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Abstract

Scientific information expresses human understanding of nature. This knowledge is largely
disseminated in different forms of text, including scientific papers, news articles, and discourse
among people on social media. While important for accelerating our pursuit of knowledge, not
all scientific text is faithful to the underlying science. As the volume of this text has burgeoned
online in recent years, it has become a problem of societal importance to be able to identify
the faithfulness of a given piece of scientific text automatically. This thesis is concerned
with the cultivation of datasets, methods, and tools for machine understanding of scientific
language, in order to analyze and understand science communication at scale. To arrive at
this, | present several contributions in three areas of natural language processing and machine
learning: automatic fact checking, learning with limited data, and scientific text processing. These
contributions include new methods and resources for identifying check-worthy claims, adversarial
claim generation, multi-source domain adaptation, learning from crowd-sourced labels, cite-
worthiness detection, zero-shot scientific fact checking, detecting exaggerated scientific claims,
and modeling degrees of information change in science communication. Critically, | demonstrate
how the research outputs of this thesis are useful for effectively learning from limited amounts of
scientific text in order to identify misinformative scientific statements and generate new insights
into the science communication process.



Resume

Videnskabelig information udtrykker menneskets forstaelse af naturen. Denne viden formidles i
hgj grad i forskellige former for tekst, herunder videnskabelige artikler, nyhedsartikler og diskurs
blandt mennesker pa sociale medier. Selvom det er vigtigt for at accelerere vores sggen efter
viden, er ikke al videnskabelig tekst tro mod den underliggende videnskab. Som maengden af
online tekst er vokset i de senere ar, er det blevet en udfordring af samfundsmaessig betydning at
kunne identificere troveerdigheden af videnskabelig tekst automatisk. Dette speciale beskaeftiger
sig med skabelsen af datasaet, metoder og veerktgjer til maskinforstaelse af videnskabeligt sprog
med henblik pa at analysere og forsta videnskabelig kommunikation i sterre skala. For at na
frem til dette praesenterer jeg flere bidrag inden for tre omrader af naturlig sprogbehandling og
machine learning: automatisk faktatjek, lzering med begraenset data og videnskabelig tekst-
behandling. Disse bidrag omfatter nye metoder og ressourcer til at identificere checkveaerdige
pastande, generering af modstridende krav, tilpasning af flere kilder til domaene, cite-worthiness
detektion, nul-shot videnskabelig faktakontrol, opdagelse af overdrevne videnskabelige pa-
stande og modellering af grader af informationsaendringer i videnskabelig kommunikation .
Slutteligt demonstrerer jeg, hvordan forskningsresultaterne fra denne afthandling er nyttige til
effektivt at leere fra begraensede maengder videnskabelig tekst for at identificere misinformative
videnskabelige udsagn og generere ny indsigt i videnskabskommunikationsprocessen.
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1 Executive Summary

Scientific knowledge is ubiquitous online, where people have access to text describing scientific
knowledge in all of its forms. These forms are heterogeneous, including scientific papers
intended for an expert audience, technical reports intended for science enthusiasts, and news
articles and social media posts intended for the general public. Science communication is the
pipeline of translation through which scientific information is disseminated at these different levels:
from higher complexity (i.e. scientific papers) to lower complexity (e.g. news and social media
posts). At the same time, the current media climate is rife with misinformation (content which is
false or inaccurate) and disinformation (content which is intentionally false or inaccurate). Mis-
and dis-informative scientific content online is equally widespread due to the misrepresentation
of scientific information through the science communication process [210, 132, 263, 180, 242,
51, 164, 224, 38, 32], which has downstream consequences on people’s behavior [135, 77, 101]
e.g. how vaccines are talked about in the media has an effect on vaccine uptake [135] and
discussions around climate change alter perceptions of efficacy around methods to address
it [101]. It is therefore a problem of societal importance to be able to combat the spread of
scientific misinformation and improve science literacy among the public.

Towards this goal and due to the sheer volume of scientific text online, the automatic
processing of scientific text using methods in natural language processing (NLP) and machine
learning is an attractive option for assisting with organizing, understanding, and analyzing it
at scale. New deep learning algorithms such as transformers [237], self-supervised learning
techniques for text such as masked language modeling [62], large repositories of scientific text
such as the Semantic Scholar Open Research Corpus (S20RC) [149], and the availability of
reliable implementations of state of the art models [251] have enabled widespread and trackable
progress on a range of important tasks in scientific language understanding. At the same time,
given the need to acquire labels in order to perform supervised training, many of the tasks for
which models perform acceptably well are relatively low complexity (e.g. determining which
words and phrases refer to a limited set of drugs and chemicals, determine the intent of a citation
in a scientific paper, which section of a paper a sentence belongs to, etc.), and limited to small
set of scientific fields. As such, there is a large gap in the field of scientific NLP addressing
machine understanding of scientific language for combating scientific misinformation.

This thesis seeks to fill this gap via the cultivation of methods, tools, and resources for
machine processing and understanding of scientific texts. In particular, I'm concerned with how
machines can be used to ensure information quality in science communication; in other words,
how to automatically detect and measure how accurate a piece of scientific information is. Prior
to the work presented in this thesis, the area of information quality in science communication was
sparsely studied in NLP, as most research in scientific NLP (including my own [259, 258, 19])
had focused on tasks related to extracting information from scientific text such as relationships
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between biomedical entities [165] and discourse strategies in scientific writing [48]. Here | will
present my work on defining tasks and building new datasets and algorithms within the area of
scientific NLP for ensuring information quality.

To arrive at this, | first contribute new resources and methods on several tasks which serve
as the bridge towards machine understanding of scientific language. As the goal is to build
tools for ensuring information quality, | first look at tasks in automated fact checking and create
new methods for check-worthiness detection and adversarial claim generation. Next, as data
availability is an issue with scientific text, | work on methods for learning with limited data
and present new models for domain adaptation, learning from crowd-sourced labels, dataset
generation, and prompt-based learning in both the general domain and science. Finally, | apply
the knowledge gained from these studies of fact checking and learning with limited data to
construct new tasks, datasets, and methods for automating the study of science communication.
As such, it will help to provide some background on each of these areas.

1.1 Automated Fact Checking

Automated fact checking is a process which can generally be broken down into three steps:
1. Claim check-worthiness detection
2. Evidence retrieval
3. Veracity prediction

Additionally, a fourth step is added in the case of explainable fact checking, namely producing a
justification [10]. Here | will provide an overview of each of these steps and datasets available
for each.

Check-Worthiness Detection Claim check-worthiness detection is concerned with identifying
claims which are worthy of being fact checked. Definitions can vary across datasets, but range
from more subjective definitions such as claims for which there is a general public interest [102]
to more objective definitions such as a claim which makes an assertion about the world that is
checkable [127]. This is presented in a number of different ways, such as identifying statements
in political debates which should be checked [23, 72] and identifying statements on Twitter which
require verification [277, 276, 274]. The task is usually studied as a first step in fact checking
separate from the rest of the process.

Evidence Retrieval Once check-worthy claims have been identified, one must then select
existing evidence which can be used to determine the veracity of those claims. This is framed as
a retrieval task from some trustworthy source, such as Wikipedia or a set of scientific documents.
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Evidence documents are assumed to be factual, thus why they must be trustworthy. Additionally,
evidence documents are necessary in order to assist in producing justifications for veracity
predictions.

Veracity Prediction The next stage is to make a prediction of the veracity of the claim given
the retrieved evidence. As such, a claim is determined to either be supported or refuted by the
evidence, or that there is not enough evidence to predict either way. The veracity prediction task
can also be performed in a late-fusion setup where evidence sentences are re-ranked during
inference in order to improve performance [151, 215].

Veracity prediction and evidence retrieval are tightly bound, so fact checking datasets tend
contain data for both. Popular early datasets for general domain fact checking include the Liar
dataset [246], which contains real world-claims from Politifact, and the FEVER dataset [230],
which is a large scale collection of manually written claims paired with evidence from Wikipedia.
Fact checking datasets are evolving constantly, such as MultiFC which is largely multi-domain [13],
FEVROUS which involves retrieving evidence and verifying claims over structured data [5], and
multiple datasets for scientific fact checking such as SciFact [239], COVID-Fact [206], and
CoVERT [163]. For a comprehensive overview of methods and datasets for automatic fact
checking, see the survey from [93].

Justification Finally, an emerging last step in the fact checking pipeline is to produce a
justification which explains the prediction. This is required in order to ensure that the prediction is
trustworthy and convince the user of the correctness of the prediction. One of the earliest works
trains a joint extractive summarization and veracity prediction model to produce justifications
for the predictions [10]. This was later followed up by work on using post-editing to improve the
fluency and coherence of these justification [118]. The survey in [93] contains a wide overview
of methods and datasets for explainable fact checking and justification generation.

1.1.1 A New View of Fact Checking for Science

One of the contributions of this work is to rethink the fact checking pipeline in the context of
scientific knowledge. The existing fact checking setup is designed to predict categorical truth
and falsehood for a given claim. With scientific claims, | argue that veracity does not fully capture
the types of subtle changes in information which are common in science journalism [224, 38,
77,132, 263, 180, 242, 51, 164, 32]. As | will demonstrate in Chapter 8 and Chapter 9, we can
reframe the problem with at least the following two steps:

1. Identify texts which discuss the same information

2. Measure how that information changes between those two texts



Step 1 is similar to the evidence retrieval component of automatic fact checking, and step 2 is
similar to the veracity prediction stage, however they are generalized and decoupled from the
notion of veracity. This opens the door to defining different types of information changes one is
interested in measuring (e.g. one sentence exaggerating another). The other two stages of the
fact checking pipeline, namely check-worthiness detection and justification, can also be included
in this framework.

