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Abstract
This thesis addresses two pivotal challenges in Multi-armed bandits: achieving best-
of-both-worlds guarantees and effectively handling delayed feedback. In practical sce-
narios like recommender systems and clinical trials, environments may exhibit a blend
of stochastic and adversarial characteristics. Concurrently, delays are prevalent in
such applications.

The Tsallis-INF algorithm introduced by Zimmert and Seldin (2019) marked a
breakthrough, demonstrating optimal performance in both adversarial and stochas-
tic bandits. Building upon this foundation, our thesis refines the Tsallis-INF regret
bound within intermediate scenarios that bridge stochastic and adversarial environ-
ments. We propose a comprehensive analysis that enhances understanding of the
self-bounding technique used by Zimmert and Seldin (2019) and yields improved re-
gret bounds for stochastic with adversarial corruption and stochastically constrained
adversarial regimes.

Addressing the challenge of delayed feedback in bandits, we establish a best-of-
both-worlds regret guarantee. Existing research within the Follow the Regularized
Leader (FTRL) framework addresses the delayed problem only in the adversarial
regime. We propose a minor adaptation to the algorithm of Zimmert and Seldin
(2020), that relies on the knowledge of the maximal delay dmax and ensures control
over the drift of the distribution over arms played by the algorithm, thereby realizing
a best-of-both-worlds guarantee.

Furthermore, we complement our best-of-both-worlds algorithm for delayed ban-
dits with the skipping technique (Zimmert and Seldin, 2020) and implicit exploration
(Neu, 2015), eliminating the requirement for prior knowledge of dmax. These tech-
niques facilitate efficient distribution drift control, further enhancing our established
best-of-both-worlds guarantees.

Lastly, we explore leveraging intermediate observations to mitigate delay impacts
on the learning process. These observations, appearing as finite states S, provide
the learner with real-time information. In each round, the corresponding state is
revealed immediately upon the learner’s action, followed by the actual loss after an
adversarially set delay. We find that the complexity of the problem pivots on the
state-loss mapping’s nature, rather than the action-state relationship. For adversarial
state-loss mappings, intermediate observations yield no advantages. However, in
scenarios with stochastic state-loss mappings, we improve worst-case regret, replacing√
(K + d)T with

√
(K + min {S, d})T , where d is the fixed delay, T is the time

horizon, and K is the number of arms. This improvement extends to arbitrary delay
settings, ensuring robust high probability guarantees.
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Resumé
Denne afhandling beskæftiger sig med to afgørende udfordringer inden for Multi-
armed bandits: opnåelse af garantier for bedst-ud-af-begge-verdener og effektiv hånd-
tering af forsinket feedback. I praktiske scenarier som anbefalingssystemer og kliniske
forsøg kan miljøer udvise en blanding af stokastiske og fjendtlige karakteristika. Sam-
tidig er forsinkelser udbredte i sådanne anvendelser.

Algoritmen Tsallis-INF, introduceret af Zimmert and Seldin (2019), markerede
et gennembrud ved at demonstrere optimal ydeevne både i fjendtlige og stokastiske
bandits. Byggende på denne grundlæggende viden forfiner vores afhandling Tsallis-
INF-regretsgrænsen inden for mellemliggende scenarier, der forbinder stokastiske og
fjendtlige miljøer. Vi foreslår en omfattende analyse, der forbedrer forståelsen af
den selvafgrænsende teknik, der anvendes af Zimmert and Seldin (2019), og giver
forbedrede regretsgrænser for stokastiske med fjendtlig korruption og stokastisk be-
grænsede fjendtlige regime.

Ved at håndtere udfordringen med forsinket feedback i bandits etablerer vi en
garant for det bedste fra begge verdener med hensyn til regrets. Eksisterende forskn-
ing inden for Follow the Regularized Leader (FTRL) rammer kun det forsinkede prob-
lem i fjendtlige regime. Vi foreslår en mindre tilpasning til algoritmen fra Zimmert
and Seldin (2020), der bygger på kendskabet til den maksimale forsinkelse dmax og
sikrer kontrol over fordelingens drift over arme, som algoritmen spiller, og realiserer
derved en garant for det bedste fra begge verdener.

Desuden supplerer vi vores algoritme for det bedste fra begge verdener til
forsinkede bandits med spring-teknikken (Zimmert and Seldin, 2020) og implicit ud-
forskning (Neu, 2015), hvilket eliminerer kravet om forhåndskendskab til dmax. Disse
teknikker letter effektiv kontrol af fordelingsdrift, hvilket yderligere forbedrer vores
etablerede garantier for det bedste fra begge verdener.

Endelig udforsker vi brugen af mellemliggende observationer for at mildne
forsinkelsens indvirkning på læringsprocessen. Disse observationer, der fremtræder
som begrænsede tilstande S, giver læseren realtidsinformation. I hvert trin afsløres
den tilsvarende tilstand øjeblikkeligt efter deltagerens handling, efterfulgt af det fak-
tiske tab efter en fjendtligt fastsat forsinkelse. Vi finder, at problemets kompleksitet
drejer sig om karakteren af sammenhængen mellem tilstand og tab, snarere end
mellem handling og tilstand. For fjendtlige sammenhænge mellem tilstand og tab
giver mellemliggende observationer ingen fordele. Dog forbedrer vi i scenarier med
stokastiske sammenhænge mellem tilstand og tab den værst tænkelige regret ved at
erstatte

√
(K + d)T med

√
(K + min {S, d})T , hvor d er den faste forsinkelse, T er

tidsrammen og K er antallet af arme. Denne forbedring strækker sig til vilkårlige
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forsinkelsesindstillinger og sikrer robuste garantier med høj sandsynlighed.
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Chapter 1

Introduction

The field of online learning includes a diverse array of problems connected to real life
challenges. At its core lies the fundamental problem of the Multi-armed Bandit, a
consequential challenge that has attracted extensive attention due to its applicability
in a wide range of domains. Multi-armed bandits, with its roots in statistical decision
theory and sequential analysis, encapsulates the essence of adaptive decision-making
under uncertainty.

The simplicity inherent to the Multi-armed Bandit framework provides a fertile
ground for analytical exploration. Nevertheless, the significance of the Multi-armed
Bandit extends far beyond its theoretical confines, finding practical relevance in an
array of real-world applications. One compelling domain where the Multi-armed
Bandit paradigm shines is adaptive clinical trials. Here, the exploration-exploitation
trade-off mirrors the challenge of experimenting with new treatments while capital-
izing on the most promising options. Moreover, the flexibility of the Multi-armed
Bandit framework makes it well-suited for enhancing recommendation systems, where
it facilitates the balance between exploring uncharted options and exploiting well-
performing choices. Although it might not fully captures the complexities of the real
world, the Multi-armed Bandit framework still acts as an essential building block.
Particularly, it significantly influences more structured domains in Online Learning
such as Reinforcement Learning, Partial Monitoring, and Monte-Carlo Tree Search,
leading to important progress that goes beyond its basic setup.

The Multi-armed Bandit problem can be visualized as a sequential decision-
making game with an agent, often referred to as the learner, who interacts with
an environment over a series of rounds. At each round the learner selects an action,
so called arm, among a set of arms and incurs the associated loss with that arm.
These losses are determined by the environment, and the learner only observes the
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Chapter 1 | Introduction

loss of the chosen action. The learner’s objective is to minimize the cumulative regret
- the gap between her accrued losses and the losses that would have been incurred
by choosing the best action consistently.

Within the realm of Multi-armed Bandits, two conventional assumptions under-
pin the fabric of the problem. The first is related to the nature of the environment,
mandating it to be either fully stochastic, where all losses are drawn i.i.d. from
certain distributions, or adversarial, allowing arbitrary choices of losses within the
[0, 1] interval. The second assumption is immediate feedback, that dictates that the
learner promptly observes the loss corresponding to her chosen action. However,
these assumptions, while providing a foundation for analysis, can be violated in
many real-world scenarios. This thesis focuses on the bandits works on both of these
challenges.

In the bandit literature, there has been extensive research on both the stochastic
regime (Thompson, 1933; Robbins, 1952; Lai and Robbins, 1985; Auer et al., 2002a)
and the adversarial setting (Auer et al., 2002b). However, these algorithms typically
make strong assumptions about the type of environment, while real-world scenarios
can be different. In practical applications, the environment might not be purely
stochastic or completely adversarial. For instance, a recommender system, where
user preferences usually follow a certain pattern, but occasional changes in behavior
due to factors like mood can disrupt this pattern. In such cases, algorithms that are
designed for fully stochastic regime might perform poorly, suffering linear regret. On
the other hand, using adversarial algorithms isn’t entirely fair either, as they only
guarantee regret for worst-case scenarios, not accounting for slight disruptions in the
stochastic environment. To address this challenge, there has been recent interest
in developing algorithms that can simultaneously work well in both the stochastic
and the adversarial regimes, without any prior knowledge about the type of the
environment (Bubeck and Slivkins, 2012; Seldin and Slivkins, 2014; Auer and Chiang,
2016; Seldin and Lugosi, 2017; Wei and Luo, 2018). The ultimate goal of these works
is to achieve the optimal bounds for both regimes, so called best-of-both-worlds
guarantees. Unlike previous attempts that had limitations in one of the regimes,
Zimmert and Seldin (2019) addressed this by introducing the Tsallis-INF algorithm,
achieving optimal bounds in both regimes. Remarkably, this algorithm had been
proposed previously for the adversarial regime by Audibert and Bubeck (2009, 2010)
and Abernethy et al. (2015), but Zimmert and Seldin reanalyzed it for the stochastic
regime, achieving logarithmic regret. Operating within the Follow the Regularized
Leader (FTRL) framework, the algorithm uses a kind of regularization known as
α-Tsallis Entropy (Tsallis, 1988), which has inspired others to seek "best-of-both-
worlds" guarantees in various settings. The analysis of Tsallis-INF has been extended
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Chapter 1 | Introduction

further by Zimmert and Seldin (2021) to intermediate regimes between stochastic
and adversarial environments, including stochastically constrained adversarial regime
(Wei and Luo, 2018) and stochastic bandits with adversarial corruptions Lykouris
et al. (2018). Yet, the analysis of the Tsallis-INF algorithm reveals a significant
drawback in such intermediate scenarios. This limitation stems from the fact that
the provided regret does not seamlessly bridge the gap between the two regimes. In
this thesis, we will delve into this issue to propose a solution.

This thesis tackles another bandit challenge: delayed feedback, a natural occur-
rence in real-world applications. For instance, in clinical trials, there’s a delay be-
tween giving patients a medication and seeing its effects. Decentralized recommender
systems also face delays in communication. In the stochastic setting, Joulani et al.
(2013) proved that the impact of fixed delay d is only an additive term O(d) on the
regret, which does not grow with time. However, delays become more impactful in
the adversarial setting. Cesa-Bianchi et al. (2019) demonstrated that fixed delay
of d could lead to O(

√
dT ) regret. Later, Bistritz et al. (2019) and Thune et al.

(2019) extended this to arbitrary delay scenarios but with a requirement of knowing
the total delay beforehand. All these adversarial regime studies operate within the
FTRL framework, using negative entropy as the regularizer. However, Zimmert and
Seldin (2020) introduced a novel FTRL-based algorithm, employing a combination of
Tsallis entropy and negative Shannon entropy for regularization. Furthermore, they
introduced an effective skipping technique to skip rounds with significantly large de-
lays. While, their algorithm achieves a minimax optimal bound in the adversarial
regime with arbitrary delays, but it remained uncertain whether it also guarantees
logarithmic performance in the stochastic setting. We show an adaptation to their
algorithm that secures a best-of-both-worlds guarantee.

As we have observed, delay’s impact on the adversarial regime grows at
√
dT

rate. Hence, if d is substantial, the delay cost could be significantly large. Yet,
in many practical scenarios, there are intermediate observations available with no
delay. For example, in medical trials, we can measure intermediate symptoms like
blood pressure and heart rate when prescribing medication. This naturally leads to
the question: Can the effect of delays be mitigated by utilizing these intermediate
observations? While this problem has been addressed by Vernade et al. (2020) for
non-stationary regime, in this thesis we tackle this problem in adversarial regime.

1.1 Outline of the Thesis
In the following we provide the structure of the thesis.
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Chapter 1 | Introduction

Chapter 2 introduces an improved analysis of Tsallis-INF algorithm provided by
Zimmert and Seldin (2021). The analysis of Tsallis-INF algorithm in both stochas-
tic with adversarial corruption, and stochastically constrained adversarial regimes
is based on the self-bounding technique, however the analysis of adversarial setting
requires a different approach. We provide a single analysis for all the regimes that
not only provides a better understanding of self-bounding technique but also pro-
vides better results in both stochastic with adversarial corruption, and stochastically
constrained adversarial regimes.

Chapter 3 and Chapter 3 both consider the problem of multi-armed bandits with
arbitrary delays. While this issue has been addressed separately in adversarial and
stochastic scenarios, no best-of-both-worlds solutions exist. In Chapter 3, we propose
a modification to the state-of-the-arts algorithm for adversarial regime by Zimmert
and Seldin (2020). Our modification ensures control over the drift of the distribution
over arms played by the algorithm by utilizing information about the maximum delay
dmax. This enables us to achieve the first-ever best-of-both-worlds guarantee for this
problem.

In Chapter 4, we empower the algorithm introduced in Chapter 3 with two tech-
niques: the skipping technique (Zimmert and Seldin, 2020) and implicit exploration
(Neu, 2015). These techniques allow distribution drift control without requiring any
prior knowledge like dmax. This advancement improves further the best-of-both-
worlds guarantees established in Chapter 3.

In Chapter 5 we consider the problem of delayed bandits with intermediate ob-
servations. In this problem, the learner takes an action, observes an intermediate
state from set of states, and suffers the loss of her action. However, the actual
loss is observed after a certain delay. We address the fundamental question: When
do intermediate observations help in delayed bandits?. We examine this question
across different scenarios of the action-state mapping and state-loss mapping. While
this problem has been studied by Vernade et al. (2020) within the non-stationary
regime for action-state mapping and the stochastic regime for state-loss mapping, our
analysis extends to all various scenarios, including both stochastic and adversarial
mappings for each scenario.

Finally in Chapter 6, we comprehensively discuss the obtained results and po-
tential future works.
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Chapter 1 | Introduction

1.2 Main Contributions
• We provide an alternative analysis for the Tsallis-INF algorithm by Zimmert

and Seldin (2021). Let ∆is be the suboptimal gaps, then the new analysis
ensures

O

(∑
i 6=i∗

1

∆i

log
(
T

K − 1

(
∑

i 6=i∗ 1/∆i)2

))
regret bound for both stochastically constrained adversarial regime and
stochastic regime with adversarial corruption with small corruption level as
C ≤

∑
i 6=i∗

1
∆i

((
log T (K−1)

(
∑

i6=i∗
1
∆i

)2

)
+ 1
)
. Furthermore for the large amount of cor-

ruptions as C ≥
∑

i 6=i∗
1
∆i

((
log T (K−1)

(
∑

i6=i∗
1
∆i

)2

)
+ 1
)
, we show Tsallis-INF achieves

O

√√√√C
∑
i 6=i∗

1

∆i

log+

(
T

K − 1

C(
∑

i 6=i∗ 1/∆i)

) ,

where log+(x) = max (1, logx). Our bound also ensures a smooth transition
from the optimal bounds of fully stochastic (C = 0) and fully adversarial
(C = T ) regimes as we increase C from 0 to T .

• We improve the bound by Zimmert and Seldin (2021) in stochastic bandits with
adversarial corruptions with the corruption budget C ∈ [0, T ], by a factor of√

logT
logT/C

. When C = O(T/ logT ), this improvement can lead to a substantial

improvement, reaching the order of
√

logT
log logT

.

• In the stochastically constrained adversarial regime, we improve
over Zimmert and Seldin (2021) by replacing

∑
i 6=i∗

1
∆i

log(T ) with∑
i 6=i∗

1
∆i

log
(
T K−1

(
∑

i 6=i∗ 1/∆i)2

)
.

• We provide a best-of-both-worlds analysis for Tsallis-INF algorithm that offers
improved insights into the self-bounding analysis of this algorithm. This stems
from our unified analysis, which covers fully adversarial, stochastic with adver-
sarial corruption, and stochastically constrained adversarial regimes, whereas
Zimmert and Seldin (2021) has a separate analysis for the fully adversarial
case. Furthermore, our approach can be extended to improve the regret for the
other variations of the Tsallis-INF algorithm in the bandit setting and beyond
such as the work by Jin and Luo (2020).
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Chapter 1 | Introduction

• We provide a modification to the algorithm by Zimmert and Seldin (2020), that
with an oracle-level knowledge of the maximum delay dmax, simultaneously
achieves near optimal regret bounds for both the adversarial and stochastic
bandits with arbitrary delays.

• We show that the regret lower bound for adversarial bandits with arbitrary
delays is Ω

(√
KT + minS(|S|+

√
DS̄ logK)

)
, where DS̄ =

∑
t∈[T ]/S dt. Our

lower bound shows optimality of the regret derived by Zimmert and Seldin
(2020).

• We establish a best-of-both-worlds results for the fixed delay setting of bandits.
This includes an optimal regret bound within the adversarial regime, alongside
a near-optimal bound for the stochastic scenario.

• We lift the the assumption about prior knowledge of dmax in arbitrary delays
regime by proposing an enhanced version of our best-of-both-worlds algorithm.

• Our new algorithm offers two improvements in best-of-both-worlds guaran-
tee: firstly, it substitutes all occurrences of dmax with the maximum number
of outstanding observations σmax; and secondly, it incorporates the possibility
of skipping large delays, thus improving the dependence on the total delay.
Notably, σmax can be considerably smaller than dmax when dealing with unbal-
anced delays.

• We present an effective method for controlling distribution drift in delayed
bandits. This technique operates within the FTRL framework, offering the
possibility of its application in other delay-related works built upon FTRL
principles.

• We demonstrate that the complexity of the problem involving delayed ban-
dits with intermediate observations is primarily determined by the state-loss
mapping, regardless of whether the action-state mapping is stochastic or ad-
versarial.

• We prove that when the state-loss mapping is adversarial, incorporating inter-
mediate observations yields no advantages to the learner.

• We show that when the state-loss mapping is stochastic, intermediate observa-
tions can be utilized to replace

√
(K + d)T with

√
(K + min {S, d})T , where

the former is the regret of bandits with fixed delays. Here S represents the
number of states, d is the fixed delay, and K is the number of actions.
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• Finally, we extend our previous result to the arbitrary delays setting and attain
high probability guarantees.
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Chapter 2

Improved Analysis of the
Tsallis-INF Algorithm in
Stochastically Constrained
Adversarial Bandits and Stochastic
Bandits with Adversarial
Corruptions

The work presented in this chapter is based on a paper that has been published as:

Saeed Masoudian and Yevgeny Seldin. Improved analysis of the tsallis-inf al-
gorithm in stochastically constrained adversarial bandits and stochastic bandits
with adversarial corruptions. In Proceedings of the Conference on Learning Theory
(COLT), 2021.
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Chapter 2 | Improved Analysis of the Tsallis-INF Algorithm

Abstract
We derive improved regret bounds for the Tsallis-INF algorithm of Zimmert
and Seldin (2021). We show that in adversarial regimes with a (∆, C, T ) self-

bounding constraint the algorithm achieves O
((∑

i 6=i∗
1
∆i

)
log+

(
(K−1)T(∑
i 6=i∗ ∆−1

i

)2

)
+√

C
(∑

i 6=i∗
1
∆i

)
log+

( (K−1)T

C
∑

i 6=i∗ ∆−1
i

))
regret bound, where T is the time horizon, K

is the number of arms, ∆i are the suboptimality gaps, i∗ is the best arm, C is the
corruption magnitude, and log+(x) = max (1, logx). InThe regime includes stochas-
tic bandits, stochastically constrained adversarial bandits, and stochastic bandits
with adversarial corruptions as special cases. Additionally, we provide a general
analysis, which allows to achieve the same kind of improvement for generalizations
of Tsallis-INF to other settings beyond multiarmed bandits.

2.1 Introduction
Most of the literature on multiarmed bandits is focused either on the stochastic set-
ting (Thompson, 1933; Robbins, 1952; Lai and Robbins, 1985; Auer et al., 2002a)
or on the adversarial one (Auer et al., 2002b). However, in recent years there has
been an increasing interest in algorithms that perform well in both regimes with no
prior knowledge of the regime (Bubeck and Slivkins, 2012; Seldin and Slivkins, 2014;
Auer and Chiang, 2016; Seldin and Lugosi, 2017; Wei and Luo, 2018), as well as
algorithms that perform well in intermediate regimes between stochastic and adver-
sarial (Seldin and Slivkins, 2014; Lykouris et al., 2018; Wei and Luo, 2018; Gupta
et al., 2019). The quest for best-of-both-worlds algorithm culminated with the work
of Zimmert and Seldin (2019), who proposed the Tsallis-INF algorithm and showed
that its regret bound in both stochastic and adversarial environments matches the
corresponding lower bounds within constants with no need of prior knowledge of the
regime. Zimmert and Seldin (2020) further improved the analysis and introduced an
adversarial regime with a self-bounding constraint, which is an intermediate regime
between stochastic and adversarial environments, including stochastically constrained
adversaries (Wei and Luo, 2018) and stochastic bandits with adversarial corruptions
(Lykouris et al., 2018) as special cases. They have shown that the Tsallis-INF algo-
rithm achieves the best known regret rate in this regime and its special cases.

The Tsallis-INF algorithm is based on regularization by Tsallis entropy with
power 1

2
, which was also used in the earlier works by Audibert and Bubeck (2009,

9
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2010) and Abernethy et al. (2015) for minimax optimal regret rates in the adversarial
regime. The key novelty of the work of Zimmert and Seldin (2019, 2020) is an analy-
sis of the algorithm in the stochastic setting based on a self-bounding property of the
regret. The idea has been subsequently extended to derive best-of-both-worlds algo-
rithms for combinatorial semi-bandits (Zimmert et al., 2019), decoupled exploration
and exploitation (Rouyer and Seldin, 2020), bandits with switching costs (Rouyer
et al., 2021), and ergodic MDPs (Jin and Luo, 2020).

We present a refined analysis based on the self-bounding property, which improves
the regret bound in the adversarial regime with a self-bounding constraint and its
special cases: stochastic bandits, stochastically constrained adversarial bandits, and
stochastic bandits with adversarial corruption. The adversarial regime with a self-
bounding constraint is defined in the following way. Let `1, `2, . . . be a sequence of
loss vectors with `t ∈ [0, 1]K , let It be the action picked by the algorithm at round
t, and let RegT = E

[∑T
t=1 `t,It

]
− mini E

[∑T
t=1 `t,i

]
be the pseudo-regret. For a

triplet (∆, C, T ) with ∆ ∈ [0, 1]K and C ≥ 0, Zimmert and Seldin (2020) define an
adversarial regime with a (∆, C, T ) self-bounding constraint as an adversarial regime,
where the adversary picks losses, such that the pseudo-regret of any algorithm at time
T satisfies

RegT ≥
T∑
t=1

∑
i

∆iP(It = i)− C.

(The above condition is only assumed to be satisfied at time T , but there is no re-
quirement that it is satisfied at time t < T .) A special case of this regime is the
stochastically constrained adversarial regime, where RegT =

∑T
t=1

∑
i∆iP(It = i)

with ∆ being the vector of suboptimality gaps. In particular, the stochastic regime
is a special case of the stochastically constrained adversarial regime. (In the stochas-
tic regime the expected loss of each arm is fixed over time. Stochastically constrained
adversarial regime relaxes this requirement by only assuming that the expected gaps
between the losses of pairs of arms are fixed, but the expected losses are allowed
to fluctuate over time.) Another special case of an adversarial regime with a self-
bounding constraint are stochastic bandits with adversarial corruptions. For two
sequences of losses LT = (¯̀1, . . . , ¯̀T ) and LT = (`1, . . . , `T ) the amount of corruption
is measured by

∑T
t=1 ‖¯̀t − `t‖∞. In stochastic bandits with adversarial corruptions

the adversary takes a stochastic sequence of losses and injects corruption with corrup-
tion magnitude bounded by C. Zimmert and Seldin (2020) show that a stochastic, as
well as a stochastically constrained adversarial regime with a vector of suboptimal-
ity gaps ∆ and injected corruption of magnitude bounded by C, satisfy (∆, 2C, T )
self-bounding constraint. As C grows from zero to T , the stochastic regime with

10
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Setting Zimmert and Seldin (2020) Our paper
Small C O

(∑
i 6=i∗

1
∆i

logT
)

O
(∑

i 6=i∗
1
∆i

log+

(
T K−1

(
∑

i 6=i∗ 1/∆i)2

))
Large C O

(√
C
∑

i 6=i∗
1
∆i

logT
)

O
(√

C
∑

i 6=i∗
1
∆i

log+

(
T K−1

C(
∑

i 6=i∗ 1/∆i)

))
Table 2.1: Comparison of the leading terms in the regret bounds of Zimmert and
Seldin (2020) and our paper, differences are highlighted in color. We define log+(x) =
max (1, logx). The "Small C" row compares the regret bounds in adversarial regimes

with (∆, C, T ) self-bounding constraints with C ≤
∑

i 6=i∗
1
∆i

((
log T (K−1)

(
∑

i6=i∗
1
∆i

)2

)
+ 1

)
.

Here, C is a subdominant term and does not show up in the big-O notation. The
"Large C" row compares the regret bounds in adversarial regimes with (∆, C, T )

self-bounding constraints with C ≥
∑

i 6=i∗
1
∆i

((
log T (K−1)

(
∑

i 6=i∗
1
∆i

)2

)
+ 1

)
. The regret

bounds in the adversarial regime are identical, and hence omitted.

adversarial corruptions interpolates between stochastic and adversarial bandits.
Lykouris et al. (2018) were the first to introduce and study stochastic bandits with

adversarial corruptions and their algorithm achieved O
(∑

i:∆i>0
KC+log(T )

∆i
log(T )

)
regret bound. Gupta et al. (2019) improved it to O

(
KC +

∑
i:∆i>0

1
∆i

log2(KT )
)

.
Zimmert and Seldin (2020) have shown that their best-of-both-worlds Tsallis-INF al-
gorithm achieves O

((∑
i 6=i∗

logT
∆i

)
+
√
C
∑

i 6=i∗
logT
∆i

)
regret bound in the more gen-

eral adversarial regime with (∆, C, T ) self-bounding constraint under the assumption
that ∆ has a unique zero entry (the assumption corresponds to uniqueness of the
best arm before corruption). Neither of the algorithms requires prior knowledge of
C.

Our contributions are summarized in the enumerated list below. The improve-
ments relative to the work by Zimmert and Seldin (2020) are further highlighted in
Table 2.1.

1. We present a refined analysis of the regret of Tsallis-INF in adversarial regimes
with a (∆, C, T ) self-bounding constraint, achieving

O

(∑
i 6=i∗

1

∆i

)
log+

 (K − 1)T(∑
i 6=i∗

1
∆i

)2
+

√√√√C

(∑
i 6=i∗

1

∆i

)
log+

(
(K − 1)T

C
∑

i 6=i∗
1
∆i

)
regret bound, where log+(x) = max (1, logx).
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2. In the stochastically constrained adversarial regime it improves the
dominating term of the regret bound from O

((∑
i 6=i∗

1
∆i

)
logT

)
to

O

((∑
i 6=i∗

1
∆i

)
log

(
(K−1)T(∑
i 6=i∗

1
∆i

)2

))
relative to the work of Zimmert and Seldin

(2020), see Table 2.1. A similar kind of improvement has been studied for
UCB-type algorithms for stochastic bandits by Auer and Ortner (2010) and
Lattimore (2018).

3. In the stochastic regime with adversarial corruptions the result yields an im-
provement by a multiplicative factor of O

(√
logT/ log (T/C)

)
relative to the

work of Zimmert and Seldin (2020), see Table 2.1 for a more refined statement.

In particular, for C = Θ

(
TK

(logT )
∑

i6=i∗
1
∆i

)
it achieves an improvement by a

multiplicative factor of
√

logT
log logT

.

4. While the analysis of Zimmert and Seldin (2020) used two different optimiza-
tion problems to analyze the regret of Tsallis-INF in adversarial environments
and in adversarial environments with a self-bounding constraint, we obtain
both bounds from the same optimization problem. This provides continuity
in the analysis in the sense that the O

(√
KT

)
adversarial regret bound is

obtained as a natural limit case of the adversarial bound with a self-bounding
constraint as C grows beyond O

(
KT∑
i6=i∗

1
∆i

)
. It also provides a better under-

standing of the self-bounding analysis technique.

5. We also provide a more general result, showing that any algorithm with ad-
versarial pseudo-regret bound satisfying RegT ≤ B

∑T
t=1

∑
i 6=i∗

√
E[wt,i]

t
, where

wt,i are the probabilities of playing action i at round t and B is a constant,
achieves

O

(
B2

(∑
i 6=i∗

1

∆i

)
log+

(
(K − 1)T(∑

i 6=i∗ ∆
−1
i

)2)+B

√√√√C

(∑
i 6=i∗

1

∆i

)
log+

(
KT

C
∑

i 6=i∗ ∆
−1
i

))

regret in the adversarial regime with (∆, C, T ) self-bounding constraint. The
result can be directly applied to achieve improved regret bounds for extensions
of the Tsallis-INF algorithm, for example, the extension to episodic MDPs (Jin
and Luo, 2020).
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2.2 Problem Setting
We study multi-armed bandit problem in which at time t = 1, 2, . . . the learner
chooses an arm It among a set of K arms {1, . . . , K}. At the same time the environ-
ment selects a loss vector `t ∈ [0, 1]K and the learner only observes and suffers the
loss `t,It . The performance of the learner is evaluated using pseudo-regret, which is
defined as

RegT = E

[
T∑
t=t

`t,It

]
− min

i∈[K]
E

[
T∑
t=t

`t,i

]
= E

[
T∑
t=t

(
`t,It − `t,i∗T

)]
,

where i∗T ∈ argmini∈[K] E
[∑T

t=t `t,i

]
is a best arm in hindsight in expectation over

the loss generation model and, in case of an adaptive adversary, the randomness of
the learner.

Like Zimmert and Seldin (2020) we consider (adaptive) adversarial regimes and
adversarial regimes with a (∆, C, T ) self-bounding constraint. In the former the losses
at round t are generated arbitrarily, potentially depending on the preceding actions
of the learner, I1 . . . , It−1. In the latter the adversary selects losses, such that for
some ∆ ∈ [0, 1]K and C ≥ 0 the pseudo-regret of any algorithm at time T satisfies

RegT ≥

(
T∑
t=1

K∑
i=1

P(It = i)∆i

)
− C. (2.1)

The condition is only assumed to be satisfied at time T , but not necessarily at t < T .
As we have already mentioned in the introduction, stochastic regime, stochastically
constrained adversarial regime, and stochastic bandits with adversarial corruptions
are all special cases of the adversarial regime with (∆, C, T ) self-bounding constraint.

Additional Notation: We use ∆n to denote the probability simplex over n + 1
points. The characteristic function of a closed convex set A is denoted by IA(x) and
satisfies IA(x) = 0 for x ∈ A and IA(x) = ∞ otherwise. We denote the indicator
function of an event E by 1(E) and use 1t(i) as a shorthand for 1(It = i). The
probability distribution over arms that is played by the learner at round t is denoted
by wt ∈ ∆K−1. The convex conjugate of a function f : Rn → R is defined by
f ∗(y) = supx∈Rn{〈x, y〉 − f(x)}.

13



Chapter 2 | Improved Analysis of the Tsallis-INF Algorithm

2.3 Background: the Tsallis-INF algorithm
In this section we provide a brief background on the Tsallis-INF algorithm of Zim-
mert and Seldin (2020). The algorithm is based on Follow The Regularized Leader
(FTRL) framework with Tsallis entropy regularization (Tsallis, 1988). The best-
of-both-worlds version of Tsallis-INF uses Tsallis entropy regularizer with power 1

2
,

defined by

Ψ(w) = 4
K∑
i=1

(
√
wi −

1

2
wi

)
.

The regularization term at round t is given by

Ψt(w) = η−1
t Ψ(w),

where ηt is the learning rate. The update rule for the distribution over actions is
defined by

wt+1 = ∇(Ψt + I∆K−1)∗(−
t∑

τ=1

ˆ̀
τ ) = arg max

w∈∆K−1

(〈
−

t∑
τ=1

ˆ̀
τ , w

〉
−Ψt(w)

)
,

where ˆ̀
τ is an estimate of the loss vector `τ . It is possible to use the standard

importance-weighed loss estimate ˆ̀
t,i =

`t,i1(It=i)

wt,i
, but Zimmert and Seldin (2020)

have shown that reduced-variance loss estimates defined by

ˆ̀
t,i =

1t(i)(`t,i − Bt(i))

wt,i

+ Bt(i), (2.2)

where Bt(i) = 1
2
1(wt,i ≥ η2t ), lead to better constants. The complete algorithm is

provided in Algorithm 1 box. The regret bound derived by Zimmert and Seldin
(2020) is provided in Theorem 2.1.

Algorithm 1: Tsallis-INF
1: Input: (Ψt)t=1,2,...

2: Initialize: Set L̂0 = 0K (where 0K is a zero vector in RK)
3: for t = 1, . . . do
4: choose wt = ∇(Ψt + I∆K−1)∗(−L̂t−1)
5: sample It ∼ wt

6: observe `t,It
7: construct a loss estimator ˆ̀

t using (2.2)
8: update L̂t = L̂t−1 + ˆ̀

t

9: end for

14



Chapter 2 | Improved Analysis of the Tsallis-INF Algorithm

Theorem 2.1 (Zimmert and Seldin, 2020). The pseudo-regret of Tsallis-INF with
ηt =

4√
t

and reduced variance loss estimators defined in equation (2.2), in any adver-
sarial bandit problem satisfies

RegT ≤ 2
√
KT + 10K log(T ) + 16.

Furthermore, if there exists a vector ∆ ∈ [0, 1]K with a unique zero entry i∗ (i.e.,
∆i∗ = 0 and ∆i > 0 for all i 6= i∗) and a constant C, such that the pseudo-regret
at time T satisfies the (∆, C, T ) self-bounding constraint (equation (2.1)), then the
pseudo-regret additionally satisfies:

RegT ≤

(∑
i 6=i∗

log(T ) + 3

∆i

)
+ 28K log(T ) + 1

∆min

+
3

2

√
K + 32 + C, (2.3)

where ∆min = mini 6=i∗{∆i}. Moreover, if C ≥
(∑

i 6=i∗
log(T )+3

∆i

)
+ 1

∆min
, then the

pseudo-regret also satisfies:

RegT ≤ 2

√√√√(∑
i 6=i∗

log(T ) + 3

∆i

+
1

∆min

)
C + 28K log(T ) + 3

2

√
K + 32. (2.4)

Remark 2.2. While Theorem 2.1 requires uniqueness of the best arm for improved
regret rates in the adversarial regime with a (∆, C, T ) self-bounding constraint, Zim-
mert and Seldin (2020) have shown experimentally that in the stochastic regime the
presence of multiple best arms has no negative effect on the pseudo-regret of the
algorithm. They conjecture that the requirement is an artifact of the analysis.

2.4 Main Results
In this section we provide our two main results. First, in Theorem 2.3 we pro-
vide a refined analysis of Tsallis-INF, which improves the pseudo-regret bounds in
the adversarial regime with a (∆, C, T ) self-bounding constraint. Then, in The-
orem 2.4 we provide a more general result, which allows to improve pseudo-regret
bounds in adversarial regimes with (∆, C, T ) self-bounding constraints for extensions
of Tsallis-INF to other problems. An advantage of both results is that the bounds
for adversarial regimes and adversarial regimes with a self-bounding constraint are
achieved from a single optimization problem, rather than from two different optimiza-
tion problems, as in prior work. As a result, the regret bounds for the adversarial
regime are achieved as a limit case of the regret bounds for adversarial regimes with
a self-bounding constraint for large C.

15



Chapter 2 | Improved Analysis of the Tsallis-INF Algorithm

2.4.1 Improved analysis of the Tsallis-INF algorithm
We start with an improved regret bound for Tsallis-INF.

Theorem 2.3. The pseudo-regret of Tsallis-INF with ηt =
4√
t

and reduced variance
loss estimators defined in equation (2.2), in any adversarial bandit problem satisfies

RegT ≤ 2
√
(K − 1)T +

1

2

√
T + 14K log(T ) + 3

4

√
K + 15. (2.5)

Furthermore, if there exists a vector ∆ ∈ [0, 1]K with a unique zero entry i∗ (i.e.,
∆i∗ = 0 and ∆i > 0 for all i 6= i∗) and a constant C ≥ 0, such that the pseudo-regret
at time T satisfies the (∆, C, T ) self-bounding constraint (equation (2.1)), then the
pseudo-regret additionally satisfies:

RegT ≤
∑
i 6=i∗

1

∆i


log T (K − 1)(∑

i 6=i∗
1
∆i

)2
+ 6

+ 28K log(T ) + 3

2

√
K + 30 + C. (2.6)

Moreover, for
∑

i 6=i∗
1
∆i

((
log T (K−1)

(
∑

i 6=i∗
1
∆i

)2

)
+ 1

)
≤ C ≤ T (K−1)∑

i 6=i∗
1
∆i

the regret also satis-
fies:

RegT ≤
√

C
∑
i 6=i∗

1

∆i

(√
log T (K − 1)

C
∑

i 6=i∗
1
∆i

+ 5

)
+Q, (2.7)

where Q =
∑

i 6=i∗
1
∆i

(
log T (K−1)

C
∑

i 6=i∗
1
∆i

+

√
2 log T (K−1)

C
∑

i6=i∗
1
∆i

+ 2

)
+ 3

√
K
2

+28K log(T )+30

is a subdominant term.

A proof of the theorem is provided in Appendix 2.7.2. Theorem 2.3 improves on
Theorem 2.1 in two ways. The bound in equation (2.6) improves the leading term
of the regret bound under self-bounding constraint relative to equation (2.3) from∑

i 6=i∗
1
∆i

logT to
∑

i 6=i∗
1
∆i

(
log T (K−1)(∑

i 6=i∗
1
∆i

)2

)
. Related refinements of regret bounds

for UCB strategies for ordinary stochastic bandits have been studied by Auer and
Ortner (2010) and Lattimore (2018). More importantly, for large amount of corrup-

tion C ∈
[∑

i 6=i∗
1
∆i

(
log
(

T (K−1)

(
∑

i6=i∗
1
∆i

)2

)
+ 1

)
, T (K−1)∑

i 6=i∗
1
∆i

]
the regret bound in equation

(2.7) is of order O
(√

C
(∑

i 6=i∗
1
∆i

)
log+

(
KT

C
∑

i 6=i∗
1
∆i

))
, whereas the regret bound
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in equation (2.4) is of order O
(√

C
∑

i 6=i∗
logT
∆i

)
. For C = Θ

(
TK

(logT )
∑

i 6=i∗
1
∆i

)
The-

orem 2.3 improves the pseudo-regret bound by a multiplicative factor of
√

logT
log logT

.
Another observation is that Theorem 2.3 successfully exploits the self-bounding prop-
erty even when the amount of corruption is almost linear in T .

2.4.2 A general analysis based on the self-bounding property
Now we provide a general result, which can be used to analyze extensions of Tsallis-
INF to other problem settings.

