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Abstract

With the increasing size of datasets in the era of machine learning and AI, exact
computations on these datasets have become increasingly infeasible. Nevertheless, in
many applications, approximate answers are sufficient. This motivates the question
of whether efficient algorithms and data structures can be designed to provide reliable
approximate answers on huge datasets.

Randomization, particularly through hash functions, is a powerful tool for sim-
plifying these algorithms. However, existing analyses of such algorithms regularly
assume fully random or highly independent hash functions, which ignores the issue
of efficiency in practice. While there exist efficient theoretical constructions of highly
independent hash functions none of them are efficient in practice. This thesis ad-
dresses these issues by providing new analyses of practical tabulation-based hashing
schemes. First in [HT22], we obtain a near-optimal understanding of concentration
guarantees for simple tabulation hashing of hash-based sums by bounding the mo-
ments. This analysis allows us to show that mixed tabulation hashing has strong
concentration guarantees for hash-based sums that closely match those of fully ran-
dom hashing. Furthermore in [HT23], we demonstrate how these insights can be used
to implement a sparse Johnson-Lindenstrauss transform, a widely used technique in
high-dimensional data analysis.

Additionally in [AK20], we study the problem of approximate set similarity search,
where the goal is to build a data structure that can identify similar sets in a database
of known sets or report that the database contains no similar set. We show that our
algorithm is optimal for all hashing-based data structures for random sets, providing
a comprehensive solution to this problem.

Finally in [AKT21], we consider the problem of dynamic load balancing in an
environment where both balls and bins can be added and removed. We assume that
each bin has a capacity of C, that is, each bin can contain at most C balls. We
construct a data structure that in expectation moves O(1/f) balls when inserting or
deleting a ball, and O(C/f) balls when inserting or deleting a bin. Where f is the
fraction of non-full bins in the following simpler probabilistic problem: Place the balls
into bins with capacity C, one ball at the time, where each ball picks a uniformly
random non-full bin. We also solve this simpler problem and provide a tight bound
for f . In order to prove these results, we needed a new result in probability theory
which was proven in [AAHT22].
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Dansk resumé

Med den stadig stigende størrelse af datasæt i tidsalderen for machine learning og
AI er præcise beregninger p̊a disse datasæt blevet stadig mere udfordrende. Ikke desto
mindre er approksimative svar tilstrækkelige i mange anvendelser. Dette motiverer
spørgsm̊alet om, hvorvidt der kan designes effektive algoritmer og datastrukturer til
at levere p̊alidelige approksimative svar p̊a enorme datasæt.

Randomisering, især gennem hashfunktioner, er et kraftfuldt værktøj til at
forenkle disse algoritmer. Dog antager eksisterende analyser af s̊adanne algoritmer
ofte fuldstændigt tilfældige eller meget uafhængige hashfunktioner, hvilket ignorerer
spørgsm̊alet om effektivitet i praksis. Selvom der eksisterer effektive teoretiske kon-
struktioner af meget uafhængige hashfunktioner, er ingen af dem effektive i praksis.
Denne afhandling angriber disse problemer ved at give nye analyser af praktiske tab-
ulation-baserede hashingsmetoder. I [HT22] opn̊ar vi en næsten optimal forst̊aelse af
koncentrationsgarantier for simpel tabulation hashing af hashbaserede summer ved at
begrænse momenterne. Denne analyse gør det muligt for os at vise, at mixed tabulation
hashing har stærke koncentrationsgarantier for hashbaserede summer, der er tæt p̊a
at matche dem fra fuldstændigt tilfældig hashing. Derudover viser vi i [HT23], hvor-
dan disse nye ideer kan anvendes til at implementere en spare Johnson-Lindenstrauss
transformation, en bredt anvendt teknik inden for højdimensionel dataanalyse.

I [AK20] studerer vi problemet med approksimativ similaritetssøgning i mængder,
hvor målet er at opbygge en datastruktur, der kan identificere lignende mængder i
en database med kendte mængder eller retunerer, at databasen ikke indeholder no-
gen lignende mængder. Vi viser, at vores algoritme er optimal for alle hashbaserede
datastrukturer for tilfældige mængder.

Til sidst i [AKT21] betragter vi problemet med dynamisk load balancing i et
dynamisk system, hvor b̊ade bolde og spande kan tilføjes og fjernes. Vi antager, at
hver spand har en kapacitet p̊a C, dvs. at hver spand kan indeholde højst C bolde.
Vi konstruerer en datastruktur, der i forventning flytter O(1/f) bolde, n̊ar en bolde
indsættes eller fjernes, og O(C/f) bolde, n̊ar en spand indsættes eller fjernes. Hvor
f er brøkdelen af ikke-fulde spande i det følgende simplere sandsynlighedsproblem:
Placer boldene i spandene med kapacitet C, en bold ad gangen, hvor hver bold vælger
en uniformt tilfældig ikke-fuld spand. Vi løser ogs̊a dette simplere problem og giver
en tæt grænse for f . For at bevise disse resultater har vi brug for et nyt resultat inden
for sandsynlighedsteori, der blev bevist i [AAHT22].
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Preface

The General rules and guidelines for the PhD programme1 at Faculty of Science, University
of Copenhagen, adopted in March 2023 states that “A thesis may either be written as
a monograph, or as a synopsis with manuscripts of papers or already published papers
attached.” The present thesis has adopted the latter format, that is, the thesis is written
as a synopsis with manuscripts of papers attached in the appendix.

In order to limit the scope of the thesis, I have chosen to only present a selected subset
of my work. I will present four papers which focus on different aspects of hashing which
has been the main area of focus for my research during my PhD.

For completeness, this preface contains a brief introduction to all the papers authored
by me, even those that are not included in this thesis. Over the course of my PhD, I
have had the pleasure of being co-author of 13 papers, 9 of which are published or are
accepted at peer-reviewed conferences or journals, while the remaining 4 are currently in
the submission process. The complete list of these papers is presented below for reference.

List of Papers

[AAKR21] Anders Aamand, Mikkel Abrahamsen, Jakob Bæk Tejs Knudsen, and Pe-
ter Michael Reichstein Rasmussen. “Classifying Convex Bodies by Their
Contact and Intersection Graphs”. In: 37th International Symposium on
Computational Geometry, SoCG 2021, June 7-11, 2021, Buffalo, NY, USA
(Virtual Conference). Ed. by Kevin Buchin and Éric Colin de Verdière.
Vol. 189. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021,
3:1–3:16.

[AAHT22] Anders Aamand, Noga Alon, Jakob Bæk Tejs Houen, and Mikkel Thorup.
“On sums of monotone random integer variables”. In: Electronic Commu-
nications in Probability 27 (2022), pp. 1–8.

[ADKK+22] Anders Aamand, Debarati Das, Evangelos Kipouridis, Jakob Bæk Tejs
Knudsen, Peter M. R. Rasmussen, and Mikkel Thorup. “No Repetition:
Fast and Reliable Sampling with Highly Concentrated Hashing”. In: Proc.
VLDB Endow. 15.13 (2022), pp. 3989–4001.

[AKKR+20] Anders Aamand, Jakob Bæk Tejs Knudsen, Mathias Bæk Tejs Knudsen,
Peter Michael Reichstein Rasmussen, and Mikkel Thorup. “Fast hash-
ing with strong concentration bounds”. In: Proccedings of the 52nd An-
nual ACM SIGACT Symposium on Theory of Computing, STOC 2020,
Chicago, IL, USA, June 22-26, 2020. Ed. by Konstantin Makarychev, Yury
Makarychev, Madhur Tulsiani, Gautam Kamath, and Julia Chuzhoy. ACM,
2020, pp. 1265–1278.

1https://science.ku.dk/phd/filer/regelsaet/general_rules_and_guidelines_phd_programme/
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[AKT21] Anders Aamand, Jakob Bæk Tejs Knudsen, and Mikkel Thorup. “Load
balancing with dynamic set of balls and bins”. In: STOC ’21: 53rd Annual
ACM SIGACT Symposium on Theory of Computing, Virtual Event, Italy,
June 21-25, 2021. Ed. by Samir Khuller and Virginia Vassilevska Williams.
ACM, 2021, pp. 1262–1275.

[AKKP+20] Thomas D. Ahle, Michael Kapralov, Jakob Bæk Tejs Knudsen, Rasmus
Pagh, Ameya Velingker, David P. Woodruff, and Amir Zandieh. “Oblivious
Sketching of High-Degree Polynomial Kernels”. In: Proceedings of the 2020
ACM-SIAM Symposium on Discrete Algorithms, SODA 2020, Salt Lake
City, UT, USA, January 5-8, 2020. Ed. by Shuchi Chawla. SIAM, 2020,
pp. 141–160.

[AK20] Thomas D. Ahle and Jakob Bæk Tejs Knudsen. “Subsets and Supermajori-
ties: Optimal Hashing-based Set Similarity Search”. In: 61st IEEE Annual
Symposium on Foundations of Computer Science, FOCS 2020, Durham,
NC, USA, November 16-19, 2020. Ed. by Sandy Irani. IEEE, 2020, pp. 728–
739.

[BBHK+23] Ioana O. Bercea, Lorenzo Beretta, Jakob Bæk Tejs Houen, Jonas Klausen,
and Mikkel Thorup. Locally Uniform Hashing. 2023. In submission.

[BHP22] Ioana O. Bercea, Jakob Bæk Tejs Houen, and Rasmus Pagh. “Daisy Bloom
Filters”. In: CoRR abs/2205.14894 (2022). arXiv: 2205.14894. In submis-
sion.

[EHNR+22] Talya Eden, Jakob Bæk Tejs Houen, Shyam Narayanan, Will Rosen-
baum, and Jakub Tetek. “Bias Reduction for Sum Estimation”. In: CoRR
abs/2208.01197 (2022). arXiv: 2208.01197. In submission.

[HPW23] Jakob Bæk Tejs Houen, Rasmus Pagh, and Stefan Walzer. “Simple Set
Sketching”. In: 2023 Symposium on Simplicity in Algorithms, SOSA 2023,
Florence, Italy, January 23-25, 2023. Ed. by Telikepalli Kavitha and Kurt
Mehlhorn. SIAM, 2023, pp. 228–241.

[HT22] Jakob Bæk Tejs Houen and Mikkel Thorup. “Understanding the Moments
of Tabulation Hashing via Chaoses”. In: 49th International Colloquium on
Automata, Languages, and Programming, ICALP 2022, July 4-8, 2022,
Paris, France. Ed. by Mikolaj Bojanczyk, Emanuela Merelli, and David P.
Woodruff. Vol. 229. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Infor-
matik, 2022, 74:1–74:19.

[HT23] Jakob Bæk Tejs Houen and Mikkel Thorup. A Sparse Johnson-
Lindenstrauss Transform using Fast Hashing. 2023. To appear in ICALP
2023.

In broad terms, the papers can be categorized into four topics. The first two topics,
namely hash functions [ADKK+22; AKKR+20; BBHK+23; HT22; HT23] and hashing-
based algorithms [AK20; AKKP+20; AKT21; BHP22; EHNR+22; HPW23], form the

https://arxiv.org/abs/2205.14894
https://arxiv.org/abs/2208.01197
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main focus of this thesis. The remaining two topics covered in the papers are probability
theory [AAHT22] and computational geometry [AAKR21].

Hash functions The focus of my research into hash functions has been on the design
of fast and practical hash functions with provable theoretical guarantees, comparable to
those of fully random hashing. In collaboration with my advisor Mikkel Thorup and other
researchers, I have explored various families of tabulation-based hash functions in several
papers [ADKK+22; AKKR+20; BBHK+23; HT22; HT23].

In [AKKR+20], we establish that simple tabulation hashing satisfies Chernoff-style
concentration bounds under severe restrictions, and propose a new hashing scheme called
tabulation-permutation that overcomes these restrictions and achieves Chernoff-style con-
centration bounds without sacrificing performance. This hashing scheme is easy to imple-
ment and has been demonstrated to be highly efficient in practice.

In [HT22], we take a different approach by bounding the moments of hashing-based
sums of simple tabulation using techniques from functional analysis, providing a near-
optimal understanding of the moments and leveraging these results to achieve strong
concentration guarantees for mixed tabulation hashing. Building on this research, [HT23]
shows that the strong concentration results of mixed tabulation can be applied to prove
that a sparse Johnson-Lindenstrauss transform implemented using mixed tabulation hash-
ing performs almost as well as when implemented using fully random hashing.

In a slightly different direction, [BBHK+23] introduces tornado tabulation hashing,
which exhibits local randomness that provably enables diverse algorithms, such as Hy-
perLogLog for counting distinct elements and one-permutation hashing for large-scale
machine learning, to perform almost as if fully-random hashing was used. This paper also
provides an efficient solution to obtaining fully-random hashing on a fixed set of n keys
with O(n) space complexity. Finally, in [ADKK+22], we demonstrate how access to hash
functions with concentration guarantees similar to fully random hashing can significantly
speed up various streaming algorithms.

Hashing-based algorithms I have further been involved in several projects on hashing-
based algorithms [AK20; AKKP+20; AKT21; BHP22; EHNR+22; HPW23]. Here, the
focus has not been on designing or proving guarantees for hash functions, but instead on
designing algorithms that use hash functions as a subroutine.

In [AKT21], we consider the problem of dynamic load balancing, where we wish to
distribute balls into bins in an environment where both balls and bins can be added and
removed. Each bin has a capacity of C, i.e., each bin can contain at most C balls. We want
to respect the capacities of the bins while minimizing the number of balls and bins that
are affected when adding or removing a ball or a bin. We construct a data structure that,
in expectation, moves O(1/f) balls when inserting or deleting a ball, and O(C/f) balls
when inserting or deleting a bin. Here, f is the fraction of non-full bins in the following
simpler probabilistic problem: Place the balls into bins with capacity C, one ball at the
time, where each ball picks a uniformly random non-full bin. We also solve this simpler
problem and provide a tight bound for f .
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In [AK20], we formulate and optimally solve a new generalized Set Similarity Search
problem, which assumes the size of the database and query sets are known in advance.
Our algorithm differs from the previous approaches by exploiting the information both
present in the sets as well as their complements, and doing so asymmetrically between
queries and stored sets. Turning the geometric concept, based on Boolean supermajority
functions, into a practical algorithm requires ideas from branching random walks on Z2,
for which we give the first non-asymptotic near tight analysis.

In [AKKP+20], we study the problem of sketching the polynomial kernel. The previous
results on the problem depended exponentially on the degree of the polynomial kernel,
while our algorithms only has a polynomial dependence on the degree.

In [HPW23], we consider a variant of the Invertible Bloom Filter of Eppstein and
Goodrich. While Invertible Bloom Filters have an explicit checksum per bucket to deter-
mine whether the bucket stores a single key, we instead exploit the idea of quotienting,
namely that some bits of the key are implicit in the location where it is stored, and we
use these bits as an implicit checksum. The main technical challenge is that the implicit
checksum is not enough to not ensure that no errors occur during decoding, so we have
to show that the decoding algorithm can recover from those errors.

In [BHP22], we introduce a parameterization of the weighted Bloom filter called a Daisy
Bloom filter. A weighted Bloom filter is a Bloom filter that adapt the number of hash
functions according to the query element. We determine a near-optimal parameterization
in the model where n element are inserted independently from a probability distribution,
P, and query elements are chosen from a probability distribution, Q, under an upper
bound on the false positive probability F .

In [EHNR+22], we investigate the well-studied problem in statistics of estimating the
sum of a multiset of N real values by sampling from a distribution P. Instead of sampling
from P, we assume that we can only sample from a distribution Q which is pointwise close
to P. We provide an algorithm to this problem that reduces the bias of sampling from
the noisy distribution and show that it is essentially optimal.

Probability theory In [AAHT22], we introduce the notion of monotone random vari-
ables which are random integer variables X where the modulus of the characteristic func-
tion of X is decreasing on [0, π]. This class of random variables include many common
distributions, e.g., the Bernoulli distribution, the Poisson distribution, and the geometric
distribution. We provide estimates for the probability that the sum of independent mono-
tone integer variables attains precisely a specific value without assuming that the variables
are identically distributed. Our estimates show that the point probabilities are close to
the density function of the normal distribution when the point is close to the mean.

Geometry Finally in a completely different direction, I have been involved in a project
within geometry. In [AAKR21], we classify convex bodies by their contact, union, and
intersection graphs. We show that two symmetric convex bodies, A,B, can construct the
same contact, union, and intersection graphs if and only if there exist a linear transfor-
mation, T , such that A = T (B).
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Papers included in the thesis The thesis commences with a broad introduction, which
encourages the exploration of practical hash functions and hashing-based algorithms. It
then presents the papers included in the thesis, namely [HT22; HT23; AKT21; AK20;
AAHT22]. The first two papers concentrate on hash functions, whereas the subsequent
two papers deal with hashing-based algorithms. The final paper is a mathematics paper
that discusses a basic probability theory problem.
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Chapter 1

Introduction

In the ever-evolving landscape of machine learning and artificial intelligence, the rapid ad-
vancements and widespread adoption of these technologies have generated a large demand
for algorithms that can efficiently process massive amounts of data. The availability of
vast datasets, coupled with the complexity of modern computational problems, has made
the exact computation of solutions an intractable task. The magnitude of the data at
hand often surpass the capabilities of traditional exact computation methods.

Moreover, the challenges are further complicated by the presence of conditional lower
bounds, which indicate that achieving exact results within reasonable time frames is simply
unfeasible for certain problems. As such, the focus has shifted towards deriving approxi-
mate solutions, which can be obtained in a more feasible and efficient manner. However,
rather than resorting to simplistic heuristics that provide pragmatic yet unreliable results,
the aspiration is to devise algorithms and data structures that can deliver dependable
statistical analyses, even in large-scale data scenarios. This pursuit is fueled by the desire
to strike a balance between computational efficiency and the accuracy of results.

Numerous problems and influential algorithms have been explored within this area of
research. Randomization is a widely used and valuable approach in algorithm design for
addressing such problems, with hash functions playing a particularly crucial role. When
analyzing the performance of these algorithms, it is often convenient to assume that the
hash functions are fully random, meaning that the hash values of keys are mutually inde-
pendent and uniformly distributed. This assumption simplifies the analysis considerably.
However, in practice, achieving fully random hashing is unfeasible. Conversely, if a weak
hash function is used, we lose the strong theoretical guarantees, and the algorithms may
fail completely when dealing with certain structured data sets. Therefore, the goal is
to discover practical and implementable hash functions that can offer some of the same
desirable theoretical guarantees as fully random hashing.

This thesis will adopt a dual focus. The first part centers around analyzing and es-
tablishing theoretical guarantees for practical families of tabulation-based hash functions,
specifically simple tabulation hashing and mixed tabulation hashing. The latter part, on
the other hand, concentrates on devising hashing-based algorithms under the assumption
of fully random hashing.

3



4 CHAPTER 1. INTRODUCTION

Structure of this thesis The thesis consists of eight chapters including this introduc-
tory chapter. It first consists of two chapters with a general introduction to hash functions
and moments of hash-based sums. Afterwards, it contains five chapters that introduces
each of the papers included in the thesis.

Chapter 4 This chapter is dedicated to presenting the results of the research paper
“Understanding the Moments of Tabulation Hashing via Chaoses” [HT22] of Appendix A.
This paper is published in the proceedings of the 49th EATCS International Colloquium
on Automata, Languages and Programming (ICALP) 2022.

Chapter 5 This chapter is dedicated to presenting the results of the research paper “A
Sparse Johnson-Lindenstrauss Transform using Fast Hashing” [HT23] of Appendix B. This
paper is to be published in the proceedings of the 50th EATCS International Colloquium
on Automata, Languages and Programming (ICALP) 2023.

Chapter 6 This chapter is dedicated to presenting the results of the research paper
“Subsets and Supermajorities: Optimal Hashing-based Set Similarity Search” [AK20]
of Appendix C. This paper is published in the proceedings of the 61st Annual IEEE
Symposium on Foundations of Computer Science (FOCS) 2020.

Chapter 7 This chapter is dedicated to presenting the results of the research paper
“Load Balancing with Dynamic Set of Balls and Bins” [AKT21] of Appendix D. This
paper is published in the proceedings of the 53rd Annual ACM Symposium on Theory of
Computing (STOC) 2021.

Chapter 8 This chapter is dedicated to presenting the results of the research paper “On
Sums of Monotone Random Integer Variables” [AAHT22] of Appendix E. This paper is
published in the journal Electronic Communications in Probability.



Chapter 2

Hash Functions

In this chapter, we will provide a brief introduction to the study hash functions and
hashing-based algorithms. It is in parts based on the introduction from [HT22].

The concept of hash functions dates all the way back to the 1950s [Dum56] and has
since become an ubiquitous tool in the design of randomized algorithms. A hash function
is a random function h : U → R from a large universe of keys U to a range R chosen with
respect to some probability distribution D. Usually, U and R are bounded integer ranges,
U = [u] = {0, . . . , u− 1}, and R = [m] = {0, . . . ,m− 1}. Most often, and this will be the
case in this thesis, D will be the uniform distribution restricted to a subset of function of
H ⊆ RU . We will then refer to H as a family of hash functions. In this thesis, we will not
explicitly state H but it will instead be described implicitly. It is common to refer to the
keys of U as balls and the elements of R as bins. One can then think of h as throwing the
balls of U into the bins of R according to the distribution D. A particularly interesting
case is when D is the uniform distribution on RU , i.e., H = RU . In that case, h is said to
be a fully random or uniformly random hash function. A fully random hash function h
thus assigns each key x ∈ U a uniform random random hash value h(x) ∈ R and the hash
values of the keys (h(x))x∈U are mutually independent.

Fully random hash functions are incredibly powerful and the mutual independence of
the hash values often allows for simple probabilistic arguments showing strong theoretical
guarantees. For this reason a lot progress of analysis of hashing-based algorithms start by
assuming access to fully random hash functions before trying to weaken that assumption.
Unfortunately, the assumption of access to fully random hash function is wholly unrealistic
in practice. Since the size of the hash family H is |R||U | then we would need to use
|U | log2 |R| to represent h. In most application, U will be for too large and often the
idea of hashing is to map down to a smaller domain where we can represent the elements.
Instead, we want a practical hash function that requires less space and be evaluated quickly
while still be random enough that it has theoretical guarantees similar to those of fully
random hash functions.

Let us consider a simple of example of an algorithm employing a hash function. Per-
haps, the simplest example of this is hashing with chaining which was also the original
motivation for studying hash function [Dum56]. In hashing with chaining, we distribute

5
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a subset of keys S ⊆ U from a large universe U into a table of size m = |R| with a hash
function h : U → R, storing a key x ∈ S at position h(x) ∈ R. We will handle collisions
by making a linked list of keys hashing to the same entry. We can then determine if a
key y ∈ U is a member of S by hashing y and checking if y is present in the present in
the linked list stored in position h(y). Clearly, we then get that the query time is pro-
portional with the number of keys colliding with y. Now consider the simple case where
|S| = |R| = n, i.e., we distribute n balls into n bins. Let us furthermore assume that h is
fully random. The expected number of collisions with y is then1

∑
x∈S\{y}

Pr[h(x) = h(y)] = 1− [y ∈ S]

n

This holds true as long as the hash values are pairwise independent which is obviously
true for fully random hash functions. However, often we are not just interested in the
expected query time but also want to bound the query time with high probability. The
probability that a bin receives more than k balls are at most

n

(
n

k

)
n−k ≤ n

( e
k

)k
by employing a simple union bound. If we chose k = O(log n/ log logn) large enough
then standard calculations give us that no bin receives more than k keys with probability
1 − n−γ , where γ depends on how large we choose k. For this analysis to work, we need
that any k balls are hashing mutually independent, again this clearly the case for fully
random hash function.

When evaluating the performance of a hash function, three main parameters are typ-
ically considered. Firstly, the time required to evaluate the hash function, secondly, the
space required to represent it, and finally, theoretical guarantees. Theoretical guarantees
involve distilling the necessary properties of a fully random hash function to determine
whether a practical hash function with comparable theoretical guarantees exists. This is
typically accomplished by aiming to replicate the properties of fully random hashing.

In the context of this thesis, examples of theoretical guarantees include concentration
results on hash-based sums and the number of (weighted) collisions. An additional example
can be found in [HT23], where an analysis of a Sparse Johnson-Lindenstrauss Transform
[KN14] is provided, which identifies a set of necessary properties from fully random hashing
and demonstrates that a practical hash function satisfies these properties.

k-independence Wegman and Carter [WC81] introduced the key concept of k-
independent hash functions. A hash function, h : U → R, drawn from a distribution,
D, is said to be k-independent if (h(x0), . . . , h(xk−1)) is uniformly distributed in Rk for
any k distinct keys x0, . . . , xk−1 ∈ U . An important observation is that this implies that
for any k distinct keys x0, . . . , xk−1 ∈ U their hash values h(x0), . . . , h(xk−1) are mutually
independent. It is commonly the case when analysing hashing-based algorithms, that the

1For a statement P we let [P ] be 1 if P is true and 0 otherwise.
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crucial property of the hash function is some form of limited independence, hence we can
substitute the fully random hash function with a k-independent hash function for a large
enough k. For example, consider the above analysis of hashing with chaining, here we
used 2-independence to calculate the expected query time and used O(log n/ log log n)-
independence to give a high probability bound on query time. Thus, we get the same
result if we just assume that the hash function is k-independent for k = O(log n/ log logn)
large enough.

We are often interested in how concentrated a hash-based sum, X, is around its mean,
µ. If the hash function k-independent for an even k then we can employ the k’th moment
bound to get that

Pr[|X − µ| ≥ t] ≤
E
[
|X − µ|k

]
tk

.

Now since the hash function is k-independent then the k’th central moment, E
[
|X − µ|k

]
,

is exactly the same as if the hash function were a fully random hash function. The study
of moments are incredibly powerful and will be discussed more in depth in Chapter 3.

Wegman and Carter [WC81] gave a simple way of constructing a k-independent hash
function. Let p be a prime then h : [p]→ [p] is constructed by choosing a0, . . . , ak−1 ∈ [p]
independently and uniformly at random and defining

h(x) =

k−1∑
i=0

aix
i (mod p) . (2.1)

This gives a k-independent hash function that maps to [p], to obtain a hash function that
maps to R = [m] we define h′(x) = h(x) mod m. This construction only approximately
satisfy the definition of k-independence but if we choose p ≫ m large enough then it
becomes a non-issue for most applications.

The main drawback of the construction in (2.1) is that it takes Ω(k) time to evaluate.
This can be quite problematic since a lot application will have k = Ω(log n) and then the
evaluation of the hash function adds a significant overhead. A natural question is then
whether it is possible to construct a k-independent hash function that can be evaluated in
o(k) time. This was studied by Siegel [Sie04] who showed this is indeed possible but then
you need to much more space. More precisely, Siegel showed that if you want to construct
a k-independent hash function that can be evaluated using t < k memory probes then
you need to use Ω(k(u/k)1/t) words of space. The lower bound shows that there is an
inherent connection between the independence of the hash function, the evaluation of the
hash function, and the space usage of the hash function. If we want to construct a hash
function that is k-independent and can be evaluated in time c = O(1) then we need to use
u1/c words of space. In the same paper, Siegel also constructs a hash function that uses
O(u1/c) words of space, can be evaluated in O(c)c time, and which is uΩ(1/c2) independent.
Unfortunately, as Siegel notes in his paper, the construction is “[...] are far too slow for
any practical application”.
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2.1 Tabulation-Based Hashing

The construction of Siegel is part of the class of hash function which we call tabulation-
based hash functions. Tabulation-based hash functions are hash functions that are centered
around a table with random entries which are used when evaluating the hash functions.
More precisely, tabulation-based hash functions will have access to a random table, T : Γ→
R, which we will think of as a function, which takes values from some set Γ and returns
values in R. Usually, the size of Γ is a root of the size of the universe or proportional
to the number of elements, that is, either |Γ| = O(uε) for some small constant ε < 1 or
|Γ| = O(n) where n is the number of elements. Let us briefly compare the tabulation-
based hash functions to the polynomial hashing scheme, (2.1). Tabulation-based hash
functions uses significantly more space, O(uε) compared to O(k), but in contrast with the
polynomial hashing scheme, they do not need to read all the randomness when evaluating
the functions. In fact, the constructions we consider in this thesis only need to access a
constant number of words when evaluating the functions.

It has been an active research area to improve on Siegel’s construction. Several papers
have focused on constructing better k-independent hash functions with the best construc-
tion currently having an evaluation time of O(c log c) while using the same space and
having the same independence as Siegel’s construction [Tho13; CPT15]. While they are
asymptotically better than Siegel’s construction they have so far not been proven to work
in practice. In a slightly different direction, a series of papers have studied constructing
hash functions that are highly independent on a fixed (unknown) set S ⊆ U but not on
the entire universe [DW03; ÖP03; PP08; DR09]. Currently, the best construction for
constructing a function that is fully independent on a fixed (unknown) set S ⊆ U is by
Dietzfelbinger and Rink [DR09] and it uses (1 + ε) |S| words of space and can be evalu-
ated in O(log(1/ε)) time. Dahlgaard et al. [DKRT15] considered the even more general
problem where the set S is chosen by a random process that uses parts of the hash values.
They gave a construction that uses O(|S|) space and can be evaluated in constant time.

The construction discussed above are all concerned with getting a highly independent
hash function. In this thesis, we present several new results on tabulation-based hashing
but in contrast with the above construction they do not exploit independence.

Simple tabulation hashing Simple tabulation hashing dates back to 1970 and was
first introduced by Zobrist for optimizing chess computers [Zob70]. In simple tabulation
hashing, we view the universe, U , to be of the form U = Σc for some alphabet, Σ, and
a positive integer c. Let T : [c] × Σ → [2l] be a uniformly random table, i.e., each value
is chosen independently and uniformly at random from the set [2l]. A simple tabulation
hash function, h : Σc → [2l], is then defined by

h(α0, . . . , αc−1) =
c−1⊕
i=0

T (i, αi) ,

where⊕ is the bitwise XOR-operation, i.e., addition when [2l] is identified with the Abelian
group (Z/2Z)l. We say that h is a simple tabulation hash function with c characters. With
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8- or 16-bit characters, the random table T fits in cache, and then simple tabulation is
very fast, e.g., in experiments, [PT12] found it to be as fast as two to three multiplications.

Let us reflect a bit about how simple tabulation hashing fits in the framework of
tabulation-hashing introduced above. In simple tabulation hashing, we have Γ = [c]× Σ,
the space usage is O(c |Σ|) = O(cu1/c), and in each evaluation of a simple tabulation
hash function we access precisely c memory locations. We see that there is an interesting
trade-off between evaluation time with c lookups and the space usage of O(cU1/c). This
motivates analysing how c affects the theoretical guarantees of simple tabulation hashing.

The constructions discussed above were all concerned with getting high independence
either on a subset of the universe or on the entire universe. An obvious question is therefore
how much independence simple tabulation hashing possess. As it turns out, simple tab-
ulation hashing is only 3-independent. The simplest case showing that simple tabulation
hashing is not 4-independent is as follows: Let c = 2 and choose α1, α2, β1, β2 ∈ Σ with
α1 ̸= α2 and β1 ̸= β2. We now consider the keys x = (α1, β1), y = (α1, β2), z = (α2, β1),
and w = (α2, β2). It now follows from the definition of simple tabulation hashing that
h(x)⊕h(y)⊕h(z)⊕h(w) = 0, irrespective of the randomness of h, thus the keys x, y, w, z
are not mutually independent.2 The low independence of simple tabulation hashing might
suggest that it does not have strong theoretical guarantees but surprisingly it does. This
was first studied by Pǎtraşcu and Thorup [PT12] who showed that simple tabulation
hashing in certain situations has concentration guarantees like fully and studied its per-
formance in linear probing, cuckoo hashing, and min-wise hashing. The concentration
guarantees of simple tabulation hashing was later refined [AKKR+20] and it was shown
that the concentration guarantees tightly linked to size of the output range |R|. A series
of papers [DKRT16; AKT18; AT19] have studied simple tabulation in the context of 2-
and d-choice balanced allocation schemes and the number of non-empty bins.

One of the reasons, that simple tabulation has these strong guarantees even though
that it is only 3-independent, is that the hash values of most subsets are independent.
There exists a quite simple description of which subsets are independent under simple
tabulation hashing. First, we note that we can consider a key x = (x0, . . . , xc−1) ∈ Σc as
a set of c position characters, x̄ = {(0, x0), . . . , (c− 1, xc−1)} ⊆ [c] × Σ. Now a subset of
keys A ⊆ Σc have independent hash values, that is, (h(x))x∈A are mutually independent,
if and only if there does not exist a non-empty subset ∅ ≠ B = {x0, . . . , xt−1} ⊆ A
such that x0△ · · · △xt−1 = ∅ where △ denotes the symmetric difference operator. A
counting argument in [DKRT15] shows that there cannot be that many subsets, B, with
that property.

Mixed tabulation hashing Let us consider the following way to construct a hash
function: Let g : Σr → R be a simple tabulation hash function and f : U → Σr be
a function. We then define h : U → R by h(x) = g(f(x)). Now if we can construct
f such that for all subsets B = {x0, . . . , xt−1} ⊆ U up to some size k, we have that
f(x0)△ · · · △ f(xt−1) ̸= ∅, then h will be k-independent. This is roughly speaking the

2We can easily extend the example to c > 2, simply choose γ ∈ Σc−2 and consider the keys x =
(α1, β1, γ), y = (α1, β2, γ), z = (α2, β1, γ), and w = (α2, β2, γ).
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idea behind most of the construction of highly independent tabulation-based hash func-
tions. Unfortunately, it is not known how to construct f deterministically. Instead, the
constructions choose f to be a random hash function and show that with high probability
it has the desired property.

One such construction is mixed tabulation hashing which was introduced in [DKRT15].
Mixed tabulation hashing can be constructed as follows: Let g : Σc+d → [2l] and h2 : Σc →
Σd be simple tabulation hash function and define f : Σc → Σc+d by f(x) = (x, h2(x)). A
mixed tabulation hash function, h : Σc → [2l], is then defined by

h(x) = g(f(x)) .

We call h a mixed tabulation hash function with c characters and d derived characters.
It can be beneficial to view g as two simple tabulation hash functions, h1 : Σc → [2l]
and h3 : Σd → [2l], then g(x, y) = h1(x) ⊕ h3(y) for x ∈ Σc, y ∈ Σd. With this view we
then get that h(x) = h1(x) ⊕ h3(h2(x)). When implementing a mixed tabulation hash
function it is possible to combine h1 and h2 into a single simple tabulation hash function
Σc → [2l] × Σd, and then h is implemented with only c + d lookups. Mixed tabulation
hashing was originally introduced to obtain high independence on a set S but in this thesis
we will study properties of mixed tabulation hashing unrelated to its independence.



Chapter 3

Moments

In this chapter, we will introduce moments of hash-based sums. It is in parts based on
the introduction from [HT22].

Before we go into discussing moments of hash-based sums, it will be instructive to
first consider some classical concentration results for random variables. The Chernoff’s
bounds [Che52] go all the way back to the 1950s and were originally introduced in the
study of statistics. In fact, the study of such bounds can be traced event further back to
Bernstein [Ber24] in the 1920s. Today Chernoff’s bounds are an essential part of analysing
randomized algorithms.

Consider the random variable X =
∑

i∈[n]Xi where (Xi)i∈[n] are independent Bernoulli
random variables, i.e., Xi ∈ {0, 1} and Pr[Xi = 1] = 1−Pr[Xi = 0] = E[Xi] for all i ∈ [n].
Writing µ = E[X] Chernoff’s bounds show that for every ε > 0 it holds that

Pr[X ≥ (1 + ε)µ] ≤
(

eε

(1 + ε)1+ε

)µ
= exp(−µC(ε)) ,

Pr[X ≤ (1− ε)µ] ≤
(

e−ε

(1− ε)1−ε

)µ
= exp(−µC(−ε)) .

Here C(x) : (−1,∞)→ R+ is defined by C(x) = (1 + x) ln(1 + x)− x.
The proof of Chernoff’s bounds follow by Markov’s inequality and by upper bounding

the moment generating function. Here we will focus on the upper tail but the proof of
lower tail is analogous.

Pr[X ≥ (1 + ε)µ] ≤ inf
λ>0

(
E
[
eλX

]
exp(−(1 + ε)µ)

)
.

The last step of the proof is to upper bound the moment generating function, E
[
eλX

]
≤

exp
(
µ(eλ − 1)

)
. An interesting observation is that exp

(
µ(eλ − 1)

)
= E

[
eλY

]
where Y is

random variable that have a Poisson distribution with parameter µ. So we upper bounded
the moment generating function of X by the moment generating function of the Poisson
distribution with parameter µ.

An alternative method for proving concentration result is by using moment bounds.
Let p ≥ 1 and consider a random variable X for which E[X] <∞ exists then for all t > 0

11
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it holds that

Pr[X > t] ≤ E
[
(X+)p

]
t−p .

Here X+ = max{X, 0}. There are several advantages to using moment bounds instead of
using the moment generating function. It has been shown that moment bounds are always
tighter [PN95], but even more crucial is the fact that the moment generating function
might not exist even random variables where all the moments exist. This motivates
studying the moments of random variables.

It often more convenient to work with p-norms instead of working the moments of
random variables directly. The p-norm of a random variable is the p’th root of the p’th
moment of the random variable and is formally defined as follows:

Definition 3.1 (p-norm). Let p ≥ 1 and X be a random variable with E[|X|p] <∞. We

then define the p-norm of X by ∥X∥p = E[|X|p]1/p.

A nice and simple feature of working with p-norms is the following tail bound which
follows by a standard application of Markov’s inequality.

Pr
[
|X| ≥ e ∥X∥p

]
≤ e−p .

This is useful a bound since a lot of applications are interested in bounding the smallest
deviation that happens with probability at most δ. Thus, if we bound ∥X∥p for p =
log(1/δ) then we immediately obtain such a bound.

As discussed above, Chernoff’s bounds are proven by upper bounding the moment
generating function by the moment generating function of the Poisson distribution. This
inspires us to similarly bound the p-norms with the p-norms of the Poisson distribution.
In order to do this, we first need to understand the p-norms of the Poisson distribution.
In [HT23], they introduced the function Ψp(M,σ2) which does exactly that. THe definition
of Ψp(M,σ2) is quite technical but [HT22] proved that Ψp(1, λ) is equal up to a constant
factor to the central p-norm of a Poisson distributed variable with mean λ.

Definition 3.2. For p ≥ 2 we define the function Ψp : R+ × R+ → R+ as follows

Ψp(M,σ2) =


(

σ2

pM2

)1/p
M if p < log pM2

σ2

1
2

√
pσ if p < e2 σ

2

M2

p

e log pM2

σ2

M if max
{

log pM2

σ2 , e
2 σ2

M2

}
≤ p

.

Remark 3.3. When p is small then case 1 and 2 apply while for large p case 3 applies. If

2 < e2 σ
2

M2 then we always have that p > log pM2

σ2 for 2 ≤ p, hence only case 2 and 3 apply.

Similarly, if e2 σ
2

M2 ≤ 2 then p ≥ e2 σ
2

M2 for all 2 ≤ p, hence only case 1 and 3 apply. This
shows that the cases disjoint and cover all parameter configurations.
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The definition Ψp(M,σ2) is quite technical but the important property of it is not its
exact definition but the fact that it captures the central p-norms of Poisson distributed
random variables. This was proven in [HT22] and is stated formally in the following
lemma.

Lemma 3.4 ([HT22]). There exist universal constants K1 and K2 satisfying that for a
Poisson distributed random variable, X, with λ = E[X]

K2Ψp(1, λ) ≤ ∥X − λ∥p ≤ K1Ψp(1, λ) ,

for all p ≥ 2.

3.1 Moments of Hash-Based Sums

Let us formalize the notion of a hashed-based sum. For a hash function h : U → R and
a fixed value function, v : U × R → R, we define the random variable Xx = v(x, h(x))
for every key x ∈ U . We are then interested in proving concentration bounds for the
sum X =

∑
x∈U Xx =

∑
x∈U v(x, h(x)). It should be noted that the randomness of X is

derived from the hash function h, thus the results will depend on the strength of h.
This is quite a general problem, and at first glance, it might not be obvious why

this is a natural construction to consider, but it does generalize a variety of well-studied
constructions:

1. Let S ⊆ U be a set of balls and assign a weight, wx ∈ R, for every ball, x ∈ S. The
goal is to distribute the balls, S, into a set of bins R = [m]. For a bin, y ∈ [m],
we define the value function vy : U × [m]→ R by vy(x, j) = wx [j = y] [x ∈ S], then
X =

∑
x∈U vy(x, h(x)) =

∑
x∈S wx [h(x) = y] will be the weight of the balls hashing

to bin y.

2. Instead of concentrating on a single bin, we might be interested in the total weight
of the balls hashing below some threshold l. This is useful for sampling, because
if h(x) is uniform in [m], then Pr[h(x) < l] = l/m. We then define the value
function v : U×[m]→ R by v(x, j) = wx [j < l] [x ∈ S], then X =

∑
x∈U v(x, h(x)) =∑

x∈S wx [h(x) < l] will be precisely the total weight of the balls hashing below l.

We already saw the first case appear when we discussed hashing with chaining in the
chapter and it generally appears when one tries to allocate resources. The second case
arises in streaming algorithms. In [ADKK+22], it was shown that if the hash function
provides strong concentration guarantees then the running time of certain streaming al-
gorithms can be improved. Finally, in [HT23], the full generality of hashed-based sums
are exploited to obtain a new analysis of a Sparse Johnson-Lindenstrauss transform. The
goal is generally to prove that X is concentrated around the mean µ = E[X]. If h is a
uniformly random hash function then this will be the case under mild assumptions about
v but it cannot otherwise be assumed a priori to be the case.

Now we fix a value function v : U ×R→ R where
∑

j∈R v(x, j) = 0 for all keys x ∈ U ,
and we assume that the hash function, h : U → R, is uniformly distributed for all keys
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x ∈ U , i.e., the has value h(x) is uniformly distributed in R. These assumptions imply
that the random variable Xx = v(x, h(x)) has mean 0 for every key x ∈ U . We then define
some notation which will be useful.

Mv = max
x∈U,j∈[m]

|v(x, j)| , (3.1)

σ2v =

∑
x∈U,j∈[m] v(x, j)2

m
. (3.2)

Here Mv is the smallest upper bound that always holds |Xx| for all keys x ∈ U , and
σ2 = Var[X] if the hash function h is pairwise independent. With this notation, we
can obtain a stronger tail bound than Chernoff’s bound for general value functions by
employing Bennett’s inequality [Ben62]. For a fully random hash function, h, Bennett’s
inequality give us that.

Pr

[∣∣∣∣∣∑
x∈U

v(x, h(x))

∣∣∣∣∣ ≥ t
]
≤ 2 exp

(
− σ2

v
M2

v
C
(
tMv
σ2
v

))

≤

2 exp
(
− t2

3σ2
v

)
if t ≤ σ2

v
Mv

2 exp
(
− t

2Mv
log
(

1 + tMv
σ2
v

))
if t > σ2

v
Mv

,

(3.3)

The proof Bennett’s inequality follows the same structure as the proof of Chernoff’s
bounds. The crucial difference between them is how they upper bound the moment
generating function. In the proof of Bennett’s inequality, the estimate E

[
eλX

]
≤

exp
(
σ2
v

M2
v

(eλMv − 1)
)

is used. If Y is a Poisson distributed random variable with parameter

σ2

M2 then exp
(
σ2
v

M2
v

(eλMv − 1)
)
≤ E

[
eλ(MvY )

]
. Thus, the moment generating function of X

is upper bounded by the moment generating function of MvY . Combining this insight
with Lemma 3.4 which shows that Ψp(M,σ2) captures the central p-norms of the Poisson
distribution, it should not be too surprising that the p-norms of

∑
x∈U v(x, h(x)) can be

controlled using Ψp(M,σ2). This is exactly what was shown in [HT22].

Theorem 3.5 ([HT22]). Let h : U → [m] be a uniformly random function, let v : U×[m]→
R be a fixed value function, and assume that

∑
j∈[m] v(x, j) = 0 for all keys x ∈ U . Define

the random variable Xv =
∑

x∈U v(x, h(x)). Then for all p ≥ 2

∥Xv∥p ≤ LΨp

(
Mv, σ

2
v

)
,

where L ≤ 16e is a universal constant.

To get a further intuition for Ψp(M,σ2), it is instructive to apply Markov’s inequal-
ity and compare the tail bound to Bennett’s inequality. More precisely, assume that
∥Z − E[Z]∥p ≤ LΨp(M,σ2) for a constant L and for all p ≥ 2. Then we can use Markov’s
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inequality to get the following tail bound for all t > 0.

Pr
[∣∣∣Z − E[Z]

∣∣∣ ≥ t] ≤ (∥Y − E[Y ]∥p
t

)p

≤


L2σ2

2t2
if t ≤ Lmax

{
M, eσ√

2

}
exp
(
− 4t2

e2L2σ2

)
if L eσ√

2
≤ t ≤ L e2σ2

2M

exp
(
− t
LM log

(
2tM
Lσ2

))
if Lmax

{
e2σ2

2M ,M
}
≤ t

.

(3.4)

In order to obtain these bounds, p is chosen as follows: If t ≤ max
{
M, eσ√

2

}
then p = 2

and otherwise p is chosen such that ∥Z − E[Z]∥p ≤ e−1t. More precisely, we have that

p =


2 if t ≤ Lmax

{
M, eσ√

2

}
4t2

e2L2σ2 if L eσ√
2
≤ t ≤ L e2σ2

2M

t
LM log

(
2tM
Lσ2

)
if Lmax

{
e2σ2

2M ,M
}
≤ t

.

We see that eq. (3.4) gives the same tail bound as Bennett’s inequality, eq. (3.3), up to a
constant in the exponent.

An interesting question is whether we can do better, that is, is the Ψp(M,σ2) the best
we can do. In [HT22], we showed that if all we know about our value function v is Mv and
σ2v then the answer is no. More precisely, in [HT22], we show the following lower bound.

Theorem 3.6 ([HT22]). Let h : U → [m] be a uniformly random function, then there
exists a value function, v : U × [m]→ R, where

∑
j∈[m] v(x, j) = 0 for all keys x ∈ U , such

that the random variable Xv =
∑

x∈U v(x, h(x)) satisfies that for all p ≤ L1 |U | log(m)∥∥∥∥∥∑
x∈U

v(x, h(x))

∥∥∥∥∥
p

≥ L2Ψp

(
Mv, σ

2
v

)
,

where L1 and L2 are a universal constant.





Chapter 4

Understanding the Moments of
Tabulation Hashing via Chaoses

This chapter is dedicated to presenting the results of our research paper “Understanding
the Moments of Tabulation Hashing via Chaoses” [HT22] of Appendix A, and includes
a slightly modified subset of its introduction. The work presented in the paper overlaps
with the master thesis submitted by the author in May 2021 [Hou23]. The core results
were present in the master thesis [Hou23] but several proofs have been rewritten and
significantly simplified.

4.1 Introduction

In [HT22], we will focus on analyzing hash-based sums. More precisely, we consider a
fixed value function, v : U × R → R, and define the random variable Xx = v(x, h(x)) for
every key x ∈ U . We are then interested in proving concentration bounds for the sum
X =

∑
x∈U Xx =

∑
x∈U v(x, h(x)). It should be noted that the randomness of X derives

from the hash function h, thus the results will depend on the strength of h. We will focus
on the case where h is either a simple tabulation hash function or a mixed tabulation hash
function.

Pǎtraşcu and Thorup [PT12] studied the theoretical guarantees of simple tabulation
hashing. They showed that simple tabulation hashing provides Chernoff-style tail bounds
for distributing n balls into m bins as long as m = n1−1/(2c). This is fine for some
applications but a lot applications need the number of bins m to be much smaller. In a
later paper [PT13], the same authors introduced a variant of simple tabulation hashing
called twisted tabulation hashing. They showed that twisted tabulation hashing provides
Chernoff-style tail bounds for any hash-based sum (as defined in Section 3.1) as long as
the expectation µ is not too large. More precisely, they need µ ≤ |Σ|1−ε for a constant
0 < ε. Again, there are a lot of applications where this assumption will be violated.

In a recent paper [AKKR+20], the analysis of simple tabulation hashing was strength-
ened. They showed that simple tabulation hashing provides Chernoff-style tail bounds
for distributing n balls into m without any restriction on n and m, but instead they

17
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needed an additive term of m−γ where γ is a constant. They also showed that such a
term is necessary. Thus, if m = O(1) then simple tabulation hashing cannot provide nice
Chernoff-style tail bounds. In the same paper [AKKR+20], they introduced tabulation-
permutation which they showed have Chernoff-style tail bounds for any hash-based sum
with an additive term of |Σ|−γ where γ is a constant.

The big issue with the prior results is that they all contain an extra additive term.
If we try to use the tail bounds to bound the central moments of X then we will only
obtain something useful for p = O(1) since the additive term will be prohibitive for
higher moments. In contrast, if we prove strong bounds for the central moments of X
for p = O(log n) then we can use Markov’s inequality to prove a bound the tail that is
exponentially decreasing but with an additive term of the form n−γ where γ = O(1). Thus
in some sense, it is more robust to bound the moments compared to bounding the tail.

While most of the study of simple tabulation hashing have focussed on proving tail
bounds, there have also been a couple of paper studying the moments of simple tabulation
hashing. Braverman et al. [BCLM+10] showed that for a fixed bin the 4th central moment
is close to that achieved by truly random hashing. Dahlgaard et al. [DKT17] generalized
this to any constant moment p. Their proof works for any p but with a doubly exponential
dependence on p, so their bound is only useful for p = O(1). In [HT22], we obtain bounds
for all the moments of hash-based sums for simple tabulation hashing which are tight up
to constants depending only on c.

4.2 Moments of Tabulation Hashing

In [HT22], we analyze the p-norms of hash-based sums for simple tabulation hashing, and
our analysis is the first that provides useful bounds for non-constant moments. Further-
more, it is also the first analysis of simple tabulation hashing that does not assume that c
is constant. We obtain an essentially tight understanding of this problem and show that
simple tabulation hashing only works well when the range is large. This was also noted
by Aamand et al. [AKKR+20] and they solve this deficiency of simple tabulation hashing
by introducing a new hashing scheme, tabulation-permutation hashing. We show that it
is also possible to break the bad instances of simple tabulation hashing by using mixed
tabulation hashing.

We introduce a bit of notation to make the theorems cleaner. We will view a value
function v : Σc × [m]→ R as a vector, more precisely, we let

∥v∥q =

∑
x∈Σc

∑
j∈[m]

|v(x, j)|q
1/q

for all q ∈ [1,∞]. For every key x ∈ Σc we define v[x] to be the sub-vector v restricted to
x, more precisely, we let

∥v[x]∥q =

∑
j∈[m]

|v(x, j)|q
1/q
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for all q ∈ [1,∞].

4.2.1 Moments of Simple Tabulation Hashing

Tha main result of [HT22] for simple tabulation hashing is a version of Theorem 3.5.

Theorem 4.1 ([HT22]). Let h : Σc → [m] be a simple tabulation hash function, v : Σc ×
[m]→ R a value function, and assume that

∑
j∈[m] v(x, j) = 0 for all keys x ∈ Σc. Define

the random variable V simple
v =

∑
x∈Σc v(x, h(x)). Then for all p ≥ 2∥∥∥V simple

v

∥∥∥
p
≤ L1Ψp

(
Kcγ

c−1
p Mv,Kcγ

c−1
p σ2v

)
,

where Kc = (L2c)
c−1, L1 and L2 are universal constants, and

γp =

max

{
log(m) + log

( ∑
x∈Σc∥v[x]∥22

maxx∈Σc∥v[x]∥22

)
/c, p

}
log

(
e2m

(
maxx∈Σc

∥v[x]∥21
∥v[x]∥22

)−1
)

It is instructive to compare this result to Theorem 3.5 for fully random hashing. Ig-
noring the constant Kc, the result for simple tabulation hashing corresponds to the result
for fully random hashing if we group keys into groups of size γc−1

p .

The definition of γp is somewhat complicated because of the generality of the theorem,

but we will try to explain the intuition behind it. The expression maxx∈Σc
∥v[x]∥21
∥v[x]∥22

measures

how spread out the mass of the value function is. It was also noted in the previous analysis
by Aamand et al. [AKKR+20] that this measure is naturally occurring. In fact, their

result needs that maxx∈Σc
∥v[x]∥21
∥v[x]∥22

≤ m1/4. If we consider the example of hashing below a

threshold l ≤ m where each key, x ∈ Σc, has weight wx, then the value function, v, will
be v(x, j) = wx

(
[j < l]− l

m

)
for x ∈ Σc, j ∈ [m], and we then get that

max
x∈Σc

∥v[x]∥21
∥v[x]∥22

= 4l

(
1− l

m

)
≤ 4l .

This correctly measures that the mass of the value function is mostly concentrated to the
l positions of [m].

The expression
∑

x∈Σc∥v[x]∥22
maxx∈Σc∥v[x]∥22

is a measure for how many keys that have signifi-

cant weight. This also showed up in the previous analyses of simple tabulation hash-
ing [AKKR+20; PT12]. If we again consider the example from before, we get that∑

x∈Σc ∥v[x]∥22
maxx∈Σc ∥v[x]∥22

=

∑
x∈Σc w2

x

maxx∈Σc w2
x

.

We can summarize the example in the following corollary.



20 CHAPTER 4. MOMENTS OF TABULATION HASHING

Corollary 4.2 ([HT22]). Let h : Σc → [m] be a simple tabulation hash function, assign a
weight, wx ∈ R, to every key, x ∈ Σc, and consider a threshold l ≤ m. Define the random
variable V simple

v =
∑

x∈Σc wx
(
[h(x) < l]− l

m

)
. Then for all p ≥ 2

∥∥∥V simple
v

∥∥∥
p
≤ Ψp

(
Kcγ

c−1
p max

x∈Σc
|wx| ,Kcγ

c−1
p

(∑
x∈Σc

w2
x

)
l

m

(
1− l

m

))
,

where Kc = L1 (L2c)
c−1, L1 and L2 are universal constants, and

γp =
max

{
log(m) + log

( ∑
x∈Σc w2

x

maxx∈Σc w2
x

)
/c, p

}
log
(
e2m
4l

)
A natural question is how close Theorem A.7 is to being tight. We show that if

log(m) + log

( ∑
x∈Σc∥v[x]∥22

maxx∈Σc∥v[x]∥22

)
/c = O

(
log

(
1 +m

(
maxx∈Σc

∥v[x]∥21
∥v[x]∥22

)−1
))

then the result

is tight up to a universal constant depending only c. Formally in [HT22], we prove the
following lemma.

Theorem 4.3 ([HT22]). Let h : Σc → [m] be a simple tabulation hash function, and
2 ≤ p ≤ L1 |Σ| log(m), then there exists a value function, v : U × [m] → R, where∑

j∈[m] v(x, j) = 0 for all keys x ∈ Σc, and for which∥∥∥∥∥∑
x∈Σc

v(x, h(x))

∥∥∥∥∥
p

≥ K ′
cΨp

(
γc−1
p Mv, γ

c−1
p σ2v

)
,

where K ′
c = Lc1 and L1 is a universal constant, and

γp = max

1,
p

log

(
e2m

(
maxx∈Σc

∥v[x]∥21
∥v[x]∥22

)−1
)


4.2.2 Moment of Mixed Tabulation Hashing

The results of simple tabulation hashing work well when the range is large and when
the mass of the value function is on few coordinates. In [HT22], we show that mixed
tabulation hashing works well even if the range is small.

Theorem 4.4 ([HT22]). Let h : Σc → [m] be a mixed tabulation function with d ≥ 1
derived characters, v : Σc× [m]→ R a value function, and assume that

∑
j∈[m] v(x, j) = 0

for all keys x ∈ Σc. Define the random variable V mixed
v =

∑
x∈Σc v(x, h(x)). For all p ≥ 2

then ∥∥∥V mixed
v

∥∥∥
p
≤ Ψp

(
Kcγ

c
pMv,Kcγ

c
pσ

2
v

)



4.3. CONCLUSION 21

where Kc = L1 (L2c)
c, L1 and L2 are universal constants, and

γp = max

{
1,

log(m)

log(|Σ|)
,

p

log(|Σ|)

}
.

Usually, in hashing contexts, we do not map to a much larger domain, i.e., we will
usually have that m ≤ |U |γ for some constant γ ≥ 1. If this is the case then we can obtain
the following nice tail bound for mixed tabulation hashing by using Markov’s inequality.

Corollary 4.5 ([HT22]). Let h : Σc → [m] be a mixed tabulation function with d ≥ 1
derived characters, v : Σc× [m]→ R a value function, and assume that

∑
j∈[m] v(x, j) = 0

for all keys x ∈ Σc. Define the random variable V mixed
v =

∑
x∈Σc v(x, h(x)). If m ≤ |U |γ

for a value γ ≥ 1 then for all t ≥ 0

Pr
[∣∣∣V mixed

v

∣∣∣ ≥ t] ≤ exp
(
− σ2

v
M2

v
C
(
tMv
σ2
v

)
/Kc,γ

)
+ |U |−γ ,

where C(x) = (x + 1) log(x + 1) − x, Kc,γ = L1

(
L2c

2γ
)c
, and L1 and L2 are universal

constants.

4.3 Conclusion

In [HT22], we have studied the moments of hash-based sums of both simple tabulation
hashing and mixed tabulation hashing. We have shown that the moments of hash-based
sums of simple tabulation hashing are close to the moments of hash-based sums of fully
random hashing as long as the number of bins are large. But when the number of bins
are small then simple tabulation hashing does not provide good concentration. We show
that mixed tabulation hashing does not suffer from this restriction and does in general
provide good concentration.





Chapter 5

A Sparse Johnson-Lindenstrauss
Transform using Fast Hashing

This chapter is dedicated to presenting the results of our research paper “A Sparse
Johnson-Lindenstrauss Transform using Fast Hashing” [HT23] from Appendix B, and
includes a slightly modified subset of its introduction.

5.1 Introduction

Dimensionality reduction is an often applied technique to obtain a speedup when working
with high dimensional data. The basic idea is to map a set of points X ⊆ Ru to a lower
dimension while approximately preserving the geometry. The Johnson-Lindenstrauss
lemma [JL84] is a foundational result in that regard.

Lemma 5.1 ([JL84]). For any 0 < ε < 1, integers n, u, and X ⊆ Ru with |X| = n, there
exists a map f : X → Rm with m = O(ε−2 log n) such that

∀w,w′ ∈ X,
∣∣∥∥f(w)− f(w′)

∥∥
2
−
∥∥w − w′∥∥

2

∣∣ ≤ ε∥∥w − w′∥∥
2
.

It has been shown in [AK17; LN17] that the target dimension m is optimal for nearly
the entire range of n, u, ε. More precisely, for any n, u, ε there exists a set of points X ⊆ Ru
with |X| = n such that for any map f : X → Rm where the Euclidean norm is distorted
by at most (1± ε) must have m = Ω(min

{
u, n, ε−2 log(ε2n)

}
).

All known proofs of the Johnson-Lindenstrauss lemma constructs a linear map f . The
original proof of Johnson and Lindenstrauss [JL84] chose f(x) = Πx where Π ∈ Rm×u

is an appropriately scaled orthogonal projection into a random m-dimensional subspace.
Another simple construction is to set f(x) = 1√

m
Ax where A ∈ Rm×u and each entry

is an independent Rademacher variable. In both cases, it can be shown that as long as
m = Ω(ε−2 log 1/δ) then

∀w ∈ Ru, Pr
[∣∣∣∥f(w)∥22 − ∥w∥

2
2

∣∣∣ ≥ ε ∥w∥22] ≤ δ. (5.1)

23
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The Johnson-Lindenstrauss lemma follows by setting δ < 1/
(
n
2

)
and taking w = z− z′ for

all pairs z, z′ ∈ X together with a union bound. (B.1) is also known as the distributional
Johnson-Lindenstrauss lemma and it has been shown that the target dimension m is tight,
more precisely, m must be at least Ω(min

{
u, ε−2 log 1/δ

}
) [JW13; KMN11].

5.1.1 Sparse Johnson-Lindenstrauss Transform

One way to speed up the embedding time is replacing the dense A of the above construction
by a sparse matrix. The first progress in that regard came by Achlioptas in [Ach03] who
showed that A can be chosen with i.i.d. entries where Aij = 0 with probability 2/3 and

otherwise Aij is chosen uniformly in ±
√

3
m . He showed that this construction can achieve

the same m as the best analyses of the Johnson-Lindenstrauss lemma. Hence this achieves
essentially a 3x speedup, but the asymptotic embedding time is still O(m ∥x∥0) where ∥x∥0
is number of non-zeros of x.

Motivated by improving the asymptotic embedding time, Kane and Nelson in [KN14],
following the work in [DKS10; KN10; BOR10], introduced the Sparse Johnson-
Lindenstrauss Transform which maps down to essentially optimal dimension m =
O(ε−2 log n) and only has s = O(ε−1 log n) non-zeros entries per column. This speeds
up the embedding time to O(ε−1 log n ∥x∥0) = O(εm ∥x∥0) thus improving the em-
bedding time by a factor of ε−1. It nearly matches a sparsity lower bound by Nel-
son and Nguyen [NN13] who showed that any sparse matrix needs at least s =
Ω(ε−1 log(n)/ log(1/ε)) non-zeros per column. Kane and Nelson [KN14] provided two dif-
ferent constructions with the same sparsity. Later a simpler analysis was given in [CJN18]
which also generalized the result to a more general class of constructions. In [HT23], we
will only focus on one of the constructions which is described below.

We will first consider the related CountSketch which was introduced in [CCF04] and
was analyzed for dimensionality reduction in [TZ12]. In CountSketch, we construct the
matrix A as follows: We pick a pairwise independent hash function, h : [u] → [m], and a
4-wise independent sign function σ : [u]→ {−1, 1}. For each x ∈ [u], we set Ah(x),x = σ(x)
and the rest of the x’th column to 0. Clearly, this construction has exactly 1 non-zero
entry per column. It was shown in [TZ12] that if m = Ω(ε−2δ−1) then it satisfies the
distributional Johnson-Lindenstrauss lemma, eq. (5.1). The result follows by bounding
the second moment of ∥Ax∥22−∥x∥

2
2 for any x ∈ Rd and then apply Chebyshev’s inequality.

The construction of the Sparse Johnson-Lindenstrauss Transform is s CountSketch
matrices concatenated and scale the resulting matrix by 1√

s
. This clearly gives a construc-

tion that has s non-zero entries per column and as it has been shown in [KN14; CJN18] if
s = Ω(ε−1 log(1/δ)) then we can obtain the optimal target dimensionm = O(ε−2 log(1/δ)).
More formally, we construct the matrix A as follows:

1. We pick a hash function, h : [s] × [u] → [m/s] and a sign function σ : [s] × [u] →
{−1, 1}.

2. For each x ∈ [u], we set Ai·m/s+h(i,x),x = σ(i,x)√
s

for every i ∈ [s] and the rest of the

x’th column to 0.
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In the previous analyses [KN14; CJN18], it was shown that if h and σ are Ω(log 1/δ)-
wise independent then the construction works. Unfortunately, it is not practical to use a
Ω(log 1/δ)-wise independent hash function so the goal of [HT23] is to obtain an analysis
of a Sparse Johnson-Lindenstrauss Transform with fewer assumptions about the hash
function. In particular, the analysis of [HT23] relax the assumptions of the hash function,
h, and the sign function, σ, to just satisfying a decoupling-decomposition and a strong
concentration property.

In [HT23], it also shown that Mixed Tabulation satisfies these properties and thus that
the Sparse Johnson-Lindenstrauss Transform can be implemented using Mixed Tabula-
tion. Let us describe more formally, what we mean by saying that Mixed Tabulation can
implement the Sparse Johnson-Lindenstrauss Transform. We let h1 : Σc = [u] → [m/s],
h2 : Σc → Σd, and h3 : Σd → [m/s] be the independent Simple Tabulation hash functions
that implement the Mixed Tabulation hash function, h1(x)⊕ h3(h2(x)). We then extend
it to the domain [s]× [u] as follows:

1. Let h′2 : [s] × Σc → Σd be defined by h′2(i, x) = h2(x) ⊕ (i, . . . , i)︸ ︷︷ ︸
d times

, i.e., each derived

character gets xor’ed by i.

2. We then define h : [s] × [u] → [m/s] and σ : [s] × [u] → {−1, 1} by h(i, x) =
h1(x) ⊕ h3(h

′
2(i, x)) and σ(i, x) = σ1(x) · σ3(h′2(i, x)), where h1 and h3 are the

Simple Tabulation hash functions described above, and σ1 : Σc → {−1, 1} and
σ3 : Σd → {−1, 1} are independent Simple Tabulation functions.

5.2 Overview of the New Analysis

The main the technical contribution of [HT23] is a new analysis of the Sparse Johnson-
Lindenstrauss Transform that relaxes the assumptions on the hash function, h. In [HT23],
we show that if h satisfies a decoupling decomposition property and a strong concentration
property then we obtain the same bounds for the Sparse Johnson-Lindenstrauss Trans-
form. Both of these properties are satisfied by h if h is Ω(log 1/δ)-wise independent so our
assumptions are weaker than those of the previous analyses.

In order to describe the approach of [HT23], we look at the random variable

Z = ∥Aw∥22 − 1 =
1

s

∑
i∈[s]

∑
x ̸=y∈[u]

σ(i, x)σ(i, y) [h(i, x) = h(i, y)]wxwy. (5.2)

Here w ∈ Ru is a unit vector. With this notation the goal becomes to bound Pr[|Z| ≥ ε].
The first step in the analysis is to decouple eq. (5.2). Decoupling was also used in one

of the proofs in [CJN18], but since we want to prove the result for more general hash func-
tions, we cannot directly use the standard decoupling inequalities. We will instead assume
that our hash function allows a decoupling-decomposition. The definition of a decoupling-
decomposition is a bit technical and we postpone the formal definition to Appendix B.
Intuitively speaking the idea of the decoupling-decomposition is to decompose the universe
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U into pieces (Uα)α where each of the pieces can be decoupled. Thus, for simplicity, we
will assume that our hash function allows for the standard decoupling inequality. If we
apply Markov’s inequality and a standard decoupling inequality for fully random hashing
we obtain the expression.

Pr[|Z| ≥ ε] ≤ ε−p E[|Z|p]

≤
(
ε−1 4

s

)p
E

∣∣∣∣∣∣
∑
i∈[s]

∑
x,y∈[u]

σ(i, x)σ′(i, y)
[
h(i, x) = h′(i, y)

]
wxwy

∣∣∣∣∣∣
p (5.3)

where (h′, σ′) are independent copies of (h, σ) and p ≥ 2. The power of decoupling stems
from the fact that it breaks up some of the dependencies and allows for a simpler analysis.

The goal is now to analyze
∥∥∥∑i∈[s]

∑
x,y∈[u] σ(i, x)σ′(i, y) [h(i, x) = h′(i, y)]wxwy

∥∥∥
p
.

First we fix (h′, σ′) and define the value function v : [s] × [u] × [m/s] → R by v(i, x, j) =
wx
∑

y∈[u] σ
′(i, y) [h(i, y) = j]wy. We then use the randomness of (h, σ) to bound the

hash-based sum
∑

i∈[s]
∑

x∈[u] σ(i, x)v(i, x, h(i, x)). In order to do this, we will assume
that (h, σ) is strongly concentrated. The formal definition of strongly concentrated is
deferred to Appendix B, but informally speaking, it requires the pair (h, σ) to have similar
concentration as fully random hashing, that is, it satisfies a lemma akin to Theorem 3.5.

Now we note that v(i, x, j) = wxai,j where ai,j =
∑

y∈[u] σ
′(i, y) [h(i, y) = j]wy. We

then take the view that |aij | is the load of the bin (i, j) ∈ [s]× [m/s]. We can then split
[s]× [m/s] into heavy and light bins and handle each separately.

In [HT23], we show that the contribution from the light bins is as if the collisions are
independent. This should be somewhat intuitive since if we only have few collisions in
each bin then the collisions behave as if they were independent. In contrast, we show that
the contribution from the heavy bins is dominated by the heaviest bin. This turns out to
be exactly what we need to finish the analysis. The following is an informal statement of
the main technical lemma of [HT23].

Lemma 5.2 ([HT23], informal). Let h, h : [s]×U → [m/s] be hash functions and σ, σ : [s]×
U → {−1, 1} be sign functions. Assume that (h, σ) and (h, (σ)) are strongly concentrated
then for all vectors w ∈ RU ,∥∥∥∥∥∥

∑
i∈[s]

∑
x,y∈U

σ(i, x)σ(i, y)
[
h(i, x) = h(i, y)

]
wxwy

∥∥∥∥∥∥
p

≤ Ψp

(
L ∥w∥22 , L

s2

m
∥w∥42

)
+ L

p

logm/s
∥w∥22 .

Here L is a constant only depending on (h, σ) and (h, (σ)).

If we combine the technical lemma with a decoupling-decomposition then we obtain
the main result of [HT23] which stated informally is the following.
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Theorem 5.3 ([HT23], informal). Let h : [s]× [u]→ [m/s] be a hash function and σ : [s]×
[u]→ {−1, 1} be a sign function. Furthermore, let 0 < ε < 1 and 0 < δ < 1 be given.

Assume that (h, σ) allows for a decoupling-decomposition and that (h, σ) is strongly
concentrated then the following is true

Pr[|Z| ≥ ε] ≤ δ.

5.3 Conclusion

In [HT23], we have provided a new analysis of a sparse Johnson-Lindenstrauss transform
with fewer assumptions on the hash function. With this new analysis we have shown that
it is possible to implement a sparse Johnson-Lindenstrauss transform using a practical
hash functions, namely, mixed tabulation hashing.





Chapter 6

Subsets and Supermajorities:
Optimal Hashing-based Set
Similarity Search

This chapter is dedicated to presenting the results of our research paper “Subsets and
Supermajorities: Optimal Hashing-based Set Similarity Search” [AK20] from Appendix C,
and includes a slightly modified subset of its introduction.

6.1 Introduction

Set Similarity Search (SSS) is the problem of indexing sets (or sparse boolean data) to
allow fast retrieval of sets, similar under a given similarity measure. The sets may repre-
sent one-hot encodings of categorical data, “bag of words” representations of documents,
or “visual/neural bag of words” models, such as the Scale-invariant feature transform
(SIFT), that have been discretized. The applications are ubiquitous across Computer Sci-
ence, touching everything from recommendation systems to gene sequences comparison.
See [CCT10; JZYY+18] for recent surveys of methods and applications.

Set similarity measures are any function, s that takes two sets and return a value
in [0, 1]. Unfortunately, most variants of Set Similarity Search, such as Partial Match,
are hard to solve assuming popular conjectures around the Orthogonal Vectors Prob-
lem [Wil05; APRS16; ARW17; CW19], which roughly implies that the best possible al-
gorithm is to not build an index, and “just brute force” scan through all the data, on
every query. A way to get around this is to study Approximate SSS: Given a query, q, for
which the most similar set y has similarity(q, y) ≥ s1, we are allowed to return any set y′

with similarity(q, y′) > s2, where s2 < s1. In practice, even the best exact algorithms for
similarity search use such an (s1, s2)-approximate solution as a subroutine [CPT18].

The question is made harder by the fact that previous algorithms study the problem
under different similarity measures, such as Jaccard, Cosine, or Braun-Blanquet similar-
ity. The only thing those measures have in common is that they can be defined as a
function f of the sets sizes, the universe size, and the intersection size. In other words,
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similarity(q, y) = f(|q|, |y|, |q∩ y|, |U |) where |U | is the size of the universe from which the
sets are taken. In fact, any symmetric measure of similarity for sets must be defined by
those four quantities.

Hence, to fully solve Set Similarity Search, we avoid specifying a particular similarity
measure, and instead define the problem solely from those four parameters. This general-
ized problem is what we solve optimally in [AK20], for all values of the four parameters:

Definition 6.1 (The (wq, wu, w1, w2)-GapSS problem). Given some universe U and a
collection Y ⊆

(
U

wu|U |
)

of |Y | = n sets of size wu|U |, build a data structure that for any

query set q ∈
(

U
wq |U |

)
: either returns y′ ∈ Y with |y′∩ q| > w2|U |; or determines that there

is no y ∈ Y with |y ∩ q| ≥ w1|U |.

For the problem to make sense, we assume that wq|U | and wu|U | are integers, that
wq, wu ∈ [0, 1], and that 0 < w2 < w1 ≤ min{wq, wu}. Note that |U | may be very large,
and as a consequence the values wq, wu, w1, w2 may all be very small.

At first sight, the problem may seem easier than the version where the sizes of sets
may vary. However, the point is that making polylog(n) data-structures for sets and
queries of progressively bigger sizes, immediately yields data structures for the original
problem. Similarly, any algorithm assuming a specific set similarity measure also yields
an algorithm for (wq, wu, w1, w2)-GapSS, so the lower bounds of [AK20] also hold for all
previously studied SSS problems.

Example 1 As an example, assume we want to solve the Subset Search Problem, in
which we, given a query q, want to find a set y in the database, such that y ⊆ q. If we
allow a two-approximate solution, GapSS includes this problem by setting w1 = wu and
w2 = w1/2: The overlap between the sets must equal the size of the stored sets; and we
are guaranteed to return a y′ such that at least |q ∩ y′| ≥ |y|/2.

Example 2 In the (j1, j2)-Jaccard Similarity Search Problem, given a query, q, we must
find y such that the Jaccard Similarity |q ∩ y|/|q ∪ y| > j2 given that a y′ exists with
similarity at least j1. After partitioning the sets by size, we can solve the problem using

GapSS by setting w1 =
j1(wq+wu)

1+j1
and w2 =

j2(wq+wu)
1+j2

. The same reduction works for any
other similarity measure with polylog(n) overhead.

The version of this problem where w2 = wqwu is similar to what is in the literature
called “the random instance” [Pan06; Laa15; ALRW17]. To see why, consider generating
n−1 sets independently at random with size wu|U |, and a “planted” pair, (q, y), with size
respectively wq|U | and wu|U | and with intersection |q ∩ y| = w1|U |. Insert the size wu|U |
sets into the database and query with q. Since q is independent from the n − 1 original
sets, its intersection with those is strongly concentrated around the expectation wqwu|U |.
Thus, if we parametrize GapSS with w2 = wqwu + o(1), the query for q is guaranteed to
return the planted set y.

There is a tradition in the Similarity Search literature for studying such this indepen-
dent case, in part because it is expected that one can always reduce to the random instance,
for example using the techniques of “data-dependent hashing” [AINR14; AR15]. However,



6.2. SUPERMAJORITIES 31

U
qy

s
s′

(a) Two cohorts, y and q with a large
intersection (blue). The first repre-
sentative set, s, favours y, while the
second, s′, favours both y and q.

q

y

(b) Branching random walk run on two cohorts q and y.
The bold lines illustrate paths considered by sets, while
the dashed lines adorn paths only considered by only one
of x or y. Here q has a higher threshold (tq = 2/3) than
y (tu = 1/2), so q only considers paths starting with two
favourable representatives.

Figure 6.1: The representative sets, coloured in red, are scattered in the universe to provide
an efficient space partition for the data.

for such a reduction to make sense, we would first need an optimal “data-independent”
algorithm for the w2 = wqwu case, which is what we provide in [AK20].

6.2 Supermajorities

In Social Choice Theory a supermajority is when a fraction strictly greater than 1/2
of people agree about something.In the analysis of Boolean functions a t-supermajority
function f : {0, 1}n → {0, 1} can be defined as 1, if a fraction ≥ t of its arguments are 1,
and 0 otherwise. We will sometimes use the same word for the requirement that a fraction
≤ t of the arguments are 1.

The main conceptual point of our algorithm is the realization that an optimal algorithm
for Set Similarity Search must take advantage of the information present in the given sets,
as well as that present in their complement. A similar idea was leveraged by Cohen et
al. [CK09] for Set Similarity Estimation. In [AK20], we show that there is a better way
of combining this information and that doing so results in an optimal hashing based data
structure for the entire parameter space of random instance GapSS.

The algorithm (idealized) While our data structure is technically a tree with a care-
fully designed pruning rule, the basic concept is very simple.

We start by sampling a large number of “representative sets” R ⊆
(
U
k

)
. Here roughly

|R| ≈ nlogn and k ≈ log n. Given family Y ⊆
(

U
wu|U |

)
of sets to store, which we call

“cohorts”, we say that r ∈ R “t-favours” the cohort y if |y ∩ r|/|r| ≥ t. Representing
sets as vectors in {0, 1}d, this is equivalent to saying ft(r ∩ y) = 1, where ft is the t-
supermajority function. (If t is less than wu, the expected size of the overlap, we instead
require |y ∩ r|/|r| ≤ t.)
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Given the parameters tq, tu ∈ [0, 1], the data-structure is a map from elements of R to
the cohorts they tu-favour. When given a query q ∈

(
U

wq |U |
)
, (a wq|U | sized cohort), we

compare it against all cohorts y favoured by representatives r ∈ R which tq-favour q (that
is |q ∩ r|/|r| ≥ tq). This set Rtq(q) is much smaller than |R| (we will have |Rtq(q)| ≈ nε

and E[|Rtu(y)∩Rtq(q)|] ≈ nε−1), so the filtering procedure greatly reduces the number of
cohorts we need to compare to the query from n to nε (where ε = ρq < 1 is defined later.)

The intuition is that while it is quite unlikely for a representative to favour a given
cohort, and it is very unlikely for it to favour two given cohorts (q and y). So if it does,
the two cohorts probably have a substantial overlap. Figure 6.1a has a simple illustration
of this principle.

In order to fully understand supermajorities, we want to understand the probability
that a representative set is simultaneously in favour of two distinct cohorts given their
overlap and representative sizes. This paragraph is a bit technical and may be skipped at
first read. Chernoff bounds in R are a common tool in the community, and for iid. Xi ∼
Bernoulli(p) ∈ {0, 1} the sharpest form (with a matching lower bound) is Pr[

∑
Xi ≥ tn] ≤

exp(−n d(t ∥ p)), which uses the binary KL-Divergence d(t ∥ p) = t log t
p + (1− t) log 1−t

1−p .

The Chernoff bound for R2 is less common, but likewise has a tight description in terms of
the KL-Divergence between two discrete distributions: D(P ∥ Q) =

∑
ω∈Ω P (ω) log P (ω)

Q(ω)

(summing over the possible events). In our case, we represent the four events that can
happen as we sample an element of U as a vector Xi ∈ {0, 1}2. HereXi = [ 11 ] means the ith
element hit both cohorts, Xi = [ 10 ] means it hit only the first and so on. We represent the

distribution of each Xi as a matrix P =
[

w1 wq−w1

wu−w1 1−wq−wu+w1

]
, and say Xi ∼ Bernoulli(P )

iid. such that Pr[Xi = [ 1−j1−k ]] = Pj,k. Then Pr[
∑
Xi ≥ [ tqtu ]n] ≈ exp(−nD(T ∥ P )) where

T =
[

t1 tq−t1
tu−t1 1−tq−tu+t1

]
and t1 ∈ [0,min{tu, tq}] minimizes D(T ∥ P ). (Here the notation

[ xy ] ≥ [ tutq ] means x ≥ tu ∧ y ≥ tq.)
These bounds above would immediately allow a cell probe version of our upper

bound Theorem 6.2, e.g. a query would require n
D(T1∥P1)−d(tq∥wq)

D(T2∥P2)−d(tq∥wq) probes, where Pi =[
wi wq−w1

wu−wi 1−wq−wu+wi

]
and Ti defined accordingly. The algorithmic challenge is that for

optimal performance, |R| must be in the order of Ω(nlogn), and so checking which repre-
sentatives favour a given cohort takes super polynomial time!

We augment the above representative sampling procedure as follows: Instead of inde-
pendent sampling sets, we (implicitly) sample a large, random height k tree, with nodes
being elements from the universe. The representative sets are taken to be each path from
the root to a leaf. Hence, some sets in R share a common prefix, but mostly they are still
independent. We then add the extra constraint that each of the prefixes of a representa-
tive has to be in favour of a cohort, rather than only having this requirement on the final
set. This is the key to making the tree useful: Now given a cohort, we walk down the
tree, pruning any branches that do not consistently favour a supermajority of the cohort.
Figure 6.1b has a simple illustration of this algorithm. This pruning procedure can be
shown to imply that we only spend time on representative sets that end up being in favour
of our cohort, while only weakening the geometric properties of the idealized algorithm
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negligibly.
While conceptually simple and easy to implement (modulo a few tricks to prevent

dependency on the size of the universe, |U |), the pruning rule introduces dependencies
that are quite tricky to analyze sufficiently tight. The way to handle this will be to
consider the tree as a “branching random walk” over Z2

+ where the value represents the
size of the representative’s intersection with the query and a given set respectively. The
paths in the random walk at step i must be in the quadrant [tqi, i] × [tui, i] while only
increasing with a bias of [ wq

wu
] per step. The branching factor is carefully tuned to just the

right number of paths survive to the end.

6.3 Main Results

Results on approximate similarity search are usually phrased in terms of two quantities:
(1) The “query exponent” ρq ∈ [0, 1] which determines the query time by bounding it
by O(nρq); (2) The “update exponent” ρu ∈ [0, 1] which determines the time required
to update the data structure when a point is inserted or deleted in Y and is given by
O(nρu). The update exponent also bounds the space usage as O(n1+ρu). Given parameters
(wq, wu, w1, w2), the important question is for which pairs of (ρq, ρu) there exists data
structures. E.g. given a space budget imposed by ρu, we ask how small can one make ρq?

6.3.1 Upper Bound

As discussed, the performance of our algorithm is described in terms of KL-divergences.
To ease understanding, we give a number of special cases, in which the general bound
simplifies. The bounds in this section assume wq, wu, w1, w2 are constants. See Appendix C
for a version without this assumption.

Theorem 6.2 ([AK20]). For any choice of constants wq, wu ≥ w1 ≥ w2 ≥ 0 and 1 ≥
tq, tu ≥ 0 we can solve the (wq, wu, w1, w2)-GapSS problem over universe U with query
time Õ(nρq + wq|U |) + no(1) and auxiliary space usage Õ(n1+ρu), where

ρq =
D(T1 ∥ P1)− d(tq ∥ wq)
D(T2 ∥ P2)− d(tq ∥ wq)

, ρu =
D(T1 ∥ P1)− d(tu ∥ wu)

D(T2 ∥ P2)− d(tq ∥ wq)
. (6.1)

and T1, T2 are distributions with expectation [ tqtu ] minimizing respectively D(T1 ∥ P1) and
D(T2 ∥ P2), as described in Section 6.2.

The two bounds differ only in the d(tq ∥ wq) and d(tu ∥ wu) terms in the numerator.
The thresholds tq and tu can be chosen freely in [0, 1]2. Varying them compared to each
other allows a full space/time trade-off with ρq = 0 in one end and ρu = 0 (and ρq < 1)
in the other. Note that for a given GapSS instance, there are many (tq, tu) which are not
optimal anywhere on the space/time trade-off. Using Lagrange’s condition ∇ρq = λ∇ρu
one gets a simple equation that all optimal (tq, tu) trade-offs must satisfy. Figure 6.2
provides some additional intuition for how the ρ values behave for different settings of
GapSS.
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Figure 6.2: Comparison to Spherical LSF: Plots of the achievable ρq (time exponent) and
ρu (space exponent) achievable with Theorem 6.2. The plots are drawn in the “random
setting”, w2 = wqwu where Spherical LSF and Data-Dependent LSH coincide.

Example 1: Near balanced ρ values. As noted, many pairs (tq, tu) are not optimal
on the trade-off, in that one can reduce one or both of ρq, ρu by changing them. The
pairs that are optimal are not always simple to express, so it is interesting to study those
that are. One such particularly simple choice on the Lagrangian is tq = 1 − wu and
tu = 1 − wq. This point is special because the values of tq and tu depend only on wu
and wq, while in general they will also depend on w1 and w2. In this setting we have

Ti =
[
1−wq−wu+wi wu−wi

wu−wi wi

]
, which can be plugged into Theorem 6.2.

In the case wq = wu = w we get the balanced ρ values ρq = ρu =
log(w1

w
1−w

1−2w+w1
)/ log(w2

w
1−w

1−2w+w2
) in which case it is simple to compare with Chosen Path’s

ρ value of log(w1
w )
/

log(w2
w ). Chosen Path on balanced sets was shown in [CP17] to be

optimal for w,w1, w2 small enough, and we see that Supermajorities do indeed recover
this value for that range.

Example 2: Linear space/constant time. Setting t1 in T1 =
[

t1 tq−t1
tu−t1 1−tq−tu+t1

]
such

that either t1
w1

=
tq−t1
wq−w1

or t1
w1

= tu−t1
wu−w1

we get respectively D(T1 ∥ P1) = d(tq ∥ wq)
or D(T1 ∥ P1) = d(tu ∥ wu). Theorem 6.2 then yields algorithms with either ρq = 0 or

ρu = 0 corresponding to either a data structure with ≈ eÕ(
√
logn) query time, or with

Õ(n) auxiliary space. Like [ALRW17] we have ρq < 1 for any parameter choice, even
when ρu = 0.
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6.3.2 Lower Bound

Since the first lower bounds on Locality Sensitive Hashing [MNP06], lower bounds for ap-
proximate near neighbours have split into two kinds: (1) Cell probe lower bounds [PTW08;
PTW10; ALRW17] and (2) Lower bounds in restricted models [ODo14; AR16; ALRW17;
CP17]. The most general such model for data-independent algorithms was formulated
by [ALRW17] and defines a type of data structure called “list of points”:

Definition 6.3 (List-of-points). Given some universes, Q, U , a similarity measure S :
Q× U → [0, 1] and two thresholds 1 ≥ s1 > s2 ≥ 0,

1. We fix (possibly random) sets Ai ⊆ {−1, 1}d, for 1 ≤ i ≤ m; and with each possible
query point q ∈ {−1, 1}d, we associate a (random) set of indices I(q) ⊆ [m];

2. For a given dataset P , we maintain m lists of points L1, L2, . . . , Lm, where Li =
P ∩Ai.

3. On query q, we scan through each list Li for i ∈ I(q) and check whether there exists
some p ∈ Li with S(q, p) ≥ s2. If it exists, return p.

The data structure succeeds, for a given q ∈ Q, p ∈ P with S(q, p) ≥ s1, if there exists
i ∈ I(q) such that p ∈ Li. The total space is defined by S = m +

∑
i∈[m] |Li| and the

query time by T = |I(q)|+
∑

i∈I(q) |Li|.

The List-of-points model contains all known Similarity Search data structures, except
for the so-called “data-dependent algorithms”. It is however conjectured [ALRW17] that
data-dependency does not help on random instances (recall this corresponds to w2 =
wqwu), which is the setting of Theorem 6.4.

In [AK20], we present two main lower bounds: (1) That requires wq = wu and ρq = ρu
and (2) That requires w2 = wqwu. In this introduction, we will only focus on the latter
and refer the reader to Appendix C for a discussion of the former.

The lower bound are concerned with random instances. This is powerful since every
known data-dependent algorithm reduces the general case to a random instance. It is even
conjectured that data-dependence does not help on random instances [ALRW17]. This
lower bound is tight for any 0 < wqwu < w1 < min{wq, wu} in the list-of-points model.

Theorem 6.4 ([AK20]). Consider any list-of-point data structure for the
(wq, wu, w1, wqwu)-GapSS problem over a universe of size d of n points with
wqwud = ω(log n), which uses expected space n1+ρu, has expected query time nρq−on(1),
and succeeds with probability at least 0.99. Then for every α ∈ [0, 1] we have that

αρq + (1− α)ρu ≥ inf
tq ,tu∈[0,1]
tu ̸=wu

(
α

D(T ∥ P )− d(tq ∥ wq)
d(tu ∥ wu)

+ (1− α)
D(T ∥ P )− d(tu ∥ wu)

d(tu ∥ wu)

)
,

where P =
[

w1 wq−w1

wu−w1 1−wq−wu+w1

]
and T = arg inf

T≪P, E
X∼T

[X]=[
tq
tu

]

D(T ∥ P ).
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Note that for w2 = wqwu, the term D(T2 ∥ P2), in Theorem 6.2, splits into d(tq ∥
wq) + d(tu ∥ wu), and so the upper and lower bounds perfectly match. This shows that
for any linear combination of ρq and ρu our algorithm obtains the minimal value. By
continuity of the terms, this equivalently states as saying that no list-of-points algorithm
can get a better query time than our Theorem 6.2, given a space budget imposed by ρu.

Example 1: Choices for tq and tu. As in the upper bounds, it is not easy to prove
that a particular choice of tq and tu minimizes the lower bound. One might hope that
having corresponding lower and upper bounds would help in this endeavour, but alas both
results have a minimization. E.g. setting tq = 1 − wu and tu = 1 − wq the expression in
Theorem 6.4 we obtain the same value as in Theorem 6.2, however it could be (though
we strongly conjecture not) that another set of values would reduce both the upper and
lower bound.

The good news is that the hypercontractive inequality by Oleszkiewicz [Ole03], can be
used to prove certain optimal choices on the space/time trade-off. In particular, in [AK20],
we show that for wq = wu = w the choice tq = tu = 1− w is optimal in the lower bound,

and matches exactly the value ρ = log
(

w1(1−w)
w(1−2w+w1)

)
/ log( w2(1−w)

w(1−2w+w2)
) from Example 1 in

the Upper Bounds section.

6.4 Conclusion

In [AK20], we have studied the problem of approximate set similarity search. We provide
a data structure that solves the problem optimally in the random setting. Our data
structure exploits information both in the sets and their complements by using Boolean
supermajority functions. Ideas and concepts from branching random walks in Z2 are
employed in order to turn the abstract ideas into an actual algorithm.



Chapter 7

Load Balancing with Dynamic Set
of Balls and Bins

This chapter is dedicated to presenting the results of our research paper “Load Balancing
with Dynamic Set of Balls and Bins” [AKT21] from Appendix D, and includes a slightly
modified subset of its introduction.

7.1 Introduction

Load balancing in dynamic environments is a central problem in designing several net-
working systems and web services [SMLK+03; KLLP+97]. We wish to allocate clients
(also referred to as balls) to servers (also referred to as bins) in such a way that none of
the servers gets overloaded. Here, the load of a server is the number of clients allocated to
it. We want a hashing-style solution where we given the ID of a client can efficiently find
its server. Both clients and servers may be added or removed in any order, and with such
changes, we do not want to move too many clients. Thus, while the dynamic allocation
algorithm has to always ensure a proper load balancing, it should aim to minimize the
number of clients moved after each change to the system. For every update in the system,
we need to change the allocation of clients to servers. For simplicity, we assume that the
updates (ball and bin insertions and removals) do not happen simultaneously and will be
operated one at a time, so that we have time to finish changing the allocation before we
get another update. Such allocation problems become even more challenging when we
face hard constraints in the capacity of each server, that is, each server has a capacity and
the load may not exceed this capacity. Typically, we want capacities close to the average
loads.

There is a vast literature on solutions in the much simpler case where the set of servers
is fixed and only the client set is updated. For now, we focus on solutions that are known to
work in our fully-dynamic case where both clients and servers can be added and removed
in an arbitrary order. This rules out solutions where only the last added server may be
removed. The above problem formulation is very general, and does not assume anything
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about the ratio between the number of clients n, and the number of servers m. However,
it is also conceivable having a system with many clients or a balanced system with n ≈ m.

The classic solution to the scenario where both clients and servers can be added and re-
moved is consistent hashing [SMLK+03; KLLP+97] where the current clients are assigned
in a random way to the current servers. While consistent hashing schemes minimize the
expected number of movements, they may result in hugely overloaded servers, and they
do not allow for explicit capacity constraints on the servers. More recently, Mirrokni et
al. [MTZ18] presented an algorithm that works with arbitrary capacity constraints on the
servers. For the purpose of load balancing, the system designer can specify a balancing
parameter c = 1 + ε, guaranteeing that the maximum load is at most ⌈cn/m⌉. While
maintaining this hard balancing constraint, they limit the expected number of clients to
be moved when clients or servers are inserted or removed. From a more practical perspec-
tive, we think of the load balancing parameter c = 1 + ε as a simple knob which captures
the tradeoff between load balancing and stability upon changes in the system. This gives
a more direct control to the system designer in meeting explicit balancing constraints.

With the algorithm from [MTZ18], while guaranteeing a balancing parameter c =
1 + ε ≤ 2, when a client is added or removed, the expected number of clients moved
is O( 1

ε2
). When a server is added or removed, the expected number of clients moved is

O( n
ε2m

). These numbers are only a factor O( 1
ε2

) worse than the general lower bounds
without capacity constrains.

Before going into the new scheme from [AKT21], it instructive to first consider a
simpler probabilistic problem, in order to understand the results of the new scheme. The
probabilistic problem is as follows: Consider placing n balls inm bins, each of capacity C =
(1+ε)n/m, one ball at the time, where each ball picks a uniformly random non-full bin. We
are interested in the number of non-full bins both in expectation and with concentration
bounds. This relatively simple problem had not been analyzed before [AKT21]. To state
the bounds from [AKT21], we define

f =


εC if C ≤ log 1/ε

ε
√
C ·
√

log(1/(ε
√
C)) if log 1/ε ≤ C < 1

2ε2

1 if C ≥ 1
2ε2

, (7.1)

whenever 0 < ε ≤ 1 and C ≥ 1 is integral. The problem was solved in [AKT21] and we
proved the following result.

Theorem 7.1 ([AKT21]). Let n,m ∈ N and 0 < ε < 1 be such that C = (1 + ε)n/m is
integral. Moreover assume that that 1/ε = mo(1). Suppose we distribute n balls sequentially
into m bins each of capacity C, for each ball choosing a uniformly random non-full bin.
The expected fraction of non-full bins is Θ(f).

How does this result relate to our dynamic load allocation problem? We can think of
the distribution scheme in the theorem as the algorithmically weakest way to assign the
balls to the capacitated bins. Here, by algorithmically weak, we mean that it cannot be
implemented in the dynamic setting where balls and bins can come and go. However, it is
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still helpful to think of it as the mathematically ideal way of solving dynamic load alloca-
tion with bounded loads in the following sense. Imagine that an insertion of a ball is carried
out by repeatedly choosing a random bin until we find a non-full one where we place the
ball. Then we avoid all the unpleasant dependencies between the loads of the bins visited
during the insertion that arise in algorithmically stronger schemes. For example, one can
compare to a scheme like linear probing where the cascading effect of balls causes heavy
dependencies between the loads of bins visited during a search or an insertion. It follows
from Theorem 7.1 that in the simple scheme above, the expected number of bins visited
when making an insertion is O(1/f). The main contribution of [AKT21] is to present a
much stronger scheme which supports general insertions and deletions of both balls and
bins, and which, nonetheless, achieves complexity bounds that are analogous to those in
the mathematically ideal scheme above. To be precise, with the scheme of [AKT21], we
expect to move O(1/f) balls when inserting or deleting a ball, and O(C/f) balls when
inserting or deleting a bin and this is tight. Similar bounds holds on the number of bins
visited when performing any of these updates.

7.2 Consistent Hashing

The standard solution to our fully-dynamic allocation problem is variations of consistent
hashing [SMLK+03; KLLP+97]. The new scheme of [AKT21] combines ideas from these
variations, so we start by reviewing those.

7.2.1 Simple Consistent Hashing

In the simplest version of consistent hashing, we hash the active balls and bins onto a unit
circle, that is, we hash to the unit interval, using the hash values to create a circular order
of balls and bins. Assuming no collisions, a ball is placed in the bin succeeding it in the
clockwise order around the circle. One of the nice features of consistent hashing is that it
is history-independent, that is, we only need to know the IDs of the balls and the bins and
the hash functions, to compute the distribution of balls in bins. If a bin is closed, we just
move its balls to the succeeding bin. Similarly, when we open a new bin, we only have to
consider the balls from the succeeding bin to see which ones belong in the new bin.

With n balls, m bins, and a fully random hash function h, each bin is expected to have
n/m balls. This is also the number of balls we expect to move when a bin is opened or
closed.

The problem with simple consistent hashing is that the maximum load on a bin is
much larger than the average load, approximately Θ(logm) times bigger. This is due to
the significant variation in the coverage of bins. Some bins cover intervals of size Θ( logmm )

and are expected to receive Θ(n logm
m ) balls, resulting in a higher maximum load.

Additionally, there is an issue where the expected number of balls landing in the same
bin as a given ball is nearly twice the average. This is because the expected distance
between neighboring bins for a ball is 1/(m+ 1), leading to an interval size of 2/(m+ 1).
Consequently, approximately 2n/m other balls are expected to land in the same bin as
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the given ball, causing each bin’s load to be almost twice the average. This negatively
affects the server’s performance, as the load determines its efficiency in serving clients.

7.2.2 Consistent Hashing with Virtual Bins

To get a more uniform bin cover, [KLLP+97] suggests the use of virtual bins. The virtual
bin trick is that the ball contents of k = O(logm) virtual bins is united in a single super
bin. The super bins are the m bins seen by the user of the system. Internally it is the
km virtual bins we place on the cycle together with the n balls. Each virtual bin has a
pointer to its super bin. To place a ball, we go along the cycle to the first virtual bin, and
then we follow the pointer to its super bin.

A super bin covers the union of the intervals covered by its k virtual bins. The point
is that for any constant ε > 0, if we pick a large enough k = O((logm)/ε2), then with
high probability, each super bin covers a fraction (1± ε)/m of the unit cycle.

We note that many other methods have been proposed to maintain such a uniform
bin cover as bins are added and removed (see, e.g., [BSS00; GH05; Man04; KM05; KR06;
TR98]), and in our algorithms, we shall also employ such virtual bins.

With a uniform bin cover, balls distribute uniformly between bins. On the posi-
tive side, in the heavily loaded case when n/m is large, e.g., n/m = ω(logm), all
loads are (1 ± o(1))n/m, w.h.p. However, with n = m, we still expect many bins with
Θ((logm)/(log logm)) balls even though the average is 1.

7.2.3 Simple Consistent Hashing with Bounded Loads.

As we mentioned earlier, Mirrokni et al. [MTZ18] presented an algorithm that works with
arbitrary capacity constraints on the bins. For the purpose of load balancing, the system
designer can specify a balancing parameter c = 1 + ε, guaranteeing that the maximum
load is at most C = ⌈cn/m⌉.

Their idea is very simple. As in simple consistent hashing, we place balls and bins
randomly on a cycle, but instead of placing balls in the first bin along the cycle, we place
them in the first non-full bin. Thus we can think of the distribution as first placing all the
bins on the cycle, and then placing the balls one-by-one, putting each in the first non-full
bin found by going in clockwise around the cycle. If we have hash functions for placing
arbitrary balls and bins along the cycle, and if we have a priority order on all balls, telling
us the order in which we insert balls, then this completely determines the placement of
any set of the balls in any set of capacitated bins. This means that the distribution is
history independent as in [BG07]. It also means that we know exactly which balls to move
if balls or bins are added or removed.

As terminology, we say a ball hash to the first bin following it in the clockwise order.
However, the ball may be placed in a later bin if the bin it hashed to was full.

