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versity of Copenhagen, between January 2018 and August 2019, as part of my master’s thesis and
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included in the thesis if published between September 2019 and May 2023.

The thesis was supervised by Professor Christian Igel from the Department of Computer Science,

University of Copenhagen (Parts II and III). Part III was co-supervised by MD Professor Poul Jørgen

Jennum from Rigshospitalet, RegionH.
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Abstract

Diagnostic tasks in healthcare often involve segmenting regions of interest in images and time

series, such as outlining organs in medical scans or scoring physiological events in electroencephalog-

raphy (EEG) recordings. Medical professionals perform most of these complex and time-consuming

tasks manually, leading to potential errors and limiting diagnostic efficiency. With the increasing

global diagnostic burden on healthcare systems, there is a growing need for (semi-) automatic com-

puter systems to alleviate repetitive manual tasks. Furthermore, these systems can make expert

knowledge available for people with limited access to well-trained medical doctors.

The primary aim of this thesis was to develop clinically robust automatic segmentation systems for

medical images and time series based on recent advances in machine learning. The thesis comprises

two parts.

The first part focused on developing a machine learning model for general medical 3D image seg-

mentation, applicable across scanning modalities and tasks. We introduced the Multi-Planar U-Net,

a fully convolutional neural network based on the U-Net architecture, which uses a data-augmentation

scheme to resample randomly rotated 2D input images from 3D training data. This process enforces

rotational equivariance properties and enables segmenting new scans from multiple orientations for

ensemble-like predictions. The Multi-Planar U-Net demonstrated applicability to variable tasks in

magnetic resonance (MR) and computerized tomography (CT) images without manual hyperparam-

eter adjustments and proved competitive in multiple segmentation challenges, including the 2018

Medical Segmentation Decathlon and the 2020 International Workshop on Osteoarthritis Imaging

Knee MRI Segmentation Challenge.

The second part of this thesis addressed the problem of automatic sleep staging of polysomno-

graphic data, which involves segmenting physiological signals from sleeping individuals into distinct

sleep stages. We developed a U-Net-based model for medical time series data called U-Time that

leverages the similarities between sleep staging and image segmentation. This model outperformed

alternative models typically used for automatic sleep staging and was transferable across clinical

cohorts without hyperparameter re-tuning.

This ability inspired the development of a successor model, U-Sleep, designed for robust sleep

staging on diverse polysomnography data. Trained on over 15,000 participants from 12 clinical stud-

ies, U-Sleep demonstrated expert-level accuracy and adaptability to different EEG input derivations,

patient demographics, and recording equipment. It was also accurate for patients with severe brain

disorders, such as stroke and Parkinson’s disease, despite their absence in the training dataset. Fur-

1



CONTENTS 2

thermore, we explored U-Sleep’s ability to score sleep stages at higher-than-usual frequencies, which

facilitated the separation of patients with sleep disorders or acute stroke from control groups, indi-

cating potential biomarker development. Sleep metrics derived from U-Sleep’s high-frequency sleep

scores were more consistent than those from low-frequency and human expert scores, suggesting

improved diagnostic accuracy. Consequently, U-Sleep may be a candidate for clinical sleep staging

and a potential research tool for high-frequency sleep patterns. The model is available for research

at https://sleep.ai.ku.dk/, where it has scored over 45,000 sleep studies.

In summary, this thesis presented clinically robust and accurate machine learning models for

segmenting medical image volumes and time series. Key practices for developing such models were

identified: First, we reconfirmed that fully convolutional, feed-forward-only neural networks like the

U-Net are broadly applicable as they performed well across diverse tasks in medical images and

time series. Second, we found it beneficial to design data-augmentation techniques that induce vari-

ous model invariance or equivariance properties to input data transformations that increase clinical

robustness, even if the target function becomes more complex, as long as the augmentations also sig-

nificantly expand the set of actual training examples. Finally, we found clinical robustness achievable

by training machine learning models on extensive and highly variable training datasets from multi-

ple sources, even if datasets differ in recording hardware, patient population, or data preprocessing

pipeline.

https://sleep.ai.ku.dk/


Dansk resumé

En række diagnostiske opgaver inden for sundhedsvæsenet indebærer segmentering af inter-

esseområder i billeder og tidsserier. Eksempler inkluderer afgrænsning af organer eller tumorer i

medicinske scanninger samt scoring af diverse fysiologiske hændelser i elektroencefalografi-optagelser

(EEG). Medicinske fagfolk udfører de fleste af disse komplekse og tidskrævende segmenteringsopgaver

manuelt, hvilket begrænser den diagnostiske proces. Da sundhedssystemerne oplever en stigende di-

agnostisk byrde, vil der i fremtiden være et øget behov for (semi-)automatiske computersystemer til

at afhjælpe repetitive manuelle segmenteringsopgaver. Sådanne systemer kan desuden gøre ekspertv-

iden tilgængelig for folk med begrænset adgang til veluddannede læger.

Det primære formål med denne afhandling var at udvikle klinisk robuste automatiske segmenter-

ingssystemer til medicinske billeder og tidsserier baseret på nylige fremskridt inden for maskinlæring-

steknologi. Afhandlingen består af to dele.

Den første del af afhandlingen fokuserer på udviklingen af en maskinlæringsmodel til segmentering

af generelle medicinske 3D-billeder, som kan anvendes på tværs af segmenteringsopgaver og scanning-

sudstyr. Vi introducerer en model, kaldet Multi-Planar U-Net, som er et såkaldt fully convolutional

neural network baseret på U-Net-arkitekturen, og som anvender en data-augmenteringsmekanisme

til at udtrække tilfældigt roterede 2D-billeder fra et 3D datasæt, som bruges til at træne mod-

ellen. Denne proces introducerer rotationsækvivalens og muliggør segmentering af nye scanninger

fra flere orienteringer, som efterfølgende kan kombineres til en enkelt og mere præcis segmenter-

ing. Multi-Planar U-Net har en tilpasningsevne, der gør modellen i stand til at segmentere både

MR- og CT-scanninger (magnetisk resonans og computertomografi) uden manuelle hyperparame-

terjusteringer. Modellen blev fundet konkurrencedygtig i flere segmenteringsudfordringer, herunder

Medical Segmentation Decathlon i 2018 og International Workshop on Osteoarthritis Imaging Knee

MRI Segmentation Challenge i 2020.

Den anden del af afhandlingen omhandler automatisk klassificering af søvnstadier i polysomno-

grafiske data, hvilket indebærer en segmentering af søvnstadier i fysiologiske signaler fra sovende

individer. Vi introducerer endnu en U-Net-baseret model, kaldet U-Time, som er specialiseret til

medicinske tidsserier, og som udnytter lighederne mellem søvnstadieklassificering og billedsegmenter-

ing. Denne model klarede sig bedre end alternative modeller, der typisk anvendtes til denne opgave,

og modellen kunne overføres til nye kliniske kohorter uden manuel justering af modellens hyper-

parametre.

Denne evne inspirerede udviklingen af en opfølgende model, kaldet U-Sleep, der er designet til

3
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robust klassificering af søvnstadier i klinisk polysomnografidata af høj variabilitet. U-Sleep blev

trænet på over 15.000 forsøgspersoner fra 12 kliniske studier og udviste en nøjagtighed på niveau

med menneskelige eksperter og en evne til at tilpasse sig input data fra meget forskellige EEG-

kilder og optageudstyr og fra patienter af variabel demografi. Modellen blev også fundet nøjagtig på

data fra patienter med alvorlige hjernesygdomme, såsom apopleksi og Parkinsons sygdom, på trods

af fraværet af data fra sådanne patienter i træningsdatasættet. Vi udforskede desuden U-Sleeps

evne til at score søvnstadier ved højere end sædvanlige frekvens. Disse højfrekvente søvnstadier

gjorde det lettere at adskille patienter med søvnforstyrrelser eller apopleksi fra kontrolgrupper, hvilket

indikerer et potentiale for biomarkørudvikling baseret på U-Sleep modellen. Søvnmetrikker afledt

af U-Sleeps højfrekvente søvnscorer var desuden mere konsistente end dem afledt fra lavfrekvente

scorer, hvilket indikerer at U-Sleep kan forbedre den diagnostiske nøjagtighed. U-Sleep er samlet set

en lovende kandidat til klinisk klassificering af søvnstadier og et potentielt forskningsværktøj, som

kan give indsigt i højfrekvente søvnmønstre. Modellen er frit tilgængelig for forskning på https:

//sleep.ai.ku.dk/, hvor den har scoret mere end 45.000 søvnundersøgelser til dato.

Sammenfattende præsenterer denne afhandling klinisk robuste og præcise maskinlæringsmodeller

til segmentering af medicinske 3D-billeder og tidsserier. En række metoder til udvikling af sådanne

modeller blev identificeret: For det første blev det bekræftet, at fully convolutional, feed-forward-only

neurale netværk, som f.eks. U-Net, er bredt anvendelige, da de klarede sig godt på tværs af forskellige

opgaver i både medicinske billeder og tidsserier. For det andet fandt vi det fordelagtigt at designe

data-augmenteringsmekanismer, der inducerer invarians- eller ækvivalens over for diverse transforma-

tioner af input data for at øge modellens kliniske robusthed, selv hvis den opgave, modellen skal løse,

bliver mere kompleks, så længe augmenteringerne også udvider sættet af faktiske træningseksempler

betydeligt. Endelig fandt vi, at klinisk robusthed kan opnås ved at træne maskinlæringsmodeller på

omfattende og meget variable træningsdatasæt fra flere kilder, selv om datasættene adskiller sig fra

hinanden med hensyn til optagelsesudstyr, patientdemografi eller præprocessering af data.

https://sleep.ai.ku.dk/
https://sleep.ai.ku.dk/


Overview of thesis structure

This thesis concerns the development of clinically robust machine learning models for segmenting

medical images and time series. It is split into four parts: Part I introduces the motivation, main

objectives, scientific background, and summaries of all enclosed papers and manuscripts. Part II

contains work on medical image segmentation using fully convolutional neural networks. Part III

considers time series segmentation using similar models applied to sleep staging. Part IV discusses

the findings of Parts II and III, highlights study limitations, draws overall conclusions, and provides

an outlook for future work and best practices for developing robust machine learning models for

healthcare applications.
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Part I

Introduction
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Chapter 1

Motivation

1.1 The burden of manual segmentation

Many diagnostic tasks in healthcare require segmenting regions of interest in images and time series

(Faust, Hagiwara, et al. 2018; Simpson et al. 2019). Segmentation is the process of dividing an

input into distinct areas. Examples include outlining organs and lesions in medical scans and scoring

physiological events like sleep stages or seizures in electroencephalography (EEG) recordings. See

Figure 1.1 for visual examples of medical image and time series segmentation problems. Segmentation

allows quantification of, for instance, a brain tumour’s existence, volume and location, from which

a diagnosis or radiation plan may be derived (Assefa et al. 2010; ICRU 1999; Menze et al. 2014).

Medical doctors or technicians perform most segmentation tasks through complicated and time-

consuming manual inspections. These are often expensive and error-prone with significant inter-rater

variability, thus limiting diagnostic throughput and precision (Danker-Hopfe, Anderer, et al. 2009;

Joskowicz et al. 2019). A few examples are:

• Segmentation of gliomas (a common primary brain tumour) in computed tomography (CT) or

magnetic resonance imaging (MRI) is becoming common to track the development of tumour

size and morphology (Bauer et al. 2013). The segmentation is difficult due to the high vari-

ability in tumour size, location and appearance, often low contrast between the tumour and

surrounding tissue and because the growing tumour may alter sounding structures making it

more difficult to rely on knowledge of typical brain anatomy (Menze et al. 2014). Consequently,

manual glioma segmentation is time-consuming and has high inter-rater variability (Angelini

et al. 2007; Deeley et al. 2011; Weltens et al. 2001).

• Accurate segmentation of liver tumours in CT is a prerequisite for both diagnosis and treatment

because the diameter of the lesion must be measured under the modified Response Evaluation

Criteria in Solid Tumor (RECIST, Eisenhauer et al. 2009) guidelines to assess tumour burden

and the exact tumour location known for effective treatment with, for instance, thermal ablation

or radiotherapy (Albain et al. 2009; Shiina et al. 2018). However, the segmentation of liver

tumours is complex because of the often low and variable contrast between the surrounding liver

tissue and lesions, significant variability in tumour size, shape and location, and the possibility

of multiple types of tumours co-occurring. Hence, manual segmentation is time-consuming and

7
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subject to inter-rater variability (Bilic et al. 2023; Moghbel et al. 2018).

• Segmentation of ventricles, atria and great vessels in cardiovascular MRI forms the basis for

diagnosing many functional and structural cardiovascular diseases (Myerson et al. 2010). This

task is also considered highly time-consuming, and the manual segmentation suffers from high

intra- and inter-rater variability (Peng et al. 2016). In addition, the number of cardiac MRIs

conducted is expected to increase due to the growing prevalence of cardiovascular disease, which

is projected to cause more than 23 million deaths globally by 2030 (Mathers et al. 2006).

• Similarly, segmentations are often needed for (physiological) time series recordings. A stan-

dard task in sleep medicine is sleep staging in which distinct physiological stages of sleep are

segmented in polysomnography (PSG) data (a sleep study recording modalities such as EEG).

Sleep staging forms the basis of many diagnostic tasks in sleep medicine but takes multiple

hours per patient and suffers from high inter-rater variability (Danker-Hopfe, Anderer, et al.

2009; Rosenberg et al. 2013; Younes, Kuna, et al. 2018; Younes, Raneri, et al. 2016; X. Zhang

et al. 2015). Automating and improving sleep staging is the focus of Part III of this thesis. For

an extended introduction to sleep staging, see Chapter 3.3.

Many other segmentation tasks are performed across medical specialities, and several of these

tasks share the characteristics of the examples mentioned above in being time-consuming and error-

prone. Moreover, the cost of healthcare systems is increasing globally, both in absolute numbers and

relative to GDP. The World Health Organization’s (WHO) Global Health Expenditure Database

(GHED) index has increased from 8.63% of GDP to 9.83% of GDP between 2000 and 2019, which

has exceptionally risen further in recent years due to the COVID-19 pandemic, see https://ap

ps.who.int/nha/database and WHO et al. (2022). Consequently, a growing potential exists for

(semi-) automatic computer models to release doctors from repetitive and time-consuming manual

tasks such as segmentation while improving diagnostic precision. These models can also make expert

knowledge available for people with limited access to well-trained medical doctors.

1.2 Automating segmentation tasks

The development of automatic and computer-assisted medical segmentation models has been studied

for over five decades (Pal et al. 1993), aiming to improve diagnostic throughput and to minimize the

inter- and intra-rater variability of manual segmentation. The technical foundations and historical

development of automatic segmentation models can be found in the Background Material chapter

3. At its core, automatic segmentation involves determining a mathematical function that maps

input data, such as a medical image, to a corresponding segmentation mask. This mask establishes

https://apps.who.int/nha/database
https://apps.who.int/nha/database
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(a) Image slices extracted from different 3D medical image volumes showcase several MRI and CT seg-
mentation tasks. Publicly available and anonymized data from the Medical Segmentation Decathlon
(http://medicaldecathlon.com/, Simpson et al. 2019), Osteoarthritis Initiative (OAI, https://www.
niams.nih.gov/grants-funding/funded-research/osteoarthritis-initiative) and the 2012 MICCAI
Multi-Atlas Challenge (Landman et al. 2012).

(b) Illustrative example of the image quantifications made possible by segmentation. A stack of 2D MRI slices
(left image) is first segmented to separate the brain from the skull and other background areas (centre image)
and then further into distinct parts of the brain (right image).

N2 W N1 N2 W W N1 N2 N2

EEG

EOG

Sleep stages
Sleep staging

(c) Illustration of the sleep staging segmentation process. EEG and electrooculography (EOG) times series
data is recorded from a sleeping subject and segmented into 30-second block sleep stages. W is the Wake
stage, N1 the Non-REM stage 1, and N2 the Non-REM stage 2 (see Background Material, section 3.3).

Figure 1.1: Image and time series segmentation examples and illustrations.

http://medicaldecathlon.com/
https://www.niams.nih.gov/grants-funding/funded-research/osteoarthritis-initiative
https://www.niams.nih.gov/grants-funding/funded-research/osteoarthritis-initiative
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a relationship between each pixel in the image and a predefined set of regions, also called labels or

classes. For example, areas of interest may include one or more organs or lesions.

Automatic segmentation models can serve multiple purposes if found to demonstrate reliability

and accuracy across the relevant clinical use cases. It can replace a human rater (computer automa-

tion), offer additional information to human raters (computer assistance) or be integrated within a

group of human raters to augment its capabilities or substitute a human member. The rapid and

consistent segmentation of automatic scoring presents a significant potential increase in diagnostic

throughput. A notable example is in population-based mammographic screenings, where two inde-

pendent human raters typically evaluate each mammogram. An alternative reading protocol can be

introduced by replacing one human rater with an automatic scorer and requiring the second human

rater’s input only if there is a disagreement between the human and automated rater. This would

effectively reduce the manual scoring workload by up to 50 % while still ensuring that a human rater

reviews all samples (Lauritzen et al. 2022).

The development of automatic segmentation models, however, is non-trivial. The complex nature

of medical data, which may vary significantly between patients and recording equipment, makes it

challenging to design reliable and accurate segmentation models for many tasks (de Bruijne 2016).

The manual programming of a set of rules for segmenting, e.g., a brain tumour, is a complex and

often an infeasible task, although early such attempts pioneered the field several decades ago (see

Background Materials chapter 3). In recent years, however, the field of automatic segmentation has

experienced a significant transformation, driven by increased access to massively parallel comput-

ing infrastructure, a growing pool of available data, and algorithmic advancements (Yoshua Bengio,

Lamblin, et al. 2006; Hinton et al. 2006; LeCun, Bottou, et al. 1998; Rumelhart et al. 1986). These

factors have facilitated the automatic learning of complex segmentation functions with machine learn-

ing (Abu-Mostafa et al. 2012). Artificial neural networks from the sub-field of deep learning have been

particularly successful (Yoshua Bengio, Courville, et al. 2013; Goodfellow et al. 2016). As detailed

in Chapter 3, these methods allow segmentation functions to be learned from observed examples of

input-output mappings, such as images or time series to their corresponding segmentations, without

the need to manually program the underlying logic for performing the segmentation task.

The 2022 edition of the Medical Image Computing and Computer Assisted Intervention (MIC-

CAI) conference exemplifies this recent activity in the field. This one conference featured presen-

tations of 574 full papers and 38 competitive challenges, where teams compete to develop (often

machine learning-based) models for specific medical image analysis tasks (L. Wang et al. 2022). An-

other prominent illustration is the highly successful U-Net model, a deep learning model designed for

biomedical image segmentation (detailed in Chapter 3.2). Since its introduction in 2015, the U-Net

has been applied to many medical image segmentation tasks. The original U-Net papers have been
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cited over 58,000 times, as indexed by Google Scholar, March 2023 (Falk et al. 2019; Ronneberger

et al. 2015).

1.3 From research to clinical adaptation

Despite the research activity in the field, however, relatively few machine learning models have be-

come commercialized, fewer received clinical approval, and only a handful has seen widespread clinical

adaptation. As of October 2022, a total of 521 "AI/ML Enabled Medical Devices" were approved by

the U.S. Food and Drug Administration (FDA) for the U.S. market, according to an analysis of the

FDA itself1 based on publicly available information from sources such as The American College of

Radiology Data Science Institute (ACR DSI, https://aicentral.acrdsi.org/). While arguably a

sizable number, this number includes devices for a wide range of tasks (mostly in radiology), includ-

ing data acquisition, preprocessing, management and visualization, various detection, segmentation

and diagnosis tasks and patient triaging and prioritization. Many implement machine learning solu-

tions only as additional features supporting other main purposes. Only a minor subset of approved

medical devices perform image- and time-series segmentation, and most have not received complete

adaptation by the corresponding medical community. Noticeable exceptions include computer as-

sistant detection (CADe) models for mammography screenings and lung nodule detection in X-ray

and CT, which were first approved by the FDA already in 1998, 2001 and 2004, respectively, and for

which similar products are routinely used in many hospitals today (Giger et al. 2008). Most other

medical image segmentation tasks are still performed manually.

Multiple medical devices have also been approved for tasks related to medical time series data,

e.g., PSG sleep studies. One of the very first FDA-approved "AI/ML Enabled Medical Devices"

was the Compumedics Sleep Monitoring model by Computmedics Sleep Pty. Ltd., which received

approval in 1997 (510(k) Premarket Notification K955841), which was first and foremost a PSG data

collection and visualization software tool, but also included early attempts at automated scoring

of sleep stages, respiratory events and arousals (although, these models were, arguably, primarily

rule-based rather than machine-learning-based at the time). While this and many later models have

been extensively used – and still are – for data recording, management and visualization features, the

scoring of sleep events, including segmentation of sleep stages, is still performed primarily manually.

So what is missing for more automatic models to be adapted in clinical practice? This is a

broad issue with complications in all process steps, from research to adaptation, including many

legislative, economic, technical and ethical barriers, some of which are discussed below. However, a

central postulate of this thesis is that the main limitation for adaptation of most former and current
1https://www.fda.gov/medical-devices/software-medical-device-samd/artificial-intelligence-and-mac

hine-learning-aiml-enabled-medical-devices

https://aicentral.acrdsi.org/
https://www.fda.gov/medical-devices/software-medical-device-samd/artificial-intelligence-and-machine-learning-aiml-enabled-medical-devices
https://www.fda.gov/medical-devices/software-medical-device-samd/artificial-intelligence-and-machine-learning-aiml-enabled-medical-devices
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automatic segmentation models is the insufficient ability to – or lack of proven ability to – perform

robustly under significant clinical variability.

Machine learning models are generally trained and evaluated by collecting and annotating a

(preferably large) dataset. A subset is used to train the model, and the remaining to assess the

model. According to standard learning theory, with some exceptions, such as in online learning

applications, to accurately assess a model’s performance on new data not seen during training, the

training, evaluation, and future data must be sampled from the same data-generating distribution

(Abu-Mostafa et al. 2012).

While all modern machine learning models for medical segmentation follow basic principles of

training and evaluating models on separate splits of a dataset, it is often neglected to study or discuss

the effect that the developed model may not work well in clinical practice, where the observed data

may systematically differ from the data used to train and evaluate the model. It is a fundamental

complexity in machine learning for healthcare that data generated in one clinical site (e.g., where

the training data was collected) may not represent the whole distribution of clinical data, as other

scanners or recording equipment may be used and with different settings on patient cohorts of different

demographical- and disease backgrounds.

Machine learning models, including modern deep learning models, are notoriously sensitive to

even minor shifts in data distributions between the data to which the model was trained and the

data on which the model is later applied. Consequently, a machine learning model trained on even

large datasets collected from one or a few different clinical sites and cohorts cannot necessarily be

expected to generalize to data from patients in other clinical sites (D’Amour et al. 2020; de Bruijne

2016; Kaushal et al. 2020). A clinically robust model, one that generalizes to most of the expected

clinical variability, must either be locally (and preferably easily) adaptable to data from the specific

clinical- site and cohort of interest, e.g., by training a new instance of the model or by employing

fine-tuning of the model or similar so-called transfer learning techniques (see Opbroek et al. (2015) for

an example, and Tan et al. (2018) and Bozinovski (2020) for reviews). Alternatively, the model can

be trained on large, cross-cohort, cross-clinical site datasets representing as much clinical variability

as possible.

In 2018, the United Nations (UN) agencies of the World Health Organization (WHO) and the

Telecommunication Union (ITU) suggested a benchmarking process for evaluating ML/AI models

on external, confidential testing datasets where, quote, Wiegand et al. (2019): "Ideally, test data

will originate from various sources to determine whether the use of an AI model can be generalized

across different populations, measurement devices, and healthcare settings". However, many recent

medical devices do not prove general clinical generalization ability. The commentary article of Wu

et al. (2021) investigated 130 recently FDA-approved AI/ML-enabled medical devices and identified
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several limitations in the evaluation studies on which the approval was based. First, 93 devices

did not publically report the number of geographically distinct clinical sites used to evaluate the

medical device. Although the FDA has this information, it limits the clinical end user’s ability to

judge the clinical resilience of the device. Four of the 41 remaining devices were evaluated on only

one geographical site and eight on only two sites. This is often insufficient because many factors

may vary depending on geographical location, including demographic characteristics, the physical

imaging or recording equipment used to collect data, the preprocessing applied to the recorded data

and more. Secondly, 126 out of 130 devices were evaluated only on retrospective data, which further

limits our ability to study how the devices work on new clinical data and whether the model has

other unintentional effects on the practical clinical process. For instance, if clinicians unintentionally

use the model in ways it was not designed for or if the model biases the clinician’s opinion in an

unintended manner (Parikh et al. 2019).

The inability to prove if a machine learning model, whether presented in a research paper or

a clinically approved product, can perform well in clinical practice despite a high degree of data

variability raises a significant issue, which may limit the general trust and speed of adaptation

of machine learning models in healthcare. This thesis developed new optimization strategies and

machine learning models that emphasize clinical generalizability to advance the clinical adaptation

of machine learning models to segment medical images and time series. It is, however, essential to

note that many other complex boundaries and hindrances also limit the successful adaptation of

medical machine learning models in clinical practice. Other equally significant challenges include the

following (see also Challen et al. (2019), and de Bruijne (2016) for reviews):

• Machine learning models and deep learning models, in particular, are often called black box

methods because they are difficult to interpret. For many medical tasks, it is a strict require-

ment that the end-user of the model, often a medical doctor, can explain to the patient why

a certain decision or diagnosis was made based on the recorded data. For this reason, most

ML/AI Enabled Medical Devices today are computer-assistance tools, which do not attempt

to replace the judgement of the medical doctors but rather provide additional information and

second opinions. For a perspective on these problems and possible solutions, see, for instance,

Rudin (2019).

• Complex bias issues, which include both unintentional model bias in which, for instance, the

developed model underperforms on specific patient demographics, but also the often unclear

effect that the usage of the machine learning model has on medical personnel in clinical practice,

and how this affects the quality of the diagnostic process (Char et al. 2018).

• Machine learning models applied to medical tasks require a low margin for error, often requiring
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levels of accuracy that match or exceed those of human experts performing the same task.

These and other problems were considered in parts of this thesis but were secondary to the main

focus on clinical robustness.



Chapter 2

Objectives

The overarching goal of this thesis was to develop clinically robust automatic segmentation models

for medical images and time series based on recent advances in machine learning. The main objectives

were the following:

1. To develop a task- and scanner-generalizable machine learning pipeline for 3D medical image

segmentation problems that requires minimal manual hyperparameter-tuning when transferred

to new tasks and are statistically- and computationally efficient.

2. To investigate the applicability of fully convolutional neural network models for time series

segmentation problems such as sleep staging, focusing on generalizability across patient cohorts.

3. To develop a clinically robust machine learning model for accurate sleep staging across patient

populations, recording hardware and preprocessing pipelines.

2.1 Defining clinically robust machine learning models

In the context of this thesis, clinical robustness is loosely defined as the ability of a machine learning

model to perform well across variable data collected in clinical practice, or, depending on the con-

text, a machine learning pipeline (here defined as a model, an optimization strategy used to train

this model, and all hyperparameters controlling the model and optimization) that is hyperparameter-

stable. Hyperparameter-stable means the ability of a machine learning pipeline to be applied (i.e., a

new model instance trained to a new set of training data and evaluated on a new set of evaluation

data) to a new task without requiring manual hyperparameter tuning while retaining high perfor-

mance. Here, performance is measured using an overlap metric, such as the F1/Dice score, between

the segmentations output by the machine learning model and manually defined expert annotations

on a hold-out dataset not used for training the model. When available, the model and individual

human experts are compared to a consensus segmentation of a group of human experts to evaluate

the relative performance of the model to human scorers. An absolute performance level regarded as

sufficient for clinical use is not generally defined, as it will vary depending on the specific application.

However, as a rule of thumb, the goal is for a machine learning model to be at least as accurate as

individual human experts compared to consensus scores.
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This thesis explored two different approaches to obtaining clinically robust machine learning

models corresponding to the two definitions of robustness outlined above:

• In Part II (Medical image segmentation), hyperparameter-stable machine learning pipelines

were investigated for medical image segmentation tasks. While a specific instance of a machine

learning model produced by such pipeline for a single task may not itself be transferable with

high performance to new tasks, imaging modalities or patient populations, the stability of the

training pipeline itself would allow (also non-technical) end-users to run the pipeline on their

specific datasets to obtain a model suitable for a given task and to periodically re-train the

model to adapt to continuous data-drift.

• In part III (Sleep staging), it was investigated if a single instance of a model (i.e., the output of

a machine learning pipeline) for the task of clinical sleep staging could become robust to a wide

range of clinical variability by training the model on large and heterogeneous datasets collected

from many sources. By simultaneous training on data from various sources and cohorts without

extensive attempts to standardize the data, the goal was to establish an optimization problem

in which the only feasible solution did not rely on features specific to individual data recording

equipment, patient demographics and more, and which would result in a single model applicable

to a wide range of clinical data without requiring on-site re-training.

If feasible, the latter approach is preferred but requires access to large and heterogeneous datasets,

which may only sometimes be available, in which case the method studied in Part II may be preferred.

In addition, we hypothesized that a machine learning pipeline that performs well across tasks is

likely to perform better under the second scenario of simultaneous training on highly heterogeneous

datasets. The two approaches should, therefore, be studied in conjunction. See Part IV for further

discussions.



Chapter 3

Background material

3.1 Automatic segmentation

An automatic segmentation model is a mathematical function that receives input data on a grid

(for instance, a medical image or volume or a physiological time series recording) and outputs a

segmentation mask. The segmentation mask specifies an integer value representing a segment or

class relationship for each grid position of the input (e.g., each pixel of an image or each time point

of a time series) so that all grid positions that share the same segmentation mask value belong to

the same semantic class. For instance, all pixels in an image with segmentation mask values of 0

may belong to a background class, while others with mask values of 1 and 2 belong to an organ

and tumour, respectively. In this thesis, we consider input data sampled on regular grids, typical of

image data and time series where each time step is sampled at a constant rate, and segmentation

models that are mappings of the form fθ : X → Y parameterized by θ, where X ∈ Rd1×···×C and

Y ∈ Nd1×···×K with d1, d2, ... being one or more spatial dimensions or a single temporal dimension, C

the number of channels, and K the number of distinct segmentation classes. Examples of data with

multiple channels are multi-modal MRI, where the same target is imaged using multiple different

sequences (a group of settings controlling the MRI acquisition) or multi-channel EEG, where brain

activity is recorded from potentially several distinct physical EEG electrode positions simultaneously

(see Background Material section 8.2 below for details).

The segmentation function fθ can generally represent a set of logical rules (often manually pro-

grammed), a statistical model learned from observed examples of data mappings from an input to

a desired output, or some combination of the two, e.g., a rule-based system where some parameters

controlling the rules are learned from data, or where a statistical model is used to refine or improve

the outputs of a rule-based system. Taking image segmentation as an example, early methods (ap-

proximately 1970 to late 1990s) predominantly applied logical rules by processing images first at the

pixel level by applying intensity thresholds, edge-detection filters and region-growing algorithms, on

top of which pre-defined mathematical models of specific shapes of interest could be fitted to detect,

for instance, an ellipsoidal structure of interest. For a review, see, e.g., Pham et al. (2000). These

methods were naturally limited in detecting complex and variable structures, which may be difficult

to model mathematically. In the late 1990s, as larger quantities of digitalized medical data became

available, methods that rely on a library of examples were developed, e.g., active shape models
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(Cootes, Edwards, et al. 2001; Cootes, Taylor, et al. 1995) and atlas registration methods (Maintz

et al. 1998).

In statistical learning or machine learning, one seeks to discover or learn a function which solves

a task of interest on a set of (often labelled) training examples while also being able to predict

accurately new examples not seen before (Abu-Mostafa et al. 2012). Because machine learning

allows the generation of predictive models without requiring explicit programming of task-specific

rules, it became possible to develop, for instance, medical image segmentation models for complex

tasks much more rapidly. However, to successfully learn functions on image data, it was necessary to

compute (typically manually defined) features of the images, which summarize various aspects of the

image into a lower-dimensional vector, which could be used for subsequent tasks such as classification

or segmentation (Remeseiro et al. 2019). For instance, Sobel filters were often used to approximate

the gradient of the image function and detect edges (Sobel et al. 1973), while Gabor filters were used

to detect textures (Gabor 1946). The resulting features could then be clustered, and a histogram

constructed by counting the occurrence of each feature in local regions (patches) of the image.

Combining feature extraction and machine learning led to many successful medical image analysis

applications, such as computer-aided models for breast cancer diagnosis (Suri et al. 2006; Wernick et

al. 2010). However, the manual definition of features may limit the ability to transfer such models to

other tasks or patient populations, and the model’s performance is ultimately limited by the designer’s

ability to define discriminative yet low-dimensional features for a given task (Litjens et al. 2017). For

these reasons, the ability to combine machine learning models with automatic feature learning (also

called representation learning) has been extensively studied (Yoshua Bengio, Courville, et al. 2013).

Since around 2000, deep learning, a sub-field of machine learning focusing on deep neural network

models that apply composites of simple feature extraction functions that together learn progressively

more complex and abstract features (Goodfellow et al. 2016), has been particularly successful. This

success can be attributed to more widespread access to massively parallel computing infrastructure,

increasing available training data, and algorithmic advances (Yoshua Bengio, Lamblin, et al. 2006;

Hinton et al. 2006; LeCun, Bottou, et al. 1998; Rumelhart et al. 1986). Deep learning has seen

several successful applications across domains, including medical image and time series processing

(Faust, Hagiwara, et al. 2018; Hesamian et al. 2019; Razzak et al. 2018). Deep learning contrasts the

manual design of filters for feature extraction by enabling the automatic learning of (compositions

of) convolution filters tailored to a specific task. With sufficient training data and proper tuning of

the model’s approximation capacity to the task at hand, it is thus possible to learn deep models that

approximate complex segmentation functions directly on, for instance, image inputs, sidestepping

the need for manual feature engineering.

However, deep learning has yet to trivialize the development of automatic medical segmentation
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models. Deep learning models may be developed without relying on task-specific expert knowledge

but still benefit significantly from such being utilized in the design and training of a model. Moreover,

determining which task-specific knowledge can be omitted when using deep learning often necessitates

expertise in deep learning models and their optimization instead. For instance, the inductive bias

(a set of imposed underlying assumptions about the unknown target function) of different deep

learning architectures may make them suitable – or not – to learn various problems. Knowledge

of the segmentation problem and data may also reveal helpful in- or equivariance properties that a

model may benefit from, e.g., equivariance to translations or rotations of an object to be segmented

within a large image volume. Expert knowledge may also be necessary to construct loss functions and

evaluation metrics that guide the learning and model selection process to solve a task more effectively.

In general, deep learning models are controlled by a usually extensive set of hyperparameters defining

both the model architecture and optimization, which often requires manual tuning for the resulting

deep learning model to function well.

This thesis explored deep learning architectures and in- and equivariance properties to data

transformations that support efficient learning of clinical robust segmentation models for medical

images and time series to increase model performance and reduce the need for expert knowledge on

deep learning when implementing such systems in clinical practice.

3.2 Medical image segmentation

3.2.1 Convolutional neural networks

A specific deep neural network architecture, the convolutional neural network (CNN), has been

particularly influential for image processing tasks since its invention in 1980 and later when found able

to learn the automatic processing of hand-written digits with previously unseen accuracy (Fukushima

1980; Lecun et al. 1998). Since then, most medical image and time series processing systems based

on machine learning have relied on CNNs. CNNs have been successfully applied to tasks as diverse as

mammography screenings (Hamidinekoo et al. 2018), brain MRI segmentation (Akkus et al. 2017),

liver tumour segmentation (Bilic et al. 2023), ultrasound analysis (S. Liu et al. 2019), classification

of pulmonary tuberculosis (Lakhani et al. 2017), lung nodule segmentation (S. Wang et al. 2017),

positron emission tomography (PET), CT, MRI reconstruction (Lundervold et al. 2019; Reader et al.

2020; Würfl et al. 2016) and several others.

CNNs are highly effective for processing images because they model complex structures in images

as composites of simpler, more local features, similar to how the human visual cortex operates (Hubel

et al. 1968). This is due to their unique architecture, which has multiple inherent inductive biases

useful for the effective processing of data on regular grids such as images:
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1. Local connectivity & parameter sharing: Unlike classical, fully connected neural networks

that implement complete matrix multiplication, CNNs use convolutional layers to implement

local transformations with shared weights. This enables the detection of local patterns in a

translationally equivariant manner. These biases build on the assumptions that spatially close

pixels are more relevant to each other than distant ones and that similar shapes, textures, or

objects can appear in multiple locations within an image and may be arbitrarily translated.

2. Translational invariance: CNNs typically implement pooling layers in addition to convolutional

layers. Pooling layers reduce the dimensionality of the feature maps by aggregating local

features within a pooling region. Typical pooling operations include max-pooling, where the

maximum value in each pooling region is taken as the output. Pooling introduces translation

invariance to minor translations (smaller than the pooling window).

3. Hierarchical feature learning: CNNs are deep compositions of convolutions and (usually) max-

pooling layers which learn progressively more abstract features. The first layer may compute

simple approximations of the first derivative of the image function to detect edges, which in

subsequent layers combine to detect local edges and textures. The convolutions applied in deep

layers may ultimately respond to complex patterns in the input image, such as a tumour.

In combination, the inductive biases of CNN architectures introduce global translation equivari-

ance (i.e., translation of an object in the image over longer distances will result in correspondingly

translated feature maps) and invariance towards more local translation (i.e., feature maps do not

change if the translation is small). The use of convolution operations inherently models the locality of

pixel data in a parameter-efficient way. For further details on CNNs and their historical development,

see reviews by Schmidhuber (2015) and Gu et al. (2018).

3.2.2 Fully convolutional neural networks

Classical CNN architectures were designed to process input data on a regular grid, such as 2D images

or 3D volumes, and produce a single output. Several convolution and max-pooling operations are

applied to the input image to extract a stack of features, which are then flattened and fed into

a fully connected layer for regression or classification. To use CNNs for semantic segmentation,

where all points on the input grid need to be assigned a prediction, most CNNs have historically

been applied to overlapping sub-grids of the input, also known as patches. See Guo et al. (2019)

and Prasoon et al. (2013) for examples. This approach conveniently solves two practical problems:

First, by training on patches, the CNN is exposed to many more unique training examples, as more

patches can be generated from a single image. Early research considered this necessary because
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most medical applications had small training datasets. Secondly, the use of patches addresses the

polynomially expanding computational and statistical complexity of segmenting larger images, as

the size of patches can be kept constant even for large images. This was also considered necessary, as

computational resources, particularly memory on graphics processing units (GPUs), limited the size

of images that could be processed in a single forward pass through the CNN model. The downside

to patch-wise processing is that it restricts the ability of the CNN model to process long-range

dependencies, which could hinder the detection of structures with low local contrast and may lead to

false-positive predictions for pixels far away from the object to be segmented. In addition, the model

has to be applied once for each pixel to segment, which is computationally expensive and wasteful,

as many of the convolutional computations are repeated with each forward pass.

Since 2015, fully convolutional networks (FCNs) have become popular models for segmentation

tasks (Long et al. 2014). FCNs are encoder-decoder networks that initially encode an image through

several convolutional and pooling operations to extract progressively more abstract features of lower

spatial dimensionality, like CNNs. However, unlike CNNs, FCNs do not flatten the extracted feature

maps to produce a single classification. Instead, they perform a decoding step that applies a learned

up-sampling function to project the feature maps back to the input dimensionality to obtain a

semantic segmentation in a single forward pass. A schematic example can be seen in Figure 8.1 of

Paper C and the U-Net papers of Falk et al. (2019) and Ronneberger et al. (2015).

The decoder sub-network applies composites of learned up-sampling functions, typically trans-

posed convolutions, nearest neighbour, or bilinear upsampling, followed by standard convolution

operations. However, because the pooling operations of the encoder sub-network discard some spa-

tial information, the direct learning of the up-sampling function is ill-defined. To overcome this,

networks like U-Net implement skip connections (formulated early, see, e.g., Bishop et al. 1995; pop-

ularized by the ResNet paper of K. He et al. 2016a). By passing feature maps from various levels of

the encoder network to the decoder, which are concatenated with, added to, or otherwise combined

with the decoded feature maps, spatial information may be recovered (Drozdzal et al. 2016). Skip-

connections also enable the automatic learning of what scale the image should be processed because

the relative weight of information passed from skip-connections and features from deeper layers can

be adjusted through the learning process. Finally, skip-connections have been empirically found to

support easier optimization of deep neural networks, which otherwise train slowly and tend to display

accuracy degradation (even on the training set) as large numbers of layers are stacked (K. He et al.

2016a; K. He et al. 2016b; Szegedy et al. 2017).

FCNs are highly effective at image segmentation due to their computational efficiency and ability

to process the entire input image or larger patches in a single pass (up to computational resource

limitations, see below), providing a more comprehensive context. This advantage often allows FCNs
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to outperform standard CNNs. In addition, perhaps surprisingly, despite typical FCNs having mil-

lions of parameters (e.g., around 30 in the default U-Net implementation), FCNs exhibit relatively

high statistical efficiency. The number of required training images varies depending on factors such

as the segmentation task’s complexity, image variability, and the quality of manual segmentations.

For relatively simple tasks, like segmenting organs without lesions in MRI or CT volumes, U-Net-like

models can learn accurate segmentation functions using only 20-40 annotated image volumes (see, for

instance, the cardiac and spleen segmentation tasks of Simpson et al. 2019). However, more complex

segmentation tasks involving lesions or other variable targets may require hundreds or thousands of

examples to achieve robust performance.

FCNs were a primary focus of this thesis because of their proven ability to work well across

diverse tasks in medical images. It is, however, essential to note that concurrently to this thesis,

many other strong candidate models were developed, including various extensions to FCNs and the

U-Net, but also based on a more recent deep learning architecture called the Transformer (Vaswani

et al. 2017). The Transformer has significantly advanced the field of natural language processing and

has seen several adaptations to images (natural as well as medical, see, e.g., Dosovitskiy et al. 2020;

Ze Liu et al. 2021) and time series data (J. Li et al. 2023; Phan, Mikkelsen, et al. 2022). Future

research directions involving a combination of FCN and Transformer architectures are discussed in

Part IV chapter 15.

3.2.3 Efficient segmentation of 3D images

Most FCNs, like the U-Net, were initially designed for 2D image segmentation problems. They are

easily generalizable to N dimensional data by implementing N dimensional convolution, max-pooling,

and up-sampling operations. See, for instance, our Paper C in Part III on U-Nets for 1D time series.

Medical images are often volumetric (N = 3 dimensions) and can thus be segmented using, e.g., a 3D

U-Net (Çiçek et al. 2016). However, processing large 3D volumes is computationally expensive, and

significant GPU memory is required, particularly during training, where the outputs of intermediate

layers must be stored for referencing during backpropagation. Even on modern GPUs, training 3D

FCNs usually requires small batch sizes, downsampled images or reduced model size (e.g., fewer

layers, filters per payer or kernel sizes) to reduce memory consumption, each of which may be sub-

optimal depending on the task. Another approach is to use a 3D FCN model applied to smaller 3D

subsets of the volume (volumetric patches). However, this method inherits some of the limitations

of patch-based segmentation with CNNs discussed above.

3D FCNs have achieved numerous successful applications despite their limitations (Çiçek et al.

2016; W. Li et al. 2017; Milletari et al. 2016), but another popular and viable approach involves

segmenting 3D images using 2D models (P. F. Christ et al. 2016; Norman et al. 2018). This method
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reduces computational overhead while maintaining the statistical efficiency of 2D kernels. For ex-

ample, a 2D model can be applied to each 2D slice along one of the three orthogonal image axes

separately to construct a complete 3D segmentation volume. However, 2D slicing is still a patch-

based method, and although each 2D image displays the entire context along two axes, it provides

no information along the third axis. Various efforts have been made to combine the statistical and

computational efficiency of 2D segmentation models with better utilization of 3D image information.

Popular approaches include using models that observe a small number of 2D slices along the third axis

(sometimes referred to as 2.5D models) (Xia et al. 2020), training multiple 2D models that process

slices from a distinct image axis and ensemble their outputs, training a single model that incorporates

information from multiple planes simultaneously (H. R. Roth et al. 2016), and employing cascaded

model setups where one model generates an initial segmentation based on 2D or downsampled 3D

inputs, which is then refined by a 3D model operating on smaller (full resolution) patches (Isensee

et al. 2018; Jiang et al. 2020; H. Roth et al. 2018). In Part II Paper A, we extend these ideas by

training an efficient 2D FCN model on many randomly oriented image planes simultaneously and

utilizing the imposed rotational equivariance to output ensemble predictions made over multiple view

orientations.

3.2.4 Clinical generalization across cohorts, scanners and tasks

The introduction of CNNs, particularly FCNs, has allowed significantly easier and faster development

of segmentation systems for new medical image segmentation tasks. In contrast to earlier methods

based on programmatic rules, mathematical modelling or manual feature engineering (outlined in

Chapter 1), deep learning segmentation models require little task-specific knowledge to develop.

They are quickly trained on modern massively-parallel hardware. Hundreds of deep learning models

that solve particular segmentation tasks in medical scans acquired on similar hardware and from

a demographically and geographically narrow cohort of people are published yearly. However, as

outlined in Chapter 1, it is often not clear if the developed models transfer to images from other

scanning equipment or different patient cohorts or how the machine learning pipeline (the model and

its optimization routine) transfers to other, but related tasks such as a separate organ or lesion type.

These limitations reduce the clinical adaptation of automatic segmentation systems.

In 2018, the MICCAI conference hosted the Medical Segmentation Decathlon (MSD) challenge

(Simpson et al. 2019). The MSD challenge aimed to identify models and optimization techniques that

support the development of clinically robust machine learning models that can automatically transfer

to different segmentation tasks. The aim of the challenge thus was to encourage the development

of segmentation models that adhere to the first of this thesis’ two definitions of clinical robustness

outlined in section 2.1, in that each model instance does not necessarily need to be robust across
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tasks or cohorts as-is, but the machine learning pipeline that produces it should. The pipeline is

then easily transferable and also applicable in clinical practice where experts on the manual tuning

of machine learning pipelines may not be available.

Teams were invited to develop a machine learning pipeline which could be applied to a new

segmentation task without human intervention and by receiving only a set of labelled training exam-

ples as input. No task-specific information was supplied with each task, and manual tuning of, for

instance, model architecture or optimization hyperparameters was not allowed. The participating

pipelines should generalize as well as possible across ten distinct medical image segmentation tasks;

7 were known to the developers during the first phase of the challenge, and 3 were revealed only in

the second phase after the development systems were locked and evaluated.

No restrictions were imposed on which techniques could be used to obtain a clinically robust

pipeline. Paper A of Part II of this thesis introduces our team’s contribution to the challenge, the

Multi-Planar U-Net (MPUnet) model, described and summarized below. Other groups took different

approaches, the most noticeable of which are described and discussed in the Related Work section 7

of Part II below where the findings of the 2018 MSD challenge paper (Simpson et al. 2019), which

we co-authored, are summarized.

3.3 Sleep staging

3.3.1 The physiology of sleep

Sleep is essential to human health, and abnormal sleep is associated with a wide range of morbidities,

including psychiatric-, neurological- and cardiovascular diseases and stroke (Baandrup et al. 2018;

Chattu et al. 2018; Ponsaing et al. 2017). It is estimated that upwards of 20 % of the Danish

population suffer from sleep disorders such as sleep-disordered breathing (SDB) (P. Jennum et al.

2009). An epidemiological study in the Netherlands reported a prevalence of 5.3 % to 12.2% for each

of 6 major sleep disorders (insomnia, circadian rhythm sleep disorders, parasomnia, hypersomnolence,

restless legs syndrome and SDB, respectively. See Walker et al. (1990), chapter 77, and Sateia

(2014) for definitions) and an overall prevalence of sleep disturbances of 32.1% Kerkhof (2017).

Consequently, sleep disorders constitute one of the most common diseases and impose significant

individual and societal costs (Garbarino et al. 2016).

The sleep cycle is central to sleep physiology and differentiating healthy from abnormal sleep.

During normal sleep, the brain and body transition through multiple distinct physiological phases

called sleep stages. The current standard for sleep scoring defines five different stages of sleep; Wake

(W), non-REM stages 1, 2 and 3 (N1-N3), and rapid eye movement (REM) sleep (Iber et al. 2007).

The sub-classification of non-REM sleep into N1–N3 signifies deeper levels of non-REM sleep. These
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are described in more detail below. Each stage is associated with specific physiological functions, and

during normal sleep, the brain transitions between non-REM and REM sleep in characteristic cycles

of approximately 90 minutes. While significant variation occurs, the canonical sleep stage transition

is Wake → N1 → N2 → N3 → N2 → REM with subsequent cycling between non-REM and REM

stage sleep with increasing duration of REM with each 90 minutes cycle. About 75 % of healthy

sleep is spent in non-REM sleep, with N2 the single most common stage occupying approximately

45 % of the night’s sleep (Feinberg et al. 1979; Patel et al. 2022). The durations, however, vary, with

older people typically getting less N3 sleep and more N2 sleep.

3.3.2 Polysomnography & manual sleep staging

Sleep stages can be objectively detected with reasonable certainty because each stage is associ-

ated with particular physiological activity, which can be picked up using external recording equip-

ment. The gold-standard method for objectively detecting sleep stages and other sleep parameters is

polysomnography (PSG). PSG is a sleep study involving the continuous overnight recording of multi-

ple brain and body signals. See Supplementary Figure C.1 of Paper C for an example. These typically

include neurological activity measured using EEG, eye movement measured using electrooculogra-

phy (EOG), muscle activity measured using electromyography (EMG), heart rate measured using

electrocardiography (ECG) and a range of non-bio-electrical signals such as body temperature and

position. Each variable presents distinct patterns in each stage of sleep, which can, therefore, be

detected and mapped throughout the night.

The number of sleep stages, their corresponding physiological basis, and the rules used to score

them have varied. Rechtschaffen and Kales (R&K) proposed the first standard for sleep stage scoring

in 1968 (Kales et al. 1968). Today, a simplified set of stage scoring rules by the American Academy

of Sleep Medicine (AASM) guidelines are used almost universally (Iber et al. 2007). The standard

defines a set of rules used to score each stage. Stage Wake, which represents the waking state

from full alertness to drowsiness, is primarily determined by the AASM guidelines for adults by the

occurrence of an 8 – 13 Hz sinusoidal activity (the so-called alpha rhythm) in occipital EEG electrodes

(see technical specifications below) when eyes are closed, REMs when eyes are open, and eye blinks.

Stage REM is defined by the occurrence of REMs when the eyes are closed, low baseline EMG

(muscle) tone with transient bursts of EMG activity and so-called sawtooth 2–6Hz visually sharp

or triangular EEG waves. The non-REM stages represent a continuum of decreasing brain activity

and physiological arousal: stage N1 represents the transition from wakefulness to sleep, marked by

a decrease in alpha rhythm frequency (8 – 13 Hz) and an increase in theta activity (4 – 7 Hz) in the

EEG; stage N2 is characterized by the presence of sleep spindles (short bursts of 11-16Hz activity)

and K-complexes (sharp, high-amplitude negative peak followed by a slower positive component) in
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the EEG; and stage N3, also called slow-wave sleep, is characterized by the presence of delta waves

(0.5 – 2 Hz) in the EEG. During non-REM stages, heart rate, blood pressure, and respiration rate

generally decrease, and rapid eye movements are absent. See Supplementary Table C.1 of Paper

C for a brief overview of the characteristics of all five stages. Note that variations to the AASM

guideline are used when scoring sleep in infants (0 – 2 months) and children (from 2 months and

with no strict upper age boundary, see M. Grigg-Damberger et al. 2007).

AASM stages are usually scored in fixed, contiguous segments of 30 seconds. The mapping of

a night’s sleep into sleep stages is called sleep staging. The output of the sleep staging process is a

time-indexed graph with stages on the y-axis called a hypnogram. In manual sleep staging, trained

medical doctors or technicians inspect each 30-second window of PSG data and apply the AASM

rules. If the features supporting two or more stages are present within the same scoring block of 30

seconds, the stage which occupies the majority of the segment is scored.

Technical specifications The AASM guidelines also establish a set of recommendations for which

EEG and EOG channel derivations should be used to score each stage, as well as various technical

and digital specifications such as recommended sampling rate and preprocessing filtering settings.

EEG is generally collected by placing electrodes in specific positions on a subject’s scalp. Typical

positions are defined by the international 10-20 system, in which electrodes are placed at various

fractions of distances on lines between easily located skull landmarks, such as on the nasion-inion

midline (Jasper 1958). Each site is identified with a letter and a number (for instance, C3), which

indicates the area ( where C indicates central) and hemisphere (where the odd number 3 indicates

placement on the left hemisphere). An EEG amplifier records a voltage differential between an

electrode and a common ground electrode, generating a so-called single-ended voltage relative to the

ground. However, because the grounding circuit contains noise, it is often necessary to reference the

single-ended signals by subtracting another electrode’s signal from an active electrode of interest.

As the noise of the grounding circuit is similar in all electrodes, this differential EEG derivation will

approximately remove the noise from all active electrodes (Luck 2014). In the 10-20 system, the

most common reference electrodes are placed on the mastoid bone process behind the left and right

ears, known as A1/M1 and A2/M2, respectively, for contralateral referencing.

An EEG montage describes how EEG electrodes are placed and referenced. The AASM guidelines

specify suitable montages for visual sleep scoring. For example, they recommend recording at least

three EEG derivations, preferably F4-M1, C4-M1, and O2-M1, to cover frontal (F4), central (C4),

and occipital (O2) activity. Additionally, it is recommended that the EEG signals be sampled at a

minimum of 200 Hz, with a preference for 500 Hz, although the signals can be visually inspected after

downsampling. A band-pass filter of 0.3Hz to 35 Hz should also be applied during preprocessing.
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It was, however, a primary focus of our work on automatic sleep staging, introduced in Papers C

and D of Part III, that our U-Time and U-Sleep models should be able to function with much less

rigorously defined and standardized EEG montages, e.g., where only a single or few EEG electrodes

are required, and sample rates and filtering settings may vary between recordings.

3.3.3 Diagnosing sleep disorders

Clinical PSG and the subsequent extraction of sleep stages and other sleep-related events are valuable

because they enable a relatively objective analysis of potential disruptions to the normal sleep cycle.

As a result, various sleep disorders can be diagnosed based on how they interfere with normal sleep

physiology and cycles. Factors that may be affected by a specific disorder include the circadian

rhythm, the ability to fall asleep, maintain sleep, and wake up, transitions between sleep stages,

the duration of each sleep stage, and the overall development of sleep dynamics throughout the

night. For example, narcolepsy, a prevalent hypersomnia disorder, is characterized by excessive

daytime sleepiness and abnormal REM sleep patterns. In the case of narcolepsy type 1, the disorder

is likely caused by a loss of neurons in the hypothalamus that produce the sleep-cycle regulating

neuropeptide orexin. This loss of neurons disrupts the normal sleep-wake balance, leading to the

symptoms associated with narcolepsy, which can be objectively diagnosed by scoring sleep stages in

a so-called Multiple Sleep Latency Test (MSLT) or "daytime nap study". In an MSLT, the patient

takes five regularly scheduled daytime naps in a bed with the lights turned off. Two of the diagnostic

criteria for narcolepsy are an average sleep latency of ≤ 8 minutes (the time from lights are turned

off to the occurrence of the first non-wake stage of sleep) and at least two so-called sleep-onset REM

periods (SO-REMs), which are transitions directly from stage Wake into a REM period (as defined

by the AASM International Classification of Sleep Disorders, Sateia 2014).

Other disorders can be detected through characteristic changes in sleep physiology. For instance,

people with REM sleep behaviour disorder will move and act out dreams instead of lying still, which

may be detected by looking for abnormal body movement during the REM sleep stage. Sleep apnea

and other sleep-related breathing disorders, in which prolonged breathing interruptions occur several

times per hour, will be visible in the recordings of chest movement, sound (snoring), and blood

oxygenation levels.

3.3.4 Limitations of the AASM guidelines and manual scoring

While the AASM guidelines are widely used and have contributed significantly to standardizing

sleep medical practice, there are several issues with the current standard for scoring sleep stages. As

summarized in the concluding remarks of Silber et al. (2007) (p. 129) in the introductory paper for
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the new AASM guidelines for visual scoring developed by the AASM-appointed Visual Scoring Task

Force in 2004 – 2005: "No visual based scoring system will ever be perfect, as all methods are limited

by the physiology of the human eye and visual cortex, individual differences in scoring experience,

and the ability to detect events viewed using a 30-second epoch". Some well-known limitations are:

• Visual scoring of high-frequency 1D signals is not intuitive for most individuals and requires

extensive training. While the ability to score accurately according to the AASM guidelines

varies with experience, even experienced scorers are subject to significant inter- and intra-scorer

variability (Danker-Hopfe, Anderer, et al. 2009; Danker-Hopfe, Kunz, et al. 2004; Drinnan et al.

1998; Rosenberg et al. 2013). Ambiguities and room for interpretation often arise in practice,

particularly when recorded data is noisy or otherwise difficult to evaluate.

• Another significant source of uncertainty is the arbitrary segmentation of continuous sleep

physiology into precise (usually) 30-second blocks, called epochs. Determining how to assign a

single sleep stage to an entire segment when a sleep stage transition occurs mid-epoch can be

challenging, and the agreement of human scorers tends to decrease near sleep stage transitions

(Kim et al. 1993). The current standard does not support scoring transient sleep stages shorter

than 30 seconds. This restriction to scoring in 30-second epochs limits diagnostic precision, as

sleep stage durations might be over- or under-estimated, and our ability to study microsleep

patterns in the sub-30-second domain may vary between healthy and diseased cohorts (St

Kubicki et al. 1996).

• The AASM guidelines primarily describe sleep in healthy individuals, with limited applicability

to those with brain disorders, such as Alzheimer’s or stroke, which significantly alter typical

brain activity and EEG recordings (Finnigan et al. 2013; Ju et al. 2014). This complexity and

ambiguity make it challenging to apply standard scoring rules in such cases. Lower inter-rater

agreement between expert scorers has been observed when scoring data from patients with

Parkinson’s disease compared to the overall agreement (Danker-Hopfe, Kunz, et al. 2004).

• Due to the repetitive nature of manual scoring, it is an error-prone process, with the potential

for scoring fatigue affecting the results.

• Manual scoring is time-consuming, as discussed in the Motivation chapter 1. This limitation

can impact the efficiency and scalability of sleep stage analysis in both research and clinical

settings.

Automatic or computer-assisted sleep staging has been suggested to overcome some limitations.
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3.3.5 Automatic sleep staging

Attempts to develop tools that assist or automate sleep staging have been made since the beginning

of digitalized sleep recordings (Bob Kemp 1993; Penzel et al. 1991; Thomas Penzel et al. 2000).

Virtually all work between 1970 and 1990 aimed to implement computational pipelines that carefully

mimicked the manual scoring process (the R&K scoring rules, widely accepted at the time Kales et

al. 1968). First, the EEG, EOG and EMG recordings were preprocessed to remove artefacts, isolate

or suppress specific frequency ranges, and extract features. It was not feasible to directly model

sleep stages from the raw, high-frequency recordings due to computational, statistical (e.g., lack of

digitalized, annotated data) and algorithmic limitations (e.g., neural networks specialized for long

sequence data, such as recurrent- or convolutional neural networks, were not yet invented). The most

common feature extraction was based on spectral analysis using the fast-Fourier transform (FFT)

algorithm to quantify the frequency components of the recorded signals within each scoring window.

Nearly all systems would measure the average amplitude of alpha- and delta waves (8 – 12 Hz & 0.5

– 4 Hz, respectively) and count occurrences of sleep spindles (bursts of 11 – 16Hz activity during N2

sleep) from the EEG recordings, as well as quantify eye movements and muscle activity in EOG and

EMG (Berry et al. 2015; Hasan 1996). Sleep stages would then be inferred from these features using

statistical models or rule-based systems designed to follow the R&K guidelines as closely as possible.

Several such systems were developed and often evaluated on relatively small (5 – 10 individuals)

healthy cohorts. For examples, see Martin et al. (1972), Agnew Jr et al. (1967), Hasan et al. (1993)

and Roessler et al. (1970). All methods from this time suffered from the same problem: They were

brittle and difficult to apply in practice to new data, as the parameters controlling the preprocessing,

feature extraction, and rule-based classification system were largely hand-crafted and required re-

tuning for the system to adapt to new signal characteristics, artefacts and recording hardware (Bob

Kemp 1993). Together with – at the time – high computational costs and relatively low accuracy,

these systems never saw widespread clinical adaptation.

Following the general trend of the development of machine learning outlined in Chapter 1 above,

through the 1990s, automatic sleep staging systems increasingly started to implement neural networks

(or other classifiers, e.g., support vector machines, random forests, gaussian mixture models or various

linear models) to model the mapping from extracted features to sleep stages, thus replacing the

fragile, rule-based classification with a function learned from a set of supervised examples (Grözinger

et al. 1995; Pfurtscheller et al. 1992; Principe et al. 1989). While this paved the way for promising

improvements in scoring accuracy, these early neural-network-based systems still relied on manually

defined input features and still suffered from a lack of robustness towards input data variability

(Robert et al. 1998). Nonetheless, recent studies have refined and used the strategy of extracting
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time- and frequency domain features for subsequent classification using supervised machine learning

models. See, for instance, Boostani et al. (2017).

Another prominent example of a successful application of manual feature extraction and subse-

quent machine learning classification is the recent sleep staging extension to the well-known YASA

sleep analysis software package (https://github.com/raphaelvallat/yasa) (Vallat et al. 2021).

This sleep stager was developed concurrently with our U-Sleep model described in Paper D of Part III

with a similar focus on clinical robustness. The algorithm first extracts a set of expert-defined time-

and frequency domain features in windows of 30 seconds from a single EEG (and optionally EOG

and EMG) channel, from which sleep stages are classified using a LightGBM (a gradient boosting

decision tree, Ke et al. 2017) model. While U-Sleep was found to perform slightly better than YASA

on sleep-disordered patients in Vallat et al. (2021), the YASA has other benefits, such as being more

easily interpretable because of the manual definition of input features as compared to deep learning

models like U-Sleep.

Since around 2010, the development of automatic sleep staging models has seen increasing use

of recurrent neural networks (RNNs, Rumelhart et al. 1986, and more often their later extension to

long short-term memory models, LSTMs, Hochreiter et al. 1997) and CNNs that process raw input

signals directly. For a review, see (Fiorillo, Puiatti, et al. 2019). Given sufficient labelled training

data, these neural network architectures can learn direct mappings from the raw input signals to

sleep stages (although the signals are often preprocessed by re-sampling to lower sample rates and

band-pass filtered to isolate relevant frequency bands as recommended by the AASM guidelines).

This ability makes the development of automatic sleep stagers significantly more accessible and

faster. Learning the scoring function from raw, annotated data examples also allows for discovering

better solutions. It is, in theory, possible that a machine learning model learns a much simpler, more

robust mapping from EEG signals to sleep stages, which is difficult to detect visually or otherwise

unintuitive to humans and, therefore, has not been previously discovered with manually defined

feature-based learning or manual scoring. However, modelling sleep stages from raw, high-frequency

input signals increases the risk of model overfitting. Larger training datasets are usually required to

develop models that operate on the raw input signals compared to manually defined features.

Prominent examples of neural network models applied successfully to raw signals include the work

of Supratak et al. (2017), which developed the DeepSleepNet model. DeepSleepNet combines both

an RNN and CNN into one model. First, a CNN sub-network extracts feature maps from the input

signal. These features are then input to a bi-directional LSTM sub-network that outputs the predicted

sleep stage sequence. The intention is to let the CNN sub-network extract, in a computational- and

statistically efficient manner, time equivariant feature maps that summarize the essential information

of the long, high-frequency inputs from which the RNN explicitly models the temporal transitions of

https://github.com/raphaelvallat/yasa
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sleep stages. DeepSleepNet scored two different datasets accurately with overall overlap macro F1

scores (the unweighted average of F1 scores computed for each stage individually) of 0.72 – 0.80, a

performance likely comparable to human experts, using only single EEG channels as input. These

results showed a significant potential to assist or automate sleep staging while simplifying the PSG

setup (e.g., for home-testing or wearable devices), which usually involves in-hospital recording using

several EEG electrodes. However, the original DeepSleepNet model was individually trained and

evaluated on relatively small datasets of 50–100 PSG records and on single EEG channels, making it

unclear if the developed models transfer with high performance to other cohort demographics, other

EEG channels, or other recording equipment without re-training.

Biswal, Sun, et al. (2018) also proposed a combined RNN and CNN model but interestingly used

(in addition to raw EEG in other experiments) spectrogram representations of the EEG signals as

input for the initial CNN sub-network. This model was trained and evaluated on two large cohorts

of 10,000 and 5,804 PSGs, respectively, and was, likely, the sleep staging model to date trained on

the largest and most diverse set of clinical PSG data. Notably, the authors also performed cross-

cohort experiments, where their model was trained on one of the two cohorts and evaluated on the

other, and one model was trained on both cohorts simultaneously. Such experiments are essential to

assess the expected performance in clinical practice and were missing from most previous studies of

automatic sleep staging. When trained and evaluated on the largest dataset, their CNN+RNN model

had an average Coheen’s Kappa (Cohen 1960) coefficient of 76.4 (2 input channels). When training

and evaluated on the smaller dataset, the score was 73.4 (2 input channels). When training on the

larger dataset and assessing on the smaller, the model scored 73.2, i.e., comparable performance to

the model trained and evaluated on the smaller dataset. Oppositely, when trained on the smaller

and assessed on the larger dataset, the model scored slightly lower at 69.2, down from 76.4 for the

model trained and evaluated on the larger dataset. When simultaneously trained on both datasets,

the model scored 74.2 on the smaller and 77.8 on the larger datasets, respectively, thus performing

better than each of the two models trained only on the individual cohorts. This critical experiment

showed that even if a neural network model is trained on thousands of PSGs (as in the case of the

smaller dataset), such a cohort may not contain enough variability to facilitate learning a model that

generalizes with similar high-performance to other clinical cohorts. However, pooling heterogeneous

datasets from different sources appeared to be a potential future direction for developing clinically

robust automatic sleep stagers. These points were recently reiterated by Fiorillo, Monachino, et

al. (2023), who found (based on experiments using our U-Sleep model, see Part III, Paper D) that

training models on even extensive and heterogeneous datasets (in terms of variability in demographics

and diseases represented) but collected from only single clinical site is itself insufficient to ensure solid

clinical generalization to other clinical sites.
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In Part III, Paper D specifically, although also focussing on the validation of the use of fully con-

volutional neural network architectures, inducing model invariance to input EEG and EOG channels

variability, and the ability to perform high-frequency sleep staging, we built upon the essential ideas

of Biswal, Sun, et al. (2018) when developing our U-Sleep model, an automatic sleep stager trained

on extensive, heterogenous data from 16 independent clinical studies.

3.3.6 Segmentation of time series with CNNs

In this thesis, we consider time series in PSG data where all time steps are regularly sampled, i.e.,

EEG (and other) physiological signals are sampled or re-sampled at a uniform rate throughout the

night. In sleep staging, the goal is to score sleep stages in contiguous, fixed-length segments that

span the entire input signal together. Consequently, while often not described as such, sleep staging

is a segmentation task as defined in the Background Material section 3.1 above.

Because segmenting a time series on a regular grid is equivalent to segmenting a one-dimensional

image, this thesis aimed to modify image segmentation models to the 1D setting to leverage the

advances described in the Background Material section 3.2 above and in the enclosed papers of Part

II. Specifically, we studied the applicability of FCNs for time series segmentation tasks exemplified

by sleep staging. Time series have traditionally been thought to be better suited for processing

by sequence models, such as RNNs, when using deep learning techniques. RNNs explicitly model

temporal relations and naturally handle variable input and output length data. However, for tasks

like sleep staging where the input data is (or can be) sampled on regular grids, and there exists a

fixed ratio between the input and output sequence lengths, CNNs are a viable alternative.

The inductive bias of translational equivariance in CNNs is also typically advantageous for time

series tasks. This is because similar sequence components and events are likely to occur at arbitrary

positions along the time series and should be detected independently of their location. Additionally,

CNNs, like RNNs, can learn long-range temporal features when designed with a sufficiently deep

architecture. In the early layers of the network, time series data are processed locally, while the

receptive field (the region of the input sequence from which values affect a convolution operation

at a given layer) grows polynomially with depth. The precise theoretical growth of the receptive

field is determined by factors such as kernel sizes in each convolution layer, the stride of convolution

operations, the width of any potential pooling operations, and the possible use of dilated convolutions.

