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Abstract

In this thesis we describe a host of static and dynamic techniques for efficient
execution of GPU programs.

Most significant is the array short-circuiting technique, which automatically
rewrites array updates and concatenations to happen in-place when deemed safe.
The optimization is based on FunMem, an intermediate representation with
non-semantic memory information that we also introduce. FunMem allows the
compiler to analyze, reason about and optimize memory usage patterns while
keeping high-level language information. To map array elements to specific
locations in memory, FunMem uses lmads. lmads have traditionally seen
most use in the context of automatic parallelization of sequential loops, where
they are used in a set-interpretation to aggregate memory accesses across loops,
but we introduce two new interpretations: as index functions in FunMem
and as a slicing mechanism in a user-facing language. The first enable cheap
change-of-layout transformations in FunMem, while the other allows users
to express complex slices of arrays not otherwise possible. Finally, to enable
the aforementioned short-circuiting optimization on complex benchmarks, we
present a heuristic for proving non-overlap of multi-dimensional lmads in the
set-interpretation.

We also introduce a technique for automatically finding near-optimal thresh-
old values for multi-versioned code. Multi-versioned code attempts to solve the
problem of not having a single best compilation strategy for a certain program,
by generating multiple semantically-equivalent but differently-optimized ver-
sions of code and guarding each version with a conditional based on runtime
parameters, leading to the creation of a tuning tree. By relying on a mono-
tonicity assumption, which relates the relative performance of each code version
to the runtime parameter conditionals, we show how to automatically tune the
threshold values such that each tuning dataset is executed using the fastest code
version. As a result, our one-time offline tuning process produces tuning values
that optimally discriminate between the different code versions for the training
datasets used, and indeed for all datasets with similar size-characteristics.

Both the static and dynamic techniques have been developed in the context
of and implemented for the Futhark parallel programming language, and we
show significant performance improvements from both array short-circuiting
and autotuning.
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Resumé

I denne afhandling beskriver vi en række statiske og dynamiske teknikker
målrettet effektiv afvikling af GPU programmer.

Den mest signifikante af disse er geledskortslutningsteknikken, som automa-
tisk omskriver geledopdateringer og sammensætninger til at foretage direkte
ændringer i geledder når det er sikkert. Optimeringen er baseret på FunMem,
en mellemliggende repræsentation med ikke-semantisk hukommelsesinformation,
som vi også introducerer. FunMem lader oversætteren analysere og optimere
hukommelsesforbrug og -mønstre, samtidig med at høj-niveau sprog-information
beholdes. For at binde geledelementer til placeringer i hukommelsen bruges
lmads. lmads er traditionelt blevet brugt i forbindelse med automatisk paral-
lelisering af sekventielle løkker, hvor de i en sætfortolkning samler information
om hukommelsestilgange. Vi introducerer to nye fortolkninger: Som indeks-
funktioner i FunMem og som en udsnitsmekanisme i et brugervendt sprog. Den
første fortolkning lader FunMem udtrykke billige indretningsændringsomdan-
nelser, mens den anden lader brugeren udtrykke komplicerede geledudsnit som
ikke ellers er mulige. For at kunne bruge førnævnte geledskortslutningsteknik
til komplicerede programmer beskriver vi også en metode til at bestemme om
two flerdimensionelle lmads i overlapper eller ej.

Derudover vises en teknik til automatisk at finde nær-optimale tærskelvær-
dier i flerversioneret kode. Flerversioneret kode bruges til at løse problemet
med at der for nogle programmer ikke findes én bedste oversættelsesstrate-
gi. Ved at lave flere semantisk ens men forskelligt optimerede versioner af
den samme kode kan der dynamisk vælges mellem dem på køretidspunktet.
Hver version beskyttes af en køretidssammenligning mellem en brugerdefineret
tærskelværdi og en dynamisk programværdi, hvilket tilsammen bliver til et
stemmetræ. Ved at forlade os på en ensformighedsantagelse som relaterer den
relative ydelse af hver kodeversion til de dynamiske programværdier, viser vi
hvordan tærskelværdierne kan stemmes således at alle stemmedatasæt afvikles
med hver deres hurtigste kodeversion. Som resultat kan vi ved blot at stemme
træet en gang opnå ét sæt tærskelværdier der automatisk vælger den bedste
kodeversion for alle stemmedatasæt, samt alle andre datasæt med lignende
størrelseskarakteristika.

Alle statiske og dynamiske teknikker i denne afhandling er blevet imple-
menteret til det parallelle programmeringssprog Futhark, og vi finder at især
geledkortslutningsteknikken og den automatiske tærskelværdistemmer giver
væsentlige ydelsesforbedringer.
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Chapter 1

Introduction

This thesis describes techniques for automatically performing analyses and
optimizations in GPU-oriented programming languages. It consists of two
distinct but related lines of work:

1. Static analysis tools and techniques for reasoning about and optimizing
memory usage in languages targeting GPU execution.

2. Dynamic analyses aimed at automatically tuning threshold parameters
in multi-versioned code based on monotonic properties.

Common to both approaches is the context: Attempting to automatically
optimize the performance of GPU oriented programs.

1.1 Static Memory Analyses in Parallel Languages

Efficient use of memory is crucial to the performance of many programs,
especially programs targeted at GPU execution [Yan+10]. Modern GPUs have
two main levels of memory, which we denote global and local memory 1, which
must be managed judiciously by the user. Correctly using coalesced access
patterns and avoiding bank conflicts can lead to performance improvements
of up to an order of magnitude. The imperative languages commonly used
to program GPUs, CUDA and OpenCL, require the programmer to directly
manage these concerns by manually allocating memory in different parts of the
memory hierarchy and mapping the results to logical arrays, which becomes
increasingly difficult as programs grow in complexity. Similarly, flattened indices
and the implicit structure of parallelism makes the resulting code difficult to
later maintain, reason about and optimize.

A rich amount of work concerns automatic parallelization of sequential code
such as the work on the SUIF [Hal+05; MH99] and Polaris [RHR03; OR12]
compilers as well as work that uses polyhedral compilation [Bon+08; CSS15].

1Local memory is called shared memory in CUDA terminology.

1
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These analyses are complicated by their attempt to reverse-engineer the users’
memory optimizations. Inferring the parallel structure of a given program
might fail, in which case the program is executed without any parallelism at
all, leading to catastrophic performance.

Parallel functional array languages [Hen+19; Mac+19; Hal+05] represent
an alternative approach, where all available parallelism is explicitly denoted
by the programmer using second-order array combinators such as map, reduce
and scan, leading to correct-by-construction parallelism. While promising, this
approach separates the notion of memory from the notion of arrays, removing
the users’ ability to reason about and optimize memory usage at all. As a
result, many common optimizations from imperative languages, such as in-
place updates or reusing already allocated memory are inexpressible, leading
to unnecessarily high memory usage.

As a solution, we present a series of analyses, tools and optimizations for
reasoning about and optimizing the use of memory in parallel languages, all
based on the use of lmads [PHP98; Hoe98].

lmads, and various extensions thereof, have traditionally been used to per-
form automatic parallelization by aggregating array accesses across sequential
loops and performing complex set-operations on the result [RHR03; OR13]. We
will also be using lmads in this capacity but we describe a new heuristic for
proving non-overlap of multi-dimensional lmads. In addition to this interpre-
tation, we introduce lmads as a slicing construct in the user-facing language,
allowing users to express complex array “views” not otherwise possible, and as
index functions in the intermediate representation of an optimizing compiler,
enabling free change-of-layout transformations of arrays.

We next introduce an intermediate representation based on lmads, Fun-
Mem, that can be used by the compiler for a parallel array language to introduce
non-semantic memory information without lowering the program to an im-
perative setting. By associating with each array an index function consisting
of an lmad, the compiler can easily manipulate and optimize memory usage
and patterns, for instance to ensure coalesced access to local memory, allow
safe in-place updates of arrays or enable memory reuse, without changing the
semantics of the program. We formalize our discussion of FunMem by showing
a translation from a pure functional IR named Fun and a translation to an
lower-level imperative language named Imp, as well as static and dynamic
semantics for each language.

Finally, we describe three optimizations based on FunMem that have all
been implemented in the Futhark programming language: Memory expansion,
memory block merging and array short-circuiting.

Memory expansion arises from the fact that GPUs do not efficiently support
dynamic allocation of memory inside threads. Therefore, all allocations of
arrays have to be hoisted out of the kernels themselves and expanded to
accommodate all threads in one allocation. We show how memory expansion is
trivially implemented using the FunMem IR.
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Memory block merging aims to reduce memory usage by applying register
allocation techniques on arrays. By computing an interference graph between
the memory blocks of a given program we are able to take into account the
different memory spaces and additional requirements imposed by the GPU
context, while merging memory blocks and reducing memory usage. We have
implemented memory block merging in the Futhark compiler, and though it
applies to many of the programs in the Futhark benchmark suite, it turns out
to have limited impact in the already highly optimized compiler.

Array short-circuiting is a complex analysis that enables compilers to recap-
ture some of the lost memory optimizations arising from parallelism guarantees
in high-level parallel programming languages. These languages enforce correct-
by-construction parallelism using traditional type system features by forcing a
separation between parallel operations that read and write to the same array.
An in-place update of the elements of an array is therefore always divided
into two separate parallel operations: First computing the updated values in
a intermediate array that is manifested to memory and secondly updating
the original array using the values from the intermediate array. The result
is extra overhead from copying and an increased memory footprint. Array
short-circuiting consists of a bottom-up analysis that is based on aggregating
array accesses using lmads and proving disjointedness of reads and writes.
The aim is to identify cases where it is safe to construct the intermediate array
directly in the memory space of the original array, such that the parallel write
becomes a no-op. The result is that in-place updates reading and writing
to the same array can be constructed without any intermediate arrays when
deemed safe. We have implemented this optimization in the Futhark compiler
and report a performance speedup on six public benchmarks of between 1.1×
and 2×, resulting in code that is competitive with hand-written OpenCL and
CUDA code.

1.2 Autotuning Threshold Parameters in
Multi-Versioned Code

For many applications, it can be difficult to statically infer the best compi-
lation technique [Che+; Fur+11; Aca+19; TJF14]. In fact, for any given
program, there may not exist one compilation technique that results in optimal
performance across all datasets and hardware specifications [Ste+; Bag+15;
Rag+13; Fra+18; Hag+18; Aca+19; TJF14]. This is especially true in the
context of massively-parallel hardware such as GPUs, where the performance of
a given program is extremely sensitive to locality, memory usage, parallelization
strategies, differences in hardware characteristics as well as dataset sizes and
shapes [Jan+10; Hij+22].

A promising strategy to deal with this problem is to generate multi-versioned
code consisting of many semantically-equivalent but differently-optimized ver-
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sions of the same computational kernel and then determining at runtime which
version to run by comparing dynamic runtime properties (specifically, the
degree of parallelism exploited) to user-defined threshold values [Hen+19]. The
different code versions and the conditionals discriminating between them form a
tuning tree. In theory, by adjusting the threshold values of the tuning tree, users
can target the best code-version for a given dataset and hardware combination.
In practice, that is not feasible for most users, given the complicated nature of
the tuning trees and the intricate knowledge of the GPU architecture required.

Instead we propose an automatic tuning technique which is based on
the structure of the tuning tree and relies on a monotonicity assumption,
which relates the relative performance of each code version to the degrees of
parallelism exploited. Arising from compiler-autotuner co-design it requires
minimal compiler instrumentation and can be applied to any tuning tree that
conforms to the monotonicity assumption. When the monotonicity assumption
is upheld, the proposed autotuner guarantees near-optimal discrimination of
code versions for all datasets which have similar parallelism characteristics to
the datasets being used to tune with.

For a given dataset, our autotuner relies on finding for each tuning parameter
the maximal optimal threshold interval, which causes the dataset to be executed
using the best code version. The monotonicity assumption then guarantees
that for each such interval found, we can intersect it with the intervals found
for all other datasets. The result is a set of threshold intervals that optimally
select between the different code versions for all the given tuning datasets, as
well as any other datasets with similar parallelism characteristics. In addition
to describing this process in detail, we also outline a proof for why adherence
to the monotonicity assumption guarantees that such intersections exist.

Furthermore, we describe two classes of programs, size-invariant and size-
variant programs, and argue for why tuning size-variant programs can be
reduced to instances of tuning size-invariant programs. We also show how
the monotonicity assumption gives rise to a binary search technique that can
be used to reduce the amount of tuning runs necessary to tune size-variant
programs.

Lastly, we demonstrate the usefulness of our autotuning technique by
implementing it for the Futhark programming language and comparing the
tuning time and resulting program performance to that of an OpenTuner-
based autotuner previously developed for Futhark, using a variety of public
benchmarks. We find that our autotuner reduces the tuning time up to 22.6×
and finds better threshold values in five out of 11 cases, leading to an increased
benchmark performance of up to 10×.



Chapter 2

Background

This chapter contains context and background information necessary for un-
derstanding the work presented in the following chapters. The work that we
present is based on the Futhark programming language [Hen+19; Hen+17;
Hen17], a pure functional array language targeted at GPU execution (though
other backends are also available), so we need to understand both how GPUs
work and how Futhark maps computations to GPU kernels.

The purpose of this chapter is not to give a comprehensive and detailed
description of either GPUs or Futhark and their inner workings, but to give a
cursory introduction which will serve as a suitable base for understanding the
work presented in the rest of this thesis. For additional details about GPUs we
refer to the official CUDA documentation at https://docs.nvidia.com/cuda
and the official OpenCL site at https://www.khronos.org/opencl/. For more
information about Futhark, we refer to https://futhark-lang.org/.

2.1 Parallelism and GPUs

Graphics processing units, or GPUs for short, were popularized in the ’90s and
early ’00s for handling the increasingly complex 3D graphics in video games.
They have since become popular platforms for high-performance computing
and data-processing under the term GPGPU (General Purpose GPU), though
we will use the shorter GPU.

The distinguishing feature of GPUs are their single-instruction multiple-
thread (SIMT) architecture, which allows many threads to run in parallel. For
example, NVIDIA’s A100 GPU [Nvi22], which is the one we’ll be using for most
of the benchmarks in this thesis, has 6912 cores, meaning that 6912 threads
can run at the same time. These 6912 cores are divided over 108 streaming
multiprocessors each with 64 cores that can process in parallel. Furthermore,
modern GPUs make aggressive use of multi-threading to hide latency, so the
number of hardware threads needed to reach full utilization and saturation

5

https://docs.nvidia.com/cuda
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is in the hundreds of thousands. All in all, GPUs have massive amounts of
parallelism available to them.

At the software level, the parallelism of a GPU like the A100 is defined in
three levels: Grid, workgroup1 and warp, with the last one not being explicitly
addressable. A grid is the main unit of execution and it consists of a number
of workgroups, arranged in one, two or three dimensions, though we will only
focus on the one-dimensional case.

A workgroup consists of a number of threads, up to 1024 on most modern
GPUs which are again divided into warps, normally consisting of 32 threads.
Though each thread has its own program counter and register state, the threads
of a warp always execute one common instruction at a time. This means that
branching can cause some threads to be idle while others are working, but if
there is at least one thread in each branch of a conditional, the entire warp
needs to execute all branches, one after the other. As a result, full efficiency is
only achieved when all 32 threads in a warp are executing the same instructions.

Inter-thread communication is achieved through the use of different kinds of
memory. At the grid level we have global memory, the slowest and largest kind
but also the only one that can be used for inter-group communication. The
A100 has either 40 or 80 GB of global memory. Threads in the same workgroup
may use local memory2 to communicate between themselves. Local memory is
much faster than global memory, but also much smaller: Each workgroup has
a maximum of 48 KB (which can be reconfigured up to 164 KB on the A100)
of local memory available. Thus, a common pattern is to attempt to chunk a
given problem into blocks that fit in the local memory of a workgroup such
that there is some kind of cooperation between the workgroup threads, in order
to take advantage of the fast local memory. Finally, threads in a workgroup
can synchronize their execution through the use of barriers, but there is no way
to synchronize across workgroups.

When transferring data from global memory to local memory or vice versa,
the speed of memory accesses can be significantly improved by using coalesced
access. Put simply, if the threads of a warp all attempt to access global memory
addresses that are consecutive in memory, they are able to do so in a single
memory operation. In contrast, if the locations accessed are far apart in
memory the warp will have to issue distinct memory operations for each thread.
Figure 2.1 shows examples of coalesced and uncoalesced accesses to memory.

Additionally, while working with local memory, the programmer has to be
aware of bank conflicts. Local memory is divided into banks (the A100 has 32
banks), such that successive words in memory belong to successive banks. As
a result, two memory locations separated by e.g. 32 words belong to the same
bank. Any number of banks can be used in parallel, but if two or more threads

1In CUDA terminology, these are called blocks, but we will be using the term workgroup
from OpenCL terminology.

2Called shared memory in CUDA terminology.
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(a) Coalesced accesses to memory.
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(b) Uncoalesced accesses to memory.

Figure 2.1: Coalesced and uncoalesced memory access patterns. The green
locations are being accessed by consecutive threads in the same warp at the
same time.

kernel plus_one(in, out) :
tid← get_local_id()
wid← get_workgroup_id()
gid← wid ∗WORKGROUP_SIZE + tid
out[gid]← in[gid] + 1

Listing 2.1: Computing the incremented values of in in parallel.

in the same warp concurrently attempt to access elements in the same bank
then those accesses will be sequentialized.

GPU code is organized into kernels. A kernel is a function that takes a
number of buffers as input and is executed on a single thread. Each thread has
a local ID, unique to the workgroup it is in, a workgroup ID and a global ID
unique across all threads. These IDs can be accessed by using the get_local_id()
and get_workgroup_id() functions. For example, listing 2.1 shows the pseudo-
code for a kernel that takes as arguments an input buffer in and an output
buffer out, increments all the values of in by one and writes the result to the
output buffer out.

Due to the physical constraints of the GPU, kernels are quite limited in what
they can do. For instance, neither recursion nor dynamic memory allocation
are supported (at least not efficiently). Therefore, all memory used by the
kernels must be pre-allocated by the host and passed as arguments.

2.2 Futhark

Futhark is a pure functional parallel array programming language. The primary
target of the language is GPU execution, which is also the focus of this thesis.
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map ‘a [n] ‘x : (f : a→ x)→ (as : [n]a)→ ∗[n]x
reduce [n] ‘a : (op : a→ a→ a)→ (ne : a)→ (as : [n]a)→ a
scan [n] ‘a : (op : a→ a→ a)→ (ne : a)→ (as : [n]a)→ ∗[n]a

Listing 2.2: Common SOACs and their types.

Futhark also has support for sequential and multicore backends, but we will
not be using those here.

A Futhark program consists of a number of top-level definitions, such as
functions and constants. Because Futhark is completely pure (apart from
non-termination and divergence, e.g. division-by-zero) a function is completely
defined in terms of its input parameters. It uses an ML-style syntax reminiscent
of Standard ML or Haskell, but with a restricted feature-set that makes it
feasible to generate efficient parallel code. Here is an example of a definition of
a simple function, inc, that increments its input:

let inc (x : i64) : i64 =
x+ 1

Futhark does not currently support recursive functions (or recursive data-
structures). Instead, a semantically sequential loop-construct can be used to
imitate tail-recursion. The syntax is:

loop x = y for i < z do body

The loop executes the body z times. In each iteration of the body, i is
bound to the iteration counter between 0 and z−1. At the beginning of the first
iteration of the loop, x is bound to the value of y; in each following iteration
of the loop, x is bound to the result of the previous iteration. Finally, the
result of the last iteration is returned. As an example, here is how the factorial
function can be defined using loop:

let fact (n : i64) : i64 =
loop acc = 1 for i < n do

acc ∗ (i+ 1)

2.2.1 Parallelism through Second-Order Array Combinators

Parallelism in Futhark is explicitly expressed by the programmer using a
collection of second-order array combinators, or SOACs, such as map, reduce
and scan, which have the types shown in listing 2.2.

The semantics are conventional: map applies a function to each element
of an array, reduce applies an associative function to successive elements of
given an array (starting with a neutral element) and scan generalizes reduce
by collecting each intermediate result.
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As an example of how the types should be read, map is a function that has
two type parameters, ‘a and ‘x which are the types of the input and output
elements respectively, as well as a size parameter [n], requiring that both the
input and output arrays have the same number of elements in them. [n]a is the
type of an array of n elements, where each element has type a. Array-types can
be nested, so a two-dimensional array would have a type like [n][m]a. Notice
that the size types prohibit irregular arrays: They cannot be assigned a type
in Futhark and are therefore not allowed. The result of the map function has
the type ∗[n]x, where the asterisk is used to indicate uniqueness. In this case
it means that the result of a map does not alias any of the inputs, it is entirely
fresh.

Here is an example of a function, inc_all, which increments all the values
of the given array using map:

let inc_all [n] : (xs : [n]i64) : ∗[n]i64 =
map inc xs

Futhark also supports slicing using conventional triplet notation, which will
alias its argument, as in the following example:

let slice [n] ‘t (xs : [n]t) (i : i64) : [i]t =

xs[0 : i]

In aggregate, Futhark guarantees that all parallelism expressed by the user
is correct by construction: Through simple type-checking mechanisms, Futhark
guarantees the absence of race conditions, deadlocks and data-races.

Additionally, Futhark’s focus on explicit parallelism through SOACs means
that the compiler doesn’t have to do any complicated analyses in order to
extract parallelism from otherwise sequential code. On the other hand, Futhark
sometimes has to make decisions about how to sequentialize parallel code,
since GPUs do not support arbitrary levels of nested parallelism. Flattening,
the technique used to turn code with arbitrary levels of nested parallelism
into something that can run on a GPU is discussed in depth in sections 7.2.1
and 7.2.2.

2.2.2 In-Place Updates

Futhark also supports in-place updates, as in the following two semantically
equivalent statements, where the latter is simply syntactic sugar for the former:

let ys = ys with [i] = x

let ys[i] = x

Note that, although this looks like imperative code, semantically we are not
actually updating the value of ys: We are creating a new array whose name
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let scatter ‘t [k] [n] : (dest : ∗[k]t) (is : [n]i64) (vs : [n]t) : ∗[k]t =
loop dest = dest for i < n do

let dest[is[i]] = vs[i]

Listing 2.3: The type and sequential semantics of scatter.

shadows the old ys. However, Futhark’s uniqueness types guarantee that the
in-place update is safe (the old ys, or any aliases thereof, can not be used in
any later code path of the program) and that the cost of the in-place update is
only proportional to the number of updated values and not to the size of ys.
In other words, while we are semantically creating a new array, Futhark the
implementation is that of a guaranteed safe in-place update.

Futhark also supports another SOAC called scatter, which enables parallel
in-place updates of an array according to a list of indices. The type and
sequential semantics of scatter is shown in listing 2.3.

Like for map, the result of a scatter is unique, but the type of scatter
also uses an asterisk for one of its arguments, dest. This indicates that dest is
unique as well, meaning that it does not alias any other arrays and is therefore
safe to modify in-place. We say that scatter now owns dest. In this way,
uniqueness types in Futhark are vaguely reminiscent of the ownership system
in Rust. In short, uniqueness types allow Futhark to support efficient in-place
updates of arrays.

scatter takes two additional arrays as arguments, is and vs, and the result
is an array containing the values of dest, but with all indices contained in is
replaced by the corresponding values from vs. Semantically, we can think of
the result as an updated copy of dest, but because of the uniqueness types,
Futhark can safely reuse the existing array and update the necessary values
in-place. Using a work/depth cost-model [BG95], scatter has constant depth
and work proportional to the number of updated values, not to the size of the
updated array



Chapter 3

Linear Memory Access
Descriptors

This chapter describes linear memory access descriptors, or lmads, and how
lmads can be interpreted both as (1) sets of points in a one-dimensional space
used in dependency analysis of arrays, (2) as index functions used to map array
elements to memory locations in a compiler IR and (3) as a slicing mechanism
for arrays. In addition to laying out the fundamental properties of lmads
and various common operations on them, we also describe a non-overlap test
for multi-dimensional lmads (seen as a set of points), all of which are used
extensively in chapters 4 to 6.

3.1 Introduction

Accurately and efficiently aggregating array accesses across loops has long been
a topic of research in the context of automatic loop parallelization [RHR03;
RPR07; OR13]. Although the traditional triplet-notation of [τ :σ :δ, . . .]—with
τ , σ and δ signifying for each dimension the offset, number of elements and
stride—has been used for this purpose, it has been found inadequate for many
applications because it cannot accurately describe the access patterns resulting
from more complex indexing-operations [PHP98].

As an alternative, and throughout the rest of this thesis, we will use Linear
Memory Access Descriptors [Hoe98]. lmads are superficially similar to the
triplet notation, but they make it possible to represent patterns that the triplet-
notation does not. An lmad L, consisting of n dimensions and an offset τ , is
written as shown in fig. 3.1. For a given dimension i, σi denotes the number of
elements of that dimension and must be strictly positive, while δi denotes the
absolute stride, i.e. the total number of elements separating two consecutive
elements of that dimension. Both τ , all σs and all δs must be integers.

A rich body of literature concerning lmads exists in the context of automatic
parallelization of sequential loops in languages like Fortran [RHR03; HPY01;

11
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L = τ + {(σ1 :δ1), . . . , (σn :δn)}

Figure 3.1: The definition of an lmad.

{ τ + i1 ∗ δ1 + · · ·+ in ∗ δn | 0 ≤ i1 < σ1, . . . , 0 ≤ in < σn }

Figure 3.2: The set interpretation of an lmad L = τ+{(σ1 :δ1), . . . , (σn :δn)}.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
. . .

Figure 3.3: The set of points represented by the lmad L = 2+{(3 :5), (4 :1)}.

OR15; Rus+06]. In this interpretation, an lmad corresponds to a set of
points in a one-dimensional space given by the equation shown in fig. 3.2.
For instance, the lmad L = 2 + {(3 : 5), (4 : 1)} corresponds to the points
{2, 3, 4, 5, 7, 8, 9, 10, 12, 13, 14, 15} as shown in fig. 3.3.

lmads are more expressive than the traditional triplet notation. For
example, they can be used to represent a staggered set of columns as shown in
fig. 3.4. This set is given by the lmad 0 + {(6 :9), (3 :8)}.

Apart from the set-interpretation of lmads, they can also be used as
a slicing mechanism. Again, the typical notation for slicing an array uses
the triplet-notation, but the triplet notation limits what kind of slices we
can express. For instance, the triplet notation is restricted to expressing the
number of dimensions of the original array (or less), with no ability to create
new dimensions. As an example of how lmads allow you to create new “views”
of the existing dimensions of an array, if xs is a one-dimensional array of size
mn, the lmad-slice xs[τ+{(n :m), (m :1)}] constructs a two-dimensional “view”
of the one-dimensional array, akin to unflattening.

Finally, lmads can be used as index functions in the intermediate represen-
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Figure 3.4: A staggered collection of columns.
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tation inside a compiler, mapping array elements in the given programming
language to specific locations in memory. This allows a compiler to make
certain array operations, such as slicing and transposition, “cost-free” for the
user: By reusing the memory of the original arrays such operations can be
implemented to have zero or negligible runtime cost.

