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Abstract

In natural language processing (NLP), a central concern is how to develop and evaluate

language model pretraining that better transfers and adapts to downstream tasks. Due

to their black box character, it is hard to understand how models transfers knowledge

and adapt it during pretraining and downstream application. Ultimately, the goal of

language model pretraining is to develop methods that improve transfer and adaption

to open-ended downstream tasks, while using training data, compute and model

parameters as efficiently as possible.

This thesis presents my research for the goal of “developing efficient, adaptable,

and interpretable NLP representations", which expands upon existing methodology for

language model pretraining and evaluation along three dimensions. (I) Improve our

understanding of adaptation at the representation level by contributing a transfer and

adaptation interpretability method in two works. The first work proposes a method to

quantify knowledge change during pretraining, zero-shot application and fine-tuning.

A second work applies this method to in-hospital patient outcome prediction to identify

knowledge redundancies, unused data sources, and quantify the impact of individual

model components.

(II) Contribute best practices and new methods for contrastive learning of language

models and NLP representations. A third work surveys self-supervised and supervised

contrastive methods in NLP to identify important theoretical aspects like energy-

based models (EBM) and properties of contrastive learning objectives to inform

representation learning design in NLP. A forth work uses these insights to propose

a state-of-the-art citation prediction language model that introduces an efficient

contrastive citation neighborhood based pretraining method.

(III) Make self-supervised pretraining more data-efficient and supervised adaptation

more label-efficient by proposing a contrastive and a non-contrastive pretraining

method. The fifth work proposes a contrastive language model that unifies self-

supervised pretraining and supervised fine-tuning. This enables data and compute

efficient pretraining of a contrastive language model from small data to reduce costs,

while markedly improving zero-shot, few-shot and long-tail performance compared to
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large pretrained language models. The sixth and final work proposes a retrofitting

method for word-embeddings in a self-supervised manner to allow data-efficient

zero-shot adaptation of representations for classification, analogy and similarity tasks

without using any target data.
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Resumé

I naturlig sprogbehandling (NLP) er en central bekymring, hvordan man kan udvikle og

evaluere sprogmodel-forudtræning, der bedre overfører og tilpasser sig downstream-

opgaver. På grund af deres black box-karakter er det svært at forstå, hvordan modeller

overfører viden og tilpasser det under forudtræning og downstream-anvendelse. Målet

med sprogmodel-forudtræning er at udvikle metoder, der forbedrer overførsel og

tilpasning til åbne downstream-opgaver, samtidig med at man bruger træningsdata,

beregninger og modelparametre så effektivt som muligt.

Denne afhandling præsenterer min forskning med det formål at udvikle effektive,

tilpasningsdygtige og fortolkelige NLP-repræsentationer, der udvider eksisterende

metoder til prætræning af sprogmodeller og evaluering af tre aspekter.

(I) Forbedring af vores forståelse af tilpasning på repræsentationsniveau ved at

bidrage til en metode til overførsel og tilpasningstolkning i to artikler. Det første

arbejde foreslår en metode til at kvantificere videnændring under forudtræning, nul-

skudsanvendelse og finjustering. En anden artikel anvender denne metode til at

forudsige om patientresultater på hospitalet for at identificere videnredundanser,

ubrugte datakilder og kvantificere virkningen af individuelle modelkomponenter.

(II) Bidrage med bedste praksis og nye metoder til kontrastlæring af sprogmodeller

og NLP-repræsentationer. Det tredje arbejde gennemgår selvtilpassede og overvågede

kontrastive metoder i NLP for at identificere vigtige teoretiske aspekter som en-

ergibaserede modeller (EBM) og egenskaber ved kontrastive læringsemner for at

informere design af repræsentationslæring i NLP. Et fjerde arbejde anvender disse ind-

sigter til at foreslå en state-of-the-art citation prediction sprogmodel, der introducerer

en effektiv kontrastiv citation neighborhood-baseret forudtræningsmetode.

(III) Gør selv-supervised pretraining mere dataeffektiv og overvåget tilpasning mere

label-effektiv ved at foreslå en kontrastiv og en ikke-kontrastiv pretraining metode.

I det femte arbejde foreslås en kontrastiv sprogmodel, der forener selv-supervised

pretraining og overvåget finjustering. Dette muliggør data- og computereffektiv

pretraining af en kontrastiv sprogmodel fra små datamængder for at reducere omkost-

ninger, samtidig med at det forbedrer nulskuds-, fåskuds- og langhalede ydeevne
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markant sammenlignet med store fortrænede sprogmodeller. Det sjette og sidste

arbejde foreslår en retrofitting metode til ordbetegnelser på en selv-supervised måde

for at tillade dataeffektiv nulskuds tilpasning af repræsentationer til klassificerings-,

analogi- og lignende opgaver uden at bruge nogen måldata.

Note: Translation created using ChatGPT with corrections by Andreas Holm, as I

do not speak Danish. Only part of thesis that used ChatGPT, i.e. no other part of the

thesis uses any language generation model or tool.
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1Executive Summary

1.1 Introduction
Recent progresses in machine learning and natural language processing have been

enabled by the pretraining and fine-tuning of computationally large language models,

or language representations, on vast amounts of data (Vaswani et al., 2017b; Yogatama

et al., 2019a; Brown et al., 2020). However the resulting model complexity has raised

three intricately connected concerns about large pretrained language representation

models.

(I) A first concern is the black box character of these models which lessens hu-

man control of their (un)desireable behavior. Both the decision process, i.e. decision
understanding or explainability, and the inner workings of these models should be un-

derstood, i.e model understanding or interpretability (Gehrmann et al., 2019; Belinkov

et al., 2020; Ras et al., 2022), to minimize undesired, while maximizing desired prop-

erties. More concretely, this thesis extends model understanding for adaptation and
transfer understanding to analyze, quantify, more deeply understand and ultimately

manipulate and design better transfer and adaptation mechanisms.

(II) The second concern is the research of novel language model representation

learning objectives that increase the data and compute efficiency of current language

models and make them better capable of few-shot learning, and learning similarity,

especially to boost data and compute efficient modeling which is the third concern.

The last concern (III) directly evolves from the first two, data-efficiency (Melis et al.,

2020; Merity et al., 2018) and the more commonly focused compute-efficiency and

memory-efficiency (Rogers et al., 2020; Tay et al., 2022; Rae et al., 2021; Hoffmann

et al., 2022; Du et al., 2022). Data-efficiency can be divided into the extensively studied

supervised efficiency (Treviso et al., 2022; Beltagy et al., 2022; Ruis et al., 2022),

and the rarely studied self-supervised data-efficiency (Melis et al., 2020; Radford

et al., 2021). Supervised data-efficiency, or sample-efficiency, refers to the ability to

predict, train and adapt from as little supervised samples (labels or annotations) as

possible, i.e. zero-shot learning and few-shot learning (Brown et al., 2020; Schick

and Schütze, 2021). Self-supervised data-efficiency, as a core research focus of this

thesis, describes the ability of a language representation learning model (language

model) to pretrain, transfer and adapt from as little (unlabeled) text data as possible

using only self-supervised learning (Melis et al., 2020; Radford et al., 2021). Thus, this

thesis is concerned with investigating the relations and synergies between (I) transfer
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and adaptation understanding (interpretability), (II) more efficient language (model)

representation pretraining objectives, and (III) data-efficient representation transfer

and adaptation.

This section introduces transfer and adaptation understanding, contrastive language

model pretraining, and data-efficient pretraining while pointing to their connections.

The papers described in the chapters of the thesis are cross-referenced where relevant.

Section 1.2 gives a summary for each thesis publication divided into the three areas of

transfer understanding, contrastive pretraining transfer, and data-efficient representa-

tion transfer. Section 1.3 provides a concise summary of the contributions by area and

suggests directions for future work.

1.1.1 Decision, Model, Transfer and Adaptation
Understanding

Past and recent research criticize the black box character of machine learning

models (Pasquale, 2015; Zarsky, 2016; Arras et al., 2017; Samek and Müller, 2019).

This resulted in the creation of visual analysis methods called explainability and

interpretability methods that are used to evaluate model quality and properties in

detail. In language applications, these terms are often used interchangeably by

researchers, which can lead to unrealistic expectations in laypeople who expect natural

language explanations and interpretations. Explainability, and the connected term

decision understanding by Gehrmann et al. (2020), determines the relevance of specific

input features, intermediate features or entire data sources (global) for individual

(local) task prediction decisions (Ras et al., 2022; Rethmeier et al., 2020c). Recently,

European legislation has started to require that machine learning models are “able to

explain individual decisions” (Regulation, 2016). Interpretability (Molnar, 2022), and

the connected term model understanding (Gehrmann et al., 2020), describe methods

that visualize learned global features of a model (Gehrmann et al., 2020). Model

understanding can be divided into the analysis of supervised and self-supervised model

understanding. It can also be used to analyze the change (adaptation) or transfer

(unaffectedness) of model behavior during self-supervised and supervised training

stages.

Supervised model understanding in NLP helps to understand and differentiate what

representations a model learns for a given set of human labeled data Gehrmann et al.

(2020), while using a specific combination of pretraining objective and supervised

end-task. It can be used to uncover biases or parameter redundancy (Phang et al.,

2021a; Rogers et al., 2020) and is useful in improving end-task specific model design

(Gehrmann et al., 2020).
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Self-supervised model understanding requires scalable, exploratory representation

change analysis, with manageable cognitive load to first quantify and locate useful

hypotheses and entry points of analysis. This is in stark contrast to supervised model

understanding, which aims to verify preconceived hypotheses (biased expectations)

of what constitutes useful representations and behavior according to a very specific

semantic defined by a target annotation – i.e. a probing task (Talmor et al., 2020;

Elazar et al., 2021). Because of this, self-supervised model understanding is an

under-researched field of study, but a central focus of this thesis. It would thus be

useful to explore self-supervised representation changes using model understanding

(Erhan et al., 2009a) in order to analyze which part of a representation transfers or is

adapted between training stages (Ramasesh et al., 2021). This would allow a human

to limit analysis overload by automatically identifying the most relevant changes in

representations and model predictions (Kahng et al., 2017).

In the following subsections I will overview model understanding (interpretability)

of transfer and adaptation as well as decision understanding (explainability). I will

also outline where model understanding can be used to analyze and understand

computational efficiency, model component efficiency, and data efficiency concerns,

which is the third focus of this thesis in Section 1.1.3. Furthermore, each subsection

will describe open challenges and present solution approaches developed in this thesis

that address them.

1.1.1.1 Model Understanding and Interpretability
Neural models automatically build representations during training. Model inter-

pretability (Molnar, 2022), also called model understanding (Gehrmann et al., 2020)

or representation analysis (Kriegeskorte et al., 2008), is a white box approach, which

aims to analyze the representations inside the model by recording and visualizing

activations at each layer of a model given specific input data. In NLP, interpretability

may refer to interaction and visualization of representations (Belinkov et al., 2020),

which model understanding focuses on (Gehrmann et al., 2020), but it may also

refer to structural analyses and behavioral studies using supervised probes (Belinkov

et al., 2020). This thesis is only concerned with the former, i.e. model understanding

via recording and visualizing representations and their change during training. Two

prominent techniques for recording activations are activation maximization and repre-

sentational similarity methods, both of which are inspired by ideas from neuroscience

(Erhan et al., 2009a; Kriegeskorte et al., 2008). Activation maximization (Erhan et al.,

2009a; Carter et al., 2019a; Olah et al., 2017a), visualizes the maximal activation

per neuron to form a prototypical visualization of what input a neuron prefers – i.e.

which inputs maximally activate a neuron. In computer vision this requires generating

1.1 Introduction 4



an input (via optimization) that maximally activates a neuron (Erhan et al., 2009a).

In NLP, activation maximization is more straight forward and reduces to finding the

tokens that maximally activate a neuron, because generating input embeddings of

non-existing tokens may lead to arbitrary interpretations.1 Representation (similarity)

analysis in neuroscience (Kriegeskorte et al., 2008) and artificial neural network learn-

ing (Morcos et al., 2018) includes methods like Central Kernel Alignment (Kornblith

et al., 2019) or predecessor methods like Singular Vector Canonical Correlation Analy-

sis (SVCCA) (Raghu et al., 2017). In NLP and computer vision, these methods record

activations for the same input data and then compare the similarity of activations

between layers (Kornblith et al., 2019), or between training steps to reason about the

location of task relevant representations or adaptations. In later section, I will explain

how this can be used to analyze how efficiently a model uses its neurons, modules

and data sources 1.1.3.

1.1.1.2 Supervised Model Understanding and Transfer
Understanding

Supervised model understanding visualizes which representations are active to

what extent for a specific label (prediction state) at different levels of granularity for

either layers (Carter et al., 2019a; Kornblith et al., 2019; Phang et al., 2021b) or

individual neurons (Dalvi et al., 2019; Rethmeier et al., 2020a; Antverg and Belinkov,

2021; Stanczak et al., 2022b). For example, when comparing training step, a typical

similarity comparison of representation is between activations of a pretrained model

and the same model after it has been fine-tuned in order to visualize or quantify where

and how much each layer activation behavior has adapted due to supervised training

(Kornblith et al., 2019; Wu et al., 2020a; Phang et al., 2021b). This can also be used

to analyze whether a model uses its components and data sources efficiently and

whether there are redundant representations, as will be discussed in Section 1.1.3 and

Paper 3 (summary 1.2.1.2). Generally, supervised learning tasks give a clear definition

of which semantic is correct, e.g. in digit or object classification tasks it is expected

that specific filters form activation images of digit or object prototypes for each class

at upper layers (Erhan et al., 2009a; Carter et al., 2019a). This makes it possible to

understand that representations of prototypes for dog noses, ears and legs (Carter

et al., 2019a) are all located in a specific region or subset of the representation space,

which also applies to linguistic properties in multi-lingual models (Stanczak et al.,

2022b). In NLP, supervised model understanding is typically based on evaluating

a specific combination of pretrained language model and fine-tuning downstream

1Note that, in the case of CNNs, embedding optimization has been used to break down n-gram filter
neuron information into token unigrams (Poerner et al., 2018), but this raises correctness issues.
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task. Many works analyze representation at neuron or layer level (Phang et al.,

2021a; Durrani et al., 2020; Stanczak et al., 2022b) for masked language models of

the BERT family. Fewer works aim to understand representations in autoregressive

(causal) language models. For example, Wang et al. (2022a) identify neural paths for

‘indirect object identification’ in GPT-2., while in Rethmeier et al. (2020a) I identify

underutilized (rarely activated) neurons after fine-tuning an LSTM language model

to gain performance and robustness by pruning such neurons. Existing work has

used supervised model understanding to help understand algorithmic bias caused by

model compression (Hooker et al., 2020b,c), or to visualize how models (mis)use

their layers and individual neurons (Kahng et al., 2017; Pezzotti et al., 2018; Hoover

et al., 2020) and uncover ineffective parameter use (Pezzotti et al., 2018; Michel et al.,

2019; Rogers et al., 2020).

This thesis contributes to supervised model understanding with two works (Reth-

meier et al., 2020a,c). First, Paper 1 (§2) is the first work to link supervised model

understanding (interpretability) to dynamic neuron pruning, which improves model

robustness without the overspecialization that results from pruning actually removing

the neurons. The method builds per neuron feature preferences using activation

maximization to quantify and differentiate per-neuron transfer (reuse) and adaptation

(change) during both pretraining and fine-tuning. The work also introduces the view

of self-supervised transfer and adaptation understanding, i.e. how self-supervised

learning forms representations during language model pretraining and how their

behavior changes during zero-shot application. For the supervised model under-

standing perspective, I show how specific pretrained neurons (I) forget information,

(II) reuse knowledge, (III) become adapted, and somewhat surprisingly, how super-

vised fine-tuning, (IV) activates previously unused neurons to store novel, end-task

specific knowledge, that was not present from pretraining. This fine-grained distinc-

tion of adaptation makes it possible to distinguish prunable from critically relevant

neurons, i.e.’ when pruning end-task specific (IV), adapted (III), or reused (II) neu-

rons performance on the end-task suffers, while pruning unused neurons increases

generalization.

In a second work, Paper 2 (§3), I extend the approaches developed in my previous

work (Rethmeier et al., 2020a) to run efficiency analysis in medical prediction models,

by uncovering unused data sources, neuron level representation redundancy and

neuron level bias in medical NLP. The work introduces the idea of inverting the

common approach of initial expert feature selection with large models. Instead I

propose explorative model understanding that first trains with all available data and

small models that make it easier to interpret, debug feature, data sources, model

components usage and biases. Hospitals worldwide do not have access to large
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amounts of GPU computing resources. Thus, instead of training large models, I

develop a novel medical sequence embedding method that uses all features and

‘models away’ missing data, making it possible to train a very small, highly efficient,

model and thereafter use interpretability to identify which features and data sources

were useful, redundant or biased. The result is a 70k parameter model compared

to self-attention models with millions of parameters (Song et al., 2018b; Rethmeier

et al., 2020c). Analysis of the model revealed that one data source and two neuron

were redundant as well as which model components were most important for each of

the four prediction tasks. Finally, I discovered potential gender and ethnic biases in a

single neuron, which may indicate the need for further investigation. Interestingly,

around the same time, Vig et al. (2020) manipulated neurons to influence gender bias

in language models, which could be useful in assessing and removing bias in future

medical prediction similar to bias considerations in recent NLP publications (Stańczak

and Augenstein, 2021).

1.1.1.3 Self-supervised Model Transfer and Adaptation
Understanding

In this section I describe how self-supervised model understanding (interpretability)

can be used to increase the efficiency of a model via model understanding based

pruning (§1.2.1.1). Self-supervised models in NLP are trained using simple objectives

like token masking (Devlin et al., 2019a; Rogers et al., 2020), autoregressive token

prediction (Brown et al., 2020), span (Giorgi et al., 2021a) or embedding contrast

(Rethmeier and Augenstein, 2022a,c) to build language representations called lan-

guage models. However, understanding the token prediction used for pretraining

language models is a highly complex process that is difficult to analyze since language

models often have vocabulary sizes beyond 50.000 tokens (Tay et al., 2022). Because

of this, the space of useful model understanding hypotheses for self-supervised or

language model pretraining is potentially infinite and testing each hypothesis one by

one requires labeled data, which makes supervised model understanding very costly

to scale, and thus inefficient. Another core problem is that supervised probes, or

fine-tuning, introduce bias during evaluation as Talmor et al. (2020); Elazar et al.

(2021) demonstrated. This is because labels require learning to change representation

or only utilize a subset of the pretrained representations that are useful in predict-

ing the probe task. Therefore, for self-supervised training it is important to switch

from biased hypothesis (probing) based model understanding to explorative model

understanding that can guide the evaluators attention to where model representations

become most affected by representations that are biased, overspecialized, transferable,

generalize and are adaptable to new domains. As a result, the utility of self-supervised
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model understanding should cover two important analysis aspects. First, automating

guidance of evaluation makes analytical scale-up easier and thus helps generalize

beyond a set of supervised probes, as Muttenthaler et al. (2020) demonstrated with

self-supervised question answering. Second, it can track unforeseen effects of self-

supervised training by locating and quantifying how self-supervised training builds

representations, how they are transferred and how well or quickly they can be adapted

by successive training. Self-supervised model understanding can thus affect future

model design decisions, e.g. Muttenthaler et al. (2022) found that training objectives

affect model bias more significantly than model size and data amount. Recent works

on self-supervised model understanding visualized how Transformer neurons capture

training information as a key-value database (Geva et al., 2021), or how different

language model pretraining architectures build different representations (Wu et al.,

2020a), while others study what linguistic information a pretrained language model

captures at the neuron (Durrani et al., 2020; Stanczak et al., 2022a) or layer level.

However, how and when pretraining builds representations and how these can

(zero-shot) transfer to new domains has not been previously studied. Prior work

has also not differentiated zero-shot transfer (input domain shift) from supervised

adaptation (simultaneous input and output domain shift), nor how this distinction

relates to pruning. This suggests that the design of less biased, more adaptable, and

more efficient models can largely benefit from developing self-supervised model under-

standing that makes building, transfer and adaptation of representations quantifiable

and tractable.

In Paper 1 (§2) I propose to use activation maximization to build ‘feature preference

distributions’ per neuron to quantify neuron level changes and similarities during both

self-supervised and supervised training settings. During self-supervised training, this

makes it possible to explore what representations language model pretraining builds

at which point of training as well as which part of the pretrained representation can

be zero-shot transferred to new data. For example, the work showed that pretraining

learns parts-of-speech distributions during early epochs, and allows to quantify how

pretrained neuron representations are reused (transferred) or ignored during zero-shot

application of the language model to new data. Such self-supervised interpretability

makes it possible to precisely locate and quantify how input (text) dependent domain

shift changes model behavior, as opposed to probing tasks, that analyze a mix of input

(text) and output (label) domain shifts, because supervised fine-tuning biases the

representations to fit an end-task (Talmor et al., 2020; Elazar et al., 2021). Thus, in

this work I also studied the distinction between input domain shift (zero-shot transfer)

to new domain text vs. input and output domain shift (adaptation) during supervised

fine-tuning. The method revealed that zero-shot input domain shift leads to many
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neurons transferring representations to the new data, but also that some neurons did

not transfer. During supervised fine-tuning on the other hand, much more neurons are

turned down or off, while others are adapted and some new ones become preferred, i.e.

encode previously unknown knowledge representations. This shows that input domain

shift and label (output) domain shift have very different effects on the model.

1.1.1.4 Decision Understanding
Decision understanding (Gehrmann et al., 2020) or explainability (Ras et al., 2022)

quantifies how relevant each input feature is for the prediction output (class) of a

single instance. For example, in the sentence “The craft left orbit with a velocity

of ...” with topic label "space" it is easy to judge that the relevant term is “orbit”,

perhaps in combination with “craft left orbit” and “velocity”. Such explanations are

called local or single instance explainability. Global explanations accumulate local

explanations across multiple instances of an entire dataset (Radensky et al., 2022).

They can be used to find the most prediction relevant and irrelevant input features

across a dataset, which can be used to identify biases and debug over-reliance of

a model on specific input patterns (Hoover et al., 2020). For example, in patient

mortality prediction, if we find that the patient chart feature “Do not resuscitate”

is strongly relevant in predicting whether a patient will die in the next 48 hours,

then this relevance is technically correct, but of little predictive value (Rethmeier

et al., 2020c) in the clinical process of preventive care – i.e. if it is on the patient

chart any laymen knows the patient will pass away soon. Prominent techniques for

explainability are gradient based methods like Integrated Gradients (Sundararajan

et al., 2017b), input perturbation based methods like LIME (Ribeiro et al., 2016),

or more recently, contrastive perturbation methods (Stepin et al., 2021; Atanasova

et al., 2022). Such methods can be applied to analyze the relevance of input features

like images or text, as well as neuron or layer relevance. As pointed out before, the

distinction of explainability methods and interpretability methods depends on the

interpretation given by different groups, e.g. Samek et al. (2019) use Explainable AI to

include both terms, while Gehrmann et al. (2020); Belinkov et al. (2020) distinguish

the two terms to focus on interpretability and model analysis. As a result, methods

like global explanations can be used used for interpretability or model understanding

Belinkov et al. (2020).

In Paper 2 (§3), I apply the integrated gradients method (Sundararajan et al., 2017b)

to analyze global feature reliance of a model and its reliance on local time frame

features for clinical decision support. Local, per instance, explanations are used to

visualize which individual patient history features are strongly (counter-)indicative of

a patient going into a critical health state in the next 48h. This makes it possible for
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medical professionals to review a summary of important recent lab results and health

markers like blood values, cardio measures, progression, medication and other relevant

events in a weighted importance view, which also helps point out rare abnormalities

and data issues. Global, dataset wide explanations, allow one to visualize which

medical features are globally important for a specific prediction task. For example,

‘comfort-measures-only‘ is strongly indicative of patient mortality, but not informative

to clinicians, while ‘diet-type=diabetic‘ is unintuitively counter-indicative on average,

but likely because low sugar (diabetic) diet has vast health benefits beyond specific

conditions (Petroni et al., 2020).

1.1.2 Contrastive Language Model Transfer and
Adaptation

Rather than only analyzing the transfer and adaptation of language models using

model understanding (interpretability), this thesis also contributes a novel contrastive

language model pretraining and fine-tuning method, which delivers marked efficiency

gains for pretraining transfer and fine-tuning adaptation, i.e. for aspect three (effi-

ciency) of this thesis, detailed in §1.1.3. To do so, I use contrastive learning, which

is part of metric learning (Musgrave et al., 2020a). Rather than learning to directly

predict a probability for a label given an embedded input, contrastive models learn to

predict a similarity metric between an embedded pair of similar (positive) or dissimilar

(negative) embeddings (Jaiswal et al., 2021a). The metric is also called the compatibil-

ity (LeCun et al., 2006a) or matching score (Vinyals et al., 2016). This pair can consist

of two input embeddings (Jaiswal et al., 2021a) or an input embedding and a label

(output) embedding (Rethmeier and Augenstein, 2022c) – i.e. from the contrastive

perspective inputs and outputs are the same. Pretraining, self-supervised contrastive

learning is implemented as sampling automatically constructed pairs that combine an

unaltered embedding and an augmented embedding that feed a contrastive training

objective. How these augmentations are constructed has many variations in computer

vision (Jaiswal et al., 2021a) and NLP (Rethmeier and Augenstein, 2022c). However,

sampling semantics are crucial to make learning efficient. Many works concentrate

on sampling (mining) hard negatives, which are negative pairs that are similar, but

not too similar to positive pairs (Cai et al., 2020). Importantly, one can not blindly

increase the number of negative samples to get better quality, because sampling has to

guarantee that positive and negative pairs never become the same, as such collisions

confuse the optimization process and degrade performance as Saunshi et al. (2019)

show in their study. Additionally, Wang and Isola (2020) point out that it is important

to sample positives such that “their embeddings preserve maximal information”, as
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otherwise downstream performance can be limited. Contrastive objectives are particu-

larly useful for pretraining multi-modal representations to solve text-to-text similarity

tasks (Reimers and Gurevych, 2019a; Gao et al., 2021a), text-to-image similarity and

translation tasks (Radford et al., 2021; Jia et al., 2021) or text-to-audio tasks (Manco

et al., 2022). In self-supervised NLP pretraining, there are a few famous examples

of sampling methods for contrastive objectives. The Word2vec skipgram (Mikolov

et al., 2013b) model contrastively predicts (mis-)matching context words to train

token embeddings for low-resource applications. SimCSE (Gao et al., 2021a) contrasts

dropout augmented sentence embeddings (positives) from embeddings of subsequent

sentences (negatives) for self-supervised pretraining of Transformer representations

to better perform at similarity tasks. Lastly, Sentence-BERT (Reimers and Gurevych,

2019a) and followup models use entailment as supervised pretraining of sentence

similarity embeddings. Another major advantage is that contrastive learning uses

embedding pairs for training, which allows for zero-shot predictions in any and across

modalities by expressing a new class (similarity pattern) or task as a function of

existing embeddings. In NLP this means contrastive models can run non-discrete

text-to-text prediction (Rethmeier and Augenstein, 2022a), which allows generative

(Wu et al., 2020b) or discriminative (Halder et al., 2020) prediction. In computer

vision and multi-modal models this means predicting images from text as in CLIP

(Radford et al., 2021) or images from augmented images as in SimCLR (Chen et al.,

2020b).

In the following section I provide an overview of basic types of contrastive learning

objectives used for NLP, as well as how they can be used for supervised pretraining. The

subsections also outline my contributions to data-efficient self-supervised pretraining,

and how this benefits the label-efficiency and parameter-efficiency of a language

model. These properties are especially desirable when pretraining models on domains

where data and/or compute resources are scarce, as is often the case for medical

applications and low-resource languages.

1.1.2.1 Energy-based Models and Noise Contrastive Estimation
While contrastive objectives are part of a larger family of metric objectives, Khosla

et al. (2020a) point out that “recent computer vision works (Tian et al., 2019; He et al.,

2020; Chen et al., 2020b) have shown that for self-supervised learning, contrastive

losses are superior to other metric objectives such as the triple, max-margin or N-

pair loss”. The two most popular contrastive learning objectives for self-supervised

learning in computer vision and NLP are Ranking and Binary Noise Contrastive

Estimation (RNCE, BNCE) (Gutmann and Hyvärinen, 2010; Mnih and Teh, 2012;

Ma and Collins, 2018). In addition, contrastive learning across computer vision and
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Figure 1.1: A subset of different EBM formulations.

NLP is popularly described through the lens of modern energy-based model (EBM)

formulations, because EBM modeling is less restrictive than probabilistic models,

and EBMs make it easy to learn relations, translations and representational fusions

between modalities. Regarding being less restrictive, EBMs are “non-normalized or

self-normalizing probabilistic models, that optimize an unnormalized negative log-

probability called the energy function” as both LeCun et al. (2006a); Song and Kingma

(2021) explain in their surveys on EBM training methods.

Regarding uni and multi-modal learning, neural EBMs and contrastive methods

embed inputs Xi or labels Yi to form embedding pairs between which to compute

similarities (compatibility, or matching) using a similarity function, instead of pre-

dicting the label or score Yi of an input Xi directly like probabilistic models. This

score is then fed into a contrastive loss such as Ranking NCE or Binary NCE. Many

architectures (P1-P3) (Aberdam et al., 2021; Radford et al., 2021; Gao et al., 2021a)

use a predefined similarity (metric) function like cosine similarity which can only

learn with exactly one positive sample and many negative samples, because only one

pairing can produce maximal similarity. Figure 1.1 shows several contrastive modeling

approaches expressed in the EBM notation originally introduced in LeCun and Huang

(2005a); LeCun et al. (2006a). For example, EBM architecture P1 takes text X1 and

hand writing X2 to learn handwriting recognition (Aberdam et al., 2021). Architecture

(P2) on the other hand takes an image X2 and learns compatible (matching) text X1

as for example in CLIP, which trains to match images and their description to run

zero-shot text classification on new images (Radford et al., 2021), while the prediction

direction could also be reversed to build an image search. The two common losses,
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Ranking and Binary NCE have some connections to other, very commonly used losses.

In NLP Ranking NCE is also referred to as the MultipleNegativeRanking loss (Wang

et al., 2022b) while computer vision research uses the term InfoNCE (van den Oord

et al., 2018; Chen et al., 2020b) to describe this objective. Ranking NCE “strongly

relates to the softmax learning objective” in that it undersamples negative (non-active

classes) in the normalizer (partition function) to become self-normalizing – i.e. ap-

proximately normalizing (Hjelm et al., 2019a; Rethmeier and Augenstein, 2022c).

Like the softmax, it is suitable for multi-class prediction problems where classes are

mutually exclusive. Binary NCE (Gutmann and Hyvärinen, 2010; Ma and Collins,

2018) originally only uses a single positive pair per sample due to the usage of cosine

similarity, which only allows exactly one pairing of embeddings to match perfectly,

while the normalizer (partition function) is assumed to be one (Hjelm et al., 2019a).

However, this is a limitation, does not allow using Binary NCE for multi-label problems,

where multiple perfect matches are required.

In Paper §6, instead of using the traditional single positive pair per sample (Gut-

mann and Hyvärinen, 2010; Mnih and Teh, 2012; Ma and Collins, 2018), I proposed

extending Binary NCE to support using multiple positive samples per instance. Since

the traditional cosine metric only allows one match, I instead used a neural network to

learn a complex similarity function, see L1 in Figure 1.1, to allow multiple pairings of

the same input with different label embeddings to produce multiple perfect similarities

– i.e. metric multi-label (match) learning. This objective is then used for self-supervised

language model pretraining by sampling in-batch words that occur (positive pairing)

or are missing (negative pairing) from the current text instance (Rethmeier and Au-

genstein, 2022a). The result of this pretraining is an ability to zero-shot predict labels

that are made up of tokens (text), which is similar to differentiable prompting, where

the underlying embeddings of a label can be fine-tuned (Zhang et al., 2022). The

contrastive pretraining is effective even for very small corpora and with small models,

which is a property that is in line with EU regulations regarding minimizing data usage

(Regulation, 2016), while also being an important criterion during application. Addi-

tionally, pretraining and subsequently fine-tuning with this loss produces markedly

improved few-shot and long-tail transfer, even compared to a 10x larger Transformer,

while taking 5x less compute time than fine-tuning the Transformer model. Since this

approach to feeding Binary NCE allows multiple positive pairs (multi-labels), that

are not mutually exclusive (no normalizer), and because the loss formulation is the

same as Binary Crossentropy, except that logits are actually learned similarity scores,

Binary NCE can be readily understood as and undersampled Binary Crossentropy. This

relation of losses is also pointed out by (Hjelm et al., 2019a), but only for multi-class

semantics rather than multi-label (multiple positives) semantics.
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1.1.2.2 Supervised and Self-Supervised Contrastive Pretraining
Contrastive methods can be divided into supervised and self-supervised methods,

each of which brings desirable benefits, especially regarding efficient transfer and

adaptation, which is discussed in more detail in the section below 1.1.3. For example,

NLP works like Gunel et al. (2021) show that supervised contrastive learning improves

robustness to noise and learning from limited data. Zhang et al. (2021) add instance

discrimination to learning entailment and contradiction to learn better reasoning

models, while Klein and Nabi (2020) use sentence pair annotations as distantly

supervised pretraining for better reasoning models. Zimmermann et al. (2021a)

show that supervised contrastive learning is able to invert a data generation process

efficiently and even from very little data. Self-supervised contrastive methods are

effective for representation learning. Parulekar et al. (2023) show that in computer

vision, self-supervised contrastive representations learned via InfoNCE (RankingNCE)

preserve cluster information of image categories – e.g. the dog likeness of an image.

Mikolov et al. (2013a) learned contrastive word representations, Giorgi et al. (2021a);

Meng et al. (2021); Wu et al. (2020b) pretrain an already pretrained masked language

model to become a contrastive language model, while Gao et al. (2021a) learn

sentence representations for similarity search. However, all of these contrastive

pretraining works rely on already otherwise pretrained Transformers like RoBERTa

(Liu et al., 2019b).

Instead, in Paper 5 §6 I propose a contrastive language autoencoder model and

train it from scratch using ‘text-embedding to text/label-embedding‘ pretraining rather

than text-to-text pretraining over discrete tokens like T5 (Raffel et al., 2020). The

model is a Joint Embedding Prediction Architecture (JEPA)2 that enables effective

pretraining with very little data, but also outperforms large Transformer fine-tuning

in few-shot and long-tail learning despite using a magnitude less parameters and

compute compared to just fine-tuning a standard Transformer model. Because of

this, the model can be considered a replacement, where the standard large pretrained

language model approach is impractical or too costly.

