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P R E FA C E

This document is a Ph.D. Thesis – a thesis submitted to obtain the degree of Ph.d.

(Philosophiae Doctor) in the Danish academic system. It is form and function equiva-

lent to a Doctor of Philosophy in English-speaking countries, or the title of Dr. rer. nat. in

Germany.

I conducted the majority of the work presented here as a Ph.D. student in Denmark

between 2020 and 2023. Danish Ph.D. programs are, in comparison to programs in other

countries, relatively short. The danish program is limited to a duration of 3 years, which

includes half a year of coursework, a half-year stay at a foreign research institution, and

half a year of duty hours in the form of teaching and administrative work.

This thesis documents and discusses my research in the field of Deep Learning and

Medical Imaging, with a special focus on image registration and the registration of images

whose topology is not the same. The first part of the thesis offers a summary, which

provides a high-level introduction to the topic. Chapter two gives a summary of this thesis’

contributions to science. Chapter three gives a brief conclusion of each work and provides

perspectives for further research.

As this thesis is a cumulative one as opposed to a monograph, the second part of this

document contains five papers either published or currently under review. All attached

papers are self-contained and can be read in any order. Some projects were published in

multiple versions, for example first as a workshop paper, then a conference paper, and

finally a journal paper. In these cases, only the most comprehensive and recent version is

included in this thesis.
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A B S T R A C T

Deformable image registration, or the nonlinear alignment of images, is a fundamental

preprocessing tool in medical imaging. Existing registration methods regularize this ill-

posed problem by the assumption of a common topology across all images. Images are

assumed to be one-to-one deformations of a common reference template. However, this

assumption is frequently violated in the real world, especially among populations requiring

medical intervention, where the physical anatomy can differ from a common template due

to tumors or surgical resections. In such cases, the same-image assumption is often accepted

as unavoidable, leading to imprecise registration and inaccuracies in the subsequent analysis.

This is especially troubling as medical imaging tools are most often used to process the

non-standard anatomies of patients requiring treatment, not healthy reference populations.

Over the last few years, deep learning methods have enabled fundamentally new ap-

proaches to image registration. Unsupervised learning-based registration models have

achieved performance on par with classical algorithms while being many times faster.

However, current deep-learning-based registration is still based on the one-to-one matching

of images, thus suffering from the same shortcomings under a change of anatomy.

This thesis explores new opportunities enabled by deep learning to overcome the same-

image assumption, such as implicitly inferring a solution from observed data with an

unsupervised probabilistic approach and informing the optimization with semantic image

representations. However, adopting deep learning to medical imaging also introduces new

challenges. The thesis contributes to the open research questions of selecting a suitable

model architecture for image registration, quantifying model uncertainty in the presence of

annotator variability, and training few-shot models in a clinical research environment.

These strands of work combine into an unsupervised model for detecting anatomical

differences alongside the registration step. The model highlights areas where the registration

is inadequate due to violations of the same-image assumption, indicating where further

care has to be taken in the analysis and downstream processing. This is an important

milestone toward a fully topology-aware image registration and an essential building block

toward a deformable registration pipeline for images with differences in anatomy.
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A B S T R A C T ( D A N I S H )

Deformerbar billedregistrering, eller den ikke-lineære justering af billeder, er et grundlæggende

forbehandlingsværktøj inden for medicinsk billedanalyse. Dette probelm er ikke velde-

fineret og regulariseres af eksisterende registreringsmetoder ved at antage en fælles topologi

på tværs af alle billeder, også kaldet “samme-billede-antagelsen”. Billeder antages således

at være en-til-en-deformationer af en fælles referenceskabelon. Denne antagelse bliver

dog ofte overtrådt i den virkelige verden, især blandt befolkninger, der kræver medicinsk

intervention, hvor den fysiske anatomi kan afvige fra en almindelig skabelon på grund af

tumorer eller kirurgiske resektioner. I sådanne tilfælde anses samme-billede-antagelsen ofte

som uundgåelig, hvilket fører til upræcis registrering og unøjagtigheder i den efterfølgende

analyse. Dette er især bekymrende, da medicinske billedbehandlingsværktøjer oftest bruges

til at behandle de ikke-standardiserede anatomier hos patienter, der kræver behandling og

ikke sunde referencepopulationer.

Gennem de sidste par år har metoder baseret på deep learning muliggjort fundamentalt

nye tilgange til billedregistrering. Uovervågede læringsbaserede registreringsmodeller har

opnået ydeevne på niveau med klassiske algoritmer, samtidig med at de er mange gange

hurtigere. Den nuværende deep-learning-baserede registrering er dog stadig baseret på

en-til-en-matchning af billeder, og lider således af de samme mangler ved en ændring af

anatomi.

Denne afhandling udforsker de nye muligheder som brugen af deep learning har givet til

at overvinde samme-billede-antagelsen, såsom implicit at udlede en løsning fra observerede

data med en uovervåget probabilistisk tilgang og informere optimeringen med semantiske

billedrepræsentationer. Imidlertid introducerer brugen af deep learning til medicinsk

billeddannelse også nye udfordringer. Afhandlingen bidrager til besvarelsen af de åbne

forskningsspørgsmål vedrørende valg af en passende modelarkitektur til billedregistrering,

kvantificering af modelusikkerhed ved tilstedeværelse af annotatorvariabilitet samt træning

af few-shot-modeller i et klinisk forskningsmiljø.

Disse forskellige spor kombineres i en uovervåget model til påvisning af anatomiske

forskelle ved siden af registreringstrinnet. Modellen fremhæver områder, hvor billedreg-

istreringen er utilstrækkelig på grund af overtrædelser af samme-billede-antagelsen, og

angiver, hvor der skal udvises yderligere omhu ved efterfølgende analyse og behandling.
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Dette er en vigtig milepæl i retning af billedregistrering, som er fuldt opmærksom på

fuldt topologi, og er en væsentlig byggesten mod en deformerbar registreringspipeline for

billeder med forskelle i anatomi.
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Part I

S U M M A RY



1

I N T R O D U C T I O N

Medical imaging encompasses multiple image acquisition and processing technologies that

are used to view inside a living organism in order to diagnose, monitor, or treat medical

conditions. Common medical imaging methods used millions of times a day to improve

patient outcomes include X-ray, Ultrasound, CT, and MRI scanning.

Computational methods are an essential component of medical imaging for both image

acquisition and analysis. The raw data recorded by CT and MRI scans require extensive

computational processing to be displayed as an image interpretable by humans. Many

medical imaging methods produce vast amounts of visual data, either in the form of

dense three-dimensional images, or video sequences, that are time-intensive, costly, and

error-prone to inspect manually. The computational processing and analysis of medical

images help doctors to find important signals in the data, help patients by providing a

better-informed treatment, and help medical researchers to find patterns across studies

involving thousands of patients.

A common pre-processing step for many processing pipelines is image registration.

Image registration aligns two or more images to a common space. It can be used to rigidly

overlay x-ray images recorded months apart or to track the complex deformation patterns

of the lung during a breathing cycle with dozens of images recorded over a few seconds.

A long-standing problem in deformable image registration is the registration of images

whose topology or anatomy is not the same. Deformable image registration methods

regularize the over-parameterized problem by assuming the images to be registered show

the same anatomy. However, this “same-topology assumption” is often violated in medical

imaging applications. The topology of the body can change through various processes, such

as tumor growth, surgical resections, and the movement of fluids, and image registration

algorithms have to be able to cope with these changes.

In paper 3, this thesis provides a step towards the accurate registration of images where

the same-topology assumption is violated, by proposing a model to detect local violations

alongside the registration step. Papers 1 and 2 lead up to this contribution, investigating
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loss functions and model architectures for image registration. Papers 4 and 5 are supporting

papers that explore related questions in medical imaging, namely the handling of annotation

and model uncertainty, and the use of few-shot models in a clinical research environment

with limited computational resources and expertise.

Following, I give a high-level introduction to image registration, the same-topology

assumption, and related challenges in medical imaging. Detailed introductions to each

topic are provided in the introduction sections of the included papers. In chapter 2, I

highlight the scientific contributions of each of the five papers. Finally, chapter 3 provides a

summary and perspectives for further research.

1.1 image registration

Image registration aligns two or more images through a geometric transformation on the

image domain. Frequently used registration methods differ in their choice of geometric

transformation, with rigid or affine registration limiting the transformation to the basic

operations of translation, scale, rotation, and perspective changes (Szeliski, 2006). A wider

range of motions can be modeled by non-linear transformations used in deformable image

registration, which allow almost unrestricted and independent displacement of any point

within the continuous image domain (Vercauteren et al., 2008; Arsigny et al., 2006). This

non-linearity allows for the registration of complex movements found in the biomedical

domain, such as deforming tissue or morphological shape changes. An example of a

registration using affine and diffeomorphic transformations is shown in fig. 1.

Registration methods can further be divided into intensity-based (Balakrishnan et al.,

2019; Avants et al., 2008) and landmark or keypoint-based (Younes, 2010; Hansen and

Heinrich, 2021) methods. Intensity-based registration operates directly on the images and

aims to match the pixel intensity values at all locations of the registered images. Keypoint-

based methods first extract points of interest from the images and then aim to align the key

points of both images.

I will further focus on deformable, intensity-based image registration.

1.1.1 Image registration framework

Most intensity-based deformable image registration frameworks model the problem as

finding a transformation Φ : ΩT → ΩS that aligns a moving source image IS : ΩS → Rd

into the coordinate system of a fixed target image IT : ΩT → Rd. The domain of the images
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(a) Moving image IS (b) Target image IT

(c) Affinely registered image IS ◦ Φaffine (d) Deformably registered image IS ◦ Φ

Figure 1: Example of a registration obtained with two transformation models. The moving image
(a) is registered to the target image (b) using an affine transformation shown in (c) and a
deformable, diffeomorphic transformation shown in (d). Figures from Guyader (2019).

is denoted by ΩS, ΩT ⊆ Rn, with n = 2 for 2-dimensional images or n = 3 for volumetric

images. The morphed moving image, obtained by application of the transformation via

function composition, is denoted as IS ◦ Φ.

The dissimilarity between the target and the morphed source image is expressed with

a suitable distance measure D : IT × IM → R. the mapping Φ ∈ G is often chosen to be a

field of dense displacement vectors, resulting in an over-parameterized model with multiple

optimal solutions. To favor smooth transitions that avoid folds or gaps, a regularization

term R : G → R is used. The optimal transformation Φ∗ is found by minimizing the loss

function

Φ∗ = argmin
Φ

D(IS ◦ Φ, IT) + R(Φ) . (1)

Most non-learned deformable registration algorithms iteratively optimize eq. (1) for each

image pair (IS, IT) (Vercauteren et al., 2007; Faisal Beg et al., 2005; Avants et al., 2008).
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Deep-learning-based image registration models instead train a parameterized model fθ ,

which predicts a transformation conditioned on the moving and fixed image as

Φθ = fθ(IS, IT) . (2)

The optimal parameters θ∗ are found by minimizing eq. (1) on a dataset of image pairs D as

θ∗ = argmin
θ

∑
(IS,IT)∈D

[
D(IS ◦ Φθ , IT) + R(Φθ)

]
, (3)

which forms the training objective of the model. Applying a transformation to an image

can be implemented efficiently and differentiably with regards to both inputs by a spatial

transformer module (Jaderberg et al., 2015). The optimization of fθ follows standard

neural-network training techniques.

1.1.2 The same-topology assumption

To simplify the over-parameterized estimation of the transformation in eq. (1), the trans-

formation is often constrained to be diffeomorphic, that is, bijective and continuously

differentiable in both directions. In particular, diffeomorphic transformations are home-

omorphic, or topology-preserving, which implies that a common topology is assumed

across all images (Grenander and Miller, 1998; Faisal Beg et al., 2005). This relationship is

formalized by a common template image Itemplate, from which all other images are obtained

via a transformation Φ from the group of diffeomorphisms G. Under this common topology

assumption, the set of all images is given by

I = {Itemplate ◦ Φ|Φ ∈ G} .

In practice, this same-topology assumption is routinely violated. For example, when nat-

ural images are registered, occlusions and temporal changes introduce non-diffeomorphic

changes to the image (Wang et al., 2018). In biomedical image registration, the assumption

is violated when the studied anatomy differs from the "standard" anatomy, for example

through pathologies or surgical intervention (Nielsen et al., 2019). As a result, most de-

formable registration methods can not register areas of images where the same-topology

assumption is violated, potentially introducing bias in downstream analysis.
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Figure 2: A source image (left) is registered to a target image (right). The same-topology assumption
is violated by the teeth of the person, which alters the image topology. A diffeomorphic
registration (middle) can not register this change in topology. As a consequence, the month
is registered with strong local deformations, and parts of the lower lip is registered to the
teeth. Example from Nielsen et al. (2019).

1.1.3 Violations of the same-topology assumption

An example of what happens when the same-topology assumption is violated in natural

images is shown in fig. 2. The teeth of the woman in the target image are altering the image

topology, and there is no fitting match for them in the source image. But a diffeomorphic

transformation needs to be fully bijective and differentiable. As a result, the lips are

registered to the teeth, with strong local deformations. This registration introduces both a

wrong match (lips to teeth) and unnatural strong deformations (stretched lips). To obtain a

correct match, the closed lips would have to be registered to the open lips, and the teeth do

not have a match in the source image. However, such a transformation is not compatible

with a diffeomorphism, as the transformation is no longer bijective and continuous.

1.2 deep learning in medical imaging

Many challenges to the application of deep-learning-based image registration models in

medical practice are shared by the larger research field of medical image analysis. Medical

image analysis is a subfield of computer vision, focusing on the computational processing

and analysis of images created in a medical context. While the vision tasks in medical

imaging are similar to the ones in general computer vision, additional challenges inherent

to the domain distinguish medical image analysis methods and research from the larger

computer vision community. These challenges are:

1. Data availability: High cost of data acquisition, patient privacy, limited data sharing.

2. Annotation availability: High cost of annotating data, high annotation-variability.
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3. Image size: Large size of volumetric images limit parameter count and network

complexity.

4. Accountability: Understanding the accuracy, reliability, fairness, reasoning, and

uncertainty of methods is essential to inform medical treatment.

Many concepts in medical image analysis are an adaptation of general computer vision

concepts but give special attention to these challenges unique to the medical domain.

1.2.1 Annotation and model uncertainty

In many medical imaging applications, the solution is often ambiguous, and sometimes

multiple solutions to a problem can be correct. When asked individually, a group of doctors

frequently disagrees in their assessment and labeling of a condition (Codella et al., 2019).

This introduces uncertainty into the medical imaging model, and is a challenge for model

evaluation.

Next to annotator variability, uncertainty can be introduced at multiple stages of the

processing chain: Image acquisition methods can introduce noise (Quay et al., 2018), and

the approximation models we build to perform a prediction can introduce uncertainty, often

as a result of limited training data (Nguyen et al., 2019). Sources of uncertainty are often

split into the uncertainty present in the data and annotations, called aleatoric uncertainty,

and the uncertainty introduced by the model, called epistemic uncertainty. Understanding

and quantifying uncertainty and variability are important steps toward analyzing deep

learning models and their predictions.

1.2.2 Multi-task and few-shot models

A drawback of most deep-learning-based approaches is that each model is limited to solving

the task it has been trained on, on the data it has been trained on. Yet, medical imaging

contains a lot of different tasks and biomedical images from many domains, while the

availability of computational resources, human expertise, and annotated data for training

dedicated models for each setting is limited. In practice, this is a barrier to the adoption of

deep learning methods, and classical algorithmic approaches to image segmentation and

registration remain common in medical practice (Li et al., 2020).
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Multi-Task Learning (MTL) models attempt to alleviate this problem by solving multiple

prediction tasks with a single model. It exploits similarities between related tasks, thus

achieving synergistic effects (Caruana et al., 1997). MTL can improve performance, lower

data requirements, and reduce computational cost compared to designing task-specific

solutions (Evgeniou and Pontil, 2004; Sener and Koltun, 2018). In medical imaging, MTL

networks are frequently used to solve multiple prediction tasks on the same input image,

for example simultaneous segmentation and classification of an image (Gupta et al., 2021;

Díaz-Pernas et al., 2021).

Few-shot models attempt to lower the data requirement of adopting a deep learning

model to a new task. They infer predictions from just a few labeled examples provided at

test-time (Ravi and Larochelle, 2017; Wang et al., 2020; Liu et al., 2019b; Schonfeld et al.,

2019). Several methods pass a query image, along with an additional set of support images

and labels as input to the model to inform a prediction (Bian et al., 2022; Feyjie et al., 2020;

Feng et al., 2021). For example, few-shot image segmentation methods (Liu et al., 2020;

Zhang et al., 2019b) use single image-label pairs (Zhang et al., 2019a; Li et al., 2021) as

support, thus requiring as little as one annotated image for segmenting an image of a

pre-trained domain.



2

S C I E N T I F I C C O N T R I B U T I O N S

After giving a general introduction to the topics of this thesis, this section summarizes the

scientific contributions of each paper. The core contributions are grouped into three areas,

shown in fig. 3. Papers 1 and 2 are on challenges in general image registration, leading

up to paper 3 on the detection of topological changes alongside the registration. Paper

4 investigates uncertainty quantification with applications in image segmentation, which

inspired the approach in paper 3. Paper 5, written during my stay at the Martinos Center,

proposes a novel method for few-shot, multi-task generalization.

Medical Imaging
Image Registration Uncertainty Quantification

Few-shot Learning

Paper 1

Paper 2

Paper 3

Paper 4

Paper 5

Figure 3: The presented papers are categorized into the areas of image registration, uncertainty
quantification, and few-shot learning.

2.1 paper 1 : a semantic similarity metric for image registration

Image registration models find correspondences between images. Most algorithmic and

deep learning-based methods solve the registration problem by the minimization of a

loss function consisting of a similarity metric and a regularization term encuraging the

smoothness of the transformation. The similarity metric is essential to the optimization, as

it judges the quality of the match between registered images and has a strong influence on

the result.
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Pixel-based similarity metrics like euclidean distance and patch-wise cross-correlation are

widely used within algorithmic and deep-learning-based image registration. These metrics

assume that if the image intensities are aligned, or strongly correlated, the images are well

aligned. This assumption can be incorrect if noise or contrast differences are present in

the data. Further shortcomings of pixel-based similarity metrics have been studied in the

image generation community, including my published master’s thesis (Czolbe et al., 2020).

In the wider computer vision community, pixel-based metrics have been superseded by

deep similarity metrics (Hou et al., 2017; Zhang et al., 2018).

Contribution

I propose a data-driven similarity metric for image registration based on the alignment

of learned, task-specific semantic features. The experimental results illustrate that the

method is robust toward image noise and achieves consistently favorable tradeoffs between

registration accuracy and transformation smoothness. I evaluate the method using deep-

learning-based image registration with U-Net (Ronneberger et al., 2015; Balakrishnan et al.,

2019) and Transformer models (Chen et al., 2022), and classical registration using the SyN

algorithm (Avants et al., 2008).

To learn filters of semantic importance to the dataset, I present both an unsupervised

approach using auto-encoders, and a semi-supervised approach using a segmentation

model. I use the learned features to construct a similarity metric used for training a

registration model, and validate my approach on three biomedical datasets of different

image modalities and applications.

Finally, I perform an extensive ablation study to evaluate the influence of individual

feature layers, model architectures, order of operations of the proposed loss, and the

possibility of using transfer learning in the absence of a dataset-specific semantic model. I

re-used this semantic similarity metric to great effect in paper 3.

2.2 paper 2 : model architectures for image registration

One consequence of introducing deep learning into image registration is the need to choose

an architecture for the model. While early works on applying deep learning to the image

registration problem stayed clear of exploring architectures (Yang et al., 2017; Balakrishnan

et al., 2019), instead mostly focusing on setting up the training objective and finding the

right representation of the transformation, the model architecture soon became another

factor to consider for optimizing learned registration methods.
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During my work on image registration, vision transformer models utilizing the atten-

tion mechanism came into prominence. When trained on large amounts of data, these

transformer models outperformed prior CNN-based networks (Chen et al., 2021a, 2022;

Wang and Delingette, 2021; Zhang et al., 2021). These papers argue that this performance

difference results from the transformers’ improved ability to accurately predict long-range

displacement vectors, something that CNN-based methods struggle with unless a hierarchi-

cal approach is taken (Hering et al., 2019; Liu et al., 2019a; Hu et al., 2019).

Contribution

In paper 2, I and my co-author provide the first experimental evaluation of this claim. We

find no evidence to support the claim.

We compare the U-Net-based Voxelmorph model (Balakrishnan et al., 2019) to two

adaptations of transformer models to image registration: the ViT-net (Dosovitskiy et al.,

2021) based approach titled “ViT-V-Net” (Chen et al., 2021a), and the shifted-window (Liu

et al., 2021) based approach titled “Transmorph” (Chen et al., 2022).

To allow for the evaluation of the registration accuracy as a function of displacement

length, we select a dataset with annotated keypoint coordinates for this study. We use the

“Learn2Reg: CT Lung Registration” dataset of 30 image pairs of inhaling and exhaling CT

thorax images (Hering et al., 2022). The key point annotations are only used for evaluation,

and not for training the models.

In the experimental evaluation, we find no evidence of the claim that transformers are

better than CNNs at registering long displacements. While the transformers outperformed

the CNN slightly on average registration error, we find this difference stemmed from a

more accurate registration of smaller displacements. On large displacements of > 20mm,

no statistically significant difference in registration performance was observed.

These results refute a common claim made in the registration transformer literature,

by providing the first experimental investigation into registration error by displacement

length. Since the paper was published, other works have further questioned the validity of

many of the claims made about transformer architectures over CNNs in computer vision

applications (Park and Kim, 2021; Liu et al., 2022). The findings of this paper informed and

validate my choice of network architecture in papers 1, 3, and 4.
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Image pair Unsupervised prediction

Topological change

Figure 4: In paper 3, I propose a model for the unsupervised detection of topological changes
alongside the registration. Left: Highlighted change of topology between two adjacent
slices of a 3d image. Right: Heatmap of the likelihood of topological changes predicted by
the unsupervised model.

2.3 paper 3 : detecting topological changes in image registration

A challenge in image registration is the alignment of domains whose topology is not the

same. This violates the same-image assumption laid out in the introduction. In biomedical

image registration, this problem can be caused by a variety of processes. For example,

when the studied anatomy differs from "standard" anatomy (Nielsen et al., 2019), image

slices obtained from a volume do not all contain the same elements, or after the surgical

removal of tissue. Despite being extremely common, this problem is routinely ignored or

accepted as inevitable, potentially introducing bias in downstream analysis.

Contribution

In paper 3, I propose an unsupervised algorithm for the detection of changes in image

topology. To achieve this, I train a conditional variational autoencoder for predicting

image-to-image alignment, obtaining a per-target-pixel probability of being obtained from

the moving image via diffeomorphic transformation. I combine the semantic loss function

from paper 1 with a learnable prior on the space of transformations (Dalca et al., 2018),

allowing me to incorporate both the reconstruction error, as well as knowledge about the

expected transformation strength. Following the learning of paper 2, the model is entirely

convolution based. An example is given in fig. 4.