Note that the priority order makes the insertion of a new ball a bit more complicated
since it may have higher priority than balls already in the system. To place it, we first
place it in the bin it hashes to directly (that is, the one just after its hash location on the
cycle). If the bin becomes overfull, we pop the lowest priority ball and place it in the next
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bin, and repeat. It is, however, important to notice that the bins we end up considering
are exactly the bins from the one the ball hashes to, and to the first non-full bin.

Mirrokni et al. [MTZ18] provided an analysis of their system. With ε ≤ 1, they showed
that starting from the hash location of any ball, the expected number of full bins passed on
the way to the first non-full bin is O(1/ε2). From this they get that the expected number
of balls that has to be moved when a ball is inserted or deleted is O(1/ε2). Likewise,
the expected number of balls that has to be moved when a bin is inserted or deleted is
O(C/ε2). These bounds are all tight for simple consistent hashing with bounded loads.

7.3 Consistent Hashing with Virtual Bins and Bounded
Loads

The new algorithm of [AKT21] basically just combines the bounded loads with virtual
bins. When a ball is placed in a virtual bin, it is also placed in its super bin which has
a limited capacity. We fix some natural number k, which is the number of virtual bins
for each super bin. In the following, we describe a mathematically simple version of the
scheme in [AKT21]. In [AKT21], they also consider a variation of this scheme which is
more suitable to be implemented in practice. The description of this scheme can be found
in Appendix D.

We hash each super bin to k different cycles or levels using independent hash functions.1

The k hash values on the k cycles will be the associated virtual bins of the given super
bin. We also hash the balls to the cycles, but contrary to the bins, each ball gets just a
single random hash value on a single random cycle.

The static placement of the balls can be described as follows: We start by placing
all balls which hash to the first cycle using standard consistent hashing with bounded
loads as described in Section 7.2.3. We assume that we have priorities on the balls and
we will simulate that they are inserted in priority order. After the first level, the balls
hashing to this level have thus been distributed into the virtual bins and we put them
in the corresponding super bins. Initially, each super bin had capacity C. If the virtual
bin of such a super bin received a balls at the first level, its new capacity is then reduced
accordingly to C−a. We continue this process on level i = 2, . . . , k. At level i, each super
bin has a certain remaining capacity and we use standard consistent hashing with bounded
loads (with these capacities) to place the balls at level i into the virtual bins and thus, into
the corresponding super bins. If a super bin had capacity C0 before the hashing to level
i, and it received a balls at level i, its remaining capacity for the next levels is C0 − a .
Traversing the levels one at a time like described, corresponds to enforcing that regardless
of the initial priorities of the balls, if two balls hash to different levels, the ball hashing to
the lower level will have the highest priority of the two. With these modified priorities,
the static image at a given point can be obtained by simply inserting the balls one by one
in priority order, placing each ball in the first virtual bin whose super bin is not full. This

1For simplicity, we advice the reader to think of all our hash functions as fully random. However, our
results hold even when the hashing is implemented with the practical mixed tabulation from [DKRT15].
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completely describes the placement of balls in bins if we know the hash functions and the
priority order, so the system is history-independent as described in [BG07].

Searching for a ball x is almost the same as for normal consistent hashing. We calculate
the hash value of x and visit the virtual bins starting from that hash value in cyclic order
until we either find x in a corresponding super bin or we meet a ball of lower priority
hashing to the same level.

Insertions are a bit more complicated. For inserting a ball x we calculate h(x) which
in particular indicates the level, i, that x hashes to. We traverse level i starting at h(x)
until we meet a bin, b, which either (a) is not full or (b) contains a ball of lower priority
than x (all balls hashing to levels j > i have lower priority than x by convention). We
insert x in b. In case (a), the insertion is complete, but in case (b) we pop y from b and
recurse the insertion starting with y (which happens at some level j ≥ i).

Ball deletions are symmetric to ball insertions in the sense that the hash functions
tells us exactly the placement of all balls in bins, both before and after the ball which we
are to insert or delete is inserted or deleted. Deleting a bin is the same as re-inserting
all balls in it, and inserting a bin is symmetric to deleting a bin. Therefore we get that
the number of balls to be moved is essentially determined by the number that has to be
moved in connection with an insertion.

Main Result In classic consistent hashing without virtual bins, we obtain no advantage
when the number of balls n are much larger than the number of bins m, or in other words,
when the capacity of a bin, C, is large. The basic issue is that most of the uncertainty
in the system without virtual bins stems from the uncertainty in the distance between a
bin and its predecessor, which determines the expected number of balls hashing directly
to the bin.

However, the use of virtual bins improves the concentration of the number of balls
hashing directly to a super bin, and we do obtain an advantage of this improved concen-
tration. This was in fact the whole point of introducing virtual bins in classic consistent
hashing without load bounds [SMLK+03]. To be precise, fix k = A(log n)/ε2 for some
appropriately large constant A. Then standard Chernoff bounds show that each bin cover
a fraction (1± λε)/m of the combined hash range, where λ can be made arbitrarily small
(by increasing A). If further the average load m/n is above k, then with high probability,
no bin gets load above C = (1 + ε)m/n by balls hashing directly to them. In particular,
all load bounds are satisfied without the having to forward a single ball. The result be-
low (which is the main result of [AKT21]) asymptotically settles the expected insertion
time for general C, in particular for any C ≤ (log n)/ε2. Before stating the theorem, we
encourage the reader to recall the definition of f in eq. (7.1)

Theorem 7.2 ([AKT21]). Let 0 < ε < 1 and suppose that we distribute n balls into m
bins each of capacity C = (1 + ε)n/m using consistent hashing with bounded loads and
k = c/ε2 uniform levels for a sufficiently large constant c. Assume that 1/ε = no(1). In
expectation we move O(1/f) balls when inserting or deleting a ball, and O(C/f) balls
when inserting or deleting a bin. Finally, when searching a ball, we expect to visit O(1)

bins when C ≥ log 1/ε and O( log 1/εC ) bins when C < log 1/ε.
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Our bounds in Theorem 7.2 show that we do get an advantage from bigger capacities
even when C is smaller than k = Θ((log n)/ε2). In fact, already for C = 1/ε2, the expected
insertion time drops to O(1).

7.4 Conclusion

In [AKT21], we have given a new solution to the problem of load balancing in a dynamic
system where both balls and bins can be added and removed. Our new data structure
combines the ideas of the previous work and its performance is comparable to the natural
probabilistic problem of throwing balls into capacitated bins. We have also given a solution
to this probabilistic problem.





Chapter 8

On Sums of Monotone Random
Integer Variables

This chapter is dedicated to presenting the results of our research paper “On Sums of
Monotone Random Integer Variables” [AAHT22] from Appendix E, and includes a slightly
modified subset of its introduction.

8.1 Introduction

We study the problem of estimating probability that the sum of independent (not neces-
sarily identically distributed) integer-valued random variables attains precisely a specific
value. In [AKT21], we provide sharp estimates and our estimates hold under a fairly
general assumption on the properties of the random variables, which for example is sat-
isfied for Bernoulli, Poisson and geometric random variables. The bounds on the point
probabilities derived in this paper have been used to understand the distribution of balls
in capacitated bins [AKT21]. In the cleanest combinatorial variant of the problem, where
the balls arrive sequentially and each ball picks a uniformly random non-full bin, they just
needed the point probabilities of sums of i.i.d. Bernoulli variables. However, for a more
dynamic distribution system, they had to apply the bounds for sums of a mix of Bernoulli
and geometrically distributed variables.

Recall that for a real random variable X, the characteristic function of X is the
map fX : R → C given by fX(λ) = E[eiλX ]. We say that a real random variable X is
monotone if |fX | is decreasing on [0, π]. In [AKT21], we provide estimates for the point
probabilities of a sum, X =

∑
j∈[k]Xj , of independent monotone random integer variables.

To be precise, for any given t ∈ Z, we estimate the probability Pr[X = t]. The estimates
of [AKT21] are sharp whenever t is close to the mean E[X], but they are not useful further
out in the tail. To handle point probabilities in the tail, we require a slightly stronger
assumption on the random variables which we now describe.

For a random integer variable X we define IX = {θ ∈ R : E[eθX ] < ∞}, to consist of
those θ ∈ R for which the moment generating function of X is defined. We note that IX
is an interval with 0 ∈ IX . For θ ∈ IX , we may define the exponentially tilted random
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variable Xθ by Pr[Xθ = t] = Pr[X=t]eθt

E[eθX ]
for t ∈ Z. We say that X is strongly monotone if

(1) IX ̸= {0} and (2) Xθ is monotone for each θ ∈ IX . In [AKT21], we use the trick of
exponential tilting to provide estimates for the point probabilities of a sum of independent
strongly monotone random integer variables, X =

∑
j∈[k]Xj , which are also sharp in the

tail.

It follows by direct computation that Bernoulli, Poisson, and geometric random vari-
ables are monotone, and moreover, that exponentially tilting these variables again yields
Bernoulli, Poisson and geometric variables. In particular, these variables are all strongly
monotone, so the results of [AKT21] give sharp estimates for the point probabilities of the
sum of (a mix of) such variables.

We will consider the following setting. Let k be an integer and (Xj)j∈[k] independent
integer-valued random variables with E[Xj ] = µj and Var[Xj ] = σ2j for j ∈ [k]. Let X =∑

i∈[k]Xi, and further µ =
∑

j∈[k] µj and σ2 =
∑

j∈[k] σ
2
j be respectively the expectation

and variance of X. The main result of [AKT21] is the following theorem.

Theorem 8.1 ([AKT21]). There exists a universal constant c, such that if X is monotone,
then for every t for which µ + tσ is an integer, the probability that X is precisely µ + tσ
satisfies,

∣∣∣∣Pr[X = µ+ tσ]− 1√
2πσ

e−t
2/2

∣∣∣∣ ≤ c
∑j∈[k] E

[
|Xj − µj |3

]
σ3

2

. (8.1)

Remark 8.2. We note that if each Xj is monotone, then X is as well. Indeed, the
characteristic function of X can be factorized as fX(λ) =

∏
j∈[k] fXj (λ). In particular,

Theorem 8.1 holds when each of the variables (Xj)j∈[k] is monotone.

The result is reminiscent of the Berry-Esseen theorem, but instead of bounding the
distance between the cumulative function of X and the cumulative function of the normal
distribution as the Berry-Esseen theorem does, our result bounds the distance between
the density function of X and the density function of the normal distribution. This setting
has been studied before in the context of large deviation theory, e.g., by Blackwell and
Hodges [BJ59] and by Iltis [Ilt95] in the d-dimensional case. They do not require X to be
monotone but they only consider the case where (Xj)j∈[k] are identically distributed and
are interested in the asymptotical behavior when k →∞. In particular the distribution of
the variables (Xj)j∈[k] cannot depend on k. McDonald [McD79] considers variables that
are not necessarily identically distributed but again in the limit k →∞ and with certain
extra assumptions on the distribution of the variables. In this work we are not interested
in such asymptotic bounds and our result is a uniform bound for monotone variables.

Point probabilites in the tail As is, Theorem 8.1 is only useful when |tσ| is not
too large. Indeed, for large |t|, the term 1√

2πσ
e−t

2/2 will typically be much smaller than

the error term on the right hand side of (8.1). In [AAHT22], we now show that if our
variables satisfy the stronger property of being strongly monotone, we may also obtain
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precise estimates for the point probabilities in the tail by combining with the trick of
exponential tilting.

Now suppose X =
∑

j∈[k]Xj is a sum of independent random integer variables and
moreover that X is not almost surely equal to a constant. We are interested in estimates
for the probability Pr[X = t] for some t ∈ Z. Let Ij = {θ ∈ R : E[eθXj ] < ∞} and
I = {θ ∈ R : E[eθX ] < ∞} = ∩j∈[k]Ij . We note each Ij and I are intervals containing
0. We define1 A = ess inf X and B = ess supX. Let further ψX : I → R be the
cumulant generating function defined by ψX : θ 7→ log(E[eθX ]). It is well known that ψX
is strictly convex and infinitely often differentiable for θ lying in the interior of I with

ψ′
X(θ) = E[XeθX ]

E[eθX ]
. For t ∈ R, we define g(t) = supθ∈I(θt − ψX(θ)). Now it is a standard

fact about the cumulant generating function that if I contains a non-empty open interval
(i.e., consists of more than a single point), then infθ∈I ψ

′
X(θ) = A and supθ∈I ψ

′
X(θ) = B.

If in particular A < t < B, there exists a θ0 in the interior of I with ψ′
X(θ0) = t. Moreover,

this θ0 is unique since ψX is strictly convex.

Now let (Yj)j∈[k] be independent random variables obtained by tilting each Xj by θ0 as

above. Let further Y =
∑

j∈[k] Yj . For s ∈ Z, we define As = {z ∈ Zk : z1 + · · ·+ zk = s}.
Then for any t ∈ Z,

Pr[X = t] =
∑
z∈At

∏
j∈[k]

Pr[Xj = zj ] =
E[eθ0X ]

eθ0t

∑
z∈At

∏
j∈[k]

Pr[Yj = zj ] =
E[eθ0X ]

eθ0t
Pr[Y = t],

so Y is simply the variable obtained by tilting X by θ0. Moreover, by the choice of θ0,

E[Y ] =
∑
z∈Z

Pr[X = z]eθ0zz

E[eθ0X ]
=

E[Xeθ0X ]

E[eθ0X ]
= ψ′

X(θ0) = t.

Now the fact that E[Y ] = t, suggests using Theorem 8.1 to estimate the probability that
Pr[Y = t]. Doing so, we immediately obtain the following result of [AAHT22].

Theorem 8.3 ([AAHT22]). Assume that X is strongly monotone and not almost surely
equal to a constant. Moreover assume that I ̸= {0}. Let t be an integer with with A < t <
B and θ be the unique real in the interior of I having ψ′

X(θ) = t. Let Y be the exponential
tilt of X by θ. Then E[Y ] = t and

Pr[X = t] =
E[eθX ]

eθt

(
1√

2πσY
±O

(
η2Y
σ6Y

))
, (8.2)

where σ2Y = Var[Y ] and ηY =
∑

j∈[k] E[|Yj − E[Yj ]|3].

Remark 8.4. We note that if either A = ess inf X ̸= −∞ or B = ess supX ̸= ∞, then
[0,∞) ⊂ I or (−∞, 0] ⊂ I, respectively, and we can therefore always apply the exponential

1Recall that the essential infimum and supremum of a random variable X are defined by ess inf X =
sup{t : Pr[X < t] = 0} and ess supX = inf{t : Pr[X > t] = 0} which are values in R ∪ {−∞,∞}.
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tilt in the lemma. We moreover note that for t < A and t > B, it trivially holds that
Pr[X = t] = 0 and it is an easy exercise to show that

Pr[X = A] =
∏
j∈[k]

Pr[Xj = ess inf Xj ], and Pr[X = B] =
∏
j∈[k]

Pr[Xj = ess supXj ],

whenever A ̸= −∞ and B ̸= ∞. Even though the lemma does not provide estimates for
these probabilities, they are therefore usually easy to determine for concrete families of
random variables.

To apply Theorem 8.3, for X =
∑

j∈[k]Xj a concrete sum of strongly monotone random
variables, say geometric variables, we would calculate ψX and find the unique θ with
ψ′
X(θ) = t. We would then determine the tilted random variables (Yj)j∈[k]. Typically

Yj comes from the same family of random variables as Xj , e.g., an exponential tilt of
respectively a Bernoulli, geometric, and Poisson variable is again Bernoulli, geometric and
Poisson. We would then determine the quantities ηY and σ2Y and plug into (8.2).

8.2 Conclusion
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[NN13] Jelani Nelson and Huy L. NguyÅn. “Sparsity Lower Bounds for Dimen-
sionality Reducing Maps”. In: Proceedings of the Forty-Fifth Annual ACM
Symposium on Theory of Computing. STOC ’13. Palo Alto, California,
USA: Association for Computing Machinery, 2013, pp. 101–110. isbn:
9781450320290.

[ODo14] Ryan O’Donnell. Analysis of boolean functions. Cambridge University
Press, 2014.



BIBLIOGRAPHY 55

[Ole03] Krzysztof Oleszkiewicz. “On a nonsymmetric version of the Khinchine-
Kahane inequality”. In: Stochastic inequalities and applications. Springer,
2003, pp. 157–168.
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Dansk resumé

Simple tabulation hashing dates back to Zobrist in 1970 and is defined as follows:
Each key is viewed as c characters from some alphabet Σ, we have c fully random hash
functions h0, . . . , hc−1 : Σ→

{
0, . . . , 2l − 1

}
, and a key x = (x0, . . . , xc−1) is hashed to

h(x) = h0(x0)⊕ . . .⊕hc−1(xc−1) where ⊕ is the bitwise XOR operation. The previous
results on tabulation hashing by Pǎtraşcu and Thorup [J.ACM’11] and by Aamand
et al. [STOC’20] focused on proving Chernoff-style tail bounds on hash-based sums,
e.g., the number keys hashing to a given value, for simple tabulation hashing, but
their bounds do not cover the entire tail. Thus their results cannot bound moments.
The paper Dahlgaard et al. [FOCS’15] provides a bound on the moments of certain
hash-based sums, but their bound only holds for constant moments, and we need
logarithmic moments.

Chaoses are random variables of the form
∑
ai0,...,ic−1Xi0 · . . . ·Xic−1 where Xi are

independent random variables. Chaoses are a well-studied concept from probability
theory, and tight analysis has been proven in several instances, e.g., when the inde-
pendent random variables are standard Gaussian variables and when the independent
random variables have logarithmically convex tails. We notice that hash-based sums
of simple tabulation hashing can be seen as a sum of chaoses that are not independent.
This motivates us to use techniques from the theory of chaoses to analyze hash-based
sums of simple tabulation hashing.

In this paper, we obtain bounds for all the moments of hash-based sums for simple
tabulation hashing which are tight up to constants depending only on c. In contrast
with the previous attempts, our approach will mostly be analytical and does not
employ intricate combinatorial arguments. The improved analysis of simple tabulation
hashing allows us to obtain bounds for the moments of hash-based sums for the mixed
tabulation hashing introduced by Dahlgaard et al. [FOCS’15]. With simple tabulation
hashing, there are certain inputs for which the concentration is much worse than with
fully random hashing. However, with mixed tabulation, we get logarithmic moment
bounds that are only a constant factor worse than those with fully random hashing for
any possible input. This is a strong addition to other powerful probabilistic properties
of mixed tabulation hashing proved by Dahlgaard et al.

∗Research supported by Investigator Grant 16582, Basic Algorithms Research Copenhagen (BARC),
from the VILLUM Foundation.
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A.1 Introduction

Hashing is a ubiquitous tool of randomized algorithms which dates all the way back to
the 1950s [Dum56]. A hash function is a random function, h : U → R, that assigns a
random hash value, h(x) ∈ R, to every key, x ∈ U . When designing algorithms and data
structures, it is often assumed that one has access to a uniformly random hash function
that can be evaluated in constant time. Even though this assumption is very useful and
convenient, it is unfortunately also unrealistic. It is thus a natural goal to find practical
and efficient constructions of hash functions that provably have guarantees akin to those
of uniformly random hashing.

If we want implementable algorithms with provable performance similar to that proven
assuming uniformly random hashing, then we have to find practical and efficient construc-
tions of hash functions with guarantees akin to those of uniformly random hashing. An
example of this is simple tabulation hashing introduced by Zobrist in 1970 [Zob70]. The
scheme is efficient and easy to implement, and Pǎtraşcu and Thorup [PT12] proved that it
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could replace uniformly random hashing in many algorithmic contexts. The versatility of
simple tabulation does not stem from a single probabilistic power like k-independence (it
is only 3-independent), but from an array of powers that have different usages in different
applications. Having one hash function with multiple powers has many advantages. One
is that we can use the same hash function implementation for many purposes. Another
is that hash functions are often an inner-loop bottleneck, and then it is an advantage if
the same hash value can be used for multiple purposes. Also, if we have proved that a
simple hash function has some very different probabilistic properties, then, morally, we
would expect it to possess many other properties to be uncovered as it has happened over
the years for simple tabulation (see, e.g., [AKT18; AT19]). Finally, when we hash a key,
we may not even know what property is needed, e.g., with weighted keys, we may need
one property to deal with a few heavy keys, and another property to deal with the many
light keys, but when we hash the key, we may not know if it is heavy or light.

One of the central powers proved for simple tabulation in [PT12] is that it has strong
concentration bounds for hash-based sums (will be defined shortly in Section A.1.1). The
concentration holds only for quite limited expected values, yet this suffices for important
applications in classic hash tables. Recently, Aamand et al. [AKKR+20] introduced
tabulation-permutation, which is only about twice as slow as simple tabulation, and which
offers general concentration bounds that hold for all hash-based sums regardless of the
expected size. An issue with tabulation-permutation is that it is not clear if it possesses
the other strong powers of simple tabulation.

A different way to go is to construct increasingly strong schemes, each inheriting all the
nice properties of its predecessors. In this direction, [PT13] introduced twisted tabulation
strengtening simple tabulation, and [DKRT15] introduced mixed tabulation strengthening
twisted tabulation. Each new scheme was introduced to get some powers not available
with the predecessor. In particular, mixed tabulation has some selective full-randomness
that is needed for aggregating statistics over hash-based k-partitions. These applications
also needed concentration bounds for hash-based sums, but [DKRT15] only provided some
specialized suboptimal concentration bounds.

In this paper, we do provide strong concentration bounds for mixed tabulation hashing
which can then be used in tandem with all the other strong properties of simple, twisted,
and mixed tabulation. In fact our bounds are more general than the strong concentration
bounds proved in [AKKR+20] for tabulation-permutation. More precisely, the concentra-
tion bounds in [AKKR+20] are Chernoff-style tail bounds that hold with high probability,
while what we do is to show moment bounds that imply such tail bounds as special cases.
Indeed the key to our results for mixed tabulation is a much stronger understanding of
the moments of simple tabulation.

Below we proceed to describe our new mathematical understanding, including the
relevance of chaoses. We will contextualize this with other work later in Section A.1.6.

A.1.1 Moment bounds for hash-based sums

In this paper, we will focus on analyzing hash-based sums. More precisely, we consider
a fixed value function, v : U × R → R, and define the random variable Xx = v(x, h(x))
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for every key x ∈ U . We are then interested in proving concentration bounds for the sum
X =

∑
x∈U Xx =

∑
x∈U v(x, h(x)). It should be noted that the randomness of X derives

from the hash function h, thus the results will depend on the strength of h.

This is quite a general problem, and at first glance, it might not be obvious why
this is a natural construction to consider, but it does generalize a variety of well-studied
constructions:

1. Let S ⊆ U be a set of balls and assign a weight, wx ∈ R, for every ball, x ∈ S. The
goal is to distribute the balls, S, into a set of bins R = [m].1 For a bin, y ∈ [m],
we define the value function vy : U × [m]→ R by vy(x, j) = wx [j = y] [x ∈ S], then
X =

∑
x∈U vy(x, h(x)) =

∑
x∈S wx [h(x) = y] will be the weight of the balls hashing

to bin y.2

2. Instead of concentrating on a single bin, we might be interested in the total weight
of the balls hashing below some threshold l. This is useful for sampling, for if
h(x) is uniform in [m], then Pr[h(x) < l] = l/m. We then define the value func-
tion v : U × [m] → R by v(x, j) = wx [j < l] [x ∈ S], then X =

∑
x∈U v(x, h(x)) =∑

x∈S wx [h(x) < l] will be precisely the total weight of the balls hashing below l.

The first case appears when one tries to allocate resources, and the second case arises in
streaming algorithms, see, e.g., [ADKK+20]. In any case, X ought to be concentrated
around the mean µ = E[X]. If h is a uniformly random hash function then this will be
the case under mild assumptions about v but it cannot otherwise be assumed a priori to
be the case.

There are two natural ways to quantify the concentration of X, either we bound the
tail of X, i.e., we bound Pr[|X − µ| ≥ t] for all t ≥ 0, or we bound the central moments
of X, i.e., we bound the p-th moment E[|X − µ|p] for all p ≥ 2. If we have a bound on
the tail that is exponentially decreasing, we can bound the central moments of X for all
p ≥ 2. Unfortunately, some of the prior works [AKKR+20; DR09; Tho13] prove bounds
on the tail that are exponentially decreasing but also has an additive term of the form
n−γ where γ = O(1). It will then only be possible to give strong bounds for the central
moments of X for p = O(1). This is not necessarily a fault of the hash function but a
defect of the analysis. In contrast, if we prove strong bounds for the central moments of
X for p = O(log n) then we can use Markov’s inequality to prove a bound the tail that
is exponentially decreasing but with an additive term of the form n−γ where γ = O(1).
Thus in some sense, it is more robust to bound the moments compared to bounding the
tail.

We can use the classic k-independent hashing framework of Wegman and
Carter [WC81] as an easy way to obtain a hash function that has bounds on the cen-
tral moments as a uniformly random hash function. A random hash function, h : U → R,
is k-independent if (h(x0), . . . , h(xk−1)) is uniformly distributed in Rk for any k distinct
keys x0, . . . , xk−1 ∈ U . The p-th central moment E[(X − µ)p] of X for a k-independent

1For a positive integer m ∈ N we define [m] = {0, . . . ,m− 1}.
2For a statement P we let [P ] be 1 if P is true and 0 otherwise.
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hash function h is the same as the p-th central moment of X for a fully random hash
function when p is an even integer less than k.

A.1.2 Tabulation Hashing

Simple tabulation hashing dates back to 1970 and was first introduced by Zobrist for
optimizing chess computers [Zob70]. In simple tabulation hashing, we view the uni-
verse, U , to be of the form U = Σc for some alphabet, Σ, and a positive integer c.
Let T : {0, . . . , c− 1} × Σ → [2l] be a uniformly random table, i.e., each value is cho-
sen independently and uniformly at random from the set [2l]. A simple tabulation hash
function, h : Σc → [2l], is then defined by

h(α0, . . . , αc−1) =
c−1⊕
i=0

T (i, αi) ,

where⊕ is the bitwise XOR-operation, i.e., addition when [2l] is identified with the Abelian
group (Z/2Z)l. We say that h is a simple tabulation hash function with c characters. With
8- or 16-bit characters, the random table T fits in cache, and then simple tabulation is
very fast, e.g., in experiments, [PT12] found it to be as fast as two to three multiplications.

The moments of simple tabulation hashing have been studied in multiple papers.
Braverman et al. [BCLM+10] showed that for a fixed bin the 4th central moment is
close to that achieved by truly random hashing. Dahlgaard et al. [DKT17] generalized
this to any constant moment p. Their proof works for any p but with a doubly exponential
dependence on p, so their bound is only useful for p = O(1). In this paper, we obtain
bounds for all the moments of hash-based sums for simple tabulation hashing which are
tight up to constants depending only on c.

Previous work has just treated c as a constant, hidden in O-notation. However, c does
provide a fundamental trade-off between evaluation time with c lookups and the space
cU1/c. We therefore find it relevant to elucidate how our moment bounds depend on c
even though we typically choose c = 4.

Mixed tabulation hashing was introduced by Dahlgaard et al. [DKRT15]. As in simple
tabulation hashing, we view the universe, U , to be of the form U = Σc for some alphabet,
Σ, and a positive integer c. We further assume that the alphabet, Σ, has the form Σ = [2k].
Let h1 : Σc → [2l], h2 : Σc → Σd, and h3 : Σd → [2l] be independent simple tabulation hash
functions. A mixed tabulation hash function, h : Σc → [2l], is then defined by

h(x) = h1(x)⊕ h3(h2(x)) .

As in simple tabulation hashing, ⊕ is the bitwise XOR-operation. We call h a mixed
tabulation hash function with c characters and d derived characters. We note that h1 and
h2 can be combined in a single simple tabulation hash function Σc → [2l]× Σd, and then
h is implemented with only c+ d lookups.

With simple tabulation hashing, there are certain inputs for which the concentration
is much worse than with fully random hashing. However, with mixed tabulation, even
if we have just d = 1 derived character, we get logarithmic moment bounds that, for
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c = O(1), are only a constant factor worse than those with fully-random hashing for any
input assuming that hash range at most polynomial in the key universe.

Getting within a constant factor is very convenient within algorithm analysis, where
we typically only aim for O-bounds that are tight within a constant factor.

A.1.3 Relation between Simple Tabulation and Chaoses

A chaos of order c is a random variable of the form∑
0≤i0<...<ic−1<n

ai0,...,ic−1

∏
j∈[c]

Xij ,

where (Xi)i∈[n] are independent random variables and (ai0,...,ic−1)0≤i0<...<ic−1<n is a mul-
tiindexed array of real numbers. And a decoupled chaos of order c is a random variable
of the form ∑

i0,...,ic−1∈[n]

ai0,...,ic−1

∏
j∈[c]

X
(j)
ij

,

where (X
(j)
i )i∈[n],j∈[c] are independent random variables and (ai0,...,ic−1)i0,...,ic−1∈[n] is a

multiindexed array of real numbers. Chaoses have been studied in different settings, e.g.,
when the variables are standard Gaussian variables [Lat06; Leh11], when the variables
have logarithmically concave tails [AL12], and when the variables have logarithmically
convex tails [KL15].

From the definition of a chaos and simple tabulation hashing it might not be immedi-
ately clear that there is connection between the two. But we can rewrite the expression
for hash-based sums of simple tabulation hashing as follows∑
x∈Σc

v(x, h(x)) =
∑

α0,...,αc−1∈Σ
v((α0, . . . , αc−1), h(α0, . . . , αc−1))

=
∑

j0,...,jc−1∈[m]

∑
α0,...,αc−1∈Σ

v

(α0, . . . , αc−1),
⊕
i∈[c]

ji

∏
i∈[c]

[T (i, αi) = ji] .

We then notice that
∑

α0,...,αc−1∈Σ v
(

(α0, . . . , αc−1),
⊕

i∈[c] ji

)∏
i∈[c] [T (i, αi) = ji] is a de-

coupled chaos of order c for any (ji)i∈[c], thus hash-based sums of simple tabulation hashing
can be seen as a sum of chaoses. Now since the random variables, ([T (i, αi) = j])j∈[m],
are not independent then the chaoses are not independent either which complicates the
analysis. Nonetheless, this realization inspires us to use techniques from the study of
chaoses to analyze the moments of tabulation hashing, in particular, our approach will be
analytical in contrast with the combinatorial approach of the previous papers. We will
expand further on the techniques in Appendix A.1.5.

A.1.4 Our Results

When proving and stating bounds for the p-th moment of a random variable it is often
more convenient and more instructive to do it in terms of the p-norm of the random
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variable. The p-norm of a random variable is the p-th root of the p-th moment of the
random variable and is formally defined as follows:

Definition A.1 (p-norm). Let p ≥ 1 and X be a random variable with E[|X|p] <∞. We

then define the p-norm of X by ∥X∥p = E[|X|p]1/p.

Our main contributions of this paper are analyses of the moments of hash-based sums
of simple tabulation hashing and mixed tabulation hashing. To do this we first had to
analyze the moments of hash-based sums of fully random hashing which as far as we are
aware have not been analyzed tightly before.

The Moments of Fully Random Hashing

Previously, the focus has been on proving Chernoff-like bounds by using the moment
generating function but a natural, different approach would be to use moments instead.
Both the Chernoff bounds [Che52] and the more general Bennett’s inequality [Ben62]
bound the tail using the Poisson distribution. More precisely, let v : U×[m]→ R be a value
function that satisfies that

∑
j∈[m] v(x, j) = 0 and define the following two parameters Mv

and σ2v which will be important throughout the paper as follows:

Mv = max
x∈U,j∈[m]

|v(x, j)| , (A.1)

σ2v =

∑
x∈U,j∈[m] v(x, j)2

m
. (A.2)

Bennett’s inequality specialized to our setting then says that for a fully random hash
function h

Pr

[∣∣∣∣∣∑
x∈U

v(x, h(x))

∣∣∣∣∣ ≥ t
]
≤ 2 exp

(
− σ2

v
M2

v
C
(
tMv
σ2
v

))

≤

2 exp
(
− t2

3σ2
v

)
if t ≤ σ2

v
Mv

2 exp
(
− t

2Mv
log
(

1 + tMv
σ2
v

))
if t > σ2

v
Mv

,

(A.3)

where C(x) = (x+ 1) log(x+ 1)− x.3

This inspires us to try to bound the p-norms of Xv with the p-norms of the Poisson
distribution. To do this we will introduce the function Ψp(M,σ2) which is quite technical
but we will prove that Ψp(1, λ) is equal up to a constant factor to the central p-norm of
a Poisson distributed variable with mean λ. One should think of Ψp(M,σ2) as a p-norm

version of σ2
v

M2
v
C
(
tMv
σ2
v

)
which appears in Bennett’s inequality.

3Here and throughout the paper log(x) will refer to the natural logarithm.
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Definition A.2. For p ≥ 2 we define the function Ψp : R+ × R+ → R+ as follows

Ψp(M,σ2) =


(

σ2

pM2

)1/p
M if p < log pM2

σ2

1
2

√
pσ if p < e2 σ

2

M2

p

e log pM2

σ2

M if max
{

log pM2

σ2 , e
2 σ2

M2

}
≤ p

.

Remark A.3. When p is small then case 1 and 2 apply while for large p case 3 applies.

If 2 < e2 σ
2

M2 then we always have that p > log pM2

σ2 for 2 ≤ p, hence only case 2 and 3

apply. Similarly, if e2 σ
2

M2 ≤ 2 then p ≥ e2 σ2

M2 for all 2 ≤ p, hence only case 1 and 3 apply.
This shows that the cases disjoint and cover all parameter configurations.

The definition Ψp(M,σ2) might appear strange but it does in fact capture the central
p-norms of Poisson distributed random variables. This is stated more formally in the
following lemma.

Lemma A.4. There exist universal constants K1 and K2 satisfying that for a Poisson
distributed random variable, X, with λ = E[X]

K2Ψp(1, λ) ≤ ∥X − λ∥p ≤ K1Ψp(1, λ) ,

for all p ≥ 2.

Bennett’s inequality shows that we can bound the tail of
∑

x∈U v(x, h(x)) and
Lemma A.4 shows that Ψp(M,σ2) captures the central p-norms of the Poisson distribu-
tion. It is therefore not so surprising that we are to bound the p-norms of

∑
x∈U v(x, h(x))

using Ψp(M,σ2).

Theorem A.5. Let h : U → [m] be a uniformly random function, let v : U × [m]→ R be
a fixed value function, and assume that

∑
j∈[m] v(x, j) = 0 for all keys x ∈ U . Define the

random variable Xv =
∑

x∈U v(x, h(x)). Then for all p ≥ 2

∥Xv∥p ≤ LΨp

(
Mv, σ

2
v

)
,

where L ≤ 16e is a universal constant.

To get a further intuition for Ψp(M,σ2) is is instructive to apply Markov’s inequal-
ity and compare the tail bound to Bennett’s inequality. More precisely, assume that
∥Y − E[Y ]∥p ≤ LΨp(M,σ2) for a constant L and for all p ≥ 2. Then we can use Markov’s
inequality to get the following tail bound for all t > 0

Pr
[∣∣∣Y − E[Y ]

∣∣∣ ≥ t] ≤ (∥Y − E[Y ]∥p
t

)p

≤


L2σ2

2t2
if t ≤ Lmax

{
M, eσ√

2

}
exp
(
− 4t2

e2L2σ2

)
if L eσ√

2
≤ t ≤ L e2σ2

2M

exp
(
− t
LM log

(
2tM
Lσ2

))
if Lmax

{
e2σ2

2M ,M
}
≤ t

.

(A.4)
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In order to obtain these bounds p is chosen as follows: If t ≤ max
{
M, eσ√

2

}
then p = 2

and otherwise p is chosen such that ∥Y − E[Y ]∥p ≤ e−1t. More precisely, we have that

p =


2 if t ≤ Lmax

{
M, eσ√

2

}
4t2

e2L2σ2 if L eσ√
2
≤ t ≤ L e2σ2

2M

t
LM log

(
2tM
Lσ2

)
if Lmax

{
e2σ2

2M ,M
}
≤ t

.

We see that eq. (A.4) gives the same tail bound as Bennett’s inequality, eq. (A.3), up to
a constant in the exponent.

We also prove a matching lower bound to Theorem A.5 which shows that Ψp(M,σ2)
is the correct function to consider.

Theorem A.6. Let h : U → [m] be a uniformly random function, then there exists a
value function, v : U × [m] → R, where

∑
j∈[m] v(x, j) = 0 for all keys x ∈ U , such that

the random variable Xv =
∑

x∈U v(x, h(x)) satisfies that for all p ≤ L1 |U | log(m)∥∥∥∥∥∑
x∈U

v(x, h(x))

∥∥∥∥∥
p

≥ L2Ψp

(
Mv, σ

2
v

)
,

where L1 and L2 are a universal constant.

The Moments of Tabulation Hashing

We analyze the p-norms of hash-based sums for simple tabulation hashing, and our analysis
is the first that provides useful bounds for non-constant moments. Furthermore, it is also
the first analysis of simple tabulation hashing that does not assume that c is constant. We
obtain an essentially tight understanding of this problem and show that simple tabulation
hashing only works well when the range is large. This was also noted by Aamand et
al. [AKKR+20] and they solve this deficiency of simple tabulation hashing by introducing
a new hashing scheme, tabulation-permutation hashing. We show that it is also possible to
break the bad instances of simple tabulation hashing by using mixed tabulation hashing.

We introduce a bit of notation to make the theorems cleaner. We will view a value
function v : Σc × [m]→ R as a vector, more precisely, we let

∥v∥q =

∑
x∈Σc

∑
j∈[m]

|v(x, j)|q
1/q

for all q ∈ [1,∞]. For every key x ∈ Σc we define v[x] to be the sub-vector v restricted to
x, more precisely, we let

∥v[x]∥q =

∑
j∈[m]

|v(x, j)|q
1/q

for all q ∈ [1,∞].
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Simple Tabulation Hashing. Our main result for simple tabulation hashing is a ver-
sion of Theorem A.5.

Theorem A.7. Let h : Σc → [m] be a simple tabulation hash function, v : Σc× [m]→ R a
value function, and assume that

∑
j∈[m] v(x, j) = 0 for all keys x ∈ Σc. Define the random

variable V simple
v =

∑
x∈Σc v(x, h(x)). Then for all p ≥ 2∥∥∥V simple

v

∥∥∥
p
≤ L1Ψp

(
Kcγ

c−1
p Mv,Kcγ

c−1
p σ2v

)
,

where Kc = (L2c)
c−1, L1 and L2 are universal constants, and

γp =

max

{
log(m) + log

( ∑
x∈Σc∥v[x]∥22

maxx∈Σc∥v[x]∥22

)
/c, p

}
log

(
e2m

(
maxx∈Σc

∥v[x]∥21
∥v[x]∥22

)−1
)

It is instructive to compare this result to Theorem A.5 for fully random hashing.
Ignoring the constant Kc, the result for simple tabulation hashing corresponds to the
result for fully random hashing if we group keys into groups of size γc−1

p .

The definition of γp is somewhat complicated because of the generality of the theorem,

but we will try to explain the intuition behind it. The expression maxx∈Σc
∥v[x]∥21
∥v[x]∥22

measures

how spread out the mass of the value function is. It was also noted in the previous analysis
by Aamand et al. [AKKR+20] that this measure is naturally occurring. In fact, their result

needs that maxx∈Σc
∥v[x]∥21
∥v[x]∥22

≤ m1/4. If we consider the example from the introduction of

hashing below a threshold l ≤ m where each key, x ∈ Σc, has weight wx, then the value
function, v, will be v(x, j) = wx

(
[j < l]− l

m

)
for x ∈ Σc, j ∈ [m], and we then get that

max
x∈Σc

∥v[x]∥21
∥v[x]∥22

= 4l

(
1− l

m

)
≤ 4l .

This correctly measures that the mass of the value function is mostly concentrated to the
l positions of [m].

The expression
∑

x∈Σc∥v[x]∥22
maxx∈Σc∥v[x]∥22

is a measure for how many keys that have signifi-

cant weight. This also showed up in the previous analyses of simple tabulation hash-
ing [AKKR+20; PT12]. If we again consider the example from before, we get that∑

x∈Σc ∥v[x]∥22
maxx∈Σc ∥v[x]∥22

=

∑
x∈Σc w2

x

maxx∈Σc w2
x

.

We can summarize the example in the following corollary.

Corollary A.8. Let h : Σc → [m] be a simple tabulation hash function, assign a weight,
wx ∈ R, to every key, x ∈ Σc, and consider a threshold l ≤ m. Define the random variable
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V simple
v =

∑
x∈Σc wx

(
[h(x) < l]− l

m

)
. Then for all p ≥ 2

∥∥∥V simple
v

∥∥∥
p
≤ Ψp

(
Kcγ

c−1
p max

x∈Σc
|wx| ,Kcγ

c−1
p

(∑
x∈Σc

w2
x

)
l

m

(
1− l

m

))
,

where Kc = L1 (L2c)
c−1, L1 and L2 are universal constants, and

γp =
max

{
log(m) + log

( ∑
x∈Σc w2

x

maxx∈Σc w2
x

)
/c, p

}
log
(
e2m
4l

)
A natural question is how close Theorem A.7 is to being tight. We show that if

log(m) + log

( ∑
x∈Σc∥v[x]∥22

maxx∈Σc∥v[x]∥22

)
/c = O

(
log

(
1 +m

(
maxx∈Σc

∥v[x]∥21
∥v[x]∥22

)−1
))

then the result

is tight up to a universal constant depending only c. Formally, we prove the following
lemma.

Theorem A.9. Let h : Σc → [m] be a simple tabulation hash function, and 2 ≤ p ≤
L1 |Σ| log(m), then there exists a value function, v : U×[m]→ R, where

∑
j∈[m] v(x, j) = 0

for all keys x ∈ Σc, and for which∥∥∥∥∥∑
x∈Σc

v(x, h(x))

∥∥∥∥∥
p

≥ K ′
cΨp

(
γc−1
p Mv, γ

c−1
p σ2v

)
,

where K ′
c = Lc1 and L1 is a universal constant, and

γp = max

1,
p

log

(
e2m

(
maxx∈Σc

∥v[x]∥21
∥v[x]∥22

)−1
)


Mixed Tabulation Hashing. The results of simple tabulation hashing work well when
the range is large and when the mass of the value function is on few coordinates. We show
that mixed tabulation hashing works well even if the range is small.

Theorem A.10. Let h : Σc → [m] be a mixed tabulation function with d ≥ 1 derived
characters, v : Σc × [m]→ R a value function, and assume that

∑
j∈[m] v(x, j) = 0 for all

keys x ∈ Σc. Define the random variable V mixed
v =

∑
x∈Σc v(x, h(x)). For all p ≥ 2 then∥∥∥V mixed

v

∥∥∥
p
≤ Ψp

(
Kcγ

c
pMv,Kcγ

c
pσ

2
v

)
(A.5)

where Kc = L1 (L2c)
c, L1 and L2 are universal constants, and

γp = max

{
1,

log(m)

log(|Σ|)
,

p

log(|Σ|)

}
.
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Usually, in hashing contexts, we do not map to a much larger domain, i.e., we will
usually have that m ≤ |U |γ for some constant γ ≥ 1. If this is the case then we can obtain
the following nice tail bound for mixed tabulation hashing by using Markov’s inequality.

Corollary A.11. Let h : Σc → [m] be a mixed tabulation function with d ≥ 1 derived
characters, v : Σc × [m]→ R a value function, and assume that

∑
j∈[m] v(x, j) = 0 for all

keys x ∈ Σc. Define the random variable V mixed
v =

∑
x∈Σc v(x, h(x)). If m ≤ |U |γ for a

value γ ≥ 1 then for all t ≥ 0

Pr
[∣∣∣V mixed

v

∣∣∣ ≥ t] ≤ exp
(
− σ2

v
M2

v
C
(
tMv
σ2
v

)
/Kc,γ

)
+ |U |−γ ,

where C(x) = (x + 1) log(x + 1) − x, Kc,γ = L1

(
L2c

2γ
)c
, and L1 and L2 are universal

constants.

Proof. The idea is to combine Theorem A.10 and Markov’s inequality. We use Theo-
rem A.10 for 2 ≤ p ≤ γ log |U | to get that∥∥∥V mixed

v

∥∥∥
p
≤ Ψp

(
Kcγ

c
pMv,Kcγ

c
pσ

2
v

)
,

where we can bound γp by

γp = max

{
1,

log(m)

log(|Σ|)
,

p

log(|Σ|)

}
≤ cγ .

So we have that ∥∥∥V mixed
v

∥∥∥
p
≤ Ψp

((
L2c

2γ
)c
Mv,

(
L2c

2γ
)c
σ2v
)
.

Now by the same method as in eq. (A.4), we get the result.

Adding a query element In many cases, we would like to prove that these properties
continue to hold even when conditioning on a query element. An example would be
the case where we are interested in the weight of the elements in the bin for which the
query element, q, hashes to, i.e., we would like that

∑
x∈S wx [h(x) = h(q)] is concentrated

when conditioning on q. Formally, this corresponds to having the value function v : Σc ×
[m] × [m] defined by v(x, j, k) = wx [x ∈ S] [j = k] and then proving concentration on∑

x∈Σc\{q} v(x, h(x), h(q)) when conditioning on q. We show that this holds both for
simple tabulation and mixed tabulation.

Theorem A.12. Let h : Σc → [m] be a simple tabulation hash function and let q ∈ Σc

be a designated query element. Let v : Σc × [m] × [m] → R a value function, and assume
that

∑
j∈[m] v(x, j, k) = 0 for all keys x ∈ U and all k ∈ [m]. Define the random variable

V simple
v,q =

∑
x∈Σc\{q} v(x, h(x), h(q)) and the random variables

Mv,q = max
x∈Σc\{q},j∈[m]

|v(x, j, h(q))| ,

σ2v,q =
1

m

∑
x∈Σc\{q}

∑
j∈[m]

v(x, j, h(q))2 ,
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which only depend on the randomness of h(q). Then for all p ≥ 2

E
[(
V simple
v,q

)p ∣∣∣h(q)
]1/p
≤ Ψp

(
Kcγ

c−1
p Mv,q,Kcγ

c−1
p σ2v,q

)
,

where Kc = L1 (L2c)
c−1, L1 and L2 are universal constants, and

γp =

max

{
log(m) + log

( ∑
x∈Σc∥v[x]∥22

maxx∈Σc∥v[x]∥22

)
/c, p

}
log

(
e2m

(
maxx∈Σc

∥v[x]∥21
∥v[x]∥22

)−1
) .

Theorem A.13. Let h : Σc → [m] be a mixed tabulation hash function and let q ∈ Σc

be a designated query element. Let v : Σc × [m] × [m] → R a value function, and assume
that

∑
j∈[m] v(x, j, k) = 0 for all keys x ∈ U and all k ∈ [m]. Define the random variable

V simple
v,q =

∑
x∈Σc\{q} v(x, h(x), h(q)) and the random variables

Mv,q = max
x∈Σc\{q},j∈[m]

|v(x, j, h(q))| ,

σ2v,q =
1

m

∑
x∈Σc\{q}

∑
j∈[m]

v(x, j, h(q))2 ,

which only depend on the randomness of h(q). For all p ≥ 2 then

E
[(
V simple
v,q

)p ∣∣∣h(q)
]1/p
≤ Ψp

(
Kcγ

c
pMv,q,Kcγ

c
pσ

2
v,q

)
(A.6)

where Kc = L1 (L2c)
c, L1 and L2 are universal constants, and

γp = max

{
1,

log(m)

log(|Σ|)
,

p

log(|Σ|)

}
.

A.1.5 Technical Overview

Fully Random Hashing

Sub-Gaussian bounds A random variableX is said to be sub-Gaussian with parameter
σ if ∥X∥p ≤

√
pσ for all p ≥ 2. It is a well-known fact that the sum of independent bounded

random variables are sub-Gaussian. In the context of fully random hashing, we have that∥∥∥∥∥∑
x∈U

v(x, h(x))

∥∥∥∥∥
p

≤
√

4p

√∑
x∈U
∥v[x]∥2∞ . (A.7)

A natural question is whether this is the best sub-Gaussian bound we can get. If we are
just interested in the contribution to a single bin, i.e., v(x, j) = wx([j = 0]− 1

m), then we
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can obtain a better sub-Gaussian bound. By using the result of Oleszkiewicz [Ole03], we
get that ∥∥∥∥∥∑

x∈U
v(x, h(x))

∥∥∥∥∥
p

≤ L
√

p

logm

√∑
x∈U

w2
x , (A.8)

where L is a universal constant. This shows that eq. (A.7) can be improved in certain
situations. We improve on this by proving a generalization of eq. (A.8). We show that∥∥∥∥∥∑

x∈U
v(x, h(x))

∥∥∥∥∥
p

≤ L
√√√√ p

log

(
e2m

∑
x∈U∥v[x]∥2∞∑

x∈U∥v[x]∥22

)√∑
x∈U
∥v[x]∥2∞ , (A.9)

where L is a universal constant. It is easy to check that if v(x, j) = wx([j = 0]− 1
m) then

it reduces to eq. (A.8) and that it is stronger than eq. (A.7).

Moments for general random variables As part of our analysis we develop a couple
of lemmas for general random variables which might be of independent interest. We prove
a lemma that provides a simple bound for weighted sums of independent and identically
distributed random variables.

Lemma A.14. Let (Xi)i∈[n] and X be independent and identically distributed symmetric
random variables, and let (ai)i∈[n] be a sequence of reals.4 If p ≥ 2 is an even integer then∥∥∥∥∥∥

∑
i∈[n]

aiXi

∥∥∥∥∥∥
p

≤ K sup

ps
(∑

i∈[n] a
s
i

p

)1/s

∥X∥s

∣∣∣∣∣∣ 2 ≤ s ≤ p
 ,

where K ≤ 4e is a universal constant.

If we consider Laplace distributed random variables then it is possible to show that
Lemma A.14 is tight up to a universal constant. Thus a natural question to ask is whether
Lemma A.14 is tight, i.e., can we prove a matching lower bound. But unfortunately, if
you consider Gaussian distributed variables then we see that Lemma A.14 is not tight. It
would be nice if there existed a simple modification of Lemma A.14 which had a matching
lower bound.

Moments of functions of random variables As part of the analysis of tabulation
hashing, we will need to analyze random variables of the form Ψp(X,Y ) where X and Y are
random variables. More precisely, we have to bound ∥Ψp(X,Y )∥p. It is not immediately
clear how one would do this but we prove a general lemma that helps us in this regard.

4A symmetric random variable, X, is a random variable that is symmetric around zero, i.e., Pr[X ≥ t] =
Pr[−X ≥ t] for all t ≥ 0.
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Lemma A.15. Let f : Rn≥0 → R≥0 be a non-negative function which is monotonically in-
creasing in every argument, and assume that there exist positive reals (αi)i∈[n] and (ti)i∈[n]
such that for all λ ≥ 0

f(λα0t0, . . . , λ
αn−1tn−1) ≤ λf(t0, . . . , tn−1) .

Let (Xi)i∈[n] be non-negative random variables. Then for all p ≥ 1 we have that

∥f(X0, . . . , Xn−1)∥p ≤ n
1/p max

i∈[n]

(
∥Xi∥p/αi

ti

)1/αi

f(t0, . . . , tn−1) .

If we can choose ti = ∥Xi∥p/αi
for all i ∈ [n], then we get the nice expression

∥f(X0, . . . , Xn−1)∥p ≤ n
1/pf(∥X0∥p/α0

, . . . , ∥Xn−1∥p/αn−1
) .

Now the result is natural to compare to the triangle inequality that says that ∥X + Y ∥p ≤
∥X∥p + ∥Y ∥p, which corresponds to considering f(x, y) = x+ y, and to Cauchy-Schwartz
that says that ∥XY ∥p ≤ ∥X∥2p ∥Y ∥2p, which corresponds to f(x, y) = xy. These two

examples might point to that the n1/p is superfluous, but by considering f(x0, . . . , xn−1) =
max{x0, . . . , xn−1} and Gaussian distributed variables, it can be shown that Lemma A.15
is tight up to a constant factor.

Tabulation Hashing

Symmetrization The analyses of chaoses have mainly focused on two types of chaoses:
Chaoses generated by non-negative random variables and chaoses generated by symmetric
random variables. It might appear strange that focus has not been on chaoses generated by
mean zero random variables. The reason is that a symmetrization argument reduces the
analysis of chaoses generated by mean zero random variables to the analysis of chaoses
generated by symmetric random variables. More precisely, a standard symmetrization
shows that

2−c

∥∥∥∥∥∥
∑

i0,...,ic−1∈[n]

ai0,...,ic−1

∏
j∈[c]

ε
(j)
ij
X

(j)
ij

∥∥∥∥∥∥
p

≤

∥∥∥∥∥∥
∑

i0,...,ic−1∈[n]

ai0,...,ic−1

∏
j∈[c]

X
(j)
ij

∥∥∥∥∥∥
p

≤ 2c

∥∥∥∥∥∥
∑

i0,...,ic−1∈[n]

ai0,...,ic−1

∏
j∈[c]

ε
(j)
ij
X

(j)
ij

∥∥∥∥∥∥
p

,

where (ε
(j)
i )i∈[n],j∈[n] are independent Rademacher variables.5

In our case, we can assume that v(x, h(x)) is a mean zero random variable but is not
necessarily symmetric. We can remedy this by using the same idea of symmetrization. We

5A Rademacher variable, ε, is a random variable chosen uniformly from the set {−1, 1}, i.e.,
Pr[ε = −1] = Pr[ε = 1] = 1

2
.
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define ε : Σc → {−1, 1} to be a simple tabulation sign function, more precisely, we have
a fully random table, Tε : [c] × Σ → {−1, 1}, and ε is then defined by ε(α0, . . . , αc−1) =∏
i∈[c] T (i, αi). We then prove that for all p ≥ 2

2−c

∥∥∥∥∥∑
x∈Σc

ε(x)v(x, h(x))

∥∥∥∥∥
p

≤

∥∥∥∥∥∑
x∈Σc

v(x, h(x))

∥∥∥∥∥
p

≤ 2c

∥∥∥∥∥∑
x∈Σc

ε(x)v(x, h(x))

∥∥∥∥∥
p

. (A.10)

The power of symmetrization lies in the fact that we get to assume that v is symmetric
in the analysis without actually changing the value functions.

Somewhat surprisingly, we are able to improve the moment bound of Dahlgaard et
al. [DKRT15] just by using symmetrization. Their result has a doubly exponential de-
pendence on the size of the moment, p, which stems from a technical counting argument
where they bound the number of terms which does not have an independent factor when
expanding the expression

(∑
x∈Σc v(x, h(x))

)p
. It appears difficult to directly improve

their counting argument but by using eq. (A.10) we are able to circumvent this. Thus,
just by using symmetrization and the insights of Dahlgaard et al. [DKRT15] we obtain
the following result.

Lemma A.16. Let h : Σc → [m] be a simple tabulation function, ε : Σc → {−1, 1} be a
simple tabulation sign function, and v : Σc× [m]→ R be a value function. Then for every
real number p ≥ 2∥∥∥∥∥∑

x∈Σc

v(x, h(x))

∥∥∥∥∥
p

≤ 2c

∥∥∥∥∥∑
x∈Σc

ε(x)v(x, h(x))

∥∥∥∥∥
p

≤
√

4p
c
√∑
x∈Σc

∥v[x]∥2∞ .

General value functions For most applications of hashing, we are either interested in
the number of balls landing in a bin or in the number of elements hashing below a threshold.
But we are studying the more general setting where we have a value function. A natural
question is whether it is possible to obtain a simpler proof for the simpler settings. We do
not believe this to be the case since the general setting of value functions will naturally
show up when proving results by induction on c. More precisely, let us consider the case
where we are interested in the number of elements from a set, S ⊆ Σc, that hash to 0. We
then want to bound

∑
x∈S

(
[h(x) = 0]− 1

m

)
=
∑

x∈Σc [x ∈ S]
(
[h(x) = 0]− 1

m

)
. This can

be rewritten as6∑
x∈Σc

[x ∈ S]
(
[h(x) = 0]− 1

m

)
=
∑
α∈Σ

∑
y∈Σc−1

[(y, α) ∈ S]
(
[h(y)⊕ T (c− 1, α) = 0]− 1

m

)
.

So if we define the value function v′ : Σ× [m]→ R by

v′(α, j) =
∑

y∈Σc−1

[(y, α) ∈ S]
(
[h⊕ j = 0]− 1

m

)
,

6For a partial key y = (β0, . . . , βc−2) ∈ Σc−1, we let h(y) =
⊕

i∈[c−1] T (i, βi).
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then we get that
∑

x∈S
(
[h(x) = 0]− 1

m

)
=
∑

α∈Σ v
′(α, T (c − 1, α)). Thus, we see that

general value functions are natural to consider in the context of tabulation hashing.
Instead of shying away from general value functions, we embrace them. This force us

look at the problem differently and guides us in the correct direction. Using this insight
naturally leads us to use eq. (A.9) and we prove the following moment bound, which is
strictly stronger than Lemma A.16.

Lemma A.17. Let h : Σc → [m] be a simple tabulation function, ε : Σc → {−1, 1} be a
simple tabulation sign function, and v : Σc × [m] → R be value function. Then for every
real number p ≥ 2∥∥∥∥∥∑

x∈Σc

ε(x)v(x, h(x))

∥∥∥∥∥
p

≤

√√√√√Kc
p (max{p, log(m)})c−1

log

(
1 +

m
∑

x∈Σc∥v[x]∥2∞∑
x∈Σc∥v[x]∥22

)c√∑
x∈Σc

∥v[x]∥2∞ ,

where Kc = (Lc)c for a universal constant L.

This statement is often weaker than Theorem A.7 but perhaps a bit surprisingly, we
will use Lemma A.17 as an important step in the proof of Theorem A.7.

Sum of squares of simple tabulation hashing A key element when proving Theo-
rem A.7 is bounding the sums of squares

∑
j∈[m]

(∑
x∈Σc

v(x, h(x)⊕ j)

)2

. (A.11)

This was also one of the main technical challenges for the analysis of Aamand et
al. [AKKR+20]. Instead of analyzing eq. (A.11), we will analyze a more general problem:
Let vi : Σc× [m]→ R be a value function i ∈ [k], we then want to understand the random
variable. ∑

j0,...,jk−1∈[m]⊕
i∈[k] ji=0

∑
x0,...,xk−1∈Σc

∏
i∈[k]

vi(xi, ji ⊕ h(xi)) (A.12)

If we have k = 2 and v0 = v1 then this corresponds to eq. (A.11). By using a decoupling
argument, it is possible to reduce the analysis of eq. (A.12) to the analysis of hash-based
sums for simple tabulation hashing. We can then use Lemma A.17 to obtain the following
lemma.

Lemma A.18. Let h : Σc → [m] be a simple tabulation function, ε : Σc → {−1, 1} be a
simple tabulation sign function, and vi : Σc × [m]→ R be a value function for i ∈ [k]. For
every real number p ≥ 2∥∥∥∥∥∥

∑
j∈[m]

(∑
x∈Σc

ε(x)v(x, h(x))

)2
∥∥∥∥∥∥
p

≤

 Lcmax{p, log(m)}

log

(
e2m

∑
x∈Σc∥v[x]∥22∑

x∈Σc∥v[x]∥21

)

c ∑
x∈Σc

∥v[x]∥22 ,
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where L is a universal constant.

Proving the main result The proof of Theorem A.7 is by induction on c. We will use
Theorem A.5 on one of the characters while fixing the other characters. This will give us
an expression of the form∥∥∥∥∥∥∥∥∥∥∥∥∥

Ψp


max

α∈Σ,j∈[m]

∣∣∣∣∣∣
∑

y∈Σc−1

v((y, α), h(y)⊕ j)

∣∣∣∣∣∣ ,
∑

α∈Σ,j∈[m]

 ∑
y∈Σc−1

v((y, α), h(y)⊕ j)

2

m



∥∥∥∥∥∥∥∥∥∥∥∥∥
p

.

By applying Lemma A.15, we bound this by

Ψp


∥∥∥∥∥∥ max
α∈Σ,j∈[m]

∣∣∣∣∣∣
∑

y∈Σc−1

v((y, α), h(y)⊕ j)

∣∣∣∣∣∣
∥∥∥∥∥∥
p

,

∥∥∥∥∥∥∥∥∥∥∥∥∥

∑
α∈Σ,j∈[m]

 ∑
y∈Σc−1

v((y, α), h(y)⊕ j)

2

m

∥∥∥∥∥∥∥∥∥∥∥∥∥
p


.

We will bound
∥∥∥maxα∈Σ,j∈[m]

∣∣∣∑y∈Σc−1 v((y, α), h(y)⊕ j)
∣∣∣∥∥∥
p

by using the induction hy-

pothesis, and we bound

∥∥∥∥∑
α∈Σ,j∈[m](

∑
y∈Σc−1 v((y,α),h(y)⊕j))

2

m

∥∥∥∥
p

by using Lemma A.18.

While this sketch is simple, the actual proof is quite involved and technical since one
has to be very careful with the estimates.

A.1.6 Mixed Tabulation Hashing in Context

Our concentration bounds for mixed tabulation hashing are similar to those Aamand et
al. [AKKR+20] for their tabulation-permutation hashing scheme and the schemes also
have very similar efficiency, roughly a factor 2 slower than simple tabulation and orders
of magnitude faster than any alternative with similar known concentration bounds. We
shall make a more detailed comparison with tabulation-permutation in Section A.1.6.

As mentioned in the beginning of the introduction, the big advantage of proving con-
centration bounds for mixed tabulation hashing rather than for tabulation-permutation
is that mixed tabulation hashing has many other strong probabilistic properties that can
now be used in tandem with strong concentration. This makes mixed tabulation an even
stronger candidate to replace abstract uniform hashing in real implementations of algo-
rithms preserving many of the asymptotic performance guarantees.
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Mixed tabulation inherits all the nice probabilistic properties known for simple and
twisted tabulation7. Dahlgaard et al. [DKRT15] introduced mixed tabulation hashing to
further get good statistics over k-partitions as used in classic streaming algorithms for
counting of distinct elements by Flajolet et al. [FM85; FFGa07; HNH13], and for fast set
similarity in large-scale machine learning by Li et al. [LOZ12; SL14a; SL14b].

Selective full randomness with mixed tabulation The main result of Dahlgaard et
al. [DKRT15] for mixed tabulation is that it has a certain kind of selective full randomness
(they did not have a word for it). An ℓ-bit mask M with don’t cares is of the form {0, 1, ?}ℓ.
An ℓ-bit string B ∈ {0, 1}ℓ matches M if it is obtained from M by replacing each ? with
a 0 or a 1. Given a hash function returning ℓ-bit hash values, we can use M to select the
set Y of keys that match M . Consider a mixed tabulation hash function h : Σc → {0, 1}ℓ
using d derived characters. The main result of Dahlgaard et al. [DKRT15, Theorem 4] is
that if the expected number of selected keys is less than |Σ|/2, then, w.h.p., the free (don’t
care) bits of the hash values of Y are fully random and independent. More formally,

Theorem A.19 (Dahlgaard et al. [DKRT15, Theorem 4]). Let h : Σc → {0, 1}ℓ be a
mixed tabulation hash function using d derived characters. Let M be an ℓ-bit mask with
don’t cares. For a given key set X ⊆ Σc, let Y be the set of keys from X with hash values
matching M . If E[|Y |] ≤ |Σ|/(1 + Ω(1)), then the free bits of the hash values in Y are
fully random with probability 1−O(|Σ|1−⌊d/2⌋).

The above result is best possible in that since we only have O(|Σ|) randomness in the
tables, we cannot hope for full randomness of an asymptotically larger set Y .

In the applications from [DKRT15], we also want the size of the set Y to be concen-
trated around its mean and by Corollary A.11, the concentration is essentially as strong
as with fully random hashing and it holds for any d ≥ 1.

In [DKRT15] they only proved weaker concentration bounds for the set Y selected in
Theorem A.19. Based on the concentration bounds for simple tabulation by Pǎtraşcu and
Thorup [PT12], they proved that if the set Y from A.19 had E[Y ] ∈ [|Σ|/8, 3|Σ|/4], then
within the same probability of 1−O(|Σ|1−⌊d/2⌋), it has

|Y | = E[Y ]

(
1±O

(√
log |Σ|(log log |Σ|)2

|Σ|

))
. (A.13)

With Corollary A.11, for E[Y ] = Θ(|Σ|), we immediately tighten (A.13) to the cleaner

|Y | = E[Y ]

(
1±O

(√
log |Σ|
|Σ|

))
. (A.14)

7This is not a black box reduction, but both twisted and mixed tabulation hashing applies simple
tabulation to a some changed keys, so any statement holding for arbitrary sets of input keys is still valid.
Moreover, mixed tabulation with one derived character corresponds to mixed tabulation applied to keys
with an added 0-character head, and having more derived characters does not give worse results.
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While the improvement is “only” a factor (log log |Σ|)2, the important point here is that
(A.14) is the asymptotic bound we would get with fully-random hashing. Also, while
Dahlgaard et al. only proved (A.13) for the special case of E[Y ] ∈ [|Σ|/8, 3|Σ|/4], our
(A.14) is just a special case of Corollary A.11 which holds for arbitrary values of E[Y ] and
arbitrary value functions.

Dahlgaard et al. presented some very nice applications of mixed tabulation to problems
in counting and machine learning and machine learning. The way they use Theorem A.19
is rather subtle.

Mixed Tabulation Hashing Versus Tabulation-Permutation Hashing

As mentioned earlier, our new concentration bounds are similar to those proved by Aa-
mand et al. [AKKR+20] for their tabulation-permutation hashing scheme. However, now
we also have moment bounds covering the tail, and we have the first understanding of
what happens when c is not constant. It is not clear if this new understanding applies
to tabulation-permutation. As discussed above, the advantage of having the concentra-
tion bounds for mixed tabulation hashing is that we can use them in tandem with the
independence result from Theorem A.19, which does not hold for tabulation-permutation.

Tabulation-permutation is similar to mixed tabulation hashing in its resource con-
sumption. Consider the mapping Σc → Σc. Tabulation-permutation first uses simple

tabulation h : Σc → Σc. Next it applies a random permutation πi : Σ
1−1→ Σ to each out-

put character h(x)i, that is, x 7→ (π1(h(x)1), . . . , πc(h(x)c). Aamand et al. [AKKR+20]
also suggest tabulation-1permutation hashing, which only permutes the most significant
character. This scheme does not provide concentration for all value functions, but it does
work if we select keys from intervals.

Aamand et al. [AKKR+20] already made a thorough experimental and theoretical
comparison between tabulation-permutation, mixed tabulation, and many other schemes.
In this comparison, mixed tabulation played the role of a similar scheme with not as
strong known concentration bounds. In the experiments, mixed tabulation hashing with c
derived characters performed similar to tabulation-permutation in speed. Here we proved
stronger concentration bounds for mixed tabulation even with a single character, where it
should perform similar to tabulation-1permutation (both use c+ 1 lookups). Both mixed
tabulation hashing and tabulation-permutation hashing were orders of magnitude faster
than any alternative with similar known concentration bounds. We refer to [AKKR+20;
DKT17] for more details. In particular, [DKT17] compares mixed tabulation with pop-
ular cryptographic hash functions that are both slower and have no guarantees in these
algorithmic contexts.

One interesting advantage of mixed tabulation hashing over tabulation-permutation
hashing is that mixed tabulation hashing, like simple tabulation hashing, only needs ran-
domly filled character tables. In contrast, tabulation-permutation needs tables that repre-
sent permutations. Thus, all we need to run mixed tabulation hashing is a pointer to some
random bits. These could be in read-only memory shared across different applications.
Read-only memory is much less demanding than standard memory since there can be no
write-conflicts, so we could imagine some special large, fast, and cheap read-only memory,
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pre-filled with random bits, e.g., generated by a quantum-device. This would open up for
larger characters, e.g., 16- or 32-bit characters, and it would free up the cache for other
applications.

A.2 Preliminaries

In this section, we will introduce the notation which will be used throughout the paper. We
will start by introducing the notation from probability theory that we need and afterwards
we will introduce notation that will help in the reasoning about tabulation hashing.

We will use the following basic mathematical notation: We define N the set of non-
negative integers, for n ∈ N we shall define [n] = {0, . . . , n− 1}, in particular [n] = ∅, and
for an event A we shall define [A] to be the indicator on A, i.e., [A] = 1 if A is true and
[A] = 0 otherwise.

If n ∈ N is non-negative integer, (Xi)i∈[n] are real variables, and j ∈ [n + 1] we shall
define X<j =

∑
i∈[n],i<j Xi =

∑
i∈[j]Xi. Similarly, for sets (Ai)i∈[n] and j ∈ [n + 1] we

shall define A<j =
⋃
i∈[j]Ai.

We will be using the following version of Stirling’s approximation [Mar65] which holds
for all integers n,

Γ(n+ 1) = n! ≤ e
√
n
(n
e

)n
. (A.15)

A.2.1 Probability Theory

In the following, we introduce the necessary notions of probability theory. We will assume
that we are given a probability space (Ω,F , P ) throughout the paper but we will often
not state it explicitly. We will be working with martingales and we shall therefore need
notation and concepts from probability theory of a fairly general and abstract character.
For an introduction to measure and probability theory, see, for instance, [Sch05].

Definition A.20. Let (Xi)i∈[n] be random variables on the probability space (Ω,F , P ).
We denote by G = σ((Xi)i∈[n]) ⊆ F the smallest σ-algebra where (Xi)i∈[n] are all G-
measurable.

Definition A.21 (Conditional expectation). Let X be a random variable on the proba-
bility space (Ω,F , P ), and let G ⊆ F be a sub σ-algebra. If E[|X|] < ∞ we can define
the random variable E[X | G] to be the conditional expectation of X given G. It shall be
G-measurable and for all G ∈ G we have that E[1G E[X | G]] = E[1GX].

We define the conditional expectation of X given a random variable Y by E[X |Y ] =
E[X |σ(Y )].

Definition A.22 (Filtration and adapted sequence). On a probability space (Ω,F , P ) a
sequence of (Fi)i∈[n] of sub σ-algebras is called a filtration if F0 ⊆ . . . ⊆ Fn−1 ⊆ F .

We say that a sequence of random variables (Xi)i∈[n] is adapted to a filtration (Fi)i∈[n]
if Xi is Fi-measurable for all i ∈ [n]. We call (Xi,Fi)i∈[n] an adapted sequence.
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Definition A.23 (Martingale and martingale difference). We call an adapted sequence
(Xi,Fi)i∈[n] a martingale sequence if E[Xi | Fi−1] = Xi−1 for all i ∈ [n]. (We define
F−1 = {∅,Ω} and X−1 = 0.)

We call an adapted sequence (Yi,Fi)i∈[n] a martingale difference sequence if
E[Yi | Fi−1] = 0 for all i ∈ [n]. (We define F−1 = {∅,Ω}.)

It should be noted that if (Yi,Fi)i∈[n] is a martingale difference sequence then
(Y<i+1,Fi)i∈[n] is a martingale sequence. Similarly, if (Xi,Fi)i∈[n] is a martingale sequence
then (Xi −Xi−1,Fi)i∈[n] is a martingale difference sequence.

Definition A.24 (p-norm). Let p ≥ 1 and X be a random variable with E[|X|p] < ∞.

We then define the p-norm of X by ∥X∥p = E[|X|p]1/p.
Let p ≥ 1, G be a sub σ-algebra, and X be a random variable with E[|X|p | G] < ∞.

We then define the p-norm of X conditioned on G by ∥X | G∥p = E[|X|p | G]1/p.

Similarly to conditional expectation, we will condition on random variables. Let p ≥ 1
and let X and Y be a random variables. We then define the p-norm of X conditioned on
Y by ∥X | Y ∥p = E[|X|p |σ(Y )]1/p

Now an important observation is that the p-norm is a seminorm which follows by the
Minkowski inequality.

Lemma A.25 (Triangle inequality(Minkowski inequality)). Let p ≥ 1 and let X and Y
be random variables with E[|X|p] < ∞ and E[|Y |p] < ∞. Then E[|X + Y |p] < ∞ and
∥X + Y ∥p ≤ ∥X∥p + ∥Y ∥p.

A.2.2 Tabulation Hashing

We will need to reason about the individual characters of a key, x ∈ Σc, and for that,
we need some notation. Most of the definitions are taken from the paper by Aamand
et al. [AKKR+20].

Definition A.26 (Position characters). Let Σ be an alphabet and c > 0 a positive integer.
We call an element (i, y) ∈ [c]× Σ a position character of Σc.

We will view a key x = (y0, . . . , yc−1) ∈ Σc as a set of c position characters,
{(0, y0), . . . (c− 1, yc−1)} ⊆ [c] × Σ. Let h : Σc → [2l] be a simple tabulation hash func-
tion and let T : [c] × Σ → [2l] be the random function used to define h. We will then
overload the notation and for a set of position characters y ⊆ [c] × Σ, define h(y) =⊕

α∈y T (y). We note that this definition agrees with our correspondence between keys
x = (y0, . . . , yc−1) ∈ Σc, and set of position characters, {(0, y0), . . . (c− 1, yc−1)} ⊆ [c]×Σ,
that is, h(x) = h({(0, y0), . . . (c− 1, yc−1)}). We have thus extended the domain of h to
P([c]× Σ). For sets of position characters x1, x2 ∈ P([c]× Σ) we will write x1⊕x2 for the
symmetric difference, i.e., x1⊕x2 = (x1 ∪x2) \ (x1 ∩x2). We note that with the extended
domain for h then h(x1 ⊕ x2) = h(x1)⊕ h(x2).

We will prove several of our statements by induction on the position characters and
for this reason, we need the following definition.
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Definition A.27 (Group of keys). Let {α0, . . . , αr−1} = [c] × Σc be an enumeration
of the position characters of Σc. For each i ∈ [r] we denote by Gi ⊆ Σc the i’th
group of keys with respect to the ordering of position characters, and define it by
Gi = {x ∈ Σc |αi ∈ x, x ⊆ {α0, . . . , αi−1}}.

We will need the following lemmas by Aamand et al. [AKKR+20].

Lemma A.28 ([AKKR+20]). Let w : Σc → R≥0 be a weight function, then there exists
an ordering {α0, . . . , αr−1} of the position characters of Σc, such that for all i ∈ [r],

∑
x∈Gi

w(x) ≤
(

max
x∈Σc

w(x)

)1/c
(∑
x∈Σc

w(x)

)1−1/c

.

Lemma A.29. Let k ∈ N be a positive integer, and w0, . . . , wk−1 : Σc → R be weight
functions. Then, ∑

x0,...,xk−1∈Σc⊕
i∈[k] xi=∅

∏
j∈[k]

wi(xi) ≤
√

k
2

kc ∏
i∈[k]

√∑
x∈Σc

wi(x)2 . (A.16)

A.3 Moment Inequalities

The goal of this chapter is to establish a series of technical lemmas concerning moments
which will be crucial in the later part of the paper. An important tool will be the function
Ψp : R+ × R+ → R+ which gives a qualitative way of measuring how close the centered
moments of sums of weighted Bernoulli variables resembles the central moments of the
Poisson distribution.

Definition A.30. For p ≥ 2 we define the function Ψp : R+ × R+ → R+ as follows,

Ψp(M,σ2) =


(

σ2

pM2

)1/p
M if p < log pM2

σ2

1
2

√
pσ if p < e2 σ

2

M2

p

e log pM2

σ2

M if max
{

log pM2

σ2 , e
2 σ2

M2

}
≤ p

.

Remark A.31. From the definition it is not clear that Ψp is well-defined, but if 2 ≤ p <
e2 σ

2

M2 then log pM2

σ2 < 2, hence at most one of the first two cases are satisfied at any given
time. This shows that Ψp is indeed well-defined.

We show in Lemma A.4 that, up to constant, Ψp(1, λ) is equal to the p-norm of a
variable distributed as a centered Poisson variable with parameter λ. This implies that,
up to constant, Ψp(M,σ2) is equal to M times the p-norm of a variable distributed as a

centered Poisson variable with parameter σ2

M2 .
When we later prove our concentration results for simple tabulation and mixed tab-

ulation, we will need to bound ∥Ψp(X,Y )∥p for random variables X and Y . Now to
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handle this we will develop a general lemma that bounds the moments of a function of
random variables by the moments of the random variables. This will be the focus of
Appendix A.3.3.

A.3.1 Moments of Poisson Distributed Variables

We start this section by proving a number of properties of the Ψp-function which we will
use extensively. Afterward, we will establish the connection between Ψp-function and the
p-norm of Poisson distributed variables.

Lemma A.32. Let p ≥ 2 then the function Ψp satisfies the following properties:

1. For all positive reals M > 0 and σ > 0,

Ψp(M,σ2) = M sup

{
p

s

(
σ2

pM2

)1/s
∣∣∣∣∣ 2 ≤ s ≤ p

}
. (A.17)

2. For all positive reals M > 0 and σ > 0,

Ψp(M,σ2) ≤ max
{
1
2

√
pσ, 1

2epM
}
. (A.18)

3. For all positive reals M > 0 and σ > 0,

1
2

√
pσ ≤ Ψp(M,σ2) . (A.19)

4. For all positive reals M > 0 and σ > 0 with e2 σ
2

M2 ≤ p,

Ψp(M,σ2) ≤ p

e log pM2

σ2

M . (A.20)

5. For all positive reals M > 0 and σ > 0 and all λ ≥ 1,

Ψp(λM,λσ2) ≤ λΨp(M,σ2) . (A.21)

6. For all positive reals M > 0 and σ > 0 and all λ ≥ 1,

λΨp(M,σ2) ≤ Ψp(λ
2M,λ2σ2) . (A.22)

7. If f : R+ → R+ is an increasing function, where p 7→ f(1/p) is log-convex and where
there exists positive reals K > 0,M > 0, and σ > 0 such that f(p) ≤ KΨp(M,σ2)
for all even integers p ≥ 2, then

f(p) ≤ 2KΨp(M,σ2) , (A.23)

for all reals p ≥ 2.

Proof.
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Proof of eq. (A.17). Let α = σ2

pM2 and define the function f(s) = 1
sα

1/s. Taking

the derivative we get that f ′(s) = 1
s2

(
− logα

s α1/s − α1/s
)

. From this it is clear that f is

maximized at the point s∗ = min {max{2, log 1/α} , p} on the interval [2, p]. This implies
that

M sup

{
p

s

(
σ2

pM2

)1/s
∣∣∣∣∣ 2 ≤ s ≤ p

}
= M sup {pf(s) | 2 ≤ s ≤ p}

= Mpf(s∗)

= Mp


1
p

(
σ2

pM2

)1/p
if p < log pM2

σ2

1
2

√
σ2

pM2 if log pM2

σ2 < 2

1

log pM2

σ2

e−1 if 2 ≤ log pM2

σ2 ≤ p

=


(

σ2

pM2

)1/p
M if p < log pM2

σ2

1
2

√
pσ if p < e2 σ

2

M2

p

e log pM2

σ2

M if max
{

log pM2

σ2 , e
2 σ2

M2

}
≤ p

which proves the claim.

Proof of eq. (A.18). We note that if p ≤ log pM2

σ2 then(
σ2

pM2

)1/p

M ≤ 1

e
M ≤ 1

2e
pM ,

and if p > e2 σ
2

M2 then,
p

e log pM2

σ2

M ≤ 1

2e
pM .

This shows the upper bound.

Proof of eq. (A.19). The lower bound follows from eq. (A.17) since,

Ψp(M,σ2) = M sup

{
p

s

(
σ2

pM2

)1/s
∣∣∣∣∣ 2 ≤ s ≤ p

}
≥Mp

2

(
σ2

pM2

)1/2

=
1

2

√
pσ .

Proof of eq. (A.20). From eq. (A.17) we know that Ψp(M,σ2) =

M sup

{
p
s

(
σ2

pM2

)1/s ∣∣∣∣ 2 ≤ s ≤ p}. We then get the upper bound,

Ψp(M,σ2) ≤M sup

{
p

s

(
σ2

pM2

)1/s
∣∣∣∣∣ 2 ≤ s

}
.
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Now using the same method as in the proof of eq. (A.17), we get that the expression is

maximized at s∗ = σ2

pM2 ≥ 2 and we get that

Ψp(M,σ2) ≤ p

e log pM2

σ2

M .

Proof of eq. (A.21). We first notice that λΨp(M,σ2) = Ψp(λM, λ2σ2). Since y 7→
Ψp(λM, y) is monotonically increasing then,

Ψp(λM,λσ2) ≤ Ψp(λM,λ2σ2) = λΨp(M,σ2) .

Proof of eq. (A.22). We will again use that λΨp(M,σ2) = Ψp(λM,λ2σ2). This time
we will use that x 7→ Ψp(x, λ

2σ2) is monotonically increasing,

λΨp(M,σ2) = Ψp(λM,λ2σ2) ≤ Ψp(λ
2M,λ2σ2) .

Proof of eq. (A.23). Let p ≥ 2 be a real and define let 2 ≤ q be the largest even
integer with q ≤ p, that is, q is the unique even integer satisfying that q ≤ p < 2q. Now
let θ ≥ [0, 1] be defined by the equation 1

p = θ 1q + (1 − θ) 1
2q . By the log-convexity of

p 7→ f(1/p) we get that f(p) ≤ f(q)θf(2q)1−θ. We then have to consider two different
cases.

If log pM2

σ2 < p then it is easy to check that Ψ2p(M,σ2) ≤ 2Ψp(M,σ2), hence we get
that

f(p) ≤ f(q)θf(2q)1−θ ≤ f(2q) ≤ KΨ2q(M,σ2) ≤ KΨ2p(M,σ2) ≤ 2KΨp(M,σ2) .

If p ≤ log pM2

σ2 then we also know that q ≤ log qM2

σ2 and Ψq(M,σ2) =
(

σ2

qM2

)1/q
M ≤

√
2
(

σ2

pM2

)1/q
M , where we have used that p < 2q and 2 ≤ q. Let p < q′ be defined by

q′ = log q′

M2σ
2. If 2q ≤ q′ then we have that Ψ2q(M,σ2) =

(
σ2

2qM2

)1/2q
M ≤

(
σ2

pM2

)1/2q
M

and we get that

f(p) ≤ f(q)θf(2q)1−θ ≤
√

2K

(
σ2

qM2

)θ/q (
σ2

2qM2

)(1−θ)/2q
M =

√
2KΨq(M,σ2) .

If q ≤ q′ ≤ 2q then

Ψ2q(M,σ2) ≤ Ψ2q′(M,σ2) ≤ 2Ψq′(M,σ2) = 2

(
σ2

q′M2

)1/q′

M ≤ 2

(
σ2

pM2

)1/2q

M .

Combining these two facts give us that

f(p) ≤ f(q)θf(2q)1−θ ≤ 2K

(
σ2

qM2

)θ/q (
σ2

2qM2

)(1−θ)/2q
M = 2KΨq(M,σ2) .

This finishes the proof of Lemma A.32.



86 APPENDIX A. MOMENTS OF TABULATION HASHING

We are now ready to establish the connection between the Ψp-function and the p-norms
of Poisson distributed random variables.

Lemma A.33. There exist universal constants K1 and K2 satisfying that for a Poisson
distributed random variable, X, with λ = E[X]

K2Ψp(1, λ) ≤ ∥X − λ∥p ≤ K1Ψp(1, λ) ,

for all p ≥ 2.

For the proof, we need the following result by Lata la [Lat97] that gives a tight bound
for p-norms of sums of independent and identically distributed symmetric variables.

Lemma A.33 (Lata la [Lat97]). If (Xi)i∈[n] are independent and identically distributed
symmetric variables and p ≥ 2 then,∥∥∥∥∥∥

∑
i∈[n]

Xi

∥∥∥∥∥∥
p

≤ K1 sup

{
p

s

(
n

p

)1/s

∥X0∥s

∣∣∣∣∣max
{

2, pn
}
≤ s ≤ p

}
,

and ∥∥∥∥∥∥
∑
i∈[n]

Xi

∥∥∥∥∥∥
p

≥ K2 sup

{
p

s

(
n

p

)1/s

∥X0∥s

∣∣∣∣∣max
{

2, pn
}
≤ s ≤ p

}
.

Here K1 and K2 are universal constants.

Proof of Lemma A.4. We will use the standard fact that the Poisson distribution is the
limit of a binomial distribution, with fixed mean λ, as the number of trials go to infinity.

Let
(
Y

(n)
i

)
i∈[n]

be independent Bernoulli variables with Pr
[
Y

(n)
i = 1

]
= λ

n for n ≥ 1. We

then get that

∥X − λ∥p = lim
n→∞

∥∥∥∥∥∥
∑
i∈[n]

(
Y

(n)
i − λ

n

)∥∥∥∥∥∥
p

.

We let (εi)i∈N be independent Rademacher variables. We will argue that

1
2

∥∥∥∥∥∥
∑
i∈[n]

εi

(
Y

(n)
i − λ

n

)∥∥∥∥∥∥
p

≤

∥∥∥∥∥∥
∑
i∈[n]

(
Y

(n)
i − λ

n

)∥∥∥∥∥∥
p

≤ 2

∥∥∥∥∥∥
∑
i∈[n]

εi

(
Y

(n)
i − λ

n

)∥∥∥∥∥∥
p

. (A.24)

We defer the proof of eq. (A.24) to the end. Using eq. (A.24) it is enough to show

that limn→∞

∥∥∥∑i∈[n] εi

(
Y

(n)
i − λ

n

)∥∥∥
p

is at most a constant away from Ψp(1, λ). We use
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Lemma A.33 to get that

lim
n→∞

∥∥∥∥∥∥
∑
i∈[n]

εi

(
Y

(n)
i − λ

n

)∥∥∥∥∥∥
p

≤ lim
n→∞

K1 sup

{
p

s

(
n

p

)1/s ∥∥∥Y (n)
0

∥∥∥
s

∣∣∣∣∣max
{

2, pn
}
≤ s ≤ p

}

= lim
n→∞

K1 sup

{
p

s

(
n

p

(
λ
n

(
1− λ

n

)s
+
(
1− λ

n

)
λs

ns

))1/s
∣∣∣∣∣max

{
2, pn

}
≤ s ≤ p

}

= lim
n→∞

K1 sup

{
p

s

(
λ

p

((
1− λ

n

)s
+
(
1− λ

n

)
λs−1

ns−1

))1/s
∣∣∣∣∣max

{
2, pn

}
≤ s ≤ p

}

= K1 sup

{
p

s

(
λ

p

)1/s
∣∣∣∣∣ 2 ≤ s ≤ p

}
= K1Ψp(1, λ) .

The last equality follows by eq. (A.17). The proof of the lower bound is analogous.

Now we just need to prove eq. (A.24). We first consider the lower bound. Fixing
(εi)i∈N and using the triangle inequality we get that∥∥∥∥∥∥
∑
i∈[n]

εi

(
Y

(n)
i − λ

n

) ∣∣∣∣∣∣ (εi)i∈N

∥∥∥∥∥∥
p

=

∥∥∥∥∥∥
∑
i∈[n]

[εi = 1]
(
Y

(n)
i − λ

n

)
−
∑
i∈[n]

[εi = −1]
(
Y

(n)
i − λ

n

) ∣∣∣∣∣∣ (εi)i∈N

∥∥∥∥∥∥
p

≤

∥∥∥∥∥∥
∑
i∈[n]

[εi = 1]
(
Y

(n)
i − λ

n

) ∣∣∣∣∣∣ (εi)i∈N

∥∥∥∥∥∥
p

+

∥∥∥∥∥∥
∑
i∈[n]

[εi = −1]
(
Y

(n)
i − λ

n

) ∣∣∣∣∣∣ (εi)i∈N

∥∥∥∥∥∥
p

.

Now we use Jensen’s inequality on each of the terms.∥∥∥∥∥∥
∑
i∈[n]

[εi = 1]
(
Y

(n)
i − λ

n

) ∣∣∣∣∣∣ (εi)i∈N

∥∥∥∥∥∥
p

=

∥∥∥∥∥∥
∑
i∈[n]

[εi = 1]
(
Y

(n)
i − λ

n

)
+
∑
i∈[n]

[εi = −1] E
[
Y

(n)
i − λ

n

] ∣∣∣∣∣∣ (εi)i∈N

∥∥∥∥∥∥
p

≤

∥∥∥∥∥∥
∑
i∈[n]

(
Y

(n)
i − λ

n

) ∣∣∣∣∣∣ (εi)i∈N

∥∥∥∥∥∥
p

.
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Unfixing (εi)i∈N we get that∥∥∥∥∥∥
∑
i∈[n]

εi

(
Y

(n)
i − λ

n

)∥∥∥∥∥∥
p

≤ 2

∥∥∥∥∥∥
∑
i∈[n]

(
Y

(n)
i − λ

n

)∥∥∥∥∥∥
p

,

which establishes the lower bound of eq. (A.24).

For the upper bound of eq. (A.24) we first define
(
Z

(n)
i

)
i∈[n]

to be independent copies

of
(
Y

(n)
i

)
i∈[n]

. We then use Jensen’s inequality to get that∥∥∥∥∥∥
∑
i∈[n]

(
Y

(n)
i − λ

n

)∥∥∥∥∥∥
p

=

∥∥∥∥∥∥
∑
i∈[n]

((
Y

(n)
i − λ

n

)
− E

[
Z

(n)
i − λ

n

])∥∥∥∥∥∥
p

≤

∥∥∥∥∥∥
∑
i∈[n]

((
Y

(n)
i − λ

n

)
−
(
Z

(n)
i − λ

n

))∥∥∥∥∥∥
p

.

We then note that due to independence
(
Y

(n)
i − λ

n

)
−
(
Z

(n)
i − λ

n

)
is a symmetric variable,

thus it has the same distribution as εi

((
Y

(n)
i − λ

n

)
−
(
Z

(n)
i − λ

n

))
. We use this and the

triangle inequality to finish the upper bound,∥∥∥∥∥∥
∑
i∈[n]

((
Y

(n)
i − λ

n

)
−
(
Z

(n)
i − λ

n

))∥∥∥∥∥∥
p

=

∥∥∥∥∥∥
∑
i∈[n]

εi

((
Y

(n)
i − λ

n

)
−
(
Z

(n)
i − λ

n

))∥∥∥∥∥∥
p

≤ 2

∥∥∥∥∥∥
∑
i∈[n]

εi

(
Y

(n)
i − λ

n

)∥∥∥∥∥∥
p

.

This finishes the proof of Lemma A.4.

A.3.2 Moments of General Random Variables

We start by proving a lemma that bounds the moments of weighted sums of indepen-
dent and identically distributed variables. The lemma is similar to Lemma A.33 by
Lata la [Lat97] but it is not tight for all distributions.

Lemma A.34. Let (Xi)i∈[n] and X be independent and identically distributed symmetric
random variables, and let (ai)i∈[n] be a sequence of reals. If p ≥ 2 is an even integer then∥∥∥∥∥∥

∑
i∈[n]

aiXi

∥∥∥∥∥∥
p

≤ K sup

ps
(∑

i∈[n] a
s
i

p

)1/s

∥X∥s

∣∣∣∣∣∣ 2 ≤ s ≤ p
 ,

where K ≤ 4e is a universal constant.
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In the proof, we will need the following folklore result. We provide a proof of the result
for completeness.

Lemma A.34. Let n ≥ 0 be a positive integer and let a1, . . . , an ∈ R be real numbers. If
x ∈ R is a real number satisfying,

xn ≤
n∑
i=1

aix
n−i .

Then,

x ≤ 2 max
1≤i≤n

|ai|1/i .

Proof. The proof follows by noticing that

xn ≤
n∑
i=1

aix
n−i ≤

n∑
i=1

|ai| |x|n−i .

We will now show that
∑n

i=1 |ai| |x|
n−i ≤ maxni=1 2i |ai| |x|n−i by induction on n. The

result is clearly true for n = 1. Now assume that the result holds for integers less than n
then,

n∑
i=1

|ai| |x|n−i ≤ max

{
2an, 2

n−1∑
i=1

|ai| |x|n−i
}
≤ n

max
i=1

2i |ai| |x|n−i .

We then have that xn ≤ maxni=1 2i |ai| |x|n−i. This is equivalent with the statement that
there exists an integer 1 ≤ i ≤ n with xn ≤ 2i |ai| |x|n−i. This implies that there exists

an integer 1 ≤ i ≤ n with x ≤ 2 |ai|1/i. This is again equivalent with x ≤ maxni=1 |ai|
1/i

which is what we wanted to prove.

We now turn to the proof of Lemma A.14.

Prood of Lemma A.14. Since p is an even integer then,∥∥∥∥∥∥
∑
i∈[n]

aiXi

∥∥∥∥∥∥
p

p

=
∑
i∈[n]

p∑
s=1

(
p− 1

s− 1

)
E

(aiXi)
s

 ∑
j∈[n]\{i}

ajXj

p−s
=
∑
i∈[n]

p∑
s=1

(
p− 1

s− 1

)
E[(aiXi)

s] E

 ∑
j∈[n]\{i}

ajXj

p−s .

The first step follows by noticing that when we expand (
∑

i∈[n] aiXi)
p then for each term

the first factor will give an i ∈ [n]. Now if i has multiplicity s ≥ 1 in the term then there
are

(
p−1
s−1

)
ways to choose the other factors for i.
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We note that since the variables are symmetric then E[(aiXi)
s] = 0 for s odd. So in

the following, we assume that s is even, which implies that p − s is even. Now we use
Jensen’s inequality to obtain,

E

 ∑
j∈[n]\{i}

ajXj

p−s = E

 ∑
j∈[n]\{i}

ajXj + ai E[Xi]

p−s ≤ E

∑
j∈[n]

ajXj

p−s .

Another usage of Jensen’s inequality gives us that

E

∑
j∈[n]

ajXj

p−s =

∥∥∥∥∥∥
∑
j∈[n]

ajXj

∥∥∥∥∥∥
p−s

p−s

≤

∥∥∥∥∥∥
∑
j∈[n]

ajXj

∥∥∥∥∥∥
p−s

p

.

Combining these we get that∥∥∥∥∥∥
∑
i∈[n]

aiXi

∥∥∥∥∥∥
p

p

≤
∑
i∈[n]

p∑
s=2

(
p− 1

s− 1

)
E[(aiXi)

s]

∥∥∥∥∥∥
∑
j∈[n]

ajXj

∥∥∥∥∥∥
p−s

p

=

p∑
s=2

(
p− 1

s− 1

)∑
i∈[n]

asi E[Xs
i ]

∥∥∥∥∥∥
∑
j∈[n]

ajXj

∥∥∥∥∥∥
p−s

p

=

p∑
s=2

(
p− 1

s− 1

)
E[Xs]

∥∥∥∥∥∥
∑
j∈[n]

ajXj

∥∥∥∥∥∥
p−s

p

∑
i∈[n]

asi .

Now using Lemma A.34 we get that∥∥∥∥∥∥
∑
i∈[n]

aiXi

∥∥∥∥∥∥
p

≤ sup

2

(
p− 1

s− 1

)1/s
∑
i∈[n]

asi

1/s

∥X∥s

∣∣∣∣∣∣∣ 2 ≤ s ≤ p
 .

Now using Stirling’s approximation, we get that
(
p−1
s−1

)
=
(
p
s

)
s
p ≤

( ep
s

)s s
p . Plugging this

estimate into our equation gives us that∥∥∥∥∥∥
∑
i∈[n]

aiXi

∥∥∥∥∥∥
p

≤ sup

2
ep

s

s1/s

p1/s

∑
i∈[n]

asi

1/s

∥X∥s

∣∣∣∣∣∣∣ 2 ≤ s ≤ p


≤ 4e sup

ps
(∑

i∈[n] a
s
i

p

)1/s

∥X∥s

∣∣∣∣∣∣ 2 ≤ s ≤ p
 .
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We will not be using the result directly instead we will use the following corollary
where we further simplify the expression by bounding only in terms of the largest weight
and the Euclidean norm.

Corollary A.35. Let (Xi)i∈[n] be independent and identically distributed symmetric ran-
dom variables, and let (ai)i∈[n] be a sequence of reals. If p ≥ 2 is an even integer then,∥∥∥∥∥∥

∑
i∈[n]

aiXi

∥∥∥∥∥∥
p

≤ K max
i∈[n]
|ai| sup

ps
( ∑

i∈[n] a
2
i

pmaxi∈[n] |ai|2

)1/s

∥X∥s

∣∣∣∣∣∣ 2 ≤ s ≤ p
 ,

where K = 4e is a universal constant.

Proof. This follows from Lemma A.14 and the fact that asi ≤ a2i maxi∈[n] |ai|s−2 for all
i ∈ [n], s ≥ 2.∥∥∥∥∥∥

∑
i∈[n]

aiXi

∥∥∥∥∥∥
p

≤ K sup

ps
(∑

i∈[n] a
s
i

p

)1/s

∥X∥s

∣∣∣∣∣∣ 2 ≤ s ≤ p


≤ K sup

ps
(∑

i∈[n] a
2
i maxi∈[n] |ai|s−2

p

)1/s

∥X∥s

∣∣∣∣∣∣ 2 ≤ s ≤ p


≤ K max
i∈[n]
|ai| sup

ps
( ∑

i∈[n] a
2
i

pmaxi∈[n] |ai|2

)1/s

∥X∥s

∣∣∣∣∣∣ 2 ≤ s ≤ p
 .

We will now use Corollary A.35 to bound the sum of different types of random variables
with Ψp-function. We start by looking at Bernoulli-Rademacher variables.

Lemma A.36. Let (Xi)i∈[n] be independent Bernoulli-Rademacher variables with param-

eter α, that is, Pr[Xi = 1] = Pr[Xi = −1] = 1
2 − Pr[Xi = 0] = α

2 , and let (ai)i∈[n] be a
sequence of reals.

If p ≥ 2 is an even integer then,∥∥∥∥∥∥
∑
i∈[n]

aiXi

∥∥∥∥∥∥
p

≤ 4eΨp

max
i∈[n]
|ai| , α

∑
i∈[n]

a2i

 .

And if p ≥ 2 is a real number then,∥∥∥∥∥∥
∑
i∈[n]

aiXi

∥∥∥∥∥∥
p

≤ 8eΨp

max
i∈[n]
|ai| , α

∑
i∈[n]

a2i

 .
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Proof. We note that ∥X∥s = α1/s for all s ≥ 2. Let p ≥ 2 be an even integer then using
Corollary A.35 we then get that∥∥∥∥∥∥

∑
i∈[n]

aiXi

∥∥∥∥∥∥
p

≤ 4emax
i∈[n]
|ai| sup

ps
( ∑

i∈[n] a
2
i

pmaxi∈[n] |ai|2

)1/s

α1/s

∣∣∣∣∣∣ 2 ≤ s ≤ p


= 4emax
i∈[n]
|ai| sup

ps
(

α
∑

i∈[n] a
2
i

pmaxi∈[n] |ai|2

)1/s
∣∣∣∣∣∣ 2 ≤ s ≤ p

 .

Now eq. (A.17) proves the first claim. By Hölder’s inequality we have that p 7→∥∥∥∑i∈[n] aiXi

∥∥∥
1/p

is log-convex and Jensen’s inequality implies that p 7→
∥∥∥∑i∈[n] aiXi

∥∥∥
p

is

increasing, thus eq. (A.23) proves the second claim.