Theorem 2.4. For any algorithm for an arbitrary problem domain with K possible
actions that satisfies

RegT ≤ B
T∑
t=1

∑
i 6=i∗

√
E[wt,i]

t
+D, (2.8)

where B,D ≥ 0 are some constants, the pseudo-regret of the algorithm in any adver-
sarial environment satisfies

RegT ≤ 2B
√

(K − 1)T +D. (2.9)

Furthermore, if there exists a vector ∆ ∈ [0, 1]K with a unique zero entry i∗ (i.e.,
∆i∗ = 0 and ∆i > 0 for all i 6= i∗) and a constant C ≥ 0, such that the pseudo-regret
at time T satisfies the (∆, C, T ) self-bounding constraint (equation (2.1)), then the
pseudo-regret additionally satisfies:

RegT ≤ B2
∑
i 6=i∗

1

∆i


log T (K − 1)(∑

i 6=i∗
1
∆i

)2
+ 3− 2 logB

+ C + 2D. (2.10)

Moreover, for B2
∑

i 6=i∗
1
∆i

((
log T (K−1)

B2(
∑

i 6=i∗
1
∆i

)2

)
+ 1

)
≤ C ≤ T (K−1)∑

i 6=i∗
1
∆i

the pseudo-
regret also satisfies:

RegT ≤ B

√
C
∑
i 6=i∗

1

∆i

(√
log T (K − 1)

C
∑

i 6=i∗
1
∆i

+ 2

)
+M, (2.11)

where M = B2
∑

i 6=i∗
1
∆i

(
log T (K−1)

C
∑

i 6=i∗
1
∆i

+

√
2 log T (K−1)

C
∑

i 6=i∗
1
∆i

+ 2

)
+ 2D is a subdomi-

nant term.
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A proof is provided in Section 2.5. The Tsallis-INF algorithm satisfies the condi-
tion in equation (2.8) with B = 5

4
(see equation (2.12) in Section 2.5, which follows

from intermediate results by Zimmert and Seldin (2020)). Although the special-
ized analysis of Tsallis-INF in Theorem 2.3 is a bit tighter than the general result
in Theorem 2.4, the latter can be applied to extensions of Tsallis-INF. One such
example is the best-of-both-worlds algorithm of Jin and Luo (2020) for episodic
MDPs. Jin and Luo (2020, Theorem 4) show that their algorithm satisfies the
condition in (2.8) and use this result to achieve O

(
(logT ) +

√
C log(T )

)
pseudo-

regret bound in the stochastic case with adversarial corruptions (Jin and Luo, 2020,
Corollary 3). Application of our Theorem 2.4 improves the pseudo-regret bound to
O
(
(logT ) +

√
C log(T/C)

)
. In particular, for C = Θ( T

logT
) the bound gets tighter

by a multiplicative factor of logT
log logT

.

2.5 Proofs
In this section we provide a proof of Theorem 2.4. The proof of Theorem 2.3 is
analogous, but more technical due to fine-tuning of the constants and is deferred to
Appendix 2.7.2. Before showing the proof we revisit the key steps in the analysis
of Tsallis-INF by Zimmert and Seldin (2020), which show that the pseudo-regret of
Tsallis-INF satisfies the condition in equation (2.8) of Theorem 2.4.

Standard FTRL analysis (Lattimore and Szepesvári, 2020) uses a potential func-
tion Φt(−L) = maxw∈∆K−1{〈w,−L〉 − Ψt(w)} for breaking the pseudo-regret into
penalty and stability terms, RegT = stability + penalty, where

stability = E

[
T∑
t=1

`t,It + Φt(−L̂t)− Φt(−L̂t−1)

]
,

penalty = E

[
T∑
t=1

−Φt(−L̂t) + Φt(−L̂t−1)− `t,i∗T

]
.

The two terms are then typically analyzed separately. Zimmert and Seldin (2020)
proved the following bounds for the two terms for Tsallis-INF with reduced-variance
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loss estimators:

stability ≤
T∑
t=1

(∑
i 6=i∗

E[wt,i]
1
2

2
√
t

+
E[wt,i]

2
√
t

)
+ 14K log(T ) + 15,

penalty ≤
T∑
t=1

(∑
i 6=i∗

E[wt,i]
1
2

2
√
t
− E[wt,i]

4
√
t

)
+

3

4

√
K.

By summation of the two bounds the pseudo-regret satisfies

RegT ≤
T∑
t=1

(∑
i 6=i∗

E[wt,i]
1
2

√
t

+
E[wt,i]

4
√
t

)
+ 14K log(T ) + 3

4

√
K + 15. (2.12)

Since E[wt,i] ≤ E[wt,i]
1
2 , the pseudo-regret of Tsallis-INF with reduced-variance loss

estimators satisfies the condition in equation (2.8) with B = 5
4

and D = 3
4

√
K +

14K log(T ) + 15. (In the proof of Theorem 2.3 we keep the refined bound on the
pseudo-regret from equation (2.12) to obtain better constants.) Now, after we have
shown how the condition in equation (2.8) can be satisfied, we present a proof of
Theorem 2.4. We start with a high-level overview of the key ideas and then present
the technical details.

2.5.1 Overview of the Key Ideas Behind the Proof of Theo-
rem 2.4

As observed by Zimmert and Seldin (2020), for any λ ∈ [0, 1] we have

RegT = (λ+ 1)RegT − λRegT . (2.13)

The condition on RegT in equation (2.8) can be used to upper bound the first term
and the self-bounding constraint (2.1) to lower bound the second, giving

RegT ≤ (λ+ 1)

(
B
∑
i 6=i∗

T∑
t=1

E[wt,i]
1
2

√
t

+D

)
− λ

(
T∑
t=1

(∑
i 6=i∗

E[wt,i]∆i

)
− C

)

≤
T∑
t=1

∑
i 6=i∗

(
B(λ+ 1)

E[wt,i]
1
2

√
t
− λE[wt,i]∆i

)
+ λC + (λ+ 1)D. (2.14)

In the adversarial analysis, we take λ = 0 and maximize the right hand side of (2.14)
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(which for λ = 0 is identical to the right hand side of (2.8)) under the constraint that
wt,i is a probability distribution to obtain O(

√
KT ) regret bound. This is almost

identical to the approach of Zimmert and Seldin (2020), except that in this case
instead of the bound in equation (2.8) they use a bound involving summation over
all arms, including i∗.

In the self-bounding analysis, Zimmert and Seldin (2020) relax the inequality in
(2.14) to

RegT ≤
T∑
t=1

∑
i 6=i∗

(
2B
√
E [wt,i] /t− λ∆iE [wt,i]

)
+ λC + 2D

and apply individual maximization of each 2B
√

E [wt,i] /t − λ∆iE [wt,i] term, drop-
ping the constraint that wt is a probability distribution. We use (2.14) directly for
bounding the regret and introduce two key novelties:

(a) we keep the constraint that wt are probability distributions; and

(b) we jointly optimize with respect to all wt,i and λ, whereas Zimmert and Seldin
(2020) first optimize w.r.t. wt,i and then w.r.t. λ.

Joint optimization over all wt,i and λ under the constraint that wt are probability
distributions is the major technical challenge that we resolve. Our analysis yields
three advantages:
(A) The dependence on time is improved from logT to log(T (K − 1)/(

∑
i 6=i∗

1
∆i
)2)

due to (a);

(B) We gain the
√

logT/ log(T/C) factor due to (b);

(C) Our adversarial and stochastic bounds come out of the same optimization prob-
lem, highlighting the relation and continuity between the two.

2.5.2 Proof of Theorem 2.4
Now we provide a detailed proof of Theorem 2.4.

Proof of the regret bound for an unconstrained adversarial regime (equa-
tion (2.9))

In the unconstrained adversarial regime we take λ = 0 and plug the inequalities∑
i 6=i∗

E[wt,i]
1
2 ≤
√
K − 1, (2.15)
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which holds since
∑

i 6=i∗ E[wt,i] ≤ 1, and
∑T

t=1
1√
t
≤ 2
√
T into equation (2.14) and

obtain the bound in equation (2.9).

Proof of the general regret bound for an adversarial regime with a self-
bounding constraint (equation (2.10))

In the adversarial regime with a self-bounding constraint, we keep the constraint
that wt is a probability distribution, and thus

∑
i 6=i∗ E[wt,i]

1
2 ≤
√
K − 1, and apply

maximization directly to the sum over i under this constraint.
To simplify the notation, we use at,i := E[wt,i]

1
2 , S :=

∑
i 6=i∗

1
∆i

, and w.l.o.g.
assume that i∗ = K. We denote Rt :=

∑
i 6=i∗

(
B(λ+ 1)

at,i√
t
− λ∆ia

2
t,i

)
and R :=∑T

t=1 Rt + λC. With this notation, by equation (2.14) we have

RegT ≤ R + (1 + λ)D. (2.16)

We bound Rt under the constraint that E[wt,i]
1
2 satisfy equation (2.15). We have

Rt ≤ max
a1,...,aK−1

K−1∑
i=1

B(λ+ 1)
ai√
t
− λ∆ia

2
i

s.t.
K−1∑
i=1

ai ≤
√
K − 1.

By Lemma 2.2 provided in Appendix 2.7.1, the answer to this optimization problem
is as follows:

1. If B(λ+1)S

2λ
√
t
≤
√
K − 1, then Rt ≤ SB2(λ+1)2

4λt
.

2. If B(λ+1)S

2λ
√
t
≥
√
K − 1, then Rt ≤

√
K−1B(λ+1)√

t
− λ(K−1)

S
.

This gives a threshold T0 =
B2(λ+1)2S2

4λ2(K−1)
, so that for t ≤ T0 the second case applies to

Rt, and otherwise the first case applies. We break the time steps into those before
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T0 and after T0 and obtain:

R =

T0∑
t=1

Rt +
T∑

T0+1

Rt + λC

≤
T0∑
t=1

(√
K − 1B(λ+ 1)√

t
− λ(K − 1)

S

)
+

T∑
t=T0+1

SB2(λ+ 1)2

4λt
+ λC

≤ 2
√

T0(K − 1)B(λ+ 1)− λ(K − 1)T0

S
+

SB2(λ+ 1)2

4λ
log T

T0

+ λC

=
B2(λ+ 1)2S

λ
− B2(λ+ 1)2S

4λ
+

B2(λ+ 1)2S

4λ

(
log T (K − 1)

S2
− 2 log B(λ+ 1)

2λ

)
+ λC

=
B2(λ+ 1)2S

4λ

[
3 + log T (K − 1)

S2

]
− B2(λ+ 1)2S

2λ
log B(λ+ 1)

2λ
+ λC. (2.17)

By taking λ = 1 we obtain

R ≤ B2S

(
log T (K − 1)

S2
− 2 log(B) + 3

)
+ C,

which together with (2.16) gives the bound (2.10) in the theorem.

Proof of the refined regret bound for an adversarial regime with a self-
bounding constraint (equation (2.11))

We continue from equation (2.17). We improve on the bound of Zimmert and Seldin
(2020) in equation (2.4) by applying a smarter optimization over λ. We let α = 2λ

B(λ+1)

and rewrite the inequality in (2.17) as

R ≤ B

2−Bα

[
S

α

(
3 + log

(
T (K − 1)

S2

))
+

2S

α
log(α) + αC

]
︸ ︷︷ ︸

f(α)︸ ︷︷ ︸
h(B,α)

. (2.18)

We denote the right hand side of the expression by h(B,α). We restrict the range
of α, so that T ≥ T0 = S2

α2(K−1)
, which gives α ≥ S√

T (K−1)
. Since λ ∈ [0, 1], we also

have α ≤ 1
B

. In order to bound h(B,α) we need to solve an optimization problem
in α over the above interval. However, h(B,α) is not convex in α, but we show that
the expression in the brackets, which we denote by f(α), is convex. We take the
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point α∗ = argminα∈[ S√
T (K−1)

, 1
B
] f(α), which achieves the minimum of f(α), and use

h(B,α∗) = B
2−Bα∗f(α

∗) as an upper bound for R. Since R ≤ h(B,α) for any α, in
particular we have R ≤ h(B,α∗).

In order to show that f(α) is convex and find its minimum we take the first and
second derivatives.

f ′(α) =
−1
α2

[
2S log(α)− Cα2 + S log (K − 1)T

S2
+ S

]
= 0,

f ′′(α) =
2S

α3

(
2 logα + log T (K − 1)

S2

)
.

For α ≥ S√
T (K−1)

the second derivative is positive and, therefore, f(α) is convex and
the minimum is achieved when f ′(α) = 0. This happens when

− log α2(K − 1)T

S2
+

C

S
α2 − 1 = 0.

We define β = α2(K−1)T
S2 , then

g(β) =
CS

(K − 1)T
β − log(β)− 1 = 0.

Since α ∈ [ S√
T (K−1)

, 1
B
], we have β ∈ [1, (K−1)T

B2S2 ]. We recall that equation (2.11)

holds under the assumption that B2S
(

log (K−1)T
B2S2 + 1

)
≤ C ≤ (K−1)T

S
. We note

that for C ≤ (K−1)T
S

we have g(1) = CS
(K−1)T

− 1 ≤ 0. We also note that for C ≥

B2S
(

log (K−1)T
B2S2 + 1

)
we have g

(
(K−1)T
B2S2

)
≥ 0. Since g(β) is continuous, the root of

g(β) = 0 for C in the above range is thus achieved by β ∈ [1, (K−1)T
B2S2 ] and since g(β)

is convex the solution is unique.
We find the root of g(β) = 0 by using the −1-branch of the Lambert W function,

called W−1(x), which is defined as the solution of equation wew = x. If g(β) = 0,
then β satisfies

−CSβ

(K − 1)T
e

−CSβ
(K−1)T =

−CS

e(K − 1)T
,

and thus
β =

−T (K − 1)

CS
W−1

(
−CS

e(K − 1)T

)
.
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We conclude that the minimum of f(α) is attained at

α∗ =

√
−S
C

W−1

(
−CS

e(K − 1)T

)
(2.19)

and, consequently, log
(

T (K−1)(α∗)2

S2

)
= C

S
(α∗)2− 1. By substituting this identity into

h(B,α∗), we obtain:

h(B,α∗) =
B

2−Bα∗

(
2
S

α∗ + 2Cα∗
)
≤ B(1 +Bα∗)

(
S

α∗ + Cα∗
)

= B

(
S

α∗ + Cα∗ +BS +BC(α∗)2
)

= B

(√
CS

w
+
√
CSw +BS +BSw

)
,

(2.20)

where w := −W−1

[
−CS

e(K−1)T

]
and the inequality follows by the fact that ∀x ∈ [0, 1] :

2
2−x
≤ 1 + x. This provides a closed form upper bound for the pseudo-regret, but

we still need an estimate of w to obtain an explicit bound. We use the result of
Chatzigeorgiou (2013), who provides the following bounds for W−1(x).
Lemma 2.1 (Chatzigeorgiou 2013). For any x ≤ 1

1 +
√

2 log(1/x) + 2

3
log(1/x) ≤ −W−1(−x/e) ≤ 1 +

√
2 log(1/x) + log(1/x).

To complete the proof it suffices to use Lemma 2.1 with x = CS
(K−1)T

, which gives

1 ≤ w ≤ 1 +

√
2 log T (K − 1)

CS
+ log T (K − 1)

CS
≤

(
1 +

√
log T (K − 1)

CS

)2

.

By substituting this into (2.20) we obtain:

h(B,α∗) ≤ B
√
CS +B

√
CS

(
1 +

√
log T (K − 1)

CS

)

+ 2B2S +B2S log T (K − 1)

CS
+B2S

√
2 log T (K − 1)

CS

= B
√
CS

(√
log T (K − 1)

CS
+ 2

)
+B2S

(
log T (K − 1)

CS
+

√
2 log T (K − 1)

CS
+ 2

)
.

(2.21)
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Finally, by (2.18) we have R ≤ h(B,α∗), which together with (2.16) and the fact
that λ ≤ 1 completes the proof. �

2.6 Discussion
We have presented a refined analysis of the Tsallis-INF algorithm in adversarial
regimes with a self-bounding constraint. The result improves on prior work in two
ways. First, it improves the dependence of the regret bound on time horizon from
logT to log (K−1)T

(
∑

i 6=i∗
1
∆i

)2
. Second, it improves the dependence of the regret bound

on corruption amount C. In particular, for C = Θ

(
TK

(logT )
∑

i 6=i∗
∑ 1

∆i

)
it improves

the pseudo-regret bound by a multiplicative factor of
√

logT
log logT

. Moreover, we have
provided a generalized result that can be used to improve regret bounds for extensions
of Tsallis-INF to other problem settings, where the regret satisfies a self-bounding
constraint. Due to versatility and rapidly growing popularity of regret analysis based
on the self-bounding property, the result provides a powerful tool for tightening regret
bounds in a broad range of corrupted settings.

2.7 Appendix

2.7.1 Technical Lemmas
Lemma 2.2. Let b and c1, . . . , cn be non-negative real numbers and let

Z = max
x∈Rn

n∑
i=1

(bxi − cix
2
i )

s.t.
n∑

i=1

xi ≤M.

Then

Z =

{
bM − M2∑n

i=1
1
ci

, if
∑n

i=1
b
2ci

> M,

b2

4

∑n
i=1

1
ci
, otherwise.

Moreover, we always have bM − M2∑n
i=1

1
ci

≤ b2

4

∑n
i=1

1
ci

and, therefore, we always have

Z ≤ b2

4

∑n
i=1

1
ci

.
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Proof. Since ci ≥ 0, the objective function is a sum of downward-pointing parabolas
and, therefore, concave. Thus, the maximum is attained when the first derivative of
the Lagrangian with Lagrange variable v ≥ 0 for the inequality constraint satisfies

b− 2cixi − v = 0,

where v(
∑n

i=1 xi−M) = 0. Thus, xi =
b−v
2ci

. The KKT conditions provide two cases:

i) If
∑n

i=1
b
2ci

> M , then v > 0 and
∑n

i=1 xi = M . As a consequence, v =

b− M∑n
i=1

1
2ci

. So xi =
M

ci
∑n

i=1
1
ci

and Z = bM − M2∑n
i=1

1
ci

.

ii) If
∑n

i=1
b
2ci
≤ M , then v = 0 and, as a consequence, xi = b

2ci
and Z =

b2

4

∑n
i=1

1
ci

.

Finally, by the AM-GM inequality we have

M2∑n
i=1

1
ci

+
b2

4

n∑
i=1

1

ci
≥ bM,

which gives the final statement of the lemma.

We also use the following result by Zimmert and Seldin (2020, Lemma 15).

Lemma 2.3 (Zimmert and Seldin, 2020). For any b > 0 and c > 0 and T0, T ∈ N,
such that T0 < T and b

√
T0 > c, it holds that

T∑
t=T0+1

1

bt
3
2 − ct

≤ 2

b
√
T0 − c

.

By doubling the lower threshold on b
√
T0 we obtain the following corollary.

Corollary 2.1. For any b > 0 and c > 0 and T0, T ∈ N, such that T0 < T and
b
√
T0 ≥ 2c, it holds that

T∑
t=T0+1

1

bt
3
2 − ct

≤ 2

c
.
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2.7.2 Proof of Theorem 2.3
Proof. Similar to the proof of Theorem 2.4, for any λ ∈ [0, 1] we use the self-bounding
constraint and the regret bound of Zimmert and Seldin (2020) given in equation
(2.12) to provide the following bound for the pseudo-regret:
RegT = (λ+ 1)RegT − λRegT

≤ (λ+ 1)

(∑
i 6=i∗

[
T∑
t=1

E[wt,i]

4
√
t

+
T∑
t=1

√
E[wt,i]√

t

]
+

3

4

√
K + 14K log(T ) + 15

)

− λ

([
T∑
t=1

∑
i 6=i∗

E[wt,i]∆i

]
− C

)
.

As before, to simplify the notation, let at,i = E[wt,i]
1
2 and S =

∑
i 6=i∗

1
∆i

and
w.l.o.g. assume that i∗ = K and define

Rt =
∑
i 6=i∗

(
λ+ 1√

t
at,i −

(
λ∆i −

λ+ 1

4
√
t

)
a2t,i

)
, (2.22)

R =
T∑
t=1

Rt + λC.

Then
RegT ≤ R + (1 + λ)

(
3

4

√
K + 14K log(T ) + 15

)
. (2.23)

Hence, in order to obtain a bound for the pseudo-regret, it suffices to derive a bound
for R. We start with the bound for a general adversarial environment and then prove
the refinements.

Proof of the regret bound for an unconstrained adversarial regime (equa-
tion (2.5))

We take λ = 0. By plugging it into the definition of Rt in equation (2.22) we obtain

Rt ≤
√
K − 1√

t
+

1

4
√
t

and

R =
T∑
t=1

Rt ≤ 2
√

(K − 1)T +
1

2

√
T .

Plugging this into (2.23) completes the proof of (2.5).
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Proof of the regret bounds for an adversarial regime with a self-bounding
constraint (equations (2.6) and (2.7))

Now we prove the refined bounds for adversarial environments satisfying the self-
bounding constraint with unique best arm. Similarly to the proof of Theorem 2.4,
we bound Rt for each t ≥ 1 by solving a constrained maximization problem over
{at,i}ni=1, where the constraint is

∑K−1
i=1 at,i ≤

√
K − 1. But the challenge here is that

the coefficients λ∆i − λ+1
4
√
t

in front of a2t,i in the definition of Rt are not necessarily
positive, and if they are not, then Lemma 2.2 cannot be applied. More precisely, if

∀i 6= i∗ : λ∆i ≥
λ+ 1

4
√
t
⇒ t ≥

(
λ+ 1

4λ∆min

)2

, (2.24)

where ∆min = mini 6=i∗{∆i}, then all the coefficients are positive. We denote α = 2λ
λ+1

and define a threshold T1 =
(

λ+1
2λ∆min

)2
=
(

1
α∆min

)2
. We note that T1 is four times

larger than what is required for satisfaction of the condition in equation (2.24). The
reason is that at a later point in the proof we apply Corollary 2.1 for t ≥ T1 and we
need to satisfy the condition of the corollary. For t ≥ T1 we can use Lemma 2.2 to
bound Rt. By the lemma we obtain:

Rt ≤
(λ+ 1)2

4t

K−1∑
i=1

1

λ∆i − λ+1√
t

=
K−1∑
i=1

λ+ 1
4λ
λ+1

∆it−
√
t
=

K−1∑
i=1

λ+ 1

2α∆it−
√
t
.

We rewrite each term in the summation in the following way

λ+ 1

2α∆it−
√
t
=

λ+ 1

2α∆it
+

λ+ 1

4α2∆2
i t

3
2 − 2α∆it

and obtain

for t ≥ T1: Rt ≤
S(λ+ 1)

2αt
+

K−1∑
i=1

λ+ 1

4α2∆2
i t

3
2 − 2α∆it

. (2.25)

In order to bound Rt for t < T1, we break it into two parts as follows:

Rt =
∑
i 6=i∗

(
λ+ 1√

t
at,i − λ∆ia

2
t,i

)
+
∑
i 6=i∗

(
λ+ 1

4
√
t
a2t,i

)
≤
∑
i 6=i∗

(
λ+ 1√

t
at,i − λ∆ia

2
t,i

)
+

1

2
√
t
,
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where the inequality holds because λ ≤ 1 and
∑

i 6=i∗ a
2
t,i ≤ 1. We use Lemma 2.2 to

bound the summation in the latter expression. The solution depends on a threshold
T2 =

(λ+1)2S2

4λ2(K−1)
= S2

(K−1)α2 :

for t ≤ T2: Rt ≤
√
K − 1(λ+ 1)√

t
− λ(K − 1)

S
+

1

2
√
t
, (2.26)

for t ≥ T2: Rt ≤
S(λ+ 1)2

4λt
+

1

2
√
t
=

S(λ+ 1)

2αt
+

1

2
√
t
. (2.27)

Note that for t ≥ T1 we have a choice between using the bound in equation (2.25) or
one of the bounds in (2.26) or (2.27), depending on whether t ≤ T2 or t ≥ T2. The
relation between the thresholds, T1 ≤ T2 or T2 ≤ T1, depends on the relation between(

1
∆min

)2
and S2

K−1
. Also note that the choice of α (which determines λ) affects the

thresholds T1 and T2, but not their relation. Similar to the proof of Theorem 2.4, we
restrict the range of α, so that T ≥ T2 =

S2

α2(K−1)
, which gives α ≥ S√

T (K−1)
.

We now derive a bound on R. We consider three cases: T2 ≤ T ≤ T1, T2 ≤ T1 ≤
T , and T1 ≤ T2 ≤ T .

First case: T2 ≤ T ≤ T1. By (2.26) and (2.27) we have:

T∑
t=1

Rt ≤
T2∑
t=1

Rt +
T∑

t=T2+1

Rt

≤
T2∑
t=1

(√
K − 1(λ+ 1)√

t
− λ(K − 1)

S

)
+

T∑
t=T2+1

(
S(λ+ 1)

2αt

)
+
√
T

≤ 2
√

T2(K − 1)(λ+ 1)− λ(K − 1)T2

S
+

S(λ+ 1)

2α
log( T

T2

) +
√

T1, (2.28)

where in the second line we used
∑T

t=1
1

2
√
t
≤
√
T and in the third line

∑T
t=T2+1

1
t
≤

log(T/T2) and λ ≤ 1 and T ≤ T1.
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Second case: T2 ≤ T1 ≤ T . By (2.26), (2.27), and (2.25) we have:

T∑
t=1

Rt ≤
T2∑
t=1

Rt +

T1∑
t=T2+1

Rt +
T∑

t=T1+1

Rt

≤
T2∑
t=1

(√
K − 1(λ+ 1)√

t
− λ(K − 1)

S

)
+

T∑
t=T2+1

(
S(λ+ 1)

2αt

)
+
√

T1

+
K−1∑
i=1

T∑
t=T1+1

λ+ 1

4α2∆2
i t

3
2 − 2α∆it

≤ 2
√

T2(K − 1)(λ+ 1)− λ(K − 1)T2

S
+

S(λ+ 1)

2α
log( T

T2

) +
√

T1

+
K−1∑
i=1

T∑
t=T1+1

1

2α2∆2
i t

3
2 − α∆it

, (2.29)

where in the second line we used
∑T1

t=1
1

2
√
t
≤
√
T1 and in the third line

∑T
t=T2+1

1
t
≤

log(T/T2) and λ ≤ 1.

Third case: T1 ≤ T2 ≤ T . By (2.26) and (2.25) we have:

T∑
t=1

Rt ≤
T2∑
t=1

Rt +
T∑

t=T2+1

Rt

≤
T2∑
t=1

(√
K − 1(λ+ 1)√

t
− λ(K − 1)

S

)
+
√

T2 +
T∑

t=T2+1

(
S(λ+ 1)

2αt

)

+
K−1∑
i=1

T∑
t=T2+1

λ+ 1

4α2∆2
i t

3
2 − 2α∆it

≤ 2
√

T2(K − 1)(λ+ 1)− λ(K − 1)T2

S
+
√
T2 +

S(λ+ 1)

2α
log( T

T2

)

+
K−1∑
i=1

T∑
t=T1+1

1

2α2∆2
i t

3
2 − α∆it

. (2.30)

Merging the cases: Corollary 2.1 provides an upper bound for the last terms of
(2.29) and (2.30):
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T∑
t=T1+1

1

2α2∆2
i t

3
2 − α∆it

≤ 2

α∆i

.

Now we combine (2.28), (2.29), and (2.30), and obtain following bound for R:

R =
T∑
t=1

Rt + λC

≤ 2
√

T2(K − 1)(λ+ 1)− λ(K − 1)T2

S
+

S(λ+ 1)

2α
log( T

T2

) + λC

+
√

max{T1, T2}+
K−1∑
i=1

2

α∆i

. (2.31)

We note that max {T1, T2} = max
{

S2

(K−1)α2 ,
1

∆2
minα

2

}
≤ S2

α2 . Moreover, by substitut-
ing T2 =

S2

α2(K−1)
into (2.31) we obtain:

R ≤ 2(λ+ 1)
S

α
− λS

α2
+

S(λ+ 1)

2α
log
(
α2(K − 1)T

S2

)
+ λC +

S

α
+

K−1∑
i=1

2

α∆i

=
λ+ 1

2

[
4
S

α
− S

α
+

S

α
log
(
(K − 1)T

S2

)
+

2S

α
log(α) + αC

]
+

3S

α

=
1

2− α

[
S

α

(
3 + log

(
T (K − 1)

S2

))
+

2S

α
log(α) + αC

]
︸ ︷︷ ︸

h(1,α)

+
3S

α
. (2.32)

We recognize that the first term in equation (2.32) is h(1, α), which was defined
earlier in equation (2.18).

Proof of the general bound in equation (2.6): By taking λ = 1, which corre-
sponds to α = 1, we obtain

R ≤ S

(
log
(
T (K − 1)

S2

)
+ 3

)
+ C + 3S

= S

(
log
(
T (K − 1)

S2

)
+ 6

)
+ C.

Plugging this and the value of λ into (2.16) completes the proof of (2.6).
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Proof of the refined bound in equation (2.7): We note that the range of
C in the refined bound in equation (2.7) is the same as in the refined bound in
(2.11) in Theorem 2.4 for B = 1. We take α∗ as in equation (2.19), i.e., α∗ =√

−S
C
W−1

(
−CS

e(K−1)T
)
)

. By Lemma 2.1 we have −W−1

(
−CS

e(K−1)T
)
)
≥ 1, and thus

α∗ ≥
√

S
C

. By plugging this bound and the bound on h(1, α∗) from equation (2.21)
into equation (2.32), we obtain:

R ≤
√
CS

(√
log T (K − 1)

CS
+ 2

)
+ S

(
log T (K − 1)

CS
+

√
2 log T (K − 1)

CS
+ 2

)
+ 3
√
CS

=
√
CS

(√
log T (K − 1)

CS
+ 5

)
+ S

(
log T (K − 1)

CS
+

√
2 log T (K − 1)

CS
+ 2

)
.

Plugging this bound into (2.16) and using the fact that λ ≤ 1 completes the proof
of (2.7).
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Chapter 3

A Best-of-Both-Worlds Algorithm
for Bandits with Delayed Feedback

The work presented in this chapter is based on a paper that has been published as:

Saeed Masoudian, Julian Zimmert, and Yevgeny Seldin. A best-of-both-worlds
algorithm for bandits with delayed feedback. In Advances in Neural Information
Processing Systems (NeurIPS), 2022.
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Abstract
We present a modified tuning of the algorithm of Zimmert and Seldin (2020)
for adversarial multiarmed bandits with delayed feedback, which in addition
to the minimax optimal adversarial regret guarantee shown by Zimmert and
Seldin simultaneously achieves a near-optimal regret guarantee in the stochas-
tic setting with fixed delays. Specifically, the adversarial regret guarantee is
O(
√
TK +

√
dT logK), where T is the time horizon, K is the number of

arms, and d is the fixed delay, whereas the stochastic regret guarantee is
O
(∑

i 6=i∗(
1
∆i

log(T ) + d
∆i logK

) + dK1/3 logK
)

, where ∆i are the suboptimality gaps.
We also present an extension of the algorithm to the case of arbitrary delays,
which is based on an oracle knowledge of the maximal delay dmax and achieves
O(
√
TK +

√
D logK + dmaxK

1/3 logK) regret in the adversarial regime, where D is
the total delay, and O

(∑
i 6=i∗(

1
∆i

log(T ) + σmax

∆i logK
) + dmaxK

1/3 logK
)

regret in the
stochastic regime, where σmax is the maximal number of outstanding observations.
Finally, we present a lower bound that matches the refined adversarial regret up-
per bound achieved by the skipping technique of Zimmert and Seldin (2020) in the
adversarial setting.

3.1 Introduction
Delayed feedback is a common challenge in many online learning problems, includ-
ing multi-armed bandits. The literature studying multi-armed bandit games with
delayed feedback builds on prior work on bandit problems with no delays. The
researchers have traditionally separated the study of bandit games in stochastic en-
vironments (Thompson, 1933; Robbins, 1952; Lai and Robbins, 1985; Auer et al.,
2002a) and in adversarial environments(Auer et al., 2002b). However, in practice
the environments are rarely purely stochastic, whereas they may not be fully adver-
sarial either. Furthermore, the exact nature of an environment is not always known
in practice. Therefore, in recent years there has been an increasing interest in al-
gorithms that perform well in both regimes with no prior knowledge of the regime
(Bubeck and Slivkins, 2012; Seldin and Slivkins, 2014; Auer and Chiang, 2016; Seldin
and Lugosi, 2017; Wei and Luo, 2018). The quest for best-of-both-worlds algorithms
for no-delay setting culminated with the Tsallis-INF algorithm proposed by Zimmert
and Seldin (2019), which achieves the optimal regret bounds in both stochastic and
adversarial environments. The algorithm and analysis were further improved by Zim-
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mert and Seldin (2021) and Masoudian and Seldin (2021), who, in particular, derived
improved regret bounds for intermediate regimes between stochastic and adversarial,
while Ito (2021) removed an assumption on uniqueness of the best arm, which was
used in the early works.

Our goal is to extend best-of-both-worlds results to multi-armed bandits with de-
layed feedback. So far the literature on multi-armed bandits with delayed feedback
has followed the traditional separation into stochastic and adversarial. In the stochas-
tic regime Joulani et al. (2013) showed that if the delays are random (generated i.i.d),
then compared to the non-delayed stochastic multi-armed bandit setting, the regret
only increases additively by a factor that is proportional to the expected delay. In the
adversarial setting Cesa-Bianchi et al. (2019) have studied the case of uniform delays
d. They derived a lower bound Ω(max(

√
KT,

√
dT logK)) and an almost matching

upper bound O(
√
KT logK +

√
dT logK). Thune et al. (2019) and Bistritz et al.

(2019) extended the results to arbitrary delays, achieving O(
√
KT logK+

√
D logK)

regret bounds based on oracle knowledge of the total delay D and time horizon T .
Thune et al. (2019) also proposed a skipping technique based on advance knowl-
edge of the delays "at action time", which allowed to exclude excessively large delays
from D. Finally, Zimmert and Seldin (2020) introduced an FTRL algorithm with a
hybrid regularizer that achieved O(

√
KT +

√
D logK) regret bound, matching the

lower bound in the case of uniform delays and requiring no prior knowledge of D or
T . The regularizer used by Zimmert and Seldin was a mix of the negative Tsallis
entropy regularizer used in the Tsallis-INF algorithm for bandits and the negative
entropy regularizer used in the Hedge algorithm for full information games, mixed
with separate learning rates:

Ft(x) = −2η−1
t

(
K∑
i=1

√
xi

)
+ γ−1

t

(
K∑
i=1

xi(logxi − 1)

)
. (3.1)

Zimmert and Seldin (2020) also improved the skipping technique and achieved a re-
fined regret bound O(

√
KT + minS(|S| +

√
DS̄ logK)), where S is a set of skipped

rounds and DS̄ is the total delay in non-skipped rounds. The refined skipping tech-
nique requires no advance knowledge of the delays. Their key step toward elimination
of the need of advance knowledge of delays was to base the analysis on the count of
the number of outstanding observations rather than the delays. The great advantage
of skipping is that a few rounds with excessively large or potentially even infinite
delays have a very limited impact on the regret bound. One of our contributions in
this paper is a lower bound for the case of non-uniform delays, which matches the
refined regret upper bound achieved by skipping.
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Even though the hybrid regularizer used by Zimmert and Seldin (2020) was shar-
ing the Tsallis entropy part with their best-of-both-worlds Tsallis-INF algorithm from
Zimmert and Seldin (2021), and even though the adversarial analysis was partly sim-
ilar to the analysis of the Tsallis-INF algorithm, Zimmert and Seldin (2020) did not
manage to derive a regret bound for their algorithm in the stochastic setting with
delayed feedback and left it as an open problem. The stochastic analysis of the
Tsallis-INF algorithm is based on the self-bounding technique (Zimmert and Seldin,
2021). Application of this technique in the no delay setting is relatively straight-
forward, but in presence of delays it requires control of the drift of the playing dis-
tribution from the moment an action is played to the moment the feedback arrives.
Cesa-Bianchi et al. (2019) have bounded the drift of the playing distribution of the
EXP3 algorithm in the uniform delays setting with a fixed learning rate. But best-
of-both-worlds algorithms require decreasing learning rates (Mourtada and Gaïffas,
2019), which makes the drift control much more challenging. The problem gets even
more challenging in the case of arbitrary delays, because it requires drift control over
arbitrary long periods of time.

We apply an FTRL algorithm with the same hybrid regularizer as the one used
by Zimmert and Seldin (2020), but with a different tuning of the learning rates.
The new tuning has a minor effect on the adversarial regret bound, but allows us
to make progress with the stochastic analysis. For the stochastic analysis we use
the self-bounding technique. One of our key contributions is a general lemma that
bounds the drift of the playing distribution derived from the time-varying hybrid
regularizer over arbitrary delays. Using this lemma we derive near-optimal best-of-
both-worlds regret guarantees for the case of fixed delays. But even with the lemma
at hand, application of the self-bounding technique in presence of arbitrary delays is
still much more challenging than in the no delays or fixed delay setting. Therefore,
we resort to introducing an assumption of oracle knowledge of the maximal delay,
which limits the maximal period of time over which we need to keep control over the
drift. Our contributions are summarized below. To keep the presentation simple we
assume uniqueness of the best arm throughout the paper. Tools for eliminating the
uniqueness of the best arm assumption were proposed by Ito (2021).

1. We show that in the arbitrary delays setting with an oracle knowledge of
the maximal delay dmax, our algorithm achieves O(

√
KT +

√
D logK +

dmaxK
1/3 logK) regret bound in the adversarial regime simultaneously with

O
(∑

i 6=i∗(
logT
∆i

+ σmax

∆i logK
) + dmaxK

1/3 logK
)

regret bound in the stochastic
regime, where σmax is the maximal number of outstanding observations. We
note that σmax ≤ dmax, but it may potentially be much smaller. For example,
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if the first observation has a delay of T and all the remaining observations have
zero delay, then dmax = T , but σmax = 1.

2. In the case of uniform delays the above bounds simplify to
O(
√
KT +

√
dT logK + dK1/3 logK) in the adversarial case and

O
(∑

i 6=i∗(
logT
∆i

+ d
∆i logK

) + dK1/3 logK
)

in the stochastic case. For
T ≥ dK2/3 logK the last term in the adversarial regret bound is
dominated by the middle term, which leads to the minimax optimal
O(
√
KT +

√
dT logK) adversarial regret. The stochastic regret lower bound

is trivially Ω(min{d
∑

i 6=i∗ ∆i

K
,
∑

i 6=i∗
logT
∆i
}) = Ω(d

∑
i 6=i∗ ∆i

K
+
∑

i 6=i∗
logT
∆i

) and,
therefore, our stochastic regret upper bound is near-optimal.

3. We present an Ω
(√

KT + minS(|S|+
√
DS̄ logK)

)
regret lower bound for

adversarial multi-armed bandits with non-uniformly delayed feedback, which
matches the refined regret upper bound achieved by the skipping technique of
Zimmert and Seldin (2020).

3.2 Problem setting
We study the multi-armed bandit with delays problem, in which at time t = 1, 2, . . .
the learner chooses an arm It among a set of K arms and instantaneously suffers
a loss `t,It from a loss vector `t ∈ [0, 1]K generated by the environment, but `t,It is
not observed by the learner immediately. After a delay of dt, at the end of round
t + dt, the learner observes the pair (t, `t,It), namely, the loss and the index of the
game round the loss is coming from. The sequence of delays d1, d2, . . . is selected
arbitrarily by the environment. Without loss of generality we can assume that all
the outstanding observations are revealed at the end of the game, i.e., t+ dt ≤ T for
all t, where T is the time horizon, unknown to the learner. We consider two regimes,
oblivious adversarial and stochastic.

The performance of the learner is evaluated using pseudo-regret, which is defined
as

RegT = E

[
T∑
t=1

`t,It

]
− min

i∈[K]
E

[
T∑
t=1

`t,i

]
= E

[
T∑
t=1

(
`t,It − `t,i∗T

)]
,

where i∗T ∈ argmini∈[K] E
[∑T

t=t `t,i

]
is a best arm in hindsight in expectation over

the loss generation model and the randomness of the learner. In the oblivious adver-
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sarial setting the losses are independent of the actions taken by the algorithm and
considered to be deterministic, and the pseudo-regret is equal to the expected regret.