Dilated convolutions involve, figuratively, the insertion of spacing between kernel weights to convolve

over greater distances in the input. It is important to note that the effective receptive field is always

smaller than the theoretical (see Luo et al. 2017). See Paper C of Part III for an example of how these

parameters can expand the receptive field of an FCN. Ultimately, convolutions in the deep layers of

a CNN can extract complex features (due to the hierarchical feature learning properties of CNNs, as
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previously discussed in the context of images) spanning long ranges in the input sequence. In practice,

it is often challenging to optimize RNNs to respond to very long-range dependencies (Yoshua Bengio,

Simard, et al. 1994). Additionally, CNNs, as feed-forward networks, are generally easier to optimize

compared to RNNs, which frequently encounter vanishing and exploding gradient problems (Pascanu

et al. 2013). Lastly, CNNs tend to train more quickly due to their non-sequential computations, which

permit greater parallelization, unlike the intrinsically sequential nature of RNNs.

In summary, the inductive biases of CNNs, which make them well-suited for image processing,

also apply to several time series tasks (Bai, Z. Kolter, et al. 2018; Zhuang Liu et al. 2022). Given

their proven track record in image segmentation, we hypothesised that FCNs could also serve as

strong candidate models for the time series equivalent of sleep staging. However, a critical technical

difference between EEG time series segmentation for sleep staging and medical image segmentation

lies in the fact that sleep stages usually span multiple input time points (with one stage typically

scored for every 30 seconds of signal, which may be sampled at hundreds of Hertz), while image

segmentation masks generally have a direct point-to-point correspondence with the input image. In

Part III, Paper C, we introduce and discuss solutions to bridge this gap.

3.3.7 High-frequency sleep staging

As outlined above, both the original R&K- and current AASM visual sleep scoring guidelines are

limited to scoring sleep into discrete, contiguous blocks of (typically) 30 seconds of length, thus not

fully accounting for the continuous and complex nature of the underlying brain physiology. Most

automatic sleep scores have inherited this restriction because they were rule-based systems designed

to mimic these standards as closely as possible or because expert-generated labels derived from

humans following these same rules were used to train a supervised machine learning classification

model.

Numerous sleep and brain disorders are known to impact sleep patterns on short time scales,

also called sleep microarchitecture. These disorders include narcolepsy (Ferri, Miano, et al. 2005),

Parkinson’s disease (Priano et al. 2019), sleep-disordered breathing (Chan et al. 2020; Kheirandish-

Gozal et al. 2007), epilepsy (Halász et al. 2002), and others, which affect, for example, the cyclic

alternating pattern (CAP) – a key component of sleep microarchitecture characterized by periodic

EEG activity in NREM sleep with alternating phases of brain activation (Parrino et al. 1998; Terzano

et al. 2002). It is, therefore, reasonable to hypothesize that a sleep staging model capable of extract-

ing sleep stages at higher frequencies could serve as a valuable tool for detecting novel sleep (EEG)

biomarkers (Péter Halász et al. 2004; Hasan 1983; H. Koch, Poul Jennum, et al. 2019). In a broader

context, there is growing interest in employing machine learning or other data-driven approaches to

discover new representations of sleep that do not reduce the intricate physiology of sleep into discrete
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blocks, thereby promoting the identification of novel biomarkers. One example is using "hypnoden-

sity" plots, probabilistic-like hypnograms of epoch and stage-wise confidence scores generated by a

machine learning model, as suggested by Stephansen et al. (2018) for diagnosing narcolepsy patients.

Some of the earliest works on automatic sleep staging, such as those based on spectral analysis

outlined above, were designed to overcome precisely the issue of fixed-length window segmentation.

So-called adaptive segmentation dynamically shrinks or expands the scoring windows to match rele-

vant parts of the input that adheres to some rules concerning the signal characteristics. For instance,

a moving window may be compared to a stationary window positioned at the beginning of a new

segment, and once a certain measure of dissimilarity between the two windows crosses a pre-defined

threshold, a new segment is defined. These methods were studied in depth and often among the

primary motivations behind developing an automated stager in the first place (St. Kubicki et al.

1989). Creutzfeldt et al. (1985), although for the more general analysis of clinical EEG, not specifi-

cally during sleep, further went on to detect groups of similar (adaptively detected) segments using

unsupervised cluster analysis techniques. In principle, similar techniques could be applied to sleep

EEG to detect adaptively sized sleep stage segments and redefine a new set of sleep stages in an unsu-

pervised data-driven manner, for instance, in critically ill patients where the normal five sleep stages

no longer apply or are difficult to score. However, both the adaptive segmentation and subsequent

cluster analysis depend on several parameters that will ultimately control the number and nature of

discovered groups of stages, which may be difficult to determine objectively without a solid physio-

logical hypothesis. This is not often the case in many patient groups where sleep stages are poorly

defined and understood. More broadly, the definition of sleep and how it is studied and diagnosed

relies on the current sleep scoring standard, which defines five stages in 30-second blocks. Going

towards shorter segments and potentially other stages is thus a fundamentally complex problem.

Since the advent of machine learning, most attempts to archive high-frequency sleep staging have

included shortening the time window for feature extraction or applying neural network classifiers in

sliding windows over the signal. Both methods have limitations. In the former case, the computed

features, e.g., time- and frequency domain features, may be noisy or ill-defined at shorter time scales

and do not account for potential long-range dependencies. The latter sliding window approach may

smooth out stage transition boundaries and transient sleep stages. A better approach would be

to train supervised models on manually defined labels scored in shorter segments. However, this

approach is also fundamentally complex because humans remain restricted to scoring according to

the AASM guidelines.

None of the described approaches has convinced the medical community to break away from

fixed-length scoring, and manual scoring, even today, remains limited to 30-second intervals. In Part

III, Papers C and D, we propose another way to model high-frequency sleeping patterns by fitting
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fully convolutional neural networks that, per default, score in 30-second intervals and are supervised

by the standard 30-second labels yet learn an implicit, intermediary representation of sleep, from

which scores may be generated at inference time at a higher frequency. We further study these

high-frequency stages’ potential clinical and diagnostic information in Abstract E and Manuscript F.

3.3.8 Spatial sleeping patterns

Traditionally, sleep has been regarded as a global and top-down brain phenomenon in which a sleep

regulatory network imposes sleep on the entire brain. This perspective is reflected in the visual

scoring of sleep stages, where a single sleep stage is assigned to each segment of brain and body

recordings. The concept of sleep as a global state has been, and remains, essential for understanding

sleep in both health and disease. This is because global metrics, such as total sleep time, sleep

efficiency, and the percentage of time spent in each sleep stage, tend to exhibit systematic variations

that establish well-defined diagnostic criteria for various sleep disorders (Sateia 2014).

Global sleep, however, is likely an oversimplification of the underlying brain and body physiol-

ogy of sleep. Accumulating evidence suggests that sleep can also be regarded as a local or spatial

phenomenon, wherein individual neuronal networks may exhibit distinct activity and sleep patterns,

allowing different regions of a sleeping individual’s brain to potentially be in different sleep stages

simultaneously (J. Krueger et al. 2019; J. M. Krueger et al. 2008; Siclari et al. 2017). From the

local sleep perspective, the characteristics of whole-organism level sleep arise from synchronizing the

states of multiple local networks.

Local sleep is a well-established phenomenon in other species, such as the characteristic uni-

hemispheric slow-wave sleep observed in dolphins (Mukhametov et al. 1977) and several bird species

(Mascetti 2016), where one hemisphere of the brain sleeps while the other remains awake. Similar

observations have been made in rats, where local cortical areas enter slow-wave sleep after extended

wakefulness (Vyazovskiy et al. 2011). In humans, regional differences in slow-wave activity have been

observed in EEG recordings along the anteroposterior cortical axis (De Gennaro, Ferrara, Curcio,

et al. 2001; De Gennaro, Ferrara, Vecchio, et al. 2005). Sleep spindles, another marker of non-REM

sleep, have also been found to occur locally (Nir et al. 2011). Overall, local sleep may offer valu-

able insights for understanding sleep disorders. For example, insomnia disorder has been proposed

to involve a desynchronization of local sleep-wake activity, with some regionally specific neuronal

structures exhibiting wake-like activity while others display NREM activity (Buysse et al. 2011).

Because the U-Sleep automatic sleep staging model, described in Paper D of Part III, was trained

to score sleep stages using any EEG electrode as input, it raises the intriguing question of whether

spatial sleep staging patterns can be observed by applying the model to various physical EEG elec-

trode positions. It is important to note that the U-Sleep model was not explicitly designed for
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this purpose. On the contrary, it was optimized to induce invariance to channel EEG positions,

outputting the same sleep stage regardless of the EEG input. However, this invariance was only ex-

plicitly imposed when scoring in typical 30-second intervals. Manuscript F of Part III demonstrates

that the similarity between sleep stages scored by U-Sleep in different EEG electrodes decreases as

the frequency of stages increases. Manuscript F and the Future Directions chapter 15 discuss the

potential and limitations of studying spatial sleep patterns as output by models like U-Sleep.



Chapter 4

Summaries of papers and manuscripts

4.1 Medical image segmentation

Our work on medical image segmentation is presented in Part II. The primary goal was to develop a

machine learning pipeline (a model and its optimization procedure) that can be transferred between

medical image segmentation tasks, clinical cohorts and scanners without requiring manual hyperpa-

rameter re-configurations. Such a system would be clinically robust according to the first definition of

section 2.1 because it can easily be re-trained to any specific clinical task of interest without requiring

expert knowledge of how to develop machine models. Part II contains two published manuscripts,

summarized below in chronological order.

4.1.1 Summary of Paper A

One Network To Segment Them All: A General, Lightweight System for Accurate 3D Medical Image

Segmentation (Perslev, Dam, et al. 2019), was published at the 2019 Medical Image Computing and

Computer Assisted Intervention (MICCAI) conference. In this work, we developed the Multi-Planar

U-Net (MPUNet), a fully convolutional neural network (FCN) based on the U-Net architecture for

cross-task medical image segmentation (Falk et al. 2019; Ronneberger et al. 2015). The defining

feature of the MPUNet is its multi-planar data augmentation technique, in which large sets of

2D image planes are sampled from several random view orientations onto the 3D data to train

a parameter-efficient 2D model while utilizing most of the available information in the labelled

training data. Using the induced rotational equivariance property of the augmentation scheme, the

MPUNet can be applied multiple times along different views when segmenting new scans to establish

a single-model ensemble-like prediction of higher quality.

The MPUNet was developed to participate in the 2018 Medical Segmentation Decathlon (MSD)

challenge (see section 3.2.4 and Simpson et al. 2019) in which participating teams should develop ma-

chine learning pipelines that could automatically solve ten highly variable segmentation tasks across

MRI and CT scans. The MPUNet, although using a fixed model architecture and hyperparameter-

set and thus not relying on compute-intensive automatic hyperparameter experiments, ranked 5th

and 6th place in the first- and second phases of the challenge, respectively. Empirically, we found the

MPUNet robust across tasks even without hyperparameter modifications because it rarely overfitted

due to the multi-planar data augmentation mechanism. Consequently, it was possible to use a single

37
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fixed model with a high approximation capacity, which could solve most medical segmentation tasks,

yet rarely encounter significant overfitting issues. This strategy was to utilize that even small labelled

datasets of medical image volumes contain large amounts of information compared to the number of

free parameters of a 2D model, which operates on input data sampled at a lower dimensionality.

4.1.2 Summary of Paper B

Cross-Cohort Automatic Knee MRI Segmentation with Multi-Planar U-Nets (Perslev, Pai, et al.

2022) was published in the Journal of Magnetic Resonance Imaging. While the MPUNet model was

developed and evaluated for cross-task performance in Paper A, Paper B assessed the performance of

the MPUNet for the specific task of knee cartilage segmentation but across clinical cohorts and MRI

scanner sequences. The MPUNet was applied without further modifications to its architecture or

hyperparameters across three clinical cohorts imaged under different MRI protocols. It was compared

to the previously evaluated Knee Imaging Quantification (KIQ) framework and a state-of-the-art deep

learning-based system for knee cartilage segmentation. It matched or exceeded their performances

for all cohorts. The MPUNet was also evaluated for cross-cohort training. A single instance of the

model was trained on images from two cohorts of variable MRI sequences simultaneously without

losing significant performance on the individual cohorts. The last experiment highlighted a promising

path to obtaining clinically robust segmentation systems by training on large and varied datasets

pooling multiple cohorts imaged under different protocols, an idea we also pursued in sleep staging

in Paper D below.

4.2 Sleep staging

Our work on automatic sleep staging is presented in Part III. The primary goal was to develop a

machine learning model that accepts as input variable PSG data from arbitrary clinical cohorts,

clinical sites and data recording pipelines and outputs an (optionally high-frequency) hypnogram

as accurate as those scored by human experts. Part III contains two published manuscripts, one

published conference abstract and one non-published manuscript, summarized below in chronological

order.

4.2.1 Summary of Paper C

U-Time: A Fully Convolutional Network for Time Series Segmentation Applied to Sleep Staging (Per-

slev, Jensen, et al. 2019), was published at the 2019 Conference on Neural Information Processing

Systems. In this work, we proposed the U-Time model, an FCN for time series segmentation based on

the U-Net architecture initially proposed for image segmentation. U-Time maps input sequences of
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arbitrary length to sleep stages of variable frequency. This is done by implicitly classifying each input

signal from which final output stages are produced by aggregating these high-frequency scores over

fixed-length intervals. Based on the proven ability of the U-Net to learn highly variable image seg-

mentation tasks and our findings in Papers A and B (see Part II), we hypothesized that an FCN-based

sleep staging model could be a robust candidate model type for clinical cross-cohort sleep staging.

FCNs are generally able to learn complex segmentation functions, and being fully feedforward archi-

tectures easier to optimize than, for instance, recurrent neural networks, which were typically used

at the time. As such, a primary focus of the work was on the so-called hyperparameter stability of

the proposed model. That is, to evaluate the performance of a U-Time model with fixed hyperpa-

rameters when trained and assessed across several distinct clinical cohorts. Across seven datasets,

U-Time reached a high performance comparable to other models that were hyperparameter-tuned

explicitly for the individual datasets. U-Time was compared to the state-of-the-art DeepSleepNet

model (a mixed RNN+CNN model) when also applied with fixed hyperparameters (Supratak et al.

2017). The CNN+RNN model was more sensitive (more significant drops in performance) to cohort

changes and would thus require manual tuning to be used in practice.

In conclusion, Paper C showed that FCN models are suitable for time series segmentation tasks

such as sleep staging and may be more hyperparameter-stable than other sequence models that were

popular at the time, such as CNN+RNN models. In combination with the ability of U-Time to

output scores at a higher frequency at prediction time, although not quantitatively studied in Paper

C, U-Time seemed a strong candidate for developing a clinically robust sleep staging model, which

could overcome several of the limitations of the preceding automatic sleep stage systems described

in the background material in Part 3.3 below.

4.2.2 Summary of Paper D

U-Sleep: Resilient High-Frequency Sleep Staging (Perslev, Darkner, et al. 2021), was published at npj

Digital Medicine in 2021. The paper’s primary objective was to extend upon the findings of Paper C

and train a clinically robust version of the U-Time model, which can be applied to variable PSG data

from arbitrary clinical cohorts, clinical sites and data recording pipelines. The resulting model, called

U-Sleep, was simultaneously trained and evaluated on PSG data from 15,660 unique patients of 16

independent clinical studies. The resulting training dataset was the most extensive and heterogeneous

PSG data ever used to train a machine learning model. It included data from both healthy individuals

and (mostly sleep-disordered) patients of diverse demographics in dispersed geographical locations

(although mainly in the USA) recorded using variable hardware through several decades (1988 –

2018). Because of the ability of U-Time to perform robustly across datasets, it was hypothesized

that a larger version of the U-Time model could learn a suitable average representation of sleeping
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patterns that may not score perfectly on each dataset but has stable performance in a wide range of

practical, clinical scenarios.

The U-Sleep model was trained on randomly sampled batches of data from across all datasets,

which were minimally preprocessed, as well as randomly selected input EEG and EOG channel

combinations in each batch, without providing information on the origin, channel derivation or other

data characteristics to the model, inducing strong invariance towards a wide range of input data

variability. Surprisingly, the resulting model could not only score most cohorts accurately using

nearly any combination of input EEG and EOG channel derivations but even outperformed multiple

other models on two datasets from new clinical sites not seen during training, despite the other

models being explicitly trained on data from those sites. When compared to the consensus scores of

five human experts, U-Sleep scored at least as accurately as the best of the five experts on healthy

and sleep-disordered subjects.

The ability of U-Sleep to score sleep stages at higher frequencies was investigated. Specifically,

we tested if scores computed at higher frequencies carried additional information allowing the sepa-

ration of healthy individuals from patients with obstructive sleep apnea. By computing sleep stage

transition triplet frequency features and fitting a random forest model, we found that the classifi-

cation performance increased significantly with sleep staging frequency. While not proving a direct

connection between the high-frequency outputs of U-Sleep and the underlying sleep physiology, these

experiments showed that the scores contain some information which may support future biomarker

development.

4.2.3 Summary of Abstract E

Automatic detection of abnormal sleeping patterns in stroke patients using high-frequency sleep stag-

ing (Perslev, West, et al. 2022), was published in the 2022 Sleep Europe conference proceedings.

A set of preliminary experiments were conducted with the U-Sleep model developed in Paper D to

investigate its performance on acute stroke patients and if its high-frequency sleep stages contain ad-

ditional information to separate acute stroke patients from the control of healthy and sleep-disordered

individuals. While U-Sleep was extensively evaluated in Paper D, the datasets did not contain many

PSGs from patients with severe brain disorders like stroke. Because EEG recordings from acute

stroke patients are significantly different from the regular and more complex, scoring sleep stages in

stroke patients, even for human experts, is challenging (Cohn et al. 1948; Jordan 2004). Evaluating

U-Sleep on stroke patients was thus performed to investigate its worst-case performance.

Across 233 PSGs from stroke patients in the acute- or sub-acute phase, U-Sleep scored stage Wake

similarly to healthy individuals, whereas stage REM was scored with below typical performance.

Non-REM stage sleep was scored accurately when grouping stages N1, N2, and N3 but significantly
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less accurately on the individual stages. This was, however, in some cases due to human annotators’

inability to score the separate stages.

In line with the observations of Paper D, high-frequency sleep stages facilitated more easily

separation of stroke patients from the control cohort, strengthening the hypothesis that U-Sleep’s

high-frequency scores contain information lost in the typical 30-second scores. However, as in Paper

D, these experiments did not reveal if the scores reflect underlying physiology or if their variations

between cohorts represent, for instance, model uncertainty on complex cases.

4.2.4 Summary of Manuscript F

U-Sleep v2: Single-Channel, High-Frequency, and Spatial Sleep Staging for Complex EEG, has not

yet been published. The manuscript makes several contributions to address further the clinical

robustness and applicability of the U-Sleep model developed in Paper D.

In the first part, new versions of U-Sleep were introduced, called U-Sleep v2, which were trained

on an extended dataset with three new, large cohorts. A total of 25,805 PSGs were used for training

and evaluating U-Sleep v2. In addition, while U-Sleep v1 and v2 both require (at least) one EEG

and (at least) one EOG channel input, two single-channel versions were made that require only (at

least) one EEG or (at least) 1 EOG. U-Sleep v2 was as accurate or more accurate than the v1 model

on the original datasets also considered in Paper D while scoring the three new cohorts accurately,

showing a further generalization ability. In addition, the U-Sleep v2 model produced more accurate

estimates of a critical sleep metric, the so-called REM latency, than U-Sleep v1. The single-channel

models performed nearly as well as the EEG+EOG counterpart and were as accurate as the best

human expert of a group of five, indicating a potential use for wearable devices and in-home sleep

studies.

In the second part, the new U-Sleep v2 models were evaluated on five new clinical cohorts of

patients with narcolepsy, periodic leg movements (PLM), REM behaviour disorder (RBD), Parkin-

son’s disease (PD) and RBD+PD. U-Sleep scored the former three new cohorts with mean F1 scores

between 0.74 to 0.80, nearly matching its performance on other, e.g., healthy cohorts. The more

complex PD and RBD+PD cohorts were scored with lower performance but still captured the rele-

vant sleep microstructure compared to expert hypnograms. In addition, the performance of U-Sleep

v2 was tested on masked input data (imputed with random noise) to study the model behaviour in

the simulated case that some sections of the recorded data are missing (e.g. if the electrode falls off

or the recording is paused). U-Sleep outputs were relatively stable even when significant parts of the

input signals were replaced with random noise, and correct stages could sometimes (but not always)

be predicted even within the area of masked data based on contextual information from pre- and

proceeding epochs alone.
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In the third and final part, it was investigated if the high-frequency sleep stage outputs lead to

different estimations of total time slept in each stage and whether the measures obtained at higher

frequencies display vary more or less compared to typical scores when the same subject is studied

multiple times on different nights. For stages Wake, N1, N2 and N3, the stage duration metrics

output by U-Sleep were more consistent between subsequent studies of the same subjects, even at

typical scoring frequency compared to human annotators. The similarity increased as the scoring

frequency was increased, indicating that the duration estimates are more stable when computed at

higher frequencies, which could improve diagnostic accuracy. For stage REM, while the stability of

the stage duration estimates also increased with scoring frequency, it was higher for human expert

scores compared to scores from U-Sleep at any scoring frequency.

Finally, a pilot study investigated potential spatial sleeping patterns when applying U-Sleep to

different EEG electrode positions. As expected, U-Sleep scores similarly in all channels at typical

1/30 Hz frequency, but at high-frequency outputs, the dissimilarity increases and predictions made

in nearby electrodes on the same hemisphere were most similar, while predictions made in electrodes

far apart on opposite hemispheres where most dissimilar.

In combination, Manuscript F provides further evidence to support the clinical applicability of

the U-Sleep for automatic sleep staging by showing high performance on challenging patient cohorts,

stable performance also when data is missing, and the potential for more accurate or stable estimates

of key diagnostic sleep parameters such as total stage durations and REM latency. Finally, the

paper identifies U-Sleep as a potential tool for studying spatial sleeping patterns, although their

physiological relevance must be proven.
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5.1 Abstract

Many recent medical segmentation systems rely on powerful deep learning models to solve highly

specific tasks. To maximize performance, it is standard practice to evaluate numerous pipelines with

varying model topologies, optimization parameters, pre- & postprocessing steps, and even model

cascades. It is often not clear how the resulting pipeline transfers to different tasks.

We propose a simple and thoroughly evaluated deep learning framework for segmentation of arbi-

trary medical image volumes. The system requires no task-specific information, no human interaction

and is based on a fixed model topology and a fixed hyperparameter set, eliminating the process of

model selection and its inherent tendency to cause method-level over-fitting. The system is available

in open source and does not require deep learning expertise to use. Without task-specific modifica-

tions, the system performed better than or similar to highly specialized deep learning methods across

3 separate segmentation tasks. In addition, it ranked 5-th and 6-th in the first and second round of

the 2018 Medical Segmentation Decathlon comprising another 10 tasks.

The system relies on multi-planar data augmentation which facilitates the application of a single

2D architecture based on the familiar U-Net. Multi-planar training combines the parameter efficiency

of a 2D fully convolutional neural network with a systematic train- and test-time augmentation

scheme, which allows the 2D model to learn a representation of the 3D image volume that fosters

generalization.
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5.2 Introduction

More and more systems for medical image segmentation rely on deep learning (DL). However, most

publications on this topic report performance improvements for a particular segmentation task and

imaging modality and use a specialized processing pipeline adapted through hyperparameter tuning.

This makes it difficult to generalize the obtained results and bears the risk that the reported findings

are artifacts. In line with the idea behind the 2018 Medical Segmentation Decathlon (MSD)1 (Simp-

son et al. 2019), a challenge evaluating the generalisability of machine learning based segmentation

algorithms, we argue that new segmentation systems should be evaluated across many different data

cohorts and maybe even tasks. This reduces the risk of unintentional method overfitting and may

help to gain more general insights about, for example, superior model architectures and learning

methods for particular problem classes. This does not only contribute to our basic understanding

of the segmentation algorithms, but also to the clinical acceptance and applicability of the systems

– even if the generality could come at the cost of not reaching state-of-the-art performance on each

individual cohort or task.

A DL segmentation framework that works across a wide range of tasks and in which the individual

components and hyperparameters are sufficiently understood allows to automate the task-specific

adaptations. This is a prerequisite for being useful for practitioners who are not experts in DL. Big

compute clusters offer a way to design systems that provide accurate segmentations for a variety

of tasks and do not require tuning by DL experts. If compute resources are not limited, automatic

model and hyperparameter selection can be implemented. Given new training data, the systems

tests a large variety of segmentation algorithms and, for each algorithm, explores the space of the

required hyperparameters. While this approach may produce powerful systems, and was employed to

variable extents by top-performing MSD submissions, we argue that it has crucial drawbacks. First,

it comes with a risk of automated method overfitting, even if the data is handled carefully. Second,

the approach may be prohibitive in clinical practice (and for many scientific institutions) when there

is simply no access to sufficient (data regulations compliant) compute resources.

This paper presents an open-source system for medical volume segmentation that addresses all

the issues outlined above. It relies on a single neural network of fixed architecture that 1) showed very

good performance across a variety of diverse segmentation tasks, 2) can be trained efficiently without

DL expert knowledge, large amounts of data, and compute clusters, and 3) does not need large

resources when deployed. The system architecture is a 2D U-Net (T. Koch et al. 2019; Ronneberger

et al. 2015) variant. The decisive feature of our approach lies in extensive data augmentation, in

particular by rotating the input volume before presenting slices to the fully convolutional network.
1http://medicaldecathlon.com

http://medicaldecathlon.com
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Fusion model2D U-Net

Figure 5.1: Model overview. In the inference phase, the input volume (left) is sampled on 2D
isotropic grids along multiple view axes. The model predicts a full volume along each axis and maps
the predictions into the original image space. A fusion model combines the 6 proposed segmentation
volumes into a single final segmentation.

Because of the latter, we refer to our approach as multi-planar U-Net training (MPUnet). We present

a thorough evaluation of our system on a total of 13 different 3D segmentation tasks, including 10

from MSD, on which it obtains high accuracies – often reaching state-of-the-art performance from

even highly specialized DL-based methods.

5.3 Method

At the heart of our system lies a 2D U-net (Ronneberger et al. 2015) modified slightly to 1) include

batch normalization layers (Ioffe et al. 2015) intervening each double convolution- and up-convolution

block and 2) use nearest-neighbor up-sampling followed by convolution to implement up-convolutions

(Odena et al. 2016). Basic network topology and hyperparameters can bet set to their default choices

as done in all experiments in this paper, see Table A.1 in the supplementary material for an overview.

Compared to (Ronneberger et al. 2015), the number of filters has been increased by a factor of
√
2, see

supplementary Table A.6 for details. As a result, the model has ≈ 62 million parameters. While one

would assume that the size of the model is a crucial hyperparameter, we kept the model architecture

the same for all tasks. For each task, only the filters in the first layer were resized according to the

number C of input channels and the number of output units was set to the number of classes K.

The decisive feature of our multi-planar U-Net training (MPUnet) is the generation of the inputs

at training and test time, which is done by sampling from multiple planes of random orientation

spanning the image volume. That is, the network must learn to segment the input seen from different

views, see Fig. 5.1.

The model f(x; θ) takes as input multi-channel 2D image slices of size w × h, x ∈ Rw×h×C ,

and outputs a probabilistic segmentation map P ∈ Rw×h×K for K classes. Prior to training we

define a set V = {v1, v2, ..., vi} of i randomly sampled unit vectors in R3. The set defines the axes

through the image volume along which we sample 2D inputs to the model, visualized in Fig. 5.2.
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(a) (b) (c)

Figure 5.2: (a) Visualization of a set V of sampled view axis unit vectors. (b) Illustration of images
sampled along one view. (c) Illustration of multiple images sampled along multiple unique views.

We re-sample the set V until all pairs of vectors have an angle of at least 60 deg between them. A

sampled set of planar axes is shown in Fig. 5.2a. Note that the model could also be fit using a set of

fixed, predefined planes, but we found no performance gain in doing so, even if the fixed set included

the standard planes. We use i = 6 for all reported evaluations. This number was chosen based

on prior experiments in which we observed monotonically improving performance with the inclusion

of additional planes and i = 6 providing a good balance between accuracy and computation, see

supplementary Table A.2.

During training, the model is provided batches of images randomly sampled from the i planes in

V without supplying information about the corresponding axis. During inference, the model predicts

along each plane producing a set of i segmentation volumes P = {Pv ∈ Rw×h×d×K | v ∈ V }. Each

Pv is mapped to the input image space to obtain point correspondence by assigning to each voxel in

the input image the value of its nearest predicted point in Pv. Distances are computed in physical

coordinates.

At test-time, the learned invariance to orientation is exploited by segmenting the entire volume

from each view. This results in several candidate segmentations for each subject, which are combined

by a linear fusion model, see Fig. 5.1. We map P to a single probabilistic segmentation by a weighted

sum of the per-class and per-view softmax-scores. For all w · h · d voxels x in P and each class

k ∈ {1, ...,K}, the fusion model ffusion : R|V |×K → RK calculates z(x)k =
∑|V |

n=1Wn,k · pn,x,k + βk.

Here pn,x,k denotes the probability of class k at voxel x as predicted by segmentation Pn. The

W ∈ R|V |×K weighs the probabilities of each class as predicted from each view and β ∈ RK are bias

parameters, which can adjust the overall tendency to predict a given class. The parameters of ffusion

are learned from the validation data. The model scales the predictions according to which views do

well on each class, motivated by the fact that different target classes may appear in different shapes

and levels of recognizability when seen from the different directions in V .
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Isotropic Image Sampling. Interpolation is needed to sample image planes not aligned with the

original voxel grid. We use tri-linear and nearest-neighbour interpolation to sample the image and

label map, respectively. We take advantage of the necessity for interpolation by sampling images

on isotropic grids in the physical scanner space, oriented according to the patient’s position in the

scanner. This ensures that the model always operates on images in which the shapes of anatomical

structures are maintained across scanners and acquisition protocols. Note that this approach may

lead to over- or under-sampling along some axes, which may lead to loss of image information or

interpolation artefacts. Empirically, however, we found that the benefit of maintaining isotropy

outweighed potential drawbacks of interpolation.

We must define a set of parameters restricting the sampling. Specifically, we are free to choose

1) the pixel dimensions, q ∈ Z+ (the number of pixels to sample for each image), 2) the real-space

extent of the image (in mm), m ∈ R+, and 3) the real-space distance between consecutive voxels,

r ∈ R+. Note that two of these parameters define the third. We restrict our sampling to equal q, m

and r for both image dimensions producing squared images. We sample images within a sphere of

diameter m centered at the origin of the scanner coordinate system. We employ a simple heuristic

that attempts to pick q, m and r so that 1) the training is computable on our GPUs with batch sizes

of at least 8, 2) r approximately matches the resolution of the images along their highest resolution

axis and 3) the sampled images span the entirety of the relevant volume of all images in the dataset.

When this is not possible, the requirements are prioritized in the given order, with 1 having highest

priority. Note that 3 becomes less important with increasing numbers of planes as voxels missed in

one plane are likely to be included in some of the others.

Augmentation. Processing the input image from different views has the the same effect as apply-

ing affine transformations to the 3D input and presenting the transformed images to a (single-view)

network. Thus, at the heart the MPUnet is a U-Net with extensive, systematic affine data augmen-

tation. On top of the multi-view sampling, we also employ non-linear transformations to further

augment the training data. We apply the Random Elastic Deformations algorithm (Simard et al.

2003) to each sampled image in a batch with a probability of 1/3. The elasticity constants σ and

deformation intensity multipliers α are sampled uniformly from [20, 30] and [100, 500], respectively.

This generates augmented images with high variability in terms of both deformation strength and

smoothness.

The augmented images do not always display anatomically plausible structures. Yet, they often

significantly improve the generalization especially when training on small datasets or tasks involving

pathologies of highly variable shape. However, we weigh the loss-contribution from augmented images

by 1/3 in order to optimize primarily over true images.
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Pre- and post-processing. Our model uses a minimum of image processing outside of the net-

work itself. We restrain from applying any post-processing of the model’s output, because post-

processing is typically highly task-specific. We only apply an image- and channel-wise outlier-robust

pre-possessing that scales intensity values according to the median and inter-quartile range com-

puted over all non-background voxels. Background voxels are defined by having intensities less than

or equal to the first percentile of the intensity distribution.

Implementation. The MPUnet is available as open-source. The fully autonomous implementation

makes the MPUnet applicable also for users with limited deep learning expertise and/or compute

resources. A command line interface supports fixed split or cross-validation training and evaluation

on arbitrary images. Any non-constant hyperparameter can automatically be inferred from the

training data. See the GitHub repository at https://github.com/perslev/MultiPlanarUNet for a

user guide.

5.4 Experiments and Results

We applied the MPUNet without task-specific modifications to a total of 13 segmentation tasks.

Ten of those datasets were part of the 2018 MSD challenge, described in detail and sourced on the

challenge’s website. The remaining three datasets were the MICCAI 2012 Multi-Atlas Challenge

(MICCAI) dataset (D. S. Marcus et al. 2007), the EADC-ADNI Harmonized Hippocampal Protocol

(HarP) dataset (Boccardi et al. 2015) and a knee MRI dataset from the Osteoarthritis Initiative (OAI)

(Dam, Lillholm, et al. 2015). The evaluation covers healthy and pathological anatomical structures,

mono- and multi-modal MR and CT, and various acquisition protocols. The mean per-class F1 (dice)

scores of the MPUNet are reported in Table 5.1. Note that in MSD tumour segmentation tasks 3 & 7

both organ and tumour are segmented, and the mean F1 for those tasks is lifted by the performance

on the organ and decreased by the performance on the tumour. We refer to the supplementary Table

A.4 for detailed per-class scores for the ten MSD tasks.

The MPUnet reached state-of-the-art performance for DL methods on the three non-challenge

datasets (MICCAI, HaRP and OAI) despite comparable methods being developed and tuned specif-

ically to the cohorts and tasks. On MICCAI, with a mean F1 of 0.74 the MPUnet compares similar

to the 0.74 obtained in (Moeskops et al. 2016) using a 2D multi-scale CNN on brain-extracted images

and 0.75 obtained in (Ganaye et al. 2018) using a combination of a multi-scale 2D CNN, 3D patch-

based CNN, a spatial information encoder network and a probabilistic atlas also on brain-extracted

images. With a mean F1 of 0.85 on HarP, the MPUnet compares favorable to 0.78-0.83 (depending

on subject disease state) reported in (Roy et al. 2018). On OAI, with a mean F1 of 0.87, the MPUnet

https://github.com/perslev/MultiPlanarUNet
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Table 5.1: Performance of the MPUnet across thirteen segmentation tasks. The shown F1 (dice)
scores are mean values computed across all non-background per-class F1 scores. For the 10 MSD
datasets evaluation was performed by the challenge organisers on non-publicly available test-sets. For
MICCAI and HarP, evaluation was performed over three trials. Five fold cross-validation was used
for OAI. The ’Classes’ column include the background class, which is not included when computing
the F1 scores. The ’Size’ column gives the total dataset size. Note that the F1 standard deviations
for tasks 8, 9 & 10 are not yet published by the challenge organizers. We refer to http://medicald
ecathlon.com/results.html for a detailed comparison of our results (team CerebriuDIKU) with
those of other challenge participants.

Dataset Modality Segmentation Target(s) Classes Size F1 Score

MICCAI MRI Whole-Brain 135 35 0.74± 0.03
HarP MRI L+R Hippocampus 3 135 0.85± 0.03
OAI MRI Knee Cartilages 7 176 0.87± 0.06
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Task 1 MRI Brain Tumours 4 750 0.60± 0.24
Task 2 MRI Cardiac, Left Atrium 2 30 0.89± 0.09
Task 3 CT Liver & Tumour 2 201 0.76± 0.18
Task 4 MRI Hippocampus ROI. 2 394 0.89± 0.04
Task 5 MRI Prostate 3 48 0.78± 0.10
Task 6 CT Lung Tumours 2 96 0.59± 0.23
Task 7 CT Pancreas & Tumour 3 420 0.48± 0.21
Task 8 CT Hepatic Ves. & Tumour 3 443 0.49
Task 9 CT Spleen 2 61 0.95
Task 10 CT Colon Cancer 2 190 0.28

gets near the 0.88/0.89 (baseline/follow-up) obtained in (Ambellan et al. 2019) using a task-specific

pipeline including 2D- and 3D U-nets along with multiple statistical shape model refinement steps.

However, the comparison cannot be directly made as (Ambellan et al. 2019) worked on a smaller

subset of the OAI data and predicted only 4 classes while we distinguished 7.

The MPUnet ranked 5th and 6th place in the first and second phases of the Medical Segmentation

Decathlon respectively, in most cases comparing unfavorable only to significantly more compute

intensive systems (see below).2

The question arises how the performance of a 2D U-net with multi-planar augmentation compares

to a U-net with 3D convolutions. Such 3D models are computationally demanding and typically

need – in our experience – large training datasets to achieve proper generalization. While we are not

making the claim that the MPUnet is universally superior to 3D models, we did find the MPUnet to

outperform a 3D U-net of comparable topology, learning and augmentation procedure across multiple

tasks including one for which the 3D model had sufficient spatial extent to operate on the entire input

volume at once. We refer to the supplementary Table A.5 for details. We also found the MPUnet

superior to both single 2D U-Nets trained on individual planes as well as ensembles of separate 2D

U-Nets trained on different planes, see Table A.2 & A.3 and Fig. A.1 in the supplementary material.
2For comparison, the median F1 scores over all 10 tasks of the best five phase 1 submissions were 0.74, 0.67, 0.69,

0.66, and (our method) 0.69. Note that the official ranking was based on a more rigorous statistical analysis.

http://medicaldecathlon.com/results.html
http://medicaldecathlon.com/results.html
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5.5 Discussion and Conclusions

The empirical evaluation over 13 segmentation tasks showed that multi-planar augmentation provides

a simple mechanism for obtaining accurate segmentation models without hyperparameter tuning.

With no task-specific modifications the MPUnet performs well across many non-pathological tissues

imaged with various MR and CT protocols, in spite of the target compartments varying drastically in

number, physical size, shape- and spatial distributions, as well as contrast to the surrounding tissues.

Also the accuracies on the more difficult pathological targets are favorable compared to most other

MSD contesters.

The MSD winning algorithm (Isensee et al. 2018) relied on selecting a suitable model topology

and/or cascade from an ensemble of candidates through cross-validation. In contrast to this and

other top-ranking participants, we were interested to develop a task-agnostic segmentation system

based on a single architecture and learning procedure that makes the system lightweight and easily

transferable to clinical settings with limited compute resources.

That the MPUnet can be applied ’as is’ across many tasks with high performance and its robust-

ness against overfitting can be attributed to both the fully convolutional network approach, which is

already known to generalize well, and our multi-planar augmentation framework. The latter allows

us to apply a single 2D model with fixed hyperparameters, resulting in a fully autonomous segmen-

tation system of low computational complexity. Multi-planar training improves the generalization

performance in several ways: 1) Sampling from multiple planes allows for a huge number of anatom-

ically relevant images augmenting the training data; 2) Exposing a 2D model to multiple planes

takes the 3D nature of the input into account while maintaining the statistical and computational

efficiency of 2D kernels; 3) The systematic augmentation scheme allows test time augmentation to

be performed, which increases the performance through variance reduction if errors across views are

uncorrelated for a given subject (visualized in supplementary Fig. A.2). This makes the MPUnet an

open source alternative to 3D fully convolutional neural networks.
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6.1 Abstract

Background: Segmentation of medical image volumes is a time-consuming manual task. Automatic

tools are often tailored towards specific patient cohorts, and it is unclear how they behave in other

clinical settings.

Purpose: To evaluate the performance of the open-source Multi-Planar U-Net (MPUnet), the vali-

dated Knee Imaging Quantification (KIQ) framework, and a state-of-the-art 2D U-Net architecture

on three clinical cohorts without extensive adaptation of the algorithms.

Study Type: Retrospective cohort study.

Subjects: 253 subjects (146 females, 107 males, ages 57±12 years) from three knee osteoarthritis

(OA) studies (CCBR, OAI & PROOF) with varying demographics and OA severity (64/37/24/53/2

scans of KL-grades 0-4).

Field Strength / Sequence: 0.18T, 1.0T/1.5T & 3T sagittal 3D fast spin echo T1w and DESS

sequences.

Assessment: All models were fit without tuning to knee MRIs with manual segmentations from

three clinical cohorts. All models were evaluated across KL-grades.

Statistical Tests: Segmentation performance differences as measured by Dice coefficients were

tested with paired, two-sided Wilcoxon signed-rank statistics with significance threshold α = 0.05.

Results: The MPUnet performed superior or equal to KIQ and 2D U-Net on all compartments

across three cohorts. Mean Dice overlap was significantly higher for MPUnet compared to KIQ and

U-Net on CCBR (0.83 ± 0.04 vs 0.81 ± 0.06 and 0.82 ± 0.05), significantly higher than KIQ and

U-Net OAI (0.86 ± 0.03 vs 0.84 ± 0.04 and 0.85 ± 0.03), and not significantly different from KIQ

while significantly higher than 2D U-Net on PROOF (0.78 ± 0.07 vs 0.77 ± 0.07, P = 0.10, and

0.73± 0.07). The MPUnet performed significantly better on N = 22 KL-grade 3 CCBR scans with

0.78± 0.06 vs 0.75± 0.08 for KIQ and 0.76± 0.06 for 2D U-Net.

Data Conclusion: The MPUnet matched or exceeded the performance of state-of-the-art knee MRI

segmentation models across cohorts of variable sequences and patient demographics. The MPUnet

required no manual tuning making it both accurate and easy-to-use.
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6.2 Introduction

Recent advances in machine learning have pushed automatic segmentation tools close to human

performance for medical image analysis (Litjens et al. 2017; Shen et al. 2017). This includes the

automatic quantification of cartilage compartments from magnetic resonance imaging (MRI) scans,

which facilitates robust, large-scale quantitative studies of osteoarthritis (OA) (Gan et al. 2020). Until

recently, most validated automatic segmentation software, such as the Knee Imaging Quantification

(KIQ) framework, were specialized and relied at least partially on task-specific knowledge (Dam,

Runhaar, et al. 2018). Gan et al. (2020) review a range of successful classical approaches based on,

e.g., random forests, deformable models, graph-based algorithms and atlas registration (Ababneh

et al. 2011; Dam, Lillholm, et al. 2015; Kashyap et al. 2018; Seim et al. 2010). With advances in

deep learning it is now possible to create automatic segmentation models given sufficient training

examples alone (LeCun, Bengio, et al. 2015). Numerous deep learning based approaches have been

suggested in recent years alone. The majority consider models from the family of fully convolutional

networks (FCN) in the popular encoder-decoder architecture, typically inspired by the U-net (Long

et al. 2014; Norman et al. 2018; Panfilov et al. 2019; Wirth et al. 2021). The FCN-centered methods

for knee MRI segmentation vary in complexity, ranging from using a single-stage U-net to combining

several U-nets (e.g., both 2D and 3D) and shape model refinement steps (e.g., a 2D U-net followed

by shape model refinement used to identify regions of interest which are then segmented by a 3D

U-net followed by another shape model refinement step) (Ambellan et al. 2019; Norman et al. 2018;

Panfilov et al. 2019; Tack et al. 2018; Zhou et al. 2018). Different strategies have been employed

to render deep learning on 3D data efficient and to cope with limited training data. To increase

the efficiency of 3D FCNs, it has been suggested to operate on overlapping patches or on down-

sampled scans (Raj et al. 2018). Another strategy is to employ a 2D FCN to segment each scan

slice independently (Norman et al. 2018; Panfilov et al. 2019; Wirth et al. 2021; Zhou et al. 2018).

The 2D approach has been extended in different ways including considering multiple planes or 3D

surface model optimization schemes (Ambellan et al. 2019; Hyungjin Lee et al. 2018; F. Liu et al.

2018; Prasoon et al. 2013; Tack et al. 2018; Zhou et al. 2018).

Despite a vast number of existing deep learning based methods for OA segmentation (often shown

to perform accurately compared to human annotators), no method has seen widespread clinical

adaptation. While such adaptation is complex due to both practical, ethical, and legal factors,

central research problems related to the models themselves also remain. For instance, it is largely

unclear how different models and methods compare even on a single cohort. Which type of model

should be perused for clinical validation for a given task? Secondly, it is even less clear if one model

designed to work well on a single dataset can also be expected to work well in other clinical scenarios,
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e.g., on data from new patient cohorts, scanner sequences or scanner manufactures. The 2019 OA

MRI segmentation challenge made one attempt towards addressing the former problem (Arjun Desai

et al. 2021). A range of deep-learning-based methods were compared and evaluated for knee MRI

segmentation on a single cohort. Multiple methods were found to perform at clinically applicable

levels. Surprisingly, the challenge demonstrated that even the simple 2D U-Net baseline model was

highly competitive (Ronneberger et al. 2015). This result indicates that many deep learning based

approaches are viable when tuned to a specific dataset, and that the method need not be very

complex. As for the second problem, however, it is unclear how the 2D U-net and other challenge

methods (often using more complex setups with, e.g., cascaded models or multiple post-processing

steps) would perform when trained on new clinical cohorts (e.g., a smaller set of annotated scans

or knees with different levels of OA severity) without re-tuning of the hyperparameters, or when

trained across multiple cohorts at once. The robustness of a model under such cross-cohort scenarios

is crucial when adapting it for clinical practice, as tuning a neural network model for new data

typically requires both compute resources and access to technical experts.

The purpose of this study was to investigate the cross-cohort performance and robustness of

state-of-the-art (classical as well as deep learning based) automatic knee segmentation methods. Its

primary focus was on the recently proposed Multi-Planar U-Net (MPUnet) model. The MPUnet

extends the popular 2D U-Net with a unique data-resampling technique, and has been found able

to output accurate segmentations across clinical cohorts (and different segmentation tasks) without

hyperparameter-tuning (Perslev, Dam, et al. 2019; Simpson et al. 2019). It scored a top-position in

the 2019 OA MRI segmentation challenge and a top-5 position in the 2018 Medical Segmentation

Decathlon (Arjun Desai et al. 2021; Simpson et al. 2019). The MPUnet is hyperparameter search

free in the sense that the default settings have proven to give good results on variable medical image

segmentation tasks, so no machine learning expertise is required to train the MPUnet on new data.

These findings indicated that the MPUnet could serve as an accurate, yet easy-to-use tool for robust

cross-cohort knee MRI segmentation also in clinics with limited access to technical experts. To test

this hypothesis, this study investigated the performance and robustness of the MPUnet as compared

to other state-of-the-art models for OA segmentation (classical as well as deep learning based) when

applied across cohorts without manual adaptation of model- or optimization hyperparameters. A

total of four OA segmentation models were considered:

1. The default MPUnet (Perslev, Dam, et al. 2019). The MPUnet relies on a single 2D U-Net

(fully convolutional neural network) model fit to 2D image slices sampled (isotropically) along

V = 6 viewing planes through the image volume. The amount of training data increases V

times, but the different views of a volume are not independent of each other. In this way the
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extension of the training data resembles data augmentation (Ioffe et al. 2015). Random elastic

deformations are applied to a subset of the sampled images to further augment the training

dataset, see Supplementary Figure B.1 (Simard et al. 2003). During optimization, images from

all planes are fed to the (a priori plane-agnostic) model without additional information about

the corresponding image plane, see Figure 5.2 from Paper I (Chapter 5, published Perslev,

Dam, et al. (2019). This training setup forces the model to learn to segment the medical

target of interest as seen from multiple views. When segmenting a new scan, the model first

predicts along each plane in the isotropic scanner space creating a set of V full segmentation

volumes for each input scan. The V segmentation suggestions are combined into one final

output using a learned fusion model. The single neural network model thus plays the role of

V experts in an ensemble-like method. The approach is illustrated in Figure 5.1 of Paper I

(Chapter 5, published Perslev, Dam, et al. (2019). The output of the MPUnet is considered the

final segmentation with no post-processing steps applied. The MPUnet and its optimization is

described in further detail in the Supplementary Information. Additional technical details are

given in Paper I (Chapter 5, published Perslev, Dam, et al. (2019).

2. The MPUnet using only a single view (the sagittal view). This corresponds to training a simple

2D U-Net but using the augmentation strategy (i.e., random elastic deformations) and training

pipeline of the MPUnet. This ablatation study tests the effectiveness of including additional

views.

3. The validated Knee Imaging Quantification (KIQ) automatic segmentation method (Dam,

Lillholm, et al. 2015; Dam, Runhaar, et al. 2018). The KIQ method was developed and

extensively validated over many years and is partly based on task-specific knowledge on cartilage

segmentation. The framework first aligns the considered scan to a reference knee MRI model

using rigid multi-atlas registration. Gaussian derivative features are then computed within

regions-of-interest for each segmentation compartment individually. The computed features

support voxel-wise classifications using compartment specific classifiers, and largest connected

component analysis is used to select final segmentation volumes for each compartment.

4. A 2D U-Net as implemented by Panfilov et al., 2019 which represents state-of-the-art per-

formance on the Osteoarthritis Initiative (OAI) dataset (Panfilov et al. 2019), see Methods.

The optimization hyperparameters, including loss function, learning rate, weight decay, batch

size, number of epochs, etc., have been tuned for the OAI dataset, and this comparison thus

allows to study how the popular 2D U-Net transfers to other datasets without re-tuning of

its hyperparameters. The Panfilov 2D U-Net performs slice-wise segmentation in the sagittal

view without post-processing of the obtained masks. Random augmentations, such as gamma
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corrections, scaling and bilateral filtering, are applied during training.

This study aimed to investigate how each of these models perform when applied with default

hyperparameters across three distinct OA cohorts to measure their robustness to scanner- and patient

demographic variations. Average model performance across all scans in a cohort and as a function

of Kellgren and Lawrence (KL) grades were compared (Kellgren et al. 1957). Finally, the ability of

the MPUnet to learn segmentations across multiple cohorts at once was investigated.

6.3 Methods

6.3.1 Cohorts

The performance of all segmentation models were evaluated on three distinct cohorts of MR knee

scans:

1. Osteoarthritis Initiative (OAI) cohort subset consisting of 88 baseline scans and 88 follow-

up scans with approximately 1-year interval. Scans were acquired using a Siemens 3T Trio

(Erlangen, Germany) scanner and a sagittal 3D Dual-Echo Steady State (DESS) with water

excitation sequence. The cohort consists of 45 males and 43 females of ages 61± 10 years and

BMIs 31.1 ± 4.6. All enrolled participants either had or were at increased risk of developing

OA. OA severity was assessed for 44 baseline scans with 0/2/10/30/2 scans of KL-grades 0-4.

2. Center for Clinical and Basic Research (CCBR) consisting of 140 scans from 140 subjects

(Dam, Folkesson, et al. 2007). Scans were acquired using a 0.18T Esaote C-Span scanner

(Genova, Italy) and a Turbo 3D T1w sequence. The cohort consists of 78 females and 62 males

of ages 55±15 and BMIs 25.8±4.0. Enrolled participants had both healthy knees and varying

degrees of OA with 50/24/13/22/0 scans of KL-grades 0-4.

3. Prevention of OA in Overweight Females (PROOF) consisting of 25 knees imaged with

1.5T Simens Symphony (Erlangen, Germany), 1.5T Siemens Magnetom Essenza (Erlangen,

Germany) and 1.0T Phillips Intera (Eindhoven, Netherlands) scanners using a 3D sagittal

DESS sequence with water excitation (Runhaar et al. 2015). Women aged 50-60 years with

BMI ≥ 27 and free of knee OA (according to clinical American College of Rheumatology

[ACR] criteria) were included in the original study. The sub-cohort considered here consists of

25 females of ages 56± 3 and BMIs 32.2± 4.1 and 12/11/1/1/0 scans of KL-grades 0-4.

Cohort statistics are summarized in Table 6.1. MRI sequence details are given in Table 6.2.

All MRIs of right knees were mirrored to resemble left knees. Informed consent was given by all



CHAPTER 6. PAPER B: CROSS-COHORT AUTOMATIC KNEE MRI SEGMENTATION 59

Table 6.1: Overview of study populations. Statistics were computed over 88, 140 and 25 subjects for
the OAI, CCBR and PROOF cohorts, respectively. OAI = Osteoarthritis Initiative; CCBR = Center
for Clinical and Basic Research; PROOF = Prevention of OA in Overweight Females. Age and BMI
shows mean and standard deviation. aFor OAI, the Tibia bone was only annotated in the 88 baseline
scans. In the baseline scans, the Medial & Lateral Femoral Cartilages were annotated separately,
whereas in the 88 follow-up scans the Femoral Cartilage was annotated as a single compartment.

Cohort Scans Subjects Compartments Age (years) BMI (kg/m2) Sex (M/F %)

OAI 176 88 6/8a 61± 10 31.1± 4.6 51/49
CCBR 140 140 2 55± 15 25.8± 4.0 44/56
PROOF 25 25 6 56± 3 32.2± 4.1 0/100

participants for inclusion into any of the original study cohorts. All data considered in this study

was handled and processed in accordance with the relevant data sharing agreements for each study.

6.3.2 Radiological Assessment and Segmentation

OAI: The tibial medial- and lateral cartilages (TMC & TLC), femoral medial- and lateral cartilages

(FMC, FLC), medial- and lateral menisci (MM & LM) and patellar cartilage (PC) were manually seg-

mented in all 176 scans by iMorphics (Manchester, UK). The tibia bone (TB) was further annotated

in the 88 baseline scans. In the baseline scans FMC and FLC were annotated separately, whereas in

the 88 follow-up scans the femoral cartilage was annotated as a single compartment. KL-grades were

assessed for all scans by trained radiologists from The David Felson Lab, School of Medicine, Boston

University. CCBR: TMC and FMC were manually segmented in all scans by trained radiologist PCP

(Denmark). KL-grades were assessed by PCP for 109 out of the total 140 scans. PROOF: TMC,

TLC, FMC, FLC, PC and TB were segmented in all scans by trained radiologist DS of Erasmus

Medical Center, Rotterdam Universit. KL-grades were assessed by DS for all scans.

Segmentation results on TB are reported in Results but not further discussed, because the com-

partment is easily segmented by all considered methods.

6.3.3 Segmentation Models

Four segmentation models were evaluated on each of the three MRI cohorts:

1. A default MPUnet model using V = 6 planar views (see Supplementary Information for details)

(Perslev, Dam, et al. 2019)

2. A V = 1 MPUnet using only the sagittal view to test the effect of using multiple views

3. The Knee Imaging Quantification (KIQ) automatic segmentation framework (Dam, Lillholm,

et al. 2015; Dam, Runhaar, et al. 2018)
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Table 6.2: Overview of cohort MRI sequences. aVariable slice thicknesses in 0.703-0.938 mm, typically
0.781 mm. bMinor variations in Echo/Repetition Times in 11.1-11.4 ms / 22.2-22.6 ms.

Cohort OAI CCBR PROOF

Scanner Siemens Trio Esaote C-Span Siemens Symphony
Siemens Magnetom Essenza
Phillips Intera

Vendor Location Erlangen, Germany Genoa, Italy Erlangen, Germany
Erlangen, Germany
Eindhoven, Netherlands

Scan 3D DESS Turbo 3D T1w 3D DESS
Field Strength (T) 3.0 0.18 1.5

1.5
1.0

Acquisition Time (min) 10 10 5-10
Plane Sagittal Sagittal Sagittal
Fat Suppression Water Excitation None Water Excitation
Field of View (mm) 140 180 160
Number of Slices 160 110 50-62
Voxel Size (mm3) 0.700 × 0.365 × 0.365 0.781a × 0.703 × 0.703 1.500 × 0.420 × 0.420

1.500 × 0.500 × 0.500
1.500 × 0.625 × 0.625
1.500 × 0.310 × 0.310

Flip Angle (°) 25 40 25
Bit Depth 12 8 12
Echo/Repetition (ms/ms) 4.7 / 16.3 16 / 50 6.0 / 19.5

8.0 / 21.4
11.3 / 22.3b

4. A 2D U-Net as implemented by Panfilov et al., 2019 (Panfilov et al. 2019) marking the state-

of-the-art in deep learning for knee MRI segmentation

The MPUnet and KIQ framework were applied with default settings across all cohorts. The 2D

U-Net was applied with optimization hyperparameters as in Panfilov et al., 2019 (Panfilov et al.

2019) using the codebase (https://github.com/MIPT-Oulu/RobustCartilageSegmentation)

provided by the authors with the following exceptions: (1) the input image sizes were modified from

the default 300× 300 on the OAI dataset to 256× 256 on CCBR (to match the size of those scans)

and 336× 336 on PROOF (bilinear resampling was used to down-sample PROOF images from their

original variable sizes of 320 × 320, 384 × 384 or 512 × 512 depending on scan; the resampled pixel

size was set to 0.47 × 0.47 mm2). The size of the images input to the 2D U-Net matched those

of the MPUnet on corresponding datasets. (2) A common batch-size of 32 was used across the

datasets (down from 64) to allow the larger 336 × 336 PROOF images to fit in our GPU memory.

(3) The learning rate was reduced to 0.0005 (down from 0.001 on OAI) and the number of training

epochs increased to 150 (down from 50 on OAI) when training on the PROOF dataset due to severe

https://github.com/MIPT-Oulu/RobustCartilageSegmentation
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overfitting observed using the default parameters on this small dataset. (4) Random horizontal flips

were disabled in the augmentation pipeline (leaving random gamma corrections, scaling and bilateral

filtering) as all MRI images considered here were mirrored to resemble right knees as described above.

6.3.4 Experiments and Statistical Analysis

All models were trained and evaluated on each of the three study cohorts individually. The MPUnet

was further evaluated in a cross-cohort setup. The trained models were applied to a subset of the

data held out during training to test their generalization properties.

6.3.5 Single Cohort Setup

On CCBR and OAI, all models were trained and evaluated on a fixed dataset split. On PROOF,

all models were trained and evaluated in a leave-one-out (LOO) cross-validation (25-fold CV) setup.

We considered fixed training/testing splits and cross-validation strategies for each dataset as Dam,

Runhaar, et al. (2018). The CCBR dataset was split into 30 training- and 110 evaluation images and

the OAI dataset was split into 44 training- and 44 evaluation images. On PROOF, the model was

evaluated in a LOO experiment (training 25 model instances each evaluated on a single, held-out

testing scan). The MPUnet was further evaluated using larger training datasets facilitated by either

a cross-validation setup with more folds (for CCBR and OAI) or through training on additionally

images taken from a different dataset (for PROOF). Specifically, we included 88 images taken from the

OAI dataset and added them to the training dataset of PROOF to investigate if the publicly available

OAI dataset could reduce the need for new manual segmentations when applying the MPUnet on a

new cohort.

6.3.6 Cross-Cohort Setup

A single instance of the model was trained on MRIs from the OAI, CCBR and PROOF datasets

simultaneously. For OAI and CCBR, we used the same fixed-splits defined above in the single-cohort

setup. We also included all 25 PROOF images into the training set to expose the model to as many

and variable images as possible. The model was evaluated on the test-set images of CCBR and OAI.

We did not evaluate on PROOF images as no fixed dataset split is available for this small dataset.

The cross-cohort model segments only the tibial- and femoral medial cartilages, as those are the only

two annotated compartments of the CCBR cohort.
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6.3.7 Evaluation

Model performances were compared using the Dice-Sørensen coefficient (Dice) (Dice 1945; Sørensen

1948), which ranges from 0 to 1 with values close to 1 indicating a perfect segmentation overlap be-

tween the predicted and ground truth masks. Dice coefficients were computed for each compartment

and for each patient scan separately and reported as summary statistics across patients. Specifically,

for each segmentation class the mean, standard deviation, and minimum observed Dice coefficients

across subjects were considered. Similar statistics were computed for all scans sub-divided by KL-

grade classification scores to investigate the effect of OA on model performances.

6.3.8 Statistical Tests

Statistical tests were conducted to assess for differences in the observed mean performance scores on

each individual compartment of each dataset (CCBR, OAI & PROOF) between:

1. The MPUnet and KIQ for models trained in the single-cohort setup with limited data (i.e.,

when the MPUnet and KIQ were trained and evaluated on identical datasets).

2. The MPUnet trained in the single-cohort setup with limited and with additional training data.

3. The MPUnet trained in the single-cohort setup with limited data and the MPUnet trained

under the cross-cohort setup.

All reported P-values were computed from paired, two-sided Wilcoxon signed-rank statistics un-

less explicitly stated otherwise. The Wilcoxon test is non-parametric test and suitable for comparing

Dice scores, which are not normally distributed. Performance differences were considered statisti-

cally significant at P-value threshold α = 0.05. In all cross-validation experiments, each scan in a

dataset appears in the test-set of a single fold, and the entire dataset is predicted once and used for

computation of evaluation metrics and subsequent statistical tests. In CV the individual hold-out

datasets are not statistically independent of each other, because the hold-out data in one fold is

in the training data of all other folds. This has to be take into account in when interpreting the

statistical results (e.g., see the recent work by Bates et al. 2021).

6.4 Results

6.4.1 Single-Cohort Experiments

Table 6.3 summarizes the segmentation performance of the MPUnet, KIQ and 2D U-Net methods

on all three study cohorts (see Table 6.1 and Table 6.2). When trained on the same number of
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samples, the MPUnet performed significantly better in terms of the mean macro Dice scores (mean

across compartments and patients) on the OAI dataset compared to KIQ (0.86±0.03 vs. 0.84±0.04,

P < 0.05), the 2D U-Net (0.86 ± 0.03 vs. 0.85 ± 0.03, P < 0.05) and the single-view MPUnet

(0.86 ± 0.03 vs. 0.85 ± 0.03, P < 0.05). The MPunet performed significantly better on the CCBR

dataset compared to KIQ (0.83 ± 0.04 vs. 0.81 ± 0.06, P < 0.05), the 2D U-Net (0.83 ± 0.04 vs.

0.82 ± 0.05, P < 0.05) and the single-view MPunet (0.83 ± 0.04 vs. 0.81 ± 0.04, P < 0.05). The

MPUnet performed significantly better on the PROOF dataset compared to the 2D U-Net (0.78±0.07

vs. 0.73± 0.07, P < 0.05) and the single-view MPunet (0.78± 0.07 vs. 0.75± 0.08, P < 0.05) and

indifferent from KIQ (0.78± 0.07 vs. 0.77± 0.07, P = 0.10).

Table 6.3 also details the performance of all methods on each individual compartment across the

three datasets and shows the minimal Dice scores observed for the compartment across all subjects

in the cohort. Across a total of 14 segmentation compartments (tibia bone excluded as it is easily

segmented by all methods), the MPUnet performed significantly better than the KIQ model on 11

compartments (TMC, TLC, FMC, FLC, PC, MM and LM on OAI; TMC and FMC on CCBR;

FLC and PC on PROOF; P < 0.05 for all) and with no significant difference on the remaining 3

(TMC, P = 0.966, TLC, P = 0.170 and FMC, P = 0.092, all on PROOF). The MPUnet performed

significantly better than the Paniflov 2D U-Net on 10 compartments (FMC, PC, MM and LM on

OAI; FM on CCBR; TMC, TLC, FMC, FLC and PC on PROOF; P < 0.05 for all) and with no

significant difference on the remaining 4 (TMC, P = 0.162, TLC, P = 0.061, FLC, P = 0.087 on

OAI; TMC, P = 0.182, on CCBR). The MPUnet performed significantly better than its single-view

counterpart on 12 compartments (TMC, FMC, FLC, PC, MM and LM on OAI; TMC and FMC on

CCBR; TMC, TLC, FMC and FLC on PROOF; P < 0.05 for all) and with no significant difference

on the remaining 2 (TLC, P = 0.056, on OAI; PC, P = 0.191, on PROOF). None of the other

models performed significantly better than the MPUnet on any compartment.

Table 6.4 details the performance of each model on the CCBR, OAI and PROOF datasets grouped

by Kellgren and Lawrence (KL) grade assessments of each scan. Figure 6.1 shows box-plot Dice score

distributions for each compartment of the CCBR dataset as segmented by the MPUnet, KIQ and

2D U-Net models similarly grouped by KL-grades. Similar box-plot figures for the OAI and PROOF

datasets are shown in the Appendix Figures B.3 & B.2. On the CCBR dataset, all models had

decreasing average performance for increasing KL-grades with mean Dice scores across N=50 KL-0

grade scans and N = 22 KL-3 grade scans dropping from 0.84 ± 0.03 to 0.75 ± 0.08 for KIQ, from

0.84±0.03 to 0.76±0.06 for the 2D U-Net, from 0.84±0.02 to 0.73±0.06 for the single-view MPUnet,

and from 0.85± 0.03 to 0.78± 0.06 for the V=6 MPUnet (P < 0.05 for all, Mann-Whitney U test).

The MPUnet had significantly higher average performance on CCBR KL-3 grade scans compared to

both KIQ, 2D U-Net and the single view MPUnet (P < 0.05 for all).
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On the OAI dataset, for all models there was a non-significant difference between their perfor-

mances on KL-2 (N = 10) and KL-3 (N = 30) grade scans (KIQ: 0.84±0.04 and 0.83±0.04 P = 0.43;

2D U-Net: 0.85 ± 0.04 and 0.85 ± 0.03, P = 0.37; MPUnet (V = 1): 0.84 ± 0.03 and 0.85 ± 0.03,

P = 0.30; MPUnet (V = 6): 0.86 ± 0.03 and 0.86 ± 0.04, P = 0.43; Mann-Whitney U tests). The

MPUnet had significantly higher average performance compared to all other models on the KL-3

group scans with 0.86± 0.04 vs. 0.84± 0.04 for KIQ, 0.85± 0.04 for the 2D U-Net and 0.85± 0.03

for the single-view MPUnet (P < 0.05 for all). On KL-2 scans the MPUnet performed significantly

better than the single-view MPUnet (0.86± 0.04 vs 0.84± 0.03, P < 0.05) and indifferent from both

KIQ (0.86± 0.04 vs 0.84± 0.04, P = 0.23) and 2D U-Net (0.86± 0.04 vs 0.85± 0.04, P = 0.16). No

statistics were computed for KL-1 or KL-4 scans as the sample sizes of N=2 were too small.

On the PROOF dataset, the MPUnet performed indifferent from KIQ on both N = 12 KL-0

scans (0.77 ± 0.07 vs 0.76 ± 0.06, P = 0.08) and N = 11 KL-1 scans (0.78 ± 0.07 vs 0.77 ± 0.09,

P = 0.41) and significantly better than the 2D U-Net (0.77 ± 0.07 vs 0.74 ± 0.06, P < 0.05) and

single-view MPunet (0.77 ± 0.07 vs 0.74 ± 0.08, P < 0.05) on KL-0 scans and significantly better

than 2D U-Net (0.78± 0.07 vs 0.72± 0.08, P < 0.05) and indifferent from the single-view MPUnet

(0.78± 0.07 vs 0.76± 0.08, P = 0.07) on KL-1 scans. No statistics were computed for the N=1 KL-2

or N=1 KL-3 scans as the sample sizes were too small.

Figure 6.2 displays a surface model fit to the manual and MPUnet predicted segmentation masks

on a single subject of the OAI cohort. The output was generated by the MPUnet trained in the

fixed-split setup (model trained with less data) and having the mean Dice on this image closest to

the mean performance over the OAI cohort. Thus, the figure shows the typical performance of the

model.

6.4.2 Single-Cohort Experiments: Training with Additional Data

Table 6.3 also summarizes the performance of the MPUnet model when trained on larger versions

of the CCBR, OAI and PROOF datasets. On CCBR, the average Dice scores improved slightly

from 0.84 ± 0.04 to 0.85 ± 0.04 (P < 0.05) on TMC and from 0.82 ± 0.05 to 0.83 ± 0.04 on FMC

with the inclusion of additional training data, while the worst-case performance decreased TMC and

increased on FMC. On the OAI dataset, the 5-CV models obtained slightly lower Dice scores than

the single-split model on average (0.86± 0.03 vs. 0.85± 0.03). However, for both CCBR and OAI,

direct statistical comparisons were not made, because the evaluation datasets differ.

