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Abstract

Deep learning segmentation has been found to be effective and accurate for a
variety of tasks including auto-contouring for radiotherapy and root phenotyping
for agricultural and plant physiological research. Prior work has shown that
existing models may not generalise well to new datasets, resulting in an unmet
need for a method allowing clinical personnel and biological research labs to
conveniently train their own models for new segmentation tasks.

We aimed to investigate the effectiveness of Interactive Machine Learning
(IML) for the rapid training of models for use in both plant science and ra-
diotherapy. IML puts the human-in-the-loop in the model training process,
allowing them to directly observe and influence the characteristics of the model
whilst annotating, yet there is little research investigating the potential of IML
for deep learning segmentation model training.

We implemented and investigated various corrective-annotation approaches
for multiple segmentation tasks and found that IML via corrective-annotation
provides a way to rapidly train fully-automatic models for diverse datasets in
plant image segmentation in under two hours of interactive training. In the
field of radiotherapy, we found the IML process can be directly utilised for task
completion, with the model and humans collaborating whilst the model learns
from human feedback. The auto-contouring model was found to continuously
provide improvements in contouring time for a heart contouring task, eventually
out-performing the existing clinical delineation software. We also quantified
agreement of the generated heart contours in terms of radiation dose, finding
that for the vast majority of automatic contours there is little deviation between
the model predicted and human corrected contours, yet in some rare cases there
can be large differences with potentially catastrophic consequences, highlighting
the need for continuous monitoring and guidance from a human observer, an
intrinsic property of the IML Workflow for task completion.

We revealed new dynamics related to IML model training, finding the com-
bination with interactive-segmentation can exacerbate what is known as the
cold-start problem, leading to a longer period of interactive training before the
approach becomes competitive with manual correction of contours. In spite of
this slower convergence the combined method demonstrates a capability that
eventually out-performs the more manual alternative.

The IML methods in the thesis are evaluated using real world image seg-
mentation tasks with real human annotators, enabling immediate translation to
several subsequent image-analysis based research projects in various domains.



Abstract in Danish

Deep learning segmentering har vist sig at veere effektiv og praecis til mange
forskellige opgaver, herunder auto-konturering til stralebehandling og rod fzeno-
typing til landbrugs- og plantefysiologisk forskning. Tidligere arbejde har vist,
at eksisterende modeller muligvis ikke generaliserer godt til nye datasaet, hvilket
resulterer i et udaekket behov for en metode der giver klinisk personale og biol-
ogiske forskningslaboratorier mulighed for nemt at treene deres egne segmenter-
ingsmodeller.

Vores formal var at undersgge effektiviteten af interaktiv maskinel in-
dleering (IML) til hurtig treening af modeller til brug i bade plantevidenskab
og stralebehandling. IML bruger human-in-the-loop i model traeningsprocessen,
hvilket giver brugeren mulighed for direkte at observere og pavirke modellens
egenskaber mens den annotere, men der findes meget lidt forskning der un-
dersgger IMLs potentiale i dyb leering segmenteringsmodel traening.

Vi implementerede og undersggte forskellige korrigerende annoterings til-
gange til en rackke segmenteringsopgaver og fandt, at IML via korrigerende an-
notering giver en hurtig made at treene fuldautomatiske modeller til forskellige
datasezet med en segmentering af plante billeder pa under to timers interaktiv
treening. Inden for straleterapi, fandt vi at IML-processen kan bruges direkte til
segmentering, hvor modellen og mennesker samarbejder, mens modellen laerer af
menneskelig feedback. Auto-kontur modellen forbedrede lgbende kontureringsti-
den af hjerter og udkonkurrere til sidst den eksisterende konturerings software i
klinikken. Vi kvantificerede ogsa overensstemmelse mellem de genererede hjerte
konturer i forhold til stralingsdosis og fandt at der for langt de fleste automa-
tiske konturer er en meget lille afvigelse mellem modellens forudsigelser og de
menneskeligt korrigerede konturer. Dog kan der i sjeldne tilfselde veere store
forskelle hvilket potentielt kan have katastrofale konsekvenser for patienten,
hvilket fremhaever behovet for lgbende overvagning og vejledning fra en men-
neskelig observatgr, en eksisterende egenskab ved IML Workflow. Vi afslgrede
nye dynamikker relateret til IML-modeltraening og fandt at kombinationen med
interaktiv-segmentering kan forveerre koldstart-problemet, hvilket medfgrer en
leengere interaktiv traeningsperiode, fgr tilgangen bliver konkurrencedygtig i
forhold til manuel korrektion af konturer. Pa trods af den langsommere kon-
vergens, udkonkurrerer den kombinerede metode til sidst det mere manuelle
alternativ. IML-metoderne i dette speciale evalueres ved brug af billeder seg-
menterings opgaver fra den virkelige verden med rigtige menneskelige anno-
tationer, hvilket muliggor gjeblikkelig omsattelse til andre forskningsprojekter
inden for forskellige domaener.



Introduction

1.1 Semantic image segmentation

Semantic segmentation involves splitting up an image into one or more regions.
For digital imagery, such as 2D photographs consisting of a grid of RGB pixels,
that is, red, green and blue values for each discrete point in the image. Seg-
mentation can be considered as a pixel classification task where each pixel is
automatically assigned a label corresponding to a semantic category. An ap-
plication of segmentation is self-driving cars [52], where there is an effort to
completely transition the world’s fleet of drivers away from having to manually
steer their cars, freeing up countless hours of human time. In the agricultural
domain, segmentation may be used to identify regions of a field where weeds
are most likely to be growing [263, 238], enabling more precise application of
herbicide, reducing costs whilst mitigating environmental damage. In medicine,
segmentation can detect regions that are more likely to develop into skin can-
cer [12, 243]. The applications of semantic segmentation to provide benefit to
society are practically endless. Any time there is a need to automatically ex-
tract information from an image, there’s a likelihood that segmentation will
be involved, for example as a pre-processing task, for risk scoring of lungs for
covid-19 [182].

1.2 Segmentation in radiotherapy

Radiotherapy involves the use of X-rays to kill tumour cells [88], and is effective
for many patients in either curative or palliative settings, where it can be used
to reduce pain and increase quality of life for patients in their final years. Ulti-
mately, the goal of the radiotherapy treatment planning procedure is to arrive
at a patient specific method of radiation delivery that will ensure the prescribed
high dose is given to the tumour to eliminate tumour cells, whilst minimising
the harmful dose to the surrounding organs [239]. The planning procedure is
personalised to each individual patient, involving the creation of a 3D annotated
map of a patient’s tumour and internal organs [98]. In a radiotherapy context,
the process of creating this map is referred to as contouring or delineation but



is functionally equivalent to semantic segmentation. The created contours are
used to help guide radiation away from critical organs where there are known
associations between radiation exposure and life threatening or debilitating com-
plications [89]. The contouring process is done with the support of one or more
imaging modalities, including positron emission tomography (PET), X-ray com-
puted tomography (CT) and magnetic resonance (MR) images in addition to
clinical knowledge of both the specific cancer type and patient characteristics.

Delineation is often done manually or semi-automatically, leading to issues
typically associated with manual work. There is a degree of intra or inter-
annotator variation, in other words, a lack of consistency in the manual con-
touring process, which, being labour intensive, is also expensive. Delineation is
time consuming, requiring extensive training and can lead to bottlenecks that
delay treatment, potentially reducing the survival probability of critically ill
patients.

Another use case of segmentation in radiotherapy is in research, for example,
in the establishment of dose-response relationships, where the response is the
likelihood of an outcome for a patient. For example for organs-at-risk, there is
a need to understand the association between the amount of radiation given to
each structure and the subsequent complications for the irradiated patient.

Dose-response relationships are established using historical or retrospective
data and require contours for computing dosimetric parameters which can then
be used to establish correlations with different outcomes based on registry
records [55] or blood tests [214, 1].

Larger scale dose-response studies are necessary to improve planning proce-
dures, allowing better informed trade-offs to be made [137]. Aznar and Marrazzo
[14] also argue there is a need for dose-response studies in lesser studied organs
such as the oesophagus and liver.

Creating large datasets of contours has traditionally been a bottleneck, lim-
iting the size and thus statistical power for dose-response studies. There are
challenges in getting access to historical patient image data and contouring on
images manually is time consuming and expensive, if the organ of interest was
not contoured as part of the original planning procedure [232].

Automated methods offer the promise of eliminating the issues with manual
contouring, improving consistency, accuracy and enabling the rapid contouring
of extremely large datasets of a thousand or more patients with various organs,
establishing much-needed dose-response relationships.

The state-of-the-art in auto-contouring today is deep-learning [114], includ-
ing CNNs or more recently vision-transformer architectures [74, 185]. Deep-
learning methods are able to segment 3D scans of many organs in large datasets
of patients, labelling each voxel based on its corresponding organ in the visible
scan [240].



1.3 Segmentation in root phenotyping

Root phenotyping is the measurement and analysis of plant root characteristics,
also known as traits. Examples of root traits include root length and root
nodule size or count. Segmentation is required for phenotyping due to the need
to automatically quantify traits from images, enabling larger scale experiments
[136]. Phenotyping is useful for both breeding and physiological experiments.

Phenotyping with image segmentation can be made easier by using more
controlled environments, mitigating the challenges associated with images from
more natural and heterogeneous soil. A limitation of phenotyping roots in
controlled experiments is that their observed traits show inconsistent correlation
with more mature root traits in the field [167], motivating the need for the
segmentation of root images grown in field conditions.

Image analysis of roots is difficult due to soil debris, background clutter and
scratches on the glass through which the roots are observed. Thus, there was
a need for the development of more robust and easy to use root segmentation
methods.

Neural networks can segment roots accurately [194] but are difficult to train
for non-experts without a computer-science background. Achieving acceptable
accuracy on a new plant image dataset often requires training a new segmen-
tation model. Thus, to make accurate root segmentation more accessible and
convenient there is a need for a user-friendly way to rapidly train deep learning
models for biological image segmentation.

1.4 Interactive Machine Learning

Conventional supervised model training, described by [83] as automatic machine
learning (aML) typically involves discrete stages. Firstly, labels are created for
the purpose of training a model and then, after the labels have been prepared,
they are split up into training, validation and test datasets, along with their
corresponding images. The creation of labels for segmentation model training
is referred to as annotation and in radiotherapy may involve contouring.

In many cases, when tackling new real world problems using machine learn-
ing, a large pre-existing data set with carefully curated annotations is not readily
available. It is difficult to know how much data must be annotated to provide
a model with an acceptable accuracy. There is a need for methods that provide
feedback to the annotator to allow them to make more informed decisions about
how much and what specific data must be annotated.

As opposed to aML, interactive machine learning (IML) is a kind of machine
learning where the labels are added while the model is being trained. With
IML there is a human-in-the-loop that has a real-time influence on the model
training procedure. Coupling annotation and training can provide benefits in
comparison to aML because the annotator is able to inspect and view the model
performance during the annotation procedure, informing their decision on when
to stop annotating, what needs to be annotated, and allowing them to better



understand what it is they’re actually labelling by having the model inform and
guide their predictions. In comparison to active learning, where a model decides
which examples should be labelled, IML involves the human user selecting which
examples are labelled from a larger pool or stream of potential training data.
IML is different to interactive segmentation because in interactive segmentation
user input is used during inference to influence the predictions, whereas IML
involves using user input to influence the training procedure via annotations
added in response to the model’s current behaviour. An IML process is a user-
driven error minimisation loop arranged around the model being trained [48].
IML systems can be characterised as being either for task completion or
model building [160]. Model building is where the focus of the IML process is
to train a model that can be subsequently used for fully automated analysis of a
typically much larger dataset. In contrast, task completion involves the human
and model working together to complete a specific task, for example to contour
a heart. In chapter 2 we present a study with an evaluation focused on model
building whilst in chapter 3 we focus our evaluation more on task completion,
with the time to complete each individual image contour reported, taking into
consideration the model prediction and time to correct the model.

1.5 Evaluating IML for Image Segmentation us-
ing Real World Tasks

A limitation of many existing IML experiments is that they use simulated in-
teraction to compare approaches. In this thesis (Chapter 2, 3, & 5), real human
annotators are used to evaluate the effectiveness of the proposed approaches.
Although simulations offer more control, they miss crucial aspects as there is a
gap between simulated and real human behaviour. A common measure of the
effectiveness of an IML strategy is how much fewer clicks are used, for interfaces
where all interaction is expressed in clicks. The methods proposed in chapter 2
include a more free-form painting interface, that allows richer expression when
interacting with the model and providing annotations as feedback.

A focus of previous studies is reducing the number of labels that can be
assigned without compromising trained model accuracy. Reducing labels is a
relevant goal, but it is only a proxy for the true cost of annotation. We argue
that an annotator’s time to achieve a given task is a more relevant metric, which
we directly measure in the studies presented in this thesis.

To evaluate the models trained with IML, we use an approach known as
Test-Then-Train [58]. Test-Then-Train allows each annotated image to be used
both as an unseen example to evaluate model generalisation performance and
to be included in the training data.

Although [58] state a Test-Then-Train strategy removes the need for a held-
out set, we still compare accuracy to a separate test set that is kept out of the
interactive training process for each study.

In this thesis, we implement and investigate multiple novel methods mani-
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festing IML processes utilising deep learning segmentation architectures. Our
evaluation uses real world tasks from both plant science and radiotherapy, en-
abling immediate translation into these disparate biological research fields.
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2.1 Summary

Convolutional neural networks (CNNs) are a powerful tool for plant image
analysis, but challenges remain in making them more accessible to researchers
without a machine learning background. We present RootPainter, an open-
source graphical user interface (GUI) based software tool for the rapid training
of deep neural networks for use in biological image analysis.

We evaluate RootPainter by training models for root length extraction from
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chicory (Cichorium intybus L.) roots in soil, biopore counting and root nodule
counting. We also compare dense annotations to corrective ones which are
added during the training process based on the weaknesses of the current model.

Five out of six times the models trained using RootPainter with correc-
tive annotations created within two hours produced measurements strongly
correlating with manual measurements. Model accuracy had a significant
correlation with annotation duration, indicating further improvements could
be obtained with extended annotation.

Our results show that a deep learning model can be trained to a high
accuracy for the three respective datasets of varying target objects, background
and image quality with less than two hours of annotation time. They indicate
that when using RootPainter, for many datasets it is possible to annotate,
train and complete data processing within one day.

2.2 Introduction

Plant research is important because we need to find ways to feed a growing
population whilst limiting damage to the environment [126]. Plant studies often
involve the measurement of traits from images, which may be used in phenotyp-
ing for genome-wide association studies [165], comparing cultivars for traditional
breeding [237] or testing a hypothesis related to plant physiology [161]. Plant
image analysis has been identified as a bottleneck in plant research [136]. A
variety of software exists to quantify plant images [123] but is typically limited
to a specific type of data or task such as leaf counting [222], pollen counting
[211] or root architecture extraction [252].

Convolutional neural networks (CNNs) are a class of deep learning models
that represent the state-of-the-art for image analysis and are currently among
the most popular methods in computer vision research. They are a type of
multi-layered neural network that uses convolution in at least one layer and
are designed to process grid like data such as images [114]. CNNs such as U-
Net [170] receive an image as input and then output another image, with each
pixel in the output image representing a prediction for each pixel in the input
image. CNNs excel at tasks such as segmentation and classification. They have
been found to be effective for various tasks in agricultural research [101, 174]
and plant image analysis, including plant stress phenotyping [99], wheat spike
counting [156], leaf counting [223] and accession classification [207].

For a CNN model to perform a particular task, it must be trained on a
suitable dataset of examples. These examples are referred to as training data
and are typically a collection of input images paired with the desired output
for that image. In the case of segmentation, each input image is paired with
a set of labels corresponding to each of the pixels in the input image. The
process of creating such labelled training data is referred to as annotation and
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(c) (d)

Figure 2.1: RootPainter corrective annotation concept. (a) Roots in soil. (b)
AT root predictions (segmentation) shown in bright blue overlaid over photo-
graph. (c) Human corrections of the initial segmentation, with corrections of
false negatives shown in red and corrections of false positives shown in green.
(d) After a period of training the AI learns from the corrections provided. The
updated segmentation is shown in bright blue.
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can be time consuming as annotation of complex images can be labour intensive
and many images may be desired as larger training datasets typically result in
improvements in trained model performance [144].

CNN model training involves a process called stochastic gradient descent
(SGD) optimising the parameters of a model such that the error is reduced. The
error, commonly referred to as the loss, is a measure of the difference between
the model’s predictions and the correct labels for the training data examples.
A separate validation dataset, consisting of similar examples, is used to provide
information on the performance of the model during the training procedure on
examples that have not been used as part of SGD optimisation. Validation set
performance may be used to decide when to stop training or assist in tuning
hyper-parameters, which are variables controlling fundamentals of the model
that are not directly optimised by SGD.

Developing a CNN-based system for a new image analysis task or dataset
is challenging because dataset design, model training and hyper-parameter tun-
ing are time-consuming tasks requiring competencies in both programming and
machine learning.

Three questions that need answering when attempting a supervised learning
project such as training a CNN are: how to split the data between training,
validation and test datasets; how to manually annotate or label the data; and
how to decide how much data needs to be collected, labelled and used for training
in order to obtain a model with acceptable performance. The choice of optimal
hyper-parameters and network architecture are also considered to be a ‘black
art’ requiring years of experience and a need has been recognised to make the
application of deep learning easier in practice [200].

The question of how much data to use in training and validation is explored
in theoretical work that gives indications of a model’s generalisation performance
based on dataset size and number of parameters [229]. These theoretical insights
may be useful for simpler models but provide an inadequate account of the
behaviour of CNNs in practice [258].

Manual annotation may be challenging as proprietary tools may be used
which are not freely available [245] and can increase the skill set required. Cre-
ating dense per-pixel annotations for training is often a time consuming process.
It has been argued that tens of thousands of images are required, making small
scale plant image datasets unsuitable for training deep learning models [222].

The task of collecting datasets for the effective training of models is further
confounded by the unique attributes of each dataset. All data are not created
equal, with great variability in the utility of each annotated pixel for the model
training process [104]. It may be necessary to add harder examples after ob-
serving weaknesses in an initial trained model [202], or to correct for a class
imbalance in the data where many examples exist of a majority class [27].

Interactive segmentation methods using CNNs such as [86, 173] provide ways
to improve the annotation procedure by allowing user input to be used in the
inference process and can be an effective way to create large high quality datasets
in less time [21].

When used in a semi-automatic setting, such tools will speed up the labelling
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process but may still be unsuitable for situations where the speed and consis-
tency of a fully automated solution is required. For example when processing
data from large scale root phenotyping facilities such as [205] where in the order
of 100,000 images or more need to be analysed.

In this study we present and evaluate our software RootPainter which makes
the process of creating a dataset, training a neural network and using it for plant
image analysis accessible to ordinary computer users by facilitating all required
operations with a cross-platform, open-source and freely available user-interface.
The RootPainter software was initially developed for quantification of roots in
images from rhizotron based root studies. However, we found its versatility to
be much broader, with an ability to be trained to recognise many different types
of structures in a set of images.

Although more root specific [194, 57, 146] and more generalist segmentation
tools such as Fiji [176] via DeepImagelJ [61] make it possible to run trained deep
learning models for segmentation, they do not provide easy to use model training
functionality, which is the purpose of the presented RootPainter software.

RootPainter allows a user to inspect model performance during the annota-
tion process so they can make a more informed decision about how much and
what data is necessary to label in order to train a model to an acceptable ac-
curacy. It allows annotations to be targeted towards areas where the current
model shows weakness (Fig. 2.1) in order to streamline the process of creat-
ing a dataset necessary to achieve a desired level of performance. RootPainter
can operate in a semi-automatic way, with a user assigning corrections to each
segmented image, whilst the model learns from the assigned corrections, reduc-
ing the time-requirements for each image as the process is continued. It can
also operate in a fully-automatic way by either using the model generated from
the interactive procedure to process a larger dataset without required interac-
tion, or in a more classical way by using a model trained from dense per-pixel
annotations which can also be created via the user interface.