We are now almost ready to prove Theorem A.5 for fully random hash functions. This
will be a principal lemma in the sequel when we prove concentration results for tabulation
hashing. But first, we need to prove a symmetrization lemma for fully random functions.

Lemma A.37. Let h : U → [m] be a uniformly random function, let v : U × [m] → R
be a fixed value function, and assume that

∑
j∈[m] v(x, j) = 0 for all keys x ∈ U . Let

ε : U → {−1, 1} be a uniformly random sign function. Define the random variable Xv =∑
x∈U v(x, h(x)). Then for all p ≥ 2,

2−1

∥∥∥∥∥∑
x∈U

ε(x)v(x, h(x))

∥∥∥∥∥
p

≤

∥∥∥∥∥∑
x∈U

v(x, h(x))

∥∥∥∥∥
p

≤ 2

∥∥∥∥∥∑
x∈U

ε(x)v(x, h(x))

∥∥∥∥∥
p

.

Proof. We first consider the lower bound. Fixing ε and using the triangle inequality we
get that∥∥∥∥∥∑

x∈U
ε(x)v(x, h(x))

∣∣∣∣∣ ε
∥∥∥∥∥
p

=

∥∥∥∥∥∑
x∈U

[ε(x) = 1]v(x, h(x))−
∑
x∈U

[ε(x) = −1]v(x, h(x))

∣∣∣∣∣ ε
∥∥∥∥∥
p

≤

∥∥∥∥∥∑
x∈U

[ε(x) = 1]v(x, h(x))

∣∣∣∣∣ ε
∥∥∥∥∥
p

+

∥∥∥∥∥∑
x∈U

[ε(x) = −1]v(x, h(x))

∣∣∣∣∣ ε
∥∥∥∥∥
p

.

Now we use Jensen’s inequality on each of the terms.∥∥∥∥∥∑
x∈U

[ε(x) = 1]v(x, h(x))

∣∣∣∣∣ ε
∥∥∥∥∥
p

=

∥∥∥∥∥∑
x∈U

[ε(x) = 1]v(x, h(x)) +
∑
x∈U

[ε(x) = −1] E[v(x, h(x))]

∣∣∣∣∣ ε
∥∥∥∥∥
p

≤

∥∥∥∥∥∑
x∈U

v(x, h(x))

∣∣∣∣∣ ε
∥∥∥∥∥
p

.
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Unfixing ε we get that∥∥∥∥∥∑
x∈U

ε(x)v(x, h(x))

∥∥∥∥∥
p

≤ 2

∥∥∥∥∥∑
x∈U

v(x, h(x))

∥∥∥∥∥
p

,

which establishes the lower bound.
For the upper bound, we first define h′ : U → [m] to be an independent copy of h. We

then use Jensen’s inequality to get that∥∥∥∥∥∑
x∈U

v(x, h(x))

∥∥∥∥∥
p

=

∥∥∥∥∥∑
x∈U

v(x, h(x))−
∑
x∈U

E
[
v(x, h′(x))

]∥∥∥∥∥
p

≤

∥∥∥∥∥∑
x∈U

(
v(x, h(x))− v(x, h′(x))

)∥∥∥∥∥
p

.

We then note that due to the independence v(x, h(x))−v(x, h′(x)) is a symmetric variable,
thus it has the same distribution as ε(x) (v(x, h(x))− v(x, h′(x))). We use this and the
triangle inequality to finish the upper bound,∥∥∥∥∥∑

x∈U

(
v(x, h(x))− v(x, h′(x))

)∥∥∥∥∥
p

=

∥∥∥∥∥∑
x∈U

ε(x)
(
v(x, h(x))− v(x, h′(x))

)∥∥∥∥∥
p

≤ 2

∥∥∥∥∥∑
x∈U

ε(x)v(x, h(x))

∥∥∥∥∥
p

,

which establishes the upper bound.

Theorem A.5. Let h : U → [m] be a uniformly random function, let v : U × [m]→ R be
a fixed value function, and assume that

∑
j∈[m] v(x, j) = 0 for all keys x ∈ U . Define the

random variable Xv =
∑

x∈U v(x, h(x)). Then for all p ≥ 2

∥Xv∥p ≤ LΨp

(
Mv, σ

2
v

)
,

where L ≤ 16e is a universal constant.

Proof. We start by using Lemma A.37 to get that∥∥∥∥∥∑
x∈U

v(x, h(x))

∥∥∥∥∥
p

≤ 2

∥∥∥∥∥∑
x∈U

ε(x)v(x, h(x))

∥∥∥∥∥
p

.

Let (Y
(j)
x )x∈U,j∈[m] be independent Bernoulli-Rademacher variables with parameter 1

m .
The idea of the proof is to show that for p ≥ 2 then,∥∥∥∥∥∑

x∈U
ε(x)v(x, h(x))

∥∥∥∥∥
p

≤

∥∥∥∥∥∥
∑

x∈U,j∈[m]

v(x, j)Y (j)
x

∥∥∥∥∥∥
p

.
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This is nontrivial to do for general p. Instead, we will focus on p being an even integer.

Let q ≥ 2 be an even integer. Then for all x ∈ U we have that

∥ε(x)v(x, h(x))∥q =

(∑
j∈[m] v(x, j)q

m

)1/q

.

But it is easy to check that∥∥∥∥∥∥
∑
j∈[m]

v(x, j)Y (j)
x

∥∥∥∥∥∥
q

≥

(∑
j∈[m] v(x, j)q

m

)1/q

.

We can now show what we want,

E

[(∑
x∈U

ε(x)v(x, h(x))

)p]
=

∑
∑

x∈U qx=p

(
p

(qx)x∈U

) ∏
x∈U

E[(ε(x)v(x, h(x)))qx ]

=
∑

∑
x∈U qx=p

∀x∈U :qx is even

(
p

(qx)x∈U

) ∏
x∈U

E[(ε(x)v(x, h(x)))qx ]

≤
∑

∑
x∈U qx=p

∀x∈U :qx is even

(
p

(qx)x∈U

) ∏
x∈U

E

∑
j∈[m]

v(x, j)Y (j)
x

qx

=
∑

∑
x∈U qx=p

(
p

(qx)x∈U

) ∏
x∈U

E

∑
j∈[m]

v(x, j)Y (j)
x

qx
= E

 ∑
x∈U,j∈[m]

v(x, j)Y (j)
x

p
Now using Lemma A.36 we get that∥∥∥∥∥∑

x∈U
ε(x)v(x, h(x))

∥∥∥∥∥
p

≤

∥∥∥∥∥∥
∑

x∈U,j∈[m]

v(x, j)Y (j)
x

∥∥∥∥∥∥
p

≤ 4eΨp

(
max

x∈U,j∈[m]
|v(x, j)| ,

∑
x∈U,j∈[m] v(x, j)2

m

)
.

for all even integers p ≥ 2. Now we use eq. (A.23) as in the proof of Lemma A.36 which
proves the second claim.

We also need the standard fact that a sum of independent sub-Gaussian is also sub-
Gaussian. We include a proof for completeness.
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Lemma A.38. Let (Xi)i∈[n] be a sequence of independent symmetric random variables.
Let p ≥ 2 and assume that there exists a sequence of real numbers (ai)i∈[n] such that for
all even integers 2 ≤ q ≤ p and all i ∈ [n] it holds that

∥Xi∥q ≤
√
qai .

Then the sum of the random variables satisfies,∥∥∥∥∥∥
∑
i∈[n]

Xi

∥∥∥∥∥∥
p

≤ √p
√

2e
∑
i∈[n]

a2i .

Proof. The main idea of the proof is to compare the random variables (Xi)i∈[n] with a
sequence of independent Gaussian (gi)i∈[n], and then exploit that the sum of Gaussian
variables is a Gaussian variable. We will use the standard fact that for all even integers
2 ≤ q, Gaussian variables satisfies ∥gi∥q = ((q − 1)!!)1/q. A simple lower bound for this
follows by using Stirling’s approximation,

((q − 1)!!)1/q ≥ ((q/2)!)1/q ≥
(( q

2e

)q/2)1/q

=

√
q

2e
.

For an upper bound we note that by the AM-GM inequality we have that (q−2i−1)(2i+

1) ≤
( q
2

)2
so we get that

((q − 1)!!)1/q ≤
((q

2

)q/2)1/q

=

√
q

2
.

Now the lower bound gives us the estimate,

∥Xi∥q ≤
√
qai ≤

√
2e ∥gi∥q .

We start by proving the case where p ≥ 2 is an even integer. We then get that

E

∑
i∈[n]

Xi

p =
∑

∑
i∈[n] qi=p

(
p

(qi)i∈[n]

) ∏
i∈[n]

E[(Xi)
qi ]

=
∑

∑
i∈[n] qi=p

∀i∈[n]:qi is even

(
p

(qi)i∈[n]

) ∏
i∈[n]

E[(Xi)
qi ]

≤
∑

∑
i∈[n] qi=p

∀i∈[n]:qi is even

(
p

(qi)i∈[n]

) ∏
i∈[n]

E
[(√

2eaigi

)qi]

=
∑

∑
i∈[n] qi=p

(
p

(qi)i∈[n]

) ∏
i∈[n]

E
[(√

2eaigi

)qi]

= E

∑
i∈[n]

√
2eaigi

p .



96 APPENDIX A. MOMENTS OF TABULATION HASHING

Now we use that if g, g′, and g′′ are independent standard Gaussian variables then ag+bg′

is distributed as
√
a2 + b2g′′. This give us that∥∥∥∥∥∥

∑
i∈[n]

Xi

∥∥∥∥∥∥
p

≤

∥∥∥∥∥∥
∑
i∈[n]

√
2eaigi

∥∥∥∥∥∥
p

=

∥∥∥∥∥∥
√∑
i∈[n]

2ea2i g

∥∥∥∥∥∥
p

≤ √p
√
e
∑
i∈[n]

a2i .

If p ≥ 2 is not an even integer then let p′ ≥ p be the smallest even integer larger than p.
We note that p′ ≤ 2p and using Jensen’s inequality we get that∥∥∥∥∥∥

∑
i∈[n]

Xi

∥∥∥∥∥∥
p

≤

∥∥∥∥∥∥
∑
i∈[n]

Xi

∥∥∥∥∥∥
p′

≤ √p
√
e
∑
i∈[n]

a2i ≤
√
p

√
2e
∑
i∈[n]

a2i .

This finishes the proof.

We can use this lemma to prove another useful bound for uniformly random functions.

Lemma A.39. Let h : U → [m] be a uniformly random function, let ε : U → {−1, 1} be a
uniformly random sign function, and let v : U × [m]→ R be a fixed value function. Then
for all p ≥ 2,∥∥∥∥∥∑

x∈U
ε(s)v(x, h(x))

∥∥∥∥∥
p

≤ L
√√√√ p

log

(
e2m

∑
x∈Σc∥v[x]∥2∞∑

x∈Σc∥v[x]∥22

) ∑
x∈Σc

∥v[x]∥2∞ ,

where L ≤ e is a universal constant.

Before we prove Lemma A.39 we need the following technical lemma.

Lemma A.40. Let (ai)i∈[n] and (bi)i∈[n] be two sequences of positive integers. If ai
bi
≥ 1

for all i ∈ [n] then,

∑
i∈[n]

ai

log
(
e2ai
bi

) ≤ ∑
i∈[n] ai

log
(
e2

∑
i∈[n] ai∑

i∈[n] bi

) . (A.25)

Proof. We define the sequence (ri)i∈[n] by ri = ai
bi

for all i ∈ [n], define the random variable

R by Pr[R = ri] = bi∑
j∈[n] bi

, and the function f : R+ → R+ by f(r) = r
log(e2r)

. Now we

note that

∑
i∈[n]

ai

log
(
e2ai
bi

) =
∑
i∈[n]

birilog
(
e2ri

)
=
∑
i∈[n]

bif(ri) =

∑
j∈[n]

bi

E[f(R)] ,

∑
i∈[n] ai

log
(
e2

∑
i∈[n] ai∑

i∈[n] bi

) =

∑
i∈[n] biri

log
(
e2

∑
i∈[n] biri∑
i∈[n] bi

) =

∑
j∈[n]

bi

 f(E[R]) .
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Thus we get that eq. (A.25) is equivalent with showing that E[f(R)] ≤ f(E[R]). It easy to
check that f is concave on the interval [1,∞) and since R ≥ mini∈[n] ri = mini∈[n]

ai
bi
≥ 1,

Jensen’s inequality implies the result.

Proof of Lemma A.39. Let x ∈ U be fixed and consider 2 ≤ q ≤ p. We then have that

∥ε(x)v(x, h(x))∥q =

(∑
j∈[m] |v(x, h(x))|q

m

)1/q

≤

( ∑
j∈[m] v(x, h(x))2

mmaxj∈[m] v(x, h(x))2

)1/q

max
j∈[m]

|v(x, h(x))|

=

(
∥v[x]∥22

m ∥v[x]∥2∞

)1/q

∥v[x]∥∞ .

Now a simple estimate give us that y1/q ≤ e(y/e2)1/q ≤ e
√

q

2e log
e2

y

=
√

eq

2 log
e2

y

for all

y ≤ 1 and all q ≥ 2. Clearly,
∥v[x]∥22

m∥v[x]∥2∞
≤ 1, hence we get that

∥ε(x)v(x, h(x))∥q ≤
√√√√ eq

2 log
(
e2m∥v[x]∥2∞

∥v[x]∥22

) ∥v[x]∥∞ .

This shows that ε(x)v(x, h(x)) is sub-Gaussian hence we can use Lemma A.38 to get that∥∥∥∥∥∑
x∈U

ε(s)v(x, h(x))

∥∥∥∥∥
p

≤ e√p

√√√√√∑
x∈U

∥v[x]∥2∞
log
(
e2m∥v[x]∥2∞

∥v[x]∥22

) .
Now an application of Lemma A.40 finishes the proof.

We end the section by bounding the simple case of weighted sums of Rademacher
variables. We will need the lemma later and it is known as Khintchine’s inequality. For
completeness we include a proof the lemma.

Lemma A.41 (Khintchine’s inequality). Let (εi)i∈[n] be a sequence of independent
Rademacher variables, and let (ai)i∈[n] be a sequence of real numbers. For all p ≥ 2
we have that ∥∥∥∥∥∥

∑
i∈[n]

aiεi

∥∥∥∥∥∥
p

≤ √p
√
e
∑
i∈[n]

a2i .

Proof. We note that for all i ∈ [n] and all q ≥ 2 we have that ∥aiεi∥q = |ai| ≤
√
q√
2
|ai|. We

now use Lemma A.38 to get that∥∥∥∥∥∥
∑
i∈[n]

aiεi

∥∥∥∥∥∥
p

≤ √p
√

2e
∑
i∈[n]

a2i
2 =

√
p

√
e
∑
i∈[n]

a2i .
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This finishes the proof.

A.3.3 Moments of Functions of Random Variables

The goal of this section is to prove Lemma A.15.

Lemma A.42. Let f : Rn≥0 → R≥0 be a non-negative function which is monotonically in-
creasing in every argument, and assume that there exist positive reals (αi)i∈[n] and (ti)i∈[n]
such that for all λ ≥ 0

f(λα0t0, . . . , λ
αn−1tn−1) ≤ λf(t0, . . . , tn−1) .

Let (Xi)i∈[n] be non-negative random variables. Then for all p ≥ 1 we have that

∥f(X0, . . . , Xn−1)∥p ≤ n
1/p max

i∈[n]

(
∥Xi∥p/αi

ti

)1/αi

f(t0, . . . , tn−1) .

Proof. We define λ = maxi∈[n]

(
Xi
ti

)1/αi

and note that Xi ≤ λαiti for all i ∈ [n]. Since f

is an increasing function then f(X0, . . . , Xn−1) ≤ f(λα0t0, . . . , λ
αn−1tn−1). We can then

use the condition on f to get that

∥f(X0, . . . , Xn−1)∥p ≤ ∥f(λα0t0, . . . , λ
αn−1tn−1)∥p ≤ ∥λ∥p f(t0, . . . , tn−1) .

Now we just need to prove that ∥λ∥p ≤ n1/p maxi∈[n]

(
∥Xi∥p/αi

ti

)1/αi

. We note that λ =

maxi∈[n]

(
Xi
ti

)1/αi

≤
(∑

i∈[n]

(
Xi
ti

)p/αi
)1/p

. Hence we get that

∥λ∥p ≤

∑
i∈[n]

E

[(
Xi

ti

)p/αi
]1/p

≤

(
nmax
i∈[n]

E

[(
Xi

ti

)p/αi
])1/p

= n1/p max
i∈[n]

(
∥Xi∥p/αi

ti

)1/αi

,

which finishes the proof.

A.3.4 Decoupling of Adapted Sequences

In the paper, we will need to analyse sums of martingale differences which are not inde-
pendent. This poses a problem because the lemmas of the previous section assumes that
random variables are independent. We will handle this issue by using a powerful result of
Hitczenko [Hit94] to reduce the sums of martingale differences to a sum of independent
variables. Before the theorem, we need a bit of notation.
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Definition A.42. Let (Xi)i∈[n] and (Yi)i∈[n] be two sequences of random variables adapted
to a filtration (Fi)i∈[n]. Then (Xi)i∈[n] and (Yi)i∈[n] are tangent with respect to (Fi)i∈[n]
if (Xi | Fi−1) and (Yi | Fi−1) has the same distribution for all i ∈ [n].

Definition A.43. Let (Xi)i∈[n] be a sequence of random variables adapted to a filtration
(Fi)i∈[n] and let G ⊆ Fn−1 be a σ-algebra. Then (Xi)i∈[n] satisfies the conditional indepen-
dence condition with respect to G if (Xi | Fi−1) and (Xi | G) have the same distribution
for all i ∈ [n], and (Xi)i∈[n] are conditionally independent given G.

Definition A.44. Let (Xi)i∈[n] and (Yi)i∈[n] be two sequences of random variables which
are tangent with respect to the filtration (Fi)i∈[n]. Let G ⊆ Fn−1 be a σ-algebra. If
(Yi)i∈[n] satisfies the conditional independence condition with respect to G then we say
that (Yi)i∈[n] is a decoupled sequence tangent to (Xi)i∈[n].

We can now state the theorem of Hitczenko [Hit94].

Theorem A.45 (Hitczenko [Hit94]). There exists a universal constant 0 < M <∞ such
that, for all p ≥ 1 and all sequences of random variables (Xi)i∈[n] and (Yi)i∈[n] where
(Yi)i∈[n] is a decoupled sequence tangent to (Xi)i∈[n], then∥∥∥∥∥∥

∑
i∈[n]

Xi

∥∥∥∥∥∥
p

≤M

∥∥∥∥∥∥
∑
i∈[n]

Yi

∥∥∥∥∥∥
p

.

Instead of using the result directly, we will instead use the following consequence of
the theorem.

Lemma A.46. Let (Xi,Fi)i∈[n] be a filtered sequence. Assume there exists a sequence of
random variables (Yi)i∈[n] satisfying the following:

1. (Xi | Fi−1) and (Yi | Fi−1) have the same distribution for every i ∈ [n].

2. The sequence (Yi)i∈[n] is conditionally independent given Fn−1.

3. (Yi | Fi−1) and (Yi | Fn−1) have the same distribution for every i ∈ [n].

4. (Xi | Fi−1) and (Xi | σ(Fi−1, (Yj)j∈[i+1]) have the same distribution for every i ∈ [n].

Then for all p ≥ 1, ∥∥∥∥∥∥
∑
i∈[n]

Xi

∥∥∥∥∥∥
p

≤M

∥∥∥∥∥∥
∑
i∈[n]

Yi

∥∥∥∥∥∥
p

,

where M is a universal constant.
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Proof. We define the filtration (Hi)i∈[n] by Hi = σ(Fi, (Yj)j∈[i+1]) for i ∈ [n]. We then
clearly have that (Xi)i∈[n] and (Yi)i∈[n] are adapted to (Hi)i∈[n]. We will also see that
they are tangent. Let A ⊆ R then,

Pr[Yi ∈ A |Hi−1] = E[[Yi ∈ A] |Hi−1]

= E
[
E
[
[Yi ∈ A]

∣∣σ(Fn−1, (Yj)j∈[i])
] ∣∣∣Hi−1

]
= E

[
E[[Yi ∈ A] | Fn−1]

∣∣∣Hi−1

]
= E

[
E[[Yi ∈ A] | Fi−1]

∣∣∣Hi−1

]
= E

[
E[[Xi ∈ A] | Fi−1]

∣∣∣Hi−1

]
= Pr[Xi ∈ A | Fi−1]

= Pr[Xi ∈ A |Hi−1]

The first equality uses the power property of conditional expectation, the second equality
uses the conditional independence property, the next two equalities follow by the equiv-
alences of distributions, the second last equality follows by Fi−1 ⊆ Hi−1, and the last
equality follows by the equivalences of distributions.

We have that (Yi)i∈[n] are conditionally independent given Fn−1 ∈ Hn−1, hence (Yi)i∈[n]
is a decoupled sequence tangent to (Xi)i∈[n]. Now Theorem A.45 give us the result.

A.4 Strong Concentration for Tabulation Hashing

The goal of this chapter is to prove strong concentration results for tabulation based
hashing. The chapter is divided into three parts: In the first part we generalize some of
the results by Aamand. et al. [AKKR+20] to the case where we have partial keys, and
we prove some auxiliary results which will be used in the later parts. In the second part
we improve the analysis of simple tabulation and provide a moment bound which holds
for all moments. In order to prove this result we first have to bound a technical quantity
which will show up as a conditional variance in the proof. Finally, in the last part we
prove moment bounds for mixed tabulation. They can be thought versions of Khintchine’s
inequality and Chernoff bound for mixed tabulation.

One of the main insights we use that differs from the previous analyses is that we work
with symmetrized versions of simple tabulation and mixed tabulation. We will in their
respective section argue that this assumption is valid.

We need the following simple lemma that compares the growth rate of powers and
logarithms. This will be used extensively.

Lemma A.47. Let a > 0 and b > 0 be positive reals. It then holds that for all x > 1,

xa

log(x)b
≥
(

e

b/a

)b
.
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Proof. We write xa

log(x)b
=
(
xa/b

log(x)

)b
so we just need to minimize xa/b

log(x) . Taking the deriva-

tive we get,

d

dx

xa/b

log(x)
=

a
bx

a/b−1 log(x)− xa/b−1

log(x)
.

From this it is clear that xa/b

log(x) is minimized at x̂ = eb/a. We then get that

(
xa/b

log(x)

)b
≥

(
x̂a/b

log(x̂)

)b
=

(
e

b/a

)b
.

A.4.1 Improved Analysis for Simple Tabulation

We start the section by arguing why we can assume that the simple tabulation functions
are symmetrized.

Lemma A.48. Let h : Σc → [m] be a simple tabulation function, v : Σc× [m]→ R a value
function, and assume that

∑
j∈[m] v(x, j) = 0 for all keys x ∈ Σc. Then for every p ≥ 2,

2−c

∥∥∥∥∥∑
x∈Σc

ε(x)v(x, h(x))

∥∥∥∥∥
p

≤

∥∥∥∥∥∑
x∈Σc

v(x, h(x))

∥∥∥∥∥
p

≤ 2c

∥∥∥∥∥∑
x∈Σc

ε(x)v(x, h(x))

∥∥∥∥∥
p

,

where ε : Σc → {−1, 1} a simple tabulation sign function.

Proof. We will prove the result by induction on c. The case c = 1 corresponds to
Lemma A.37.

Now assume that c > 1 and that the results is true for values less than c. We define
the σ-algebra G = σ((T (c− 1, α))α∈Σ). Fix G and define v′ : Σc−1 × [m]→ R by

v′(x, j) =
∑
α∈Σ

v(x ∪ {(c− 1, α)} , T (c− 1, α)⊕ j) .

Clearly, we have that v′(x, j) is G-measurable for x ∈ Σc−1, j ∈ [m] and E[v′(x, h(x) | G] = 0
for all x ∈ Σc−1. We fix G and use the induction hypothesis to get that

2−(c−1)

∥∥∥∥∥∥
∑

x∈Σc−1

ε(x)v′(x, h(x))

∣∣∣∣∣∣ G
∥∥∥∥∥∥
p

≤

∥∥∥∥∥∥
∑

x∈Σc−1

v′(x, h(x))

∣∣∣∣∣∣ G
∥∥∥∥∥∥
p

≤ 2c−1

∥∥∥∥∥∥
∑

x∈Σc−1

ε(x)v′(x, h(x))

∣∣∣∣∣∣ G
∥∥∥∥∥∥
p

.
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So if we unfix G then we have that

2−(c−1)

∥∥∥∥∥∥
∑

x∈Σc−1

ε(x)v′(x, h(x))

∥∥∥∥∥∥
p

≤

∥∥∥∥∥∥
∑

x∈Σc−1

v′(x, h(x))

∥∥∥∥∥∥
p

≤ 2c−1

∥∥∥∥∥∥
∑

x∈Σc−1

ε(x)v′(x, h(x))

∥∥∥∥∥∥
p

.

(A.26)

Now we define the σ-algebra H = σ
(
(h({(j, α)}), ε({(j, α)}))j∈[c−1],α∈Σ

)
, and define

v′′ : Σ × [m] → R by v′′(α, j) =
∑

x∈Σc−1 ε(x)v(x ∪ {(c− 1, α)} , h(x) ⊕ j). We then
get that∥∥∥∥∥∥

∑
x∈Σc−1

ε(x)v′(x, h(x))

∥∥∥∥∥∥
p

=

∥∥∥∥∥∥
∑

x∈Σc−1

ε(x)
∑
α∈Σ

v(x ∪ {(c− 1, α)} , T (c− 1, α)⊕ h(x))

∥∥∥∥∥∥
p

=

∥∥∥∥∥∑
α∈Σ

v′′(α, T (c− 1, α))

∥∥∥∥∥
p

.

We fix H and use Lemma A.37 to get that

2−1

∥∥∥∥∥∑
α∈Σ

ε({(c− 1, α)})v′′(α, T (c− 1, α))

∣∣∣∣∣ H
∥∥∥∥∥
p

≤

∥∥∥∥∥∑
α∈Σ

v′′(α, T (c− 1, α))

∣∣∣∣∣ H
∥∥∥∥∥
p

≤ 2

∥∥∥∥∥∑
α∈Σ

ε({(c− 1, α)})v′′(α, T (c− 1, α))

∣∣∣∣∣ H
∥∥∥∥∥
p

.

We unfix G and get that

2−1

∥∥∥∥∥∑
α∈Σ

ε({(c− 1, α)})v′′(α, T (c− 1, α))

∥∥∥∥∥
p

≤

∥∥∥∥∥∑
α∈Σ

v′′(α, T (c− 1, α))

∥∥∥∥∥
p

≤ 2

∥∥∥∥∥∑
α∈Σ

ε({(c− 1, α)})v′′(α, T (c− 1, α))

∥∥∥∥∥
p

.

(A.27)

We now note that∑
α∈Σ

ε({(c− 1, α)})v′′(α, T (c− 1, α))

=
∑
α∈Σ

ε({(c− 1, α)})
∑

x∈Σc−1

ε(x)v(x ∪ {(c− 1, α)} , h(x)⊕ T (c− 1, α))

=
∑
x∈Σc

ε(x)v(x, h(x)) .

Thus combining eq. (A.26) and eq. (A.27) finishes the proof.
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We can then generalize a result by Aamand et al. [AKKR+20]. The previous bound
was only valid for p = O(1) constant while we expand the applicability to all p ≥ 2. Sur-
prisingly, the main insight is that by symmetrizing, the combinatorial arguments become
much simpler.

Lemma A.49. Let h : Σc → [m] be a simple tabulation function, ε : Σc → {−1, 1} be a
simple tabulation sign function, and vi : Σc× [m]→ R be value functions for i ∈ [k]. Then
for every p ≥ 2,

∥∥∥∥∥∥∥∥∥
∑

x0,...,xk−1∈Σc

∑
j0,...,jk−1∈[m]⊕

i∈[k] ji=0

∏
i∈[k]

ε(xi)vi(xi, ji ⊕ h(xi))

∥∥∥∥∥∥∥∥∥
p

≤
√
pk

ck ∏
i∈[k]

∥vi∥2

(∑
x∈Σc ∥vi[x]∥21∑
x∈Σc ∥vi[x]∥22

)1/2−1/k

.

(A.28)

Proof. We will argue that for every even integer q ≥ 2,

∥∥∥∥∥∥∥∥∥
∑

x0∈ΣI0 ,...,xk−1∈ΣIk−1

∑
j0,...,jk−1∈[m]⊕

i∈[k] ji=0

∏
i∈[k]

ε(xi)vi(xi, ji ⊕ h(xi))

∥∥∥∥∥∥∥∥∥
q

≤
√
qk

2

ck ∏
i∈[k]

∥vi∥2

(∑
x∈Σc ∥vi[x]∥21∑
x∈Σc ∥vi[x]∥22

)1/2−1/k

(A.29)

We claim that the result follows from this. Let p ≥ 2 be a real number and let q ≥ 2 be
the unique even number such that q ≤ p < q + 2. Since q ≥ 2 then p ≤ 2q and we can
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then use Jensen’s inequality to get that∥∥∥∥∥∥∥∥∥
∑

x0∈ΣI0 ,...,xk−1∈ΣIk−1

∑
j0,...,jk−1∈[m]⊕

i∈[k] ji=0

∏
i∈[k]

ε(xi)vi(xi, ji ⊕ h(xi))

∥∥∥∥∥∥∥∥∥
p

≤

∥∥∥∥∥∥∥∥∥
∑

x0∈ΣI0 ,...,xk−1∈ΣIk−1

∑
j0,...,jk−1∈[m]⊕

i∈[k] ji=0

∏
i∈[k]

ε(xi)vi(xi, ji ⊕ h(xi))

∥∥∥∥∥∥∥∥∥
2q

≤
√

2qk

2

ck ∏
i∈[k]

∥vi∥22

(∑
x∈Σc ∥vi[x]∥1∑
x∈Σc ∥vi[x]∥22

)1/2−1/k

≤
√
pk

ck ∏
i∈[k]

∥vi∥2

(∑
x∈Σc ∥vi[x]∥21∑
x∈Σc ∥vi[x]∥22

)1/2−1/k

.

All we need to do now is to prove eq. (A.29). Let q ≥ 2 be an even integer. The goal
is to apply Lemma A.29 to prove the claim. First we define f :

∏
i∈[k] Σ

Ii → R by

f(x0, . . . , xk−1) =
∑

j0,...,jk−1∈[m]⊕
i∈[k] ji=0

∏
i∈[k]

vi(xi, ji ⊕ h(xi)) .

We then want to bound∥∥∥∥∥∥
∑

x0,...,xk−1∈Σc

∏
i∈[k]

ε(xi)

 f(x0, . . . , xk−1)

∥∥∥∥∥∥
q

If we fix h then we get that∥∥∥∥∥∥
∑

x0,...,xk−1∈Σc

∏
i∈[k]

ε(xi)

 f(x0, . . . , xk−1)

∣∣∣∣∣∣ h
∥∥∥∥∥∥
q

q

=
∑

x
(0)
0 ,...,x

(0)
k−1,...,x

(q−1)
0 ,...,x

(q−1)
k−1 ∈Σc⊕

j∈[q],i∈[k] x
(j)
i =∅

∏
j∈[q]

f(x
(j)
0 , . . . , x

(j)
k−1) .

Now we want to bound f to a form such that we can use Lemma A.29. This will be done
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by use of the Cauchy-Schwartz inequality.

f(x0, . . . , xk−1) =
∑

j0,...,jk−1∈[m]]⊕
i∈[k] ji=0

∏
i∈[k]

vi(xi, ji ⊕ h(xi))

=
∑

j0,...,jk−3∈[m]

 ∏
i∈[k−2]

vi(xi, ji ⊕ h(xi))


·
∑

jk−2∈[m]

vk−2(xk−2, jk−2 ⊕ h(xk−2))vk−1

xk−1, h(xk−1)⊕
⊕

s∈[k−1]

js


≤

∑
j0,...,jk−3∈[m]

∣∣∣∣∣∣
∏

i∈[k−2]

vi(xi, ji ⊕ h(xi))

∣∣∣∣∣∣ ∥vk−2[xk−2]∥2 ∥vk−1[xk−1]∥2

=

 ∏
i∈[k−2]

∥vi[xi]∥1

 ∥vk−2[xk−2]∥2 ∥vk−1[xk−1]∥2

=

 ∏
i∈[k−2]

∥vi[xi]∥1
∥vi[xi]∥2

 ∏
i∈[k]

∥vi[xi]∥2 .

Similarly, for all i1 ̸= i2 ∈ [k] we can prove that

f(x0, . . . , xk−1) ≤

 ∏
i∈[k]\{i1,i2}

∥vi[xi]∥1
∥vi[xi]∥2

 ∏
i∈[k]

∥vi[xi]∥2 .

This implies that

f(x0, . . . , xk−1) ≤
∏
i∈[k]

∥vi[xi]∥2
(
∥vi[xi]∥1
∥vi[xi]∥2

)1−2/k

We are now ready to use Lemma A.29.∥∥∥∥∥∥
∑

x0,...,xk−1∈Σc

∏
i∈[k]

ε(xi)

 f(x0, . . . , xk−1)

∣∣∣∣∣∣ h
∥∥∥∥∥∥
q

q

≤
∑

x
(0)
0 ,...,x

(0)
k−1,...,x

(q−1)
0 ,...,x

(q−1)
k−1 ∈Σc⊕

j∈[q],i∈[k] x
(j)
i =∅

∏
j∈[q],i∈[k]

∥∥∥vi[x(j)i ]
∥∥∥
2


∥∥∥vi[x(j)i ]

∥∥∥
1∥∥∥vi[x(j)i ]
∥∥∥
2

1−2/k

≤
√

qk
2

qck

∏
i∈[k]

√√√√∑
x∈Σc

∥vi[x]∥22

(
∥vi[x]∥21
∥vi[x]∥22

)1−2/k

q

.
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Now we define the random variables Ri by Pr
[
Ri =

∥vi[x]∥21
∥vi[x]∥22

]
=

∥vi[x]∥22∑
x∈Σc∥vi[x]∥22

, and note

that ∑
x∈Σc

∥vi[x]∥22

(
∥vi[x]∥21
∥vi[x]∥22

)1−2/k

=

(∑
x∈Σc

∥vi[x]∥22

)
E
[
R

1−2/k
i

]
≤

(∑
x∈Σc

∥vi[x]∥22

)
E[Ri]

1−2/k

=

(∑
x∈Σc

∥vi[x]∥22

)(∑
x∈Σc ∥vi[x]∥21∑
x∈Σc ∥vi[x]∥22

)1−2/k

= ∥vi∥22

(∑
x∈Σc ∥vi[x]∥21∑
x∈Σc ∥vi[x]∥22

)1−2/k

.

The inequality follows by Jensen’s inequality. This implies that∥∥∥∥∥∥
∑

x0,...,xk−1∈Σc

∏
i∈[k]

ε(xi)

 f(x0, . . . , xk−1)

∣∣∣∣∣∣ h
∥∥∥∥∥∥
q

q

≤
√

qk
2

qck

∏
i∈[k]

∥vi∥2

(∑
x∈Σc ∥vi[x]∥21∑
x∈Σc ∥vi[x]∥22

)1/2−1/k
q

.

Now taking the q’th root, give us that∥∥∥∥∥∥
∑

x0,...,xk−1∈Σc

∏
i∈[k]

ε(xi)

 f(x0, . . . , xk−1)

∥∥∥∥∥∥
q

=

∥∥∥∥∥∥
∥∥∥∥∥∥

∑
x0,...,xk−1∈Σc

∏
i∈[k]

ε(xi)

 f(x0, . . . , xk−1)

∣∣∣∣∣∣ h
∥∥∥∥∥∥
q

∥∥∥∥∥∥
q

≤

∥∥∥∥∥∥
√

qk
2

ck

∏
i∈[k]

∥vi∥2

(∑
x∈Σc ∥vi[x]∥21∑
x∈Σc ∥vi[x]∥22

)1/2−1/k
∥∥∥∥∥∥

q

=

√
qk
2

ck ∏
i∈[k]

∥vi∥2

(∑
x∈Σc ∥vi[x]∥21∑
x∈Σc ∥vi[x]∥22

)1/2−1/k

,

which finishes the proof of the lemma.

Bounding the Sum of Squares

The goal of this section is to prove Lemma A.52 from which we then get a bound of sum
of squares of simple tabulation hashing. We start by proving a result for simple tabulation
hashing that will serve as the base for the proof.
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Lemma A.50. Let h : Σc → [m] be a simple tabulation function, ε : Σc → {−1, 1} be a
simple tabulation sign function, and v : Σc × [m] → R be value function. Then for every
real number p ≥ 2∥∥∥∥∥∑

x∈Σc

ε(x)v(x, h(x))

∥∥∥∥∥
p

≤

√√√√√Kcp (max{p, log(m)})c−1

∑
x∈Σc ∥v[x]∥2∞

log

(
e2m

∑
x∈Σc∥v[x]∥2∞∑

x∈Σc∥v[x]∥22

)c ,
where Kc = (Lc)c for a universal constant L.

Proof. The proof will be by induction on c. For c = 1 the result follows by Lemma A.39.
Now we assume that the result is true for c − 1. We define v′ : Σc−1 × [m] → R by

v′(x, j) =
∑

α∈Σ εc−1(α)v(x∪{(c− 1, α)} , j⊕T (c−1, α)). The induction hypothesis then
give us that∥∥∥∥∥∑

x∈Σc

ε(x)v(x, h(x))

∥∥∥∥∥
p

=

∥∥∥∥∥∥
∥∥∥∥∥∥
∑

x∈Σc−1

ε(x)v′(x, h(x))

∣∣∣∣∣∣ T ({c− 1} × Σ)

∥∥∥∥∥∥
p

∥∥∥∥∥∥
p

≤

∥∥∥∥∥∥∥∥∥∥
√√√√√√Kc−1p (max{p, log(m)})c−2

∑
x∈Σc−1 ∥v′[x]∥2∞

log

(
e2m

∑
x∈Σc−1∥v′[x]∥2∞∑

x∈Σc−1∥v′[x]∥22

)c−1

∥∥∥∥∥∥∥∥∥∥
p

≤
√
Kc−1p (max{p, log(m)})c−2

∥∥∥∥∥∥∥∥∥
∑

x∈Σc−1 ∥v′[x]∥2∞

log

(
e2m

∑
x∈Σc−1∥v′[x]∥2∞∑

x∈Σc−1∥v′[x]∥22

)c−1

∥∥∥∥∥∥∥∥∥
1/2

p/2

.

(A.30)

We define the function f : R2
≥0 → R≥0 by

f(x, y) =


0 if y = 0

x

log
(

e2x
y

)c−1 if 0 < y ≤ x

x
2c−1 otherwise

.

Clearly,
∑

x∈Σc−1 ∥v′[x]∥2∞ ≥
1
m

∑
x∈Σc−1 ∥v′[x]∥22, hence we have that

∑
x∈Σc−1 ∥v′[x]∥2∞

log

(
e2m

∑
x∈Σc−1∥v′[x]∥2∞∑

x∈Σc−1∥v′[x]∥22

)c−1 = f

 ∑
x∈Σc−1

∥∥v′[x]
∥∥2
∞ , 1

m

∑
x∈Σc−1

∥∥v′[x]
∥∥2
2

 .
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It is easy to check that f(λx, λy) = λf(x, y) so by Lemma A.15 we get that∥∥∥∥∥∥f
 ∑
x∈Σc−1

∥∥v′[x]
∥∥2
∞ , 1

m

∑
x∈Σc−1

∥∥v′[x]
∥∥2
2

∥∥∥∥∥∥
p/2

≤ 21/pf


∥∥∥∥∥∥
∑

x∈Σc−1

∥∥v′[x]
∥∥2
∞

∥∥∥∥∥∥
p/2

, 1
m

∥∥∥∥∥∥
∑

x∈Σc−1

∥∥v′[x]
∥∥2
2

∥∥∥∥∥∥
p/2


≤
√

2f


∥∥∥∥∥∥
∑

x∈Σc−1

∥∥v′[x]
∥∥2
∞

∥∥∥∥∥∥
p/2

, 1
m

∥∥∥∥∥∥
∑

x∈Σc−1

∥∥v′[x]
∥∥2
2

∥∥∥∥∥∥
p/2

 .

(A.31)

We define vx : Σ× [m]→ R for every x ∈ Σc−1 by vx(α, j) = v(x∪{(c− 1, α)} , j). We
then have that v′(x, j) =

∑
α∈Σ εc−1(α)vx(α, j ⊕ T (c− 1, α)).

Let p̄ = max{p, log(m)}.∥∥∥∥∥∥
∑

x∈Σc−1

∥∥v′[x]
∥∥2
∞

∥∥∥∥∥∥
p/2

=

∥∥∥∥∥∥
∑

x∈Σc−1

max
j∈[m]

v′(x, j)2

∥∥∥∥∥∥
p/2

≤
∑

x∈Σc−1

∥∥∥∥max
j∈[m]

v′(x, j)2
∥∥∥∥
p/2

=
∑

x∈Σc−1

∥∥∥∥max
j∈[m]

∣∣v′(x, j)∣∣∥∥∥∥2
p

≤
∑

x∈Σc−1

∥∥∥∥max
j∈[m]

∣∣v′(x, j)∣∣∥∥∥∥2
p̄

≤
∑

x∈Σc−1

∑
j∈[m]

∥∥v′(x, j)∥∥p̄
p̄

2/p̄

≤
∑

x∈Σc−1

(
mmax

j∈[m]

∥∥v′(x, j)∥∥p̄
p̄

)2/p̄

≤ e
∑

x∈Σc−1

max
j∈[m]

∥∥v′(x, j)∥∥2
p̄

Now we will use that v′(x, j) =
∑

α∈Σ ε({(c− 1, α)})vx(α, j⊕T (c−1, α)) and Lemma A.39.

∥∥v′(x, j)∥∥2
p̄

=

∥∥∥∥∥∑
α∈Σ

εc−1(α)vx(α, j ⊕ T (c− 1, α))

∥∥∥∥∥
2

p̄

≤ C1p̄

∑
α∈Σ ∥vx[α]∥2∞

log

(
e2m

∑
α∈Σ∥vx[α]∥

2
∞∑

α∈Σ∥vx[α]∥
2
2

)
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So we have that∥∥∥∥∥∥
∑

x∈Σc−1

∥∥v′[x]
∥∥2
∞

∥∥∥∥∥∥
p/2

≤ e
∑

x∈Σc−1

max
j∈[m]

∥∥v′(x, j)∥∥2
p̄

≤ C1ep̄
∑

x∈Σc−1

∑
α∈Σ ∥vx[α]∥2∞

log

(
e2m

∑
α∈Σ∥vx[α]∥

2
∞∑

α∈Σ∥vx[α]∥
2
2

) .

Now we use Lemma A.40 to get that∥∥∥∥∥∥
∑

x∈Σc−1

∥∥v′[x]
∥∥2
∞

∥∥∥∥∥∥
p/2

≤ C1ep̄
∑

x∈Σc−1

∑
α∈Σ ∥vx[α]∥2∞

log

(
e2m

∑
α∈Σ∥vx[α]∥

2
∞∑

α∈Σ∥vx[α]∥
2
2

)
≤ C1ep̄

∑
x∈Σc−1

∑
α∈Σ ∥vx[α]∥2∞

log

(
e2m

∑
x∈Σc−1

∑
α∈Σ∥vx[α]∥

2
∞∑

x∈Σc−1
∑

α∈Σ∥vx[α]∥
2
2

)
= C1ep̄

∑
x∈Σc ∥v[x]∥2∞

log

(
e2m

∑
x∈Σc∥v[x]∥2∞∑

x∈Σc∥v[x]∥22

)
(A.32)

We again use that v′(x, j) =
∑

α∈Σ εc−1(α)vx(α, j ⊕ T (c− 1, α)) to get that∥∥∥∥∥∥
∑

x∈Σc−1

∥∥v′[x]
∥∥2
2

∥∥∥∥∥∥
p/2

=

∥∥∥∥∥∥
∑

x∈Σc−1

∑
j∈[m]

v′(x, j)2

∥∥∥∥∥∥
p/2

≤
∑

x∈Σc−1

∥∥∥∥∥∥
∑
j∈[m]

v′(x, j)2

∥∥∥∥∥∥
p/2

=
∑

x∈Σc−1

∥∥∥∥∥∥
∑
j∈[m]

(∑
α∈Σ

εc−1(α)vx(α, j ⊕ T (c− 1, α))

)2
∥∥∥∥∥∥
p/2

=
∑

x∈Σc−1

∥∥∥∥∥∥
∑
j∈[m]

∑
α,β∈Σ

εc−1(α)εc−1(β)vx(α, j ⊕ T (c− 1, α))vx(β, j ⊕ T (c− 1, β))

∥∥∥∥∥∥
p/2

Now we can use Lemma A.49 to get that∥∥∥∥∥∥
∑
j∈[m]

∑
α,β∈Σ

εc−1(α)εc−1(β)vx(α, j ⊕ T (c− 1, α))vx(β, j ⊕ T (c− 1, β))

∥∥∥∥∥∥
p/2

≤ 2p
∑
α∈Σ
∥vx[α]∥22
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This implies that

∥∥∥∥∥∥
∑

x∈Σc−1

∥∥v′[x]
∥∥2
2

∥∥∥∥∥∥
p/2

≤ 2p
∑

x∈Σc−1

∑
α∈Σ
∥vx[α]∥22 = 2p

∑
x∈Σc

∥v[x]∥22 ≤ 2p̄
∑
x∈Σc

∥v[x]∥22 .

(A.33)

Combining eq. (A.30), eq. (A.31), eq. (A.32), and eq. (A.33) we get that

∥∥∥∥∥∑
x∈Σc

ε(x)v(x, h(x))

∥∥∥∥∥
p

≤
√
Kc−1p (max{p, log(m)})c−2

· f

C1ep̄

∑
x∈Σc ∥v[x]∥2∞

log

(
e2m

∑
x∈Σc∥v[x]∥2∞∑

x∈Σc∥v[x]∥22

) , 1

m
2p̄
∑
x∈Σc

∥v[x]∥22


1/2

.

We will now argue that

f

C1ep̄

∑
x∈Σc ∥v[x]∥2∞

log

(
e2m

∑
x∈Σc∥v[x]∥2∞∑

x∈Σc∥v[x]∥22

) , 1

m
2p̄
∑
x∈Σc

∥v[x]∥22

 ≤ Lc p̄

log

(
e2m

∑
x∈Σc∥v[x]∥2∞∑

x∈Σc∥v[x]∥22

)c ,

which will finish the proof.

We will use Lemma A.47 to get that

(
e2m

∑
x∈Σc∥v[x]∥2∞∑

x∈Σc∥v[x]∥22

)1/c

log

(
e2m

∑
x∈Σc∥v[x]∥2∞∑

x∈Σc∥v[x]∥22

) ≥ e

c
.

This implies that

C1ep̄
∑

x∈Σc∥v[x]∥2∞
log

(
e2m

∑
x∈Σc∥v[x]∥2∞∑

x∈Σc∥v[x]∥22

)
1
m2p̄

∑
x∈Σc ∥v[x]∥22

≥ C1

2c

(
e2m

∑
x∈Σc ∥v[x]∥2∞∑

x∈Σc ∥v[x]∥22

)1−1/c

.
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We then get that

f

C1ep̄

∑
x∈Σc ∥v[x]∥2∞

log

(
e2m

∑
x∈Σc∥v[x]∥2∞∑

x∈Σc∥v[x]∥22

) , 1

m
2p̄
∑
x∈Σc

∥v[x]∥22



≤ f

2ecp̄

∑
x∈Σc ∥v[x]∥2∞

log

(
e2m

∑
x∈Σc∥v[x]∥2∞∑

x∈Σc∥v[x]∥22

) , 1

m
2p̄
∑
x∈Σc

∥v[x]∥22


= 2ec

p̄

log

((
e2m

∑
x∈Σc∥v[x]∥2∞∑

x∈Σc∥v[x]∥22

)1−1/c
)c

= 2ec
p̄

log

(
e2m

∑
x∈Σc∥v[x]∥2∞∑

x∈Σc∥v[x]∥22

)c (
1− 1

c

)c
≤ 8ec

p̄

log

(
e2m

∑
x∈Σc∥v[x]∥2∞∑

x∈Σc∥v[x]∥22

)c .
This finishes the proof.

We will now expand the result of Lemma A.17 to chaoses of simple tabulation hashing.
For this we need the following decoupling lemma of de la Pena et al. [PMS94].

Lemma A.50 (Decoupling [PMS94]). Let (f
(j)
i0,...,ik−1

)i0,...,ik−1∈[n],j∈[m] be a multiindexed

array of real numbers, and assume that f
(j)
i0,...,ik−1

= 0 if il = il′ for some l ̸= l′. Let

(X
(j)
i )i∈[n] be a sequence of independent and identically distributed random variables for

every j ∈ [m].

Define (Y
(j)
i,l )i∈[n],l∈[k] to be a sequence of independent and identically distributed ran-

dom variables which has the same distribution as X
(j)
0 for every j ∈ [m]. Then for every

p ≥ 2,∥∥∥∥∥∥
∑
j∈[m]

∑
i0,...,ik−1∈[n]

f
(d)
i0,...,ik−1

∏
l∈[k]

X
(j)
il

∥∥∥∥∥∥
p

≤ Lk

∥∥∥∥∥∥
∑
j∈[m]

∑
i0,...,ik−1∈[n]

f
(d)
i0,...,ik−1

∏
l∈[k]

Y
(j)
il,l

∥∥∥∥∥∥
p

,

where Lk ≤ kk if E
[
X

(j)
0

]
= 0 for all j ∈ [m], and Lk ≤ (2k + 1)k otherwise.

If we specialize it to simple tabulation hashing we get the following corollary.

Corollary A.51. Let (Fα0,...,αk−1
)α0,...,αk−1∈Σ be a multiindexed array of real functions

Fα0,...,αk−1
: [m] → R, and assume that Fα0,...,αk−1

= 0 if xl = xl′ for some l ̸= l′. Let
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h : Σ → [m] be a fully random function and let ε : Σ → {−1, 1} be a fully random sign
function. Let h′ : Σk → [m] be a simple tabulation hash function and let ε′ : Σk → {−1, 1}
be a simple tabulation sign function. Then for every p ≥ 2,∥∥∥∥∥∥

∑
α0,...,αk−1∈Σ

Fα0,...,αk−1
(h(α0)⊕ . . .⊕ h(αk−1))

∏
l∈[k]

ε(αl)

∥∥∥∥∥∥
p

≤ kk
∥∥∥∥∥∥
∑
x∈Σk

Fx(h′(x))ε′(x)

∥∥∥∥∥∥
p

.

Proof. We start by noticing that we can write the expression as follows,∥∥∥∥∥∥
∑

α0,...,αk−1∈Σ
Fα0,...,αk−1

(h(α0)⊕ . . .⊕ h(αk−1))
∏
l∈[k]

ε(αl)

∥∥∥∥∥∥
p

=

∥∥∥∥∥∥
∑

α0,...,αk−1∈Σ

∑
j0,...,jk−1

Fα0,...,αk−1
(j0 ⊕ . . .⊕ jk−1)

∏
l∈[k]

ε(αl) [h(αl) = jl]

∥∥∥∥∥∥
p

.

We can then use Lemma A.50 to get that∥∥∥∥∥∥
∑

α0,...,αk−1∈Σ

∑
j0,...,jk−1

Fα0,...,αk−1
(j0 ⊕ . . .⊕ jk−1)

∏
l∈[k]

ε(αl) [h(αl) = jl]

∥∥∥∥∥∥
p

≤ kk
∥∥∥∥∥∥

∑
α0,...,αk−1∈Σ

∑
j0,...,jk−1

Fα0,...,αk−1
(j0 ⊕ . . .⊕ jk−1)

∏
l∈[k]

ε′({l, αl}) [T (l, αl) = jl]

∥∥∥∥∥∥
p

.

We can then finish the proof by reversing the rewriting,∥∥∥∥∥∥
∑

α0,...,αk−1∈Σ

∑
j0,...,jk−1

Fα0,...,αk−1
(j0 ⊕ . . .⊕ jk−1)

∏
l∈[k]

ε′({l, αl}) [T (l, αl) = jl]

∥∥∥∥∥∥
p

=

∥∥∥∥∥∥
∑

α0,...,αk−1∈Σ
Fα0,...,αk−1

(T (0, α0)⊕ . . .⊕ T (k − 1, αk−1))ε
′(α0, . . . , αk−1)

∥∥∥∥∥∥
p

=

∥∥∥∥∥∥
∑
x∈Σk

Fx(h′(x))ε′(x)

∥∥∥∥∥∥
p

.

We can now prove our result for chaoses of simple tabulation hashing.

Lemma A.52. Let h : Σc → [m] be a simple tabulation function, ε : Σc → {−1, 1} be a
simple tabulation sign function, and vi : Σc × [m] → R be value function for i ∈ [k]. For
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every real number p ≥ 2,∥∥∥∥∥∥∥∥∥
∑

x0,...,xk−1∈Σc

∑
j0,...,jk−1∈[m]⊕

i∈[k] ji=0

∏
i∈[k]

ε(xi)vi(xi, ji ⊕ h(xi))

∥∥∥∥∥∥∥∥∥
p

≤

 Lck3 max{p, log(m)}

log

(∏
i∈[k]

(
e2m

∑
x∈Σc∥vi[x]∥2∞∑

x∈Σc∥vi[x]∥22

)1/k
)

ck/2

∏
i∈[k]

∥vi∥2
(
∥vi∥1
∥vi∥2

)1−2/k

,

where L is a universal constant.

Proof. For every j ∈ [c] we define πj : Σc → {i} × Σ to be the projection onto the i’th
position character, i.e., for a key x = {(0, α0), . . . , (c− 1, αc−1)} we have that πi(x) =
(i, αi).

We define p̄ = max{p, log(m)} to ease notation.
We make the observation that

∑
j0,...,jk−1∈[m]⊕

i∈[k] ji=0

∏
i∈[k] ε(xi)vi(xi, ji⊕h(xi)) depends only

on
⊕

i∈[k] h(xi). More precisely, we note that if we define v′ : Σck × [m]→ R by,

v′((x0, . . . , xk−1), j) =
∑

j0,...,jk−1∈[m]⊕
i∈[k] ji=j

∏
i∈[k]

vi(xi, ji)

then we have that∑
j0,...,jk−1∈[m]⊕

i∈[k] ji=0

∏
i∈[k]

ε(xi)vi(xi, ji ⊕ h(xi)) = v′((x0, . . . , xk−1),
⊕
i∈[k]

h(xi))

This implies that we can the expression into sub-expressions depending on the number of
distinct characters at each position.

Let t0, . . . , tc−1 be even integers less than k. Now fix pairs ((s
(i)
l , r

(i)
l ))l∈[ti/2] for i ∈ [k]

and define the set X by,

X =
{

(x0, . . . , xk−1) ∈ (Σc)k
∣∣∣ ∀i ∈ [c] :

(
∀l ∈ [ti] : πi(xs(i)l

) = πi(xr(i)l

)

∧ (πi(xj))j∈[k]\
⋃

l∈[ti]

{
s
(i)
l ,r

(i)
l

} are all distinct
)}
.

We define T (i) : [c] × Σ → [m] to be independent copies of T for i ∈ [k], and similarly,
define ε(i) : Σ→ {−1, 1} to be independent copies of ε for i ∈ [k]. We define the set,

Ri =

v ∈ [c]

∣∣∣∣∣∣ i ̸∈
⋃

l∈[ti/2]

{
s
(v)
l , r

(v)
l

} ,
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for i ∈ [k]. We now use Corollary A.51 to get that∥∥∥∥∥∥
∑

x0,...,xk−1∈X
v′((x0, . . . , xk−1),

⊕
i∈[k]

h(xi))
∏
i∈[k]

ε(xi)

∥∥∥∥∥∥
p

≤
∏
i∈[c]

(k − ti)k−ti

∥∥∥∥∥∥
∑

x0,...,xk−1∈X
v′((x0, . . . , xk−1),

⊕
i∈[k]

⊕
l∈Ri

T (i)(l, πl(xi)))
∏
i∈[k]

∏
l∈Ri

ε(i)(l, πl(xi))

∥∥∥∥∥∥
p

.

This corresponds to a simple tabulation function with ck −
∑

i∈[k] ti characters. We can
then use Lemma A.17 to get that∥∥∥∥∥∥

∑
x0,...,xk−1∈X

v′((x0, . . . , xk−1),
⊕
i∈[k]

⊕
l∈Ri

T (i)(l, πl(xi)))
∏
i∈[k]

∏
l∈Ri

ε(i)(l, πl(xi))

∥∥∥∥∥∥
p

≤

√√√√√√√
L(ck −

∑
i∈[k]

ti)p̄

ck−
∑

i∈[k] ti ∑
x∈X ∥v′[x]∥2∞

log

(
e2m

∑
x∈X∥v′[x]∥2∞∑

x∈X∥v′[x]∥22

)ck−∑
i∈[k] ti

Now repeated use of Cauchy-Schwartz as in the proof of Lemma A.49 implies that

∑
x∈X

∥∥v′[x]
∥∥2
∞ ≤

∏
i∈[k]

∥vi∥22

(∑
x∈Σc ∥vi[x]∥21∑
x∈Σc ∥vi[x]∥22

)1−2/k

,

∑
x∈X

∥∥v′[x]
∥∥2
2
≤
∏
i∈[k]

∥vi∥22

(∑
x∈Σc ∥vi[x]∥21∑
x∈Σc ∥vi[x]∥22

)1−1/k

.

We then get that∥∥∥∥∥∥
∑

x0,...,xk−1∈X
v′((x0, . . . , xk−1),

⊕
i∈[k]

⊕
l∈Ri

T (i)(l, πl(xi)))
∏
i∈[k]

∏
l∈Ri

ε(i)(l, πl(xi))

∥∥∥∥∥∥
p

≤

 L(ck −
∑

i∈[k] ti)p̄

log

(∏
i∈[k]

(
e2m

∑
x∈Σc∥vi[x]∥22∑

x∈Σc∥vi[x]∥21

)1/k
)


(ck−
∑

i∈[k] ti)/2

∏
i∈[k]

∥vi∥2

(∑
x∈Σc ∥vi[x]∥21∑
x∈Σc ∥vi[x]∥22

)1/2−1/k

.
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Now we note that given (ti)i∈[k] we can choose the pairs ((s
(i)
l , r

(i)
l ))l∈[ti/2] for i ∈ [k] in∏

i∈[k]
(
k
ti

)
(ti − 1)!! ways. Summing all the possible values for (ti)i∈[k] we get that∥∥∥∥∥∥∥∥∥
∑

x0,...,xk−1∈Σc

∑
j0,...,jk−1∈[m]⊕

i∈[k] ji=0

∏
i∈[k]

ε(xi)vi(xi, ji ⊕ h(xi))

∥∥∥∥∥∥∥∥∥
p

≤
∑

t0,...,tk−1

∏
i∈[k]

(
k

ti

)
(ti − 1)!!(k − ti)k−ti



·

 L(ck −
∑

i∈[k] ti)p̄

log

(∏
i∈[k]

(
e2m

∑
x∈Σc∥vi[x]∥22∑

x∈Σc∥vi[x]∥21

)1/k
)


(ck−
∑

i∈[k] ti)/2

∏
i∈[k]

∥vi∥2

(∑
x∈Σc ∥vi[x]∥21∑
x∈Σc ∥vi[x]∥22

)1/2−1/k

≤

 L2ck
3p̄

log

(∏
i∈[k]

(
e2m

∑
x∈Σc∥vi[x]∥22∑

x∈Σc∥vi[x]∥21

)1/k
)

ck/2

∏
i∈[k]

∥vi∥2

(∑
x∈Σc ∥vi[x]∥21∑
x∈Σc ∥vi[x]∥22

)1/2−1/k

This finishes the proof.

It now becomes easy to prove Lemma A.18.

Lemma A.53. Let h : Σc → [m] be a simple tabulation function, ε : Σc → {−1, 1} be a
simple tabulation sign function, and vi : Σc × [m]→ R be a value function for i ∈ [k]. For
every real number p ≥ 2∥∥∥∥∥∥

∑
j∈[m]

(∑
x∈Σc

ε(x)v(x, h(x)⊕ j)

)2
∥∥∥∥∥∥
p

≤

 Lcmax{p, log(m)}

log

(
e2m

∑
x∈Σc∥v[x]∥22∑

x∈Σc∥v[x]∥21

)

c ∑
x∈Σc

∥v[x]∥22 ,

where L is a universal constant.

Proof. This follows by Lemma A.52 since,∥∥∥∥∥∥
∑
j∈[m]

(∑
x∈Σc

ε(x)v(x, h(x))

)2
∥∥∥∥∥∥
p

=

∥∥∥∥∥∥
∑

x,y∈Σc

∑
j∈[m]

ε(x)ε(y)v(x, h(x))v(y, h(y))

∥∥∥∥∥∥
p

.
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Concentration Result for Simple Tabulation Hashing

We are now ready to prove the main result of the section. Note that by using Lemma A.48,
the result can be extended to the case without symmetrization, which proves Theorem A.7.
We warn the reader that the proof is long and technical.

Theorem A.7. Let h : Σc → [m] be a simple tabulation hash function, v : Σc× [m]→ R a
value function, and assume that

∑
j∈[m] v(x, j) = 0 for all keys x ∈ Σc. Define the random

variable V simple
v =

∑
x∈Σc v(x, h(x)). Then for all p ≥ 2∥∥∥V simple

v

∥∥∥
p
≤ L1Ψp

(
Kcγ

c−1
p Mv,Kcγ

c−1
p σ2v

)
,

where Kc = (L2c)
c−1, L1 and L2 are universal constants, and

γp =

max

{
log(m) + log

( ∑
x∈Σc∥v[x]∥22

maxx∈Σc∥v[x]∥22

)
/c, p

}
log

(
e2m

(
maxx∈Σc

∥v[x]∥21
∥v[x]∥22

)−1
)

Proof. We will prove the result by induction on c. For c = 1 it corresponds to using a
fully random hash function, and the result follows by Theorem A.5.

Now we assume that c > 1 and that the result is true for values less than c. We
note that without loss of generality we can assume that Mv = 1. Let w : Σc → R be a
function defined by w(x) = ∥v[x]∥22 and for X ⊆ Σc we overload the notation of w to write
w(X) =

∑
x∈X w(x). Furthermore, we define w∞(X) = maxx∈X w(x).

Now applying Lemma A.28 we obtain an ordering of position characters
{α0, . . . , αr−1} = [c] × Σ where r = c |Σ|, satisfying that the groups Gi =
{x ∈ Σc |αi ∈ x ∧ x ⊆ {α0, . . . , αi}} has the property that w(Gi) ≤ w(Σc)1−1/cw∞(Σc)1/c

for every i ∈ [r].
We define the random variables

X
(j)
i =

∑
x∈Gi

ε(x \ {αi})v(x, j ⊕ h(x \ {αi})) ,

Yi = ε(αi)X
(h(αi))
i ,

for all i ∈ [r], j ∈ [m]. With this notation we have that

V simple
v = V =

∑
i∈[r]

Yi .

We let (Fi)i∈[r] be a filtration where Fi = σ((h(αk), ε(αk))k∈[i+1]) for i ∈ [r]. It is easy

to see that X
(j)
i is Fi−1-measurable, Y

(j)
i is Fi-measurable, and E

[
Y

(j)
i

∣∣∣Fi−1

]
= 0 for all

j ∈ [m], i ∈ [r]. We thus have that (Yi,Fi)i∈[r] is a martingale difference sequence. We
furthermore notice that

Var[Yi | Fi] =
1

m

∑
k∈[m]

(
X

(k)
i

)2
,
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for all j ∈ [m], i ∈ [r].

Let h′ : Σc → [m] be a simple tabulation hash function independent of h, and ε′ : Σc →
[m] be a simple tabulation sign function independent of ε. We define the random variables

Z
(j)
i = ε′(αi)X

(j⊕h′(αi)). We can now easily check that (Zi)i∈[r] satisfies the properties
needed for Lemma A.46:

1. (Yi | Fi−1) and (Zi | Fi−1) have the same distribution for every i ∈ [r].

2. The sequence (Zi)i∈[r] is conditionally independent given Fr−1.

3. (Zi | Fi−1) and (Zi | Fr−1) have the same distribution for every i ∈ [r].

4. (Yi | Fi−1) and (Yi | σ(Fi−1, (Zk)k∈[i+1]) have the same distribution for every i ∈ [r].

Now Lemma A.46 then implies that∥∥∥∥∥∥
∑
i∈[r]

Yi

∥∥∥∥∥∥
p

≤M

∥∥∥∥∥∥
∑
i∈[r]

Zi

∥∥∥∥∥∥
p

. (A.34)

We now use that (Zi)i∈[r] are conditionally independent given h, so fixing h and using
Theorem A.5 we get that∥∥∥∥∥∥

∑
i∈[r]

Zi

∣∣∣∣∣∣ h
∥∥∥∥∥∥
p

≤ 16eΨp

(
max

i∈[r],j∈[m]

∣∣∣X(j)
i

∣∣∣ , ∑i∈[r],j∈[m]

(
X

(j)
i

)2

m

)
. (A.35)

Since Ψp(λM,λ2σ2) = λΨp(M,σ2), we then use Lemma A.15 to get that∥∥∥∥∥Ψp

(
max

i∈[r],j∈[m]

∣∣∣X(j)
i

∣∣∣ , ∑i∈[r],j∈[m]

(
X

(j)
i

)2

m

)∥∥∥∥∥
p

≤ 21/pΨp

∥∥∥∥ max
i∈[r],j∈[m]

∣∣∣X(j)
i

∣∣∣∥∥∥∥
p

,
1

m

∥∥∥∥∥∥
∑

i∈[r],j∈[m]

(
X

(j)
i

)2∥∥∥∥∥∥
1/2

p/2


≤
√

2Ψp

∥∥∥∥ max
i∈[r],j∈[m]

∣∣∣X(j)
i

∣∣∣∥∥∥∥
p

,
1

m

∥∥∥∥∥∥
∑

i∈[r],j∈[m]

(
X

(j)
i

)2∥∥∥∥∥∥
p/2

 .

(A.36)

We set p̄ = max
{
p, log(m) + log

(
w(Σc)
w∞(Σc)

)
/c
}

. With this notation we have that

γp =
p̄

log

(
minx∈Σc

e2m
∑

j∈[m] v(x,j)
2

(
∑

j∈[m]|v(x,j)|)
2

) .
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We start by bounding
∥∥∥maxi∈[r],j∈[m]

∣∣∣X(j)
i

∣∣∣∥∥∥
p
. By the induction hypothesis we get

that

∥∥∥∥ max
i∈[r],j∈[m]

∣∣∣X(j)
i

∣∣∣∥∥∥∥
p

≤
∥∥∥∥ max
i∈[r],j∈[m]

∣∣∣X(j)
i

∣∣∣∥∥∥∥
p̄

≤

 ∑
i∈[r],j∈[m]

∥∥∥X(j)
i

∥∥∥p̄
p̄

1/p̄

≤

m∑
i∈[r]

max
j∈[m]

∥∥∥X(j)
i

∥∥∥p̄
p̄

1/p̄

≤

m∑
i∈[r]

Lp1Ψp̄

(
Kc−1γ

c−2
p ,Kc−1

γc−2
p w(Gi)

m

)p̄1/p̄

≤ L1

m∑
i∈[r]

Ψp̄

(
Kc−1γ

c−2
p ,Kc−1

γc−2
p w(Gi)

m

)p̄1/p̄

.

An easy observation is that Ψp̄(M,σ2)p̄ is a convex function in σ2. So using that
maxi∈[r]w(Gi) ≤ w(Σc)1−1/cw∞(Σc)1/c and that

∑
i∈[r]w(Gi) = w(Σc) we get that

∥∥∥∥ max
i∈[r],j∈[m]

∣∣∣X(j)
i

∣∣∣∥∥∥∥
p

≤ L1

(
m
(

w(Σc)
w∞(Σc)

)1/c)1/p̄

Ψp̄

(
Kc−1γ

c−2
p ,Kc−1

γc−2
p w(Σc)1−1/cw∞(Σc)1/c

m

)

≤ L1eΨp̄

(
Kc−1γ

c−2
p ,Kc−1

γc−2
p w(Σc)1−1/cw∞(Σc)1/c

m

)
.

(A.37)

The last inequality follows since p̄ ≥ log(m) + log
(

w(Σc)
w∞(Σc)

)
/c.

We will bound

∥∥∥∥∑i∈[r],j∈[m]

(
X

(j)
i

)2∥∥∥∥
p/2

by using the triangle inequality and
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Lemma A.18.

∥∥∥∥∥∥
∑

i∈[r],j∈[m]

(
X

(j)
i

)2∥∥∥∥∥∥
p/2

≤
∑
i∈[r]

∥∥∥∥∥∥
∑
j∈[m]

(
X

(j)
i

)2∥∥∥∥∥∥
p/2

≤ K ′
c−1 max

1,

 p/2

log

(
e2m

∑
x∈Σc∥v[x]∥22∑

x∈Σc∥v[x]∥21

)

c
∑
i∈[r]

w(Gi)

≤ K ′
c−1 max

1,

 p

log
(

minx∈Σc
e2m∥v[x]∥22
∥v[x]∥21

)

c
∑
i∈[r]

w(Gi)

≤ K ′
c−1γ

c−1
p w(Σc)

≤ Kcγ
c−1
p w(Σc) .

(A.38)

Here K ′
c−1 is the constant depending on c− 1 which we get from Lemma A.18.

Now combining eq. (A.36), eq. (A.37), and eq. (A.38) we get that

∥∥∥∥∥Ψp

(
max

i∈[r],j∈[m]

∣∣∣X(j)
i

∣∣∣ , ∑i∈[r],j∈[m]

(
X

(j)
i

)2

m

)∥∥∥∥∥
p

≤
√

2Ψp

(
L1eΨp̄

(
Kc−1γ

c−2
p ,Kc−1

γc−2
p w(Σc)1−1/cw∞(Σc)1/c

m

)
,Kcγ

c−1
p

w(Σc)

m

)

=
√

2Ψp

(
L1eΨp̄

(
Kc−1γ

c−2
p ,Kc−1

γc−2
p w(Σc)1−1/cw∞(Σc)1/c

m

)
,Kcγ

c−1
p σ2v

)
.

(A.39)

Now we will consider two cases depending on w(Σc).

Case 1. w(Σc) ≤
(
p̄e−2Kc−1γ

c−2
p

)c/(c−1)
m
(

m
w∞(Σc)

)1/(2c−1)
. In this case we will show

that,

L1eΨp̄

(
Kc−1γ

c−2
p ,Kc−1

γc−2
p w(Σc)1−1/cw∞(Σc)1/c

m

)
≤ Kcγ

c−1
p . (A.40)
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We first notice that

Kc−1
γc−2
p w(Σc)1−1/cw∞(Σc)1/c

m

K2
c−1γ

2c−4
p

=
w(Σc)1−1/cw∞(Σc)1/c

mKc−1γ
c−2
p

≤
(
p̄e−2Kc−1γ

c−2
p

)
m(2c−2)/(2c−1)w∞(Σc)−(c−1)/c(2c−1)w∞(Σc)1/c

mKc−1γ
c−2
p

= e−2p̄

(
w∞(Σc)

m

)1/(2c−1)

= e−2p̄

(
max
x∈Σc

∥v[x]∥22
m

)1/(2c−1)

≤ e−2p̄

(
max
x∈Σc

∥v[x]∥21
m ∥v[x]∥22

)1/(2c−1)

≤ e−2p̄ .

(A.41)

Now by Equation (A.18) we get that

L1eΨp̄

(
Kc−1γ

c−2
p ,Kc−1

γc−2
p w(Σc)1−1/cw∞(Σc)1/c

m

)
≤ L1e

p̄

e log

(
p̄mK2

c−1γ
2c−4
p

γc−2
p w(Σc)1−1/cw∞(Σc)1/c

)Kc−1γ
c−2
p

≤ L1
p̄

log

(
e2
(

minx∈Σc
m∥v[x]∥22
∥v[x]∥21

)1/(2c−1)
)Kc−1γ

c−2
p

≤ 2L1cKc−1γ
c−1
p

≤ Kcγ
c−1
p .

Where we have used that
Kc−1

γc−2
p w(Σc)1−1/cw∞(Σc)1/c

m

K2
c−1γ

2c−4
p

≤ e−2p̄
(

maxx∈Σc
∥v[x]∥21
m∥v[x]∥22

)1/(2c−1)

which follows from eq. (A.41), and that 2L1cKc−1 ≤ Kc.
Now combining eq. (A.34), eq. (A.35), eq. (A.39), and eq. (A.40) we get the result.

Case 2. w(Σc) >
(
p̄e−2Kc−1γ

c−2
p

)c/(c−1)
m
(

m
w∞(Σc)

)1/(2c−1)
. In this case we will argue

that

Ψp

(
L1eΨp̄

(
Kc−1γ

c−2
p ,Kc−1

γc−2
p w(Σc)1−1/cw∞(Σc)1/c

m

)
,Kcγ

c−1
p w(Σc)

)

≤ 1
2

√
p

√
Kcγ

c−1
p w(Σc) .

(A.42)
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We use eq. (A.18) to get that

L1eΨp̄

(
Kc−1γ

c−2
p ,Kc−1

γc−2
p w(Σc)1−1/cw∞(Σc)1/c

m

)

≤ max

L1
e
2

√
p̄Kc−1

γc−2
p w(Σc)1−1/cw∞(Σc)1/c

m
,L1

1
2 p̄Kc−1γ

c−2
p

 .

We apply eq. (A.18) again to obtain that

Ψp

(
L1eΨp̄

(
Kc−1γ

c−2
p ,Kc−1

γc−2
p w(Σc)1−1/cw∞(Σc)1/c

m

)
,Kcγ

c−1
p w(Σc)

)

≤ max

{
1
2

√
p

√
Kcγ

c−1
p

w(Σc)

m
, 1
2epL1eΨp̄
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p w(Σc)1−1/cw∞(Σc)1/c

m

)}
.

Combining the two estimates give us that

Ψp

(
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(
Kc−1γ
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We will show that the max is equal to 1
2

√
p

√
Kcγ

c−1
p

w(Σc)
m which will show eq. (A.42).

First we show that 1
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)1/(c−1)
m1/c

(
m
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Now by using Lemma A.47 we get that
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The last inequality follows by choosing L2 ≥ L1. Combining it all we get that
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This implies that 1
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4 p
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m as we wanted.

Next we show that 1
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p . Again we note that this

equivalent with showing that
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Again we use Lemma A.47 to obtain that
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This proves eq. (A.42) and combining this with eq. (A.19) we get that
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(A.43)

Now combining eq. (A.34), eq. (A.35), eq. (A.39), and eq. (A.43) we get the result.

A.4.2 Concentration Results for Mixed Tabulation Hashing

In this section, we will prove two different concentration results for mixed tabulation
hashing. The first is a version of Khintchine’s inequality for mixed tabulation hashing,
and the proof is the simpler of the two. The other result is a strengthening of Theorem A.7
by using the strength of mixed tabulation hashing.

We will first introduce some notation.
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Definition A.53. Let h : Σc → [m] be a mixed tabulation function with d derived charac-
ters, and let h1 : Σc → [m], h2 : Σc → Σ, and h3 : Σd → [m] be the three simple tabulation
function defining h, i.e., h(x) = h1(x)⊕ h3(h2(x)).

Let ε1 : Σc → {−1, 1} and ε3 : Σd → {−1, 1} be independent simple tabulation sign
functions. We define ε : Σc → {−1, 1} by

ε(x) = ε1(x)ε3(h2(x)) .

We say that ε is a mixed tabulation sign function associated with h.

Theorem A.54. Let ε : Σc → {−1, 1} be a mixed tabulation sign function with d ≥ 1
derived characters, and let w : Σc → R be a weight function. For all p ≥ 2 then,∥∥∥∥∥∑

x∈Σc

w(x)ε(x)

∥∥∥∥∥
p

≤
√
eKc
√
pγc/2p

√∑
x∈Σc

w(x)2 (A.44)

Here Kc is as defined in Lemma A.18 and γp = max
{

1, p
log(|Σ|)

}
.

Proof. We will prove the result for d = 1. For d > 1 we fix the last d−1 derived characters
and incorporate them into the weight function. This will only change the sign of the weight
function for some keys, thus the result follows from the case with d = 1.

We let ε1 : Σc → {−1, 1}, h : Σc → Σ, and ε2 : Σ → {−1, 1} be the three simple
tabulation functions used to define ε, i.e., ε(x) = ε1(x)ε2(h(x)).

We can now write,∥∥∥∥∥∑
x∈Σc

w(x)ε(x)

∥∥∥∥∥
p

=
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p

.

We fix h and ε1 and use Lemma A.41 to get that∥∥∥∥∥∑
α∈Σ
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∑
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w(x) [h(x) = α] ε1(x)

)2

.

We define the value function v : Σc × Σ → R by v(x, α) = w(x) [α = 0]. We can then
write,∥∥∥∥∥∥

√√√√∑
α∈Σ

(∑
x∈Σc

w(x) [h(x) = α] ε1(x)
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)2
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.
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Now we use Lemma A.18 to get that∥∥∥∥∥∥
∑
α∈Σ

(∑
x∈Σc

ε1(x)V (x, α⊕ h(x))
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Putting it all together, we get that
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√
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w(x)2 .

Before proving the next result, we will first argue that we only need the symmetric
case, similarly, as we did for simple tabulation.

Lemma A.55. Let h : Σc → [m] be a mixed tabulation function with d derived characters
and v : Σc × [m]→ R a value function. Then for every p ≥ 2,∥∥∥∥∥∑

x∈Σc

(
v(x, h(x))− E[v(x, h(x))]

)∥∥∥∥∥
p

≤ 2c+d
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x∈Σc

ε(x)v(x, h(x))

∥∥∥∥∥
p

,

where ε : Σc → {−1, 1} a mixed tabulation sign function associated with h.

Proof. The result follows by two uses Lemma A.48. Fixing h2 and h3 and using
Lemma A.48 we get that∥∥∥∥∥∑

x∈Σc

(
v(x, h(x))− E[v(x, h(x))]
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p

.
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Now we fix h1, h2, and ε1 and use Lemma A.48,

2c

∥∥∥∥∥∑
x∈Σc

ε1(x)
(
v(x, h1(x)⊕ h3(h2(x)))− E[v(x, h1(x)⊕ h3(h2(x)))]

) ∣∣∣∣∣ h1, h2, ε1
∥∥∥∥∥
p

≤ 2c+d
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x∈Σc

ε1(x)ε3(h)v(x, h1(x)⊕ h3(h2(x)))

∣∣∣∣∣ h1, h2, ε1
∥∥∥∥∥
p

= 2c+d
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x∈Σc

ε(x)v(x, h(x))

∣∣∣∣∣ h1, h2, ε1
∥∥∥∥∥
p

.

We can now prove the concentration result for mixed tabulation. The proof is very
similar to the proof of Theorem A.7 and is again quite long and technical.

Theorem A.10. Let h : Σc → [m] be a mixed tabulation function with d ≥ 1 derived
characters, v : Σc × [m]→ R a value function, and assume that

∑
j∈[m] v(x, j) = 0 for all

keys x ∈ Σc. Define the random variable V mixed
v =

∑
x∈Σc v(x, h(x)). For all p ≥ 2 then∥∥∥V mixed

v

∥∥∥
p
≤ Ψp

(
Kcγ

c
pMv,Kcγ

c
pσ

2
v

)
(A.45)

where Kc = L1 (L2c)
c, L1 and L2 are universal constants, and

γp = max

{
1,

log(m)

log(|Σ|)
,

p

log(|Σ|)

}
.

Proof. We will prove the result for d = 1. For d > 1 we fix the last d−1 derived characters
and incorporate them into the value function. This does not change the variance and the
result then follows from the case with d = 1.

We can assume without loss of generality that Mv = 1.

We let h1 : Σc → [m], h2 : Σc → Σ, and h3 : Σ → [m] be the three simple tabulation
functions used to define h, i.e., h(x) = h1(x) ⊕ h3(h2(x)). Similarly, we let ε1 : Σc →
{−1, 1} and ε3 : Σ → {−1, 1} be the two simple tabulation sign functions used to define
ε, i.e., ε(x) = ε1(x)ε3(h2(x)).

We can then write,

V mixed
v =

∑
x∈Σc

ε(x)v(x, j ⊕ h(x))

=
∑
x∈Σc

ε1(x)ε3(h2(x))v(x, j ⊕ h1(x)⊕ h3(h2(x)))

=
∑
α∈Σ

ε3(α)
∑
x∈Σc

ε1(x) [h2(x) = α] v(x, j ⊕ h1(x)⊕ h3(α)) .
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We define the value function vh : Σ × [m] → R by vh(α, j) =∑
x∈Σc ε1(x) [h2(x) = α] v(x, j ⊕ h1(x)). This allows us to write,

V mixed
v =

∑
α∈Σ

ε3(α)vh(α, j ⊕ h3(α)) .

If we fix h1 and h2 then Theorem A.5 give us that

∥∥∥V mixed
v

∣∣∣ h1, h2∥∥∥
p
≤ 8eΨp

(
max

α∈Σ,j∈[m]
|vh(α, j)| ,

∑
α∈Σ,j∈[m] vh(α, j)2

m

)
. (A.46)

As in the proof of Theorem A.7 we will use Lemma A.15.

∥∥∥∥∥Ψp

(
max

α∈Σ,j∈[m]
|vh(α, j)| ,

∑
α∈Σ,j∈[m] vh(α, j)2

m

)∥∥∥∥∥
p

≤
√

2Ψp

∥∥∥∥ max
α∈Σ,j∈[m]

|vh(α, j)|
∥∥∥∥
p

,
1

m

∥∥∥∥∥∥
∑

α∈Σ,j∈[m]

vh(α, j)2

∥∥∥∥∥∥
p/2

 .

(A.47)

Now we want to bound
∥∥maxα∈Σ,j∈[m] |vh(α, j)|

∥∥
p

and
∥∥∥∑α∈Σ,j∈[m] vh(α, j)2

∥∥∥
p/2

. We

define the value function v′ : Σc × ([m]× Σ) → R by v′(x, (j, α)) = [α = 0] v(x, j). We
then get that

vh(α, j) =
∑
x∈Σc

ε1(x)v′(x, (j ⊕ h1(x), α⊕ h2(x))) .

Clearly, we have that the support of v′ is at most m for all x ∈ Σc, thus
∥v′[x]∥21
∥v′[x]∥22

≤ m for

all x ∈ Σc.

We define p̄ = max{q, log(m |Σ|)}. This implies that γp = p̄
log(e|Σ|) .



128 APPENDIX A. MOMENTS OF TABULATION HASHING

We can now bound the moments of maxα∈Σ,j∈[m] |vh(α, j)| by using Theorem A.7.∥∥∥∥ max
α∈Σ,j∈[m]

|vh(α, j)|
∥∥∥∥
p
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c

(
γ′p
)c−1 σ2v

|Σ|

)
,

where L
(1)
c is a constant depending on c as given by Theorem A.7, M1 is universal constant,

and

γ′p = max


log(m |Σ|) + log

( ∑
x∈Σc∥v′[x]∥22

maxx∈Σc∥v′[x]∥22

)
/c

log(e |Σ|)
,
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log (e |Σ|)


We note that γ′p ≤ 2γp since,
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( ∑
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So we have that∥∥∥∥ max
α∈Σ,j∈[m]

|vh(α, j)|
∥∥∥∥
p

≤ eM1Ψp̄

(
2L(1)

c γc−1
p , 2L(1)

c γc−1
p

σ2

|Σ|

)
. (A.48)
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We bound the moments of
∑

α∈Σ,j∈[m] vh(α, j)2 by using Lemma A.18. We get that
for all q ≥ 2,∥∥∥∥∥∥

∑
α∈Σ,j∈[m]

vh(α, j)2

∥∥∥∥∥∥
p

=

∥∥∥∥∥∥
∑

α∈Σ,j∈[m]

(∑
x∈Σc

v′(x, (j ⊕ h1(x), α⊕ h2(x)))

)2
∥∥∥∥∥∥
p

≤ L(2)
c max

{
1,

(
p

log(e |Σ|)

)c} ∑
x∈Σc

∥∥v′[x]
∥∥2
2

= L(2)
c γcp

∑
x∈Σc

∥v[x]∥22

≤ Kcγ
c
p

∑
x∈Σc

∥v[x]∥22 .

(A.49)

Where L
(2)
c is constant depending on c as given by Lemma A.18.

Now combining eq. (A.47), eq. (A.48), and eq. (A.49), and we get that∥∥∥∥∥Ψp

(
max

α∈Σ,j∈[m]
|vh(α, j)| ,

∑
α∈Σ,j∈[m] vh(α, j)2

m

)∥∥∥∥∥
p

≤ eΨp

(
eM1Ψp̄

(
2L(1)

c γc−1
p , 2L(1)

c γc−1
p

σ2

|Σ|

)
,Kcγ

c
pσ

2

)
.

(A.50)

We will now consider three different cases.

Case 1. σ2 ≤ (2e−3L
(1)
c )p̄γc−1

p (e |Σ|)1−
1

4(2c+1) . In this case we will show that

eM1Ψp̄

(
2L(1)

c γc−1
p , 2L(1)

c γc−1
p

σ2

|Σ|

)
≤ Kcγ

c
p . (A.51)

We first see that

2L
(1)
c γc−1

p
σ2

|Σ|(
2L

(1)
c γc−1

p

)2 =
σ2

2L
(1)
c γc−1

p |Σ|

≤
(2e−3L

(1)
c )p̄γc−1

p (e |Σ|)1−
1

4(2c+1)

2L
(1)
c γc−1

p |Σ|

≤ e−2p̄ |Σ|−
1

4(2c+1)

≤ e−2p̄ .

(A.52)
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By eq. (A.20) we get that

eM1Ψp̄

(
2L(1)

c γc−1
p , 2L(1)

c γc−1
p

σ2

|Σ|

)
≤ eM1

p̄

log

(
p̄
(
2L

(1)
c γc−1

p

)2

2L
(1)
c γc−1

p
σ2

|Σ|

)2L(1)
c γc−1

p

≤ 2eM1L
(1)
c

p̄

log

(
e2 |Σ|

1
4(2c+1)

)γc−1
p

≤ 8eM1L
(1)
c (2c+ 1)γcp

≤ 24ecM1L
(1)
c γcp

≤ Kcγ
c
p .

Here we have used that
p̄
(
2L

(1)
c γc−1

p

)2

2L
(1)
c γc−1

p
σ2

|Σ|
≥ e2 |Σ|

1
4(2c+1) which follows from eq. (A.52) and

that Kc ≥ 24ecM1L
(1)
c .

Now combining eq. (A.46), eq. (A.50), and eq. (A.51) we get the result.

Case 2. σ2 > (2e−3L
(1)
c )p̄γc−1

p (e |Σ|)1−
1

4(2c+1) and p ≤ |Σ|1−
1

2(2c+1) . We will show that

Ψp

(
eM1Ψp̄

(
2L(1)

c γc−1
p , 2L(1)

c γc−1
p

σ2

|Σ|

)
,Kcγ

c
pσ

2

)
≤ √p

√
Kcγcpσ

2 . (A.53)

We use eq. (A.18) to get that

Ψp̄

(
2L(1)

c γc−1
p , 2L(1)

c γc−1
p

σ2

|Σ|

)
≤ max

{
1
2

√
p̄2L

(1)
c γc−1

p
σ2

|Σ|
, L

(1)
c
e p̄γc−1

p

}
.

We again apply eq. (A.18) to obtain that

Ψp

(
eM1Ψp̄

(
2L(1)

c γc−1
p , 2L(1)

c γc−1
p

σ2

|Σ|

)
,Kcγ

c
pσ

2

)
≤ max

{
1
2

√
p
√
Kcγcpσ

2, M1
2 Ψp̄

(
2L(1)

c γc−1
p , 2L(1)

c γc−1
p

σ2

|Σ|

)}
.

Combining the two estimates give us that

Ψp

(
eM1Ψp̄

(
2L(1)

c γc−1
p , 2L(1)

c γc−1
p

σ2

|Σ|

)
,Kcγ

c
pσ

2

)
≤ max

{
1
2

√
p
√
Kcγcpσ

2, M1

√
L
(1)
c

2
√
2

p

√
p̄γc−1

p
σ2

|Σ|
, M1L

(1)
c

2e pp̄γc−1
p

}

We will show that the max is equal to 1
2

√
p
√
Kcγcpσ

2 which will show eq. (A.53).
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First we show that 1
2

√
p
√
Kcγcpσ

2 ≥ M1

√
L
(1)
c

2
√
2

p
√
p̄γc−1

p
σ2

|Σ| . We note that this equivalent

with showing that
Kc
4 pγcpσ

2

M2
1L

(1)
c

8 p2p̄γc−1
p

σ2

|Σ|

≥ 1,

Kc
4 pγ

c
pσ

2

M2
1L

(1)
c

8 p2p̄γc−1
p

σ2

|Σ|

=
2Kc

M2
1L

(1)
c

· γp |Σ|
pp̄

=
2Kc

M2
1L

(1)
c

· |Σ|
p log(e |Σ|)

≥ 2Kc

M2
1L

(1)
c

· |Σ|
1

2(2c+1)

log(e |Σ|)
.

Now by using Lemma A.47 we get that

2Kc

M2
1L

(1)
c

· |Σ|
1

2(2c+1)

log(e |Σ|)
≥ 2Kc

eM2
1L

(1)
c

· (e |Σ|)
1

2(2c+1)

log(e |Σ|)
≥ 2Kc

eM2
1L

(1)
c

(
e

2(2c+ 1)

)
=

Kc

3M2
1L

(1)
c c

.

Now Kc = (L2c)
c and L

(1)
c = (T1c)

c where T1 is universal constant determined by Theo-
rem A.7. Now choosing L2 large enough we get that so we get that

Kc

3M2
1L

(1)
c c

=
Lc2

3M2
1T

c−1
1

≥ 1 .

Combining it all we get that

Kc
4 pγ

c
pσ

2

M2
1L

(1)
c

8 p2p̄γc−1
p

σ2

|Σ|

≥ 1 .

This implies that 1
2

√
p
√
Kcγcpσ

2 ≥ M1

√
L
(1)
c

2
√
2

p
√
p̄γc−1

p
σ2

|Σ| as we wanted.

Next we show that 1
2

√
p
√
Kcγcpσ

2 ≥ M1L
(1)
c

2e pp̄γc−1
p . Again we note that this equivalent

with showing that
Kc
4 pγcpσ

2

M2
1

(
L
(1)
c

)2

4e2
p2p̄2γ2c−2

p

≥ 1,

Kc
4 pγ

c
pσ

2

M2
1

(
L
(1)
c

)2

4e2
p2p̄2γ2c−2

p

=
e2Kc(

M1L
(1)
c

)2 σ2

pp̄2γc−2
p

≥ e2Kc(
M1L

(1)
c

)2 (2e−3L
(1)
c )p̄γc−1

p (e |Σ|)1−
1

4(2c+1)

pp̄2γc−2
p

≥ 2Kc

eM2
1L

(1)
c

(e |Σ|)1−
1

4(2c+1)

p log(e |Σ|)

≥ 2Kc

eM2
1L

(1)
c

(e |Σ|)
1

4(2c+1)

log(e |Σ|)
.
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Again we use Lemma A.47 to obtain that

2Kc

eM2
1L

(1)
c

(e |Σ|)
1

4(2c+1)

log(e |Σ|)
≥ 2Kc

eM2
1L

(1)
c

(
e

4(2c+ 1)

)
≥ Kc

6eM2
1L

(1)
c c

.

Now Kc = (L2c)
c and L

(1)
c = (T1c)

c where T1 is universal constant determined by Theo-
rem A.7. Now choosing L2 large enough we get that so we get that

Kc

6eM2
1L

(1)
c c

=
Lc2

6eM2
1T

c−1
1

≥ 1 .

Combining it all we get that

Kc
4 pγ

c
pσ

2

M2
1

(
L
(1)
c

)2

4e2
p2p̄2γ2c−2

p

≥ 1 .

This implies that 1
2

√
p
√
Kcγcpσ

2 ≥ M1L
(1)
c

2e pp̄γc−1
p .

This proves eq. (A.53) and combining this with eq. (A.19) we get that

Ψp

(
eM1Ψp̄

(
2L(1)

c γc−1
p , 2L(1)

c γc−1
p

σ2

|Σ|

)
,Kcγ

c
pσ

2

)
≤ Ψp

(
Kcγ

c
p,Kcγ

c
pσ

2
)
. (A.54)

Now combining eq. (A.46), eq. (A.50), and eq. (A.54) we get the result.

Case 3. σ2 > (2e−3L
(1)
c )p̄γc−1

p (e |Σ|)1−
1

4(2c+1) and p > (e |Σ|)1−
1

2(2c+1) . In this case we

will exploit that
∣∣V mixed
v

∣∣ ≤ |Σ|c. This implies that
∥∥V mixed

v

∥∥
p
≤ |Σ|c, so if we can prove

that

L1Ψp

(
Kcγ

c
p,Kcγ

c
pσ

2
)
≥ |Σ|c , (A.55)

then the result follows.
We use eq. (A.19) to get that

Ψp

(
Kcγ

c
p,Kcγ

c
pσ

2
)
≥ √p

√
Kcγcpσ

2

≥

√
p2Kc(2e−3L

(1)
c )γ2c−1

p (e |Σ|)1−
1

4(2c+1)

≥
√

2e−3KcL
(1)
c

(e |Σ|)
2c+1
2 ·

(
1− 1

2(2c+1)

)
log(e |Σ|)

2c−1
2

≥
√

2e−3KcL
(1)
c

(e |Σ|)c+
1
4

log(e |Σ|)
2c−1
2
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Now we use Lemma A.47 to get that

(e |Σ|)1/4

log(e |Σ|)
2c−1
2

≥
(

e

2(2c− 1)

)2c−1
2
≥
( e

4c

)2c−1
2

.

Combining this we get that

Ψp

(
Kcγ

c
p,Kcγ

c
pσ

2
)
≥
√

2e−3KcL
(1)
c (e |Σ|)c

( e
4c

)2c−1
2 ≥

√
2e−3 |Σ|c

√
KcL

(1)
c

( e
4c

)2c−1
.

We have that KcL
(1)
c = c2c−1T c1T

c−1
2 where T1 is a universal constant and T2 is a universal

determined by Theorem A.7. Choosing T1 large enough we get that

√
KcL

(1)
c

(
e
4c

)2c−1 ≥
1
L1

. Thus eq. (A.55) follows and the result is proven.

A.5 Lower Bounds

Similarly, as in the proof of Lemma A.4, we will use the following result by Lata la [Lat97]
that gives a tight bound for p-norms of sums of independent and identically distributed
symmetric variables.

Lemma A.56 (Lata la [Lat97]). If X, (Xi)i∈[n] are independent and identically distributed
symmetric variables and p ≥ 2 then,∥∥∥∥∥∥

∑
i∈[n]

Xi

∥∥∥∥∥∥
p

≤ K1 sup

{
p

s

(
n

p

)1/s

∥X∥s

∣∣∣∣∣max
{

2, pn
}
≤ s ≤ p

}
,

and ∥∥∥∥∥∥
∑
i∈[n]

Xi

∥∥∥∥∥∥
p

≥ K2 sup

{
p

s

(
n

p

)1/s

∥X∥s

∣∣∣∣∣max
{

2, pn
}
≤ s ≤ p

}
.

Here K1 and K2 are universal constants.

We start by proving the lower bound for uniformly random hash functions which will
serve as a base for the other lower bounds. We show the following lemma.

Lemma A.57. Let h : U → [m] be a uniformly random function and let v : U × [m]→ R
be a value function defined by,

v(x, j) =

{
1− 1

m if j = 0

− 1
m otherwise

,

for all x ∈ U . Then for all 2 ≤ p ≤ L1 |U | log(m),∥∥∥∥∥∑
x∈U

v(x, h(x))

∥∥∥∥∥
p

≥ L2Ψp

(
Mv, σ

2
v

)
,

where L1 and L2 is a universal constant.
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It is easy to check that this implies Theorem A.9.

Proof. We will consider the value function, v : U × [m]→ R, defined by,

v(x, j) =

{
1− 1

m if j = 0

− 1
m otherwise

,

We then have that σ2v = |U | 1m
(
1− 1

m

)
and Mv = 1. The goal is then to prove that∥∥∥∥∥∑

x∈U
v(x, h(x))

∥∥∥∥∥
p

≥ L2Ψp(1, σ
2
v) . (A.56)

We then use Lemma A.37 to get that∥∥∥∥∥∑
x∈U

v(x, h(x))

∥∥∥∥∥
p

≥ 1
2

∥∥∥∥∥∑
x∈U

ε(x)v(x, h(x))

∥∥∥∥∥
p

,

where ε : U → {−1, 1} is uniformly random sign function. We can now use Lemma A.56,∥∥∥∥∥∑
x∈U

ε(x)v(x, h(x))

∥∥∥∥∥
p

≥ K2 sup

{
p

s

(
|U |
p

)1/s

∥v(x, h(x))∥s

∣∣∣∣∣max
{

2, p
|U |

}
≤ s ≤ p

}
.

We will argue that ∥v(x, h(x))∥s ≥
1
2

(
1
m

(
1− 1

m

))1/s
for all s ≥ 2,

∥v(x, h(x))∥s =
(
1
m

(
1− 1

m

)s
+
(
1− 1

m

) (
1
m

)s)1/s
=
(
1
m

(
1− 1

m

))1/s ((
1− 1

m

)s−1
+
(
1
m

)s−1
)1/s

≥
(
1
m

(
1− 1

m

))1/s (
max

{(
1− 1

m

)s−1
,
(
1
m

)s−1
})1/s

≥ 1
2

(
1
m

(
1− 1

m

))1/s
.

This implies that∥∥∥∥∥∑
x∈U

ε(x)v(x, h(x))

∥∥∥∥∥
p

≥ K2

2
sup

ps
(
|U | 1m

(
1− 1

m

)
p

)1/s
∣∣∣∣∣∣max

{
2, p

|U |

}
≤ s ≤ p


=
K2

2
sup

{
p

s

(
σ2v
p

)1/s
∣∣∣∣∣max

{
2, p

|U |

}
≤ s ≤ p

}
.

It is easy to see that the function s 7→ p
s

(
σ2
v
p

)1/s
is maximized at s∗ = log

(
p
σ2
v

)
. It is

easy to check that log
(
p
σ2
v

)
≥ p

|U | when p ≤ L1 |U | log(m) for a sufficiently large universal
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constant L1. We then get that∥∥∥∥∥∑
x∈U

ε(x)v(x, h(x))

∥∥∥∥∥
p

≥ K2

2
sup

{
p

s

(
σ2v
p

)1/s
∣∣∣∣∣max

{
2, p

|U |

}
≤ s ≤ p

}

=
K2

2
sup

{
p

s

(
σ2v
p

)1/s
∣∣∣∣∣ 2 ≤ s ≤ p

}

=
K2

2
Ψp(1, σ

2
v) .