I test the validity of my approach on a dataset of cell slices with annotated topological

changes and on the proxy task of unsupervised brain tumor detection. I also validate my

approach by investigating a spatial "topological inconsistency likelihood", and showing

that this likelihood is higher in regions where topological inconsistencies are known to be

common. My model is able to detect topological inconsistencies with a purely registration-
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z(i) ∼ pprior(z|x)

Prob. U-Net

Figure 5: Models for estimating segmentation uncertainty alongside the segmentation. Figure
adapted from Kohl et al. (2018). Blue: residual blocks (He et al., 2016). Orange: Dropout
layers (Srivastava et al., 2014) essential to the networks’ functionality.

driven framework, and thus allows me to know where the assumption of a common

topology is violated.

2.4 paper 4 : uncertainty in image segmentation

The deep-learning methods used in papers 1-3 rely on manual annotations of medical

images to train or evaluate the networks. Manual annotations are costly and time in-

tensive to obtain, and annotations obtained from different annotators often show large

variations (Armato III et al., 2011). In paper 4, I investigate how deep learning models

can learn from uncertain annotations and quantify uncertainty in their own predictions.

My co-author uses the uncertainty estimates as a sample selection strategy to reduce total

annotation needs with an active learning framework.

Contribution

To estimate the uncertainty along with the segmentation, multiple modifications to seg-

mentation networks have been proposed, shown in fig. 5. I evaluated a simple U-Net (Ron-

neberger et al., 2015), an ensemble of U-Nets, MC-Dropout (Gal, Yarin and Ghahramani,

2016) and the probabilistic U-Net (Kohl et al., 2018). While all these models are able to

estimate per-pixel uncertainty, the last three models are also able to also propose alternative

segmentation masks.

I investigate the degree to which the predicted uncertainty correlates with the error of the

prediction. I find that the uncertainty estimates of all models correlate strongly with both

segmentation errors and the uncertainty among a set of expert annotators. Surprisingly, the

model architecture used does not have a strong influence on the quality of estimates, with

even a simple U-Net giving good pixel-level uncertainty estimates.
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Mu co-author investigated the potential for uncertainty estimates to be used for selecting

samples for annotation in an active learning framework. We find that there are many

pitfalls to an uncertainty-based data selection strategy. For example, in an experiment with

multiple annotators, the images with the highest model uncertainty were precisely those

images where the annotators were also uncertain. Labeling these ambiguous images by a

group of expert annotators yielded conflicting ground truth annotations, providing little

certain evidence for the model to learn from, which meant that adding more samples of

those uncertain images could not reduce model uncertainty. A more differentiated view of

aleatoric and epistemic uncertainty (uncertainty stemming from the data and annotations,

instead of the model) might be necessary.

2.5 paper 5 : few-shot multi-task generalization for clinical research

While deep learning methods in medical imaging are more accurate and faster than classical

approaches, the adoption of deep learning within clinical research is hindered by the large

up-front investment and knowledge required to develop and train deep learning models.

This problem is amplified by the many processing tasks present in clinical research, and

image characteristics and quality vary depending on the image acquisition site and method.

The generalization of deep learning models to new tasks and domains, such as different

acquisition protocols or new segmentation targets, remains a barrier to adoption (Li et al.,

2020).

Each deep learning model is limited to solving the task it has been trained on, on the data

it has been trained on. Performing tasks like segmentation, registration, or reconstruction

require different models for each processing step, despite operating on the same input data

and methods exhibiting strong similarities in network architecture (Ronneberger et al., 2015;

Hoffmann et al., 2020; Billot et al., 2021). Yet, designing and training models to solve these

tasks in each application domain is expensive, and the resources required to do so – clinical

expertise, deep learning knowledge, large annotated datasets, and specialized graphics

processing hardware – are often not present.

Contribution

To remove the need for training or fine-tuning task or dataset-specific models in clinical

research, I introduce a general-purpose few-shot multi-task model that, given a set of

examples at inference, can solve a broad range of image processing tasks without the need

for task-specific training or fine-tuning.
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Figure 6: In clinical research, researchers have to solve a large range of image-processing tasks, often
on multiple input domains. As an example, the image pictures 8 tasks from a Brain-MRI
processing pipeline, covering images from multiple acquisition sites, modalities, and
protocols. Training dedicated machine learning models for each task and input modality
is infeasible, necessitating new solutions.

The model uses a novel model architecture, that takes as input a context set of examples to

inform the processing task, and thus does not require the prior definition of the tasks. The

method enables single-pass generalization during inference and can process any number of

reference images in a single pass to inform the prediction.

I apply the method to neuroimaging, where I solve 8 brain-MRI processing tasks across

images of 7 modalities with a single model and generalize with minimal loss in performance

to non-trained tasks. A representative set of tasks is given in fig. 6.

I evaluate the model by comparing its single-pass, multi-task generalization performance

to task-specific baselines conditioned on an equivalent amount of data. I find that the

method outperforms task-specific baselines on tasks where ≤ 32 labeled examples are

available, despite never training on the task. When generalizing across segmentation

protocols, the method matches the performance of baselines trained directly on the dataset.
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C O N C L U S I O N S A N D P E R S P E C T I V E S F O R F U RT H E R R E S E A R C H

In this chapter, I briefly summarize the main contribution of each paper in the context of

the larger research field and offer perspectives for further research directions.

3.1 image registration

In paper 1, I compare multiple similarity metrics for image registration, and propose a new,

semantic metric, utilizing dataset-specific learned features. My experiments differ from

most of the published work by evaluating the method on multiple datasets, and showing

improved performance on noisy data. The proposed method lays the groundwork for paper

3, where the use of this semantic similarity metric boosted performance by a large margin.

Similarity metrics for image registration are a well-established research field. Even

before deep learning was used for the registration, multiple works explored learning image

descriptors to drive algorithmic registration, often using a supervised approach (Haskins

et al., 2019; Cheng et al., 2018; Simonovsky et al., 2016). The work by Pielawski et al. (2020),

published parallel to mine, proposed a related approach using an unsupervised semantic

similarity metric. They extended their method to multimodal image registration, however,

their registration is performed by classical algorithmic method.

While each of these papers shows that deep similarity metrics can improve registration

using standard registration methods and limited datasets, the use of these metrics in image

registration competitions remains low (Hering et al., 2022). Combining the advanced and

often dataset-specific models winning these challenges with semantic similarity metrics is a

promising future avenue for increasing performance.

In paper 2, I and my co-author compare CNN and transformer-type architectures for

image registration networks. The paper was well received by the community, as it offers

a novel comparison of these architectures for image registration by evaluating error as a

16
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function of displacement length. Overall skepticism towards transformer models in the

vision community remains high. Park and Kim (2021) supports the finding that long-range

data dependency does not provide an observable advantage in practice. Liu et al. (2022)

show that well-designed CNNs can match, or even outperform, vision transformer models.

Finding and evaluating new model architectures for specific tasks remains a staple research

direction with plenty of opportunity to publish, but well-founded insights remain elusive

in this area.

In paper 3, I develop a novel way for the detection of local violations to the same-

image assumption, which is inherent to all fully diffeomorphic image registration models.

Currently, to treat violations to this assumption, piecewise diffeomorphic models use

explicit annotations (Nielsen et al., 2019; Li et al., 2012) or domain-specific, often supervised

modeling (Risser et al., 2013; Delmon et al., 2013; Pace et al., 2013; Chen et al., 2021b;

Schmidt-Richberg et al., 2012) of areas of topological change to exclude these areas from

the registration. My method improves on unsupervised and domain-independent detection

methods (Li and Wyatt, 2010) by a large margin, providing a building block towards the

first fully end-to-end trained piecewise-diffeomorphic registration model. Building such

a model remains an interesting research direction, however, compounding errors from

combining multiple error-prone methods, and the many degrees of freedom of such a

model remain a challenge.

3.2 deep learning in medical imaging

Papers 4 and 5 focus on more general problems in medical imaging.

In paper 4, I investigate uncertainty quantification methods for image segmentation and

my co-author attempts to use these uncertainty estimates as a sample selection strategy for

active learning. The experiments show that even a simple U-net is competitive for assessing

segmentation uncertainty as a proxy for likely segmentation error. Other comparison

studies come to a similar result (Jungo and Reyes, 2019). Using the uncertainty estimates

for active learning was unsuccessful, as the model would repeatedly select samples of high

data uncertainty, not high model uncertainty. Nguyen et al. (2019) argue that a future

research direction would be to separate aleatoric and epistemic uncertainty, and only use

the epistemic, model-induced uncertainty as a selection strategy.
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In paper 5, I proposed a novel model for rapid few-shot, single-pass, multi-task gen-

eralization to solve a wide range of medical imaging tasks in neuroimaging. The work

improves on prior multi-task models by solving more tasks than any prior publication in

the neuroimaging domain and requiring no prior definition of or training on the set of tasks.

The research was performed alongside Dalca and Others (2023), who continue to work

on the method to solve image segmentation for segmentation tasks across all biomedical

domains with a single model. As the first paper demonstrating the potential of this new

method, I made simplifying assumptions, such as affinely pre-aligning images, excluding

lesion segmentation from the scope of tasks, and performing the experiments on 2d slices.

More engineering, compute, and research is required to develop it into a product useable

by clinical researchers.
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A B S T R A C T

Image registration aims to find geometric transformations that align images. Most algo-
rithmic and deep learning-based methods solve the registration problem by minimizing
a loss function, consisting of a similarity metric comparing the aligned images, and
a regularization term ensuring smoothness of the transformation. Existing similarity
metrics like Euclidean Distance or Normalized Cross-Correlation focus on aligning pixel
intensity values or correlations, giving difficulties with low intensity contrast, noise, and
ambiguous matching. We propose a semantic similarity metric for image registration,
focusing on aligning image areas based on semantic correspondence instead. Our ap-
proach learns dataset-specific features that drive the optimization of a learning-based
registration model. We train both an unsupervised approach extracting features with an
auto-encoder, and a semi-supervised approach using supplemental segmentation data.
We validate the semantic similarity metric using both deep-learning-based and algorith-
mic image registration methods. Compared to existing methods across four different
image modalities and applications, the method achieves consistently high registration
accuracy and smooth transformation fields.

© 2023 Elsevier B. V. All rights reserved.

1. Introduction

Deformable registration, or nonlinear image alignment, is a
fundamental tool in medical imaging to capture local deforma-
tions or changes between images. Applications include tracking
disease progression (Yang et al., 2020; Castillo et al., 2013;
Nielsen et al., 2019), population analysis (LaMontagne et al.,
2019), co-registration of image modalities (Song et al., 2021;
Lee et al., 2019a), object tracking (Ulman et al., 2017), and
guiding of medical machinery (Trofimova et al., 2020). The reg-
istration model finds correspondences between a set of images
and derives a geometric transformation to align them. Most algo-
rithmic and deep learning-based methods solve the registration
problem by the minimization of a loss function consisting of a
similarity metric and a regularization term ensuring smoothness

∗Corresponding author. e-mail: per.sc@di.ku.dk (Steffen Czolbe)

of the transformation. The similarity metric is essential to the op-
timization; it judges the quality of the match between registered
images and has a strong influence on the result.

Pixel-based similarity metrics like euclidean distance and
patch-wise cross-correlation are well explored within algorith-
mic and deep-learning-based image registration. These metrics
assume that if the image intensities are aligned, or strongly cor-
related, the images are well aligned. Each choice of metric
adds additional assumptions on the characteristics of the specific
dataset. Thus, a common methodological approach is to trial reg-
istration models with multiple different pixel-based metrics, and
choose the metric performing best on the dataset (Balakrishnan
et al., 2019; Hu et al., 2019a).

The shortcomings of pixel-based similarity metrics have been
studied substantially in the image generation community (Hou
et al., 2017; Zhang et al., 2018), where they have been super-
seded by deep similarity metrics approximating human visual
perception. Here, image representations are commonly ex-
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tracted by neural networks pre-trained on image-classification
tasks (Deng et al., 2009). Performance can be further improved
by fine-tuning the representation to human perception (Czolbe
et al., 2020; Zhang et al., 2018). These representation-based
deep similarity metrics have improved the visual quality of im-
ages generated with variational auto-encoders considerably. As
image registration is a conditional generative problem (Dalca
et al., 2018a; Czolbe et al., 2021b), we propose to apply deep
similarity metrics within image registration to achieve a similar
increase in performance for registration models.

Contributions. We propose a data-driven similarity metric for
image registration based on the alignment of learned, task-
specific semantic features. The experimental results illustrate
that the method is robust toward image noise and achieves con-
sistently favorable tradeoffs between registration accuracy and
transformation smoothness. We evaluate the method using deep-
learning based image registration with U-Nets (Ronneberger
et al., 2015; Balakrishnan et al., 2019) and Transformers (Chen
et al., 2022), and classical registration using the SyN algorithm
of the ANTS package (Avants et al., 2008b).

To learn filters of semantic importance to the dataset, we
present both an unsupervised approach using auto-encoders, and
a semi-supervised approach using a segmentation model. We
use the learned features to construct a similarity metric used
for training a registration model, and validate our approach
on four biomedical datasets of different image modalities and
applications. For both methods and across all datasets, our
method achieves consistently high registration accuracy and
smooth transformation fields.

Finally, we perform an extensive ablation study to evaluate
the influence of individual feature layers, model architectures,
order of operations of the proposed loss, the possibility of using
transfer learning in the absence of a dataset-specific semantic
model, and the robustness toward noise in the images.

Previous prublications. Part of this work has been published at
the Medical Imaging with Deep Learning (MIDL) conference
(Czolbe et al., 2021c). This journal release contains an extended
experimental evaluation, a fourth dataset, deeper discussion, and
a broadened background section. We demonstrate the applicabil-
ity of our method using the recently published state-of-the-art
transformer TransMorph, and the well-established SyN algo-
rithm. In addition, the popular similarity metrics of mutual
information (Studholme et al., 1999) and MIND-SSC (Hein-
rich et al., 2013b), further called MIND, have been included as
baselines in all experiments. A new ablation study section dis-
cusses multi-task pre-training, demonstrates transfer learning in
the absence of a dataset-specific semantic feature extractor, and
provides insights into multi-level feature learning by evaluating
how different levels contribute to the registration accuracy. A
new experiment confirms the robustness of our metric towards
image noise.

2. Background & related work

2.1. Image registration

Intensity-based image registration frameworks model the prob-
lem as finding a transformation Φ : Ω→ Ω that aligns a moving
image I : Ω → R to a fixed image J : Ω → R. The morphed
source image, obtained by applying the transformation, is ex-
pressed by function composition as I◦Φ. The domain Ω denotes
the set of all coordinates x ∈ Rd within the image1. Images
record intensity at discrete pixel-coordinates p but can be viewed
as a continuous function by interpolation. The optimal transfor-
mation is found by minimization of a similarity metric D and a
λ-weighted regularizer R, expressed via the loss function

L(I, J,Φ) = D(I ◦ Φ, J) + λR(Φ) . (1)

The choice of similarity metric D is the main objective of this
paper, and common choices are discussed later. The regularizer
R is necessary as many non-linear transformation models are
over-parametrized, leading to many potential solutions. Smooth
transformation fields, that avoid folds or gaps, are assumed to be
physically plausible and encouraged by the regularizer (Leow
et al., 2007; Kabus et al., 2009). Implicit regularizers achieve
these properties by measuring the inverse consistency of the
transformation (Greer et al., 2021; Shen et al., 2019b), while
explicit regularizers operate on the displacement vector field
directly (Balakrishnan et al., 2019). We use the explicit diffusion
regularizer throughout this paper, which penalizes the spatial
gradients of the displacement field. The displacement field
u : Ω→ Rd of a discrete pixel-coordinate p is given by

Φ(p) = p + u(p) , (2)

and the diffusion regularizer thereon is defined as

R(Φ) =
∑

p∈Ω
‖∇u(p)‖2 , (3)

with ∇u(p) approximated via finite differences over the pixel
coordinates.

2.2. Registration methods

Many methods of optimizing Eq. (1) have been proposed, and
finding improved registration methods continues to be an active
area of research. The field can be grouped into 1. algorithmic
methods and 2. deep-learning-based methods.

1. Algorithmic methods optimize the objective for each pair
of images individually, resulting in slow registration when
many images have to be registered, for example in real-time
applications or large population studies. Yet, this approach

1While the domain Ω is continuous in Rd , recorded images and computations
thereon are discrete. For simplicity of notation, we denote both the continuous
and discrete domain as Ω. We implement

∑
p∈Ω as a vectorized operation over

the discrete pixel/voxel-coordinates and calculate |Ω| as the total count of discrete
pixels/voxels of the image. The transformation Φ is implemented as a map from
a discrete domain to a continuous one, and the sampling of continuous points
from a discrete image is implemented via bi-/tri-linear interpolation.
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does not require a large up-front investment into training
datasets and resources. Most algorithms follow an iterative,
gradient-descent-based approach. Some methods optimize
the transformation directly, such as elastic models (Bajcsy
and Kovačič, 1989; Davatzikos, 1997; Shen and Davatzikos,
2002), sparse parameterizations with b-splines (Rueckert
et al., 1999), and Demons (Thirion, 1998; Vercauteren et al.,
2007). Others parameterize intermediate transformation
steps to offer diffeomorphic guarantees on the transforma-
tion field, such as the Large Diffeomorphic Distance Metric
Mapping (LDDMM) algorithm (Faisal Beg et al., 2005)
and standard symmetric normalization (SyN) (Avants et al.,
2008b). Recent approaches follow a discrete optimization
scheme (Heinrich et al., 2013a, 2015) while in Siebert et al.
(2021), convex global optimization is combined with a lo-
cal gradient-based instance refinement using an adaptive
optimizer.

2. With the emergence of deep neural networks, model- and
learning-based techniques for image registration are an area
of active research. Compared to the algorithmic approach,
deep-learning-based registration models are trained on a
large dataset, necessitating a longer training time and a
large collection of training images. However, after training
is completed, inferring a transformation from the model is
magnitudes faster than the algorithmic counterparts. Early
works use supervised approaches, requiring ground-truth
transformation fields (Yang et al., 2017; Krebs et al., 2017;
Haskins et al., 2019). As these are often infeasible to attain,
most contemporary works employ unsupervised or semi-
supervised approaches by optimizing objective (1) directly.
The dominant network architecture are fully-convolutional
neural networks (CNNs), often in a U-Net configuration
(Balakrishnan et al., 2019; Hu et al., 2019b; Hoopes et al.,
2021). Various modifications, such as multi-level archi-
tectures (de Vos et al., 2019; Liu et al., 2019; Hu et al.,
2019a; Mok and Chung, 2020, 2021; Shen et al., 2019a;
Zhao et al., 2019), probabilistic models (Dalca et al., 2018b;
Czolbe et al., 2021b), discretised architectures with a corre-
lation layer (Dosovitskiy et al., 2015; Heinrich and Hansen,
2020), and fluid-diffeomorphism based transformations
(Dalca et al., 2018b) have been proposed. Alternative ap-
proaches use vision transformers (Wang and Delingette,
2021; Chen et al., 2021, 2022; Mok and Chung, 2022; Shi
et al., 2022; Song et al., 2022; Wang et al., 2022; Pegios
and Czolbe, 2022) or graph-based networks (Hansen and
Heinrich, 2021).

2.3. Similarity metrics for image registration
Similarity metric D measures the distance between the warped

moving (morphed) image I ◦ Φ and the fixed image J. Pixel-
based metrics are well explored within algorithmic image regis-
tration, a comparative evaluation is given by Avants et al. (2011).
We briefly recall four popular choices used as baselines in our
evaluation: mean squared error (MSE), normalized cross cor-
relation (NCC), normalized mutual information (NMI), and
modality independent neighborhood descriptor (MIND), and
discuss how these can be combined with supervised labels to
obtain a semi-supervised similarity metric.

2.3.1. Mean Squared Error
The pixel-wise MSE is intuitive, computationally efficient,

and easy to reason about. It is derived by maximizing the nega-
tive log-likelihood of a Gaussian normal distribution, making it
an appropriate choice under the assumption of Gaussian noise.
On a grid of discrete points p from the domain Ω, the MSE is
defined as

MSE(I ◦ Φ, J) =
1
|Ω|

∑

p∈Ω
‖(I ◦ Φ)(p) − J(p)‖2 . (4)

2.3.2. Normalized Cross Correlation
Patch-wise NCC is robust to variations in brightness and con-

trast, making it a popular choice for images recorded with dif-
ferent acquisition tools and protocols, or even across image
modalities. For two image patches A,B, represented as column-
vectors of length N with patch-wise means Ā, B̄ and variance
σ2

A, σ
2
B, it is defined as

NCCpatch(A,B) =

N∑

n=1

(An − Ā)(Bn − B̄)
σAσB

. (5)

The patch-wise similarities are then averaged over the image as

NCC(I ◦ Φ, J) =
1
|Ω|

∑

p∈Ω
NCCpatch(Ip ◦ Φ, Jp) , (6)

where Ip, Jp denote the square image patch around pixel p (Gee
et al., 1993; Avants et al., 2008b). Patches are centered around
each pixel, leading to overlapping patches. Note that a slightly
altered but computationally more efficient variant of NCC is
used in some image registration works (Avants et al., 2011).

2.3.3. Normalized Mutual Information
Normalized mutual information (Studholme et al., 1999) mod-

els the probabilistic relation between the voxel intensities of the
images. It is suitable for applications where no linear relation
between the image intensities is present, making it the primary
similarity metric used in multi-modal image registration. The
relation between the morphed and fixed image is modeled as

NMI(I ◦ Φ, J) =
H(I ◦ Φ) + H(J)

I(I ◦ Φ, J)
, (7)

with marginal entropy H(I) = −
∫
R pI(x) log(pI(x)) dx and

mutual information I(x, y) = −
∫
R pIJ(x, y) log(pIJ(x, y)) dx dy.

To calculate the joint probability pIJ(x, y) and marginals
pI(x), pJ(y), the intensity distributions of both images are ap-
proximated by histograms, making them non-differentiable. For
adaptation in gradient-based deep-learning frameworks, Parzen-
window estimates with gaussian kernels are used to approximate
the distributions. Given a Parzen window function w, the joint
histogram for discrete bucket means x, y ∈ R is calculated as

hIJ(x, y) =
∑

p∈Ω
w((I ◦ Φ)(p) − x) w(J(p) − y) , (8)

from which the joint pIJ(x, y) is obtained by normalization and
pI(x), pJ(y) by marginalization thereof (de Vos et al., 2020; Qiu
et al., 2021).
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Fig. 1: Schematic overview of the method, using a U-Net model for registration. First, the feature extractor (yellow) is trained. We trial both a U-Net segmentation
model trained on supervised segmentation masks (top left) and an unsupervised auto-encoder as the feature extractor (bottom left). The trained feature extractor is
then used to drive the optimization of a registration model (blue, right). We trial both a U-Net (pictured) and transformer-based registration networks and algorithmic
registration with SyN (Avants et al., 2008b). The registration model predicts the transformation Φ based on the moving and fixed images I, J. A spatial transformer
module applies the transformation to obtain the morphed image I ◦ Φ. Next, a pyramid of semantic representations Fl(·) is extracted by the frozen kernels of the
encoding branch of the feature extractor. The DeepSim similarity metric compares the representations and calculates the similarity loss. It forms the training loss of
the registration network together with the regularization of the transformation field.