We evaluate the effectiveness of RootPainter by training models for three
different types of data and tasks without dataset-specific programming or hyper-
parameter tuning. We evaluate the effectiveness on a set of rhizotron root
images, and in order to evaluate the versatility of the system, also on two other
types of data, a biopores dataset, and a legume root nodules dataset, both
involving objects in the images quite different from roots.

For each dataset we compare the performance of models trained using the
dense and corrective annotation strategies on images not used during the train-
ing procedure. If annotation is too time-consuming, then RootPainter will be
unfeasible for many projects. To investigate the possibility of rapid and conve-
nient model training we use no prior knowledge and restrict annotation time to
a maximum of two hours for each model. We hypothesize that (1) in a limited
time period RootPainter will be able to segment the objects of interest to an ac-
ceptable accuracy in three datasets including roots, biopores and root nodules,
demonstrated by a strong correlation between the measurements obtained from
RootPainter and manual methods. And (2) a corrective annotation strategy
will result in a more accurate model compared to dense annotations, given the
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same time for annotation.

Training with corrective-annotation is a type of interactive-machine-learning,
as it uses a human-in-the-loop in the model training procedure. As opposed to
active-learning, which involves the learner automatically selecting which exam-
ples the user labels [184], interactive-machine-learning involves a human decid-
ing which examples should be added for future iterations of training [8].

Prior work for interactive training for segmentation includes [62] and [110].
[62] evaluated their method using neuronal structures captured using Electron
Microscopy, and found the interactively trained model to produce better seg-
mentations than a model trained using exhaustive ground truth labels.

[110] combined interactive segmentation with interactive training by using
the user feedback in model updates. Their training approach requires an initial
dataset with full ground-truth segmentations, whereas our method requires no
prior labelled data, which was a design choice we made to increase the applica-
bility of our method to plant researchers looking to quantify new objects in a
captured image dataset.

As opposed to [62] we use a more modern, fully convolutional network model,
which we expect to provide substantial efficiency benefits when dealing with
larger images. Our work is novel in that we evaluate an interactive corrective
annotation procedure in terms of annotation time to reach a certain accuracy
on real-world plant image datasets. Synthetic data is often used to evaluate
interactive segmentation methods [20, 119, 129]. To provide more realistic mea-
surements of annotation time we use real human annotators for our experiments.
As opposed to many competing deep learning methods for segmentation, we pro-
vide a graphical user interface (GUI) which allows all operations to be completed
using a user-interface, an essential feature for ensuring uptake in the plant image
analysis community.

2.2.1 Roots in Soil

Plant roots are responsible for uptake of water and nutrients. This makes un-
derstanding root system development critical for the development of resource
efficient crop production systems. For this purpose, we need to study roots
under real life conditions in the field, studying the effects of crop genotypes
and their management [163, 162], cover crops [215], crop rotation [218] and
other factors. We need to study deep rooting, as this is critical for the use of
agriculturally important resources such as water and nitrogen [217, 219).

Rhizotron based root research is an important example of plant research.
Acquisition of root images from rhizotrons is widely adopted [166], as it allows
repeated and non-destructive quantification of root growth and often to the full
depth of the root systems. Traditionally the method for root quantification
in such studies involves a lengthy procedure to determine the root density on
acquired images by counting intersections with grid-lines [216].

Manual methods require substantial resources and can introduce undesired
inter-annotator variation on root density, therefore a faster and more consis-
tent method is required. More recently, fully automatic approaches using CNNs
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have been proposed [194]; although effective, such methods may be challeng-
ing to re-purpose to different datasets for root scientists without the required
programming expertise. A method which made the re-training process more
accessible and convenient would accelerate the adoption of CNNs within the
root research community.

2.2.2 Biopores

Biopores are tubular or round-shaped continuous voids formed by root penetra-
tion and earthworm movement [103]. They function as preferential pathways
for root growth [70] and are therefore important for plant resource acquisition
[112, 71]. Investigation of soil biopores is often done by manually drawing on
transparent sheets on an excavated soil surface [69]. This manual approach is
time consuming and precludes a more in-depth analysis of detailed information,
including diameter, surface area, or distribution patterns such as clustering.

2.2.3 Root Nodules

Growing legumes with nitrogen-fixing capacity reduces the use of fertilizer [105],
hence there is an increased demand for legume-involved intercropping [75] and
precropping for carry over effects. Roots of legumes form associations with
rhizobia, forming nodules on the roots, where the nitrogen fixation occur. Un-
derstanding the nodulation process is important to understand this symbiosis
and the nitrogen fixation. However, counting nodules from the excavated roots
is a cumbersome and time consuming procedure, especially for species with
many small nodules such as clovers ( Trifolium spp.).

2.3 Materials and Methods

2.3.1 Software Implementation

RootPainter uses a client-server architecture, allowing users with a typical lap-
top or desktop computer to utilise a graphics processing unit (GPU) on a more
computationally powerful server. The client and server can be used on the
same machine if it is equipped with suitable hardware, reducing network IO
overhead. Instructions are sent from the client to server using human-readable
JSON (JavaScript Object Notation) format. The client-server communication is
facilitated entirely with files via a network drive or file synchronisation applica-
tion. This allows utilisation of existing authentication, authorisation and backup
mechanisms whilst removing the need to setup a publicly accessible static TP
address. The graphical client is implemented using PyQt5 which binds to the
Qt cross-platform widget toolkit. The client installers for Mac, Windows, and
Linux are built using the Pylnstaller build system which bundles all required
dependencies. As opposed to the more generalist annotation software napari
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[201] which is also built using Qt, the RootPainter client is designed to specif-
ically facilitate our proposed corrective annotation protocol and to not require
python familiarity. Image data can be provided as JPEG, PNG or TIF and
in either colour or grayscale. Image annotations and segmentations are stored
as PNG files. Models produced during the training process are stored in the
python pickle format and extracted measurements in comma-separated value
(CSV) text files.

A folder referred to as the sync directory is used to store all datasets,
projects and instructions which are shared between the server and client. The
server setup (Supporting Information, Note S2.9.1) requires familiarity with
the Linux command line so should be completed by a system administrator.
The server setup involves specification of a sync directory, which must then be
shared with users. Users will be prompted to input the sync directory rela-
tive to their own file system when they open the client application for the first
time and it will be automatically stored in their home folder in a file named
root_painter_settings.json which the user may delete or modify if required.

Creating a Dataset

The Create training dataset functionality is available as an option when opening
the RootPainter client application. It is possible to specify a source image
directory, which may be anywhere on the local file system and whether all images
from the source directory should be used or a random sample of a specified
number of images. It is also possible to specify the target width and height
of one or more samples to take from each randomly selected image; this can
provide two advantages in terms of training performance. Firstly, RootPainter
loads images from disk many times during training which can for larger images
(more than 2000 x 2000 pixels) slow down training in proportion to image size
and hardware capabilities. Secondly, recent results [121] indicate that capturing
pixels from many images is more useful than capturing more pixels from each
image when training models for semantic segmentation, thus when working with
datasets containing many large images, using only a part of each image will likely
improve performance given a restricted time for annotation.

When generating a dataset, each image to be processed is evaluated for
whether it should be split into smaller pieces. If an image’s dimensions are
close to the target width and height then the image will be added to the dataset
without it being split. If an image is substantially bigger then all possible ways to
split the image into equally sized pieces above the minimum are evaluated. For
each of the possible splits, the resultant piece dimensions are evaluated in terms
of their ratio distance from a square and distance from the target width and
height. The split which results in the smallest sum of these two distances is then
applied. From the split image, up to the mazimum tiles per image are selected
at random and saved to the training dataset. The source images do not need to
be the same size and the images in the generated dataset will not necessarily be
the same size but all provided images must have a width and height of at least
572 pixels, and we recommend at least 600 as this will allow random crop data
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augmentation. The dataset is created in the RootPainter sync directory in the
datasets folder in a subdirectory which takes the user-specified dataset name. To
segment images in the original dimensions, the dataset creation routine can be
bypassed by simply copying or moving a directory of images into a subdirectory
in the RootPainter datasets directory.

Working with Projects

Projects connect datasets with models, annotations, segmentations and mes-
sages returned from the server. They are defined by a project file (.seg_proj)
which specifies the details in JSON and a project folder containing relevant
data. The options to create a project or open an existing project are presented
when opening the RootPainter client application. Creating projects requires
specifying a dataset and optionally an initial model file. Alternatively a user
may select ‘random weights’ also known as training from scratch, which will use
He initialization [77] to assign a models initial weights. A project can be used
for inspecting the performance of a model on a given dataset in the client, or
training a model with new annotations which can also be created using drawing
tools in the client user interface.

Model architecture

We modified the network architecture from [194] which is a variant of U-Net
[170] implemented in PyTorch [152] using Group Normalization [244] layers.
U-Net is composed of a series of down-blocks and up-blocks joined by skip con-
nections. The entire network learns a function which converts the input data
into a desired output representation, e.g. from an image of soil to a segmen-
tation or binary map indicating which of the pixels in the image are part of a
biopore. In the down-blocks we added 1 x 1 convolution to halve the size of the
feature maps. We modified both down-blocks and up-blocks to learn residual
mappings, which have been found to ease optimization and improve accuracy in
CNNs [76] including U-Net [259]. To speed up inference by increasing the size
of the output segmentation, we added one pixel padding to the convolutions
in the down-blocks and modified the input dimensions from 512 x 512 x 3 to
572 x 572 x 3, which resulted in a new respective output size of 500 x 500 x 2,
containing a channel for the foreground and background predictions. The mod-
ified architecture has approximately 1.3 million trainable parameters, whereas
the original had 31 million. These alterations reduced the saved model size from
124.2 MB [191] to 5.3 MB, making it small enough to be conveniently shared
via email.

Creating Annotations

Annotations can be added by drawing in the user interface with either the fore-
ground or background brush tools. It’s also possible to undo or redo brush
strokes. Annotation can be removed with the eraser tool. If an image is only
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partially annotated then only the regions with annotation assigned will be used
in the training. Whilst annotating it’s possible to hide and show the annotation,
image or segmentation. For convenience during use, a table of keyboard short-
cuts is presented in Supporting Information, Note S2.9.2. When the user clicks
Save € next in the interface, the current annotation will be saved and synced
with the server, ready for use in training. The first and second annotations are
added to the training and validation sets respectively (see Training Procedure
below). Afterwards, to maintain a typical ratio between training and validation
set, annotations will be added to the validation set when the training set is at
least five times the size of the validation set, otherwise they will be added to
the training set.

Training Procedure

The training procedure can be started by selecting Start training from the net-
work menu which will send a JSON instruction to the server to start training
for the current project. The training will only start if the project has at least
two saved annotations as at least one is required for each of the training and
validation set. Based on [194] we use a learning rate of 0.01 and Nestorov mo-
mentum with a value of 0.99. We removed weight decay as results have shown
similar performance can be achieved with augmentation alone whilst reducing
the coupling between hyperparameters and dataset [81]. The removal of weight
decay has also been suggested in practical advice [22] based on earlier results
[37] indicating its superfluity when early stopping is used. We do not use a
learning rate schedule in order to facilitate an indefinitely expanding dataset.
An epoch typically refers to a training iteration over the entire dataset [63].
In this context we initially define an epoch to be a training iteration over 612
image sub-regions corresponding to the network input size, which are sampled
randomly from the training set images with replacement. We found an iteration
over this initial epoch size to take approximately 30 seconds using two RTX 2080
Ti GPUs with an automatically selected batch size of 6. If the training dataset
expands beyond 306 images, then the number of sampled sub-regions per epoch
is set to twice the number of training images, to avoid validation overwhelming
training time. The batch size is automatically selected based on total GPU
memory and all GPUs will be used by default using data parallelism.
RootPainter utilises a supervised learning procedure, which involves training
a model to predict the same value (either foreground or background) for a pixel
in the input data as the one found in the corresponding location of an anno-
tation. The annotations are created by the user and include pixels annotated
as foreground, pixels annotated as background, and pixels without annotation.
Only the pixels annotated as foreground or background are used in training.
This is achieved by setting the pixels without foreground or background an-
notation to 0 in both the network prediction and associated annotation. The
distance between the annotated pixels and network predictions is computed us-
ing a loss function, which is a combination of dice-loss and cross-entropy taken
from [194]. This computed loss is then used to update the network weights,
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leading to a model with reduced error on subsequent images.

After each epoch, the model predictions are computed on the validation set
and F} is calculated for the current and previously saved model. If the current
model’s F} is higher than the previously saved model then it is saved with its
number and current time in the file name. If for 60 epochs no model improve-
ments are observed and no annotations are saved or updated then training will
stop automatically.

We designed the training procedure to have minimal RAM requirements
which do not increase with dataset size, in order to facilitate training on larger
datasets. We found the server application to use less than 8GB of RAM during
training and inference, and would suggest at least 16GB RAM for the machine
running the server application. We found the client to use less than 1GB RAM
but have not yet tested on devices equipped with less than 8GB of RAM.

Augmentation

We modified the augmentation procedure from [194] in three ways. We changed
the order of the transforms from fixed to random in order to increase variation.
We reduced the probability that each transform is applied to 80% in order
to reduce the gap between clean and augmented data, which recent results
indicate can decrease generalization performance [78]. We also modified the
elastic grid augmentation as we found the creation of the deformation maps
to be a performance bottleneck. To eliminate this bottleneck we created the
deformation maps at an eighth of the image size and then interpolated them up
to the correct size.

Creating Segmentations

It is possible to view segmentations for each individual image in a dataset by
creating an associated project and specifying a suitable model. The segmen-
tations are generated automatically via an instruction sent to the server when
viewing each image and saved in the segmentations folder in the corresponding
project.

When the server generates a segmentation, it first segments the original
image and then a horizontally flipped version. The output segmentation is
computed by taking the average of both and then thresholding at 0.5. This
technique is a type of test time data augmentation which is known to improve
performance [153]. The segmentation procedure involves first splitting the im-
ages into tiles with a width and height of 572 pixels, which are each passed
through the network and then an output corresponding to the original image is
reconstructed.

It’s possible to segment a larger folder of images using the Segment folder
option available in the network menu. To do this, an input directory, output
directory and one or more models must be specified. The model with the highest
number for any given project will have the highest accuracy in terms of F; on
the automatically selected validation set. Selecting more than one model will
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Figure 2.2: Screenshots of the RootPainter software, showing examples of the
various stages of the interactive training procedure. (a) Initial annotation cre-
ated at the start of interactive training, with foreground annotation shown in red
and background annotation shown in green. (b) Corrective annotation whilst
the model progresses to a suitable solution. The segmentation is shown in light
blue. (¢) Segmentation shown later in the model training process.

result in model averaging, an ensemble method which improves accuracy as
different models don’t usually make identical errors [63]. from different projects
representing different training runs on the same dataset will likely lead to a more
diverse and thus more accurate ensemble, given they are of similar accuracy. It
it is also possible to use models saved at various points from a single training
run, a method which can provide accuracy improvements without extending
training time [183].

The user interface is shown in Fig. 2.2 with various stages of the interactive
training procedure shown.

Extracting Measurements

It is possible to extract measurements from the produced segmentations by
selecting an option from the measurements menu. The FExtract length option
extracts centerlines using the skeletonize method from scikit-image [227] and
then counts the centerline pixels for each image. The Ezxtract region properties
uses the scikit-image regionprops method to extract the coordinates, diameter,
area, perimeter and eccentricity for each detected region and stores this along
with the associated filename. The FExtract count method gives the count of all
regions per image. Each of the options require the specification of an input
segmentation folder and an output CSV.
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2.3.2 Datasets

Biopore Images

Biopore images were collected near Meckenheim (50°37'9”N 6°59'29”E) at a
field trial of University of Bonn in 2012 (see [69] for a detailed description).
Within each plot an area was excavated to a depth of 0.45 m. The exposed
soil surface was carefully flattened to reveal biopores and then photographed in
colour.

Bersoft software (Windows, Version 7.25) was used for biopore quantifica-
tion. Using the eclipse function, the visible biopores were marked, then the
count number was generated as a CSV file. Pores smaller than two mm were
excluded from biopore counting.

We restricted the analysis to images with a suitable resolution and cropped
to omit border areas. For each image, the number of pixels per mm was recorded
using Gimp (MacOS, Version 2.10) in order to calculate pore diameter. We split
the images into two folders. BP_counted which contained 39 images and was
used for model validation after training as these images had been counted by a
biopore expert and BP_uncounted which contained 54 images and was used for
training.

Nodule Images

Root images of persian clover ( Trifolium resupinatum) were acquired at 800 DPI
in colour using a water-bed scanner after root extraction. We used a total of
113 images which all had a blue background, but were taken with two different
scanners. From the 113 images, 65 were captured using an Epson V700 scan-
ner and appeared darker and underexposed whereas 48 were captured using an
Epson Expression 12000XL Photo Scanner and appeared well lit, showing the
nodules more clearly. The blue background was obtained by blocking the scan-
ner transparency unit with non-transparent blue paper to create a background
which provided contrast to the root nodules. Blocking the scanner transparency

Table 2.1: Details for each of the datasets created for training. The number of
images and tiles were chosen to enable a consistent dataset size of 200 images.
Only 50 images were sampled from for the biopores and nodules, in order to
ensure there were enough images left in the test set. The datasets created are
available to download from [199].

Object Name Source Reference To Max  Target

folder sample tiles size
Biopores  BP_750_training BP_uncounted [198] 50 4 750
Nodules nodules_750_training  counted_nodules [192] 50 4 750

Roots towers_750_training grid_counted_roots  [190] 200 1 750
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unit meant that the only light source was from the document table (the lower
part) of the scanner.

They were counted manually using WinRhizo Pro (Regent Instruments Inc.,
Canada, Version 2016). Image sections were enlarged and nodules were selected
manually by clicking. Then, the total number of marked nodules were counted
by the software. We manually cropped to remove the borders of the scanner
using Preview (MacOS, Version 10.0) and converted to JPEG to ease storage
and sharing. Of these 50 were selected at random to have subregions included
in training and the remaining 63 were used for validation.

Roots Dataset

We downloaded the 867 grid counted images and manual root length measure-
ments from [190] which were made available as part of the evaluation of U-Net
for segmenting roots in soil [194] and originally captured as part of a study on
chicory drought stress [161] using a four m rhizobox laboratory described in
[220]. We removed the 10 test images from the grid counted images, leaving 857
images. The manual root length measurements are a root intensity measure-
ment per-image, which was obtained by counting root intersections with a grid
as part of [161].

2.3.3 Annotation and Training

For the roots, nodules and biopores we created training datasets using the Cre-
ate training dataset option. We used random sample, with the details specified
in Table 2.1. The two users (user a and user b) that we used to test the software
were the two first authors. Each user trained two models for each dataset. For
each model, the user had two hours (with a 30 minutes break between them)
to annotate 200 images. We first trained a model using the corrective anno-
tation strategy whilst recording the finish time and then repeated the process
with the dense annotation strategy, using the recorded time from the corrective
training as a time limit. This was done to ensure the same annotation time was
used for both annotation strategies. With corrective annotations, the annota-
tion and training processes are coupled as there is a feedback loop between the
user and model being trained that happens in real time. Whereas with dense
the user annotated continuously, without regard to model performance. The
protocol followed when using corrective annotations is outlined in Supporting
Information, Notes S2.9.3 and annotation advice given in Supporting Informa-
tion, Notes S2.9.4. For the first six annotations on each dataset, we added clear
examples rather than corrections. This was because we observed divergence in
the training process when using corrective from the start in preliminary exper-
iments. We suspect the divergence was caused by the user adding too many
background classes compared to foreground or difficult examples. When cre-
ating dense annotations, we followed the procedure described in Supporting
Information, Notes S2.9.5.
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When annotating roots, in the interests of efficiency, a small amount of soil
covering the root would still be considered as root if it was very clear that root
was still beneath. Larger gaps were not labelled as root. Occluded parts of
nodules were still labelled as foreground (Fig. 2.3(a)). Only the centre part of a
nodule was annotated, leaving the edge as undefined. This was to avoid nodules
which were close together being joined into a single nodule. When annotating
nodules which were touching, a green line (background labels) was drawn along
the boundary to teach the network to separate them so that the segmentation
would give the correct counts (Fig. 2.3(b)).