Additional Notation: We use ∆n to denote the probability simplex over n + 1
points. The characteristic function of a closed convex set A is denoted by IA(x) and
satisfies IA(x) = 0 for x ∈ A and IA(x) =∞ otherwise. The convex conjugate of a
function f : Rn → R is defined by f ∗(y) = supx∈Rn{〈x, y〉−f(x)}. We also use bar to

denote that the function domain is restricted to ∆n, e.g., f̄(x) =
{
f(x), if x ∈ ∆n

∞, otherwise
.

We denote the indicator function of an event E by 1(E) and use 1t(i) as a shorthand
for 1(It = i). The probability distribution over arms that is played by the learner at
round t is denoted by xt ∈ ∆K−1.

3.3 Algorithm
The algorithm is based on Follow The Regularized Leader (FTRL) algorithm with
the hybrid regularizer used by Zimmert and Seldin (2020), stated in equation (3.1).
At each time step t let σt =

∑t−1
s=1 1(s + ds ≥ t) be the number of outstanding ob-

servations and Dt =
∑t

s=1 σt be the cumulative number of outstanding observations,
then the learning rates are defined as

η−1
t =

√
t+ η0, γ−1

t =

√∑t
s=1 σs + γ0
logK

, (3.2)

where η0 = 10dmax + d2max/
(
K1/3 log(K)

)2 and γ0 = 242d2maxK
2/3 log(K). The

update rule for the distribution over actions played by the learner is

xt = ∇F̄ ∗
t (−L̂obs

t ) = arg min
x∈∆K−1

〈L̂obs
t , x〉+ Ft(x), (3.3)

where L̂obs
t =

∑t−1
s=1

ˆ̀
s1(s + ds < t) is the cumulative importance-weighted ob-

served loss and ˆ̀
s is an importance-weighted estimate of the loss vector `s defined

by
ˆ̀
t,i =

`t,i1(It = i)

xt,i

.

At the beginning of round t the algorithm calculates the cumulative number of
outstanding observations Dt and uses it to define the learning rate γt. Next, it
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uses the FTRL update rule defined in (3.3) to define a distribution over actions xt

from which to draw action It. Finally, at the end of round t it receives the delayed
observations and updates the cumulative loss estimation vector accordingly, so that
L̂obs
t+1 = L̂obs

t +
∑t

s=1
ˆ̀
s1(s+ds = t). The complete algorithm is provided in Algorithm

2.

Algorithm 2: FTRL with advance tuning for delayed bandit
1 Initialize D0 = 0 and L̂obs

1 = 0K (where 0K is a zero vector in RK)
2 for t = 1, . . . , T do
3 Set σt =

∑t−1
s=1 1(s+ ds > t)

4 Update Dt = Dt−1 + σt

5 Set xt = arg minx∈∆K−1〈L̂obs
t , x〉+ Ft(x) // Ft is defined in (3.1) and

6 ηt and γt in (3.2)
7 Sample It ∼ xt

8 Observe (s, `s,Is) for all s that satisfy s+ ds = t

9 L̂obs
t+1 = L̂obs

t +
∑t

s=1
ˆ̀
s1(s+ ds = t)

3.4 Best-of-both-worlds regret bounds for Algo-
rithm 2

In this section we provide best-of-both-worlds regret bounds for Algorithm 2. First,
in Theorem 3.1 we provide regret bounds for an arbitrary delay setting, where we
assume an oracle access to dmax. Then, in Corollary 3.1 we specialize the result to a
fixed delay setting.
Theorem 3.1. Assume that Algorithm 2 is given an oracle knowledge of dmax. Then
its pseudo-regret for any sequence of delays and losses satisfies

RegT = O(
√
TK +

√
D logK + dmaxK

1/3 logK).

Furthermore, in the stochastic regime the pseudo-regret additionally satisfies

RegT = O

(∑
i 6=i∗

(
1

∆i

log(T ) + σmax

∆i logK
) + dmaxK

1/3 logK

)
.

A sketch of the proof is provided in Section 3.5 and detailed constants are worked
out in Appendix 3.8.3. For fixed delays Theorem 3.1 gives the following corollary.
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Corollary 3.1. If the delays are fixed and equal to d, and T ≥ dK2/3 logK, then
the pseudo-regret of Algorithm 2 always satisfies

RegT = O(
√
TK +

√
dT logK)

and in the stochastic setting it additionally satisfies

RegT = O

(∑
i 6=i∗

(
1

∆i

log(T ) + d

∆i logK
) + dK1/3 logK

)
.

In the adversarial regime with fixed delays d, regret lower bound is
Ω
(√

KT +
√
dT logK

)
, whereas in the stochastic regime with fixed delays the regret

lower bound is trivially Ω(d
∑

i 6=i∗ ∆i

K
+
∑

i 6=i∗
logT
∆i

). Thus, in the adversarial regime
the corollary yields the minimax optimal regret bound and in the stochastic regime
it is near-optimal. More explicitly, it is optimal within a multiplicative factor of∑

i 6=i∗
1

∆i logK
+ K4/3 logK∑

i 6=i∗ ∆i
in front of d.

If we fix a total delay budget D, then uniform delays d = D/T is a special
case, and in this sense Theorem 3.1 is also optimal in the adversarial regime and
near-optimal in the stochastic regime, although for non-uniform delays improved
regret bounds can potentially be achieved by skipping. We also note that having the
dependence on σmax in the middle term of the stochastic regret bound in Theorem 3.1
is better than having a dependence on dmax, since σmax ≤ dmax, and in some cases
it can be significantly smaller, as shown in the example in the Introduction and
quantified by the following lemma.

Lemma 3.1. Let dmax(S) = maxs∈S ds, where S ⊆ {1, . . . , T} is a subset of rounds.
Let S̄ = {1, . . . , T} \ S be the remaining rounds. Then

σmax ≤ min
S⊆{1,...,T}

{
|S|+ dmax(S̄)

}
.

A proof of Lemma 3.1 is provided in Appendix 3.8.1.
Finally, we note that the result in Theorem 3.1 is easily extendable to the cor-

rupted regime, because the proof relies on the same self-bounding technique as the
one used by Zimmert and Seldin (2021). If we denote by Bstoch

T the regret upper
bound in the stochastic regime in Theorem 3.1 and by C the total corruption budget,
then in the corrupted regime the regret would be O(Bstoch

T +
√

Bstoch
T C). The proof

is straightforward, following the lines of Zimmert and Seldin (2021), and, therefore,
left out.
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3.5 A proof sketch of Theorem 3.1
In this section we provide a sketch of a proof of Theorem 3.1. We provide a proof
sketch for the stochastic bound in Section 3.5.1. Afterwards, in Section 3.5.2, we
show how the analysis of Zimmert and Seldin (2020) gives the adversarial bound
stated in Theorem 3.1.

3.5.1 Stochastic Bound
We start by providing a key lemma (Lemma 3.2) that controls the drift of the playing
distribution derived from the time-varying hybrid regularizer over arbitrary delays.
We then introduce a drifted version of the pseudo-regret defined in (3.4), for which
we use the key lemma to show that the drifted version of the pseudo-regret is close to
the actual one. As a result, it is sufficient to bound the drifted version. The analysis
of the drifted pseudo-regret follows by the standard analysis of the FTRL algorithm
(Lattimore and Szepesvári, 2020) that decomposes the pseudo-regret (drifted pseudo-
regret in our case) into stability and penalty terms. Thereafter, we proceed by using
Lemma 3.2 again, this time to bound the stability term in order to apply the self-
bounding technique (Zimmert and Seldin, 2019), which yields logarithmic regret in
the stochastic setting. Our key lemma is the following.

Lemma 3.2 (The Key Lemma). For any i ∈ [K] and s, t ∈ [T ], where s ≤ t and
t− s ≤ dmax, we have

xt,i ≤ 2xs,i.

A detailed proof of the lemma is provided in Appendix 3.8.2. Below we explain
the high level idea behind the proof.

Proof sketch. We know that xt = ∇F̄ ∗
t (−L̂obs

t ) and xs = ∇F̄ ∗
s (−L̂obs

s ), so we intro-
duce x̃ = ∇F̄ ∗

s (−L̂obs
t ) as an auxiliary variable to bridge between xt and xs. The

analysis consists of two key steps and is based on induction on (t, s).
Deviation Induced by the Loss Shift: This step controls the drift when we fix
the learning rates and shift the cumulative loss. We prove the following inequality:

x̃i ≤
3

2
xs,i.

Note that this step uses the induction assumption for (s, s−dr) for all r < s : r+dr =
s.
Deviation Induced by the Change of Regularizer: In this step we bound the
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drift when the cumulative loss vector is fixed and we change the regularizer. We
show that

xt,i ≤
4

3
x̃i.

Combining these two steps gives us the desired bound. A proof of these steps is
provided in Appendix 3.8.2.

We use Lemma 3.2 to relate the drifted pseudo-regret to the actual pseudo-regret.
Let At = {s : s ≤ t and s+ ds = t} be the set of rounds for which feedback arrives
at round t. We define the observed loss vector at time t as ˆ̀obs

t =
∑

s∈At

ˆ̀
s and the

drifted pseudo-regret as

Reg
drift

T = E

[
T∑
t=1

(
〈xt, ˆ̀

obs
t 〉 − ˆ̀obs

t,i∗T

)]
. (3.4)

We rewrite the drifted regret as

Reg
drift

T = E

[
T∑
t=1

∑
s∈At

(
〈xt, ˆ̀s〉 − ˆ̀

s,i∗T

)]

=
T∑
t=1

∑
s∈At

K∑
i=1

E[xt,i(ˆ̀s,i − ˆ̀
s,i∗T

)]

=
T∑
t=1

∑
s∈At

K∑
i=1

E[xt,i]∆i =
T∑
t=1

K∑
i=1

E[xt+dt,i]∆i,

where when taking the expectation we use the facts that ˆ̀
s has no impact on the

determination of xt and that the loss estimators are unbiased. Using Lemma 3.2 we
make a connection between pseudo-regret and the drifted version:

Reg
drift

T =
T∑
t=1

K∑
i=1

E[xt+dt,i]∆i ≥
T−dmax∑

t=1

K∑
i=1

1

2
E[xt+dmax,i]∆i

=
1

2

T∑
t=dmax+1

K∑
i=1

E[xt,i]∆i

≥ 1

2

T∑
t=1

K∑
i=1

E[xt,i]∆i −
dmax

2
=

1

2
RegT −

dmax

2
,
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where the first inequality follows by Lemma 3.2, and the second inequality uses∑dmax

t=1 E[xt,i]∆i ≤ dmax. As a result, we have RegT ≤ 2Reg
drift

T + dmax and it
suffices to upper bound Reg

drift

T . We follow the standard analysis of FTRL, which
decomposes the drifted pseudo-regret into stabiltiy and penalty terms as

Reg
drift

T =E


T∑
t=1

〈xt, ˆ̀
obs
t 〉+ F̄ ∗

t (−L̂obs
t+1)− F̄ ∗

t (−L̂obs
t )︸ ︷︷ ︸

stability



+ E


T∑
t=1

F̄ ∗
t (−L̂obs

t )− F̄ ∗
t (−L̂obs

t+1)− `t,i∗T︸ ︷︷ ︸
penalty

 .

For the penalty term we have the following bound by Abernethy et al. (2015)

penalty ≤
T∑
t=2

(Ft−1(xt)− Ft(xt)) + FT (ei∗T )− F1(x1),

where ei∗T denotes a the unit vector in RK with the i∗T -th element being one and zero
elsewhere. By replacing the closed form of the regularizer in this bound and using
the facts that η−1

t − η−1
t−1 = O(ηt), γ−1

t − γ−1
t−1 = O(σtγt/ logK), and x

1
2
t,i∗T
− 1 ≤ 0, we

obtain

penalty ≤ O

(
T∑
t=2

∑
i 6=i∗

ηtx
1
2
t,i +

T∑
t=2

K∑
i=1

σtγtxt,i log(1/xt,i)

logK

)
+ 2
√

η0(K − 1) +
√

γ0 logK.

(3.5)

In order to control the stability term we derive Lemma 3.3.

Lemma 3.3 (Stability). Let υt = |At|. For any αt ≤ γ−1
t we have

stability ≤
T∑
t=1

K∑
i=1

2f
′′

t (xt,i)
−1(ˆ̀obst,i − αt)

2.
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Furthermore, αt =
∑K

j=1 f
′′
(xt,j)

−1 ˆ̀obs
t,j∑K

j=1 f
′′ (xt,j)−1

satisfies αt ≤ γ−1
t and yields

E[stability] ≤
T∑
t=1

∑
i 6=i∗

2γt(υt − 1)υtE[xt,i]∆i +
T∑
t=1

∑
s∈At

K∑
i=1

2ηtE[x3/2
t,i x

−1
s,i (1− xs,i)].

(3.6)
A proof of the stability lemma is provided in Appendix 3.8.1.6. We ap-

ply Lemma 3.2 to (3.6) to give bounds υtxt,i =
∑

s∈At
xt,i ≤ 2

∑
s∈At

xs,i and
x
3/2
t,i x

−1
s,i (1 − xs,i) ≤ 23/2x

1/2
s,i (1 − xs,i). Moreover, in order to remove the best arm

i∗ from the summation in the later bound we use x
1/2
s,i∗(1 − xs,i∗) ≤

∑
i 6=i∗ xs,i ≤∑

i 6=i∗ x
1/2
s,i . These bounds together with the facts that we can change the order of

the summations and that each t belongs to exactly one As, gives us the following
stability bound

E[stability] = O

(
T∑
t=1

∑
i 6=i∗

ηtE[x1/2
t,i ] +

T∑
t=1

∑
i 6=i∗

γt+dt(υt+dt − 1)E[xt,i]∆i

)
. (3.7)

By combining (3.7), (3.5), and the fact that RegT ≤ 2Reg
drift

T + dmax, we show
that there exist constants a, b, c ≥ 0, such that

RegT ≤ E

a
T∑
t=1

∑
i 6=i∗

ηtx
1/2
t,i︸ ︷︷ ︸

A

+b
T∑
t=1

∑
i 6=i∗

γt+dt(υt+dt − 1)xt,i∆i︸ ︷︷ ︸
B

+c
T∑
t=2

K∑
i=1

σtγtxt,i log(1/xt,i)

logK︸ ︷︷ ︸
C


+ 4
√

η0(K − 1) + 2
√
γ0 logK + dmax︸ ︷︷ ︸

D

. (3.8)

Self bounding analysis: We use the self-bounding technique to write RegT =
4RegT − 3RegT , and then based on (3.8) we have

RegT ≤ E
[
4aA−RegT

]
+ E

[
4bB −RegT

]
+ E

[
4cC −RegT

]
+ 4D. (3.9)

For D we can substitute the values of γ0 and η0 and get

D = O(dmax(K − 1)1/3 logK). (3.10)

Upper bounding A,B, and C requires separate and elaborate analysis, which we do
in Lemmas 3.4, 3.5 and 3.6, respectively. Proofs of these lemmas are provided in
Appendix 3.8.1.2.
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Lemma 3.4 (A bound for 4aA−RegT ). We have the following bound for any a ≥ 0:

4aA−RegT ≤
∑
i 6=i∗

4a2

∆i

log(T/η0 + 1) + 1. (3.11)

Lemma 3.4 contributes the logarithmic (in T ) term to the regret bound.

Lemma 3.5 (A bound for 4bB−RegT ). Let υmax = maxt∈[T ] υt, then for any b ≥ 0:

4bB −RegT ≤ 64b2υmax logK. (3.12)

It is evident that υmax ≤ σmax ≤ dmax, so the bound in Lemma 3.5 contributes
an O(dmax logK) term to the regret bound.

Lemma 3.6 (A bound for 4cC −RegT ). For any c ≥ 0:

4cC −RegT ≤
∑
i 6=i∗

128c2σmax

∆i logK
. (3.13)

Part of the pseudo-regret bound that corresponds to Lemma 3.6 comes from
the penalty term related to the negative entropy part of the regularizer. In this
part, despite the fact that σmax can be much smaller than dmax (Lemma 3.1), the∑

i 6=i∗
σmax

∆i logK
term could be very large when the suboptimality gaps are small. In

Appendix 3.8.4 we show how an asymmetric oracle learning rate γt,i ' γt/
√
∆i for

the negative entropy regularizer can be used to remove the
∑

i 6=i∗ 1/∆i factor in front
of σmax. The possibility of removing this factor without the oracle knowledge is left
as an open question.

Finally, by plugging (3.10),(3.11),(3.12),(3.13) into (3.9) we obtain the desired
regret bound.

3.5.2 Adversarial bound
For the adversarial regime we use the final bound of Zimmert and Seldin (2021),
which holds for any non-increasing learning rates:

RegT ≤
T∑
t=1

ηt
√
K +

T∑
t=1

γtσt + 2η−1
T

√
K + γ−1

T logK.
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It suffices to substitute the values of the learning rates and use Lemma 3.7 for function
1√
x
:

RegT ≤
T∑
t=1

√
K√

t+ η0
+

T∑
t=1

σt

√
logK√

Dt + γ0
+ 2
√

KT +Kη0 +
√

log(K)DT + γ0 log(K)

= O
(√

KT +
√

log(K)DT + dmaxK
1/3 logK

)
.

3.6 Refined lower bound
In this section, we prove a tight lower bound for adversarial regret with arbitrary
delays. Thune et al. (2019) have proposed a skipping technique to achieve refined re-
gret upper bounds in the adversarial regime with non-uniform delays. The technique
was improved by Zimmert and Seldin (2020), but it remained unknown whether the
refined regret bounds for regimes with non-uniform delays are tight. We answer
this question positively by showing that the regret bound of Zimmert and Seldin
(2020) is not improvable without additional assumptions. We first derive a refined
lower bound for full-information games with variable loss ranges, which might be of
independent interest. A proof is provided in Appendix 3.8.5.

Theorem 3.2. Let L1 ≥ L2 ≥ · · · ≥ LT ≥ 0 be a non-increasing sequence of positive
reals and assume that there exists a permutation ρ : [T ] → [T ], such that the losses
at time t are bounded in [0, Lρ(t)]

K. The minimax regret Reg∗ in the corresponding
adversarial full-information game satisfies

Reg∗ ≥ max

1

2

blog2(K)c∑
t=1

Lt,
1

32

√√√√ T∑
t=blog2(K)c

L2
t log(K)

 .

From here we can directly obtain a lower bound for the full-information game
with variable delays. This implies the same lower bound for bandits, since we have
strictly less information available.

Corollary 3.2. Let (dt)
T
t=1 be a sequence of non-increasing delays, such that dt ≤

T +1− t and let an oblivious adversary select all loss vectors (`t)
T
t=1 in [0, 1]K before

the start of the game. The minimax regret of the full-information game is bounded
from below by

Reg∗ = Ω

(
min
S⊂[T ]

|S|+
√

DS̄ log(K)

)
, where DS̄ =

∑
t∈[T ]\S

dt .
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Proof. We divide the time horizon greedily into M buckets, such that the actions
for all timesteps inside a bucket have to be chosen before the first feedback from
any timestep inside the bucket is received. In other words, let bucket Bm =
{bm, . . . , bm+1 − 1}, then ∀t ∈ Bm : t+ dt > bm+1 − 1, while ∃t ∈ Bm : t+ dt = bm+1.
This division of buckets has the following properties:

(i) monotonically decreasing sizes: |B1| ≥ |B2| ≥ · · · ≥ |BM |.

(ii) upper bound on the sum of delays: ∀m ∈ [M − 1] : |Bm|2 ≥
∑

t∈Bm+1
dt.

Both properties follow directly from the non-decreasing nature of the delays.

|Bm| = bm+1 − bm ≤ bm + dbm − bm = dbm
|Bm| = min

t∈Bm

{dt + t− bm} ≥ dbm+1−1 + min
t∈Bm

{t− bm} ≥ dbm+1−1 .

Hence

|Bm| ≥ dbm+1−1 ≥ dbm+1 ≥ |Bm+1| ,∑
t∈Bm+1

dt ≤ |Bm+1| · dbm+1 ≤ |Bm+1| · |Bm| ≤ |Bm|2 .

Set S ′ =
⋃blog2(K)c

m=1 Bm and let the adversary set all losses within a bucket to the
same value, then the game reduces to a full information game over M rounds with
loss ranges |B1|, |B2|, . . . , |BM |. Applying Theorem 3.2 yields

Reg∗ ≥ max

1

2

blog2(K)c∑
m=1

|Bm|,
1

32

√√√√ M∑
m=blog2(K)c

|Bm|2 log(K)


≥ max

1

2
|S ′|, 1

32

√∑
t∈S̄′

dt log(K)

 = Ω

min
S⊂[T ]

|S|+
√∑

t∈S̄

dt log(K)

 .

3.7 Discussion
We have presented a best-of-both-worlds analysis of a slightly modified version of
the algorithm of Zimmert and Seldin (2020) for bandits with delayed feedback. The
key novelty of our analysis is the control of the drift of the playing distribution over
arbitrary, but bounded, time intervals when the learning rate is changing over time.
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This control is necessary for best-of-both-worlds guarantees, but it is much more
challenging than the drift control over fixed time intervals with fixed learning rate
that appeared in prior work.

We also presented an adversarial regret lower bound matching the skipping-based
refined regret upper bound of Zimmert and Seldin (2020) within constants.

Our work leads to several exciting open questions. The main one is whether
skipping can be used to eliminate the need in oracle knowledge of dmax. If possible,
this would remedy the deterioration of the adversarial bound by the additive factor
of dmax, because the skipping threshold would be dominated by

√
DS̄ logK. Another

open question is whether the σmax

∆i
term can be eliminated from the stochastic bound.

Yet another open question is whether the dmax factor in the stochastic bound can
be reduced to σmax and whether the multiplicative terms dependent on K can be
eliminated. An extension of the results to first order bounds, that depend on the
cumulative loss of the best action rather than T , and extension to arm dependent
delays are also open questions. For now it was only done in the adversarial setting
(Gyorgy and Joulani, 2021; Van der Hoeven and Cesa-Bianchi, 2022).

3.8 Appendix

3.8.1 Proofs of the lemmas for the analysis of Algorithm 2
3.8.1.1 A proof of Lemma 3.1

Proof. Let S ⊆ {1, . . . , T} and S̄ = {1, . . . , T} \ S be an arbitrary split of the game
rounds. Consider the number of outstanding observations σt at an arbitrary round
t. The number σt is bounded by the sum of the number of outstanding observations
from actions taken in the rounds in S and the number of outstanding observations
from actions taken in the rounds in S̄. The former is bounded by |S|, and the latter
is bounded by dmax(S̄), since by definition of dmax(S̄) any observation from an action
taken in a round in S̄ can be outstanding for at most dmax(S̄) rounds. Since this
holds for any split of the rounds {1, . . . , T} into S and S̄, we have σmax = maxt σt ≤
minS⊆{1,...,T}

(
|S|+ dmax(S̄)

)
.

3.8.1.2 Proofs of the lemmas supporting the proof of Theorem 3.1

We start with providing some auxiliary lemmas.

Lemma 3.7 (Integral inequality: Lemma 4.13 of Orabona (2019)). Let g(x) be a
positive nonincreasing function, then for any non-negative sequence {zn}n∈{0,...,N} we
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have
N∑

n=1

zng

(
n∑

i=0

zi

)
≤
∫ ∑N

i=0 zi

z0

g(x)dx.

Lemma 3.8. Let σt and υt be the number of outstanding observations and arriving
observations at time t, respectively, then the following inequality holds for all t

t∑
s=1

σs ≥
t∑

s=1

υ2
s − υs
2

.

Proof. Note that As = {r : r + dr = t}. We define Ds = {dr : r ∈ As} be the set
of delays corresponding to observations that arrive at round s, then Ds must have
υs = |As| different number of elements, because ∀r ∈ As : r + dr = s. As a result,
we have ∑

r∈As

dr ≥ 0 + 1 + . . .+ (υs − 1) =
υs(υs − 1)

2
.

This gives us the following inequality
t∑

s=1

υ2
s − υs
2

≤
t∑

s=1

∑
r∈As

dr

=
∑

r:r+dr≤t

dr.

On the other hand,
∑t

s=1 σs ≥
∑

r:r+dr≤t dr, since every observation from an action
taken at round r with delay dr counts as outstanding over dr rounds, i.e., contributes
1 to σr+1, . . . , σr+dr , and observations that have not arrived by round t contribute
only to the left hand side of the inequality. Together with the preceding inequality
this completes the proof.

3.8.1.3 A proof of Lemma 3.4

Proof. We bound 4aA−RegT .

4aA−RegT =
T∑
t=1

∑
i 6=i∗

 4ax
1
2
t,i√

t+ η0
− xt,i∆i


≤

T∑
t=1

∑
i 6=i∗

4a2

(t+ η0)∆i

≤
∑
i 6=i∗

4a2

∆i

log(T/η0 + 1) + 1, (3.14)
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where the first inequality uses the AM-GM inequality, by which for any z and y we
have z + y ≥ 2

√
zy ⇒ 2

√
zy − y ≤ z. The second inequality follows by the integral

bound on the harmonic series, by which
∑T

t=1 1/(t+η0) ≤ log(T+η0)−log(η0)+1.

3.8.1.4 Proof of Lemma 3.5

Proof. We have

4bB −RegT =
T∑
t=1

∑
i 6=i∗

xt,i∆i (4b(υt+dt − 1)γt+dt − 1) .

We define T0 to be the first round t with γ−1
t ≥ 4b(υmax − 1), where υmax =

maxs∈[T ]{υs}. Then in the summation over time, the rounds with t+dt ≥ T0 provide
a negative contribution, since 4b(υt+dt − 1)γt+dt − 1 ≤ 4b(υt+dt

−1)

4b(υmax−1)
− 1 ≤ 0. Therefore,

4bB −RegT ≤
∑

t+dt<T0

∑
i 6=i∗

xt,i∆i (4b(υt+dt − 1)γt+dt − 1)

≤
∑

t+dt<T0

4b(υt+dt − 1)γt+dt =

T0−1∑
t=1

∑
s+ds=t

4b(υt − 1)γt =

T0−1∑
t=1

4bυt(υt − 1)γt,

(3.15)

where the second inequality holds because
∑

i 6=i∗ xt,i∆i ≤ 1 and υt+dt ≥ 1. For
simplicity of notation, we denote υ̃t = υt(υt − 1)/2, for which Lemma 3.8 gives us∑t

s=1 υ̃t ≤
∑t

s=1 σs. Therefore, we have

T0−1∑
t=1

4bυt(υt − 1)γt ≤
T0−1∑
t=1

8b
√

logKυ̃t√∑t
s=1 υ̃t

≤ 16b

√√√√(logK)

T0−1∑
t=1

υ̃t ≤ 16b

√√√√(logK)

T0−1∑
t=1

σt ≤ 16b(logK)γ−1
T0−1,

(3.16)

where the second inequality uses integral inequality Lemma 3.7 for g(x) = 1√
x
.

Moreover, by the choice of T0 we have γ−1
T0−1 ≤ 4b(υmax − 1). Combining this with

(3.15) and (3.16) gives us 4bB −RegT ≤ 64b2υmax logK.
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3.8.1.5 Proof of Lemma 3.6

Proof. First, we remove i∗ from the summation in C by using the following inequality

−xt,i∗ log(xt,i∗) ≤ (1− xt,i∗) =
∑
i 6=i∗

xt,i,

which follows by the fact that z log(z) + 1− z is a decreasing function for z ∈ [0, 1],
and the minimum value is zero, therefore, it is non-negative for z ∈ [0, 1]. By using
this inequality we have
T∑
t=2

K∑
i=1

−4cσtxt,i log(xt,i)√
(St + γ0) logK

≤ 4c
T∑
t=1

∑
i 6=i∗

−σtxt,i log(xt,i)√
(St + γ0) logK︸ ︷︷ ︸
C1

+4c
T∑
t=1

∑
i 6=i∗

σtxt,i√
(St + γ0) logK︸ ︷︷ ︸
C2

,

where St =
∑t

s=1 σs. We break the expression 4cC −RegT , into 4
(
cC1 − αRegT

)
+

4
(
cC2 − βRegT

)
, where α + β = 1/4.

Controlling cC2 − βRegT
Let σmax = maxt∈[T ]{σt} and let Ti be the first round t when St + γ0 ≥ c2σ2

max

β2∆2
i logK

.
Then for all t ≥ Ti we have

cσtxt,i√
(St + γ0) logK

− βxt,i∆i ≤ 0.

Therefore, rounds after Ti provide negative contribution to the summation, and we
have

cC2 − βRegT ≤ β
∑
i 6=i∗

Ti−1∑
t=1

xt,i

(
cσt

β
√
(St + γ0) logK

−∆i

)

≤
∑
i 6=i∗

Ti−1∑
t=1

cσt√
(St + γ0) logK

≤
∑
i 6=i∗

2c(
√
STi−1 + γ0 −

√
γ0)√

logK

≤
∑
i 6=i∗

2c2σmax

β∆i logK
, (3.17)

where the third inequality uses Lemma 3.7 for g(x) = 1√
x

and the last inequality
follows by the choice of Ti, which gives STi−1 + γ0 ≤ c2σ2

max

β2∆2
i logK

.
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Controlling cC1 − αRegT
For cC1 − αRegT , let bt =

cσt

α
√

(St+γ0) logK
, then

cC1 − αRegT = α
T∑
t=1

∑
i 6=i∗

(−btxt,i log(xt,i)−∆ixt,i)

≤ α
T∑
t=1

∑
i 6=i∗

max
z∈[0,1]

{−btz log(z)−∆iz} .

The function g(z) = −btz log(z) − ∆iz is a concave function for z ∈ [0, 1] and the
maximum occurs when the derivative is zero. So we must have −bt log(z)− bt−∆i =

0⇒ z = e
−∆i

bt
−1, and by substitution maxz∈[0,1] g(z) = bte

−∆i
bt

−1. Therefore,

cC1 − αRegT ≤ α
T∑
t=1

∑
i 6=i∗

bte
−∆i

bt
−1

=
∑
i 6=i∗

T∑
t=1

cσt√
(St + γ0) logK

exp

(
−
α∆i

√
(St + γ0) logK

cσt

− 1

)

≤
∑
i 6=i∗

T∑
t=1

σt ×
c√

(St + γ0) logK
exp

(
−
α∆i

√
(St + γ0) logK
cσmax

− 1

)
,

where σmax = maxt∈[T ]{σt}. Let gi(x) = c√
x logK

exp
(
−α∆i

√
x logK

cσmax
− 1
)

, then for
each i we need to upper bound

∑T
t=1 σtgi(St + γ0), which by Lemma 3.7 can be

upper bounded by
∫ ST+γ0
γ0

gi(x)dx, because g is nonincreasing. On the other hand,
for any δ, a ≥ 0, we have

∫
a√
x

exp(− δ
√
x

a
− 1)dx = −2a2

δ
exp(− δ

√
x

a
− 1). So, using
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the closed form of
∫
gi(x)dx with δ = α∆i

σmax
, a = c√

logK
, we have

cC1 − αRegT ≤
∑
i 6=i∗

∫ ST+γ0

γ0

gi(x)dx

=
∑
i 6=i∗

−2c2σmax

α∆i logK
exp

(
−α∆i

√
x logK

cσmax

− 1

) ∣∣∣∣x=ST+γ0

x=γ0

=
2c2σmax

(
exp

(
−α∆i

√
γ0 logK

cσmax
− 1
)
− exp

(
−α∆i

√
(ST+γ0) logK

cσmax
− 1
))

α∆i logK

≤
∑
i 6=i∗

2c2σmax

α∆i logK
. (3.18)

Taking together (3.17) and (3.18) gives us

4cC −RegT ≤
∑
i 6=i∗

8c2σmax

∆i logK

(
1

β
+

1

α

)
=
∑
i 6=i∗

8c2σmax

∆i logK

(
1

1/4− α
+

1

α

)
≤
∑
i 6=i∗

128c2σmax

∆i logK
, (3.19)

where the second inequality uses α = 1
8
.

3.8.1.6 Proof of the stability lemma

The lemma has two parts, the first part is the general bound for the stability term
and the second is a special case of that bound where we set α to a specific value to
get the desirable bound.

Before starting the proof we provide one fact and one lemma that help us in the
proof of the stability lemma. We recall that our regularization function is Ft(x) =∑K

i=1 ft(x), where ft(x) = −2η−1
t

√
x+ γ−1

t x(logx− 1).

Fact 3.3 ((Zimmert and Seldin, 2020)). f ∗′
t (x) is a convex monotonically increasing

function.

Proof. The proof is available in Section 7.3 of the supplementary material of Zimmert
and Seldin (2020).
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Lemma 3.9. Let DF (x, y) = F (x)−F (y)−〈x−y,∇F (y)〉 be the Bergman divergence
of a function F . Then for any x ∈ dom(ft), and any ` such that ` ≥ −γ−1

t :

Df∗
t
(f

′

t (x)− `, f
′

t (x)) ≤
`2

2f
′′
t (ex)

.

Moreover, it is easy to see (f
′′
t (ex))

−1 ≤ 4(f
′′
t (x))

−1, which implies Df∗
t
(f

′
t (x) −

`, f
′
t (x)) ≤ 2`2

f
′′
t (x)

.

Proof. By Taylor’s theorem there exists x̃ ∈
[
f ∗′
t (f

′
t (x)− `), f ∗′

t (f
′
t (x))

]
, such that

Df∗
t
(f

′

t (x)− `, f
′

t (x)) =
1

2
`2f ∗′′

t (f
′

t (x̃)) =
1

2
`2f

′′

t (x̃)
−1,

where the second equality is a property of the convex conjugate operation. We have
two cases for `:

1. If ` ≥ 0, then based on Fact 3.3 we know that f ∗′
t is increasing, so x̃ ≤ x. On

the other hand, f ′′
(x)−1 is increasing, so f

′′
t (x̃)

−1 ≤ f
′′
t (x)

−1 ≤ f
′′
t (ex)

−1.

2. If ` < 0, then x̃ ∈
[
f ∗′
t (f

′
t (x)), f

∗′
t (f

′
t (x)− `)

]
. We show that f ∗′

t (f
′
t (x)−`) ≤ ex,

which by the choice of x̃ implies x̃ ≤ ex, and consequently, like in the other
case, we end up having f

′′
t (x̃)

−1 ≤ f
′′
t (ex)

−1.
Since f ∗′ is increasing and ex = f ∗′(f

′
(ex)), it suffices to prove that f

′
(ex) ≥

f
′
(x)− `, or, equivalently, f ′

(ex)− f
′
(x) ≥ −`. So

f
′
(ex)− f

′
(x) =

(
−η−1

t (ex)−1/2 + γ−1
t log(ex)

)
−
(
−η−1

t x−1/2 + γ−1
t log(x)

)
= η−1

t x−1/2

(
1− 1√

2

)
+ γ−1

t ≥ γ−1
t ≥ −`

Proof of the First Part of the Stability Lemma. We have xt =
arg minx∈∆K−1〈L̂obs

t , x〉 + Ft(x), so by the KKT conditions there exists c0 ∈ R,
such that −L̂obs

t = ∇Ft(xt)− c01K . On the other hand, F̄t(−L+ c1K) = F̄t(−L) + c
for any c ∈ R and L ∈ RK and the equality holds iff c = 0. Therefore, using these

54



Chapter 3 | A Best-of-Both-Worlds Algorithm for Bandits with Delayed Feedback

two facts we can rewrite the stability term as

T∑
t=1

〈xt, ˆ̀
obs
t 〉+ F̄ ∗

t (−L̂obs
t+1)− F̄ ∗

t (−L̂obs
t ) (3.20)

=
T∑
t=1

〈xt, ˆ̀
obs
t − αt1K〉+ F̄ ∗

t (−L̂obs
t+1 + (αt + c0)1K)− F̄ ∗

t (−L̂obs
t + c01K)

=
T∑
t=1

〈xt, ˆ̀
obs
t − αt1K〉+ F̄ ∗

t (∇Ft(xt)− (ˆ̀obst − αt1K))− F̄ ∗
t (∇Ft(xt))

≤
T∑
t=1

〈xt, ˆ̀
obs
t − αt1K〉+ F ∗

t (∇Ft(xt)− (ˆ̀obst − αt1K))− F ∗
t (∇Ft(xt))

=
K∑
i=1

Df∗
t

(
f

′

t (xt,i)− (ˆ̀obst,i − αt), f
′

t (xt,i)
)
, (3.21)

where the inequality holds because F̄ ∗
t (L) ≤ F ∗

t (L) for all L ∈ RK and F̄ ∗
t (∇Ft(x)) =

F ∗
t (∇Ft(x)) for all x ∈ RK . Hence, since αt ≤ γ−1

t , we have ˆ̀obs
t,i −αt ≥ −αt ≥ −γ−1

t .
This implies that we can apply Lemma 3.9 to get the following bound for (3.21)

stability ≤
K∑
i=1

2f
′′

t (xt,i)
−1(ˆ̀obst,i − αt)

2.

Proof of the Second Part of the Stability Lemma. First, we must check
whether αt =

∑K
j=1 f

′′
(xt,j)

−1 ˜̀
t,j∑K

j=1 f
′′ (xt,j)−1

satisfies αt ≤ γ−1
t or not:

αt =

∑K
j=1 f

′′
(xt,j)

−1 ˜̀
t,j∑K

j=1 f
′′(xt,j)−1

=

∑K
j=1 f

′′
(xt,j)

−1
∑

s∈At

ˆ̀
s,j∑K

j=1 f
′′(xt,j)−1

≤ 8|At|(K − 1)
1
3 ≤ 8dmax(K − 1)

1
3 ≤ γ−1

t ,

where the first inequality uses Lemma 3.10. To simplify the analysis, for all i let
zi = f

′′
t (xt,i)

−1, then by substitution of the value of αt in the stability expression we
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have
K∑
i=1

zi(˜̀t,i − αt)
2 =

K∑
i=1

zi ˜̀
2
t,i − 2

K∑
i=1

zi ˜̀t,iαt +
K∑
i=1

ziα
2
t

=
K∑
i=1

zi ˜̀
2
t,i −

(
∑K

i=1 zi
˜̀
t,i)

2∑K
i=1 zi

=
K∑
i=1

zi ˜̀
2
t,i −

∑K
i=1 z

2
i
˜̀2
t,i∑K

i=1 zi
−
∑

i,j,i6=j zizj
˜̀
t,i
˜̀
t,j∑K

i=1 zi

=
K∑
i=1

(
zi −

z2i∑K
j=1 zj

)(∑
s∈At

ˆ̀
s,i

)2

−

∑
i,j,i6=j zizj

(∑
r,s∈At

ˆ̀
r,i
ˆ̀
s,j

)
∑K

i=1 zi

=
K∑
i=1

(
zi −

z2i∑K
j=1 zj

)(∑
s∈At

ˆ̀2
s,i

)
(3.22)

+
K∑
i=1

(
zi −

z2i∑K
j=1 zj

)( ∑
r,s∈At,r 6=s

ˆ̀
r,i
ˆ̀
s,i

)
−

∑
i,j,i6=j zizj

(∑
r,s∈At

ˆ̀
s,i
ˆ̀
r,j

)
∑K

i=1 zi
.

(3.23)

We call the term in line (3.22) Stab1 and the two terms in line (3.23) Stab2. We
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first bound the expectation of Stab1.