In short, the contributions of this chapter are:

1. A description of how lmads can be used as a slicing mechanism.

2. A description of lmads as index functions.

3. A non-overlapping test for multi-dimensional lmads in the set-of-points
representation.

4. A proof-sketch for the correctness of the non-overlapping test.

With the exception of the proof-sketch, the work presented in this chapter
has previously either been published at SC22 [Mun+22] or is in print at IFL
2022 [MOHss].

3.2 Background and Related Work

Linear memory access descriptors were first described in 1997 [Pae97] although
not named as such until 1998 [PHP98; Hoe98]. In the context of automatic
loop parallelization, they are used to aggregate, summarize and reason about
cross-iteration dependencies in sequential loops, both in dynamic and static
settings [RHR03; RPR07; OR13]. We denote this use of lmads the set-
interpretation.

We will also be using the set-interpretation of lmads when discussing
array short-circuiting in chapter 6, but in contrast to the complex operations1,
extensions and runtime support commonly needed for automatic loop paral-
lelization [RHR03; Rus+06; OR13], our use of lmads is entirely static and
we only rely on unions and a non-overlapping test, which we will describe in
section 3.6. The non-overlapping test is inspired by the multi-dimensional
recursive intersection algorithm described in [HPY01], but builds upon it by
applying heuristics to e.g. split dimensions when a given lmad self-overlaps,
leading to less conservative results.

While lmads under the set interpretation represent a set of points in a
one-dimensional space, we can also interpret an lmad as an index function
for an array. An index function is a function Nn → N, mapping the values
of some n-dimensional space to values in a single dimension. Typically, it is
used to map arrays in a given language to concrete offsets in some memory
buffer, corresponding to the location in memory of each element of the array.

1Such as subtraction and intersection.
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A compiler for an array programming language might associate such an index
function with each array in the intermediate representation. When the array
is later indexed, the index function is applied to find the precise location in
memory.

The desire to use lmads as index functions in the IR of a programming
language is closely related to the use of lmads as a slicing construct. Together,
they allow the programmer to use so-called change-of-layout transformations,
such as slices and transpositions, without the overhead of manifesting the
changed arrays to memory, while still allowing the compiler to perform further
high-level optimizations on the array uses. As an example, consider the following
piece of code:

let xs : [n][m]@xsmem → f = . . .

let xs′ : [m][n]@xsmem → transpose(f) = transpose xs

let x : int = xs′[k]

The first line says that xs is an array with dimensions n×m residing in the
memory buffer xsmem accessed with the index function f . If transpose is used
to transpose an index function at compile time then xs′ can reuse the memory
of xs at no runtime cost. Finally, when computing x, we use (transpose(f))(k)
to find the corresponding offset in xsmem.

lmads are closely related to dope vectors, which have been used in imple-
mentations for ALGOL 60 [Sat61] and APL [GW78]. The structure of dope
vectors are similar to lmads, but in contrast to lmads, dope vectors are often
used as actual metadata carried around at runtime; in our use, lmads are
strictly a compile-time construct.

3.3 lmads as a Slice

Many programming languages have some sort of slicing-mechanism for arrays.
For instance, Python uses the notation xs[start :stop :step] to indicate the slice
of xs starting from element start up to stop with a step of step. For instance
the slice xs[1 : 10 : 2] would correspond to the values at indices 1, 3, 5, 7, 9 of
xs. An alternative, but isomorphic, notation is xs[start :number-of-elems :step],
where xs[1 :5 :2] corresponds to the same indices as above.

However, as we’ve already seen in fig. 3.4, the triplet notation is not always
expressive enough. As a further example, triplet-notation cannot be used
to express the blocked anti-diagonal pattern shown in fig. 3.5, which is a
simplified version of the pattern used in the NW example discussed extensively
in section 6.1. In short, we wish to update the blocks of an anti-diagonal of
a matrix in-place, but the slice representing the blocked anti-diagonal cannot
be represented using triplet notation. However, by using lmads as a slicing
mechanism and denoting by b the block size, by i the anti-diagonal index and
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Figure 3.5: The simplified anti-diagonal write pattern from NW.

by n the number of elements per row of the array xs, we can represent the
necessary slice as

xs[ib+ {(i+ 1:nb− b), (b :n), (b :1)}]

At the most basic level, lmad-slices make it possible to take a one-
dimensional array and unflatten it into an array of higher dimensionality,
but it can also be used to represent blocked and skewed views as we have
just demonstrated. We will be using lmad-slicing mostly for one-dimensional
arrays, but it can easily be extended to apply to every dimension of an array,
as shown in fig. 3.6.

3.4 lmads as Index Functions

When a programming language supports array slices, the compiler has to decide
how to represent those slices at runtime, e.g. where to put the elements of
the slice and how the specific address of each element is found. The simplest
solution is to always manifest all arrays in some known order, usually row-
major, a dense format where consecutive elements of a row are located next
to each other. When mapping over the slice corresponding to the pattern in
fig. 3.5, the values in that slice would first be copied to a new memory buffer
in row-major order before applying the map.

Of course, this can be wasteful. After all, the values that are copied to the
new memory block already exists in another location, and if we are only reading
from the new slice, we might as well reuse the old allocation. In order to do
so, we would need to associate with each array an index function, mapping
the elements of the array to particular offsets in the associated linear memory
space. By using lmads as index functions, we can model complex slices such
as the one from NW with no copying-overhead.

For a q-dimensional lmad, L = τ + {(σ1 : δ1), . . . , (σq : δq)}, we therefore
define application as follows:

L(y1, . . . , yq) = τ + y1δ1 + · · ·+ yqδq (Application)
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In other words, to find the memory location of an index xs[x, y, z], we
compute L(x, y, z), where L is the index function of xs.

To support our use of lmads as index functions, we define a set of common
operations on lmads, shown in fig. 3.6.

The slice-function is used to slice an lmad according to an ordinary slice,
[offset :elems, . . .]. For each dimension, the slice specifies an offset and a number
elements. This kind of slicing corresponds closely to regular triplet-notation
slices, albeit without the strides, though adding support for strides is trivial,
as shown in section 3.4.1.

The alternative slicing function slicelmad takes a one-dimensional lmad
L and slices it according to a q-dimensional lmad, L′. We also define the
more general variant, slicelmads, which is used to slice a multi-dimensional
lmad using multiple lmad-slices, with each lmad-slice applied to a separate
dimension of the original lmad.

fix is used to fix the outermost dimension of an lmad. For instance, given
an lmad L = 10 + {(4 : 4), (4 : 1)}, fixing the outer dimension using fix(L, 1)
yields the lmad 14 + {(4 :1)}.

transpose is used to transpose the two outermost dimensions of an lmad
such that transpose(0 + {(20 :10), (10 :1)}) = 0 + {(10 :1), (20 :10)}. The result
is an element previously at index [i, j] is now at index [j, i], as expected.

Finally, we define R(x1, . . . , xn) as the row-major lmad with n dimensions
of the sizes indicated, and C(x1, . . . , xn) as the column-major ditto.

We use these functions to implement zero-cost change-of-layout transforma-
tions, as described in detail in chapter 4. In short, any time the user computes
a slice or transposition of an array, we are able to reuse the memory of the
original array.

3.4.1 Index Function Extensions

For simplicity, especially in later chapters, we have kept the definition and
algebra of lmads described so far simple. For completeness, we will now discuss
various extensions to the lmad algebra that are or have been used, for instance
in the Futhark programming language.

Triplet Slices with Strides

First of all, lmads fully support traditional triplet slices with strides. To
handle ordinary triplet slices, we use an extended version of the slice function,
slice’ , which takes an lmad and a slice with offset :elems :stride triplets:

slice’(τ + {(σ1 :δ1), . . . , (σq :δq)}, [x1 :y1 :z1, . . . , xq :yq :zq]) =
(τ +Σq

ixiδi) + {(y1 :z1δ1), . . . , (yq :zqδq)}
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slice(τ + {(σ1 :δ1), . . . , (σq :δq)}, [x1 :y1, . . . , xq :yq]) =

(τ +

q∑
i

xiδi) + {(y1 :δ1), . . . , (yq :δq)} (Slicing)

slicelmad(τ + {(σ :δ)}, τ ′ + {(σ1 :δ1), . . . , (σq :δq)}) =
τ + τ ′δ + {(σ1 :δδ1), . . . , (σq :δδq)} (Slicing with an lmad)

slicelmads(τ + {(σ1 :δ1), . . . , (σn :δn)},
τ1 + {(σ1,1 :δ1,1), . . . , (σ1,m1 :δ1,m1)},

...
τn + {(σn,1 :δn,1), . . . , (σn,mn :δn,mn)}) =

τ + τ1δ1 + · · ·+ τnδn+

{(σ1,1 :δ1δ1,1), . . . , (σ1,m1 :δ1δ1,m1),

...
(σn,1 :δnδn,1), . . . , (σn,mn :δnδn,mn)} (Slicing with multiple lmads)

fix(τ + {(σ1 :δ1) · · · (σq :δq)}, k) =
(τ + k · δ1) + {(σ2 :δ2) · · · (σq :δq)} (Fix)

transpose(τ + {(σ1 :δ1), (σ2 :δ2), . . . , (σq :δq)}) =
τ + {(σ2 :δ2), (σ1 :δ1), . . . , (σq :δq)} (Transpose)

R(x1, . . . , xn) = 0 + {(x1 :
n∏

i=2

xi), . . . , (xn :1)} (Row-Major)

C(x1, . . . , xn) = 0 + {(x1 :1), . . . , (xn :
n−1∏
i=1

xi)} (Column-Major)

Figure 3.6: Common operations on lmads.
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Dimension Permutation

Similarly, while we have described a transpose function which transposes the
two outer-most dimensions of an lmad, it is possible to extend the algebra with
a more general permute function. In Futhark, permutation of array dimensions
is not directly represented in the source language, but when the source code
is translated to an intermediate representation, (nested) calls to transpose
is translated to a permute primitive. Given an lmad and a list of indices
[i0, . . . , ik], the definition of permute is:

permute(τ + {(σ1 :δ1), . . . , (σq :δq)}, [i0, . . . , ik]) =
τ + {(σi0 :δi0), . . . , (σik :δik)}

In other words, permute permutes the dimensions of a given lmad according
to the given indices. However, because the Futhark compiler will sometimes be
able to extract useful information from the permutation of an array in order to
perform later optimizations, each dimension in the Futhark version of lmads
actually has an additional permutation parameter, π, indicating the permuted
index of the given dimension. The resulting representation looks like this:

τ + {(σ :δ :π), . . .}

In order to compute the “effective” lmad dimensions, we must first permute
them according to the π-values. For an lmad with permutations, application
is performed by first permuting the dimensions such that they are ordered by
their permutation values and then performing regular application.

Rotation

A common operation on arrays is rotation: Given an array x = [0, 1, 2],
rotate(x, 1) produces the array [1, 2, 0]. It is possible to support rotates in the
IR without manifestation by annotating lmads with an additional rotation
factor for each dimension, ρ. The resulting representation looks like this:

τ + {(σ :δ :ρ), . . .}

Our lmad application function needs to be amended to take rotations into
account:

L(y1, . . . , yq) = τ +Σi<q
i=1((yi + ρi) mod σi) ∗ δi (Applicationrot)

Futhark did have support for rotations in lmads for a while, but it has
been removed in order to simplify the IR.
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Compositions of lmads

Besides the added complexity and the fact that modulo and division could
be costly at runtime, adding rotations to the algebra also means that the
algebra is no longer closed under composition: Taking a slice of a rotated
lmad cannot always be represented as an lmad. For instance, given the lmad
L = 0+{(10 :1 :5)}, taking the [3 :4] slice should result in an lmad representing
the flat offsets [8, 9, 0, 1], but that is not possible using a one-dimensional lmad.

To alleviate this situation, we can change the index function representation
to consist of a list of lmads instead of a single lmad. The sliced and rotated
index function from above would then be represented as the list [3 + {(4 : 1 :
0)}, 0 + {(10 : 1 : 5)}]. Application of index functions with multiple lmads is
done by applying the first lmad to get a flat offset, then unranking that index
by the shape of the second lmad and finally applying the unranked index to the
second lmad, as seen in proc. 3.12. Unranking is done by taking a flat offset and
finding the multi-dimensional index of an lmad that would correspond to that
flat offset in a row-major representation, as shown in proc. 3.2. For example,
given the flat offset 10 and the two-dimensional lmad L = 0 + {(4 :4), (4 :1)},
the unranked index is [2, 2]. Unranking an index at run-time involves expensive
division and modulo operations, but does not occur often in actual code.

Procedure 3.1: ApplyLMADs(L1, L2, i)

input : lmads L1 = τ1 + {(σ1
1 :δ

1
1), . . . , (σ

1
n :δ

1
n)},

L2 = τ2 + {(σ2
1 :δ

2
1), . . . , (σ

2
m :δ2m)} and an n-dimensional

index [i1, . . . , in].
output :The corresponding index into L2.

1 x←− L1(i1, . . . , in);
2 j1, . . . , jm ←− Unrank(L2, x);
3 y ←− L2(j1, . . . , jm);
4 return y;

Reshape

Reshaping is the process of taking an lmad, flattening it to a one-dimensional
view and applying a new lmad on top. For instance:

reshape(10+ {(20:10), (10:1)}, 0+ {(50:4), (4 :1)}) = 10+ {(50:4), (4 :1)}

Like rotation, reshaping an array can lead to index functions that are
not representable by a single lmad, and therefore often leads to an lmad
composition.

2ApplyLMADs only applies to two lmads, but can be generalized to an arbitrary
amount of lmads.
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Procedure 3.2: Unrank(L, x)
input :An lmad τ + {(σ1 :δ1), . . . , (σn :δn)}, and a flat offset x.
output :An n-dimensional index corresponding to the unranked x.

1 slc←− •;
2 for i < n do
3 tmp←−

∏j≤n
j=i+1 σj ;

4 Append x
tmp to slc;

5 x←− x mod tmp;

6 return slc;

3.5 lmads as Sets of Points

We can also interpret an lmad as representing a set of points in a one-
dimensional space, using the definition from fig. 3.2, repeated here for reference:

{ τ + i1 ∗ δ1 + · · ·+ in ∗ δn | 0 ≤ i1 < σ1, . . . , 0 ≤ in < σn }

This is the common interpretation, and as already described it is useful
when we want to reason about array accesses, for instance when performing
automatic parallelization or array short-circuiting, as in chapter 6.

Under this interpretation, an lmad, L, has a domain, dom(L), constituting
all valid indices as well as an image, img(L), constituting all addresses that
are reachable by applying indices within the domain. Zero-dimensional lmads
correspond to a single point in space.

3.5.1 Image-Preserving Operations

Under the set-interpretation of lmads, we can freely modify a given lmad as
long as we do not change its image. This can be helpful when using lmads for
further analysis and optimizations. We now present a series of operations that
are only safe when regarding lmads as sets of points.

Normalization

If we statically know the ordering and sign of the strides of an lmad, we can
always normalize the lmad. Normalizing an lmad turns it into another lmad
with only positive strides and dimensions sorted by stride. The normalized
lmad has the same image as the original lmad, but the corresponding index
function or slice has changed. Normalization therefore only applies when we
are using the set-interpretation of lmads.

Pseudocode for the normalization procedure can be seen in proc. 3.3. For
an lmad, L = τ + {(σ1 :δ1), . . . , (σn :δn)}, normalizing the negatively strided
dimension at index i is done by negating the stride of that dimension and
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adding σiδi + 1 to the global offset. Afterwards, the dimensions are sorted by
their normalized strides. As an example the lmad L = 16 + {(4 :−1), (8 :4)}
is normalized to L′ = 13 + {(8 : 4), (4 : 1)}. When reasoning about the sets
represented by an lmad, we will for the most part assume that it has already
been normalized.

Procedure 3.3: Normalize(L)
input :An lmad L = τ + {(σ1 :δ1), . . . , (σn :δn)}.
output :The normalized lmad.

1 res←− •;
2 for i < n do
3 if δi < 0 then
4 τ ←− τ + σiδi + 1;
5 Append (σi :−δi) to res;
6 else
7 Append (σi :δi) to res;

8 res←− sort res in decreasing order by stride;
9 return τ + {res};

Inserting Empty Dimensions

It is always possible to insert “empty” dimensions anywhere in an lmad without
changing the image of the lmad. An empty dimension is a dimension with any
stride and σ = 1: The only valid index for that dimension is 0, so no matter
what stride is used it holds that 0·δ = 0. Therefore the extra dimension does not
change the image of the lmad. For instance, given the lmad L = τ+{(σ1 :δ1)},
we can insert an empty dimension at the end to get L′ = τ + {(σ1 :δ1), (1 :1)}

Splitting and Joining Dimensions

Given an lmad L containing two dimensions (σi : δi) and (σj : δj) such that
δi = σjδj , we can join the two dimensions without changing the image of the
lmad by removing the two old dimensions and inserting a new with number of
elements σiσj and stride δj :

join(τ + {. . . , (σi :σjδj), (σj :δj), . . .}, i) =
τ + {. . . , (σiσj :δj), . . .} (Join)

For instance: join(τ + {(20:10), (10:1)}, 1) = τ + {(200:1)}.
Similarly, given an lmad L with a dimension (σi : δi) and a split j that

divides σi, we can always split that dimension into two new dimensions as
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follows:

split(τ + {. . . , (σi :δi), . . .}, i, j) =
τ + {. . . , (σi

j
:jδi), (j :δi), . . .} (Split)

The result is that we can reverse a join, e.g.: split(τ + {(200:1)}, 1, 10) =
τ + {(20:10), (10:1)}.

3.5.2 lmad Expansion

Just as we can reduce the number of dimensions of an lmad using fix, it can be
helpful to be able to expand an lmad to increase the number of dimension as
well. For instance, when analyzing a sequential loop containing an array access,
we would like to be able to summarize the accesses into one lmad. Consider
the following example, where xs is an array with index function L:

for i ≤ n do What is the aggregated access?
. . . xs[i] . . . Access with lmad L(i)

Procedure 3.4: Expand(i, l, s, L)
input :A lower bound l, a number of elements (or span) s and an

iterator variable i, such that l ≤ i < l + s, as well as an lmad
L = τ + {d}.

output :The lmad expanded with a new dimension.

1 if i is free in d then
2 fail

3 k ←− fresh;
4 offset←− τ [k/i];
5 offset’←− τ [k + 1/i];
6 newStride←− offset’− offset;
7 newOffset←− τ [l/i];
8 L′ ←− newOffset + {(s :newStride), d};
9 if k is free in L′ then

10 fail
11 else
12 return L′;

To aggregate the accesses across the loop, we would like a systematic way
to reverse fix. Procedure 3.4 shows the pseudo-code for Expand, which takes
an iterator variable, i, a lower bound, l, a number of elements, s and an lmad,
L, and “expands” the lmad by adding a new dimension. It works by first
asserting that i does not occur in any of the dimensions in L. Then, it creates a
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fresh name k, and computes offset and offset’ by replacing the iterator variable
inside the lmad-offset τ with k and k + 1, respectively. The new stride is
computed by taking the difference between offset’ and offset, while the new
offset is computed by replacing i with the lower bound l in τ . Finally, we assert
that our temporary variable k does not occur in the resulting lmad L′ once it
has been simplified.

Using Expand, we can aggregate array accesses across recurrences such
as loops and maps. In fact, expanding an lmad over a loop corresponds
to taking the union of the lmads representing the array accesses of each
iteration. Therefore, if the ith iteration of a loop has array accesses that can
be summarized by Li, l is the lower bound of the iterator variable (usually 0)
and s is the upper bound, then:

s+l⋃
i=l

Li ≈ Expand(i, l, s, L)

Sometimes expansion will not work, e.g. if the iterator variable is used in
any of the dimensions of the lmad to expand. In this case, we can always use
a set of lmads, to represent the union of their accesses. In other words:

s+l⋃
i=l

Li = {Li | l ≤ i ≤ s+ l}

3.6 lmad Overlap

When reasoning about recurrent array accesses using lmads, we will often
need to decide whether two given lmads overlap. We’ll start by describing the
simple case in which each lmad has a single dimension, before moving on to
the more general case.

3.6.1 One-dimensional lmads

For two one-dimensional lmads, L1 and L2, there are three cases for which
they do not overlap: Either all points in L1 come before all points in L2, all
points in L2 come before all points in L1 or the points of the two lmads are
interleaved in memory. Figure 3.7 shows two examples: In fig. 3.7a the accesses
of the two lmads (colored green and red, respectively) are interleaved, while
in fig. 3.7b the accesses of one lmad are all located before the accesses of the
other.

As a result, non-overlap for two one-dimensional lmads with positive strides,
τ1 + {(σ1 :δ1)} and τ2 + {(σ2 :δ2)}, can be checked by the predicate [OR12]:

gcd(δ1, δ2) ∤ (τ1 − τ2) ∨ τ1 > τ2 + σ2 ∨ τ2 > τ1 + σ1
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0 1 2 3 4 5 6 7 8

(a) Interleaved accesses.

0 1 2 3 4 5 6 7 8

(b) Disjoint accesses.

Figure 3.7: Possible cases for non-overlapping lmads in one dimension.

3.6.2 Multi-dimensional lmads

Multi-dimensional lmads pose some additional problems when attempting
to statically prove non-overlap. Most notably, lmads can have overlapping
dimensions and we might want to be able to compare lmads with different
strides and numbers of dimensions. A naive solution would be to use formula
given in fig. 3.2 for the two lmads of interest and then attempt to prove that
the resulting sets are disjoint. However, that is infeasible, probably intractable,
for even slightly complex examples3 [HPY01].

Instead, we present an alternative heuristic for statically determining
whether two lmads overlap or not, based on an interval representation, called
a sum of strided intervals, or sosi. The heuristic is conservative: If any step
along the way cannot be computed statically, we fail and report that the two
lmads may overlap. In other words, we do not claim to be able to handle all
lmads, but we have found this heuristic good enough to prove non-overlap for
the NW and LUD benchmarks, as described in chapter 6.

The process to determine whether two lmads L1 and L2 have an empty
intersection, i.e. do not overlap, is as follows:

1. Normalize each lmad.

2. Turn each lmad into a sosi.

3. Match up the strides of the sosis by inserting empty dimensions as
necessary while preserving normalization, e.g. the dimensions of the
resulting sosis should still be ordered by stride.

4. Distribute the offsets of the sosis, such that each resulting sosi has an
offset of zero.

5. Determine whether either of the sosis have self-overlapping dimensions.
If they do, attempt to split the offending dimension and return to step 3.

6. If both sosis have no self-overlapping dimensions, determine whether the
two sosis contain a pair of dimensions with matching strides that does
not overlap. If successful, the lmads do not overlap.

Procedure 3.5 shows the pseudo-code corresponding to steps 3–6.
3And indeed, we attempted to use an external SMT solver [MB08] to prove non-overlap

of our NW problem, but it was not able to do so.
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Procedure 3.5: NoOverlap(I1, I2)
input :Two normalized sosis, I1 and I2.
output : true if I1 ∩ I2 = ∅ can be proved, false otherwise

1 I ′1, I
′
2 ←− match up strides of I1 and I2 by inserting empty dimension

and preserving normalization;
2 [l11, u

1
1]δ1 + · · ·+ [l1n, u

1
n]δn, [l21, u

2
1]δ1 + · · ·+ [l2n, u

2
n]δn ←− distribute

offsets of I ′1 and I ′2;
3 if there exists i such that δi ≤ u1i+1δi+1 + · · ·+ u1nδn then
4 I11 ←− [l11, u

1
1]δ1 + · · ·+ [l1i , u

1
i − 1]δi + · · ·+ [l1n, u

1
n]δn;

5 I11 ←− u1i δi + [l11, u
1
1]δ1 + · · ·+ [l1i−1, u

1
i−1]δi−1 + [l1i+1, u

1
i+1]δi+1 +

· · ·+ [l1n, u
1
n]δn;

6 return NoOverlap(I11 , I
′′
2 ) ∧NoOverlap(I21 , I

′′
2 );

7 else if there exists i such that δi ≤ u2i+1δi+1 + · · ·+ u2nδn then
8 Symmetrical;
9 else

10 if there exists i such that I ′′1 ∩ I ′′2 = ∅ then
11 return true;
12 else
13 return false;

Each step along the way preserves the image of the resulting sosis such
that they match the image of the original lmads.

The first step is straightforward: Normalizing lmads is described in sec-
tion 3.5.1. Of course, we may not be able to statically determine the correct
ordering of the strides, in which case the analysis should conservatively fail.

The next step is to convert the lmads into sosis. A sosi consists of a
global offset, τ , and a sum of intervals with strides of the form, [l, u] · δ. Like an
lmad, a sosi represents a set of points in a one-dimensional space as defined
by the following formula, where we require both offsets, strides and interval
bounds to be non-negative:

τ +Σm
i=1[li, ui] · δi = {τ +Σm

i=1jiδi | l1 ≤ j1 ≤ u1, . . . , lm ≤ jm ≤ um} (3.1)

In order to turn two lmads into sosis, we use toInterval as defined in
fig. 3.8. Then we can insert extra empty dimensions such that the two sosis
have dimensions with matching strides, while being careful to preserve the
normalization of the resulting sosis.

Distributing Offsets (step 4)

To get rid of the global offsets, we need to distribute the terms of each offset
among the intervals of the sosis, which we can do without changing the image
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toInterval(τ + {(σ1 :δ1), . . . , (σq :δq)}) =
τ + [0, σ1 − 1] · δ1 + . . .+ [0, σq − 1] · δq

Figure 3.8: The definition of toInterval.

of the sosis. Distributing the offset requires a bit of symbolic algebra support
for simplifying and distributing terms to different intervals. Let’s look at an
example. Consider two normalized sosis with matching strides:

I1 = τ1 + [l11, u
1
1] · δ1 + · · ·+ [l1n, u

1
n] · δn

I2 = τ2 + [l21, u
2
1] · δ1 + · · ·+ [l2n, u

2
n] · δn

We wish to get rid of the offsets τ1 and τ2 by distributing them onto the
intervals of the sosis. To do so, we attempt to match up the terms of the
intervals with the strides of the dimensions that best match it. For instance, if
for a given sosi the offset is equal to one of the strides, e.g. δ1+[l1, u1] ·δ1+ · · · ,
we can distribute the offset onto the interval with stride δ1 without changing
the image of the sosi:

δ1 + δ2[l1, u1] · δ1 = [l1 + 1, u1 + 1] · δ1

When distributing across two sosis, I1 = τ1 + . . . and I2 = τ2 + . . ., we can
simplify matters a bit, by subtracting τ2 from τ1 and add the positive terms to
intervals in I1 and add the absolute value of the negative terms to intervals in
I2. This changes the image of the sosis, but we claim that I1 and I2 overlap if
and only if the two resulting sosis I ′1 and I ′2 overlap.