After completing the annotation, we left the models to finish training using
the early stopping procedure and then used the final model to segment the
respective datasets and produce the appropriate measurements.

We also repeated this procedure for the projects but using a restricted num-
ber of annotations by limiting to those that had been created in just 30, 60,
90, 120 and 150 minutes (including the 30 minute break period) to give us
an indication of model progression over time with the two different annotation
strategies.

2.3.4 Measurement, Correlation and Segmentation Met-
rics

For each project we obtained correlations with manual measurements using the
portion of the data not used during training to give a measure of generalization
error, which is the expected value of the error on new input [63]. For the roots
dataset, the manual measurements were compared to length estimates given by
RootPainter, which are obtained from the segmentations using skeletonization
and then pixel counting.

For the biopores and nodules datasets we used the extract region properties
functionality from RootPainter, which gives information on each connected re-
gion in an output segmentation. For the biopores the regions less than 2mm in
diameter were excluded. The number of connected regions for each image were
then compared to the manual counts.

In order to obtain segmentation metrics, we used the extract segmentation
metrics function available from the RootPainter extras menu. This function
generates a CSV file containing dice score, recall, precision and accuracy for each
of the segmented images in a project. The ground truth used for evaluation is the
model prediction with the corrections assigned, i.e. the corrected segmentation.
This corrected segmentation is then used to evaluate the predicted segmentation
which is stored in the segmentations folder.

2.3.5 Filtering nodules by size

We investigated the effect of filtering out nodules less than a certain size by
computing the correlation between the automated and manual nodule counts as
a function of a size threshold. The size threshold meant that counted nodules
would include only those above a specific area in pixels. We computed the



26

(b)

Figure 2.3: Nodule annotation. The red brush was used to mark the
foreground (nodules) and the green brush to mark the background (not
nodules). (a) We annotated nodules occluded by roots as though the roots
were not there. (b) Adjacent nodules were separated using the background class.
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correlation with each size threshold from 0 to 400 pixels. We did this for the
model trained by user b only.

2.4 Results

We report the R? for each annotation strategy for each user and dataset (Table
2.2). Training with corrective annotations resulted in strong correlation (R? >
0.7) between the automated measurements and manual measurements five out
of six times. The exception was the nodules dataset for user b with an R? of
0.69 (Table 2.2). Training with dense annotations resulted in strong correlation
three out of six times, with the lowest R? being 0.55 also given by the nodules
dataset for user b (Table 2.2).

Table 2.2:  R? for each training run. These are computed by obtaining measure-
ments from the segmentations from the final trained model and then correlating
with manual measurements for the associated dataset.

Dataset User Corrective R2  Dense R?

Biopores a 0.78 0.58
Biopores b 0.78 0.67
Nodules a 0.73 0.89
Nodules b 0.69 0.55
Roots a 0.89 0.90
Roots b 0.92 0.90

Table 2.3: Mean and standard error of the R? for each annotation strategy.
These are computed by obtaining measurements from the segmentations from
the final trained model and then correlating with manual measurements. Using
mixed-effects model with annotation strategy as a fixed factor and user and
dataset as random factors no significant effects were found (P < 0.05).

Strategy Mean Standard error

Corrective 0.80 0.04
Dense 0.75 0.07

For each annotation strategy, we report both the mean and standard error for
the obtained R? values from all datasets and both users (Table 2.3). The mean
of the R? values obtained when using corrective annotation shows they tended
to be higher compared with dense, but the differences were not statistically
significant (Mixed-effects model; P<0.05). We plot the mean and standard error
at each time point for which multiple R? values were obtained (Fig. 2.4(a)). In
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general corrective improved over time, overtaking dense performance just after
the break in annotation (Fig. 2.4(a)). The 30 minute break period taken by the
annotator after one hour corresponds to a flat line in performance during that
period (Fig. 2.4(a)). On average, dense annotations were more effective at the
30 minute time period, whereas corrective were more effective after two hours
(including the 30 minute break) and at the end of the training (Table 2.3).
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Figure 2.4: Annotation duration and accuracy. (a) Mean and standard error for
the R? values over time. These include the 30 minute break and are restricted to
time points where multiple observations are available. The shaded area indicates
the standard error. (b) User reported duration in minutes for annotating each
dataset, excluding the 30 minutes break taken after one hour of annotation. The
annotator would use the same amount of time for both corrective and dense
annotation strategies. The time fell below the limit of two hours (excluding
break) when they ran out of images to annotate.

We report the duration for each user and dataset (Fig. 2.4(b)). Five
out of six times all 200 images were annotated in less than the two hour time
limit. The nodules dataset took the least time, with annotation completed in
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Figure 2.5: Two correctly detected nodules shown with three false positives.
Segmentation is shown overlaid in light blue on top of a sub-region of one of
the nodule images used for evaluation. The correct nodules are much larger and
on the edge of the root. The three false positives are indicated by a red circle.
They are much smaller and bunched together.

66 minutes and 80 minutes for users a and b respectively (Fig. 2.4(b)). The
roots dataset for user a was the only project where the two hours time limit was
reached without running out of images (Fig. 2.4(b)).
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(b)

Figure 2.6: Example input and segmentation output from photographs not used
in training. The segmentations are shown in light blue and are from models
trained from scratch using no prior knowledge with annotations created using
the corrective annotation protocol with RootPainter. (a) Biopores. Annotations
created by user b in one hour and 45 minutes. (b) Nodules. Annotations created
by user a in one hour and six minutes. (c¢) Roots. Annotations created by user
a in two hours.

We show an example of errors found from the only model trained correctively
which did not result in a strong correlation (Fig. 2.5). There were cases when
the vast majority of pixels were labelled correctly but a few small incorrect
pixels could lead to substantial errors in count (Fig. 2.5).

We found filtering nodules less than a certain size to provide substantial
reductions in error. There was an improvement in R? from 0.69 to 0.75 when
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Figure 2.7:  Manual measurements plotted against automatic measurements
attained using RootPainter. (a) Biopores using user b corrective model. (b)
Nodules using user a corrective model. (c¢) Roots in soil using user a corrective
model.
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Figure 2.8: R? for the annotations attained after 30, 60, 90, 120 minutes and
the final time point for users a and b on the three datasets for dense and cor-
rective annotation strategies. trained to completion refers to models which were
trained until stopping without interaction, using the annotations created within
the specified time period, whereas real time refers to models saved during the
corrective annotation procedure as it happened. For the corrective annotations
we plot both the performance of the model saved during the training proce-
dure and the same model if allowed to train to completion with the annotations
available at that time.
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Figure 2.9: Annotation progression. (a) Number of images viewed and anno-
tated for the dense and corrective annotation strategies. For dense all images
are both viewed and annotated, whereas corrective annotations are only added
for images where the model predictions contain clear errors. (b) Total num-
ber of annotated pixels for dense and corrective annotation strategies over time
during the annotation procedure. For dense, almost all pixels in each image are
annotated. Corrective annotations are only applied to areas of the image where
the model being trained exhibits errors.
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changing the area threshold from 0 to 5 pixels. The benefits increased up to an
area threshold of 284 pixels, giving an R? of 0.9 (Supporting Information, Notes
$2.9.5).

We show examples of accurate segmentation results obtained with models
trained using the corrective annotation strategy (Fig. 2.6(a), 2.6(b) and 2.6(c))
along with the corresponding manual measurements plotted against the auto-
matic measurements obtained using RootPainter (Fig. 2.7).

The observed R? values for corrective annotation had a significant positive
correlation with annotation duration (P<0.001). There was no significant cor-
relation between annotation time and R? values for models trained using dense
annotations.

We plot the R? for each project after training was completed along with the
R? obtained with training done only on annotations at restricted time limits,
and refer to these as trained to completion along with the models saved at that
time point during the corrective annotation procedure as it happened which we
refer to as real time (Fig. 2.8). After only 60 minutes of annotation, all models
trained for roots in soil gave a strong correlation with grid counts (Fig. 2.8,
Roots a and b). The performance of dense annotation for user b on the nodules
dataset was anomalous with a decrease in R? as more annotated data was used
in training (Fig. 2.8, Nodules b). The corrective models obtained in real time
were similar to those trained to completion, except nodules by user b, indicating
that computing power was sufficient for real time corrective training (Fig. 2.8).

We plot the number of images viewed and annotated for the corrective and
dense annotation strategies (Fig. 2.9(a)). For the corrective annotation strategy,
only some of the viewed images required annotation. In all cases the annotator
was able to progress through more images using corrective annotation (Fig.
2.9(a)).

For the roots and nodules datasets for user b for the first hour of training,
progress through the images was faster when performing dense annotation (Fig.
2.9(a), Roots b and Nodules b).

We plot the amount of labelled pixels for each training procedure over time
for both corrective and dense annotations (Fig. 2.9(b)). With corrective anno-
tation less pixels were labelled in the same time period and as the annotator
progressed through the images the rate of label addition decreased (Fig. 2.9(b)).
The dice score is also plotted (Fig. 2.10(a)) and accuracy (Fig. 2.10(b)) along
with running averages (n=30) for the models trained using corrective annota-
tion. For both dice and accuracy, the running average shows both large fluctu-
ations and a trend of continuous improvement as more images are annotated.
The performance of the biopores model being trained by user b is an outlier,
as it appears to decrease in accuracy and to a lesser extent dice score towards
the end of training. For the nodules and roots datasets, towards the end of
corrective-annotation, the dice score is approximately 0.9 but with larger fluc-
tuations, whereas for the biopores the dice appears to stay consistently above
0.9.
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Figure 2.10: Segmentation metrics including dice score (a) and accuracy (b)
for each of the images segmented as part of the interactive segmentation pro-
cedure in order of annotation. Metrics were computed using the segmentations
and corrective annotations created as part of the interactive training procedure
for user a and user b for each of the three datasets. In this case the ground
truth used for evaluation is the model prediction with the corrections assigned,
i.e. the corrected segmentation. Dice ranges from 0-1 and is higher when the
model prediction agrees with the ground truth. Accuracy ranges from 0-1 and
is the ratio of pixels that were predicted correctly to the total pixels in the
image. As accuracy is very high, to show the changes in the moving average,
accuracy is only shown in the range of 0.99 to 1.0. There is a trend of continuous
improvement as more images are annotated and interactive training continues.
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2.5 Discussion

In this study we focused on annotation duration, as we consider the time re-
quirements for annotation rather than the number of available images to be
more relevant to the concerns of the majority of plant research groups looking
to use deep learning for image analysis. Our results, for corrective training in
particular, confirm our first hypothesis by showing that a deep learning model
can be trained to a high accuracy for the three respective datasets of varying tar-
get objects, background and image quality in less than two hours of annotation
time.

Our results demonstrate the feasibility of training an accurate model using
annotations made in a short time period, which challenges the claims that tens
of thousands of images [222] or substantial labelled data [145] are required to
use CNNs. In practice, we also expect longer annotation periods to provide
further improvement. The R? for corrective training had a significant correlation
with annotation duration indicating that spending more time annotating would
continue to improve performance.

There was a trend for an increasing fraction of viewed images to be ac-
cepted without further annotation later in the corrective training (Fig. 2.9(a)),
indicating fewer of the images required corrections as the model performance
improved. This aligns with the reduction in the rate of growth for the total
amount of corrections (Fig. 2.9(b)) indicating continuous improvement in the
model accuracy over time during the corrective training.

We suspect the cases where dense annotation had a comparatively faster
speed in the beginning (Fig. 2.9(a), Roots b and Nodules b) were due to three
factors. Firstly, switching through images has little overhead when using the
dense annotation strategy as there is no delay caused by waiting for segmen-
tations to be returned from the server. Secondly, corrective annotation will
take a similar amount of time to dense in the beginning as the annotator needs
to assign a large amount of corrections for each image. And thirdly, many of
the nodule images did not contain nodules meaning dense annotations could be
added almost instantly.

The average dice scores of approximately 0.9 for roots (Fig. 2.10(a)) is simi-
lar to previous results for root segmentation [194], indicating our trained model
was accurate (please see below note on the limitations of such comparisons).
For comparison, in previous work, similar root segmentation accuracy was ob-
tained using approximately 25 hours of root annotation time [194]. We found
that the dice scores for biopores were higher than those for roots or nodules
(Fig. 2.10(a)), which we suspect was due to the biopore dataset being easier to
segment, with higher contrast between the biopore and surrounding soil. Our
reported dice scores plots (Fig. 2.10(a)) serve as a point of comparison for future
work and in combination with RootPainter’s functionality to extract segmen-
tation metrics, provide a convenient way for users to confirm and report that
their trained models have a suitable accuracy.

Although a trend in improvement over time is shown in the segmentation
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metrics (Fig. 2.10(a), 2.10(b)), there were large fluctuations and for user b
on the biopores dataset there appears to be a decrease in the model accuracy
towards the end of corrective-annotation (Fig. 2.10(b)). We expect that the
variation in accuracy was caused by both intra-annotator variation and by the
large amount of variation in the quality and difficulty of the images for the
network, as can be seen from all plots.

It is important to note that metrics, such as the above, comparing corrected
predictions to predictions are not comparable to completely independent anno-
tations done while blinded to the model predictions. Completely independent
annotations include to some degree an amount of irreducible error stemming
from observer variation and uncertainty. Corrections, on the other hand, are
expected to be of clear errors and may therefore in some cases be a more useful
measure of the system’s performance as assessed by the observer in question.

Although corrective annotation tended to produce models with higher accu-
racy relative to dense (Table 2.3), the lack of a statistically significant difference
prevents us from coming to a more substantive conclusion about the benefits of
corrective over dense annotation. Despite being unable to confirm our second
hypothesis, that corrective annotation provides improved accuracy over dense
in a limited time period, it is still clear that it will provide many real-world
advantages. The feedback given to the annotator will allow them to better un-
derstand the characteristics of the model trained with the annotations applied.
They will be able to make a more informed decision about how many images to
annotate to train a model to sufficient accuracy for their use case.

Although strong correlation was attained when using the models trained
with corrective annotation, they in some cases overestimated (Fig. 2.7 a) or
underestimated (Fig. 2.7 b) the objects of interest compared to the manual
counts. For the biopores (Fig. 2.7 a) this may be related to the calibration
and threshold procedure which results in biopores below a certain diameter be-
ing excluded from the dataset. We inspected the outlier in Fig. 2.7 b where
RootPainter had overestimated the number of nodules compared to the man-
ual counts. We found that this image (043.jpg) contained many roots which
were bunched together more closely than what was typical in the dataset. We
suspect this had confused the trained network and could be mitigated by using
a consistent and reduced amount of roots per scan, whilst using more of the
images for training and annotating for longer to capture more of the variation
in the dataset.

In one case, training with corrective annotation failed to produce a model
that gave a strong correlation with the manual measurements. This was for the
nodules data for user b, where the R? was 0.69. We suspect this was partially
due to the limited number of nodules in the training data. Many of the images
in the dataset created for training contained no nodules and only included the
background. This also meant the annotation was able to finish in less time.
We consider this a limitation of the experimental design as we expect that a
larger dataset which allowed for annotating nodules for the full two hour time
period would have provided better insights into the performance of the corrective
training procedure.
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Fig. 2.5 shows examples of some of the errors in the nodules dataset. In
practice, the annotator would be able to view and correct such errors during
training until they had abated. We noticed that many of the nodule errors were
smaller false positives, so investigated the effect of filtering out nodules less than
a certain size (Supporting Information, Notes 2.9.5). The substantial improve-
ments in nodule count correlation from 0.69 to 0.93 when using a nodule size
threshold can be explained by the removal of smaller false positive artefacts.
This indicates that the model was producing many small false positive predic-
tions, which could also explain some of the overestimation of nodules (Fig. 2.7
b).

The problem with small false positives may have been mitigated with the
dense annotations as a larger amount of background examples are added, sup-
pressing more of the false positive predictions that arise in the limited training
time.

The improvement in R? when removing small nodules may also be due to
differences in subjective interpretation of what is a nodule, between the original
counter and annotator training the model.

The reduction in R? as dense annotation time increased, shown in nodules
b (Fig. 2.8) was highly unexpected. Although in some cases increasing training
data can decrease performance when training CNNs [143], it is usually the case
that the opposite is observed. We suspect these anomalous results are due to the
large amount of variation in the success of the dense training procedure, rather
than revealing any general relationship between performance and the amount
of data used.

As the nodule images are captured in a controlled environment, further im-
provements to accuracy could be attained by reducing controllable sources of
variation and increasing the technical quality of the images. The lighting was
also varying for the nodules with approximately half of the images underexposed.
We expect that more consistent lighting conditions would further improve the
nodule counting accuracy. Cropping the nodule images manually could also be-
come a time consuming bottleneck, which could be avoided by ensuring all the
roots and nodules were positioned inside the border and having the placement
of the border be fixed in its position in the scanner such that the cropping could
be done by removing a fixed amount from each image, which would be trivial
to automate.

Fig. 2.4(a) indicates corrective annotation leads to lower R? in the earlier
phases of annotation (e.g. within 60 minutes). We suspect this is due to dense
annotation having an advantage at the start as the user is able to annotate
more pixels in less time using dense annotation with no overhead caused by
waiting for segmentations from the server. We suspect in many cases corrective
annotation will provide no benefits in terms of efficiency when the model is in
the early stages of training as the user will still have to apply large amounts
of annotation to each image, whilst slowed down by the delay in waiting for
segmentations. Later in training, e.g. after one hour and 40 minutes, corrective
overtakes dense in terms of mean R? performance (Fig. 2.4(a)). We suspect
this is due to the advantages of corrective annotation increasing as the model
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converges, when more of the examples are segmented correctly and don’t need
adding to the training data as they would provide negligible utility beyond what
has already been annotated. Our results show corrective annotation achieves
competitive performance with a fraction of the labelled pixels compared to dense
(Fig. 2.9(b)). These results align with [221] who confirmed that a large portion
of the training data could be discarded without hurting generalization perfor-
mance. This view is further supported by theoretical work [203] showing in
certain cases networks will learn a maximum-margin classifier, with some data
points being less relevant to the decision boundary.

The corrective training procedure performance had lower standard error after
one hour (Fig. 2.4(a)) and particularly at the end (Table 2.3). We conjecture
that the corrective annotation strategy stabilized convergence and increased the
robustness of the training procedure to the changes in dataset with the fixed
hyperparameters by allowing the specific parts of the dataset used in training
to be added based on the weaknesses that appear in each specific training run.

In more heterogeneous datasets with many anomalies, we suspect correc-
tive annotation to provide more advantages in comparison to dense, as working
through many images to find hard examples will capture more useful training
data. A potential limitation of the corrective annotation procedure is the suit-
ability of these annotations when used as a validation set for early stopping, as
they are less likely to provide a representative sample, compared to a random
selection. Our annotation protocol for corrective annotation involved initially
focusing on clear examples (Supporting Information, Notes S2.9.3) as in pre-
liminary experiments we found corrective annotation did not work effectively at
the very start of training. Training start-up was also found to be a challenge
for other systems utilising interactive training procedures [62], indicating future
work in this area would be beneficial.

Another possible limitation of corrective annotations is that they are based
on the model’s weaknesses at a specific point in time. This annotation will likely
become less useful as the model drifts away to have different errors from those
that were corrected.

One explanation for the consistently strong correlation on the root data
compared to biopores and nodules is that the correlation with counts will be
more sensitive to small errors than correlation with length. A small pixel-wise
difference can make a large impact on the counts. Whereas a pixel erroneously
added to the width of a root may have no impact on the length and even pixels
added to the end of the root will cause a small difference.

