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Preface
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as part of the Center for Basic Machine Learning Research in Life Science
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This dissertation is divided into six chapters. Chapter 1 provides an in-
troduction and all necessary background information relevant to the topics
presented in this thesis, of which an overview is given in Chapter 2. The
main body of the thesis is presented in Chapter 3, Chapter 4 and Chapter 5,
which contain the main scientific contributions of my Ph.D. work. Finally, I
provide a summary and future research directions in Chapter 6.

Thank you for reading.

Marloes Arts
March 2023
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Abstract

The work presented in this Ph.D. thesis focuses on the intersection of machine
learning and protein modelling. This field is thriving due to the emergence
of more powerful models and growing amounts of data, with AlphaFold2 as a
recent success story in static protein structure prediction that even made its
way into the global news. Nonetheless, this static view does not accurately
represent the complete picture since proteins are dynamic biomolecules. The
papers presented in this thesis zoom in on all dynamic aspects of proteins:
structure ensembles, protein dynamics, and protein sequence evolution. All
proposed methods are based on generative machine learning models such that
new data points can be produced that come from approximately the same
distribution as the data seen during training.

The main contributions of this dissertation are threefold. Firstly, we propose
a general method to simultaneously impose local and global constraints in
protein structure ensemble modelling. As a proof of principle, this method
is incorporated into a simple variational autoencoder (VAE) and we demon-
strate that the generated samples are of high quality, both locally and glob-
ally. The second contribution is a denoising diffusion model based method
trained on reduced representations of protein structures from molecular dy-
namics simulations. Not only can this model produce new samples in a
one-shot manner, a force field can also cheaply be extracted to perform new
simulations. The final contribution is a closer investigation on the use of
VAEs to model protein family sequence data. Specifically, we examine the
strengths and weaknesses of Bayesian decoders in this context as well as
show the potential of hierarchical VAEs to alleviate the mismatch between
the commonly used standard Gaussian prior over latent space and the “star-
shaped” aggregated posterior for protein family data.
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Resumé

Arbejdet præsenteret i denne ph.d. afhandling fokuserer på krydsfeltet mellem
maskinlæring og proteinmodellering. Dette felt blomstrer på grund af fremkom-
sten af mere kraftfulde modeller og voksende mængder af data med Al-
phaFold2 som en nylig succeshistorie inden for forudsigelse af statisk pro-
teinstruktur, der endda fandt vej til de globale nyheder. Dette statiske
billede giver dog ikke et helt retvisende billede af proteiners natur, da pro-
teiner i virkeligheden er dynamiske biomolekyler. Artiklerne præsenteret
i denne afhandling tager et nærmere blik på alle dynamiske aspekter af
proteiner: proteinstrukturensembler, proteindynamik og evolution af pro-
teinsekvenser. Alle foreslåede metoder er baseret på generative maskin-
læringsmodeller, således at der kan produceres nye datapunkter, der kommer
fra omtrent den samme fordeling som de data, der ses under træning.

Hovedbidragene i denne afhandling er tredelte. Først foreslår vi en generel
metode til at pålægge lokale og globale begrænsninger samtidigt i modeller-
ing af proteinstrukturensembler. Som et bevis på princippet er denne metode
inkorporeret i en simpel variationel autoenkoder (VAE), og vi demonstr-
erer, at de genererede strukturer er af høj kvalitet, både lokalt og globalt.
Det andet bidrag er en metode baseret på støjreducerende diffusionsmodeller
trænet på forenklede repræsentationer af proteinstrukturer fra simuleringer af
molekylærdynamik. Denne model kan ikke alene direkte generere nye struk-
turer, men kan også bruges til billigt at ekstrahere et molekylært kraftfelt,
som gør det muligt at udføre nye molekylære simuleringer. Det sidste bidrag
er en nærmere undersøgelse af brugen af VAE’er til at modellere sekvensdata
fra proteinfamilier. Specifikt undersøger vi styrkerne og svaghederne ved
Bayesianske dekodere i denne sammenhæng, samt vise potentialet af hier-
arkiske VAE’er til at afhjælpe misforholdet mellem den almindeligt anvendte
standard normalfordelte prior over det latente rum og den “stjerneformede”
aggregerede posterior for protein familiedata.
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Chapter 1

Introduction

Protein sequence, structure and function are inextricably intertwined, and
understanding these interconnections is the key to understanding biological
processes and disease. Over the last years, a lot of research effort has been
invested in solving the long-standing challenge of predicting static protein
structures from amino acid sequences. Recently, this has lead to unprece-
dented successes, set in motion by DeepMind’s AlphaFold2 [1] convincingly
winning the challenging protein folding competition “Critical Assessment of
Techniques for Protein Structure Prediction” in 2020 (CASP14). However,
static structures do not represent the full picture of a functional protein. In
this thesis, I present different methods based on generative machine learning
models to address various aspects of the flexible protein picture, ranging from
ensembles of protein structures and dynamics to sequence variance through
evolution. The focus of this introduction will be on explaining the concepts
needed in Chapter 3, Chapter 4 and Chapter 5, both from a biological and
a machine learning perspective.
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Chapter 1 | Introduction

1.1 Protein Structure & Sequence Variation

Firstly, we will take a closer look at proteins, essentially the dynamic cogs and
machines that are built from our DNA blueprint to carry out almost all bodily
functions. In the same way a faulty blueprint can lead to a questionable
product, DNA mutations can lead to proteins that differ in appearance and
behavior. This may result in a useless or even detrimental protein, but could
also lead to a molecule that is more stable or better suited for a specific task.
In the following sections, I will discuss proteins and their variation in terms
of both sequence and structure in more detail.

1.1.1 Protein Structure & Sequence

Proteins are polymer chains folded into a specific three-dimensional shape, of
which the surface has distinct physical features as well as chemical properties
such as charge and polarity [2, Chapter 2]. For example, proteins can bind
ligands (small molecules) in binding pockets, which are inlets in the protein
surface with specific properties optimized to compliment that particular lig-
and. The 3D protein shape itself is also largely determined by the polarity
and charge within the polymer chain, with hydrophobic (i.e. water-repelling)
parts packed away at the inner part of the protein, while hydrophilic (i.e.
water-attracting) parts are exposed on the outside, and electrostatic bonds
formed between oppositely charged side chains [2, Chapter 1].

The structure of a single protein, also called a monomer, is organized in three
levels [3, Chapter 3], as shown in Fig. 1.1. The first is called the primary
structure, where a chain of repeating units called amino acids is formed [4].
All amino acids share a basic building block consisting of a nitrogen atom and
two carbon atoms, where the last carbon forms a so-called peptide bond with
the nitrogen atom of the next amino acid to form the polymer chain. The
central carbon of each amino acid, termed Cα, is connected to a side chain,
also called a residual group. For naturally occurring proteins, there exists
twenty different residual groups, each with distinct chemical properties. The
repeated N-Cα-C sequence forms the backbone of the protein, and the residual
groups stick out of this backbone. Each of the twenty different amino acids
is associated with a capital letter (Latin alphabet), so that a chain of amino
acids can also be represented as a sequence of letters.
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Chapter 1 | Introduction

The second level of structure arises when the chain of amino acids folds up
locally to form secondary structural elements, namely α-helices and β-sheets,
where the latter consists of multiple parallel β-strands [5]. Hydrogen and
sulfur bridges fortify these relatively rigid elements which are connected by
flexible loops that exhibit more fluctuations.

Finally, the protein chain folds onto itself to achieve the third level of struc-
tural organization: the tertiary structure or global fold. Ultimately, this three
dimensional shape is determined by the location of secondary structure ele-
ments and the interplay between the chemical properties of the amino acid
chain and the chemical environment [6]. Larger proteins can contain multiple
domains that fold up locally and independently before the full global fold is
completed. It’s worth noting that even though most proteins have a pre-
ferred folded state, often called the native state, they are dynamic molecules
that adopt multiple conformations. This will be discussed more elaborately
in Section 1.1.3.

Backbone

	𝐂𝛂 	𝐂	𝐍

	𝐇	𝐇 	𝐎

	𝐑

Residual	group

𝐏𝐫𝐢𝐦𝐚𝐫𝐲: 	amino	acid	sequence

α-helix β-sheet

𝐒𝐞𝐜𝐨𝐧𝐝𝐚𝐫𝐲: 	local	structure 𝐓𝐞𝐫𝐭𝐢𝐚𝐫𝐲: 	global	structure

Figure 1.1: Protein monomer structure is organized into three levels: pri-
mary: the amino acid sequence, secondary: the local structure, and tertiary:
the global fold.

Protein Families

The aforementioned link between protein sequence, structure and function is
clearly visible throughout evolution. Similarly to how the evolution of species
results in “survival of the fittest”, protein evolution is governed by natural
selection. Random mutations in DNA can result in substitutions, insertions
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Chapter 1 | Introduction

or deletions in the amino acid sequence. This gives rise to groups of proteins
derived from a common ancestor, also called homologs, that are similar in
terms of sequence, structure and function [7, 8]. These groups of proteins are
known as protein families, and members can be found both within and across
species. A diverse pool of genes and corresponding proteins leads to more
flexibility in protein shape, function, and stability. Beneficial variants will
persist, while detrimental variants are either not viable or will not be selected
for. Protein evolution is inspirational to fields such as protein design, as it is
often easier to adapt an existing protein than to create de novo proteins [9].
After choosing a known protein that already possesses some of the desired
qualities, single or multiple mutations can be made experimentally to test
the change in the properties of the protein. Designing proteins through this
experimental route can be time- and resource-consuming. Therefore it is an
active field of research to find strategies to guide exploratory experiments,
or, ultimately, design new proteins from scratch.

Multiple Sequence Alignments (MSA)

Collections of similar sequences, such as protein families, are often repre-
sented as a multiple sequence alignment (MSA) [10]. In an MSA, all sequences
are scaled to the longest protein in the collection, aligning the amino acids in
a way that maximizes the overlap between identical or similar entries and in-
troducing gaps where needed. Not only is this a clear way to organize protein
sequences, it can also serve as a valuable input to computational methods.
This is especially true regarding protein families, since an MSA can then be
viewed as a snapshot of evolution, which provides a lot of information about
which mutations were selected for. Examples of such methods are Riessel-
man et al. [11] and Frazer et al. [12]. While these models are capable learning
the evolutionary organization of protein sequences, they have certain limita-
tions that were the inspiration for the work presented in Chapter 5. I will
come back to this in Section 1.2.1, since some theoretical background behind
variational autoencoders is needed for the reasoning behind our work.

Static Protein Structure

First of all, I would like to provide some historical perspective around exper-
imental protein structure determination. I will not go into much technical
detail for the experimental methods mentioned, and refer the reader to the
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Chapter 1 | Introduction

respective papers for more information. The scientific field that concerns
itself with the investigation of protein structure stems from the late 19th and
early 20th century [13, 14]. These initial experiments established the under-
standing of proteins as polymer chains of amino acids which in turn led to
the notion of higher order structure and the driving force of hydrophobic
interaction [5, 15, 16]. Later on, scientists successfully identified different
“states” of protein structure by looking at the patterns of diffracted X-rays
for a specific material [17]. The issue with this type of analysis was that
diffraction patterns are often not very clear for raw materials. A big leap
forward was applying X-ray diffraction to crystallized proteins [18]. In this
method, called X-ray crystallography, proteins are first crystallized to form a
regular, fixed structure, for which the diffraction patterns are much cleaner
and more consistent. The invention of this technique was awarded with a
Nobel Prize in 1915. The successful application of this technique to obtain
the first ever protein structure, of muscle myoglobin, was also awarded a
Nobel Prize in 1962 [19].

An obvious but important bias of this structure determination method is the
need to crystallize the proteins, which is not possible for every protein and will
also not be feasible for every possible conformation of the protein. That being
said, X-ray crystallography is still, to this day, one of the most used exper-
imental methods to infer protein structure, alongside nuclear magnetic res-
onance (NMR) spectroscopy and cryogenic electron microscopy (cryo-EM).
In a nutshell, NMR spectroscopy leverages changes in the local electronic
environments around atom nuclei to get an ensemble of protein structures
in solution [20–22]. The invention of this technique was awarded the Nobel
prize in Chemistry in 2002. In contrast, cryo-EM determines protein struc-
ture through 3D reconstruction of multiple 2D snapshots of a frozen protein
sample [23, 24], which got the Nobel Prize in Chemistry in 2017.

The experimental techniques mentioned above increased the number of known
static protein structures. Moreover, sequencing techniques developed such
that there was an abundance of proteins for which we know the amino acid
sequence. Given the growing number of available structures and sequences,
the only thing missing is a mapping from one to the other, i.e. how to go
from primary to tertiary structure. This connection was first demonstrated
in 1953, which resulted in another Nobel Prize in 1972 [25]. Predicting the
global structure from the amino acid sequence, also known as the “protein
folding problem”, has been a long standing challenge in computational biol-
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Chapter 1 | Introduction

ogy. Following the theory that the native fold of a protein is its most stable
state, established methods within the field aim to maximize the stability of
the predicted structure through minimization of the free energy [26]. This
is commonly done either by taking a known similar structure as a template
[27], or by leveraging an MSA of homologous structures through a database
search [28], or by assembling small structure fragments with a similar se-
quence [29, 30].

Over the last years, a lot of progress in sequence-to-structure prediction has
been made within the field of machine learning. The first end-to-end differen-
tiable model for protein structure learning was presented by AlQuraishi [31]
in 2019. Only a year later, DeepMind’s AlphaFold2 [1], a large transformer-
based model that also includes evolutionary information, bested its competi-
tion at the protein folding competition CASP14, after which some now claim
the protein folding problem is “solved”. While this last statement is still
debatable, AlphaFold2 presented a large step forwards, which was quickly
followed up by others [32, 33]. Even more recently, diffusion models (see
Section 1.2.2) have started to emerge as promising models for structure pre-
diction and protein design [34, 35].

𝜅!𝜅" 𝜅#

𝐈𝐧𝐭𝐞𝐫𝐧𝐚𝐥
Dihedrals
Bond	angles
Bond	lengths

Coarse	
graining

Bead

Learned
representation ?

𝑥!
𝑥"

𝑥#𝐄𝐮𝐜𝐥𝐢𝐝𝐞𝐚𝐧
3D	coordinates
Pairwise	distances

pwd

Figure 1.2: An overview of the protein structure representation relevant for
this thesis: 3D coordinates (top left) with one pairwise distance (pwd) in-
dicated in blue, internal coordinates (bottom left), coarse-grained represen-
tations (top right) and learned representations (bottom right). The protein
shown in the middle is protein G (PDB ID: 1pga), which will also be used
in subsequent example figures and is one of the test cases in both Chapter 3
and Chapter 4.
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Chapter 1 | Introduction

1.1.2 Protein Structure Representations

Protein structures can be represented in different ways. Out of many pos-
sibilities, I will here discuss the representations relevant for this thesis, of
which an overview is depicted in Fig. 1.2. Throughout this section, I will
consider only the N-Cα-C backbone of proteins with a length of L amino
acids, corresponding to A = L × 3 atoms. Since the focus of this thesis
is mostly on the flexible protein picture, I will also highlight how different
representations handle perturbations in structure.

Cartesian Coordinates

One of the most intuitive options to represent a protein structure is in Carte-
sian coordinates, i.e. in Euclidean space. As this requires an x-, y- and z-
coordinate for each atom, this results in A × 3 coordinates. Importantly,
working with 3D coordinates corresponds to placing the protein with a pre-
determined translation and rotation in Euclidean space. Fig. 1.3 shows an
example of a 3D protein representation.

𝑥!
𝑥"

𝑥#𝐄𝐮𝐜𝐥𝐢𝐝𝐞𝐚𝐧
3D	coordinates
Pairwise	distances

pwd

Figure 1.3: An example of a Cartesian coordinate representation for protein
G (PDB ID: 1pga) shown as a 3D molecular graph of the full structure
(both backbone and side chains) in the middle and pairwise distances for the
backbone atoms on the right.

Perturbations It is relatively simple to make a perturbation to a single
atom in 3D space, because effectively this will only change the coordinates of
the atom in question and leave all other atom coordinates unchanged. Even
though perturbations generally do not affect the global structure much, they
can violate the local constraints that occur in natural proteins, resulting in
e.g. bond dissociation and steric clashes (i.e. bond crossing).
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Chapter 1 | Introduction

Pairwise Distances

Pairwise distances are Euclidean distances between all possible pairs of atoms
within the protein. Since they is often used in tandem with Cartesian rep-
resentations, it was chosen to depict them together in Fig. 1.2. Pairwise
distances can be organized in an A×A matrix, exemplified by the matrix in
Fig. 1.3 on the right-hand side. This matrix is symmetrical due to the fact
that the pairwise distance is the Euclidean norm of the vector from atom
i to atom j, which will give the same distance as the norm between atom
j and atom i. Moreover, the diagonal will be zero because these are the
distances between the atom and itself, and the offset-one diagonals contain
bond lengths. While pairwise distances are independent of the rotation and
translation of the protein, they are also invariant with respect to reflections.
This is not a desirable feature for proteins, since the handedness of structural
elements is an important physical and chemical feature. Moreover, pairwise
distance presentations are redundant; a subset of all pairwise distances is
sufficient to infer the missing values.

Perturbations A pairwise distance representation is hard to work with
in terms of perturbations, since one cannot simply change one pairwise dis-
tance without affecting others. For this reason, pairwise distances are often
used only at evaluation time, while perturbations are done using a different
representation such as Cartesian coordinates.

Internal Coordinates

The internal coordinate representation for proteins consists of bond lengths,
bond angles and dihedrals. Bond lengths are simply the distance between the
current atom and its successor, corresponding to the A− 1 atomic bonds in
the backbone chain. Bond angles are angles between two consecutive bonds,
of which there are A− 2 in the protein backbone. Finally, dihedrals are tor-
sional angles, which require four consecutive atoms in order to be computed.
For this set of four atoms, the dihedral is the angle between the plane defined
by the first three atoms and the plane defined by the last three atoms. A
dihedral is essentially the torsional angle that twists the protein backbone
around the bond between the middle two atoms of the set, and the backbone
contains A− 3 such dihedrals. Fig. 1.4 shows an example of how internal co-
ordinates are distributed for an ensemble of protein structures. Bond lengths
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Chapter 1 | Introduction

and bond angles follow quite peaked distributions, while dihedrals display
the most variance, making them the most important factor in determining
the structure of the protein backbone. It is common to represent the most
fluctuating dihedrals, namely those around N-Cα bonds (ϕ angles) and Cα-C
bonds (ψ angles) together in a Ramachandran plot. This ψ-versus-ϕ plot
exhibits clusters corresponding to specific secondary structural elements, as
indicated in Fig. 1.4. This basic internal representation contains 3 × A − 6
coordinates and is redundant, although it is also possible to reduce such
representations to a fully non-redundant version [36]. For protein modelling
purposes, bond lengths can often be assumed to be fixed due to their small
variance, which makes the representation cheaper (2 × A − 5 coordinates).
In any form, internal coordinate representations are invariant with respect
to rotations and translations.

𝜅!𝜅" 𝜅#

𝐈𝐧𝐭𝐞𝐫𝐧𝐚𝐥
Dihedrals
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Simulated	ensemble
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N C
Cα

𝜙 𝜓 𝜔

𝛽

𝛼, left

𝛼, right

Figure 1.4: An example of distributions over the internal coordinate rep-
resentation for a short simulation (400 frames, 50ps interval) of protein G
(PDB ID: 1pga).

Perturbations The position of each (non-terminal) atom i in the back-
bone is determined by three corresponding internal coordinates, as shown
in Fig. 1.4 on the left hand side. The bond length preceding the atom can
move the atom along the bond. For small changes, the bond angle around
atom i − 1 moves the atom approximately perpendicular to the bond and
within the bond angle plane. The dihedral around the bond between atom
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Chapter 1 | Introduction

i− 2 and i− 1 moves the atom perpendicular to the previous directions for
small perturbations, i.e. in and out of the bond angle plane. A considerable
advantage of perturbing in internal coordinate space is that local structure
is always preserved. This is due to the fact that a change in one internal
coordinate will lead to a rigid body movement, where the perturbed atom
will move together with all atoms downstream. Even though local physical
constraints will not suffer much from perturbations, it is very challenging to
uphold global constraints, since this requires a complicated covariance struc-
ture over all internal coordinates. In Chapter 3, we present a method that
unifies local and global constraints within the internal coordinate parameter-
ization. This is achieved through the incorporation of global constraints in
Euclidean space into a full covariance structure over internal coordinates for
ensembles of protein structures.

Coarse-Grained Representations

For the representations discussed so far, we have mostly considered the back-
bone of proteins. This is a simplified view on the full, fine-grained protein
that also includes all residual groups. The full molecule can be very expen-
sive to use in e.g. simulations, since it would require computing the forces
acting on each atom as I will come back to in the next section “Protein
Dynamics”. Therefore, it may be useful to work with simplified representa-
tions of the protein to save computational cost, while preserving the relevant
features as well as possible despite the loss of fine-grained information. A
coarse-grained (CG) representation is obtained by grouping certain atoms
together into so-called beads using a coarse-graining mapping [37]. These
beads are usually placed at the center of mass of the corresponding atom
group or at the location of the heaviest atom in the group. The backbone is
an extremely simple example of a CG representation where the mapping is
just a slicing operation for all the backbone atoms. Similarly, slicing out the
Cαatoms gives another simple CG representation, as illustrated in Fig. 1.5.
CG mappings can be chosen to be much more sophisticated or even learned
[38]. Coarse-grained representations will play a large role in Chapter 4, where
we propose a method to generate coarse-grained structures as well as obtain
a coarse-grained force field needed for simulations. Both the method and
simulation basics will be covered in the sections below: diffusion models are
described in Section 1.2.2, and simulations and force fields are discussed in
Section 1.1.3.
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Coarse	
graining

Bead
N CCα

R

Figure 1.5: An example of a Cα-coarse-grained representation of protein G
(PDB ID: 1pga), where amino acids are reduced to beads located at the
Cαatom position.

Perturbations Coarse-grained representations are not bound to a specific
coordinate system. Just like atoms, beads can for example be chosen to be
placed in Euclidean space or internal coordinate space, with all correspond-
ing advantages and drawbacks for perturbations. Depending on the coarse-
graining mapping, it may be more challenging to satisfy local constraints due
to the loss of fine-grained information.

Learned Representations

All methods discussed so far constitute different ways to parameterize a pro-
tein, which would still ultimately be in three-dimensional space. In contrast,
learned representations can be set in any space with an arbitrary number of
dimensions. There is a wide variety of models within the field of machine
learning that uses such learned representations one way or another, of which
generative probabilistic latent variable models are relevant for this thesis and
will be elaborately discussed in Section 1.2.

1.1.3 Protein Dynamics

Up until this point, I have discussed proteins in a static setting, and described
how perturbations affect the structure. As a final step towards the dynamic
protein picture, I will transition to protein dynamics and simulation. Pro-
teins are inherently dynamic molecules, which is essential to carry out their
function. Changes in structure can occur on short time scales for processes
such as domain and hydrogen bond vibrations, or on larger time scales for
conformational transitions such as folding and unfolding events, pore opening
and closing, and hinge movements [39]. Here, I will touch upon a selection
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Chapter 1 | Introduction

of protein dynamics tools relevant for the work in this thesis.

Molecular Dynamics

In a molecular dynamics (MD) simulation, the protein is placed in an envi-
ronment, e.g. a block of water molecules as shown in Fig. 1.6. Given this
composite biomolecular system, the forces exerted on each atom can be cal-
culated and Newton’s laws of motion will dictate how the atoms move in 3D
space as a function of time. The approximated force field used in this type
of simulation is the result of quantum mechanical computations, commonly
supplemented with experimental measurements [40]. There is a myriad of op-
tions for force field calculation methods, of which AMBER [41], CHARMM
[42] and OPLS [43] are typical choices.

Figure 1.6: Chignolin (grey), a peptide (i.e. a small protein) of 10 amino
acids, in a block of solvent molecules (red). Simulation frame from Lindorff-
Larsen et al. [44].

Langevin Dynamics

In the classic setting, a force field F is calculated as the negative gradient
of the interaction potential V over particles x: F (x) = −∇xV (x). Corre-
spondingly, the equation of motion, based on Newton’s second law, becomes
F =M d2x

dt2
, with M the particle masses. This is an approximation of reality

which may not take into account frictions caused by the solvent molecules or
random collision events. Additionally, classic deterministic force fields do not
require the temperature to be fixed, even though in most cases it is desired to

12



Chapter 1 | Introduction

analyze the protein’s behavior at a specific temperature. Langevin dynamics
[45] is an example of a thermostatting method designed to keep the system
at a given temperature [46]. Friction and stochastic forces are incorporated
into the Langevin equation of motion as follows:

M
d2x

dt2
= F (x)︸ ︷︷ ︸

particle
interactions

− γM
dx

dt︸ ︷︷ ︸
friction

+
√

2MγkBTw(t)︸ ︷︷ ︸
random events

, (1.1)

where t is time, γ is the friction coefficient, kB is the Boltzmann constant,
T is the temperature, and w(t) is a random force generated by a delta-
correlated stationary Gaussian process [46]. This type of dynamics is relevant
for Chapter 4, where we perform Langevin dynamics simulations using a
predicted force field.

Coarse-Graining

One can imagine how force calculations on each atom in a system can quickly
increase computational cost. To alleviate this problem, a reduced, coarse-
grained (CG) representation of the biomolecular system may be used (see
“Coarse-grained representations” in Section 1.1.2). Even though this fixes one
problem, it creates another: a CG representation requires a corresponding
coarse-grained force field, without losing thermodynamic consistency. Meth-
ods to obtain such CG force fields include variational force matching, relative
entropy minimization, and flow-matching. Variational force matching explic-
itly minimizes the difference between coarse-grained and fine-grained forces
[47], while relative entropy minimization performs force-agnostic density esti-
mation [48]. Flow-matching is a combination of both, utilizing a normalizing
flow as a density-estimator teacher model, and a separate, more flexible stu-
dent model that does force-matching with respect to its teacher [49]. The
reader is referred to the respective papers for more details. In Chapter 4, we
propose a model with a simple setup that outperforms flow-matching in both
sampling and dynamics for coarse-grained proteins, while also being capable
of scaling to larger systems. The underlying model is based on denoising
diffusion, which will be described elaborately in Section 1.2.2.
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1.2 Generative Latent Variable Models

All works presented in this thesis feature generative probabilistic latent vari-
able models. These are data-driven methods that model the underlying data
distribution, assuming the inputs are observations of the random variable
of interest. For the work considered in this thesis, the inputs will be some
type of protein representation, for example a multiple sequence alignment
or the Cartesian coordinates of the backbone of a protein structure. The
observed random variable follows an unknown distribution, which we hope
to better approximate by introducing latent variables, which are unobserved.
Even though there are no observations for these variables, the intuitive idea
is that including them in the model can help explain the behavior of the ob-
served variable. As an example, consider a protein moving through a block
of solvent molecules. The observed variable is the location of the protein over
time, and the latent variable represents the force field acting on the protein.
Of course the force field will greatly influence the movements of the protein,
and therefore including it in the model will help predicting where the protein
will be next. In this example, the latent variable is an actual interpretable
and physical concept, but this does not necessarily need to be the case. The
goal of these probabilistic latent variable models is to approximate the true
data distribution by maximizing the likelihood that the modeled distribution
is the same as the process that generated the observed data. Importantly,
the parameterization of the modelled distribution is chosen in such a way
that it can be sampled from, hence the term generative probabilistic latent
variable model.

That being said, there exists a wide variety of these types of models. Here,
I will zoom in on variational autoencoders (VAE) and denoising diffusion
probabilistic models (DDPM). A simple, single-layer VAE is used in Chap-
ter 3 to demonstrate the potential of the proposed way to incorporate global
constraints into the covariance structure over internal coordinates. Chapter 5
investigates the properties of different variants of the VAE in the context of
protein sequence (MSA) modelling. More specifically, we use ladder VAEs
(LVAEs), which is a type of hierarchical VAE (HVAE), as well as importance
weighted samples (IWAE) and a Bayesian decoder, all described below. In
Chapter 4, we use a DDPM model to obtain an equilibrium distribution
as well as a force field for coarse-grained protein structures from molecular
dynamics data.
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Chapter 1 | Introduction

Since an exhaustive explanation of machine learning and neural networks is
beyond the scope of this thesis, I will assume basic familiarity with concepts
such as neurons, weights and backpropagation.