1.1.3 Data and Compute-Efficient Transfer and
Adaptation

So far I discussed how to analyze and improve transfer and adaption of language

model pretraining, whereas this section ties these two aspects more closely to data-

efficiency and compute efficiency concerns, to improve pretraining as a whole. Cur-

2A term introduced by Yann LeCun https://ai.facebook.com/blog/
yann-lecun-advances-in-ai-research
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rently, large pretrained models dominate NLP research. This practice is based on the

experience of improved downstream performance for NLP tasks and has consolidated

the assumption that pretraining with a lot of data from many domains will create

representations that can be reused for any downstream task. However, failure cases of

transfer such as Cleverhans effects are less widely reported (McCoy et al., 2019a). This

assumption, sometimes referred to as BERTology (Rogers et al., 2020), is convenient in

decreasing the effort for research and industry application progress through reuse, but

can potentially be problematic for the following four reasons. First, a large pretrained

NLP transformer may inherit its gender or ethnic biases (Bender et al., 2021b) to a

downstream domain like medical decision support. Second, the models are large,

and as a result comparatively slow on inference, which causes increased deployment

time costs. For example, regulations for applications of medical NLP require that the

training data is only-accessible on-site, meaning cloud compute is not an option, and

that any hospital will first have to build an AI compute infrastructure, which at least

in Europe is not common, because the involved security, personnel, maintenance,

and running costs are a large extra cost, unlike in the IT industry (and academia),

where compute is a core component of business. Third, large models cause increased

development time costs, as modifications in data or models are slow to iterate because

of compute requirements – regardless of domain. Four, large models increase the effort

and compute of decision and model understanding techniques, especially in domains

that are highly regulated and demand high model trust and decision understanding,

where this additional effort can quickly increase development evaluation costs and

personnel effort – each time the model needs to be updated.

From these points, it becomes evident that, large third-party pretrained models can

be quite inefficient beyond their reuse for potentially improved transfer, which has lead

to research into how to make them more efficient. In NLP, works on improving the

training, inference and memory efficiency of Transformers aim to reduce deployment

and development time of architectures used for pretrained models – Tay et al. (2022)

give a good summary of recent techniques. In computer vision, contrastive self-

supervised pretraining such as BYOL (Grill et al., 2020) or MOCO derivatives (He

et al., 2020) have been successful, but are criticized for requiring very large amounts of

compute, data and careful augmentation strategy exploration to be effective. A second

core aspect of efficiency is sample-efficiency during supervised fine-tuning to adjust a

pretrained model for a specific downstream task. To address this, existing research

increases the few-shot capabilities of large pretrained language models using different

losses (Hinton et al., 2015), continued pretraining or giving context (prompting)

(Wu et al., 2022) to condition a language model into task specific text generation.

Works on compute and memory efficiency limit tunable parameters to a few existing
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(Ben Zaken et al., 2022a) or newly introduced ones (Houlsby et al., 2019), to pruning

the trained network (Frankle and Carbin, 2019a), or quantize it (Kim et al., 2021a),

i.e. reduce the compute precision of the model. Surprisingly, few to no research has

studied self-supervision or pretraining data efficiency, i.e. self-supervised pretraining

of a model with magnitudes less text data than current pretrained models require to

be effective.

In the subsections below, I investigate the combination of small data, small model

pretraining, which made it apparent that such pretraining can be very cost efficient and

solve domain mismatch or compute requirement issues in situations where hardware,

data, bias inheritance concerns, access and regulations prohibit using larger common

setups. A welcome side-effect is that small model pretraining reduces the dependence

(customer login) on other external institutions to provide pretrained models and allow

low-resource domains like smaller languages or health to iterate faster in developing

their own models due to the largely decreased hardware requirements. It also increases

iteration speed or cost scaling efficiency in setting where data and compute are of no

concern.

1.1.3.1 Data-Efficient and Parameter-Efficient Transfer and
Adaptation

When seen from a transfer and adaptation perspective, it is desirable to use models

that are able to train and adapt using minimal (self-)supervised data and reduce model

complexity to allow easy modifications, as well as model and decision understanding,

with fast iteration speeds. To reduce the amount of parameter updates, methods like

Adapters (Houlsby et al., 2019) help reduce the fine-tuning parameter updates, while

many efficient Transformer modification have been developed to make larger training

tasks with these models more computationally efficient (Tay et al., 2022). A second

aspect of efficiency is data-efficiency which can be further divided into fine-tuning

data, i.e. label, efficiency and pretraining data efficiency. i.e. the ability to pretrain

effectively from little data. For label-efficiency, models like GPT3 (Brown et al., 2020)

or prompting methods like Schick and Schütze (2021) can produce good zero to few-

shot predictions. However, the aspect of pretraining data efficiency, i.e. pretraining

from little data, has rarely been studied (Melis et al., 2020). A last perspective on

efficiency is model compression or simply using models with less parameters, especially

while preserving robustness. For example, (Hooker et al., 2020a,c) showed that

large models loose important long-tail information of rare features during model

compression, which effectively disadvantages specific groups during prediction and

introduces undesirable majority bias.
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In Paper 2 (§3) I efficiently train a medical prediction model with a magnitude

less parameters than previous LSTM and Transformer based models, while achieving

significantly better performance in all prediction scores. This model is designed to

be small enough to effectively be trained on a single in-hospital GPU. Additionally,

since the model is small, it is computationally cheap to run models understanding and

decision understanding on it, which is important because medical model have high

trust requirements.

In Paper 5 (§6) I demonstrate that large Transformer models should not be assumed

to be proficient at long-tail prediction. Instead of compressing large models, I pretrain

a contrastive language model on a few megabytes of text data given by the task, to

increase few-shot and long-tail prediction at markedly better quality than a standard

pretrained transformer produces after fine-tuning. Pretraining plus fine-tuning of

this contrastive model is 5x faster than fine-tuning the Transformer model, which

demonstrates the computational benefit. Additionally, a contrastive Transformer

variant such as TARS, that can only learn in a supervised manner (Halder et al., 2020)

has a training speed of up to 2.000k samples per second on a V100 GPU, while the

custom contrastive model achieves 52.000 samples per second. The contrastive model

also needs no learning rate schedules, warmup, or layer normalization to pretrain

stably, unlike Transformer pretraining, which is also known to be unstable during

pretraining (Nguyen and Salazar, 2019) and training from scratch (Yogatama et al.,

2019b), due to LayerNorm problems (Nguyen and Salazar, 2019).

In Paper 6 (§7) I propose an embedding retrofitting method which produces varia-

tions of existing word embeddings that lead to better downstream performance on

18 end-tasks. This process only used the word embedding and no target domain data

which results in a zero-shot adaptation process that can be run in a few seconds on a

CPU. The method can be used to produce a better word embedding for a single task or

a better embedding for a set of tasks – i.e. for multi-task learning.

1.2 Scientific contributions
1.2.1 Decision, Model, Transfer and Adaptation

Understanding
1.2.1.1 Paper 1: TX-Ray: Quantifying and Explaining

Model-Knowledge Transfer in (Un-)Supervised NLP
State-of-the-art NLP methods for explainable artificial intelligence (XAI) focus on

explaining per-sample decisions in supervised end or probing tasks – i.e. decision

understanding (Arras et al., 2017; Samek et al., 2019). Interpretability, or model
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Figure 1.2: Example uses of TX-Ray: for transfer learning and model interpretability. Left
(1): pre-train a sequence encoder E on corpus Xpre and collect feature preference
distributions (red bars) over input features (e.g. words) fk.3 Middle (2): apply,
but not re-train, the encoder E to new domain inputs Xend and observe the
changed neuron activation (green). Similarities in red and green reveal zero-shot
forward transfer potential or data match between Xpre and Xend according to E.
Right (3): fine-tune encoder E on supervision labels Yend to reveal ‘backward’
transfer of supervision knowledge into the encoder’s knowledge abstractions.4

understanding, methods on the other hand analyze the activations of a model over

a corpus of supervised probing tasks (Belinkov et al., 2020). However, this is in-

sufficient to deeply understand and quantify how models absorb knowledge during

self-supervised pretraining, zero-shot apply the learned knowledge to a new domain,

or how the model knowledge transfers and adapts during supervised training. Instead,

in this work, I make model knowledge transfer and adaptation trackable and quan-

tifiable by designing a novel method of expressing each neuron as a ‘distribution

of maximal input feature preference’ and recording feature preference changes

during pretraining, zero-shot application to a new domain, and finally during

supervised fine-tuning – as seen in Figure 1.2. Additionally, I propose using this

method for pruning that is guided by ‘feature preference distribution’ changes of

each neuron after supervised fine-tuning. Transfer and adaptation analysis are run

in three experiments, while a fourth experiment is aimed at more deeply analyzing the

knowledge sparsification induced by supervised fine-tuning via fine-grained neuron

pruning and activation analysis – for full details see Paper 1 §2.

I first study model understanding during pretraining, and find that the language

model learns the distribution of parts-of-speech (POS) tags during early pretraining

epochs – i.e. the POS tag frequency distribution and POS tag activation strength

distribution during early epochs are very similar. Furthermore, this produced two

more insights. One, that pretraining uses the majority of the neurons to learn

feature preference, i.e. 89% of model neurons build a feature preference, while only
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11% do not exhibit maximal feature activation preference – i.e. 11% of neurons remain

unpreferred during pretraining. Two, that during later epochs of pretraining more

neurons adapt a preference, where each neuron feature preference becomes more

varied over time, while these preferences also converge to stable distribution over

later epochs in analogy to training loss convergence. This means that certain feature

preferences and feature types are learned before others resulting in an implicit feature

learning curriculum. In combination, this demonstrates that pretraining broadly

adapts the language model neurons to build knowledge representations.

Secondly, I study the zero-shot knowledge transfer of a pretrained model to a

new text domain, which shows that the language model still broadly activates on

99% of the same preferred neurons from pretraining. However, despite this broad

reuse of neurons, the experiment also showed that the preference distributions per

neuron changed significantly from the preference over the original pretraining corpus,

while a subset of neurons responded similarly on both corpora. Thus, this model

understanding method allows for a more fine-grained view of model knowledge

transfer by making it possible to differentiate neurons that are ‘transferable but

have to be adapted by way of continued training’ from neurons that can ‘transfer

directly without the need for adaptation’. This notion also shows that comparing

data domains without the model perspective is not necessarily informative, because

the transfer (overlap) between domains is determined by what the model learned

from the first domain, not by what information or knowledge is actually contained in

that first domain. Thus, the quality of knowledge absorption is necessarily dependent

on the pretraining objective, which is a central point of motivation for the combination

of model understanding and contrastive learning throughout this thesis.

Third, I study how supervised fine-tuning transfers and adapts model knowledge.

I find that, as seen in Table 1.1, supervision not only sparsifies feature preferences

(A), i.e. makes neurons unpreferred, but also adapts neuron preferences (B,C), and

even adds preferences to the 11% of previously unused neurons (D). When pruning

the removed (unpreferred) neurons (A), the model gains test set generalization,

whereas when pruning adapted neurons (B,C) the model looses test set performance

depending on how often the neurons are used. Specifically, rarely used preferred

neurons have little impact after pruning (B), while frequently used neurons have a

large impact on performance (C). Finally, when pruning neurons that were added

(became preferred) due to supervision, the test set generalization of the model dropped

most significantly.

Together these insights demonstrate that model understanding can not only be used

to quantify model knowledge transfer and adaptation in a fine-grained manner, but

also links model understanding (interpretability) to model pruning.
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Which neurons
prunded?

% AM
of 675 

F1 change % pruning
effecttrain test

 none = baseline 100.000 0.00 0.00 −

 A: 740 avoided − 3.65 2.80 ↓ noise, ↑ generality

 B: 20 least prefered 0.004 -3.79 0.00 ↓ over-fitting

 C: 20 top prefered 83.120 -4.99 -1.43 ↓ generalization

 D: 85 sup gained 3.006 -3.71 -3.87 ↓ sup. knowledge

Table 1.1: Pruning avoided (removed), preferred and supervision-added neurons: After
supervised encoder fitting; (A) prunes removed (unpreferred) neurons, (B,C) prune
the least and most preferred adapted neurons, and (D) prunes 85 neurons gained
due to supervision. Colors represent relative score change in % from original –
score drops (red,−), gains (blue).

1.2.1.2 Paper 2: EffiCare: Better Prognostic Models via
Resource-Efficient Health Embeddings

In medical prognostics, existing methods adapt complex, high data-resource lan-

guage models from NLP to the typically low-data resource medical data setting, which

has resulted in only moderate performance improvements for clinical prediction tasks

in recent works. Additionally, most hospitals do not have the compute resources to

train large models and run scalable decision and model understanding on them. This

is an issue, especially because trust through decision and model understanding is

paramount in the clinical setting, which goes so far as regulation demanding decision

understanding (Regulation, 2016). Instead, I this work, I propose combining small

models that require minimal compute, while still outperforming large transformer

based models. I first contribute a novel sequence embedding method for electronic

health records (EHR), which combines the language and real valued features

contained in EHR data into a shared embedding format. This eliminates the

traditional domain feature-engineering and makes feature selection and feature

amount scaling a part of the model, rather than employing costly, manual expert

domain feature selection up front. The proposed neural model not only very

markedly outperforms the state-of-the-art results on all four patient outcome and

in-hospital prediction task, but is also 17 times smaller, more data-efficient, less

complex and thus more accessibly interpretable, than the previous state-of-the-art

(transformer) model. Additionally, by applying the embedding retrofitting tech-

nique previously developed in Paper 6 §7, Section 1.2.3.2, I further improve the

prediction performance of the model. Running the model understanding technique

developed in Paper 1, Section 1.2.1.1, I find that there is little to no redundancy
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Figure 1.3: Feature type and pooling mechanism relevances for patient decompensation
(organ failure) and length-of-stay classification. The x-axis shows relevances for
model components such as max, average and sum pooling over time (high level
patient embeddings). The color bars express relevances of pooling over events of
a single time step Figure 3.2. Output events are not used when predicting either
task.

regarding which subcategory of medical domain knowledge each neuron encodes,

but also that there are neurons that capture potentially biased information such

as gender and ethnicity. Furthermore, adding per-task relevance to the same tech-

nique, I determine how important each model component is per prediction task as

well as how important each of the four data-sources is, which for example reveals

that one data-source is not required for the tasks of length-of-stay classification, as

seen in Figure 1.3. The final experiment visualizes the indicators for whether a patient

dies withing the next 48h as well as which global features indicate patient mortality

using the Integrated Gradients method developed by Sundararajan et al. (2017c). The

global feature analysis reveals that certain features are indeed highly indicative of

mortality, but that some of them are also not very informative and should thus be

removed (deselected) as an input feature.

In summary, model understanding allows to develop a very data and compute

efficient model design via component and data relevance analysis, as well as for

post-hoc (delayed) feature selection, along with redundancy and bias checks.

1.2.2 Contrastive Language Models based Transfer and
Adaptation
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1.2.2.1 Paper 3: A Primer on Contrastive Pretraining in Language
Processing: Methods, Lessons Learned and Perspectives

Modern natural language processing (NLP) methods employ self-supervised pre-

training objectives such as masked or autoregressive language modeling to boost the

performance of various downstream tasks. Contrastive pretraining on the other

hand has received comparatively little attention in NLP, which is surprising since

contrastive self-supervised training objectives have been the core of recent pretraining

advancements in image representation learning. I thus contributed a primer on

contrastive pretraining in NLP to make it easier for NLP researchers to incorpo-

rate contrastive pretraining as well as to help them better understand, modify

and become aware of important methodological considerations including the

learning theoretical advantages of contrastive methods. This is especially helpful

to learn since contrastive methods are designed to improve transfer and adaptation

during learning (Radford et al., 2021; Wu et al., 2020b; Chen et al., 2020b). To make

it as easy as possible to learn the concepts, current application and potential future

research directions of contrastive NLP methods I organize the study into four major

parts. First, I introduce Noise Contrastive Estimation methods, how they relate to

commonly known Softmax and Binary Cross Entropy losses, when and how to

use them effectively, which pitfalls to regard during training sample creation, as

well as their connection to the more general framework of energy-based models

(EBM). I also introduce the notion of input-input contrastive and input-output

contrastive EBMs to give special attention on how to design computationally

efficient contrastive NLP methods, since computational complexity is critical concern

when pretraining using contrastive methods. The second and third part aim to provide

inspiration on how to directly apply the contrastive modeling by overviewing recent

supervised contrastive pretraining methods in part two, and self-supervised con-

trastive pretraining methods in part three. Both supervised and self-supervised

contrastive pretraining methods are categorized into input-input and input-output

contrastive approaches to point out their advantages, limitations and current state-

of-the-art NLP applications of either. The last part focuses on open challenges and

research opportunities to encourage increased research into contrastive NLP, because

its properties of unified multi-modal fusion, probabilistic generalization, robustness

and decades of research deep connection to self-supervised learning make contrastive

methods an ideal candidate for future NLP and multi-modal research milestones in

machine learning development.
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Overall, the survey gives the theoretical tooling, in-practice examples and future

research directions to contribute to future developments in contrastive language model

pretraining as well as NLP and mutli-modal models as a whole.

1.2.2.2 Paper 4: Neighborhood Contrastive Learning for Scientific
Document Representations with Citation Embeddings

Scientific document representations can use contrastive learning objectives to learn

desirable similarity semantics for tasks such as document relatedness. Prior work on

scientific document relatedness (Cohan et al., 2020b) has used discrete, unidirectional

citation relations. However, detecting scientific document similarity despite lacking

a direct citation is a central goal of document similarity tasks, which means that a

hard cut-off will ignore such relations, and that a unidirectional citation, as done in

(Cohan et al., 2020b) can not be sufficient for document similarity training. Instead,

we use nearest neighbor sampling over citation graph embeddings that is controlled

by a novel data-driven sampling margin for efficient contrastive learning of document

representations, as seen in Figure 1.4.

sample 
induced
margin

easy negatives

Figure 1.4: Given a query paper in citation graph embedding space. A hard positive is
a graph embedding that is sampled from a similar (close) context of , but are
not so to the anchor embedding that gradients become zero. A hard (to classify)
negatives (red band) is close to the positives (green band) up to a sampling
induced margin, that can be selected as a hyperparameter. Easy negatives are
very dissimilar (distant) from the query paper .

The sampling margin both generates informative hard-to-learn negatives and simul-

taneously avoids collisions with positives, as such collisions would otherwise degrade
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learning quality and speed. As a result, the method produces a new state-of-the-art

on the SciDocs benchmark – i.e. a citation and document relatedness benchmark.

Additionally, the method trains (or fine-tunes) in a sample-efficient manner with as

little as 10% of the available data, while it can also be effectively combined with

recent training-efficient methods like BitFit (Ben Zaken et al., 2022a). Advantageously,

training a general-domain language model using the method, i.e. without using a

model that was specifically pretrained on scientific text, it outperforms baselines

that were pretrained on in-domain data, which nullifies the need for related domain

pretraining, including data and compute costs.

1.2.3 Data-efficient Representation Transfer and
Adaptation

1.2.3.1 Paper 5: Long-Tail Zero and Few-Shot Learning via
Contrastive Pretraining on and for Small Data

The loss of long-tail information during model compression has been linked to

algorithmic fairness considerations due to the disproportionate loss of minority (tail)

information compared to majority (distribution head) information (Hooker et al.,

2020a,c). Crucially, in NLP, compression is based on the assumption that large off-

the-shelf language models capture long-tail information well in the first place which

raises two questions. The first question is then: “how well does a standard approach

of fine-tuning a pretrained Transformer language model actually capture long-tail

information?”. The second question then becomes whether small language models can

be made to capture long-tail information, which would have implications on whether

compression is a good method and necessary step for long-tail preservation. To

answer these two questions, I study the fine-tuning performance of a pretrained

Transformer on a challenging long-tail, web text classification task. Secondly,

I contribute a novel contrastive pretraining objective to pretrain a small con-

trastive language model from a small pretraining corpus of 60 megabytes. The

method unifies self-supervised pretraining, and supervised long-tail fine-tuning,

which markedly increases tail data-efficiency and tail prediction performance

– see Figure 1.5. I additionally find that, the contrastive language model has

superior zero-shot, few-shot and long-tail fine-tuning performance compared to

the Transformer model. The combined time taken for pretraining and fine-tuning

of this contrastive language model is 5 times faster than the Transformer model re-

quires for fine-tuning only, because it takes the Transformer model many epochs to

capture the long-tail nature of the task. When increasing the amount of per-epoch

self-supervision labels and contrastive model size to 10 million parameters, without
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Figure 1.5: Contrastive <text, pseudo/real label> embedding pair matcher model: A word
embedding layer E 1 embeds text and real/pseudo labels, where labels are word
IDs. CLESS embeds a text (‘measuring variable interaction’), real positive (R) or
negative (p-value) labels, and positive (variable) or negative (median) pseudo
labels. A sequence encoder T 2 embeds a single text, while a label encoder L
3 embeds c labels. Each text has multiple (pseudo) labels, so the text encoding
ti is repeated for, and concatenated with, each label encoding l◦i,l. The resulting
batch of <text embedding, label embedding> pairs [[ti, l◦i,1], . . . , [ti, l◦i,c]] 4 are
fed into a ‘matcher’ classifier 5 that is trained in 6 as a binary noise contrastive
estimation loss LB (Ma and Collins, 2018) over multiple label (mis-)matches
{0, 1} per text instance ti. Unlike older works, we add contrastive self-supervision
over pseudo labels as a pretraining mechanism. Here, the word ‘variable’ is a
positive self-supervision (pseudo) label for a text instance ti, while words from
other in-batch texts, e.g. ‘median’, provide negative pseudo labels.

increasing the pretraining data size, the model markedly gains zero-shot, few-shot and

long-tail retention performance that markedly surpass that of the 12 time larger Trans-

former language model. The result is a long-tail language model pretraining objective,

that due to its data-efficiency, can effectively pretrain form small text corpora, while

also observing computational and memory efficiency that are desirable in practical

application.

I thus find that, model compression may not be the go-to method for obtaining good

long-tail performance from compact models. More beneficially, this also lead to the

contribution of a novel contrastive language model pretraining method, that can

be used in domains where pretraining and fine-tuning data or computational

resources are limited. Since, by definition, long-tail information is always limited,

the method is also data-efficient regarding tail (minority) information.

1.2.3.2 Paper 6: MoRTy: Unsupervised Learning of Task-specialized
Word Embeddings by Autoencoding

Publicly available pretrained word embeddings do not always work well for a

specific task (Bollegala and Bao, 2018; Kiela et al., 2018a), and pretraining custom

word embeddings does not always work well either, particularly in data limited setups

(Dingwall and Potts, 2018). It would thus be desirable to have a word embedding

learning technique that works well in low data and compute scenarios. In this work,
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I contribute a simple yet effective post-processing method that retrofits word

embeddings in a zero-shot fashion without target data using self-supervision to

construct a set of task-specialized word embeddings. The set of specialized word

embeddings can then be used as a hyperparameter during supervised evaluation to

pick the most suitable word embeddings. In an experiment with 18 task ranging from

classification, semantic similarity to word analogy tasks, I demonstrate that there is

always a learned retrofitting that results in better end-task performance.
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Figure 1.6: 1-epoch MORTY (MT %) performance change over Fasttext: Blue bars show
Fasttext baseline performance (100%). 3 Morty runs: trained on Fasttext for 1
epoch (2x5 Fasttext for corpus sizes 2M and 103M and 1x for 600B). Detailed
description on next page.

This post-processing technique works especially for word embeddings pretrained

from limited text data, which is especially useful in domains where pretraining text

is not abundant. In a second experiment I demonstrate that, it is also possible to

produce as single retrofit embedding that is on average better over all 18 tasks, i.e. for

use in a multi-task learning scenario. More importantly, I demonstrate that over three

random retrofits, the resulting retrofit embedding always outperforms the original

FastText word embeddings on average over 18 tasks as seen in Figure 1.6, and that

this consistent improvement is especially strong for low-data embeddings.

1.3 Summary of Contributions and Future
Work

The sum of publications created during this thesis advance transfer and adaptation

understanding, training and efficiency of representations in NLP. While studying

connections between these aspects, a particular focus is put on the relation between

self-supervised and supervised training and how they interact with representation

transfer and adaptation. Hence, Table 1.2 maps the contributions in understanding,
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Adaptation
Understanding

Contrastive
Adaptation

Data-Efficient
Adaptation

SL SSL SL SSL SL SSL
Rethmeier et al. (2020a) x x
Rethmeier et al. (2020c) x x x
Rethmeier and Augenstein (2022c) x x
Ostendorff et al. (2022a) x
Rethmeier and Augenstein (2022a) x x x x
Rethmeier and Plank (2019) x x

Table 1.2: Summary of contributions made by each publication, organized by the three core
topics: Adaptation and Transfer Understanding/ XAI, Contrastive NLP Pretraining,
and Data-efficient Adaptation. Each method is further split into whether it applies
to supervised learning SL, or self-supervised learning SSL.

pretraining and towards the efficiency of NLP representation transfer and adaptation

to both self-supervised learning (SSL) and supervised learning (SL).

Regarding self-supervised learning aspects the proposed methods expand existing

research in model understanding, transfer and efficiency gains within the frame-

work of language model pretraining, since pretraining makes it possible to deeply

study how representations evolve, transfer and adapt during training of existing and

novel pretraining methods. Especially through contrastive (energy-based) pretraining

methodology, the thesis contributes to the transfer, adaptation, data and compute effi-

ciency of language models, which is generally beneficial to low resource scenarios, e.g.

when data is sparse or long-tail distributed, which is sparse by definition. Additionally,

compute and data-efficiency are evaluated on citation prediction, in-hospital patient

outcome prediction and over various NLP tasks including classification, similarity

and analogy tasks. Especially the work on patient outcome prediction verifies that

NLP representation understanding and training methodology work on mixed text

and scalar data, but can also be used to improve model design and trust in medical

applications.

1.3.1 Decision, Model, Transfer and Adaptation
Understanding

This thesis makes core contributions to model understanding of transfer, adaptation,

and pruning (Paper §2), as well as to detecting model component and data source

relevance (Paper §3).

Regarding model transfer understanding, Paper §2 is the first to study model

understanding at all training stages from an untrained model, to a pretrained one, its

zero-shot application and supervised fine-tuning. While many works have investigated
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pruning, this thesis is the first to link model understanding (and explainable AI)

to pruning by tracking neuron feature preference changes across training stages.

Another insight is that supervised adaptation of pretrained model knowledge causes

representational sparsification that leads to knowledge forgetting, as the flip side

of pruning, as well as to overfitting (overspecialization) of neurons caused by the

supervised objective. Advantageously, this technique enables fine-grained pruning by

making it possible to categorize neuron knowledge changes regarding: (I) transferred

(reused without change), (II) adapted (reused with change), overspecialized (III),

(IV) newly introduced and (V) actively forgetting (turned off) neurons. This makes

it possible to separate end task-essential neurons and their (reused, adapted, added)

knowledge (I, II, IV) from task-irrelevant (overspecialized, forgotten knowledge)

neurons (III, V) to prune according to application requirements. While language

model fine-tuning is often analyzed using explainability or model understanding

techniques, the work in this thesis is also the first to investigate the complete pipeline

of how self-supervised pretraining, zero-shot application and fine-tuning interplay at a

representation level in an autoregressive (causal) language model. A direct insight of

this analysis in this thesis is that a language model learns to capture basic distributional

features such as parts-of-speech during early pretraining. Another profound, yet often

neglected, insight is that when shifting from an original to a new domain during

direct (zero-shot) transfer, it is not only the similarity of input feature distribution that

determines transfer quality, but also the similarity of model activations (behavior) over

both domain datasets. That is, transfer is maximized, if the model behaves similarly

over both domain inputs and if additionally most of the two domain information

(knowledge) was absorbed by the model during training on the first domain. Thus,

transfer quality is largely dependent on the pretraining objective and its ability to

build as much reusable representations from as little data as possible. As a result,

supervised transfer can not be understood in detail without zero-shot transfer analysis,

because the above argument applies even when testing on data of the same domain or

dataset – i.e. this important insight was later reinforced in zero-shot probing works by

Talmor et al. (2020); Elazar et al. (2021).

Additionally, in the area of patient outcome prediction (Paper §3), this thesis con-

tributes to model component and data source relevance analysis to produce verification

of model and data-efficiency as well as designing more efficient architectures. In

health care models this helps to make the models small, efficient and uncover their

inner workings. For example, I find that models automatically cluster medical field

knowledge about nephrology or cardiology in specific neurons while minimizing

redundancies between these neurons. I also find that training builds a single, poten-

tially biased feature neuron that encodes ethnicity and gender, which may present
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an important factor of analysis for trustworthy in-hospital AI solutions. Specifically,

compared to previous state-of-the-art Transformer based models, this design via model

understanding made it possible to very significantly improve upon state-of-the-art

results, while also reducing model size by an order of magnitude. This connection

between model understanding and efficiency has profound benefits for in-hospital

applications regarding cost, interpretability and maintenance in predictive health.

The connection between the lottery ticket hypothesis (Frankle and Carbin, 2019c)

– i.e. searching for pruned networks that better generalize to a task than the larger

model – and model understanding guided pruning is so far not understood. Further

research into this direction could make it possible to fully control dynamic, task-

wise, pruning, by finding tickets in larger networks using model understanding, and

allowing the pruned neurons to be used for learning other tasks. Such task-wise

pruning and transfer understanding would enable informed control of catastrophic

knowledge forgetting, knowledge adaptation and its extension during exposure to new

tasks and information over time. Since fine-grained neuron change understanding

can distinguish task-irrelevant from task-relevant neurons it could be used to turn off

forgetting by freezing neurons, or up-regulate the learning rate of specific neurons per

task.

1.3.2 Contrastive Pretraining based Transfer and
Adaptation

Contributions in the area of contrastive pretraining in NLP include contrastive

pretraining of a language model from scratch (Paper §6), a paper §5 that contributes

to contrastive transfer for scientific document and citation representation, and a primer

on contrastive pretraining and applications that is aimed at helping NLP researchers

better understand, use and develop contrastive NLP models (Paper §4).

Unlike contrastive pretraining in computer vision, contrastive pretraining in NLP had

previously been limited to contrastive pretraining of already pretrained Transformer

language models due to scaling issues with contrastive approaches and Transformer

models. It was thus unclear whether language models can be pretrained contrastively

from scratch to similar effectiveness as vision models. In Paper §6 this thesis con-

tributes a novel contrastive autoencoder architecture and accompanying pretraining

method that enable effective pretraining of a language model, as well as zero-shot

learning by modeling pretraining and fine-tuning as a text embedding compatibility

prediction task. It extends the traditional noise contrastive estimation methodology to

use multiple positives, introduces a learned similarity function, scalable, compute opti-
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mized sample encoding and collision prevention for positives and negatives samples

to enable data and compute efficient pretraining (see §6).

Regarding scientific document representation learning this thesis proposes a state-

of-the-art knowledge fusion method for scientific document classification and citation

prediction tasks – see Paper §5. It fuses knowledge of citation graph embeddings

to scientific text embeddings by sampling citation embeddings per document for

contrastive training. Previous work relied on discrete citation information, which

relies on correct citation and does not allow citation relatedness beyond recorded

citation structures – which is a core goal of document similarity. Crucially, the method

introduces a data-driven sampling margin that avoids collisions between positives

and hard negatives which can be tuned using only a fraction of the data while also

enabling highly few-shot effective training.

Future research can apply the contrastive autoencoder pretraining method to larger

pretraining data, to better understand if large language models are necessary or if data

is more important. Another aspect is temporal adaptation, where first unpublished

experiments indicate that a contrastive language model representation degrades sig-

nificantly less over new information compared to autoregressive (causal) or masked

language models. Another direction that is worth exploring is how contrastive training

objective converts model representations to an energy based representations and

whether these representations exhibit the same behavior during transfer and adapta-

tion. A final area of further research is how a contrastive language model performs

in neural search and recommendation tasks, especially regarding its small parameter

size and compute efficient query encoding.

1.3.3 Data-efficient Representation Transfer and
Adaptation

In regards to data-efficient transfer and adaptation, this thesis contributes three

methods. One method to improve zero-shot (label-free) adaptation (Paper §7). A

second method that enables data-efficient (self-supervised) pretraining, along with

efficient zero-shot, few-shot and long-tail transfer (Paper §6). And finally a method

for few-shot knowledge fusion (Paper §5).

The first method (Paper §7) retrofits word embeddings using an autoencoding

approach. Existing works in this domain require adaptation (retrofitting) of word

embeddings using end-task fine-tuning data, while the proposed method produces

embedding variations in a fully self-supervised manner. This makes it possible to

create embedding variations that lead to improved performance of a single task, where

variations are treated as a hyperparameter. Additionally, the method is able to produce
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a single, overall better, embedding in the sense that the multi-task learning perfor-

mance improves over a set of 18 tasks, which range from text classification, semantic

similarity to word analogy. Finally, the method is not only extremely compute efficient,

only requiring a CPU, but also generates word-embeddings that are more pretraining

data efficient than standard approaches, i.e. pretrain better word embedding from

small data collections.

The second work proposes a method and model for contrastive language model

pretraining (Paper §6) which contributes self-supervised training that, unlike existing

language models used for pretraining, can train effectively from even 10% of an

already very small pretraining text data set over a much larger Transformer model.

Additionally, the method allows zero-shot prediction without requiring a preceding

labeled task, which also enables it to achieve markedly better few-shot, long-tail and

few-shot long-tail fine-tuning performance over a standard Transformer model. This

is an important property, since in the long-tail data is always limited by definition,

and with larger data the complexity of the distribution’s long-tail data grows. This

means that, scaling up data aggravates the problem of long-tail (minority information)

ignorance rather than solve it. Finally the combined pretraining and and fine-tuning

time is overall five times faster than only fine-tuning a standard masked language

model that has an order of magnitude more parameters.

A third work (Paper §5) contributes a state-of-art approach to knowledge distillation

for scientific document representation, as well as to the few-shot learning capabilities

of such models. Instead of using discrete citation graph similarity, this model com-

putes textual similarity as continuous, data-driven citation embedding neighborhood

similarity for contrastive pretraining to learn a combined representation for document

relatedness. Previous methods modeled citation information unidirectionally, did not

prevent positive and negative samples from colliding, and had no mechanism for hard

negative sampling, which is needed to make learning efficient. To solve these issues,

the proposed model introduces a data-driven sampling margin that separates for posi-

tives and hard-negatives to prevent collisions, model citation relations bidirectionally,

and increase the models ability to train effectively from small data and thus adapt

better to updated information. Specifically, a direct result of this controlled sampling

is that the model can learn effectively from 1% to 10% of training data and works well

when combined with other methods for efficient fine-tuning such as BitFit (Ben Zaken

et al., 2022a), to further boost efficiency.

