
U N I V E R S I T Y O F C O P E N H A G E N
F A C U L T Y O F S C I E N C E

PhD thesis

RandomizedAlgorithms for LargeDatasets
Graphs, Streams, and Sums: The Sublinear Trilogy

Jakub Tětek

Advisor: Mikkel Thorup

Submitted: 31.07.2024

This thesis has been submitted to the PhD School of The Faculty of Science, University of Copenhagen

2

Abstract

This thesis addresses several challenges in efficiently processing large
datasets and in privacy-preserving computation. Specifically, in this the-
sis, we look into the following problems.

First, we focus on the problem of estimating the sum of numbers
under the assumption that we may sample the numbers proportionally
to their values.

Second, we focus on several related problems in sublinear-time com-
putation on graphs. We investigate several different models which for-
malize the setting where we have a very large graph and we want to
perform some computation on it without even reading all of it. We con-
sider several problems, namely sampling edges uniformly, counting edges,
and counting triangles.

Finally, we consider the well-known Misra-Gries sketch for the prob-
lem of approximately finding frequent elements in a stream. We make
this sketch differentially private while losing only a minimal amount of
accuracy.

3

Resumé

Denne afhandling omhandler forskellige udfordringer inden for effek-
tiv behandling af store datasæt samt privatlivsbevarende beregninger.
Specifikt undersøger vi følgende problemer. Først ser vi p̊a estimering af
summen af en talmængde under antagelse af at hvert tal fra mængden kan
udvælges med sandsynlighed proportionel til dets værdi. Dernæst fokuse-
rer vi p̊a en række relaterede grafproblemer som kan beregnes i sublineær
tid. Vi undersøger forskellige modeller til at formalisere situationer hvor
vi ønsker at udregne egenskaber af en meget stor graf uden at skulle ind-
læse hele grafen først. Vi beskæftiger os med problemer omhandlende at
implementere uniform udvælgelse af kanter, at tælle kanter, samt at tælle
trekanter. Slutteligt betragter vi den velkendte Misra-Gries skitse, som
bruges til at finde de oftest forekommende elementer i en strøm. Vi gør
skitsen differentielt privat med minimal indvirkning p̊a dens nøjagtighed.

4

Acknowledgements

I would like to thank my parents, without whom I would not be writing this
thesis, especially my mother who has done for my education more than anyone
else. I would like to thank everyone who inspired me on my way to becoming
a researcher in computer science, most notably Jirka Benc, Martin Mareš, and
Tomáš Gavenčiak.

I am also very grateful to the people who have hosted me during the
numerous research stays that I completed over the course of my PhD: Ronnit
Rubinfeld at MIT, Talya Eden at Bar-Ilan University, Robert Krauthgamer
at Weizmann Institute, Pavel Veselý at Charles University, Badih Ghazi at
Google, and Olek Lukaszewicz at the University of Wroc law.

I would like to thank Rasmus Pagh. While he was not officially my super-
visor, I was very often in his office telling him about an exciting idea I had
the previous evening. I have learned a lot from these conversations and I am
very grateful that Rasmus’s doors were always open.

However, first and foremost, I would like to thank my supervisor Mikkel
Thorup. I could not have wished for a better supervisor: He provided steadfast
encouragement when I needed it most, helped with his wisdom and advice
when I encountered obstacles, and gave me the autonomy to explore ideas
independently. His invaluable advice was crucial for my development as a
scientist. I am truly grateful for the opportunity to work under his mentorship.

Contents

Contents 5

1 Introduction 9

Better Sum Estimation via Weighted Sampling 10

Edge Sampling and Graph Parameter Estimation via Vertex Neigh-
borhood Accesses . 11

Hash-ordered access . 12

Full neighborhood access . 13

Sampling an Edge in Sublinear Time Exactly and Optimally 13

Better Differentially Private Approximate Histograms and Heavy
Hitters using the Misra-Gries Sketch 14

Preliminaries on differential privacy 14

The Misra-Gries sketch . 15

Our contribution . 15

2 Better Sum Estimation via Weighted Sampling 17

Introduction. 18

Related Work and Applications. 19

Overview of employed techniques. 23

Preliminaries. 27

Sum Estimation by Proportional Sampling. 29

Algorithm with advice ñ ≥ |U |. 29

Algorithms for |U | unknown. 30

Sum Estimation by Hybrid Sampling. 38

Algorithms for |U | known. 38

Algorithms for |U | unknown. 43

Lower Bounds. 44

Proportional sampling. 50

Sum estimation in hybrid setting, known n. 53

Sum estimation in hybrid setting, unknown n. 55

Counting Edges in a Graph. 56

Open Problems. 58

5

6 CONTENTS

3 Edge Sampling and Graph Parameter Estimation via Vertex
Neighborhood Accesses 59

Introduction . 61

What is a vertex access? . 65

Our techniques . 67

Preliminaries . 75

Graph access models . 75

Pointwise ε-Approximate sampling 76

Conditioning principle . 76

Notation . 77

Algorithms with advice . 77

Sampling without replacement 78

Edge sampling . 78

Sampling one edge in the indexed neighbor access model 78

Biased vertex sampling using hash-ordered access 82

Bernoulli sampling with hash-ordered neighbor access 87

Sampling edges without replacement with hash-ordered neigh-
bor access . 91

Sampling edges with replacement with hash-ordered neighbor
access . 92

Implementing our algorithms with batched access 93

Sampling multiple edges without hash-ordered neighbor access 94

Lower bound for sampling multiple edges 95

Estimating the Number of Edges by Sampling 95

Directly Estimating the Number of Edges 97

Algorithm with hash-ordered neighbor access 97

Algorithm with pair queries . 100

Lower bound . 106

Triangle counting with full neighborhood access 108

Algorithm with edge sampling 108

Algorithm with both vertex and edge sampling 111

Lower Bound . 122

4 Sampling an Edge in Sublinear Time Exactly and Optimally 125

Introduction . 126

Technical overview . 127

Related work . 129

Preliminaries . 129

Sampling an edge . 130

5 Better Differentially Private Approximate Histograms and
Heavy Hitters using the Misra-Gries Sketch 135

Introduction . 136

Technical overview . 139

CONTENTS 7

Preliminaries . 140
Related work . 142
Differentially Private Misra-Gries Sketch 143

Privatizing standard versions of MG 154
Tips for practitioners . 154

Pure Differential Privacy . 155
Privatizing merged sketches . 157
User-level Differential Privacy . 158
Open Problems . 165

Bibliography 167

Chapter 1

Introduction

With the continued increase in the amount of available data, the question of
how to process it efficiently is more important than ever. Unfortunately, due
to a lack of time and effort, I did not quite manage to solve this problem.
Instead, in this thesis, I solve several specific problems of this nature.

In this thesis, we will look at how to perform computation on a graph
without even reading all of it. We also focus on estimating sums of numbers
under the assumption that we may sample the numbers from a specific natural
distribution. We also focus on streaming algorithms for discovering the most
common elements – heavy hitters – in a stream, while protecting users’ privacy
by relying on the differential privacy framework.

This thesis is a compilation thesis and it consists of four papers together
with their summaries which now follow. Specifically, the papers in this thesis
are the following:

• In the first paper (Beretta and Tětek [2024]), we consider estimating
a sum of numbers in the setting where we may sample the numbers
proportionally their value. We show that if we have n numbers, we may
estimate their sum in roughly O(

√
n) samples.

• In the second of these papers (Tětek and Thorup [2022a]), we focus
on sublinear-time computation on graphs. Specifically, we focus on the
following problems: sampling an edge in sublinear time given “vertex
access” to the graph, counting the number of edges, as well as counting
the number of triangles. We consider these problems in four different
natural settings which formalize the notion of “vertex access”.

• In the third paper (Eden et al. [2023]), we improve upon the edge sam-
pling procedure from Tětek and Thorup [2022a]. This method allows us
to sample an edge exactly uniformly in sublinear time in complexity in
which our previous results could only achieve constant-factor approxi-
mation of uniform.

9

10 CHAPTER 1. INTRODUCTION

• The last paper1 (Janos Lebeda and Tetek [2024]) focuses on differential
privacy in the streaming setting. Specifically, in that paper, we show how
to make the Misra-Gries sketch – a commonly used sketch for finding
frequent items in a stream – differentially private without significant
deterioration of performance.

Another paper that I wanted to include as it would fit nicely, but couldn’t, is
the paper (Tětek [2022]) on approximately counting the number of triangles
in a graph by combining sampling and fast matrix multiplication. However,
then I recalled that I already handed this paper in as my Master’s thesis, and
this thesis will sadly have to do without it. However, a reader who enjoys
the papers in this thesis will likely also be interested in that paper. But
now, without further ado, let me introduce the four papers that I was able to
include.

Better Sum Estimation via Weighted Sampling

In this paper, we considered the problem of estimating the sum of numbers –
or rather estimating the sum of weights of items – under the assumption that
we may sample the items either (1) proportionally to their values, or (2) that
we may sample both proportionally and uniformly. Formally, we assume that
we have a set U of items a ∈ U that each has a value w(a). Let n = |U |. The
goal is to estimate W =

∑
a∈U w(a), where we may sample the items with the

probability of sampling a being w(a)/W . We assume that if we sample two
items, we may check whether both samples are the same item or not (note
that there may be multiple items with the same weight). We call this the
proportional setting and the setting where we may also sample uniformly we
call hybrid.

In the paper, we talk about a few examples of this setting, but here I
mention that the famous Metropolis-Hastings algorithm allows precisely for
this kind of proportional sampling.

This problem has previously been considered by Motwani et al. [2007].
Under the assumption that they know n, they give an algorithm with sample
complexity Õ(

√
n/ε7/2) in the proportional setting and Õ(3

√
n/ε9/2) in hybrid,

and they prove this is near-optimal in terms of the dependency on n. In our
paper, we improve this to O(

√
n/ε) and O(3

√
n/ε4/3). We give matching and

near-matching lower bounds, including the dependency on ε. We also consider
the case when n is not known.

Another advantage of our approach is that some of our algorithms are
much simpler than those in the original paper. We now sketch the algorithm
for the proportional setting with known n. The algorithm works as follows.

1We refer here to the conference version of the paper. However, the version in this thesis
corresponds to a journal version which is currently under review.

EDGE SAMPLING AND GRAPH PARAMETER ESTIMATION VIA
VERTEX NEIGHBORHOOD ACCESSES 11

We let S = {a1, · · · , a|S|} be the multiset of Θ(
√
n/ε) samples and for each

s ∈ U , we define cs to be the number of times it has been sampled. We then
define

Ŵ =

(
m

2

)
·

(∑
s∈S

(
cs
2

)
w(s)

)−1

.

I do not show the full analysis here, but I at least try to give some intuition.
Instead of working directly with the random variable Ŵ , we consider and
analyze the value 1/Ŵ and show that it is a good approximation of 1/W .
This then implies that Ŵ is a good approximation of W . We now show that
E[1/Ŵ] = 1/W . The analysis of the variance can be found in the paper.

We have

Ŵ−1 =

(
m

2

)−1

·
∑
s∈S

(
cs
2

)
w(s)

.

We now look at the sum. For each s ∈ S, we add to the sum
(
cs
2

)
/w(s). We

consider the collisions between sampled items (that is, the pairs of samples
that are equal). The term

(
cs
2

)
is then the number of collisions that happen on

the item s. We define Yi,j = 1/w(ai) if ai = aj and we let Yi,j = 0 otherwise.
We then thus have

E

[(
m

2

)−1

·
∑
s∈S

(
cs
2

)
w(s)

]
= E

(m
2

)−1

·
∑

i ̸=j∈[|S|]

Yi,j

=

(
m

2

)−1

·
∑

i ̸=j∈[|S|]

E[Yi,j] = E[Y1,2] ,

where the last step uses that all variables Yi,j are identically distributed. But
the expectation of Yi,j is easy to compute:

E[Yi,j] =
∑
a∈U

P [ai = aj = a]/w(a) =
∑
a∈U

w(a)2

W 2
/w(a) =

∑
a∈U

w(a)

W 2
= 1/W .

This gives us that
E[1/Ŵ] = 1/W .

This looks reasonable – if we could prove a bound on the variance (as we
do in the paper), this would imply that the estimator gives a good relative
approximation with good probability.

Edge Sampling and Graph Parameter Estimation
via Vertex Neighborhood Accesses

In this paper, we investigate various graph problems in various settings of
sublinear computation. The setting most commonly used in sublinear-time

12 CHAPTER 1. INTRODUCTION

graph algorithms allows the following operations: (1) given an index i, we
may request the i-th vertex of the graph, (2) given a vertex and an index j,
we may request its j-th neighbor, and (3) given a vertex, we may request its
degree. We call this the indexed neighbor model. While this is a reasonable
model, it is far from the only one that one may wish to use. We suggest
two other access models and explore the complexity of several problems in
them. Namely, we consider the problem of estimating the number of edges in
a graph, sampling edges, and estimating the number of triangles in a graph.
Now, we discuss the models that we use and show how the complexities of the
above problems compare between the different settings.

Hash-ordered access

One possible addition to the indexed neighbor model is that we may assume
the neighbors of a vertex are not ordered adversarially, but they are ordered
with respect to a fully random hash function. That is, we have a hash function
h : V → [0, 1] and each neighborhood is ordered increasingly with respect to
h. While this may seem rather arbitrary, the motivation is that this interface
can be efficiently implemented in practice and it allows for more efficient
algorithms.

In this setting, we consider the problem of estimating the number of edges
in a graph. An algorithm with complexity O(n

ε2
√
m

) was known (Seshadhri

[2015]), as well as a lower bound of Ω(n√
εm

) Goldreich and Ron [2008]. We

improve the lower bound to Ω(n
ε
√
m

) as long as ε is not too small, and this

lower bound works even in the stronger “full neighborhood access” model (see
below). We then give a more efficient algorithm in the hash-ordered access
setting with complexity Õ(n

ε
√
m

+ 1
ε2

). Note that this is near-optimal for ε

being not too small, thanks to our improved lower bound. This is in contrast
with the previous results, which only had (near-)optimal complexity in terms
of n and m.

Inspired by this algorithm, we also give an algorithm that uses the more
standard assumption that, in addition to the three standard queries (1)-(3), we
may also use a query that answers the question “are vertices u and v adjacent”
where u and v can be any two vertices that we specify. This algorithm runs
in time Õ(n

ε
√
m

+ 1
ε4

) which is again near-optimal when ε is not too small.

At the core of our edge-counting algorithm in the hash-ordered setting is an
algorithm for uniformly sampling s edges in the same setting. This algorithms
returns s edges sampled independently uniformly in time Õ(

√
s n√

m
+ s). This

is the same complexity in which the previous work (Eden et al. [2021b]) in
the indexed neighbor model achieved ε-approximate sampling for constant ε.
As a side-note, we also improve the algorithm for ε-approximately sampling
one edge in the indexed neighbor model from O(n√

εm
) (Eden and Rosenbaum

[2018c]) to O(n√
m

log ε−1).

SAMPLING AN EDGE IN SUBLINEAR TIME EXACTLY AND
OPTIMALLY 13

Full neighborhood access

Another natural model choice is to assume that when we query a vertex, we get
the (unique identifiers of) all adjacent vertices. While this may not seem very
realistic, we argue that in many settings, this is quite a reasonable assumption,
apart from also being a very simple and clean model. For example, if the graph
is stored on a hard drive, accessing one bit of information does not cost much
less than accessing several megabytes. However, vertices rarely have such
a high degree in practice that its neighborhood could not be stored in that
amount of space.

In this setting, we give a better algorithm for estimating the number of
triangles in a graph. In the indexed neighbor setting, an algorithm was known

(Eden et al. [2017b]) that ran in time Õ(n
ε10/3T 1/3 + m3/2

ε3T
), where T is the num-

ber of triangles and this was known to be optimal in terms of the dependency
on n,m, T . Using the power of the full neighborhood access setting, we man-

aged to improve this significantly to Õ(n
εT 1/3 +

√
nm

ε2T
). We also proved that

this is near-optimal in terms of n,m, T .

Sampling an Edge in Sublinear Time Exactly and
Optimally

In this paper, we improve upon the algorithm in the indexed neighbor setting
for sampling one edge that we gave with my supervisor Mikkel Thorup in the
previous paper. Namely, instead of being able to sample pointwise 1 + ε close
to uniform, we sample exactly uniformly in the optimal expected complexity
O(n/

√
m). I now try to sketch the basic technique.

The previous work (Eden and Rosenbaum [2018c]) shows that if the degrees
are bounded by ∆, then one may sample an edge in time O(∆). They then
used this technique for the vertices with small degrees (light vertices) while
using an alternative approach for the high-degree vertices (heavy vertices) –
this “alternative approach” is the crux of the problem. It can be easily seen
that the problem of sampling an edge uniformly is equivalent to sampling a
vertex proportionally to its degree; that is, sampling w with probability d(w)

2m .
Specifically, the forward implication (the one we need) holds for the following
reason: if we sample a vertex from this distribution and return a random
incident edge, this edge is picked uniformly at random from the set of all
edges of the graph.

A simple counting argument shows that if we set ∆ = 100
√
m, then any

heavy vertex can only have a small constant fraction of its neighbors that are
also heavy. If we uniformly sample an edge uv (in the analysis, we do not
know how to do this yet!), the probability that u is light and v = w for a fixed

heavy vertex w is equal to c · d(w)
2m where c is the proportion of neighbors of w

that are light. Using this fact, we use the approach for sampling edges incident

14 CHAPTER 1. INTRODUCTION

to light vertices, in order to sample any heavy vertex w with this probability.
If we knew c, we could easily sample an edge uniformly – we would return
the sampled vertex with probability, say, 1/(2c) which results in sampling the

vertex w with probability 1
2 ·

d(w)
2m as we wanted (in the framework of Eden

and Rosenbaum [2018c], one can easily adjust the sampling probabilities by a
fixed constant factor so the factor 1

2 does not cause issues).

While this is a nice observation, it may not seem very useful, since we do
not know c. However, we manage to work around this issue. The main idea is
that we do not need to know c, we just need to be able to somehow generate a
Bernoulli trial with probability 1/(2c). At the same time, note that it is easy
to sample a Bernoulli trial with probability c – we just sample a neighbor of
w and we check whether it is light. Luckily for us, there is a general result
that states that under mild technical assumptions, if we have access to i.i.d.
samples from Bern(p), then we may simulate a trial from Bern(f(p)) for a
function f in expected O(1) samples from Bern(p) (Nacu and Peres [2006]).
But this is exactly what we needed – this allows us to generate samples from
the desired distribution Bern(1/(2c)) just by relying on access to samples
Bern(c) which we can easily provide. Using this with the above approach
gives us the desired algorithm.