1.2.1 Variational Autoencoders

Variational autoencoders (VAEs) are a specific type of autoencoder first in-
troduced by Kingma and Welling [50] and Rezende et al. [51]. Generally,
autoencoders are used to reconstruct the input after passing it through a bot-
tleneck, which can be regarded as the learned latent dimensionality-reduced
representation of the input [52]. Like regular autoencoders, VAEs consist
of an encoder, which maps to the latent space, and a decoder, which maps
the latent representation back to the reconstruction of the input. The main
difference between a VAE and a regular autoencoder is that the VAE learns a
parameterization of a distribution over a latent space rather than learning the
mapping to the latent space directly. This makes it possible to draw samples
from a VAE, while regular autoencoders are not generative. Fig. 1.7 shows a
simplified depiction of how a VAE could be used to reconstruct a data point.
VAEs are versatile models which have, amongst others, proven useful within
the field of protein modelling for applications ranging from representation
learning to protein design [11, 12, 53–55].

𝒛

𝒙

Encoder Decoder

𝒙+

Latent	
representation

Figure 1.7: Simple illustration of a VAE, where an encoder maps the data
point x to a distribution in dimensionality-reduced latent space z, and the
decoder maps back from z to the reconstructed sample x̂. The molecule
shown in this example is the central carbon (Cα) trace of chignolin, a peptide
(i.e. a small protein) of 10 amino acids that will be one of the test cases in
Chapter 4.
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Let us take a step back and consider why we would need variational autoen-
coders, and introduce the general notation. Fig. 1.8A depicts the general
model, where the latent variable z generates our random variable of interest
x with likelihood pθ(x|z), where θ are the distribution parameters learned
by a neural network. By updating these model parameters θ, the likelihood
can be maximized such that for optimal parameters the data distribution is
modelled as closely as possible. Moreover, we choose a prior distribution
p(z) for the latent variable, which does not depend on observed states of
x. This prior is commonly chosen to be standard Gaussian (N (0, I)). The
distribution over x can be described by the marginal likelihood, also called
the model evidence:

pθ(x) =

∫
pθ(x, z) =

∫
pθ(x|z)p(z)dz. (1.2)

The problem with Eq. (1.2) is that it often does not have an analytic solution
or a sufficiently efficient estimator, especially for high-dimensional spaces [56].
Instead, let us consider the posterior distribution pθ(z|x) which arises when
Bayes’ rule is used to update the prior with new observations characterized
by the likelihood [57]:

pθ(z|x) =
pθ(x|z)p(z)

pθ(x)
. (1.3)

This true posterior would correspond to reversing the blue arrow in Fig. 1.8A.
While the nominator terms pθ(x|z) and p(z) are tractable to compute, the
remaining problem is still the normalizing constant pθ(x), which was pre-
viously stated to be intractable. Therefore, we can choose to approximate
the posterior instead by a new distribution qϕ(z|x) with model parameters
ϕ, represented by the dotted orange line in Fig. 1.8A [50, 51]. The objec-
tive is to find an approximate posterior such that qϕ(z|x) ≈ pθ(z|x), and
therefore we need an appropriate way to compare the approximate and true
posterior.

KL-divergence The Kullback-Leibler divergence (KL divergence) is a mea-
sure of the difference between two distributions [58]. The idea behind the KL
divergence is very simple: if we want to compute the dissimilarity between a
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Figure 1.8: Variational autoencoder setup. A: graphical model of the VAE,
with the likelihood indicated as a blue arrow and the approximated poste-
rior indicated as a dotted orange arrow. The objective is to match true and
approximated posterior. B: Reverse KL-divergence is chosen for model op-
timization, since a mode-seeking behavior is preferred over a mean-seeking
behavior (example shows bimodal p in blue and unimodal approximation q
in orange).

reference distribution pθ(x) and an approximated distribution qϕ(x) (leav-
ing out conditioning on z for now), we can simply take the ratio of these
distributions: pθ(xi)

qϕ(xi)
for one input xi. Note that this measure is asymmetri-

cal, i.e. it matters if we divide p by q or vice versa, which will be important
later on. For numeric stability and convenience we take the difference of the
log-likelihoods instead: log pθ(xi) − log qϕ(xi) = log pθ(xi)

qϕ(xi)
, which is called

the log-likelihood ratio (LLR). Of course, rather than using just one sam-
ple, we would like to compute the expected value of this ratio, which is the
definition of the KL divergence. Since the LLR is a function of a random
variable x, we can use the law of the unconscious statistician to formulate
the expectation:

DKL(pθ || qϕ) := Epθ

[
log

pθ(x)

qϕ(x)

]
=

∫
pθ(x) log

pθ(x)

qϕ(x)
dx. (1.4)

It was already mentioned that the KL divergence is not symmetric. Eq. (1.4)
shows the forward KL divergence between reference distribution p and ap-
proximation q. However, we could also flip the two distribution, giving rise
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to the reverse KL divergence:

DKL(qϕ || pθ) := Eqϕ

[
log

qϕ(x)

pθ(x)

]
=

∫
qϕ(x) log

qϕ(x)

pθ(x)
dx. (1.5)

To determine whether to use forward or reverse KL divergence, we can com-
pare their behaviors. Fig. 1.8B shows a simple example of a bimodal reference
distribution p in blue and a unimodal approximation q in orange, represent-
ing the common situation where we want to model a complex distribution
by a simpler one. When minimizing forward KL divergence according to
Eq. (1.4), the optimal distribution of q will display mean-seeking behavior,
which is due to the fact that a high price is paid whenever the approximation
has no probability mass in a region covered by p. In contrast, minimizing the
reverse KL divergence according to Eq. (1.5) leads to mode-seeking behavior,
since the highest gain will come from a large overlap between the largest
peak of p and the unimodal q.

Now that we know how forward and reverse KL divergence differ in behavior,
we need to determine which one is most suitable for the variational autoen-
coder, where we want to measure how close our approximated posterior is
to the true posterior. Since the aim is to capture a simplified version of
the true data distribution while still capturing the most important features,
mode-seeking behavior is preferred over mean-seeking behavior. Therefore,
the reverse KL divergence is chosen to compare the approximated and true
posterior:

DKL(qϕ(z|x) || pθ(z|x)) = Eqϕ


log qϕ(z|x)

pθ(z|x)


 . (1.6)

As indicated by a red box in Eq. (1.6), there is still the problem of the
intractable true posterior in the denominator. It will therefore be necessary
to rewrite the objective such that we can compute it.
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Evidence lower bound Let us take Eq. (1.6) as a starting point:

DKL(qϕ(z|x) || pθ(z|x)) = Eqϕ

[
log

qϕ(z|x)
pθ(z|x)

]

= Eqϕ [log qϕ(z|x)]− Eqϕ [log pθ(z|x)︸ ︷︷ ︸
Bayes’ rule

]

= Eqϕ [log qϕ(z|x)]− Eqϕ [log pθ(z,x)]

+ Eqϕ [log pθ(x)]︸ ︷︷ ︸
expectation

= Eqϕ [log qϕ(z|x)]− Eqϕ [log pθ(z,x)]

+ log pθ(x)︸ ︷︷ ︸
independent of z

∫
qϕ(z|x)dz

︸ ︷︷ ︸
probability density, = 1

= Eqϕ [log qϕ(z|x)]− Eqϕ [log pθ(z,x)] + log pθ(x).

Reorganizing the terms gives

log pθ(x) = −Eqϕ [log qϕ(z|x)] +Eqϕ [log pθ(z,x)] +DKL(qϕ(z|x) || pθ(z|x)).
(1.7)

There are still two problems here. Firstly, we know that log pθ(x) is in-
tractable to compute, and the same holds true for DKL(qϕ(z|x) || pθ(z|x)).
However, from the definition of KL divergence (see Eq. (1.5)), we know that
it is always positive. Therefore, a lower bound on the log evidence can be
given:

log pθ(x) ≥ Eqϕ

[
log

pθ(z,x)

qϕ(z|x)

]
=: LELBO. (1.8)

Note that even though we got rid of the KL divergence term, maximizing
this lower bound will still implicitly minimize DKL(qϕ(z|x) || pθ(z|x)) for
Eq. (1.7) to hold true [59]. Additionally, I kept the denominator qϕ(z|x) to
be conditioned on x, but in principle one could also replace this by qϕ(z)
since removing the conditioning will not change anything in the derivations
above apart from the denominator. Eq. (1.8) is called the evidence lower
bound (ELBO), where, in the context of a VAE, LELBO is to be maximized
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[50]. Correspondingly, the loss function λVAE(ϕ,θ;x) to be minimized by the
VAE will be the negative of LELBO. Now, all that is left to be done is obtain
pθ(z,x) and qϕ(z|x), which will be made more intuitive below.

λVAE(ϕ,θ;x) := −LELBO

= −Eqϕ

[
log

pθ(z,x)

qϕ(z|x)

]

= Eqϕ [log qϕ(z|x)]− Eqϕ [log pθ(x|z)]− Eqϕ [log p(z)]

= −Eqϕ [log pθ(x|z)] + Eqϕ

[
log

qϕ(z|x)
p(z)

]

= −Eqϕ [log pθ(x|z)]︸ ︷︷ ︸
expected

reconstruction error

+DKL(qϕ(z|x) || p(z)). (1.9)

Now we are left with a learning objective where all terms are obtainable from
the VAE. As stated before, VAEs have an encoder and a decoder part. The
encoder takes the input and maps to a distribution in latent space parameter-
ized by a mean µ and standard deviation σ since we have chosen a Gaussian
prior and posterior. The decoder maps back from latent space to the recon-
structed output. The expected reconstruction error term in Eq. (1.9) comes
from the decoder, and we can also compute the KL divergence between the
known prior and the approximated posterior that is learned by the encoder of
the network. The full encoder-decoder network can be trained with Eq. (1.9)
as its training loss. The architectures of both encoder and decoder can be
simple linear layers, but can also chosen to be more complex. Once the net-
work is trained, new samples are generated by sampling from the prior and
passing these samples through the decoder network with trained weights to
obtain the final samples.

Reparameterization trick Update the model weights through backprop-
agation requires taking the gradient of the loss function Eq. (1.9) with respect
to all model parameters. For the decoder this is not a problem, since we can
swap gradient (w.r.t. θ) and expectation (w.r.t. qϕ):
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∇θλVAE(ϕ,θ;x) = ∇θ

(
−Eqϕ [log pθ(x|z)] +DKL(qϕ(z|x) || p(z))

)

= ∇θ

(
−Eqϕ [log pθ(x|z)] + Eqϕ [log qϕ(z|x)− log p(z)]

)

= Eqϕ [∇θ(− log pθ(x|z) + log qϕ(z|x)︸ ︷︷ ︸
independent of θ

− log p(z))]

= Eqϕ [∇θ(− log pθ(x|z)− log p(z))]

= Eqϕ [−∇θ log pθ(x, z)].

The resulting expectation can be estimated easily with a Monte Carlo esti-
mator, where z is drawn from qϕ(z|x), i.e. the encoder of the network.

However, getting the gradient ∇ϕλVAE(ϕ,θ;x) is not that simple, since gra-
dient and expectation both involve ϕ:

∇ϕλVAE(ϕ,θ;x) = ∇ϕ

(
−Eqϕ [log pθ(x|z)] + Eqϕ [log qϕ(z|x)− log p(z)]

)

̸= Eqϕ [∇ϕ(− log pθ(x|z) + log qϕ(z|x)− log p(z))].

Therefore, backpropagation w.r.t. ϕ is not able to flow through stochastic
node z, as depicted in Fig. 1.9A.

𝒙

𝝓
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𝝐

𝝈
𝝁𝒛
𝝐
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𝒙

𝝓

𝓛
𝝈
𝝁𝒛

Backpropagation

A B

Figure 1.9: The reparameterization trick. Solid green circles are stochastic
nodes, diamonds represent deterministic nodes. A: the stochastic node breaks
backpropagation. B: the problem is circumvented by the reparameterization
trick, where noise sample ϵ is drawn from a distribution that is independent
of ϕ.

To circumvent this issue, we can apply the reparameterization trick [50, 51,
60], where instead of drawing z from qϕ(z|x) we can express z as a transfor-
mation T of a newly introduced random variable ϵ: z = T (ϵ,ϕ,x). In the
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most common case where we have a Gaussian posterior and z ∼ p(z|x), we
can do the following reparameterization:

z = µ+ σϵ, (1.10)

where µ and σ are predicted by the encoder and ϵ ∼ N (0, I). Using the
reparameterization trick, the expectations in the loss (Eq. (1.9)) can be taken
w.r.t. the distribution over ϵ instead of qϕ(z|x), which means gradient and
expectation can once again be safely swapped in the same way as for the
decoder. Fig. 1.9B shows how the backpropagation flow is restored by the
reparameterization trick.

Importance Weighted Autoencoders

During VAE training, we commonly draw one sample of z from the approx-
imated posterior qϕ(z|x). However, we can also give a multi-sample version
of LELBO from Eq. (1.8) and call it LELBOms :

log pθ(x) ≥ Eqϕ

[
1

k

k∑

i=1

log
pθ(zi,x)

qϕ(zi|x)

]
=: LELBOms , (1.11)

where z1, . . . ,zk ∼ qϕ(z|x) and number of samples k. Note that k > 1
gives LELBOms ≥ LELBO, indicating that drawing more samples will give a
better estimation of the ELBO and therefore a closer estimation of the log
evidence.

However, Burda et al. [61] propose a way to get even closer to the log evidence,
suggesting a tighter bound on the log evidence. In order to understand their
reasoning, we need to revisit the ELBO for a bit.

When deriving the ELBO above, we set the KL divergence between the true
and approximated posterior as an intuitive starting point to derive the ELBO.
However, one could also take the definition of the log evidence as a starting
point and derive the ELBO from there, using importance sampling (see text
box) as a Monte Carlo integrator and swapping log and expectation using
Jensen’s inequality:
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log pθ(x) = log

∫
pθ(x|z)p(z)dz

= log

∫
pθ(x, z)

qϕ(z|x)
qϕ(z|x)dz

= logEqϕ

[
pθ(x, z)

qϕ(z|x)

]
(1.12)

≥ Eqϕ

[
log

pθ(x, z)

qϕ(z|x)

]
,

which is the same result as Eq. (1.8).

Importance sampling [62]
is essentially a trick where
a proxy distribution is used

to insert a “probabilistic
one”, in this case qϕ(z|x)

qϕ(z|x)
.

The resulting unnormalized
importance weights are

wi =
pθ(x, zi)

qϕ(zi|x)
.

The likelihood ratio inside the expectation in Eq. (1.12) can be seen as un-
normalized importance weights wi =

pθ(x,zi)
qϕ(zi|x)

, whose average is an unbiased
estimator of the evidence [61] and therefore

log pθ(x) = logEqϕ

[
1

k

k∑

i=1

wi

]
≥ Eqϕ

[
1

k

k∑

i=1

logwi

]

︸ ︷︷ ︸
LELBOms

. (1.13)

Burda et al. [61] leverage the connection between Eq. (1.12) and importance
weights to obtain a new family of lower bounds under the name impor-
tance weighted lower bound (IWLB) with corresponding objective LIWLB

[61, 63]. Compared to LELBOms , the only difference is that the log and sum
are swapped:

log pθ(x) ≥ Eqϕ

[
log

1

k

k∑

i=1

wi

]
=: LIWLB. (1.14)

From here, it is clear from Jensen’s inequality that the IWLB provides a
tighter bound on the log evidence compared to ELBO:

logEqϕ

[
1

k

k∑

i=1

wi

]

︸ ︷︷ ︸
log pθ(x)

≥ Eqϕ

[
log

1

k

k∑

i=1

wi

]

︸ ︷︷ ︸
LIWLB

≥ Eqϕ

[
1

k

k∑

i=1

logwi

]

︸ ︷︷ ︸
LELBOms

. (1.15)

23



Chapter 1 | Introduction

Bear in mind that if the number of samples k = 1, the LIWLB = LELBO which
is the objective for a regular VAE. If we, on the other hand, take the limit of
k to infinity, we get limk→∞ LIWLB = log pθ(x). This indicates that for large
numbers of k, the true posterior is approached by the approximated posterior.
LIWLB is the objective for the importance weighted autoencoder (IWAE)[61].
Even though IWAEs have the same type of architecture as VAEs, IWAEs
are capable of using the network capacity better and can in principle model
more complex distributions [61, 64]. This also makes sense intuitively: a VAE
encoder draws one sample for z, which will be treated like observed data by
the decoder whose weights will be adjusted in a biased manner [63]. In this
way, both the encoder and the decoder can be heavily penalized for a “bad”
sample. In contrast, the IWAE has more flexibility due to the importance
weights, which will put less emphasis on a single sample.

There are also problems associated with optimizing lower bounds and even
though it is beyond the scope of this thesis to provide detailed proof, I will
briefly mention these limitations and the associated literature. A general
problem that occurs in VAEs is that the variance of the gradients of the objec-
tive function w.r.t. model parameters can become large, which decreases the
signal-to-noise ratio (SNR) and can even prevent the model form converging
properly [65, 66]. It has been shown that this problem gets worse for multi-
sample estimators [67, 68], and different ways have been proposed to mitigate
these problems, both for regular VAEs and IWAEs [65, 66, 69, 70].

Hierarchical VAEs

Up until this point, we have considered a VAE (or IWAE) with a single
multidimensional latent variable z. Since some prior is assumed over this
one latent variable, customarily a standard Gaussian, it is easy to imagine
that this can be a large constraint to the model, limiting the complexity of
distributions that can be modelled by the VAE. One way to increase the flex-
ibility of the model is to introduce a hierarchy of multiple latent variables,
creating a hierarchical variational autoencoder (HVAE) with a more expres-
sive prior and approximate posterior [50, 51, 61, 71–73]. Fig. 1.10 depicts
a schematic representation of the encoder (top) and decoder (bottom) of a
vanilla HVAE.

In the encoder, corresponding to the inference model as before, the first
latent variable z1 is conditioned on the input x and each following latent
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Figure 1.10: Hierarchical VAE (HVAE) structures. Solid green circles are
stochastic nodes, diamonds represent deterministic nodes. “Upward” passes
are shown as orange arrows, “downward” passes are shown as blue arrows,
black lines and arrows indicate transfer without the involvement of a neural
network. Top: encoder for a vanilla HVAE. Middle: encoder for a ladder
VAE (LVAE). Bottom: the decoder is the same for HVAE and LVAE, apart
from the shared weights between the decoder and the downward pass of the
LVAE encoder, indicated by a green star.

variable zi is conditioned on the latent variable preceding it. Therefore the
approximate posterior factorizes in a bottom-up fashion for a model with N
latent variables [61]:

qϕ(z|x) = qϕ(z1|x)
N∏

i=2

qϕ(zi|zi−1). (1.16)

In contrast, the decoder represents the generative model and its joint prob-
ability distribution factorizes in a top-down manner:

25



Chapter 1 | Introduction

pθ(x, z) = pθ(x, z1)
N−1∏

i=1

pθ(zi, zi+1), (1.17)

with
∏N−1

i=1 pθ(zi, zi+1) = p(z) the prior distribution. Even though this hier-
archical structure gives more flexibility to the model, HVAE training can be
relatively unstable due to the cumulative effect of conditional stochasticity
as more latent variables are added [73]. Moreover, HVAEs with many lay-
ers tend to have inactive layers higher up in the hierarchy, i.e. closer to zN ,
which do not have any effect on the learned representation and therefore do
not lead to a gain in performance [61, 74, 75].

A solution to this problem is suggested by Sønderby et al. [71], who introduce
a method called the ladder variational autoencoder (LVAE). Fig. 2.3 (middle)
shows the inference model of the LVAE. As opposed to the encoder of a vanilla
HVAE, the LVAE encoder first does a deterministic upward pass, followed
by top-down inference:

qϕ(z|x) = qϕ(zL|x)
1∏

i=N−1

qϕ(zi|zi+1). (1.18)

Here, the mean and standard deviation of the approximate posterior at each
latent layer i is a combination of the mean and variance from the determin-
istic node di from the upward pass and the stochastic latent layer upstream
zi+1 [71, 74] as depicted in Fig. 2.3 (middle, see Sønderby et al. [71] for
implementation details).

Bayesian Decoder

In a regular VAE model, we assume a single estimate for each parameter
in the decoder network, i.e. we get a point estimate θ∗ that optimizes the
likelihood p(x|z,θ∗). However, this approach does not incorporate the un-
certainty over the selection of the network parameters (weights and biases),
also known as the epistemic uncertainty. This can lead to overly confident
generative models, especially for samples that do not lie within the data dis-
tribution [76–78]. Instead of only being probabilistic about z, we could also
infer a distribution over the parameters of the decoder network and treat
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them in a Bayesian way [50]. Similar to before, we seek to approximate the
true posterior p(θ|X), with X the full training dataset. In practice, this is
often done through minimization of the KL divergence between proxy dis-
tribution q(θ|λ) and prior p(θ), also known as "Bayes by Backprop" [79].
Here, the prior is commonly chosen to be a standard Gaussian such that
p(θ) ∼ N (0, I). Moreover, q(θ|λ) is also usually assumed to be diagonally
Gaussian distributed, parameterized by λ = {µ,σ2}. Bayes by Backprop
gives us a new lower bound and corresponding objective for a dataset with
N samples (see [79] and appendix F of [50]):

log pθ(x) ≥ N · Ep(x)

[
Eq(θ|λ)qϕ(z|x)[log p(x|z,θ)−DKL (qϕ(z|x) || p(z))]

]

−DKL (q(θ|λ) || p(θ)) . (1.19)

In the generative process, the weights and biases are drawn from the pre-
dicted distributions, thereby making the model more robust towards epis-
temic uncertainty. As a side note, it is also possible to be Bayesian over
the parameters of the encoder network, but since estimating distributions
and sampling from them is more expensive compared to point estimates, the
common choice is to only be probabilistic for the generative network.

While being Bayesian about the decoder weights takes epistemic uncertainty
into account, having a stochastic estimate for each parameter can also add
noise, especially when a standard diagonal Gaussian distribution is assumed
such that all parameter distributions are sampled independently. Although
there are ways to get a full covariance structure for the parameters, such as
Laplace approximation [80], this is usually a very expensive operation. An-
other way to mitigate noise is by scaling down the variance of the network
parameter distributions and making them more “peaked”. The scaling factor
is often referred to as the temperature, where a higher temperature corre-
sponds to a higher variance. Lowering the temperature makes the variance
smaller and therefore it becomes more likely that the parameters are sam-
pled close to the mean, which may in many cases increase performance in a
phenomenon is called the cold posterior effect [81].
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Variational Autoencoders: Conclusion

VAEs are probabilistic generative models consisting of an encoder, a latent
space with reduced dimensionality, and a decoder. They are trained by opti-
mizing a lower bound on the model evidence. Several flavors of VAEs exist;
trying to tighten the lower bound (IWAE), incorporate epistemic uncertainty
(Bayesian decoder), increase flexibility by adding more layers of latent space
(HVAE/LVAE), and many more. As we move on to Section 1.2.2, consider
what would happen if we expand an hierarchical VAE to have many, say a
thousand, latent space layers, and replace the encoder by a stochastic pro-
cess without any learned parameters as well as disregard the need for a bottle
neck. The result would, in a very hand-wavy manner, already be quite close
to a diffusion model, and keeping this in mind will hopefully facilitate reading
the next section.

1.2.2 Diffusion Models

Diffusion models are based on the idea that a model can learn how to re-
move stochastically added noise. In the so-called forward process, increasing
amounts of noise are added to a data point until a state of pure noise is
reached. The generative model learns how to remove noise in the reverse
process. This way, a corrupted sample can be reconstructed or a completely
new sample can be generated by drawing a sample from noise and subse-
quently denoising the sample. Fig. 1.11 shows a simplified picture of a diffu-
sion model, reducing a small protein to noise and denoising it in the opposite
direction.

One of the first diffusion models within the domain of machine learning was
introduced by Sohl-Dickstein et al. [82], but they started attracting more
attention with the publications of Song and Ermon [83] and Ho et al. [84].
Diffusion models have gained momentum in recent years, becoming state-of-
the-art in image synthesis [85–87], resulting in popular tools such as Stabil-
ityAI’s Stable Diffusion [88] and Midjourney [89], and OpenAI’s DALLE 2
[90]. More recently, diffusion models have emerged as a promising tool for
modelling proteins [34, 35, 91–93].

Throughout the diffusion model explanation, I have tried to keep the nota-
tion and illustrations as close as possible to Section 1.2.1 (Variational Au-
toencoders) to aid understanding and comparison between both methods.
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Denoise

Add noise

Figure 1.11: Simple illustration of a diffusion model, where noise can be
added sequentially to a sample, and the model learns how to denoise the
corrupted sample. The molecule shown in this example is the central carbon
(Cα) trace of chignolin, a peptide (i.e. a small protein) of 10 amino acids
that will be one of the test cases in Chapter 4.

The relationship between diffusion models and VAEs will be discussed in
Section 1.2.3 (“Diffusion models versus variational autoencoders”).

Setup We aim to construct a probabilistic model p with parameters θ that
approximates the distribution q over data: pθ(x) ≈ q(x), where x ∈ Rd

denotes a d-dimensional data point and q does not depend on any parameters.
If we want to compute the normalized probability density function, we run
into a partition function Z, which is a normalizing constant that depends on
θ and usually involves solving an analytically intractable integral:

pθ(x) =
p̃θ(x)∫

x∈Rn p̃θ(x)dx
=

1

Z(θ)
p̃θ(x), (1.20)

where p̃ is the non-normalized version of p. This situation is very similar to
the variational autoencoder setting, see Eq. (1.3) in Section 1.2.1.

There are generative models that can estimate exact densities, such as au-
toregressive models and normalizing flows [94]. Even though discussing these
models in detail is beyond the scope of this thesis, it is important to acknowl-
edge that they come with other drawbacks. Autoregressive models use the
past values of a data series to predict future values. Many different variants
of autoregressive models have been developed over the years for a variety of
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applications [95–100]. However, the model requires ordered data, has diffi-
culties is retaining long-term information, and has a slow generation process
due to its autoregressive nature [94]. Normalizing flows apply a series of
invertible (i.e. bijective) transformations to convert a complex data distri-
bution into a simple distribution that can be sampled from. Normalizing
flows come in different shapes and sizes and can be applied in different fields
[49, 101–105]. Drawbacks of this type of model are slow and difficult training,
scaling limitations, and constrained expressivity due to the need for bijective
mappings [94]. That being said, both autoregressive and normalizing flow
generative models can evaluate exact (normalized) densities.

However, when we do not have a tractable likelihood, there is the alternative
option to adopt a non-normalized model, also called an energy based model
(EBM). Here, I will focus on a subset of non-normalized models based on
score matching, which I will explain more elaborately in the next section as
we carefully build up to describing diffusion models. Even though we are
assuming a non-normalized model, score-based models might still be able to
provide an estimate of (a lower bound of) the log-likelihood, similar to VAEs,
which I will get back to later.

Score Matching

To understand score-based models such as diffusion models, we first need to
define what a score, also called the score function, is. Essentially, a score
is an indicator for how a distribution changes with respect to its inputs. In
other words, it is the gradient of the probability distribution landscape. See
Fig. 1.12 for a simple example of what this could look like.