Future research of the mentioned contrastive pretraining methods could extend

them to learning over time since the models learn better from fewer examples. Another

field of improvement is to use the knowledge distillation framework to enrich language

models with contextual information from other graph embeddings such as knowledge
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bases as retrieval augmentation and search tasks. A last future improvement could

be to apply the ideas of embedding retrofitting to low resource modeling. Since

the retrofitting method was already beneficially applied to the medical prediction

model produced during this thesis, it is reasonable to assume that it can be applied to

other low resource, low compute tasks to stabilize training and increase performance

as it did in the medical domain. Together, these efficiency benefits would further

decrease deployment and maintance costs of future domain applications, while still

delivering better performance results, as the works produced during this thesis already

demonstrated for various domains and tasks.
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Part II
Explainable Representation Transfer

and Adaptation



2TX-Ray: Quantifying and
Explaining Model-Knowledge
Transfer in (Un-)Supervised
NLP

2.1 Introduction
Continual and Transfer Learning have gained importance across fields like NLP,

where the de facto standard approach is to pretrain a sequence encoder and fine-tune

it to a set of supervised end-tasks (Peters et al., 2019). Analysis and understanding of

transfer in NLP are currently focused on using either supervised probing tasks (Belinkov

and Glass, 2019) to compare task performance metrics (Wang et al., 2019) or laborious

per-instance explainability (Belinkov and Glass, 2019). Supervised probing annotation

is costly, but not guaranteed to be reliable under domain shifts. Probing is also

limited to analyzing foreseen (probed) knowledge absorption aspects, while unforeseen,

model-knowledge properties that underlie and thus further our understanding of

self-supervised pretraining remain hidden (McCoy et al., 2019b). In fact, ‘decision

understanding’ explainability techniques, as (Gehrmann et al., 2019) term them,

compute the relevance of a feature or neuron for an end-task prediction score. This

makes ‘decision understanding’ explainability unable to answer the following research

questions (RQ1-3) – i.e. how can we explain transfer?

(RQ1), unsupervised knowledge absorption: Can explainabilty (XAI) analyze how

self-supervised models build and change knowledge abstractions during pretraining

and can XAI measure knowledge changes? Do measures coincide with conventional

metrics like perplexity? If and when does self-supervision learn linguistic abstractions

like word function (parts-of-speech)?

(RQ2), zero-shot knowledge transfer: What knowledge subset do pretrained

models apply to a new domain without re-training, e.g. in a zero-shot setting?

(RQ3), supervised/ backwards transfer: Can knowledge transfer ‘backwards’

from supervision labels into a pretrained model? Does XAI identify which neurons

are reconfigured – i.e. become task (ir)relevant due to supervision. Can we validate

XAI-based transfer measures (RQ1) empirically by pruning (ir)relevant neurons?

TX-Ray can analyze and quantify (self-)supervised model knowledge change: To

answer RQ1-3 we propose TX-Ray. TX-Ray – i.e., Transfer eXplainability as pReference
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of Activations analYsis – modifies the well established activation maximization method

of visualizing the preferred inputs of neurons (Erhan et al., 2009b) to suit NLP. The

resulting fine-grained ‘model understanding’ – as (Gehrmann et al., 2019) term it –

enables us to quantify knowledge changes or transfer during training at the level of

individual neurons – without requiring or preemptively limiting analysis to probing

task supervision semantics. The method is designed to explore model knowledge

change at both neuron (detail) and model (overview) level to enable concise or deep

explorative analysis of unforeseen knowledge transfer mechanics to help us better

analyze (continual) transfer, model knowledge generalization (McCoy et al., 2019b;

Frankle and Carbin, 2019c), or low-resource learning. (Adebayo et al., 2018; Sixt

et al., 2019) showed that XAI methods do not guarantee faithful explanations. We thus

use TX-Ray’s transfer measures to guide neuron pruning and empirically verify that it

can identify task (ir)relevant neurons that boost or lower test set generalization as

expected. We also demonstrate that supervision not only causes catastrophic forgetting

of knowledge, but also adds new knowledge into previously un-preferred (under-used)

neurons in Table (2.2).

2.2 Approach
TX-Ray is inspired by the widely used activation maximization explainability method,

which is based on the idea that “a pattern to which a unit is responding maximally

is a good first-order abstraction of what a unit (neuron) is doing. A simple way is to

find the input samples that produce the highest activation for a neuron. Unfortunately,

this opens the problem of how to ‘combine’ these samples.” (Erhan et al., 2009b). In

computer vision, naively combining image maximum feature activation maps “over a

corpus does not produce interpretable results” (Erhan et al., 2009b). In NLP, however,

maximal activations of discrete token feature can easily be combined over many

samples to form a discrete distribution of ‘tokens that a neuron prefers’. These corpus-

wide input feature preference distributions let us visualize how each neuron abstracts

input knowledge subsets.

A major advantage of a ‘feature preference’ method is that it can analyze non-
supervised models over an entire corpus, while ‘prediction score relevance explainability’

methods require supervised models, and only explain individual instances (Belinkov

and Glass, 2019). When representing a neuron’s abstracted knowledge as a feature

preference distributions, we can measure knowledge change, or transfer, during

learning using standard measures such as Hellinger Distance – i.e., a symmetric

version of the Kullback Leibler divergence. This allows one to track changes in

neuron knowledge abstractions during model pretraining, model application to new
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domains or due to supervised fine tuning – see experimental section. Additionally,

we automatically determine neurons that change their knowledge the most over time

to provide interesting starting points (see Figure 2.5, 2.7) for nuanced, per-neuron

analysis (see Figure 2.6 and 2.8).

2.2.1 Neurons as Feature Preference
We thus expresses each neuron nn as a distribution over preferred features fk with

activation probabilities pk (Figure 3.2) that have been aggregated over an entire corpus

to construct each nn distribution as follows.

(1) Record what features neurons prefer: Given: a corpus D, text sequences

si ∈ D, input features (tokens) fk ∈ si, a sequence encoder E, and hidden layer

neurons nn ∈ E, for each input token feature fk in the corpus sequences si, we

calculate its: encoder neuron activations a = E(fk); along with a’s maximally active

neuron nargmax = argmax(a) and (maximum) activation value amax = max(a); to

then record a single feature’s activation row vector [fk, nargmax, amax]. If the encoder is

part of a classifier model C, we also record the sequence’s class probability ŷ = C(si)
and true class y as a longer vector [fk, nargmax, amax, ŷ, y]. For analyses in RQ1-3, we

also record part-of-speech tags (POS, see section 2.3.1) in the row vectors. This

produces a matrix M of neuron feature max activations that we aggregate to express

each neuron as a probability distribution over maximally activated features in Step

(2).

(2) Preferred feature distribution per neuron: From rows mr ∈ M , we generate

for each neuron nn its discrete feature activation distribution Ann = {(fk, µ(amax1 ,

. . . , amaxm)) | fk, nn, amaxj
∈ mr ∧ mr ∈ M ∧ nargmax = nn}, where each fk is a fea-

ture the neuron maximally activated on, and µ(amax1 , . . . , amaxm) = µfk
is the mean

(maximum-)activation of that feature in nn. We then turn each activation distri-

bution Ann into a probability distribution Pnn by calculating the sum of its feature

activation means sµ̄ = sum(µf1 , . . . , µfl
) and dividing each µfk

by sµ̄ to produce the

normalized distribution Pnn = {(f1, µf1/sµ̄), . . . , (fl, µfl
/sµ̄)} = {(f1, p1), . . . , (fl, pl)}},

where, each pfk
is now the activation probability of a feature fk ∈ nn. Finally,

for n neurons in a model, P describes their n per-neuron activation distributions

P = {Pn1 , . . . , Pnn=|E|}.

Features can be n-grams, and be tracked through multiple layers as in (Carter et al.,

2019b). However, since in this work we focus on concisely presenting TX-Ray’s transfer

analysis, we only use uni-grams and a single layer.
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2.2.2 Neuron Knowledge Change
We use Hellinger distance H (Hellinger, 1909) and neuron distribution length l

to quantify differences between discrete feature preference probability distributions

p = Pna and q = Pnb
of two neurons na and nb as follows:

H(p, q) = 1√
2

√√√√√ l∑
fk=1

(√pfk
− √

qfk
)2; knowl. change

l(Pnn) = |{fk | fk ∈ Pnn}|; knowledge ‘diversity’

Neuron length l describes the number of (unique) maximally activated features

in a feature preference distribution Pnn. We use Hellinger distance because it is

symmetric, unlike the Kullback-Leibler divergence. Importantly, if one of the preference

distributions Pna or Pnb
is empty, i.e. has zero features (zero length), then the resulting

Hellinger distance is ill-defined. Thus, Hellinger distance allows one to easily quantify

neuron feature preference shifts to measure per-neuron knowledge change during

pre-training (RQ1), zero-shot transfer (RQ2), and supervised fine-tuning (RQ3).

Neuron length l on the other hand allows us to define binary states like ‘un-

preferred’ for empty preference distributions (l = 0) and non-empty ones ‘preferred’

(l > 0). We can use the two terms to classify three kinds of neuron preference state
changes caused by different model training stages: ‘shared’, ‘avoided’, ‘gained’. For

‘shared’ neurons both distributions are non-empty (preferred) – e.g. when neurons

received maximum activations before and after retraining a model. ‘Avoided’ neurons

were active ‘preferred’, but became less active ‘un-preferred’ after retraining. Finally

‘gained’ neurons, became more active after retraining, switching from ‘un-preferred’ to

‘preferred’ status. In RQ1-3 we will use changes in Hellinger Distance, distribution

length and neuron states to identify which neurons overfit to few preferred features,

which ones reuse features (transfer) and which one never specialize (unfit).

2.3 Experiments and Results
We showcase TX-Ray’s usefulness for analyzing and quantifying transfer in answering

the previously stated research questions. For RQ1, we pretrain an LSTM sequence

encoder E1 with 1500 hidden units on WikiText-2 similarly to (Merity et al., 2017b;

Howard and Ruder, 2018), and apply (RQ2) or fine-tune it (RQ3) on IMDB (Maas

1Though possible, we do not pretrain Transformers, due to high computation requirements, and since
LSTMs encoders perform vastly better when pretraining on small collections – compare (Wang
et al., 2020b) with (Merity et al., 2017b). Instead, we focus on demonstrating TX-Ray’s analytical
versatility, especially for true low-resource scenarios, where large pre-training is unavailable.
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Figure 2.1: Pretraining neuron length shifts: where neuron length l (token variety) be-
comes; longer (blue /), shorter (red \), unchanged (black :) for epoch 1, 48, 49.
Token variety settles (:) in later epochs.

et al., 2011), so we can analyze its zero-shot and supervised transfer properties. Each

RQ’s experimental setup and results are detailed below.

2.3.1 RQ1: Pretrained what Knowledge
In this experiment, we explore how pretraining builds knowledge abstractions. We

first analyze neuron abstraction shift between early and later training epochs, and

then verify that Hellinger distance and neuron length changes converge similar to

measures like training loss.

We pretrain a single layer LSTM encoder E on paragraphs from the WikiText-2

corpus Dwiki2 using a standard language modeling setup until loss an perplexity

converge, resulting in 50 training epochs. We save model states at Epoch 1, 48

and 49 for later analysis. To produce neuron activation distributions Pwiki1 (gray),

Pwiki48 (pink) and Pwiki49 (red) we feed the first 400.000 tokens of WikiText-2 into

the Epoch 1, 48 and 49 model snapshots each to compare their neuron adaptation

and incremental abstraction building using Hellinger distance and distribution length.

Additionally, we record POS feature activation distributions using one POS tag per

token, to later group tokens activations by their word function to better read, analyze

and compare feature preference distributions – see Figure 2.2, 2.4, 2.6 or 2.8. POS

tags are produced by the state-of-the-art Flair tagger (Akbik et al., 2019) using the

Penn Treebank II2 tag set.

We use this experiment to verify the feasibility of using a feature preference dis-

tribution approach, since comparing Epochs 1 vs. 48 should reveal large changes to

neuron abstractions, while Epoch 48 and 49 should cause few changes. The resulting

changes in terms of Hellinger distance, amount of ‘shared’ preferred neurons, and

feature preference distribution lengths can be seen in Figure 2.1.

2https://www.clips.uantwerpen.be/pages/mbsp-tags
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While the Epoch 1 vs. 48 comparison produced 544 ‘shared’ neurons, the later

48 vs. 49 comparison shows 1335 ‘shared’ (section 2.2.2) neurons. This means that

pretraining the encoder distributes maximum input activations across increasingly

many neurons. This can be seen in most neurons becoming longer (blue ■/▲ lines),

and fewer neurons becoming shorter (red ▲\■ lines). As expected, for epochs 48 and

49 we see almost unchanged neuron length – seen as dotted vertical (:) lines between

epochs. Additionally, in later training stages, shorter neurons are more frequent than

longer ones, reflected in the opacity of dotted vertical bars decreasing with neuron

length. In fact, the average length of ‘shared’ preferred neurons drops from 944.76 in

epoch 1 to 524.55 and 519.34 in epochs 48 and 49.

Since lengths of POS class preference distributions change significantly in the early

epochs, we also analyze whether the encoders activations Pwiki1, Pwiki49 actually

learned to represent the original POS tag frequency distribution of WikiText-2. Thus,

we express both corpus POS tag frequencies and encoder activation masses as pro-

portional (relative) frequencies per token. In Figure 2.2, we see relative corpus POS

tag frequencies (black), compared with encoder POS activation percentages for epoch

1 (dark grey) and 49 (red). Evidently, the encoder learns a good approximation of

the original distribution (black) even after just the first epoch (dark grey), which

confirms findings by (Saphra and Lopez, 2018), who showed that: “language model

pretraining learns POS first”, and that “during later epochs (49) the encoder POS

representation changes little”. Ultimately, the encoder near perfectly replicates the

original POS distribution. We thus see that POS are well represented by the encoder,

and that neuron adaptation and length shifts converge in later epochs in accordance

with the quality of the POS match. This also tells us that TX-Ray, similar to more

involved optimization-based analysis methods (Saphra and Lopez, 2018; Raghu et al.,

2017), can reveal comparably deep insights into the mechanisms of unsupervised

training, while being simpler and more versatile (RQ1-3).

Using Figure 2.3, a similar analysis about neuron feature distribution changes stabi-
lizing at later training stages can be made using Hellinger distances. When visualizing

distances, we see that they shrink as expected by 99.92% on average in later epochs

and that neuron distance comparisons concentrate on medium length distributions of

10-200 features fk each. Preference distribution changes of short, specialized, neuron

seem to produce higher Hellinger distances than longer, more general neurons. Since

distances over different neuron lengths are not and should not be directly compared,

this visualization acts to provide an explorable overview of neuron distances over

different preference distribution lengths, used to identify and examine interesting

neurons in detail.
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To run such a detail analysis we pick 2 neurons from Figure 2.3 for closer inspection

of their feature preference distribution changes between Epochs 1, 48 and 49. Figure

2.4 thus shows neuron 296 from the top 10 (head) most distant Epoch 1 vs. 48

neurons, and Neuron 38 from the 10 least changed ones (tail). As expected from

Neuron 296’s high Hellinger distances between Epoch 1 and 48, we see that its token

and POS distribution for Epoch 1, i.e., an outlined grey bar and the word ‘condition’

(■), are very different from the Epoch 48 and 49 distributions (▲, ▲), which show

no significant change in token and POS distribution – i.e., they look nearly the same.

Equally expected from Neuron 38’s low Hellinger distance for Epoch 1 and 48; we

see that it keeps the exact same token, ‘with’, and POS, ‘IN‘, across all three epochs.

This demonstrates that Hellinger distance identifies neuron change, and that later

epochs, as expected, lead to small neuron abstraction changes, while earlier ones, also

as expected, experience larger changes.

2.3.2 RQ2: Do we Zero-Shot Transfer?
In this section, we analyze where and to what extent knowledge is zero-shot

transferred when applying a pretrained encoder to text of a new domain – without

re-training the encoder to fit that new data.

To do so, we apply the trained encoder E, in prediction-only mode, to both its

original corpus IMDB, Dimdb, and to the new domain WikiText-2 corpus Dwiki2, to

generate feature preference distributions Pimdb and Pwiki2 from the encoders’ hidden

layer, as before. We also record activation distributions for POS, which despite the

FLAIR tagger being SOTA across several datasets and tasks, had noticeably low quality

on the noisy IMDB corpus. However on the WikiText-2 corpus, tagging produced

comparatively sensible results. By comparing neuron token and tag activations Pimdb

(new domain) vs. Pwiki2 using Hellinger distances for the same neuron positions as in

RQ1, we can now analyze zero-shot transfer as distribution shifts. Put differently, we

estimate domain transfer between the pretrained model abstractions and text input

from a new domain. High distances between the same neurons in Pimdb and Pwiki2 tell

us that the pretrained neuron did not abstract the new domain texts well, resulting in

low transfer and poor cross-domain generalization. When comparing Pimdb and Pwiki2

in terms of Hellinger distances vs. neuron lengths in Figure 2.5, we see that 1323 out

of 1500 pretrained neurons (88.2%) remain ‘preferred’ (‘shared’) when applying E

to the IMDB domain. A drop in the amount of ‘preferred’ neurons compared to the

RQ1 analysis, though at 1335 to 1323 small, is expected since the pretraining corpus

covers a broader set of domains.

However, to gain a detailed view of model abstraction behavior and zero-shot

transfer, we analyze activation differences between Pimdb (green) and Pwiki2 (red)
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Figure 2.6: Low vs. high zero-shot transfer neurons: Neuron 637 transferred little, while
the ‘but-no’ neuron 1360 transferred (applied) well from pretraining to the new
IMDB domain.

for two specific neurons, visualizing one each from the 10 most (head) and 10 least

(longtail) Hellinger-distant neurons. In Figure 2.6 (up), we see Neuron 637, which

has high Hellinger distance when comparing token feature distributions (▲, ◦). As

expected, the neuron’s feature preference between the pretraining corpus Pwiki2 and

the new domain data Pimdb changes a lot. In fact, the distance in Neuron 637 is high

in terms of both POS classes (word function semantics) and non-synonymous tokens –

see x-axis annotated with POS tags and tokens sorted by POS class. Overall, we see

very little knowledge transfer across data sets within Neuron 637 due to its feature
over-specialization, which is also observable in its short distribution length l – only 2

features activate. When looking at the low Hellinger distance Neuron 1360 in Figure

2.6 (lower plot), we see that the neuron focuses on tokens such as ‘no’ on both datasets

and ‘but’ on IMDB, suggesting that its pretrained sensitivity to disagreement (red), is

useful when processing sentiment in the new domain dataset. Furthermore, we see

that IMDB specific tokens have many strong activations for movie terms like ‘dorothy’

or ‘shots’ (green). We thus conclude that Neuron 1360 is both able to apply (zero-

shot transfer) its knowledge to the new domain, as expected from the low Hellinger

distance, while also being adaptive to the new domain inputs, despite not being fine-

tuned to do so, which is more surprising. In summary, we find that during zero-shot
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application of an encoder to new domain data, the pretrained encoder exhibits broad

transfer, indicated by almost equal amounts of ‘shared’ neurons between pretraining

(1335) and application to the new domain data (1323). A supervision fit encoder

however, has its knowledge reconfigured to superivsion, leading to much reduced

transfer of pretrained knowledge, as we will see in RQ3.

2.3.3 RQ3: How does Supervision Back-Transfer Label
Knowledge?

In this experiment, we analyze whether transfer constitutes more phenomena than

just a high level observation like catastrophic forgetting. Here, we want to see if

knowledge also transfers ‘backwards’ from supervised annotations to a pretrained

encoder. Specifically, we analyze whether knowledge is added or discarded in two

experiments. In Experiment 1, we demonstrate how TX-Ray can identify knowledge

addition or loss induced by supervision at individual neuron level (section 2.3.3.1). In

Experiment 2, we verify our understanding of neuron specialization and generalization

by first pruning neurons that add or lose knowledge during supervision, and then

measuring end-task performance changes (section 2.3.3.2). Finally, we show how

neuron activity increasingly sparsifies over RQ1-3 to gain overall insights about model-

neuron specialization and generalization during unsupervised and supervised transfer

(section 2.3.3.3).

For this RQ, we extend the pretrained encoder E with a shallow, binary classifier3 to

classify IMDB reviews as positive or negative while fine-tuning E to create a domain-

adapted encoder Eimdb−sup. To guarantee a controlled experiment, we freeze the

embedding layer weights and do not use a language modeling objective, such that

model re-fitting is exclusively based on supervised feedback – i.e., on knowledge

encoded into the labels. We tune the model to produce roughly 80% F1 on the IMDB

test set, to be able to analyze the effects of even moderate amounts of supervised fine-
tuning before task (over-)fitting occurs. To produce feature preference distributions

Pimdb−sup, we feed the IMDB corpus DIMDB to the newly fine-tuned encoder Eimdb−sup

– i.e. using the same IMDB text input. We also once more record POS tags for tokens.

This time, since POS distributions are compared on the same corpus, their distances are

more consistent than in RQ2. Analyzing Hellinger distance and neuron length change

when comparing Pimdb−sup vs. Pimdb−zero−shot will tell us which neuron abstractions

were changed the most due to supervision – i.e., show us ‘backward knowledge transfer’.

In Figure 2.7, we notice that only 675 neurons were ‘shared’ compared to 1323 neurons

3One fully connected layer with sigmoid activation that is fed by E′s end-of-sequence hidden state.
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Figure 2.7: Neuron feature preference change after supervision: Hellinger distances of
675 ‘shared’ neuron preferences before and after supervised encoder fine-tuning –
dropped from 1323.

Table 2.1: Preferred features of 6/ 85 noisy supervision neurons gained by supervised
fine-tuning: 3 highly active ones (top 3), 3 seldomly active ones (bottom 3).

#neuron : activation sum, features, (#features total )
200 : 1307.42 great, james, superb, famous, strange, possible, french, english,
grand, final, indian, solid . . . (141)
1210 : 501.97 original, overall, good, real, some, dear, french, british, black,
odd, italian, entire, many . . . (161)
125 : 299.12 more, two, best, one, few, most, three, nice, four, fellow, films,
somewhat, lot, favorite, rare . . . (77)
1289 : 7.92: terrific, dull, essential, celia, unbelievable, gentle, melancholy,
intended, shaggy . . . (14)
372 : 4.18: walter
688 : 0.48: archer

in the zero-shot transfer setting (Figure 2.5). In other words, supervision re-fits the
sequence-encoder to ‘avoid’ (unprefer) nearly half its neurons.

2.3.3.1 Supervision adds and removes knowledge
Somewhat surprisingly, supervision not only erased neurons, but also added dis-

tributions for 85 new neurons into Pimdb−sup that had previously empty distributions

in Pimdb−zero−shot. We analyzed these neurons and found that they represent new

supervision task specific feature fk detectors. Below in Table 2.1, we show token

features fk for the top three strongest firing neurons nn and the three least activating

neurons out of the 85 – i.e. supervision-specific neurons with the highest or lowest

overall activation magnitude. Note: we removed stop-words like ‘the’ or ‘a’ as well as

spelling duplicates from the table’s feature lists to remain brief. Features are sorted by

decreasing activation mass from left to right. We see that the first three highly active

neurons roughly encode movie-related locations and entities as well as sentiment

terms like ‘dull’ or ‘great’, though some seem unspecialized (general), fitting many

genres.

When looking at the three least activating ‘supervision’ neurons, we find more

specialized feature lists. Some of them are short and very specialized to a specific
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feature – e.g. the 372 ‘walter’ neuron seems to be a ‘Breaking Bad’ review detector,

while ‘archer’ (688) may detect the animated show of the same name. Somewhat

surprisingly, Neuron 1289, despite only having a low activation sum, is comprised

of many features that focus on sentiment like ‘terrific’ or ‘dull’, making the neuron

more specialized than the top three. This suggests that ‘supervision’ neurons with low

activation mass, somewhat independent of their feature variety, are more specialized

than the highly active ones – which reflects in their lower ‘neuron length’, i.e. them

preferring fewer features. Detailed ‘discoveries’ like supervision-gained knowledge

reinforce our motivation, that an exploration-investigation approach can reveal de-

tailed insights about a model’s inner workings if ‘drilled-down’4 far enough, which

underlines TX-Ray’s application potential.

2.3.3.2 Pruning avoided, shared and gained neurons
To understand how much the ‘avoided’, ‘shared’ and 85 neurons ‘gained’ by super-

vision affect predictive task performance, we run four pruning experiments (A-D)

that remove neuron sets to measure the relative change from the unpruned F1 score

in % – i.e., a drop from 80 to 77 is 77 − 80/80 = −3.75%. Experiment (A) cuts 740

‘avoided’ neurons from the encoder Eimdb−sup, i.e., 740 neurons with empty feature

preference distribution after supervision. Experiments B and C cut the 20 least and

most active neurons from the supervision tuned encoder. To select 20 neurons each,

we sort neurons by their individual activation mass, i.e. the sum of a neuron’s (max)

activations, where ‘unpreferred’ neurons with an empty preference distribution have

zero activity. In the last pruning experiment (D), we prune the 85 neurons that became

‘preferred’ after (due to) supervision – i.e., were ‘unpreferred’ before in Pimdb−zero−shot.

Table 2.2 shows for each pruning: the relative changes in training and test set F1 and

what percentage of the encoder’s entire (max) activation mass the pruned neurons

drop.

For pruning experiment (A), we see that removing ‘avoided’ neurons not only

does not drop performance as commonly observed when dropping irrelevant neurons

(Voita et al., 2019; Sanh et al., 2020), but actually increases both training and test set
performance by 3.65 and 2.80 % respectively, resulting in better generalization. In

Experiment (B), when removing seldomly activated supervision neurons, as indicated

by the low activation mass percentage of 0.004%, we lose significant training per-

formance (−3.79%), but no test set performance, telling us that those neurons were

over-specialized or over-fit to the training set. It also tells us that these neurons were

likely short (over-specialized), similar to those in Table 2.1 that have low activation

4A fundamental visualization techniques design pattern used to describe incrementally more focused
analysis.
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Table 2.2: Pruning avoided, preferred and supervision-gained neurons: After supervised
encoder fitting; (A) prunes avoided (unpreferred) neurons, (B,C) prune the least
and most preferred neurons, and (D) prunes 85 neurons gained by supervision –
i.e., that were non-preferred in pretraining. Colors represent relative score change
in % from original – score drops (red,−), gains (blue). Similar to (Frankle and
Carbin, 2019c), test score increases, despite pruning ≈ 50% of encoder neurons in
(A).

Which neurons
prunded?

% AM
of 675 

F1 change % pruning
effecttrain test

 none = baseline 100.000 0.00 0.00 −

 A: 740 avoided − 3.65 2.80 ↓ noise, ↑ generality

 B: 20 least prefered 0.004 -3.79 0.00 ↓ over-fitting

 C: 20 top prefered 83.120 -4.99 -1.43 ↓ generalization

 D: 85 sup gained 3.006 -3.71 -3.87 ↓ sup. knowledge

mass (372, 688). When we examined this intuition, we found that each of the 20

neurons has a length of exactly one – i.e. is over-specialized. When pruning the 20

most heavily used supervision neurons (C) with 83.12% (max) activation mass, we see

the largest drop in training set performance out of all experiments (A-D). This tells

us that, similar to observations in experiment (B), TX-Ray again identified neurons

that strongly over-fit to the training data, while they overfit the test set to a lesser

extend. Thus, Experiments (B, C) indicate that cutting supervision specific neurons

after training can help preserve generalization performance, i.e., reduce generaliza-

tion loss. Lastly, for (D), when pruning the 85 neurons ‘gained’ by supervision both

training and test performances drop by equal amounts. Since these 85 supervision-

only neurons only became ‘preferred‘ after supervised fine-tuning, this indicates that

pretraining-exposed neurons as in (B) and (C), suffer less from overfitting on new

(test set) data, even when pruned. We reason that pretraining-exposed neurons in

(B) and (C) have their knowledge partially duplicated across other neurons, while

the supervision-only knowledge in the 85 ‘gained’ neurons (D) has no such backups.

(Neuron) generalization, specialization: These observations are not only consistent

with known effects of pretraining on generalization (Peters et al., 2019; Howard and

Ruder, 2018), but also show that TX-Ray can identify and distinguish at individual
neuron level, which parts of a neural network improve or preserve generalization (A,

B) and which do not (C, D). Moreover, the pruning based generalization increase in

experiment (A) is consistent with findings of Lottery Ticket based pruning by (Frankle

and Carbin, 2019c), as well as with our notions of neuron specialization an gener-
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Figure 2.8: Low and transfer to supervision: Neuron 47 saw no transfer, while Neuron
877 transferred its knowledge better from before (zero-shot) to after supervised
fine-tuning on IMDB.

alization used throughout TX-Ray. This demonstrates the method’s effectiveness in

identifying neurons that affect generalization and specialization.

To again analyze what individual neurons learned, we inspect neurons with high

and low Hellinger distances between encoder activations before (green) Pimdb−zero−shot

and after supervision (blue) Pimdb−sup. In Figure 2.8, we show Neuron 47 (up), from

the top 10 highest Hellinger distances. We see that the neuron 47 changed in both

POS and token distributions after supervision, which suggests catastrophic forgetting,

or supervised reconfiguration. For the low Hellinger distance Neuron 877 (down), we

see some POS and token distribution overlap before and after supervision, and that

movie review related terms (green ▽) become relevant, compared to noticeably war

related tokens before supervision (green ◦). This shows the neuron’s semantic shift

(POS, token) due to supervision – i.e., limited knowledge transfer occurred despite the

low Hellinger distance. Moreover, distribution length changed for this neuron from 9

before to 15 tokens after supervision, indicating a lack of transfer. Finally, we recall

that in the zero-shot case more neurons were ‘shared’ than after supervision, 1323

vs. 675 (Figure 2.5 vs. Figure 2.7), which should be reflected in the overall activation

magnitude produced by encoder E before and after supervision.

2.3.3.3 Supervision sparsifies neuron knowledge
To investigate the distribution length shift and activation sum hypotheses formulated

above, we visualize the shift of neuron length before and after supervision (Figure

2.9 and Figure 2.10), as well as the activation mass for the three research questions:

(RQ1) pretraining, (RQ2) zero-shot, and (RQ3) supervision.

In Figure 2.9, we see neurons that shortened (red lines, ▽/◦), or got longer (blue

lines, ◦\▽), after supervision. Token preference distributions of neurons actually
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Figure 2.10: Sorted neuron activation masses, for the pretrained (large, ▲), zero-shot (middle,
◦), and supervision tuned encoder (small, ▽). Supervision sparsifies activations –
i.e. ▽ head peaks, tail shortens.

slightly lengthen by 4.62% on average over the 675 shared neurons,5 while POS

preference distributions, severely shorten at 32.83% (not shown). Similar neuron

lengthening, ‘feature variety increase’, from supervision, was already apparent in

neuron 877 (Figure 2.8), where supervision appeared to have specialized and extended

a previously unspecific neuron into a movie sentiment detector6.

In Figure 2.10, we see that the activation mass – i.e., the sum of activation values

– differs across corpora and encoder activation distributions Pimdb−zero−shot, Pimdb−sup

and Pwiki2. A much more peaked activation mass is produced after the encoder has

been fine-tuned via supervision and then again applied to IMDB (blue, ▽) compared

to before supervision (green), which is a strong indicator that supervision sparsified

the neuron activation and therefore the abstractions in the encoder. The activation

mass of the pretrained encoder E on its pretraining corpus (WikiText-2, red ▲) is,

unsurprisingly, the broadest, while it activates less strongly on the same amount of text

(400k tokens) on the IMDB text (green, ◦), due to the mismatch of domains between

pretrained encoder and the new data domain – as seen in RQ2.

5Over the entire 1500 neurons, neuron token length shortens by 42.53% after supervision.
6Again, without deeper analysis, we are not claiming that this is the case, only that such points for

investigation and new, interesting hypotheses can be identified via TX-Ray.
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2.4 Related Work
Recent explainability methods (Gehrmann et al., 2019; Belinkov and Glass, 2019;

Gilpin et al., 2018; Atanasova et al., 2020) fall into two categories: supervised ‘model-

understanding (MU)’ and ‘decision-understanding (DU)’. DU treats models as black

boxes by visualizing how important each input is for a prediction outcome to under-

stand model decisions. MU enables a grey-box view by visualizing internal model

abstractions to understand what knowledge a model learned. Both DU and MU heav-

ily focus on analyzing supervised models, while understanding transfer learning in

self- and supervised models remain open challenges. Supervised ‘DU’: techniques

explain decisions for supervised (probing) tasks to hypothesis test models for language

properties like syntax and semantics (Conneau and Kiela, 2018; Schwarzenberg et al.,

2019), or language understanding (Wang et al., 2019; Giulianelli et al., 2018). DU is

limited to supervised analysis of individual samples (Gilpin et al., 2018; Arras et al.,

2019). MU: techniques like Activation Atlas or Summit (Carter et al., 2019b; Hohman

et al., 2020) explore supervised model knowledge in vision, while NLP methods like

Seq2Seq-Vis (Strobelt et al., 2019) compare model behavior using many per-instance

explanations. However, these methods produce a high cognitive load, showing many

details, which makes it harder to understand overarching learning phenomena. (Un-)

supervised ‘model and transfer understanding’: TX-Ray modifies ideas behind

activation maximization (Erhan et al., 2009b; Olah et al., 2017b; Carter et al., 2019b)

(see section 2.2) to enable measuring neuron knowledge change, specialization and

generalization as well as to guide explorative transfer analysis by quantifying inter-
esting starting points. Somewhat similarly to our setup in RQ3, (Singh et al., 2019)

“calculate Helliger distances over ‘neuron feature dictionaries‘ to measure neuron adap-

tation during ‘supervised’ task learning” in the prefrontal cortex of rats. Measuring

changes in neuron feature preference distributions enables fine-grained analysis of

neuron (de-)specialization and model knowledge transfer in RQ1-3. TX-Ray extends

upon probing task and correlation based transfer analysis methods like (Liu et al.,

2019a; Bau et al., 2019; Raghu et al., 2017), to provide more flexible, yet nuanced,

(un-)supervised transfer interpretability and analysis for current and future (continual)

pretraining methods (Peters et al., 2019; de Masson d’Autume et al., 2019), while also

enabling discovery of unforeseen hypotheses to help scale learning analysis beyond the
limitations of supervised probing and approximate correlation analysis.

2.5 Conclusion and Future Work
We presented TX-Ray, a simple, yet nuanced model knowledge explainability method

for analyzing how neuron knowledge transfers between pretraining (RQ1), zero-shot
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knowledge application (RQ2), and supervised fine-tuning (RQ3). We showed how to

extract neuron knowledge abstractions in NLP, developed extensible explainability

visualizations and demonstrated how this can measure knowledge abstraction change.