Better Differentially Private Approximate
Histograms and Heavy Hitters using the
Misra-Gries Sketch

In this paper, we have shown how the commonly used Misra-Gries sketch
(Misra and Gries [1982]) for the problem of heavy hitters can be made differ-
entially private. First, I introduce the notion of differential privacy and the
Misra-Gries sketch. Then I explain our contribution.

Preliminaries on differential privacy

Differential privacy (Dwork et al. [2006a]) concerns the setting where we want
to publicly release some function of a dataset that contains private informa-
tion. The worry is that especially if we release multiple such values, an attacker
might reconstruct parts of the private dataset based on the published infor-
mation. Indeed, there have been examples of this happening Narayanan and
Shmatikov [2006], Barth-Jones [2012]. Differential privacy is a privacy notion
that gives strong probabilistic guarantees on the impossibility of such attacks.

More formally, we assume we have a symmetric relation x ∼ x′ of the set
of all possible datasets (possible inputs). Intuitively speaking, this usually
corresponds to “the datasets x and x′ differ in the data of one user” where the
database consists of records of users. Then, for a privacy parameter ε > 0, we

BETTER DIFFERENTIALLY PRIVATE APPROXIMATE HISTOGRAMS
AND HEAVY HITTERS USING THE MISRA-GRIES SKETCH 15

say that an algorithm A is ε-differentially private if

P [A(x) ∈ S] ≤ eεP [A(x′) ∈ S]

for any measurable set S. Similarly, ε, δ-differential privacy assumes that

P [A(x) ∈ S] ≤ eεP [A(x′) ∈ S] + δ .

We will not need to rely directly on this definition here. Instead, it will suffice
to know that if we define the global sensitivity GSf = supx∼x′ ∥f(x)−f(x′)∥1,
then releasing the value f(x) + Laplace(GSf/ε) is ε-differentially private.

An interested reader wishing for an introduction to differential privacy will
be well-served by the very short introduction by Near and Abuah [2021].

The Misra-Gries sketch

The Misra-Gries sketch is a sketch for finding the frequent items in a stream of
items and approximating their frequencies. If the sketch has size k, the error
in the estimated frequency of any item is at most m

k+1 where m is the length
of the stream. This is known to be optimal among deterministic algorithms
(Bose et al. [2003]). The sketch works as follows. It stores at most k key-
value pairs, which intuitively correspond to the (approximate) most common
elements and their estimated counts. Whenever some value is equal to 0,
we remove this pair. Inserting an item is performed as follows: if the key
is already present, we increment its counter by 1, otherwise we add a new
key-value pair with the counter equal to 1. If this resulted in us having > k
pairs, we subtract 1 from all counters (note that this necessarily removes the
item that we just inserted, so we will again have ≤ k key-value pairs).

Our contribution

How do we make the Misra-Gries sketch differentially private? Note that the
global sensitivity is k, since subtracting 1 from all counters results in a total
change of k. If we naively use the Laplace noise, this will thus result in the
rather large error of O(k/ε). Annoyingly, this increases as the sketch gets
bigger, which is exactly the opposite of what we would want (bigger sketches
should result in lower error). I now sketch a simple way to get around this, in
the paper we give a more direct analysis which results in better constants.

We come up with an alternative representation of the k counters. Namely,
we have one more counter c, that stores the total number of decrements. That
is, instead of decrementing all the counters like in the original algorithm, we
will increase this counter c. When we insert a new item, we sets its value to
be c. Then if we subtract c from each counter at the end, we get the exact
same sketch that we would get if we used the standard algorithm. (The rule
for when keys are removed from the sketch has to be modified accordingly).

16 CHAPTER 1. INTRODUCTION

The advantage of this representation is that its ℓ1 sensitivity can be proved
to be ≤ 2. This is easy to see if the two neighboring inputs (from the definition
of differential privacy) differ in the last item from the input. By induction,
we prove that this holds in general. This means that adding Laplace noise
of magnitude 2/ε to each counter in the universe (the ones not represented
in the sketch are treated implicitly as 0) ensures ε-differential privacy. This
algorithm in turn can be seen to be equivalent to using the standard Misra-
Gries sketch and adding two noises as follows: independent Laplacian noise
to each counter and then one identical Laplacian noise to all counters.

However, this algorithm has to add noise to every item in the universe,
which results in a high maximum noise value and is hard to implement effi-
ciently. Note that we cannot just add noise to the elements stored in the sketch
as the set of stored items can differ between neighboring inputs, and we can-
not afford to add noise to a counter on one input and not on the other, that
would violate privacy. We get around this issue by relying on ε, δ-differential
privacy. Namely, we set a threshold τ = O(log(nδ−1)/ε) and we throw away
all items whose counter after adding noise is < τ . Why does this help? The
issue was that it might happen that the set of stored items is different between
two neighboring inputs. We prove that if an item is in the sketch for only one
of two neighboring inputs, its count has to be 1. But then the probability
that we release any of such items is ≤ δ since that would require the noise to
have magnitude at least τ − 1 which happens only with probability δ. But,
intuitively speaking, if we do not release these items, they also cannot leak
any private information, thus guaranteeing ε, δ-differential privacy.

Chapter 2

Better Sum Estimation via
Weighted Sampling

Lorenzo Beretta
lorenzo2beretta@gmail.com

BARC, Univ. of Copenhagen

Jakub Tětek
j.tetek@gmail.com

BARC, Univ. of Copenhagen

Abstract

Given a large set U where each item a ∈ U has weight w(a), we
want to estimate the total weight W =

∑
a∈U w(a) to within factor of

1 ± ε with some constant probability > 1/2. Since n = |U | is large, we
want to do this without looking at the entire set U . In the traditional
setting in which we are allowed to sample elements from U uniformly,
sampling Ω(n) items is necessary to provide any non-trivial guarantee
on the estimate. Therefore, we investigate this problem in different set-
tings: in the proportional setting we can sample items with probabilities
proportional to their weights, and in the hybrid setting we can sample
both proportionally and uniformly. These settings have applications, for
example, in sublinear-time algorithms and distribution testing.

Sum estimation in the proportional and hybrid setting has been con-
sidered before by Motwani, Panigrahy, and Xu [ICALP, 2007]. In their
paper, they give both upper and lower bounds in terms of n. Their
bounds are near-matching in terms of n, but not in terms of ε. In this
paper, we improve both their upper and lower bounds. Our bounds are
matching up to constant factors in both settings, in terms of both n
and ε. No lower bounds with dependency on ε were known previously.
In the proportional setting, we improve their Õ(

√
n/ε7/2) algorithm to

O(
√
n/ε). In the hybrid setting, we improve Õ(3

√
n/ε9/2) to O(3

√
n/ε4/3).

Our algorithms are also significantly simpler and do not have large con-
stant factors.

We then investigate the previously unexplored scenario in which n is
not known to the algorithm. In this case, we obtain a O(

√
n/ε+log n/ε2)

algorithm for the proportional setting, and a O(
√
n/ε) algorithm for the

hybrid setting. This means that in the proportional setting, we may

17

18
CHAPTER 2. BETTER SUM ESTIMATION VIA WEIGHTED

SAMPLING

remove the need for advice without greatly increasing the complexity of
the problem, while there is a major difference in the hybrid setting. We
prove that this difference in the hybrid setting is necessary, by showing
a matching lower bound.

Our algorithms have applications in the area of sublinear-time graph
algorithms. Consider a large graph G = (V,E) and the task of (1 ± ε)-
approximating |E|. We consider the (standard) settings where we can
sample uniformly from E or from both E and V . This relates to sum
estimation as follows: we set U = V and the weights to be equal to
the degrees. Uniform sampling then corresponds to sampling vertices
uniformly. Proportional sampling can be simulated by taking a random
edge and picking one of its endpoints at random. If we can only sample
uniformly from E, then our results immediately give a O(

√
|V |/ε) algo-

rithm. When we may sample both from E and V , our results imply an
algorithm with complexity O(3

√
|V |/ε4/3). Surprisingly, one of our sub-

routines provides an (1±ε)-approximation of |E| using Õ(d/ε2) expected
samples, where d is the average degree, under the mild assumption that
at least a constant fraction of vertices are non-isolated. This subroutine
works in the setting where we can sample uniformly from both V and E.
We find this remarkable since it is O(1/ε2) for sparse graphs.

Introduction.

Suppose we have a large set U , a weight function w : U → [0,∞) and we want
to compute a (1±ε)-approximation of the sum of all weights W =

∑
a∈U w(a).

Since n = |U | is very large, we want to estimate W by sampling as few
elements as possible. In the traditional setting in which we are allowed to
sample elements from U uniformly, sampling o(n) items cannot provide any
non-trivial guarantee on the approximation as we may miss an element with
a very large weight. This led Motwani et al. [2007] to study this problem
when we are allowed to sample elements proportionally to their weights (i.e.,
sample a with probability w(a)/W). In particular, they studied two settings:
the proportional setting, where we can sample items proportionally to their
weights, and the hybrid setting where both proportional and uniform sampling
is possible. In this paper, we revisit these two settings and get both improved
lower and upper bounds. We also extend the results to more general settings
and show how our techniques imply new results for counting edges in sublinear
time.

Motwani et al. [2007] give upper and lower bounds for both proportional
and hybrid settings. Their bounds are matching up to polylogarithmic factors
in terms of n, but not in terms of ε. In this paper, we improve both their upper
and lower bounds. Our bounds are matching up to polylogarithmic factors
in both settings, in terms of both n and ε. Moreover, for wide parameter
regimes our bounds are matching up to constant factors. No lower bounds
with dependency on ε were known previously.

INTRODUCTION. 19

In the proportional setting, we improve their Õ(
√
n/ε7/2) algorithm to

O(
√
n/ε). In the hybrid setting, we improve Õ(3

√
n/ε9/2) to O(3

√
n/ε4/3). Our

algorithms are also significantly simpler. In the same paper, Motwani et al.
[2007] write: “to efficiently derive the sum from [proportional] samples does
not seem straightforward”. We would like to disagree and give a formula that
outputs an estimate of W from a proportional sample. This formula is not
only optimal in terms of sample complexity but also very simple. Our other
algorithms, although not as simple, do not have large hidden constants and
we believe they are both practical and less involved than their predecessors.

In their work, Motwani et al. [2007] always assume to know the size of the
universe n = |U |. We extend these results to the case of unknown n. In this
case, we obtain a O(

√
n/ε + log n/ϵ2) algorithm for the proportional setting,

and a O(
√
n/ε) algorithm for the hybrid setting. This means that in the

proportional setting we may remove the need for advice without significantly
impacting the complexity of the problem, while there is a major difference
in the hybrid setting. We prove that this difference in the hybrid setting is
necessary, by showing a matching lower bound.

We give lower bounds for all our estimation problems, both for proportional
and hybrid settings, and when n is either known or unknown. This is the most
technically challenging part of the paper. We prove lower bounds for n known
and unknown as well as proportional and hybrid settings; all our lower and
upper bounds are matching up to a constant factor. See Table 2.1 for a
summary of our results.

Our algorithms have particularly interesting applications in the area of
sublinear-time graph algorithms, which are explained in detail in Chapter 2.

The paper is structured as follows. In what is left of Chapter 2 we ex-
plain applications and related work, give an overview of the techniques em-
ployed, and provide the reader with formal definitions of problems and nota-
tion. Chapter 2 contains our algorithms for proportional setting, while Line 8
contains algorithms for hybrid setting. In Line 3 we prove all our lower bounds.
In Line 3 we show how to apply our algorithms to the problem of counting
the number of edges in a graph in sublinear time. In Line 3 we raise several
open problems.

Related Work and Applications.

In this section, we show that our algorithms can be applied to get sublinear-
time graph algorithms and distribution testing and discuss how this relates
to previous work in these areas. We also discuss here how the widely used
Metropolis-Hastings algorithm in fact implements the proportional sampling.
We suggest that this could be an application domain worth investigating.

20
CHAPTER 2. BETTER SUM ESTIMATION VIA WEIGHTED

SAMPLING

Advice to
the algorithm

This paper Motwani et al. [2007]

Proportional Hybrid Proportional Hybrid

n known Θ(
√
n/ε)

O(min(3
√
n/ε4/3, n log n))

Ω(min(3
√
n/ε4/3, n)

Õ(
√
n/ε7/2)

Ω(
√
n)

Õ(3
√
n/ε9/2), O(

√
n/ε2)

Ω(3
√
n)

Known ñ ≥ n O(
√
ñ/ε)

Ω(
√
n/ε)

O(min(
√
n/ε, n log n))

Ω(min(
√
n/ε, n))

No advice
O(
√
n/ε+ log n/ϵ2)

Ω(
√
n/ε)

O(min(
√
n/ε, n log n))

Ω(min(
√
n/ε, n))

Table 2.1: Results of this paper.

Counting edges in sublinear time.

When a graph G = (V,E) is very large, we may want to approximately solve
certain tasks without looking at the entire G, thus having a time complexity
that is sublinear in the size of G. In particular, estimating global properties of
G such |V | or |E| in this setting is an important problem and has been studied
in both theoretical and applied communities Feige [2006a], Goldreich and Ron
[2006], Seshadhri [2015], Eden et al. [2017a], Tětek and Thorup [2022], Katzir
et al. [2011], Dasgupta et al. [2014a]. Since the algorithm does not have the
time to pre-process (or even see) the whole graph, it is important to specify
how we access G. Several models are employed in the literature. The models
differ from each other for the set of queries that the algorithm is allowed
to perform. A random vertex query returns a random vertex, a random edge
query returns a random edge, a pair query takes two vertices u, v as arguments
and returns (u, v) ∈ E, a neighborhood query takes a vertex v and an index
i as arguments and returns the i-th neighbor of v (or says that d(v) < i), a
degree query, given a vertex v, returns its degree deg(v). We parameterize the
complexities with an approximation parameter ε, n = |V | and m = |E|.

The problem of estimating the number of edges in a graph in sublinear time
has been first considered by Feige [2006a]. Their algorithm works in the model
where only random vertex queries and degree queries are allowed and achieves
a (2 + ε)-approximation algorithm using Õ(n

ε
√
m

) time and queries. Their

algorithm does not use neighborhood queries and the authors showed that
without neighborhood queries, 2 − ε approximation requires a linear number
of queries. Goldreich and Ron [2006] broke the barrier of factor 2 by using
neighborhood queries. Indeed, they showed a (1+ε)-approximation with time
and query complexity of Õ(n

ε9/2
√
m

). Currently, the best known algorithm is

the one by Eden et al. [2017a] and has complexity Õ(n
ε2

√
m

). If pair queries are

allowed, the algorithm of Tětek and Thorup [2022] has complexity Õ(n
ε
√
m

+
1
ε4

); in the same paper the authors showed a lower bound which is near-

matching for ε ≥ m1/6/n1/3 as well as an algorithm with complexity Õ(n
ε
√
m

+

INTRODUCTION. 21

1
ε2

) in what they call the hash-ordered access model. They also show an
algorithm in the more standard setting with random vertex and neighborhood
queries, that runs in time Õ(

√
n/ε). This is the same complexity (up to a

logO(1) n factor) that we achieve in the setting with random edge queries, as
we discuss below. Our techniques are, however, completely different and share
no similarity with the techniques used by Tětek and Thorup [2022].

Our algorithms can be applied to solve the edge counting problem when
either (i) random edge queries only are allowed, or (ii) both random edge and
random vertex queries are allowed. We remark that uniform edge sampling
can be (approximately) simulated using Õ(n/

√
εm) random vertex queries,

degree queries and neighbor queries (Eden and Rosenbaum [2018c]). While
edge counting has not been explicitly considered in these settings before, these
settings are established and have been used in several papers (Assadi et al.
[2019b], Aliakbarpour et al. [2018a], Fichtenberger et al. [2020a], Biswas et al.
[2021b]). We instantiate our algorithm for this graph problem setting U = V
and w(v) = deg(v) for each v ∈ V . Uniform sampling then corresponds
to sampling vertices uniformly. Proportional sampling can be simulated by
taking a random edge and picking one of its endpoints at random. Degree
query allows us to get the weights of sampled vertices. Since these settings
have not been explicitly studied before, we compare our results with what
follows directly from the known literature.

If we can only sample uniformly from E, the algorithm by Motwani et al.
implies an algorithm for this problem that has complexity Õ(

√
n/ε7/2). Using

an algorithm from Eden et al. [2017a] and standard simulation of random
vertex queries using random edge queries, one would get time Õ(

√
m/ε2+ m

ε
√
n′)

for n′ being the number of non-isolated1 vertices2. Our results immediately
give a O(

√
n/ε) algorithm, or Õ(

√
n/ε+ 1/ε2) when n is not known.

When we may sample both from E and V , the algorithms by Motwani et
al. imply algorithms with sample complexities of Õ(3

√
n/ε9/2) and O(

√
n/ε2).

We may also use the algorithm of Eden et al. [2017a] that relies on random
vertex query only. This has complexity from O(n

ε2
√
m

). Our results imply an

algorithm with complexity O(3
√
n/ε4/3). Surprisingly, one of our subroutines

provides an (1 ± ε)-approximation of |E| using Õ(d/ε2) expected samples,
where d is the average degree, under the mild assumption that at least a con-
stant fraction of vertices are non-isolated (in fact, we prove a more complicated
complexity which depends on the fraction of vertices that are isolated). This
subroutine works in the setting where we can sample uniformly from both V
and E. We find this interesting since it is O(1/ε2) for sparse graphs.

1A vertex is isolated if it has degree zero.
2One may simulate uniform sampling from the set of non-isolated vertices at multiplica-

tive overhead of O(m/n′) by sampling proportionally and using rejection sampling. We
may then use set size estimation by birthday paradox in time O(

√
n′/ϵ) to learn n′ and the

algorithm of Eden et al. [2017a].

22
CHAPTER 2. BETTER SUM ESTIMATION VIA WEIGHTED

SAMPLING

Distribution testing.

Consider a model in which we are allowed to sample from a distribution D
on U , and when we do, we receive both a ∈ U and PD(a). This model is
stronger than the one we considered throughout the paper. In fact, it is
a special case of our model obtained by fixing W = 1. Similarly, we may
consider such stronger variant of the hybrid setting. This model has received
attention both in statistics and in theoretical computer science literature.
Most notably, Horvitz and Thompson [1952b] in 1952 showed how to estimate
the sum

∑
a∈U v(a), for value function v : U → R when having access to

a sample a from D and PD(a). More recently, many distribution testing
problems have been considered in this and similar models.