Proof. Given two sosis, I1 and I2, where τ+1 and τ−1 are the positive and
negative terms of the offset of I1, and vice versa for I2:

I1 = τ+1 − τ−1 + [l11, u
1
1]δ1 · · · [l1n, u1n]δn

I2 = τ+2 − τ−2 + [l21, u
2
1]δ1 · · · [l2n, u2n]δn

Assume there exists i1, . . . , in and j1, . . . , jn in range of the corresponding
dimensions of each sosi such that:

τ+1 − τ−1 + i1δ1 · · · inδn = τ+2 − τ−2 + j1δ1 · · · jnδn

Then it also holds that

τ+1 + τ−2 + i1δ1 · · · inδn = τ+2 + τ−1 + j1δ1 · · · jnδn

Therefore, we can split up and distribute the negative and positive terms
of the offsets without affecting whether the two sosis overlap.
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Things become more complicated when the terms of the offsets are not
exactly equal to the strides of the intervals. Consider the following case, where
n and b are known to be positive:

I = nb+ [l1, u1] · (nb− b) + [l2, u2] · n+ [l3, u3] · 1

The offset is nb. Of course, any offset is divisible by the stride of the last
dimension, 1, but nb is more closely related to the stride of the first dimension,
nb− b. In order to apply it there, we rewrite τ = nb = (nb− b) + b. Then, we
directly distribute nb− b to the first dimension and b to the last, yielding:

I = nb+ [l1, u1] · (nb− b) + [l2, u2] · n+ [l3, u3] · 1
= (nb− b) + b+ [l1, u1] · (nb− b) + [l2, u2] · n+ [l3, u3] · 1
= b+ [l1 + 1, u1 + 1] · (nb− b) + [l2, u2] · n+ [l3, u3] · 1
= [l1 + 1, u1 + 1] · (nb− b) + [l2, u2] · n+ [l3 + b, u3 + b] · 1

Once again, this process may fail, e.g. if we are not be able to statically
determine whether the terms of the offsets are positive or negative. In this
case, the non-overlapping test conservatively fails.

No Self-Overlap (step 5)

Having transformed the sosis in order to get rid of the offsets, we now need to
make sure that each sosi does not overlap itself. Self-overlapping happens when
the span of lower dimensions is larger than the stride of a larger dimension.
For example, the following sosi self-overlaps, because the total stride of first
dimension (10) is not strictly larger than the span of the rest of the sosi (10):

[0, 1] · 10 + [0, 10] · 1

For a given normalized sosi with zero offset I1 = [l1, u1]·δ1+· · ·+[ln, un]·δn,
the following condition is sufficient for I to have no self-overlapping dimensions:

∀i. δi >
n∑

k=i+1

ukδk (3.2)

If a sosi is found to be self-overlapping, e.g. there is a particular dimension
i such that δi ≤

∑n
k=i+1 ukδk, we split up the dimension with index i + 1,

resulting in two new sosis. For instance:

[0, 1] · 10 + [0, 10] · 1 = [0, 1] · 10 + [0, 9] · 1︸ ︷︷ ︸
I′1

∪ 10 + [0, 1] · 10︸ ︷︷ ︸
I′′1
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Assuming that I2 is some other sosi, it must hold that if both I ′1 ∩ I2 = ∅
and I ′′1 ∩ I2 = ∅, then I1 ∩ I2 = ∅ is also true. We therefore recursively continue
the non-overlapping test with these two new sosis. To guarantee termination,
we impose an upper bound to how many times we recursively attempt to split
the dimensions of a sosi.

The Non-Overlap Test Between Two sosis (step 6)

Having transformed our lmads into sosis, I1 and I2, with matching strides,
no offset and no self-overlap, it follows that I1 ∩ I2 ≠ ∅ if and only if there
exists some indices for I1 and I2, j

1 and j
2 respectively, for which it holds that

∀i. l1i ≤ j1i ≤ u1i ∧ l2i ≤ j2i ≤ u2i and that:

n∑
i=1

j1i δi =
n∑

i=1

j2i δi (3.3)

But if that is true, then j
1 must be exactly equal to j

2, as per the following
lemma.

Lemma 3.6.1. If I1 ∩ I2 ̸= ∅ and j
1 and j

2 are valid indices for I1 and I2
that satisfy eq. (3.3), then

∀i. j1i = j2i

Proof. Assume that there exists minimal q such that j1q ̸= j2q . Without loss of
generality, assume that j1q > j2q . We then have that:

(j1q − j2q )δq ≥ δq Because j1q > j2q

>

n∑
k=q+1

u2kδk Because there is no self-overlap

≥
n∑

k=q+1

(j2k − j1k)δk Because u2k ≥ j2k and j1k ≥ 0
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Implying that

(j1q − j2q )δq >

n∑
k=q+1

(j2k − j1k)δk

⇔
n∑

k=q

(j1k − j2k)δk > 0

⇔
n∑

k=q

j1kδk >
n∑

k=q

j2kδk

⇔
n∑

k=1

j1kδk >

n∑
k=1

j2kδk Because q is minimal

This contradicts the assertion in eq. (3.3).

This lemma lets us prove the following theorem, which states the sufficient
condition we will use to show non-overlap of sosis.

Theorem 3.6.2 (sosi Non-Overlap). Given two normalized sosis, I1 and I2
with zero offsets and no self-overlap, a sufficient condition for I1 ∩ I2 = ∅ is
that there is at least one pair of intervals which do not overlap, e.g.:

∃i. [l1i , u1i ] ∩ [l2i , u
2
i ] = ∅ or equivalently u2i < l1i ∨ u1j < l22 (3.4)

Proof. Assume that there is a dimension i in I1 and I2 for which the intervals
di not overlap, as in eq. (3.4). Then by lemma 3.6.1 it cannot be the case that
I1 ∩ I2 ̸= ∅, because there exists no j1i and j2i within the valid bounds that
satisfy j1i = j2i .

As an example, given the two sosis I1 = [0, 2] · 10 + [0, 4] · 1 and I2 =
[0, 2] · 10 + [5, 9] · 1, we can see that even though the first pair of dimensions
overlap, the second pair does not, so the points represented by those intervals
do not overlap. We can validate this assertion by enumerating all the points of
each sosi:

I1 = {0, 1, 2, 3, 4, 10, 11, 12, 13, 14, 20, 21, 22, 23, 24}
I2 = {5, 6, 7, 8, 9, 15, 16, 17, 18, 19, 25, 26, 27, 28, 29}

Apart from some symbolic algebra in handling the splitting of dimensions,
all of the tests involved in proving non-overlap of lmads come down to relatively
simple inequalities.
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3.6.3 Example: Proving Non-Overlap of NW

Using the NW example, which is explained in more detail in sections 6.1 and 6.8,
we now show an example of how non-overlap is proven.

Assuming that

n = qb+ 1, q > 1, b > 1, i ≥ 1

we wish to prove that the following two lmads, LW and LR, do not overlap,
e.g. LW ∩ LR = ∅:

LW = ib+ n+ 1 + {(i+ 1:nb− b), (b :n), (b :1)}
LR = ib+ {(i+ 1:nb− b), (b+ 1:n)}

The lmads have already been normalized, so we start by transforming
them into sosis and inserting extra dimensions to match the strides:

IW = ib+ n+ 1 + [0, i] · (nb− b) + [0, b− 1] · n+ [0, b− 1] · 1
IR = ib+ [0, i] · (nb− b) + [0, b] · n

= ib+ [0, i] · (nb− b) + [0, b] · n+ [0, 0] · 1

Next, we need to distribute the offsets. By subtracting the offset of IR from
the offset of IW we get n+ 1, which are added to the intervals of IW , yielding:

I ′W = [0, i] · (nb− b) + [1, b] · n+ [1, b] · 1
I ′R = [0, i] · (nb− b) + [0, b] · n+ [0, 0] · 1

Both I ′W and I ′R have self-overlapping dimensions, since the stride of the first
interval is not greater than the span of the later dimensions, because nb−b ̸> nb.
Therefore, we split the second dimension, e.g. [0, b] ·n = [0, b−1] ·n∪{nb}. The
result is four new sosis, some of which have new offsets we need to distribute:

I1W = nb+ [0, i] · (nb− b) + [0, 0] · n+ [1, b] · 1
= (nb− b) + b+ [0, i] · (nb− b) + [0, 0] · n+ [1, b] · 1
= [1, i+ 1] · (nb− b) + [0, 0] · n+ [b+ 1, 2b] · 1

I2W = [0, i] · (nb− b) + [1, b− 1] · n+ [1, b] · 1
I1R = nb+ [0, i] · (nb− b) + [0, 0] · n+ [0, 0] · 1

= (nb− b) + b+ [0, i] · (nb− b) + [0, 0] · n+ [0, 0] · 1
= [1, i+ 1] · (nb− b) + [0, 0] · n+ [b, b] · 1

I2R = [0, i] · (nb− b) + [0, b− 1] · n+ [0, 0] · 1

None of the resulting sosis have self-overlapping dimensions, so we can
apply the test from the non-overlap theorem. To prove (I1W ∪I2W )∩(I1R∪I2R) = ∅,
it is enough to prove that they are pairwise disjoint.
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We get that W 1
I ∩R1

I = ∅, W 1
I ∩R2

I = ∅ and W 2
I ∩R2

I = ∅ because the last
dimensions do not overlap, e.g. [b+ 1, 2b] ∩ [b, b] = ∅.

Likewise, W 2
I ∩R1

I = ∅ because the second dimension does not overlap. In
other words [1, b− 1] ∩ [0, 0] = ∅.





Chapter 4

Memory in a Functional
Language IR

In this chapter, we present a technique for introducing a notion of memory
to the IR of a functional parallel array-oriented language. We show how the
resulting IR, FunMem, which uses lmads as index functions, lets us reason
about and optimize memory access patterns and usage while staying in a
high-level value-based semantics.

4.1 Introduction

In functional array languages, computations based on multi-dimensional arrays
are expressed in terms of second-order array combinators and change-of-layout
operations, as described in more detail in section 2.2. SOACs, such as map,
reduce, scan and scatter, take arrays as inputs and produce new arrays
as outputs. Change-of-layout operations create new arrays by reordering,
reshaping or selecting a subset of values from already existing arrays. Expressing
computations in terms of these combinators and operations lends itself well to
parallelization, and indeed, a promising line of research uses parallel functional
languages for efficient GPU execution [Hen+19].

One challenge for these languages, is that GPU performance is highly
sensitive to choices around how arrays are allocated and mapped to memory.
In pure and functional languages, there is no notion of memory that the
user can use to express memory layout optimizations themselves, so it is
up to the compiler to determine the best way to represent different arrays.
Traditionally, memory is introduced by the compiler when translating the
functional intermediate representation (IR) to an imperative IR, but that
means that the compiler loses the ability to reason about memory at a higher,
functional level.

In this chapter, we present a technique for representing arrays and memory
mappings in the intermediate representation of a functional parallel array

33
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language, without losing the ability to reason about memory optimizations at
a high level. The idea is to take the functional IR and amend it with support
for allocations and by associating with each array an index-function, both
inserted automatically by the compiler. The resulting IR still has a value-based
semantics that we can use to perform high-level optimizations, but it also has
a memory-oriented semantics that we can use to optimize memory usage.

As an example, consider the following bit of code in our functional IR,
Fun, where a two-dimensional array xs1 is sliced to compute xs′ (kernel is a
parallel loop, described in more detail in section 4.3):

let xs : [n][m] = kernel . . .
let xs′ : [i][j] = xs[0 : i, 0:j]

Directly lowering this code to an imperative context would either perform
a deep copy of xs to compute xs′ or modify all references to xs′ to instead
refer to the corresponding offset of xs. In both cases we lose information about
the relation between xs and xs′, which will make it harder to later analyze
and reason about. Instead, we wish to stay in the functional context but add
some additional memory-related information, by transforming our code into
FunMem:

let xsmem : mem = alloc (nm)
let xs : [n][m]@xsmem → L = kernel . . .
let xs′ : [i][j]@xsmem → slice(L, [0 : i, 0:j]) = xs[0 : i, 0:j]

We have added an additional statement, explicitly allocating the necessary
memory for xs: xsmem. In addition, we have associated with each array
information about which memory allocation it belongs to, and how the values
of the array are laid out in that buffer. For instance, xs is an array of size n×m
which resides in xsmem and is indexed using the index function L. Similarly,
xs′ is an i × j array that also resides in xsmem with an appropriately sliced
index function (see the definition of slice in section 3.4).

This way, we have kept the high-level relationship between xs and xs′, while
still allowing the compiler to reason about memory. The memory information
that we add is non-semantic, meaning that if it is removed, the semantics of
the program stays the same. As a result, programs in FunMem have two
dynamic semantics we can use to evaluate them: A memory-agnostic value-based
semantics that is equivalent to the one for Fun and a heap-based semantics
that uses the memory annotations. A FunMem program is only valid if the two
semantics agree on the result. Therefore, any memory optimizations introduced
by the compiler must carefully preserve the semantics of the program.

We show the usefulness of our IR by presenting the full static and dynamic
semantics for both Fun, FunMem and Imp, the latter language being a simple

1For concision, we are leaving out the element types of arrays in all our examples, so
[n][m] should be read “an n×m array of integers.”
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imperative target-language for our compilation, as well as simple transforma-
tions between the IRs. Additionally, we show an example of an optimization
in FunMem called memory expansion, which hoists allocations out of parallel
kernels in order to allow efficient execution on GPUs. Chapters 5 and 6 will
show even further optimizations that rely on FunMem.

This chapter is structured as follows: We start with a brief discussion
of the background for our work, as well as examples of related work. Then
we introduce the Fun language, a simple functional IR without memory
annotations. Afterwards we introduce FunMem, an extension of Fun with
memory annotations and allocations, and we show how to transform a Fun
program to FunMem. We then showcase the memory expansion optimization
which uses FunMem. Finally, we introduce the third IR, Imp, which is used to
illustrate how FunMem can be efficiently transformed into an imperative IR.

The contributions of this chapter are:

1. A formal specification of the static and dynamic semantics of the FunMem
intermediate representation.

2. Procedures for translating Fun programs to FunMem and FunMem
programs to Imp while preserving semantics.

3. An FunMem implementation of the memory expansion optimization for
GPU execution of nested parallel kernels.

The work presented here has previously been published at SC22 [Mun+22]
or will be published at IFL 2022 [MOHss].

4.2 Background and Related Work

Let’s look at an expanded example of the one from the previous section:

let xs : [n][m] = kernel . . .
let xs′ : [i][j] = xs[0 : i, 0:j]
. . . xs′[k, l] . . .

We still compute xs and xs′ as before, but now we also have a use of xs′ at
a later point. The naive way of transforming our program into an imperative
form and introducing memory is to manifest all intermediate arrays, meaning
that xs′ gets its own allocation:

var xsmem : mem

xsmem ← alloc (nm)
kernel . . . -- Some computation that populates xsmem

var xs′mem : mem

xs′mem ← alloc (ij)
kernel . . . -- Copy values from xsmem to xs′mem

. . . xs′mem[kj + l] . . .
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But of course, that introduces unnecessary overhead that wouldn’t be
present if we were writing our code directly in an imperative language: The
reference to xs′ should really be using the memory of xs. What we would like
is something like the following, where q is the corresponding location of xs′[k, l]
inside xsmem:

var xsmem : mem

xsmem ← alloc (nm)
kernel . . . -- Some computation that populates xsmem

. . . xsmem[q] . . .

This way get the desired reuse of the memory of xs, but we also lose
information and expressibility in the process. For instance, if the xsmem[q]
expression takes place inside a parallel loop and we want to make sure that
the accesses are coalesced, we will need to change how xsmem is laid out in
memory, but it might not always be clear how that changes q or how other
accesses to xsmem are affected and how to change them accordingly. In short,
we lose information about the original relation between xs′ and xs.

Other approaches to introducing and handling memory in functional lan-
guage IRs include destination-passing style [Sha+17], push and pull arrays
[CSS12] as well as region inference [TB98].

Destination-passing style is used to efficiently allocate and deallocate mem-
ory by way of requiring function callers to explicitly pass in the memory for the
function result, eliminating unnecessary copying of array results in higher-order
functions. However, it does not solve the case of imperfectly nested maps,
which still requires copying overheads.

Push and pull arrays use function composition to model array fusion, en-
abling compilers to sometimes use registers instead of expensive global memory.
These however do not apply if fusion introduces redundant computation or if
the compositions cannot be fused.

Region inference clusters together objects that share a lifetime, such that
they can all be freed at the same time without garbage collection. This requires
frequent allocation at the inner level which is very inefficient on GPUs.

In most cases, memory is introduced in functional IRs as part of a general
lowering of the language into a more imperative style, as in the example
above. This precludes further analysis of the memory usage at the level of the
functional IR, making some optimizations harder, if not impossible, to write.
The major exception is region inference, which does extend its functional IR
with a non-semantic notion of memory, but it does so only to reason about the
lifetime of objects in order to manage allocations and deallocations efficiently.
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τ ::= Types
| int integer
| [x] · · · [x] array

v ::= Values
| k integer
| [v, . . . , v] array

p ::= (x : τ) Binding

s ::= let p · · · p = e Statement

b ::= Body
| s b statement
| in (x, · · · , x) result

se ::= Scalar expression
| k integer const
| x variable
| se⊕ se operator

e ::= Expressions
| se scalar expression
| x[x, . . . , x] index
| x[x :x, . . . , x :x] slice
| transpose x transpose
| if x then b else b conditional
| kernel x ≤ y do b parallel loop

r ::= [k] · · · [k] Program result type

Figure 4.1: Syntactic objects for Fun.

4.3 The Fun Language

We now introduce the Fun language. It is a pure, functional and size-
dependently typed language with monomorphic types and parallelism, and
corresponds to a subset of the functional IR used in Futhark. There are no
support for functions or sequential loops in Fun, so it is insufficient to express
any real programs, but it will serve to describe our technique.

Figure 4.1 shows the grammar for Fun. We assume a denumerably infinite
set of program variables, ranged over x, y, z and use superscripts and subscripts
to distinguish distinct variables. We also write α to indicate a sequence of
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αs, where α is a syntactical metavariable. We write FV (α) for the set of free
variables in α.

Fun has two types: integers and arrays, the latter of which has explicit sizes
for each dimension. For concision we have left out the base type of arrays, but
it can be assumed to be int. A value can be an integer literal or an array literal.
Statements consist of a number of patterns and an expression, binding the result
of the expression to the names in the patterns. A body consists of a sequence
of statements terminated by a result. An expression can be either a scalar
expression, an array operation (indexing, slicing, transposing), a traditional
conditional expression using if or a parallel loop using kernel. Slices have the
form [offset :num_elems, . . .], meaning that they do not, purely for simplicity
of the language, support strides. Scalar operations consist of integer constants,
variables and operators, where we assume the traditional arithmetic operations.
kernel expressions consist of a thread-identifier and an upper bound as well as
a body. In the expression kernel x ≤ y do b, y iterations of the loop body are
executed in parallel, with x bound to the corresponding value between 1 and y
in each iteration. The result of each iteration is written to the corresponding
position in the result array. For example, the following statement computes an
array of size y, containing the numbers from 2 to y + 1 and binds the result to
xs:

let xs : [y] = kernel x ≤ y do

let z : int = x+ 1
in (z)

For simplicity of exposition, kernel-bodies can only return one value,
but the rules for static and dynamic semantics could easily be expanded to
accommodate multiple return values.

We also show the syntax for a program result type, which is used in the
static semantics of Fun, discussed in section 4.3.1.

For convenience, we define the helper-functions iota and copy2. iota x
computes an array of values from 1 to x, while copy x produces a copy of x:

iota x ≡ kernel xi ≤ x do in (xi)

copy x ≡ kernel y1 ≤ z1 · · · kernel (yn ≤ zn) do
in (x[y1, . . . , yn])

Listing 4.1 shows an example of Fun statement, where xsize, ysize, zcond are
assumed to be free. Note how the branches of the if-expression return not just
the array value, but also the size needed in (the type of) the pattern of the if

binding itself.
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Γ ⊢ se : int

Γ ⊢ k : int
[T-Const]

(x : int) ∈ Γ

Γ ⊢ x : int
[T-Var]

Γ ⊢ se1 : int Γ ⊢ se2 : int

Γ ⊢ se1 ⊕ se2 : int
[T-Op]

Γ ⊢ s

Γ ⊢ se : int

Γ ⊢ let (x : int) = se
[T-Scalar]

(y : [z1, . . . , zn]) ∈ Γ ∀n1 i.(yi : int) ∈ Γ

Γ ⊢ let (x : int) = y[y1, . . . , yn]
[T-Index]

(x : int) ∈ Γ Γ ⊢ p← b1 Γ ⊢ p← b2 ∀y ∈ FV (p).(y : int) ∈ Γ, p

Γ ⊢ let p = if x then b1 else b2

[T-If]

(xarr : [x1][x2]) ∈ Γ

Γ ⊢ let (yarr : [x2][x1]) = transpose xarr
[T-Transpose]

∀2n1 i.(yi : int) ∈ Γ (xarr : [x1] · · · [xn]) ∈ Γ

Γ ⊢ let (zarr : [y2] · · · [y2n]) = xarr[y1 :y2, . . . , y2n−1 :y2n]
[T-Slice]

(y : int) ∈ Γ Γ, (x : int) ⊢ (z : τ)← b ∀y′ ∈ FV (τ).(y′ : int) ∈ Γ

Γ ⊢ let (z : [y]τ) = kernel x ≤ y do b

[T-Kernel]
Γ ⊢ p← b

S = {y1 7→ x1, . . . , yn 7→ xn}
(x1 : S(τ1)) ∈ Γ · · · (xn : S(τn)) ∈ Γ

Γ ⊢ (y1 : τ1) · · · (yn : τn)← in (x1, · · · , xn)
[T-Result]

Γ ⊢ let ps = e Γ, ps ⊢ p← b

Γ ⊢ p← let ps = e b
[T-Stm]

Figure 4.2: Fun type rules.
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let (zsize : int) (zarr : [zsize]) =
if zcond then

let (x : [xsize]) = iota xsize
in (xsize, x)

else

let (x : [ysize]) = iota ysize
in (ysize, y)

Listing 4.1: Example of Fun statement.

⊢ b : (r, . . . , r)

• ⊢ (x1 : [k1,1] · · · [k1,m1 ]) · · · (xn : [kn,1] · · · [kn,mn ])← b

⊢ b : ([k1,1] · · · [k1,m1 ], . . . , [kn,1] · · · [kn,mn ])
[T-Prog]

Figure 4.2: Continued

4.3.1 Static Semantics

Next we introduce the static semantics, or type rules, for Fun, shown in fig. 4.2.
The rules are pretty straightforward and consist of four judgments. The first
judgment, Γ ⊢ se : int states that a particular scalar expression se is well-typed
within the environment Γ and has the type int. The judgment Γ ⊢ s states
that in the context Γ, the statement s is well-typed. Note that in the T-If rule,
we use FV (p) to mean the free variables in the types of the patterns, specifically
array sizes, not the names bound in the patterns themselves. In other words,
the T-If rule requires all array sizes occurring in types in p to either be bound
by Γ or by another pattern in p. The judgment Γ ⊢ p← b states that the body
b is well-typed in the context of Γ and the result can be bound to the pattern
p. T-Result uses a substitution S to require that any arrays returned either
already have their sizes bound in the surrounding environment or have their
sizes returned as well. Finally, the judgment ⊢ b : (r, . . . , r) states that b is a
well-typed program returning arrays with constant-sized dimensions. Here, and
for the rest of the thesis, we will use • to indicate an empty context and empty
sequences in general.

4.3.2 Operational Semantics

We continue by introducing the operational semantics for the Fun language.
We start with some helper functions defined in fig. 4.3. index is used to index

2We have taken some liberty with the notation for copy, but the idea is to have appropri-
ately nested kernel-calls returning the corresponding values of the copied arrays.
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index(v, •) = v
index([v1, . . . , vm], k1, . . . , kn) = index(vk1 , k2, . . . , kn)
slc(v, •) = v
slc([v1, . . . , vm], k1 :k

′
1, k2 :k

′
2 . . . , kn :k

′
n) = [slc(vk1 , k2 :k

′
2, . . . , kn :k

′
n),

...
slc(vk1+k′1

, k2 :k
′
2, . . . , kn :k

′
n)]

tr([[v1,1, . . . , v1,n], . . . , [vm,1, . . . , vm,n]]) = [[v1,1, . . . , vm,1],
...

[v1,n, . . . , vm,n]]

Figure 4.3: Auxiliary functions for transforming values.

arrays according to a sequence of indexing constants. slc similarly slices an
array and tr transpose.

Using these helper functions, we move on to the actual semantics, as shown
in fig. 4.4. The semantics is a conventional value-based one, but note that
we do not handle errors like out-of-bounds accesses and similar. Arrays are
1-indexed, primarily to make the notation concise. Here, and for the rest of
the chapter, we use E(α) to denote substituting all variables in α with their
corresponding values from the environment E, but also to evaluate arithmetic
operations on the resulting constants, following conventional arithmetic rules.

The semantics consist of two judgments. The judgment E ⊢ e ⇓ (v, . . . , v)
states that the expression e, when applied in the environment E, results in
the values (v, . . . , v). The judgment E ⊢ b ↓ (v, . . . , v) states that the body b
results in the values (v, . . . , v) when evaluated in the environment E.

4.4 Fun with Memory

Having introduced Fun, the base IR for our language, we now move on to
FunMem, the memory-extended variant of Fun, which we can use for memory
optimizations.

The syntax for FunMem can be seen in fig. 4.5. We reuse a lot of the
constructs from Fun, but introduce a few new things: The mem type is the type
of a memory allocation, which is the type of the result of the alloc expression.
In addition to the sizes of their dimensions, arrays are now annotated with a
variable indicating which memory allocation the array resides in, and an index
function L, describing how individual values of the array are accessed. We will
use lmads, as described in chapter 3, as index functions. Additionally, for the
operational semantics, heap labels and a heap abstraction is added. Listing 4.2
shows an example of a program in FunMem.
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E ⊢ e ⇓ (v, . . . , v)

E(x) ̸= 0 E ⊢ b1 ⇓ (v1, . . . , vn)

E ⊢ if x then b1 else b2 ⇓ (v1, . . . , vn)
[E-If-True]

E(x) = 0 E ⊢ b2 ⇓ (v1, . . . , vn)

E ⊢ if x then b1 else b2 ⇓ (v1, . . . , vn)
[E-If-False]

v = conventional evaluation of se
E ⊢ se ⇓ (v)

[E-Scalar]

v = index(E(x), E(y1), . . . , E(yn))

E ⊢ x[y1, . . . , yn] ⇓ (v)
[E-Index]

v = tr(E(x))

E ⊢ transpose x ⇓ (v) =
[E-Transpose]

v = slc(E(x), E(y1) :E(y2), . . . , E(y2n−1) :E(y2n))

E ⊢ x[y1 :y2, . . . , y2n−1 :y2n] ⇓ (v)
[E-Slice]

m = E(y)

E, x 7→ 1 ⊢ b ⇓ (v1)
...