We find that TX-Ray enables explorative analysis of how knowledge is lost and added

during supervision (RQ3), how neurons overfit or generalize (RQ1-3), and how

pretraining builds knowledge abstractions (RQ1). TX-Ray is designed to reduce

computational and cognitive load, but is flexible and scalable. In future, we will use

TX-Ray for more advanced transfer models and metrics. The code and visualizations

are available at github.com/copenlu/tx-ray.
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3EffiCare: Better Prognostic
Models via Resource-Efficient
Health Embeddings

3.1 Introduction
For many machine learning tasks we can observe that more complex models with

more data tend to outperform the previous state-of-art model. Particularly deep learn-

ing approaches can implicitly learn to extract and apply task relevant features(Choi

et al., 2016; Kwon et al., 2019b; Lu et al., 2019; Choi et al., 2017; Ma et al., 2018;

Song et al., 2018a; Ma et al., 2019b,a). However, complex models require more

compute resources and large amounts of data to learn well – usually the more data

the better. In clinical contexts this might be an issue as large datasets are often not

available. For example, on the 2017 four-task clinical prediction benchmark by Haru-

tyunyan(Harutyunyan et al., 2017)1, the paradigm of applying complex models taken

from other fields, but limiting training data to a small set of expert-selected features

has resulted in a stagnation in performance – see Table 3.1 †. Limiting the amount of

input features is based on two common assumptions. From the medical perspective,

limiting features to known ones increases trust and model interpretability. From a

machine learning perspective, it is common to limit the number of input variables

(features) and discard rare ones, in an effort to make learning easier. A welcome side

effect of such limitation is that memory, compute and manual labor requirements are

minimized to meet real world time and cost limitations. However, feature limitation

by expert bias prohibits the discovery of new and unforseen correlations. Moreover,

a highly limited feature set combined with relatively small dataset does not provide

enough input information to fully utilize deep learning methods. This problem is

compounded by an increasing trend to adopt the latest large, complex models with

many learnable parameters from domains like computer vision or natural language

processing(Choi et al., 2016; Kwon et al., 2019b; Lu et al., 2019; Choi et al., 2017;

Ma et al., 2018; Song et al., 2018a; Ma et al., 2019b,a), where data types are much

more homogeneous and large scale data can be readily exploited. On the other hand,

Tomašev et al.(Tomašev et al., 2019) provide a recent example of the performance

benefits gained from using all instead of an expert-selected feature set. However,

1Originally published in 2017. Nature publication in 2019.
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when using hundreds of more features with complex models, the resulting learning

setup quickly becomes impractical for hospital deployment, due to the large memory,

compute and complex model interpretability. However, for low-data tasks we can

also use small embedding-pooling based models that were originally designed as

text classifiers, where small models outperformed complex, 29-layered, convolutional

networks, while using orders of magnitude less parameters and compute (Bojanowski

et al., 2017).

By combining and extenting upon these insights from other fields we propose

and demonstrate the following ‘less-but-better’ approach of using large data, with

small models. We introduce a resource-efficient feature-embedding method, along

with a lightweight neural architecture to process electronic health records (EHR)

efficiently. This allows our approach to be able to encode and process a large variety

of information performantly. We test our method on four different clinical prediction

tasks found in the context of intensive care unit (ICU)(Harutyunyan et al., 2017).

Using smaller models over resource-efficient feature-embedding we can handle an

amount of data that would be resource-prohibitive for large models – i.e. we train

over hundreds of features, while previous (complex) models used only a few hand-

picked features(Ma et al., 2018; Song et al., 2018a; Ma et al., 2019b,a; Harutyunyan

et al., 2017), given comparable compute setups. By combining two unsupervised pre-

training methods(Bojanowski et al., 2017; Rethmeier and Plank, 2019), we simplify

recent ideas of embedding patient health event histories as time-stamped embedding
sequences(Ma et al., 2018, 2019b,a), to ‘embed-away’ the sparsity of health records.

The proposed embedding and model approach greatly reduces the manual labor

required to add data sources and test new models, which enables faster development

iterations. As a result of fast development we quickly realized that less complex,

pooling based models greatly outperform complex recurrent, convolutional or self-

attention approaches – both in terms of task scores and resource efficiency.

Finally, we focus on model trust and transparency through ‘model understand-

ing’(Gehrmann et al., 2019), i.e. interpretability methods(Rethmeier et al., 2020a; Er-

han et al., 2009b), to inspect the model, and model ‘decision understanding’(Gehrmann

et al., 2019), i.e. explainability(Sundararajan et al., 2017a), to identify important

medical events for predictions. Combining ‘model and decision understanding’ allows

us to verify that our models not only optimize task predictions, but also implicitly

learn to identify important biomarkers for each prediction task and that they use

data sources and model components efficiently, i.e. with little redundancies. Overall,

we improve performance and minimize labor, time, data and hardware use to help

remove these major obstacles in applying state-of-the-art prognostic models to ease

the day-to-day hospital application.

3.1 Introduction 52



3.2 Benchmark Dataset
MIMIC-III (Johnson et al., 2016), is an anonymized public database containing

electronic-health-records (EHR) for over 40,000 patients from intensive care units

(ICU). The data is longitudinal, heterogeneous and irregularly sampled. Furthermore,

there are duplicate entries and erroneous input by the medical staff. For evaluation,

we use benchmark tasks provided by Harutyunyan et al. (Harutyunyan et al., 2017).

We refer to this work as benchmark or *Haru17/19. The benchmark includes four

different tasks, namely In-Hospital Mortality, Decompensation, Length of Stay and

Phenotyping. In-Hospital Mortality task predicts whether a patient will die during their

stay at the hospital based on the first 48 hours of ICU admission. Decompensation task

predicts at every hour whether the patient will die in the next 24 hours. Length of Stay
is the task of predicting the remaining number of hours of a patient in ICU at each

hour of stay. Phenotyping addresses the task of classifying the diagnosis (multilabel out

of 25 acute care conditions) at the end of the patient’s stay. Each task uses the data

of an individual ICU stay up to the prediction time. The resulting benchmark dataset

consists of 33,798 unique patients with a total of 41,902 ICU stays and over 250

million clinical events. Each sample corresponds to an individual ICU stay of a patient.

Our experiments use the same cohorts, including the same training, development and

test data splits. To limit information leakage, the splits are made based on individual

patients, not ICU stays.

3.3 Embedding Sequential Data
Most related work in the context of prognostic deep learning models use a set of

fixed features which are inserted into a sequential neural architecture(Tomašev et al.,

2019; Song et al., 2018a; Harutyunyan et al., 2017; Ma et al., 2019a), expecting

each particular feature at a fixed position. Opposed to that we would like to avoid a

fixed set of predefined features or techniques such as imputation. In natural language

processing we can technically use an unlimited amount of sequential embedding

features for words to feed word co-occurence semantics into a machine learning

model. Such embeddings are multi-dimensional vectors, that are pre-trained using

self-supervision(Bojanowski et al., 2017; Rethmeier and Plank, 2019) such that words

that share common contexts are placed close to one another in the vector space,

i.e. have a smaller cosine similarity. Inspired by this idea we encode diverse set

of events and their non-scalar values as vectorsas follows. To gather events, we

use the same source data tables from MIMIC-III as the benchmark. The benchmark

paper constructs a set of 17 hand-picked features, which they pre-process by merging

duplicate events and cleaning values. We instead use all 4336 events from those
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portion. Concept-value-time embeddings: Concept-embedding are concatenated
with binned feature values and encoded time stamps. For example, the value 19
of label Respiratory_Rate is discritized as 00100, assuming that 19 is a value in
the middle range of Respiratory_Rate based on training set values. Categorical
label-values like clear for lll-lung-sounds are assigned a zero vector 00000.

tables. Namely, CHARTEVENTS containing the electronic chart that displays patient’s

information relevant to care, LABEVENTS containing all the laboratory test results and

OUTPUTEVENTS consisting any output fluid excreted by or extracted from the patient,

such as urine output or drain after surgery. In the training set, patients have 87 hour

stays on average, where 92% of these hours have events in CHARTEVENTS , 15% in

LABEVENTS and 12% in OUTPUTEVENTS tables. When an hour has events, it has on

average 50 in CHARTEVENTS , 16 in LABEVENTS and 1 in OUTPUTEVENTS tables. The

same event, e.g. heart rate measurement, can occur multiple times within an hour.

Each event consists of hours elapsed since admission, a label such as Heart-rate or

Heart-rhythm, and a corresponding value such as 89 or “asystole”.

To embed the event label into a vector representation we use randomly initialized
embedding vectors and pretrained FastText embeddings. To obtain pretrained FastText

embeddings, event labels occurring together within a time step are concatenated and

written into a file – see Figure 3.1. Using this sequence of feature labels any word

embedding method can be applied. We use the FastText (Bojanowski et al., 2017)

skip-gram method to learn those embeddings because FastText incorporates sub-word

information in token embeddings. This results in embeddings, where labels that share
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sub-words are close-by in the embedding space, e.g. heart-rate and heart-rhythm.

Learning embeddings for sub-words also helps us mitigate problems of changing the

distribution of tokens by decreasing the number of categorical features by splitting

each into many with concatenated values. After obtaining these embeddings, we use

them as a non-trainable, or frozen, embedding look-up table in our models. That way

we can feed an event sequence into this table, which turns them into an embedding

sequence. Note, values in MIMIC-III are highly heterogenuous and unclean, e.g. 89,

"SR (Sinus Rhythm)", "1cm", "24/24". To handle such input we first obtain unique

feature labels by concatenating event names and any value that is not a scalar, e.g.

judgement-intact, ventilation_rate-24/24. After obtaining the vector representation

for the event label, scalar feature value and time stamp we concatenate these features

into a single ‘concept-value-time’ embedding vector – Figure 3.1. Scalar feature values

are discritized and encoded with a one-hot vector. For each individual feature we

calculate uniform buckets for values using the training set. Each bucket represents

a value range of that feature. In addition, two further buckets are used to deal with

outliers. Categorical feature values are already included in feature label embedding

and are represented as zero vectors here. Furthermore, time bucket t in hours is

included both in logarithmic and exponential form: log(t + 1), exp(t/1000) − 1. Using

this calculation normalizes the hour format (which can go up to 1500 hours) in two

non-linear ways(Kwon et al., 2019a). The complete pipeline is shown in Figure 3.1.

3.4 Prognostic Multitask Model
To efficiently integrate the large amount of data features occurring in the ICU we use

a small model with as few parameters as empirically necessary. This enables us to train

the model within a reasonable amount of time, despite using thousands of features –

i.e. our best performing model trained in 40 minutes × 14 epochs on a single GPU2.

During early experiments we also tested deep and shallow GRU-based and CNN based

architectures, which were significantly slower to train but performed worse than the

small time-pooling based model. Figure 3.2 provides an overview of our prognostic

multitask model. The events from different sources (e.g. chart events) are embedded

and collected within ‘1-hour-buckets’ containing all embeddings occurring within a

single hour t for that source. The size of each bucket is patient-dependent according

to the maximum number of features occurring within an hour for that source. In case

of a smaller number of features occurring within an hour, the bucket will be zero

padded. Each embedding et from bucket at hour t is fed into a fully connected layer

(FC) with ReLU activation, followed by different poolings (max, avg and normalized

2GeForce GTX 1080 Ti with 11GB memory, 10 Core CPU.
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1 + Ai
2 + · · · + Ai

t√
|Ai

1 + Ai
2 + · · · + Ai

t|
(3.1)

sum) over the events. The output of each pooling is then concatenated to obtain an

hourly patient embedding st, together with the pooling outputs from all other event

sources (e.g. lab and output). This step (A) is applied for all hours of all events

since admission (until the current prediction time snow) to generate a sequence of

hourly patient embeddings from s0 to snow. Finally all patient embeddings up until

prediction time are fed into same poolings over time. The outputs of the poolings

are then concatenated with the demographic embedding (B), resulting in a patient

embedding pnow that represents the patient’s aggregate state from admission up until

hour now. This final patient embedding is then fed into the different fully connected

layers, corresponding to the four different predictions (see right side of figure). Max

and average poolings are commonly used in deep learning, however normalized sum

pooling, see equation 3.1, was introduced by (Pham et al., 2016), to account for the

accumulation of risk through time. Additionally, this sum pooling version ignores
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zero-padding in contrast to average pooling, which provides an additional implicit

learning feature.

3.5 Configuration and Experimental Setup
For the following experiments, we trained feature representations using a FastText

with a window size of 15 and default parameters with 100 dimensional embeddings.

Scalar values are discritized into 10 uniform bins with two additional outlier bins

for the 0.01 and 0.99 percentile values. Bins are calculated over the training set and

are fixed at test time. This results in a one-hot vector of length 12 for scalar-valued

features and a zero vector for any categorical feature. The fully connected layer for

each table has 50 dimensions. The demographic input is sent through a two layer MLP

with dimensions 40 and 20 and ReLU activations in-between. Each task is predicted

by a corresponding fully connected layer using this representation.

We train with mini-batch size 16. For regularization, we apply input dropout

with probabilities 0.15 for events and 0.1 for whole time-steps. The demographics

network is regularized with 0.3 dropout. All tasks, but especially decompensation,

have imbalanced label distributions. Thus, we use class weighting while calculating

the training loss. This is equivalent to over-sampling patients that correspond to less

frequent labels. For the multitask loss, we use the same weighting as in the benchmark

paper(Harutyunyan et al., 2017), except for the fact that we train regression and

classification for length of stay at the same time: 0.2 for in hospital mortality, 2 for

decompensation, 1 for length of stay classification, 0.1 for length of stay regression

and 1 for phenotyping. As optimizer we use Adam with Pytorch defaults, i.e. learning

rate 0.001 and betas 0.9, 0.999. Since a few patient histories are disproportionately

long, we consider only the first 30 days of each patient’s stay at the hospital during

training, as done by(Ma et al., 2019a,b). At test time, we predict over all time-steps.

For development and model selection, we used the training and validation set defined

by (Harutyunyan et al., 2017). The test set from (Harutyunyan et al., 2017) is used

only to report results.

3.6 Results
See results in Table 3.1. As ROC scores overestimate performance under class

imbalance(Saito and Rehmsmeier, 2015) we only discuss the results related to AUC-

PR and Kappa. In case of Phenotyping previous works do not provide AUC-PR results.

While a higher score represents an increase in performance for most evaluation

measures, in case of MAD, a lower score is better.
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Model # Parameters # Features

*Haru17/19 MC-model (MT)(Harutyunyan et al., 2017) 1,225,253 64

FastText embeddings 70,528 10461
FastText event count > 100 70,528 6165
FastText only 17 *Haru17/19 70,528 75

Table 3.2: Number of trainable parameters and features. Each categorical event-value counts
a as a single feature. For comparison, the 17 features used in *Haru17/19 result in
64 individual features. FastText only 17 counts non-preprocessed events used to
construct the 64 features from *Haru17/19(Harutyunyan et al., 2017).

Sequence embeddings of patient features majorly boosts performance: First,

we evaluate our embedding-based methods (†) against the previously best single and

multitask models (*)(Harutyunyan et al., 2017; Ma et al., 2019a,b; Song et al., 2018a)

in Table 3.1. For each baseline work(*), we list the best model results only. The

*Haru17/19 benchmark has the oldest results, originally published in 2017 and then

republished in a 2019 Nature issue(Harutyunyan et al., 2017). The first two works

(*) only use the 17 features selected by *Haru17/19. Notably more recent complex

models by Ma and Song did not beat the less complex baselines by *Haru17/19. We

also see that multitask learning performs better. These observations suggests that

we should use less complex, multitask learning models with more than 17 training

features. Our approaches, that use all 10,461 benchmark feature embeddings with our

comparatively simple multitask models(†), outperform the baselines (*) on all tasks

by large margins, where some scores such as length of stay MAD and decompensation

AUC-PR almost double. Furthermore, as Table 3.2 shows, even though our approach

uses many more features, it has a much smaller number of trainable parameters. Thus,

small neural architectures that are designed for low-resource scenarios by using fewer

parameters are not only easier and faster to train, but also boost performance.

Further, we can conclude that using all available features drastically benefits learning
and that multiple tasks may benefit each other through shared, pretrained event

embeddings (see Embedder in Figure 3.2). Note that, using random embeddings does

not require embedding pretraining, and therefore requires the least modeling effort.

However, when we exploit embedding pre-training via FastText (Bojanowski et al.,

2017) we improve on all metrics except length of stay Kappa.

Finally, we retro-fit our event embeddings using the autoencoding method and

implementation3 by *Reth19(Rethmeier and Plank, 2019). We select optimal *Reth19

embeddings using our validation set, which leads to a 4.1 point increases in the

decompensation test score without using extra labor or hardware resources – i.e. they

3https://github.com/DFKI-NLP/MoRTy
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efficiently boost performance. For completeness, we also mention three negative (dead-

end) insights. We initially tested many more complex models, but since using CNN

and GRU layers strongly underperformed in prediction and compute performance com-

pared to our smaller models, we choose to not pursue complex architectures. Further,

excluding the number of hours elapsed since admission in the input embeddings hurt

performance moderately, while using only max pooling considerably hurt performance.

Telling us that average and sum pooling are important components.

Early expert bias for feature limitation hurts performance: Next we analyze

if early domain expert-based bias, like feature selection or removing rare features,

impacts model performance. As done in the benchmark paper(Harutyunyan et al.,

2017), we use only the 17 hand-picked features to train our model, except we do

not do any feature clean-up (see FastText only 17 *Haru17/19). Table 3.1 shows a

large drop in overall performance compared to the all-features (†) FastText embeddings
model, except for Length of Stay Kappa. However, even in this low-data setting, our

approach still mostly outperforms previous state-of-the-art approaches indicating that

small models may be better suited to the data setup.

Additionally, when removing infrequent features from training (FastText event count

> 100), we see that model performances drop for most tasks. Thus, we conclude that

early domain biases like early expert feature selection and rare event filtering can

greatly hurt task learning and thus test set prediction performance. Our motivation

behind testing the influence of removing demographic features will be explained in

the interpretability-detail section, further down.

3.7 Interpretability for ‘model understanding’
Automation bias, is an over-reliance on decision making technology due to high system

complexity and low understanding. Thus, we aim to peer into our models’ black-box

to increase awareness of its capabilities and its limitations by inspecting learned

abstractions. We hence analyze how our best model combines and filters patient

features and how important different model components are for task predicting each

task. Using intepretability, we allow ‘model understanding’ (Gehrmann et al., 2019) at

two levels – i.e. detail and overview.

First, we gain a detail-view of how a model represents domain knowledge from chart

or lab events for all tasks by adapting the interpretability concept of “aggregating and

visualizing what features the neurons in a model prefer” from (Rethmeier et al., 2020a;

Erhan et al., 2009b). This concept was introduced in image recognition to visualize

a model’s learned abstractions like eyes or noses (Erhan et al., 2009b). The method

was recently extended to visualize word category abstractions in language processing

3.7 Interpretability for ‘model understanding’ 60



PCA-Lockout-Min (9753)

pca-dose_1-mg (87)

Patient-controlled-analgesia-PCA-[Inject] (8971)

PCA-Total-Dose (5218)

PCA-1-Hr-Limit-mg (9431)

pca-medication_dilaudid (6988)

pca-dose_2mg (32)

Patient-controlled-analgesia-PCA-[Attempt] (8946)

pca-dose_.25mg (151)

pca-dose_.5mg (28)

chart filter: "pain level"

mean activation (event frequency)

fe
at

ur
e 

(c
ha

rt 
ev

en
t)

Urea-Nitrogen-Urine (2437)

prot.-electrophoresis-urine_only-albumin-detected (27)

chloride-urine_less-than-10 (38)

bicarbonate-urine_less-than-5 (115)

Magnesium-Urine (78)

Phosphate-Urine (156)

Bicarbonate-Urine (25)

Osmolality-Measured (3736)

Chloride-Urine (1758)

Osmolality-Urine (3308)

lab filter: "urin markers"

mean activation (event frequency)

fe
at

ur
e 

(la
b 

ev
en

t)
Figure 3.3: Detailed interpretability view: Top-10 “preferred features” of two patient-event

level filters. Two filters Hi from FCCHART and FCLAB (Figure 3.2). The chart
filter abstracts pain management events, the lab filter captures urine indicators.
(Rare features) like ‘Bicarbonate-Urine’ matter – see (feature count).

models (Rethmeier et al., 2020a), which we can use in a similar fashion to visualize

which events our model components prefer during. Secondly, we aggregate activations

of the learned patient representations (patient emb in Figure 3.2) to gain an overview
of how important different types of either domain knowledge (data sources) or model

components are for predicting each of the four tasks.

Interpretability detail-view, reveals (non-)redundancies: To visualize what low-

level filters learn about individual data sources like chart or lab events, we collect the

“preferred (maximally activated) features” of each neuron in FCCHART and FCLAB

over the training set. Thus, each ‘filter neuron’ in FCCHART or FCLAB forms a

distribution of ‘preferred features’ using the method and implementation4 proposed

by Rethmeier et al.(Rethmeier et al., 2020a), who similarly visualized knowledge

abstraction during unsupervised language model training. In Figure 3.3, we see which

patient features are the most active (preferred) in two neurons of our model’s learned

low-level feature filters. Note that, we see one chart and one lab neuron out of a total

150 filters – i.e. 50 filters each over chart, lab and body-output events.

The presented chart data filter shows a strong focus (in terms of activation-preference)

on information regarding the need for self-controlled pain-relieve – i.e. the patient’s

perceived pain level. The presented lab filter is most active for features that involve

urine lab values. Thus, these filters implicitly learned to abstract and cluster knowledge
about pain and urine related health indicators, even though we did not model any

4https://github.com/copenlu/tx-ray
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explicit feature clustering or preprocessing as done in older, manual feature-engineering

approaches. When looking at the other filters, we found that many filters learned to

focus on specific clinical contexts: bed-laying pressure points, cardiology-cholesterol

measures, blood health, self-sufficiency, and diet.

Moreover, we found that data sources, e.g. body-output data, that have fewer

features than others, have an increasing number of filters with empty feature prefer-

ence distributions. This suggests that those filters may not be necessary and could be

removed to shrink the model and therefore its hardware requirements. Interestingly,

we also observed that non-empty filters form unique feature clusters – i.e. no duplicate

clusters. This indicates that these filters learned to avoid abstraction redundancies,
or as representation learning terminology puts it, our model learned disentangled

representations5. Practically, efficient data representation results in a model that uses

computations and memory in terms of its parameters efficiently.

Finally, we noticed that chart event filters such as those seen in Figure 3.3 already

encode demographics such as sex and weight. Accordingly, after removing the de-

mographic input data and its 2 layer MLP component, test set performances were

nearly unaffected – see † FastText w/o demographics (MT) in Table 3.1. This leads us

to conclude that, we can use interpretabilty to identify and then remove unnecessary
(redundant) model components and data sources.

Interpretability overview, how relevant data and model components are per

task? To gain an overview on how each prognostic task uses features from chart,

lab and output events we collect learned patient embedding representations (see

Figure 3.2) for all patient histories in the development set. Next, we multiply the

representations with each of the four classifier weights. In this way we can investigate

how strongly (active) each task weights specific data sources and pooling information.

In Figure 3.4 we see that neither of the two tasks uses body-output feature information

and that data and pooling importance vary per task. However, when we remember

(see data section) that only 12% of patient-buckets have OUTPUTEVENTS , while 92%
and 15% have CHARTEVENTS or LABEVENTS , we understand that output events still

matter, and that lab events are very important6, even though chart events dominate by

raw frequency and hence weighted activation. For Decompensation sum and average

pooling over a single time step (event-level) cause both strong positive and strong

negative impacts on the prediction score. Also, chart events are the most important

here. At event-level, average and sum pooling have strong impacts on predictions,

while at the pooling-over-time-level, we see that max pooling is the most impactful.

5https://deepai.org/machine-learning-glossary-and-terms/disentangled-representation-learning
6Due to space limitations, we do not show frequency adjusted relevance, though this is easy in practice.
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Figure 3.4: Feature type and pooling mechanism relevances for two tasks. The x-axis shows
relevances for max, average and sum pooling over time (high level patient embed-
dings). The color bars express relevances of pooling over events of a single time
step (low level data filters FCCHART , FCLAB and FCOUT P ) – see Figure 3.2.

We also see that average pooling over time causes only positive impacts. Thus, each

task uses data sources and network components differently.

3.8 Explainability for per-patient ‘decision
understanding’

So far we only looked at understanding how the model abstracts data and uses its

component to model the four tasks. However, to also provide ‘decision understanding’

(Gehrmann et al., 2019) of what features are most relevant or impactful for a specific

prediction, we use the explainability method of integrated gradients (see (Gehrmann

et al., 2019)). We again split our analysis into overview and detail. This allows us to

see how (counter-)indicative specific event value combinations are in for predicting

patient mortality overall compared to how important events are in a single patients

history.
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Explainability overview of the most and least predictive features: Using the

popular integrated gradients method (Sundararajan et al., 2017a), we calculate

for each development set feature its impact on the prediction score of true posi-

tive in-hospitality-mortality predictions. Table 3.3 shows that features like heart-
rhythm=asystole or Gastric-Emesis have a strong positive influence, whereas Drain-
Out-#1-Tap or Ultrafiltrate-Ultrafiltrate have a strong negative influence on a posi-

tive prediction. “Other” describes four identically labeled hematology events from

LABEVENTS that are related to fluids: Cerebrospinal Fluid, Joint fluid, Pleural, As-

cites. As we expected, high impact features describe events that likely occur close to

an in-hospital-mortality. Importantly, we see that some infrequent features have a

strong positive or negative influence on the classification, meaning they should not be

prematurely filtered.

Explainability detail: (counter-)predictive feature in a patient’s history. Figure

3.5 shows the attributions of input events to a correct in-hospital mortality prediction

of a single patient. The prediction is done at 48th hour as per the task definition and

the input has 3438 events in total. The figure shows only the events with a high

(>0.2) positive or negative impact (attribution) on the mortality prediction for a

patient, where the patient eventually died at 368th hour. The events from the initial

48 hours that are most indicative for the death of the patient are Foley=3, abdominal-

assessment=ascites, Urea-Nitrogen-Urine=3, patient-location=cc6b Lactate=4 and

Anion-Gap=4. Most counter-indicative are features like Sputum-source=expectorated,

Urea-Nitrogen=2, Lactate=2 and Foley=3. This visualization lets us analyze which

events are most critical to a patients condition over time, according to the trained

model.

3.9 Discussion & Conclusion
We presented a novel, resource-efficient patient event sequence embedding method

and model that largely improves the state-of-the-art performance on a public bench-

mark for patient health prediction in intensive care units (Harutyunyan et al., 2017).

Due to its resource-efficient, automated design, our method is able to learn useful

features from raw and heterogeneous input without laborious feature-engineering or

impractical hardware demands. The model can deal with highly sparse raw streaming

inputs that have errors and missing values. As a result it improves patient health

prediction over clinically used severity scores(Salluh and Soares, 2014) and modern,

often much more complex neural models(Ma et al., 2019b,a). Besides identifying

important features that were used by others (Harutyunyan et al., 2017; Purushotham

et al., 2017), our approach uses important features that seem intuitively sound upon
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Figure 3.5: A single patients 48 hours integrated gradient explanation for a correctly predicted
in-hospital mortality. Equals are categorical values, or the bin of a scalar value,
where 1 is the lowest and 10 the highest bin (Outlier bins 0 and 11 are infrequent.)
The bars show accumulative positive attributions for events in 4 hour blocks for
different data sources. Colored events have a mortality prediction attribution
(> 0.2). Negative attributions are counter-indicative.

loser inspection. Since real world application in a hospital requires minimization of

human labor, time, hardware and extensibility costs, we propose multiple modeling

choices to conserve those resources, while also producing substantial improvements

over state-of-the-art methods.
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Part III
Contrastive Language Model Adaptation



4Paper 3: A Primer on
Contrastive Pretraining in
Language Processing:
Methods, Lessons Learned &
Perspectives

4.1 Introduction
Current downstream machine learning applications heavily rely on the effective

pretraining of representation learning models. Contrastive learning is one such

technique which enables pretraining of general or task-specific encoder models in a

supervised or self-supervised fashion. While contrastive pretraining in computer vision

has enabled the recent successes in self-supervised image representation pretraining,

the benefits and best practices of contrastive pretraining in natural language processing

(NLP) are less established (Jaiswal et al., 2021b). However, a first wave of works on

contrastive NLP methods, seen in Figure 4.1, shows strong performance and data-

efficiency benefits of (self-)supervised contrastive NLP pretraining. For example, even

supervised contrastive pretraining enables zero-shot prediction of unseen text classes

and improves few-shot performance (Pappas and Henderson, 2019). Moreover, task-

agnostic self-supervised contrastive pretraining systems have been shown to improve

overall language modeling performance (Logeswaran and Lee, 2018; Clark et al.,

2020; Wu et al., 2020b; Giorgi et al., 2021a), data and label-efficiency (Radford

et al., 2021; Rethmeier and Augenstein, 2020) or semantic similarity tasks (Gao et al.,

2021a). Besides that, there are many task-specific uses of contrastive self-supervision,

e.g. for pronoun disambiguation (Klein and Nabi, 2020), discourse representation

learning (Iter et al., 2020) or text summarization (Duan et al., 2019), to name a few –

see Section 4.3.

In this primer to contrastive pretraining, we therefore summarize recent supervised

and self-supervised contrastive NLP pretraining methods. We then describe how

they enable zero-shot learning and improve language modeling, few-shot learning,

pretraining data-efficiency or rare event prediction. We cover basic concepts and

crucial design lessons of contrastive NLP, while detailing the resulting benefits such
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Figure 4.1: Types of contrastive pretraining: and works that fall within these categories.
marks text-image contrastive works.

as zero-shot prediction and efficient training. Then, we structure existing research

as supervised or self-supervised contrastive pretraining and explain connections to

Energy-Based models (EBMs), since many works refer to EBMs. Finally, we point

out open challenges and outline future and underrepresented research directions in

contrastive NLP pretraining.

4.2 Contrastive Learning and its Benefits
At their core, contrastive methods learn to distinguish between pairs of similar or

dissimilar data points. A pair of similar data points is called a positive sample, which

in self-supervised contrastive learning is generated by augmenting an original data

point. For example, SimCSE by (Gao et al., 2021a) applies two dropout masks to an

input sentence to create two slightly different sentence embeddings that are then used

as a pair of positive (matching) sentence embeddings for self-supervised pretraining.

Negative samples are pairs where the two data points are of different data instances,

e.g. in SimCSE the authors simply use the embeddings of other sentences in a training

batch as negatives. Contrastive objectives have been demonstrated to have certain

desirable properties over other common losses. (Graf et al., 2021a) have shown that

a contrastive loss is more resistant to label noise than the commonly used softmax
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objective. Additionally, Zimmermann et al. (2021a) demonstrate that contrastive self-

supervision effectively “inverts a data generating process”. This results in very data-

efficient pretraining as both they and Rethmeier and Augenstein (2020) demonstrate.

Other potential benefits include modelling redundancy reduction (Zbontar et al., 2021)

and disentangling representations (Ren et al., 2021). Below, in Section 4.2.1, we

overview popular contrastive losses for NLP and summarize how to avoid pitfalls.

Then we overview connections to other machine learning fields and specifically outline

Energy-Based models in Section 4.2.2, since they are used in much of the cited

research. Finally we organize methods into input-input contrastive and the NLP

specific input-output contrastive methods to highlight their respective benefits.

4.2.1 Noise Contrastive Estimation (NCE)
Noise contrastive estimation (NCE) is the objective used by most contrastive learning

approaches within NLP. Thus, we briefly outline its main variants, Binary and Ranking

NCE, and the core ideas behind them, while pointing to Ma and Collins (2018)1 for

detailed, yet readily understandable explanations of the two main NCE variants. Both

variants can intuitively be understood as classification with undersampling of negative

(non-active) classes. Either method is used to predict a similarity score between two

text embeddings, where the prediction score 1 means similar, and a score of 0 or -1

means dissimilar, i.e. a direct analog to the standard (self-)supervised classification

objectives. Training is done with positive and negative samples, where xi is an original

text input embedding, while a−
i is an augmented text embedding that is dissimilar to

xi, and a+
i is a text embedding that is considered similar to xi. A positive sample is then

describes as a pair of similar text embeddings <xi, a+
i > that is annotated, manually or

automatically, with a similarity (class) of 1 via an indicator variable. A negative sample

is a pair <xi, a−
i > of dissimilar text embeddings that is annotated with a similarity of

0, or -1, depending of the similarity function (e.g. cosine) to indicated dissimilarity

or a mismatch. Either method uses one positive sample <xi, a+
i >, and sub-samples

K negative samples <xi, a−
i > for contrast. Below we describe both variants, and will

point out an easy way to remember both variants at the end.

Binary NCE: The first variant expresses NCE as a binary objective (loss) in the form

of maximum log likelihood, where only K negatives are considered.

LB(θ, γ) = log σ(s(xi, a+
i,0; θ), γ) +

K∑
k=1

log(1 − σ(s(xi, a−
i,k; θ), γ) (4.1)

1https://vimeo.com/306156327 talk by Ma and Collins (2018).
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Here, s(xi, ai,◦; θ) is a similarity or scoring function that measures the compatibility

between a single text input xi and a contrast sample ai,◦. This sample is another input

text or an output label (text) to model NLP tasks as ‘text-to-text’ prediction similar to

language models. The similarity or scoring function is typically a cosine similarity, a

dot product, or a small neural network that computes a similarity or matching score

between a pair of text embeddings (Pappas and Henderson, 2019; Rethmeier and

Augenstein, 2020). The σ(z, γ) is a scaling function, which for use in Equation 4.1, is

typically the sigmoid σ(z) = exp(z − γ)/(1 + exp(z − γ)) with a hyperparameter γ ≥ 0
(temperature), that is tuned or omitted depending on how negative samples a−

i are

attained (Ma and Collins, 2018).

Ranking NCE, InfoNCE, NT-Xent: learns to rank a single positive pair (xi, a+
i,0)

above K negative pairs (xi, a−
i,k):

LR(θ) = log
es̄(xi, a+

i,0; θ)

es̄(xi, a+
i,0; θ) + ∑K

k=1 es̄(xi, a−
i,k; θ)

(4.2)

In Jaiswal et al. (2021c), section 5, it can be seen that the Ranking NCE objective has

the same form as the InfoNCE objective in CPC (van den Oord et al., 2018) or the

NT-Xent objective in SimCLR (Chen et al., 2020b), except that the SimCLR version

uses a similarity scaling factor (temperature) τ . The names InfoNCE and NT-Xent are

commonly used in computer vision, while all names are used in NLP. Interestingly,

van den Oord et al. (2018) also proved that “minimizing this loss maximizes a lower

bound on the mutual information” of a positive sample (between a pair) <xi, a+
i,0> –

i.e. in their notation between xt+k, ct := <a+
i,0, xi>. This means that the Ranking NCE

can also be understood as approximate mutual information maximization objective.

Additionally, as discussed in Ma and Collins (2018) section 3.2, some older works

define a modified similarity (scoring) function s̄(xi, ai,◦) = s(xi, ai,◦) − log pN (ai,◦) to

subtract the probability of the current sample ai,◦ under a chosen noise distribution

pN (ai,◦). For example, Mikolov et al. (2013c) set pN (ai,◦) as corpus word-unigram

probabilities pword (Mikolov et al., 2013c) to make the learning of word embeddings

more robust. Works like Deng et al. (2020) set the noise distribution to the probability

pLM of a sequence under a language model LM , to learn contrastive sequence pre-

diction. As Ma and Collins (2018) state, when desirable, adding this noise term can

make the Binary NCE objective self-normalizing allowing it to converge faster towards

the MLE solution. Ranking NCE is already self-normalizing, but Ma and Collins (2018)

showed that adding the noise term can still improve RankingNCE results. While some

older works like (Mnih and Teh, 2012) set the parameters of the noise distribution

4.2 Contrastive Learning and its Benefits 71



term to zero, for computational reasons, recent models do not use a noise distribution

term (Wu et al., 2020b; Rethmeier and Augenstein, 2020).

Generalization to an Arbitrary Number of Positives: As Khosla et al. (2020b) discuss,

original contrastive losses use only one positive sample per text instance (see e.g.