First, Canonne and Rubinfeld [2014] considered the model where one can
(i) sample a ∈ U according to D; (ii) query an oracle that, given a ∈ U , returns
PD(a). This allows us to both get the probability of a sampled item, but also
the probability of any other item. For every permutation-invariant problem,
any sublinear-time algorithm in this model may be transformed so that it only
queries the oracle on previously sampled items or on items chosen uniformly
at random 3. This setting is stronger than our hybrid setting. However, the
two models become equivalent if we know W .

Second, Onak and Sun [2018] considered exactly the model described
above, where one can sample from a distribution D, and both a ∈ U and
PD(a) are returned. This setting is again stronger than our proportional set-
ting, and it becomes equivalent once we know W .

In both of these papers, the authors solved several distribution testing
problems such as: uniformity testing, identity testing, closeness testing, dis-
tance to a known distribution, and distance between two unknown distribu-
tions in the respective models. Canonne and Rubinfeld [2014] also considered
the problem of providing an additive approximation of entropy. Both Canonne
and Rubinfeld [2014] and Onak and Sun [2018] proved several lower bounds,
showing that many of their algorithms are optimal up to constant factors.
These lower bounds also imply a separation between the two models for some
of the problems mentioned above.

In both of the papers, the authors make a point that many of their al-
gorithms (all the ones we mentioned) are robust with respect to noise of
multiplicative error (1 ± ε/2) in the answers of the probability oracles. Our
algorithms can then serve as a reduction from the weaker models we consider
in this paper to these stronger models where we know the probabilities and
not just the weights. The reason is that we can get an approximation of

3Since we consider permutation invariant problems, we may randomly permute the ele-
ments. Whenever we query an element that has not yet been sampled, we may assume that
it is sampled uniformly from the set of not-yet-sampled elements. This can be simulated by
sampling elements until getting a not-yet-seen item (sublinearity ensures that the step adds
multiplicative O(1) overhead).

INTRODUCTION. 23

W , meaning that we may then approximately implement the above-described
models. Since the mentioned algorithms (Canonne and Rubinfeld [2014], Onak
and Sun [2018]) are robust, a (1 ± ε/2)-approximation of W is sufficient to
simulate them.

Proportional sampling in practice: Metropolis-Hastings.

Proportional sampling is often implemented in practice using the Metropolis-
Hasting algorithm. This algorithm is widely used in statistics and statistical
physics, but can also be used to sample combinatorial objects. It can be used
to sample from large sets which have complicated structures that make it
difficult to use other sampling methods. Just like our algorithms, it is suit-
able when the set is too large to be stored explicitly, making it impossible to
pre-process it for efficient sampling. One of the main appeals of Metropolis-
Hasting is that it does not require one to know the exact sampling probabil-
ities, but it is sufficient to know the items’ weights like in the proportional
setting described in this paper. We thus suggest that our algorithm could find
practical applications in combination with the Metropolis-Hasting algorithm.

Overview of employed techniques.

Here we provide a summary of the techniques employed throughout the paper.
We denote with Punif (·) and Pprop(·) the probabilities computed according to
uniform and proportional sampling, respectively. Although often not specified
for brevity, all guarantees on the approximation factors of estimates in this
section are meant to hold with probability 2/3. These probability can be
amplified to 1 − δ through O(log 1/δ) repetitions using the folklore median
trick. We do not know whether the dependency w.r.t. δ is optimal and this
would be an interesting further question.

Proportional setting with advice ñ ≥ n.

Consider sampling two elements a1, a2 ∈ U proportionally and define Y12 =
1/w(a1) if a1 = a2, and Y12 = 0 otherwise. It is easy to show that Y12 is an
unbiased estimator of 1/W . We could perform this experiment many times
and take the average. This would give a good approximation to 1/W and tak-
ing the inverse value, we would get a good estimate on W . Unfortunately, we
would need Θ(n/ε2) repetitions in order to succeed with a constant probabil-
ity. We can fix this as follows: we take m samples a1, · · · , am and consider one
estimator Yij for each pair of samples ai, aj for i ̸= j. This allows us to get

(
m
2

)
estimators from m samples. We show that estimators Yij are uncorrelated.
This reduces the needed number of samples from O(n/ε2) to O(

√
n/ε).

We now describe the estimator formally. Let S = {a1, · · · , am} be the set
of sampled items, and for each s ∈ S define cs to be the number of times item

24
CHAPTER 2. BETTER SUM ESTIMATION VIA WEIGHTED

SAMPLING

s is sampled. Then,

Ŵ =

(
m

2

)
·

(∑
s∈S

(
cs
2

)
w(s)

)−1

is a (1 ± ε)-approximation of W with probability 2/3 for m = Θ(
√
n/ε). If,

instead of knowing n exactly, we know some ñ ≥ n we can achieve the same
guarantees by taking Θ(

√
ñ/ε) samples.

Proportional setting, unknown n.

We partition U into buckets Bi = {a ∈ U |w(a) ∈ [2i, 2i+1)}. We choose some
b ∈ Z and compute two estimates: Ŵb approximates Wb =

∑
a∈Bb

w(a), and

P̂b approximates Pb = Pprop(a ∈ Bb) = Wb/W . We then return Ŵb/P̂b, as
an estimate of W . If both estimates are accurate, then the returned value is
accurate. To choose b, we sample a1 and a2 proportionally and define b so that
max{a1, a2} ∈ [2b, 2b+1). We prove that, surprisingly4, E[1/Pb] = O(log n).
Computing P̂b is simply a matter of estimating the fraction of proportional
samples falling into Bb. This can be done using O(1/(Pbε

2)) samples, where ε
is the approximation parameter. Therefore the expected complexity of com-
puting P̂b is O(log n/ε2). Computing Ŵb is more involved. First, we design
two subroutines to sample from Bb, one for proportional sampling and one
for uniform. These subroutines work by sampling a ∈ U until we get a ∈ Bb;
the subroutine for uniform sampling then uses rejection sampling. These sub-
routines take, in expectation, O(1/Pb) samples to output one sample from
Bb. Since we can now sample uniformly from Bb, we sample items uniformly
form Bb until we find the first repeated item and use the stopping time to
infer |Bb| up to a constant factor. In expectation, we use O(

√
|Bb|) uniform

samples and compute ñb, such that |Bb| ≤ ñb ≤ O(|Bb|). Since we can also
sample proportionally from Bb, we may use the algorithm for proportional
setting with advice ñb to estimate Wb. This yields a total sample complexity
of O(

√
n/ε+ log n/ε2).

Hybrid setting.

We now present the techniques used in the hybrid setting. Before giving a
sketch of the main algorithms, we introduce two subroutines.

Coupon-collector-based algorithm. In the hybrid setting, we can sample
elements uniformly. If we know n = |U | a well-known result under the name of
“coupon collector problem” shows that we can retrieve with high probability
all n elements by performing Θ(n log n) uniform samples. We extend this

4Notice that, if we just define b = a1, then we have E[1/Pb] = n in the worst case where
we have n distinct non-empty buckets. Therefore, taking the maximum of two samples
entails an exponential advantage.

INTRODUCTION. 25

result to the case of unknown n. We maintain a set of retrieved elements
S ⊆ U and keep on sampling uniformly and adding new elements to S until
we perform Θ(|S| log |S|) samples in a row without updating S. It turns out
that this procedure retrieves the whole set U with probability 2/3 and expected
complexity O(n log n). According to our lower bounds, this algorithm is near-
optimal when ε = O(1/

√
n). Therefore, we can focus on studying hybrid

sampling for larger values of ε.

Harmonic mean and estimating W/n with advice θ̃ ≥W/n in hybrid
setting. If we sample a ∈ U proportionally, then 1/w(a) is an unbiased
estimator of n/W . Unfortunately, we may have very small values of w(a),
which can make the variance of this estimator arbitrarily large. To reduce
variance, we can set a threshold ϕ and define an estimator Yϕ as 1/w(a) if
w(a) ≥ ϕ, and 0 otherwise. Set p = Punif (w(a) ≥ ϕ), then we have E[Yϕ] =
pn/W and Var(Yϕ) ≤ pn/(ϕW). If we define Ȳϕ as the average of θ̃/(pϕε2)
copies of Yϕ, we have Var(Ȳϕ) ≤ (εE[Yϕ])2. With such a small variance, Ȳϕ
is a good estimate of pn/W . Estimating p is simply a matter of estimating
the fraction of uniform samples having w(•) ≥ ϕ. This can be done taking
O(1/(pε2)) uniform samples. Once we have estimates of both p and pn/W
we return their ratio as an estimate of W/n. We employed in total O((1 +
θ̃
ϕ)/(p ε2)) proportional and uniform samples.

Perhaps surprisingly, this corresponds to taking the harmonic mean of the
samples with weight at least ϕ and adjusting this estimate for the weight of
the items with weight < ϕ.

Hybrid setting, known n. We now sketch the algorithm for sum estima-
tion in the hybrid setting with known n. We combine our formula to estimate
W in the proportional setting and the above algorithm to estimate W/n in
hybrid setting to obtain an algorithm that estimates W using O(3

√
n/ε4/3)

uniform and proportional samples. Define U≥θ = {a ∈ U |w(a) ≥ θ}. We find
a θ such that Punif (a ∈ U≥θ) ≈ n−1/3ε−2/3, this can be done taking enough
uniform samples and picking the empirical (1 − n−1/3ε−2/3)-quantile5 . We
define p = Pprop(a ∈ U≥θ) ≥ Punif (a ∈ U≥θ) ≈ n−1/3ε−2/3. We compute an
estimate p̂ of p counting the fraction of proportional samples falling in U≥θ.
Now we have two cases. If p̂ ≥ 1/2, we can simulate sampling from the pro-
portional distribution on U≥θ with O(1) overhead by sampling proportionally
until we get an element of U≥θ. Then, we use the algorithm for sum estima-
tion under proportional sampling restricted to elements in U≥θ to estimate∑

a∈U≥θ
w(a) = pW . Dividing by the estimate p̂ ≈ p, we get an estimate for

W . Else, p̂ < 1/2, and thus p ≤ 2/3 (assuming p̂ is a good enough estimate

5We may assume that ϵ ≥ 8/
√
n by running the coupon-collector-based algorithm

when ϵ < 8/
√
n. Under this assumption, it holds n−1/3ε−2/3 ∈ [0, 1] and taking the

(1− n−1/3ε−2/3)-quantile then is meaningful.

26
CHAPTER 2. BETTER SUM ESTIMATION VIA WEIGHTED

SAMPLING

of p). We then have θn ≥
∑

a̸∈U≥θ
w(a) = (1 − p)W ≥ W/3. This allows

us to use the harmonic-mean-based algorithm to estimate W/n with ϕ = θ
and θ̃ = 3θ. In both cases we manage to provide an estimate of W using
O(3
√
n/ε4/3) samples.

Hybrid setting, unknown n. We now sketch our technique for sum es-
timation in the hybrid setting with unknown n. First, we sample items uni-
formly until we find the first repeated item and use the stopping time to infer
the total number of items n. In expectation, we use O(

√
n) uniform samples

and compute ñ, such that n ≤ ñ and E[ñ] = n. Now, we can use our algo-
rithm for sum estimation in the proportional setting with advice ñ. This uses
in expectation O(

√
ñ/ε) = O(

√
n/ε) samples. As we prove, this complexity

is optimal up to a constant factor for ϵ ≥ 1/
√
n. Again, if ε ≤ 1/

√
n, then

we use our coupon-collector-based algorithm that retrieves every element of
U using O(n log n) samples.

Lower bounds.

The most technically challenging part of our paper is Line 3, where we prove
lower bounds for all estimation problems we address in the first part of the
paper. All our lower bound proofs follow a common thread. We now sketch
the main ideas. First, we define two different instances of the estimation prob-
lem at hand (U1, w1) and (U2, w2) such that a (1± ε)-approximation of W is
sufficient to distinguish between them. Then, we define our hard instance as a
mixture of the two: we take (U1, w1) with probability 1/2 and (U2, w2) other-
wise. We denote these events by E1 and E2 respectively. Second, we show that
a Bayes classifier cannot distinguish between the two cases with probability
2/3 using too few samples; since Bayes classifiers are risk-optimal6 this implies
that no classifier can have misclassification probability less than 1/3 while us-
ing the same number of samples. To show that a Bayes classifier has a certain
misclassification probability, we study the posterior distribution, conditioned
on the samples it has seen. Let the multiset S represent the outcome of the
samples. Since the prior is uniform, applying the Bayes theorem gives

P (E1 |S)

P (E2 |S)
=
P (S | E1)
P (S | E2)

.

We denote this likelihood ratio by R(S). We show that whenever |S| is
(asymptotically) too small, we have R(S) ≈ 1 with probability close to 1.
When R(S) ≈ 1, the posterior distribution is very close to uniform. This
entails misclassification probability close to 1/2. If X and Y are some random

6Risk of a classifier refers to the misclassification probability under some fixed distribu-
tion. For the Bayes classifier, we implicitly assume that this distribution is the same as the
prior.

INTRODUCTION. 27

variables sufficient to reconstruct S (that is, there exists an algorithm that,
given (X,Y), generates S′ with the same distribution as S), we can define

R(X) =
P (X | E1)
P (X | E2)

and R(Y |X) =
P (Y |X, E1)
P (Y |X, E2)

and we have, thanks to the Bayes theorem, R(S) = R(X) · R(Y |X). In this
way, we can break the problem of proving R(S) ≈ 1 into proving R(X) ≈ 1
and R(Y |X) ≈ 1. This allows us to reduce all our lower bounds to proving
concentration of likelihood ratios for two basic problems: (1) distinguishing
between two sets of size n and (1 − ε)n by uniform sampling and (2) distin-
guishing between two sequences of i.i.d. random variables from Bern(p) and
Bern(p− ε).

We now sketch how we bound the likelihood ratio R(S) for problem (1),
the same technique applies to problem (2). In problem (1), we call E1 the event
|U | = n and E2 the event |U | = (1 − ε)n, and we set P (E1) = P (E2) = 1/2.
First, we notice that R(S) depends only on the number ℓ(S) of distinct ele-
ments in S. Then, we prove three facts. First, ℓ(S) | Ei is concentrated around
E[ℓ(S) | Ei]. Second, E[ℓ(S) | E1] ≈ E[ℓ(S) | E2]. Third, for small deviations of
ℓ(S), we have small deviations of R(ℓ(S)). These three facts are sufficient to
conclude that, with probability close to 1, R(ℓ(S)) lies in a very narrow inter-
val; further computations show that 1 lies in that interval, hence R(S) ≈ 1
with probability close to 1.

Preliminaries.

Problem definition. We now give a formal definition of the two settings
that we consider. Let us have a set U of cardinality n and a weight function w :
U → [0,∞). We denote by W the sum

∑
a∈U w(a). The following operations

are allowed in the proportional sampling setting: (1) proportionally sample an
item, this returns (a,w(a)) with probability w(a)/W ; (2) given two items a, a′,
check whether a = a′. This is the only way we can interact with the items.
In the hybrid setting, we may in addition (3) sample an item uniformly (that
is, return (a,w(a)) for any a ∈ U with probability 1/n). In both settings, we
want to compute an estimate Ŵ of W such that (1 − ε)W ≤ Ŵ ≤ (1 + ε)W
with probability 2/3.

Notation. When (1− ε)W ≤ Ŵ ≤ (1 + ε)W holds, we say that such Ŵ is a
(1± ε)-approximation of W . Some of our subroutines require “advice” in the
form of a constant factor approximation of some value. For sake of consistency,
we denote this constant factor approximation of • by •̃. Similarly, if we want
to estimate some value •, we use •̂ to denote the estimate. Let us have some
predicate ϕ that evaluates true on some subset of U and false on the rest. We
denote by Punif (ϕ(a)) and Pprop(ϕ(a)) the probability of ϕ evaluating to true
for a being picked uniformly and proportionally, respectively.

28
CHAPTER 2. BETTER SUM ESTIMATION VIA WEIGHTED

SAMPLING

We state all our results (both upper and lower bound) for some constant
success probability > 1/2. These probabilities can be amplified to any other
constants without increasing the asymptotic complexity. In pseudocode, we
often say that we execute some algorithm with some failure probability. By
this, we mean that one uses probability amplification to achieve that failure
probability.

Relative bias estimation of a Bernoulli random variable. LetX1, X2, · · ·
be i.i.d. random variables distributed as Bern(p). Lipton et al. [1993] gave a
very simple algorithm that returns p̂ such that, with probability at least 2/3,
p̂ is a (1± ε)-approximation of p7. It can be summarized as follows.

Proposition 1 (follows from Lipton et al. [1993]). Let X1, X2, · · · be i.i.d.
random variables distributed as Bern(p). There exists an algorithm that uses
in expectation O(1

ε2p
) samples and returns p̂ such that E[1/p̂] = 1/p and

P (|p̂− p| > εp) ≤ 1

3
.

We call this algorithm BernoulliEstimator(ε). We assume that this
algorithm has access to the sequence X1, X2, · · · ; we specify these random
variables when invoking the algorithm.

Probability amplification and expected values. Consider an estimator
that gives a guarantee on the estimate x̂ that holds with some probability (say,
guarantee that a proposition ϕ(x̂) holds with probability at least 2/3) and at
the same time, we know that E[x̂] ≤ y for some value y. We sometimes need
to amplify the probability of the guarantee (that is, amplify the probability
that ϕ(x̂) holds) but would like to retain a bound E[x̂] = O(y). We now argue
that using the standard median trick is sufficient. Namely, we prove that

Lemma 2. Let us have non-negative i.i.d. random variables X1 · · ·X2t−1 for
some integer t, and let X = median(X1 · · ·X2t−1). It holds E[X] ≤ 2E[X1].

Proof. Let X ′
1, · · · , X ′

2t−1 be the random variables X1, · · · , X2t−1 sorted in
increasing order. We then have

E[X] ≤ E

[
1

t
·
2t−1∑
i=t

X ′
i

]
≤ E

[
1

t
·
2t−1∑
i=1

Xi

]
≤ 2t− 1

t
· E[X1].

7In that paper, the authors in fact solve a more general problem. For presentation of
this special case, see Watanabe [2005].