E, x 7→ m ⊢ b ⇓ (vm)

E ⊢ kernel x ≤ y do b ⇓ ([v1, . . . , vm])
[E-Kernel]

E ⊢ b ⇓ (v, . . . , v)

E ⊢ e ⇓ (ve1, . . . , v
e
n) E, x1 7→ ve1, . . . , xn 7→ ven ⊢ b ⇓ (vb1, . . . , v

b
m)

E ⊢ let (x1 : τ1) · · · (xn : τn) = e b ⇓ (vb1, . . . , v
b
m)

[E-Let]

E(xi) = vi for 0 < i ≤ n

E ⊢ in (x1, . . . , xn) ⇓ (v1, . . . , vn)
[E-In]

Figure 4.4: Big-step operational semantics for Fun.
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τ ::= Types
| int integer
| [x] · · · [x]@x→ L array
| mem memory block

v ::= Values
| k integer
| ℓ label
| (ℓ, L) label and lmad
| [v, . . . , v] array

e ::= Expressions
| ... Any Fun expression
| alloc se allocation

L ::= se+ {(x :x), . . . , (x :x)} LMAD

r ::= [x] · · · [x] Program result type

H ::= ℓ 7→ [k, . . . , k], H | • Heap

Figure 4.5: Syntactic objects for FunMem. Most of the grammar is unchanged
from Fun, but we require different information in types (τ) and we add an
alloc expression.

let (zsize : int) (zmem : mem) (zarr : [zsize]@zmem → R(zsize)) =
if zcond then

let (xmem : mem) = alloc xsize
let (x : [xsize]@xmem → R(xsize)) = iota xsize
in (xsize, xmem, x)

else

let (ymem : mem) = alloc ysize
let (x : [ysize]@ymem → R(ysize)) = iota ysize
in (ysize, ymem, y)

Listing 4.2: The example from listing 4.1 translated to FunMem.
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4.4.1 Static Semantics

The type rules for FunMem are shown in fig. 4.6. Though not depicted in the
figures, we also reuse the Γ ⊢ se : int and Γ ⊢ p← b judgments from the Fun
type rules in fig. 4.2. Furthermore, we use the definition of slice from fig. 3.6.

The judgment Γ ⊢ s states that the statement s is well-typed in the context
Γ. It is important to notice that the memory of the original array is reused in
the rules for transposition and slicing. Those operations are change-of-layout
operations, and by using lmads as index functions they become cost free (O(1))
operations at runtime because we are just changing how we index the values of
the underlying memory buffer. Also note that the rule for kernels (T-Mem-
Kernel) allows us to pick any index function for the resulting pattern, as long
as the sizes of the dimensions fit. The rule for T-Mem-If states that all the
types contained in the pattern must be well-typed in the context of Γ, p.

The judgment Γ ⊢ L : [x1] · · · [xn] states that in the environment Γ, the
lmad L is well-typed and describes an index function for an array of shape
[x1] · · · [xn]. Concretely, the T-Mem-LMAD rule states that all free variables
in L must have type int in the context Γ, and that the index function matches
the shape of the desired array.

The judgment Γ ⊢ τ states that the type τ is well-typed in the context Γ.
For array types, this means that the lmad must be well-typed, and that the
associated memory block must be bound within Γ.

The ⊢ b : (r, . . . , r) judgment states that the body b is a well typed program
returning constant-sized arrays. Note that we also require that all arrays
return their memory allocations, that we enforce a particular ordering of the
return values and that the index functions of the returned arrays are row-major.
Forcing all array sizes to be constant and index functions to be row-major
means that we don’t need to return any additional data in order to determine
how an array is laid out in memory.

The type rules for FunMem are unsound by design, meaning that well-
typed programs can “go wrong”. For instance, by not imposing any restrictions
on which memory allocations are used for kernel-operations or how, we allow
for imperative in-place updates. The type rules also allow race-conditions, by
not verifying that different iterations of the same kernel expression read from
and write to distinct memory locations. Of course, our goal is still that any
FunMem program actually generated from Fun is sound, which we enforce
through the concept of validity, described in section 4.4.3. By making the
type rules more lenient, we can express various memory optimizations that
would not otherwise be possible. Instead, we have opted to have the dynamic
semantics include a check to verify the absence of data races, as described in
section 4.4.2
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Γ ⊢ s

Γ ⊢ se : int

Γ ⊢ let (x : int) = se
[T-Mem-Scalar]

Γ ⊢ se : int

Γ ⊢ let (x : mem) = alloc se
[T-Mem-Alloc]

(y : [z1, . . . , zn]@ymem → L) ∈ Γ ∀n1 i.(yi : int) ∈ Γ

Γ ⊢ let (x : int) = y[y1, . . . , yn]
[T-Mem-Index]

(x : int) ∈ Γ Γ ⊢ p← b1 Γ ⊢ p← b2 ∀(y : τ) ∈ p. Γ, p ⊢ τ

Γ ⊢ let p = if x then b1 else b2
[T-Mem-If]

(xarr : [x1][x2]@xmem → L) ∈ Γ

Γ ⊢ let (yarr : [x2][x1]@xmem → transpose(L)) = transpose xarr

[T-Mem-Transpose]

(xarr : [x1] · · · [xn]@xmem → Lx) ∈ Γ
Lz = slice(Lx, [y1 :y2, . . . , y2n−1 :y2n])

Γ ⊢ let (zarr : [y1] · · · [y2n−1]@xmem → Lz) = xarr[y1 :y2, . . . , y2n−1 :y2n]

[T-Mem-Slice]

(y : int) ∈ Γ Γ, (x : int) ⊢ (z : τ)← b Γ ⊢ [y]τ

Γ ⊢ let (z : [y]τ) = kernel x ≤ y do b
[T-Mem-Kernel]

Γ ⊢ L : [x1] · · · [xn]

L = seo + {(x1 :y1), . . . , (xn :yn)} ∀z ∈ FV(L).(z : int) ∈ Γ

Γ ⊢ L : [x1] · · · [xn]

[T-Mem-LMAD]
Γ ⊢ τ

Γ ⊢ int [T-Mem-Int]

(xmem : mem) ∈ Γ Γ ⊢ Lx : [x1] · · · [xn]
Γ ⊢ [x1] · · · [xn]@xmem → Lx

[T-Mem-Arr]

Figure 4.6: FunMem type rules.
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⊢ b : (r, . . . , r)

• ⊢ pmem
1 pval1 · · · pmem

n pvaln ← b
∀i.pmem

i = (xmem
i : mem)

∀i.pvali = (xvali : [ki,1] · · · [ki,mi ]@xmem
i → R(ki,1, . . . , ki,mi))

⊢ b : ([k1,1] · · · [k1,m1 ], . . . , [kn,1] · · · [kn,mn ])

[T-Mem-Prog]

Figure 4.6: Continued

mem ⇒unmem int

[x]@xmem → L ⇒unmem [x]
alloc se ⇒unmem 0

Figure 4.7: Turning a FunMem program into a Fun program. When these
rules are applied at all possible locations to a FunMem program, the result will
be a Fun program, although one that might redundantly shuffle extraneous
information around, corresponding to the index functions and memory blocks
that have been erased.

4.4.2 Operational Semantics

A FunMem program can be evaluated in one of two ways: Transforming it
into a Fun program by essentially deleting the memory annotations and using
the value-based semantics of Fun; or by using a heap-based semantics that
mimics how FunMem would be implemented on actual physical hardware.
A FunMem program is valid (a notion we will define with more rigidity in
section 4.4.3) only if the two evaluation-methods produce the same result.

To evaluate a FunMem program under the value-based semantics, we first
transform it into a Fun program. This is done by turning all values of type mem
into int (they will have no semantic impact on the program), allocations into
dummy integer literals and removing memory annotations from array types. In
other words, we apply the rules in fig. 4.7 everywhere possible in the original
program.

Alternatively, we can evaluate a FunMem program using the heap-based
semantics shown in fig. 4.8. The semantics are a bit more complicated than the
rules encountered so far, mostly due to the desire to keep a trace of memory
accesses in order to guarantee race-freedom. As such, the boxed parts serve
to detect data races, but are not otherwise significant for the evaluation result.
We use the definition of slice and transpose from fig. 3.6 as well as racefree from
fig. 4.9 and memcopy from fig. 4.10. For space reasons we elide the rules for
scalar expressions, as they are conventional.

The rules use a standard heap abstraction, denoted H, that maps labels ℓ
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E;H ⊢ s ⇓ E;H; ⟨R,W⟩

E(se) = m ℓ fresh E′ = E, y 7→ ℓ H ′ = H, ℓ 7→ [

m︷ ︸︸ ︷
0, . . . , 0]

E;H ⊢ let (y : mem) = alloc se ⇓ E′;H ′; ⟨∅, ∅⟩

[E-Mem-Alloc]

E(x) = (ℓx, Lx)
E′ = E, z 7→ (ℓx, slice(Lx, [E(y1) :E(y2), . . . , E(y2n−1) :E(y2n)]))

E;H ⊢ let (z : τ) = x[y1 :y2, . . . , y2n−1 :y2n] ⇓ E′;H ′; ⟨∅, ∅⟩

[E-Mem-Slice]

E(x) = (ℓx, Lx)
E′ = E, z 7→ (ℓx, transpose(Lx))

E;H ⊢ let (z : τ) = transpose x ⇓ E′;H ′; ⟨∅, ∅⟩
[E-Mem-Transpose]

E(x) = (ℓx, Lx) k = Lx(E(y1), . . . , E(yn)) E′ = E, z 7→ H[ℓx, k]
R = {(ℓx, k)}

E;H ⊢ let (z : int) = x[y1, . . . , yn] ⇓ E′;H ′; ⟨R, ∅⟩

[E-Mem-Index]

E, x 7→ 1;H0 ⊢ b ⇓ E1;H1; ⟨R1,W1⟩
(H ′

1, R′
1,W ′

1 ) = memcopy(H1, E1(zres), zmem,fix(Lz, 1))
...

E, x 7→ k;H ′
k−1 ⊢ b ⇓ Ek;Hk; ⟨Rk,Wk⟩

(H ′
k, R′

k,W ′
k ) = memcopy(Hk, Ek(zres), zmem,fix(Lz, k))

E(y) = k racefree(R1 ∪R′
1, . . . ,Rk ∪R′

k,W1 ∪W ′
1, . . . ,Wk ∪W ′

k)

E′ = E, z 7→ (E(zmem), E(Lz))

R′ =
⋃i≤k

i=1
Ri ∪R′

i W ′ =
⋃i≤k

i=1
Wi ∪W ′

i

E;H0 ⊢
let (z : [zd1 ] · · · [zdn]@zmem → Lz) =
kernel x ≤ y do s in (zres)

⇓ E′;H ′
k; ⟨R

′,W ′⟩

[E-Mem-Kernel]

Figure 4.8: Heap-based big-step operational semantics rules for FunMem.
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E(x) ̸= 0 E;H ⊢ s ⇓ Es;Hs; ⟨Rs,Ws⟩
E′ = E, x1 7→ Es(y1), . . . , xn 7→ Es(yn)

E;H ⊢ let (x1 : τ1) · · · (xn : τn) =
if x then s in (y1, . . . , yn) else b2

⇓ E′;Hs; ⟨Rs,Ws⟩

[E-Mem-If-T]

E(x) = 0 E;H ⊢ s ⇓ Es;Hs; ⟨Rs,Ws⟩
E′ = E, x1 7→ Es(y1), . . . , xn 7→ Es(yn)

E;H ⊢ let (x1 : τ1) · · · (xn : τn) =
if x then b1 else s in (y1, . . . , yn)

⇓ E′;Hs; ⟨Rs,Ws⟩

[E-Mem-If-F]

E;H ⊢ s ⇓ E;H; ⟨R,W⟩

E;H ⊢ let p1 = e1 ⇓ E1;H1; ⟨R1,W1⟩
...

En−1;Hn−1 ⊢ let pn = en ⇓ En;Hn; ⟨Rn,Wn⟩

E;H ⊢ let p1 = e1 · · · let pn = en ⇓ En;Hn; ⟨
i≤n⋃
i=1

Ri,

i≤n⋃
i=1

Wi⟩

[E-Stms]

⊢ b ⇓ (v, . . . , v);H

•; • ⊢ s ⇓ E;H; ⟨R,W⟩
⊢ s in (x1, . . . , xn) ⇓ (E(x1), . . . , E(xn));H

[E-Mem-Prog]

Figure 4.8: Continued

to one-dimensional memory blocks, consisting of arrays of integers. We can
look up the value at offset i in the memory block ℓ using H[ℓ, i]. Similarly, we
use H[ℓ, i] 7→ k to construct a new heap identical to H but with index i in ℓ
changed to k, modeling an in-place update.

The main judgment, E;H ⊢ s ⇓ E;H; ⟨R,W⟩ , states that in the value
environment E and with the heap H, evaluating the statement s creates an
extended value environment E′, an updated heap H ′ and a trace of read and
write locations, R and W, represented as sets of (ℓ, L) pairs.

As mentioned, the trace has no semantic significance, but is used as a
condition in E-Mem-Kernel to avoid data races by prohibiting locations
written in one iteration of a parallel loop or kernel from being used in any way
in any other iteration. The purpose is to allow implementations to concurrently
execute different iterations of kernel. Note that locations are specific indices
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racefree(R1, . . . ,Rk,W1, . . . ,Wk) =
∀i(Wi ∩

⋃
j ̸=i(Rj ∪Wj)) = ∅

(4.1)

Figure 4.9: The definition of the racefree function.

memcopy(H, k, ℓ, L) = (H[ℓ, L()] 7→ k, ∅, {(ℓ, L())})
memcopy(H, (ℓsrc, Lsrc), ℓdst, Ldst) = (H ′,R,W)
where H ′ = H[ℓdst, i] 7→ ki

ki =

{
H[ℓsrc, j] ∃ j ∈ dom(Lsrc)⇒ i = Ldst(j)
H[ℓdst, i] otherwise

R = {(ℓsrc, p) | p ∈ img(Lsrc)}
W = {(ℓdst, p) | p ∈ img(Ldst)}

(4.2)

Figure 4.10: The definition of memcopy.

in a given memory block, not memory blocks themselves, so different iterations
are allowed to access different locations within the same memory block.

E-Mem-Kernel is also the only place where the heap is actually modified,
through the use of the memcopy function, seen in fig. 4.10. Simply put, we use
memcopy to copy the results of each iteration of the kernel to the appropriate
place in the result array. memcopy takes as arguments a heap H, a constant k
or a pair of source label and index function, a destination label and destination
index function, and returns an updated heap with values copied from the source
to the destination as well as read and write sets. In short, if the result of a kernel
body is a constant k, simply map the location given by the (zero-dimensional)
destination lmad to k. Otherwise, copy the values from the source array to
the destination array element-wise, leaving any untouched values in place.

E-Mem-Alloc states that the alloc expression creates a new label and
adds a freshly initialized array to the heap.

E-Mem-Slice and E-Mem-Transpose compute new arrays by slicing or
transposing the lmad of their inputs. Note that the memory block of the input
is reused, meaning that the only cost of doing a slice is computing the new
index function, which is done mostly at compile time. Only some additions
and multiplications are left at runtime to compute the offset of a given index.
Similarly, E-Mem-Index indexes an array by looking up the memory block
and index function and computing the corresponding offset into the heap label.
E-Mem-Index is the only place (outside of memcopy) where the read set is
updated. E-Mem-If-T and E-Mem-If-F behave as expected.

Finally, the E;H ⊢ s ⇓ E;H; ⟨R,W⟩ and ⊢ b ⇓ (v, . . . , v);H judgments
describe how a sequence of statements and a program are evaluated.
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nest(k, •) = k
nest([v1, . . . , vm], [k1] · · · [kn]) =
[nest([v1, . . . , vkn ], [k1] · · · [kn−1]), . . . ,nest([vm−kn , . . . , vm], [k1] · · · [kn−1])]

(4.3)

Figure 4.11: Definition of nest.

4.4.3 Validity

Having described the two ways of evaluating FunMem programs, we now move
on to the concept of validity. The idea is to use the two evaluation-mechanisms
to prove validity by requiring that a given program evaluates to equivalent
results using both methods.

First, we define a helper function nest as shown in fig. 4.11, which produces
a row-major view of the array in the given memory block. It takes a flat array
and a shape as arguments and recursively computes the multi-dimensional
array according to the shape. As an example, nest([1, 2, 3, 4], [2][2]) produces
the array [[1, 2], [3, 4]].

Next, we define validity:

Definition 4.4.1 (Validity). Let bmem be a FunMem program

s in (xmem
1 , xval1 , . . . , xmem

n , xvaln )

and b be the corresponding Fun program given by

bmem ⇒unmem b

Then bmem is valid if

⊢ bmem : ([k1,1] · · · [k1,m1 ], . . . , [kn,1] · · · [kn,mn ])

and

⊢ bmem ⇓ (ℓ1, (ℓ1, L1), . . . , ℓn, (ℓn, Ln));H

and

⊢ b ⇓ (0, v1, . . . , 0, vn)

such that for all 1 ≤ i ≤ n

nest(H(ℓi), [ki,1] · · · [ki,mi ]) = vi.

Any process that creates a new FunMem program, including the initial
translation from Fun, must take care to preserve validity.
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Procedure 4.1: TransformProgram(prg)
input :A well-typed Fun program prg = s in (x).
output :A FunMem program corresponding to prg.

1 s′,Γ←− TransformStms(s, •);
2 res←− •;
3 foreach xi in x do
4 [z]@mem→ L←− Γ(xi);
5 ymem, y ←− fresh;
6 salloc ←− let (ymem : mem) = alloc (

∏
z);

7 slin ←− let (y : [z]@ymem → R(z)) = copy xi;
8 Append salloc slin to s′;
9 Append ymem, y to res;

10 return s′ in (res);

4.5 Fun → FunMem

We now move on to describing how a Fun program is translated into FunMem.
This process is handled by a collection of four procedures, shown in procs. 4.1
to 4.4.

TransformProgram is the entry-point for the program transformation.
It works by first calling TransformStms on the statements of the body of
the given program and then performing a copy of the result values to ensure
that they are in row-major form before returning them.

Procedure 4.2: TransformStms(s, Γ)
input :A sequence of Fun statements s and the corresponding type

environment Γ.
output :The transformed FunMem statements s′ with inserted

memory and the corresponding type environment Γ′.

1 s′ ←− •;
2 Γ′ ←− Γ;
3 foreach s in s do
4 t←− TransformStm(s,Γ′);
5 foreach let p = e in t do
6 Append p to Γ′;

7 Append t to s′;

8 return s′,Γ′;

TransformStms is a simple wrapper that just calls TransformStm on
each statement of a list of statements.
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Procedure 4.3: TransformStm(s,Γ)
input :A Fun statement s : let p = e and a FunMem type

environment Γ.
output :FunMem statements s′ corresponding to s with inserted

memory annotations and memory allocations if necessary.

1 case e ≡ se or e ≡ x[y1, . . . , yn] do
2 return s;
3 case p ≡ (z : [z1] · · · [zn]) and e ≡ x[y1 :yn+1, . . . , yn :yn+n] do
4 [x1] · · · [xn]@xmem → Lx ←− Γ(x);
5 Ly ←− slice(Lx, [y1 :yn+1, . . . , yn :yn+n]);
6 return let (z : [z1] · · · [zn]@xmem → Ly) = e;
7 case p ≡ (y : [n][m]) and e ≡ transpose x do
8 [m][n]@xmem → L←− Γ(x);
9 return let (y : [n][m]@xmem → transpose(L)) = e;

10 case e ≡ kernel i ≤ x do s′ in (xres) and p ≡ (y : [z1] · · · [zn]) do
11 sinner,Γ

′ ←− TransformStms(s′,Γ);
12 ymem ←− fresh;
13 salloc ←− let (ymem : mem) = alloc (

∏n
i=1 zi);

14 Ly ←− R(z1, . . . , zn);
15 p′ ←− (y : [z1] · · · [zn]@ymem → Ly);
16 return salloc let p′ = kernel i ≤ x do sinner in (xres);
17 case e ≡ if c then sthen in (x) else selse in (y) do
18 s′then,Γthen ←− TransformStms(sthen,Γ);
19 s′else,Γelse ←− TransformStms(selse,Γ);
20 pres, xres, yres ←− •, •, •;
21 foreach xi, yi, (zi : τz) in x, y, p do
22 τx ←− Γthen(xi);
23 τy ←− Γelse(yi);
24 (sx;xsupp)←− Support(τx);
25 (sy; ysupp)←− Support(τy);
26 Append sx, sy to s′then, s

′
else respectively;

27 S, pi ←− •, •;
28 foreach x′ in xsupp do
29 xres ←− fresh;
30 Append x′ 7→ xres to S;
31 Append (xres : int) to pi;

32 Append (zi : S(τx)) to pi;
33 Append pi, xsupp, ysupp to pres, xres, yres respectively

34 return let pres = if c then s′then in xres else s′else in yres;
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TransformStm, shown in proc. 4.3 is the main driver. It works by pattern
matching on the expression and pattern of a statement, handling each kind of
expression differently. Statements consisting of sub-expressions or array index
expressions can be returned directly. When slicing or transposing an array x,
we have to find the type and memory annotations for x in the environment
first, after which the index function is transformed and a new statement is
returned that reuses the memory of x.

kernel-statements are handled by first transforming the statements in the
body of the kernel. Then, a new memory block is allocated with enough room
for the values of all iterations and a suitable index function is computed. In this
case, we always use a row-major index-function. Finally the alloc-statement
and the updated kernel-statement are returned.

Handling of conditionals are slightly more complicated because we have
to return the memory blocks and “supporting” information for the lmads of
all arrays that are returned. First we transform the statements of the two
branches. Then, for each return value of the original statement, we look up
the type in each branch and find all the supporting information using the
Support function, shown in proc. 4.4. Given an array, Support returns a new
statement binding the scalar expression in the offset to a variable, as well as the
supporting information of the array: memory block and offset variable as well
as spans and strides for each dimension. Then, for each of those supporting
variables, we make up a new fresh variable name that we bind in the statement
pattern. Finally, in order to make sure that the lmads of returned arrays
correctly use the returned existential values, we use a substitution. Note that
we always return all strides, number of elements and memory blocks from each
branch of a conditional. That may not be strictly necessary, but let’s us keep
the implementation simple. We leave it up to a later simplification pass to
remove any redundant information, if desired.

Procedure 4.4: Support(τ)
input :A FunMem type τ
output :The supporting information of τ , and a statement binding the

offset scalar expression to a variable, if there is one.

1 case τ ≡ int do
2 return (•; •);
3 case τ ≡ [x1] · · · [xn]@xmem → se+ {(x1 :xn+1), . . . , (xn :x2n)} do
4 y ←− fresh;
5 return (let y = se;xmem, y, x1, . . . , x2n);

All in all, these procedures allow us to systematically introduce memory
in a Fun program resulting in a FunMem program. While providing a proof
that this transformation is always valid is out of the scope of this thesis, we
believe that this relatively simple procedure does indeed preserve validity.
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4.6 Memory Expansion

Next, we will show how the FunMem IR can be used to perform powerful
optimizations and code transformations in a simple way. The example we will
use is that of memory expansion, which is critical for GPU code.

Because GPU kernels cannot efficiently allocate new memory for internal
uses, it is common to instead pre-allocate enough memory for all the threads
in a given kernel execution, and then have each thread use separate chunks of
the allocated buffer. FunMem programs have no such limitation, but if we
eventually do want to run our program on a GPU, we will need to get rid of any
allocations inside kernel-expressions. We do so by hoisting them out of the
kernel and expanding them accordingly, in a process called memory expansion.
Assuming that a separate pass has been used to lift kernel allocations as much
as possible, memory expansion can be performed on FunMem program using
the simple procedure shown in proc. 4.5.

Procedure 4.5: MemoryExpand(prg)
input :A FunMem program prg where all memory annotations have

been hoisted as much as possible.
output :A FunMem program where allocations at the top of kernel

calls have been expanded out.

1 while prg contains a statement
s ≡ let p = kernel x ≤ y do let z = alloc se b

2 such that x ̸∈ FV(se) and z is only used in patterns do
3 z′ ←− fresh;
4 b′ ←− b with all τ of the form
5 [x1] · · · [xn]@z → se′ + {(x1 :xn+1), . . . , (xn :x2n)}
6 replaced with
7 [x1] · · · [xn]@z′ → x · se+ se′ + {(x1 :xn+1), . . . , (xn :x2n)}
8 Replace s with s′ =
9 let z′ = alloc (se · y)

10 let p = kernel x ≤ y do b′

MemoryExpand works by searching the given program for statements
containing kernel-expressions, such that the first statement inside the kernel-
body is an allocation of some variable z. We require the size of the allocation
to not depend on the iterator value of the kernel and for z to only be used in
patterns, i.e. z must not be returned. We then create a new variable z′ which is
used as the replacement allocation outside the body. We replace all references
to z inside array types with z′, and modify the associated lmads with an offset
expressed in terms of the iterator variable. The result is a simple procedure
which expands memory out of kernels and modifies the index functions inside
as necessary.
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The programs resulting from the MemoryExpand procedure lay out the
portions of memory belonging to different threads in separate contiguous chunks
of memory. In other words, if each thread needs an array of n elements, the first
thread will use the first n elements of the expanded memory buffer, and so on.
This approach provides good spatial locality for CPU-based systems, since a
given thread will access memory elements close to each other. For GPU systems
on the other hand, this would be prohibitively expensive. Instead, we would
rather have the accesses of different threads be interleaved, resulting in so-
called coalesced access3. Thankfully, it is easy to produce an alternative version
of MemoryExpand targeted at GPUs: We just have to use the following
replacement lmad instead of the one in the original formulation:

se′ + x+ {(x1 :yxn+1), . . . , (xn :yx2n)}

The result is that for threads with consecutive thread-IDs, elements with
the same array index are laid out consecutively in memory. Strongly simplified,
this means that when the threads are all accessing e.g. element 1 of their
corresponding arrays, those elements are consecutive in memory so the GPU
can fetch them in a single instruction, instead of having to do one fetch for
each thread.

The MemoryExpand procedure shows how we can use the FunMem repre-
sentation to perform high-level optimizations and transformations. Chapters 5
and 6 will show more complex examples of optimizations in FunMem.

4.7 An Imperative Target Language

We now introduce Imp, a simple imperative language with a parallel looping
construct, which is used to illustrate how a FunMem program is translated
into efficient imperative code.

Figure 4.12 shows the grammar for Imp, reusing the scalar expressions
from Fun. The language has two types of variables, int and mem. Imp
supports sequencing statements, declaration, assignment and allocations. It
has support for reading and writing from one-dimensional memory buffers and
it has branching and parallel loop constructs. The type rules for Imp are trivial
and follow from the language, so we will not show them here. Listing 4.3 shows
the FunMem program from listing 4.2 translated into Imp.