On the PROOF dataset, the addition of 88 OAI scans (significantly different in both resolution,

noise level and contrast compared to the scans of PROOF) to the training set significantly improved

average Dice scores on FLC (from 0.80± 0.07 to 0.83± 0.04, P < 0.05) and PC (from 0.79± 0.07 to

0.81± 0.04, P < 0.05), non-significantly increased average Dice scores on TLC (from 0.72± 0.13 to
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0.73 ± 0.13, P = 0.44) and FMC (from 0.78 ± 0.08 to 0.79 ± 0.09, P = 0.09) and non-significantly

decreased performance on TMC (from 0.79± 0.06 to 0.78± 0.08, P = 0.58). The mean macro Dice

scores were significantly improved from 0.78± 0.07 to 0.79± 0.06 (P < 0.05).

6.4.3 Cross-Cohort Experiment

Table 6.5 summarizes the performance sores of an MPUnet model trained on images from all the

OAI, CCBR and PROOF datasets simultaneously and evaluated on test-set images from OAI and

CCBR. The cross-cohort model matched the performance of its specialized counterpart on the CCBR

dataset (mean macro Dice scores of 0.83 ± 0.04 and 0.83 ± 0.04, respectively, P = 0.71) while the

cross-cohort MPUnet model showed significantly decreased, but still high, performance compared to

its specialized counterpart on the OAI dataset (0.84± 0.04 and 0.86± 0.03, respectively, P < 0.05).

6.5 Discussion

In this study, three models for automatic MRI knee segmentation were evaluated across three clini-

cal cohorts. Each model was applied as-is without prior tuning of its hyperparameters to simulate a

clinical scenario in which the model is to be applied in a new setting (e.g., in a new clinic, for a new

scanner or for a new segmentation task), but where manual tuning of the model’s hyperparameters

is not feasible (e.g., due to lack of technical experts, computational resources or time). The MPUnet

was hypothesised to perform well under these restrictions, because it was designed for participation in

the 2018 Medical Segmentation Decathlon (Simpson et al. 2019). Participating models were tasked

to solve highly variable medical segmentation tasks without (manual) task-specific modifications.

The MPUnet ranked 5th without expensive hyperparameter tuning (Simpson et al. 2019) (see Sup-

plementary Information for details). In addition, the MPUnet later scored a top position in the 2019

OA MRI segmentation challenge using the same set of hyperparameters (Arjun Desai et al. 2021).

Here, the MPUnet was compared to the validated KIQ method as well as a state-of-the-art 2D

U-Net implementation for knee MRI segmentation by Panfilov et al. (Panfilov et al. 2019) on the

OAI, CCBR and PROOF datasets. The considered cohorts varied in both patient demographics, size

and scanner sequences, see Tables 6.1 & 6.2. All three models were able to reach high performance

on both the CCBR and OAI datasets. However, the MPUnet reached a significantly higher mean

macro Dice score on the OAI and CCBR datasets compared to both KIQ and the 2D U-Net. None

of the comparison models reached significantly higher Dice scores on any individual compartment

across the datasets. The performance scores of the MPUnet were only slightly below the best of

models submitted to the 2019 OA MRI segmentation challenge (a set of models which included

the MPUnet itself) on the same dataset. There, models achieved mean Dice scores in the range
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of 0.86-0.88 but on fewer segmentation compartments than considered in this study (i.e., the 2019

OA MRI segmentation challenge task was simpler) (Arjun Desai et al. 2021). In the challenge, only

four compartments were segmented while eight were segmented here. The MPUnet even performed

slightly better than the 2D U-Net model, which was tuned specifically for the OAI dataset, and

has reported the highest (to our knowledge) mean Dice scores so far with 0.90 ± 0.02 on femoral

cartilage, 0.90± 0.03 on tibial cartilage, 0.87± 0.05 on patellar cartilage and 0.86± 0.03 on menisci

(Panfilov et al. 2019). It is important to note that the re-trained version of the 2D U-Net model

applied to the OAI dataset in this work scores significantly lower on average. Again, this is due

to the different number of segmentation compartments considered (four and eight, respectively).

For instance, the models trained here must separate the femoral cartilage into both a medial and

lateral sub-compartment which is a harder task with uncertainty even in the ground-truth labelling.

Interestingly, the KIQ and the MPUnet performed equally good on the small and variable (N = 25)

PROOF dataset without requiring modifications (for reference, the menisci have previously been

automatically segmented with a mean Dice of 0.75 on the same dataset (Xu et al. 2020), but a

direct comparison is not possible as the menisci were not segmented here). The 2D U-Net model,

however, experienced significant overfitting when trained using its default parameters. Overfitting

was decreased by lowering the learning rate and increasing the number of training epochs, but still

the obtained 2D U-Net model performed significantly worse than both KIQ and the MPUnet. This

result illustrates the premise of this paper, namely that adapting automatic segmentation models

in practice is challenging. While the 2D U-Net model of Panfilov et al. is one of the best models

fit so far on the OAI dataset for the segmentation of the four considered compartments, that result

alone does not provide a guarantee that the model will work well on other, e.g., smaller, datasets

or even the same dataset with a different number of segmentation compartments. With systematic

hyperparameter tuning, the 2D U-Net model could likely be brought to a high performance also on

the PROOF dataset, but such a process may not be feasible in many clinical settings. The KIQ

model, although slightly inferior on average to the 2D U-Net on the CCBR and OAI datasets, does

not suffer from this limitation when transferred to the small PROOF dataset. This is likely because

the framework builds on expert knowledge of knee segmentation, which acts as a strong prior when

learning a new dataset. Therefore, the KIQ framework requires less data compared to the 2D U-Net,

which must learn from scratch how to segment the 25 new MRIs. Interestingly, the MPUnet, which

is also a deep-learning model based on the 2D U-Net and accordingly must also learn from scratch

on the small PROOF dataset, did surprisingly well and even outperforms the KIQ framework as

measured by the average Dice scores. The MPUnet’s robustness and ability to learn from small

datasets may result from its unique multi-planar data augmentation strategy. This is supported by

the observation that the single-view MPUnet model performs significantly worse than the normal (6
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viewed) MPUnet model on all datasets, and often below both KIQ and the 2D U-Net.

The average performance of automatic knee MRI segmentation models are likely to drop for

knees of increasing KL-grades as increased OA severity may cause the target compartments to vary

abnormally in both shape and volume. Consequently, the robustness and clinical relevance of any

automatic model is reflected above all in its performance on high KL-grade scans. This study

systematically investigated the performance of all models as a function of KL-grades 0 to 3. The

considered cohorts contained too few scans of KL-grade 4 for statistical analysis. On both the

OAI and CCBR cohorts, the MPUnet had a significantly higher average performance on knees

with moderate OA (KL-3) as compared to all other models. None of the other models performed

significantly better than the MPUnet on any individual KL-grade group across the datasets. On the

CCBR dataset, all considered models dropped in performance as a function of KL-grade. On the

OAI and PROOF datasets, however, the picture is less clear. For instance, the MPUnet performed

similar on KL-2 (N = 10) and KL-3 (N = 30) OAI scans, but with only N = 2 KL-1 and N = 2

KL-4 grade scans available it could not be concluded if there is an overall decreasing trend or not.

Similarly, a decreasing trend could not be concluded on the PROOF data due to the limited number

of available scans of KL-grades 2 & 3.

As the performance of deep learning models generally improves with increasing amounts of train-

ing data, the potential for further improvement of the MPUnet performance was tested by training

separate instances of the model on larger training datasets. As expected, increasing the size of the

PROOF training dataset (by using more folds in CV) increased performance as measured by most

metrics on all compartments. On the OAI dataset, the performance instead dropped slightly. In

both cases, however, a direct comparison is difficult because the evaluation sets differ (evaluation on

a fixed test set versus CV). Interestingly, including 88 MRIs from the OAI dataset into the PROOF

training set significantly improved the macro Dice performance of the MPUnet. The cross-cohort ex-

periment further showed that a single instance of the MPUnet can learn to segment knee MRIs from

two different scanner sequences and patient cohorts with high performance on both. These results

suggest that a great potential exists to obtain robust and clinically applicable models by training on

larger, merged knee MRI datasets even if they differ with regards to, e.g., scanner sequences, clinical

site, and cohort demographics. This strategy of mixing even highly variable training datasets has

recently led to the development of robust & clinically applicable models in the field of automated

sleep analysis (Perslev, Darkner, et al. 2021). Given the demonstrated high performance of the

MPUnet across clinical cohorts, MRI sequences and KL-grades, such a model, if trained on enough

and variable data, is perhaps archivable also for knee MRI segmentation and could ultimately serve

as a ready-to-use, robust model for general knee MRI segmentation.

The pre-trained MPUnet models are made available. These models may be used directly or serve
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as initializations for training new models. This transfer learning can help building well generalizing

models for new data even if the new dataset is very small.

6.5.1 Limitations

This study considered mean Dice scores as a direct proxy for general knee MRI segmentation per-

formance. Further studies should be made to address if the presented observations hold also for

other clinically relevant metrics such as surface distances, volumes, etc. Ultimately, future studies

should address if the segmentation masks obtained by deep learning allow for accurate assessments

of pathologies such as OA associated cartilages. In addition, this study did not include data from all

major producers of MRI scanners (e.g., GE Healthcare). Finally, it is a limitation of the study that

data selection was done retrospectively.

6.6 Conclusion

This study found that the MPUnet improves on the state-of-the-art in knee MRI segmentations

across cohorts without the need for manual adaptations. It was found accurate even on high KL-

grade scans and could learn across multiple cohorts at once. This robustness of the MPUnet makes it

practical and applicable also for research groups with limited specialist knowledge of deep learning,

because the framework may be easily adapted to new data or even applied directly using one of the

pre-trained models that were made available.

Data Availability

Pre-trained MPUnet models for cohorts OAI, CCBR and PROOF are available at https://sid.

erda.dk/cgi-sid/ls.py?share_id=DQADRdWlID. The multi-planar convolutional neural network

method is available as open-source software. The software can be used without prior knowledge

of deep learning, is open sourced under the MIT license and is available along with tutorials at

https://github.com/perslev/MultiPlanarUNet. To fit the model to new MRI sequences, a set

of manually annotated segmentation masks are required. With these at hand, the included Python

scripts will perform training, evaluation, and predictions on future images with launching the script

on properly organized data folders being the only involved human action.

The software requires just a single GPU but can utilize additional GPUs if available. For most

applications, 12GB GPU memory is required for optimal performance. On our system with a single

GPU segmenting a new scan takes 2-6 minutes.

https://sid.erda.dk/cgi-sid/ls.py?share_id=DQADRdWlID
https://sid.erda.dk/cgi-sid/ls.py?share_id=DQADRdWlID
https://github.com/perslev/MultiPlanarUNet
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KIQ

Panfilov 2D U-Net

MPUnet V1

MPUnet V6

Femoral medial cartilage

KIQ

Panfilov 2D U-Net

MPUnet V1

MPUnet V6

Tibial medial cartilage
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F1 Scores

KIQ
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3

Figure 6.1: Box-plots showing the distribution of Dice scores for the MPUnet, KIQ and the 2D U-Net
on the CCBR dataset grouped according to the KL-grade score of the individual MRIs. (a) Dice
scores on the Femoral Medial Cartilage. (b) Dice scores on the Tibial Medial Cartilage. (c) Macro
Dice scores.
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Figure 6.2: Surface models visually comparing the expert annotated segmentation (b) to the anno-
tations of MPUnet (c) on an average performing sample of the OAI dataset. (a) Shows a reference
coronal slice from the MRI volume with KL-grade = 3.

Table 6.5: Cross-Cohort Experiment: Segmentation performance across subjects in the test-splits of
OAI and CCBR of a single MPUnet model instance trained on MRIs from all of the CCBR, OAI and
PROOF cohorts. Accuracy is given as the Dice volume overlap showing mean±std and minimum
values. P-values compare the per-compartment mean Dice scores of the cross-cohort model to the
MPUnet trained and evaluated on the individual cohorts.

Method MPUnet (V = 6)
Training images 30 CCBR + 44 OAI + 25 PROOF

Evaluation images 110 CCBR 44 OAI
Tibial medial cartilage 0.84± 0.05

0.59, P = 0.49
0.83± 0.06
0.59, P < 0.05

Femoral medial cartilage 0.82± 0.05
0.68, P = 0.07

0.85± 0.05
0.66, P < 0.05

Macro Dice 0.83± 0.04
0.66, P = 0.71

0.84± 0.04
0.72, P < 0.05



Chapter 7

Related work

The following papers were all published and co-authored during the PhD but not enclosed in

this thesis because they contain tangentially related work or challenge participation papers written

together with large numbers of authors.

7.1 The Medical Segmentation Decathlon

This paper by Simpson et al. (2019) presents the organization, outcomes, and conclusions of the

2018 MICCAI Medical Segmentation Decathlon challenge. We participated in this challenge using

the MPUNet model described in Paper A. As briefly mentioned in Chapter 3, Section 3.2.4, the MSD

challenge encouraged teams to develop machine learning pipelines capable of automatically adapting

themselves to learn models for ten distinct medical image segmentation tasks involving MRI and

CT scans. A labelled training dataset was provided for each task, but no task-specific information

could be given to the system, and manual hyperparameter tuning was not permitted. As a result,

the proposed methods must be fully automated, using only a labelled dataset as input to generate a

segmentation model for a specific task.

Several innovative pipelines were developed during the challenge. The winning team created the

now widely adopted nnU-Net framework (Isensee et al. 2018). This framework combines automatic

hyperparameter specification using a set of custom heuristics that analyze or fingerprint the provided

training dataset, along with an automatic selection of an appropriate U-Net-type model architecture

from a collection of three options, determined through cross-validation experiments. The model

candidates include a 2D U-Net, a 3D U-Net, and a cascaded 2D U-Net, which generates an initial

low-resolution segmentation, subsequently refined by a 3D U-Net model to produce the final high-

resolution segmentation. An instance of each candidate model is trained, and the single model or

ensemble combining the outputs of two individual models and achieving the best F1 score in a 5-

fold cross-validation experiment is used to predict the test images. The nnU-Net framework ranked

first in 9 out of 10 tasks, demonstrating versatility. However, one drawback of this approach is the

computational overhead of training multiple candidate models during cross-validation experiments.

The second-place team adopted a distinct approach with some similarities to our MPUNet method

of Paper A. Utilizing a single, relatively constrained model architecture. They focused on designing

an optimization process that maximizes the use of available 3D information from medical volumes

74
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while training parameter-efficient models that process only 2D inputs or thin 3D patches (i.e., a

stack of a small number of 2D image planes sampled along the third image axis) (Xia et al. 2020).

Employing a data-resampling strategy similar to our MPUNet method, they utilized that multiple

2D views could be generated from a 3D volume by applying rotation transformations. These views

can either be fed into a single 2D model, as in our method, to expand the available training dataset,

or into separate models specialized for each view orientation, as in their approach. Additionally,

they developed a semi-supervised optimization strategy based on co-training (Blum et al. 1998) that

enabled their method to incorporate information from labelled and unlabeled data during training.

Their models were initialized with weights obtained from the only tangentially related tasks on

natural images.

In contrast to approaches like the nnU-Net, which selects suitable model architectures through

heuristics and automated experimentation, the methods of (Xia et al. 2020) and our MPUNet aim to

make the machine learning pipeline robust across tasks by employing a single model architecture with

high approximation capacity that can be trained on small datasets with limited overfitting because

it operates with high statistical efficiency in 2D (or thin 3D patches) while the labelled data is 3D.

However, it is essential to note that these multi-view approaches and the model selection strategy

of the nnU-Net are orthogonal methods, operating at the data and model levels, respectively, and

could be implemented together. For example, multi-planar data augmentation could be incorporated

within the nnU-Net to enhance the performance of the 2D candidate model. The nnU-Net framework

would still apply its hyperparameter selection heuristics and automatic model selection techniques

to choose and configure an optimal model for a given task.

The challenge also highlighted a set of best practices that were implemented by most teams.

For example, data augmentation techniques were employed by all top-performing groups. Data aug-

mentation involves artificially expanding the available training dataset size by applying one or more

(often randomized) image transformation functions to each training example, generating subtle vari-

ations in the observed data. For instance, large sets of randomly defined affine transformations can

be applied to all available training images to introduce model invariance to such transformations

(refer to Shorten et al. (2019) for a review of data augmentation techniques). Additionally, most

teams implemented specialized loss functions or data-resampling procedures to address label imbal-

ance issues, which are often prominent in medical images where the foreground object of interest is

considerably smaller than the remaining image volume.

Since the original challenge, several new submissions have been made, some of which have sur-

passed the performance of the initial nnU-Net challenge winners. Part of this improvement can be

attributed to the new submissions having the advantage of tuning their systems on all ten datasets,

unlike the original challenge participants who only had access to seven datasets during the open
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phase. However, some methodological advances have also been made since the 2018 challenge. For

example, several newer methods rely on auto-ML-inspired techniques (refer to Hutter et al. (2019)

and X. He et al. (2021) for reviews), specifically neural architecture search (NAS, see Elsken et al.

(2019) for a review). In NAS, a neural network architecture is automatically generated by itera-

tively selecting new candidate models from a defined search space using, for instance, evolutionary

optimization algorithms (Real et al. 2017) or reinforcement learning (Zoph et al. 2016). However,

while NAS and other auto-ML techniques may enhance a system’s overall performance, they often

come with significant computational overhead, as numerous candidate models are evaluated through

optimization. NAS was employed by Y. He et al. (2021), who led the challenge until recently when

Hatamizadeh, Nath, et al. (2022) took the lead, incorporating results from the more recent Vision

Transformer architectures of UNETR (Hatamizadeh, Tang, et al. 2022) and Swin Transformers (Ze

Liu et al. 2021). These newer Transformer architectures aim to combine the strengths of FCN models

like the U-Net (e.g., hierarchical feature encoding and encoder-decoder bottleneck structures) with

the advantages of Transformers (e.g., their ability to process long-range dependencies).

Many of the techniques mentioned operate at different levels of the machine learning pipeline

and may be composable. Based on the findings of the MSD, one could hypothesize that a promis-

ing approach to achieving highly generalizable machine learning pipelines for medical segmentation

– provided computational overhead is not a significant constraint – involves a combination of an

automatically configured model architecture (either through NAS or similar auto-ML techniques or

by selecting a candidate from a set of models). This architecture would first be pre-trained on a

large and diverse collection of unlabelled images or labelled images for some related task and then

fine-tuned using extensive data augmentation (e.g., multi-view training and classical augmentations)

on a smaller set of labelled image examples for the specific target task.

The conclusions from the 2018 MSD challenge will be further explored concerning the general

findings of this thesis in the Discussion chapter 13.

7.2 The Liver Tumor Segmentation Benchmark (LiTS)

This paper by Bilic et al. (2023) presents the setup, results, and conclusions of the Liver Tumor

Segmentation Benchmark (LiTS) challenge. The challenge was hosted in three editions, first at a

workshop during the 2017 IEEE International Symposium on Biomedical Imaging (ISBI), then at

the 2017 MICCAI conference, and finally as the liver segmentation task of the 2018 MSD MICCAI

challenge described earlier. Participants were invited to develop segmentation models for segmenting

the liver and primary and secondary liver tumours in CT images. We participated in this challenge

through the 2018 MSD using the MPUNet model detailed in Paper A.
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The dataset comprised 131 training and 70 testing images from eight geographically dispersed

clinical institutions. The imaged tumours exhibited considerable variability, encompassing primary

and secondary tumours with diverse shapes, locations, sizes, contrasts, and densities. As highlighted

in the Motivation chapter 1, liver tumours are complex segmentation targets due to these factors,

even for human expert annotators.

The challenge demonstrated that many automatic segmentation systems also struggle with these

technical difficulties. While all methods accurately segmented the liver (average per-subject F1/Dice

score overlaps of 0.92-0.96 for most teams across the three editions), the liver tumours were segmented

with an average F1 overlap in the range of 0.64 – 0.67 in the 2017 edition. However, the top-

performing methods in the 2017 (MICCAI) and 2018 (MICCAI MSD) editions significantly improved

these results, achieving average F1 overlaps of 0.70 and 0.74, respectively. The latter score was

achieved by the nnU-net, the winner of the 2018 MSD challenge (Isensee et al. 2018). These results

demonstrate that a task-agnostic system can outperform specialized systems from the two editions

where liver tumour segmentation was the sole target task. However, most submissions to the 2018

MSD challenge did not accomplish this feat. The median score on the tumour class among the 19

participants was 0.54, below the typical performance of systems submitted to the 2017 ISBI edition.

For example, in our submission, the MPUNet segmented the liver tumour class with a mean F1

score of 0.57, corresponding to the 8th highest of the 19 participants. It’s overall ranking in the

challenge was 5th/6th, indicating a worse-than-usual performance on the liver tumour segmentation

task. These results will further be discussed in the Discussion chapter 13.

Over the three editions of the challenge, a total of 73 fully automated segmentation models

were submitted. Similar to the 2018 MSD challenge, the U-Net architecture was employed in most

systems, often in a cascaded setup where separate models first performed coarse-grained outlining

followed by fine-detailed segmentation. Almost all teams utilized various types of data augmentation.

Additionally, many teams implemented post-processing of the segmentation masks, such as discarding

detected tumours outside the segmented liver region, filling holes in tumours, and more.

7.3 The International Workshop on Osteoarthritis Imaging Knee

MRI Segmentation Challenge

This paper by Arjun Desai et al. (2021) presents the setup, results, and conclusions of the 2019

International Workshop on Osteoarthritis Imaging (IWOI) Knee MRI Segmentation Challenge. The

challenge invited participants to develop segmentation models for segmenting knee cartilages in MRI

to assess the clinical efficacy of using automatic models to extract osteoarthritis (OA) biomarkers.

We participated in this challenge using the MPUNet model described in Paper A without further
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modifications, aiming to test the model’s ability to solve a specific task compared to submissions

explicitly tuned for the challenge.

A total of five teams participated in the challenge, with one team submitting an entry after the

challenge concluded. Two teams made two submissions each. All eight submissions utilized U-Net-

inspired FCN models but with varying numbers of parameters, optimization hyperparameters, and

loss functions. The segmentations were assessed using standard overlap metrics, such as the F1 score.

Additionally, the error in estimating cartilage thickness, a potential biomarker for OA progression

assessment, was evaluated by comparing manually defined and automatic segmentations. All methods

achieved accurate segmentations, with average F1 scores ranging from 0.81 to 0.90 for all four targets

(femoral, tibial, patellar cartilages, and the meniscus). The top four performing teams, including

the MPUNet, demonstrated no significant differences in F1 overlap for any targets. The cartilage

thickness error was also similar among these four teams, with low mean percentage errors between 4,%

and 6,% for the femoral and tibial cartilage targets (within the range of practical limitations defined

by the scanning resolution). However, the patellar cartilage showed more significant and varied

errors, with mean errors between 6,% and 10,%. The thickness estimates were inconsistent across

scans for all networks, potentially limiting their clinical applicability. The MPUNet demonstrated

average thickness errors of 4,%, 6,%, and 6,% for the three cartilage targets.

Despite achieving high overall segmentation overlap scores, the challenge revealed that all net-

works performed worse in cartilage areas most commonly affected by OA. These findings suggest

that various networks (although all U-Net-inspired) optimized using different hyperparameters and

loss functions may produce similar knee cartilage segmentations in MRI. The limitations of these

networks are likely not due to their architecture or optimization hyperparameters but rather the lack

of training data that adequately represents the clinical variability of cartilages impacted by OA.

The challenge also made an important observation that there was only a weak correlation between

F1 segmentation overlap scores and cartilage thickness estimation errors. This finding indicates that

the effectiveness of simple overlap metrics, such as F1, is limited in assessing the clinical applicability

of different models that all achieve high F1 scores. Slight improvements to the F1 score may not

significantly impact the accuracy of the clinical endpoint variable of interest. The limitations of eval-

uating clinical segmentation models using simple F1 scores are further discussed in the Limitations

chapter 13.4 in Part IV below.

7.4 Towards Automatic Cartilage Quantification in Clinical Trials

This paper by Dam, Arjun Desai, et al. (2023) presents the setup, results, and conclusions of a follow-

up challenge to the IWOI Knee MRI Segmentation Challenge by Arjun Desai et al. (2021), discussed
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above. All six teams that participated in the original challenge were invited to join the follow-up

challenge, and they all accepted. Each team used their original model, trained on the dataset from

the initial challenge, to segment a total of 1,130 new knee MRIs from a different sub-cohort within

the same study (the Osteoarthritis Initiative (OAI) multi-visit cohort, Nevitt et al. 2006) from which

the data for the original challenge was selected. The sub-cohort consisted of 556 subjects imaged

during baseline and follow-up visits one year later.

The challenge aimed to assess if methods developed for the 2019 IWOAI challenge could reliably

quantify OA imaging biomarkers, such as cartilage loss, in a larger cohort with manually measured

cartilage volume scores. The challenge focused on a longitudinal trial where scanner changes and

drifts caused by software updates or part replacements could alter MRI appearances between a

subject’s visits, even when using the same scanner and sequence throughout the study.

The methods were primarily assessed based on their ability to detect cartilage volume changes

between the baseline and follow-up visits. As observed in the original challenge, all methods demon-

strated high segmentation accuracy, with correlations between manual and automatic cartilage vol-

ume measurements ranging from 0.82 to 0.95. The automatic methods tended to either overestimate

or underestimate cartilage volumes but were relatively consistent in their tendencies. The challenge

concluded that both automatic and manual segmentations had similar sensitivity to cartilage volume

changes, at least for those compartments where the ground truth was reliable (see Dam, Arjun Desai,

et al. (2023) for further details).

The highest sensitivity to cartilage volume change was achieved by a slightly modified version

of our MPUNet (in which the typical ReLU activation functions were replaced with ELU activation

functions) specifically for the lateral tibial cartilage compartment. In this compartment, the MPUNet

demonstrated sensitivity to detecting volume changes at least as well as manual annotations, sug-

gesting that this method and other high-performing submissions from the challenge may be used in

future clinical studies to quantify OA imaging biomarkers. However, it is essential to note that all

automatic methods were more sensitive to scanner drift and shift events than manual annotations.

Therefore, continuous analysis of the potential impact of such events on the obtained automatic

quantifications is essential throughout the study. To maintain optimal performance, models may

need to be re-trained or fine-tuned on newly annotated scans whenever significant scanner drift is

detected.
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7.5 Accurate Segmentation of Dental Panoramic Radiographs with

U-Nets

This paper describes concurrent work to Paper A on the MPUnet (T. Koch et al. 2019). It outlines

several best practices for applying U-Net-like FCN models to medical image segmentation tasks,

some of which were also implemented in Paper A. Specifically, a U-Net architecture was designed

for segmenting dental radiographs. A series of experiments were conducted to explore the potential

for optimization using various loss functions, input image patching strategies (since processing the

large radiograph images as a whole was not feasible at the time, even for FCNs), data augmentation

techniques(reflections of the input radiographs to utilize their natural symmetry properties), ensemble

predictions generated by multiple independently trained networks, and a method known as test-time

augmentation. This last approach involved predicting the same radiographs using the same network

multiple times after applying different transformation functions.

The concept of test-time augmentation was already introduced in the AlexNet paper by Krizhevsky

et al. (2017). Their model was applied to multiple overlapping patches extracted from the input to

produce a more accurate average segmentation. Test-time augmentation inspired the multi-planar

data augmentation scheme presented in Paper A, where the training data augmentation scheme in-

troduces model rotation equivariance properties which can be further utilized at test time to predict

image volumes as seen from multiple view orientations.
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8.1 Abstract

Neural networks are becoming more and more popular for the analysis of physiological time-series.

The most successful deep learning systems in this domain combine convolutional and recurrent layers

to extract useful features to model temporal relations. Unfortunately, these recurrent models are

difficult to tune and optimize. In our experience, they often require task-specific modifications,

which makes them challenging to use for non-experts. We propose U-Time, a fully feed-forward deep

learning approach to physiological time series segmentation developed for the analysis of sleep data.

U-Time is a temporal fully convolutional network based on the U-Net architecture that was originally

proposed for image segmentation. U-Time maps sequential inputs of arbitrary length to sequences of

class labels on a freely chosen temporal scale. This is done by implicitly classifying every individual

time-point of the input signal and aggregating these classifications over fixed intervals to form the

final predictions. We evaluated U-Time for sleep stage classification on a large collection of sleep

electroencephalography (EEG) datasets. In all cases, we found that U-Time reaches or outperforms

current state-of-the-art deep learning models while being much more robust in the training process

and without requiring architecture or hyperparameter adaptation across tasks.
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8.2 Introduction

During sleep our brain goes through a series of changes between different sleep stages, which are

characterized by specific brain and body activity patterns (Iber et al. 2007; Kales et al. 1968).

Sleep staging refers to the process of mapping these transitions over a night of sleep. This is of

fundamental importance in sleep medicine, because the sleep patterns combined with other variables

provide the basis for diagnosing many sleep related disorders (Sateia 2014). The stages can be

determined by measuring the neuronal activity in the cerebral cortex (via electroencephalography,

EEG), eye movements (via electrooculography, EOG), and/or the activity of facial muscles (via

electromyography, EMG) in a polysomnography (PSG) study (see Figure C.1 in the Supplementary

Material). The classification into stages is done manually. This is a difficult and time-consuming

process, in which expert clinicians inspect and segment the typically 8–24 hours long multi-channel

signals. Contiguous, fixed-length intervals of 30 seconds are considered, and each of these segments

is classified individually.

Algorithmic sleep staging aims at automating this process. Recent work shows that such systems

can be highly robust (even compared to human performance) and may play an important role in

developing novel biomarkers for sleep disorders and other (e.g., neurodegenerative and psychiatric)

diseases (Schenck et al. 2014; Stephansen et al. 2018; Warby et al. 2014). Deep learning is becoming

increasingly popular for the analysis of physiological time-series (Faust, Hagiwara, et al. 2018) and

has already been applied to sleep staging (Faust, Razaghi, et al. 2019; Robert et al. 1998; Ronzhina

et al. 2012). Today’s best systems are based on a combination of convolutional and recurrent layers

(Biswal, Kulas, et al. 2017; Supratak et al. 2017). While recurrent neural networks are conceptually

appealing for time series analysis, they are often difficult to tune and optimize in practice, and it has

been found that for many tasks across domains recurrent models can be replaced by feed-forward

systems without sacrificing accuracy (Bai, J. Z. Kolter, et al. 2018; Q. Chen et al. 2017; Vaswani

et al. 2017).

This study introduces U-Time, a feed-forward neural network for sleep staging. U-Time as

opposed to recurrent architectures can be directly applied across datasets of significant variability

without any architecture or hyperparameter tuning. The task of segmenting the time series is treated

similar to image segmentation by the popular U-Net architecture (Ronneberger et al. 2015). This

allows segmentation of an entire PSG in a single forward pass and to output sleep stages at any

temporal resolution. Fixing a temporal embedding, which is a common argument against feed-

forward approaches to time series analysis, is no problem, because in our setting the full time series

is available at once and is processed entirely (or in large chunks) at different scales by the special

network architecture.



CHAPTER 8. PAPER C: U-TIME: FULLY CONVOLUTIONAL NETWORK FOR TIME SERIES85

In the following, we present our general approach to classifying fixed length continuous segments

of physiological time series. In Section 8.4, we apply it to sleep stage classification and evaluate it on 7

different PSG datasets using a fixed architecture and hyperparameter set. In addition, we performed

many experiments with a state-of-the-art recurrent architecture, trying to improve its performance

over U-Time and to assess its robustness against architecture and hyperparameter changes. These

experiments are listed in the Supplementary Material. Section 8.5 summarizes our main findings,

before we conclude in Section 8.6.

8.3 Method

U-Time is a fully convolutional encoder-decoder network. It is inspired by the popular U-Net archi-

tecture originally proposed for image segmentation (T. Koch et al. 2019; Perslev, Dam, et al. 2019;

Ronneberger et al. 2015) and so-called temporal convolutional networks (Lea et al. 2016). U-Time

adopts basic concepts from U-Net for 1D time-series segmentation by mapping a whole sequence to

a dense segmentation in a single forward pass.

Let x ∈ RτS×C be a physiological signal with C channels sampled at rate S for τ seconds. Let e be

the frequency at which we want to segment x, that is, the goal is to map x to ⌊τ ·e⌋ labels, where each

label is based on i = S/e sampled points. In sleep staging, 30 second intervals are typically considered

(i.e., e = 1/30 Hz). The input x to U-Time are T fixed-length connected segments of the signal, each

of length i. U-Time predicts the T labels at once. Specifically, the model f(x; θ) : RT×i×C → RT×K

with parameters θ maps x to class confidence scores for predicting K classes for all T segments. That

is, the model processes 1D signals of length t = Ti in each channel.

The segmentation frequency e is variable. For instance, a U-Time model trained to segment with

e = 1/30 Hz may output sleep stages at a higher frequency at inference time. In fact, the extreme

case of e = S, in which every individual time-point of x gets assigned a stage, is technically possible,

although difficult (or even infeasible) to evaluate (see for example Figure 8.3). U-Time, in contrast

to other approaches, allows for this flexibility, because it learns an intermediate representation of

the input signal where a confidence score for each of the K classes is assigned to each time point.

From this dense segmentation the final predictions over longer segments of time are computed by

projecting the fine-grained scores down to match the rate e at which human annotated labels are

available.

The U-Time model f consists of three logical submodules: The encoder fenc takes the raw

physiological signal and represents it by a deep stack of feature maps, where the input is sub-

sampled several times. The decoder fdec learns a mapping from the feature stack back to the input

signal domain that gives a dense, point-wise segmentation. A segment classifier fsegment uses the
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Figure 8.1: Illustrative example of how U-Time maps a potentially very long input sequence (here
only T = 4 for visual purposes) to segmentations at a chosen temporal scale (here e = 1/30 Hz)
by first segmenting the signal at every data-point and then aggregating these scores to form final
predictions.

dense segmentation to predict the final sleep stages at a chosen temporal resolution. These steps

are illustrated in Figure 8.1. An architecture overview is provided in Figure 8.2 and detailed in

Supplementary Table C.2.

Encoder The encoder consists of four convolution blocks. All convolutions in the three submodules

preserve the input dimensionality through zero-padding. Each block in the encoder performs two

consecutive convolutions with 5-dimensional kernels dilated to width 9 (Yu et al. 2016) followed by

batch normalization (Ioffe et al. 2015) and max-pooling. In the four blocks, the pooling windows

are 10, 8, 6, and 4, respectively. Two additional convolutions are applied to the fully down-sampled

signal. The aggressive down-sampling reduces the input dimensionality by a factor 1920 at the lowest

layers. This 1) drastically reduces computational and memory requirements even for very long inputs,

2) enforces learning abstract features in the bottom layers and, 3), combined with stacked dilated

convolutions, provides a large receptive field at the last convolution layer of the encoder. Specifically,

the maximum theoretical receptive field of U-Time corresponds to approx. 5.5 minutes given a 100 Hz

signal (see (Luo et al. 2017) for further information on theoretical and effective receptive fields).

The input x to the encoder could be an entire PSG record (T = ⌊τ · e⌋) or a subset. As the

model is based on convolution operations, the total input length t need not be static either, but could

change between training and testing or even between individual mini-batches. While t is adjustable,

it must be large enough so that all max-pooling operations of the encoder are defined, which in our

implementation amounts to tmin = 1920 or 19.2 seconds of a 100Hz signal. A too small t reduces

performance by preventing the model from exploiting long-range temporal relations.
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Decoder The decoder consists of four transposed-convolution blocks (Long et al. 2014), each per-

forming nearest-neighbour up-sampling (Odena et al. 2016) of its input followed by convolution with

kernel sizes 4, 6, 8 and 10, respectively, and batch normalization. The resulting feature maps are

concatenated (along the filter dimension) with the corresponding feature maps computed by the

encoder at the same scale. Two convolutional layers, both followed by batch normalization, process

the concatenated feature maps in each block. Finally, a point-wise convolution with K filters (of size

1) results in K scores for each sample of the input sequence.

In combination, the encoder and decoder maps a t × C input signal to t ×K confidence scores.

We may interpret the decoder output as class confidence scores assigned to every sample point of

the input signal, but in most applications we are not able to train the encoder-decoder network in a

supervised setting as labels are only provided or even defined over segments of the input signal.

Segment classifier The segment classifier serves as a trainable link between the intermediate

representation defined by the encoder-decoder network and the label space. It aggregates the sample-

wise scores to predictions over longer periods of time. For periods of i time steps, the segment classifier

performs channel-wise mean pooling with width i and stride i followed by point-wise convolution

(kernel size 1). This aggregates and re-weights class confidence scores to produce scores of lower

temporal resolution. In training, where we only have T labels available, the segment classifier maps

the dense t×K segmentation to a T ×K-dimensional output.

Because the segment classifier relies on the mean activation over a segment of decoder output,

learning the full function f (encoder+decoder+segment classifier) drives the encoder-decoder sub-

network to output class confidence scores distributed over the segment. As the input to the segment

classifier does not change in expectation if e (the segmentation frequency) is changed, this allows

to output classifications on shorter temporal scales at inference time. Such scores may provide

important insight into the individual sleep stage classifications by highlighting regions of uncertainty

or fast transitions between stages on shorter than 30 second scales. Figure 8.3 shows an example.

8.4 Experiments and Evaluation

Our brain is in either an awake or sleeping state, where the latter is further divided into rapid-eye-

movement sleep (REM) and non-REM sleep. Non-REM sleep is further divided into multiple states.

In his pioneering work, (Kales et al. 1968) originally described four non-REM stages, S1, S2, S3 and

S4. However, the American Academy of Sleep Medicine (AASM) provides a newer characterization

(Iber et al. 2007), which most importantly changes the non-REM naming convention to N1, N2, and

N3, grouping the original stages S3 and S4 into a single stage N3. We use this 5-class system and
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Figure 8.2: Structural overview of the U-Time architecture. Please refer to Supplementary Figure C.2
for an extended, larger version.

refer to Table C.1 in the Supplementary Material for an overview of primary features describing each

of the AASM sleep stages.

We evaluated U-Time for sleep-stage segmentation of raw EEG data. Specifically, U-Time was

trained to output a segmentation of an EEG signal into K = 5 sleep stages according to the AASM,

where each segment lasts 30 seconds (e = 1/30 Hz). We fixed T = 35 in our experiments. That is,

for a S = 100 Hz signal we got an input of t = 105000 samples spanning 17.5 minutes.

Our experiments were designed to gauge the performance of U-Time across several, significantly

different sleep study cohorts when no task-specific modifications are made to the architecture or

hyperparameters between each. In the following, we describe the data pre-processing, optimization,

and evaluation in detail, followed by a description of the datasets considered in our experiments.

Preprocessing All EEG signals were re-sampled at S = 100 Hz using polyphase filtering with

automatically derived FIR filters. Across the datasets, sleep stages were scored by at least one

human expert at temporal resolution e = 1/30 Hz. When stages were scored according to the

(Kales et al. 1968) manual, we merged sleep stages S3 and S4 into a single N3 stage to comply with

the AASM standard. We discarded the rare and typically boundary-located sleep stages such as

‘movement’ and ‘non-scored’ and their corresponding PSG signals, producing the identical label set

{W, N1, N2, N3, R} for all the datasets. EEG signals were individually scaled for each record to

median 0 and inter quartile range (IQR) 1.

Some records display extreme values typically near the start or end of the PSG studies when

electrodes are placed or the subject is entering or leaving the bed. To stabilize the pre-processing

scaling as well as learned batch normalization, all 30 second segments that included one or more

values higher than 20 times the global IQR of that record were set to zero. Note that this only

applied if the segment was scored by the human observer (almost always classified ‘wake’ as these

typically occur outside the ’in-bed’ region), as they would otherwise be discarded. We set the values
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to zero instead of discarding them to maintain temporal consistency between neighboring segments.

Optimization U-Time was optimized using a fixed set of hyperparameters for all datasets. We

used the Adam optimizer (Kingma et al. 2015) with learning rate η = 5 · 10−6 minimizing the

generalized dice cost function with uniform class weights (Crum et al. 2006; Sudre et al. 2017),

L(y, ŷ) = 1 − 2
K

∑K
k

∑N
n yknŷkn∑K

k

∑N
n ykn+ŷkn

. This cost function is useful in sleep staging, because the classes

may be highly imbalanced. To further counter class imbalance we selected batches of size B = 12

on-the-fly during training according to the following scheme: 1) we uniformly sample a class from

the label set {W, N1, N2, N3, R}, 2) we select a random sleep period corresponding to the chosen

class from a random PSG record in the dataset, 3) we shift the chosen sleep segment to a random

position within the T = 35 width window of sleep segments. This scheme does not fully balance the

batches, as the 34 remaining segments of the input window are still subject to class imbalance.

Training of U-Time was stopped after 150 consecutive epochs of no validation loss improvement

(see also Cross-validation below). We defined one epoch as ⌈L/T/B⌉ gradient steps, where L is the

total number of sleep segments in the dataset, T is the number of fixed-length connected segments

input to the model and B is the batch size. Note that we found applying regularization unnecessary

when optimizing U-Time as overfitting was negligible even on the smallest of datasets considered

here (see Sleep Staging Datasets 8.4 below).

Model specification and hyperparameter selection The encoder and decoder parts of the

U-Time architecture are 1D variants of the 2D U-Net type model that we have found to perform

excellent across medical image segmentation problems (described in T. Koch et al. 2019; Perslev,

Dam, et al. 2019). However, U-Time uses larger max-pooling windows and dilated convolution

kernels. These changes were introduced in order to increase the theoretical receptive field of U-Time

and were made based on our physiological understand of sleep staging rather than hyperparameter

tuning. The only choice we made based on data was the loss function, where we compared dice loss

and cross entropy using 5-fold cross-validation on the Sleep-EDF-39 dataset (see below). We did not

modify the architecture or any hyperparameters (e.g., learning rates) after observing results on any

of the remaining datasets. Our minimal hyperparameter search minimizes the risk of unintentional

method-level overfitting.

U-Time as applied here has a total of ≈ 1.2 million trainable parameters. Note that this is at

least one order of magnitude lower than typical CNN-LSTM architectures such as DeepSleepNet

(Supratak et al. 2017). We refer to Table C.2 and Figure C.2 in the Supplementary Material for a

detailed model specification as well as to Table C.3 in the Supplementary Material for a detailed list

of hyperparameters.
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Cross-validation We evaluated U-Time on 7 sleep EEG datasets (see below) with no task-specific

architectural modifications. For a fair comparison with published results, we adopted the evaluation

setting that was most frequent in the literature for each dataset. In particular, we adopted the

number of cross-validation (CV) splits, which are given in the results Table 8.2 below. All reported

CV scores result from single, non-repeated CV experiments.

It is important to stress that CV was always performed on a per-subject basis. The entire EEG

record (or multiple records, if one subject was recorded multiple times) were considered a single

entity in the CV split process.1 On all datasets except SVUH-UCD, ⌈5%⌉ of the training records

of each split were used for validation to implement early-stopping based on the validation F1 score

(Dice 1945; Sørensen 1948). For SVUH-UCD, a fixed number of training epochs (800) was used in

all splits, because the dataset is too small to provide a representative validation set.

Evaluation & metrics In Table 8.2 we report the per-class F1/dice scores computed over raw

confusion matrices summed across all records and splits. This procedure was chosen to be comparable

to the relevant literature. The table summarizes our results and published results for which the

evaluation strategy was described clearly. Specifically, we only compare to studies in which CV has

been performed on a subject-level and not segment level. In addition, we only compare to studies

that either report F1 scores directly or provide other metrics or confusion matrices from which we

could derive the F1 score. We only compare to EEG based methods.

LSTM comparison We re-implemented the successful DeepSleepNet CNN-LSTM model (Supratak

et al. 2017) for two purposes. First, we tried to push the performance of this model to the level of

U-Time on the Sleep-EDF-39 and DCSM datasets (see below) through a series of hyperparameter

experiments summarized in Table C.13 & Table C.14 in the Supplementary Material. Second, we

used DeepSleepNet to establish a unified, state-of-the-art baseline. Because the DeepSleepNet system

as introduced in (Supratak et al. 2017) was trained for a fixed number of epochs without early stop-

ping, we argue that direct application of the original implementation to new data would favour our

U-Time model. Therefore, we re-implemented DeepSleepNet and plugged it into our U-Time train-

ing pipeline. This ensures that the models use the same early stopping mechanisms, class-balancing

sampling schemes, and TensorFlow implementations. We employed pre- and finetune training of the

CNN and CNN-LSTM subnetworks, respectively, as in (Supratak et al. 2017). We observed over-

fitting using the original settings, which we mitigated by reducing the default pre-training learning

rate by a factor 10. For Sleep-EDF-39 and DCSM, DeepSleepNet was manually tuned in an attempt
1Not doing so leads to data from the same subject being in both training and test sets and, accordingly, to

overoptimistic results. This effect is very pronounced. Therefore, we do not discuss published results where training
and test set were not split on a per-subject basis.
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to reach maximum performance (see Supplementary Material). We did not evaluate DeepSleepNet

on SVUH-UCD because of the small dataset size.

Implementation U-Time is publicly available at https://github.com/perslev/U-Time. The

software includes a command-line-interface for initializing, training and evaluating models through

CV experiments automatically distributed and controlled over multiple GPUs. The code is based on

TensorFlow (Abadi et al. 2015). We ran all experiments on a NVIDIA DGX-1 GPU cluster using

1 GPU for each CV split experiment. However, U-Time can be trained on a conventional 8-12 GB

memory GPU. Because U-Time can score a full PSG in a single forward-pass, segmenting 10+ hours

of signal takes only seconds on a laptop CPU.

Sleep Staging Datasets We evaluated U-Time on several public and non-public datasets covering

many real-life sleep-staging scenarios. The PSG records considered in our experiments have been

collected over multiple decades at multiple sites using various instruments and recording protocols

to study sleep in both healthy and diseased individuals. We briefly describe each dataset and refer

to the original papers for details. Please refer to Table 8.1 for an overview and a list of used EEG

channels.

Sleep-EDF A public PhysioNet database (Goldberger et al. 2000; B. Kemp et al. 2000) often used

for benchmarking automatic sleep stage classification algorithms. As of 2019, the sleep-cassette subset

of the database consists of 153 whole-night polysomnographic sleep recordings of healthy Caucasians

age 25-101 taking no sleep-related medication. We utilze both the full Sleep-EDF database (referred

to as Sleep-EDF-153 ) as well as a subset of 39 samples (referred to as Sleep-EDF-39 ) that correspond

to an earlier version of the Sleep-EDF database that has been extensively studied in the literature.

Note that for these two datasets specifically, we only considered the PSGs starting from 30 minutes

before to 30 minutes after the first and last non-wake sleep stage as determined by the ground truth

labels in order to stay comparable with literature such as (Supratak et al. 2017).

Physionet 2018 The objective of the 2018 Physionet challenge (Ghassemi et al. 2018; Goldberger

et al. 2000) was to detect arousal during sleep from PSG data contributed by the Massachusetts Gen-

eral Hospital’s Computational Clinical Neurophysiology Laboratory. Sleep stages were also provided

for the training set. We evaluated U-Time on splits of the 994 subjects in the training set.

DCSM A non-public database provided by Danish Center for Sleep Medicine (DCSM), Rigshos-

pitalet, Glostrup, Denmark comprising 255 whole-night PSG recordings of patients visiting the center

for diagnosis of non-specific sleep related disorders. Subjects vary in demographic characteristics,

diagnostic background and sleep/non-sleep related medication usage.

ISRUC Sub-group 1 of this public database (Khalighi et al. 2016) comprises all-night PSG

https://github.com/perslev/U-Time
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Table 8.1: Datasets overview. The Scoring column reports the annotation protocol (R&K =
Rechtschaffen and Kales, AASM = American Academy of Sleep Medicine), Sample Rate lists the
original rate (in Hz), and Size gives the number of subjects included in our study after exclusions.

Dataset Size Sample Rate Channel Scoring Disorders

S-EDF-39 39 100 Fpz-Cz R&K None
S-EDF-153 153 100 Fpz-Cz R&K None
Physio-2018 994 200 C3-A2 AASM Non-specific sleep disorders
DCSM 255 256 C3-A2 AASM Non-specific sleep disorders
ISRUC 99 200 C3-A2 AASM Non-specific sleep disorders
CAP 101 100-512 C4-A1/C3-A2 R&K 7 types of sleep disorders
SVUH-UCD 25 128 C3-A2 R&K Sleep apnea, primary snoring

recordings of 100 adult, sleep disordered individuals, some of which were under the effect of sleep

medication. Recordings were independently scored by two human experts allowing performance

comparison between the algorithmic solution and human expert raters. We excluded subject 40 due

to a missing channel.

CAP A public database (Terzano et al. 2002) storing 108 PSG recordings of 16 healthy subjects

and 92 pathological patients diagnosed with one of bruxism, insomnia, narcolepsy, nocturnal frontal

lobe epilepsy, periodic leg movements, REM behavior disorder, or sleep-disordered breathing. We

excluded subjects brux1, nfle6, nfle25, nfle27, nfle33, n12 and n16 due to missing C4-A1 and C3-A2

channels or due to inconsistent meta-data information.

SVUH-UCD The St. Vincent’s University Hospital / University College Dublin Sleep Apnea

Database (Goldberger et al. 2000) contains 25 full overnight PSG records of randomly selected

individuals under diagnosis for either obstructive sleep apnea, central sleep apnea or primary snoring.

8.5 Results

We applied U-Time with fixed architecture and hyperparameters to 7 PSG datasets. Table 8.2 lists

the class-wise F1 scores computed globally (i.e., on the summed confusion matrices over all records)

for U-Time applied to a single EEG channel (see Table 8.1), our re-implemented DeepSleepNet

(CNN-LSTM) baseline and alternative models from literature. Table C.12 in the Supplementary

material further reports a small number of preliminary multi-channel U-Time experiments, which

we discuss below. Table C.5 to Table C.11 in the Supplementary Material display raw confusion

matrices corresponding to the scores of Table 8.2. In Table C.4 in the Supplementary Material, we

report the mean, standard deviation, minimum and maximum per-class F1 scores computed across

individual EEG records, which may be more relevant from a practical perspective.

Even without task-specific modifications, U-Time reached high performance scores for large and

small datasets (such as Physionet-18 and Sleep-EDF-39), healthy and diseased populations (such as
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Table 8.2: U-Time results across 7 datasets. U-Time and our CNN-LSTM baseline process single-
channel EEG data. Referenced models process single- or multi-channel EEG data. References: [1]
Supratak et al. (2017), [2] Vilamala et al. (2017), [3] Phan, Fernando Andreotti, Cooray, Chén, et al.
(2018), [4] Tsinalis et al. (2016), [5] F. Andreotti et al. (2018).

.

Eval Global F1 scores

Dataset Model Records CV W N1 N2 N3 REM mean

S-EDF-39 U-Time 39 20 0.87 0.52 0.86 0.84 0.84 0.79
CNN-LSTM1 39 20 0.85 0.47 0.86 0.85 0.82 0.77
VGGNet2 39 20 0.81 0.47 0.85 0.83 0.82 0.76
CNN3 39 20 0.77 0.41 0.87 0.86 0.82 0.75
Autoenc.4 39 20 0.72 0.47 0.85 0.84 0.81 0.74

S-EDF-153 U-Time 153 10 0.92 0.51 0.84 0.75 0.80 0.76
CNN-LSTM 153 10 0.91 0.47 0.81 0.69 0.79 0.73

Physio-18 U-Time 994 5 0.83 0.59 0.83 0.79 0.84 0.77
CNN-LSTM 994 5 0.82 0.58 0.83 0.78 0.85 0.77

DCSM U-Time 255 5 0.97 0.49 0.84 0.83 0.82 0.79
CNN-LSTM 255 5 0.96 0.39 0.82 0.80 0.82 0.76

ISRUC U-Time 99 10 0.87 0.55 0.79 0.87 0.78 0.77
CNN-LSTM 99 10 0.84 0.46 0.70 0.83 0.72 0.71
Human obs. 99 - 0.92 0.54 0.80 0.85 0.90 0.80

CAP U-Time 101 5 0.78 0.29 0.76 0.80 0.76 0.68
CNN5 104 5 0.77 0.35 0.76 0.78 0.76 0.68
CNN-LSTM 101 5 0.77 0.28 0.69 0.77 0.75 0.65

SVUH-UCD U-Time 25 25 0.75 0.51 0.79 0.86 0.73 0.73

Sleep-EDF-153 and DCSM), and across different EEG channels, sample rates, accusation protocols

and sites etc. On all datasets, U-Time performed, to our knowledge, at least as well as any automated

method from the literature that allows for a fair comparison – even if the method was tailored

towards the individual dataset. In all cases, U-Time performed similar or better than the CNN-

LSTM baseline.

We attempted to push the performance of the CNN-LSTM architecture of our re-implemented

DeepSleepNet (Supratak et al. 2017) to the performance of U-Time on both the Sleep-EDF-39 and

DCSM datasets. These hyperparameter experiments are given in Table C.13 and Table C.14 in the

Supplementary Material. However, across 13 different architectural changes to the DeepSleepNet

model, we did not observe any improvement over the published baseline version on the Sleep-EDF-

39 dataset, indicating that the model architecture is already highly optimized for the particular

study cohort. We found that relatively modest changes to the DeepSleepNet architecture can lead to

large changes in performance, especially for the N1 and REM sleep stages. On the DCSM dataset, a

smaller version of the DeepSleepNet (smaller CNN filters, specifically) improved performance slightly

over the DeepSleepNet baseline.



CHAPTER 8. PAPER C: U-TIME: FULLY CONVOLUTIONAL NETWORK FOR TIME SERIES94

Figure 8.3: Visualization of the class confidence scores of U-Time trained on C = 3 input channels
on the Sleep-EDF-153 dataset when the segmentation frequency e is set to match the input signal
frequency. Here, U-Time outputs 100 sleep stage scores per second. The top, colored letters give the
ground truth labels for each 30 second segment. The height of the colored bars in the bottom frame
gives the softmax (probability-like) scores for each sleep stage at each point in time.

8.6 Discussion and Conclusions

U-Time is a novel approach to time-series segmentation that leverages the power of fully convolutional

encoder-decoder structures. It first implicitly segments the input sequence at every time point and

then applies an aggregation function to produce the desired output.

We developed U-Time for sleep staging, and this study evaluated it on seven different sleep PSG

datasets. For all tasks, we used the same U-Time network architecture and hyperparameter settings.

This does not only rule out overfitting by parameter or structure tweaking, but also shows that

U-Time is robust enough to be used by non-experts – which is of key importance for clinical practice.

In all cases, the model reached or surpassed state-of-the-art models from the literature as well as our

CNN-LSTM baseline. In our experience, CNN-LSTM models require careful optimization, which

indicates that they may not generalize well to other cohorts. This is supported by the observed

drop in CNN-LSTM baseline performance when transferred to, for example, the ISRUC dataset. We

further found that the CNN-LSTM baseline shows large F1 score variations, in particular for sleep

stage N1, for small changes of the architecture (see Table C.13 in the Supplementary Material). In

contrast, U-Time reached state-of-the-art performance across the datasets without being tuned for

each task. Our results show that U-Time can learn sleep staging based on various input channels
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across both healthy and diseased subjects. We attribute the general robustness of U-Time to its fully

convolutional, feed-forward only architecture.

Readers not familiar with sleep staging should be aware that even human experts from the

same clinical site may disagree when segmenting a PSG.2 While human performance varies be-

tween datasets, the mean F1 overlap between typical expert annotators is at or slightly above 0.8

(Stephansen et al. 2018). This is also the case on the ISRUC dataset as seen in Table 8.2. U-

Time performs at the level of the human experts on the three non-REM sleep stages of the ISRUC

dataset, while inferior on the REM sleep stage and slightly below on the wake stage. However,

human annotators have the advantage of being able to inspect several channels including the EOG

(eye movement), which often provides important information in separating wake and REM sleep

stages. This is because the EEG activity in wake and REM stages is similar, while – as the name

suggests – characteristic eye movements are indicative of REM sleep (see Table C.1 in the Supple-

mentary Material). In this study we chose to use only a single EEG channel to compare to other

single-channel studies in literature. It is highly likely that U-Time for sleep staging would benefit

from receiving multiple input channels. This is supported by our preliminary multi-channel results

reported in Supplementary Table C.12. On ISRUC and other datasets, the inclusion of an EOG

channel improved classification of the REM sleep stage.

We observed the lowest U-Time performance on the CAP dataset, although on par with the model

of (F. Andreotti et al. 2018), which requires multiple input channels. The CAP dataset is difficult

because it contains recordings from patients suffering from seven different sleep related disorders,

each of which are represented by only few subjects, and because of the need for learning both the

C4-A1 and C3-A2 channels simultaneously.

Besides its accuracy, robustness, and flexibility, U-Time has a couple of other advantageous prop-

erties. Being fully feed-forward, it is fast in practice as computations may be distributed efficiently

on GPUs. The input window T can be dynamically adjusted, making it possible to score an entire

PSG record in a single forward pass and to obtain full-night sleep stage classifications almost instan-

taneously in clinical practice. Because of its special architecture, U-Time can output sleep stages at

a higher temporal resolution than provided by the training labels. This may be of importance in a

clinical setting for explaining the system’s predictions as well as in sleep research, where sleep stage

dynamics on shorter time scales are of great interest (H. Koch, Poul Jennum, et al. 2019). Figure 8.3

shows an example.

While U-Time was developed for sleep staging, we expect its basic design to be readily appli-

cable to other time series segmentation tasks as well. Based on our results, we conclude that fully
2This is true in particular for the N1 sleep stage, which is difficult to detect due to its transitional nature and

non-strict separation from the awake and deep sleep stages.
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convolutional, feed-forward architectures such as U-Time are a promising alternative to recurrent ar-

chitectures for times series segmentation, reaching similar or higher performance scores while being

much more robust with respect to the choice of hyperparameters.



Chapter 9

Paper D
U-Sleep: Resilient high-frequency sleep staging

Authors

Mathias Persleva, Sune Darknera, Lykke Kempfnerb, Miki Nikolicb, Poul Jørgen Jennumb and Chris-

tian Igela.

aDepartment of Computer Science, University of Copenhagen, Copenhagen, Denmark
bDanish Center for Sleep Medicine, Rigshospitalet, Glostrup, Denmark

Published

npj Digital Medicine 4, 2021. DOI: https://doi.org/10.1038/s41746-021-00440-5

Copyright information

CC BY 4.0 open-access licence. The manuscript has been re-formatted. In agreement with the

licence terms, the manuscript’s content was changed by removing the original Supplementary Figure

2 and Supplementary Table 1 to limit the repeating of information available in Paper C (Chapter 8).

97

https://doi.org/10.1038/s41746-021-00440-5
https://creativecommons.org/licenses/by/4.0/


CHAPTER 9. PAPER D: U-SLEEP: RESILIENT HIGH-FREQUENCY SLEEP STAGING 98

9.1 Abstract

Sleep disorders affect a large portion of the global population and are strong predictors of morbidity

and all-cause mortality. Sleep staging segments a period of sleep into a sequence of phases pro-

viding the basis for most clinical decisions in sleep medicine. Manual sleep staging is difficult and

time-consuming as experts must evaluate hours of polysomnography (PSG) recordings with elec-

troencephalography (EEG) and electrooculography (EOG) data for each patient. Here we present

U-Sleep, a publicly available, ready-to-use deep-learning-based system for automated sleep staging

(sleep.ai.ku.dk). U-Sleep is a fully convolutional neural network which was trained and evaluated on

PSG recordings from 15,660 participants of 16 clinical studies. It provides accurate segmentations

across a wide range of patient cohorts and PSG protocols not considered when building the system.

U-Sleep works for arbitrary combinations of typical EEG and EOG channels, and its special deep

learning architecture can label sleep stages at shorter intervals than the typical 30 second periods

used during training. We show that these labels can provide additional diagnostic information and

lead to new ways of analyzing sleep. U-Sleep performs on par with state-of-the-art automatic sleep

staging systems on multiple clinical datasets, even if the other systems were built specifically for

the particular data. A comparison with consensus-scores from a previously unseen clinic shows that

U-Sleep performs as accurately as the best of the human experts. U-Sleep can support the sleep stag-

ing workflow of medical experts, which decreases healthcare costs, and can provide highly accurate

segmentations when human expertise is lacking.

https://sleep.ai.ku.dk
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9.2 Introduction

Sleep disorders affect a large portion of the global population and impose significant welfare costs

(Devore et al. 2016; P. Jennum et al. 2009; Silva et al. 2016; Tobaldini et al. 2018; Wittchen et

al. 2011). Abnormal sleeping patterns and associated sleep disorders are strong predictors of mor-

bidity and all-cause mortality (Chattu et al. 2018; Garbarino et al. 2016). Anomalous sleep-wake

changes occur for instance in psychiatric conditions (e.g., schizophrenia, depression Baandrup et al.

2018), neurodegenerative diseases (e.g., dementia, rapid eye movement sleep behavior disorder, and

Parkinson’s Disease Baandrup et al. 2018; H. Koch, Poul Jennum, et al. 2019; Olesen et al. 2018),

and genuine sleep disorders (e.g., narcolepsy (Stephansen et al. 2018), insomnia (Miller et al. 2016),

sleep apnea H. Koch, Schneider, et al. 2017) as well as during epileptic seizures and prior to stroke

(Ponsaing et al. 2017). Timely and accurate diagnosis of sleep disorders relies on the difficult and

time-consuming process of sleep staging based on polysomnography (PSG) data. A PSG collects

a set of non-invasive long-term recordings of physiological measures of multiple brain and body

functions using modalities such as electroencephalography (EEG), electrooculography (EOG), and

electromyography (EMG). These signals are divided into intervals, typically of 30 seconds, which are

mapped to different sleep stages such as awake, light sleep, intermediate sleep, deep sleep, and rapid

eye movement (REM) sleep (Iber et al. 2007; Kales et al. 1968) (see Supplementary Figure C.1 and

Supplementary Table C.1 for a brief overview of PSG and sleep stage characteristics). This sleep

staging forms the basis for subsequent analyses.

Sleep staging requires multiple hours of manual annotations from expert clinicians for each sub-

ject incurring significant costs and leading to bottlenecks in both diagnosis and large-scale clinical

studies. The manual annotations suffer from high intra- and interscorer variability which reduces the

diagnostic precision (Stephansen et al. 2018; Warby et al. 2014). Algorithmic sleep staging aims at

automating this process. Recent work shows that such systems can be highly accurate and robust

and may play an important role in developing novel biomarkers for sleep disorders and other (e.g.,

neurodegenerative) diseases (Anderer et al. 2010; Klosh et al. 2001; Schenck et al. 2014; Stephansen

et al. 2018; Warby et al. 2014). Deep learning (LeCun, Bengio, et al. 2015) is becoming increasingly

popular for the analysis of physiological time-series in general (Faust, Hagiwara, et al. 2018) and has

already been successfully applied to sleep staging (Faust, Razaghi, et al. 2019; Robert et al. 1998;

Ronzhina et al. 2012). While several high-performance deep-learning-based sleep staging systems

have been proposed recently (Biswal, Sun, et al. 2018; Chambon et al. 2018; Dong et al. 2018; Guil-

lot et al. 2019; Kuo et al. 2020; Mousavi et al. 2019; Phan, Fernando Andreotti, Cooray, O. Y. Chen,

et al. 2019; Phan, Chén, P. Koch, Lu, et al. 2020; Phan, Chén, P. Koch, Mertins, et al. 2020; Sun

et al. 2017; Supratak et al. 2017), these have not yet been widely adopted in clinical practice because
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it is not clear if the reported results can be generalized. Current state-of-the-art systems are tuned,

trained and evaluated on one or a very small number of clinical cohorts, and it remains questionable

if similar results can be achieved in a different clinical setting for different patient populations. Most

systems are designed to operate on PSG data from a specific hardware & pre-processing pipeline

including a specific set of EEG/EOG/EMG channels, sampling rate, etc. to maximize performance.

Consequently, most existing sleep staging systems – including deep learning systems trained on sev-

eral datasets (F. Andreotti et al. 2018; Phan, Chén, P. Koch, Lu, et al. 2020) – require re-training

at each clinical site, which imposes a significant technical barrier.

A robust, easy-to-use sleep staging model directly applicable across clinical populations and PSG

protocols with (at least) expert-level performance would both free significant resources across sleep

clinics and enable developing countries with advanced sleep diagnostics. Such a system may also

serve as a global, standardized reference for sleep staging which could spark scientific discussions and

reduce inter-clinical and inter-operator variability.

This study describes U-Sleep, our contribution towards these goals. U-Sleep is a publicly available,

ready-to-use deep neural network for resilient sleep staging inspired by the popular U-Net (Brandt

et al. 2020; Falk et al. 2019; Ronneberger et al. 2015) architecture for image segmentation. The

neural network was trained and evaluated on the – to the best of our knowledge – largest and

most diverse set of PSG records for sleep staging ever collected, spanning 16 independent clinical

studies providing 23 datasets, geographically dispersed clinical sites, multiple decades, a large array

of demographics, and patient groups. Eight datasets were not considered during model development

and training, they were only used for realistic verification of U-Sleep. Two datasets are consensus-

scored and allowed us to compare U-Sleep’s performance to that of five clinical experts on both

healthy subjects and sleep-disordered patients. U-Sleep requires only a single EEG and a single

EOG channel with arbitrary standard electrode placement as input, makes no assumptions about

the acquisition hardware (including sampling rate) or pre-processing pipeline, and outputs a whole

night’s sleep stages in seconds on a laptop CPU. U-Sleep also has a unique in-built ability to output

sleep stage labels at temporal frequencies up to the signal sampling rate (Perslev, Jensen, et al.

2019). We show that such high-frequency representation of sleep carries diagnostic information in

separating obstructive sleep apnea (OSA) patients from a population of healthy control subjects.

Figure 9.1 provides an overview of the U-Sleep prediction pipeline. Figure 9.2 illustrates the

model architecture. U-Sleep is freely available at https://sleep.ai.ku.dk.

https://sleep.ai.ku.dk
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Figure 9.1: The U-Sleep prediction pipeline. U-Sleep is a ready-to-use deep neural network for
sleep staging. First, it maps each provided EEG and EOG channel pair (shown in the top) to an
intermediate, high-frequency sleep stage representation (shown in the middle). The intermediate
representation is visualized by the colored bars indicating the level of confidence U-Sleep has that
the subject is in one of the 5 sleep stages at a given time (Blue: Wake, Red: N1, Green: N2, Cyan:
N3, Yellow: REM). From the intermediate representation, U-Sleep aggregates confidence scores over
periods of time (for instance segments of 30 seconds) to output final sleep staging scores. U-Sleep
makes no assumptions about the PSG protocol including acquisition hardware, electrode positions,
filtering, and sampling rate. Internally, signals are re-sampled at 128 Hz. U-Sleep may output sleep
stage labels up to this frequency.

9.3 Methods

9.3.1 Fully Convolutional Neural Network for Time Series Segmentation

The U-Sleep model is a deep neural network which maps an EEG and an EOG signal to a high-

frequency sleep stage representation and then aggregates this intermediate representation to a se-

quence of sleep stages each spanning a fixed-length time interval (e.g., 30 seconds). This process

is illustrated in Figure 9.1. U-Sleep accepts input signals obtained with any common electrode

placement (i.e., any EEG and EOG channel), hardware and software filtering, and sampling rate

(internally re-sampled to 128 Hz). Up to computer memory constraints, U-Sleep processes inputs of

arbitrary lengths. However, inputs shorter than 17.5 minutes may reduce performance by restrict-

ing the model from observing long-range dependencies in the data. and predicts sleep stages for the

whole sequence in a single forward pass. This makes it possible for U-Sleep to process a whole night’s

PSG data in seconds on commodity hardware and even in less than a second if a graphics processing

unit (GPU) is used.
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Figure 9.2: Model architecture. U-Sleep is a special fully convolutional neural network architecture
designed for physiological time-series segmentation tasks such as sleep staging. It consists of an
encoder (left) which encodes the input signals into dense feature representations, a decoder (middle)
which projects the learned features into the input space to generate a dense sleep stage representation
as shown in Figure 9.1, and finally a specially designed segment classifier (right) which generates sleep
stages at a chosen temporal resolution. Please see the Method section and Supplementary Table D.1
for details on the U-Sleep model architecture.