2.3.4. Modality Independent Neighborhood Descriptor
The MIND-SSC image descriptor (Heinrich et al., 2012a,

2013b) extracts representations from images based on their self-
similarity context (SSC). It is used as a loss function by compar-
ing the extracted representations of images.

The self-similarity of two patches centered on x, y with local
variance σ2 is caluclated as

S (I, x, y) = exp
(
−‖Ix − Iy‖2

σ2

)
. (9)

Given this equation, the image descriptor of a pixel coordinate p
is then calculated by evaluating the above equation on all pixels
x, y ∈ N from the neighborhood of p, only using pairs x, y are
adjacent to each other (euclidian distance of

√
2). Notably, the

intensity of the center pixel p has no direct influence on the
descriptor of p. The descriptor is dependent on the choice of the
patch size as well as the dilation and shape of the neighborhood
N , which have to be tuned for each application.

2.3.5. Semi-Supervised Measures
If additional information is available, the unsupervised sim-

ilarity measures can be extended by a supervised component
to align either ground-truth segmentation masks, pre-defined
reference points, or reproduce a pre-determined reference trans-
formation field. However, by adding a supervised component,
the registration model is incentivized to be biased towards this
component. Balakrishnan et al. (2019) study this in detail: as the
strength of a supervised loss term is increased, the accuracy on
unobserved regions and overall accuracy is decreasing. Thus, in
the absence of perfect annotations, it is common practice to com-
bine metrics operating on different representations of the image
(Avants et al., 2008a). We compare to a semi-supervised metric
by fusing an intensity-based loss Lintensity with a semi-supervised
metric Lseg operating on segmentation class annotations as

L = Lintensity(I ◦ Φ, J) + γLseg(S ◦ Φ,T) (10)

for segmentation masks S,T of images I, J and weighting factor
γ. For our expeirments, we use a supervised version of the NCC
metric, formulated as NCCsup(I,S, J,T,Φ) = NCC(I ◦ Φ, J) +

MSE(S ◦ Φ,T) for one-hot encoded S,T (Balakrishnan et al.,
2019).

2.4. Deep similarity metrics in image registration

While deep-learning-based image registration has received
much interest recently, similarity metrics utilizing the compo-
sitional and data-driven advantages of neural networks remain
under-explored. Some works explore how to incorporate scale-
space into learned registration models, but similarity metrics
remain intensity-based (Hu et al., 2019a; Li and Fan, 2018).
Learned similarity metrics are proposed by Haskins et al. (2019)
and Krebs et al. (2017), but both approaches require ground
truth registration maps for training, which are either syntheti-
cally generated or manually created by a medical expert. Lee
et al. (2019b) propose to learn annotated structures of interest as
part of the registration model to aid alignment, but the method
discards sub-regional and non-annotated structures.

Closest to our work is the approach by Wu et al. (2016), who
learn a representation of the input images via a stacked autoen-
coder and use the resulting representations for the downstream
task of algorithmic image registration. This is similar to our
autoencoder-based approach combined with SyN registration.
While their experimental evaluation has limitations, such as the
patch-based training on small 213 patches, a model of 2 layers,
and a small dataset of 66 images, their observations of increased
accuracy and flexibility over handcrafted features are similar to
ours. Majumdar et al. (2017) further investigates deep-learning-
based features for algorithmic image registration. They find
that on comparatively small datasets of less than 30 images,
hand-crafted features can outperform learned ones.
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2.5. Multi-modal image registration
Common data representations are frequently used as similarity

metrics in multi-modal image registration (Heinrich et al., 2012b;
Chen et al., 2016; Simonovsky et al., 2016; Pielawski et al.,
2020; Blendowski et al., 2021). These approaches establish
common representations across image modalities and are often
learned from well-aligned images of multiple modalities. While
our approach is similar, we instead aim to find a semantically
augmented representation of images of a single modality, and
show their applicability to mono-modality registration.

3. Method

We first discuss how the popular NCC metric assesses the sim-
ilarity of image patches. We then modify the encoding of patches
to include semantic information and finally outline how these
semantic features are extracted from the image. A schematic
overview of the method is given in Fig. 1.

3.1. A discussion of NCC
Our design of a semantic similarity metric starts by examining

the popular NCC metric. We see that NCC between image
patches A and B is equivalent to the cosine-similarity between
the corresponding mean-centered vectors f (A) = A − Ā and
f (B) = B − B̄:

NCCpatch(A,B) =

〈
f (A), f (B)

〉

‖ f (A)‖‖ f (B)‖ , (11)

with scalar product 〈·, ·〉 and euclidean norm ‖ · ‖ . Thus, an alter-
native interpretation of the NCC similarity measure is the cosine-
similarity between two feature descriptors in a high-dimensional
space. The descriptor is given by the intensity values of a cen-
tered image patch centered at a pixel p. We will construct a
similar metric, using semantic feature descriptors instead.

3.2. A semantic similarity metric for image registration
To align areas of similar semantic value, we propose a simi-

larity metric based on the agreement of semantic feature repre-
sentations of two images. Semantic feature maps are obtained
by a feature extractor, which is pre-trained on a surrogate task.
To capture alignment of both localized, concrete features, and
global, abstract ones, we calculate the similarity at multiple lay-
ers of abstraction. Given a set of feature-extracting functions
F l : RΩ×C → RΩl×Cl for L layers, we define

DeepSim(I ◦ Φ, J) =
1
L

L∑

l=1

1
|Ωl|

∑

p∈Ωl

〈
F l

p(I ◦ Φ), F l
p(J)

〉

‖F l
p(I ◦ Φ)‖‖F l

p(J)‖ ,

(12)

where F l
p(J) denotes the lth layer feature extractor applied to

image J, at the spatial coordinate p. It is a vector of Cl output
channels, and the spatial size of the lth feature map is denoted
by |Ωl|.

Just as for NCC, the neighborhood of the pixel is considered
by the similarity metric, as F l is composed of convolutional
filters with increasingly large receptive field sizes. In contrast to
NCC, it is not necessary to zero-mean the feature descriptors, as
the semantic feature representations are trained to be robust to
variances in image brightness present in the training data.

I

F0(I) F1(I) F2(I)

Fig. 2: The DeepSim similarity metric aligns a pyramid of semantic feature
representations of an image. Left: Image I. Right: Examples of feature maps
Fl(I) extracted at layers l ∈ {0, 1, 2}. Feature maps extracted from deeper
layers of the feature extraction network encompass more global information,
and are of lower spatial resolution. Each feature maps is Cl channels deep, with
Cl = 64, 128, 256 in our experiments.

3.3. Feature extraction

To aid registration, the functions F l(·) should extract features
of semantic relevance for the registration task, while ignoring
noise and artifacts inherent in image acquisition methods. To
achieve these properties we extract features from the encoding
branch of networks trained on two surrogate tasks:

1. Semi-Supervised measure: If segmentation masks are avail-
able, we can learn features on a supplementary segmen-
tation task. Segmentation models excel at learning rele-
vant kernels for the data while attaining invariance towards
non-predictive features like noise, but require an annotated
dataset for training. We denote the proposed similarity
metric with feature extractors conditioned on this task as
DeepSimseg.

2. Unsupervised measure: We can learn an abstract feature
representation of the dataset in an unsupervised setting with
auto-encoders. Auto-encoders learn an efficient data en-
coding by training the network to ignore signal noise. A
benefit of this approach is that no additional annotations
are required. While variational methods for encoding tasks
have several advantages, we choose a deterministic auto-
encoder for its simplicity and lack of hyperparameters. We
denote the similarity metric with feature extractors condi-
tioned on this task as DeepSimae.

The choice of depth and receptive field size of the feature
extracting functions has further impact on the metric. Deeper
feature extractors can model more complex datasets, but increase
computation time and memory requirements during training. Ex-
clusively using high-level features, such as the last layer of a
segmentation network, might only align the borders of anatomi-
cal regions and has the potential to ignore finer structures within
those regions. On the contrary, too shallow features can behave
similarly to intensity-based metrics. We evaluate different depth
configurations as an ablation study, and use kernels up to the bot-
tleneck of the segmentation network for our main experiments,
effectively building a feature pyramid as visualized in Fig. 2.
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4. Experimental setup

We evaluate our method using both deep-learning-based
and algorithmic image registration. We train deep registra-
tion models with the proposed unsupervised DeepSimae and
semi-supervised DeepSimseg, and compare to baselines MSE,
NCC, NCCsup (NCC with supervised information), NMI, and
MIND. Our implementation of the baseline metrics follows
Avants et al. (2011), Balakrishnan et al. (2019), Qiu et al.
(2021), Hou et al. (2017), and (Heinrich et al., 2013b). To
show that our method is also applicable to algorithmic im-
age registration, we compare intensity-based registration us-
ing SyN (Avants et al., 2008b) to SyN registration of images
augmented with semantic features learned by DeepSim. To en-
sure reproducibility, all code and experiments are available at
github.com/SteffenCzolbe/DeepSimRegistration.

4.1. Data
To show that our approach applies to a variety of registration

tasks, we validate it on four 2D and 3D datasets of different
modalities:

(1) T1 weighted Brain-MRI scans from the ABIDE-I, ABIDE-
II (Di Martino et al., 2014) and OASIS3 (LaMontagne et al.,
2019) studies for atlas-based alignment of Brain-MRI scans.
Acquisition details, subject age ranges, and health conditions
differ for each dataset, but no large anatomical anomalies are
present. We perform standard pre-processing as in Balakrishnan
et al. (2019), including intensity normalization, affine spatial
alignment, skull-stripping and segmentation for each scan using
FreeSurfer (Fischl, 2012) and crop the resulting images to 160×
192×224 voxels. Anatomical regions labeled separately on each
hemisphere and smaller regions such as on the sub-structures
of the cingulate cortex are combined, resulting in 24 distinct
segmentation classes. After scans with preprocessing errors are
discarded, we split the data 3665/250/250 for train-, validation-,
and test-set, and register images to an atlas.

(2) T1 weighted MR scans of the hippocampus from the 2022
Learn2Reg challenge (Hering et al., 2022). The dataset was
originally introduced in (Jafari-Khouzani et al., 2011) and in-
cluded in the Medical Segmentation Decathlon Antonelli et al.
(2022). It contains images from 90 healthy adults and 105 adults
with a non affective psychotic disorder. Images are cropped
to 64 × 64 × 64 voxels. We split the data into 156 train-, 52
validation-, and 52 test-images, and perform inter-subject regis-
tration, giving 24000 unique training pairs.

(3) Slices of human blood cells from the Platelet-EM dataset
(Quay et al., 2018). Images are recorded using serial block-face
scanning electron microscopy. The dataset contains 74 slices
manually annotated with three classes (Cytoplasm, Organelle,
Background). Images are affinely pre-aligned and the dataset
is split 50/12/12 for train-, validation-, and test-set. We register
neighboring 2d slices.

(4) Cell tracking video of the PhC-U373 dataset from the
ISBR cell tracing challenge (Maška et al., 2014; Ulman et al.,
2017). The video sequence contains 230 2d images and is an-
notated with two classes (Cells, Background). We split the data
115/68/67 for train-, validation-, and test-set and register images
of adjacent time steps.
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(b) Transformer

Fig. 3: Hyperparameter tuning for a) U-Net and b) Transformer-based registra-
tion models. We trial regularizer strength parameter λ = 2n for some n ∈ Z
for each model, similarity metric, and dataset independently. Parameter λ on
the log-scaled x-axis, validation mean dice overlap on the y-axis. For each
model, we select the λ with the highest validation mean dice overlap for further
evaluation.

4.2. Deep learning models

For the registration model, we trial both well-established 2D
and 3D U-Net (Ronneberger et al., 2015) architectures as pop-
ularized through VoxelMorph (Balakrishnan et al., 2019), and
the recent state-of-the-art transformer model TransMorph (Chen
et al., 2022).

We use the same U-Net architecture for the image registration
model and segmentation-based feature extraction networks. We
use a similar architecture for the auto-encoder feature extractor
but without the shortcut connections. Each network consists
of three encoder and decoder stages. Each stage consists of
one batch normalization (Ioffe and Szegedy, 2015), two con-
volutional, and one dropout layer (Gal, Yarin and Ghahramani,
2016). After the final decoder step, we smooth the model output
with three more convolutional layers. We experimented with
deeper architectures but found they do not increase performance.
The activation function is LeakyReLu throughout the network,
Softmax for the final layer of the segmentation network, Sigmoid
for the final layer of the auto-encoder, and linear for the final
layer of the registration network. The stages have 64, 128, 256
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Table 1: Parameters of the baseline similarity metrics used in our experiments.

Baseline Parameter Value

Brain-MRI Hippocampus MR Platelet-EM PhC-U373

NCC /NCCsup window size 9 9 9 9
NMI number of bins 64 64 8 32
MIND radius 2 2 6 4
MIND dilation 2 2 6 4
MIND neighborhood size 6 6 4 4

channels for 2d datasets, and 32, 64, 128 channels for 3d.
In our experiments with TransMorph, we tried different model

variants and sizes. We use the original TransMorph version
which consists of 4 stages with {2, 2, 4, 2} number of Swin Trans-
former (Liu et al., 2021) blocks and {4, 4, 8, 8} number of heads
in each stage respectively but set the embedding dimension to
C = 64 because it performed better. As suggested we set the
window size to be the same as at the input size after 32-fold
downsampling while we zero-pad the images for the PhC-U373
dataset to make the spatial dimensions divisible by 32.

The segmentation model is trained with a cross-entropy loss
function, the auto-encoder with the mean squared error. Both
U-Net and transformer-based registration networks are trained
with the loss given by Eq. 1. The optimization algorithm for all
models is ADAM (Kingma and Ba, 2015), the initial learning
rate is 10−4, decreasing by a factor of 10 each time the validation
loss plateaus. All models are trained until convergence. Training
images are augmented with random affine transformations. Due
to the large 3D volumes involved, the choice of batch-size is
often limited by available memory. We sum gradients over
multiple passes to arrive at effective batch-sizes of 3-5 samples.

4.3. Hyperparameter selection

The characteristics of deformable image registration methods
are strongly influenced by the strength of regularization that is
applied. Additionally, some baseline metrics have further hyper-
parameters, e.g, the number of bins in NMI or radius and dilation
in MIND. For a fair comparison, we tune all parameters on the
validation split of each dataset. The parameter choices used in
our experiments can be found in Table 1. For hyperparameter
λ, we trial values λ = 2n for some n ∈ Z for each U-Net model
and hyperparameter selection, and plot the validation mean dice
overlap in Fig. 3. We selected the parameter choices scoring the
highest for further evaluation.

4.4. Algorithmic image registration

We further investigate whether algorithmic image registra-
tion benefits from the semantic image representations used for
DeepSim. As a baseline, we choose to register the intensity
images using the well-establish SyN algorithm (Avants et al.,
2008b) from the ANTS software package (Avants et al., 2009),
using the default registration parameters. For the semantic simi-
larity metrics, we augment the intensity images by registering
semantic feature maps obtained from either the auto-encoder
or the segmentation feature extractor as additional modalities.

We use channel-wise normalization, so that ‖F l
c(·)‖2 = 1 for

each channel and layer, and up-scale all feature maps to image
size using bi-/tri-linear interpolation. All modalities contribute
equally to the objective function.

5. Results

5.1. Qualitative results

We plot the fixed and moving images I, J and the morphed
image I ◦Φ warped by transformations obtained from the U-Net
registration models trained with each similarity metric model
in Fig. 4. The transformation is visualized by grid-lines and
segmentation classes are overlaid for guidance.

5.2. Registration accuracy

We measure registration accuracy by the mean Sørensen Dice
overlap of the annotated segmentation masks on the unseen
test-set of each dataset. Results are presented in Fig. 6. U-Net
registration models trained with our proposed DeepSimae and
DeepSimseg metrics achieve higher accuracy than all baselines
on the Brain-MRI and Platelet-EM datasets. On the PhC-U373
dataset, only the NCCsup baseline performs better. On the Hip-
pocampus MR dataset, DeepSimae and DeepSimseg outperform
MSE, but fall behind the other baselines.

In Fig. 7, we contrast registration accuracy with transforma-
tion regularity (Leow et al., 2007; Kabus et al., 2009). We see
that DeepSimae and DeepSimseg are placed in the bottom right
corner for three out of four datasets, indicating very smooth
transformation fields combined with high registration accuracy.

Using algorithmic registration with SyN, the semantic fea-
tures of DeepSimseg improve the registration accuracy over the
baseline on all four datasets. The auto-encoder-based features
of DeepSimae fall short of just intensity-based registration.

We perform statistical significance testing of the model’s re-
sults with the Wilcoxon signed rank test for paired samples. A
significance level of 5% gives a Bonferroni-adjusted significance
threshold p = 0.002. We further measure the effect size with
Cohen’s d and show the results in Table 2. We see that most
results are statistically significant. On the Platelet-EM dataset,
the performance difference between models trained with MSE
and our proposed metrics falls below the statistical threshold,
yet our method outperforms the baselines with at least small
effect sizes. On the PhC-U373 dataset, the baseline NCCsup
outperform DeepSim with very small effect sizes.
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Moving Fixed MSE NCC NCCsup NMI MIND DeepSimaeDeepSimseg

Fig. 4: Qualitative comparison of U-Net based deep-learning registration models. We register the moving image I (1st column) to the fixed image J (2nd column).
Morphed images I ◦ Φ obtained from registration models trained with baseline similarity metrics MSE, NCC, NCCsup, NMI, and MIND in columns 3–7. Morphed
images obtained from our methods DeepSimae and DeepSimseg in columns 8 and 9. Rows: Datasets Brain-MRI, Hippocampus MR, Platelet-EM, PhC-U373. Select
segmentation classes annotated in color. The transformation is visualized by morphed grid-lines.

MSE NCC NCCsup NMI MIND DeepSimae DeepSimseg

Fig. 5: Detail view of transformation grids on the highlighted spot of the Platelet-EM dataset in Fig. 4. The regularity of the transformation fields on this noisy image
patch varies considerably between methods. Models trained with NCC, NCCsup, and MIND exhibit the most irregular transformation fields. Models trained with
DeepSimae and DeepSimseg show the smoothest transformation fields. The cell-boundary is annotated in blue. The transformation is visualized by morphed grid-lines.

5.3. Regularity of the Transformation
To highlight the differences in transformation fields between

methods, we display a noisy background patch of the Platelet-
EM dataset in Fig. 5. The patch has been registered with trans-
formations obtained from the U-Net registration models trained
with each similarity metric model. Black grid-lines visualize
the transformation. On this patch, models trained with NCC,
NCCsup, and MIND produce highly irregular transformation
fields. Transformations obtained from DeepSimae, DeepSimseg
and NMI are the most smooth on this dataset.

We perform a quantitative analysis of the regularity of the
transformations produced by the U-Net models in Table 3,
measuring transformation irregularity by the variance of the
log-determinant of the Jacobian of the transformation field
σ2(log |JΦ|), and domain folding by the percentage of trans-
formation voxels with a negative determinant.

5.4. Noise Resistance
We further evaluate registration performance in the presence

of noise in the input data. Without retraining the models, we

measure the mean dice overlap on the test set of the Platelet-
EM dataset with added Gaussian noise. We sample the noise
from N(0, σ2), and test noise levels of σ = 0, 0.05, 0.1, ..., 0.35.
We show results and examples of the noisy image patches in
Fig. 8. The performance of all models decreases as noise is
added. However, the models trained with the baselines loose
performance quicker then model trained with Deepsim.

5.5. Convergence and speed
We monitor the mean training and validation dice overlap of

the U-Net based deep-learning models during training in Fig. 9.
The training accuracy is, with few exceptions, similar to the test
accuracy, indicating that results generalize well. The relative
time per epoch of models trained with each loss function is given
in Table 4. Training models with DeepSim adds between 4−52%
time per epoch.

5.6. Anatomical regions
The Brain-MRI dataset contains annotations of the brain’s

anatomical regions. We plot the dice overlap per region in a
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Fig. 6: For the datasets Brain-MRI, Hippocampus MR, Platelet-EM and PhC-U373, we trial multiple registration models and algorithms and record their test mean
dice overlap. U-Net based deep-learning models trained with similarity metrics MSE, NCC (Gee et al., 1993), NCCsup (Balakrishnan et al., 2019), NMI (Studholme
et al., 1999), MIND (Heinrich et al., 2012a), DeepSimae (ours), DeepSimseg (ours) on the left side of each plot. On the right side of each plot is algorithmic registration
with the SyN algorithm (Avants et al., 2008b), and the SyN algorithm augmented with semantic features from DeepSimae and DeepSimseg. Boxplot with median,
quartiles, deciles and outliers. Labels of our methods in bold.
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Fig. 7: Registration accuracy and irregularity of the transformation fields. Test mean dice overlap from Fig. 6 on the x-axis, variance of the log Jacobian determinant
of the transformation σ2(log |JΦ |) on the y-axis. Higher dice overlaps indicate a better alignment, lower variance indicates smoother transformation fields and fewer
deformations.

Table 2: Significance testing of the results, performed with the Wilcoxon signed rank test for paired samples. Effect size measured with Cohen’s d. Statistically
insignificant results (significance level 0.05, Bonferroni-corrected to p > 0.002) and very small effect sizes (|d| < 0.1) in grey.

Dataset Method Baseline

MSE NCC NCCsup NMI MIND

p d p d p d p d p d

Brain-MRI DeepSimae <0.001 0.14 <0.001 0.43 <0.001 0.10 <0.001 0.18 <0.001 0.46
DeepSimseg <0.001 0.30 <0.001 0.60 <0.001 0.25 <0.001 0.34 <0.001 0.63

Hippocampus MR DeepSimae 0.003 0.15 <0.001 −0.16 <0.001 −0.28 <0.001 −0.10 <0.001 −0.17
DeepSimseg <0.001 0.24 0.006 −0.07 <0.001 −0.19 0.238 −0.01 0.020 −0.08

Platelet-EM DeepSimae 0.016 0.12 <0.001 1.14 <0.001 0.51 <0.001 0.43 <0.001 0.96
DeepSimseg 0.034 0.10 <0.001 1.12 <0.001 0.49 <0.001 0.40 <0.001 0.94

PhC-U373 DeepSimae <0.001 0.10 <0.001 0.11 <0.001 −0.06 <0.001 0.08 <0.001 0.10
DeepSimseg <0.001 0.12 <0.001 0.13 0.002 −0.03 <0.001 0.11 <0.001 0.12
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Table 3: Regularity of the transformation. The determinant of the Jacobian of the transformation |JΦ | is a measure of how the image volume is compressed or stretched
by the transformation. We assess transformation smoothness by the variance of the voxel-wise log Jacobian determinant σ2(log |JΦ |), a lower variance indicates a
more volume-preserving transformation. Additionally, we assess the regularity of the transformation by measuring the percentage of voxels for which the determinant
is < 0, which indicates domain folding.