The last equality follows by eq. (A.17). This proves eq. (A.56) and finishes the proof.

Now we are ready to prove the lower bound for simple tabulation hashing.

Theorem A.9. Let h : Σc → [m] be a simple tabulation hash function, and 2 ≤ p ≤
L1 |Σ| log(m), then there exists a value function, v : U×[m]→ R, where

∑
j∈[m] v(x, j) = 0

for all keys x ∈ Σc, and for which∥∥∥∥∥∑
x∈Σc

v(x, h(x))

∥∥∥∥∥
p

≥ K ′
cΨp

(
γc−1
p Mv, γ

c−1
p σ2v

)
,

where K ′
c = Lc1 and L1 is a universal constant, and

γp = max

1,
p

log

(
e2m

(
maxx∈Σc

∥v[x]∥21
∥v[x]∥22

)−1
)


Proof. We will define a value function, v : Σc × [m] → R, for which minx∈Σc
∥v[x]∥22
∥v[x]∥21

=

1

4
(
1− 1

m

) . We then have that

γp = max

1,
p

log

(
e2m

4
(
1− 1

m

)
)
 .

If γp = 1 then the result follow by Theorem A.6, so we assume that γp > 1. We let
S = [1 + ⌊γp⌋]c−1 × Σ and formally define the value function, v : Σc × [m]→ R, by,

v(x, j) =


0 if x ̸∈ S
1− 1

m if x ∈ S and j = 0

− 1
m otherwise

.



136 APPENDIX A. MOMENTS OF TABULATION HASHING

For every i ∈ [c−1], we define Ai to be the event that T (i, α) = T (i, 0) for all α ∈ [1+⌊γp⌋].
We note that

Pr[Ai] =

(
1

m

)⌊γp⌋
≥
(

1

m

)γp
= exp

−p log(m)

log

(
e2m

4
(
1− 1

m

)
)
 ≥ e−p .

We then get that Pr
[∧

i∈[c−1]Ai

]
≥ e−p(c−1).

If
∧
i∈[c−1]Ai happens then we can set j∗ =

⊕
i∈[c−1] T (i, 0). Now we define the value

function v′ : Σ× [m]→ R, by

v′(α, j) =

{
1− 1

m if j = j∗

− 1
m otherwise

.

We then get that∑
x∈Σc

v(x, h(x)) =
∑
x∈S

v(x, h(x)) =
∑
α∈Σ

(1 + ⌊γp⌋)c−1 v′(α, T (c− 1, α)) .

This implies that∥∥∥∥∥∑
x∈Σc
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∥∥∥∥∥
p

=
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v(x, h(x))

∥∥∥∥∥
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E
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+ E
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C
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)p


1/p

≥

∥∥∥∥∥∥
 ∧
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Ai
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∥∥∥∥∥∥
p

= Pr
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1/p

E
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)p ∣∣∣∣∣∣
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1/p

≥ e−c (1 + ⌊γp⌋)c−1 E
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)p ∣∣∣∣∣∣
∧
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Ai

1/p

.
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Now we use Theorem A.6 to get that∥∥∥∥∥∥
∑
α∈Σ

v′(α, T (c− 1, α))

∣∣∣∣∣∣
∧

i∈[c−1]

Ai

∥∥∥∥∥∥
p

≥ LΨp(1, σ
2
v′) ,

where σ2v′ = 1
m

(
1− 1

m

)
|Σ|. Combining it all we have that∥∥∥∥∥∑

x∈Σc

v(x, h(x))

∥∥∥∥∥
p

≥ e−c (1 + ⌊γp⌋)c−1 LΨp

(
1,

1

m

(
1− 1

m

)
|Σ|
)

= e−cLΨp

(
(1 + ⌊γp⌋)c−1 , (1 + ⌊γp⌋)2(c−1) 1

m

(
1− 1

m

)
|Σ|
)

≥ e−cLΨp

(
γc−1
p , γc−1

p

1

m

(
1− 1

m

)
|Σ| (1 + ⌊γp⌋)c−1

)
.

The equality follows since Ψp(λM,λ2σ2) = λΨp(M,σ2). We have that
1
m

(
1− 1

m

)
|Σ| (1 + ⌊γp⌋)c−1 = σ2v so this finishes the proof.

A.6 Adding a Query Element

The goal of the section is to prove that the result holds even when you condition on a
query element. We start by proving the result for simple tabulation.

Theorem A.12. Let h : Σc → [m] be a simple tabulation hash function and let q ∈ Σc

be a designated query element. Let v : Σc × [m] × [m] → R a value function, and assume
that

∑
j∈[m] v(x, j, k) = 0 for all keys x ∈ U and all k ∈ [m]. Define the random variable

V simple
v,q =

∑
x∈Σc\{q} v(x, h(x), h(q)) and the random variables

Mv,q = max
x∈Σc\{q},j∈[m]

|v(x, j, h(q))| ,

σ2v,q =
1

m

∑
x∈Σc\{q}

∑
j∈[m]

v(x, j, h(q))2 ,

which only depend on the randomness of h(q). Then for all p ≥ 2

E
[(
V simple
v,q

)p ∣∣∣h(q)
]1/p
≤ Ψp

(
Kcγ

c−1
p Mv,q,Kcγ

c−1
p σ2v,q

)
,

where Kc = L1 (L2c)
c−1, L1 and L2 are universal constants, and

γp =

max

{
log(m) + log

( ∑
x∈Σc∥v[x]∥22

maxx∈Σc∥v[x]∥22

)
/c, p

}
log

(
e2m

(
maxx∈Σc

∥v[x]∥21
∥v[x]∥22

)−1
) .
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Proof. We start by defining a partition of Σc \ {q}. Write q = (α0, . . . , αc−1) and for
I ⊊ [c], we define GI ⊆ Σc by

GI = {x ∈ Σc \ {q} | ∀i ∈ I : (i, αi) ∈ x ∧ ∀i ̸∈ I : (i, αi) ̸∈ x}

This clearly gives a partition of Σc \ {q}. Using this we obtain,

∥∥∥V simple
v,q

∣∣∣ h(q)
∥∥∥
p

=

∥∥∥∥∥∥
∑

x∈Σc\{q}

v(x, h(x), h(q))

∣∣∣∣∣∣ h(q)

∥∥∥∥∥∥
p

=

∥∥∥∥∥∥
∥∥∥∥∥∥
∑

x∈Σc\{q}

v(x, h(x), h(q))

∣∣∣∣∣∣ (h((i, αi)))i∈[c]

∥∥∥∥∥∥
p

∣∣∣∣∣∣ h(q)

∥∥∥∥∥∥
p

≤

∥∥∥∥∥∥
∑
I⊊[c]

∥∥∥∥∥∥
∑
x∈GI

v(x, h(x), h(q))

∣∣∣∣∣∣ (h((i, αi)))i∈[c]

∥∥∥∥∥∥
p

∣∣∣∣∣∣ h(q)

∥∥∥∥∥∥
p

.

Now using Theorem A.7 we get that,∥∥∥∥∥∥
∑
I⊊[c]

∥∥∥∥∥∥
∑
x∈GI

v(x, h(x), h(q))

∣∣∣∣∣∣ (h((i, αi)))i∈[c]

∥∥∥∥∥∥
p

∣∣∣∣∣∣ h(q)

∥∥∥∥∥∥
p

≤

∥∥∥∥∥∥
∑
I⊊[c]

Ψp

Kc−|I|γ
c−1−|I|
p Mv,q,Kc−|I|γ

c−1−|I|
p

1
m

∑
x∈GI

∑
j∈[m]

v(x, j, h(q))

 ∣∣∣∣∣∣ h(q)

∥∥∥∥∥∥
p

=
∑
I⊊[c]

Ψp

Kc−|I|γ
c−1−|I|
p Mv,q,Kc−|I|γ

c−1−|I|
p

1
m

∑
x∈GI

∑
j∈[m]

v(x, j, h(q))


≤ Ψp

(
22cKcγ

c−1
p Mv,q, 2

2cKcγ
c−1
p σ2v,q

)
.

The last bound follows by using eq. (A.22) from Lemma A.32.

We now prove the result for mixed tabulation when conditioning on a query element.

Theorem A.13. Let h : Σc → [m] be a mixed tabulation hash function and let q ∈ Σc

be a designated query element. Let v : Σc × [m] × [m] → R a value function, and assume
that

∑
j∈[m] v(x, j, k) = 0 for all keys x ∈ U and all k ∈ [m]. Define the random variable

V simple
v,q =

∑
x∈Σc\{q} v(x, h(x), h(q)) and the random variables

Mv,q = max
x∈Σc\{q},j∈[m]

|v(x, j, h(q))| ,

σ2v,q =
1

m

∑
x∈Σc\{q}

∑
j∈[m]

v(x, j, h(q))2 ,
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which only depend on the randomness of h(q). For all p ≥ 2 then

E
[(
V simple
v,q

)p ∣∣∣h(q)
]1/p
≤ Ψp

(
Kcγ

c
pMv,q,Kcγ

c
pσ

2
v,q

)
(A.57)

where Kc = L1 (L2c)
c, L1 and L2 are universal constants, and

γp = max

{
1,

log(m)

log(|Σ|)
,

p

log(|Σ|)

}
.

Proof. We start by defining H = σ((h1((i, αi)), h2((i, αi)))i∈[c]). Now we get that,

∥∥∥V mixed
v,q

∣∣∣ h(q)
∥∥∥
p

=

∥∥∥∥∥∥
∑

x∈Σc\{q}

v(x, h(x), h(q))

∣∣∣∣∣∣ h(q)

∥∥∥∥∥∥
p

=

∥∥∥∥∥∥
∥∥∥∥∥∥
∑

x∈Σc\{q}

v(x, h(x), h(q))

∣∣∣∣∣∣ H
∥∥∥∥∥∥
p

∣∣∣∣∣∣ h(q)

∥∥∥∥∥∥
p

≤

∥∥∥∥∥∥
∥∥∥∥∥∥

∑
α∈Σ\{h2(q)}

ε2(α)
∑
x∈Σc

ε1(x)v(x, h1(x)⊕ h3(α), h(q)) [h2(x) = α]

∣∣∣∣∣∣ H
∥∥∥∥∥∥
p

∣∣∣∣∣∣ h(q)

∥∥∥∥∥∥
p

+

∥∥∥∥∥∥
∥∥∥∥∥∥
∑

x∈Σc\{q}

ε2(h2(q))ε1(x)v(x, h1(x)⊕ h3(h2(q)), h(q)) [h2(x) = h2(q)]

∣∣∣∣∣∣ H
∥∥∥∥∥∥
p

∣∣∣∣∣∣ h(q)

∥∥∥∥∥∥
p

For the second term we use Theorem A.12 to get that,

∥∥∥∥∥∥
∥∥∥∥∥∥
∑

x∈Σc\{q}

ε2(h2(q))ε1(x)v(x, h1(x)⊕ h3(h2(q)), h(q)) [h2(x) = h2(q)]

∣∣∣∣∣∣ H
∥∥∥∥∥∥
p

∣∣∣∣∣∣ h(q)

∥∥∥∥∥∥
p

≤ Ψp

(
22cKcγ

c−1
p Mv,q, 2

2cKcγ
c−1
p σ2v,q

)
≤ Ψp

(
22cKcγ

c
pMv,q, 2

2cKcγ
c
pσ

2
v,q

)
For the first term we use the same proof technique as in the proof of Theorem A.12. Write
q = (α0, . . . , αc−1) and for I ⊊ [c], we define GI ⊆ Σc by

GI = {x ∈ Σc \ {q} | ∀i ∈ I : (i, αi) ∈ x ∧ ∀i ̸∈ I : (i, αi) ̸∈ x}
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This clearly gives a partition of Σc \ {q}. Using this we obtain,∥∥∥∥∥∥
∑

α∈Σ\{h2(q)}

ε2(α)
∑
x∈Σc

ε1(x)v(x, h1(x)⊕ h3(α), h(q)) [h2(x) = α]

∣∣∣∣∣∣ H
∥∥∥∥∥∥
p

≤
∑
I⊊[c]

∥∥∥∥∥∥
∑

α∈Σ\{h2(q)}

ε2(α)
∑
x∈GI

ε1(x)v(x, h1(x)⊕ h3(α), h(q)) [h2(x) = α]

∣∣∣∣∣∣ H
∥∥∥∥∥∥
p

=
∑
I⊊[c]

∥∥∥∥∥∥
∑

α∈Σ\{h2(q)}

ε2(α)
∑
x∈GI

ε1(x)v(x, h1(x)⊕ h3(α), h′(q)) [h2(x) = α]

∣∣∣∣∣∣ H
∥∥∥∥∥∥
p

≤
∑
I⊊[c]

∥∥∥∥∥∥
∑
α∈Σ

ε2(α)
∑
x∈GI

ε1(x)v(x, h1(x)⊕ h3(α), h′(q)) [h2(x) = α]

∣∣∣∣∣∣ H
∥∥∥∥∥∥
p

.

We then use Theorem A.10 to get that,

∑
I⊊[c]

∥∥∥∥∥∥
∑
α∈Σ

ε2(α)
∑
x∈GI

ε1(x)v(x, h1(x)⊕ h3(α), h′(q)) [h2(x) = α]

∣∣∣∣∣∣ H
∥∥∥∥∥∥
p

≤ 2cΨp

(
Kcγ

c
pMv,q,Kcγ

c
pσ

2
v,q

)
≤ Ψp

(
22cKcγ

c
pMv,q, 2

2cKcγ
c
pσ

2
v,q

)
.

Now combining everything we get that,∥∥∥V mixed
v,q

∣∣∣ h(q)
∥∥∥
p
≤ 2Ψp

(
22cKcγ

c
pMv,q, 2

2cKcγ
c
pσ

2
v,q

)
≤ Ψp

(
22c+2Kcγ

c
pMv,q, 2

2c+2Kcγ
c
pσ

2
v,q

)
,

which finishes the proof.
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A.I Statistics over k-partitions using mixed tabulation

We will now describe how mixed tabulation hashing is used for statistics over k-partitions.
The description of the application is largely copied from [DKRT15] but now we can use our
new strong concentration bounds for mixed tabulation hashing to obtain stronger results.

We consider the generic approach where a hash function is used to k-partition a set into
k bins. Statistics are computed on each bin, and then all these statistics are combined so as
to get good concentration bounds. This approach was introduced by Flajolet and Martin
[FM85] under the name stochastic averaging to estimate the number of distinct elements
in a data stream. Today, a more popular estimator of this quantity is the HyperLogLog
counter, which is also based on k-partitioning [FFGa07; HNH13]. These types of counters
have found many applications, e.g., to estimate the neighborhood function of a graph
with all-distance sketches [BRV11; Coh14]. Later k-partitions were used for set similarity
in large-scale machine learning by Li et al. [LOZ12; SL14a; SL14b]. Under the name
one-permutation hashing, Li et al. used k-partitions to gain a factor k in speed within the
classic MinHash framework of Broder et al. [Bro97; BCFM00].

We will use MinHash for frequency estimation as an example to illustrate how mixed
tabulation yields good statistics over k-partitions: suppose we have a fully random hash
function applied to a set X of red and blue balls. We want to estimate the fraction f
of red balls. The idea of the MinHash algorithm is to sample the ball with the smallest
hash value. With a fully-random hash function, this is a uniformly random sample from
X, and it is red with probability f . For better concentration, we may use k independent
repetitions: we repeat the experiment k times with k independent hash functions. This
yields a multiset S of k samples with replacement from X. The fraction of red balls in S
concentrates around f and the error probability falls exponentially in k.

Consider now the alternative experiment based on k-partitioning, assuming that k is
a power of two. We use a single hash function, where the first log k bits of the hash value
partitions X into k bins, and then the remaining bits are used as a local hash value within
the bin. We pick the ball with the smallest (local) hash value in each bin. This is a sample
S from X without replacement, and again, the fraction of red balls in the non-empty bins
is concentrated around f with exponential concentration bounds. We note that there are
some differences. We do get the advantage that the samples are without replacement,
which means better concentration. On the other hand, we may end up with fewer samples
if some bins are empty.

The big difference between the two schemes is that the second one runs Ω(k) times
faster. In the first experiment, each ball participated in k independent experiments, but
in the second one with k-partitioning, each ball picks its bin, and then only participates
in the local experiment for that bin. Thus, time-wise, we get k experiments for the price
of one. Handling each ball, or key, in constant time is important in applications of high
volume streams.

The above approach, however, requires a very powerful hash function. The main issue
is the overall k-partitioning distribution between bins. It could be that if we get a lot of
red balls in one bin, then this would be part of a general clustering of the red balls on a
few bins (examples showing how such systematic clustering can happen with simple hash
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functions are given in [PT10]). This clustering would disfavor the red balls in the overall
average even if the sampling in each bin was uniform and independent. This is an issue
of non-linearity, e.g., if there are already more red than blue balls in a bin, then doubling
their number only increases their frequency by at most 3/2. We note that k-independence
does not by itself suffices to give any guarantees in this situation.

Using mixed tabulation hashing We will now show mixed tabulation can be applied
in the above application using selective full randomness from Theorem A.19 in tandem
with the concentration from (A.14). Combined they give:

Let h : Σc → {0, 1}ℓ be a mixed tabulation hash function using d derived
characters. Let M be an ℓ-bit mask with don’t cares. For a given key set
X ⊆ Σc, let Y be the set of keys from X with hash values matching M . If
Ω(|Σ|) = E[Y ] = |Σ|(1−Ω(1)), then with probability 1−O(|Σ|1−⌊d/2⌋), the free
bits of the hash values in Y are fully random. Moreover, with this probability,
|Y | = E[Y ](1±O(

√
(log |Σ|)/|Σ|)).

For the k-partitioning, we need k to be bounded relative to the alphabet size as k ≤ |Σ|
4d ln |Σ| .

Recall here our hash tables need space O(|Σ|) which then has to be a logarithmic factor
bigger than k. This may motivate 16-bit characters rather than 8-bit characters, but on
modern computers this still fits in fast cache.

We a set X of n red and blue balls, and for simplicity in our analysis, we assume
that the ratio between them is at most a factor 2. If n ≤ |Σ|/2, Theorem A.19 with
all bits free states that the balls hash fully-randomly with high probability. This means
that any analysis based on fully-random hashing applies directly. Otherwise let q =
⌈log(n/(2|Σ|/3)⌉. We study the set of balls Y that has q leading zeros in their local hash
value. These q bits are the fixed bits in the mask Theorem A.19. The expected size of Y
is between |Σ|/3 and 2|Σ|/3, so by Theorem A.19, w.h.p., all other bits in the hash values
of Y are fully random, including both the global index of log k bits and the tail of bits in
the local hash value after the q leading zeros. Moreover, (A.14), imply that the size of Y
is at most a factor

1±O(
√

(log |Σ|)/|Σ|) = 1±O(
√

1/k)

from its mean, and the same holds for the ratio between red and blue balls in our simple
case where there are more than n/4 of each.

We claim that, w.h.p, all bins get a ball from Y . We know that E[|Y |] ≥ |Σ|/3 ≥
2kd ln |Σ|/3, so w.h.p., |Y | ≥ kd ln |Σ|/2. Consider now any bin i. Since the bin indices are
fully random, the probability that i gets no ball from Y is at most (1 − 1/k)kd(ln |Σ|/2) <
1/|Σ|d/2. A union bound now implies that all bins get a ball from Y with probability
1− k/|Σ|d/2 ≥ 1− |Σ|1−d/2.

Since every bin contains a ball from Y and these are the balls with q leading zeros in
their local hash, the MinHash ball from X in each bin is from Y . Since all keys from Y
have at least q leading zeros in their hash values and all other bits are fully random, this
means that, w.h.p., the result of the experiment is exactly the same as if we applied it to
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Y using a fully random hash function, and our concentration bounds imply that the ratio
between red and blue balls is well-preserved from X to Y .

The important point in the above analysis is that it is only the analysis that needs to
know anything about n. This is important in more complicated contexts, e.g., streaming
where n is not known in advance, or in set similarity where red balls represent the inter-
section of sets while the blue balls represent their symmetric difference, and where we use
the k-partitions to compare sets of many different sizes. We know that mixed tabulation
hashing is almost as good fully random hashing as long as k ≤ |Σ|

4d ln |Σ| .

The above description is very similar to the one of Dahlgaard et al. [DKRT15]. The
difference is that we now have the right concentration bounds for twisted tabulation,
e.g., Dahlgaard et al., had the additional constraint that k ≤ |Σ|

log |Σ|(loglog |Σ|)2 , which is

completely unnecessary.
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Dansk resumé

The Sparse Johnson-Lindenstrauss Transform of Kane and Nelson (SODA 2012)
provides a linear dimensionality-reducing map A ∈ Rm×u in ℓ2 that preserves distances
up to distortion of 1 + ε with probability 1 − δ, where m = O(ε−2 log 1/δ) and each
column of A has O(εm) non-zero entries. The previous analyses of the Sparse Johnson-
Lindenstrauss Transform all assumed access to a Ω(log 1/δ)-wise independent hash
function. The main contribution of this paper is a more general analysis of the Sparse
Johnson-Lindenstrauss Transform with less assumptions on the hash function. We also
show that the Mixed Tabulation hash function of Dahlgaard, Knudsen, Rotenberg, and
Thorup (FOCS 2015) satisfies the conditions of our analysis, thus giving us the first
analysis of a Sparse Johnson-Lindenstrauss Transform that works with a practical
hash function.
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B.1 Introduction

Dimensionality reduction is an often applied technique to obtain a speedup when working
with high dimensional data. The basic idea is to map a set of points X ⊆ Ru to a lower
dimension while approximately preserving the geometry. The Johnson-Lindenstrauss
lemma [JL84] is a foundational result in that regard.

Lemma B.1 ([JL84]). For any 0 < ε < 1, integers n, u, and X ⊆ Ru with |X| = n, there
exists a map f : X → Rm with m = O(ε−2 log n) such that

∀w,w′ ∈ X,
∣∣∥∥f(w)− f(w′)

∥∥
2
−
∥∥w − w′∥∥

2

∣∣ ≤ ε∥∥w − w′∥∥
2
.

It has been shown in [AK17; LN17] that the target dimension m is optimal for nearly
the entire range of n, u, ε. More precisely, for any n, u, ε there exists a set of points X ⊆ Ru
with |X| = n such that for any map f : X → Rm where the Euclidean norm is distorted
by at most (1± ε) must have m = Ω(min

{
u, n, ε−2 log(ε2n)

}
).

All known proofs of the Johnson-Lindenstrauss lemma constructs a linear map f . The
original proof of Johnson and Lindenstrauss [JL84] chose f(x) = Πx where Π ∈ Rm×u

is an appropriately scaled orthogonal projection into a random m-dimensional subspace.
Another simple construction is to set f(x) = 1√

m
Ax where A ∈ Rm×u and each entry is

an independent Rademacher variable.1 In both cases, it can be shown that as long as
m = Ω(ε−2 log 1/δ) then

∀w ∈ Ru, Pr
[∣∣∣∥f(w)∥22 − ∥w∥

2
2

∣∣∣ ≥ ε ∥w∥22] ≤ δ. (B.1)

The Johnson-Lindenstrauss lemma follows by setting δ < 1/
(
n
2

)
and taking w = z− z′ for

all pairs z, z′ ∈ X together with a union bound. (B.1) is also known as the distributional
Johnson-Lindenstrauss lemma and it has been shown that the target dimension m is tight,
more precisely, m must be at least Ω(min

{
u, ε−2 log 1/δ

}
) [JW13; KMN11].

Sparse Johnson-Lindenstrauss Transform. One way to speed up the embedding
time is replacing the dense A of the above construction by a sparse matrix. The first
progress in that regard came by Achlioptas in [Ach03] who showed that A can be chosen
with i.i.d. entries where Aij = 0 with probability 2/3 and otherwise Aij is chosen uniformly

in ±
√

3
m . He showed that this construction can achieve the same m as the best analyses

of the Johnson-Lindenstrauss lemma. Hence this achieves essentially a 3x speedup, but
the asymptotic embedding time is still O(m ∥x∥0) where ∥x∥0 is number of non-zeros of
x.

Motivated by improving the asymptotic embedding time, Kane and Nelson in [KN14],
following the work in [DKS10; KN10; BOR10], introduced the Sparse Johnson-
Lindenstrauss Transform which maps down to essentially optimal dimension m =
O(ε−2 log n) and only has s = O(ε−1 log n) non-zeros entries per column. This speeds

1A Rademacher variables, X, is a random variable that is chosen uniformly in ±1, i.e., Pr[X = 1] =
Pr[X = −1] = 1

2
.
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up the embedding time to O(ε−1 log n ∥x∥0) = O(εm ∥x∥0) thus improving the em-
bedding time by a factor of ε−1. It nearly matches a sparsity lower bound by Nel-
son and Nguyen [NN13] who showed that any sparse matrix needs at least s =
Ω(ε−1 log(n)/ log(1/ε)) non-zeros per column.

Using Hashing. When the input dimension, u, is large it is not feasible to store the
matrix A explicitly. Instead, we use a hash function to calculate the non-zero entries
of A. Unfortunately, the previous analyses of the Sparse Johnson-Lindenstrauss Trans-
form [KN14; CJN18] assume access to a Ω(log 1/δ)-wise independent hash function which
is inefficient. This motivates the natural question:

What are the sufficient properties we need of the hash function for a Sparse
Johnson-Lindenstrauss Transform to work?

The goal of this work is to make progress on this question. In particular, we provide a
new analysis of a Sparse Johnson-Lindenstrauss Transform with fewer assumptions on the
hash function. This improved analysis allows us to conclude that there exists a Sparse
Johnson-Lindenstrauss Transform that uses Mixed Tabulation hashing which is efficient.

Mixed Tabulation Hashing. Before introducing Mixed Tabulation hashing, we will
first discuss Simple Tabulation hashing which was introduced by Zobrist [Zob70]. Simple
Tabulation hashing takes an integer parameter c > 1, and we view a key x ∈ [u] =
{0, . . . , u− 1} as a vector of c characters, x0, . . . , xc−1 ∈ Σ = [u1/c]. For each character,
we initialize a fully random table Ti : Σ→ [2r] and the hash value of x is then calculated
as

h(x) = T0[x0]⊕ . . .⊕ Tc−1[xc−1],

where ⊕ is the bitwise XOR-operation. We say that h is a Simple Tabulation hash function
with c characters.

We can now define Mixed Tabulation hashing which is a variant of Simple Tabulation
hashing that was introduced in [DKRT15]. As with Simple Tabulation hashing, Mixed
Tabulation hashing takes c > 1 as a parameter, and it takes a further integer parameter
d ≥ 1. Again, we view a key x ∈ [u] as vector of c characters, x0, . . . , xc−1 ∈ Σ = [u1/c].
We then let h1 : Σc → [2r], h2 : Σc → Σd, and h3 : Σd → [2r] be independent Simple
Tabulation hashing. Mixed Tabulation hashing is then defined as follows

h(x) = h1(x)⊕ h3(h2(x)).

We say that h a mixed tabulation hash function with c characters and d derived characters.
We call h2(x) ∈ Σd the derived characters. Mixed Tabulation hashing can be efficiently
implemented by storing h1 and h2 as a single table with entries in [2r]×Σd, so the whole
hash function can be computed with just c+ d lookups.
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Our Contributions. Our main contribution is a new analysis of a Sparse Johnson-
Lindenstrauss Transform that does not rely on the high independence of the hash func-
tion. Instead we show that it suffices that the hash function supports a decoupling-
decomposition combined with strong concentration bounds.

We show that Mixed Tabulation hashing satisfies these conditions. This gives the first
instance of a practical hash function that can support a Sparse Johnson-Lindenstrauss
Transform.

B.1.1 Sparse Johnson-Lindenstrauss Transform

As mentioned earlier, the Sparse Johnson-Lindenstrauss Transform was introduced by
Kane and Nelson [KN14] and they provided two different constructions with the same
sparsity. Later a simpler analysis was given in [CJN18] which also generalized the result
to a more general class of constructions. In this paper, we will only focus on one of the
constructions which is described below.

Before we discuss the construction of the Sparse Johnson-Lindenstrauss Transform,
we will first consider the related CountSketch which was introduced in [CCF04] and was
analyzed for dimensionality reduction in [TZ12]. In CountSketch, we construct the matrix
A as follows: We pick a pairwise independent hash function, h : [u] → [m], and a 4-wise
independent sign function σ : [u] → {−1, 1}. For each x ∈ [u], we set Ah(x),x = σ(x)
and the rest of the x’th column to 0. Clearly, this construction has exactly 1 non-zero
entry per column. It was shown in [TZ12] that if m = Ω(ε−2δ−1) then it satisfies the
distributional Johnson-Lindenstrauss lemma, eq. (B.1). The result follows by bounding
the second moment of ∥Ax∥22−∥x∥

2
2 for any x ∈ Rd and then apply Chebyshev’s inequality.

The bad dependence in the target dimension, m, on the failure probability, δ, is be-
cause we only use the second moment. So one might hope that you can improve the
dependence by looking at higher moments instead. Unfortunately, it is not possible to
improve the dependence for general x ∈ Rd, and it is only possible to improve the de-
pendence if ∥x∥2∞ / ∥x∥22 is small. Precisely, how small ∥x∥2∞ / ∥x∥22 has to be, has been
shown in [FKL18]. So to improve the dependence on δ, we need to increase the number
of non-zero entries per column.

We are now ready to describe the construction of the Sparse Johnson-Lindenstrauss
Transform. The construction is to concatenate s CountSketch matrices and scale the
resulting matrix by 1√

s
. This clearly gives a construction that has s non-zero entries per

column and as it has been shown in [KN14; CJN18] if s = Ω(ε−1 log(1/δ)) then we can
obtain the optimal target dimension m = O(ε−2 log(1/δ)). More formally, we construct
the matrix A as follows:

1. We pick a hash function, h : [s] × [u] → [m/s] and a sign function σ : [s] × [u] →
{−1, 1}.

2. For each x ∈ [u], we set Ai·m/s+h(i,x),x = σ(i,x)√
s

for every i ∈ [s] and the rest of the

x’th column to 0.
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In the previous analyses [KN14; CJN18], it was shown that if h and σ are Ω(log 1/δ)-
wise independent then the construction works. Unfortunately, it is not practical to use
a Ω(log 1/δ)-wise independent hash function so the goal of this work is to obtain an
analysis of a Sparse Johnson-Lindenstrauss Transform with fewer assumptions about the
hash function. In particular, we relax the assumptions of the hash function, h, and the
sign function, σ, to just satisfying a decoupling-decomposition and a strong concentration
property. The formal theorem is stated in Appendix B.3.

We also show that Mixed Tabulation satisfies these properties and thus that the Sparse
Johnson-Lindenstrauss Transform can be implemented using Mixed Tabulation. Let us
describe more formally, what we mean by saying that Mixed Tabulation can implement
the Sparse Johnson-Lindenstrauss Transform. We let h1 : Σc = [u]→ [m/s], h2 : Σc → Σd,
and h3 : Σd → [m/s] be the independent Simple Tabulation hash functions that implement
the Mixed Tabulation hash function, h1(x)⊕ h3(h2(x)). We then extend it to the domain
[s]× [u] as follows:

1. Let h′2 : [s] × Σc → Σd be defined by h′2(i, x) = h2(x) ⊕ (i, . . . , i)︸ ︷︷ ︸
d times

, i.e., each derived

character gets xor’ed by i.

2. We then define h : [s] × [u] → [m/s] and σ : [s] × [u] → {−1, 1} by h(i, x) =
h1(x) ⊕ h3(h

′
2(i, x)) and σ(i, x) = σ1(x) · σ3(h′2(i, x)), where h1 and h3 are the

Simple Tabulation hash functions described above, and σ1 : Σc → {−1, 1} and
σ3 : Σd → {−1, 1} are independent Simple Tabulation functions.

B.1.2 Hashing Speed

When we use tabulation schemes, it is often as a fast alternative to Ω(log n)-independent
hashing. Typically, we implement a q-independent hash function using a degree q − 1
polynomial in O(q) time, and Siegel [Sie04] has proved that this is best possible unless
we use large space. More precisely, for some key domain [u], if we want to do t <
q memory accesses, then we need space at least u1/t. Thus, if we want higher than
constant independence but still constant evaluation times, then we do need space uΩ(1).
In our application, we have to compute many hash values simultaneously, so an alternative
strategy would be to evaluate the polynomial using multi-point evaluation. This would
reduce the time per hash value to O(log2 q) but this is still super constant time.

With tabulation hashing, we use tables of size O(|Σ|) where |Σ| = u1/c and c = O(1).
The table lookups are fast if the tables fit in cache, which is easily the case for 8-bit
characters. In connection with each lookup, we do a small number of very fast AC0

operations: a cast, a bit-wise xor, and a shift. This is incomparable to polynomial in the
sense of fast cache versus multiplications, but the experiments from [AKKR+20, Table
1] found Simple Tabulation hashing to be faster than evaluation a 2-wise independent
polynomial hashing.

Tabulation schemes are most easily compared by the number of lookups. Storing h1
and h2 in the same table, Mixed Tabulation hashing uses c+ d lookups. With d = c, the
experiments from [AKKR+20] found Mixed Tabulation hashing to be slightly more than
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twice as slow as Simple Tabulation hashing, and the experiments from [DKT17] found
Mixed Tabulation hashing to be about as fast as 3-wise independent polynomial hashing.
This motivates our claim that Mixed Tabulation hashing is practical.

In theory, we could also use a highly independent hash function that uses large space,
but we don’t know of any efficient construction. Siegel states about his construction,
it is “far too slow for any practical application” [Sie04], and while Thorup [Tho13] has
presented a simpler construction than Siegel’s, it is still not efficient. The experiments
in [AKKR+20] found it to be more than an order magnitude slower than Mixed Tabulation
hashing.

B.2 Related Work

Even Sparser Johnson-Lindenstrauss Transforms. As touched upon earlier, there
is a lower bound by Nelson and Nguyen [NN13] that rules out significant improvements,
but never the less there has been research into sparser embedding. In the extreme, Feature
Hashing of [WDLS+09] considers the case of s = 1. The lower bound excludes Feature
Hashing from working for all vectors, but in [FKL18] they gave tight bounds for which
vectors it works in terms of the measure ∥w∥2∞ / ∥w∥22. This was later generalized in [Jag19]
to a complete understanding between the tradeoff between s and the measure ∥w∥2∞ / ∥w∥22.
In this paper, we will only focus on the case s = Θ(ε−1 log 1/δ) and m = Θ(ε−2 log 1/δ)

Fast Johnson-Lindenstrauss Transform. Another direction to speed-up the eval-
uation of Johnson-Lindenstrauss transforms is to exploit dense matrices with fast
matrix-vector multiplication. This was first done by Ailon and Chazelle [AC09]
who introduced the Fast Johnson-Lindenstrauss Transform. Their original construc-
tion was recently [FHL22] shown to give an embedding time O(u log u + m(log 1/δ +
ε log2(1/δ)/ log(1/ε))).

This has generated a lot follow-up work that has tried to improve the running
to a clean O(u log u). Some of the work sacrifice the optimal target dimension,
m = O(ε−2 log 1/δ), in order to speed-up the construction, and are satisfied with
sub-optimal m = O(ε−2 log n log4 u) [KW11], m = O(ε−2 log3 n) [DGCN+09], m =
O(ε−1 log3/2 n log3/2 u+ε−2 log n log4 u) [KW11], m = O(ε−2 log2 n) [HV11; Vyb11; FL20],
and m = O(ε−2 log n log2(log n) log3 u) [JPSS+22]. Another line of progress is to assume
that the target dimension, m, is substantially smaller then the starting dimension, u. Un-
der the assumption that m = o(u1/2) the work in [AL08; BK21] achieves embedding time
O(u logm). The only construction that for some regimes improves on the original Fast
Johnson-Lindenstrauss Transform is the recent analysis [JPSS+22] of the Kac Johnson-
Lindenstrauss Transform, which uses the Kac random walk [Kac56]. They show that it
can achieve an embedding time of O(u log u+ min

{
u log n,m log n log2(log n) log3 u

}
).

Previous Work on Tabulation Hashing. The work by Patrascu and Thorup [PT12]
initiated the study of tabulation based hashing that goes further than what 3-wise indepen-
dence of constructions would suggest. A long line of papers have shown tabulation based
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hashing to work for min-wise hashing [PT13; DT14], hashing for k-statistics [DKRT15],
and the number of non-empty-bins [AT19]. Furthermore, multiple papers have been con-
cerned with showing strong concentration results for tabulation based hashing [PT12;
PT13; AKKR+20; HT22]. Tabulation based hashing has also been studied experimen-
tally where they have been shown to exhibit great performance [DKT17; AKKR+20].

B.2.1 Preliminaries

In this section, we will introduce the notation which will be used throughout the paper.
First we introduce p-norms.

Definition B.2 (p-norm). Let p ≥ 1 and X be a random variable with E[|X|p] <∞. We

then define the p-norm of X by ∥X∥p = E[|X|p]1/p.

Throughout the paper, we will repeatedly work with value functions v : U × [m]→ R.
We will allow ourself to sometime view them as vectors, and in particular, we will write

∥v∥2 =

√∑
x∈U

∑
j∈[m/s]

v(x, j)2,

∥v∥∞ = max
x∈U,j∈[m/s]

|v(x, j)| .

We will also use the Ψp-function introduced in [HT22].

Definition B.3. For p ≥ 2 we define the function Ψp : R+ × R+ → R+ as follows,

Ψp(M,σ2) =


(

σ2

pM2

)1/p
M if p < log pM2

σ2

1
2

√
pσ if p < e2 σ

2

M2

p

e log pM2

σ2

M if max
{

log pM2

σ2 , e
2 σ2

M2

}
≤ p

.

It was shown in [HT22] that Ψp(1, λ) is within a constant factor of the p-norm of a
Poisson distributed random variable with parameter λ. They also showed that Ψp(M,σ2)
can be used to upper bound expressions involving a fully random hash function h : U →
[m]. Let v : U × [m]→ R be a value function then they showed that∥∥∥∥∥∑

x∈U
v(x, h(x))

∥∥∥∥∥
≤

CΨp(∥v∥∞ , ∥v∥22 /m) ,

where C is a universal constant.

B.3 Overview of the New Analysis

Our main technical contribution is a new analysis of the Sparse Johnson-Lindenstrauss
Transform that relaxes the assumptions on the hash function, h. We show that if h
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satisfies a decoupling decomposition property and a strong concentration property then
we obtain the same bounds for the Sparse Johnson-Lindenstrauss Transform. Both of
these properties are satisfied by h if h is Ω(log 1/δ)-wise independent so our assumptions
are weaker than those of the previous analyses.

In this section, we will give an informal overview of new approach. The technical
details and the formal statement of the result will be in Appendix B.4.

In order to describe our approach, we look at the random variable

Z = ∥Aw∥22 − 1 =
1

s

∑
i∈[s]

∑
x ̸=y∈[u]

σ(i, x)σ(i, y) [h(i, x) = h(i, y)]wxwy. (B.2)

Here w ∈ Ru is a unit vector. With this notation the goal becomes to bound Pr[|Z| ≥ ε].
The first step in our analysis is that we want to decouple eq. (B.2). Decoupling was

also used in one of the proofs in [CJN18], but since we want to prove the result for more
general hash functions, we cannot directly use the standard decoupling inequalities. We
will instead assume that our hash function allows a decoupling-decomposition. This will
formally be defined in Appendix B.4 and we will for now assume that our hash function
allows for the standard decoupling inequality. If we apply Markov’s inequality and a
standard decoupling inequality for fully random hashing we obtain the expression.

Pr[|Z| ≥ ε] ≤ ε−p E[|Z|p]

≤
(
ε−1 4

s

)p
E

∣∣∣∣∣∣
∑
i∈[s]

∑
x,y∈[u]

σ(i, x)σ′(i, y)
[
h(i, x) = h′(i, y)

]
wxwy

∣∣∣∣∣∣
p (B.3)

where (h′, σ′) are independent copies of (h, σ) and p ≥ 2. The power of decoupling stems
from the fact that it breaks up some of the dependencies and allows for a simpler analysis.

The goal is now to analyse
∥∥∥∑i∈[s]

∑
x,y∈[u] σ(i, x)σ′(i, y) [h(i, x) = h′(i, y)]wxwy

∥∥∥
p
.

This is done by first fixing (h′, σ′) and bounding∥∥∥∑i∈[s],j∈[m/s]
∑

x∈[u] σ(i, x) [h(i, x) = j]wxaij

∥∥∥
p

using the randomness of (h, σ) where

aij =
∑

y∈[u] σ
′(i, y) [h′(i, y) = j]wy. In order to do this, we will assume that the pair

(h, σ) is strongly concentrated. Again the formal definition of this is postponed to
Appendix B.4, but informally, we say that the pair is strongly concentrated if it has
concentration results similar to those of fully random hashing.

We now take the view that |aij | is the load of the bin (i, j) ∈ [s]× [m/s]. The idea is
then to split [s]× [m/s] into heavy and light bins and handle each separately. We choose
a parameter k and let I be the heaviest k bins. Using the triangle inequality, we then get
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that∥∥∥∥∥∥
∑

i∈[s],j∈[m/s]

∑
x∈[u]

σ(i, x) [h(i, x) = j]wxaij

∥∥∥∥∥∥
p

≤

∥∥∥∥∥∥
∑

(i,j)∈I

∑
x∈[u]

σ(i, x) [h(i, x) = j]wxaij

∥∥∥∥∥∥
p

+

∥∥∥∥∥∥
∑

(i,j)∈[s]×[m/s]\I

∑
x∈[u]

σ(i, x) [h(i, x) = j]wxaij

∥∥∥∥∥∥
p

.

We show that the contribution from the light bins is as if the collisions are independent.
This should be somewhat intuitive since if we only have few collisions in each bin then the
collisions behave as if they were independent. In contrast, we show that the contribution
from the heavy bins is dominated by the heaviest bin. This turns out to be exactly what
we need to finish the analysis.

B.4 Technical Results

In this section, we will expand on the description from Appendix B.3 and formalize the
ideas.

Decoupling. Ideally, we would like to use the standard decoupling inequality, eq. (B.3).
Unfortunately, we cannot expect more general hash functions to support such a clean
decoupling. We therefore introduce the notion of a decoupling-decomposition.

Definition B.4 (Decoupling-decomposition). Let p ≥ 2, L ≥ 1, and 0 ≤ γ ≤ 1. We say
that a collection of possibly randomized sets, (Uα), is a (p, L, γ)-decoupling-decomposition
for a property P of a pair (h, σ), if there exist hash functions hα : [s] × Uα → [m/s] and
sign functions s : [s]× Uα → {−1, 1} for all α such that

Pr[|Z| ≥ ε]

≤

ε−1
∑
α

L

s

∥∥∥∥∥∥
∑
i∈[s]

∑
x,y∈Uα

σα(i, x)σ′α(i, y)
[
hα(i, x) = h′α(i, y)

]
wxwy

∥∥∥∥∥∥
p

p

+ γ
(B.4)

where (hα, σα) and (h′α, σ
′
α) has the same distribution, and (hα, σα) satisfies the property

P when conditioned on (h′α, σ
′
α) and Uα.

The reader should compare eq. (B.3) for fully random hashing with eq. (B.4). There
are 3 main differences between the expressions.

1. The first thing to notice is that, in the decoupling-decomposition we sum over dif-
ferent sets (Uα), where this is not needed for fully random hashing. We allow the
decoupling-decomposition to use a different decoupling on each of the sets Uα. This
is very powerful since general hash functions are not necessarily uniform over the
input domain.
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2. For the decoupling-decomposition, we allow an additive error probability γ. This is
useful if the hash function allows for decoupling most of the time except when some
unprobable event is happening.

3. The last difference is that a much larger loss-factor is allowed by the decoupling-
decomposition than eq. (B.3). In the case of fully random hashing, we only lose a
factor of 4 but for more general hash functions this loss might be bigger.

Finally, we note that eq. (B.3) implies if (h, σ) is 2p-wise independent for an integer
p ≥ 2 then [u] is a decoupling-decomposition of (h, σ) for any property P that is satisfied
by (h, σ).

Strong Concentration. The second property we need is that the hash function is
strongly concentrated.

Definition B.5 (Strong concentration). Let h : [s] × U → [m/s] be a hash function and
σ : [s] × U → {−1, 1} be a sign function. We say that the pair (h, σ) is (p, L)-strongly-
concentrated if

1. For all value functions, v : [s]× [m/s]→ R, and all vectors, w ∈ RU ,∥∥∥∥∥∥
∑
i∈[s]

∑
x∈U

σ(i, x)v(i, h(i, x))wx

∥∥∥∥∥∥
p

≤ Ψp

(
L ∥v∥∞ ∥w∥∞ , L

s

m
∥v∥22 ∥w∥

2
2

)
, (B.5)

∥∥∥∥∥∥
∑
i∈[s]

∑
x∈U

σ(i, x)v(i, h(i, x))wx

∥∥∥∥∥∥
p

≤
√
L

p

log(m/s)
∥v∥22 ∥w∥

2
2 . (B.6)

2. For all vectors, w ∈ RU ,∥∥∥∥∥∥
∑
i∈[s]

∑
j∈[m/s]

(∑
x∈U

σ(i, x) [h(i, x) = j]wx

)2
∥∥∥∥∥∥
p/2

≤ Lmax

{
s ∥w∥22 ,

p

logm/s
∥w∥22

}
.

(B.7)

3. If p ≤ logm,∥∥∥∥∥ max
i∈[s],j∈[m/s]

∣∣∣∣∣∑
x∈U

σ(i, x) [h(i, x) = j]wx

∣∣∣∣∣
∥∥∥∥∥
p

≤ e

√
L

logm

logm/s
∥w∥2 . (B.8)

We need essentially 3 different properties of our hash function to say that it is strongly
concentrated.
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1. The first property is a concentration result on the random variable

∑
i∈[s]

∑
x∈U

σ(i, x)v(i, h(i, x))wx.

Here we need two different concentration results: The first concentration result,
eq. (B.5), roughly corresponds to a p-norm version of what you would obtain by
applying Bennett’s inequality to a fully random hash function, while the second
concentration result, eq. (B.5), corresponds to the best hypercontractive result you
can obtain for weighted sums of independent Bernoulli-Rademacher variables with
parameter s/m.2

2. The second property bounds the sum of squares

W =
∑
i∈[s]

∑
j∈[m/s]

(∑
x∈U

σ(i, x) [h(i, x) = j]wx

)2

.

The condition, eq. (B.7), bounds ∥W∥p/2 by the maximum of two cases. The first
case corresponds to E[W ], and the second case is motivated by applying eq. (B.6)
to

sup
z∈R[s]×[m/s],

∥z∥2=1

∥∥∥∥∥∥
∑
i∈[s]

∑
j∈[m]

∑
x∈U

σ(i, x)zi,h(i,x)wx

∥∥∥∥∥∥
2

p

.

While this at first glance might seem odd, it is roughly the best you can do, since
one can show that

max

E[W ] , sup
z∈R[s]×[m/s],

∥z∥2=1

∥∥∥∥∥∥
∑
i∈[s]

∑
j∈[m]

∑
x∈U

σ(i, x)zi,h(i,x)wx

∥∥∥∥∥∥
2

p

 ≤ ∥W∥p/2 .

3. The final property is a bound on the largest coordinate,
maxi∈[s],j∈[m/s]

∣∣∑
x∈U σ(i, x) [h(i, x) = j]wx

∣∣. The bound is a natural conse-
quence of eq. (B.6) for fully random hashing. Namely, for fully random hashing we

2A Bernoulli-Rademacher variable with parameter α is random variable, X ∈ {−1, 0, 1}, with
Pr[X = 1] = Pr[X = −1] = α/2 and Pr[X = 0] = 1− α.
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get that ∥∥∥∥∥ max
i∈[s],j∈[m/s]

∣∣∣∣∣∑
x∈U

σ(i, x) [h(i, x) = j]wx

∣∣∣∣∣
∥∥∥∥∥
p

≤

∥∥∥∥∥ max
i∈[s],j∈[m/s]

∣∣∣∣∣∑
x∈U

σ(i, x) [h(i, x) = j]wx

∣∣∣∣∣
∥∥∥∥∥
logm

≤ e max
i∈[s],j∈[m/s]

∥∥∥∥∥
∣∣∣∣∣∑
x∈U

σ(i, x) [h(i, x) = j]wx

∣∣∣∣∣
∥∥∥∥∥
logm

≤ e

√
L

logm

logm/s
∥w∥2 .

This derivation is not true for general hash function, but the hash function can still
satisfy eq. (B.8).

The results of [HT22] show that if the hash function h : [s]× U → [m/s] and the sign
function σ : [s]×U → [m/s] is p-wise independent for an integer p ≥ 2 then the pair (h, σ)
is (p,K)-strongly-concentrated where K is a universal constant.

The Main Result. We are now ready to state our main result which is a new analysis
of a Sparse Johnson-Lindenstrauss Transform that only assumes that the hash function
has a decoupling-decomposition for the strong concentration property.

Theorem B.6. Let h : [s]× [u]→ [m/s] be a hash function and σ : [s]× [u]→ {−1, 1} be a
sign function. Furthermore, let 0 < ε < 1 and 0 < δ < 1 be given, and define p = log 1/δ.

Assume that there exists constants L1, L2, L3, and 0 ≤ γ < 1, that only depends on
(h, σ) and p, such that

1. There exists a (p, L1, γ)-decoupling-decomposition, (Uα), for the (p, L2)-strong-
concentration property of (h, σ)

2. For all vectors w ∈ Ru,
∑

α

∑
x∈Uα

w2
x ≤ L3 ∥w∥22.

3. m ≥
(
16e7L2

1L
3
2L

2
3

)
· ε−2 log(1/δ).

4. s ≥
(

64e3L1L
3/2
2 L3

)
· ε−1 log(1/δ).

Then the following is true

Pr[|Z| ≥ ε] ≤ δ + γ.

As discussed earlier, a fully random hash function satisfies all the property needed of
the theorem and thus gives a new analysis of the Sparse Johnson-Lindenstrauss Transform
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for fully random hashing. We will also later show that Mixed Tabulation satisfies the as-
sumption of the theorem hence giving the first analysis of a Sparse Johnson-Lindenstrauss
Transform with a practical hash function that works.

The main difficulty in the analysis of Theorem B.6 is contained in the following techni-
cal lemma. The idea in the proof of Theorem B.6 is to use the decoupling-decomposition
and apply the following lemma to each part.

Lemma B.7. Let h, h : [s] × U → [m/s] be hash functions and σ, σ : [s] × U → {−1, 1}
be sign functions. Let p ≥ 2 and assume that there exists a constant L such that (h, σ)
is (p, L)-strongly concentrated when conditioning on (h, σ), and similarly, (h, σ) is (p, L)-
strongly concentrated when conditioning on (h, σ). Then for all vectors w ∈ RU ,∥∥∥∥∥∥

∑
i∈[s]

∑
x,y∈U

σ(i, x)σ(i, y)
[
h(i, x) = h(i, y)

]
wxwy

∥∥∥∥∥∥
p

≤ Ψp

(
32e3L3/2 ∥w∥22 , 32e6L3 s

2

m
∥w∥42

)
+ 36e3L

p

logm/s
∥w∥22 .

The lemma shows that the expression has two different regimes. The first regime,

Ψp

(
32e3L3/2 ∥w∥22 , 32e6L3 s2

m ∥w∥
4
2

)
, is essentially what we would expect if each of

the collisions,
[
h(i, x) = h(i, y)

]
, are independent of each other. The other regime,

36e3L p
logm/s ∥w∥

2
2, is essentially what you expect the largest coordinate to contribute.

Our analysis is inspired by these two regimes and tries to exploit them explicitly.
We start by fixing (h, σ) and divide the coordinates into heavy and light coordinates. We

then show that contribution of the light coordinates is Ψp

(
32e3L3/2 ∥w∥22 , 32e6L3 s2

m ∥w∥
4
2

)
which matches the intuition that if we only have few collisions on each coordinate then the
collisions behave as if they were independent. Similarly, we show that the contribution of
the heavy coordinates is dominated by the heaviest coordinate, namely, the contribution
is 36e3L p

logm/s ∥w∥
2
2.

B.4.1 Mixed Tabulation Hashing

Our main result for Mixed Tabulation hashing is the following.

Theorem B.8. Let h : [s]× [u] → [m/s] and σ : [s]× [u] → {−1, 1} be Mixed Tabulation
functions as described in Appendix B.1.1. Furthermore, let 0 < ε < 1 and 0 < δ < 1 be
given, and define p = log 1/δ.

If m ≥ γ3cp ε
−2 log(1/δ) and s ≥ γ

3/2c
p ε−1 log(1/δ) where γp = Kcmax

{
1, p

log|Σ|

}
for a

universal constant K.

Then the following is true

Pr[|Z| ≥ ε] ≤ δ + ε3c |Σ|−d .
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The result follows by proving that Mixed Tabulation hashing has a
(p, 4c+2, 4ε−23c sm |Σ|

−d)-decoupling-decomposition and that Mixed Tabulation has
the strong concentration property. The main new part is in showing the decoupling-
decomposition while the analysis of the strong concentration property is modification of
the analysis in [HT22].

B.5 Analysis of the Sparse Johnson-Lindenstrauss
Transform

Lets us start by showing how Lemma B.7 implies our main result, Theorem B.6.

Proof of Theorem B.6. We start by using eq. (B.4) of the decoupling decomposition to
get that

Pr[|Z| ≥ ε]

≤

ε−1
∑
α

L1

s

∥∥∥∥∥∥
∑
i∈[s]

∑
x,y∈Uα

σα(i, x)σ′α(i, y)
[
hα(i, x) = h′α(i, y)

]
vxvy

∥∥∥∥∥∥
p

p

+ γ

Now we fix α and apply Lemma B.7 while fixing Uα∥∥∥∥∥∥
∑
i∈[s]

∑
x,y∈Uα

σα(i, x)σ′α(i, y)
[
hα(i, x) = h′α(i, y)

]
vxvy

∥∥∥∥∥∥
p

≤ Ψp

(
32e3L

3/2
2 , 32e6L3 s

2

m

) ∑
x∈Uα

w2
x + 36e3L2

p

logm/s

∑
x∈Uα

w2
x

Using this we get that

∑
α

L1

s

∥∥∥∥∥∥
∑
i∈[s]

∑
x,y∈Uα

σα(i, x)σ′α(i, y)
[
hα(i, x) = h′α(i, y)

]
vxvy

∥∥∥∥∥∥
p

≤
∑
α

L1

s

(
Ψp

(
32e3L

3/2
2 , 32e6L3 s

2

m

) ∑
x∈Uα

w2
x + 36e3L2

p

logm/s

∑
x∈Uα

w2
x

)

We now use that
∑

α

∑
x∈Uα

w2
x ≤ L3 ∥w∥22 to get that

∑
α

L1

s

(
Ψp

(
32e3L

3/2
2 , 32e6L3 s

2

m

) ∑
x∈Uα

w2
x + 36e3L2

p

logm/s

∑
x∈Uα

w2
x

)

≤ L3L1

s

(
Ψp

(
32e3L

3/2
2 , 32e6L3 s

2

m

)
+ 36e3L2

p

logm/s

)
∥w∥22
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It can now be checked that if m and s satisfies the stated assumptions then

L3L1

s

(
Ψp

(
32e3L

3/2
2 , 32e6L3 s

2

m

)
+ 36e3L2

p

logm/s

)
∥w∥22 ≤ e

−1ε

Combining all the facts, we get that

Pr[|Z| ≥ ε] ≤
(
ε−1(e−1ε)

)p
+ γ = δ + γ.

This finishes the proof.

The rest of the section is concerned with proving our main technical lemma,
Lemma B.7. First we need the following two lemmas from [HT22].

Lemma B.9. Let f : Rn≥0 → R≥0 be a non-negative function which is monotonically
increasing in every argument, and assume that there exists positive reals (αi)i∈[n] and
(ti)i∈[n] such that for all λ ≥ 0,

f(λα0t0, . . . , λ
αn−1tn−1) ≤ λf(t0, . . . , tn−1) .

Let (Xi)i∈[n] be non-negative random variables. Then for all p ≥ 1 we have that

∥f(X0, . . . , Xn−1)∥p ≤ n
1/p max

i∈[n]

(
∥Xi∥p/αi

ti

)1/αi

f(t0, . . . , tn−1) .

Lemma B.10. Let p ≥ 2, M > 0, and σ2 > 0 then

1

2

√
pσ ≤ Ψp(M,σ2) ≤ max

{
1

2

√
pσ,

1

2e
pM

}
.

We are now ready to prove Lemma B.7.

Proof of Lemma B.7. We start by defining vh, vh̄ : [s]× [m/s]→ R by,

vh(i, j) =
∑
x∈U

σ(i, x)wx [h(i, x) = j] ,

vh̄(i, j) =
∑
y∈U

σ(i, y)wy
[
h(i, y) = j

]
.

We then want to prove that∥∥∥∥∥∥
∑

i∈[s],j∈[m/s]

vh(i, j)vh̄(i, j)

∥∥∥∥∥∥
p

≤ Ψp

(
32e3L3/2 ∥w∥22 , 32e6L3 ∥w∥42

)
+ 4e3L

p

logm/s
∥w∥22 .
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First we consider the case where p
logm/s ∥w∥

2
2 ≥ s ∥w∥22. By Cauchy-Schwartz and

eq. (B.7) we get that

∥∥∥∥∥∥
∑

i∈[s],j∈[m/s]

vh(i, j)vh̄(i, j)

∥∥∥∥∥∥
p

≤

∥∥∥∥∥∥
∑

i∈[s],j∈[m/s]

vh(i, j)2

∥∥∥∥∥∥
p

≤ L p

logm/s
∥w∥22 .

We now focus on the case where p
logm/s ∥w∥

2
2 < s ∥w∥22. We define π : [m]→ [s]× [m/s]

to be a bijection which satisfies that

|vh(π(0))| ≥ |vh(π(1))| ≥ . . . ≥ |vh(π(m− 1))| .

We note that π is a random function but we can define π such that it only depends on
the randomness of h and σ. We define k = ⌊p/ log(m/p)⌋, I = {π(i) | i ∈ [k]}, and the
random functions v′h, v

′′
h : [s]× [m/s]→ R by

v′h(i, j) = vh(i, j) [(i, j) ∈ I] ,

v′′h(i, j) = vh(i, j) [(i, j) ̸∈ I] .

Again we note that v′h and v′′h only depends on the randomness of h and σ. We can then
write our expression as

∥∥∥∥∥∥
∑

i∈[s],j∈[m/s]

vh(i, j)vh̄(i, j)

∥∥∥∥∥∥
p

=

∥∥∥∥∥∥
∑
i∈[s]

∑
y∈U

σ(i, y)vh(i, h(i, y))wy

∥∥∥∥∥∥
p

≤

∥∥∥∥∥∥
∑
i∈[s]

∑
y∈U

σ(i, y)v′h(i, h(i, y))wy

∥∥∥∥∥∥
p

+

∥∥∥∥∥∥
∑
i∈[s]

∑
y∈U

σ(i, y)v′′h(i, h(i, y))wy

∥∥∥∥∥∥
p

.

We will bound each of the term separately. We start by bounding∥∥∥∑i∈[s]
∑

y∈U σ(i, y)v′h(i, h(i, y))wy

∥∥∥
p
. We fix h and σ and use eq. (B.6) to get

that ∥∥∥∥∥∥
∑
i∈[s]

∑
y∈U

σ(i, y)v′h(i, h(i, y))wy

∥∥∥∥∥∥
p

≤
∥∥∥∥√L p

logm/s
∥w∥22

∥∥v′h∥∥22∥∥∥∥
p

=

√
L

p

logm/s
∥w∥2

∥∥∥∥∥∥
√ ∑

(i,j)∈I

v′h(i, j)2

∥∥∥∥∥∥
p

.
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We note that
∑

(i,j)∈I v
′
h(i, j)2 = maxJ⊆[s]×[m/s],|J |=k

∑
(i,j)∈J vh(i, j)2. We then get that∥∥∥∥∥∥

√ ∑
(i,j)∈I

v′h(i, j)2

∥∥∥∥∥∥
p

=

∥∥∥∥∥∥
√

max
J⊆[s]×[m/s],|J |=k

∑
(i,j)∈J

vh(i, j)2

∥∥∥∥∥∥
p

≤

 ∑
J⊆[s]×[m/s],|J |=k

∥∥∥∥∥∥
√ ∑

(i,j)∈J

vh(i, j)2

∥∥∥∥∥∥
p

p


1/p

≤
(
ms

k

)1/p

max
J⊆[s]×[m/s],|J |=k

∥∥∥∥∥∥
√ ∑

(i,j)∈J

vh(i, j)2

∥∥∥∥∥∥
p

We use Sterling’s bound and get that
(
ms
k

)1/p ≤ ( emsk )k/p ≤ ( ems log(ms/p)p

)1/ log(ms/p)
≤ e3.

So we get that∥∥∥∥∥∥
√ ∑

(i,j)∈I

v′h(i, j)2

∥∥∥∥∥∥
p

≤ e3 max
J⊆[s]×[m/s],|J |=k

∥∥∥∥∥∥
√ ∑

(i,j)∈J

vh(i, j)2

∥∥∥∥∥∥
p

A standard volumetric argument gives that there exists a 1/4-net, Z ⊆ RJ , with |Z| ≤ 9k,
such that ∥∥∥∥∥∥

√ ∑
(i,j)∈J

vh(i, j)2

∥∥∥∥∥∥
p

=

∥∥∥∥∥∥ sup
z∈RJ ,∥z∥2=1

∑
(i,j)∈J

zi,jvh(i, j)

∥∥∥∥∥∥
p

≤

∥∥∥∥∥∥sup
z∈Z

∑
(i,j)∈J

zi,jvh(i, j)

∥∥∥∥∥∥
p

+

∥∥∥∥∥∥ sup
z∈RJ ,∥z∥2=1

∑
(i,j)∈J

(zi,j − z′i,j)vh(i, j)

∥∥∥∥∥∥
p

≤

∥∥∥∥∥∥sup
z∈Z

∑
(i,j)∈J

zi,jvh(i, j)

∥∥∥∥∥∥
p

+ sup
z∈RJ ,∥z∥2=1

∥∥z − z′∥∥
2

∥∥∥∥∥∥
√ ∑

(i,j)∈J

vh(i, j)2

∥∥∥∥∥∥
p

where z′ ∈ Z is the closest element to z, and as such ∥z − z′∥2 ≤ 1/4.

Since there are at most 9k elements in Z then
∥∥∥supz∈Z

∑
(i,j)∈J zi,jvh(i, j)

∥∥∥
p
≤
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9 supz∈Z

∥∥∥∑(i,j)∈J zi,jvh(i, j)
∥∥∥
p
, where we used that k ≤ p. Collecting the fact we get

that ∥∥∥∥∥∥
√ ∑

(i,j)∈J

vh(i, j)2

∥∥∥∥∥∥
p

≤ 36 sup
z∈Z

∥∥∥∥∥∥
∑

(i,j)∈J

zi,jvh(i, j)

∥∥∥∥∥∥
p

Using this we get that

e3 max
J⊆[s]×[m/s],|J |=k

∥∥∥∥∥∥
√ ∑

(i,j)∈J

vh(i, j)2

∥∥∥∥∥∥
p

≤ 36e3 max
J⊆[s]×[m/s],|J |=k

max
z∈Z

∥∥∥∥∥∥
∑

(i,j)∈J

zi,jvh(i, j)

∥∥∥∥∥∥
p

= 36e3 max
J⊆[s]×[m/s],|J |=k

max
z∈Rs×m/s,
∥z∥2=1

∥∥∥∥∥∥
∑
i∈[s]

∑
x∈U

σ(i, x)zi,h(i,x) [(i, h(i, x)) ∈ J ]wx

∥∥∥∥∥∥
p

We can then use eq. (B.6) to get that

36e3 max
J⊆[s]×[m/s],|J |=k

max
z∈Rs×m/s,
∥z∥2=1

∥∥∥∥∥∥
∑
i∈[s]

∑
x∈U

σ(i, x)zi,h(i,x) [(i, h(i, x)) ∈ J ]wx

∥∥∥∥∥∥
p

≤ 36e3 max
J⊆[s]×[m/s],|J |=k

max
z∈Rs×m/s,
∥z∥2=1

√
L

p

logm/s
∥w∥2 ∥z∥2

= 36e3
√
L

p

logm/s
∥w∥2

Combining the facts, we get that
∥∥∥∑i∈[s]

∑
y∈U σ(i, y)v′h(i, h(i, y))wy

∥∥∥
p

≤

36e3L p
logm/s ∥w∥

2
2.

We will now bound
∥∥∥∑i∈[s]

∑
y∈U σ(i, y)v′′h(i, h(i, y))wy

∥∥∥
p
. We fix h and ε and use

eq. (B.5) to get that∥∥∥∥∥∥
∑
i∈[s]

∑
y∈U

σ(i, y)v′′h(i, h(i, y))wy

∥∥∥∥∥∥
p

≤
∥∥∥Ψp

(
L ∥w∥∞

∥∥v′h∥∥∞ , L
s

m
∥w∥22

∥∥v′h∥∥22)∥∥∥p
≤
∥∥∥Ψp

(
L ∥w∥∞

∣∣v′h(π(k + 1))
∣∣ , L s

m
∥w∥22 ∥vh∥

2
2

)∥∥∥
p
.
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Now we use Lemma B.9 to get that,

∥∥∥Ψp

(
L ∥w∥∞

∣∣v′h(π(k + 1))
∣∣ , L s

m
∥w∥22 ∥vh∥

2
2

)∥∥∥
p

≤
√

2Ψp

(
L ∥w∥∞

∥∥∣∣v′h(π(k + 1))
∣∣∥∥
p
, L

s

m
∥w∥22

∥∥∥∥vh∥22∥∥∥
p/2

)
.

Since we assume that p
logm ∥w∥

2
2 < s ∥w∥22 then eq. (B.7) give us that

∥∥∥∥vh∥22∥∥∥
p/2
≤

Ls ∥w∥22.
We will now bound ∥v′h(π(k + 1))∥p. For this, we will distinguish between two cases:

Either p ≥ logm or p < logm. Let us first case where p ≥ logm. We will use that

|v′h(π(k + 1))| ≤
∑

i∈[k+1]|v′h(π(i))|
k+1 . We then get that

∥∥v′h(π(k + 1))
∥∥
p

≤

∥∥∥∥∥
∑

i∈[k+1] |v′h(π(i))|
k + 1

∥∥∥∥∥
p

≤

( m

k + 1

)
2k+1 max

J⊆[s]×[m/s],
|J |=k+1

max
(σi,j)(i,j)∈J∈{−1,1}J


∥∥∥∑(i,j)∈J σi,jvh(i, j)

∥∥∥
p

k + 1


p

1/p

≤ max
J⊆[s]×[m/s],

|J |=k+1

max
(si,j)(i,j)∈J∈{−1,1}J

2

(
m

k + 1

)1/p

∥∥∥∑(i,j)∈J σi,jvh(i, j)
∥∥∥
p

k + 1

We note that
∥∥∥∑(i,j)∈J σi,jvh(i, j)

∥∥∥
p

=
∥∥∥∑x∈U

∑
(i,j)∈J σ(i, x)si,j [h(i, x) = j]wx

∥∥∥
p
. Since

we have that p ≥ logm then k ≥ 1 which implies that k+ 1 ≤ 2 p
log(m/p) . We then get that(

m
k+1

)1/p ≤ ( em
2p/ log(m/p)

)2/ log(m/p)
≤ 2e3. We now use eq. (B.6) to get that,

∥∥∥∥∥∥
∑
x∈U

∑
(i,j)∈J

σ(i, x)si,j [h(i, x) = j]wx

∥∥∥∥∥∥
p

=

∥∥∥∥∥∥
∑
i∈[s]

∑
x∈U

σ(i, x) [(i, h(i, x)) ∈ J ] si,h(i,x)wx

∥∥∥∥∥∥
p

≤
√
L

p

logm/s

√
|J | ∥w∥2

=

√
L

p

logm/s

√
k + 1 ∥w∥2
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Combining this we get that ∥v′h(π(k + 1))∥p ≤ 4e3
√
L p

logm/s
∥w∥2√
k+1

. We then obtain that,∥∥∥∥∥∥
∑
i∈[s]

∑
y∈U

σ(i, y)v′′h(i, h(i, y))wy

∥∥∥∥∥∥
p

≤
√

2Ψp

(
4e3L

√
L

p

(k + 1) logm/s
∥w∥∞ ∥w∥2 , L

2 s
2

m
∥w∥42

)

≤
√

2Ψp

(
4e3L

√
L

logm/p

logm/s
∥w∥22 , L

2 s
2

m
∥w∥42

)
If logm/p ≤ 4 logm/s then we get that,∥∥∥∥∥∥

∑
i∈[s]

∑
y∈U

σ(i, y)v′′h(i, h(i, y))wy

∥∥∥∥∥∥
p

≤
√

2Ψp

(
16e3L3/2 ∥w∥22 , L

2 s
2

m
∥w∥42

)

≤ Ψp

(
32e3L3/2 ∥w∥22 , 2L

2 s
2

m
∥w∥42

)
If logm/p > 4 logm/s then m/p > (m/s)4 which implies that pm

s2
≤ √pm. Using this

we get that
p16e6L3 logm/p

logm/s
∥w∥42

L2 s2

m
∥w∥42

≤ 16e6L
√
pm logm/p ≤ 16e6L. Where we have used that

√
s log 1/x ≤ 1. Now we use Lemma B.10 to get that∥∥∥∥∥∥

∑
i∈[s]

∑
y∈U

σ(i, y)v′′h(i, h(i, y))wy

∥∥∥∥∥∥
p

≤
√

2Ψp

(
32e3L3/2 ∥w∥22 , L

2 s
2

m
∥w∥42

)

≤
√

2

√
pL316e6

s2

m
∥w∥42

≤ Ψp

(
8e3L3/2 ∥w∥2 , 32e6L3 s

2

m
∥w∥42

)
Now let us consider the case where p < logm. By eq. (B.8), we get that

∥∥v′h(π(k + 1))
∥∥
p
≤

∥∥∥∥∥ max
i∈[s],j∈[m/s]

∣∣∣∣∣∑
x∈U

σ(i, x) [h(i, x) = j]wx

∣∣∣∣∣
∥∥∥∥∥
p

≤ e

√
L

logm

logm/s
∥w∥2

We then obtain that,∥∥∥∥∥∥
∑
i∈[s]

∑
y∈U

σ(i, y)v′′h(i, h(i, y))wy

∥∥∥∥∥∥
p

≤
√

2Ψp

(
eL

√
L

logm

logm/s
∥w∥∞ ∥w∥2 , L

s2

m
∥w∥42

)

≤
√

2Ψp

(
eL

√
L

logm

logm/s
∥w∥22 , L

s2

m
∥w∥42

)
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If s ≤ m3/4 then we get that logm ≤ 4 logm/s and

√
2Ψp

(
eL

√
L

logm

logm/s
∥w∥22 , L

s2

m
∥w∥42

)
≤
√

2Ψp

(
4eL3/2 ∥w∥22 , L

s2

m
∥w∥42

)

as wanted. If s ≥ m3/4 then we get that peL3 logm
L2s2/m

≤ eLm log2m
s2

≤ eL log2m
m1/2 ≤ 16/eL, where

we have used that
√
x log2 1/x ≤ 16/e2. Again we use Lemma B.10 to get that

√
2Ψp

(
4eL3/2 ∥w∥22 , L

s2

m
∥w∥42

)
≤
√
p32/eL3

s2

m
∥w∥22

≤ Ψp

(
8L3/2 ∥w∥22 , 32L3 s

2

m
∥w∥42

)
.

Combining everything we get that∥∥∥∥∥∥
∑
i∈[s]

∑
y∈U

σ(i, y)v′′h(i, h(i, y))wy

∥∥∥∥∥∥
p

≤ Ψp

(
32e3L3/2 ∥w∥2 , 32e6L3 s

2

m
∥w∥42

)
,

∥∥∥∥∥∥
∑
i∈[s]

∑
y∈U

σ(i, y)v′h(i, h(i, y))wy

∥∥∥∥∥∥
p

≤ 4e3L
p

logm/s
∥w∥22 .

Now we conclude that∥∥∥∥∥∥
∑

i∈[s],j∈[m/s]

vh(i, j)vh̄(i, j)

∥∥∥∥∥∥
p

≤

∥∥∥∥∥∥
∑
i∈[s]

∑
y∈U

σ(i, y)v′h(i, h(i, y))wy

∥∥∥∥∥∥
p

+

∥∥∥∥∥∥
∑
i∈[s]

∑
y∈U

σ(i, y)v′′h(i, h(i, y))wy

∥∥∥∥∥∥
p

≤ Ψp

(
32e3L3/2 ∥w∥22 , 32e6L3 ∥w∥42

)
+ 4e3L

p

logm/s
∥w∥22 .

Thus finishing the proof.

B.6 Analysis of Mixed Tabulation Hashing

The goal of this section is to prove our main result for Mixed Tabulation hashing. The main
new results is in Appendix B.6.2 where we show that Mixed Tabulation has a decoupling-
decomposition. In Appendix B.6.3, we show that Mixed Tabulation also has the strong
concentration property. The proofs in Appendix B.6.3 are modifications of those found
in [HT22] for Mixed Tabulation hashing.
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B.6.1 Notation and Previous Results for Tabulation Hashing

We will need to reason about the individual characters of a key, x ∈ Σc, and for that, we
need some notation.

Definition B.11 (Position characters). Let Σ be an alphabet and c > 0 a positive integer.
We call an element (i, y) ∈ [c]× Σ a position character of Σc.

We will view a key x = (y0, . . . , yc−1) ∈ Σc as a set of c position characters,
{(0, y0), . . . (c− 1, yc−1)} ⊆ [c] × Σ. We define the sets Ppartial and Pprefix which con-
tains partial keys.

Ppartial =
{
{(i, αi)}i∈I

∣∣ ∅ ≠ I ⊆ [c], ∀i ∈ I : αi ∈ Σ
}

Pprefix =
{
{(i, αi)}i∈I

∣∣ ∅ ≠ I ⊆ [c], I is an interval containing 0, and ∀i ∈ I : αi ∈ Σ
}

For a partial key, π = {(i0, α0), . . . , (ik−1, αk−1)} ∈ Ppartial, we define Iπ = {i0, . . . , ik−1}
to be the set of used positions. We will also write |π| = |Iπ|.

For a simple tabulation hashing function, h : Σc → R, we will let hI for I ⊆ [c] to be the
hash function that only looks at the positions in I, i.e., hI(x) =

⊕
i∈I Ti[xi]. Similarly, for

h2 : Σc → Σd we will define hI for I ⊆ [d] to be the partial key restricted to the positions
I.

For π ∈ Ppartial and τ ∈ Pprefix, we define the random set Uπ,τ as follows

Uπ,τ = {x ∈ Σc |π ⊆ x, τ ⊆ h2(x)}

We also need the following lemmas from [HT22].

Lemma B.12. Let h : U → [m] be a uniformly random function, let v : U × [m] → R be
a fixed value function, and assume that

∑
j∈[m] v(x, j) = 0 for all keys x ∈ U . Define the

random variable Xv =
∑

x∈U v(x, h(x)). Then for all p ≥ 2,

∥Xv∥p ≤ LΨp

(
Mv, σ

2
v

)
,

where L ≤ 16e is a universal constant.

Lemma B.13. Let h : U → [m] be a uniformly random function, let ε : U → {−1, 1} be a
uniformly random sign function, and let v : U × [m]→ R be a fixed value function. Then
for all p ≥ 2, ∥∥∥∥∥∑

x∈U
ε(s)v(x, h(x))

∥∥∥∥∥
p

≤ L
√

p

log(m)
∥v∥2 ,

where L ≤ e is a universal constant.

Lemma B.14. Let h : Σc → [m] be a simple tabulation hash function, v : Σc× [m]→ R a
value function, and assume that

∑
j∈[m] v(x, j) = 0 for all keys x ∈ U . Then for all p ≥ 2,∥∥∥∥∥∑

x∈Σc

v(x, h(x))

∥∥∥∥∥
p

≤ L1Ψp

(
Kcγ

c−1
p ∥v∥∞ ,Kcγ

c−1
p

∥v∥22
m

)
,
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where Kc = (L2c)
c−1, L1 and L2 are universal constants, and

γp =

max

{
log(m) + log

( ∑
x∈Σc∥v[x]∥22

maxx∈Σc∥v[x]∥22

)
/c, p

}
log

(
e2m

(
maxx∈Σc

∥v[x]∥21
∥v[x]∥22

)−1
)

Lemma B.15. Let h : Σc → [m] be a simple tabulation function, ε : Σc → {−1, 1} be a
simple tabulation sign function, and vi : Σc × [m] → R be value function for i ∈ [k]. For
every real number p ≥ 2,

∥∥∥∥∥∥
∑
j∈[m]

(∑
x∈Σc

ε(x)v(x, h(x)⊕ j)

)2
∥∥∥∥∥∥
p

≤

 Lcmax{p, log(m)}

log
(
e2m

∑
x∈Σc

∑
j∈[m] v(x,j)

2∑
x∈Σc (

∑
j∈[m]|v(x,j)|)2

)

c

∥v∥22 ,

where L is a universal constant.

B.6.2 Decoupling

Before proving the decoupling-decomposition for Mixed Tabulation hashing, we a general
decoupling lemma. We start by stating a standard decoupling result as found in [Ver18].

Lemma B.16. Let fij : T ×T → R be functions for i, j ∈ [n]. Let (Xi)i∈[n] be independent
random variables with values in T such that E[fij(Xi, Xj) |Xj ] = E[fij(Xi, Xj) |Xi] = 0
for all i ̸= j ∈ [n]. Then, for every convex function F : R→ R, one has

E

F (
∑

i ̸=j∈[n]

fij(Xi, Xj))

 ≤ E

F (4
∑
i,j∈[n]

fij(Xi, X
′
j))

 ,

where (X ′
i)i∈[n] is an independent copy of (Xi)i∈[n].

We slightly generalize the decoupling result as follows.

Lemma B.17. Let fi0,...,ic−1,j0,...,jc−1 : T c × T c → R be functions for

i0 . . . , ic−1, j0, . . . , jc−1 ∈ [n]. Let (X
(k)
i )i∈[n],k∈[c] be independent random variables

with values in T such that

E
[
fi0,...,ic−1,j0,...,jc−1((X

(0)
i0
, . . . , X

(c−1)
ic−1

), (X
(0)
j0
, . . . , X

(c−1)
jc−1

))
∣∣∣ (X(k)

ik
)k∈[c]\{l}, (X

(k)
jk

)k∈[c]

]
= 0,

E
[
fi0,...,ic−1,j0,...,jc−1((X

(0)
i0
, . . . , X

(c−1)
ic−1

), (X
(0)
j0
, . . . , X

(c−1)
jc−1

))
∣∣∣ (X(k)

ik
)k∈[c], (X

(k)
jk

)k∈[c]\{l}

]
= 0,

(B.9)
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for all i0 . . . , ic−1, j0, . . . , jc−1 ∈ [n] and all l ∈ [c] with ik ̸= jk for all k ∈ [c]. Then, for
every convex function F : R→ R, one has

E

F
 ∑
i0...,ic−1,j0,...,jc−1∈[n]

∀k∈[c]:ik ̸=jk

fi0,...,ic−1,j0,...,jc−1((X
(0)
i0
, . . . , X

(c−1)
ic−1

), (X
(0)
j0
, . . . , X

(c−1)
jc−1

))




≤ E

F
4c

∑
i0...,ic−1,j0,...,jc−1∈[n]

fi0,...,ic−1,j0,...,jc−1((X
(0)
i0
, . . . , X

(c−1)
ic−1

), (X̂
(0)
j0
, . . . , X̂

(c−1)
jc−1

))

 ,
(B.10)

where (X̂
(k)
i )i∈[n],k∈[c] is an independent copy of (X

(k)
i )i∈[n],k∈[c].

Proof. The will by induction on c, and the induction start, c = 1, is exactly Lemma B.16.
Now assume that c > 1 and that eq. (B.10) holds for c− 1.

Throughout the proof, we use i and j as shortcuts for i0, . . . , ic−2 and j0, . . . , jc−2

respectively. We also use Xi, Xj, and X̂j to denote (X
(0)
i0
, . . . , X

(c−2)
ic−2

), (X
(0)
j0
, . . . , X

(c−2)
jc−2

),

and (X̂
(0)
i0
, . . . , X̂

(c−2)
ic−2

) respectively.

We start by defining the functions, gic−1,jc−1 : T × T → R for all ic−1, jc−1 ∈ [n], by

gic−1,jc−1(x, y) =
∑

i0...,ic−2,j0,...,jc−2∈[n]
∀k∈[c−1]:ik ̸=jk

fi,ic−1,j,jc−1((Xi, x), (Xj, y)).

We note that eq. (B.9) implies that

E
[
gic−1,jc−1(X

(c−1)
ic−1

, X
(c−1)
jc−1

)
∣∣∣X(c−1)

ic−1
, (X

(k)
i )i∈[n],k∈[c−1]

]
= 0 ,

E
[
gic−1,jc−1(X

(c−1)
ic−1

, X
(c−1)
jc−1

)
∣∣∣X(c−1)

jc−1
, (X

(k)
i )i∈[n],k∈[c−1]

]
= 0 ,

for all ic−1 ̸= jc−1 ∈ [n]. This implies that we can use Lemma B.16 while conditioning on
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(X
(k)
i )i∈[n],k∈[c−1] to get that

E

F
 ∑
i0...,ic−1,j0,...,jc−1∈[n]

∀k∈[c]:ik ̸=jk

fi,ic−1,j,jc−1((Xi, X
(c−1)
ic−1

), (Xj, X
(c−1)
jc−1

))




= E

E

F
 ∑
ic−1 ̸=jc−1∈[n]

gic−1,jc−1(X
(c−1)
ic−1

, X
(c−1)
c−1 )

∣∣∣∣∣∣ (X(k)
i )i∈[n],k∈[c−1]


≤ E

E

F
4

∑
ic−1,jc−1∈[n]

gic−1,jc−1(X
(c−1)
ic−1

, X̂
(c−1)
c−1 )

∣∣∣∣∣∣ (X(k)
i )i∈[n],k∈[c−1]



= E

F
4

∑
i0...,ic−1,j0,...,jc−1∈[n]

∀k∈[c−1]:ik ̸=jk

fi,ic−1,j,jc−1((Xi, X
(c−1)
ic−1

), (Xj, X̂
(c−1)
jc−1

))


 .

We then define the functions, hi,j : T
c−1×T c−1 → R for all i0 . . . , ic−2, j0, . . . , jc−2 ∈ [n],

by

hi,j((x0, . . . , xc−2), (y0, . . . , xc−2))

=
∑

ic−1,jc−1∈[n]

fi,ic−1,j,jc−1((x0, . . . , xc−2, X
(c−1)
ic−1

), (y0, . . . , yc−2, X̂
(c−1)
jc−1

)) .

Now let i0 . . . , ic−2, j0, . . . , jc−2 ∈ [n] and l ∈ [c− 1] with ik ̸= jk for all k ∈ [c− 1] and let
H = hi0,...,ic−2,j0,...,jc−2 . Then again by eq. (B.9) we get that for

E
[
hi,j(Xi, Xj)

∣∣∣ (X(k)
ik

)k∈[c−1]\{l}, (X
(k)
jk

)k∈[c−1], (X
(c−1)
i , X̂

(c−1)
i )i∈[n]

]
= 0,

E
[
hi,j(Xi, Xj)

∣∣∣ (X(k)
ik

)k∈[c−1], (X
(k)
jk

)k∈[c−1]\{l}, (X
(c−1)
i , X̂

(c−1)
i )i∈[n]

]
= 0.
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We can then use the induction hypothesis conditioned on (X
(c−1)
i , X̂

(c−1)
i )i∈[n] to get that3

E

F
4

∑
i0...,ic−1,j0,...,jc−1∈[n]

∀k∈[c−1]:ik ̸=jk

fi,ic−1,j,jc−1((Xi, X
(c−1)
ic−1

), (Xj, X̂
(c−1)
jc−1

))




= E

E

F
4

∑
i0...,ic−2,j0,...,jc−2∈[n]

∀k∈[c−1]:ik ̸=jk

hi,j(Xi, Xj)


∣∣∣∣∣∣∣∣ (X

(c−1)
i , X̂

(c−1)
i )i∈[n]




≤ E

E

F
4c

∑
i0...,ic−2,j0,...,jc−2∈[n]

hi,j(Xi, X̂j)

∣∣∣∣∣∣ (X(c−1)
i , X̂

(c−1)
i )i∈[n]


= E

F
4c

∑
i0...,ic−1,j0,...,jc−1∈[n]

fi,ic−1,j,jc−1((X
(0)
i0
, . . . , X

(c−1)
ic−1

), (X̂
(0)
j0
, . . . , X̂

(c−1)
jc−1

))

 .

This finishes the induction step and thus the proof.

We are now ready to prove a decoupling lemma for Mixed Tabulation.

Lemma B.18.

∥∥∥∥∥∥
∑
i∈[s]

∑
x,y∈[u]

[h2(x) ̸= h2(y)]σ(i, x)σ(i, y) [h(i, x) = h(i, y)]wxwy

∥∥∥∥∥∥
p

≤
∑

π∈Ppartial

τ∈Pprefix

4c+1

∥∥∥∥∥∥
∑
i∈[s]

∑
x,y∈Uπ,τ

σIπ ,|τ |(i, x)σIπ ,|τ |(i, y)
[
hIπ ,|τ |(i, x) = hIπ ,|τ |(i, y)

]
wxwy

∥∥∥∥∥∥
p

(B.11)

3
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where

hI,r(i, x) =
(
h1,I(x)⊕ h3,{r}(h

{r}
2,I (x)⊕ i⊕ h{r}2,Ic(x))

)
⊕
(
h1,Ic(x)⊕ h3,{r}c(h

{r}c
2 (x)⊕ i⊗(d−1))

)
σI,r(i, x) =

(
σ1,I(x)⊕ σ3,{r}(h

{r}
2,I (x)⊕ i⊕ h{r}2,Ic(x))

)
⊕
(
σ1,Ic(x)⊕ σ3,{r}c(h

{r}c
2 (x)⊕ i⊗(d−1))

)
hI,r(i, y) =

(
h1,I(y)⊕ h3,{r}

(
h
{r}
2,I (y)⊕ i⊕ h{r}2,Ic(y)

))
⊕
(
h1,Ic(y)⊕ h3,{r}c(h

{r}c
2 (y)⊕ i⊗(d−1))

)
σI,r(i, y) =

(
σ1,I(y)⊕ σ3,{r}

(
h
{r}
2,I (y)⊕ i⊕ h{r}2,Ic(y)

))
⊕
(
σ1,Ic(y)⊕ σ3,{r}c(h

{r}c
2 (y)⊕ i⊗(d−1))

)
Futhermore, we have that

∑
π

∑
τ

∑
x∈Uπ,τ

w2
x ≤ d2c ∥w∥22 (B.12)

for all w ∈ Ru.

Proof. We will start by proving eq. (B.12). Let x ∈ [u], now it is easy to see that there
exists 2c, π ∈ Ppartial such that π ⊆ x and similarly there exists d, τ ∈ Pprefix such that
τ ⊆ h2(x). We there have that there d2c pairs (π, τ) ∈ Ppartial×Pprefix such that x ∈ Uπ,τ
and thus eq. (B.12) follows.

We will now focus on proving eq. (B.11). We start by defin-
ing the events Ax,y,τ for x, y ∈ [u] and τ ∈ Pprefix by [Ax,y,τ ] =[
h2,[|τ |](x) = h2,[|τ |](y) = τ

][
h2,{|τ |}(x) ̸= h2,{|τ |}(y)

]
. We can then write

∥∥∥∥∥∥
∑
i∈[s]

∑
x,y∈[u]

[h2(x) ̸= h2(y)]σ(i, x)σ(i, y) [h(i, x) = h(i, y)]wxwy

∥∥∥∥∥∥
p

=

∥∥∥∥∥∥
∑

τ∈Pprefix

∑
i∈[s]

∑
x,y∈[u]

[Ax,y,τ ]σ(i, x)σ(i, y) [h(i, x) = h(i, y)]wxwy

∥∥∥∥∥∥
p

≤
∑

τ∈Pprefix

∥∥∥∥∥∥
∑
i∈[s]

∑
x,y∈[u]

[Ax,y,τ ]σ(i, x)σ(i, y) [h(i, x) = h(i, y)]wxwy

∥∥∥∥∥∥
p
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We then define the functions hr, hr : [s]× [u]→ [m/s] and σr, σr : [s]× [u] by

hr(i, x) = h1(x)⊕ h3,{r}(h
{r}
2 (x)⊕ i)⊕ h3,{r}c(h

{r}c
2 (x)⊕ i⊗(d−1))

σr(i, x) = σ1(x)σ3,{r}(h
{r}
2 (x)⊕ i) · σ3,{r}c(h

{r}c
2 (x)⊕ i⊗(d−1))

hr(i, y) = h1(y)⊕ h3,{r}(h
{r}
2 (y)⊕ i)⊕ h3,{r}c(h

{r}c
2 (y)⊕ i⊗(d−1))

σr(i, y) = σ1(x)σ3,{r}(h
{r}
2 (x)⊕ i) · σ3,{r}c(h

{r}c
2 (x)⊕ i⊗(d−1))

For a fixed τ ∈ Pprefix, we see that the expression

∑
i∈[s]

∑
x,y∈[u]

[Ax,y,τ ]σ(i, x)σ(i, y) [h(i, x) = h(i, y)]wxwy

satisfies the requirement of Lemma B.16 for the random variables
(h3,{|τ |}(α), σ3,{|τ |}(α))α∈Σ. So applying Lemma B.16 we get that

∑
τ∈Pprefix

∥∥∥∥∥∥
∑
i∈[s]

∑
x,y∈[u]

[Ax,y,τ ]σ(i, x)σ(i, y) [h(i, x) = h(i, y)]wxwy

∥∥∥∥∥∥
p

≤
∑

τ∈Pprefix

4

∥∥∥∥∥∥
∑
i∈[s]

∑
x,y∈[u]

[x ̸= y]σ|τ |(i, x)σ|τ |(i, y)
[
h|τ |(i, x) = h|τ |(i, y)

]
wxwy

∥∥∥∥∥∥
p

We can now rewrite this expression as follows,

∑
τ∈Pprefix

∥∥∥∥∥∥
∑
i∈[s]

∑
x,y∈[u]

[x ̸= y]σ|τ |(i, x)σ|τ |(i, y)
[
h|τ |(i, x) = h|τ |(i, y)

]
wxwy

∥∥∥∥∥∥
p

=
∑

τ∈Pprefix

∥∥∥∥∥∥
∑

π∈Ppartial

∑
i∈[s]

∑
x,y∈[u]

[x ∩ y = π]σ|τ |(i, x)σ|τ |(i, y)
[
h|τ |(i, x) = h|τ |(i, y)

]
wxwy

∥∥∥∥∥∥
p

≤
∑

π∈Ppartial

τ∈Pprefix

∥∥∥∥∥∥
∑
i∈[s]

∑
x,y∈[u]

[x ∩ y = π]σ|τ |(i, x)σ|τ |(i, y)
[
h|τ |(i, x) = h|τ |(i, y)

]
wxwy

∥∥∥∥∥∥
p

For fixed π ∈ Ppartial and τ ∈ Pprefix, we see that the expression

∑
i∈[s]

∑
x,y∈[u]

[x ∩ y = π]σ|τ |(i, x)σ|τ |(i, y)
[
h|τ |(i, x) = h|τ |(i, y)

]
wxwy
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satisfies the requirement of Lemma B.17 for the random variables
(h1,Icπ(x), h2,Icπ(x), σ1,Icπ(x), σ2,Icπ(x))x∈[u]. So applying Lemma B.16 we get that

∑
π∈Ppartial

τ∈Pprefix

∥∥∥∥∥∥
∑
i∈[s]

∑
x,y∈[u]

[x ∩ y = π]σ|τ |(i, x)σ|τ |(i, y)
[
h|τ |(i, x) = h|τ |(i, y)

]
wxwy

∥∥∥∥∥∥
p

≤
∑

π∈Ppartial

τ∈Pprefix

4c

∥∥∥∥∥∥
∑
i∈[s]

∑
x,y∈[u]

[x ∩ y = π]σIπ ,|τ |(i, x)σIπ ,|τ |(i, y)
[
hIπ ,|τ |(i, x) = hIπ ,|τ |(i, y)

]
wxwy

∥∥∥∥∥∥
p

This finishes the proof of eq. (B.11) and thus the lemma.

Finally, we can prove that Mixed Tabulation has an (p, 4c+2, 4ε−23c sm |Σ|
−d)-

decoupling-decomposition.

Lemma B.19.

Pr[|Z| ≥ ε]

≤

ε−1
∑

π∈Ppartial

τ∈Pprefix

4c+4

s

∥∥∥∥∥∥
∑
i∈[s]

∑
x,y∈Uπ,τ

σIπ ,|τ |(i, x)σIπ ,|τ |(i, y)
[
hIπ ,|τ |(i, x) = hIπ ,|τ |(i, y)

]
wxwy

∥∥∥∥∥∥
p


p

+ 4ε−23c
s

m
|Σ|−d ,

where

hI,r(i, x) =
(
h1,I(x)⊕ h3,{r}(h

{r}
2,I (x)⊕ i⊕ h{r}2,Ic(x))

)
⊕
(
h1,Ic(x)⊕ h3,{r}c(h

{r}c
2 (x)⊕ i⊗(d−1))

)
σI,r(i, x) =

(
σ1,I(x)⊕ σ3,{r}(h

{r}
2,I (x)⊕ i⊕ h{r}2,Ic(x))

)
⊕
(
σ1,Ic(x)⊕ σ3,{r}c(h

{r}c
2 (x)⊕ i⊗(d−1))

)
hI,r(i, y) =

(
h1,I(y)⊕ h3,{r}

(
h
{r}
2,I (y)⊕ i⊕ h{r}2,Ic(y)

))
⊕
(
h1,Ic(y)⊕ h3,{r}c(h

{r}c
2 (y)⊕ i⊗(d−1))

)
σI,r(i, y) =

(
σ1,I(y)⊕ σ3,{r}

(
h
{r}
2,I (y)⊕ i⊕ h{r}2,Ic(y)

))
⊕
(
σ1,Ic(y)⊕ σ3,{r}c(h

{r}c
2 (y)⊕ i⊗(d−1))

)
Futhermore, we have that ∑

π

∑
τ

∑
x∈Uπ,τ

w2
x ≤ d2c ∥w∥22
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for all w ∈ Ru.

Proof. We use a union bound to obtain that,

Pr[|Z| ≥ ε] ≤ Pr

∣∣∣∣∣∣
∑
i∈[s]

∑
x ̸=y∈[u]

σ1(x)σ1(y) [(h1(x), h2(x)) = (h1(y), h2(y))]wxwy

∣∣∣∣∣∣ ≥ ε/2


+ Pr

∣∣∣∣∣∣
∑
i∈[s]

∑
x,y∈[u]

[h2(x) ̸= h2(y)]σ(i, x)σ(i, y) [h(i, x) = h(i, y)]wxwy

∣∣∣∣∣∣ ≥ ε/2


For the first term, we use that

E

(
∑
i∈[s]

∑
x ̸=y∈[u]

σ1(x)σ1(y) [(h1(x), h2(x)) = (h1(y), h2(y))wxwy])
2

 ≤ 3c ∥w∥42
s

m
|Σ|−d .

So applying Markov’s inequality, we get that,

Pr

∣∣∣∣∣∣
∑
i∈[s]

∑
x ̸=y∈[u]

σ1(x)σ1(y) [(h1(x), h2(x)) = (h1(y), h2(y))]wxwy

∣∣∣∣∣∣ ≥ ε/2


≤ 4ε−23c
s

m
|Σ|−d .

For the second term we apply Markov’s inequality for p and then the result follows by
Lemma B.18.

B.6.3 Concentration

The goal of this section is to show that Mixed Tabulation is (p, γcp)-strongly-concentrated

where γp = Kcmax
{

1, p
log|Σ|

}
for a universal constant K. This is done in next 3 lemmas

that prove the individual parts of the strong concentration. They all follow the same
blueprint as the results in [HT22].