A limitation of the RootPainter software is the hardware requirements for
the server. We ran the experiments using two NVIDIA RTX 2080 Ti GPUs con-
nected with NVLink. Purchasing such GPUs may be prohibitively expensive for
smaller projects and hosted services such as Paperspace, Amazon Web Services
or Google Cloud may be more affordable. Although model training and data
processing can be completed using the client user interface, specialist technical
knowledge may still be required to setup the server component of the system.
To mitigate the hardware requirements and technical knowledge required for
the initial setup, we have prepared an open source Jupyter notebook web ap-
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plication (see Data Availability) which is made available via Google Colab and
guides a user without specialist technical knowledge through setting up a Root-
Painter server using a freely available GPU. As part of the online supplementary
material we also make a video available showing how to interactively train and
use a biopores segmentation model with RootPainter (Video S1).

Although RootPainter automates the annotation process by providing an
initial model prediction, the correction process, which involves manually draw-
ing, could still become laborious, especially for larger more complex images.
Interactive-segmentation tools such as grabber [24] may be complementary and
could be investigated in further work to accelerate RootPainter’s corrective-
annotation process.

There are a limited number of root traits that can be exported from Root-
Painter in comparison to other root segmentation software applications such as
faRIA [146]. This limitation has been addressed by the addition of a conversion
utility, available from the RootPainter extras menu, that enables RootPainter
segmentations to be conveniently processed with RhizoVision Explorer [179],
facilitating the extraction of many more traits from the RootPainter segmenta-
tions.

In addition to the strong correlations with manual measurements when using
corrective annotation, we found the accuracy of the segmentations obtained for
biopores, nodules and roots to indicate that the software would be useful for
the intended counting and length measurement tasks (Fig. 2.6(a), 2.6(b) and
2.6(c)).

The performance of RootPainter on the images not used in the training
procedure indicate that it would perform well as a fully automatic system on
similar data. Our results are a demonstration that for many datasets using
RootPainter will will make it possible to complete the labelling, training and
data processing within one working day.
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2.8 Data Availability

The nodules dataset is available from [192]. The biopores dataset is avail-
able from [198]. The roots dataset is available from [190]. The client
software installers are available from https://github.com/Abe404/root_
painter/releases. The source code for both client and server is avail-
able from https://github.com/Abe404/root_painter. The created train-
ing datasets and final trained models are available from [199]. The co-
lab notebook is available at https://colab.research.google.com/drive/
104narYAvTBt-X4QEDrBS0Zm_DRaAKHtA7usp=sharing

2.9 Supporting Information

2.9.1 Server Software Setup Instructions

Instructions on how to setup the RootPainter server.

For our tests we use a client-server architecture and run the client and server
components of the system on different computers, using Dropbox to facilitate
IO between them. We do not use any Dropbox specific functionality so any
service which synchronises a folder between two computers should work. It is
also possible to run the client and server on the same computer which will reduce
lag and eliminate the need to use a third party service or network drive to sync
files. We tested the server component using Python 3.7.5.

1. git clone --branch 0.2.4 https://github.com/Abe404/root_painter.
git

2. cd root_painter/trainer

3. pip install torch==1.3.1 -f https://download.pytorch.org/whl/
torch_stable.html

4. pip install -r requirements.txt


https://github.com/Abe404/root_painter/releases
https://github.com/Abe404/root_painter/releases
https://github.com/Abe404/root_painter
https://colab.research.google.com/drive/104narYAvTBt-X4QEDrBSOZm_DRaAKHtA?usp=sharing
https://colab.research.google.com/drive/104narYAvTBt-X4QEDrBSOZm_DRaAKHtA?usp=sharing
https://github.com/Abe404/root_painter.git
https://github.com/Abe404/root_painter.git
https://download.pytorch.org/whl/torch_stable.html
https://download.pytorch.org/whl/torch_stable.html
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5. NOTE: pytorch installation may be more involved as it could require and
consideration of the current CUDA version. We have tested using py-
torch version 1.3.1 but would expect it to work with more recent versions.
See https://pytorch.org/get-started/previous-versions/ for more
details on how to install pytorch.

6. python3 main.py

7. You will be prompted to specify a sync location. For our tests
we used Dropbox and a folder named paper_rp.sync so we input
~ /Dropbox/paper_rp_sync

8. If the folder doesn’t exist then it will be created with the necessary sub
folders (datasets, projects, models and instructions).

9. The system will start running and watching for instructions from the
client. You must share access to the created folder with the users us-
ing your file share service (such as Dropbox) or network drive. The users
will then need to input this when they first run the client software.

10. See section Software Implementation for further instructions for client
software setup.

11. For our tests we ran the RootPainter server inside a tmux session but
for more long running use cases a systemd service will likely be more
robust. See https://github.com/torfsen/python-systemd-tutorial
for instructions on creating a systemd service with python.

2.9.2 Keyboard Shortcuts

A table showing the keyboard shortcuts that can be used to speed up the an-
notation process when using the RootPainter client.

Table 2.4: Keyboard shortcuts for corrective annotation with RootPainter

Key Function
Q foreground brush
W background brush
Z undo
Ctrl4-Shift+7 redo
Alt+scroll Change brush size
(Windows Key/Command key) + click and drag Pan view
A show or hide annotation
I show or hide image
S show or hide segmentation

Scroll Z0om


https://pytorch.org/get-started/previous-versions/
https://github.com/torfsen/python-systemd-tutorial
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2.9.3 Corrective Training Protocol

Instructions on how to train a model with RootPainter using the corrective
annotation protocol, as was done in this study.

Stage 1

Start a timer immediately before starting to annotate
Start training after clicking Save & Next for the second annotated image.

Keep track of how many images you have annotated until you have anno-
tated six images.

Skip images which do not include clear examples of both classes.

When images contain clear examples of both classes then label the clear
and unambiguous parts of the image.

Aim to label around 5-10 times as much background as foreground.

Use a thinner brush to avoid boundaries when labelling the foreground
class as these can be ambiguous and time consuming to label.

After clicking Save & Next for the 6th image proceed to stage 2.

Write down the image number for the 6th annotated image.

Stage 2

For each image press S to view the segmentation. Instead of labelling
everything which is clear, focus on labeling the parts of the image which
have clearly been segmented incorrectly, whilst following the corrective
annotation advice.

Once you have proceeded through 10 images since the 6th annotated image
then set pre-segment (from the options menu) from 0 to 1. Increasing the
pre-segment setting causes the server to create segmentations ahead of
time for upcoming images. This allows the user to progress through the
images faster but presents a trade-off as they could potentially be out of
date as they are segmented with the best model available at the time and
not updated. Thus we only increase pre-segment once the user has worked
through a few images, as their annotation time speeds up and necessitates
the adjustment.

Once you have proceeded through 20 images since the 6th annotated image
then set pre-segment from one to two.

Once one hour has passed on the timer then take a break for 30 minutes.
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After the 30 minute break then click Start Training again and proceed to
annotate as before the break for another hour.
After the second hour has been completed then stop annotating.

Leave the network to stop training on its own.

2.9.4 Corrective Annotation Advice

Extra tips on how to execute the corrective training protocol effectively.

Use a large brush for the background (green) as this makes it quicker label
all the false positive regions.

Focus time and attention on the incorrectly predicted parts of the image

It is not a problem to label some foreground as foreground which has
already been predicted correctly.

It is also not a problem to label some background as background if it has
already been predicted correctly.

Errors to avoid include labelling a background pixel as foreground or la-
belling some foreground as background. These should be corrected using
the eraser tool.

It is not a problem to leave small areas unlabelled such as boundaries be-
tween foreground and background in the interest of avoiding errors whilst
annotating quickly.

Press I (capital i) to hide and show the image in order to better check the
networks segmentation prediction for errors before proceeding to the next
image.

2.9.5 Dense Annotation Advice

Tips on how to annotate densely, as was done in this study for comparison
purposes.

Set pre-segment (from the options menu) to 10 so that segmentation time
does not impact ability to work through the images. Increasing the pre-
segment setting causes the server to create segmentations ahead of time
for upcoming images. For dense we don’t care about the segmentations so
by segmenting 10 in advance it means the client software will never stall
their progression through the images because the segmentation has not
yet loaded.

Change the background colour from the default transparency level to a
transparency level of 8%. This is because altering the brush transparency
allows viewing the object of interest through the background annotation.
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e Label each image as all background with a single click using the large
brush and proceeded to explicitly annotate all objects of interest (using
foreground brush) or ambiguous regions (using the eraser brush) before
proceeding to the next image.

e Leave ambiguous regions such as boundaries as undefined, rather than
labelling them as foreground or background.

e Once the time limit is reached, use the eraser tool to mark areas not yet
annotated in the current image as undefined, stop annotating and click
Start Training.

Nodule Threshold Plot

A plot showing correlation between automatic and manual nodules counts as a
function of a nodule size threshold.

0 50 100 150 200 250 300 350 400
size threshold (pixels)

Figure 2.11: Correlation between automated and manual nodule counting as a
function of size threshold for the automatically detected nodules. The thresh-
olded nodules include only those above the specified area in pixels.

Video S1: RootPainter Biopore Model Training Video

A 42 minute video showing the training of a biopore segmentation model us-
ing RootPainter with corrective annotation. The video is available to down-
load from the online supplementary material available with the published arti-
cle: https://nph.onlinelibrary.wiley.com/action/downloadSupplement?
doi=10.1111%2Fnph. 18387&file=nph18387-sup-0002-VideoS1.mp4
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3.1 Summary

Purpose: Organ-at-risk contouring is still a bottleneck in radiotherapy, with
many deep learning methods falling short of promised results when evaluated on
clinical data. We investigate the accuracy and time-savings resulting from the
use of an interactive-machine-learning method for an organ-at-risk contouring
task.
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Methods: We implement an open-source interactive-machine-learning soft-
ware application that facilitates corrective-annotation for deep-learning gener-
ated contours on X-ray CT images. A trained-physician contoured 933 hearts
using our software by delineating the first image, starting model training, and
then correcting the model predictions for all subsequent images. These correc-
tions were added into the training data, which was used for continuously training
the assisting model. From the 933 hearts, the same physician also contoured
the first 10 and last 10 in Eclipse (Varian) to enable comparison in terms of
accuracy and duration.

Results: We find strong agreement with manual delineations, with a dice
score of 0.95. The annotations created using corrective-annotation also take
less time to create as more images are annotated, resulting in substantial time
savings compared to manual methods. After 923 images had been delineated,
hearts took 2 minutes and 2 seconds to delineate on average, which includes
time to evaluate the initial model prediction and assign the needed corrections,
compared to 7 minutes and 1 seconds when delineating manually.

Conclusions: Our experiment demonstrates that interactive-machine-
learning with corrective-annotation provides a fast and accessible way for
non computer-scientists to train deep-learning models to segment their own
structures of interest as part of routine clinical workflows.

3.2 Introduction

Half of all cancer patients receive radiotherapy [41], which is associated with
a range of dose dependent side effects [17]. Effective mitigation of these side
effects requires accurate delineation of organs-at-risk, such as the heart and
oesophagus [50, 127]. Manual delineation is still widely used but time-consuming
in comparison to automated methods [208] and subject to large inter-observer
variation [100, 250].

A review of auto-segmentation methods for radiotherapy indicated deep-
learning methods and convolutional neural networks (CNN) in particular as
representing the state-of-the-art [29]. See existing surverys of deep-learning for
radiotherapy for explanations of machine learning, deep learning, and CNNs
[132].

Although CNNs exhibit impressive performance when the training and test-
ing data are drawn from the same distribution [134, 90, 208, 53, 224], variations
specific to on-site clinical data may result in decreased performance [60, 59, 177].
For example it has been found that organ deformations due to an abdominal
compression technique impaired the performance of an externally trained CNN
model [54].

Training models on-site is a potential solution but can be challenging as
training neural networks involves time-consuming trial and error [132] and hiring
the appropriate experts is associated with high costs. A lack of large and high-
quality publicly available datasets compounds the problem [232] as annotating
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Figure 3.1: Interactive machine learning with corrective annotation puts the
human-in-the-loop during the model training process.

large enough datasets for training deep-learning models with purely on-site data
may be infeasible.

Corrective-annotation is an annotation sparsification strategy that results in
a sub-region of each image being labelled. Annotation-sparsification strategies
reduce the amount of user-annotation per-image. For a 3D heart segmentation
dataset, annotation-sparsification was found to enable deep-learning models to
be trained using just 20% of the labelled data whilst obtaining similar perfor-
mance [260].

As opposed to approaches that rely on automatic methods to infer which
regions of an image are most useful for labelling [260], corrective-annotation
utilises human feedback (Figure 3.1) to identify problematic regions of the image
for the model [62, 193, 82, 111]. Methods such as corrective-annotation which
utilise a human-in-the-loop to improve machine learning implementations are
known as interactive machine learning (IML) [83].

In prior work, corrective-annotation IML methods have been used to train
deep-learning segmentation models for a diverse array of modalities, including
2D plant photographs [193, 72, 43], laser ablation tomography [49], histopathol-
ogy [82] and 3D X-ray CT images of methane in sand [7].

To the best of our knowledge, no prior work has evaluated an IML approach
applied to medical X-ray CT data. Therefore we implement an IML system for
X-ray CT data and investigate its effectiveness for organ-at-risk segmentation.

We hypothesise that (1) semi-automatic contouring via an IML corrective-
annotation method will provide similar accuracy to existing manual methods;
And (2) that it will offer continuous improvements in contouring time as more
images are annotated, eventually leading to substantial time savings.
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3.3 Materials and Methods

We use a corrective-annotation approach to contour a large dataset of hearts by
having a physician correct all generated contours during training (Figure 3.1).
The process is semi-automatic, with the assisting model continuously learning
as more images are annotated.

3.3.1 Dataset

We used X-ray CT scans from a cohort of patients that had been collated
for a study on the association between mean heart dose and radiation-induced
lymphopenia [213]. The CT scans were from patients who had started to receive
radiotherapy to the chest region between 2009 and 2016 at Rigshospitalet in
Denmark. The cohort was restricted to patients who were at least 18 years old,
had dosimetric data available, a solid malignant tumour (excluding lymphoma)
and a blood count both before and after receiving radiotherapy. This resulted in
933 X-ray CT scans from 923 patients, of which 308 had breast cancer, 291 had
esophageal cancer, 56 had small-cell-lung-carcinoma and 268 had non-small-cell
lung carcinoma. The 933 images had varying slice thicknesses. 209 images had
a slice thickness of 3mm, 721 had a slice thickess of 2mm , and 3 had a slice
thickness of lmm. The number of voxels in each dimension varied. The total
number of slices (depth) varied from 96 to 489 with a mean of 189. The width
and height of the axial plane ranged from 512 to 658, with a mean of 537 voxels.
No pre-processing was performed to normalize the images in any way. All files
were saved in the gzip compressed NIfTI file format with extentsion .nii.gz. to
facilitate convenient loading with nibabel library [25].

3.3.2 Software Implementation

We implemented RootPainter3D, which is based on RootPainter, an open-source
corrective-annotation software application that utilises a client-server architec-
ture and makes the necessary operations to train and use a deep-learning model
for image segmentation available via a cross-platform graphical user interface
[193].

The original RootPainter uses a variant of U-Net [169] modified to utilise
group norm [244] and residual connections [76]. Compared to the 2D version
we modify the software in several ways. The 2D convolutional layers were con-
verted to 3D, resulting in a variant of the 3D U-Net architecture which is known
to perform well for organ-at-risk segmentation [53] and sparse data [35]. The
interface was modified to allow contrast settings to be adjusted, navigation and
annotation of 3D images, with viewing enabled in both sagittal and axial views
simultaneously. The data augmentation was removed. Although it is claimed
data augmentation is critical to achieving favourable generalisation performance
[178], results indicate the advantages of data-augmentation can be inconsistent
and dataset specific [92].
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RootPainter3D allows a user to inspect model predictions on a dataset that
they work through sequentially - one image at a time. For each image, they
initially define a bounding box in order to obtain predictions for a region con-
taining the organ of interest. The user is able to assign corrections to the model
predictions given for the defined region. When the user clicks ’save and next’ in
the interface the current annotation is saved to disk in a folder of annotations
which is shared with a remote server with a more powerful graphics process-
ing unit (GPU). The server component of the software continuously trains a
3D U-Net on the available annotations using stochastic gradient descent. For
RootPainter3D, batches of 4 annotations, with their associated image regions
are sampled from the annotation folder without replacement. The regions of
the images used for training are only those where user-annotations are assigned.
Supervised training is used but the annotations are sparse. Only the defined
regions (what the user has specified as either foreground or background) are
used for computing the loss which is used for updating the model weights.

The contrast settings (see Contouring procedure for more details). can be
changed to a preset option in the view menu, such as mediastinal, which was
used for our experiments.

3.3.3 Contouring procedure

To enable comparison to a manual method widely used in the clinic, 20 hearts
were also delineated using the Eclipse treatment planning software from Varian
Medical Systems, Inc.

From the 933 heart CT scans, the annotator delineated the first 10 in Eclipse
and then all 933 in RootPainter3D and then the last 10 in Eclipse. This was
done to allow the dice score (see section 3.3.6) to be computed between the con-
tours done in RootPainter3D and Eclipse, and also to compare delineation time
between RootPainter3D and Eclipse at the start and end of the RootPainter3D
model training process.

Contouring in both Eclipse and RootPainter3D was done using the medi-
astinal hounsfield unit (HU) window which ranges from -125 HU to 250 HU.
For both software applications, annotation can be performed in both the sagit-
tal and axial views but for our experiment all annotation was assigned in the
axial view. We used a single physician and contours were collected for research
purposes, rather than as part of a routine procedure.

In RootPainter3D the user is able to view the model’s initial segmentation
in blue (Figure 3.2). They can annotate foreground (heart) regions in red and
background (not heart) regions in green (Figure 3.2). A 3D segmentation con-
sists of a model prediction for each voxel in an image. If annotating correctively,
the red foreground annotation should correspond to model predictions that were
false negatives, and the green background regions should be targeted towards
false positive model predictions. Taking corrections into account, the corrected
contour can be viewed using the outline view (Figure 3.3).

When contouring in Eclipse, every third slice was contoured and then in-
terpolation was used to join the slices, as this is a standard clinical procedure
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Figure 3.2: Screenshot of RootPainter3D software showing segmentation in blue
and annotation in red for corrections to false negative regions and green for
corrections to false positive regions. The area in light red is outside of the
bounding box and is not part of the predicted or corrected region. The dashed
red line shows the position of the axial slice in the sagittal view. This dashed
line was added after the experiment in this study was completed based on user-
feedback.
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Figure 3.3: Screenshot of RootPainter3D software showing the outline view with
segmentation and annotation hidden. The axial view is shown on the right and
sagittal view on the left. The user is able to change what data is shown via
keyboard shortcuts or with the checkboxes shown in each viewer.
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used to save time compared to contouring all slices. The contours were not
further modified after the interpolation had been applied. The same trained
physician delineated all hearts in both RootPainter3D and Eclipse using the
Danish guidelines for whole heart contouring [135].

In order to ensure the physician’s familiarity with both software applications
prior to the experiment, 20 hearts that were not used as part of the experiment
were contoured in both applications.

In RootPainter3D, the initial image was densely delineated without consid-
ering the model’s segmentation. After delineating the first image, the training
procedure started. The subsequent 932 images were delineated by having the
physician evaluate the model prediction and then correct all errors using the
user interface.

3.3.4 Training

The training process for neural networks is a procedure where the network
weights and biases are iteratively updated by a gradient descent algorithm,
which compares the network outputs with the desired output [114].

When a user completes a delineation in the RootPainter3D client software,
the annotation is saved to disk and training is started automatically by sending
an instruction to the server.

The training routine, once started, first creates a model using Kaiming ini-
tialisation to assign random parameters [77], and then trains that model by
continuously iterating over all saved annotations.

The training procedure treats newly saved images similarly to previously
saved images as all images are equally likely to be used in the next batch of the
training procedure. It loads the annotations from disk and uses these, combined
with the image data, to train a model to predict the annotated regions correctly.
For the RootPainter3D trainer, regions that are not annotated are set to 0 in
both the network predictions and annotation. This means only the regions
of the image explicitly annotated as either foreground or background by the
annotator are used to compute the loss. The loss is then used to update the
network weights. The loss function used in RootPainter3D is a combination of
cross-entropy and dice loss [194].