Method Dataset

Brain-MRI Hippocampus MR Platelet-EM PhC-U373

σ2(log |JΦ|) |JΦ| < 0 (%) σ2(log |JΦ|) |JΦ| < 0 (%) σ2(log |JΦ|) |JΦ| < 0 (%) σ2(log |JΦ|) |JΦ| < 0 (%)

MSE 0.21 0.42 1.84 8.75 0.29 0.40 0.02 0.02
NCC 0.29 0.93 1.15 4.08 1.08 4.15 0.51 0.71
NCCsup 0.16 0.28 1.14 3.99 1.08 4.03 0.46 0.57
NMI 0.16 0.24 0.41 0.51 0.03 0.00 0.10 0.30
MIND 0.25 0.77 0.67 1.62 0.29 0.23 0.19 0.20
DeepSimae 0.14 0.20 0.97 3.02 0.12 0.04 0.20 0.35
DeepSimseg 0.12 0.12 0.48 0.89 0.19 0.14 0.10 0.32
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Fig. 8: Model performance on noisy data. We add Gaussian noise sampled from
N(0, σ2) to the input data, and measure the dice overlap on the test set. The
x-axis shows the noise level, and the y-axis the test Dice overlap. Images below
the plot show image patches under the noise levels.

boxplot in Fig. 10, and highlight regions where both of our
metrics perform better than all baselines bold. Baseline methods
(blue) perform very similar, despite NCCsup as a supervised
metric requiring more information over the unsupervised MSE
and NCC.

5.7. Image registration using Transformers

We further evaluate the flexibility of the proposed method
using the recent state-of-the-art transformer-based model Trans-
Morph on the 2d datasets. As in the previous experiments, we
perform hyperparameter tuning both for DeepSim and baseline
loss functions and select the transformer model with the highest
validation dice overlap.

Given the best parameter choices, we evaluate the tradeoff
between dice-overlap and transformation smoothness on the test
sets in Fig. 11. Results are similar to ones obtained with the
U-Net model in Fig. 7, albeit slightly better overall. TransMorph
registration networks trained with DeepSim achieve favorable
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Fig. 9: Convergence during training and validation of U-Net models. Gradient
update steps on the x-axis, train and validation mean dice overlap on the y-axis.
The training duration per model on a single RTX 2080 GPU is approximately
seven days for the Brain-MRI dataset and one day for the Platelet and PhC-U373
datasets.

Table 4: Relative training time of U-Net registration models, based on mea-
surements of 1 epoch of training. MSE = 1.00. Time measurement includes
feed-forward and back-propagation through the model and loss function, as well
as weight update for the model.

Method Dataset

Brain-MRI Hip. MR Plat.-EM PhC-U373

MSE 1.00 1.00 1.00 1.00
NCC 1.09 1.22 1.05 1.02
NCCsup 1.12 1.24 1.05 1.03
NMI 1.07 1.05 1.08 1.04
MIND 1.02 1.05 1.03 1.02
DeepSimae 1.04 1.52 1.17 1.15
DeepSimseg 1.03 1.49 1.16 1.15
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Fig. 10: Dice overlaps of the anatomical regions of the Brain-MRI dataset. Baselines in shades of blue, our methods in red. Bold labels for regions where both of our
methods score higher than all baselines. We combined labels of the left and right brain hemispheres into a single class. The boxplot shows median, quartiles, deciles
and outliers.

accuracy-smoothness tradeoffs for both the 2d datasets, placing
in the bottom right corner of the plot on both datasets.

6. Ablation studies

After establishing the DeepSim similarity metric and com-
paring it to established choices, we now focus on investigating
decisions made in the design of the metric. We investigate the
effect of different levels of extracted features, assess if a dedi-
cated feature extractor needs to be trained for each dataset, and
inquire about the order of operations within the metric. These
experiments are performed on the 2d dataset only.

6.1. Levels of extracted features

The abstraction levels at which semantic features are extracted
can have an impact on the proposed metric. We investigate how
different levels of features contribute to the registration accuracy.
We trial DeepSim loss functions using deep features extracted
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Fig. 11: Evaluation of the TransMorph registration network trained with different
loss functions. Registration accuracy and irregularity of the transformation fields.
Test mean dice overlap on the x-axis, variance of the log Jacobian determinant
of the transformation σ2(log |JΦ |) on the y-axis. Higher dice overlaps indicate a
better alignment, lower variance indicates smoother transformation fields that
are often considered more realistic.

from multiple combinations of layers, using only features ex-
tracted feature extraction layers 1, 2, 3, 1+2, 1+3, 2+3, and
all layers. The level of the feature extraction layer is denoted
with superscript, e.g, DeepSim1 compares shallow features ex-
tracted only from the first layer of a deep feature extractor, while
DeepSim12 combines features only from the two first layers.

We re-tune the regularization hyperparameter λ on the 2d
datasets for the different layer configurations of DeepSim both
for our unsupervised and semi-supervised approach, using U-
Net based registration models. We plot the registration accuracy
on the validation sets for DeepSimae and DeepSimseg in Fig. 13a
and Fig. 13b respectively. We observe that for the Platelet-EM
dataset, which contains noisy images, using high-level features
such as level 3 of the deep feature extractors improves accuracy.
Most notably, disregarding the shallowest layer, DeepSim23

seg
achieves slightly better performance than DeepSimseg. On the
other hand, on the non-noisy PhC-U373 dataset, level 1 con-
tributes the most to the registration accuracy. This is in line with
previous results, where the intensity-based baselines performed
competitively on the PhC-U373 dataset. In general, it is evident
that including both low-level, concrete features and high-level,
more abstract ones in the loss, is beneficial to the performance
of the registration model in almost all of the cases.

We further plot heatmaps of the loss occurred under differ-
ent loss functions in Fig. 12a, and a per-layer view of the loss
occurred under DeepSim in Fig. 12b. The moving and fixed im-
ages (top left) have been registered using U-Net models trained
with the presented similarity metrics, and the occurred loss at
each spatial coordinate is plotted on a color scale normalized to
each model. The results show that, compared to the baselines, the
DeepSim loss is more evenly distributed around non-matching
image parts. It also doesn’t occur a loss in the noisy background
area between the cells.
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Moving Fixed MSE NCC DeepSimae DeepSimseg

(a) Loss-heatmaps of selected loss functions

DeepSim0
ae DeepSim1

ae DeepSim2
ae DeepSim0

seg DeepSim1
seg DeepSim2

seg

(b) Losses at layers 1,2,3 of DeepSimae and DeepSimseg

Fig. 12: Heatmaps of the loss occurred after registration of the Moving and Fixed image (top left). Top Row: Registration and loss under models trained with MSE,
NCC, DeepSimae, and DeepSimseg. Bottom row: Heatmaps of loss occurred at layers 1,2,3 of DeepSimae, and DeepSimseg. Brighter colors indicate a higher loss.
Loss values have been normalized to one color scale.

6.2. Transfer Learning
One drawback of DeepSim is that a feature extractor has to be

trained for each dataset. We investigate whether this is necessary,
or if we can use feature-extractors trained on related or similar
data instead. This approach is commonly referred to as Transfer
Learning.

We trial three separate configurations: for the Platelet-EM
dataset, we use the auto-encoder and segmentation model trained
on the PhC-U373 dataset as the feature extractor. Vice versa, for
the PhC-U373 dataset, we use the auto-encoder and segmenta-
tion model trained on the Platelet-EM dataset. We denote these
similarity metrics with transferred features as DeepSimae – TL
and DeepSimseg – TL. Finally, we investigate the performance
of our method using a universal feature extractor. To this end, we
extract features from a VGG (Simonyan and Zisserman, 2014)
classification network trained on ImageNet (Deng et al., 2009),
and we denote this variant of the method as DeepSimVGG.

For each configuration, we train U-Net based registration net-
works with different regularization parameters λ and plot the
mean validation dice overlap in Fig. 14. We observe that for
PhC-U373 all transfer learning approaches (DeepSimae – TL,
DeepSimseg – TL, DeepSimVGG) not only improve the perfor-
mance compared to the default setup of our method, but also
surpass in performance all the baselines from the previous ex-
periments. This might indicate that the PhC-U373 dataset does
not have sufficient complexity and size to train a good feature
extractor on it. For the Platelet-EM dataset, the performance
of DeepSim transfer learning variants falls short of the original
method but is still comparable with other baseline loss func-
tions.

6.3. Feature extraction and transformation
As defined in Eq. (12), the DeepSim metric first applies the

transformation to the moving image, and then extracts a seman-

tic representation from the morphed image (Transform before
Extraction, TbE). A recently used alternative approach (Czolbe
et al., 2021a) first extracts a semantic representation from the
moving image, and then transforms the semantic representa-
tion (Extraction before Transformation, EbT). We empirically
compare both variants, using both an auto-encoder and a seg-
mentation model as the feature extractor.

We re-tune the regularization hyperparameter λ for the al-
ternative implementation DeepSim (EbT). The necessary trans-
formation of lower resolution feature maps is implemented by
down-sampling and -scaling the transformation before warping
the feature map. Registration accuracy on the validation sets
is displayed in Fig. 15. We observe that the optimal choice for
λ differs between the variations of the loss function, with the
optimal value for the EbT version being consistently lower than
for the unaltered TbE version across all datasets and feature
extractors. The loss functions achieving the highest dice overlap
are inconsistent, with the TbE version performing better on the
Brain-MRI dataset, both versions achieving similar scores on
the Platelet-EM dataset, and the EbT version performing better
on the PhC-U373 dataset.

7. Discussion

The experimental results show that registration methods op-
timized with the proposed semantic similarity metric achieve
small improvements in accuracy. Additionally, they are rebust
to noise and produce smoother transformations, resulting in con-
sistent improvements in the accuracy-smoothness tradeoff and
more plausible transformations. The trend holds true across
four diverse datasets and registration with SyN, U-Nets, and
Transformers, showing the general applicability of the results.

We see the largest performance increase on the Platelet-EM
dataset, which we hypothesize is caused by the significant noise
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Fig. 13: Effect of different layer configurations on registration accuracy with
(a) DeepSimae and (b) DeepSimseg. We trial loss functions using only features
from feature extraction layers 1, 2, 3, 1+2, 1+3, 2+3 and all layers. For each
configuration, we train U-Nets with different regularization parameters λ (x-axis)
and observe the validation dice overlap (y-axis).

present in the dataset. The intensity-based metrics incentivize
the model to align the noise, producing the observed unsmooth
transformations and high loss values across the image, overall
hindering registration. The proposed semantic similarity metric
has instead learned that the noise is of no semantic importance,
thus ignoring it in the registration.

Similarity metrics are independent of the registration method
used. To show the general applicability of our metric and its
independence from the underlying registration framework, we
conducted experiments with U-Nets, transformer-based architec-
tures, and algorithmic registration using the SyN algorithm from
the ANTS package. The observed results are similar, especially
between the two deep-learning based approaches. This is an
indication that the choice of the registration model matters less
compared to the metric used during training. Our method is
robust and behaves consistently across registration methods.
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Fig. 14: We trial transferring feature extractors between datasets. Models trained
with DeepSimae and DeepSimseg use a feature extractor trained on their dataset.
Models trained with DeepSimae – TL and DeepSim – TL use a feature extractor
trained on the opposite dataset. The model trained with DeepSimVGG uses
features form the VGG image classification network in the feature extractor. For
each loss function, we train models with a range of regularization parameters λ
(x-axis) and observe the mean dice overlap on the validation set (y-axis).
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Fig. 15: We test an alternative version of DeepSim, where semantic features are
extracted from the images before the transformation is applied (EbT: Extract
before Transform). We train models with both DeepSim and DeepSim (EbT),
using both segmentation models and auto-encoders as the feature extractor. For
each of the three datasets Brain-MRI, Platelet-EM, and PhC-U373 we trial
multiple choices for the regularization hyperparameter λ (x-axis) and observe
the mean dice overlap on the validation set (y-axis).

A drawback of our method is that it requires a feature extractor
to obtain features of semantic importance to the dataset. The
experimental evaluation shows that the availability of annotated
anatomical regions can help with learning semantic features,
particularly if the dataset is large enough to support the training
of such models. However, labeling a dataset is expensive and
time-consuming, especially in biomedical settings.

To alleviate this issue, we investigated two alternatives that
do not require labeled data or the training of a dedicated feature
extractor. The need for labeled data can be removed by using
semantic features extracted from an auto-encoder. This metric
outperformed the baselines in both registration accuracy and
transformation smoothness when registering images with the
deep-learning-based models. However, using algorithmic regis-
tration, the unsupervised approach underperformed the baselines,
particularly on the 3D Brain-MRI dataset. This could be caused
by shortcomings of the auto-encoder, which yielded blurry re-
constructions on the large brain volumes. On the other hand,
for the 3D Hippocampus MR dataset, our proposed similarity
metric provides a noticeable improvement when using the SyN
registration algorithm.

To remove the requirement of having to train a dedicated
feature extractor completely, one can use transfer learning to use
an extractor trained on a different dataset. We used extractors
trained on other medical datasets, and a general computer vision
feature extractor, trained on ImageNet. Both worked especially
well when the target dataset was small, even outperforming
feature extractors trained directly on the data for the PhC-U373
dataset. This approach could be further expanded by using
networks pre-trained on a large range of medical imaging tasks
(Chen et al., 2019).

We focused on mono-modal image registration. The presented
method could be extended to multi-modal registration in two
different ways: (1) Through the use of modality-specific feature
extractors to map each input modality to a common semantic
representation (Pielawski et al., 2020), followed by alignment
thereof. (2) Alternatively, separate feature extractors can be
trained on each modality, and their semantic representations
compared with a multi-modal metric such as MIND,NMI, or
NCC.

7.1. Weaknesses

A weakness of our method is the need to include a separate
model for the extraction of semantic features. While we have



14 Steffen Czolbe, Paraskevas Pegios, Oswin Krause, Aasa Feragen / Medical Image Analysis (2023)

shown that no dedicated model is required – other models can
be reused with only slight decreases in performance – the de-
sign, training, and testing of a second model takes additional
resources.

In the absence of ground-truth transformation fields, evalua-
tion of deformable image registration is performed through proxy
tasks. We measured accuracy by segmentation dice-overlap, but
this evaluation technique only measures the overlap of larger
areas, while discarding the alignment of sub-structures inside the
annotated regions and does not evaluate point-to-point matches.
We further evaluated the smoothness of the transformation fields
and balanced this with the dice overlap in our evaluation, but
no conclusive way of combining these metrics exists in the im-
age registration literature. We welcome that recent registration
challenges focus increasingly on measures besides segmentation
dice overlap.

As our similarity metric depends on an auxiliary task, there
is also a risk that the metric is biased by this choice of task,
as well as by the segmentation masks that are used to train the
auxiliary segmentation network. This label bias is perhaps most
of all a problem in that its potential downstream effects are
hard to foresee. However, we also note that the annotations
often used to validate registration algorithms come with similar
risks. Registration algorithms are often validated using annotated
landmarks or Dice overlap of segmentation masks. We argue
that these validation methods, which also affect which models
are eventually chosen and published as state-of-the-art, come
with a similar risk of label bias.

Any method is based on a large number of choices, decisions,
and hyperparameters. While we did extensive trials of some of
them in the ablation studies, there is always more that can be
tested. We weighted all semantic features evenly in our method,
and only considered features extracted from the encoding branch
of the feature extraction networks. Tuning the individual weight
of each feature is computationally expensive, but can be achieved
in the presence of dedicated datasets, as Zhang et al. (2018)
show for perceptual similarity metrics in image generation, or
through hyperparameter learning strategies as shown by Hoopes
et al. (2021) and Mok and Chung (2021) for image registration.
While we did tune the regularization hyperparameter for the
deep-learning-based models, we did not tune the parameters
of SyN, instead using the same default parameters for each
method. Due to technical constraints, we did not use the exact
formulation of DeepSim for the SyN registration experiment but
instead treated the semantic representations from DeepSim as
additional modalities during registration with SyN. Because of
practical issues, NMI is not used for TransMorph on the PhC-
U373 dataset. Due to limited hardware availability, we do not
include the 3d datasets in some of the ablation studies and our
experiments with TransMorph.

8. Conclusion

We designed a semantic similarity metric for image registra-
tion. The new metric measures image similarity via the agree-
ment of semantic and hierarchical image representations. The se-
mantic representations can be extracted either in an unsupervised

approach using an auto-encoder or in a supervised approach us-
ing supplemental segmentation data. In the absence of both, we
have shown that features trained on related datasets can also be
used.

The proposed metric achieves robust performance across four
diverse datasets and three different registration models, using
both deep-learning-based and algorithmic image registration.
Image registration optimized with our method shows improved
accuracy and smoother transformation fields compared to met-
rics such as MSE, NCC, NMI, and MIND.

The method is applicable to image registration tasks of all
modalities and anatomies. Beyond the diverse range of datasets
presented here, our good results in the presence of noise let
us hope that our method will improve registration accuracy in
domains such as low-dose CT, ultrasound, or microscopy, where
details are often hard to identify, and image quality is poor.

We further emphasize that the application of semantic sim-
ilarity metrics is not limited to the image registration domain.
Semantic similarity metrics have the potential to improve meth-
ods in other image regression tasks, such as image synthesis,
-translation, and -reconstruction.
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Maška, M., Ulman, V., Svoboda, D., Matula, P., Matula, P., Ederra, C., Urbiola,
A., España, T., Venkatesan, S., Balak, D.M.W., Karas, P., Bolcková, T.,
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Abstract

Convolutional Neural Networks (CNNs) are well-established in medical imaging tackling
various tasks. However, their performance is limited due to their incapacity to capture long
spatial correspondences within images. Recently proposed deep-learning-based registration
methods try to overcome this limitation by assuming that transformers are better at mod-
eling long-range displacements thanks to the nature of the self-attention mechanism. Even
though existing transformers are already considered state-of-the-art in image registration,
there is no extensive validation of the key premise. In this work, we test this hypothesis
by evaluating the target registration error as a function of the displacement. Our findings
show that transformers outperform CNNs on a public dataset of lung 3D CT images with
large displacements. Yet, the performance difference stems from transformers registering
small displacements with higher accuracy. Contrary to previous beliefs, we find no evi-
dence to support the hypothesis that transformers register long displacements better than
CNNs. Additionally, our experiments provide insights on how to train vision transformers
effectively for image registration on small datasets with less than 50 image pairs.

Keywords: Image Registration, Vision Transformers, Convolutional Neural Networks

1. Introduction

Image registration aims to find geometric transformations that align images. During the last
years, CNN-based methods, such as VoxelMorph (Balakrishnan et al., 2019), have attracted
wide attention in the field of deformable registration. After training, these methods can
significantly speed up medical image processing pipelines while achieving comparable regis-
tration accuracy with traditional optimization approaches. The main limitation of CNNs is
that they tend to focus on local aspects of images, which is problematic especially when the
displacements between the moving and the fixed images become larger than the effective
receptive field. Vision transformers lack the inductive biases of CNNs, such as translation
invariance and locally restricted receptive fields and their success is usually ascribed to
their ability to capture long-range dependencies within an image, even from the shallowest
layers. Very recently, (Park and Kim, 2022) questioned this explanation by revealing new
intuitions on how vision transformers work. Following the current trend in computer vision
and medical imaging, transformer-based models such as ViT-V-Net (Chen et al., 2021b)
and TransMorph (Chen et al., 2021a) have been proposed as strong candidates for better
modeling of long-range displacements. Even though these models can have a global view
of the entire image (Chen et al., 2021a) achieving state-of-the-art results in image registra-
tion, there is no extensive validation of the main hypothesis that transformers can capture
long-range displacements better than CNNs.

© 2022 P. Pegios & S. Czolbe.
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2. Experimental Setup

Given a fixed volume F, and a moving volume M, we seek to predict a transformation
Φ = Id + u, where u is the displacement field and Id is the identity transformation. The
warping is applied using a spatial transformation function, i.e, M ◦ Φ. We model u using
a deep network which can be either a convolutional (VoxelMorph) or a transformer-based
(Vit-V-Net, TransMorph) network. In that sense, a network is used to generate the trans-
formation between the images, i.e, gθ(F,M) = u, where θ = {θenc,θdec} and subscripts enc
and dec denote the parameters of the encoder and decoder part of network respectively. In-
stead of naive random initialization, we leverage IXI1 pre-trained weights to initialize θenc,
while θdec (task specific) are initialized randomly. To the best of our knowledge, transfer
learning has not been used for image registration because established CNN-based methods
can achieve good performance even for small datasets (Balakrishnan et al., 2019). During
training, normalized cross correlation is used as distance metric between M ◦ Φ and F,
together with diffusion regularization, weighted by a hyper-parameter λ. A warm-up phase
is evaluated by gradually increasing the learning rate up to a specific point and then using
standard schedulers. This is a common technique for fine-tuning transformers because layer
normalization in multi-head self-attention (MSA) layers can lead to high gradients at early
iterations. Intuitively, by taking small steps we prevent adaptive optimizers from going
towards wrong directions. Previous studies focused on evaluating transformers mainly in
terms of DICE using large datasets. We conduct the evaluation in terms of Target Regis-
tration Error (TRE) since our aim is test to the ability of the models to capture long-range
displacements. For evaluation, we use the “Learn2Reg: CT Lung Registration” dataset
which contains 30 cases of inhaling and exhaling image pairs. Since there are no available
landmarks for the original test pairs, we reorganize the dataset and split it (20/5/5), in
order to use available keypoints for our validation (6-10) and test cases (1-5).

3. Results & Discussion

Figure 1: Comparison of displacement fields between TransMorph++ and VoxelMorph-2++.

For a fair comparison, we tuned λ for baseline (random initialized) and fine-tuned (ini-
tialized with encoder pre-trained weights) models using the validation set. Transformers
because of the lack of inductive bias required stronger regularization (λ = 1) than Voxel-
Morph (λ = 0.5). We evaluated the irregularity and the smoothness of the transformations
and the results are reported in Table 1. Transfer learning proved beneficial not only for
transformers but also for VoxelMorph. This can be very useful in practice when working
with limited hardware and datasets. As expected, TransMorph benefited the most from
transfer learning since its encoder is completely composed of transformer layers. Further-
more, TransMorph outperformed both VoxelMorph and ViT-V-Net, but apart from transfer
learning, it required a warm-up phase to improve the smoothness of transformations.

1. https://github.com/junyuchen245/TransMorph_Transformer_for_Medical_Image_Registration/
blob/main/IXI/TransMorph_on_IXI.md
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Warm-up Model TRE ↓ |JΦ|<0(%) ↓ σ(|JΦ|)
- Affine 15.34 - -

- VoxelMorph-2 11.74 0.61 0.133

- VoxelMorph-2++ 10.58 0.45 0.120

- ViT-V-Net 10.80 0.16 0.090

- ViT-V-Net++ 10.12 0.84 0.122

- TransMorph 11.88 2.29 0.188

✓ TransMorph++ 9.91 0.34 0.105

Table 1: Evaluation metrics on our test set (cases 1-
5). Transfer learning is denoted with a ++
superscript. TRE is measured in mm.

A qualitative comparison of the dis-
placements produced by the fine-tuned
VoxelMorph and TransMorph models is
shown in Fig.1. The displacement vec-
tors are colored based on the difference in
TRE. The greener the vector the better
TransMorph++ is while as a vector gets
more purple the better VoxelMorph++ is.
Diagnostic plots to measure TRE by the
length of the displacement are illustrated
in Fig.2. The displacements were binned into approximately evenly-sized bins, in order
to determine the mean and a confidence interval for each bin. In this way, diagnostic
curves were produced for each fine-tuned model aiming to inspect TRE as the displacement
length increases. Bin-wise statistical t-tests with Benjamini/Hochberg correction were used
to highlight the significant bins (p-value ≤ 0.05) for the pair-wise model comparisons.
It is evident that transformers were better at small to medium lengths while for larger
displacements there is no such difference.