Lemma B.20. For any value function, v : [s]×[m/s], and any vector w ∈ RU the following
concentration results for Mixed Tabulation hashing holds∥∥∥∥∥∥

∑
i∈[s]

∑
x∈U

σ(i, x)v(i, h(i, x))wx

∥∥∥∥∥∥
p

≤ Ψp

(
γcp ∥v∥∞ ∥w∥∞ , γcp

s

m
∥v∥22 ∥w∥

2
2

)
, (B.13)

∥∥∥∥∥∥
∑
i∈[s]

∑
x∈U

σ(i, x)v(i, h(i, x))wx

∥∥∥∥∥∥
p

≤
√
γcp

p

logm/s
∥v∥2 ∥w∥2 . (B.14)

Here γp = Kcmax
{

1, p
log|Σ|

}
for a universal constant K.
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Proof. We start by rewriting the expression∥∥∥∥∥∥
∑
i∈[s]

∑
x∈U

σ(i, x)v(i, h(i, x))wx

∥∥∥∥∥∥
p

=

∥∥∥∥∥∥
∑
α∈Σ

σ2(α)
∑
i∈[s]

∑
x∈U

σ1(x)v(i, h1(x)⊕ h3(x)) [h2(x) = α⊕ i]wx

∥∥∥∥∥∥
p

We define the value function v′ : U × (Σ× [m/s])→ R by v′(x, (i, j)) = v(i, j) [i ∈ [s]]wx.
We can then write our expression as∥∥∥∥∥∥

∑
α∈Σ

σ2(α)
∑
i∈[s]

∑
x∈U

σ1(x)v(i, h1(x)⊕ h3(x)) [h2(x) = α⊕ i]wx

∥∥∥∥∥∥
p

=

∥∥∥∥∥∑
α∈Σ

σ2(α)
∑
x∈U

v′(x, (α⊕ h2(x), h3(α)⊕ h1(x)))

∥∥∥∥∥
p

Now we start by proving eq. (B.14). We use Lemma B.13 to get that∥∥∥∥∥∑
α∈Σ

σ2(α)
∑
x∈U

v′(x, (α⊕ h2(x), h3(α)⊕ h1(x)))

∥∥∥∥∥
p

≤ e
√

p

logm/s

∥∥∥∥∥∥
∑
α∈Σ

∑
j∈[m/s]

(∑
x∈U

v′(x, (α⊕ h2(x), j ⊕ h1(x)))

)2
∥∥∥∥∥∥
1/2

p/2

Now we use Lemma B.15 to obtain that∥∥∥∥∥∥
∑
α∈Σ

∑
j∈[m/s]

(∑
x∈U

v′(x, (α⊕ h2(x), j ⊕ h1(x)))

)2
∥∥∥∥∥∥
p/2

≤ γcp
∑
x∈U

∑
i∈Σ

∑
j∈[m/s]

v′(x, (i, j))2

= γcp
∑
x∈U

∑
i∈Σ

∑
j∈[m/s]

v(i, j)2 [i ∈ [s]]w2
x

= γcp ∥v∥
2
2 ∥w∥

2
2

(B.15)

This then give us that∥∥∥∥∥∑
α∈Σ

σ2(α)
∑
x∈U

v′(x, (α⊕ h2(x), h3(α)⊕ h1(x)))

∥∥∥∥∥
p

≤ e
√
γcp

p

logm/s
∥v∥2 ∥w∥2

This finishes the proof of eq. (B.14).
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Now we focus on eq. (B.13). We use Lemma B.12 to get that∥∥∥∥∥∑
α∈Σ

σ2(α)
∑
x∈U

v′(x, (α⊕ h2(x), h3(α)⊕ h1(x)))

∥∥∥∥∥
p

≤ L ∥Ψp (A,B)∥p

where

A = max
α∈Σ

max
j∈[m/s]

∣∣∣∣∣∑
x∈U

v′(x, (α⊕ h2(x), h3(α)⊕ h1(x)))

∣∣∣∣∣
B =

∑
α∈Σ

∑
j∈[m/s]

(∑
x∈U

v′(x, (α⊕ h2(x), j ⊕ h1(x)))

)2

We apply Lemma A.15 to get that we just need to bound the two expressions∥∥∥∥∥max
α∈Σ

max
j∈[m/s]

∣∣∣∣∣∑
x∈U

v′(x, (α⊕ h2(x), h3(α)⊕ h1(x)))

∣∣∣∣∣
∥∥∥∥∥
p∥∥∥∥∥∥

∑
α∈Σ

∑
j∈[m/s]

(∑
x∈U

v′(x, (α⊕ h2(x), j ⊕ h1(x)))

)2
∥∥∥∥∥∥
p/2

From eq. (B.15) we have that∥∥∥∥∥∥
∑
α∈Σ

∑
j∈[m/s]

(∑
x∈U

v′(x, (α⊕ h2(x), j ⊕ h1(x)))

)2
∥∥∥∥∥∥
p/2

≤ γcp ∥v∥
2
2 ∥w∥

2
2

Let p̄ = max{p, log(m/s · |Σ|} and use Lemma B.14 to get that∥∥∥∥∥max
α∈Σ

max
j∈[m/s]

∣∣∣∣∣∑
x∈U

v′(x, (α⊕ h2(x), j ⊕ h1(x)))

∣∣∣∣∣
∥∥∥∥∥
p

≤

∥∥∥∥∥max
α∈Σ

max
j∈[m/s]

∣∣∣∣∣∑
x∈U

v′(x, (α⊕ h2(x), j ⊕ h1(x)))

∣∣∣∣∣
∥∥∥∥∥
p̄

≤

∑
α∈Σ

∑
j∈[m/s]

∥∥∥∥∥∑
x∈U

v′(x, (α⊕ h2(x), j ⊕ h1(x)))

∥∥∥∥∥
1/p̄

p̄

1/p̄

≤ eΨp̄

γcp max
x∈U

max
i∈[s]

max
j∈[m/s]

|v(i, j)wx| , γcp
s

m |Σ|
∑
x∈U

∑
i∈[s]

∑
j∈[m/s]

v(i, j)2w2
x


≤ eΨp̄

(
γcp ∥v∥∞ ∥w∥∞ , γcp

1

|Σ|
∥v∥22 ∥w∥

2
2

)
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We then get that∥∥∥∥∥∑
α∈Σ

σ2(α)
∑
x∈U

v′(x, (α⊕ h2(x), h3(α)⊕ h1(x)))

∥∥∥∥∥
p

≤ eΨp

(
eΨp̄

(
γcp ∥v∥∞ ∥w∥∞ , γcp

1

|Σ|
∥v∥22 ∥w∥

2
2

)
, γcp

s

m
∥v∥22 ∥w∥

2
2

)
Since s ≤

√
|Σ|, the same case analysis as in the proof of [HT22, Theorem 7] give us that

since ∥∥∥∥∥∑
α∈Σ

σ2(α)
∑
x∈U

v′(x, (α⊕ h2(x), h3(α)⊕ h1(x)))

∥∥∥∥∥
p

≤ Ψp

(
γcp ∥v∥∞ ∥w∥∞ , γcp

s

m
∥v∥22 ∥w∥

2
2

)
This finishes the proof.

Lemma B.21. For any vector w ∈ RU , the following concentration result holds for Mixed
Tabulation hashing,∥∥∥∥∥ max

i∈[s],j∈[m/s]

∣∣∣∣∣∑
x∈U

σ(i, x) [h(i, x) = j]wx

∣∣∣∣∣
∥∥∥∥∥
p

≤

√
γcp

logm

logm/s
∥w∥2

Here γp = Kcmax
{

1, p
log|Σ|

}
for a universal constant K.

Proof. We start by rewriting the expression,∥∥∥∥∥ max
i∈[s],j∈[m/s]

∣∣∣∣∣∑
x∈U

σ(i, x) [h(i, x) = j]wx

∣∣∣∣∣
∥∥∥∥∥
p

=

∥∥∥∥∥ max
i∈[s],j∈[m/s]

∣∣∣∣∣∑
α∈Σ

σ3(α)
∑
x∈U

σ1(x) [h1(x)⊕ h3(α) = j] [h2(x) = α⊕ i]wx

∣∣∣∣∣
∥∥∥∥∥
p

.

Now we fix the randomness of h1, σ1, h2 and use Lemma B.13 to get that,∥∥∥∥∥ max
i∈[s],j∈[m/s]

∣∣∣∣∣∑
α∈Σ

σ3(α)
∑
x∈U

σ1(x) [h1(x)⊕ h3(α) = j] [h2(x) = α⊕ i]wx

∣∣∣∣∣
∥∥∥∥∥
p

≤

∥∥∥∥∥ max
i∈[s],j∈[m/s]

∣∣∣∣∣∑
α∈Σ

σ3(α)
∑
x∈U

σ1(x) [h1(x)⊕ h3(α) = j] [h2(x) = α⊕ i]wx

∣∣∣∣∣
∥∥∥∥∥
logm

≤ e max
i∈[s],j∈[m/s]

∥∥∥∥∥
∣∣∣∣∣∑
α∈Σ

σ3(α)
∑
x∈U

σ1(x) [h1(x)⊕ h3(α) = j] [h2(x) = α⊕ i]wx

∣∣∣∣∣
∥∥∥∥∥
logm

≤ e2
√

logm

logm/s
max
i∈[s]

j∈[m/s]

√√√√√√ ∑
α∈Σ

k∈[m/s]

(∑
x∈U

σ1(x) [h1(x) = j ⊕ k] [h2(x) = α⊕ i]wx

)2
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We now note that the expression

√√√√√√ ∑
α∈Σ

k∈[m/s]

(∑
x∈U

σ1(x) [h1(x) = j ⊕ k] [h2(x) = α⊕ i]wx

)2

does not depend on i and j, so might as well look at i = j = 0. We thus get that

∥∥∥∥∥ max
i∈[s],j∈[m/s]

∣∣∣∣∣∑
x∈U

σ(i, x) [h(i, x) = j]wx

∣∣∣∣∣
∥∥∥∥∥
p

≤ e2
√

logm

logm/s

∥∥∥∥∥∥
∑
α∈Σ

∑
k∈[m/s]

(∑
x∈U

σ1(x) [h1(x) = k] [h2(x) = α]wx

)2
∥∥∥∥∥∥
1/2

p/2

We can then apply Lemma B.15 and obtain

∥∥∥∥∥ max
i∈[s],j∈[m/s]

∣∣∣∣∣∑
x∈U

σ(i, x) [h(i, x) = j]wx

∣∣∣∣∣
∥∥∥∥∥
p

≤

√
γcp

logm

logm/s
∥w∥2

This finishes the proof.

Lemma B.22. For any vector w ∈ RU , the following concentration result holds for Mixed
Tabulation hashing,

∥∥∥∥∥∥
∑
i∈[s]

∑
j∈[m/s]

(∑
x∈U

σ(i, x) [h(i, x) = j]wx

)2
∥∥∥∥∥∥
p

≤ γcp max

{
s ∥w∥22 ,

p

logm/s
∥w∥22

}

Here γp = Kcmax
{

1, p
log|Σ|

}
for a universal constant K.
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Proof. We start by rewriting the expression∥∥∥∥∥∥
∑
i∈[s]

∑
j∈[m/s]

(∑
x∈U

σ(i, x) [h(i, x) = j]wx

)2
∥∥∥∥∥∥
p

=

∥∥∥∥∥∥
∑
i∈[s]

∑
x,y∈U

σ(i, x)σ(i, y) [h(i, x) = h(i, y)]wxwy

∥∥∥∥∥∥
p

≤

∥∥∥∥∥∥
∑
i∈[s]

∑
x,y∈U

σ(i, x)σ(i, y) [(h1(x), h2(x)) = (h1(y), h2(y))]wxwy

∥∥∥∥∥∥
p

+

∥∥∥∥∥∥
∑
i∈[s]

∑
x,y∈U

σ(i, x)σ(i, y) [h(i, x) = h(i, y)] [h2(x) ̸= h2(y)]wxwy

∥∥∥∥∥∥
p

= s

∥∥∥∥∥∥
∑
z∈Σd

∑
j∈[m/s]

(∑
x∈U

σ1(x) [(h1(x), h2(x)) = (j, z)]wx

)2
∥∥∥∥∥∥
p

+

∥∥∥∥∥∥
∑
i∈[s]

∑
x,y∈U

σ(i, x)σ(i, y) [h(i, x) = h(i, y)] [h2(x) ̸= h2(y)]wxwy

∥∥∥∥∥∥
p

We will bound each of the two expressions separately. We use Lemma B.15 to get that

s

∥∥∥∥∥∥
∑
z∈Σd

∑
j∈[m/s]

(∑
x∈U

σ1(x) [(h1(x), h2(x)) = (j, z)]wx

)2
∥∥∥∥∥∥
p

≤ γcps ∥w∥
2
2

To bound the other expression, we use Lemma B.18 to get that,∥∥∥∥∥∥
∑
i∈[s]

∑
x,y∈U

σ(i, x)σ(i, y) [h(i, x) = h(i, y)] [h2(x) ̸= h2(y)]wxwy

∥∥∥∥∥∥
p

≤
∑

π∈Ppartial

τ∈Pprefix

4c+1

∥∥∥∥∥∥
∑
i∈[s]

∑
x,y∈Uπ,τ

σIπ ,|τ |(i, x)σIπ ,|τ |(i, y)
[
hIπ ,|τ |(i, x) = hIπ ,|τ |(i, y)

]
wxwy

∥∥∥∥∥∥
p

For each π ∈ Ppartial and each τ ∈ Pprefix this corresponds to a Mixed Tabulation hash
function with c′ ≤ 2c and d′ ≤ 2. We can then use eq. (B.14) to get that

∑
π∈Ppartial

τ∈Pprefix

4c+1

∥∥∥∥∥∥
∑
i∈[s]

∑
x,y∈Uπ,τ

σIπ ,|τ |(i, x)σIπ ,|τ |(i, y)
[
hIπ ,|τ |(i, x) = hIπ ,|τ |(i, y)

]
wxwy

∥∥∥∥∥∥
p

≤
∑

π∈Ppartial

τ∈Pprefix

4c+1γcp
∑

x∈Uπ,τ

w2
x
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We then use eq. (B.12) to get that,∑
π∈Ppartial

τ∈Pprefix

4c+1γcp
∑

x∈Uπ,τ

w2
x ≤ γcpd8c ∥w∥22

Combing the bounds we get that∥∥∥∥∥∥
∑
i∈[s]

∑
j∈[m/s]

(∑
x∈U

σ(i, x) [h(i, x) = j]wx

)2
∥∥∥∥∥∥
p

≤ γcp + γcpd8c ∥w∥22

≤ γcp max

{
s ∥w∥22 ,

p

logm/s
∥w∥22

}
as wanted, which finishes the proof.
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Canada: Curran Associates Inc., 2018, pp. 5394–5404.

[FL20] Casper Benjamin Freksen and Kasper Green Larsen. “On Using Toeplitz
and Circulant Matrices for Johnson-Lindenstrauss Transforms”. In: Algo-
rithmica 82.2 (2020), pp. 338–354.

[HV11] Aicke Hinrichs and Jan Vyb́ıral. “Johnson-Lindenstrauss lemma for circu-
lant matrices”. In: Random Structures & Algorithms 39.3 (2011), pp. 391–
398. eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/rsa.
20360.

[HT22] Jakob Bæk Tejs Houen and Mikkel Thorup. “Understanding the Moments
of Tabulation Hashing via Chaoses”. In: 49th International Colloquium on
Automata, Languages, and Programming, ICALP 2022, July 4-8, 2022,
Paris, France. Ed. by Mikolaj Bojanczyk, Emanuela Merelli, and David P.
Woodruff. Vol. 229. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Infor-
matik, 2022, 74:1–74:19.

[Jag19] Meena Jagadeesan. “Understanding Sparse JL for Feature Hashing”. In:
Proceedings of the 33rd International Conference on Neural Information
Processing Systems. NeurIPS’19. Red Hook, NY, USA: Curran Associates
Inc., 2019.

[JPSS+22] Vishesh Jain, Natesh S. Pillai, Ashwin Sah, Mehtaab Sawhney, and Aaron
Smith. “Fast and memory-optimal dimension reduction using Kac’s walk”.
In: The Annals of Applied Probability 32.5 (2022), pp. 4038–4064.

[JW13] T. S. Jayram and David P. Woodruff. “Optimal Bounds for Johnson-
Lindenstrauss Transforms and Streaming Problems with Subconstant Er-
ror”. In: ACM Trans. Algorithms 9.3 (June 2013). issn: 1549-6325.

[JL84] William Johnson and Joram Lindenstrauss. “Extensions of Lipschitz maps
into a Hilbert space”. In: Contemporary Mathematics 26 (Jan. 1984),
pp. 189–206.

[Kac56] Mark Kac. “Foundations of kinetic theory”. In: Proceedings of The third
Berkeley symposium on mathematical statistics and probability. Vol. 3. 1956,
pp. 171–197.

[KMN11] Daniel Kane, Raghu Meka, and Jelani Nelson. “Almost Optimal Explicit
Johnson-Lindenstrauss Families”. In: Approximation, Randomization, and
Combinatorial Optimization. Algorithms and Techniques. Ed. by Leslie Ann
Goldberg, Klaus Jansen, R. Ravi, and José D. P. Rolim. Berlin, Heidelberg:
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[NN13] Jelani Nelson and Huy L. NguyÅn. “Sparsity Lower Bounds for Dimen-
sionality Reducing Maps”. In: Proceedings of the Forty-Fifth Annual ACM
Symposium on Theory of Computing. STOC ’13. Palo Alto, California,
USA: Association for Computing Machinery, 2013, pp. 101–110. isbn:
9781450320290.

[PT13] Mihai Patrascu and Mikkel Thorup. “Twisted Tabulation Hashing”. In:
Proceedings of the Twenty-Fourth Annual ACM-SIAM Symposium on Dis-
crete Algorithms, SODA 2013, New Orleans, Louisiana, USA, January 6-8,
2013. Ed. by Sanjeev Khanna. SIAM, 2013, pp. 209–228.
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Dansk resumé

We formulate and optimally solve a new generalized Set Similarity Search prob-
lem, which assumes the size of the database and query sets are known in advance.
By creating polylog copies of our data-structure, we optimally solve any symmetric
Approximate Set Similarity Search problem, including approximate versions of Sub-
set Search, Maximum Inner Product Search (MIPS), Jaccard Similarity Search and
Partial Match.

Our algorithm can be seen as a natural generalization of previous work on Set
as well as Euclidean Similarity Search, but conceptually it differs by optimally ex-
ploiting the information present in the sets as well as their complements, and doing
so asymmetrically between queries and stored sets. Doing so we improve upon the
best previous work: MinHash [J. Discrete Algorithms 1998], SimHash [STOC 2002],
Spherical LSF [SODA 2016, 2017] and Chosen Path [STOC 2017] by as much as a
factor n0.14 in both time and space; or in the near-constant time regime, in space, by
an arbitrarily large polynomial factor.

Turning the geometric concept, based on Boolean supermajority functions, into a
practical algorithm requires ideas from branching random walks on Z2, for which we
give the first non-asymptotic near tight analysis.

Our lower bounds follow from new hypercontractive arguments, which can be seen
as characterizing the exact family of similarity search problems for which supermajori-
ties are optimal. The optimality holds for among all hashing based data structures in
the random setting, and by reductions, for 1 cell and 2 cell probe data structures. As
a side effect, we obtain new hypercontractive bounds on the directed noise operator
T p1→p2
ρ .
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C.1 Introduction

Set Similarity Search (SSS) is the problem of indexing sets (or sparse boolean data) to
allow fast retrieval of sets, similar under a given similarity measure. The sets may repre-
sent one-hot encodings of categorical data, “bag of words” representations of documents,
or “visual/neural bag of words” models, such as the Scale-invariant feature transform
(SIFT), that have been discretized. The applications are ubiquitous across Computer Sci-
ence, touching everything from recommendation systems to gene sequences comparison.
See [CCT10; JZYY+18] for recent surveys of methods and applications.

Set similarity measures are any function, s that takes two sets and return a value
in [0, 1]. Unfortunately, most variants of Set Similarity Search, such as Partial Match,
are hard to solve assuming popular conjectures around the Orthogonal Vectors Prob-
lem [Wil05; APRS16; ARW17; CW19], which roughly implies that the best possible al-
gorithm is to not build an index, and “just brute force” scan through all the data, on
every query. A way to get around this is to study Approximate SSS: Given a query, q, for
which the most similar set y has similarity(q, y) ≥ s1, we are allowed to return any set y′
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with similarity(q, y′) > s1, where s2 < s1. In practice, even the best exact algorithms for
similarity search use such an (s1, s2)-approximate1 solution as a subroutine [CPT18].

Euclidean Similarity Search, where the data is vectors x ∈ Rd and the measure of
similarity is “Cosine”, has recently been solved optimally — at least in the model of
hashing based data structures [AR15; ALRW17a]. Meanwhile, the problem on sets has
proven much less tractable. This is despite that the first solutions date back to the seminal
MinHash algorithm (a.k.a. min-wise hashing), introduced by Broder et al. [BGMZ97;
Bro97] in 1997 and by now boasting thousands of citations. In 2014 MinHash was shown
to be near-optimal for set intersection estimation [PSW14], but in a surprising, recent
development, it was shown not to be optimal for similarity search [CP17]. The question
thus remained: What is the optimal algorithm for Set Similarity Search?

The question is made harder by the fact that previous algorithms study the problem
under different similarity measures, such as Jaccard, Cosine, or Braun-Blanquet similar-
ity. The only thing those measures have in common is that they can be defined as a
function f of the sets sizes, the universe size, and the intersection size. In other words,
similarity(q, y) = f(|q|, |y|, |q∩ y|, |U |) where |U | is the size of the universe from which the
sets are taken. In fact, any symmetric measure of similarity for sets must be defined by
those four quantities.

Hence, to fully solve Set Similarity Search, we avoid specifying a particular similar-
ity measure, and instead define the problem solely from those four parameters. This
generalized problem is what we solve optimally in this paper, for all values of the four
parameters:

Definition C.1 (The (wq, wu, w1, w2)-GapSS problem). Given some universe U and a
collection Y ⊆

(
U

wu|U |
)

of |Y | = n sets of size wu|U |, build a data structure that for any

query set q ∈
(

U
wq |U |

)
: either returns y′ ∈ Y with |y′∩ q| > w2|U |; or determines that there

is no y ∈ Y with |y ∩ q| ≥ w1|U |.

For the problem to make sense, we assume that wq|U | and wu|U | are integers, that
wq, wu ∈ [0, 1], and that 0 < w2 < w1 ≤ min{wq, wu}. Note that |U | may be very large,
and as a consequence the values wq, wu, w1, w2 may all be very small.

At first sight, the problem may seem easier than the version where the sizes of sets may
vary. However, the point is that making polylog(n) data-structures for sets and queries
of progressively bigger sizes,2 immediately yields data structures for the original problem.
Similarly, any algorithm assuming a specific set similarity measure also yields an algorithm
for (wq, wu, w1, w2)-GapSS, so our lower bounds also hold for all previously studied SSS
problems.

Example 1 As an example, assume we want to solve the Subset Search Problem, in
which we, given a query q, want to find a set y in the database, such that y ⊆ q. If we

1By classical reductions [HIM12] we can assume s1 is known in advance.
2For details, see [CP17] Section 5. A similar reduction, called “norm ranging”, was recently shown at

NeurIPS to give state of the art results for Maximum Inner Product Search in Rd [YLDC+18], suggesting
it is very practical.
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allow a two-approximate solution, GapSS includes this problem by setting w1 = wu and
w2 = w1/2: The overlap between the sets must equal the size of the stored sets; and we
are guaranteed to return a y′ such that at least |q ∩ y′| ≥ |y|/2.

Example 2 In the (j1, j2)-Jaccard Similarity Search Problem, given a query, q, we must
find y such that the Jaccard Similarity |q ∩ y|/|q ∪ y| > j2 given that a y′ exists with
similarity at least j1. After partitioning the sets by size, we can solve the problem using

GapSS by setting w1 =
j1(wq+wu)

1+j1
and w2 =

j2(wq+wu)
1+j2

. The same reduction works for any
other similarity measure with polylog(n) overhead.

The version of this problem where w2 = wqwu is similar to what is in the literature
called “the random instance” [Pan06; Laa15; ALRW17b]. To see why, consider generating
n−1 sets independently at random with size wu|U |, and a “planted” pair, (q, y), with size
respectively wq|U | and wu|U | and with intersection |q ∩ y| = w1|U |. Insert the size wu|U |
sets into the database and query with q. Since q is independent from the n − 1 original
sets, its intersection with those is strongly concentrated around the expectation wqwu|U |.
Thus, if we parametrize GapSS with w2 = wqwu + o(1), the query for q is guaranteed to
return the planted set y.

There is a tradition in the Similarity Search literature for studying such this indepen-
dent case, in part because it is expected that one can always reduce to the random instance,
for example using the techniques of “data-dependent hashing” [AINR14; AR15]. However,
for such a reduction to make sense, we would first need an optimal “data-independent”
algorithm for the w2 = wqwu case, which is what we provide in this paper. We discuss
this further in the Related Work section.

For generality we still define the problem for all w2 ∈ (0, w1), our upper bound holds
in this general setting and so does the lower bound Theorem C.4.

We give our new results in Appendix C.1.2 and our new lower bounds in Ap-
pendix C.1.3, but first we would like to sketch the algorithm and some probabilistic tools
used in the theorem statement.

C.1.1 Supermajorities

In Social Choice Theory a supermajority is when a fraction strictly greater than 1/2 of
people agree about something.3 In the analysis of Boolean functions a t-supermajority
function f : {0, 1}n → {0, 1} can be defined as 1, if a fraction ≥ t of its arguments are 1,
and 0 otherwise. We will sometimes use the same word for the requirement that a fraction
≤ t of the arguments are 1.4

The main conceptual point of our algorithm is the realization that an optimal algorithm
for Set Similarity Search must take advantage of the information present in the given sets,

3“America was founded on majority rule, not supermajority rule. Somehow, over the years, this has
morphed into supermajority rule, and that changes things.” – Kent Conrad.

4It turns out that defining everything in terms of having a fraction t ± o(1) of 1’s is also sufficient.
This is similar to Dubiner [Dub10].
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U
qy

s
s′

(a) Two cohorts, y and q with a large
intersection (blue). The first repre-
sentative set, s, favours y, while the
second, s′, favours both y and q.

q

y

(b) Branching random walk run on two cohorts q and y.
The bold lines illustrate paths considered by sets, while
the dashed lines adorn paths only considered by only one
of x or y. Here q has a higher threshold (tq = 2/3) than
y (tu = 1/2), so q only considers paths starting with two
favourable representatives.

Figure C.1: The representative sets, coloured in red, are scattered in the universe to
provide an efficient space partition for the data.

as well as that present in their complement. A similar idea was leveraged by Cohen et
al. [CK09] for Set Similarity Estimation, and we show in Appendix C.4.2 that the classical
MinHash algorithm can be seen as an average of functions that pull varying amounts of
information from the sets and their complements. In this paper, we show that there is a
better way of combining this information and that doing so results in an optimal hashing
based data structure for the entire parameter space of random instance GapSS.

This way of combining this information is by supermajority functions. While on the
surface they will seem similar to the threshold methods applied for time/space trade-
offs in Spherical LSF [ALRW17a], our use of them is very different. Where [ALRW17a]
corresponds to using small t = 1/2 + o(1) thresholds (essentially simple majorities) our
t may be as large as 1 (corresponding to the AND function) or as small as 0 (the NOT
AND function). This way they are a sense as much a requirement on the complement as
it is on the sets themselves.

The algorithm (idealized): While our data structure is technically a tree with a care-
fully designed pruning rule, the basic concept is very simple.

We start by sampling a large number of “representative sets” R ⊆
(
U
k

)
. Here roughly

|R| ≈ nlogn and k ≈ log n. Given family Y ⊆
(

U
wu|U |

)
of sets to store, which we call

“cohorts”, we say that r ∈ R “t-favours” the cohort y if |y ∩ r|/|r| ≥ t. Representing
sets as vectors in {0, 1}d, this is equivalent to saying ft(r ∩ y) = 1, where ft is the t-
supermajority function. (If t is less than wu, the expected size of the overlap, we instead
require |y ∩ r|/|r| ≤ t.)

Given the parameters tq, tu ∈ [0, 1], the data-structure is a map from elements of R to
the cohorts they tu-favour. When given a query q ∈

(
U

wq |U |
)
, (a wq|U | sized cohort), we

compare it against all cohorts y favoured by representatives r ∈ R which tq-favour q (that
is |q ∩ r|/|r| ≥ tq). This set Rtq(q) is much smaller than |R| (we will have |Rtq(q)| ≈ nε
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and E[|Rtu(y)∩Rtq(q)|] ≈ nε−1), so the filtering procedure greatly reduces the number of
cohorts we need to compare to the query from n to nε (where ε = ρq < 1 is defined later.)

The intuition is that while it is quite unlikely for a representative to favour a given
cohort, and it is very unlikely for it to favour two given cohorts (q and y). So if it does,
the two cohorts probably have a substantial overlap. Figure C.1a has a simple illustration
of this principle.

In order to fully understand supermajorities, we want to understand the probability
that a representative set is simultaneously in favour of two distinct cohorts given their
overlap and representative sizes. This paragraph is a bit technical and may be skipped at
first read. Chernoff bounds in R are a common tool in the community, and for iid. Xi ∼
Bernoulli(p) ∈ {0, 1} the sharpest form (with a matching lower bound) is Pr[

∑
Xi ≥ tn] ≤

exp(−n d(t ∥ p)),5 which uses the binary KL-Divergence d(t ∥ p) = t log t
p +(1− t) log 1−t

1−p .

The Chernoff bound for R2 is less common, but likewise has a tight description in terms of
the KL-Divergence between two discrete distributions: D(P ∥ Q) =

∑
ω∈Ω P (ω) log P (ω)

Q(ω)

(summing over the possible events). In our case, we represent the four events that can
happen as we sample an element of U as a vector Xi ∈ {0, 1}2. HereXi = [ 11 ] means the ith
element hit both cohorts, Xi = [ 10 ] means it hit only the first and so on. We represent the

distribution of each Xi as a matrix P =
[

w1 wq−w1

wu−w1 1−wq−wu+w1

]
, and say Xi ∼ Bernoulli(P )

iid. such that Pr[Xi = [ 1−j1−k ]] = Pj,k. Then Pr[
∑
Xi ≥ [ tqtu ]n] ≈ exp(−nD(T ∥ P )) where

T =
[

t1 tq−t1
tu−t1 1−tq−tu+t1

]
and t1 ∈ [0,min{tu, tq}] minimizes D(T ∥ P ). (Here the notation

[ xy ] ≥ [ tutq ] means x ≥ tu ∧ y ≥ tq.)
The optimality of Supermajorities for Set Similarity Search is shown using a certain

correspondence we show between the Information Theoretical quantities described above,
and the hypercontractive inequalities that have been central in all previous lower bounds
for similarity search.

These bounds above would immediately allow a cell probe version of our upper

bound Theorem C.2, e.g. a query would require n
D(T1∥P1)−d(tq∥wq)

D(T2∥P2)−d(tq∥wq) probes, where Pi =[
wi wq−w1

wu−wi 1−wq−wu+wi

]
and Ti defined accordingly. The algorithmic challenge is that for

optimal performance, |R| must be in the order of Ω(nlogn), and so checking which repre-
sentatives favour a given cohort takes super polynomial time!

The classical approach to designing an oracle to efficiently yield all such representatives,
, is a product-code or “tensoring trick”. The idea, (used by [Chr17; BDGL16]), is to choose
a smaller k′ ≈

√
k, make k/k′ different R′

i sets of size n
√
logn and take R as the product

R′
1 × · · · ×R′

k/k′ . As each R′ can now be decoded in no(1) time, so can R. This approach,

however, in the case of Supermajorities, has a big drawback: Since tqk
′ and tuk

′ must be
integers, tq and tu have to be rounded and thus distorted by a factor 1 + 1/k′. Eventually,

this ends up costing us a factor w
−k/k′
1 which can be much larger than n. For this reason,

we need a decoding algorithm that allows us to use supermajorities with as large a k as
possible!

5A special case of Hoeffding’s inequality is obtained by d(p+ ε ∥ p) ≥ 2ε2, Pinsker’s inequality.
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We instead augment the above representative sampling procedure as follows: Instead
of independent sampling sets, we (implicitly) sample a large, random height k tree, with
nodes being elements from the universe. The representative sets are taken to be each
path from the root to a leaf. Hence, some sets in R share a common prefix, but mostly
they are still independent. We then add the extra constraint that each of the prefixes of
a representative has to be in favour of a cohort, rather than only having this requirement
on the final set. This is the key to making the tree useful: Now given a cohort, we walk
down the tree, pruning any branches that do not consistently favour a supermajority of
the cohort. Figure C.1b has a simple illustration of this algorithm and Algorithm 1 has
a pseudo-code implementation. This pruning procedure can be shown to imply that we
only spend time on representative sets that end up being in favour of our cohort, while
only weakening the geometric properties of the idealized algorithm negligibly.

While conceptually simple and easy to implement (modulo a few tricks to prevent
dependency on the size of the universe, |U |), the pruning rule introduces dependencies
that are quite tricky to analyze sufficiently tight. The way to handle this will be to
consider the tree as a “branching random walk” over Z2

+ where the value represents the
size of the representative’s intersection with the query and a given set respectively. The
paths in the random walk at step i must be in the quadrant [tqi, i] × [tui, i] while only
increasing with a bias of [ wq

wu
] per step. The branching factor is carefully tuned to just the

right number of paths survive to the end.

The “history” aspect of the pruning is a very important property of our algorithm, and is
where it conceptually differs from all previous work.

Previous Locality Sensitive Filtering, LSF, algorithms [CP17; ALRW17b] can be seen as
trees with pruning, but their pruning is on the individual node level, rather than on the
entire path. This makes a big difference in which space partitions can be represented,
since pruning on node level ends up representing the intersection of simple partitions,
which can never represent Supermajorities in an efficient way. In [BDGL16] a similar idea
was discussed heuristically for Gaussian filters, but ultimately tensoring was sufficient for
their needs, and the idea was never analyzed.

C.1.2 Upper Bounds

As discussed, the performance of our algorithm is described in terms of KL-divergences. To
ease understanding, we give a number of special cases, in which the general bound simpli-
fies. The bounds in this section assume wq, wu, w1, w2 are constants. See Appendix C.2.1
for a version without this assumption.

Theorem C.2 (Simple Upper Bound). For any choice of constants wq, wu ≥ w1 ≥ w2 ≥ 0
and 1 ≥ tq, tu ≥ 0 we can solve the (wq, wu, w1, w2)-GapSS problem over universe U with
query time Õ(nρq + wq|U |) + no(1) and auxiliary space usage Õ(n1+ρu), where

ρq =
D(T1 ∥ P1)− d(tq ∥ wq)
D(T2 ∥ P2)− d(tq ∥ wq)

, ρu =
D(T1 ∥ P1)− d(tu ∥ wu)

D(T2 ∥ P2)− d(tq ∥ wq)
.
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and T1, T2 are distributions with expectation [ tqtu ] minimizing respectively D(T1 ∥ P1) and
D(T2 ∥ P2), as described in Appendix C.1.1.

The two bounds differ only in the d(tq ∥ wq) and d(tu ∥ wu) terms in the numerator.
The thresholds tq and tu can be chosen freely in [0, 1]2. Varying them compared to each
other allows a full space/time trade-off with ρq = 0 in one end and ρu = 0 (and ρq < 1)
in the other. Note that for a given GapSS instance, there are many (tq, tu) which are not
optimal anywhere on the space/time trade-off. Using Lagrange’s condition ∇ρq = λ∇ρu
one gets a simple equation that all optimal (tq, tu) trade-offs must satisfy. As we will
discuss later, it seems difficult to prove that a solution to this equation is unique, but
in practice, it is easy to solve and provides an efficient way to optimize ρq given a space
budget n1+ρu . Figure C.2 and Figure C.3 provides some additional intuition for how the
ρ values behave for different settings of GapSS.

Regarding the other terms in the theorem, we note that the Õ hides only log n factors,
and the additive no(1) term grows as eO(

√
logn log logn), which is negligible unless ρq = 0.

We also note that there is no dependence on |U |, other than the need to store the original
dataset and the additive wq|U |, which is just the time it takes to receive the query. The
main difference between this theorem and the full version is that the full theorem does not
assume the parameters (wq, wu, w1, w2) are constants but consider them potentially very
small. In this more realistic scenario, it becomes very important to limit the dependency
on factors like w−1

1 , which is what guides a lot of our algorithmic decisions.

Example 1: Near balanced ρ values. As noted, many pairs (tq, tu) are not optimal
on the trade-off, in that one can reduce one or both of ρq, ρu by changing them. The
pairs that are optimal are not always simple to express, so it is interesting to study those
that are. One such particularly simple choice on the Lagrangian is tq = 1 − wu and
tu = 1 − wq.6 This point is special because the values of tq and tu depend only on wu
and wq, while in general they will also depend on w1 and w2. In this setting we have

Ti =
[
1−wq−wu+wi wu−wi

wu−wi wi

]
, which can be plugged into Theorem C.2.

In the case wq = wu = w we get the balanced ρ values ρq = ρu =
log(w1

w
1−w

1−2w+w1
)/ log(w2

w
1−w

1−2w+w2
) in which case it is simple to compare with Chosen Path’s

ρ value of log(w1
w )
/

log(w2
w ). Chosen Path on balanced sets was shown in [CP17] to be

optimal for w,w1, w2 small enough, and we see that Supermajorities do indeed recover
this value for that range.

We give a separate lower bound in Appendix C.3.4 showing that this value is in fact
optimal when w2 = wqwu.

Example 2: Subset/superset queries. If w1 = min{wu, wq} and w2 = wuwq we

can take tq = −α
wq−wu

+
wq(1−wu)
wq−wu

and tu =
wu(1−wu)wq(1−wq)

wq−wu
α−1 − wu(1−wq)

wq−wu
for any α ∈

6To make matters complicated, this is a simple choice and on the Lagrangian, but that doesn’t prove
another point on the Lagrangian won’t reduce both ρq and ρu and thus be better. That we have a matching
lower bound for the algorithm doesn’t help, since it only matches the upper bound for (tq, tu) minimal in
Theorem C.2. In the case wq = wu we can, however, prove that this tq, tu pair is optimal.
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[w1 − wqwu, max{wu, wq} − wqwu]. Theorem C.2 then gives data structures with

ρq =
tq log 1−tu

1−wu
− tu log

1−tq
1−wq

d(tu ∥ wu)
ρu =

(1− tu) log
tq
wq
− (1− tq) log tu

wu

d(tu ∥ wu)
if w1 = wu,

ρq =
(1− tq) log tu

wu
− (1− tu) log

tq
wq

d(tu ∥ wu)
ρu =

tu log
1−tq
1−wq

− tq log 1−tu
1−wu

d(tu ∥ wu)
if w1 = wq.

This represents one of the cases where we can solve the Lagrangian equation to get a
complete characterization of the tq, tu values that give the optimal trade-offs. Note that
when w1 = wu or w1 = wq, the P matrix as used in the theorem has 0’s in it. The
only way the KL-divergence D(T ∥ P ) can then be finite is by having the corresponding
elements of T be 0 and use the fact that 0 log 0

q is defined to be 0 in this context.

Example 3: Linear space/constant time. Setting t1 in T1 =
[

t1 tq−t1
tu−t1 1−tq−tu+t1

]
such

that either t1
w1

=
tq−t1
wq−w1

or t1
w1

= tu−t1
wu−w1

we get respectively D(T1 ∥ P1) = d(tq ∥ wq) or

D(T1 ∥ P1) = d(tu ∥ wu). Theorem C.2 then yields algorithms with either ρq = 0 or

ρu = 0 corresponding to either a data structure with ≈ eÕ(
√
logn) query time, or with

Õ(n) auxiliary space. Like [ALRW17a] we have ρq < 1 for any parameter choice, even
when ρu = 0. For very small wq and wu < exp(−

√
log n) there are some extra concerns

which are discussed after the main theorem.

C.1.3 Lower Bounds

Results on approximate similarity search are usually phrased in terms of two quantities:
(1) The “query exponent” ρq ∈ [0, 1] which determines the query time by bounding it
by O(nρq); (2) The “update exponent” ρu ∈ [0, 1] which determines the time required
to update the data structure when a point is inserted or deleted in Y and is given by
O(nρu). The update exponent also bounds the space usage as O(n1+ρu). Given parameters
(wq, wu, w1, w2), the important question is for which pairs of (ρq, ρu) there exists data
structures. E.g. given a space budget imposed by ρu, we ask how small can one make ρq?

Since the first lower bounds on Locality Sensitive Hashing [MNP06], lower bounds
for approximate near neighbours have split into two kinds: (1) Cell probe lower
bounds [PTW08; PTW10; ALRW17a] and (2) Lower bounds in restricted models [ODo14;
AR16; ALRW17a; CP17]. The most general such model for data-independent algorithms
was formulated by [ALRW17a] and defines a type of data structure called “list of points”:

Definition C.3 (List-of-points). Given some universes, Q, U , a similarity measure S :
Q× U → [0, 1] and two thresholds 1 ≥ s1 > s2 ≥ 0,

1. We fix (possibly random) sets Ai ⊆ {−1, 1}d, for 1 ≤ i ≤ m; and with each possible
query point q ∈ {−1, 1}d, we associate a (random) set of indices I(q) ⊆ [m];

2. For a given dataset P , we maintain m lists of points L1, L2, . . . , Lm, where Li =
P ∩Ai.
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3. On query q, we scan through each list Li for i ∈ I(q) and check whether there exists
some p ∈ Li with S(q, p) ≥ s2. If it exists, return p.

The data structure succeeds, for a given q ∈ Q, p ∈ P with S(q, p) ≥ s1, if there exists
i ∈ I(q) such that p ∈ Li. The total space is defined by S = m +

∑
i∈[m] |Li| and the

query time by T = |I(q)|+
∑

i∈I(q) |Li|.

The List-of-points model contains all known Similarity Search data structures, except
for the so-called “data-dependent algorithms”. It is however conjectured [ALRW17b] that
data-dependency does not help on random instances (recall this corresponds to w2 =
wqwu), which is the setting of Theorem C.5.

We show two main lower bounds: (1) That requires wq = wu and ρq = ρu and (2)
That requires w2 = wqwu. The second type is tight everywhere, but quite technical. The
first type meanwhile is quite simple to state, informally:

Theorem C.4. If wq = wu = w and ρu = ρq = ρ, any data-independent LSF data

structure must use space n1+ρ and have query time nρ where ρ ≥ log( w1−w2

w(1−w))
/

log( w2−w2

w(1−w))
.

The LSF Model defined in [BDGL16; CP17] generalizes [MNP06; OWZ14], but is
slightly stronger than list-of-points. It is most likely that they are equivalent, so we defer its
definition till Definition C.28. We will just note that previous bounds of this type [OWZ14;
CP17] were only asymptotic, whereas our lower bound holds over the entire range of

0 < w2 < w1 < w < 1. By comparison with ρ = log( w1(1−w)
w(1−2w+w1)

)/ log( w2(1−w)
w(1−2w+w2)

) from
Example 1 in the Upper Bounds section, we see that the lower bound is sharp when
w,w1, w2 → 07 and also for w1 → w, since w(1 − 2w + w1) = w(1 − w) − w(w − w1).
However, for w2 = w2 (the random instance), Theorem C.4 just says ρ ≥ 0, which means
it tells us nothing.

For the random instances, we give an even stronger lower bound, which gets rid of the
restrictions wq = wu and ρq = ρu. This lower bound is tight for any 0 < wqwu < w1 <
min{wq, wu} in the list-of-points model.

Theorem C.5. Consider any list-of-point data structure for the (wq, wu, w1, wqwu)-
GapSS problem over a universe of size d of n points with wqwud = ω(log n), which uses
expected space n1+ρu, has expected query time nρq−on(1), and succeeds with probability at
least 0.99. Then for every α ∈ [0, 1] we have that

αρq + (1− α)ρu ≥ inf
tq ,tu∈[0,1]
tu ̸=wu

(
α

D(T ∥ P )− d(tq ∥ wq)
d(tu ∥ wu)

+ (1− α)
D(T ∥ P )− d(tu ∥ wu)

d(tu ∥ wu)

)
,

where P =
[

w1 wq−w1

wu−w1 1−wq−wu+w1

]
and T = arg inf

T≪P, E
X∼T

[X]=[
tq
tu

]

D(T ∥ P ).

7As w,w1, w2 → 0 we recover the lower bound ρ ≥ log(w1
w
)
/
log

(
w2
w

)
obtained for Chosen Path

in [CP17].



200 APPENDIX C. OPTIMAL HASHING-BASED SET SIMILARITY SEARCH

Note that for w2 = wqwu, the term D(T2 ∥ P2), in Theorem C.2, splits into d(tq ∥
wq) + d(tu ∥ wu), and so the upper and lower bounds perfectly match. This shows that
for any linear combination of ρq and ρu our algorithm obtains the minimal value. By
continuity of the terms, this equivalently states as saying that no list-of-points algorithm
can get a better query time than our Theorem C.2, given a space budget imposed by ρu.
8

Example 1: Choices for tq and tu. As in the upper bounds, it is not easy to prove
that a particular choice of tq and tu minimizes the lower bound. One might hope that
having corresponding lower and upper bounds would help in this endeavour, but alas both
results have a minimization. E.g. setting tq = 1 − wu and tu = 1 − wq the expression in
Theorem C.5 we obtain the same value as in Theorem C.2, however it could be (though
we strongly conjecture not) that another set of values would reduce both the upper and
lower bound.

The good news is that the hypercontractive inequality by Oleszkiewicz [Ole03], can be
used to prove certain optimal choices on the space/time trade-off.9 In particular we will
show that for wq = wu = w the choice tq = tu = 1−w is optimal in the lower bound, and

matches exactly the value ρ = log
(

w1(1−w)
w(1−2w+w1)

)
/ log( w2(1−w)

w(1−2w+w2)
) from Example 1 in the

Upper Bounds section.

Example 2: Cell probe bounds Panigrahy et al. [PTW08; PTW10; KP12] created
a framework for showing cell probe lower bounds for problems like approximate near-
neighbour search and partial match based on a notion of “robust metric expansion”.
Using the hypercontractive inequalities shown in this paper with this framework, as well
(as the extension by [ALRW17a]), we can show, unconditionally, that no data structure,
which probes only 1 or 2 memory locations10, can improve upon the space usage of n1+ρu

obtained by Theorem C.2 as we let ρq = 0. In particular, this shows that the near-constant
query time regime from Example 3 in the Upper Bounds is optimal up to no(1) factors in
time and space.

C.1.4 Technical Overview

The contributions of the paper are conceptual as well as technical. To a large part, what
enables tight upper and lower parts is defining the right problem to study. The second
part is realizing which geometry is going to work and proving it in a strong enough model.

8It is easy to see that ρu = 0 minimizes αρq+(1−α)ρu when α = 0, and similarly ρu = ρmax minimizes
αρq + (1− α)ρu when α = 1, where ρmax is the minimal space usage when ρq = 0. Furthermore, we note
that when we change α from 0 to 1, then ρu will continuously and monotonically go from 0 to ρmax. This
shows that for every ρu ∈ [0, ρmax] there exists an α such that αρq + (1− α)ρu is minimized, where ρq is
best query time given the space budget imposed by ρu.

9The generalizations by Wolff [Wol07] could in principle expand this range, but they are only tight up
to a constant in the exponent.

10For 1 probe, the word size can be no(1), whereas for the 2 probe argument, the word size can only be
o(logn) for the lower bound to hold.
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Lastly, a number of tricky algorithmic problems arise, requiring a novel algorithm and a
new analysis of 2-dimensional branching random walks of exponentially tilted variables.

Supermajorities – why do they work? Representing sets x ⊆ U as a vector x ∈
{0, 1}|U | and scaling by 1/

√
|x|, we get ∥x∥2 = 1, and it is natural to assume the optimal

Similarity Search data structure for data on the unit-sphere — Spherical LSF — should
be a good choice. Unfortunately this throws away two key properties of the data: that
the vectors are sparse, and that they are non-negative. Algorithms like MinHash, which
are specifically designed for this type of data, take advantage of the sparsity by entirely
disregarding the remaining universe, U . This is seen by the fact that adding new elements
to U never changes the MinHash of a set. Meanwhile Spherical LSF takes the inner
product between x and a Gaussian vector scaled down by 1/

√
|U |, so each new element

added to U , in a sense, lowers the “sensitivity” to x.

In an alternative situation we might imagine |x| being nearly as big as |U |. In this case
we would clearly prefer to work with U \ x, since information about an element that is
left out, is much more valuable than information about an element contained in x. What
Supermajorities does can be seen as balancing how much information to include from x
with how much to include from U \ x. A very good example of this is in Appendix C.4.2,
which shows how to view MinHash as an average of simple algorithms that sample a
specific amount from each of x and U \ x. Supermajorities, however, does this in a more
clever way, that turns out to be optimal. A crucial advantage is the knowledge of the size
of x, as well as the future queries, which allow us to use different thresholds on the storage
and query side, each which is perfectly balanced to the problem instance.

As an interesting side effect, the extra flexibility afforded by our approach allows bal-
ancing the time required to perform queries with the size of the database. It is perhaps
surprising that this simple balancing act is enough to be optimal across all hashing algo-
rithms as well as 1 cell and 2 cell probe data structures.

The results turn out to be best described in terms of the KL-divergences D(T ∥ P )−
d(tq ∥ wq) and D(T ∥ P ) − d(tu ∥ wu), which are equivalent to D(TXY ∥ PY |XTX) and
D(TXY ∥ PX|Y TY ). Here PXY is the distribution of a coordinated sample from both a
query and a dataset, PX and PY are the marginals, and TXY is roughly the distribution
of samples conditioned on having a shared representative set. Intuitively these describe
the amount of information gained when observing a sample from TXY given a belief that
X (resp. Y ) is distributed as T and Y (resp. X) is distributed as P . In this framework,
Supermajorities can be seen as a continuation of the Entropy LSH approach by [Pan06].

Branching Random Walks Making Supermajorities a real algorithm (rather than
just cell probe), requires, as discussed in the introduction, an efficient decoding algorithm
of which representative sets overlap with a given cohort. Previous LSF methods can be
seen as trees, with independent pruning in each leaf, going back to the LSH forest in
2005 [BCG05; ARN17]. Our method is the first to significantly depart from this idea:
While still a tree, our pruning is highly dependent across the levels of the tree, carrying
a state from the root to the leaf which needs be considered by the pruning as well as the
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analysis. In “branching random walk”, the state is represented in the “random walk”,
while the tree is what makes it branching. While considered heuristically in [BDGL16],
such a stateful oracle has not before been analysed, partly because it wasn’t necessary.
For Supermajorities, meanwhile, it is crucially important. The reason is that failure of the
“tensoring trick” employed previously in the literature, when working with thresholds.

The approach from [AI06; BDGL16; ALRW17a] when applied to our scheme would
correspond to making our representatives have size just

√
k (so there are only |R′| ≈

eÕ(
√
logn) of them,) and then makeR′⊗

√
k our newR. SinceR′ can be decoded in no(1) time,

and the second step can be made to take only time proportional to the output, this works
well for some cases. This approach has two main issues: (1) There is a certain overhead
that comes from not using the optimal filters, but only an approximation. However, this
gives only a factor eÕ(

√
logn), which is usually tolerated. Worse is (2): Since the thresholds

tqk and tuk have to be integral, using representative sets of size
√
k means we have to

“repair” them by a multiplicative distortion of approximately 1 ± 1/
√
k, compared to

1 ± 1/k for the “real” filters. This turns out to cost as much as w−
√
k

1 which can easily
be much larger than the polynomial cost in n. In a sense, this shows that supermajority
functions must be applied to measure the entire representative part of a cohort at once!
This makes tensoring not well fit for our purposes.

A pruned branching random walk on the real line can be described in the following
way. An initial ancestor is created with value 0 and form the zeroth generation. The
people in the ith generation give birth ∆ times each and independently of one another to
form the (i + 1)th generation. The people in the (i + 1)th generation inherit the value,
v, of their parent plus an independent random variable X. If ever v + X < 0, the child
doesn’t survive. After k generations, we expect by linearity ∆k Pr[∀i≤k

∑
j∈[i]Xi ≥ 0]

people to be alive, where Xi are iid. random variables as used in the branching. A pruned
2d-branching random walk is simply one using values ∈ R2.

Branching random walks have been analysed before in the Brownian motion litera-
ture [Shi15]. They are commonly analysed using the second-moment method, however, as
noted by Bramson [Big77]: “an immediate frontal assault using moment estimates, but
ignoring the branching structure of the process, will fail.” The issue is that the probabil-
ity that a given pair of paths in the branching process survives is too large for standard
estimates to succeed. If the lowest common ancestor of two nodes manages to accumulate
much more wealth than expected, its children will have a much too high chance of sur-
viving. For this reason we have to counterintuitively add extra pruning when proving the
lower bound that a representative set survives. More precisely, we prune all the paths that
accumulate much more than the expected value. We show that this does not lower the
probability that a representative set is favour by much, while simultaneously decreasing
the variance of the branching random walk a lot. Unfortunately, this adds further compli-
cations, since ideally, we would like to prune every path that gets below the expectation.
Combined with the upper bound this would trap the random walks in a band to narrow to
guarantee the survival of a sufficient number of paths. Hence instead, we allow the paths
to deviate by roughly a standard deviation below the expectation.
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Exponential Tilting and Non-asymptotic Central Limit Lemmas for Random
Walks To analyse our algorithm, we need probability bounds for events such as “survival
of k generations” that are tight up to polynomial factors. This contrast with many typical
analysis approaches in Computer Science, such as Chernoff bounds, which only need to be
tight up to a constant in the exponent. We also can’t use Central Limit type estimates,
since they either are asymptotic (which correspond to assuming wq and wu are constants)
or too weak (such as Berry Esseen) or just don’t apply to random walks.

The technical tool we employ is “Exponential Tilting”, which allows coupling the real
pruned branching random walk to one that is much more well behaved. This can be seen as
a nicer way of conditioning the random walk on succeeding. This nicer random walk then
needs to be analysed for properties such as “probability that the path is always above the
mean.” This is shown using a rearrangement lemma, known as the Truck Driver’s Lemma:
Assume a truck driver must drive between locations l1, l2, . . . , ln, l1. At stop i they pick
up gi gas, and between stop i and i + 1 they expand ei gas. The lemma say, that if the
sum of gi − ei is non-negative, then there is a starting position j ∈ {1, . . . , n} so that the
driver’s gas level never goes below 0.

This lemma gives an easy proof that a random walk on R+ of n identically distributed
steps, must be always non-negative with probability at least 1/n times the probability that
it is eventually non-negative. That’s because, if the location is eventually non-negative,
and all arrangements of steps happen with the same probability, then we must hit the
“always non-negative” rotation with probability ≥ 1/n.

Extending this argument to two dimensions turns out to require a few extra conditions,
such as a positive correlation between the coordinates, but as a surprisingly key result, we
manage to show Lemma C.11, which says that for k ∈ Z+ and p, p1, p2 ∈ [0, 1], such that,
pk, p1k, and p2k are integers and p ≥ p1p2. Let X(i) ∈ {0, 1}2 be independent identically
distributed variables. We then get that

Pr

∀l ≤ k :
∑
i∈[k]

X(i) ≥ [ p1p2 ] l

∣∣∣∣∣∣
∑
i∈[k]

X(i) = [ p1p2 ] k ∧
∑
i∈[k]

X
(i)
1 X

(i)
2 = pk

 ≥ k−3 .

Output-sensitive set decoding In our algorithm we are careful to not have factors of
|U | and |X| (the size of the sets) on our query time and space bounds. When sampling
our tree, at each level we must pick a certain number, ∆, of elements from the universe
and check which of them are contained in the set being decoded. This is an issue, since
∆ may be much bigger than X ∩ ∆, and so we need an “output-sensitive” sampling
procedure. We do this by substituting random sampling with a two-independent hash
function h : Uk → [q], where q is a prime number close to |U |. The sampling criterion is
then h(r ◦ x) ≤ ∆, where ◦ is string concatenation. The function h(r) can be taken to be∑k

i=1 aixi + b (mod q) for random values a1, . . . , ak, b ∈ [q], so we can expand h(r ◦ x) as
h(r) + akx (mod q).
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Now

{x ∈ X | (h(r ◦ x) mod q) < ∆}
= {x ∈ X | (h(r) + akx mod q) < ∆}
= ∪∆−1

i=0 {x ∈ X | akx ≡ ∆− h(r) mod q}
= {x ∈ X | (akx mod q) ∈ [−h(r),∆− h(r)] mod q},

where the last equation is adjusted in case (−h(r) mod q) > (∆ − h(r) mod q). By
pre-computing {akx mod q | x ∈ X} (just has to be done one for each of roughly log n
levels in the tree), and storing the result in a predecessor data-structure (or just sorting
it), the sampling can be done it time proportional to the size of its output.

Lower Bounds and Hypercontractivity The structure of our lower bounds is by
now standard: We first reduce our lower bound to random instances by showing that with
high probability the random instances are in fact an instance of our problem. For this to
work, we need ww |U | = ω(log n) and in particular |U | = ω(log n), so we get concentration
around the mean. This requirement is indeed known to be necessary, since the results
of [BDGL16; Cha17] break the known lower bounds in the “medium dimension regime”
when |U | = O(log n).

The main difference compared to previous bounds is that we study Boolean functions
on so-called p-biased spaces, where the previous lower bounds used Boolean functions
on unbiased spaces. This is necessary for us to lower bound every parameter choice for
GapSS. In particular we are interested in tight hypercontractive inequalities on p-biased
spaces. We say that a distribution PXY on a space ΩX × ΩY is (r, s)-hypercontractive if

E
(X,Y )∼PXY

[f(X)g(Y )] ≤ E
X∼PX

[f(X)r]1/r E
Y∼PY

[g(Y )s]1/s ,

for all functions f : ΩX → R and g : ΩY → R, where PX and PY are the marginal
distributions on the spaces ΩX and ΩY respectively. On unbiased spaces, the classic
Bonami-Beckner inequality [Bon70; Bec75] gives a complete understanding of the hyper-
contractivity. Unfortunately, this is not the case for p-biased spaces where the hyper-
contractivity is much less understood, with [Ole03] and [Wol07] being state of the art.
We sidestep the issue of finding tight hypercontractive inequalities by instead showing
an equivalence between hypercontractivity and KL-divergence, which is captured in the
following lemma:11

Lemma C.6. Let PXY be a probability distribution on a space ΩX ×ΩY and let PX and
PY be the marginal distributions on the spaces ΩX and ΩY respectively. Let s, r ∈ [1,∞),
then the following is equivalent

1. For all functions f : ΩX → R and g : ΩY → R,

E
(X,Y )∼PXY

[f(X)g(Y )] ≤ E
X∼PX

[f(X)r]1/r E
X∼PY

[g(Y )s]1/s .

11It appears that one might prove a similar result using [Nai14] and [Fri15].



C.1. INTRODUCTION 205

2. For all probability distributions QXY ≪ PXY ,

D(QXY ∥ PXY ) ≥ D(QX ∥ PX)

r
+

D(QY ∥ PY )

s
,

where QX and QY be the marginal distributions on the spaces ΩX and ΩY respectively

The main technical argument needed for proving Lemma C.6 is that, for all probability
distributions P,Q, where Q is absolutely continuous with respect to P, and all functions
ϕ,

D(Q ∥ P) + log E
X∼P

[exp(ϕ(X))] ≥ E
X∼Q

[ϕ(X)] .

This can be seen as a version of Fenchel’s inequality, which says that f(x) + f∗(p) ≥ xp
for all convex functions f, f∗, where f∗ is convex conjugate of f , and all x, p ∈ R.

We use Lemma C.6 together with the “Two-Function Hypercontractivity Induc-
tion Theorem” [ODo14], which shows that if P⊗n

XY is (r, s)-hypercontractive if and
only if PXY is (r, s)-hypercontractive. This implies that E(X,Y )∼P⊗n

XY
[f(X)g(Y )] ≤

EX∼P⊗n
X

[f(X)r]1/r EX∼P⊗n
Y

[g(Y )s]1/s for all functions f, g if and only D(QXY ∥ PXY ) ≥
D(QX∥PX)

r + D(QY ∥PY )
s for all probability distributions QXY . In the proof of Theorem C.5

we have PXY =
[

w1 wq−w1

wu−w1 1−wq−wu+w1

]
and consider all the probability distributions of the

form QXY = arg inf
QXY ≪PXY , E

X∼QXY
[X]=[

tq
tu

]

D(QXY ∥ PXY ) for tq, tu ∈ [0, 1].

The obtained inequalities can be used directly with the framework by Panigrahy et
al. [PTW08] to obtain bounds on “Robust Expansion”, which has been shown to give
lower bounds for 1-cell and 2-cell probe data structures, with word size no(1) and o(log n)
respectively.

The Directed Noise Operator We extend the range of our lower bounds further,
by studying a recently defined generalization of the p-biased noise operator [ABGM14;
AV15; Lif18; KLLM19]. This “Directed Noise Operator”, T p1→p2

ρ : L2({0, 1}d , π⊗dp1 ) →

L2({0, 1}d , π⊗dp2 ) has the property ̂T p1→p2
ρ f

(p2)
(S) = ρ|S|f̂ (p1)(S) for any S ⊆ [d], where

f̂ (p)(S) denotes the p-biased Fourier coefficient of f . Just like the Ornstein Uhlenbeck
operator, we show that T p2→p3

σ T p1→p2
ρ = T p1→p3

ρσ and that T p2→p1
ρ is the adjoint of T p1→p2

ρ .
By connecting this operator to our hypercontractive theorem, we can integrate the results
by Oleszkiewicz and obtain provably optimal points on the (tq, tu) trade-off.

We show that for p-biased distributions over {0, 1}n, we can add the following line to
the list of equivalent statements in Lemma C.6:

3. For all functions f : {0, 1}n → R it holds ∥T p1→p2
ρ f∥Ls′ (p1)

≤ ∥f∥Lr(p2)
.

The operator allows us to prove some optimal choices for r and s in Lemma C.6 (and
by effect for tq and tu.) Following [ABGM14] we use Pareseval’s identity, to write
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∥T p1→p2
ρ f∥2L2(p2)

as

̂T p1→p2
ρ f

(p2)
(∅)2 + ̂T p1→p2

ρ f
(p2)

({1})2 = f̂ (p1)(∅)2 + ρ2f̂ (p1)({1})2

= ∥T p1→p1f∥2L2(p1)
≤ ∥f∥2Lr(p1)

,

where r is perfectly determined by Oleszkiewicz in [Ole03]. It is possible to prove further
lower bounds using Hölder’s inequality on T , however the bounds obtained this way turn
out to be optimal only in the case s = 2 or r = 2 that also follow from Parseval. A
particular simple case is r = s =, wq = wu = w, and w2 = w2, in which case the arguments

above gives the lower bound ρ ≥ log( w1(1−w)
w(1−2w+w1)

)/ log(1−ww ) mentioned in Example 1 in
the Upper Bounds section.

Another use of T is in proving lower bounds outside of the random instance w2 = wqwu
regime. Using the power means inequality over p-biased Fourier coefficients, we show the
relation(

⟨T p→p
α f, f⟩L2(p)/ ∥f∥

2
L2(p)

)1/ log(1/α)
≤
(
⟨T p→p
β f, f⟩L2(p)/ ∥f∥

2
L2(p)

)1/ log(1/β)
.

which is allows comparing functions under two different noise levels. This is stronger than
hypercontractivity, even though we can prove it in fewer instances. The proof can been
seen as a variation of [OWZ14] and we get a lower bound with a similar range, but without
asymptotics and for Set Similarity instead of Hamming space Similarity Search.

C.1.5 Related Work

For the reasons laid out in the introduction, we will compare primarily against approximate
solutions. The best of those are all able to solve GapSS, thus making it easy to draw
comparisons. The guarantees of these algorithms are listed in Table C.1 and we provide
plots in Figure C.2 and Figure C.3 for concreteness.

The methods known as Bit Sampling [IM98] and SimHash (Hyperplane round-
ing) [Cha02], while sometimes better than MinHash[BGMZ97] and Chosen Path [CP17]
are always worse (theoretically) that Spherical LSF, so we won’t perform a direct com-
parison to those.

It should be noted that both Chosen Path and Spherical LSF both have proofs of
optimality in the restricted models. However these proofs translated to only a certain
region of the (wq, wu, w1, w2) space, and so they may nearly always be improved.

Arguably the largest break-through in Locality Sensitive Hashing, LSH, based data
structures was the introduction of data-dependent LSH [AINR14; AR15; ARN17]. It
was shown how to reduce the general case of α, β similarity search as described above,
to the case (α, β) 7→ (α−β1−β , 0), in which many LSH schemes work better. Using those
data structures on GapSS with w2 > wqwu will often yield better performance than the
algorithms described in this paper. However, in the “random instance” case w2 = wqwu,
which is the main focus of this paper, data-dependency has no effect, and so this issue
won’t show up much in our comparisons.



C.1. INTRODUCTION 207

Method Balanced ρq = ρu Space/time trade-offs

Spherical LSF
[TT07; Laa15]

[Chr17; ALRW17a]

1− α
1 + α

1 + β

1− β
ρq = (1−α1+λ)2

1−α2
1−β2

(1−αλβ)2
(∗∗∗)

ρu = (1−α1+λ)2

1−α2
1−β2

(1−αλβ)2

MinHash [BGMZ97]
log w1

wq+wu−w1

log w2
wq+wu−w2

Same as above(∗) with
α = w1

wq+wu−w1
, β = w2

wq+wu−w2

Chosen Path [CP17]
log w1

max{wq ,wu}

log w2
max{wq ,wu}

N/A

Supermajorities

(This paper)

Theorem C.2,

Example 1
Theorem C.2

Data-Dependent LSF
[AR15; ALRW17a]

1− α
1 + α− 2β

√
ρq + α′√ρu =

√
1− α′2

where α′ = 1− 1−α
1−β

SimHash [Cha02]
log(1− arccos(α)/π)

log(1− arccos(α)/π)
N/A(∗∗)

Bit Sampling [IM98]
log(1− wq − wu + 2w1)

log(1− wq − wu + 2w2)
N/A(∗∗)

Table C.1: Time and space exponents for the best similarity search data-structures. For
Spherical LSF and SimHash, α and β are the inner products between sets represented
as vectors, and can by Lemma C.26 be taken to be α =

w1−wqwu√
wq(1−wq)wu(1−wu)

and β =

w2−wqwu√
wq(1−wq)wu(1−wu)

.

(∗): Space/time trade-offs for MinHash can be obtained using MinHash as an embedding
for Spherical LSF. (∗∗): Some space/time trade-offs can be obtained for LSH using Multi-
probing [LJWC+07]. (∗∗∗): λ ∈ [−1, 1] controls the space/time trade-off.

We note that even without a reduction to the random instance, for many practical uses,
it is natural to assume such “independence” between the query and most of the dataset.
Arguably this is the main reason why approximate similarity search algorithms have gained
popularity in the first place. In practice, some algorithms for Set Similarity Search take
special care to handle “skew” data distributions [RSW20; ZLWZ+17; MMP18], in which
some elements of the Universe are heavily over or under-represented. By special casing
those elements, those algorithms can be seen as reducing the remaining dataset to the
random instance. Curiously, even the early research on Partial Match by Ronald Rivest
in his PhD thesis [Riv76], studied the problem on random data.

Many of the algorithms, based on the LSH framework, all had space usage roughly
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(b) Example with larger sets of different sizes.

Figure C.2: Comparison to Spherical LSF: Plots of the achievable ρq (time exponent) and
ρu (space exponent) achievable with Theorem C.2. Note that using our optimal spherical
embedding from Lemma C.26 is critical to achieve the exponents shown for Spherical
LSF. The plots are drawn in the “random setting”, w2 = wqwu where Spherical LSF and
Data-Dependent LSH coincide.

n1+ρ and query time nρ for the same constant ρ. This is known as the “balanced regime”
or the “LSH regime”. Time/space trade-offs are important, since n1+ρ can sometimes
be too much space, even for relatively small ρ. Early work on this was done by Pan-
igrahy [Pan06] and Kapralov [Kap15] who gave smooth trade-offs ranging from space
n1+o(1) to query time no(1). A breakthrough was the use of LSF (rather than LSH), which
allowed time/space trade-offs with sublinear query time even for near linear space and
small approximation [Laa15; Chr17; ALRW17b].

We finally compare our results to the classical literature on Partial Match and Super-
/Subset search, which has some intriguing parallels to the work presented here.

Comparison to Spherical LSF We use “Spherical LSF” as a term for the algo-
rithms [BDGL16] and [Laa15], but in particular section 3 of [ALRW17a], which has the
most recent version. The algorithm solves the (r, cr)-Approximate Near Neighbour prob-
lem, in which we, given a dataset Y ⊆ Rd and a query q ∈ Rd must return y ∈ Y such
that ∥q − y∥2 < cr or determinate that there is no y′ ∈ Y with ∥y − q∥2 ≤ r.

The algorithm is a tree over the points, P . At each node they sample T i.i.d. Gaussian
d-dimensional vectors z1, . . . , zT and split the dataset up into (not necessarily disjoint)
“caps” Pi = {p ∈ P | ⟨zi, p⟩ ≥ tu}. They continue recursively and independently until the
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expected number of leaves shared between two points at distance ≥ cr is ≈ n−1+ε.

The real algorithm also samples includes some caps that are dependent on an analysis of
the dataset. This allows obtaining a query time of n1/(2c

2−1), for all values of r, rather than
only in the “random instance”, which, for data on the sphere, corresponds to r = 1/(

√
2c).

(To see this, notice that rc = 1/
√

2, which is the expected distance between two orthogonal
points on a sphere.)

Whether we analyse the data-independent algorithm or not, however, a key property
of Spherical LSF is that each node in the tree is independent of the remaining nodes.
This allows a nice inductive analysis. In comparison, in our algorithm, the nodes are not
independent. Whether a certain node gets pruned, depends on which elements from the
universe were sampled at all the previous nodes along the path from the root. One could
imagine doing Spherical LSF with a running total of inner products along each path, which
would make the space partition more smooth, and possible better in practice. Something
along these lines was indeed suggested in [BDGL16], however it wasn’t analysed, as for
Spherical LSF the inner products at each node are continuous, and the thresholds can be
set at any precision.

It is clear that Spherical LSF can solve GapSS – one simply needs an embedding of
the sets onto the sphere. An obvious choice is x 7→ x/ ∥x∥2. This was used in [CP17]
when comparing Chosen Path to Spherical LSF. However it is also clear that the choice
of embedding matters on the performance one gets out of Spherical LSF. Other authors
have considered x 7→ (2x− 1)/

√
d and various asymmetric embeddings [SL14a].

We would like to find the most efficient embedding to get a fair comparison. However,
we don’t know how to do this optimally over all possible embeddings, which include
using MinHash and possibly somehow emulating Supermajorities.12 We instead find the
most efficient affine embedding, which turns out to be surprisingly simple, and which
encompasses all previously suggested approaches. In Lemma C.4.1 we prove a general
result, implying that the embedding is optimal for Spherical LSF as well as other spherical
data structures like SimHash. In Figure C.2 and Figure C.3 the ρ-values of Spherical LSF
are obtained using this optimal embedding.

From the figures, we see the two main cases in which Spherical LSF is suboptimal. As
the sets get very small (wq, wu, w1 → 0) the ρ value in the LSH regime goes to 1, whereas
Supermajorities (as well as MinHash and Chosen Path) still obtain good performance.
Similarly in the asymmetric case wq ̸= wu, as we make ρq very small, the performance
gap between Supermajorities and Spherical LSF can grow to arbitrarily large polynomial
factors.

Comparison to MinHash Given a random function h : P({1, . . . , d}) → [0, 1], the
MinHash algorithm hashes a set x ⊆ {1, . . . , d} to mh(x) = arg mini∈x h(i). One can

show that Pr[mh(x) = mh(y)] = J(x, y) = |x∩y|
|x∪y| . Using the LSH framework by Indyk and

Motwani [IM98] this yields a data structure for Approximate Set Similarity Search over
Jaccard similarity, J , with query time dnρ and space usage n1+ρ+dn, where ρ = log j1

log j2
and

12We would also need some sort of limit on how much time the embedding takes to perform.
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Figure C.3: Comparison to MinHash: Varying different parameters while searching on
a background of random sets (w2 = wqwu), Supermajorities regularly get substantially
better time and space exponents. The plots are drawn in the “random setting”, w2 = wqwu
and use the optimal embedding for Spherical LSF.

j1 and j2 define the gap between “good” and “bad” search results. As Jaccard similarity is
a set similarity measures, it is clear that MinHash yields a solution to the GapSS problem
with ρq = ρu = log w1

wq+wu−w1

/
log w2

wq+wu−w2
. Similarly, and that any solution to GapSS

can yield a solution to Approximate SSS over Jaccard similarity.

MinHash has been very popular, since it gives a good, all-round algorithm for Set Sim-
ilarity Search, that is easy to implement. In Figure C.3 we see how MinHash performant
for different settings of GapSS. In particular we see that when solving the Superset Search
problem, which is a common use case for MinHash, our new algorithm obtains quite a
large polynomial improvement, except when the Jaccard similarity between the query and
the sought after superset is nearly 0 (which is hardly an interesting situation.)

It is possible to use MinHash as an embedding (or densification) of sets into Hamming
space or onto the Sphere. We can then use Spherical LSF to get space/time trade-offs. We
have not plotted those, but we can notice that in the balanced case, ρq = ρu, this would
give ρ = 1−j1

1+j1
1+j2
1−j2 , which is worse than ρ = log j1/ log j2 obtained by the direct algorithm.

MinHash is quite different from the other algorithms considered in this section. For
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Figure C.4: Comparison to Chosen Path: Fixing wq and the Jaccard similarity so w1 =
j1

1+j1
(wq+wu), we vary wu to see the performance of different algorithms at different levels

of asymmetry in the set sizes. The plots are drawn in the “random setting”, w2 = wqwu
and use the optimal embedding for Spherical LSF.

some more intuition of why MinHash is not optimal for Approximate Set Similarity Search,
we show in Appendix C.4.2 that MinHash can be seen as an average of a family of Chosen
Path like algorithms. We also show that an average is always worse than simply using the
best family member, which implies that MinHash is never optimal.

Comparison to Chosen Path The Chosen Path algorithm of [CP17], is virtually
identical to Supermajorities, when parametrized with tq = tu = 1. Similar to Spherical
LSF and our decoding algorithm, they build a tree on the datasets. For each node they
sample iid. Elements x1, x2, · · · ∈ U from the universe, and split the data into (not
necessarily disjoint) subsets Pi = {p ∈ P | xi ∈ p}. They again continue recursively and
independently until the expected number of leaves shared between two dissimilar points
is sufficiently small.

The case tq = tu = 1 however, turns out to be a very special case of our algorithm,
because one can decide which leaves of the tree to prune, without knowledge of what
happened previously on the path from the root to the node. This allows a nice inductive
analysis of Chosen Path based on second moments, which is a classic example literature
on branching processes. Meanwhile, for our general algorithm, we need to analyse the
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resulting branching random walk, a conceptually much different beast.

Doing the analysis, one gets a data structure for Approximate Set Similarity Search
over Braun-Blanquet similarity, B(x, y) = |x∩y|

max{|x|,|y|} , with query time |q|nρ and auxiliary

space usage n1+ρ, where ρ = log b1
log b2

and b1 and b2 define the gap between “good” and “bad”
search results. Since tq = tu = 1 is sometimes the optimal choice for Supermajorities, it is
clear that we must sometimes coincide in performance with Chosen Path. In particular,
this happens as wq = wu and wq, wu, w1 → 0. This is also one of the case where our lower
bound Theorem C.4 is sharp, which confirms, in addition to the lower bound in [CP17]
that both algorithms are sharp for LSF data structures in this setting. Figure C.2a shows
how Chosen Path does nearly as well as Supermajorities on very small sets.

In the case wq = wu the ρ value of Chosen Path can be equivalently written in terms
of Jaccard similarities as log 2j1

1+j1

/
log 2j2

1+j2
, which is always smaller than the log j1

/
log j2

obtained by MinHash. (This value, 2j/(1 + j), is also known as the Sørensen-Dice co-
efficient of two sets.) However, in the case wq ̸= wu Chosen Path can be much worse
than MinHash, as seen in Figure C.2b and Figure C.3a. In [CP17] it was left as an open
problem whether MinHash could be improved upon in general. It is a nice result that
the balanced ρ value of Supermajorities (when ρq = ρu) can be shown (numerically) to
always be less than or equal to log 2j1

1+j1

/
log 2j2

1+j2
, even when wq ̸= wu. It is a curious

problem for which similarity measure, S, so the balanced ρ value of Supermajorities equal
log s1/ log s2.

Partial Match (PM) and Super-/Subset queries (SQ) Partial Match asks to pre-
process a database D of n points in {0, 1}d such that, for all query of the form q ∈ {0, 1, ∗}d,
either report a point x ∈ D matching all non-∗ characters in q or report that no such x
exists. A related problem is Super-/Subset queries, in which queries are on the form
q ∈ {0, 1}d, and we must either report a point x ∈ D such that x ⊆ q (resp. q ⊆ x) or
report that no such x exists.

The problems are equivalent to the subset query problem by the following folklore
reductions: (PM → SQ) Replace each x ∈ D by the set {(i, pi) : i ∈ [d]}. Then replace
each query q by {(i, qi) : qi = ∗}. (SQ → PM) Keep the sets in the database as vectors
and replace in each query each 0 by an ∗.

The classic approach, studied by Rivest [Riv76], is to split up database strings like
supermajority and file them under s, u, p etc. Then when given query like set we take
the intersection of the lists s, e, t. Sometimes this can be done faster than brute force
searching each list. He also considered the space heavy solution of storing all subsets, and
showed that when d ≤ 2 log n, the trivial space bound of 2d can be somewhat improved.
Rivest finally studied approaches based on tries and in particular the case where most
of the database was random strings. The latter case is in some ways similar to the LSH
based methods we will describe below.

Indyk, Charikar and Panigrahy [CIP02] also studied the exact version of the problem,

and gave, for each c ∈ [n], an algorithm with O(n/2c) time and n2(O(d log2 d
√
c/ logn) space,

and another with O(dn/c) query time and ndc space. Their approach was a mix between
the shingling method of Rivest, building a look-up table of size ≈ 2Ω(d), and a brute force
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Figure C.5: This figure from the Partial Match algorithm of [CIP02] shares some of the
same geometrical intuition visible in our own figure C.1a.

search. These bounds manage to be non-trivial for d = ω(log n), however only slightly.
(e.g. n/poly(log n) time with polynomial space.)

There has also been a large number of practical papers written on Partial Match /
Subset queries or the equivalent batch problem of subset joins [RPNK00; MG03; GG10;
AAK10; FMNM19]. Most of these use similar methods to the above, but save time and
space in various places by using bloom filters and sketches such as MinHash [BGMZ97]
and HyperLogLog [FFGM07].

Maximum Inner Product (MIPS) is the Similarity Search problem with S(x, y) =
⟨x, y⟩ — the Euclidean inner product. For exact algorithms, most work has been done
in the batch version (n data points, n queries). Here Alman et al. [ACW16] gave an

n2−1/Õ(
√
k) algorithm, when d = k log n.

An approximative version can be defined as: Given c > 1, pre-process a database D
of n points in {0, 1}d such that, for all query of the form q ∈ {0, 1}d return a point x ∈ D
such that ⟨q, x⟩ ≥ 1

c maxx′∈D⟨q, x′⟩. Here [APRS16] gives a data structure with query

time ≈ Õ(n/c2), and [CW19] solves the batch problem in time n2−1/O(log c) (both when d
is no(1).)

There are a large number of practical papers on this problem as well. Many are based
on the Locality Sensitive Hashing framework (discussed below) and have names such as
SIMPLE-LSH [NS15] and L2-ALSH [SL14a]. The main problem for these algorithms is
usually that no hash family of functions h : {0, 1}d × {0, 1}d → [m] such that Pr[h(q) =
h(x)] = ⟨q, x⟩/d [APRS16] and various embeddings and asymmetries are suggested as
solutions.

The state of the art is a paper from NeurIPS 2018 [YLDC+18] which suggests parti-
tioning data by the vector norm, such that the inner product can be more easily estimated
by LSH-able similarities such as Jaccard. This is curiously very similar to what we suggest
in this paper.

We will not discuss these approaches further since, for GapSS, they all have higher
exponents than the three LSH approaches we study next.
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C.2 The Algorithm

We now describe the full algorithm that gives Theorem C.2. We state the full version of
the theorem, discuss it and prove it. The section ends with an involved analysis of the
survival probabilities of the branching random walk.

Notationally we define [n] = {1, . . . , n} and let (· ◦ ·) : Al1 × Al2 → Al1+l2 be the
concatenation operator for any set A and integers l1, l2. We will use the Iversonian bracket,
defined by [P ] = 1 if P and 0 otherwise. For R and U sets, we have R× U = {r ◦ u | r ∈
R, u ∈ U} P(U) is the power set of U .

The first step is to set up our assumptions. For wq, wu, w1, w2, tq, tu ∈ [0, 1] given, we
can assume min{wq, wu} ≥ w1 > w2 and tq ̸= wq, tu ̸= wu. We are also given a universe
U and a family Y ⊆

(
U

wu|U |
)

of size |Y | = n.

It will be nice to assume |U | = q where q is a prime number. This can always be
achieved by adding at most |U |0.525 elements to U large enough13 [BHP01]. Hence we only
distort each of wq, wu, w1, w2 by roughly a factor 1 +O(|U |−1/2), which is insignificant for
|U | = Ω(log n)2, and we can always increase |U | without changing the problem parameters
by duplicating the set elements.

Let k ∈ Z+ be defined later. For all i ∈ [k] we define hi(r) : [q]i → [q] by hi(r) =∑
j∈[i] ai,jrj+bi mod q for some sequences of random numbers ai,j ∈ [q]\{0}, bi ∈ [q], such

that each hi is a 2-independent random function. (That means Pr[hi(r) = hi(r
′)] ≤ 1/q

for r ̸= r′.)
Finally two sequences (∆i ∈ Z+)i∈[k] and (cℓ ∈ R2)ℓ∈[k] to be specified later. We

can now define the sets Ri = {r ◦ x ∈ Ri−1 × U |hi(r ◦ x) < ∆i} , as well as the decoding
functions

Ri(X, t) =

{
r ∈ Ri

∣∣∣∣ ∀ℓ ≤ i :
∑
j∈[ℓ]

[rj ∈ X] ≥ tℓ− cℓ
}

Intuitively Ri are our representative sets at level i in the tree, such that Rk is a close
to iid. uniform sample from Uk. The decoding function takes a set X ⊆ U and a value
t ∈ [0, 1], and returns all r ∈ Ri such that all prefixes r′ of r “(t − ε)-favours” X (as
defined by |r ∩X|/|r| ≥ t− ε in the introduction), where ε =

c|r′|
|r′| is some slack that helps

ensure survival of at least one representative set. The slack won’t be the same on each
coordinate, but scaled by their variance. The algorithm is shown below as pseudo-code in
Algorithm 1.

Our data structure now builds a hash-table M of lists of pointers and store each set
y ∈ Y in M [r] for every r ∈ Rk(y, tu). One can think of this as storing the elements at the
leafs of the tree represented by the sets Ri. On a new query q ∈

(
U

wq |U |
)

we look at every

list M [r] for r ∈ Rk(q, tq). For each y in such a list, we compute the intersection with q
and return y if |q ∩ y|/|U | ≥ w2. This takes time min{wu, wq}|U |, which would be a large
multiplicative factor on our query time, so we may instead choose to sample just

O(min{wq, wu}w−1
2 log n) (C.1)

13It is an open conjecture by Harald Cramér that (log |U |)2 suffices as well. [Cra36]



C.2. THE ALGORITHM 215

Algorithm 1: Pseudocode for the decoding function R.

Input: Universe U , Set X ⊆ U , Threshold t ∈ [0, 1]
Result: Set Pk ⊆ Uk of paths
R0 ← {((), 0)} // These Ri values contain the paths and scores

for i = 1 to k do
Ri ← {}
for (r, s) ∈ Ri−1 do

for x ∈ U st. hi(r ◦ x) < ∆i do // Sample the universe
s′ ← s+ [x ∈ X]
if s′ ≥ it− ci then // Trim to promising paths

Ri ← Ri ∪ {(r ◦ x, s′)}
end

end

end

end

elements, which suffices as a test with high probability.
This describes the entire algorithm, exception for an optimization for the “Sample the

universe” step above, which naively implemented would take time |X|. This optimization
is the reason |U | was chosen to be a prime number.

An optimization In the “Sample the universe” step of Algorithm 1 a naive implemen-
tation spends time |X| hashing all possible elements and comparing their value to ∆i. We
now show how to make this step output sensitive, using only time equal to the number of
values for which the condition is true. 14

The requirement s′ ≥ it− ci we call the “trimming condition”. This allows us to trim
away most prefix paths which would be very unlikely to ever reach our requirement for
the final path. To speed up finding all x ∈ U such that hi(r ◦ x) < ∆i we note that there
are two cases relevant to the trimming condition, depending on s in the algorithm: (1) s′

has to be s+ 1 or (2) s′ = s suffices. In the first case we are only interested in x values in
X, while in the second case, all x ∈ U values are relevant.

We have hi(r ◦ x) = η + ax mod q for some values η, a and b where a > 0. In case
(2) the relevant x are simple {a−1(v− η) mod q | v ∈ [∆i]}, where a−1 exists because q is
prime. For the case (1) where x must be in X, we pre-process X by storing ax mod q for
x ∈ X in a sorted list. Using a single binary search, we can then find the relevant values
with a time overhead of just lg |X|. Using a more advanced predecessor data structure,
this overhead can be reduced. See Algorithm 2 for a pseudocode version of this idea.

C.2.1 Full Theorem

We state the full version of Theorem C.2 and a discussion of the differences between it
and the idealized version in the introduction.

14The subroutine is inspired by personal communications with Rasmus Pagh and Tobias Christiani.
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Algorithm 2: Output sensitive sample

Input : r ∈ [q], ∆ ∈ [q]
Pre-process: s = sorted{h(x) | x ∈ X} ∈ [q]|X| and κ ∈ X |X| st. h(κ[i]) = s[i].
Result: R = {x ∈ X | (h(x) + r mod q) < ∆}
i← min{i ∈ [|X|] | s[i− 1] < q − r ≤ s[i]} // We assume s[i] = −∞ for i < 0
R← {}
while (s[i mod |X|] + r mod q) < ∆ do

R← R ∪ {κ[i mod |X|]}
i← i+ 1

end

Theorem C.2 (Full version). Let wq, wu ≥ w1 ≥ w2 ≥ 0 be given with w1 ≥ wqwu and 1 ≤
tq, tu ≤ 0. Set k to be the smallest even integer greater than or equal to logn

D(T2∥P2)−d(tq∥wq)

and assume that tqk/2 and tuk/2 are integers. The (wq, wu, w1, w2)-GapSS problem over
a universe U can be solved with expected query time

query time O
(
ςq k

28 nρq + kwq |U |+
( tq(1−wq)
(1−tq)wq

)√tq(1−tq)k · 6.5 log(3k))),
space usage O(ςu k

28 n1+ρu + nwu |U |)

and update time O
(
ςu k

28 nρu + kwu |U |+
( tu(1−wu)
(1−tu)wu

)√tu(1−tu)k · 6.5 log(3k))),
where ρq =

D(T1 ∥ P1)− d(tq ∥ wq)
D(T2 ∥ P2)− d(tq ∥ wq)

and ρu =
D(T1 ∥ P1)− d(tu ∥ wu)

D(T2 ∥ P2)− d(tq ∥ wq)
,

and ςq =
min{wq ,wu}

w2
e2(D(T1∥P1)−d(tq∥wq)), ςu = e2(D(T1∥P1)−d(tu∥wu)).

We stress that all previous Locality Sensitive algorithms with time/space trade-offs
had no(1) factors on nρq and nρu . These could be as large as exp(

√
log n) or even

exp((log n)/(log log n)). In contrast, our algorithm is the first that only loses k ≈ log(n)
multiplicative factors!

In the statement of Theorem C.2 we have taken great effort to make sure that any
dependence on wq, wu, w1, w2, tq, tu is visible and only truly universal constants, like 4, are
hidden in the O(·).

The main thing we do lose is the additive (
tq(1−wq)
(1−tq)wq

)Õ(
√
tq(1−tq)k). We may note the

bound (
tq

1−tq )
√
tq(1−tq) ≤ 2, so the main eyesore is the 1/wq. For wq > e−Õ(

√
logn) this

is dominated by the main term, but for very small sets it could potentially be an issue.
However, it turns out that as wq and wu get small, the optimal choices of tq and tu move

towards 0 or 1. Since this effect is exponentially stronger we get that (1/wq)
√
tq(1−tq) is

usually never more than a small constant. It also means that we recover the performance
of Chosen Path in the case tq = 1, tu = 1, which has no Ω(e

√
logn) terms. 15

15The authors know of a way to reduce the error term further, so it only appears in the ρq = 0 case,
and only as exp((log 1/wq)

2/3k1/3) which is o(n) for any wq = ω(1/n).
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In case w−1
q is large, but w2 is not too small, we can reduce w−1

q to wu
w2
k by hashing!

Sketch: Define a hash function h : U → [m] where m = O(
wqwu

w2
|U |k) and map each set y

to {i ∈ [m] | ∃e ∈ y : h(e) = i}, that is the OR of the hashed values. With high probability
this only distorts the size of the sets and their inner products by a factor (1 + 1/k) which
doesn’t change ρ.

The constants of the size ςq and ςu are standard in all other similar algorithms
since [IM98], as they come from the requirement that k is an integer. The terms
D(T1 ∥ P1) − d(tq ∥ wq) and D(T1 ∥ P1) − d(tu ∥ wu) in ςq and ςu may be bounded
by log wu

w1
and log

wq

w1
respectively. The factor of 2 on those terms come from the tensor-

ing step done on paths of length k/2. This can be removed at the cost of making the
ratio-of-odds term multiplicative in the bounds above. The factor min{wq, wu}/w2 in ςq
comes from equation (C.1) and is the time it takes to verify a candidate identified by the
filtering. Note that this factor would exist even in a brute force O(n) algorithm and exists
in any data structures known for similar problems. In fact, for small n, it is necessary due
to communication complexity bounds.

Proof of Theorem C.2. Let Tq and Tu be the time it takes to compute Rk(x, tq) and
Rk(y, tu) on given sets. When creating the data structure, decoding each y ∈ Y takes
time nTu and uses nE[|Rk(Y, tu)|] words of memory for space equivalent. When querying
the data structure we first use time Tq to decode q, then E[|Rk(X, tq)|] time to look in the

buckets, and finally
min{wq ,wu} logn

w2
time on each of E[|Rk(X, tq) ∩Rk(Y, tu)|]n expected

collisions with far sets (the worst case is that we never find any y with y ∩ q > w2|U | so
we can’t return early.)

The key to proving the theorem is thus bounding the above quantities. We do this
using the following lemma, which we prove at the end of the section:

Lemma C.7. In Algorithm 1 let k ∈ Z+ and let wq, wu, w1, w2 ∈ [0, 1] be the Gap-SS
parameters such that w1 ≥ wqwu. Now let tq, tu ∈ [0, 1] be the thresholds such that tqk
and tuk are integers, and let ∆ > 0 be the branching factor. Given a query set X, with
|X| = wq |U |, and data set Y ⊆ U , with |Y | = wu |U |, then running Algorithm 1 with

cℓ =

[√
tq(1−tq)√
tu(1−tu)

]
·
√

6.5ℓ log(3k) for ℓ < k and ck = [ 00 ], gives that

E[|Rk(X, tq)|] ≤ 2∆k exp(−k d(tq ∥ wq)) . (C.2)

E[|Rk(Y, tu)|] ≤ 2∆k exp(−k d(tu ∥ wu)) . (C.3)

Pr[|Rk(X, tq) ∩Rk(Y, tu)| ≥ 1] ≥ 7−8k−14∆k exp(−kD(T1 ∥ P1)) if |X ∩ Y | ≥ w1 |U | .
(C.4)

E[|Rk(X, tq) ∩Rk(Y, tu)|] ≤ 2∆k exp(−kD(T2 ∥ P2)) if |X ∩ Y | ≤ w2 |U | .
(C.5)

where Pj =
(

wj wq−wj

wu−wj 1−wq−wu+wj

)
, Tj =

(
tj tq−tj

tu−tj 1−tq−tu+tj

)
, tj = arg inf D(Tj ∥ Pj) for

j ∈ {1, 2}.
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Finally the expected running times, Tq and Tu, it takes to compute Rk(X, tq) and
Rk(Y, tu) respectively are bounded by

E[Tq]≤ O
(
k |X|+ k(k + log(n))∆k exp(−k d(tq ∥ wq))

(
tq(1−wq)
(1−tq)wq

)(ck)1 )
.

E[Tu]≤ O
(
k |Y |+ k(k + log(n))∆k exp(−k d(tu ∥ wu))

(
tu(1−wu)
(1−tu)wu

)(ck)2 )
.

(C.6)

We define ∆ = exp(D(T1 ∥ P1)), and let k be the smallest even integer at least
logn

D(T2∥P2)−d(tq∥wq)
. Define the sequence ∆i = 2li for some li ∈ Z≥0 such that

∏i
j=1 ∆j ≤

∆i < 2
∏i
j=1 ∆j for all i ∈ [k].

We make 2 initiations of Algorithm 1, M1,M2, with height k/2. ∆ and cℓ are adjusted
correspondingly. In we have ck/2 = ck = [ 00 ].

For each instance we have

E
[∣∣Rk/2(X, tq)∣∣] ≤ 2 exp(k/2 D(T1 ∥ P1)− k/2 d(tq ∥ wq))

≤ 2 exp

((
log n

D(T2 ∥ P2)− d(tq ∥ wq)
+ 2

)
(D(T1 ∥ P1)− d(tq ∥ wq))

2

)
= 2n

1
2

D(T1∥P1)−d(tq∥wq)

D(T2∥P2)−d(tq∥wq) (D(T1 ∥ P1)− d(tq ∥ wq)).
similarly we get

E
[∣∣Rk/2(X, tq)∣∣] ≤ 2n

1
2

D(T1∥P1)−d(tu∥wu)
D(T2∥P2)−d(tq∥wq) (D(T1 ∥ P1)− d(tu ∥ wu)).

We combine the two data instances M1 and M2 by taking as representative sets re-
turned the product of the sets returned by each of them. In particular, this means we
successfully find a near set, if

∣∣Rk/2(X, tq) ∩Rk/2(Y, tu)
∣∣ ≥ 1 for both instances, which

happens with probability at least

(7−8k−14∆k exp(−kD(T1 ∥ P1)))
2 = (7−8k−14)2.

hence, repeating the algorithm Ck28 times, for some C, we can boost this probability to
99%.

Putting it all together now yields the full version of Theorem C.2 contingent
on Lemma C.7.

C.2.2 Bounds on Branching

It now remains to prove Lemma C.7. The inequalities (C.2), (C.3) and (C.5) are all
simple calculations based on linearity of expectation. The time bound (C.6) is also fairly
simple, but we have to take the decoding optimization described above into account. We
also need to bound the number of paths alive at some point during the decoding process,
which requires being more careful about the trimming conditions.

Finally the proof of the probability lower bound (C.4) is the main star of the section.
We do this using essentially a second-moment method, but a number of tricks are needed
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in order to squeeze out acceptable bounds, taking into account that any of wq, wu, w1, w2

may be o(1), which among other things forbid the use of many Central Limit Theorem
type results.

Proof of (C.2) and (C.3). We only provide the proof for (C.2) since the proof (C.3) is
analogous.

Let r ∈ Rk be a representative string and define the random variables X (i) = [ri ∈ X]
for i ∈ [k], because the hash functions hi used at each level of the tree are independent,
so are the (X (i))i∈[k] independent.

We use linearity of expectation, and completely throw away the fact that some branches
may have been cut early. Throwing away extra cuts of course only increases the probability
of survival. Meanwhile, we do not expect to gain more than factors of k this way, compared
to a sharp analysis, since the whole point of the algorithm is to efficiently approximate
cuts done only at the leaf level.

E[|Rk(X, tq)|] ≤ |Rk|Pr

∀ℓ ≤ k :
∑
i∈[ℓ]

X (i) ≥ tqℓ− c(ℓ)1


≤ |Rk|Pr

∑
i∈[k]

X (i) ≥ tqk


≤ |Rk| exp(−k d(tq ∥ wq)).

The final bound is the entropy Chernoff bound we use everywhere. Since |Rk| =
∏k
i=1 ∆i ≤

2∆k we get the bound.

Proof of (C.5). This is similar to the proof of (C.2) and (C.3), but two dimensional.
Like in the those proofs we consider a single representative string r ∈ Rk and define the

random variables X (i) =
[
[ri∈X]
[ri∈Y ]

]
for i ∈ [k]. By definition of Algorithm 1 (X (i))i∈[k] are

independent.

We then bound using linearity of expectation:

E[|Rk(X, tq) ∩Rk(Y, tu)|] ≤ |Rk|Pr

∀ℓ ≤ k :
∑
i∈[ℓ]

X (i) ≥ [ tqtu ]ℓ− c(ℓ)


≤ 2∆k Pr

∑
i∈[k]

X (i) ≥ [ tqtu ]k


≤ 2∆k exp(−D(T2 ∥ P2))

Proof of (C.6). As a preprocessing stage we make k sorted lists of (aix)x∈X where ai is
the coefficient in hi(p ◦ x) = h′i(p) + aix mod q, this takes O(k |X|) time.
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We will argue that at each level of tree that we only use O(k+ log |X|) = O(k+ log n)
amortized time per active path. More precisely, at level l we use O((k+ log n) |Rℓ(X, tq)|)
amortized time.

Let ℓ ∈ [k] be fixed and consider an active path r ∈ Rℓ(X, tq). If
∑

i∈[ℓ][ri ∈
X] ≥ tq(l + 1) − c

(l−1)
1 then every one of its children will be active. So we need to

find {x ∈ U |hℓ(p ◦ x) < ∆ℓ} = h−1
ℓ ([∆ℓ]). Now hℓ(p ◦ x) = h′ℓ(p) + ax mod q where

a ̸= 0 mod q and s = h′ℓ(p) can be computed in O(k) time. We then get that
h−1
ℓ ([∆ℓ]) =

{
a−1(i− s)

∣∣ i ∈ [∆ℓ]
}

, this we can find in time proportional with the number
of active children, so charging the cost to them gives the result.

If
∑

i∈[ℓ][ri ∈ X] < tq(l + 1) − c
(l−1)
1 then only the children r ◦ x ∈ Rl+1 where

x ∈ X will be active. So we need to find {x ∈ X |hℓ(p ◦ x) < ∆ℓ}. Again using that
hℓ(p◦x) = h′ℓ(p)+ax mod q where a ̸= 0 mod q and s = h′ℓ(p) can be computed in O(k)
time, we have reduced the problem to finding h−1

ℓ ([∆ℓ]) = {x ∈ X | s+ ax mod q < ∆ℓ}.
This we note we can rewrite as h−1

ℓ ([∆ℓ]) = {x ∈ X | s ≤ ax ∨ ax < ∆ + s− q}, so using
our sorted list this can be done in O(log n) time plus time proportional with the number
of active children, so charging this cost to them gives the result.

We bound the expected number of active paths on a level ℓ ∈ [k]. Let r ∈ Rℓ be
a representative string and define the random variables X (i) = [ri ∈ X] for i ∈ [k], by
definition of Algorithm 1 (X (i))i∈[k] are independent. We then bound

Pr

∑
i∈[l]

X (i) ≥ tqℓ− c(ℓ)1

 ≤ Pr

∀j ≤ ℓ :
∑
i∈[j]

X (i) ≥ tqj − c(j)1


≤ Pr

∑
i∈[ℓ]

X (i) ≥ tqℓ− c(ℓ)1


≤ exp(−l d(tq − c(ℓ)/l ∥ wq))

≤ exp(−l d(tq ∥ wq))
(
tq(1−wq)
wq(1−tq)

)c(ℓ)1
.

The crucial step here was using the identity

d(tq − ε ∥ wq) = d(tq ∥ wq)− ε log
tq(1−wq)
wq(1−tq) + d(tq − ε ∥ tq)

from which we can ignore the d(tq − ε ∥ tq) term, since it is positive.

Using linearity of expectation we get that

E[|Rℓ(X, tq)|] ≤ |Rℓ| exp(−ℓd(tq ∥ wq))
(
tq(1−wq)
wq(1−tq)

)c(ℓ)1

≤ 2∆ℓ exp(−ℓd(tq ∥ wq))
(
tq(1−wq)
wq(1−tq)

)c(ℓ)1
.
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Now the expected cost of the tree becomes

E

∑
ℓ∈[k]

O((k + log(n)) |Rℓ(X, tq)|)

 = O((k + log(n))
∑
ℓ∈[k]

E[|Rℓ(X, tq)|])

≤ O(k(k + log(n))∆k exp(−k d(tq ∥ wq))
(
tq(1−wq)
wq(1−tq)

)c(ℓ)1
) .

Note that we throw away some leverage here by bounding the size of each level by

the final level. We might have defined c(ℓ) such that ℓ∆− ℓd(tq ∥ wq) + c(ℓ) log
tq(1−wq)
wq(1−tq) −

ℓd(tq − c(ℓ)/ℓ ∥ tq) = k∆ − k d(tq ∥ wq) and still used the same bound. The only later
requirement we set the c(ℓ) is that

∑
ℓ∈[k] exp(−ℓd(tq − c(ℓ)/ℓ ∥ tq)) sum to 1/ poly(k).

Making this change could potentially kill the
(
tq(1−wq)
wq(1−tq)

)c(ℓ)1
factor, which is a bit of an

eye sore. However in the near-constant query time case, which is really when this factor
(or term once we using the tensoring trick) is relevant, this trick wouldn’t work, since we
then have exactly ∆ = d(tq ∥ wq).