The dynamic semantics for Imp are shown in fig. 4.13. It is a fairly standard
semantics that follows naturally from the language. It uses a heap abstraction H,
like the one in Fun, mapping labels to memory blocks, and a value environment
E, mapping variables to values. The judgement H;E ⊢ s→ H;E states that
evaluating the statement s with the heap H and value environment E produces
the new heap H ′ and environment E′.

3Consecutive SIMT threads concurrently executing load/store operation accessing con-
secutive locations in memory.
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τ ::= Types
| int integer
| mem memory

s ::= Statements
| skip no-op
| s; s sequencing
| var x : τ declaration
| x← se assignment
| x← alloc se allocation
| x← x[se] read
| x[se]← se write
| if x then s else s fi conditional
| kernel x ≤ se do s done parallel loop

Figure 4.12: Grammar for Imp, a tiny imperative, structured, and statement-
oriented language. Reuses the scalar expressions from the functional represen-
tation.

var zsize : int;
var zmem : mem;
if zcond then

var xmem : mem;
xmem ← alloc xsize;
kernel i ≤ xsize do xmem[i]← i done;
zsize ← xsize;
zmem ← xmem

else

var ymem : mem;
ymem ← alloc ysize;
kernel i ≤ ysize do ymem[i]← i done;
zsize ← ysize;
zmem ← ymem fi

Listing 4.3: The example from listing 4.2 translated to Imp.
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H;E ⊢ s→ H;E

H;E ⊢ var x : int→ H;E, x 7→ 0
[E-Imp-Dec-Int]

H;E ⊢ var x : mem→ H;E, x 7→ ⊥ [E-Imp-Dec-Mem]

H;E ⊢ x← se→ H;E, x 7→ E(se)
[E-Imp-Assign-Int]

H;E ⊢ x← y → H;E, x 7→ E(y)
[E-Imp-Assign-Mem]

H;E ⊢ x← y[se]→ H;E, x 7→ H[E(y), E(se)]
[E-Imp-Read]

H;E ⊢ x[sei]← sej → H[E(x), E(sei)] 7→ E(sej);E
[E-Imp-Write]

E(se) = m ℓ fresh H ′ = H, ℓ 7→ [

m︷ ︸︸ ︷
0, . . . , 0]

H;E ⊢ x← alloc se→ H ′;E, x 7→ ℓ
[E-Imp-Alloc]

H1;E1 ⊢ s1 → H2;E2 H2;E2 ⊢ s2 → H3;E3

H1;E1 ⊢ s1; s2 → H3;E3
[E-Imp-Seq]

E(x) ̸= 0 H;E ⊢ s1 → H ′, E′

H;E ⊢ if x then s1 else s2 fi→ H ′;E′ [E-Imp-If-True]

E(x) = 0 H;E ⊢ s2 → H ′;E′

H;E ⊢ if x then s1 else s2 fi→ H ′;E′ [E-Imp-If-False]

H;E ⊢ skip→ H;E
[E-Imp-Skip]

E(se) = k
H;E, x 7→ 1 ⊢ s→ H ′

1;E
′
1 · · · H ′

k−1;E, x 7→ k ⊢ s→ H ′
k;E

′
k

H;E ⊢ kernel x ≤ se do s done→ H ′
k;E

[E-Imp-Kernel]

Figure 4.13: Big-step operational semantics rules for Imp. The heap structure
is the same as for FunMem.
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4.7.1 FunMem → Imp

Next, we describe how FunMem is translated into Imp. The main driver is
FunMemToImp, as shown in proc. 4.6. FunMemToImp makes use of Copy
which in turn can be seen in proc. 4.7.

FunMemToImp takes a statement s and an environment Γ and works by
matching on the kind of expression used in s. For change-of-layout transforma-
tions such as slicing or transposing, we do not need to generate any code since
these are free at runtime, so we return skip. For assignments of sub-expressions
or allocations we declare the new variable and perform the assignment. To
handle indexing of arrays, we first look up the memory block and index function
of the array in question, and then we apply the index function to the given
indices in order to find the correct offset into the corresponding memory block.
For if-expressions we initialize the return variables outside the conditional and
then we insert assignment statements at the end of each branch. Note that we
have to filter out any array values in the returns and pattern, since Imp does
not have array values. Finally, for kernel, we look up the type of the return
value and insert a copy into the correct position in the pattern variable at the
end of the body.

Translating an entire program is simply a matter of applying FunMem-
ToImp to all statements in the program.

The Copy works as follows: If the value we’re copying is an integer, simply
index into the corresponding place in the destination memory and insert it there.
Otherwise, if the result is an array, insert a kernel-nest of the appropriate
depth and perform the copy in parallel.

Thus, we have described Imp and how we can translate FunMem into Imp
in a straightforward manner. Imp corresponds closely to a standard imperative
language (although with a parallel loop construct), so we provide an entire path
from the functional IR, through FunMem to an imperative language. Again,
we do not prove that the transformation from FunMem to Imp produces a valid
program with equivalent semantic meaning, but we can use similar reasoning
about validity as we did for the translation from Fun to FunMem.

4.8 Relation to IRs in Futhark

The languages presented in this chapter are simplified versions of internal
languages used in the Futhark compiler. The actual implementation is much
richer, containing more constructs such as sequential loops, more ways to
construct fresh arrays than through kernel and more index transformations
than just transpose and slicing. However, the core ideas of using lmads to
model the memory layout of arrays and the way that values are passed around
through the program (particularly when returned from conditionals) are the
same. Futhark also supports functions, which are implemented by adding the
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Procedure 4.6: FunMemToImp(s,Γ)
input :A FunMem statement s ≡ let p = e and a FunMem type

environment Γ containing all patterns in the entire program.
output :An Imp statement.

1 case s ≡ let (x : τ) = x[x1 :x2, . . . , xn−1 :xn] do
2 return skip;

3 case s ≡ let (x : τ) = transpose x do
4 return skip;

5 case s ≡ let (x : int) = se do
6 return var x : int;x← se;

7 case s ≡ let (x : mem) = alloc se do
8 return var x : mem;x← alloc se;

9 case s ≡ let (x : int) = y[x1, . . . , xn] do
10 Γ(y) ≡ . . .@ymem → Ly;
11 return var x : int;x← ymem[Ly(x1, . . . , xn)];

12 case s ≡ let p = if y then b1 else b2 do
13 b1 ≡ st1 · · · stn in xt;
14 b2 ≡ sf1 · · · s

f
n in xf ;

15 ∀(xi : τi) ∈ p : τi = int ∨ τi = mem.(xi, τi, x
t
i, x

f
i ) ≡

(x′1, τ
′
1, x

t′
1 , x

f ′

1 ), . . . , (x′m, τ ′m, xt
′
m, xf

′
m);

16 res←−
17 var x′1 : τ ′1; · · · ; var x′m : τ ′m;
18 if y then

19 FunMemToImp(st1); · · · ;FunMemToImp(stn);
20 x′1 ← xt

′
1 ; · · · ;x′m ← xt

′
m

21 else

22 FunMemToImp(sf1); · · · ;FunMemToImp(sfn);

23 x′1 ← xf
′

1 ; · · · ;x′m ← xf
′

m

24 fi;
25 return res;

26 case s ≡ let p = kernel yi ≤ yn do b do
27 b ≡ s1 · · · sm in (x);
28 Γ(x) ≡ τ ;
29 return kernel yi ≤ yn do

30 FunMemToImp(s1); · · · ;FunMemToImp(sm);
31 Copy(p, yi, (x : τ))
32 done;
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Procedure 4.7: Copy(px, xidx, py)

input :A pattern px, an index xidx, and a pattern py.
output : Imp statement copying from py to px[x

idx].

1 px ≡ (x : [z1] · · · [zn]@xmem → Lx);
2 case py ≡ (y : int) do
3 return xmem[Lx(x

idx)]← y;

4 case py ≡ (y : [z2] · · · [zn]@ymem → Ly) do
5 return
6 kernel zidx2 ≤ z2 do · · · kernel zidxn ≤ zn do

7 xmem[Lx(x
idx, zidx2 , . . . , zidxn )]←−

8 ymem[Ly(z
idx
2 , . . . , zidxn )]

9 done . . . done;

necessary memory annotations and lmads to function parameters and return
values.

The Futhark compiler uses similar type rules to the ones presented here
for each language in its internal representations, allowing it to type-check
the results of each compiler-pass. As already discussed, this does not protect
Futhark from all memory errors in FunMem, but it has caught many compiler
bugs nonetheless. At the same time, FunMem enables compile-time memory
optimizations that would be much harder to express without the high-level
functional context that FunMem has.



Chapter 5

Memory Block Merging

The first major optimization is called “memory block merging”. The goal is
to identify memory blocks inside kernels that are no longer used but still live
and use those instead of having to allocate new memory blocks. We show that
register-allocation techniques can be applied to array allocations but also that
it mostly matters for local memory.

5.1 Introduction and Motivation

Consider the following snippet of (extended) Fun code, where we assume that
the computation of bs uses a but not as, and that as is no longer used after
the computation of a:

let as : [n] = map . . .
let a : int = reduce (+) 0 as
let bs : [m] = map . . .

The corresponding FunMem code would look like this:

let asmem : mem = alloc n
let as : [n]@asmem → R(n) = map . . .
let a : int = reduce (+) 0 as
let bsmem : mem = alloc m
let bs : [m]@bsmem → R(m) = map . . .

We have two allocations, but since amem is never used after the computation
of a, we could use amem to store bs instead of allocating a new memory block,
but we have no way to express that in the source language (or Fun). In an
imperative language, we could either directly reuse the allocation, or we could
free asmem after the computation of a and leave it up to the dynamic allocator
to reuse the same memory for bmem.

If our language uses a dynamic allocator, we can use a last use analysis to
detect when amem is no longer used (after the computation of a) and then insert
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a statement to free it. But because GPUs do not support dynamic memory
allocation at all, it would only work outside kernels. Instead, we need to rely
on static optimizations if we are to reduce the memory usage inside kernels1.
To address such cases, we now describe the memory block merging analysis.

5.2 Related Work

Memory block merging is inspired by ordinary register allocation in compil-
ers [Cha+81]. However, several additional constraints prevent us from using
techniques such as linear scan [PS99]:

• Register allocation concerns itself with assigning values to a limited
number of uniform registers, perhaps “spilling” any extraneous values to
memory. In contrast, we are not in limited in the number of allocations
we can make and there is no spilling. Rather, we take a program that
already has allocations in it, and try to optimize those allocations.

• Our allocations are not uniform. Besides having different sizes, the
elements of the arrays using each allocation can also have different sizes,
and they can even reside in different “spaces”2.

5.3 Intuition

Instead of using a linear scan algorithm, we are going to use graph coloring
between the different allocations. The basic idea is to compute an interference
graph between the memory blocks in the given program, and then use a standard
greedy graph-coloring algorithm to merge non-interfering memory blocks.

An interference graph is a graph with edges between vertices that “interfere”
with each other. In our case, memory blocks that are in use at the same time
should interfere with each other. With the aid of information about the last
use of each variable in a program, we can compute the interference graph using
a top-down pass. Every time a use of an array is encountered, we insert edges
between the associated memory block and all other memory blocks that are
currently live, i.e. have been used at least once and have not reached their last
use.

By inserting extra edges between allocations which reside in different spaces
and which have different element sizes, we can adapt this general framework to
our specific requirements.

We then use the interference graph to compute a coloring that distributes
the arrays of the program onto memory blocks, insert the necessary allocations

1Therefore, memory block merging must also take place before memory expansion,
described in section 4.6

2Global memory and local memory belong to different memory spaces on the GPU that
cannot be intermixed.
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and change the index functions in the program as necessary. Optimally coloring
the graph is NP-complete [Kar72], so we will use a greedy non-optimal algorithm
instead, which is also standard in register allocation [Cha+81].

5.4 An Example

Using the example from section 5.1, our optimization works as follows:

1. Compute the last use table for the program. For the example above, it
is determined that asmem is last used in the computation of a and that
bsmem is last used in the computation of bs.

2. Using the last use information to compute when memory-blocks are live,
compute the interference graph of the memory blocks in the program.
It is determined that asmem and bsmem do not interfere with each other
because they are not live at the same time, have the same element-size
and reside in the same memory space.

3. Using the greedy graph-coloring algorithm, we “color” the interference
graph, assigning colors to all the memory blocks in the program and
potentially merging memory blocks that do not overlap. The two memory
blocks in our example are assigned the same color.

4. New allocation statements are inserted at the top of the kernel with fresh
names. If necessary, a statement computing the maximum of the merged
memory block sizes is inserted and the maximum is used as the allocation
size. In this case, we will dynamically compute the maximum of n and
m.

5. All index functions referring to the merged memory blocks are changed
to refer to the new memory blocks.

The transformed code looks like this:

let tmp : int = max(n,m)
let freshmem : mem = alloc tmp
let asmem : mem = alloc n
let as : [n]@freshmem → R(n) = map . . .
let a : int = reduce (+) 0 as
let bsmem : mem = alloc m
let bs : [m]@freshmem → R(m) = map . . .

Removing the now redundant allocations of asmem and bsmem is done by a
later simplification pass.
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5.5 Memory Block Merging in Futhark

Memory block merging has been fully implemented in the Futhark compiler, is
part of the official release of Futhark and takes up around 800 lines of code.
We have not found any significant increase in the performance of the generated
code, but we have seen a reduction in memory usage in our OptionPricing
benchmark3 of 6%.

3Detailed in section 6.8.
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Short-Circuiting

We now introduce array short-circuiting, an optimization that aims to remove
the overhead of parallelism safety guarantees in high-level languages by, among
other things, allowing array updates to be performed in-place when deemed
safe.

The array short-circuiting optimization has previously been presented at
SC22 [Mun+22].

6.1 Motivation: NW

The Needleman-Wunsch benchmark, also known as NW, is an implementation of
a dynamic programming algorithm for aligning protein sequences [Che+09]. The
algorithm works by filling out the top and left perimeters of a two-dimensional
array, and then computing the value of each cell depending on the three already
computed neighbors, as seen in fig. 6.1a. Already computed values are marked
in gray, while the values currently under evaluation are green. Based on the
dependency pattern, we can parallelize the algorithm by computing all the cells
on an antidiagonal in parallel, because none of the reads overlap with any of
the writes, as shown in fig. 6.1b.

This naive parallelization of NW will incur lots of uncoalesced accesses to
global memory on a GPU: Specifically three for each cell on the antidiagonal.
Global memory is slow so we would rather use local memory, especially because
the algorithm is largely memory-bound: The computation done for each cell is
trivial. Some of the reads overlap, but moving those to local memory would
only reduce the reads from global memory from 3n to 2n+ 1 (where n is the
number of elements on the antidiagonal). Additionally, those reads would still
be uncoalesced, and so would the writes at the end of each iteration of the
main loop.

Instead, it is possible to block the algorithm, as shown in fig. 6.1c. The
computation of each block only depends on the values immediately above and
to the left of the block, shown in blue and red outlines respectively. The result
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(c) Computing a blocked anti-diagonal
in parallel.

Figure 6.1: NW access patterns. Gray cells have already been computed.

is that each block consisting of b× b elements—in this case b = 3—reads 2b+ 1
elements from global memory, significantly increasing the performance of the
algorithm, especially as b gets larger. In the example with b = 3, each block
reads 7 elements from global memory using the blocked algorithm, compared
to the 3 · 32 = 27 elements read with the naive parallelization. Even more
importantly, both the reads of the top perimeter (outlined in blue in fig. 6.1c)
and the writes of each block (in green) can be done in a coalesced fashion,
greatly increasing the spatial locality of the resulting algorithm.

Using the in-place update notation described in section 2.2.2, the blocked
version of the NW algorithm can be viewed as a map. If we denote by W the
q blocks of b× b elements on a given antidiagonal of the original array, by R1

the q slices of b + 1 elements shown in red in fig. 6.1c, by R2 the q slices of
b elements shown in blue in fig. 6.1c and by ⊕ some function computing the
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block based on the two inputs, it can be expressed as:

let tmp = map2 ⊕ xs[R1] xs[R2]
let xs[W ] = tmp

The goal of array short-circuiting is to compute tmp directly in the space of
xs, eliminating the intermediate array.

Regular triplet notation does not allow us to express the slices necessary to
formulate NW in this way, but lmads-slices do: Assume that the original array
is a one-dimensional array with n2 elements (where n = pb+1, for some positive
integer p and block size b) and i is the number of the blocked antidiagonal we
are trying to compute (i < p). We can then use the notation from section 3.3
to describe the three slices above as:

W = n+ ib+ 1 + {(i+ 1:nb− b), (b :n), (b :1)}
R1 = ib+ {(i+ 1:nb− b), (b+ 1:n)}
R2 = ib+ 1 + {(i+ 1:nb− b), (b :1)}

The resulting arrays have the sizes:

xs[W ] : [i+ 1][b][b]
xs[R1] : [i+ 1][b+ 1]
xs[R2] : [i+ 1][b]

As an example, in fig. 6.1c, we have i = 1, b = 3 and n = 10, which means
that W = 14 + {(2 :27), (3 :10), (3 :1)} and xs[W ] : [2][3][3].

By expressing the slices this way, we can use a regular parallel map to
compute the blocked anti-diagonal update forming the main loop of the program.
However, due to the parallel-by-construction semantics of the map-SOAC and
the freedom from data-races that it guarantees, the computation and write
of the updated slice are separated. In other words, to statically ensure that
none of the writes to xs overlaps with any of the reads from xs a temporary
array is allocated containing the intermediate result. This protects the user
from data-races, at the cost of incurring extra memory and copying overhead.
As a result, when introducing memory to the code above, it is turned into the
following:

let tmpmem : mem = alloc ((i+ 1) ∗ b ∗ b)
let tmp : [i+ 1][b][b]@tmpmem → R(i+ 1, b, b) =

map2 ⊕ xs[R1] xs[R2]

let xs : [n2]@xsmem → Lxs = xs with [W ] = tmp

Ideally, we would like to be able to construct tmp directly in the memory
of xs, turning the code above into the following (where slicelmad is taken from
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fig. 3.6):

let tmp : [i+ 1][b][b]@xsmem → slicelmad(Lxs,W ) =
map2 ⊕ xs[R1] xs[R2]

let xs : [n2]@xsmem → Lxs = xs with [W ] = tmp

While compiling this program to lower-level imperative code, the code
generator can determine that the in-place update on the last line is a no-op
and remove it altogether, eliminating the overhead of writing the intermediate
array (tmp) to memory and reading from it again.

The safety guarantees in question produce a similar result when memory is
introduced in concatenation-statements such as let A = concat B C1. The
result is that B and C are computed in separate memory blocks before being
copied into the result array. If B and C are never used again, we would like be
able to save two allocations and some copying by constructing them directly in
the memory space of A.

The in-place updates and constructions discussed above are easily written di-
rectly in imperative memory-oriented languages. In other words, the additional
safety properties of functional array-languages prevent us from achieving the
same performance as hand-written imperative code. To alleviate the situation,
we propose the array short-circuiting optimization. The goal of this optimiza-
tion is to identify instances of in-place updates or concatenations where it is safe
to omit the intermediate buffer, such that the arrays are constructed directly
in the desired location. This will allow our high-level functional programs to
achieve the same level of performance as imperative code, without the safety
hazards. The result of our optimization is that the NW update or the concate-
nation from above are turned into code without any unnecessary intermediate
arrays, resulting in a speedup of 1.1×–2× on applicable benchmarks, as shown
in section 6.8.

6.2 Overview

The short-circuiting optimization is a syntax-directed translation that works
on the extended FunMem IR used in Futhark, but can be used in any IR
that uses lmads as array index functions. It starts by attempting to find
a “short-circuiting point”. Assuming the memory of x is last used in each
statement, a short-circuiting point is one of the following:

1. let ys = ys with [. . .] = x

2. let ys = concat a x

3. let ys = kernel . . . do . . . in (x)

1concat is a function that takes two arrays and concatenates them together, e.g.
concat [1, 2] [3, 4] = [1, 2, 3, 4].
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The kernel case arises because there is an implicit copy at the end of a
kernel body, so we can regard it as attempting to put x directly in the space
of ys during construction. Kernel short-circuiting like this is only valid if x is
an array. In all cases, we call x the “source” and ys the “destination” of the
short-circuiting attempt2.

After finding a short-circuiting point, we first compute the projected index
function, the index function that we would use for x if short-circuiting succeeds.
Then, the optimization will attempt to prove that it is safe to construct the
source directly in the space of the destination by traversing the program bottom-
up from the short-circuiting point to the “array creation point” of the source
and verifying the safety of the short-circuiting along the way.

The array creation point of an array x is a statement that creates a “new”
array in memory, instead of simply changing the layout of an existing array.
For a given array x and some z such that either z = x or x aliases z, we support
the following array creation points:

1. let z = kernel . . .

2. let z = iota . . .

3. let z = replicate . . .

4. let z = copy . . .

Note that the array creation point is distinct from the memory creation
point, which is where the memory of z is allocated: They may be separated
because of aggressive hoisting of memory allocations.

The goal of the bottom-up traversal is to verify the following properties:

1. The memory of the destination must be allocated before the creation of
the source array.

2. Change-of-layout transformations both to and from the source are legal
using the “projected” index functions as long as the projected index
function can be constructed.

3. The free variables of the projected index function of the array are in scope
at the array creation point, or can be brought into scope. In other words,
the projected index function cannot rely on something we calculate later.
Likewise for all aliases of the short-circuited array.

4. No writes to the source intersects with any later uses of the destination
in between the array creation point and the short-circuiting point.

Upon reaching the array creation point and having verified these properties,
the optimization deems it safe to compute the source directly in the destination
memory space using the projected index function.

2Short-circuiting with a as the source in the concat-example is also valid.
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6.3 Computing the Projected Index Function

Before validating the safety properties, the analysis needs to compute the
projected index function of the source. When the short-circuiting point is an
in-place update, the projected index function corresponds to the slice being
updated. For instance, in the following example, the projected index function
of x is slice(Lys,W ):

let ys : τ@ysmem → Lys = ys with [W ] = x

When computing the projected index function for a concat-statement, we
have to slice the index function of the destination accordingly. In the next
example, if z is an array with n elements and x is an array with m elements,
the projected index function of x is slice(Lys, [n :m]):

let ys : τ@ysmem → Lys = concat z x

Lastly, for kernel-statements, each thread must write to a place in the
destination according to its index. In the example below, the projected index
function of x is fix(Lys, i) (where fix , which is defined in fig. 3.6, fixes the
outermost dimension of the given lmad):

let ys : [n]τ@ysmem → Lys = kernel i ≤ n do . . . in (x)

6.4 Safety Properties in Detail

We now describe in detail the properties outlined in section 6.2, which are
needed to verify the safety of the short-circuiting transformation.

In most cases, the first safety property (that the array creation of the source
must dominate the memory allocation of the destination) can be handled by a
separate pass that attempts to lift all allocations as much as possible within a
body, so we will not spend any more time on it here. The details of the rest of
the safety properties are as follows:

6.4.1 Change-of-layout Transformations

The second safety property asserts that the necessary change-of-layout trans-
formations on the projected index functions are possible. To illustrate this
requirement, consider the following example, where a and b are not used at any
later point (transpose is defined in fig. 3.6):

let a : [n][m]@amem → La = map . . .
let b : [m][n]@amem → transpose(La) = transpose a
let ys : [p][m][n]@ysmem → Lys = ys with [i] = b
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Short-circuiting starts by identifying the short-circuiting point on the third
line, for which ys is the destination, b is the source and the projected index
function is fix(Lys, i). Proceeding with the bottom-up analysis, we see that b is
not the “original array”, but rather that it is an alias of a. We therefore have
to compute the projected index function of a by reverting the change-of-layout
operation in question. Thankfully, transposition is easily reverted, in this case
by computing transpose(fix(Lys, i)), resulting in the following short-circuited
code:

let a : [n][m]@ysmem → transpose(fix(Lys, i)) = map . . .
let b : [m][n]@ysmem → fix(Lys, i) = transpose a
let ys : [p][m][n]@ysmem → Lys = ys with [i] = b

Unfortunately, some change-of-layout transformations cannot be reversed,
as they are not information-preserving. Consider for instance the following:

let a : [n]@amem → La = map . . .
let b : [m]@amem → slice(La, [x :y]) = a[x :y]
let ys : [n][n]@ysmem → Lys = ys with [i] = b

The elements of the original array, a, do not fit into the space of ys that b
is allowed to occupy, so we cannot short-circuit b into ys. Therefore, we only
support reversing transpositions3. If our analysis encounters any non-reversible
change-of-layout transformations, it will fail.

Just as the short-circuiting source may actually be the result of one or more
change-of-layout operations on other arrays, other arrays may be the result of
change-of-layout operations on the original array. For instance, consider the
following example:

let a : [n][m]@amem → La = map . . .
let b : [m][n]@amem → transpose(La) = transpose a
let c : [m]@amem → slice(La, [x :y]) = a[x :y]
let ys : [p][m][n]@ysmem → Lys = ys with [i] = b

Because both b (our short-circuiting source) and c alias a, we have to
record and change the index function of c in addition to a and b in order to
short-circuit b into ys. Thankfully, this is trivial: Given the projected index
function of a, we can always compute the index function of c by applying the
appropriate change-of-layout function to the projected index function of a.

3It is an open question whether we could identify some cases in which the original array,
e.g. a, is only used as the slice basis for the source array, e.g. b. In that case, it might be
safe to shrink a such that it only contains the elements needed for b. Futhark’s simplifier
will handle some simple cases (by not computing the full a), but perhaps there is room for a
more complex analysis.
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After short-circuiting, the code above looks like this:

let a : [n][m]@ysmem → transpose(fix(Lys, i)) = map . . .
let b : [m][n]@ysmem → fix(Lys, i) = transpose a
let c : [m]@amem → slice(transpose(fix(Lys, i)), [x :y]) = a[x :y]
let ys : [p][m][n]@ysmem → Lys = ys with [i] = b

6.4.2 Index-Function Projection Safety

When computing the projected index functions of short-circuited arrays and
their aliases, we also have to ensure that the free variables in the new index
function are actually in scope or can be computed when needed. For instance,
consider the following example:

let ysmem : mem = alloc m
let ys : [m][n]@ysmem → Lys = . . .
let xsmem : mem = alloc n
let xs : [n]@xsmem → Lxs = . . .
let i : int = . . .
let ys : [m][n]@ysmem → Lys = ys with [i] = xs

In order to short-circuit xs into ys, we compute the projected index-function:
fix(Lys, i). However, we cannot use this index function for xs, because i is
not in scope when xs is created, it is only computed later. To handle these
cases, we keep track of all the scalars used in the computation of the projected
index functions and attempt to lift them above the array creation point of the
short-circuiting source. In other words, the code above is turned into this:

let ysmem : mem = alloc m
let ys : [m][n]@ysmem → Lys = . . .
let xsmem : mem = alloc n
let i : int = . . .
let xs : [n]@xsmem → Lxs = . . .
let ys : [m][n]@ysmem → Lys = ys with [i] = xs

It is not always possible to lift the necessary scalar computations, for instance
if the computation of the scalar in question depends on the short-circuiting
source, as in the following example:

let ysmem : mem = alloc m
let ys : [m][n]@ysmem → Lys = . . .
let xsmem : mem = alloc n
let xs : [n]@xsmem → Lxs = . . .
let i : int = xs[0]
let ys : [m][n]@ysmem → Lys = ys with [i] = xs

In such cases, short-circuiting is not possible and will fail.
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6.4.3 Non-Overlap

Finally, we have to ensure that short-circuiting does not introduce any data
dependency errors. These can happen if a write to the source interferes with a
later read from the destination, as in the following example:

let ysmem : mem = alloc m
let ys : [m][n]@ysmem → Lys = . . .
let xsmem : mem = alloc n
let xs : [n]@xsmem → Lxs = . . .
let i : int = ys[0, 0]
let ys : [m][n]@ysmem → Lys = ys with [0] = xs

In this case, short-circuiting xs into ys will cause i to have the wrong value,
because the corresponding location in ys will have been overwritten during the
creation of xs.