SUM ESTIMATION BY PROPORTIONAL SAMPLING. 29

Algorithm 1: PropEstimator(ñ, ε)

1 Given a parameter 0 < ε < 1 and advice ñ ≥ n
2 S ← perform m =

√
24ñ/ε+ 1 samples

3 Return the estimate Ŵ =
(
m
2

)
·
(∑

s∈S
(cs2)
w(s)

)−1

4 In case cs = 1 for all s ∈ S set Ŵ =∞.

Sum Estimation by Proportional Sampling.

In this section, we focus on sum estimation in the proportional setting. We
design algorithms to estimate W and our objective is to minimize the total
number of samples taken in the worst case. We present two different algo-
rithms that provide an (1± ε)-approximation of W with probability 2/3. The
first one, PropEstimator, assumes to have an upper bound on the number
of elements ñ ≥ n, and achieves sample complexity of O(

√
ñ/ε). The second

one, NoAdvicePropEstimator, does not assume any knowledge of n, and
produce an ε-estimate using O(

√
n/ε+ log n/ε2) samples in expectation.

Algorithm with advice ñ ≥ |U |.

Let a1 . . . am be m items picked independently at random from U with prob-
abilities proportional to their weights. Let S be the set of sampled items, and
for each s ∈ S define cs to be the number of times item s is sampled. For
each i, j ∈ [m]2 define Yij to be 1/w(ai) if ai = aj and 0 otherwise. We now
estimate W as follows:
Before we prove correctness, we need the following lemma.

Lemma 3. Given pairwise distinct i, j, k ∈ [m], we have E[Yi,j] = 1/W ,
Var(Yi,j) ≤ n/W 2, and Cov[Yi,j , Yi,k] = 0

Proof.

E[Yij] =
∑
a∈U

1

w(a)
P (xi = xj = a) =

∑
a∈U

w(a)

W 2
=

1

W

Var(Yij) ≤ E[Y 2
ij] =

∑
a∈U

1

w(a)2
P (xi = xj = a) =

∑
a∈U

1

W 2
=

n

W 2

As for the covariance, it holds Cov[Yi,j , Yi,k] = E[Yi,j · Yi,k]− E[Yj,k] · E[Yi,k].
This is equal to 0 as

E[Yi,j · Yi,k] =
∑
a∈U

1

w(a)2
P (xi = xj = xk = a) =

∑
a∈U

w(a)

W 3
=

1

W 2
= E[Yj,k] · E[Yi,k]

30
CHAPTER 2. BETTER SUM ESTIMATION VIA WEIGHTED

SAMPLING

Theorem 4. Given parameters ñ and 0 < ε < 1, PropEstimator(ñ, ε) has

sample complexity O(
√
ñ
ε) and returns an estimate Ŵ such that E[1/Ŵ] =

1/W . If, moreover, ñ ≥ n, then P (|Ŵ −W | ≤ εW) ≥ 2/3.

Proof. The sample complexity is clearly as claimed. We now prove that 1/Ŵ
is an unbiased estimator of 1/W :

1

Ŵ
=

(
m

2

)−1∑
s∈S

(
cs
2

)
w(s)

=

(
m

2

)−1 ∑
1≤i<j≤m

Yij

and thus

E

[
1

Ŵ

]
=

(
m

2

)−1 ∑
1≤i<j≤m

E [Yij] =
1

W
.

When i, j, k, ℓ are all distinct, Yij and Ykℓ are independent. Moreover, by
Lemma 3, Yij and Yik are uncorrelated for j ̸= k. Using the bound on Var(Yij)
from Lemma 3, we then have that

Var

[
1

Ŵ

]
=

(
m

2

)−2 ∑
1≤i<j≤m

Var(Yij)

≤
(
m

2

)−1 n

W 2

≤ 1

12
·
(ε

W

)2
By Chebyshev inequality, it holds that

P

(∣∣∣∣ 1

Ŵ
− 1

W

∣∣∣∣ > ε

2W

)
≤

Var
[
1/Ŵ

]
(ε/2W)2

≤ 1

3

Finally, for ε ≤ 1 we have

(1− ε)W ≤ (1 + ε/2)−1W ≤ Ŵ ≤ (1− ε/2)−1W ≤ (1 + ε)W

This means that |1/Ŵ − 1/W | ≤ ε/(2W) implies |Ŵ − W | ≤ εW . Thus

P
(
|Ŵ −W | ≤ εW

)
≥ 2/3.

Algorithms for |U | unknown.

In this section, we present the algorithm NoAdvicePropEstimator, which
samples elements from U proportionally to their weights, and computes an
(1 ± ε)-approximation of W with probability 2/3, without any knowledge of
n = |U |.

SUM ESTIMATION BY PROPORTIONAL SAMPLING. 31

Algorithm 2: SetSizeEstimator()

1 S0 ← ∅
2 for i ∈ N do
3 Sample ai ∈ U uniformly
4 if ai ∈ Si then
5 ŝ← |Si|
6 N̂ ← 4ŝ2

7 return N̂

8 Si+1 ← Si ∪ {ai}

NoAdvicePropEstimator takes O(
√
n/ε+ log n/ϵ2) samples in expec-

tation and works as follows. We partition U into buckets such that items in
one bucket have roughly the same weight. We pick one bucket such that the
items in this bucket are likely to have a sufficiently large total weight. We
then estimate the sum restricted to this bucket. If we are able to do that, we
can estimate the total weight by looking at what fraction of the proportional
samples end up in this bucket. We estimate the sum restricted to the bucket
as follows. Since the weights are roughly the same for all items in the bucket,
we may use rejection sampling to efficiently simulate uniform samples from
the bucket. That allows us to estimate the number of items in it, up to a
constant factor. We use the algorithm PropEstimator with this estimated
bucket size as the advice ñ.

Estimating |U | through uniform sampling.

As a preliminary step, we assume that we are able to sample elements from
U uniformly, rather than according to their weights. Under this assumption,
we introduce the algorithm SetSizeEstimator that, using O(

√
n) expected

samples, estimates n = |U | up to a constant factor with probability 2/3. The
intuition behind SetSizeEstimator is fairly simple: if we sample uniformly
with replacement from a universe of size n and we see the first repetition after
t samples, then it is likely that t ≈

√
n.

Theorem 5. SetSizeEstimator has expected sample complexity of O(
√
n).

It returns an estimate N̂ such that P (n ≤ N̂) ≥ 2/3 and E[N̂] = O(n).

Proof. We prove that when the algorithm aborts, it holds P (
√
n/2 ≤ ŝ) ≥

2/3. The bound on P (n ≤ N̂) follows by the definition of N̂ . Define the
event Ei = {ai ∈ Si}, where we define that ai ̸∈ Si whenever the algorithm
terminates before step i. It then holds P (Ei) ≤ P (Ei |

⋂
j<i Ēj) = i/n. We

32
CHAPTER 2. BETTER SUM ESTIMATION VIA WEIGHTED

SAMPLING

Algorithm 3: PropBucketSampler(b)

1 Sample (a,w(a)) proportionally

2 while w(a) ̸∈ [2b, 2b+1) do
3 Sample (a,w(a)) proportionally

4 return (a,w(a))

have

P

(
ŝ <

√
n

2

)
= P

√
n/2−1⋃
i=0

Ei

≤

√
n/2−1∑
i=0

P (Ei)

≤

√
n/2−1∑
i=0

i

n

=
1

n
·
(√

n/2

2

)
<

1

6
.

After
√
n samples, each additional sample is a repetition with probability at

least 1/
√
n. The number of iterations before the algorithm returns is thus

stochastically dominated by
√
n + Geom(1/

√
n). We may thus bound the

expectation as

E
[
N̂
]

= E
[
4ŝ2
]
≤ O

(
n+ E

[
Geom(1/

√
n)2
])
≤ O(n)

where the last inequality is a standard result on the second moment of the
geometric random variable.

Simulating uniform sampling.

We define buckets Bi = {a ∈ U |w(a) ∈ [2i, 2i+1)} for each i ∈ Z, and we show
how to sample elements uniformly from Bi, while allowed to sample elements
proportionally to their weight w. First, we show how to sample elements from
a bucket Bb given a b ∈ Z proportionally in PropBucketSampler. We then
use rejection sampling to obtain a uniform sample through UnifBucketSampler.

Lemma 6. Let pb = P (w(a) ∈ [2b, 2b+1)) for a ∈ U sampled proportionally.
Then, the expected sample complexity of both PropBucketSampler and
UnifBucketSampler is O(1/pb). PropBucketSampler returns an item
from the b-th bucket with distribution proportional to the weights. UnifBucketSampler
returns an item from the b-th bucket distributed uniformly.

SUM ESTIMATION BY PROPORTIONAL SAMPLING. 33

Algorithm 4: UnifBucketSampler(b)

1 (a,w(a))← PropBucketSampler(b)

2 while Uniform([0, 1]) > 2b

w(a) do

3 (a,w(a))← PropBucketSampler(b)

4 return (a,w(a))

Proof. PropBucketSampler performs samples until it samples an item a
from bucket Bb; it returns a. This is equivalent to sampling proportionally
conditioned on a ∈ Bb. This proves that the output has the claimed distribu-
tion. In each step, we finish with probability pb, independent of other steps.
The expected number of steps is, therefore, 1/pb. This proves the sample
complexity.

Similarly, we terminate UnifBucketSampler after sampling a ∈ Bb and
Uniform([0, 1]) ≤ 2b

w(a) . Sampling until a ∈ Bb is equivalent to sampling item

a from Bb with probability w(a)/Ab where Ab is the total weight of items in
bucket Bb. Therefore, a is sampled in each step with probability

pb ·
w(a)

Ab
· 2b

w(a)
=
pb2

b

Ab

Since this probability is the same for all items a ∈ Bb, the resulting distribution
is uniform. The rejection probability is upper-bounded by 1/2. Therefore,
UnifBucketSampler also has expected sample complexity of O(1/pb)

Putting it together: Estimating W without advice.

Finally, we are ready to show the algorithm NoAdvicePropEstimator, that
estimates W without relying on any advice ñ ≥ n. To analyze it, we first need
a lemma.

To analyze NoAdvicePropEstimator, we first need a lemma:

Lemma 7. Consider b1, b2 and b as defined in NoAdvicePropEstimator,
and let a ∈ U be a random element sampled proportionally. Then,

E

[
1

Pprop (a ∈ Bb | b)

]
= O(log n).

Moreover, if we define nb as the number of items in Bb we have

E

[√
nb

Pprop (a ∈ Bb | b)

]
= O(

√
n).

.

34
CHAPTER 2. BETTER SUM ESTIMATION VIA WEIGHTED

SAMPLING

Algorithm 5: NoAdvicePropEstimator(ε)

1 Sample (a1, w(a1)), (a2, w(a2)) proportionally
2 bi ← ⌊logw(ai)⌋ for i = 1, 2
3 b← max(b1, b2)
4 ñb ← SetSizeEstimator() using UnifBucketSampler(b) as

sampling subroutine, with success probability 9/10
5 Ŵb ← PropEstimator(ε3 , ñb) using PropBucketSampler(b) as

sampling subroutine, with success probability 9/10
6 P̂b ← BernoulliEstimator

(
ε
3

)
to estimate P (a ∈ Bb) with success

probability 9/10
7 Ŵ ← Ŵb/P̂b

8 return Ŵ

Proof. Throughout this proof, we assume a to be sampled proportionally.
We first prove the first statement. Define k = max{j |Bj ̸= ∅}, and set
B = {Bj |k − 2 log n < j ≤ k and Bj ̸= ∅}. Notice that |B| ≤ 2 log n and, for
each Bj ̸∈ B, x ∈ Bj we have

P (a = x) ≤ 2k−2 logn+1

W
= 2−2 logn+1 · 2k

W
≤ 2

n2

since there exists y ∈ Bk and therefore W ≥ w(y) ≥ 2k. Hence, sampling
a ∈ U proportionally we have

P (Ba ̸∈ B) = P (∃j, s.t. a ∈ Bj ∧Bj ̸∈ B)

≤
∑

x∈
⋃

Bj ̸∈B Bj

P (a = x)

≤ n · 2

n2
=

2

n
.

Now, we notice that for each Bj , it holds

P (b ∈ Bj) ≤ 2 · P (b1 ∈ Bj) · P (∃i ≤ j : b2 ∈ Bi) (2.1)

= 2 · P (a ∈ Bj) · P (∃i ≤ j : a ∈ Bi)

≤ 2 · P (a ∈ Bj)

where the factor two is given by the union bound, and we used a ∼ b1 ∼ b2.

SUM ESTIMATION BY PROPORTIONAL SAMPLING. 35

Then, we can write

E

[
1

P (a ∈ Bb | b)

]
=
∑
Bj ̸=∅

P (b ∈ Bj)

P (a ∈ Bj)

=
∑
Bj∈B

P (b ∈ Bj)

P (a ∈ Bj)
+
∑
Bj ̸∈B
Bj ̸=∅

P (b ∈ Bj)

P (a ∈ Bj)

≤ 2 · |B|+
∑
Bj ̸∈B
Bj ̸=∅

2P (∃i ≤ j : a ∈ Bi)

≤ 2 · |B|+
∑
Bj ̸∈B
Bj ̸=∅

2P (Ba ̸∈ B)

≤ 4 log n+ 2n · P (Ba ̸∈ B)

≤ 4 log n+ 4 = O(log n).

The fist inequality is obtained using eq. (2.1). The second inequality descends
from the fact that Bj ̸∈ B and i ≤ j imply Bi ̸∈ B. The last two inequalities
are obtained using n as an upper bound on the number of nonempty buckets
Bj and recalling that P (Ba ̸∈ B) ≤ 2/n.

Now we can prove the second statement. Denote by nb the number of ele-
ments inBb and define ℓ = arg maxi∈Z ni2

i/2. If we define Si =
∑

j≤i

∑
a∈Bj

w(a),

then we can rewrite the already proven inequality P (b ∈ Bj) ≤ 2 ·P (a ∈ Bj) ·
P (∃i ≤ j : a ∈ Bi) as

P (b ∈ Bj) ≤ 2 · P (a ∈ Bj) ·
Sj
W
. (2.2)

We now prove that there exists a constant C > 0 such that, for all i ∈ Z it holds
Sℓ−i ≤ C ·Sℓ ·2−i/2. Notice that, by definition of ℓ, we have nj ·2j/2 ≤ nℓ ·2ℓ/2
for all j ∈ Z. We can now bound

Sℓ−i ≤
∑
j≤ℓ−i

nj · 2j+1

≤ nℓ ·
∑
j≤ℓ−i

2ℓ/2−j/2 · 2j+1

= 2nℓ2
ℓ ·
∑
j≤ℓ−i

2j/2−ℓ/2

≤ 2Sℓ ·
∑
j≤ℓ−i

2j/2−ℓ/2 ≤ C · Sℓ2−i/2.

Therefore, we have
∑

j<ℓ Sj = O(Sℓ). Notice that by the definition of ℓ we

have nℓ+i ≤ nℓ · 2−i/2 for each i ≥ 0. Now we are ready to prove our final

36
CHAPTER 2. BETTER SUM ESTIMATION VIA WEIGHTED

SAMPLING

result.

E

[√
nb

P (a ∈ Bb | b)

]
=
∑
j∈Z

P (b ∈ Bj) ·
√
nj

P (a ∈ Bj)

≤
∑
j∈Z

2
Sj
W
· √nj

≤
∑
j<ℓ

2
Sj
W
·
√
n+

∑
j≥ℓ

2
√
nj

≤ O(Sℓ)

W
·
√
n+

∑
i≥0

2
√
nℓ · 2−i/4 = O(

√
n).

The first inequality uses eq. (2.2), the second inequality is obtained splitting
the series in two parts and using Sj ≤ W . The last inequality is obtained
plugging in

∑
j<ℓ Sj = O(Sℓ) and nℓ+i ≤ nℓ · 2−i/2 for i ≥ 0.

Now we are ready to analyze NoAdvicePropEstimator.

Theorem 8. Let Ŵ be the estimate returned by NoAdvicePropEstimator.
Then Ŵ is an (1± ε)-approximation of W with probability 2/3. Moreover, its
expected sample complexity is

O

(√
n

ε
+

log(n)

ε2

)
.

Proof. We start by proving correctness. Define Wb =
∑

x∈Bb
w(x) and Pb =

P (a ∈ Bb | b) = Wb/W . Notice that Wb and Pb are random variables, since
they depend on b. Now we prove that Ŵ is a (1 ± ε)-approximation of W
with probability 2/3. Define the event E1 = {n ≤ ñb}, we have P (E1) ≥ 9/10
(where we use Theorem 5 together with probability amplification to amplify
the success probability of 2/3 to 9/10). Define the event

E2 =
{

(1− ε/3)Wb ≤ Ŵb ≤ (1 + ε/3)Wb

}
then, we have P (E2 | E1) ≥ 9/10 (where we use Theorem 4 and probability
amplification). Define the event

E3 =
{

(1− ε/3)Pb ≤ P̂b ≤ (1 + ε/3)Pb

}
then it holds P (E3 | b) ≥ 9/10 (where we use Proposition 1 and probability
amplification). On the event E2 ∩ E3, it holds

(1− ε) ·W ≤ 1− ε/3
1 + ε/3

· Wb

Pb
≤ Ŵb

P̂b

≤ 1 + ε/3

1− ε/3
· Wb

Pb
≤ (1 + ε) ·W.

SUM ESTIMATION BY PROPORTIONAL SAMPLING. 37

Then we can apply union bound and prove

P
(
Ŵ < (1− ε)W or Ŵ > (1 + ε)W

)
≤ P

(
Ē2 ∪ Ē3

)
≤ P

(
Ē1
)

+ P
(
Ē2 | E1

)
+ P (Ē3)

≤ 1

10
+

1

10
+

1

10
≤ 1

3
.