In contrast to other automated sleep staging systems, U-Sleep is a purely feed-forward, fully

convolutional neural network. Fully convolutional networks have been incredibly successful in com-

putational vision and especially in medical image analysis. They mark the state of the art in image

segmentation, with the U-Net arguably being the most popular architecture so far (Falk et al. 2019;

Ronneberger et al. 2015). We successfully applied U-Nets for various medical segmentation tasks,

and found that one fixed architecture and set of hyperparameters can give excellent results across

very different tasks (A. Desai et al. 2020; T. Koch et al. 2019; Perslev, Dam, et al. 2019). Recently,

we adapted our version of U-Net for image analysis (Brandt et al. 2020; A. Desai et al. 2020; T.

Koch et al. 2019; Perslev, Dam, et al. 2019) to the segmentation of one-dimensional physiological

time series data. We extended the architecture with an additional block of fully convolutional layers

for aggregating classifications (Perslev, Jensen, et al. 2019). The new architecture termed U-Time

was applied to sleep staging.

In accordance with our results on images, we found that we could use the same network archi-

tecture and training process to learn a variety of sleep staging tasks outperforming state-of-the-art

models such as DeepSleepNet (Supratak et al. 2017). Our fully convolutional network was easier to

train (e.g., less dependent on hyperparameter settings) compared to more complex models for sleep

staging relying on recurrent neural network architectures (Perslev, Jensen, et al. 2019). Another

decisive feature of U-Time is that it provides a classification of the input signals for each time point

as an intermediate representation, although the data used for training and evaluating the model were

segmented at a much lower temporal resolution. The U-Sleep architecture proposed in this study
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supersedes U-Time; the main differences between the systems are described below.

9.3.2 Automated Sleep Staging

Sleep staging refers to the process of partitioning a PSG record into a sequence of sleep stages.

Human annotators typically consider segments of 30 seconds and assign a single sleep stage to each

segment. We denote a PSG record by X ∈ RτS×C , where τ is a number of seconds sampled, S is the

sampling rate and C is the number of channels recorded. The output of the sleep staging process is

a sequence of ⌊τ · e⌋ labels, where e is the frequency at which we want to assign sleep stages, with

e = 1/30 Hz being the typical value for human annotators. Thus, each sleep stage spans i = S/e

sampled points in time across C channels.

Given a fixed integer i > 0, U-Sleep defines a deterministic function f(X′; θ) : RT ·i×C → RT×K

for any integer T > 0, where θ is a set of parameters learned from data, X′ is a (section of a) PSG

record, T is a number of fixed-length segments with i sampled points each, C the number of PSG

channels and K is the number of sleep stages. During training, X′ is typically a submatrix of a

longer PSG X with X′ = X[{t, . . . , t + i · T}, {1, . . . , C}] for some time point t. That is, U-Sleep

takes a temporal section of a PSG and outputs a sequence of labels corresponding to fixed-length,

contiguous segments of time (in principle, different output labels of U-Sleep could span different

lengths of time, but we assume the typical case of fixed-length segments). The input X′ can be

any length (augmented or cut to a multiple of i; ideally T · i ≥ 4096, because there are 12 pooling

operations down-sampling the signal by a factor of 2 each). For instance, when we trained U-Sleep,

X′ spanned 17.5 minutes of a PSG signal. When using U-Sleep to predict sleep stages in new data,

the whole PSG is input to U-Sleep (i.e., X′ = X), which computes the whole hypnogram at once.

The provided U-Sleep system requires at least two input channels (C = 2), one EEG and one

EOG channel, respectively, sampled or re-sampled to 128 Hz. It assumes K = 5 different stages

{Wake, N1, N2, N3, REM}.

9.3.3 Machine Learning Model

U-Sleep is a fully convolutional deep neural network refining its predecessor U-Time (Perslev, Jensen,

et al. 2019), which we recently devised for time-series segmentation problems such as sleep staging

(the differences between U-Sleep and U-Time are described below). In the following, we outline the

U-Sleep architecture. We refer to Figure 9.2 for a schematic overview and to Supplementary Table

D.1 for additional details on the configuration of the individual layers.

U-Sleep consists of three sub-modules: 1) An encoder module first extracts a deep stack of

abstract feature maps from the input signals. Each extracted feature map has a lower temporal
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resolution compared to its input. 2) A decoder module then performs an up-scaling of the compact

feature maps to match the temporal resolution of the input signals. The output of the decoder may

be seen as a complex representation of sleep stages at a frequency matching the input signal. 3)

A specially designed segment classifier module aggregates the intermediate, high-frequency output

of the decoder into segments and predicts the sleep stages for these segments. For each segment,

a confidence score is predicted for every possible sleep stage, which is interpreted as a probabilistic

prediction by applying the softmax-function. Next, we describe the individual modules in more

detail.

Encoder The encoder module comprises 12 encoder blocks. Each encoder block consists of one

convolutional layer (kernel size 9, no kernel dilation, stride 1 Goodfellow et al. 2016), one layer of

Exponential Linear Unit (ELU) (Clevert et al. 2016) activation functions, batch normalization (Ioffe

et al. 2015) and max-pooling (kernel size 2, stride 2). The number of learned filters cl in the l-th

convolutional layer is
√
2 times larger compared to the previous layer, starting with c1 = 5, that is,

for l ∈ {1, ..., 11} we have cl+1 = ⌊cl
√
2⌋ (this corresponds to a doubling of the degrees of freedom

from one block to the next, which is less than in U-Net implementations).

Decoder The decoder module consists of 12 decoder blocks. Each decoder block performs nearest

neighbour up-sampling of the input with kernel size 2 (i.e., it doubles the length of the feature maps

along the temporal axis) and applies convolution (kernel size 2, stride 1), ELU activation functions

and batch normalization. The up-scaled input is then combined with the output of the batch-

norm operation (i.e., before max-pooling) of the corresponding encoder block (in terms of temporal

resolutions, e.g., the first decoder block matches the last encoder block). Then a convolution, non-

linearity, and batch-normalization are applied to the stacked feature maps. Opposite to the encoder,

the decoder scales down the number of learned filters by a factor of
√
2 in each consecutive block.

The output of the final decoder has the same temporal resolution as the input signal. Thus,

when concatenated, the encoder and decoder modules map an input signal in RT ·i×C to an output in

RT ·i×K , where K = 5 is the number of sleep stages. This output can be regarded as an intermediate

representation of sleep stages at high (128 Hz) frequency.

Segment Classifier The segment classifier module maps the intermediate, high-frequency rep-

resentation to the sleep stage prediction at the desired frequency. It aggregates scores over longer

segments of time. For a given window of length i it first applies a per-channel mean-pooling operation

with kernel width i and stride i. Two point-wise convolution operations (kernel width 1, stride 1)

are then applied, the first using ELU activation functions. This allows to learn a non-linear weighted

combination of the mean scores over the interval. Finally, the softmax function is used to transform
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the scores into probabilistic predictions. Thus, the output of the segment classifier is a T ×K right

stochastic matrix, where T is a number of segments and K = 5 is the number of sleep stages. During

training, we have one sleep stage label available for each segment of length i, and we train the whole

encoder + decoder + segment classifier network end-to-end as described in the Optimization section

below.

9.3.4 Model Specification and Hyperparameter Selection

The deep neural network architecture of U-Sleep is well-structured and simple in comparison to many

others deep networks proposed for sleeep staging. Still, the U-Sleep has many hyperparameters (e.g.,

the depth, the number of filters and their sizes for each block, etc.) which could be optimized to tune

its performance on any specific set of data. However, we deliberately did not systematically tune

the hyperparameters of U-Sleep, but employed a minimal hyperparameter selection strategy based

on empirical evidence gathered from the U-Time (Perslev, Jensen, et al. 2019), our experience from

using fully convolutional neural networks for image segmentation (Brandt et al. 2020; T. Koch et al.

2019; Perslev, Dam, et al. 2019), and our physiological understanding of sleep staging. We avoided

automated hyperparameter search to limit unintentional method-level overfitting and problems due

to adaptive data analysis.

We adopted large parts of the U-Sleep model architecture (Supplementary Table D.1) and hyper-

parameters (Supplementary Table D.2) from its predecessor U-Time (Perslev, Jensen, et al. 2019),

which was shown to be able to learn sleep staging across a range of datasets (individually) without

requiring dataset-specific hyperparameter tuning. Still, we changed important aspects of the system.

Because U-Sleep solves a significantly more difficult learning task requiring generalization across clin-

ical cohorts and input channel combinations we increased the capacity of the network. The increased

dataset size allowed us to fit a more complex model. In addition, we improved the system based

on lessons learnt from U-Time. U-Sleep has a larger number of trainable parameters (≈ 3.1 · 106

compared to U-Time’s ≈ 1.1 · 106) and is significantly deeper, consisting of 12 encoder- and decoder

blocks instead of U-Time’s four. U-Sleep also down-samples the input signal and subsequent feature

maps much more slowly by using max-pooling kernels of width 2 in all encoder blocks instead of

U-Time much more aggressive max-pooling kernels of widths in {10, 8, 4, 2}. U-Sleep implements the

more complex ELU non-linearity following all convolution operations instead of U-Time’s Rectified

Linear Units (ReLUs). Finally, whereas U-Time only linearly combined the mean-pooled activa-

tions in the final segment classifier layer, U-Sleep applies two convolution operations allowing for a

non-linear weighted combination.

All changes served to increase the capacity of U-Sleep (i.e., its ability to approximate a more

complex target function). Using a less aggressive max-pool down-sampling strategy reduces the
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information loss in the early layers. While U-Time benefited from early, aggressive down-sampling

to reach computational and statistical efficiency, we argued that U-Sleep might need to capture

more complex, hardly conceived patterns in the input signals which are robustly observed across

datasets and channel combinations but may be lost if the input is sub-sampled too aggressively.

The increased depth of U-Sleep also considerably expanded its theoretical receptive field (Luo et al.

2017) (the maximum length of input signal that may effect each convolution computation in a given

layer) from U-Time’s ≈ 5.5 minutes to ≈ 9.6 minutes in the last convolutional layer of the encoding

sub-network. We numerically estimated the output sleep stages to be sensitive to changes in the

input space 6.75 minutes backward and forward in time (i.e., each sleep stage prediction is informed

by data from a window of up to 13.5 minutes of 128 Hz signal).

While U-Sleep has more layers compared to U-Time, the individual encoder- and decoder blocks

are less complex, because they apply only a single convolution operation to their inputs instead of

two, and the number of learned filters scale only by a factor of
√
2 with depth instead of 2 (see

Supplementary Table D.2).

Finally, we trained U-Sleep differently from U-Time to accommodate learning across many dif-

ferent datasets, and also apply augmentations as described in the Optimization and Augmentation

sections below. The more common and simpler cross-entropy cost function was optimized instead of

the generalized dice loss (Crum et al. 2006; Sudre et al. 2017) used for U-Time.

All reported results in this study are from the first and only trained instance of the U-Sleep

model. That is, the design choices described above were not revised based on the performance of the

system, making the reported evaluation metrics highly reliable.

9.3.5 Pre-processing

All EEG and EOG signals are resampled to 128 Hz using polyphase filtering. We scale the range of

EEG and EOG signals on a global, per-subject and per-channel basis so that the whole EEG signal

recorded from a single channel has a median of 0 and inter quartile range (IQR) of 1 (i.e. an outlier

robust scaling). We then clip any value which has an absolute deviation from the median of more

than 20 times the IQR of that channel. Finally, during training we strip from the beginning and end

any EEG or EOG signal which is outside the range of the scored hypnogram.

The current U-Sleep system considers sleep stages following the AASM standard: { W, N1, N2,

N3, REM } (Iber et al. 2007). If data was originally scored by a human expert following the Kales

and Rechtschaffen (Kales et al. 1968) manual, we merged stages S3 and S4 into a single N3. U-Sleep

does not attempt to score stages such as ’MOVEMENT’ or ’UNKNOWN’. Whenever such a label

occurred during training, we masked the loss contribution from that segment. This ensures that

the model observes the segment in question, but its prediction does not influence the computation
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of the gradients for updating the model. We did not remove such segments entirely, as we want a

model that can deal with such potentially noisy regions when scoring neighbouring segments after

deployment.

9.3.6 Augmentation

Data augmentation refers to modifying the input data during training to improve generalization.

We applied transformations to a random subset of the sampled batch elements, replacing variable

lengths of segments within EEG and EOG channels or even entire channels with Gaussian noise.

Specifically, for each sample in a batch, with probability 0.1, a fraction of the signals in that sample

was replaced with noise from N(µ = µ̂, σ2 = 0.01), where µ̂ is the empirically measured mean of the

sample’s signals. The fraction was sampled log-uniformly from [0.001, ..., 0.3]. With probability 0.1

at most 1 channel was entirely replaced by noise. These augmentations were applied to force the

model to consider both channels and complex distant relations in the signal.

9.3.7 Input Channel Majority Voting

When applying U-Sleep to new PSG data we utilize its ability to accept input data from arbitrary

EEG and EOG electrode positions by predicting the full hypnogram for each combination of 1 EEG

and 1 EOG channel possible for the given PSG. The resulting predictions are then combined to one

final hypnogram. For each segment, the softmax scores (values ranging from 0 to 1 indicating the

model’s confidence in each sleep stage) of all predictions are summed up and the sleep stage with

the highest accumulated score is the final prediction for the segment.

The hypnogram based on an ensemble of predictions is likely to be more accurate than the

individual hypnograms, as multiple predictions may smooth out errors if those are uncorrelated

across channels (Masegosa et al. 2020; Perslev, Dam, et al. 2019) and provide additional evidence to

difficult, borderline cases.

9.3.8 Evaluation

U-Sleep outputs sleep stages in {W,N1,N2,N3,REM} as described above. When evaluating U-

Sleep we scored the full PSG, but did not consider the predicted class on a segment with a label

different from the five sleep stages (e.g., a segment labelled ’MOVEMENT’ or, for whatever reason,

not scored by a human expert at all). We predicted sleep stages using all combinations of available

EEG and EOG channels for each PSG. Unless otherwise specified, we used majority voting fusing

these predictions when evaluating U-Sleep. We refer to the supplementary material for channel-wise

results.
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We evaluated U-Sleep using the F1/Sørensen-Dice metric (Dice 1945; Sørensen 1948), which is

computed for each sleep stage c separately. The F1 score is defined as Fc
β=1 = 2TP

2TP+FP+FN , where

TP, FP and FN are the number of true positives, false positives and false negatives for a given class

c. The F1 score is used, because it emphasises both recall and precision. We computed the F1 score

for all 5 classes from (non-normalized) confusion matrices and report them separately or combined

by calculating the unweighted mean. Note that unweighted F1 scores typically reduce the absolute

scores due to lower performance on less abundant classes such as sleep stage N1.

Table 9.2 gives an overview over the results, reporting only F1 scores computed for a given class

across all subjects of a testing set, which results in a single number without error bars. In Table

9.3 we consider F1 scores computed for each subject individually and report the mean and standard

deviation, which may better reflect performance in a clinical setting.

Each PSG record in the datasets DOD-H and DOD-O was scored by 5 human experts. This allows

us to compute consensus-scored hypnograms that may be regarded as ground truth data and then

evaluate the performance of U-Sleep in relation to this ground truth as well as in comparison to

individual human experts. We used the code provided with the DOD publication (see https://

github.com/Dreem-Organization/dreem-learning-evaluation) for evaluating the consensus

scores (Guillot et al. 2019), except that we did not balance the F1 scores measured for each class by

the abundance of that class (we report unweighted mean F1 scores for consistency reasons). When

comparing a human annotator to the consensus, the consensus hypnograms are generated from the

N−1 remaining expert scores. In accordance to the literature, U-Sleep and other automated methods

reported in Table 9.3 were evaluated against consensus hypnograms based on the N −1 most reliable

annotators (Guillot et al. 2019).

9.3.9 High-Frequency Sleep Staging Experiments

U-Sleep has the ability to make predictions at higher temporal resolutions compared to the the

labels used during training. As an intermediate representation, U-Sleep computes a confidence score

for each possible sleep stage at each sampled time point (i.e., at 128 Hz in the current system). An

example of this is shown in Figure 9.1. Sleep stages are inherently defined based on patterns observed

over (longer) time periods. Thus, the question is whether the high-resolution outputs are informative

of actual physiological sleeping patterns or only add more noise.

During training, our model considers the mean of the confidence scores over a 30-seconds segment,

shuffling the scores within a segment would not change the learning and the prediction. Still, it is

likely that the intermediate scores will reflect the true sleep stage at a time point, because only in

that way the system can be independent of the – to a large extend arbitrary – positioning of the

windows defining the segments.

https://github.com/Dreem-Organization/dreem-learning-evaluation
https://github.com/Dreem-Organization/dreem-learning-evaluation
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One way to assess the usefulness of the scores is by linking them to a clinical diagnosis. We consid-

ered the datasets DOD-H and DOD-O (see Table 9.1 and the Supplementary Material Datasets section)

with 25 healthy subjects and 55 obstructive sleep apnea (OSA) patients, respectively. As OSA pa-

tients suffered from abrupt awakenings and rapid transitions from deep sleep into lighter sleep stages,

we expected a classifier to be able to separate the two populations with better-than-random perfor-

mance given simple features describing the number of such transitions per time. For each subject in

DOD-H and DOD-O, we predicted sleep stages at frequencies in {2, 4, 8, 16, 32, 64, 128, 256, 512, 768, 1280}

predictions/min. We used all available combinations of EEG and EOG channels (16 for DOD-O and

24 for DOD-H) and computed the majority vote for each segment. For each subject we considered

the 2 predictions/minute output for determining the onset and end of sleep (indicated by first and

last sleep stage). For all frequencies, only the sleep stages within this time-frame were considered.

For each segment of 1.5 hours of sleep we counted the number of occurrences of sleep stage

transition triplets. A triplet is a sequence (s1, s2, s3) ∈ {W,N1,N2,N3,REM}3. We considered only

triplets for which s1 ̸= s2 and s2 ̸= s3. This leaves 80 different triplets in which a fast transition to

stage s2 occur (e.g., (N3,W,N1)) ignoring more typical triplets such as (N2,N2,N2).

We fit a random forest classifier (Breiman 2001) (using the sklearn implementation, Pedregosa

et al. 2011) to the triplet frequencies (occurrences per time). We fit the classifier to 79 out of the 80

subjects and predicted whether the last subject suffers from OSA or not, repeating the process for

all subjects (leave-one-out cross validation). We repeated the whole experiment 50 times for each

frequency bin with a small randomization in the hyperparameters of the random forest classifier.

The latter is done to increase our confidence that any observed correlation is not related to a very

specific set of hyperparameters. Specifically, in each repetition of the experiment we trained a random

forests with 200 trees with respect to the Gini impurity measure and class weights wc = n/(k · nc),

where wc is the weight associated with class c, n is the total number of samples, nc the number

of samples of class c, and k = 2 is the number of classes (’balanced’ mode in sklearn notation).

A random value was chosen for the following hyperparameters: maximum_tree_depth ∈ {2, . . . , 7},

min_samples_leaf ∈ {2, ..., 7}, min_samples_split ∈ {2, ..., 7} and max_features ∈ {sqrt, log2}.

We refer to https://scikit-learn.org/stable/modules/ensemble.html#forest for a detailed

description of those parameters.

We determined the overall OSA classification for each subject by the majority vote over the

predictions of the model across all segments of 1.5 hours of sleep, ties were broken at random.

https://scikit-learn.org/stable/modules/ensemble.html#forest
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9.4 Results

9.4.1 Datasets and Model Training

We trained and evaluated U-Sleep on 19,924 PSG records collected from 15,660 participants of

16 independent clinical studies (21 datasets). A brief overview of each dataset along with key

demographic statistics are displayed in Table 9.1, details can be found in Supplementary Note:

Datasets. All datasets are publicly available, some require an approval. The datasets can be split

into two groups. First, there are 13 datasets that were partly used to train the U-Sleep model. In

combination they span ≈ 19.4 years of annotated signals. Each dataset was split into training (at

least 75 %), validation (up to 10 %, at most 50 subjects) and testing (up to 15 %, at most 100

subjects) subsets on a per-subject or per-family basis. All records from subjects in the training sets

were used to train the U-Sleep model. Records in the validation sets where used to monitor the

performance of U-Sleep throughout training. Records in the testing subsets were used for evaluation.

In the second group are 8 datasets that were used for evaluation only, that is, no data from these

sources were used in the model building process (neither for training nor hyperparameter selection).

These datasets allowed an unbiased performance evaluation of U-Sleep when applied (unaltered) to

new, clinical cohorts. Among others, we measured the performance of U-Sleep against human experts

by considering held-out consensus-scored datasets produced by clinical experts. The performance of

U-Sleep was compared to that of the individual experts evaluated against their consensus scores.

The combined training dataset spans a significant fraction of the expected clinical population

including large numbers of healthy individuals, patients with sleep and non-sleep related disorders,

men and women, as well as different age-, BMI- and ethnic groups. The datasets were collected across

geographically diverse locations (although mainly from the US), across decades, and on a variety of

hardware using different sampling rates, hardware filters and more. The datasets were scored by

sleep experts with different backgrounds.

Our goal is to perform accurate sleep staging across all cohorts simultaneously. In contrast to

most studies, we deliberately exposed the machine learning system to highly variable data and labels,

in order to learn a final model which generalizes well and is useful in clinical practice where data

may vary unexpectedly and with time. U-Sleep was trained on randomly selected batches sampled

across the datasets as described in the Methods section. For each sample in a batch, U-Sleep

was exposed to a randomly selected EEG and EOG channel combination picked from all possible

combinations for the given PSG. No information was given to the model about the data sources.

This challenging setup forced U-Sleep to become invariant to electrode placements. We designed

U-Sleep to require only a single EEG and a single EOG channel, where the electrode placement does
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not matter as long as it is a standard position, to maximize its applicability and ease-of-use. We

omitted other modalities such as EMG, which carry important information about sleep disturbances

and disorders (e.g., Parkinson’s Disease and REM sleep behavior disorder), but are not necessary for

the delineation of sleep stages. Adding EMG has the potential to further improve the performance

of U-Sleep. However, EMG signals especially help to distinguish between being awake and REM

sleep, two stages that our predecessor system U-Time already separates very well. In preliminary

experiments, adding EMG did not improve the performance of U-Time (see supplementary Table

S.12 in the study of Perslev, Jensen, et al. 2019). Using only the two most common modalities makes

our model widely applicable, in particular in scenarios without advanced sleep monitoring setups,

and allowed us to combine many datasets for training, some of which did not, for example, contain

EMG recordings.

9.4.2 Performance Overview

U-Sleep was able to learn sleep staging across all training datasets simultaneously. Supplementary

Figure D.2 shows both the overall loss and mean F1 score computed across validation subsets for

each individual training dataset. The U-Sleep performance increased at similar rates for all datasets.

We used the trained U-Sleep to predict the full hypnogram of all PSG records in the test subsets

of all datasets using all available combinations of EEG and EOG channels. Given the large num-

ber of results, we focus on the mean and stage-wise F1/Dice metrics computed across subjects for

each dataset as described in the Methods section. The per-channel evaluations are shown for each

dataset in Supplementary Tables D.3–D.24. Table 9.2 lists the F1 scores using majority vote, that

is, the hypnograms were generated using predictions from all available EEG-EOG channel combi-

nations within each record. Majority voting, as can be seen from the channel-wise results in the

Supplementary Material, always performed at least as good as the average over all possible channel

combinations. For 19 out of the 21 datasets, the majority voting performed at least as good as the

best individual channel (see Supplementary Material).

Across 21 datasets, U-Sleep performed sleep staging with mean F1 ± STD (in parenthesis shown

when weighted by number of test records) of 0.90 ± 0.04 (0.91 ± 0.03) for stage Wake, 0.53 ± 0.07

(0.53 ± 0.07) for stage N1, 0.85 ± 0.04 (0.86 ± 0.03) for N2, 0.76 ± 0.07 (0.77 ± 0.08) for stage N3,

and 0.90± 0.02 (0.90± 0.02) for stage REM. Considering the mean computed across stages for each

dataset, the global F1 performance can be summarized as 0.79 ± 0.03 (0.79 ± 0.03) ranging from a

minimum 0.73 (SVUH) to maximum 0.85 (CCSHS and CHAT). The standard deviation over F1 scores

obtained using each available channel combination was for most datasets below 0.02 (mean 0.01),

with datasets MASS-C1 and ABC being the only exceptions with standard deviations of 0.03.

Examples of hypnograms as computed by U-Sleep using channel majority voting are visualized
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and compared to human expert annotations for all 21 testing datasets in in Supplementary Figures

D.3–D.23. Specifically, we display the predicted hypnogram with the single highest F1-score, the

single lowest F1-score and the one nearest to the median F1 score observed for the dataset. Thus,

the figures visualize the span in U-Sleep performance from worst- to best-case scenario.

9.4.3 Consensus Results: Comparing to Human Experts

In Table 9.3 we report the performance of U-Sleep on the consensus-scored datasets DOD-H (9.3a) and

DOD-O (9.3b) compared to the performance of 5 individual clinical experts from which the consensus

scores were generated. The distributions of scores are shown for U-Sleep and the 5 experts in Figure

9.3.

Across the 25 healthy subjects of DOD-H, U-Sleep matched the best performing human expert with

a mean F1 score of 0.79±0.07 and human expert scores ranging from a minimum 0.72±0.11 (Expert

4) to a maximum 0.79±0.07 (Expert 3). There is no significant difference between the performance of

U-Sleep and the best human expert (Expert 3) at confidence level α = 0.05 (W = 150.0, p = 0.737,

two-sided Wilcoxon test). U-Sleep scored higher mean F1 than all humans on stages Wake and

N1, similar to the best individual expert (Expert 3) on stage REM and worse than all human

experts on stage N3. U-Sleep performed on average on par with the best two models SimpleNet

and DeepSleepNet from the six models evaluated in the publication presenting the data (Guillot

et al. 2019) (3 best shown here), which were trained on consensus-scored labels from the same data

distribution.

Across the 55 OSA patients of DOD-O, U-Sleep had the highest mean performance of 0.76± 0.10

among the set of human experts and itself, with human performances ranging from a minimum

0.69 ± 0.12 (Expert 1) to a maximum 0.74 ± 0.11 (Expert 5). There is no significant difference

between the performance of U-Sleep and the best human expert (Expert 5, W = 555.0, p = 0.072,

two-sided Wilcoxon test). U-Sleep scored higher mean F1 than all humans on stages N1, N3 and

REM, and slightly below Expert 5 on stages Wake and N2. U-Sleep performed as well or better than

the reference models, which were trained on consensus labels.

9.4.4 Evaluation of High Frequency Sleep Stages

U-Sleep can output sleep stages at a higher frequency than that of the labels used during trained. We

trained with a label frequency of 1/30 Hz – the most typical so called page size in sleep staging – but

can provide sleep stage predictions at frequencies up to 128 Hz (input records may be sampled at a

higher frequency, but will be re-sampled before analysis). Figure 9.1 visualizes these high-frequency

scores. We argue that these scores can capture sleeping patterns on shorter time scales (Perslev,
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Figure 9.3: Boxplots illustrating the distributions of F1 scores from 5 human experts and U-Sleep
on healthy controls and OSA patients. Panel (a) shows results from dataset DOD-H on 25 healthy
subjects. Panel (b) shows results from dataset DOD-O on 55 patients suffering from OSA. Sleep stages
produced by U-Sleep and the 5 individual experts were compared to consensus-scored hypnograms.
Please refer to the Methods section for further details. Mean F1 scores averaged across stages are
shown along with F1 scores for the 5 individual sleep/wake stages. The performance of U-Sleep is
shown in red colors (right most boxplot in each group). The performance of each human expert is
shown in shades of blue (4 left most boxplots in each group). Note that some records were scored
by both human experts and U-Sleep with very low F1 scores (0 in some cases) on individual classes.
This especially concerns stage N3 in dataset DOD-O and most often happens for rare classes. For
instance, a patient severely affected by OSA rarely enters the N3 deep sleep stage, and the resulting
low number of observed N3 stages makes even a few errors result in a large deviation in the F1 score.
Each box-plot shows the median (middle vertical line), first and third quartiles (lower and upper
box limits) and whiskers that extend to 1.5 times the IQR added or subtracted the third and first
quartiles, respectively. Data outside of this range is marked as outliers indicated by diamond shaped
points.

Jensen, et al. 2019). To show this, we performed a simple, but carefully designed study to investigate

if there is predictive information in the high frequency scores. We describe the experimental details

in the Methods section. We considered the datasets DOD-H and DOD-O. Our experiment evaluated

the hypothesis that the healthy subjects and OSA patients are easier to discriminate by a classifier

when extracting features from high-resolution sleep stage scores. We considered the output by U-

Sleep at different frequencies and computed the occurrences of sleep-stage triplet transitions of the

form (s1, s2, s3), where sx ∈ {Wake,N1,N2,N3,REM} and s1 ̸= s2 and s2 ̸= s3. The extracted

triplet frequency features are time-invariant. We get the same number of features independent of

the frequency at which we computed them. We fitted Random Forrest (Breiman 2001) classifiers to
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separate the healthy and OSA patients using features extracted at different frequencies.

Figure 9.4 shows the result of the experiment. We evaluated the classification performance on

sleep stages generated by U-Sleep at 14 different frequencies approximately uniformly distributed

on a log2 scale from 2 stages/minute to 7680 stages/minute (128 Hz). The mean F1 classification

performance increased from an initial low value of 0.60 (at 2 stages/minute frequency) up to a

maximum of 0.94 (at 1280 stages/minute), indicating that the task of separating healthy and OSA

patients was much easier using high-frequency scores, and, consequently, that such stages are indeed

clinically informative.

9.5 Discussion

U-Sleep has simultaneously learned sleep staging for a wide range of clinical cohorts without requiring

adaptation to different cohorts. It can deal with large variations in patient demographics and PSG

protocols, and only requires an arbitrary single EEG and EOG channel as inputs. We evaluated U-

Sleep on several datasets that it has not seen during training, and we found that its accuracy matches

the performance of models that were specifically developed and/or trained on these datasets. For

instance, U-Sleep matches the performance of its predecessor U-Time (for a performance comparison

of U-Time with other sleep staging approaches we refer to Perslev, Jensen, et al. 2019) trained

specifically on datasets ISRUC-SG1 and SVUH (Perslev, Jensen, et al. 2019) with both models scoring

0.77 and 0.73 mean F1, respectively. U-Sleep also approximately matches the performance of U-Time

on datasets SEDF-SC (U-Sleep: 0.79, U-Time: 0.76), PHYS (U-Sleep: 0.79, U-Time: 0.77) and DCSM

(U-Sleep: 0.81, U-Time: 0.79). However, the scores of U-Time on these datasets span additional

records, so the results cannot be compared directly. U-Sleep performs nearly as well as DeepSleepNet

on MASS-C3 (Supratak et al. 2017) (mean F1 of 0.82 for DeepSleepNet and 0.80 for U-Sleep). It is

even as accurate as the best human expert of a group of five when evaluated on the datasets DOD-H

and DOD-O with healthy and diseased individuals. It performs at least as well as all six automated

systems evaluated in the original study presenting these data (Guillot et al. 2019). In contrast to

U-Sleep, these six models were all trained on the same consensus-scored labels that define the ground

truth, which gives them the advantage of learning from higher quality labels as well as a matching

label distributions at training and test time.

In contrast to other automated systems, U-Sleep is trained to work with any standard EEG and

EOG channels it receives as input. The measured F1 scores do vary between individual channels

(as seen in Supplementary Tables D.8–D.24), but with a low standard deviation for most datasets.

Prediction by combining the available channels using majority vote almost always matches the pre-

diction using the best individual channel. As majority scores can be easily obtained also in practice,
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this result reliefs sleep researchers from testing which channel combinations work best for their spe-

cific patients and data. In accordance with our clinical experience, we did not find specific EEG and

EOG channel combinations that score particularly well or badly across datasets. It is possible that

the performance scores obtained using a specific channel reflect what information the human anno-

tators focused on when annotating the signals, as individual experts may have personal preference

(or training) when detecting certain sleep stage characteristics such as spindles and K-complexes in

a particular set of channels. As U-Sleep is trained on randomly varying channel combinations, it is

forced to learn robust features that are conceivable across EEG channels. We hypothesize that U-

Sleep utilizes its ability to look minutes into both the past and future to detect more global sleeping

patterns that are observable across channels, but may be difficult to conceive for humans.

Developing sleep staging systems based on deep learning is an active research area, and new

findings will further improve U-Sleep. When trained on single datasets, some recent algorithms may

perform better than the general U-Sleep system (Kuo et al. 2020; Phan, Chén, P. Koch, Mertins,

et al. 2020). While recent work showed that specialised systems can be applied to new datasets with

good performance using transfer learning techniques (F. Andreotti et al. 2018; Phan, Chén, P. Koch,

Lu, et al. 2020), these methods were retrained on new data matching the target cohort, which requires

technical expertise, time, specialized hardware, and labelled data from the target domain. However,

no system has demonstrated the robustness of U-Sleep on the much more difficult and relevant task

of resilient sleep staging across new clinical cohorts, different input channels, etc. without additional

training.

The U-Sleep architecture was designed based on our experience with U-Net-type neural networks

(Brandt et al. 2020; A. Desai et al. 2020; T. Koch et al. 2019; Perslev, Dam, et al. 2019), please

refer to the Methods section for details. It is a limitation of our study that, because of the long

training time and in order to avoid problems due to adaptive data analysis, we have not fine-tuned

the U-Sleep architecture and training procedure. It is possible that small modifications could further

improve the results. Also, while we have attempted to compile as many and diverse datasets as

possible (e.g., with respect to demographics), all datasets used so far were collected in either Europe

or North America, and represent in particular healthy subjects and OSA patients; two groups both

likely to display normal EEG patterns. It remains to be systematically studied how U-Sleep performs

on patients with highly abnormal brain activity patterns (e.g., following stroke or due to psychiatric

diseases or neurodegenerative disorders). In addition, we have only limited patient record informa-

tion available for all subjects. Accordingly, it has not been possible to fully rule out all potential

(e.g., regional) biases of U-Sleep. It is our hope that more sleep data will be made available from

currently underrepresented groups of subjects, training on which will reduce the risk of unintentional

biases. In Supplementary Note: Demographic Bias, we report the effects of age, sex and gender,
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finding increasing age to have a statistically significant (but small in magnitude) negative effect on

performance, which we attribute to general decrease in health with age.

U-Sleep is an accurate, carefully evaluated and ready-to-use system for sleep staging. There-

fore, we believe that the public availability of U-Sleep will benefit researchers and clinicians in sleep

medicine. It can augment the workflow of expert clinicians by immediately providing sleep stage

annotations of high quality when a PSG sample is inspected. While we do not advocate to disregard

the invaluable expertise of the local clinical and technical staff, who will undoubtedly have a signifi-

cantly better understanding and experience with patients and data from their clinic, we think that

significant resources can be saved by using U-Sleep’s predictions as a starting point for sleep staging.

In this case, the expert only needs to spot potential errors or disagreements with the system’s output

instead of scoring the whole PSG manually. Furthermore, U-Sleep can provide highly accurate sleep

staging when experienced experts are missing. It computes in seconds on a laptop CPU and requires

no technical expertise to use, which makes it applicable for home-monitoring and sleep clinics in

developing countries.

U-Sleep may facilitate large-scale, global studies of sleep with more consistent and less biased

labels. While manual sleep staging follows guidelines as suggested by, for example, the AASM (Iber

et al. 2007), it is a difficult process with room for interpretation, making it inconsistent and error

prone (Warby et al. 2014). Different clinics may perform sleep staging slightly differently, which may

introduce systematic biases when pooling data from clinical sites. While U-Sleep may make errors,

these are more consistent. U-Sleep could thus be used to annotate large collections of data from

across the world, facilitating the on-going and presumably important transition to large-scale sleep

studies (Bragazzi et al. 2019). Individual clinics may be interested to compare their scores against

those of U-Sleep, which may spark scientific debate about observed differences.

The ability of U-Sleep to output high-frequency sleep stages has the potential to significantly

impact the study of sleeping patterns in health and disease, as demonstrated by our proof-of-concept

experiments separating OSA patients and healthy controls. The current standard for sleep classifi-

cation has developed only little since its first formulation in 1968 (Kales et al. 1968), in particular

given the great progress made towards understanding sleep physiology. Sleep staging today almost

always considers the brain as if it would move discretely from one stage to another over segments

of exactly 30 seconds, failing to account for sleep dynamics on shorter time scales (H. Koch, Poul

Jennum, et al. 2019). As we have shown, sleep stage scores at much higher frequency may serve as

the basis for building future diagnostic predictive models. Such models – which may take additional

input modalities such as EMG and demographic variables into account – may require significantly

less training data compared to models that must learn to solve a predictive diagnostic task from raw

PSG data alone, because they can utilize that U-Sleep has already digested the complex raw signals
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into an informative, high-frequency representation of sleep.

Ethical Approval

The Research Ethics Committee for SCIENCE and HEALTH, University of Copenhagen, has re-

viewed this research project and has found it compliant with the relevant Danish and International

standards and guidelines for research ethics. The DCSM dataset was extracted and anonymized by

the Danish Center for Sleep Medicine under a general approval from the Danish Data Protection

Agency to analyze historical PSG data. All other datasets were acquired from third party databases

and handled according to the relevant data sharing agreements.

Data Availability

We make the DCSM dataset publicaly available at https://sid.erda.dk/wsgi-bin/ls.py?share

_id=fUH3xbOXv8. This repository will be frozen and issued a DOI for persistent access following the

review process. All other datasets are in principle also publicly available assuming the individual

researcher and use-case is eligible for a given dataset as determined by the third-party dataset licence

holders listed for each dataset individually in the Supplementary Material. Please refer to Table 9.1

for an overview of which datasets require approval and which are directly available.

Confusion matrices for U-Sleep predictions on all channel combinations (including majority votes)

for individual subjects in all test datasets may be downloaded from https://sid.erda.dk/wsgi-b

in/ls.py?share_id=HE5nA4Xs37. These matrices allow re-computation of F1 metrics as reported

here, as well as other metrics of interest. The repository also stores hyperparameter configuration

files as well as dataset preprocessing and splitting information needed to reproduce the training of

U-Sleep.

Code Availability

The in-house developed codebase used for training U-Sleep is publicaly available on GitHub at https:

//github.com/perslev/U-Time. The codebase is supplied with the submitted manuscript. The

software includes a command-line-interface for initializing, training and evaluating models without

the need to alter the underlying codebase. The software is based on TensorFlow (Abadi et al. 2015).

Please refer to the README file of the repository for guidance on installation and a step-by-step guide

on how to train a U-Sleep model on a subset or all of the datasets considered here. We trained

U-Sleep on a single GPU (NVIDIA Titan X) with 12 GiB of memory. Because U-Sleep can score

https://sid.erda.dk/wsgi-bin/ls.py?share_id=fUH3xbOXv8
https://sid.erda.dk/wsgi-bin/ls.py?share_id=fUH3xbOXv8
https://sid.erda.dk/wsgi-bin/ls.py?share_id=HE5nA4Xs37
https://sid.erda.dk/wsgi-bin/ls.py?share_id=HE5nA4Xs37
https://github.com/perslev/U-Time
https://github.com/perslev/U-Time
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a full PSG in a single forward pass, segmenting 10+ hours of signal takes only seconds on a laptop

CPU and is practically instantaneous if running on a GPU.

We make inference using the pre-trained U-Sleep model freely available at https://sleep.

ai.ku.dk for non-commercial usage. Users may upload (anonymised or public domain) PSG files

(European Data Format, EDF, or HDF5) to the service, choose parameters such as which channels

to use and the inference frequency (e.g., 1/30 Hz or higher), and receive back the automatically

scored hypnogram. The service also provides a simple interface to interactively visualize the scored

hypnogram and to obtain key sleep statistics over selected periods of time. The raw sleep stages can

be downloaded in several formats. We welcome community feedback on how we may improve the

service with additional features.
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Table 9.1: Datasets overview. Please refer to the Supplementary Material for additional details on
each dataset. Missing values are due to study design or anonymized data. Individual statistics may
be computed over a smaller number of observations than the total number of subjects due to missing
data. Datasets DOD-H and DOD-O are hold-out consensus scored datasets. ABC = Apnea, Bariatric
surgery, and CPAP (Bakker et al. 2018), CCSHS = Cleveland Children’s Sleep and Health Study
(Rosen, Larkin, et al. 2003), CFS = Cleveland Family Study (Redline, Tishler, et al. 1995), CHAT
= Childhood Adenotonsillectomy Trial (C. L. Marcus et al. 2013; Redline, Amin, et al. 2011), HPAP
= Home Positive Airway Pressure (Rosen, Auckley, et al. 2012), MESA = Multi-Ethnic Study of
Atherosclerosis (X. Chen et al. 2015), MROS = Osteoporotic Fractures in Men (Blackwell et al.
2011; Song et al. 2015), SHHS = Sleep Heart Health Study (Quan et al. 1998), and SOF = Study
of Osteoporotic Fractures (Cummings et al. 1990; Spira et al. 2008), PHYS = 2018 PhysioNet/CinC
Challenge (Ghassemi et al. 2018), SEDF = Sleep-EDF (B. Kemp et al. 2000), SVUH = St. Vincent’s
University Hospital / University College Dublin Sleep Apnea Database (Goldberger et al. 2000),
DCSM = Danish Centre for Sleep Medicine, ISRUC = ISRUC-Sleep (Khalighi et al. 2016), MASS
= The Montreal Archive of Sleep Studies (O’Reilly et al. 2014), and DOD = Dreem Open Datasets
(Arnal et al. 2019; Guillot et al. 2019; Thorey et al. 2019). (✓) = requires approval. *Number of
distinct families. **Assuming uniform age distribution in the binned data.

Type Dataset Public Records Subjects Length (days) Age (years) BMI Sex % (F/M)

In
te

rn
al

-
T
ra

in
/T

es
t

ABC (✓) 132 49 46.2 48.8± 9.8 38.9± 2.9 43/57
CCSHS (✓) 515 515 240.1 17.7± 0.4 25.1± 5.9 50/50
CFS (✓) 730 730/144* 300.8 41.7± 20.0** 32.4± 9.5 55/45
CHAT (✓) 1638 1232 679.6 6.6± 1.4 19.0± 4.9 52/48
DCSM ✓ 255 255 201.02 – – –
HPAP (✓) 238 238 77.6 46.5± 11.9 37.3± 9.2 43/57
MESA (✓) 2056 2056 905.5 69.4± 9.1 – 54/46
MROS (✓) 3926 2903 1877.3 76.4± 5.5 27.2± 3.8 0/100
PHYS ✓ 994 994 309.8 55.2± 14.3 – 33/67
SEDF-SC ✓ 153 78 144.1 58.8± 22.0 – 53/47
SEDF-ST ✓ 44 22 14.8 40.2± 17.7 – 68/32
SHHS (✓) 8444 5797 3144.4 63.1± 11.2 28.2± 5.1 52/48
SOF (✓) 453 453 188.1 82.8± 3.1 27.7± 4.7 100/0

H
ol

d-
O

ut

ISRUC-SG1 ✓ 100 100 31.3 51.1± 15.9 – 44/56
ISRUC-SG2 ✓ 16 8 4.9 46.9± 17.5 – 25/75
ISRUC-SG3 ✓ 10 10 3.1 39.6± 9.6 – 10/90
MASS-C1 (✓) 53 53 19.9 63.6± 5.3 – 36/64
MASS-C3 (✓) 62 62 21.8 42.5± 18.9 – 55/45
SVUH ✓ 25 25 7.2 50.0± 9.4 31.6± 3.9 16/84
DOD-H ✓ 25 25 8.6 35.3± 7.5 23.8± 3.4 24/76
DOD-O ✓ 55 55 18.5 45.6± 16.5 29.6± 6.4 36/64
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Table 9.2: Majority vote results overview. For each record in each dataset, U-Sleep generated a
hynogram using all possible combinations of 1 EEG and 1 EOG channel. Results reported here
are from the majority voted hypnograms across all such combinations as described in the Methods
section. We refer to Supplementary Tables D.3-D.24 for per-channel results. Here we report the global
F1 scores across all subjects in each dataset. The reported Mean (weighted) and STD (weighted)
statistics are computed across datasets in each column weighted by the number of PSG records in
each row.

Type Dataset Records Wake N1 N2 N3 REM Mean

In
te

rn
al

-
T
ra

in
/T

es
t

ABC 20 0.87 0.53 0.84 0.72 0.90 0.77
CCSHS 78 0.93 0.63 0.91 0.88 0.93 0.85
CFS 92 0.93 0.52 0.89 0.84 0.91 0.82
CHAT 128 0.93 0.64 0.87 0.90 0.90 0.85
DCSM 39 0.97 0.48 0.86 0.83 0.89 0.81
HPAP 36 0.91 0.48 0.84 0.78 0.90 0.78
MESA 100 0.92 0.59 0.87 0.65 0.90 0.79
MROS 134 0.93 0.46 0.87 0.68 0.88 0.77
PHYS 100 0.84 0.60 0.84 0.81 0.87 0.79
SEDF-SC 23 0.93 0.57 0.86 0.71 0.88 0.79
SEDF-ST 8 0.80 0.58 0.88 0.64 0.91 0.76
SHHS 140 0.93 0.51 0.87 0.76 0.92 0.80
SOF 68 0.93 0.45 0.86 0.77 0.92 0.78

H
ol

d-
O

ut

ISRUC-SG1 100 0.89 0.52 0.79 0.77 0.88 0.77
ISRUC-SG2 16 0.85 0.49 0.78 0.83 0.86 0.76
ISRUC-SG3 10 0.90 0.55 0.78 0.74 0.85 0.77
MASS-C1 53 0.94 0.41 0.81 0.61 0.88 0.73
MASS-C3 62 0.93 0.54 0.87 0.75 0.91 0.80
SVUH 25 0.80 0.37 0.81 0.78 0.88 0.73
DOD-H 25 0.91 0.60 0.87 0.79 0.94 0.82
DOD-O 55 0.90 0.52 0.86 0.74 0.92 0.79

Mean (weighted) 0.91 0.53 0.86 0.77 0.90 0.79
STD (weighted) 0.03 0.07 0.03 0.08 0.02 0.03
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Table 9.3: Consensus score results on datasets (a) DOD-H and (b) DOD-O. Highest scores from human
experts and the U-Sleep are highlighted in bold. Scores where one of the trained ML models (last 3
rows) performed as well or superior to U-Sleep are indicated by underlined numbers. However, these
models were fit to the particular datasets, while U-Sleep has not seen any data from DOD-H and DOD-O
during model building and training, indicated by checkmarks or crosses in the Fit column. Numbers
shown are mean ± 1 standard deviation per-subject F1 scores computed between the output of a
single model or human expert and the consensus scores generated from the 4 (N−1) remaining (when
comparing human to consensus) or best human annotators (when comparing model to consensus).

(a) DOD-H: Healthy controls, N = 25

Scorer Fit Wake N1 N2 N3 REM Mean

Expert 1 – 0.83± 0.11 0.49± 0.15 0.86± 0.12 0.78± 0.240.78± 0.240.78± 0.24 0.84± 0.16 0.76± 0.11
Expert 2 – 0.83± 0.14 0.52± 0.11 0.88± 0.05 0.78± 0.230.78± 0.230.78± 0.23 0.89± 0.06 0.78± 0.07
Expert 3 – 0.84± 0.12 0.54± 0.13 0.88± 0.05 0.74± 0.25 0.93± 0.050.93± 0.050.93± 0.05 0.79± 0.070.79± 0.070.79± 0.07
Expert 4 – 0.73± 0.18 0.40± 0.15 0.83± 0.07 0.75± 0.22 0.90± 0.09 0.72± 0.11
Expert 5 – 0.83± 0.14 0.53± 0.12 0.89± 0.040.89± 0.040.89± 0.04 0.76± 0.24 0.90± 0.09 0.78± 0.08
U-Sleep ✗ 0.88± 0.100.88± 0.100.88± 0.10 0.56± 0.140.56± 0.140.56± 0.14 0.86± 0.05 0.73± 0.23 0.93± 0.050.93± 0.050.93± 0.05 0.79± 0.060.79± 0.060.79± 0.06

SimpleNet ✓ 0.83± 0.13 0.57± 0.14 0.90± 0.04 0.80± 0.23 0.90± 0.09 0.80± 0.07
DeepSleepNet ✓ 0.84± 0.10 0.56± 0.13 0.90± 0.05 0.79± 0.24 0.88± 0.10 0.79± 0.07
SeqSleepNet ✓ 0.81± 0.18 0.54± 0.14 0.87± 0.08 0.73± 0.25 0.86± 0.12 0.76± 0.11

(b) DOD-O: OSA patients, N = 55

Scorer Fit Wake N1 N2 N3 REM Mean

Expert 1 – 0.87± 0.11 0.38± 0.15 0.82± 0.13 0.59± 0.31 0.81± 0.25 0.69± 0.12
Expert 2 – 0.87± 0.09 0.46± 0.17 0.82± 0.11 0.61± 0.29 0.86± 0.22 0.72± 0.12
Expert 3 – 0.88± 0.09 0.42± 0.16 0.83± 0.13 0.46± 0.33 0.85± 0.22 0.69± 0.11
Expert 4 – 0.89± 0.09 0.46± 0.15 0.84± 0.07 0.52± 0.33 0.83± 0.24 0.71± 0.12
Expert 5 – 0.90± 0.080.90± 0.080.90± 0.08 0.48± 0.15 0.86± 0.080.86± 0.080.86± 0.08 0.62± 0.33 0.85± 0.22 0.74± 0.11
U-Sleep ✗ 0.89± 0.09 0.53± 0.140.53± 0.140.53± 0.14 0.85± 0.08 0.66± 0.300.66± 0.300.66± 0.30 0.88± 0.200.88± 0.200.88± 0.20 0.76± 0.100.76± 0.100.76± 0.10

SimpleNet ✓ 0.89± 0.09 0.52± 0.16 0.88± 0.11 0.63± 0.35 0.85± 0.22 0.75± 0.11
DeepSleepNet ✓ 0.86± 0.11 0.46± 0.17 0.87± 0.10 0.67± 0.30 0.84± 0.22 0.74± 0.12
SeqSleepNet ✓ 0.84± 0.13 0.46± 0.20 0.86± 0.10 0.59± 0.33 0.77± 0.28 0.71± 0.14
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Figure 9.4: Classification performance on the task of separating healthy control subjects and OSA
patients in a population of N = 80 (25 controls, 55 OSA patients) using a Random Forrest classifier
on sleep stage transition triplet frequencies extracted using U-Sleep outputs of varying frequency.
Panels (a) and (b) illustrate the process of extracting sleep stage triplet transition frequencies from
low (a) and high (b) frequency outputs from U-Sleep, which are passed to the classifier. Panel (c)
shows classification performance as a function of sleep staging frequency. Increasing the temporal
resolution improved the predictive performance of the downstream classifier from its initial low mean
F1 of 0.60 to nearly perfect classifications with mean F1 scores in range 0.89 – 0.94 at frequencies
≥ 768 predictions/minute. The black curve shows the mean performance with standard deviation
error bars computed over 50 repetitions of the experiment using randomly configured classifiers. The
solid red line is the F1 score obtained using a baseline model which predicts only the majority class
(OSA patient) independent its input.
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Introduction: Standard sleep staging methods compress polysomnographic data into 30 s sleep

stages. Automatic scoring models, such as U-Sleep, make it possible to extract sleep stages at much

higher frequencies. It has been hypothesized that such scores may be indicative of neurophysiological

processes and may carry additional diagnostic information.

Objectives: To investigate if high-frequency outputs of the U-Sleep model contain additional diag-

nostic information for separating stroke patients from healthy and sleep-disordered controls compared

to typical 1/30 Hz expert-derived sleep stages.

Methods: Overnight polysomnography (PSG) was performed for 20 healthy individuals, 39 patients

undergoing diagnosis for sleep disorders and 233 stroke patients in the acute/sub-acute phase. Three

human experts derived sleep stages at 1/30 Hz frequency, while the U-Sleep model was used to ex-

tract stages at 1/30, 1 and 12.8 Hz. Sleep stage transition-triplet frequencies were computed from

expert- and automatically derived stages at each frequency. Cross-validation classification experi-

ments using Random Forrest models were performed to separate stroke patients from healthy and

sleep-disordered controls based on triplet frequency features. Classification performance was evalu-

ated using the macro F1-score. Each experiment was repeated 50 times, and median performances

obtained using automatic and expert scores were compared using two-sided Wilcoxon Signed Rank

tests.

Results: U-Sleep performed sleep staging at 1/30 Hz with an F1-overlap to experts of 0.83 ± 0.18

for stage wake, 0.86 ± 0.15 for stage non-REM, and 0.64 ± 0.35 for stage REM (mean ± 1 STD,

N = 233). Using expert derived stages, the classification experiments separated stroke patients

from controls with macro F1-scores of 0.74 ± 0.01 (median ± 1 MAD, N = 50). In comparison,

using U-Sleep scores resulted in lower classification performance at 1/30 Hz frequency (0.68± 0.02,

P < 0.001), better performance at 1 Hz (0.76 ± 0.01, P < 0.001) and even higher performance at

12.8 Hz (0.80± 0.01, P < 0.001).

Conclusions: High-frequency sleep stage representations as output by the U-Sleep model are in-

formative for separating stroke patients from healthy and sleep-disordered controls. Higher staging

frequencies allowed for a better classification, ultimately exceeding that of human experts scores. Fur-

ther work is needed to address if high-frequency U-Sleep scores reflect underlying neurophysiological

processes or, for instance, model uncertainty on difficult cases.
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11.1 Abstract

The U-Sleep model has been shown to perform automatic sleep staging at expert-level performance

across data collected from healthy and sleep-disordered individuals. The model is robust to near-

arbitrary input EEG and EOG channel combinations and has been evaluated on a large set of patient

cohorts of variable demographics. We introduce an improved U-Sleep model and simplified variants

requiring only single-channel input. The new models were trained on an expanded dataset of 25,805

sleep studies and were evaluated on heterogeneous testing data, including complex electroencephalog-

raphy (EEG) data from patients with narcolepsy, REM Sleep Behavior Disorder, Periodic Leg Move-

ment and Parkinson’s Disease. The use of the U-Sleep model for high-frequency sleep staging was

further analysed. A qualitative investigation of high-frequency scores indicated that U-Sleep detects

rapid (< 30 seconds) sleep stages. On average, this effect increased the estimated duration of stages

N1 and N3 sleep with a corresponding decrease in stage N2. Estimates based on high-frequency

stages displayed higher correlations across repeated sleep studies of the same subjects, indicating

that they may be better suited for objective sleep analysis. Finally, a study of the spatial variation

of sleeping patterns when applying U-Sleep on different EEG electrodes was conducted. Spatial

variation increased with increased staging frequency, with higher degrees of stage synchronisation

for nearby electrodes on the same hemisphere. This paper adds to evidence supporting U-Sleep as a

clinically robust model with high performance even on complex & single-channel EEG, which may be

used to study sleep in novel ways in high-throughput, high-frequency studies. All models are freely

available for research at https://sleep.ai.ku.dk.

https://sleep.ai.ku.dk
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11.2 Introduction

Sleep staging provides the basis for many clinical decisions in sleep medicine. Manual sleep staging

is time-consuming and complex as human experts must evaluate hours of polysomnographic (PSG)

recordings, making it expensive and subject to high inter- and intra-rater variability (Danker-Hopfe,

Anderer, et al. 2009; Rosenberg et al. 2013; Younes, Kuna, et al. 2018; Younes, Raneri, et al. 2016;

X. Zhang et al. 2015). Automatic sleep staging aims to automate or assist this process. The accuracy

of such systems has improved dramatically in recent years with the advance of deep learning (Faust,

Hagiwara, et al. 2018; Faust, Razaghi, et al. 2019; LeCun, Bengio, et al. 2015) and large data-

sharing initiatives such as the National Sleep Research Resource1 (NSRR)(G.-Q. Zhang et al. 2018)

and Physionet2 (Goldberger et al. 2000).

The development of automatic sleep stagers has been pursued since the beginning of digital

sleep recordings (Bob Kemp 1993; Penzel et al. 1991; Thomas Penzel et al. 2000). A clinically

robust and high-performance sleep stager is thought to improve diagnostic throughput and potentially

accuracy and consistency, which may benefit patients and facilitate presumably important large-scale

longitudinal sleep studies (Boostani et al. 2017; Bragazzi et al. 2019). Automatic stagers may also

facilitate a transition from the traditional visual scoring of sleep physiology in 30-second discrete,

whole-brain segments, which persists mainly for historical reasons and due to the complexity of visual

adaptive scoring for humans (Silber et al. 2007), to a smoother and less compressed representation

of sleep.

While several accurate automatic sleep staging models based on deep learning and classical ma-

chine learning techniques have been developed (Biswal, Sun, et al. 2018; Phan, Mikkelsen, et al. 2022;

Supratak et al. 2017; Vallat et al. 2021), most clinical sleep staging is still performed manually into

30-second segments. Meanwhile, the recent expansion of available wearable devices for out-of-clinic

and longitudinal sleeping recordings has necessitated the development of sleep stagers that work

reliably with limited input data modalities.

This paper makes significant contributions within the domains of clinical sleep staging, research

in alternative and more informative representations of sleeping patterns, and scoring based on single-

modality recordings for, e.g., wearable devices. It shows that the U-Sleep (Perslev, Darkner, et al.

2021) model can likely support all these functions, scoring reliably on complex EEG from patient

groups not seen during training, with missing input data and based on only single electroencephalog-

raphy (EEG) or electrooculography (EOG) input, while also able to score sleep at higher frequencies

and in distinct spatial EEG positions. The paper is divided into three parts:
1https://sleepdata.org
2https://physionet.org

https://sleepdata.org
https://physionet.org
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Part I: U-Sleep v2 and single-channel variants The original U-Sleep model demonstrated

that automatic models could be made nearly agnostic to input channel EEG and EOG derivations

and that sleep staging is possible using a single input. Fiorillo, Monachino, et al. (2023) recently

discovered that the original U-Sleep model is robust to even non-standard EEG and EOG derivations

and could score using double EEG or EOG inputs. They also found that U-Sleep could generalize

to a large and heterogeneous new dataset regardless of channel derivations used during training.

These findings imply that models like U-Sleep can be robust to variable and atypical inputs, which

would be difficult for humans to score that look for specific events in specific channels when following

the American Academy of Sleep Medicine (AASM) guidelines (Iber et al. 2007). It was hypothesised

that U-Sleep may be well-suited for scoring complex and noisy data and that U-Sleep may provide

accurate sleep scores based on only single-channel inputs for more straightforward applications in,

e.g., wearable technologies.

These discoveries inspired the development of a new set of improved U-Sleep models, collectively

called U-Sleep v2. These models were trained on an expanded (as compared to Perslev, Darkner,

et al. 2021) dataset of 25,805 sleep studies and include a drop-in replacement to the original model,

which accepts EEG and EOG inputs, as well as simplified single-channel variants. The improved

U-Sleep model performed as well as or better than the original model for all stages. The new version

was also shown to more accurately predict REM latency, an essential sleep metric for diagnosing nar-

colepsy (Sateia 2014). Although slightly below the dual-channel model, both single-channel variants

performed statistically non-inferior to even the best human expert of a group of five on new data not

seen during training.

Part II: Performance on complex EEG Clinically validating and implementing an automatic

sleep staging system requires reliable scoring across diverse patient groups. Most research models,

however, are trained on relatively homogenous patient cohorts from one or a few distinct clinical

sites and evaluated on similar data, which limits the understanding of clinical robustness towards

new and unexpected data which may arise in clinical practice.

U-Sleep demonstrated promising clinical stability by matching human expert performance on

healthy controls and patients with obstructive sleep apnea (OSA) on data from a new sleep clinic

and geographic region not seen during training. However, while U-Sleep’s training and evaluation

included data from over 15,000 subjects from 16 clinical studies (including both healthy individuals,

sleep apnea patients and patients with various non-sleep/non-brain diseases, e.g., cardiovascular

diseases), it has yet to be proven effective for several patient cohorts and complex EEG from patients

with more severe brain disorders. Such studies are necessary before a complete clinical adaptation

of U-Sleep can be made, as it would strongly support the general applicability of the U-Sleep model
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if it were found to perform reasonably even in the most complex of cases.

The second part investigated the performance of U-Sleep v2 on several new cohorts, including

people with periodic leg movements (PLM), REM sleep behaviour disorder (RBD), narcolepsy, and

Parkinson’s disease (PD). These experiments aimed to validate the model’s clinical potential, where

data may appear more complex than the model observed during training. The experiments showed

that U-Sleep accurately scores sleep in narcolepsy, RBD and PLM patients and captures relevant

sleep macrostructure even in severely fragmented sleep of patients with PD and RBD, several of

which human annotators found difficult to score.

To further test the clinical applicability and stability of the U-Sleep model, its ability to infer

sleep stages for epochs with masked data based solely on contextual information was examined.

These tests simulated the impact on model stability with periods of missing input data, e.g., due

to malfunctioning or paused recordings. They showed that U-Sleep often correctly scored epochs

without available data using information from preceding or subsequent epochs. It was further tested

how the accuracy of U-Sleep develops as input data is subjected to different band-pass filtering pre-

processing and found that U-Sleep likely performs optimally with unfiltered input data. Finally,

it was shown that the soft (probability-like) confidence score outputs of U-Sleep correlate with the

uncertainty of a group of human experts and that these scores thus may be useful to inspect in

clinical practice.

Part III: High-frequency and spatial sleep stages U-Sleep’s default behaviour scores sleep

stages at 1/30Hz using all available EEG electrodes, but can also output stages at higher frequencies

and score individually for each EEG electrode position, both decisive factors compared to existing

validated scoring systems. This could enable the study of sleep as a near-continuous and potentially

spatial physiological process rather than in whole-brain 30-second blocks.

In the original U-Sleep paper, high-frequency scores allowed for easier separation of healthy

individuals from sleep-disordered patients in a statistical classification experiment, showing that the

scores contained relevant clinical information. A similar result was later observed for separating

acute stroke patients from the control of healthy and sleep-disordered individuals (Perslev, West, et

al. 2022). Yet, whether these scores are linked to actual sleep physiology or result from a model effect

on different patient groups remains unconfirmed. For instance, these experiments would have shown

similar results if the high-frequency outputs were systematically noisier due to model uncertainty

on the more challenging data from individuals with sleep disorders or stroke. A direct link between

high-frequency stages and underlying sleep physiology should be proven to use U-Sleep to study sleep

as a high-frequency physiological process.

This paper did not definitively prove such a link, but several experiments were conducted to
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further the understanding of the relevance and clinical usefulness of high-frequency scores. In ad-

dition, a pilot experiment was conducted on the ability of U-Sleep to score across EEG electrode

positions to study spatial sleeping patterns. These experiments were designed to complement those

of Perslev, Darkner, et al. (2021) and showed that increased staging frequency affects typically de-

rived sleep metrics, such as total sleep duration in each stage while making the estimates of such

metrics more consistent across repeated studies of the same subject for most stages. Visual analysis

of high-frequency scores revealed that this effect arises from U-Sleep’s ability to score transient sleep

stages. Finally, the synchronization of spatial sleep stages decreased with staging frequency, with

spatially close electrodes on the same hemisphere supporting more similar stage predictions.

Together, this paper provides evidence in favour of adopting U-Sleep as a potential tool to enhance

diagnostic throughput, scoring reliability, and robustness, facilitate out-of-clinic and longitudinal

sleep studies with, e.g., wearable devices, and promote novel research in sleep physiology, transitioning

towards examining sleep as a smooth, near-continuous, and possibly spatial process.

11.3 Methods

The following briefly introduces the automatic sleep staging model U-Sleep described in Perslev et

al., 2021 Perslev, Darkner, et al. 2021. A set of additional datasets not considered in Perslev et al.,

2019, are described, as well as how those datasets were used to train and evaluate the U-Sleep v2

model and single-channel variants. Then, the statistical evaluation of sleep staging performance is

described, along with the methodological background for high-frequency and spatial sleep stages was

extracted and studied.

11.3.1 U-Sleep model overview

U-Sleep is an automatic sleep staging machine learning model. It is a fully convolutional neural

network (Long et al. 2014) based on the popular U-Net (Falk et al. 2019; Ronneberger et al. 2015)

architecture and its time-series specialization, U-Time (Perslev, Jensen, et al. 2019). U-Sleep maps

several physiological signals, such as EEG and EOG, to contiguous sleep stages, each spanning fixed-

length intervals of the input signal, i.e., U-Sleep segments the input signals. U-Sleep was trained on

sleep stage labels derived from human experts at 1/30 Hz frequency but may segment the input at

higher frequencies for new data. The original U-Sleep v1 model processes exactly 1 EEG and 1 EOG

input channel sampled at any frequency and is usually applied to all such available combinations

to produce a majority-voted hypnogram. The input EEG and EOG channels can be recorded from

a wide range of positions because the model was simultaneously trained on arbitrary combinations
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of all available channel derivations over a combined training cohort of 15,660 participants and 16

clinical studies. U-Sleep v1 was as accurate as human experts on healthy individuals and OSA

patients compared to the expert consensus scores (Perslev, Darkner, et al. 2021). The U-Sleep model

is freely available for research at https://sleep.ai.ku.dk. See Perslev, Darkner, et al. (2021) for

further details on the model architecture, optimization and evaluation.

11.3.2 Extended training and evaluation datasets

All training and evaluation datasets considered in Perslev, Darkner, et al. (2021), which included PSG

recordings from 15,660 participants of 16 clinical studies, were considered in this study. As described

in Supplementary Materials F.1, the original datasets contained atypical random channel derivations

(Fiorillo, Monachino, et al. 2023), which were removed for this present study to include only typical

derivations. In addition, eight new datasets were considered here for training and evaluation of the

U-Sleep v2 model:

• The Nationwide Children’s Hospital (NCH) Sleep DataBank (NCHSDB (Harlin Lee et al. 2022;

G.-Q. Zhang et al. 2018), https://sleepdata.org/datasets/nchsdb). This database

contains pediatric PSGs of 3,673 unique patients conducted at NCH in Columbus, Ohio, USA,

between 2017 and 2019. This study considered 3,949 pediatric PSGs of 3,651 unique patients,

as 35 recordings were excluded due to missing data, inability to safely align PSG recordings

and hypnogram events, or other technical problems. Of the considered recordings, 3,794 were

used to train U-Sleep v2, 53 were used to assess model performance during training, and 102

were held out for testing purposes.

• The Wisconsin Sleep Cohort (WSC Young et al. (2009) and G.-Q. Zhang et al. (2018), https:

//sleepdata.org/datasets/wsc). This database contains overnight in-laboratory PSGs

conducted at the University of Wisconsin-Madison, Wisconsin, USA, with a sample of 1,500

state employees. A total of 2,532 recordings from 1,115 unique patients were considered. The

entire database consists of 2,556 recordings, but 24 were excluded due to missing data, inability

to safely align PSG recordings and hypnogram events, or other technical problems. Of the

considered recordings, 2,205 were used to train U-Sleep v2, 109 were used to assess model

performance during training, and 218 were held out for testing purposes.

• The Stanford Technology Analytics and Genomics in Sleep database (STAGES G.-Q. Zhang et

al. (2018), https://sleepdata.org/datasets/stages). This database contains overnight

in-laboratory PSGs conducted on 1,500 adult and adolescent patients at 20 data collection

sites from six centres (Stanford University, Bogan Sleep Consulting, Geisinger Health, Mayo

https://sleep.ai.ku.dk
https://sleepdata.org/datasets/nchsdb
https://sleepdata.org/datasets/wsc
https://sleepdata.org/datasets/wsc
https://sleepdata.org/datasets/stages


CHAPTER 11. MS. F: SINGLE-CHANNEL, HIGH-FREQUENCY & SPATIAL STAGING 133

Clinic, MedSleep, and St. Luke’s Hospital). A total of 1,790 recordings from 1,559 unique

patients were considered. The database consists of 2,033 recordings, but 243 were excluded

due to missing data, inability to safely align PSG recordings and hypnogram events, or other

technical problems. Of the considered recordings, 1,643 were used to train U-Sleep v2, 58 were

used to assess model performance during training, and 89 were held out for testing purposes.

Repeated studies conducted on the same patient were treated as a single instance when assigned

to either training, validation, or test-set splits not to give the system an unfair advantage. The size

of the validation and testing sets was determined by selecting all recordings for up to 50 unique

validation patients and 100 unique testing patients in each dataset. However, because some PSGs

were excluded (e.g., due to discovered data issues) after their initial assignment to a given split, the

split sizes mentioned above for each dataset may be lower.

To evaluate the sleep staging ability of U-Sleep on recordings from new patient cohorts and

complex EEG patterns, an additional five datasets were considered for evaluation-only purposes:

• Danish Center for Sleep Medicine (DCSM) Narcolepsy cohort (DCSM-N). This dataset consists

of overnight PSGs conducted on 82 unique patients with narcolepsy type I and II at the DCSM,

Rigshospitalet, Denmark.