The simplest way to ensure safety from data dependency errors is to prevent
the destination from being used in between the short-circuiting point and the
array creation point of the source. Unfortunately, that is too restrictive for e.g.
the NW example, where the computation of the blocked anti-diagonal depends
on the values of adjacent cells in the destination. In the example above, if xs
was instead placed in the second row of ys we would expect short-circuiting to
succeed.

Instead of preventing all uses of the destination, short-circuiting will keep
“access summaries” of the destination uses and source writes and use those to
attempt to prove that short-circuiting is safe, even if the same array is being
read and written to. An access summary is simply a set of lmads, indicating
what locations in the given memory block have been accessed.

The short-circuiting algorithm maintains two summaries of memory loca-
tions when trying to short-circuit some source x into some destination ys:

Uys: aggregates reads and writes of the destination array (ys, assumed to reside
in ysmem) and aliases thereof;

Wx: aggregates writes to the source x and aliases thereof, using the projected
index functions into ysmem.

For each statement in our backwards pass towards the array creation point
of x, we update each summary and verify at that point that none of the writes
to the source overlap with previous uses of the destination. This guarantees
that program semantics are preserved even if ys is accessed in the live range of
x: Writes to x are not allowed to overlap with later reads or writes from ys.
Checking non-overlap of the access summaries is done using the non-overlapping
test from section 3.6 on the pair-wise lmads from the two summaries.
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-- Success if reached!
let x = scratch . . .
-- Lwt

x = slice(Lnew
x , Swt

x )
-- Wx = {Lwt

x }
-- Fail here if: Uys ∩ Lwt

x ̸= ∅
let x[Swt

x ] = . . .
-- Lwt

ys = slice(Lys, S
wt
ys )

-- Uys = Uys ∪ {Lwt
ys}

let ys[Swt
ys ] = . . .

-- Lrd
ys = slice(Lys, S

rd
ys)

-- Uys = {Lrd
ys}

let . . . = f (ys[Srd
ys ])

-- Wx = ∅, Uys = ∅
-- Lnew

x = slice(Lys, S
sc)

let ys[Ssc] = x

Listing 6.1: Short-circuiting a straight line of code.

6.5 A Simple Example

Listing 6.1 shows an example of short-circuiting a straight line of code, and
the resulting access summaries.

We start with the short-circuiting point on the last line: The goal is to
short-circuit x into ys using the slice Ssc. We initialize the access summaries
Wx and Uys to the empty sets and compute the projected index function, Lnew

x ,
for x.

On the next two lines, we encounter a read from and a write to the
destination. In both cases, we compute the index function corresponding to
access and add it to the access summary. Then we encounter a write to the
source, meaning that we have to compute the corresponding access summary
and add it to the write set. If the write to the source overlaps with any of the
uses of the destination encountered so far, short-circuiting fails. Otherwise the
analysis continues to the first line, the array creation point of x. If the analysis
reaches this point, the short-circuiting analysis succeeds and we can update
the index function of x accordingly.

6.6 Handling Recurrences

Constructs like loops and maps introduce additional complexity to our analysis.
For instance, we have to check the access summaries of each iteration of a
sequential loop against all the previous iterations. Likewise when handling a
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parallel loop we have to check the accesses of each iteration against all other
iterations.

6.6.1 Loops

To handle sequential loops, we first apply the short-circuiting analysis to the
loop body using empty initial access summaries, verifying that short-circuiting
is safe inside to body of a single iteration. Having collected and verified the
access summaries of a single iteration denoted by the iteration index i, U i

ys

and W i
x, we then denote by U>i

ys the access summary of all the destination uses
in iterations after iteration i. Similarly, we denote by U total

ys and Wtotal
x the

total access summaries for all the iterations of a loop. The three aggregated
access summaries are defined as follows and can be computed using the lmad
expansion procedure, Expand, described in section 3.5.2:

U>i
ys =

n−1⋃
j=i+1

U j
ys

U total
ys =

n−1⋃
j=0

U j
ys

Wtotal
x =

n−1⋃
j=0

Wj
x

Assuming that Uys is the use set of the destination after the loop, we can
check inter-iteration overlap, as well as overlap of writes inside the loop with any
previously encountered uses of the destination, using the following equation:

U>i
ys ∩W i

x = ∅ ∧ Uys ∩W loop
x = ∅

Finally, to proceed with our analysis, we update the outside access sum-
maries by adding the total access summary of the loop:

W ′
x =Wx ∪Wtotal

x

U ′
ys = Uys ∪ U total

ys

6.6.2 Parallel Loops

Kernels are handled similarly to sequential loops, except for the fact that all
the threads of a kernel can execute simultaneously. Therefore, instead of U>i

ys ,
we need to compute U ̸=i

ys , which is defined by the following equation:

U ̸=i
ys = U<i

ys ∪ U>i
ys =

i−1⋃
j=0

U j
ys ∪

n−1⋃
j=i+1

U j
ys
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Figure 6.2: The updated anti-diagonal elements computed in listing 6.2.

We also have to take into consideration that each thread in a map ends
with an implicit write to the result array. So if the result of the parallel loop
is the source of our current short-circuiting attempt, x, with projected index
function Lx and the thread ID i, then the body of a kernel expression ends
with a source write defined by:

W i,init
x = fix(Lx, i)

Thus, when analyzing the body of the parallel loop, the access summary
for writes to the source is initialized to W ′i,init

x .
Like for sequential loops, if we assume that Uys is the use set of the

destination after the loop, inter-iteration overlap is checked by the following
equation:

U ̸=i
ys ∩W i

x = ∅ ∧ Uys ∩Wtotal
x = ∅

Likewise, to proceed with our analysis, we update the outside access sum-
maries by adding the total access summary of the parallel loop:

W ′
x =Wx ∪Wtotal

x

U ′
ys = Uys ∪ U total

ys

6.6.3 An Example with a Parallel Loop

Listing 6.2 shows a concrete example of short-circuiting code involving a kernel.
By regarding ys as a two-dimensional array with 10× 10 elements, the code in
question increments the values of the anti-diagonal in parallel, following the
pattern shown in fig. 6.2.
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let ysmem : mem = alloc 100
let ys : [100]@ysmem → R(100) = . . .
let ys′ : [10]@ysmem → 9 + {(10:9)} = ys[9 + {(10:9)}]
let xmem : mem = alloc 10

-- Uys = U total
ys = {9 + {(10:9)}}

-- Wx = {9 + 9i, Wtotal
xs } = {9 + 9i, 9 + {(10:9)}}

-- Array-creation of x, analysis succeeds
let x : [10]@xmem → R(10) =

-- U ̸=i
ys =

⋃j<i

j=0
U j
ys ∪

⋃j<10

j=i+1
U j
ys

-- = {9 + {(i :9)}, 9i+ 18 + {(10− i− 1:9)}}
-- Verify that U ̸=i

ys ∩W i
x = ∅

kernel i ≤ 10 do

-- U i
ys = {9 + 9i}, W i

x = {9 + 9i}
let tmp : int = ys′[i] + 1

-- U i
ys = {}, W i

x = {9 + 9i}
in (tmp)

-- Uys = {}, Wx = {}
-- Projected index function for x: 9 + {(10:9)}
let ys[9 + {(10:9)}] = x

Listing 6.2: Short-circuiting with a kernel.

Starting from the last line, we first find the short-circuit point: x is being
used to update ys in-place. The projected index function of x is computed and
the access summaries, Uys and Wx, are initialized.

Next, we encounter a kernel-expression, a parallel loop. To handle it, we
must first process the body independently, computing the access summaries
U i
ys and W i

x. On the last line of the body we have the return statement which
contains an implicit write to the source array x. Therefore, we must verify that
the implicit write does not overlap with any previous uses of the destination.
Since U i

ys is empty, that follows trivially, and we update W i
x accordingly.

On the next line of the kernel body we have a read from an array aliasing the
destination (ys′), so the corresponding index is added to U i

ys. Note that, even
though this read from the destination overlaps with the implicit write to the
source at the end of the kernel, the write comes after the read so short-circuiting
will not violate the original dependencies.

Once the entire body has been processed, we have to verify that the source
writes in each iteration do not overlap with any destination uses in the other
threads. We therefore compute U ̸=i

ys and attempt to prove that it is disjoint
from W i

x using the non-overlapping test from section 3.6. If successful, the
analysis updates Uys and Wx using the access summaries of the entire loop
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U total
ys and Wtotal

x before proceeding with the analysis.
Intuitively, it can be seen that W i

x = {9 + 9i} is disjoint from 9 + {(i :9)}
because the latter corresponds to the points {9, 18, . . . , 9 + 9(i− 1)}. Similarly,
W i−x is disjoint from 9i+18+{(10− i−1:9)} because the latter corresponds
to the points {9i+ 18, 9i+ 27, . . . , 90}.

The statement computing x is also the array creation point of the source
of our current short-circuiting attempt. Thus, because the analysis has not
encountered any dependency errors along the way, short-circuiting x into ys is
deemed safe and the index function of x can be updated accordingly.

6.7 Implementation Details

Short-circuiting has been fully implemented as an automated pass in the
Futhark compiler and takes up around 5000 lines of Haskell code.

Proving that access summaries do not overlap is the most complex part
of the pass. While our heuristic from section 3.6.2 allow us to use simple
inequalities to prove non-overlap of complex examples like NW and the LUD
benchmark (which we will describe in section 6.8.2), the algebraic simplifier
and solver within Futhark is not yet up to that task. We therefore have two
versions of the short-circuiting pass implemented: One that uses our internal
algebraic simplifier but cannot prove non-overlap in NW and LUD (though it
does improve other benchmarks, and parts of LUD and NW) as well as one that
offloads the algebraic simplification and solving of inequalities to a third-party
SMT-solver (specifically, Z3 [MB08]), which can fully short-circuit NW and
LUD. To keep the number of external dependencies in the official Futhark
releases down, the first one is the one that is used in the current master-branch
of Futhark, while the latter one lives in its own branch.

While having to use an external SMT-solver to fully optimize cases like
NW might seem like a detriment to our implementation, it is important to
note that the SMT-solver is not able to prove non-overlap of NW on its own.
Indeed, when given the raw lmads in order to try to prove them disjoint, Z3
will run for more than a week without giving an answer. Only by giving it the
preprocessed inequalities arising from the heuristic described in section 3.6.2
is it able to produce any answer at all. We believe that implementing the
necessary algebraic solver-procedures directly in the Futhark compiler is feasible,
though outside the scope of this work4.

Short-circuiting causes a compile time overhead of around 10% on most
of our benchmarks. However, some benchmarks take even longer to compile
with short-circuiting due to the complex lmad that arise. For instance, NW
compiles in 17 seconds using the external SMT-solver, compared to 1 second
without.

4And probably not scientifically interesting. Lots of work exists concerning the imple-
mentation of algebraic simplification engines and solvers.
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Dataset Reference (ms)
Unoptimized

Speedup
Optimized

Speedup
Optimization

Impact

A
10

0 8192 9 0.99x 1.16x 1.17x
16384 21 0.96x 1.19x 1.24x
32768 58 1.04x 1.36x 1.31x

M
I1

00

8192 15 0.71x 0.88x 1.24x
16384 44 0.64x 0.78x 1.21x
32768 325 1.01x 1.14x 1.13x

Table 6.1: NW performance. 1000 runs.

6.8 Experimental Results

To investigate the impact of the short-circuiting optimization, we have evaluated
it on a collection of benchmarks. All benchmarks were run using NVIDIA A100
and AMD MI100 GPUs. To get accurate measurements, each benchmark is
run enough times (as indicated by the header of each table) for the runtimes
to settle at a stable level. We always discard the first run and then average
the rest. All benchmarks are compared to a reference hand-written OpenCL
implementation from a publicly available benchmark suite, and we show the
relative performance of the Futhark implementation both with and without
short-circuiting, as well as the impact of the optimization.

6.8.1 NW

We benchmark our NW implementation against the hand-written OpenCL
implementation from the Rodinia benchmark suite [Che+09]. The results are
shown in table 6.1, the number in the dataset-column indicates the size of the
square matrix used as input.

For the largest dataset, our short-circuited Futhark-code is 36% faster than
the reference implementation on the A100, with the optimization itself having
an impact of 31%. The code generated by Futhark is very similar to the
hand-written implementation, so the difference in performance is likely due to a
bank conflict in the Rodinia code that happens when accessing shared memory.
The Futhark version uses padding to avoid such conflicts. On the MI100, things
are not quite as impressive, but for the largest dataset our implementation is
14% faster than the reference, with a short-circuiting impact of 13%.

6.8.2 LUD

The LUD benchmark performs lower-upper decomposition of a matrix. We
compare our implementation with the LUD implementation from Rodinia, to
which the code generated by Futhark is also very similar.
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Figure 6.3: LUD access pattern.

Dataset Reference (ms)
Unoptimized

Speedup
Optimized

Speedup
Optimization

Impact

A
10

0 8192 190 1.08x 1.34x 1.25x
16384 1445 1.19x 1.53x 1.29x
32768 11547 1.21x 1.60x 1.32x

M
I1

00

8192 173 0.60x 0.72x 1.19x
16384 1248 0.74x 0.98x 1.32x
32768 10511 0.83x 1.14x 1.39x

Table 6.2: LUD performance. 10 runs.

At a high level, the algorithm blocks the input matrix and iterates along
the diagonal axis of blocks, processing a successively smaller part of the matrix.
Figure 6.3 shows an example of the access pattern with a block-size of two:
The red block is computed first. The result is then used to compute the blue
and yellow blocks, all three of which are used to compute the green blocks at
the end. Then, the algorithm recursively processes the green blocks in a similar
manner.

Table 6.2 shows the performance of our implementation compared to the
reference implementation from Rodinia. Like for NW, the number in the
dataset column indicates the size of the square matrix used as input. On
the A100 we are 60% faster for the largest dataset with an impact from the
optimization of 32%. On the MI100 we are 14% faster for the largest dataset
with an optimization impact of 39%. The difference in performance is largely
due to the fact that Futhark automatically inserts register-tiling in addition to
the block-tiling expressed by the user.

6.8.3 Hotspot

The Hotspot benchmark models heat propagation in processors and consists
of a big stencil. It takes as input a two-dimensional matrix and a number of
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Figure 6.4: Hotspot access pattern.

Dataset Reference (ms)
Unoptimized

Speedup
Optimized

Futhark
Optimization

Impact

A
10

0 8192 9 0.47x 0.84x 1.78x
16384 29 0.46x 0.94x 2.04x
32768 117 0.46x 0.94x 2.05x

M
I1

00

8192 8 0.33x 0.64x 1.96x
16384 34 0.35x 0.68x 1.97x
32768 142 0.37x 0.73x 1.98x

Table 6.3: Hotspot performance. 10 runs.

iterations. In each iteration, the values of the elements of the two-dimensional
matrix is updated based on its cardinal neighbors. To compute this in parallel,
we first compute the values at the corners and edges of the matrix and then
compute the inner values. The resulting access pattern can be seen in fig. 6.4,
where the differently colored cells are computed in separate parallel operations.

By constructing the final matrix as the concatenation of those different
parts, short-circuiting can make sure that the values are actually constructed
in-place, leading to around 2x speedup compared to the un-short-circuited
version, as seen in table 6.3 (again, the dataset number is the size of the matrix).
In terms of absolute performance, the optimized Futhark version is close to
that of the hand-written implementation from Rodinia on the A100, but a bit
further away on the MI100.

6.8.4 LBM

The LBM benchmark is an implementation of the Lattice Boltzmann methods
for simulating fluid dynamics. The main part of the code consists of a loop with
a map inside, computing the rows of the output array. Our short-circuiting
method allows Futhark to compute the intermediate results of that main map
directly in the desired output space, removing extra copies from the resulting
code.
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Dataset Reference (ms)
Unoptimized

Speedup
Optimized

Speedup
Optimization

Impact

A
10

0 short 29 0.84x 0.92x 1.09x
long 860 0.86x 0.95x 1.10x

M
I1

00 short 49 0.65x 1.04x 1.59x
long 1423 0.63x 1.01x 1.60x

Table 6.4: LBM performance. 100 runs.

Dataset Reference (ms)
Unoptimized

Speedup
Optimized

Speedup
Optimization

Impact

A
10

0 medium 1 0.78x 0.80x 1.03x
large 18 0.58x 0.70x 1.21x

M
I1

00 medium 13 4.19x 4.70x 1.12x
large 28 0.65x 0.74x 1.14x

Table 6.5: OptionPricing performance. 1000 runs.

The performance of our implementation of LBM compared to the reference
implementation from the Parboil benchmark suite [Str+12] can be seen in
table 6.4. The datasets used are taken from Parboil. In general, short-circuiting
brings the performance up to par with the hand-written implementation, even
a bit higher on the MI100. The impact of the optimization is most significant
on the MI100, which shows an improvement in execution time of up to 60%,
while the A100 shows a more modest impact of around 10%.

6.8.5 OptionPricing

The OptionPricing benchmark is an implementation of the Black-Scholes based
option pricing engine from FinPar [And+16]. The performance impact of short-
circuiting can be seen in table 6.5, with datasets taken from FinPar. While
short-circuiting does not quite close the gap between the two implementations,
the impact of up to 21% on the A100 and up to 14% on the MI100 brings
the Futhark implementation significantly closer (except for one case where the
hand-written implementation is exceptionally slow on the MI100).

6.8.6 LocVolCalib

LocVolCalib (Local volatility calibration) is another implementation of a bench-
mark from the FinPar benchmark suite. As seen in table 6.6, short-circuiting
has a modest impact here, between 4% and 12%. While the resulting perfor-
mance is a bit worse than the reference implementation for the largest dataset,
we show similar or even better performance for the other datasets.
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Dataset Reference (ms)
Unoptimized

Speedup
Optimized

Speedup
Optimization

Impact

A
10

0 small 103 0.97x 1.05x 1.08x
medium 50 1.18x 1.27x 1.07x
large 169 0.63x 0.68x 1.08x

M
I1

00

small 207 1.08x 1.20x 1.12x
medium 84 0.92x 0.97x 1.06x
large 431 0.76x 0.79x 1.04x

Table 6.6: LocVolCalib performance. 10 runs.

Dataset Reference (ms) Unoptimized
Speedup

Optimized
Speedup

Optimization
Impact

A
10

0 855280 70 9.82x 15.19x 1.55x
8552800 631 76.48x 93.18x 1.22x

85528000 6194 197.66x 208.02x 1.05x

M
I1

00

855280 70 5.06x 6.78x 1.34x
8552800 630 39.11x 46.08x 1.18x

85528000 6280 115.72x 126.18x 1.09x

Table 6.7: NN performance. 100 runs.

6.8.7 NN

Finally, the NN benchmark is an implementation of K-nearest neighbors. The
code consists of computing the distance between the given points using a map
and a loop with a reduction inside.

With short-circuiting, Futhark is able to determine that the result of the
reduce can be put directly in the result of the loop, removing the overhead of
the additional copy. We see significant speedup here of up to 55% on the A100
and 34% on the MI100, as shown in table 6.7. The dataset column indicates
the number of points used.

The reference implementation from Rodinia only parallelizes the initial
distance computation, and not the reduction, so the Futhark implementation
is significantly faster, especially as the input data gets larger.

6.9 In-place Scalar Maps

While we have so far focused on in-place updates and concatenations, there
are some simple but obvious cases that we should also support. Consider for
instance the following two Futhark definitions:

let f (xs : ∗[]i32) = map (+2) xs
let g (xs : ∗[]i32) (ys : []i32) = map2 (+) xs ys
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Notice that xs is unique in both cases, which means that a straightforward
imperative implementation could reuse the memory buffer of xs for the result
of the function. Short-circuiting as defined above is not able to do that, because
the results of the map bodies are not arrays. However, with a bit of extra work
we can handle these special cases using the ordinary short-circuiting techniques.

In short, when encountering a kernel with scalar results we can attempt to
match up the return patterns with any arrays indexed inside the body of the
kernel. If we can find an array that satisfies the following conditions, we can
short-circuit the scalar computation and get rid of the extra allocation:

1. The array is used in an indexing operation inside the kernel.

2. The array must be last used in that indexing operation.

3. The indexing operation must only use the thread-id variables.

4. The array must have the same index function as the pattern of the kernel
statement.

5. The elements of the array must have the same size as the resulting
elements of the kernel.

6. The array must be unique.

If we can find such an array, we can perform short-circuiting by treating
the identified array as the source and the pattern of the kernel statement as
the destination. Then, regular short-circuiting can be applied to verify safety
and to make the kernel call reuse the array buffer.

This tweak to short-circuiting has been implemented in the Futhark compiler,
but it has negligible impact on the generated GPU code, apart from resulting
more satisfying code [Hen22]. However, on the multicore backend we have
observed speedups of up to 2x on simple programs like the ones above, likely
due to locality.

6.10 Related Work

Many other attempts have been made at addressing the memory overhead of
the functional style of languages. Destination passing style [Sha+17] adapts
a region-based approach in order to attempt to create arrays directly in their
destination space, but it does not use index functions and therefore does not
support index-based optimization analyses like short-circuiting.

Sisal’s Build-in-Place and Update-in-Place optimizations are similar to, but
more limited than, short-circuiting. In particular, Update-in-Place uses dope
vectors (which are similar to lmads, see section 3.2) to model memory layout
of arrays, but cannot express general layout optimizations such as coalescing.
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The Data-Flow Graph Language (DFGL) [Sbî+15] uses a DSL to express
dependencies between (elements of) arrays and computations in sequential code,
and then uses a polyhedral framework to prove deadlock-freedom and safety of
parallelization, as well as allowing certain optimizations. We take the reverse
approach by starting with a program that has safe parallelism by construction,
and then attempt to prove that some of the intermediate buffers (which are used
conservatively to ensure safe parallelism) are not necessary. As such, we use an
unrestricted language with a conventional type system to enforce separation
of reads and writes. Other languages have followed the same approach as
DFGL of separating program from optimizations, such as Chill [Kha+13],
Halide [Rag+13] (both of which predate DFGL) and PolyMage [MVB15].

The use of lmads for analyzing and optimizing parallelism is reminiscent of
automatic parallelization of loops in Fortran [Hal+05; OR12; HPY01; RPR07;
OR13]. Those analyses often aggregate loop-accesses into read-only (RO), read-
write (RW) and write-first (WF) sets, expanded across loops using complex set
operations like subtraction and intersection. By attacking the problem from
the other direction, the operations we need to support (union and non-overlap)
are much simpler to implement. Furthermore, if automatic parallelization of a
given loop fails, the results are catastrophic, in that it yields sequential code.
In contrast, if our analysis fails we still use all the parallelism expressed by the
user, paying only a 1.1× to 2× overhead from the extra copies and allocations.

Scalarazation of array update syntax in Fortran [Zha07] is also related.
They address the issue of taking an array update statement like A(2 : 11) =
A(1 : 10)+A(3 : 12) and sequentializing it in such a way that data dependencies
are respected. For instance, if the above statement was naively implemented,
the reads and writes from successive iterations of the resulting loop would
overlap, yielding incorrect results. Scalarization is an automatic analysis and
technique to correctly implement the sequential code with the fewest necessary
intermediate values. However, the problem that we are trying to address is
different, in that we are given an already parallel (and correct) array update
statement like the one above, and trying to prove that it is safe to remove some
of the overhead given by the safe parallelization.





Chapter 7

Autotuning

In this chapter, we present a technique for automatically tuning the threshold
parameters that discriminate semantically-equivalent but differently-optimized
code versions making up the computational kernels of a program. Assuming that
the structure of the multi-versioned code adheres to a monotonicity assumption,
our autotuner performs a one-time tuning process, relying on minimal compiler
instrumentation, that generates near-optimal threshold values for all datasets
represented by the tuning datasets.

7.1 Introduction

Determining the best compilation technique for a given problem can be difficult
in the face of different dataset and hardware characteristics [Che+]. For
instance, when writing applications with imperfectly nested parallel loops for
the GPU, common wisdom tells us to use enough parallelism to saturate the
hardware and sequentialize any parallelism in excess of what the hardware can
support. But if the characteristics of the input datasets are allowed to vary
significantly we may not be able to statically determine how much parallelism is
enough. For instance, one dataset may offer a sufficient amount of parallelism
in the top parallel loop to saturate the GPU, while another dataset requires
exploiting one or more levels of inner parallelism as well.

As a result, even though GPUs are successfully used to power the fastest
supercomputers on the planet [Sch22], they are notoriously difficult to pro-
gram efficiently, especially when the problem at hand exhibits nested levels of
parallelism with sizes that are statically unknown or unpredictable.

Further complicating matters, the common wisdom mentioned above does
not always hold. It has been shown that even when there is enough outer
parallelism to saturate the GPU, it can sometimes be more efficient to ex-
ploit additional inner levels of parallelism, for instance when that additional
parallelism can be mapped to GPU workgroups and intermediate results can
fit in local memory [And+16; Gie+20]. Additionally, the best optimization
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strategy for one generation of GPUs may not be the best strategy for another
generation of GPUs, even from the same vendor [Hen+19]. For NVIDIA GPUs,
for instance, the large dataset from the LocVolCalib benchmark of the FinPar
benchmark suite [And+16] runs faster using the common-wisdom approach on
Kepler GPUs, but not on Turing GPUs where the intra-group version using
workgroups and local memory is faster.

In summary, for many important applications, no common optimization
recipe exists that can produce a single statically generated version of code that
has optimal performance across all datasets and hardware of interest.

Much work has been done to attempt to solve this problem, such as:

1. Targeting best average performance across datasets by using supervised
offline training methods from machine learning to infer the best configu-
rations of compiler flags [Che+; Fur+11; Bag+15].

2. Aiming specifically at stencil applications by statically selecting between
various compile-time optimization recipes using stochastic methods, and
then using those same-shape stencils on larger arrays [Rag+13; Fra+18;
Hag+18].

3. Using dynamic analysis to control the granularity for parallel multicore
execution [Aca+19; TJF14].

While the last approach is infeasible on GPUs due to the runtime-system
extensions needed, the first two approaches are limited by the fact that they
do not attempt to classify datasets based on the best-suited code version, and
are thus not able to statically construct a single program that offers optimal
performance for all datasets.