A GPU is required for achieving optimal performance when training large
parameter models such as deep neural networks. As the entire dataset cannot fit
in the memory of the GPU, stochastic gradient descent is used to make network
updates based on a subset (known as a batch) of the full available dataset. In our
case the network is trained with a batch size of 4. We used two NVIDIA Titan
RTX GPUs, with 24GB of memory each, using a data-parallel [39] approach.
Due to GPU memory constraints, instead of using the full images, a sub-region
(patch) is sampled from a random location that contains annotation, from each
of the randomly sampled images in the training batch. The patch dimensions are
228, 228 and 52 voxels, corresponding to width, height and depth respectively.

For the RootPainter3D trainer application, once training has started, the
process is continuous, even when the client application is closed. The trainer ap-
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plication keeps track of a counter named epochs_without_progress. This counter
is used to measure the length of time that the network has been trained without
obtaining a new high score on the validation data.

3.3.5 Validation

In a machine learning context, the purpose of validation is to estimate model
performance on unseen data. Networks with large capacity can overfit arbitrary
datasets [258]. Fortunately, they have a tendency to learn smooth functions
and overfitting can be conveniently mitigated with early stopping [31]. Early
stopping involves checking model performance on a portion of the data not
used for training. This allows generalisation performance to be estimated and
a snapshot of the model weights to be taken before overfitting has substantially
degraded performance.

Similarly to 2D RootPainter [193], a portion of the annotated images are
assigned to the validation set instead of the training set. The first image is
assigned to the training dataset, then the second image is assigned to the vali-
dation dataset. From then on images are only assigned to the validation dataset
if the training dataset is at least 5 times as large as the validation dataset.

The validation dataset is used for model selection, in a way equivalent to
early stopping. An epoch typically refers to a full iteration over all available
training data. In this context we define epoch length in terms of the number of
examples sampled from the training data and have this automatically adjusted
in relation to the validation set size, which increases as more images are anno-
tated. If no validation images have been saved then the epoch length is 128.
Otherwise the length is maxz (64, 2v) where v is the number of patches contain-
ing annotation in the validation set. Setting the length of the training period
based on the validation set size ensures validation time does not overwhelm the
training procedure, despite continuous addition of new cases.

At the end of each epoch the predictions for the model being trained are
computed on the validation set and a dice score is computed using the available
validation set annotations. If the model-in-training’s dice score is higher than
the most recently saved model so far then it will be saved to disk and used for
generating the segmentation presented to the user in the client user-interface.

epochs_without_progress will get set to 0 in two cases. Firstly, when new data
is added to the training or validation datasets. Secondly, when a new model is
found which obtains a new high score on the validation set.

Network training procedures are stochastic and dependent on initial weights
[13]. Therefore as the first initial weights are unlikely to be optimal, repeating
the training procedure with different initial weights is a simple way to obtain
better results. For this reason we introduced a restart procedure. The restart
procedure was not functioning for the first 478 hearts, during which the network
would stop after 60 epochs without progress.

The restarting behaviour, used for the latter portion of the experiment to
further boost network accuracy, would start training the network from scratch
after 60 epochs_without_progress were reached. If the newly trained model beat
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the best model on the validation set so far then it would be saved (see Validation
for more details). That means if the system is left unattended for long enough,
it will likely find a new best model, and keep trying relentlessly until it does.

3.3.6 Dice evaluation

The dice score is a measure of overlap between structures. If two structures are
exactly overlapping, the dice score is 1.0. For prediction p, annotation g, and
voxel count N, dice score is defined as:

20ng) 25V pigi (3.1)

- N N
pUg 3P+ g

In order to evaluate the accuracy of the RootPainter3D contours before and
after user correction, we compared the dice of both the initial predicted contour
and the version after corrections with contours created manually in Eclipse for
the same 20 images.

For each model generated heart contour, we also compute the dice score be-
tween the predicted heart contour and corrected version for 933 images. This
approach is similar to previous studies that use manually corrected model pre-
dictions as ground-truth contours for evaluation [53, 67].

3.3.7 Interaction logging and annotation duration

To evaluate the extent to which the trained model assisted in reducing an-
notation time, we asked the annotator to log the specific time periods when
they started and stopped annotating. We also automatically logged interaction
events with the user-interface including when the user saved an image, opened
a new image, moved to a different slice in the axial or sagittal views, changed
zoom settings and mouse down and mouse release events.

To compute the amount of time the annotator spent on each image, we filter
to interaction events inside their manually logged annotation period. For each
file, we start accumulating interaction time from when the user opens that file
until they open the next file. We also exclude periods of inactivity from our
duration computation, which we define as no interaction events for at least 20
seconds.

3.3.8 Impact on radiation dose

We also compare the computed mean heart dose (Gy) when using the initial
segmentation compared to the corrected contour.

To compare dose absorption we first obtain a 3D dose matrix with the same
resolution as the associated image for each scan from the clinical dose plan.
The dose matrix provides a cumulative level of radiation dose absorbed by each
voxel in the planning CT scan. We compute the mean heart dose using the dose
matrix combined with both the initial segmentation and corrected structure
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Figure 3.4: Delineation duration for each of the 933 images shown in order of
delineation with the mean delineation duration of the 20 images contoured in
Eclipse. RootPainter3D per-image delineation duration reduces over time.

independently. We then take the absolute difference between the two mean
heart dose measurements to allow us to plot dose deviation over time as more
hearts are annotated. The dose calculation is not repeated and we therefore
rely on the 3D dose matrix from the clinical calculation algorithm at the time of
treatment. This was the Analytical Anistropic Algorithm for earlier treatments
and superseded by the Acuros XB Boltzmann equation algorithm of the Eclipse
systems starting in 2014.

3.4 Results

Duration

In order to evaluate the annotation speed of RootPainter3D, we report delin-
eation duration as a function of the number of images annotated (Figure 3.4).
The first 10 and last 10 hearts are shown separately to highlight both the differ-
ences with Eclipse and RootPainter3D both before and after a period of exten-
sive interactive annotation (Figure 3.5). RootPainter3D is initially slower and
then becomes significantly faster after it has learned from more user corrections
(Figure 3.5).

After around 110 images, delineation duration in RootPainter3D is less than
the mean delineation of the 20 hearts contoured in Eclipse (Figure 3.4). With
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Figure 3.5: RootPainter3D and Eclipse delineation duration for the first 10 and
last 10 images out of the 933. RootPainter3D is initially slower than Eclipse
but then becomes significantly faster. The last 10 hearts take an average of 2
minutes and 2 seconds to delineate in RootPainter3D compared to 7 minutes
and 1 seconds when using Eclipse. Delineation in RootPainter3D is over three
times faster than delineation in Eclipse.

Table 3.1: Dice scores between hearts delineated using RootPainter3D and
Eclipse, showing strong agreement between methods. However, the Root-
Painter3D predicted and corrected contours are more similar to each other than
either one is to the Eclipse contours. pred refers to RootPainter3D predicted
contours and cor refers to the RootPainter3D corrected contours.

Eclipse vs pred | Eclipse vs cor | pred vs cor
mean | 0.945 0.952 0.991
std 0.008 0.007 0.005

the exception of temporary fluctuations, the RootPainter3D per-heart delin-
eation duration continues to decrease as more hearts are contoured (Figure 3.4)
becoming substantially faster than the comparison manual method with the last
10 hearts taking an average of 2 minutes and 2 seconds to delineate compared to
7 minutes and 1 seconds when using Eclipse (Figure 3.5). The recorded time in-
cludes both the time for the physician to evaluate the model’s segmentation and
assign any required corrections. The RootPainter3D delineations also maintain
strong agreement with manual delineations of the same images (Table 3.1).

Accuracy

The dice score between the initial predicted heart and the corrected version are
shown with running mean and standard deviation which were computed using
a running average from 60 images (Figure 3.6). The dice scores of all hearts,
excluding the first (which had a dice score of 0.2) are shown in figure 3.6. From
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Figure 3.6: The dice score for 933 images shown in delineation order. The dice
score compares the predicted vs. the corrected contour for each delineated heart.
After the initial training period, the vast majority of dice scores are above 0.9,
with only a few outliers dropping below. Outliers are labelled a and b.

the 300th heart onward, the vast majority of hearts have a dice score above 0.98
(Figure 3.10) with a few outliers having dice scores between 0.9 and 0.95 and
just two extreme outliers having dice scores below 0.7 (Figure 3.6).

Axial slices from the outliers a and b labelled in figure 3.6 are illustrated in
figure 3.7 and figure 3.8 respectively. These two hearts were the only ones out
of the last 600 annotated which had a dice score lower than 0.9. In both cases
the model appeared to be confused by a large tumour adjacent to the heart.

To show the model progression more clearly, in figure 3.10 the y-axis min-
imum is raised to 0.9, which includes most of the values. Although there are
fluctuations, the mean dice score shows a trend of continuous improvement as
more images are correctively delineated (Figure 3.10).

We found strong agreement between the hearts contoured in RootPainter3D
and Eclipse (Table 3.1). All of the last 10 hearts in RootPainter3D had higher
agreement with the manual Eclipse delineations after the corrections were as-
signed.

Figure 3.11 shows the mean heart dose and dose difference between predicted
and corrected heart contours for all hearts where the absolute dose difference
was less than 0.25 Gray. As shown in figure 3.12, only 4 of the model predicted
hearts in the last 300 result in an error in dose above 1 Gray.
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Figure 3.8: Outlier b: Dice score 0.68.

Figure 3.9: Outliers a and b. For each heart two axial slices are shown with
contours overlaid. On the left the model prediction is shown in green with the
user corrected heart in yellow. On the right only the corrected heart is shown.
For both the outliers with low dice, the tumour was located adjacent to the
heart.
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Figure 3.10: Dice score computed using the initial predicted image and the
corrected version. Y-axis restricted to 0.9 to 1.0 to show improvement in mean
over time. The mean dice score has fluctuations, but shows a general trend of
improvement throughout the experiment.
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Figure 3.11: A plot of the outliers, showing dose differences between the pre-
dicted and corrected heart contours along with mean heart dose for hearts with
absolute differences over 0.25 Gray for images 1-311, 312-622 and 623 to 923.
The outliers became less severe in terms of dose difference as more images were
annotated. Despite this, even in the later stages of interactive training (images
622-933) there was still a severe outlier with a difference of over 6 Gray. This
outlier, labelled b, corresponds to the dice score outlier labelled b in figure 3.6
and shown in figure 3.8. In some cases a low corrected mean heart dose would
still have a large dose difference, for example in images 622-933 one heart had
less than 2 Gray mean heart dose but over 1.5 Gray difference between the
predicted and corrected heart contours.
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Figure 3.12: Percentage of hearts with absolute differences from 0.25 to 1 Gray
and over 1 Gray for images 1-311, 312-622 and 623 to 923. The dose differences
decrease as more images are annotated correctively.

3.5 Discussion

The strong agreement with the manual contours shown in table 3.1 supports our
first hypothesis that RootPainter3D will result in accurate contours. Prior heart
auto-contouring studies have observed a mean dice score of 0.925 between model
predictions and manual delineation [53]. Disagreement between multiple heart
delineators was found to give a dice score of 0.931 [251], indicating the difference
between RootPainter3D delineations and our manually created delineations may
be less than the difference between two annotators, even before corrections are
assigned.

The decrease in per-image contouring duration as more hearts are annotated
(figure 3.4) and significantly faster contouring for the last 10 hearts (Figure 3.5)
support our second hypothesis that RootPainter3D will offer substantial time
savings.

In Eclipse, only one in every three slices was manually delineated, with the
others created using interpolation. Even though in RootPainter3D all slices
were manually corrected, the contouring time was still more than three times
faster than Eclipse (Figure 3.5). This discrepancy between the number of slices
delineated vs interpolated also explains why RootPainter3D was slower than
eclipse during the initial period of annotation (Figure 3.5).

The dice scores between the RootPainter3D corrected contours and Eclipse
contours are lower than the dice scores between the RootPainter3D predicted
contours and corrected contours (Table 3.1).

As the predicted and corrected contours are not done independently, it is
expected that they will have higher agreement than two independently created
contours. For quantifying errors in an existing delineation, there are some cases
where this may be a strength. When delineating from scratch in noisy im-
ages and areas with little contrast, a drop in dice may be caused by differences
in delineation along ambiguous border regions. With corrective-annotation, the
annotator focuses on clear errors and the measured dice is therefore an indication
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of how often the system makes such clear errors and these may be more relevant
to quantify. For creating datasets for machine learning, corrective-annotation
could therefore reduce label noise consisting of natural-perturbations. Although
deep-learning is relatively robust to label noise [168], perturbations along bound-
aries are particularly problematic for U-Net model training [79].

In prior studies, correcting contours, as opposed to contouring from scratch
has been shown to increase consistency and reduce inter-observer variation [40].

The two outliers with low dice scores were in patients with anatomical ab-
normalities that will also likely be correlated to high dose to the heart (Figure
3.9) and in one case would have resulted in an error in dose quantification of over
6 Gray had it not been corrected (Figure 3.11). This is a potential limitation
of using fully-automatic contouring for dose-response modelling and shows the
importance of carefully reviewing the results of such models in clinical applica-
tions.

Some of the larger errors are likely due to rare anatomical or pathological
features or low contrast between the structure of interest and adjacent structures
(Figure 3.9). Improvements in auto-segmentation performance are known to
depend on image quality but rare artifacts or features are inevitable and will
continue to require human intervention.

A typical limitation of auto-contouring studies is the small number of scans
used for evaluation, with less than 100 being typical [177]. By evaluating our
contouring software on over 900 hearts we were able to identify outliers that
would have otherwise been missed (Figure 3.9). It is clear from figure 3.6
that smaller datasets may exclude such outliers by chance, resulting in over-
optimistic characterisations of performance on unseen data.

Despite editing auto-contours being identified as a barrier to the adoption of
automatic methods [251], our results, in alignment with previous studies [124,
226, 108], demonstrate that correcting auto-contours saves time compared to a
standard clinical workflow. In prior work, time-savings have been demonstrated,
even when the predicted structures are of particularly low quality, with a dice
score as low as 0.46 [64].

The benefits of corrective-annotation to routine clinical contouring are clear
as correcting inaccurate contours is already essential to optimise treatment plan-
ning [50, 127]. In addition to being usable by non-experts [48] and providing
performance improvements in comparison to fully-automated systems [84], IML
can provide trust and quality control benefits [133] which are of particular in-
terest in a radiotherapy context.

The IML process (Figure 3.1) provides feedback to the annotator on how
much data is necessary to train a model to a given level of accuracy and due to
their extended exposure to model behaviour, provides physicians with control of
model training and insight into the strengths and limitations of an Al system,
attributes needed to ensure clinical adoption [28].

[160] characterise IML systems as being used for task-completion or model-
building. As opposed to prior evaluations of IML with corrective-annotation
for model-building [193], in this study we also demonstrate the potential for
assisting in task-completion.
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We used mean heart dose computation accuracy to measure model quality.
Although it brings our results closer to a value familiar to the working radiation
oncologist, the utility of mean heart dose for understanding cardiac toxicity
has been called into question by recent studies [85]. With faster contouring
capabilities, IML systems such as RootPainter3D provide capabilities to contour
more structures in less time, making it possible to delineate organ sub-structures
in a larger cohort of patients.

We motivated the omission of data-augmentation based on results that in-
dicate the benefits may be dataset specific [92]. More recently, the same au-
thors conducted a more thorough analysis, providing stronger indications that
a sensibly designed data-augmentation procedure would provide benefits across
datasets and organs [96]. Thus we expect the addition of data-augmentation
would further improve our results.

We observed that many time consuming contour adjustments were minor
changes along the boundary which are in many cases unlikely to have a large
impact on dose. This aligns with previous observations [26], [26] and indicates
a need for methods that guide delineators in determining which corrections are
meaningful for dose-planning.

The combination of electronic health records, stored dose matrices and CT
scans from record and verify systems has great potential to increase our under-
standing of radiation dose effects for normal tissues [232].

Prior work investigating the relationship between radiation exposure and
lymphopenia for a cohort of 901 patients was completed by registering all scans
to a single reference patient [1]. Our proposed method would compliment such
studies by enabling efficient segmentation of structures of interest for each indi-
vidual patient CT scan, potentially mitigating errors that may result from the
registration process.

Our software is made available open source and we emphasise that with
a restarted training process, the same application can learn to segment other
organs of interest in a research setting. As we started training from random
weights and use a fairly generic U-Net architecture, we expected the performance
to be similar.

The risks when working with new data and multiple clinicians will need to
be carefully considered before such systems can be adopted in the clinic, and
new tests may need to be designed to ensure robustness and quality [233].

For technical teams including physicists and programmers, an open source
solution may offer the needed flexibility to modify, extend and experiment with
altered versions of the software. For less technical teams, software with existing
commercial support may be a preferred choice.

Our proposed method immediately utilises all user corrections in the training
procedure. Although the lack of commercial support may be a barrier to uptake,
compared to commercial offerings, our method provides a way for teams to
continuously adapt models to specific onsite issues without waiting for updates
from third-party vendors.
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3.6 Conclusion

Our results demonstrate the benefits of continual-learning with corrective-
annotation, by showing how contouring time can be continually reduced whilst
maintaining accuracy. The model-training was initiated and all annotation
added via the graphical-user-interface, demonstrating that our proposed soft-
ware provides a user-accessible way to train and use deep-learning models to
semi-automatically contour large datasets.

It may be some time before such systems can be made widely available to
clinics, as medical devices utilising continual-learning are yet to be approved by
the FDA [115, 38].
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Abstract

Background: Increased organ at risk segmentation accuracy is required to
reduce cost and complications for patients receiving radiotherapy treatment.
Some deep learning methods for the segmentation of organs at risk use a two
stage process where a localisation network first crops an image to the relevant
region and then a locally specialised network segments the cropped organ of
interest.

Purpose: We investigate the accuracy improvements brought about by such a
localisation stage.

Method: We compare a two-stage approach using localisation to a single-stage
baseline network trained on full resolution images using random patch sampling.
We use five datasets from the Medical Segmentation Decathlon, including the
heart left atrium (MRI), liver (CT), pancreas (CT), spleen (CT) and prostate
(MRI). We split each dataset into training, validation and test subsets for our
experiments.

Results: The two stage approach including automatic localisation provided
significant increases in segmentation accuracy for the spleen, pancreas and heart.
Localisation improved both training time and stability compared to the baseline
method. We also observe increased benefits of localisation for smaller organs.
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Conclusion: Automatic, and to a greater extent manual localisation can reduce
training time and increase segmentation accuracy, especially for smaller organs.

Introduction

More than 50% of cancer patients receive radiotherapy which is associated with
a range of dose dependent side effects. Delineation of organs at risk on treatment
planning scans is crucial to minimise complications [50, 127]. Manual delineation
is possible and still widely used but in comparison to automated methods is time
consuming [208] and subject to large inter-observer variation [100]. Therefore,
methods to improve the accuracy of automated methods are required. A review
of auto-segmentation methods for radiotherapy is presented by Cardenas et al.
[29] with deep learning methods and convolutional neural networks in particular
representing the state-of-the-art.

Organ localisation has been used for a variety of tasks in image analysis and
can reportedly improve segmentation accuracy whilst reducing computational
memory and processing time requirements [246].

Kutnar et al. [113] found a two-stage localisation approach to be effective for
the segmentation of lacunes in brain MR images and Gros et al. [67] found spine
centerline localisation to provide state-of-the-art spinal cord segmentation accu-
racy. Feng et al. [53] proposed a two stage approach using cropped 3D images,
where a similar 3D U-Net was used for both the initial organ localisation and
segmentation stages. They claim their approach is more data efficient due to
the use of voxel labels in the training of the localisation network. The method
proposed by Feng et al. [53] is appealing as it uses the same method (segmenta-
tion with 3D-U-Net [34]) for both localisation and segmentation which simplifies
both concept and implementation.