It remains to prove that the expected number of samples that NoAdvicePropEstimator
uses is as claimed. Denote by σ1 the total number of samples taken on
line 4, by σ2 the total number of samples taken on line 5 and by σ3 the
total number of samples taken on line 6. We denote the number of sam-
ples employed during the i-th call to UnifBucketSampler(b) on line 4 with

η
(i)
1 ; similarly, we denote the number of samples taken during the i-th call to

PropBucketSampler(b) on line 5 with η
(i)
2 . We can then write

σ1 =

τ1∑
i=1

η
(i)
1 and σ2 =

τ2∑
i=1

η
(i)
2

where τ1 and τ2 are the number of calls to UnifBucketSampler(b) per-
formed on line 4 and line 5, respectively. First we notice that, thanks to

Lemma 6, there exists a constant K > 0 such that E[η
(i)
1 | b], E[η

(i)
2 | b] ≤

K
P (a∈Bb | b) . Thanks to Theorem 5, we have E[τ1 | b] = O(

√
nb) and τ2 =

O(
√
ñb/ε). Now we are ready to bound E[σ1] and E[σ2]. We have

E [σ1] = E

[
E

[
τ1∑
i=1

η
(i)
1

∣∣ b]] = E
[
E
[
τ1
∣∣ b] · E [η(1)1

∣∣ b]] ≤ E [K ·O(
√
nb)

P (a ∈ Bb | b)

]
= O

(√
n
)

where the first equality is by the Wald’s identity and the last equality is
obtained applying Lemma 7. Similarly,

E [σ2] = E

[
E

[
τ2∑
i=1

η
(i)
2

∣∣ b]] = E
[
E
[
τ2
∣∣ b] · E [η(1)2

∣∣ b]]
≤ E

[
K ·

(√
80ñb/ε+ 1

)
P (a ∈ Bb | b)

]
= O

(√
n

ε
+ log n

)
= O

(√
n

ε

)
where we used that E[

√
ñb] ≤

√
E[ñb] ≤

√
n, which holds thanks to Theorem 5

and Jensen inequality. In order to bound E[σ3 | b], recall that, thanks to
Proposition 1, there exists a C > 0 such that, conditioning on the value of b,
BernoulliEstimator(ε3) takes in expectation at most C

P (a∈Bb | b)ε2
samples

in order to estimate P (a ∈ Bb). Therefore we have

E[σ3] = E [E[σ3 | b]] ≤ E
[

C

P (a ∈ Bb | b) ε2

]
= O

(
log n

ε2

)
.

38
CHAPTER 2. BETTER SUM ESTIMATION VIA WEIGHTED

SAMPLING

where the last equality holds by Lemma 7. This concludes the proof, since the
total number of samples taken by NoAdvicePropEstimator is σ1+σ2+σ3.
By the bounds we have proven above, the expectation of σ1 + σ2 + σ3 is as
claimed.

Sum Estimation by Hybrid Sampling.

In this section, we assume that we can sample elements both proportionally
and uniformly. Again, we solve the task of providing an estimate Ŵ of W
such that Ŵ is a (1± ε)-approximation of W with probability 2/3.

We notice that if we take Θ(n log n) uniform samples then, with probability
2/3, we see every element of U . This simple analysis is well-known under the
name of Coupon Collector problem. If we know n (or any constant-factor
approximation of it) we may simply take Θ(n log n) samples, assume we have
seen every element at least once, and compute W exactly. If we do not know n,
we first use SetSizeEstimator to compute an estimate N̂ of n accurate up
to a constant factor. If SetSizeEstimator succeeds, then taking O(N̂ log N̂)
samples suffices to collect all elements.

Therefore, it is sufficient to show an algorithm with complexity T (n, ε) to
obtain a complexity of the form O(min(T (n, ε), n log n)), as we can just run the
coupon-collector algorithm in parallel and take the result provided by the first
of the two algorithms to finish its execution. In what follows we only show how
to achieve a complexity of O(3

√
n/ε4/3) when |U | is known, and of O(

√
n/ε)

when |U | is unknown. As a consequence, the complexities that we achieve
in this settings are O(min(3

√
n/ε4/3, n log n)) and of O(min(

√
n/ε, n log n)) re-

spectively.

Algorithms for |U | known.

In this section, we show an algorithm that, given n = |U |, returns a (1 ± ε)-
approximation of W with probability 2/3 using O(3

√
n/ε4/3) samples. First,

we introduce a subroutine that uses harmonic mean to estimate the average
weight W/n; then we combine it with PropEstimator to obtain the main
algorithm of this section.

Harmonic-mean-based estimator.

Here we show the algorithm HarmonicEstimator(ε, θ̃, ϕ) that returns an
(1±ε)-approximation θ̂ ofW/n with probability 2/3. HarmonicEstimator(ε, θ̃, ϕ)
takes as advice an upper bound on the average weight θ̃ ≥ W/n, and a pa-
rameters ϕ such that we expect Punif (w(a) ≥ ϕ) not to be too small and θ̃/ϕ
not to be too large. A more formal statement follows.

To see the intuition behind this algorithm, consider the case when ϕ ≤ w(a)
for all a ∈ U . It then holds p̂ ≈ 1. We take k samples, and let 1/H be the

SUM ESTIMATION BY HYBRID SAMPLING. 39

Algorithm 6: HarmonicEstimator(ε, θ̃, ϕ)

1 p̂← BernoulliEstimator
(
Punif (w(a) ≥ ϕ), ε3

)
with success

probability 9/10

2 k ← 45 · θ̃
ϕ(1−ε/3)p̂ε2

3 Sample a1 . . . ak proportionally
4 for i = 1 . . . k do
5 if w(ai) ≥ ϕ then
6 bi = 1/w(ai)

7 else
8 bi = 0

9 H =
∑k

i=1 bi/k

10 θ̂ ← p̂/H

11 return θ̂

harmonic mean of the weights of the sampled items. We have E[H] = n/W ,
and θ̂ ≈ 1/H as p̂ ≈ 1. Unfortunately H might have a high variance due to
elements having very small weights. To fix this, we consider a parameter ϕ
such that w(a) < ϕ for some a ∈ U . Instead of E[H] = n/W , we then have
E[H] = n′/W for n′ = |{a ∈ U |w(a) ≥ ϕ}|. We then multiply 1/H by p̂ in
order to adjust for the fraction of items that were ignored. Note that, while
increasing ϕ, the variance of 1/H decreases; however, also n′ decreases and
this means that computing an estimate p̂ ≈ n′/n requires more samples. This
introduces a trade-off between the algorithm’s complexity and the variance of
H.

Lemma 9. Given parameters θ̃ and 0 < ε < 1, HarmonicEstimator(ε, θ̃, ϕ)

has expected sample complexity O((1 + θ̃
ϕ)/(p ε2)) where p = Punif (w(a) ≥ ϕ).

It returns an estimate Ŵ such that P (θ̂ < W/(20n)) ≤ 1/20. If, moreover,
θ̃ ≥W/n, then P (|Ŵ −W | ≤ εW) ≥ 2/3.

Proof. We start by proving that θ̂ is a (1+ε)-approximation of W/n with prob-
ability 2/3 when θ̃ ≥W/n. Define the event E = {p̂ is a (1±ε/3)-approximation of p}.
By Proposition 1 and using probability amplification, we have P (E) ≥ 9/10.
For each i = 1 . . . k we have

E[bi] =
∑
a∈U,

w(a)≥ϕ

1

w(a)
· w(a)

W
=
n≥ϕ

W
=
p · n
W

where n≥ϕ is the number of elements in a ∈ U with w(a) ≥ ϕ. Notice that

40
CHAPTER 2. BETTER SUM ESTIMATION VIA WEIGHTED

SAMPLING

this implies E[H] = p · n/W . Moreover, for each i = 1 . . . k

Var(bi) ≤ E
[
b2i
]

=
∑
a∈U,

w(a)≥ϕ

1

w2(a)
· w(a)

W
≤

n≥ϕ

ϕ ·W
=

p · n
ϕ ·W

.

Conditioning on E , we have that (1−ε/3)p̂ ≤ p. The way we have set k allows
us to bound

Var(H | E) =
Var(bi)

k
=

p · n
ϕ ·W

· ε
2(1− ε/3)p̂

45
· ϕ
θ̃
≤(p · n

W

)2
· ε

2

45
= E[H]2 · ε

2

45

where we used that θ̃ ≥ W/n. It holds E[H | E] = E[H]. We may thus apply
Chebyshev’s inequality to get

P

(
|H − E[H]| > ε

3
E[H]

∣∣∣∣ E) ≤ Var(H | E)(
ε
3E[H]

)2 ≤ 9

45
=

1

5

Since ε < 1, we have (1−ε/3)−1 ≤ 1+ε/2 and (1+ε/3)−1 ≥ 1−ε/2. Therefore

P

(∣∣∣∣ 1

H
− 1

E[H]

∣∣∣∣ > ε

2
· 1

E[H]

∣∣∣∣ E) ≤ 1

5
.

Again, since ε < 1, we have (1+ε/3)·(1+ε/2) ≤ 1+ε and (1−ε/3)·(1−ε/2) ≥
1− ε. Hence, using the union bound

P

(∣∣∣∣∣ p̂H − p

E[H]

∣∣∣∣∣ > ε · p

E[H]

)
≤

P (Ē) + P

(∣∣∣∣ 1

H
− 1

E[H]

∣∣∣∣ > ε

2
· 1

E[H]

∣∣∣∣ E) ≤ 1

3
.

Since p/E[H] = W/n, we have that the estimate θ̂ = p̂/H is a (1 + ε)-
approximation of W/n with probability ≥ 2/3.

We now argue the sample complexity. The expected number of samples
used on line 1 is by Proposition 1 equal to O(1/(p ε2)). In the rest of the
algorithm, we use k samples. It holds

E [k] = E

[
1

p̂

]
·O

(
θ̃

ϕ ε2

)
= O

(
θ̃

p ϕ ε2

)

where the second equality holds by Proposition 1. The sample complexity is
thus as claimed.

SUM ESTIMATION BY HYBRID SAMPLING. 41

Algorithm 7: HybridEstimator(n, ε)

Abort this algorithm if it uses more than C n1/3

ε4/3
samples, where C is

a large enough constant.

1 Find θ such that P

(
n2/3

ε2/3
≤
∣∣∣∣ {a ∈ U ∣∣w(a) ≥ θ

} ∣∣∣∣ ≤ 2 · n2/3

ε2/3

)
≥ 19

20

2 p̂← BernoulliEstimator
(
Pprop(w(a) ≥ θ), ε3

)
with success

probability 19/20
3 if p̂ ≥ 1/2 then

4 ñ≥θ ← 2 · n2/3

ε2/3

5 Ŵ≥θ ← PropEstimator
(
ñ≥θ,

ε
3

)
with success probability 19/20,

run on proportional samples conditioned on w(a) ≥ θ, obtained
by rejecting elements with w(a) < θ

6 Ŵ ← Ŵ≥θ/p̂

7 else
8 ρ̂← HarmonicEstimator(ε, 3θ, θ) with success probability

19/20
9 Ŵ ← n · ρ̂

10 return Ŵ

Finally, we prove that, regardless of θ̃, it holds P (θ̂ < W/(20n)) ≤ 1/20.
It holds E[H/p̂] = E[H]E[1/p̂] = n/W where E[1/p̂] = 1/p by Proposition 1.
Therefore, by the Markov’s inequality

P

(
p̂

H
≤ W

20n

)
= P

(
H

p̂
≥ 20n

w

)
≤ 1

20
.

Combining the two algorithms.

Here, we combine HarmonicEstimator with PropEstimator to obtain
HybridEstimator. It works in the hybrid setting and provides a (1 ± ε)-
approximation of W with probability 2/3, using in expectation O(3

√
n/ε4/3)

samples. While analysing HybridEstimator, we can restrict ourselves to
ε ≥ 8/

√
n. Indeed, for very small values of ε (namely, ε ≤ 1/(

√
n log n)) we

use the coupon-collector algorithm, and for intermediate values of ε (namely,
1/(
√
n log n) < ε < 8/

√
n) we use PropEstimator(n, ε). The coupon col-

lector algorithm gives a sample complexity of O(n log n), that is better than
O(3
√
n/ε4/3) for ε < 1/(

√
n log n). PropEstimator gives a sample complex-

ity of O(
√
n/ε), that is better than O(3

√
n/ε4/3) for ε < 8/

√
n.

To implement line 1 it is sufficient to sample uniformly 120n1/3ε2/3 ele-
ments of U and define θ as the element with the 180-th largest weight. (Note
that for ε ≥ 8/

√
n we have 120n1/3ε2/3 ≥ 480, so this is well-defined.) Let k

42
CHAPTER 2. BETTER SUM ESTIMATION VIA WEIGHTED

SAMPLING

be such that there are k elements a ∈ U with w(a) ≥ θ. A standard analysis

using Chebyshev inequality shows that k is concentrated around 3
2
n2/3

ε2/3
.

Theorem 10. Given ε such that 8/
√
n ≤ ε < 1, HybridEstimator(n, ε)

uses O(3
√
n/ε4/3) samples. With probability at least 2/3, the returned estimate

Ŵ is a (1± ε)-approximation of W .

Proof. We first analyze a variant of the algorithm that does not abort. (That
is, an algorithm with the same pseudocode except for the abortion condition
removed.) We now show that this algorithm returns a (1± ε)-approximation
with probability at least 5/6.

The scheme summarized above to find θ at line 1 succeeds with probability
at least 19/20. We call this event E1. Define the event E2 = {p̂ is a (1 ±
ε/3)-approximation of p}. It holds P (E2) ≥ 19/20.

We now consider the case p̂ ≥ 1/2. On line 5 we employ the algorithm
PropEstimator. Whenever it performs a sample, we simulate a propor-
tional sample from the set Uθ = {a ∈ U |w(a) ≥ θ} by sampling until we
sample item a such that w(a) ≥ θ. It is easy to see that the distribution
obtained with this sampling scheme is exactly the proportional distribution
on the set Uθ. Conditioning on E1, ñ≥θ is a valid advice and (by Theorem 4)
PropEstimator returns a (1 ± ε/3)-approximation of Wθ =

∑
w(a)≥θ w(a)

with probability at least 2/3. We amplify this probability to 19/20. Hence,
we have

P
({
Ŵθ is a (1± ε)-approximation of W≥θ

}
∩ E2

)
≥

1−
(

1

20
+ P (Ē1) + P (Ē2)

)
≥ 5

6
.

On this event, since ε < 1, we have

(1− ε)W ≤ 1− ε/3
1 + ε/3

W ≤ Ŵ ≤ 1 + ε/3

1− ε/3
W ≤ (1 + ε)W.

Now we analyse the case p̂ < 1/2. Whenever 3θ ≥W/n, HarmonicEstimator(ε, 3θ, θ)
returns a (1± ε)-approximation of W/n with probability 2/3 (by Lemma 9).
We amplify that probability to 19/20. Now we argue that, conditioning on
E2, we have 3θ ≥ W/n. Define p = Pprop(w(a) ≥ θ), then (on E2) we have
p ≤ (1 + ϵ/3)p̂ ≤ (1 + 1/3)1/2 ≤ 2/3. Hence, nθ ≥ (1 − p)W ≥ W/3 and
thus 3θ ≥ W/n, where the first inequality is obtained using

∑
w(a)<θ w(a) =

(1 − p)W . Applying union bound gives that HarmonicEstimator(ε, 3θ, θ)
succeeds with probability at least 1− (1/20 + P (Ē2))) ≥ 5/6.

Therefore, regardless of the value of p̂, we have shown that Ŵ is a (1 ±
ε)-approximation of W with probability at least 5/6. Thus, the modified
algorithm without abortion is correct with probability at least 5/6. We now
argue that the probability that Algorithm 7 is aborted is at most 1/6 (for C
large enough). By the union bound, its success probability is at least 2/3.

SUM ESTIMATION BY HYBRID SAMPLING. 43

Algorithm 8: NoAdviceHybridEstimator(ε)

1 ñ← SetSizeEstimator(), with success probability 5/6 (using
uniform sampling)

2 Ŵ ← PropEstimator(ñ, ε), with success probability 5/6 (using
proportional sampling)

3 return Ŵ

In what follows, we compute how many samples are taken on each line. On
line 1, we use only 120n1/3ε2/3 samples. Thanks to Proposition 1, BernoulliEstimator
on line 2 uses O(1/(pε2)) samples in expectation. In what follows, we condi-
tion on E1 ∩ E2. It holds p ≥ Punif (w(a) ≥ θ) and thus we have p ≥ 1

ε2/3n1/3 .

The number of samples used on line 2 is then in expectation O(n1/3/ε4/3). By
the (conditional) Markov’s inequality the probability that we use more than
C1n

1/3/ε4/3 is at most 1/30, for some C1 large enough. PropEstimator uses
O(
√
n2/3/ϵ2/3/ϵ) = O(n1/3/ε4/3) samples in the worst case. The rejections

cause only constant factor expected slowdown. Again, by the (conditional)
Markov’s inequality, for C2 large enough, we use more than C2n

1/3/ε4/3 with
probability at most 1/30. Since we have p ≥ 1

ε2/3n1/3 , on line 8 HarmonicEstimator

takes O(n1/3/ε4/3) samples in expectation (by Lemma 9). Thus, there exists
a constant C3 such that on line 8 we use more than C3n

1/3/ε4/3 samples with
probability at most 1/30.

Set C = 120 + C1 + C2 + C3. It then holds by the union bound that we
use more than C 3

√
n/ε4/3 samples (and thus abort) with probability at most

P (Ē1) + P (Ē2) + 1/30 + 1/30 = 1/6.

Algorithms for |U | unknown.

In this section we show an algorithm that, without any knowledge of n = |U |,
provides a (1 ± ε)-approximation of W with probability 2/3 using O(

√
n/ε)

samples. This complexity is strictly higher than the one of Line 8 for ε =
ω(1/

√
n). However, it is near-optimal when we do not know n, as we will see

in Line 3.

Theorem 11. NoAdviceHybridEstimator(ε) uses in expectation O(
√
n/ε)

samples and, with probability at least 2/3, we have (1−ε)W ≤ Ŵ ≤ (1+ε)W .

Proof. By Theorem 5, SetSizeEstimator takes O(
√
n) samples and returns

ñ such that n ≤ ñ with probability 2/3. We amplify this probability to 5/6.
Conditioning on n ≤ ñ, PropEstimator returns (1± ε)-estimate of W with
probability at least 2/3 by Theorem 4. We amplify this probability to 5/6.
By the union bound, the algorithm returns a (1±ε)-estimate with probability
at least 2/3.

44
CHAPTER 2. BETTER SUM ESTIMATION VIA WEIGHTED

SAMPLING

Moreover, by Theorem 5 and Lemma 2, E[ñ] = O(n). By the Jensen
inequality, PropEstimator then uses in expectation O(

√
n/ε) samples.

Coupon collector algorithm for unknown |U |.

We can design a simple O(n log n) time algorithm that computes W exactly
with probability 2/3 in the hybrid setting, without knowing n = |U |. We
denote this algorithm with NoAdviceCouponCollector. First, we use
SetSizeEstimator to give an estimate N̂ of n such that n ≤ N̂ ≤ Cn for
some constant C, with probability ≥ 5/6. This guarantee holds thanks to The-
orem 5 combined with probability amplification and Markov’s inequality. We
say that SetSizeEstimator succeeds if that is the case. Then, by standard
coupon collector we know that, conditioned on SetSizeEstimator succeed-
ing, O(N̂ log N̂ samples suffice to collect all elements in U , with probability
5/6. Then, we simply compute the sum of their weights and by union bound
this sum equals W with probability ≥ 2/3.