• Danish Center for Sleep Medicine (DCSM) periodic leg movement (PLM) cohort (DCSM-PLM).

This dataset consists of overnight PSGs conducted on 41 unique patients with RBD at the

DCSM, Rigshospitalet, Denmark.

• Danish Center for Sleep Medicine (DCSM) REM Sleep Behavior Disorder (RBD) cohort (DCSM-RBD).

This dataset consists of overnight PSGs conducted on 33 unique patients with RBD at the

DCSM, Rigshospitalet, Denmark. This study investigated sleep in RBD patients as well as

Parkinson’s Disease (PD) patients and patients with both RBD and PD diagnosed (see cohorts

below).

• Danish Center for Sleep Medicine (DCSM) PD cohort (DCSM-PD). This dataset consists of

overnight PSGs conducted on 24 unique patients with PD at DCSM, Rigshospitalet, Denmark.

• Danish Center for Sleep Medicine (DCSM) RBD & PD cohort (DCSM-PD). This dataset consists

of overnight PSGs conducted on 31 unique patients diagnosed with RBD and PD at DCSM,

Rigshospitalet, Denmark.

All PSGs of the DCSM-N, DCSM-RBD, DCSM-PLM, DCSM-PD and DCSM-RBD-PD datasets were used only

for evaluation. None of the data was used to train any models.
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11.3.3 Models

A total of 3 new versions of the U-Sleep model were developed and studied:

1. U-Sleep v2: A model identical to the original U-Sleep v1 model was retrained on the extended

dataset described above, i.e., the same clinical cohorts that were used to train U-Sleep v1 and

the training set extension cohorts of WSC, STAGES and NCHSDB.

2. U-Sleep Single-Channel: Two alternative formulations of the U-Sleep model, which process

only a single EEG or single EOG input channel instead of the combined EEG and EOG input,

were trained and evaluated in a similar process to that described for the U-Sleep v2 model

above.

All three models were initialized with random weights with model optimization and selection

conducted as described for the original model in Perslev, Darkner, et al. (2021). Most importantly,

all models have trained on randomly varying input channels matching their input specifications.

11.3.4 Sleep staging evaluation

To obtain sleep stage scores for a given sleep study, the considered U-Sleep model was first applied

once to all combinations of available channels that match the model’s input requirements. E.g. for

a study with EEG channels { C3-M2, C4-M1 } and EOG channels { E1-M2, E2-M1 } available,

a model which requires a single EEG and a single EOG input would predict four times on the

combinations { C3-M2 + E1-M2, C3-M2 + E2-M1, C4-M1 + E1-M2, C4-M1 + E2-M1 }, whereas a

model which requires only a single EEG input would predict on two times on { C3-M2, C4-M1 }.

The model confidence scores for each prediction were then summed together, and the single sleep

stage that received the maximum total confidence was chosen for each epoch separately. These

generated hypnograms are referred to as majority-voted model predictions. All experiments and

evaluations use the majority-voted hypnograms unless explicitly stated otherwise. Only for evaluating

the performance of the single-channel U-Sleep v2 variants in cases where only one channel derivation

is available was the raw output from a single prediction of the U-Sleep v2 models considered.

The accuracy of a particular U-Sleep model was evaluated by comparing the macro F1/Dice

score (Dice 1945; Sørensen 1948) between the majority-voted model predictions and the human

expert scores. The macro F1/Dice score is the unweighted mean of stage-wise scores assigning equal

importance to all sleep stages independent of the number of stage instances. Both global F1 scores

computed from the summed confusion matrices across all subjects of a cohort and per-subject F1

scores (i.e., computed from the confusion matrix of a single subject) were used depending on the

experiment. The former was used to simplify the analysis when large numbers of comparisons were
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made as the global F1 score summarizes the performance into a single number, while the latter was

used for more detailed analyses and reported with one or more summary statistics such as mean,

standard deviation, median, min, max and inter-quartile range F1 scores over subjects.

Significant differences in median F1 scores between two sets of predictions on similar datasets

were statistically evaluated using the paired non-parametric two-sided Wilcoxon signed rank test

(scipy implementation, Virtanen et al. 2020) at significance level α = 0.05. The Wilcoxon statistic

(the sum of positive or negative difference ranks, whichever is smaller, denoted W ) was reported

along with P -values computed using the exact method, discarding pair differences that equal zero.

11.3.5 REM latency

A common failure mode for automatic sleep stagers is the wrongful prediction of so-called sleep-

onset REM (SO-REM), where the atypical direct transition from Wake into REM is predicted at

sleep onset. The prevalence of SO-REM predictions was quantified by calculating the REM latency

calculations based on the majority-voted hypnogram outputs of the original U-Sleep v1 and new U-

Sleep v2 models for all N = 1, 871 PSGs across all validation- and test-set splits excluding datasets

WSC, STAGES and NCHSDB to compare fairly to U-Sleep v1, which was trained without those datasets.

The REM latency is the time from the first scored non-Wake (N1-N3 or REM) stage to the first

scored REM stage. Note that the REM latency is 0 when a SO-REM is predicted, although here,

for comparing different models, possibly wrongful predictions of (near) SO-REMs were defined as

any prediction where the observed REM latency was at least 60 minutes while the predicted latency

was at most 10 minutes. The prevalence of possibly wrongly predicted SO-REMs was also visually

inspected in pairwise REM latency plots between the automatic and human expert-derived REM

latency estimations. The REM latencies computed based on the U-Sleep v1 or v2 hypnograms were

then correlated using the Pearson correlation coefficient (r). Better estimates of REM latency result

in higher r values.

11.3.6 Entropy correlation to a group of human experts

U-Sleep predicts for each epoch a probability-like value for each sleep stage. When applying U-Sleep

in practice, the single stage with the highest confidence is usually considered for further analysis.

However, the soft probability-like values may be useful, for example, to investigate the uncertainty of

the model between two or more stages in difficult or ambiguous epochs. The probability-like scores

are interesting mainly if they reflect the uncertainty of a group of human expert annotators.

Whether the uncertainty of U-Sleep was correlated with the uncertainty of a group of human

experts was tested using N = 80 PSGs from the two multi-scored evaluation-only datasets of DOD-H
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and DOD-O. For each 30-second epoch, the stage scores of the five human expert raters were one-hot

encoded and averaged to form a vector representing the overall scoring confidence of the group. The

entropy of this vector was computed. Similarly, the entropy of the probability-like output vector of

U-Sleep was computed for each epoch at typical staging frequency 1/30Hz. The human and U-Sleep

entropy scores were then correlated using Spearman’s rank correlation coefficient (denoted ρ), a non-

parametric measure of rank correlation that does not assume a linear relationship. Note that due to

the distribution of human expert predictions being discrete, only seven distinct entropy values are

possible given the set of 5 sleep stages, whereas the U-Sleep outputs are (up to numerical precision)

continuous.

11.3.7 Robustness experiments

Two additional experiments were conducted to investigate the performance stability of the U-Sleep

v2 models on input data that has been masked (to simulate missing data) or pre-process band-pass

filtered.

Context awareness: Robustness to masked input data To investigate the ability of U-Sleep

to sleep stage based on imperfect and noisy input data, all versions of the U-Sleep model were further

evaluated on a series of N = 39 modified sleep studies of the test set from the dataset DCSM. As a

baseline, every (overlapping) segment of signals spanning 35 epochs (each of 30 seconds duration)

from all studies was scored. The centre-most prediction in each window was then extracted from

each prediction and compared to the corresponding score from human experts, i.e., for each input of

35 epochs, only the prediction of the centermost epoch was considered. Predictions were made on

only one channel input, i.e., majority voting was not used. The channels used for the U-Sleep v2,

U-Sleep v2 (EEG) and U-Sleep v2 (EOG) models were { C4-M1, E1-M2 }, { C4-M1 } and { E1-M2

}, respectively.

Similar evaluations were made a total of 11 times but on different, noisy versions of the input

data: In each repetition, one or more of the central most epoch(s) in each input segment was replaced

by N(µ = 0.0, σ2 = 0.01) noise in both the EEG and EOG input channels (as applicable per the

model input specification), or the entire EEG or EOG channel was replaced by similar noise (only

for the dual-channel model).

In one experiment, for instance, the centermost epoch of 30 seconds in each input segment of 35

epochs was replaced with noise in all input channels. All such inputs were then scored using U-Sleep,

and the centralmost score was extracted from each predicted segment. This evaluation tests the

ability of U-Sleep to score an epoch that contains no information in either of the input channels and

must be scored solely based on its placement within signals recorded over the neighbouring epochs.
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An example segment of such input data with the centermost epoch replaced by noise is visualized in

Figure 11.5b. Note that only 11 out of 35 are epochs, shown in the figure for visual clarity.

A total of nine such experiments were conducted with noise replacing recorded signals in differ-

ent epochs relative to the centre. These experiments included, among others, replacing the three

centermost epochs with noise and replacing the epoch immediately before or after the centremost.

In the most extreme case, U-Sleep had no signal information to rely on within 4 minutes and 30

seconds centred on the epoch to predict. In addition, two similar experiments were conducted, but

the entire EEG and EOG channels were replaced by such noise, while the other channel contained

unaltered signal data. These two experiments were conducted to test the ability of the dual-channel

U-Sleep model to score only based on one of its two input channels compared to the performance of

the corresponding single-channel models.

Filtering pre-processing To investigate the effect on overall U-Sleep performance with and with-

out pre-filtering of input data, and to study the effect on stage-wise performance when filtering spe-

cific frequency bands, all N = 36 test-set studies of the HPAP dataset were scored by the U-Sleep

at 1/30 Hz frequency with 16 different setups of pre-filtering applied. The HPAP dataset was chosen,

because it consists of non-pre-filtered data. Specifically, the EEG and EOG input channels were

band-pass FIR filtered using the mne.filter.filter_data (Gramfort et al. 2013) function with all

pairs-wise combinations of parameters l_freq (lower pass-band edge) in [None, 0.3, 1.0, 3.0] Hz and

h_freq (upper pass-band edge) in [None, 70.0, 35.0, 17.5] Hz, where None indicates that data is only

low- or high-passed, respectively. For each of the 16 set of predictions, stage-wise and mean F1 scores

were computed against the human scorer’s labels to quantify the effect of the specific filtering range

on both stage-wise and overall performance.

11.3.8 High-frequency sleep stage analyses

To analyse the relevancy of high-frequency U-Sleep sleep stage scores, the U-Sleep v2 model was

applied to the total set of N = 2499 PSGs across all validation- and test-set splits with scoring

frequencies 1/30Hz (default), 1/6Hz, 1Hz and 5Hz. The following experiments were conducted:

Qualitative visualizations of high-frequency scores High-frequency sleep stages were quali-

tatively evaluated by scoring all subjects in datasets DOD-H and DOD-O at each frequency and over one

or more epochs of 30 seconds in figures exemplified by Figure 11.6a. From top to bottom, these plots

visualize manual sleep scores of 5 human experts for each epoch, the consensus or majority score

of the five human experts, U-Sleep’s prediction at 1/30 Hz frequency, an example EEG and EOG

signal and finally U-Sleep confidence scores in each sleep stage at each instance of time indicated by
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stacked, coloured bar plots. These plots allow a visual analysis of how the confidence of U-Sleep in

each sleep stage changes with staging frequency and how these scores align with the uncertainty of

the group of human expert annotators.

Sleep stage durations To compare the total time spent in each sleep stage as estimated by U-

Sleep and human experts, the durations were computed at frequencies of 1/30Hz, 1/6Hz, 1Hz, and

5Hz for U-Sleep and at typical 1/30Hz for human experts across all N = 2499 from the validation-

and test-set splits. Hypnograms were trimmed to include only stages between the first and last

non-Wake scoring according to the scorings of the human expert. The measured durations were

then compared between all sets of annotations using linear regression and the Pearson correlation

coefficient (r). Significant differences in mean stage durations were statistically evaluated using the

paired two-sided t-test at significance level α = 0.05. The t statistic was reported along with P -values

and Cohen’s d effect size measures (Cohen 2013).

The total duration of each sleep stage was also computed within all 30-second windows based on

U-Sleep’s outputs at various frequencies (1/30 Hz, 1/6Hz, 1 Hz and 5 Hz) and plotted as box plots

in a confusion matrix where the conditional 30-second stage scored by human experts is represented

in rows, and each stage as scored by U-Sleep in columns. These plots allow investigating if certain

transient sleep stages were scored more often by U-Sleep within specific 30-second sleep stage blocks

scored by humans.

Test/re-test correlations To test the hypothesis that sleep metrics derived from high-frequency

sleep stage scores more accurately reflect sleep physiology, a set of test/re-test correlation experiments

were conducted. Sleep stage durations were measured using outputs from U-Sleep at frequencies

1/30 Hz, 1/6 Hz, 1 Hz and 5 Hz and human experts at 1/30Hz for all multi-visit subjects in the

validation and testing splits of datasets ABC (11 subjects), CHAT (43 subjects), MROS (50 subjects),

NCHSDB (5 subjects), ISRUC-SG2 (8 subjects), SHHS (67 subjects), WSC (98 subjects) for a total of

N = 282 unique subjects. The Pearson correlation coefficient (r) was computed between sleep stage

durations measured at baseline and follow-up for each set of sleep stage annotations. Where subjects

had more than two visits, all combinations of baseline and follow-up visits were considered for a total

of N = 473 test/re-test comparisons for each sleep stage and annotator. Correlation coefficients were

plotted as a function of U-Sleep staging frequency and compared to the baseline of human 1/30 Hz

annotations.

Higher test/re-test correlation coefficients indicate a more robust estimate because subjects usu-

ally follow relatively similar sleeping patterns over time (at least more similar to themselves than to

random other subjects in a cohort).
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11.3.9 Spatial high-frequency sleep stage correlations

All U-Sleep models were trained on randomly varying input EEG/EOG (as applicable) channel

combinations. Therefore, as shown in Perslev, Darkner, et al. (2021), U-Sleep is mostly invariant

to channel derivations and can sleep stage given highly variable inputs. Consequently, it is possible

to use U-Sleep to score sleep stages in individual channels at various physical positions. While the

learned invariance properties make scorings in different input channels relatively similar at typical

1/30 Hz frequency (as shown in the Supplementary Material of Perslev, Darkner, et al. 2021), it has

not been studied if spatial scoring variations appear at higher frequencies. This raises the question if

it is possible to capture spatial sleep using U-Sleep by predicting individual EEG electrode positions.

To study if the agreement between stages scored using different EEG input channels changes with

EEG electrode position and staging frequency, the following experiment was conducted:

All PSGs from the validation- and test-set splits with all EEG and EOG channel derivations in

{ C3-M2, C4-M1, F3-M2, F4-M1, O1-M2, O2-M1, E1-M2 } available were considered for a total of

N = 842 PSGs. These were used to quantify spatial sleep patterns. U-Sleep v2 was then used to

score each study using the six input EEG channels (each with E1-M2 as a common EOG input)

separately – i.e., not using the typical majority voting scheme – at frequencies 1/30 Hz, 0.2 Hz, 1Hz,

and 5 Hz.

For each PSG, each pair of input channels and a given staging frequency, sleep staging divergence

measures were computed between the probability-like confidence score outputs of U-Sleep at each

epoch and averaged. Specifically, the average Jensen-Shannon divergence measure JSD(p1 ∥ p2) =

1
T

∑T
t=1

(
1
2DKL(p

t
1 ∥ mt) + 1

2DKL(p
t
2 ∥ mt)

)
was computed, where mt = 1

2

(
pt1 + pt2

)
, DKL the Kull-

back–Leibler divergence (Kullback et al. 1951), T the number of epochs and pt1, pt2 ∈ [0, 1]5 the

predicted softmax confidence vector at epoch t using two separate EEG channel inputs. The average

divergence measure computed across all PSGs gives one similarity measure for each pair of EEG

electrode positions for each staging frequency. Lower numbers indicate less divergence, i.e., more

similar predictions made with each EEG input, with JSD(p1 ∥ p2) = 0 only if predictions p1 and p2

are identical in all epochs. Higher divergence scores oppositely indicate less similar predictions with

an upper bound JSD(p1 ∥ p2) = log 2 ≈ 0.693 reached only if orthogonal predictions are made with

each EEG input in all epochs.

The experiment was also repeated using the single-channel U-Sleep v2 (EEG) model on N = 853

PSGs that had all the EEG channel derivations in { C3-M2, C4-M1, F3-M2, F4-M1, O1-M2, O2-M1

} available to assess the robustness of the observed patterns across two models and to investigate any

possible effects on spatial patterns of using a single, shared EOG input to the dual-channel U-Sleep

v2 model.
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Finally, to ensure that any potential differences in scoring divergence observed at higher frequen-

cies did not result from a fixed lag-time between pairs of signals, the JSD was also computed for all

shifts of one signal relative to the other of ±60 seconds for all pair-wise EEG channels predicted at

5Hz and plotted in a cross-correlation-like experiment. If the set of predictions in two channels were

similar but offset by a fixed lag, the JSD would take its lowest value at a shift value not equal to 0.

11.4 Results

The results section contains three parts: The first describes the results of the improved U-Sleep v2

model and single-channel variants, the second their performance evaluations on complex EEG, and

the third findings on high-frequency and spatial sleeping patterns.

11.4.1 Part I: U-Sleep v2 and single-channel variants

An improved U-Sleep v2 model was trained on an extended dataset (compared to Perslev, Darkner,

et al. 2021) consisting of 25,805 PSGs from 16 clinical cohorts and evaluated on a total of 1,932 PSGs

not used for training from 29 cohorts, 13 of which were entirely for evaluation to simulate clinical

application. All models were trained using the optimization strategy described in Perslev, Darkner,

et al. (2021), summarized in the Methods section. Three models were trained using different input

data. The first model, U-Sleep v2, mimics the original U-Sleep v1 model, performing sleep staging

using any available EEG and EOG channels. The two other models, U-Sleep v2 (EEG) and U-Sleep

v2 (EOG) are simplified variants trained using only EEG or EOG input data.

U-Sleep v2 Being identical to the U-Sleep v1 model in both model definition and optimization

strategy, this model serves as a drop-in replacement of the original U-Sleep model trained on an

expanded dataset containing three new cohorts from the NSRR database (G.-Q. Zhang et al. 2018):

The Wisconsin Sleep Cohort (WSC) dataset containing N = 2532 studies (Young et al. 2009), the

Stanford Technology Analytics and Genomics in Sleep (STAGES) dataset containing N = 1790 studies,

and the Nationwide Children’s Hospital (NCH) and Carnegie Mellon University (NCHSDB) dataset

containing N = 3949 studies (Harlin Lee et al. 2022). The cohorts are further described in the

Methods section.

The best-performing model on the validation split data was found after approximately 5 million

optimization steps (about 10 % longer training than U-Sleep v1) and then applied to all combina-

tions of EEG and EOG inputs from all PSGs in the test split data. The majority vote scores across

all channel combinations were compared to human expert sleep stage annotations using global (i.e.,

computed across all cohort subjects) and per-subject F1/Dice (Dice 1945; Sørensen 1948) score met-
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rics. Table 11.1 lists these metrics for each sleep stage separately compared to similar metrics for

the original U-Sleep v1 model. Performance compared to the consensus scores of 5 human experts

on datasets DOD-O and DOD-H are shown in Table 11.2 and Figure 11.1. All training and evalua-

tions were performed on a dataset with the atypical channel derivations (Fiorillo, Monachino, et al.

2023) included in the original dataset of Perslev, Darkner, et al. (2021) removed (see Supplementary

Material F.1 for details).

The U-Sleep v2 model performed slightly better than U-Sleep v1 on all stages N1, N2, N3, REM

and macro F1 (the unweighted mean over stage-wise scores) as measured by the weighted mean over

global F1 scores, which all increased by 0.01 – 0.02 points for all. Considering the median over

per-subject F1 scores, U-Sleep v2 scored significantly higher, although by similarly small absolute

increases of < 0.01 – 0.02, on stages Wake, N1 N2, REM and macro F1 and indifferent on stage

N3. For instance, the median ±1 median absolute deviation (MAD) per-subject F1 REM stage score

increased from 0.91±0.04 to 0.92±0.04 (N = 1444, Wilcoxon test statistic W = 346207, P < 0.001).

U-Sleep v2 scored with global macro F1 scores of 0.77, 0.70 and 0.77 on the evaluation sets of the

new datasets of WSC, STAGES, and NCHSDB, respectively. See Table 11.1 for all other statistics and

comparisons to U-Sleep v1.

The U-Sleep v2 model performed similarly to the U-Sleep v1 model on the multi-scored DOD-H

dataset (N = 25, mean ± 1 STD of 0.80± 0.08 vs 0.79± 0.06 and medians of 0.82 vs 0.81, W = 93,

P = 0.06) and the best individual human expert (Expert 3, 0.79 ± 0.07, median 0.80, W = 96,

P = 0.08). On the multi-scored DOD-O dataset, U-Sleep v2 scored similarly to the U-Sleep v1 model

(N = 55, 0.76± 0.11 vs 0.76± 0.10, median 0.80 vs 0.78, W = 741, P = 0.81) and better than the

best individual human expert (Expert 5, 0.74± 0.11, median 0.77, W = 524, P = 0.04).

The results show that the U-Sleep v2 model performed at least as well as the original U-Sleep v1

model while generalising to a larger dataset with more diverse cohorts, e.g., including more data from

children (via dataset NCDHSDB, see Methods for details), and that U-Sleep v2 may perform better

than even the best individual human expert on data from OSA patients.

Single-channel variants The single-channel EEG and EOG models were trained using the same

data and optimization strategy as the U-Sleep v2 model, except only available EEG or EOG data

were considered, i.e., each model was trained on random single-channel EEG or EOG inputs. The

intention was to develop models better suited to settings without access to both EEG and EOG

modalities (e.g., some wearable devices). The best-performing models on the validation split data

were found after approximately 6.9 million and 1.2 million optimization steps (about 50% longer

and 76 % shorter training than U-Sleep v1) for the EEG and EOG models, respectively.

The performance of the U-Sleep v2 (EEG) model was compared to the dual-channel U-Sleep v2 in
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Supplementary Table F.2. Channel-wise majority vote scores compared to human expert consensus

scores on the datasets DOD-O and DOD-H are shown in Table 11.2 and Figure 11.1. The single-channel

EEG model performed similarly to U-Sleep v2 as measured by the weighted mean over global F1

scores on stages Wake, N2, N3 and the macro F1, and lower by 0.02 points on stages N1 (0.48 vs

0.50) and REM (0.87 vs 0.89). Considering the per-subject results, U-Sleep v2 (EEG) performed

significantly below, although with small absolute differences of < 0.01 – 0.02 for stages Wake, N1,

N3, REM and the macro F1 (P < 0.001 for all) and similarly on stage N2 (0.87±0.13 vs 0.78±0.14,

N = 1921, W = 879098, P = 0.071). See Supplementary Table F.2 for all other statistics and

comparisons.

On the multi-scored DOD-H dataset, the single-channel model scored more accurately on average

with mean 0.82± 0.06 vs 0.80± 0.08 (N = 25, medians 0.83 vs 0.82, W = 89, P = 0.048), while on

the multi-scored DOD-O dataset the two models performed similar (N = 55, 0.76±0.11 vs 0.76±0.10,

medians 0.78 vs 0.80 P = 0.10). U-Sleep v2 (EEG) performed better the best human rater on dataset

DOD-H (Expert 3, 0.82± 0.06 vs 0.79± 0.06, medians 0.83 vs 0.80, W = 44, P < 0.001) and similar

to the best human rater on dataset DOD-O (Expert 5, 0.74± 0.11, median 0.77, W = 671, P = 0.41).

Supplementary Table F.4 shows the performance of U-Sleep v2 (EEG) on the DCSM dataset

(N = 39 test-split PSGs) when scoring using six individual EEG channels compared to the majority

voted hypnogram generated using all channels. The table shows per-subject and per-stage statistics

(mean, STD, min, max, median and IQR statistics over F1 scores). As also found in Perslev, Darkner,

et al. (2021), the results show that the majority vote hypnograms are the most accurate and should

be used when possible, but predictions on just a single channel may produce accurate results. For

instance, U-Sleep v2 (EEG) mean ±1 STD macro F1 scores of 0.78 ± 0.08 with median 0.80 using

only the { C4-M1 } channel compared to 0.78 ± 0.09, median 0.82 for the majority voted (N = 6

channels) hypnograms (W = 200, P = 0.01). Refer to Supplementary Table F.4 for similar metrics

on specific stages and other EEG channels.

Similar experiments and evaluations were performed for the U-Sleep v2 (EOG) model. Sup-

plementary Table F.3 shows its majority vote performance compared to the U-Sleep v2 model.

See Supplementary Material section B for detailed descriptions of these results. In summary, the

EOG-only model performed slightly below the dual-channel (and the EEG-only model) model with

significantly lower median per-subject scores on all stages and absolute performance differences of

< 0.01 – 0.04 for all stages. However, U-Sleep v2 was still statistically non-inferior to the best of five

human scorers on datasets DOD-H and DOD-O (see Table 11.2 and Figure 11.1) and scored accurately

with just a single EOG channel available (see Supplementary Table F.5).

These results show that the single-channel U-Sleep v2 models are high-performance models that

perform at least as well as human experts and can score accurately using a single input channel
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but that the dual-channel U-Sleep v2 model should be slightly preferred when both modalities are

available.

REM latency estimations REM latencies were estimated based on the majority vote scores of

U-Sleep v1 and U-Sleep v2 for all 1, 871 PSGs from the validation- and test-set splits – excluding

the WSC, NCHSDB and STAGES datasets for a fair comparison to U-Sleep v1– and correlated to REM

latencies observed from human scores. Figure 11.2 visualizes the experiment results. Supplementary

Figure F.2 shows similar plots for the U-Sleep v2 (EEG) and U-Sleep v2 (EOG) models.

Both U-Sleep v1 and U-Sleep v2 provided accurate REM latency estimations on average with

Pearson’s correlation coefficients to expert observed latencies of r = 0.82 and r = 0.84, respectively.

The small improvement of the U-Sleep v2 model was also reflected in fewer (likely) wrongfully

predicted SO-REMs (see Methods for details) with 64/1871 for U-Sleep v1 and 38/1871 for U-Sleep

v2. The single-channel variants similarly had slightly lower correlation coefficients compared to the

U-Sleep v2 model with r = 0.81 and r = 0.79 and higher numbers of (likely) wrongfully predicted

SO-REMs (56/1871 and 46/1871) for the EEG and EOG model, respectively.

These results show that U-Sleep v2 has improved slightly over its predecessor to correctly separate

Wake and REM near sleep onset, as also reflected in the generally slight improvement in REM stage

prediction accuracy between v1 and v2 (see Table 11.1), and reiterates that while the single-channel

variants are very accurate, the dual-channel model should be slightly preferred when both modalities

are available.

11.4.2 Part II: Performance on complex EEG

In part I, the U-Sleep v2 and the single-channel variants were evaluated and compared on an extensive

dataset of diverse cohorts of primarily healthy individuals, sleep apnea patients, and patients with

various non-sleep/non-brain disorders (e.g., cardiovascular diseases). This part investigates their

performance and robustness on more complex data variability to which they may be exposed in

real-world clinical settings. The following experiments were conducted:

1. The scoring accuracy of the models was evaluated on five new and varied cohorts, including

people with narcolepsy, PLM, RBD, PD and RBD+PD (see Methods for cohort details).

2. The correlation between the entropy (a measure of uncertainty) of the U-Sleep model and a

group of human experts was measured to study if the probability-like outputs of U-Sleep may

be useful in clinical practice to gauge the certainty of the model’s predictions in ambiguous

epochs.
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3. The behaviour and accuracy of the models were studied when input was partially masked to

force the models to predict based on only contextual information. This experiment simulated

the response to missing data (e.g., a paused recording) or periods of insufficient data quality

(to be detected by an external tool and replaced by random noise).

Additionally, the Supplementary Material F.3 contains a section on model accuracy evaluation as

progressively narrower band-pass filtering is applied to input EEG and EOG data to test if U-Sleep is

likely to display catastrophic performance drops if end-users pre-process their data to remove certain

low- or high-frequency components. In summary, they showed that U-Sleep v2 is likely best applied

to unfiltered input data, as applying even the 0.3Hz – 35Hz band-pass filter as recommended by

the AASM guidelines (Iber et al. 2007) reduced performance, although this result may be highly

dataset-specific.

Performance on complex EEG Table 11.1 shows the global F1/Dice scores on patient co-

horts DCSM-N (N = 82 patients with Narcolepsy Type I and II), DCSM-PLM (N = 41 patients with

PLM), DCSM-RBD (N = 33 patients with RBD, 34 PSGs), DCSM-PD (N = 24 patients with PD), and

DCSM-RBD-PD (N = 31 patients with PD and RBD) all diagnosed at the Danish Center for Sleep

Medicine at Rigshospitalet in Denmark.

U-Sleep v2 scored the narcolepsy cohort with a global macro F1 score similar to that of its

weighted mean performance across all cohorts (0.80 vs 0.80), although with a higher than usual

performance on stage Wake (0.97 vs 0.93) and lower on stages N1, N2 and REM, which may be

driven by the prevalence of more Wake epochs, which are easier to score. However, the scores were

generally high and well within the scores observed for other cohorts, indicating that U-Sleep can

be reliably used for scoring sleep in narcolepsy patients. Similar results were observed for the PLM

cohort, with average results close to the general average (0.79 vs 0.80) and slightly lower accuracies

on all non-Wake stages but with high scores within the typically observed range.

The performance of U-Sleep v2 was significantly lower on the DCSM-RBD dataset compared to

the general average (0.74 vs 0.80), and a further drop was observed on the more complex signals

from patients in the DCSM-PD and DCSM-RBD-PD cohorts (macro F1 of 0.65 on DCSM-PD and 0.60 on

DCSM-RBD-PD). In particular, a drop in performance was observed for stages N1 (0.29 vs a weighted

average of 0.52) and REM (0.57 vs a weighted average of 0.91) for the RBD PD patients. There

appeared to be an additive difficulty in scoring RBD+PD patients over patients with just RBD or

PD.

Figure 11.3 and Supplementary Figures F.8–F.11 show best, median and worst case example

comparisons (as measured by per-subject macro F1 scores) of hypnograms scored by U-Sleep v2 and

human annotators for datasets DCSM-PD, DCSM-N, DCSM-PLM, DCSM-RBD and DCSM-RBD-PD, respectively.
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While the scoring performance measured by F1 metrics was lower than the general average on the

RBD, PD and RBD-PD patients, the scored hypnograms were visually examined and generally

captured sleep macrostructure similar to that of hypnograms scored by human experts. In several

cases, human annotators had difficulty confidently scoring the most complex signals from patients

with severely abnormal EEG and fragmented sleep, which may affect the evaluation metrics due to

ground truth uncertainty.

U-Sleep v2 performed significantly better on stage REM than U-Sleep v1 on the most difficult

datasets of DCSM-RBD, DCSM-PD, and DCSM-RBD-PD with global F1 scores of 0.81 vs 0.74, 0.65 vs

0.57 and 0.57 vs 0.43, respectively, while the v2 model oppositely performed slightly worse on the

N1, N2 and N3 stages. The lower REM performance of U-Sleep v1 on the more complex data may

indicate that the original model did not fully utilize the available EOG information, which may be

related to the atypical channel derivations in the original dataset (see Supplementary Materials F.1).

This is supported by the single-channel variants’ REM stage performances on RBD+PD, where the

EOG-only model performed significantly, and atypically, better than the EEG-only model (0.53 vs

0.41), indicating that while the EEG-only model, on average, performs more accurately than the

EEG-only model (see Supplementary Material F.2), the EOG channel is useful for accurate REM

stage predictions when the EEG signal is complex and sleep severely fragmented. Oppositely, the

EEG model performed better than the EOG model on stage N3 (0.62 vs 0.49).

The single-channel variants otherwise displayed trends similar to those of the dual-channel model,

with performances on the narcolepsy and PLM cohorts similar to their typical weighted averages and

gradually decreasing performance on RBD, PD and RBD+PD patients, respectively.

Entropy correlation to a group of human experts Based on visual examinations, it was

hypothesised that the probability-like confidence score outputs of U-Sleep v2 correlate with the

uncertainty of a group of human experts and may be useful to study in clinical practice. Figure

11.4a provides one visual example. In epochs 2 and 4, where experts disagreed on stage assignment,

U-Sleep matched the experts’ uncertainty assigning confidence to all stages that at least one human

expert scored. The shown high-frequency stage scores (see Part III below for a detailed analysis of

high-frequency stages) also reveal the potential source of uncertainty as the stage transitions from

epochs 2 to 3 and 3 to 4 were more accurately detected when not restricted to 30-second epoch

boundaries. Human scorers may have found assigning a single stage to the epoch difficult.

A quantification of this phenomenon is provided in Figure 11.4, which shows the median and IQR

entropy values of U-Sleep v2 correlated against the entropy of 5 human expert annotators on datasets

DOD-H and DOD-O. See Methods for details. The U-Sleep entropy values increased with each increase

in human entropy (ignoring the likely outlier at 1.61 nats human entropy for which the sample
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size was too small to make conclusions). A moderate to strong correlation (Spearman’s ρ = 0.53,

P < 0.001) indicates that U-Sleep and a group of experts found similar epochs easy and difficult to

score unanimously. Figure 11.4 also shows that the entropy of U-Sleep v2 was, on average, higher in

epochs where the group of humans scored (near) unanimously (i.e., with low entropy). However, this

discrepancy may be overestimated due to the discrete set of possible entropy values that five human

predictions can take. For instance, transient sleep stages in the middle of an epoch may increase the

uncertainty of all human raters, yet this experiment may not capture such effects because each rater,

in contrast to U-Sleep v2, which outputs soft probability-like scores, must assign a single discrete

stage.

These results indicate that the uncertainty scores of U-Sleep at 1/30Hz default scoring may be

useful in clinical practice to focus the manual scorer’s attention on the most difficult (as measured by

disagreement between human raters) sections of the PSGs, as U-Sleep are likely to score those with

high entropy values. Finally, using U-Sleep’s ability to score at a higher frequency may be useful to

dissect exact transition boundaries in these cases. See Part III below for further details.

Robustness to masked input data The robustness of the U-Sleep v2 models towards partially

masked input data was studied by replacing sub-sections of input data with random noise and

comparing their performance to when unaltered, full-information inputs were scored.

Across N = 39 sleep studies in the test set split of the dataset DCSM, 59.084 overlapping segments

of 35 epochs of signals were processed by all models once for each noise experiment. Each experiment’s

prediction for these central epochs was compared with the human expert labels, and stage-wise F1

scores were computed for each sleep study separately. See the Methods section for setup for additional

details.

Figure 11.5 visualizes F1 scores for the U-Sleep v2 model as boxplots for several experiments with

different lengths of input signal replaced by noise. Similar plots for U-Sleep v1, U-Sleep v2 (EEG)

and U-Sleep v2 (EOG) are shown in Supplementary Figure F.3. As expected, all models performed

best with full-information inputs and saw performance drops as input signal noise increased. The

re-trained U-Sleep v2 model experienced a significant decrease in mean F1 scores when replacing

the entire EEG or EOG input with noise from 0.77 ± 0.08 (median 0.81) to 0.74 ± 0.10 (median

0.78, W = 112, P < 0.001) and 0.74 ± 0.09 (median 0.75, W = 78, P < 0.001), respectively. For

comparison, the U-Sleep v2 (EEG) scored 0.76 ± 0.09 (median 0.78, W = 258, P = 0.07), and the

U-Sleep v2 (EOG) scored 0.74 ± 0.10 (median 0.78, W = 336, P = 0.46) in their full-information

setting (i.e., no input data replaced by noise), indicating that U-Sleep v2 on this dataset performed

as well as the single-channel variants when exposed only to one of its two expected inputs. Removing

EOG for the U-Sleep v2 model had a more significant negative impact on REM stage accuracy (from
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0.89±0.11 to 0.81±0.18) while removing EEG affected N1 stage performance more (from 0.52±0.12

to 0.48± 0.13).

When replacing data in both input channels of the central epoch with noise for the U-Sleep

v2 model, mean performance dropped from 0.77 ± 0.08 (median 0.81) to 0.71 ± 0.09 (median 0.71,

W = 13, P < 0.001). This was mainly driven by decreased stage N1 performance from 0.52 ± 0.12

(median 0.54) to 0.41± 0.10 (median 0.42, W = 50, P < 0.001). Other stages showed less, although

statistically significant, decline, e.g., the REM stage from 0.89 ± 0.11 (median 0.92) to 0.88 ± 0.13

(median 0.91, W = 197, P = 0.01). Similar patterns occurred when removing epochs before/after

the central epoch, with N1 performance dropping more significantly than the remaining stages. This

is likely related to N1 being short and transitive, while other stages can more often be inferred from

the surrounding context alone. One example where a transient N1 stage was correctly predicted from

context is visualized in Figure 11.5b. Figure 11.5c shows an example where U-Sleep failed to infer

the central epoch without data, although, in this example, it predicted a reasonable transition from

Wake to N2 via N1, assigning probabilities to both bordering stages despite the lack of central epoch

data.

Interestingly, N1 performance was more negatively affected by removing the central and two

preceding and proceeding epochs (0.29 ± 0.11, median 0.30) than by removing the central and four

preceding (0.36 ± 0.10, median 0.36, W = 86, P < 0.001) or proceeding (0.40 ± 0.11, median 0.42,

W = 30, P < 0.001) epochs. This suggests U-Sleep can sometimes infer the central stage for N1

based on pre-epoch (preferred) or post-epoch information alone but requires information from the

immediate context to detect the often transient stage.

Additional context visualization examples are shown in Supplementary Figures F.4-F.7, all of

which show different noise settings and indications of how U-Sleep successfully and unsuccessfully

relied on neighbourhood and/or sleep stage transition pattern probabilities to infer stages for epochs

with missing data.

11.4.3 Part III: High-frequency and spatial sleep stages

In Parts I and II, all experiments considered sleep staging at the default scoring frequency of 1/30

Hz and most experiments considered the majority-voted hypnogram computed across all available

channel inputs. To further the understanding of the (potential) physiological and clinical relevance

of U-Sleep’s high-frequency and spatial sleep stage scores, the following experiments were conducted:

1. The effect of scoring at higher frequencies on derived metrics such as total sleep duration in each

stage was investigated, and the robustness of such metrics as a function of staging frequency

was quantified with test/re-test experiments.
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2. A pilot study investigated the similarity of stages predicted in different spatial EEG locations

depending on staging frequency.

Figure 11.6a shows a qualitative example of why high-frequency stages may be interesting to

study. The U-Sleep v2 model was applied to data from a sleep study from the DOD-H dataset. All five

human annotators and the U-Sleep model consistently scored the third and fourth epochs as stage

Wake. At 1/30 Hz frequency, the U-Sleep model indicates a near 100 % confidence in stage Wake

for both epochs. However, there is a visually apparent dampening in the signal amplitude of about

15 seconds between the two epochs, which could indicate a rapid physiologically relevant change in

sleep, which is not reflected by the typical 30-second annotations. At higher scoring frequencies,

U-Sleep detects a rapid transition from Wake to N1 and/or N2 before regaining confidence in stage

Wake. As addressed in detail in the Discussion section below, it is difficult to conclude if U-Sleep

high-frequency confidence scores reflect actual sleep physiology. However, examples such as this are

abundant (see Supplementary Materials) and raise whether high-frequency scores capture rapid sleep

stage transitions lost at the 30-second scale. The following experiments aimed to quantify these and

other observed effects of high-frequency staging.

Sleep stage durations & test/re-test correlations Table 11.3 (see also Supplementary Figure

F.13 for visual representations of the table values) and Supplementary Figure F.12 quantify the effect

of transient sleep stages that may appear within 30-second epochs. Table 11.3 shows the average

total durations of each sleep stage as measured using human-derived annotations and U-Sleep v2

at frequencies 1/30 Hz, 0.2Hz, 1 Hz and 5 Hz across 2499 PSGs from the validation- and test-set

splits. It also shows test/re-test Pearson’s correlation values (r) comparing stage duration estimates

computed at different longitudinal visits of the same patient, higher values of which may indicate a

more robust duration estimator (see Methods for details and argumentation). A correlation coefficient

was computed for each duration estimate (i.e., for all scorings and stages) across 473 total test/re-test

comparisons of 282 unique patients.

There were only minor differences between the mean durations measured using human-derived

annotations and U-Sleep-derived annotations (at 1/30 Hz) for all stages W (1.42±1.51 vs 1.41±1.45,

N = 2499, t = −1.42, P = 0.15, Cohen’s d = −0.01), N2 (3.43 ± 1.06 vs 3.54 ± 0.96, t = −9.14,

d = −0.11), N3 (1.08± 0.88 vs 1.05± 0.77, t = 3.39, d = 0.04) and REM (1.18± 0.58 vs 1.22± 0.57,

t = −7.54, d = −0.08). While all differences were significant according to the paired t-test, this

was mainly due to the large paired sample size, as the effect sizes (Cohen’s d) were all small (< 0.2,

Cohen 2013). Human annotators, however, scored a higher mean N1 duration than U-Sleep at

1/30 Hz (0.60 ± 0.50 hours vs 0.47 ± 0.38 hours, corresponding to an ≈ 28 % average difference,

t = 18.13, P < 0.001, d = 0.30), but with lower test/re-test correlation as compared to U-Sleep at



CHAPTER 11. MS. F: SINGLE-CHANNEL, HIGH-FREQUENCY & SPATIAL STAGING 149

1/30 Hz (0.55 vs 0.66). When the staging frequency increased, U-Sleep measured increasingly higher

N1 mean durations (from 0.47 to 0.66) and with higher test/re-test correlations (from 0.66 to 0.70).

These results show that U-Sleep scored total N1 sleep duration more consistently between baseline-

and follow-up visits than human annotators, with further improved consistency when scoring at

higher staging frequencies. Note that higher test/re-test correlations do not alone indicate that

the duration estimates are more aligned with the true physiology, only that the estimates are more

reliable across visits. The predicted N1 duration, for instance, starts lower (mean 0.47 hours) and

ends higher (0.66 hours) than the human-scored durations (0.60), yet the correlation values were

higher for U-Sleep in both cases.

Similarly, average durations measured by U-Sleep changed with staging frequency for stages Wake

(from 1.42 hours to 1.56 hours, ≈ 10 % increase), N2 (from 3.54 hours to 3.01 hours, ≈ 15 % decrease),

N3 (from 1.05 hours to 1.29 hours, ≈ 23 % increase). The test/re-test correlation increased slightly

for all of the stages Wake (0.45 to 0.46), N2 (0.48 to 0.52) and N3 (0.79 to 0.82). The test/re-test

correlation was higher for U-Sleep, even at 1/30 Hz frequency, compared to human annotators for all

stages: Wake, N1, N2 and N3. Oppositely, neither the measured total duration (from 1.22 hours to

1.18 hours, ≈ 3 % decrease) nor r value (0.37 to 0.37) changed notably for stage REM with changing

frequency, and the r value was consistently lower for U-Sleep as compared to human annotators.

Figure 11.6b plots durations measured using U-Sleep at 1/30Hz against human annotations. The

plot shows that while both sets of annotations provided linearly correlated duration measurements,

particularly for stages Wake, N2, N3, and REM, there were several individual significant exceptions

where one annotator scored significantly shorter total duration for that stage. For all stages, there

are cases where U-Sleep at 1/30Hz scores a particular stage significantly less often and significantly

more frequently than the human annotator. Figure 11.6c shows a similar plot, but which compares

durations using annotations from U-Sleep at 1/30 Hz with U-Sleep at 5 Hz. A near-perfect correlation

was found between sleep durations measured at 1/30 Hz and 5 Hz for stages Wake and REM (r = 0.99

and r = 0.99) with no significant outliers (i.e., dots away from the identity line). In contrast, as

also visible from Table 11.3, measured N2 stage duration was consistently lower at 5Hz compared

to 1/30 Hz, with oppositely higher estimated N1 and N3 durations at 5 Hz. In combination with

the results of Supplementary Figure F.12, which shows the total confidence of the U-Sleep model in

each possible class within windows of 30-seconds conditioned on human annotation for that interval,

these results show that U-Sleep tends to, in particular, score more transient N1 and N3 stages within

periods that would be scored N2 by both humans and U-Sleep at typical 1/30 Hz.

Spatial high-frequency sleep stages Because U-Sleep can score in any input channel, it was

hypothesised that spatial sleep dynamics might be detected by applying U-Sleep to individual EEG
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electrode positions. Figure 11.7 shows the results of a pilot study of such spatial high-frequency sleep

staging patterns. The mean Jensen–Shannon divergence (JSD) measure was computed between pairs

of U-Sleep v2 predicted confidence scores in different spatial EEG electrode positions and at different

frequencies (1/30 Hz, 1/6 Hz, 1 Hz and 5Hz) across N = 842 validation- and test-set PSGs that

had had all of EEG channels { C3-M2, C4-M1, F3-M2, F4-M1, O1-M2, O2-M1 } and EOG channel

E1-M2 available. See Methods for further quantification details.

Figure 11.7a shows that the similarity of predictions made at typical 1/30 Hz in any pair of EEG

channels was high (i.e., low mean JSD) with scores close zero (≤ 0.022 for all pairs, mean 0.015,

range [0, log 2 ≈ 0.693]). In other words, the confidence score outputs of U-Sleep were similar in

all EEG channels. This result aligns with the findings of Perslev, Darkner, et al. (2021) where

the (thresholded/discrete) scoring performance was similarly high using any EEG channel. These

results were expected and are a consequence of the induced channel invariance of the U-Sleep training

pipeline (see Perslev, Darkner, et al. 2021 for details).

Figures 11.7b-11.7d show the spatial scoring divergences as the scoring frequency was increased.

Notably, the divergence increased between all pairs of EEG channels with increased frequency with a

mean JSD of 0.022 at 1/6 Hz, 0.041 at 1 Hz, and 0.077 at 5 Hz, i.e., an average JSD approximately 5

times higher at 5 Hz than at 1/30 Hz (the absolute divergences remain, however, low). Supplementary

Figure F.15 shows two examples of the cross-correlation-like experiment, described further in the

Methods section, which showed that the increasing divergence observed at high scoring frequency is

not a simple result of a linear, fixed lag between the compared time-series, as the lowest JSD was

observed in nearly all PSGs and channel combinations at offset 0 (i.e., no relative shift).

At 5 Hz, where the spatial scoring divergence (dis-similarity) was highest, the most similar pre-

dictions were made in channel pairs { F3, C3 } and { F4, C4 } with mean JSD scores of 0.042 and

0.039, respectively. The highest divergence was observed between pairs { O2, F3 } and { O1, F4

} with mean JSD scores of 0.100 in both cases.

The relatively closely positioned – but contralateral – occipital electrodes (O1 and O2) were

scored with a mean JSD of 0.084, which is slightly larger than the divergences between the occipital

electrodes and their same-hemisphere, but relatively far apart central counterparts (C3 and C4) with

mean JSD scores of 0.070 for channel pair { O1, C3 } and 0.068 for channel pair { O2, C4 }. These

results show that U-Sleep v2 scored more similarly at high frequency in nearby EEG electrodes on the

same hemisphere. In contrast, more dis-dissimilar predictions were made in EEG electrodes placed

contralaterally and far apart.

The experiment was repeated using the single-channel U-Sleep v2 (EEG) model to rule out any

potential bias effects of using a common { E1-M2 } EOG input to the U-Sleep v2 model above.

Similar patterns were observed with slightly higher average divergence scores. See Supplementary
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Figure F.14. These results suggest that the shared EOG input makes the U-Sleep v2 score more

similarly across EEG inputs, but that spatial EEG variations drive the spatial scoring patterns

observed at high-frequency outputs.

11.5 Discussion

This paper introduced new and improved U-Sleep v2 models and stress-tested them on several pa-

rameters to advance the understanding of their performance and behaviour in clinical practice. The

models were trained on an extensive and heterogeneous multi-site dataset of 25,805 PSGs and eval-

uated on complex EEG from patients not seen during training to simulate a real-world application.

Single-channel variants were developed for easier integration with wearable devices. The clinical

applicability and stability of the models were examined through various scenarios, including masked

input data, different band-pass filtering, and correlation with human expert uncertainty. The study

also investigated the clinical relevance of high-frequency sleep stage outputs and explored spatial

sleeping patterns using U-Sleep’s special scoring capabilities in a pilot study.

Three variants of U-Sleep v2 were introduced: U-Sleep v2, which is a drop-in replacement to

U-Sleep v1, accepting both EEG and EOG inputs, was found at least as accurate as the original

model while generalizing to an even greater dataset, including, for instance, additional pediatric sleep

studies. The U-Sleep v2 model also improved over its predecessor on a common failure mode for

automatic sleep staging models, which is the wrongful prediction of SO-REMs. It predicted fewer

likely wrong instances and obtained a higher SO-REM estimation correlation to human experts.

Two single-channel alternatives, U-Sleep v2 (EEG) and U-Sleep v2 (EOG), were also developed

and assessed. The single-channel variants demonstrated slightly lower performance than the average

of the U-Sleep v2 model, yet they still exhibited high performance, even in extreme cases where only

one input channel was available. U-Sleep v2 (EEG) even outperformed the dual-channel model on

the multi-scored DOD-H dataset, and both single-channel EEG and EOG models were statistically

non-inferior to the best human annotator on both the DOD-H and DOD-O datasets.

The U-Sleep v2 models were assessed on several patient groups not well-represented in the training

dataset. U-Sleep v2 accurately scored sleep for narcolepsy and PLM patients with a performance

similar to that observed for healthy individuals and OSA patients. The model’s performance was

slightly lower for RBD patients; however, it was not conclusive whether the reduced scoring accuracy

was causally linked to the RBD disorder cohort factor. The average performance (mean F1 of 0.74)

remained high and fell within the range of scores observed in other cohorts, such as STAGES (0.70),

MASS-C1 (0.72), and SVUH (0.73). The reason for the lower performance in these specific cohorts is

still unknown. U-Sleep v2 was further evaluated on complex EEG patterns from PD and RBD+PD
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patients. Although the model’s performance was significantly lower than average for these cohorts,

visual inspections of the resulting hypnograms indicated a good representation of the overall macro

sleep structure. Fragmented sleeping patterns made objective, quantitative evaluation challenging

due to unstable evaluation metrics and uncertainty in the ground truth, as even human annotators

found several PSGs difficult to score.

U-Sleep v2 (EEG) demonstrated approximately similar performance to the dual-channel model

when scoring narcolepsy, PLM, and PD patients, with mean F1 scores of 0.79 vs 0.80, 0.78 vs 0.79, and

0.66 vs 0.65, respectively. It scored RBD and RBD-PD patients slightly less accurately with global

macro F1 score differences of ≈ 0.02 points. Interestingly, the single-channel EEG model showed

significantly lower accuracy in scoring REM sleep for the RBD (0.76 vs 0.81) and RBD+PD cohorts

(0.44 vs 0.57) but performed slightly better on REM for the PD cohort (0.67 vs 0.65, respectively).

This suggests that the EOG channel provides significant information to correctly score REM sleep

(likely by enhancing the model’s ability to distinguish REM sleep from Wake in cases of highly

fragmented sleep) but is required only in certain complex cases. This is supported by the U-Sleep

v2 (EOG) results, which scored REM sleep significantly better than U-Sleep v2 (EEG) in RBD+PD

patients, although performing slightly worse on average on most other cohorts.

The above results indicate that the U-Sleep v2 models exhibit high average performance and can

effectively generalize to even complex new patient cohorts not encountered during training. How-

ever, a thorough analysis of the generated hypnogram should be conducted in the most complex

cases involving severe sleep fragmentation or REM sleep abnormalities, e.g., in patients with neu-

rodegenerative disorders or RBD. The single-channel U-Sleep v2 variants performed as well as the

best human experts on healthy and OSA patients not seen during training and could score accurately

using a single input electrode. The single-channel U-Sleep models may thus be effective for use in

wearable devices to support, for instance, longitudinal studies. However, when both EEG and EOG

are available, the dual-channel U-Sleep v2 model should be marginally preferred for scoring complex

cases with maximum accuracy and consistency.

The entropy (a measure of uncertainty) of the outputs of U-Sleep v2 at a typical 1/30Hz scoring

frequency was found to correlate with the uncertainty of a group of five human expert scorers. Visual

studies of high-frequency scores (discussed further below) revealed that uncertainty might arise in

boundary regions with miss-aligned epoch boundaries where unanimously assigning a single stage to

a 30-second epoch is non-trivial. These results indicate that U-Sleep’s confidence outputs may be

useful in clinical practice to direct the attention of the human scorer to the most relevant, difficult

parts of the recording. High-frequency scores can support this process by allowing human operators

to evaluate possible sources of uncertainty (such as a transient stage).



CHAPTER 11. MS. F: SINGLE-CHANNEL, HIGH-FREQUENCY & SPATIAL STAGING 153

The performance of the U-Sleep v2 model was further investigated under the influence of masked

input data by replacing parts of input data with random values to simulate malfunctioning or paused

recordings or otherwise missing data. As anticipated, scoring accuracy decreased when input data

was missing. However, using contextual information, U-Sleep could often accurately infer sleep stages

for epochs with no available data. It was also discovered that, at least on the DCSM dataset, the U-

Sleep v2 model performed approximately on par with the single-channel variants when provided with

only one input and noise as the second input.

It is, however, worth noting that U-Sleep’s ability to perform with input data replaced by noise is

expected, as the models were trained with random data replacements for data augmentation to force

the model to learn long-range dependencies. Introducing other types of noise or artefacts may have a

more negative impact on performance, and it remains uncertain whether, in the case of true noise or

malfunctioning recordings, input data should be replaced by the type of noise used for augmentation

during training or if the model should be exposed to the raw signal containing its natural noise.

The filtering experiments indicated that U-Sleep is likely best applied to relatively raw (in this case

unfiltered) input data for optimal performance, as even applying the AASM recommended 0.3Hz –

35 Hz band-pass filtering reduced the model’s performance on the HPAP dataset. However, this result

may be dataset-specific and necessitates further experimentation. The U-Sleep v2 model was trained

on a subset of data from the HPAP dataset, which was not pre-filtered, potentially leading to a bias

towards higher performance on non-filtered data for this specific dataset.

The significance of U-Sleep’s high-frequency and spatial sleep stages was examined in the third

and final part of the paper. Visual inspections suggested that high-frequency outputs might enable

more accurate quantification of transient sleep stages and stage transitions that do not align with the

arbitrary 30-second epoch boundaries. With the finding that U-Sleep’s scoring uncertainty correlates

with that of human experts, discussed above, these findings imply that the high-frequency and

probability-like outputs of U-Sleep offer an interesting alternative representation of sleep stages,

potentially containing more information than traditional discrete stages.

It was demonstrated that the U-Sleep v2 model, even at the typical 1/30 Hz frequency, provided

sleep stage duration estimates with high correlation to those of human experts while offering more

consistent scoring across multiple visits of the same patients for stages Wake, N1, N2, and N3.

However, human annotators scored the REM stage more consistently. The consistency of stage

duration estimates generally increased as the U-Sleep scoring frequency increased (except for REM,

which remained stable). This could suggest that U-Sleep’s high-frequency outputs are clinically

relevant, serving as a more reliable objective measure for some sleep metrics. However, this result may

be metric-specific. As observed in high-frequency plots such as Figures 11.5, 11.4 and Supplementary
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Figures F.4–F.7, high-frequency scores can be noisy or highly responsive to local signal patterns.

Some metrics, like REM latency, may require a new definition based on robust statistics rather than

the current outlier and noise-sensitive definition of time from the first non-Wake to the first REM

stage. Different metrics might also be calculated based on various frequency outputs from U-Sleep

as applicable.

Interestingly, the average stage durations also varied with scoring frequency, increasing by ap-

proximately 10% for stage Wake, 28% for stage N1, and 23% for stage N3, while the average stage

N2 duration decreased by around 15 %. A possible explanation for the non-REM variations is that

U-Sleep can score transient N1 and N3 stage sleep at higher frequencies when not constrained by

epoch boundaries and not required to assign a single stage to epochs with multiple sub-stages. In

such cases, e.g., where a 30-second period has characteristics of multiple non-REM stages, epochs

might otherwise tend to be scored as the middle-most and majority stage, N2.

In the final analysis, this study investigated if sleep scoring varies with the spatial location of

input EEG electrodes. Since U-Sleep is trained to induce invariance to the exact electrode positions,

the experiments predictably demonstrated high-scoring similarity across electrodes at a typical 1/30

Hz frequency. However, as the scoring frequency increased, so did the scoring variability with spatial

EEG location. Predictions made using nearby electrodes were more similar than those between

distant electrodes. A weak tendency for more similar scoring between electrodes placed on the same

hemisphere was also observed. Cross-correlation-like experiments showed that a fixed lag-time effect

did not cause the observed drop in scoring similarity at higher stage frequencies. These results

suggest that U-Sleep could potentially be used to study sleep as a local phenomenon, which may

vary in health and disease (although this remains to be demonstrated).

Establishing a direct causal relationship between the high-frequency or spatial U-Sleep scores and

underlying sleep physiology remains challenging. However, Perslev, Darkner, et al. (2021) demon-

strated that high-frequency stages enable easier separation of healthy control subjects and OSA

patients, which was later reaffirmed for separating stroke patients from a control group of healthy

and OSA patients. These findings reveal that some information in the high-frequency scores is com-

pressed and lost in the typical 1/30 Hz scoring regime. Based on visual analysis and the computation

of sleep stage durations at different frequencies, this paper suggests that U-Sleep may be capable of

inferring transient sleep stages (i.e., those lasting less than 30 seconds) and that some sleep metrics

can be more robustly estimated at higher scoring frequencies. The pilot experiment on spatial sleep

staging indicated that high-frequency stages systematically vary with spatial EEG location. These

results further suggest informative content and provide an early indication of a, but importantly not

proven, causal relationship between high-frequency and spatial stages and sleep physiology.

In combination, this paper introduced new U-Sleep models and presented further evidence sup-
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porting their suitability for clinical sleep staging. U-Sleep can accurately score healthy and sleep-

disordered individuals and provide reasonable predictions even on highly complex EEG data from

subjects with brain disorders like PD without being trained on such data. The models are also

robust, capable of scoring using any input EEG or EOG channels and even just a single channel,

making them suitable for wearable or home-testing setups. Lastly, the high-frequency outputs and

ability to score spatial sleep lay the groundwork for computing new and more robust clinical sleep

metrics and open up opportunities for novel research in basic sleep physiology.
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Table 11.1: Channel-wise majority vote sleep staging performance comparisons of U-Sleep v1 and
U-Sleep v2. The models were compared across all test-set splits using global (i.e., computed across
all subjects in a cohort) F1/Dice scores. The macro column is the macro F1 score (i.e., unweighted
mean over the global stage-wise F1 scores). Scores of U-Sleep v1 and U-Sleep v2 are shown to the left
and right of each table cell, respectively, with an arrow (→) in between unless both models archived
a similar score. A bold font indicates that U-Sleep v2 scored better, and an underlined font indicates
that U-Sleep v1 scored better. Below the main table are summary statistics comparing the sample
weighted mean and standard deviations of both models computed over the global F1 scores as well as
median, median absolute deviation (MAD), and Wilcoxon’s test statistics computed over per-subject
F1 scores (i.e., in contrast to the global F1 scores of the upper table) for comparison. U-Sleep v2 was
also evaluated on the test-splits of datasets WSC, STAGES and NCHSDB, but scores on those datasets
were not included in the summary statistics and tests to allow direct comparison to the U-Sleep v1
model.

Type Dataset Records Wake N1 N2 N3 REM Mean

In
te

rn
al

-
T
ra

in
/T

es
t

ABC 20 0.89 → 0.900.89 → 0.900.89 → 0.90 0.42 → 0.620.42 → 0.620.42 → 0.62 0.83 → 0.840.83 → 0.840.83 → 0.84 0.73 0.91 → 0.920.91 → 0.920.91 → 0.92 0.76 → 0.800.76 → 0.800.76 → 0.80
CCSHS 78 0.97 0.61 → 0.640.61 → 0.640.61 → 0.64 0.91 → 0.920.91 → 0.920.91 → 0.92 0.87 → 0.890.87 → 0.890.87 → 0.89 0.92 → 0.930.92 → 0.930.92 → 0.93 0.86 → 0.870.86 → 0.870.86 → 0.87
CFS 92 0.96 0.52 → 0.530.52 → 0.530.52 → 0.53 0.88 → 0.890.88 → 0.890.88 → 0.89 0.81 → 0.860.81 → 0.860.81 → 0.86 0.90 → 0.920.90 → 0.920.90 → 0.92 0.81 → 0.830.81 → 0.830.81 → 0.83
CHAT 128 0.96 → 0.970.96 → 0.970.96 → 0.97 0.60 → 0.630.60 → 0.630.60 → 0.63 0.85 → 0.870.85 → 0.870.85 → 0.87 0.88 → 0.900.88 → 0.900.88 → 0.90 0.89 → 0.910.89 → 0.910.89 → 0.91 0.84 → 0.850.84 → 0.850.84 → 0.85
DCSM 39 0.98 → 0.990.98 → 0.990.98 → 0.99 0.47 → 0.550.47 → 0.550.47 → 0.55 0.86 0.83 0.88 → 0.910.88 → 0.910.88 → 0.91 0.81 → 0.830.81 → 0.830.81 → 0.83
HPAP 36 0.91 → 0.920.91 → 0.920.91 → 0.92 0.43 → 0.460.43 → 0.460.43 → 0.46 0.83 → 0.840.83 → 0.840.83 → 0.84 0.77 → 0.75 0.90 → 0.910.90 → 0.910.90 → 0.91 0.77 → 0.780.77 → 0.780.77 → 0.78
MESA 100 0.95 0.46 → 0.590.46 → 0.590.46 → 0.59 0.85 → 0.870.85 → 0.870.85 → 0.87 0.72 → 0.70 0.89 → 0.910.89 → 0.910.89 → 0.91 0.77 → 0.800.77 → 0.800.77 → 0.80
MROS 134 0.95 → 0.960.95 → 0.960.95 → 0.96 0.44 0.86 → 0.870.86 → 0.870.86 → 0.87 0.69 → 0.720.69 → 0.720.69 → 0.72 0.87 → 0.890.87 → 0.890.87 → 0.89 0.76 → 0.780.76 → 0.780.76 → 0.78
PHYS 100 0.84 0.60 → 0.57 0.84 → 0.850.84 → 0.850.84 → 0.85 0.81 → 0.79 0.87 → 0.880.87 → 0.880.87 → 0.88 0.79
SEDF-SC 23 0.93 0.57 0.86 0.71 → 0.760.71 → 0.760.71 → 0.76 0.87 → 0.880.87 → 0.880.87 → 0.88 0.79 → 0.800.79 → 0.800.79 → 0.80
SEDF-ST 8 0.80 → 0.810.80 → 0.810.80 → 0.81 0.54 → 0.600.54 → 0.600.54 → 0.60 0.88 → 0.890.88 → 0.890.88 → 0.89 0.65 → 0.660.65 → 0.660.65 → 0.66 0.91 → 0.90 0.76 → 0.770.76 → 0.770.76 → 0.77
SHHS 140 0.94 0.50 → 0.510.50 → 0.510.50 → 0.51 0.87 0.77 0.91 0.80
SOF 68 0.96 0.46 → 0.45 0.86 0.76 → 0.770.76 → 0.770.76 → 0.77 0.92 0.79

WSC 218 0.89 0.53 0.90 0.61 0.90 0.77
STAGES 89 0.82 0.37 0.81 0.69 0.81 0.70
NCHSDB 102 0.89 0.38 0.86 0.90 0.83 0.77

H
ol

d-
O

ut

ISRUC-SG1 100 0.88 → 0.900.88 → 0.900.88 → 0.90 0.50 0.79 → 0.78 0.78 → 0.72 0.89 → 0.900.89 → 0.900.89 → 0.90 0.77 → 0.76
ISRUC-SG2 16 0.83 → 0.850.83 → 0.850.83 → 0.85 0.50 → 0.49 0.78 → 0.76 0.82 → 0.74 0.86 → 0.870.86 → 0.870.86 → 0.87 0.76 → 0.74
ISRUC-SG3 10 0.87 → 0.900.87 → 0.900.87 → 0.90 0.56 → 0.570.56 → 0.570.56 → 0.57 0.78 → 0.74 0.74 → 0.62 0.86 0.76 → 0.74
MASS-C1 53 0.94 0.39 → 0.36 0.81 0.61 0.88 → 0.900.88 → 0.900.88 → 0.90 0.73 → 0.72
MASS-C3 62 0.93 0.50 0.85 → 0.860.85 → 0.860.85 → 0.86 0.73 → 0.740.73 → 0.740.73 → 0.74 0.91 → 0.920.91 → 0.920.91 → 0.92 0.78 → 0.790.78 → 0.790.78 → 0.79
SVUH 25 0.81 0.34 → 0.29 0.81 0.82 → 0.860.82 → 0.860.82 → 0.86 0.88 → 0.890.88 → 0.890.88 → 0.89 0.73
DOD-H 25 0.92 → 0.90 0.60 → 0.620.60 → 0.620.60 → 0.62 0.87 → 0.880.87 → 0.880.87 → 0.88 0.79 → 0.820.79 → 0.820.79 → 0.82 0.94 → 0.93 0.82 → 0.830.82 → 0.830.82 → 0.83
DOD-O 55 0.90 0.52 → 0.51 0.86 → 0.890.86 → 0.890.86 → 0.89 0.74 → 0.780.74 → 0.780.74 → 0.78 0.92 → 0.930.92 → 0.930.92 → 0.93 0.79 → 0.800.79 → 0.800.79 → 0.80

DCSM-N 82 0.97 0.50 → 0.48 0.84 0.78 → 0.800.78 → 0.800.78 → 0.80 0.87 → 0.880.87 → 0.880.87 → 0.88 0.79 → 0.800.79 → 0.800.79 → 0.80
DCSM-PLM 41 0.98 0.45 0.84 0.75 → 0.760.75 → 0.760.75 → 0.76 0.91 → 0.90 0.79
DCSM-RBD 34 0.96 0.43 → 0.42 0.83 → 0.82 0.70 0.74 → 0.810.74 → 0.810.74 → 0.81 0.73 → 0.740.73 → 0.740.73 → 0.74
DCSM-PD 24 0.94 → 0.950.94 → 0.950.94 → 0.95 0.37 → 0.35 0.70 → 0.67 0.62 → 0.60 0.57 → 0.650.57 → 0.650.57 → 0.65 0.64 → 0.650.64 → 0.650.64 → 0.65
DCSM-RBD-PD 31 0.91 → 0.90 0.31 → 0.29 0.70 → 0.68 0.59 → 0.55 0.43 → 0.570.43 → 0.570.43 → 0.57 0.59 → 0.600.59 → 0.600.59 → 0.60

Mean (weighted) 0.93 → 0.940.93 → 0.940.93 → 0.94 0.50 → 0.510.50 → 0.510.50 → 0.51 0.84 → 0.850.84 → 0.850.84 → 0.85 0.76 → 0.770.76 → 0.770.76 → 0.77 0.88 → 0.890.88 → 0.890.88 → 0.89 0.78 → 0.790.78 → 0.790.78 → 0.79
STD (weighted) 0.04 0.07 → 0.08 0.04 → 0.05 0.07 → 0.08 0.08 → 0.060.08 → 0.060.08 → 0.06 0.04 → 0.05

Per subject median 0.95 0.51 0.86 → 0.870.86 → 0.870.86 → 0.87 0.79 0.91 → 0.920.91 → 0.920.91 → 0.92 0.78
Per subject MAD 0.03 0.11 0.05 0.11 → 0.12 0.04 0.06

Pairs w. diff ̸= 0, n 1504 1492 1513 1409 1444 1524
Wilcoxon, W 398981 501496 459330 473064 346207 470123

P -value < 0.001 < 0.001 < 0.001 0.122 < 0.001 < 0.001
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Table 11.2: Consensus score results on datasets (a) DOD-H and (b) DOD-O. The highest scores from
human experts and the U-Sleep are highlighted in bold. Numbers shown are mean ± 1 standard
deviation per-subject F1 scores computed between the output of a single model or human expert and
the consensus scores generated from the 4 (N − 1) remaining (when comparing human to consensus)
or best (when comparing the model to consensus) human annotators.