In score matching (SM), the goal is to match the score function of the model
density, denoted with sθ, to the score function of the data distribution, de-
noted with s [106]. The score function corresponds to the gradient of the
log-density of the distribution with respect to the inputs:

sθ(x) = ∇x log
1

Z(θ)
p̃θ(x) = ∇x log p̃θ(x) (1.21)

s(x) = ∇x log q(x), (1.22)

where we assume that q is differentiable with respect to x. Note that the
score function does not depend on the normalization constant Z of the distri-
bution. Intuitively, matching these two scores means aligning the first-order
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Figure 1.12: A score represents the gradient of the probability distribution,
exemplified here by a vector field of a 2D density landscape.

derivatives of the logarithm of both distributions. More formally, the ob-
jective is to find the optimal parameters to minimize the expected squared
distance between the model and data score functions, i.e. we want to mini-
mize the objective function LSMexplicit

:

LSMexplicit
:=

1

2
Eq∥sθ(x)− s(x)∥2 (1.23)

This is known as explicit score matching. However, evaluating this objective
function requires either knowing the gradient of the data distribution log-
density or somehow getting a non-parametric estimate of it, which is often
non-trivial. Luckily, this problem can be circumvented by applying integra-
tion by parts [106, Theorem 1], resulting in the following objective for implicit
score matching:

LSMimplicit
:= Eq

[
Tr(∇xsθ(x)) +

1

2
sθ(x)

]
+ C, (1.24)

where ∇xsθ(x) corresponds to the Hessian of the log-density and C is a
constant that does not depend on θ.
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Even though implicit score matching fixes one problem, it gives rise to an-
other: computing the Hessian of the log-density distribution is often expen-
sive from a computational perspective (O(d2) in space and time), especially
for high-dimensional settings. Computing the Hessian through e.g. backprop-
agation can be very slow [107]. One way around this issue is to use sliced
score matching [108], where the high-dimensional problem is transformed
into a one-dimensional problem by projecting onto a random direction and
comparing scores in that direction.

Denoising Score Matching

An alternative score matching approach that avoids calculating the Hessian
altogether is denoising score matching (DSM) [109]. This method can be
regarded as a transition step from score matching towards diffusion models
since the underlying theory and objective are very similar. DSM combines
ideas from score matching and denoising autoencoders [110, 111]. In denois-
ing autoencoders, input samples are artificially corrupted in multiple steps,
where at each step:

x̃ = x+ ϵ, (1.25)

with x the input sample, x̃ the corrupted sample and ϵ the added noise,
which is usually normally distributed, i.e. ϵ ∼ N (0,σ2I) where σ2 denotes
the variance. This yields the following conditional density:

qσ(x̃|x) =
1

(2π)d/2σ
exp− 1

2σ2 ∥x̃−x∥2 .

A variational autoencoder is then trained such that the encoder learns how
to encode the corrupted sample x̃ into a latent representation z, while the
decoder maps the latent representation to x̂, a reconstruction of the input
sample. The goal is to minimize the squared difference between the recon-
structed sample and the original input ∥x̂− x∥2.
In DSM, the gradient of the conditional log-density, ∇x̃ log qσ(x̃|x), is matched
to the score function sθ predicted by a model. This leads to the following
objective for the joint density qσ(x̃,x) = qσ(x̃|x)q0(x), with q0(x) the den-
sity at zero noise (σ = 0), i.e. the empirical probability density function
associated with the data:
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LDSM := Eqσ(x̃,x)

[
1

2
∥sθ(x̃)−∇x̃ log qσ(x̃|x)∥2

]
. (1.26)

In words, the gradient of the conditional log-density will bring us closer
towards the noise-free input, and we want our model to match that as closely
as possible. In a setting where the model is highly expressive and enough data
is available, the score given optimal parameters sθ∗(x̃) will approximately
match the score ∇x̃ log qσ(x̃), where the score is no longer conditioned on x
[109]. Moreover, at low noise levels we have that sθ∗(x̃) ≈ ∇x log q0(x), since
the joint density qσ(x̃,x) will resemble the data distribution q0(x) [83].

Diffusion Models: SMLD and DDPM

Diffusion models learn a denoising process for samples to which noise has
been added slowly in multiple steps and are thereby able to generate new
samples from noise, as illustrated in Figure 1.11. A more detailed view on
diffusion models is shown in Fig. 1.13. The increasingly noisy representations
of the input can be seen as a diffusion model’s “latent space”, which is why
from now on I will denote noisy samples by zi, with i = 0, . . . , L the noise-
adding step, z0 = x the original sample and zL random noise where all
information has been destroyed.
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Figure 1.13: Detailed schematic representation of a diffusion model. Noise
is added during the forward process, while in the reverse process the model
learns how to denoise the sample. The training objective for DDPMs, which
is to minimize the difference between the predicted noise and the ground
truth noise, is shown at the bottom of the figure in a light green box.
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There are multiple variants of diffusion models, of which the two main ap-
proaches I will focus on here are denoising diffusion probabilistic models
(DDPM) [84] and score matching with Langevin dynamics (SMLD) [83]. I
will discuss both models, but DDPM will be explained in more detail since
it is the model that is relevant for Chapter 4 of this thesis. Both DDPM
and SMLD gradually add Gaussian noise to the input sample in the forward
process and both methods in one way or another compute denoising scores.
However, there are distinct differences between both models and especially
their equilibrium distributions. SMLD is a DSM-based method (see “Denois-
ing score matching”) that adds noise according to Eq. (1.25). As the number
of noise-adding steps i goes to infinity, SMLD therefore has a finite mean
(which is equivalent to the original input) and an exploding variance:

q(zi|zi−1) = N (zi−1, σ
2
i I) (1.27)

lim
i→∞

q(zi|z0) = N (z0,∞ · I) (1.28)

In contrast, DDPM applies a scaling factor to the input while also adding
noise, both dependent on an increasing noise scale 0 < βi < 1, such that the
limit distribution becomes standard Gaussian:

q(zi|zi−1) = N (
√
ᾱi−1zi−1, (1− ᾱi−1)I) (1.29)

lim
i→∞

q(zi|z0) = N (0, I), (1.30)

with αi = 1 − βi and ᾱi =
∏i

j=1 αj. There is also a variance preserving
variant of SMLD, mentioned in Song et al. [112, Section 3.4]. Both for SMLD
and DDPM, q does not depend on any network parameters, since the added
noise is just sampled from a known distribution and there are no learned
parameters involved.

SMLD and DDPM also differ in their learning objectives. In SMLD, the
loss is based on denoising score matching (see Eq. (1.26)), meaning that in
optimal circumstances (i.e. for optimal parameters, small noise levels and
an infinite amount of time steps) the learned score will approximate the
true scores. Subsequently, sampling is done using Langevin dynamics steps
(see [83] and Section 1.1.3). In DDPM, on the other hand, the objective is
to maximize the evidence lower bound (ELBO) for every step, treating the
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corrupted data as latent variables:

LDDPM :=
L∑

i=0

LELBO,i

= Eq

[
log

pθ(z0:L)

q(z1:L|z0)

]

= Eq [log pθ(z0|z1)]︸ ︷︷ ︸
LI

−
L−1∑

i=1

DKL (q(zi|zi+1, z0)||pθ(zi|zi+1))︸ ︷︷ ︸
LII

−DKL(q(zL|z0)||p(zL))︸ ︷︷ ︸
LIII

. (1.31)

Here, LI is the expected reconstruction error for the first diffusion step, LII

are computable KL divergences between Gaussians, and LIII is the diver-
gence between the distribution over noisy samples given the input samples
at final step L and the “prior” we have over noise. LIII can be disregarded
since it has no learned parameters and is therefore constant over training.
Moreover, LIII approaches zero for a sufficient number of diffusion steps L,
since large amounts of added noise will eventually always converge to the
standard Gaussian distribution in a DDPM as shown in Eq. (1.30). In the
end, we are left with the by now familiar reconstruction term and a number of
KL divergences. Here it is important to note that even though the so-called
forward process posterior q(zi−1|zi) is intractable, it becomes tractable when
conditioned on z0:

q(zi−1|zi, z0) = N (µ̃i(zi, z0), β̃iI)

where µ̃i(zi, z0) =

√
αi(1− ᾱi−1)

1− ᾱi

zi +

√
ᾱi−1βi
1− ᾱi

z0

and β̃i =
1− ᾱi−1

1− ᾱi

βi.

Next, we can remove the dependency of µi on z0. Through the reparameter-
ization trick we can write z0 as a function of zi:

zi =
√
ᾱiz0 +

√
1− ᾱiϵi,with ϵi ∼ N (0, I)

⇒ z0 =
1√
ᾱi

(
zi −

√
1− ᾱiϵi

)
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Substituting z0 in µi with the expression above gives the following result:

µ̃i =
1√
αi

(
zi −

βi√
1− ᾱi

ϵi

)
.

In a similar way, we can parameterize the model mean µθ as a function of zi

and a neural-network parameterized noise source ϵθ:

pθ(zi−1|zi) = N (µθ,i, σ
2
i )

where µθ,i =
1√
αi

(
zi −

βi√
1− ᾱi

ϵθ(zi, i)

)

with σi either learned by the model (σθ,i) or set as a hyperparameter, which
will be assumed here. For fixed σi, LII can be reformulated such that the
effective objective becomes minimizing the difference between µ̃i and µθ,i

[84]:

LII = Eq(z0),ϵi∼N (0,I)


 β2

i

2αi(1− ᾱi)∥σi∥22
∥ϵi − ϵθ(

√
ᾱiz0 +

√
1− ᾱiϵi︸ ︷︷ ︸

zi

, i)∥2

 .

(1.32)

Ho et al. [84] suggest a simplified version of this expression to use in DDPM
training, which also covers the reconstruction term LI when i = 1:

λDDPM,i = Eq(z0),ϵi∼N (0,I)

[
∥ϵi − ϵθ(zi, i)∥2

]
+ C, (1.33)

where C can be omitted during training since it does not depend on θ when
σi is set and not learned. For i = 1, this loss function corresponds to LI :
the reconstruction loss for a Gaussian distribution with fixed sigma becomes
the mean squared error (MSE) between the ground truth and the reconstruc-
tion, which is in turn equivalent to the MSE between the predicted noise at
i = 1 and the true noise that was added in the forward process. In other
words, a perfect reconstruction is obtained when the predicted noise equals
the forward process noise. For i > 1, Eq. (1.33) corresponds to an unweighted
version of Eq. (1.32), which often leads to better sample quality in practice,
possibly because less weight is given to the more simple denoising tasks at
small values of i [84].
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The effective objective for the model according to Eq. (1.33) is to predict
the level of noise for a given zi. During training of a DDPM model, a noise
level i is picked at random. The predicted noise is then matched to the
ground truth noise, where obtaining the ground truth is trivial since we can
make any jump in the forward process due to the fact that all added noise is
Gaussian distributed. Here, it is important to note that the parameters for
every step in the generative process are shared. Moreover, it has been shown
that the loss in Eq. (1.33) implicitly minimizes the DSM loss with weights γi
[83, 84]:

λDSM
DDPM,i = Eq(z0)Eq(zi|z0)γi∥sθ(zi)−∇zi log q(zi|z0)∥2, (1.34)

which is indeed very similar to LDSM in Eq. (1.26). For this DSM objective,
we know that for a highly expressive model, enough data and low noise levels,
the predicted score approximates the true score [83]. An equivalent statement
holds for optimizing λDSM

DDPM,i with low noise levels for each noise-adding step
i, which can be ensured by taking the limit to infinity for the number for
noise-adding steps.

Score versus conservative energy gradient Given optimal parameters
and a sufficient number of noise adding steps, diffusion models aim to es-
timate a score, either explicitly (SMLD) or implicitly (DDPM). However,
a straightforward parameterization of the score with a neural network does
not enforce the constraint that ∇zi log q(zi) is a conservative vector field,
i.e. that any line integral between two points within the vector field is in-
dependent of the path taken. Enforcing this constraint would be plausi-
ble since we are modeling a Boltzmann distribution where energy is con-
served: q(z0) ∼ exp−V (z0)/(kBT ), with V (z0) the potential energy, kB
the Boltzmann constant and T the temperature. The gradient of the log
density corresponds to −∇ziV (z0) = F (z0), with F (z0) the conservative
forces. This property could be realized by parameterizing the learned score
such that we explicitly calculate the gradient of a scalar energy function:
sθ(zi) = −∇ziVθ(zi). Although this parameterization could serve as a strong
inductive bias, it could also substantially change the optimization landscape
through the added constraints. In Salimans and Ho [113], it is argued that
as long as you take care of the way you build in these constraints, similar
results can be obtained with both parameterizations.
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Diffusion Models: Conclusion

Diffusion models learn how to denoise samples to which noise has been added
in a multi-step process. These models are flexible and expressive, and can
provide an estimate of the lower bound of the log-likelihood. What I have
not touched upon here is that it is also possible to generalize the number
of noise steps to infinity, giving rise to the stochastic differential equation
(SDE) formulation of diffusion models, which can be used to compute exact
log-likelihoods [112, Appendix D.2].

Apart from being expressive, diffusion models are relatively fast to train and
scale well to large inputs. A drawback is that the generative process of the
simplest version of a diffusion model is slow due to the step-wise sampling
process. However, tricks can be applied to speed up generation [114].

1.2.3 Diffusion Models versus Variational Autoencoders

As I have hinted at earlier, diffusion models are in many ways similar to
deep hierarchical VAEs. I have illustrated the similarities and differences in
Fig. 1.14. First of all, both models have a generative process where a latent
variable is sampled and subsequently transformed over multiple steps into
outputs that resemble the training data. Secondly, looking at Fig. 1.14 and
comparing Fig. 1.10 to Fig. 1.13, there is a strong resemblance between the
encoder of a VAE and the forward process of a diffusion model, since in both
cases a data point gets converted into a sequence of latent representations.
In addition, both VAEs and DDPMs are optimized using the same objective,
namely maximizing the lower bound on the log evidence.

Of course, there are also differences between the two approaches. Diffusion
models have shared parameters for each step in the generative chain, whilst
in hierarchical VAEs a different network is typically trained to transition
from one latent space layer to another. This makes diffusion models a bit
more flexible, since they are trained to handle many noise levels with one
set of parameters given noise-step i. Moreover, while there are similarities
between the encoder of a VAE and the forward process of a diffusion model,
the latter does not have any learned parameters. Finally, all intermediate
representations in a diffusion model have to be of the same size as the input,
while a VAE allows for dimensionality reduction (i.e. a bottleneck). This dif-
ference is linked to how much value is assigned to the latent representation
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in both models. In VAEs, the latent space is often intended as a reduced
representation of the input, which still contains essential information about
the data point. This representation can then in principle be used in different
downstream tasks. In contrast, diffusion models mostly aim to get plausible
samples, and all information about the input gets destroyed as it is trans-
formed into random noise. Even though this means the latent representations
cannot easily be used for downstream tasks, it also gives the model a lot of
flexibility and, in most cases, good performance.

Shared	objective:
ELBO	⬆
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Figure 1.14: Conceptual similarities and differences between variational au-
toencoders and diffusion models.
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Chapter 2

Overview

My Ph.D. journey took some unexpected turns. When I started, we set
out to develop new methods for protein folding using a variety of different
machine learning models (amongst others LSTMs, residual neural networks,
autoregressive networks and dilated convolutional networks). However, after
the release of Alphafold2 [1], we decided to move away from static structure
prediction and redirect our attention towards ensembles of structures and
protein dynamics. Moreover, we ended up focusing on generative models,
which was a natural choice since modeling ensembles is much more valuable
if one can also sample from the learned distribution. Below, I provide a short
description for each of the paper chapters.

Chapter 3: Internal-Coordinate Density Modelling of Pro-
tein Structure: Covariance Matters

From our own experiences as well as existing protein structure modeling lit-
erature, it is clear that the choice of structure representation is often of great
importance. The two most common parameterizations are Cartesian coordi-
nates and internal coordinates. Cartesian coordinates model global structure
well, but struggle with local chemical integrity and require either a rotation
and translation invariant model or data augmentation. Internal coordinates,
on the other hand, satisfy local constraints, but it is non-trivial to capture
global structural integrity for this representation since perturbations lead
to rigid-body movements downstream of the perturbed atom. Therefore, a
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complex covariance structure is needed to satisfy global structural constraints
when modelling protein structure using internal coordinates. In Chapter 3,
this is exactly the problem we address, as illustrated in Fig. 2.1 (under re-
view for ICML 2023). Inspired by Favrin et al. [115] and earlier work of my
supervisor Wouter Boomsma concerning local moves [116], we derived a full
covariance structure over internal coordinates for ensembles of full proteins
by placing constraints in 3D space. As a proof-of-concept, we incorporate
our method into a variational autoencoder and show high-quality generated
samples, both locally locally and globally.
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Figure 2.1: The paper in Chapter 3, currently under review for ICML 2023,
describes a method to capture a rich covariance structure over internal co-
ordinates that incorporates global constraints for ensembles of proteins. A
VAE is presented as an example of how the covariance structure could be
leveraged in practice. Figure adapted from Fig. 1 in the corresponding pa-
per.

Chapter 4: Two for One: Diffusion Models and Force
Fields for Coarse-Grained Molecular Dynamics

In the final year of my Ph.D., I got the opportunity to go to Amsterdam, the
Netherlands, for a four month internship at Microsoft Research (AI4Science).
My own research interests and the extensive machine learning expertise that
was present in the group culminated in a project where a diffusion model is
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used for density modeling of coarse-grained protein dynamics data, inspired
by Köhler et al. [49] for certain modeling and evaluation choices. The re-
sulting paper (under review for ICML 2023) is presented in Chapter 4. We
exploit the fact that diffusion models implicitly learn a score such that we
can, in addition to using the learned equilibrium distribution to draw samples
i.i.d., also extract a coarse-grained force field to use in molecular dynamics
simulations, as illustrated in Fig. 2.2. We show that our method outperforms
baselines for equilibrium metrics as well as transition probability dynamics
metrics for small- to medium-sized proteins exhibiting folding and unfolding
events [44].

Denoising diffusion model
! − !!($" , &) #

i.i.d. sampling dynamics

Coarse-grained data (xyz)

Chapter	4

DDPM

Structure
dynamics

Figure 2.2: The paper in Chapter 4, currently under review for ICML 2023,
presents a diffusion model that takes coarse-grained molecular dynamics data
as input and learns both an equilibrium distribution from which samples can
be drawn i.i.d. and a coarse-grained force field that can be used for molecular
dynamics. Figure adapted from Fig. 1 in the corresponding paper.

Chapter 5: Sampling quality in deep generative models
of protein sequences

Although generative models can be a powerful tool, they are not without
flaws. The final paper of this thesis, under review for UAI 2023, investigates
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latent representations of protein families in VAE-based models. First shown
by Riesselman et al. [11], training a one-layer VAE on protein family sequence
(MSA) data results in a “star-shaped” aggregated posterior where different
species separate in latent space. However, a standard Gaussian prior hardly
seems appropriate for this type of representation considering the considerable
amount of areas where probability mass will be placed despite the absence of
observed data points, as depicted in Fig. 2.3. This has a negative effect on
the quality of the samples generated by the model. We investigate this issue
in Chapter 5 and show that using a multi-layer LVAE somewhat alleviates
this problem. We further show that the use of a Bayesian decoder results in
lower sample quality and report on the effect of introducing a temperature
scale on the posterior of the weights of the decoder. This work was partly
done during my change of environment at DTU.

Multiple	sequence	
alignment

!

"

!(0, %) prior

aggregated
posterior

A B

C

Chapter	5

LVAE

Sequence
evolution

Figure 2.3: The paper in Chapter 5, currently under review for UAI 2023, in-
vestigates sampling quality in VAE models trained on protein family sequence
data. We show how the use of an LVAE somewhat reduces the discrepancies
between the prior and the aggregated posterior, and investigate the effects
of a Bayesian decoder on generated samples. Figure adapted from Fig. 1 in
the corresponding paper.

43



Chapter 3

Internal-Coordinate Density
Modelling of Protein Structure:
Covariance Matters
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The work presented in this chapter was submitted to ICML 2023
and is currently under review. A preprint is available on arXiv:
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Internal-Coordinate Density Modelling of Protein Structure: Covariance
Matters

Marloes Arts 1 Jes Frellsen 2 Wouter Boomsma 1

Abstract
After the recent ground-breaking advances in pro-
tein structure prediction, one of the remaining
challenges in protein machine learning is to reli-
ably predict distributions of structural states. Para-
metric models of small-scale fluctuations are diffi-
cult to fit due to complex covariance structures be-
tween degrees of freedom in the protein chain, of-
ten causing models to either violate local or global
structural constraints. In this paper, we present
a new strategy for modelling protein densities in
internal coordinates, which uses constraints in 3D
space to induce covariance structure between the
internal degrees of freedom. We illustrate the
potential of the procedure by constructing a vari-
ational autoencoder with full covariance output
induced by the constraints implied by the condi-
tional mean in 3D, and demonstrate that our ap-
proach makes it possible to scale density models
of internal coordinates to full-size proteins.

1. Introduction
Proteins are macro-molecules that are involved in nearly
all cellular processes. Most proteins adopt a compact 3D
structure, also referred as the native state. This structure is a
rich source of knowledge about the protein, since it provides
information about how the protein can engage biochemically
with other proteins to conduct its function. The machine
learning community has made spectacular progress in recent
years in the prediction of the native state from the amino
acid sequence of a protein (Jumper et al., 2021; Senior
et al., 2020; Wu et al., 2022b; Baek et al., 2021; Wu et al.,
2022a). However, the static picture of the structure of a
protein is misleading: in reality a protein is continuously
moving, experiencing both thermal fluctuations and larger
conformational changes, both of which affect its function.

1Department of Computer Science, University of Copenhagen,
Copenhagen, Denmark 2Department of Applied Mathematics and
Computer Science, Technical University of Denmark, Copenhagen,
Denmark. Correspondence to: Marloes Arts <ma@di.ku.dk>.
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Figure 1. Proteins can be represented in local and global coordi-
nates. Internal coordinates are fed as input to a model (in our case
a VAE), which predicts a mean and full covariance structure over
internal coordinates based on a prior plus specific constraints on
atom fluctuations. The resulting model can generate high-quality
samples, in terms of both local and global structure.

One of the remaining challenges in machine learning for
structural biology is to reliably predict these distributions of
states, rather than just the most probable state. We discuss
the state of the density modelling field in Section 5 (Related
work).

Modelling the probability density of protein structure is
non-trivial, due to the strong constraints imposed by the
molecular topology. The specific challenges depend on the
chosen structural representation: if a structure is represented
by the 3D coordinates of all its atoms, these atom positions
cannot be sampled independently without violating the phys-
ical constraints of e.g. the bond lengths separating the atoms.
In addition, an arbitrary decision must be made about how
the structure is placed in a global coordinate system, which
implies that operations done on this representation should
preferably be invariant or equivariant to this choice. An
alternative representation is to parameterize the structure
using internal coordinates, i.e. in terms of bond lengths,
bond angles and torsion/dihedral angles (rotations around
the bonds). The advantage of this representation is that
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internal degrees of freedom can be sampled independently
without violating the local bond constraints of the molecule.
It also makes it possible to reduce the number of degrees
of freedom to be sampled – for instance fixing the bond
lengths to ideal values, since they fluctuate much less than
the torsion angles and bond angles.

For the reasons given above, an internal coordinate repre-
sentation would appear to be an attractive choice for density
modelling. However, one important problem reduces the
appeal: small fluctuations in internal coordinates will propa-
gate down the chain, leading to large fluctuations of atoms
remotely downstream in the protein chain. As a conse-
quence, internal-coordinate density modelling necessitates
careful modelling of the covariance structure between the
degrees of freedom in order to ensure that small-scale fluc-
tuations in internal coordinates result in small perturbations
of the 3D coordinates of the protein. Such covariance struc-
tures are typically highly complex, making direct estimation
difficult.

In this paper, we investigate whether density modelling of
full-size proteins in internal coordinates is feasible. We em-
pirically demonstrate the difficulty in estimating the covari-
ance structure of internal coordinates from data, and instead
propose a technique for inducing the covariance structure
by imposing constraints on downstream atom movement
using the Lagrange formalism. Rather than estimating the
covariance structure from scratch, we can instead modulate
the covariance structure by choosing appropriate values for
allowed fluctuations of downstream atoms. We demonstrate
the procedure in the context of a variational autoencoder
(Fig. 1). Given a prior on the internal coordinate fluctuations
and a predicted mean, we impose constraints on the atom
fluctuations in 3D coordinates to obtain a full covariance
structure over the internal coordinates. We show that this al-
lows us to generate valid structures in terms of both internal
and Cartesian coordinates. Our method is validated in two
very different test cases: a small set of nmr structures on
an α-helical protein and a molecular dynamics dataset on
the larger and more complex protein G. We anticipate that
this method could serve as a building block applicable more
generally for internal-coordinate density estimation, for in-
stance for internal-coordinate denoising diffusion models.

Our main contributions are:

• We formulate a procedure for inducing full-protein co-
variance structures in internal coordinates (bond angles
and torsional angles), based on constraints on atom
fluctuations in 3D space.

• We design a variational autoencoder which models fluc-
tuations for full-length proteins in internal coordinates.
Despite the fact that constraints are expressed in terms

of Cartesian coordinates, the model is not dependent
on a global reference frame (i.e. it is rotationally invari-
ant).

• We demonstrate that our model provides meaningful
density estimates on ensemble data for proteins ob-
tained from experiment and simulation. To our knowl-
edge, it is the first model to reliably estimate internal
coordinate densities at this scale.

Scope. Our focus in this paper will be on modelling dis-
tributions of protein structure states in internal coordinates.
We are thus concerned with thermodynamic ensembles,
rather than the detailed dynamics that a molecule under-
goes. Dynamics could potentially be modelled on top of our
approach, for instance by fitting a discrete Markov model to
describe transitions between states, and using our approach
to model the thermal fluctuations within a state, but this is
beyond the scope of the current work.

Another perspective on our approach is that we wish to
describe the aleatoric uncertainty associated with a struc-
ture deposited in the Protein Data Bank, or a structure pre-
dicted by a protein structure prediction procedure such as
Alphafold (Jumper et al., 2021).

2. Background
2.1. Cartesian vs internal coordinates

As stated before, Cartesian coordinates and internal coor-
dinates each have advantages and disadvantages. Assume
we have a 3D protein structure in Euclidean space with
atom positions x. Throughout this paper, we only consider
backbone atoms N , Cα and C, which means that the total
number of atoms M is equal to three times the number of
amino acids. The Euclidean setting thus results in 3 ×M
coordinates. Even though in this setting each of the atoms
can fluctuate without affecting other atoms in the backbone
chain, there is no guarantee for chemical integrity, i.e. con-
servation of bond lengths and respecting van der Waals
forces. This can lead to backbone crossings and generally
unphysical protein structures.

One way to ensure chemical integrity is by parameterizing
the protein structure in internal coordinate space using di-
hedrals κ1, bond angles κ2 and bond lengths κ3. Here,
dihedrals are torsional angles that twist the protein around
the bond between two consecutive atoms, bond angles are
angles within the plane that is formed by two consecutive
bonds, and bond lengths are the distances between two con-
secutive backbone atoms. Since bond length distributions
have very little variance, we choose to fix them, thereby
reducing the number of variables over which we need to
estimate the covariance. We will refer to the remaining two
internal coordinates together as κ to avoid notation clutter.
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As dihedrals can only be defined by four points (where the
dihedral is the angle between the plane defined by the first
three points and the plane defined by the last three points)
and bond angles can only be defined by three points, the re-
sulting protein structure representation will have (2×M)−5
coordinates. Not only does this system result in less coor-
dinates to determine a full covariance structure over, the
coordinates are also automatically rotation and translation
invariant, as opposed to Cartesian coordinates.

The remaining problem is that small changes in one inter-
nal coordinate can have large consequences for the global
structure of the protein, since all atoms downstream of the
internal coordinate will move together, acting like a rigid
body. It is therefore challenging to preserve global structure
while altering internal coordinates, since they are mostly
descriptive of local structure.

2.2. Standard precision estimators do not capture global
structure fluctuations

Because of the limitations of internal coordinates mentioned
in Section 2.1 it is a highly non-trivial task to capture a full
covariance structure over κ which also conforms to con-
straints in Euclidean space that are inherent to the protein.
As an example, we use a standard estimator to get a preci-
sion matrix (i.e. the inverse of the covariance matrix) over κ
for a short molecular dynamics simulation on “1pga”, also
known as “protein G” ( Fig. 2). Details about the simulation
can be found in Appendix A. We see that when we take
samples from a multivariate Gaussian over κ with the true
mean (based on the dataset) and the estimated precision, the
samples exhibit atom fluctuations that are much higher than
the original simulation, and with a very different patterns.