For the final proof we need the following lemma, which bounds the probability that
an unbiased Bernoulli 2d random walk stays entirely in the negative quadrant. A lemma
like this is an exercise to show using the Central Limit Theorem and convergence to
Brownian motion. However, our bound is non-asymptotic, making no assumptions about
the relationship between the probability distribution of Xi and the size of n. There are
non-asymptotic CLT bounds, like Berry Esseen, but unfortunately multivariate Berry
Esseen bounds for random walks are not very developed.

Lemma C.8 (The probability that a random walk stays in a quadrant). Let X1, . . . , Xk ∈
{0, 1}2 be iid. Bernoulli 2d-random variables with probability matrix

[
p p1−p

p2−p 1−p1−p2+p

]
.

Assume that the coordinates are correlated, that is p ≥ p1p2, and assume pqk and p2k are
integers.

Let Sℓ =
∑

i∈[ℓ]Xi be the associated random walk. Then

Pr[∀ℓ ∈ [k] : Sℓ ≤ 0] ≥ 1

400 k6.5
.

The proof of this is in Appendix C.2.3.

Proof of (C.4). We will prove this bound using the second moment method. For this to
work, it is critical that we restrict our representative strings further and consider

S =

r ∈ Rk
∣∣∣∣∣∣ ∀ℓ ≤ k :

[
[ri∈X]
[ri∈Y ]

]
ℓ− c(ℓ) ≤

∑
i∈[ℓ]

[
[ri∈X]
[ri∈Y ]

]
≤ [ tqtu ]ℓ

 ,

It is easy to check that S ⊆ Rk(X, tq) ∩Rk(Y, tu), thus we have that

Pr[|Rk(X, tq) ∩Rk(Y, tu)| ≥ 1] ≥ Pr[|S| ≥ 1] ≥ E[|S|]2
/

E
[
|S|2

]
,
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where the last bound is Paley-Zygmund’s inequality. We then need to do two things: 1)

Lower bound E[|S|], and 2) Upper bound E
[
|S|2

]
.

Lower bounding E[|S|]. Let r ∈ Rk be a representative string and define the random

variables X (i) =
[
[ri∈X]
[ri∈Y ]

]
for i ∈ [k]. Each one has distribution P =

[
w1 wq−w1

wu−wq 1−wq−wu+w1

]
.

We then introduce variables X̃ (i) with law T =
[

t1 tq−t1
tu−tq 1−tq−tu+t1

]
, where t1 minimizes

D(T ∥ P ) as defined in the algorithm.

We then use the following variation on Sanov’s theorem:

Lemma C.9. For any set A ⊆ R2×n we have

Pr
[
(X (i))i∈[k] ∈ A

]
= exp(−kD(T ∥ P )) Pr

[
(X̃ (i))i∈[k] ∈ A

]
Proof. Define the logarithmic moment generating function Λ(λ) = log E[exp(⟨λ,X⟩)], and
let z = (∇xΛ∗)(t). By a standard correspondence, (see e.g. [PW14] Chapter 14 or [Din94]
Chapter 6.2), we have that

dT (x) = exp(⟨z, x⟩ − Λ(z))dP (x) (C.7)

for Radon–Nikodym derivates dT and dP . Now using the exponential change of measure,
we get that

Pr
[
(X (i))i∈[k] ∈ A

]
=

∫
(x(i))i∈[k]∈A

dP⊗k

=

∫
(x̃(i))i∈[k]∈A

exp

kΛ(z)−

〈
z,
∑
i∈[k]

x̃(i)

〉 dT⊗k

= exp(−kD(T ∥ P ))

∫
(x̃(i))i∈[k]∈A

exp

−〈z,∑
i∈[k]

(
x̃(i) − [ tqtu ]

)〉 dT⊗k

= exp(−kD(T ∥ P )) Pr
[
(X̃ (i))i∈[k] ∈ A

]
,

where the last inequality follows from the fact that if (x̃(i))i∈[k] ∈ A then
∑

i∈[k] x̃
(i) =

[ tqtu ]k.

For convenience we will sometimes write T =
[
t11 t12
t21 t22

]
. Note that by assumption

tqk = (t12 + t11)k and tuk = (t21 + t11)k are integers, but values such as t11k and t22k
need not be.
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We define the sets

U =

(x(i))i∈[k] ∈ R2×k

∣∣∣∣∣∣ ∀ℓ ≤ k :
∑
i∈[ℓ]

x(i) ≤ [ tqtu ]ℓ


and L =

(x(i))i∈[k] ∈ R2×k

∣∣∣∣∣∣ ∀ℓ ≤ k :
∑
i∈[ℓ]

x(i) ≥ [ tqtu ]ℓ− c(ℓ)


such that U ∩L are all sequences satisfying our path requirement. In other words E|S| =
exp(−kD(T ∥ P )) Pr

[
(X̃ (i))i∈[k] ∈ U ∩ L

]
. Using a union bound we split up:

Pr
[
(X̃ (i))i∈[k] ∈ U ∩ L

]
≥ Pr

[
(X̃ (i))i∈[k] ∈ U

]
− Pr

[
(X̃ (i))i∈[k] ∈ L

]
.

The term is bounded by Lemma C.8 from the Appendix. Once we notice that w1 ≥
wqwu implies that t1 ≥ tqtu. One way to see this is that t1 minimizing D(T ∥ P ) gives

rise to the equation
w1(1−wq−wu+w1)
(wq−w1)(wu−w1)

=
t1(1−tq−tu+t1)
(tq−t1)(tu−t1) =

t1+t1(t1−tq−tu)
tqtu+t1(t1−tq−tu) . If w1 ≥ wqwu the

left hand side is ≥ 1, and so we must have t1 ≥ tqtu.
Lemma C.8 then gives us

Pr
[
(X̃ (i))i∈[k] ∈ U

]
≥ 1

400
k−3.5 .

This is a pretty small value, so for the union bound to work we need an even smaller
probability for the lower bound.

We bound each coordinate individually. The cases are symmetric, so we only consider
the first coordinate. Using another union bound and Bernstein’s inequality we get

Pr

[
∃ℓ ≤ k :

ℓ∑
i=1

X̃ (i)
1 ≤ tqℓ− c

(ℓ)
1

]
=
∑
l≤k

Pr

[
ℓ∑
i=1

X̃ (i)
1 ≤ tqℓ− c

(ℓ)
1

]

≤
∑
l≤k

exp

(
−(c

(ℓ)
1 )2/2

(1− tq)tqℓ+ (1− 2tq)c
(ℓ)
1 /3

)

≤ 1

1200
k−6.5.

since c
(ℓ)
1 = Ω(

√
tq(1− tq)l log l + |1− 2tq| log l).

Similarly, we upper bound Pr
[
∃ℓ ≤ k :

∑ℓ
i=1 X̃

(i)
2 ≤ tuℓ− c

(ℓ)
2

]
≤ 1

1200k
−6.5. Putting it

all together we get

Pr
[
(X (i))i∈[k] ∈ A

]
≥ 1

1200
exp(−kD(T1 ∥ P1))k

−6.5 ,

so by linearity of expectation we get that

E[S] ≥ |Rk|
1

1200
k−6.5 exp(−kD(T ∥ P )) ≥ 1

1200
k−6.5∆k exp(−kD(T ∥ P )) .
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Upper bounding E
[
|S|2

]
Consider two representative strings r, r′ ∈ Rk and let q ∈ Rℓ be their common prefix,

hence l is the length of their common prefix. Define the random variables X (i) =
[
[ri∈X]
[ri∈Y ]

]
,

Y(j) =
[
[r′j∈X]

[r′j∈Y ]

]
, and Z(h) =

[
[qh∈X]
[qh∈Y ]

]
for i, j ∈ [k] \ [ℓ] and h ∈ [l]. We then get that

Pr
[
p, p′ ∈ S

]
≤ Pr

∑
h∈[ℓ]

Z(h) +
∑

i∈[k]\[l]

X (i) ≥ tk ∧
∑
h∈[ℓ]

Z(h) +
∑

j∈[k]\[l]

Y(j) ≥ tk ∧
∑
h∈[ℓ]

Z(h) ≤ tl


≤ Pr

∑
h∈[ℓ]

Z(h) +
∑

i∈[k]\[l]

X (i) +
∑

j∈[k]\[l]

Y(j) ≥ (2k − ℓ)t

 .

Now
∑

h∈[ℓ]Z(h) +
∑

i∈[k]\[l]X (i) +
∑

j∈[k]\[l] Y(j) is almost a sum of independent random

variable. We have that X (k−ℓ+1) and Y(k−ℓ+1) are correlated since they are chosen by
sampling without replacement, but this implies that

E
[
exp(⟨λ,X (k−ℓ+1) + Y(k−ℓ+1)⟩)

]
≤ E

[
exp(⟨λ,X (k−ℓ+1)⟩)

]
E
[
exp(⟨λ,Y(k−ℓ+1)⟩)

]
We can then use a 2-dimensional Entropy-Chernoff bound and get that

Pr

∑
h∈[ℓ]

Z(h) +
∑

i∈[k]\[l]

X (i) +
∑

j∈[k]\[l]

Y(j) ≥ (2k − ℓ)t

 ≤ exp(−(2k − ℓ) D(T ∥ P )) ,

Using this we can upper bound E
[
|S|2

]
= E

[∑
r,r′∈Rk

[r, r′ ∈ S]
]

by splitting the sum

by the length of their common prefix.

E
[
|S|2

]
= E

 ∑
r,r′∈Sk

[r, r′ ∈ S]


≤

k∑
i=1

 i∏
j=1

∆j

(∆i+1

2

) k∏
j=i+2

∆j

 exp(−(2k − i) D(T ∥ P ))

≤

 k∏
j=1

∆j

2

exp(−2kD(T ∥ P ))
k∑
i=1

exp(iD(T ∥ P ))

 i∏
j=1

∆j

−1

≤

 k∏
j=1

∆j

2

· exp(−2kD(T ∥ P )) · k · exp(kD(T ∥ P )) ·∆−k

≤ 4k∆k exp(−kD(T ∥ P ))
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Finishing the proof

Having lower bounded E[|S|] and upper bounded E
[
|S|2

]
we can finish the proof.

Pr[|Rk(X, tq) ∩Rk(Y, tu)| ≥ 1] ≥ Pr[|S| ≥ 1]

≥ E[|S|]2
/

E
[
|S|2

]
≥

1
12002

k−13∆2k exp(−2kD(T ∥ P ))

4k∆k exp(−kD(T ∥ P ))

=
1

24002
k−14∆ℓ exp(−kD(T ∥ P )) .

C.2.3 Central Random Walks

The main goal of this section is to prove Lemma C.8, which polynomially in k lower
bounds the probability that a biased random walk on Z2 always stays below its means.
Asymptotically, this can be done in various ways using the Central Limit Theorem for
Brownian Motion, but as far as we know there are no standard ways to prove such a result
in a quantitative way.

What we would really want is a Multidimensional Berry Esseen for Random Walks.
Instead we prove something specifically for walks where each iid. step X1, . . . , Xk ∈ {0, 1}2

be is a Bernoulli 2d-random variables with probability matrix
[

p p1−p
p2−p 1−p1−p2+p

]
. We need

the further restrictions that the coordinates are correlated (p ≥ p1p2), and that p1k and
p2k are integers.

We will start by proving some partial results, simply bounding the probability that
the final position of the random walk hits a specific value. We then prove the lemma
conditioned on hitting those values, and finally put it all together.

Lemma C.10. Let k ∈ Z+ and p1, p2 ∈ [0, 1], such that, both p1k and p2k are integers.
Choose p ∈ [0, 1], such that, p ≥ p1p2. Let X(i) ∈ R2 be independent identically distributed

2-dimensional Bernoulli variables, where their probability matrix is P =
[

p p1−p
p2−p 1−p1−p2+p

]
.

We then get that

Pr

∑
i∈[k]

X(i) = ( p1p2 ) k ∧
∑
i∈[k]

X
(i)
1 X

(i)
2 = ⌈pk⌉

 ≥ 1

400
k−3.5 ,

In the proof we will be using the Stirling’s approximation

√
2πnnne−n ≤ n! ≤ e

√
nnne−n . (C.8)
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This implies the following useful bounds on the binomial and multinomial coefficients.(
n

an

)
≥
√

2π

e2
n−0.5a−an(1− a)−(1−a)n . (C.9)(

n

an, bn, cn

)
≥
√

2π

e4
n−1.5a−anb−bnc−cn(1− a− b− c)−(1−a−b−c)n . (C.10)

Proof. If p1 = 1 then p = p2 and we get that

Pr

∑
i∈[k]

X
(i)
2 = p2k

 =

(
k

p2k

)
pp2k2 (1− p2)(1−p2)k ≥

√
2π

e2
k−

1
2 ,

where we have used eq. (C.9). We get the same bound when p1 = 0, p2 = 1, or p2 = 0.

Now assume that p1, p2 ̸∈ {0, 1}, we then have that 1
k ≤ p1 ≤ 1− 1

k and 1
k ≤ p2 ≤ 1− 1

k .
We first note that

Pr

∑
i∈[k]

X(i) = (p1k, p2k) ∧
∑
i∈[k]

X
(i)
1 X

(i)
2 = ⌈pk⌉


=

(
k

⌈pk⌉ , p1k − ⌈pk⌉ , p2k − ⌈pk⌉

)
p⌈pk⌉(p1 − p)p1k−⌈pk⌉(p2 − p)p2k−⌈pk⌉(1− p1 − p2 + p)k−p1k−p2k+⌈pk⌉

≥
√

2π

e4
· 1

k3/2
exp

(
− ⌈pk⌉ log

⌈pk⌉
pk
− (p1k − ⌈pk⌉) log

p1k − ⌈pk⌉
p1k − pk

− (p2k − ⌈pk⌉) log
p2k − ⌈pk⌉
p2k − pk

− (k − p1k − p2k + ⌈pk⌉) log
k − p1k − p2k + ⌈pk⌉
k − p1k − p2k + pk

)
where we have used eq. (C.10). We will bound each of the terms ⌈pk⌉ log ⌈pk⌉

pk , (p1k −
⌈pk⌉) log p1k−⌈pk⌉

p1k−pk , (p2k− ⌈pk⌉) log p2k−⌈pk⌉
p2k−pk , and (k− p1k− p1k+ ⌈pk⌉) log k−p1k−p2k+⌈pk⌉

k−p1k−p2k+pk
individually.

Using that p ≥ p1p2 ≥ 1
k2

we get that

⌈pk⌉ log
⌈pk⌉
pk

= (1 + pk) log

(
1 +

1

pk

)
≤ 1 + log(1 + k) .

Now using that 1− p1 − p2 + p ≥ (1− p1)(1− p2) ≥ 1
k2

we get that

(k − p1k − p1k + ⌈pk⌉) log
k − p1k − p2k + ⌈pk⌉
k − p1k − p2k + pk

≤ (k(1− p1 − p2 + p) + 1) log

(
1 +

1

k(1− p1 − p2 + p)

)
≤ 1 + log(1 + k) .
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We easily get that

(p1k − ⌈pk⌉) log
p1k − ⌈pk⌉
p1k − pk

≤ (p1k − ⌈pk⌉) log
p1k − pk
p1k − pk

= 0 .

Similarly, we get that (p2k − ⌈pk⌉) log p2k−⌈pk⌉
p2k−pk = 0.

Combining all this we get that

Pr

∑
i∈[k]

X(i) = (p1k, p2k) ∧
∑
i∈[k]

X
(i)
1 X

(i)
2 = ⌈pk⌉


≥
√

2π

e4
k−1.5 exp(−(1 + log(1 + k))− (1 + log(1 + k))) ≥ 1

400
k−3.5 .

We now prove a result for the random walk, conditioned on the final position. In the
last result of this section, we will remove those restrictions.

Lemma C.11. Let k ∈ Z+ and p, p1, p2 ∈ [0, 1], such that, pk, p1k, and p2k are integers
and p ≥ p1p2. Let X(i) ∈ {0, 1}2 be independent identically distributed variables. We then
get that

Pr

∀l ≤ k :
∑
i∈[k]

X(i) ≥

p1
p2

 l

∣∣∣∣∣∣
∑
i∈[k]

X(i) =

p1
p2

 k ∧
∑
i∈[k]

X
(i)
1 X

(i)
2 = pk

 ≥ k−3 .

In the proof we will use the folklore result.

Lemma C.12. Let k ∈ Z+ and (ai)i∈[k] numbers such that
∑

i∈[k] ai ≥ 0 then there exists
a s ∈ [k] such that

∑
i∈[l] a(s+i) mod k ≥ 0 for every l ≤ k.

Proof of Lemma C.11. Using Lemma C.12 we get that
∑

i∈[l]X
(i)
1 ≥ p1l for every l ≤ k

with probability at least k−1 since every variable identically distributed. Fixing (X
(i)
1 )i∈[k]

and using Lemma C.12 2 times we get that
∑

i∈[l]X
(i)
1 X

(i)
2 ≥

p
p1

∑
i∈[l]X

(i)
1 and

∑
i∈[l](1−

X
(i)
1 )X(i) ≥ p2−p

1−p1
∑

i∈[l]X
(i)
1 for every l ≤ k with probability at least k−2. If all these three

events happens then for every l ≤ k we get that∑
i∈[l]

X
(i)
2 =

∑
i∈[l]

X
(i)
1 X

(i)
2 +

∑
i∈[l]

(1−X(i)
1 )X

(i)
2

≥ p

p1

∑
i∈[l]

X
(i)
1 +

p2 − p
1− p1

∑
i∈[l]

X
(i)
1

=
p− p1p2
p1(1− p1)

∑
i∈[l]

X
(i)
1 +

p2 − p
1− p1

l

≥ p− p1p2
p1(1− p1)

p1l +
p2 − p
1− p1

l

= p2l .
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So we conclude that with probability at least k−3 then
∑

i∈[l]X
(i) ≥

p1
p2

 l for every

l ≤ k which finishes the proof.

All that remains is proving Lemma C.8. We restate it and then prove it.

Lemma C.13. Let X1, . . . , Xk ∈ {0, 1}2 be iid. Bernoulli 2d-random variables with

probability matrix
[

p p1−p
p2−p 1−p1−p2+p

]
. Assume that the coordinates are correlated, that is

p ≥ p1p2, and assume pqk and p2k are integers.

Let Sℓ =
∑

i∈[ℓ]Xi be the associated random walk. Then

Pr[∀ℓ ∈ [k] : Sℓ ≤ 0] ≥ 1

400 k6.5
.

Proof. We define the set U =
{

(x(i))i∈[k] ∈ R2×k
∣∣∣∀ℓ ≤ k :

∑
i∈[ℓ] x

(i) ≤ [ p1p2 ]ℓ
}

of all se-

quences satisfying our path requirement. In other words Pr[∀k ∈ [n] : Sk ≤ 0] =
Pr
[
(X (i))i∈[k] ∈ U

]
. We then add even more restrictions by defining

A′ =

(x(i))i∈[k] ∈ R2×k

∣∣∣∣∣∣
∑
i∈[k]

x(i) = [ p1p2 ]k ∧
∑
i∈[k]

(1− x(i)1 )(1− x(i)2 ) = ⌈p22k⌉

 . (C.11)

That is, we require the last final value of the path to completely match its expectation,

rounded up. By monotonicity we have Pr
[
(X (i))i∈[k] ∈ U

]
≥ Pr

[
(X̃ (i))i∈[k] ∈ U ∩A′

]
.

We want to use Lemma C.10 and Lemma C.11 and to ease the notation we introduce
the negated random variables Y(i) = 1− X̃ (i). Define p22 = 1− p1− p2 + p. We then have
that E

[
Y(i)

]
= [ 1−p11−p2 ] and Pr

[
Y(i) = ( 1

1 )
]

= p22 = 1 − p1 − p2 + p ≥ (1 − p1)(1 − p2) by
the assumption of correlation.

We can then rewrite using Y(i):

Pr
[
(X̃ (i))i∈[k] ∈ U ∩A′

]
= Pr

∀ℓ ≤ k :
∑
i∈[k]

Y(i) ≥ [ 1−p11−p2 ]ℓ ∧
∑
i∈[k]

Y(i) = [ 1−p11−p2 ]k ∧
∑
i∈[k]

Y(i)
1 Y

(i)
2 = ⌈p22k⌉


Now using Lemma C.10 we have that

Pr

∑
i∈[k]

Y(i) = [ 1−p11−p2 ]k ∧
∑
i∈[k]

Y(i)
1 Y

(i)
2 = ⌈p22k⌉

 ≥ 1

400
k−3.5 .
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Combining this with Lemma C.11 we get that

Pr

∀ℓ ≤ k :
∑
i∈[k]

Y(i) ≥ [ 1−p11−p2 ]ℓ ∧
∑
i∈[k]

Y(i) = [ 1−p11−p2 ]k ∧
∑
i∈[k]

Y(i)
1 Y

(i)
2 = ⌈p22k⌉


= Pr

∑
i∈[k]

Y(i) = [ 1−p11−p2 ]k ∧
∑
i∈[k]

Y(i)
1 Y

(i)
2 = ⌈p22k⌉


· Pr

∀ℓ ≤ k :
∑
i∈[k]

Y(i) ≥ [ 1−p11−p2 ]ℓ

∣∣∣∣∣∣
∑
i∈[k]

Y(i) = [ 1−p11−p2 ]k ∧
∑
i∈[k]

Y(i)
1 Y

(i)
2 = ⌈p22k⌉


≥ 1

400
k−6.5 .

C.3 Lower Bounds

Our lower bounds all assume that w2d = ω(log n), where d is the size of the universe. As
discussed in the introduction is both standard and necessary.

We proceed to define the hard distributions for all further lower bounds.

1. A query x ∈ {0, 1}d is created by sampling d random independent bits with
Bernoulli(wq) distribution.

2. A dataset P ⊆ {0, 1}d is constructed by sampling n − 1 vectors with random
independent bits from such that yi ∼ Bernoulli(w2/wq) if xi = 1 and yi ∼
Bernoulli((wu − w2)/(1− wq)) otherwise, for all y ∈ P .

3. A ‘close point’, y′ ∈ {0, 1}d, is created by y′i ∼ Bernoulli(w1/wq) if xi = 1 and
y′i ∼ Bernoulli((wu − w1)/(1− wq)) otherwise. This point is also added to P .

The values are chosen such that E[|x|] = wqd, E[|z|] = wud for all z ∈ P , E[|x ∩ y′|] = w1d,
and E[|x ∩ y|] = w2d for all y ∈ P \ {y′}. By a union bound over P , the actual values
are within factors 1 + o(1) of their expectations with high probability. Changing at most
o(log n) coordinates we ensure the weights of queries/database points is exactly their
expected value, while only changing the inner products by factors 1 + o(1). Since the
changes do not contain any new information, we can assume for lower bounds that entries
are independent. Thus any (wq, wu, w1(1 − o(1)), w2(1 + o(1)))-GapSS data structure on
P must thus be able to return y′ with at least constant probability when given the query
x.

Model Our lower bounds are shown in slightly different models. The first lower bound
follows the framework of O’Donnell et al. [OWZ14] and Christiani [Chr17] and directly
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lower bound the quantity
log(p1/min{pu,pq})
log(p2/min{pu,pq}) which lower bounds ρu and ρq in Defini-

tion C.28. This lower bound holds for all w2 ̸= wqwu, i.e., it gives a lower bound when we
are not considering a random instance, and it only gives a lower bound in the case where
ρq = ρu.

For the second lower bound we follow the framework of Andoni et al. [ALRW17b] and
give a lower bound in the “list-of-points”-model (see Definition C.3). This is a slightly
more general model, though it is believed that all bounds for the first model can be shown
in the list-of-points model as well. Our lower bound shows that our upper bound is tight in
the full time/space trade-off when w2 = wqwu, i.e., when we are given a random instance.

The second bound can be extended to show cell probe lower bounds by the arguments
in [PTW08].

C.3.1 p-biased Analysis

We first give some preliminaries on b-biased Boolean analysis, and then introduce the
directed noise operator.

Preliminaries

We want analyse Boolean functions f : {0, 1}d → {0, 1} but as is common, it turns out to
be beneficial to consider a more general class of functions f : {0, 1}d → R.

The probability distribution πp is defined on {0, 1} by πp(1) = p and πp(0) = 1 −
p, and we define π⊗dp to be the product probability distribution on {0, 1}d. We write

L2({0, 1}d , π⊗dp ) for the inner product space of functions f : {0, 1}d → R with inner
product

⟨f, g⟩p = E
x∼π⊗d

p

[f(x)g(x)] .

We will define the norm ∥f∥Lq(p)
=
(

Ex∼π⊗d
p

[f(x)q]
)1/q

.

We define the p-biased Fourier coefficients for a function f : L2({0, 1}d , π⊗dp ) by

f̂ (p)(S) = E
x∼π⊗d

p

[
f(x)ϕ

(p)
S (x)

]
,

for every S ⊆ [d] and where we define

ϕ(p)(x) =
x− p√
p(1− p)

ϕ
(p)
S (x) =

∏
i∈S

ϕ(p)(xi) .

The Fourier coefficients have the nice property that

f(x) =
∑
S⊆[d]

f̂ (p)(S)ϕ
(p)
S (x) . (C.12)
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The Fourier coefficients satisfy the Parseval-Plancherel identity, which says that for any
f, g ∈ L2({0, 1}d , πdp) we have that

⟨f, g⟩p =
∑
S⊆[d]

f̂ (p)(S)ĝ(p)(S) .

In particular we have that Ex∼π⊗d
p

[
f(x)2

]
= ∥f∥2L2(p)

=
∑

S⊆[d] f̂
(p)(S)2. For Boolean

functions f : {0, 1}d → {0, 1} this is particularly useful since we get that

Pr
x∼π⊗d

p

[f(x) = 1] = E
x∼π⊗d

p

[f(x)] = E
x∼π⊗d

p

∑
S⊆[n]

f̂ (p)(S)ϕ
(p)
S (x)

 = f̂ (p)(∅)

Pr
x∼π⊗d

p

[f(x) = 1] = E
x∼π⊗d

p

[f(x)] = E
x∼π⊗d

p

[
f(x)2

]
=
∑
S⊆[d]

f̂ (p)(S)2.

If we think of f as a filter in a Locality Sensitive data structure, Prx∼π⊗d
p

[f(x) = 1] is

the probability that the filter accepts a random point with expected weight p (d · p of the
coordinates being 1).

Noise

For ρ ∈ [−1, 1], p1, p2 ∈ (0, 1), and x ∈ {0, 1}d we write y ∼ Np1→p2
ρ (x) when y ∈ {0, 1}d

is randomly chosen such that for each i ∈ [d] independently, we have that if xi ∼ πp2 then
yi ∼ πp1 and (xi, yi) are ρ-correlated. We note that if x ∼ π⊗dp2 and y ∼ Np1→p2

ρ then we

also have that y ∼ π⊗dp1 and x ∼ Np2→p1
ρ (y).

For ρ ∈ [−1, 1] and p1, p2 ∈ (0, 1) we define the directed noise operator T p1→p2
ρ :

L2({0, 1}d , π⊗dp1 )→ L2({0, 1}d , π⊗dp2 ) by

T p1→p2
ρ f(x) = E

y∼Np1→p2
ρ

[f(y)] .

When p1 = p2 = p then T p→p
ρ is the usual noise operator on p-biased spaces and we denote

it T
(p)
ρ . T

(p)
ρ has the nice property that T̂

(p)
ρ f

(p)

(S) = ρ|S|f̂ (p)(S) for any S ⊆ [d], and

hence T
(p)
ρ satisfies the semigroup property T

(p)
ρ T

(p)
σ = T

(p)
ρσ . The following lemma shows

that we have similar properties for T p1→p2
ρ .

Lemma C.13. For ρ ∈ [−1, 1], p1, p2 ∈ (0, 1) and f ∈ L2({0, 1}d , π⊗p1) we have that

̂T p1→p2
ρ f

(p2)
(S) = ρ|S|f̂ (p1)(S) ,

for any S ⊆ [d]. Furthermore, for any σ ∈ [−1, 1] and p3 ∈ [0, 1] we have that
T p2→p3
σ T p1→p2

ρ = T p1→p3
ρσ and T p2→p1

ρ is the adjoint of T p1→p2
ρ .
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Proof. We fix S ⊆ [d] and get that

̂T p1→p2
ρ f

(p2)
(S) = E

x∼π⊗d
p2

[
T p1→p2
ρ f(x)ϕ

(p2)
S (x)

]
= E

x∼π⊗d
p2

[
E

y∼Np1→p2
ρ (x)

[f(y)]ϕ
(p2))
S (x)

]

= E
x∼π⊗d

p2

 E
y∼Np1→p2

ρ (x)

∑
T⊆[d]

f̂ (p1)(T )ϕ
(p1)
T (y)

ϕ(p2)S (x)


= E

x∼π⊗d
p2

[
E

y∼Np1→p2
ρ (x)

[
f̂ (p1)(S)ϕ

(p1)
S (y)ϕ

(p2)
S (x)

]]

= f̂ (p1)(S)
∏
i∈S

E
xi∼πp2

[
E

yi∼N
p1→p2
ρ

[
ϕ
(p1)
i (yi)ϕ

(p2)
i (xi)

]]
= ρ|S|f̂ (p1)(S) ,

where the last line uses that ϕ
(p)
i (x) = x−p√

p(1−p)
, which proves the first claim. For the

second claim we note that

̂(T p2→p3
σ T p1→p2

ρ f)
(p3)

(S) = σ|S| ̂T p1→p2
ρ f

(p2)
(S) = (ρσ)|S|f̂ (p1)(S) = ̂T p1→p2

ρσ f
(p3)

(S) ,

for any f ∈ f ∈ L2({0, 1}d , π⊗p1) and any S ⊆ [d] which proves the second claim. For the
last claim we use the Plancherel-Parseval identity and get that

⟨T p1→p2
ρ f, g⟩L2(p2) =

∑
S∈[d]

ρ|S|f̂ (p1)ĝ(p2) = ⟨f, T p2→p1
ρ g⟩L2(p1) ,

for any f ∈ L2({0, 1}d , π⊗dp1 ) and any g ∈ L2({0, 1}d , π⊗dp2 ) which shows that T p2→p1
ρ is the

adjoint of T p1→p2
ρ .

We say that (T p1→p2
ρ )ρ>0 is (s, r)-hypercontractive if there exists ρ0 > 0 such that for

every ρ ≥ ρ0 and every f ∈ Lr({0, 1}d , πdp1)∥∥T p1→p2
ρ f

∥∥
Ls(p2)

≤ ∥f∥Lr(p1)
.

We define σs,r(p1, p2) to be the smallest possible ρ0 We are interested in the hypercon-
tractivity of T p1→p2

C.3.2 Symmetric Lower bound

The most general, but sadly least tractable, approach to our lower bounds, is to bound
the noise operator Tα in terms of a different level of noise, Tβ. We do however manage to
show one bound on this type, following an spectral approach first used by O’Donnell et
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al. [OWZ14] to prove the first optimal LSH lower bounds of ρ ≥ 1/c for data-independent
hashing. Besides handling the case of set similarity with filters rather than hash functions,
we slightly generalize the approach a big by using the power-means inequality rather than
log-concavity. 16

We will show the following inequality(
Prx,y′,f [f(x) = 1, f(y′) = 1]

Prx,f [f(x) = 1]

)1/ logα

≤
(

log
Prx,y,f [f(x) = 1, f(y) = 1]

Prx,f [f(x) = 1]

)1/ log β

where α = w1−w2

w(1−w) and β = w2−w2

w(1−w) , and y′ and y are sampled as respectively a close and

a far point (see the top of the section). By rearrangement, this directly implies a lower
bound in the LSF model as defined in Definition C.28.

First we prove a general lemma about Boolean functions, which contains the most
important arguments.

Lemma C.14. Let f : {0, 1}n → R be a function and p ∈ (0, 1). Then for any 1 > α ≥
β > 0 we have that(

⟨T (p)
α f, f⟩L2(p)

∥f∥2L2(p)

)1/ log(1/α)

≤

⟨T (p)
β f, f⟩L2(p)

∥f∥2L2(p)

1/ log(1/β)

.

Proof. We use the Parseval-Plancherel identity and the power-mean inequality to get that(
⟨T (p)
α f, f⟩L2(p)

∥f∥2L2(p)

)1/ log(1/α)

=

(∑
S⊆[n] α

|S|f̂ (p)(S)2∑
S⊆[n] f̂

(p)(S)2

)1/ log(1/α)

=

 n∑
k=0

∑
S⊆[n]
|S|=k

f̂ (p)(S)2∑
S⊆[n] f̂

(p)(S)2

(
e−k
)log(1/α)

1/ log(1/α)

≤

 n∑
k=0

∑
S⊆[n]
|S|=k

f̂ (p)(S)2∑
S⊆[n] f̂

(p)(S)2

(
e−k
)log(1/β)

1/ log(1/β)

=

(∑
S⊆[n] β

|S|f̂ (p)(S)2∑
S⊆[n] f̂

(p)(S)2

)1/ log(1/β)

=

⟨T (p)
β f, f⟩L2(p)

∥f∥2L2(p)

1/ log(1/β)

.

The first and the last equality follows from the Parseval-Plancherel identity and the in-
equality follows from the power-mean inequality since log(1/α) ≤ log(1/β).

16This widens the range in which the bound is applicable – the O’Donnell bound is only asymptotic
for r → 0. However the values we obtain outside this range, when applied to Hamming space LSH, aren’t
sharp against the upper bounds.
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The proof of Theorem C.4 is then simply a few a rearrangements such that we can use
Lemma C.14.

Corollary C.15. Any data-independent LSF data structure for the (w,w,w1, w2)-GapSS
problem with expected query time nρq and expected space usage n1+ρu where ρq = ρu = ρ
must have

ρ ≥ log

(
w1 − w2

w(1− w)

)/
log

(
w2 − w2

w(1− w)

)
.

Proof. Let F be any fixed LSF-family and let f : {0, 1}n → {0, 1} be a random function
such that f−1(1) = Q for Q ∼ F . Now we define the deterministic function f : {0, 1}n → R

by f(x) =
∑

S⊆[d]

√
Ef

[
f̂ (w)(S)2

]
ϕS(x). Using the Parseval-Plancherel identity we get

that

E
f

[
⟨T (w)
ρ f, f⟩L2(w)

]
=
∑
S⊆[d]

ρ|S| E
f

[
f̂ (w)(S)2

]
= ⟨T (w)

ρ f, f⟩L2(w) .

for every ρ. We set α = w1−w2

w(1−w) and β = w2−w2

w(1−w) and note that Prx,y′,f [f(x) =

1, f(y′) = 1] = Ef

[
⟨T (w)
α f, f⟩L2(w)

]
, Prx,y,f [f(x) = 1, f(y) = 1] = Ef

[
⟨T (w)
β f, f⟩L2(w)

]
,

and Prx,f [f(x) = 1] = Ef

[
∥f∥2L2(w)

]
. Then using Lemma C.14 we get that

(
Prx,y′,f [f(x) = 1, f(y′) = 1]

Prx,f [f(x) = 1]

)1/ log 1/α

=

Ef

[
⟨T (w)
α f, f⟩L2(w)

]
Ef

[
∥f∥2L2(w)

]
1/ log 1/α

=

⟨T (w)
α f, f⟩L2(w)∥∥f∥∥2

L2(w)

1/ log 1/α

≤

⟨T (w)
β f, f⟩L2(w)∥∥f∥∥2

L2(w)

1/ log 1/β

=

(
Prx,y,f [f(x) = 1, f(y) = 1]

Prx,f [f(x) = 1]

)1/ log 1/β

.

By rearrangement this implies that

ρ =
log

Prx,y′,f [f(x)=1,f(y′)=1]

Prx,f [f(x)=1]

log
Prx,y,f [f(x)=1,f(y)=1]

Prx,f [f(x)=1]

≥ logα

log β
.
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As noted the bound is sharp against our upper bound when wu, wq, w1, w2 are all small.

Also notice that logα/ log β ≤ 1−α
1+α

1−β
1+β is a rather good approximation for α and β close to

1. Here the right hand side is the ρ value of Spherical LSH with the batch-normalization
embedding discussed in Appendix C.4.1.

Note that the lower bound becomes 0 when we get close to the random instance,
w2 → wqwu. In the next sections we will remedy this, by showing a lower bound tight
exactly when w2 = wqwu.

C.3.3 General Lower Bound

Our second lower bound will be proven in the “list-of-points” model. We follow and
expand upon the approach by Andoni et al. [ALRW17b]. The main idea is to lower bound
random instances with planted points. If the random instances correspond to a Similarity
Search problem with high probability then we have a lower bound for the Similarity Search
problem. We formalize the notion of random instances in the following general definition.

Definition C.16 (Random instance). For spaces Q and U we describe a distribution of
dataset-query pairs (P, q) where P ⊆ U and q ∈ Q. Let PQU be a probability distribution
on Q × U , a PQU -random instance is a dataset-query pair drawn from the following
distribution.

1. A dataset P ⊆ U is constructed by sampling n points where p ∼ PU for all p ∈ P .

2. A dataset point p′ ∈ P is fixed and a q ∈ Q is sampled such that (q, p′) ∼ PQU .

3. The goal of the data structure is to pre-process P such that it recovers p′ when given
the query point q.

We can then generalize the result by Andoni et al. [ALRW17b], who proved a result
specifically for random Hamming instances, to general random instances. We defer the
proof to Appendix C.I.

Lemma C.17. Let Q and U be some spaces and PQU a probability distribution on Q×U .
Consider any list-of-points data structure for PQU -random instances of n points, which
uses expected space n1+ρu, has expected query time nρq−on(1), and succeeds with probability
at least 0.99. Let r, s ∈ [1,∞] satisfy

E
(X,Y )∼PQU

[f(X)g(Y )] ≤ ∥f(X)∥Lr(PQ) ∥g(Y )∥Ls(PU ) ,

for all functions f : Q→ R and g : U → R. Then

1

r
ρq +

1

r′
ρu ≥

1

r
+

1

s
− 1 ,

where r′ = r
r−1 is the convex conjugate of r.
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This gives a good way to lower bound random instances when one has tight hypercon-
tractive inequalities. Unfortunately, for most probability distributions this is not the case
but we can amplify the power of Lemma C.17 by combining it with Lemma C.18 which
we recall from the introduction.

Lemma C.18. Let PXY be a probability distribution on a space ΩX ×ΩY and let PX and
PY be the marginal distributions on the spaces ΩX and ΩY respectively. Let s, r ∈ [1,∞),
then the following is equivalent

1. For all functions f : ΩX → R and g : ΩY → R we have

E
(X,Y )∼PXY

[f(X)g(Y )] ≤ ∥f(X)∥Lr(PX) ∥g(Y )∥Ls(PY ) . (C.13)

2. For all probability distributions QXY which are absolutely continuous with respect to
PXY we have

D(QXY ∥ PXY ) ≥ D(QX ∥ PX)

r
+

D(QY ∥ PY )

s
. (C.14)

We defer the proof to the end of the section and instead start by focusing on the
effects of combining Lemma C.17 and Lemma C.18. First of all we can prove the following
general lower bound for random instances.

Theorem C.18. Let Q and U be some spaces and PQU a probability distribution on Q×U .
Consider any list-of-points data structure for PQU -random instances of n points, which
uses expected space n1+ρu, has expected query time nρq−on(1), and succeeds with probability
at least 0.99. Then for every r ∈ [1,∞] we have that

1

r
ρq +

1

r′
ρu

≥ inf
QQU

(
1

r

D(QQU ∥ PQU )−D(QQ ∥ PQ)

D(QU ∥ PU )
+

1

r′
D(QQU ∥ PQU )−D(QU ∥ PU )

D(QU ∥ PU )

)
,

where r′ = r
r−1 is the convex conjugate of r and the infimum is over every probability

distribution QQU with QU ̸= PU and which is absolutely continuous with respect to PQU .

Proof. Let r ∈ [1,∞] and choose s = arg inf {s ∈ [1,∞] | PQU is (r, s)-hypercontractive}.
Lemma C.17 give us that

1

r
ρq +

1

r′
ρu ≥

1

r
+

1

s
− 1 . (C.15)

Lemma C.18 give us that

D(QXY ∥ PXY ) ≥ D(QX ∥ PX)

r
+

D(QY ∥ PY )

s
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for every QQU with QU ̸= PU and which is absolutely continuous with respect to PQU .
We can rewrite this as

1

r
D(QQU ∥ PQU )−D(QQ ∥ PQ) +

1

r′
D(QQU ∥ PQU )−D(QU ∥ PU )

≥
(

1

s
− 1

r′

)
D(QU ∥ PU ) ⇔

1

r

D(QQU ∥ PQU )−D(QQ ∥ PQ)

D(QU ∥ PU )
+

1

r′
D(QQU ∥ PQU )−D(QU ∥ PU )

D(QU ∥ PU )

≥ 1

s
− 1

r′
=

1

s
+

1

r
− 1

Now the minimality of s give us that

inf
QQU

(
1

r

D(QQU ∥ PQU )−D(QQ ∥ PQ)

D(QU ∥ PU )
+

1

r′
D(QQU ∥ PQU )−D(QU ∥ PU )

D(QU ∥ PU )

)
=

1

s
+

1

r
− 1,

(C.16)

where the infimum is over every probability distribution QQU with QU ̸= PU and which
is absolutely continuous with respect to PQU . Now combining (C.15) and (C.16) give us
the result.

Combining the lemma with the “Hypercontractive Induction Theorem” [ODo14] we
can prove Theorem C.5.

Lemma C.19. Let PXY be a probability distribution on a space ΩX × ΩY and P⊗n
XY be

a probability distribution consisting n independent copies of PXY . Then PXY is (r, s)-
hypercontractive if and only if P⊗n

XY is (r, s)-hypercontractive.

We restate Theorem C.5 and prove it.

Theorem C.5. Consider any list-of-point data structure for the (wq, wu, w1, wqwu)-
GapSS problem over a universe of size d of n points with wqwud = ω(log n), which uses
expected space n1+ρu, has expected query time nρq−on(1), and succeeds with probability at
least 0.99. Then for every α ∈ [0, 1] we have that

αρq + (1− α)ρu ≥ inf
tq ,tu∈[0,1]
tu ̸=wu

(
α

D(T ∥ P )− d(tq ∥ wq)
d(tu ∥ wu)

+ (1− α)
D(T ∥ P )− d(tu ∥ wu)

d(tu ∥ wu)

)
,

where P =
[

w1 wq−w1

wu−w1 1−wq−wu+w1

]
and T = arg inf

T≪P, E
X∼T

[X]=[
tq
tu

]

D(T ∥ P ).

Proof. From the discussion at the beginning of the section it is enough to lower bound
the P⊗d-random instance where P = Bernoulli([

w1 wq−w1

wu 1−wq−wu+w1
]), since this will imply

a lower bound for the (wq, wu, w1, wqwu)-GapSS problem. Combining Lemma C.19 and
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Lemma C.18 we get that P⊗d is (r, s)-hypercontractive if and only if D(T ∥ P ) ≥ d(tq∥wq)
r +

d(tu∥wu)
s where T = arg inf

T≪P, E
X∼T

[X]=[
tq
tu

]

D(T ∥ P ). Now repeating the proof of Theorem C.18

give us the result.

Proof of Lemma C.18 We now turn to the proof Lemma C.18. The main argument
needed in the proof of is contained in the following lemma, which can be seen as a variation
of Fenchel’s inequality.

Lemma C.20. Let P be a probability distribution on a space Ω, Q a probability which
is absolutely continuous with respect to P , and ϕ : Ω → R a function such that
EX∼P [exp(ϕ(X))] <∞. Then

D(Q ∥ P ) + log E
X∼P

[exp(ϕ(X))] ≥ E
X∼Q

[ϕ(X)] .

and we have equality if and only if dQ
dP (x) = exp(ϕ(x))

EX∼P[exp(ϕ(X))] .

Proof. We note that

D(Q ∥ P ) = E
X∼Q

[
log

dQ

dP
(X)

]
= E

X∼Q

[
log

dQ
dP (X)

exp(ϕ(X))

]
+ E
X∼Q

[ϕ(X)]

= E
X∼Q

[ϕ(X)]− E
X∼Q

[
log

exp(ϕ(X))
dQ
dP (X)

]
.

Using Jensen’s inequality we get that

E
X∼Q

[
log

exp(ϕ(X))
dQ
dP (X)

]
≤ log E

X∼Q

[
exp(ϕ(X))

dP

dQ
(X)

]
= log E

X∼P
[exp(ϕ(X))] .

Combining these two equations give us the inequality. Now we note that we have equality
if and only if eϕ(x) dPdQ(x) is constant, and since Q is a probability distribution this is

equivalent with dQ
dP (x) = exp(ϕ(x))

EX∼P[exp(ϕ(X))] .

We are now ready to prove Lemma C.18.

Proof of Lemma C.18. First we prove that (C.13) ⇒ (C.14). Let QXY be a probability
distribution which is absolutely continuous with respect to PXY . We set exp(ϕX(x)) =
dQX
dPX

(x) and exp(ϕY (y)) = dQY
dPY

(y). From this we see that EX∼PX
[exp(ϕX(X))] =

EX∼Px

[
dQX
dPX

(X)
]

= EX∼QX
[1] = 1 and similarly that EY∼PY

[exp(ϕY (Y ))] = 1, hence
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we have that dQX
dPX

(x) = exp(ϕX(x))
EX∼PX

[exp(ϕX(X))] and dQY
dPY

(y) = exp(ϕY (y))
EY ∼PY

[exp(ϕY (Y ))] . Using (C.13)

we get that

E
(X,Y )∼PXY

[exp(ϕX(X) + ϕY (Y )]

≤ E
X∼PX

[exp(rϕX(X))]1/r E
Y∼PY

[exp(sϕY (Y )]1/s ⇔

log E
(X,Y )∼PXY

[exp(ϕX(X) + ϕY (Y )]

≤ log EX∼PX
[exp(rϕX(X))]

r
+

log EY∼PY
[exp(sϕY (Y )]

s
.

Using Lemma C.20 3 times we have that

log E
(X,Y )∼PXY

[exp(ϕX(X) + ϕY (Y ))] ≥ E
(X,Y )∼QXY

[ϕX(X) + ϕY (Y )]−D(QXY ∥ PXY )

log E
X∼PX

[exp(ϕX(X))] = E
X∼QX

[ϕX(X)]−D(QX ∥ PX)

log E
X∼PY

[exp(ϕY (Y ))] = E
Y∼QY

[ϕY (Y )]−D(QY ∥ PY ) ,

where the equalities hold since dQX
dPX

(x) = exp(ϕX(x))
EX∼PX

[exp(ϕX(X))] and dQY
dPY

(y) =

exp(ϕY (y))
EY ∼PY

[exp(ϕX(Y ))] . We then get that log E(X,Y )∼PXY
[exp(ϕX(X) + ϕY (Y )] ≤

log EX∼PX
[exp(rϕX(X))]

r +
log EY ∼PY

[exp(sϕY (Y )]

s implies, that

E
(X,Y )∼QXY

[ϕX(X) + ϕY (Y )]−D(QXY ∥ PXY )

≤ EX∼QX
[rϕX(X)]−D(QX ∥ PX)

r
+

EY∼QY
[sϕY (Y )]−D(QY ∥ PY )

s
.

Now by rearrangement this is equivalent with

D(QXY ∥ PXY ) ≥ D(QX ∥ PX)

r
+

D(QY ∥ PY )

s
,

which proves that (C.13)⇒ (C.14).
We now prove that (C.14)⇒ (C.13). Fix the functions f : ΩX → R and g : ΩY → R.

We note that E(X,Y )∼PXY
[f(X)g(Y )] ≤ E(X,Y )∼PXY

[|f | (X) |g| (Y )] hence we can assume
that f and g are non-negative. We define ϕX(x) = log(f(x)) and ϕY (x) = log(g(x))17.
Then (C.13) is equivalent with

E
(X,Y )∼PXY

[exp(ϕX(X) + ϕY (Y )]

≤ E
X∼PX

[exp(rϕX(X))]1/r E
Y∼PY

[exp(sϕY (Y )]1/s ⇔

log E
(X,Y )∼PXY

[exp(ϕX(X) + ϕY (Y )]

≤ log EX∼PX
[exp(rϕX(X))]

r
+

log EY∼PY
[exp(sϕY (Y )]

s
.

17We define log(0) = −∞ and exp(−∞) = 0.
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We define the probability distribution QXY by dQXY
dPXY

(x, y) = exp(ϕX(X)+ϕY (Y )
E(X,Y )∼PXY

[exp(ϕX(X)+ϕY (Y )] .

It is easy to see that QXY is indeed a probability distribution. Using (C.14) we get that

D(QXY ∥ PXY ) ≥ D(QX ∥ PX)

r
+

D(QY ∥ PY )

s
.

Using Lemma C.20 3 times we have that

D(QXY ∥ PXY ) = E
(X,Y )∼QXY

[ϕX(X) + ϕY (Y )]− log E
(X,Y )∼PXY

[exp(ϕX(X) + ϕY (Y ))]

D(QX ∥ PX) ≥ E
X∼QX

[rϕX(X)]− log E
X∼PX

[exp(rϕX(X))]

D(QY ∥ PY ) ≥ E
Y∼QY

[sϕY (Y )]− log E
X∼PY

[exp(sϕY (Y ))] ,

where the equality holds since dQXY
dPXY

(x, y) = exp(ϕX(X)+ϕY (Y )
E(X,Y )∼PXY

[exp(ϕX(X)+ϕY (Y )] . We then get

that D(QXY ∥ PXY ) ≥ D(QX∥PX)
r + D(QY ∥PY )

s implies, that

E
(X,Y )∼QXY

[ϕX(X) + ϕY (Y )]− log E
(X,Y )∼PXY

[exp(ϕX(X) + ϕY (Y ))]

≥ EX∼QX
[rϕX(X)]− log EX∼PX

[exp(rϕX(X))]

r

+
EY∼QY

[sϕY (Y )]− log EX∼PY
[exp(sϕY (Y ))]

s
.

Now if we rearrange we get that

log E
(X,Y )∼PXY

[exp(ϕX(X) + ϕY (Y )] ≤ log EX∼PX
[exp(rϕX(X))]

r

+
log EY∼PY

[exp(sϕY (Y )]

s
,

which proves that (C.14)⇒ (C.13).

C.3.4 Explicit Hypercontractive Bounds

In this section we show how to relate the directed noise operator to the lower bounds of
Oleszkiewicz [Ole03], thereby giving direct lower bounds for a number of cases for s and
r. By Theorem C.5 and Lemma C.17 this is the dual to proving optimal values (tq, tu) in
our upper bound.

We start by with a standard lemma which shows that hypercontractivity of an operator
implies hypercontractivity of its adjoint.

Lemma C.21. Let T : L2(Ω, π) → L2(Ω, π
′) be an operator with T ∗ : L2(Ω, π

′) →
L2(Ω, π) being its adjoint, and let 1 ≤ r, s < ∞ with r′, s′ being their convex conjugates.
Then

∥Tf∥Ls′ (π
′) ≤ ∥f∥Lr(π)
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holds for all f ∈ L2(Ω, π), if and only if

⟨Tf, g⟩L2(π′) = ⟨f, T ∗g⟩L2(π) ≤ ∥f∥Lr(π)
∥g∥Ls(π′)

holds for all f ∈ L2(Ω, π) and all g ∈ L2(Ω, π
′), if and only if

∥T ∗g∥Lr′ (π)
≤ ∥g∥Ls(π′)

holds for all g ∈ L2(Ω, π
′).

Proof. We assume that ∥Tf∥Ls′ (π
′) ≤ ∥f∥Lr(π)

holds for all f ∈ L2(Ω, π). Let f ∈ L2(Ω, π)

and g ∈ L2(Ω, π
′) then by Hölder’s inequality we have that

⟨Tf, g⟩L2(π′) ≤ ∥Tf∥Ls′ (π
′) ∥g∥Ls(π′) ≤ ∥f∥Lr(π)

∥g∥Ls(π′) .

Similarly, we assume that ∥T ∗g∥Lr′ (π)
≤ ∥g∥Ls(π′) holds for all g ∈ L2(Ω, π

′). Let

f ∈ L2(Ω, π) and g ∈ L2(Ω, π
′) then by Hölder’s inequality we have that

⟨f, T ∗g⟩L2(π) ≤ ∥f∥Lr(π′) ∥T
∗g∥Lr′ (π

′) ≤ ∥f∥Lr(π)
∥g∥Ls′ (π

′) .

Finally, we assume that ⟨Tf, g⟩L2(π′) ≤ ∥f∥Lr(π)
∥g∥Ls(π′) holds for all f ∈ L2(Ω, π)

and all g ∈ L2(Ω, π
′). Let f ∈ L2(Ω, π) then using that Ls(π

′) is the dual norm of Ls′(π
′)

we get that

∥Tf∥Ls′ (π
′) = sup

∥g∥Ls(π′)=1
⟨Tf, g⟩L2(π′) ≤ sup

∥g∥Ls(π′)=1
∥f∥Ls(π)

∥g∥Lr(π′) = ∥f∥Lr(π)
.

Similarly, let g ∈ L2(Ω, π
′) then using that Lr(π) is the dual norm of Lr′(π) we get that

∥T ∗g∥Lr′ (π)
= sup

∥f∥Lr(π)=1
⟨f, T ∗g⟩L2(π) ≤ sup

∥f∥Lr(π′)=1
∥f∥Lr(π)

∥g∥Ls(π′) = ∥g∥Ls(π′) ,

which finishes the proof.

Our hypercontractive results will be based on the tight hypercontractive inequality by
Oleszkiewicz [Ole03].

Theorem C.22 ([Ole03]). Let p ∈ (0, 12) ∪ (12 , 1) and 1 ≤ r ≤ 2 then for any function

f ∈ L2({0, 1}d , π⊗dp ) we have that∥∥∥T (p)
ρ f

∥∥∥
L2(p)

≤ ∥f∥Lr(p)
,

where ρ = p−1/2(1− p)−1/2

√
(1−p)2−2/r−p2−2/r

p−2/r−(1−p)−2/r which is best possible.

From this we get following tight hypercontractive inequalities for T p1→p2
ρ .
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Corollary C.23. Let p1, p2 ∈ (0, 12) ∪ (12 , 1) and 1 ≤ r ≤ 2 then for any function f ∈
L2({0, 1}d , π⊗dp1 ) we have that∥∥T p1→p2

ρ f
∥∥
L2(p2)

≤ ∥f∥Lr(p1)
,

where ρ = p
−1/2
1 (1− p1)−1/2

√
(1−p1)2−2/r−p2−2/r

1

p
−2/r
1 −(1−p1)−2/r

which is best possible.

Proof. Using the Parseval-Plancherel identity and Lemma C.13 we get that∥∥T p1→p2
ρ f

∥∥2
L2(p2)

=
∑
S⊆[d]

̂T p1→p2
ρ f

(p2)
(S)2 =

∑
S⊆[d]

ρ2|S| ̂T p1→p2
ρ f

(p2)
(S)2 =

∥∥∥T (p1)f
∥∥∥2
L2(p1)

,

hence the result follows from Theorem C.22.

Corollary C.24. Let p1, p2 ∈ (0, 12) ∪ (12 , 1) and 1 ≤ s ≤ 2 with s′ the convex conjugate

of s, then for any function f ∈ L2({0, 1}d , π⊗dp1 ) we have that∥∥T p1→p2
ρ f

∥∥
Ls′ (p2)

≤ ∥f∥L2(p1)
,

where ρ = p
−1/2
2 (1− p2)−1/2

√
(1−p2)2−2/s−p2−2/s

2

p
−2/s
2 −(1−p2)−2/s

which is best possible.

Proof. By Lemma C.21 we get that the result is true if and only if∥∥T p2→p1
ρ g

∥∥
L2(p1)

≤ ∥g∥Ls(p2)
,

for all functions g ∈ L2({0, 1} , πp2). Now the result follows by using Corollary C.23.

We also get a hypercontractive inequality for the standard noise operator T
(p)
ρ .

Corollary C.25. Let p ∈ (0, 12) ∪ (12 , 1) and 1 ≤ r ≤ 2 with convex conjugate r′, then for

any function f ∈ L2({0, 1}d , π⊗dp ) we have that∥∥∥T (p)
ρ f

∥∥∥
Lr′ (p)

≤ ∥f∥Lr(p)
,

where ρ = p(1− p) (1−p)
2−2/r−p2−2/r

p−2/r−(1−p)−2/r which is best possible.

Proof. Using Lemma C.21 we get the result holds if and only if

⟨T (p)
ρ f, g⟩L2(p) ≤ ∥f∥Lr(p)

∥g∥Lr(p)
,

holds for all f, g ∈ L2({0, 1}d , π⊗dp ). First we note that the result is true by using Cauchy-
Schwartz and Theorem C.22

⟨T (p)
ρ f, g⟩L2(p) = ⟨T (p)√

ρf, T
(p)√
ρg⟩L2(p) ≤

∥∥∥T (p)√
ρf
∥∥∥
L2(p)

∥∥∥T (p)√
ρg
∥∥∥
L2(p)

≤ ∥f∥Lr(p)
∥f∥Lr(p)
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Now to see that ρ is best possible we set g = f which give us that∥∥∥T (p)√
ρf
∥∥∥2
L2(p)

= ⟨T (p)
ρ f, f⟩L2(p) ≤ ∥f∥

2
Lr(p)

,

so Theorem C.22 gives that ρ is best possible.

We will use Corollary C.25 to show that setting (tq, tu) = (1 − w, 1 − w) is an
optimal threshold for the (w,w,w1, w

2)-GapSS problem. First of we note that ρ =

p(1 − p) (1−p)
2−2/r−p2−2/r

p−2/r−(1−p)−2/r can be rewritten as r = 2 log τ

log ρ+τ

ρ+τ−1

where τ = 1−p
p . Using

Lemma C.17 we get that ρ = w1−w2

w(1−w) , τ = 1−w
w , and that

1

r
ρq +

1

r′
ρu ≥

2

r
− 1 .

Now we have that ρq = ρu =
log

w(w1−2w+1)
w1(1−w)

log w
1−w

, and we find that

2

r
− 1 =

log ρ+τ
ρ+τ−1

log τ
− 1 =

log τ−1 ρ+τ
ρ+τ−1

log τ
.

It is then easy to check that τ−1 ρ+τ
ρ+τ−1 = w1(1−w)

w(w1−2w+1) , which then shows that (tq, tu) =

(1− w, 1− w) is an optimal threshold for the (w,w,w1, w
2)-GapSS problem.

C.4 Other Algorithms

We show two results that, while orthogonal to Supermajorities, help us understand them
and how they fit within the space of Similarity Search algorithms.

The first result is an optimal affine embedding of sets onto the sphere. This result
is interesting in its own right, as it results in an algorithm that is in many cases better
than the state of the art, and which can be implemented very easily in systems that
can already solve Euclidean or Spherical Nearest Neighbours. The result gives a simple,
general condition a Spherical LSH scheme must meet for the embedding to be optimal,
and we show that both SimHash and Spherical LSH meets it.

The second result is also a new algorithm. In particular, it is a mix between Chosen
Path and MinHash, which always achieves ρ values lower than both of them. It is in a sense
a simple answer to the open problem in [CP17] about how to beat MinHash consistently.
More interesting though, is that it sheds light on what makes Supermajorities work: It
balances the amount of information pulled from sets vs. their complements. The proof
is also conceptually interesting, since it proves that it is never advantageous to combine
multiple Locality Sensitive Filter families.
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(a) Query time/space exponent, ρ, for the
SimHash algorithm [CIP02].
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Figure C.6: Given a GapSS instance with wq = .3 and wu = .2, the optimal affine
embedding of the data (represented as vectors x ∈ {0, 1}|U |) onto the sphere, turns out
to be normalizing the “mean” and “variance”. That is, before scaling down to ∥x∥2 = 1,
we subtract respectively wq and wu from all coordinates. The plot shows the “ρ-value”
achieved by different spherical algorithms as the among subtracted is varied: The x-axis,
a, is the amount subtracted from queries and the y-axis, b, is the amount subtracted from
datasets.

C.4.1 Embedding onto the Sphere

We show, that if an algorithm has exponent ρ(α, β) = f(α)/f(β) where α is the cosine
similarity between good points and β is the similarity between bad points on the sphere;
then assuming some light properties on f , which contain both Spherical and Hyperplane
LSH, two affine embedding of sets x ∈ {0, 1}d to Sd−1 that minimizes ρ once the new
cosine similarities are calculated, is x 7→ (x−w)/

√
w(1− w) where w = |x|/d. While the

mapping is allowed to depend on any of the GapSS parameters, it curiously only cares
about the weight of the set itself. For fairness, all our plots, such as Figure C.2, uses this
embedding when comparing Supermajorities to Spherical LSH.

Lemma C.26 (Embedding Lemma). Let g, h : {0, 1}d → Rd be function on the form
g(x) = a1x + b1 and h(y) = a2y + b2. Let ρ(x, y, y′) = f(α(x, y))/f(α(x, y′)) where
α(x, y) = ⟨x, y⟩/ ∥x∥2 ∥y∥2 be such that

f(z) ≥ 0, d
dz

(
(±1− z) ddz log f(z)

)
≥ 0 and d3

dz3
log f(z) ≤ 0

for all z ∈ [−1, 1]. Assume we know that ∥x∥22 = wqd, ∥y∥22 = wud, ⟨x, y′⟩ = w1d and
⟨x, y⟩ = w2d, then arg mina1,a2,b1,b2 ρ(g(x), h(y), h(y′)) = (1, 1,−wq,−wu).

In this section we will show that Hyperplane [Cha02] and Spherical [ALRW17b] LSH
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both satisfy the requirements of the lemma. Hence we get two algorithms with ρ-values:

ρhp =
log(1− arccos(α)/π)

log(1− arccos(β)/π)
, ρsp =

1− α
1 + α

1 + β

1− β
.

where α =
w1−wqwu√

wq(1−wq)wu(1−wu)
and β =

w2−wqwu√
wq(1−wq)wu(1−wu)

, and space/time trade-offs

using the ρq, ρu values in [Chr17]. 18 Figure C.6 shows how ρ varies with different
translations a, b.

Taking tq = wq(1+o(1)) and tu = wu(1+o(1)) in theorem C.2 recovers ρsp by standard
arguments. This implies that theorem C.2 dominates Spherical LSH (for binary data).

Lemma C.27. The functions f(z) = (1 − z)/(1 + z) for Spherical LSH and f(z) =
− log(1− arccos(z)/π) for Hyperplane LSH satisfy lemma C.26.

Proof. For Spherical LSH we have f(z) = (1− z)/(1 + z) and get

d
dz

(
(±1− z) ddz log f(z)

)
= 2/(1± z)2 ≥ 0,

d3

dz3
log f(z) = −4(1 + 3z2)/(1− z2)3 ≤ 0.

For Hyperplane LSH we have f(z) = − log(1− arccos(z)/π) and get

d
dz

(
(±1− z) ddz log f(z)

)
=

(arccos(z)∓
√

1− z2 − π) log(1− arccos(z)/π)∓
√

1− z2

(1± z)
√

1− z2(π − arccos(z))2 log(1− arccos(z)/π)2
.

In both cases the denominator is positive, and the numerator can be shown to be likewise
by applying the inequalities

√
1− z2 ≤ arccos(z),

√
1− z2 + arccos(z) ≤ π and x ≤

log(1 + x).

The d3

dz3
log f(z) ≤ 0 requirement is a bit trickier, but a numerical optimization shows

that it’s in fact less than −1.53.

Finally we prove the embedding lemma:

Proof of lemma C.26. We have

α =
⟨x+ a, y + b⟩
∥x+ a∥2 ∥y + b∥2

=
w1 + wqb+ wua+ ab√

(wq(1 + a)2 + (1− wq)a2)(wu(1 + b)2 + (1− wu)b2)

and equivalent with w2 for β. We’d like to show that a = −wq, b = −wu is a minimum
for ρ = f(α)/f(β).

Unfortunately the f ’s we are interested in are usually not convex, so it is not even
clear that there is just one minimum. To proceed, we make the following substitution
a→ (c+ d)

√
wq(1− wq)− wq, b→ (c− d)

√
wu(1− wu)− wu to get

α(c, d) =
cd+

w1−wqwu√
wq(1−wq)wu(1−wu)√

(1 + c2)(1 + d2)
.

18Unfortunately the space/time aren’t on a form applicable to lemma C.26. From numerical experiments
we however still conjecture that the embedding is optimal for those as well.
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We can further substitute cd 7→ rs and
√

(1 + c2)(1 + d2) 7→ r + 1 or r ≥ 0, −1 ≤ s ≤ 1,
since 1 + cd ≤

√
(1 + c2)(1 + d2) by Cauchy Schwartz, and (cd,

√
(1 + c2)(1 + d2)) can

take all values in this region.

The goal is now to show that h = f
(
rs+x
r+1

)/
f
(
rs+y
r+1

)
, where 1 ≥ x ≥ y ≥ −1, is

increasing in r. This will imply that the optimal value for c and d is 0, which further
implies that a = −wq, b = −wu for the lemma.

We first show that h is quasi-concave in s, so we may limit ourselves to s = ±1. Note

that log h = log f
(
rs+x
r+1

)
− log f

(
rs+y
r+1

)
, and that d2

ds2
log f

(
rs+x
r+1

)
=
(

r
1+r

)2
d2

dz2
log f(z)

by the chain rule. Hence it follows from the assumptions that h is log-concave, which
implies quasi-concavity as needed.

We now consider s = ±1 to be a constant. We need to show that d
drh ≥ 0. Calculating,

d

dr
f

(
rs+ x

r + 1

)/
f

(
rs+ y

r + 1

)
=

(s− x)f
(
rs+y
r+1

)
f ′
(
rs+x
r+1

)
− (s− y)f

(
rs+x
r+1

)
f ′
(
rs+y
r+1

)
(1 + r)2f

(
rs+y
r+1

)2 .

Since f ≥ 0 it suffices to show d
dx(s − x)f ′

(
rs+x
r+1

)/
f
(
rs+x
r+1

)
≥ 0. If we substitute

z = rs+x
r+1 , z ∈ [−1, 1], we can write the requirement as d

dz (s − z)f ′(z)/f(z) ≥ 0 or
d
dz

(
(±1− z) ddz log f(z)

)
≥ 0.

C.4.2 A MinHash Dominating Family

Consider the classical MinHash scheme: A permutation h : [d]→ [d] is sampled at random,
and y ⊆ {0, 1}d is placed in bucket i ∈ [m] if h(i) ∈ y and ∀j<ih(j) ̸∈ y. The probability
for a collision between two sets q, y is then |q∩y|/(|q|+|y|−|q∩y|) by a standard argument
which implies an exponent of ρmh = log w1

wq+wu−w1

/
log w2

wq+wu−w2
.

Now consider building multiple independent such MinHash tables, but keeping only
the kth bucket in each one. That gives a Locality Sensitive Filter family, which we will
analyse in this section.

The Locality Sensitive Filter approach to similarity search is an extension by Becker et
al. [BDGL16] to the Locality Sensitive Hashing framework by Indyk and Motwani [IM98].
We will use the following definition by Christiani [Chr17], which we have slightly extended
to support separate universes for query and data points:

Definition C.28 (LSF). Let X and Y be some universes, let S : X × Y → R be a
similarity function, and let F be a probability distribution over {(Q,U) | Q ⊆ X,U ⊆ Y }.
We say that F is (s1, s2, p1, p2, pq, pu)-sensitive if for all points x ∈ X, y ∈ Y and (Q,U)
sampled randomly from F the following holds:

1. If S(x, y) ≥ s1 then Pr[x ∈ Q, y ∈ U ] ≥ p1.

2. If S(x, y) ≤ s2 then Pr[x ∈ Q, y ∈ U ] ≤ p2.

3. Pr[x ∈ Q] ≤ pq and Pr[x ∈ U ] ≤ pu.
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We refer to (Q,U) as a filter and to Q as the query filter and U as the update filter.

We first state the LSF-Symmetrization lemma implicit in [CP17]:

Lemma C.29 (LSF-Symmetrization). Given a (p1, p2, pq, pu)-sensitive LSF-family, we
can create a new family that is (p1

q
p , p2

q
p , q, q)-sensitive, where p = max{pq, pu} and q =

min{pq, pu}.

For some values of p1, p2, pq, pu this will be better than simply taking max(ρu, ρq). In
particular when symmetrization may reduce ρu by a lot by reducing its denominator.

Proof. W.l.o.g. assume pq ≥ pu. When sampling a query filter, Q ⊆ U , pick a random
number ϱ ∈ [0, 1]. If ϱ > pu/pq use ∅ instead of Q. The new family then has p′q = pq ·pu/pq
and so on giving the lemma.

Getting back to MinHash, we note that the “keeping only the ith bucket” family
discussed above, corresponds sampling a permutation s of Y and taking the filter

U = {x | si ∈ x ∧ s0 ̸∈ x ∧ · · · ∧ si−1 ̸∈ x}.

That is, the collection of x such that the first i − 1 values of s are not in x (since then
x would have been put in that earlier bucket), but the ith element of s is in x (since
otherwise x would have been put in a later bucket.)

Using just one of these families, combined with symmetrization, gives the ρ value:

ρi = log
(1− wq − wu + w1)

iw1

max{(1− wq)iwq, (1− wu)iwu}

/
log

(1− wq − wu + w2)
iw2

max{(1− wq)iwq, (1− wu)iwu}
.

This scheme is a generalization of Chosen Path, since taking i = 0 recovers exactly
that algorithm. However, as we increase i, we see that the weight gradually shifts from the
present elements (symbolized by w1, w2, wq and wu) to the absent elements (symbolized
by (1− wq − wu + wq), etc.).

We will now show that for a given set of (wq, wu, w1, w2) there is always an optimal i
which is better than using all of the i, which is what MinHash does. The exact goal is to
show

ρmh = log
w1

wq + wu − w1

/
log

w2

wq + wu − w2
≥ min

i≥0
ρi.

For this we show the following lemma, which intuitively says that it is never advanta-
geous to combine multiple filter families:

Lemma C.30. The function f(x, y, z, t) = log(max{x, y}/z)/ log(max{x, y}/t), defined
for min{x, y} ≥ z ≥ t > 0, is quasi-concave.

This means in particular that

log(max{x+ x′, y + y′}/(z + z′))

log(max{x+ x′, y + y′}/(t+ t′))
≥ min

{
log(max{x, y}/z)

log(max{x, y}/t)
,

log(max{x′, y′}/z′)
log(max{x′, y′}/t′)

}
,

when the variables are in the range of the lemma.
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Proof. We need to show that the set{
(x, y, z, t) :

log(max{x, y}/z)

log(max{x, y}/t)
≥ α

}
= {(x, y, z, t) : max{x, y}1−αtα ≥ z}

is convex for all α ∈ [0, 1] (since z ≥ t so f(x, y, z, t) ∈ [0, 1]). This would follow if
g(x, y, t) = max{x, y}1−αtα would be quasi-concave itself, and the eigenvalues of the Hes-
sian of g are exactly 0, 0 and −(1−α)αtα−2 max{x, y}−α−1

(
max{x, y}2 + t2

)
so g is even

concave!

We can then show that MinHash is always dominated by one of the filters described,
as

ρmh =
log w1

wq+wu−w1

log w2
wq+wu−w2

=
log

∑
i≥0(1−wq−wu+w1)iw1

max{
∑

i≥0(1−wq)iwq ,
∑

i≥0(1−wu)iwu}

log
∑

i≥0(1−wq−wu+w2)iw2

max{
∑

i≥0(1−wq)iwq ,
∑

i≥0(1−wu)iwu}

≥ min
i≥0

log
(1−wq−wu+w1)iw1

max{(1−wq)iwq ,(1−wu)iwu}

log
(1−wq−wu+w2)iw2

max{(1−wq)iwq ,(1−wu)iwu}

,

where the right hand side is exactly the symmetrization of the “only bucket i” filters. By
monotonicity of (1−wq)iwq and (1−wu)iwu we can further argue that it is even possible
to limit ourselves to one of i ∈ {0,∞, log(wq/wu)/ log((1−wq)/(1−wu))}, where the first
gives Chosen Path, the second gives Chosen Path on the complemented sets, and the last
gives a balanced trade-off where (1− wq)iwq = (1− wu)iwu.

C.5 Conclusion and Open Problems

For a long time there was a debate [SL14b] about why MinHash worked so well for sets,
compared to other more general methods, like SimHash. It was a mystery why this
method, so foreign to the frameworks of Spherical LSF and Chosen Path could still do so
much better. For asymmetric problems like Subset Search, it was entirely open how far ρ
could be reduced.

This paper finally solves the mystery of MinHash and unifies the ideas and frameworks of
Euclidean and Set Similarity Search.

By showing that supermajorities indeed solve the general problem optimally, we not
only unify and explain the performance of the previous literature, but also recover major
performance improvements, space/time trade-offs, and the ability to solve Set Similarity
Search for any similarity measure.

We propose the following open problems for future research:

LSH with polylog time When parametrized accordingly, we get a data structure with
eÕ(

√
logn) query time and nO(1) space. Using Spherical LSH one can get similar

runtime, though with a higher polynomial space usage. Employing a tighter analysis
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of our algorithm, the query time can be reduced to eÕ((logn)1/3), which by comparison
with we conjecture is tight for the approach. A major open question is whether one
can get Õ(1)?

Data-dependent Data-dependent LSH is able to reduce approximate similarity search
problems to the case where far points are as far away as had they been random.
For (wq, wu, w1, w2)-GapSS this corresponds to the case w2 = wqwu. This would
finally give the “optimal” algorithm for GapSS without any “non-data-dependent”
disclaimers.

Sparse, non-binary data Our lower bounds really hold for a much larger class of prob-
lems, including cosine similarity search on sparse data in Rd. However, our upper
bounds currently focus on binary data only. It would be interesting to generalize
our algorithm to this and other types of data for which Supermajorities are also
optimal.

Sketching We have shown that Supermajorities can shave large polynomial factors of
space and query time in LSH. Can they be used to give similar gains in the field
of sketching sets under various similarity measures? Can one expand the work
of [PSW14] and show optimality of some intersection sketching scheme?
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C.I Proof of Lemma C.17

This proof in this section mostly follows [ALRW17a], with a few changes to work with
separate spaces Q and U .

Lemma C.17. Let Q and U be some spaces and PQU a probability distribution on Q×U .
Consider any list-of-points data structure for PQU -random instances of n points, which
uses expected space n1+ρu, has expected query time nρq−on(1), and succeeds with probability
at least 0.99. Let r, s ∈ [1,∞] satisfy

E
(X,Y )∼PQU

[f(X)g(Y )] ≤ ∥f(X)∥Lr(PQ) ∥f(Y )∥Ls(PU ) ,

for all functions f : Q→ R and g : U → R. Then

1

r
ρq +

1

r′
ρu ≥

1

r
+

1

s
− 1 ,

where r′ = r
r−1 is the convex conjugate of r.

Proof. Fix a data structure D, where Ai specifies which dataset points are placed in Li.
Additionally, we define Bi = {v | i ∈ I(v)} to the set of query points which scan Li. We
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sample a random dataset point u and then a random query point v from the neighborhood
of u. Let

γi = Pr[v ∈ Bi |u ∈ Ai]

represent the probability that query v scans the list Li conditioned on u being in Li. The
query time for D is given by the following expression

T =
∑
i∈[m]

[v ∈ Bi]

1 +
∑
j∈[n]

[uj ∈ Ai]


E[T ] =

∑
i∈[m]

Pr[v ∈ Bi] +
∑
i∈[m]

γi Pr[u ∈ Ai] + (n− 1)
∑
i∈[m]

Pr[u ∈ Ai] Pr[v ∈ Bi] .

We want to lower bound Pr[v ∈ Bi], so let 1 ≤ r, s be any values such that PQU is (r, s)-
hypercontractive. We then get that

γi Pr[u ∈ Ai] = Pr[u ∈ Ai ∧ v ∈ Bi]

= E[[u ∈ Ai][v ∈ Bi]]

≤ ∥[u ∈ Ai]∥Ls(p1)
∥[v ∈ Bi]∥Lr(p2)

= Pr[u ∈ Ai]1/s Pr[v ∈ Bi]1/r

Hence we get that Pr[v ∈ Bi] ≥ γri Pr[u ∈ Ai]r/s
′
. We define τi = Pr[u ∈ Ai] and get that

E[T ] ≥
∑
i∈[m]

γri τ
r/s′

i +
∑
i∈[m]

γiτi + (n− 1)
∑
i∈[m]

γri τ
1+r/s′

i .

Since the data structure succeeds with probability γ we have that∑
i∈[m]

τiγi ≥ Pr[∃i ∈ [m] : v ∈ Bi, u ∈ Ai] = γ .

Since D uses at most S space we have that

m+
∑
i∈[m]

|Ai| ≤ S ⇒
∑
i∈[m]

τi ≤
S

n
.

We then get that we want to minimize

E[T ] ≥
∑
i∈[m]

γri τ
r/s′

i +
∑
i∈[m]

γiτi + (n− 1)
∑
i∈[m]

γri τ
1+r/s′

i

≥
∑
i∈[m]

γri τ
r
i (τ

−r/s
i + (n− 1)τ

1−r/s
i ) ,
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given the constraints ∑
i∈[m]

τiγi ≥ γ

∑
i∈[m]

τi ≤
S

n
.

First we fix (τi)i∈[m] and minimize the function with respect to (γi)i∈[m]. Using Lagrange
multipliers this is equivalent to minimizing the function

f((γi)i∈[m], λ, ν) =
∑
i∈[m]

γri τ
r
i (τ

−r/s
i + (n− 1)τ

1−r/s
i )− λ(

∑
i∈[m]

τiγi − γ − ν2)

We find the critical points ∇f = 0:

rγr−1
i τ ri (τ

−r/s
i + (n− 1)τ

1−r/s
i ) = λτi∑

i∈[m]

τiγi = γ + ν2

2λν = 0

for all i ∈ [m]. We note that since γ > 0 then λ > 0 and hence ν = 0. The first inequality
can be rewritten as

γr−1
i τ r−1

i =
λ

r(τ
−r/s
i + (n− 1)τ

1−r/s
i )

⇔

γiτi =

(
λ

r(τ
−r/s
i + (n− 1)τ

1−r/s
i )

)r′/r
Combining this with

∑
i∈[m] τiγi = γ give us that

∑
i∈[m]

(
λ

r(τ
−r/s
i + (n− 1)τ

1−r/s
i )

)r′/r
= γ ⇔

λr
′/r =

γ∑
i∈[m]

(
1

r(τ
−r/s
i +(n−1)τ

1−r/s
i )

)r′/r

We define ti =

(
1

τ
−r/s
i +(n−1)τ

1−r/s
i

)r′/r
and get that

γiτi = γ
ti∑

i∈[m] ti
⇔

γri τ
r
i = γr

tri
(
∑

i∈[m] ti)
r
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We then get that our original function becomes

γr
∑
i∈[m]

tri
(
∑

i∈[m] ti)
r
t
−r/r′
i = γr

∑
i∈[m]

ti
(
∑

i∈[m] ti)
r

= γr(
∑
i∈[m]

ti)
−(r−1) = γr(

∑
i∈[m]

ti)
−r/r′

So we want to maximize

∑
i∈[m]

ti =
∑
i∈[m]

(
1

τ
−r/s
i + (n− 1)τ

1−r/s
i

)r′/r
=
∑
i∈[m]

τ
r′/s
i

(1 + (n− 1)τi)r
′/r

We now consider two different cases.

Case 1. r > s. We know that τi ≤ 1 so we get that

∑
i∈[m]

τ
r′/s
i

(1 + (n− 1)τi)r
′/r
≤
∑
i∈[m]

τ
r′(1/s−1/r)
i

nr′/r

Since r′(1/s− 1/r) > 0 then we can use the power-mean inequality to get

∑
i∈[m]

τ
r′(1/s−1/r)
i

nr′/r
≤ m

nr′/r

(∑
i∈[m] τi

m

)r′(1/s−1/r)

≤ mr′−r′/s

nr′/r

(
S

n

)r′(1/s−1/r)

=
mr′/s′

nr′/s
Sr

′(1/s−1/r)

≤ Sr
′/s′+r′(1/s−1/r)

nr′/s

=
S

nr′/s

where we have used that max
{
m,n

∑
i∈[m] τi

}
≤ S.

Case 2. r ≤ s We find the derivatives

d

dτi

∑
i∈[m]

τ
r′/s
i

(1 + (n− 1)τi)r
′/r

=
r′

s t
r′/s−1
i (1 + (n− 1)τi)

r′/r − (n− 1) r
′

r (1 + (n− 1)τi)
r′/r−1t

r′/s
i

(1 + (n− 1)τi)2r
′/r

=
r′t

r′/s−1
i

(1 + (n− 1)τi)r
′/r+1

(
1

s
(1 + (n− 1)τi)− (n− 1)

1

r
τi

)
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Case 2.1. r < s We note that the function is maximized when we set τi =
1
s

(n−1)( 1
r
− 1

s
)

=
r

(n−1)(s−r) . This give us that

∑
i∈[m]

τ
r′/s
i

(1 + (n− 1)τi)r
′/r
≤ m

(
r

(n−1)(s−r)

)r′/s
(

1 + r
s−r

)r′/r ≤ S

nr′/s

(
2r
s−r

)r′/s
(

s
s−r

)r′/r
where we have used that m ≤ S and n ≥ 2.

m
r

(n− 1)(s− r)
≤ S

n
⇒ m ≤ S (n− 1)(s− r)

nr

Case 2.2. r = s We note that the function is increasing in τi so it is maximized when
τi = 1. Then we get that

∑
i∈[m]

τ
r′/s
i

(1 + (n− 1)τi)r
′/r
≤ m

nr′/r
=

S

nr′/r
=

S

nr′/s

where we have used that m ≤ S and r = s.

From this we note that if we set K = max

{
1,

( 2r
s−r )

r′/s

( s
s−r )

r′/r

}
then

∑
i∈[m]

τ
r′/s
i

(1+(n−1)τi)r
′/r ≤

S
nr′/sK. Now we can give the final lower bound on E[T ]:

E[T ] ≥ γr(
∑
i∈[m]

ti)
−r/r′ ≥ γr

(
S

nr′/s
K

)−r/r′

= γrK−r/r′S−r/r′nr/s

From this we get the result we want

ρq ≥ −
r

r′
(1 + ρu) +

r

s
− on(1)⇔

1

r
ρq +

1

r′
ρu ≥

1

s
− 1

r′
− on(1)
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Dansk resumé

In dynamic load balancing, we wish to distribute balls into bins in an environment
where both balls and bins can be added and removed. We want to minimize the
maximum load of any bin but we also want to minimize the number of balls and bins
that are affected when adding or removing a ball or a bin. We want a hashing-style
solution where we given the ID of a ball can find its bin efficiently.

We are given a user-specified balancing parameter c = 1 + ε, where ε ∈ (0, 1). Let
n and m be the current number of balls and bins. Then we want no bin with load
above C = ⌈cn/m⌉, referred to as the capacity of the bins.

We present a scheme where we can locate a ball checking 1 + O(log 1/ε) bins in
expectation. When inserting or deleting a ball, we expect to move O(1/ε) balls, and
when inserting or deleting a bin, we expect to move O(C/ε) balls. Previous bounds
were off by a factor 1/ε.

The above bounds are best possible when C = O(1) but for larger C, we can do
much better: Let

f =


εC if C ≤ log 1/ε

ε
√
C ·
√

log(1/(ε
√
C)) if log 1/ε ≤ C < 1

2ε2

1 if C ≥ 1
2ε2

We show that we expect to move O(1/f) balls when inserting or deleting a ball, and
O(C/f) balls when inserting or deleting a bin. Moreover, when C ≥ log 1/ε, we can
search a ball checking only O(1) bins in expectation.

For the bounds with larger C, we first have to resolve a much simpler probabilistic
problem. Place n balls in m bins of capacity C, one ball at the time. Each ball picks a
uniformly random non-full bin. We show that in expectation and with high probability,
the fraction of non-full bins is Θ(f). Then the expected number of bins that a new
ball would have to visit to find one that is not full is Θ(1/f). As it turns out, this is
also the complexity of an insertion in our more complicated scheme where both balls
and bins can be added and removed.
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D.1 Introduction

Load balancing in dynamic environments is a central problem in designing several net-
working systems and web services [SMLK+03; KLLP+97]. We wish to allocate clients
(also referred to as balls) to servers (also referred to as bins) in such a way that none of
the servers gets overloaded. Here, the load of a server is the number of clients allocated to
it. We want a hashing-style solution where we given the ID of a client can efficiently find
its server. Both clients and servers may be added or removed in any order, and with such
changes, we do not want to move too many clients. Thus, while the dynamic allocation
algorithm has to always ensure a proper load balancing, it should aim to minimize the
number of clients moved after each change to the system. For every update in the system,
we need to change the allocation of clients to servers. For simplicity, we assume that the
updates (ball and bin insertions and removals) do not happen simultaneously and will be
operated one at a time, so that we have time to finish changing the allocation before we
get another update. Such allocation problems become even more challenging when we
face hard constraints in the capacity of each server, that is, each server has a capacity and
the load may not exceed this capacity. Typically, we want capacities close to the average
loads.
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There is a vast literature on solutions in the much simpler case where the set of servers
is fixed and only the client set is updated. For now, we focus on solutions that are
known to work in our fully-dynamic case where both clients and servers can be added and
removed in an arbitrary order. This rules out solutions where only the last added server
may be removed1. The above problem formulation is very general, and does not assume
anything about the ratio between the number of clients n, and the number of servers m.
Processors are cheap, so one could for instance imagine systems with a large number of
servers. However, it is also conceivable having a system with many clients or a balanced
system with n ≈ m.

The classic solution to the scenario where both clients and servers can be added and
removed is Consistent Hashing [SMLK+03; KLLP+97] where the current clients are as-
signed in a random way to the current servers. While consistent hashing schemes minimize
the expected number of movements, they may result in hugely overloaded servers, and they
do not allow for explicit capacity constraints on the servers. The basic point is that the
load balancing of consistent hashing [KLLP+97; SMLK+03] is no better than a random
assignment of clients to servers. The same issue holds for Highest Random Weight Hashing
(popularly known as Rendezvous Hashing) [TR98]. Hence, with n clients and m servers,
we expect good load balancing if n/m = ω(logm), but the balance is lost with smaller
loads, e.g., with n ≈ m, we expect many servers to be overloaded with Θ(logm/ log logm)
clients.

More recently, Mirrokni et al. [MTZ18] presented an algorithm that works with arbi-
trary capacity constraints on the servers. For the purpose of load balancing, the system
designer can specify a balancing parameter c = 1 + ε, guaranteeing that the maximum
load is at most ⌈cn/m⌉. While maintaining this hard balancing constraint, they limit the
expected number of clients to be moved when clients or servers are inserted or removed.
From a more practical perspective, we think of the load balancing parameter c = 1 + ε
as a simple knob which captures the tradeoff between load balancing and stability upon
changes in the system. This gives a more direct control to the system designer in meeting
explicit balancing constraints.

Even without capacity constraints, the obvious general lower bounds for moves are as
follows. When a client is added or removed, at least we have to move that client. When
a server is added or removed, at least we have to move the clients belonging to it. On the
average, we therefore have to move least n

m clients when a server is added or removed.

With the algorithm from [MTZ18], while guaranteeing a balancing parameter c =
1 + ε ≤ 2, when a client is added or removed, the expected number of clients moved
is O( 1

ε2
). When a server is added or removed, the expected number of clients moved is

O( n
ε2m

). These numbers are only a factor O( 1
ε2

) worse than the general lower bounds
without capacity constrains. For balancing parameter c ≥ 2, the expected number of
moves is increased by a factor 1 + O( log cc ) over the lower bounds. This implies that for
superconstant c, we only expect to pay a negligible cost in extra moves.

Focusing on the challenging case where c = 1 + ε ≤ 2, we present an algorithm which

1In particular, this rules out the external memory techniques [Lar88] where blocks (playing the role of
fixed capacity servers) can only be added to and removed from the top of the current memory.
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reduces the number of moves by a factor 1/ε. When inserting or deleting a ball, we expect
to move O(1/ε) balls, and when inserting or deleting a bin, we expect to move O(C/ε)
balls. To search a ball we only need to consider O(log(1 + 1/ε)) “consecutive” bins.

With C := cn/m, these bounds are essentially best possible when C = O(1) is a
constant. However, for larger C, we can do even better. In order to explain, this we first
have to consider the following much simpler probabilistic problem: Consider placing n
balls in m bins, each of capacity C = (1 + ε)n/m, one ball at the time, where each ball
picks a uniformly random non-full bin. We are interested in the number of non-full bins
both in expectation and with concentration bounds. To our surprise, this relatively simple
problem does not seem to have been analyzed before, and so, we believe our bounds to be
of independent interest. To state our bounds, we define

f =


εC if C ≤ log 1/ε

ε
√
C ·
√

log(1/(ε
√
C)) if log 1/ε ≤ C < 1

2ε2

1 if C ≥ 1
2ε2

, (D.1)

whenever 0 < ε ≤ 1 and C ≥ 1 is integral. We are going to prove the following result

Theorem D.1. Let n,m ∈ N and 0 < ε < 1 be such that C = (1 + ε)n/m is integral.
Moreover assume that that 1/ε = mo(1). Suppose we distribute n balls sequentially into
m bins each of capacity C, for each ball choosing a uniformly random non-full bin. The
expected fraction of non-full bins is Θ(f).

How does this result relate to our dynamic load allocation problem? We can think
of the distribution scheme in the theorem as the algorithmically weakest way to assign
the balls to the capacitated bins. Here, by algorithmically weak, we mean that it cannot
be implemented in the dynamic setting where balls and bins can come and go. However,
it is still helpful to think of it as the mathematically ideal way of solving dynamic load
allocation with bounded loads in the following sense. Imagine that an insertion of a ball
is carried out by repeatedly choosing a random bin until we find a non-full one where we
place the ball. Then we avoid all the unpleasant dependencies between the loads of the bins
visited during the insertion that arise in algorithmically stronger schemes. For example,
one can compare to a scheme like linear probing where the cascading effect of balls causes
heavy dependencies between the loads of bins visited during a search or an insertion. It
follows from Theorem D.1 that in the simple scheme above, the expected number of bins
visited when making an insertion is O(1/f). The main contribution of this paper is to
present a much stronger scheme which supports general insertions and deletions of both
balls and bins, and which, nonetheless, achieves complexity bounds that are analogous
to those in the mathematically ideal scheme above. To be precise, with our scheme, we
expect to move O(1/f) balls when inserting or deleting a ball, and O(C/f) balls when
inserting or deleting a bin and this is tight. Similar bounds holds on the number of bins
visited when performing any of these updates. Our main technical challenge is handling all
the intricate dependencies that arise in the much more complicated probabilistic setting
in our scheme.
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Applications. Consistent hashing has found numerous applications [ÖV11; GF04] and
early work in this area [KLLP+97; SMKK+01; SMLK+03] has been cited more than ten
thousand times. To highlight the wide variety of areas in which similar allocation prob-
lems might arise, we mention a few more important references to applications: content-
addressable networks [RFHK+01], peer-to-peer systems and their associated multicast
applications [RD01; CDKR02]. Our algorithm and that from [MTZ18] are very similar
to consistent hashing, and should work for most of the same applications, bounding the
loads whenever this is desired. In fact, the algorithm from [MTZ18] already found two
quite different industrial applications; namely Google’s cloud system [MZ17] and Vimeo’s
video streaming [Rod16]. Both systems had to handle the lightly loaded case. Also, in
both cases, load balancing was not an objective to maximize, but rather a hard constraint,
e.g., in the Vimeo blog post [Rod16], Rodland describes how no server is allowed to be
overloaded, and how he found a load balancing parameter c = 1.25 to be satisfactory for
Vimeo’s video steaming. We shall return to this later. With our algorithm, we get the
same load balancing but with much fewer reallocations.

D.1.1 Background: Consistent Hashing

The standard solution to our fully-dynamic allocation problem is consistent hashing
[SMLK+03; KLLP+97]. We shall use it as a starting point for own own solution, so
we review it below.

Simple Consistent Hashing. In the simplest version of consistent hashing, we hash
the active balls and bins onto a unit circle, that is, we hash to the unit interval, using the
hash values to create a circular order of balls and bins. Assuming no collisions, a ball is
placed in the bin succeeding it in the clockwise order around the circle. One of the nice
features of consistent hashing is that it is history-independent, that is, we only need to
know the IDs of the balls and the bins and the hash functions, to compute the distribution
of balls in bins. If a bin is closed, we just move its balls to the succeeding bin. Similarly,
when we open a new bin, we only have to consider the balls from the succeeding bin to
see which ones belong in the new bin.

With n balls, m bins, and a fully random hash function h, each bin is expected to have
n/m balls. This is also the number of balls we expect to move when a bin is opened or
closed.

One problem with simple consistent hashing as described above is that the maximum
load is likely to be Θ(logm) times bigger than the average. This has to do with a big
variation in the coverage of the bins. We say that bin b covers the interval of the cycle
from the preceding bin b′ to b because all balls hashing to this interval land in b. When
m bins are placed randomly on the unit cycle, on the average, each bin covers an interval
of size 1/m, but we expect some bins to cover intervals of size Θ( logmm ), and such bins

are expected to get Θ(n logm
m ) balls. The maximum load is thus expected to be a factor

Θ(logm) above the average.
A related issue is that the expected number of balls landing in the same bin as any

given ball is almost twice the average. More precisely, consider a particular ball x. Its
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expected distance to the neighboring bin on either side is exactly 1/(m+1), so the expected
size of the interval between these two neighbors is 2/(m + 1). All balls landing in this
interval will end in the same bin as x; namely the bin b succeeding x. Therefore we expect
2(n − 1)/(m + 1) ≈ 2n/m other balls to land with x in b. Thus each ball is expected to
land in a bin with load almost twice the average. If the load determines how efficiently a
server can serve a client, the expected performance is then only half what it should be.

In [KLLP+97] they addressed the above issue using so called virtual bins. We will
also employ these virtual bins in our solution and describe them below.

Consistent Hashing with Virtual Bins. To get a more uniform bin cover,
[KLLP+97] suggests the use of virtual bins. The virtual bin trick is that the ball contents
of k = O(logm) virtual bins is united in a single super bin. The super bins are the m
bins seen by the user of the system. Internally it is the km virtual bins we place on the
cycle together with the n balls. Each virtual bin has a pointer to its super bin. To place
a ball, we go along the cycle to the first virtual bin, and then we follow the pointer to its
super bin.

A super bin covers the union of the intervals covered by its k virtual bins. The point
is that for any constant ε > 0, if we pick a large enough k = O(logm), then with high
probability, each super bin covers a fraction (1± ε)/m of the unit cycle.

We note that many other methods have been proposed to maintain such a uniform
bin cover as bins are added and removed (see, e.g., [BSS00; GH05; Man04; KM05; KR06;
TR98]), and in our algorithms, we shall also employ such virtual bins.

With a uniform bin cover, balls distribute uniformly between bins. On the posi-
tive side, in the heavily loaded case when n/m is large, e.g., n/m = ω(logm), all
loads are (1 ± o(1))n/m, w.h.p. However, with n = m, we still expect many bins with
Θ((logm)/(log logm)) balls even though the average is 1. In this paper, we aim for good
load balancing for all possible load levels.

D.1.2 Simple Consistent Hashing with Bounded Loads.

As we mentioned earlier, Mirrokni et al. [MTZ18] presented an algorithm that works with
arbitrary capacity constraints on the bins. For the purpose of load balancing, the system
designer can specify a balancing parameter c = 1 + ε, guaranteeing that the maximum
load is at most C = ⌈cn/m⌉.

Their idea is very simple. As in simple consistent hashing, we place balls and bins
randomly on a cycle, but instead of placing balls in the first bin along the cycle, we place
them in the first non-full bin. Thus we can think of the distribution as first placing all the
bins on the cycle, and then placing the balls one-by-one, putting each in the first non-full
bin found by going in clockwise around the cycle. If we have hash functions for placing
arbitrary balls and bins along the cycle, and if we have a priority order on all balls, telling
us the order in which we insert balls, then this completely determines the placement of
any set of the balls in any set of capacitated bins. This means that the distribution is
history independent as in [BG07]. It also means that we know exactly which balls to move
if balls or bins are added or removed.
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As terminology, we say a ball hash to the first bin following it in the clockwise order.
However, the ball may be placed in a later bin if the bin it hashed to was full.

Note that the priority order makes the insertion of a new ball a bit more complicated
since it may have higher priority than balls already in the system. To place it, we first
place it in the bin it hashes to directly (that is, the one just after its hash location on the
cycle). If the bin becomes overfull, we pop the lowest priority ball and place it in the next
bin, and repeat. It is, however, important to notice that the bins we end up considering
are exactly the bins from the one the ball hashes to, and to the first non-full bin.

The details of all the different system updates are described in Mirrokni et al. [MTZ18].
This also includes rolling adjustment of the capacities relative to average load n/m.
Instead of giving all bins the maximal capacity C = ⌈cn/m⌉, they always have
⌈cn⌉ −m ⌊cn/m⌋ bins with capacity ⌊cn/m⌋. The only exception is that we never drop
any capacity below 1. A hash function choose which bins have which capacities, and this
ensures that only few capacities have to be changed with each system update. In Mirrokni
et al. [MTZ18] they show that their results hold, both when capacities are adjusted to ε,
and when a joint capacity C is given, defining ε = Cm/n−1. In this paper, for simplicity,
we will focus on the latter model with fixed capacities.

Mirrokni et al. [MTZ18] also provided an analysis of their system. With ε ≤ 1, they
showed that starting from the hash location of any ball, the expected number of full
bins passed on the way to the first non-full bin is O(1/ε2). From this they get that
the expected number of balls that has to be moved when a ball is inserted or deleted
is O(1/ε2). Likewise, the expected number of balls that has to be moved when a bin is
inserted or deleted is O(C/ε2). These bounds are all tight for simple consistent hashing
with bounded loads.

Finally, Mirrokni et al. [MTZ18] also discussed many potentially relevant techniques
that could possibly be made to work for fully-dynamic load balancing where both balls
and bins can be added and removed, and with strict requirements on the maximal load
for each bin. In these comparisons, their scheme was the one with the best proven bounds
on the number of moves needed in connection with the updates.

Faster Searches

Mirrokni et al. [MTZ18] states that to search a ball, they have to consider O(1/ε2) bins,
but using an old trick [AK74; Knu73], this is easily improved to O(1/ε). The idea is that
when we search for a ball, we can stop as soon as we reach a bin that is not filled with
balls of higher priority. This helps the searches if the priorities are random. We shall use
the idea later, so let’s elaborate. The bins considered in the search are exactly the bins
from the bin hashed to and till the first non-full bin if only the balls of higher priority
was inserted. Let r(q,m,C) be expected number of bins considered if there are q balls
of higher priority, and m bins of capacity C. Then with n balls in total, the expected
cost with random priorities is

∑n
q=0 r(q,m,C)/(n + 1). The analysis in [MTZ18] implies

r(q,m,C) = O(1/ε2q) where εq = C/ qm − 1, implying an expected cost of O(1/ε) with
random priorities.
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We note that random priorities do not help with updates, for if we, say, want to insert
a ball, and meet a bin that is full including balls of lower priority, then we have to place the
lowest priority ball in a later bin. However, finding the established server of a client if any,
is often the most frequent operation in the system, so a faster search is very important in
practice. As stated, a similar analysis gives that for our system, we have to consider fewer
bins when searching than when inserting a ball. In particular, we only need to consider
O(1) bins in expectation when C ≥ log 1/ε.