(a) DOD-H: Healthy controls, N = 25

Scorer Wake N1 N2 N3 REM Mean

Expert 1 0.83± 0.11 0.49± 0.15 0.86± 0.12 0.78± 0.24 0.84± 0.16 0.76± 0.11
Expert 2 0.83± 0.14 0.52± 0.11 0.88± 0.05 0.78± 0.23 0.89± 0.06 0.78± 0.07
Expert 3 0.84± 0.12 0.54± 0.13 0.88± 0.05 0.74± 0.25 0.93± 0.050.93± 0.050.93± 0.05 0.79± 0.07
Expert 4 0.73± 0.18 0.40± 0.15 0.83± 0.07 0.75± 0.22 0.90± 0.09 0.72± 0.11
Expert 5 0.83± 0.14 0.53± 0.12 0.89± 0.04 0.76± 0.24 0.90± 0.09 0.78± 0.08

U-Sleep v1 (EEG + EOG) 0.88± 0.10 0.56± 0.14 0.86± 0.05 0.73± 0.23 0.93± 0.050.93± 0.050.93± 0.05 0.79± 0.06
U-Sleep v2 0.88± 0.11 0.59± 0.140.59± 0.140.59± 0.14 0.88± 0.05 0.76± 0.22 0.92± 0.09 0.80± 0.08
U-Sleep v2 (EEG) 0.88± 0.09 0.57± 0.14 0.92± 0.030.92± 0.030.92± 0.03 0.82± 0.230.82± 0.230.82± 0.23 0.92± 0.07 0.82± 0.060.82± 0.060.82± 0.06
U-Sleep v2 (EOG) 0.83± 0.14 0.49± 0.19 0.87± 0.08 0.78± 0.23 0.91± 0.10 0.77± 0.10

(b) DOD-O: OSA patients, N = 55

Scorer Wake N1 N2 N3 REM Mean

Expert 1 0.87± 0.11 0.38± 0.15 0.82± 0.13 0.59± 0.31 0.81± 0.25 0.69± 0.12
Expert 2 0.87± 0.09 0.46± 0.17 0.82± 0.11 0.61± 0.29 0.86± 0.22 0.72± 0.12
Expert 3 0.88± 0.09 0.42± 0.16 0.83± 0.13 0.46± 0.33 0.85± 0.22 0.69± 0.11
Expert 4 0.89± 0.09 0.46± 0.15 0.84± 0.07 0.52± 0.33 0.83± 0.24 0.71± 0.12
Expert 5 0.90± 0.080.90± 0.080.90± 0.08 0.48± 0.15 0.86± 0.08 0.62± 0.33 0.85± 0.22 0.74± 0.11

U-Sleep v1 (EEG + EOG) 0.89± 0.09 0.53± 0.140.53± 0.140.53± 0.14 0.85± 0.08 0.66± 0.30 0.88± 0.20 0.76± 0.100.76± 0.100.76± 0.10
U-Sleep v2 0.89± 0.10 0.51± 0.16 0.89± 0.070.89± 0.070.89± 0.07 0.65± 0.31 0.89± 0.200.89± 0.200.89± 0.20 0.76± 0.110.76± 0.110.76± 0.11
U-Sleep v2 (EEG) 0.90± 0.070.90± 0.070.90± 0.07 0.47± 0.14 0.88± 0.07 0.69± 0.310.69± 0.310.69± 0.31 0.84± 0.20 0.76± 0.100.76± 0.100.76± 0.10
U-Sleep v2 (EOG) 0.89± 0.08 0.49± 0.15 0.87± 0.08 0.67± 0.30 0.88± 0.20 0.76± 0.10

Table 11.3: Mean ± 1 standard deviation sleep stage durations in hours computed from hypnograms
scored by human experts and the U-Sleep v2 model at different staging frequencies on all N = 2499
PSGs of the validation- and test-set splits. Hypnograms were trimmed to include only stages between
the first and last non-Wake scoring according to the scorings of the human expert. The Pearson’s
correlation r test/re-test value for sleep stage duration metrics are listed in parentheses, computed
across a total N = 473 test/re-test comparisons of 282 unique subjects (all available multi-visit
subjects). The highest correlation value(s) observed for each stage are highlighted in bold.

Annotator Freq. (Hz) Wake (hours) N1 (hours) N2 (hours) N3 (hours) REM (hours)

Human 1/30 1.41± 1.45 (0.43) 0.60± 0.50 (0.55) 3.43± 1.06 (0.45) 1.08± 0.88 (0.78) 1.18± 0.58 (0.430.430.43)

U-Sleep 1/30 1.42± 1.51 (0.45) 0.47± 0.38 (0.66) 3.54± 0.96 (0.48) 1.05± 0.77 (0.79) 1.22± 0.57 (0.37)
U-Sleep 1/6 1.52± 1.52 (0.460.460.46) 0.51± 0.37 (0.67) 3.37± 0.90 (0.50) 1.10± 0.75 (0.81) 1.20± 0.56 (0.37)
U-Sleep 1 1.54± 1.52 (0.460.460.46) 0.55± 0.37 (0.69) 3.21± 0.85 (0.51) 1.19± 0.74 (0.830.830.83) 1.20± 0.56 (0.37)
U-Sleep 5 1.56± 1.51 (0.460.460.46) 0.66± 0.39 (0.700.700.70) 3.01± 0.80 (0.520.520.52) 1.29± 0.74 (0.82) 1.18± 0.54 (0.37)
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(a) DOD-H: Healthy controls, N = 25
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(b) DOD-O: OSA patients, N = 55

Figure 11.1: Boxplots illustrating the distributions of F1 scores from 5 human experts and U-Sleep
on healthy controls and OSA patients. Panel (a) shows results from dataset DOD-H on 25 healthy
subjects. Panel (b) shows results from dataset DOD-O on 55 patients suffering from OSA. Sleep stages
produced by U-Sleep and the five individual experts were compared to consensus-scored hypnograms.
Please refer to the Methods section for further details. Mean F1 scores averaged across stages and
F1 scores for the five individual sleep/wake stages are shown. The performance of different U-Sleep
model versions is shown in shades of red (5 right-most boxplots in each group). The performance of
each human expert is shown in shades of blue (5 left most boxplots in each group). Note that some
records were scored by both human experts and U-Sleep with very low F1 scores (0 in some cases)
on individual classes. This especially concerns stage N3 in dataset DOD-O and most often happens for
rare classes. For instance, a patient severely affected by OSA rarely enters the N3 deep sleep stage.
The resulting low number of observed N3 stages makes even a few errors resulting in a large deviation
in the F1 score. Each boxplot shows the median (middle vertical line), first and third quartiles (lower
and upper box limits) and whiskers that extend to 1.5 times the IQR added or subtracted from the
third and first quartiles, respectively. Data outside of this range is marked as outliers indicated by
diamond-shaped points.
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Figure 11.2: REM latencies computed from predicted majority-voted hypnograms of U-Sleep v1 (left)
and U-Sleep v2 (right) correlated against observed REM latencies computed from expert annotated
hypnograms. Pearson’s correlation coefficient, r, is indicated above each plot, along with the number
of likely wrongly predicted SO-REMs (dots within the lower red box of each plot; here defined by an
observed REM latency of at least 60 minutes with a predicted latency of at most 10 minutes). The
U-Sleep v2 performed REM latency estimation more accurately than the U-Sleep v1 with a higher
general correlation and fewer wrongly predicted SO-REMs.
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(a) Hypnogram with highest observed macro F1-score (record PD005).
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(b) Hypnogram with macro F1-score nearest dataset median (record PD033).
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(c) Hypnogram with lowest observed macro F1-score (record PD018).

Figure 11.3: Highest, nearest median and lowest scoring (majority voted) hypnograms observed across
dataset DCSM-PD. Black hypnograms were predicted by U-Sleep, and red hypnograms are human
expert annotations. F1 scores for each stage are shown to the right. Note that these unweighted
per-subject F1 scores are noisy and may be misleading if the human annotator scores only a few
instances of a given stage.
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(a) Example, DOD-H subject. In epochs 2 and 4, the uncertainty of the group of human annotators was well
captured by U-Sleep at 1/30 Hz scoring frequency. The possible source of human and model uncertainty was
revealed at higher frequencies. U-Sleep separately scores the first and second half of each epoch 2 and 4 as
different stages when not restricted to the arbitrary 30-second stage boundaries.
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(b) Entropy experiment with U-Sleep v2 scores at
1/30 Hz.

Figure 11.4: Entropy (uncertainty) correlation between U-Sleep v2 and a group of 5 human raters.
N = 80, datasets DOD-O and DOD-H. See Methods for details on quantification.
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(a) Boxplots showing F1 scores for each sleep stage computed across subjects under
different context prediction experiments. The entire input modality was removed in
the Channel: EEG and Channel: EOG experiments. In Epochs experiments, 30-second
epochs were removed with indicated indices relative to the central-most epoch (the
predicted). See Methods for details.
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(b) Successful context prediction example where the central N1 stage was correctly
guessed based on pre- or proceeding epoch data.
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(c) Unsuccessful context prediction example where the central N2 stage was not cor-
rectly guessed based on pre- or proceeding epoch data. Missing information, the model
assumed a smooth transition from Wake to N2 via an intermediate N1 stage.

Figure 11.5: Context prediction experiment and illustrative examples for model U-Sleep v2 on N = 39
sleep studies from the DCSM dataset.
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(a) Motivating example. Epochs 3 and 4 were scored as Wake by all expert annotators and U-Sleep at 1/30 Hz.
U-Sleep detects a transient N1 or N2 stage at higher frequency outputs, a possible physiological phenomenon
given the visible dampening in signal amplitude between epochs 3 and 4, which is lost in the compression of
representing sleep in discrete 30-second blocks.
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(b) Comparison of total sleep stage duration in hours measured by human experts at 1/30 Hz staging frequency
and U-Sleep v2 at 1/30 Hz staging frequency on all N = 2499 PSGs from the validation- and test-set splits.
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(c) Comparison of total sleep stage duration in hours as measured by U-Sleep v2 at 1/30 Hz staging frequency
and U-Sleep v2 at 5 Hz staging frequency on all N = 2499 PSGs from the validation- and test-set splits.

Figure 11.6: Sleep stage duration as a function of staging frequency.
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Figure 11.7: Spatial sleep scoring divergence (dis-similarity) experiment using the U-Sleep v2 model.
Each number shows the mean epoch-wise Jensen-Shannon divergence (JSD) measure between the
probability-like confidence score outputs of the model made in a pair of channels at different frequen-
cies. Higher numbers (darker red) indicate that predictions were more diverging (i.e., less similar)
on average. All N = 842 validation- and test-set PSGs with all channels available were used. Note
that the colour bar is capped to the range [0, 0.10] to highlight differences, although the mean JSD
measure in this experiment, in principle, could take a maximum value of log 2 ≈ 0.693 if orthogonal
predictions were made in all epochs in all PSGs.



Chapter 12

Related work

The following pilot study on quantifying sleep stage confidence dynamics as a sleep stage tran-

sition is predicted by the U-Sleep v2 (EEG + EOG) model was initially planned for inclusion in

Manuscript F, Chapter 11. It was removed because the methodological basis for how one should

correctly and in a non-biased manner quantify the observed sleep stage transition speeds behaviour

was not fully developed as of writing this thesis. See below for further discussions of the current

approach’s limitations. The section is instead presented here as an experimental pilot study of re-

lated work to inspire hopefully fruitful future research in the exciting domain of high-frequency sleep

patterns.

12.1 Pilot study: Sleep stage transition speeds

12.1.1 Motivation

Visual examinations of high-frequency sleep stage scores revealed that the confidence of the U-Sleep

model in a specific sleep stage might rise at varying speeds (i.e., over varying periods of time) whenever

a stage transition occurs. See, for instance, Figure 12.1b and Figure 12.1a for examples of a fast

and a slow stage transition, respectively. These dynamics will be referred to as transition speeds.

While fast and slow transition speeds are difficult to relate directly to sleep physiology, as they may

reflect the model’s confidence in scoring difficult and easy stage transitions, it was hypothesised

that the transition speeds might vary systematically and contain clinically relevant information.

Consequently, an experiment was performed to quantify transition speeds and investigate differences

between pairs of bi-directional stage transitions. In addition, transition speeds were correlated to

demographic variables age, BMI and sex.

12.1.2 Methods

Stage transition speeds were computed for all N = 2, 499 PSGs from the validation- and test-set

splits of the dataset of manuscript F (chapter 11) using U-Sleep v2. Probability-like sleep scores

were extracted at 1/5,Hz for quantifying slow transitions (defined as > 10 seconds) and 5,Hz for

quantifying rapid transitions (defined as ≤ 10 seconds).

Fast transitions were quantified between peaks of high stage confidence defined by median confi-
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dence of ≥ 0.5 in sliding windows over 27 confidence scores (5.4 seconds) at 5,Hz frequency. Transition

speed was calculated only for pairs of peaks (a source peak, ps, and target peak pt) with non-identical

stages and where ps ended within 10 seconds of the start of pt.

To quantify transitions over longer time scales, peaks were also extracted from raw (i.e., no

median filter) 1/5,Hz predictions with ≥ 40 seconds continuous confidence of ≥ 0.35. Pairs of peaks

≤ 100 seconds apart were considered for further quantification.

A sigmoid function, defined as f(x) = L
1+exp (−k(x−x0))

+ b, was fitted to the 0.2 Hz or 5 Hz scores

from the start of ps to the end of pt. Here, f(x) models the confidence score in the stage of target peak

pt, x represents the relative time within the transition window, and p = [b, L, k, x0] is a parameter

vector controlling the lower and upper range of f(x), the steepness of the logistic function, and the

x-axis offset of the sigmoid midpoint, respectively.

Parameters were fitted using the scipy.optimize.curve_fit function (Virtanen et al. 2020)

with the dogbox method and a maximum of 1000 optimization steps. The initial parameter vector

was set to p0 = [med(ys),med(yt), 1,m] for parameters b, L, k, and x0, respectively. Here, med(ys)

represents the median confidence value within the source peak ps, med(yt) denotes the median

confidence value within the target peak pt, and m is the middle time point between the end of ps and

the start of pt. The parameter bounds were set as (0.0, 1.0), (0.0, 1.0), (−∞,∞), and (minx,maxx)

for parameters b, L, k, and x0, respectively, where x is the vector of time-points (independent values

in the fit).

Whenever a fit met the termination conditions within the maximum number of iterations, it was

considered for further analysis. For each successful fit, the transition speed was defined and calculated

as s = f−1(0.9L + b) − f−1(0.1L + b) seconds, where f−1 is the inverse of the fitted sigmoid. The

transition speed, s, indicates the number of seconds it takes for the (scaled/normalized) target stage

confidence to increase from 10 % to 90 %, according to the fitted model f(x). Figure 12.2 provides

examples of detected source ss and target st peaks along with the fitted logistic models for a fast

and slow transition.

Transition speeds for all eligible transitions across sleep studies were visualized as histograms. To

highlight potential non-symmetric transition speed dynamics (i.e., when transitioning from stage ss

to stage st is faster than the reverse transition from st to ss), histogram bin-height differences were

also calculated for all bi-directional stage transitions and plotted. Lastly, Pearson’s correlation coeffi-

cients (r) were computed to assess the relationship between stage transition speeds and demographic

variables age and BMI.
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12.1.3 Results

A total of 444, 593 sigmoidal fits (see Methods) were successfully fitted to model the U-Sleep v2

model’s confidence scores transitioning from detected source peaks to target peaks. Figure 12.3

shows histograms of log-transformed transition speeds between all pair-wise combinations of source

and target stages. Figure 12.4 shows bin-height differences between transition speed histograms

computed for a stage transition s1 → s2 and the reverse transition s2 → s1.

As depicted in Figure 12.3, all sleep stage transitions followed either uni- or bimodal log-normal

distributions. Table 12.1 presents the median, interquartile range (IQR), and the percentage of

transitions classified as fast (i.e., less than or equal to 10 seconds). Transitions from all stages

{ N1, N2, N3, REM } to Wake followed approximately unimodal distributions with low median

values (ranging from 1.6 to 2.8 seconds) and IQRs (ranging from 3.1 to 4.4 seconds). As a result,

approximately 95% of all observed transitions into stage Wake from any source were classified as

fast. In contrast, transitions from { Wake, N1, N2, N3 } to REM were more frequently observed

to be slow (i.e., with transition speeds greater than 10 seconds), with median values between 12.9

seconds (Wake to REM) and 46.7 seconds (N3 to REM), and IQRs ranging from 15.1 to 101.1

seconds. Additionally, transitions from REM to N1 (median of 39.5 seconds, IQR 51.0 seconds) and

N2 (median of 29.3 seconds, IQR of 87.7 seconds) were notably slower than transitions between any

pair of non-REM stages, which all had median values of less than 13 seconds. The transition from

REM to the N3 stage had insufficient data points for a reliable analysis.

Some sleep stage transitions, most notably Wake to N2 and N2 to REM, followed approximately

bimodal distributions. The separate detection of fast and slow transitions may have biased the

identification of such bimodal distributions. However, it remains unclear why only certain transitions

were affected in that case. See a further discussion of limitations below.

Figure 12.4 shows that most pairs of sleep stages exhibited non-symmetric bi-directional transition

speed dynamics. All bi-directional Wake transitions (i.e., Wake ⇄ { N1, N2, N3, REM }) displayed a

simple relationship where transitioning into Wake from any of the four other stages was, on average,

faster than the opposite transition from any of the four stages into Wake. A similar pattern was

observed for the bi-directional transition N1 ⇄ N2, where transitioning from N2 to N1 was, on

average, faster than the reverse transition N1 to N2. Similar dynamics were observed for the bi-

directional transition N2 ⇄ REM, although with less certainty due to fewer observations.

The transition dynamics for the bi-directional transition N2 ⇄ N3 were more complex, as depicted

by multiple peaks in Figure 12.4g. Transitions from N2 to N3 were more commonly observed within

the 0.1 – 1.0 seconds, 7.5 – 20 seconds, and > 100 seconds ranges, while the opposite transition from

N3 to N2 was more commonly observed in the intermediate 1.0 – 7.5 seconds and 20 – 100 seconds
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Table 12.1: Sleep stage transition statistics. Each table cell displays the median and IQR (first line)
and percentage (second line) of transitions classified as fast, i.e., less than or equal to 10 seconds for
all pair-wise transitions (see distributions in Figure 12.3).

Target Stage
Wake N1 N2 N3 REM

S
ou

rc
e

S
ta

ge

Wake - 5.2s - 5.3s 7.6s - 36.0s 3.2s - 7.1s 12.9s - 15.1s
92 % 61 % 94 % 58 %

N1 2.1s - 3.9s - 8.3s - 12.3s - 43.1s - 101.1s
96 % 72 % 29 %

N2 2.1s - 3.1s 5.6s - 6.6s - 0.9s - 3.8s 17.9s - 68.3s
96 % 92 % 91 % 46 %

N3 1.6s - 3.4s 13.4s - 15.0s 1.0s - 3.5s - 46.7s - 79.3s
94 % 58 % 93 % 24 %

REM 2.8s - 4.4s 39.5s - 51.0s 29.3s - 87.7s - -96 % 10 % 37 %

ranges. Bi-directional transitions N1 ⇄ REM also exhibited non-simple dynamics, with transitions

from N1 to REM more frequently observed in the < 10 seconds and > 100 seconds ranges, and the

reverse transition REM to N1 more commonly observed in the intermediate 10 – 100 seconds range.

The remaining bi-directional transitions (N3 ⇄ REM and N1 ⇄ REM) had too few observations to

conclude their dynamics.

Pearson’s correlation coefficients between transition speeds and demographic variables age and

BMI were small (< 0.15) for all pairs of stage transitions except N1 → REM (r = 0.39) and N3 →

REM (r = 0.45). Linear regression analyses revealed negative slopes of a = −1.3 and −0.8 for the

two transitions, respectively, indicating an average decrease in transition speed with age. However,

these transitions were particularly rare (at about 0.36% and 0.12% prevalence), and considerable

standard errors on the slope estimates may suggest a random or weak correlation. Similarly, there

were no clear correlations between transition speeds and variables BMI or sex.

12.1.4 Discussion and limitations

The analysis of sleep stage transition dynamics revealed several interesting patterns, such as general

asymmetric transition dynamics where transitioning from one stage to another occurred rapidly in

one direction and slowly in the opposite direction. However, no clear correlation was found between

sleep stage transition speeds for any pair of stages and demographic variables age, BMI or sex. This

raises questions about whether the calculated metrics truly reflect underlying physiology, as one

might expect a genuine physiological phenomenon like sleep stage transition speeds to be influenced

by variables like age, which is known to affect several aspects of sleep physiology.

These results may stem from the limitations and biases of the quantification method employed
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in this pilot study. First, the type and number of transitions detected were likely influenced by the

chosen quantification method and its hyperparameters. The appropriateness of the selected sigmoidal

model for the task is uncertain. Moreover, the hyperparameters were manually tuned based on a

visual examination of randomly chosen fits to maximize the number of successful fits while minimizing

false positive fits to non-relevant patterns. It was not feasible to manually investigate all the fitted

sigmoidal models for correctness, and different parameters would likely have detected other types

and numbers of transitions.

The impact of these biases on the results of the pilot study is unclear, such as whether the chosen

quantification was biased towards detecting more fast or long transitions or if relevant intermediate

transitions were missed. Nevertheless, the observation of non-symmetrical transition speeds between

all pairs of stages remains noteworthy unless these potential biases affected the quantification of

transition speeds systematically differently depending on the stage transition.

However, due to the limitations of the quantification method, this study was considered insuffi-

ciently mature for inclusion in Manuscript F, chapter 11. It is presented here to encourage future

research in this area.
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(a) Slow transition example. Between epochs 2 and 3, the transition N1 → N2 occurs.
The confidence of the U-Sleep model increases in stage N2 from near 0 to near 1 over
approximately 60 seconds.
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(b) Fast transition example. Between epochs 4 and 5, the transition N2 → Wake occurs.
The confidence of the U-Sleep model increases rapidly in stage Wake from near 0 to near
1 over approximately 2-3 seconds.

Figure 12.1: Examples of slow and fast stage transitions as scored by the U-Sleep v2 model.
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(a) Example of a fast transition from stage Wake to N1 quantified using a sigmoidal fit, giving a transition
speed of ≈ 5 seconds.
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(b) Example of a slow transition from stage N2 to REM quantified using a sigmoidal fit, giving a transition
speed of ≈ 66 seconds.

Figure 12.2: Examples of fast and slow stage transitions quantified using a sigmoidal fit as described
in the Methods section. Note that the plots in (a) and (b) have differently scaled x-axes.
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Figure 12.3: Pair-wise stage transition speeds. Each histogram shows log10-transformed transition
times from a source stage (rows) to a target stage (columns). See Methods for details on the definition
and quantification of transition speeds.
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Figure 12.4: Transition speed histogram (see Figure 12.3) bin-height differences between bi-
directional stage transitions. E.g., Figure 12.4a shows the difference between the transition speed
histogram bins shown in Figure 12.3 for the transition Wake → N1 and reverse N1 → Wake. Each
figure highlights the differences in average transition speed dynamics between any two stages.
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Chapter 13

Discussion

13.1 Clinical robustness

Making clinically robust machine learning models for medical segmentation problems is challenging.

Two primary difficulties stem from the complexity of medical data, which often varies with a patient’s

disease history and demographic, and may display systematic and sudden differences when new

recording equipment or software is used to collect the data. The problem of high data variability

can be minimized by training segmentation models on extensive and variable datasets. Collecting

such datasets is, however, a non-trivial task. Even a model like U-Sleep, introduced in Paper D of

Part III, trained on a massive and variable dataset collected by hundreds of researchers and medical

doctors from several countries, cannot claim to have observed all relevant sleep data variability. It

was, for instance, primarily trained on data from the EU and the US and data from a range of

relevant patients, e.g., with severe brain disorders, were largely missing. Paper D, Abstract E and

Manuscript F showed that U-Sleep could still generalize to new clinical sites and patient groups

displaying complex EEG (e.g., PD patients) not represented in the training dataset, but this ability

may be specific to the task of sleep staging and cannot be guaranteed in general.

Even if the training data included all imaginable clinical variability at a given instant, the model

would likely deteriorate in performance with time because of continuous data drift and shift events.

Physiological data is complex and may drift over time as demographic factors evolve or when new

diseases emerge that change the characteristics of the recorded signals or images. Shift events, after

which new data systematically differ from the original training data, are likely to occur as new

hardware (e.g., new scanners or EEG recording equipment) or software updates are implemented

over time.

For a concrete example of the problem of the inability to transfer machine learning models

to other, even similar tasks in the medical domain, consider the single-cohort models developed

in Paper B of this thesis on knee cartilage segmentation. Paper B did not intend to create model

instances that are clinically robust across cohorts or MRI- scanners and sequences but instead studied

the ability of the MPUNet pipeline to work reliably across such. However, following the paper’s

publication, researchers were interested in applying one of our models to their knee MRI data (direct

communication; unpublished work). Their data was imaged on scanners and MRI sequences different

from those considered in the paper. While the task was nearly identical and very narrow, i.e.,

177
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segmentation of knee cartilages in MRI, the models of Paper B, which were found to perform at state-

of-the-art accuracies in the single-cohort experiments, failed to produce meaningful results on the

data of the external researchers. First, because of a technical difference in which the image volumes

were differentially rotated and mirrored. Even after proper alignment, our developed models would

produce nearly meaningless results, with most cartilage voxels wrongly predicted as background.

The intended application of the MPUNet would be to train a new model from scratch or fine-tune

one of the models of Paper B on labelled data from the new dataset. However, the case exemplifies

the barrier that end-users of machine learning models for healthcare tasks may encounter if they

want to implement a pre-trained model developed for a similar but non-identical task. Unless very

carefully communicated, end-users may not be aware that even minor differences between their data

and the data with which the research model was trained may significantly decrease performance.

This issue affects all automatic segmentation systems. A set of hand-crafted rules in a classical

system may no longer apply if data is collected from a new device or patient group. Typical machine

learning systems cannot guarantee an expected performance if new data is not sampled from the same

distribution that generated the training data. Therefore, one cannot simply develop and deploy a

machine learning model in the clinic without considering how to generalise to clinical variability.

Broadly speaking, one must adopt at least one of three (non-exclusive) techniques:

1. Re-training or fine-tuning the model to data specific to the clinical application site and the task.

As studied in Part II, the machine learning pipeline must be easily applied without extensive

hyperparameter re-tuning when transferred to new tasks or clinical sites to be applicable also

when machine learning experts are unavailable. Because these methods demand labelled data

for each new application, the pipeline should be as statistically efficient as possible.

The fine-tuning approach is a simple transfer learning method that adapts a model to the target

domain. The motivation is that the model should retain some of its learned information from

the source domain and only need to adapt to select new features specific to the target domain.

However, neural networks are prone to catastrophic forgetting, which may lead to overfitting

to the small target domain dataset (French 1999), making it challenging to automate and

generalize a transfer learning pipeline in clinical settings.

2. Attempt to map data collected in the target domain through various preprocessing steps to ap-

pear similar to data collected in the source domain. One may try to identify some quantifiable

differences between data collected in the source- and target domains and create a pre-processing

transformation pipeline which, for instance, attempts to standardize the intensity distributions

of the images or attempts to establish a point-wise correspondence between anatomical land-

marks (e.g., using image registration, see Oliveira et al. 2014 for a review).
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3. Training the model on highly variable, cross-cohort datasets to induce model invariance proper-

ties to data variations which are unnecessary to solve the task, e.g., data variability introduced

by different hardware equipment or software preprocessing steps.

These methods can – and probably should – be used in conjunction. For example, training on

large and varied datasets, as done in Part III Paper D and Manuscript F, may create a clinically

robust model at a specific instant in time. However, the model might not remain robust due to

ongoing data drift and shift. As mentioned above, to address this, the model should be continuously

updated by fine-tuning it on the original data and any new annotated data collected since its clinical

implementation.

Arguably, any machine learning system to be clinically implemented should be evaluated concern-

ing its cross-cohort performance and stability under data drift and shift events. Historically, most

studies (including some of our own) did not perform such evaluations. It was common to consider

only a single retrospective cohort collected from one clinical site and split it into parts for training and

evaluation. While such papers have made significant technical contributions, few developed models

have been clinically implemented as outlined in the Introduction Part I. Lately, however, increas-

ing focus has been devoted to research on the training and evaluation of clinically robust machine

learning models. The 2018 MSD challenge, for instance, was among the first to encourage the devel-

opment of machine learning models that not only perform in a narrow domain (e.g., a single task on

a single source of data) but also can solve many different tasks without requiring manual tuning from

machine learning experts (Simpson et al. 2019). The work of this thesis emerged from the MSD. It

investigated the development of clinically robust machine learning pipelines and instances of models

for segmenting medical images and time series. Both approaches were feasible and will be discussed

below.

13.2 MPUNet: A robust ML pipeline?

In Part II, the MPUNet, a pipeline that automatically trains a U-Net-like model for (near) arbitrary

3D medical image segmentation tasks using multi-planar data augmentation, was robust across most

of the ten tasks of the MSD challenge as well as whole brain MRI, hippocampal MRI and knee

cartilage MRI tasks. In contrast to most work at the time on automatically configuring pipelines,

the MPUNet used a fixed model topology and hyperparameter set and did not rely on automatic

hyperparameter experiments, AutoML or similar techniques (Y. He et al. 2021; Isensee et al. 2018).

Further, the 2D U-Net, the backbone segmentation model of the MPUNet, although able to solve most

segmentation problems when properly hyperparameter-tuned, does not guarantee sufficient clinical

robustness alone. This can be seen, for instance, in Paper B of Part II on knee MRI segmentation,
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in which the MPUNet compared favourably to a then state-of-the-art 2D U-Net when transferred

without tuning to other clinical cohorts. The 2D U-Net trained without multi-planar augmentation

transferred with lower performance.

These results indicate that the multi-planar augmentation scheme, the main differentiating feature

of the MPUNet over the base U-Net, is the deciding mechanism that increases the clinical robustness

of the MPUNet pipeline. As argued above, the base U-Net model can likely solve most segmentation

tasks if its complexity and optimization are tuned correctly to the task and dataset size to ensure

a proper fit (limited over- and underfitting). Empirically and based on qualitative investigations of

learning curves, multi-planar training seems to reduce overfitting of even high-complexity U-Nets

(e.g., with double the normal free parameters) on small datasets (e.g., 20-30 unique scans). This

is likely because the mechanism drastically expands the availability of proper training data – i.e.,

samples from the actual training data rather than the typically deformed and potentially anatomically

infeasible examples generated by other augmentations – while using a statistically efficient 2D model.

Because the model operates in a lower-dimensional space than the training data from which numerous

distinct examples may be generated, there are probably fewer functions in the hypothesis space that

significantly overfits the more complex multi-view segmentation function.

However, this raises the question of why multi-planar training does not introduce significant

underfitting. After all, the multi-planar target function must be more complex than any single-

view function. We, however, argue that the multi-view function may not be considerably harder to

approximate for three reasons: First, each additional view also introduces additional training data.

If the views are significantly different, making the function harder to learn, the new training data

is also more different, thus presenting a stronger learning signal. Secondly, the difficulty of learning

new views does not scale linearly because of feature reusability. A significant fraction of the network

will likely apply equally well to all views, e.g., convolution filters that extract low-level features

such as edges and textures but also more complex ones such as shapes and some positional features

(e.g., distance from the image centre), which are preserved across rotations. However, this is also

likely why Paper A found the benefit of including additional views to eventually saturate, as each

new view introduces less unique information. Third, some 3D structures may be easier to segment

in particular views. For instance, structures with an easily recognizable shape when seen from a

particular view. This benefit was further encouraged through the training of the fusion model, which

weighs the contribution to the final ensemble prediction of each class from each view differentially,

see Paper A. Finally, even if multi-planar training were to induce more errors when predicting in a

single view, these may be cancelled out if uncorrelated across views due to the test-time ensembling

that multi-view training allows.

In summary, enforcing equivariance to certain rotation transformations through multi-planar
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augmentation seems to provide a beneficial inductive bias for segmenting 3D medical data using 2D

FCNs, making the overall machine learning pipeline both computationally and statistically efficient

and applicable for a wide range of tasks. Ultimately, however, a tradeoff must exist between under

and overfitting. The above arguments are primarily intuitive and based on empirical observations,

and the theoretical basis for why multi-planar training seems to work well in practice remains largely

unresolved. For instance, while the term rotational equivariance was used loosely above, multi-planar

augmentation only explicitly enforces equivariance to a small set of rotations depending on the chosen

views and only for the base segmentation model. The separately trained fusion model oppositely

breaks down the equivariance properties of the combined model (i.e., the base segmentation model

and the fusion model) by applying a view-specific weighing of predictions made in each view for the

final ensemble prediction. In Paper A, six views were empirically found to balance performance and

(test-time) compute resources on the development dataset, and the views were randomly defined.

However, optimal choices for how many views and which to use may depend on the task. It remains

unclear how to efficiently choose views that maximize the accuracy of the ensemble prediction output

by the base segmentation model and the fusion model in combination.

13.3 U-Sleep: A robust ML model?

The largely positive results of using FCNs with multi-planar training for medical images inspired

our work on robust sleep staging in Part III by adapting the U-Net to 1D time series segmentation

problems and later developing the U-Sleep model.

U-Time was adapted to 1D time-series segmentation problems with only minor modifications to

the original U-Net for 2D image problems. Except for the apparent replacement of 2D convolutional

operators with 1D counterparts, the number of filters in each convolutional layer was reduced, and just

single convolution layers replaced the typical double-convolution encoder block to reduce the overall

complexity of the model. The latter also because the stacking of multiple convolutional layers, each

of which uses small kernel sizes such as 3 × 3, is often performed in image segmentation models

primarily to exponentially increase the receptive field of the model with depth without introducing a

squared expansion in the number of model parameters that increasing the size of a single 2D kernel

would. This, however, is unnecessary in the 1D domain because the numbers of weights scale linearly

with kernel size. Instead, the kernel sizes were increased in width, and so-called dilated convolutions

were employed to expand the receptive field of the model. This was considered necessary for a task

like sleep staging, where the input has long-range dependencies that may span several minutes of

high-frequency (e.g., 128 Hz) signals.
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High-frequency staging A so-called segment classifier module was also developed, which allows

bridging the gap between the output of typical FCN models, which classify every position on the grid

of the input data, and segmentation labels spanning more extended periods, which are characteristic

of many time series tasks. The segment classifier averages over the high-frequency intermediate

representation output by the encoder and decoder sub-networks. It then linearly combines the

scores to produce a result for a period of interest. Another approach, which seems similar at first

glance, would be to consider all data points belonging to the single label scored for a period of

interest and train a typical FCN model against such dense or pseudo-high frequency label map.

However, while not tested, we argue that it will introduce training instability and less valid high-

frequency scores because the learning signal will discourage the detection of transient sleep stage

changes or minority stages (i.e., stages that span less of the segment than another majority stage).

In contrast, the segment classifier design does not restrict the model’s ability to freely distribute

class-confidence scores within the period of interest. Instead, it enforces that the average confidence

over a given segment is the signal from which to produce the final score. Consequently, while not

carefully studied here, the choice of aggregation function (i.e., the mean operation in the default U-

Time implementation) may be essential and task-dependant, mainly if one is interested in studying

the high-frequency segmentations that the U-Time architecture allows by changing the width of

the aggregation function window to span a shorter period during prediction. The average function

makes sense in sleep staging because it models the mental and AASM-established scoring guidelines

of assigning the stage that spans the most time to a given segment. However, neither U-Time nor

U-Sleep directly outputs the majority stage score but instead applies one (U-Time) or two (U-Sleep)

linear layers on top of the average pooled scores to allow some flexibility. It remains, however, to be

studied if these choices improved or decreased the overall scoring performance and how they affected

the high-frequency outputs.

FCNs and LSTMs As hypothesised, the inductive biases of FCN models that make them suitable

for image segmentation extended to time series segmentation problems like sleep staging. The feed-

forward-only architectures were compute-efficient (processing a whole night’s PSG data in a single

forward pass at prediction time), easily optimized with limited overfitting, able to learn the long-range

features necessary to solve the task effectively, and maintained high performance when transferred to

new cohorts. In contrast, popular sequence models, such as mixed CNN and LSTM models, displayed

decreased performance when transferred to other patient cohorts without hyperparameter tuning.

The increased stability and easier training of the feed-forward-only FCNs over recurrent architec-

tures was hypothesised and unsurprising given the well-known difficulties of optimizing such models

(Yoshua Bengio, Simard, et al. 1994; Pascanu et al. 2013). More surprisingly, U-Time was more
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performant than mixed CNN and LSTM models on datasets where the recurrent models had been

explicitly tuned to ensure a good fit. This indicates, in contrast to popular belief, e.g., in the au-

tomatic sleep staging community at the time, that explicit modelling of the temporal dynamics of

sleep stages with recurrent units was necessary (or at least very useful) to learn proper sleep stag-

ing functions. Sufficiently deep FCNs can, however, also approximate arbitrarily complex temporal

dynamics, which are explicitly encoded in the weights of their convolution kernels at deeper layers.

Their special encoder-decoder architecture with skip connections allows such features to be computed

at different temporal scales. Finally, FCNs naturally process long-range dependencies. U-Time, for

instance, was numerically estimated to be responsive to input changes as far as 100.000 time-steps

(approximately 13.5 minutes of 128 Hz signal) away from a given output (which could be easily

extended using, e.g., larger or more dilated kernels). Such distant relationships are often challenging

to model with recurrent models.

Cross-cohort & cross-channel training The U-Sleep model extended the U-Time model but

also took inspiration from several other studies. The feasibility of simultaneous cross-cohort training

was shown in our own Paper B on cross-cohort knee segmentation and pioneering studies such as

Biswal, Sun, et al. (2018), which showed that machine learning-based sleep staging is feasible not only

on extensive and heterogeneous cohorts but also that such models may be trained across multiple

(two, precisely) cohorts simultaneously.

In addition, the special training of U-Sleep on randomly varying input EEG and EOG channel

derivations has some resemblance to the multi-planar augmentation of Paper A. Instead of thinking

of the sleep staging task as a mapping from a specific source of EEG activity to sleep stages, U-Sleep

was, illustratively, trained in a multi-view fashion by instead considering the more general task of

mapping a sleeping brain as seen from any EEG electrode derivation to sleep stages. Each EEG input

can be considered an individual view of the physiological processes that inherently are the nature of

the sleep stages we aim to score. Like the MPUNet, this training strategy further induces certain

in- or equivariance properties, invariance under variable EEG and EOG input channels, specifically,

which can be utilized to perform test-time augmentation to generate an average hypnogram of usually

higher quality scored over multiple channel inputs. It should be noted that while multi-planar train-

ing encourages equivariance to view orientations, the cross-channel training of U-Sleep encourages

invariance to channel derivations. In multi-planar training, the loss over the outputs of the model

is minimized when the generated outputs are exact rotations of the ground truth label volume. In

cross-channel training, the loss is minimized when the model produces predictions identical to the

single ground truth hypnogram in all channels.
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Clinical potential Based on Paper D and Manuscript F results, U-Sleep seems suitable for clin-

ical sleep staging. It is robust to patient demographics, disease state and history, PSG recording

equipment, EEG montaging, and data preprocessing. It was also found to perform at least at the

human expert level on healthy and diseased patients from new clinical sites. It outperformed other

automatic sleep staging models even if they were explicitly tuned and, more importantly, trained on

data from those clinics. In Manuscript F, U-Sleep was further shown to produce reasonable sleep

stage predictions for PSG recordings likely to display complex EEG patterns, such as from patients

with RBD and PD. Abstract E showed that U-Sleep could even score sleep in acute stroke patients

with good performance, considering how difficult human experts find this task, at least when group-

ing sleep into coarser Wake, REM and Non-REM stage groups. Manuscript F also found that the

uncertainty of U-Sleep’s outputs correlates with that of a group of five human experts, making these

scores a useful study in clinical practice to direct the attention of human scorers towards difficult and

ambiguous epochs. In summary, U-Sleep can score reliably under a wide range of clinical variability

and likely serve as a useful tool for clinical sleep staging.

Single-channel staging & wearables The unintentional data loading, first discovered by Fior-

illo, Monachino, et al. (2023) and described in the Supplementary Material F.1, introduced atypical

channel derivations in the training of the original U-Sleep v1 model, causing interesting further

robustness towards atypical input data. Specifically, these data induced additional invariance prop-

erties towards atypical EEG and EOG channel derivations. They also allowed using two EEG or two

EOG inputs instead of the expected one EEG and one EOG combination. These results show that

machine learning models like U-Sleep can solve sleep staging with robustness towards input data

variability that would be difficult for human annotators to replicate and that machine learning mod-

els can score sleep based on robustly available features in near arbitrary EEG and EOG derivations.

I.e., they do not require the typical, carefully defined PSG setup to function.

These findings inspired the development of single-channel U-Sleep variants, which can operate

using only EEG or EOG inputs. While the dual-channel U-Sleep model performed slightly better,

particularly on more complex cases, such as PD or RBD patients, the single-channel models were as

accurate as even the best human rater out of five on healthy individuals and apnea patients. This

indicates that U-Sleep may also support out-of-clinic and longitudinal studies through integration

with, e.g., wearable devices. Several researchers are currently examining the use of U-Sleep in this

domain and seeing promising early results, although these have not yet – to our knowledge – been

published.
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Novel sleep representations Manuscript F also showed that U-Sleep might be a useful research

tool as the high-frequency and spatial sleep stage score output revealed interesting patterns and

features. For instance, the outputs of U-Slee facilitated more robust sleep statistics (defined as more

similar across multiple recordings of the same patient on different nights) compared to human experts

(although not consistently; humans scored total REM sleep duration more robustly, see Manuscript

F), and the robustness increased for most stages with higher staging frequencies. The special ability

of U-Sleep to score in different EEG electrodes was found to reveal spatial sleep patterns at high-

scoring frequencies, where scoring in spatially close electrodes on the same hemisphere was more

similar than between distant & cross-hemispheric electrodes. However, it remains to be studied how

and if these patterns provide additional clinical information. Coupled with the findings that U-Sleep’s

high-frequency outputs support the easier separation of patients from controls (sleep-disordered and

acute stroke, Paper D and Abstract E), U-Sleep may be a valuable tool for studying sleep physiology

and biomarkers in novel ways.

However, whether the high-frequency and spatial stages reflect underlying sleep physiology or

indicate model-specific behaviour to different input signals remains uncertain. While Paper D, Ab-

stract E, and Manuscript F provide some evidence in favour of the former, Part III’s Related Work

section discussed a pilot study on sleep stage transition speeds, which did not. This phenomenon,

observed through high-frequency sleep stage scores generated by U-Sleep, seemed significant and

potentially linked to a physiological phenomenon. However, we found no evident variation in these

transition dynamics with any available demographic factors, such as age, BMI or sex, indicating

that these specific dynamics may reflect model-specific uncertainties to different stages rather than

physiology. However, the complex stage transition dynamics observed between some stages (e.g., N2

and N3) are not easily explained as only related to model uncertainty, and it is possible that the pre-

liminary and rudimentary quantification of transition speeds limited our ability to detect correlations

to demographic factors, should they exist.

Deployment U-Sleep was deployed to a free & unlimited (for research) use web server developed

as part of this thesis at https://sleep.ai.ku.dk/. The hope was that it would facilitate global,

large-scale studies of sleep, leveraging that automatic methods like U-Sleep are likely more consistent

scorers than a pool of international human scorers. The service has been extensively used with more

than 45.000 PSG scorings from more than 450 unique users. In particular, the recently developed

API and its Python bindings (https://github.com/perslev/U-Sleep-API-Python-Bindings)

have enabled a recent surge in large-scale studies conducted on multiple thousands of sleep studies.

These include studies on specific patient groups, such as children and narcolepsy or Parkinson’s

patients, and the use of high-frequency staging to detect biomarkers (studies, to our knowledge, have

https://sleep.ai.ku.dk/
https://github.com/perslev/U-Sleep-API-Python-Bindings
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not yet been published).

With the deployment of U-Sleep as a free, high-performance and easy-to-use service, we also

hoped to make expert knowledge on sleep staging available for people with limited access to well-

trained medical doctors. However, the U-Sleep service is used primarily by researchers in Europe,

North America and China, with large areas of the world, such as the majority of Africa and large

areas of South America, seeing low numbers of users (stats based on anonymized analysis of data on

users’ affiliation to a research institution, which they submitted when creating their account). The

usage may be proportional to the total number of PSGs conducted in different regions and shows,

rather unsurprisingly, that while a tool such as U-Sleep may be made freely available, that alone

does not ensure its adaptation if sleep recording facilities and practices are not already in place.

Consequently, it is possible that U-Sleep would be more universally influential if implemented in

easily accessible wearable devices that individuals at home can use.

13.4 Limitations

The studies presented in this thesis have several limitations, including both general and study-specific

limitations:

• All models developed in this thesis were evaluated using only the single F1/Dice score metric

for assessing the overlap between the automatically generated segmentation mask and a ground

truth segmentation map. This metric is widely used in the machine learning community and

is suitable for evaluating segmentations in particular because it ignores the often trivial true

negative predictions (e.g., the trivial segmentation of the majority background in images).

Being the harmonic mean of precision and recall, it further represents a conservative single-

number aggregate that requires both to be high for the F1 score to be high.

However, no single metric can fully capture the segmentation performance of a model, and

the F1 score (or any other summary metric) may not truly reflect the clinical validity of the

segmentation. Because all pixels of a particular class are weighted equally, the F1 score may

be high even if a small but essential sub-region of the mask is poorly segmented. For instance,

in knee cartilage thickness quantification, the F1 score may be high even if the thickness of

the cartilage segmentation volume is not very accurate. In general, the F1 score favours large

volumes, and errors near the boundary of a large segmentation volume may not be well reflected

because correct predictions on the remaining volume outnumber errors on the boundary. The

boundary is, however, of critical importance in many clinical scenarios as it may delineate,

for instance, healthy- and tumour tissues or sleep stage transitions. For this reason, some
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challenges, like the 2018 MSD (Simpson et al. 2019), also evaluated segmentation performance

using an average surface distance metric.

Finally, the F1 can be highly affected by label imbalance. Other metrics exist that account for

label imbalance. For instance, Coheen’s Kappa, which is directly suitable for multi-class prob-

lems (Cohen 1960), or Matthews correlation coefficient (MCC), which can also be formulated

for the multi-classification setting (Chicco et al. 2020; Gorodkin 2004). However, all metrics

provide different views on the segmentation quality and make different assumptions.

In summary, one metric likely cannot stand alone when evaluating medical segmentations.

The evaluations of this thesis could have been improved by evaluating multiple metrics and,

more importantly, by studying the actual influence of the segmentation performance on clinical

decisions based on them.

• More generally, this thesis did not fully evaluate the clinical relevance of the developed image-

and sleep-stage segmentation methods, as the effects of using these systems in daily clinical

routine were not studied. For instance, is the MPUNet feasible to apply for non-technical

experts in the clinical setting, and how often does it require re-training to new data? How

much does using U-Sleep decrease the time spent on manual sleep staging in practice? Several

such questions would be interesting to investigate in future work; see also below.

• Models were generally evaluated concerning their average or median performance across sub-

jects (with some exceptions, for instance, in Paper B, where the minimum scores are also

assessed). However, in clinical practice, the worst-case performance may be equally important,

at least if the system is fully automated or the operator cannot easily spot such outlier predic-

tions. The possible adverse effect on the individual patient for which the system malfunctions

should be considered before we can claim a system is fully clinically robust.

• As outlined in the Introduction part I, this thesis did not aim to address various other essential

challenges for applying machine learning in healthcare, including ethical and legal barriers to

implementation (who has the responsibility when the ML model fails?) and the lack of explain-

ability of black-box methods (how did the model make its prediction for a given patient?).

• All evaluations were performed on retrospective data. It remains to be studied how, for instance,

U-Sleep performs on prospective data that may be subject to gradual data drift and shift events

(e.g., gradual cohort demographic changes and recording equipment upgrades).

• For the MPUNet pipeline specifically, it is an inherent limitation that the model instances that

the channels produce are not themselves clinically robust and that the pipeline must be applied
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to new, annotated data in each application domain. However, because of the shown ability of

the MPUNet to learn variable tasks without hyperparameter-tuning, the pipeline can likely

be used to develop robust model instances by training on large and heterogenous, cross-cohort

datasets.

• For the U-Sleep model specifically, the study’s limitation is that the model only scores sleep

stages and not other sleep-related events. While U-Sleep solves the task of sleep staging with

high accuracy and clinical robustness, it does not automate any of the remaining sleep-scoring

tasks that humans perform when manually annotating PSG data in the clinical setting, such

as the scoring of respiratory events, leg movements or cardiac events, which is necessary to

diagnose certain disorders. Consequently, while U-Sleep automates a significant part of the

PSG scoring process, manual inspection is still required whenever other non-sleep stage events

are to be scored.

See the Future Perspectives chapter 15, which outlines possible research directions which may

rectify some of these limitations.
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Conclusions

The overarching goal of this thesis was to develop clinically robust automatic segmentation models

for medical images and time series. This problem was addressed in two different ways:

1. Part II studied clinically robust machine learning pipelines for medical image segmentation, i.e.,

a machine learning model, its optimisation procedure, and all hyperparameters controlling the

two. To this end, we developed the MPUNet, a machine learning pipeline that trains an FCN

under multi-planar data augmentation. The MPUNet was found clinically robust according to

definition one of section 2.1 because it could be applied across many (although not all) tasks,

clinical cohorts and scanner configurations with high performance without requiring extensive

or manual hyperparameter tuning. This ability is due to the multi-planar augmentation scheme

that efficiently uses the available 3D image information by re-sampling the proper training data

distribution while training a statistically and computationally efficient 2D segmentation model.

2. Part III investigated clinically robust model instances for sleep staging. Our first finding

was that FCN architectures are effective candidates for time series segmentation problems,

often outperforming and exhibiting greater hyperparameter stability than mixed convolutional-

recurrent networks. We then introduced the U-Sleep model, which was trained simultaneously

on diverse sleep data from multiple cohorts and clinical sites. The model demonstrated clinical

robustness per definition two in section 2.1, as it could be used without re-training on highly

variable sleep data and achieved performance comparable to human expert annotators.

Concluding on the findings of Part II and III, the thesis made the following general observations

on how to archive clinical robustness in deep learning segmentation models:

1. The general applicability of fully convolutional, feed-forward-only neural networks was recon-

firmed. The U-Net base architecture performed well across diverse medical image segmentation

tasks and was transferred to the new domain of time series segmentation with only minor mod-

ifications.

2. We found it beneficial to design data- augmentation and re-sampling techniques which induce

model in- or equivariance properties to transformations of the input data that increase the clin-

ical robustness of the model, even if the augmentations make the target function significantly
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more complex, as long as the augmentations also considerably expand the set of actual training

examples (i.e., samples from the proper training data distribution rather than deformed, aug-

mented samples). The learned in- or equivariance properties can be used to perform test-time

augmentation to output a more accurate ensemble prediction.

In Part II, multi-planar augmentation expanded the complexity of the target function, which

should now map image volumes under multiple rotation transformations to a segmentation

map, but also drastically expanded the available training data through re-sampling of the

proper training data. The induced equivariance to (specific) rotations was further used to

perform a single-model ensemble prediction on new data, eliminating segmentation errors that

are decorrelated across views.

In Part III, training U-Sleep on randomly sampled input EEG and EOG channel derivations

expanded the complexity of the target function, which should now map arbitrary input deriva-

tions to sleep stages, but also drastically expanded the available training data. The induced

invariance to input derivations was further exploited by averaging multiple predictions on new

data.

The MPUNet and U-Sleep were both trained using data augmentations which do not produce

distorted examples but re-samples the available training data and use test-time augmentation to

produce stronger segmentations on new data utilizing the induced in- or equivariance properties.

3. We found clinical robustness is achievable by training machine learning models on extensive and

highly variable training datasets from several sources, even if each dataset varies concerning,

for instance, recording hardware, patient population and data preprocessing pipeline.

This thesis also made the following software services and open-source software contributions:

1. An open-source (MIT licence) implementation of the MPUNet pipeline. It includes a command-

line interface that allows model initialization, configuration, training and evaluation without

code modifications. The software is available at https://github.com/perslev/MultiPlanar

UNet

2. An open-source (MIT licence) implementation of the U-Time and U-Sleep models. It includes a

command-line interface that allows model initialization, configuration, training and evaluation

without code modifications. The software is available at https://github.com/perslev/utime.

3. A web service that deploys the U-Sleep pre-trained models for unlimited and free usage for any

research application. The University of Copenhagen hosts the service at https://sleep.ai

.ku.dk/. The service has a visual front-end as well as API for programmatic access. A set of

https://github.com/perslev/MultiPlanarUNet
https://github.com/perslev/MultiPlanarUNet
https://github.com/perslev/utime
https://sleep.ai.ku.dk/
https://sleep.ai.ku.dk/
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free Python bindings to the API were also made available at https://github.com/perslev

/U-Sleep-API-Python-Bindings (MIT licence). As of April 2023, the service has been used

to score more than 45,000 PSG files by more than 450 unique users, with an average of 250

predictions per day in 2023.

https://github.com/perslev/U-Sleep-API-Python-Bindings
https://github.com/perslev/U-Sleep-API-Python-Bindings
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Future perspectives

Medical image segmentation Several studies could be conducted to improve the MPUNet and

our understanding of multi-planar augmentation:

• The MPUNet was developed alongside the widely used nnU-Net by Isensee et al. (2018) for the

2018 MSD MICCAI challenge (Simpson et al. 2019). Although the nnU-Net outperformed the

MPUNet in the competition, the methodological advancements contributing to each system’s

clinical robustness are not mutually exclusive and could be combined. Multi-planar augmenta-

tion operates at the data level, while the automatic fingerprinting and model selection strategy

of the nnU-Net function at the model architecture level. It would be worthwhile to explore

the integration of multi-planar augmentation into the 2D candidate model of the nnU-Net. It

would be interesting to study if this change increases the number of tasks for which the auto-

matic model selection pipeline chooses the 2D (+ multi-planar augmentation) model candidate

over the 3D and cascaded model candidates.

• As discussed in the Discussion section 13 above, it remains unclear how to efficiently estimate

suitable views and the number of views for a given task. Currently, the MPUNet uses six

randomly chosen views (with a restriction on minimum pairwise angles). A theoretical study

of quantifying which views contain the most relevant information for a given task would likely

improve the performance of the MPUNet. An empirical study of whether different segmentation

tasks benefit from additional or fewer views and whether particular views, e.g., the canonical

orthogonal image axes, should always be included in the set of views would also add valuable

practical information.

• The base segmentation and fusion models are currently trained in two separate steps. This is

because a whole segmentation volume must be predicted along each view and mapped back to

the scanner coordinate space to establish point correspondence between the volumes for the

fusion model to be trained. While a non-trivial task, if the combined model (the base model

and the fusion model) could be cast into a single differentiable model and efficiently trained

end-to-end, it may be possible to integrate the choice of view orientations into the learning

problem itself so that suitable views that maximise the performance of the combined model are

automatically learned. This would necessitate the design of a new type of fusion model that

does not require point correspondence between the predictions within a single batch (likely
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non-trivial) and a differentiable image interpolation module through which the loss can be

backpropagated to update the set of current view vectors.

Sleep staging Several studies could be conducted to evaluate further and increase our understand-

ing of the U-Sleep model for sleep staging and, in particular high-frequency and spatial sleep stages,

and sleep medicine more broadly, including:

• A logical research direction is to extend U-Sleep to score other sleep-related events in addition

to sleep stages. Several studies have addressed the automatic scoring of various sleep-related

events in isolation; see, e.g., Nikkonen et al. 2021, Ferri, Zucconi, et al. 2005, Brink-Kjaer

et al. 2020 and Acır et al. 2004 for automatic scoring of respiratory events, EEG sleep spindles,

arousal and leg movements, respectively. Some studies have also developed methods that score

multiple events simultaneously. For instance, Biswal, Sun, et al. 2018 implemented a mixed

convolutional and recurrent neural network for scoring sleep stages, respiratory events, and limb

movements. Several commercial systems can also score both sleep stages and other sleep-related

events.

A naive implementation to extend U-Sleep to score both sleep stages and other events would

be to create an additional output from the model, which segments the PSG into short binary

segments indicating the presence or absence of each event of interest. However, because many

such events are sparse, non-contiguous and of variable length, the default FCN architecture

may not be well suited for these tasks, as the dense binary segmentation of an arbitrarily

defined grid may introduce heavy label imbalance, where the negative (no event) class is to

be almost-always predicted. A better approach would be to use a model which can predict

(any number of) event onset time points and associated durations. Transformer-based models

may be suitable for such tasks and could be trained independently. However, due to the vast

quantity of PSG data that has both sleep stages and other events annotated, better performance

is likely achievable by training a single model, which can then leverage the additional learning

signal from the expanded set of labels to learn features that support both predictive tasks.

To benefit from the strengths of FCN architectures (for dense sleep stage segmentation) and

Transformers (for sporadic event detection), the Transformer sub-network could be conditioned

on the feature maps extracted by the encoder network of the FCN model. In reverse, the

Transformer sub-network could affect the decoding of features into sleep stages in the FCN

up-sampling sub-network, e.g., through an attention mechanism, which might also benefit the

sleep scoring accuracy, as the occurrence of some events is highly indicative of a particular sleep

stage (e.g., sleep spindles in stage N2).
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• As described in Manuscript F, U-Sleep can operate on single input EEG channels (or EOG, with

slightly lower average performance). An important future research route would be to evaluate

and extend the U-Sleep model to various variable devices such as headbands or similar on which

only a limited set of electrodes are available.

• Further work is needed to understand the relevance and potential of U-Sleep’s high-frequency

sleep stages. As shown in Paper D, Abstract E, Manuscript F, and the Related work section

of Part III, there is likely clinically and physiologically relevant information in these scores,

but the link between these scores and underlying physiology remains unclear. Future research

could further study high-frequency sleeping patterns in health and disease by attempting to

classify not just a single sleep disorder from a group of controls but in a more complex, realistic

scenario in which several different sleeping disorders need individual classification. In addition,

further research is needed to understand the implications of architectural modifications in the

so-called segment classifier, e.g., the effect on high-frequency stages if aggregation functions

other than the mean are used or how operations (such as learned linear combinations) applied

on top of the aggregation output affects the final, high-frequency scores.

• Paper D and Manuscript F showed early hints at an interesting future research direction on

studying spatial sleeping patterns using U-Sleep’s ability to score sleep in EEG electrodes of

arbitrary spatial position. In particular, it would be interesting to study whether distinct

spatial sleeping patterns are robustly observable across individuals and whether they vary in

health and disease as a function of staging frequency. These patterns could also be correlated

to spatial observations of brain activity measured using fMRI in simultaneous EEG and fMRI

studies (Mulert 2022).

• A modified version of U-Sleep could be developed to automate the task of sleep staging in other

species, e.g., rodents.

15.1 Open data sharing initiatives

While the development and extensive clinical robustness of the U-Sleep model were made possible in

part due to methodological advances, such as using FCNs for time series and training on randomly

selected input channel derivations, what critically enabled this work was recent large-scale and open

data sharing initiatives in the sleep data domain, including not least the National Sleep Research

Resource (https://sleepdata.org/) and Physionet (https://physionet.org/) (Goldberger

et al. 2000; G.-Q. Zhang et al. 2018). These resources collect not only vast quantities of labelled

data, e.g., for training sleep stage classifiers, but also diverse data from many individual clinical

https://sleepdata.org/
https://physionet.org/
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sites and patient cohorts while standardizing the technical specifications of the data to enable easier

development of cross-cohort ML systems like U-Sleep. U-Sleep has shown the significant potential of

such databases. We argue that clinically robust ML segmentation models may be created in a wide

range of medical sub-fields and for a wide range of tasks if the already available annotated image

and time series data are made available (in anonymized form and following all required ethical and

legal approval processes) in centralized registers like the NSRR or Physionet. This potential was

also shown in Paper 6 for segmenting knee cartilages in MRI, although in a small-scale experiment,

where the MPUNet could be trained in a cross-cohort setup while retaining full performance on each

cohort. Collecting significant numbers of variable MRIs from different clinical sites, scanners, MRI

sequences, and patient cohorts may enable the development of robust cartilage segmentation models.

15.2 U-Sleep: Clinical certification and implementation

The U-Sleep model seems viable for clinical sleep staging because it is as accurate as human experts

on PSG data from healthy and sleep-disordered individuals while coping with significant variability

in patient demographics, recording equipment, EEG montages and preprocessing. U-Sleep has been

implemented locally for research purposes in the Danish Center for Sleep Medicine at Rigshospitalet

and received positive, qualitative feedback from expert scorers testing the system on a limited num-

ber of cases. There is an interest in verifying U-Sleep clinically and launching pilot studies of its

applicability in daily clinical workflows and wearable devices.

However, several items must be addressed before U-Sleep can be made available to clinical end-

users. First, U-Sleep needs clinical certification. For clinical usage within the European Economic

Area (EEA), a Conformité Européenne (CE) mark must be issued for U-Sleep to be registered as a

(likely) Class IIa medical device. The certification requires technical documentation of the safety and

performance of U-Sleep as described in Annex I of the Regulation (EU) 2017/745 on medical devices

(https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32017R0745), which,

among others, in chapter 1.1 states: "They shall be safe and effective and shall not compromise the

clinical condition or the safety of patients, or the safety and health of users or, where applicable, other

persons, provided that any risks which may be associated with their use constitute acceptable risks

when weighed against the benefits to the patient and are compatible with a high level of protection of

health and safety, taking into account the generally acknowledged state of the art". The safety- and

performance of U-Sleep must thus be evaluated to ensure the safety of the patients and users and

weighed against the benefit that the device provides to clinical end-users and patients. Such risk

analysis is submitted to a notified body and developed based on the results of a clinical investigation

of the device. Concretely, U-Sleep must be studied in a prospective clinical study in which several

https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32017R0745
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experiments may be relevant to ensure the safety and performance of the device:

1. The performance of U-Sleep should be assessed in multiple distinct clinical sites and on all

relevant patient groups and demographics for which the system is ultimately intended. Such

a study would be similar to those of Paper D and Manuscript F in Part III. Still, it must be

conducted on new & prospective data using the deployment software implementation of the

model in the relevant hospital environment.

2. The influence on the diagnostic process when using U-Sleep instead of manual scoring should be

investigated to ensure that patients are not wrongly diagnosed when U-Sleep is implemented,

e.g., in cases where U-Sleep fails to produce an accurate scoring. For instance, it may be

relevant to study if the professional user’s judgement is (negatively) affected by the availability

of scores produced by U-Sleep.

3. Conversely, the time saved on manual sleep staging and potential benefits to diagnostic precision

and consistency when using U-Sleep should be investigated to gauge the positive effects relative

to any potentially discovered adverse effects.

U-Sleep may be clinically implemented if the benefit-risk ratio favours the patient and clinical

end-users.

In late April 2023, BETA.HEALTH (https://betahealth.dk/) issued a grant of 500,000 DKK

to support the clinical evaluation and implementation of U-Sleep. BETA.HEALTH is a joint Danish

clinical innovation platform run by Rigshospitalet, Copenhagen, and Aarhus University Hospital,

Aarhus, and sponsored by the Novo Nordisk Foundation (https://novonordiskfonden.dk/en/),

The Central Denmark Region, and The Capital Region of Denmark. We greatly appreciate the

support of BETA.HEALTH.

https://betahealth.dk/
https://novonordiskfonden.dk/en/
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Figure A.1: Visual comparison of the typical performance improvements obtained on a random
subject of the MICCAI dataset when going from a single U-Net model fit to a single plane (single-
model-single-view, SMSV, second column) to an ensemble of such models (multi-model-multi-view,
MMMV, third column) to the MPUnet (single-model-multi-view, SMMV, fourth column). The first
row shows the full segmentation on a single 2D slice. The second row presents a zoom of the
highlighted region shown in each image of row 1. The third row shows a binary error-map for the
highlighted region with black pixels representing errors compared to the ground truth and white
pixels representing correctly classified pixels.
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Table A.1: Fixed hyperparameter set for the optimization of the MPUnet core model on any seg-
mentation task.

Parameter Value Notes

Optimizer Adam The global learning rate is reduced by 10
% for every 2 consecutive epochs without
validation performance improvements.

Learning rate - 5 · 10−5

β1 - 0.9
β2 - 0.999
ϵ - 1 · 10−8

Loss function Cross entropy
Regularization - None

Class balancing - None

Model Topology 2D U-Net The input dimensions are inferred based
on the sizes of the images of the training
data cohort. The range of 128-512 is
appropriate for typical compute systems,
but may be expanded to work on larger
images. Generalization properties outside
of this suggested range have not been
tested. Note that small images volumes
may be oversampled.

Input dim - 128-512
Depth - 4

Up-sampling - Nearest neighbour
Activations - ReLU

Conv. kernel size - 3× 3
Max-pool kernel size - 2× 2

Padding - True (’same’)
Batch normalization - True

Parameters - 6.2 · 107

Image sampling Multi-Planar Plane unit vectors are sampled uniformly
from the 3-sphere with at least 60 deg
angle between them.

Image interp - Tri-linear
Label interp - Nearest-neighbour

Num. planes - 6

Non-linear aug. RED* Strength and smoothness sampled
on-the-fly to produce variable
deformations. *Random Elastic
Deformations.

Strength, α - uniform(100, 500)
Elasticity, σ - uniform(20, 30)
Apply prob. - 1/3
Loss weight - 1/3

Pre-processing Robust scaling Image- and channel-wise scaling to
(non-background) intensity distribution
of median 0 and IQR 1.

Post-processing None

Batch size 8-16 16 by default, reduced by 2 until batches
fit in GPU memory. A fraction of 1 minus
the mean validation recall of a batch
must contain non-background images
(≥ 1 pixel of class ̸= 0).

Foreground fraction - 1 - recall

Training epochs ∞ Training continues until 15 consecutive
epochs of without validation performance
improvements.

Train images/epoch - 2500
Val. images/epoch - 3500

Early stopping criteria Validation F1 Mean per-class F1 scores (excluding
background) computed over all images of
a validation epoch.

Model selection criteria Validation F1
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Table A.2: F1 improvement on the MICCAI and MSD Task 4 datasets for a MPUnet of 2-9 planes
relative to the mean performance of 9 single-plane models each fit to 1 of the 9 planes of the 9-plane
MPUnet model. While the absolute performance benefit of using higher numbers of planes vary
between the two tasks, the gains are monotonically increasing with views across both. Note that
these results are only guiding as the experiments were conducted just once for each MPUnet.

Num. planes, i = 9 8 7 6 5 4 3 2

MICCAI 0.041 0.037 0.037 0.035 0.029 0.024 0.015 0.012
MSD T4 0.017 0.017 0.016 0.015 0.015 0.014 0.013 0.012

Table A.3: Mean F1 performance on the MICCAI dataset for MPUnets of i ∈ {3, 6, 9} planes
compared to ensembles of individual single-plane model each trained on a unique plane. Each single-
plane model is optimized under the same set of hyperparameter as the MPUnet. Note that the
single-planar ensembles have i times the parameters of their MPUnet counterparts divided evenly
across its i sub-models.

Num. planes, i = 9 6 3

Single-Planar Ensemble 0.717± 0.019 0.714± 0.021 0.710± 0.024
Multi-Planar U-Net 0.743± 0.028 0.737± 0.027 0.717± 0.030

Table A.4: Detailed report of the MPUnet mean and standard deviation F1 (dice) performance on
individual target classes across the 10 tasks of the Medical Segmentation Decathlon.