Mikolov et al. (2013c); Logeswaran and Lee (2018)), while recent methods mine

multiple positives per sample (Qu et al., 2021; Rethmeier and Augenstein, 2020). This

means that the positive term in Equation 4.1 extends to become a sum over P positive

samples.

P∑
p=1

log σ(s(xi, a+
i,p; θ, γ)) (4.3)

A way to easily remember Binary and Ranking NCE: Binary NCE can be remem-

bered as an undersampled version of Binary Cross Entropy over similarity scores.

When used with multiple positives, but without a noise distribution term for self-

normalization, it can learn multi-label problems, where an instance can have multiple

active labels (classes) that are independent of each other. When using a single positive

class, Binary NCE learns a contrastive version of multi-class classification, especially

when adding the optional noise distribution term for self-normalization, which makes

it act even closer to an undersampled softmax objective.

Ranking NCE can be remembered as an undersampled softmax over similarity

scores, as it uses an undersampled normalization, which suits multi-class learning,

where classes are mutually exclusive and normalization can be thought of as ‘inducing

a ranking and mutual exclusivity’ between classes. While this objective if often

appropriate when learning representations, other ranking losses can be used to induce

ranking oriented semantics, e.g. SPECTER and SciNCL (Cohan et al., 2020b; Ostendorff

et al., 2022b) use the triplet (ranking) loss for contrastive pretraining of citation

representations. However, for practical applications the impact of ranking loss variant

may be minor, as pointed out by Musgrave et al. (2020a), who give a concise overview

of relevant losses and a critical analysis of realistic benefits and drawbacks.

Lessons on Effective Negative and Positive Sampling. A key component (and

pitfall) of effective contrastive learning is how positive and negative samples are

generated. Saunshi et al. (2019) prove and empirically validate that “sampling more

negatives improves performance, but only if they do not collide with positive samples”,
which otherwise deteriorates performance. Instead, in section 6.3. of their work they

propose to “sample negatives from blocks of similar data points”, i.e. from similar

contexts such as the same paragraph or sentence. Instances of such contextual contrast

sampling can be found in (Saunshi et al., 2019; Rethmeier and Augenstein, 2020;
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Iter et al., 2020). For example, Rethmeier and Augenstein (2020) sample words

from a current text instance to construct positives for self-supervised pretraining of a

contrastive text autoencoder model. Recent works use multiple positive samples to

boost supervised contrast (Khosla et al., 2020b). Additionally, during self-supervision,

multiple positives should be sampled from similar contexts (Wang and Isola, 2020)

or "diversely from common and rare positives when pretraining long-tail recognition

language models." (Rethmeier and Augenstein, 2020).

4.2.2 Contrastive Learning in Machine Learning
Contrastive learning methods are related to other machine learning concepts, all

of which describe the same underlying intuitions of how to learn representations in

either a supervised or self-supervised fashion. All these methods are related in that

they are learning from the similarity (contrastive, metric learning), shared information

(mutual information), or compatibility (Energy-Based Models) between views or

augmentations of the same input or output data.

Mutual information: For one, as explained in Section 4.2.1, InfoNCE (or Ranking

NCE) has been shown to maximize the lower bound of mutual information (MI)

between similar augmented and non-augmented inputs (van den Oord et al., 2018;

Hjelm et al., 2019b), while works like (Boudiaf et al., 2020; Kong et al., 2020) show

this MI perspective between inputs and labels or inputs and input sub-sequences.

Importantly Tschannen et al. (2020) demonstrate that maximizing mutual information

with contrastive losses can deteriorate end-task performance, and does not necessarily

lead to learning useful representations. They also state that the “mutual information

gets biased by the end-task objective, such that end task performance is maximized”.

In contrast, when thinking of the recent successes with contrastive pretraining in

computer vision (Chen et al., 2020b,c), it becomes apparent that the bias introduced

via the sampling design, i.e. the input augmentations used to produce positive and

negative samples, is the tool for introducing task biases that lead to learning relevant

representations. For this reason, starting from Section 4.3, we will discuss contrastive

works in the context of NLP subfields to provide pointers to what kinds of sampling

and augmentations induce desirable biases that help a model learn NLP task-relevant

representations.

Metric learning: Because contrastive methods learn classification over similarity

scores between instances, it is a part of the more general field of metric learning.

Metric learning uses losses like triplet loss, focal loss, Neighborhood Component

Analysis, and many others to learn (dis-)similarities between inputs (Musgrave et al.,

2020a). Interestingly, Musgrave et al. (2020a) find that even basic contrastive losses

perform surprisingly well when fairly compared to advanced metric losses, while
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Zimmermann et al. (2021a) point out that contrastive objectives are “theoretically

more deeply understood than most metric losses”.

Energy-Based Models: Many recent works describe contrastive learning as Energy-

Based Models (EBMs). LeCun and Huang (2005a); LeCun et al. (2006b) define an

Energy Base Model E(W, X, Y ) as one that “instead of trying to classify inputs X to

labels Y , we would like to predict if a certain pair of <x, y> fit together or not under

the model parameters W – i.e. find whether a y is compatible with x according to

W . Especially LeCun and Huang (2005a) describes how an EBM E(X,Y,W) can be

expressed in probabilistic model notation P (Y |X, W ) or as a non-normalized model,

as we have already seen in Section 4.2.1 with Ranking NCE and Binary NCE. The

modernized graphical and mathematical notion, as used in the excellent EBM lecture

by LeCun and Canziani2, still heavily relates to the ones used in (LeCun and Huang,

2005a; LeCun et al., 2006b).

Therefore, we overview the two most NLP-relevant EBM formulations and reuse not

only their mathematical notation but also adopt the graphical notation from LeCun

et al. (2006b) for figures. In keeping with this notion, we categorize methods as either

input-input (xi, xj) or input-output (xi, yj), which also allows us to better discuss

their respective benefits. Contrastive computer vision methods learn from input-input

(image-image) pairs (xi, xj) (Jaiswal et al., 2021b; Chen et al., 2020c). As a result,

using 10 samples incurs 10 times the computational load, which spawned efforts

to reduce this load by reusing computation (He et al., 2020). In NLP, some recent

methods reduce this burden by instead using input-output (text, label) pairs (xi, yc),
where the labels are produced by a separate, very lightweight, encoder – see Section

4.2.2. Here xi, xj are input text embeddings, while yc are embeddings of “a short text

span that describes a real or self-supervision label”, i.e. an extreme summarization.

This works as follows.

Input-Output Contrastive EBM: The binary NCE variant from Equation 4.1 is a

special case of a “Contrastive Free Energy” loss as described in Fig. 6b of LeCun et al.

(2006b), while Fig. 2 and Sec. 3.3 of LeCun and Huang (2005b) describe it as the

negative log-likelihood loss with negative undersampling. LeCun et al. (2006b) devise

an input-output EBM E variation that learns the compatibility between input-output

pairs (xi, yc) with xi ∈ X and yc ∈ Y

E(X, Y ) or E(W, X, Y ) (4.4)

2https://atcold.github.io/pytorch-Deep-Learning/en/week07/07-1/ – EBM definition by
Yann LeCun and Alfredo Canziani.
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Here, W (θ in Equation 4.1) are model parameters that encode inputs X and la-

bels Y , while these X and Y are views of either the same data point (positives),

or different data points (negatives). The energy function E measures the compat-

ibility between views (X, Y ), where E(◦)=0 indicates optimal compatibility – e.g.

E(X=Tiger, Y =felidae)=0 means X and Y match. Note that in the probabilistic

framework P (Y =felidae|X=Tiger, W )=1. Figure 4.2 shows two recent works (Pap-

pas and Henderson, 2019; Rethmeier and Augenstein, 2020) that use an input-output

contrastive learning approach. These methods encode an input text xi using a text-

encoder T and a label description text yc using a very small, computationally cheap,

label-encoder L. The input text and label text encoding is then concatenated into

a single text input-output encoding pair (T (xi), L(yc)), which feeds a classifier that

trains a binary NCE objective LB, as in Equation 4.1. The left method in Figure

4.2 by Pappas and Henderson (2019) uses supervised text-to-label pair pretraining to

allow zero-shot prediction of unseen test time classes. The right-hand side method

(Rethmeier and Augenstein, 2020) instead samples input words xi ∈ X to use them

as ‘pseudo label’ encodings y′
c=L(xi) for contrastive self-supervised pretraining. Once

this method pretrains on sampled input words (pseudo labels), the prediction head is

directly reused during supervision via textual labels. This enables zero-shot prediction,

without using supervision labels, by unifying supervision and self-supervision as a single

task of learning to contrast (mis)matching (real) label encodings L(yc) or pseudo label

encodings y′
c=L(xi).

Input-Input Contrastive EBM: Expressing input-input contrastive learning as an

EBM is straight forward (LeCun et al., 2006b). Input-input methods in Figure 4.3

contrast input texts X from augmented input texts X ′ rather than from labels Y as

in Figure 4.2. For example, Clark et al. (2020) replace a subset of input text words

xi,w with other words xi,w′ sampled from the vocabulary for self-supervised contrastive

pretraining. The original text xi is augmented into a text ai to provide a positive

sample augment a+
i or a negative sample augment a−

i . Self-supervised pretraining

then contrasts pairs (xi, ai) of original texts against augmented ones via the binary

NCE as in Equation 4.1. As a direct analog to the EBM in Equation 4.4, this can be

written as

E(X, X ′) or E(W, X, X ′) (4.5)

Methods on the left in Figure 4.3 re-pretrain an already pretrained language model

such as BERT, using a contrastive objective. Methods on the right implement what

amounts to contrastive (self-supervised) language model pretraining. Though the
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Figure 4.2: Contrastive input-output (X, Y ) pretraining: Texts and labels are encoded
independently via a medium sized text encoder and a very small label-encoder.
This encodes 1 text for n labels with minimal computation to enable large-scale
K negative sampling.

difference between input-input and input-output contrast seems semantical at first,

each approach implies specific practical benefits and drawbacks as follows.

Furthermore, input-input contrastive methods (EBM) such as the ones listed in

Figure 4.3 recently explored improving large-scale NLP pretraining. Re-pretraining

methods like Fang et al. (2020a); Deng et al. (2020); Giorgi et al. (2021a); Qu

et al. (2021); Gao et al. (2021a) (see Figure 4.3 left tower) apply ‘a second stage

of contrastive pretraining’ to an otherwise pretrained Transformer model, to save

computation by contrastively training with less input augmentations. This can be

seen as either making use of (an advantage) or requiring (a limitation) otherwise

pretrained models. Other input-input contrastive methods such as Meng et al. (2021);

Wu et al. (2020b); Clark et al. (2020) do not rely on otherwise pretrained encoders –

see Figure 4.3 right tower. Additionally, works such as Radford et al. (2021) provide

evidence that the same efficiency benefit of contrastive learners apply to large-scale

models across modalities. For instance, Radford et al. (2021) replace a Transformer

by a CNN to speed up self-supervised zero-shot prediction learning by a factor of 3,

and add text contrastive pretraining to speed up learning by another factor of 4.

The Benefits and Weaknesses of Input-Output or Input-Input Contrastive Meth-

ods. Input-Output contrastive methods in Figure 4.2 are capable of zero-shot prediction
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Figure 4.3: Contrastive input-input (X, X ′) Pretraining: Input-input methods contrast an
original text with augmented positive a+

i and negative a−
i texts ai ∈ X ′, which

requires more computation than input-output methods.

since they learn a pretraining NCE classifier, which can be reused or re-tuned to suit

any downstream task labels, without having to initialize a new classifier per task

– i.e. multi-task learning becomes single-task learning. As a contrastive analog to

text-to-text Transformers like T5 (Raffel et al., 2020), they unify self and supervised

prediction with zero-shot transfer as a ‘text-to-text embedding similarity prediction’

objective, whereas most, but not all, input-input methods, still have to initialize a new

classifier for supervised downstream tasks. Input-output contrastive methods encode

labels by using a small, compute efficient label-encoder, while encoding the more

compute intensive text input X encoding only once. Input-input methods on the other

hand construct ‘augmented views’ X ′ by running a large (Transformer) text encoder

over an augmented version X ′ of the original input X. This multiplies their training

time by the number K+P of negative and positive samples and presents the most

important challenge to the more wide-spread adaptation of contrastive pretraining.

For this reason, input-input research often argues that fewer negative samples should

be used. Instead, input-output contrastive self-supervision (Rethmeier and Augenstein,

2020) and contrastive supervision (Pappas and Henderson, 2019; Jiang et al., 2019a;

Hardalov et al., 2021) enable very data-efficient pretraining and improved zero to

few-shot, as well as long-tail learning. They can be pretrained on very small text

collections with commodity hardware, which is very important for many applications

in industry, medicine, and places where large amounts of GPU compute are less easy to
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attain. Thus, combining highly expressive input-input with compute efficient input-output
methods provides a logical progression for future research.

Both input-input and input-output methods are well suited for self-supervised pre-

training of language representations. These contrastively pretrained representations

can subsequently be used for transfer learning of later supervised end-tasks during

fine-tuning just as masked or autoregressive language model pretraining improves

transfer. To make it easy to understand which contrastive methods have been ex-

plored within the different subfields of NLP we overview popular self-supervised and

supervised contrastive NLP methods Section 4.3 and later point to open questions and

opportunities Section 4.4.

4.3 Self- or Supervised Contrastive
Pretraining

The goal of contrastive pretraining is to initialize model weights for efficient zero-

shot transfer or fine-tuning to downstream tasks. Pretraining is either supervised or self-

supervised. Supervised contrastive pretraining methods use corpora of hand-annotated

data such as paraphrased parallel sentences, textual labels or text summarizations to

define text data augmentations for contrastive pretraining. Self-supervised contrastive

methods aim to scale pretraining by contrasting automatically augmented input texts

X ′ or textual output pseudo-labels Y ′∼P (X) – see Section 4.2.2 for input-input vs.

input-output contrastive methods. Both self-supervised and supervised contrastive

methods are used to train language models from scratch, or can ‘re-pretrain’ or fine-

tune a model that was already pretrained using another pretraining method, e.g. a

masked language model such as RoBERTa (Liu et al., 2019b). Below, we structure self-

and supervised contrastive pretraining by technique and application.

4.3.1 Self-supervised Contrastive Pretraining
Input-input Contrastive Text Representation Pretraining via Automated Text

Augmentation. Figure 4.3 compares methods that use input-input contrastive (EBM)

learning as overviewed in Section 4.2.2. Qu et al. (2021) use combinations of re-

cently proposed text data augmentations like “cutoff, back translation, adversarial

augmentation and mixup”. They find that mixing augmentations is most useful when

the augmentations provide sufficiently different views of the data. Further, since

constructing text augmentations which do not alter the meaning (semantics) of a

sentence is very difficult, they introduce two losses to ensure both sufficient difference

and semantic consistency of sentence augmentations. They define a consistency loss

to guarantee that augmentations lead to similar predictions yc and a contrastive loss
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that makes augmented text representations ai similar to the original text xi. To ensure

that a sufficiently large amount of negative text augmentations are sampled, they use

an augmentation-embedding memory bank with a momentum encoder. Fang et al.

(2020a) only use back-translation, Wu et al. (2020b); Meng et al. (2021) investigate

sentence augmentation methods, Giorgi et al. (2021a) contrast text spans, Clark

et al. (2020); Meng et al. (2021) replace input words by re-sampling a language

model, (Gao et al., 2021a) sample positive text embeddings via dropout, and Simoulin

and Crabbé (2021) investigate contrastive sentence structure pretraining. Finally,

Meng et al. (2021) also contrasts cropped sentences after augmentation via word

re-sampling.

Contrasting Next or Surrounding Sentence (or Word) Prediction (NSP, SSP).

Sentence prediction is a popular input-input contrastive method as in Section 4.2.2.

Next sentence prediction, NSP, and surrounding sentence prediction, SSP, take in-

spiration from the skip-gram model (Mikolov et al., 2013c), where surrounding and

non-surrounding words are contrastively predicted given a central word to learn word

embeddings using an NCE Section 4.2.1 variant (Mikolov et al., 2013c). Methods

mostly differ in how they sample positive and negative sentences, where negative

sampling strategies such as undersampling frequent words, in Mikolov et al. (2013a),

are crucial. Logeswaran and Lee (2018) propose contrastive NSP, to predict the next

sentence as a positive sample against n random negative sample sentences. Instead

of generating the next sentence, they learn to discriminate which sentence encoding

follows a given sentence. This allows them to train a better text encoder model

with less computation but sacrifices the ability to generate text. Liu et al. (2019b)

investigate variations of the contrastive NSP objective used in the BERT model. The

method contrasts a consecutive sentence as a positive text sample against multiple non-

consecutive sentences from other documents as negative text samples. They find that

sampling negatives from the same document during self-supervised BERT pretraining

is critical to downstream performance, but that removing the original BERT NSP task

improves downstream performance. Iter et al. (2020) find that predicting surrounding

sentences in a k-sized window around a given central anchor sentence “improves

discourse performance of language models”. They sample surrounding sentences:

(a) randomly from the corpus to construct easy negatives, and (b) from the same

paragraph, but outside the context window as hard (to contrast) negative samples.

Contextual negative sampling is theoretically and empirically proven by Saunshi et al.

(2019), who demonstrate that: “increased negative sampling only helps if negatives

are taken from the original texts’ context or block of information”, i.e. the same

document, paragraph, or sentence. Aroca-Ouellette and Rudzicz (2020) study how to

combine different variants of the NSP pretraining tasks with non-contrastive, auxil-
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iary self-supervision signals, while Simoulin and Crabbé (2021) explore contrastive

sentence structure learning.

Input-output Contrastive Text Representation Pretraining. Rethmeier and Au-

genstein (2020) use output label embeddings as an alternative view Y (labels) of text

input embeddings X for contrastive learning of (dis)-similar text-label embedding

pairs (X, Y ) via binary NCE from Section 4.2.1. Using a separate label and text en-

coder enables the model to efficiently compute many negative label samples, while

encoding the text X only once, unlike input-input view methods in Figure 4.3. They

pretrain with random input words as pseudo-labels for self-supervised pretraining on

a very small corpus, which despite the limited pretraining data enables unsupervised

zero-shot prediction, largely improved few-shot and markedly better rare concept

(long-tail) learning.

Contrastive Distillation. Sun et al. (2020) propose CoDIR, a contrastive language

model distillation method to pretrain a smaller student model from an already pre-

trained larger teacher such as a Masked Transformer Language Model. Compressing

a pretrained language model is challenging because nuances such as interactions

between the original layer representation are easily lost – without noticing. For

distillation, they extract layer representations from both the large teacher and the

small student network over the same or two different input texts, to create a student

and teacher view of said texts. Using the constrastive InfoNCE loss (van den Oord

et al., 2018), they then learn to make the student representation similar to teacher

representations for the same input texts, and dissimilar if they receive different texts.

The score or similarity function in InfoNCE is measured as the cosine distance between

mean pooled student and teacher Transformer layer representations. For negative

sampling in pretraining, they use text inputs from the same topic, e.g. a Wikipedia

article, to mine hard negative samples – i.e. they sample views from similar contexts

as recommended for contrastive methods in (Saunshi et al., 2019).

Text Generation as a Discriminative EBM. Deng et al. (2020) combine an auto-

regressive language model, with a contrastive text continuation EBM model for im-

proved text generation. During pretraining, they learn to contrast real data text

continuations and language model generated text continuations via conditional NCE

from Section 4.2.1. For generation, they sample the top-k text completions from

the auto-regressive language model and then score the best continuation via the

trained EBM, to markedly improve model perplexity. However, the current approach

is computationally expensive.

Cross-modal Contrastive Representation Pretraining. Representations for zero-

shot image classification can be pretrained using image caption text for contrastive

self-supervised pretraining. Jia et al. (2021) automatically mine a large amount
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of noisy text captions for images in ALIGN, to then noise-filter and use them to

construct matching and mismatching pairs of image and augmented text captions for

contrastive training. Radford et al. (2021) use the same idea in CLIP, but pretrain

on a large collection of well annotated image caption datasets. Both methods allow

for zero-shot image classification and image-to-text or text-to-image generation and

are inherently zero-shot capable. Radford et al. (2021) also run a zero-shot learning

efficiency analysis for CLIP and find two things. First, they find that using a data-

efficient CNN text encoder increases zero-shot image prediction convergence 3-fold

compared to a Transformer text encoder, which they state to be computationally

prohibitive. Second, they find that adding contrastive self-supervised text pretraining

increases zero-shot image classification performance 4-fold. Thus, CLIP (Radford

et al., 2021) shows that contrastive self-supervised CNN text encoder pretraining can

substantially outperform current Transformer pretraining methods, while ALIGN (Jia

et al., 2021) also automates the image and caption data collection process to increase

data scalability.

Vision-language grounding Shi et al. (2021) show that contrastive RoI-Feature

prediction pretraining can increase performance on vision language grounding tasks

compared to self-supervised masked token prediction or image-sentence matching

predictions, especially when there is a gap between the pretraining domain and

end-task domain. Akula et al. (2020) use a crowdsourced dataset to create a harder

vision-language grounding task for robustness tests against common models and find

that a contrastive method they design does increase performance, but is outperformed

by a multi-task learning approach. Since contrastive losses have been shown to not

overfit random labels (robustness) by Graf et al. (2021a), it is not clear whether there

may be a label noise problem due to the crowdsourced nature of the data.

4.3.2 Supervised Contrastive Pretraining
Input-output Contrastive Supervised Text Representation Pretraining. Seen

in Figure 4.2, Pappas and Henderson (2019) train a two-input-lane Siamese CNN

network, which encodes text as the input view xi in one lane, and labels via a label

encoder in a second data view yc, to learn to contrast pairs of (xi, yx) as similar (1)

or not (0). Rather than encoding labels as multi-hot vectors such as [0, 1, 0, 0, 1],
they express each label by a textual description of said label. These textual label

descriptions can then be encoded by a label encoder subnetwork, which in the simplest

case constructs a label embedding by averaging over the word embeddings of the

words that describe a label. However, this requires manually describing each label.

Using embeddings of supervised labels, they pretrain a contrastive text classification

network on known positive and negative labels, and later apply the pretrained network
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to unseen classes for zero-shot prediction. Their method thus provides supervised, but

zero-shot capable pretraining. While Rethmeier and Augenstein (2020) also support

supervised contrastive input-output pretraining, they automate label descriptions

construction, and conjecture that in real-world scenarios, most labels, e.g. the word

‘elephant’, are already part of the input vocabulary and can thus be pretrained as

word embeddings via methods such as Word2Vec (Mikolov et al., 2013a). They also

note that: “once input words are labels, one can sample input words as pseudo label

embeddings for contrastive self-supervised pretraining”, as described in section Section

4.3.1. Either method is contrastively pretrained via binary NCE as described in Section

4.2.1. Furthermore, both methods markedly boost few-shot learning and enable

zero-shot predictions, while Rethmeier and Augenstein (2020) enables unsupervised

zero-shot learning via self-supervised contrastive pretraining. The added contrastive

self-supervision further boosts few-shot and long-tailed learning performance, while

also increasing convergence speed over supervised-only contrastive learning in Pappas

and Henderson (2019).

Contrastive Commonsense Pretraining. (Klein and Nabi, 2020) use contrastive

self-supervised pretraining to refine a pretrained BERT language model to drastically

increase performance on pronoun disambiguation and the Winograd Schema Com-

monsense Reasoning task. Their method contrasts over candidate trigger words that

affect which word a pronoun refers to. They first mine trigger word candidates from

text differences in paraphrased sentences and then maximize the contrastive margin

between candidate pair likelihoods. While general pretraining provides little pronoun

disambiguation learning signal, their method demonstrates the design of task-specific

contrastive learning to produce strong performance increases in un- and supervised
commonsense reasoning.

Contrastive Text Summarization. Duan et al. (2019) use a Transformer attention

mechanism during abstractive sentence summarization learning to optimize two

contrasting loss objectives. One loss maximizes the contributions of tokens with the

most attention when predicting the summarized sentence. The other loss is connected

to a second decoder head, which learns to minimize the contribution of the attention

to other, non-summarization relevant, tokens. This method can perhaps best be

understood as contrastive, layer attention noise reduction. The main draw back of

this method is the current dual network head prediction, which introduces a larger

complexity compared to other contrastive methods.

Cross and Multi-modal Supervised Contrastive Text Pretraining for Representa-

tion Learning. Recent work from computer vision and time series prediction train

with contrastive supervised losses to enable zero-shot learning or improve data-to-

text generation. Jiang et al. (2019a) fuse image and text description information
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into the same representation space for generalized zero-shot learning – i.e. where at

test time some classes are unseen, zero-shot, while other classes were seen during

training. To do so, they first pretrain a supervised text-image encoder network to

contrast (image, text, label) triplets of human annotated image classes. At test time,

this contrastive network decides which text description best matches a given image.

This works for seen and unseen classes, because classes are represented as text de-

scriptions. Radford et al. (2021); Li et al. (2021) perform pretraining on manually

annotated textual image descriptions to enable better generalization to unseen image

classes. Uehara et al. (2020) turn stock price value time series into textual stock

change descriptions where the contrastive objectives markedly increase the fluency

and non-repetitiveness of generated texts, especially when trained with little data.

Datasets Construction for Contrastive pretraining. Raganato et al. (2019) au-

tomatically create a corpus of contrastive sentences for word sense disambiguation

in machine translation by first identifying sense ambiguous source sentence words,

and then creating replacement word candidates to mine sentences for contrastive

evaluation.

4.4 Challenges and Future Opportunities:
Here we outline current challenges and promising next steps towards improving

contrastive NLP, as well as how its learning properties may help better handle issues

like data efficiency or algorithmic bias.

Data Efficiency, Fairness and Small-scale Pretraining. Zimmermann et al. (2021a)

proved that contrastive methods effectively recover data properties even from very

limited data, which explains their few-shot label efficiency in both supervised con-

trastive fine-tuning (Gunel et al., 2021) and contrastive re-pretraining of pretrained

language model (Fang et al., 2020a; Iter et al., 2020; Su et al., 2021). Additionally,

contrastive language models like Clark et al. (2020); Wu et al. (2020b); Rethmeier

and Augenstein (2020); Meng et al. (2021) do not require other pretrained models,

while largely improving pretraining data efficiency (zero-shot learning) or label effi-

ciency (few-shot learning). For example, Rethmeier and Augenstein (2020) propose a

small contrastive language model to markedly improve long-tail learning over large

pretrained language models. Contrastive modeling thus provides a promising direction

to reducing algorithmic fairness issues that have been linked to a loss of minority

(tail) information by Hooker et al. (2020a). These aspects indicate that contrastive

self-supervised models require far less pretraining data than other objectives, which

opens their applications to data sparse domains, languages, productivity gains, and

scalable or budget friendly language model pretraining.
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Better Negative and Positive Generation: Current methods require sampling

many negative instances for contrastive learning to work well. Sampling hard (Cai

et al., 2020), or context relevant negatives (Saunshi et al., 2019) are known to boost

sample efficiency during contrastive self-supervised learning, while sampling diverse

negatives (Mikolov et al., 2013c; Musgrave et al., 2020a; Rethmeier and Augenstein,

2020) have been demonstrated to improve generalization in open class set (or open

tasks) applications such as pretraining. Sampling multiple positives for supervised

contrast is common in multi-label metric learning and therefore somewhat studied.

However, explicit experiments on the benefits of generating multiple positive samples

for contrastive self-supervision are poorly understood, especially in NLP. To date, Wang

and Isola (2020) showed that positive self-supervision samples should be sampled

close to one another (in computer vision), while sampling more contextual positives

has been linked to largely improved language model pretraining sample efficiency

gains in Rethmeier and Augenstein (2020). Works like BYOL (Grill et al., 2020)

or Barlow Twins (Zbontar et al., 2021) do not require negative sampling. Their

momentum contrast or redundancy reduction based learning, may be adapted for

contrastive language modeling to overcome current compute challenges of input-input

contrastive NLP.

Self-supervised text augmentation research in NLP (Section 4.3.1) is gaining mo-

mentum and Qu et al. (2021); Chen et al. (2020a) and many others analyze using

mixes of recent text data augmentations. However, these input-input contrastive

methods often use computationally expensive or non-robust mechanisms like: back

translation, initializing a new prediction head per downstream task, or rely on already

otherwise pretrained models like RoBERTa. Fortunately, more scalable and robust

input augmentations have already been proposed by Wu et al. (2020b); Iter et al.

(2020), which is a promising step to cost effective future extensions.

Data Limited NLP Sub-fields: (Chi et al., 2021) use contrastive pretraining to

reduce data limitations in multi-lingual models, while Jiang et al. (2020b) use ad-

versarial sample generation to make contrastive pretraining more sample efficient

and robust. The contrastive word sense disambiguation (WSD) dataset construction

method by Raganato et al. (2019) is potentially adaptable to automatically mine

inputs for contrastive pronoun learning in Klein and Nabi (2020). Such automation

would help to scale contrastive common sense learning.

Underresearched NLP applications: An underresearched direction for contrastive

NLP are data-to-text tasks that turn non-text inputs into a textual description. Uehara

et al. (2020), for instance, contrastively learn to generate stock change text descrip-

tions from stock price time series using limited data, while works such as Radford et al.

(2021); Jia et al. (2021) show that contrastive text supervision and self-supervision
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can multiply the zero-shot learning efficiency in cross-modal representation learning.

Deng et al. (2020) improve text generation with contrastive importance resampling

of language model generated text continuations, while Duan et al. (2019) propose

contrastive abstractive sentence summarization, which using Momentum Contrast

can potentially improve. Sun et al. (2020) compress a large language model. Future

work could adapt their method to fuse multiple language models or mutually transfer

knowledge between models. Jiang et al. (2021) present long-tail preserving vision

model compression by contrasting easily pruned (forgotten) model information with

large model information. Together with Wu et al. (2020b); Rethmeier and Augenstein

(2020) this may be used to learn and compress large long-tail capable language mod-

els that retain more tail class information to reduce compression-induced minority

fairness losses as first identified by Hooker et al. (2020a).

XAI and active learning: Works like Luss et al. (2021) and Ross et al. (2021)

generate contrastive (counterfactual) explanations in vision or NLP, because humans

give contrastive explanations. This could be used to ease the creation of semantically

sensible input augmentations, which are used as negative or positive samples for con-

trastive learning. This would result in an optimization loop between explanation and

contrast pair generation that amounts to energy minimization towards an equilibrium.

Additionally, human annotations could be incorporated for data-efficient, explanation

guided human-in-the-loop learning.

4.5 Conclusion
This primer on contrastive pretraining, surveys contrastive learning concepts and

their relations to other sub-fields like EBMs to ease advanced reading into the con-

nected literature. It highlights recent methodological and theoretical insights that are

important to designing effective contrastive learners for NLP. Finally, the primer struc-

tures contrastive pretraining as self- vs. supervised learning summarises challenges,

and provides pointers to future research directions.
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5Paper 4: Neighborhood
Contrastive Learning for
Scientific Document
Representations with Citation
Embeddings

5.1 Introduction

sample 
induced
margin

easy negatives

Figure 5.1: Starting from a query paper in a citation graph embedding space. Hard
positives are citation graph embeddings that are sampled from a similar (close)
context of , but are not so close that their gradients collapse easily. Hard (to
classify) negatives (red band) are close to positives (green band) up to a
sampling induced margin. Easy negatives are very dissimilar (distant) from the
query paper .

Large pretrained language models (LLMs) achieve state-of-the-art results through

fine-tuning on many NLP tasks (Rogers et al., 2020). However, the sentence or

document embeddings derived from LLMs are of lesser quality compared to simple

baselines like GloVe (Reimers and Gurevych, 2019b), as their embedding space suffers

from being anisotropic, i.e. poorly defined in some areas (Li et al., 2020).
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One approach that has recently gained attention is the combination of LLMs with

contrastive fine-tuning to improve the semantic textual similarity between document

representations (Wu et al., 2020c; Gao et al., 2021b). These contrastive methods learn

to distinguish between pairs of similar and dissimilar texts (positive and negative

samples). As recent works show (Tian et al., 2020b; Rethmeier and Augenstein,

2022d,b; Shorten et al., 2021), the selection of these positive and negative samples is

crucial for efficient contrastive learning.

This paper focusses on learning scientific document representations (SDRs). The

core distinguishing feature of this domain is the presence of citation information that

complement the textual information. The current state-of-the-art SPECTER by Cohan

et al. (2020a) uses citation information to generate positive and negative samples for

contrastive fine-tuning of a SciBERT language model (Beltagy et al., 2019). SPECTER

relies on ‘citations by the query paper’ as a discrete signal for similarity, i.e., positive

samples are cited by the query while negative ones are not cited.

However, SPECTER’s use of citations has its pitfalls. Considering only one citation

direction may cause positive and negative samples to collide since a paper pair could

be treated as a positive and negative instance simultaneously. Also, relying on a single

citation as a discrete similarity signal is subject to noise, e.g., citations may reflect

politeness and policy rather than semantic similarity (Pasternack, 1969) or related

papers lack a direct citation (Gipp and Beel, 2009). This discrete cut-off to similarity

is counter-intuitive to (continuous) similarity-based learning.

Instead, the generation of non-colliding contrastive samples should be based on

a continuous similarity function that allows us to find semantically similar papers,

even without direct citations. With SciNCL, we address these issues by generating

contrastive samples based on citation embeddings. The citation embeddings, which

incorporate the full citation graph, provide a continuous, undirected, and less noisy

similarity signal that allows the generations of arbitrary difficult-to-learn positive and

negative samples.

Contributions:

• We propose neighborhood contrastive learning for scientific document represen-

tations with citation graph embeddings (SciNCL) based on contrastive learning

theory insights.

• We sample positive (similar) and negative (dissimilar) papers from the k near-

est neighbors in the citation graph embedding space, such that positives and

negatives do not collide but are also hard to learn.
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• We compare against the state-of-the-art approach SPECTER (Cohan et al., 2020a)

and other strong methods on the SCIDOCS benchmark and find that SciNCL

outperforms SPECTER on average and on 9 of 12 metrics.

• Finally, we demonstrate that with SciNCL, using only 1% of the triplets for

training, starting with a general-domain language model, or training only the

bias terms of the model is sufficient to outperform the baselines.

• Our code and models are publicly available.1

5.2 Related Work
Contrastive Learning pulls representations of similar data points (positives) closer

together, while representations of dissimilar documents (negatives) are pushed apart.

A common contrastive objective is the triplet loss (Schroff et al., 2015) that Cohan

et al. (2020a) used for scientific document representation learning, as we describe

below. However, as Musgrave et al. (2020b) and Rethmeier and Augenstein (2022d)

point out, contrastive objectives work best when specific requirements are respected.

(Req. 1) Views of the same data should introduce new information, i.e. the mutual

information between views should be minimized (Tian et al., 2020b). We use citation

graph embeddings to generate contrast label information that supplements text-based

similarity. (Req. 2) For training time and sample efficiency, negative samples should

be hard to classify, but should also not collide with positives (Saunshi et al., 2019).