We can use this to ensure we never use more than O(n log n) samples in
the hybrid setting. Specifically, we may execute in parallel this algorithm to-
gether with one of the above algorithms and abort when one of them returns
an estimate. If one wishes to implement this in practice, it is possible to in-
stead do the following. Given the parameter ε, compute a threshold n0 such
that we would like to (if we knew n) execute NoAdviceCouponCollector
if n ≤ n0 and NoAdviceHybridEstimator if n > n0. We then run
NoAdviceCouponCollector and we abort if in case we find n0 distinct
elements. If this happens, we then run NoAdviceHybridEstimator.

Lower Bounds.

In this section, we give lower bounds for the problems we study in this paper.
The proofs of the lower bounds all follow a common thread. In what follows,
we use the term risk to refer to the misclassification probability of a classifier.

The roadmap of all our proofs follows. First, we define two different in-
stances of the problem (U1, w1) and (U2, w2) such that a (1±ε)-approximation
of W is sufficient to distinguish between them. Then, we define our hard in-
stance as an equally likely mixture of the two, namely we take (U1, w1) with
probability 1/2 and (U2, w2) otherwise. We denote these events by E1 and
E2 respectively. Second, we show that a Bayes classifier8 cannot distinguish
between the two cases with probability 2/3 using too few samples; since Bayes
classifiers are risk-optimal this implies that no classifier can have risk less than
2/3 while using the same number of samples. To show that a Bayes classifier

8Suppose we have a partition of the probability space Ω into events E1, · · · , Ek. We want
to guess which event happened, based on observation X. Bayes classifier outputs as its guess
Eℓ that maximizes P (Eℓ|X).

LOWER BOUNDS. 45

has a certain risk, we study the posterior distribution. Let S represent the
outcome of the samples. Since the prior is uniform, applying Byes theorem
gives

P (E1 |S)

P (E2 |S)
=
P (S | E1)
P (S | E2)

.

We call this ratio R(S) and show that R(S) ≈ 1 with probability close to
1. When R(X) ≈ 1, the posterior distribution is very close to uniform, and
this entails a risk close to 1/2. First, we show this formally with some tech-
nical lemmas, and then we instantiate our argument for each of the studied
problems.

Lemma 12. Given two disjoint events E1, E2 such that P (E1) = P (E2) = 1/2
and a random variable X, we define the ratio

R(x) =
P (X = x | E1)
P (X = x | E2)

.

Notice that R(X) is a random variable since it depends on the outcome of X.
If

P

(
7

8
≤ R(X) ≤ 8

7

)
≥ 14

15

then any classifier taking X and classifying E1, E2 has risk ≥ 2/5.

Proof. First, we notice that since Bayes classifiers (BC) are risk-optimal, then
it is sufficient to prove our statement for a Bayes classifier. Define pi =
P (Ei |X) for i = 1, 2, then Bayes classifier simply returns arg maxi=1,2 pi.
By Bayes theorem and because P (E1) = P (E2) we have R(X) = p1/p2. If
7/8 ≤ R(X) ≤ 8/7, then

1

p2
=
p1 + p2
p2

= 1 +R(X) ∈
[

15

8
,

15

7

]
and the same holds for p1, therefore 7/15 ≤ p1, p2 ≤ 8/15. Hence, conditioning
on 7/8 ≤ R(X) ≤ 8/7, the probability of correct classification is at most 8/15.
Finally, we have

P (BC returns correct answer) ≤ P
(
R(X) <

7

8
∨R(X) >

8

7

)
+ P

(
BC returns correct answer

∣∣∣∣ 7

8
≤ R(X) ≤ 8

7

)
≤ 1

15
+

8

15
=

3

5
.

Before proving the main theorems, we need several lemmas.

46
CHAPTER 2. BETTER SUM ESTIMATION VIA WEIGHTED

SAMPLING

Lemma 13. Consider an instance of our problem (U,w) so that n = |U | and
w(a) = 1 for each a ∈ U . We take m independent samples and denote by ℓ
the number of distinct elements obtained. Then, Var(ℓ) ≤ m2/n. Moreover,
for each δ > 0

P

(∣∣ℓ− E[ℓ]
∣∣ ≥ 1√

δ
· m√

n

)
≤ δ.

Note that, since all weights are the same, the proportional sampling is
equivalent to sampling uniformly from U .

Proof. We use the Efron-Stein inequality to prove a bound on the variance
of ℓ. Let Xi be the i-th sample. Now ℓ is a function of X1, · · · , Xm and we
write it as ℓ = f(X1, · · · , Xm). Let X ′

1, · · · , X ′
m be an independent copy of

X1, · · · , Xm. Let ℓ′i = f(X1, · · · , Xi−1, X
′
i, Xi+1, · · · , Xm). It clearly holds

that |ℓ−ℓ′i| ∈ {0, 1}, moreover ℓ−ℓ′i = 1 if and only if Xi does not collide with
with any Xj for j ̸= i and X ′

i does collide with some Xk for k ̸= i. It holds that
|{X1, · · · , Xi−1, Xi+1, · · ·Xm}| ≤ m. Therefore, the probability that a X ′

i lies
in this set is≤ m/n. Since ℓ and ℓ′i are symmetric, we have that also ℓ−ℓ′i = −1
with probability ≤ m/n. Hence, E[(ℓ − ℓ′i)

2] = P (|ℓ − ℓ′i| = 1) ≤ 2m/n.
Applying Efron-Stein we get

Var(ℓ) ≤ 1

2
·

m∑
i=1

E
[(
ℓ− ℓ′i

)2] ≤ m2

n

Now we just plug this bound on the variance into Chebyshev inequality and
we get the desired inequality.

Fingerprints. Given a sample S, we define its fingerprint F as the set of
tuples (ca, w(a)) where for each distinct item a in S, we add to F such a tuple
with ca being equal to the number of copies of a in S. Having a fingerprint of S
is sufficient for any algorithm, oblivious of (U,w), to produce a sample S′ that
is equal to S, up to relabeling of the elements. Since the only allowed queries
are testing equality of two items and the weight query, one may easily prove
that the execution of the algorithm on these two samples is the same (indeed,
these two samples are indistinguishable by the equality and weight queries).
Therefore, we can safely assume that an algorithm in the proportional setting
takes as an input the fingerprint F of S, rather than S. For algorithms in the
hybrid setting, we can assume that it takes as input separately the fingerprint
of the proportional and the fingerprint of the uniform samples.

Lemma 14. Let us have parameters n and ϵ < 1/3. Let N = n with proba-
bility 1/2, and N = (1− ε)n otherwise. Consider the random instance of the
sum estimation problem (U,w) with |U | = N and w(a) = 1 for each a ∈ U .
Consider a sample of size m and its fingerprint Fm = {(ci, w(ai)}i=1...ℓ and

LOWER BOUNDS. 47

define the ratio

R(Fm) =
P (Fm |N = n)

P (Fm |N = (1− ε)n)
.

If m = o(
√
n/ε) and m = o(n), then

P

(
98

100
≤ R(Fm) ≤ 100

98

)
≥ 99

100

for n large enough.

Proof. We can explicitly compute the likelihood of a given fingerprint Fm =
{(ci, w(ai)}i=1...ℓ where ℓ is the number of distinct elements as

P
(
Fm

∣∣N = r
)

=
ℓ!

rm

(
r

ℓ

)(
m

c1 . . . cℓ

)
=

1

rm−ℓ

ℓ−1∏
i=1

(
1− i

r

)(
m

c1 . . . cℓ

)
and therefore

R(Fm) = (1− ε)m−ℓ ·
ℓ−1∏
i=1

1− i/n
1− i/(1− ε)n

= (1− ε)m−ℓ ·
ℓ−1∏
i=1

(
1 +

εi

(1− ε)n− i

)
Note that R(Fm) depends only on ℓ. From now on we denote it with R(ℓ).

Now we define an interval [a, b] such that P (ℓ ∈ [a, b]) ≥ 99/100. To do so,
we first compute the expectation of ℓ and then use the concentration bound
of Lemma 13. We prove that

E [ℓ|N = (1− ε)n] ≤ E [ℓ|N = n] ≤ E [ℓ|N = (1− ε)n] +O

(
ε
m2

n

)
.

The expression of E [ℓ|N = n] is given by

E [ℓ|N = n] = n ·
(

1−
(

1− 1

n

)m)
since each item is not sampled with probability (1− 1

n)m. From this expression,
it is apparent that E [ℓ|N = n] is increasing in n. Expanding this formula, we
get

E [ℓ|N = n]− E [ℓ|N = (1− ε)n] = ε
m2

2n
+O

(
ε
m3

n2

)
= O

(
ε
m2

n

)

48
CHAPTER 2. BETTER SUM ESTIMATION VIA WEIGHTED

SAMPLING

where the last estimate uses the m = o(n) assumption. Now we define a =
E [ℓ|N = (1− ε)n]− 10m/

√
n and b = E [ℓ|N = n] + 10m/

√
n. Using the last

result we proved, we have

|b− a| = 20
m√
n

+O

(
ε
m2

n

)
= o

(
1

ε

)
.

Note that, like all asymptotics in this proof, the o(1/ϵ) is for the limit n→ +∞
and makes sense even for ϵ being a constant. Thanks to Lemma 13 we have
P (ℓ ̸∈ [a, b] |N = n) ≤ 1/100 and P (ℓ ̸∈ [a, b] |N = (1 − ε)n) ≤ 1/100, and
therefore P (ℓ ̸∈ [a, b]) ≤ 1/100.

Now we give bounds on R(a) and R(b). It is apparent from the explicit
formula above that ℓ 7→ R(ℓ) is an increasing function. We have

R(a) · 99

100
≤ R(a)

∑
k∈[a,b]∩Z

P (ℓ = k |N = (1− ε)n)

≤
∑

k∈[a,b]∩Z

R(k)P (ℓ = k |N = (1− ε)n)

≤
∑

k∈[a,b]∩Z

P (ℓ = k |N = n) ≤ 1

and thus, R(a) ≤ 100/99. Analogously,

1

R(b)
· 99

100
≤ 1

R(b)

∑
k∈[a,b]∩Z

P (ℓ = k |N = n)

≤
∑

k∈[a,b]∩Z

1

R(k)
P (ℓ = k |N = n)

≤
∑

k∈[a,b]∩Z

P (ℓ = k |N = (1− ε)n) ≤ 1

and thus, R(b) ≥ 99/100. We now have an upper bound on R(a) and a lower
bound on R(b). However, we need a lower bound on R(a) and an upper bound
on R(b) (that is, the other way around). For each k < m we have

R(k + 1)

R(k)
=

1

1− ε
·
(

1 +
εk

(1− ε)n− k

)
≤ (1 + 2ε) ·

(
1 +

2εm

n

)
≤ 1 + 3ε

for n large enough, where we used k < m = o(n) and ε ≤ 1/3. Hence,

R(b) ≤ R(a) · (1 + 3ε)⌈|b−a|⌉

≤ 100

99
· e3ε⌈|b−a|⌉

≤ 100

99
· eo(1) ≤ 100

98

LOWER BOUNDS. 49

where the last inequality holds for n large enough because m = o(
√
n/ε).

R(a) ≥ R(b) · (1 + 3ε)−⌈|b−a|⌉

≥ 99

100
· e−3ε⌈|b−a|⌉

≥ 99

100
· e−o(1) ≥ 98

100

Finally, we have for n large enough that

P

(
R(ℓ) ̸∈

[
98

100
,

100

98

])
≤ P (ℓ ̸∈ [a, b]) ≤ 1

100
.

Using the same approach as Lemma 14, we prove a similar result for the
task of estimating the bias p of a Bernoulli random variable up to an additive
ε. In this setting, we provide an asymptotic lower bound on the number
of samples, where the asymptotics are meant for the limit (p, ε) → 0. The
following lemma is folklore and it is implied by Fact 2.2 in Canonne [2022].
Here we prove it for the sake of completeness, without claiming any original
contribution.

Lemma 15. Let 0 < ε < p and set q = p with probability 1/2, and q = p− ε
otherwise. Let X1 . . . Xm be a sequence of i.i.d. Bernoulli random variables
with bias q, and let ℓ =

∑m
i=1Xi ∼ Bin(m, q). Define the ratio

R(ℓ) =
P (ℓ | q = p)

P (ℓ | q = p− ε)
.

If m = o(p/ε2) then

P

(
98

100
≤ R(ℓ) ≤ 100

98

)
≥ 99

100
.

for p (and thus also ϵ) small enough.

Proof. We follow the same scheme we adopted in the proof of Lemma 14.
First, we compute R(ℓ) explicitly

R(ℓ) =
pℓ(1− p)m−ℓ

(p− ε)ℓ(1− p+ ε)m−ℓ
=

(
1 + ε

1−p

)ℓ−m

(
1− ε

p

)ℓ .

We have E[ℓ | q = p] = mp, E[ℓ | q = p−ε] = m(p−ε), Var(ℓ | q = p) ≤ mp, and
Var(ℓ | q = p−ε) ≤ mp. We define a = m(p−ε)−10

√
mp and b = mp+10

√
mp,

and using Chebyshev inequality we have P (ℓ ∈ [a, b] | q = p) ≥ 99/100 and

50
CHAPTER 2. BETTER SUM ESTIMATION VIA WEIGHTED

SAMPLING

P (ℓ ∈ [a, b] | q = p − ε) ≥ 99/100. Hence, P (ℓ ∈ [a, b]) ≥ 99/100. Notice
that |b− a| = mε+ 20

√
mp = o(p/ε) where the second equality holds by the

assumption that m = o(p/ϵ2). Now, we bound R(a) and R(b). Again, we
notice that ℓ 7→ R(ℓ) is an increasing function.

R(a) · 99

100
≤ R(a)

∑
k∈[a,b]∩Z

P (ℓ = k | q = p− ε)

≤
∑

k∈[a,b]∩Z

R(k)P (ℓ = k | q = p− ε)

≤
∑

k∈[a,b]∩Z

P (ℓ = k | q = p) ≤ 1

and thus, R(a) ≤ 100/99. Analogously, we prove R(b) ≥ 99/100. For each
k < m we have

R(k + 1)

R(k)
=

1 + ε
1−p

1− ε
p

≤ 1 + 3
ε

p

for p and ε sufficiently small. Hence,

R(b) ≤ R(a) ·
(

1 + 3
p

ε

)⌈|b−a|⌉

≤ 100

99
· e3

p
ε
⌈|b−a|⌉

≤ 100

99
· eo(1) ≤ 100

98

where the last inequality holds for p and ϵ sufficiently small. Analogously, we
prove R(a) ≥ 98/100. Finally, we have

P

(
R(ℓ) ̸∈

[
98

100
,

100

98

])
≤ P (ℓ ̸∈ [a, b]) ≤ 1

100
.

Proportional sampling.

In this section, we assume, as we did in Section 2, that we can sample only
proportionally. We prove that Ω(

√
n/ε) samples are necessary to estimate

W with probability 2/3, thus PropEstimator is optimal up to a constant
factor.

Deciding the number of samples at run-time. In all our lower bounds,
we show that it is not possible that an algorithm takes m = o(T (n, ε)) samples
in the worst case and correctly approximates W with probability 2/3. All
these lower bounds safely extend to lower bounds on the expected number
of samples E[m]. All our proofs work by showing that the Bayes classifier

LOWER BOUNDS. 51

has risk 1/2 − o(1). Suppose now that we have an algorithm A that uses in
expectation µ(n, ϵ) = o(T (n, ϵ)) samples. We now define a classifier as follows.
We run A and abort if it uses more than 20µ(n, ϵ) samples9. We return the
answer given by A or an arbitrary value if we have aborted the algorithm. By
the Markov’s inequality, the probability that we abort is at most 1/20. Our
classifier has risk 1/3 + 1/20 < 2/5. Since any constant success probability
greater than 1/2 is equivalent up to probability amplification, we also have
a classifier with risk 1/3 that uses O(µ(n, ϵ)) = o(T (n, ϵ) samples. Since a
Bayes classifier with such parameters does not exist (as we show) and Bayes
classifiers are risk-optimal, this is a contradiction.

Theorem 16. In the proportional setting, there does not exist an algorithm
that, for every instance (U,w) with |U | = n, takes m samples for m = o(

√
n/ε)

and returns a (1±ε)-approximation of W with probability 2/3. This holds also
when n is known to the algorithm.

Proof. As already proven, we may assume that the algorithm only gets the
fingerprint Fm of the sample S of size m, instead of S itself. In the rest of the
proof, we separately consider two cases: ε ≥ 1/

√
n and ε < 1/

√
n.

Case ε ≥ 1√
n
: We first define the hard instance (U,w). Define the random

variable k as k = (1− ε)n with probability 1/2 and k = n otherwise, then let
U = {a1 . . . an} and

w(ai) =

{
1 if i ≤ k
0 otherwise.

Items with weight zero are never sampled while sampling proportionally while
we are sampling uniformly from those with weight 1. Moreoverm = o(

√
n/ε) =

o(n) for ε ≥ 1/
√
n. Hence, this is exactly the settings of Lemma 14. If we let

Fm to be the fingerprint of the samples and define R(Fm) as in Lemma 14,
we have

P

(
98

100
≤ R(Fm) ≤ 100

98

)
≥ 99

100
.

Applying Lemma 12 gives us the desired result.

Case ε < 1√
n
: For convenience, we show an instance of size n+ 1 instead of

n. First, we define s2 = min
{√

n
εm ,

n
4

}
and notice that s = ω(1) and s ≤

√
n/2.

Define the random variable k as k = n− s
√
n with probability 1/2 and k = n

9Note that, while the algorithm does not know µ(n, ϵ), this is not an issue in this ar-
gument. The reason is that a classifier is defined as an arbitrary function from the set of
possible samples and private randomness to the set of classes. This allows us to “embed” µ
into the classifier

52
CHAPTER 2. BETTER SUM ESTIMATION VIA WEIGHTED

SAMPLING

otherwise. Define the events E1 = {k = n − s
√
n} and E2 = {k = n}. We

construct (U,w) so that U = {a0 . . . an} and

w(ai) =

s
√
n

ε − n if i = 0

1 if 1 ≤ i ≤ k
0 otherwise.