Figure 2: TRE across the displacement length domain.

Conclusion Overall, trans-
formers outperformed Voxel-
Morph but the performance
gain came from better reg-
istering small displacements.
To answer the question posed
in the title of the paper:
contrary to previous assump-
tions, we found no evidence to
support the claim that trans-
formers register long displace-
ments better than CNNs. This finding seems to be supported by (Park and Kim, 2022)
where it is shown that “the success of MSAs for computer vision is NOT due to their weak
inductive bias and capturing long-range dependency”.
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Abstract

Geometric alignment appears in a variety of applications, ranging from domain
adaptation, optimal transport, and normalizing flows in machine learning; optical
flow and learned augmentation in computer vision and deformable registration
within biomedical imaging. A recurring challenge is the alignment of domains
whose topology is not the same; a problem that is routinely ignored, potentially
introducing bias in downstream analysis. As a first step towards solving such
alignment problems, we propose an unsupervised algorithm for the detection of
changes in image topology. The model is based on a conditional variational auto-
encoder and detects topological changes between two images during the registration
step. We account for both topological changes in the image under spatial variation
and unexpected transformations. Our approach is validated on two tasks and
datasets: detection of topological changes in microscopy images of cells, and
unsupervised anomaly detection brain imaging.

1 Introduction

Geometric alignment is a fundamental component of widely different algorithms, ranging from
domain adaptation [7], optimal transport [40] and normalizing flows [35, 42] in machine learning;
optical flow [21, 51] and learned augmentation [20] in computer vision, and deformable registration
within biomedical imaging [5, 15, 19, 39, 53]. A recurring challenge is the alignment of domains
whose topology is not the same. When the objects to be aligned are probability distributions [35], this
appears when distributions have different numbers of modes whose support is separated into separate
connected components. When the objects to be aligned are scenes or natural images, the problem
occurs with occlusion or temporal changes [51]. In biomedical image registration, the problem is
very common and happens when the studied anatomy differs from "standard" anatomy [36]. Despite
being extremely common, this problem is routinely ignored or accepted as inevitable, potentially
introducing bias in downstream analysis.

We study two cases from biomedical image registration. One is the alignment of image slices to
reconstruct a 3d volume, where changes in topology between slices introduce challenges in post-
processing (Figure 1). The other is the registration of brain MRI scans, where tumors give common
examples of anatomies that are topologically different from healthy brains. In deformable image
registration, a "moving image" is mapped via a nonlinear transformation to make it as similar as
possible to a "target" image, enabling matching local features or transferring information from one

35th Conference on Neural Information Processing Systems (NeurIPS 2021).



Image pair Unsupervised prediction

Topological change

Figure 1: Left: Example of topological changes between two adjacent slices of human blood cells
imaged via serial block-face scanning electron microscopy [41]. We aim to detect the change of
topology caused by an emerging organelle within the cell (highlighted by the red arrow) while
accounting for non-linear deformations of the image introduced by natural shape changes between
slices. Right: Heatmap of the likelihood of topological changes predicted by our unsupervised model.

image to another. It is common to numerically stabilize the estimation of the transformation by
constraining the predicted transformation to be diffeomorphic, that is, bijective and continuously
differentiable in both directions. In particular, diffeomorphic transformations are homeomorphic, or
topology-preserving, which implies that a common topology is assumed across all images [13, 15].
This topology is often provided by a common template image Itemplate, from which all other images
are obtained via the transformation Φ from the group of diffeomorphisms G. Under this common
topology assumption, the set of all images is given by

I = {Itemplate ◦ Φ|Φ ∈ G} .

Topological differences in biomedical images can be caused by a variety of processes. For instance,
image slices obtained from a volume do not all contain the same elements. Tumor growth or the
removal of surgical tissue can alter the topology of an image. Various processes can lead to the
replacement or deformation of organic tissue, which cannot be mapped to the original image. We
choose to model these topological differences as the inability to obtain one image from the other via a
homeomorphic transformation of the image domain. Since, within image registration, transformations
are assumed to be continuously differentiable, we are effectively modelling topological differences
between pairs of images via the failures of diffeomorphic image registration in aligning them.

As most registration algorithms align images based on intensity, e.g. minimizing mean squared error
(MSE), these tissue changes make it difficult to map images correctly. The strong local deformations
required to deal with the non-diffeomorphic part of the image inevitably also deform the surrounding
area, leading to distorted transformation fields in topologically matching parts of the image [36].
These transformation fields adversely affect downstream tasks, for example indicating false size
changes in adjacent regions.

Previous work on aligning topologically inconsistent domains. Attempting to relax the same-
image assumption induced by fully diffeomorphic transformations is not new. In the context of organs
sliding against each other, several approaches exist, most of which rely on pre-annotating the sliding
boundary using organ segmentation [6, 10, 22, 37, 43, 46], with a few extensions to un-annotated
images [38, 45].

When topological holes are created or removed in the domain, for example through tumors, patholo-
gies, or surgical resections, the loss function used for registration can be locally weighted or masked
[26, 29, 30], or an artificial insection can be grown to correct anatomies [36]. These approaches rely
on annotation of the topological differences, which have to be provided manually or by segmentation.
An exception is given by Li and Wyatt [30], which detects changes in topology from the difference
between the aligned images. This depends crucially on the ability to find a good diffeomorphic
registration outside the anomaly, which is difficult all the while the applied transformation is still
diffeomorphic.
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An alternative approach to registering topologically inconsistent images is to inpaint the difference in
the source images to obtain a topologically consistent quasi-normal image. Then standard registration
methods can be used on the altered images. Quasi-normal images can be obtained through low-
rank and sparse matrix decomposition [32, 33], principle component analysis [16, 18], denoising
VAEs [52], or learning of a blended representation [17]. Registration with the quasi-normal approach
retains the diffeomorphic properties of the transformation but does not register the topologically
inconsistent areas of the images.

Our contribution. We propose an unsupervised algorithm for the detection of changes in image
topology. To this end, we train a conditional variational autoencoder for predicting image-to-image
alignment, obtaining a per-target-pixel probability of being obtained from the moving image via
diffeomorphic transformation. We combine a semantic loss function trained to extract contextual
information [8], with a learnable prior of transformations [9], allowing us to incorporate both the
reconstruction error, as well as knowledge about the expected transformation strength.

We test the validity of our approach on a novel dataset of cell slices with annotated topological
changes and on the proxy task of unsupervised brain-tumor detection. We also validate our approach
by investigating a spatial "topological inconsistency likelihood", and showing that this likelihood is
higher in regions where topological inconsistencies are known to be common. Our model is able to
detect topological inconsistencies with a purely registration-driven framework, and thus provides the
first step towards an end-to-end registration model for images with topological discrepancies. The
implementation is available at github.com/SteffenCzolbe/TopologicalChangeDetection.

2 Background

2.1 Notation of images and transformations

We view an image I interchangeably as two different structures. First, it is a continuous function
I : ΩI → RC , where ΩI = [0, 1]D is the domain of the image, and C the number of channels.
This function can be approximated by a grid of n pixels with positions xk ∈ ΩI leading to the
image representation I

(c)
k , where c is an index over the channels and Ik = (I

(1)
k , . . . , I

(C)
k )T = I(xk).

Second, this pixel grid is accompanied by a graph structure that encodes the neighbourhood of each
pixel. In this view, the set of neighbours of a pixel with index k (for example the 4-neighbourhood
of a pixel on the image grid) is referred to as N(k) and |N(k)| is the number of neighbours. The
neighborhoods of a pixel gives rise to a graph which can be described via the graph laplacian
Λ ∈ Rn×n with Λk,k = |N(k)| and Λk,k′ = −1 when pixel k′ ∈ N(k), and zero otherwise.

Applying a spatial transformation Φ : RD → RD to an image is written as J = I ◦ Φ, which can be
seen as its own image with domain ΩJ = [0, 1]D with pixel coordinates yk ∈ ΩJ and Jk = I(Φ(yk)).
The transformation Φ can be seen as a vector field on the image domain which assigns each pixel
in J a position on I and thus it can be parameterized as a pixel grid Φ

(d)
k , d = 1, . . . , D at the pixel

coordinates of J using Φ(yk) = yk +Φk. To make this choice of coordinate system clear, we will
refer to a transformation that moves a pixel position from the domain ΩJ to the corresponding pixel
in domain ΩI as ΦJ→I, whenever it is not clear from the context. If Φ is a diffeomorphism, it can
alternatively be parameterized by a vector field V on the tangent space around the identity, where the
mapping between the tangent space and the transformation is given by Φ = exp(V ), which amounts
to integration over the vector field [2].

2.2 Variational registration framework

It is possible to phrase the problem of fitting a registration model in terms of variational inference,
using an approach similar to conditional variational autoencoders [47]. Here, we summarize the
approach taken by [9, 31]. For a D-dimensional image pair (I,J), we assume that J is generated
from I by drawing a transformation Φ from a prior distribution p(Φ|I), apply it to I and then add
pixel-wise noise:

p(J|I) =
∫

pnoise(J|I ◦ Φ)p(Φ|I) dΦ

This includes the common topology assumption implicitly via p(Φ|I), which is typically chosen
to produce invertible transformations depending only on the topology of I, as well as the noise
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model which does not assume systematic changes between J and I. This model can be learned using
variational inference using a proposal distribution q(Φ|I,J) with evidence lower bound (ELBO)

log p(J|I) ≥ Eq(Φ|I,J) [log pnoise(J|I ◦ Φ)]−KL(q(Φ|I,J)‖p(Φ|I)) . (1)
In contrast to variational autoencoders, the decoder is given by the known application of Φ to I. Thus,
the degrees of freedom in this model are in the choice of the encoder, prior, and the noise distribution.
Dalca et al. [9] proposed to parameterize Φ as a vector field V

(d)
k on the tangent space, which turns

application of Φ = exp(V ) into sampling an image with a spatial transformer module [24]. As a
prior for this parameterization, they chose a prior independent of I

p(Φ) =
D∏

d=1

N
(
V (d) | 0,Λ−1

)
,

where we used the implicit identification of Φ and V and the precision matrix Λ is chosen as the
Graph Laplacian over the neighbourhood graph (see notation). Using an encoder that for each pixel
proposes q(V (d)

k |I,J) = N (µ
(d)
k , v

(d)
k ), the KL divergence is derived as

KL
(
q(Φ|I,J)‖p(Φ|I)

)
=

1

2

D∑

d=1

n∑

k=1

− log v
(d)
k +|N(k)|v(d)k +

∑

l∈N(k)

(
µ
(d)
k − µ

(d)
l

)2
+const . (2)

It is worth noting that this equation is invariant under translations of µ. This invariance manifests in
rank-deficiency of Λ and as a result, const is infinite. Thus, sampling from the prior and bounding
the objective is impossible. Still training with this term works in practice as images are usually
pre-aligned with an affine transformation and thus translations are close to zero. We will present a
slightly modified approach, rectifying the missing eigenvalue.

3 Detection of topological differences

The variational approach for learning the distribution of transformations introduced before optimizes
an ELBO on log p(J|I). This information is enough to detect images that contain topological
differences under the assumption that these images will overall have a lower likelihood. However, in
our application, we need not only to detect the existence but also the position of outliers in the image.
For this, we have to ensure that log p(J|I) can be decomposed into a likelihood for each pixel of the
image. It is immediately obvious by inspection of the ELBO (1) together with the KL-Divergence (2),
that the lower bound on log p(J|I) can be decomposed into pixel-wise terms if log pnoise(J|I ◦Φ) can
be decomposed as such. To enforce this, we will introduce a general form of error function, which
can be decomposed and includes the MSE as a special case. For this, we first map the images I and J
to feature maps over the pixel positions k via a mapping fk(I) ∈ RF and define the loss as:

pnoise(J|I ◦ Φ) =
n∏

k=1

N (fk(J)|fk(I) ◦ Φ,Σf ) , (3)

where Σf ∈ RF×F is a diagonal covariance matrix with variances learned during training.

The ability to decompose the likelihood is not enough for a meaningful metric, as we have to ensure
that each term is calculated in the correct coordinate system. This depends on the parameterisation
and regularisation of Φ. In the approach by Dalca et al. [9] the parameterization V of Φ is defined on
the tangent space and consequently the prior is also on this space. Since the connection between Φ
and V is given by integration of the vector field, decomposing (2) for a single pixel k will produce
estimates based on the local differential of the transformation, but will not take the full path with
starting and endpoints into account. Thus, correct cost assignments require integration of (2) over the
computed path, which is expensive and suffers from severe integration inaccuracies. Instead, we will
use an alternative approach, where we parameterize Φ directly as a vector field on the image domain.
Transformations parameterized this way are not necessarily invertible anymore, yet smoothness is
still encouraged by the prior.

Learnable prior Using this parameterization, we extend the approach by Dalca et al. [9] and
introduce a parameterized prior on Φk that is learned simultaneously with the model:

p(Φ) =
D∏

d=1

N
(
Φ(d) | 0,Λ−1

αβ

)
, Λαβ = αΛ +

β

n2
✶✶

T (4)
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The expected variations and translations between transformation vectors are governed by α and β.
Unlike most works in image registration, we do not treat these as tuneable hyperparameters, but
instead view them as unknowns to be fitted to the data during training similar to [28, 49]. For efficient
learning, we use an estimate for the optimal values for α, β over a batch of samples during training,
and use a running average at test time. A detailed explanation is given in supplementary material A.

The second term of (4) ensures that Λαβ is invertible, by adding a multiple of the eigenvector
✶ = (1, . . . , 1)T . It can be verified easily that Λ✶ = 0. Unlike adding a multiple of the identity matrix
to Λ, adding the missing eigenvalue does not modify the prior in any other way than regularizing
the translations. Further, it ensures that the KL divergence of the resulting matrix can be quickly
computed up to a constant as α and β do not modify the same eigenvalues. Recomputing the
KL-divergence for n transformation vectors in D dimensions leads to

2KL (q(Φ|I,J)‖pαβ(Φ)) = −(n− 1)D logα−D log β + β
D∑

d=1

(
1

n

n∑

i=1

µ
(d)
i

)2

+

D∑

d=1

n∑

k=1

− log v
(d)
k +

(
α|N(k)|+ β

n2

)
v
(d)
k + α

∑

l∈N(k)

(
µ
(d)
k − µ

(d)
l

)2
+ const (5)

Decomposed error metric We define our pixel-wise error measure for topological change detection
based on the ELBO (1) with KL-divergence (5) as follows, where we compute µ

(d)
k and v

(d)
k via the

proposal distribution q(Φ|I,J) and pick Φ
(d)
k = µ

(d)
k :

Lk(J|I) = − logN (fk(J)|fk(I) ◦ Φ,Σf ) +
βµ

(d)
k

n2

D∑

d=1

n∑

i=1

µ
(d)
i

+
D∑

d=1

− log v
(d)
k +

(
α|N(k)|+ β

n2

)
v
(d)
k + α

∑

l∈N(k)

(
µ
(d)
k − µ

(d)
l

)2
. (6)

We will treat the loss over all pixels L(J|I) = (L1(J|I), . . . , Ln(J|I)) as another image with domain
and pixel coordinates the same as J. This measure is not symmetric. The prior distribution does
not treat the distributions q(Φ|I,J) and q(Φ|J, I) equally. If ΦJ→I maps a line in J to an area in
I, this will incur a large visible feature along the line due to violating the smoothness assumption
encoded in the prior. On the other hand, if an area in J gets mapped to a line in I, the overall error
contribution is smoothed out over the area. To rectify this issue, we will compute a bidirectional
measure Lsym(J|I) = L(J|I) +L(I|J) ◦ΦI→J, where ΦI→J is the same as the one used to compute
L(J|I). For this measure it holds that if ΦJ→I = Φ−1

I→J, we have Lsym(I|J) = Lsym(J|I) ◦ ΦJ→I up
to interpolation errors caused by the finite coordinate grid.

Topological outlier detection Lsym detects topological changes between two images. However,
for evaluation on the Brain dataset, we are interested in topological outliers. Outliers can be detected
using Lsym by contrasting the observed deviations with the observed deviations within a larger set of
control images C. This leads to the score

Q(J) = EI∈C [Lsym(J|I)− EK∈C [Lsym(I|K)] ◦ ΦI→J] . (7)

4 Evaluation

We evaluate our approach on two tasks. In the first, we measure prediction agreement with annotated
topological changes on a dataset of cell slices. For this, we introduce the first dataset with annotated
topological differences for image registration (see Section 4.1), which allows us to significantly
expand on the evaluation strategies of prior work [26, 29, 30]. In the second task, we adapt our
approach to anomaly detection in order to detect brain tumors on slices of MRI images.

On the change detection task, we use our model prediction of Lsym directly. On the anomaly detection
task, we use the score (7), which subtracts the average scores over healthy patients for each pixel.

We compare our model to the following baselines:
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1. Two unsupervised approaches for topological change detection:
• Li and Wyatt’s [30] intensity difference and image gradient-based approach using a deterministic

registration model [5] to obtain the transformations.
• Using the same model, we devise a method based on the Jacobian Determinant of the transfor-

mation field |JΦ|. We expect strong stretching or shrinkage in areas of topological mismatch,
which we measure using use the score log(|detJΦ|)2.

We adapt both approaches to the task of tumor detection by subtracting the average scores over
healthy patients, analogous to (7).

2. The approach by An and Cho [1] for unsupervised anomaly detection in images is based on the lo-
cal reconstruction error of a variational autoencoder. The error score is ‖J−dec(enc(J))‖2, where
enc(J) maps J to the mean of the variational proposal distribution and dec is the corresponding
learned decoder. As the score does not use registration, we cannot use equation (7).

3. A supervised segmentation model trained for segmenting topological changes based on two input
images on the cell dataset, and tumor segmentation based on a single input image on the brain
dataset. Since this model requires annotated data, we withhold 75% of the annotated volumes for
training and evaluate the segmentation model only on the remaining samples.

In both tasks, we measure the pixel-wise agreement of the models with the annotated ground-truth
using the receiver operating characteristic curve (ROC curve) and compare the area under the curve
(AUC) between the models. AUC estimates are bootstrapped on the subject level to obtain error
estimates.

As additional evaluations, we present qualitative examples and investigate whether brain regions
with known topological variability get assigned higher scores in our model. For this we compute the
pairwise average score Lsym over multiple healthy subjects and register them all to a brain atlas using
EI,K [Lsym(I|K) ◦ ΦI→Atlas]. We group the scores by their position on the brain atlas into partitions:
cortical surfaces, subcortical regions, and ventricles.

4.1 Tasks and Data

Topology change detection in Cells Serial block-face scanning electron microscopy (SBEM) is a
method to obtain three-dimensional images from small biological samples. An image is taken from
the face of the block, after which a thin section is cut from the sample to expose the next slice. A
challenge is the accurate reconstruction of the volume, as neighboring slices differ by both natural
deformations and changes in topology. Natural deformations can be introduced by shape-changes of
objects between the slices, and deformations of the sample due to the physical cutting. Changes in
topology occur due to objects present in one slice but not the other, and tears of the physical sample
induced by the cutting.

We evaluate our method on the detection of topological changes between neighboring slices of human
platelet cells recorded with SBEM. We use the pre-segmented dataset by Quay et al. [41] as a base. In
the dataset, image slices are affinely pre-aligned and manually segmented into 7 classes. Afterwards,
for the validation and test set, we annotated changes in the topology of the segmentation masks.
Using this approach, not all instances of topological changes in the image can be annotated as the
segmentation maps merge several types of cell components into a single class. The data is cropped
into patches of 256× 256 pixels and we use 9 patches of 50 slices for training, 4 patches of 24 slices
for validation, and 5 patches of 24 slices for test (3 patches for the supervised approach due to the
training-test split of annotated data).

Brain tumor detection Individual brains offer a range of topological differences, especially in the
presence of tumors. Further, inter-subject differences are found at the cortical surface, where the sulci
vary significantly [48], and near ventricles, which can either be open cavities, or partially closed [36].
We quantitatively evaluate our method on the proxy task of detecting brain tumors. Tumors change the
morphology of the brain and can thus be detected indirectly via the large transformations they cause.
For this, we first train our model using a dataset of healthy images from the control group and then use
(7) to obtain a score for topological outlier detection. For the control set, we combine T1 weighted
MRI scans of the healthy subjects from the ABIDE I [11]1, ABIDE II [12] and OASIS3 [27] studies.

1CC BY-NC-SA 3.0, https://creativecommons.org/licenses/by-nc-sa/3.0/
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For the tumor set we use MRI scans from the BraTS2020 brain tumor segmentation challenge [3, 4,
34], which have expert-annotated tumors. We use the T1 weighted MRI scans, and combine labels
of the classes necrotic/cystic and enhancing tumor core into a single tumor class. All datasets are
anonymized, with no protected health information included and participants gave informed consent
to data collection.

We perform standard pre-processing on both brain datasets, including intensity normalization, affine
spatial alignment, and skull-stripping using FreeSurfer [14]. From each 3D volume, we extract a
center slice of 160× 224 pixels. Scans with preprocessing errors are discarded, and the remaining
images of the control dataset are split 2381/149/162 for train/validation/test. Of the tumor dataset, 84
annotated images with tumors larger than 5cm2 along the slice are used for evaluation (17 for the
supervised approach due to the training-test split of subjects).

4.2 Model and training

All models evaluated are based on a U-Net [44] architecture, except An and Cho [1], which we
implement using as a spatial VAE following the previously published adaptation to Brain-scans by
Venkatakrishnan et al. [50]. The networks consist of encoder and decoder stages of 64, 128, 256
channels for all registration models, and 32, 64, 128, 256 channels for the segmentation and VAE
models. Each stage consists of a batch normalization [23] and a convolutional layer.

In our approach, we use a U-Net to model p(Φ|I,J). The output of the last decoder stage is fed
through separate convolution layers with linear activation functions to predict the transformation
mean and log-scaled variance. Throughout the network, we use LeakyReLu activation functions. The
generator step I ◦Φ is implemented by a parameterless spatial transformer layer [24]. During training
of our model, we use the analytical solution for prior parameters α, β (supplementary material,
Eq. 8), averaged over the mini-batch of 32 image pairs. For validation and test, we use the running
mean recorded during training. The diagonal covariance of the reconstruction loss Σf is treated as a
trainable parameter.

For all datasets, we use data augmentation with random affine transformations of the training images.
For training, the optimization algorithm is ADAM [25] with a learning rate of 10−4. Regularization
of all models is performed by applying an L2-penalty to the weights with a factor of 0.01 for the cell
dataset and 0.0005 for the brains. We train each model on a single TitanRTX GPU, with maximum
training times of 1 day for the cells and 4 days for the brains. Hyperparameters: The network by
Venkatakrishnan et al. [50] has σ = 1 chosen from {0.1, 1, 10}, based on reconstruction loss on
validation set. The deterministic registration model was trained using λ = 0.1 as in [8]. For [30], the
parameters σ of the Gaussian derivative kernel and hyper-parameter K where chosen to maximize
the AUC score, selecting σ = 6, K = 2 out of {1, . . . , 9}2.