One approach to addressing these concerns is to generate multi-versioned
code and use runtime characteristics in combination with threshold values
provided by the user to dynamically choose between versions. While this can
be done in hand-written code, it is especially interesting in a functional context
where syntax-based rewrite-rules can be used to automatically generate many
semantically equivalent but differently optimized versions of code [Ste+].

One such technique is incremental flattening, a flattening transformation
which is used to transform programs with many nested levels of parallelism
into a form that can be efficiently executed on hardware with limited levels of
parallelism, such as GPUs [Hen+19]. Incremental flattening works by mapping
increasing levels of application parallelism to hardware parallelism, generating
many semantically-equivalent but differently-optimized versions of code. These
different versions of code, or kernels, are combined into one program by guarding
each kernel with a predicate that compares the amount of exploited parallelism
of that kernel with a threshold value provided by the user. In general, a program
can consist of multiple such computational kernels, and each one of them can
result in multi-versioned code.



7.1. INTRODUCTION 89

B₁:
 P₁ ≥ T₁

B₂:
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Figure 7.1: An example tuning tree.

The result is a forest of tuning trees1, such as the one shown in fig. 7.1.
The tuning tree in this example consists of three kernels, V1, V2 and V3. At
runtime, the amount of parallelism exploited by V1, denoted P1, is compared
to the user-provided threshold value T1. If P1 is larger than T1, the V1 kernel
is used for this execution. If V1 does not exploit enough parallelism for the
given dataset, P2 (the amount of parallelism exploited by V2) is compared to
T2. If P2 is larger, V2 is run, otherwise V3 is used.

Having generated a multitude of code-versions for a particular program,
the question of how to choose the best threshold values remains. Ideally, we
should choose threshold values such that the best code version is always chosen
for any dataset on any given piece of hardware. For large programs, manually
finding the best threshold values can be infeasible due to the potentially large
number of kernels generated and the opaque (for the average user) relation
between the program written and the kernels generated. Additionally, even
if the user knows exactly what the different generated kernels are for a given
program, choosing the optimal kernel still depends on the hardware and dataset
characteristics, as described above.

Instead of relying on the user to provide tuning parameters, we can employ
an “autotuning” process. The idea is to define a set of tuning inputs and
then use another program to systematically run our program with various
combinations of tuning parameters in order to find the combination that gives
the best performance for all the specified inputs, which hopefully translates to
the real inputs used later on.

In the paper introducing incremental flattening [Hen+19], the authors
suggest using an autotuner based on the OpenTuner framework [Ans+14]
to tune the threshold parameters of incrementally flattened programs. The
resulting autotuner uses a black-box approach — it has no insight into how
the target program is structured — wherein the tuning parameters are initially
guessed more or less randomly, relying on stochastic methods to iteratively
improve each guess. Unfortunately, the search space for any given program
can be huge, so this is both time consuming and does not guarantee that the
found values are optimal. Indeed, our experimental evaluation in section 7.8

1Though the forest can consist of multiple trees, we will be considering one tree at a
time, since each tree can be tuned independently.
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shows that the OpenTuner-based autotuner does not always find optimal tuning
parameters and that the tuning times can be unpredictable and sub-optimal
for a number of real-world applications and public benchmarks.

7.1.1 Overview

In this chapter, we will describe a different approach, based on co-design between
the compiler and autotuner. Inspired by incremental flattening, our technique
is applicable to any kind of multi-versioned code, as long as the resulting tuning
tree conforms with a monotonicity assumption. Defined in detail in section 7.4,
the monotonicity assumption relates the relative performance of two branches of
the tuning tree to the conditional discriminating between them. As an example,
for the conditional B1 in fig. 7.1 to adhere to the monotonicity assumption,
it must be the case that if V1 is found to be the fastest of the three kernels
for some value x of P1, then V1 is also be faster than the other kernels for any
larger value of P1.

In the case of incremental flattening, the dynamic program value — P1 in the
above example — refers to the amount of parallelism exploited by the guarded
kernel, e.g. V1, but our autotuner does not require that to be the case, only
that the tree conforms with the monotonicity assumption. However, we find
that the trees constructed by incremental flattening adhere to the monotonicity
assumption under common circumstances, and we discuss remedial techniques
that could be applied in case it does not.

At the basic level, our autotuner works by finding, for each provided dataset,
the set of maximal threshold intervals that selects the fastest kernel. If the
given program adheres to the monotonicity assumption, we are then able to
intersect the threshold intervals for any number of datasets into a single set of
threshold intervals that selects the fastest kernel for all of those datasets and any
datasets that have similar parallelism characteristics. The only requirements
from the compiler is that it is possible to export the tuning tree generated by a
particular program and that it is possible to show what degrees of parallelism
are exploited for each kernel when run on a given dataset (e.g. what the values
of P are).

The tuning tree for a given program might be traversed multiple times in
the course of a single execution. For instance, an outer sequential loop around
the parallel loops in the user code will cause a kernel to be selected and run
multiple times. For a given dataset and program, this may cause each kernel
to exploit different degrees of parallelism in each iteration (e.g. P takes on
different values at different times during one execution), and it might even
be the case that different kernels are preferable at different times during the
same execution. We call programs where all kernels always exploit the same
degree of parallelism during a single execution size-invariant programs and
programs where some kernels exploit different degrees of parallelism during a
single execution size-variant programs.
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Our autotuning strategy is best explained in terms of size-invariant programs,
but we show how size-variant programs can be considered a special-case of
size-invariant programs and how to modify our autotuner to accommodate
them. While size-variant programs are not fundamentally harder to tune
than size-invariant programs, they can cause an explosion in the search space
of threshold values, but we show how to handle that using a binary search
technique.

The resulting autotuner finds the optimal threshold intervals for size-
invariant programs using just O(kd) runs of the program in question: Each
kernel k is run once with each dataset d, in a one-time, ahead-of-time tuning
process. The resulting tuning values will always pick the fastest kernel for
all datasets that have similar size-characteristics as the tuning datasets. For
size-variant programs, each kernel is run O(logmi) times for each dataset,
where mi is the different degrees of parallelism exhibited by that one dataset,
instead of just once.

Finally, we show the viability of our approach by applying the autotuner to
Futhark programs compiled using incremental flattening, comparing against
a black-box OpenTuner-based autotuner and evaluating the impact on a
number of real-world applications from the remote-sensing and financial do-
mains [Gie+20; HEO18] as well as benchmarks from public benchmark suites
such as Rodinia [Che+09] and FinPar [And+16; Oan+12]. Compared with the
OpenTuner-based autotuner, our method reduces the tuning time by as much
as 22.6×, with an average of 6.4×. In five out of 11 cases our autotuner also
finds better thresholds that speed up program runtimes by as much as 10×.

In summary, we claim the following contributions:

1. We present an autotuning technique relying on minimal compiler instru-
mentation that guarantees near-optimal kernel-choice when a monotonic-
ity assumption is upheld.

2. We describe and discuss the monotonicity assumption, including prov-
ing that the monotonicity assumption guarantees that optimal interval
thresholds overlap.

3. We describe how size-variant and size-invariant programs differ, and the
steps required for the autotuner to be able to handle both efficiently.

4. We demonstrate the viability of our approach by applying it to Futhark
programs compiled using incremental flattening and evaluating the impact
on a number of real-world applications and public benchmarks.

Most of the work presented in this chapter has previously been published
at TFP 2021 [Mun+21]. This thesis adds a more detailed description of the
monotonicity assumption and a proof argument for the overlap of optimal
threshold intervals.
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7.2 Background

7.2.1 Flattening

Parallel functional array languages, such as Futhark, allow users to express
arbitrary amounts of nested parallelism, for example by using the SOACs
described in section 2.2: map, reduce, scan and scatter. In contrast, GPUs
generally only have one or two levels of parallelism available at the hardware
level. Therefore, in order to efficiently execute parallel programs on GPUs, a
compiler for such a language must determine a way to “flatten” the parallelism
in the given program to the level of parallelism available in the hardware.
For example, a perfectly nested parallel loop map (map f) xss, where xss is
a two-dimensional array, can be flattened by first flattening xss into a one-
dimensional array and then applying map f to the resulting array. Imperfectly
nested parallel loops may be flattened using flag-vectors, map-loop interchanges
and other similar techniques [Ble+94].

Blelloch’s transformation is a technique for “full flattening” [Ble90]. It is a
universal transformation that works by fully flattening all available parallelism
through a technique called vectorization, which lifts all functions f into vector-
ized versions f̂ that applies to segmented arrays. Although useful because it
can be generally applied, the typical shortcomings of full flattening are [Hen17]:

1. All parallelism is always exploited.

2. It does not consider communication or locality of reference. In fact, in
many cases locality of reference is destroyed.

3. It may blow up memory. For instance, the fully flattened version of
matrix multiplication uses O(n3) space, while the regular implementation
uses O(n2).

7.2.2 Incremental Flattening

One technique that attempts to address the shortcomings of full flattening
is incremental flattening [Hen+19]. It is a generic flattening algorithm that
works as a top-down pass over a simple data-parallel language supporting
regular nested data-parallelism, creating semantically-equivalent versions of
differently-parallelized code. Each distinct code-version, or kernel, is guarded
by a conditional that dynamically compares the amount of exploited parallelism
of that kernel with a user-provided threshold value. If the kernel would exploit
enough parallelism, that kernel is chosen.

The transformation works by recursively traversing the given code in a
top-down manner, mapping parallelism to a given hardware level l. Every time
a map is encountered it will:
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let mapscan [m][n] (xss : [m][n]i64) : [m][n]i64 =
map2 (\row i→
loop row = row for _ < 64 do

let row = map (+ i) row
in scan (+) 0 row

) xss (iota m)

Listing 7.1: The definition of mapscan.

1. Produce one version of code that maps the parallelism of the discovered
map-nest to hardware level l and sequentializes the inner parallelism of
the discovered map.

2. Map the parallelism of the discovered map to hardware level l and
recursively map the inner parallelism to hardware level l − 1. In the case
of GPUs, this corresponds to workgroup parallelism with intermediate
results stored in fast local memory.

3. Flatten the parallelism of the discovered map at hardware level l and
recursively continue inside the body. This step essentially corresponds to
applying map fission and map-loop interchange to create a perfect nest
of maps that can end in a reduce or scan operation.

If we denote by Vi different kernels resulting from some function f , by Pi(x)
the amount of parallelism exploited by the kernel Vi for a particular dataset x
and by Ti the user-defined threshold values, incremental flattening will turn a
statement let y = f x (where f has some amount of inner parallelism) into
the following:

let y =
if P1(x) ≥ T1 then V1(x) else
if P2(x) ≥ T2 then V2(x) else
. . .
if Pn(x) ≥ Tn then Vn(x) else
Vn+1(x)

Leaving out the x, the generated code can be thought to constitute a tree of
kernels, which we call a tuning tree, such as the one shown in fig. 7.1. By setting
the threshold values appropriately for a given dataset, incremental flattening
allows the user to ensure that the preferred kernel is chosen.

As an example of how incremental flattening works, consider the mapscan
function, shown in listing 7.1.

This contrived function transforms a two-dimensional matrix by mapping
over the rows and then, for each row, performing a map and a scan in a loop.
In other words, mapscan has two levels of imperfectly nested parallelism. As a
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let mapscanouter [m][n] (xss : [m][n]i64) : [m][n]i64 =
map2 (\row i→
loop row = row for _ < 64 do

let (row,_) =
loop (row, acc) = (copy row, 0) for j < n do

let tmp = acc+ row[j] + i
let row[j] = tmp
in (row, tmp)

in row
) xss (iota m)

Listing 7.2: The definition of mapscanouter.

let mapscanintra [m][n] (xss : [m][n]i64) : [m][n]i64 =
-- Uses grid-level parallelism.
map2 (\row′ i→

-- row is stored in local memory
loop row = copy row′ for _ < 64 do

-- Uses group-level parallelism.
let row = map (+ i) row
in scan (+) 0 row

) xss (iota m)

Listing 7.3: The definition of mapscanintra.

let mapscaninner [m][n] (xss : [m][n]i64) : [m][n]i64 =
loop xss = copy xss for _ < m do

map2 (\row i→
let row = map (+i) row
in scan (+) 0 row

) xss (iota m)

Listing 7.4: The definition of mapscaninner.

result, incremental flattening targeting a GPU with two levels of parallelism
(taking advantage of workgroups and local memory) would produce three
different versions of mapscan: One that exploits only the outer parallelism
and sequentializes the inner map and scan, one that exploits both levels of
parallelism by utilizing workgroups and keeping row in local memory as well
as a version that fully flattens all parallelism. The resulting code, here called
mapscanouter, mapscanintra and mapscaninner are shown in listings 7.2 to 7.4
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Note that the perfectly nested map and scan construction in mapscaninner

is turned into a single flattened parallel kernel, with degree of parallelism mn.
Between the first and last version, we will intuitively expect mapscanouter to
perform well for inputs where the degree of outer parallelism, m, is large enough
to saturate the GPU and mapscaninner to be preferable otherwise, because
it exploits more parallelism. But we also have the intra-group version, which
uses fast local memory for the intermediate results of the inner loop; it is likely
preferable in most cases where it applies. Unfortunately, most modern GPUs,
including the A100, only supports up to 1024 threads in a workgroup, so the
intra-group version will only be applicable when n is less than that.

In fact, because of this extra limitation on intra-group kernels, incremental
flattening will insert an extra condition on intra-group branches in the tuning
tree, asserting that the amount of intra-group parallelism does not exceed that
which is supported by the GPU in question. We will however elide that detail
for most of this chapter, since the result is simply that the fully flattened version
deepest in the tuning tree serves as a fallback for the intra-group kernels.

Thus, if we find that the intra-group version is always preferable when
applicable, we can set the thresholds guarding mapscanouter and mapscanintra

respectively such that it is always chosen. In terms of the tuning tree in fig. 7.1,
assuming that V1 corresponds to mapscanouter, V2 to mapscanintra and V3 to
mapscaninner, we set T1 =∞ and T2 = 0, ensuring that V2 is always executed.
This conforms with the intuitive notion that, if a given kernel is preferable for
some amount of parallelism, then adding more parallelism will not hurt the
relative performance of that kernel2.

In summary, incremental flattening is a general technique that allows the
compiler for a parallel array language to generate trees of code versions that are
flattened differently, making it possible to choose the best version at runtime
by setting a set of user-defined parameters accordingly.

Previously, finding the best threshold values for these parameters, a process
called “tuning”, was done using a black-box autotuner based on the OpenTuner
framework [Ans+14]. Over time, and as we will see in section 7.8, this autotuner
was observed to unreliable. As an alternative, we will describe our autotuner
in the following sections.

7.3 Intuition and an Example

Instead of the general black-box autotuner approach suggested by the authors
of the incremental flattening paper [Hen+19], we present an autotuner based on
co-design between the compiler and tuner. By adapting the tuning technique to
the specific transformation producing the multi-versioned code in question, we

2We will make this notion, and its consequences, more precise when discussing the
monotonicity assumption in section 7.4
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(b) Targeting V2 by setting T2 = 50.
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(c) Targeting V1 in the
collapsed tree.

Figure 7.2: Targeting specific code versions for a single dataset.

are able to take advantage of knowledge about the structure of the generated
code in order to more efficiently find better threshold values.

Our framework assumes that the multi-versioned code in question has the
structure of a (forest of) tree(s) such as the one in fig. 7.1. Specifically, it assumes
that a number of kernels V1, . . . , Vn+1 are guarded by branches B1, . . . , Bn.
Each branch Bi must compare a dynamic program property Pi to some user-
defined threshold value Ti. If the tree conforms to a monotonicity assumption we
guarantee that we find near-optimal threshold values using a small deterministic
number of runs, needing only minimal compiler instrumentation.

The basic idea underlying our autotuner is to tune the threshold parameters
for each dataset individually, yielding for each parameter the maximal interval
which, in aggregate, will choose the fastest kernel for that dataset. Then,
because of the monotonicity assumption, we are able to combine those intervals
by intersecting them, yielding for each branch a single threshold interval that
will choose the fastest kernel for all the tuning datasets being used. This way,
we can perform a one-time tuning that will choose the fastest kernel for all
datasets similar to the ones being used to tune with.

Focusing for now on the simple size-invariant case, in which the amount of
parallelism exploited by each kernel does not change during a single execution,
we’ll use the tuning tree from fig. 7.1 as an example. Because the program
is size-invariant we can reason that for a given dataset there is going to be a
fastest kernel, which we should prefer. In order to find out which kernel is the
fastest for a given dataset, we just need to run each kernel once on the dataset
and record which is the fastest.

The steps for a single dataset is shown in fig. 7.2. We start by running the
bottom-most kernel first, V3 in this case. To run V3, we set all thresholds to ∞
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(or some sufficiently high number), as shown in fig. 7.2a. No matter what the
degree of parallelism for the given dataset is at each branch, the comparison
will always be false so the fall-back kernel lowest in the tree is run and we can
record the execution time of that kernel.

Next, we want to target V2 and this is where we need a bit of compiler
instrumentation: If the program outputs the degrees of parallelism being
compared at each branch, we can tell exactly what values to use for the
threshold parameter T2 in order to next target the V2 kernel. In this example,
P1 was reported to be 10 and P2 was reported to be 50. Thus, in order to run
V2 on our dataset, we set T2 to 50 (or any value below 50), as in fig. 7.2b, and
record the execution time.

Having tuned V2 and V3, we can consider that entire sub tree as one
combined kernel formed by those two kernels. The combined kernel can be
considered as one near-optimal program kernel V ′

2 , resulting in the tree shown
in fig. 7.2c, upon which we can apply recursive reasoning to run V1.

Now that we have run all three kernels on our dataset, we can compare the
execution times and determine which one is the fastest. Let’s assume that V2

is fastest. Therefore, for this dataset, the optimal threshold intervals for T1

and T2 are (10,∞) and [0, 50]. In other words, as long as T1 is larger than 10
and T2 is lower than or equal to 50, V2 will be used for this particular dataset.

Assuming that the execution time of each kernel does not depend on the
specific values contained in the dataset being used but only on the amount
of parallelism exploited, we can use the same threshold values for all other
datasets with the same size-characteristics, always running the fastest kernel.
Whether it holds or not comes down to the monotonicity assumption, discussed
in section 7.4.

Finally, since we have identified the individual sets of maximal optimal
threshold intervals for a number of datasets we can combine the threshold
intervals for each parameter by interval intersection. If such an intersection
exists for each threshold, the resulting set of intervals will always select the
fastest kernel for each of the datasets being used to tune with.

For example, if we found that the maximal optimal threshold intervals for
two datasets x and y are:

T x
1 = (10,∞) and T x

2 = [0, 50]
T y
1 = [0, 100] and T y

2 = [0, 1000]

Then the pairwise intersections (10, 100] and [0, 50] are also optimal threshold
intervals for x and y (albeit not maximal).
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Figure 7.3: The tuning tree in fig. 7.1 with the last branch collapsed.

7.4 The Monotonicity Assumption and Correctness
Argument

The autotuner we propose relies heavily on assumptions about the relative
performance of code versions as a function of the amount of parallelism they
exploit, as well as the general structure of the tuning tree. So far, we have
relied on an intuitive understanding of this monotonicity assumption, given in
section 7.1.1, but it is time to describe and discuss it in more detail.

Definition 7.4.1 (Monotonicity assumption). For some i and some value of Pi,
if the kernel Vi is found to be faster than all kernels Vj , j > i, then it remains
faster for all larger values of Pi.

Let us consider a simple example with a tuning tree consisting of just two
kernels, V1 and V2, with a branch B1 : P1 ≥ T1. If V1 is measured to be faster
than V2 for a dataset with P1 = x, it should also be faster for all datasets
where P1 is larger than x, no matter how V2 is constructed. We will use
this two-kernel example when discussing the monotonicity assumption further,
since any larger tuning graph can be reduced to a recursive application of the
two-kernel problem. For instance, assume a tuning tree with three kernels, like
the one in fig. 7.1: Having tuned the threshold T2, we can treat the entire
branch of B2 as one opaque kernel V ′

2 , as shown in fig. 7.3, and apply recursive
reasoning on the branches further up the tree.

Given such a two-kernel tuning tree, if V1 is found to be faster than V2 for a
particular dataset d which causes V1 to exploit an amount of parallelism x, then
the maximal optimal threshold interval for that dataset and threshold parameter
is [0, x]. Conversely, if V2 is faster, the maximal optimal threshold interval
is (x,∞). Our tuning strategy relies on being able to take the intersection
between several such maximal optimal threshold intervals, arising from different
datasets. Therefore, we need to make sure that such an intersection exists.

Theorem 7.4.1 (Overlap of optimal threshold intervals). Given two datasets
d1 and d2 and a collapsed tuning tree with kernels V1, V2 guarded by the branch
B1 : P1 ≥ T1, if the monotonicity assumption applies then the maximal optimal
threshold intervals for the two datasets overlap.
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Proof. If we denote by R(V, d) the execution time of V when run on the dataset
d and by deg(V, d) the degree of parallelism exploited by V when run on d,
there are four cases for the execution times of V1 and V2 when run on two
datasets d1 and d2:

Case 1: R(V1, d1) ≤ R(V2, d1) ∧ R(V1, d2) ≤ R(V2, d2)
The maximal optimal threshold intervals for d1 and d2 are [0, deg(V1, d1)]
and [0, deg(V1, d2)] respectively, which trivially overlap.

Case 2: R(V1, d1) ≤ R(V2, d1) ∧ R(V1, d2) > R(V2, d2)
The maximal optimal threshold intervals for the two given datasets are
[0, deg(V1, d1)] and (deg(V1, d2),∞). By the monotonicity assumption
it must be the case that deg(V1, d1) > deg(V1, d2), so the two intervals
overlap.

Case 3: R(V1, d1) > R(V2, d1) ∧ R(V1, d2) ≤ R(V2, d2)
Symmetrical with case 2.

Case 4: R(V1, d1) > R(V2, d1) ∧ R(V1, d2) > R(V2, d2)
The maximal optimal threshold intervals for the given datasets are
(deg(V1, d1),∞) and (deg(V2, d2),∞), which trivially overlap.

Thus, in all four cases, if the monotonicity assumption holds, the optimal
threshold intervals for the two datasets overlap.

We have thus outlined a proof that if the monotonicity assumption holds
for a given branch then the optimal threshold intervals for any two datasets d1
and d2 have a non-empty intersection. For a given program there may be many
datasets, but it follows from Helly’s theorem [DGK63] that if the maximal
optimal intervals for all pair-wise datasets have non-empty intersections, then
the maximal optimal intervals for all datasets also have a non-empty intersection.
This can also intuitively be seen by defining lmax as the maximal lower-bound
of all the datasets and umin as the minimal upper bound of all the datasets.
Because the intervals of all pair-wise datasets overlap, it must also hold that
lmax ≤ umin and that all other intervals overlap with the interval [lmax, umin].

7.5 Limitations

Apart from the monotonicity assumption, there are several limitations to our
technique. First and foremost, real-life hardware is subject to many fluctuations
and variations in their performance. We have observed significant (2× and
more) fluctuations in runtime across individual executions, both becoming
faster due to warm-up effects and becoming slower due to throttling. Care must
therefore be taken to ensure that enough runs are used to get a representative
execution time in order not to get misleading tuning results. Our autotuner
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implementation contains a check to ensure that the given program does not
become slower after tuning each threshold, in which case the user is warned.

Furthermore, the datasets used for tuning might not be fully representative
for the datasets being used later on. For instance, assume we have tuned a three-
kernel program on two datasets, causing V1 to exploit degrees of parallelism
of 10 and 100, and found an optimal threshold interval of [11; 100]. If the
monotonicity assumption holds, any dataset that causes V1 to exploit parallelism
outside of this interval will still be optimally discriminated, but we make no
such promises for datasets falling inside the interval. For instance, if we find
said interval of [11; 100] and then run our program on a dataset with degree
of parallelism 50 in V1, we do not know if we should use V1 or V2. Therefore,
users should strive to provide tuning datasets that are representative of the
datasets to be expected in real runs, either many datasets or datasets that
capture the sweet spots.

As mentioned, the monotonicity assumption does not always apply, e.g. for
otherwise important parallelization concerns like tile sizes. Other approaches
should therefore be used to determine such parameters. In reality, many valid
tuning trees will not adhere to the monotonicity assumption, so we (or the
compiler) have to be careful when constructing tuning trees. We will discuss
this matter further in section 7.7.

As a result, we say that our autotuner guarantees near-optimal threshold
values for a tuning tree in which the monotonicity assumption holds.

7.6 Tuning in Detail

Having described the intuition behind our autotuner, we now move on to a more
detailed description, including the overall autotuner algorithm and a discussion
about the differences between size-invariant and size-variant programs and
their impact on tuning. Before continuing it is important to note that the
autotuner is completely separate from the compiler: It is not able to change the
structure of the tuned program or modify the code inside. It can only change
the threshold values of the program and run the program with a given dataset.

7.6.1 Instrumentation

Minimal compiler instrumentation is needed to

1. Statically show the dependencies between tuning parameters of a given
program.

2. Dynamically log the degree of exploitable parallelism being compared in
each branch during the execution of the program.
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Procedure 7.1: TuneProgram(p, t, d)
input :The program to run p, the thresholds in depth-first order of

the tuning graph t and the training datasets d.
output :Optimal threshold values for the threshold parameters in p.

1 t1, . . . tn ←− t;
2 rti ←− [0,∞] ∀i.1 ≤ i ≤ n;
3 foreach d in d do
4 ti ←−∞,∀i.1 ≤ i ≤ n;
5 bestRun←− run p on d with values (t1, . . . , tn);
6 foreach i in n . . . 1 do
7 ([lbi, ubi], bestRun)←− TuneThreshold(p, d, t, i, bestRun);
8 ti ←− (lbi + ubi)/2;
9 rti ←− rti ∩ [lbi, ubi];

10 return (rt1 , . . . , rtn);

7.6.2 TuneProgram

We start with TuneProgram as shown in proc. 7.1. This is the main entry-
point of the autotuner, which takes as arguments a program to run, p, the n
thresholds parameters of the corresponding tuning tree, t, and a number of
datasets d. It loops over the datasets in order, and for each dataset it refines
the currently found optimal threshold interval.

TuneProgram starts by initializing all threshold ranges to [0,∞] on line 2
(rti is the optimal threshold interval found so far for Ti). Then, for each dataset,
we first initialize all threshold values to ∞ (line 4) and compute the baseline
execution time (bestRun) using the bottom-most kernel (line 5). Then, for
each threshold we find the optimal threshold-interval (defined by lbi and ubi)
along with the new best execution time using TuneThreshold (line 7), set
the threshold value in question accordingly and update the global threshold
range (lines 8 to 9). At the end, we return the optimal threshold intervals
found (line 10).