Notice that our choice of s together with ε < 1/
√
n guarantees n−s

√
n ≥ n/2

and s
√
n/ε− n = ω(n). We have that W =

∑n
i=0w(ai) differs by more than

a factor of (1 + ε) between events E1 and E2.
Consider an element a ∈ U sampled proportionally and define pi = P (a ̸=

a0 | Ei) for i = 1, 2. Then,

p2 =
n

n− s
√
n+ w(a0)

=
ε
√
n

s

p1 =
n− s

√
n

n− s
√
n+ w(a0)

=
p2 − ε
1− ε

and |p1 − p2| ≤ ε. We perform m samples in total and define the random
variable X counting the number of times items other than a0 are sampled.
We define FX as the fingerprint of the sampled items different from a0. Given
FX , we may easily reconstruct the fingerprint of the whole sample by adding
the tuple (m−X,w(a0)). It thus holds P (Fm|Ei) = P (FX |Ei) for i ∈ {1, 2}.

Now we define the event L = {X ≤ 30E[X]} and by Markov’s inequality
P (L) ≥ 29/30. Moreover,

E[X] = m(p1 + p2)/2 ≤ m(p2 + ε) ≤ m(ε
√
n/s+ ε) ≤ 2εm

√
n/s = o

(n
s

)
.

Define ε′ = s/
√
n. Conditioning on L, we have X ≤ 30E[X] = o(

√
n/ε′) =

o(n). If we further condition on X = x for some x ≤ 30E[X] and we look at
FX , we are exactly in the setting of Lemma 14. Therefore,

P

(
98

100
≤ P (FX |X = x, E1)
P (FX |X = x, E2)

≤ 100

98

)
≥ 99

100

and integrating over L we obtain

P

(
98

100
≤ P (FX |X, E1)
P (FX |X, E2)

≤ 100

98

∣∣∣∣L) ≥ 99

100
.

Now, we will bound the ratio

R(X) =
P (X | E1)
P (X | E2)

.

We have X =
∑m

i=1Xi, where Xi is an indicator for the i-th sample not
being equal to a0. Therefore, X | Ej ∼ Bin(m, pj) for j = 1, 2. It holds,

LOWER BOUNDS. 53

|p1 − p2| ≤ ε. Because m = o(
√
n/ϵ) and by the definition of s, we have

m = o(
√
n/(sε)) = o(p2/ε

2). We can apply Lemma 15 and obtain

P

(
98

100
≤ R(X) ≤ 100

98

)
≥ 99

100
.

Finally, we put the bounds together. We consider the ratio

R(Fm) =
P (Fm | E1)
P (Fm | E2)

=
P (FX | E1)
P (FX | E2)

=
P (X | E1) · P (FX |X, E1)
P (X | E2) · P (FX |X, E2)

.

By the union bound, along with 7/8 < (98/100)2, we get

P

(
R(Fm) ̸∈

[
7

8
,

8

7

])
≤

P
(
L̄
)

+ P

(
P (FX |X, E1)
P (FX |X, E2)

̸∈
[

98

100
,

100

98

] ∣∣∣∣L)+ P

(
P (X | E1)
P (X | E2)

̸∈
[

98

100
,

100

98

])
≤

1

30
+

1

100
+

1

100
≤ 1

15
.

We can apply Lemma 12 and conclude the proof.

Sum estimation in hybrid setting, known n.

In this section, we assume, as we did in Section 8, that we can sample both
proportionally and uniformly. We will prove that Ω(min(3

√
n/ε4/3, n)) samples

are necessary to estimate W with probability 2/3. This complexity is the
minimum of the sample complexity of the HybridEstimator and (up to a
logarithmic factor) the complexity of the standard coupon collector algorithm.
Recall that for algorithms in the hybrid setting, we can assume that they take
as input two separate fingerprints: the fingerprint of the proportional and the
fingerprint of the uniform samples.

Theorem 17. In the hybrid setting, there does not exist an algorithm that,
for every instance (U,w) with |U | = n, takes m = o(min(3

√
n/ε4/3, n)) propor-

tional and uniform samples and returns a (1 ± ε)-approximation of W with
probability 2/3. This holds also when n is known to the algorithm.

The proof of Theorem 17 closely mimics the proof of Lemma 14. Indeed,
in order to “fool” the uniform samples, we pad our distribution with many 0-
weight elements. Indeed, only n2/3/ε2/3 element will have non-zero weight. On
those elements, we basically apply Lemma 14. Then, to bound the information
obtained by sampling (uniformly) zero-weight elements we use Lemma 15.

Proof. It is enough to prove that for ε ≥ 8/
√
n, any algorithm returning

a (1 ± ε)-approximation of W with probability 2/3 must take Ω(3
√
n/ε4/3)

54
CHAPTER 2. BETTER SUM ESTIMATION VIA WEIGHTED

SAMPLING

samples. Indeed, if ε < 8/
√
n, a (1 ± ε)-approximation is also a (1 ± 8/

√
n)-

approximation, and then we have reduced to the case ε ≥ 8/
√
n where we

know that Ω(3
√
n/n−

1
2
· 4
3) = Ω(n) samples are necessary. In either case we

then need Ω(min(3
√
n/ε4/3, n)) samples.

Define the random variable k as k = (1− ε)n2/3/ε2/3 with probability 1/2
and k = n2/3/ε2/3 otherwise. Define the events E1 = {k = (1 − ε)n2/3/ε2/3}
and E2 = {k = n2/3/ε2/3}. We construct (U,w) so that U = {a1 . . . an} and

w(ai) =

{
1 if 1 ≤ i ≤ k
0 otherwise.

We have that W =
∑n

i=1w(ai) differs by more than a factor of (1+ε) between
events E1 and E2. Notice that k ≤ n/4 as ε ≥ 8/

√
n. Let Sp be the multiset

of proportional samples and Su the multiset of uniform samples. Let Th =
(Sp∪Su)∩{k+1, · · · , n} and Tl = (Sp∪Su)∩{1, · · · , k}. Let Fl = {(ci, w(ai))}i
be the fingerprint of Tl and Fh = {(ci, w(ai))}i of be the fingerprint of Th. We
now argue hat (Fl, Fh) is sufficient for any algorithm, oblivious of the choice
of k, to reconstruct sample multisets S′

u and S′
p distributed as Su and Sp. We

pick |Fl| − m items at random from Fl and let S′
u be the multiset of these

items, together with all items in Fh. We let S′
p be the multiset of the items

left in Fl. It is easy to verify that (S′
u, S

′
p) ∼ (Su, Sp). Thus, we can assume

that the algorithm is given (Fl, Fh) as input, instead of the sample multisets
Su and Sp.

Consider a ∈ U sampled uniformly, and define pi = P (w(a) = 1 | Ei) for
i = 1, 2. Then,

p1 =
n2/3/ε2/3

n
=

1

n1/3ε2/3

p2 =
(1− ε)n2/3/ε2/3

n
=

1

n1/3ε2/3
− ε1/3

n1/3

and defining ε′ = ε1/3/n1/3 we obtain p2 = p1− ε′. Let X = |Su ∩{1, · · · , k}|.
Since X | Ej ∼ Bin(m, pj) for j = 1, 2 and m = o(n1/3/ε4/3) = o(p1/ε

′2), we
can apply Lemma 15 and obtain

P

(
98

100
≤ P (X | E1)
P (X | E2)

≤ 100

98

)
≥ 99

100
.

Conditioning on X = x for some x = 1 . . .m, Fl represents a sample of x+ |Sp|
items drawn uniformly from a set of cardinality k, so we are in the setting of
lemma 14. Moreover, we have

|Fl| ≤ |Sp|+ |Su| = o

(
3
√
n

ε4/3

)
= o

(√
n2/3/ε2/3

ε

)
.

LOWER BOUNDS. 55

Hence, Lemma 14 holds and we have

P

(
98

100
≤ P (Fl |X = x, E1)
P (Fl |X = x, E2)

≤ 100

98

)
≥ 99

100

and integrating over x = 1 . . .m we have

P

(
98

100
≤ P (Fl |X, E1)
P (Fl |X, E2)

≤ 100

98

)
≥ 99

100
.

Similarly, we have that |Fh| ≤ |Su| = o(3
√
n/ε4/3) = o(

√
n/ε) where the

second inequality holds because we are assuming ε > 8/
√
n. Moreover, condi-

tioning on X = x for some x = 1 . . .m, Fh represent a sample of |Su|−x items
drawn uniformly from a set of size n − k. It holds n − k ≥ 3n/4, and n − k
thus differs by at most a factor 1− ε between the two events E1, E2. Again, we
are in the right setting to apply Lemma 14, and integrating over x = 1 . . .m
gives

P

(
98

100
≤ P (Fh |X, E1)
P (Fh |X, E2)

≤ 100

98

)
≥ 99

100
.

We are now ready to put everything together. Note that Fl and Fh are inde-
pendent once conditioned on (E1, X) or (E2, X). Define the ratio

R(Fl, Fh) =
P ((Fl, Fh) | E1)
P ((Fl, Fh) | E2)

=
P (X | E1) · P (Fl |X, E1) · P (Fh |X, E1)
P (X | E2) · P (Fl |X, E2) · P (Fh |X, E2)

Using the union bound, along with 7/8 < (98/100)3, we get

P

(
R(Fl, Fh) ̸∈

[
7

8
,

8

7

])
≤

P

(
P (X | E1)
P (X | E2)

̸∈
[

98

100
,

100

98

])
+ P

(
P (Fl |X, E1)
P (Fl |X, E2)

̸∈
[

98

100
,

100

98

])
+

P

(
P (Fh |X, E1)
P (Fh |X, E2)

̸∈
[

98

100
,

100

98

])
≤

1

100
+

1

100
+

1

100
<

1

15
.

We can apply Lemma 12 and conclude the proof.

Sum estimation in hybrid setting, unknown n.

We now prove a lower bound for the hybrid setting, in case the algorithm does
not know n.

Theorem 18. In the hybrid setting, there does not exist an algorithm that,
for every instance (U,w), takes m = o(min(

√
n/ε, n)) samples and returns a

(1 ± ε)-approximation of W with probability 2/3. This holds also when the
algorithm is provided with an advice ñ such that (1− ε)n ≤ ñ ≤ n.

56
CHAPTER 2. BETTER SUM ESTIMATION VIA WEIGHTED

SAMPLING

Proof. Employing the same argument as in Theorem 17, it is sufficient to
prove that for ε ≥ 1/

√
n a lower bound of Ω(

√
n/ε) holds.

Consider the instance (U,w) where w(a) = 1 for each a ∈ U and we set
|U | = n with probability 1/2 and |U | = (1−ε)n otherwise. Providing a (1±ε)-
approximation of W is equivalent to distinguishing between the two cases. On
this instance, sampling uniformly and proportionally is the same. Therefore,
we are in the setting of Lemma 14. Combining Lemma 14 and Lemma 12 like
in the proofs above, we get that no classifier can distinguish between |U | = n
and |U | = (1− ε)n with probability 2/3 using o(

√
n/ε) samples.

Counting Edges in a Graph.

In this section, we show an algorithm that estimates the average degree of a
graph G = (V,E) in the model in which we are allowed to perform random
vertex queries, random edge queries, and degree queries. Recall that a random
vertex query returns a uniform sample form V , a random edge queries returns a
uniform sample from E, and a degree queries returns deg(v) when we provide
v ∈ V as argument. In this section, we denote the number of vertices and
edges with n and m respectively.

Here, we show that HarmonicEstimator from Line 8, can be adapted to
estimate the average degree d. It achieves a complexity of O(m log logn

n′ε2 + n
n′ε2)

in expectation, where n′ is the number of non-isolated10 vertices. This is
very efficient when there are few isolated vertices and the graph is sparse.
Moreover, the only way we use sampling of vertices is to estimate the number
of non-isolated vertices. Therefore, if we assume that there are no isolated
vertices in the graph, it is sufficient to only be able to uniformly sample edges.

Our approach is similar to that of Katzir et al. [2011] but the authors
in the paper do not prove bounds on the time complexity. Moreover, their
algorithm only works when there are no isolated vertices.

Theorem 19. Given a graph G = (V,E), consider a model that allows (1)
random vertex queries, (2) random edge queries, and (3) degree queries. In
this model, there exists an algorithm that, with probability at least 2/3, returns
a (1 ± ε)-approximation d̂ of the average degree d = 2m/n. This algorithm
performs O(m log log d

n′ε2 + n
n′ε2) queries in expectation, where n′ is the number of

non-isolated vertices.

Proof. We first show an algorithm that is given θ̃ such that d ≤ θ̃, has time

complexity O(θ̃n
ε2n′ + n

ε2n′), and is correct with probability 2/3. We define a
sum estimation problem (U,w). We set the universe to be U = V and for each
vertex v ∈ U , we set its weight w(v) = deg(v). Then W =

∑
a∈U w(a) = 2m

and W/n = d. Sampling an edge uniformly at random and picking one

10Recall that a vertex is isolated if it has degree 0.

COUNTING EDGES IN A GRAPH. 57

of its endpoints at random corresponds to sampling a vertex proportion-
ally to its weight. Moreover, we can sample vertices uniformly. There-
fore, we are able to implement both queries of the hybrid setting. We run
HarmonicEstimator(ε, θ̃, 1). By Lemma 9, it returns with probability at

least 2/3 a 1±ε-approximation of d, and its sample complexity is O(θ̃n
ε2n′ +

n
ε2n′)

since what is called p in Lemma 9 is now n′/n.

It remains to get rid of the need for advice θ̃. We use the standard tech-
nique of performing a geometric search. See, for example, Goldreich and Ron
[2006] for more details. We initialize θ̃ = 1 and in each subsequent itera-
tion, we double θ̃. Let K be a large enough constant. In each iteration, we
run K log log θ̃ independent copies of HarmonicEstimator(ε, θ̃, 1) and de-
note with d1 . . . dK log log θ̃ the returned estimates. We define d̂ as the median
of d1 . . . dK log log θ̃. We say that the di succeeds if both the following hold:

(i) di ≥ d/20, (ii) θ̃ < d or di is a (1 ± ε)-approximation of d. Otherwise
we say that di fails. We extend this definition to d̂. Thanks to Lemma 9,
di fails with probability ≤ 1/3 + 1/20. By a standard argument based on
the Chernoff bound, for K large enough, we have that d̂ fails with proba-
bility at most 2/(π log2(2θ̃)). Denote with Ej the event that d̂ succeeds at
iteration j (i.e., when θ̃ = 2j−1). Define E =

⋂
j≥0 Ej . Union bound gives

P (E) ≥ 1 − 2
π

∑
j>0

1
j2

= 2/3. We stop our algorithm when d̂ ≤ θ̃/20 and

return d̂. Conditioning on {d̂ ≤ θ̃/20}∩E , we have θ̃/20 ≥ d̂ ≥ d/20. This im-
plies that θ̃ ≥ d and hence d̂ is a (1±ε)-approximation of d. Since P (E) ≥ 2/3,
we have that with probability 2/3 the returned value is a (1±ε)-approximation
of d.

One iteration of our algorithm has time complexity O(θ̃n log log θ̃
ε2n′). We

argue that the expected complexity is dominated by the first iteration in
which θ̃ ≥ 40 d. The time complexity of each additional iteration (conditioned
on being executed) increases by a factor 2 + o(1). Each additional iteration
is executed only if the previous one resulted in an estimate d̂ > θ̃/20 ≥ 2 d.
This happens only when d̂ is not a (1± ε)-approximation of d, and assuming
a correct advice θ̃ ≥ d this happens outside of E . Therefore, we execute each
additional iteration with probability ≤ 1/3. Since the time spend in each
iteration increases by a factor 2 + o(1) while the probability of executing the
iteration decreases by a factor of 3, the expected complexity contributed by
each additional iteration for θ̃ ≥ 40 d decreases by a factor of 2/3 + o(1).
Therefore, the expected complexity is dominated (up to a constant factor) by
the first execution with θ̃ ≥ 40 d. If d ≥ 1, then in this iteration, we have
θ̃ = Θ(d). The time complexity is then O(m log log d

ϵ2n′). If d < 1, then it holds
θ = O(1) in this execution. The complexity is then O(n

n′ϵ2). This gives total

time complexity of O(m log log d
n′ϵ2 + n

n′ϵ2).

58
CHAPTER 2. BETTER SUM ESTIMATION VIA WEIGHTED

SAMPLING

Open Problems.

We believe there are many interesting open problems related to our work. We
now give a non-comprehensive list of questions that we think would give more
understanding of weighted sampling and its applications.

More efficient algorithm for spacial classes of inputs. Are there some
large classes of inputs for which it is possible to get a more efficient algorithm?
Can the problem be parameterized by some additional parameters apart from
n, ε (e.g. empirical variance) that tend to be small in practice?

Different sampling probabilities. Are there settings where one may ef-
ficiently sample with probability depending on the value of an item but not
exactly proportional? Could this be used to give a general algorithm for es-
timating the sum W? An example of such a result is Dasgupta et al. [2014a]
where the authors show an efficient algorithm for estimating the average degree
of a graph when sampling vertices with probabilities proportional to m

n +d(v).

Get a complete understanding of edge counting. The complexity of
the problem of approximately counting edges in a graph is understood in terms
of n,m in the setting where we can only sample vertices uniformly at random.
What is the complexity of counting edges when we allow only random edge
queries? What if both random edge and random vertex queries are allowed?
As we show, it may be useful to parameterize the problem by the fraction of
vertices that are not isolated. What is the complexity of the problem under
such parameterization?

Acknowledgements

Lorenzo Beretta and Jakub Tětek belong to Basic Algorithms Research Copen-
hagen (BARC), University of Copenhagen. BARC is supported by the VIL-
LUM Foundation grant 16582. Jakub Tětek received funding from the Bakala
Foundation. Lorenzo Beretta receives funding from the European Union’s
Horizon 2020 research and innovation program under the Marie Sk lodowska-
Curie grant agreement No. 801199.

We are grateful to Rasmus Pagh for his advice. We would like to thank
our supervisor, Mikkel Thorup, for helpful discussions and his support. We
would like to thank Talya Eden for her advice regarding related work.

Chapter 3

Edge Sampling and Graph
Parameter Estimation via
Vertex Neighborhood
Accesses

Jakub Tětek Mikkel Thorup

{j.tetek,mikkel2thorup}@gmail.com
Basic Algorithms Research Copenhagen

University of Copenhagen

Abstract

In this paper, we consider the problems from the area of sublinear-
time algorithms of edge sampling, edge counting, and triangle counting.
Part of our contribution is that we consider three different settings, dif-
fering in the way in which one may access the neighborhood of a given
vertex. In previous work, people have considered indexed neighbor ac-
cess, with a query returning the i-th neighbor of a given vertex. Full
neighborhood access model, which has a query that returns the entire
neighborhood at a unit cost, has recently been considered in the applied
community. Between these, we propose hash-ordered neighbor access,
inspired by coordinated sampling, where we have a global fully random
hash function, and can access neighbors in order of their hash values,
paying a constant for each accessed neighbor.