D.1.3 Our Scheme: Consistent Hashing with Virtual Bins and
Bounded Loads

Our algorithm basically just combines the bounded loads with virtual bins. When a
ball is placed in a virtual bin, it is also placed in its super bin which has a limited
capacity. In the following, we describe two different versions of our scheme. The first
one, described in Appendix D.1.3, is conceptually the simplest to understand and easier
to analyze mathematically. It is this version that we will analyze in the main body of
the paper. The second one, described in Appendix D.1.3, is the version most suitable to
be implemented in practice for several reasons to be described. Our results hold for both
implementations, and in Appendix D.9, we sketch how to derive the results for the second
more practical version. Common to both versions is that we fix some natural number k,
which is the number of virtual bins for each super bin.

Mathematically Clean Version: Many Independent Cycles

For this version, we hash each super bin to k different cycles or levels using independent
hash functions2. The k hash values on the k cycles will be the associated virtual bins of
the given super bin. We also hash the balls to the cycles, but contrary to the bins, each
ball gets just a single random hash value on a single random cycle.

The static placement of the balls can be described as follows: We start by placing
all balls which hash to the first cycle using standard consistent hashing with bounded
loads as described in Appendix D.1.2. We assume that we have priorities on the balls and
we will simulate that they are inserted in priority order. After the first level, the balls
hashing to this level have thus been distributed into the virtual bins and we put them
in the corresponding super bins. Initially, each super bin had capacity C. If the virtual
bin of such a super bin received a balls at the first level, its new capacity is then reduced
accordingly to C−a. We continue this process on level i = 2, . . . , k. At level i, each super
bin has a certain remaining capacity and we use standard consistent hashing with bounded
loads (with these capacities) to place the balls at level i into the virtual bins and thus, into
the corresponding super bins. If a super bin had capacity C0 before the hashing to level
i, and it received a balls at level i, its remaining capacity for the next levels is C0 − a .
Traversing the levels one at a time like described, corresponds to enforcing that regardless

2For simplicity, we advice the reader to think of all our hash functions as fully random. However, our
results hold even when the hashing is implemented with the practical mixed tabulation from [DKRT15].
We will later sketch how our proofs can be modified to show this.
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of the initial priorities of the balls, if two balls hash to different levels, the ball hashing to
the lower level will have the highest priority of the two. With these modified priorities,
the static image at a given point can be obtained by simply inserting the balls one by one
in priority order, placing each ball in the first virtual bin whose super bin is not full. This
completely describes the placement of balls in bins if we know the hash functions and the
priority order, so the system is history-independent as described in [BG07].

Searching for a ball x is almost the same as for normal consistent hashing. We calculate
the hash value of x and visit the virtual bins starting from that hash value in cyclic order
until we either find x in a corresponding super bin or we meet a ball of lower priority
hashing to the same level.

Insertions are a bit more complicated. For inserting a ball x we calculate h(x) which
in particular indicates the level, i, that x hashes to. We traverse level i starting at h(x)
until we meet a bin, b, which either (a) is not full or (b) contains a ball of lower priority
than x (all balls hashing to levels j > i have lower priority than x by convention). We
insert x in b. In case (a), the insertion is complete, but in case (b) we pop y from b and
recurse the insertion starting with y (which happens at some level j ≥ i).

Ball deletions are symmetric to ball insertions in the sense that the hash functions
tells us exactly the placement of all balls in bins, both before and after the ball which we
are to insert or delete is inserted or deleted. Deleting a bin is the same as re-inserting
all balls in it, and inserting a bin is symmetric to deleting a bin. Therefore we get that
the number of balls to be moved is essentially determined by the number that has to be
moved in connection with an insertion (we shall discuss this in more detail later).

For most of our results, we will assume that the hashing of balls to the different levels is
uniform, but in Appendix D.2 we will see an applications where the probability of hashing
to level i is 1/2i for 1 ≤ i ≤ k − 1 and 2−k+1 for i = k. In this setting we already obtain
a big improvement over standard consistent hashing using just log 1/ε levels.

Practical Version: A Single Linear Order

We next describe the more practical implementation of our algorithm and here we will also
give more details on the concrete ranges of the hash functions. As will be seen, it is very
similar to the the version above having some minor alterations. For this implementation
all balls and all virtual bins are hashed to a single range, which we think of not as a
cyclic order but rather as a linear order. In order to describe the static image at given
point, we would again consider the balls one by one in priority order, placing each ball
in the first virtual bin whose super bin is not full. Again, this ensures that the system is
history-independent.

We now provide some more details on the hash functions and the priority order. Gen-
erally the hash values are in some universe [u] = {0, . . . , u − 1}. We imagine u to be so
large that we expect no collisions between hash values (if there are ties, we can break
them in favour of the ID’s of the balls, but we will ignore this detail). We also think of
both balls and bins having ID’s in [u].

We have a single hash h : [u]→ [u] describing the hash location of the balls. We also
use h to give the random priority order of the balls, inserting those with smallest hash
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values first.

For the super bins, and for some parameter k, each bin has k + 1 associated virtual
bins. Their hash locations are described via k + 1 hash functions hi : [u] → [u], i ∈
[k] = {0, . . . , k}. We assume that k divides u, e.g., that both are powers of two, and we
restrict hi to map uniformly into [iu/k, (i+ 1)u/k). This way each super bin gets exactly
one virtual bin in each of the k + 1 intervals [iu/k, (i + 1)u/k). Having this spread is
important because of the priority order of the balls, which implies that virtual bins with
larger hash values are more likely to be full.

The last interval [u, u+ u/k) is outside the normal hash range [u]. These last virtual
bins will pick up any key that did not end in a bin in the normal range [u]. Since every
super bin is represented in [u, u+ u/k), all balls are picked up unless there are more balls
than the total capacity. As a result, we do no longer think of balls and bins as hashing to
a cycle, but just to a linearly ordered universe with an extra set of representative virtual
bins by the end making sure that all balls get placed.

We briefly explain why this system is preferable in practice. The first reason is that
when using the hash values of the balls as their priorities we obtain a very simple descrip-
tion of the static distribution of balls in the bins: We may simply insert the balls in order
from lowest to highest hash value, always placing the ball in the first non-full bins. A way
of picturing this is to imagine that the balls of lower hash values are “pushing” balls of
higher hash values ahead of them. On a line, it is very easy to implement this comparison
as a standard comparison between hash values. In fact, it is possible to obtain a similar
image for cycles, but for this one needs to impose a cyclic priority order of the balls hashing
to a given level, and performing comparisons for such a cyclic order is a bit more technical
to implement3. If on the other hand, we decided to stick with the linear priority order on
each cycle, thus giving up on the nice image from above, we still encounter some technical
issues with the implementation. With searches and insertions, everything works fine, but
the issues come up when deleting balls and inserting bins. For instance, when deleting a
ball which is placed in the “last” bin on the cycle, we may have to pull back balls that
have been forwarded from this bin to the “first” bins in the cycle, and for deciding if such
balls are to be pulled back, we have to use a different comparison of hash values. Thus,
even with linear priorities the cyclic probing still muddies the implementation and makes
it less efficient.

Again, we shall play a bit with the ranges of the hash functions for the virtual bins.
However, they will always partition [u] consecutively with the range of hi following the
range of hi−1. With the exponentially decreasing hash ranges described by the end of Ap-
pendix D.1.3, hi, maps uniformly to [u− u/2i, u− u/2i+1) for i ∈ [k − 1] and hk−1 maps
uniformly to [u− u/2k−1, u). As above hk is special, mapping to [u, u+ u/k).

Searches and insertions have similar descriptions to the ones given in Appendix D.1.3.
Moreover, the history independence again implies that deletions are symmetric to inser-
tions. Finally, deleting a bin corresponds to inserting the ball in the bin, and inserting a
bin is symmetric to the deletion of the bin.

3For example, for just two balls, the notion of one hashing before the other is not well defined.
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D.1.4 Main Results on Consistent Hashing

We now present our main results on consistent hashing with bounded loads and virtual
bins.

O(1/ε) Reallocated Balls, with log 1/ε Levels

Our first result, to be proved in Appendix D.2, uses a logarithmic number of virtual bins
to achieve that the number of bins visited during an insertion (and thus the number of
reallocated balls) is O(1/ε). It uses a non-uniform distribution of the balls to the different
levels, with the probability of a ball hashing to level i being 2−i for 1 ≤ i ≤ k − 1 and
2−k+1 for i = k.

Theorem D.2. Let 0 < ε < 1 and suppose that we distribute n balls into m bins each of
capacity C = (1 + ε)n/m using consistent hashing with bounded loads and k = ⌈log(1/ε)⌉
levels, where the probability, pi, that a ball hashes to level i is

pi =

{
2−i, 1 ≤ i ≤ k − 1

2−k+1, i = k.

Assume that 1/ε = no(1). When inserting or deleting a ball, we expect to visit (and hence
move) O(1/ε) balls, and when inserting or deleting a bin, we expect to move O(C/ε) balls.
Finally, when searching a ball, we expect to visit O(log 1/ε) bins.

In the previous system of simple consistent hashing with bounded loads, but no virtual
bins, Mirrokni et al. [MTZ18] proved that ball insertions and deletions are expected to
move O(1/ε2) balls while bin insertions and deletions are expected to move O(C/ε2) balls.
Those bounds are a factor 1/ε worse than ours. Mirrokni et al. [MTZ18] would also perform
searches considering O(1/ε2) bins in expectation, but using the trick of assigning random
priorities to the balls, one can get down to O(1/ε) bins in expectation, still without the
use of virtual bins. Combining our scheme using virtual bins, with the trick of random
priorities the expected number of bins visited during a search drops exponentially to
O(log 1/ε), as stated in the theorem.

When proving Theorem D.2, the main technical challenge is bounding the expected
number of bins visited during an insertion. In fact, the remaining parts of the theorem
follow once we have this bound. In Appendix D.7, we will argue why the results on ball
deletions and bin insertions and deletions follow. Finally, in Appendix D.8, we will use
the trick described in Appendix D.1.2 to prove the result on ball searches.

Better Bounds when the Capacities are Large

In classic consistent hashing without virtual bins, we obtain no advantage when the num-
ber of balls n are much larger than the number of bins m, or in other words, when the
capacity of a bin, C, is large. The basic issue is that most of the uncertainty in the system
without virtual bins stems from the uncertainty in the distance between a bin and its
predecessor, which determines the expected number of balls hashing directly to the bin.



D.1. INTRODUCTION 273

However, the use of virtual bins improves the concentration of the number of balls
hashing directly to a super bin, and we do obtain an advantage of this improved concen-
tration. This was in fact the whole point of introducing virtual bins in classic consistent
hashing without load bounds [SMLK+03]. To be precise, fix k = A(log n)/ε2 for some
appropriately large constant A. Then standard Chernoff bounds show that each bin cover
a fraction (1± λε)/m of the combined hash range, where λ can be made arbitrarily small
(by increasing A). If further the average load m/n is above k, then with high probability,
no bin gets load above C = (1 + ε)m/n by balls hashing directly to them. In particular,
all load bounds are satisfied without the having to forward a single ball. The result be-
low (which is the main result of our paper) asymptotically settles the expected insertion
time for general C, in particular for any C ≤ (log n)/ε2. Before stating the theorem, we
encourage the reader to recall the definition of f in eq. (D.1)

Theorem D.3. Let 0 < ε < 1 and suppose that we distribute n balls into m bins each of
capacity C = (1+ε)n/m using consistent hashing with bounded loads and k = c/ε2 uniform
levels for a sufficiently large constant c. Assume that 1/ε = no(1). In expectation we move
O(1/f) balls when inserting or deleting a ball, and O(C/f) balls when inserting or deleting
a bin. Finally, when searching a ball, we expect to visit O(1) bins when C ≥ log 1/ε and

O( log 1/εC ) bins when C < log 1/ε.

Our bounds in Theorem D.3 show that we do get an advantage from bigger capacities
even when C is smaller than k = Θ((log n)/ε2). In fact, already for C = 1/ε2, the expected
insertion time drops to O(1).

Again, the hardest part of proving Theorem D.3, is bounding the expected number
of bins visited during an insertion by O(1/f). As for Theorem D.2, we argue that the
remaining parts of the theorem follows in Appendices D.7 and D.8

High Probability Bounds Theorems D.2 and D.3 only bound the expected number
of balls moved during the insertions and deletions of balls and bins. However, it is also
possible to obtain high probability bounds. We will provide such high probability bounds
in a later full version of the paper.

Distributing Balls Randomly into Capacitated Bins

To understand the strength of our bounds, we consider a much simpler problem where
we place n balls in m bins, each of capacity C = (1 + ε)n/m, one ball at the time. Each
ball picks a uniformly random non-full bin. Letting X denote the fraction of non-full
bins, we show in Appendix D.3 that E[X] = Θ(f) and X = Θ(f) with high probability.
Surprisingly, this relatively simple question has not been studied before.

What is the idea of considering this simpler distribution scheme? With a fraction
of X non-full bins, the expected number of random bins visited in order to find one of
the non-full ones is 1/X. This is reminiscent to searching for a non-full bin using (any
variation of) consistent hashing with bounded loads, except that we get rid of the intricate
dependencies which arise in the more complicated schemes that can handle both insertions
and deletions. In this way, the scheme above can be thought of as the simplest way of
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achieving the desired load balancing, but of course it has no chance of working in a fully
dynamic setting. We thus obtain, the same complexity bounds as the weakest system
imaginable, at the same time being able to handle both insertions and deletions of balls
and bins.

The Practical Implementation with Mixed Tabulation

When proving Theorems D.2 and D.3, we will assume that our scheme is implemented as
described in Appendix D.1.3 and, moreover, using fully random hash functions. In Ap-
pendix D.9 we will sketch why our results hold even with the more practical implemen-
tation from Appendix D.1.3. We will also sketch how one can obtain the same results
with the practical mixed tabulation scheme from [DKRT15]. In the implementation with
mixed tabulation, we would use k independent mixed tabulation hash functions for the
hashing of virtual bins, and a single independent mixed tabulation hash function for the
hashing of balls.

D.1.5 The Model and its Applicability.

Consistent hashing with or without virtual bins is a simple versatile scheme that has
been implemented in many different systems with different constraints and performance
measures [ÖV11; GF04]. The most classic implementation of consistent hashing is the
distributed system Chord [SMKK+01; SMLK+03] which has more than ten thousand
citations. The Chord papers [SMKK+01; SMLK+03] give a thorough description of the
many issues affecting the design. On the high level, they have a system of pointers so that
given an arbitrary hash location, they can find the next bin in the clockwise order using
O(log n) messages. This is how they find the (virtual) bin a ball hashes to. In simple
consistent hashing, this is where the ball is to be found. With virtual bins, there are
additional pointers between virtual bins and their super bins that we can follow using O(1)
messages. In fact, Chord does maintain explicit successor pointers between neighboring
(virtual) bins, so we only have to pay O(1) extra messages to find a next bin along the
cycle.

As described by Mirrokni et al. [MTZ18], the successor pointers give immediate support
for forwarding in case of capacitated bins. Mirrokni et al. only used this forwarding for
simple consistent hashing without virtual bins, and this has been adopted both by Google’s
Cloud Pub/Sub [MZ17] and Vimeo [Rod16]. Both systems had to handle the lightly loaded
case. Also, in both cases, load balancing was not an objective to maximize, but rather a
hard constraint, e.g., in the Vimeo blog post [Rod16], Rodland describes how no server is
allowed to be overloaded, and how he found a load balancing parameter c = 1 + ε = 1.25
to be satisfactory for Vimeo’s video steaming.

The successor pointers in Chord work equally well for moving between virtual bins.
In fact, Rodland from Vimeo has told (personal communication) the last author, Thorup,
that their system does allow a combination of virtual bins and bounded loads, like what
we suggest in this paper, so a system similar to ours is already running. Thorup had the
general idea from much earlier (around the time of the first versions of [MTZ18]), but
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deriving the mathematical understanding, presented here in Theorem D.3 took several
years.

Let us now consider the time to search a ball in a Chord-like setting. By Theorem
D.3, we expect to consider O(log(1/f)) consecutive virtual bins with associated super
bins. Finding the virtual bin succeeding the hash location uses O(log n) messages while
each other bin is found with O(1) messages. Then our message bottleneck is actually to
find the first virtual bin.

Now it could be the case that balls/clients themselves remembered if they are in the
system, and if so, what bin/server they belonged to. The latter requires that they are
notified if they get moved due to other updates in the system, e.g., if their bin/server was
removed.

Another way to circumvent the O(log n) messages for placing the hash location would
be if we for some m̂ = Θ(m), placed the reference points pi = ui/m̂, i ∈ [m̂], in the doubly-
linked list of virtual bins. For a ball x its hash reference point is p⌊h(x)m̂/u⌋. Regardless of
system updates, it could remember its reference point, and from there follow in expectation
O(1) successor pointers to get the current virtual bin succeeding its real hash location.
The reference points could be updated by background rebuilding to be ready every time
m is halved or doubled, thus maintaining an m̂ approximating m within a factor of 2.

In fact, our scheme is equally relevant for less distributed systems than Chord. In
Google’s Cloud Pub/Sub [MZ17], the most important aspects of the system was (1) that
it has good load balance (2) that only few clients/balls have to be moved in connection
with update, that is, a ball or bin insertion or deletion, and (3) history independence so
that the placement of balls in bins can be computed by anyone knowing the hash functions
and the current set of balls and bins. The fact that each system update only leads to few
moves implies that even if we have a few mistakes in the set of balls and bins, then this
only implies a few mistakes in the placement of balls in bins.

System updates, inserting or deleting a ball or a bins are hopefully not too frequent.
As mentioned in [MZ17], the dominant concern is the actual reallocation of balls between
bins; for in the real world, this means moving clients between servers disrupting service
etc. Theorems D.2 and D.3 give us concrete bounds on how many balls we expect to move.

The computation of which balls are to be moved in connection with updates depends
very much on the situation. As in [MZ17], thanks to history independence, we can compute
the balls to be moved from scratch. We know the update to the set of balls and bins, and
the hash functions tell us exactly which balls are placed in which bins before and after
update. The difference tells us exactly which balls have to be moved. This solution if fine
if the computation cost is small compared with the cost of actually moving the clients.

Alternatively, we may want a more distributed local identification of the moves as in in
the Chord system. This is fairly straightforward for insertions, and we already described
it earlier. It does, however, get a bit more complicated for the other updates, and we shall
return to such a distributed implementation in Section D.1.6.

Stepping back, we offer a generic scheme for a load balanced distribution of balls in
bins when both can be added and removed. We are not claiming to have a theoretical
model that captures all the important aspects of performance since this depends very
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much on the concrete implementation context. Our main contribution is a theoretical
analysis of combinatorial parameters described in Theorems D.2 and D.3.

D.1.6 Computing Moves Locally in a Distributed Environment

We will now discuss how we could compute which balls have to be moved in connection
with system updates in a distributed Chord-type system. Recall that sometimes it may be
fast enough to identify the moves more centrally, simply by computing the placement of
the balls in the bins before and after the update, and just identify the difference. However,
in this subsection, we will discuss how to identify the moves locally, not spending much
more time than the number of moves specified in Theorems D.2 and D.3.

We already discussed how to insert balls, but we want to do it in a way that also makes
it fast and easy to delete balls. The basic idea to make deletions efficient is that we for
every virtual bin store the number of balls that have passed it. More precisely, each bin
has a pass count that starts at zero when there are no balls. We now consider the process
where balls are inserted in priority order, each just placed in the first virtual bin with a
non-empty super bin. This increases the count on all the virtual bins between the hash
location and the virtual bin the ball ends in. Each super bin will also store which of its
virtual bins that have a positive pass count.

The above pass counts are quite easy to maintain when balls arrive to the real system,
that is, not in priority order. To see this, we review the insertion of a ball, adding when
pass counts should be incremented. To insert a new ball, we first hash it to some location
which also determines its priority. Starting from the hash location, we visit the virtual
bins following, each time looking in the corresponding super bin. If the super bin is not
full, we simply place the ball in it and terminate the insertion. If the super bin is filled
with balls of higher priority, we increment the pass count of the virtual bin, and continue
to the next virtual bin. However, if the super bin is filled and contains a ball of lower
prioirty, we insert the new ball and pop the ball of lowest priority. The popped ball belongs
to some virtual bin, which could be the same, but could also be only much later in the
linear order than the virutal bin we just came from. The pass count is incremented from
whichever virtual bin we pop the ball from, and then we recursiviely rinsert the popped
ball, continuing from the next virtual bin. The O(1/f) bound from Theorem D.3 actually
bounds not only the number of moves, but also the number of bins considered during the
above insertion.

Next we consider the deletion of a ball. Essentially, we just want to reverse the above
process, systematically finding the balls the ball to be deleted have displaced. We think of
deletions as first removing a ball, and then recursively, filling a hole. Finding the ball to
be removed is easy, as described before, and when we remove it, we will have to decrement
the pass count on all the virtual bins between its hash location and up to the virtual bin
before the one it landed in. Next we want to see if we can refill the whole. Assuming
that the bin we removed was in the level i virtual bin of a super bin. We now check
corresponding super bin b to see if any ball has been displaced by the ball we deleted.
This is the case if and only if at least one of its virtual bins has a positive pass count.
Let j be the lowest level of a virtual bin with a positive pass count. It is not hard to see
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that we must have j ≥ i. We now consider the virtual bins following the level j virtual
bin until we find a ball with hash location before hj(b). The virtual bins passed decrease
their counts, and then we recursively delete the ball. As described above, our total work
is within a constant factor of the symmetric insertion, that is, we consider O(1/f) bins
and spend O(1/f) time in total.

We now consider the insertion of deletion of super bins. We think of these super bin
or server updates as more rare than the ball or client updates.

Deleting a super bin b is relatively easy. Essentially, we just reinsert all the balls in it.
A small detail is that if a ball x was in the level j virtual bin, then we insert it starting
from hj(b) rather than from h(x). This can only save work over the regular insertion of
x and in particular, this means that we do not increase the pass count for virtual bins
between h(x) and hj(b). By Theorem D.3, the expected number of balls that has to be
moved when deleting a super bin is O(C/f). However, on top of that, we do have to spend
at least O(k) time on removing the k virtual bins from the system.

Inserting a super bin b is a bit more complicated. We would like to just fill it as we
filled the holes arising when deleting a ball, but we have the issue that we do not know
the pass counts for the k virtual bins representing the new super bin. To handle this, for
i = 1, . . . , k, we first find the hash location hi(b) of its virtual bin bi, which takes O(log n)
messages, including inserting it in the linked list of virtual bins. Next consider the virtual
bin u following bi. If bin u has no ball and pass count zero, then we can just set the pass
count of hi(b) to zero. Otherwise, we continue along the virtual bins, counting the balls
in them, until we find a ball that hash after hi(b). All but the last ball are the balls that
have passed the level i virtual bin bi, which now gets a pass count. Now that we have the
pass count, we can move those balls to bi, as long as super bin b has space for them, using
the same procedure as described under deletions of balls.

We now first analyze the number of bins considered to compute the pass counts of the
virtual bins bi. We note that the bins considered are exactly the same as if we searched
for a ball that hashed to hi(b). Now consider instead the case where we first generate a
random i ∈ [k], and then generate hi(b). With i random, hi(b) is uniformly random in [u],
and then the expected number of bins considered is exactly the same as those considered
in the search of a ball with hash value uniformly random in [u]. We conclude that the
expected total number of bins considered over all i ∈ [k] is exactly k times bigger. Thus,

by Theorem D.3, we expect to consider at most O(k log(1/ε)
C ) bins when C ≤ log 1/ε, and

only O(k) bins when C ≥ log 1/ε. Now that the pass counts are fixed, inserting a bin is
symmetric to deleting it and has the same cost, yielding a bound of O(C/f).

D.1.7 Dynamic Load Capacities

We now also consider what happens when we use self-adjusting capacities like Mirrokni
et al. [MTZ18]. Below, the capacitated bins correspond to our super bins. Rather than
fixed capacities, the user of the system specifies a balancing parameter c = (1 + ε) and
then the maximal capacity is C = ⌈cn/m⌉. We do not want all bins to change capacity
each time cn/m passes an integer.
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Instead, as in Mirrokni et al. [MTZ18], assuming an arbitrary fixed ordering of the
super bins, we let the lowest q = ⌈cn⌉ −m ⌊cn/m⌋ super bins have capacity C = ⌈cn/m⌉
while the remaining r = m − q have capacity C − 1. We refer to the former bins as big
bins and the latter bins as small bins, though the difference is only 1. Moreover, as an
exception to the above rule, we will never let the capacity drop below 1, that is, if cn < m,
then all bins have capacity 1.

The basic point in the above system is that a ball update changes at most ⌈c⌉ = O(1)
bin capacities while a bin update changes at most O(C) capacities. Switching the capacity
from large to small has the same effect as inserting an extra high priority ball in the super
bin while leaving the capacity at C. In the other direction, switching the capacity from
small to large corresponds to a deletion of an extra high priority ball.

From an analysis perspective, this means that we are essentially studying a system
with n′ = r + n balls in bins of capacity C where Cm = ⌈cn′/m⌉. In our analysis, this
corresponds to having a 0th level which puts exactly one ball in each of r bins; 0 in the
rest. Such a perfect level poses no issues for the analysis. Thus the cost per capacity
change is the same as that of regular insertions/deletions, and therefore have no effect on
our overall bounds.

A small point, elaborated in Mirrokni [MTZ18], is that for all the bounds to hold,
we may always do things in the order that maximizes capacity in every step, so that we
always have a total capacity of Cm = ⌈c(n+ q)/m⌉. For example, when inserting a ball,
we increase capacities before inserting, while deleting a ball, we decrease capacities last.
Likewise for a bin insertion, we insert it before decreasing capacities, while when deleting
a bin, we start by increasing the capacities.

D.1.8 Roadmap of the Paper

We now present a brief roadmap of our paper as well as some of the theorems to be proven
in the individual sections.

In Section D.2, we prove the part of Theorem D.2 concerning insertions of balls. That
the statements about ball deletions and bin insertions and deletions follow, is covered
in Appendix D.7. Finally, in Appendix D.8 we prove the statement of the theorem con-
cerning ball searches.

To prove the main result of the paper, Theorem D.3, we first have to solve the much
simpler problem of showing that when n balls are distributed into m bins each of capacity
C = (1 + ε)n/m, the expected fraction of non-full bins is Θ(f). This simpler problem is
solved in Section D.3.

In Section D.4, we present a tail bound for sums of geometric random variables as well
a technical lemma concerning consistent hashing with bounded loads and virtual bins.
These results will be useful in the later sections towards the proof of Theorem D.3.

In Section D.5, we show that when distributing n balls into m bins using consistent
hashing with bounded loads and enough levels, it similarly holds that the expected fraction
of non-full bins is Θ(f), and moreover, that the number of non-full bins is concentrated
around its mean. The exhibition is divided into two parts: In Section D.5.1, we prove
the concentration result and in Section D.5.2, we determine the mean within a constant
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factor. The following theorem is a corollary of the results from Appendix D.5 and we will
require it to prove our main result in Section D.6.

Theorem D.4. Let n,m ∈ N and 0 < ε < 1. Suppose we insert n balls into m bins, each
of capacity C = (1 + ε)n/m, using consistent hashing with bounded loads and virtual bins
and k levels. For (i, j) ∈ [k]× [C + 1], we let Xi,j denote the number of bins with at most
j balls after the hashing of balls to levels 0, . . . , i− 1 and µi,j = E[Xi,j ]. For any γ = O(1)
and (i, j) ∈ [k]× [C + 1], it holds that |Xi,j − µi,j | ≤ m1/2+o(1) with probability 1− n−γ.

If moreover k ≥ c/ε2 for a sufficiently large universal constant c, it holds that
µk−1,C−1 = Θ(fm).

In Section D.6, we show the part of Theorem D.3 which concerns ball insertions. Again,
ball deletions, bin insertions, and bin deletions are handled in Appendix D.7, and searches
are handled in Appendix D.8.

Finally, in Appendix D.9, we sketch why our results hold, even if we use the prac-
tical implementation described in Appendix D.1.3. We also sketch how to modify the
proofs in the case where the hashing is implemented with the mixed tabulation scheme
from [DKRT15].

D.2 Expected O(1/ε) Insertion Time with ⌈log(1/ε)⌉ Levels
In this section we prove the part of Theorem D.2 concerning insertions, restated below.
We will assume that we use the implementation described in Appendix D.1.3 but the result
also holds with the other implementation in Appendix D.1.3 (see the Appendix D.9).

Theorem D.5. Suppose that we distribute n balls into m bins each of capacity C =
(1 + ε)n/m using consistent hashing with bounded loads and4 k = ⌈log(1/ε)⌉ + 2 levels,
where the probability, pi, that a ball hashes to level i is

pi =

{
2−i, 1 ≤ i ≤ k − 1

2−k+1, i = k.

Assume that 1/ε = no(1). The expected number of bins visited when inserting a ball is then
O(1/ε).

We remark that one way to implement the above hashing is by using an auxiliary hash
function s : U → [2k−1]. Letting h1, . . . , hk denote the hash functions distributing balls
at level 1, . . . , k, the hash value of a key x ∈ U is then given by hi+1(x), where i is the
number of leading 0’s of s(x).

Proof. Let Z denote the number of virtual bins visited in total and Zi denote the number
of virtual bins visited at level i ∈ [k]. Then Z =

∑k
i=1 Zi. We will show that E[Zi] = O(2i)

from which it follows that E[Z] = O(2k) = O(1/ε).

4For simplicity, we have stated the theorem using k = ⌈log(1/ε)⌉+2 levels as this makes the constants
in the proof work out particularly nicely. However, a simple inspection of the proof of Theorem D.5 will
show that the bound holds for any positive integer k = log(1/ε)−O(1).
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First, it follows from a standard Chernoff bound that if Xi is the number of balls
hashing to level i and µi = E[Xi] = pin, then for δ ≤ 1,

Pr[|Xi − µi| ≥ δµi] ≤ exp(−δ2µi/3)

Thus , it holds that |Xi − µi| = O(
√
µi log n) with probability at least 1− n−3. Similarly,

if X<i =
∑

j<iXj and µ<i =
∑

j<i µj , it holds that |X<i−µ<i| = O(
√
µ<i log n) with the

same high probability.

For each j ∈ [m], we define C
(i)
j to be the remaining capacity of bin j after the

distribution of balls to levels 1, . . . , i− 1. Then
∑

j∈[m]C
(i)
j = (1 + ε)n−X<i, so it follows

from the above that with probability 1−O(n−2),∑
j∈[m]

C
(i)
j ≥ (1 + ε)n− µ<i −O

(√
µ<i log n

)
= (ε+ 2−i+1)n−O(

√
n log n).

For i < k we have that µi = 2−in, so it follows that,
∑

j∈[m]C
(i)
j ≥ 2Xi with probability

1−O(n−2), where we used the assumption that 1/ε = no(1). In the case i = k, we instead
have that

Xk ≤ 2−k+1n+O(
√
n log n) ≤ εn/2 + (

√
n log n),

with probability at least 1−O(n−2), so again
∑

j∈[m]C
(i)
j = Xk + εn ≥ 2Xk, again using

that 1/ε = no(1).

Now fix i ∈ [k], and write Cj = C
(i)
j for simplicity. Let E denote the event that

pin/2 ≤ Xi ≤ 2pin and that
∑

j∈[m]C
(i)
j ≥ 2Xk. Then Pr[Ec] = O(n−2), so that

E[Zi] ≤ E[Zi | E ] + E[Zi | Ec] Pr[Ec] ≤ E[Zi | E ] +O(mn−2) = E[Zi | E ] +O(1).

Thus, it will suffice to show that E[Zi | E ] = O(2i). Let b be the first bin visited at level
i, i.e., during the insertion we at some level j < i arrived at bin b and b is not full after
the hashing of balls to level 1, . . . , i− 1. Let I be a maximal interval at level i containing
b and satisfying that all bins lying in I are full at level i. Let R denote the number of
bins in I excluding b. Then Zi ≤ R + 1. We will show that E[R] = O(2i) (for notational
convenience the conditioning on E has been left out). Let s ∈ N be given and let As
denote the even that s + 1 ≤ R ≤ 2s. We are now going to provide an upper bound on
Pr[As]. Let I−1 and I+1 be the intervals respectively ending and starting at b and of lengths
s
3m . Similarly, let I−2 and I+2 be the intervals respectively ending and starting at b and of
lengths 3s

m . Let I1 = I−1 ∪ I
+
1 and I2 = I−2 ∪ I

+
2 . Finally, partition I2 into 54 intervals of

equal lengths, J1, . . . , J54. Let a be such that (1 − a)/(1 + a) = 5/6 (or a = 1/11) and
C = 1

m

∑
j∈[m]Cj . We claim that if As holds then either of the following events must be

true

B1: I
−
2 or I+2 contains at most 2s virtual bins different from b.

B2: I
−
1 or I+1 contains at least s/2 virtual bins different from b.
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B3: The total capacity of bins different than b hashing to Jj is at most (1−a)sC
9 for some

1 ≤ ℓ ≤ 54.

B4: The total number of balls hashing to Jℓ is at least (1+a)sC
18 for some 1 ≤ ℓ ≤ 54.

To see this, suppose that As occurs but neither of B1, B2, B3 occurs. We show that then
B4 must occur. As R ≤ 2s and B1 did not occur, I ⊆ I2. As R ≥ s + 1 and B2 did not
occur, either I−1 ⊆ I or I+1 ⊆ I. Letting ℓ denote the number of j such that Jj ⊆ I it
therefore follows that ℓ ≥ 3. Since B3 did not occur, the total capacity of bins hashing

to I is at least ℓC(1−a)s
9 . Finally, since all balls which ends up in a bin in I must have

hashed to I it follows that the total number of balls hashing to I is at least ℓC(1−a)s
9 . In

particular, for some 1 ≤ ℓ ≤ 54, at least ℓC(1−a)s
9(ℓ+2) balls must hash to Jℓ. But

ℓC(1− a)s

9(ℓ+ 2)
≥ C(1− a)s

15
=
C(1 + a)s

18
,

so we conclude that B4 holds.
Simple Chernoff bounds gives that inequality give that Pr[B1] = exp(−Ω(s)) and

Pr[B2] = exp(−Ω(s)). To bound Pr[B3], let ℓ ∈ [54] be fixed and define Yj to be the

indicator for bin j hashing to Jℓ. Further, define Y =
∑

j∈[m] Yj . Then E[Y ] = Cs
9 . This

time however, we only have that |Yj | ≤ C, so applying Chernoff we obtain that

Pr[B3] = Pr[Y ≤ (1− a) E[Y ]] = exp

(
−Ω

(
E[Y ]

C

))
= exp

(
−Ω

( s
2i

))
For B4, note that since we conditioned on E , the expected number of balls hashing to an

interval Jℓ is Xis
9m ≤

Cs
18 . Thus, another Chernoff bound yields that Pr[B4] = exp(−Ω(sC)).

Note that C ≥ 1/2i, so that we in particular have that Pr[B4] = exp(−Ω(s/2i)). Combin-
ing our bounds, it follows that for s ≥ 2i,

Pr[As] = exp
(
−Ω

( s
2i

))
.

Now we can upper bound

E[R] ≤ 2i +

∞∑
j=0

Pr[A2i+j ]2i+j+1 = 2i + 2i+1
∞∑
j=1

exp
(
−Ω(2j)

)
2j = O(2i),

as desired. This completes the proof.

D.3 Balls into Capacitated Bins

In this section we prove Theorem D.1. Let us start by recalling the setting of the theorem.
We let n,m ∈ N and ε be given with 0 < ε < 1 and suppose that we sequentially distribute
n balls into m bins, each of capacity C = (1 + ε)n/m. For simplicity, we assume that n,m
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and ε are such that C is a positive integer. Each ball is placed in a uniformly random
non-full bin, where a bin is full if it contains precisely C balls. The theorem claims that
if 1/ε = mo(1), then the expected fraction of non-full bins is Θ(f), where,

f =


εC, C ≤ log(1/ε)

ε

√
C log

(
1

ε
√
C

)
, log(1/ε) < C ≤ 1

2ε2

1, 1
2ε2
≤ C.

To prove the theorem, we will take an alternative viewpoint on the distribution process.
Instead of picking a non-full bin for each ball, we disregard the capacities and instead pick
a uniformly random bin (full or non-full). Then a bin may receive more than C balls but
if it does, we view it as having exactly C balls. To be precise, for j ∈ [m], and i ∈ Z≥0,

we denote by X
(i)
j the number of balls in bin j after i balls have been placed. We further

define Y
(i)
j = min(X

(i)
j , C). Let T ∈ N be minimal such that

∑
j∈[m] Y

(T )
j = n. Note that

T is a random variable with T ≥ n and that Pr[T <∞] = 1. Further note that when the
n balls are distributed into the m bins as in Theorem D.1, the joint distribution of balls

in bins has the same distribution as (Y
(T )
j )i∈[m]. We will first prove concentration bounds

on T and for this, we require Azuma’s inequality.

Theorem D.6 (Azuma’s inequality [Azu67]). Suppose that (Xi)
k
i=0 is a martingale sat-

isfying that |Xi+1−Xi| ≤ si almost surely for all i = 0, . . . , k− 1. Let s =
∑k

i=1 s
2
i . Then

for any t > 0 it holds that

Pr(|Xk −X0| ≥ t) ≤ 2 exp

(
−t2

2s

)
. (D.2)

The concentration bound on T is as in the following lemma.

Lemma D.7. For any N ≥ 2Cm and any t > 0 it holds that

Pr[|T − E[T ]| ≥ t] ≤ 2 exp

(
− t

2ε2

8N

)
+m exp(−N/(8m)).

Proof. For i ∈ Z≥0, we define Si ∈ [m] to be the randomly chosen bin for the i’th ball. We
further define Fi = σ(S1, . . . , Si) to be the σ-algebra generated by the random choices of
bins for the first i balls. Finally, we put Xi = E[T |Fi]. Then (Xi)

∞
i=0 is a martingale with

X0 = E[T ]. Now the random variable Xi is the expected value of T conditioned on the
placements of the first i balls. We are going to prove that |Xi+1−Xi| ≤ 1+ε

ε for each i ≥ 0.

To see this, fix i and write n′ =
∑

j∈[m] Y
(i)
j . If n′ ≥ n, then Xi = Xi+1 = T , so we may

assume that n′ < n, i.e., after distributing the first i balls we are still not done distributing
the n balls into the capacitated bins. In this case, it trivially holds that Xi+1 ≤ Xi + 1
with equality holding if and only if the (i + 1)’st ball is placed in a bin which is already
full. On the other hand, we claim that Xi ≤ Xi+1 + 1+ε

ε . To see this, let T ′ be minimal
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such that
∑

j∈[m] Y
(T ′)
j = n − 1 and let T ′

i = max(T ′, i). From the assumption n′ < n it

follows that T ′
i < T and we may write

Xi = E[T ′
i |Fi] + E[T − T ′

i |Fi].

Consider now any sequence of ball placements s = (s1, . . . , sℓ) ∈ [m]ℓ with ℓ > i satisfying
that if (S1, . . . , Sℓ) = s, then T = ℓ. Then, for any s′ ∈ [m]ℓ differing from s in at most
the (i+1)’st coordinate, it holds that if (S1, . . . , Sℓ) = s′, then T ′

i ≤ ℓ. From this it follows
that E[T ′

i |Fi] ≤ Xi+1. We further claim that E[T − T ′
i |Fi] ≤ 1+ε

ε . To see this, note that
when placing n balls into m bins of capacity C = (1 + ε)n/m, at least ε

1+ε bins will be
non-full regardless of the positions of the balls. Now T − T ′

i counts the number of times
we have to select a random bin until we find a non-full bin. Therefore, T − T ′

i will be
geometrically distributed with parameter p ≥ ε

1+ε , and it follows that E[T−T ′
i | Fi] ≤ 1+ε

ε .
Combining our bounds, we conclude that

|Xi+1 −Xi| ≤
1 + ε

ε
≤ 2

ε
.

Plugging into Azuma’s inequality, we see that for any N ≥ 0 and any t > 0, it holds that

Pr[|XN − E[T ]| ≥ t] = Pr[|XN −X0| ≥ t] ≤ 2 exp

(
− t

2ε2

8N

)
.

Thus, for any N ≥ 0,

Pr[|T − E[T ]| ≥ t] ≤ Pr[|XN − E[T ]| ≥ t] + Pr[XN ̸= T ] ≤ 2 exp

(
− t

2ε2

8N

)
+ Pr[N < T ].

Suppose N ≥ 2Cm. By a standard Chernoff bound it follows if N balls are distributed
at random into m bins, the probability that a given bin receives less than C balls is
upper bounded by exp(−N/(8m)). Thus, we can trivially upper bound Pr[N < T ] ≤
m exp(−N/(8m)). Combining our bounds,

Pr[|T − E[T ]| ≥ t] ≤ 2 exp

(
− t

2ε2

8N

)
+m exp(−N/(8m)),

as desired.

Curiously, Lemma D.7 does not tell us anything about the value of E[T ] and in fact, we
will not need it when proving Theorem D.1. The bound in Lemma D.7 is a bit unwieldy,
so below we state a corollary which is better suited for applications.

Corollary D.8. Let γ = O(1). If C > 3(1+ε)(1+γ) logn
ε2

, then Pr[T = n] = 1 − O(n−γ).

Otherwise |T − E[T ]| = O
(√

m logn
ε2

)
with probability 1−O(n−γ), where the implicit con-

stant in the O-notation depends on γ.
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Proof. Suppose first that C > 3(1+ε)(1+γ) logn
ε2

. Consider throwing n balls into m bins
uniformly at random. Let X denote the number of balls landing in a given bin and
µ = E[X] = C/(1 + ε). Then a standard Chernoff bound shows that

Pr[X > C] = Pr[X > (1 + ε)µ] ≤ exp(−ε2µ/3) ≤ n−γ−1,

so the probability that any bin receives more than C ball is O(n−γ) by a union bound. In
particular T = n with probability 1−O(n−γ).

Suppose on the other hand that C ≤ 3(1+ε)(1+γ) logn
ε2

≤ 6(1+γ) logn
ε2

. Apply-
ing Lemma D.7 with N = max(2Cm, 8m(γ + 1) log n), we obtain that

Pr[|T − E[T ]| ≥ t] = 2 exp

(
− t

2ε2

8N

)
+ n−γ .

In particular |T −E[T ]| = O(
√
N log n/ε) with probability 1−O(n−γ). The desired bound

follows by observing that N = O(m logn
ε2

).

We need one further Lemma before proving Theorem D.1.

Lemma D.9. Let k ≥ 0 be fixed and define Z =
∑

j∈[m] Y
(k)
j . Then for any t > 0,

Pr[|Z − E[Z]| ≥ t] ≤ 2 exp

(
− t

2

2k

)
.

Proof. Let S1, S2, . . . and F1,F2, . . . be defines as in the proof of Lemma D.7. For 0 ≤
i ≤ k, we define Zi = E[Z | Fi] so that Z0 = E[Z] and Zk = Z. Now it is easy to check
that for 0 ≤ i < k it holds that |Zi+1 − Zi| ≤ 1. Thus the desired result follows from
Azuma’s inequality.

We will next prove Theorem D.1.

Proof of Theorem D.1. Note first, that if ε = Ω(1), then f = Θ(1), regardless of the
relationship between ε and C. When placing n balls into m bins, each of capacity C =
(1 + ε)n/m, the fraction of non-full bins is at least ε/(1 + ε), regardless where the balls
are placed. In the case ε = Ω(1), this is Θ(1), so Theorem D.1 is trivial. In the following,
we may therefore assume that ε smaller than a sufficiently small constant.

We will again consider the alternative viewpoint where we throw an infinite sequence of

balls uniformly at random into the bins. As before, we define X
(i)
j to be the number of balls

in bin j after throwing i balls, Y
(i)
j = min(X

(i)
j , C) and T = min(i ∈ N :

∑
j∈[m] Y

(i)
j = n).

Let γ > 1 be a constant to be fixed. We are going to split the argument into three
cases.
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Case 1: C ≤ γ log(1/ε). We will show that in this case, the expected fraction of non-full
bins is Θ(εC). To do this, we first show the following technical claim.

Claim D.10. If C ≤ γ log(1/ε), then E[T ] = (1 + Ω(1))n.

Proof of Claim. Fix a bin j ∈ [m] and consider throwing m log(1/ε)/2 balls into m bins.
The probability that bin j is empty is(

1− 1

m

)m log(1/ε)/2

= Ω(
√
ε).

As we will now argue, it follows that when throwing N ≥ m log(1/ε)/2 balls into m bins
uniformly at random, a given bin receives at most N/m− log(1/ε)/2 balls with probability
Ω(
√
ε). For this, we use the results of [GM14], stating that if W ∼ B(k, p) is binomially

distributed with p < 1 − 1/k, then Pr[X ≤ E[X]] > 1/4. Combining this result with
the above, we obtain that the given bin receives none of the first m log(1/ε)/2 balls with
probability Ω(

√
ε) and at most (N −m log(1/ε)/m = N/m− log(1/ε)/2 of the remaining

balls with probability at least 1/4. Moreover, these events are independent, happening
simultaneously with probability Ω(

√
ε), which gives the desired.

Now let N = n+ log(1/ε)m/4 and define Z =
∑

j∈[m] Y
(N)
j . From the above observa-

tion, it follows that

E[Z] ≤ Cm− Ω(
√
ε log(1/ε)m),

and by applying Lemma D.9 it follows that it similarly hold with high probability that
Z ≤ Cm−Ω(

√
ε log(1/ε)m), with a potentially larger implicit constant in the Ω-notation.

Assuming that ε is smaller than a sufficiently small constant we therefore have that with
high probability,

Z ≤ (C − γε log(1/ε))m ≤ C(1− ε)m = (1 + ε)(1− ε)n < n.

Thus T > N with high probability, but this also means that

E[T ] ≥ N = n+
log(1/ε)m

4
≥ n+

Cm

4γ
= n

(
1 +

1 + ε

4γ

)
= n(1 + Ω(1)),

as desired.

Using the claim and Corollary D.8 it follows that also T = (1+Ω(1))n with probability

1 − n−γ for any constant γ and that |T − E[T ]| = O
(√

m logn
ε2

)
with the same high

probability.

We now choose N = E[T ] + O
(√

m logn
ε2

)
so large that Pr[T ≥ N ] ≤ n−2. Then

N = (1 + Ω(1))n as well. Consider a bin j ∈ [m] and let Ak = [X
(N)
j = k] for each k ≥ 0.

Then

Pr[Ak] =

(
N

k

)
1

mk

(
1− 1

m

)N−k
.
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If k = N1/2−Ω(1), then simple calculus yields that Pr[Ak] can be approximated with the
Poisson distribution with mean µ = N/m as follows,

Pr[Ak] = (1 + o(1))

(
N

m

)k 1

k!
e−N/m = (1 + o(1))

µk

k!
e−µ.

In particular, this holds when k ≤ C. Thus, for any k ≤ C it holds that

Pr[Ak]

Pr[Ak−1]
= (1 + o(1))

µ

k
= (1 + Ω(1))

n

km
≥ (1 + Ω(1))

n

Cm
=

1 + Ω(1)

1 + ε
= 1 + Ω(1),

where the last inequality requires that ε is smaller than a sufficiently small constant which
we may assume. Let α = Ω(1) be the implicit constant in the Ω-notation above, such that
for k ≤ C (and n,m, 1/ε sufficiently large), we have that Pr[Ak]/Pr[Ak−1] ≥ 1 + α. It
follows that,

Pr[Y
(N)
j < C] =

C∑
k=1

Pr[AC−k] ≤
C∑
k=1

(1 + α)k−1 Pr[AC−1] = O(Pr[AC−1]),

and

E[C − Y (N)
j ] =

C∑
k=1

kPr[AC−k] ≤
C∑
k=1

k(1 + α)k−1 Pr[AC−1] = O(Pr[AC−1]).

It trivially holds that Pr[Y
(N)
j < C] ≥ Pr[AC−1] and E[C − Y (N)

j ] ≥ Pr[AC−1], so in fact

we have proved that Pr[Y
(N)
j < C] = Θ(Pr[AC−1]) and E[C − Y (N)

j ] = Θ(Pr[AC−1]). By
linearity of expectation,

E

∑
j∈[m]

C − Y (N)
j

 = Θ(mPr[AC−1]) = Θ(mPr[Y
(N)
j < C]). (D.3)

Now with probability at least 1− n−2, it holds that N −O
(√

m logn
ε2

)
≤ T ≤ N . Since T

is chosen such that
∑

j∈[m]C − Y
(T )
j = εn, it follows that

E

∑
j∈[m]

C − Y (N)
j

 = Θ(εn). (D.4)

Thus, combining (D.3) and (D.4), we obtain that Pr[Y
(N)
j < C] = Θ(εC). Finally,

Pr[Y
(T )
j < C] ≥ Pr[Y

(N)
j < C]− Pr[N < T ] = Ω(εC)− n−2 = Ω(εC).

Using the exact same argument but instead choosing N = E[T ] − O
(√

m logn
ε2

)
so small

that Pr[T ≤ N ] ≤ n−2, we obtain that Pr[Y
(T )
j < C] = O(εC), so in fact Pr[Y

(T )
j <

C] = Θ(εC). But Pr[Y
(T )
j < C] is independent of j and is exactly the expected fraction

of non-full bins. Thus the proof is complete in the case C ≤ γ log(1/ε).
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Case 2: γ log(1/ε) < C ≤ 1
γε2

. To make the argument work, we will assume that

γ = O(1) is sufficiently large. We can make this assumption since the argument from case
1 holds for any γ = O(1). In general, the argument from case 1 serves as a nice warm up
but for the present case we have to be more careful in our estimates. Again, we choose

N = E[T ] +O
(√

m logn
ε2

)
so large that Pr[T ≥ N ] ≤ n−2 and put µ = N/m. Let us state

by proving some crude bounds on N as stated in the following claim.

Claim D.11. If γ = O(1) is sufficiently large, then C +
√
C ≤ N/m ≤ 3C/2.

Proof. We first prove the lower bound. Suppose for contradiction that N/m < C +
√
C.

Then E
[∑

j∈[m]C − Y
(N)
j

]
= Ω(

√
Cm) = Ω(n/

√
C) = Ω(nγε), so if γ is sufficiently

large, E
[∑

j∈[m]C − Y
(N)
j

]
≥ 2εn and this contradicts the fact that with high probability

T ≤ N . For the upper bound, note that if N/m ≥ 3C/2, then for any j ∈ [m],

Pr[X
(N)
j ≤ C] ≤ exp

(
− N

18m

)
≤ exp

(
− C

12

)
≤ exp

(
−γ log(1/ε))

12

)
= εγ/12 ≤ ε2

by a Chernoff bound and assuming γ ≥ 24. Thus, E
[∑

j∈[m]C − Y
(N)
j

]
≤ ε2Cm ≤ εn/2,

where the last inequality assumes that ε is sufficiently small. Again this contradicts the

fact that with high probability T ≥ N −O
(√

m logn
ε2

)
As before, we consider a bin j ∈ [m] and define Pr[Ak] = Pr[X

(N)
j = k]. Then for

k ≤ C,

Pr[Ak]

Pr[Ak−1]
=

(
N
k

)(
N
k−1

) 1

m− 1
=
N − k + 1

k

1

m− 1
=
µ

k

m

m− 1

N − k + 1

N
=
µ

k
(1±O(1/m)) .

It follows from the claim that µ/k ≥ 1 + 1/
√
C for k ≤ C. By our assumptions C ≤

1/ε2 = mo(1) and thus Pr[Ak]/Pr[Ak−1] = (µ/k)1±o(1). Let α ∈ N be minimal satisfying
that Pr[AC−1]/Pr[AC−α] ≥ 2. Using the crude bounds in the claim and simple calculations
we obtain that α = Θ(1/ log(µ/C)). Now,

Pr[Y
(N)
j < C] = Θ(αPr[AC−1]) = Θ(αPr[AC ]), (D.5)

and

E[C − Y (N)
j ] = Θ(α2 Pr[AC−1]) = Θ(α2 Pr[AC ]). (D.6)

As in case 1, Pr[Y
(T )
j < C] = Θ(Pr[Y

(N)
j < C]) which is the the value we are looking for.

Thus, if we can find the value of α, eq. (D.5) will give us the result we are looking for.
The problem is that α depends of N and hence of E[T ] which we as of now don’t know

the value of. However, we know that E[C − Y (N)
j ] is close to εn, so on a high level we can

plug this into eq. (D.6) and solve for α.
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Let us make the above argument precise. First, we write µ = C + β noting that by

the claim,
√
C ≤ β ≤ C/2. Note for later use that α = Θ

(
1

log(µ/C)

)
= Θ

(
C
β

)
. Using the

Poisson approximation,

Pr[AC ] = (1 + o(1))
µC

C!
e−µ = Θ

(( µ
C

)C 1√
Ceβ

)
= Θ

((
1 +

β

C

)C 1√
Ceβ

)
.

Write f(x) = log (1 + x), so that exp(f(β/C)) = 1 + β/C. As β/C ≤ 1/2, we can use a
Taylor expansion to conclude that

f

(
β

C

)
= f(0) + f ′(0)

β

C
−Θ

(
f ′′(0)

(
β

C

)2
)

=
β

C
−Θ

((
β

C

)2
)
.

Write ∆ = β − Cf(β/C), so that ∆ = Θ(β2/C) = Θ(C/α2). Then

Pr[AC ] = Θ

(
1√
Ce∆

)
.

On the other hand, it follows from Corollary D.8 that with high probability

∑
j∈[m]

C − Y (N)
j = Θ

∑
j∈[m]

C − Y (T )
j

 = Θ(εn),

so that, E[C − Y (N)
j ] = Θ(εC). Plugging all this into eq. (D.6), we find that

α2

√
Ce∆

= Θ(εC).

Using that α2 = Θ(C/∆), this reduces to ∆e∆ = Θ
(

1
ε
√
C

)
, so that ∆ = Θ

(
log
(

1
ε
√
C

))
,

and thus,

α = Θ

(√
C/ log

(
1

ε
√
C

))
.

Combining eq. (D.5) and eq. (D.6), we find that,

Pr[Y
(N)
j < C] = Θ(E[C − Y (N)

j ]/α) = Θ

(
ε
√
C

√(
log

1

ε
√
C

))
.

A similar argument to that used in the first case shows that also Pr[Y
(T )
j < C] =

Θ(Pr[Y
(N)
j < C]) = Θ(f) which completes the proof.
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Case 3: C > 1
γε2

. We can reduce this case to case 2 as follows. Define the function,

f : R→ R by f(x) = x(x− n/m)2. Then f(n/m) = 0 and f(C) = Cε2(n/m)2 > (n/m)2

γ ,

so there exists n/m < Ĉ < C satisfying that f(Ĉ) = (n/m)2

γ . Let ε̂ be such that Ĉ =

(1 + ε̂)n/m, so that 0 < ε̂ < ε. Then f(Ĉ) = Ĉε̂2(n/m)2 which implies that Ĉ = 1
γε̂2

.

Now define Ŷ
(i)
j = min(X

(i)
j , Ĉ) and T̂ = min(i ∈ N :

∑
j∈[m] Ŷ

(i)
j = n). As Ĉ ≤ C, it

follows that T̂ ≥ T . We can now apply the result from Case 2 to conclude that

Pr[Y
(T )
j < C] ≥ Pr[Y

(T̂ )
j < C] = Ω(1),

which completes the proof.

D.4 Some Helpful Lemmas

In this section, we provide two helpful lemmas which will be useful in several of the later
sections. The first is a tail bound for sums of geometric random variables, and the second
can be seen as a high probability upper bound on the number of bins visited at a given
level during an insertion with consistent hashing with bounded loads and virtual bins.

D.4.1 A Tail Bound for Sums of Geometric Variables

Recall that we say that Y is geometrically distributed with parameter p if for non-
negative integers k it holds that Pr[Y = k] = pk(1 − p). Then E[Y ] = p

1−p and
Var[Y ] = E[Y ](1 + E[Y ]). Let (Xi)i∈[n] be independent random variables such that Xi

is geometrically distributed with parameter pi. Let X =
∑

i∈[n]Xi. Define µi = E[Xi],

σ2i = Var[Xi] = µi(1+µi), µ =
∑

i∈[n] µi, and σ2 =
∑

i∈[n] σ
2
i . Finally let W0 : [0,∞)→ R

be the Lambert function defined by W0(x)eW0(x) = x. We have the following theorem.

Theorem D.12. For any t ≥ 0 it holds that

Pr
[
X ≥ µ+ 4tσ2

]
≤

e
−2σ2tW0(t), if t ≤

(
1 + 1

2µ0

)
log
(

1 + 1
2µ0

)
(

1− 1
1+2µ0

)2σ2t
, if t >

(
1 + 1

2µ0

)
log
(

1 + 1
2µ0

) . (D.7)

Proof. The idea of the proof is standard and uses the moment generating function of X.

Let 0 ≤ λ ≤ log
(

1 + 1
2µ0

)
be a parameter which we will fix later. Then

E
[
eλ(Xi−µi)

]
=

e−λµi

1− µi(eλ − 1)
= e−λµi−log(1−µi(eλ−1)) .

Define f(λ) = −λµi − log
(
1− µi(eλ − 1)

)
. Using a Taylor expansion,

f(λ) ≤ f(0) + f ′(0)λ+
max0≤x≤λ f

′′(x)

2
λ2
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It is easy to check that f(0) = 0, f ′(0) = 0, and f ′′(λ) = σ2i
eλ

(1−µi(eλ−1))2
. Now using that

λ ≤ log
(

1 + 1
2µ0

)
we get that f ′′(λ) ≤ 4σ2i e

λ, and hence

f(λ) ≤ 2σ2i e
λλ2.

We now use Markov’s inequality to conclude that

Pr
[
X ≥ µ+ 4tσ2

]
= Pr

[
eλ

∑
i∈[n](Xi−µi) ≥ eλ4tσ2

]
≤
∏
i∈[n] E

[
eλ(Xi−µi)

]
eλ4tσ2

≤ e2σ2eλλ2−4λtσ2
.

We will set λ = min
{

log
(

1 + 1
2µ0

)
,W0(t)

}
. Now, if t ≤

(
1 + 1

2µ0

)
log
(

1 + 1
2µ0

)
then

λ = W0(t). This implies that,

Pr

∑
i∈[n]

Xi ≥ µ+ 4tσ2

 ≤ e2σ2eλλ2−4λtσ2
= e−2σ2tW0(t) .

On the other hand, if t >
(

1 + 1
2µ0

)
log
(

1 + 1
2µ0

)
then λ = log

(
1 + 1

2µ0

)
. This implies

that,

Pr

∑
i∈[n]

Xi ≥ µ+ 4tσ2

 ≤ e2σ2eλλ2−4λtσ2 ≤ e−2σ2 log
(
1+

1
2µ0

)
t

=

(
1− 1

1 + 2µ0

)2σ2t

Defining C : [0,∞) → R by C(x) = (1 + x) log(1 + x) − x, it follows from standard
calculus that C(x) = Θ(xW0(x)). In particular, the first bound in (D.7) takes the form

Pr
[
X ≥ µ+ 4tσ2

]
= e−Ω(σ2C(t)).

Up to the constant delay in the exponential decrease, this is the same as the standard
variance-based Chernoff bound for the sum of independent variables in [0, 1]. Intuitively,
the second bound of (D.7) corresponds to the event that the heaviest of the geometric
variables, X0, satisfies X0 = µ0 + Ω(σ2t).

D.4.2 A High Probability Upper Bound on the Run Length at a Level

We next prove the general lemma on consistent hashing with bounded loads and virtual
bins. Consider a bin b at level i that may be chosen dependently on the hashing of balls
and bins to levels 1, . . . , i−1. We prove that if I is a maximal interval of level i containing
b satisfying that all bins in I get full after the hashing of balls to levels 1, . . . , i, then with
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probability 1− δ the number of bins in I is O(log(1/δ)/ε). This bound is quite crude but
we require it for both the analyses of Section D.5 and Section D.6 which proceed by step
by step revealing the history of how a bin obtained its balls at a given level. The result
entails that at a given point in the process, we have only revealed an insignificant part
of the system. On a high level, this means that even conditioning on what we already
know about the system, the probabilities of the various relevant events only change very
slightly. The result is as follows.

Lemma D.13. Let n,m ∈ N and 0 < ε < 1 with 1/ε = no(1). Suppose we distribute n
balls into m bins, each of capacity C = (1 + ε)n/m, using consistent hashing with bounded
loads and virtual bins and k ≥ 2/ε levels. Let b be a bin at level i which may be chosen
dependently on the hashing of balls and bins to level 1, . . . , i − 1. Let I be a maximal
interval at level i containing b such that all bins lying in I are full after the hashing to
level 1, . . . , i. Let 1/nO(1) < δ ≤ 1/2. The number of bins in I is O(log(1/δ)/ε) with
probability at least 1− δ.

Proof. The proof is very similar to the proof of Theorem D.5, so we just provide a sketch
of the proof. We may clearly assume that i = k as this can only decrease the remaining
capacities of the bins. Let C1, . . . , Cm be the remaining capacities and C = 1

m

∑
i∈[m]Ci.

Using a standard Chernoff bound and the assumptions that k ≥ 2/ε and 1/ε = no(1), we
find that the number of balls hashing to level k is at most εn with probability 1−O(n−γ)
for any γ = O(1). Letting X denote the number of such balls, it follows that mC ≥ 2X
with the same high probability. Condition on this event and let R denote the number
of bins in I. For a given s, we find as in the proof of Theorem D.5, that there exists
a constant number of intervals I1, . . . , Iℓ, all of length Θ(s/m) Such that the following

holds. Let X
(1)
j , X

(2)
j , and X

(3)
j denote respectively the number of bins, total capacity of

bins, and number of balls hashing to Ij . Let further µ
(1)
j = E[X

(1)
j ], µ

(2)
j = E[X

(2)
j ], and

µ
(3)
j = E[X

(3)
j ]. If s+ 1 ≤ R ≤ 2s, then there is a j ∈ [ℓ] such that either

B1: |X(1)
j − µ

(1)
j | = Ω(µ

(1)
j ),

B2: |X(2)
j − µ

(2)
j | = Ω(µ

(2)
j ),

B3: X
(3)
j − µ

(3)
j = Ω(max(µ

(3)
j , Cs)).

Note that µ
(1)
j = Θ(s) and µ

(2)
j = Θ(Cs). It therefore follows from standard Cher-

noff bounds that Pr[B1] = exp(−Ω(s)), Pr[B2] = exp(−Ω(Cs/C)), and Pr[B3] =
exp(−Ω(Cs)). As C = (1 + ε)n/m, we always have that C ≥ εn/m ≥ εC/2. There-
fore, we obtain the combined bound

Pr[s+ 1 ≤ R ≤ 2s] = exp(−Ω(εs)).
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With t = O(log(1/δ)/ε) sufficiently large, it follows that

Pr[R′ ≥ t+ 1] ≤
∞∑
i=0

Pr[At2i ] ≤
∞∑
i=0

exp(−Ω(t2iε))

≤
∞∑
i=0

exp(− log(2/δ)2i) ≤
∞∑
i=0

(δ/2)2
i ≤ δ.

This completes the proof.

Remark D.14. We will use the bound of Lemma D.13 to obtain the results in Section D.5
showing the concentration of the fraction of non-full bins around its mean µ = Θ(f). In
fact, this allows us to prove a stronger version of Lemma D.13 in Section D.6 which bounds
the number of bins in I by O(log(1/δ)/f), the only caveat being that here we have to use
k ≥ 1/ε2 levels.

We finish the section with the following definition.

Definition D.15. For I as in the lemma above, we will call I the run at level i containing
b.

Lemma D.13 shows that the number of bins in the run is O( log(1/δ)ε ) with probability
1− δ. It in particular follows that the number of bins visited at level i during an insertion
is O( log(1/δ)ε ) with probability 1− δ. Indeed, if b is a bin encountered during the insertion
which is not full at level i − 1, then all the bins encountered at level i lie in the run at
level i containing b.

D.5 Non-Full Bins: In Expectation and with
Concentration

In this section we will show that with consistent hashing, for each level d ∈ [k] and
each and each 0 ≤ t ≤ C, the number of bins at level d containing at most t balls is
sharply concentrated around its mean. This goal is achieved in Appendix D.5.1. Next,
in Appendix D.5.2 we prove that with k ≥ c/ε2 levels for a sufficiently large constant c,
the expected number of non-full bins at the highest level k − 1, is Θ(f) where f is as
defined in Equation (D.1).

D.5.1 High Probability Bounds on the Number of Non-Full Bins

The goal of this section is to prove the first part of Theorem D.4. For this, we first require
some notation. We define

X
(j)
d The remaining capacity of bin j after distributing balls to all levels i ≤ d.

Y
(j)
d The number of balls landing in or forwarded by bin j at level d.
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Z
(j)
d,s The capacity of the bin s places before bin j just before the hashing of balls to level

d.

W
(j)
d,s The number of balls landing between the bins placed s and s + 1 places before bin

j at level i.

There are some important relations between the variables. Y
(j)
d can be expressed in terms

of W
(j)
d,s and Z

(j)
d,s as follows Y

(j)
d = W

(j)
d,0 + max

{
0,maxl≥1

∑l
s=1(W

(j)
d,s − Z

(j)
d,s)
}

. Similarly,

we can express X
(j)
d in terms of Y

(j)
d as follows X

(j)
d = max

{
0, C −

∑
i≤d Y

(j)
i

}
.

Now due to all the dependencies in the system, it is unwieldy to analyse it directly.
Instead, we will analyse a simpler system which we then show can give us high probability

bounds for
∑

j∈[m][X
(j)
d ≤ t] for each t ≤ C. First we define X (j)

0 = C for every bin j. We

then define X (j)
d for 0 < d < k recursively as follows: First define independent random

variables Z(j)
d,s and W(j)

d,s for every bin j and every integer s by

Pr
[
Z(j)
d,s = t1

]
= Pr

[
X (j)
d−1 = t1

]
(D.8)

Pr
[
W(j)
d,s = t2

]
=

(
n/k

n/k +m

)t2 m

n/k +m
(D.9)

for every integers 0 ≤ t1 ≤ C and 0 ≤ t2. So W(j)
d,s is geometrically distributed with

parameter n/k
n/k+m . We then define Y(j)

d = W(j)
d,0 + max

{
0,maxl≥1

∑l
s=1(W

(j)
d,s −Z

(j)
d,s)
}

and finally X (j)
d = max

{
0, C −

∑d
i=1 Y

(j)
i

}
.

Clearly, the two systems have a lot of similarities. X (j)
d and Y(j)

d are defined analogously

to how X
(j)
d and Y

(j)
d are defined. The difference between the two system is the difference

between variables the Z(j)
d,s , W

(j)
d,s and the variables Z

(j)
d,s , W

(j)
d,s . Our goal is to show that

two systems are in fact very comparable, yet leverage that the second system is much
simpler to analyse due to the independence. This approach leads to the theorem below

which provides concentration of
∑

j∈[m][X
(j)
i ≤ t] around mPr

[
X (j)
i ≤ t

]
.

Theorem D.16. Let n and m be positive integers and set µ = n
m . Let 0 ≤ ε ≤ 1 be such

that C = (1 + ε)µ is in integer. If µ = mo(1) and ε = mo(1), then with probability at least
1−m−γ we have that∣∣∣∣∣∣

∑
j∈[m][X

(j)
i ≤ t]

m
− Pr

[
X (j)
i ≤ t

]∣∣∣∣∣∣ ≤ m−1/2+o(1) (D.10)

for all levels 1 ≤ i ≤ k and all 0 ≤ t ≤ C. The constant in the big-O notation depends on
γ.
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We define Ad to be the event that∣∣∣∣∣∣
∑

j∈[m][X
(j)
i ≤ t]

m
− Pr

[
X (j)
i ≤ t

]∣∣∣∣∣∣ ≤ m−1/2+o(1) (D.11)

for all 1 ≤ i ≤ d and all 0 ≤ t ≤ C. The goal of Theorem D.16 is prove that Pr[Ak] ≥
1−m−γ . An important step of the proof is the following lemma.

Lemma D.17. Fix 0 ≤ t ≤ C, j ∈ [m], and a subset S ⊆ [m] \ {j} of l ≤ O(logm) bins.
Then ∣∣∣Pr

[
Y

(j)
d ≥ t

∣∣∣Ad−1 ∧ (X
(i)
d )i∈S

]
− Pr

[
Y(j)
d ≥ t

]∣∣∣ ≤ m−1/2+o(1) (D.12)

We also need a couple of auxiliary lemmas. The first is a simple consequence of
Lemma D.13:

Lemma D.18. With probability at least 1−m−γ we have that the longest run at level d
is at most O((logm)/ε).

We will also need a bound on the number of balls between consecutive bins.

Lemma D.19. With probability at least 1−m−γ there are no more than O(logm(µ/k+1))
balls between any two consecutive virtual bins on level d.

Proof. This is simple observation since the probability that is there lands l balls between
consecutive virtual bins is at most

l−1∏
i=0

n/k − i
n/k − i+m

≤
(

1− m

n/k +m

)l
≤ exp

(
− m

n/k +m
l

)
It is now clear that if l = Θ(logm(µ/k + 1)) that there are no consecutive virtual bins
which receives more that l balls with probability 1−m−γ .

The final lemma is a technical lemma which we will use to get tail bounds. The proof
is deferred to the end of the section.

Lemma D.20. Let B1, . . . Bn be Bernoulli variables, 0 ≤ δ ≤ 1 a small real, and r > 0
be an even integer. Assume that for any i ∈ [n] and any subset S ⊆ [n] \ {i} of size at
most r − 1 we have that |Pr[Bi = 1 | (Bj)j∈S ]− p| ≤ δ, then

E

∑
i∈[n]

(Bi − p)

r1/r

≤ δn+O(
√
rn) ,

and the following tail bound holds

Pr

∣∣∣∣∣∣
∑
i∈[n]

(Bi − p)

∣∣∣∣∣∣ ≥ δn+ r
√
n

 ≤ exp(−Ω(r)) . (D.13)
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We will now prove Lemma D.17.

Proof of Lemma D.17. Let Bd be the event that the longest run on the level d is at most

r = O(logm/Pr
[
X (j)
d > 0

]
) ≤ O(log(m)/ε) and that there are at most O(logm(µ/k +

1)) balls between any two consecutive virtual bins on level d. By Lemma D.18 and
Lemma D.19 we have that Pr[¬Bd |Ad−1] ≤ m−γ′ hence we get that∣∣∣Pr

[
Y

(j)
d ≥ t

∣∣∣Ad−1 ∧ (X
(i)
d )i∈S

]
− Pr

[
Y

(j)
d ≥ t ∧Bd

∣∣∣Ad−1 ∧ (X
(i)
d )i∈S

]∣∣∣ ≤ m−γ′

The important observation now is that

Y
(j)
d = W

(j)
d,0 + max

{
0, max

1≤l≤r

l∑
s=1

(W
(j)
d,s − Z

(j)
d,s)

}

when Bd is true. So we only reveal r virtual bins and at most O(rO(logm(µ/k+1))) balls

when determining Y
(j)
d .

We will introduce a third system which will act as an intermediate between the two

systems. Let X
(j)
d−1 be independent random variables where each of the variables has

the same marginal distribution as X
(j)
d−1. Let Z

(j)
d,s and W

(j)
d,s be independent random

variables where each of Z
(j)
d,s has the same marginal distribution as Z

(j)
d,s , and each of

W
(j)
d,s is geometrically distributed with parameter n/k

n/k+m . We then define Y
(j)
d = W

(j)
d,0 +

max
{

0,max1≤l≤r
∑l

s=1(W
(j)
d,s − Z

(j)
d,s)
}

. The difference between the intermediate system

and the original system is that in the intermediate system we are sampling everything
with replacement and in the original system everything is sampled without replacement.

Let D be the event that X
(j)
d−1 is a distinct bin from the bins (Z

(i)
d,s)i∈S,1≤s≤r and

that the bins (X
(i)
d−1)i∈S are distinct for the bins (X

(j)
d,s)1≤s≤r. It is easy to see that

Pr
[
¬D ∧B

∣∣∣Ad−1 ∧ (X
(i)
d )i∈S

]
≤ O( rl

m−(l+1)(r+1)) = m−1+o(1), hence we get that∣∣∣Pr
[
Y

(j)
d ≥ t ∧Bd

∣∣∣Ad−1 ∧ (X
(i)
d )i∈S

]
− Pr

[
Y

(j)
d ≥ t ∧Bd ∧D

∣∣∣Ad−1 ∧ (X
(i)
d )i∈S

]∣∣∣
≤ m−1+o(1) .

It is standard fact that if we sample X
(j)
d−1 and (Z

(j)
d,s)1≤s≤r independently with replace-

ment and condition on them sampling distinct bins which are also distinct from the bins

for (X
(i)
d−1)i∈S and (Z

(i)
d,s)i∈S,1≤s≤r, then it has the same distribution as sampling with-

out replacement. The probability that we make such a sampling error is bounded by
l(r+1)2

m = m−1+o(1).

Similarly, if we sample (W
(j)
d,s)0≤s≤r independently with replacement conditioned on

all balls being distinct and distinct from the ball sampled for (W
(j)
d,s )i∈S,0≤s≤r, then it has

the same distribution as sampling without replacement. With probability 1 − m−γ we
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have that W
(j)
d,s ≤ O(logm(µ/k + 1)) for all 0 ≤ s ≤ r, hence the probability of making a

sampling error with balls is bounded by

m−γ +O

(
log(m)2(µ/k + 1)2(r + 1)2

ne

)
= m−γ +O

(
k log(m)2(µ/k + 1)2(r + 1)2

n

)
= m−1+o(1) .

From this two facts we see that∣∣∣Pr
[
Y

(j)
d ≥ t ∧Bd ∧D

∣∣∣Ad−1 ∧ (X
(i)
d )i∈S

]
− Pr

[
Y

(j)
d ≥ t ∧Bd ∧D

∣∣∣Ad−1

]∣∣∣ ≤ m−1+o(1) .

Since Bd ∧D happens with probability at least 1−m−γ we get that,∣∣∣Pr
[
Y

(j)
d ≥ t ∧Bd ∧D

∣∣∣Ad−1

]
− Pr

[
Y

(j)
d ≥ t

∣∣∣Ad−1

]∣∣∣ ≤ m−1+o(1) .

We then define Y(j)
d = W(j)

d,0 + max
{

0,max1≤l≤r
∑l

s=1(W
(j)
d,s −Z

(j)
d,s)
}

. The difference

between Y(j)
d and Y(j)

d is that Y(j)
d looks at at most r bins in the tail while Y(j)

d looks at all

bins in the tail. If Z
(j)
d,s = Z(j)

d,s for all 1 ≤ s ≤ r then Pr
[
Y

(j)
d ≥ t

∣∣∣Ad−1

]
= Pr

[
Y(j)
d ≥ t

]
.

This observation imply that∣∣∣Pr
[
Y

(j)
d ≥ t

∣∣∣Ad−1

]
− Pr

[
Y(j)
d ≥ t

]∣∣∣
≤

∑
τ1,...,τr

∣∣∣Pr
[
(Z

(j)
d,1, . . . , Z

(j)
d,r) = (τ1, . . . , τr)

∣∣∣Ad−1

]
− Pr

[
(Z(j)

d,1, . . . ,Z
(j)
d,r ) = (τ1, . . . , τr)

] ∣∣∣
≤

∑
τ1,...,τr

∣∣∣ ∏
1≤s≤r

Pr
[
Z

(j)
d,s = τs

∣∣∣Ad−1

]
−
∏

1≤s≤r
Pr
[
Z(j)
d,s = τs

] ∣∣∣
≤ 2

∑
0≤τ≤C

∣∣∣Pr
[
Z

(j)
d,1 = τ

∣∣∣Ad−1

]
− Pr

[
Z(j)
d,1 = τ

] ∣∣∣
≤ r

∑
0≤τ≤C

m−1/2+o(1)

≤ m−1/2+o(1)

Now the same arguments as in the proof of Lemma D.18 show that Y(j)
d = Y(j)

d with
probability at least 1−m−γ . Combining all these bounds proves the claim.

Now having proved Lemma D.17 we are ready to prove Theorem D.16.

Proof of Theorem D.16. We note that

Pr[Ak] = Pr

 ∧
1≤i≤k

Ai

 =
∏

1≤i≤k
Pr[Ai |Ai−1]
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If we can prove that Pr[Ad |Ad−1] ≥ 1 − O(m−γ′) for all 1 ≤ d ≤ k, where γ′ is an
appropriately chosen constant, then we would get that

Pr[Ak] ≥ (1−m−γ′)k ≥ 1−m−γ

The rest of the proof is now to show that Pr[¬Ad |Ad−1] ≤ O(m−γ′).
Let j ∈ [m] and S ⊆ [m] \ {s} with l = |S| ≤ O(logm). We will prove that,∣∣∣Pr

[
X

(j)
d ≤ t

∣∣∣Ad−1 ∧ (X
(i)
d )i∈S

]
− Pr

[
X (j)
d ≤ t

]∣∣∣ ≤ m−1/2+o(1) . (D.14)

This will imply the result since if we combine eq. (D.14) with Lemma D.20 we get that,

Pr

∣∣∣∣∣∣
∑

j∈[m][X
(j)
d ≤ t]

m
− Pr

[
X (j)
d ≤ t

]∣∣∣∣∣∣ ≥ m−1/2+o(1)

∣∣∣∣∣∣Ad−1

 ≤ m−γ′′ .

For 0 ≤ t ≤ C. Now a union bound over all 0 ≤ t ≤ C gives us that

Pr[¬Ad ∧Bd |Ad−1] ≤ (C + 1)m−γ′′ ≤ m−γ′ .

We then get that Pr[Ak] ≥ 1−m−γ as we wanted.

We just need to prove eq. (D.14). We note that X
(j)
d ≤ t if and only if X

(j)
d−1−Y

(j)
d ≤ t.

We thus get that,

Pr
[
X

(j)
d ≤ t

∣∣∣Ad−1 ∧ (X
(i)
d )i∈S

]
=

t−1∑
s=0

Pr
[
X

(j)
d−1 ≤ t− s ∧ Y

(j)
d = s

∣∣∣Ad−1 ∧ (X
(i)
d )i∈S

]
+ Pr

[
Y

(j)
d ≥ t

∣∣∣Ad−1 ∧ (X
(i)
d )i∈S

]
If we fix the first d− 1 levels then we get that

Pr
[
X

(j)
d−1 ≤ t− s

∣∣∣ (X(i)
d )i∈S

]
=

∑
i∈[m]\S [X

(j)
d−1 ≤ t− s]

m− |S|
We condition on Ad−1 so we know that,∣∣∣∣∣∣

∑
i∈[m][X

(i)
d−1 ≤ t− s]
m

− Pr
[
X (j)
d−1 ≤ t− s

]∣∣∣∣∣∣ ≤ m−1/2+o(1)

This implies that,∣∣∣∣∣∣
∑

i∈[m]\S [X
(i)
d−1 ≤ t− s]

m− |S|
− Pr

[
X (j)
d−1 ≤ t− s

]∣∣∣∣∣∣
≤ m−1/2+o(1) +

∣∣∣∣∣∣
∑

i∈S

(
[X

(i)
d−1 ≤ t− s]− Pr

[
X (j)
d−1 ≤ t− s

])
m− |S|

∣∣∣∣∣∣
≤ m−1/2+o(1)



298 APPENDIX D. DYNAMIC SET OF BALLS AND BINS

Here we have used that |S| ≤ O(log(m)). We thus get that

− Pr
[
Y

(j)
d = s

∣∣∣Ad−1 ∧ (X
(i)
d )i∈S

]
m−1/2+o(1)

≤ Pr
[
X

(j)
d−1 ≤ t− s ∧ Y

(j)
d = s

∣∣∣Ad−1 ∧ (X
(i)
d )i∈S

]
− Pr

[
X (j)
d−1 ≤ t− s

]
Pr
[
Y

(j)
d = s

∣∣∣Ad−1 ∧ (X
(i)
d )i∈S

]
≤ Pr

[
Y

(j)
d = s

∣∣∣Ad−1 ∧ (X
(i)
d )i∈S

]
m−1/2+o(1)

Using this we get that,∣∣∣Pr
[
X

(j)
d ≤ t

∣∣∣Ad−1 ∧ (X
(i)
d )i∈S

]
− Pr

[
X (j)
d−1 − Y

(j)
d ≤ t

∣∣∣Ad−1 ∧ (X
(i)
d )i∈S

]∣∣∣ ≤ m−1/2+o(1)

We now want to exchange Y
(j)
d with Y(j)

d and the approach is similar to what we just did.
We note that,

Pr
[
X (j)
d−1 − Y

(j)
d ≤ t

∣∣∣Ad−1 ∧ (X
(i)
d )i∈S

]
=

t−1∑
s=0

Pr
[
X (j)
d−1 = s

]
Pr
[
Y

(j)
d ≤ t− s

∣∣∣Ad−1 ∧ (X
(i)
d )i∈S

]
+ Pr

[
X (j)
d−1 ≥ t

]
We now use Lemma D.17 to get that,∣∣∣Pr

[
Y

(j)
d ≤ t− s

∣∣∣Ad−1 ∧ (X
(i)
d )i∈S

]
− Pr

[
Y(j)
d ≤ t− s

]∣∣∣ ≤ m−1/2+o(1) +m−γ

So ∣∣∣Pr
[
X (j)
d−1 = s

]
Pr
[
Y

(j)
d ≤ t− s

∣∣∣Ad−1 ∧ (X
(i)
d )i∈S

]
− Pr

[
X (j)
d−1 = s ∧ Y(j)

d ≤ t− s
]∣∣∣

≤ Pr
[
X (j)
d−1 = s

]
m−1/2+o(1)

This implies that,∣∣∣Pr
[
X

(j)
d ≤ t

∣∣∣Ad−1 ∧ (X
(i)
d )i∈S

]
− Pr

[
X (j)
d ≤ t

]∣∣∣ ≤ m−1/2+o(1)

Where we have use that t ≤ C ≤ mo(1). This proves eq. (D.14) and thus finishes the
proof.

Later in the paper we will need to bound the contribution to a bin while fixing the
previous levels. The proof structure is very similar to the proof of We define Ld−1 to be
the sigma-algebra generated by the first d− 1 levels.
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Lemma D.21. Let 0 ≤ t ≤ C, j ∈ [m], and 1 ≤ d ≤ k. Then∣∣∣∣∣Pr

[
k∑
i=d

Y
(j)
i ≥ t

∣∣∣∣∣Ld−1

]
− Pr

[
k∑
i=d

Y(j)
i ≥ t

]∣∣∣∣∣ ≤ k [Acd−1

]
+ 2km−1/2+o(1) (D.15)

Proof. We will prove that,∣∣∣∣∣Pr

[
k∑

i=k−r
Y

(j)
i ≥ t

∣∣∣∣∣Lk−r−1

]
− Pr

[
k∑

i=k−r
Y(j)
i ≥ t

]∣∣∣∣∣
≤ (1 + r)

[
Ack−r−1

]
+ (1 + 2r)m−1/2+o(1)

(D.16)

for 0 ≤ r ≤ k − d and all 0 ≤ t ≤ C. We will prove the result by induction on r.
We first consider r = 0. We then have that,

Pr
[
Y

(j)
k ≥ t

∣∣∣Lk−1

]
= [Ak−1] Pr

[
Y

(j)
k ≥ t

∣∣∣Lr−1

]
+
[
Ack−1

]
Pr
[
Y

(j)
k ≥ t

∣∣∣Lr−1

]
We now use Lemma D.17 to get that, [Ak−1] Pr

[
Y

(j)
k ≥ t

∣∣∣Lk−1

]
=

[Ak−1]
(

Pr
[
Y(j)
k ≥ t

]
+ δ
)

where |δ| ≤ m−1/2+o(1). We then get that,

Pr
[
Y

(j)
k ≥ t

∣∣∣Lk−1

]
= [Ak−1]

(
Pr
[
Y(j)
k ≥ t

]
+ δ
)

+
[
Ack−1

]
Pr
[
Y

(j)
k ≥ t

∣∣∣Lr−1

]
= Pr

[
Y(j)
k ≥ t

]
+
[
Ack−1

] (
Pr
[
Y

(j)
k ≥ t

∣∣∣Lr−1

]
− Pr

[
Y(j)
k ≥ t

])
+ [Ak−1] δ

We have that∣∣∣[Ack−1

] (
Pr
[
Y

(j)
k ≥ t

∣∣∣Lr−1

]
− Pr

[
Y(j)
k ≥ t

])
+ [Ak−1] δ

∣∣∣ ≤ [Ack−1

]
+ |δ|

≤
[
Ack−1

]
+m−1/2+o(1)

This proves eq. (D.16) for r = 0 which will be our induction start.
Now we consider r ≥ 1 assume that eq. (D.16) is true for values less than r. We note

that,

Pr

[
k∑

i=k−r
Y

(j)
i ≥ t

∣∣∣∣∣Lk−r−1

]
=

t−1∑
s=0

Pr

[
k∑

i=k−r+1

Y
(j)
i ≥ t− s ∧ Y (j)

k−r = s

∣∣∣∣∣Lk−r−1

]
+ Pr

[
Y

(j)
k−r ≥ t

∣∣∣Lk−r−1

]
We now fix 0 ≤ s ≤ t − 1 and use the tower property of conditional expectation to get
that,

Pr

[
k∑

i=k−r+1

Y
(j)
i ≥ t− s ∧ Y (j)

k−r = s

∣∣∣∣∣Lk−r−1

]

= E

[[
Y

(j)
k−r = s

]
Pr

[
k∑

i=k−r+1

Y
(j)
i ≥ t− s

∣∣∣∣∣Lk−r
] ∣∣∣∣∣Lk−r−1

]
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By then induction hypothesis we have that Pr
[∑k

i=k−r+1 Y
(j)
i ≥ t− s

∣∣∣Lk−r] =

Pr
[∑k

i=k−r Y
(j)
i ≥ t− s

]
+ δs where |δs| ≤ r

[
Ack−r

]
+ (2r − 1)m−1/2+o(1). This implies

that,

E

[[
Y

(j)
k−r = s

]
Pr

[
k∑

i=k−r+1

Y
(j)
i ≥ t− s

∣∣∣∣∣Lk−r
] ∣∣∣∣∣Lk−r−1

]

= E

[[
Y

(j)
k−r = s

](
Pr

[
k∑

i=k−r
Y(j)
i ≥ t− s

]
+ δs

)∣∣∣∣∣Lk−r−1

]

= Pr

[
k∑

i=k−r+1

Y(j)
i ≥ t− s ∧ Y

(j)
k−r = s

∣∣∣∣∣Lk−r−1

]
+ E

[[
Y

(j)
k−r = s

]
δs

∣∣∣Lk−r−1

]

Hence, we get that,

Pr

[
k∑

i=k−r
Y

(j)
i ≥ t

∣∣∣∣∣Lk−r−1

]

=
t−1∑
s=0

Pr

[
k∑

i=k−r+1

Y
(j)
i ≥ t− s ∧ Y (j)

k−r = s

∣∣∣∣∣Lk−r−1

]
+ Pr

[
Y

(j)
k−r ≥ t

∣∣∣Lk−r−1

]

=

t−1∑
s=0

(
Pr

[
k∑

i=k−r+1

Y(j)
i ≥ t− s ∧ Y

(j)
k−r = s

∣∣∣∣∣Lk−r−1

]
+ E

[[
Y

(j)
k−r = s

]
δs

∣∣∣Lk−r−1

])
+ Pr

[
Y

(j)
k−r ≥ t

∣∣∣Lk−r−1

]
= Pr

[
k∑

i=k−r+1

Y(j)
i + Y

(j)
k−r ≥ t

∣∣∣∣∣Lk−r−1

]
+

t−1∑
s=0

E
[[
Y

(j)
k−r = s

]
δs

∣∣∣Lk−r−1

]

Now we want to exchange Y
(j)
k−r with Y(j)

k−r and the method is similar to before. We write,

Pr

[
k∑

i=k−r+1

Y(j)
i + Y

(j)
k−r ≥ t

∣∣∣∣∣Lk−r−1

]

=
t−1∑
s=0

Pr

[
k∑

i=k−r+1

Y(j)
i = s

]
Pr
[
Y

(j)
k−r ≥ t− s

∣∣∣Lk−r−1

]
+ Pr

[
k∑

i=k−r+1

Y(j)
i ≥ t

]

Now by analogous arguments as in the induction start we get that

Pr
[
Y

(j)
k−r ≥ t− s

∣∣∣Lk−r−1

]
= Pr

[
Y(j)
k−r ≥ t− s

]
+ δ′s where |δ′s| ≤

[
Ack−r−1

]
+ m−1/2+o(1).
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We thus get that,

t−1∑
s=0

Pr

[
k∑

i=k−r+1

Y(j)
i = s

]
Pr
[
Y

(j)
k−r ≥ t− s

∣∣∣Lk−r−1

]
+ Pr

[
k∑

i=k−r+1

Y(j)
i ≥ t

]

=

t−1∑
s=0

Pr

[
k∑

i=k−r+1

Y(j)
i = s

](
Pr
[
Y(j)
k−r ≥ t− s

]
+ δ′s

)
+ Pr

[
k∑

i=k−r+1

Y(j)
i ≥ t

]

= Pr

[
k∑

i=k−r
Y(j)
i ≥ t

]
+

t−1∑
s=0

Pr

[
k∑

i=k−r+1

Y(j)
i = s

]
δ′s

Now combining it all we get that,

Pr

[
k∑

i=k−r
Y

(j)
i ≥ t

∣∣∣∣∣Lk−r−1

]
= Pr

[
k∑

i=k−r
Y(j)
i ≥ t

]

+
t−1∑
s=0

(
E
[[
Y

(j)
k−r = s

]
δs

∣∣∣Lk−r−1

]
+ Pr

[
k∑

i=k−r+1

Y(j)
i = s

]
δ′s

)
.

Now to finish the proof we just need to bound∣∣∣∑t−1
s=0

(
E
[[
Y

(j)
k−r = s

]
δs

∣∣∣Lk−r−1

]
+ Pr

[∑k
i=k−r+1 Y

(j)
i = s

]
δ′s

)∣∣∣.
∣∣∣∣∣
t−1∑
s=0

(
E
[[
Y

(j)
k−r = s

]
δs

∣∣∣Lk−r−1

]
+ Pr

[
k∑

i=k−r+1

Y(j)
i = s

]
δ′s

)∣∣∣∣∣
≤ t−1

max
s=0

E[|δs| | Lk−r−1] +
t−1

max
s=0

∣∣δ′s∣∣ ≤ [Ack−r−1

]
+ 2rm−1/2+o(1) + rPr

[
Ack−r

∣∣Lk−r−1

]
We now just need to bound Pr

[
Ack−r

∣∣Lk−r−1

]
. From the proof of Theorem D.16 we have

that [Ak−r−1] Pr
[
Ack−r

∣∣Lk−r−1

]
≤ m−γ . So we get that

rPr
[
Ack−r

∣∣Lk−r−1

]
≤ r

[
Ack−r−1

]
+ rm−γ ≤ r

[
Ack−r−1

]
+m−1/2+o(1)

This implies that,∣∣∣∣∣
t−1∑
s=0

(
E
[[
Y

(j)
k−r = s

]
δs

∣∣∣Lk−r−1

]
+ Pr

[
k∑

i=k−r+1

Y(j)
i = s

]
δ′s

)∣∣∣∣∣
≤ (r + 1)

[
Ack−r−1

]
+ (1 + 2r)m−1/2+o(1)

This finishes the induction step and thus the proof.

We now turn to the proof Lemma D.20.
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Proof of Lemma D.20. Let j1, . . . , jr be different indices and a1, . . . , ar be non-negative
integers such that

∑r
i=1 ai = r. We then want to estimate E[(Xjr − p)ar | (Xji)i<r]∣∣∣E[(Xjr − p)ar | (Xji)i<r]

∣∣∣ =
∣∣∣E[Xjr | (Xji)i<r] (1− p)ar + (1− E[Xjr | (Xji)i<r])(−p)ar

∣∣∣
≤ δ |(1− p)ar − (−p)ar |+ |p(1− p)ar + (1− p)(−p)ar |

Now let X ′
i be independent Bernoulli variables with parameter p′ where p′ = p+δ if p < 1

2
and p′ = p− δ when p ≥ 1

2 . It is now easy to check that∣∣∣E[(X ′
i − p)ar

]∣∣∣ = δ |(1− p)ar − (−p)ar |+ |p(1− p)ar + (1− p)(−p)ar |

Using this we see that ∣∣∣∣∣E
[

r∏
i=1

(Xi − p)ar
]∣∣∣∣∣ ≤

∣∣∣∣∣E
[

r∏
i=1

(X ′
i − p)ar

]∣∣∣∣∣
From this we conclude that E[(

∑
i(Xi − p))r] ≤ E[(

∑
i(X

′
i − p))

r]. Now by the triangle
inequality and Hoeffding’s inequality we get that

E

[(∑
i

(Xi − p)

)r]1/r
≤ E

[(∑
i

(X ′
i − p)

)r]1/r

≤ δn+ E

[(∑
i

(X ′
i − p′)

)r]1/r
≤ δn+O(

√
rn)

Now using Markov’s inequality give us the tail bound.

D.5.2 The probability that a bin is not full

In this section we will bound the probability Pr
[
X (j)
k = 0

]
for any bin j. Since the

bound is the same for all bins we will suppress j from the notation. We note that

Pr[Xk = 0] = Pr
[∑k

i=1 Yi ≥ C
]
. Now an important observation is that if we de-

fine 1 − fd = Pr
[∑d

i=1 Yi ≥ C
]
, then Yd is geometrically distributed with parameter

αd = n/k
n/k+fdm

= 1

1+
fdk
µ

. The reason is that when generating Yd, we sample with replace-

ment so when sampling a bin, the probability that it will be filled is 1− fd independently
of the history. Thus, at any point, the probability of getting another ball is

n/k

n/k +m

∞∑
i=0

(
m

n/k +m
(1− fd)

)i
=

n/k
n/k+m

1− m
n/k+m(1− fd)

=
n/k

n/k + fdm
=

1

1 + fdk
µ

.

Which is exactly what we get from a geometrically distributed variable.
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From simple facts about geometrically distributed variables we get that µd = E[Yd] =
µ
kfd

, and σ2d = Var[Yd] = µ
kfd

(
1 + µ

kfd

)
≥ µd. We note that

k∑
i=1

σ2i =
k∑
i=1

µ

kfi

(
1 +

µ

kfi

)
≥

k∑
i=1

µ

kfi
(D.17)

We define Sd =
∑d

i=1 Yi for 1 ≤ d ≤ k. Our goal is to prove that there exists a constant
L such that,

fk ≥ L


εC if C ≤

(
1/(ε
√
C)
)

ε

√
C log

(
1

ε
√
C

)
if log

(
1/(ε
√
C)
)
≤ C ≤ 1

2ε2

1 if 1
2ε2
≤ C

. (D.18)

Combining this with Theorem D.16, the second part of Theorem D.4 will follow. Now to
prove Equation (D.18), it suffices to consider the case C ≤ γ/ε2 for a sufficiently small
constant γ. Indeed, otherwise, we apply a reduction similar to the one in Case 3 in the
proof of Theorem D.1. We will make this assumption in what follows. We also note that
we can assume that C is larger than 1

4L because if C ≤ 1
4L then we get that,

ε/4 ≥ L


εC if C ≤ log

(
1/(ε
√
C)
)

ε

√
C log

(
1

ε
√
C

)
if log

(
1/(ε
√
C)
)
≤ C ≤ 1

2ε2

1 if 1
2ε2
≤ C

.

We will argue that fk is always larger than ε/4. We know that
∑

j∈[m]

[
X

(j)
k = 0

]
≤

n
C = m

1+ε and 1 − fk ≤
∑

j∈[m]

[
X

(j)
k =0

]
m + m−1/2+o(1) with probability at least 1 −m−γ by

Theorem D.4. Fixing such event give us that,

fk ≥ 1− 1

1 + ε
−m−1/2+o(1) ≥ ε/2− ε/4 = ε/4 .

Here we have used that ε ≤ 1 and that 1/ε = mo(1). So if C ≤ 1
4L then eq. (D.18) holds

and we in from now assume that C > 1
4L .

We will prove the result by showing the stronger result that for all 1 ≤ d ≤ k,

fd ≥ L


εC if C ≤ log

(
1/(ε
√
C)
)

ε

√
C log

(
1

ε
√
C

)
if log

(
1/(ε
√
C)
)
≤ C ≤ 1

2ε2

1 if 1
2ε2
≤ C

. (D.19)

We will prove eq. (D.19) by induction on d.



304 APPENDIX D. DYNAMIC SET OF BALLS AND BINS

First we note that f1 ≥ f2 ≥ . . . ≥ fkε/4. We then get that E[Sd] =
∑d

i=1 µi ≤
4dµ
εk ≤

dεC
2 , where we have used that k ≥ 8/ε2. So for d ≤ 1/ε we get that

∑d
i=1 µi ≤ C/2 and

Markov’s inequality give us that,

1− fd = Pr[Sd ≥ C] ≤ 1

2
.

This shows that eq. (D.19) holds for d ≤ 1/ε and since ε ≤ 1 then it holds for d = 1 which
will be our induction start.

Now the previous argument shows that when E[Sd] ≤ C/2 then eq. (D.19) holds, so
we can assume that

∑d
i=1 µi > C/2. We note that fd ≥ fd−1/2 since,

fd = Pr[Sd < C] ≥ Pr[Sd−1 < C ∧ Yd = 0] = fd−1(1− αd) = fd−1
1

1 + µ
fdk

.

This implies that fd ≥ fd−1− µ
k ≥ fd−1/2 where we use that k ≥ c/ε2 for some sufficiently

large constant c and that fd−1 ≥ Lε2C. We now note that if fi ≥ L
2 min

{
ε
√
C, 1

}
then

µi ≤ 1, since,

µd =
µ

kfi
≤ 2ε2C

cLmin
{
ε
√
C, 1

} ≤ 1 .

Here we have used that k ≥ c/ε2, that c is sufficiently large, and that 1/ε2 ≤ C. We also
note that

E
[
|Yi − µi|3

]
= E

[
[Yi ≤ µi] (µi − Yi)3

]
+ E

[
[Yi > µi] (Yi − µi)3

]
≤ µ3i + α

⌊µi⌋
i E

[
Y3
i

]
≤ µ3i + E

[
Y3
i

]
.