Check-worthiness can be included as is, but redefined towards predicting which scientific
statements should be compared to the scientific literature. This is equally as subjective as the
general domain version of the task, and is likely something that should be performed in tandem
with humans in order to select the most salient scientific claims. The final step, justification, is a
critical step in explainability which should be explored in future work. Namely, once one identifies
statements describing the same information and measures how the statements differ, it is critical
for a system to justify and explain exactly how those differences appear in text. In fact, an
ideal system would be able to match scientific statements describing the same information, and
simply explain in natural language how those statements differ, while at the same time binning
statements into different classes of interest for the sake of triaging different types disinformation
strategies e.g. exaggeration, cherry-picking data, changes in degree of certainty, etc. This
would then enable new technologies where the average user browsing on the internet could
have scientific misinformation automatically flagged for them, with an explanation of how the
information they read online differs from what the source scientific literature says. Additionally,
this could help improve science journalism by providing journalists with a tool to proof-read
their articles and identify critical changes in their messaging which deviates from the scientific
literature.

1.2 Learning with Limited Data

NLP has been seeing rapid progress in terms of the generalizability of models in recent years.
Up until a few years ago, the dominant paradigm in NLP was to annotate large corpora for
individual tasks and train a specialized model (generally an LSTM [106] or a transformer [237])
on that specific task or a set of highly related tasks. With the advent of ever-inflating transformers
pre-trained in a self-supervised fashion with different flavors of language modeling [62, 192],
models have become more general purpose and able to learn complex tasks with significantly
less labeled data than previously. Here, | will focus on three areas which | make contributions
to in this work for learning from limited labeled data: transfer learning, domain adaptation, and
few-shot learning.

Transfer Learning Transfer learning is ubiquitous in the field of NLP currently. The major shift
to transfer learning approaches in NLP started with the works of EImo [182], ULM-FiT [112], and



BERT [62]. The basic idea is simple: starting with a suitably large network, train the weights of
this network on a massive corpus of general purpose text in a self-supervised fashion. Then,
fine-tune this model on tasks of interest using labeled data. The main self-supervised learning
techniques used are auto-regressive language modeling, where a model is trained to predict the
next token in a piece of text given all of the previous tokens, and masked language modeling
(MLM), where, given a piece of text, mask out some percentage of tokens in that text and try
to predict the missing tokens. The large pre-trained language models resulting from this type
of training can be used to achieve state-of-the-art performance on a large array of tasks with
less labeled data than previous methods [62, 148]. | make extensive use of large pre-trained
language models in this thesis to help alleviate the need to employ massive amounts of labeled
data for the scientific tasks | work on while still achieving reasonable results. Additionally, they
form the foundation of the methods and models | develop throughout this thesis.

Domain Adaptation Domain adaptation is a form of transfer learning where the goal is to
generalize to data from distributions lying outside that of the training data. Domain differences
in text can occur in various ways, from differences in the subject or topic of different texts to
texts that are in completely different languages. Approaches generally fall into three categories:
supervised approaches (e.g. [56, 76, 134]), where both labels for the source and the target
domain are available; semi-supervised approaches (e.g. [66, 261]), where labels for the source
and a small set of labels for the target domain are provided; and lastly unsupervised approaches
(e.g. [31, 80, 225, 146]), where only labels for the source domain are given. Additionally, different
approaches exist in the single-source setting, where data in only one source domain is available,
versus the multi-source setting, where data in multiple source domains is given [271]. Common
methods in NLP for domain adaptation include domain adversarial training [80], pivot-based
methods [273], progressive language model fine-tuning [94], and mixture-of-experts [92].

For scientific text, domain adaptation is especially difficult given the stark differences in
the language used between scientific domains. The definition of a domain is also particularly
tricky — even within the same academic field, say medicine, researchers working on different
topics employ vastly different language, oftentimes even for the same concepts [33]. Additionally,
researchers in different fields have vastly different needs. For example, a common task in
biomedical NLP is relation extraction for the construction of knowledge bases [248], but each
sub-discipline has its own particular set of entities and relations that they care about [19]. At
the same time, annotating scientific text is highly expensive and time-consuming given the
need for domain expertise and the technical nature of science. As such, it is highly beneficial
to be able to generalize across domains. Part of this thesis will focus on domain adaptation,
in particular multi-source domain adaptation with large pre-trained transformers and building
structural scaffolding datasets with scientific text to improve transfer learning to new tasks.

These approaches are promising for two reasons. First, labeled data for scientific text
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tasks tend to be available for a few popular research areas, including medicine, biology, and
computer science. It makes sense to investigate multi-source domain adaptation in order to
leverage all available data to generalize to sparsely annotated scientific fields. Second, structural
scaffolding tasks are generally much easier to acquire data for as they are acquired automatically.
Scaffold tasks are weakly-supervised tasks where data is acquired via the structure of scientific
documents and which help improve the generalization of models on tasks involving scientific
texts [48]. Examples of scaffolding tasks include predicting the section of a scientific document
where a piece of text resides and predicting whether or not a sentence should have a citation.
As the training label is embedded in the structure of the document, massive corpora can be built
cheaply and lead to gains in performance across tasks, as we will show in Chapter 6.

Learning From Crowd-Sourced Labels One method commonly used to acquire a large
amount of annotations for a problem relatively cheaply is to employ crowd annotators on
platforms such as Amazon Mechanical Turk to provide such annotations. While this is useful on
extremely well-defined tasks, it is very difficult to acquire many high quality labels from crowd-
workers for science. As such, one generally makes a tradeoff between annotation abundance
and cost in order to acquire high quality labels from experts in science [69, 65, 248].

In order to gain the most from these crowd annotations, recent work has looked into how to
learn from them directly without selecting one single ground-truth label for a given sample [235].
The work of [183] was one of the first, which demonstrated that learning directly from crowd
annotations treated as soft-labels using the softmax function leads to better out of distribution
performance in computer vision. This line of work has been followed by [234] and [78] in NLP,
looking at the use of the KL divergence as an effective loss on the soft labels. The survey of
[235] provides an extensive set of experiments on different methods for learning from crowd
labels on a vast array of datasets. This is a potentially attractive option for scientific text in
order to improve generalization from a limited set of crowd-annotations, which are expensive
to acquire. In Chapter 5, | develop new methods for learning from crowd annotations, and
demonstrate their efficacy on a number of tasks and datasets for out-of-domain performance,
including with scientific text.

Prompt-Based Learning In some cases, labeled data is either completely unavailable or it is
prohibitively expensive to acquire a large enough set of labeled data to effectively train a model
directly. Few-shot learning is an area of study in machine learning where the goal is to develop
methods which generalize well from a highly limited set of labeled data. The area of few-shot
learning investigated in this thesis for scientific text is prompt-based learning.

Prompt-based learning seeks to leverage language model pre-training for generalization.
As such, the two widely used flavors of prompt-based learning are prefix prompting and cloze



prompting [147], reflecting the two major forms of language model pretraining used today. The
core idea behind both methods for classification is the same: instead of solving a classification
problem P(y|z), where x is the input and y is one of a discrete set of labels, solve the problem
P(V(y)|p(z)), where p(x) is a function which transforms the input = by inserting one or more
tokens into x, with at least one token being a masked out token, and V' (y) maps the label y to
one or more tokens in the language model’s vocabulary. Then, instead of learning a completely
new classifier over a new label space, one can use the classifier which was trained over the
model’s vocabulary during language model pretraining and transform the classification task into a
language modeling task, where P(V (y)|p(z)) is a prediction over the tokens V' (y) in the masked
positions of p(x). In this, the model has presumably learned useful patterns from the much larger
pretraining corpus which can be transferred to the downstream classification task, provided
the functions p(x) and V (y) are suitably reflective of the classification problem, particularly with
respect to the language model being used.

As a concrete example, consider the problem of sentiment analysis of movie reviews. Given
input x = “l was on the edge of my seat!” and label y = “[POSITIVE]”, y € { [POSITIVE] ,
[NEGATIVE] }, we can define p(z) to be a function which takes input = and produces output
“Ix]. The movie is [MASK]” and V' (y) to be a function which takes our discrete label y and
selects a token V(y) € {“good”, “bad”} which we will train the model to predict in the position
of the “[MASK]” token. In this case, we would hope that the model would predict “good” in
the position of the “[MASK]”, and that language model pretraining would provide a suitable
initialization such that this can be fine-tuned with much fewer examples than training a classifier
from scratch over the original input (in a large enough pretraining corpus, the language model
has potentially seen similar examples associating “being on the edge of one’s seat” as “good”
in the context of film or other media). This style of prompt-based learning was popularized in
the works of [213, 212]. Recent directions for prompt-based learning include automated prompt
searching [217], automated verbalizer searching [212], learning soft prompts [155], and learning
from multiple prompts [116].

Prompt-based learning presents a promising direction for scientific text understanding, as it
both alleviates the need for labeling large corpora and allows for the injection of expert knowledge
into the classification problem. One of the core challenges is determining useful prompts and
verbalizers for a problem; models can be highly sensitive to the selection of patterns and label
verbalizations [212]. The choice of model can also vastly change the optimal prompts for a given
problem. As such, there is a tradeoff between the expense of annotating corpora for scientific
text tasks and the time needed to train an appropriate language model and engineer or learn
prompts which would reduce this expense while still providing acceptable performance. | will
demonstrate in Chapter 8 that this is possible on the scientific text task of predicting exaggeration
in science communication with as few as 200 training samples. However, | would argue that
more work is needed in the direction of prompting for scientific text, particularly for determining
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which corpora are suitable for pretraining on which tasks, and how domain knowledge can be
appropriately applied for a given task.