Dataset Description Class F1 Score

Task 1 Brain Tumours Edema 0.70± 0.20
Non-enhancing tumor 0.43± 0.31
Enhancing tumour 0.67± 0.22

Task 2 Cardiac Left atrium 0.89± 0.09
Task 3 Liver & Tumour Liver 0.94± 0.03

Cancer 0.57± 0.32
Task 4 Hippocampus ROI. Anterior 0.90± 0.03

Posterior 0.88± 0.04
Task 5 Prostate Peripheral zone 0.69± 0.13

Transition zone 0.86± 0.07
Task 6 Lung Tumours Cancer 0.59± 0.23
Task 7 Pancreas & Tumour Pancreas 0.71± 0.14

Cancer 0.25± 0.27
Task 8 Hepatic Ves. & Tumour Vessel 0.59

Tumour 0.38
Task 9 Spleen Spleen 0.95
Task 10 Colon Cancer Cancer primaries 0.28
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Figure A.2: Visualization of the benefit of the MPUNet test-time augmentation approach. A 2D
slice from an input image is shown in the upper left panel with a highlighted region of interest to
the right giving the ground truth (binary) label map for the left atrium of an image in the Medical
Segmentation Decathlon Task 4 dataset. A single MPUnet predicts on the entire image volume
along 6 planes and maps the predictions to the input image space, producing a set of 6 segmentation
volumes. For each of those, the corresponding slice to the input image is shown in the lower left
panel. Darker red colors indicate higher confidence of the model in the foreground class at the given
pixel as seen in a given view. Note that while each confidence map matches the ground truth to
a large extend, the model has both false positive and false negative confidence in certain areas of
individual views. After passing the 6 segmentation maps through the fusion model (lower right),
a much cleaner output is produced, which after thresholding (upper right) coresponds well to the
ground truth.
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Table A.5: Comparison of the Multi-Planar UNet and a 3D UNet of identical topology (all 2D
operations replaced by 3D operations) on the three non-challenge benchmark datasets MICCAI,
HaRP and OAI as well as the Medical Segmentation Decathlon (MSD) Task 4 dataset (hippocampus
in region-of-interest). The two models were trained under identical optimization parameters. The
shown scores are mean per-class F1 scores pooled across three separate training and evaluation
sessions. The MSD Task 4 dataset experiments were conducted on random splits of the challenge
training data, as we do not have access to the test set. The 3D UNet was trained on isotropic ROIs of
64-cube voxels with random rotations and 3D random elastic deformations applied at batch-sampling
time. This was done to emulate the benefit of the MPUNet’s significant data augmentation. The
sampled voxel-resolution was identical to that chosen for the MPUNet. The 3D model has a total
of 90 million parameters against the 62 of the MPUnet. The MSD Task 4 dataset consists of small
cut-out regions of interest spanning narrowly around the hippocampus to segment, and was include
here to study the performance of the 3D model when the entire input image fits within the 64-cube
input patch. Note: The OAI dataset used for those experiments was a smaller subset of the full
dataset for which results are displayed in Table 5.1 (no follow-up scans included, specifically).

MICCAI HaRP OAI MSD T4

3D U-Net w. rotations 0.74± 0.04 0.84± 0.05 0.81± 0.07 0.87± 0.04
Multi-Planar U-Net 0.74± 0.03 0.85± 0.03 0.84± 0.07 0.88± 0.04
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Table A.6: MPUnet base model topology (U-Net type) for images sampled with pixel dim q = 256.
Note: Convolution strides of 1× 1 where used in all layers.

Layer name Output dim Kernel dim Filters Activation Pad
Input 256× 256× C - - - -

conv_1_1 256× 256× 90 3× 3 90 ReLU same
conv_1_2 256× 256× 90 3× 3 90 ReLU same

bn_1 256× 256× 90 - - - -
pool_1 128× 128× 90 2× 2 - - valid

conv_2_1 128× 128× 181 3× 3 181 ReLU same
conv_2_2 128× 128× 181 3× 3 181 ReLU same

bn_2 128× 128× 181 - - - -
pool_2 64× 64× 181 2× 2 - - valid

conv_3_1 64× 64× 362 3× 3 362 ReLU same
conv_3_2 64× 64× 362 3× 3 362 ReLU same

bn_3 64× 64× 362 - - - -
pool_3 32× 32× 362 2× 2 - - valid

conv_4_1 32× 32× 724 3× 3 724 ReLU same
conv_4_2 32× 32× 724 3× 3 724 ReLU same

bn_4 32× 32× 724 - - - -
pool_4 16× 16× 724 2× 2 - - valid

conv_5_1 16× 16× 1448 3× 3 1448 ReLU same
conv_5_2 16× 16× 1448 3× 3 1448 ReLU same

up_1 32× 32× 1448 2× 2 - - -
conv_6_0 32× 32× 724 2× 2 724 ReLU same

bn_6 32× 32× 724 - - - -
merge(bn4, bn6) 32× 32× 1448 - - - -

conv_6_1 32× 32× 724 3× 3 724 ReLU same
conv_6_2 32× 32× 724 3× 3 724 ReLU same

bn_7 32× 32× 724 - - - -
up_2 64× 64× 724 2× 2 - - -

conv_7_0 64× 64× 362 2× 2 362 ReLU same
bn_8 64× 64× 362 - - - -

merge(bn3, bn8) 64× 64× 724 - - - -
conv_7_1 64× 64× 362 3× 3 362 ReLU same
conv_7_2 64× 64× 362 3× 3 362 ReLU same

bn_9 64× 64× 362 - - - -
up_3 128× 128× 362 2× 2 - - -

conv_8_0 128× 128× 181 2× 2 181 ReLU same
bn_10 128× 128× 181 - - - -

merge(bn2, bn10) 128× 128× 362 - - - -
conv_8_1 128× 128× 181 3× 3 181 ReLU same
conv_8_2 128× 128× 181 3× 3 181 ReLU same

bn_11 128× 128× 181 - - - -
up_4 256× 256× 181 2× 2 - - -

conv_9_0 256× 256× 90 2× 2 90 ReLU same
bn_12 256× 256× 90 - - - -

merge(bn1, bn12) 256× 256× 180 - - - -
conv_9_1 256× 256× 90 3× 3 90 ReLU same
conv_9_2 256× 256× 90 3× 3 90 ReLU same

bn_13 256× 256× 90 - - - -
output 256× 256×K 1× 1 K softmax -
Trainable parameters: 62, 062, 342 (for K = 135, C = 1)
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Figure B.1: Visualization of the effect of random elastic deformations. (a) Input image. (b) Aug-
mented image.
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Figure B.2: Box-plots showing the distribution of dice scores for the MPUnet, KIQ and the Panfilov
2D U-Net on the PROOF dataset grouped according to the KL-grade score of the individual MRIs.
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Figure B.3: Box-plots showing the distribution of dice scores for the MPUnet, KIQ and the Panfilov
2D U-Net on the OAI dataset grouped according to the KL-grade score of the individual MRIs.
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Table C.1: Brief characterization of typical features of the 5 sleep stages as defined by the AASM
manual (Iber et al. 2007).

Name Encoding Description

Wake W Spans wakefulness to drowsiness. Consists of at least 50%
alpha waves (8-13 Hz EEG signals). Rapid and reading
eye movements. Eye blinks may occur.

Non-REM 1 N1 Short, light sleep stage comprising about 5%-10% of a
night’s sleep. Dominated by theta waves (4-7 Hz EEG
signals). Slow eye movements in W → N1 transition.
Some EMG activity, but lower than wake.

Non-REM 2 N2 Comprises 40%-50% of a normal night’s sleep. EEG
dispalys theta-waves like N1, but intercepted by so-called
K-complexes and/or sleep spindles (short bursts of
13-16Hz EEG signal).

Non-REM 3 N3 Comprises about 20%-25% of a typical night’s sleep.
High amplitude, slow 0.3-3 Hz EEG signals. Low EMG
activity.

REM R Rapid-eye-movements may occur. Displays both theta
waves and alpha (like wake), but typically 1-2 Hz slower.
EMG significantly reduced. Dreaming may occur this
stage, which comprises 20%-25% of the night’s sleep.
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Figure C.1: A segment of 30 seconds of a typical polysomnography (PSG) study showing multiple
EOG, EEG, EMG and ECG channels. Human experts evaluate segments such as this and assign
it to one of the sleep stages in {W, N1, N2, N3, R}. In most experiments of this study, U-Time
considers only a single EEG channel (for instance C3, as seen above).
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Table C.2: U-Time model topology. Layer dimensions below are valid for i = 3000, C = 1, T = 35,
K = 5. BN = batch normalization. All convolution kernels in layer 1 to 16 (the encoder) are dilated
to with 9.

ID Layer Type Output dim Kernel Filters Activation Pad

1 Input 35× 3000× 1 - - - -
2 Reshape 105000× 1 - - - -
3 Convolution → BN 105000× 16 5 16 ReLU same
4 Convolution → BN 105000× 16 5 16 ReLU same
5 Max Pool 10500× 16 10 - - valid
6 Convolution → BN 10500× 32 5 32 ReLU same
7 Convolution → BN 10500× 32 5 32 ReLU same
8 Max Pool 1312× 32 8 - - valid
9 Convolution → BN 1312× 64 5 64 ReLU same

10 Convolution → BN 1312× 64 5 64 ReLU same
11 Max Pool 218× 64 6 - - valid
12 Convolution → BN 218× 128 5 128 ReLU same
13 Convolution → BN 218× 128 5 128 ReLU same
14 Max Pool 54× 128 4 - - valid
15 Convolution → BN 54× 256 5 256 ReLU same
16 Convolution → BN 54× 256 5 256 ReLU same
17 Up-sample 216× 256 4 - - -
18 Convolution → BN 216× 128 4 128 ReLU same
19 Crop & Concat(13, 18) 216× 256 - - - -
20 Convolution → BN 216× 128 5 128 ReLU same
21 Convolution → BN 216× 128 5 128 ReLU same
22 Up-sample 1296× 128 6 - - -
23 Convolution → BN 1296× 64 6 64 ReLU same
24 Crop & Concat(10, 23) 1296× 128 - - - -
25 Convolution → BN 1296× 64 5 64 ReLU same
26 Convolution → BN 1296× 64 5 64 ReLU same
27 Up-sample 10368× 64 8 - - -
28 Convolution → BN 10368× 32 8 32 ReLU same
29 Crop & Concat(7, 28) 10368× 64 - - - -
30 Convolution → BN 10368× 32 5 32 ReLU same
31 Convolution → BN 10368× 32 5 32 ReLU same
32 Up-sample 103680× 32 10 - - -
33 Convolution → BN 103680× 16 10 16 ReLU same
34 Crop & Concat(4, 33) 103680× 32 - - - -
36 Convolution → BN 103680× 16 5 16 ReLU same
35 Convolution → BN 103680× 16 5 16 ReLU same
36 Convolution 103680× 5 1 5 TanH same
37 Zero padding 105000× 5 - - - -
38 Reshape 35× 3000× 5 - - - -
38 Average Pooling 35× 5 - - - valid
39 Convolution 35× 5 1 5 Softmax same

Trainable parameters: 1, 187, 589
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Table C.3: Hyperparameters used for all datasets.

Parameter Value Notes

Optimizer Adam We employ a fixed learning rate across all
datasets. See Kingma et al. (2015).Learning rate - 5 · 10−6

β1 - 0.9
β2 - 0.999
ϵ - 1 · 10−8

Loss function Dice loss See Crum et al. (2006) and Sudre et al.
(2017).Regularization - None

Class balancing - Uniform (None)

Base Topology 1D U-Net The input dimensionality is the number
of data points in a single PSG segment
(one segment is 30 seconds in typical
sleep staging, giving input dimensionality
3000 for sample rate S = 100). T is the
number of contiguous segments the model
operates on at once. T may be
dynamically adjusted. Cropping and
zero-padding is needed to decode to
dimensions equal to the input, see Ioffe
et al. (2015), Odena et al. (2016),
Ronneberger et al. (2015), and Yu et al.
(2016).

.
Input dim - 3000

Window size (T ) - 35
Depth - 4

Up-sampling - Nearest neighbour
Activations - ReLU

Conv. kernel size - 5
Conv. kernel dilation size - 9

Max-pool kernel size - {10, 8, 6, 4}
Padding - True (’same’)

Batch normalization - True
Parameters - ≈ 1.2 · 106

Pre-processing Robust scaling Record- and channel-wise transformation
to distribution of median 0 and IQR 1.
Re-sampling uses polyphase filtering
(implementation:
scipy.signal.resample_poly, see
Virtanen et al. 2020).

Post-processing None
Re-sampling (S) 100 Hz

Batch size (B) 12 For each member of a batch, a class from
the label set {W, N1, N2, N3, R} is
determined by uniform sampling. A
random PSG record that contains the
given class is sampled, from which the
input window is sampled randomly so
that the selected class is present
somewhere in the window.

Class sampling prob. - Uniform

Training epochs ∞ Training continues until 150 consecutive
epochs without validation performance
improvements. L is the number of 30
second segments in the dataset.

Steps per epoch ⌈L/T/B⌉

Early stopping criteria Validation F1 Mean per-class F1 scores (excluding
background) computed over all images of
a validation epoch.

Model selection criteria Validation F1
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Table C.4: U-Time per-record results. Values shown are F1/dice scores computed across all PSG
records in each dataset. Each cell displays the mean F1 ± 1 standard deviation, with the lowest and
highest observed F1 score across the records given in the line below indicated by ↓ and ↑ respectively.

Dataset W N1 N2 N3 REM

S-EDF-39 0.87± 0.13 0.49± 0.16 0.85± 0.11 0.81± 0.17 0.83± 0.16
↓ 0.34 ↑ 0.99 ↓ 0.05 ↑ 0.81 ↓ 0.25 ↑ 0.94 ↓ 0.12 ↑ 0.96 ↓ 0.04 ↑ 0.97

S-EDF-153 0.89± 0.08 0.51± 0.13 0.83± 0.09 0.57± 0.30 0.79± 0.16
↓ 0.55 ↑ 0.99 ↓ 0.04 ↑ 0.76 ↓ 0.40 ↑ 0.96 ↓ 0.00 ↑ 1.00 ↓ 0.00 ↑ 0.98

Physio-18 0.78± 0.16 0.57± 0.14 0.81± 0.12 0.69± 0.27 0.78± 0.23
↓ 0.00 ↑ 0.99 ↓ 0.00 ↑ 0.87 ↓ 0.00 ↑ 0.98 ↓ 0.00 ↑ 1.00 ↓ 0.00 ↑ 1.00

DCSM 0.97± 0.04 0.47± 0.13 0.83± 0.11 0.76± 0.24 0.80± 0.20
↓ 0.67 ↑ 1.00 ↓ 0.00 ↑ 0.80 ↓ 0.29 ↑ 0.96 ↓ 0.00 ↑ 0.97 ↓ 0.00 ↑ 0.98

ISRUC 0.84± 0.11 0.53± 0.12 0.77± 0.12 0.86± 0.10 0.73± 0.22
↓ 0.42 ↑ 0.97 ↓ 0.11 ↑ 0.73 ↓ 0.07 ↑ 0.92 ↓ 0.42 ↑ 0.99 ↓ 0.00 ↑ 0.99

CAP 0.70± 0.22 0.28± 0.16 0.74± 0.14 0.79± 0.15 0.73± 0.23
↓ 0.00 ↑ 0.99 ↓ 0.00 ↑ 0.66 ↓ 0.30 ↑ 0.93 ↓ 0.10 ↑ 0.95 ↓ 0.00 ↑ 0.95

SVUH-UCD 0.73± 0.12 0.46± 0.12 0.75± 0.16 0.79± 0.21 0.67± 0.26
↓ 0.52 ↑ 0.92 ↓ 0.28 ↑ 0.66 ↓ 0.25 ↑ 0.95 ↓ 0.00 ↑ 0.98 ↓ 0.04 ↑ 0.93

Table C.5: U-Time (C = 1) confusion matrix for dataset Sleep-EDF-39

Wake N1 N2 N3 REM

Wake 6980 740 244 22 260
N1 205 1624 604 15 356
N2 360 615 15182 982 660
N3 25 7 777 4892 2
REM 204 516 523 0 6474

Table C.6: U-Time (C = 1) confusion matrix for dataset Sleep-EDF-153

Wake N1 N2 N3 REM

Wake 58676 5650 650 40 790
N1 2364 12067 5172 132 1787
N2 335 5478 57437 3491 2391
N3 10 69 2974 9978 8
REM 323 2510 2280 83 20639

Table C.7: U-Time (C = 1) confusion matrix for dataset Physionet-2018

Wake N1 N2 N3 REM

Wake 133594 20295 2473 96 1487
N1 22006 83149 22744 183 8896
N2 6834 32279 304191 25593 8924
N3 493 214 17779 84006 100
REM 3165 9095 6782 138 97684
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Table C.8: U-Time (C = 1) confusion matrix for dataset DCSM

Wake N1 N2 N3 REM

Wake 341590 5681 2326 316 4396
N1 2839 11128 4804 19 2350
N2 1888 6037 94237 6586 4279
N3 195 33 7156 36200 53
REM 1931 1733 2522 435 40205

Table C.9: U-Time (C = 1) confusion matrix for dataset ISRUC

Wake N1 N2 N3 REM

Wake 17237 1892 512 33 751
N1 1349 6505 2316 66 1254
N2 359 2649 22135 1878 1174
N3 38 10 2332 14876 26
REM 363 974 938 56 9589

Table C.10: U-Time (C = 1) confusion matrix for dataset CAP

Wake N1 N2 N3 REM

Wake 14126 1532 1779 411 1004
N1 1149 1412 997 84 797
N2 1244 1351 28629 3477 2195
N3 135 32 4560 19069 296
REM 760 870 2187 394 13429

Table C.11: U-Time (C = 1) confusion matrix for dataset SVUH-UCD

Wake N1 N2 N3 REM

Wake 3537 739 227 18 186
N1 783 1704 525 8 383
N2 174 601 5423 410 377
N3 9 7 310 2328 9
REM 207 300 212 22 2275

Table C.12: U-Time multi-channel results across 4 datasets. Dataset sizes and evaluation types match
those of Table 8.2 in the main text. Specefic channels used: Sleep-EDF-153: EEG Fpz-Cz, EMG
submental, EOG horizontal. Physionet-2018: EEG C3-M2, EEG O1-M2, EMG CHEST. DCSM:
EEG C3-M2, EOG E2-M2. ISRUC: EEG C3-M2, EOG ROC-M1.

Global F1 scores

Dataset Channels W N1 N2 N3 REM mean

S-EDF-153 EEG + EMG + EOG 0.92 0.51 0.82 0.72 0.84 0.76
Physio-18 2×EEG + EMG 0.83 0.58 0.83 0.79 0.83 0.77
DCSM EEG + EOG 0.97 0.51 0.83 0.83 0.86 0.80
ISRUC EEG + EOG 0.88 0.55 0.79 0.87 0.83 0.78
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Table C.13: Hyperparameter experiments for our re-implemented DeepSleepNet (Supratak et al.
2017) on the Sleep-EDF-39 dataset. The 5-CV hyperparameter experiments were conducted on
25 records only in order to speed up computation. Thus, the performance scores should not be
compared directly to the paper re-implementation results (which are based on all 39 records in a
20-CV evaluation), but rather to the baseline experiment.

Global F1 scores

Experiment Eval. W N1 N2 N3 REM mean

Paper re-implementation 20-CV 0.86 0.41 0.87 0.83 0.81 0.76

Baseline 5-CV 0.85 0.39 0.86 0.89 0.79 0.76
Smaller CNN filters 5-CV 0.84 0.31 0.86 0.87 0.77 0.73
Larger CNN filters 5-CV 0.84 0.30 0.87 0.87 0.76 0.73
Two CNN layers 5-CV 0.84 0.26 0.85 0.85 0.76 0.71
Four CNN layers 5-CV 0.84 0.31 0.86 0.89 0.78 0.74
One RNN layer 5-CV 0.85 0.35 0.86 0.88 0.78 0.74
Three RNN layers 5-CV 0.76 0.41 0.85 0.85 0.75 0.72
Short sequences (T = 10) 5-CV 0.83 0.31 0.86 0.87 0.75 0.72
Long sequences (T = 50) 5-CV 0.83 0.34 0.86 0.86 0.74 0.73
LSTM → GRU 5-CV 0.84 0.35 0.86 0.87 0.74 0.73
LSTM 64 cells 5-CV 0.85 0.32 0.85 0.84 0.78 0.73
LSTM 256 cells 5-CV 0.85 0.31 0.86 0.86 0.77 0.73
Dropout → Zoneout (5%) 5-CV 0.80 0.34 0.85 0.88 0.77 0.73
Dropout → Zoneout (10%) 5-CV 0.80 0.39 0.84 0.87 0.77 0.73

CNN filter size 3-ensemble 5-CV 0.86 0.34 0.87 0.88 0.79 0.75
FPZ+CZ+EOG ensemble 5-CV 0.91 0.40 0.89 0.85 0.87 0.78

Table C.14: Hyperparameter experiments for our re-implemented DeepSleepNet (Supratak et al.
2017) on the DCSM dataset. The hyperparameter experiments were conducted on a 100-records
subset of the DCSM dataset to speed up computation. Thus, performance scores should not be
compared to the results in Table 8.2 directly, but rather to the baseline experiment.

Global F1 scores

Experiment Eval. W N1 N2 N3 REM mean

Baseline 5-CV 0.95 0.33 0.81 0.77 0.80 0.73
Smaller CNN filters 5-CV 0.95 0.37 0.80 0.79 0.81 0.74
Larger CNN filters 5-CV 0.94 0.34 0.81 0.77 0.80 0.73
LSTM → GRU 5-CV 0.95 0.33 0.80 0.76 0.80 0.73
Short sequences (T = 10) 5-CV 0.95 0.32 0.80 0.75 0.78 0.72
Long sequences (T = 50) 5-CV 0.95 0.32 0.79 0.78 0.79 0.73

Four input signals ensemble 5-CV 0.96 0.36 0.83 0.80 0.81 0.75



APPENDIX C. APPENDIX FOR PAPER C 242

En
co

de
r B

lo
ck

In
pu

t

1D
 c

on
vo

lu
tio

n
Ba

tc
h 

no
rm

al
iz

at
io

n

N
N

 u
p-

sa
m

pl
in

g
M

ax
 p

oo
l

C
on

ca
te

na
te

Av
er

ag
e 

po
ol

Segment Classifier

Sl
ee

p 
St

ag
es

O
ut

pu
t

In
pu

t
O

ut
pu

t

Sk
ip

 C
on

ne
ct

io
n

D
ec

od
er

 B
lo

ck

D
en

se
Sc

or
in

g

Figure C.2: Expanded structural overview of the U-Time architecture.



Appendix D

Appendix for Paper D

D.1 Supplementary Note: Datasets

In the following, we briefly describe the datasets considered in this study.

ABC The Apnea, Bariatric surgery, and CPAP (ABC) study consists of PSG recordings from

patients with severe obstructive sleep apnea (OSA) and morbid obesity (BMI of 35-45) (Bakker

et al. 2018; G.-Q. Zhang et al. 2018). The study addressed the effect of bariatric (weight loss)

surgery in comparison to continuous positive airway pressure (CPAP) therapy for the treatment of

OSA. The study pooled data from two different US sleep programs and spans a demographically

diverse group of OSA patients. 53 subjects were enrolled in the original study, of which 49 were

available to us for our work. EEG and EOG signals were recorded at 256 Hz and hardware low-

pass filtered at 105 Hz and high-pass filtered at 0.16 Hz. Hypnograms were scored according to the

AASM criteria. For more information, we refer to https://doi.org/10.25822/nx52-bc11 and

https://clinicaltrials.gov/ct2/show/NCT01187771.

CCSHS The Cleveland Children’s Sleep and Health Study (CCSHS) is a large cohort of children

and adolescents originally studied at ages 8-11 (Rosen, Larkin, et al. 2003; G.-Q. Zhang et al. 2018).

The cohort is a stratified random sample of full-term and pre-term children born at 3 different

hospitals around Cleveland, Ohio, US between 1988 and 1993. We considered PSG data as recorded

in-lab during the third and final longitudinal visit which took place between 2006 and 2010. In our

study, we had access to 515 samples of adolescents aged 16-19. EEG and EOG signals were recorded

at 128 Hz and hardware high-pass filtered at 0.15 Hz. Hypnograms were scored according to the

AASM criteria. For more information, we refer to https://doi.org/10.25822/cg2n-4y91.

CFS The Cleveland Family Study (CFS) is a large, family-based study of sleep apnea consiting of

2284 subjects from 361 families studied longitudinally between 1990 and 2006 (Redline, Tishler, et al.

1995; G.-Q. Zhang et al. 2018). We considered data from the last visit (2006) at which full overnight

PSG were measured. 730 subjects from 144 families participated in this study. When splitting data

from CFS into train/test splits, we ensured that all family members appear in the same split. EEG

and EOG signals were recorded at 128 Hz and hardware low-pass filtered at 105 Hz and high-pass

filtered at 0.16 Hz. Hypnograms were scored according to the AASM criteria. For more information
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on this dataset, we refer to https://doi.org/10.25822/jmyx-mz90.

CHAT The Childhood Adenotonsillectomy Trial (CHAT) studied the effect of adenotonsillectomy

surgery (removal of tonsils and adenoids) on mild to moderate obstructive sleep apnea (OSA) in

children ages 5-10 years (C. L. Marcus et al. 2013; Redline, Amin, et al. 2011; G.-Q. Zhang et

al. 2018). Subjects were assessed with full PSG at baseline and after a 7-month period. Study

participants were recruited from 6 US sleep centres in Massachusetts, Missouri, New York, Ohio and

Pennsylvania. We considered a total of 1638 PSG records from 1232 subjects (452 baseline, 407

follow-up, 779 control). Record chat-baseline-300927 was excluded due to missing EOG channels.

EEG and EOG signals were recorded at 200 Hz or higher (varies between studies) with variable

hardware filtering applied depending on the acquisition system. Hypnograms were scored according

to the AASM criteria. For more information, we refer to https://doi.org/10.25822/d68d-8g03

and https://clinicaltrials.gov/ct2/show/NCT00560859.

HPAP The Home Positive Airway Pressure (HomePAP, abbreviated HPAP in this study) was

a multi-site study with patients enrolled from 7 different US academic sleep centres to study the

effectiveness of home-based portable monitoring as compared to laboratory-based PSG for the diag-

nosis and treatment of obstructive sleep apnea (OSA) in adults at least 18 years of age (Rosen,

Auckley, et al. 2012; G.-Q. Zhang et al. 2018). The study included 373 subjects of which we

consider only the 247 who underwent lab-based PSG recordings. We excluded 9 subjects (IDs

1600052, 1600138, 1600280, 1600047, 1600194, 1600361, 1600087, 1600368, and 1600203) due to

missing EOG and/or reference channels. EEG and EOG signals were recorded at 200 Hz with

no hardware filtering applied. Hypnograms were scored according to the AASM criteria. For

more information on this dataset, we refer to https://doi.org/10.25822/xmwv-yz91 and

https://clinicaltrials.gov/ct2/show/NCT00642486.

MESA The Multi-Ethnic Study of Atherosclerosis (MESA) was a multi-ethnic longitudinal study

of factors associated with the progression of cardiovascular disease across a cohort of black, white,

Hispanic, and Chinese-American men and women aged 45-84 at study onset in 2000–2002 (X. Chen

et al. 2015; G.-Q. Zhang et al. 2018). Between 2010–2012, 2237 participants further enrolled in the

MESA Sleep sub-study and underwent (among others) overnight unattended PSG. We had 2056

subjects available for our study. EEG and EOG signals were recorded at 256 Hz and hardware

low-pass filtered at 100 Hz. Hypnograms were scored according to the AASM criteria. For more

information, we refer to https://doi.org/10.25822/n7hq-c406.

https://doi.org/10.25822/jmyx-mz90
https://doi.org/10.25822/d68d-8g03
https://clinicaltrials.gov/ct2/show/NCT00560859
https://doi.org/10.25822/xmwv-yz91
https://clinicaltrials.gov/ct2/show/NCT00642486
https://doi.org/10.25822/n7hq-c406
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MROS A sub-study of the larger Osteoporotic Fractures in Men (MrOS) study investigated the

association between sleep patterns, sleep-disordered breathing and cognition in community-dwelling

men aged 67 and above who were not selected on the basis of sleep disorders or cognitive impairment

(Blackwell et al. 2011; Song et al. 2015; G.-Q. Zhang et al. 2018). Subjects were enrolled from 6

different US clinical sites in Alabama, Minnesota, Pennsylvania, Oregon, and California. Between

2003-2005, 3135 subjects enrolled of which 2909 underwent in-home overnight polysomnography

(PSG). In this study, we considered a total of 3926 PSG records (2900 from visit 1 and 1026 from

visit 2) from 2903 subjects. We excluded a total of 7 records (IDs aa2180, aa3370, aa1367, aa1715,

aa1900, aa3903, aa3411 all from visit 1) due to missing EOG channels and/or sleep stage annotation

files. EEG and EOG signals were recorded at 256 Hz and hardware high-pass filtered at 0.15 Hz.

Hypnograms were scored according to the AASM criteria. For more information on the MROS

dataset and studies, please refer to https://doi.org/10.25822/kc27-0425.

PHYS The over-night PSG data the from 2018 PhysioNet/CinC Challenge were contributed by

the Massachusetts General Hospital’s Computational Clinical Neurophysiology Laboratory and the

Clinical Data Animation Laboratory. The full dataset spans 1,985 patients who were monitored

for the diagnosis of sleep disorders. The original challenge was automatic detection of arousal, but

sleep stages were annotated by clinical staff. The dataset was split into two equal sized halves for

training and testing. In our study we considered the 994 subjects publicly available in the training

subset. EEG and EOG signals were recorded at 200 Hz. Hypnograms were scored according to the

AASM criteria by a total of 7 annotators (1 scoring per PSG). For more information, we refer to

https://physionet.org/content/challenge-2018 and (Ghassemi et al. 2018; Goldberger et al.

2000).

SEDF-SC & SEDF-ST The Sleep-EDF Database (Expanded) consists of 197 whole-night PSG

recordings. In the Sleep Cassette (SEDF-SC) sub-study, 153 PSGs were collected between 1987–1991

from healthy Caucasians aged 25–101 not taking sleep-related medication. The Sleep Telemetry

(SEDF-ST) sub-study investigated the effect of temazepam intake on sleep in 22 Caucassian males

and females. Participants took no other medication and were generally healthy but having mild

difficulties falling asleep. Two recordings were collected from each individual on two nights at the

hospital, one after temazepam intake and the other one after placebo intake. EEG and EOG signals

were recorded at 100 Hz. Hypnograms were scored according to the Rechtschaffen and Kales criteria,

which we aligned to AASM as described in the Methods section. The SEDF-SC database has

been regularly used for benchmarking of automatic sleep stage classification algorithms. For more

information on either sub-study, we refer to https://doi.org/10.13026/C2C30J and Goldberger

https://doi.org/10.25822/kc27-0425
https://physionet.org/content/challenge-2018
https://doi.org/10.13026/C2C30J
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et al. (2000) and B. Kemp et al. (2000).

SHHS The Sleep Heart Health Study (SHHS) was a large, prospective cohort study investigating

sleep-disordered breathing such as OSA as risk-factors for the development of cardiovascular disease

(Quan et al. 1998; G.-Q. Zhang et al. 2018). A total of 6441 subjects were recruited from 6 already

on-going National Heart, Lung, and Blood Institute studies (see https://clinicaltrials.gov/c

t2/show/NCT00005275 for details). Adults of age 40 or older, who were able and willing to undergo

home PSG, were enrolled between 1995–1998. Between 2001-2003, a second PSG was obtained for

3295 of the participants. For our study, we had a total of 8444 PSG records available (5793 visit 1;

2651 visit 2) collected from 5797 individuals. EEG and EOG signals were recorded at 125 Hz and

50 Hz, respectively, and hardware high-pass filtered at 0.15 Hz. Hypnograms were scored according

to the Rechtschaffen and Kales criteria, which we aligned to AASM as described in the Methods

section. For more information on SHHS, we refer to https://doi.org/10.25822/ghy8-ks59.

SOF A sub-study of the larger Study of Osteoporotic Fractures (SOF) investigated the associa-

tion between sleep-disordered breathing and cognitive impairment in community-dwelling Caucasian

women aged 65 and above (Cummings et al. 1990; Spira et al. 2008; G.-Q. Zhang et al. 2018).

Subjects were enrolled from four US cities between 1986–1988. An additional cohort of African-

American women were recruited between 1997–1998. In our study, we considered the unattended,

whole-night, in-home PSG data collected between 2002–2004 from 461 participants at SOF visit 8

(subjects originally enrolled from US metropolitan areas Minneapolis, Minnesota and and Pittsburgh,

Pennsylvania between 1986-1988). EEG and EOG signals were recorded at 128 Hz and hardware

high-pass filtered at 0.15 Hz. Hypnograms were scored according to the Rechtschaffen and Kales

criteria, which we aligned to AASM as described in the Methods section. For more information, we

refer to https://doi.org/10.13026/C2X676.

DCSM This new dataset was collected and prepared by the Danish Centre for Sleep Medicine

(DCSM) and comprises 255 whole-night PSG recordings of patients visiting the center for diagnosis

of non-specific sleep related disorders. The records are fully anonymized and were selected randomly.

The included subjects thus likely vary in demographic characteristics, diagnostic background and

sleep/non-sleep related medication usage. The PSGs were collected between 2015-2018. EEG and

EOG signals were recorded at 256 Hz and bandpass filtered to interval 0.3 Hz - 70 Hz (3dB limits).

Hypnograms were scored according to the AASM criteria. This dataset serves as an unbiased, random

sample from the distribution of data generated by the DCSM. The DCSM dataset is publicaly

available at https://sid.erda.dk/wsgi-bin/ls.py?share_id=fUH3xbOXv8. This repository will

be frozen and issued a DOI for persistent access following the review process.

https://clinicaltrials.gov/ct2/show/NCT00005275
https://clinicaltrials.gov/ct2/show/NCT00005275
https://doi.org/10.25822/ghy8-ks59
https://doi.org/10.13026/C2X676
https://sid.erda.dk/wsgi-bin/ls.py?share_id=fUH3xbOXv8
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ISRUC-SG1, ISRUC-SG2 & ISRUC-SG3 The ISRUC dataset consists of randomly selected

all-night PSG recordings acquired by the Sleep Medicine Centre of the Hospital of Coimbra University,

Portugal (Khalighi et al. 2016). It covers both healthy subjects and patients with sleep disorders

under the effect of sleep medication. It is divided into three sub-groups (ISRUC-SG1, -SG2, -SG3)

with 100 sleep disordered adults, 8 sleep disordered adults with PSGs aqquired twice on different

nights, and 10 healthy control subjects in each of the three sub-groups, respectively. Data were

aqquired between 2009–2013. All records were scored by two experts. We considered hypnograms

from annotator 1 for all records but subject_2_visit_2 of ISURC-SG2 for which we used the

hypnogram of annotator 2 due to missing data. EEG and EOG signals were recorded at 200 Hz

and filtered using a bandpass Butterworth filter with lower and higher cutoff frequencies of 0.3 Hz and

35 Hz, respectively. Hypnograms were scored according to the AASM criteria. For more information

on the ISRUC dataset, we refer to https://sleeptight.isr.uc.pt.

MASS-C1 & MASS-C3 The Montreal Archive of Sleep Studies (MASS) pooled 200 whole-night

recordings from three different hospital-based sleep laboratories of the Center for Advanced Research

in Sleep Medicine, Montreal, Canada (O’Reilly et al. 2014). Subjects were between 18–76 years at

the time of recording, which occurred in the period 2001–2013. The subjects were organized into

five subsets (C1-C5) according to the research protocols used for data acquisition. All included

subjects were healthy controls, although an apnea-hypnea index of up to 20 (moderate sleep apnea)

was allowed for subjects in C1. In this study, we considered PSG recordings from subsets C1 (53

subjects) and C3 (62 subjects) for which the experts annotated 30-second intervals in line with the

other datasets. EEG and EOG signals were recorded at 256 Hz and hardware low-passed filtered

at 0.10 Hz (EOG) or 0.30 Hz (EEG) and high-pass filtered at 30 Hz (EOG) or 100 Hz (EEG).

Hypnograms were scored according to the AASM criteria. For more information, we refer to http:

//ceams-carsm.ca/en/MASS.

SVUH The St. Vincent’s University Hospital / University College Dublin Sleep Apnea Database

(SVUH) contains 25 full overnight PSG records of randomly selected individuals under diagnosis

for either obstructive sleep apnea, central sleep apnea or primary snoring (Goldberger et al. 2000).

Subjects were enrolled over a 6-month period. We considered data from the revised database of

2001. Subjects were at least 18 years old and had no known cardiac disease, had no autonomic

dysfunction, and took no medication known to interfere with heart rate. EEG and EOG signals were

recorded at 128 Hz. Hypnograms were scored according to the Rechtschaffen and Kales criteria,

which we aligned to AASM as described in the Methods section. For more information, we refer to

https://doi.org/10.13026/C26C7D.

https://sleeptight.isr.uc.pt
http://ceams-carsm.ca/en/MASS
http://ceams-carsm.ca/en/MASS
https://doi.org/10.13026/C26C7D
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DOD-H & DOD-O The Dreem Open Dataset – Healthy (DOD-H) was collected from 25 volunteers

at the French Armed Forces Biomedical Research Institute’s Fatigue and Vigilance Unit in France.

Subjects were without sleep complaints, aged 18-65 and locally recruited without regard to gender

or ethnicity. The Dreem Open Dataset – Obstructive (DOD-O) was collected from the Stanford Sleep

Medicine Center, California, US from 55 patients (clinical trial NCT03657329) with clinical suspicion

for sleep-related breathing disorder. Individuals clinically diagnosed with sleep disorders other than

OSA, suffering from morbid obesity, taking sleep medications or with certain cardiopulmonary or

neurological comorbidities were excluded from the study. EEG and EOG signals from both DOD-H

and DOD-O were sampled at 256 Hz and each PSG was scored by 5 individual experts from 3 dif-

ferent sleep clinics. All experts were registered Sleep Technologists with at least 5 years of clinical

scoring experience. For more information on the DOD datasets and consensus scoring, we refer to the

publications of Arnal et al. (2019), Guillot et al. (2019), and Thorey et al. (2019).

D.2 Supplementary Note: Demographic Bias

We conducted an analysis of potential demographic bias in the average U-Sleep performance. We

considered the variables age, sex and BMI and accounted for dataset origin. We could not evaluate

important variables such as disease state and ethnicity, because the required information was missing

was missing for several datasets. Supplementary Figure D.1 shows graphical representations of the

test-set distribution of F1 scores as a function of age, sex, BMI and general disease stage, respectively.

Note that these plots show only correlations, not causal relations.

We fitted a beta regression model (using the betareg, Cribari-Neto et al. (2010), v3.1-3 package

in R, Team (2019), v3.6.1) on 532 records from the test sets of datasets ABC, CCSHS, CFS, CHAT,

HPAP, MROS, SHHS, SOF and SVUH. The 532 records represent all available test-set records for

which we have age, sex and BMI information available. The regression model predicts the mean

F1 score as a function of those parameters along with variables encoding the dataset origin of each

sample giving a total 11 covariates. The estimated coefficients of the model were −0.004± 0.007 for

BMI (95% CI, z = −1.273, p = 0.203), −0.012± 0.004 for age (95% CI, z = −6.141, p < 0.001), and

−0.102 ± 0.102 for sex (difference if subject is Male, 95% CI, z = −1.954, p = 0.051). Coefficients

testing were done using two-sided Z-tests. The interpretation of the coefficients is that the expected

F1 performance drops with increasing BMI and increasing age as well as for male subjects. However,

only age was significant (p < 0.05). It is likely that this observation is confounded by the general

worsening of health with age.
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(a) Majority vote mean F1-scores by subject age.
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(b) Majority vote mean F1-scores by subject BMI.
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(c) Majority vote mean F1-scores by subject sex.

Figure D.1: Correlations between U-Sleep per-subject mean F1 score performance (using majority
votes) and individual demographic variables. In panels (a) and (b) the red center lines show median
values in 10 equally sized bins. The lower and upper red lines together represent the interquartile
range. In panel (c) letter-value plots (H. Hofmann et al. 2017) visualize the median (center black
line) and 10 other quantiles (letter-values, specifically). Observations beyond the most extreme
letter-values are labeled outliers and plotted as diamond shapes. Note that the widths of each box
in the letter-value plots are arbitrary and serve only to visually separate individual boxes. Please
refer to the Supplementary Note: Demographic Bias for statistical analysis and discussion.
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(a) The training and validation loss on the training and validation set. Little to no overfitting (reduced
training loss with stagnant or increasing validation loss) is observed. Two points of interest are marked: 1)
The sudden improvement in performance occurs as the model starts improving on the difficult N1 sleep stage.
Up until this point, U-Sleep would rarely predict N1 stages at all, resulting in a lower mean performance. 2)
The finally selected model at epoch 10154. Training for 150 epochs after this point did not further improve
validation performance.

(b) Mean F1 score computed across all datasets using random subsets of the validation data after each epoch
of training. The mean F1 increases steadily over time on all datasets, indicating that the model is able to
simultaneously learn the function across all clinical cohorts.

Figure D.2: U-Sleep learning curves. It took a total of ≈ 4, 500, 000 gradient updates (processed
batches of data) to train the model to convergence, equivalent to observing ≈ 9, 582 years of (non-
unique) annotated PSG data. The total training set length is ≈ 19.4 years. The long training time
needed to obtain the final model is a result of both the highly challenging task – learning sleep
staging across clinical cohorts with varying and noisy labels, randomly varying input channels as
well as augmentation – and that we chose to train U-Sleep using a very small learning rate (please
refer to the Methods section). As we were interested only in a single, final version of the U-Sleep
model, the long training time is only an issue because of the energy consumption. We estimate that
training U-Sleep consumed up to a total of 1, 121 kWh (96.1 kg CO2 eq.) using the CarbonTracker
tool (Anthony et al. 2020) with an added 25% margin.
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Table D.1: U-Sleep model topology for input window size i = 3840 (30 seconds of 128 Hz signal),
number of input channels C = 2, sequence length T = 35, number of output classes K = 5 and
complexity factor scaling value α = 1.67. The complexity scaling modifies the filter number in each
block or layer as described in the Methods section to a number c′ = ⌊c ·

√
α⌋ where c is the original

number of filters. Note that T · i = 134400. Each encoder block performs the following operations:
convolution → activation function → batch normalization → (zero-padding if input length is odd) →
max pooling (kernel width 2, stride 2). Each encoder block also outputs a residual connection (the
output of the layer immediately before max pooling) which is passed to its corresponding decoder
block. Each decoder block performs the following operations on its input: nearest-neighbour up-
sampling (kernel width 2) → convolution → activation function → batch normalization → (crop if
needed to match residual connection input) → concatenation with residual connection → convolution
→ activation function → batch normalization. The average pooling layer (ID=28) has striding of
i = 3840.

ID Layer Type Output dim Kernel Filters Activation Pad

- Input (symbolic) T · i× C - - - -
1 Input 134400× 2 - - - -
2 Encoder Block 67200× 6 9 6 ELU same
3 Encoder Block 33600× 9 9 9 ELU same
4 Encoder Block 16800× 11 9 11 ELU same
5 Encoder Block 8400× 15 9 15 ELU same
6 Encoder Block 4200× 20 9 20 ELU same
7 Encoder Block 2100× 28 9 28 ELU same
8 Encoder Block 1050× 40 9 40 ELU same
9 Encoder Block 525× 55 9 55 ELU same

10 Encoder Block 263× 77 9 77 ELU same
11 Encoder Block 132× 108 9 108 ELU same
12 Encoder Block 66× 152 9 152 ELU same
13 Encoder Block 33× 214 9 214 ELU same
14 Convolution + Batch Norm. 33× 302 9 306 ELU same
15 Decoder Block (res=13) 66× 428 9 214 ELU same
16 Decoder Block (res=12) 132× 304 9 152 ELU same
17 Decoder Block (res=11) 264× 216 9 108 ELU same
18 Decoder Block (res=10) 526× 154 9 77 ELU same
19 Decoder Block (res=9) 1050× 110 9 55 ELU same
20 Decoder Block (res=8) 2100× 80 9 40 ELU same
21 Decoder Block (res=7) 4200× 56 9 28 ELU same
22 Decoder Block (res=6) 8400× 40 9 20 ELU same
23 Decoder Block (res=5) 16800× 30 9 15 ELU same
24 Decoder Block (res=4) 33600× 22 9 11 ELU same
25 Decoder Block (res=3) 67200× 18 9 9 ELU same
26 Decoder Block (res=2) 134400× 12 9 6 ELU same
27 Convolution 134400× 6 1 6 TanH same
28 Average Pooling 35× 6 3840 - - valid
29 Convolution 35× 5 1 5 ELU same
30 Convolution 35× 5 1 5 Softmax same

Trainable parameters: 3, 114, 337
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Table D.2: U-Sleep Model, Optimization and Pre-Processing Hyperparameters.

Parameter Value Notes

Optimizer Adam See Kingma et al. (2015).
Learning rate - 10−7

β1 - 0.9
β2 - 0.999
ϵ - 1 · 10−8

Loss function Cross-entropy
Regularization - None

Class balancing - None

Base Topology 1D U-Net The input dimensionality is the number
of data points in a single PSG segment
(one segment is 30 seconds in typical
sleep staging, giving input dimensionality
3840 for sample rate S = 128). T is the
number of contiguous segments the model
operates on at once. T may be
dynamically adjusted. Zero-padding is
needed to decode to dimensions equal to
the input (Ioffe et al. 2015; Odena et al.
2016; Ronneberger et al. 2015; Yu et al.
2016). ELU=Exponential Linear Units
(Clevert et al. 2016).

.
Input dim. - 3840

Window size (T ) - 35
Depth - 12

Up-sampling - Nearest neighbour
Activations - ELU

Conv. kernel size - 9
Conv. kernel dilation size - 9

Max-pool kernel size - 2
Padding - True (’same’)

Batch normalization - True
Parameters - ≈ 3.12 · 106

Pre-processing Robust scaling Record- and channel-wise transformation
to distribution of median 0 and IQR 1.
Re-sampling uses polyphase filtering
(implementation:
scipy.signal.resample_poly, see
Virtanen et al. 2020). Clamping of
absolute values deviating from the
median by more than 20 times the IQR of
the channel.

Post-processing None
Re-sampling (S) 128 Hz

Batch size (B) 64 For element in a batch, a class from the
label set {W, N1, N2, N3, R} is
determined by uniform sampling. A
random PSG record of this class is
sampled, from which the input window is
sampled randomly so that the selected
class is in the window.

Class sampling prob. - Uniform

Training epochs ∞ Training continues until 100 consecutive
epochs without validation performance
improvements. 443 steps amounts to
roughly 106 30-second segments (or
labels, equivalently).

Steps per epoch 443

Early stopping criteria Validation F1 Mean per-class F1 scores computed over
random subsets of up to 20 validation
records from each dataset.

Model selection criteria Validation F1
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(a) Hypnogram with highest observed F1-score (record abc-baseline-900026).
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(b) Hypnogram with F1-score nearest dataset median (record abc-baseline-900039).
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(c) Hypnogram with lowest observed F1-score (record abc-baseline-900014).

Figure D.3: Highest, nearest median and lowest scoring (majority voted) hypnograms observed
across records in the test-split of dataset ABC. Black hypnograms were predicted by U-Sleep, red
hypnograms are human expert annotations. F1-scores for each stage are shown to the right of each
set of hypnograms. Each hypnogram displays at most 30 minutes of wake prior to and following the
first and last non-wake period, respectively, as determined by the human expert annotations.
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(a) Hypnogram with highest observed F1-score (record ccshs-trec-1800544).
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(b) Hypnogram with F1-score nearest dataset median (record ccshs-trec-1800195).
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(c) Hypnogram with lowest observed F1-score (record ccshs-trec-1800007).

Figure D.4: Highest, nearest median and lowest scoring (majority voted) hypnograms observed
across records in the test-split of dataset CCSHS. Black hypnograms were predicted by U-Sleep, red
hypnograms are human expert annotations. F1-scores for each stage are shown to the right of each
set of hypnograms. Each hypnogram displays at most 30 minutes of wake prior to and following the
first and last non-wake period, respectively, as determined by the human expert annotations.
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(a) Hypnogram with highest observed F1-score (record cfs-visit5-802273).
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(b) Hypnogram with F1-score nearest dataset median (record cfs-visit5-802658).
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(c) Hypnogram with lowest observed F1-score (record cfs-visit5-802299).

Figure D.5: Highest, nearest median and lowest scoring (majority voted) hypnograms observed
across records in the test-split of dataset CFS. Black hypnograms were predicted by U-Sleep, red
hypnograms are human expert annotations. F1-scores for each stage are shown to the right of each
set of hypnograms. Each hypnogram displays at most 30 minutes of wake prior to and following the
first and last non-wake period, respectively, as determined by the human expert annotations.
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(a) Hypnogram with highest observed F1-score (record chat-baseline-nonrandomized-300405).
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(b) Hypnogram with F1-score nearest dataset median (record
chat-baseline-nonrandomized-301034).
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(c) Hypnogram with lowest observed F1-score (record chat-baseline-300397).

Figure D.6: Highest, nearest median and lowest scoring (majority voted) hypnograms observed
across records in the test-split of dataset CHAT. Black hypnograms were predicted by U-Sleep, red
hypnograms are human expert annotations. F1-scores for each stage are shown to the right of each
set of hypnograms. Each hypnogram displays at most 30 minutes of wake prior to and following the
first and last non-wake period, respectively, as determined by the human expert annotations.
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(a) Hypnogram with highest observed F1-score (record 285ab4bdf51f).
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(b) Hypnogram with F1-score nearest dataset median (record 4dac221360bb).
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(c) Hypnogram with lowest observed F1-score (record 65fd36d709ae).

Figure D.7: Highest, nearest median and lowest scoring (majority voted) hypnograms observed
across records in the test-split of dataset DCSM. Black hypnograms were predicted by U-Sleep, red
hypnograms are human expert annotations. F1-scores for each stage are shown to the right of each
set of hypnograms. Each hypnogram displays at most 30 minutes of wake prior to and following the
first and last non-wake period, respectively, as determined by the human expert annotations.
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(a) Hypnogram with highest observed F1-score (record homepap-lab-full-1600255).
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(b) Hypnogram with F1-score nearest dataset median (record homepap-lab-full-1600319).
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(c) Hypnogram with lowest observed F1-score (record homepap-lab-split-1600251).

Figure D.8: Highest, nearest median and lowest scoring (majority voted) hypnograms observed
across records in the test-split of dataset HPAP. Black hypnograms were predicted by U-Sleep, red
hypnograms are human expert annotations. F1-scores for each stage are shown to the right of each
set of hypnograms. Each hypnogram displays at most 30 minutes of wake prior to and following the
first and last non-wake period, respectively, as determined by the human expert annotations.
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(a) Hypnogram with highest observed F1-score (record mesa-sleep-4682).
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(b) Hypnogram with F1-score nearest dataset median (record mesa-sleep-2834).
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(c) Hypnogram with lowest observed F1-score (record mesa-sleep-5680).

Figure D.9: Highest, nearest median and lowest scoring (majority voted) hypnograms observed
across records in the test-split of dataset MESA. Black hypnograms were predicted by U-Sleep, red
hypnograms are human expert annotations. F1-scores for each stage are shown to the right of each
set of hypnograms. Each hypnogram displays at most 30 minutes of wake prior to and following the
first and last non-wake period, respectively, as determined by the human expert annotations.
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(a) Hypnogram with highest observed F1-score (record mros-visit1-aa2023).
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(b) Hypnogram with F1-score nearest dataset median (record mros-visit1-aa2359).
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(c) Hypnogram with lowest observed F1-score (record mros-visit2-aa3175).

Figure D.10: Highest, nearest median and lowest scoring (majority voted) hypnograms observed
across records in the test-split of dataset MROS. Black hypnograms were predicted by U-Sleep, red
hypnograms are human expert annotations. F1-scores for each stage are shown to the right of each
set of hypnograms. Each hypnogram displays at most 30 minutes of wake prior to and following the
first and last non-wake period, respectively, as determined by the human expert annotations.
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(a) Hypnogram with highest observed F1-score (record tr07-0891).
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(b) Hypnogram with F1-score nearest dataset median (record tr07-0394).
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(c) Hypnogram with lowest observed F1-score (record tr07-0828).

Figure D.11: Highest, nearest median and lowest scoring (majority voted) hypnograms observed
across records in the test-split of dataset PHYS. Black hypnograms were predicted by U-Sleep, red
hypnograms are human expert annotations. F1-scores for each stage are shown to the right of each
set of hypnograms. Each hypnogram displays at most 30 minutes of wake prior to and following the
first and last non-wake period, respectively, as determined by the human expert annotations.
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(a) Hypnogram with highest observed F1-score (record SC4022E0-PSG).
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(b) Hypnogram with F1-score nearest dataset median (record SC4201E0-PSG).
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(c) Hypnogram with lowest observed F1-score (record SC4571F0-PSG).

Figure D.12: Highest, nearest median and lowest scoring (majority voted) hypnograms observed
across records in the test-split of dataset SEDF-SC. Black hypnograms were predicted by U-Sleep, red
hypnograms are human expert annotations. F1-scores for each stage are shown to the right of each
set of hypnograms. Each hypnogram displays at most 30 minutes of wake prior to and following the
first and last non-wake period, respectively, as determined by the human expert annotations.
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(a) Hypnogram with highest observed F1-score (record ST7212J0-PSG).
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(b) Hypnogram with F1-score nearest dataset median (record ST7182J0-PSG).
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(c) Hypnogram with lowest observed F1-score (record ST7181J0-PSG).

Figure D.13: Highest, nearest median and lowest scoring (majority voted) hypnograms observed
across records in the test-split of dataset SEDF-ST. Black hypnograms were predicted by U-Sleep, red
hypnograms are human expert annotations. F1-scores for each stage are shown to the right of each
set of hypnograms. Each hypnogram displays at most 30 minutes of wake prior to and following the
first and last non-wake period, respectively, as determined by the human expert annotations.
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(a) Hypnogram with highest observed F1-score (record shhs1-204781).
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(b) Hypnogram with F1-score nearest dataset median (record shhs1-204364).

N3
N2
N1

REM
W

0 1 2 3 4 5 6 7 8
Time (hours)

N3
N2
N1

REM
W

Sl
ee

p 
St

ag
e

F1-scores
W 0.92
REM 0.00
N1 0.00
N2 0.61
N3 0.00
Mean 0.31

Predicted
Expert

(c) Hypnogram with lowest observed F1-score (record shhs1-201279).

Figure D.14: Highest, nearest median and lowest scoring (majority voted) hypnograms observed
across records in the test-split of dataset SHHS. Black hypnograms were predicted by U-Sleep, red
hypnograms are human expert annotations. F1-scores for each stage are shown to the right of each
set of hypnograms. Each hypnogram displays at most 30 minutes of wake prior to and following the
first and last non-wake period, respectively, as determined by the human expert annotations.
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(a) Hypnogram with highest observed F1-score (record sof-visit-8-10354).
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(b) Hypnogram with F1-score nearest dataset median (record sof-visit-8-09115).
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(c) Hypnogram with lowest observed F1-score (record sof-visit-8-10514).

Figure D.15: Highest, nearest median and lowest scoring (majority voted) hypnograms observed
across records in the test-split of dataset SOF. Black hypnograms were predicted by U-Sleep, red
hypnograms are human expert annotations. F1-scores for each stage are shown to the right of each
set of hypnograms. Each hypnogram displays at most 30 minutes of wake prior to and following the
first and last non-wake period, respectively, as determined by the human expert annotations.
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(a) Hypnogram with highest observed F1-score (record subject_48).
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(b) Hypnogram with F1-score nearest dataset median (record subject_5).
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(c) Hypnogram with lowest observed F1-score (record subject_54).

Figure D.16: Highest, nearest median and lowest scoring (majority voted) hypnograms observed
across records in the test-split of dataset ISRUC-SG1. Black hypnograms were predicted by U-Sleep,
red hypnograms are human expert annotations. F1-scores for each stage are shown to the right of
each set of hypnograms. Each hypnogram displays at most 30 minutes of wake prior to and following
the first and last non-wake period, respectively, as determined by the human expert annotations.
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(a) Hypnogram with highest observed F1-score (record subject_8_visit_2).
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(b) Hypnogram with F1-score nearest dataset median (record subject_1_visit_1).
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(c) Hypnogram with lowest observed F1-score (record subject_7_visit_2).

Figure D.17: Highest, nearest median and lowest scoring (majority voted) hypnograms observed
across records in the test-split of dataset ISRUC-SG2. Black hypnograms were predicted by U-Sleep,
red hypnograms are human expert annotations. F1-scores for each stage are shown to the right of
each set of hypnograms. Each hypnogram displays at most 30 minutes of wake prior to and following
the first and last non-wake period, respectively, as determined by the human expert annotations.
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(a) Hypnogram with highest observed F1-score (record subject_10).
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(b) Hypnogram with F1-score nearest dataset median (record subject_2).
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(c) Hypnogram with lowest observed F1-score (record subject_3).

Figure D.18: Highest, nearest median and lowest scoring (majority voted) hypnograms observed
across records in the test-split of dataset ISRUC-SG3. Black hypnograms were predicted by U-Sleep,
red hypnograms are human expert annotations. F1-scores for each stage are shown to the right of
each set of hypnograms. Each hypnogram displays at most 30 minutes of wake prior to and following
the first and last non-wake period, respectively, as determined by the human expert annotations.
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(a) Hypnogram with highest observed F1-score (record 01-01-0016).
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(b) Hypnogram with F1-score nearest dataset median (record 01-01-0047).
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(c) Hypnogram with lowest observed F1-score (record 01-01-0031).

Figure D.19: Highest, nearest median and lowest scoring (majority voted) hypnograms observed
across records in the test-split of dataset MASS-C1. Black hypnograms were predicted by U-Sleep, red
hypnograms are human expert annotations. F1-scores for each stage are shown to the right of each
set of hypnograms. Each hypnogram displays at most 30 minutes of wake prior to and following the
first and last non-wake period, respectively, as determined by the human expert annotations.
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(a) Hypnogram with highest observed F1-score (record 01-03-0035).
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(b) Hypnogram with F1-score nearest dataset median (record 01-03-0008).
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(c) Hypnogram with lowest observed F1-score (record 01-03-0058).

Figure D.20: Highest, nearest median and lowest scoring (majority voted) hypnograms observed
across records in the test-split of dataset MASS-C3. Black hypnograms were predicted by U-Sleep, red
hypnograms are human expert annotations. F1-scores for each stage are shown to the right of each
set of hypnograms. Each hypnogram displays at most 30 minutes of wake prior to and following the
first and last non-wake period, respectively, as determined by the human expert annotations.
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(a) Hypnogram with highest observed F1-score (record ucddb022).
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(b) Hypnogram with F1-score nearest dataset median (record ucddb015).
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(c) Hypnogram with lowest observed F1-score (record ucddb025).

Figure D.21: Highest, nearest median and lowest scoring (majority voted) hypnograms observed
across records in the test-split of dataset SVUH. Black hypnograms were predicted by U-Sleep, red
hypnograms are human expert annotations. F1-scores for each stage are shown to the right of each
set of hypnograms. Each hypnogram displays at most 30 minutes of wake prior to and following the
first and last non-wake period, respectively, as determined by the human expert annotations.
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(a) Hypnogram with highest observed F1-score (record 889dcc46-9998-4b54-9c49-f291f153d101).
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(b) Hypnogram with F1-score nearest dataset median (record
01e60017-d3b5-41cf-bcfb-bde09d46003f).
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(c) Hypnogram with lowest observed F1-score (record 42f25159-530e-47be-ab07-0895e565ad08).

Figure D.22: Highest, nearest median and lowest scoring (majority voted) hypnograms observed
across records in the test-split of dataset DOD-H. Black hypnograms were predicted by U-Sleep, red
hypnograms are human expert annotations. F1-scores for each stage are shown to the right of each
set of hypnograms. Each hypnogram displays at most 30 minutes of wake prior to and following the
first and last non-wake period, respectively, as determined by the human expert annotations.
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(a) Hypnogram with highest observed F1-score (record c900fd7f-649d-4ce9-b618-d83c4dea898a).
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(b) Hypnogram with F1-score nearest dataset median (record
7259faa4-fef7-4d76-834d-a1a5e4a04b85).
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(c) Hypnogram with lowest observed F1-score (record d203e2a0-b261-4b11-9b76-74709094690d).