In the first inequality we have used that the geometric distribution is memoryless. Now

simple calculations give that E
[
Y3
i

]
≤ 6µi(1 +µi)

2 ≤ 24µi, so we get that E
[
|Yi − µi|3

]
≤

µ3i + 24µi ≤ 25µi.
Depending on E[Sd] we will prove different bounds on fd. Let M > 0 be a large

constant. We will prove that if E[Sd] < C +M
√
C then fd ≥ L, if C +M

√
C ≤ E[Sd] <

C + 1
4C then fd ≥ Lε

√
C log

(
1

ε
√
C

)
, and if C + 1

4C ≤ E[Sd] then fd ≥ LεC. This will

prove the result since ε

√
C log

(
1

ε
√
C

)
≥ εC if and only if C ≥

(
1/(ε
√
C)
)

, and since

C ≤ γ/ε2 for a small constant γ then 1 ≥ min

{
ε

√
C log

(
1

ε
√
C

)
, εC

}
.

If E[Sd] < C + M
√
C then we will show that fd ≥ L. This will follow by a usage of

the Berry-Esseen theorem.

Theorem D.22 (Berry Esseen theorem). Let X1, . . . , Xd be independent random variables

with E[Xi] = 0, E
[
X2
i

]
= σ2i > 0, and E

[
|Xi|3

]
= ρi <∞. Let Fd be the cumulative dis-

tribution function of
∑d

i=1Xi, let Φ be the cumulative distribution function of the standard



D.5. NON-FULL BINS: IN EXPECTATION AND WITH CONCENTRATION 305

normal distribution, and let σ2 =
∑d

i=1 σ
2. Then,

sup
x∈R
|Fd(x)− Φ(x/σ)| ≤ K1

∑d
i=1 ρi
σ3

.

where K1 is a universal constant.

Since E[Sd] < C + M
√
C then C ≥ E[Sd] −M

√
E[Sd] ≤ E[Sd] −M

√∑d
i=1 σ

2
i and

we get that fd = Pr[Sd < C] ≥ Pr

[
Sd < E[Sd]−M

√∑d
i=1 σ

2
i

]
. Now the Berry-Esseen

theorem give us that,

fd ≥ Pr

Sd < E[Sd]−

√√√√ d∑
i=1

σ2i

 ≥ Φ(−M)−K1

∑d
i=1 E

[
|Yi − µi|3

]
(∑d

i=1 σ
2
i

)3/2
We know that E

[
|Yi − µi|3

]
≤ 25µi and that σ2i ≥ µi for all 1 ≤ i ≤ d, so we get that,

fd ≥ Φ(−M)− 25K1
E[Sd]

E[Sd]
3/2
≥ Φ(−M)− 25K1

√
8L ≥ L .

Here we have used that E[Sd] ≥ C/2 ≥ 1
8L and that L is sufficiently small.

Now we consider the case where E[Sd] ≥ C + M
√
C. We define βd = E[Sd] − C and

note that βd ≥M
√
C. We will need the following claim.

Claim D.23. For all 1 ≤ d ≤ k and all integers t ≥ 1 we have that,

Pr[Sd = t+ 1]

Pr[Sd = t]
≤ Pr[Sd = t]

Pr[Sd = t− 1]
.

Proof. We define the sets At =
{

(a1, . . . , ad) ∈ Nd0
∣∣∣∑d

i=1 ai = t
}

and get that

Pr

[
d∑
i=1

Yi = t

]
=

∑
(a1,...,ad)∈At

d∏
i=1

αaii (1− αi) .

We note that the result it is equivalent to showing that Pr[X = t+ 1] Pr[X = t− 1] ≤
Pr[X = t]2 which in turn is equivalent to

∑
(a,b)∈At+1×At−1

d∏
i=1

αai+bii (1− αi)2 ≤
∑

(a,b)∈At×At

d∏
i=1

αai+bii (1− αi)2.

To see that this latter inequality holds, let s ∈ A2t and define the map gs : Nd0 → N0

by gs(i) = |{(a, b) ∈ Ai × A2t−i | a + b = s}|. We note that gs(i) > 0 exactly when
i ∈ {0, 1, . . . , 2t}. The desired inequality is then equivalent to

∑
s∈A2t

gs(t+ 1)

d∏
i=1

αsii ≤
∑
s∈A2t

gs(t)

d∏
i=1

αsii .
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We will show that gs is log-concave for each s ∈ A2t. As gs is clearly symmetric around
i = t, it will in particular follow that gs(t + 1) ≤ gs(t) which then leads to the desired
inequality. To show that gs is log-concave, we note that it is a convolution of log-concave
functions. Indeed, fix s and define for 1 ≤ j ≤ d, the map hj : N0 → N0 by hj(i) = 1 if
0 ≤ i ≤ sj and hj(i) = 0 otherwise. Then each hj is log-concave, and moreover, gs is the
convolution gs = h1 ∗ · · · ∗ hk, i.e.,

gs(i) =
∑
a∈Zk

a1+···+ad=i

d∏
j=1

hj(aj).

It is a standard fact that the convolution of log-concave functions is again log-concave,
and the desired inequality follows.

Now let ℓd ∈ N be the minimal integer satisfying that
Pr[Sd = C − 1] /Pr[Sd = C − 1− ℓd] ≥ 2. Now combining Claim D.23 with the
definition of ℓd we get that,

Pr[Sd < C] =
C∑
t=1

Pr[Sd = C − t] ≥
ℓd∑
t=1

Pr[Sd = C − t] ≥ ℓd
2

Pr[Sd = C − 1] ,

Pr[Sd < C] =
C∑
t=1

Pr[Sd = C − t] ≤
⌈C/ℓd⌉∑
r=0

ℓd Pr[Sd = C − 1− rℓd]

≤ ℓd Pr[Sd = C − 1]

∞∑
r=0

2−r = 2ℓd Pr[Sd = C − 1] ,

E[(C − Sd)[Sd < C]] =

C∑
t=1

tPr[Sd = C − t]

≤
⌈C/ℓd⌉∑
r=0

(
rℓ2d +

ℓd(ℓd + 1)

2

)
Pr[Sd = C − 1− rℓd]

≤
⌈C/ℓd⌉∑
r=0

(
rℓ2d +

ℓd(ℓd + 1)

2

)
2−r Pr[Sd = C − 1]

≤ 4ℓ2d Pr[Sd = C − 1] ,

E[(C − Sd)[Sd < C]] =
C∑
t=1

tPr[Sd = C − t] ≥
ℓd∑
t=1

tPr[Sd = C − 1− t]

≥
ℓ2d
4

Pr[Sd = C − 1] .

From this we get that E[(C−Sd)[Sd<C]]
8ℓd

≤ fd ≤ 8E[(C−Sd)[Sd<C]]
ℓd

. Now it is
clear that E[(C − Sd)[Sd < C]] ≥ E[(C − Sk)[Sk < C]] and we will argue that
E[(C − Sk)[Sk < C]] ≥ εµ

2 ≥
εC
4 . This will imply that fd ≥ εC

32ℓd
. Using Theorem D.16 we
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get that Pr[Sd ≥ C − t] ≥
∑

j∈[m]

[
X

(j)
k ≤t

]
m −m−1/2+o(1) for all 1 ≤ t ≤ C with probability

1−m−γ , and we know that
∑C

t=1

∑
j∈[m]

[
X

(j)
k ≤t

]
m = εC, so fixing such event give us that,

E[(C − Sk)[Sk < C]] =

C∑
t=1

Pr[Sd ≥ C − t]

≥
C∑
t=1

∑j∈[m]

[
X

(j)
k ≤ t

]
m

−m−1/2+o(1)


= εµ− Cm−1/2+o(1)

≥ εC
2 − Cm

−1/2+o(1)

≥ εC
4 .

Here we have used that ε ≤ 1 and that 1/ε = mo(1).
Now we just need to upper bound ℓd. By Claim D.23 we get that ℓd ≤ log(2)

log

(
Pr[Sd=C]

Pr[Sd=C−1]

)
 so we want to lower bound Pr[Sd=C]

Pr[Sd=C−1] . To do this we will define expo-

nentially tilted variables (Vi)1≤i≤d. Let λ ∈ R satisfying E[eλSd ] <∞ be a parameter which

will be determined later. We define Vi by Pr[Vi = t] = Pr[Yi=t]e
λt

E[eλYi ]
for 1 ≤ i ≤ d. Clearly,

this is well-defined since
∑∞

t=0 Pr[Yi = t] eλt = E
[
eλYi

]
. As pointed out in [AAKT21],

each Vi is also geometric random variables (with parameter αie
λ) and,

Pr[Sd = C − t] =
E
[
eλ

∑d
i=1 Yi

]
eλC

eλt Pr

[
d∑
i=1

Vi = C − t

]
. (D.20)

for all integers t. Moreover, there is a unique λ maximizing λC − log E
[
eλ

∑d
i=1 Yi

]
, and

with this choice of λ, it holds that
∑d

i=1 E[Vi] = C. It is easy to see that λ < 0 since β > 0.

We start by noticing that
∑d

i=1 Var[Vi] ≥
∑d

i=1 E[Vi] = C, and that E
[
|Vi − E[Vi]|3

]
≤

25 E[Vi] by the same reasoning that gave us that E
[
|Yi − µi|3

]
≤ 25 E[Yi] since Vi is

geometrically distributed with parameter αie
λ < αi.

We will also need the following lemma by Aamand et al. [AAKT21]. We state a
simplified version of their lemma which covers our use case.

Lemma D.24. Let X1, . . . , Xd be independent geometric distributed random variables

with Var[Xi] = σ2i > 0 and E
[
|Xi − E[Xi]|3

]
= ρi < ∞, and let σ2 =

∑d
i=1 σ

2
i . Then for

every t where µ+ tσ is an integer,∣∣∣∣Pr[X = µ+ tσ]− 1√
2πσ

e−t
2/2

∣∣∣∣ ≤ K2

(∑d
i=1 ρi
σ3

)2

.
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where K2 is a universal constant.

We will also need the following claim. The proof is bit technical so we defer the proof
till the end of the section.

Claim D.25. If β ≥ C then,

Pr[Sd = C]

Pr[Sd = C − 1]
≥ e1/8 ,

and if β < C then,

Pr[Sd = C]

Pr[Sd = C − 1]
≥ e

1
8β/C ,

and

Pr[Sd = C − 1]

Pr
[
Sd = C − 1− 1

2

⌈
C
β

⌉] < 2 .

If β ≥ 1
4C then using Claim D.25 we get that ℓd ≤ ⌈32 log(2)⌉ which implies that

fd ≥ εC
32⌈32 log(2)⌉ ≥ LεC. So now we just need to focus on the case where β < 1

4C. We use

Claim D.25 to get that ℓd ≤
⌈
8 log(2)Cβ

⌉
≤ 7Cβ which implies that fd ≥ εβ

224 .

We now just need to lower bound β. From Claim D.25 we know that ℓd >
1
4

⌈
C
β

⌉
≥

C
4β > 1, so Pr[Sd = C] ≤ Pr[Sd = C − 1] /2 and we get that E[(C − Sd)[Sd < C]] ≥
ℓ2d
8 Pr[Sd = C]. We will argue that E[(C − Sd)[Sd < C]] ≤ 2εC. Using Theorem D.16

we get that Pr[Sd ≥ C − t] ≤
∑

j∈[m]

[
X

(j)
k ≤t

]
m + m−1/2+o(1) for all 1 ≤ t ≤ C with proba-

bility 1−m−γ , and we know that
∑C

t=1

∑
j∈[m]

[
X

(j)
k ≤t

]
m = εC, so fixing such event give us

that,

E[(C − Sk)[Sk < C]] =

C∑
t=1

Pr[Sd ≥ C − t]

≤
C∑
t=1

∑j∈[m]

[
X

(j)
k ≤ t

]
m

+m−1/2+o(1)


= εµ+ Cm−1/2+o(1)

≤ εC − Cm−1/2+o(1)

≤ 2εC .

Here we have used that 1/ε = mo(1). Combing it all we have that,

Pr[Sd = C] ≤ 16
εC

ℓ2d
≤ 256

εβ2

C
.
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We will now prove that

Pr[X = C] ≥
exp

(
−β2

C

)
4
√
C

. (D.21)

This will lead to the desired result. Indeed, combining with the bounds above, we then
obtain that

exp
(
−β2

C

)
√
C

≤ εβ2

1024C
,

or ∆e∆ ≥ 1
1024ε

√
C

, where we have put ∆ = β2/C. Then ∆ ≥ 1
1024 log

(
1

ε
√
C

)
, so that

β ≥ 1
32

√
C log

(
1

ε
√
C

)
, and finally

fd = Pr[Sd < C] ≥ 1
32ε

√
C log

(
1

ε
√
C

)
≥ Lε

√
C log

(
1

ε
√
C

)
,

as desired.
We thus turn to prove eq. (D.21). By eq. (D.20) we have that,

Pr[Sd = C] =
E
[
eλ

∑d
i=1 Yi

]
eλC

Pr

∑
i∈[k]

Vi = C

 . (D.22)

We start by focusing on bounding λC − log E
[
eλ

∑d
i=1 Yi

]
. First write ψd(p) =

log E
[
ep

∑d
i=1 Yi

]
and define the function gd(t) = supp(pt − ψd(p)) which is the Fenchel-

Legendre transform of ψd(p). By our choice of λ, gd(C) = λC − log E
[
eλ

∑d
i=1 Yi

]
. It is

easy to check that gd(C+β) = 0 and g′d(C+β) = 0, and a standard result on the Fenchel-
Legendre transformations is that g′′d(t) = 1

ψ′′
d (pd(t))

where pd(t) is the unique number such

that gd(t) = pd(t)t− ψd(pd(t)). Now by Taylor’s expansion formula we have that

gd(C) ≤

(
sup

C≤t≤C+β
g′′d(t)

)
β2

2
=

(
1

infC≤t≤C+β ψ
′′
d(pd(t))

)
β2

2
(D.23)

We have that ψ′
d(p) =

∑d
i=1

E[Yie
pYi ]

E[epYi ]
and

ψ′′
d(p) =

d∑
i=1

E
[
Y2
i e
pYi
]

E[epYi ]
−

(
E
[
YiepYi

]
E[epYi ]

)2
 ≥ d∑

i=1

E
[
YiepYi

]
E[epYi ]

= ψ′
d(p).

Now, pd(t) ≥ λ when C ≤ t ≤ C + β. This implies that ψ′′
d(p(t)) ≥ ψ′

d(λ) = C when
C ≤ t ≤ C + β. Combining this with eq. (D.22) and eq. (D.23) we get that

Pr[Sd = C] ≥ e−
β2

2C Pr

[
d∑
i=1

Vi = C

]
≥ e−

β2

C Pr

[
d∑
i=1

Vi = C

]
. (D.24)
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To complete the proof of eq. (D.21), it thus suffices to show that Pr
[∑

i∈[k] Vi = C
]

= 1
4
√
C

.

We use Lemma D.24 to get that,

Pr

[
d∑
i=1

Vi = C

]
≥ 1√

2π
∑d

i=1 Var[Vi]
−K2


∑d

i=1 E
[
|Vi − E[Vi]|3

]
(∑d

i=1 Var[Vi]
)3/2


2

Now we use that E[Vi] ≤ Var[Vi] ≤ 2 E[Vi], |Vi − E[Vi]|3 ≤ 25 E[Vi], and
∑d

i=1 E[Vi] = C
to get that,

Pr

[
d∑
i=1

Vi = C

]
≥ 1√

4πC
− 252K2

1

C2

We know that C ≥ 1
4L so if we choose L sufficiently small we get that,

Pr

[
d∑
i=1

Vi = C

]
≥ 1

4
√
C
.

This leads to the desired bound.
We finish the section by proving Claim D.25.

Proof of Claim D.25. We start by using eq. (D.20) to get that,

Pr[Sd = C]

Pr[Sd = C − 1]
= e−λ

Pr
[∑d

i=1 Vi = C
]

Pr
[∑d

i=1 Vi = C − 1
]

We want to argue that
Pr[

∑d
i=1 Vi=C]

Pr[
∑d

i=1 Vi=C−1]
≥ max

{
e−1/8, e−

1
8β/C

}
. First we use Lemma D.24

to get that,

Pr
[∑d

i=1 Vi = C
]

Pr
[∑d

i=1 Vi = C − 1
] ≥

1√
2π

∑d
i=1 Var[Vi]

−K2

(∑d
i=1 E[|Vi−E[Vi]|3]

(
∑d

i=1 Var[Vi])
3/2

)2

1√
2π

∑d
i=1 Var[Vi]

e−1/(2
∑d

i=1 Var[Vi]) +K2

(∑d
i=1 E[|Vi−E[Vi]|3]

(
∑d

i=1 Var[Vi])
3/2

)2

Now we use that E[Vi] ≤ Var[Vi] ≤ 2 E[Vi], |Vi − E[Vi]|3 ≤ 25 E[Vi], and
∑d

i=1 E[Vi] = C
to get that,

1√
2π

∑d
i=1 Var[Vi]

−K2

(∑d
i=1 E[|Vi−E[Vi]|3]

(
∑d

i=1 Var[Vi])
3/2

)2

1√
2π

∑d
i=1 Var[Vi]

e−1/(2
∑d

i=1 Var[Vi]) +K2

(∑d
i=1 E[|Vi−E[Vi]|3]

(
∑d

i=1 Var[Vi])
3/2

)2 ≥
1− 252K2

√
8π 1

C

e−1/(4C) + 252K2

√
8π 1

C
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Using that e−1/(4c) ≤ 1− 1
8c we the get that,

1− 252K2

√
8π 1

C

e−1/(4C) + 252K2

√
8π 1

C

≥
1− 252K2

√
8π 1

C

1− 1
8c + 252K2

√
8π 1

C

= 1−
2 · 252K2

√
8π 1

C −
1
8c

1− 1
8c + 252K2

√
8π 1

C

We now that C ≥ 1
4L so choosing L sufficiently small it holds that

2 · 252K2

√
8π 1

C −
1
8c

1− 1
8c + 252K2

√
8π 1

C

≤ 2 · 252K2

√
8π√

C

This implies that,

Pr
[∑d

i=1 Vi = C
]

Pr
[∑d

i=1 Vi = C − 1
] ≥ 1− 2 · 252K2

√
8π√

C

Clearly, 1− 2·252K2

√
8π√

C
≥ e−1/8 by choosing L small enough. We also note that,

1− 2 · 252K2

√
8π√

C
≥ e−

4·252K2

√
8π√

C ≥ e−
M

8
√
C ≥ e−

β
8C .

By choosing M large enough. The last inequality follows since β ≥M
√
C.

We now have to bound λ. We define the function

h(x) =
d∑
i=1

αie
x(1− αiex)−1 .

We note that h(0) =
∑d

i=1 E[Yi] = C + β. We take the derivative of h twice and get that,

h′(x) =

d∑
i=1

αie
x(1− αiex)−2

h′′(x) =
d∑
i=1

aex(1 + ex)(1− αiex)−3

We note that h′(x) ≥ 0 and h′′(x) ≥ 0 for all x so h is a monotonically increasing convex
function, and h′(0) =

∑d
i=1 Var[Yi] ≤

∑d
i=1 2µi = 2(C + β).

If β ≥ C then again using that h is convex we get that,

h(−1
4) ≥ h(0)− 1

4h
′(0) ≥ C + β − 21

4(C + β) ≥ C .

Since h is increasing then it implies that λ ≤ −1
4 and we get that,

Pr[Sd = C]

Pr[Sd = C − 1]
= e−λ

Pr
[∑d

i=1 Vi = C
]

Pr
[∑d

i=1 Vi = C − 1
] ≥ e

1
4 e−

1
8 = e−

1
8 .
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If β < C then using that h is convex we get that,

h(−1
4β/C) ≥ h(0)− 1

4β/Ch
′(0) ≥ C + β − 21

4β/C(C + β)

= C + (1− 21
4 − 21

4β/C)β ≥ C + (1− 41
4)β ≥ C .

Since h is increasing then it implies that λ ≤ −1
4β/C and we get that,

Pr[Sd = C]

Pr[Sd = C − 1]
= e−λ

Pr
[∑d

i=1 Vi = C
]

Pr
[∑d

i=1 Vi = C − 1
] ≥ e14β/Ce−1

8β/C = e
1
8β/C .

We now focus on the upper bound. We use eq. (D.20) to get that,

Pr[Sd = C − 1]

Pr
[
Sd = C − 1− 1

4

⌈
C
β

⌉] = e
−λ14

⌈
C
β

⌉ Pr
[∑d

i=1 Vi = C − 1
]

Pr
[∑d

i=1 Vi = C − 1− 1
4

⌈
C
β

⌉]
We start by lower bounding λ. We first note that h′(x) ≤ h(x) for all x. Using that h is
convex we get that,

C + β = h(0) ≥ h(−β/C) + β/Ch′(−β/C) ≥ C + β

C
h(−β/C) .

This implies that h(−β/C) ≤ C and λ ≥ −β/C. Now we will bound
Pr[

∑d
i=1 Vi=C−1]

Pr
[∑d

i=1 Vi=C−1−
⌈
C
β

⌉] .

We will again use Lemma D.24.

Pr
[∑d

i=1 Vi = C − 1
]

Pr
[∑d

i=1 Vi = C − 1− 1
4

⌈
C
β

⌉]

≤

1√
2π

∑d
i=1 Var[Vi]

e−1/(2
∑d

i=1 Var[Vi]) +K2

(∑d
i=1 E[|Vi−E[Vi]|3]

(
∑d

i=1 Var[Vi])
3/2

)2

1√
2π

∑d
i=1 Var[Vi]

e
−(1+

1
4

⌈
C
β

⌉
)2/(2

∑d
i=1 Var[Vi]) −K2

(∑d
i=1 E[|Vi−E[Vi]|3]

(
∑d

i=1 Var[Vi])
3/2

)2

≤
1√
2πC

e−1/(2
∑d

i=1 Var[Vi]) + 252K2
1
C

1√
2πC

e
−(1+

1
4

⌈
C
β

⌉
)2/(2

∑d
i=1 Var[Vi]) − 252K2

1
C

Now we note that since β ≥M
√
C then we get that (1 + 1

4

⌈
C
β

⌉
)2/(2

∑d
i=1 Var[Vi]) ≤ 1

12 .

We then get that,

Pr
[∑d

i=1 Vi = C − 1
]

Pr
[∑d

i=1 Vi = C − 1− 1
4

⌈
C
β

⌉] ≤ 1√
2πC

+ 252K2
1
C

1√
2πC

e−1/12 − 252K2
1
C

≤ e1/6
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The last inequality follows by C ≥ 1
4L and choosing L small enough. We then get that,

Pr[Sd = C − 1]

Pr
[
Sd = C − 1− 1

4

⌈
C
β

⌉] = e
−λ14

⌈
C
β

⌉ Pr
[∑d

i=1 Vi = C − 1
]

Pr
[∑d

i=1 Vi = C − 1− 1
4

⌈
C
β

⌉]
≤ e

β
C

1
4

⌈
C
β

⌉
e1/6

≤ e1/2+1/6

< 2

D.6 The Number of Bins Visited During an Insertion

This section is dedicated to proving the part of Theorem D.3 concerning insertions, which
we restate below.

Theorem D.26. Let n,m ∈ N and 0 < ε < 1 with 1/ε = no(1). Let C = (1 + ε)n/m.
Suppose we insert n balls into m bins, each of capacity C, using consistent hashing with
bounded loads and virtual bins having k levels where k = c/ε2 for c a sufficiently large
universal constant. The expected number of bins visited during an insertion of a ball is
O(1/f).

In fact, the proof uses only that the total number of non-full bins is Θ(f) with high
probability, not the concrete value of f . Therefore the complicated expression for f will
never occur in the proof of the theorem. All we will occasionally use is the fact that the
number of non-full bins is Ω(ε), which follows trivially from a combinatorial argument.

The section is structured as follows: We start by providing some preliminaries for
the proof of Theorem D.26 in Appendix D.6.1. In Appendix D.6.2, we use the results
from Appendix D.5 to provide a strengthening of Lemma D.13. Finally, we provide the
proof of Theorem D.26 in Appendix D.6.3.

D.6.1 Preliminaries For the Analysis

We start by making the following definition which will be repeatedly be useful in the
analysis to follow.

Definition D.27. Consider any distribution of n balls into m bins. We say that a bin is
close to full if it contains more than (1 + ε/2)n/m balls. Otherwise, we say that it is far
from full.

Suppose we distribute n balls into m bins each of capacity C = (1 + ε)n/m using
consistent hashing with bounded loads and virtual bins. By Theorem D.4, the number
of non-full bins is Θ(fm) with high probability when k = O(1/ε2) is sufficiently large.
We claim that it also holds that the number of far from full bins is Θ(fm) with high
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probability. To see this, suppose that after distributing the n balls into the m bins of
capacity C = (1 + ε)n/m each, we reduce the capacity of each bin to C0 = (1 + ε/2)n/m.
This requires forwarding balls from the now overflowing bins and this forwarding can only
increase the number of bins containing (1 + ε/2)n/m balls. By Theorem D.4, and with
ε0 = ε/2, the number of non-full bins after the relocating is Θ(f0m), where

f0 =


ε0C0, C0 ≤ log(1/ε0)

ε0

√
C0 log

(
1

ε0
√
C0

)
, log(1/ε0) < C0 ≤ 1

2ε20

1, 1
2ε20
≤ C0.

But clearly, f0 = Θ(f), so we conclude that the number of far from full bins before
modifying the system is Θ(fm) with high probability.

Summing up, we have the following corollary to Theorem D.4.

Corollary D.28. In the setting of Theorem D.26, the number of far from full bins is
Θ(fm) with high probability, i.e., with probability 1− n−γ for every γ=O(1).

Finally, recall Definition D.15: The run at a given level i containing some virtual bin
b, is the maximal interval at level i which contains b and satisfies that all bins lying in I
gets full at level i.

D.6.2 High Probability Bound on the Number of Bins Visited in an
Insertion

This section will be dedicated to prove the following strengthening of Lemma D.13.

Theorem D.29. Let n,m ∈ N and 0 < ε < 1 with 1/ε = no(1). Suppose we distribute n
balls into m bins, each of capacity C = (1 + ε)n/m, using consistent hashing with bounded
loads and virtual bins and k = c/ε2 levels for a sufficiently large constant c. Let b be a
bin at level i which may be chosen dependently on the hashing of balls and bins to level
1, . . . , i− 1 and I the run at level I containing b. Let X denote the number of bins in I.
For any t ≥ 1/f ,

Pr[X ≥ t] = exp(−Ω(tf)) +O(n−10)

The same statement holds even if b is given an extra start load of λtf⌈Cε/2⌉ ’artificial’
balls before the hashing of balls and bins to level i, where λ is a sufficiently small constant.

Note that it in particular follows that the number of bins visited at a given level during
an insertion is O(log(1/δ)/f) with probability 1− δ.

Proof. Let R denote the number of virtual bins in I. By Corollary D.28, the number of far
from full bins after inserting balls at level 1, . . . , i−1 is at least c0fm with high probability,
where c0 > 0 is some universal constant. Furthermore, by a standard Chernoff bound, the
number of balls hashing to level i is at most 2n/k with high probability. Here we used the
assumption that 1/ε = no(1), so n≫ k log n. Condition on those two events and consider



D.6. THE NUMBER OF BINS VISITED DURING AN INSERTION 315

the following modified process at level i where (1) b and every bin which was close to full
after inserting the balls at level 1, . . . , i − 1 forwards every ball it receives at level i, i.e.,
has its remaining capacity reduced to zero (2) each far from full bin stores at most ⌈Cε/2⌉
balls from level i before it starts forwarding balls at level i, i.e., has its remaining capacity
reduced to ⌈Cε/2⌉. Let I ′ denote the run containing b with such modified capacities.
Letting R′ denote the number of virtual bins lying in I it then holds that R ≤ R′, so it
suffices to provide a high probability upper bound on R′.

Let s ∈ N be given and let As be the event that s + 1 ≤ R′ ≤ 2s + 1. Define J−
1

and J+
1 to be respectively the intervals at level i ending and starting at b and having

length s/(4m). Similarly, let J−
2 and J+

2 be respectively the intervals at level i ending
and starting at b and having length 4s/m. We observe that if As occur then either of the
following events must hold.

B1: J
−
2 or J+

2 contains at most 3s virtual bins.

B2: J
−
1 or J+

1 contains at least s/2 virtual bins

B3: J
−
1 or J+

1 contains at most c0fs/8 virtual bins which were far from full from levels
1, . . . , i− 1

B4: J
−
2 ∪ J

+
2 contains at least ⌈Cε/2⌉ · c0fs/8 balls.

Indeed, suppose that As occur and that neither of B1, B2, B3 occur. We show that then
B4 must occur. To see this observe that if B1 does not occur, then since I ′ consists of at
most 2s+ 1 bins, I ′ ⊆ J−

2 ∪J
+
2 . Since B2 does not occur, I ′ must further fully contain J−

1

or J+
1 . Since B3 does not occur, I ′ must then contain at least c0fs/8 virtual bins which

were far from full from levels 1, . . . , i − 1. Finally any ball allocated to a bin of I ′ must
also hash to I ′. Since the at least c0fs/8 far from full bins from level 1, . . . , i − 1 which
lie in I ′ each get full at level i and has a total capacity of ⌈Cε/2⌉ · c0fs/8, it follows that
at least ⌈Cε/2⌉ · c0fs/8 balls must hash to I ′ ⊆ J−

2 ∪ J
+
2 . This is exactly the event B4.

As in the proof of Lemma D.13, we can use standard Chernoff bounds to conclude
that Pr[B1] = exp(−Ω(s)), Pr[B2] = exp(−Ω(s)) and Pr[B3] = exp(−Ω(fs)). For B4, we
observe that the expected number of balls, µ, hashing to J−

2 ∪ J
+
2 is upper bounded by

2n/k · 8s/m = O(Cs/k). As f = Ω(ε), we may assume that k ≥ c′/(εf) for any constant
c′. Thus, choosing c′ sufficiently large, it follows that µ ≤ Csεfc0/32. Using another
Chernoff bound, it follows Pr[B4] = exp(−Ω(fs)). In conclusion, if s ≥ 1/f , it holds that
Pr[As] = exp(−Ω(fs)) and the desired result follows as in the proof of Lemma D.13.

Finally, it is easy to modify the constants in the above argument, so that it carries
through even when b is given an extra start load of λtf⌈Cε/2⌉ balls for a sufficiently small
constant λ, and this gives the final statement of the Theorem.

D.6.3 The Proof of Theorem D.26

In this section, we provide the proof of Theorem D.26. In order to do so, we first require
a technical lemma which for a given virtual bin, b, bounds the number of balls that are
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either placed in b or forwarded from b at level i. The technique used to prove this lemma
will be used for the final proof of Theorem D.26, but in a more sophisticated way. As
such, the lemma below serves as a nice warm up to the proof of Theorem D.26. We start
out by choosing s∗ = O(log n/f) sufficiently large, such that Theorem D.29 yields that
for a bin b at level i, the length of the run containing b at level i (see Definition D.15) has
length at most s∗ with probability 1− 1/n10.

Lemma D.30. Let λ = O(1) be any constant. Let b be a virtual bin at level i that may
depend on the distribution of balls into bins at level 1, . . . , i− 1. Let ni denote the number
of balls hashing to level i and suppose that n/(2k) ≤ ni ≤ 2n/k where k = O(1/ε2) is
sufficiently large (depending on λ). Let Z denote the number of the ni balls hashing to
level i that either are placed in b or are forwarded from b. Define α = ⌈Cε/2⌉. For any
ℓ ≥ 1/5 satisfying that αℓ is an integer5, it holds that

Pr[Z ≥ αℓ] ≤ e−λℓ + 1/n10.

Proof. We define Aℓ to be the event that Z ≥ αℓ. When upper bounding the probability
of Aℓ we may assume that every bin which was close to full at level i − 1 forwards all
balls landing in it at level i. We may further assume that any bin which was far from
full at level i − 1 stores exactly α = ⌈Cε/2⌉ balls and then starts forwarding balls. Let
Z ′ denote the number of balls landing in b or being forwarded from b at level i in this
modified process. Then clearly, Z ′ ≥ Z so Pr[Z ≥ αℓ] ≤ Pr[Z ′ ≥ αℓ].

b

x

Figure D.1: s bins that are far from full and αs + αℓ balls. The bins are represented as
boxes and the balls as disks.

Next note that if Z ′ ≥ αℓ, then there must an integer s ≥ 0 and an interval of the
i’th level ending in b which contains exactly s virtual bins which are far from full and
exactly αs + αℓ balls. See Figure D.1. Indeed, of the ℓ balls landing or being forwarded
from b consider the one hashing furthest behind b at level i, call it x. Let s be the the
number of far from full bins hashing between x and b at level i. Aside from the αℓ balls
landing in b or being forwarded from b, there must hash enough balls between x and s
to put α balls in each of the far from full bins between x and b, and thus the interval
between x and b contains exactly s far from full bins and αs + αℓ balls. We denote the
event that there exists such an interval by Aℓ,s noting that we may then upper bound

Pr[Aℓ] ≤
∑s∗

s=0 Pr[Aℓ,s] + 1/n10. Here we used that the run containing b has length at
most s∗ with probability at least 1− 1/n2. We proceed to upper bound Pr[Aℓ,s] for each
0 ≤ s ≤ s∗.

5The constant 5 is arbitrary.
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b = b0

b1

b2b3

b4

?

?
?

?

?

Figure D.2: We generate the number of balls hashing directly between bi and bi+1 sequen-
tially. In each step the number of such balls is dominated by a geometric distribution with
parameter q.

So fix s ≥ 0. We generate the sequence of the s+1 far from full bins b = b0, b1, . . . , bs+1

leading up to b and the balls hashing between them in a backwards order. Starting at b0
we go backwards along the cyclic order. At some point we reach a bin, b1 and we let X0

be the number of balls met along the way in the between b0 and b1. We continue this was,
going backwards until we have met s+ 1 bins b1, . . . , bs+1 and for each 1 ≤ i ≤ s we let Xi

be the number of balls met in the cyclic order between bi and bi+1. See Figure D.2 for an
illustration of the process. Let f denote the fraction of bins which were far from full from
level 1, . . . , i − 1. As we saw after Definition D.27, f ≥ ε/3. Now when going backwards
from bi until we get to bi+1, the probability of meeting a ball in each step is upper
bounded by ni

ni+mf−s ≤
ni

ni+mf−s∗ := q regardless of the values of X0, . . . , Xi−1. Letting

X ′
0, . . . , X

′
s be independent geometric variables with parameter 1− q, X =

∑s
i=0Xi, and

X ′ =
∑s

i=0X
′
i it follows tht for any t > 0, Pr[X ≥ t] ≤ Pr[X ′ ≥ t].

If Aℓ,s holds, then X ≥ sα+ ℓα, so we may upper bound

Pr[Aℓ,s] ≤ Pr[X ′ ≥ sα+ ℓα].

The expected value of X ′
i is

E[X ′
i] =

q

1− q
=

ni
mf − s∗

= O

(
n

kmf

)
= O

(
α

kfε

)
≤ α

λ0
.

Here λ0 = O(1) is a sufficiently large constant which we will choose later. Here we again
used the assumption that 1/ε = mo(1) and moreover that k = O(1/ε2) is sufficiently large.

It follows that E[X ′] = (s+1)α
λ0

. Note in particular that we can ensure that E[X ′] ≤ sα+ℓα
2 ,

so that

Pr[X ′ ≥ sα+ ℓα] ≤ Pr

[
X ′ ≥ E[X ′] +

sα+ ℓα

2

]
.

We apply Theorem D.12 to bound this quantity. If we are in the case, where we are to
use the second bound of eq. (D.7), we obtain that

Pr

[
X ′ ≥ E[X ′] +

sα+ ℓα

2

]
≤
(

1− 1

1 + 2α/λ0

) sα+ℓα
4

,
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It is easy to check that
(

1− 1
1+2α/λ0

)α
can be made smaller than any sufficiently small

constant, just by choosing λ0 sufficiently large. Thus it follows that

Pr[X ′ ≥ sα+ ℓα] ≤ e−λ1(s+ℓ), (D.25)

where we can make λ1 = O(1) sufficiently large. However, we may have to use the first
bound of eq. (D.7) and we investigate now which bound we obtain in this case. Relating

back to Theorem D.12, we define µ0 = E[X ′
i] ≤ α/λ0, A =

(
1 + 1

2µ0

)
log
(

1 + 1
2µ0

)
and

t = 1
4σ2

sα+ℓα
2 . We further define σ2 = Var[X ′] = (s + 1) Var[X ′

i] = (s + 1)µ0(1 + µ0). If
µ0 ≥ 1, then A ≤ 1/µ0 and σ2 ≤ (s+ 1)2µ20, so that

Aσ2 ≤ 2(s+ 1)µ0 ≤
2(s+ 1)α

λ0
<
sα+ ℓα

8
= tσ2,

by choosing λ0 large enough. Thus, in this case we obtain the bound in eq. (D.25). If on
the other hand µ0 < 1, then

t ≥ sα+ ℓα

16(s+ 1)µ0
≥ λ0(s+ ℓ)

16(s+ 1)
≥ λ2

for a sufficiently large constant λ2. Then also W0(t) can be made larger than any given
constant, so we obtain that the bound of eq. (D.25) holds in general.

We now sum over s to obtain that

Pr[Aℓ] ≤ 1/n10 +

s∗∑
s=0

Pr[Aℓ,s] ≤ 1/n10 +

s∗∑
s=0

e−λ1(s+ℓ) ≤ 1/n10 + e−λℓ,

where again λ can be made sufficiently large. This completes the proof.

With this lemma in hand we are ready to proceed with the proof of Theorem D.26. To
guide the reader, we will start by providing a high level idea of how to obtain the result
as follows. First of all, it will be helpful to recall in details how an insertion of a ball is
handled using consistent hashing with bounded loads and virtual bins. When inserting a
ball, x, we uniformly hash x to a random point at a random level. Suppose that the hash
value of x, h(x), lies in the i’th level i for some i. Starting at h(x) we walk along level i
until we arrive at a virtual bin. If the virtual bin is filled to its capacity with balls hashing
to level 1, . . . , i, we forward a ball from that bin at level i (it could be x but it could
also be another ball that hashed to level i of lower priority than x). We repeat the step,
continuing to walk along level i until we meet a new virtual bin. The first time we meet
a virtual bin, b, which was not filled to its capacity with balls hashing to level 1, . . . , i,
we insert the forwarded ball and find the smallest level j > i such that the virtual bin of
b at level j received a ball at level j. If no such level exists, the insertion is completed.
Otherwise b has an overflow of one ball at level j, and we continue the insertion walking
along level j starting at b. Theorem D.26 claims that the expected number of bins visited
during this entire process is upper bounded by O(1/f).
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The idea of in our proof of Theorem D.26 is to split the bins visited during the
insertion of x into epochs. An epoch starts by visiting ⌈1/f⌉ virtual bins of the insertion
(unless of course the insertion is completed before that many bins has been seen). The last
of these ⌈1/f⌉ virtual bins lies at some level i and we finish the epoch by completing the
forwarding of balls needed at level i. At this point, we are either done with the insertion
or we need to forward a ball from some virtual bin at some level j > i. The next epochs
are similar; having finished epoch a − 1, in epoch a, we visit ⌈1/f⌉ virtual bins. At this
point, we will be at some level ℓ if we are not already done with the insertion. We then
finish the part of the insertion which takes place at level ℓ. Importantly, at the beginning
of each epoch, we have just arrived at a virtual bin at a completely fresh level.

The proof shows that during the first ⌈1/f⌉ steps of an epoch, the probability of
finishing the insertion in each step is 1 − Ω(f). The intuition for this, is that when we
reach a bin b at some level, i, the probability that b is far from full from other levels than i
can be showed to be Ω(f). Since the number of levels k = O(1/ε2) is large, the contribution
from level i to b only fills b with probability 1−Ω(1). Thus, the probability of not finishing
the insertion during the first ⌈1/f⌉ steps of an epoch is (1−Ω(f))⌈1/f⌉ = e−Ω(1) = 1−Ω(1).
Now conditioning on not finishing the insertion during the first ⌈1/f⌉ steps of an epoch,
we can still show that the expected number of bins visited during the rest of the epoch
is O(1/f). Letting E denote the event of finishing the insertion during the first ⌈1/f⌉ of
an epoch and T , the total number of bins visited during the insertion, we have on a very
high level that

E[T ] ≤ Pr[E ]⌈1/f⌉+ Pr[Ec](O(1/f) + E[T ]) = O(1/f) + Pr[Ec]E[T ] = O(1/f) + pE[T ],
(D.26)

where p = 1−Ω(1). Solving this equation, we find that E[T ] = O(1/f). Here it should be
noted that the recursive formula (D.26) is a bit too simplified. In our analysis, the E[T ]
on the left hand side and on the right hand side of (D.26) will not exactly be the same.
The point is that after finishing epoch a, and being ready to start epoch a + 1 at a new
level j, we will know a bit more about the hashing of balls to level 1, . . . , j − 1 than we
did before the beginning of epoch a. However, using Lemma D.29, we know that it is only
a relatively small fraction of the system that we have any information about, and so we
can argue that the expectation does not change much.

With this intuition in mind, our next goal is to obtain Theorem D.26.

Proof of Theorem D.26. As described above, we partition the insertion into epochs where
an epoch consists of the following two steps.

1. We go through ⌈1/f⌉ bins of the insertion ending in a bin at some level ℓ.

2. We continue the insertion at level ℓ until we arrive at some bin b which does not get
full at level ℓ.

After step 2. we will have to continue the insertion on some level j > i (if b gets full at
that level). Note that the insertion will complete during an epoch if along the way, we
meet a bin which does not get full on either of levels 1, . . . , k. We will prove the following
more technical claim which implies Theorem D.26.
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Claim D.31. Let D > 0 be any constant and 0 ≤ t ≤ D log n. Condition on the event
that the insertion has been through t epochs so far. Let E denote the event that we finish
the insertion at one of the first ⌈1/f⌉ bins met during step 1. of epoch t + 1. Further
define R to be the random variable which counts the number of bins visited during step 2.
of epoch t+ 1 (if the insertion completes before we get to step 2. we put R = 0). Then

Pr[E ] ≥ c, (D.27)

for some universal constant c > 0 (which does not depend on D), and

E[R | Ec] = O(1/f). (D.28)

Before proving the claim, we argue how the desired result follows. First of all, choosing
D = 2/c, it follows from (D.27) that the probability of not finishing the insertion during
the first D log n epochs is upper bounded by

(1− c)D logn ≤ exp(−2 log n) ≤ n−2.

Conditioned on this extremely low probability event, the expected time for the insertion
is crudely and trivially upper bounded by mk, but mkn−2 ≪ 1, so this has no influence
on the expected number of bins visited during the insertion, as we will now formalize.
For 1 ≤ i ≤ D log n, we let Xi denote the expected number of bins visited during the
insertion starting from epoch i. If the insertion finishes before epoch i, we let Xi = 0.
Let further Ei denote the probability of finishing the insertion during step 1. of epoch i.
Finally, let Ri denote the number of bins visited during step 2. of epoch i. Then, for any
0 ≤ i ≤ D log n, it holds that

E[Xi] ≤ Pr[Ei] · ⌈1/f⌉+ Pr[Eci ](E[Ri | Eci ] + E[Xi+1]).

By the claim, Pr[Eci ] ≤ 1− c and E[Ri | Eci ] = O(1/f), so we obtain that

E[Xi] ≤ O(1/f) + (1− c)E[Xi+1].

Solving this recursion, we obtain that

E[X0] = O(1/f) + (1− c)iE[Xi+1],

so putting i = D log n, we obtain that E[X0] = O(1/f)+n−2 ·E[XC logn+1] = O(1/f). But
E[X0] is exactly the expected number of bins visited during an insertion. It thus suffices
to prove the claim which is the main technical challenge of the proof.

Proof of Claim D.31. We split the proof into the proofs of equations (D.27) and (D.28).
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Proof of Equation (D.27)

It suffices to show that for each of the ⌈1/f⌉ bins visited during step 1. of the epoch,
the probability of ending the insertion at that bin is Ω(f). More formally, we let Ai
denote the event that the i’th of these bins, 1 ≤ i ≤ ⌈1/f⌉ is still full, i.e., that we do
not end the insertion at the i’th bin, and show that Pr[Ai] ≤ (1 − Ω(f))i + im−1/2+o(1).
The probability of not completing the insertion during step 1. of the epoch is then upper
bounded by (1 − Ω(f))⌈1/f⌉ + ⌈1/f⌉m−1/2+o(1) ≤ (1 − Ω(f))⌈1/f⌉ + o(1) ≤ e−Ω(1) := c
which is the desired result. Here we used that 1/f ≤ O(1/ε) = mo(1).

We will condition on Ai−1 so start by making the conditioning more precise by describ-
ing exactly how the bins met before the i’th bin of the epoch at the given level received
enough ball to make them full. We then bound the probability of Ai conditioned on this
history. So fix i with 1 ≤ i ≤ ⌈1/f⌉. The conditioning on Ai−1 means that we have already
seen i−1 full bins during the epoch. Suppose that the i’th bin, call it b, is at some level ℓ.
We then in particular know that the number of bins we have already visited at level ℓ is at
most i− 1 ≤ 1/f . Let a ≥ 0 denote the number of bins already visited on level ℓ. Going
backwards from b := ba, we denote these bins ba−1, . . . , b0. Thus b0 was the first bin ever
visited at level ℓ. Note that possibly ba = b0. The conditioning Ai−1 especially implies
that after level ℓ, all bins b0, . . . , ba−1 got filled. We now describe how these bins got filled
at level ℓ as follows (see also Figure D.3 for an illustration of the process). Starting with
j = 0, if the remaining capacity of b0 after levels 1, . . . , ℓ− 1 is C0, we go backwards until
at some point we have met a set of bins of total remaining capacity C∗ and exactly C∗+C0

balls for some C∗. After this sequence, we insert a question mark ?. This sequence of
bins and balls describes how b0 received its C0 balls, and the ? indicates a yet unknown
history. We next go backwards from b1 which has remaining capacity C1, say. If we arrive
at b0 before having seen C1 balls get we simply skip past the history of how b0 got fills
and continue the process after the ?. If we obtain the description of how b1 got filled at
level ℓ before reaching b0, there might still be more balls hashing between b0 and b1 (but
no bins). In this case we insert a question mark, ?, after the sequence of balls leading up
to b1. More generally, for j = 1, . . . , a−1, we go backwards from bj generating a sequence
of balls. Whenever we reach a bin, we go back to the nearest ? and start generating balls
at that point until we find a new bin or are done with describing the filling of bj — In the
later case we insert a new ?. The ? before bin b0 has a special status. If we ever reach
it, and we still require Cj balls to be filled, we go backwards until we have found a set
of bins of total remaining capacity C∗ and exactly C∗ + C0 balls for some C∗. It should
be remarked that there is nothing probabilistic going on here. We have simply explained
a way to find the positions of a set of balls and bins which certify how bins b0, . . . , ba−1

got filled at level ℓ. See Figure D.3 for an example of how this description of how bins
b0, . . . , ba−1 got filled at level ℓ can look.

We let O denote the event that bin b receives more than ⌈Cε/2⌉ bins from level ℓ. We
also let N denote the event that b receives at least n

m(1 + ⌈Cε/2⌉) balls from the levels
different than ℓ. We then get that,

Pr[Ai] ≤ Pr[Ai−1 ∧ (O ∨N )] ≤ Pr[Ai−1] Pr[O |Ai−1] + Pr[Ai−1 ∧ Oc ∧N ] .
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b0 b1 b2 b3 b4

1 4 2 3?? 1 ?

Figure D.3: The filling of bins b0, . . . , b3 at level ℓ. The bins are represented as boxes
an the numbers within them describes their remaining capacity at level ℓ. The balls are
represented as disks and the question marks ? in circles.

We will next show that Pr[O |Ai−1] = p, where p = 1− Ω(1), and

Pr[Ai−1 ∧ Oc ∧N ] ≤ Pr[Ai−1] Pr[Oc | Ai−1] (1− c0f) +m−1/2+o(1)

where c0 = Ω(1) is a universal constant. This will then imply that,

Pr[Ai] ≤ Pr[Ai−1] (1− (1− p)c0f) +m−1/2+o(1) ≤ (1− (1− p)c0f)i + im−1/2+o(1) .

We again split the proof into two parts.

Bounding Pr[O |Ai−1]: In the following we will omit the conditioning of Ai−1 from the
notation to avoid clutter. We have described how bins b0, . . . , ba−1 got filled at level ℓ.
This included a tail of balls behind each bin as well as some positions marked with ?. Let
s+ 1 be the number of such ?-marks including the mark behind bin b0. (See Figure D.3).
Then s ≤ a. Let X0 denote the number of balls being forwarded to ba from the backmost
? before b0 and let X1, . . . , Xs, denote the number of balls forwarded to ba from the
remaining positions marked with a ?. The number of balls, nℓ , hashing to level ℓ lies
between n/(2k) and 2n/k with probability 1 − O(n−10) by a standard Chernoff bound.
Moreover, the total number of bins lying in the history described so far is s∗ = O( lognf )

with probability 1 − O(n−10), by Lemma D.29 including those bins landing before b0 in
the description. Now conditioning on this history, for each 1 ≤ j ≤ s

E[Xj ] ≤
nk

m− s∗
= O(C/k).

It follows that

E

 s∑
j=1

Xj

 = O(sC/k) = O(C/(fk)) = O(C/(εk)).

If, we choose k = O(1/ε2) sufficiently large, it in particular follows that E
[∑s

j=1Xj

]
≤

⌈Cε/2⌉/20. Thus, by Markov’s inequality,

Pr

 s∑
j=1

Xj ≥ ⌈Cε/2⌉/2

 ≤ 1/10. (D.29)

Next, we show that Pr[X∗ ≥ ⌈Cε/2⌉/2] ≤ 1/10. From this it will follow that, Pr[O] ≤ 1/5
which is what we need. For bounding this probability, we may use Lemma D.30. To get
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into the setting of that lemma, we may simply contract the interval of the cyclic order
from the most backwards ? to ba and remove all unresolved ? in between except for the
most backwards one. That the other places marked with ? now cannot receive any balls
only increases the probability that X∗ ≥ t for any t. Now we are exactly in the setting of
Lemma D.30, which we apply with ℓ = 1/2 to conclude that if k = O(1/ε2) is sufficiently
large, then

Pr[X∗ ≥ ⌈Cε/2⌉/2] ≤ 1/10.

The reader may note that as an alternative to the reduction above (contracting the so far
described history of how the bins b0, . . . , ba−1 received their balls), we may simply reprove
Lemma D.30 in this a tiny bit more complicated setting. The arguments would remain
exactly the same.

In conclusion, we have now argued that Pr[O |Ai−1] ≤ 1/5.

Bounding Pr[Ai−1 ∧ Oc ∧N ]: We start by defining notation which we used in Ap-
pendix D.5.1. Let Yi be the number of balls which land in bin b or which are forwarded
by bin b on level i. We define Y<ℓ =

∑
i<ℓ Yi and Y>ℓ =

∑
i>ℓ Yi. With this notation we

get that

Pr[Ai−1 ∧ Oc ∧N ] = Pr
[
Ai−1 ∧ Oc ∧ Y<ℓ + Y>ℓ ≥

n

m
(1 + ⌈Cε/2⌉)

]
We let let Lℓ be the sigma-algebra generated by the random choices on the first ℓ

levels, and Ad will be the event as defined in Appendix D.5.1.

We recall the simpler system from Appendix D.5.1 which we will compare to. Let Yi
be the number of balls which land in bin b or which are forwarded by bin b on level i in
the simpler system. We similarly define Y<ℓ =

∑
i<ℓ Yi and Y>ℓ =

∑
i>ℓ Yi.

We will prove that,

Pr
[
Ai−1 ∧ Oc ∧ Y<ℓ + Y>ℓ ≥

n

m
(1 + ⌈Cε/2⌉)

]
(D.30)

≤ Pr[Ai−1 ∧ Oc] Pr
[
Y<ℓ + Y>ℓ ≥

n

m
(1 + ⌈Cε/2⌉)

]
+m−1/2+o(1) (D.31)

This will imply the result since

Pr
[
Y<ℓ + Y>ℓ ≥

n

m
(1 + ⌈Cε/2⌉)

]
≤ Pr

[
k∑
i=1

Yi ≥
n

m
(1 + ⌈Cε/2⌉)

]

Now using Theorem D.16 we get that Pr
[∑k

i=1 Yi ≥
n
m(1 + ⌈Cε/2⌉)

]
≤

Pr
[∑k

i=1 Yi ≥
n
m(1 + ⌈Cε/2⌉)

]
+ m−1/2+o(1), and the discussion at the start of Ap-

pendix D.6.1 give us that Pr
[∑k

i=1 Yi ≥
n
m(1 + ⌈Cε/2⌉)

]
≤ 1 − c0f . Thus we just need

to prove eq. (D.30).
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We start by noticing that,

Pr
[
Ai−1 ∧ Oc ∧ Y< + Y>ℓ ≥

n

m
(1 + ⌈Cε/2⌉)

]
=

n
m
(1+⌈Cε/2⌉)−1∑

s=0

Pr
[
Ai−1 ∧ Oc ∧ Y<ℓ = s ∧ Y>ℓ ≥

n

m
(1 + ⌈Cε/2⌉)− s

]
+ Pr

[
Ai−1 ∧ Oc ∧ Y<ℓ ≥

n

m
(1 + ⌈Cε/2⌉)

]
We fix 0 ≤ s ≤ n

m(1 + ⌈Cε/2⌉)− 1 and get that,

Pr
[
Ai−1 ∧ Oc ∧ Y<ℓ = s ∧ Y>ℓ ≥

n

m
(1 + ⌈Cε/2⌉)− s

]
= E

[
[Ai−1 ∧ Oc ∧ Y<ℓ = s] Pr

[
Y>ℓ ≥

n

m
(1 + ⌈Cε/2⌉)− s

∣∣∣Ll]]
Now we use Lemma D.21 and get that Pr

[
Y>ℓ ≥ n

m(1 + ⌈Cε/2⌉)− s
∣∣Ll] ≤

Pr
[
Y>ℓ ≥ n

m(1 + ⌈Cε/2⌉)− s
]

+ k [Acℓ] + (1 + 2k)m−1/2+o(1). Using this we get that,

Pr
[
Ai−1 ∧ Oc ∧ Y<ℓ + Y>ℓ ≥

n

m
(1 + ⌈Cε/2⌉)

]
≤ Pr

[
Ai−1 ∧ Oc ∧ Y<ℓ + Y>ℓ ≥

n

m
(1 + ⌈Cε/2⌉)

]
+

n
m
(1+⌈Cε/2⌉)−1∑

s=0

E
[
[Ai−1 ∧ Oc ∧ Y<ℓ = s]

(
k [Acℓ] + (1 + 2k)m−1/2+o(1)

)]
Now we note that,

n
m
(1+⌈Cε/2⌉)−1∑

s=0

E
[
[Ai−1 ∧ Oc ∧ Y<ℓ = s]

(
k [Acℓ] + (1 + 2k)m−1/2+o(1)

)]
≤ kPr[Acℓ] + (1 + 2k)m−1/2+o(1)

≤ km−γ + (1 + 2k)m−1/2+o(1)

≤ m−1/2+o(1)

The second last inequality uses Theorem D.16 and last uses that k = mo(1).
We also want to also exchange Y<ℓ with Y<ℓ and we will do this in similar fashion.

Pr
[
Ai−1 ∧ Oc ∧ Y<ℓ + Y>ℓ ≥

n

m
(1 + ⌈Cε/2⌉)

]
=

n
m
(1+⌈Cε/2⌉)−1∑

s=0

Pr[Y>ℓ = s] Pr
[
Ai−1 ∧ Oc ∧ Y<ℓ ≥

n

m
(1 + ⌈Cε/2⌉)− s

]
+ Pr

[
Ai−1 ∧ Oc ∧ Y>ℓ ≥

n

m
(1 + ⌈Cε/2⌉)

]
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Again we fix s and get that,

Pr
[
Ai−1 ∧ Oc ∧ Y<ℓ ≥

n

m
(1 + ⌈Cε/2⌉)− s

]
= Pr[Ai−1 ∧ Oc] Pr

[
Y<ℓ ≥

n

m
(1 + ⌈Cε/2⌉)− s

∣∣∣Ai−1 ∧ Oc
]

≤ Pr[Ai−1 ∧ Oc] Pr
[
Y<ℓ ≥

n

m
(1 + ⌈Cε/2⌉)− s

∣∣∣Ai−1 ∧ Oc ∧Aℓ−1

]
+ Pr

[
Acℓ−1

]
By Theorem D.16 we know that Pr

[
Acℓ−1

]
≤ m−γ . Now similarly to Y<ℓ we define Y

(j)
<ℓ to

be the number of balls which lands in j or which are forwarded by bin j on levels before
level ℓ. We know that b is chosen uniformly from the set [m] \ {b0, . . . , ba−1} so if we fix
the first ℓ− 1 then the probability that Y<ℓ ≥ n

m(1 + ⌈Cε/2⌉)− s is equal to∑
j∈[m]\{b0,...,ba−1}

[
Y

(j)
<ℓ ≥

n
m(1 + ⌈Cε/2⌉)− s

]
m− a

Since we condition on Aℓ−1 then we have that,∣∣∣∣∣∣
∑

j∈[m]

[
Y

(j)
<ℓ ≥

n
m(1 + ⌈Cε/2⌉)− s

]
m

− Pr
[
Y<ℓ ≥

n

m
(1 + ⌈Cε/2⌉)− s

]∣∣∣∣∣∣ ≤ m−1/2+o(1)

This implies that,∣∣∣∣∣∣
∑

j∈[m]\{b0,...,ba−1}

[
Y

(j)
<ℓ ≥

n
m(1 + ⌈Cε/2⌉)− s

]
m− a

− Pr
[
Y<ℓ ≥

n

m
(1 + ⌈Cε/2⌉)− s

]∣∣∣∣∣∣
≤ m

m− a
m−1/2+o(1) +

a

m− a

Now we use Lemma D.13 to get that a ≤ O(log(m)/ε) = mo(1) with probability 1−m−γ .
Here we use that 1/ε = mo(1). Combining this we get that,

Pr
[
Y<ℓ ≥

n

m
(1 + ⌈Cε/2⌉)− s

∣∣∣Ai−1 ∧ Oc ∧Aℓ−1

]
≤ Pr

[
Y<ℓ ≥

n

m
(1 + ⌈Cε/2⌉)− s

]
+

m

m−mo(1)
m−1/2+o(1) +

mo(1)

m−mo(1)
+m−γ

≤ Pr
[
Y<ℓ ≥

n

m
(1 + ⌈Cε/2⌉)− s

]
+m−1/2+o(1)

We then get that,

Pr
[
Ai−1 ∧ Oc ∧ Y<ℓ ≥

n

m
(1 + ⌈Cε/2⌉)− s

]
= Pr[Ai−1 ∧ Oc] Pr

[
Y<ℓ ≥

n

m
(1 + ⌈Cε/2⌉)− s

∣∣∣Ai−1 ∧ Oc
]

≤ Pr[Ai−1 ∧ Oc]
(

Pr
[
Y<ℓ ≥

n

m
(1 + ⌈Cε/2⌉)− s

]
+m−1/2+o(1)

)
+m−γ

≤ Pr[Ai−1 ∧ Oc] Pr
[
Y<ℓ ≥

n

m
(1 + ⌈Cε/2⌉)− s

]
+m−1/2+o(1)
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Using this we get that,

Pr
[
Ai−1 ∧ Oc ∧ Y<ℓ + Y>ℓ ≥

n

m
(1 + ⌈Cε/2⌉)

]
≤ Pr[Ai−1 ∧ Oc] Pr

[
Y<ℓ + Y>ℓ ≥

n

m
(1 + ⌈Cε/2⌉)

]
+

n
m
(1+⌈Cε/2⌉)−1∑

s=0

Pr[Y>ℓ = s]m−1/2+o(1)

≤ Pr[Ai−1 ∧ Oc] Pr
[
Y<ℓ + Y>ℓ ≥

n

m
(1 + ⌈Cε/2⌉)

]
+m−1/2+o(1)

This finishes the proof eq. (D.30).
This concludes the proof that equation (D.27) of the claim holds.

Proof of Equation (D.28)

We restate what we have to prove, namely that

E[R | Ec] = O(1/f),

Where R is the number of bins visited during step 2. of epoch t + 1 and Ec is the event
that we did not finish the insertion during step 1. of epoch t+ 1. Let b0, . . . , ba denote the
bins that we have visited so far at the level where we are currently at, call it ℓ. All bins
b0, . . . , ba got filled from levels 1, . . . , ℓ, and as in the proof of equation (D.27) of the claim,
we may again describe the history of how the bins b0, . . . , ba got filled to their capacity at
level ℓ. See Figure D.4 for an example of such a history.

baba−1

?

ba−2

??

b0

?

Figure D.4: An example of how the conditioning on Ec might look. Except for the ?
coming before b0, the circled ?’s, are parts of the cyclic order which has not yet been
fixed, but which are known to consist solely of balls. The circled ? appearing before b0,
which is the yet unknown history of how many balls b0 are to further forward, has a special
role. Indeed, this history does not have to consist solely of balls but can consist of a run
of balls and bins such that all of the bins in the run gets filled at this level.

Let s ≥ 1/f . We wish to argue that the conditional probability

Pr[R ≥ s | Ec] = O(exp(−Ω(sf))) +O(n−10). (D.32)

Ignoring the unimportant O(n−10) term, it will follow that

E[R | Ec] ≤ 1/f +

∞∑
i=0

Pr[2i/f ≤ R ≤ 2i+1/f ]2i+1/f

= 1/f +O

(
1

f

∞∑
i=0

exp(−Ω(2i))2i

)
= O(1/f).
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and including the O(n−10) term in the computation could only increase the bound with
an additive n−8, say, as we can here use the trivial bound on the length of a run of mk.
Thus, this yields the desired result. For the bound on Pr[s ≤ R ≤ 2s | Ec], it clearly
suffices to assume that s ≥ c/f where c = O(1) is a sufficiently large constant.

We start by noting that with probability 1 − O(n−10), the number of balls hashing
to level ℓ is at most 2n/k which we assume to be the case in what follows. Let q denote
the number of places marked with ? between b0 and ba and let X1, . . . , Xq denote the
number of balls landing at these positions. Then q ≤ a ≤ 1/f . Let α = ⌈Cε/2⌉. Let
A denote the event that X1 + · · · + Xq ≥ λsfα, where λ = Ω(1) is a sufficiently small
constant to be chosen later. We start by providing an upper bound on Pr[A]. For this,
we let X =

∑q
i=1Xi and note, like in the proof of Lemma D.30, that for each i, Xi is

dominated by a geometric variable with parameter q where q = nℓ
m+nℓ

. Here nℓ = 2n/k
is the upper bound on the number of ball hashing to level ℓ. Furthermore, this claim
holds even conditioning on the values of (Xj)j<i. Let s′ = sλ. Letting Y1, . . . , Y1/f be

independent such geometric variables and Y =
∑1/f

i=1 Yi, we can thus upper bound

Pr[A] ≤ Pr[Y ≥ s′fα].

Note that

E[Yi] ≤
nℓ
m
≤ 2C

k
≤ 4α

εk

for 1 ≤ i ≤ 1/f , so that E[Y ] ≤ 4α
εfk ≤ α, were the last inequality follows by assuming that

k = O(1/ε2) is sufficiently large. We may also assume that s′f is larger than a sufficiently
large constant, as described above, so we can upper bound

Pr[A] ≤ Pr[Y ≥ E[Y ] + s′fα/2].

By applying the bound eq. (D.7) of Theorem D.12 similarly to how we did in the proof
of Lemma D.30 it follows after some calculations that

Pr[A] = exp(−Ω(sf)).

Now condition on Ac and let us focus on upper bounding Pr[R ≥ s | Ec ∩ Ac]. For
this, we apply (D.29). To get into the setting of that theorem, we contract the part
of the history revealed so far between the back-most ?-mark before b0 and up til and
including ba into a single unified bin. By the conditioning on Ac, this unified bin comes
with an extra start load of at most λsfα balls, where we can choose λ = Ω(1) to be any
sufficiently small constant. Thus, with the conditioning, we are exactly in the setting to
apply Theorem D.29, and we may thus bound

Pr[R ≥ s | Ec ∩Ac] = exp(−Ω(sf)).

It follows that

Pr[R ≥ s | Ec] ≤ Pr[A] + Pr[R ≥ s | Ec ∩Ac] = exp(−Ω(sf)),

which is the desired. This completes the proof of Claim D.31.

As explained before the proof of Claim D.31, this completes the proof of our theorem.
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D.7 Insertions of Bins and Deletions of Balls and Bins

In this section, we prove the statements of Theorems D.2 and D.3 concerning the deletions
of balls and insertions and deletions of bins. Combined with the results of Appendices D.2,
D.6 and D.8, this proves the two theorems in full.

Deletions of Balls. By the history independence, a deletion of a ball is symmetric to
an insertion. The bins visited when deleting a ball x are the same as the bins visited if
x had not been in the system and was inserted. Thus, we can upper bound the expected
number of bins visited when deleting a ball by O(1/ε) for Theorem D.2 and O(1/f)
for Theorem D.3. This also upper bounds the number of balls moved in a deletions.

Deletions of Bins. A deletion of a super bin is the same as reinserting the balls lying
in that super bin. We claimed that that the expected cost of deleting a super bin is
O(C/f) in Theorem D.3. At first, this may seem completely obvious, since the cost of
inserting a single ball is O(1/f). However, this cost is for inserting a ball which is selected
independently of the random choices of the hash function. Now, we are looking at the
balls placed in a given super bin b, and those are highly dependent on the hash function.
However, we do know that the expected average cost of all balls in the system is O(1/f).
Moreover, all bins are symmetric, so the bin b behaves like a random bin amongst those in
the system. Thanks to our load balancing, the balls are almost uniformly spread between
the bins, so a random ball from a random bin is almost a uniformly random ball, so a
random ball from b has expected cost O(1/f). There are at most C balls in b them, so the
total expected cost is O(C/f). A similar argument applies in the case of Theorem D.2.

Insertions of Bins Again, by the history independence an insertion of a bin is sym-
metric to its deletion. The balls that are moved when inserting a bin are thus the same
as if that bin was in the system but was deleted. Thus we can use the result for deletions
of bins to conclude the bound of O(C/f) on the number of balls moved when inserting a
bin. A similar argument applies in the case of Theorem D.2.

D.8 Faster Searches Using the Level-Induced Priorities

In this section we make the calculation demonstrating that giving the balls random pri-
orities, we obtain the better bounds on the number of bins visited during an insertion as
claimed in Theorems D.2 and D.3. This is not a new idea but is in fact an old trick [AK74;
Knu73]. What we need to do is verify that applying it, with the particular formula for f
in eq. (D.1), we obtain the stated search times. In fact, what we require for the analysis
is only the fact that if two balls hash to different levels, the ball hashing to the lower level
has the highest priority of the two. Within a given level, the priorities can be arbitrary.
This is important for the practical version of our scheme described in Appendix D.1.3
where the priorities are not uniformly random and independent of the hashing of balls,
but where the hashing of the balls in fact determines the priorities, with higher hash values
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implying lower priorities. We start by arguing about the expected number of bins visited
during a search as stated in Theorem D.2.

Number of Bins Visited During a Search: Theorem D.2. We encourage the reader
to recall the setting described in the theorem. Define X to be the number of bins visited
during the search for some ball x. Importantly, if x hashes to level i, then all virtual bins
visited during the search of x also lie on level i. For i ∈ [k], we let Ai denote the event that
x hashes to level i, so that Pr[Ai] = pi. By a standard Chernoff bound, the number of balls
hashing to the first i levels is np≤i ±m1/2+o(1) = np≤i(1 ±m−1/2+o(1)), with probability
1−O(n−10), say. Here we used that 1/ε = mo(1). Condition on this event and define n<i
to be the number of balls hashing to the first i levels. Finally letting εi be such that that
(1 + εi)n≤i/m = C, we obtain from the part of Theorem D.2 concerning insertions (which
was proved in Appendix D.2) that E[Xi | Ai] = O (1/εi). Moreover, Pr[Ai] ≤ 2−i+1 for
each i. It finally follows from the Chernoff bound above that εi ≥ 1/2i, and so

E[X] =
∑
i∈[k]

E[X | Ai] Pr[Ai] = O(k) = O(log 1/ε)

as desired.

Number of Bins Visited During a Search: Theorem D.3. We now perform a
similar calculation to the one above, in the more complicated setting of Theorem D.3.
Let us for simplicity assume that the number of balls hashing to each level is exactly
n/k. It is trivial to later remove this assumption. We also assume for simplicity that
k ≥ 1/ε2 is a power of 2, k = 2a for some a. Let ℓ = ⌈log(1/ε)⌉ noting that ℓ ≤ a. We
partition [k] = I0 ∪ · · · Iℓ, where Ii = [2a − 2a−i−1] \ [2a − 2a−i] for 0 ≤ i ≤ ℓ − 1 and
Iℓ = [2a] \ [2a − 2a−ℓ]. Let Ai be the event that the given ball to be searched x hashes to
some level in Ii, so that Pr[Ai] = 2−i+1 for 0 ≤ i ≤ ℓ− 1 and Pr[Aℓ] = 2−ℓ. For 0 ≤ i ≤ ℓ
we define n≤i to be the number of balls hashing to some level in I0 ∪ · · · ∪ Ii. Finally, let
εi be such that (1 + εi)n≤i/m = C and note that Pr[Ai] = Θ(εi).

We partition [ℓ+ 1] into three sets, [ℓ+ 1] = J1 ∪ J2 ∪ J3 where

J1 = {i ∈ [ℓ+ 1] : C ≤ log 1/εi}, J2 = {i ∈ [ℓ+ 1] : log 1/εi < C ≤ 1

2ε2i
},

and J3 = {i ∈ [ℓ+ 1] :
1

2ε2i
< C}.

It then follows from the part of Theorem D.3 dealing with insertions (proved in Ap-
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pendix D.6) that

E[X] = O

∑
i∈J1

Pr[Ai]

εiC
+
∑
i∈J2

Pr[Ai]

εi

√
C log

(
1

εi
√
C

) +
∑
i∈J3

Pr[Ai]



= O

1 +
|J1|
C

+
∑
i∈J2

1√
C log

(
1

εi
√
C

)


We have the trivial bound |J1| ≤ ℓ+ 1 = O(log 1/ε). Moreover, for i ∈ J2, it holds that

e−C ≤ εi ≤
√

1

2C
,

and since εi = Θ(2−i), it follows that

∑
i∈J2

1√
C log

(
1

εi
√
C

) = O

 1√
C

O(C)∑
i=1

1√
i

 = O(1).

In conclusion,

E[X] = O

(
1 +

log 1/ε

C

)
,

and splitting into the cases, C ≤ log 1/ε and C < log 1/ε, we obtain the desired result.

D.9 The Practical Implementation.

In this section we sketch why our results continue to holds when using the practical
implementation described in Appendix D.1.3 even when the hashing is implemented using
the practical mixed tabulation scheme from [DKRT15]. Let us call the implementation
from Appendix D.1.3 the practical implementation.

We first discuss the practical implementation with fully random hashing. For this,
recall the definition of a run (Definition D.15). Using a similar argumentation to the
one used in the proof of Lemma D.13, it is easy to show that in this implementation,
for any constant γ = O(1), the maximal number of bins in a run is O((log n)/ε) with
probability 1−n−γ . Denote this high probability event E . The number of balls lying in a
run consisting of ℓ bins is trivially upper bounded by C(ℓ+1), so if E occurs, the maximal
number of balls hashing to a fixed run is O(C(log n)/ε). It follows that the number of
balls that are forwarded past any given point is O(C(log n)/ε). In particular for any level
i, the number of balls that are forwarded from level i to level i+1 is O(C(log n)/ε) and the
total number of such balls over all levels is O(kC(log n)/ε) = mo(1). One can now modify
our inductive proof of Theorem D.4 to check that its statement remains valid even with
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the influence of these extra balls. Recall that in Theorem D.4, Xi,j denoted the number
of bins with at most j balls after the hashing of balls to levels 0, . . . , i − 1. Intuitively,
in the inductive step, these mo(1) extra balls can only affect mo(1) bins which does not
affect the high probability bound stating that |Xi,j−µi,j | ≤ m1/2+o(1). To exclude the bad
event Ec, we simply use a union bound and that E happened with very high probability.
Once we have a version of Theorem D.4 which holds in the practical implementation, we
can repeat the proof of Theorem D.26, again using union bounds for the event that the
insertion interacts with the run of size mo(1) entering the given level from below.

Let us now discuss the implementation with mixed tabulation. A mixed tabulation
hash function h is defined using two of the simple tabulation hash functions from [PT12],
h1 : Σc → Σd and h2 : Σc+d → R. Here Σ is some character alphabet with Σc = [u] and
c, d = O(1) are constants. Then for a key x, h(x) = h2(x, h1(x)). An important property
of mixed tabulation, proved in [DKRT15], is the following: Suppose X is a set of keys,
p1, . . . , pb are output bit positions and v1, . . . , vb are desired bit values. Let Y be the set of
keys x ∈ X for which the pi’th output bit h(x)pi = vi for all i. If E[|Y |] ≤ |Σ|/(1 + Ω(1)),
then the remaining output bits of the hash values in Y are completely independent with
probability 1−O(|Σ|1−⌊d/2⌋). Another important property is that mixed tabulation obeys
the same concentration bounds as simple tabulation on the number of balls landing in an
interval [PT12].

For the implementation with mixed tabulation, we use k independent mixed tabulation
functions, h1, . . . , hk, to distribute the virtual bins, and a single mixed tabulation function
h∗ for the balls (independent of h1, . . . , hk). We moreover assume that |Σ| = u1/c = nΩ(1)

which can be achieved using a standard universe reduction. To obtain our results using
mixed tabulation, the idea is essentially the same as above. Again, we first need to prove
an analogue of Theorem D.4, and we would do this using induction on the level, bounding
|Xi,j − µi,j | with high probability for each level i. To do this, we partition level i into
dyadic intervals where we expect at most |Σ|/2 balls or bins to hash. Then we can use
the concentration bound from [PT12] (which also holds for mixed tabulation) to obtain
concentration on the number of bins of a given capacity from the previous levels hashing
to each interval. Moreover, we can use the result of [DKRT15] to conclude that restricted
to such an interval the hashing of balls and bins is fully random. Again, we can prove a
version of Lemma D.13 with mixed tabulation (by using that mixed tabulation provides
concentration bounds) and conclude that the total number of balls that are forwarded
from one interval to another is O(C(log n)/ε) = mo(1) = |Σ|o(1). Essentially, the good
distribution of the Xi−1,j ensures that we also obtain a good distribution of the number
of bins with each capacity in each of the intervals of level i (using that the influence of the
|Σ|o(1) balls passing between intervals can only affect |Σ|o(1) bins), and this gives a good
distribution of the Xi,j . For this, it is important to be aware that there are now more
intervals, essentially n/|Σ|, but since |Σ| = nΩ(1), we still obtain that the total number
of balls that are forwarded from one interval to another is n1−Ω(1). The high probability
bound we obtain on |Xi,j − µi,j | then instead takes the form |Xi,j − µi,j | = n1−Ω(1), but
this still suffices for our purposes. Finally, we may prove a mixed tabulation version
of Theorem D.26, again using the fully random hashing within each interval and using
union bounds to bound away the probability that we interact with the |Σ|o(1) balls that
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are forwarded between intervals. As such, showing that our results hold using mixed
tabulation uses essentially the same ideas as is needed to show that the implementation
in Appendix D.1.3 does, but with a finer partitioning into intervals.
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On Sums of Monotone Random Integer Variables

Anders Aamand∗ Noga Alon† Jakob B. T. Knudsen∗
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Dansk resumé

We say that a random integer variable X is monotone if the modulus of the
characteristic function of X is decreasing on [0, π]. This is the case for many commonly
encountered variables, e.g., Bernoulli, Poisson and geometric random variables. In this
note, we provide estimates for the probability that the sum of independent monotone
integer variables attains precisely a specific value. We do not assume that the variables
are identically distributed. Our estimates are sharp when the specific value is close to
the mean, but they are not useful further out in the tail. By combining with the trick
of exponential tilting, we obtain sharp estimates for the point probabilities in the tail
under a slightly stronger assumption on the random integer variables which we call
strong monotonicity.

E.1 Introduction

In this note we provide sharp estimates for the probability that the sum of independent
(not necessarily identically distributed) integer-valued random variables attains precisely
a specific value. Our estimates hold under a fairly general assumption on the properties of
the random variables, which for example is satisfied for Bernoulli, Poisson and geometric
random variables. The bounds on the point probabilities derived in this paper have been
used to understand the distribution of balls in capacitated bins [AKT21]. In the cleanest
combinatorial variant of the problem, where the balls arrive sequentially and each ball
picks a uniformly random non-full bin, they just needed the point probabilities of sums of
i.i.d. Bernoulli variables. However, for a more dynamic distribution system, they had to
apply the bounds for sums of a mix of Bernoulli and geometrically distributed variables.

Recall that for a real random variable X, the characteristic function of X is the map
fX : R→ C given by fX(λ) = E[eiλX ]. We say that a real random variable X is monotone
if |fX | is decreasing on [0, π]. In the first part of this note (Section E.2), we provide
estimates for the point probabilities of a sum, X =

∑
j∈[k]Xj , of independent monotone

random integer variables1. To be precise, for any given t ∈ Z, we estimate the probability

∗Basic Algorithms Research Copenhagen (BARC), University of Copenhagen, Denmark. Emails:
aa@di.ku.dk, jakn@di.ku.dk, and mikkel2thorup@gmail.com. BARC is supported by the VILLUM Foun-
dation grant 16582.

†Department of Mathematics, Princeton University, Princeton, New Jersey, USA and Schools of Math-
ematics and Computer Science, Tel Aviv University, Tel Aviv, Israel. Email: nalon@math.princeton.edu.
Research supported in part by NSF grant DMS-1855464, BSF grant 2018267 and the Simons Foundation.

1We define [k] = {0, . . . , k − 1}
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Pr[X = t]. Our estimates are sharp whenever t is close to the mean E[X], but they are
not useful further out in the tail. To handle point probabilities in the tail, we require a
slightly stronger assumption on the random variables which we now describe.

For a random integer variable X we define IX = {θ ∈ R : E[eθX ] < ∞}, to consist of
those θ ∈ R for which the moment generating function of X is defined. We note that IX
is an interval with 0 ∈ IX . For θ ∈ IX , we may define the exponentially tilted random

variable Xθ by Pr[Xθ = t] = Pr[X=t]eθt

E[eθX ]
for t ∈ Z. We say that X is strongly monotone

if (1) IX ̸= {0} and (2) Xθ is monotone for each θ ∈ IX . In the second part of this
note (Section E.3), we use the trick of exponential tilting to provide estimates for the
point probabilities of a sum of independent strongly monotone random integer variables,
X =

∑
j∈[k]Xj , which are also sharp in the tail.

It follows by direct computation that Bernoulli, Poisson, and geometric random vari-
ables are monotone, and moreover, that exponentially tilting these variables again yields
Bernoulli, Poisson and geometric variables. In particular, these variables are all strongly
monotone, so our results give sharp estimates for the point probabilities of the sum of (a
mix of) such variables. In Section E.3, we provide examples of the estimates that can be
obtained for such a sum using our results.

In the note we will consider the following setting. Let k be an integer and (Xj)j∈[k]
independent integer-valued random variables with E[Xj ] = µj and Var[Xj ] = σ2j for

j ∈ [k]. Let X =
∑

i∈[k]Xi, and further µ =
∑

j∈[k] µj and σ2 =
∑

j∈[k] σ
2
j be respectively

the expectation and variance of X. The main result of the note is the following theorem.

Theorem E.1. There exists a universal constant c, such that if X is monotone, then for
every t for which µ+ tσ is an integer, the probability that X is precisely µ+ tσ satisfies,

∣∣∣∣Pr[X = µ+ tσ]− 1√
2πσ

e−t
2/2

∣∣∣∣ ≤ c
∑j∈[k] E

[
|Xj − µj |3

]
σ3

2

. (E.1)

Remark E.2. We note that if each Xj is monotone, then X is as well. Indeed, the
characteristic function of X can be factorized as fX(λ) =

∏
j∈[k] fXj (λ). In particular,

Theorem E.1 holds when each of the variables (Xj)j∈[k] is monotone.

Our result is reminiscent of the Berry-Esseen theorem, but instead of bounding the
distance between the cumulative function of X and the cumulative function of the normal
distribution as the Berry-Esseen theorem does, our result bounds the distance between
the density function of X and the density function of the normal distribution. This setting
has been studied before in the context of large deviation theory, e.g., by Blackwell and
Hodges [BJ59] and by Iltis [Ilt95] in the d-dimensional case. They do not require X to be
monotone but they only consider the case where (Xj)j∈[k] are identically distributed and
are interested in the asymptotical behavior when k →∞. In particular the distribution of
the variables (Xj)j∈[k] cannot depend on k. McDonald [McD79] considers variables that
are not necessarily identically distributed but again in the limit k →∞ and with certain
extra assumptions on the distribution of the variables. In this work we are not interested
in such asymptotic bounds and our result is a uniform bound for monotone variables.
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Another line of related work is the asymptotic expansions in the local limit theorem.
See for instance [GK54] (Section 51) or [IL71] (Theorems 4.5.3 and 4.5.4) which for any
given r provide expressions for the point probabilities of a sum of k i.i.d. random integer
variables (Xj)j∈[k] up to an additive error of o(k−r). Again, these results holds asymp-
totically as k → ∞ and the distributions of the (Xj)j∈[k] cannot depend on k. The case
of different distributions is considered in [DH22] which provide expansions of the point
probabilities using regular and trigonometric polynomials up to an additive error of o(σ−r)
(without any assumptions of monotonicity).

E.2 Point Probabilities Near the Mean

The goal of this section is to prove Theorem E.1, but before diving into the proof, we pro-
vide some examples of random variables for which the condition of the lemma is satisfied.
Let p ∈ [0, 1] and λ > 0. Let Y be a Bernoulli variable with Pr[Y = 1] = 1−Pr[Y = 0] = p,
let Z be geometric with Pr[Z = k] = pk(1 − p) for k ∈ N0, and let W be Poisson with
Pr[W = k] = λke−λ/k! for k ∈ N0. Let fY , fZ , fW be the characteristic functions for Y ,
Z, and W . Then for λ ∈ R,

fY (λ) = 1− p+ peiλ, fZ(λ) =
1− p

1− peiλ
, and fW (λ) = eλ(e

iλ−1).

Thus,

|fY (λ)|2 = (1− p+ peiλ)(1− p+ pe−iλ) = 1 + 2p(1− p)(cosλ− 1)

|fZ(λ)|2 =

(
1− p

1− peiλ

)(
1− p

1− pe−iλ

)
=

(1− p)2

1 + p2 − 2p cosλ
, and

|fW (λ)| = eλ(cosλ−1),

which are all decreasing functions on [0, π].
We will need the following simple Lemma on random integer variables.

Lemma E.3. Let X be an integer random variable X with third moment. Then2

E[|X − E[X]|3] ≥ Var[X]/2.

Proof. Let µ = E[X]. We may clearly assume that 0 ≤ µ < 1 by replacing X with X − a
for an appropriate integer a. Define Z0 = [X ≤ 0] and Z1 = [X ≥ 1] = 1− Z0. Then,

0 = E[X − µ] = E[Z1 · |X − µ|]− E[Z0 · |X − µ|],

and,

E[|X − µ|] = E[Z1 · |X − µ|] + E[Z0 · |X − µ|].

2Originally, our bound was E[|X − E[X]|3] ≥ Var[X]/10, which sufficed for our purposes. We thank
Ahmad Beirami [Bei] for pointing out how we could replace the constant 10 with 2 which is optimal as
can be seen by letting X be a Bernoulli variable with parameter 1/2.
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It follows that

Var[X] = E[Z1 · (X − µ)2] + E[Z0 · (X − µ)2]

≥ (1− µ) E[Z1 · |X − µ|] + µE[Z0 · |X − µ|] =
E[|X − µ|]

2
. (E.2)

Now finally,

Var[X]2 ≤ E[|X − µ|] · E[|X − µ|3] ≤ 2 Var[X] E[|X − µ|3],

where the first inequality is by Cauchy-Schwartz and the second is an application of (E.2).
The desired result follows.

Proof of Theorem E.1. We start by noting that we may assume that σ2 > C for a suffi-
ciently large constant C. Indeed, by Lemma E.3,

c

(∑
j∈[k] E[|Xj − µj |3]

σ3

)2

≥ c

4σ2
,

so (E.1) is immediate when σ2 ≤ C (by choosing c sufficiently large).
Now the proof proceeds, similarly to proofs of the Berry-Esseen theorem and uses

simple properties of the Fourier transformation of X. Let fj be the characteristic function
of Xj − µj for j ∈ [k] and let F be the characteristic function of X − µ. Then

F (λ) =
∏
j∈[k]

fj(λ) =
∑
n∈Z

Pr[X = n] ei(n−µ)λ .

For non-zero integers s, it holds that 1
2π

∫ π
−π e

isλdλ = 0 whereas 1
2π

∫ π
−π e

isλdλ = 1 if s = 0.
It follows that for any integer n ∈ Z,

Pr[X = n] =
1

2π

∫ π

−π
F (λ)e−i(n−µ)λdλ .

In particular, if µ+ tσ is an integer, then

Pr[X = µ+ tσ] =
1

2π

∫ π

−π
F (λ)e−itσλdλ .

We define τ =
∑

j∈[k] E[|Xj−µj |3]
σ3 noting that we may assume that τ ≤ c0 for a sufficiently

small constant c0 as otherwise the result is trivial. Split the interval [−π, π] into three

parts, I1 = [−ε, ε], I2 = [ε, π], and I3 = [−π,−ε]. We will prove that if ε =

√
8 log 1/τ

σ ,
then ∣∣∣F (λ)e−itσλ

∣∣∣ = |F (λ)| ≤ τ2 for all λ ∈ I2 ∪ I3 and, (E.3)∫ ε

−ε
F (λ)e−itσλdλ =

1√
2πσ

e−t
2/2 +O(τ2). (E.4)
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We note that we may assume that ε ≤ π. Indeed, by Lemma E.3, log 1/τ
σ2 ≤ log(8σ)

σ , and σ
is assumed to be sufficiently large. The desired result thus follows immediately from (E.3)
and (E.4).

We start by proving (E.3). It is a general fact that the characteristic function fY of a
random variable Y is Hermitian, i.e., fY (−t) = fY (t). In particular, |F (λ)| = |F (−λ)|, so
it is enough to prove that |F (λ)| ≤ τ2 for λ ∈ I2. As |F | is decreasing on [0, π], it in fact
suffices to prove that |F (ε)| ≤ τ2. Now another standard fact about the characteristic
function fY of a random variable Y is that for any n,∣∣∣∣∣∣fY (λ)−

n∑
j=0

(iλ)j

j!
E[Y j ]

∣∣∣∣∣∣ ≤ |λ|
n+1 E[|Y |n+1]

(n+ 1)!
. (E.5)

By Jensen’s inequality, σ2j ≤ (E[|Xj − µj |3])2/3, so it follows that

ε2σ2j ≤

ε3 ∑
j∈[k]

E
[
|Xj − µj |3

]2/3

= (ε3σ3τ)2/3 ≤ 8 log(1/τ)τ2/3 ≤ 1, (E.6)

where the last inequality used that τ ≤ c0 for a sufficiently small constant c0. We may
thus apply (E.5) with n = 2 to conclude that

|fj(ε)| ≤ 1− ε2

2
σ2j + E

[
|Xj − µj |3

] ε3
6
≤ e−

ε2

2
σ2
j+E[|Xj−µj |3] ε

3

6 .

Thus, for λ ∈ I2,∣∣∣F (λ)e−itσλ
∣∣∣ = |F (λ)| ≤ |F (ε)| ≤ e−

ε2

2 σ
2+(

∑
j∈[k] E[|Xj−µj |3]) ε3

6 = e−ε
2σ2(1/2−σετ/6).

As σετ = τ
√

8 log 1/τ ≤ 3/2, it therefore follows that for λ ∈ I2,

|F (λ)| ≤ e−
ε2σ2

4 = τ2 , (E.7)

which proves (E.3).
Turning to (E.4), we again use the Taylor expansion formula to get

fj(λ) = 1− λ2

2
σ2j + E

[
|Xj − µj |3

]
λ3gj(λ),

for some (complex-valued) function gj(λ) with |gj(λ)| ≤ 1/6 for all λ. As in (E.6), for
|λ| ≤ ε,

E
[
|Xj − µj |3

]
|λ|3 ≤ 1, (E.8)

and

λ4σ4j ≤ (|λ|3 E[|Xj − µj |3])4/3 ≤ |λ|3 E[|Xj − µj |3] ≤ 1. (E.9)
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It follows that |fj(λ)−1| ≤ 5/6. Now for z ∈ C with |z| ≤ 5/6 it holds that 1+z = exp(z+
O(z2)). Also, if a, b ∈ C satisfy that |a|2 ≤ |b| ≤ 1, then |a + b|2 ≤ 2(|a|2 + |b|2) ≤ 4|b|.
Combining these observations with (E.8) and (E.9) we find that

fj(λ) = e−
λ2

2
σ2
j+E[|Xj−µj |3]O(λ3).

It follows that

F (λ)e−itσλ = e−
λ2

2
σ2+(

∑
j∈[k] E[|Xj−µj |3])O(λ3)e−itσλ

We then get that

F (λ)e−itσλ = e−
λ2

2
σ2+(

∑
j∈[k] E[|Xj−µj |3])O(λ3)e−itσλ

= e−
λ2

2
σ2

1 +

∑
j∈[k]

E
[
|Xj − µj |3

]O(λ3)

 e−itσλ
(E.10)

for |λ| ≤ ε. Now we get that

1

2π

∫ ε

−ε

∣∣∣∣∣∣e−λ2

2
σ2

∑
j∈[k]

E
[
|Xj − µj |3

]O(λ3)e−itσλ

∣∣∣∣∣∣ dλ
=

1

π

∑
j∈[k]

E
[
|Xj − µj |3

]∫ ε

0
e−

λ2

2
σ2
O(λ3)dλ

=
1

π

∑j∈[k] E
[
|Xj − µj |3

]
σ4

∫ √8 log 1/τ

0
e−

s2

2 O(s3)ds

= O

∑j∈[k] E
[
|Xj − µj |3

]
σ4


= O(τ2)

(E.11)

Here we used the substitution s = λσ, and the last step uses Lemma E.3. Again using
the same substitution we get that

1

2π

∫ ε

−ε
e−

λ2

2
σ2
e−itσλdλ =

1

2πσ

∫ √8 log 1/τ

−
√

8 log 1/τ
e−

s2

2 e−itsds

Note that for any u > 0,∫ ∞

u
e−s

2/2 ds ≤ 1

u

∫ ∞

u
s · e−s2/2 ds =

1

u
e−u

2/2,
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so we can bound

1

2πσ

∫
|s|≥
√

8 log 1/τ

∣∣∣∣e− s2

2 e−its
∣∣∣∣ ds ≤ τ4

πσ
√

8 log 1/τ
= O(τ2). (E.12)

Calculating the Fourier transform of function of e−
s2

2 we get that

1

2πσ

∫ ∞

−∞
e−

s2

2 e−itsds =
1√
2πσ

e−t
2/2 (E.13)

Combining (E.10), (E.11), (E.12), and (E.13) proves (E.4). This finishes the proof.

E.3 Point Probabilities in the Tail

As is, Theorem E.1 is only useful when |tσ| is not too large. Indeed, for large |t|, the
term 1√

2πσ
e−t

2/2 will typically be much smaller than the error term on the right hand side

of (E.1). We now show that if our variables satisfy the stronger property of being strongly
monotone, we may also obtain precise estimates for the point probabilities in the tail by
combining with the trick of exponential tilting.

Recall that we defined a real random variable X to be strongly monotone if IX ̸= {0}
and Xθ is monotone for each θ ∈ IX . Here, IX = {θ ∈ R : E[eθX ] <∞} consisted of those
θ for which the moment generating function of X is defined, and Xθ was the exponentially

tilted random variable defined by Pr[Xθ = t] = Pr[X=t]eθt

E[eθX ]
for t ∈ Z.

Many commonly encountered random variables have the property of being strongly
monotone:

Lemma E.4. Let X be Bernoulli, Y be geometric and Z be Poisson. Then X,Y and Z
are each strongly monotone.

Proof. We already saw that the classes of Bernoulli, geometric, and Poisson variables
consists of monotone variables. The result follows by calculating the point probabilities
of the tilted variables (when they exists) and observing that each class is closed under
exponential tilts.

Now suppose X =
∑

j∈[k]Xj is a sum of independent random integer variables and
moreover that X is not almost surely equal to a constant. We are interested in estimates
for the probability Pr[X = t] for some t ∈ Z. Let Ij = {θ ∈ R : E[eθXj ] < ∞} and
I = {θ ∈ R : E[eθX ] < ∞} = ∩j∈[k]Ij . We note each Ij and I are intervals containing
0. We define3 A = ess inf X and B = ess supX. Let further ψX : I → R be the
cumulant generating function defined by ψX : θ 7→ log(E[eθX ]). It is well known that ψX
is strictly convex and infinitely often differentiable for θ lying in the interior of I with

ψ′
X(θ) = E[XeθX ]

E[eθX ]
. For t ∈ R, we define g(t) = supθ∈I(θt − ψX(θ)). Now it is a standard

3Recall that the essential infimum and supremum of a random variable X are defined by ess inf X =
sup{t : Pr[X < t] = 0} and ess supX = inf{t : Pr[X > t] = 0} which are values in R ∪ {−∞,∞}.
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fact about the cumulant generating function that if I contains a non-empty open interval
(i.e., consists of more than a single point), then infθ∈I ψ

′
X(θ) = A and supθ∈I ψ

′
X(θ) = B.

If in particular A < t < B, there exists a θ0 in the interior of I with ψ′
X(θ0) = t. Moreover,

this θ0 is unique since ψX is strictly convex.
Now let (Yj)j∈[k] be independent random variables obtained by tilting each Xj by θ0 as

above. Let further Y =
∑

j∈[k] Yj . For s ∈ Z, we define As = {z ∈ Zk : z1 + · · ·+ zk = s}.
Then for any t ∈ Z,

Pr[X = t] =
∑
z∈At

∏
j∈[k]

Pr[Xj = zj ] =
E[eθ0X ]

eθ0t

∑
z∈At

∏
j∈[k]

Pr[Yj = zj ] =
E[eθ0X ]

eθ0t
Pr[Y = t],

so Y is simply the variable obtained by tilting X by θ0. Moreover, by the choice of θ0,

E[Y ] =
∑
z∈Z

Pr[X = z]eθ0zz

E[eθ0X ]
=

E[Xeθ0X ]

E[eθ0X ]
= ψ′

X(θ0) = t.

Now the fact that E[Y ] = t, suggests using Theorem E.1 to estimate the probability that
Pr[Y = t]. Doing so, we immediately obtain the following result.

Theorem E.5. Assume that X is strongly monotone and not almost surely equal to a
constant. Moreover assume that I ̸= {0}. Let t be an integer with with A < t < B and θ
be the unique real in the interior of I having ψ′

X(θ) = t. Let Y be the exponential tilt of
X by θ. Then E[Y ] = t and

Pr[X = t] =
E[eθX ]

eθt

(
1√

2πσY
±O

(
η2Y
σ6Y

))
, (E.14)

where σ2Y = Var[Y ] and ηY =
∑

j∈[k] E[|Yj − E[Yj ]|3].

Remark E.6. We note that if either A = ess inf X ̸= −∞ or B = ess supX ̸= ∞, then
[0,∞) ⊂ I or (−∞, 0] ⊂ I, respectively, and we can therefore always apply the exponential
tilt in the lemma. We moreover note that for t < A and t > B, it trivially holds that
Pr[X = t] = 0 and it is an easy exercise to show that

Pr[X = A] =
∏
j∈[k]

Pr[Xj = ess inf Xj ], and Pr[X = B] =
∏
j∈[k]

Pr[Xj = ess supXj ],

whenever A ̸= −∞ and B ̸= ∞. Even though the lemma does not provide estimates for
these probabilities, they are therefore usually easy to determine for concrete families of
random variables.

To apply Theorem E.5, for X =
∑

j∈[k]Xj a concrete sum of strongly monotone
random variables, say geometric variables, we would calculate ψX and find the unique θ
with ψ′

X(θ) = t. We would then determine the tilted random variables (Yj)j∈[k]. Typically
Yj comes from the same family of random variables as Xj , e.g., an exponential tilt of
respectively a Bernoulli, geometric, and Poisson variable is again Bernoulli, geometric and
Poisson. We would then determine the quantities ηY and σ2Y and plug into (E.14).
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Example E.7. Let X =
∑

j∈[k]Xj , where (Xj)j∈[k] are independent Bernoulli variables
with Pr[Xj = 1] = pj . We want to estimate Pr[X = t] for some 0 < t < k − 1. For
this, we define θ, (Yj)j∈[k] and Y as in Theorem E.5. Then each Yj is again Bernoulli.
If Pr[Yj = 1] = qj , then E[|Yj − E[Yj ]|3] = qj(1 − qj)(q2j + (1 − qj)2) ≤ Var[Yj ], so that

ηY ≤ σ2Y . Thus, the bound of (E.14) becomes

Pr[X = t] =
1√

2πσY

E[eθX ]

eθt

(
1±O

(
1

σY

))
,

The bound on the error term can be shown to be asymptotically tight using known results.
We in particular note that if σY = ω(1), the bound on Pr[X = t] is within a factor of
1+o(1) of the true value. Consider as a very simple example4, the case where the Bernoulli
variables (Xj)j∈[k] are identically distributed. Then the same holds for the (Yj)j∈[k], and
since E[Y ] = t, we must have that σ2Y = t(1 − t/k). In particular, the bound is within a
factor of 1 + o(1) of the true value as long as ω(1) < t < k − ω(1).

Example E.8. Let X =
∑

j∈[k]Xj be a sum of independent geometric variables such
that for some probabilities (pj)j∈[k] and each s ∈ N0, Pr[Xj = s] = psj(1 − pj). Let

µj = E[Xj ] =
pj

1−pj for j ∈ [k] and µ = E[X]. Assume that µj = O(1) for j ∈ [k]. We want

to estimate Pr[X = t] for some integer t > 0 using Theorem E.5, and we define θ, (Yj)j∈[k]
and Y accordingly. For simplicity, we will assume that t = O(E[X]). By Lemma E.4,
each Yj is again geometric, say with Pr[Yj = s] = qsj (1 − qj) for s ∈ N0. Moreover, since
E[Xj ] = O(1) for j ∈ [k] and t = O(E[X]), it follows that also E[Yj ] = O(1) for j ∈ [k].
Now simple calculations yields that Var[Yj ] = Θ(E[Yj ]) and E[|Yj − E[Yj ]|3] = Θ(E[Yj ]).
Plugging into (E.14), we thus obtain that

Pr[X = t] =
1√

2πσY

E[eθX ]

eθt

(
1±O

(
1
√
µY

))
,

where µY = E[Y ] = t. In particular, the bound is within a factor of 1 + o(1) of the true
value as long as t = ω(1).
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