In essence, for each dataset, our algorithm is recursively tuning the thresh-
olds of the tuning tree like in fig. 7.2. In each iteration, the kernels further down
the tree are considered as a collapsed tuning tree with some known best execu-
tion time. The kernel guarded by the current threshold is run, the execution
time compared and the optimal threshold interval updated accordingly.

The TuneThreshold procedure is used to tune an individual threshold on
a given dataset. In fact, there are two different versions of this procedure: One
for tuning size-invariant thresholds and one for tuning size-variant thresholds.
In our actual implementation of the autotuner, we always use the version aimed
at variant thresholds, since there is no overhead when the threshold is in fact
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invariant, but the procedure for invariant thresholds is shorter and simpler, so
we will describe it here for illustrative purposes.

7.6.3 TuneInvarThreshold

Procedure 7.2: TuneInvarThreshold(p, d, t, i, bestRun)
input :The program to run p, the training dataset d, the thresholds

in the order they appear in tuning graph t, the index of the
current threshold to tune i and the best execution time so far
bestRun

output :The optimal threshold interval for the dataset and threshold
parameter, as well as an updated bestRun.

1 t1, . . . tn ←− t;
2 ePar ←− exploitedPar(p, d, i);
3 ti ←− ePar;
4 newRun←− run p on d with threshold values t1, . . . , ti, . . . , tn;
5 if newRun < bestRun then
6 bestRun←− newRun;
7 lbi ←− 0, ubi ←− ePar;
8 else
9 lbi ←− ePar + 1, ubi ←−∞;

10 return ([lbi, ubi], bestRun);

The pseudo code for TuneInvarThreshold is shown in proc. 7.2. The
algorithm takes as inputs a program p, a dataset d, a set of threshold parameters
t, the index of the threshold to tune i, and the best execution time found so
far bestRun. It starts by getting the amount of parallelism exploited by the
kernel Vi on the given dataset (line 2). In the actual implementation, these
parallelism values are recorded during the computation of bestRun on line 5 of
TuneProgram by having the program output the exploited parallelism at
each branch, so this is a simple lookup. Then, ti is set to ePar (line 3) and
is used to run the program on the given dataset (line 4). Then, depending
on whether the new run was faster or slower than the previous fastest run3,
we update bestRun and set the upper and lower bound of the threshold and
return them along with the new fastest execution time (line 10).

In other words, this simple procedure finds the threshold interval optimally
discriminating a particular branch in the tuning tree for a given tuning dataset.
If the monotonicity holds, then all the threshold intervals found for this par-
ticular threshold parameter will intersect and that intersection will optimally

3We can insert some ϵ here to adjust for fluctuations in execution time. Depending on
what value is chosen for ϵ we can favor kernels further up or down the tree.
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let mapscanvar [k] (ns : []i64)(xs : [k]i64) : [k]i64 =
loop xs = xs for n in ns do

let m = k/n
let xss′ : [n][m]i64 = unflatten n m xs
let xss =
map2 (\row i →
loop row = row for _ < 64 do

let row′ = map (+i) row
in scan (+) 0 row′

) xss′ (iota n)
in flatten_to k xss

Listing 7.5: The definition of mapscanvar.

discriminate the branch for all the given datasets. However, this will only
handle programs that are size-invariant, meaning there is only one value of
ePar for given threshold and dataset. If the program or branch is size-variant,
we will need additional handling.

7.6.4 TuneVarThreshold

The technique described in section 7.6.3 finds near-optimal threshold intervals
for a given threshold parameter and dataset — but only if the degree of
parallelism exhibited for that particular dataset is constant during a single
execution. We’ll now discuss the variant of TuneThreshold aimed at size-
variant branches. First, we’ll start with an example of what a size-variant
program looks like.

In contrast to the size-invariant function mapscan, shown in listing 7.1, the
mapscanvar function shown in listing 7.5 is size-variant. Each iteration of the
outer loop computes a 2-dimensional array of the same total size k, viewed as
2-dimensional arrays of different shapes (n× k/n), which is then mapped over.

The overall structure of the resulting tuning tree, seen in fig. 7.4, is identical
to the one for mapscan (seen in fig. 7.1), with the addition of an outer loop.
This means that each threshold parameter can be compared to multiple different
degrees of parallelism during a single execution of the program on a given
dataset. For instance, if ns = [1, 8, 64] and xs is an array of length 64, the
outer loop will be run three times, each time with different values for P1 and
P2. In the first iteration P1 = 1, P2 = 64, in the second P1 = 8, P2 = 8 and in
the final iteration P1 = 64, P2 = 1. When we were talking about size-invariant
programs, such as mapscan, we assumed that for a given dataset one kernel
would always be the fastest, but that is not the case in mapscanvar: Perhaps
V2 is fastest when P2 = 64 and P2 = 8 but not when P2 = 1. We therefore call
mapscanvar a size-variant program.
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Loop B₁:
 P₁ ≥ T₁

B₂:
 P₂ ≥ T₂

V₁
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V₂
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Figure 7.4: A size-variant tuning tree with an outer loop.

Fortunately, to tune mapscanvar, we can still rely on the monotonicity
assumption because it is only concerned with the relationship between the
structure of the tuning tree and the specific amounts of parallelism used to
choose between code versions. For a particular dataset and threshold parameter,
it is still the case that there is one optimal threshold value for that parameter.
Continuing on the example from above, if we find that V2 is faster than V3

when P2 is 8 and 64 but not when P2 is 1, then the optimal interval for T2 is
[8,∞], for that dataset.

In fact, we can think of each instance of execution of a computation kernel
during a single execution of the whole program as separate datasets. Even
though P2 takes on three different values during the execution of the entire
loop, every time a particular kernel is executed, we are executing that kernel
with a particular instantiation of the parallelism values. It is as if we had a
size-invariant program (without the outer loop present in mapscanvar) that
is run repeatedly with different inputs. Conceptually, and in terms of the
monotonicity assumption, we can therefore think of each of these instantiations
as separate executions. If the program respects the monotonicity assumption,
there must be an optimal threshold interval for each instantiation and threshold
parameter. Combining them is a simple matter of intersecting the resulting
threshold intervals, just like we did for the size-invariant programs.

Likewise, when tuning two (or more) datasets, we can assume that the
optimal threshold intervals for those datasets always has an intersection, because
of the monotonicity assumption. This means that we don’t have to change the
overall tuning strategy, we just have to change how a single threshold is tuned
for a given dataset.

After running the program in question on a given dataset once (with all
threshold parameters set to ∞), we would be able to collect a list of all
parallelism values being compared against each threshold. Thus, in principle,
we could just tune each threshold against all values as if they were separate
datasets. For instance, in the example above, we would first set T2 = ∞, to
see that P2 takes on the values 1, 8, 64. To find the best threshold interval for
the parallelism value 64 we would set T2 = 64. If the resulting run is faster
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than the previous run (because one of the iterations of the main loop used
V2 instead of V3 and V2 turned out to be faster when P2 = 64, whereby the
whole execution would be faster), we would know that the optimal threshold
interval for that instantiation is [0, 64]. Then we could continue tuning the next
instantiation by setting T2 = 8 yielding a new interval that could be intersected
with the previous one, and so on.

The problem with size-variant branches and programs is that they can
create an explosion of different parallelism values to tune against. For instance,
one could easily create a program that causes the parallelism of a particular
branch to span the entire space of 64-bit integers, which is of course infeasible to
tune naively. This could in principle also happen with size-invariant programs,
but it is unlikely because the user would have to submit as many datasets to
the tuning process.

Instead, we can take advantage of the monotonicity assumption: Assume a
collapsed tuning tree like in fig. 7.3, and assume that P1 takes on n distinct
values x1, . . . , xn (in sorted order) during the execution of a given dataset d.
Assume further that we have run the program two times with T1 = xj and
T1 = xj+1 respectively, and that the first run was faster. The only difference
between the two runs is that the first run uses the kernel V1 when P1 = xj
while the second run uses V2. All other kernel uses are the same between the
two runs.

Because the first run is faster, V1 must be faster than V2 when P1 = xj .
Therefore, by the monotonicity assumption, it follows that V1 will remain faster
for any value higher than xj , so the optimal threshold value for this dataset
must lie in the interval between xj and xn. Conversely, if the second run was
faster, the optimal value would be somewhere between x1 and xj .

Therefore, if the monotonicity assumption holds, we can use a binary search
to find the optimal value (or interval) of Ti. By performing a binary search of
the n possible threshold values for a given dataset and threshold parameter we
can find the optimal interval in O(log n) runs instead of O(n) runs.

The resulting variation of TuneThreshold is called TuneVarThresh-
old and can be seen in proc. 7.3. It takes the same arguments as TuneIn-
varThreshold, but it uses a binary search to find the best threshold interval
for the given dataset and threshold parameter. It uses a simple helper procedure
called minInd which is shown in proc. 7.4.

TunevarThreshold works as follows: First, the list of exploited par-
allelism values is computed (line 2). The list is supposed to be sorted and
deduplicated4. On the next line, that list is augmented with 0 and ∞ in either
end, making sure that we represent all possible splits between the two guarded
kernels. Next we compute the execution times of the outer boundaries of the
tuning space: rlow represents the execution time found at the lowest end of

4Like in TuneInvarThreshold, these values are actually precomputed, so this is a
simple lookup.
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Procedure 7.3: TuneVarThreshold(p, d, t, i, bestRun)
input :The program to run, p; the current dataset, d; the thresholds

in the order they appear in the tuning graph, t; the index of
the current threshold to tune, i; and the best execution time
so far, bestRun.

output :Optimal threshold values for the threshold parameters in p.

1 t1, . . . , tn ←− t;
2 ePar1, . . . , eParm ←− SortedExploitedPar(p, d, ti);
3 ePar ←− 0, ePar1, . . . , eParm,∞;
4 low ←− 0;
5 rlow ←− execution time of p on d with ti set to 0;
6 high←− m+ 1;
7 rhigh ←− bestRun;
8 (bestRun, bestInd)←− minInd(rlow, low, rhigh, high);
9 while low < high do

10 mid←− ⌊(low + high)/2⌋;
11 rmid ←− execution time of p on d with ti set to eParmid;
12 if rhigh < rmid then
13 low ←− mid+ 1
14 else
15 if rlow < rmid then
16 high←− mid− 1
17 else
18 rgrd ←− execution time of p on d with ti set to eParmid+1;
19 if rmid < rgrd then
20 (bestRun, bestInd)←−

MinInd(bestRun, bestInd, rmid,mid);
21 high←− mid− 1;
22 else
23 (bestRun, bestInd)←−

MinInd(bestRun, bestInd, rgrd,mid+ 1);
24 low ←− mid+ 2;

25 (lbi, ubi)←− (eParbestInd−1 + 1, eParbestInd+1 − 1);
26 return ([lbi, ubi], bestRun);
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Procedure 7.4: MinInd(rlow, low, rhigh, high)
input :Execution times rlow and rhigh and their corresponding

indices, low and high.
output :The fastest execution time and the corresponding index.

1 if rlow < rhigh then
2 return (rlow, low);
3 else
4 return (rhigh, high);

the tuning space and is computed on line 5, rhigh is the execution time at the
highest end of the tuning space and is initialized to the value of bestRun. The
initial bestRun is assumed to contain the execution time when ti =∞, so we
don’t need to recompute it again (line 8). These will serve as the outer limits
of our binary search interval, which is then iteratively refined in the main loop.
After the loop, bestRun and bestInd are updated to contain the best execution
time found so far and the corresponding index.

Inside the loop, we first find the index of the halfway point in the current
tuning space and run the program using that value as the threshold value,
recording the resulting execution time (lines 10 to 11), after which the lower
and upper bound is refined. In the two simple cases, when either of the higher
or lower execution times are faster than the newly found execution time, we
simply update high or low, narrowing the search space, and loop. Otherwise,
if the middle run was faster than the runs at the current boundaries, we run
the program again using a neighboring point to get a gradient of the execution
time relative to the value of the threshold parameter (line 18). This gradient
is then used to refine the search space (lines 19 to 24). All in all, for a given
dataset and threshold, TunVarThreshold will find the optimal threshold
value using O(log n) runs of the program, where n is the number of different
amounts of parallelism exhibited used at that threshold.

7.7 Broken Monotonicity

The monotonicity assumption does not hold for all possible tuning trees. In
fact, it is easy to construct a tuning tree that is not monotonic, for instance by
changing the comparison operator or swapping kernels around in our mapscan
example. However, if our compiler carefully constructs the tuning tree such
that the monotonicity assumption is adhered to, we will be able to use our
autotuning framework to tune the threshold parameters.

Our experimental evaluation in section 7.8 indicates that incremental flat-
tening in many common cases produces tuning trees that are amenable to our
autotuning techniques, but that is not guaranteed. For instance, if one were
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(b) Adding duplicate code versions.

Figure 7.5: Alternative versions of the tuning graph, enabling different
constraints.

to construct a program with a tuning tree like the one in fig. 7.1 that had the
property that V1 is fastest whenever the amount of inner parallelism is less
than some constant k and V2 is faster otherwise, it would not adhere to the
monotonicity assumption.

In other words, although incremental flattening often produces tuning trees
that can be tuned using our autotuner framework, the expressive power of the
resulting trees are limited to relatively simple conditions.

We can handle some of these cases by modifying the tuning tree. For
instance, we might be able to change the order of kernels or duplicate kernels,
as in fig. 7.5, to construct a tree that is monotonic. Incremental flattening does
not do this automatically, and it is an open question whether it could be done.

7.8 Experimental Results

For experimental validation of our autotuning framework, we have implemented
it for the Futhark programming language, which uses incremental flattening
to construct its tuning trees. We compare the tuning time and performance
impact of using our autotuner against using the old OpenTuner-based black-box
tuner proposed in [Hen+19].
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7.8.1 Hardware and Methodology

All tuning and benchmarking reported here is performed using a NVIDIA
GeForce RTX 2080 Ti GPU, but we have observed similar results on a slightly
older GTX 780 Ti.

By virtue of being the only tuning solution available in Futhark for a while,
the OpenTuner implementation has been highly optimized. It will, among other
things, use memoization techniques to avoid running the same combination
of kernels twice, attempting to minimize the number of runs. However, it is
still inherently random and measuring GPU performance is itself subject to
execution time fluctuations, so the tuning time and resulting threshold values
can vary significantly.

In order to get representative results, we base our analysis of each benchmark
on three separate passes. In each pass we:

1. Benchmark the untuned program 500 times and record the best execution
time found.

2. Use the OpenTuner-based autotuner to tune the threshold values, run
the benchmark 500 times using the thresholds found and record the best
execution time found.

3. Use our autotuner to tune the threshold values, run the benchmark 500
times using the thresholds found and record the best execution time
found.

In all cases, we use the same datasets for tuning and for the actual bench-
marking. We report the best of the three tuning times for both OpenTuner and
the autotuner. As for execution times: we report the best of three execution
times found for untuned, both the worst and best for the OpenTuner-based
autotuner and only the worst execution time for our autotuner.

7.8.2 Benchmarks and Datasets

We now describe the benchmarks used to show the impact of our autotuner.
The datasets and number of thresholds for each benchmark are shown in
table 7.1. The D1 and D2 columns show the two different datasets used and
the Thresholds column shows the number of threshold parameters to tune. The
implementations for all benchmarks are taken from the futhark-benchmarks
repository [Hac].

Heston is a calibration model for the Hybrid Stochastic Local Volatility /
Hull-White model [HEO18]. We use datasets from the futhark-benchmarks
repository [Hac].

BFAST [Gie+20] is used to measure changes in satellite time-series data
in order to detect e.g. deforestation, and is widely used in the remote sensing
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Benchmark D1 D2 Thresholds

Heston 1062 quotes 10000 quotes 9
BFAST peru africa 16
LocVolCalib medium large 2
OptionPricing small large 1
LUD 256× 256 2048× 2048 9
Backprop 214 220 1
LavaMD 103 × 50 33 × 50 4
NW 2048× 2048 1024× 1024 6
NN 1× 855280 4096× 128 3
SRAD 1× 502× 458 1024× 16× 16 4
Pathfinder 1× 100× 105 391× 100× 256 1

Table 7.1: Benchmarks and the datasets used to experimentally validate our
autotuner.

community. For our benchmarks, we use datasets from the futhark-kdd19
repository [OH].

LocVolCalib (local volatility calibration) and OptionPricing are imple-
mentations of real-world financial computations from the FinPar benchmark
suite [And+16; Oan+12]. Here, we use datasets from the finpar reposi-
tory [Oan+].

LUD, Backprop, LavaMD and NN are all benchmarks from the Rodinia
benchmark suite [Che+09]. For these benchmarks, we use datasets from
Rodinia except in cases (such as Backprop) where Rodinia only has one dataset,
in which case we have created datasets that exhibit different parallelization
characteristics from the original dataset. The inputs are matrices or arrays of
the sizes indicated in D1 and D2. The LUD benchmark is the only benchmark
that is size-variant.

The NW, SRAD and Pathfinder benchmarks are also from Rodinia, but
we have implemented batched versions in order to have more nested levels
of parallelism: The outer dimension in the dataset description indicates the
number of matrices used as input.

Table 7.2 shows the tuning time and tuning time speedup for each bench-
mark. In general, we see a significant reduction in tuning time, from 1.4× for
LUD to 22.6× for Heston. Without those two outliers, the average speedup is
5.1×.

More thresholds generally leads to higher tuning times, but other factors
also have an effect, such as execution time of individual runs, and whether
a benchmark is size-variant or not. The LUD benchmark shows the least
improvement in tuning time because it has size-variant parallelism, causing
the autotuner to have to use a binary search to find the optimal threshold
values. Therefore, seemingly, our implementation is only a bit faster than the
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Benchmark Opentuner (s) Autotuner (s) Tuning Speedup

Heston 3798 168 22.59x
BFAST 1127 206 5.47x
LocVolCalib 101 21 4.83x
OptionPricing 31 6 5.40x
LUD 611 430 1.42x
Backprop 30 8 3.65x
LavaMD 104 28 3.67x
NW 222 29 7.62x
NN 125 36 3.48x
SRAD 148 28 5.31x
Pathfinder 66 10 6.81x

Table 7.2: Tuning-time and speedup between the OpenTuner implementation
and our autotuner.

Figure 7.6: Benchmark execution time speedup. The baseline is untuned
performance. Higher is better.

OpenTuner-based tuner. But as we will see later, due to the random nature
of the OpenTuner-based autotuner, it sometimes finds degenerate threshold
values leading to very bad performance of the tuned program.

Not shown here is the fact that our autotuner has very low variance in
tuning time compared to the OpenTuner-based one, because our autotuner is
deterministic: It will always perform the same number of runs necessary to
tune a particular dataset. For instance, it took the OpenTuner-based autotuner
between 366 and 881 seconds to tune LUD, while our autotuner used roughly
the same amount of time each time. Thus, using our autotuner, the programmer
is able to reason about tuning time, and can weigh whether to add additional
training datasets or not.

Figure 7.6 shows the execution time speedup of programs tuned using Open-
Tuner and our autotuner compared to untuned execution. We have chosen to
focus on the LavaMD, LUD, SRAD, BFAST and LocVolCalib benchmarks, since
they are the only ones whose performance characteristics change significantly
when tuned. The Futhark compiler uses sensible default thresholds and various
heuristics (such as favoring intra-group parallelism when possible) to ensure
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that even untuned programs have good performance. For all benchmarks, our
autotuner finds the best threshold values (the slight variation in D1 of LavaMD
can be chalked down to performance fluctuations), conforming with our claim
that they are in fact near-optimal.

LUD, having size-variant parallelism and being very sensitive to the choice
of threshold values shows some of the worst performance for OpenTuner. We
see that while the untuned version performs reasonably well and the auto-
tuner consistently finds the optimal threshold values, OpenTuner is struggling.
Because of the inherently random process, the best thresholds it finds only
lead to 80% the performance of the untuned version, while in the worst case
performance grinds to a halt.

OpenTuner sometimes finds the correct threshold values in LavaMD, SRAD
and LocVolCalib, but we also see that it is inconsistent. In the worst case it
might settle on threshold values that are significantly worse than the optimal,
as in the second dataset of SRAD, or even default values, as in the second
dataset of LavaMD.

Like LUD, BFAST relies on intra-group parallelism and is highly sensitive
to the choice of threshold values. It therefore receives a significant boost in
performance from accurate tuning, such as the one produced by our autotuner.
In contrast, the OpenTuner tool cannot even handle the largest dataset (africa),
because some code versions cause the GPU to run out of local memory, for
which the OpenTuner-based autotuner has no fallback strategy. Our autotuner
correctly identifies which code version causes the problem and is able to avoid
it for the rest of the tuning. The result is that, while OpenTuner performs
reasonably well on the smaller dataset (though not as well as our autotuner), it
fails to tune the largest dataset at all, leaving lots of performance on the table.

7.9 Related Work

A preliminary demonstration of a deterministic autotuner based on monotonicity
properties was investigated in a MSc thesis by Svend Lund Breddam [Bre19]
and shown to compare favorably to other AI-based approaches.

Other related work in autotuning is organized in one of three groups:
The first group of autotuners work by inferring compilation flags based

on best average performance across training datasets for some given hardware.
Typically, this is implemented using some kind of machine learning, i.e. relying
on supervised offline training [Fur+11]. These methods have yielded promising
result on multi-core [Che+] and many-core [Bag+15] systems, for instance by
inferring compiler flags for GCC or finding near-optimal tile sizes for GPU code
generation.

Secondly, languages such as Lift [Ste+; Hag+18] and SPIRAL [Fra+18]
have used the method of generating different versions of code using the rich
rewrite-rule systems of functional languages, and then having a tuning process
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to choose between them on a per-dataset and per-hardware configuration basis.
Using this method, they are able to maximize performance for that particular
combination of dataset and hardware, but will have to retune if the dataset
changes. Similarly, Halide [Rag+13] finds the best way to fuse image-processing
pipelines using stochastic methods, resulting in various combinations of tiling,
sliding windows and work replication transformations. Again, tuning is done on
a per-dataset basis, but inferred tile sizes may be portable to larger datasets.

Finally, black-box approaches such as OpenTuner comprises a third group
of autotuners. They use stochastic search strategies like hill-climbing and
simulated annealing, as well as allowing the user to specify custom search
procedures. ATF [RG19] uses a similar approach by allowing the user to
write annotations in their language to help guide the autotuning framework.
These approaches can work well when the entire tuning-space provides new
information to the tuner, but are hindered by the inherent lack of insight into
how the program actually is constructed. When the search space is vast, and
only a limited amount of points actually provide new information for the tuner,
as is the case in incrementally flattened programs, these approaches can take a
long time to find the right tuning parameters, if they ever do.

Our autotuner combines some of these approaches by taking a compiler and
autotuner co-design approach. By having the compiler output a minimal amount
of data about the generated program structure and by relying on assumptions
about how that structure relates to the performance of the individual generated
kernels we are able to guarantee near-optimal performance for all datasets,
given representative training datasets. This contrasts to the first approach,
which only targets average performance, and the second approach, where you
have to retune for every dataset. We are also able to perform that tuning in a
small, predictable amount of time, which differentiates us from the third group.





Chapter 8

Conclusions and Future Work

We have presented static and dynamic analyses aimed at improving the perfor-
mance of GPU-oriented code. In particular, we have:

1. Described how lmads can be used to represent array slicing in program-
ming languages, allowing more expressive slices such as staggered or
diagonal blocked views of an array.

2. Described how lmads can be used as index functions in the intermediate
representation of compilers, allowing the compiler to statically transform
change-of-layout operations into zero-overhead operations at runtime.

3. Presented a non-overlapping test for multi-dimensional lmads (in the set
interpretation) that allows self-overlapping dimensions within the same
lmad, along with a demonstration of how to apply it to the complex NW
benchmark.

4. Formally described a series of intermediate representations, Fun, Fun-
Mem and Imp, aimed at allowing a compiler for a parallel array language
to non-semantically introduce memory without losing the high-level con-
text.

5. Shown a series of analyses and optimizations based on the FunMem im-
perative language, chief among them the array short-circuiting algorithm,
which allows the compiler to automatically optimize in-place updates
and concatenations to reduce the amount of copying and memory over-
head arising from e.g. from high-level language guarantees. All these
optimizations have been implemented in the Futhark compiler, with short-
circuiting showing significant speedups in the generated code, leading to
performance that is competitive with hand-written code.

6. Presented a technique for automatically finding near-optimal threshold
values for the parameters of a tuning tree for multi-versioned code that
adheres to the monotonicity assumption. We have also implemented this
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technique for the Futhark programming language and experimentally
validated it against a black-box tuning approach, showing significant
improvements in both tuning time and performance of the tuned program.

While the last point is slightly separate from the rest (it is dynamic, the
rest are static), they share the context: Automatically generating code that
efficiently executes on the GPU.

8.1 Limitations and Future Work

While lmad-slices have proven valuable in implementing in-place versions of
both the NW and LUD benchmarks, we have not found any use for their rich
expressiveness elsewhere. It would be interesting to investigate whether there
are any other applications with complex indexing and slicing operations that
could benefit from lmad-slices. Furthermore, lmad-slices are currently only
implemented as an intrinsic in Futhark that is unsuitable for use by the average
programmer. More work needs to be done to expose them in a safe manner,
in order to ensure that e.g. self-overlapping lmad-slices cannot be written to,
and to provide a friendly user-experience.

Array short-circuiting, while powerful, also harbors potential for improve-
ments. For example, we currently limit short-circuit attempts to cases where
the source is last used at the short-circuit point. It might be possible to loosen
this restriction in some cases. For instance, consider the following code:

. . .
let ys[k] = x -- Short-circuit point, x is source
let z : int = reduce (+) 0 x

Although x is used after the short-circuit point, we are only reading from
it and ys has not been further altered, so it should still be safe to perform
short-circuiting. Unfortunately, our analysis does not presently handle such
cases.

Similarly, we only support reversing a limited set of change-of-layout opera-
tions. As an example, we do not currently support short-circuiting x′ into ys
in the following code:

let x : [n]@xmem → L = . . .
let x′ : [m]@xmem → slice(L, [0 :2m :2]) = x[0 :2m :2]
let ys[k] = x

However, if we can prove that only the elements of x that are included in x′

are ever used, it should still be safe to short-circuit x′ into ys. The result would
be that the unused elements of x would not be computed, and so x would be
able to fit directly in the space of ys.
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Many of the papers on automatic parallelization of sequential loops [RHR03;
Rus+06] use augmented runtime versions of lmads called rt_lmads or
usr. rt_lmads allow for much more precise access summaries, by including
operations like subtraction and intersection, at the cost of increased complexity.
They also shift the analysis more in the direction of dynamic analysis, which
is not as suitable in the context of GPU execution, but it might be worth
exploring whether there are parts that make sense for array short-circuiting.

The primary limitation of our autotuning work is the monotonicity require-
ment. Although we have demonstrated that our technique applies to a host of
benchmark programs, the monotonicity assumption is not guaranteed to hold
for all such programs. One avenue of future work is to investigate whether we
can automatically detect such cases and take steps to improve the situation by
modifying the tuning tree, as described in section 7.7. This would allow our
autotuner to apply to even more programs.
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