Although the method obtains competitive accuracy [251], an ablation anal-
ysis or baseline comparison method is lacking. Therefore, we conduct a more
focused investigation to measure the accuracy gains brought about by such an
approach to localisation. We hypothesise that localisation will improve organ
at risk segmentation accuracy, demonstrated by a significant increase in dice.
To the best of our knowledge, this hypothesis has not been tested in a focused
investigation.

Methods

Dataset

To evaluate the effect of localisation on a diverse array of organ at risk seg-
mentation tasks, we used the spleen, pancreas, prostate, liver and heart (left
atrium) datasets [187] from the Medical Segmentation Decathlon [10]. We used
only the original training sets, as this portion of the data has corresponding
labels available for download. To facilitate the training and evaluation of deep
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learning models for image segmentation, we split the downloaded images and
labels into our own training, validation and test subsets with sizes of 60%, 20%
and 20%, respectively (Table 4.1). This ratio between training, validation and
test data was chosen as it is typical for deep learning model training.

Table 4.1: Number of images included in each of the training, validation and
test datasets for each of the organs.

organ training validation test

spleen 25 8 8

pancreas 169 56 56

prostate 19 7 6

liver 41 14 14

heart 12 4 4
Implementation

We used PyTorch [151] (Version 1.13.1) and implemented a 3D U-Net [34] which
is an encoder-decoder style semantic-segmentation architecture. For all experi-
ments we use 64GB of RAM and two NVIDIA 3090 RTX GPUs.

When performing semantic segmentation using convolutional neural net-
works, GPU memory is often a bottleneck. Due to this limitation there is a
trade off between batch size, which is the number of images used in each train-
ing update and patch size, which is the size of the images used during training.
Larger input patches allow more context to be considered for each voxel or pixel
classification decision and have been found to improve accuracy [87]. Therefore
we used an input patch size of 64x256x256 for all experiments as this was the
largest we could fit in GPU memory. However as such large input patches take
up more GPU memory they force a reduction in batch size. Therefore we used a
batch size of 2 for all experiments with one instance (input patch) on each GPU,
utilising a data-parallel approach, meaning the training batch is split accross
the GPUs. Small batch sizes can be problematic for the commonly used batch
normalisation method [91, 244]. Therefore we used group normalisation [244]
after each layer as it performs well when small batch sizes are used and has been
found to be effective for 3D medical image segmentation tasks [141].

We use a loss function which is a combination of dice [204] and cross-entropy
as this has been found to be effective when dealing with class imbalanced
datasets [194, 206]. Although in [53] the authors used cross-entropy with impor-
tance weights for their main experiments, they mentioned that they also found
a combination of cross-entropy and dice loss to both stabilise and accelerate the
training process. Another disadvantage of cross-entropy as opposed to dice loss
is that organ specific importance weights require manual tuning. We used zero
padding in the convolution operations to allow our 3D network to produce an
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output segmentation with the same size as the input patch.

For all experiments we used the Adam optimiser [106] with a learning rate of
0.0001. For each training run we initialise the weights using He [77] initialisation.
We used check-pointing and early stopping [139] to mitigate over-fitting. Check-
pointing involves saving the model weights to disk during the training run. We
computed the dice on the validation set at the end of each epoch and only
saved models which obtained a new highest dice. There are various way to
implement an early stopping procedure [157]. Our stopping criterion used the
number of epochs since an improved dice had been found, a parameter which is
a commonly referred to as patience. We set patience to 20 for all experiments,
thus each training run would stop after 20 epochs had passed since a new highest
dice score on the validation set had been obtained.

To mitigate the possibility that the results were due to chance, for each organ
and method, training runs were repeated until 10 runs had converged, where
convergence was defined as the model having at least 0.1 dice on the validation
set after 20 epochs.

The methods campared include a baseline full resolution segentations ap-
proach using 3D patches, a two stage localisation approach and a method in-
volving only organ segmentation, where the ground truth was used to localise
(Figure 4.1). In the following sections we describe the three different approaches
we experimented with to evaluate the benefits of localisation.
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Figure 4.1: Tlustration showing the three different methods compared, including
the baseline, two stage involving both a localisation network and organ segmen-
tation network and the organ segmentation network that uses the ground truth
to localise.

Baseline - full resolution segmentation

In order to evaluate the advantages of the two stage localisation process we
trained a single stage baseline network. For each training instance we sample
a patch with random location within the image and the corresponding location
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from the annotation. We enforced that at least 80% of the selected patches
contained foreground annotation. Such biased instance selection is a relatively
common practice as otherwise most patches would not contain foreground which
can cause convergence problems.

Localisation network

In order to train the localisation network we created a low resolution version of
the dataset by resizing the images and annotations down to a half their width
and height and a third of their depth. We then trained the network to predict
the annotations which were also resized to match the reduced resolution images.
We created these low res images using the resize function from scikit-image [227]
(Version 0.17.2).

Organ segmentation network

To train the organ segmentation network, we first created a dataset of images
and annotations which were cropped by taking the region of the image including
the organ with 15 voxels padding on each side to include some background
context. To ensure enough padding was included on each side of the organ,
even if the organ was at the edge of an image, the images were zero padded by
15 voxels on each side before cropping to the organ. The organ segmentation
network was trained independently using these cropped versions of the original
images and ground truth annotations, without regard to the output of any
particular localisation network.

Ground truth localisation

We also evaluated an approach using a localisation stage which utilises the
ground truth labels. We do this to access the advantages of localisation given
an accurate bounding box.

Two stage localisation & segmentation pipeline

In order to segment the full resolution image with a preliminary localisation step
we implemented a two stage process. We first computed a low res version of the
image and then segmented it using the localisation network. We then identified
the organ as the largest connected foreground region in the low res segmentation.
We then segmented the corresponding region in the full resolution image with
padding on each side of the organ as described in the above Organ segmentation
network section. To perform this two stage segmentation, we pairwise couple
the localisation networks with the organ segmentation networks chronologically,
thus the i’th organ network trained is coupled with the i’th localisation network.
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Metrics

During training we computed dice on both the training and validation data.
For the final model that was automatically selected at the end of the training
run, dice was computed on both the randomly selected validation and test sets
using the full resolution segmentations and annotations.

The two sided t-test as implemented in SciPy [231] (Version 1.5.4) was used
for testing for significant differences between the accuracy of the methods on
both the validation and test datasets. We also record time for each of the
training runs to converge.

Results

Training

Table 4.2:  Average training time (minutes) for each of the three types of
networks for each of the organs.

baseline low res organ

spleen 74.9 10.8 10.1
pancreas 477.6 65.1 91.2
prostate 6.4 2.0 2.2
liver 253.2 42.8 110.0
heart 22.2 3.7 2.5

For each organ, the baseline approach is substantially slower than the other
methods and for all organs takes longer to converge than both the low res and
organ networks combined (Table 4.2).

Both the baseline method and low res networks had less stable performance
during training compared to the organ network, with larger fluctuations in the
dice (Figure 4.2). The organ segmentation network always converged (Figure
4.3a). With the baseline and low res networks, convergence is similarly likely,
with 83% of the baseline training runs and 85% of the low res training runs
converging. The varying rates of convergence (Figure 4.3) reflect the difference
seen in training stability (Figure 4.2).
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Figure 4.3: Convergence rate for (a) each method and organ, (b) as a function of
dataset size and (c) as a function of class balance (average foreground percent).

Validation

Table 4.3:  Average dice on the validation set for the baseline network compared
to the two stage approach with both predicted and ground truth localisation.

Values which are significantly higher than the baseline are shown in bold.

baseline two stage ground truth localised
spleen 0.6491 + 0.0997 0.8142+0.0221 0.8619 + 0.0092
pancreas 0.4372 4+ 0.0148 0.6674 £+ 0.0146  0.7564 + 0.0096
prostate  0.7744 4+ 0.0109 0.7699 + 0.0149 0.8323 + 0.0076
liver 0.6661 + 0.0188 0.7044 + 0.0694 0.7807 + 0.1061
heart 0.6547 + 0.0239 0.7018 £0.0281 0.7612 + 0.0087

For the validation sets, the dice was significantly higher for the two stage ap-
proach compared to the baseline method for the heart (p < 0.001), spleen
(p < 0.001) and pancreas (p < 0.001). For the liver, although the two stage
approach appears it may offer some improvements, the difference was not signif-
icant (p = 0.11). For the prostate there was no significant difference (p = 0.44).

On the validation set, the difference between the ground truth localised
method and baseline was significant for the liver (p < 0.05) and highly significant
for the heart, spleen, pancreas and prostate (p < 0.001). For all organs except
the liver (p = 0.07), the benefits of ground truth localization are significant
compared to using the localization network to provide the cropped region (p <

0.001).
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Test
Table 4.4:  Average dice on the test set for the baseline network compared

to the two stage approach with both predicted and ground truth localisation.
Values which are significantly higher than the baseline are shown in bold.

baseline two stage ground truth localised

spleen 0.4433 £ 0.1162 0.6503 = 0.0538  0.8255 % 0.0086
pancreas 0.4366 = 0.0205 0.6519 +0.0136 0.7397 & 0.0063
prostate  0.797 £ 0.0342  0.7204 £ 0.0244 0.8361 £ 0.0145
liver 0.6039 + 0.0214 0.6096 = 0.0664 0.7156 + 0.1028
heart 0.5764 + 0.0311  0.623 £ 0.0523 0.7508 + 0.0178

On the test set, the two stage dice score was higher than the baseline for the
spleen (p < 0.001), pancreas (p < 0.001) and heart (p < 0.05). For the liver
the difference was not significant (p = 0.8). The test set dice was significantly
higher with the baseline approach compared to the two stage method for the
prostate (p < 0.001).

When using the ground truth labels to localise, the increase in organ network
dice compared to the baseline was highly significant for the heart, spleen and
pancreas (p < 0.001) and significant for the prostate and liver (p < 0.05).

The benefits of ground truth localization were also highly significant com-
pared to using the localization network to provide the cropped region for the
heart, spleen, pancreas and prostate (p < 0.001) and significant for the liver
(p < 0.05). We found that smaller organs, as a percentage of scanned region
tend to benefit more from localisation (Figure 4.4).
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Figure 4.4: Benefit of localisation for each of the datasets for both predicted
localisation region (0) and when the ground truth location is provided (x). The
mean improvement in dice is calculated by subtracting the mean baseline dice
from the mean localised dice. Foreground % is the percentage of the voxels in a
scan that belong to the organ as opposed to the background, where background
is considered as all voxels outside of that particular organ.

Discussion

Although the significant improvements in dice for the majority of datasets con-
firm our hypothesis that localisation improves organ at risk segmentation accu-
racy, the baseline performed stronger than expected in comparison to the two
stage localisation approach, even out-performing the localisation approach on
the prostate test set.

The mean organ volume as a percentage of total image volume ranges from
0.2% for the pancreas to 2.7% for the prostate. This represents an extreme
class imbalance, particularly for the pancreas, spleen and left atrium. Class
imbalance is known to have detrimental effects on the performance of machine
learning models [122] and convolutional neural networks in particular [27]. If
not addressed, a class imbalance problem may lead to algorithms tending to
predict only the majority class [47]. Gros et al. [67] argue a two stage approach
involving localisation is able to mitigate issues caused by class imbalanced data.
The trend of an increased benefit of localisation for smaller organs (Figure 4.4)
is expected, because for smaller organs the class balance issue becomes more
severe and if the organ becomes large enough there will be negligible difference
between the baseline and localisation approaches.

One explanation for the good performance of the baseline could be the ran-
dom selection of patches during the baseline training procedure. This ran-
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dom selection could have provided some augmentation benefits similar to ran-
dom cropping. When the organ segmentation network encountered unexpected
anomalies it may have been less equipped to handle them. Xu et al. [247] trained
an organ segmentation network using a region containing the organ of interest
but with variation in the amount of padding around it. Varying the amount of
context around each organ during training may be key to a two-stage localisa-
tion network that provides consistent advantages in accuracy compared to the
single stage baseline line method.

The baseline and low res network training instability, including fluctuations
in dice (Figure 4.2) is likely related to the challenges with class imbalance.
Although the baseline network had biassed instance selection to include fore-
ground batches more frequently, its task was likely more complicated compared
to cropped organ segmentation as the baseline network must learn to segment
regions further away from the organ. For the baseline approach, the patches
used in training will have also been less consistent, including varying amounts
of the organ of interest or sometimes only background regions.

The heart (left atrium) had the lowest rate of convergence on average, which
is likely due to it having both a relatively small dataset (Figure 4.3b) and a large
class imbalance (Figure 4.3c). Our condition for convergence was based on
accuracy, which typically increases with training dataset size [80]. An exception
is the pancreas, with the largest dataset, yet a convergence rate of only around
85% (Figure 4.3b), which may be due to the high class imbalance in this dataset
(Figure 4.3c).

Reduction in model training time is critical for both workflow optimisa-
tion and carbon footprint [9]. Slow training may also hinder novel interactive-
machine-learning approaches that depend on model adaptation to support a
feedback loop between annotator and model [196, 195, 241, 189]. We found
that the baseline method had slower convergence and longer training time com-
pared to the localisation approach, even when considering that the localisation
approach involved training two networks (Table 4.2). The slow convergence of
patch based training in comparison to other approaches has been observed in
previous work evaluating methods for brain tumour segmentation [23].

A potential drawback of the two stage localisation approach is the additional
complexity of training two networks. A potential limitation to the network
architecture used in this study is the use of zero-padding to ensure that the
network input and output had consistent size. In some cases zero-padding has
been found to increases errors on the edge of a patch by as much as 35% [87].

The consistent benefits of using ground truth to localise the region for the
organ segmentation network (Table 4.4) motivate the use of a manual bounding
box in cases where accuracy improvements are required for smaller organs, an
approach that has been used for prior studies in interactive machine learning for
organ at risk segmentation [196]. Manual localisation would also be feasible with
interactive segmentation methods, such as the approach proposed by Rasmussen
et al. [164] where organ extremities are input to guide the predicted contour.
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Conclusion
Our results show the advantages of both manual and automatic localisation for
organ at risk segmentation in terms of both training time, convergence rate

and segmentation accuracy, especially for smaller organs where class imbalance
causes challenges for conventional approaches to segmentation model training.
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Abstract

Background: Corrective annotation is an interactive-machine-learning
method that reduces contouring time but correcting large contiguous error
regions still involves repetitive work.

Purpose: To measure the change in contouring time when updating the
segmentation in real time based on user annotations as input.

Methods: We compare the existing interactive-machine-learning method,
RootPainter3D, to a new variant, named auto-complete, that allows segmenta-
tion for the current image being annotated to be continuously updated based
on the annotation input.

Results: We find that auto-complete is slower initially and then appears to be
faster after enough images have been annotated.

Conclusions: Our proposed auto-complete method illustrates the potential to
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augment interactive-machine-learning methods with interactive-segmentation
and, given enough data, to further accelerate auto-contouring of organs at risk
in radiotherapy.

5.1 Introduction

There is a need for faster and more accurate auto-contouring to improve radio-
therapy. A critical use-case is online-adaptive radiation therapy (ART) which
may reduce harmful radiation dose to critical organs-art-risk [14] and is imple-
mented at magnetic resonance linear accelerators (MR-linacs) [109, 242], and
online-adaptive computerised tomography (CT) linacs [11, 186, 253]. In ART,
the daily patient anatomy is taken into account in each radiotherapy treat-
ment session, necessitating the rapid creation of accurate contours. At sites
where anatomy changes rapidly due to bladder filling, rectum filling, or intes-
tine movements, the accuracy of segmentations deteriorate with time. If online
segmentation takes too long, the patient anatomy at the time of treatment will
no longer be representative of the pre-treatment scan used for segmentation.
Therefore, segmentation time is crucial for accurate treatment delivery in ART.

To improve annotation speed, several methods have been proposed that use
preliminary annotation such as clicks or scribbles as input to a model to guide
predictions. The class of annotation approaches that use user-input in the model
inference stage is known as interactive-segmentation. Interactive-segmentation
methods may take user input in the form of a bounding box [117], scribbles [15]
or clicks at the extremities of a visible object [150]. The 3DSlicer [155] medical
image annotation software supports interactive segmentation methods such as
GrabCut [172]. From drawing scribbles in one or multiple 2D slices of the fore-
ground and background classes, 3DSlicer can generate and refine an entire 3D
segmentation. Imfusion Labelsis a commercial software using a GrabCut-like
algorithm that has demonstrated annotation speed three times faster than a
manual approach using ITK-SNAP [255] for segmentation of vestibular schwan-
noma in MRIs [131]. QuPath [16] enables interactive segmentation with a ran-
dom forest pixel classifier. Given some initial annotations, QuPath trains a
pixel classifier model, which can then be applied on the remainder of the im-
age or new unseen images. MONAI Label [45] is used as an extension for
existing annotation software such as 3DSlicer or QuPath and enables interac-
tive segmentation both for radiology and histopathological images. Similarly
to QuPath, MONAT label supports interactive segmentation through machine
learning-based models. However, it extends QuPath by adding deep learning
support. For ultrasound images, Annotation Web [188] provides a web interface
and generates segmentations from user-defined border coordinates using cubic
Hermite spline interpolation.
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5.1.1 Interactive machine learning

Interactive machine learning for image segmentation was introduced by Fails and
Olsen [51] in their system named Crayons which involves a corrective feedback
cycle where model predictions are viewed by the human annotator, with the
corrections being provided back to the model. As opposed to using user-input
in the model inference procedure, interactive-machine-learning methods use user
input in the training procedure to select which examples, or regions of images
will be used in training. Interactive-machine-learning involves a human-in-the-
loop during the model training procedure, as opposed to traditional machine
learning, where models are trained from an existing annotated dataset in a fully
automatic way. Thus, they are useful for applications where sufficient annotated
data is not yet available and there is a desire to obtain additional annotation
with the assistance of an already partially trained model.

Histo-Cloud [125] is a web-based human-in-the-loop software for histopathol-
ogy images, utilising a Deeplab V3+ [33] CNN for segmentation. CVAT [180] is
another open, web-based annotation tool, primarily tailored and used for natu-
ral images. CVAT is free to use and can be set up locally, similar to Annotation
Web. However, CVAT offers a paid subscription to annotate data on the cloud,
with GPUs, where various semi-automatic tools are available. To speed up an-
notation, CVAT offers various pretrained models to assist in annotation, both
pure detectors and interactors, similarly to GrabCut.

5.1.2 Corrective annotation for interactive machine learn-
ing

Corrective-annotation methods have been shown to continually improve seg-
mentation efficiency [196] and consistency [40] for routine delineation tasks.
Correcting auto-generated contours may still be tedious as error regions often
span multiple axial slices (Figure 5.1), requiring similar manual corrections to
each slice. We propose to use the ongoing corrective annotation of the current
scan as input to the model to refine predictions in subsequent slices, generating
real time auto-contour updates as delineation progresses.

To the best of our knowledge, no prior work has evaluated the annotation ef-
ficiency of interactive-segmentation combined with interactive-machine-learning
applied to 3D medical image data.

We evaluate the performance of our contour auto-complete method by com-
paring it to a baseline method where all corrections are assigned manually with-
out updates to the model prediction during delineation (full-correction). We hy-
pothesise that the auto-complete method will result in reductions in delineation
time in comparison to the baseline method whilst maintaining high accuracy.
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Figure 5.1: Heart scan shown with segmentation overlaid in blue in the Root-
Painter3D software. False negative annotations are shown in red. The grey
circle indicates a contiguous error region where several similar annotations have
been assigned to multiple adjacent slices.

5.2 Methods

Both corrective annotation methods (auto-complete and full-correction) were
implemented as variations of the open-source RootPainter3D [196] deep learn-
ing auto-contouring software, which uses corrective-annotation in training to
progressively improve auto-contouring accuracy.

We used a dataset of MRI scans which included multiple scans from 31
different patients with liver metastases that had been referred to SBRT. 177
scans were delineated in the same order using both methods. 12 images from
these 177 images were also delineated by a trained clinician using the MRIdian
planning system to enable consistency to be checked between the completed
corrective delineations and standard clinical delineations.