For the reconstruction loss, we compare two different loss functions. The first is using the MSE as
in [9, 30]. The second is a semantic similarity metric similar to [8]. To obtain the semantic image
descriptors, we train a U-net with 32, 64, 64 channels for image segmentation, using the manual
annotations of the cell set and automatically created labels obtained with FreeSurfer [14] for the brain
control images. Notably, the segmentation models used for the loss have not been trained on images
or pairs containing topological changes or tumors. From this network, we extract the features of the
first three stages and use them as a 160-channel feature map in the loss (3). For both the MSE and
the semantic loss, we learn the variance parameters while training the variational autoencoder.

4.3 Results

The ROC curves of all trained models on the cell and brain tasks can be seen in Figure 2. For both
tasks, the supervised model performed best (AUC 0.90, 0.95), while our proposed approach with
semantic loss performed best among the unsupervised models (AUC 0.88, 0.80). The unsupervised
approach for topological change detection by Li and Wyatt [30] (AUC 0.75, 0.70) performed overall
best among the baselines, but worse than our method. The unsupervised anomaly detection method
by An and Cho [1] (AUC 0.72, 0.67) performed well at detecting brain tumors, but worse at detecting
topological changes in the cell images. Using the Jacobian determinant (AUC 0.75, 0.62) performed
well on the cell images but worse on the brain tumor detection task. Our approach using MSE (AUC
0.72, 0.61) performed worse than the other methods on both tasks.
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Figure 2: Receiver operating characteristic curves (ROC) and area under the curve (AUC) for
detecting topological changes on the cell and brain datasets. We test models of our method for
unsupervised topological change detection, trained with a semantic loss function and the MSE in
the reconstruction term, and compare against unsupervised baselines from image registration (Li
and Wyatt [30], Jacobian Determinant) and unsupervised anomaly detection (An and Cho [1]). For
reference, we also include a supervised segmentation model, which has been trained on the ground
truth annotations.

I

J

Lsym(J|I)

Figure 3: Topological differences detected by our method, cell dataset. Neighboring slices I, J in
rows 1 and 2. Heatmaps of the likelihood of topological differences detected with Lsym in row 3.
Heatmaps are overlayed on image J to ease comparison. Annotated topological differences used for
evaluation outlined in red. Note that only a subset of topological anomalies present is annotated in
our dataset.

When analyzing the ROC curves, our model performed best among the unsupervised models for all
false positive rates, while the supervised model is the best overall. Finally, even though both models
share the same trained model, the score used by Li and Wyatt [30] performed better than scoring
using the Jacobian determinant on the brain tumor detection task, while on the cell dataset, both
approaches performed the same.

We show qualitative results on the cell dataset in Figure 3. In row 3, we see that Lsym detected
annotated areas of topological change (contoured in red), but is more certain at detecting changes in
areas with high intensity difference. In many cases, the model assigns a likelihood of topological
changes to areas that have not been annotated in the dataset, such as the merging cell boundary in
column 2 or many small changes in the cell interior in column 4.
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Figure 4: Topological differences detected by our method, brain dataset. Structurally normal brain I
in column 1, brain with tumor J in column 2. Heatmaps of the likelihood of topological differences
detected with Lsym in columns 3, 4 . Likelihood of topological differences caused by the structural
anomaly filtered by Eq. 7 in columns 5, 6. Contour of the ground truth brain tumor in red. Heatmaps
are overlayed on image J to ease comparison.
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Figure 5: Left: Heatmap of average location of topological differences among the control group,
predicted by the semantic model, averaged with EI,K [Lsym(I|K) ◦ ΦI→Atlas] using a brain atlas as
reference image. Center: We use morphological operations to split the atlas into cortical surface
(blue), ventricles (orange) and sub-cortical structures (green). Right: Likelihood of topological
differences occurring in each region. Boxplot with median, quartiles, deciles.
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Qualitative results on the brain data are presented in Figure 4. When looking at columns 3 and 4, we
see that Lsym detected notable areas with high changes in topology compared to the reference image
I. This includes the ventricles (rows 2,3), the cortical areas with the sulci (all rows) as well as tumor
areas (rows 1,3,5). There was a clear difference in the behaviour between semantic loss and MSE as
the semantic loss highlights broader regions of the surface. When comparing the outlier-detection
measure Q(J) in columns 5 and 6, we can see that our approach filtered most of the ventricles and
sulci leaving an area around most tumor regions. Notable exceptions are rows 2 and 4, where the
tumor area was not highlighted, as well as row 1 where only part of the tumor was detected.

In Figure 5, we show the average topological change score on healthy subjects. We see on the brain
image and the box plot, that the cortical surfaces and ventricles get assigned higher scores than the
subcortical structures.

5 Discussion and conclusion

In this work, we have introduced a novel approach for the detection of topological changes. We
evaluated our approach qualitatively and compared it quantitatively to previous approaches using
both a novel dataset with purpose-made annotations and on an unsupervised segmentation proxy task.
On both tasks, our approach performed best among the unsupervised methods, but could not reach
the performance of the supervised method.

An unsupervised method is useful in practice, as annotations of topological changes are rarely
available. While our results are not pixel exact, they indicate where a registration algorithm must
be used more carefully to obtain a valid registration. The results on the cell dataset align well with
the annotations, and many of the false positives appear to be caused by incomplete annotation of
the data. This is also reflected in the reported ROC-curves, which show that our model outperforms
the supervised segmentation model at false positive rates larger than 0.5. The results obtained on
the tumor segmentation proxy task are reinforced by the distribution of scores obtained on healthy
patients in different parts of the brain. The high likelihood of topological differences in ventricles
found agrees with previous work [36] and the higher scores in cortical surfaces reflect the fact, that
the sulci of the cortical surface exhibit high variability between subjects [7], which was previously
difficult to quantify.

Our results also show that using a semantic loss function is advantageous compared to the MSE in
this task, as all MSE based methods performed worse than our approach using the semantic loss.
This is likely because the contrast between some anatomical areas is quite small and thus missed by
the MSE. In contrast, the semantic loss incorporates more texture information and thus is capable of
differentiating between areas of similar intensity but different semantics. However, particularly on
the brain example, even the semantic approach misses tumors close to the cortex. We hypothesize,
that this is in part caused by the similar appearance of tumors and grey matter, in part by the semantic
model not being trained on tumors, and in part due to the cortical area containing high topological
variation among the control group as well.

On the brain dataset, our unsupervised results for the method by An and Cho [1] are in line with
previously reported results on a comparable dataset [50]. However, our supervised results are not
comparable to the results published for the BRATS challenge, as we selected a subset of data for
training and only used structural MRI images, discarding the other modalities. On the cell dataset, no
other work on topology change or outlier detection is available.

Our study has several limitations. We only investigate registrations in 2D and topological differences
might vanish if the whole 3D volume is considered. The transformations obtained by our unsupervised
method differ from strongly regularised methods, as the hyperparameter-less learned prior under-
regularises in order to maximize the likelihood of a topological match during training. Conversely,
the poor performance of the Jacobian determinant might be due to a strong regularisation for good
performance in image registration as we used the hyperparameters as found in [8].

In conclusion, our approach serves as the first step for unsupervised annotation of topological changes
in image registration. Our approach is fully unsupervised and hyperparameter-free, making it a
prospective building block in an end-to-end topology-aware image registration model.
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Abstract. Probabilistic image segmentation encodes varying prediction
confidence and inherent ambiguity in the segmentation problem. While
different probabilistic segmentation models are designed to capture dif-
ferent aspects of segmentation uncertainty and ambiguity, these mod-
elling differences are rarely discussed in the context of applications of
uncertainty. We consider two common use cases of segmentation uncer-
tainty, namely assessment of segmentation quality and active learning.
We consider four established strategies for probabilistic segmentation,
discuss their modelling capabilities, and investigate their performance in
these two tasks. We find that for all models and both tasks, returned
uncertainty correlates positively with segmentation error, but does not
prove to be useful for active learning.

Keywords: Image segmentation · Uncertainty quantification · Active
learning.

1 Introduction

Image segmentation – the task of delineating objects in images – is one of the
most crucial tasks in image analysis. As image acquisition methods can introduce
noise, and experts disagree on ground truth segmentations in ambiguous cases,
predicting a single segmentation mask can give a false impression of certainty.
Uncertainty estimates inferred from the segmentation model can give some in-
sight into the confidence of any particular segmentation mask, and highlight
areas of likely segmentation error to the practitioner. It adds transparency to
the segmentation algorithm and communicates this uncertainty to the user. This
is particularly important in medical imaging, where segmentation is often used
to understand and treat disease. Consequently, quantification of segmentation
uncertainty has become a popular topic in biomedical imaging [6, 11].

Training segmentation networks requires large amounts of annotated data,
which are costly and cumbersome to attain. Active learning aims to save the
annotator’s time by employing an optimal data gathering strategy. Some active

Code available at github.com/SteffenCzolbe/probabilistic segmentation
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Fig. 1: Segmentation uncertainty is often interpreted as probable segmentation
error, as seen near the lesion boundary in the first two examples. In the third
example, however, model bias leads to a very certain, yet incorrect segmentation.

learning methods use uncertainty estimates to select the next sample to anno-
tate [7,9,10]. While several potential such data gathering strategies exist [13,16],
a consistent solution remains to be found [8].

While several methods have been proposed to quantify segmentation uncer-
tainty [4, 6, 11], it is rarely discussed what this uncertainty represents, whether
it matches the user’s interpretation, and if it can be used to formulate a data-
gathering strategy. We compare the performance of several well-known prob-
abilistic segmentation algorithms, assessing the quality and use cases of their
uncertainty estimates. We consider two segmentation scenarios: An unambigu-
ous one, where annotators agree on one underlying true segmentation, and an
ambiguous one, where a set of annotators provide potentially strongly different
segmentation maps, introducing variability in the ground truth annotation.

We investigate the degree to which the inferred uncertainty correlates with
segmentation error, as this is how reported segmentation uncertainty would typ-
ically be interpreted by practitioners. We find that uncertainty estimates of the
models coincide with likely segmentation errors and strongly correlate with the
uncertainty of a set of expert annotators. Surprisingly, the model architecture
used does not have a strong influence on the quality of estimates, with even a
deterministic U-Net [12] giving good pixel-level uncertainty estimates.

Second, we study the potential for uncertainty estimates to be used for se-
lecting samples for annotation in active learning. Reducing the cost of data
annotation is of utmost importance in biomedical imaging, where data availabil-
ity is fast-growing, while annotation availability is not. We find that there are
many pitfalls to an uncertainty-based data selection strategy. In our experiment
with multiple annotators, the images with the highest model uncertainty were
precisely those images where the annotators were also uncertain. Labeling these
ambiguous images by a group of expert annotators yielded conflicting ground
truth annotations, providing little certain evidence for the model to learn from.

2 Modelling segmentation uncertainty

Image segmentation seeks to estimate a well-defined binary3 segmentation g : Ω →
{0, 1} for a discrete image domain Ω. Typically, a predictive model h(x,w) with

3 For simplicity, we consider binary segmentation; the generalization to multi-class
segmentation is straightforward.
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parameters w, such as a neural network, is fitted to binary annotation data
a : Ω → {0, 1} by minimizing a loss L(a, h(x,w)). Here, x ∈ RΩ is the image,
and y = h(x,w) defines an image of pixel-wise segmentation probabilities, such
as the un-thresholded softmax output of a segmentation network h.

Typically, the annotation is assumed to be error-free, that is a = g, and
predictors are typically trained on a single annotation per image. We assume
that the trained neural network h(x,w) satisfies

h(x,w) = g(x) + b+ err ,

where b and err denote bias and segmentation error. Segmentation uncertainty is
often interpreted as correlating with this error, although this is primarily realistic
for small bias. Such segmentation tasks are called unambiguous; we consider a
running example of skin lesion segmentation from dermoscopic images [3, 15],
where the lesion boundary is clearly visible in the image (Fig. 1).

Recent work has considered ambiguous segmentation tasks [6,11], where there
is no accessible “ground truth” segmentation, either because the data is not suf-
ficient to estimate the segmentation, or because there is subjective disagreement.
Examples include lesions in medical imaging, where the boundary can be fuzzy
due to gradual infiltration of tissue, or where experts disagree on whether a
tissue region is abnormal or not.

In such tasks, we make no assumption on the underlying segmentation g or
the errors err, but regard the observed annotations as samples from an unknown
“ground truth” distribution p(a|x) over annotations a conditioned on the image
x. The goal of segmentation is to estimate the distribution p(a|x), or its proxy
distribution p(y|x) over pixel-wise class probabilities y : Ω → [0, 1], as accurately
as possible for a given image x. If successful, such a model can sample coher-
ent, realistic segmentations from the distribution, and estimate their variance
and significance. As a running example of an ambiguous segmentation task, we
consider lung lesions [1, 2, 6]. For such tasks, predictors are typically trained on
multiple annotators, who may disagree both on the segmentation boundary and
on whether there is even an object to segment.

From the uncertainty modelling viewpoint, these two segmentation scenarios
are rather different. Below, we discuss differences in uncertainty modelling for
the two scenarios and four well-known uncertainty quantification methods.

3 Probabilistic Segmentation Networks

A probabilistic segmentation model seeks to model the distribution p(y|x) over
segmentations given an input image x. Here, our annotated dataset (X,A) con-
sists of the set X of N images

{
xn | n = 1, ..., N

}
, and L annotations are

available per image, so that A =
{
a
(l)
n ∼ p(y|xn) | (n, l) = (1, 1), ..., (N,L)

}
.

Taking a Bayesian view, we seek the distribution

p(y|x,X,A) =

∫
p(y|x,w)p(w|X,A, h) dw , (1)
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U-Net

h(x, ŵ)

Ensemble

h(x,w(1))

...
h(x,w(M))

h(x,w(r))

w(r) ∼ p(w; θ)

MC-Dropout

h(x, z(i), ŵ)

z(i) ∼ pprior(z|x)

Prob. U-Net

Fig. 2: Schematic overview (adapted from [6]) of the evaluated models. Blue:
residual blocks . Orange: Dropout layers essential to the networks’ functionality.

over segmentations y given image x and data (X,A), which can be obtained by
marginalization with respect to the weights w of the model h.

In most deep learning applications, our prior belief over the model h, denoted
p(h), is modelled by a Dirac delta distribution indicating a single architecture
with no uncertainty. In the context of uncertain segmentation models, however,
we would like to model uncertainty in the parameters w. Denoting our prior
belief over the parameters w by p(w|h), Bayes’ theorem gives

p(w|X,A, h) =
p(w|h)p(A|X,w, h)

p(A|X, h)
, (2)

where the likelihood update function is given by

p(A|X,w, h) = exp

(
N∑

n=1

L∑

l=1

A(l) log (h(xn,w)) + (1−A(l)) log (1− h(xn,w))

)

and normalizing constant

p(A|X, h) =

∫
p(w|h)p(A|X,w, h) dw .

This integral is generally intractable, making it impossible to obtain the
proper posterior (2). Below, we discuss how empirical approximations p̂(y|x,X,A)
to the distribution p(y|x,X,A) found in (1) are performed in four common seg-
mentation models. Note that both p and p̂ can be degenerate, depending on the
number of annotations available and models used.

U-Net with softmax output. The well established U-Net [12] architecture
with a softmax output layer yields class-likelihood estimates. As the model
is deterministic, p(h|X,A) is degenerate. Parameters are selected by a max-
imum a posteriori (MAP) estimate i.e. p(w|X,A, h) ≈ δ(w − ŵ) in which
ŵ = argmax p(w|X,A, h). The model output (1) is approximated by the degen-
erate distribution p̂(y|x,X,A) ≈ p(y|x, ŵ). The softmax output layer predicts



Is segmentation uncertainty useful? 5

a pixel-wise class probability distribution p(y(i,j)|x,X,A). As no co-variance
or dependencies between pixel-wise estimates are available, segmentation masks
sampled from the pixel-wise probability distributions are often noisy [11]. An
alternative approach followed by our implementation is the thresholding of pixel-
wise probability values, which leads to a single, coherent segmentation map.

Ensemble methods combine multiple models to obtain better predictive per-
formance than that obtained by the constituent models alone, while also allowing
the sampling of distinct segmentation maps from the ensemble. We combine M
U-Net models h(x,w(m)) where, if labels from multiple annotators are available,
each constituent model is trained on a disjoint label set A(m). When trained on
datasets with a single label, all constituent models are trained on the same data
and their differences stem from randomized initialization and training. Treating
the models as samples, we obtain an empirical distribution approximating (1)
by drawing from the constituent models at random.

Monte-Carlo Dropout [4] is a Bayesian approximation technique based on
dropout, where samples from the posterior over dropout weights give a better
approximation of the true posterior than a MAP estimation. Given a selected
model h, one can approximate (1) as p̂(y|x,X,A) ≈ 1/R

∑R
r=1 p(y|x,w(r)) when

w(r) ∼ p(w|X,A, h). Since p(w|X,A, h) is intractable, it is approximated [4] by
a variational distribution p(θ) as θi = wi · zi, zi ∼ Bernoulli(pi), where pi is the
probability of keeping the weight wi in a standard dropout scheme.

The Probabilistic U-Net [6] fuses the output of a deterministic U-Net with
latent samples from a conditional variational auto-encoder modelling the varia-
tion over multiple annotators. Test-time segmentations are formed by sampling
a latent z, which is propagated with the image through the U-Net. Predictions
are made as p̂(y|x,X,A) ≈ p(y|x, z(i), ŵ), with z(i) ∼ pprior(z|x).

4 Experiments

4.1 Data

Practical applications of uncertainty in segmentation tasks differ both in the
type of ambiguity, and the availability of expert annotations. We select two
representative datasets for our evaluation.

The ISIC18 dataset consists of skin lesion images with a single annotation
available [3,15], and is used as an example of unambiguous image segmentation.
We rescale the images to 256×256 pixels and split the dataset into 1500 samples
for the train-set and 547 each for the validation and test sets.

The LIDC-IDRI lung cancer dataset [1, 2] contains 1018 lung CT scans
from 1010 patients. For each scan, 4 radiologists (out of 12) annotated abnormal
lesions. Anonymized annotations were shown to the other annotators, who were
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Skin Lesions Lung Cancer

Image

U-Net

Ensemble

MC-Dropout

Prob. U-Net

0.2 0.4 0.6 0.8 1.00.0
Model Uncertainty (Entropy)

Fig. 3: Segmentation Uncertainty. Samples from the test set of the two datasets.
Images in row one, model uncertainty (entropy) heat-maps in rows 2-5. Outline
of mean ground truth annotations in Blue, mean model predictions in Orange.

allowed to adjust their own masks. Significant disagreement remains between the
annotators: Among the extracted patches where at least one annotator marked
a lesion, an average of 50% of the annotations are blank. We pre-processed the
images as in [6], resampled to 0.5mm resolution, and cropped the CT-slices with
lesions present to 128 × 128 pixels. The dataset is split patient-wise into three
groups, 722 for the training-set and 144 each for the validation and test sets.

4.2 Model tuning and training

To allow for a fair evaluation, we use the same U-Net backbone of four encoder
and decoder blocks for all models. Each block contains an up-/down-sampling
layer, three convolution layers, and a residual skip-connection. The ensemble
consists of four identical U-Nets. The latent-space encoders of the probabilistic
U-Net are similar to the encoding branch of the U-Nets, and we choose a six-
dimensional latent space size, following the original paper’s recommendation.

All models were trained with binary cross-entropy. The probabilistic U-Net
has an additional β-weighted KL-divergence loss to align the prior and posterior
distributions, as per [6]. The optimization algorithm was Adam, with a learning
rate of 10−4 for most models, except the probabilistic U-Net and MC-Dropout
models on the skin lesion dataset, where a lower learning rate of 10−5 gave
better results. We utilized early stopping to prevent over-fitting, and define the
stopping criteria as 10 epochs without improvement of the validation loss, 100
epochs for models trained with the reduced learning rate. For the MC-Dropout
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(a) Skin Lesion Dataset (b) Lung Cancer Dataset

Fig. 4: Pixelwise uncertainty by prediction correctness (True Positive, False Pos-
itive, False Negative, True Negative). The scatter plot shows individual pixels,
with the median circled. For the lung cancer dataset, we discarded pixels with
annotator disagreement.

and probabilistic U-Net models we performed a hyper-parameter search over
the dropout probability p and the loss function weighting factor β, selecting the
configuration with the lowest generalized energy distance on the validation set.
We arrived at p = 0.5, β = 0.0005.

4.3 Uncertainty Estimation

For all models, our uncertainty estimates are based on non-thresholded pixel-
wise predictions. For the U-Net, we take the final softmax predictions; for the
remaining models we average across 16 non-thresholded samples. We quantify
the pixel-wise uncertainty of the model by the entropy

H(p(y(i,j)|x,X,A)) =
∑

c∈C
p(y(i,j) = c|x,X,A) log2

1

p(y(i,j) = c|x,X,A)

with p(y(i,j) = c|x) as the pixel-wise probability to predict class c ∈ C. We plot
the resulting uncertainty map for random images x from both datasets in Fig. 3.
For visual reference, we overlay the mean expert annotation in Blue, and the
mean model prediction in Orange. Darker shades indicate higher uncertainty.

We quantitatively assess the quality of uncertainty estimates by examining
their relation to segmentation error in Fig. 4. On both datasets, models are more
certain when they are correct (true positive, true negative) compared to when
they are incorrect (false positive, false negative). A repeated measure correlation
test finds a significant (α = 0.01) correlation between segmentation error and
model uncertainty on both datasets, for all methods. The relation holds, but is
less strong, for MC-dropout on the skin dataset, which retains high uncertainty
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Fig. 5: Pixel-wise model uncertainty on
the lung cancer dataset, grouped by
agreement of expert annotations. Ex-
perts agree: H(p) = 0, somewhat agree
0 < H(p) < 1, disagree H(p) = 1.

Fig. 6: Generalized Energy Distance of
models on the lung cancer dataset, ap-
proximation by 1 to 16 samples, me-
dian highlighted. Lower distances are
better.

even when it is correct. On the lung cancer dataset, all models have high uncer-
tainty on true positive predictions. This might be caused by the imbalance of the
dataset, where the positive class is strongly outweighed by the background and
annotators often disagree. We tried training the models with a class-occurrence
weighted loss function, which did produce true positive predictions with higher
certainty but suffered an overall higher segmentation error.

We assess the correlation of model uncertainty with the uncertainty of the
annotators on the lung cancer dataset in Fig. 5. For all models, this correlation is
significant (α = 0.01) . The median model uncertainty is very low (< 0.1) when
all annotators agree, but high (> 0.7) when they disagree. There is a minor
difference in model uncertainty between partial agreement (annotators split 3 –
1) and full disagreement (annotators split 2 – 2).

4.4 Sampling Segmentation Masks

Fig. 7 shows segmentation masks y sampled from the trained models p̂(y|x). The
U-Net model is fully deterministic and does not offer any variation in samples.
The sample diversity of the ensemble is limited by the number of constituent
models (four in our experiment). The MC-Dropout and probabilistic U-Net allow
fully random sampling and achieve a visually higher diversity. On the skin lesion
dataset, where only one export annotation per image is available, models still
produce diverse predictions. On the lung cancer dataset, samples from the MC-
Dropout and probabilistic U-Net represent the annotator distribution well.