3. Internal-coordinate density modelling with
constraints

To overcome the limitations that regular covariance and
precision estimators have, we incorporate constraints on
atom fluctuations in Euclidean space.

3.1. Setup

We parameterize a 3D protein structure in terms of internal
coordinates (i.e. dihedrals and bond angles, while bond
lengths are kept fixed), which together will be referred to as
κ. Our aim is to obtain a multivariate Gaussian distribution
over the deviations from the mean p(∆κ), centered at zero,
with a full precision structure. This target distribution is
subject to constraints over atom fluctuations, enforcing the
preservation of global structure. We have a prior q(∆κ)
over the internal coordinate distribution, where the mean is
zero and the precision is a diagonal matrix with the diagonal
filled by the inverse variance over all ∆κ values, estimated
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Figure 2. When a standard estimator is used to get the precision
structure over internal coordinates (top row; dihedrals and bond
angles, bond lengths are kept fixed), the atom fluctuations signifi-
cantly deviate from MD simulations (bottom row). Blue arrows
and red helices represent secondary structural elements. The vari-
ance is calculated as the mean of the variances over the x, y and z
axis, in Å
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from our input data. The prior is defined as

q(∆κ) =
1

Zq
exp

(
−1

2
∆κTΣ−1

κ,prior∆κ

)
, (1)

where Zq = σdata

√
2π is the normalization constant for

the prior distribution and Σ−1
κ,prior = a · diag(σ−2

κ,data) with
a a hyperparameter that determines the strength of the prior.
Our approach will be to construct a new distribution p which
is as close as possible to q, but which fulfills a constraint that
prohibits the downstream 3D coordinates from fluctuating
too much. We thus wish to minimize the Kullback-Leibler
divergence between the objective distribution and prior:

DKL(p|q) =
∫
p(∆κ) ln

p(∆κ)

q(∆κ)
d∆κ. (2)

, adding constraints on the expected value over squared atom
displacements of each downstream atom m:

E∆κ∼p(∆κ)

[
∆x2m

]
= Cm (3)

where E∆κ∼p(∆κ)

[
∆x2m

]
is the expected value for themth

squared displacement and Cm is a constant equivalent to the
variance of the atom position σ2

κ,x assuming equal variance
in all directions. Since every ∆xm is a function of ∆κ with
probability density function p(∆κ), we can use the law of
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the unconscious statistician to reformulate the constraints
as follows:

E∆κ∼p(∆κ)

[
∆x2m

]
=

∫
∆x2mp(∆κ)d∆κ = Cm (4)

3.2. Lagrange formalism to incorporate constraints

We use the Lagrange formalism to incorporate M of these
constraints, where M is the number of atoms. Because we
need the integral over p(∆κ) to sum to one, we also add
this as a constraint.

D̃KL(p|q) =
∫
p(∆κ) ln

p(∆κ)

q(∆κ)
d∆κ

+ λ0

(∫
p(∆κ)d∆κ− 1

)

+
M∑

n=1

λn

(∫
∆x2np(∆κ)d∆κ− Cn

)
(5)

This is the objective we want to minimize. Taking the
derivative of D̃KL(p|q) with respect to p(∆κ) and setting
to zero:

0 = 1 + λ0 + ln
p(∆κ)

q(∆κ)
+

M∑

n=1

λn∆x
2
n

p(∆κ) =
1

Zp
q(∆κ) exp

(
−

M∑

n=1

λn∆x
2
n

)
(6)

with Zp being the normalization constant of the target distri-

bution. Note that ∂2D̃KL(p|q)
∂p(∆κ)2 = 1

p(∆κ) is positive, therefore
we know our solution will indeed be a minimum.

3.3. First order approximation for atom fluctuations

In order to use Eq. (6) to satisfy the imposed constraints, we
need to express ∆x2 in terms of ∆κ. To first order, we can
express the displacement vectors ∆xi

m of each atom with
respect to the ith internal coordinate as

∆xi
m =

∂xm

∂κi
∆κi (7)

where xm is the position of the mth atom, under the con-
dition that the atom is post-rotational, i.e. the location of
atom m is downstream of the ith internal coordinate. From
Eq. (7) it follows that the squared distance can be defined as

∆x2m =
∑

ij

∂xm

∂κi
∆κi ·

∂xm

∂κj
∆κj = ∆κTGm∆κ (8)

where Gi,j
m = ∂xm

∂κi
· ∂xm

∂κj
is a symmetric and positive-

definite matrix.

Substituting Eq. (8) and our prior expression from Eq. (1)
into our target distribution from Eq. (6) gives a new Gaus-
sian distribution:

p(∆κ) =
1

Z̃
exp

(
−1

2
∆κT

(
Σ−1

κ,prior +Σ−1
κ,constr

)
∆κ

)

= N (0, Σ̃) (9)

where Z̃ is the new normalization constant, Σ−1
κ,constr =

2
∑M

n=1 λnGn and the covariance matrix of the new Gaus-
sian distribution Σ̃ =

(
Σ−1

κ,prior +Σ−1
κ,constr

)−1
.

3.4. Satisfying the constraints

The final step in the constrained optimization is to establish
the values for the Lagrange multipliers. A closed form
solution for this is not readily available, but we can rewrite
the constraints as

Cm = E∆κ∼N (0,Σ̃)

[
∆κTGm∆κ

]
= tr(Σ̃Gm) (10)

Although it is nontrivial to express Lagrange multipliers
λ in terms of atom fluctuations C, we thus see that it is
possible to evaluate C given a set of Lagrange multipliers
λ. In the following, we will therefore construct our models
such that our networks predict λ, directly.

3.5. VAE pipeline

VAE model architecture. To demonstrate how our
method works within a modelling context, we choose a
one-layer variational autoencoder (VAE), for which the ar-
chitecture is shown in Fig. 3. The VAE has a simple linear
encoder that takes internal coordinates κ (dihedrals and
bond angles, bond lengths are kept fixed) as input and maps
to latent space z, where we have a standard Gaussian as
a prior on the latent space. The decoder outputs the mean
over κ, which is converted into Cartesian coordinates using
pNeRF (AlQuraishi, 2018). This mean structure in 3D coor-
dinates is used for two purposes. First, using the structure
we can evaluate the partial derivatives of atom positions
with respect to the individual κ, and thereby construct a Gm

matrix for all M atoms. Second, the predicted mean over
κ is used to get a pairwise distance matrix d that serves
as the input to a U-Net (Ronneberger et al., 2015), from
which we estimate values for the Lagrange multipliers for
each constraint. This allowed the variational autoencoder,
conditioned on the latent state z, to modulate the allowed
fluctuations. Implementation-wise, the U-net is concluded
with an average pooling operation that for each row-column
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combination computes one Lagrange multiplier λ. Together
with our fixed-variance prior over κ and hyper parameter a
determining the strength of this prior, a new precision matrix
is formed according to Eq. (9). The model can generate new
structures through simple ancestral sampling: first gener-
ating z from the standard normal prior, and subsequently
sampling from a multivariate Gaussian distribution with the
decoded mean and the constructed precision matrix. For
specific model settings see Appendix A.

Loss. We customarily optimize the evidence lower bound
(ELBO) using the Gaussian likelihood on the internal de-
grees of freedom as constructed above. This likelihood does
not ensure that the predicted Lagrange multipliers are within
the range within which our first order approximation of the
fluctuations is valid. To ensure this, we add an auxiliary
loss in the form of a mean absolute error over λ−1, which
prevents the κ-prior from dominating. By tuning the weight
waux on the auxiliary loss, we can influence the strength of
the constraints.
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Figure 3. Model overview. The encoder (left) embeds internal
coordinates into the latent space. The decoder predicts a mean,
from which constraints are extracted that are weighed by predicted
Lagrange multipliers to obtain a precision matrix. Together with
the prior over the precision matrix based on the input data, a new
precision matrix is formed which can be used to sample from a
multivariate Gaussian.

4. Experiments
4.1. Test cases

1unc: solution nmr dataset. 1unc corresponds to the so-
lution structure of the human villin C-terminal headpiece
subdomain. This protein contains 36 residues, correspond-
ing to 108 backbone (N , Cα and C) atoms. This solution
nuclear magnetic resonance (nmr) dataset is freely available
from the Protein Data Bank and contains 25 conformers.

1pga: molecular dynamics dataset. We have a short in-
house molecular dynamics (MD) simulation for 1pga, cor-

responding to B1 immunoglobulin-binding domain protein
G. This is a 56 amino acid long protein with 168 back-
bone atoms. The simulated trajectory is 20ns long, where
structures are saved with a 50ps interval, resulting in 400
structures for this protein. See Appendix A for more details
about the simulation.

4.2. Metrics

Local. In order to get a good overview of the local struc-
ture of protein, we visualize the distributions over internal
coordinates. For bond angles, we present simple histograms,
where we name the bond angles around the different back-
bone atoms θN , θCα

and θC , respectively. For the dihedrals,
we show a Ramachandran plot. These are a well-known
visualization tool in the context of protein structures, where
ϕ and ψ dihedrals, which are the torsional angles around
the N − Cα and Cα − C bonds, are plotted against each
other. Different types of secondary structure (α helices and
β sheets) cluster together in different areas within this plot.

Global. In this paper, we are mostly interested in pre-
serving constraints in Euclidean space, even though we are
modelling our distribution in internal coordinate space. The
constraints that we formulate in Section 3 act on atom fluc-
tuations in Cartesian coordinates. We accordingly report the
variance over atom positions across superposed samples to
evaluate global structure fluctuations. Additionally, we can
visualize how well our first-order approximation is holding
by calculating Cm according to Eq. (10) given the predic-
tions of the model. Since these constraints assume the same
absolute starting point for all proteins, this metric can only
be evaluated on structures directly sampled by the model
without superposing them.

Quality. To assess the quality of sampled structures, we
utilize the Qualitative Model Energy ANalysis (QMEAN)
server to evaluate the QMEAN6 score, which is a combi-
nation of six different potentials, representing both local
and global interactions (Studer et al., 2020; Benkert et al.,
2011). Each sample is assigned a QMEAN6 score, and we
calculate the mean over all samples.

Baselines. Apart from comparing the generated samples
from our model to the ground truth distributions that come
from MD or nmr, we also include two baselines. The first
are samples from our prior over fluctuations in κ, which
corresponds to independently sampling each internal coor-
dinate from a univariate Gaussian based on their individual
variances as estimated from the dataset. The final baseline
are samples from a multivariate Gaussian with a mean based
on the dataset and a precision matrix computed by a stan-
dard estimator. We use an empirical estimator for 1pga, but
since this method led to a non-invertible matrix for 1unc,
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we resort to an Oracle Approximating Shrinkage (OAS)
estimator (Chen et al., 2010) for this system.

4.3. Internal-coordinate density modelling results

1unc. Our first test case is the small solution nmr dataset
1unc, which is a mostly α-helical protein with a compact
global structure (Fig. 4A). In the precision matrix our VAE
predicts, as reported in Fig. 4B, one can detect block-type
behavior along different secondary structure elements, for
dihedrals as well as bond angles. Fig. 4C shows that the
distributions over internal coordinates are similar to the
reference nmr distribution, although the distributions are
slightly more peaked. This is inherent to our method, since
our first-order approximation holds for smaller steps. As
shown in Fig. 4D (top), the atom fluctuations in the samples
from the VAE mostly follow the same pattern as Cm, our
imposed constraints. This demonstrates that our approxima-
tion is holding well, and even though samples sometimes
deviate from Cm in one place, mostly around more flexible
parts of the protein, the approximation can still be “recov-
ered” further downstream. The atom fluctuations compared
to the reference distribution (Fig. 4D, bottom) also conform
to our hypothesis; overall the sample fluctuations are smaller
compared to the reference, but they follow a similar pattern.
In other words, our model takes a smaller step with the same
characteristics. In contrast, both baselines have fluctuations
that are much larger than the reference.

In terms of sample quality, Table 1 shows that samples from
the VAE are on par with the reference structures. Samples
from the standard estimator baseline do worse, but samples
from the κ-prior also do well. This is probably due to
the fact that 1unc largely consists of α-helices with very
few loops, and consequently good local structure can more
easily lead to acceptable global structure. However, from
Fig. 4D (bottom) it is clear that the atom fluctuations of the
prior are not representative of the nmr distribution. This
is further illustrated in Appendix B.1, where we show 3D
representations for some of the sampled structures.

1pga. The second test case, 1pga, is a larger and more
complex protein containing two β-strands, and α-helix and
two more β-strands that form a β-sheet with the first two
strands (Fig. 1A). The global fold is therefore very impor-
tant in this protein, which should be well-reflected in the
atom fluctuations. The precision matrix outputted by our
VAE (Fig. 5B) shows strong blocks in both dihedrals and
bond angles, corresponding to different secondary structure
elements. Similar to 1unc, the bond angle and dihedral dis-
tributions shown in Fig. 5C are following the same pattern
as the reference distributions, but less broadly distributed.
Fig. 5D (top) shows that the atom fluctuations in VAE sam-
ples are following the imposed constraints Cm, and devi-
ations from our first-order approximation mostly occur in

loop regions, exemplified by the large peak between the first
two β-strands. From Fig. 5D (bottom), it is again clear that
samples from our model follow the pattern of a smaller-step
reference distribution, while prior and standard estimator
baseline samples have fluctuations that are much larger than
the reference distribution.

That the fluctuations in the baselines are too large is also
reflected in the sample quality as reported in Table 1. While
VAE sample quality is comparable to the reference data
quality, the prior and standard estimator samples are of
lower quality. This demonstrates that for a globally more
complex protein such as 1pga, a good distribution over in-
ternal coordinates does not guarantee good global structure
fluctuations, which is compensated for in our model by the
constraints we impose. This is also clearly visible when we
visualise the samples in 3D in Appendix B.1, where baseline
samples even show crossings of the backbone. Moreover,
Appendix B.2 shows examples of how the prior weight a
and the auxiliary loss weight waux influence atom fluctua-
tions, demonstrating that tuning these hyperparameters is
important for good performance.

5. Related work
There is a large body of work on models for analyzing tra-
jectories of molecular dynamics simulations, either through
Markov state models (Chodera & Noé, 2014; Singhal &
Pande, 2005; Sarich et al., 2013; Schütte et al., 1999; Prinz
et al., 2011), or more complex modelling strategies (Mardt
et al., 2018; Hernández et al., 2018; Sultan et al., 2018;
Mardt et al., 2020; Xie et al., 2019). Typically, these focused
on dimensionality reduced representations of the molecular
structures, and are therefore not density models from which
samples can be drawn.

To our knowledge, the first generative density model of full
protein coordinates was the Boltzmann generator (Noé et al.,
2019), a normalizing flow over the Cartesian coordinates of
protein ensembles. This approach was later used to estimate
coarse-grained force fields for molecular dynamics simu-
lations, which demonstrated the ability of flows to sample
structural ensembles for small proteins (Köhler et al., 2022).
Other approaches involve latent variable models. One ex-
ample is the IG-VAE, which generates structures in 3D
coordinates but expresses the loss in terms of distances and
internal coordinates to maintain SE(3) invariance. Similar
approaches have been used to analyze cryo-EM data, where
the task is to generate ensembles of structures given the ob-
served cryo-EM image data. Since cryo-EM data provides
information at slightly lower resolution than the full-atomic
detail we discuss here, the output of these approaches are
often density maps in 3D space (Zhong et al., 2021; Punjani
& Fleet, 2021). One example of atomic-level modelling in
this space is (Rosenbaum et al., 2021), which decodes deter-
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Figure 4. Internal-coordinate density modelling for 1unc. A: 3D structure of 1unc visualized using PyMOL (Schrödinger & DeLano),
with α helices in red. B: precision matrix predicted by our VAE model, organized in blocks over dihedrals and bond angles, respectively.
C: distributions over bond angles and dihedrals, for both our VAE (top, with nmr means indicated in orange) and the reference nmr
distribution (bottom). D: atom fluctuations over atom positions for samples from our model compared to computed constraints for
non-superposed structures (top) and atom fluctuations compared to baselines on superposed structures (bottom). The variance is calculated
as the mean of the variances over the x, y and z axis, in Å

2. Secondary structure elements are indicated along the atom position axis.

Table 1. Sample quality using QMEAN server for samples from the VAE model and baselines: reference data, samples from the prior, and
samples from a standard estimator. Based on 200 random samples, except the nmr reference which is based on 25 data points.

Reference VAE samples Prior samples Standard estimator samples
1unc 0.60± 0.05 0.60± 0.03 0.60± 0.03 0.50± 0.07 (empirical)
1pga 0.54± 0.03 0.57± 0.03 0.49± 0.06 0.41± 0.07 (OAS)

ministically into 3D coordinates, but describes the variance
in image space (Rosenbaum et al., 2021). Finally, diffusion
models have recently provided a promising new approach
to density modelling, with impressive examples of density
modelling at the scale of full-size proteins (Watson et al.,
2022; Ingraham et al., 2022; Anand & Achim, 2022).

The primary objective in our paper is to investigate
whether density modelling is feasible in internal coordi-
nates. Internal-coordinate probabilistic models of proteins
have traditionally focused on protein local structure, i.e.
correct modelling of angular distributions of the secondary
structure elements in proteins. Early work was based on
hidden Markov models of small fragments (Camproux et al.,
1999; 2004; de Brevern et al., 2000; Benros et al., 2006).
The discrete nature of the fragments meant that these mod-
els did not constitute a complete probabilistic model of
the protein structure. Later models solved this issue by
modelling local structure in internal coordinates, using dif-
ferent sequential models and angular distributions (Edgoose
et al., 1998; Bystroff et al., 2000; Hamelryck et al., 2006;
Boomsma et al., 2008; 2014; Thygesen et al., 2021). Due
to the downstream effects of small internal-coordinate fluc-
tuations, these models are not by themselves capable of

modelling the distribution of entire protein structures, but
they are useful as proposal distributions in Markov chain
Monte Carlo (MCMC) simulations of proteins (Irbäck &
Mohanty, 2006; Boomsma et al., 2013). Using deep learn-
ing architectures to model the sequential dependencies in the
protein chain, recent work has pushed the maximum length
of fragments that can be reliably modelled (Thygesen et al.,
2021). To our knowledge, however, no internal-coordinate
density model has yet been able to robustly model angular
densities beyond fragments of length 15, due to the chal-
lenges in estimating the necessary covariance structure.

Our work was inspired by methods used for constrained
Gaussian updates in MCMC simulation, first introduced
by (Favrin et al., 2001), and later extended by (Bottaro
et al., 2012). Our method generalizes the approach to global
updates of proteins, derives the relationship between the
Lagrange multipliers and corresponding fluctuations in Eu-
clidean space, and uses neural networks to govern the level
of fluctuations in order to modulate the induced covariance
structures.

Recent work has demonstrated that internal-coordinate mod-
elling can also be done using diffusion models (Jing et al.,
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Figure 5. Internal-coordinate density modelling for 1pga. A: 3D structure of 1pga visualized using PyMOL (Schrödinger & DeLano),
with α helices in red and β sheets in blue. B: precision matrix predicted by our VAE model, organized in blocks over dihedrals and bond
angles, respectively. C: distributions over bond angles and dihedrals, for both our VAE (top, with nmr means indicated in orange) and
the reference MD distribution (bottom). D: atom fluctuations over atom positions for samples from our model compared to computed
constraints for non-superposed structures (top) and atom fluctuations compared to baselines on superposed structures (bottom). The
variance is calculated as the mean of the variances over the x, y and z axis, in Å

2. Secondary structure elements are indicated along the
atom position axis.

2022). So far this method has been demonstrated only on
small molecules. We believe the method we introduce in
this paper might help scale these diffusion approaches to
full proteins.

6. Discussion
Although protein structure prediction is now considered a
solved problem, fitting the density of structural ensembles
remains an open problem. Many recent activities in the
field focus on diffusion models in the Cartesian coordinate
representation of a protein. In this paper, we take a different
approach, and investigate how we can describe small-scale
fluctuations in terms of a distribution over the internal de-
grees of freedom of a protein. The main challenge in this
context is the complex covariance between different parts
of the chain. Failing to model this properly results in mod-
els that produce disruptive changes to the global structure
even for fairly minor fluctuations in the internal coordinates.
Instead of estimating the covariance matrix from data, we
show that it can be induced by imposing constraints on the
Cartesian fluctuations. In a sense, this represents a natural
compromise between internal and Cartesian coordinates:
we obtain samples that are guaranteed to fulfill the physical
constraints of the protein topology (e.g. bond lengths, and
bond angles), while at the same time producing meaningful
fluctuations globally.

We implement the idea in the decoder of a variational au-
toencoder on two protein systems. This is primarily a proof

of concept, and this implementation has several limitations.
First of all, the standard deviations of the individual degrees
of freedom in the prior of the internal degrees of freedom are
currently set as a hyperparameter. These could be estimated
from data, either directly, or using a preexisting model of
protein local structure. In the current implementation, we
place an auxiliary loss on the inverse of the Lagrange mul-
tiplier, to ensure that the fluctuations stay within a range
where our first-order approximation is valid. A more elegant
implementation would be to use the relationship between
the Lagrange multiplier and the fluctuations in Cartesian
coordinates (10), such that the auxiliary loss could be ex-
pressed directly as a likelihood on the Cartesian fluctuations.
We leave both these extensions for future work. Another lim-
itation is the current model is that the produced fluctuations
are generally too small to match the target densities. This
can be solved by constructing a hierarchical VAE, where
samples are constructed as a multi-step process, similar to
the generation process in diffusion models. In fact, we be-
lieve that our fundamental approach of induced covariance
matrices could be a fruitful way to make diffusion models
in internal coordinates scale to larger systems, by allowing
for larger non-disruptive steps.

7. Code and data availability
Code and data will be made available upon acceptance.



Internal-Coordinate Density Modelling of Protein Structure: Covariance Matters

8. Acknowledgements
The work was supported by the Novo Nordisk Foundation
(project grant nr NNF18OC0052719) and conducted within
the Center for Basic Machine Learning Research in Life
Science (MLLS, grant nr NNF20OC0062606).

References
AlQuraishi, M. pnerf: Parallelized conversion from internal

to cartesian coordinates. bioRxiv, pp. 385450, 2018.

Anand, N. and Achim, T. Protein structure and sequence
generation with equivariant denoising diffusion proba-
bilistic models. arXiv preprint arXiv:2205.15019, 2022.

Baek, M., DiMaio, F., Anishchenko, I., Dauparas, J.,
Ovchinnikov, S., Lee, G. R., Wang, J., Cong, Q., Kinch,
L. N., Schaeffer, R. D., et al. Accurate prediction of pro-
tein structures and interactions using a three-track neural
network. Science, 373(6557):871–876, 2021.

Benkert, P., Biasini, M., and Schwede, T. Toward the estima-
tion of the absolute quality of individual protein structure
models. Bioinformatics, 27(3):343–350, 2011.

Benros, C., de Brevern, A., Etchebest, C., and Hazout, S. As-
sessing a novel approach for predicting local 3D protein
structures from sequence. Proteins, 62:865–880, 2006.

Boomsma, W., Mardia, K., Taylor, C., Ferkinghoff-Borg, J.,
Krogh, A., and Hamelryck, T. A generative, probabilistic
model of local protein structure. Proc Natl Acad Sci USA,
105(26):8932–8937, 2008.

Boomsma, W., Frellsen, J., Harder, T., Bottaro, S., Johans-
son, K. E., Tian, P., Stovgaard, K., Andreetta, C., Olsson,
S., Valentin, J. B., et al. Phaistos: A framework for
markov chain monte carlo simulation and inference of
protein structure. Journal of computational chemistry, 34
(19):1697–1705, 2013.

Boomsma, W., Tian, P., Frellsen, J., Ferkinghoff-Borg, J.,
Hamelryck, T., Lindorff-Larsen, K., and Vendruscolo, M.
Equilibrium simulations of proteins using molecular frag-
ment replacement and nmr chemical shifts. Proceedings
of the National Academy of Sciences, 111(38):13852–
13857, 2014.

Bottaro, S., Boomsma, W., E. Johansson, K., Andreetta, C.,
Hamelryck, T., and Ferkinghoff-Borg, J. Subtle monte
carlo updates in dense molecular systems. Journal of
Chemical Theory and Computation, 8(2):695–702, 2012.

Bystroff, C., Thorsson, V., and Baker, D. HMMSTR: a
hidden Markov model for local sequence-structure corre-
lations in proteins. J Mol Biol, 301(1):173–190, 2000.

Camproux, A., Tuffery, P., Chevrolat, J., Boisvieux, J., and
Hazout, S. Hidden Markov model approach for identi-
fying the modular framework of the protein backbone.
Protein Eng Des Sel, 12(12):1063–1073, 1999.

Camproux, A., Gautier, R., and Tufféry, P. A hidden Markov
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A. Experiment details
Model. The VAE encoder linear layer sizes are [60, 30, 15] and decoder linear layer sizes are [15, 30, 60]. We use a
standard U-Net that takes a pairwise distance matrix of size M ×M (where M is the number of atoms) and 1 channel, and
scales the channels up to 1024 channels in four steps before scaling back down to one channel in four steps. All models
were run for 1200 epochs, with batch size 16 and learning rate 0.01. All datasets were split 90%-10% into a training and
validation set. The validation set is tracked during training to prevent overtraining. Prior and auxiliary loss weights were
explored with grid search, values chosen for the models reported in the main paper are shown in Table A1. All final metrics
are calculated on structures sampled from the model. At sampling time, 100 samples are drawn from the latent space prior,
decoded, and subsequently 4 samples are drawn from the final multivariate Gaussian to get a total of 400 structures. Models
were trained on a Nvidia Titan Xp (12GB) GPU.

Table A1. Weight settings for test cases.

a waux

1unc 10 5
1pga 50 50

Molecular dynamics details. The molecular dynamics simulation was done in OpenMM (Eastman et al., 2017), using an
Amber forcefield (Maier et al., 2015), water type TIP3P, box geometry “rhombic dodecahedron” and a padding of 1 nm
on each side of the solvated protein (i.e. 2 nm in total). The simulation is 20ns in total with a 50ps time lag, giving 400
structures.
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B. Additional results
B.1. Visualization of sampled structures.

Fig. A1 shows ten randomly chosen superposed samples for our model, the reference, and the prior and standard estimator
baselines. This demonstrates that VAE samples tend to have slightly smaller, but globally consistent fluctuations compared
to the reference data, while the baselines show larger fluctuations that can lead to unphysical structures containing crossings.

Reference VAE	samples Prior	samples Standard	estimator	samples

1p
ga

1u
nc

Figure A1. Visualization of ten random, superposed samples from the reference data, the VAE model and the prior and standard estimator
baselines, for both 1unc and 1pga.
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B.2. Impact of weights.

The prior weight a and the weight on the auxiliary loss on the lagrange multipliers waux are hyperparameters to the model,
and choosing different values can have a lot of impact. As an example, Fig. A2 shows how different choices for 1pga affect
how well samples conform to Cm (i.e. how well our approximation holds) and how the resulting fluctuations compare to
baselines.

𝑎 = 1000,	𝑤!"#= 1000

𝑎 = 50,	𝑤!"#= 50

𝑎 = 50,	𝑤!"#= 500

𝑎 = 500,	𝑤!"#= 50

𝑎 = 500,	𝑤!"#= 500

Figure A2. The choice of a and the auxiliary loss weight waux impact atomic fluctuations. Here we show five different combinations for
1pga. Left: atom fluctuations of model samples compared to imposed constraints, right: atom fluctuations of superimposed structures for
model samples and baselines. The variance is calculated as the mean of the variances over the x, y and z axis, in Å

2.
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Abstract
Coarse-grained (CG) molecular dynamics enables
the study of biological processes at temporal and
spatial scales that would be intractable at an atom-
istic resolution. However, accurately learning a
CG force field remains a challenge. In this work,
we leverage connections between score-based gen-
erative models, force fields and molecular dynam-
ics to learn a CG force field without requiring
any force inputs during training. Specifically, we
train a diffusion generative model on protein struc-
tures from molecular dynamics simulations, and
we show that its score function approximates a
force field that can directly be used to simulate
CG molecular dynamics. While having a vastly
simplified training setup compared to previous
work, we demonstrate that our approach leads to
improved performance across several small- to
medium-sized protein simulations, reproducing
the CG equilibrium distribution, and preserving
dynamics of all-atom simulations such as protein
folding events.