E[Stab1] = E

[
K∑
i=1

(
zi −

z2i∑K
i=1 zi

)(∑
s∈At

ˆ̀2
s,i

)]

= E

[
K∑
i=1

(
zi −

z2i∑K
i=1 zi

)(∑
s∈At

Es[ˆ̀
2
s,i]

)]

= E

[
K∑
i=1

(
zi −

z2i∑K
i=1 zi

)(∑
s∈At

`2s,ix
−1
s,i

)]

≤
∑
s∈At

E

[
K∑
i=1

zix
−1
s,i −

∑K
i=1 z

2
i x

−1
s,i∑K

i=1 zi

]

≤
∑
s∈At

E

[
K∑
i=1

zix
−1
s,i (1− xs,i)

]

≤
∑
s∈At

E

[
K∑
i=1

2ηtx
3/2
t,i x

−1
s,i (1− xs,i)

]
, (3.24)

where the first inequality bounds losses by one and changes the order of sum-
mations, the second inequality uses Cauchy-Schwarz inequality

∑K
i=1 z

2
i x

−1
s,i =(∑K

i=1 z
2
i x

−1
s,i

)( K∑
i=1

xs,i

)
︸ ︷︷ ︸

=1

≥
(∑K

i=1 zi

)2
, and the last inequality uses the fact that

zi = f
′′
t (xt,i)

−1 ≤ 2ηtx
3/2
t,i .
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For Stab2 we have

E[Stab2] = E

[
1∑K
i=1 zi

(
K∑
i=1

∑
r,s∈At,r 6=s

∑
j 6=i

zizj ˆ̀r,i ˆ̀s,i −
∑
i,j,i6=j

∑
r,s∈At

zizj ˆ̀s,i ˆ̀r,j

)]

= E

[
1∑K
i=1 zi

(
K∑
i=1

∑
r,s∈At,r 6=s

∑
j 6=i

zizjµ
2
i −

∑
i,j,i6=j

∑
r,s∈At

zizjµiµj

)]

= E

[
1∑K
i=1 zi

(
υt(υt − 1)

K∑
i=1

∑
j 6=i

zizjµ
2
i − υ2

t

∑
i,j,i6=j

zizjµiµj

)]
(3.25)

≤ E

[
υt(υt − 1)∑K

i=1 zi

(
K∑
i=1

zi(
K∑
j=1

zj)µ
2
i −

K∑
i=1

z2i µ
2
i −

∑
i,j,i6=j

zizjµiµj

)]

= E

[
υt(υt − 1)∑K

i=1 zi

(
(

K∑
i=1

ziµ
2
i )(

K∑
i=1

zi)− (
K∑
i=1

ziµi)
2

)]

≤ E

[
υt(υt − 1)∑K

i=1 zi

(
(

K∑
i=1

ziµ
2
i )(

K∑
i=1

zi)− (
K∑
i=1

zi)
2µ2

i∗

)]

= E

[
υt(υt − 1)(

K∑
i=1

ziµ
2
i −

K∑
i=1

ziµ
2
i∗)

]

≤ E

[
υt(υt − 1)(

∑
i 6=i∗

2zi∆i)

]

≤ E

[∑
i 6=i∗

2υt(υt − 1)γtxt,i∆i

]
, (3.26)

where the second equality follows by the fact that for all s ∈ At, xs has no impact
on xt, and for all different elements of At, such as r, s ∈ At and r < s, xr has no
impact on xs. Regarding the inequalities, the first one follows by υ2

t ≥ υt(υt−1), the
second one holds because for all i we have µ∗

i ≤ µi, the third inequality follows by
µi + µi∗ ≤ 2 and µi − µi∗ = ∆i, and the last one substitutes zi = f

′′
(xt,i)

−1 ≤ γtxt,i.
Combining (3.24) and (3.26) completes the proof.

58



Chapter 3 | A Best-of-Both-Worlds Algorithm for Bandits with Delayed Feedback

3.8.2 Proof of the Key Lemma
3.8.2.1 Auxiliary results for the proof of the key lemma

First, we provide two facts and a lemma, which are needed for the proof of the key
lemma. We recall that ft(x) = −2η−1

t

√
x+ γ−1

t x(logx− 1).

Fact 3.4. f
′
t (x) is a concave function.

Proof. f
′
t (x) = −η−1x−1/2 + γ−1

t logx, so the second derivative is −3
4
η−1x−5/2 −

γ−1
t x−2 ≤ 0.

Fact 3.5. f
′′
t (x)

−1 is a convex function.

Proof. Let g(x) = f
′′
t (x)

−1 = (
η−1
t x−3/2

2
+ γ−1

t x−1)−1, then the second derivative of
g(x) is

g
′′
(x) =

ηtγ
2
t ·
(
2ηtx

7
2 + 3γtx

3
)

2
√
x
(
2ηtx

3
2 + γtx

)3 ,

which is positive.

Lemma 3.10. Fix t and s where t ≥ s, and assume that there exists α, such that
xt,i ≤ αxs,i for all i ∈ [K], and let f(x) =

(
−2η−1

t

√
x+ γ−1

t x(logx− 1)
)
, then we

have the following inequality∑K
j=1 f

′′
(xt,j)

−1 ˆ̀
s,j∑K

j=1 f
′′(xt,j)−1

≤ 2α(K − 1)
1
3 .
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Proof for Lemma 3.10. We begin the proof as the following∑K
i=1 f

′′
(xt,i)

−1 ˆ̀
s,i∑K

i=1 f
′′(xt,i)−1

=
f

′′
(xt,is)

−1x−1
s,is

`s,is∑K
i=1 f

′′(xt,i)−1

≤
f

′′
(xt,is)

−1x−1
t,is

(xt,is/xs,is)∑K
i=1 f

′′(xt,i)−1

≤
f

′′
(xt,is)

−1αx−1
t,is∑K

i=1 f
′′(xt,i)−1

≤
αf

′′
(xt,is)

−1x−1
t,is

(K − 1)f ′′
(

1−xt,is

K−1

)−1

+ f ′′(xt,is)
−1

Define z := xt,is

=
α
(
η−1
t z−3/2 + 2γ−1

t z−1
)−1

z−1

(K − 1)
(
η−1
t ( 1−z

K−1
)−3/2 + 2γ−1

t ( 1−z
K−1

)−1
)−1

+
(
η−1
t z−3/2 + 2γ−1

t z−1
)−1

= α

(
(1− z)

η−1
t z−1/2 + 2γ−1

t

η−1
t

√
K − 1(1− z)−1/2 + 2γ−1

t

+ z

)−1

, (3.27)

where the first inequality follows by `s,is ≤ 1, the second one uses the assumption of
the lemma that xt,i ≤ αxs,i, and the third inequality is due to convexity of f ′′

(x)−1

from Fact 3.5. We consider two cases for z: z < 1
K

and z ≥ 1
K

.

a) z ≤ 1
K

: This case implies
1− z

z
=

1

z
− 1 ≥ K − 1⇒ (1− z)−1/2

√
K − 1 ≤ z−1/2

⇒ 1 ≤ η−1
t z−1/2 + 2γ−1

t

η−1
t

√
K − 1(1− z)−1/2 + 2γ−1

t

. (3.28)

Plugging (3.28) into (3.27) gives∑K
i=1 f

′′
(xt,i)

−1 ˆ̀
s,i∑K

i=1 f
′′(xt,i)−1

≤ α (1− z + z)−1 = α.

b) z ≥ 1
K

: Similar to the previous case, z ≥ 1
K

implies η−1
t z−1/2 ≤ η−1

t

√
K − 1(1−

z)−1/2, so the minimum of η−1
t z−1/2+2γ−1

t

η−1
t

√
K−1(1−z)−1/2+2γ−1

t

occurs when 2γ−1
t = 0. Sub-

stitution of 2γ−1
t = 0 in (3.27) gives∑K

i=1 f
′′
(xt,i)

−1 ˆ̀
s,i∑K

i=1 f
′′(xt,i)−1

≤ α
(
(1− z)3/2z−1/2(K − 1)−1/2 + z

)−1
. (3.29)
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Here we have the following two subcases

b1) z ≥ 1
(K−1)1/3+1

: This gives

α
(
(1− z)3/2z−1/2(K − 1)−1/2 + z

)−1 ≤ αz−1

≤ α
(
(K − 1)1/3 + 1

)
≤ 2α(K − 1)1/3.

b2) z ≤ 1
(K−1)1/3+1

: This implies (1 − z) ≥ (K−1)1/3

(K−1)1/3+1
≥ 1

2
and we can use it

in (3.29) in the following way

α
(
(1− z)3/2z−1/2(K − 1)−1/2 + z

)−1

≤ α

(
z−1/2(K − 1)−1/2

√
8

+ z

)−1

= α

(
z−1/2(K − 1)−1/2

2
√
8

+
z−1/2(K − 1)−1/2

2
√
8

+ z

)−1

≤ α

3

(
(K − 1)−1

32

)−1/3

≤ 2α(K − 1)1/3,

where the second inequality is by the AM-GM inequality.

Combining the results for all cases and setting α = 4 we obtain the upper bound
8(K − 1)1/3.

3.8.2.2 Proof of the key lemma

Proof of Lemma 3.2. To show xt,i ≤ 2xs,i for all i we do induction on valid pairs
(t, s), where we call a pair (t, s) valid if s ≤ t and t− s ≤ dmax. The induction step
for (t, s) uses the induction assumption for all valid pairs (t′, s′), such that s′, t′ < t,
and all valid pairs (t′, s′), such that t′ = t and s < s′ ≤ t. Thus, the induction base
would be all the pairs of (t′, t′) for all t′ ∈ [T ], for which the statement xt′,i ≤ 2xt′,i

trivially holds. Hence, it suffices to prove the induction step for the valid pair (t, s).
As we mentioned in the proof sketch, we have xt = F̄ ∗

t (−L̂obs
t ) and xs =

F̄ ∗
s (−L̂obs

s ), and we introduce x̃ = F̄ ∗
s (−L̂obs

t ) as an auxiliary variable to bridge from
xt and xs. We bridge from xt to xs via x̃ in the following way.

Deviation Induced by the Loss Shift: This step controls the drift when we
fix the regularization (more precisely, the learning rates) and shift the cumulative
loss. We prove the following inequality:

x̃i ≤
3

2
xs,i.
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Note that this step uses the induction assumption for (s, s−dr) for all r < s : r+dr =
s.
Deviation Induced by the Change of Regularizer: In this step we bound the
drift when the cumulative loss vector is fixed and we change the regularizer. We
show that

xt,i ≤
4

3
x̃i.

Deviation induced by the change of regularizer

The regularizer at any round r is Fr(x) =
∑K

i=1 fr(xi) =∑K
i=1

(
−2η−1

r

√
xi + γ−1

r xi(logxi − 1)
)
. Since xt = ∇F̄ ∗

t (−L̂obs
t ) and

x̃ = ∇F̄ ∗
s (−L̂obs

t ), by the KKT conditions ∃µ, µ̃ s.t. ∀i:

f
′

s(x̃i) = −Lobs
t,i + µ̃,

f
′

t (xt,i) = −Lobs
t,i + µ.

We also know that ∃j : x̃j ≥ xt,j which leads to

−Lobs
t,j + µ = f

′

t (xt,j) ≤ f
′

s(xt,j) ≤ f
′

s(x̃j) = −Lobs
t,j + µ̃,

where the first inequality holds because the learning rates are decreasing, and the
second inequality is due to the fact that f ′

s(x) is increasing. This implies that µ ≤ µ̃,
which gives us the following inequality for all i:

f
′

t (xt,i) = −
1

ηt
√
xt,i

+
log(xt,i)

γt
≤ − 1

ηs
√
x̃i

+
log(x̃i)

γs
= f

′

s(x̃i).

Define α = xt,i/x̃i. Using the above inequality we have

1

ηs
√
x̃i

− log(x̃i)

γs
≤ 1

ηt
√
αx̃i

− log(x̃i)

γt
− log(α)

γt
(multiply by ηt

√
x̃i and rearrange)

⇒ 1√
α
≥ ηt

ηs
+ 2
√

x̃i log(
√

x̃i)

(
ηt
γt
− ηt

γs

)
+ log(α)ηt

γt

√
x̃i

≥ ηt
ηs

+ min
0≤z≤1

{
2z log(z)

(
ηt
γt
− ηt

γs

)
+ log(α)ηt

γt
z

}
(a)
=

ηt
ηs
− 2

e

(
ηt
γt
− ηt

γs

)(
1√
α

) γ−1
t

γ−1
t −γ−1

s

(b)

≥ ηt
ηs
−
(
ηt
γt
− ηt

γs

)
1√
α
,
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where (a) holds because the minimized function is convex and equating the first

derivative to zero gives z =
(

1√
α

) γ−1
t

γ−1
t −γ−1

s , and (b) follows by γ−1
t

γ−1
t −γ−1

s
≥ 1 and e ≥ 2.

Rearranging the above result gives

α ≤
(
ηs
γt
− ηs

γs
+

ηs
ηt

)2

=

(
ηs(γ

−1
t − γ−1

s ) +
ηs
ηt

)2

. (3.30)

Now we need to substitute the closed form of learning rates to obtain an upper bound
for α. As a reminder, the learning rates are

γ−1
s =

1√
logK

√√√√ s∑
r=1

σr + γ0, η−1
s =

√
s+ η0,

γ−1
t =

1√
logK

√√√√ s+d∑
r=1

σr + γ0, η−1
t =

√
s+ d+ η0,

where d = t− s, η0 = 10dmax + d2max/
(
K1/3 log(K)

)2, and γ0 = 242d2maxK
2/3 log(K).

Therefore, in (3.30) we have

ηs
(
γ−1
t − γ−1

s

)
≤ ηs

∑s+d
r=s+1 σr√

log(K)
(∑s+d

r=1 σr + γ0

)
≤ ηs

∑s+d
r=s+1 σr√

log(K)γ0

≤ d2max√
log(K)γ0η0

≤ d2max√
242d4max

=
1

24
, (3.31)

where the third inequality follows by d, σr ≤ dmax for all r and ηs ≤ 1√
η0

, and the
last inequality holds because η0 ≥ 16d2max/K

2/3. On the other hand, for ηs
ηt

in (3.30)
we have

ηs
ηt

=

√
s+ d+ η0
s+ η0

=

√
1 +

d

s+ η0

≤
√

1 +
d

10dmax

≤
√

1 +
dmax

10dmax

=

√
11

10
, (3.32)
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where the first and the second inequalities hold because η0 ≥ 10dmax and d ≤ dmax,
respectively.
Plugging (3.31) and (3.32) into (3.30) gives us the following bound for α:

α ≤

(√
11

10
+

1

24

)2

≤ 4

3
. (3.33)

Deviation Induced by the Loss Shift

We have xs = ∇F̄ ∗
s (−Lobs

s ) and x̃ = ∇F̄ ∗
s (−Lobs

t ). Since they both share the same
regularizer Fs(x) =

∑K
i=1 fs(xi), to simplify the notation we drop s and use f(x) to

refer to fs(x). By the KKT conditions ∃µ, µ̃ s.t. ∀i:

f
′
(xs,i) = −Lobs

s,i + µ,

f
′
(x̃i) = −Lobs

t,i + µ̃.

Let ˜̀= Lobs
t − Lobs

s , then by the concavity of f ′
(x) from Fact 3.4, we have

(xs,i − x̃i)f
′′
(xs,i) ≤ f

′
(xs,i)− f

′
(x̃i)︸ ︷︷ ︸

µ−µ̃+˜̀
i

≤ (xs,i − x̃i)f
′′
(x̃i). (3.34)

Since f
′′
(xs,i) ≥ 0, from the left side of (3.34) we get xs,i − x̃i ≤

f
′′
(xs,i)

−1
(
µ− µ̃+ ˜̀

i

)
. Taking summation over all i and using the fact that both

vectors xs and x̃ are probability vectors, we have

0 =
K∑
i=1

xs,i − x̃i ≤
K∑
i=1

f
′′
(xs,i)

−1
(
µ− µ̃+ ˜̀

i

)
⇒ µ̃− µ ≤

∑K
i=1 f

′′
(xs,i)

−1 ˜̀
i∑K

i=1 f
′′(xs,i)−1

. (3.35)

Combining the right hand sides of (3.34) and (3.35) gives

(x̃i − xs,i)f
′′
(x̃i) ≤ µ̃− µ− ˜̀

i ≤
∑K

j=1 f
′′
(xs,j)

−1 ˜̀
j∑K

j=1, f
′′(xs,j)−1

64



Chapter 3 | A Best-of-Both-Worlds Algorithm for Bandits with Delayed Feedback

and by rearrangement

x̃i ≤ xs,i + f
′′
(x̃i)

−1 ×
∑K

j=1 f
′′
(xs,j)

−1 ˜̀
j∑K

j=1 f
′′(xs,j)−1

≤ xs,i + γsx̃i ×
∑K

j=1 f
′′
(xs,j)

−1 ˜̀
j∑K

j=1 f
′′(xs,j)−1

, (3.36)

where the last inequality holds because f
′′
(x̃i)

−1 =
(
η−1
s

1
2
x̃
−3/2
i + γ−1

s x̃−1
i

)−1

. The

next step for bounding x̃i is to bound
∑K

j=1 f
′′
(xs,j)

−1 ˜̀
j∑K

j=1 f
′′ (xs,j)−1

in (3.36), where ˜̀
j =

∑
r∈A

ˆ̀
r,j

and A = {r : s ≤ r + dr < t}.

If there exists r ∈ A, such that r > s and 2xr,i ≤ xs,i, then combining it with
the induction assumption for (t, r), i.e., xt,i ≤ 2xr,i, leads to xt,i ≤ 2xr,i ≤ xs,i,
which completes the proof. Otherwise, that for all r ∈ A we have either r ≤ s or
xs,i ≤ 2xr,i. If r ≤ s, we can use the induction assumption for (s, r), which gives
xs,i ≤ 2xr,i. Consequently, in either case, the inequality xs,i ≤ 2xr,i holds for all
r ∈ A, and we can plug it into Lemma 3.10 to get the following bound for all r ∈ A:∑K

j=1 f
′′
(xs,j)

−1 ˆ̀
r,j∑K

j=1 f
′′(xs,j)−1

≤ 4(K − 1)
1
3 . (3.37)

We then proceed by doing a summation over all r ∈ A on both sides of the above
inequality and get

∑K
j=1 f

′′
(xs,j)

−1 ˜̀
j∑K

j=1 f
′′ (xs,j)−1

≤ 4|A|(K− 1)
1
3 . Now it suffices to plug this result

into (3.36):

x̃i ≤ xs,i + 4|A|γsx̃i(K − 1)
1
3 ⇒

x̃i ≤ xs,i ×
(

1

1− 4|A|γs(K − 1)1/3

)
(3.38)

≤ xs,i ×
(

1

1− 8γsdmax(K − 1)1/3

)
≤ xs,i ×

(
1

1− 8
√

logK/γ0dmax(K − 1)1/3

)
=

xs,i

1− 1/3
=

3

2
xs,i, (3.39)

where the third inequality uses |A| ≤ dmax+ t− s ≤ 2dmax, and the last one uses the
facts that γs ≤

√
log(K)/γ0 and γ0 = 242d2max(K − 1)2/3 log(K).

Combining (3.39) and (3.33) completes the proof.

65



Chapter 3 | A Best-of-Both-Worlds Algorithm for Bandits with Delayed Feedback

3.8.3 Detailed constant factors in the regret bound for Al-
gorithm 2

In this section we provide a detailed regret bound for Algorithm 2.
As we proved in Section 3.5 we have the following inequality for the drifted regret:

RegT ≤ 2Reg
drift

T + dmax (3.40)

We first derive a bound for the drifted regret by splitting the drifted regret into
stability and penalty terms, as mentioned in Section 3.5. Following the general
analysis of the penalty term for FTRL (Abernethy et al., 2015), we have

penalty ≤
T∑
t=2

(Ft−1(xt)− Ft(xt)) + FT (x
∗)− F1(x1),

which gives us

penalty =
T∑
t=2

(
2(

K∑
i=1

x
1
2
t,i − 1)(η−1

t − η−1
t−1)−

K∑
i=1

xt,i log(xt,i)(γ
−1
t − γ−1

t−1)

)
− 2η−1

1 + 2
√
Kη−1

1 + γ−1
1 logK

≤
T∑
t=2

(
2
∑
i 6=i∗

x
1
2
t,i(η

−1
t − η−1

t−1)−
K∑
i=1

xt,i log(xt,i)(γ
−1
t − γ−1

t−1)

)
+ 2
√

η0(K − 1) +
√

γ0 logK

≤
T∑
t=2

(
2
∑
i 6=i∗

ηtx
1
2
t,i −

K∑
i=1

σtγtxt,i log(xt,i)√
logK

)
+ 2
√
η0(K − 1) +

√
γ0 logK,

(3.41)

where the first inequality holds because x
1
2
t,i∗ ≤ 1 and the second inequality follows by

η−1
t −η−1

t−1 =
√
t+ η0−

√
t− 1 + η0 ≤ 1√

t+η0
= ηt and γ−1

t −γ−1
t−1 =

γ−2
t −γ−2

t−1

γ−1
t +γ−1

t−1

≤ γ−2
t −γ−2

t−1

γ−1
t

.

For the stability term, we start from the bound given by Lemma 3.3:

E[stability] ≤
T∑
t=1

∑
i 6=i∗

2γt(υt − 1)υtE[xt,i]∆i +
T∑
t=1

∑
s∈At

K∑
i=1

ηtE[x3/2
t,i x

−1
s,i (1− xs,i)].

(3.42)
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In above inequality, we know that υtxt,i =
∑

s∈At
xt,i, and by Lemma 3.2 we have

xt,i ≤ 2xs,i for s ∈ At. Then for the first term in (3.42):

T∑
t=1

∑
i 6=i∗

2γt(υt − 1)υtxt,i∆i ≤
T∑
t=1

∑
i 6=i∗

∑
s∈At

4γt(υt − 1)υtxs,i∆i

=
T∑
t=1

∑
i 6=i∗

4γt+dt(υt+dt − 1)xt,i∆i. (3.43)

Furthermore, we can bound x
3/2
t,i x

−1
s,i (1 − xs,i) ≤ 23/2x

1/2
s,i (1 − xs,i). Moreover, in

order to remove the best arm i∗ from the summation in the later bound we use
x
3/2
t,i∗x

−1
s,i∗(1− xs,i∗) ≤ 2

∑
i 6=i∗ xs,i ≤

∑
i 6=i∗ 2x

1/2
s,i .

For the second term in (3.42) we have

T∑
t=1

∑
s∈At

K∑
i=1

ηtx
3/2
t,i x

−1
s,i (1− xs,i) ≤

T∑
t=1

∑
s∈At

K∑
i=1

ηt2
3/2x

1/2
s,i (1− xs,i)

≤
T∑
t=1

∑
s∈At

∑
i 6=i∗

√
8ηtx

1/2
s,i +

T∑
t=1

∑
s∈At

∑
i 6=i∗

2ηtx
1/2
s,i

≤
T∑
t=1

∑
i 6=i∗

5ηtx
1/2
t,i , (3.44)

where the last inequality follows by the facts that we can change the order of the
summations and that each t belongs to exactly one As. Plugging (3.43) and (3.44)
into (3.42) we have

E[stability] ≤ E

[
T∑
t=1

∑
i 6=i∗

4γt+dt(υt+dt − 1)xt,i∆i +
T∑
t=1

∑
i 6=i∗

5ηtx
1/2
t,i

]
. (3.45)
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Now it suffices to combine (3.45), (3.41), and (3.40) to get

RegT ≤ E

14
T∑
t=1

∑
i 6=i∗

ηtx
1/2
t,i︸ ︷︷ ︸

A

+8
T∑
t=1

∑
i 6=i∗

γt+dt(υt+dt − 1)xt,i∆i︸ ︷︷ ︸
B



+ E

2
T∑
t=2

K∑
i=1

σtγtxt,i log(1/xt,i)

logK︸ ︷︷ ︸
C

+ 4
√
η0(K − 1) + 2

√
γ0 logK + dmax︸ ︷︷ ︸

D

.

(3.46)

We rewrite the regret as

RegT = 4RegT − 3RegT ≤ 4× 14A−RegT +4× 8B−RegT +4× 2C −RegT +4D,

where by applying Lemmas 3.4, 3.5, and 3.6 we achieve

4× 14A−RegT ≤
∑
i 6=i∗

282

∆i

log(T/η0 + 1)

4× 8B −RegT ≤ 642υmax logK

4× 2C −RegT ≤
∑
i 6=i∗

512σmax

∆i logK
.

Therefore, the final regret bound is

RegT ≤
∑
i 6=i∗

282

∆i

log(T/η0 + 1) + 642υmax logK +
∑
i 6=i∗

512σmax

∆i logK

+ 16
√

η0(K − 1) + 8
√
γ0 logK + 4dmax.

3.8.4 Removing the multiplicative factor 1/∆i from σmax/∆i

in the regret bound
In this section we discuss how an asymmetric oracle learning rate γt,i ' γt/

√
∆i for

negative entropy regularizer can be used to remove the factor
∑

i 6=i∗ 1/∆i in front of
σmax in the regret bound.
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In the analysis of Algorithm 2 we divided the regret into stability and penalty
expressions. Moreover, in each of the bounds for stability and penalty we have
two terms which correspond to negative entropy and Tsallis parts of the hybrid
regularizer. The terms related to negative entropy part in both stability and penalty
bounds are

T∑
t=1

∑
i 6=i∗

γt+dt(υt+dt − 1)E[xt,i]∆i︸ ︷︷ ︸
B

+
K∑
i=1

E[xt,i log(1/xt,i)](γ
−1
t − γ−1

t−1)︸ ︷︷ ︸
C

,

where B and C, as we have seen in Section 3.5, are due to stability and penalty
terms,respectively. The idea here is to scale-up γt to decrease C, however increasing
γt increases B. Hence, we are facing a trade off here. To deal with this trade-off
we change the learning rates for negative entropy from symmetric γt to asymmetric
γt,i, and we expect this change only affect the parts of regret bound come from the
negative entropy part of the regularizer, which are B and C. This change results in
to having two following terms instead,

T∑
t=1

∑
i 6=i∗

γt+dt,i(υt+dt − 1)E[xt,i]∆i︸ ︷︷ ︸
Bnew

+
K∑
i=1

E[xt,i log(1/xt,i)](γ
−1
t,i − γ−1

t−1,i)︸ ︷︷ ︸
Cnew

.

Here if we could choose γt,i = γt/
√
∆i, then using the definition of γt we would be

able to rewrite Bnew and Cnew as

Bnew = O

(
T∑
t=1

∑
i 6=i∗

γt+dt(υt+dt − 1)E[xt,i]
√

∆i

)

Cnew = O

(
K∑
i=1

σtγtE[xt,i log(1/xt,i)]
√
∆i√

logK

)
.

Now we must see what is the result of applying the self-bounding technique on these
new terms. For Bnew and Cnew, following the similar analysis as Lemma 3.5 and
Lemma 3.6 we can get

4Bnew −RegT = O(υmax logK) = O(dmax logK)

4Cnew −RegT = O( σmax

logK
).
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This implies that injecting
√

1/∆i in the negative entropy learning rates removes the
factor

∑
i 6=i∗

1
∆i

in front of the σmax. More interestingly this comes without having
any significant changes in the other terms of regret bound.
As a result, we conjecture that replacing a good estimation of the suboptimal gaps
namely ∆̂i in γt,i as γt,i = γt/

√
∆̂i might be also helpful to remove the multiplicative

factors related to suboptimal gaps in front of the σmax. We leave this problem to
future work.

3.8.5 Lower bounds

Algorithm 3: Adversarial choice of `
Input: x

1 Initialize I = {argmaxi xi} while
∑

i∈I xi + mini∈Ī xi ≤ 2
3

do
2 Update I ← I ∪ {argmini∈Ī xi}

3 return `i =

{
min{1,

∑
i∈Ī xi∑
i∈I xi
} for i ∈ I

max{−1,−
∑

i∈I xi∑
i∈Ī xi
} for i ∈ Ī

Lemma 3.11. For any x ∈ ∆([K]), such that maxi xi ≤ 2
3
, the vector ` returned by

Algorithm 3 satisfies ` ∈ [−1, 1], 〈x, `〉 = 0, and
∑K

i=1 xi`
2
i ≥ 1

2
.

Proof. The first two properties follow directly by construction. For the third property
we bound the ratio of the two sets. Assume that

∑
i∈I xi <

1
3
, then argmini∈Ī xi <

1
3

and the algorithm does not return yet, so at the end
∑

i∈I xi ∈ [1
3
, 2
3
]. Let p =

max{
∑

i∈I xi, 1−
∑

i∈I xi}, then p ∈ [1
3
, 2
3
] and the quantity in question is bounded

by

K∑
i=1

xi`
2
i =

∑
i∈I

xi`
2
i +

∑
i∈Ī

xi`
2
i = p+ (1− p)

(
p

1− p

)2

=
p

1− p
≥ 1

2
.

Claim 3.6. For the negentropy potential F (x) = η−1
∑K

i=1 log(xi)xi, it holds that

−F ∗
(−L)−min

i
Li = η−1 log(max

i
∇F ∗

(−L)i) .
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Proof. Denote i∗ = argmini∈[K] Li. It is well known that the exponential weights
distribution is (∇F ∗

(−L))i = exp(−ηLi)/(
∑

j∈[K]) exp(−ηLj). Therefore, the ne-
gentropy has an explicit form of the constrained convex conjugate:

F
∗
(−L) =

〈
∇F ∗

(−L),−L
〉
− F (∇F ∗

(−L)) = η−1 log(
K∑
i=1

exp(−ηLi)) .

Hence

−F ∗
(−L)− Li∗ = −η−1 log

(
K∑
i=1

exp(−ηLi)

)
+ η−1 log(exp(−ηLi∗))

= −η−1 log

(∑K
i=1 exp(−ηLi)

exp(−ηLi∗)

)
= η−1 log

(
∇F ∗

(−L)i∗
)
.

Proof of Theorem 3.2. For ease of presentation, we will work with loss ranges
[−Lt/2, Lt/2], which is equivalent to loss ranges of [0, Lt] in full-information games.
Assume that

1

2

blog2(K)c∑
t=1

Lt ≥
1

32

√√√√ T∑
t=blog2(K)c

L2
t log(K) .

Define the active set A1 = [K]. At any time t, if ρ(t) 6∈ [blog2(K)c], we set `t to 0
and proceed with At+1 = At. Otherwise, if ρ(t) ∈ [blog2(K)c], we randomly select
half of the arms in At to assign `t,i = −Lρ(t)/2, and the other half `t,i = Lρ(t)/2. (In
case of an uneven number |At| we leave one arm at 0.) All other losses are 0. We
reduce At+1 = {i ∈ At | `t,i < 0} to the set of arms that were negative. The set An

will not be empty since we can repeat halving the action set exactly blog2(K)c many
times. The expected loss of any player is always 0, while the loss of the best arm is
mina

∑T
t=1 `t,a = −

∑blog2(K)c
t=1 Lt/2, hence

R∗ ≥
blog2(K)c∑

t=1

Lt/2 .

It remains to analyse the case

1

2

blog2(K)c∑
t=1

Lt <
1

32

√√√√ T∑
t=blog2(K)c

L2
t log(K) .
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In this case, note that we have√√√√ T∑
t=blog2(K)c

L2
t/ log(K) >

16

log(K)

blog2(K)c∑
t=1

Lt > 16
blog2(K)c

log(K)
Lblog2(K)c > 8Lblog2(K)c .

(3.47)
The high level idea is now to create a sequence of losses adapted to the choices of the
algorithm. Let xti = E [It = i|`t−1, . . . , `1] be the expected trajectory of the algorithm
and let zti = exp(−ηLti)/

∑K
j=1 exp(−ηLtj) for Lt =

∑t−1
s=1 `t be the trajectory of

EXP3. Let the adversary follow Algorithm 4 for the selection of losses, then based
on Lemma 3.11 we have 0 = 〈zt, `t〉 and also it is easy to see 0 ≤ 〈xt, `t〉, therefore
we have 0 = 〈zt, `t〉 ≤ 〈xt, `t〉. This implies that the regret of the algorithm cannot
be smaller than that of EXP3, so the regret of algorithm A can be bounded as

RegT (A) =
T∑
t=1

〈xt, `t〉 − min
a∗∈∆([K])

〈a∗, LT+1〉

≥
T∑
t=1

〈zt, `t〉 − min
a∗∈∆([K])

〈a∗, LT+1〉 = − min
a∗∈∆([K])

〈a∗, LT+1〉 ,

Let F (x) = η−1
∑K

i=1 xi log(xi) then we have

− min
a∗∈∆([K])

〈a∗, LT+1〉 =
T∑
t=1

[
F

∗
(−Lt+1)− F

∗
(−Lt)

]
+ F

∗
(−L1)− F

∗
(−LT+1)

− min
a∗∈∆([K])

〈a∗, LT+1〉

=
T∑
t=1

η−1 log

(
K∑
i=1

exp(−ηLt+1,i)

)
− η−1 log

(
K∑
i=1

exp(−ηLt,i)

)
+ η−1 log(K) + η−1 log(max

i∈[K]
zT+1,i)

=
T∑
t=1

η−1 log

(
K∑
i=1

zti exp(−η`ti)

)
+ η−1 log(K)

+ η−1 log(max
i∈[K]

zT+1,i),

where the second equality uses Claim 3.6 for L = LT+1 and the fact for any L ∈ RK ,
F

∗
(−L) = η−1exp(

∑K
i=1−ηLi) . Now we choose the learning rate for EXP3 to be

η =
√

log(K)/(
∑T

t=blog2(K)c L
2
t ), that based on (3.47) together with the fact that we
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set losses to zero for ρ(t) ∈ [blog2Kc] in Algorithm 4 ensures |η`ti| ≤ 1
2
ηLblog2(K)c ≤ 1

2
.

Using that, by Taylor’s theorem and the monotonicity of the second derivative of exp,
we have for all x ≥ −1

2
: exp(x) ≥ 1+ x+ 1

2
exp′′(−1

2
)x2 ≥ 1+ x+ 3

10
x2, as well as by

concavity of log for all 0 ≤ x ≤ 1
4

we have log(1 + x) ≥ 4 log(5/4)x ≥ 5
6
x, we get for

any t ∈ [T ] by Lemma 3.11

η−1 log(
K∑
i=1

zti exp(−η`ti)) ≥ η−1 log(1 + η2
3

10

K∑
i=1

zti`
2
ti)

≥ η

4

K∑
i=1

zti`
2
ti ≥ I{max

i
zti ≤

2

3
} η
32

L2
ρ−1(t) .

Now we have two possible events, either ∀t ∈ [T ] : maxi zti ≤ 2
3

and

RegT (A) ≥
η

32

∑
t=blog2(K)c

L2
t =

1

32

√ ∑
t=blog2(K)c

L2
t log(K) ,

or there exists s ∈ [T ] such that maxi zs,i >
2
3
, then from Algorithm 4 we infer that

∀t ≥ s : `t = 0 and consequently ∀t ≥ s : zt = zs, so maxi zT+1,i >
2
3

and

RegT (A) ≥ η−1(log(K) + log(2/3)) ≥ 1

32
η−1 log(K) =

1

32

√ ∑
t=blog2(K)c

L2
t log(K) .

Algorithm 4: Adversary
Input: Actor A, learning rate η

1 for t = 1, . . . , n do
2 Set ∀i : zti = exp(−ηLti)/

∑K
j=1 exp(−ηLtj)

3 if maxi∈[K] zti >
2
3

or ρ(t) ≤ blog2(K)c then
4 `t = 0

5 else
6 Get ` from Algorithm 3 with x = zt.
7 Determine xt = E

[
A((`s)t−1

s=1)
]

8 Set `t = sign(〈xt, `〉)Lρ−1(t)`/2
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Chapter 4

An Improved Best-of-both-worlds
Algorithm for Bandits with
Delayed Feedback

The work presented in this chapter is based on a paper that has been published as:

Saeed Masoudian, Julian Zimmert, and Yevgeny Seldin. An improved
best-of-both-worlds algorithm for bandits with delayed feedback. https:
//arxiv.org/abs/2308.10675, 2023.
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Abstract
We propose a new best-of-both-worlds algorithm for bandits with variably delayed
feedback. The algorithm improves on prior work by Masoudian et al. (2022) by
eliminating the need in prior knowledge of the maximal delay dmax and providing
tighter regret bounds in both regimes. The algorithm and its regret bounds are based
on counts of outstanding observations (a quantity that is observed at action time)
rather than delays or the maximal delay (quantities that are only observed when
feedback arrives). One major contribution is a novel control of distribution drift,
which is based on biased loss estimators and skipping of observations with excessively
large delays. Another major contribution is demonstrating that the complexity of
best-of-both-worlds bandits with delayed feedback is characterized by the cumulative
count of outstanding observations after skipping of observations with excessively large
delays, rather than the delays or the maximal delay.

4.1 Introduction
Delayed feedback is an ubiquitous challenge in real-world applications. Study of
multiarmed bandits with delayed feedback has started at least four decades ago in
the context of adaptive clinical trials (Simon, 1977; Eick, 1988), the same problem
that has earlier motivated introduction of the bandit model itself (Thompson, 1933).

Joulani et al. (2013) have studied multiarmed bandits with delayed feedback
under the assumption that the rewards are stochastic and the delays are sampled
from a fixed distribution. They provided a modification of the UCB1 algorithm,
which was originally designed for stochastic bandits with non-delayed feedback (Auer
et al., 2002a). Joulani et al. have shown that the regret of the modified algorithm
is O

(∑
i:∆i>0

(
logT
∆i

+ σmax∆i

))
, where i indexes the arms, ∆i is the suboptimality

gap of arm i, T is the time horizon (unknown to the algorithm), and σmax is the max-
imal number of outstanding observations. The result implies that in the stochastic
setting the delays introduce an additive term in the regret bound, proportional to
the maximal number of outstanding observation.

In the adversarial setting, multiarmed bandits with delayed feedback were first
analyzed under the assumption of uniform delays (Neu et al., 2010, 2014). For this
setting Cesa-Bianchi et al. (2019) have shown an Ω(

√
KT +

√
dT logK) lower bound

and an almost matching upper bound, where K is the number of arms, T is the time
horizon, and d is the fixed delay. The algorithm of Cesa-Bianchi et al. is based on a
modification of the EXP3 algorithm of (Auer et al., 2002b). Cesa-Bianchi et al. used

75



Chapter 4 | An Improved Best-of-both-worlds Algorithm for Bandits with Delayed Feedback

a fixed learning rate that is tuned based on the knowledge of d. The analysis is based
on control of the drift of the distribution over arms played by the algorithm from
round t to round t+ d. Then Thune et al. (2019) and Bistritz et al. (2019) provided
algorithms for variable adversarial delays, but under the assumption that the delays
are known “at action time”, meaning that the delay dt is known at time t, when
the action is taken, rather that at time t + dt, when the observation arrives. The
advanced knowledge of delays is necessary to tune the learning rate and control the
drift of played distribution from round t, when an action is played, to round t + dt,
when the observation arrives. Alternatively, an advance knowledge of the cumulative
delay up to the end of the game can be used for the same purpose. Finally, Zimmert
and Seldin (2020) derived an algorithm for the adversarial setting that required no
advance knowledge of delays and matched the lower bound of Cesa-Bianchi et al.
(2019) within constants. The algorithm and analysis of Zimmert and Seldin are
parametrized by running counts of the number of outstanding observations σt, an
empirical quantity that is observed at time t (“at the time of action”), and avoids
explicit control of the distribution drift.

Masoudian et al. (2022) attempted to extend the algorithm of Zimmert and Seldin
(2020) to best-of-both-worlds setting. In best-of-both-worlds setting the goal is to
derive algorithms that simultaneously provide an adversarial regret guarantee and a
refined regret bound in case the environment happens to be stochastic, without prior
knowledge of the nature of the environment. The stochastic part of the analysis of
Masoudian et al. is based on a direct control of the distribution drift and, therefore,
they had to go back and reintroduce an assumption that the maximal delay dmax is
known. The maximal delay is used to tune the learning rate, to control the drift of
playing distribution from round t to round t+dt, and eventually shows up additively
in both the stochastic and the adversarial regret bounds. Thus, in presence of just
a single delay of order T , both the stochastic and the adversarial bounds could be
linear in the time horizon.