We measure the distance between the model distribution p̂(y|x,X,A) and
the annotator distribution p(y|x) with the Generalized Energy Distance [6, 11,
14]. The distance measure is calculated as

D2
GED(p, p̂) = 2Ey∼p,ŷ∼p̂ [d(y, ŷ)]− Ey,y′∼p [d(y, y′)]− Eŷ,ŷ′∼p̂ [d(ŷ, ŷ′)] . (3)



Is segmentation uncertainty useful? 9

Image Annotation Image Annotations

Samples Samples

U-Net
0.00 0.00

Ensemble
0.10 0.27

MC-Dropout
0.26 0.39

Prob. U-Net
0.07 0.43

Fig. 7: Samples from the probabilistic models. First row: Image and ground truth
annotations from the skin dataset (left) and lung nodule dataset (right). Follow-
ing rows: samples y ∼ p̂(y|x,X,A) drawn from the various models. Sample
diversity over the entire dataset shown next to the model name.

We use 1 − IoU(·, ·) as the distance d. A low D2
GED indicates similar distribu-

tions of segmentations. We approximate the metric by drawing up to 16 samples
from both distributions, and sample with replacement. The results are shown
in Fig. 6. We observe that the annotator distribution is best approximated by
the probabilistic U-Net, with MC-dropout and Ensemble closely behind; these
pairwise ranks are significant (α = 0.01) with left-tailed t-tests. A deterministic
U-Net architecture is not able to reproduce the output distribution. Our results
are consistent with [6], verifying our implementation. Following [11], we use the
last term of (3) to assess the diversity of samples drawn from the model and note
them in Fig. 7. They reinforce the qualitative observations of sample diversity.

4.5 Uncertainty estimates for active learning

Instead of training the models with all available data {X,A}, we now start with a
small random subset {X0,A0}. We train the model with this subset at iteration
t = 0, and then add a set of k images from {X,A} to form {Xt+1,At+1}.
Samples are selected based on the sum of pixel-wise entropies [7]. We repeat for
T iterations, benchmarking against a random sample selection strategy.

For both skin lesion and lung cancer datasets, we start with a training size
of 50 images, add k = 25 images at each iteration, and repeat T = 10 times.
The models are trained for 5000 gradient updates with a batch size of 16 and
32 for the respective datasets. Since annotations are costly and to speed up
computations, no validation-loss based early stopping is used. The experimental
setup has been picked to ensure meaningful model uncertainties for the data
selection policy and to ensure convergence within each active learning iteration.

The learning curves in Fig. 8 show that random-based sampling leads to a
faster reduction in test loss over the uncertainty-based sampling strategy for
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Fig. 8: Learning curves for the four algorithms on both datasets. Note that the
Probabilisitic U-net only applies to the ambiguous segmentation.

Image Annotator 1 Annotator 2 Annotator 3 Annotator 4

Fig. 9: An example of the ambiguous samples frequently selected for inclusion
into the training set under the uncertainty-based data gathering strategy. This
unseen sample was selected when 150 annotations were revealed. The group
of expert annotators provided disagreeing segmentation masks, confirming the
model uncertainty but providing little additional information to learn from.

both datasets. We further investigated the samples selected by the uncertainty-
based strategy by looking at the images which caused a large increase in the test
error. One such image is shown in Fig. 9.

5 Discussion & Conclusion

Our results in Fig. 4 show that there is a clear relation between uncertainty
estimates and segmentation error. The examples in Fig. 3 further highlight that
areas of high uncertainty are not merely distributed around class boundaries, but
also encompass areas with ambiguous labels. Fig. 5 shows that the uncertainty
estimates obtained from the model are a good representation of the uncertainty
of a group of expert annotators. We conclude that pixel-wise model uncertainty
estimates give the practitioner a good indication of possible errors in the pre-
sented segmentation mask, allowing those predictions to be examined with care.

The learning curves in Fig. 8 show that estimated uncertainty is not generally
useful for selecting active learning samples, for any model or dataset. Our results
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depend on using the sum of pixel-wise entropies as a per-image entropy, which is
correct for the softmax model, but only an approximation for the other models.
This might impact our results. For the Lung Cancer dataset, all models esti-
mate high uncertainty for the positive class, and the active learner thus selects
images with a large foreground, skewing the proportion of classes represented
in the training set. Furthermore, the selected images often have high annotator
disagreement, illustrated in Fig. 9. If the active learner prefers sampling am-
biguous images, it will be presented with inconsistent labels leading to harder
learning conditions and poor generalisation. This may stem from an incorrect
active learning assumption that annotations are noise-free and unambiguous,
which is often not true. In conclusion, for a fixed budget of annotated images,
we find no advantage in uncertainty-based active learning.

We observed similar behaviour of pixel-wise uncertainty estimates across all
four segmentation models. The models differ in their ability to generate a distri-
bution of distinct and coherent segmentation masks, with only the MC-dropout
and probabilistic U-Net offering near unlimited diversity (see Fig. 7). But these
models are harder to implement, more resource-intensive to train, and require
hyperparameter tuning. The choice of model is ultimately application dependent,
but our experiments show that even a simple U-net is competitive for the com-
mon task of assessing segmentation error. This agrees with [5], which compared
uncertainty quantification models for unambiguous segmentation.

Our division of segmentation tasks into ambiguous and unambiguous consid-
ers it as ”unambiguous” when a fundamentally ambiguous segmentation task is
covered by a single annotator – or potentially several annotators, but with only
one annotator per image, as for the Skin Lesion dataset. Even if the underlying
task is ambiguous, the models considered in this paper inherently assume that it
is not, as there is no mechanism to detect annotator variance when every image
is only annotated once. More fundamental modelling of segmentation ambiguity
and uncertainty thus remains a highly relevant open problem.

To conclude – is segmentation uncertainty useful? We find that uncertainty,
even in the simplest models, reliably gives practitioners an indication of areas of
an image that might be ambiguous, or wrongly segmented. Using uncertainty es-
timates to reduce the annotation load has proven challenging, with no significant
advantage over a random strategy.
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Abstract

Neuroimage processing tasks like segmentation, recon-
struction, and registration are central to the study of neuro-
science. Deep learning strategies and architectures used to
solve these tasks are often similar. Yet, when presented with
a new task or a dataset with different visual characteristics,
practitioners most often need to train a new model, or fine-
tune an existing one. This is a time-consuming process that
poses a substantial barrier for the thousands of scientists
and clinical researchers who often lack the resources or ex-
pertise to train deep learning models. In practice, this leads
to a lack of adoption of deep learning and neuroscience be-
ing dominated by classical frameworks. In this paper, we
introduce Neuralizer, a single model that generalizes to pre-
viously unseen neuroimaging tasks and modalities without
the need for re-training or fine-tuning. Tasks do not have
to be known a priori, and generalization happens in a sin-
gle forward pass during inference. We show experimentally
that the model can solve processing tasks across multiple
image modalities, acquisition methods, and datasets, and
generalize to tasks and modalities it has not been trained
on. When few annotated subjects are available (≤ 32 in
our experiments), our multi-task network outperforms task-
specific baselines without training on the task.

1. Introduction

Computational methods for the processing and analysis
of neuroimages have deepened our understanding of the hu-
man brain. The field has also led to advanced patient care
by developing non-invasive methods of diagnosis and treat-
ment, and has attracted large interest from the medical com-

Input Prediction
One Model 
for all Tasks

Context Set informs Task

Figure 1. We solve a broad range of image processing tasks with
a single model by conditioning the prediction on a context set of
examples. After training on a diverse set of tasks, the model can
generalize to new tasks in a single forward pass without re-training
or fine-tuning. The model is highly flexible, requiring no prior
definition of the set of tasks, and can be conditioned with context
sets of any length.

munity and funding bodies. Recent deep learning research
promises to further increase the accuracy and speed of neu-
roimaging methods.

A drawback of most current deep-learning-based ap-
proaches is that each model is limited to solving the task
it has been trained on, on the data it has been trained on.
Generalization to new task and domains, such as differ-
ent acquisition protocols or new segmentation targets, re-
mains a barrier to adoption [60]. Performing neuroimag-
ing tasks like segmentation, registration, reconstruction, or
motion correction requires different models for each pro-
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Figure 2. Examples of the neuroimaging tasks and modalities included in our dataset. Input images in the top row, output images in the
bottom row.

cessing step, despite operating on the same input data and
methods exhibiting strong similarities in network architec-
ture [12,42,82]. Yet, designing and training models to solve
these tasks on each dataset is prohibitively expensive. To
train a deep learning model, a dataset needs to be compiled
and manually annotated, and the network, training and data
loading logic needs to be implemented, all of which gen-
erally require machine learning and neuroimaging exper-
tise. In addition, computational resources like specialized
graphics processing hardware needs to be available for run-
ning the optimization. These requirements are particularly
problematic in clinical research settings due to a high cost
of annotation and a lack of machine learning expertise and
hardware. The many closely related neuroimaging tasks
and image modalities and acquisition characteristics require
custom solutions, many of which are not available. As a
consequence, many works forgo using methods adapted to
their task and data characteristics, and instead use existing
methods even when their data acquisition falls outside of
the protocols used for building the tool [10,31,96]. As neu-
roimaging tasks have much in common, generalization is
a promising proposal to reduce the number of models that
have to be trained.

Contribution

We introduce Neuralizer, a general-purpose neuroimag-
ing model that, given a set of examples at inference (Fig. 1),
can solve a broad range of neuroimaging tasks on diverse
image modalities (Fig. 2), without the need for task-specific
training or fine-tuning.

Neuralizer involves a novel architecture (Fig. 3), that
takes as input a context set of examples to inform the pro-
cessing task, and thus does not require prior definition of
the tasks. The method enables single-pass generalization
during inference and can process any number of reference
images in a single pass to inform the prediction.

As a first method tackling task generalization in neu-

roimaging, we focus on analyzing the capabilities of such
system and presenting general insights, and thus focus on
2D experiments allowed by our compute environment. We
evaluate our model by comparing it’s single-pass general-
ization performance to task-specific baselines conditioned
on an equivalent amount of data. We find that Neuralizer
outperforms the baselines on tasks where ≤ 32 labeled
examples are available, despite never training on the task.
When generalizing across segmentation protocols, Neural-
izer matches the performance of baselines trained directly
on the dataset.

2. Background & related work
We give a short introduction to neuroimaging tasks, ter-

minology, and methods. We then provide an overview
of fundamental methods for adapting a model to multiple
domains, including multi-task learning, few-shot learning,
fine-tuning, and data synthesis.

2.1. Neuroimage analysis

Neuroimage analysis employs computational techniques
to study the structure and function of the human brain.
Common imaging techniques are structural magnetic res-
onance imaging (MRI), functional MRI, diffusion tensor
imaging (DTI), computed tomography (CT), and Positron
emission tomography (PET). Each imaging method can cre-
ate diverse images with different characteristics and con-
trasts, which are further diversified depending on the prop-
erties of the acquisition site [58, 107], device, protocol,
imaging sequence [54], and use of contrast agents [9, 33].

To analyze these images, a variety of processing tasks
are most often combined in a processing pipeline. Com-
mon processing tasks include anatomical segmentation [12,
16, 27], skull stripping [45, 51, 84, 91, 106], defacing [2,
36], registration [5–7, 10, 18, 24, 42, 52], modality trans-
fer [77, 78, 94], in-painting [38, 66, 67, 76, 104], super-
resolution [56,71,72,100], compressed sensing, reconstruc-



tion, and de-noising [56,68,89], bias field removal [32,57],
surface fitting [44] and parcellation [88, 95].

Multiple toolboxes provide a suite of interoperable soft-
ware components, most implementing classical optimiza-
tion strategies. Widely used toolboxes are Freesurfer [27],
FSL [49, 92, 103], SPM [30], CIVET [3], BrainSuite [87],
HCP pipeline [97], and BrainIAK [55]. Deep-learning-
based methods are just now starting to be included because
of their improved accuracy and shorter runtime [12, 45].
While these toolboxes provide solutions for common neu-
roimaging applications, most tasks are limited to a single
modality. Manual updates by the authors are required to in-
clude new processing tasks and to support a wider variety
of image modalities.

2.2. Multi-task learning

Multi-Task Learning (MTL) frameworks solve multiple
tasks simultaneously by exploiting similarities between re-
lated tasks [15]. MTL can improve performance and reduce
computational cost and development time compared to de-
signing task-specific solutions [22, 85]. In neuroimaging,
MTL networks were recently proposed for the simultaneous
segmentation and classification of brain tumors by training
a single network with separate prediction heads associated
with the different tasks [20,35]. This strategy does not scale
as the number of tasks increases, requires prior determina-
tion of the set of tasks, and does not enable generalization
of the model to new tasks. With Neuralizer, we build on
these methods to achieve scalable MTL, without the need
for multiple network heads, and impotently the ability to
generalize to new tasks and modalities.

2.3. Few-shot learning

Few-shot models generate predictions from just a few la-
beled examples [64, 81, 83, 101], or in the case of zero-shot
methods [13], none at all. In computer vision, several meth-
ods pass a query image, along with a set of support images
and labels as input to the model [64,86,93,98]. Natural im-
age segmentation methods [65, 109] use single image-label
pairs [59, 108] as support or aggregate information from a
larger support set [61]. Recent n-shot learning methods in
the medical imaging setting [11,25,26] operate on a specific
anatomical region in a single image modality [39, 111]. We
build on ideas from these methods but aim to solve a much
larger range of image-to-image tasks on images of many
modalities, leading to unique challenges.

2.4. Fine-tuning

To tackle problems in the limited data scenarios frequent
in medical imaging, neural networks can be pre-trained on
a related task with high data availability and then fine-tuned
for specific tasks. For example, a common approach in-
volves taking a Res-Net [40] trained on ImageNet [19] and

fine-tuning part of the network for a new task [46, 53, 99].
For medical imaging, networks pre-trained on large sets of
medical images are available [17], and fine-tuning them to
new tasks results in shortened training time and higher ac-
curacy [4,70]. However, as with training from scratch, fine-
tuning requires machine learning expertise and computa-
tional resources not always available in clinical research.
Additionally, in scenarios with small datasets, fine-tuning
models trained on large vision datasets can be harmful [80].

2.5. AutoML methods

AutoML tools can be used to automate the steps of im-
plementation, training, and tuning deep learning models, re-
ducing the technical knowledge required of the user. For
example, NN-UNet [47] is a software package that auto-
mates the design and training of U-Nets [82] for biomedical
image segmentation, and has been successfully applied to
brain segmentation [21, 48, 69]. While AutoML methods
effectively reduce the technical requirements for the imple-
mentation, massively parallel hardware is still required for
performing the internal hyper-parameter search and training
the model. Additionally, AutoML methods reduce the flex-
ibility in solution design, as they are often specific to a type
of task or data structure.

2.6. Data augmentation and synthesis

Data augmentation increases the diversity of training
data by augmenting or modifying existing data [82, 110].
It improves the model’s robustness to input variability that
may not be available in the original training data. In neu-
roimaging, arbitrary image modalities can be simulated by
synthesis of images without requiring any real data [12, 14,
42,45,90]. In meta-learning, data augmentation can further
be used to generate entirely new tasks [63,102,105]. We use
data augmentations and further expand existing methods by
developing rich neuroimaging task augmentations for gen-
eralization to unseen neuroimaging tasks.

3. Neuralizer
We introduce Neuralizer, a multi-task model for neu-

roimage analysis tasks. In this section, we first define the
training framework and adaptations necessary to operate on
a diverse range of tasks and input types. Then, we introduce
the model architecture, training, and inference strategies.

3.1. Generalizabe multi-task model

Fig. 1 gives a high-level overview of our model. Let T
represent a set of tasks, with a subset of tasks Tseen seen
during training. Each task consists of input-output image
pairs (xt, yt) from potentially multiple underlying datasets
with joint input and output spaces xt ∈ X , yt ∈ Y .

To enable generalization to unseen tasks, we condition
the model on a context set Ct = {(xt,i, yt,i)}Ni=1 of input-
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Figure 3. Neuralizer consists of 7 Pairwise-Conv-Avg blocks (right), arranged in a U-Net-like [75, 82] configuration (left). Each Pairwise-
Conv-Avg block enables interaction between the input image and the image pairs present in the context set. The block consists of a
residual unit, pairwise convolution of each context member with the target, and an averaging of results across the context set to update the
representation. To extract information from context sets of any size, the architecture is invariant in the length of the context size N .

output image pairs that exemplify the task to be performed.
The context set can vary in size |Ct| = N .

We employ a neural network gθ(xt, Ct) = yt with
weights θ that aims to apply the task defined by context set
Ct to the input neuroimage xt. We optimize the network
using supervised training with the loss

L(Tseen; θ) = Et∈Tseen

[
E(xt,yt,Ct)[Lt(yt, gθ(xt, Ct))]

]
,
(1)

where Lt is a task-specific loss function.

3.2. Design for diverse tasks

To process different tasks with a single model, we care-
fully select the loss function, image encoding, and genera-
tion of the training set for each task type.

Loss function. Neuralizer needs to solve both segmen-
tation tasks (e.g. anatomical segmentation and skull-
stripping via a brain mask), and image-to-image tasks
(e.g. denoising). We use the Soft Dice Loss [75] for the
segmentation-like tasks, and the pixel-wise Mean Squared
Error MSE(yt, g(xt, Ct)) = 1

2σ2

∑
p[ytp − g(xt, Ct)p]

2

with balancing hyperparameter σ2 for all other tasks. As
the network optimizes multiple tasks during training, the
balance of the loss terms can dramatically affect the result.

Input and output encoding. For Neuralizer to work on
both segmentation and image-to-image tasks, we facilitate
simultaneous input of multiple image modalities and masks.
We design the input space X to accept floating point value
images with three channels and zero-pad empty channels.
The output space Y follows the same design but uses only
one channel.

Training dataset creation. On each training iteration, we
first sample a task t from Tseen. Given the task, the task-

Table 1. Tasks, Modalities, Datasets, and Segmentation classes
used for training Neuralizer.

Tasks Modalities

Binary Segmentation T1-w.
Modality Transfer T2-w.
Super Resolution MRA
Skull Stripping PD
Motion Correction FLAIR
Undersampled Reconstruction ADC
Denoising & Bias correction DWI
Inpainting DTI (17 dir.)

Datasets Segmentation Classes

OASIS 3 [43, 73] Freesufer Aseg, 31
classes [12, 27]BRATS [8, 9, 74]

IXI [1]
ATLAS R2.0 [62] Manually-annotated Hammers

Atlas, 96 classes [23, 34, 37]Hammers Atlas [37]
WMH Challenge [54]
ISLES2022 [79] Brainmasks [27, 45]

specific dataset is created from the underlying training data
(Tab. 1). From this dataset, we sample the input image,
ground truth output, and image pairs for the context set. To
increase the range of images that can be used to condition
the trained model, the image modalities and acquisition pro-
tocols of members of the context set can differ from the in-
put image for some tasks. Supplemental section G contains
a detailed description of the training data generator.



3.3. Model architecture

Fig. 3 shows the Neuralizer network architecture, devel-
oped jointly with [102]. As the architecture is independent
of the task, we omit the task subscript in this section.

The input image x and the image pairs of the context
set Ci = (xi, yi), i = 1, ..., N are first passed through an
embedding layer consisting of a single 1 × 1 convolution
with learnable kernels ex, eC , to obtain the representations
rx = x ∗ ex, rCi = cat(xi, yi) ∗ eC where ∗ is the convo-
lution operator. This combines each context image pair to
a joint representation rCi

and maps all representations to a
uniform channel width c, which is constant throughout the
model. Next, we process the representations by multiple
Pairwise-Conv-Avg Blocks (explained later), arranged as a
U-Net-like configuration [75,82] to include multiple scales.
The output rout

x of the final Pairwise-Conv-Avg Block is pro-
cessed by a residual unit [40] and a final 1 × 1 conv layer
to map to one output channel. All residual units consist of
two 3 × 3 conv layers, a shortcut connection, and GELU
activation functions [41].

Compared to standard CNNs, Neuralizer needs a mech-
anism to enable knowledge transfer from the context set
to the input image. We introduce the Pairwise-Conv-Avg
Block (Fig. 3, right) to model this interaction. The block
maps from representations of the target input rin

x and context
pairs rin

Ci
to output representations rout

x , rout
Ci

of the same size.
First, we process each input separately with a residual unit
to obtain rint

x = ResUnitx(r
in
x ) and rint

Ci
= ResUnitC(r

in
Ci
).

The residual units operating on the context representations
have shared weights. Second, we pairwise concatenate the
context representations with the target representation on the
channel dimension so that pi = cat(rint

x , rint
Ci
). We com-

bine the pairwise representations and reduce the channel
size back to c with a 1 × 1 convolution with learnable ker-
nel kx, and update the target representation by averaging
across context members rout

x = rint
x + 1

N

∑N
i=1 pi ∗ kx. The

context representations are updated with a separate kernel
rout
Ci

= rint
Ci

+ pi ∗ kC . We then re-size the outputs of
a Pairwise-Conv-Avg Block before feeding them as input
the next block. We experimented with attention-based and
weighted average approaches but found that they do not lead
to an increased generalization to unseen tasks.

3.4. Task augmentations

To further diversify the training dataset, we employ task
augmentations [102], a group of transformations applied at
random to the input and output images, and the images of
their context set. The objective is not to create plausible
neuroimaging tasks, but instead to increase the diversity of
tasks to discourage the model from merely memorizing the
tasks in the training data. A list of all task augmentations is
given in Tab. 2, with more detailed descriptions and visual
examples in Supplement C.

3.5. Inference

During inference, we supply an input image xi and a
context set Ci from the same task. Given these inputs, a
simple feed-forward pass through the model provides the
prediction ŷ = g(x,C). To further increase accuracy at test-
time, we use context-set bootstrapping [102]. If less than
the maximum computationally feasible number of context
images is provided, it is padded to full size by sampling
with replacement from the provided set, with small affine
movements applied to the padded samples.

4. Experiments
We first compare Neuralizer with task-specific networks,

which require substantial expertise and compute. We then
analyze the effect of the length of context set, and the multi-
task generalization to unseen segmentation schemes and im-
age modalities. For this first method of large-scale multi-
task generalization in neuroimaging, we conduct the exper-
iments on 2D image slices.

4.1. Data

To create a diverse dataset encompassing a multitude
of different modalities, acquisition protocols, devices, and
tasks, we pool neuroimages from the public datasets OA-
SIS3 [43, 73], BRATS [8, 9, 74], Atlas R2.0 [62], Ham-
mers Atlas [37], IXI [1], ISLES2022 [79], and the White
Matter Hyperintensities Challenge [54]. We segment all
subjects with Synthseg [12, 27]. Based on the segmenta-
tion, we affinely align the images to the MNI 152 template
space [28, 29], and resample to 1mm isometric resolution
at a size of 192 × 224 × 192mm. We perform quality as-
surance of the segmentation and registration by ensuring no
segmented areas fall outside of the cropped volume and dis-
card subjects failing this check (4 subjects discarded). We
extract a coronal slice of 192×192mm, bisecting the frontal
Brain stem, Hippocampus, Thalamus, and Lateral ventri-
cles. We rescale image intensities to the [0, 1] interval using
dataset-specific percentiles. For full head images, we create
a brain mask with Synthstrip [27,45]. The final dataset con-
tains 2,282 subjects with 15,911 images and segmentation
masks across 8 modalities and 17 DTI directions. Subjects
of the seven original datasets are split into 80% training and
validation, 20% test, with a minimum of 15 test subjects per
dataset.