1. Introduction
Coarse-grained (CG) molecular dynamics (MD) promises
to scale simulations to larger spatial and time scales than
currently accessible through atomistic MD simulations
(Clementi, 2008; Noid, 2013; Saunders & Voth, 2013;
Kmiecik et al., 2016). Scaling up MD by orders of magni-
tude would enable new studies on macromolecular dynamics
over longer ranges of time, such as large protein folding
events and slow interactions between large molecules.

To obtain a CG simulation model, one first maps the all-
atom, or fine-grained, representation to a coarse-grained

*Equal contribution. 1Work done during an internship at Mi-
crosoft Research. 2AI4Science, Microsoft Research. 3Freie
Universität Berlin, Department of Physics. Correspondence to:
Marloes Arts <ma@di.ku.dk>, Victor Garcia Satorras <victor-
gar@microsoft.com>.

Preprint.

Figure 1. A denoising diffusion model is trained with a standard
loss on atomistic (fine-grained) equilibrium samples projected onto
the CG space. By leveraging connections between score-based
generative modeling, force fields and molecular dynamics, we
obtain a single model that can generate i.i.d. equilibrium CG
samples and whose neural network can be used as a CG force field
in CG molecular dynamics simulations.

representation, e.g. by grouping certain atoms together to
form so-called CG beads. Second, a CG force field needs to
be designed such that CG molecular dynamics simulations
reproduce relevant features of molecular systems.

In top-down approaches, a CG model is often defined
to reproduce specific macroscopic observables, as exper-
imentally measured and/or simulated on fine-grained mod-
els (Marrink et al., 2007; Davtyan et al., 2012; Matysiak
& Clementi, 2006; Chen et al., 2018). In bottom-up ap-
proaches, one seeks to obtain a CG model reproducing the
microscopic behavior (e.g., thermodynamics, kinetics) of a
fine-grained model (Noid et al., 2008; Shell, 2008; Nüske
et al., 2019). In the latter case, a common approach is to
define a CG force field for the chosen CG representation by
enforcing thermodynamic consistency (Noid, 2013). This re-
quires that simulations following the CG model should have
the same equilibrium distribution as obtained by projecting



equilibrated all-atom simulations onto the CG resolution.

Traditional bottom-up coarse-graining techniques that rely
on the thermodynamic consistency principle have produced
significant results in the last decade (Mim et al., 2012; Chu
& Voth, 2005; Yu et al., 2021), in particular when used in
combination with machine-learning methods (Wang et al.,
2019; Husic et al., 2020). Two commonly used approaches
are variational force matching and relative entropy mini-
mization.

Variational force matching minimizes the mean squared er-
ror between the model’s CG forces and the atomistic forces
projected onto the CG space, which must be included in
the data (Noid et al., 2008). However, due to the stochastic
nature of the projected forces, this noisy force-matching
estimator has a large variance, leading to data-inefficient
training. Alternatively, relative entropy minimization ap-
proaches (Shell, 2008) perform density estimation in the
CG space without accessing atomistic forces. The major-
ity of this class of methods are equivalent to energy-based
models (Song & Kingma, 2021). Since training these mod-
els requires iteratively drawing samples from the model to
estimate log-likelihood gradients, such methods demand
significantly higher computational cost (Hinton, 2002).

Flow-matching (Köhler et al., 2023) is a hybrid approach
that does not require atomistic forces for training (like rela-
tive entropy minimization) while also retaining good sample-
efficiency. The method has two training stages. First, a CG
density is modeled with an augmented normalizing flow
(Rezende & Mohamed, 2015; Papamakarios et al., 2021;
Huang et al., 2020; Chen et al., 2020). A second learn-
ing stage with a force-matching-like objective is then re-
quired to extract a deterministic CG force field that can
be used in CG molecular dynamics simulations. Köhler
et al. (2023) demonstrated that flow-matching improves per-
formance on several fast-folding proteins (Lindorff-Larsen
et al., 2011). However, the learned CG models are not yet
accurate enough for reproducing the thermodynamics of the
corresponding fine-grained models, and scaling to larger
proteins leads to instabilities.

In this work, we leverage the recently popularized class of
denoising diffusion models (Ho et al., 2020; Sohl-Dickstein
et al., 2015), which have already shown promising results
for protein structure generation (Wu et al., 2022; Trippe
et al., 2022; Watson et al., 2022; Igashov et al., 2022; Qiao
et al., 2022), conformer generation (Jing et al., 2022), and
docking (Corso et al., 2022). In particular, we train a score-
based generative model on CG structures sampled from the
CG equilibrium distribution. By highlighting connections
between score-based generative models (Song et al., 2020),
force fields and molecular dynamics, we demonstrate that
learning such a generative model with a standard denoising
loss and a conservative score yields a single model that can

be used to produce i.i.d. CG samples and which can be used
directly as a CG force field for CG molecular dynamics sim-
ulations. An overview is shown in Figure 1. In addition to
having a single-stage training setup, our method leads to im-
proved performance across several small- to medium-sized
protein simulations, reproducing the CG equilibrium distri-
bution and preserving the dynamical mechanisms observed
in all-atom simulations such as protein folding events. We
also provide evidence that our diffusion CG model allows
for scaling to a larger protein than previously accessible
through flow-matching.

2. Background
Coarse-graining can be described by a dimensionality re-
duction map Ξ : R3N → R3n that transforms a high-
dimensional atomistic representation x ∈ R3N to a lower-
dimensional CG representation z ∈ R3n, where n ≪ N .
For molecular systems, the CG map is usually linear,
Ξ ∈ R3n×3N , and returns the Cartesian coordinates z of CG
“beads” as a linear combination of the Cartesian coordinates
x of a set of representative atoms.

The probability density of the atomistic system at a par-
ticular temperature T is described by the Boltzmann dis-
tribution q(x) ∝ exp (−U(x)/kBT ), where U(x) is the
system’s potential energy and kB is the Boltzmann constant.
By identifying the ensemble of atomistic configurations x
that maps into the same CG configuration z, we can explic-
itly express the probability density of the CG configurations
z as:

q(z) =

∫
exp(−U(x)/kBT )δ(Ξ(x)− z) dx∫

exp(−U(x′)/kBT )dx′ , (1)

where δ(·) is the Dirac delta function. Up to an additive
constant, this distribution uniquely defines the thermody-
namically consistent effective CG potential of mean force
V (z) (Noid et al., 2008):

V (z) = −kBT log q(z) + cst. =

= −kBT log

∫
e−U(x)/kBT δ(Ξ(x)− z) dx+ cst.

Unfortunately, computing the integral is usually intractable.
Therefore, methods that approximate thermodynamically
consistent effective CG potentials have been proposed. Be-
low we briefly summarize two commonly used approaches.

Variational force matching. Noid et al. (2008) showed
that under certain constraints of the coarse-graining map-
ping Ξ, a more tractable consistency equation between
the coarse-grained force field −∇zV (z) and the atom-
istic force field −∇xU(x) can be obtained. More specif-
ically, if Ξ is a linear map, and if each bead has at least



one atom with a nonzero coefficient only for that spe-
cific bead, then the following relation holds: −∇zV (z) =
Eq(x|z)[Ξf (−∇xU(x))]. Here, Ξf is a linear map whose
coefficients are related to the linear coefficients of the CG
map Ξ (Ciccotti et al., 2005). Noid et al. (2008) showed that
the above relation can be used to approximate a thermody-
namically consistent CG potential Vθ(z) with parameters θ
by minimizing the following variational loss:

Eq(x,z)

[
∥∇zVθ(z)− Ξf (∇xU(x))∥22

]
. (2)

Relative entropy minimization. Another approach to
obtaining the CG forces is via relative entropy minimiza-
tion, where optimizing the density implicitly leads to op-
timized mean potential functions. Concretely, we seek to
estimate the CG density by minimizing the relative entropy,
or Kullback-Leibler divergence, Eq(z)[log q(z)− log pθ(z)],
which is equivalent to optimizing the maximum likelihood
when a finite number of samples is drawn from q(z). The
approximate CG forces can be extracted from the optimized
model density pθ(z) through −∇zVθ(z) ∝ ∇z log pθ(z).
Unlike variational force matching, relative entropy mini-
mization does not impose any constraints on the CG map,
and no atomistic forces are required for training.

Traditionally, an unnormalized version of pθ is modeled
by directly parameterizing the CG potential Vθ, yielding
pθ(z) ∝ exp (−Vθ(z)/kBT ). To minimize the relative en-
tropy, one would need to either estimate the free energy (i.e.
the normalizing constant) of the model (Shell, 2008) or draw
i.i.d. samples from the model for gradient estimation (Hin-
ton, 2002; Thaler et al., 2022), which renders this approach
impractical for higher-dimensional problems.

An alternative is to use an explicit density model such as
a normalizing flow (Dinh et al., 2014; Rezende & Mo-
hamed, 2015; Dinh et al., 2016), allowing for straightfor-
ward maximum-likelihood density estimation and force field
learning. However, learning expressive invertible functions
is challenging, so instead, Köhler et al. (2023) opted for
augmented normalizing flows (Huang et al., 2020; Chen
et al., 2020). The introduction of auxiliary random variables
increases the expressivity of the flow, at the cost of an in-
tractable marginal likelihood, yielding a minimization objec-
tive that is a variational upper bound to the relative entropy.
Furthermore, one can only extract a stochastic estimate for
the CG force from the augmented normalizing flow model.
In order to distill a deterministic approximate CG force to
simulate the CG dynamics, Köhler et al. (2023) proposed
a teacher-student setup akin to variational force-matching.
This two-stage approach was dubbed flow-matching.

3. Diffusion Models for Coarse-Grained
Molecular Dynamics

Denoising diffusion probabilistic models (DDPMs) (Ho
et al., 2020; Sohl-Dickstein et al., 2015) sample from a
probability distribution by approximating the inverse of a
diffusion process, i.e. a denoising process. The diffusion
(forward) process is defined as a Markov chain of L steps
q(z1:L | z0) =

∏L
i=1 q(zi | zi−1), where z0 is a sample

from the unknown data distribution q(z0). The learned re-
verse process is defined as a reverse-time Markov chain
of L denoising steps p(z0:L) := p(zL)

∏L
i=1 pθ(zi−1 |

zi) that starts from the prior p(zL). For real-valued
random variables, the choice of distribution for the for-
ward process is typically Gaussian, q(zi | zi−1) =
N (zi;

√
1− βizi−1, βiI), with {βi} fixed variance param-

eters that increase as a function of i such that the Markov
chain has a standard Normal stationary distribution. The
reverse process distributions are chosen to have the same
functional form: p(zL) = N (0, I) and pθ(zi−1 | zi) =
N (zi−1;µθ(zi, i), σ

2
i I). Here, µθ(zi, i) is a learnable func-

tion with parameters θ, and σ2
i is a fixed variance. By

making use of closed-form marginalization for Gaussian dis-
tributions, and by parameterizing the means as µθ(zi, i) =
1√
αi

(
zi − βi√

1−ᾱi
ϵθ(zi, i)

)
, with ϵθ(zi, i) the noise predic-

tion neural network, training proceeds by minimizing the
loss (Ho et al., 2020):

L∑

i=1

KiEq(z0)EN (ϵ;0,I)

[∥∥ϵ−ϵθ(
√
ᾱiz0 +

√
1− ᾱiϵ, i)

∥∥2
]
.

(3)
Here, αi = 1 − βi and ᾱi =

∏i
s=1 αs. Up to a con-

stant, Eq. 3 is a negative evidence lower bound if Ki =
β2
i

2σ2
iαi(1−ᾱi)

. However, Ho et al. (2020) found that a
reweighted loss with Ki = 1 worked best in practice.

In this manuscript, the data consists of samples from the CG

Boltzmann distribution: q(z0) ∝ e
− V (z)

kBT . Given a trained
diffusion model parameterized through a noise prediction
network ϵθ(zi, i), we can produce i.i.d. samples of the
approximate CG distribution through ancestral sampling
from the graphical model p(zL)

∏L
i=1 pθ(zi−1 | zi).

3.1. Extracting Force Fields from Diffusion Models

Song et al. (2020) demonstrated that the DDPM loss in Eq. 3
with Ki = 1 is equivalent to the following weighted sum of
denoising score matching objectives (Vincent, 2011):

L∑

i=1

(1−ᾱi)Eq(z0)Eq(zi|z0)

[
∥sθ(zi, i)−∇zi

log q(zi | z0)∥2
]
.

(4)
Here, q(zi | z0) = N (zi;

√
ᾱiz0, (1− ᾱi)I), and sθ(zi, i)

is the score model. While this was not made explicit by



Song et al. (2020), the equivalence of these two losses is
achieved by relating the score model sθ(zi, i) to the noise
prediction network ϵθ(zi, i) through sθ(zi, i) = − ϵθ(zi,i)√

1−ᾱi
,

see Appendix A.1. Given a sufficiently expressive model
and sufficient amounts of data, the optimal score sθ∗(zi, i)
will match the score ∇zi

log q(zi) (Vincent, 2011), where
q(zi) =

∫
dz0q(zi | z0)q(z0) is the marginal distribution

at level i of the forward diffusion process. At sufficiently
low noise levels, the marginal distribution q(zi) will re-
semble the data distribution q(z0), such that sθ∗(zi, i) ef-
fectively approximates the score of the unknown data dis-
tribution. When the latter is equal to the CG Boltzmann

distribution q(z0) ∝ e
− V (z)

kBT , the optimal score sθ∗(zi, i)
at level i = 1 will approximately match the CG forces
∇z log q(z) =

−∇zV (z)
kBT = Fz

kBT . Finally, by using the re-
lation between sθ(zi, i) and the noise prediction network
ϵθ(zi, i), we can extract the approximate CG forces from a
denoising diffusion model trained with the loss in Eq. 3:

FDFF
z = − kBT√

1− ᾱi
ϵθ∗(z, i). (5)

We will refer to such an approximate CG force field as a
Denoising Force Field (DFF). While in principle the lowest
level (i = 1) should provide the best approximation to the
CG forces, in practice, we treat i as a hyperparameter and
pick the best i by cross-validating the simulated dynamics.

Connections between force fields and denoising diffusion
models have been made in previous work. Zaidi et al. (2022)
pre-trained a property prediction graph neural network in
a denoising diffusion setup by denoising molecular struc-
tures that locally maximize the Boltzmann distribution (or
minimize the energy). By approximating the data distribu-
tion as a mixture of Gaussians centered around these local
minima, they demonstrate that the score matching objective
is equivalent to learning the force field of this approximate
mixture of Gaussians data distribution. Similarly, Xie et al.
(2022) connected the learned score in a denoising network
for small noise levels to a harmonic force field around en-
ergy local minima structures. A key point is that these
connections only provide approximate force fields around
the local minima structures, making them of limited use
in downstream tasks. In this work, we show that training
denoising diffusion models on samples from the equilibrium
Boltzmann distribution—rather than only the locally maxi-
mizing structures—allows us to learn an approximate force
field in an unsupervised manner for the entire equilibrium
distribution. This is crucial for running stable and reliable
CG MD simulations with the extracted CG force field.

3.2. Molecular Dynamics with the Denoising Force Field

With the DFF from Eq. 5, we can perform CG molecular
dynamics simulations by propagating the Langevin equation

M
d2z

d t2
= −∇zV (z)− γM

dz

dt
+
√

2MγkBT w(t), (6)

where we substitute −∇zV (z) = FDFF
z . M represents

the mass of the CG beads, γ is a friction coefficient,
and w(t) is a delta-correlated stationary Gaussian process
Ep(x) [w(t) ·w(t′)] = δ(t− t′) with mean Ep(x) [w(t)] =
0. In our experiments, we set γ and T to the same values
as those used in the original atomistic simulations that pro-
duced the data. Therefore, given a trained network ϵθ, the
only hyper-parameter left to tune is the noise level i.

A well-known limit of the Langevin equation (Eq. 6) is
that of a negligible mass and a large friction coefficient
(with a finite η = γM ), called Brownian dynamics or over-
damped Langevin dynamics. Interestingly, in Appendix A.2
we show that iteratively diffusing and denoising at a low-
noise level (e.g. i = 1) approximates Brownian dynamics
with a simulation timestep ∆t implicitly defined through
∆tkBT

Mγ = 1− ᾱ1 = β1.

3.3. Denoising Force Field Architecture

The choice of the neural network ϵθ is heavily influenced
by the physical symmetries of the system under study. For
instance, the CG force field must be conservative, i.e. it
must equal the negative gradient of a CG energy potential
Vθ(z). Therefore, we parameterize ϵθ(zi, i) as the gradi-
ent of an energy neural network with a scalar output, i.e.
ϵθ(zi, i) = ∇zinnθ(zi, i), with nnθ : R3n × {1, ..., L} 7→
R. Previous studies on image generation by Salimans &
Ho (2021) yielded no empirical difference in sample qual-
ity when using an unconstrained score network or a score
that is parameterized as the gradient of an energy function.
However, in Appendix B.1 we demonstrate that using a con-
servative score in a diffusion model is crucial for stable CG
MD simulations with the extracted denoising force field.

Furthermore, the force field must be translation invariant
and rotation equivariant. We ensure the model is translation
invariant by using the coordinates of the CG beads only
through pairwise difference vectors z(i) − z(j) as input
to the network. While the forces must be equivariant to
rotations ,we explicitly do not want reflection equivariance,
to avoid generating mirrored proteins as reported by Trippe
et al. (2022). In other words, we want equivariance with
respect to SO(3) instead of O(3). A simple strategy to
approximate O(3) equivariance without requiring the more
expensive spherical harmonics or angular representations is
the use of data augmentation. Previous work by Gruver et al.
(2022) showed that learned equivariance with transformers
can be competitive with actual equivariant networks. In



Figure 2. Experimental results for alanine dipeptide. Left: Jensen-Shannon divergence between dihedral distributions produced by
several CG methods for different training set sizes and the test partition of the all atom simulation data projected onto the CG resolution.
Results are averaged over four runs, and error bars denote a 95% confidence interval. Right: Ramachandran plots showing the dihedral
distributions for the different methods trained on 500K samples.

Appendix B.3 we show that our denoising force field learns
to be rotation equivariant on a validation set with a relative
squared error introduced by rotations of < 10−6.

In this work, we model the network nnθ as a graph trans-
former adapted with the above symmetry constraints. Fur-
ther architecture details are given in Appendix C.1. Note
that previous works on neural-network-based CG force
fields also often add a prior energy term in the scalar energy
neural network to enforce better behavior of the CG force
field further away from the training dataset (Wang et al.,
2019; Husic et al., 2020; Köhler et al., 2023). In contrast,
we did not find this to be necessary to obtain stable CG MD
simulations with our denoising CG force field.

4. Experiments
By training our diffusion model on samples from a CG
equilibrium distribution, we simultaneously obtain an i.i.d.
sample generator (denoted DFF i.i.d.) as well as a CG force
field for running CG MD simulations (DFF sim.). In this
section, we evaluate the performance and scalability of our
model for both use cases on (i) alanine dipeptide, and (ii)
several fast-folding proteins (Lindorff-Larsen et al., 2011).
In particular, we investigate how well the CG equilibrium
distribution and the dynamics can be reproduced.

We compare our model to three baselines: Flow i.i.d. and
Flow-CGNet sim. from Köhler et al. (2023) and CGNet
sim. (Wang et al., 2019). CGNet sim. is a pure force-
matching neural network trained on CG forces that were
projected from the fine-grained representation onto the CG
representation. Flow i.i.d. is the force-agnostic augmented
normalizing flow model trained as a density estimator in the
first stage of the flow-matching setup (Köhler et al., 2023).

This flow model can only be used to produce i.i.d. sam-
ples. Flow-CGNet sim. performs CG simulations using the
deterministic CGNet force field distilled from the gradient
of the augmented normalizing flow model in the second
teacher-student distillation stage of flow-matching. Recall
that for our method, we do not require a teacher-student
setup since the same network can be used for i.i.d. sampling
and for CG simulations. We also provide reference data,
which is the original MD simulation projected onto the CG
resolution. Lastly, note that while we often show results for
both i.i.d. and simulation-based methods, the latter have the
more challenging task to also model the dynamics in order
to obtain correct equilibrium distributions. We therefore
expect the proposed i.i.d. methods to perform better when
analyzing equilibrium distributions.

4.1. Coarse-Grained Simulation — Alanine Dipeptide

First, we evaluate our method on a CG representation of the
well-studied alanine dipeptide system. We use the same CG
representation as in Köhler et al. (2023); Wang et al. (2019);
Husic et al. (2020), which projects all atoms onto the five
central backbone atoms of the molecule (see Figure C1).
The simulated data (Köhler et al., 2023) consists of four
independent runs of length 500 ns, with 250 000 samples
saved per simulation (2 ps intervals). We evaluate the model
using four-fold cross-validation, where three of the simula-
tions are used for training and validation, and one is used for
testing. We consider different training dataset sizes, ranging
from 10K to 500K training samples. For the Langevin dy-
namics simulation, we follow the same settings as Köhler
et al. (2023), i.e. we run the simulation at 300 Kelvin for
1M steps with a step size of 2 fs and store the samples every
250 time steps. However, unlike Köhler et al. (2023), we
do not use parallel tempering, which is known to improve



Table 1. Experimental results for fast-folders. The table displays the Jensen-Shannon (JS) divergence for TIC distributions and pairwise
distance (PWD) distributions, where in the latter case an average is taken over all entries of the upper triangle of the PWD matrix with
offset three. The JS divergences compare distributions from the atomistic MD simulations that were projected on CG space, and the
distributions produced by the learned CG methods.

Chignolin Trp-cage Bba Villin Protein G
TIC JS PWD JS TIC JS PWD JS TIC JS PWD JS TIC JS PWD JS TIC JS PWD JS

Reference .0057 .0002 .0026 .0002 .0040 .0002 .0032 .0004 .0014 .0002

Flow i.i.d. .0106 .0022 .0078 .0057 .0229 .0073 .0109 .0142 n/a n/a
DFF .0096 .0005 .0052 .0007 .0111 .0017 .0073 .0009 .0131 .0009

Flow-CGNet sim. .1875 .1271 .1009 .0474 .1469 .0594 .2153 .0535 n/a n/a
DFF .0335 .0067 .0518 .0403 .1289 .0408 .0564 .0244 .2260 .0691

the mixing of the dynamics. Our denoising network nnθ
(Section 3.3) consists of two graph transformer layers with
96 features in the hidden layers. Further implementation
details are in Appendix C.4.1.

Metrics. Following Köhler et al. (2023); Wang et al.
(2019), we evaluate the quality of the generated samples by
analyzing statistics over the two dihedral angles (ϕ, ψ) com-
puted along the CG backbone of alanine dipeptide. Each
angle describes a four-body interaction, representing the
main degrees of freedom of the system. We generate a Ra-
machandran plot by computing the free energy as a function
of these two angles, binning values into a 2D histogram, and
taking the negative logarithm of the probability density. To
provide a quantitative analysis, we measure the empirical
Jensen-Shannon (JS) divergence between the dihedral distri-
butions of samples drawn from the model and the test set.
A reference comparing the training and test sets is provided
as a lower bound.

Results. As shown in Figure 2 (left), DFF sim. signifi-
cantly outperforms previous CG simulation methods (Flow-
CGNet sim. and CGNet sim.), especially in the low-data
regime, and even performs comparably to the i.i.d. sampling
method Flow i.i.d.. Moreover, DFF i.i.d. outperforms its
counterpart Flow i.i.d. with a significant margin, almost ap-
proaching the performance of the lower bound (Reference).
The right side of Figure 2 shows the Ramachandran plots
after training on 500 K samples, further highlighting that
our model is able to generate realistic samples.

4.2. Coarse-Grained Simulation — Fast-folding Proteins

Next, we evaluate our model on a more challenging set of
fast-folding proteins (Lindorff-Larsen et al., 2011). Such
proteins exhibit folding and unfolding events, which makes
their simulated trajectories particularly interesting. We pick
the same proteins as in Köhler et al. (2023), namely Chigno-
lin, Trp-cage, Bba and Villin. These were coarse-grained by

slicing out the Cα atom for every amino acid, yielding one
bead per residue (10, 20, 28, and 35 beads, respectively).
For these proteins, we produce the Flow i.i.d. and Flow-
CGNet sim. plots through samples that were made publicly
available by the authors. Since scaling to larger proteins was
found to be challenging for flow-matching (Köhler et al.,
2023), we additionally include the larger “Protein G” (56
beads) to analyze the scalability of our method. The all atom
simulations vary in length, but for each trajectory the frames
are shuffled and split 70-10-20% into a training, validation
and test set. More dataset details are in Appendix C.5.1.

4.2.1. EQUILIBRIUM ANALYSIS

Metrics. We use several metrics to evaluate the quality of
the generated equilibrium distributions. First, we analyze
the slowest changes in the protein conformation, which are
usually related to (un-)folding events. For this, we calculate
the time-lagged independent component analysis (TICA)
(Naritomi & Fuchigami, 2011; Pérez-Hernández et al., 2013;
Schwantes & Pande, 2013) using the Deeptime library (Hoff-
mann et al., 2021) and pick the first two TIC coordinates,
resulting in a 2D distribution over the slowest processes.
Basins in these 2D distributions are associated with meta-
stable states. Further, we compute the JS divergence of
the obtained TIC distributions between each model and the
reference MD data (denoted by TIC JS). As a qualitative
analysis, we plot the log of the obtained TIC distributions.

To assess the global structure of the proteins, we compare
pairwise distance distributions by calculating the JS diver-
gence relative to the test MD distribution for all distances
within the upper triangle of the pairwise distance matrix
with a diagonal offset larger than three (denoted by PWD
JS). The offset is chosen to avoid over-representing local
structure. Moreover, we plot the free energy as a function of
the root mean squared distance (RMSD) between the gen-
erated samples and the native, folded structure for all Cα

atoms. Dips in the resulting curve correspond to meta-stable



Figure 3. Left: native structure visualization (α-helices in orange, β-sheets in blue) made with PyMOL. Middle: Cα-RMSD free energy
w.r.t. the folded native structure. Right: joint density plots for the two slowest TIC coordinates, where the color indicates the free energy
value. The red cross indicates the location of the native structure.

ensembles, with higher densities of samples representing a
bigger proportion of the distribution. Finally, we analyze
the normalized count over contact maps, which results in a
2D histogram that shows the probability of two atoms being
in contact, i.e. within a threshold of 10 Å of one another.

Figure 4. Contact maps for Flow-CGNet sim., DFF sim. and the
reference MD data for fast-folding proteins. The contact threshold
is set to 10 Å. The axes in the plot represent atom indices.

Results. Table 1 shows that DFF i.i.d. and DFF sim.
consistently outperform their respective baselines across

the equilibrium metrics (TIC JS and PWD JS). As shown
in Figure 3, the TIC 2D free energy landscapes for our
model look more similar to the reference MD distribution
(as reflected in the TIC JS metrics), especially for Chignolin
and Villin. The similarity is weaker for Bba, where local
modes are more dominant. Further, the free energy curves
as a function of the RMSD are always overlapping with the
reference curve for DFF i.i.d., and are close to the reference
MD curve in dense regions for DFF sim..

Figure 4 shows further qualitative results in the form of
a normalized count over contact maps for DFF sim. and
Flow-CGNet sim.; for i.i.d. models, see Appendix C.5.3.
As can be seen, the DFF models capture contact probabili-
ties much better than the flow-based models in all proteins,
especially in the off-diagonal regions that represent global
structure. These results are closely related to the JS diver-
gences between pairwise off-diagonal distances (Table 1).
Taken together, these results indicate that diffusion-based
models capture global structure better than their flow-based
baselines. Moreover, the analysis in Appendix C.5.3 shows
that the CG fast folder samples produced by DFF sim. do
not display chemical integrity violations such as bond disso-
ciations or backbone crossings, therefore, DFF sim. does
not require an energy prior as used in Flow-CGNet sim. to



Table 2. Average and state-probability weighted JS divergence between the reference MD data and model simulations for transition
probabilities of the estimated Markov model.