1.3 NLP for Science

While significant progress has been made in NLP in recent years, much of the progress is
restricted to a narrow domain of general text which does not require deep understanding
of complex topics or jargon typical to much of science. Scientific text processing requires
specialized datasets and resources for performing the various tasks one would wish to perform
on scientific text. Additionally, specific scientific fields often require individualized resources, as
each field has its own idiosyncrasies and jargon which aren’t represented in or representative of
other fields [33].

Much work on scientific NLP focuses on tasks relevant to the research community but
not necessarily the general public. These tasks include named entity recognition (NER) and
entity linking of biomedical concepts such as diseases and chemicals [65, 259], as well as
relation extraction to extract associations between these concepts [248]. Tools to perform these
tasks are indeed useful: the construction of knowledge bases using automated tools can help
researchers quickly organize a field of literature, offsetting the cognitive load required to perform
their research and assist in the discovery of e.g. drug treatments for a novel disease. Similarly,
a popular NLP task for scientific text is the summarization of scientific papers [262]. The goal
is to produce a concise summary of a paper which is easily consumable by a researcher in
that field. The task is learned by training a generative model e.g. BART [138] to produce the
abstract of a paper given the paper full text. More recent work has sought to build datasets and
models for generating meta-summaries which ingest multiple documents on a particular topic
and produce a summary of the major findings on that topic [63]. Finally, a variety of classification
tasks over scientific texts exist, including citation intent classification [119, 48] and paper field
prediction [26]. However, in this work | am concerned with machine understanding of scientific
language more broadly than solely academic papers.

For the interface between scientific literature and lay text, recent work has begun to investigate
tasks such as lay summarization [45] and scientific fact checking [239, 206, 163]. The goal of
lay summarization is to simplify complicated scientific literature and generate summaries which
a lay person can understand. This is both a difficult linguistic task and also important for making
the findings of science accessible to the general public. Another task at the interface of papers
and the pubilic, scientific fact checking is focused on the veracity of scientific information. The
problem has been studied both on synthetic data derived from scientific abstracts [239] and on
real-world claims sourced from various social media websites [206, 163]. The task is difficult, as
it requires models for both information retrieval and entailment prediction, the difficulty if which is
exacerbated by the complexity of scientific language.
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Figure 1.1: We are interested in measuring the information similarity of statements about
scientific findings between different sources, including scientific papers, news, and tweets,
shown here with real examples. The finding in this figure comes from [73] and the news quote is
from [195].

This thesis addresses three gaps in the literature around scientific text understanding. The
first is that information quality in science goes beyond veracity. While categorical falsehoods do
exist in science communication, and it is important both as a semantics problem as well as for
public well being, categorical falsehood only addresses one type of scientific misinformation. In
practice, more subtle distortions such as exaggeration and hedging permeate science communi-
cation, and this has an impact on people’s behavior [224, 38, 253, 252, 95, 77, 135]. Even well
intentioned science communicators are prone to these distortions, as the quotes in Figure 1.1
demonstrate. Here, | present a new paradigm with which to view the scientific misinformation
problem in NLP: as one where we wish to identify the degree to which scientific statements are
different and what those differences are.

The second gap | address is that the majority of works on scientific language understanding,
particularly for ensuring information quality, ignore most of the text of scientific papers. Most
works will use paper abstracts as sources of claims and evidence to perform fact-checks
against [239, 206, 163]. While the abstract provides presumably the most salient information in
a scientific article, tasks which focus solely on paper abstracts will fail to capture the more subtle
pieces of information in an article such as caveats to findings and limitations, a well documented
phenomenon for journalists as well [77]. In Chapter 9 | will obviate the need to ingest the full texts
of papers for fully understanding scientific language and the science communication pipeline.

The third gap | address in this thesis is that the majority of existing work around scientific
information quality is narrow in scope. Popular datasets for scientific fact checking and sum-
marization, including [239], focus largely on biology and medicine. Additionally, they restrict
themselves to just scientific papers or just scientific papers and one other domain (e.g. Red-
dit [206], Twitter [163], etc.). | present work in this thesis (particularly, Chapter 9) which broadly



Sentence 1 Sentence 2
The polar bear is sliding on the A polar bear is sliding across the

sSnow. sSnow.
A plane is taking off An air plane is taking off

A dog rides a skateboard A dog is riding a skateboard
A man is playing the drums A man plays the drum

Table 1.1: Samples of sentence pairs in STSB which have a similarity score of 5

covers three stages of the science communication pipeline (papers, news, and Twitter) and four
scientific fields (medicine, biology, computer science, and psychology). Additionally, | argue
that this is necessary in the context of ensuring information quality in science and machine
understanding of scientific language in general, as it is important to build tools which are robust
across fields of research and level of complexity for the sake of increased public good.

1.4 Machine Understanding of Scientific Language

The core problem explored in this thesis is how to enable machine understanding of scientific
language. In particular, I'm concerned with how machines can understand what information
is expressed in a scientific sentence, and how to determine the degree to which two scientific
sentences express the same information. As a preliminary, it is important to explicitly define what
| mean by scientific information. Scientific information is expressed through scientific findings,
where a scientific finding has the following definition:

Definition 1.1 A scientific finding is a statement that describes a particular research output of a
scientific study, which could be a result, conclusion, product, etc.

This general definition holds across fields; for example, many findings from medicine and
psychology report on effects on some dependent variable via manipulation of an independent
variable, while in computer science many findings are related to new systems, algorithms, or
methods. The goal is to be able to build systems which can help analyze and improve science
communication through automatic processing of scientific findings, a critically important topic
which has large impact on both people’s behavior and public policy [167, 135].

There are several core challenges on the path to this goal. First, what tasks are necessary in
order to achieve it? As discussed in Section 1.3, there are several existing tasks in scientific
NLP. Information extraction can potentially help, but the information measured in these tasks
are explicit entities and relations, which would potentially require defining and building labeled
datasets for each type of relation which expresses a scientific finding we would be interested
in. The task of automatic fact checking [230] (and indeed the scientific version of it [239]) is
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Sentence 1

Sentence 2

Higher-income professionals had
less tolerance for smartphone use
in business meetings.

We are intrigued by the result that
professionals with higher incomes
are less accepting of mobile phone
use in meetings.

If we allow people to retract recently
posted comments, then we may be
able to minimize regret from posting
in the heat of the moment.

Allowing users to retract recently
posted comments may help mini-
mize regret .

Papers with shorter titles get more
citations #science #metascience
#sciencemetrics

Our analysis suggests that papers
with shorter titles do receive greater
numbers of citations.

Low levels of self-esteem and poor
emotional processing skills were sig-
nificantly correlated with gang in-

Major findings also indicated that
low levels of parental monitoring,
poor parental communication and

volvement, as were low levels of
parental monitoring, poor parental
communication and housing insta-
bility.

housing instability were significantly
associated with gang involvement.

Table 1.2: Samples of sentence pairs in SPICED (Chapter 9) which have a matching score of 5.

perhaps a better place to start, though it is concerned with a very specific type of information
change: veracity. While it is important to be able to measure when one scientific statement is
contradicted or supported by another, in practice the types of information changing between
different utterances of the same finding tend to be more nuanced and not necessarily categorical
falsehood [224, 38, 253, 252]. It would seem that a more broad notion of information change is
needed in order to achieve the goal of this work.

A promising line of work to emulate is semantic textual similarity (STS) [44, 81]. Here, the
goal is to measure how similar are the meanings of two pieces of text, measured as a scalar
from 1-5. Some examples of what would be considered highly similar sentences in a typical
STS task (from STSB [44]) are given in Table 1.1. Here we see a very strict notion of similarity:
for a pair to be highly similar, the entire meaning of the sentence must be preserved from one
sentence to the other. While closer to the type of information change concerned with in this work,
this definition of similarity is too restrictive to be useful in the context of scientific information. As
described in Definition 1.1, a finding is an expression of a research output. In this, the salient
information relates to what is said about the research output, so some information in a piece of
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text may change the semantics of the text but not what is meant by the finding. Consider the
following sentences:

Sentence 1: The study showed that increased dietary sugar led to weight gain in
humans.

Sentence 2: “If a person eats more sugar, they’ll gain more weight,” said the
researchers.

The meaning of these two sentences is slightly different, but the information in the findings is
equivalent. This is further demonstrated in real examples from the dataset | present in Chapter
9, shown in Table 1.2. Given this, STS is a good starting point if we can modulate the task to
focus solely on the information in the scientific findings.

This thesis will build up to and ultimately define the task of measuring scientific information
change, as well as develop and evaluate different ways of modeling and learning it. Prior to
this work, this framing of the problem of scientific misinformation was not defined, and the most
related work came in the forms of automatic fact checking [230] and causal claim strength
prediction of scientific statements [265, 266, 143]. Because of this, | will ask several questions
in this thesis: what tasks are relevant for understanding scientific language and how do we
define them? How do we collect data for these tasks? How do we evaluate them? How do we
model and learn them? | tackle these questions systematically in the following way, initially using
existing datasets and tasks and eventually building new methods and datasets to achieve the
goal of scientific language understanding for ensuring information quality:

General Domain Fact Checking | first present novel solutions to problems in general domain
fact checking (Chapter 2 and 3). This includes predicting when statements should be fact
checked, as well as generating adversarial inputs for fact checking models in order to evaluate
their robustness.