Table 2. Task Augmentations

Task Augmentations

IntensityMapping SyntheticModality
SobelFilter MaskInvert
MaskContour MaskDilation
PermuteChannels DuplicateChannels
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Figure 4. Performance of multi-task Neuralizer and the task-specific baselines on each task, averaged across all modalities in the test set.
The tasks being evaluated were included in the training of Neuralizer-seen (orange), held out in Neuralizer-unseen (blue), and specifically
trained on by each task-specific baseline (gray). The x-axis is the size of the train/context set, and the y-axis is the Dice/PSNR score. Some
points on the x-axis are omitted for better visibility. ‘All’ refers to all available train data for the task, ranging from 249 to 2,282 subjects
depending on the task. The bars denote the standard deviation across modalities. We provide an evaluation on just the T1 modality in
Supplement E.

4.2. Models

Neuralizer-seen. This Neuralizer model has seen all
tasks we have available during training. We evaluate the
performance of Neuralizer on unseen scans from tasks and
modalities that have been included in the training. The
model uses the 4-stage architecture shown in Fig. 3 with
64 channels per layer. During training, the context size |Ci|
is sampled from U{1,32} at each iteration.

Neuralizer-unseen. To evaluate the performance of Neu-
ralizer on tasks and modalities it has not been trained on,
we train a family of Neuralizer models where a single task
or modality is excluded from the training set. The model
architecture of Neuralizer-unseen is identical to Neuralizer-
seen.

Baseline-seen. As no established baseline for multi-task
and multi-modality models in neuroimaging can tackle
the number of tasks we aim for, we compare Neuralizer
to an ensemble of task-specific U-Nets [75, 82]. How-
ever, training one model for each task and modality re-
quires overwhelming computational resources. To re-

duce the computational requirement, we follow previous
modality-agnostic models [12, 45] and train each model
on multiple input modalities. This lowers the number
of models to be trained to one per task, segmentation
class, and modality-transfer output modality. To compare
Baseline-seen with Neuralizer-unseen conditioned on an
equal amount of data, we train U-Net models with training
set sizes of {1, 2, 4, 8, 16, 32, all} and use data augmenta-
tion.

We use a 4-stage U-Net architecture with one residual
block per layer. The channel width is tuned experimentally
for each training dataset size. We select 256 channels for
all data, and 64 channels otherwise. Using larger U-Nets re-
sulted in overfitting and lower performance. An overview of
model parameter count and inference cost is given in Sup-
plement H.

4.3. Training

We use supervised training, task-specific loss functions,
and weigh the MSE loss by selecting σ2 = 0.05, resulting in
both loss terms being of similar magnitude. All models are
trained with a batch size of 8, a learning rate of 10−4, and
the ADAM optimizer [50]. To speed up training, we under-



1 2 4 8 16 32

0.80

0.85

0.90

0.95

1.00

Re
la

tiv
e 

Ta
sk

 P
er

fo
rm

an
ce

 

All

Baseline-seen
Neuralizer-seen
Neuralizer-unseen

Train / Context Size

Figure 5. Results averaged across tasks, expressed as relative per-
formance compared to the baseline trained on all data. The tasks
being evaluated were included in the training of Neuralizer-seen
(orange), held out in Neuralizer-unseen (blue), and specifically
trained on by each task-specific baseline (gray). The x-axis is the
size of the train/context set, and the y-axis is the relative score.
Some points on the x-axis are omitted for better visibility. ‘All’
refers to all available data for the task, ranging from 249 to 2,282
subjects depending on the task. Bars: standard deviation across
tasks/modalities.

sample tasks that the model learns quickly, with sampling
weights given in Supplement I.

In addition to the task augmentations, we use data aug-
mentations via random affine movements, random elastic
deformations, and random flips along the sagittal plane. For
Baseline-seen, we reuse the task augmentations but remove
augmentations that introduce uncertainty over the model
output due to not having access to the context set. The train-
ing time for Neuralizer is 7 days on a single A100 GPU. The
training time of the baseline models is capped at 5 days.
All models use early stopping, ending the training after 25
epochs without a decrease in validation loss. The model
with the lowest validation loss is used for further evalua-
tion.

4.4. Evaluation

We evaluate the Dice coefficient for the segmentation
and skull stripping tasks, and the Peak Signal-to-Noise Ra-
tio (PSNR) for the image-to-image tasks on the test set. As
the few-shot capability is of particular interest, we measure
performance as a function of context set size for the Neu-
ralizer models and use training set size as an analog for the
U-Net models. We evaluate context sets of up to 32 sub-
jects. Larger context sets are possible but come at a linear
cost in memory.

4.5. Experiment 1: Comparison to task-specific net-
works

To assess if Neuralizer’s multi-task approach is com-
petitive compared to task-specific models, we evaluate the

performance and runtime of Neuralizer-seen, Neuralizer-
unseen, and Baseline-seen on the test-set of each task. For
Neuralizer-unseen, we withhold image modalities using a
leave-one-out strategy during training and evaluate on the
unseen modalities at test time.

Results. We display the results by task in Fig. 4, aggre-
gated across all tasks in Fig. 5, and in tabular form in
Supplement D. Both Neuralizer models outperform task-
specific baselines trained on up to 32 samples. When train-
ing the baselines on all available data, the baselines outper-
form Neuralizer-seen by 2 percentage points in relative per-
formance, and Neuralizer-unseen by 3 percentage points.
The loss in performance when generalizing to an unseen
modality (between Neuralizer-seen and Neuralizer-unseen)
is less than 2 percentage points for all context set sizes.

Training the baseline model to convergence on 32 sam-
ples took on average 28.2 ± 16.6 hours per task, using one
A100 GPU. Since Neuralizer only requires inference for a
new task, it is orders of magnitude faster, requiring less than
0.1 seconds on a GPU and less than 3 seconds on a CPU.

We provide qualitative samples of the predictions from
Neuralizer-seen model in Supplement A, Figures 6-8.

4.6. Experiment 2: Context set size

To assess the few-shot setting, we evaluate performance
as a function of the number of labeled samples. For Neu-
ralizer, we evaluate the model with context-set sizes of
{1, 2, 4, 8, 16, 32} unique subjects from the test set. For the
baseline, we trained models with reduced training set sizes
of the same amount of subjects. To reduce the effect of ran-
dom training subject selection, we train three separate base-
lines with n = 1, two baselines with n = 2, and average
results of models with the same n.

Results. Tab. 4 and Figs. 4, 5 illustrate the results. For all
models, prediction accuracy increases with the availability
of labeled data, with diminishing returns. For both Neural-
izer models, a context set size of one achieves more than
90% of the performance attainable with all data. The base-
line performs overall worse than both Neuralizer models
when ≤ 32 labeled samples are available but achieves the
best overall performance on larger datasets.

4.7. Experiment 3: Generalization to unseen seg-
mentation protocol

The Hammers Atlas dataset [23, 34, 37] provides an al-
ternative anatomical segmentation protocol to the widely-
used Freesurfer segmentation available for most subjects
in the dataset. The shape, size, and amount of annotated
regions in the protocols differ drastically. A different im-
age acquisition site also leads to images of different visual
characteristics. We use the Hammers Atlas dataset to eval-
uate Neuralizer-unseen by withholding the dataset and its



Model Task Seen Segmentation Class (Hammers Atlas) Mean (std)

Hip PAG STG MIG FuG Stm Ins PCG Tha CC 3V PrG PoG ALG

Baseline-seen ✓ .88 .86 .93 .92 .79 .87 .82 .87 .90 .80 .68 .83 .77 .82 .84 (.07)
Neuralizer-seen ✓ .88 .86 .92 .92 .76 .88 .83 .85 .90 .82 .73 .86 .77 .81 .84 (.07)
Neuralizer-unseen ✗ .88 .87 .93 .91 .78 .87 .82 .85 .90 .81 .72 .85 .78 .81 .84 (.06)

Table 3. Segmentation of the Hammers Atlas dataset. For Neuralizer-unseen, this dataset and segmentation scheme is withheld from
training, allowing comparative evaluation of the Dice overlap to models that have been trained using this dataset. The Hammers Atlas
dataset contains region of interest segmentations significantly different from the Freesurfer protocol available for most of the training data.
Evaluation of major segmentation classes located in the center and right of the coronal slice. See Supplement F for class abbreviations.

annotations entirely from training. We evaluate the Dice
coefficient of the 14 major anatomical segmentation classes
present in the center and right half of the coronal slice.

Results. Tab. 3 illustrates the results. Neuralizer-unseen
performs similarly to Neuralizer-seen and the baseline,
while not requiring lengthy re-training or fine-tuning on the
Hammers Atlas dataset, and not having seen the segmenta-
tion protocol. All three models achieve a mean Dice coef-
ficient of 0.84. The largest performance difference is in the
third ventricle class, where both Neuralizer models outper-
form the baseline by at least 0.04 Dice. The Freesurfer seg-
mentation protocol included in the training set of the Neu-
ralizer models also contains a third ventricle class.

5. Discussion

Our experiments using modality and segmentation class
hold-outs show that Neuralizer can generalize well to un-
seen neuroimaging tasks. Across all context set sizes, the
generalization loss between seen and unseen modalities and
segmentation classes is less than 2 percentage points across
experiments 1 and 2. On the smaller held-out Hammers-
Atlas segmentation dataset, we find that Neuralizer can gen-
eralize to unseen tasks with similar performance. These re-
sults show promise that a single Neuralizer model can per-
form multiple tasks including generalization to new infer-
ence tasks not seen during training.

In settings with 32 or fewer labeled example images,
Neuralizer-unseen outperforms task-specific baselines de-
spite never having seen the task or modality at train time,
and taking nearly no effort or compute compared to the
baselines which require substantial expertise, manual la-
bor, and compute resources. The performance difference
is largest when only one labeled subject is available, but
still present at 32 subjects (Fig. 5). The Neuralizer few-
shot approach provides a performance advantage on smaller
datasets likely by exploiting similarities across the many
neuroimaging tasks and datasets available in training. When
training the baselines on all available data, they can outper-
form Neuralizer-seen and Neuralizer-unseen by at most 3

percentage points. The inflection point of identical perfor-
mance between Neuralizer and the baselines is not covered
by the range of context set sizes chosen for training and
evaluation due to prohibitive computational costs.

When large annotated datasets are available, the base-
lines performed best on most tasks. However, training task-
specific models comes at a significant cost. As a first step
in the proposed problem formulation, Neuralizer offers an
alternative with near equal performance, while only requier-
ing seconds to infer any task from the context set.

Limitations

We made simplifying assumptions in this first paper
demonstrating the potential of multi-task generalization in
neuroimaging. The presented experiments are conducted
on 2D data slices. In large part, we did this since running
the hundreds of baselines in 3D would be infeasible on our
available compute resources. However, entire volumetric
data would also impose prohibitive memory requirements
on Neuralizer models. To tackle 3D data in the future, we
plan to process multiple slices at a time.

We affinely aligned the images of the context set to the
target image. Early in Neuralizer development, we tried
training on non-aligned inputs but found that it deteriorated
performance. The need for affine alignment provides an ob-
stacle to adoption. While existing affine-alignment tools are
fast and can be employed, we also believe that this require-
ment can be removed with further development.

Early on, we experimented with lesion segmentation
tasks but found the results to be unsatisfactory. Lesions are
spatially heterogeneous, making learning from the context
set much harder for convolutional architectures. As with
3D data and affine alignment, we believe this to be an in-
teresting future research challenge. While we demonstrate
the proposed ideas on a broad range of tasks and modalities,
Neuroimage analysis can involve more domains, tasks, and
populations, like image registration, surface-based tasks,
CT image domains, and pediatric data. We look further to
extend Neuralizer to tackle these in the future.



6. Conclusion
Neuralizer performs rapid few-shot, single-pass, multi-

task generalization, and outperforms task-specific baselines
in limited data scenarios. Even when a large amount of
annotated data is available, Neuralizer often matches base-
line performance despite not training on the data. Neural-
izer provides clinical researchers and scientists with a sin-
gle model to solve a wide range of neuroimaging tasks on
images of many modalities and can be easily adapted to
new tasks without the substantial investment of retraining
or fine-tuning a task-specific model.
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Supplementary Material for
Neuralizer: Neuroimage Analysis without Re-Training
A. Samples

We provide examples of model inputs – target image and context set – and Neuralizer-seen predicted outputs. The inputs
are sampled at random from the test dataset. The context set length is sampled from the discrete random uniform distribution
U{1,32}. To reduce visual clutter, we display up to eight context image pairs and omit the rest in the visualization. We also
only show one channel, excluding additional inputs like multiple modalities, or the binary mask for in-painting tasks. We
provide a collection of images from the first 50 samples from the test dataset. We only excluded examples to avoid duplication
of tasks.

Target Input Model Prediction Context Set

Figure 6. Sample Neuralizer-seen predictions. Left: Target input (magenta frame) and model prediction (blue frame). Right: context set
supplied to inform the task (grey frame). We provide more samples on the next pages.



Target Input Model Prediction Context Set

Figure 7. Sample Neuralizer-seen predictions (continued). Left: Target input (magenta frame) and model prediction (blue frame). Right:
context set supplied to inform the task (grey frame).



Target Input Model Prediction Context Set

Figure 8. Sample Neuralizer-seen predictions (continued). Left: Target input (magenta frame) and model prediction (blue frame). Right:
context set supplied to inform the task (grey frame).



B. Train samples
We provide samples from the train set, including data and task augmentations, and show all three input channels. Further

examples of the visual diversity possible with task augmentations are shown in Fig. 11.

Target Input Model Prediction Context Set

Figure 9. Sample Neuralizer-seen predictions from the train set, with data and task augmentations. All three channels of the input are
shown. Left: Target input (magenta frame) and model prediction (blue frame). Right: context set supplied to inform the task (grey frame).



C. Task augmentations
We provide a more detailed description of the task augmentation strategies we employ. First, we describe each task

augmentation implemented by us. Then, we show the composition and likelihood of the augmentations during training.
Finally, we show examples in Fig. 11. Hyper-parameters for all augmentations are selected by visual inspection.

C.1. Task augmentations

We provide a description of each task augmentation. In addition to the task augmentations, we use data augmentations via
random affine movements, random elastic deformations, and random flips along the sagittal plane.

SobelFilter. A Sobel filter is applied to an intensity image.

IntensityMapping. The intensity of an image is remapped. To perform this operation, the image intensity values are split
into histogram bins, and each bin is assigned a new intensity difference value. To obtain new intensity values, we compute a
distance from the original intensity value to the two neighboring bin centers, using linear interpolation.

SyntheticModality. An intensity image is replaced with a synthetic one generated from an anatomical segmentation map
of the subject, using previous work [42]. Each anatomical segmentation class is randomly assigned an intensity mean and
standard deviation and the new synthetic modality image of the brain is generated according to these distributions. As our
anatomical segmentations do not cover the skull, we take an extra step to ensure skulls are present in the synthetic data: If
the original intensity image had a skull, the generated brain is overlaid onto the original image, thus keeping the skull.

MaskContour. We extract a contour of the binary mask in a segmentation task, which then represents the new target
segmentation mask. Contoured Masks are always dilated to a width of 3 voxels.

MaskDilation. The binary segmentation mask is dilated by 1 voxel.

MaskInvert. The binary segmentation mask is inverted.

PermuteChannels. The input images are represented by three channels. On each input during training, we permute the
input channels. This encourages the network to ignore the specific channel order.

DuplicateChannels. We overwrite empty input channels with the duplication of a non-zero channel. The augmentation is
applied to each empty channel with a probability p.

C.2. Composition and likelihood of task augmentations

We compose task and data augmentations during training. Some task augmentations can be combined (e.g. MaskDila-
tion and MaskInvert), while others are exclusive to each other (e.g. SobelFilter and SyntheticModality). To model these
dependencies, we define the default composition tree used for most tasks in Fig. 10. The augmentation groups “Mask Aug-
mentations”, “Intensity Augmentations”, “Channel Augmentations”, and “Spatial Augmentations” are applied in this order.
Augmentations in child nodes of “Compose” are applied left to right, while “OneOf” selects a single child augmentation to
apply. A node is applied with probability p stated on the node.

Some tasks use modified versions of this composition tree. As a safety feature, we do not use RandomFlip for
segmentation-related tasks, as this can lead to information leakage when evaluating on non-symmetric class-holdouts (in
our experiments presented here we always hold out the same anatomical class on both sides of the brain, but this has not al-
ways been the case during development). To simplify other tasks, we omit MaskContour and MaskDilate from the inpainting
task, and SobelFilter and SyntheticModality form the modality transfer task.

C.3. Examples of task augmentations

Fig. 11 provides visual examples of task augmentations applied to a segmentation and bias correction task.



Compose (p=1)

Compose (p=1)

Compose (p=1)

MaskInvert (p=0.4)

MaskDilation (p=1)

MaskContour (p=1) MaskDilation (p=1)

OneOf (p=1)

OneOf (p=2/3) SyntheticModality (p=1)SobelFilter (p=0.5)

PermuteChannels (p=1) DupliateChannels (p=0.2)

IntensityMapping (p=0.75)

Compose (p=1)

RandomFlip (p=0.5)AffineTransform (p=1) ElasticDeformation (p=1)

Mask Augmentations Intensity Augmentations

Channel Augmentations Spatial Augmentations

Figure 10. Default composition of augmentations used for most tasks during training. We use “Compose” and “OneOf” nodes to model
these restrictions. Augmentations in child nodes of “Compose” are applied left to right, while “OneOf” selects a single child augmentation
to apply. A node is applied with probability p.

Target Task Augmentations (Examples)

Figure 11. Examples of task augmentations, designed to increase the diversity of neuroimaging tasks seen by the model during training. We
show non-augmented target input and output image of T1 modality on the left. We show examples of random data- and task-augmentations
applied to the target during training on the right. The augmented target input is represented by up to three channels of real and synthetic
modalities of the subject. The target output is augmented with synthetic image modalities and alterations to the segmentation mask. The
same augmentations are applied to the context set.



D. Experiments 1 and 2 tabular results
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8 .77± .11 23.7± 2.2 29.0± 1.9 .97± .02 28.1± 2.1 31.8± 2.0 30.0± 3.2 36.4± 2.2
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Table 4. Model scores (Dice for segmentation and skull-stripping, PSNR for other tasks) for each model and task as a function of the
available subjects for training (U-Net) or context set (Neuralizer). Higher values are better. We average scores across all test subjects,
eight modalities, and four segmentation classes (Cerebal cortex, Lateral ventricle, Thalamus, Hippocampus). Standard deviation across
modalities and segmentation classes.



E. Evaluation on T1 modality
We aggregated scores across all modalities in Fig. 4. To aid comparison to other works, we provide the same evaluation,

performed on just the T1 modality here. Some tasks are easier on T1 data, thus improving scores. Note that for small
dataset sizes of 1 or 2 subjects, the baselines sometimes underperform on the T1 modality. This is due to a limitation in our
implementation, where images of the T1 modality are not always present in small training sets. For sizes of 4 subjects and
larger, the t1 modality is always included in the training set.
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Figure 12. Performance of multi-task Neuralizer and the task-specific baselines on each task, t1 modality only. The tasks being evaluated
were included in the training of Neuralizer-seen (orange), held out in Neuralizer-unseen (blue), and specifically trained on by each task-
specific baseline (gray). The x-axis is the size of the train/context set, and the y-axis is the Dice/PSNR score. Some points on the x-axis are
omitted for better visibility. ‘All’ refers to all available train data for the task, ranging from 249 to 2,282 subjects depending on the task.
The bars denote the standard deviation across subjects.



F. Class names for Hammers Atlas dataset (experiment 3)
We provide label names and indices for the tissue classes in Tab. 3, re-compiled from [23, 34, 37].

Abbreviation Class Index Class Name

Hip 2 Hippocampus
PAG 10 Parahippocampal and ambient gyri
STG 12 Superior temporal gyrus
MIG 14 Middle and inferior temporal gyri
FuG 16 Lateral occipitotemporal gyrus (fusiform gyrus)
Stm 19 Brainstem
Ins 20 Insula
PCG 26 Gyrus cinguli, posterior part
Tha 40 Thalamus
CC 44 Corpus callosum
3V 49 Third ventricle
PrG 50 Precentral gyrus
PoG 60 Postcentral gyrus
ALG 94 Anterior long gyrus

Table 5. Hammers Atlas label abbreviations.



G. Training dataset creation
We dynamically generate input image xt, ground truth output yt, and context set {(xt,j , yt,j)}Nj=1 from a collection of

underlying datasets (Tab. 1) during training.
In every training iteration, we first sample a task t from Tseen. Next, one of the underlying datasets is selected to generate

the sample (x, y). Due to the makeup of the datasets, not every task can be performed on every dataset. For example, a dataset
involving a single modality can not naturally be used to generate a modality transfer task. From the list of valid datasets, we
sample the datasets for the input and context images independently, with a 1/3rd chance of all context images coming from
the same dataset as the input, 1/3rd chance that context datasets are sampled at random from the valid datasets, and 1/3rd
chance that the context does not contain any subjects of the input dataset.

After the selection of task and dataset, we create the input and output images. This creation varies by task. We draw the
subjects from each dataset at random, but exclude the input subject to re-occur as a context set member. For most tasks, we
sample a subset of between one to three image modalities from the subject. For the segmentation task, we join a random
subset of available segmentation classes into a binary target mask. For reconstruction and denoising tasks, noise and artifacts
in the input images are simulated according to [89]. For the modality transfer task, we select a separate target modality. For
the inpainting task, we create a random binary mask from Perlin noise mask these areas from the input image. For skull
stripping, the target is a binary brain mask. For tasks other than segmentation and modality transfer, the modality of context
images can vary from the input image.



H. Inference cost and model size
We provide an overview of model parameter count and inference cost here. we use a Baseline U-net with 64 channels for

experiments with limited data set sizes, and a U-Net with 256 channels for experiments on all data. For Neuralizer, we use
the same model in all experiments, but the inference cost increases linearly with the size of the context set.

Table 6. Model size and inference cost.

Model inference FLOP (g) Parameters (m)

Baseline, 64 channels 20.7 0.62
Baseline, 256 channels 329.7 9.84
Neuralizer, 1 ctx image 39.1 1.27
Neuralizer, 32 ctx images 610.5 1.27



I. Task weights
To speed up training, we use weighted sampling of tasks during training. Task weights are shown in Tab. 7. These values

have been tuned experimentally. Tasks that converge fast and achieve high-quality results are given a lower weight. Tasks
that take longer to converge or are given a higher weight.

Table 7. Task weights during training.

Task Weight

Binary Segmentation 2.0
Modality Transfer 2.0
Superresolution 1.0
Skull Stripping .5
Motioncorrection Reconstruction .5
Denoising & Bias correction .5
k-space Undersampling Recon. 1.0
Inpainting 1.0
Simulated Modality Transfer 1.0
Masking .5
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