To mitigate the so-called cold-start problem [120] which hampers the utility
of IML methods on new datasets without an initial trained model [209], we
trained an initial model to convergence on 24 dense clinician delineations, with
18 images used in a training set and 6 in a validation set used for early stopping.

The corrective delineation procedure consisted of three annotation sessions,
with models left training overnight, on the newly expanded dataset of anno-
tations, between each session. The sessions included 20, 60, and 97 images,
respectively. Delineation time was automatically recorded, including time to
both review and correct identified mistakes.

5.3 Results

We report time to delineate each scan as a function of the number of images
delineated in figure 5.2. We found auto-complete started out slower than full-
correction, but appears to be faster as more images are delineated (Figure 5.2).
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For auto-complete, the delineations annotated in the third annotation session
took significantly less time than the first annotation session. Although auto-
complete appears faster on average, the difference between methods was not
yet significant. We also report the agreement with expert clinician delineations
(Figure 5.3).

auto-complete
full-correction
—— auto-complete mean
6 full-correction mean

delineation duration (minutes)

T T T T T
0 25 50 75 100 125 150 175

Figure 5.2: Delineation duration for each scan in order of completion time for
both the auto-complete and full-correction methods.
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Figure 5.3: The dice with expert clinician delineations for the completed con-
tours for both methods was similar to inter-annotator variation.

5.4 Discussion and Conclusion

During the first annotation session, the auto-complete method hampered con-
touring performance, as poor contour auto-completions increased the delineation
workload but with sufficient training data and time, corrective annotation with
auto-completion provided some reductions in contouring time, whilst maintain-
ing high delineation accuracy. Overall both corrective-annotation methods pro-
vided rapid contouring (Figure 5.2). For comparison, manual liver delineation
has been reported as taking 4-8 minutes. me. we need timings. As shown in Fig-
ure 5.3, when measuring agreement with expert clinical delineations we found
an agreement between contours which was similar to inter-annotator variation
(~ 0.94), indicating high accuracy and suitability for clinical use.



Discussion

6.1 2D RootPainter

The 2D RootPainter study (Chapter 2) was conducted to address the need
for a more efficient and easy to use method for biologists to train their own
segmentation models. IML is of broader relevance to the development of deep
learning applications as it combines training and annotation in an interactive
process, providing real time feedback to the annotator (Figure 3.1). To our
knowledge, there were no prior methods or existing software applications that
facilitate IML with a U-Net segmentation architecture.

We found corrective-annotation with the proposed RootPainter IML soft-
ware to provide rapid and accessible model training for biological image seg-
mentation. Demonstrating the versatility and accessibility of our approach, we
trained segmentation models for three different structures of interest from three
diverse datasets, with annotation, model training and segmentation all com-
pleted using a purpose-built graphical user interface. The accuracy of the ob-
tained models in the limited time period demonstrates the efficiency and utility
of the proposed method as a complete and accessible machine-learning pipeline
for biologists.

6.2 Efficient IML model training

In chapter 2 we found the proposed IML method to be an efficient way to train
segmentation models. For five out of the six models trained using corrective-
annotation, the resulting measurements had a strong correlation with manual
measurements within two hours of interactive training.

We also compared corrective to dense annotations in terms of their ability to
train models to a given accuracy in a limited time period. We found improved
performance with corrective annotation on average, but dense annotation per-
formed surprisingly well.

Our results show that deep learning segmentation models can be trained to
a high level of accuracy with annotations produced in a short period of time.
Our results challenge the common misconception that deep learning methods

84
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require vast amounts of data [65, 147]. More annotated data undoubtedly tends
to improve generalisation, but the results presented in this thesis show that
for some datasets and tasks in biological image analysis, useful models can be
obtained with small amounts of annotation.

The difference between the corrective and dense annotation protocols stud-
ied in chapter 2 was not significant, which we expect was partially due to the
restricted time for annotation. It appears that dense annotation performs well
in the early stages of annotation as the value of corrections is small when the
model is largely predicting incorrectly. Corrective-annotation includes an ad-
ditional overhead of the user having to inspect model predictions in addition
to inspecting the image. This overhead is described by [210] as the query cost.
Our findings from both chapter 2 and 3 show that corrective-annotation comes
into its own later in the interactive training procedure, once larger regions of
the input are already predicted correctly, reducing the annotation burden and
allowing the annotator to quickly move on to more problematic areas of the
dataset for the model being trained. We had similar findings in our study on
IML for segmentation in 3D (Chapter 3) where, in the early stages of interactive
training, corrective annotation was out-performed by densely annotating in the
eclipse treatment planning software (Figure 3.4). These findings from chapter 2
and 3 regarding the utility of dense and corrective annotation at various points in
the training procedure informed the study design presented in chapter 5, where
we opted to start training on an initial densely annotated dataset and only
compared corrective-annotation procedures for subsequently annotated images.
This challenge is related to the ‘cold start’ problem that also affects active learn-
ing [66] and is typically encountered in the literature regarding recommender
systems [175, 230], where there may be a requirement to make predictions re-
lated to an entity for which there is little or no prior information. The challenges
in this initial ‘cold-start’ period of annotation thay be alleviated by leveraging
alternative annotation approaches for interactive segmentation methods, such
as [150] or utilising pre-trained foundation models [107] which may reduce the
user input required compared to more manual annotation approaches.

Subsequent studies have further validated the efficiency benefits brought
about by our proposed segmentation methodology, an analysis using 36500 man-
ually annotated images found RootPainter to make the phenotyping process over
50 times faster in comparison to a manual annotation method using RootFly
[256], saving over 1000 hours per growth season [19].

Our findings, and the software implementations we have made publically
available (Chapter 2) have helped highlight IML as a promising method to
overcome the annotation requirement of deep-learning models [148]. The rapid
training process has been reproduced for other datasets, with Han et al. [72]
training all models in their study within 200 minutes of interactive training and
Han et al. [73] using a limit of two hours for interactive training. RootPainter
has also been used to further refine destructive sampling workflows, with Han
et al. [72] showing how automated segmentation can be used to remove arduous
manual debris cleaning steps from the phenotyping process.

Seethepalli et al. [179] were able to obtain satisfactory results using just 10
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partially annotated images. For 3D X-ray CT data of soda-lime glass pellets,
impressive results were obtained using just 50 annotated slices [5].

In chapter 2, we argued that corrective-annotation could be used to train
accurate models in a short time period. Subsequent studies have used our meth-
ods to investigate the accuracy of models trained with corrective-annotation for
various tasks. The measurements provided by RootPainter for root analysis
have been shown to be highly positively correlated with root biomass data [3].
Clément et al. [36] performed validation on grid counts on 2000 images, obtain-
ing an R-~squared of 0.55. Alvarez-Borges et al. [6] observed that the mean error
for porosity was below 1% and the mean error for methane gas measurements
was below 0.05%. Although such evaluations of model accuracy contribute
to a better understanding of the characteristics of our proposed methods for
various tasks, the large scale manual validation associated with the models cre-
ated in many studies using our methods, may also highlight a limitation of the
corrective-annotation model training workflow, in that it is time consuming to
perform additional dense annotation to validate a model trained with corrective
annotation (See section 6.7.2 for a more detailed discussion).

6.3 RootPainter3D

We conducted the study presented in chapter 3 because organ-at-risk contour-
ing is a time consuming task in radiotherapy. Although methods exist to train
and use deep-learning segmentation models [95, 30], there were no studies eval-
uating IML with an integrated GUI for a routine radiotherapy contouring task.
A method that enabled continuous training, allowing clinicians to update and
train their own models would have several advantages in terms of flexibility and
adaptability, allowing clinics to train their own models for use cases not antici-
pated by commercial software vendors. We implemented an interface enabling
the navigation and annotation of 3D X-ray CT images (Figure 3.2 and 3.3),
and a 3D convolutional neural network to better utilise the volumetric context
(Section 3.3.2).

We evaluated our proposed method on a heart segmentation task and found
it was able to converge to an accurate model, demonstrating the potential of
IML software for use in routine organ-at-risk contouring. The accuracy of the
model is demonstrated by the dice score of 0.945, evaluated against indepen-
dently delineated heart contours using the eclipse treatment planning software.
This dice score is high compared to other approaches, which we list in table
6.1 for comparison. We observed a contouring time of two minutes which is
considerably faster than the more manual method used in the clinic (Section
3.4). We also found a small deviation in captured dose, with only four of the
last 300 hearts having a deviation above one Gray (Figure 3.12), indicating the
potential for use in dose-response studies.

Despite the high accuracy of the trained model, our study revealed challenges
of using DL methods as in some cases the segmentation would fail catastroph-
ically (Figure 3.9) indicating the risks of naively using AI models in a clinical
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setting. Our observations also reinforce comments by Aznar and Marrazzo [14]
that there is a continued requirement for expertise in the clinical treatment
team when using Al methods to ensure supervision and correction of automatic
delineations.

The focus of the RootPainter3D method is on the review and correction of
segmentation errors, which lends itself to the ongoing efforts to improve the
safety and standard of AT in the clinic [68]. Corrective annotation provides a
way to continuously review and correct model errors but does not reveal the
cause of errors such as those presented in Figure 3.9. Further insight into the
visual features that cause segmentation errors may be possible with occlusion
methods [65].

We used the heart contours produced in chapter 3 to investigate the rela-
tionship between mean heart dose and lymphopenia, showing the link between
cardiac toxicity and immunosuppression for patients with intrathoracic tumours
[212]

We used the liver contours produced in chapter 5 in a study investigating
interfractional dose accumulation [236]. The annotations and RootPainter3D
software created as part of chapter 3 were also used to train another model that
has helped provide insights into the radiation exposure and association with
observed cardiovascular toxicity in over 5000 patients [56].

Although the dice of 0.945, computed against a set of independently de-
lineated images was high compared to other approaches, the corrective-dice of
0.991 was much higher. The corrective annotation protocol dictates that the
user should only annotate regions of the predicted segmentation that they are
sure are incorrect. This results in an annotation map consisting of foreground,
background and unknown voxels/pixels. By default all pixels are unknown until
annotated. For some of the pixels that remain unknown (not actively annotated
with corrections) it may be that the annotator was satisfied with the model pre-
diction but for others the annotator may not have been certain that the model
prediction was a clear error due to noise, limitations in their own knowledge
or lack of clarity in the corresponding region of the segmented image. These
unknown pixels may not be captured in measures of error based on corrective
annotation, leading to more optimistic indications of model performance.

We also expect that corrective-dice provides a more accurate measure of
reducible clear errors. By clear error, we mean errors that, when inspecting
a segmentation, annotators would agree on and by reducible we mean that
could potentially be reduced by further training of the model. Examples of
errors that are likely not reducible and not clear are those that will be included
when comparing two independently created dense annotations that disagree on
a noisy or ambiguous boundary region. Upon review it may be declared that
neither dense annotation was more accurate on the boundary, but that the true
boundary was ambiguous. Such regions of ambiguity in the images may lead
to a drop in dice score when comparing two independent dense annotations
but not necessarily when quantifying error using corrective annotation. This is
because with corrective annotation the annotator is only instructed to label the
regions of the image where they are certain the model has made an error. With
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the dense annotation used in chapter 3 the annotator had to label each voxel
as foreground or background and did not have the option to label a voxel as
unknown, which may have provided a similar dice to corrective annotation.

The corrective-dice is not independent as corrective annotation is assigned
in response to the segmentation and after the user has observed the model
prediction. We did not investigate the extent to which observing model predic-
tions may have biassed the annotator, which is a possibility and a more general
concern when using corrective-annotation procedures for contouring [241]. We
suspect this bias may in some cases also lead to advantages, as a model’s predic-
tions may highlight regions of an image that would have otherwise been missed,
or by encouraging consistency.

We used a bounding box in the initial RootPainter3D study presented in
chapter 3 but not in the study presented in chapter 5, in order to save time.
Specifying a 3D bounding box accurately took approximately 30 seconds, which
was approximately 25% of the time spent on each scan towards the end of
interactive training. Using a bounding box likely provided benefits in terms of
training time and stability, as shown in chapter 4. Our method for specifying
the box may have been made more efficient by extreme point clicking [150] or by
having boxes be automatically proposed that are verified by annotators [149].

6.4 Versatility and Accessibility

The 2D RootPainter software and proposed IML image processing pipeline pre-
sented in chapter 2 has found utility for the segmentation of a broad array of
datasets and image processing tasks. These datasets include plant species in
varying backgrounds and heterogeneous soils taken from minirhizotrons with
RGB cameras [36, 19], multispectral cameras [130], soil-cores and profile walls
[72], rhizobox facilities [181, 3, 2, 32] and the analysis of biopores in three new
datasets [73].

RootPainter has also been applied successfully in more controlled phenotyp-
ing environments. It has been highlighted as an effective way to measure nodule
mass per plant for legumes [44], applied to create segmentations of nodules in
growth pouches [43, 138]', and scanned roots [72], streamlining destructive phe-
notyping measurements.

Further validating our claims (Chapter 2) regarding flexibility and versatility,
applications have been found outside of 2D biological imaging, with studies using
RootPainter for granular packings and gas bubbles in X-ray CT [5, 128] and to
analyse fibres [102] and voids [225] in composite materials.

One of our key aims in the study presented in chapter 2 was to make deep-
learning model training more accessible to biologists without a machine learning
background. To enable this we implemented a IML U-Net segmentation model
training system utilising a client-server architecture, with all operations made

IThe detailed growth and image capture setup and discussion of how our IML analysis
pipeline has influenced nodule research is described in an online video created by R Ford
Denison: Darwinian Agriculture [158].
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available via a purpose-built cross-platform user interface. The interface was
used in the study to perform all actions required for both training and using
the segmentation models to complete the three different image processing tasks
discussed.

Our claims regarding the accessibility of the method (Chapter 2) have been
further emphasised by external research groups who have evaluated RootPainter
for new tasks and datasets [181], with the approach described as straightforward
to implement [5] and an easy way to train a CNN [42]. In almost all of the
studies where RootPainter has been applied, models were trained interactively
by scientists without a background in computer science or machine learning.

Making deep-learning segmentation model training accessible to biologists
is a novel feature of RootPainter that has enabled new research questions. For
example, Sell et al. [181] trained different models to analyse the same images
in different ways, quantifying different regions of the root anatomy. This study
specific use case was not considered in the design of the original software and
would not be possible using a more specific root segmentation approach that did
not facilitate model retraining by end users. RootPainter has been chosen by
biologists looking to develop affordable and easy to use phenotyping platforms
incorporating low cost or commodity hardware [181, 142].

RootPainter has been highlighted as an established method for CNN model
training [142] that has enabled the standardisation and increased speed of image
analysis tasks [18]. In 2021, RootPainter was found to be the 5th most popular
root image analysis software (out of a total of 52) from a survey conducted at
the 11th symposium of the International Society of Root Research [42], with
none of the more popular systems providing equivalent functionality to enable
segmentation from noisy complex images.

The popularity of RootPainter is still growing rapidly. The installer for the
GUI client has been downloaded 1551 times 2. The training datasets [199] used
in the original paper [195] and discussed in chapter 2 have been downloaded 816
times3®. These statistics indicate we have made progress towards achieving a
stated aim of chapter 2, which was to make deep-learning model training more
accessible.

Studies such as Alvarez-Borges et al. [5] were completed by scientists able
to attend online RootPainter workshops?. These workshops have been possible
to run due to the data in the original study being made available online [199],
which is a strength of using plant data, as opposed to medical images. Plant
images can be more easily shared to allow others to reproduce results and learn
to use the proposed methods.

2Calculated using https://tooomm.github.io/github-release-stats/. Accessed on the
20th of May 2023

3Download statistics taken from https://zenodo.org/record/3754046. Accessed on the
20th of May 2023

4Examples of three such workshops are
https://nordicphenotyping.org/activities/annual-nppn-workshop-2022
https://www.microscopy.lu.se/sites/microscopy.lu.se/files/
programmemlformicroscopy_october2020_finalll.pdf
https://www.youtube.com/watch?v=73u73tBvR04


https://tooomm.github.io/github-release-stats/
https://zenodo.org/record/3754046
https://nordicphenotyping.org/activities/annual-nppn-workshop-2022
https://www.microscopy.lu.se/sites/microscopy.lu.se/files/programmemlformicroscopy_october2020_final11.pdf
https://www.microscopy.lu.se/sites/microscopy.lu.se/files/programmemlformicroscopy_october2020_final11.pdf
https://www.youtube.com/watch?v=73u73tBvRO4
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The accessibility of the software has enabled biologists to ask methodological
machine learning research questions with implications outside of their target do-
main. Han et al. [73] experimented with combining different types of datasets in
the training process and found this led to improved results with less annotation.

RootPainter has enabled new insights to be discovered in existing datasets.
It revealed insights on the effects of deep tillage lasting up to 50 years that
were not previously discovered when using manual annotation [73]. Bauer et al.
[19] used RootPainter to highlight that automated segmentation better reveals
root senescence, a physiological event related to root ageing that was not easily
observed with previous methods. And Chen et al. [32] used RootPainter to
provide insights into the performance of deep roots under varying water and
nitrogen availability. The benefits of using RootPainter in terms of revealing
new biological phenomena are attributed in part to a reduction in inter-observer
variation [73] and elimination of annotator specific bias [19].

6.5 Localise To Segment

The RootPainter3D paper presented in chapter 3 had a localisation stage built
in. This was a manual step involving the user first specifying a bounding box
around the region of interest for each image delineated. We added this step
to avoid the user having to inspect errors further away from the structure of
interest. This method appeared effective, but includes manual overhead. We
conducted the study presented in chapter 4 to investigate the potential perfor-
mance benefits of using an automated localisation stage. Although popular in
the literature we could not find a direct comparison to validate the effectiveness
of such a strategy. We tested the benefits of localisation on several structures.
A downside of such approaches is their additional complexity. We make our own
implementations available open-source to help other research groups looking to
implement two-stage localisation pipelines.

Localisation appears to provide substantial advantages in terms of accuracy
for most of the structures and in terms of training time for all structures in-
vestigated, which is of particular relevance in an IML setting. We suspect the
benefits of localisation are due to how the approach helps mitigate issues with
class balance and allows different networks to specialise on details at different
scales.

6.6 Image Analysis Software Complementarity

Although RootPainter’s lack of detailed trait extraction has been identified as
a weakness [19], several studies [19, 248, 3] have analysed their RootPainter
segmentations in the open-source root analysis software RhizoVision Explorer
[179]. This combination of methods has been highlighted as the current standard
for reliable high-throughput root phenotyping [19, 254, 159, 42]. To further
streamline integration we have developed functionality in RootPainter to provide
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improved compatibility with RhizoVision Explorer (figure 6.1) which has been
applied in recent studies [248].

Original Segmented Analyzed

RhizoVision
Explorer

Figure 6.1: Illustration of a combined image analysis pipeline including Root-
Painter and Rhizovision explorer. The figure is supplied by Abraham George
Smith (University of Copenhagen, Denmark) and Larry York (Oak Ridge Na-
tional Laboratory, USA) and includes a rhizobox photograph from Benjamin
Delory (Leuphana University of Liineburg, Germany). The segmented root sys-
tem displayed is of Lopholaena deltombei.

This complementarity between open-source image analysis software pro-
grams has created a division-of-labour enabling RootPainter to be developed as
a general purpose segmentation technology, whilst RhizoVision explorer handles
the more root specific trait extraction needs of the plant phenotyping commu-
nity.

6.7 Remaining challenges

6.7.1 Dataset design, image order and patch size

In section 2.3.1 we describe our proposed Create training dataset functionality
that splits each image in a dataset into a series of tiles to improve the efficiency
of interactive training. This has not been used in every published study using
RootPainter, for example Nair et al. [142] found that small patches did not al-
ways allow the annotator to view the necessary context to accurately annotate
an image, thus they opted to annotate images with the original size of 2292 x
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1944, which we expect may have reduced the annotation efficiency. This limita-
tion has been addressed in more recent iterations of the software by providing
functionality to view images in context (Figure 6.2). But this function does not
overcome limitations related to the fixed field of view of the model which, with
some datasets, may not provide the most appropriate receptive field to segment
the structure of interest.