Modeling and Dataset Creation for Scientific Text Tasks | next investigate several problems
related to dataset creation and modeling for scientific tasks. This is predicated on the fact that
dataset creation with scientific text is both expensive and time consuming [239, 224, 38], and
as such, datasets for scientific tasks tend to be small and/or difficult to acquire. Additionally,
one generally must acquire data for each scientific field and target task of interest [65, 259, 239,
206, 163, 248, 130, 262, 63, 45]. To alleviate some of these problems, with an eye to building
up new datasets for the tasks required for scientific language understanding and measuring
information change, | present contributions to domain adaptation (Chapter 4), learning from
noisy crowd-sourced labels (Chapter 5), automatic dataset generation (Chapter 7), and few-shot
learning (Chapter 8).
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Towards Scientific Language Understanding Finally, | define, model, evaluate, and analyze
several tasks in scientific language understanding, in particular with respect to measuring infor-
mation change. For this | look into existing tasks such as cite-worthiness detection (Chapter
6) and scientific fact checking (Chapter 7), curate better evaluation data and develop models
for the task of detecting exaggerated scientific statements (Chapter 8), and define and build a
comprehensive dataset for the new task of measuring information change in science communi-
cation (Chapter 9). In addition, | demonstrate how the dataset and models built in Chapter 9 can
be used to help both with other tasks in scientific language understanding and with analyzing
science communication broadly.

In the following sections, | will break down and summarize each of these components and
how they contribute to the goal of machine understanding of scientific language.

1.4.1 General Domain Fact Checking

As a part of automatically ensuring information quality in science, | develop new methods for
ensuring information quality in general domain texts. For this, | work on two important issues
in fact checking: detecting when a claim should be fact checked (Chapter 2) and fact checking
model robustness against adversarial attacks (Chapter 3).

As the first step in automatic fact checking, check-worthiness detection involves determining
if a statement “makes an assertion about the world that is checkable” [127]. This step is useful
both for further processing by machine learning models to determine veracity as well as for
notifying fact checkers of information worthy of a fact check. In this work, | use the observation
that this is a highly subjective task [127] to hypothesize that while samples labeled as positive
are likely true positives, not all negative samples are true negatives. As such, | experiment
with positive unlabeled (PU) learning for the check-worthiness detection task on three datasets:
Wikipedia citation needed detection, rumor detection on Twitter, and political speech check-
worthiness detection. | find that while PU learning is helpful for Wikipedia and Twitter, it is
detrimental to performance in the political domain, noting some inconsistencies in the labeling
of that dataset. This work and the observations made become some of the basis for the work
| perform on check-worthiness in science in the form of cite-worthiness detection: the task of
identifying scientific sentences which require a citation.

The second general domain fact checking task | investigate is adversarial claim generation.
Adversarial claims are deceptive model inputs designed to mislead an ML system into making
the wrong prediction. Its important to reveal such system vulnerabilities in order to correct them,
especially for fact checking systems where an adversarial claim can trick a model into predicting
a false claim is true. In this work | explore universal adversarial triggers — single tokens which can
be prepended to a wide range of inputs to force a particular model prediction to be changed in a
certain direction (e.g. “SUPPORTS” to “REFUTES” in a fact checking model) [82]. The primary
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issue with these types of attacks is that they tend to truly flip the input label (e.g. prepending a
negation word such as “None” in order to flip a supported claim to a refuted claim) and make
the input nonsensical. To address this, | introduce a secondary objective in the adversarial
trigger search which optimizes the semantic textual similarity of the original claim and adversarial
claim. To ensure the coherence of the adversarial claim, | additionally introduce a generation
component using GPT-2 [192] which is trained to include the trigger token in the output claim.
Combining these two modules for adversarial claim generation results in more robust adversarial
claims which are coherent and don't trivially flip the original label of the claim.

1.4.2 Learning from Limited Data

The next part of this thesis presents several contributions in the area of building and utilizing
datasets for scientific language understanding tasks in the presence of limited data. The methods
presented are general and applicable to a wide range of machine learning and NLP tasks, so
| evaluate them on both general domain and scientific text. The methods | build are in the
following areas of machine learning:

» Domain adaptation
* Learning from crowd-sourced data
» Generation

» Few-shot learning

Domain adaptation In Chapter 4 | present work on using large pre-trained transformer models
to perform multi-source domain adaptation (MSDA). The main idea behind MSDA is to leverage
data for a particular task but drawn from disparate modes of the underlying distribution in order
to perform inference on a target mode of data for which no training labels are available (see
Figure 1.2). Examples of these different modes are different types of products in the case of
reviews on Amazon or different fields of study in the case of scientific text. Domain adaptation is
relevant to scientific language understanding due to the cost of obtaining high quality human
annotated data in science. If we can make better use of less data and already existing data, we
will have made progress towards improving NLP for science.

The particular methods | explore in this work are mixture-of-experts techniques and domain
adversarial training [92, 80]. The idea behind mixture-of-experts is to train individual models on
particular domains and subsequently learn how to mix their predictions for the target domain.
This is based on the hypothesis that some domains are more relevant than others for the target
e.g. the language used in medicine is more similar to the language used in biology than in
computer science, therefore a model trained on biology texts will be more relevant than one
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Figure 1.2: In multi-source domain adaptation, a model is trained on data drawn from multiple
parts of the underlying distribution. At test time, the model must make predictions on data from
a potentially non-overlapping part of the distribution.

trained on computer science texts. Domain adversarial training on the other hand aims to induce
a more uniform internal representation of data across domains such that the representations
of data in the target domain are similar to the representations of data in the source domains.
The net effect of this is that the classifier trained on source domain data generalizes better to
target domain data, as the target domain data appears to lie within the distribution of data that
the model was trained on.

| examine how mixture-of-experts and domain adversarial training can be effectively utilized
with the current dominant large pretrained transformer models in NLP. | do so with several
different types of mixing strategies, from simple ensembling to a learned attention mechanism,
as well as including or excluding domain adversarial training. | find in this work that while
simple ensembling provides some gains in performance across tasks, more complex mixing
strategies provide no gain in performance. An analysis of the predictions of each individual
domain expert reveals that these large transformer models learn highly homogeneous classifiers
for a particular task despite being trained on completely different data, helping to explain the
result that complex mixing functions provide no gain in performance. Additionally, | find that
while domain adversarial training does indeed induce a more uniform representation in a given
model, this does not translate into improved generalization to target data.

Learning from Crowd-Sourced Data In Chapter 5, | propose new methods for learning from
crowd annotations treated as soft-targets that confer more robust performance in the out-of-
domain setting across a number of tasks. This is based on the fact that selecting an effective
training signal for tasks in natural language processing is difficult: collecting expert annotations

15



is expensive, and crowd-sourced annotations may not be reliable. Recent work in machine
learning has demonstrated that learning from soft-labels acquired from crowd annotations can
be effective [234, 78, 235, 183] especially when there is distribution shift in the test set [183].
However, the best method for acquiring these soft labels is inconsistent across tasks.

To address this, | propose new methods for acquiring soft-labels from crowd-annotations by
aggregating the distributions produced by existing methods. In particular, | propose to find a
distribution over classes by learning from multiple-views of crowd annotations via temperature
scaling and finding the Jensen-Shannon centroid of their distributions. | demonstrate that using
these aggregation methods leads to best or near-best performance across four NLP tasks on out-
of-domain test sets, mitigating fluctuations in performance when using the constituent methods
on their own. Additionally, these methods result in best or near-best uncertainty estimation
across tasks. | argue that aggregating different views of crowd-annotations as soft-labels is an
effective way to ensure performance which is as good or better than the best individual view,
which is useful given the inconsistency in performance of the individual methods.

Generation | next propose novel methods for dataset generation in the context of scientific fact
checking in Chapter 7. Again due to the cost of annotation for scientific text tasks, one attractive
option is to leverage existing data in order to automatically create new data with which to train
models. One of the primary datasets for scientific fact checking, namely SciFact [239], is one
such dataset in which human experts were required to manually write claims and pair them with
ground truth statements from scientific abstracts which either support or refute those claims.
In this work, | explore how the existing data in SciFact can be used to automatically generate
new training data both in an unsupervised and supervised fashion. | find that both methods are
effective, as training data generated using both can be used to train a model to within 90% of
the performance of a model trained on manually written claims on the veracity prediction task of
scientific fact checking.

Few-shot Learning Next, | develop methods for few-shot learning evaluated on the nascent
task of scientific exaggeration detection (Chapter 8). Few-shot learning is an area of study
which aims to achieve as much generalization as possible from as little data as possible. The
particular area of few-shot learning explored in this work is prompt-based learning with large
pretrained language models. For this we develop multi-task pattern exploiting training (MT-PET),
a multi-task version of pattern exploiting training (PET) [213, 214].

As discussed in Section 1.2, the core idea behind PET is to transform a classic supervised
learning task, in which the goal is to learn a classifier which produces a probability distribution
over K classes for a given input, to a cloze-style question answering problem which can make
effective use of masked langauge model (MLM) pretraining. In this, one engineers a “prompt” for
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Figure 1.3: MT-PET design. We define pairs of complementary pattern-verbalizer pairs for a
main task and auxiliary task. These PVPs are then used to train PET on data from both tasks.

their input data with one or more tokens in this prompt masked, and the classification task is
to predict the appropriate token in the language model’s vocabulary which would fill the mask
token in the prompt. These tokens are explicit verbalizations (a.k.a verbalizers) of the classes
which the model should be trained to predict.

With PET, one defines prompts and verbalizers for the single task one wishes to solve. In
Chapter 8 | develop MT-PET (see Figure 1.3), a multi-task version of this which can leverage
prompts and verbalizers from complementary tasks to the main task one wishes to perform.
The hypothesis is that some transfer learning may occur between similar tasks (e.g. semantic
textual similarity and natural language inference), and thus having complementary patterns and
verbalizers when training PET and using all of the training data from both tasks should help with
few-shot learning. Indeed | find that MT-PET does help for the task of scientific exaggeration
detection when using the complementary tasks of detecting exaggerated statements and
detecting the causal claim strength of a statement with as few as 200 samples from each task.