We introduce a different best-of-both-worlds modification of the algorithm of
Zimmert and Seldin (2020) that is fully parametrized by the running count of out-
standing observations and requires no advance knowledge of delays or the maximal
delay. Our algorithm is based on a careful augmentation of the algorithm of Zim-
mert and Seldin with implicit exploration (described below), followed by application
of the skipping technique (also described below) as an alternative tool to limit the
time span over which we need to control the distribution shift.

Implicit exploration was introduced by Neu (2015) as a tool to control the vari-
ance of importance-weighted loss estimates. Our application of implicit exploration
was inspired by the work of Jin et al. (2022), who used it to control the variance of
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Table 4.1: Comparison to state-of-the-art. The following notation is used: T is the
time horizon, K is the number of arms, i indexes the arms, ∆i is the suboptimality
gap or arm i, σmax is the maximal number of outstanding observations, D =

∑T
t=1 dt

is the total delay, S ⊆ [T ] is a subset of indexes of game rounds, in general it is a
collection of rounds with excessively large delays that are skipped, S̄ = [T ] \ S is
the complementary set of rounds, DS̄ =

∑
t∈S̄ dt is the total delay in rounds that

are not skipped, and dmax is the maximal delay. We have minS
(
|S|+

√
DS̄
)
≤√

D and σmax ≤ dmax, and in some cases minS
(
|S|+

√
DS̄
)
�
√
D and σmax �

dmax. Therefore, bounds that exploit skipping are generally tighter than the bounds
without skipping, and terms involving σmax are generally smaller than terms involving
dmax. The bounds of Masoudian et al. (2022) cannot benefit from skipping due to
the dmax term (see Appendix 4.7.7). The S∗ term in our stochastic bound is the
number of rounds skipped by the algorithm. In Appendix 4.7.6 we show that S∗

never exceeds dmax.

Paper Key results
Joulani et al. (2013) Stochastic bound: O

(∑
i:∆i>0

(
logT
∆i

+ σmax∆i

))
Zimmert and Seldin (2020) Adversarial bound without skipping:

O
(√

KT +
√
D logK

)
Adversarial bound with skipping:
O
(√

KT + minS
(
|S|+

√
DS̄ logK

))
A matching lower bound is provided
by Masoudian et al. (2022)

Masoudian et al. (2022) Best-of-both-worlds bound, stochastic part
O
(∑

i 6=i∗

(
logT
∆i

+ σmax
∆i logK

)
+ dmaxK

1/3 logK
)

The results assume oracle Best-of-both-worlds bound, adversarial part
knowledge of dmax O

(√
TK +

√
D logK + dmaxK

1/3 logK
)

Our paper Best-of-both-worlds bound, stochastic part
O
(∑

i 6=i∗

(
logT
∆i

+ σmax
∆i logK

)
+Kσmax + S∗

)
,

S∗ = O
(

min
(
dmax,minS

{
|S|+

√
DS̄K

2
3 logK

}))
Best-of-both-worlds bound, adversarial part

O
(√

KT + minS

{
|S|+

√
DS̄K

2
3 logK

}
+Kσmax

)
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importance-weighted loss estimates in Markov decision processes with delayed feed-
back. However, our parametrization of implicit exploration is different from prior
work, because we need to make it work in best-of-both-worlds setting, i.e., it should
not deteriorate the bounds in either of the two settings, which makes it challenging.

Skipping was introduced by Thune et al. (2019) as a way to limit the dependence
of an algorithm on a small number of excessively large delays. The idea is that the
regret in every round is at most 1 and, therefore, it is “cheaper” to skip a round
with an excessively large delay and bound the regret in the corresponding round
by 1, rather than include it in the core analysis. As already mentioned, Thune
et al. have assumed prior knowledge of delays, but Zimmert and Seldin (2020) have
perfected the skipping technique by basing it on the running count of outstanding
observations. In both prior works skipping was an optional add-on aimed to improve
regret bounds in case of highly unbalanced delays. In our work skipping becomes
an indispensable part of the algorithm, because, apart from making the algorithm
robust to few excessively large delays, it also limits the time span over which the
control over playing distribution drift is needed.

We compare our results to key results from prior work in Table 4.1. It has been
shown by Joulani et al. (2013) and Masoudian et al. (2022) that σmax ≤ dmax, and
that in some cases σmax � dmax. For example, if the first observation has a delay of
T , and all the remaining observations have delay zero, then dmax = T , but σmax = 1.
Therefore, bounds in terms of σmax are preferable over bounds in terms of dmax,
and for some problem instances the improvement may be very significant. We also
have that minS

(
|S|+

√
DS̄ logK

)
≤
√
D logK, where S ⊆ [T ] is a subset of game

rounds skipped by an algorithm, S̄ = [T ] \ S is the complementary set of rounds,
D =

∑T
t=1 dt is the total delay, and DS̄ =

∑
t∈S̄ dt is the total delay in rounds that

are not skipped. Furthermore, in some cases minS
(
|S|+

√
DS̄ logK

)
�
√
D logK.

Thune et al. (2019) provided an example, where the delays in the first
√
T rounds

of the game are of order T , and the delays in the remaining rounds of the game are
zero. In this case minS

(
|S|+

√
DS̄ logK

)
= O

(√
T
)

, but
√
D logK = O

(
T 3/4

)
.

Therefore, bounds that exploit skipping are preferable over bounds that do not,
and for some problem instances the improvement may be very significant. In the
supplementary material we show that bounds with an additive dmax term, including
the results of Masoudian et al. (2022), cannot benefit from skipping, in contrast to
our results.

The following list highlights our main contributions.

1. We provide a new technique to control the distribution drift that is independent
of dmax and provides regret bounds that depend on σmax rather than dmax.
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At the conceptual level it implies that the regret is affected by the amount
of information missing at the time of decision making (which is bounded by
σmax) rather than the time that the information is missing (which is bounded
by dmax).

2. We provide an implicit exploration scheme that works in best-of-both-worlds
setting.

3. We improve both the stochastic and the adversarial part of best-of-both-worlds
regret bounds relative to Masoudian et al. (2022) by replacing terms dependent
on dmax by terms dependent on σmax.

4. We make skipping possible and useful, in contrast to Masoudian et al. (2022).

5. It has been shown in prior work that dmax does not appear in the regret bounds
neither in the stochastic (Joulani et al., 2013) nor in the adversarial setting
Zimmert and Seldin (2020) taken individually, and in general, when each of the
two settings is considered in isolation, the regret is unaffected by presence of a
small number of excessively large delays. However, the question of whether the
same can be achieved in best-of-both-worlds setting was left open by Masoudian
et al. (2022). We answer this question positively. The general message is that
the delays per se are not the right quantity for characterizing the complexity
of bandit learning with delayed feedback.

4.2 Problem setting
We study the problem of multi-armed bandit with variable delays. In each round t =
1, 2, . . ., the learner picks an action It from a set of K arms and immediately incurs a
loss `t,It from a loss vector `t ∈ [0, 1]K . However, the incurred loss is observed by the
learner only after a delay of dt, at the end of round t+ dt. The delays are arbitrary
and chosen by the environment. We use σt to denote the number of outstanding
observations at time t defined as σt =

∑
s≤t 1(s + ds > t) and σmax = maxt∈[T ] σt to

be the maximal number of outstanding observations.
We consider two regimes for generation of losses by the environment: oblivious

adversarial and stochastic.
We use pseudo-regret to compare the expected total loss of the learner’s strategy

to that of the best fixed action in hindsight. Specifically, the pseudo-regret is defined
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as:

RegT = E

[
T∑
t=1

`t,It

]
− min

i∈[K]
E

[
T∑
t=1

`t,i

]
= E

[
T∑
t=1

(
`t,It − `t,i∗T

)]
,

where i∗T = mini∈[K] E
[∑T

t=1 `t,i

]
is the best action in hindsight. In the oblivious

adversarial setting, the losses are assumed to be deterministic and independent of
the actions taken by the algorithm. As a result, the expectation in the definition of i∗T
can be omitted and the pseudo-regret definition coincides with the expected regret.
Throughout the paper we assume that i∗T is unique. This is a common simplifying
assumption in best-of-both-worlds analysis (Zimmert and Seldin, 2021). Tools for
elimination of this assumption can be found in Ito (2021).

4.3 Algorithm
The algorithm is a best-of-both-worlds modification of the adversarial FTRL al-
gorithm with hybrid regularizer by Zimmert and Seldin (2020). It is provided in
Algorithm 5 display. The modification includes biased loss estimators (implicit ex-
ploration) and adjusted skipping threshold. The algorithm maintains a set of skipped
rounds St (initially empty), a cumulative count of “active” outstanding observations
(those that have not been skipped yet), and a vector of cumulative observed loss
estimates L̂obs

t from non-skipped rounds. At round t the algorithm constructs an
FTRL distribution xt over arms using regularizer Ft defined in equation (4.2) below,
and samples an arm according to xt. Then it receives the observations that arrive
at round t, except those that come from the skipped rounds, and updates the vector
L̂obs
t of cumulative loss estimates. The loss estimates ˆ̀

t are defined below in equation
(4.1). Then it counts the number of “active” outstanding observations σ̂t (those that
belong to non-skipped rounds), updates the cumulative count of outstanding observa-
tions Dt, and computes the skipping threshold dtmax =

√
Dt

49K2/3 logK
. Finally, it adds

rounds s for which the observation has not arrived yet and the waiting time (t− s)
exceeds the skipping threshold dtmax to the set of skipped rounds St. Lemma 4.14,
which is an adaptation of Zimmert and Seldin (2020, Lemma 5) to our skipping rule,
shows that at most one round s is skipped at a time (at most one index s satisfies
the if-condition for skipping in Line 16 of the algorithm for a given t).

We use implicit exploration to control importance-weighted loss estimates. The
idea of using implicit exploration is inspired by the works of Neu (2015) and Jin
et al. (2022), but its parametrization and application goal are different from prior
work. To the best of our knowledge, it is the first time implicit exploration is used
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Algorithm 5: Best-of-both-worlds algorithm for bandits with delayed feed-
back
1 Initialize S0 = ∅, D0 = 0, and L̂obs

0 = 0, where 0 is the zero vector in RK

2 for t = 1, 2, . . . do
3 // Playing an arm and receiving observations (except from skipped

rounds)
4 Set xt = arg minx∈∆K−1〈L̂obs

t−1, x〉+ Ft(x)
// Ft is defined in (4.2)

5 Sample It ∼ xt

6 for s : (s+ ds = t) ∧ (s /∈ St−1) do
7 Observe (s, `s,Is)

8 L̂obs
t = L̂obs

t−1 +
ˆ̀
s

// ˆ̀
s is defined in (4.1)

9 // Counting “active” outstanding observations and updating the skipping
threshold

10 Set σ̂t =
∑

s∈[t−1]\St−1
1(s+ ds > t) // Count of “active”

outstanding observations
11 Update Dt = Dt−1 + σ̂t

12 Set dtmax =

√
Dt/

(
49K

2
3 logK

)
13 // Skipping observations with excessively large delays
14 // By Lemma 4.14 at most one index s satisfies the if-condition for a

given t
15 for s ∈ [t− 1] \ St−1 do
16 if min {ds, t− s} ≥ dtmax then
17 St = St−1 ∪ {s} // If the waiting time t− s exceeds

dtmax, then s is skipped
18 else
19 St = St−1
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for best-of-both-worlds bounds. For any s, t ∈ [T ] with s ≤ t we define implicit
exploration terms λs,t = e

− Dt
Dt−Ds . Our biased importance-weighted loss estimators

are defined by
ˆ̀
t,i =

`t,i1(It = i)

max
{
xt,i, λt,t+d̂t

} , (4.1)

where we use d̂s = min
(
ds,min {(t− s) : t− s ≥ dtmax}

)
to denote the time that

the algorithm waits for the observation from round s. It is the minimum of the delay
ds, and the time (t−s) to the first round when the waiting time exceeds the skipping
threshold dtmax.

Similar to Zimmert and Seldin (2020), we use a hybrid regularizer based on a
combination of the negative Tsallis entropy and the negative entropy, with separate
learning rates

Ft(x) = −2η−1
t

(
K∑
i=1

√
xi

)
+ γ−1

t

(
K∑
i=1

xi(logxi − 1)

)
, (4.2)

where the learning rates are η−1
t =

√
t and γ−1

t =
√

49Dt

logK
. The update rule for

obtaining the distribution over arms is

xt = ∇F̄ ∗
t (−L̂obs

t ) = arg min
x∈∆K−1

〈L̂obs
t , x〉+ Ft(x), (4.3)

where L̂obs
t =

∑t−1
s=1

ˆ̀
s1(s+ds < t)1(s /∈ St−1) is the cumulative importance-weighted

loss estimate of observations that have arrived by time t and have not been skipped.
In the analysis we use S = ST to denote the final set of skipped rounds at time

T and S̄ = [T ] \ S to denote its complement.

4.4 Regret Bounds
The following theorem provides best-of-both-worlds regret bounds for Algorithm 5.
A proof is provided in Section 4.5 and a bound on S∗ can be found in Appendix
4.7.6.

Theorem 4.1. The pseudo-regret of Algorithm 5 for any sequence of delays and
losses (where the losses are bounded in the [0, 1] interval) satisfies

RegT = O
(√

KT + min
S⊆[T ]

{
|S|+

√
DS̄K

2
3 logK

}
+Kσ̂max

)
.
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Furthermore, if the losses are stochastic, the pseudo-regret also satisfies

RegT = O

(∑
i 6=i∗

(
logT
∆i

+
σ̂max

∆i logK

)
+Kσ̂max + S∗

)
,

where σ̂max = maxt∈[T ] {σ̂t} is the maximal number of outstanding observations after
skipping, and it satisfies σ̂max ≤ σmax, and S∗ is the number of rounds skipped by the
algorithm, and it satisfies

S∗ = O
(

min
(
dmax, min

S⊆[T ]

{
|S|+

√
DS̄K

2
3 logK

}))
.

Masoudian et al. (2022) provide Ω
(√

KT + minS⊂[T ]

{
|S|+

√
DS̄ logK

})
regret

lower bound for adversarial environments with variable delays, which is matched
within constants by the algorithm of (Zimmert and Seldin, 2020) for adversarial
environments. Our algorithm matches the lower bound within a multiplicative factor
of K 1

3 on the delay-dependent term, which is the price we pay for obtaining a best-
of-both-worlds guarantee. It is an open question whether this factor can be reduced.

In the stochastic regime, assuming that the delays in the first σmax rounds are of
order T , and that the losses come from Bernoulli distributions with bias close to 1

2
,

we obtain a trivial regret lower bound Ω
(
σmax

∑
i 6=i∗ ∆i

K
+
∑

i 6=i∗
logT
∆i

)
. This bound is

almost matched by the algorithm of Joulani et al. (2013) for the stochastic regime
only, which achieves O

(∑
i 6=i∗

(
1
∆i

log(T ) + σmax∆i

))
regret bound. Our bound has

some extra terms, most notably
∑

i 6=i∗
σ̂max

∆i logK
and S∗. It is an open question whether

these terms can be reduced or whether it is possible to derive a best-of-both-worlds
lower bound showing that this price is inevitable.

Theorem 4.1 provides three major improvements relative to the results of Ma-
soudian et al. (2022): (1) it requires no advance knowledge of dmax; (2) it replaces
terms dependent on dmax by terms dependent on σ̂max, which never exceeds dmax,
and in some cases may be significantly smaller; and (3) it makes skipping possible
and beneficial, making the algorithm robust to a small number of excessively large
delays and replacing

√
D logK term with minS⊆[T ]

{
|S|+

√
DS̄K

2
3 logK

}
, which is

never much larger, but in some cases significantly smaller.
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4.5 Analysis
In this section, we present a proof of Theorem 4.1. We begin with the stochastic
analysis in Section 4.5.1, followed by the adversarial analysis in Section 4.5.2.

4.5.1 Stochastic Analysis
Our stochastic analysis is based on the drift control lemma (Lemma 4.1). This
lemma enables us to control the drift of the playing distribution using the time-
varying hybrid regularizer. Unlike the drift control lemma used by Masoudian et al.
(2022), which injects dmax into the learning rates, our lemma relies on the implicit
exploration terms introduced in the loss estimators defined in equation (4.1) and on
skipping of large delays. We present our key lemma below.

Lemma 4.1 (Drift Control Lemma). Let dtmax be the skipping threshold at time t.
Then, for any i ∈ [K] and s, t ∈ [T ], where s ≤ t and t− s ≤ dtmax, we have

xt,i ≤ 4max(xs,i, λs,t).

The complete proof of the lemma is presented in Appendix 4.7.2. Below we
provide a sketch of the proof.

Proof sketch. By the FTRL update rule we know that xt = ∇F̄ ∗
t (−L̂obs

t−1) and xs =

∇F̄ ∗
s (−L̂obs

s−1). We define an auxiliary variable x̃s = ∇F̄ ∗
s (−L̂obs

t−1) to bridge between
xt and xs. It is based on the regularizer from round s and the loss estimate from
round t. More precisely, we use induction on the pair (s, t) and achieve the bound

xt,i

max(xs,i,λs,t)
≤ 4 through the following two steps. The first bounds the deviation

between xt and x̃s due to the change of regularizer from Ft to Fs, and the second
bounds the deviation between x̃s and xs due to the change of loss estimate from L̂obs

t−1

to L̂obs
s−1.

Deviation induced by the change of regularizer: This step keeps the cu-
mulative loss vector fixed, and investigates the deviation caused by the change of
regularizer. We show that

xt,i

max(x̃s,i, λs,t)
≤ 2.

The proof relies on the implicit exploration term λs,t in the loss estimates. This term
plays a crucial role in controlling the deviation caused by the change of regularizer.
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Deviation induced by the loss shift: This step bounds the deviation caused
by the change of the cumulative loss estimate while keeping the regularizer fixed.
We prove the following inequality:

x̃s,i

xs,i

≤ 2.

The step is based on induction and the skipping procedure of the algorithm.
The second step establishes that max(x̃i,λs,t)

max(xs,i,λs,t)
≤ 2. When combined with the result

from the first step, it completes the proof.

We then proceed by defining the drifted regret as

Reg
drift

T = E

[
T∑
t=1

(
〈xt, ˆ̀

obs
t 〉 − ˆ̀obs

t,i∗T

)]
, (4.4)

where ˆ̀obs
t =

∑t
s=1

ˆ̀
s1(s+ d̂s = t)1(s /∈ St) is the cumulative vector of losses received

at time t. To establish a relationship between Reg
drift

T and the actual regret RegT ,
we provide Lemma 4.2 that measures the drift of the drifted regret from the actual
one. Later in this section, we provide the proof, which is based on the drift control
lemma (Lemma 4.1).

Lemma 4.2 (Drift of the Drifted Regret). Let σt
max = maxs∈[t] {σ̂s}. Then, we have

the following lower bound for the drifted regret

Reg
drift

T ≥ 1

4
RegT −

σmax

4
− 2K

T∑
t=1

(
λt,t+d̂t

+ λt,t+d̂t+σt
max

)
− S∗.

We can use the standard FTRL analysis and the drift control lemma, similar
to Masoudian et al. (2022), to obtain an upper bound for Reg

drift

T . Specifically, in
Appendix 4.7.1 we show that

Reg
drift

T ≤ E

[
a

T∑
t=1

∑
i 6=i∗

ηtx
1/2
t,i + b

T∑
t=1

∑
i 6=i∗

γt+d̂t
(υt+d̂t

− 1)xt,i∆i

]

+ E

[
c

T∑
t=2

K∑
i=1

σ̂tγtxt,i log(1/xt,i)

logK

]
+O

(
K

T∑
t=1

λt,t+d̂t
+ S∗

)
, (4.5)

where a, b, c ≥ 0 are some constants, and for any time t ∈ [T ], υt =∑t
s=1 1

(
s+ d̂s = t

)
is the number of arrivals at time t (if a round s is skipped
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at time t it counts as an “empty” arrival with its loss estimate set to zero), and S∗

is the total number of rounds skipped by the algorithm. By applying Lemma 4.2 to
(4.5), we achieve the following regret bound

RegT ≤ E

[
2a

T∑
t=1

∑
i 6=i∗

ηtx
1/2
t,i + 2b

T∑
t=1

∑
i 6=i∗

γt+d̂t
(υt+d̂t

− 1)xt,i∆i

]

+ E

[
2c

T∑
t=2

K∑
i=1

σ̂tγtxt,i log(1/xt,i)

logK

]

+O

(
K

T∑
t=1

(
λt,t+d̂t

+ λt,t+d̂t+σt
max

)
+ σmax + S∗

)
. (4.6)

Now we apply a self-bounding analysis, similar to Masoudian et al. (2022), and get

RegT = O

(∑
i 6=i∗

(
1

∆i

log(T ) + σmax

∆i logK

)
+ σmax +K

T∑
t=1

(
λt,t+d̂t

+ λt,t+d̂t+σt
max

)
+ S∗

)
.

The details of the self-bounding analysis are provided in Appendix 4.7.3. To com-
plete the analysis for the stochastic regime, we also need to bound the sum of the
implicit exploration terms. This bound is provided in Lemma 4.3. This lemma is the
second key result of the paper, because it shows that the bias introduced by implicit
exploration does not deteriorate the bounds. The proof is based on a careful study
of the evolution of Dt throughout the game, and is deferred to Appendix 4.7.4.

Lemma 4.3 (Summation Bound). For all s ∈ [T ], let Ds =
∑s

r=1 σ̂r, then we have

T∑
t=1

e
−

D
t+d̂t

D
t+d̂t

−Dt + e
−

D
t+d̂t+σtmax

D
t+d̂t+σtmax

−Dt = O(σ̂max).
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Proof of the Drifted Regret Lemma

We start with the definition of the drifted regret.

Reg
drift

T = E

[
T∑
t=1

(
〈xt, ˆ̀

obs
t 〉 − ˆ̀obs

t,i∗T

)]

=
T∑
t=1

∑
s:s+d̂s=t

K∑
i=1

E

[(
`s,ixs,ixt,i

max {xs,i, λs,t}
−

`s,i∗Txs,i∗T
xt,i

max
{
xs,i∗T

, λs,t

})1(s /∈ St)

]

≥
T∑
t=1

∑
s:s+d̂s=t

K∑
i=1

E


 `s,ixs,ixt,i

max {xs,i, λs,t}︸ ︷︷ ︸
?

−`s,i∗Txt,i

1(s /∈ St)

 . (4.7)

Note that when taking the expectation, we rely on the fact that ˆ̀
s with s + d̂s = t

does not affect xt. If max {xs,i, λs,t} = xs,i, then ? = `s,ixt,i, otherwise

? =
`s,ixs,ixt,i

λs,t

= `s,ixt,i −
`s,ixt,i (λs,t − xs,i)

λs,t

≥ `s,ixt,i −
4λs,t(λs,t − xs,i)

λs,t

≥ `s,ixt,i − 4λs,t, (4.8)

where the first inequality uses xt,i ≤ 4max(xs,i, λs,t) = 4λs,t by Lemma 4.1, and
`s,i ≥ 1, and the second inequality follows by xs,i ≥ 0. Plugging (4.8) into (4.7) gives

Reg
drift

T ≥
T∑
t=1

∑
s:s+d̂s=t

K∑
i=1

E
[(
`s,ixt,i − 4λs,t − `s,i∗Txt,i

)
1(s /∈ St)

]

≥ E

 T∑
t=1

∑
s:s+d̂s=t

K∑
i=1

∆ixt,i


︸ ︷︷ ︸

RT

−S∗ − 4K
T∑
t=1

∑
s:s+d̂s=t

E [λs,t] . (4.9)

It suffices to give a lower bound for RT in terms of the actual regret RegT . The
difference between RT and RegT is that in RT the coefficient behind

∑K
i=1 ∆ixt,i is

the number of arrivals υt =
∑t

s=1 1
(
s+ d̂s = t

)
at time t, and υt might be larger

than one due to delays. Our main idea here is to leverage the drift control lemma
to rearrange the arrivals. Specifically, by Lemma 4.1 for all r ∈ [0, dtmax], we have
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max(xt,i, λt,t+r) ≥ 1
4
xt+r,i, which implies xt,i ≥ 1

4
xt+r,i − λt,t+r. Thus, we obtain the

following bound for any r ∈ [0, dtmax]

K∑
i=1

∆ixt,i ≥
1

4

K∑
i=1

∆ixt+r,i −Kλt,t+r. (4.10)

Hence, if we observe more than one arrival at round t (i.e., υt ≥ 1), we can
rearrange the arrivals to ensure that almost all rounds receive at least 1

4
of an arrival

with some additional cost from implicit exploration terms. To achieve this, we may
push some of the arrivals forward to future rounds. When we push an arrival s from a
current round t to round t+r using (4.10), it is equivalent to replacing

∑K
i=1∆ixt,i by

1
2

∑K
i=1∆ixt+r,i−Kλt,t+r in RT . Note that with this method, we may push an arrival

to a round that is bigger than T which is equivalent to replacing
∑K

i=1 ∆ixt,i by zero.
We propose Algorithm 6 that provides a greedy way to rearrange the arrivals. It
pushes each arrival to the first available (unoccupied) round.

Algorithm 6: Greedy Rearrangement
1 Initialize υnew

t = 0 for all t = 1, . . . , T + dTmax
2 for t = 1, . . . , T do
3 for s = 1, . . . , t : s+ d̂s = t do
4 Find the first round π(s) ∈ [t, t+ dtmax] such that υnew

π(s) = 0

5 Move the arrival from round s to round π(s) and update υnew
π(s) =

1
4

Let υnew
t for all t ∈ [T + dTmax] be the total arrivals at time t after the rearrange-

ment, and let π(t) be the round to which we have mapped round t for all t ∈ [T ].
Then the following inequality holds for any rearrangement

RT =
T∑
t=1

υt

K∑
i=1

∆ixt,i ≥
T∑
t=1

υnew
t

K∑
i=1

∆ixt,i −K

T∑
t=1

λt,π(t). (4.11)

We provide properties of the greedy rearrangement in Lemma 4.4.

Lemma 4.4. Let σt
max = maxs∈[t] {σ̂s}. Then for any round t, Algorithm 6 keeps all

arrivals at time t in the interval [t, t + σt
max], such that ∀s ≤ t : s + d̂s = t, we have

π(s)− t ≤ σt
max and υnew

π(s) ∈
{
0, 1

4

}
.
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We provide a proof of this lemma in Appendix 4.7.5. Using this lemma, we have

T∑
t=1

υnew
t

K∑
i=1

∆ixt,i =
1

4

T∑
t=1

K∑
i=1

∆ixt,i −
1

4

T∑
t=1

1(υnew
t = 0)

K∑
i=1

∆ixt,i

≤ 1

4
RegT −

1

4
σT

max ≤
1

4
RegT −

1

4
σmax, (4.12)

where the second inequality uses the fact after any rearrangement
∑T

t=1 υt =

4
∑T+σmax

t=1 υnew
t , and as a result the number of rounds with zero arrivals will be

σmax. Since ∀t ∈ [T ] : π(t) ≤ t+ d̂t+σt
max then λt,π(t) ≤ λt,t+d̂t+σt

max
. So, this together

with (4.12), (4.11), and (4.9) completes the proof.

4.5.2 Adversarial Analysis
For the adversarial regret bound we have

RegT ≤ 4
√
KT +

T∑
t=1

γtσ̂t + γ−1
T logK + S∗ +K

T∑
t=1

λt,t+d̂t

≤ O
(√

KT +
√
DT logK + S∗ +Kσ̂max

)
, (4.13)

where the first four terms on the right hand side of the first inequality is a bound on
the regret in the non-skipped rounds, which follows by Zimmert and Seldin (2020,
Theorem 3), since the structure of the algorithm is identical, the last term is the
bias introduced by implicit exploration. We provide details in Appendix 4.7.8. The
second inequality holds by the choice of the learning rates {γt}t∈[T ] and Lemma 4.3.
Since our skipping rule differs, we need to revise the bound of Zimmert and Seldin
(2020) on

√
DT logK + S∗.

Lemma 4.5. We have

S∗ +
√
DT log(K) ≤ O

(
max

{
K

2
3 log(K), min

S⊂[T ]

(
|S|+

√
DS̄K

2
3 log(K)

)})
.

A proof of the lemma can be found in Appendix 4.7.8. The lemma completes the
proof of the adversarial bound in Theorem 4.1.
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4.6 Discussion
We have presented a best-of-both-worlds algorithm for bandits with delayed feedback.
The algorithm is based on a careful augmentation of the adversarial algorithm of
Zimmert and Seldin (2020) with implicit exploration and adjusted skipping. The
result improves on prior work of Masoudian et al. (2022) by eliminating the need in
prior knowledge of dmax, replacing terms dependent on dmax with terms dependent
on σ̂max, which is generally better, and benefiting from skipping. To the best of
our knowledge, it is also the first use of implicit exploration in the context of best-
of-both-worlds bounds. In particular, we manage to control the implicit exploration
bias, so that it does not deteriorate neither the stochastic, nor the adversarial bound.

The work leads to several directions for future research. One is whether the best-
of-both-worlds bounds could be improved further, in particular, whether it is possible
to reduce the K

1
3 term in the adversarial bound and

∑
i 6=i∗

σ̂max
∆i logK

and S∗ terms in
the stochastic bound, or whether it is possible to derive lower bounds demonstrating
that best-of-both-worlds bounds for bandits with delayed feedback must bear extra
costs. Another interesting direction is to find additional applications for implicit
exploration in the context of best-of-both-worlds bounds.

4.7 Appendix

4.7.1 Details of the Drifted Regret Analysis
In this section we prove the bound on drifted regret in equation (4.5). The derivation
is same as the one by Masoudian et al. (2022), however, for the sake of completeness
we reproduce it here. The analysis follows the standard FTRL approach, decompos-
ing the drifted pseudo-regret into penalty and stability terms as
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Reg
drift

T =E


T∑
t=1

〈xt, ˆ̀
obs
t 〉+ F̄ ∗

t (−L̂obs
t+1)− F̄ ∗

t (−L̂obs
t )︸ ︷︷ ︸

stability



+ E


T∑
t=1

F̄ ∗
t (−L̂obs

t )− F̄ ∗
t (−L̂obs

t+1)− `t,i∗T︸ ︷︷ ︸
penalty

 .

The penalty term is bounded by the following inequality, derived by Abernethy
et al. (2015)

penalty ≤
T∑
t=2

(Ft−1(xt)− Ft(xt)) + FT (ei∗T )− F1(x1), (4.14)

where ei∗T represents the unit vector in RK with the i∗T -th element being one and
zero elsewhere. This leads to the following bound for penalty term

penalty ≤ O

(
T∑
t=2

∑
i 6=i∗

ηtx
1
2
t,i +

T∑
t=2

K∑
i=1

σtγtxt,i log(1/xt,i)

logK

)
, (4.15)

where we substitute the explicit form of the regularizer into (4.14) and exploit the
properties η−1

t − η−1
t−1 = O(ηt), γ−1

t − γ−1
t−1 = O(σtγt/ logK), and x

1
2
t,i∗T
− 1 ≤ 0.

For the stability term, following a similar analysis as presented by Masoudian
et al. (2022, Lemma 5), but incorporating implicit exploration terms, for any αt ≤
γ−1
t we obtain

stability ≤
T∑
t=1

K∑
i=1

2f
′′

t (xt,i)
−1(ˆ̀obst,i − αt)

2.

Let At =
{
s ≤ t : s+ d̂s = t

}
, then due to the choice of skipping threshold,

αt =
∑

s∈At

¯̀
s,t satisfies the condition αt ≤ γ−1

t , where ¯̀
s,t =

∑K
i=1 f

′′
t (xt,i)

−1 ˆ̀
s,i∑K

i=1 f
′′
t (xt,i)−1

=
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f
′′
t (xt,Is )

−1 ˆ̀
s,Is∑K

i=1 f
′′
t (xt,i)−1

. Thus we have

stability ≤
T∑
t=1

K∑
i=1

2f
′′

t (xt,i)
−1

(∑
s∈At

ˆ̀
s,i − ¯̀

s,t

)2

=
T∑
t=1

K∑
i=1

∑
s∈At

2f
′′

t (xt,i)
−1
(
ˆ̀
s,i − ¯̀

s,t

)2
︸ ︷︷ ︸

S1

+
T∑
t=1

K∑
i=1

∑
r,s∈At,r 6=s

2f
′′

t (xt,i)
−1
(
ˆ̀
s,i − ¯̀

s,t

)(
ˆ̀
r,i − ¯̀

r

)
︸ ︷︷ ︸

S2

For brevity we define zt,i = f
′′
t (xt,i)

−1 and mt
s,i = max {xs,i, λs,t} for any s ≤ t

and i ∈ [K]. We begin bounding S1 by replacing definition of loss estimators from
(4.1) and get

E[S1] =
T∑
t=1

K∑
i=1

∑
s∈At

2E

zt,i(`s,Is1(Is = i)

mt
s,i

− zt,Is`s,Is

mt
s,Is

∑K
j=1 zt,j

)2


≤
T∑
t=1

K∑
i=1

∑
s∈At

2E

zt,i(1(Is = i)

mt
s,i

− zt,Is

mt
s,Is

∑K
j=1 zt,j

)2


=
T∑
t=1

∑
s∈At

2
K∑
i=1

E

[
zt,i

(
1(Is = i)

mt
s,i

2 − zt,Is1(Is = i)

mt
s,im

t
s,Is

∑K
j=1 zt,j

)]
︸ ︷︷ ︸

S1
1

+
T∑
t=1

∑
s∈At

2E

[(
z2t,Is

mt
s,Is

2(
∑K

j=1 zt,j)
−

K∑
i=1

zt,Iszt,i1(Is = i)

mt
s,im

t
s,Is

∑K
j=1 zt,j

)]
︸ ︷︷ ︸

S2
1

Where the first inequality uses `s,Is ≤ 1. We show that S2
1 has negative contribution

to S1 by taking expectation w.r.t. Is as the following

S2
1 =

T∑
t=1

∑
s∈At

E

[
K∑
i=1

z2t,ixs,i

mt
s,i

2(
∑K

j=1 zt,j)
−

K∑
i=1

z2t,ixs,i

mt
s,i

2∑K
j=1 zt,j

]
= 0
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Thus we only need to bound S1
1 , for which we take expectation w.r.t. Is and

separate i∗ from the other arms to get

S1
1 =

K∑
i=1

E

[
zt,i

(
1(Is = i)

mt
s,i

2 − zt,Is1(Is = i)

mt
s,im

t
s,Is

∑K
j=1 zt,j

)]

≤
∑
i 6=i∗

E

[
zt,ixs,i

mt
s,i

2

]
+ E

[
zt,i∗xs,i∗

mt
s,i∗

2 −
z2t,i∗xs,i∗

mt
s,i∗

2∑K
j=1 zt,j

]

≤
∑
i 6=i∗

E
[
4ηtx

1/2
s,i

]
+ E

[
xs,i∗

mt
s,i∗

2 × zt,i∗

(
1− zt,i∗∑K

j=1 zt,j

)]

≤
∑
i 6=i∗

4E
[
ηtx

1/2
s,i

]
+ E

[
xs,i∗

mt
s,i∗

2 × ηtx
3/2
t,i∗

(
1−

x
3/2
t,i∗

(1− xt,i∗)3/2 + x
3/2
t,i∗

)]

≤
∑
i 6=i∗

4E
[
ηtx

1/2
s,i

]
+ E

[
ηtxs,i∗x

3/2
t,i∗

mt
s,i∗

2 ×
(
(1− xt,i∗)

3/2

2−1/2

)]

≤
∑
i 6=i∗

4E
[
ηtx

1/2
s,i

]
+ E

[
4
√
2ηt
∑
i 6=i∗

xt,i

]

≤
∑
i 6=i∗

4E
[
ηtx

1/2
s,i

]
+ E

[
16
√
2ηt
∑
i 6=i∗

(xs,i + λs,t)

]

≤ O

(
E

[
ηs
∑
i 6=i∗

x
1/2
s,i

]
+ E [Kλs,t]

)
,

where the second inequality uses zt,i = f
′′
t (xt,i)

−1 ≤ ηtx
3/2
t,i along xt,i ≤ mt

s,i

from Lemma 4.1, the third inequality is due the fact that zt,i∗

(
1− zt,i∗∑K

j=1 zt,j

)
is an

increasing function in terms of both zt,i∗ and
∑

i 6=i∗ zt,i and we substitute zt,i∗ ≤
ηtx

3/2
t,i∗ and

∑
j 6=i∗ zt,j ≤

∑
j 6=i∗ ηtx

3/2
t,j ≤ ηt(1− xt,i∗)

3/2, the fourth inequality is due to
(1− a)3/2 + a3/2 ≤ 2−1/2, the fifth and the sixth inequalities rely on Lemma 4.1, and
finally the last inequality is followed by ∀i : xs,i ≤ x

1/2
s,i and that ηt ≤ ηs. Combining

bounds for S1
1 and S2

1 gives the following bound for S1

E[S1] ≤ O

(
T∑
t=1

∑
i 6=i∗

ηtE[x1/2
t,i ] +

T∑
t=1

Kλt,t+d̂t

)
(4.16)
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For S2, we take expectation with respect to Is, Ir, and randomness of losses, all
separately to get

E[S2] =
T∑
t=1

K∑
i=1

∑
r,s∈At,r 6=s

2E
[
zt,i

(
ˆ̀
s,i − ¯̀

s

)(
ˆ̀
r,i − ¯̀

s

)]
=

T∑
t=1

K∑
i=1

∑
r,s∈At,r 6=s

2E

[
zt,i

(
µixs,i

mt
s,i

−
∑K

j=1 zt,jµjxs,j/m
t
s,j∑K

j=1 zt,j

)(
µixr,i

mt
r,i

−
∑K

j=1 zt,jµjxr,j/m
t
r,j∑K

j=1 zt,j

)]
.

(4.17)

For simplicity we define εts,i = µi − µixs,i

mt
s,i

for any s ≤ t and any i ∈ [K], for which we
have the following bounds

0 ≤ εts,i ≤
λs,t

mt
s,i

.