Original Image: Image_87.jpg o <] RootPainter delory Image_87_001Jpg

Project Edit Options Brushes View Network Measurements Extras

Segmentation (5)
Annotation (&)
7 image ()

Network not training

<Previous | 6/400 (332 Annotated) | Save & Next >

Figure 6.2: RootPainter ‘view image in context’ functionality allows users to
inspect the original image from which a tile was taken, providing additional
context to aid in annotating, otherwise ambiguous features.

In section 2.2 we motivated the need for a more user-friendly model train-
ing software addressing the existing challenges for biologists without an ML
background. One challenge mentioned was dataset design.

We proposed a GUI based software combining deep-learning with corrective-
annotation, which involves targeting annotation towards errors or weaknesses in
the model during training (Section 2.9.3). The current implementation of both
RootPainter and RootPainter3D present the images to the annotator in random
order during the interactive training procedure. Our results show this approach
is effective, resulting in a high accuracy in a short time period (Figure 2.7 & 2.8).
However, a random image ordering, as implemented in the current versions of
the software, is less optimal when training models for larger datasets, as the user
becomes less likely to find the most crucial errors to be added to the training
data as they progress through the images in a random order. This is because if
a fixed period of time is available to annotate the images, the percentage of the
dataset a user will be able to inspect and correct errors for will be smaller if the
dataset is extremely large, meaning there is an increased likelihood that none of
the images containing a feature of interest (for example an artefact that results
in false positives) will be included in the annotated images. Thus we would not
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expect a model to segment such images correctly. Although the user is able to
increase the rate at which they annotate images as model performance improves
(Figure 2.9(a)), the amount of pixels they annotate in each image decreases and
there is still a fixed overhead for the inspection of each image viewed. For larger
datasets, this inspection overhead can start to dominate the annotation time,
further reducing the rate at which the user will be able to add new annotated
pixels to the training data.

To compensate for this limitation in the software, subsequent works [19, 130]
have taken additional steps to ensure models are suitable for the larger datasets.
Bauer et al. [19] encourages users to actively curate their RootPainter training
dataset to capture variation in relation to the factors present in the dataset,
including facility and date of image capture. A limitation of such dataset design
procedures is that users will typically not always know all factors of variation in
their datasets. A randomization procedure will also randomise unknown factors
of variation.

There have also been notable deviations from the corrective protocol. Ma-
linowska et al. [130] trained a model to segment 78200 images in a few hours,
skipping through many images to find the images with larger error due to arte-
facts and other abnormalities that they deemed more relevant to overall model
performance. Such deviations from the protocol indicate challenges when using
RootPainter to segment very large datasets with considerable outliers. Although
additional user-instruction and protocol modification may be effective ways to
address issues with larger datasets, these burden new users learning the software
and introduce more possibility for user error. We believe the software can do
more to optimally order the images for annotation. In future work we aim to
address these challenges by improving the ordering of images using active learn-
ing to automatically suggest the next best image for the user to annotate to
improve the overall performance of the model®. The complementarity between
active learning and corrective-annotation has been recently demonstrated by
[210] in a study using online learning with streaming sensor data, where a com-
bination of IML and active learning provided improved performance in terms of
both labelling and query cost.

6.7.2 The Validation Bottleneck

We claim in section 2.5 that the corrective-annotation protocol will enable an-
notators to be more informed about how much annotation is required to train
a model to a suitable accuracy. Studies employing the proposed IML procedure
have found the need to perform extra validation steps. The pipeline proposed
by Nair et al. [142] includes a time consuming validation stage where the anno-
tator first decides, based on a qualitative evaluation, if the model has stopped
improving before performing a comparison to manually annotated data. Eval-

5Work package 3 of our postdoc project ‘Interactive deep learning for image segmentation’
which has already been awarded DKK 2662420 by the novo nordisk foundation and will be
executed by assistant Professor Jens Petersen and Abraham George Smith at the University
of Copenhagen over a 3 year period.
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uating model performance visually in a qualitative way may not be consistent
or easy for others to reproduce. Preparing additional manually annotated data
for validation is typically time consuming and done using dense annotation,
eliminating the benefits of using an IML procedure.

Based on our work evaluating the convergence of a heart segmentation model
trained with IML (Figure 3.4) we have developed an interactive metrics plot
(Figure 6.3(a)) to provide quantitative measures of model performance with
the RootPainter software. The interactive metrics plot allows users to click
on outliers in the plot to inspect specific examples and obtain rolling average
measurements of error in terms of area, dice, accuracy, precision and recall.
The metrics shown in the metrics plot are corrective-metrics, computed using
the difference between the initial predicted segmentation and the corrected seg-
mentation, which is the segmentation with the user corrections (annotations)
assigned. Working with corrective-metrics could provide a way to eliminate
the validation bottleneck as these are added as part of the model-training pro-
cess and would not involve a time consuming additional manual annotation
phase. Although the metrics plot helps, there is still a lack of clear guidelines
for users to know what level of accuracy is appropriate, and thus how long to
continue with their interactive model training when using an IML procedure.
The use of corrective-metrics is also less established for model validation, and
further research may be required to understand the strengths and weaknesses in
comparison to metrics computed more conventionally using independent dense
annotations.
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Figure 6.3: Interactive metrics plot uses the corrected error to provide measures
of model accuracy. Figure 6.3(a) includes an image from Jaeger et al. [97] and
figure 6.3(b) includes an image from Alonso-Crespo et al. [4] which is a publically
licensed dataset prepared for a RootPainter workshop.

6.7.3 Should we be correcting all errors?

In the RootPainter3D study (chapter 3), it can be seen in figure 3.12 that the
dose did not change substantially for the vast majority of hearts when com-
paring the initial predicted segmentation to the corrected segmentation. The
difference in dose is not just dependent on the magnitude of the error in seg-
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mentation in terms of dice or incorrect voxels, but on the radiotherapy plan and
the subsequent dose-gradient for the specific patient around their heart. This
indicates that, for a segmentation model used to quantify dose, some segmen-
tation errors of similar size are more important than others to correct. All of
the hearts took a substantial amount of time to contour correctively (Figure
3.4), yet for only a few the corrections had a substantial impact on the dose
(Figure 3.11). Automatically identifying such segmentations or regions of seg-
mentations ahead of time would vastly reduce the necessary contouring time
when producing contours to accurately quantify radiation dose within a given
margin of error in terms of absolute dose.

In a clinical setting such as radiotherapy planning, it may not make sense
for a dose-planner to correct organ-at-risk segmentation errors that are far away
from the target and thus unlikely to lead to changes in the plan or radiation
dose quantified by the contoured organ. In future work it may be possible to
speed up corrective annotation by considering the predicted dose information.
More could be done to guide clinicians towards corrections most critical for the
end use case.

6.8 2D or 3D CNNs for 3D Image Segmenta-
tion?

An advantage of 2D CNNs, and likely one advantage of the RootPainter2D, in
comparison to RootPainter3D is the faster model training time. Faster model
training makes it easier to evaluate an annotation strategy for a new potential
dataset or task. In chapter 2 the annotation duration for each experiment was
limited to two hours, with accurate models obtained. In contrast to this, a limit
of 2 hours for the annotation performed in chapter 3 would have resulted in
less than 20 of the hearts being annotated and a performance that was not yet
competitive with the baseline manual comparison method in terms of contouring
time (Figure 3.4). The tasks evaluated in chapter 2 and chapter 3 are different
and thus a direct comparison is not possible based on the works in this thesis
but a considerable body of prior work exists to help inform an understanding of
the tradeoffs between 2D and 3D networks for the segmentation of 3D structure

The use of networks with 3D convolutional kernels for medical image segmen-
tation of 3D structures, as investigated in chapter 3 can be motivated by their
capability of using interslice context, including spatial information that cannot
be considered when using 2D convolutions on individual slices [234]. The use
of individual slices would have been the only approach possible if applying the
2D system proposed in chapter 2 to the heart segmentation task investigated in
chapter 3. Although there are seemingly intuitive benefits of 3D CNNs, it is not
entirely clear these materialise in tangible performance advantages compared to
their 2D counterparts. The use of 3D convolution comes with a computational
trade-off.

In a study using a 240 CT scan dataset, model training time was found to be
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twice as long for the 3D compared to a 2D approach, with all models taking over
a day to train [235]. Another limitation with 3D CNNs highlighted by Lei et al.
[116] is that whole volume training is increasingly computationally expensive
and complex, especially as an increasing number of layers are used. These
increased computational requirements, in particular GPU memory, require the
use of smaller batches in training and smaller regions in the input patches with
reduced input size, leading to slower training [234]. The number of voxels scales
cubically with the region of interest, raising the computational burden to learn
more complex visual patterns in comparison to 2D approaches [118]. Although
Vu et al. [234] did not observe significant performance improvements for 3D
CNNs regardless of dataset size in their investigation, they speculate that the
typically higher number of parameters in 3D CNNs necessitates larger datasets
to mitigate overfitting. Pre-trained 3D models and large labelled datasets for
pre-training are also lacking in comparison to more established 2D approaches
[249].



6.8.1 Accuracy Comparison

Table 6.1:
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A dice score comparison between 2D and 3D CNNs for various
structures, with the higher accuracy shown in bold.

Reference Structure 2D 3D
[224] (MRRN) Left lung 0.97 0.98
[224] (MRRN) Right lung 0965  0.97
[224] (MRRN) Heart 0.92 0.91
[224] (MRRN) Oesophagus 0.74 0.64
[224] (MRRN) Spinal cord 0.87 0.71
[228] (FCN) Oesophagus 0.835 0.82
[228] (FCN) Heart 0.95 094
[228] (FCN) Trachea 0.90 0.90
[228] (FCN) Aorta 0.93 092
[235] (U-Net) Brain (Brats19) 0.768 0.769
[235] (U-Net) Kidney (KiTS19) 0.766  0.763
[235] (U-Net) Brain (IBSR 18) 0.898  0.924
[235] (U-Net) Head and Neck 0.656 0.635
[235] (U-Net) Pelvic (U-PRO) 0.807  0.841
[235] (U-Net) Heart 0.857 0.899
[235] (U-Net) Spleen 0.738 0.828
[235] (U-Net) Hippocampus 0.830 0.831
[235] (Seg-Net) Brain (Brats19) 0.744 0.726
[235] (Seg-Net) Kidney (KiTS19) 0.755  0.735
[235] (Seg-Net) Brain (IBSR 18) 0.782 0.744
[235] (Seg-Net) Head and Neck 0.643 0.599
[235] (Seg-Net) Pelvic (U-PRO) 0.763 0.771
[235] (Seg-Net) Heart 0.804 0.770
[235] (Seg-Net) Spleen 0.691 0.582
[235] (Seg-Net) Hippocampus 0.803 0.786
[94] (U-Net) Brain Edema [187] 0.786 0.8071
[94] (U-Net) Non-enhancing brain tumour [187]  0.5865 0.6222
[94] (U-Net) Enhancing brain tumour [187] 0.7742  0.7907
[94] (U-Net) Heart [187] 0.9136  0.9245
[94] (U-Net) Liver [187] 0.9337  0.5394
[94] (U-Net) Liver tumour [187] 0.9411 0.6174
[94] (U-Net) Hippocampus Anterior [187] 0.8852 0.8987
[94] (U-Net) Hippocampus Posterior [187] 0.8670 0.8820
[94] (U-Net) Prostate Peripheral Zone [187] 0.6198 0.8431
[94] (U-Net) Prostate Transitional Zone [187] 0.6077  0.8373
[94] (U-Net) Lung tumour [187] 0.5268 0.5587
[94] (U-Net) Pancreas [187] 0.7470  0.3541
[94] (U-Net) Pancreas tumour [187] 0.7769  0.4269
[93] (U-Net) L. ventricular cavity 0.945 0.928
[93] (U-Net) R. ventricular cavity 0.902 0.879
[93] (U-Net) L. ventricular myocardium 0.905 0.872
[257] (U-Net) Liver 0.94 0.93
[257] (U-Net) R. kidney 0.91 0.89
[257] (U-Net) Spleen 0.93  0.92
[257] (U-Net) Pancreas 0.57 0.59
[196] (U-Net) (RootPainter3D)  Heart 0.945
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Zettler and Mastmeyer [257] indicate significant advantages for the 2D U-Net
for the kidney and liver and substantial savings when using the 2D network in
terms of computation for all organs investigated.

In some cases 3D CNNs have been found to provide improved segmentation
accuracy in comparison to 2D CNNs, in particular for organs with a small vol-
ume or having a tubular shape [261]. But, as shown in table 6.1, which includes
a collection of comparisons from 2D and 3D from various studies in the medical
image domain, the benefits of 3D are inconsistent. The 2D network presented in
chapter 2 of this thesis, used as part of the proposed RootPainter IML segmen-
tation system was found to have a higher IoU when compared to two alternative
networks, including a network using 3D convolution [6]. Similar to many other
studies, results from van Harten et al. [228], show only minor differences in accu-
racy between the 2D and 3D CNNs investigated for segmentation of oesophagus,
heart, trachea and aorta.

6.8.2 Multiple adjacent slices

To alleviate issues with training time and computational resources associated
with 3D networks, a variety of pseudo 3D, or 2.5D approaches have been pro-
posed. Multislice inputs, as opposed to 3D convolution, are described as a type
of pseudo 3D Network that may provide ways to capture more 3D context with
a reduced computational burden in comparison to networks that perform con-
volution in 3D. Vu et al. [234] compared multislice inputs to 2D CNNs on five
datasets, finding that the benefits in accuracy were not significant for four out
of five of the datasets investigated. Increasing the number of input slices in the
multislice network did not appear to provide additional benefit in segmentation
accuracy in comparison to a 2D segmentation approach [234].

6.8.3 Multiple orthogonal slices

In attempting to bridge the gap between 2D and 3D Networks in terms of com-
putational performance and accuracy, Yang et al. [249] propose an approach
they named ACS (axial-coronal-sagittal) convolutions that can capture 3D con-
text without processing the full 3D volume. Roth et al. [171] propose a 2.5D
representation for lymph node detection using random sets of deep CNN obser-
vations. During training their approach samples the 3D input volume from a
variety of orthogonal views, varying in scale, translation and rotation.

Roth et al. [171] argues that 3D CNNs are not possible to implement ef-
ficiently due to hardware constraints. Although there have been substantial
hardware advancements in the several years since this claim was made, more
recent similar multi-view 2.5D sampling approaches [154] have emerged com-
petitive with 3D networks for a variety of 3D segmentation tasks in the medical
segmentation decathlon [10].
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6.8.4 Regularisation of 3D CNNs

Vu et al. [234] argued that 3D networks have a tendency to overfit and thus more
data is required. A variety of regularisation methods have been employed to
mitigate the overfitting of 3D CNNs. The aforementioned 2.5D approach [154]
was outperformed by a purely 3D method [140] using a novel regularisation
approach in the medical segmentation decathlon [10].

Myronenko [140] utilised a variational auto-encoder (VAE) to regularise a
shared encoder. Myronenko [140] claim this VAE encoder regularisation both
improved the accuracy and reliability of the training procedure, ensuring that
the network performance was less sensitive to the initial random weights used,
with each training run leading to a model with good performance.

Yang et al. [249] discuss methods for improving the performance of 3D med-
ical image segmentation including deep supervision. One example of deep su-
pervision is outlined by Dou et al. [46], who propose an approach where lower-
level and middle-level features from their CNN encoder are upsampled using
deconvolution. They then use these additional prediction paths to compute
segmentations and then compute the loss via the difference between each of
the generated segmentations and the ground truth. Such deeply supervised ap-
proaches are believed to provide more effective parameter updates, mitigating
issues with vanishing gradients and have been found to result in faster training
and better performance for heart and liver segmentation tasks [46].

UNet++[262] employs deep supervision via inclusion of skip connections to
reduce the ‘semantic gap’ between feature maps in the decoder and encoder
sections of the network to make the learning task easier. Zhou et al. [262] find
their modified U-Net provides an improvement in IoU of 3.9 over a regular U-Net
without deep supervision.

As a method that could speed up training, deep supervision is relevant to
the IML approaches discussed in this thesis. Faster training will likely provide
an improved user experience by reducing the time for the model to adapt to
annotations provided by the user, further reducing the amount of annotation
needed. Training stability is also of interest, as a deep-learning training process
that fails is particularly complex for non-expert users to debug.

6.8.5 Ensembling both 2D and 3D networks

Given that 2D and 3D CNNs likely make different types of errors, combining
an ensemble of 3D and 2D U-Nets may prove to be a more optimal approach
compared to using either in isolation. This approach was taken by nnU-Net[94],
which won the medical segmentation decathlon using an ensemble of both 2D
and 3D U-Nets.

Similarly van Harten et al. [228] compare both 2D CNNs, 3D CNNs and
an ensemble combining both methods. Although there are minor differences
between approaches they are likely negligible when considering the additional
complexity of combining 2D and 3D methods and the additional hardware re-
quirements and training cost of training a 3D network. Of the approaches
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compared by van Harten et al. [228], the 2D network used 73 thousand pa-
rameters, a fraction of the 3.7 million used for their 3D network, which brings
into doubt the fairness of the comparison. A fairer comparison would allocate
similar resources to both architectures. The extra parameters could have been
utilised in the 2D network to enable a deeper network with more channels or
layers, a larger receptive field or even an ensemble of 2D networks taking similar
resources to the single 3D network.

6.8.6 Issues specific to using 3D CNNs with Interactive
Machine Learning

One issue to consider is how the user navigates through data when providing
annotation to create a model using IML within a limited time. When annotating
3D images sequentially (as opposed to 2D images) and completely, there is likely
a reduced rate at which variance is captured in the annotated portion of the
data. It may be the case that annotating similar adjacent slices will result in
an annotated dataset that includes less variation than a dataset including slices
that are more varied from regions further away in the same patient or taken
from many different patients.

Such annotation procedures that are designed to maximise variation may
pose challenging in practice as accurate annotation of a single slice may involve
navigation and inspection of the surrounding 3D region. It may also be necessary
to annotate each patient completely and sequentially due to clinical workflow
requirements.

There are also considerable challenges in utilising sparse 3D annotations
in training in comparison to sparse 2D annotations. Assuming a single slice is
corrected, in the 3D context this drastically increases the amount of information
that is provided as input to the network. 3D volumes are inherently much bigger
and more memory intensive, with the input increasing cubically with the size
of the region of interest. This poses limitations in the training efficiency of 3D
IML methods. Training time itself will also slow the feedback loop between
annotator input and model adaptation.

6.8.7 New possibilities when processing data in 3D

In chapter 5 we explored a solution not possible if working in a slice-by-slice
way. As 3D volumes are segmented in a single pass, sparse annotation can be
used to guide the network inference and assist in filling in the blanks in the
missing slices between the slices annotated. This approach combining IML with
interactive-segmentation was found to further improve contouring efficiency in
comparison to an IML approach involving fully manual correction. (Chapter 5).
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6.9 Auto-complete

We conducted the auto-complete study because, in chapter 3 we found that
corrective-annotation has limitations when applied to 3D due to the user hav-
ing to navigate through many adjacent slices, correcting similar model errors
repetitively.

We hypothesised that if we allowed inference to repeat, but with the users
work-in-progress annotation as input, then the network would be able to learn
to utilise the annotation to refine the segmentation, providing speed-ups in the
overall annotation process. This could potentially provide a way for the network
to learn to interpolate between annotated slices or to extrapolate from the region
of the structure corrected so far.

We found the proposed auto-complete method to be slower initially, but
then it appeared, after a substantial period of interactive training, to become
competitive and eventually faster than interactive training, confirming our hy-
pothesis.

The auto-complete method indicates the type of advancements possible when
integrating 3D context in a method combining aspects of both IML and inter-
active segmentation that would not be possible if processing the input data in
a slice-by-slice manner.

6.10 Conclusion

The flexibility offered by the IML systems presented in this thesis has resulted
in an expansion in the applications and use of novel computer science Al meth-
ods. Our findings in this thesis shine light on a path forward to enable more
accessible and flexible deep-learning model training for a plethora of biological
image analysis tasks.
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