1.4.3 Tasks in Scientific Language Understanding

Finally, | contribute to a number of tasks in scientific language understanding, culminating in a
new task and dataset on measuring information change in science across different media. The
tasks explored in this thesis are the following:

17



« Cite-worthiness detection

Scientific fact checking

Scientific exaggeration detection

» Modeling information change in science

Cite-worthiness detection | first present new data and models for cite-worthiness detection
(Chapter 6). The task of cite-worthiness detection is: given a statement from a scientific paper,
predict if that statement should have a citation i.e. that it requires external evidence in order to
be validated. This task is similar to the check-worthiness detection tasks examined in Chapter 2.
Additionally, as a structural scaffold it is easy to acquire large amounts of data for this task.

For this work, | observe that existing datasets for cite-worthiness are limited in size, limited
in the number of domains studied, have high class imbalance, and are low-quality in terms
of dataset cleanliness [223, 29, 75, 74]. In response to this, | develop CiteWorth, a large,
rigorously curated, and high quality dataset for cite-worthiness detection across 10 scientific
domains. CiteWorth contains over 1.1M sentences, of which 300K are cite-worthy and 800K are
non-cite-worthy. Additionally, | develop a strict set of rules for curating and cleaning cite-worthy
sentences such that the vast majority of trivial markers of possible citations are removed. The
dataset is also contextualized — data is collected at the paragraph level, such that all surrounding
context within a paragraph is available for each sentence.

| perform several baseline experiments on CiteWorth, finding that including context sentences
can improve cite-worthiness detection by 5 points in F1 score. | additionally perform a domain
analysis to show that CiteWorth is useful in the study of domain adaptation for scientific text as
there exists strong differences in representations and cross-domain performance for different
fields. Finally, | show that pre-training on the cite-worthiness detection task provides gains on
several downstream tasks in scientific text understanding tasks, providing further evidence for
the usefulness of scaffolding tasks in scientific NLP [48].

Scientific fact checking The next task | look into is scientific fact checking (Chapter 7).
Scientific fact checking consists of the following: given a scientific claim ¢ and a corpus of
scientific abstracts D, retrieve evidence abstracts from D and predict if ¢ is either supported or
refuted by those documents, or if there is not enough information to make a prediction. Several
datasets have been introduced for this task (e.g. [239, 206, 163]). | focus here on the SciFact
dataset [239], which is manually created.

The fact checking task is relevant in the context of combating scientific misinformation, but
data is difficult to acquire. The SciFact dataset is built by having domain experts manually write
scientific claims based off of findings described in scientific abstracts. These claims are then
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paired with source abstracts and sentences which support the claim. Negative instances are also
created manually, where annotators manually rewrite claims to be contradicted by the source
abstract. This is an expensive and time-consuming process, resulting in a somewhat small
dataset (~1,400 claims). Given this, | build and test new methods for scientific fact checking
dataset generation, achieving competetive performance on veracity prediction with no manually
labeled samples.

Scientific fact checking addresses veracity, which is an important type of information change
to model. As such, datasets such as SciFact are good starting points for building tools to combat
scientific misinformation, but they are limited in scope both in terms of covering the types of
misinformation that appear in science and in covering scientific language beyond academic
papers. The next works | present are attempts to go beyond veracity and beyond solely scientific
literature, to propose a different paradigm with which to think about and examine the problem of
automating the process of ensuring information quality in science.

Scientific exaggeration detection As a first step, | present work on scientific exaggeration
detection in Chapter 8. Similar to scientific fact checking, one of the goals of performing
exaggeration detection is to combat scientific misinformation online and flag particular types of
information change between statements made in source scientific literature and popular media.
Exaggeration is one of the well documented issues in science communication [224, 38].

While an important issue, little data was available for training machine learning models on
this task prior to our study, and the problem had mostly been studied in NLP as one of detecting
the causal strength of scientific claims as opposed to directly measuring differences in this claim
strength [265, 266, 143]. One of the goals of this work was to present a study which used real
world data one would find in the wild, as opposed to artificially created data. Therefore, as a first
step, | curate existing data from various studies on exaggeration in science communication into
a comprehensive test set and small training set, necessary for measuring model performance
and progress on the task.

The dataset comes from the studies in [224] and [38], where domain experts manually
label the primary findings as described in scientific papers and press releases along with their
causal claim strength. Overall | curate 100 pairs of findings from papers and press releases
for training and 553 pairs for evaluation. As the training dataset is small, | develop methods for
prompt-based learning for this task, and demonstrate that one can achieve moderate levels of
performance with only the 100 training instances in the data.

Modeling information change Finally, | address the problem of modeling general information
change in scientific findings between different media. This task is inspired by the fact that
no comprehensive dataset had existed for the basic task of pairing together sentences which
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describe the same scientific findings. This is a necessary step if one wishes to make comparisons
between how scientists and the media describe scientific findings, in order to analyze this
communication and provide indications of where such communications fail.

To address this gap, | build a dataset of paired scientific findings labeled with the degree
to which the two findings describe the same findings using a 5-point scale which | call the
Information Matching Score (IMS). Some examples of paired findings with a matching score of 5
are given in Table 1.2. The dataset, namely the SCIENTIFIC PARAPHRASE AND INFORMATION
CHANGE DATASET (SPICED), is built by first pairing together potential scientific findings as
presented in scientific papers, news media, and Twitter using SentenceBERT (SBERT) [197],
then presenting the potential pairs to human annotators. The Prolific platform! is used in order to
hire domain experts in the scientific fields represented in the data: medicine, biology, psychology,
and computer science. After constructing the dataset and ensuring the data is high quality, |
train several baseline models and benchmark their performance, finding that SBERT models
fine-tuned on SPICED are best suited to the task.

Next, | show how models trained on SPICED are beneficial for multiple downstream applica-
tions. First, | show how models trained on SPICED perform significantly better on the task of
evidence retrieval for scientific fact checking, despite differences in the domain and source of
scientific claims. Then, | perform several large scale analyses of science communication using
models trained on SPICED as well as the exaggeration detection dataset from Chapter 8. | make
three primary observations in this analysis:

1. General news outlets systematically express higher information change than press releases
and science and technology news outlets.

2. Verified users and users with more followers express higher information change on average
than organizational accounts.

3. Findings as expressed in the limitations sections of papers tend to be exaggerated more
in the media.

Importantly, | show that models trained on SPICED can be used to reveal large scale trends in
science communication, making the dataset and models useful for answering new research
questions about how the message of science changes across media. These results also show
that one shouldn’t ignore the full-text of a paper when analyzing science communication, as
stark differences exist between different sections of a paper in terms of how the message can
change. These results and resources represent a new way to think about and study the problem
of scientific misinformation.

Thttps://www.prolific.co/
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1.5 Towards Scientific Language Understanding

The components of this thesis culminate into the first study on information change in science
communication within natural language processing. As an entry point to building tools for
combating scientific misinformation, | first develop new methods for general domain fact checking
and scientific fact checking given the availability of data. | then contribute tools for modeling and
dataset creation in order to assist with building new resources for new tasks in scientific language
understanding. | gradually build upon various tasks in scientific language understanding,
ultimately defining information change as an important and useful task for automatically analyzing
scientific texts at all stages of the science communication pipeline. At the same time, there is
still much work to be done in order to improve datasets, methods, and problem formulations for
ensuring information quality in science communication.

1.5.1 Datasets

The datasets developed in this thesis, while demonstrated to be useful, are still rather limited
in size. The dataset presented in Chapter 8 consists of only 653 samples, and the dataset in
Chapter 9 only 6,000. Additionally, they have limited scope, covering only the most popular
scientific disciplines. As such, more resources should be invested in building larger and more
comprehensive datasets for these tasks; in particular, most of those resources should be
invested in developing difficult test sets. In my view, the main need for more data is in order to
track progress on these tasks as opposed to developing more accurate models. We should follow
the current trend in NLP and machine learning to build models and methods which require less
training data in order to mitigate the expense of annotation and collection of data. It therefore
makes more sense to invest more resources into making difficult testing data covering a broad
range of fields, topics, and tasks.

1.5.2 Methods

In line with the need for larger testing data, new methods should be created for working with
limited scientific training data. Massive language models the likes of GPT-3 [39] are capable
of impressive few- and zero-shot performance on general domain text. Given the training sets
available in popular scientific domains, one avenue of research could be to first determine how
to insert appropriate domain knowledge in a prompt-based fashion to perform well on those
domains, as well as to explore how to develop prompting methods which transfer across domains.
Those practices could then be applied to new scientific domains and tasks, where the main
expense would come from hiring experts to develop small sets of prompts as opposed to hand
annotating large training sets.
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1.5.3 Problem Formulations

The problem formulation presented in Chapter 9 poses measuring information change between
scientific sentences very generally. This is useful for revealing trends in science communication
with very broad strokes. For example, we can ask research questions such as “to what degree
do different organizations change the message of science?” and “how do different social factors
affect degree of information change?”, which are answerable with sufficiently large sets of
unlabeled data.