We then continue from 4.17 and utilize the following decomposition

K∑
i=1

2E

[
zt,i

(
µi −

∑K
j=1 zt,jµj∑K
j=1 zt,j

− εts,i +

∑K
j=1 zt,jε

t
s,j∑K

j=1 zt,j

)(
µi −

∑K
j=1 zt,jµj∑K
j=1 zt,j

− εtr,i +

∑K
j=1 zt,jε

t
r,j∑K

j=1 zt,j

)]

≤ 2E


K∑
i=1

zt,i

(
µi −

∑K
j=1 zt,jµj∑K
j=1 zt,j

)2

︸ ︷︷ ︸
S1
2



+ 2E


K∑
i=1

zt,iε
t
s,iε

t
r,i + 2zt,i(ε

t
s,i + εtr,i)︸ ︷︷ ︸

S2
2



+ 2E

(
∑K

i=1 zt,iε
t
s,i)(
∑K

i=1 zt,iε
t
r,i)∑K

i=1 zt,i︸ ︷︷ ︸
S3
2

 , (4.18)

where the inequality holds because we ignore the negative terms after multiplication
and that |(µi −

∑K
j=1 zt,jµj∑K
j=1 zt,j

)| ≤ 1. We need to bound each part from (4.18). We start
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with S1
2 ,

S1
2 =

K∑
i=1

zt,i

(
µi −

∑K
j=1 zt,jµj∑K
j=1 zt,j

)2

=
K∑
i=1

zt,iµ
2
i −

(∑K
i=1 zt,iµi

)2
∑K

i=1 zt,i

≤
K∑
i=1

zt,iµ
2
i −

(∑K
i=1 zt,iµi∗

)2
∑K

i=1 zt,i

≤
K∑
i=1

zt,i(µ
2
i − µ2

i∗)

≤
∑
i 6=i∗

2γtxt,i∆i (4.19)

We bound S2
2 as

S2
2 =

K∑
i=1

zt,iε
t
s,iε

t
r,i + 2zt,i(ε

t
s,i + εtr,i)

≤
K∑
i=1

zt,i
εts,i + εtr,i

2
+ 2zt,i(ε

t
s,i + εtr,i)

≤ 5

2

K∑
i=1

zt,iλs,t

mt
s,i

+
zt,iλr,t

mt
r,i

≤ 5

2
Kγt(λs,t + λr,t), (4.20)

where the last inequality holds because zt,i ≤ γtxt,i and that xt,i ≤ 4mt
s,i, 4m

t
r,i from

Lemma 4.1.
It remains to give upper bound for S3

2 as

S3
2 =

(
∑K

i=1 zt,iε
t
s,i)(
∑K

i=1 zt,iε
t
r,i)∑K

i=1 zt,i

≤
(
∑K

i=1 zt,iλs,t/m
t
s,i)(
∑K

i=1 zt,iλr,t/m
t
r,i)∑K

i=1 zt,i

≤ 1

2
Kγt(λs,t + λr,t), (4.21)
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where the second inequality rely on zt,i ≤ γtxt,i, λs,t ≤ mt
s,i, λr,t ≤ mt

r,i, and xt,i ≤
4mt

s,i, xt,i ≤ 4mt
r,i from Lemma 4.1. It is suffices to plug bounds in (4.19), (4.20),

and (4.21) to obtain

E[S2] ≤
T∑
t=1

∑
i 6=i∗

4∆iγtE[xt,i]υt(υt − 1) + 6
T∑
t=1

Kγt+d̂t
(υt+d̂t

− 1)λt,t+d̂t

≤
T∑
t=1

∑
i 6=i∗

∑
s∈At

4∆iγtE[xs,i + λs,t](υt − 1) + 6
T∑
t=1

Kγt+d̂t
(υt+d̂t

− 1)λt,t+d̂t

≤
T∑
t=1

∑
i 6=i∗

∑
s∈At

4∆iγtE[xs,i](υt − 1) + 10
T∑
t=1

Kγt+d̂t
(υt+d̂t

− 1)λt,t+d̂t

≤ O

(
T∑
t=1

∑
i 6=i∗

γt+d̂t
∆iE[xt,i](υt+d̂t

− 1) +K
T∑
t=1

λt,t+d̂t

)
, (4.22)

where the third inequality uses Lemma 4.1 and the last inequality holds because of
the skipping that ensures γt+d̂t

(υt+d̂t
− 1) ≤ 1. Now, it is sufficient to combine the

bounds for S1 and S2 in (4.16) and (4.22) and get

E[stability] ≤ O

(
T∑
t=1

∑
i 6=i∗

ηtE[x1/2
t,i ] +

T∑
t=1

∑
i 6=i∗

γt+d̂t
E[xt,i](υt+d̂t

− 1) +K
T∑
t=1

λt,t+d̂t

)
.

(4.23)
Combining the stability bound from (4.23) and the penalty bound from (4.15) con-
cludes the proof.

4.7.2 Proof of the Drift Control Lemma
In this section we provide a proof of Lemma 4.1. We start with a few auxiliary
results, and then prove the lemma.

4.7.2.1 Auxiliary results for the proof of the key lemma

For the proof we use two facts and a lemma from Masoudian et al. (2022), and a
new lemma. Recall that ft(x) = −2η−1

t

√
x+ γ−1

t x(logx− 1).

Fact 4.2. (Masoudian et al., 2022, Fact 15) f
′
t (x) is a concave function.

Fact 4.3. (Masoudian et al., 2022, Fact 16) f
′′
t (x)

−1 is a convex function.
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Lemma 4.6. (Masoudian et al., 2022, Lemma 17) Fix t and s with t ≥ s, and
assume that there exists α, such that xt,i ≤ αmax(xs,i, λs,t) for all i ∈ [K], and let
f(x) =

(
−2η−1

t

√
x+ γ−1

t x(logx− 1)
)
, then we have the following inequality∑K

j=1 f
′′
(xt,j)

−1 ˆ̀
s,j∑K

j=1 f
′′(xt,j)−1

≤ 2α(K − 1)
1
3 .

Lemma 4.7. If t > s and (t− s) ≤ dtmax, then

dtmax ≤
√
2dsmax,

which is equivalent to Dt ≤ 2Ds.

Proof. It suffices to prove that Dt ≤ 2Ds, which is equivalent to proving that (Dt −
Ds) ≤ 1

2
Dt. We have:

Dt −Ds =
t∑

r=s+1

σ̂r ≤ (t− s)dtmax ≤
(
dtmax

)2
=

Dt

49K
2
3 logK

≤ Dt

2
,

where the first inequality holds because due to skipping, for all r ≤ t we have
σ̂r ≤ dtmax, and (t− s) ≤ dtmax.

4.7.2.2 Proof of the Drift Control Lemma

Now we are ready to provide a proof of Lemma 4.1. Similar to the analysis of
Masoudian et al. (2022), the proof relies on induction on valid pairs (t, s), where a
pair (t, s) is considered valid if s ≤ t and (t − s) ≤ dtmax. The induction step for
pair (t, s) involves proving that xt,i ≤ 4max(xs,i, λs,t) for all i ∈ [K]. To establish
this, we use the induction assumption for all valid pairs (t′, s′) such that s′, t′ < t,
as well as all valid pairs (t′, s′), such that t′ = t and s < s′ ≤ t. The induction base
encompasses all pairs (t′, t′) for all t′ ∈ [T ], where the statement xt′,i ≤ 4xt′,i holds
trivially.

To control xt,i

max(xs,i,λs,t)
we first introduce an auxiliary variable x̃ = F̄ ∗

s (−L̂obs
t−1). We

then address the problem of drift control by breaking it down into two sub-problems:

1. xt,i

max(x̃i,λs,t)
≤ 2: the drift due to change of regularizer,

2. x̃i

xs,i
≤ 2: the drift due to loss shift.
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Deviation induced by the change of regularizer

The regularizer at round r is defined as

Fr(x) =
K∑
i=1

fr(xi) =
K∑
i=1

(
−2η−1

r

√
xi + γ−1

r xi(logxi − 1)
)
.

We have xt = ∇F̄ ∗
t (−L̂obs

t−1) and x̃ = ∇F̄ ∗
s (−L̂obs

t−1). According to the KKT conditions,
there exist Lagrange multipliers µ and µ̃, such that for all i:

f
′

s(x̃i) = −L̂obs
t−1,i + µ̃,

f
′

t (xt,i) = −L̂obs
t−1,i + µ.

We also know that there exists an index j, such that x̃j ≥ xt,j. This leads to the
following inequality:

−L̂obs
t−1,j + µ = f

′

t (xt,j) ≤ f
′

s(xt,j) ≤ f
′

s(x̃j) = −L̂obs
t−1,j + µ̃,

where the first inequality holds because the learning rates are decreasing, and the
second inequality is due to the fact that f ′

s(x) is increasing. This implies that µ ≤ µ̃,
which gives us the following inequality for all i:

f
′

t (xt,i) = −
1

ηt
√
xt,i

+
log(xt,i)

γt
≤ − 1

ηs
√
x̃i

+
log(x̃i)

γs
= f

′

s(x̃i).

Thus, we have two cases, either − 1
ηt
√
xt,i
≤ − 1

ηs
√
x̃i

or log(xt,i)

γt
≤ log(x̃i)

γs
.

Case i: If − 1
ηt
√
xt,i
≤ − 1

ηs
√
x̃i

holds, then we have xt,i

x̃i
≤ η2s

η2t
= t

s
. On the other

hand, we have

t− s ≤ dtmax =

√ ∑t
r=1 σ̂r

K3/2 logK
≤

√
t2/2

K3/2 logK
≤ t

2
,

where the second inequality holds because trivially σ̂r ≤ r. This implies that xt,i

x̃i
≤ 2.

Case ii: If log(xt,i)

γt
≤ log(x̃i)

γs
, it implies that xt,i ≤ x̃

γt
γs
i . Using x̃i ≤ max(x̃i, λs,t),
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we get

xt,i ≤ max(x̃i, λs,t)
γt
γs

= max(x̃i, λs,t)×max(x̃i, λs,t)
γt
γs

−1

≤ max(x̃i, λs,t)× λ
γt
γs

−1

s,t

= max(x̃i, λs,t)× λ
−

√
Dt−

√
Ds√

Dt
s,t

= max(x̃i, λs,t)× e
Dt

Dt−Ds
×

√
Dt−

√
Ds√

Dt

= max(x̃i, λs,t)× e

√
Dt

(
√

Dt+
√
Ds) ≤ max(x̃i, λs,t)× e

1

1+
√

1
2 ≤ max(x̃i, λs,t)× 2.

Therefore, in both cases we obtain
xt,i ≤ 2max(x̃i, λs,t). (4.24)

Deviation Induced by the Loss Shift

The initial steps of the proof of this part are the same as in Masoudian et al. (2022).
However, for the sake of completeness, we restate them here.

Since we have xs = ∇F̄ ∗
s (−L̂obs

s−1) and x̃ = ∇F̄ ∗
s (−L̂obs

t−1), they both share the same
regularizer Fs(x) =

∑K
i=1 fs(xi). For brevity, we drop s from fs(x). By the KKT

conditions ∃µ, µ̃ s.t. ∀i:
f

′
(xs,i) = −L̂obs

s−1,i + µ,

f
′
(x̃i) = −L̂obs

t−1,i + µ̃.

Let ˜̀= L̂obs
t−1 − L̂obs

s−1, then by the concavity of f ′
(x) from Fact 4.2, we have

(xs,i − x̃i)f
′′
(xs,i) ≤ f

′
(xs,i)− f

′
(x̃i)︸ ︷︷ ︸

µ−µ̃+˜̀
i

≤ (xs,i − x̃i)f
′′
(x̃i). (4.25)

Since f
′′
(xs,i) ≥ 0, from the left side of (4.25) we get xs,i − x̃i ≤

f
′′
(xs,i)

−1
(
µ− µ̃+ ˜̀

i

)
. Taking summation over all i and using the fact that both

vectors xs and x̃ are probability vectors, we have

0 =
K∑
i=1

(xs,i − x̃i) ≤
K∑
i=1

f
′′
(xs,i)

−1
(
µ− µ̃+ ˜̀

i

)
,

⇒ µ̃− µ ≤
∑K

i=1 f
′′
(xs,i)

−1 ˜̀
i∑K

i=1 f
′′(xs,i)−1

. (4.26)
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Combining the right hand sides of (4.25) and (4.26) gives

(x̃i − xs,i)f
′′
(x̃i) ≤ µ̃− µ− ˜̀

i ≤
∑K

j=1 f
′′
(xs,j)

−1 ˜̀
j∑K

j=1, f
′′(xs,j)−1

,

and by rearrangement we get

x̃i ≤ xs,i + f
′′
(x̃i)

−1 ×
∑K

j=1 f
′′
(xs,j)

−1 ˜̀
j∑K

j=1 f
′′(xs,j)−1

≤ xs,i + γsx̃i ×
∑K

j=1 f
′′
(xs,j)

−1 ˜̀
j∑K

j=1 f
′′(xs,j)−1

, (4.27)

where the last inequality holds because f
′′
(x̃i)

−1 =
(
η−1
s

1
2
x̃
−3/2
i + γ−1

s x̃−1
i

)−1

. The

next step for bounding x̃i is to bound
∑K

j=1 f
′′
(xs,j)

−1 ˜̀
j∑K

j=1 f
′′ (xs,j)−1

in (4.27), where ˜̀
j =

∑
r∈A

ˆ̀
r,j

and A =
{
r : s ≤ r + d̂r < t

}
.

If there exists r ∈ A, such that r > s and 4max(xr,i, λr,r+d̂r
) ≤ xs,i, then com-

bining it with the induction assumption for (r + d̂r, r), where we have xr+d̂r,i
≤

4max(xr,i, λr,r+d̂r
), leads to xr+d̂r,i

≤ xs,i. On the other hand, by the induction
assumption for pair (r + d̂r, t), we have

xt,i ≤ 4max(xr+d̂r,i
, λr+d̂r,t

).

So using xr+d̂r,i
≤ xs,i and λr+d̂r,t

≤ λs,t we can derive xt,i ≤ 4max(xs,i, λs,t). This
inequality satisfies the condition we wanted to prove in the drift lemma. Therefore,
we assume that for all r ∈ A we have either r ≤ s or xs,i ≤ 4max(xr,i, λr,r+d̂r

).
If r ≤ s, using the the induction assumption for (s, r) together with the fact that
λr,s ≤ λr,r+d̂r

, results in xs,i ≤ 4max(xr,i, λr,s). Consequently, in either case, the
following inequality holds for all r ∈ A

xs,i ≤ 4max(xr,i, λr,r+d̂r
). (4.28)

Thus, inequality in (4.28) satisfies the condition of Lemma 4.6, and for all r ∈ A
we get: ∑K

j=1 f
′′
(xs,j)

−1 ˆ̀
r,j∑K

j=1 f
′′(xs,j)−1

≤ 8(K − 1)
1
3 . (4.29)
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We proceed by summing both sides of the inequality (4.29) over all r ∈ A and obtain∑K
j=1 f

′′
(xs,j)

−1 ˜̀
j∑K

j=1 f
′′ (xs,j)−1

≤ 4|A|(K − 1)
1
3 . Now it suffices to plug this result into (4.27):

x̃i ≤ xs,i + 8|A|γsx̃i(K − 1)
1
3 ⇒

x̃i ≤ xs,i ×
(

1

1− 8|A|γs(K − 1)1/3

)
(4.30)

≤ xs,i ×
(

1

1− 24γsdsmax(K − 1)1/3

)
≤ xs,i ×

(
1

1− 1/2

)
= 2xs,i, (4.31)

where the third inequality uses |A| ≤ dsmax+t−s ≤ dtmax+dsmax, and that dtmax ≤ 2dsmax
by Lemma 4.7, and for the last inequality we use the definitions of γs and dsmax.

Combining (4.31) and (4.24) completes the induction step.

4.7.3 Self-Bounding Analysis
In this section we show the details of how to apply self-bounding analysis to bound
the right hand side of (4.6).

We start from (4.6) and decompose it as follows

RegT ≤ E

a
T∑
t=1

∑
i 6=i∗

ηtx
1/2
t,i︸ ︷︷ ︸

A

+b
T∑
t=1

∑
i 6=i∗

γt+dt(υt+dt − 1)xt,i∆i︸ ︷︷ ︸
B

+c
T∑
t=2

K∑
i=1

σ̂tγtxt,i log(1/xt,i)

logK︸ ︷︷ ︸
C


+O

(
K

T∑
t=1

(
λt,t+d̂t

+ λt,t+d̂t+σt
max

)
+ σmax + S∗

)
︸ ︷︷ ︸

D

.

We rewrite the pseudo-regret as RegT = 4RegT − 3RegT , and then based on the
decomposition above we have

RegT ≤ E
[
4aA−RegT

]
+ E

[
4bB −RegT

]
+ E

[
4cC −RegT

]
+ 4D. (4.32)

Masoudian et al. (2022) provide the following three lemmas that give the bounds for
the first three terms in (4.32).
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Lemma 4.8. (Masoudian et al., 2022, Lemma 6) For any a ≥ 0, we have:

4aA−RegT ≤
∑
i 6=i∗

4a2

∆i

log(T + 1) + 1. (4.33)

Lemma 4.9. (Masoudian et al., 2022, Lemma 7) Let υmax = maxt∈[T ] υt, then for
any b ≥ 0:

4bB −RegT ≤ 64b2υmax logK. (4.34)

It is evident that υmax ≤ σmax, so the bound in Lemma 4.9 is dominated by
O(Kσmax) term in the regret bound.

Lemma 4.10. (Masoudian et al., 2022, Lemma 8) For any c ≥ 0:

4cC −RegT ≤
∑
i 6=i∗

128c2σmax

∆i logK
. (4.35)

By plugging (4.33),(4.34),(4.35) into (4.32) we get the desired bound.

4.7.4 A Proof of Lemma 4.3
First we provide two facts and two auxiliary lemmas.

Lemma 4.11. For any t we have

2Dt ≥
t∑

s=1

d̂s.

Proof. We show that for any t ∈ [T ] we have
∑t

s=1 d̂s −Dt ≤ Dt:
t∑

s=1

d̂s −Dt =
∑

(s≤t)∧(s+d̂s>t)

(d̂s − σ̂s)

≤
∑

(s≤t)∧(s+d̂s>t)

d̂s

≤
(
dtmax

)2
=

Dt

49K
2
3 logK

≤ Dt,

where the second inequality holds because d̂s ≤ dtmax, and the total number of steps
that satisfy (s ≤ t)∧ (s+ d̂s > t) is less than the skipping threshold at time t, which
is again dtmax. Rearranging the inequality completes the proof.
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Lemma 4.12 ((Orabona, 2022, Lemma 4.13)). Let a0 ≥ 0 and f : [0; +∞) →
[0; +∞) be a nonincreasing function. Then

T∑
t=1

atf

(
a0 +

t∑
i=1

ai

)
≤
∫ ∑T

t=0 at

a0

f(x)dx.

Fact 4.4. For any x ≥ 0, we have e−x ≤ 1
x
.

Fact 4.5. For any x ≥ 1, we have e−x ≤ 1
x log2(x) .

Proof of Lemma 4.3. We have two summations as
T∑
t=1

e
−

D
t+d̂t

D
t+d̂t

−Dt +
T∑
t=1

e
−

D
t+σtmax+d̂t

D
t+σtmax+d̂t

−Dt ,

where we show an upper bound of O(σ̂max) for each of them.
Bounding the First Summation: Let T0 be the time satisfying

√
DT0 =

σ̂max
K1/3 log(K)

, then using Facts 4.4 and 4.5 we have

T∑
t=1

e
−

D
t+d̂t

D
t+d̂t

−Dt ≤
T0∑
t=1

Dt+d̂t
−Dt

Dt+d̂t︸ ︷︷ ︸
A

+
T∑

t=T0+1

Dt+d̂t
−Dt

Dt+d̂t
log2

( Dt+d̂t

Dt+d̂t
−Dt

)
︸ ︷︷ ︸

B

.

For A we give the following bound

A =

T0∑
t=1

t+d̂t∑
s=t+1

σ̂s

Dt+d̂t

=

T0∑
s=1

s−1∑
t=0

σ̂s1(t+ d̂t ≥ s)

Dt+d̂t

≤
T0∑
s=1

σ̂2
s

Ds

≤
T0∑
s=1

σ̂s

√
Ds

K1/3 log(K)Ds

=

T0∑
s=1

σ̂s

K1/3 log(K)
√
Ds

≤ O

( √
DT0

K1/3 log(K)

)
= O

(
σ̂max

K2/3 log2(K)

)
,
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where the second equality is by swapping the summations, the first inequality
holds because Dt+d̂t

≥ Ds, the third inequality uses σ̂s ≤ dsmax ≤
√
Ds

K1/3 logK
, and the

last inequality uses Lemma 4.12.
The bound for B is as follows

B =
T∑

t=T0+1

t+d̂t∑
s=t+1

σ̂s

Dt+d̂t
log2

( Dt+d̂t

Dt+d̂t
−Dt

) ≤ T∑
t=T0+1

t+d̂t∑
s=t+1

σ̂s

Dt+d̂t
log2

(
7K1/3 log(K)Dt+d̂t

σ̂max
√

Dt+d̂t

)
=

T∑
s=T0+1

s−1∑
t=T0+1

σ̂s1(t+ d̂t ≥ s)

Dt+d̂t
log2

(√
7K1/3 log(K)Dt+d̂t

σ̂max

)
=

T∑
s=T0+1

s−1∑
t=T0+1

σ̂s1(t+ d̂t ≥ s)

4Dt+d̂t
log2

(
49K2/3 log2(K)Dt+d̂t

σ̂2
max

)
≤

T∑
s=T0+1

σ̂2
s

4Ds log2
(
49K2/3 log2(K) Ds

σ̂2
max

)
≤ σ̂max

T∑
s=T0+1

σ̂s

4Ds log2
(

49K2/3 log2(K)Ds

σ̂2
max

)
≤ σ̂max

∫ DT

DT0

1

4x log2(49K
2/3 log2(K)x
σ̂2

max
)

= σ̂max
−1

4 log(49K2/3 log2(K)x
σ̂2

max
)

∣∣∣∣DT

DT0

= O(σ̂max),

where the first inequality follows by σ̂s ≤ σ̂max and our skipping procedure that

ensures d̂t ≤ dtmax ≤
√

Dt+d̂t

K1/3 logK
, the second equality is by swapping the summations,

the second inequality follows by Dt+d̂t
≥ Ds and

∑s−1
t=1 1(t + d̂t ≥ s) = σ̂s, the last

inequality follows by Lemma 4.12 , and the last equality uses
∫

1
x log2(x/σ̂2

max)
dx =

−1
log(x/σ̂2

max)
.

Bound the Second Summation: The bound for the second summation follows
the same approach, but it requires additional care due to existence of σt

max in it. Let
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T0 to be the time satisfying
√
DT0 =

σ̂max
K1/3 log(K)

, then using Facts 4.4 and 4.5 we have

T∑
t=1

e
−

D
t+σtmax+d̂t

D
t+σtmax+d̂t

−Dt ≤
T0∑
t=1

Dt+σt
max+d̂t

−Dt

Dt+σt
max+d̂t︸ ︷︷ ︸

A

+
T∑

t=T0+1

Dt+σt
max+d̂t

−Dt

Dt+σt
max+d̂t

log2
( D

t+σtmax+d̂t

D
t+σtmax+d̂t

−Dt

)
︸ ︷︷ ︸

B

.

For A we give the following bound

A =

T0∑
t=1

e
−

D
t+σtmax+d̂t

D
t+σtmax+d̂t

−Dt ≤
T0∑
t=1

Dt+σt
max+d̂t

−Dt

Dt+σt
max+d̂t

=

T0∑
t=1

t+σt
max+d̂t∑

s=t+1

σ̂s

Dt+σt
max+d̂t

≤
T0∑
s=1

s−1∑
t=0

σ̂s1(t+ σt
max + d̂t ≥ s)

Ds

≤
T0∑
s=1

(2σs
max + σ̂s−σs

max)σ̂s

Ds

≤
T0∑
s=1

3
√
Dsσ̂s

K1/3 log(K)Ds

=

T0∑
s=1

3σ̂s

K1/3 log(K)
√
Ds

≤ O

( √
DT0

K1/3 log(K)

)
= O( σ̂max

K2/3 log2(K)
),

where the first inequality is by Fact 4.4, the second inequality holds by swap-
ping the summations and that Dt+σt

max+d̂t
≥ Ds, third inequality use the following

derivation

1(t+ σt
max + d̂t ≥ s) ≤1(t+ d̂t ≥ s) + 1(s > t+ d̂t ≥ s− σt

max)

≤1(t+ d̂t ≥ s) + 1(t ∈ [s− σt
max, s− 1])]

+ 1(t < s− σt
max ∧ t+ d̂t ≥ s− σt

max), (4.36)
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the third equality is by swapping the summations, the third inequality uses σ̂s ≤
dsmax ≤

√
Ds

K1/3 logK
, and finally the last inequality uses Lemma 4.12.

The bound for B is as follows

B =
T∑

t=T0+1

∑t+σt
max+d̂t

s=t+1 σ̂s

Dt+σt
max+d̂t

log2

(
D

t+σtmax+d̂t∑t+σtmax+d̂t
s=t+1 σ̂s

)

≤
T∑

t=T0+1

t+σt
max+d̂t∑

s=t+1

σ̂s

Dt+σt
max+d̂t

log2

(
7K1/3 log(K)D

t+σtmax+d̂t

2σ̂max
√

D
t+σtmax+d̂t

)
=

T∑
s=T0+1

s−1∑
t=T0+1

σ̂s1(t+ σt
max + d̂t ≥ s)

Dt+σt
max+d̂t

log2

(
3K1/3 log(K)

√
D

t+σtmax+d̂t

σ̂max

)
=

T∑
s=T0+1

s−1∑
t=T0+1

4σ̂s1(t+ σt
max + d̂t ≥ s)

Dt+σt
max+d̂t

log2

(
9K2/3 log2(K)D

t+σtmax+d̂t

σ̂2
max

)
≤

T∑
s=T0+1

4(2σs
max + σ̂s−σs

max)σ̂s

Ds log2
(

Ds

4σ̂2
max

)
≤ σ̂max

T∑
s=T0+1

12σ̂s

Ds log2
(

9K2/3 log2(K)Ds

σ̂2
max

)
≤ σ̂max

∫ DT

DT0

12

x log2(9K
2/3 log2(K)x

σ̂2
max

)

= σ̂max
−12

log(9K2/3 log2(K)x
σ̂2

max
)

∣∣∣∣DT

DT0

= O(σ̂max),

where the first inequality is due to our skipping procedure that ensures
max

{
σt

max, d̂t

}
≤ dtmax ≤

√
Dt+σt

max+d̂t
, the second equality is by swapping the sum-

mations, the second inequality follows by Dt+d̂t
≥ Ds and (4.36), the last inequality

follows by Lemma 4.12, and the last equality uses
∫

1
x log2(x/σ̂2

max)
dx = −1

log(x/σ̂2
max)

.
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4.7.5 A proof of Lemma 4.4
Proof. We use the term free round to refer to a round r such that υnew

r is zero. By
applying induction on the time step t, we show that if the algorithm is currently
at time t and intends to rearrange the υt arrivals, there exist υt free rounds in the
interval [t, t + σt

max − σ̂t + υt] to which the algorithm can push the arrivals. This
ensures that the arrival from round s, will be rearranged to round π(s) ≥ s + d̂s,
such that π(s)− (s+ d̂s) ≤ σt

max. To this end, we assume the induction assumption
holds for all r < t, and then proceed with induction step for t.

Induction Base:
The induction base corresponds to the first arrival time, denoted as t0. At this time
step, all υt0 arrivals can be rearranged to the free rounds in the interval [t0, t0+υt0−1],
which is a subset of [t0, t0+σt0

max− σ̂t0 +υt0−1]. Therefore, the induction base holds.
Induction step:

Assume that we are at round t, and our aim is to rearrange the arrivals of round t.
We define t1 as the last occupied round, where t1 ≥ t. To prove that t1−t ≤ σt

max−σ̂t,
we first note that since the algorithm is greedy, all rounds t, t + 1, . . . , t1 − 1 must
also be occupied by some arrivals from the past.

Let t0 < t be the first round where one of its arrivals has been rearranged to t,
and let υ

′
t0

be the number of arrivals at time t0 that are rearranged to some rounds
before t. Then by induction assumption we know

t− t0 ≤ σt0
max − σ̂t0 + υ

′

t0
+ 1 = σt0

max −
t0−1∑
r=1

1(r + d̂r ≥ t0) + υ
′

t0
+ 1. (4.37)

On the other hand, by the choice of t0, each occupied round t, t + 1, . . . , t1 must be
occupied by exactly one arrival among the arrivals of rounds t0, . . . , t− 1, except for
the υ

′
t arrivals of t0 that are rearranged to some rounds before t. So we have

t1 − t+ 1 ≤
t−1∑
r=1

1(t0 ≤ r + d̂r ≤ t− 1)− υ
′

t0

=

t0−1∑
r=1

1(t0 ≤ r + d̂r ≤ t− 1) +
t−1∑
r=t0

1(t0 ≤ r + d̂r ≤ t− 1)− υ
′

t0

=

t0−1∑
r=1

1(t0 ≤ r + d̂r ≤ t− 1) + t− t0 −
t−1∑
r=t0

1(r + d̂r ≥ t)− υ
′

t0
,

where the second equality holds because
∑t−1

r=t0
1(r+ d̂r ≥ t0) = t− t0. We use (4.37)
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to bound t− t0 in the above inequality and get

t1 − t ≤ σt0
max +

t0−1∑
r=1

1(t0 ≤ r + d̂r ≤ t− 1)−
t0−1∑
r=1

1(r + d̂r ≥ t0)−
t−1∑
r=t0

1(r + d̂r ≥ t)

= σt0
max −

t0−1∑
r=1

1(r + d̂r ≥ t)−
t−1∑
r=t0

1(r + d̂r ≥ t)

= σt0
max −

t−1∑
r=1

1(r + d̂r ≥ t) ≤ σt
max − σ̂t, (4.38)

where the last inequality follows by the fact that {σr
max}r∈[T ] is a non-decreasing

sequence. So if the algorithm rearranges the υt arrivals at round t to rounds t1 +
1, . . . , t1 + υt, then, using the inequality (4.38), we can conclude that these rounds
fall within the interval [t, t+ σt

max − σ̂t + υt].

4.7.6 A Bound on S∗

By Lemma 4.14 we know that Algorithm 5 does not not skip more than one out-
standing observation per round. Let (t1, . . . , tS∗) be an indexing of S. By definition
of skipping thresholds, we know that dtsmax =

√
Dts

K1/3 logK
for all s ∈ [S∗]. If we only

consider the contribution of outstanding observations for the skipped rounds in Dts ,
we get the following inequality

dtsmax =

√
Dts

K1/3 logK
≥

√ ∑s
i=1 d̂ti

K1/3 logK

=

√∑s
i=1 d

ti
max

K1/3 logK
, (4.39)

where the second inequality holds because the delay of skipped rounds must be equal
to the skipping thresholds.

Let c = K1/3 logK, then by (4.39) for any s ∈ [S∗] we get(
cdtsmax

)2 ≥ s∑
i=1

cdtimax.

By rearrangement we obtain the following recursive relation:
s−1∑
i=1

cdtimax ≤
(
cdtsmax

)2 − cdtsmax ≤ (cdtsmax −
1

2
)2. (4.40)
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We use this recursive relation to show by induction that cdtsmax ≥ s/2 for any
s ∈ [S∗].

Induction base: We have dt1max ≥ 1, so clearly cdt1max ≥ 1/2 is satisfied.
Induction step: To prove the induction step for s, we use (4.40) to get

cdtsmax ≥
1

2
+

√√√√ s−1∑
i=1

cdtimax

≥ 1

2
+

√√√√ s−1∑
i=1

i

2

=
1

2
+

√
s(s− 1)

4

≥ 1

2
+

s− 1

2
=

s

2
,

where the second inequality follows by the induction assumption for all i ∈ [s − 1],
and the last inequality uses the fact that s ≥ 1. Thus, the induction step is satisfied.

We obtain that S∗ ≤ 2c × dtS∗
max = O(cdmax), which together with Lemma 4.5

completes the proof.

4.7.7 Adversarial bounds with dmax cannot benefit from skip-
ping

In this section we show that adversarial regret bounds that involve terms that are
linear in dmax, such as the bounds of Masoudian et al. (2022), cannot benefit from
skipping. We prove the following lemma.

Lemma 4.13. √
D ≤ min

S

(
|S|+

√
DS̄

)
+ dmax.

Proof. For any split of the rounds [T ] into S and S̄ we have

D = DS̄ +DS ≤ DS̄ + |S|dmax ≤ DS̄ + |S|2 + d2max.

Thus √
D ≤

√
DS̄ + |S|2 + d2max ≤ |S|+

√
DS̄ + dmax,

and since the above holds for any S, we obtain the statement of the lemma.
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We remind that skipping allows to replace a term of order
√
D by a term of or-

der minS
(
|S|+

√
DS̄
)

(for simplicity we ignore factors dependent on K). Thus,
it may potentially replace a bound of order

√
D + dmax by a bound of order

minS
(
|S|+

√
DS̄
)
+ dmax, but since by the lemma minS

(
|S|+

√
DS̄
)
+ dmax =

Ω(
√
D), this would not improve the order of the bound.

4.7.8 Details of the Adversarial Analysis
The only difference between our algorithm and the algorithm of Zimmert and Seldin
(2020) is the implicit exploration and the slightly modified skipping rule. Let `t be
the original loss sequence, then the adversary can create an adaptive sequence ˜̀

t

that forces the player to play according to the implicit exploration rule by simply
down-scaling all the losses by

˜̀
ti =

xti`ti

max
{
xt,i, λt,t+d̂t

} .

Our regret bound decomposes now into

RegT = max
i∗T

E

[
T∑
t=1

〈xt, `t〉 − `t,i∗T

]

≤ max
i∗T

E

[
T∑
t=1

〈
xt, ˜̀t

〉
− ˜̀

t,i∗T

]
+ E

[
T∑
t=1

〈
xt, `t − ˜̀

t

〉]
.

The first term is bounded by Zimmert and Seldin (2020, Theorem 3) (since the player
plays their algorithm on the modified loss sequence) by

4
√
KT +

T∑
t=1

γtσ̂t + γ−1
T logK + S∗

and the second term is
T∑
t=1

〈
xt, `t − ˜̀

t

〉
≤

K∑
i=1

T∑
t=1

(1− xti

xti + λt,t+d̂t

)xti ≤ K

T∑
t=1

λt,t+d̂t
,

which can be controlled via Lemma 4.3.
Next, we reason about the nature of skips. The following lemma is an adaptation

of Zimmert and Seldin (2020, Lemma 5) to our skipping threshold.
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Lemma 4.14. Algorithm 5 will not skip more than 1 point at a time.

Proof. We prove the lemma by contradiction. Assume that s1, s2 are both de-
activated at time t. W.l.o.g. let s2 ≤ s1 − 1. Skipping of s1 at time t means
t − s1 ≥

√
Dt/(K

2
3 log(K)) ≥

√
Dt−1/(K

2
3 log(K)). At the same time we assumed

t− 1− s2 ≥ t− s1, which means that s2 would have been deactivated at round t− 1
or earlier.

Next we bound the number of skips by quantities appearing in the proof.

Lemma 4.15. The number of skips satisfies

S∗ ≤ 2

√
DTK

2
3 log(K) .

Proof of Lemma 4.15. Recall that d̂t is the contribution of a timestep t to the sum
DT .

Let (t1, . . . , tS∗) be an indexing of S. By Lemma 4.14 we skip at most one
outstanding observation per round. Thus, we have that

d̂tm ≥
√
Dtm+d̂tm

/(K
2
3 log(K)) ≥

√√√√ m∑
i=1

d̂ti/(K
2
3 log(K)) =

√
d̂tm +

∑m−1
i=1 d̂ti

K
1
3

√
log(K)

.

By solving the quadratic inequality in d̂tm we obtain

d̂tm ≥
1 +

√
1 + 4K

2
3 log(K)

∑m−1
i=1 d̂ti

2K
2
3 log(K)

.

Now we prove by induction that d̂tm ≥ m

2K
2
3 log(K)

. The induction base holds since

d̂t1 = 1. For the inductive step we have

d̂tm ≥
1 +

√
1 + 4K

2
3 log(K)

∑m−1
i=1 d̂ti

2K
2
3 log(K)

≥
1 +

√
1 +m(m− 1)

2K
2
3 log(K)

≥ m

2K
2
3 log(K)

.

Finally, we have

√
DT log(k) ≥

√√√√ S∗∑
m=1

d̂tm log(k) ≥

√
S∗(S∗ + 1)

4K
2
3

≥ 1

2K
1
3

S∗ .
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Proof of Lemma 4.5. When DT < 16K
2
3 log(K), we have by Lemma 4.15

|S|+
√
DT log(K) ≤ 12K

2
3 log(K)

and we are done. Otherwise, note that for any any t ∈ [T ] \ S, we have d̂t ≤√
DT/(K

2
3 log(K)), hence for any R ⊂ [T ]:

∑
t∈[T ]\R

dt ≥
∑

t∈[T ]\R

d̂t ≥ DT − |R|
√
DT/(K

2
3 log(K))− |S|

≥ DT − |R|
√
DT/(K

2
3 log(K))− 2

√
DTK

2
3 log(K)

≥ 1

2
DT − |R|

√
DT/(K

2
3 log(K))

Hence,

|R|+
√ ∑

s∈[T ]\R

dsK
2
3 log(K) ≥ min

r∈
[
0, 1

2

√
DTK

2
3 log(K)

] r +
√

1

2
DTK

2
3 log(K)− r

√
K

2
3 log(K)

≥ 1

2

√
DTK

2
3 log(K).

Rearranging leads to

S∗ +
√

Dt log(K) ≤ 6 min
R⊂[T ]

|R|+√ ∑
s∈[T ]\R

dsK
2
3 log(K)

 .
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Chapter 5

Delayed Bandits: When Do
Intermediate Observations Help?

The work presented in this chapter is based on a paper that has been published as:

Emmanuel Esposito, Saeed Masoudian, Hao Qiu, Dirk Van Der Hoeven, Nicolò
Cesa-Bianchi, and Yevgeny Seldin. Delayed bandits: When do intermediate obser-
vations help? In Proceedings of the International Conference on Machine Learning
(ICML), 2023.

113



Chapter 5 | Delayed Bandits: When Do Intermediate Observations Help?

Abstract
We study a K-armed bandit with delayed feedback and intermediate observations.
We consider a model where intermediate observations have a form of a finite state,
which is observed immediately after taking an action, whereas the loss is observed
after an adversarially chosen delay. We show that the regime of the mapping of
states to losses determines the complexity of the problem, irrespective of whether
the mapping of actions to states is stochastic or adversarial. If the mapping of
states to losses is adversarial, then the regret rate is of order

√
(K + d)T (within

log factors), where T is the time horizon and d is a fixed delay. This matches the
regret rate of a K-armed bandit with delayed feedback and without intermediate
observations, implying that intermediate observations are not helpful. However, if
the mapping of states to losses is stochastic, we show that the regret grows at a rate of√(

K + min{|S|, d}
)
T (within log factors), implying that if the number |S| of states

is smaller than the delay, then intermediate observations help. We also provide
refined high-probability regret upper bounds for non-uniform delays, together with
experimental validation of our algorithms.

5.1 Introduction
Delay is an ubiquitous phenomenon that many sequential decision makers have
to deal with. For example, outcomes of medical treatments are often observed
with delay, purchase events happen with delay after advertisement impressions,
and acceptance/rejection decisions for scientific papers are observed with delay after
manuscript submissions. The impact of delay on the performance of sequential deci-
sion makers, measured by regret, has been extensively studied under full information
and bandit feedback, and in stochastic and adversarial environments. Yet, in many
situations in real life intermediate observations may be available to the learner. For
example, a health check-up might give a preliminary indication on the effect of a
treatment, an advertisement click might be a precursor for an upcoming purchase,
and preliminary reviews might provide some information regarding an upcoming ac-
ceptance or rejection decision. In this work we study when, and how, intermediate
observations can be used to reduce the impact of delay in observing the final outcome
of an action in a multi-armed bandit setting.

Online learning with delayed feedback and intermediate observations was studied
by Mann et al. (2019) in a full-information setting, and then by Vernade et al. (2020)
in a nonstationary stochastic bandit setting. In the paper of Vernade et al. (2020),
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at each time step the learner chooses an action and immediately observes a signal
(also called state) belonging to a finite set. The actual loss (i.e., feedback) incurred
by the learner in that time step is only received with delay, which can be fixed or
random. More formally, the observed state is drawn from a distribution that only
depends on the chosen action, and the incurred loss is drawn from a distribution
that only depends on the observed state (and not on the chosen action), forming
a Markov chain. The work of Vernade et al. (2020) studies a setting, where st are
nonstationary and `t are i.i.d. stochastic.

Action
At

State
St = st(At)

Loss
`t(St)

no delay delay dt
In this work, we consider

two possible regimes for the
mappings st from actions to
states (stochastic and adversar-
ial) and two possible regimes for the mappings `t from states to losses (also stochastic
and adversarial). Altogether, we study four different regimes, defined by the combi-
nation of the first and the second mapping type.