Figure D.23: Highest, nearest median and lowest scoring (majority voted) hypnograms observed
across records in the test-split of dataset DOD-O. Black hypnograms were predicted by U-Sleep, red
hypnograms are human expert annotations. F1-scores for each stage are shown to the right of each
set of hypnograms. Each hypnogram displays at most 30 minutes of wake prior to and following the
first and last non-wake period, respectively, as determined by the human expert annotations.
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Table D.3: ABC - Test data - Channel-wise F1/dice scores (computed across subjects)

Records Wake N1 N2 N3 REM mean

F4-M1+E2-M1 20 0.81 0.49 0.78 0.60 0.79 0.69
F3-M2+E2-M1 20 0.83 0.48 0.78 0.53 0.85 0.70
C3-M2+E2-M1 20 0.84 0.50 0.81 0.62 0.86 0.73
O1-M2+E2-M1 20 0.84 0.51 0.81 0.63 0.88 0.73
F3-M2+E1-M2 20 0.85 0.48 0.83 0.71 0.90 0.75
O2-M1+E2-M1 20 0.86 0.51 0.83 0.71 0.88 0.76
O1-M2+E1-M2 20 0.85 0.48 0.84 0.73 0.90 0.76
C4-M1+E2-M1 20 0.85 0.51 0.83 0.73 0.87 0.76
F4-M1+E1-M2 20 0.86 0.50 0.83 0.71 0.89 0.76
C3-M2+E1-M2 20 0.86 0.53 0.84 0.75 0.91 0.78
O2-M1+E1-M2 20 0.87 0.52 0.84 0.76 0.90 0.78
C4-M1+E1-M2 20 0.87 0.53 0.84 0.76 0.90 0.78

Mean 0.85 0.50 0.82 0.69 0.88 0.75
Standard deviation 0 0.02 0.02 0.07 0.03 0.03

Majority vote 20 0.87 0.53 0.84 0.72 0.90 0.77

Table D.4: CCSHS - Test data - Channel-wise F1/dice scores (computed across subjects)

Records Wake N1 N2 N3 REM mean

C4-A1+ROC-A1 78 0.91 0.57 0.90 0.86 0.90 0.83
C4-A1+LOC-A2 78 0.92 0.57 0.90 0.86 0.91 0.83
C3-A2+ROC-A1 78 0.92 0.58 0.90 0.87 0.91 0.84
C3-A2+LOC-A2 78 0.92 0.59 0.90 0.87 0.91 0.84

Mean 0.92 0.58 0.90 0.86 0.91 0.83
Standard deviation 0 0.01 0.00 0.00 0.00 0.01

Majority vote 78 0.93 0.63 0.91 0.88 0.93 0.85

Table D.5: CFS - Test data - Channel-wise F1/dice scores (computed across subjects)

Records Wake N1 N2 N3 REM mean

C3-A2+ROC-A1 92 0.93 0.48 0.87 0.83 0.91 0.80
C3-A2+LOC-A2 92 0.93 0.50 0.87 0.82 0.90 0.81
C4-A1+LOC-A2 92 0.93 0.49 0.88 0.84 0.90 0.81
C4-A1+ROC-A1 92 0.93 0.51 0.88 0.84 0.91 0.81

Mean 0.93 0.50 0.88 0.83 0.91 0.81
Standard deviation 0 0.01 0.00 0.01 0.00 0.00

Majority vote 92 0.93 0.52 0.89 0.84 0.91 0.82
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Table D.6: CHAT - Test data - Channel-wise F1/dice scores (computed across subjects)

Records Wake N1 N2 N3 REM mean

O2-M1+E1-M2 128 0.91 0.58 0.84 0.89 0.86 0.81
T3-M2+E1-M2 128 0.90 0.60 0.84 0.89 0.87 0.82
T4-M1+E1-M2 128 0.91 0.60 0.84 0.89 0.87 0.82
C4-M1+E1-M2 128 0.92 0.60 0.84 0.89 0.87 0.82
F3-M2+E1-M2 128 0.91 0.60 0.85 0.89 0.88 0.82
C3-M2+E2-M1 128 0.91 0.60 0.85 0.89 0.88 0.83
T3-M2+E2-M1 128 0.90 0.61 0.85 0.89 0.88 0.83
O1-M2+E1-M2 128 0.91 0.60 0.85 0.89 0.88 0.83
T4-M1+E2-M1 128 0.91 0.61 0.85 0.89 0.89 0.83
C3-M2+E1-M2 128 0.91 0.60 0.85 0.90 0.88 0.83
O2-M1+E2-M1 128 0.92 0.60 0.85 0.89 0.88 0.83
F4-M1+E1-M2 128 0.92 0.60 0.85 0.89 0.89 0.83
O1-M2+E2-M1 128 0.91 0.61 0.86 0.89 0.89 0.83
F3-M2+E2-M1 128 0.92 0.62 0.86 0.89 0.89 0.84
F4-M1+E2-M1 128 0.92 0.61 0.86 0.89 0.90 0.84
C4-M1+E2-M1 128 0.93 0.62 0.86 0.89 0.89 0.84

Mean 0.91 0.60 0.85 0.89 0.88 0.83
Standard deviation 0 0.01 0.01 0.00 0.01 0.01

Majority vote 128 0.93 0.64 0.87 0.90 0.90 0.85

Table D.7: DCSM - Test data - Channel-wise F1/dice scores (computed across subjects)

Records Wake N1 N2 N3 REM mean

O2-M1+E1-M2 39 0.96 0.47 0.82 0.78 0.85 0.78
O1-M2+E1-M2 39 0.96 0.47 0.83 0.79 0.86 0.78
F3-M2+E1-M2 39 0.97 0.44 0.84 0.81 0.87 0.79
C3-M2+E1-M2 39 0.96 0.45 0.84 0.81 0.87 0.79
O2-M1+E2-M2 39 0.97 0.47 0.84 0.81 0.87 0.79
F4-M1+E1-M2 39 0.97 0.46 0.84 0.80 0.89 0.79
O1-M2+E2-M2 39 0.97 0.48 0.84 0.81 0.87 0.79
F3-M2+E2-M2 39 0.97 0.45 0.84 0.82 0.89 0.79
C4-M1+E1-M2 39 0.97 0.46 0.85 0.80 0.90 0.79
F4-M1+E2-M2 39 0.97 0.46 0.85 0.82 0.88 0.80
C3-M2+E2-M2 39 0.97 0.47 0.85 0.82 0.89 0.80
C4-M1+E2-M2 39 0.97 0.46 0.85 0.82 0.90 0.80

Mean 0.97 0.46 0.84 0.81 0.88 0.79
Standard deviation 0 0.01 0.01 0.01 0.01 0.01

Majority vote 39 0.97 0.48 0.86 0.83 0.89 0.81
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Table D.8: HPAP - Test data - Channel-wise F1/dice scores (computed across subjects)

Records Wake N1 N2 N3 REM mean

O2-M1+E1 34 0.89 0.44 0.80 0.72 0.86 0.74
C4-M1+E1 34 0.89 0.41 0.80 0.73 0.89 0.75
F4-M1+E2-M1 32 0.89 0.42 0.82 0.74 0.88 0.75
O2-M1+E2-M1 32 0.90 0.43 0.81 0.73 0.88 0.75
F4-M1+E1 34 0.87 0.47 0.80 0.72 0.88 0.75
C3-M2+E1-M2 32 0.90 0.48 0.82 0.71 0.85 0.75
C4-M1+E2-M1 32 0.90 0.43 0.82 0.73 0.88 0.75
C3-M2+E1 34 0.89 0.47 0.82 0.71 0.86 0.75
O2-M1+E2 34 0.89 0.45 0.81 0.75 0.87 0.75
F3-M2+E1 34 0.89 0.46 0.82 0.74 0.87 0.76
C3-M2+E2-M1 32 0.89 0.48 0.83 0.72 0.87 0.76
O1-M2+E1 34 0.89 0.48 0.81 0.73 0.88 0.76
F3-M2+E1-M2 32 0.90 0.47 0.82 0.74 0.87 0.76
F4-M1+E2 34 0.87 0.47 0.81 0.76 0.89 0.76
C4-M1+E2 34 0.89 0.44 0.82 0.75 0.89 0.76
C3-M2+E2 34 0.89 0.47 0.83 0.74 0.86 0.76
F4-M1+E1-M2 32 0.89 0.47 0.82 0.73 0.89 0.76
C4-M1+E1-M2 32 0.90 0.47 0.82 0.73 0.88 0.76
O1-M2+E2-M1 32 0.90 0.47 0.83 0.73 0.88 0.76
F3-M2+E2-M1 32 0.89 0.47 0.83 0.75 0.88 0.76
O2-M1+E1-M2 32 0.90 0.49 0.82 0.73 0.88 0.76
F3-M2+E2 34 0.89 0.47 0.83 0.76 0.87 0.76
O1-M2+E1-M2 32 0.91 0.48 0.83 0.74 0.88 0.77
O1-M2+E2 34 0.89 0.49 0.82 0.76 0.89 0.77

Mean 0.89 0.46 0.82 0.74 0.88 0.76
Standard deviation 0 0.02 0.01 0.01 0.01 0.01

Majority vote 36 0.91 0.48 0.84 0.78 0.90 0.78

Table D.9: MESA - Test data - Channel-wise F1/dice scores (computed across subjects)

Records Wake N1 N2 N3 REM mean

Fz-Cz+E2-FPz 100 0.88 0.50 0.83 0.60 0.81 0.72
Fz-Cz+E1-FPz 100 0.90 0.51 0.85 0.66 0.85 0.75
C4-M1+E1-FPz 100 0.91 0.56 0.85 0.62 0.89 0.77
C4-M1+E2-FPz 100 0.91 0.57 0.85 0.65 0.88 0.77
Cz-Oz+E2-FPz 100 0.91 0.58 0.85 0.65 0.88 0.77
Cz-Oz+E1-FPz 100 0.92 0.56 0.86 0.63 0.90 0.77

Mean 0.90 0.55 0.85 0.63 0.87 0.76
Standard deviation 0 0.03 0.01 0.02 0.03 0.02

Majority vote 100 0.92 0.59 0.87 0.65 0.90 0.79
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Table D.10: MROS - Test data - Channel-wise F1/dice scores (computed across subjects)

Records Wake N1 N2 N3 REM mean

C4-M1+E2-M1 134 0.92 0.44 0.86 0.63 0.87 0.75
C4-M1+E1-M2 134 0.92 0.42 0.86 0.66 0.88 0.75
C3-M2+E1-M2 134 0.92 0.43 0.86 0.68 0.87 0.75
C3-M2+E2-M1 134 0.93 0.45 0.86 0.68 0.86 0.76

Mean 0.92 0.43 0.86 0.66 0.87 0.75
Standard deviation 0 0.01 0.00 0.02 0.01 0.00

Majority vote 134 0.93 0.46 0.87 0.68 0.88 0.77

Table D.11: PHYS - Test data - Channel-wise F1/dice scores (computed across subjects)

Records Wake N1 N2 N3 REM mean

O1-M2+E1-M2 100 0.84 0.59 0.82 0.78 0.86 0.78
O2-M1+E1-M2 100 0.84 0.59 0.82 0.79 0.86 0.78
C3-M2+E1-M2 100 0.83 0.59 0.83 0.79 0.87 0.78
F3-M2+E1-M2 100 0.83 0.58 0.83 0.80 0.87 0.78
C4-M1+E1-M2 100 0.83 0.59 0.84 0.80 0.87 0.79
F4-M1+E1-M2 100 0.83 0.59 0.84 0.81 0.87 0.79

Mean 0.83 0.59 0.83 0.79 0.86 0.78
Standard deviation 0 0.00 0.01 0.01 0.01 0.00

Majority vote 100 0.84 0.60 0.84 0.81 0.87 0.79

Table D.12: SEDF-SC - Test data - Channel-wise F1/dice scores (computed across subjects)

Records Wake N1 N2 N3 REM mean

Pz-Oz+EOG 23 0.92 0.53 0.83 0.68 0.84 0.76
Fpz-Cz+EOG 23 0.92 0.54 0.86 0.71 0.88 0.78

Mean 0.92 0.54 0.84 0.69 0.86 0.77
Standard deviation 0 0.01 0.01 0.02 0.02 0.01

Majority vote 23 0.93 0.57 0.86 0.71 0.88 0.79

Table D.13: SEDF-ST - Test data - Channel-wise F1/dice scores (computed across subjects)

Records Wake N1 N2 N3 REM mean

Fpz-Cz+EOG 8 0.80 0.55 0.87 0.64 0.91 0.76
Pz-Oz+EOG 8 0.79 0.60 0.89 0.63 0.90 0.76

Mean 0.79 0.57 0.88 0.63 0.91 0.76
Standard deviation 0 0.03 0.01 0.01 0.01 0.00

Majority vote 8 0.80 0.58 0.88 0.64 0.91 0.76
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Table D.14: SHHS - Test data - Channel-wise F1/dice scores (computed across subjects)

Records Wake N1 N2 N3 REM mean

C4-A1+EOG(R)-PG1 140 0.91 0.45 0.86 0.74 0.91 0.77
C3-A2+EOG(L)-PG1 135 0.91 0.49 0.86 0.75 0.89 0.78
C4-A1+EOG(L)-PG1 140 0.92 0.48 0.87 0.76 0.91 0.79
C3-A2+EOG(R)-PG1 135 0.92 0.50 0.87 0.76 0.90 0.79

Mean 0.92 0.48 0.86 0.75 0.90 0.78
Standard deviation 0 0.02 0.00 0.01 0.01 0.01

Majority vote 140 0.93 0.51 0.87 0.76 0.92 0.80

Table D.15: SOF - Test data - Channel-wise F1/dice scores (computed across subjects)

Records Wake N1 N2 N3 REM mean

C4-A1+ROC-A1 68 0.93 0.45 0.84 0.70 0.89 0.76
C3-A2+LOC-A2 68 0.91 0.37 0.84 0.78 0.91 0.76
C3-A2+ROC-A1 68 0.92 0.42 0.84 0.74 0.91 0.77
C4-A1+LOC-A2 68 0.93 0.42 0.85 0.76 0.91 0.77

Mean 0.92 0.42 0.84 0.74 0.91 0.77
Standard deviation 0 0.03 0.00 0.03 0.01 0.00

Majority vote 68 0.93 0.45 0.86 0.77 0.92 0.78

Table D.16: ISRUC-SG1 - Test data - Channel-wise F1/dice scores (computed across subjects)

Records Wake N1 N2 N3 REM mean

C3-M2+E2-M1 100 0.87 0.50 0.74 0.69 0.82 0.72
C3-M2+E1-M2 100 0.84 0.49 0.77 0.75 0.85 0.74
F3-M2+E2-M1 99 0.88 0.50 0.77 0.72 0.85 0.75
F4-M1+E2-M1 99 0.89 0.50 0.77 0.73 0.85 0.75
O1-M2+E1-M2 100 0.86 0.48 0.78 0.76 0.87 0.75
F4-M1+E1-M2 99 0.86 0.49 0.78 0.76 0.88 0.75
O1-M2+E2-M1 100 0.88 0.49 0.78 0.76 0.86 0.75
O2-M1+E2-M1 100 0.87 0.51 0.77 0.77 0.86 0.76
C4-M1+E2-M1 100 0.88 0.50 0.78 0.77 0.86 0.76
O2-M1+E1-M2 100 0.86 0.48 0.78 0.80 0.87 0.76
F3-M2+E1-M2 99 0.86 0.50 0.79 0.79 0.87 0.76
C4-M1+E1-M2 100 0.86 0.48 0.79 0.81 0.88 0.76

Mean 0.87 0.49 0.77 0.76 0.86 0.75
Standard deviation 0 0.01 0.01 0.03 0.01 0.01

Majority vote 100 0.89 0.52 0.79 0.77 0.88 0.77
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Table D.17: ISRUC-SG2 - Test data - Channel-wise F1/dice scores (computed across subjects)

Records Wake N1 N2 N3 REM mean

C4-M1+E2-M1 16 0.80 0.48 0.76 0.80 0.84 0.74
C3-M2+E2-M1 16 0.79 0.46 0.77 0.81 0.85 0.74
O1-M2+E2-M1 16 0.80 0.48 0.76 0.82 0.85 0.74
O2-M1+E2-M1 16 0.80 0.48 0.77 0.81 0.85 0.74
F3-M2+E2-M1 16 0.81 0.49 0.77 0.82 0.83 0.74
C4-M1+E1-M2 16 0.84 0.47 0.77 0.82 0.83 0.75
F4-M1+E2-M1 16 0.81 0.49 0.78 0.82 0.86 0.75
F3-M2+E1-M2 16 0.85 0.48 0.78 0.83 0.82 0.75
C3-M2+E1-M2 16 0.85 0.47 0.78 0.83 0.85 0.76
O1-M2+E1-M2 16 0.84 0.47 0.78 0.84 0.86 0.76
O2-M1+E1-M2 16 0.85 0.49 0.78 0.83 0.85 0.76
F4-M1+E1-M2 16 0.87 0.48 0.78 0.83 0.85 0.76

Mean 0.83 0.48 0.77 0.82 0.84 0.75
Standard deviation 0 0.01 0.01 0.01 0.01 0.01

Majority vote 16 0.85 0.49 0.78 0.83 0.86 0.76

Table D.18: ISRUC-SG3 - Test data - Channel-wise F1/dice scores (computed across subjects)

Records Wake N1 N2 N3 REM mean

O1-M2+E2-M1 10 0.84 0.54 0.77 0.72 0.87 0.75
C3-M2+E2-M1 10 0.86 0.54 0.77 0.71 0.86 0.75
F4-M1+E1-M2 10 0.91 0.54 0.76 0.69 0.84 0.75
F3-M2+E2-M1 10 0.85 0.53 0.77 0.74 0.85 0.75
O2-M1+E2-M1 10 0.85 0.54 0.77 0.75 0.85 0.75
O1-M2+E1-M2 10 0.91 0.54 0.76 0.70 0.85 0.75
C4-M1+E1-M2 10 0.91 0.49 0.78 0.76 0.84 0.75
C4-M1+E2-M1 10 0.85 0.53 0.78 0.75 0.85 0.75
F4-M1+E2-M1 10 0.86 0.55 0.76 0.72 0.87 0.75
C3-M2+E1-M2 10 0.92 0.53 0.77 0.73 0.85 0.76
O2-M1+E1-M2 10 0.90 0.53 0.79 0.78 0.83 0.76
F3-M2+E1-M2 10 0.92 0.52 0.79 0.78 0.85 0.77

Mean 0.88 0.53 0.77 0.74 0.85 0.75
Standard deviation 0 0.02 0.01 0.03 0.01 0.01

Majority vote 10 0.90 0.55 0.78 0.74 0.85 0.77



APPENDIX D. APPENDIX FOR PAPER D 280

Table D.19: MASS-C1 (part 1/2) - Test data - Channel-wise F1/dice scores (computed across sub-
jects). This table displays all MASS-C1 evaluations on EOG(R) channel combinations. Please refer
to Table D.20 for MASS-C1 evaluations with EOG(L) channels and for mean, standard deviation
and majority vote summaries across both EOG(L) and EOG(R) channel combinations.

Records Wake N1 N2 N3 REM mean

P3-LER+EOG(R) 6 0.93 0.32 0.66 0.39 0.90 0.64
T4-LER+EOG(R) 6 0.93 0.34 0.68 0.39 0.91 0.65
F8-LER+EOG(R) 6 0.91 0.36 0.72 0.46 0.85 0.66
O2-LER+EOG(R) 6 0.92 0.38 0.72 0.44 0.85 0.66
T6-LER+EOG(R) 6 0.93 0.35 0.71 0.44 0.90 0.66
C4-LER+EOG(R) 6 0.90 0.39 0.73 0.47 0.85 0.67
T3-LER+EOG(R) 6 0.92 0.35 0.73 0.47 0.87 0.67
F4-LER+EOG(R) 6 0.93 0.34 0.72 0.46 0.90 0.67
F3-LER+EOG(R) 6 0.93 0.37 0.72 0.45 0.88 0.67
P4-LER+EOG(R) 6 0.93 0.38 0.73 0.46 0.87 0.67
O1-LER+EOG(R) 6 0.93 0.38 0.73 0.46 0.89 0.68
Pz-LER+EOG(R) 6 0.93 0.40 0.75 0.49 0.85 0.68
C3-LER+EOG(R) 6 0.93 0.37 0.74 0.48 0.89 0.68
P4-CLE+EOG(R) 47 0.93 0.29 0.78 0.57 0.88 0.69
Cz-LER+EOG(R) 6 0.92 0.38 0.75 0.51 0.89 0.69
T5-LER+EOG(R) 6 0.93 0.39 0.75 0.50 0.88 0.69
Fz-LER+EOG(R) 6 0.93 0.40 0.75 0.50 0.90 0.69
F7-LER+EOG(R) 6 0.93 0.39 0.75 0.51 0.90 0.70
Fp1-LER+EOG(R) 3 0.93 0.34 0.80 0.50 0.93 0.70
Cz-CLE+EOG(R) 47 0.93 0.35 0.78 0.57 0.88 0.70
Fp2-LER+EOG(R) 3 0.93 0.39 0.80 0.51 0.91 0.71
T3-CLE+EOG(R) 47 0.93 0.37 0.79 0.58 0.88 0.71
F4-CLE+EOG(R) 47 0.93 0.38 0.79 0.59 0.88 0.71
F7-CLE+EOG(R) 47 0.94 0.40 0.80 0.60 0.87 0.72
P3-CLE+EOG(R) 47 0.93 0.40 0.80 0.60 0.87 0.72
T5-CLE+EOG(R) 47 0.94 0.40 0.80 0.60 0.88 0.72
Fz-CLE+EOG(R) 47 0.94 0.39 0.81 0.61 0.88 0.73
F3-CLE+EOG(R) 47 0.93 0.42 0.80 0.61 0.87 0.73
C3-CLE+EOG(R) 47 0.94 0.40 0.81 0.62 0.88 0.73
O1-CLE+EOG(R) 47 0.94 0.40 0.81 0.62 0.88 0.73
O2-CLE+EOG(R) 47 0.93 0.42 0.82 0.61 0.88 0.73
F8-CLE+EOG(R) 47 0.93 0.41 0.82 0.63 0.88 0.73
C4-CLE+EOG(R) 47 0.93 0.39 0.83 0.65 0.88 0.74
T4-CLE+EOG(R) 47 0.94 0.41 0.83 0.64 0.88 0.74
Pz-CLE+EOG(R) 47 0.94 0.42 0.83 0.64 0.88 0.74
T6-CLE+EOG(R) 47 0.94 0.41 0.83 0.65 0.88 0.74
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Table D.20: MASS-C1 (part 2/2) - Test data - Channel-wise F1/dice scores (computed across sub-
jects). This table displays all MASS-C1 evaluations on EOG(L) channel combinations. Please refer
to Table D.19 for MASS-C1 evaluations with EOG(R) channels. The displayed mean, standard devi-
ation and majority vote scores represent summaries computed across both EOG(L) (this table) and
EOG(R) (Table D.19) channel combinations.

Records Wake N1 N2 N3 REM mean

F8-LER+EOG(L) 6 0.91 0.38 0.74 0.48 0.82 0.67
P3-LER+EOG(L) 6 0.93 0.36 0.71 0.44 0.90 0.67
O2-LER+EOG(L) 6 0.93 0.37 0.72 0.46 0.87 0.67
C4-LER+EOG(L) 6 0.91 0.40 0.74 0.49 0.84 0.68
Pz-LER+EOG(L) 6 0.92 0.41 0.75 0.49 0.84 0.68
T6-LER+EOG(L) 6 0.92 0.41 0.75 0.49 0.88 0.69
T4-LER+EOG(L) 6 0.93 0.38 0.75 0.48 0.91 0.69
C3-LER+EOG(L) 6 0.91 0.38 0.77 0.53 0.87 0.69
T3-LER+EOG(L) 6 0.93 0.39 0.76 0.50 0.90 0.70
P4-LER+EOG(L) 6 0.92 0.41 0.77 0.52 0.87 0.70
O1-LER+EOG(L) 6 0.93 0.39 0.77 0.51 0.90 0.70
F3-LER+EOG(L) 6 0.93 0.42 0.76 0.51 0.88 0.70
T5-LER+EOG(L) 6 0.92 0.42 0.79 0.56 0.87 0.71
F4-LER+EOG(L) 6 0.93 0.43 0.78 0.53 0.90 0.71
F8-CLE+EOG(L) 47 0.94 0.40 0.78 0.58 0.87 0.71
F7-LER+EOG(L) 6 0.93 0.40 0.79 0.58 0.88 0.72
T3-CLE+EOG(L) 47 0.94 0.43 0.78 0.56 0.88 0.72
T4-CLE+EOG(L) 47 0.94 0.42 0.79 0.57 0.87 0.72
Fz-LER+EOG(L) 6 0.93 0.44 0.79 0.55 0.89 0.72
O1-CLE+EOG(L) 47 0.94 0.41 0.79 0.58 0.88 0.72
T6-CLE+EOG(L) 47 0.94 0.41 0.79 0.59 0.88 0.72
Cz-CLE+EOG(L) 47 0.94 0.45 0.79 0.57 0.87 0.72
Cz-LER+EOG(L) 6 0.93 0.44 0.80 0.58 0.89 0.73
P4-CLE+EOG(L) 47 0.94 0.42 0.80 0.59 0.89 0.73
C4-CLE+EOG(L) 47 0.94 0.43 0.81 0.60 0.87 0.73
O2-CLE+EOG(L) 47 0.94 0.44 0.82 0.59 0.86 0.73
C3-CLE+EOG(L) 47 0.94 0.41 0.81 0.62 0.87 0.73
Fp1-LER+EOG(L) 3 0.94 0.43 0.83 0.56 0.91 0.73
Pz-CLE+EOG(L) 47 0.94 0.42 0.82 0.62 0.87 0.73
P3-CLE+EOG(L) 47 0.93 0.43 0.82 0.63 0.86 0.73
Fz-CLE+EOG(L) 47 0.94 0.43 0.81 0.61 0.87 0.73
T5-CLE+EOG(L) 47 0.94 0.44 0.83 0.63 0.87 0.74
F4-CLE+EOG(L) 47 0.93 0.45 0.83 0.63 0.86 0.74
F3-CLE+EOG(L) 47 0.94 0.47 0.83 0.63 0.85 0.74
F7-CLE+EOG(L) 47 0.94 0.48 0.83 0.63 0.86 0.75
Fp2-LER+EOG(L) 3 0.92 0.48 0.85 0.64 0.88 0.75

Mean [Tables D.19 & D.20] 0.93 0.40 0.78 0.55 0.88 0.71
Standard deviation [Tables D.19 & D.20] 0 0.03 0.04 0.07 0.02 0.03

Majority vote [Tables D.19 & D.20] 53 0.94 0.41 0.81 0.61 0.88 0.73
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Table D.21: MASS-C3 - Test data - Channel-wise F1/dice scores (computed across subjects)

Records Wake N1 N2 N3 REM mean

C3-LER+EOG(L) 62 0.91 0.50 0.83 0.69 0.90 0.76
O2-LER+EOG(L) 62 0.91 0.50 0.82 0.69 0.90 0.77
C3-LER+EOG(R) 62 0.90 0.51 0.83 0.70 0.89 0.77
O2-LER+EOG(R) 62 0.91 0.51 0.83 0.70 0.90 0.77
F8-LER+EOG(L) 62 0.92 0.50 0.84 0.70 0.91 0.77
F8-LER+EOG(R) 62 0.92 0.51 0.85 0.72 0.90 0.78
T3-LER+EOG(L) 62 0.92 0.50 0.85 0.72 0.91 0.78
F7-LER+EOG(L) 62 0.92 0.52 0.85 0.72 0.91 0.78
Oz-LER+EOG(R) 62 0.90 0.52 0.86 0.75 0.89 0.78
P3-LER+EOG(R) 62 0.89 0.51 0.88 0.78 0.87 0.78
F7-LER+EOG(R) 62 0.92 0.53 0.85 0.73 0.90 0.79
Fp2-LER+EOG(L) 62 0.91 0.53 0.85 0.73 0.90 0.79
Cz-LER+EOG(L) 62 0.92 0.52 0.85 0.73 0.90 0.79
Cz-LER+EOG(R) 62 0.91 0.52 0.86 0.74 0.90 0.79
T3-LER+EOG(R) 62 0.92 0.51 0.86 0.74 0.90 0.79
Oz-LER+EOG(L) 62 0.91 0.53 0.86 0.74 0.90 0.79
Fz-LER+EOG(L) 62 0.92 0.53 0.85 0.73 0.91 0.79
P3-LER+EOG(L) 62 0.89 0.51 0.88 0.77 0.88 0.79
Fz-LER+EOG(R) 62 0.91 0.53 0.85 0.74 0.90 0.79
Fp2-LER+EOG(R) 62 0.91 0.55 0.86 0.74 0.90 0.79
Pz-LER+EOG(L) 62 0.92 0.53 0.86 0.74 0.90 0.79
Pz-LER+EOG(R) 62 0.92 0.53 0.86 0.74 0.89 0.79
T6-LER+EOG(L) 62 0.91 0.52 0.87 0.75 0.90 0.79
T6-LER+EOG(R) 62 0.91 0.53 0.87 0.75 0.90 0.79
T4-LER+EOG(R) 62 0.91 0.55 0.87 0.76 0.88 0.79
F3-LER+EOG(L) 62 0.91 0.53 0.87 0.75 0.90 0.79
F3-LER+EOG(R) 62 0.91 0.54 0.87 0.76 0.90 0.79
T5-LER+EOG(L) 62 0.92 0.53 0.88 0.76 0.90 0.80
O1-LER+EOG(L) 62 0.92 0.53 0.88 0.76 0.90 0.80
T4-LER+EOG(L) 62 0.91 0.55 0.88 0.76 0.89 0.80
C4-LER+EOG(R) 62 0.91 0.56 0.88 0.76 0.88 0.80
F4-LER+EOG(L) 62 0.92 0.54 0.88 0.76 0.90 0.80
T5-LER+EOG(R) 62 0.92 0.54 0.88 0.77 0.89 0.80
F4-LER+EOG(R) 62 0.92 0.55 0.88 0.77 0.89 0.80
P4-LER+EOG(R) 62 0.91 0.56 0.88 0.77 0.89 0.80
C4-LER+EOG(L) 62 0.91 0.55 0.88 0.77 0.89 0.80
O1-LER+EOG(R) 62 0.92 0.54 0.88 0.77 0.90 0.80
P4-LER+EOG(L) 62 0.91 0.55 0.88 0.77 0.89 0.80
Fp1-LER+EOG(R) 62 0.91 0.55 0.88 0.77 0.90 0.80
Fp1-LER+EOG(L) 62 0.91 0.55 0.88 0.76 0.90 0.80

Mean 0.91 0.53 0.86 0.74 0.90 0.79
Standard deviation 0 0.02 0.02 0.02 0.01 0.01

Majority vote 62 0.93 0.54 0.87 0.75 0.91 0.80
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Table D.22: SVUH - Test data - Channel-wise F1/dice scores (computed across subjects)

Records Wake N1 N2 N3 REM mean

C4-A1+EOG(L) 25 0.78 0.37 0.77 0.66 0.85 0.69
C3-A2+EOG(R) 25 0.80 0.36 0.80 0.79 0.86 0.72
C3-A2+EOG(L) 25 0.79 0.36 0.81 0.81 0.87 0.73
C4-A1+EOG(R) 25 0.80 0.38 0.81 0.81 0.86 0.73

Mean 0.79 0.37 0.80 0.77 0.86 0.72
Standard deviation 0 0.01 0.02 0.06 0.01 0.02

Majority vote 25 0.80 0.37 0.81 0.78 0.88 0.73

Table D.23: DOD-H - Test data - Channel-wise F1/dice scores (computed across subjects)

Records Wake N1 N2 N3 REM mean

FP2-F4+EOG2 25 0.83 0.47 0.85 0.79 0.89 0.77
FP2-F4+EOG1 25 0.83 0.48 0.85 0.80 0.89 0.77
FP1-F3+EOG2 25 0.84 0.50 0.85 0.79 0.90 0.78
FP1-F3+EOG1 25 0.83 0.51 0.86 0.80 0.91 0.78
FP1-M2+EOG1 25 0.88 0.56 0.83 0.74 0.92 0.79
FP1-M2+EOG2 25 0.88 0.55 0.83 0.76 0.91 0.79
FP1-O1+EOG1 25 0.88 0.57 0.83 0.76 0.90 0.79
F3-F4+EOG1 25 0.85 0.52 0.86 0.81 0.92 0.79
FP1-O1+EOG2 25 0.89 0.57 0.83 0.76 0.90 0.79
F3-M2+EOG1 25 0.88 0.58 0.83 0.75 0.93 0.79
F3-F4+EOG2 25 0.87 0.51 0.87 0.82 0.90 0.79
FP2-O2+EOG1 25 0.88 0.58 0.84 0.77 0.91 0.79
FP2-M1+EOG1 25 0.88 0.58 0.84 0.76 0.92 0.80
F3-O1+EOG1 25 0.89 0.58 0.84 0.76 0.91 0.80
FP2-M1+EOG2 25 0.89 0.59 0.84 0.76 0.92 0.80
F4-M1+EOG2 25 0.89 0.58 0.84 0.76 0.92 0.80
FP2-O2+EOG2 25 0.89 0.59 0.84 0.76 0.91 0.80
F3-M2+EOG2 25 0.88 0.58 0.85 0.77 0.92 0.80
F4-O2+EOG1 25 0.89 0.58 0.84 0.78 0.91 0.80
F4-M1+EOG1 25 0.88 0.59 0.85 0.77 0.92 0.80
C3-M2+EOG1 25 0.87 0.59 0.85 0.77 0.92 0.80
F4-O2+EOG2 25 0.89 0.59 0.85 0.77 0.91 0.80
F3-O1+EOG2 25 0.90 0.60 0.85 0.78 0.92 0.81
C3-M2+EOG2 25 0.88 0.58 0.86 0.79 0.93 0.81

Mean 0.87 0.56 0.85 0.77 0.91 0.79
Standard deviation 0 0.04 0.01 0.02 0.01 0.01

Majority vote 25 0.91 0.60 0.87 0.79 0.94 0.82
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Table D.24: DOD-O - Test data - Channel-wise F1/dice scores (computed across subjects)

Records Wake N1 N2 N3 REM mean

C3-M2+EOG2 55 0.88 0.51 0.81 0.70 0.88 0.76
F3-M2+EOG2 55 0.88 0.50 0.82 0.69 0.91 0.76
C4-M1+EOG1 55 0.89 0.51 0.83 0.71 0.89 0.77
F3-M2+EOG1 55 0.88 0.50 0.83 0.70 0.92 0.77
C4-M1+EOG2 55 0.87 0.50 0.84 0.71 0.91 0.77
F3-F4+EOG2 55 0.85 0.47 0.86 0.74 0.91 0.77
C3-M2+EOG1 55 0.89 0.51 0.83 0.71 0.90 0.77
F3-O1+EOG2 55 0.87 0.49 0.84 0.73 0.91 0.77
F4-O2+EOG2 55 0.87 0.49 0.84 0.73 0.92 0.77
F4-O2+EOG1 55 0.88 0.50 0.84 0.72 0.91 0.77
F3-F4+EOG1 55 0.87 0.47 0.86 0.74 0.92 0.77
F3-O1+EOG1 55 0.88 0.49 0.85 0.73 0.92 0.77
O1-M2+EOG2 55 0.87 0.49 0.85 0.76 0.89 0.77
O2-M1+EOG1 55 0.88 0.50 0.85 0.76 0.89 0.78
O1-M2+EOG1 55 0.88 0.50 0.86 0.76 0.90 0.78
O2-M1+EOG2 55 0.87 0.50 0.86 0.77 0.90 0.78

Mean 0.88 0.50 0.84 0.73 0.91 0.77
Standard deviation 0 0.01 0.01 0.03 0.01 0.01

Majority vote 55 0.90 0.52 0.86 0.74 0.92 0.79
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Appendix for Manuscript F

F.1 U-Sleep v1 on original and corrected datasets

Fiorillo, Monachino, et al. (2023) discovered that the U-Time code repository (https://github.c

om/perslev/U-Time) versions 1.0.1 and prior contained a logical error in a function responsible

for loading EDF/EDF+ datafiles (resolved as of April 2022) making the original U-Sleep v1 model

(Perslev, Darkner, et al. 2021) simultaneously trained on both standard (i.e., as suggested by the

AASM guidelines and the International 10-20 system) and non-standard EEG and EOG channel

derivations. Interestingly, this effect was not initially discovered because it has minimal impact on

model performance. See Fiorillo, Monachino, et al. (2023) and Supplementary Table F.1, which

compares U-Sleep v1 on the original dataset and the dataset considered in this present study, which

removed the atypical channel derivations.

The unintentional data loading would cause data to be loaded from EDF/EDF+ files where the

ordering of returned channels would match that of the loaded file instead of the order requested

as per parameters passed to the loading function. This mismatch between the intended and actual

function had the following effects on the training of the U-Sleep v1 model:

• For datasets that stored original raw recordings in EDF/EDF+ formatted files, the package

U-Time either:

1. Loaded the expected EEG and EOG channels. This occurred for all files where the channel

order in the file matched the requested channel order.

2. Loaded randomly ordered channels (but consistently ordered for all studies in a dataset).

For example, two EEGs or an EEG and an EOG might have been loaded incorrectly in

the wrong order.

3. Loaded unexpected and atypical channel derivations such as C3-C4, M1-M2, C3-EOG etc.

This sometimes occurred when raw signals were stored without derivations as separate

channels (e.g., C3, C4, M1, M2, ...).

4. A combination of 1 – 3 with some correct channels and some incorrect.

• The U-Sleep v1 model was trained simultaneously on combinations of correctly and incorrectly

loaded data, where the incorrectly loaded data itself varied as described above. However, the
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set of loaded channels was consistent across all sleep studies within a given dataset that stored

identical and similarly ordered channels in their raw files. This was the case for most studies,

as most studies within a dataset were collected under similar protocols.

• For studies where channel data were incorrectly loaded (fully or partially), the randomized

channel selection routine used to train the U-Sleep v1 model would select random combinations

of inputs from these wrongly ordered and/or derived channels in each training iteration.

Consequently, the U-Sleep v1 model was trained on complex and varied input channel modalities

and derivations. Although the primary objective of the original training setup was indeed to train the

model on diverse and complex inputs to improve robustness and generalization, the intended design

at least ensured that the model would always observe exactly 1 EEG and 1 EOG (in that order) of

standard derivations according to, for example, the 10-20 system. Instead, the above-described data

loading mechanism forced the model to learn to solve the task using typical and atypical inputs.

Importantly, the unintentional data loading did not significantly influence the U-Sleep v1 evalu-

ation results presented in Perslev, Darkner, et al. (2021) because:

• The presented evaluation scores were correct in that they demonstrate the performance of U-

Sleep v1 on a wide range of datasets computed across channels that can be obtained using the

utime software package version 1.0.0 or lower. That is, while some of the input channel types

and combinations contributing to the majority scores were atypical from a human expert point

of view, they are easily and consistently obtainable in practice and, thus, from a practical and

machine learning point of view, equally valid for evaluation as compared to any other set of

channels. Supplementary Table F.1 shows a direct comparison of U-Sleep v1 on the original

and corrected datasets.

• The most central evaluation, the comparison of U-Sleep v1 with human experts from a pre-

viously unseen clinic on the datasets DOD-H (healthy controls) and DOD-O (sleep-disordered

patients), was completely unaffected.

Consequently, all general model performance and robustness statements in Perslev, Darkner, et

al. (2021) hold.

The feasibility of this approach is interesting and surprising from a medical sleep point of view.

One would expect the type and consistency of input channel modalities and derivations to play a cen-

tral role in ensuring robust model performance. However, it shows that sleep staging is possible based

on simpler representations of brain activity that are detectable from single EEG and EOG channels

of atypical and variable derivations and that automatic models can perform sleep staging without
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relying on, e.g., AASM guidelines. See Fiorillo, Monachino, et al. (2023) for further discussions and

results.

F.1.1 U-Sleep v1 Performance on corrected Data

The U-Sleep v1 model was evaluated on both the original dataset and corrected dataset. In other

words, the U-Sleep v1 model, which was trained on the original dataset containing partly miss-

configured channel types and derivations, was applied as-is without further training on the original

and corrected testing datasets. These results are shown in Supplementary Table F.1.

All performance metrics computed on the original dataset are identical to those of Perslev, Dark-

ner, et al. (2021). When evaluated on the corrected dataset, some metrics did not change (as rounded

to 2 decimal places) either because the original and updated data are identical (i.e., this data was

not affected) or because the model performed equally well using either the original or updated data.

Considering the median per-subject F1 scores, the U-Sleep v1 model performed significantly worse

on stages Wake, N1, N2, REM and Macro F1 (P < 0.001 for all) and indifferent on N3 (P = 0.405).

This is expected because the model was trained on the atypical channel derivations and, therefore,

likely to perform slightly better on those exact inputs. However, the absolute median differences

were small (< 0.01 – 0.02 for all), indicating similar performance and an ability to score using highly

variable inputs.

The consensus-scored datasets DOD-H and DOD-O were unaffected. The performance of U-Sleep

v1 in Table 11.2 and Figure 11.1 of the main paper are therefore identical to those listed in Perslev,

Darkner, et al. (2021).

F.2 Detailed U-Sleep v2 (EOG) model results

A single-channel EOG model was also developed to support the niche setting where no EEG data is

available and to study the feasibility of sleep staging based only on EOG data. Supplementary Table

F.3 shows its majority vote performance compared to the U-Sleep v2 model. On average, the single-

channel EOG model performed slightly below the U-Sleep v2 model with a weighted mean ±1 STD

macro F1 scores of 0.77± 0.04 vs 0.79± 0.04 and per-subject median ±1 MAD scores of 0.75± 0.07

vs 0.77± 0.07 (W = 388560, P < 0.001). Similarly, the dual-channel model performed better on all

stages Wake, N1, N2, N3 and REM (P < 0.001 for all). However, all absolute performance differences

were below 0.03 points, and the EOG-only model scored REM nearly as well as the dual-channel

model (weighted mean global macro F1 of 0.89 vs 0.90, implying that the EOG-only model was

equally able to separate tonic REM stages from Wake.

On the multi-scored DOD-H dataset, U-Sleep v2 (EOG) scored worse than U-Sleep v2 (N = 25,

0.77 ± 0.10 vs 0.80 ± 0.08, medians 0.81 vs 0.82, W = 73, P = 0.01) but indifferent from the best
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human expert (Expert 3, 0.79 ± 0.06, median 0.80, W = 140, P = 0.56). On the DOD-O dataset, it

scored similarly to U-Sleep v2 (N = 55, 0.76± 0.10 vs 0.76± 0.11, medians 0.79 vs 0.80, W = 625,

P = 0.23) and similar to the best human expert (Expert 5, 0.74 ± 0.11, median 0.77, W = 597,

P = 0.15).

Supplementary Table F.5 shows the performance of U-Sleep v2 (EOG) on the DCSM dataset

(N = 39 test-split PSGs) when scoring using two individual EOG channels compared to the majority

voted hypnogram generated using both channels. The table shows per-subject and per-stage statistics

(mean, STD, min, max, median and IQR statistics over F1 scores). As observed for the U-Sleep v2

(EEG) model in the main paper, the majority voted hypnograms are more accurate and should be

used when available, but single-channel predictions can produce accurate hypnograms nonetheless.

For instance, U-Sleep v2 (EOG) scored with a mean ±1 STD across macro F1 scores of 0.76± 0.10

and median 0.79 using only the { E1-M2 } channel compared to 0.77 ± 0.09, median 0.80 for the

majority voted (N = 2 channels) hypnograms (W = 140, P < 0.001). Refer to Supplementary Table

F.5 for similar metrics on specific stages and the { E2-M2 } channel.

F.3 Effect of filtering pre-processing

Figure F.1 shows the results of the band-pass filtering experiment. The performance of the U-Sleep

v2 model on N = 36 test-set sleep studies from the HPAP dataset was evaluated after pre-processing

the EEG and EOG input data with various band-pass filtering settings. The mean performance was

highest when scoring on raw, un-filtered inputs, with a grand mean F1 score of 0.78. Applying a

low-pass filter with an upper bandpass edge of 70.0Hz or 35.0 Hz had no negative influence on mean

performance (0.78 and 0.78, respectively), indicating that U-Sleep v2 did not require information

from frequency components higher than 35 Hz to score stages for this dataset. However, applying a

low-pass filter at 17.5Hz significantly reduced mean performance to an F1 score of 0.72. Performance

dropped on all five stages, most severely on the N1 stage (from 0.46 to 0.35) and least severely on

stage N2 (from 0.84 to 0.81). These results show that frequency components between 17.5 Hz and

35.0 Hz were necessary for optimal scoring of all stages.

High-pass filtering of the data at 0.3 Hz lowered mean performance from 0.78 to 0.75, driven

primarily by a drop in N1 and Wake stage accuracy (from 0.46 to 0.40 and from 0.92 to 0.89, re-

spectively). While increasing the lower bandpass edge to 1.0 Hz further decreased mean performance

to 0.71, it had no further negative effect on stage Wake performance but led to a significant drop in

performance on all stages N1, N2, N3 and REM. As a sanity check, a high-pass filter at 3.0 Hz was

also applied, which reduced model accuracy on the slow-wave N3 stage to nearly 0, as the model

predicted no N3 stage sleep for most studies in this setting. As expected, this result shows that the
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Figure F.1: Filtering experiments. Shown scores are F1/Dice scores computed on summed confusion
matrices across all N = 36 subjects in the HPAP test set.

model relied on slow-wave frequency components in the 0.5 Hz – 2Hz range as defined by the AASM

scoring rules (Iber et al. 2007) to score stage N3.

Applying both a lower- and upper-frequency cut-off had an approximately additive negative influ-

ence on overall model performance, and applying the 0.3 Hz – 35 Hz band-pass filter as recommended

by the AASM guidelines (Iber et al. 2007) reduced mean performance from the initial F1 score of

0.78 to 0.75. These experiments suggest that raw EEG and EOG inputs may be preferred when

using U-Sleep on new data, although the optimal filtering pre-processing may be dataset-specific.
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Type Dataset Records Wake N1 N2 N3 REM Mean

In
te

rn
al

-
T
ra

in
/T

es
t

ABC 20 0.89 0.53 → 0.42 0.84 → 0.83 0.72 → 0.730.72 → 0.730.72 → 0.73 0.90 → 0.910.90 → 0.910.90 → 0.91 0.78 → 0.76
CCSHS 78 0.97 0.62 → 0.61 0.91 0.88 → 0.87 0.93 → 0.92 0.86
CFS 92 0.96 0.52 0.88 0.84 → 0.81 0.91 → 0.90 0.82 → 0.81
CHAT 128 0.96 0.64 → 0.60 0.87 → 0.85 0.90 → 0.88 0.90 → 0.89 0.85 → 0.84
DCSM 39 0.98 0.47 0.86 0.83 0.88 0.81
HPAP 36 0.92 → 0.91 0.48 → 0.43 0.84 → 0.83 0.78 → 0.77 0.90 0.78 → 0.77
MESA 100 0.95 0.59 → 0.46 0.87 → 0.85 0.65 → 0.720.65 → 0.720.65 → 0.72 0.89 0.79 → 0.77
MROS 134 0.96 → 0.95 0.46 → 0.44 0.87 → 0.86 0.68 → 0.690.68 → 0.690.68 → 0.69 0.88 → 0.87 0.77 → 0.76
PHYS 100 0.84 0.60 0.84 0.81 0.87 0.79
SEDF-SC 23 0.93 0.57 0.86 0.71 0.88 → 0.87 0.79
SEDF-ST 8 0.80 0.58 → 0.54 0.88 0.64 → 0.650.64 → 0.650.64 → 0.65 0.91 0.76
SHHS 140 0.95 → 0.94 0.51 → 0.50 0.87 0.76 → 0.770.76 → 0.770.76 → 0.77 0.91 0.80
SOF 68 0.96 0.45 → 0.460.45 → 0.460.45 → 0.46 0.86 0.77 → 0.76 0.92 0.79

H
ol

d-
O

ut

ISRUC-SG1 100 0.90 → 0.88 0.52 → 0.50 0.79 0.77 → 0.780.77 → 0.780.77 → 0.78 0.88 → 0.890.88 → 0.890.88 → 0.89 0.77
ISRUC-SG2 16 0.85 → 0.83 0.49 → 0.500.49 → 0.500.49 → 0.50 0.78 0.83 → 0.82 0.86 0.76
ISRUC-SG3 10 0.91 → 0.87 0.55 → 0.560.55 → 0.560.55 → 0.56 0.78 0.74 0.85 → 0.860.85 → 0.860.85 → 0.86 0.77 → 0.76
MASS-C1 53 0.94 0.41 → 0.39 0.81 0.61 0.88 0.73
MASS-C3 62 0.93 0.54 → 0.50 0.87 → 0.85 0.75 → 0.73 0.91 0.80 → 0.78
SVUH 25 0.82 → 0.81 0.37 → 0.34 0.81 0.78 → 0.820.78 → 0.820.78 → 0.82 0.88 0.73
DOD-H 25 0.92 0.60 0.87 0.79 0.94 0.82
DOD-O 55 0.90 0.52 0.86 0.74 0.92 0.79

Mean (weighted) 0.93 0.53 → 0.51 0.86 → 0.85 0.77 0.90 → 0.89 0.80 → 0.79
STD (weighted) 0.04 0.07 0.03 0.08 → 0.070.08 → 0.070.08 → 0.07 0.02 0.03

Per subject median 0.95 → 0.94 0.53 → 0.51 0.87 → 0.86 0.80 0.92 → 0.91 0.78
Per subject MAD 0.03 → 0.04 0.10 → 0.11 0.04 0.11 0.04 0.06

Pairs w. diff ̸= 0, n 1076 1063 1090 1007 1018 1092
Wilcoxon, W 196520 182205 208825 246072 211377 224917

P -value < 0.001 < 0.001 < 0.001 0.405 < 0.001 < 0.001

Table F.1: U-Sleep v1 channel-wise majority vote F1 score performance on original (left numbers in
each cell) and corrected (right numbers in each cell) data (see Supplementary Materials section A
for details). The layout and statistics of this table mirror that of Table 11.1 in the main paper to
which we refer for details.
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Table F.2: Channel-wise majority vote sleep staging performance comparisons of U-Sleep v2 (left
numbers in each cell) and U-Sleep v2 (EEG) (right numbers in each cell). The layout and statistics
of this table mirror that of Table 11.1 in the main paper, to which we refer for details, with the
exception that performance on all datasets in this table was included in the summary statistics and
test computations.

Type Dataset Records Wake N1 N2 N3 REM Macro F1

In
te

rn
al

-
T
ra

in
/T

es
t

ABC 20 0.90 0.62 → 0.53 0.84 → 0.83 0.73 → 0.69 0.92 → 0.91 0.80 → 0.77
CCSHS 78 0.97 0.64 → 0.650.64 → 0.650.64 → 0.65 0.92 0.89 0.93 0.87
CFS 92 0.96 0.53 → 0.52 0.89 0.86 → 0.85 0.92 → 0.91 0.83 → 0.82
CHAT 128 0.97 → 0.96 0.63 → 0.60 0.87 0.90 0.91 0.85
DCSM 39 0.99 → 0.97 0.55 → 0.51 0.86 → 0.83 0.83 → 0.82 0.91 → 0.89 0.83 → 0.80
HPAP 36 0.92 → 0.930.92 → 0.930.92 → 0.93 0.46 → 0.43 0.84 0.75 0.91 → 0.90 0.78 → 0.77
MESA 100 0.95 → 0.960.95 → 0.960.95 → 0.96 0.59 → 0.55 0.87 → 0.86 0.70 → 0.66 0.91 → 0.89 0.80 → 0.78
MROS 134 0.96 0.44 0.87 → 0.86 0.72 → 0.71 0.89 → 0.88 0.78 → 0.77
PHYS 100 0.84 → 0.82 0.57 → 0.51 0.85 → 0.84 0.79 → 0.78 0.88 0.79 → 0.77
SEDF-SC 23 0.93 → 0.92 0.57 → 0.56 0.86 → 0.870.86 → 0.870.86 → 0.87 0.76 → 0.800.76 → 0.800.76 → 0.80 0.88 → 0.86 0.80
SEDF-ST 8 0.81 → 0.850.81 → 0.850.81 → 0.85 0.60 → 0.53 0.89 → 0.87 0.66 → 0.64 0.90 → 0.920.90 → 0.920.90 → 0.92 0.77 → 0.76
SHHS 140 0.94 0.51 → 0.50 0.87 0.77 → 0.73 0.91 0.80 → 0.79
SOF 68 0.96 0.45 → 0.470.45 → 0.470.45 → 0.47 0.86 0.77 → 0.75 0.92 → 0.91 0.79
WSC 218 0.89 → 0.900.89 → 0.900.89 → 0.90 0.53 → 0.52 0.90 0.61 → 0.620.61 → 0.620.61 → 0.62 0.90 → 0.89 0.77 → 0.76
STAGES 89 0.82 → 0.840.82 → 0.840.82 → 0.84 0.37 → 0.35 0.81 0.69 0.81 0.70
NCHSDB 102 0.89 0.38 → 0.36 0.86 → 0.85 0.90 → 0.89 0.83 0.77 → 0.76

H
ol

d-
O

ut

ISRUC-SG1 100 0.90 → 0.910.90 → 0.910.90 → 0.91 0.50 → 0.46 0.78 0.72 → 0.760.72 → 0.760.72 → 0.76 0.90 → 0.88 0.76
ISRUC-SG2 16 0.85 → 0.890.85 → 0.890.85 → 0.89 0.49 → 0.46 0.76 → 0.770.76 → 0.770.76 → 0.77 0.74 → 0.770.74 → 0.770.74 → 0.77 0.87 → 0.85 0.74 → 0.750.74 → 0.750.74 → 0.75
ISRUC-SG3 10 0.90 → 0.920.90 → 0.920.90 → 0.92 0.57 → 0.56 0.74 → 0.750.74 → 0.750.74 → 0.75 0.62 → 0.640.62 → 0.640.62 → 0.64 0.86 → 0.870.86 → 0.870.86 → 0.87 0.74 → 0.750.74 → 0.750.74 → 0.75
MASS-C1 53 0.94 0.36 → 0.380.36 → 0.380.36 → 0.38 0.81 → 0.820.81 → 0.820.81 → 0.82 0.61 → 0.620.61 → 0.620.61 → 0.62 0.90 → 0.89 0.72 → 0.730.72 → 0.730.72 → 0.73
MASS-C3 62 0.93 0.50 → 0.550.50 → 0.550.50 → 0.55 0.86 → 0.880.86 → 0.880.86 → 0.88 0.74 → 0.770.74 → 0.770.74 → 0.77 0.92 → 0.91 0.79 → 0.810.79 → 0.810.79 → 0.81
SVUH 25 0.81 0.29 → 0.330.29 → 0.330.29 → 0.33 0.81 → 0.79 0.86 → 0.74 0.89 → 0.87 0.73 → 0.71
DOD-H 25 0.90 0.62 → 0.60 0.88 → 0.920.88 → 0.920.88 → 0.92 0.82 → 0.890.82 → 0.890.82 → 0.89 0.93 0.83 → 0.850.83 → 0.850.83 → 0.85
DOD-O 55 0.90 → 0.910.90 → 0.910.90 → 0.91 0.51 → 0.48 0.89 → 0.88 0.78 → 0.790.78 → 0.790.78 → 0.79 0.93 → 0.89 0.80 → 0.79

DCSM-N 82 0.97 0.48 → 0.45 0.84 0.80 → 0.810.80 → 0.810.80 → 0.81 0.88 0.80 → 0.79
DCSM-PLM 41 0.98 0.45 → 0.43 0.84 → 0.83 0.76 → 0.75 0.90 0.79 → 0.78
DCSM-RBD 34 0.96 → 0.95 0.42 → 0.38 0.82 → 0.80 0.70 0.81 → 0.76 0.74 → 0.72
DCSM-PD 24 0.95 0.35 → 0.33 0.67 → 0.700.67 → 0.700.67 → 0.70 0.60 → 0.660.60 → 0.660.60 → 0.66 0.65 → 0.670.65 → 0.670.65 → 0.67 0.65 → 0.660.65 → 0.660.65 → 0.66
DCSM-RBD-PD 31 0.90 → 0.89 0.29 → 0.28 0.68 → 0.67 0.55 → 0.610.55 → 0.610.55 → 0.61 0.57 → 0.44 0.60 → 0.58

Mean (weighted) 0.92 0.50 → 0.48 0.85 0.75 0.89 → 0.87 0.78
STD (weighted) 0.05 → 0.040.05 → 0.040.05 → 0.04 0.09 → 0.080.09 → 0.080.09 → 0.08 0.05 0.09 0.06 → 0.07 0.05

Per subject median 0.93 0.51 → 0.49 0.87 0.78 0.91 → 0.90 0.77 → 0.76
Per subject MAD 0.05 0.12 0.04 0.13 → 0.14 0.04 → 0.05 0.07

Pairs w. diff ̸= 0, n 1906 1891 1921 1771 1833 1933
Wilcoxon, W 810105 672535 879098 725634 607209 822175

P -value < 0.001 < 0.001 0.071 0.006 < 0.001 < 0.001



APPENDIX F. APPENDIX FOR MANUSCRIPT F 292

Table F.3: Channel-wise majority vote sleep staging performance comparisons of U-Sleep v2 (left
numbers in each cell) and U-Sleep v2 (EOG) (right numbers in each cell). The layout and statistics
of this table mirror that of Table 11.1 in the main paper, to which we refer for details, with the
exception that performance on all datasets in this table was included in the summary statistics and
test computations.

Type Dataset Records Wake N1 N2 N3 REM Macro F1

In
te

rn
al

-
T
ra

in
/T

es
t

ABC 20 0.90 → 0.88 0.62 → 0.55 0.84 → 0.83 0.73 → 0.69 0.92 → 0.90 0.80 → 0.77
CCSHS 78 0.97 0.64 → 0.60 0.92 → 0.91 0.89 → 0.88 0.93 → 0.92 0.87 → 0.85
CFS 92 0.96 0.53 → 0.50 0.89 → 0.88 0.86 → 0.84 0.92 → 0.91 0.83 → 0.82
CHAT 128 0.97 → 0.96 0.63 → 0.60 0.87 → 0.86 0.90 → 0.89 0.91 → 0.90 0.85 → 0.84
DCSM 39 0.99 → 0.97 0.55 → 0.49 0.86 → 0.85 0.83 → 0.71 0.91 → 0.89 0.83 → 0.78
HPAP 36 0.92 → 0.90 0.46 0.84 → 0.81 0.75 → 0.73 0.91 → 0.90 0.78 → 0.76
MESA 100 0.95 0.59 → 0.54 0.87 → 0.86 0.70 → 0.68 0.91 0.80 → 0.79
MROS 134 0.96 → 0.95 0.44 → 0.40 0.87 → 0.85 0.72 → 0.65 0.89 0.78 → 0.75
PHYS 100 0.84 → 0.83 0.57 → 0.590.57 → 0.590.57 → 0.59 0.85 → 0.83 0.79 → 0.78 0.88 → 0.87 0.79 → 0.78
SEDF-SC 23 0.93 → 0.90 0.57 → 0.48 0.86 → 0.83 0.76 → 0.66 0.88 → 0.86 0.80 → 0.74
SEDF-ST 8 0.81 → 0.79 0.60 → 0.53 0.89 → 0.85 0.66 → 0.42 0.90 → 0.89 0.77 → 0.70
SHHS 140 0.94 → 0.93 0.51 → 0.45 0.87 → 0.86 0.77 → 0.76 0.91 0.80 → 0.78
SOF 68 0.96 0.45 → 0.39 0.86 → 0.85 0.77 → 0.74 0.92 0.79 → 0.77

WSC 218 0.89 → 0.87 0.53 → 0.50 0.90 → 0.89 0.61 → 0.57 0.90 0.77 → 0.74
STAGES 89 0.82 → 0.830.82 → 0.830.82 → 0.83 0.37 → 0.36 0.81 → 0.820.81 → 0.820.81 → 0.82 0.69 → 0.700.69 → 0.700.69 → 0.70 0.81 0.70 → 0.710.70 → 0.710.70 → 0.71
NCHSDB 102 0.89 0.38 → 0.36 0.86 → 0.85 0.90 → 0.89 0.83 0.77

H
ol

d-
O

ut

ISRUC-SG1 100 0.90 → 0.84 0.50 → 0.46 0.78 → 0.77 0.72 → 0.750.72 → 0.750.72 → 0.75 0.90 → 0.88 0.76 → 0.74
ISRUC-SG2 16 0.85 → 0.79 0.49 → 0.45 0.76 0.74 → 0.790.74 → 0.790.74 → 0.79 0.87 → 0.86 0.74 → 0.73
ISRUC-SG3 10 0.90 → 0.86 0.57 → 0.54 0.74 → 0.770.74 → 0.770.74 → 0.77 0.62 → 0.740.62 → 0.740.62 → 0.74 0.86 → 0.85 0.74 → 0.750.74 → 0.750.74 → 0.75
MASS-C1 53 0.94 → 0.93 0.36 → 0.430.36 → 0.430.36 → 0.43 0.81 → 0.820.81 → 0.820.81 → 0.82 0.61 0.90 → 0.89 0.72 → 0.740.72 → 0.740.72 → 0.74
MASS-C3 62 0.93 → 0.91 0.50 → 0.520.50 → 0.520.50 → 0.52 0.86 → 0.84 0.74 → 0.71 0.92 → 0.91 0.79 → 0.78
SVUH 25 0.81 → 0.79 0.29 → 0.28 0.81 → 0.80 0.86 → 0.75 0.89 → 0.88 0.73 → 0.70
DOD-H 25 0.90 → 0.83 0.62 → 0.53 0.88 → 0.87 0.82 → 0.840.82 → 0.840.82 → 0.84 0.93 0.83 → 0.80
DOD-O 55 0.90 → 0.89 0.51 → 0.48 0.89 → 0.87 0.78 → 0.76 0.93 0.80 → 0.79
DCSM-N 82 0.97 0.48 → 0.43 0.84 0.80 0.88 0.80 → 0.79
DCSM-PLM 41 0.98 0.45 → 0.43 0.84 → 0.83 0.76 → 0.74 0.90 → 0.910.90 → 0.910.90 → 0.91 0.79 → 0.78
DCSM-RBD 34 0.96 → 0.95 0.42 0.82 → 0.78 0.70 → 0.64 0.81 → 0.77 0.74 → 0.71
DCSM-PD 24 0.95 → 0.94 0.35 → 0.33 0.67 0.60 → 0.55 0.65 → 0.58 0.65 → 0.62
DCSM-RBD-PD 31 0.90 → 0.930.90 → 0.930.90 → 0.93 0.29 → 0.320.29 → 0.320.29 → 0.32 0.68 0.55 → 0.49 0.57 → 0.53 0.60 → 0.59

Mean (weighted) 0.92 → 0.91 0.50 → 0.47 0.85 → 0.84 0.75 → 0.73 0.89 → 0.88 0.78 → 0.77
STD (weighted) 0.05 0.09 → 0.080.09 → 0.080.09 → 0.08 0.05 → 0.040.05 → 0.040.05 → 0.04 0.09 → 0.11 0.06 0.05

Per subject median 0.93 → 0.92 0.51 → 0.47 0.87 → 0.86 0.78 → 0.76 0.91 0.77 → 0.75
Per subject MAD 0.05 → 0.06 0.12 → 0.110.12 → 0.110.12 → 0.11 0.04 → 0.05 0.13 → 0.15 0.04 0.07

Pairs w. diff ̸= 0, n 1909 1889 1918 1761 1820 1933
Wilcoxon, W 531146 568069 598905 571044 651190 510951

P -value < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001
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Table F.4: Single-channel per-subject F1 scores for all N = 39 test-split PSGs of the DCSM dataset
scored using the U-Sleep v2 (EEG) model. Each hypnogram was scored using only a single EEG
channel at a time (i.e., without the typical majority voting across channels). Statistics shown are
mean, standard deviation, minimum and maximum, median (Q2) and inter-quartile range (Q3 −
Q1) over the per-subject scores. Sub-table (a) shows similar statistics computed on majority-voted
hypnograms across all six channels for reference.

(a) Majority voted (N = 6 channels) for comparison

Stage Mean STD Max Min Median IQR

Wake 0.97 0.12 1.00 0.25 0.99 0.01
N1 0.51 0.13 0.78 0.24 0.53 0.18
N2 0.84 0.12 0.95 0.33 0.88 0.09
N3 0.71 0.29 1.00 0.00 0.83 0.27
REM 0.87 0.13 0.97 0.36 0.91 0.09
Macro 0.78 0.09 0.93 0.54 0.82 0.11

(b) C3-M2

Stage Mean STD Max Min Median IQR

Wake 0.96 0.13 1.00 0.19 0.98 0.01
N1 0.49 0.13 0.71 0.20 0.52 0.16
N2 0.84 0.12 0.94 0.31 0.88 0.06
N3 0.68 0.30 1.00 0.00 0.82 0.28
REM 0.85 0.17 0.97 0.30 0.89 0.08
Macro 0.76 0.11 0.90 0.34 0.80 0.11

(c) C4-M1

Stage Mean STD Max Min Median IQR

Wake 0.98 0.01 1.00 0.92 0.98 0.01
N1 0.50 0.13 0.73 0.24 0.49 0.18
N2 0.84 0.09 0.94 0.58 0.87 0.08
N3 0.68 0.29 1.00 0.00 0.79 0.26
REM 0.87 0.13 0.98 0.38 0.90 0.08
Macro 0.78 0.08 0.90 0.58 0.80 0.12

(d) F3-M2

Stage Mean STD Max Min Median IQR

Wake 0.96 0.13 1.00 0.15 0.99 0.02
N1 0.47 0.14 0.75 0.15 0.49 0.19
N2 0.83 0.12 0.94 0.32 0.87 0.11
N3 0.68 0.30 0.97 0.00 0.84 0.28
REM 0.85 0.17 0.97 0.13 0.91 0.10
Macro 0.76 0.11 0.92 0.38 0.79 0.13

(e) F1-M2

Stage Mean STD Max Min Median IQR

Wake 0.96 0.11 1.00 0.28 0.99 0.02
N1 0.48 0.14 0.68 0.15 0.49 0.14
N2 0.83 0.12 0.94 0.33 0.87 0.12
N3 0.68 0.30 0.96 0.00 0.83 0.26
REM 0.86 0.13 0.99 0.41 0.90 0.10
Macro 0.76 0.08 0.90 0.58 0.78 0.12

(f) O1-M2

Stage Mean STD Max Min Median IQR

Wake 0.96 0.14 1.00 0.14 0.99 0.02
N1 0.48 0.13 0.74 0.19 0.50 0.17
N2 0.80 0.12 0.93 0.33 0.83 0.13
N3 0.66 0.30 1.00 0.00 0.79 0.39
REM 0.80 0.19 0.97 0.03 0.87 0.11
Macro 0.74 0.11 0.91 0.42 0.77 0.14

(g) O2-M1

Stage Mean STD Max Min Median IQR

Wake 0.96 0.13 1.00 0.15 0.99 0.02
N1 0.47 0.14 0.73 0.19 0.50 0.21
N2 0.80 0.12 0.94 0.29 0.81 0.14
N3 0.66 0.30 1.00 0.00 0.78 0.39
REM 0.81 0.19 0.97 0.17 0.89 0.14
Macro 0.74 0.12 0.92 0.26 0.76 0.14
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Table F.5: Single-channel per-subject F1 scores for all N = 39 test-split PSGs of the DCSM dataset
scored using the U-Sleep v2 (EOG) model. Each hypnogram was scored using only a single EOG
channel at a time (i.e., without the typical majority voting across channels). Statistics shown are
mean, standard deviation, minimum and maximum, median (Q2) and inter-quartile range (Q3 −
Q1) over the per-subject scores. Sub-table (a) shows similar statistics computed on majority-voted
hypnograms across all six channels for reference.

(a) Majority voted (N = 6 channels) for comparison

Stage Mean STD Max Min Median IQR

Wake 0.96 0.12 1.00 0.21 0.98 0.02
N1 0.50 0.11 0.68 0.21 0.53 0.18
N2 0.85 0.08 0.95 0.59 0.87 0.08
N3 0.67 0.29 1.00 0.00 0.81 0.32
REM 0.88 0.12 0.99 0.42 0.92 0.07
Macro 0.77 0.09 0.90 0.52 0.80 0.10

(b) E1-M2

Stage Mean STD Max Min Median IQR

Wake 0.96 0.13 1.00 0.20 0.98 0.02
N1 0.47 0.11 0.65 0.14 0.50 0.15
N2 0.84 0.09 0.95 0.59 0.86 0.09
N3 0.64 0.32 1.00 0.00 0.81 0.38
REM 0.87 0.14 0.99 0.35 0.92 0.07
Macro 0.76 0.10 0.88 0.51 0.79 0.15

(c) E2-M2

Stage Mean STD Max Min Median IQR

Wake 0.96 0.08 1.00 0.50 0.98 0.02
N1 0.50 0.12 0.68 0.23 0.53 0.21
N2 0.84 0.08 0.94 0.57 0.85 0.08
N3 0.65 0.29 1.00 0.00 0.78 0.40
REM 0.87 0.11 0.98 0.57 0.91 0.10
Macro 0.76 0.08 0.89 0.57 0.78 0.11
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Figure F.2: REM latencies computed from predicted majority-voted hypnograms of U-Sleep v2
(EEG) (left) and U-Sleep v2 (EOG) (right) correlated against observed REM latencies computed
from expert annotated hypnograms. Pearson’s correlation coefficient, r, is indicated above each
plot, along with the number of likely wrongly predicted SO-REMs (dots within the lower red box
of each plot; here defined as observations where the observed REM latency was at least 60 minutes
while the predicted latency was at most 10 minutes.). Both U-Sleep v2 (EEG) and U-Sleep v2
(EOG) performed REM latency estimation less accurately than the U-Sleep v2 with a lower general
correlation and more wrongly predicted SO-REMs (see Figure 11.2.
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Figure F.3: Context predicitons on N = 39 test-split sleep studies from the DCSM dataset for models
U-Sleep v1, U-Sleep v2 (EEG) and U-Sleep v2 (EOG). See also Figure 11.5 for a similar plot for the
U-Sleep v2 model and additional methodological details.
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Figure F.4: Context Example 3. In this example, the central epoch and four proceeding epochs
were removed from both input channels to the U-Sleep v2 model, which must score the epochs based
only on distant neighbouring information. Notably, the model predicted a natural transition from
the preceding Wake periods (for which information was available) to the preceding N2 epoch (for
which information was available) via a transient N1 stage. However, the exact timing and length of
the N1 transition were not correctly inferred. Note also that the confidence approximately linearly
transitions from Wake to N1 to N2 within the region of missing data with intermediate N1 confidence.
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Figure F.5: Context Example 4. The three central-most epochs were replaced by noise in both input
channels to the U-Sleep v2 model, which could correctly infer the most likely transition from N2 to
Wake based on contextual information only. Note also that the model assigns increased confidence
to stage N1 immediately before the Wake stage, indicating a possible preference for scoring the
transition N2 → N1 → Wake over the direct N2 → Wake.
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Figure F.6: Context Example 5. The central epoch was replaced by noise in both input channels to
the U-Sleep v2 model. Despite the transition from a preceding period of stable N3 sleep directly to
Wake occurring exactly at the epoch of missing information, the model correctly scored the transition
based on the proceeding information, which indicates Wake stages.
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Figure F.7: Context Example 6. The central three epochs were replaced by noise in both input
channels to the U-Sleep v2 model. In this example, a long stable period of REM sleep is easily
scored by the model (with high REM stage confidence) despite the lack of 1.5 minutes of input data,
because both pre- and proceeding information indicates a stable REM period.
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(a) Hypnogram with highest observed macro F1-score (record Sub104).
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(b) Hypnogram with macro F1-score nearest dataset median (record N0043).
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(c) Hypnogram with lowest observed macro F1-score (record Sub125).

Figure F.8: Highest, nearest median and lowest scoring (majority voted) hypnograms observed across
dataset DCSM-N. Black hypnograms were predicted by U-Sleep, and red hypnograms are human expert
annotations. F1 scores for each stage are shown to the right. Note that these unweighted per-subject
F1 scores are noisy and may be misleading if the human annotator scores only a few instances of a
given stage.
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(a) Hypnogram with highest observed macro F1-score (record PLM117).
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(b) Hypnogram with macro F1-score nearest dataset median (record PLM101).
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(c) Hypnogram with lowest observed macro F1-score (record PLM122). The missing areas of the
expert’s hypnogram indicate that a stage was not assigned, making the computed F1 scores highly
variable with small changes in the numbers of correctly or wrongfully predicted stages for the classes
with few ground truth instances.

Figure F.9: Highest, nearest median and lowest scoring (majority voted) hypnograms observed across
dataset DCSM-PLM. Black hypnograms were predicted by U-Sleep, and red hypnograms are human
expert annotations. F1 scores for each stage are shown to the right. Note that these unweighted
per-subject F1 scores are noisy and may be misleading if the human annotator scores only a few
instances of a given stage.
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(a) Hypnogram with highest observed macro F1-score (record RBD097).
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(b) Hypnogram with macro F1-score nearest dataset median (record RBD059).
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(c) Hypnogram with lowest observed macro F1-score (record RBD089). The missing areas of the
expert’s hypnogram indicate that a stage was not assigned, making the computed F1 scores highly
variable with small changes in the numbers of correctly or wrongfully predicted stages for the classes
with few ground truth instances.

Figure F.10: Highest, nearest median and lowest scoring (majority voted) hypnograms observed
across dataset DCSM-RBD. Black hypnograms were predicted by U-Sleep, and red hypnograms are
human expert annotations. F1 scores for each stage are shown to the right. Note that these un-
weighted per-subject F1 scores are noisy and may be misleading if the human annotator scores only
a few instances of a given stage.
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(a) Hypnogram with highest observed macro F1-score (record RBD-PD-050).
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(b) Hypnogram with macro F1-score nearest dataset median (record RBD-PD094).
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(c) Hypnogram with lowest observed macro F1-score (record RBD-PD-012).

Figure F.11: Highest, nearest median and lowest scoring (majority voted) hypnograms observed
across dataset DCSM-RBD-PD. Black hypnograms were predicted by U-Sleep, and red hypnograms
are human expert annotations. F1 scores for each stage are shown to the right. Note that these
unweighted per-subject F1 scores are noisy and may be misleading if the human annotator scores
only a few instances of a given stage.
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Figure F.12: Confusion matrix for U-Sleep v2 at different staging frequencies as applied to the entire
set of N = 2499 PSGs across all validation- and test-set splits. Each row corresponds to the five
sleep stages derived by human experts in 30-second intervals. The sum of confidence scores output
by the model corresponding to each of the five sleep stages within the conditional segments is plotted
in each of the five columns. Each boxplot within a single cell figure represents scores computed at
different staging frequencies (from left to right: 1/30 Hz, 1/6 Hz, 1 Hz and 5 Hz). For instance, in
the diagonal cells, boxplots show the sum of confidence scores at different frequencies that the model
assigns to the human expert’s derived stage within windows of 30 seconds. The plot in the second
cell in the first row shows confidence that the model assigns to stage N1 across all windows scored
as Wake by human experts. Boxplot show minimum, Q1, median, Q3 and maximum values (outliers
not separately plotted for visual clarity).
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Figure F.13: Visual representations of data in Table 11.3. Shows sleep stage durations as a function
of staging frequency for human annotators and U-Sleep v2 and corresponding test/re-test Pearson’s
correlation r values for stage duration estimates made by different annotators.
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Figure F.14: Spatial sleep scoring divergence (dis-similarity) experiment using the U-Sleep v2 (EEG)
model. Each number shows the mean epoch-wise Jensen-Shannon divergence (JSD) measure between
the probability-like confidence score outputs of the model made in a pair of channels at different
frequencies. Higher numbers (darker red) indicate that predictions were more diverging (i.e., less
similar) on average. All N = 853 validation- and test-set PSGs with all channels available were
used. Note that the colour bar is capped to the range [0, 0.13] to highlight differences, although the
mean JSD measure in this experiment, in principle, could take a maximum value of log 2 ≈ 0.693 if
orthogonal predictions were made in all epochs in all PSGs.
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(a) Example 2. Mean JSD cross-correlation experiment for one randomly selected PSG and pair of EEG
channels (O1-M2 and F3-M2, with common E1-M2). The lowest JSD at lag 0 seconds indicate that the two
sequences were most similar when not shifted relative to each other, i.e., there was no fixed lag effect
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(b) Example 2. Mean JSD cross-correlation experiment for one randomly selected PSG and pair of EEG
channels (O2-M1 and C3-M2, with common E1-M2). The lowest JSD at lag 0 seconds indicate that the two
sequences were most similar when not shifted relative to each other, i.e., there was no fixed lag effect.

Figure F.15: Cross-correlation-like experiment measuring the mean Jensen-Shannon Divergence (see
Methods) between two predicted sleep staging sequences at 5Hz using the U-Sleep v2 model shifted
by ±60 seconds relative to each other. The experiment showed that the JSD is minimized in nearly
all cases at shift 0, i.e., no shift, indicating no fixed lag effect between the two predicted sequences.
Two randomly selected examples are shown above.
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