Narrowing down the specific types of information change and strategies used by organizations
is a different story. In the current formulation, one can narrow down the types of information
change in a pipeline fashion, first by matching findings (considering a matched pair to be one
where the IMS exceeds a certain threshold) and then performing a second analysis (human
or machine) to identify what information changes between the pair. This is the setup used in
Section 9.6.3 to determine what sections of a scientific paper tend to be overstated. The problem
in this setup is: what types of information change do we care about measuring? Certain types
of information change have been identified as being prevalent in science communication [224,
38, 77], but as of now there isn’t a central resource defining all of them. | would argue that an
important next step in building tools for measuring information change in science is to define a
taxonomy of information change in science. Such changes should be of societal relevance
and prevalent in science communication. Examples of changes that could be included in such a
taxonomy are veracity, exaggeration, certainty, and cherry-picking.

Once such a taxonomy is defined, the next step is to determine how to automatically identify
the specific changes listed in that taxonomy. Training a model for each type of information
change would be cumbersome, potentially requiring separate training data for each label of
interest. As such, new methods in the areas of learning from limited data explored in this
thesis could be useful for overcoming the need to develop specialized training sets for every
type of information change. For example, methods in multi-task learning, domain adaptation,
and prompt-based learning could prove useful, given the proper injection of domain expert
knowledge into the model. Large generative models (e.g. GPT-3) could also be one avenue to
explore given their impressive zero-shot ability. Additionally, these models have an even more
promising feature of potentially being able to explain their predictions in natural language. An
ideal model would be able to both mark the types of changes occurring between two scientific
sentences, as well as explain exactly how those changes appear in text.

One limitation of the current problem formulation is that | consider the matching problem to
be 1-to-1. In practice, one may wish to compare a scientific sentence to multiple sources, and it
may require integrating several different scientific findings to determine how a piece of science
communication gets the message right and wrong. While it is possible in the current setup to
simply rank multiple sentences and select any sentences above a certain threshold as the body
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for comparison, how to consolidate all of that information and select appropriate thresholds is
something to explore in future work.

A final consideration is: what do we consider to be “truth”? This is a problem in fact checking
as well, where one must decide what source of information is considered the ground truth state
of the world e.g. Wikipedia [230]. In this thesis, | have assumed that scientific documents
represent truth; in the real world, this isn’t always the case [114, 228, 218, 40]. In fact, it is in
the nature of science to change, and what is considered truth at one point in time will likely be
disproved, replaced, or amended at a later point. It is then a critical next step to conjure new
ways of predicting the trustworthiness and accuracy of scientific papers. This is a difficult task,
since without a set ground truth, how does one know whether a scientific article is accurate?
One could consider social factors such as the number of citations a paper has or the track record
of the authors, but this route is fraught with potential for inadvertent biases and missteps. It
is therefore, in my opinion, less a question to be answered solely by computer scientists, but
an important question to be engaged with in an interdisciplinary conversation between social
scientists, science of science researchers, ethicists, and the public.

The following chapters are prints of the various peer-reviewed papers which constitute this
work, and hopefully represent a strong contribution in the area of natural language processing
for scientific language understanding.
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Figure 2.1: Examples of check-worthy and non check-worthy statements from three different
domains. Check-worthy statements are those which were judged to require evidence or a fact
check.

2 Claim Check-Worthiness Detection as Positive Unlabelled
Learning

2.1 Introduction

Misinformation is being spread online at ever increasing rates [59] and has been identified
as one of society’s most pressing issues by the World Economic Forum [113]. In response,
there has been a large increase in the number of organizations performing fact checking [90].
However, the rate at which misinformation is introduced and spread vastly outpaces the ability of
any organization to perform fact checking, so only the most salient claims are checked. This
obviates the need for being able to automatically find check-worthy content online and verify it.

The natural language processing and machine learning communities have recently begun
to address the problem of automatic fact checking [238, 102, 229, 13, 10, 11, 175, 3]. The first
step of automatic fact checking is claim check-worthiness detection, a text classification problem
where, given a statement, one must predict if the content of that statement makes “an assertion
about the world that is checkable” [127]. There are multiple isolated lines of research which
have studied variations of this problem. Figure 2.1 provides examples from three tasks which
are studied in this work: rumour detection on Twitter [277, 275], check-worthiness ranking in
political debates and speeches [8, 72, 22], and citation needed detection on Wikipedia [196].
Each task is concerned with a shared underlying problem: detecting claims which warrant
further verification. However, no work has been done to compare all three tasks to understand
shared challenges in order to derive shared solutions, which could enable improving claim
check-worthiness detection systems across multiple domains.
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Therefore, we ask the following main research question in this work: are these all variants of
the same task, and if so, is it possible to have a unified approach to all of them? We answer this
question by investigating the problem of annotator subjectivity, where annotator background and
expertise causes their judgement of what is check-worthy to differ, leading to false negatives in
the data [127]. Our proposed solution is Positive Unlabelled Conversion (PUC), an extension of
Positive Unlabelled (PU) learning, which converts negative instances into positive ones based
on the estimated prior probability of an example being positive. We demonstrate that a model
trained using PUC improves performance on English citation needed detection and Twitter
rumour detection. We also show that by pretraining a model on citation needed detection, one
can further improve results on Twitter rumour detection over a model trained solely on rumours,
highlighting that a unified approach to these problems is achievable. Additionally, we show that
one attains better results on political speeches check-worthiness ranking without using any form
of PU learning, arguing through a dataset analysis that the labels are much more subjective
than the other two tasks.

The contributions of this work are as follows:

1. The first thorough comparison of multiple claim check-worthiness detection tasks.

2. Positive Unlabelled Conversion (PUC), a novel extension of PU learning to support check-
worthiness detection across domains.

3. Results demonstrating that a unified approach to check-worthiness detection is achievable
for 2 out of 3 tasks, improving over the state-of-the-art for those tasks.

2.2 Related Work

2.2.1 Claim Check-Worthiness Detection

As the first step in automatic fact checking, claim check-worthiness detection is a binary
classification problem which involves determining if a piece of text makes “an assertion about the
world which can be checked” [127]. We adopt this broad definition as it allows us to perform a
structured comparison of many publicly available datasets. The wide applicability of the definition
also allows us to study if and how a unified cross-domain approach could be developed.

Claim check-worthiness detection can be subdivided into three distinct domains: rumour
detection on Twitter, check-worthiness ranking in political speeches and debates, and citation
needed detection on Wikipedia. A few studies have been done which attempt to create full
systems for mining check-worthy statements, including the works of [127], ClaimRank [115],
and ClaimBuster [102]. They develop full software systems consisting of relevant source
material retrieval, check-worthiness classification, and dissemination to the public via end-user
applications. These works are focused solely on the political domain, using data from political
TV shows, speeches, and debates. In contrast, in this work we study the claim check-worthiness
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detection problem across three domains which have publicly available data: Twitter [276], political
speeches [8], and Wikipedia [196].

Rumour Detection on Twitter Rumour detection on Twitter is primarily studied using the
PHEME dataset [277], a set of tweets and associated threads from breaking news events which
are either rumourous or not. Published systems which perform well on this task include contextual
models (e.g. conditional random fields) acting on a tweet’s thread [276, 275], identifying salient
rumour-related words [1], and using a GAN to generate misinformation in order to improve a
downstream discriminator [152].

Political Speeches For political speeches, the most studied datasets come from the Clef
CheckThat! shared tasks [8, 72, 22] and ClaimRank [115]. The data consist of transcripts of
political debates and speeches where each sentence has been annotated by an independent
news or fact-checking organization for whether or not the statement should be checked for
veracity. The most recent and best performing system on the data considered in this paper
consists of a two-layer bidirectional GRU network which acts on both word embeddings and
syntactic parse tags [97]. In addition, they augment the native dataset with weak supervision
from unlabelled political speeches.

Citation Needed Detection Wikipedia citation needed detection has been investigated recently
in [196]. The authors present a dataset of sentences from Wikipedia labelled for whether or
not they have a citation attached to them. They also released a set of sentences which
have been flagged as not having a citation but needing one (i.e. unverified). In contrast
to other check-worthiness detection domains, there are much more training data available
on Wikipedia. However, the rules for what requires a citation do not necessarily capture all
“checkable” statements, as “all material in Wikipedia articles must be verifiable” [196]. Given
this, we view Wikipedia citation data as a set of positive and unlabelled data: statements which
have attached citations are positive samples of check-worthy statements, and within the set of
statements without citations there exist some positive samples (those needing a citation) and
some negative samples. Based on this, this domain constitutes the most general formulation of
check-worthiness among the domains we consider. Therefore, we experiment with using data
from this domain as a source for transfer learning, training variants of PU learning models on it,
then applying them to target data from other domains.

2.2.2 Positive Unlabelled Learning

PU learning methods attempt to learn good binary classifiers given only positive labelled and
unlabelled data. Recent applications where PU learning has been shown to be beneficial include
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Figure 2.2: High level view of PUC. A PU classifier (f, green box) is first learned using PU data
(with s indicating if the sample is positive or unlabelled). From this the prior probability of a
sample being positive is estimated. Unlabelled samples are then ranked by f (red box) and the
most positive samples are converted into positives until the dataset is balanced according to the
estimated prior. The model ¢ is then trained using the duplication and weighting method of [71]
as described in §2.3.2 with labels [ (blue box). Greyed out boxes are negative weights which are
ignored when training the classifier g, as those examples are only trained as positives.

detecting deceptive reviews online [139, 199], keyphrase extraction [221] and named entity
recognition [181]. For a survey on PU learning, see [25], and for a formal definition of PU
learning, see §2.3.2.

Methods for learning positive-negative (PN) classifiers from PU data have a long history [61,
58, 137], with one of the most seminal papers being from [71]. In this work, the authors show
that by assuming the labelled samples are a random subset of all positive samples, one can
utilize a classifier trained on PU data in order to train a different classifier to predict if a sample is
positive or negative. The process involves training a PN classifier with positive samples being
shown to the classifier once and unlabelled samples shown as both a positive sample and a
negative sample. The loss for the duplicated samples is weighted by the confidence of a PU
classifier that the sample is positive.