We characterize (within logarithmic factors) the minimax regret rates for all of
them, by giving upper and lower bounds. Similar to Vernade et al., we assume that
the states are observed instantaneously, and we assume that the losses are observed
with delay d. We show that the minimax regret rate is fully determined by the
regime of the states to losses mapping, regardless of the regime of the actions to
states mapping. The results are informally summarized in the following table, where
K denotes the number of actions, S denotes the number of states, and T denotes
the time horizon. It is assumed that the losses belong to the [0, 1] interval.

States to losses mapping Regret (within log factors)
Adversarial

√
(K + d)T

Stochastic
√(

K + min{S, d}
)
T

All of our upper bounds hold with high probability (with respect to the learner’s
internal randomization) irrespective of the regime of the action to states mapping.

We recall that (within logarithmic factors) the minimax regret rate in multi-
armed bandits with delays without intermediate observations is of order

√
(K + d)T

(Cesa-Bianchi et al., 2019). Therefore, we conclude that if the mapping from states
to actions is adversarial, then intermediate observations do not help (in the minimax
sense), because the regret rates are the same irrespective of whether the interme-
diate observations are used or not, and irrespective of whether the mapping from
actions to states is stochastic or adversarial. However, if the mapping from states
to losses is stochastic, and the number S of states is smaller than the delay d, then
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intermediate observations are helpful, and we provide an algorithm, MetaAdaBIO,
which is able to exploit them. Our result improves on the Õ

(√
KST

)
regret bound

obtained by Vernade et al. (2020) for the case of stochastic and stationary action
to states mapping. Our algorithm also applies to a more general setting of non-
uniform delays (dt)t∈[T ] where we achieve a high-probability regret bound of order√
KT + min{ST,DT} (ignoring logarithmic factors). This improves upon the total

delay term DT = d1 + · · · + dT similarly to the respective term in the fixed delay
setting.

Related work Adaptive clinical trials have served an inspiration for the multi-
armed bandit model (Thompson, 1933), and, interestingly, they have also pushed the
field to study the effect of delayed feedback (Simon, 1977; Eick, 1988). In the bandit
setting Joulani et al. (2013) have studied a stochastic setting with random delays,
whereas Neu et al. (2010, 2014) have studied a nonstochastic setting with constant
delays. Cesa-Bianchi et al. (2019) have shown an Ω(max{

√
KT,

√
dT lnK}) lower

bound for nonstochastic bandits with uniformly delayed feedback, and an upper
bound matching the lower bound within logarithmic factors by using an Exp3-style
algorithm (Auer et al., 2002b), whereas Zimmert and Seldin (2020) have reduced the
gap to the lower bound down to constants by using a Tsallis-INF approach (Zimmert
and Seldin, 2021). Follow up works have studied adversarial multi-armed bandits
with non-uniform delays (Thune et al., 2019; Bistritz et al., 2019, 2022; Gyorgy and
Joulani, 2021; Van der Hoeven and Cesa-Bianchi, 2022) with Zimmert and Seldin
(2020) providing a minimax optimal algorithm and Masoudian et al. (2022) deriving
a matching lower bound and a best-of-both-worlds extension. Two key techniques
for handling non-uniform delays are skipping, introduced by Thune et al. (2019), and
algorithm parametrization by the number of outstanding observations (an observed
quantity at action time), as opposed to the delays (an unobserved quantity at action
time), introduced by Zimmert and Seldin (2020).

Paper structure In Section 5.2 we provide a formal problem definition. In
Section 5.3 we introduce two algorithms, MetaBIO and MetaAdaBIO, for the model of
bandits with intermediate observations. In Section 5.4 we analyze both algorithms
and prove high-probability regret bounds for the setting of adversarial action-state
mappings and stochastic losses. In Section 5.5 we provide the lower bounds, and in
Section 5.6 experimental evaluation, concluding with a discussion in Section 5.7.
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5.2 Problem definition
We consider an online learning setting with a finite set A = [K] of K ≥ 2 actions
and a finite set S = [S] of S ≥ 2 states. In each round t = 1, 2, . . . the learner picks
an action At ∈ A and receives a state St = st(At) ∈ S as an intermediate observation
according to some mapping st ∈ SA. The learner also incurs a loss `t(St) ∈ [0, 1],
which is only observed at the end of round t+ dt, where the delay dt ≥ 0 is revealed
to the learner only when the observation is received.

The difficulty of this learning task depends on three elements all initially unknown
to the learner:

• the sequence of action-state mappings s1, . . . , sT ∈ SA;
• the sequence of loss vectors `1, . . . , `T ∈ [0, 1]S;
• the sequence of delays d1, . . . , dT ∈ N, where dt ≤ T − t for all t ∈ [T ] without loss

of generality.
Note that unlike standard bandits, here the losses are functions of the states instead
of the actions. However, since actions are chosen without a-priori information on
the action-state mappings, learners have no direct control on the losses they will
incur and, because of the delays, they also have no immediate feedback on the loss
associated with the observed states. Note also that, for all t ≥ 1, the states st(a)
for a 6= At and the losses `t(s) for s 6= St are never revealed to the algorithm. For
brevity, we refer to this setting as (delayed) Bandits with Intermediate Observations
(BIO).

In the setting of stochastic losses, we assume the loss vectors `t ∈ [0, 1]S are
sampled i.i.d. from some fixed but unknown distribution Q, and let θ ∈ [0, 1]S be
the unknown vector of expected losses for the states. That is, `t(s) ∼ Q(· | s) has
mean θ(s) for each t ∈ [T ] and s ∈ S. Note that we allow dependencies between
the stochastic losses of distinct states in the same round, but require losses to be
independent across rounds. In the setting of stochastic action-state mappings, we
assume that each observed state St is independently drawn from a fixed but unknown
distribution P (· |At). If both losses and action-state mappings are stochastic, then
`t(St) is independent of At given St. When losses or action-state mappings are
adversarial, we always assume oblivious adversaries.

Our main quantity of interest is the regret measured via the learner’s cumulative
loss

∑
t `t(St), where St = st(At) and (At)t≥1 is the sequence of learner’s actions. In

case of stochastic losses, we define the learner’s performance by
∑

t θ(St). In case of
stochastic action-state mappings, we average each instantaneous loss over the random
choice of the state:

∑
s `t(s)P (s |At) for adversarial losses and

∑
s θ(s)P (s |At) for
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stochastic losses. Regret is always computed according to the best action with respect
to appropriate notion of cumulative loss. In particular, for stochastic state-action
mappings, the cumulative losses of the best action are

min
a∈A

T∑
t=1

∑
s∈S

`t(s)P (s | a) and min
a∈A

T∑
t=1

∑
s∈S

θ(s)P (s | a) .

5.3 Algorithm
In this section we introduce MetaBIO (Algorithm 7) that transforms any algorithm B
tailored for the delayed setting without intermediate observations into an algorithm
for our setting. We then propose MetaAdaBIO, a modification of MetaBIO that delivers
an improved regret bound for our setting.

Algorithm 7: MetaBIO
Input: Algorithm B for standard delayed bandits, confidence parameter

δ ∈ (0, 1)
Initialize L(s) = ∅ for all s ∈ S
for t = 1, . . . , T do

Get At from B
Observe St = st(At)
for j : j + dj = t do

Receive (j, `j(Sj))
Update L(Sj) = L(Sj) ∪ {(j, `j(Sj))}

Initialize feedback set M = ∅
Compute nt(St)
if |L(St)| ≥ nt(St) then

Add t to M
for j : j + dj = t ∧ |L(Sj)| < nj(Sj) do

Add j to M
for j ∈M do

Compute θ̃t(Sj) from L(Sj) // using δ

Feed (j, Aj, θ̃t(Sj)) to B

The idea of MetaBIO is to reduce the impact of delays using the information we
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get from intermediate observations. More precisely, if we have enough observations
for the current state St at time t, we immediately feed to B the estimate of the mean
loss of this state as if it were the actual loss at time t; otherwise, we wait for dt time
steps and refine our estimate using the additional loss observations.

The are two key steps in the design of our algorithm: how we construct the mean
estimate and when we use it instead of waiting for the actual loss. They are the steps
highlighted in green in Algorithm 7. For all t ∈ [T ] and s ∈ S, we use θ̃t(s) to denote
the mean estimate of θ(s) at round t and nt(s) to denote the number of observations
for state s that we want to observe before using θ̃t(s). We add a subscript t to L(s) in
Algorithm 7 to denote the set of observations we have collected at the end of round
t. Thus, θ̃t(s) uses Nt(s) = |Lt(s)| observations.

Fixed delay setting. When all rounds have delay d, we simply choose nt(s) = d
for all s ∈ S, t ∈ [T ]. In other words, if we have at least d observations for some state,
then we can compensate for the effect of delays and construct a well concentrated
mean estimate around the actual mean. Let θ̂t(s) =

∑
j∈Lt(s)

`j(s)
/
Nt(s). Then our

mean loss estimate is a lower confidence bound for θ(s) defined by

θ̃t(s) = max
{
0, θ̂t(s)−

1

2
εt(s)

}
(5.1)

for εt(s) =
√

2
Nt(s)

ln 4ST
δ

.

Arbitrary delay setting. In the arbitrary delay setting, where we do not have
preliminary knowledge of delays, we can not use the delays to set nt(s). Instead,
at the end of time t, we have access to the number of outstanding observations
σt =

∣∣{j ∈ [t] : j + dj > t}
∣∣, which is different from prior works that consider

outstanding observation at the beginning of the round. Then, for any s ∈ S, we
may set nt(s) = σt. With this choice, incurring zero delay at some round implies
that we received at least half of all the observations we could have received in the
no-delay setting (see Section 5.8.2.4). In Section 5.4 we see that this ensures our
mean estimate is well concentrated around its mean.

Since Algorithm 7 waits for the actual loss at time t only if Nt(St) < σt, then
d̃t = dt 1[Nt(St) < σt] is the actual delay incurred by the algorithm, and Lt+d̃t

(s)
is the set of observations used to compute the estimate of the mean loss at time t.
Because some observations may arrive at the same time, the high-probability analysis
of MetaBIO requires these observations to be ordered. More precisely, we construct
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our mean estimate at time t+ d̃t for the feedback of round t using the set

L′
t(s) =

{
(j, `j(s)) ∈ Lt+d̃t

(s)
∣∣∣ j + d̃j= t+ d̃t ⇒ j<t

}
.

Letting N ′
t(s) = |L′

t(s)|, we define the empirical mean

θ̂t(s) =
∑

j∈L′
t(s)

`j(s)

N ′
t(s)

. (5.2)

Algorithm 8: MetaAdaBIO
Input: Algorithm B for standard delayed bandits, confidence parameter

δ ∈ (0, 1)
Initialize D0 = 0
for t = 1, . . . , T do

Get At from B
for j : j + dj = t do

Receive (j, `j(Sj))
Feed (j, Aj, `j(Sj)) to B

Set σt =
∑t−1

j=1 1[j + dj > t]

Update Dt = Dt−1 + σt

if Dt(3 lnK + ln(6/δ)) > 49ST ln 8ST
δ

then
break

if t < T then
Run MetaBIO(B, δ/2) for the remaining rounds

Then, we set εt(s) =
√

2
N ′

t(s)
ln 4ST

δ
and define the mean loss estimator similarly

to Equation (5.1).
The MetaAdaBIO algorithm. As we said already, the goal of intermediate ob-

servations is to reduce the impact of delays. However, if the number of states is too
large compared to the average delay, then the information we get from intermediate
observations could be misleading. To address this issue, we introduce MetaAdaBIO
(Algorithm 8). Given a horizon T ,1 this algorithm runs B (which is tailored for the
setting without intermediate observations) until the total incurred delay exceeds ST ,

1Note that we may remove the a-priori knowledge of T by using a doubling trick at the cost of
a polylog factor in the regret. See Remark 5.5 for further details.
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and then switches to MetaBIO. We precise that MetaAdaBIO computes Dt as the sum
of outstanding observation counts up to round t, which is then used in the switching
condition.

5.4 Regret Analysis
We analyze MetaBIO and MetaAdaBIO in the setting of adversarial action-state map-
pings and stochastic losses where the regret is defined by RT =

∑T
t=1 θ(St) −

mina∈A
∑T

t=1 θ(st(a)). Our analysis guarantees a bound on RT that holds with
high probability (and not just in expectation). A related notion of regret is
RT =

∑T
t=1 `t(St)−mina∈A

∑T
t=1 `t(st(a)) which considers the realized losses instead

of their means. The two quantities are close with high probability: each inequality

−
√

2T ln(2K/δ) ≤ RT −RT ≤
√

2T ln(2/δ) (5.3)

individually holds with probability at least 1 − δ for any given δ ∈ (0, 1) (see
Lemma 5.2).

Let DT =
∑T

t=1 dt be the total delay. We start by showing an upper bound on the
total actual delay D̃T =

∑T
t=1 dt1[Nt(St) < σt] ≤ DT incurred by MetaBIO. Then, we

provide a high-probability regret analysis of both MetaBIO and MetaAdaBIO.
More precisely, we can show that MetaBIO incurs the delays of no more than

min{2Sσmax, T} rounds, where σmax = maxt∈[T ] σt. In the worst case, these rounds
correspond with those from the set

Φ ∈ argmax
J⊆[T ]

{
DJ : |J | = min{2Sσmax, T}

}
. (5.4)

where we denote DJ =
∑

t∈J dt for any J ⊆ [T ]. Note that the set Φ is fully
determined by the delay sequence d1, . . . , dT . Moreover, the total delay incurred by
MetaBIO cannot be worse than the sum of delays corresponding to the rounds in Φ,
as stated in the lemma below.

Lemma 5.1 (Total actual delay). If MetaBIO is run with any algorithm B on delays
(dt)t∈[T ], then D̃T ≤ DΦ.

Lemma 5.1 (proof in Section 5.8.2.1) implies that, if all delays are bounded by
dmax, then D̃T ≤ 2Sσmaxdmax, which does not depend on T . In the fixed-delay setting
with delay d, for example, we get a total effective delay of at most 2Sd2, rather than
the total delay dT we would incur without access to intermediate observations (when
T is large enough).
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We now turn MetaBIO into a concrete algorithm by instantiating B. Specifically,
we use DAda-Exp3 (Gyorgy and Joulani, 2021), a variant of Exp3 which does not
use intermediate observations and is robust to delays. DAda-Exp3 has the following
regret bound.

Theorem 5.1 (Gyorgy and Joulani (2021, Corollary 4.2)). For any δ ∈ (0, 1), the
regret with respect to realized losses of DAda-Exp3 in the adversarial bandits with
arbitrary delays with probability at least 1− δ satisfies

RT ≤ 2
√

3(2KT +DT ) lnK +

(√
2KT +DT

3 lnK
+

σmax

2
+ 1

)
ln 2

δ
.

While Theorem 5.1 shows a high-probability bound on RT , Equation (5.3) shows
that a high-probability bound for one notion of regret ensures a high-probability
bound for the other. Although the original bound by Gyorgy and Joulani (2021)
was stated with dmax instead of σmax, we can replace the former with the latter by
observing that, in the analysis of Gyorgy and Joulani (2021, Theorem 4.1), they only
use dmax to upper bound the number of outstanding observations. Note that σmax is
never larger than dmax, indicating it is a well-behaved term that is not vulnerable to
a few large delays. See Masoudian et al. (2022, Lemma 3) for a refined quantification
of the relation between σmax and dmax.

If we consider a fixed confidence level δ ∈ (0, 1), then we can make the learning
rate ηt and the implicit exploration term γt in DAda-Exp3 depend on the specific
value of δ so as to achieve an improved regret bound (see Appendix 5.8.2.2). This
allows us to show that in the BIO setting with adversarial action-state mappings and
stochastic losses, the regret RT of DAda-Exp3 is upper bounded by

2
√

2KTCK,6δ + 2
√

DTCK,6δ +
σmax + 2

2
ln 2

δ
(5.5)

with probability at least 1− δ, where CK,δ = 3 lnK + ln 12
δ

.
Next, we state the regret bound for MetaBIO. We remark that we initialize DAda-

Exp3 with confidence parameter δ/2 so as to guarantee the high-probability bound
as in (5.5) with probability at least 1− δ/2 as required.

Theorem 5.2. Let δ ∈ (0, 1). If we run MetaBIO using DAda-Exp3, then the regret
of MetaBIO in the BIO setting with adversarial action-state mappings and stochastic
losses with probability at least 1− δ satisfies

RT ≤ 2
√

2KTCK,3δ + 7

√
ST ln 4ST

δ
+ 2
√
DΦCK,3δ +

σmax + 2

2
ln 4

δ
. (5.6)
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We begin the analysis of Theorem 5.2 by decomposing the regret into two parts:
(i) the regret RT of DAda-Exp3 with losses θ̃t(St), and (ii) the gap RT − RT , cor-
responding to the cumulative error of the estimates fed to DAda-Exp3. For the first
part, we follow an approach similar to Gyorgy and Joulani (2021) and apply Neu
(2015, Lemma 1) to obtain a concentration bound for the loss estimates defined us-
ing importance weighting along with implicit exploration. When using the actual
losses, the application of Neu (2015, Lemma 1) is straightforward. However, when
the mean loss estimate θ̃t(St) is used rather than the actual loss, there is a potential
dependency between the chosen action At and θ̃t(St). In Section 5.8.2.3 we carefully
design a filtration to show that we may indeed use the high-probability regret bound
of DAda-Exp3 in order to upper bound the first part (regret RT defined in terms of
the estimates θ̃t).

The second part requires to bound the cumulative error of our estimator in (5.2)
for the observed states {St}t∈[T ]. To this end, we use the Azuma-Hoeffding inequality
to control the error of these estimates. Doing so causes a Õ(

√
ST ) term to appear

in the regret bound. The detailed proof of this part is in Section 5.8.2.4, together
with the proof of Theorem 5.2.

The presence of the Õ(
√
ST ) term in the regret bound implies that, when S �

max{DT/T,K}, using intermediate feedback leads to no advantage over ignoring
it. So we ideally want to recover the original bound in (5.5) when this happens.
MetaAdaBIO solves this issue and gives the following regret guarantee. The proof of
this result is deferred to Section 5.8.2.5. We remark that, to achieve this bound,
before the eventual switch we use algorithm DAda-Exp3 with confidence parameter
set to δ/3 so as to guarantee a high-probability bound on Rt∗ with probability at
least 1− δ/2 over the first t∗ rounds that DAda-Exp3 runs by itself.

Theorem 5.3. Let δ ∈ (0, 1). If we run MetaAdaBIO with DAda-Exp3, then the
regret of MetaAdaBIO in the BIO setting with adversarial action-state mappings and
stochastic losses with probability at least 1− δ satisfies

RT ≤ 3min

{
7

√
ST ln 8ST

δ
,
√
DTCK,2δ

}
+6
√

KTCK,2δ+2
√
DΦCK,2δ+(σmax+2) ln 8

δ
.

(5.7)

If we consider any upper bound dmax on the delays (dt)t∈[T ], we can further observe
that the regret RT of MetaAdaBIO (with DAda-Exp3) satisfies

RT = Õ
(√

KT + min
{√

S
(√

T + dmax
)
,
√
dmaxT

})
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with high probability. This also follows from the fact that, as previously mentioned,
we can bound the total delay of MetaBIO by DΦ ≤ 2Sd2max.

Given the previous regret bounds, we observe that we may further improve the
dependency on the delays by adopting the idea of skipping rounds with large delays
when computing the learning rates. This “skipping” idea was introduced by Thune
et al. (2019) and has been leveraged by Gyorgy and Joulani (2021) to show that
DAda-Exp3 can achieve a refined high-probability regret bound—see Gyorgy and
Joulani (2021, Theorem 5.1). As a consequence, we can indeed provide an improved
bound in our setting by following similar steps as in the proof of Theorem 5.2. The
only main change is the adoption of the version of DAda-Exp3 that uses the skipping
procedure.

Corollary 5.1. Let δ ∈ (0, 1). If we run MetaBIO with DAda-Exp3 with skipping
(Gyorgy and Joulani, 2021, Theorem 5.1), then the regret of MetaBIO in the BIO
setting with adversarial action-state mappings and stochastic losses with probability
at least 1− δ satisfies

RT = O

(√
KTCK,δ+

√
ST ln ST

δ
+ln 1

δ
+
√
CK,δ lnK min

R⊆Φ

{
|R|+

√
DΦ\R lnK

})
.

This result could also be extended in a similar way to MetaAdaBIO, so as to
achieve the best result from the presence of intermediate feedback.

So far, we have provided some high-probability guarantees for the regret of both
MetaBIO and MetaAdaBIO, by which we can derive some expectation bounds as well
(e.g., by setting δ ≈ 1/T ). However, using the empirical mean estimators θ̂t as
the mean loss estimators at time t and working directly with the expected regret
allows us to improve the achievable bound by a polylogarithmic factor. Hence, for
the expected regret we use Tsallis-INF (Zimmert and Seldin, 2020), a learning
algorithm for the standard delayed bandit problem that uses a hybrid regularizer to
deal with delays and gives a minimax-optimal expected regret bound. The proof of
this expected regret upper bound is in Appendix 5.8.2.6.

Proposition 5.4. If we execute MetaAdaBIO with Tsallis-INF (Zimmert and
Seldin, 2020), and use the switching condition

√
8Dt lnK > 6

√
ST ln(2ST ) at each

round t ∈ [T ], where Dt =
∑t

j=1 σj, then the regret of MetaAdaBIO in the BIO setting
with adversarial action-state mappings and stochastic losses satisfies

E[RT ] ≤ 4
√
2KT +

√
8DΦ lnK + 2min

{
6
√

ST ln(2ST ),
√

8DT lnK
}

.
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Remark 5.5. In MetaBIO, we can replace T by t2 in the definition of the confidence
intervals for (5.2) and remove the need for prior knowledge of the time horizon T .
In MetaAdaBIO, we could use a doubling trick to avoid the prior knowledge of T in
the switching condition. On the other hand, it is not required to know the number
of states S for expectation bounds on the regret of MetaBIO. However, removing the
prior knowledge of S in the high-probability regret bounds is challenging. Indeed,
to the best of our knowledge, there is no result in BIO that avoids prior knowledge
on the number of states. Lifting this requirement in the high-probability analysis is
thus an interesting question for future work.

5.5 Lower Bounds
The lower bounds in this section are for the expected regret E[RT ]. Since our al-
gorithms provide high-probability guarantees, the upper bounds also apply to the
expected regret. Throughout this section we will make use of constant delay i.e.
dt = d for all t ∈ [T ]. We will first prove a general

√
KT lower bound for all

algorithms in BIO, after which we specialize to particular cases.
We start by proving a Ω

(√
KT

)
lower bound for any algorithm in our setting

and for any combination of stochastic or adversarial action-state mappings and loss
vectors. The construction is a reduction to the standard bandits lower bound con-
struction (see Section 5.8.3 for a complete proof).
Theorem 5.6. Irrespective to whether the action-state mappings and loss vectors
are stochastic or adversarial, there exists a sequence of losses such that any (possibly
randomized) algorithm in BIO suffers regret E[RT ] = Ω

(√
KT

)
.

Adversarial action-state mapping and stochastic losses. We first prove a
lower bound

√
ST for any number K ≥ 2 of actions. However, we do need a minor

generalization of our setting to allow correlation between unseen losses. Specifically,
we allow all pairs of losses `j(s), `j′(s

′) of distinct states s 6= s′ to be correlated if
j > j′ and j−j′ ≤ d, while we guarantee the i.i.d. nature of losses for any fixed state.
Since E[`t(St)] = E[θ(St)], this does not affect the analysis for the upper bound on
the regret of our algorithms since E[RT ] ≤ E[RT ] (see Lemma 5.4). However, for a
high-probability upper bound, we need to relate RT and RT , which now leads to an
additive Õ(

√
ST ) term rather than an additive Õ(

√
T ) term as in Equation (5.3).

In the proof of the
√
ST lower bound, we leverage the fact that losses are inde-

pendent only across time steps for a fixed state, while they may depend on the losses
of the other states. Note that our lower bound holds even when the learner knows
the action-state assignments beforehand.
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Theorem 5.7. Suppose that the action-state mapping is adversarial and the losses
are stochastic and that dt = d for all t ∈ [T ]. If T ≥ min{S, d} then there exists a
distribution of losses and a sequence of action-state mappings such that any (possibly
randomized) algorithm suffers regret E[RT ] = Ω

(√
min{S, d}T

)
.

We provide a sketch of the proof of Theorem 5.7 (see Appendix 5.8.3 for the full
proof). First, suppose that S ≤ 2d. For the construction of the lower bound we only
consider two actions and equally split the states over these two actions. Then, we
divide the T time steps in blocks of length S/2 ≤ d. In each block, each state has the
same loss. Since the block length is smaller then the delay, we have effectively created
a two-armed bandit problem with T ′ = T/(S/2) rounds and loss range [0, S/2], for
which we can prove a Ω

(
S
√
T ′
)
= Ω

(√
ST
)

lower bound by showing an equivalent
lower bound for the full information setting. If S > 2d, we use the same construction
with only 2d states, and obtain a Ω

(√
dT
)

lower bound.
Finally, we can show the following lower bound, whose proof can be found in

Section 5.8.3.

Theorem 5.8. Suppose that the action-state mapping is adversarial, the losses are
stochastic, and that dt = d for all t ∈ [T ]. If T ≥ d+1 then there exists a distribution
of losses and a sequence of action-state mappings such that any (possibly randomized)
algorithm suffers regret E[RT ] = Ω

(
min

{
(d+ 1)

√
S,
√

(d+ 1)T
})

.

This term is also present in the dynamic regret bound of NSD-UCRL2, but it is
necessarily incurred from their analysis even in the stationary case (Vernade et al.,
2020, Theorem 1).

This last lower bound implies that the regret of our algorithm is near-optimal.
Since the lower bound of Theorem 5.6 applies to the case where the action-state
mapping is adversarial and the losses are stochastic, we find the following result as
a corollary of Theorem 5.6, Theorem 5.7, and Theorem 5.8.

Corollary 5.2. Suppose that the action-state mapping is adversarial, the losses are
stochastic, and that dt = d for all t ∈ [T ]. If T ≥ 1 + min{S, d}, then there exists a
distribution of losses and a sequence of action-state mappings such that any (possi-
bly randomized) algorithm suffers regret E[RT ] = Ω

(
max

{√
KT,

√
min{S, d}T , (d+

1)
√
S
})

.

Stochastic action-state mappings and adversarial losses. In this case we
recover the standard lower bound for adversarial bandits with bounded delay. The
full proof of this result can be found in Section 5.8.3.
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Theorem 5.9. Suppose that the action-state mapping is stochastic, the losses are
adversarial, and that dt = d for all t ∈ [T ]. Then there exists a stochastic action-
state mapping and a sequence of losses such that any (possibly randomized) algorithm
suffers regret E[RT ] = Ω

(
max

{√
KT,

√
dT
})

.

Adversarial action-state mappings, adversarial losses. Since we can re-
cover the construction of the lower bound in Theorem 5.9, we have the following
result.

Corollary 5.3. Suppose that the action-state mapping is adversarial, the losses are
adversarial, and that dt = d for all t ∈ [T ]. Then there exists an action-state mapping
and a sequence of losses such that any (possibly randomized) algorithm suffers regret
E[RT ] = Ω

(
max

{√
KT,

√
dT
})

.

5.6 Experiments
We empirically compare our algorithm MetaBIO with the following baselines: DAda-
Exp3 (Gyorgy and Joulani, 2021) for adversarial delayed bandits without intermedi-
ate observations (which we used to instantiate the algorithm B), the standard UCB1
algorithm (Auer et al., 2002a) for stochastic bandits without delays and intermedi-
ate observations, and NSD-UCRL2 (Vernade et al., 2020) for nonstationary stochastic
action-state mappings and stochastic losses. We run all experiments with a time
horizon of T = 104. All our plots show the cumulative regret of the algorithms con-
sidered as a function of time. The performance of each algorithm is averaged over
20 independent runs in every experiment, and the shaded areas consider a range
centered around the mean with half-width corresponding to the empirical standard
deviation of these 20 repetitions. In the first two experiments, we consider both fixed
delays d ∈ {50, 100, 200} and random delays dt ∼ Laplace(50, 25) sampled i.i.d. from
the Laplace distribution with E[dt] = 50.

Experiment 1: stochastic action-state mappings. Here we use a stationary
version of the experiments in (Vernade et al., 2020)—see Table 5.1 in Section 5.8.4
for details. We set K = 4 and S = 3, while we repeat this experiment for the pre-
viously mentioned values of delays. Figure 5.1 shows that, across all delay regimes,
MetaBIO largely improves on the performance of DAda-Exp3 by exploiting interme-
diate observations.

Experiment 2: adversarial action-state mappings. In this construction,
we simulate the adversarial mapping using a construction adapted from (Zimmert
and Seldin, 2021): we alternate between two stochastic mappings while keeping the
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loss means fixed. We set K = 4, S = 3, and we consider multiple instances for the
different values of delays as in the previous experiment. The interval between two
consecutive changes in the distribution of action-state mappings grows exponentially.
See Table 5.2 in Section 5.8.4 for details. Figure 5.2 shows that MetaBIO and MetaBIO
with “skipping” outperform both UCB1 and NSD-UCRL2.
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Figure 5.1: Cumulative regret over time for the stochastic action-state mapping when
delays are fixed or random.
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Figure 5.2: Cumulative regret over time for the adversarial action-state mapping
when delays are fixed or random. All algorithms have small variance except for UCB1
and NSD-UCRL2.

Experiment 3: utility of intermediate observations. Here we set K = 8,
d = 100, and investigate how the performance of MetaBIO changes when the number
S of states varies in {4, 6, 8, 10, 12}. The mean loss is always 0.2 for the optimal
state and 1 for the others. The optimal action always maps to the optimal state.
The suboptimal actions map to the optimal state with probability 0.6 and map to a
random suboptimal state with probability 0.4. This implies that the expected loss
of each arm remains constant when the number of states changes. Figure 5.3 shows
that the regret gap between MetaBIO and DAda-Exp3 shrinks as the number of states
increases. This observation confirms our theoretical findings about the dependency
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of the regret on the number of states, which lead to a larger improvement the fewer
they are.

Experiment 4: performance of MetaAdaBIO when S < d. We use the
same setting as in Experiment 1 with delay d = 20.2 The first plot of Figure 5.4
shows the performance of MetaAdaBIO compared with both DAda-Exp3 and MetaBIO.
Before the switching point, MetaAdaBIO runs DAda-Exp3 (up to independent internal
randomization). Afterwards, MetaAdaBIO switches to MetaBIO (which in turn runs
DAda-Exp3 as a subroutine) and quickly aligns with its performance. Note that, at
the switching time, MetaAdaBIO uses (via MetaBIO) the same instance of DAda-Exp3
that was already running, rather than starting a new instance. It can be shown that
our analysis of MetaAdaBIO applies to this variant as well without changes in the
order of the bound.

Experiment 5: performance of MetaAdaBIO when S > d. We use a setting
that is almost identical to that of Experiment 3 (Section 5.6), except we set d = 4
and S = 14. The performance of the three algorithms is shown in the second plot
of Figure 5.4. We can observe that MetaAdaBIO does not switch to MetaBIO and its
performance is thus the same as that of DAda-Exp3, whereas MetaBIO incurs a larger
regret.
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Figure 5.3: Cumulative re-
gret over time of DAda-
Exp3 and MetaBIO with dif-
ferent numbers of states
S ∈ {4, 6, 8, 10, 12}.
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Figure 5.4: Cumulative regret over time of DAda-
Exp3, MetaBIO and MetaAdaBIO when S < d (left)
and S > d (right). The vertical line is the switching
point of MetaAdaBIO.

2Compared to the switching condition used for the analysis of MetaAdaBIO, we replace
49ST ln 8ST

δ with ST . This change allows the switching condition to be triggered more easily
to provide a better visualization of the behaviour of MetaAdaBIO, while it only introduces a polylog
factor in its regret bound.
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5.7 Future Work
The work of Vernade et al. (2020) also considers a non-stationary action-state map-
ping and derive regret bounds for the switching regret. Preliminary results suggest
that, as long as there is an algorithm that can provide bounds on the switching regret
with delayed feedback, our ideas also transfer to this setting. Unfortunately, there is
currently no algorithm that can provide bounds on the switching regret with delayed
feedback and we leave this as a promising direction for future work.

5.8 Appendix

5.8.1 Auxiliary Results
Lemma 5.2. Consider any algorithm that picks actions (At)t∈[T ] in the adversarial
delayed bandits problem with intermediate feedback with arbitrary action-state map-
pings (st)t∈[T ] and i.i.d. loss vectors (`t)t∈[T ]. Then, for any given δ ∈ (0, 1),

RT −RT ≤
√

2T ln(2/δ) and RT −RT ≤
√
2T ln(2K/δ)

individually hold with probability at least 1− δ.

Proof. First, observe that we can relate the two notions of regret as

RT = RT +
T∑
t=1

(
θ(St)− `t(St)

)
+ min

a∈A

T∑
t=1

`t(st(a))−min
a∈A

T∑
t=1

θ(st(a))︸ ︷︷ ︸
(4)

.

By Azuma-Hoeffding inequality, we can show that each side of

−

√
T

2
ln
(
1

δ′

)
≤

T∑
t=1

(
θ(St)− `t(St)

)
≤

√
T

2
ln
(
1

δ′

)
(5.8)

holds with probability at least 1− δ′. Now, define

a∗` ∈ argmin
a∈A

T∑
t=1

`t(st(a)) and a∗θ ∈ argmin
a∈A

T∑
t=1

θ(st(a)) .
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On the one hand, observe that

(4) ≤
T∑
t=1

`t(st(a
∗
θ))−

T∑
t=1

θ(st(a
∗
θ)) ≤

√
T

2
ln
(
1

δ′

)
,

where the last inequality holds with probability at least 1− δ′ by Azuma-Hoeffding
inequality. On the other hand, we can show that

(4) ≥
T∑
t=1

`t(st(a
∗
`))−

T∑
t=1

θ(st(a
∗
`)) =: (�) .

However, in this case a∗` depends on the entire sequence `1, . . . , `T . We thus need to
use a union bound in order to show that

P

(
(�) ≤ −

√
T

2
ln
(
K

δ′

))
≤
∑
a∈A

P

(
T∑
t=1

`t(st(a))−
T∑
t=1

θ(st(a)) ≤ −

√
T

2
ln
(
K

δ′

))
≤ δ′ ,

where the last inequality follows by Azuma-Hoeffding inequality. We conclude the
proof by setting δ′ = δ/2.

Lemma 5.3. The estimates (θ̂t)
T
t=1 defined in Equation (5.2) are such that |θ̂t(s)−

θ(s)| ≤ 1
2
εt(s) simultaneously holds for all t ∈ [T ] and all s ∈ S with probability at

least 1− δ/2.

Proof. In a similar way as in Vernade et al. (2020), define Xm(s) to be the empirical
mean estimate for θ(s) which uses the first m ∈ [T ] observed losses corresponding to
state s ∈ S. Notice that θ̂t(s) = XN ′

t(s)
(s), while we define ε′m(s) =

√
2
m

ln(4ST
δ
) so

that εt(s) = ε′N ′
t(s)

(s). We can additionally observe that E[Xm(s)] = θ(s). Then, we
can use Azuma-Hoeffding inequality to show that

P

⋂
s∈S

⋂
t∈[T ]

{
|θ̂t(s)− θ(s)| ≤ 1

2
εt(s)

} ≥ P

⋂
s∈S

⋂
m∈[T ]

{
|Xm(s)− θ(s)| ≤ 1

2
ε′m(s)

}
≥ 1− 2

∑
s∈S

T∑
m=1

e−
1
2
ε′m(s)2m

= 1− δ

2
,

where we also used a union bound in the second inequality.
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Lemma 5.4. Consider any algorithm that picks actions (At)t∈[T ] in the BIO setting
with adversarial action-state mappings (st)t∈[T ] and stochastic loss vectors (`t)t∈[T ].
Assume that the losses for any fixed state are i.i.d., whereas pairs of losses `j(s), `j′(s′)
of distinct states s 6= s′ might be correlated when j > j′ and j − j′ ≤ dj′. Then, it
holds that E[RT ] ≤ E[RT ], where the expectation is with respect to the stochasticity
of the losses and the randomness of the algorithm.

Proof. We know that E[`t(st(a))] = θ(st(a)) for any fixed a ∈ A and all t ∈ [T ]. We
further observe that

E[`t(St)] = E
[
E[`t(st(At)) | At]

]
= E[θ(St)]

holds for all t ∈ [T ], as At is independent of losses that can be correlated with `t.
Now, define

a∗` ∈ argmin
a∈A

T∑
t=1

`t(st(a)) and a∗θ ∈ argmin
a∈A

T∑
t=1

θ(st(a)) .

Then, we conclude the proof by showing that

E[RT ] =
T∑
t=1

E[`t(St)]− E

[
T∑
t=1

`t(st(a
∗
`))

]

≥
T∑
t=1

E[`t(St)]− E

[
T∑
t=1

`t(st(a
∗
θ))

]
=

T∑
t=1

E[θ(St)]−
T∑
t=1

θ(st(a
∗
θ)) = E[RT ] .

5.8.2 High-Probability Regret Bound
5.8.2.1 Total delay bound

Lemma 5.1 (Total actual delay). If MetaBIO is run with any algorithm B on delays
(dt)t∈[T ], then D̃T ≤ DΦ.

Proof of Lemma 5.1. For any s ∈ S, we define Ts = {t ∈ [T ] : St = s} to be the set
of all rounds when the state observed by the learner corresponds to s. Denote by
ts the last time step t ∈ Ts such that Nt(s) < σt and let Cs = {t ∈ Ts : t ≤ ts} be
those rounds in Ts that come no later than ts. According to the choice of ts, all the
rounds in Ts for which learner waits for the respective delayed loss, must belong to
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Cs, while the learner incurs d̃t = 0 delay for rounds t ∈ Ts \ Cs. Now we partition Cs
into two sets: the observed set Cobs

s = {t ∈ Cs : t + dt ≤ ts} and the outstanding set
Cout
s = {t ∈ Cs : t + dt > ts}. From the choice of ts, we can see that the number of

rounds in Cobs
s is

|Cobs
s | ≤ Nts(s) < σts ≤ σmax ,

and the number of rounds in Cout
s is
|Cout

s | ≤ σts ≤ σmax .

Therefore, we have |Cs| ≤ 2σmax. So if we define Call =
⋃

s∈S Cs, then |Call| ≤
min{2Sσmax, T} = |Φ|. This also implies that

T∑
t=1

d̃t ≤
∑
t∈Call

dt ≤
∑
t∈Φ

dt

by definition of Φ.

5.8.2.2 Improved Regret for DAda-Exp3 for Fixed δ

We follow the analysis of Theorem 4.1 in Gyorgy and Joulani (2021, Appendix A) and
our goal is to use the knowledge of δ ∈ (0, 1) to tune the learning rates (ηt)t∈[T ] and
the implicit exploration terms (γt)t∈[T ], accordingly. Let d1, . . . , dT be the sequence of
delays perceived by DAda-Exp3, and let DT =

∑T
t=1 dt be its total delay. Furthermore,

let σt be the number of outstanding observations of DAda-Exp3 at the beginning of
round t ∈ [T ]. Suppose that we take γt = cηt with c > 0 for all t ∈ [T ], then
following the same analysis as in Gyorgy and Joulani (2021, Appendix A), we end
up with the following regret bound that holds with probability at least 1 − 2δ′ for
any δ′ ∈ (0, 1/2):

RT ≤
ln(K)

ηT
+

T∑
t=1

ηt(σt + (c+ 1)K) +
ln(K/δ′)

2cηT
+

σmax + c+ 1

2c
ln(1/δ′)

=
1

ηT

(
ln(K) +

ln(K/δ′)

2c

)
+

T∑
t=1

ηt(σt−1 + (c+ 1)K) +
σmax + 1

2c
ln(1/δ′) + ln(1/δ′)

2
.