(Req. 3) Recent works like Musgrave et al. (2020b) and Khosla et al. (2020c) use

multiple positives. However, positives need to be consistently close to each other

(Wang and Isola, 2020), since positives and negatives may otherwise collide, e.g.,

Cohan et al. (2020a) consider only ‘citations by the query’ as similarity signal and

not ‘citations to the query’. Such unidirectional similarity does not guarantee that

a negative paper (not cited by the query) may cite the query paper and thus could

cause collisions, the more we sample (Appendix 5.10.6.10). Our method treats both

citing and being cited as positives (Req. 2), while it also generates hard negatives and

hard positives (Req. 2+3). Hard negatives are close to but do not overlap positives

(red band in Figure 5.1). Hard positives are close, but not trivially close to the query

document (green band in Figure 5.1). The sample induced margin (space between

red and green band in Figure 5.1) ensures that contrast samples do not collide.

Triplet Mining remains a challenge in NLP due to the discrete nature of language

which makes data augmentation less trivial as compared to computer vision (Gao

et al., 2021b). Examples for augmentation strategies are translation, word deletion,

or word reordering (Fang et al., 2020b; Wu et al., 2020c). Positives and negatives can

1 https://github.com/malteos/scincl
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be sampled based on the sentence position within a document (Giorgi et al., 2021b).

Gao et al. (2021b) utilize supervised entailment datasets for the triplet generation.

Language- and text-independent approaches are also applied. Kim et al. (2021b) use

intermediate BERT hidden state for positive sampling and Wu et al. (2021) add noise

to representations to obtain negative samples. Xiong et al. (2020) present an approach

similar to SciNCL where they sample hard negatives from the k nearest neighbors

in the embedding space derived from the previous model checkpoint. While Xiong

et al. rely only on textual data, SciNCL integrates also citation information which are

especially valuable in the scientific context as Cohan et al. (2020a) have shown.

Scientific Document Representations based on Transformers (Vaswani et al.,

2017c) and pretrained on domain-specific text dominate today’s scientific document

processing. There are SciBERT (Beltagy et al., 2019), BioBERT (Lee et al., 2019) and

SciGPT2 (Luu et al., 2021), to name a few. Recent works modify these domain LLMs to

support cite-worthiness detection (Wright and Augenstein, 2021), document similarity

(Ostendorff et al., 2020) or fact checking (Wadden et al., 2020).

Aside from text, citations are a valuable signal for the similarity of research papers.

Paper (node) representations can be learned using the citation graph (Wu et al., 2019;

Perozzi et al., 2014; Grover and Leskovec, 2016). Especially for recommendations

of papers or citations, hybrid combinations of text and citation features are often

employed (Han et al., 2018; Jeong et al., 2020; Brochier et al., 2019; Yang et al.,

2015; Holm et al., 2022).

Closest to SciNCL are Citeomatic (Bhagavatula et al., 2018) and SPECTER (Co-

han et al., 2020a). While Citeomatic relies on bag-of-words for its textual features,

SPECTER is based on SciBERT. Both leverage citations to learn a triplet-based doc-

ument embedding model, whereby positive samples are papers cited in the query.

Easy negatives are random papers not cited by the query. Hard negatives are citations

of citations – papers referenced in positive citations of the query, but are not cited

directly by it. Citeomatic also uses a second type of hard negatives, which are the

nearest neighbors of a query that are not cited by it.

Unlike our approach, Citeomatic does not use the neighborhood of citation embed-

dings, but instead relies on the actual document embeddings from the previous epoch.

Despite being related to SciNCL, the sampling approaches employed in Citeomatic

and SPECTER do not account for the pitfalls of using discrete citations as signal for

paper similarity. Our work addresses this issue.

Cross-Modal Transfer. SciNCL transfers knowledge across modalities, i.e., from

citations into a language model. According to Cohan et al. (2020a), SciNCL can be

considered as a “citation-informed Transformer”. This cross-modal transfer learning is

applied for various modalities (see Kaur et al. (2021) for an overview): text-to-image
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(Socher et al., 2013), RGB-to-depth image (Tian et al., 2020a), or graph-to-image

(Wang et al., 2018). While the aforementioned methods incorporate cross-modal

knowledge through joint loss functions or latent representations, SciNCL transfers

knowledge through the contrastive sample selection, which we found superior to the

direct transfer approach Appendix 5.10.6.9.

5.3 Methodology
Our goal is to learn citation-informed representations for scientific documents. To

do so we sample three document representation vectors and learn their similarity. For

a given query paper vector dQ, we sample a positive (similar) paper vector d+ and a

negative (dissimilar) paper vector d−. This produces a ‘query, positive, negative’ triplet

(dQ, d+, d−) – represented by ( , , ) in Figure 5.1. To learn paper similarity, we

need to define three components: (Section 5.3.1) how to calculate document vectors

d for the loss over triplets L; (Section 5.3.2) how citations provide similarity between

papers; and (Section 5.3.3) how negative and positive papers (d−, d+) are sampled as

(dis-)similar documents from the neighborhood of a query paper dQ.

5.3.1 Contrastive Learning Objective
Given the textual content of a document d (paper), the goal is to derive a dense

vector representation d that best encodes the document information and can be used in

downstream tasks. A Transformer language model f (SciBERT; Beltagy et al. (2019))

encodes documents d into vector representations f(d) = d. The input to the language

model is the title and abstract separated by the [SEP] token.2 The final layer hidden

state of the [CLS] token is then used as a document representation f(d) = d.

Training with a masked language modeling objectives alone has been shown to

produce sub-optimal document representations (Li et al., 2020; Gao et al., 2021b).

Thus, similar to the SDR state-of-the-art method SPECTER (Cohan et al., 2020a), we

continue training the SciBERT model (Beltagy et al., 2019) using a self-supervised

triplet margin loss (Schroff et al., 2015):

L = max
{
∥dQ−d+∥2−∥dQ−d−∥2+ξ, 0

}
Here, ξ is a slack term (ξ = 1 as in SPECTER) and ∥∆d∥2 is the L2 norm, used as a

distance function. However, the SPECTER sampling method has significant drawbacks.

We will describe these issues and our contrastive learning theory guided improvements

in detail below in Section 5.3.2.

2Cohan et al. (2019) evaluated other inputs (venue or author) but found the title and abstract to
perform best.
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5.3.2 Citation Neighborhood Sampling
Compared to the textual content of a paper, citations provide an outside view on

a paper and its relation to the scientific literature (Elkiss et al., 2008), which is why

citations are traditionally used as a similarity measure in library science (Kessler, 1963;

Small, 1973). However, using citations as a discrete similarity signal, as done in Cohan

et al. (2020a), has its pitfalls. Their method defines papers cited by the query as

positives, while paper citing the query could be treated as negatives. This means that

positive and negative learning information collides between citation directions, which

Saunshi et al. (2019) have shown to deteriorate performance. Furthermore, a cited

paper can have a low similarity with the citing paper given the many motivations a

citation can have (Teufel et al., 2006). Likewise, a similar paper might not be cited.

To overcome these limitations, we learn citation embeddings first and then use the

citation neighborhood around a given query paper dQ to construct similar (positive)

and dissimilar (negative) samples for contrast by using the k nearest neighbors. This

builds on the intuition that nodes connected by edges should be close to each other

in the embedding space (Perozzi et al., 2014). Using citation embeddings allows us

to: (1) sample paper similarity on a continuous scale, which makes it possible to: (2)

define hard to learn positives, as well as (3) hard or easy to learn negatives. Points

(2-3) are important in making contrastive learning efficient as will describe below in

Section 5.3.3.

5.3.3 Positives and Negatives Sampling
Positive samples: d+ should be semantically similar to the query paper dQ, i.e.

sampled close to the query embedding dQ. Additionally, as Wang and Isola (2020)

find, positives should be sampled from comparable locations (distances from the

query) in embedding space and be dissimilar enough from the query embedding, to

avoid gradient collapse (zero gradients). Therefore, we sample c+ positive (similar)

papers from a close neighborhood around query embedding dQ (k+ − c+, k+], i.e. the

green band in Figure 5.1. When sampling with KNN search, we use a small k+ to find

positives and later analyze the impact of k+ in Figure 5.2.

Negative samples: can be divided into easy and hard negative samples (light

and dark red in Figure 5.1). Sampling more hard negatives is known to improve

contrastive learning (Bucher et al., 2016; Wu et al., 2017). However, we make sure to

sample hard negatives (red band in Figure 5.1) such that they are close to potential

positives but do not collide with positives (green band), by using a tunable ‘sampling

induced margin’. We do so, since Saunshi et al. (2019) showed that sampling a larger

number of hard negatives only improves performance if the negatives do not collide
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with positive samples, since collisions make the learning signal noisy. That is, in the

margin between hard negatives and positives we expect positives and negatives to

collide, thus we avoid sampling from this region. To generate a diverse self-supervised

citation similarity signal for contrastive SDR learning, we also sample easy negatives

that are farther from the query than hard negatives. For negatives, the k− should be

large when sampling via KNN to ensure samples are dissimilar from the query paper.

5.3.4 Sampling Strategies
As described in Figure 5.3.2 and Figure 5.3.3, our approach improves upon the

method by Cohan et al. (2020a). Therefore, we reuse their sampling parameters (5

triplets per query paper) and then further optimize our methods’ hyperparameters.

For example, to train the triplet loss, we generate the same amount of (dQ, d+, d−)
triplets per query paper as SPECTER (Cohan et al., 2020a). To be precise, this means

we generate c+=5 positives (as explained in 5.3.3). We also generate 5 negatives,

three easy negatives c−
easy=3 and two hard negatives c−

hard=2, as described in Section

5.3.3.

Below, we describe three strategies (I-III) for sampling triplets. These either sample

neighboring papers from citation embeddings (I), by random sampling (II), or using

both strategies (III). For each strategy, let c′ be the number of samples for either

positives c+, easy negatives c−
easy, or hard negatives c−

hard.

Citation Graph Embeddings: We train a graph embedding model fc on citations

extracted from the Semantic Scholar Open Research Corpus (S2ORC; Lo et al., 2020)

to get citation embeddings C. We utilize PyTorch BigGraph (Lerer et al., 2019), which

allows for training on large graphs with modest hardware requirements. The resulting

graph embeddings perform well using the default training settings from Lerer et al.

(2019), but given more computational resources, careful tuning may produce even

better-performing embeddings. Nonetheless, we conducted a narrow parameter search

based on link prediction – see Appendix 5.10.4.

(I) K-nearest neighbors (KNN): Assuming a given citation embedding model fc and

a search index (e.g., FAISS, Section5.4.3), we run KNN(fc(dQ), C) and take c′ samples

from a range of the (k − c′, k] nearest neighbors around the query paper dQ with its

neighbors N={n1, n2, n3, . . . }, whereby neighbor ni is the i-th nearest neighbor in the

citation embedding space. For instance, for c′=3 and k=10 the corresponding samples

would be the three neighbors descending from the tenth neighbor: n8, n9, and n10. To

reduce computing effort, we sample the neighbors N only once via [0; max(k+, k−
hard)],

and then generate triplets by range-selection in N ; i.e. positives = (k+ − c+; k+], and

hard negatives = (k−
hard − c−

hard; k−
hard].
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(II) Random sampling: Sample any c′ papers without replacement from the

corpus.

(III) Filtered random: Like (II) but excluding the papers that are retrieved by

KNN, i.e., all neighbors within the largest k are excluded. This is analog to SPECTER’s

approach of selecting random candidates that are not cited by the query.

The KNN sampling introduces the hyperparameter k that allows for the controlled
sampling of positives or negatives with different difficulty (from easy to hard depending

on k). Specifically, in Figure 5.1 the hyperparameter k defines the tunable sample
induced margin between positives and negatives, as well as the width and position

of the positive sample band (green) and negative sample band (red) around the

query sample. Besides the strategies above, we experiment with similarity threshold,

k-means clustering and sorted random sampling, neither of which performs well

(Appendix 5.10.6).

5.4 Experiments
In the following, we introduce our experiments including the data sets and imple-

mentation details.

5.4.1 Evaluation Dataset
We evaluate on the SCIDOCS benchmark (Cohan et al., 2020a). A key difference

to other benchmarks is that embeddings are the input to the individual tasks without

explicit fine-tuning. The SCIDOCS benchmark consists of the following four tasks:

Document classification (CLS) with Medical Subject Headings (MeSH) (Lipscomb,

2000) and Microsoft Academic Graph labels (MAG) (Sinha et al., 2015). Co-views

and co-reads (USR) prediction based on the L2 distance between embeddings. Direct

and co-citation (CITE) prediction based on the L2 distance between the embeddings.

Recommendations (REC) generation based on embeddings and paper metadata.

5.4.2 Training Datasets
The experiments mainly compare SciNCL against SPECTER on the SCIDOCS bench-

mark. However, we found 40.5% of SCIDOCS’s papers leaking into SPECTER’s training

data (the leakage affects only the unsupervised paper data but not the gold labels –

see Appendix 5.10.2. To be transparent about this leakage, we train SciNCL on two

datasets:

SPECTER replication (w/ leakage): We replicate SPECTER’s training data including

its leakage. Unfortunately, SPECTER provides neither citation data nor a mapping to

S2ORC, which our citation embeddings are based on. We successfully map 96.2% of
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SPECTER’s query papers and 83.3% of the corpus from which positives and negatives

are sampled to S2ORC. To account for the missing papers, we randomly sample papers

from S2ORC (without the SCIDOCS papers) such that the absolute number of papers

is identical with SPECTER.

S2ORC subset (w/o leakage): We select a random subset from S2ORC that does

not contain any of the mapped SCIDOCS papers. This avoids SPECTER’s leakage,

but also makes the scores reported in Cohan et al. (2020a) less comparable. We

successfully map 98.6% of the SCIDOCS papers to S2ORC. Thus, only the remaining

1.4% of the SCIDOCS papers could leak into this training set.

The details of the dataset creation is described in Appendix 5.10.1 and 5.10.3. Both

training sets yield 684K triplets (same count as SPECTER). Also, the ratio of training

triplets per query remains the same (Section 5.3.4). Our citation embedding model is

trained on the S2ORC citation graph. In w/ leakage, we include all SPECTER papers

even if they are part of SCIDOCS, the remaining SCIDOCS papers are excluded (52.5

nodes and 463M edges). In w/o leakage, all mapped SCIDOCS papers are excluded

(52.4M nodes and 447M edges) such that we avoid leakage also for the citation

embedding model.

5.4.3 Model Training and Implementation
We replicate the training setup from SPECTER as closely as possible. We implement

SciNCL using Huggingface Transformers (Wolf et al., 2020), initialize the model with

SciBERT’s weights (Beltagy et al., 2019), and train via the triplet loss (Equation 5.3.1).

The optimizer is Adam with weight decay (Kingma and Ba, 2015; Loshchilov and

Hutter, 2019) and learning rate λ=2−5. To explore the effect of computing efficient

fine-tuning we also train a BitFit model (Ben Zaken et al., 2022b) with λ=1−4 (Section

5.7.2). We train SciNCL on two NVIDIA GeForce RTX 6000 (24G) for 2 epochs (approx.

24 hours of training time) with batch size 8 and gradient accumulation for an effective

batch size of 32 (same as SPECTER). The graph embedding training is performed on an

Intel Xeon Gold 6230 CPU with 60 cores and takes approx. 6 hours. The KNN strategy

is implemented with FAISS (Johnson et al., 2021) using a flat index (exhaustive

search) and takes less than 30min for indexing and retrieval of the triplets.

5.4.4 Baseline Methods
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We compare against the following baselines (details in Appendix 5.10.5): USE (Cer

et al., 2018), BERT (Devlin et al., 2019b), BioBERT (Lee et al., 2019), SciBERT

(Beltagy et al., 2019), CiteBERT (Wright and Augenstein, 2021), DeCLUTR (Giorgi

et al., 2021b), the graph-convolution approach SGC (Wu et al., 2019), Citeomatic

(Bhagavatula et al., 2018), and SPECTER (Cohan et al., 2020a).

Also, we compare against Oracle SciDocs which is identical to SciNCL except that its

triplets are generated based on SCIDOCS’s validation and test set using their gold labels.

For example, papers with the same MAG labels are positives and papers with different

labels are negatives. Similarly, the ground truth of the other tasks is used, i.e., clicked

recommendations are considered as positives etc. In total, this procedure creates

106K training triplets for Oracle SciDocs. Moreover, we under-sample triplets from the

classification tasks to ensure a balanced triplet distribution over the tasks. Accordingly,

Oracle SciDocs represents an estimate for the performance upper bound that can be

achieved with the current setting (triplet margin loss and SciBERT encoder).

5.5 Overall Results
Table 5.1 shows the results, comparing SciNCL with the best validation performance

against the baselines. With replicated SPECTER training data (w/ leakage), SciNCL

achieves an average performance of 81.8 across all metrics, which is a 1.8 point

absolute improvement over SPECTER (the next-best baseline). When trained without

leakage, the improvement of SciNCL over SPECTER is consistent with 1.7 points but

generally lower (79.4 avg. score). In the following, we refer to the results obtained

through training on the replicated SPECTER data (w/ leakage) if not otherwise

mentioned.

We find the best validation performance based on SPECTER’s data when positives

and hard negative are sampled with KNN, whereby positives are k+=25, and hard

negatives are k−
hard=4000 (Section 5.6). Easy negatives are generated through filtered

random sampling. SciNCL’s scores are reported as mean over ten random seeds

(seed ∈ [0, 9]).

For MAG classification, SPECTER achieves the best result with 82.0 F1 followed

by SciNCL with 81.4 F1 (-0.6 points). For MeSH classification, SciNCL yields the

highest score with 88.7 F1 (+2.3 compared to SPECTER). Both classification tasks

have in common that the chosen training settings lead to over-fitting. Changing

the training by using only 1% training data, SciNCL yields 82.2 F1@MAG (Table

5.2). In all user activity and citation tasks, SciNCL yields higher scores than all

baselines. Moreover, SciNCL outperforms SGC on direct citation prediction, where

SGC outperforms SPECTER in terms of nDCG. On the recommender task, SPECTER
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yields the best P@1 with 20.0, whereas SciNCL achieves 19.3 P@1 (in terms of nDCG

SciNCL and SPECTER are on par).

When training SPECTER and SciNCL without leakage, SciNCL outperforms SPECTER

even in 11 of 12 metrics and is on par in the other metric. This suggests that SciNCL’s

hyperparameters have a low corpus dependency since they were only optimized on

the corpus with leakage.

Regarding the LLM baselines, we observe that the general-domain BERT, with

a score of 63.4, outperforms the domain-specific BERT variants, namely SciBERT

(59.6) and BioBERT (58.8). LLMs without citations or contrastive objectives yield

generally poor results. This emphasizes the anisotropy problem of embeddings directly

extracted from current LLMs and highlights the advantage of combining text and

citation information.

In summary, we show that SciNCL’s triplet selection leads on average to a perfor-

mance improvement on SCIDOCS, with most gains being observed for user activity

and citation tasks. The gain from 80.0 to 81.8 is particularly notable given that even

Oracle SciDocs yields with 83.0 an only marginally higher avg. score despite using test

and validation data from SCIDOCS for the triplet selection.

5.6 Impact of Sample Difficulty
In this section, we present the optimization of SciNCL’s sampling strategy (Section

5.3.3). We optimize the sampling for positives and hard or easy negatives with partial

grid search on a random sample of 10% of the replicated SPECTER training data

(sampling based on queries). Our experiments show that optimizations on this subset

correlate with the entire dataset. The validation scores in Section 5.2 and Figure 5.3

are reported as the mean over three random seeds.

5.6.1 Positive Samples
Figure 5.2 shows the avg. scores on the SCIDOCS validation set depending on

the selection of positives with the KNN strategy. We only change k+, while negative

sampling remains fixed to its best setting (Section 5.6.2). The performance is relatively

stable for k+<100 with peak at k+=25, for k+>100 the performance declines as k+

increases. Wang and Isola (2020) state that positive samples should be semantically

similar to each other, but not too similar to the query. For example, at k+=5, positives

may be a bit “too easy” to learn, such that they produce less informative gradients

than the optimal setting k+=25. Similarly, making k+ too large leads to the sampling
induced margin being too small, such that positives collide with negative samples, which

creates contrastive label noise that degrades performance (Saunshi et al., 2019).
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Figure 5.2: Results on the validation set w.r.t. positive sampling with KNN when using 10%
training data.

Another observation is the standard deviation σ: One would expect σ to be inde-

pendent of k+ since random seeds affect only the negatives. However, positives and

negatives interact with each other through the triplet margin loss. Therefore, σ is also

affected by k+. To account for the interaction of positives and negatives, one could

sample simultaneously based on the distance to the query and the distance of positives

and negatives to each other.

5.6.2 Hard Negative Samples
Figure 5.3 presents the validation results for different k−

hard given the best setting for

positives (k+=25). The performance increases with increasing k−
hard until a plateau

between 2000<k−
hard<4000 with a peak at k−

hard=4000. This plateau can also be

observed in the test set, where k−
hard=3000 yields a marginally lower score of 81.7

(Table 5.2). For k−
hard>4000, the performance starts to decline again. This suggests

that for large k−
hard the samples are not “hard enough” which confirms the findings of

Cohan et al. (2020a).

5.6.3 Easy Negative Samples
Filtered random sampling of easy negatives yields the best validation performance

compared pure random sampling (Table 5.2). However, the performance difference

is marginal. When rounded to one decimal, their average test scores are identical.

The marginal difference is caused by the large corpus size and the resulting small

probability of randomly sampling one paper from the KNN results. But without
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Figure 5.3: Results on the validation set w.r.t. hard negative sampling with KNN using 10%
training data.

filtering, the effect of random seeds increases, since we find a higher standard deviation

compared to the one with filtering.

As a potential way to decrease randomness, we experiment with other approaches

like k-means clustering but find that they decrease the performance (Appendix

5.10.6).

5.6.4 Collisions
Similar to SPECTER, SciNCL’s sampling based on graph embeddings could cause

collisions when selecting positives and negatives from regions close to each other. To

avoid this, we rely on a sample induced margin that is defined by the hyperparameter

k+ and k−
hard (distance between red and green band in Figure 5.1). When the margin

gets too small, positives and negatives are more likely to collide. A collision occurs

when the paper pair (dq, ds) is contained in the training data as positive and as negative

sample at the same time. Figure 5.4 demonstrates the relation between the number

of collisions and the size of the sample induced margin. The number of collisions

increases when the sample induced margin gets smaller. The opposite is the case when

the margin is large enough (k−
hard > 1000), i.e., then the number of collisions goes to

zero. This relation also affects the evaluation performance as Figure 5.2 and Figure

5.3 show. Namely, for large k+ or small k−
hard SciNCL’s performance declines and

approaches SPECTER’s performance.
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Figure 5.4: Number of collisions w.r.t. size of the sample induced margin as defined through
k+ and k−

hard.

CLS USR CITE REC Avg. ∆

SciNCL 85.0 88.8 94.7 36.6 81.8 –
SPECTER 84.2 88.4 91.5 36.9 80.0 -1.8
k−
hard=2000 84.9 88.8 94.7 36.1 81.6 -0.2

k−
hard=3000 84.5 88.7 94.6 36.9 81.7 -0.1

easy neg. w/ random 85.1 88.8 94.7 36.6 81.8 0.0
undirected citations 84.6 88.8 94.7 36.6 81.7 -0.1
Init. w/ BERT-Base 83.4 88.4 93.8 37.5 81.2 -0.6
Init. w/ BERT-Large 84.6 88.7 94.1 36.4 81.4 -0.4
Init. w/ BioBERT 83.7 88.6 93.8 37.7 81.4 -0.4
1% training data 85.2 88.3 92.7 36.1 80.8 -1.0
10% training data 85.1 88.7 93.5 36.2 81.1 -0.6
BitFit training 85.8 88.6 93.7 35.3 81.2 -0.5

Table 5.2: Ablations. Numbers are averages over tasks of the SCIDOCS test set, average score
over all metrics, and rounded absolute difference to SciNCL.

5.7 Ablation Analysis
Next, we evaluate the impact of language model initialization and number of

parameters and triples.

5.7.1 Initial Language Models
Table 5.2 shows the effect of initializing the model weights not with SciBERT

but with general-domain LLMs (BERT-Base and BERT-Large) or with BioBERT. The
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initialization with other LLMs decreases the performance. However, the decline is

marginal (BERT-Base -0.6, BERT-Large -0.4, BioBERT -0.4) and all LLMs outperform

the SPECTER baseline. For the recommendation task, in which SPECTER is superior

over SciNCL, BioBERT outperforms SPECTER. This indicates that the improved triplet

mining of SciNCL has a greater domain adaption effect than pretraining on domain-

specific literature. Given that pretraining of LLMs requires a magnitude more resources

than the fine-tuning with SciNCL, our approach can be a solution for resource-limited

use cases.

5.7.2 Data and Computing Efficiency
The last three rows of Table 5.2 show the results regarding data and computing

efficiency. When keeping the citation graph unchanged but training the language

model with only 10% of the original triplets, SciNCL still yields a score of 81.1 (-0.6).

Even with only 1% (6840 triplets), SciNCL achieves a score of 80.8 that is 1.0 points

less than with 100% but still 0.8 points more than the SPECTER baseline. With this

textual sample efficiency, one could manually create triplets or use existing supervised

datasets as in Gao et al. (2021b).

Lastly, we evaluate BitFit training (Ben Zaken et al., 2022b), which only trains

the bias terms of the model while freezing all other parameters. This corresponds to

training only 0.1% of the original parameters. With BitFit, SciNCL yields a considerable

score of 81.2 (-0.5 points). As a result, SciNCL could be trained on the same hardware

with even larger (general-domain) language models Section (5.7.1).

5.8 Conclusion
We present a novel approach for contrastive learning of scientific document em-

beddings that addresses the challenge of selecting informative positive and negative

samples. By leveraging citation graph embeddings for sample generation, SciNCL

achieves a score of 81.8 on the SCIDOCS benchmark, a 1.8 point improvement over

the previous best method SPECTER. This is purely achieved by introducing tunable

sample difficulty and avoiding collisions between positive and negative samples, while

existing LLM and data setups can be reused. This improvement over SPECTER can be

also observed when excluding the SCIDOCS papers during training (see w/o leakage

in Table 5.1). Furthermore, SciNCL’s improvement from 80.0 to 81.8 is particularly

notable given that even oracle triplets, which are generated with SCIDOCS’s test and

validation data, yield with 83.0 only a marginally higher score.

Our work highlights the importance of sample generation in a contrastive learning

setting. We show that language model training with 1% of triplets is sufficient
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to outperform SPECTER, whereas the remaining 99% provide only 1.0 additional

points (80.8 to 81.8). This sample efficiency is achieved by adding reasonable effort

for sample generation, i.e., graph embedding training and KNN search. We also

demonstrate that in-domain LLM pretraining (like SciBERT) is beneficial, while general-

domain LLMs can achieve comparable performance and even outperform SPECTER.

This indicates that controlling sample difficulty and avoiding collisions is more effective

than in-domain pretraining, especially in scenarios where training an LLM from scratch

is infeasible.

5.9 Limitations
SciNCL’s strategy of selecting positive and negative samples requires additional

computational resources for training the graph embedding model, performing the

KNN search, and optimizing the hyperparameters k+, k−
hard (Section 5.4.3). While

some of the compute resources are offset by the sample-efficient language model

training (Section 5.7.2), we still consider the increased compute effort as the major

limitation of the SciNCL method.

Especially the training of the graph embedding model accounts for most of the

additional compute effort. This is also the reason for us providing only a shallow

of evaluation of the graph embeddings (Appendix 5.10.4). For example, we did not

evaluate the effect of different graph embeddings on the actual SCIDOCS performance.

Moreover, evaluations with smaller subsets of the S2ORC citation graph are missing.

Such evaluations could indicate whether also less citation data can be sufficient, which

would lower the compute requirements but would make SciNCL also applicable in

domains where less graph data is available.
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5.10 Appendices
5.10.1 Mapping to S2ORC

Table 5.3: Mapping to S2ORC citation graph

S2ORC mapping Success rate

SciDocs papers
- with S2ORC IDs 220,815 / 223,932 (98.6%)
- in S2ORC graph 197,811 / 223,932 (88.3%)

SPECTER papers
- with S2ORC IDs 311,094 / 311,860 (99.7%)
- in S2ORC graph 260,014 / 311,860 (83.3%)

Neither the SPECTER training data nor the SciDocs test data comes with a mapping

to the S2ORC dataset, which we use for the training of the citation embedding model.

However, to replicate SPECTER’s training data and to avoid leakage of SciDocs test

data such a mapping is needed. Therefore, we try to map the papers to S2ORC based

on PDF hashes and exact title matches. The remaining paper metadata is collected

through the Semantic Scholar API. Table 5.3 summarizes the outcome of mapping

procedure. Failed mappings can be attributed to papers being unavailable through

the Semantic Scholar API (e.g., retracted papers) or papers not being part of S2ORC

citation graph.

5.10.2 SPECTER-SciDocs Leakage
When replicating SPECTER (Cohan et al., 2020a), we found a substantial overlap

between the papers3 used during the model training and the papers from their SCIDOCS

benchmark4. In both datasets, papers are associated with Semantic Scholar IDs. Thus,

no custom ID mapping as in Section 5.10.1 is required to identify papers that leak from

training to test data. From the 311,860 unique papers used in SPECTER’s training data,

we find 79,201 papers (25.4%) in the test set of SCIDOCS and 79,609 papers (25.5%)

in its validation set. When combining test and validation set, there is a total overlap of

126,176 papers (40.5%). However, this overlap affects only the ‘unsupervised’ paper

metadata (title, abstract, citations, etc.) and not the gold labels used in SCIDOCS (e.g.,

MAG labels or clicked recommendations).

3https://github.com/allenai/specter/issues/2
4https://github.com/allenai/scidocs
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5.10.3 Dataset Creation
As describe in Section 5.4.2, we conduct our experiments on two datasets. Both

datasets rely on the citation graph of S2ORC (Lo et al., 2020). More specifically,

S2ORC with the version identifier 20200705v1 is used. The full citation graph consists

of 52.6M nodes (papers) and 467M edges (citations). Table 5.4 presents statistics on

the datasets and their overlap with SPECTER and SCIDOCS. The steps to reproduce

both datasets are:

Replicated SPECTER (w/ leakage)

In order to replicate SPECTER’s training data and do not increase the leakage, we

exclude all SCIDOCS papers which are not used by SPECTER from the S2ORC citation

graph. This means that apart from the 110,538 SPECTER papers not a single other

SCIDOCS paper is included. The resulting citation graph has 52.5M nodes and 463M

edges and is used for training the citation graph embeddings.

For the SciNCL triplet selection, we also replicate SPECTER’s query papers and

its corpus from which positive and negatives are sampled. Our mapping and the

underlying citation graph allows us to use 227,869 of 248,007 SPECTER’s papers

for training. Regarding query papers, we use 131,644 of 136,820 SPECTER’s query

papers. To align the number training triplets with the one from SPECTER, additional

papers are randomly sampled from the filtered citation graph.

Random S2ORC subset (w/o leakage)

To avoid leakage, we exclude all successfully mapped SCIDOCS papers from the

S2ORC citation graph. After filtering the graph has 52.3 nodes and 447M edges. The

citation graph embedding model is trained on this graph.

Next, we reproduce triplet selection from SPECTER. Any random 136,820 query

papers are selected from the filtered graph. For each query, we generate five positives

(cited by the query), two hard negatives (citation of citation), and three random nodes

from the filtered S2ORC citation graphs. This sampling produces 684,100 training

triplets with 680,967 unique papers IDs (more compared to the replicated SPECTER

dataset). Based on these triplets the SPECTER model for this dataset is trained with

the same model settings and hyperparameters as SciNCL (second last row in Table

5.1).

Lastly, the SciNCL triplets are generated based on the citation graph embeddings of

the same 680,967 unique papers IDs, i.e, the FAISS index contains only these papers

and not the remaining S2ORC papers. Also, the same 136,820 query papers are

used.
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Table 5.4: Statistics for our two datasets and their overlap with SPECTER and SciDocs respec-
tively.

Replicated
SPECTER

(w/ leakage)

Random
S2ORC subset
(w/o leakage)

Training triplets 684,100 684,100

Unique paper IDs 248,007 680,967
- in SPECTER 227,869 9,182
- in SciDocs 110,538 0
- in SciDocs

and in SPECTER 110,538 0

Query paper IDs 136,820 136,820
- in SciDocs 69,306 0
- in SPECTER queries 131,644 463

Citation graph
- Nodes 52,526,134 52,373,977
- Edges 463,697,639 447,697,727

5.10.4 Graph Embedding Evaluation
To evaluate the underlying citation graph embeddings, we experiment with a few

of BigGraph’s hyperparameters. We trained embeddings with different dimensions

d={128, 512, 768} and different distance measures (cosine similarity and dot product)

on 99% of the data and test the remaining 1% on the link prediction task. An

evaluation of the graph embeddings with SCIDOCS is not possible since we could not

map the papers used in SCIDOCS to the S2ORC corpus. All variations are trained

for 20 epochs, margin m=0.15, and learning rate λ=0.1 (based on the recommended

settings by Lerer et al. (2019)).

Table 5.5: Link prediction performance of BigGraph embeddings trained on S2ORC citation
graph with different dimensions and distance measures.

Dim. Dist. MRR Hits@1 Hits@10 AUC

128 Cos. 54.09 43.39 75.21 85.75
128 Dot 89.75 85.84 96.13 97.70
512 Dot 94.60 92.47 97.64 98.64
768 Dot 95.12 93.22 97.77 98.74

Table 5.5 shows the link prediction performance measured in MRR, Hits@1, Hits@10,

and AUC. Dot product is substantially better than cosine similarity as distance measure.

Also, there is a positive correlation between the performance and the size of the embed-

dings. The larger the embedding size the better link prediction performance. Graph
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embeddings with d=768 were the largest possible size given our compute resources

(available disk space was the limiting factor).

5.10.5 Baseline Details
If not otherwise mentioned, all BERT variations are used in their base-uncased

versions.

The weights for BERT (bert-base-uncased), BioBERT (biobert-base-cased-v1.2), Cite-

BERT (citebert), DeCLUTR (declutr-sci-base) are taken from Huggingface Hub5. We

use Universal Sentence Encoder (USE) from Tensorflow Hub6. For Oracle SciDocs, we

use the SciNCL implementation and under-sample the triplets from the classification

tasks to ensure a balanced triplet distribution over the tasks. The SPECTER version

for the random S2ORC training data (w/o leakage) is also trained with the SciNCL

implementation. Please see Cohan et al. (2020a) for additional baseline methods and

their implementation details.

5.10.6 Negative Results
We investigated additional sampling strategies and model modification of which

none led to a significant performance improvement.

5.10.6.1 Undirected Citations
Our graph embedding model considers citations as directed edges by default. We

also train a SciNCL model with undirected citations by first converting a single edge

(a, b) into the two edges (a, b) and (b, a). This approach yields a slightly worse per-

formance (81.7 avg. score; -0.1 points) and, therefore, was discarded for the final

experiments.

5.10.6.2 kNN with interval large than c
Our best results are achieved with KNN where the size of the neighbor interval

(k − c′; k] is equal to the number of samples c′ that the strategy should generate. In

addition to this, we also experimented with large intervals, e.g., (1000; 2000], from

which c′ papers are randomly sampled. This approach yields comparable results but

suffers from a larger effect of randomness and is therefore more difficult to optimize.