Chignolin Trp-cage Bba Villin
Average Weighted Average Weighted Average Weighted Average Weighted

Flow-CGNet 2.5 · 10−2 5.7 · 10−3 4.8 · 10−2 1.8 · 10−2 6.9 · 10−2 6.8 · 10−2 3.1 · 10−2 2.9 · 10−2

DFF 9.7 · 10−4 5.1 · 10−4 1.3 · 10−3 7.5 · 10−4 4.0 · 10−3 4.2 · 10−3 1.2 · 10−4 2.1 · 10−5

Figure 5. First two TIC coordinates tracked over time for Chignolin, with zoom-in on an unfolding and folding event, showing a 2D
trajectory though TIC space and four structures along the path.

run stable simulations. Finally, Protein G is a larger and
more complex protein compared to the other fast-folders
and out of reach for flow-matching models. Our results
show that diffusion-based models are scalable to this larger
protein and can capture the global structure.

As a limitation in our method, we found that while the
DFF i.i.d. model generally improves as we increase the
number of features/layers in our neural network, the perfor-
mance of the simulations obtained by DFF sim. is sensitive
to the bias/variance trade-off in the network, and it can actu-
ally decrease for more flexible networks. See Appendix B.2
for an example in Chignolin.

4.2.2. DYNAMICS ANALYSIS

Metrics. We qualitatively assess the simulated trajecto-
ries by tracking the first two TIC coordinates over time and
showing (part of) the corresponding trajectory in 2D TIC
space. We visualize (un-)folding events with the correspond-
ing structures along the path. As a quantitative measure, we
extract the transition probabilities from one conformational
state to the other as follows. First, we use K-means clus-
tering to divide the 2D TIC space into K clusters for the
full (unsplit) MD dataset, with K determined by the elbow
method. Next, all transitions are counted and normalized to
obtain a transition probability matrix corresponding to the
estimated Markov model (Prinz et al., 2011), where each
row can be compared to MD data using the JS divergence.
Even though the relation between fine-grained and coarse-
grained time is non-trivial (Jin et al., 2022; Nüske et al.,

2019), leading to different time lags, we can still evaluate
how well a coarse-grained model reproduces the kinetic
model of the fine-grained reference distribution. We show
the average JS divergence over all starting states as well as
the average weighted by the overall state probability as esti-
mated from the reference data. Note that this metric can only
be calculated for simulation samples (i.e. Flow-CGNet and
DFF simulations). We cannot calculate a reference value
here that compares transition probabilities between the train
and test splits, since the MD dataset was shuffled before it
was split and thus all sets contain frames that are distributed
across time without retaining temporal information.

Results. Figure 5 depicts the first two TIC coordinates
for a DFF sim. trajectory, clearly showing transitions from
the folded to unfolded conformations. This is further high-
lighted by zooming in on part of the trajectory, revealing
how the trajectory moves in 2D TIC space, and what the
conformations look like in different parts of the landscape.
The results of the transition probability analysis are shown
in Table 2 for all fast-folders except Protein G, since no
Flow-CGNet sim. samples were available for this larger pro-
tein. The DFF sim. model outperforms the Flow-CGNet sim.
model across all fast-folders, showing a better preservation
of dynamics. More results on transition probability matrices
and the clustering of 2D TIC space are in Appendix C.5.3.



5. Conclusions
We have presented a new approach to CG molecular dynam-
ics modeling based on denoising diffusion models, moti-
vated by connections between score-based generative mod-
els, force fields and molecular dynamics. This results in a
simple training setup as well as improved performance and
scalability compared to previous work. Future directions
to improve our work include scaling to larger proteins and
generalizing across different systems. Another interesting
direction would be to combine the current force-agnostic
training approach with an explicit force-matching objective
if such force information is available.
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A. Derivations
A.1. Relation between Score Function sθ(zi, i) and Noise Predicting Network ϵθ(zi, i)

In this section, we show that Eq. 3 and 4 are equal up to a reweighting of the summands by setting:

sθ(zi, i) = − ϵ(zi, i)√
1− ᾱi

.

We start from Eq. 4:

Ezi,z0
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ᾱiz0, (1− ᾱi)I)
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. Reorganize

That is, the noise-prediction loss of Eq. 3 can be seen as a reweighted denoising score matching loss, and vice versa.

A.2. Connecting Denoising Diffusion and the Brownian Dynamics

Recall from Section 3 that a denoising-diffusion model consists of an iterative diffusion process q(zi | zi−1) =
N (zi;

√
1− βizi−1, βiI) and a denoising process p(zi−1 | zi) = N (zi−1;µθ(zi, i), σ

2
i I) of L steps, where βi and

σ2
i are the variance coefficients of the diffusion and denoising steps, respectively, and i ∈ [1, . . . , L]. In this section, we show

that iteratively performing a diffusion step followed by a denoising step at a low-noise level (e.g. i = 1) approximates the
Brownian dynamics of a molecular system. We demonstrate that by tuning the first diffusion noise level β1, we effectively
modify the step size of a Brownian dynamics simulation, as the two can be related by β1 = 1− ᾱ1 = ∆tkBT

Mγ . We start by
re-parameterizing the diffusion step z1 ∼ q(z1 | z0) as:

z1 =
√

1− β1z0 +
√
β1wa, (7)

where wa ∼ N (0, I). Similarly, we re-parameterize z0 ∼ p(z0 | z1) = N (z0;µθ(z1, 1), σ
2
1I) and rewrite µθ using the

noise-predicting network ϵθ from Section 3 as:
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1√

1− σ1

(
z1 −

√
σ1ϵθ(z1, 1)

)
+
√
σ1wb. (8)

Following Ho et al. (2020), we set σi = βi. We now introduce a superscript index (t) to denote the sequence of states that
unfold the diffusion-denoising process through time. Combining this notation with both Eq. 7 and 8 we obtain the following
recursive update:
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where wc ∼ N (0, I) and d
= denotes equal in distribution. To make the relation to Brownian dynamics more explicit, we can

discretize the overdamped limit of the Langevin dynamics from Eq. 6 using the Euler-Maruyama scheme:

z(t+1) = z(t) −∆t
∇zV (z)

γM
+

√
∆t

2kBT
γM

w, (9)

where w ∼ N (0, I) and ∆t is the simulation time step. By comparing the two equations, we see that the denoising-diffusion
process corresponds to simulating a Brownian dynamics of a force field ∇zV (z) = kBT√

β1
ϵθ(z, i) =

kBT√
1−ᾱ1

ϵθ(z, i) and an

implicit step size ∆t = Mγ
kBT β1. Note that the force field is the same as the denoising force field (Eq. 5). Furthermore, the

variance of the denoising-diffusion process β1 = 1− ᾱ1 is proportional to the simulation time step ∆t.



B. Additional Experiments
B.1. Ablation on Conservative Forces

Designing our neural network to approximate a conservative force is necessary to satisfy the following property in physics:
“A conservative force is a force with the property that the total work done in moving a particle between two points is
independent of the path taken.”. This property can be satisfied by computing the force as the gradient of a scalar with respect
to the input coordinates. In this section, we empirically show the benefits of using a conservative network when simulating
dynamics (for DFF sim.). In contrast, the benefits for i.i.d. generation (DFF i.i.d.) are smaller.

We build a non-conservative network by replacing the last linear layer and average pooling operation of the conservative
network, such that the network n̂nθ : Rn×3 → Rn×3 outputs a three-dimensional vector for each node (instead of a scalar).
The non-conservative noise prediction network is then defined as ϵθ = n̂nθ.

Next, we compare the performance of both variants on the proteins Chignolin and Trp-cage using the same experimental
settings as in Appendix C.5.

Figure B1. Ablation on TICA plots for chignolin and trp-cage fast folders comparing conservative vs non-conservative neural networks
for simulated and i.i.d. data with our DFF model.

Table B1. Ablation study on conservative versus non-conservative variants in Chignolin and Trp-cage. We report the JS divergence
between TICA distributions and pairwise distance distributions.

Chignolin Trp-cage
TIC JS PWD JS TIC JS PWD JS

Reference .0057 .0002 .0026 .0002

DFF (non-conservative) i.i.d. .0104 .0008 .0120 .0030
DFF .0096 .0005 .0052 .0007

DFF (non-conservative) sim. .3216 .2147 .0879 .0399
DFF .0335 .0067 .0518 .0403

As illustrated in Figure B1, and numerically shown in Table B1, the conservative variant outperforms the non-conservative
case in most metrics for Chignolin and Trp-cage. Notice this difference is very significant in Chignolin simulated data where
the TIC JS performance differs by an order of magnitude and even more for PWD JS. In Chignolin, we also tried using a
more powerful non-conservative network, and while the non-conservative dynamics would improve for deeper networks, the
performance would still be quite far from the conservative DFF sim. metric reported in the current experiment. On the other
hand, the performance gap between conservative and non-conservative force fields in i.i.d. generation was reduced when we
increased the size of the network.



B.2. Ablation on Number of Hidden Features

In Appendix C.5, we mentioned that the expressivity of the neural network (e.g. number of hidden features) has a notable
influence on the quality of the simulated dynamics. More specifically, while i.i.d. generation tends to perform better as we
increase the expressivity of our network, dynamics simulations may become worse. We found that properly choosing the
number of features in our network plays an important role in the quality of the generated samples. Here, we show that the
sweet spot in the bias/variance trade-off is significantly more sensitive when using the force field to simulate dynamics than
when doing i.i.d. generation with the same network. We report the performance of DFF (i.i.d. and sim.) for different number
of hidden features {32, 64, 128, 256}. All other training settings are the same as described for Chignolin in the fast-folding
protein experiment in Appendix C.5.2.

Figure B2 and Table B2 show that while the performance of i.i.d. generation improves as we increase the number of hidden
features, the performance of simulated dynamics peaks at 64 features and deteriorates as we increase the network size. This
implies that dynamics simulation is more sensitive to the number of features compared to i.i.d. sampling. The number of
training iterations was set to 1M in all models and the validation curves on noise-prediction loss did not show symptoms of
over-fitting.

Figure B2. TICA plots for the ablation on the number of features per layer for Chignolin.

Table B2. TIC JS and PWD JS w.r.t the test partition with varying numbers of features. The model used to compute all metrics is our
proposed DFF in both i.i.d. sampling and dynamics simulation.

Number of features Chignolin
TIC JS PWD JS

Reference .0057 .0002

i.i.d.

32 .0105 .0010
64 .0096 .0005

128 .0091 .0004
256 .0091 .0004

sim.

32 .0692 .0318
64 .0335 .0067

128 .0434 .0179
256 .0503 .0263

The proposed method (DFF sim.) has shown excellent performance in systems such as Alanine, Chignolin (nf=64) or Villin
compared to previous ML coarse grained methods. Despite its good performance, we believe improving the robustness of
the model via introducing new inductive biases or regularization techniques can be a promising direction in order to leverage
higher-capacity neural networks without compromising the performance in simulation.



B.3. Rotation Equivariance through Data Augmentation

In this section, we experimentally confirm that using data augmentation for training the neural network ϵθ to be approximately
equivariant to rotations is sufficient in practice. Recall that a function f is equivariant to rotations if rotating its input
results in an equivalent rotation of its output, i.e. Rf(z) = f(Rz), where R is a rotation matrix. To analyze the degree
of equivariance of our network ϵθ, we compute the relative squared error between ϵθ(z) and R−1ϵθ(Rz) for samples
z ∼ pval(z) drawn from the validation partition. In Table B3, we show the errors of the networks ϵθ(·, i) trained on different
proteins. Specifically, we evaluate the non-equivariance at the noise level i at which we extract the force field to simulate
Langevin dynamics. These noise levels are {20, 15, 5, 5, 5} for Chignolin, Trp-cage, Bba, Villin and Protein G, respectively.
Since the relative squared error is in the order of < 10−6 for all proteins, we conclude that applying data augmentation is
sufficient for achieving rotation equivariance for most practical use cases.

Table B3. Relative squared error between ϵθ(z) and R−1ϵθ(Rz) across different fast-folding proteins.

Chignolin Trp-cage Bba Villin Protein G

Relative squared error (mean) 7.8 · 10−7 4.9 · 10−7 2.8 · 10−7 1.9 · 10−7 1.9 · 10−7

Relative squared error (stdev) 8.7 · 10−7 6.0 · 10−7 1.6 · 10−7 6.5 · 10−8 7.0 · 10−8



C. Experimental Details
C.1. Architecture Details

In this section, we describe the neural network used to parameterize ϵθ. For this, we adapted Graph Transformer (GT)
from https://github.com/lucidrains/graph-transformer-pytorch. We modified the architecture to
satisfy the symmetry constraints from Section 3.3. We start by naming a function that calls the Graph Transformer from the
mentioned link as

nodesout = GT[nodesin, edgesin],

where nodesin ∈ Rn×dn , edgesin ∈ Rn×n×de . n being the number of nodes, dn the number of dimensions per node and de
the number of dimensions per edge. GT will receive as input the node embeddings h ∈ Rn×(·) and the noise level index i
as node features. Pairs of vector differences zj − zk as edge features such that

nodesin[j, :] = concat [h[j, :], i]]

edgesin[j, k, :] = z[j, :]− z[k, :]

Now we define a network nnθ′ : [h, z, i] → R1 that takes the Graph Transformer and outputs a scalar value:

nnθ′ : {h, z, i} → {nodesin, edgesin} → GT → {nodesout} → nn.Linear(dn, 1) → sum(·) → {output}

Finally, to define ϵθ, we incorporate h as its learnable parameters θ = {θ′,h} and compute the gradient of nnθ′ w.r.t. z

ϵθ(z, i) = ∇znnθ′(h, z, i)

C.2. Coarse-graining Operator

In Figure C1, we give an overview of all systems we use in our experiments along with their CG representations. Coarse-
graining is done by slicing out the relevant atoms, i.e. the backbone atoms for alanine-dipeptide, and Cα atoms for all
fast-folding proteins.

C.3. The optimization objective

We defined the optimization objective of a diffusion model at a given noise level i in Section 3 as
Eq(z0)EN (ϵ;0,I)

[∥∥ϵ−ϵθ(
√
ᾱiz0 +

√
1− ᾱiϵ, i)

∥∥2
]
. In (Ho et al., 2020), the noise level i is sampled from a discrete

uniform distribution i ∼ U{1, . . . , L} . In this work, in order to encourage the training at lower noise levels, we sample i
from U{1, . . . , L/10} and U{L/10 + 1, . . . , L} with 50% probability each. This results in more training samples at low
noise levels which led to a better performance in the extracted force field.

C.4. Alanine Dipeptide

The alanine dipeptide dataset simulated by Köhler et al. (2023) consists of four different simulations of length 500ns with
250K samples each. We partition the data using three simulations for train-validation (750K samples) and one for testing
(250K samples). The three training-validation simulations are shuffled and 250K are used for validation and 500K for
training.

C.4.1. IMPLEMENTATION DETAILS

To evaluate the influence of the dataset size on model performance, we train the model on the following amounts of training
data: 10K, 20K, 50K, 100K, 200K and 500K.

We use a neural network with two graph Transformer layers and 96 hidden features per layer. The network is optimized
using Adam with a learning rate of 3 · 10−4 and cosine learning rate decay dropping to 1 · 10−5. All experiments are run
with batch size 1024 and for 1M iterations, with early stopping on the training set sizes 10K and 20K.

For the Langevin dynamics simulation, we use the same simulation settings as in Köhler et al. (2023), except that we do not
use parallel tempering. We simulate for 1M iterations, with a time step resolution of 2 femtoseconds, samples are saved



Figure C1. Overview of all systems used in our experiments, consisting of alanine dipeptide and five different fast-folding proteins. Top:
fine-grained representation. Bottom: coarse-grained representation, i.e. backbone for alanine-dipeptide and Cα atoms for the fast-folding
proteins. α-helices are shown in orange, β-sheets are shown in blue.

every 250 steps resulting in 4K samples per simulation. 100 simulations are run in parallel resulting in a total of 400K
samples. The mass of each CG node is set to 12.8 g/mol, which is the weighted average of the mass of carbon and oxygen
atoms. The temperature and the friction coefficient are the same as in the reference data (300 Kelvin and 1ps−1).

The noise level i of the denoising diffusion process is obtained by cross-validation. As mentioned in Section 3.1, ideally,
with infinite data and network capacity, we would choose i to be the smallest value (i = 1). But in practice we cross-validate
it, and we find that the smaller the training dataset size, the larger the value of i. The i values obtained for each amount of
training samples are the following (indexing from 0 as in the code instead of 1 as in the code):

Table C1. Cross-validated noise levels i across different training set sizes.

Training set size 10K 20K 50K 100K 200K 500K

Noise level i 26 25 20 19 17 8

C.5. Fast-folding Proteins

C.5.1. DATASET DETAILS

All fast-folding protein data was obtained from Lindorff-Larsen et al. (2011). The trajectories were randomly split 70-10-20%
into a training, validation and test set, using the same seed as Köhler et al. (2023). All trajectories we used contain Cα atoms
only, and the interval between frames is 200 picoseconds. Further details can be found in the table below.

C.5.2. IMPLEMENTATION DETAILS

In diffusion-denoising process, we used the cosine scheduler with 1000 different noise levels i which is the standard setting
in (Ho et al., 2020; Hoogeboom et al., 2022). We used the Adam optimizer. Remaining training hyperparameters are
reported in Table C3. Given the training settings from Table C3, the training iterations per second were 17 it/s for chignolin
on two V100 GPUs and 13 it/s, 9.8 it/s, 6.5 it/s, 5.9 it/s, for trp-cage, bba, villin and protein G respectively on four V100
GPUs each.



Table C2. Additional dataset details for fast-folding proteins.

Chignolin Trp-cage Bba Villin Protein G

ID CLN025 2JOF 1FME 2F4K NuG2/1MIO
Temperature (K) 340 290 325 360 350
Amino acids 10 20 28 35 56
Simulation length (µs) 106 208 223 125 369
Data points 534 743 1 044 000 1 114 545 629 907 1 849 251

Table C3. Hyperparameters used in different experiments.

Chignolin Trp-cage Bba Villin Protein G

Batch size 512 512 512 512 256
Learning rate 4 · 10−4 4 · 10−4 4 · 10−4 4 · 10−4 4 · 10−4

Training iterations 1M 1M 2M 2M 3M
Number of layers 3 3 3 3 3
Number of features 64 128 96 128 128
Exponential moving average .995 .995 .995 .995 .995

For the Langevin dynamics, we ran 6 million steps simulations and saved samples every 500 steps, running 100 simulations
in parallel resulted in 1.2M samples. The mass of the particles is set to 12 g/mol which is the mass of each slices Carbon
atom, the simulated temperature is the same as in the ground truth data simulation which is reported in Table C2). The noise
levels i used for each fast-folder protein indexing from 0 are {20, 15, 5, 5, 5} for Chignolin, Trp-cage, Bba, Villin and
Protein G respectively.

C.5.3. ADDITIONAL RESULTS

Contact maps As presented in the main text, one way to analyze the global structure of a protein is by evaluating contact
maps. Contacts are places within a protein where two atoms are close together, which will occur either when atoms are close
in sequence space or when the protein’s global fold demands the atoms to be within short distance range. These contacts can
be shown as binarized pairwise distance matrices, where only those atoms pairs that are within a certain distance from one
another are given value 1 while all other pairs are 0. Contact maps provide rich information about the global conformation
of a protein, and they evolve over time during dynamics. Here, we choose to evaluate the distribution over contact maps
at equilibrium. We get contact maps for all samples, where a pairwise distance between two atoms smaller than 10Å is
considered a contact, and show a normalized count over these contact maps. Note that Cα atoms are typically about 3.8Å
apart due to local constraints, which means that the diagonal of the pairwise distance matrix as well as diagonals up until
an offset between two and four are always contacts. From Figure C2, it is clear that the DFF i.i.d. method is better at
capturing the off-diagonal contacts, especially for larger structures. Even for our largest test case of Protein G, where we
have no Flow-CGNet samples to compare, DFF i.i.d. extremely close to the reference. DFF sim. captures the off-diagonal
distributions less well compared to the i.i.d. generator, but still improves significantly upon Flow-CGNet.

Chemical integrity In order to show the chemical integrity of our samples, we show statistics over sequence-subsequent
and sequence-distant Cα atoms. In the coarse-grained molecules, Cα atoms form the backbone of the protein structure,
where we expect the bond length distribution between subsequent atoms to be consistent with the Reference data through the
simulation. In Figure C3, we compare the ground truth MD distribution to the samples from our DFF sim. model. Our
model shows the same mean, but a broader variance distribution due to the intrinsic variance introduced by the diffusion
noise in qi(z). This is because DFF sim. is actually modelling qi(z) to approximate the Reference data. To demonstrate
that the variance increase in the bonded nodes is caused by the variance in qi(z) and not by a bond dissociation in the
dynamics, we also plot the distribution of the ground truth qi(z), which we can sample by diffusing the reference MD data
z ∼ q(zi | z0)q(z0). In Figure C3, we see the bonds distribution approximated by DFF (sim.) are the same as the ground
truth diffused distribution qi(z), this means, the dynamics do not diverge into unknown regions that would lead to bond
dissociation.



Figure C2. Contact analysis at equilibrium distribution for fast-folding proteins. Each row of results corresponds to one protein. Left:
native structure visualization (α-helices in orange, β-sheets in blue), made with PyMOL. Right: log of normalized contact counts over all
samples. Red squares indicate region of interest that contains longer-range contacts, crucial toe global structure.

Secondly, in the same Figure C3, we evaluate the small-distance tail of sequence-distant atoms that are three ore more
residues apart, corresponding to off-diagonal contact points (see previous paragraph: ”Contact maps”). When these small-
distance tails contain values that approach zero, it means van der Waals forces are violated and in the worst case there can be
crossings of the backbone with itself. Figure C3 shows that our samples don’t violate chemical integrity.

Transition probabilities using K-means clustering In this paragraph we present more detailed results of transition
probability analysis using K-means clustering. Figure C4 depicts the results of k-means clustering in 2D TIC space as well
as transition pribability matrices for the reference distribution, the Flow-CGNet model and our own DFF model.



Figure C3. Chemical integrity analysis. Plots in the first two columns display the bond distribution of qi(zi) and DFF (sim) w.r.t.
to Reference Molecular Dynamics. This demonstrates that our model respects the bond distribution of qi(z) without the dynamics
degenerating into unkown regions of space that would lead to bond dissociations. Plots in the right two columns display the small-distance
tail of the distribution for sequence-distant atoms, these plots show there are no crossings of the backbone with itself (the distribution
doesn’t get close to zero).



Figure C4. K-means clustering in 2D TIC space for fast-folders (K determined by elbow method) and resulting transition probability
matrices for Flow-CGNet, DFF and the reference distribution. Color intensity indicates probability.
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Abstract

The variational autoencoder has become a common
model for analyzing multiple sequence alignments
of proteins. Trained on a single protein family, such
models can capture the higher-order dependencies
between sites in a multiple sequence alignment and
have proven useful both for quantifying variant ef-
fects and for proposing novel protein sequences in
the context of protein engineering. In this paper,
we ask how we can improve the sampling quality
in these models. One potential weakness of these
models is that they are not well-specified, in the
sense that the aggregated posterior distribution is
dramatically different from the prior. Sampling
from the model will therefore produce latent val-
ues that are not representative of any training data
points and thus depend critically on the extrapola-
tion properties of the decoder. We demonstrate that
this problem can be alleviated in a fairly straightfor-
ward manner using a hierarchical stochastic struc-
ture, giving rise to samples which better capture
the covariance between sites. Interestingly, the use
of a Bayesian decoder, which has previously been
shown to improve accuracy for variant effect pre-
diction, is shown to have a severely detrimental
effect on sampling quality, possibly due to limita-
tions of the mean-field approximation.

1 INTRODUCTION

Protein families are collections of protein sequences that are
similar in sequence, structure and function. These amino
acid sequences are usually presented as a multiple sequence
alignment (MSA), where protein sequences are aligned to
get same-length sequences with as much overlap as possible,
introducing gaps where necessary. Protein families can be
regarded as a snapshot of evolution, potentially holding
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Figure 1: The protein family VAE is not well-specified. A) A
VAE with a normal prior can be used for density estimation
of MSAs. B) The aggregated posterior distribution differs
dramatically from the prior distribution. C) Colors indicate
species, which cluster together in latent space.

a vast amount of information on protein functionality and
the effects of mutations, insertions and deletions [Tatusov
et al., 1997]. The rise of modern biological sequencing
techniques is accompanied by an increased interest in
biological sequence analysis from the field of machine
learning [Riesselman et al., 2018, Bepler and Berger, 2019,
Alley et al., 2019, Rao et al., 2019, Rives et al., 2021, Shin
et al., 2021, Heinzinger et al., 2019, Madani et al., 2020,
Elnaggar et al., 2020, Lu et al., 2020, Frazer et al., 2021,
Ji et al., 2021, Repecka et al., 2021, Detlefsen et al., 2022].

Deep latent variable models, and in particular variational
autoencoders (VAEs) [Kingma and Welling, 2014, Rezende
et al., 2014], are commonly used to learn unsupervised rep-
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resentations from data, and have become a standard choice
for analyzing sequences within protein families [Sinai et al.,
2017, Riesselman et al., 2018]. A protein family VAE takes
multiple sequence alignments (MSAs) as its input and learns
a generative model by approximating the posterior distribu-
tion over the latent representations, as shown in Figure 1A.
Even though these models perform well in terms of variant
generation and mutation effect prediction, Figure 1B exem-
plifies a common problem: the aggregated posterior distri-
bution differs substantially from the prior, i.e. the model is
not well specified. We would expect this to cause improper
sampling from the prior, which can give practical prob-
lems for generating new, stable protein sequences for e.g.
protein design. On the other hand, an advantage of this “star-
shaped” structure is that different species cluster together in
latent space, making the aggregated posterior distribution
biologically interpretable (Figure 1C). This begs the ques-
tion whether it is possible to have a well-specified model
that increases performance but at the same time generates a
latent space where we can still retrieve meaningful clusters.

To this end, we investigate the effect of using a hierarchical
VAE (HVAE) [Rezende et al., 2014, Burda et al., 2016],
which has a learnable prior with a hierarchical stochastic
latent structure. In a HVAE, the latent representation that is
furthest from the output in the generative process can con-
form to a prespecified prior, commonly a standard Gaussian
prior, while the distribution of the lower layers is learned
to increase performance. We adopt a ladder VAE (LVAE)
architecture [Sønderby et al., 2016], where the inference
model consists of a deterministic upward pass and a stochas-
tic downward pass with connections between the two passes,
and downward pass parameters are shared with the genera-
tive model except for the final decoder step. The resulting
inference scheme and generative scheme of the LVAE is
depicted in Figure 2 along the usual bottom-up hierarchical
VAE. We examine if the added flexibility of a learnable
prior aids in obtaining a better specified model with higher
sample quality, which would be a valuable trait in protein
engineering applications.

In this paper, we investigate strategies for improving the
sample quality of deep generative protein sequence models,
exploring several variations of VAEs and LVAEs. Our main
contributions are:

• We demonstrate that while the use of a Bayesian de-
coder is beneficial for obtaining high performance in
fitness prediction, these models fail to generate mean-
ingful samples. A likely culprit is the independence
assumption underlying mean field variational inference.
We investigate whether tempering the posterior miti-
gates this issue, but find that cooling of the posterior
does in not lead to an increase in sampling quality –
suggesting that the variational approximation finds a
different minimum in the landscape than the maximum
likelihood solution.

• We show that LVAEs alleviate the mismatch between
the prior and the aggregated posterior, giving rise to im-
proved sampling quality in the non-Bayesian decoder
setting when the number of layers is increased, while
preserving the interpretable “star-shape” in 2D latent
space. However, this increase in sampling quality is
not observed in the Bayesian setting.

• We find that fitness prediction, measured in terms of
Spearman correlation between predicted and experi-
mentally determined scores, is to a large extent influ-
enced by how the marginal log-likelihood is computed.
Surprisingly, the common approach of using impor-
tance sampling to obtain more accurate estimates of the
marginal likelihood leads to correlation scores worse
than simple Monte Carlo sampling (which merely re-
duces the variance of the lower bound on the marginal
likelihood).