Therefore, by taking η−1
t =

√
(c+1)Kt+

∑t
j=1 σj

2 ln(K)+ 1
c

ln(K/δ′)
, we get the following bound with

probability at least 1− 2δ′:

RT ≤ 2

√√√√((c+ 1)KT +
T∑
t=1

σt

)(
2 ln(K) +

ln(K/δ′)

c

)
+
σmax + 1

2c
ln(1/δ′)+ ln(1/δ′)

2
.
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We know that
∑T

t=1 σt = DT by definition of σt. Then, we can set c = 1 to obtain
that the regret RT (as per the original notion of regret used in Gyorgy and Joulani
(2021)) is

RT ≤ 2
√
2KT (3 ln(K) + ln(1/δ′)) + 2

√
DT (3 ln(K) + ln(1/δ′)) + σmax + 2

2
ln(1/δ′)

(5.9)
with probability at least 1− 2δ′.

From Lemma 5.2, we have that

RT ≤ RT +
√
2T ln(2/δ′) (5.10)

holds with probability at least 1− δ′. So, combining Equations (5.9) and (5.10), and
setting δ = 3δ′, we can upper bound our notion of regret RT as

RT ≤ 2

√
2KT

(
3 lnK + ln 3

δ

)
+

√
2T ln 6

δ
+ 2

√
DT

(
3 lnK + ln 3

δ

)
+

σmax + 2

2
ln 3

δ

(5.11)

with probability at least 1− δ.

5.8.2.3 Reduction to DAda-Exp3 via MetaBIO

Based on the reduction via MetaBIO, we require that B guarantee a regret bound

R̂B
T =

T∑
t=1

θ̃t(St)−min
a∈A

T∑
t=1

θ̃t(st(a)) (5.12)

that holds with high probability when the losses experienced by B are of the form
θ̃t
(
st(a)

)
. Note that, even though the action-state mappings s1, . . . , sT are unknown

to the learner, we can provide those losses as long as B requires bandit feedback only.
Indeed, we can compute θ̃t(St) defined in Equations (5.1) and (5.2), while we cannot
determine st(a) for all actions a ∈ A that are not At. As mentioned in Section 5.4,
in this work we consider DAda-Exp3 (Gyorgy and Joulani, 2021) as algorithm B used
by MetaBIO. In what follows, we refer to this specific choice for the algorithm B.

The analysis of DAda-Exp3 for the high-probability bound (Theorem 5.1) is such
that most steps only require that the loss of each action is bounded in [0, 1]. Then,
those steps apply for any such sequence of loss vectors. However, the crucial part of
that analysis that requires attention is the application of Lemma 1 from Neu (2015).
We restate it below for reference.
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Before that, we introduce the notation required for stating the result. We consider
a learner choosing actions A1, . . . , AT according to probability distributions p1, . . . , pT
over actions. We denote by Ft−1 the observation history of the learner until the
beginning of round t. The result uses importance-weighted estimates for the losses
`1, . . . , `T with implicit exploration, where the implicit exploration parameter is γt ≥
0 for each time t. These loss estimates are defined as

˜̀
t(a) =

1[At = a]

pt(a) + γt
`t(a) ∀t ∈ [T ],∀a ∈ A . (5.13)

Lemma 5.5 (Neu (2015, Lemma 1)). Let γt and αt(a) be nonnegative Ft−1-
measurable random variables such that αt(a) ≤ 2γt, for all t ∈ [T ] and all a ∈ A.
Let ˜̀

t(a) be as in (5.13). Then,
T∑
t=1

K∑
a=1

αt(a)
(
˜̀
t(a)− `t(a)

)
≤ ln(1/δ)

holds with probability at least 1− δ for any δ ∈ (0, 1).

In our case, we require an analogous result that work when loss vectors correspond
with our estimates θ̃1, . . . , θ̃T . However, these estimate have a dependency with the
past actions chosen by the learner. This requires some nontrivial changes in the
proof of Neu (2015, Lemma 1).

Before that, we introduce some crucial definitions for this proof. Let ρ(t) = t+dt
be the arrival time for the realized loss `t(St) of the state St observed at time t ∈ [T ].
Let ρ̃(t) = t+ d̃t be instead the arrival time perceived by algorithm B relative to its
choice of At at time t, i.e., when B receives θ̃t(St). This also means that θ̃t(St) is
only defined at time ρ̃(t) ≤ ρ(t).

Let π : [T ]→ [T ] be the permutation of [T ] that orders rounds according to their
value of ρ̃. In other words, π satisfies the following property:

π(r) < π(t) ⇐⇒ ρ̃(r) < ρ̃(t) ∨ (ρ̃(r) = ρ̃(t) ∧ r < t) ∀r, t ∈ [T ] . (5.14)

This permutation allows us to sort rounds according to the order in which MetaBIO
feeds B with a respective estimate for the mean loss. In particular, the r-th round
in this order corresponds with the round tr = π−1(r), for any r ∈ [T ]. Hence, we can
equivalently define the round tr as the round such that its estimate θ̃tr(Str) for the
mean loss θ(Str) is the r-th estimate received by B.

Define

Fr = {(j, Aj, Sj, `j(Sj)) | j ∈ [T ], π(j) ≤ r} ∀r ∈ [T ] (5.15)
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as the information observed by B by the end to the time step when we feed it the
estimate relative to round tr. Note that this defines a filtration, as Fr−1 ⊆ Fr for all
r ∈ [T ], which has some desirable properties thanks to the ordering π we consider.
In particular, we have that d̃tr , εtr , ptr , N ′

tr are Fr−1-measurable random variables by
the way we define them. This property is also due to the fact that Ntr and L′

tr

are determined when conditioning on Fr−1. Moreover, we are now interested in the
following importance-weighted loss estimates with implicit exploration:

˜̀
t(a) =

1[At = a]

pt(a) + γt
θ̃t(st(a)) ∀t ∈ [T ],∀a ∈ A . (5.16)

Corollary 5.4. Let γtr and αtr(a) be non-negative Fr−1-measurable random variables
such that αtr(a) ≤ 2γtr , for all r ∈ [T ] and all a ∈ A. Let ˜̀

t(a) be as in (5.16).
Then,

T∑
t=1

K∑
a=1

αt(a)
(
˜̀
t(a)− θ̃t(st(a))

)
≤ ln(1/δ)

holds with probability at least 1− δ for any δ ∈ (0, 1).

Proof. We follow the proof of Neu (2015, Lemma 1) by considering any realization
`1, . . . , `T of the losses. The main difference is that, when defining the supermartin-
gale as in the original proof, we need to consider the terms of the sum in the order
denoted by π instead of the increasing order of t. For this reason, we rewrite the
sum from the statement by following the order given by π:

T∑
r=1

K∑
a=1

αtr(a)
(
˜̀
tr(a)− θ̃tr(str(a))

)
.

At this point, we need prove that E
[
˜̀
tr(a)

∣∣Fr−1

]
≤ θ̃tr(str(a)), where we recall

that tr = π−1(r). Also recall that εtr , ptr and γtr are Fr−1-measurable. This property
allows us to prove the inequality with the conditional expectation of θ̂t instead of
the one with the actual optimistic estimates θ̃t, by the definition of the latter. In
other words, we now need to prove that E

[
ˆ̀
tr(a)

∣∣Fr−1

]
≤ θ̂tr(str(a)), where ˆ̀

t(a) =
1[At=a]
pt(a)+γt

θ̂t(st(a)).
We can consider two cases depending on whether d̃tr < dtr is true or not (and,

thus, we are in the case d̃tr = dtr). In the first case, note that the realized losses used
for computing θ̂tr(str(a)) correspond to time steps in L′

tr(str(a)), for which there is a
corresponding tuple in Fr−1. Therefore, we have that θ̂tr(str(a)) is Fr−1-measurable,
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and we can show that

E
[
ˆ̀
tr(a)1[d̃tr < dtr ]

∣∣∣ Fr−1

]
= E

[
1[Atr = a]

ptr(a) + γtr

∣∣∣∣ Fr−1

]
1[d̃tr < dtr ]

N ′
tr(str(a))

∑
j∈L′

tr
(str (a))

`j(str(a)) .

In the second case, we have that d̃tr = dtr , which implies that tr ∈ L′
tr(str(a)) in

the case Atr = a. This means that we have a corresponding tuple in Fr−1 only for
rounds in L′

tr(str(a)) \ {tr}. Nonetheless, this does not pose an issue since we have
the indicator 1[Atr = a], and thus Str = st(a). Indeed, we have that

E
[
ˆ̀
tr(a)1[d̃tr = dtr ]

∣∣∣ Fr−1

]
= E

 1[Atr = a]

ptr(a) + γtr
· 1[d̃tr = dtr ]

N ′
tr(str(a))

∑
j∈L′

tr
(str (a))

`j(str(a))

∣∣∣∣∣∣ Fr−1


= E

[
1[Atr = a]

ptr(a) + γtr

∣∣∣∣ Fr−1

]
1[d̃tr = dtr ]

N ′
tr(str(a))

∑
j∈L′

tr
(str (a))

j 6=tr

`j(str(a))

+ E
[
1[Atr = a]

ptr(a) + γtr

∣∣∣∣ Fr−1

]
1[d̃tr = dtr ]

N ′
tr(str(a))

`tr(str(a))

= E
[
1[Atr = a]

ptr(a) + γtr

∣∣∣∣ Fr−1

]
1[d̃tr = dtr ]

N ′
tr(str(a))

∑
j∈L′

tr
(str (a))

`j(str(a))

and therefore the inequality

E
[
ˆ̀
tr(a)

∣∣∣ Fr−1

]
= E

[
1[Atr = a]

ptr(a) + γtr

∣∣∣∣ Fr−1

]
θ̂tr(str(a)) ≤ θ̂tr(str(a))

is true because 1[d̃t < dt] + 1[d̃t = dt] = 1 for all t ∈ [T ], and by definition of θ̂t.
As already mentioned, this is equivalent to proving that E

[
˜̀
tr(a)

∣∣Fr−1

]
≤

θ̃tr(str(a)) holds. By using a notation similar to the original proof, if we define
λ̃r =

∑K
a=1 αtr(a)˜̀tr(a) and λr =

∑K
a=1 αtr(a)θ̃tr(str(a)), the process (Zr)r∈[T ] with

Zr = exp(
∑r

j=1(λ̃j − λj)) is a supermartingale with respect to (Fr)r∈[T ] which has
the same properties as in the proof of Neu (2015, Lemma 1). This concludes the
current proof by following a similar reasoning as in the original one.

Thanks to this result, we can conclude that the adoption of DAda-Exp3 for the
reduction via MetaBIO can guarantee a high-probability regret bound on R̂B

T as stated
in Theorem 5.1, but with total delay D̃T =

∑T
t=1 d̃t instead of DT .
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5.8.2.4 Regret of MetaBIO

By Lemma 5.3, we have that

RT ≤
T∑
t=1

θ̃t(St)−min
a∈A

T∑
t=1

θ̃t(st(a)) +
T∑
t=1

εt(St) = R̂B
T +

T∑
t=1

εt(St) (5.17)

with probability at least 1−δ/2, where R̂B
T (Equation (5.12)) is the regret of algorithm

B when fed with (θ̃t ◦ st)t∈[T ] as losses.
Lemma 5.6. Conditioning on the event as stated in Lemma 5.3, the sum of er-
rors suffered from MetaBIO by using the loss estimates (θ̃t)t∈[T ] from Equations (5.1)
and (5.2) is

T∑
t=1

εt(St) ≤
(
4 + 2

√
2
)√

ST ln
(
4ST

δ

)
.

Proof. First, observe that we can rewrite the sum of errors as
T∑
t=1

εt(St) =
T∑
t=1

εt(St)1[d̃t < dt] +
T∑
t=1

εt(St)1[d̃t = dt] .

We now provide an upper bound for the first sum of errors. For any s ∈ S, we define
Ts = {t ∈ [T ] : St = s} to be the set of all rounds when the state observed by the
learner corresponds to s. We can bound it as

T∑
t=1

εt(St)1[d̃t < dt] =
∑
s∈S

∑
t∈Ts

εt(s)1[d̃t < dt]

=

√
2 ln
(
4ST

δ

)∑
s∈S

∑
t∈Ts

√
1

N ′
t(s)

1[d̃t < dt]

≤ 2

√
ln
(
4ST

δ

)∑
s∈S

∑
t∈Ts

√
1

Mt(s)
1[d̃t < dt]

(because N ′
t(s) ≥ 1

2
Mt(s))

≤ 4

√
ln
(
4ST

δ

)∑
s∈S

√
MT (s)

(since Mt(s) is increasing over Ts)

≤ 4

√
ST ln

(
4ST

δ

)
,
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where the second inequality holds because N ′
t(St) = Nt(St) ≥ 1

2
Mt(St) when d̃t < dt

since Mt(St) ≤ Nt(St) + σt, while the last one follows by Jensen’s inequality and the
fact that

∑
s∈S MT (s) = T .

As a last step, we provide an upper bound to the second sum. Let Js = {r ∈
Ts : d̃r = dr} and notice that |Js| ≤ |Ts| = MT (s). Observe that ρ(t) = ρ̃(t) for each
round t such that d̃t = dt, and thus by Equation (5.14) we have that

π(r) < π(t) ⇐⇒ ρ(r) < ρ(t) ∨ (ρ(r) = ρ(t) ∧ r < t)

for all r, t ∈ [T ] such that d̃r = dr and d̃t = dt. Define νs : Js →
[
|Js|
]

by

νs(t) = |{r ∈ Js : π(r) ≤ π(t)}| ∀t ∈ Js .

Observe that νs(t) ≤ N ′
t(s) = |L′

t(s)| for all s ∈ S and all t ∈ Js. This is due to the
fact that νs(t) counts a subset of L′

t(s); to be precise, we have that νs(t) = |L′
t(s)∩Js|.

Moreover, notice that the condition π(r) ≤ π(t) defines a total order over Js. Hence,
νs(t) counts the number of elements of Js preceding t ∈ Js (including t itself) in this
total order. This implies that νs is a bijection between Js and

[
|Js|
]
. Then, using a

similar reasoning as before, we show that

T∑
t=1

εt(St)1[d̃t = dt] =

√
2 ln
(
4ST

δ

)∑
s∈S

∑
t∈Ts

√
1

N ′
t(s)

1[d̃t = dt]

=

√
2 ln
(
4ST

δ

)∑
s∈S

∑
t∈Js

√
1

N ′
t(s)

(by definition of Js)

≤

√
2 ln
(
4ST

δ

)∑
s∈S

∑
t∈Js

√
1

νs(t)

(since νs(t) ≤ N ′
t(s) for t ∈ Js)

≤ 2

√
2 ln
(
4ST

δ

)∑
s∈S

√
|Js| (since νs(t) is bijective)

≤ 2

√
2 ln
(
4ST

δ

)∑
s∈S

√
MT (s) (since |Js| ≤MT (s))

≤ 2

√
2ST ln

(
4ST

δ

)
. (by Jensen’s inequality)
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Theorem 5.2. Let δ ∈ (0, 1). If we run MetaBIO using DAda-Exp3, then the regret
of MetaBIO in the BIO setting with adversarial action-state mappings and stochastic
losses with probability at least 1− δ satisfies

RT ≤ 2
√

2KTCK,3δ + 7

√
ST ln 4ST

δ
+ 2
√
DΦCK,3δ +

σmax + 2

2
ln 4

δ
. (5.6)

Proof of Theorem 5.2. By Equation (5.17), the regret RT can be bounded as

RT ≤ R̂B
T +

T∑
t=1

εt(St) ≤ R̂B
T + 7

√
ST ln 4ST

δ

with probability at least 1 − δ/2, where the last inequality follows by Lemma 5.6.
From what we argued in Section 5.8.2.3, we can upper bound R̂B

T using the high-
probability regret bound of DAda-Exp3. Notice that the delays incurred by DAda-
Exp3 via MetaBIO are those given when providing the estimates (θ̃t)t∈[T ]. We denote
these delays by d̃1, . . . , d̃T , and the total delay perceived by DAda-Exp3 is thus D̃T =∑T

t=1 d̃t. Hence, from the improved bound for DAda-Exp3 in Equation (5.9), we have
that

R̂B
T ≤ 2

√
2KT (3 ln(K) + ln(4/δ)) + 2

√
D̃T (3 ln(K) + ln(4/δ)) + σmax + 2

2
ln(4/δ)

holds with probability at least 1−δ/2. The combination of the above two inequalities,
together with Lemma 5.1, concludes the proof.

5.8.2.5 Regret of MetaAdaBIO

Theorem 5.3. Let δ ∈ (0, 1). If we run MetaAdaBIO with DAda-Exp3, then the
regret of MetaAdaBIO in the BIO setting with adversarial action-state mappings and
stochastic losses with probability at least 1− δ satisfies

RT ≤ 3min

{
7

√
ST ln 8ST

δ
,
√
DTCK,2δ

}
+6
√

KTCK,2δ+2
√
DΦCK,2δ+(σmax+2) ln 8

δ
.

(5.7)

Proof of Theorem 5.3. Let t∗ ∈ [T ] be the last round before MetaAdaBIO switches
from DAda-Exp3 to MetaBIO, i.e., the last round that satisfies Dt∗CK,4δ ≤

141



Chapter 5 | Delayed Bandits: When Do Intermediate Observations Help?

49ST ln 8ST
δ

. Then, define a∗ ∈ argmina

∑T
t=1 θ(st(a)). We may decompose regret as

RT =
t∗∑
t=1

(
θ(St)− θ(st(a

∗))
)
+

T∑
t=t∗+1

(
θ(St)− θ(st(a

∗))
)

≤
t∗∑
t=1

θ(St)−min
a∈A

t∗∑
t=1

θ(st(a))︸ ︷︷ ︸
Rt∗

+
T∑

t=t∗+1

θ(St)−min
a∈A

T∑
t=t∗+1

θ(st(a))︸ ︷︷ ︸
Rt∗:T

.

The incurred delay until time t∗ is Dt∗ . Thus, from Equation (5.11), we get that the
following bound

Rt∗ ≤ 2
√

2Kt∗CK,2δ +

√
2t∗ ln 12

δ
+ 2
√

Dt∗CK,2δ +
σmax + 2

2
ln 6

δ
(5.18)

holds with probability at least 1−δ/2, where we recall that CK,δ = 3 lnK+ ln(12/δ).
If our algorithm never switches, then t∗ = T and we get the bound in (5.18) for RT .
Note that this is no greater than the upper bound in the statement as

√
DTCK,2δ ≤

7
√

ST ln(8ST/δ) by definition of t∗ in this case.
Otherwise, we use the switching condition

√
Dt∗CK,2δ ≤ 7

√
ST ln(8ST/δ) along

with the fact that
√

t∗ ln(12/δ) ≤
√
Kt∗CK,2δ to get

Rt∗ ≤ 3
√

2Kt∗CK,2δ + 14

√
ST ln 8ST

δ
+

σmax + 2

2
ln 6

δ
. (5.19)

Furthermore, Theorem 5.2 directly gives us an upper bound for Rt∗:T since
MetaAdaBIO runs MetaBIO for t > t∗ with the confidence parameter set to δ/2. We
just need to bound the total incurred delays of these rounds, namely D̃t∗:T . Let σ′

t

be the outstanding observations for any round t > t∗ as perceived by the execution
of MetaBIO starting after round t∗, that is, when considering only delays (dt)t>t∗ . It
is immediate to observe that σ′

t ≤ σt and thus maxt>t∗ σ
′
t ≤ maxt>t∗ σt. Moreover,

from Lemma 5.1 we have
D̃t∗:T ≤ DΦ′ ,

where Φ′ denotes a set of min{T − t∗, 2Sσ′
max} rounds with the largest delays among

(dt)t>t∗ , with σ′
max = maxt>t∗ σ

′
t. So we have

DΦ′ ≤ DΦ
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due to the fact that |Φ′| = min{T − t∗, 2Sσ′
max} ≤ min{T, 2Sσmax} = |Φ|. Therefore,

from Theorem 5.2 we obtain

Rt∗:T ≤ 2
√

2K(T − t∗)CK,3δ + 7

√
ST ln 8ST

δ
+ 2
√
DΦCK,3δ +

σmax + 2

2
ln 8

δ
(5.20)

with probability at least 1 − δ/2. We conclude the proof by combining Equa-
tions (5.19) and (5.20) along with the fact that

√
t∗ +

√
T − t∗ ≤

√
2T to get that

the bound

RT ≤ 6
√

KTCK,2δ+3min

{
7

√
ST ln 8ST

δ
,
√
DTCK,2δ

}
+2
√
DΦCK,2δ+(σmax+2) ln 8

δ

holds with probability at least 1− δ.

5.8.2.6 Expected Regret Analysis of MetaAdaBIO with Tsallis-INF

Proposition 5.4. If we execute MetaAdaBIO with Tsallis-INF (Zimmert and
Seldin, 2020), and use the switching condition

√
8Dt lnK > 6

√
ST ln(2ST ) at each

round t ∈ [T ], where Dt =
∑t

j=1 σj, then the regret of MetaAdaBIO in the BIO setting
with adversarial action-state mappings and stochastic losses satisfies

E[RT ] ≤ 4
√
2KT +

√
8DΦ lnK + 2min

{
6
√

ST ln(2ST ),
√

8DT lnK
}

.

Proof of Proposition 5.4. We begin by studying of expected regret of MetaBIO and
we then give a regret analysis of MetaAdaBIO. When running MetaBIO, we use the
unbiased empirical mean estimators (θ̂t)t∈[T ] as the mean loss estimates, rather than
the lower confidence bounds (θ̃t)t∈[T ]. The expected regret is defined as

E[RT ] =
T∑
t=1

E[θ(St)]−
T∑
t=1

θ(st(a
∗)) ,

where a∗ = mina∈A
∑T

t=1 θ(st(a)). Here we use a version of Tsallis-INF that is tai-
lored for the delayed bandits problem (Zimmert and Seldin, 2020), which guarantees
a bound in expectation on the regret

R̂Tsallis
T (a) =

T∑
t=1

θ̂t(St)−
T∑
t=1

θ̂t(st(a))
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against any fixed action a ∈ A, using the loss estimates {θ̂t}t∈[T ]. Observe that this
regret is defined in terms of our estimates, as required in our case. By Zimmert and
Seldin (2020, Theorem 1), Tsallis-INF guarantees that its expected regret is

E
[
R̂Tsallis

T (a∗)
]
= E

[
T∑
t=1

θ̂t(St)−
T∑
t=1

θ̂t(st(a
∗))

]

≤ 4
√
KT +

√
8D̃T lnK ≤ 4

√
KT +

√
8DΦ lnK ,

where the last inequality uses Lemma 5.1. Then, we can focus on our notion of regret
and use the above regret bound to obtain that

E[RT ] =E
[
RT − R̂Tsallis

T (a∗)
]
+ E

[
R̂Tsallis

T (a∗)
]

=E

[
T∑
t=1

(
θ(St)− θ̂t(St)

)]
+ E

[
T∑
t=1

(
θ̂t(st(a

∗))− θ(st(a
∗))
)]

+ E
[
R̂Tsallis

T (a∗)
]

≤E

[
T∑
t=1

(
θ(St)− θ̂t(St)

)
︸ ︷︷ ︸

∆

]
+ E

[
T∑
t=1

(
θ̂t(st(a

∗))− θ(st(a
∗))
)]

+ 4
√
KT +

√
8DΦ lnK . (5.21)

We know that our mean estimator is unbiased. Therefore, we have that
E[θ̂t(st(a∗))] = θ(st(a

∗)) for any t ∈ [T ], meaning that the second term in the right-
hand side of (5.21) is equal to zero.

On the other hand, we can apply Lemma 5.3 to get the following bound for ∆
that holds with probability at least 1− δ/2 for any δ ∈ (0, 1):

∆ ≤ min

{
1

2

T∑
t=1

εt(St), T

}
, (5.22)

where we recall that εt(s) =
√

2
N ′

t(s)
ln 4ST

δ
. In particular, the inequality ∆ ≤ T is

true in general. By Lemma 5.6, we can bound the right-hand side of (5.22) as

1

2

T∑
t=1

εt(St) ≤
7

2

√
ST ln 4ST

δ

when conditioning on the event as in the statement of Lemma 5.3. If we denote such
an event as E , we have that P

(
E
)
≤ δ/2 and that E[∆ | E ] ≤ 7

2

√
ST ln(4ST/δ). As
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a consequence, we notice that

E[∆] = E[∆ | E ]P(E) + E
[
∆ | E

]
P
(
E
)
≤ 7

2

√
ST ln 4ST

δ
+

δ

2
T ≤ 5

√
ST ln(2ST ) + 1

where in the last inequality we set δ = 2/T . Since we assume that S ≥ 2, we can
easily observe that E[∆] ≤ 6

√
ST ln(2ST ). Plugging this into Equation (5.21) gives

us
E[RT ] ≤ 4

√
KT +

√
8DΦ lnK + 6

√
ST ln(2ST ) . (5.23)

At this point, we can proceed to the proof of the overall bound on the expected
regret of MetaAdaBIO. The behaviour of MetaAdaBIO follows the same principle as
before, but the switching condition is different:√

8Dt lnK > 6
√
ST ln(2ST ) .

Similar to the analysis of MetaAdaBIO in Section 5.8.2.5, we decompose the regret
into

E[RT ] ≤
t∗∑
t=1

E[θ(St)]−min
a∈A

t∗∑
t=1

θ(st(a))︸ ︷︷ ︸
Rt∗

+
T∑

t=t∗+1

E[θ(St)]−min
a∈A

T∑
t=t∗+1

θ(st(a))︸ ︷︷ ︸
Rt∗:T

,

where t∗ is the last round satisfying
√
8Dt∗ ≤ 6

√
ST ln(2ST ). Then, we have

E[Rt∗ ] ≤ 4
√
Kt∗ +

√
8Dt∗ lnK . (5.24)

If t∗ = T then Rt∗ = RT and we get the bound in (5.24), where we note that√
8DT lnK ≤ 6

√
ST ln(2ST ) by definition of t∗ in this case, and we can replace DT

by DT . Otherwise, t∗ < T and we can apply the bound for MetaBIO from (5.23),
along with the fact that the total incurred delay after round t∗ is upper bounded by
DΦ, in order to derive an upper bound for E[Rt∗:T ] that is

E[Rt∗:T ] ≤ 4
√

K(T − t∗) +
√

8DΦ lnK + 6
√
ST ln(2ST ) . (5.25)

Finally, if we use the fact that
√
8Dt∗ ≤ 6

√
ST ln(2ST ) (by definition of t∗) in (5.24),

and combine it with (5.25), we conclude that

E[RT ] ≤ 4
√
2KT +

√
8DΦ lnK + 2min

{
6
√
ST ln(2ST ),

√
8DT lnK

}
,

where we also used the fact that
√
t∗ +
√
T − t∗ ≤

√
2T .
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5.8.3 Proofs for the Lower Bounds
Theorem 5.6. Irrespective to whether the action-state mappings and loss vectors
are stochastic or adversarial, there exists a sequence of losses such that any (possibly
randomized) algorithm in BIO suffers regret E[RT ] = Ω

(√
KT

)
.

Proof. Our construction only uses two states h1 and h2. The loss vectors, which are
deterministic and do not change over time, are defined as follows: `t(h1) = 1 and
`t(h2) = 0 for all t ≥ 0. The stochastic action-state mapping, which is also constant
over time, is given by

st(a) =

{
h1 with probability pa

h2 with probability 1− pa

for all a ∈ A and t ≥ 0, where the probabilities pa are to be determined. Thus,
the loss of an arm a is `t(st(a)) = `t(h1) = 1 with probability pa and `t(st(a)) =
`t(h2) = 0 with probability 1 − pa. Since the loss is determined by the state, the
learner receives bandit feedback without delay. We can then choose pa for a ∈ A to
mimic the standard Ω

(√
KT

)
distribution-free bandit lower bound—e.g., see Slivkins

et al. (2019, Chapter 2). By Yao’s minimax principle, the same lower bound also
applies to the case with adversarial action-state mappings. Since the loss vectors are
deterministic, this covers all possible cases in BIO.

Theorem 5.7. Suppose that the action-state mapping is adversarial and the losses
are stochastic and that dt = d for all t ∈ [T ]. If T ≥ min{S, d} then there exists a
distribution of losses and a sequence of action-state mappings such that any (possibly
randomized) algorithm suffers regret E[RT ] = Ω

(√
min{S, d}T

)
.

Proof of Theorem 5.7. Assume without loss of generality that K = 2 and let S =
{h1, . . . , hS} be the finite set of possible states. Let S ′ = bmin{S/2, d}c and let
I1, . . . , IT be the actions chosen by the considered algorithm. Split the T time steps
into m = bT/S ′c blocks B1, . . . , Bm of equal size S ′, eventually leaving ≤ S ′−1 extra
time steps. We assume with no loss of generality that the last step corresponds to
the end of the m-th block. The feedback formed by the losses of the actions chosen
by the algorithm in a certain block is received only after the last time step of the
same block since S ≤ 2d. Define bi = (i − 1)S ′ + 1 for all i ∈ [m]. We assume that
the learner receives all the realized losses `t(st(A)) for all t ∈ Bi and all A ∈ {1, 2}
at the end of each block, which means that we are in a full information setting, as
this only helps the algorithm.

Now, we define a specific sequence of assignments from actions to states, and
construct losses so that the expected regret becomes sufficiently large. Let st(A) =
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h2(t−bi)+A for all t ∈ Bi, all i ∈ [m] and all A ∈ {1, 2}; this means that, for the
first time step of any block, actions 1 and 2 will be assigned to states h1 and h2

respectively, then to h3 and h4 respectively in the next time step of the same block,
and so on. Let ε = 1

4

√
S′

2T ln(4/3) ∈ [0, 1
4
] and let θ(A) ∈ R2 be a vector of mean losses

such that θ
(A)
i = 1

2
− I{i = A}ε, for each A ∈ {1, 2}. We simplify the notation with

EA[·] = E
[
·
∣∣ θ(A)

]
and PA(·) = P

(
·
∣∣ θ(A)

)
, where the conditioning on θ(A) means that

we sample losses for each state assigned to i ∈ {1, 2} such that they are Bernoulli
random variables with mean θ

(A)
i . In particular, conditioning on θ(A), we sample

independent Bernoulli random variables X i
1, . . . , X

i
m with mean θ

(A)
i , one for each

block, for i ∈ {1, 2}. Then, the losses are defined as `t(st(i)) = X i
j for each t ∈ Bj

and each j ∈ [m].
We can now proceed to show a lower bound for the expected pseudo-regret. Let

Ti be the number of times the learner chooses action i over all T time steps. The
expected pseudo-regret over the two instances determined by θ(k) for k ∈ {1, 2} adds
up to

E1[RT ] + E2[RT ] = ε(2T − E1[T1]− E2[T2]) .

Following the standard analysis, we show that the difference E2[T2]− E1[T2] is such
that

E2[T2]− E1[T2] ≤ T · dTV(P2,P1) ≤ T

√
1

2
DKL(P1 ‖P2) ,

where the last step follows by Pinsker’s inequality.
Let λi = {(It, `t(St(1)), `t(St(2))) | t ∈ Bi} be the feedback set known to the

learner by the end of block Bi, and let λi = (λ1, . . . , λi) be the tuple of all feedback
sets up to the end of block Bi. Denote by Pk,i(·) the probability measure of feedback
tuples λi conditioned on θ(A). By the chain rule for the relative entropy, we can
observe that

DKL(P1 ‖P2) =
m∑
i=1

∑
λi−1

P1(λ
i−1)DKL(P1,i(· | λi−1)‖P2,i(· | λi−1))

≤
m∑
i=1

∑
λi−1

P1(λ
i−1)16ε2 ln(4/3)

= 16mε2 ln(4/3) ,

where we used the fact that each relative entropy DKL(P1,i(· | λi−1) ‖P2,i(· | λi−1))
corresponds to the sum of the relative entropy between two Bernoulli distributions
with means 1/2 and 1/2 − ε and that between Bernoulli distributions with means
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1/2−ε and 1/2, respectively, which is upper bounded by 16ε2 ln(4/3) for ε ∈ [0, 1/4].
This follows by an application of the chain rule for the relative entropy, as well as
from the fact that the distribution of It is the same under both P1,i(· | λi−1) and
P2,i(· | λi−1), for all t ∈ Bi and any λi−1. Therefore, we have that

E2[T2]− E1[T2] ≤ 2εT
√

2m ln(4/3)

which also implies that

E1[RT ]+E2[RT ] ≥ εT

(
1− 2ε

√
2
T

S ′ ln(4/3)

)
=

εT

2
≥ 1

8

√
bS/2cT
2 ln(4/3)

≥ 1

8

√
ST

6 ln(4/3)
,

where we used the facts that m ≤ T/S ′ and that bS/2c ≥ S/3 for any integer S ≥ 2.
This means that the expected pseudo-regret of the learner has to be 1

16

√
ST

6 ln(4/3) at
least in one of the two instances. Now, for S > 2d we use the same construction,
but now we only use 2d states, which leads to the promised Ω(

√
min{S, d}T ) lower

bound.

Theorem 5.8. Suppose that the action-state mapping is adversarial, the losses are
stochastic, and that dt = d for all t ∈ [T ]. If T ≥ d+1 then there exists a distribution
of losses and a sequence of action-state mappings such that any (possibly randomized)
algorithm suffers regret E[RT ] = Ω

(
min

{
(d+ 1)

√
S,
√

(d+ 1)T
})

.

Proof of Theorem 5.8. Let S ′ = min{bS
2
c, b T

d+1
c} ≥ 1. We consider the first (d+1)S ′

rounds of the game and divide them into S ′ blocks B1, . . . , BS′ of same length d+1.
In this way, we ensure that the feedback for any time step in some block is revealed
to the learner only after its final round.

Without loss of generality, we can assume that the learner observes all the losses
of one block immediately after its last time step; this only helps the learner since they
would observe only the incurred losses at possibly later rounds otherwise. We can
further simplify the problem by assuming that losses are deterministic functions of
the states, i.e., `t ≡ θ for every round t. This also means that the problem turns into
an easier, full-information version of our problem with deterministic losses. Now, let
the adversary choose the action-state mappings such that for each block index i and
each action a ∈ A, St(a) = St′(a) ∈ {s2i−1, s2i} for all t, t′ ∈ Bi. Furthermore, we
assume that the losses are chosen such that θ(s2i−1) ∈ {0, 1} and θ(s2i) = 1−θ(s2i−1)
for all i ∈ [S ′]. In this construction, the learner cannot obtain any useful information
from the states of a block because of the delays. Moreover, the states observed in
one block are not observed again in the other blocks.
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It thus suffices to prove a lower bound for a standard full information game with
S ′ rounds and loss range [0, d+ 1]. Hence, we can conclude that the expected regret
of any algorithm has to be

E[RT ] = Ω
(
(d+ 1)

√
S ′
)
= Ω

(
min

{
(d+ 1)

√
S,
√

(d+ 1)T
})

.

Theorem 5.9. Suppose that the action-state mapping is stochastic, the losses are
adversarial, and that dt = d for all t ∈ [T ]. Then there exists a stochastic action-
state mapping and a sequence of losses such that any (possibly randomized) algorithm
suffers regret E[RT ] = Ω

(
max

{√
KT,

√
dT
})

.

Proof. Since by Theorem 5.6 we already know that any algorithm must suffer
Ω
(√

KT
)

regret, we only need to show a Ω(
√
dT ) lower bound. We use two states,

h1 and h2. Our action-state mapping is deterministic and, for all t ≥ 0, assigns
st(a) = h1 to all but one action a?, to which the mapping assigns st(a

?) = h2. We
now have constructed a two-armed bandit problem with delayed feedback and T
rounds, for which a Ω(

√
dT ) lower bound is known (Cesa-Bianchi et al., 2019).

5.8.4 Action-State Mappings and Loss Means Used in the
Experiments

Table 5.1 and Table 5.2 describe the instances used to generate the data for the
experiments of Section 5.6.

Mean loss s = 1 s = 2 s = 3
θ(s) 0.2 0.4 0.8

Mapping P (1|a) P (2|a) P (3|a)
a = 1 0.8 0.1 0.1
a = 2 0.4 0.5 0.1
a = 3 0.3 0.7 0.0
a = 4 0.5 0.3 0.2

Table 5.1: Mean losses and stochastic action-state mapping for Experiment 1 in
Section 5.6.
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Mean loss s = 1 s = 2 s = 3
θ(s) 0 1 1

Environment 1
Mapping P (1|a) P (2|a) P (3|a)
a = 1 0.06 0.47 0.47
a = 2 0 0.50 0.50
a = 3 0 0.50 0.50
a = 4 0 0.50 0.50

Environment 2
Mapping P (1|a) P (2|a) P (3|a)
a = 1 1 0 0
a = 2 0.94 0.03 0.03
a = 3 0.94 0.03 0.03
a = 4 0.94 0.03 0.03

Table 5.2: Mean losses and stochastic action-state mappings for Experiment 2 in
Section 5.6.
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Chapter 6

Summary and Discussion

The thesis represents a significant advancement in the field of multi-armed bandits
by addressing two critical challenges: the need for "best-of-both-worlds" guarantees
and the effective handling of "delayed feedback" in real-world applications, as they
closely mirror the complexities present in various practical scenarios.

In Chapter 2, we introduced an enhanced analysis of the Tsallis-INF algorithm
within adversarial regimes with self-bounding constraint. With a corruption budget
denoted as C, our enhancements culminates at C = O

(
T

logT

)
, resulting in a regret

reduction by a factor of logT
log logT

. In stochastically constrained adversarial regime,

it further refines regret by substituting logT with log
(

(K−1)T(∑
i6=i∗

1
∆i

)2

)
. Similar to

Zimmert and Seldin (2021), our analysis relies on the uniqueness of the best arm.
However, it’s worth noting that Ito (2021) provide a new technique to remove this
assumption. We conjecture that our derived bound has also a matching lower bound
for adversarial regimes with a self-bounded constraint, as it is already optimal in
extreme cases such as fully stochastic and fully adversarial regimes, but we leave it
to future work.

In Chapter 3, we established the first-ever "best-of-both-worlds" guarantee for
delayed bandits. We proposed adaptation to the algorithm of Zimmert and Seldin
(2020) that relies on the knowledge of dmax to control the drift of arms distribution.
The control of this distribution drift constitutes the core of our best-of-both-worlds
analysis. This aspect presents the most challenging part of the analysis due to the
dynamically changing learning rate. Furthermore, we established the optimality of
the regret derived by Zimmert and Seldin (2020) for the adversarial regime, substan-
tiating this claim with a corresponding lower bound.

In Chapter 4, we empowered the algorithm introduced in Chapter 3 with two

151



Chapter 6 | Summary and Discussion

techniques: the skipping technique and implicit exploration, which allows us to elim-
inate the necessity for prior knowledge of dmax. Furthermore, we showed that the
contribution of delays in the regret, always appears as the maximum amount of ob-
servation we are missing (σmax), rather than the maximum waiting time for these
missing information (dmax). An intriguing question remains regarding the possibility
of eliminating all multiplicative factors tied to σmax, especially

∑
i 6=i∗

1
∆i

.
In Chapter 5, we explored "intermediate observations" as a means to mitigate the

impact of delays in the problem of bandits with arbitrary delays. We demonstrated
that the complexity of this problem lies only behind the nature of state-loss mappings.
We proved that while intermediate observations offer no benefits in adversarial state-
loss mappings, they bring significant advantages in scenarios involving stochastic
state-loss mappings, where the dependence of the regret bound on delay can be
replaced by the number of states. Our algorithm is based on a novel reduction
strategy that could be extended to other regimes, such as non-stationary bandits
if there exists an algorithm for the delayed non-stationary bandits. An interesting
problem for future work is to provide an algorithm for delayed non-stationary bandits
to be able to apply our reduction idea, enabling a comparative assessment against
the regret bounds of the Vernade et al. (2020).
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