Building on this, du Plessis et al. [67] propose an unbiased estimator which improves the
estimator introduced in [71] by balancing the loss for positive and negative classes. The work
of Kiryo et al. [126] extends this method to improve the performance of deep networks on PU
learning. Our work builds on the method of Elkan and Noto [71] by relabelling samples which
are highly confidently positive.

2.3 Methods

The task considered in this paper is to predict if a statement makes “an assertion about the
world that is checkable” [127]. As the subjectivity of annotations for existing data on claim
check-worthiness detection is a known problem [127], we view the data as a set of positive and
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unlabelled (PU) data. In addition, we unify our approach to each of them by viewing Wikipedia
data as an abundant source corpus. Models are then trained on this source corpus using
variants of PU learning and transferred via fine-tuning to the other claim check-worthiness
detection datasets, which are subsequently trained on as PU data. On top of vanilla PU learning,
we introduce Positive Unlabelled Conversion (PUC) which relabels examples that are most
confidently positive in the unlabelled data. A formal task definition, description of PU learning,
and explanation of the PUC extension are given in the following sections.

2.3.1 Task Definition

The fundamental task is binary text classification. In the case of positive-negative (PN) data,
we have a labelled dataset D : {(z,y)} with input features » € R? and labels y € {0,1}. The
goal is to learn a classifier g : = — (0, 1) indicating the probability that the input belongs to the
positive class. With PU data, the dataset D instead consists of samples {(x, s)}, where the value
s € {0,1} indicates if a sample is labelled or not. The primary difference from the PN case is
that, unlike for the labels y, a value of s = 0 does not denote the sample is negative, but that the
label is unknown. The goal is then to learn a PN classifier g using a PU classifier f : x — (0,1)
which predicts whether or not a sample is labelled [71].

2.3.2 PU Learning

Our overall approach is depicted in Figure 2.2. We begin with an explanation of the PU learning
algorithm described in [71]. Assume that we have a dataset randomly drawn from some
probability distribution p(z,y, s), where samples are of the form (z,s), s € {0,1} and s = 1
indicates that the sample is labelled. The variable y is unknown, but we make two assumptions
which allow us to derive an estimator for probabilities involving y. The first is that:

ply=0[s=1)=0 (2.1)

In other words, if we know that a sample is labelled, then that label cannot be 0. The second
assumption is that labelled samples are Selected Completely At Random from the underlying
distribution (also known as the SCAR assumption). Check-worthiness data can be seen as an
instance of SCAR PU data; annotators tend to only label those instances which are very clearly
check-worthy in their opinion [127]. When combined across several annotators, we assume this
leads to a random sample from the total set of check-worthy statements.

Given this, a classifier f : © — (0,1) is trained to predict p(s = 1|z) from the PU data. It is
then employed to train a classifier ¢ to predict p(y = 1|x) by first estimating ¢ = p(s = 1|y = 1)
on a set of validation data. Considering a validation set VV where P C V' is the set of positive
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samples in V, c is estimated as:
e~ |—]13| S () 2.2)
zeP
This says our estimate of p(s = 1|y = 1) is the average confidence of our classifier on known
positive samples. Next, we can estimate E,, , ) [h(z,y)] for any arbitrary function » empirically
from a dataset of £ samples as follows:

Elh] = %( Z h(xz,1) + Z w(x)h(x,1) 4+ (1 —w(z))h(z,0)) (2.3)
( )

z,s=1 (z,5=0)

l—c p(s=1x)

w(r) =ply =1lz,s =0) = (2.4)

¢ 1—p(s=1|x)
In this case, c is estimated using Equation 2.2 and p(s = 1|z) is estimated using the classifier f.
The derivations for these equations can be found in [71].

To estimate p(y = 1|x) empirically, the unlabelled samples in the training data are duplicated,
with one copy negatively labelled and one copy positively labelled. Each copy is trained on with
a weighted loss w(z) when the label is positive and 1 — w(z) when the label is negative. Labelled
samples are trained on normally (i.e. a single copy with unit weight).

2.3.3 Positive Unlabelled Conversion

For PUC, the motivation is to relabel those samples from the unlabelled data which are very
clear cut positive. To accomplish this, we start with the fact that one can also estimate the
prior probability of a sample having a positive label using f. If instead of ~ we want to estimate
Ely] = p(y = 1), the following is obtained:

=1~ (3 1+ 3 @) 25)

x,s=1 x,s=0

This estimate is then utilized to convert the most confident unlabelled samples into positives.
First, all of the unlabelled samples are ranked according to their calculated weight w(zx). The
ranked samples are then iterated through and converted into positive-only samples until the
distribution of positive samples is greater than or equal to the estimate of p(y = 1). Unlike in
vanilla PU learning, these samples are discretized to have a positive weight of 1, and trained
on by the classifier g once per epoch as positive samples along with the labelled samples. The
remaining unlabelled data are trained on in the same way as in vanilla PU learning.

2.3.4 Implementation

In order to create a unified approach to check-worthiness detection, transfer learning from
Wikipedia citation needed detection is employed. To accomplish this, we start with a training
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dataset D° of statements from Wikipedia featured articles that are either labelled as containing
a citation (positive) or unlabelled. We train a classifier f* on this dataset and obtain a classifier
g° via PUC. For comparison, we also train models with vanilla PU learning and PN learning
as baselines. The network architecture for both f* and ¢° is BERT [62], a large pretrained
transformer-based [237] language model. We use the HuggingFace transformers implementation
of the 12-layer 768 dimensional variation of BERT [251]. The classifier in this implementation is
a two layer neural network acting on the [CLS] token.

From ¢°, we train a classifier g* using downstream check-worthiness detection dataset D’ by
initializing ¢* with the base BERT network from ¢* and using a new randomly initialized final layer.
In addition, we train a model f* on the target dataset, and train ¢ with PUC from this model to
obtain the final classifier. As a baseline, we also experiment with training on just the dataset D*
without any pretraining. In the case of citation needed detection, since the data comes from the
same domain we simply test on the test split of statements labelled as “citation needed” using
the classifier g°. We compare our models to the published state of the art baselines on each
dataset.

For all of our models (f*, ¢%, f!, ¢*) we train for two epochs, saving the weights with the best
F1 score on validation data as the final model. Training is performed with a max learning rate
of 3e-5 and a triangular learning rate schedule [112] that linearly warms up for 200 training
steps, then linearly decays to 0 for the rest of training. For regularization we add L2 loss with a
coefficient of 0.01, and dropout with a rate of 0.1. Finally, we split the training sets into 80% train
and 20% validation, and train with a batch size of 8. The code to reproduce our experiments can
be found here.?

2.4 Experimental Results

To what degree is claim check-worthiness detection a PU learning problem, and does this
enable a unified approach to check-worthiness detection? In our experiments, we progressively
answer this question by answering the following: 1) is PU learning beneficial for the tasks
considered? 2) Does PU citation needed detection transfer to rumour detection? 3) Does PU
citation needed detection transfer to political speeches? To investigate how well the data in each
domain reflects the definition of a check-worthy statement as one which “makes an assertion
about the world which is checkable” and thus understand subjectivity in the annotations, we
perform a dataset analysis comparing the provided labels of the top ranked check-worthy claims
from the PUC model with the labels given by two human annotators. In all experiments, we
report the mean performance of our models and standard deviation across 15 different random
seeds. Additionally, we report the performance of each model ensembled across the 15 runs
through majority vote on each sample.

2https://github.com/copenlu/check-worthiness-pu-learning
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Table 2.1: F1 and ensembled F1 score for citation needed detection training on the FA split and
testing on the LQN split of [196]. The FA split contains statements with citations from featured
articles and the LQN split consists of statements which were flagged as not having a citation
but needing one. Listed are the mean, standard deviation, and ensembled results across 15
seeds (eP, eR, and eF1). Bold indicates best performance, underline indicates second best.
*The reported value is from rerunning their released model on the test dataset. The value in
brackets is the value reported in the original paper.

2.4.1 Datasets

Wikipedia Citations We use the dataset from [196] for citation needed detection. The dataset
is split into three sets: one coming from featured articles (deemed ‘high quality’, 10k positive
and 10k negative statments), one of statements which have no citation but have been flagged
as needing one (10k positive, 10k negative), and one of statements from random articles which
have citations (50k positive, 50k negative). In our experiments the models were trained on
the high quality statements from featured articles and tested on the statements which were
flagged as ‘citation needed’. The key differentiating features of this dataset from the other two
datasets are: 1) the domain of text is Wikipedia and 2) annotations are based on the decisions
of Wikipedia editors following Wikipedia guidelines for citing sources?.

Twitter Rumours The PHEME dataset of rumours is employed for Twitter claim check-
worthiness detection [277]. The data consists of 5,802 annotated tweets from 5 different
events, where each tweet is labelled as rumourous or non-rumourous (1,972 rumours, 3,830
non-rumours). We followed the leave-one-out evaluation scheme of [276], namely, we performed
a 5-fold cross-validation for all methods, training on 4 events and testing on 1. The key differenti-
ating features of this dataset from the other two datasets are: 1) the domain of data is tweets
and 2) annotations are collected from professional journalists specifically for building a dataset
to train machine learning models.