2 RELATED WORK

Multiple sequence alignments have been an omnipresent
ingredient in bioinformatics methods over the last decades.
Initially, they were primarily used to extract site-specific
statistics based on the frequency of amino acids occurring
at each position. A decade ago, it became clear that
pairwise correlations could be exploited to infer structural
properties from such alignments, using energy models like
the Potts model [Marks et al., 2011, Morcos et al., 2011,
Balakrishnan et al., 2011]. While going beyond pairwise
correlations is not tractable through direct enumeration,
the DeepSequence protein family variational autoencoder
demonstrated that its latent structure allowed for further
gains by exploiting higher order effects [Riesselman et al.,
2018]. This model was shown to provide both state-of-the
art prediction of variant effects in Deep Mutational Scan
experiments, and was later also shown to be useful for
disease variant prediction (the EVE model [Frazer et al.,
2021]). Even with the recent developments in language
modelling for protein sequences, variational autoencoder
remain the method of choice for variant effect prediction
when sufficiently many sequences are available [Meier
et al., 2021, Hesslow et al., 2022]. Also for the generation of
new protein sequences the variational autoencoder has been
successful, producing experimentally verified functional
proteins [Hawkins-Hooker et al., 2021]. Finally, although
care should be taken when interpreting the latent spaces
of generative models, the original protein family VAE
demonstrated a tree-like structure in latent space, which
reflected the phylogeny of the sequences in the alignment
[Riesselman et al., 2018]. This result was later expanded
upon in [Ding et al., 2019], and recently analyzed in detail,
demonstrating how latent spaces can give rise to meaningful
distances and interpolation [Detlefsen et al., 2022].

In the image analysis community, the variational autoen-
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coder is an attractive model primarily for its generative
purposes. In this setting it was originally found to generate
more blurry images than methods like Generative Adverse-
rial Networks (GANs). However, in recent years a number
of methodological advances have made the variational au-
toencoder fully competitive both in terms of generation qual-
ity and log-likelihood on natural image benchmarks. Most
of the advances involved either creating more flexible and
expressive variational distributions to better approximate
the true posterior or using more expressive priors rather
then the usual diagonal Gaussian. These can be interpreted
as different strategies to tackle the mismatch between the
learned aggregated posterior and the prior in VAEs [Rosca
et al., 2018, Hoffman and Johnson, 2016], i.e. latent space
regions where the prior is assigning high density but which
have low density under the aggregated posterior. Tomczak
and Welling [2018] suggested approximating the aggregated
posterior as a prior by fitting a mixture model with fixed
components on a posterior computed over learned pseudo-
inputs. Other approaches, instead, involve reweighting the
standard Gaussian prior, by either using rejection sampling
with a learned acceptance function [Bauer and Mnih, 2019]
or using an energy-based model prior [Aneja et al., 2021].
Flexibility can also be gained by parameterizing the prior
using normalizing-flows [Chen et al., 2017] or autoregres-
sive models [Gulrajani et al., 2017]. However, most of the
recent success of VAEs is due to architecture design choices
and tricks that allow to train deep hierarchical VAE [Burda
et al., 2016, Sønderby et al., 2016] with a large number of
stochastic layers [Maaløe et al., 2019, Vahdat and Kautz,
2020, Child, 2021]. By defining a conditional hierarchy of
latent variables, deep hierarchical VAEs have a more expres-
sive prior and a more flexible posterior approximation at
the same time, and are able to tackle the mismatch problem
between the prior and the aggregated posterior by tuning
both.

Recently, denoising diffusion models [Sohl-Dickstein et al.,
2015, Ho et al., 2020] have gained popularity for their gen-
erative capabilities in the image domain. However, they
are less established in the context of biological sequence
modelling, and need additional tweaking to extract the like-
lihood [Song et al., 2021]. Since we require evaluations of
likelihoods, we opted for pursuing the VAE approach here.

3 PROTEIN FAMILY LADDER
VARIATIONAL AUTOENCODERS

We start by reviewing VAEs, their extension to hierarchical
architectures and the specific design of the ladder VAE to
make robust training of these models feasible. Finally, we
consider Bayesian VAEs, where we learn a distribution over
the decoder parameters.
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Figure 2: A) HVAE bottom-up inference model, where x is
the input, arrows indicate neural networks parameterizing
a mean and a variance, and z are sampled latent variables.
B) LVAE top-down inference model, where deterministic
variables d are combined with stochastic variables z in order
to get new mean and variance values to sample the next
latent variable from. C) The generative model is the same
both for HVAE and LVAE, apart from the shared weights
(indicated by blue stars).

3.1 VARIATIONAL AUTOENCODER

The variational autoencoder is a framework to train deep
latent variable models p(x, z) = p(x|z)p(z) where the as-
sumption is that an observed variable x is generated by
a transformation of an unobserved variable z. The prior
distribution p(z) over the latent variables can be learned,
as highlighted in the Related Works section, but common
choice is to consider a standard Gaussian N (0, I). The con-
ditional distribution pθ(x|z) is a parametric family of dis-
tributions over the input space parametrized by a neural
network with parameters θ. The true posterior p(z|x) is
intractable, making it impossible to optimize the model pa-
rameters by maximizing the log-likelihood directly. We rely
on a variational distribution qϕ(z|x), also parameterized by
a neural network, to approximate the true posterior. The
model parameters θ and ϕ are jointly learned by maximiz-
ing the evidence lower bound, L(θ, ϕ), on the log-likelihood
(ELBO) defined as:

log pθ(x) ≥ Eqϕ(z|x)[log pθ(x|z)]− KL(qϕ(z|x)||p(z))︸ ︷︷ ︸
=:L(θ,ϕ)

,

where KL is the Kullback-Leibler divergence.

3.2 HIERARCHICAL VAE AND LADDER VAE

The regular VAE is defined with a single (n-dimensional)
latent variable, which limits the VAE’s ability to model
complex input distributions. Hierarchical VAEs extend
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the VAE framework by considering a hierarchical prior,
i.e. a hierarchy of L latent variables instead of a single
one. This structure has the benefit of increasing the ex-
pressivity of the prior and the approximate posterior. The
new prior p(z) is defined as p(z) =

∏L−1
i=1 p(zi|zi+1),

and therefore the top-down generative process becomes
p(x, z) = p(x|z1)p(z1|z2) · · · p(zL−1|zL). For the infer-
ence model we can either follow a bottom-up approach
Burda et al. [2016] (HVAE), where the inference is defined
as

qϕ(z | x) = qϕ(z1 | x)
L∏

i=2

qϕ(zi | zi−1), (1)

or a top-down Sønderby et al. [2016] (LVAE), where the
inference is defined as

qϕ(z | x) = qϕ(zL | x)
1∏

i=L−1

qϕ(zi | zi+1). (2)

In the top-down inference of the LVAE, weights can be
shared between the encoder and decoder (Figure 2). Op-
timization of model parameters for both cases is done by
maximizing the evidence lower bound.

Training deep HVAEs is known to become unstable as
we increase the number of layers, due to the introduction
of more and more conditional stochasticity [Vahdat and
Kautz, 2020]. In addition, due to their bottom-up inference
model, latent variables in the upper stochastic layers of
HVAEs tend to become inactive, meaning that they are not
contributing in learning a meaningful representation [Burda
et al., 2016]. The top-down inference was introduced as a
solution for exactly this problem [Sønderby et al., 2016].
Another possible approach to avoid the problem of upper
latent variables being inactive is the use of skip connections
[Maaløe et al., 2019, Vahdat and Kautz, 2020]. In this
work we consider only hierarchical VAEs with top-down
inference as defined in Sønderby et al. [2016].

3.3 BAYESIAN VAE

Both DeepSequence [Riesselman et al., 2018] and EVE
[Frazer et al., 2021] use a Bayesian decoder for their VAE
model. This is motivated by the improvements in perfor-
mance when predicting stability of protein mutations for
different families. In the usual VAE notation, which we also
adopted, pθ(x|z) means p(x|z,θ = θMLE), where θMLE is
just a single point estimate learned during training. In a
Bayesian VAE, one assumes a distribution over the decoder
parameters θ and the overall goal is to estimate the posterior
distribution p(θ|D). A possible approach to approximate
the posterior distribution is to optimize a variational approx-
imation of the posterior by minimizing the KL between
the variational distribution q(θ|λ) and the prior distribution
p(θ) during training using gradient descent. In the literature
this is also known as “Bayes by Backprop” [Blundell et al.,

2015], which was also used by [Riesselman et al., 2018,
Frazer et al., 2021] to train their Bayesian VAE. When using
this approach, the model is trained by maximizing:

log pθ(x) ≥ N · Ep(x)[Eq(θ|λ)qϕ(z|x) log p(x|z,θ)
− KL(qϕ(z|x)||p(z))]− KL(q(θ|λ)||p(θ)),

where the prior distribution is usually assumed to be a
standard Gaussian, i.e. p(θ) = N (0, I) and the varia-
tional approximation is assumed to be a diagonal Gaussian
q(θ|λ) = N (µ,σ2I), with λ = {µ,σ2} being the param-
eters optimized during training and N being the number of
training points.

The choice of employing a Bayesian decoder in a VAE has
also seen successful applications in the domain of out-of-
distribution detection [Daxberger and Hernández-Lobato,
2019, Glazunov and Zarras, 2022]. In this context, it was
shown that potential benefits can be gained by a more com-
prehensive Bayesian treatment of the weights, using stochas-
tic gradient Hamiltonian Monte Carlo [Chen et al., 2014].
We will only consider only Bayes by Backprop in this study,
to allow for direct comparisons to the earlier DeepSequence
and Eve models, but will return to the discussion on poten-
tial weaknesses of the Bayes by Backprop approach in the
Discussion section.

4 EXPERIMENTS

We will investigate the following:

1. Given the success of hierachical VAEs for image gen-
eration, can we improve sampling quality in protein se-
quence VAEs using an architecture of multiple stochas-
tic layers?

2. Does the use of a hierarchical stochastic structure in
these VAEs alleviate the mismatch between the prior
and the aggregated posterior we see in Fig. 1B?

3. What is the effect of the Bayesian decoder on sam-
ple quality and the performance in quantifying variant
stability?

4. Is the final Spearman correlation between predicted and
experimentally determined variant effects influenced
by the way we compute the marginal log-likelihood?

To answer these questions, we start by considering the EVE
model [Frazer et al., 2021], which is the most commonly
used VAE for modelling amino acid sequences for protein
families. This is a one-stochastic layer VAE with a Bayesian
decoder, which also considers a 1D convolution to encour-
age correlation between amino acids and temperature scal-
ing of the output logits. An important difference between
the EVE model we used in this paper and the original EVE
implementation is that we decide to model sequence gaps in
the alignments, while in the original model these are masked
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during training. This means that unlike DeepSequence and
EVE, our models are able to generate sequences with gaps,
which is of critical importance for reliable sequence genera-
tion.

We consider possible modifications that can improve EVE
architecture by making it more flexible. We investigate hier-
archical VAEs with two and three stochastic layers and for
all models we consider two equivalent architectures with
and without a Bayesian decoder. A full detailed description
of these models and the training setup is available in the
Supplementary Material (section A)1.

Protein family data We test our hypotheses on the the
beta-lactamase protein family multiple sequence alignment
dataset made available by Riesselman et al. and labeled by
species, as well as the corresponding deep mutational scan
dataset [Stiffler et al., 2015] as a test set for calculating mu-
tant effect prediction (Spearman correlation). As shown in
[Riesselman et al., 2018], we use the log-ratio of the lower
bound on the marginal likelihood as a proxy for sequence
variant fitness. During training, sequences are reweighed
to reduce sampling bias, using a 80% identity cutoff [Ries-
selman et al., 2018, Ekeberg et al., 2013]. For the hold out
set, we randomly pick 5% of the training set and remove
all sequences from the training set that have more than 80%
sequence similarity with the hold out set. After processing,
there are 4412 sequences in the training set and 388 in the
hold out set.

4.1 PROTEIN FAMILY VAE SAMPLE QUALITY

To demonstrate the effect of the mismatch between the prior
and the aggregated posterior for protein family VAE models,
we assess the quality of generated samples. This was done
by drawing samples from an EVE model, i.e. a 1-layer VAE
with a Bayesian decoder, to obtain a “pseudo-alignment”
with the same number of sequences as the input MSA that
the model was trained on. We use EVcouplings [Hopf et al.,
2019] to predict a precision-ranked list of contacts, i.e. sites
where atoms are predicted to be in close spatial proximity, as
shown in Figure 3A. Subsequently, we customarily take the
average precision over the top L, top L/2 and top L/4 con-
tacts to obtain a sample quality score, where L is the length
of the protein (which is 263 amino acids for beta-lactamase).
Figure 3B reports the sample quality for the input MSA, a
site-independent model and different variants of EVE. Top
L, top L/2 and top L/4 all follow a similar pattern, where
top L/n quality scores are generally higher for larger values
of n since the top-to-bottom decrease in precision-ranked
contacts is not linear. The MSA serves as a reference value,
providing a loose upper sample quality limit that can be ob-
tained based on the input data. The site independent model
is a simple model that assumes each residue position to

1Code will be made available on Github upon publication.
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Figure 3: A) Example of a contact map that can be predicted
using evolutionary couplings, compared to a reference map.
Long-range predicted contacts in black, reference in blue.
Secondary structure elements are shown in black on the
right and bottom of the contact map. B) Sample quality
for the input MSA, a site-independent model, and different
variants of EVE (a 1-layer VAE with a Bayesian decoder).

be independent, where we use the input MSA to get all
positional amino acid distributions. Since our experiment
focuses on covariation, and ignores conservation of amino
acids, the sample-quality of the site-independent model is
close to zero. For EVE, we consider three different variants.
The first one is the original EVE model, where at sampling
time we sample both the decoder weights θ(i) ∼ q(θ|λ) and
a latent representation z(i) ∼ p(z) from the prior before
decoding the latent z(i). Even though this model has been
shown to have good performance in the context of disease
variant prediction [Frazer et al., 2021], the sample quality
of generated protein sequence samples is still relatively low.
Freezing the weights of the Bayesian decoder to be equal to
the mean (MAP estimate) yields similar, but slightly lower,
sample quality. In contrast, replacing the Bayesian decoder
by a non-Bayesian variant gives a boost in sample quality.
This indicates that even though the Bayesian decoder is
useful for improving stability predictions, this modelling
choice can be detrimental for generated samples.
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Figure 4: 2D latent representations. Left: different levels
of aggregated posterior distributions for a model with 1 to
3 hierarchical layers, color coded by species. Right: com-
parison between the prior (kernel density estimate, orange)
and the aggregated posterior (scatter, dark blue) for the 3
layer model, with kernel density estimations of marginal
distributions on the marginal axes.

4.2 THE HIERARCHICAL VAE AS A BETTER
SPECIFIED MODEL?

We hypothesize that one of the main factors explaining
low sample quality in protein family VAEs is the inconsis-
tency between the prior and the learned aggregated posterior,
which is depicted in Figure 1B. These inconsistencies are
reflected in differences in structure and overall scale of the
two distributions. Here, we visually investigate if hierar-
chical VAEs can overcome this mismatch. We explore the
learned 2D latent space for 1-, 2-, and 3-layer VAEs trained
with two latent variables without a Bayesian decoder, since
the non-Bayesian decoder scored the highest in terms of
sample quality in Figure 3B. The left-hand side of Figure 4
shows the latent space for these three models, color coded
by species. For the 2- and 3-layer hierarchical models, the
top layers furthest away from the output (z2 and z3, re-
spectively) are much closer to the Gaussian prior, while
preserving the interpretable star-shaped structure close to
the output (z1). On the right-hand side of Figure 4 demon-
strates how well the aggregated posterior overlaps with the
prior for the 3-layer model. At each layer, the prior matches
the aggregated posterior quite well in terms of scale and
overall shape. Note that we show one sample for each data
point in the aggregated posterior, which does not reflect the
fluctuations each point has. We show the effect of using
more samples in the Supplementary Material (section B).

However, even for many samples, there are still regions of
latent space where the prior assigns some probability mass
even though these regions are empty for the aggregated
posterior. Despite this, hierarchical VAEs seem to be bet-
ter, although not perfectly, specified models for generating
protein sequences.

4.3 THE EFFECT OF WEIGHT DISTRIBUTION
TEMPERATURE DURING SAMPLING

Since VAEs with a non-Bayesian decoder seem to perform
relatively well in terms of sampling quality, we investigate
whether or not sample quality improves for VAE models
with Bayesian decoders when the temperature of the distribu-
tion over decoder weights is turned down at sampling time.
Here, a temperature of 1 corresponds to regular weight sam-
pling from the Bayesian decoder before sampling sequences,
and zero temperature corresponds to sampling using the
mean weights of the decoder (MAP estimate). We evaluate
sample quality as well as Spearman correlation with muta-
tion effects at six different temperatures: 0.0, 0.2, 0.4, 0.6,
0.8 and 1.0, as reported in Figure 5. Alongside 1-, 2-, and 3-
layer Bayesian decoder VAEs at this range of temperatures,
we also report the temperature-independent performance
of the non-Bayesian variants and, in case of sample qual-
ity, the input MSA. Figure 5A shows that decreasing the
temperature for decoder weight sampling does not have a
substantial effect on sampling quality across hierarchical
models. Moreover, the sampling quality of the Bayesian
decoder models is still far below their non-Bayesian coun-
terparts, which show some slight improvement upon adding
more layers to the hierarchical model. For the Spearman
correlation for mutation effect prediction, Figure 5B shows
an opposite trend where the Bayesian variants have a much
higher correlation compared to the non-Bayesian variants.
Adding more layers to the non-Bayesian decoder VAE even
seems detrimental to this specific downstream task, despite
having much higher sampling quality. Finally, even though
the Spearman correlation hardly seems to be influenced by
decoder weight sampling temperature for the 1- and 3-layer
models, the 2-layer model clearly shows a downward trend
when lowering the temperature.

4.4 SENSITIVITY OF SPEARMAN CORRELATION
TO THE NUMBER OF SAMPLES

We use the probability log-ratio as a proxy for the fitness
of a specific mutation. This is defined as log p(x(mutant)|θ)

p(x(wild-type)|θ) =

log p(x(mutant)|θ) − log p(x(wild-type)|θ). In the context of
a VAE, a common way to approximate the marginal log-
likelihood is by importance sampling, as initially proposed
by Rezende et al. [2014], which provides a tighter bound
on the marginal log-likelihood. In contrast, directly using
the ELBO gives a looser approximation of the marginal log-
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Figure 5: Sample quality (A) and Spearman correlation for mutation effect prediction (B) for hierarchical models at different
decoder weight sampling temperatures. Dashed lines show non-Bayesian temperature-independent model variants, dotted
orange line shows input MSA sample quality. Precise numerical values can be found in the Supplementary Material (section
D), along with results for hierarchical models with a smaller architecture (section C).

likelihood. Indeed, the former is an actual approximation
of the marginal likelihood, while the latter is just a lower
bound. We can write the approximation of the marginal
log-likelihood as Burda et al. [2016]:

log p(x) ≥ L(x;θ, ϕ)

≈ 1

M

M∑

m=1

[
log

1

K

K∑

k=1

pθ(x|zm,k)p(zm,k)

qϕ(zm,k|x)

]

where z1,1, . . . , zM,K ∼ qϕ(z|x). If in the above equation
we consider the number of importance samples K = 1, then
this corresponds to the usual VAE ELBO, which can be
estimated using M Monte Carlo (MC) samples. If, instead,
K > 1, then we get the importance weighted autoencoder
(IWAE) bound from Burda et al. [2016], where we usually
set M = 1. The first approach results in a low variance
estimate as M goes to infinity, while the second results in a
lower-variance as well as a tighter bound as K increases.

We investigate how the choice of both the type and num-
ber of samples influence the final Spearman correlation.
We consider the EVE model as described in Frazer et al.
[2021] and compare its performance to a corresponding
non-Bayesian variant in terms of Spearman correlation. We
consider two approaches to estimate the log-likelihood; in
the first approach, we keep K = 1 and vary the number of
MC samples, while in the second approach we do the oppo-
site. From Figure 6, we can see that increasing the number of
MC samples leads to a larger gain in performance compared
to increasing the number of IWAE samples. This is true
both in the Bayesian and non-Bayesian setting, although the
fitness prediction gap between the two approaches is smaller
for the model without the Bayesian decoder.

5 DISCUSSION

Over the last years, VAEs have become popular tools for
characterizing mutations within protein families. In partic-
ular, they display unmatched performance in prediction of
variant effects and their tree-like latent spaces have been

observed to contain biologically relevant information. How-
ever, in the context of the VAE as a generative model, the
structured latent space has been a source of concern, since
it is at odds with the prior distribution. This means that
sampling from the prior can result in z-values that are are
not representative for any of the training data. Moreover, if
the prior does not cover the same space as the aggregated
posterior, this might influence the diversity of the samples.
One might therefore expect that sampling quality could be
improved considerably if this problem was addressed. In this
paper, we set out to investigate how substantial this problem
is in practice, what the effects are on protein fitness predic-
tion and how to mitigate the mismatch between the prior
and the aggregated posterior to improve sample quality. We
demonstrate that hierarchical VAEs increase the flexibility
of the prior distribution to match that of the structured latent
space, which leads to an improvement in terms of sample
quality in the non-Bayesian decoder setting.

Although we see some gains in sampling quality in the hi-
erarchical non-Bayesian setting, the improvements are less
dramatic than we had expected, especially in the Bayesian
context. We believe the explanation to be related to the ex-
trapolation properties of neural networks. In areas of the
latent space which are unsupported by data (off-manifold),
the decoder will map to similar sequences as the nearest
latent point on the boundary of the manifold, and do so
with high certainty [Detlefsen et al., 2022]. Thus, if we take
an off-manifold latent point, decode it, and subsequently
encode it back to the latent space, we effectively project
the point onto the manifold. Although this is a problem-
atic property for uncertainty quantification, it appears to be
beneficial for the generative aspects of the model, since off-
manifold latent points will still produce reasonable samples.
One would, however, expect that this introduces a bias in
the sampled distribution, implicitly upweighting the bound-
ary region. This aspect of sampling quality was not tested
in our experiments, and it is not obvious how one would
quantify this effect in the high dimensional space of protein
sequences.

7



A

B

Figure 6: Evolution of the Spearman correlation with respect
to the type and the number of samples used to approximate
the log-likelihood. A) Spearman for the original EVE model
as described in Frazer et al. [2021] and B) non-Bayesian
version of the EVE. Using MC samples is always giving
better results, but the difference between the MC and IWAE
approach is smaller in the non-Bayesian case.

One surprising result of our study was the fact that we saw
no improvement in fitness prediction (Spearman correlation
to experiment) when we consider hierarchical VAEs, de-
spite the fact that the model is better specified and produces
higher quality samples. Likewise, we saw no improvement
when considering improving our estimate of the marginal
log-likelihood. While unexpected, these observations is in
tune with a recent study considering the relationship be-
tween density estimation and fitness estimation, in which it
was concluded that we cannot generally assume these two
objectives to align [Weinstein et al., 2022]. In fact, in some
cases, misspecification of a density model was shown to be
beneficial for fitness estimation. This observation is compli-
cated further by the fact that in general, depending on the
assay, the experimentally measured quantity might also not
be identical to the function optimized by evolution (although
this alignment should be strong for the beta-lactamase assay
studied here). For the purpose of variant effect prediction,
we should therefore consider optimizing hyperparameters
of the models on (hold-out sets of) the experimental data
directly.

The hierarchical VAEs presented here do not fully solve
the prior-aggregated posterior mismatch, in the sense that
they still assign some probability mass in areas of latent
space which do not correspond to data observed during
training. Further extensions of the expressivity of the prior
could resolve this issue, e.g. by using a normalizing flows or
diffusion-based priors [Chen et al., 2017]. However, these
changes would typically involve an increase in the num-
ber of parameters, which is potentially problematic in the
setting where these models are to be estimated on single
protein families consisting of only hundreds to thousands of
sequences. Likewise, training issues are known to arise in
these settings due to the competition between the conditional
log-likelihood and the KL term in the VAE ELBO. However,
the spectacular progress observed for hierarchical VAEs in
image generation in recent years suggests that a hierarchical
approach might provide benefits not attainable by such pri-
ors. Another approach is to use even more informative priors.
One example is the recent use of an Ornstein-Uhlenbeck
process to provide a tree-structure the latent space [Moreta
et al., 2022] of a variational autoencoder. Currently, this
latter approach is however limited to multiple sequence
alignments with a low number of sequences, and requires a
precomputed phylogenetic tree, making it less of a general
purpose solution.

Another open problem we highlight in this paper is that
Bayesian VAEs generate lower-quality samples compared
to an equivalent non-Bayesian model. In addition to that, the
temperature scaling experiments reveal that the minimum
found by maximum likelihood and VI yield to very differ-
ent results in terms of quality of the generated sequences.
We believe that mean-field approximation can be the cause
of this behaviour, and modelling the correlation between
weights either by doing full (or block) covariance Laplace or
Hamiltonian Monte Carlo would be a promising approach
to investigate in future works. However, modelling the full
covariance over decoder weights is challenging due to con-
strictions in memory and compute power. As an example,
if we consider the beta-lactamase protein family from the
experiments section, we have to model a 263-long sequence
with an alphabet of 21. Assuming a last-layer with 100
hidden units, this would results in a ≈ 500000 × 500000
covariance matrix. Therefore, although the recent advances
in Laplace approximation [Daxberger et al., 2021], espe-
cially last-layer Laplace approximation, it will be difficult to
estimate the posterior distribution over the decoder weights
in a post-hoc way. An alternative used by earlier studies in
out-of-distribution detection is to use Hamiltonian Monte
Carlo for estimating the weight distributions. This replaces
the need for storing a full covariance matrix with a simple
registration of weight samples, but at the price of a compu-
tationally more involved training procedure. We leave a full
exploration of these tradeoff as future work.

8



6 ACKNOWLEDGEMENTS

The work conducted within the Center for Basic Ma-
chine Learning Research in Life Science (MLLS, grant
nr NNF20OC0062606). MA was supported by the Novo
Nordisk Foundation (grant nr NNF18OC0052719) and FB
by the Innovation Fund Denmark (grant nr 0175-00014B).

References

E. C. Alley, G. Khimulya, S. Biswas, M. AlQuraishi, and
G. M. Church. Unified rational protein engineering with
sequence-based deep representation learning. Nature
methods, 16(12):1315–1322, 2019.

J. Aneja, A. Schwing, J. Kautz, and A. Vahdat. A contrastive
learning approach for training variational autoencoder pri-
ors. Advances in Neural Information Processing Systems,
34, 2021.

S. Balakrishnan, H. Kamisetty, J. G. Carbonell, S.-I. Lee,
and C. J. Langmead. Learning generative models for
protein fold families. Proteins: Structure, Function, and
Bioinformatics, 79(4):1061–1078, 2011.

M. Bauer and A. Mnih. Resampled priors for variational
autoencoders. In The 22nd International Conference on
Artificial Intelligence and Statistics, pages 66–75. PMLR,
2019.

T. Bepler and B. Berger. Learning protein sequence embed-
dings using information from structure. arXiv preprint
arXiv:1902.08661, 2019.

C. Blundell, J. Cornebise, K. Kavukcuoglu, and D. Wier-
stra. Weight uncertainty in neural network. In Interna-
tional conference on machine learning, pages 1613–1622.
PMLR, 2015.

Y. Burda, R. B. Grosse, and R. Salakhutdinov. Importance
weighted autoencoders. In 4th International Conference
on Learning Representations, ICLR 2016, 2016.

T. Chen, E. Fox, and C. Guestrin. Stochastic gradient hamil-
tonian monte carlo. In International conference on ma-
chine learning, pages 1683–1691. PMLR, 2014.

X. Chen, D. P. Kingma, T. Salimans, Y. Duan, P. Dhariwal,
J. Schulman, I. Sutskever, and P. Abbeel. Variational
lossy autoencoder. In 5th International Conference on
Learning Representations, ICLR, 2017.