5.10.6.3 K-Means Cluster for Easy Negatives
Easy negatives are supposed to be far away from the query. Random sampling from

a large corpus ensures this as our results show. As an alternative approach, we tried

5https://huggingface.co/models
6https://tfhub.dev/google/universal-sentence-encoder-large/5
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k-means clustering whereby we selected easy negatives from the centroid that has a

given distance to the query’s centroid. However, this decreased the performance.

5.10.6.4 Sampling with Similarity Threshold
As alternative to KNN, we select samples based on cosine similarity in the citation

embedding space. Take c′ papers that are within the similarity threshold t of a query

paper dQ such that s(fc(dQ), fc(di)) < t, where s is the cosine similarity function.

For example, given the similarity scores S={0.9, 0.8, 0.7, 0.1} (ascending order, the

higher the similarity is the closer the candidate embedding to the query embedding is)

with c′=2 and t=0.5, the two candidates with the largest similarity scores and larger

than the threshold would be 0.8 and 0.7. The corresponding papers would be selected

as samples. While the positive threshold t+ should close to 1, the negative threshold

t− should be small to ensure samples are dissimilar from dQ. However, the empirical

results suggest that this strategy is inferior compared to KNN.

5.10.6.5 Hard Negatives with Similarity Threshold
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Figure 5.5: Results on the validation set w.r.t. hard negative sampling with SIM using 10%
training data.

Selecting hard negatives based on the similarity threshold yields a test score of 81.7

(-0.1 points). Figure 5.5 show the validation results for different similarity thresholds.

A similar pattern as in Figure 5.3 can be seen. When the negatives are closer to the

query paper (larger similarity threshold t), the validation score decreases.
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5.10.6.6 Positives with Similarity Threshold
Positive sampling with SIM performs poorly since even for small t+ < 0.5 many

query papers do not have any neighbors within this similarity threshold (more than

40%). Solving this issue would require changing the set of query papers which we

omit for comparability to SPECTER.

5.10.6.7 Sorted Random
Simple random sampling does not ensure if a sample is far or close to the query. To

integrate a distance measure in the random sampling, we first sample n candidates,

then order the candidates according to their distance to the query, and lastly select the

c′ candidates that are the closest or furthest to the query as samples.

5.10.6.8 Mask Language Modeling
Giorgi et al. (2021b) show that combining a contrastive loss with a mask language

modeling loss can improve text representation learning. However, in our experiments

a combined function decreases the performance on SCIDOCS, probably due to the

effects found by (Li et al., 2020).

5.10.6.9 Student-Teacher Learning
Student-teacher learning is effective in related work on cross-modal knowledge

transfer (Kaur et al., 2021; Tian et al., 2020a). We also try to adopt this approach for

our experiments, whereby the Transformer language model is the student, and the

citation graph embedding model is the teacher. By directly learning from the citation

embeddings, we could circumvent the positive and negative sampling needed for

triplet loss learning, which introduces unwanted issues like collisions. Given a batch

of document representations derived from text DT ext (through the language model)

and the citation graph representations for the same documents DGraph, we compute

the pairwise cosine similarity for both sets ST ext and SGraph. To transfer the knowledge

from the citation embeddings into the language model, we devise the student-teacher

loss LST based on a mean-squared-error loss (MSE) such that the difference between

the cosine similarities is minimized:

LST = MSE(ST ext, SGraph) (5.1)

Despite the promising results from Tian et al. (2020a), the student-teacher approach

performs poorly in our experiments. We attribute this the overfitting to the citation

data (the training loss approaches zero after a few steps while the validation loss

remains high). The model trained with LST yields only a SCIDOCS average score of
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64.7, slightly better than SciBERT but substantially worse than SciNCL with triplet

loss.

Additionally, we experiment with a joint loss that is the sum of triplet margin loss

LT riplet (see Section 5.3.1) and the student-teacher loss LST :

LJoint = LT riplet + LST (5.2)

Training with the joint loss LJoint achieves an average score of 80.5. Even though

the joint loss is not subject to overfitting, its SCIDOCS performance is slightly worse

than the triplet loss LT riplet alone. Given this outcome and that the computation of

the cosine similarities adds additional complexity, we discard the student-teacher

approach for the final experiments.

5.10.6.10 SPECTER & Bidirectional Citations
SPECTER (Cohan et al., 2020a) relies on unidirectional citations for their sampling

strategy. While papers cited by the query paper are considered as positives samples,

those citing the query paper (opposite citation direction) could be negative samples.

We see this use of citations as a conceptional flaw in their sampling strategy.

To test the actual effect on the resulting document representation, we first repli-

cate the original unidirectional sampling strategy from SPECTER with our training

data (see w/ leakage in Section 5.4.2). The resulting SPECTER model achieves an

average score of 79.0 on SCIDOCS.7 When changing the sampling strategy from

unidirectional to bidirectional (‘citations to the query’ are also treated as a signal for

similarity), we observe an improvement of +0.4 points to 79.4. Consequently, the use

of unidirectional citations is not only a conceptional issue but also degrades learning

performance.

5.10.7 Task-specific Results
Figure 5.7 and 5.9 present the validation performance like in Section 5.6 but on a

task-level and not as an average over all tasks. The plots show that the optimal k+

and k−
hard values are partially task dependent.

5.10.8 Examples
Table 5.6 lists three examples of query papers with their corresponding positive and

negative samples. The complete set of triplets that we use during training is available

in our code repository1.

7The difference to the scores reported in Cohan et al. (2020a) is due to the difference in the underlying
training data.
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Figure 5.7: Task-level validation performance w.r.t. k+ with KNN strategy using 10% training
data.
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Figure 5.9: Task-level validation performance w.r.t. k−
hard with KNN strategy using 10%

training data.
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Table 5.6: Example query papers with their positive and negative samples.

Query: BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding

Positives:

• A Broad-Coverage Challenge Corpus for Sentence Understanding through Inference
• Looking for ELMo’s Friends: Sentence-Level Pretraining Beyond Language Modeling
• GLUE : A MultiTask Benchmark and Analysis Platform for Natural Language Understanding
• Dissecting Contextual Word Embeddings: Architecture and Representation
• Universal Transformers

Negatives:

• Planning for decentralized control of multiple robots under uncertainty
• Graph-Based Relational Data Visualization
• Linked Stream Data Processing
• Topic Modeling Using Distributed Word Embeddings
• Adversarially-Trained Normalized Noisy-Feature Auto-Encoder for Text Generation

Query: BioBERT: a pre-trained biomedical language representation model for biomedical text mining

Positives:

• Exploring Word Embedding for Drug Name Recognition
• A neural joint model for entity and relation extraction from biomedical text
• Event Detection with Hybrid Neural Architecture
• Improving chemical disease relation extraction with rich features and weakly labeled data
• GLUE : A MultiTask Benchmark and Analysis Platform for Natural Language Understanding

Negatives:

• Weakly Supervised Facial Attribute Manipulation via Deep Adversarial Network
• Applying the Clique Percolation Method to analyzing cross-market branch banking ...
• Perpetual environmentally powered sensor networks
• Labelling strategies for hierarchical multi-label classification techniques
• Domain Aware Neural Dialog System

Query: A Context-Aware Citation Recommendation Model with BERT and Graph Convolutional Networks

Positives:

• Content-based citation analysis: The next generation of citation analysis
• ScisummNet: A Large Annotated Dataset and Content-Impact Models for Scientific Paper ...
• Citation Block Determination Using Textual Coherence
• Discourse Segmentation Of Multi-Party Conversation
• Argumentative Zoning for Improved Citation Indexing

Negatives:

• Adaptive Quantization for Hashing: An Information-Based Approach to Learning ...
• Trap Design for Vibratory Bowl Feeders
• Software system for the Mars 2020 mission sampling and caching testbeds
• Applications of Rhetorical Structure Theory
• Text summarization for Malayalam documents — An experience
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6Paper 5: Long-Tail Zero and
Few-Shot Learning via
Contrastive Pretraining on and
for Small Data

6.1 Introduction
Long-tail information has been found to be disproportionately affected during model

compression, which has in turn been linked to reducing aspects of algorithmic fairness

for minority information (Hooker et al., 2020a; Hooker, 2021). Additionally, real-

world data is subject to long-tail learning challenges such as imbalances, few-shot

learning, open-set recognition (Liu et al., 2019c), or feature and label noise (D’souza

et al., 2021; Hu et al., 2021). Crucially, works by Hooker et al. (2020d); Zhuang et al.

(2021) find that common long-tail evaluation measures like top-k metrics mask tail

prediction performance losses. Current works on long-tail preservation in smaller

models are focused on compressing large, supervised computer vision models (Liu

et al., 2019c; Chang et al., 2019; Joseph et al., 2020; Blakeney et al., 2021; Jiang et al.,

2021), while general long-tail learning methods only study supervised contrastive

learning.

In this work, we extend the field of ‘long-tail preservation in compact models’ to (self-

supervised) pretrained language models (PLMs), and investigate whether contrastive

language modeling (CLM) can be used to train a small, long-tail preserving model

which does not require compression or large pretrained models. In this context,

large PLMs are an important point of reference since they are often assumed to be

base models for use in arbitrary NLP downstream tasks, as a trade-off for their large

pretraining costs. These models are pretrained over many text domains in the hopes of

achieving partial in-domain pretraining that later overlaps with arbitrary downstream

applications. This works well except in cases where fine-tuning data is limited (Rogers

et al., 2020). Unfortunately, training data and sub-domains in the tail of a distribution

are always limited and diverse by definition, which foreseeably increases the domain

distribution mismatch between large PLMs and long-tail distributed end-task data.

Hence, in order to train long-tail preserving models, it is useful to study small-scale,

but in-domain pretraining, which ideally, is similarly or more compute efficient than

fine-tuning a large PLM, while still achieving superior long-tail prediction performance.
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Thus, we first evaluate a large PLM in a challenging long-tail tag prediction setup (see

Section 6.4) and then move on to propose a small contrastive language model (CLM)

to answer the following three research questions.

• RQ-1: Does a large pretrained language model, in this case, RoBERTa (Liu et al.,

2019b), achieve good long-tail class prediction performance (Section 6.5.1)?

• RQ-2: Can we extend language models such that a small language model can

retain accurate long-tail information, with overall training that is computationally

cheaper than fine-tuning RoBERTa?

• RQ-3: What are the long-tail prediction performance benefits of small CLMs that

unify self-supervised and supervised contrastive learning?

Contributions We address RQ-2 by proposing a contrastive language model objec-

tive that unifies supervised learning with self-supervised pretraining to produce a small
model, with strong long-tail retention that is cheap to compute, thereby avoiding the

need for compressing a large model. This takes inspiration from supervised contrastive

learning, which is known to improve long-tail learning in NLP (Liu et al., 2017; Pappas

and Henderson, 2019; Chang et al., 2019). However, we add self-supervised contrastive
learning since its effect has not been studied in the context of language models for

long-tail learning, especially not with the requirement of producing small models. We

call this unified learning objective: Contrastive Long-tail Efficient Self-Supervision

or CLESS. The method constructs pseudo-labels from input text tokens to use them

for contrastive self-supervised pretraining. During supervised fine-tuning on real

(long-tail) labels, the model directly reuses the self-supervision task head to predict

real, human-annotated, text labels. Thus, we unify self-supervised and supervised

learning regimes into a ‘text-to-text’ approach. This builds on ideas for large PLMs

that use ‘text-to-text’ prediction like T5 (Raffel et al., 2020) and extends them to

contrastive self-supervision to ensure long-tail retention in small language models that

pretrain efficiently, even under strong data limitations. Using a ‘text-to-text’ prediction

objective allows for modeling arbitrary NLP tasks by design, though in this work we

focus exclusively on improving the under-studied field of long-tail language modeling.

We evaluate RQ-1 and RQ-2 by comparing RoBERTa against CLESS regarding long-tail

prediction in 6.5.1. To address RQ-3, we study three long-tail learning performance

aspects. (RQ-3.1) We study how well our contrastive self-supervised pretraining

generalizes to long-tail label prediction without using labeled examples, i.e. zero-shot,

long-tail prediction in Section 6.5.2. (RQ-3.2) We evaluate how zero-shot performance

is impacted by increased model size and pseudo-label amount during self-supervised

pretraining (Section 6.5.2). (RQ-3.3) Finally, we investigate our models’ few-shot
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learning capabilities during supervised long-tail fine-tuning and compare the results

to the RoBERTa model in Section 6.5.3.

6.2 Related Work
In this section, we summarize related work and how it influenced our method design

and evaluation strategy decisions.

6.2.1 Long-tail compression
Works by Hooker et al. (2020a,d) raised awareness of the disproportionate loss of

long-tail information during model compression and the undesirable rise in algorithmic

bias and fairness issues this may cause. Other works such as Liu et al. (2019c) pointed

out that real-world learning is always long-tailed and that few-shot and zero-shot

learning settings naturally arise in tailed, real-world distributions. To make matters

worse, real-world long-tail data is highly vulnerable to noise, which creates drastic

learning and evaluation challenges, especially for self-supervised learning methods.

For example, D’souza et al. (2021) identify types of noise that especially impact

long-tail data prediction and Zhuang et al. (2021) find that noise disproportionately

affects long-tail metrics. In fact, all the aforementioned show that top-k metrics hide

long-tail performances losses. This means that we need long-tail sensitive evaluation,

which inspired us to use Average Precision as a measure. In addition, we split tail

analysis into 5 buckets that all contain an equal amount of positive labels, where each

bucket contains increasingly more and rarer classes – see Section 6.4. These label

imbalances in long-tail tasks make manual noise treatment very cumbersome, but

fortunately, contrastive objectives are naturally robust to label noise as we will detail

in the paragraph below.

6.2.2 Contrastive learning benefits
Contrastive objectives like Noise Contrastive Estimation (NCE), have been shown to

be much more robust against label noise overfitting than the standard cross-entropy

loss (Graf et al., 2021b). Additionally, Zimmermann et al. (2021b) found that con-

trastive losses can “recover the true data distribution even from very limited learning

samples”. Supervised contrastive learning methods like Liu et al. (2017); Zhang et al.

(2018); Pappas and Henderson (2019); Chang et al. (2019) have repeatedly demon-

strated improved long-tail learning. Finally, Jiang et al. (2021) recently proposed

contrastive long-tail compression into smaller models. However, this still leaves the

research question (RQ-1), whether large models learn long-tail well enough in the

first place, unanswered. These observations, learning properties and open research

questions inspired us to forgo large model training and the subsequent compression
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by instead training small contrastive models and extending them with contrastive

self-supervision to combine the benefits of language model pretraining and contrastive

learning. This imbues a small (contrastive language) model with strong long-tail

retention capabilities, as well as with data-efficient learning for better zero to few-shot

learning – as is detailed in the results Section 6.5.

6.2.3 Long-tail learning
Long-tail learning has prolific subfields like extreme classification, which is con-

cerned with supervised long-tail learning and top-line metric evaluation. The field

provides varied approaches for different data input types like images (Liu et al.,

2019c), categorical data, or text classification using small supervised (Liu et al., 2017)

or large supervision fine-tuned PLMs like Chang et al. (2019) for supervised tail

learning. However, these methods only explore supervised contrastive learning and

limit their evaluation to top-line metrics, which, as mentioned above, mask long-tail

performance losses. This naturally leads us to explore the effects of self-supervised
contrastive learning (or pretraining) as one might expect such pretraining to enrich

long-tail information before tail learning supervision. Additionally, as mentioned

above, we use Average Precision over all classes, rather than top-k class, to unmask
long-tail performance losses.

6.2.4 Negative and Positive Generation
As surveys like Musgrave et al. (2020a); Rethmeier and Augenstein (2021) point

out, traditional contrastive learning research focuses on generating highly informative

(hard) negative samples, since most contrastive learning objectives only use a single
positive learning sample and b (bad) negative samples – Musgrave et al. (2020a) give

an excellent overview. However, if too many negative samples are generated they can

collide with positive samples, which degrades learning performance (Saunshi et al.,

2019). More recent computer vision works like Khosla et al. (2020d); Ostendorff et al.

(2022c) propose generating multiple positive samples to boost supervised contrastive
learning performance, while Wang and Isola (2020) show that, when generating posi-

tive samples, the representations of positives should be close (related) to each other.

Our method builds on these insights and extends them to self-supervised contrastive
learning and to the language model domain using a straightforward extension to

NCE. Instead of using only one positive example the like standard NCE by Mnih and

Teh (2012), our method uses g good (positive) samples (see Section 6.3). To ensure

that positive samples are representationally close (related) during self-supervised

contrastive pretraining, we use words from a current input text as positive ‘pseudo-

labels’ – i.e. we draw self-supervision pseudo-labels from a related context. Negative
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pseudo-labels (words) are drawn as words from other in-batch text inputs, where

negative sample words are not allowed not appear in the current text to avoid the

above-mentioned collision of positive and negative samples.

6.2.5 Data and parameter efficiency
Using CNN layers can improve data and compute efficiency over self-attention

layers as found by various works (Rethmeier et al., 2020c; Kim et al., 2020; Tay

et al., 2021). data-efficiency is paramount when pretraining while data is limited,

which, for (rare) long-tail information, is by definition, always the case. Radford et al.

(2021) find that replacing a Transformer language encoder with a CNN backbone

increases zero-shot data-efficiency 3 fold. We thus use a small CNN text encoder, while

for more data abundant or short-tail pretraining scenarios a self-attention encoder

may be used instead. Our method is designed to increase self-supervision signal,

i.e. by sampling more positive and negatives, to compensate for a lack of large

pretraining data (signal) – since rare and long-tailed data is always limited. It is

our goal to skip compression and still train small, long-tail prediction capable models.

Notably, CLESS pretraining does not require special learning rate schedules, residuals,

normalization, warm-ups, or a modified optimizer as do many BERT variations (Devlin

et al., 2019a; Liu et al., 2019b, 2020a).

6.2.6 Label Denoising
Label dropout of discrete {0, 1} labels has been shown to increase label noise

robustness by (Szegedy et al., 2016). We use dropout on both the dense text and label

embeddings. This creates a ‘soft’, but dense label noise during both self-supervised

and supervised training, which is also similar to sentence similarity pretraining by

Gao et al. (2021a), who used text embedding dropout rather than label embedding

dropout to generate augmentations for contrastive learning.

6.3 CLESS: Unified Contrastive
Self-supervised to Supervised Training and
Inference

As done in natural language usage, we express labels as words, or more specifi-

cally as word embeddings, rather than as {0, 1} label vectors. CLESS then learns to

contrastively (mis-)match <text embedding, (pseudo/real) label embedding> pairs

as overviewed in Figure 6.1. For self-supervised pretraining, we in-batch sample g

(good) positive and b (bad) negative <text, pseudo label> embedding pairs per text
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instance to then learn good and bad matches from them. Positive pseudo labels are a

sampled subset of words that appear in the current text instance. Negative pseudo

labels are words sampled from the other texts within a batch. Crucially, negative

words (pseudo labels) can not be the same words as positive words (pseudo labels) –

i.e. w+
i ∩ w−

j = ∅.

This deceptively simple sampling strategy ensures that we fulfill two important

criteria for successful self-supervised contrastive learning. One, using multiple positive

labels improves learning if we draw them from a similar (related) context, as Wang

and Isola (2020) proved. Two, we avoid collisions between positive and negative

samples, which otherwise degrades learning when using more negatives as Saunshi

et al. (2019) find. Similarly, for supervised learning, we use g positive, real labels

and undersample b negative labels to construct <text, positive/negative real label>

pairs. A text-2-label classifier 5 learns to match <text, label> embedding pairs using

a noise contrastive loss (Ma and Collins, 2018), which we extend to use g positives

rather than just one. This unifies self-supervised and supervised learning as contrastive

‘text embedding to (label) text embedding matching’ and allows direct transfer like

zero-shot predictions of real labels after pseudo label pretraining– i.e. without prior

training on other real labels as required by methods like (Zhang et al., 2018; Pappas

and Henderson, 2019; Jiang et al., 2019b). Below, we describe our approach and link

specific design choices to insights from existing research in steps 1 - 6 .

‘measuring’
=‘variable’

‘interaction’

text-2-label 
matcher
sub-net

1 0

text 
sequence 
encoder

net

0

label 
encoder

nety+  = ‘R’
labels sampled, 
no fixed number

NCE = one class,
match yes/no BCE y+

y−

y+

y−

p

p

positive 

negative 

pos. pseudo 

neg. pseudo 

1

training (pseudo-)labels

1

2

3
4

5
6

y
p1   

y
p2   

y
1     

y
2  

...
=‘median’

y+
p

  real  labels
y-  = ‘p-value’

 text/pseudo labels y-
p

 label/w
ord em

bedding L
U

T

NCE loss

t.repeat( text-encoding ) for each   +  −   label 

dropout

0

Figure 6.1: Contrastive <text, pseudo/real label> embedding pair matcher model: A word
embedding layer E 1 embeds text and real/pseudo labels, where labels are word
IDs. CLESS embeds a text (‘measuring variable interaction’), real positive (R) or
negative (p-value) labels, and positive (variable) or negative (median) pseudo
labels. A sequence encoder T 2 embeds a single text, while a label encoder L
3 embeds c labels. Each text has multiple (pseudo) labels, so the text encoding
ti is repeated for, and concatenated with, each label encoding l◦i,l. The resulting
batch of <text embedding, label embedding> pairs [[ti, l◦i,1], . . . , [ti, l◦i,c]] 4 are
fed into a ‘matcher’ classifier 5 that is trained in 6 as a binary noise contrastive
estimation loss LB (Ma and Collins, 2018) over multiple label (mis-)matches
{0, 1} per text instance ti. Unlike older works, we add contrastive self-supervision
over pseudo labels as a pretraining mechanism. Here, the word ‘variable’ is a
positive self-supervision (pseudo) label for a text instance ti, while words from
other in-batch texts, e.g. ‘median’, provide negative pseudo labels.
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We give the model a text instance i of words wi and a set of positive and negative

label words w◦
i = w+

i ⊕ w−
j ∈ Rc=g+b. We also construct a label indicator Ii as ground

truth labels for the binary NCE loss in 6 . This label indicator contains a g-sized vector

of ones 1 ∈ Ng
0 to indicate positive (matching) <text, label> embedding pairs and a

b-sized zero vector 0 ∈ Nb
0 to indicated mismatching pairs, resulting in the indicator

Ii = {1 ⊕ 0} ∈ Nc=g+b
0 0

CLESS then encodes input text and labels in three steps 1 - 3 . First, both the input

text (words) wi and the labels w◦
i are passed through a shared embedding layer 1

to produce E(wi) as text embeddings and E(w◦
i ) as label embeddings. Then, the text

embeddings are encoded via a text encoder T 2 , while labels are encoded by a label

encoder L as follows:

E(wi), E(w◦
i ) 1

ti = T (E(wi)) 2

L◦
i = L(E(w◦

i )) = [l+
i,1, . . . , l+

i,g, l−
i,1, . . . , l−

i,b] 3

To make model learning more data-efficient we initialize the embedding layer E

with fastText word embeddings that we train on the 60MB of in-domain text data.

Such word embedding training only computes a few seconds, while enabling one to

make the text encoder architecture small, but well initialized. The text encoder T

consists of a single, k-max-pooled CNN layer followed by a fully connected layer for

computation speed and data-efficiency (Simoncelli and Olshausen, 2001; Dosovitskiy

et al., 2020; Radford et al., 2021). As a label encoder L, we average the embeddings

of words in a label and feed them through a fully connected layer – e.g. to encode a

label ‘p-value’ we simply calculate the mean word embedding for the words ‘p’ and

‘value’.

To learn whether a text instance embedding ti matches any of the c label embeddings

l◦
i,· ∈ L◦

i , we repeat the text embedding ti, c times, and concatenate text and label

embeddings to get a matrix Mi of <text, label> embedding pairs:

Mi = [[ti, l+
i,1], . . . , [ti, l−

i,c]] 4

This text-label paring matrix Mi is then passed to the matcher network M 5 , which

first applies dropout to each text-label embedding pair and then uses a three layer

MLP to produce a batch of c label match probabilities:

pi = {σ(M(Mi,1)), . . . , σ(M(Mi,c))} 5
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Figure 6.2: Head to long-tail as 5 balanced class bins: We bin classes by label frequency.
Each bin contains equally many active label occurrences. Classes within a bin are
imbalanced and become few-shot or zero-shot towards the tail, especially after
train/dev/test splitting. Class frequencies are given in log scale – task data details
in Section 6.4.

Here, applying dropout to label and text embeddings induces a dense version of
label noise. Discrete {0,1} label dropout has been shown to improve robustness to

label noise in Szegedy et al. (2016); Lukasik et al. (2020). Because we always predict

correct pseudo labels in pretraining, this forces the classifier to learn to correct dropout

induced label noise.

Finally, we use a binary noise contrastive estimation loss as in (Ma and Collins,

2018), but extend it to use g positives, not one.

LB = −1
c

g+b=c∑
l=1

Ii,l · log(pi,l) + (1 − Ii,l) · log(1 − pi,l) 6

Here, LB is the mean binary cross-entropy loss of g positive and b negative labels –

i.e. it predicts c=b+g label probabilities pi, where the label indicators Ii from 1 are

used as ground truth labels.

Though we focus on evaluating CLESS for long-tail prediction in this work, other

NLP tasks such as question answering or recognizing textual entailment can similarly

be modeled as contrast pairs <X=’text 1 [sep] text 2’, Y =’is answer’>. Unlike T5

language models (Raffel et al., 2020), this avoids translating back and forth between

discrete words and dense token embeddings. Not using T5s’ softmax objective, also

allows for predicting unforeseen (unlimited) test classes (label). We provide details

on hyperparameter tuning of CLESS for self-supervised and supervised learning in the

Appendix.
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6.4 Data: resource constrained, long-tail,
multi-label, tag prediction

To study efficient, small model, long-tail learning for ‘text-to-text’ pretraining mod-

els, we choose a multi-label question tag prediction dataset as a testbed. We use

the “Questions from Cross Validated” dataset, where machine learning concepts are

tagged per question – – https://www.kaggle.com/stackoverflow/statsquestions,

accessed on 30th of Aug 2021. This dataset is small (80MB of text), and entails

solving a challenging ‘text-to-text’ long-tailed prediction task. The dataset has 85k

questions with 244k positive labels, while we do not use answer texts. As with many

real-world problems, labels are vague, since tagging was crowd-sourced. This means

that determining the correct amount of tags per question (label density) is hard, even

for humans. The task currently has no prior state-of-the-art. As seen in Figure 6.2,

the datasets’ class occurrence frequencies are highly long-tailed, i.e. the 20% most

frequently occurring classes result in 7 ‘head’ classes, while the 20% least frequent

(rightmost) label occurrences cover 80% or 1061/1315 of classes. Tags are highly

sparse – at most 4 out of 1315 tags are labeled per question. We pretrain fastText word

embeddings on the unlabeled text data to increase learning efficiency, and because

fastText embeddings only take a few seconds to pretrain. The full details regarding

preprocessing can be found in the Appendix.

Long-tail evaluation metrics and challenges: Long-tail, multi-label classification

is challenging to evaluate because (i) top-k quality measures mask performance losses

on long-tailed minority classes as Hooker et al. (2020d) point out. Furthermore, (ii)

measures like ROCAUC overestimate performance under class imbalance (Davis and

Goadrich, 2006; Fernández et al., 2018), and (iii) discrete measures like F-score are

not scalable, as they require discretization threshold search under class imbalance.

Fortunately, the Average Precision score AP = ∑
n(Rn − Rn−1)Pn addresses issues

(i-iii), where Pn and Rn are precision and recall at the nth threshold. We choose

APmicro weighting as this score variant is the hardest to improve.

6.5 Results
In this section, we analyze the three research questions: (RQ-1) Does RoBERTa

learn long-tail tag prediction well? (RQ-2) Can a 12.5x smaller CLESS model achieve

good long-tail prediction, and at what cost? (RQ-3) How does CLESS compare in

zero to few-shot prediction and does its model size matter. We split the dataset into

80/10/10 for training, development, and test set. Test scores or curves are reported for
models that have the best development set average precision score APmicro over all 1315
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Figure 6.3: Long-tail performance (RQ-1, RQ-2), over all five head to tail class bins – see
Figure 6.2. The tail class bin contains 80.7% or 1062/1315 of classes. The
non-pretrained CLESS (2) underperforms, while RoBERTa performs the worst on
the 80.7% of tail classes. The largest pretrained CLESS model (3.XL) outperforms
RoBERTa in tail and mid class prediction, while performing nearly on par for the
7/1315=0.5% (most common) head classes.

classes. RoBERTa has 125 million parameters and is pretrained on 160GB of text data.

CLESS has 8-10 million parameters and is pretrained on just 60MB of in-domain text

data. We use a ZeroR classifier, i.e. predicting the majority label per class, to establish

imbalanced guessing performance. The ZeroR APmicro on this dataset is 0.002 since

a maximum of 4 in 1315 classes are active per instance – i.e. which underlines the

challenge of the task.

6.5.1 (RQ-1+2): Long-tail Capture of RoBERTa vs.
CLESS

Here we compare the long-tail prediction performance of RoBERTa (1) vs. CLESS

setups that, either were pretrained (3, 3.XL), or not pretrained (2). Plotting individual

scores for 1315 classes is unreadable. Instead, we sort classes from frequent to rare

and assign them to one of five ‘20% of the overall class frequency’ bins, such that all

bins are balanced. This means all bins contain the same amount of positive real labels

(label occurrences) and are directly comparable. As seen in Figure 6.2, this means

that the head bin (left) contains the most frequent 7/1315=0.5% classes, while the tail

contains the most rarely occurring 1061/1315=80.7% classes.
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6.5.1.1 RoBERTa: a large pretrained model does not guarantee
long-tail capture

Figure 6.3 shows how a tag prediction fine-tuned RoBERTa performs over the five

class bins as described above or in Section 6.4. RoBERTa learns the most common

(.5% head) classes well, but struggles with mid to tail classes. On the tail class bin,

i.e. on 1061/1315=80.7% of classes, RoBERTa performs worse than a CLESS model

that did not use contrastive pretraining (2). This allows multiple insights. One, a
large PLM should not implicitly be assumed to learn long-tail information well. Two,

large-scale pretraining data should not be expected to contain enough (rare) long-

tailed domain information for an arbitrary end-task, since in the tail-domain, data is

always limited. Three, even a small supervised contrastive model, without pretraining,

can improve long-tail retention (for 80.7% of classes). Together these results indicate

that compressing a large PLM may not be the optimal approach to training a small,

long-tail prediction capable model.

6.5.1.2 CLESS: contrastive pretraining removes the need for model
compression

Model (3) and (3.XL) use our contrastive pretraining on the end-tasks’ 60MB of

unlabeled text data before supervised fine-tuning. We see that models with contrastive

pretraining (3, 3.XL) noticeably outperform RoBERTa (1) and the non-pretrained

contrastive model (2), on all non-head class bins, but especially on the 80.7% tail

classes. We also see that the pretraining model parameter amount impacts CLESS

performance as the 10 million parameter model (3.XL) outperforms the 8M parameters

model (3) over all class bins and especially the tail bin. The above observations are

especially encouraging as they tell us that contrastive in-domain pretraining can

produce small, long-tail learning capable models without the need for compressing

large models. It also tells us that model capacity matters in long-tail information

retention, but not in the common sense that large PLMs are as useful as they have

proven to be for non-long-tail learning applications. This also means that contrastive

self-supervised LM pretraining can help reduce algorithmic bias caused by long-

tail information loss in smaller models, the potential fairness impact of which was

described by (Hooker et al., 2020a,d; Hooker, 2021).

6.5.1.3 Practical computational efficiency of contrastive language
modeling

Though the long-tail performance results of CLESS are encouraging, its computa-

tional burden should ideally be equal or less than that of fine-tuning RoBERTa. When

we analyzed training times we found that RoBERTa took 126 GPU hours to fine-tune

6.5 Results 126



for 48 epochs, when using 100% of fine-tuning labels. For the same task we found

that CLESS (3.XL) took 7 GPU hours for self-supervised pretraining (without labels)

and 5 GPU hours for supervised fine-tuning over 51 epochs – To bring CLESS to the

same GPU compute load as RoBERTa (≈ 96%) we parallelized our data generation

– otherwise our training times double and the GPU load is only ≈ 45%. As a result,

pretraining plus fine-tuning takes CLESS (3.XL) 12 hours compared to 126 for fine-

tuning RoBERTa. This means that the proposed contrastive in-domain pretraining

has both qualitative and computational advantages, while remaining applicable in

scenarios where large collections of pretraining data are not available – which may

benefit use cases like non-English or medical NLP. Additionally, both methods ben-

efit from parameter search, but since CLESS unifies self-supervised pretraining and

supervised fine-tuning as one objective we can reuse pretraining hyperparameters

during fine-tuning. A more in-depth account of computational trade-offs is given in

the Appendix , while details of hyperparameter tuning are given in the Appendix.

It is of course possible to attempt to improve the long-tail performance of RoBERTa,

e.g. via continued pretraining on the in-domain data (Gururangan et al., 2020) or by

adding new tokens (Pörner et al., 2020; Hoover et al., 2020). However, this further

increases the computation and memory requirements of RoBERTa, while the model

still has to be compressed – which requires even more computation. We also tried to

further improve the embedding initialization of CLESS using the method described in

(Rethmeier and Plank, 2019), to further boost its learning speed. While this helped

learning very small models (<2M parameters), it did not meaningfully impact the

performance of contrastive pretraining or fine-tuning.

6.5.2 (RQ-3.1-2): contrastive zero-shot long-tail
learning

Thanks to the unified learning objective for self-supervised and supervised learning,

CLESS enables zero-shot prediction of long-tail labels after self-supervised pretraining,

i.e. without prior training on any labels. Therefore, in this section, we analyze the

impact of using more model parameters (RQ-3.1) as well as using more pseudo labels

(RQ-3.2) during self-supervised contrastive pretraining.

6.5.2.1 (RQ-3.1): More self-supervision and model size improve
zero-shot long-tail capture

In Section 6.4, we study how CLESSs’ zero-shot long-tail retention ability is impacted

by: (left) using more pseudo labels (learning signal) during pretraining; and (right) by

using only portions of unlabeled text data for pretraining. To do so, we pretrain CLESS

variants on pseudo labels and evaluate each variant’s zero-shot APmicro performance
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Figure 6.4: Zero-shot pretraining data-efficiency: by model size, pseudo label amount and
pretraining text amount. Left: The zero-shot (data-efficiency) performance of
the self-supervised pretraining base model (3) is increased when, adding more
self-supervision pseudo labels (3.PL+) and when increasing model parameters
(3.XL). Right: When only using only a proportion of the pretraining input data
texts to pretrain model (3), its zero-shot learning is slowed down proportionally,
but still converges towards the 100% for all but the most extreme pretraining data
reductions.

over all 1315 classes of the real-label test set from Section 6.4. As before, we show

test score curves for the models with the best APmicro dev set performance.