Political Speeches The dataset we adopted in the political speeches domain is the same as
in [97], consisting of 4 political speeches from the 2018 Clef CheckThat! competition [8] and
3 political speeches from ClaimRank [115] (2,602 statements total). We performed a 7-fold
cross-validation, using 6 splits as training data and 1 as test in our experimental setup. The data
from ClaimRank is annotated using the judgements from 9 fact checking organizations, and the

Shttps://en.wikipedia.org/wiki/Wikipedia:Citing_sources
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Method P R 1 6P eR  eFi

[276] 66.7 55.6 60.7 Po-

BiLSTM 62.3 56.4 59.0 Po- - -
BERT 69.9+17 608+26 650=+13: 71.3 61.9 66.3
BERT + Wiki 69.3+16 614+26 651+£12: 70.7 622 66.2
BERT + WikiPU 699+13 625+16 66.0+1.1 722 646 682
BERT + WikiPUC 701 +1.1 618+18 657+10 71.5 627 66.8
BERT + PU 68.7+12 647+18 66,609 699 652 675
BERT + PUC 68.1+15 653+16 66.6+09  69.1 66.3 67.7
BERT + PU + WikiPU 684+12 66.1+12 672+06 693 672 683
BERT + PUC + WikiPUC 68.0+ 1.4 66.0+20 670+13 694 675 685

Table 2.2: micro-F1 (uF1) and ensembled F1 (eF1) performance of each system on the PHEME
dataset. Performance is averaged across the five splits of [276]. Results show the mean,
standard deviation, and ensembled score across 15 seeds. Bold indicates best performance,
underline indicates second best.

data from Clef 2018 is annotated by factcheck.org. The key differentiating features of this dataset
from the other two datasets are: 1) the domain of data is transcribed spoken utterances from
political speeches and 2) annotations are taken from 9 fact checking organizations gathered
independently.

2.4.2 Is PU Learning Beneficial for Citation Needed Detection?

Our results for citation needed detection are given in Table 2.1. The vanilla BERT model already
significantly outperforms the state of the art model from Redi et al. [196] (a GRU network with
global attention) by 6 F1 points. We see further gains in performance with PU learning, as well
as when using PUC. Additionally, the models using PU learning have lower variance, indicating
more consistent performance across runs. The best performing model we see is the one trained
using PUC with an F1 score of 82.6. We find that this confirms our hypothesis that citation data
is better seen as a set of positive and unlabelled data when used for check-worthiness detection.
In addition, it gives some indication that PU learning improves the generalization power of the
model, which could make it better suited for downstream tasks.

2.4.3 Does PU Citation Needed Detection Transfer to Rumour Detection?

2.4.3.1 Baselines

The best published method that we compare to is the CRF from [276]. which utilizes a combi-
nation of content and social features. Content features include word vectors, part-of-speech
tags, and various lexical features, and social features include tweet count, listed count, follow
ratio, age, and whether or not a user is verified. The CRF acts on a timeline of tweets, making it
contextual. In addition, we include results from a 2-layer BiLSTM with FastText embeddings [35].
There exist other deep learning models which have been developed for this task, including [152]
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and [1], but they do not publish results on the standard splits of the data and we were unable to
recreate their results, and thus are omitted.

2.4.3.2 Results

The results for the tested systems are given in Table 2.2. Again we see large gains from BERT
based models over the baseline from [276] and the 2-layer BiLSTM. Compared to training solely
on PHEME, fine tuning from basic citation needed detection sees little improvement (0.1 F1
points). However, fine tuning a model trained using PU learning leads to an increase of 1 F1
point over the non-PU learning model, indicating that PU learning enables the Wikipedia data
to be useful for transferring to rumour detection i.e. the improvement is not only from a better
semantic representation learned from Wikipedia data. For PUC, we see an improvement of 0.7
F1 points over the baseline and lower overall variance than vanilla PU learning, meaning that
the results with PUC are more consistent across runs. The best performing models also use PU
learning on in-domain data, with the best average performance being from the models trained
using PU/PUC on in domain data and initialized with weights from a Wikipedia model trained
using PU/PUC. When models are ensembled, pretraining with vanilla PU learning improves
over no pretraining by almost 2 F1 points, and the best performing models which are also
trained using PU learning on in domain data improve over the baseline by over 2 F1 points. We
conclude that framing rumour detection on Twitter as a PU learning problem leads to improved
performance.

Based on these results, we are able to confirm two of our hypotheses. The first is that
Wikipedia citation needed detection and rumour detection on Twitter are indeed similar tasks,
and a unified approach for both of them is possible. Pretraining a model on Wikipedia provides
a clear downstream benefit when fine-tuning on Twitter data, precisely when PU/PUC is used.
Additionally, training using PUC on in domain Twitter data provides further benefit. This shows
that PUC constitutes a unified approach to these two tasks.

The second hypothesis we confirm is that both Twitter and Wikipedia data are better seen as
positive and unlabelled for claim check-worthiness detection. When pretraining with the data as
a traditional PN dataset there is no performance gain and in fact a performance loss when the
models are ensembled. PU learning allows the model to learn better representations for general
claim check-worthiness detection.

To explain why this method performs better, Table 2.1 and Table 2.2 show that PUC improves
model recall at very little cost to precision. The aim of this is to mitigate the issue of subjectivity
in the annotations of check-worthiness detection datasets noted in previous work [127]. Some
of the effects of this are illustrated in Table A.1 and Table A.2 in §A.1. The PUC models are
better at distinguishing rumours which involve claims of fact about people i.e. things that people
said or did, or qualities about people. For non-rumours, the PUC pretrained model is better

34



Method MAP

127] 26.7

97] 30.2

BERT 33.0+ 1.8
BERT + Wiki 34.4 + 2.7
BERT + WikiPU 332+ 1.7
BERT + WikiPUC 31.7+1.8
BERT + PU 18.8 + 3.7
BERT + PUC 26.7 +2.8
BERT + PU + WikiPU 16.8 £ 3.5
BERT + PUC + WikiPUC 27.8 +2.7

Table 2.3: Mean average precision (MAP) of models on political speeches. Bold indicates best
performance, underline indicates second best.

at recognizing statements which describe qualitative information surrounding the events and
information that is self-evident e.g. a tweet showing the map where the Charlie Hebdo attack
took place.

2.4.4 Does PU Citation Needed Detection Transfer to Political Speeches?

2.4.4.1 Baselines

The baselines we compare to are the state of the art models from [97] and [127]. The model
from [127] consists of InferSent embeddings [52] concatenated with POS tag and NER features
passed through a logistic regression classifier. The model from [97] is a bidirectional GRU
network acting on syntatic parse features concatenated with word embeddings as the input
representation.

2.4.4.2 Results

The results for political speech check-worthiness detection are given in Table 2.3. We find that
the BERT model initialized with weights from a model trained on plain Wikipedia citation needed
statements performs the best of all models. As we add transfer learning and PU learning, the
performance steadily drops. We perform a dataset analysis to gain some insight into this effect
in §2.4.5.

2.4.5 Dataset Analysis

In order to understand our results in the context of the selected datasets, we perform an analysis
to learn to what extent the positive samples in each dataset reflect the definition of a check-
worthy claim as “an assertion about the world that is checkable”. We ranked all of the statements
based on the predictions of 15 PUC models trained with different seeds, where more positive
class predictions means a higher rank (thus more check-worthy), and had two experts manually
relabel the top 100 statements. The experts were informed to label the statements based on
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Dataset P R F1

81.7 87.0 843
Wikipedia 84.8 87.0 85.9
833 870 851

875 824 8438
Twitter 86.3 81.2 83.6
869 81.8 84.2

33.8 89.3 49.0
Politics 31.1 100.0 47.5
325 94.7 483

Table 2.4: F1 score comparing manual relabelling of the top 100 predictions by PUC model with
the original labels in each dataset by two different annotators. /talics are average value between
the two annotators.

the definition of check-worthy given above. We then compared the manual annotation to the
original labels using F1 score. Higher F1 score indicates the dataset better reflects the definition
of check-worthy we adopt in this work. Our results are given in Table 2.4.

We find that the Wikipedia and Twitter datasets contain labels which are more general,
evidenced by similar high F1 scores from both annotators (> 80.0). For political speeches, we
observe that the human annotators both found many more examples to be check-worthy than
were labelled in the dataset. This is evidenced by examples such as It's why our unemployment
rate is the lowest it's been in so many decades being labelled as not check-worthy and New
unemployment claims are near the lowest we’ve seen in almost half a century being labelled as
check-worthy in the same document in the dataset’s original annotations. This characteristic
has been noted for political debates data previously [127], which was also collected using
the judgements of independent fact checking organizations [83]. Labels for this dataset were
collected from various news outlets and fact checking organizations, which may only be interested
in certain types of claims such as those most likely to be false. This makes it difficult to train
supervised machine learning models for general check-worthiness detection based solely on
text content and document context due to labelling inconsistencies.

2.5 Discussion and Conclusion

In this work, we approached claim check-worthiness detection by examining how to unify three
distinct lines of work. We found that check-worthiness detection is challenging in any domain
as there exist stark differences in how annotators judge what is check-worthy. We showed that
one can correct for this and improve check-worthiness detection across multiple domains by
using positive unlabelled learning. Our method enabled us to perform a structured comparison
of datasets in different domains, developing a unified approach which outperforms state of the
art in 2 of 3 domains and illuminating to what extent these datasets reflect a general definition of
check-worthy.

Future work could explore different neural base architectures. Further, it could potentially
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benefit all tasks to consider the greater context in which statements are made. We would also
like to acknowledge again that all experiments have only focused on English language datasets;
developing models for other, especially low-resource languages, would likely result in additional
challenges. We hope that this work will inspire future research on check-worthiness detection,
which we see as an under-studied problem, with a focus on developing resources and models
across many domains such as Twitter, news media, and spoken rhetoric.
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