R. Child. Very deep vaes generalize autoregressive models
and can outperform them on images. In 9th International
Conference on Learning Representations, ICLR, 2021.

E. Daxberger and J. M. Hernández-Lobato. Bayesian varia-
tional autoencoders for unsupervised out-of-distribution
detection. arXiv preprint arXiv:1912.05651, 2019.

E. Daxberger, A. Kristiadi, A. Immer, R. Eschenhagen,
M. Bauer, and P. Hennig. Laplace redux-effortless
bayesian deep learning. Advances in Neural Informa-
tion Processing Systems, 34:20089–20103, 2021.

N. S. Detlefsen, S. Hauberg, and W. Boomsma. Learning
meaningful representations of protein sequences. Nature
communications, 13(1):1–12, 2022.

X. Ding, Z. Zou, and C. L. Brooks III. Deciphering protein
evolution and fitness landscapes with latent space models.
Nature communications, 10(1):1–13, 2019.

M. Ekeberg, C. Lövkvist, Y. Lan, M. Weigt, and E. Aurell.
Improved contact prediction in proteins: using pseudo-
likelihoods to infer potts models. Physical Review E, 87
(1):012707, 2013.

A. Elnaggar, M. Heinzinger, C. Dallago, G. Rihawi,
Y. Wang, L. Jones, T. Gibbs, T. Feher, C. Angerer,
M. Steinegger, et al. Prottrans: towards cracking the lan-
guage of life’s code through self-supervised deep learn-
ing and high performance computing. arXiv preprint
arXiv:2007.06225, 2020.

J. Frazer, P. Notin, M. Dias, A. Gomez, J. K. Min, K. Brock,
Y. Gal, and D. S. Marks. Disease variant prediction with
deep generative models of evolutionary data. Nature, 599
(7883):91–95, 2021.

M. Glazunov and A. Zarras. Do bayesian variational autoen-
coders know what they don’t know? In Uncertainty in
Artificial Intelligence, pages 718–727. PMLR, 2022.

I. Gulrajani, K. Kumar, F. Ahmed, A. A. Taïga, F. Visin,
D. Vázquez, and A. C. Courville. Pixelvae: A latent
variable model for natural images. In 5th International
Conference on Learning Representations, ICLR, 2017.

A. Hawkins-Hooker, F. Depardieu, S. Baur, G. Couairon,
A. Chen, and D. Bikard. Generating functional protein
variants with variational autoencoders. PLoS computa-
tional biology, 17(2):e1008736, 2021.

M. Heinzinger, A. Elnaggar, Y. Wang, C. Dallago,
D. Nechaev, F. Matthes, and B. Rost. Modeling aspects
of the language of life through transfer-learning protein
sequences. BMC bioinformatics, 20(1):1–17, 2019.

D. Hesslow, N. Zanichelli, P. Notin, I. Poli, and D. Marks.
Rita: a study on scaling up generative protein sequence
models. arXiv preprint arXiv:2205.05789, 2022.

J. Ho, A. Jain, and P. Abbeel. Denoising diffusion probabilis-
tic models. Advances in Neural Information Processing
Systems, 33:6840–6851, 2020.

M. D. Hoffman and M. J. Johnson. Elbo surgery: yet another
way to carve up the variational evidence lower bound. In
Workshop in Advances in Approximate Bayesian Infer-
ence, NIPS, volume 1, 2016.

9



T. A. Hopf, A. G. Green, B. Schubert, S. Mersmann, C. P.
Schärfe, J. B. Ingraham, A. Toth-Petroczy, K. Brock, A. J.
Riesselman, P. Palmedo, et al. The evcouplings python
framework for coevolutionary sequence analysis. Bioin-
formatics, 35(9):1582–1584, 2019.

Y. Ji, Z. Zhou, H. Liu, and R. V. Davuluri. Dnabert: pre-
trained bidirectional encoder representations from trans-
formers model for dna-language in genome. Bioinformat-
ics, 37(15):2112–2120, 2021.

D. P. Kingma and M. Welling. Auto-encoding variational
bayes. In 2nd International Conference on Learning
Representations, ICLR, 2014.

A. X. Lu, H. Zhang, M. Ghassemi, and A. Moses. Self-
supervised contrastive learning of protein representations
by mutual information maximization. BioRxiv, 2020.

L. Maaløe, M. Fraccaro, V. Liévin, and O. Winther. Biva:
A very deep hierarchy of latent variables for generative
modeling. Advances in neural information processing
systems, 32, 2019.

A. Madani, B. McCann, N. Naik, N. S. Keskar, N. Anand,
R. R. Eguchi, P.-S. Huang, and R. Socher. Progen: Lan-
guage modeling for protein generation. arXiv preprint
arXiv:2004.03497, 2020.

D. S. Marks, L. J. Colwell, R. Sheridan, T. A. Hopf, A. Pag-
nani, R. Zecchina, and C. Sander. Protein 3d structure
computed from evolutionary sequence variation. PloS
one, 6(12):e28766, 2011.

J. Meier, R. Rao, R. Verkuil, J. Liu, T. Sercu, and A. Rives.
Language models enable zero-shot prediction of the ef-
fects of mutations on protein function. Advances in Neu-
ral Information Processing Systems, 34, 2021.

F. Morcos, A. Pagnani, B. Lunt, A. Bertolino, D. S. Marks,
C. Sander, R. Zecchina, J. N. Onuchic, T. Hwa, and
M. Weigt. Direct-coupling analysis of residue coevolu-
tion captures native contacts across many protein families.
Proceedings of the National Academy of Sciences, 108
(49):E1293–E1301, 2011.

L. S. Moreta, O. Rønning, A. S. Al-Sibahi, J. Hein,
D. Theobald, and T. Hamelryck. Ancestral protein se-
quence reconstruction using a tree-structured ornstein-
uhlenbeck variational autoencoder. In International Con-
ference on Learning Representations, 2022.

R. Rao, N. Bhattacharya, N. Thomas, Y. Duan, P. Chen,
J. Canny, P. Abbeel, and Y. Song. Evaluating protein
transfer learning with tape. Advances in neural informa-
tion processing systems, 32, 2019.

D. Repecka, V. Jauniskis, L. Karpus, E. Rembeza,
I. Rokaitis, J. Zrimec, S. Poviloniene, A. Laurynenas,

S. Viknander, W. Abuajwa, et al. Expanding functional
protein sequence spaces using generative adversarial net-
works. Nature Machine Intelligence, 3(4):324–333, 2021.

D. J. Rezende, S. Mohamed, and D. Wierstra. Stochastic
backpropagation and approximate inference in deep gen-
erative models. In International conference on machine
learning, pages 1278–1286. PMLR, 2014.

A. J. Riesselman, J. B. Ingraham, and D. S. Marks. Deep
generative models of genetic variation capture the effects
of mutations. Nature methods, 15(10):816–822, 2018.

A. Rives, J. Meier, T. Sercu, S. Goyal, Z. Lin, J. Liu, D. Guo,
M. Ott, C. L. Zitnick, J. Ma, et al. Biological structure
and function emerge from scaling unsupervised learning
to 250 million protein sequences. Proceedings of the
National Academy of Sciences, 118(15), 2021.

M. Rosca, B. Lakshminarayanan, and S. Mohamed. Distri-
bution matching in variational inference. arXiv preprint
arXiv:1802.06847, 2018.

J.-E. Shin, A. J. Riesselman, A. W. Kollasch, C. McMahon,
E. Simon, C. Sander, A. Manglik, A. C. Kruse, and D. S.
Marks. Protein design and variant prediction using au-
toregressive generative models. Nature communications,
12(1):1–11, 2021.

S. Sinai, E. Kelsic, G. M. Church, and M. A. Nowak. Varia-
tional auto-encoding of protein sequences. arXiv preprint
arXiv:1712.03346, 2017.

J. Sohl-Dickstein, E. Weiss, N. Maheswaranathan, and
S. Ganguli. Deep unsupervised learning using nonequi-
librium thermodynamics. In International Conference on
Machine Learning, pages 2256–2265. PMLR, 2015.

C. K. Sønderby, T. Raiko, L. Maaløe, S. K. Sønderby, and
O. Winther. Ladder variational autoencoders. Advances
in neural information processing systems, 29, 2016.

Y. Song, C. Durkan, I. Murray, and S. Ermon. Maximum
likelihood training of score-based diffusion models. Ad-
vances in Neural Information Processing Systems, 34:
1415–1428, 2021.

M. A. Stiffler, D. R. Hekstra, and R. Ranganathan. Evolv-
ability as a function of purifying selection in tem-1 β-
lactamase. Cell, 160(5):882–892, 2015.

R. L. Tatusov, E. V. Koonin, and D. J. Lipman. A genomic
perspective on protein families. Science, 278(5338):631–
637, 1997.

J. Tomczak and M. Welling. Vae with a vampprior. In
International Conference on Artificial Intelligence and
Statistics, pages 1214–1223. PMLR, 2018.

10



A. Vahdat and J. Kautz. Nvae: A deep hierarchical vari-
ational autoencoder. Advances in Neural Information
Processing Systems, 33:19667–19679, 2020.

E. N. Weinstein, A. N. Amin, J. Frazer, and D. S. Marks.
Non-identifiability and the blessings of misspecification
in models of molecular fitness and phylogeny. bioRxiv,
2022.

11



Sampling quality in deep generative models of protein sequences
(Supplementary Material)

Marloes Arts1,* Federico Bergamin2,* Wouter Boomsma1 Jes Frellsen2

1Department of Computer Science, University of Copenhagen, Copenhagen, Denmark
2Department of Applied Mathematics and Computer Science, Technical University of Denmark, Copenhagen, Denmark

*Equal contribution

A MODEL ARCHITECTURE DETAILS

We present in detail the model architectures and the training setup we used to generate the results and plots of the main paper.
An overview of model settings can be found in Table A1 and Table A2. Code will be made available upon publication.

EVE For the EVE implementation Frazer et al. [2021] we closely follow the available implementation in their GitHub
repository 1. EVE is one-stochastic layer VAE with a Bayesian decoder. The encoder is a 3-layers neural network with
[2000, 1000, 300] hidden units which map the amino acid sequence to a 50 dimensional latent variable. The decoder is
also a 3-layers neural network with [300, 1000, 2000] hidden units, which map the latent observation to the logits of a
Categorical distribution, modelling the input sequence. In the decoder they also consider having a final 1D convolution
layer to encourage amino acid correlation and a temperature scaling parameter for the final logits, i.e. the final logits are
computed as logits = log(1.0 + exp(temperature)) ∗ logits. Having a Bayesian decoder means that we are not
treating the decoder parameters deterministically, i.e. learning a single set of weights, but instead we learn a distribution
over that. This also include the logits temperature parameter. The prior over the decoder weights is assumed to be a standard
Gaussian and the weights are optimize by Bayes by Backprop Blundell et al. [2015], which makes convergence to be pretty
slow. Indeed, following their setting we trained the model for 45000 epochs and choose the model with the best validation
error. In addition to that, they use dropout Srivastava et al. [2014] with p = 0.1 and they initialize both the encoder and the
Bayesian decoder in a specific way. We use the same initialization when we consider a Bayesian Decoder in our models.

For the non-Bayesian version of EVE, we just consider the same encoder and decoder architecture but we did not use
the 1D convolution, the logits temperature parameter, and the use of dropout during training. We also did not use the
same initialization because it was mostly suited for training model with a Bayesian decoder. We instead consider batch
normalization Ioffe and Szegedy [2015].

2-stochastic layer VAE For the 2-stochastic layer VAE we consider a slightly different architecture. The bottom-up
structure is defined by two neural network with the following hidden units [[1000, 500, 200], [500, 300, 200]] and the top-
down part of the inference has a single neural network with [200, 300, 500] hidden units. The final decoder, instead, is
defined as a three layer network with the following structure: [300, 500, 1000]. The latent on the top of the hierarchy has 30
dimension, while the other one is 50 dimensional. In case we are using a Bayesian decoder we initialized all the bottom-up
structure as the EVE encoder and we also initialize the Bayesian decoder in the same way as EVE. Apart from the number
of hidden units, the Bayesian decoder has the same structure in same of type of layers as the original EVE.

For the non-Bayesian version, as in the EVE case, we use the same architectures without the "tricks” suggested by the
DeepSequence model Riesselman et al. [2018] and included batch normalization.

3-stochastic layer VAE We follow mostly the same implementation details as before and just considered a different
architecture. In this case the bottom up structure is composed by three different networks with the following shapes
[[1000, 500, 200], [500, 300, 200], [300, 200, 100]], where the first element of the list is the encoder. The top-down part,

1EVE codebase can be found here: https://github.com/OATML-Markslab/EVE
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Table A1: Model architectures for hierarchical models.

BOTTOM-UP TOP-DOWN FINAL DECODER LATENT DIMENSION

1 LAYER [[2000, 1000, 300]] − [300, 1000, 2000] [50]

2 LAYER
[[1000, 500, 200],
[500, 300, 200]]

[[200, 300, 500]] [300, 500, 1000] [50, 30]

3 LAYER

[[1000, 500, 200],
[500, 300, 200],
[300, 200, 100]]

[[100, 200, 300],
[200, 300, 500]]

[300, 500, 1000] [50, 30, 10]

1 LAYER 2D [[2000, 2000]] − [100, 2000] [2]

2 LAYER 2D
[[2000, 2000],
[100, 100]]

[[100, 100]] [100, 2000] [2, 2]

3 LAYER 2D
[[2000, 2000],
[500, 500],
[100, 100]]

[[50, 50],
[100, 100]]

[100, 2000] [2, 2, 2]

Table A2: Additional model configurations, Bayesian versus non-Bayesian.

BAYESIAN
DECODER

1D CONVOLUTION BATCHNORM
TEMPERATURE

SCALING LOGITS
DROPOUT
DECODER

EVE
INITIALIZATION

BAYESIAN ✓ ✓ − ✓ 0.1 ✓

NON-BAYESIAN − − ✓ − 0.0 −

instead, has two networks with shapes [[100, 200, 300], [200, 300, 500]]. The final decoder is the same as in the 2-stochastic
layers case, meaning that it has [300, 500, 1000] hidden units. Starting from the top latent, we use the following latent
dimensions: [50, 30, 10].

For the non-Bayesian version we do exactly as in the previous two models.

2D latent space models For the 2D latent space models, we use hierarchical VAE models without a Bayesian decoder, as
decribed in the previous paragraphs. Since the latent space has a reduced size of only two latent variables, we use a slightly
simpler setup: the neural networks between layers have only two layers instead of three, where both layers are of the same
size. See Table A1 for more details.

Training setup For all the considered model we use Adam optimizer Kingma and Ba [2015] with 1e−4 learning rate
and a batch size of 256. All models were run for 45000 epochs, after which the best model was chosen based on the best
validation loss. The only exception are the 2D latent space models, which were run for 80 epochs. As we also mention in the
paper introduction, the optimization process of VAE with multiple stochastic layers is difficult. Combining them with a
Bayesian decoder makes the optimization procedure more brittle.
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B MULTIPLE SAMPLES FOR THE AGGREGATED POSTERIOR

In the main paper, we visualize the aggregated prior using one sample per data point. However, one could also consider
drawing multiple samples per input, to get and idea of the fluctuations that can occur for a data point. Figure A1 shows
the comparison between the prior and the aggregated posterior for 1 and 100 samples per data point. For 100 samples, the
distribution is more spread out and certain “islands” in latent space at z1-level start overlapping.

𝑧!

𝑧"

𝑧#

Prior	vs	aggregated	posterior	(3layers)

1	sample 100	samples

Figure A1: Left: aggregated posterior for a 3-layer non-Bayesian VAE, color coded by species. Right: comparison between
prior and aggregated posterior for the same model, with 1 and 100 samples, respectively, for the aggregated posterior.
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C SMALLER HIERARCHICAL VAE NEURAL NETWORK ARCHITECTURES

Since the MSA dataset that we use is relatively small and the original EVE model as well as the 2- and 3-layer variants
reported in this paper contain neural networks with layer sizes that are relatively large, we also explore a smaller archi-
tecture. We reduce the number of layers in every neural network between latent variables and we set a lower latent space
dimensionality (details in Table A3). Similar to the results in the main paper, we evaluate all models both in the Bayesian
and the non-Bayesian setting. Interestingly, Figure A2 show that the non-Bayesian performance is very close to their larger
counterparts in the main paper, both in terms of sample quality and Spearman correlation. Additionally, sample quality
for the small Bayesian models behaves similarly to the large Bayesian models. However, the Spearman correlation drops
substantially for 2- and 3- layer hierarchical models with a Bayesian decoder. This shows that the Bayesian variants of the
model are very sensitive to the chosen architecture, and might need more flexibility to perform well in downward tasks.

A B

Figure A2: Sample quality (A) and Spearman correlation for mutation effect prediction (B) for hierarchical models with
a smaller architecture compared to the regular sized 1-layer models at different decoder weight sampling temperatures.
Dashed lines show non-Bayesian temperature-independent model variants, dotted orange line shows input MSA sample
quality.

Table A3: Model architectures for small hierarchical models.

BOTTOM-UP TOP-DOWN FINAL DECODER LATENT DIMENSION

2 LAYER
[[1000, 500],
[500, 300]]

[[300, 500]] [500, 1000] [30, 10]

3 LAYER

[[1000, 500],
[500, 300],
[300, 200]]

[[200, 300],
[300, 500]]

[500, 1000] [30, 20, 10]

D RESULTS

We report also the results we showcase in the main paper in a table form, which make it easier for future performance
comparison. In Table A4, we report the results related to the plot in Fig.5 in the paper.
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Table A4: Numerical results visualized in Fig.5 of the paper. We compare hierarchical VAEs both in terms of fitness
prediction and sample quality. For the model with a Bayesian decoder we considered temperature scaling both for computing
the Spearman correlation and for sampling.

1-STOCHASTIC LAYER (EVE)

FITNESS SAMPLE QUALITY

BAYESIAN DECODER TEMPERATURE SPEARMAN TOP L TOP L/2 TOP L/4

✓ 0.0 0.7364 0.2505 0.3058 0.3851
✓ 0.2 0.7384 0.2894 0.3584 0.4371
✓ 0.4 0.7395 0.3200 0.4077 0.5174
✓ 0.6 0.7384 0.3159 0.3916 0.4935
✓ 0.8 0.7386 0.3082 0.3896 0.4800
✓ 1.0 0.7401 0.3080 0.3811 0.4762
✗ − 0.6994 0.5861 0.7061 0.7786

2-STOCHASTIC LAYERS

FITNESS SAMPLE QUALITY

BAYESIAN DECODER TEMPERATURE SPEARMAN TOP L TOP L/2 TOP L/4

✓ 0.0 0.7068 0.2968 0.3775 0.4776
✓ 0.2 0.7143 0.3569 0.4618 0.6061
✓ 0.4 0.7206 0.3472 0.4237 0.5156
✓ 0.6 0.7259 0.2981 0.3547 0.4270
✓ 0.8 0.7298 0.3278 0.4157 0.5133
✓ 1.0 0.7297 0.3162 0.3746 0.4169
✗ − 0.6921 0.5792 0.7074 0.7680

3-STOCHASTIC LAYERS

FITNESS SAMPLE QUALITY

BAYESIAN DECODER TEMPERATURE SPEARMAN TOP L TOP L/2 TOP L/4

✓ 0.0 0.7377 0.2779 0.3683 0.4822
✓ 0.2 0.7375 0.3206 0.4030 0.5059
✓ 0.4 0.7348 0.3839 0.4725 0.5468
✓ 0.6 0.7348 0.3402 0.4258 0.5151
✓ 0.8 0.7359 0.3649 0.4462 0.5011
✓ 1.0 0.7336 0.3714 0.4747 0.5992
✗ − 0.6927 0.6130 0.7507 0.8344
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Chapter 6

Concluding Remarks

The field intersecting machine learning and structural biology is
moving at an incredible pace and the arrival of AlphaFold2 [1]
only added more fuel to the fire, setting off a cascade of genera-
tive models for static structure prediction. However, the dynamic
nature of proteins is still lacking from this static picture. Despite
progress in ensemble density modelling and force field computa-
tion [41, 49, 117], the field is still far away from a generative
method over ensembles that generalizes across systems, and even
further away from a cheap way to obtain force fields for unseen
systems. While these objectives might be currently out of reach
due to lack of training data, the majority of the work done during
my Ph.D. was aimed at taking intermediate steps towards these
goals.

Initially, we focused on the parameterization choice that needs
to be made when modeling protein structure variance. For most
models, the selected representation is a consequence of the model
application: if local structure is prioritized over global structure,
e.g. in local models or for small proteins, one can be inclined to
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choose an internal coordinate parameterization, while Cartesian
coordinates might be the better option when the emphasis is on
global structure. In Chapter 3, we reconciled these two represen-
tations to get the best of both worlds. The proof-of-concept VAE
model trained on protein structure ensembles is able to gener-
ate high-quality samples, both in terms of local and global struc-
ture.

However, we are also aware of the limitations of this method.
First of all, our first-order approximation only holds for small
atom perturbations in 3D space. This issue could be alleviated by
combining multiple small perturbations in a hierarchical VAE or,
ultimately, a diffusion model. For example, the recently released
diffusion-based Chroma model relies on correlated diffusion rather
than the commonly used uncorrelated variant [35, Appendix C],
and we believe our method could provide a richer covariance struc-
ture compared to the ones mentioned in the paper. The model
we chose in our paper to show the method’s potential was a rela-
tively simple VAE in combination with a U-Net [118], where the
latter was a remnant of our own earlier experiments predicting
the fluctuations of pairwise distances directly in a non-generative
setting, see Appendix A. In the current setting, the U-Net directly
predicts the Lagrange multipliers λ, which affect the degree of 3D
fluctuation per atom and are kept low through a regularizing loss
term. Since the relationship between λ and the true atom fluc-
tuation constraints C is known (see Equation 10 in the paper),
we are presently experimenting with an auxiliary maximum like-
lihood loss on C directly. This is ongoing work and so far this
model objective has proven hard to optimize in the current model
setting. We hope this research will present a small step towards
accurately modelling protein structure ensembles in terms of local
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as well as global structure.

In Köhler et al. [49], the authors chose to parameterize protein
structures using internal coordinates, and train a normalizing flow-
based model to get a density estimator over Cαcoarse-grained pro-
tein dynamics structure data. Additionally, they train a second
model in a teacher-student setup to do explicit force matching
with respect to the flow model and thereby obtain a force field to
use for simulations. While the results were promising, the method
does not scale well to larger systems due to its limited capacity
to model global structure and the restrictions imposed by the bi-
jective transformations within the normalizing flow. Moreover,
ensuring local chemical integrity necessitated the use of auxil-
iary loss terms to prevent steric clashes and bond dissociation.
Finally, performing dynamics with the obtained force field was
quite challenging and required parallel tempering (i.e. increasing
and decreasing the temperature) to increase the change of going
from one low-energy basin to another. In Chapter 4, we set out to
solve some of these problems using a diffusion model. The inputs
are set in Cartesian space with rotational data augmentation and
all molecules are centered to zero to make our output invariant
to rototranslational transformations. This method, which has a
much simpler training setup without auxiliary losses, outperforms
the flow-based method in equilibrium setting. In addition, we can
extract the implicitly learned score function from the model and
directly translate it into a force field. The simulations obtained
utilizing these extracted force fields (without parallel tempering)
follow the original molecular dynamics simulations better than the
flow-based model. We also demonstrate that our method scales
better to larger systems, showing results on protein G which was
outside the modeling range of the flow-based method.
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However, there is still room for improvement. Since the proposed
method still has a slight tendency to get stuck in low-energy
basins, we are now experimenting with flexible levels of noise,
similar to parallel tempering, to improve simulations. Another
thing that might help the model “generalize within the protein”
is to include amino acid labels in the coarse-grained bead proper-
ties, such that the individual chemical properties can be learned.
Even though this method still needs to be trained per system, our
hope is that a similar model could be trained to generalize across
proteins, given enough training data.

Generative models, and VAEs in particular, have been applied to
protein family sequence (MSA) data [11, 12]. Interestingly, for
one-layer VAEs, different species separate into a “star-shape” in
the latent representation. This means there is a considerable mis-
match between the standard Gaussian prior and the aggregated
posterior, potentially leading to suboptimal sample quality. In
Chapter 5 we address this issue and alleviate it slightly by intro-
ducing multiple layers of latent space in an LVAE model. Even
though the improvement was less dramatic than expected in terms
of sample quality and the model still assigns probability mass to
regions without observed data points, the reduced mismatch be-
tween the prior and the aggregated posterior is a promising re-
sult.

A counter-intuitive result that we encountered throughout all our
experiments is that there appears to be an inverse relationship be-
tween sample quality and protein fitness prediction. Even though
it has been shown before that these objectives do not necessarily
align, an effect that has even been called the “blessing of misspeci-
fication” [119], we are still looking into explaining this observation.
To this end, we plan to include experimental data in the train-
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ing set to investigate whether assay data and evolutionary data
agree on the objective to be optimized. We also found that us-
ing a Bayesian decoder is detrimental to sample quality, where
the effect of the decoder weight sampling temperature is negli-
gible, i.e. the cold posterior effect is not present or not strong
enough to make a difference. This might be due to the lack of
covariance structure between the weight sampling distributions in
the decoder, and we are looking into ways to address this prob-
lem while avoiding memory problems, such as last-layer Laplace
approximation [80].

Overall, the work presented in this Ph.D. thesis focused on gen-
erative models for protein structure and sequence variation in the
context of protein structure ensembles, protein dynamics, and the
evolution of amino acid sequences. It has been rewarding to be
able to contribute with steps towards a better understanding of
this challenging, hybrid field.
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Appendix A

Pairwise distance distributions

Poster: Protein Structure Variance Prediction using Deep Learn-
ing and Molecular Dynamics Simulations

The poster on the next page outlines a U-Net based model to
predict pairwise distance variance directly from the amino acid
sequence and native structure for a protein. The poster was pre-
sented at the Geometric Deep Learning Summer School 2021,
where it received the Best Poster Award.
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Protein Structure Variance 
Prediction using Deep Learning
and Molecular Dynamics Simulations
Marloes Arts * ma@di.ku.dk , Wouter Boomsma * wb@di.ku.dk
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Methods

Our model is based on a U-Net, a type of architecture that is well-
known in imaging tasks such as segmentation. The input features are
processed to form an “image” with 99 features per pixel.
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§ Reparameterization of 𝜎!!"
For more robust training, we choose the
variance to be distributed according to
the conjugate prior of Gaussian data:
the inverse-Gamma distribution.
This results in a student-t distribution2.

Proteins are involved in virtually all processes within
cells. They consist of a string of amino acids, folded up
into a specific 3D structure which is directly linked to
the function of the protein.

Recently, there has been huge progress in predicting the
static structure of proteins, but this is not the whole
story. Proteins are dynamic molecules, and some parts
have more variance than others.

Given the amino acid sequence and static structure of a
protein, predict the distribution over all pairwise
distances within a protein.

Motivation:
§ Insight in protein function
§ Sampling structures (e.g. data augmentation)
§ Future direction: weigh distances according to their

variance when predicting the mean structure from
amino acid sequence (i.e. distances with less variance
are probably more important for the main structure)

(Preliminary) Results

We train and validate our network on a (soon to be
published) data set that was constructed using Molecular
Dynamics (MD)1. For each protein, we have 399
simulated structures with an interval of 50 ps. For this
poster, we use all proteins with al length of ≤200 amino
acids (474 train, 19 validation, 62 test).
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Conclusion:
We propose a U-Net based network that can capture protein structure variance patterns given their amino acid sequence
and static structure, solely by minimizing the negative log likelihood on structures simulated through Molecular Dynamics.

1. Data set built by Tone Bengtsen, previously a postdoc in our group.
2. Nicki S Detlefsen, Martin Jørgensen, and Søren Hauberg. Reliable training and estimation of variance networks. arXiv preprint arXiv:1906.03260, 2019.

Our network captures the
pairwise distance variance
pattern quite well.
Importantly, the predicted
𝜎 is a result of minimizing
the NLL, without the use
of a ground truth 𝝈.
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