The left plot of Figure 6.4, shows the effect of increasing the number of self-

supervision pseudo label and model parameters. The CLESS 8M model (3), pretrained

with 8 million parameters and 150 pseudo labels, achieves around .10APmicro on the

test real labels as zero-shot long-tail performance. When increasing the pseudo label

number to 500 in model (3.PL+), the model gains zero-shot performance (middle

curve), without requiring more parameters. When additionally increasing the model

parameters to 10M in (3.XL), the zero-shot performance increases substantially (top

curve). Thus, both increasing self-supervision signal amount and model size boost

zero-shot performance.

6.5.2.2 RQ-3.2: Contrastive pretraining leads to data-efficient
zero-shot long-tail learning

Further, in the right plot of Figure 6.4 we see the CLESS 8M model (3) when trained

on increasingly smaller portions (100%, . . . , 10%) of pretraining text. For all but the
smallest pretraining data portions (< 25%) the model still converges towards the origi-

nal 100% performance. However, as expected, its convergence slows proportionally

with smaller pretraining text portions since each data reduction implies seeing less

pseudo label self-supervision per epoch. As a result, the data reduced setups need more

training epochs, so we allowed 5x more waiting-epochs for early stopping than in the

left plot. Thus, our contrastive self-supervised objective can pretrain data-effectively

from very limited data. Similar data-efficiency gains from using contrastive objec-

tives were previously only observed in computer vision applications by Zimmermann
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et al. (2021b), which confirms our initial intuition that contrastive self-supervision is

generally useful for self-supervised learning from limited data.

Methods like Pappas and Henderson (2019); Jiang et al. (2019b); Augenstein et al.

(2018) required supervised pretraining on real labels to later predict other, unseen

labels in a zero-shot fashion. CLESS instead uses self-supervised pretraining to enable

zero-shot prediction without training on real labels. This ‘text-to-text’ prediction

approach is intentionally reminiscent of zero-shot prediction approaches in large

PLMs like GPT-3 (Brown et al., 2020), but is instead designed to maximize zero-shot,

long-tail prediction for use cases that strongly limit pretraining data amounts and

model size. Hooker et al. (2020d) hypothesized that long-tail prediction depends

on the model capacity (parameter amount). Additionally, Brown et al. (2020) found

that zero-shot prediction performance depends on model capacity, but (Frankle and

Carbin, 2019b; Rethmeier et al., 2020b) experimentally showed or visualized how

inefficiently model capacity is used by common models, especially after fine-tuning.

From the above observations, we can confirm the impact of model size for the dou-

bly challenging task of long-tail, zero-shot prediction, but we can also confirm that

contrastive pretraining allows a model to much more efficiently use its capacity for

long-tail capture, i.e. requiring 12.5x fewer parameters (capacity) than common the

RoBERTa model. Perhaps more encouragingly, we also observed that cheap, contrastive

in-domain pretraining boosts zero-shot prediction, even when pretraining data is very

limited – i.e. either by lack of large domain text data or due to data limitations caused

by a long-tail distribution.

6.5.3 (RQ-3.3): few-shot long-tail learning
Since CLESS models allow direct transfer (reuse) of the pretrained prediction head

for supervised label prediction one would also expect the models’ few-shot long-tail

prediction performance to benefit from self-supervised pretraining. We thus study the

few-shot learning performances of both CLESS and RoBERTa, to understand differences

in large pretrained language models (PLMs) and small contrastive language model

(CLM) pretraining in more detail. For the few-shot setup, we use 100%, 50% and

10% of labeled text instances for supervised training or fine-tuning of all models. This

implies that if labels were common in the 100% setup, they now become increasingly

rare or few-shot in the 10% setup, since the smaller label sets are still long-tail

distributed. We again use APmicro test set performance over all 1315 classes to

compare models.

In Figure 6.5, we see that when using full supervision (100%), all models per-

form similarly, with CLESS (3.XL) slightly outperforming RoBERTa (.493 vs. .487)

APmicro_test. For few-shot learning (10%, 50%), we see that CLESS 3.XL retrains
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Figure 6.5: (RQ-3.3) Few-shot label-efficiency: (1) RoBERTa. (2) CLESS without pretraining.
(3) CLESS with pretraining. (3.XL) CLESS pretrained with more pseudo labels and
model parameter as described in (Section 6.5.2). APmicro_test scores for few-shot
portions: 100%, 50%, 10% of training samples with real labels. CLESS 10M
outperforms RoBERTa, and retrains 93.5% of its long-tail performance using only
10% of fine-tuning label texts.

.461/.493=0.935% of its original performance when using only 10% of fine-tuning

labels, while RoBERTa and CLESS 8M each retain around 77%. This demonstrates that

even a sightly larger contrastive pretraining model, with increased self-supervision sig-

nal (3.XL), not only improves zero-shot learning performance as was seen in Figure 6.4,

but also markedly boosts few-shot performance. Noticeably, the only non-pretrained

model (2), performs much worse than the others in the more restricted few-shot

scenarios. Since models (2) and (3) use the same hyperparameters and only differ in

being pretrained (3) or not being pretrained (2), this demonstrates that contrastive

self-supervised pretraining largely improves label efficient learning.

6.6 Conclusion
We introduce CLESS, a contrastive self-supervised language model (CLM), that

unifies self-supervised pretraining and supervised fine-tuning into a single contrastive

‘text embedding to text embedding’ matching objective. Through three research

questions (RQ-1 to RQ-3) we demonstrate that this model learns superior zero-shot,

few-shot, and fully supervised long-tail retention in small models without needing to
compress large models. In RQ-1, we first show that a fine-tuned, large pretrained

language model like RoBERTa should not implicitly be expected to learn long-tail

information well. Then, in RQ-2, we demonstrate that our contrastive self-supervised
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pretraining objective enables very text data-efficient pretraining, which also results in

markedly improved (label efficient) few-shot or zero-shot long-tail learning. Finally,

in RQ-3, we find that using more contrastive self-supervision signals and increasing

model parameter capacity play important roles in boosting zero to few-shot long-tail

prediction performance when learning from very limited in-domain pretraining data.

We also find that the very low compute requirements of our method make it a viable

alternative to large pretrained language models, especially for learning from limited

data or in long-tail learning scenarios, where tail data is naturally limited. In future

work, we envision applying CLESS to low-data domains like medicine (Rethmeier

et al., 2020c) and fact-checking (Augenstein et al., 2019), or to tasks where new labels

emerge at test time, e.g. hashtag prediction (Ma et al., 2014).
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Table 6.1: Time complexity O(Layer), data-efficiency, number of trainable parameters, num-
ber of all parameters. The data-efficiency of Convolutions (*) is reported in various
works to be superior to that of self-attention models (Liu et al., 2020b; Yogatama
et al., 2019a; Merity et al., 2017a; Wang et al., 2020a; Kim et al., 2020; Bender
et al., 2021a; Radford et al., 2021). d is the input embedding size and its increase
slows down convolutions. n is the input sequence length and slows down self-
attention the most (Vaswani et al., 2017a). There exist optimizations for both
problems.

Layer Type O(Layer) Reported Data Requirements Trainable Parameters
Convolution O(n · d2) small (*) 8M-10M (CLESS)
Self-Attention O(n2 · d) large to web-scale (*) 125M (RoBERTa)

6.7 Appendices
6.7.1 Text Processing Details

We decompose tags such as ‘p-value’ as ‘p’ and ‘value’ and split latex equations into

command words, as they would otherwise create many long, unique tokens. In the

future, character encodings may be better for this specific dataset, but that is out of our

current research scope. Words embedding are pretrained via fastText on the training

corpus text. 10 tag words are not in the input vocabulary and thus we randomly

initialize their embeddings. Though we never explicitly used this information, we

parsed the text and title and annotated them with ‘HTML-like’ title, paragraph, and

sentence delimiters, i.e. </title>, </p>, and </s>.

6.7.2 Complexity
Here we will discuss the time and transfer complexity of CLESS vs. Self-attention

models. We do so since time complexity is only meaningful if the data-efficiency of

two methods is the same, because the combination of convergence speed, computation

speed, and end-task performance makes a model effective and efficient.

6.7.2.1 Time complexity:
Our text encoder uses a single 1D CNN encoder layer which has a complexity of

O(n · k · d · f) vs. O(n2 · d) for vanilla self-attention as outlined in Vaswani et al.

(2017a). Here n is the input sequence length, k is the convolution filter size, d is

the input embedding dimension [d = 512 in (Vaswani et al., 2017a) vs. d = 100
for us], and f is the number of convolution filters (at maximum f = 3 · 100 for our

(3.XL) pretraining model). Since we use kernel sizes {1, 2, 3} we get for the largest

configuration (3.XL) an O(n·k = 6·d = 1·f = 3d) ≈ O(n·3d2) vs. O(n2 ·5d) in a vanilla

(2017) self-attention setup where d=512. Furthermore Transformer self-attention

runs an n-way soft-max computation at every layer (e.g. 16 layers), while we run g · b
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single-class predictions at the final output layer using a noise contrastive objective

NCE. We use NCE to undersample both: true negative learning labels (label=0) as

well as positive and negative pseudo labels (input words). If the goal is to learn a

specific supervised end-task, more informed sampling of positive and negative pseudo

labels can be devised. However, we did not intend to overfit the supervised task by

adding such hand-crafted human biases. Instead we use random sampling to pretrain

a model for arbitrary downstream tasks (generalization), which follows a similar logic

as random masking does in masked language modeling.

6.7.2.2 Transfer complexity
: Traditional transfer NLP approaches like RoBERTa (Liu et al., 2019b) need to

initialize a new classification head per task which requires either training a new model

per task or a joint multi-task learning setup. CLESS however can train multiple tasks,

even if they arrive sequentially over time, while reusing the same classifier head from

prior pretraining or fine-tuning. Thus, there is no need to retrain a separate model

each time as in current Transformer transfer models. Once pretrained a CLESS model

can zero-shot transfer to any new task since the match classifier is reused.

6.7.3 Hyperparameters
In this section, we describe the data and memory efficiency of the proposed method

as well as the hyperparameter tuning we conducted.

6.7.3.1 Data, sample and memory efficiency:
We analyzed input data and label efficiency in the main documents zero and few-

shot learning sections. Regarding data-efficiency and model design choices we were

guided by the existing research and optimized for data-efficient learning with inherent

self-supervised zero-shot capabilities in order to facilitate and study supervision-free

generalization to unforeseen tasks. We explain the origins of these design choices in

more detail below. As mentioned in the related research section, Transformers rely on

large to Web-scale pretraining data collections ‘end-task external pretraining data’ (Liu

et al., 2020b; Yogatama et al., 2019a), which results in extensive pretraining hardware

resources (Hooker, 2020; Dodge et al., 2020), concerns about environmental costs

(Strubell et al., 2019a; Bender et al., 2021a) and unintended contra-minority biases

(Mitchell et al., 2020; Waseem et al., 2020; Bender et al., 2021a). CNNs have been

found to be more data-efficient than Transformers, i.e. train to better performance with

less data, several works. For example in OPENAI’s CLIP model, see Figure 2 in (Radford

et al., 2021), the authors find that replacing a Transformer language model backbone

with a CNN backbone increased the zero-shot data-efficiency 3 fold, which they further

increased by adding a supervised contrastive learning objective. (Dosovitskiy et al.,
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2020) showed that adding a CNN component to a vision Transformer model helps with

data and computational efficiency, see Figure 5 and text in (Dosovitskiy et al., 2020).

When comparing works on small-scale data pretraining capabilities between (Merity

et al., 2017a) (CNN, LSTM) with recent Transformer models Wang et al. (2020a), one

can see that Transformer encoders struggle to learn from small pretraining collections.

They also struggle to fine-tuning on smaller supervised collections (Liu et al., 2020a;

Dodge et al., 2020; Rogers et al., 2020). For CLESS, tuning the embedding layer

made little difference to end-task performance, when starting training with pretrained

fastText word embedding. Thus embedding tuning the embedding layer can be turned

off to reduce gradient computation and memory. For example, when not tuning

embeddings, the CLESS 10M model has only 3.2M trainable parameters.
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6.7.3.2 Parameter tuning + optima (2)-(3.XL)
We provide detailed parameter configurations as python dictionaries for reproducibil-

ity in the code repository within the /confs folder. In 6.2 we see how the hyperparam-

eters explored in CLESS – the optimal CLESS 3.XL parameters are marked in bold. The

baseline CLESS configuration (2) hyperparameters were found as explained in the ta-

ble, using the non-pretraining CLESS 8M (2) model – its best parameters are italic. We

found these models by exploring hyperparameters that have been demonstrated to in-

crease generalization and performance in (Jiang et al., 2020a; He et al., 2019). To find

optimal hyperparameter configurations for the baseline model (2) we ran a random

grid search over the hyperparameter values seen in 6.2. For the baseline CLESS 8M

model (2), without pretraining, we found optimal hyperparameters to be: lr = 0.001
(lr=0.0005 works too), filter_sizes_and_number = {1 : 100, 2 : 100, 3 : 100},

match_classifier=two_layer_classifier, ’conf’:[{’do’: None|.2, ’out_dim’: 2048 | 4196

| 1024}, max_kpooling=7, bs=1536, etc. – see table 6.2. Increasing the filter size,

classifier size, its depth, or using larger k in k-max pooling decreased dev set per-

formance of the non-pretrained model (i.e., CLESS 8M) due to increased overfitting.

The largest pretrained CLESS 10M (3.XL) model was able to use more: ‘max-k=10’,

a larger ‘label’ and ‘text sequence encoder’= one_layer_label_enc, ’conf’:[{’do’: .2,

’out_dim’: 300} while the batch size shrinks to 1024 due to increased memory re-

quirements of label matching. Note that label and text encoder have the same output

dimension in all settings – so text and label embeddings remain in the same represen-

tation dimensionality R300. The label encoder averages word embeddings (average

pooling), while the text encoder uses a CNN with filters as in 6.2. The model receives

text word ids and label-word ids, that are fed to the ‘text encoder’ and ‘label-encoder’.

These encoders are sub-networks that are configured via dictionaries to have fully

connected layers and dropout, with optimal configurations seen in the table. As the

match-classifier, which learns to contrast the (text embedding, label embedding) pairs,

we use a two_layerMLP which learns a similarity (match) function between text

embedding to label embedding combinations (concatenations).

During self-supervised pretraining, the models (3) and (3.XL) optimize for arbitrary
unforeseen long-tail end-tasks, which allows zero-shot prediction without ever seeing

real labels, but also uses a very diverse learning signal by predicting sampled positive

and negative input word embeddings. If the goal is to solely optimize for a specific

end-task, this self-supervision signal can be optimized to pretrain much faster, e.g.

by only sampling specific word types like nouns or named entities. With specific

end-task semantics in mind, the pseudo label and input manipulations can easily be

adjusted. This allows adding new self-supervision signals without a need to touch

the model’s network code directly, which helps ease application to new tasks and
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for less experienced machine learning practitioners. Finally, we mention implemen-

tation features, that can safely be avoided to reduce computation and optimization

effort, so that following research needs not explore this option. When training the

supervised and self-supervised loss at the same time (jointly), CLESS rescales both

batch losses to be of the same loss value as using a single loss. This makes it easy

to balance (weight) the two loss contributions in learning, and allows transferring

hyperparameters between self-supervised and supervised pretraining. We also allow

re-weighting the loss balance by a percentage, so that one loss can dominate. However,

we found that in practice: (a) using the self-supervised loss along with the supervised

one does not improve quality, but slows computation (2 losses). (b) We also found

that, if one decides to use joint self and supervised training, loss re-weighting had no

marked quality effects, and should be left at 1.0 (equal weighting), especially since it

otherwise introduces further, unnecessary hyperparameters. For pretraining research,

hyperparameter search is very involved, because we deviate in common practice by

introducing a new architecture, a new loss variation, an uncommon optimization goal

and metrics as well as a new dataset. Thus we ended up with 205 trails for small test

set, RoBERTa, CLESS variants, zero-shot and few shot hyperparameter search. On the

herein reported dataset, we have not yet tested further scaling up model parameters

for pretraining as this goes against the goal of the paper and is instead investigated

in followup work. Furthermore, when we ran such parameter scale-up experiments,

to guarantee empirical insights, these created a significant portion of trails, meaning

that, now that sensible parameters are established, we can use much fewer trials, as is

the case with pretrained transformers. The work at hand suggest that, once sensible

parameters are established, they are quite robust, such that doubling the learning

rate, batch size and loss weighting only cause moderate performance fluctuations.

Finally, the above reported pretraining hyperparameters seem to work well on cur-

rently developed followup research, that uses other, even much larger, datasets. This

makes the 205 hyperparameter trials a one time investment for initial pretraining

hyperparameter (re)search for this contrastive language model (CLESS).
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7Paper 6: MoRTy:
Unsupervised Learning of
Task-specialized Word
Embeddings by Autoencoding

7.1 Introduction
Word embeddings are ubiquitous in Natural Language Processing. They provide

a low-effort, high pay-off way to improve the performance of a specific supervised

end-task by transferring knowledge. However, recent works indicate that universally

best embeddings are not yet possible (Bollegala and Bao, 2018; Kiela et al., 2018a;

Dingwall and Potts, 2018), and that they instead need to be tuned to fit specific end-

tasks using inductive bias – i.e., semantic supervision for the unsupervised embedding

learning process (Conneau et al., 2018; Perone et al., 2018). This way, embeddings

can be tuned to fit a specific single-task (ST) or multi-task (MT: set of tasks) semantic

(Xiong et al., 2018).

Fine-tuning requires labeled data, which is often either too small, not available

or of low quality and creating or extending labeled data is costly and slow. Word

embeddings are typically induced from huge unlabeled corpora with billions of tokens,

but for limited-resource domains like biology or medicine, it becomes less clear

whether there is still transfer. We set out to create task-specified embeddings cheaply,

with self-supervision, that are able to provide consistent improvements, even in limited

resource settings.

We evaluate the impact of our method, named MORTY, on 18 publicly available

benchmark tasks developed by Jastrzebski et al. (2017)1 using two ways to induce

embeddings, Fasttext and GloVe. We test them in two setups corresponding to two

different overall aims: (a) to specialize embeddings to better fit a single supervised task

or, (b) to generalize embeddings for multiple supervised end-tasks, i.e., to optimize

MORTYs for single or multi-task settings. Since most embeddings are pre-trained on

large corpora, we also investigate whether our method further improves embeddings

trained on small corpus setups.

1https://github.com/kudkudak/word-embeddings-benchmarks
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Hence, we demonstrate the method’s application for single-task, multi-task, small,

medium and web-scale (common crawl) corpus-size settings (Section 7.4). Learning
to scale-up by pretraining on more (un-)labeled data is both: (a) not always possible

in low-resource domains due to lack of such data, and (b) heavily increases the

compute requirements of comparatively small supervised down-stream task. This

not only leads to high per model-instance costs but also limits learning to scale-
out, i.e., when combining many smaller models into a larger dynamic model as is

desirable in continual learning settings, where models, inputs and objectives may

emerge or disappear over time. To provide an alternative in such settings we design

MORTY as a learning-to-scale-down approach, that uses less data and compute to

achieve a performance improvement despite forgoing (un-)supervised fine tuning on

target domain data. Consequently, MORTY uses very little resources,2 producing a low

carbon footprint, especially regarding recent, compute intensive, scale-up approaches

like ELMo or BERT (Peters et al., 2018; Devlin et al., 2018) which have high hardware

and training time requirements and a large carbon footprint as recently demonstrated

by Strubell et al. (2019b). As a result, we demonstrate a simple, unsupervised scale-

down method, that allows further pretraining exploitation, while requiring minimum

extra effort, time and compute resources. As in standard methodology, optimal post-

processed embeddings can be selected according to multiple proxy-tasks for overall

improvement or using a single end-task’s development split—e.g., on a fast baseline

model for further time reduction.

7.2 MoRTy embeddings
Our proposed post-processing method provides a Menu of Reconstructing Transfor-

mations to yield improved end-task performance (MORTY).

Approach: The key idea of MORTY is to create a family of embeddings by learning

to reconstruct the original pre-trained embeddings space via autoencoders.

The resulting family or representations (post-processed embeddings) gives a “menu"

which can be picked from in two ways: (a) standard development set tuning, to gain

performance at a single supervised task (ST), or (b) via benchmark tasks, to boost

performance of multiple tasks (MT). The first is geared towards optimizing embeddings

for a single specific task (specialization), the latter aims at embedding generalization,

that works well across tasks.

In more details, the overall MORTY recipe is: (1) Train (or take): an original (pre-

trained) embedding space Eorg using embedding method f . (2) Reconstruct Eorg:

2< 1GB memory including the whole dataset, computes fast on GPU and CPU and inherits FastText’s
dynamic out-of-vocabulary token embedding generation, which is useful in handling unforeseen
words in down-stream tasks.
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compute multiple randomly initialized representations of Eorg using a reconstruction

loss (mean square error, cf. below). (3) Pick: performance-optimal representation

for the end-task(s) via a task’s development split(s) or proxy tasks, depending on the

end-goal, i.e., specialization or generalization. (4) Gain: use optimal MORTY (Epost)

to push relative performance on end task(s).

Which autoencoder variant? For step (2), we found the following autoencoder

recipe to work best: A linear autoencoder with one hidden layer, trained via bRMSE

(batch-wise root mean squared error), the same hidden layer size as the original

embedding model and half of its learning rate3– i.e., a linear, complete autoencoder,
trained for a single epoch (cf. end of Section 7.3).

We experimented with alternative autoencoders: sparse (Ranzato et al., 2007),

denoising, discrete (Subramanian et al., 2018), and undercomplete autoencoders,

but found the simple recipe to work best. In the remainder of the paper, we test this

‘imitation-scheme’ setup recipe.

7.3 Experiments
With the aim of deriving a simple yet effective ‘best practice’ usage recipe, we

evaluate MORTY as follows: a) using two word embedding methods f ; b) corpora of

different sizes to induce Eorg, i.e., small, medium and web-scale; c) evaluation across

18 semantic benchmark tasks spanning three semantic categories to broadly examine

MORTY’s impact, while assessing both single and multi-task end goals; and finally e)

evaluate 1-epoch setups in relation to different corpus sizes.

Embeddings and Corpus Size: We evaluate embeddings trained on small, medium

(millions of tokens) and large (billions of tokens) corpus sizes. In particular, we

train 100-dimensional embeddings with Fasttext (Bojanowski et al., 2016)4 and

GloVe (Pennington et al., 2014)5 on the 2M and 103M WikiText created by Merity

et al. (2016). We complement them with off-the-shelf web-scale Fasttext and GloVe

embeddings (trained on 600B and 840B tokens, respectively). This results in the

following vocabulary sizes for Fasttext and GloVe embeddings, respectively: on 2M
25,249 and 33,237 word types. For 103M we get 197,256 and 267,633 vocabulary

words. Public, off-the-shelf – common-crawl trained – Fasttext and GloVe embeddings

have very large vocabularies of 1,999,995 and 2,196,008 words.

3Original Fasttext and GloVe used lr = 0.05, so lr ≈ 0.025 is a ‘careful’ rate and used throughout the
experiments in this paper.

4To train Fasttext we used https://fasttext.cc
5To train GloVe we used the python glove_python wheel
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To account for variation in results, we train both embedding methods five times each6

on the two WikiText corpus sizes. We observed only minor variations, < 0.5% between

runs for both Fasttext and GloVe, in overall performance Σ – i.e., when summing the

scores of all benchmark tasks.

Semantic benchmark tasks: We use a publicly available word embedding bench-

mark implementation developed by Jastrzebski et al. (2017) – chosen for reproducibil-

ity and breadth. The 18 tasks span three semantic categories: (a) word similarity

(6 tasks), (b) word analogy (3 tasks), and (c) word and sentence categorization (9

tasks).7

embedder
model

Fasttext base
performance

MT % change by
1 overall Morty 

ST % change by
18 single Mortys

GloVe base
performance

MT % change by
1 overall Morty 

ST % change by
18 single Mortys

train size 2M 103M 600B 2M 103M 600B 2M 103M 600B 2M 103M 840B 2M 103M 840B 2M 103M 840B
AP 0.31 0.59 0.68 -6.1 -0.9 -1.5 8.2 5.2 4 0.2 0.43 0.61 2.7 5.6 9.3 13.2 9.2 12.2
BLESS 0.3 0.73 0.84 -2.2 3.8 -3 13 9.7 5.4 0.27 0.51 0.85 1.6 -1.6 -1.8 7.9 7.9 4.7
Battig 0.14 0.32 0.48 -3.6 0.1 -3.7 7 4 0.5 0.1 0.19 0.46 3.5 2 1.9 7.4 5.4 8.5
ESSLI 1a 0.48 0.76 0.77 2.2 4.3 17.6 27.5 10.2 17.6 0.46 0.63 0.75 0 3.1 9.1 8 8.9 12.1
ESSLI 2b 0.63 0.75 0.78 9.2 2.7 0 26.5 11.3 12.9 0.51 0.74 0.75 19.9 -0.5 6.7 23.7 11.7 16.7
ESSLI 2c 0.54 0.54 0.62 -3.7 10.7 -10.7 11 19.7 10.7 0.46 0.54 0.62 2.1 2.7 0 16.9 16.7 10.7
Google 0.06 0.04 0.12 33.6 293.8 187.3 45.3 319.3 217.2 0 0.05 0.58 42.7 13.8 2.8 60.4 18.6 5.9
SEval 12 2 0.11 0.16 0.24 1.6 4.3 -2.8 18.1 14.1 4.8 0.11 0.15 0.2 6.5 2.2 1 11.4 5 2.4
MSR 0.28 0.08 0.18 18.8 246.2 117.1 27.5 267.3 137 0 0.09 0.57 45.6 30.9 -2.4 100.7 38.1 10.1
MTurk 0.24 0.52 0.73 65.6 5.1 1.1 98 12.6 1.5 0.3 0.46 0.69 -22.4 2.6 0.5 1.6 4.2 2.6
RG65 0.29 0.71 0.86 65.2 0.7 2.1 104.7 5.3 5.6 0.15 0.44 0.77 11.6 3.9 -1.3 30.8 10 4
RW 0.21 0.38 0.59 -17.1 -0.8 -2 4.1 2.4 0.9 0.2 0.21 0.46 -2.1 11.8 2 4 19.8 10.3
MEN 0.36 0.71 0.84 13 0.4 -0.4 22 2.3 0.3 0.16 0.51 0.8 3.6 5.6 0.5 15.1 7 7.7
SimLex999 0.18 0.31 0.5 -23.2 3.7 -1.2 7.3 9 3.1 0.03 0.22 0.41 147.8 7.3 3.1 228.3 11.7 9.3
TR9856 0.1 0.13 0.18 2.8 -4.1 -37.1 20.5 17.3 -2.5 0.09 0.08 0.1 13.9 8.9 -4.7 19.8 47.3 36.7
WS353 0.46 0.69 0.79 3.9 1 -1.7 10 2.9 0.6 0.16 0.45 0.74 31.5 7.2 0.7 36.8 8.2 5.6
WS353R 0.35 0.63 0.74 16.4 1.7 -2.8 24.3 4.1 1.6 0.08 0.4 0.69 53.1 6.5 1.1 62 8.2 2.7
WS353S 0.52 0.77 0.84 3.2 0.4 0.6 13.3 3 1.9 0.27 0.58 0.8 15.1 6.5 0.3 20.2 7.6 5.9
∑ tasks 5.55 8.83 10.79 8.9 5.8 3.4 8.9 5.8 3.6 3.56 6.68 10.84 7.8 4.3 1.9 7.8 4.3 1.9
category 2.39 3.7 4.17 -2.1 -0.2 1.8 11.4 4.5 3.1 2 3.04 4.05 3.5 -0.8 2.4 7.3 3.3 5.5
analogy 0.45 0.28 0.55 15.5 115 72.2 24.6 125.2 92.7 0.11 0.29 1.34 7.4 4.2 1.3 12.3 15.8 6.5
similarity 2.71 4.85 6.07 6.2 -0.6 -4.7 17.3 2.2 -0.3 1.45 3.35 5.45 9.2 1.8 0 11 6.3 2.9

legend <50% 50% >50% < -10% no change > +10% <50% 50% >50% < -10% no change > +10%

Table 7.1: MORTY on Fasttext and GloVe: Above are scores for: 18 individual tasks (AP-
WS353S), the sum of 18 scores Σ, and scores grouped by semantic: similarity (AP-
ESSLI2c), analogy (Google-MSR), classification (MTurk-WS253S). Left column:
shows absolute scores of the original embedder. Middle column: shows % score
change after fine-tuning with the MORTY that has the highest overall score Σ – i.e.,
1 MORTY for all tasks (multi-task). Right column: shows % score change after
applying 18 individually best MORTYs per single-task – i.e., 18 MORTYs . Each
column is further split by corpus size – 2M, 103M(illion) and 600/840B(illion)
tokens. All scores are averages over 5 original embedder scores and respective
MORTY changes.

6Fasttext was trained using the implementation’s (fasttext.cc) default parameters. GloVe was
trained with the same parameters as in (Pennington et al., 2014) – Figure 4b. Though, 4a gave the
same results.

7Jastrzebski et al. (2017) use measures form the dataset literature: Spearman correlation for similarity,
3CosAdd for analogy and accuracy and cluster purity for categorization.
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Evaluation and Experimental Details For the single-task setup we show MORTY’S

relative, percentual performance change (ST % change) produced by choosing the

best MORTY embedding per task – 18 MORTYs. Correspondingly, for multi-task results

we show MT % change obtained by choosing the MORTY embedding with the best

score over all tasks Σ – i.e., one MORTY for all tasks. Performances in Table 7.1

are averaged over 5 runs each of Fasttext and GloVe per corpus size. To maximize

MORTY’S usability we evaluate a 1-epoch training scheme. We test its robustness –

particularly for limited resource use – by training 1 epoch on three corpus sizes (small

to web-scale), using the best multi-task (MT/ Σ) base embedder – see Fasttext Table

7.1. We again account for variation by using 3 randomly initialized MORTY runs, each

over the 5 respective runs per corpus size. In this experiment, a single epoch yielded

very stable boosts, that are comparable to multi-epoch training.

7.4 Results
The main results are provided in Table 7.1 and Figure 7.1. There are several

take-aways.

f : Fasttext and GloVe: First, regarding the base embeddings (cf. per-category

base performance scores in Table 7.1): i) we notice that Fasttext performs overall

better than GloVe; ii) classification and similarity results improve the larger the corpus;

consistently over f ; and iii) GloVe is better for the analogy tasks on web-scale data.8

MORTY for multi-task application: Second, the MT % change columns show that

a single best MORTY improves overall performance Σ (black row)9 – the sum of 18

tasks – by 8.9, 5.8 and 3.4 percent compared to Fasttext base. As corpus size increases,

there is less space for MORTY to improve Σ scores. What is interesting to note is that

MORTY is able to recover analogy performance on 103M (to more than 2M level).

This is also reflected in the Google and MSR analogy scores doubling and tripling

(middle column). On 2M we also see a modest improvement (6.2) for similarity

tasks, while classification on 2M slightly dropped. Regarding GloVe (3 rightmost

columns) we notice lower overall performance (black column), which is consistent

with findings by Levy et al. (2015). MORTY on GloVe produces lower but more

stable improvements for the MT setting (middle column), with analogy and similarity

performance noticeably increasing for the small 2M dataset. Generally, we see both

performance increases and drops for individual task, especially on 2M and Fasttext,

indicating that, a single overall best MORTY specializes the base Fasttext embedding

8GloVe 3CosAdd matches (Levy and Goldberg, 2014).
9Note that, % change for Σ is not the average of the individual task changes, but the % change of the

sum of 18 individual scores.
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to better fit a specific subset of the 18 tasks, while still beating the base embedders f

in overall score (Σ).

MORTY for single-task application: In the ST % change columns we see best

single task (ST) results for task-specific optimal MORTY embeddings. Both embedders

get consistent boosts, with Fasttext exhibiting significantly higher improvement from

MORTY on 2M and 103M, despite already starting out at a higher base performance.

training corpus size (small, medium, common crawl)
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Figure 7.1: 1-epoch MORTY (MT %) performance change over Fasttext: Blue bars show
Fasttext baseline performance (100%). 3 Morty runs: trained on Fasttext for 1
epoch (2x5 Fasttext for corpus sizes 2M and 103M and 1x for 600B). Detailed
description on next page.

Applying the MORTY 1-epoch recipe So far, we saw MORTYs potential for overall

(ST/MT/Σ) performance improvements, but will we observe the same in the wild?

To answer this question for the MT use-case, we apply a 1-epoch training only recipe.

That is, we train 1-epoch using a linear, complete autoencoder using half of the base
embedders learning rate on three randomly initialized MORTYs, and then test them on

the 18 task (MT) setup. Figure 7.1 shows consistent MT/Σ score improvements for

each of the 3 MORTY-over-Fasttext runs (red, yellow, green) on 2M, 103M, and 600B

vs. base Fasttext (blue 100).

We see that, for practical application, this allows MORTY to boost supervised MT

performance even without using a supervised development split or proxy task(s),

while also eliminating multi-epoch tuning. Both Figure 7.1 and Table 7.1 show similar

overall (MT) improvements per corpus size, which suggests that 1-epoch training

is sufficient and that MORTY is especially beneficial on smaller corpora – i.e., in

limited resource settings.

7.5 Related Work
There is a large body of work on information transfer between supervised and

unsupervised tasks. First and foremost unsupervised-to-supervised transfer includes
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using embeddings for supervised tasks. However, transfer also works vice versa, in a

supervised-to-unsupervised setup to (learn to) specialize embeddings to better fit a

specific supervised signal (Ruder and Plank, 2017; Ye et al., 2018). This includes in-

jecting generally relevant semantics via retrofitting or auxiliary multi-task supervision

(Faruqui et al., 2015; Kiela et al., 2018b). Supervised-to-supervised methods provide

knowledge transfer between supervised tasks which is exploited successively (Kirk-

patrick et al., 2017), jointly (Kiela et al., 2018b) and in joint-succession (Hashimoto

et al., 2017).

Unsupervised-to-unsupervised transfer is less studied. Dingwall and Potts (2018)

proposed a GloVe model-modification that retrofits publicly available GloVe embeddings

to produce specialized domain embeddings, while Bollegala and Bao (2018) propose

meta-embeddings via denoising autoencoders to merge diverse (Fasttext and GloVe)

embeddings spaces. The later, is also a low-effort approach and closest to ours.

However, it focuses on embedding merging that they tuned on a single semantic

similarity task, while MORTY provides an overview of tuning for 19 different settings.
Furthermore, MORTY requires only a single embedding space, which contributes to

the literature by outlining that meta-embedding improvements may partly stem from

re-encoding rather than only from semantic merging.

7.6 Conclusion
We demonstrated a low-effort, self-supervised, learning scale-down method to con-

struct task-optimized word embeddings from existing ones to gain performance on a

(set of) supervised end-task(s) without direct domain adaptation. Despite its simplicity,

MORTY is able to produce significant performance improvements for single and multi-
task supervision settings as well as for a variety of desirable word encoding properties

while forgoing building and tuning complex model architectures and labeling.10 Per-

haps most importantly, MORTY shows considerable benefits for low-resource settings

and thus provides a learning-to-scale-down alternative to recent scale-up approaches.
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