For edge sampling and counting, our new lower bounds are in the
most powerful full neighborhood access model. We provide matching
upper bounds in the weaker hash-ordered neighbor access model. Our
new faster algorithms can be provably implemented efficiently on massive
graphs in external memory and with the current APIs for, e.g., Twitter
or Wikipedia. For triangle counting, we provide a separation: a better
upper bound with full neighborhood access than the known lower bounds

59

with indexed neighbor access. The technical core of our paper is our edge-
sampling algorithm on which the other results depend. We now describe
our results on the classic problems of edge and triangle counting.

We give an algorithm that uses hash-ordered neighbor access to ap-
proximately count edges in time Õ(n

ε
√
m

+ 1
ε2) (compare to the state

of the art without hash-ordered neighbor access of Õ(n
ε2

√
m

) by Eden,

Ron, and Seshadhri [ICALP 2017]). We present an Ω(n
ε
√
m

) lower bound

for ε ≥
√
m/n in the full neighborhood access model. This improves the

lower bound of Ω(n√
εm

) by Goldreich and Ron [Rand. Struct. Alg. 2008])

and it matches our new upper bound for ε ≥
√
m/n. We also show an

algorithm that uses the more standard assumption of pair queries (“are
the vertices u and v adjacent?”), with time complexity of Õ(n

ε
√
m

+ 1
ε4).

This matches our lower bound for ε ≥ m1/6/n1/3.
Finally, we focus on triangle counting. For this, we use the full power

of the full neighbor access. In the indexed neighbor model, an algorithm

that makes Õ(n
ε10/3T 1/3 + min(m, m

3/2

ε3T)) queries for T being the number
of triangles, is known and this is known to be the best possible up to
the dependency on ε (Eden, Levi, Ron, and Seshadhri [FOCS 2015]).

We improve this significantly to Õ(min(n, n
εT 1/3 +

√
nm

ε2
√
T

)) full neighbor

accesses, thus showing that the full neighbor access is fundamentally
stronger for triangle counting than the weaker indexed neighbor model.
We also give a lower bound, showing that this is the best possible with
full neighborhood access, in terms of n,m, T .

INTRODUCTION 61

Introduction

In this paper, we consider three well-studied problems from the area of sublinear-
time algorithms: edge sampling, edge counting, and triangle counting in a
graph. All of the three problems we consider have been studied before (in
their approximate versions); see Eden and Rosenbaum [2018a], Eden et al.
[2020] for edge sampling, Feige [2006a], Goldreich and Ron [2008], Seshadhri
[2015], Eden et al. [2017a], Dasgupta et al. [2014b] for edge counting, and Itai
and Rodeh [1977], Kolountzakis et al. [2012], Eden et al. [2015], Bera and Se-
shadhri [2020] for triangle counting. We first give an algorithm for exact edge
sampling. We then apply this algorithm to both edge and triangle counting.
We consider these three problems both in the well-studied indexed neighbor
model1, but also in two new models that we introduce.

The first of them is the full neighborhood access model. This model has
recently been considered in the applied community (Ben-Eliezer et al. [2021]),
and similar settings are commonly used in practice, as we discuss in chap-
ter 3. In this model, upon querying a vertex, the algorithm receives the whole
neighborhood. To the best of our knowledge, we are the first to formally de-
fine this model and to give an algorithm with provable guarantees on both
correctness and its query complexity. In this model, we get an algorithm
for triangle counting significantly more efficient than what is possible in the
indexed neighbor model.

We also introduce a model we call hash-ordered neighbor access. This is an
intermediate model, stronger than the indexed neighbor model, but weaker
than the full neighborhood access model. We show that for edge sampling
and counting, this model is sufficient to get an algorithm that nearly matches
lower bounds (which we also prove) that work in models even stronger than
the full neighborhood access model. The queries provided by the hash-ordered
neighbor access can be implemented efficiently (see Chapter 3). Interestingly,
the same data structure can be used to implement pair queries as well as hash-
ordered neighbor access. This model formalizes the fact that the algorithms
for edge counting and sampling only use the full neighborhood access in a very
limited way.Moreover, our algorithms for edge sampling and counting are such
that they may be efficiently implemented using queries implemented by, e.g.,
Twitter’s, and Wikipedia’s APIs, well as in some external memory setting; we
discuss this in Line 7.

To appreciate our bounds, note that in a graph consisting of a clique of
size2 ≈

√
m and the rest being an independent set, we need n/

√
m queries

just to find one edge. This provides a lower bound for both edge sampling
and counting.

1In this setting, we have the following queries: given a vertex, return its degree; given a
vertex v and a number i ≤ d(v), return the i-th neighbor v in an arbitrary ordering; return
a random vertex.

2We use n and m to denote the number of vertices and edges in the graph, respectively.

62
CHAPTER 3. EDGE SAMPLING AND GRAPH PARAMETER

ESTIMATION VIA VERTEX NEIGHBORHOOD ACCESSES

Dependency on ε. The focus of sublinear-time algorithms is usually on ap-
proximate solutions, as many problems cannot be solved exactly in sublinear
time. We thus have some error parameter ε, that controls how close to the
exact solution the output of our algorithm should be. Throughout this paper,
we put emphasis not only on the dependence of the running time on n and
m but also on ε. After all, ε can be polynomial in n or m (that is, it may
hold ε = Ω(nδ) for some δ > 0). While the dependency on ε in sublinear-time
algorithms has often been ignored, we believe it would be a mistake to disre-
gard it. We are not the only ones with this opinion. For example, Goldreich
says in his book [Goldreich, 2018, page 200] that he “begs to disagree” with
the sentiment that the dependency on ε is not important and stipulates that
“the dependence of the complexity on the approximation parameter is a key
issue”.

Sampling edges. The problem of sampling edges has been first systemat-
ically studied by Eden and Rosenbaum [2018a] (although it was previously
considered in Kaufman et al. [2004]). They show how to sample an edge
pointwise ε-close to uniform (see Definition 20) in time O(n√

εm
) in the in-

dexed neighbor setting, and they prove this is optimal in terms of n,m. We
show that the power of this setting is sufficient to improve the time complexity

exponentially in ε, to O(n log ε−1
√
m

) = Õ(n√
m

).

Sampling multiple edges has recently been considered by Eden et al. [2021a].
They present an algorithm that runs in time3 Õ(

√
s n
ε
√
m

+ s) and samples s

edges pointwise ε-close to uniform with high probability, but they do not prove
any lower bounds. We prove that their algorithm is optimal in terms of n,m, s.

We give more efficient algorithms with the hash-ordered neighbor access.
Specifically, we give the first sublinear-time algorithm that w.h.p. returns a
sample of edges from exactly uniform distribution. It runs in expected time
Õ(
√
s n√

m
+ s), which is the same complexity as that from Eden et al. [2021a]

for approximate edge sampling for constant ε = Ω(1) (we solve exact edge
sampling, which is equivalent to the case ε = 0). We give a near-matching
lower bound for all choices of n,m, s. Apart from sampling with replacement,
our methods also lead to algorithms for sampling without replacement and
Bernoulli sampling.4

Apart from being of interest in its own right, the problem of sampling
multiple edges is also interesting in that it sheds light on the relationship be-
tween two standard models used in the area of sublinear algorithms. While
many algorithms only use vertex accesses, many also use random edge sam-
pling. An algorithm for uniform edge sampling then can be used to simulate

3The authors claim complexity Õ(
√
s n
ε
√
m
), which is sublinear in s. However, one clearly

has to spend at least Ω(s) time and perform Ω(min(m, s)) queries.
4Bernoulli sampling is defined as sampling each edge independently with some probabil-

ity p.

INTRODUCTION 63

random edge queries. Our algorithm is not only more efficient, but also has
an advantage over the algorithm by Eden et al. [2021a] that it can be used as
a black box. This is not possible with their algorithm as it only samples edges
approximately uniformly.

We use this reduction between the settings with and without random edge
queries in our new algorithm for triangle counting. We prove that, perhaps sur-
prisingly, this reduction results in near-optimal complexity in terms of n,m, T
(where T is the number of triangles). We also use our edge sampling algorithm
for counting edges5, also resulting in a near-optimal complexity, this time even
in terms of ε, for ε ≥

√
m/n.

Since we consider edge sampling to be the technical core of our paper, we
focus on that in this extended abstract. We defer the rest of our results to
the full version of the paper.

Counting edges. The problem of counting edges in sublinear time was
first considered by Feige [2006a]. In his paper, he proves a new concentration
inequality and uses it to give a 2 + ε approximation algorithm for counting
edges running in time O(n

ε
√
m

). This algorithm only uses random vertex and

degree queries but no neighbor access. It is also proven by Feige [2006a] that
in this setting, Ω(n) time is required for 2− ε approximation for any ε > 0.

Since we are dealing with a graph, it is natural to also consider a query that
allows us to access the neighbors of a vertex. Goldreich and Ron [2008] use
indexed neighbor queries to break the barrier of 2-approximation and show
a (1 ± ε)-approximation that runs in time Õ(n

ε4.5
√
m

). They also present a

lower bound of Ω(n√
εm

). To prove this lower bound, they take a graph with m

edges and add a clique containing εm edges. To hit the clique with constant
probability, Ω(n√

εm
) vertex samples are required.

Using a clever trick based on orienting edges towards higher degrees, Se-
shadhri [2015] shows a much simpler algorithm. This approach has been later
incorporated into the journal version of the paper by Eden et al. [2015] and
published in that paper. The trick of orienting edges also led to an algo-
rithm for estimating moments of the degree distribution (Eden et al. [2017a]).
The moment estimation algorithm can estimate the number of edges in time
Õ(n

ε2
√
m

) by estimating the first moment – the average degree. This is cur-

rently the fastest algorithm known for counting edges.

We show two more efficient algorithms that use either the pair queries
or the hash-ordered neighbor access. Specifically, in this setting, we give an
algorithm that approximately counts edges in time Õ(n

ε
√
m

+ 1
ε2

). This bound

is strictly better than the state of the art (assuming ε ≪ 1 and m ≪ n2).

5We do not directly use the result on sampling s edges for fixed s. Instead, we use a
variant which instead samples each edge independently with some given probability p.

64
CHAPTER 3. EDGE SAMPLING AND GRAPH PARAMETER

ESTIMATION VIA VERTEX NEIGHBORHOOD ACCESSES

We also show that the (in some sense) slightly weaker setting6 of indexed
neighbor with pair queries (“are vertices u and v adjacent”) is sufficient to
get an algorithm with time complexity Õ(n

ε
√
m

+ 1
ε4

). This improves upon

the state of the art for ε being not too small. Our methods also lead to an
algorithm in the indexed neighbor access setting that improves upon the state
of the art for ε small enough.

We show lower bounds that are near-matching for a wide range of ε. Specif-
ically, we prove that Ω(n

ε
√
m

) samples are needed for ε ≥
√
m/n, improving in

this range upon Ω(n√
εm

) from Goldreich and Ron [2008]. This lower bound

holds not only with full neighbor access, but also in some more general set-
tings. For example, Twitter API implements a query that also returns the
degrees of the neighbors. Our lower bound also applies to that setting.

Triangle counting. The number of triangles T in a graph can be trivially
counted in time O(n3). This has been improved by Itai and Rodeh [1977] to
O(m3/2). This is a significant improvement for sparse graphs. The first im-
provement for approximate triangle counting has been given by Kolountzakis

et al. [2012], who improved the time complexity to Õ(m + m3/2

ε2T
) (recall that

T is the number of triangles). This has been later improved by Eden et al.

[2017a] to Õ(n
ε10/3T 1/3 + min(m, m

3/2

ε3T
)). In that paper, the authors also prove

that their algorithm is near-optimal in terms of n,m, T .

Variants of the full neighborhood access model are commonly used in prac-
tice, and the model has been recently used in the applied community (Ben-
Eliezer et al. [2021]). Perhaps surprisingly, no algorithm performing asymp-
totically fewer queries than the algorithm by Eden et al. [2017a] is known in
this setting. Since the number of neighborhood queries is often the bottle-
neck of computation (the rate at which one is allowed to make requests is
often severely limited), more efficient algorithms in this model could signifi-
cantly decrease the cost of counting triangles in many real-world networks. We

fill this gap by showing an algorithm that performs Õ(min(n, n
εT 1/3 +

√
nm

ε2
√
T

))

queries. This is never worse than Õ(n
ε10/3T 1/3 + m3/2

ε3T
) and it is strictly better

when T ≪ m9/4/n3/2 or ε ≪ 1. This also improves the complexity in terms
of n,m, T . Our result also proves a separation between the two models, as
the algorithm by Eden et al. [2017a] is known to be near-optimal in terms of
n,m, T in the indexed neighbor model. Our triangle counting algorithm relies
on our result for sampling edges, showcasing the utility of that result. Using
the algorithm of Eden and Rosenbaum [2018a] to simulate the random edge
queries would result in both worse dependency on ε and a more complicated
analysis. We also prove near-matching lower bounds in terms of n,m, T .

6Any algorithm with pair queries with time/query complexity Q can be simulated in
O(Q log logn) time/queries using hash-ordered neighbor access. We discuss this in Chapter 3

INTRODUCTION 65

Setting without random vertex/edge queries. If we are not storing the
whole graph in memory, the problem of sampling vertices in itself is not easy.
There has been work in the graph mining community that assumes a model
where random vertex or edge queries are not available and we are only given
a seed vertex. The complexity of the algorithms is then parameterized by
an upper bound on the mixing time of the graph. The problem of sampling
vertices in this setting has been considered by Chierichetti and Haddadan
[2018], Ben-Eliezer et al. [2021]. The problems of approximating the average
degree has been considered by Dasgupta et al. [2014b]. Counting triangles in
this setting has been considered by Bera and Seshadhri [2020].

What is a vertex access?

Motivation behind full neighborhood access. All sublinear-time algo-
rithms with asymptotic bounds on complexity published so far assume only
a model which allows for indexed neighbor access. However, this model is
usually too weak to model the most efficient ways of processing large graphs,
as non-sequential access to the neighborhood is often not efficient or not pos-
sible at all. The full neighborhood access model attempts to capture this. For
example, to access the i-th neighbor of a vertex in the Internet graph7, one
has to, generally speaking, download the whole webpage corresponding to the
vertex. Similarly, when accessing a real-world network through an API (this
would usually be the case when accessing the Twitter graph, Wikipedia graph,
etc.), while it is possible to get just the i-th neighbor of a vertex, one may
often get the whole neighborhood at little additional cost. The reason is that
the bottleneck is usually the limit on the allowed number of queries in some
time period and in one query, one may usually get many neighbors. While
there is usually a limit on this number of neighbors that can be fetched in one
query, this limit is often large enough that for the vast majority of vertices,
the whole neighborhood can be returned as a response to one query.

As a sidenote, this limit is typically larger than the average degree. For
example, in the case of Twitter, the average degree is 1414 MacCarthy [2016]8

while the limit is 5000 Twi. This fact can be used to formally prove that our
edge sampling and counting algorithms can be efficiently implemented using
standard API calls, as provided for example by Twitter or Wikipedia, as well
as when the graph is stored on a hard drive (discussed below). We discuss the
details of this in Line 7.

Although the above-mentioned APIs do not support random vertex queries,
there are methods that implement the random vertex query and are efficient

7Internet graph is a directed graph with vertices being webpages and a directed edge for
each link.

8The study considers the average number of followers of an active account but also count
follows by inactive accounts. The actual average degree is thus likely somewhat lower. This
number however suffices for our argument.

66
CHAPTER 3. EDGE SAMPLING AND GRAPH PARAMETER

ESTIMATION VIA VERTEX NEIGHBORHOOD ACCESSES

in practice (Ben-Eliezer et al. [2021], Chiericetti et al. [2016]). In the full
neighborhood access model, we do not assume any specific vertex sampling
method; any algorithm implementing the random vertex query may be used.
This further strengthens the case for our model. If it takes several API calls
to get one random vertex, one may perform multiple API calls on the neigh-
borhood of each randomly sampled vertex without significantly increasing the
complexity.

Another motivation for the full neighborhood access comes from graphs
stored in external memory. When storing the graph on a hard drive, one
may read ≈ 1-3 MB in the same amount of time as the overhead caused by
a non-linear access9. If each neighbor is stored in roughly 10-30 bytes, then
when we access one neighbor, we may read on the order of 105 neighbors while
increasing the running time only by a small constant factor.

These considerations suggest that an algorithm in the full neighborhood
access model with lower complexity may often be preferable to an asymptoti-
cally less efficient algorithm in the weaker indexed neighbor access setting. It
is also for these reasons that this model has been recently used in the applied
community (Ben-Eliezer et al. [2021]).

Lower bounds and the full neighbor access. While some lower-bounds
in the past have been (implicitly) shown in the full neighborhood access model
(such as the one for edge counting by Goldreich and Ron [2008]), others do
not apply to that setting (such as the one for triangle counting by Eden et al.
[2017a]; in fact, we prove that it does not hold in the full neighborhood access
model). As we have argued, there are many settings where one can easily get
many neighbors of a vertex at a cost similar to getting one vertex. Lower
bounds proven in the indexed neighbor access model then do not, in general,
carry over to these settings. This highlights the importance of proving lower
bounds in the full neighborhood model, which are applicable to such situations.

Motivation behind hash-ordered neighbor access. We introduce a
model suitable for locally stored graphs, inspired by coordinated sampling.
This model is also suitable for graphs stored in external memory. We call this
model the hash-ordered neighbor access. It is an intermediate model, stronger
than the indexed neighbor access but weaker than the full neighborhood access
model.

While in the indexed neighbor model, the neighbors can be ordered arbi-
trarily, this is not the case with hash-ordered neighbor access. In this setting,

9Consider for example Seagate ST4000DM000 (Seagate [2014]) and Toshiba
MG07SCA14TA (Toshiba [2019]). These are two common server hard drives. The aver-
age seek (non-linear access) times of these hard drives are 12 and 8.5 ms, respectively. Their
average read speeds are 146 and 260 MB/s, respectively. This means that in the time it
takes to do one seek, one can read ≈ 1.75 and ≈ 2.2 MB, respectively.

INTRODUCTION 67

we have a global hash function h : V → (0, 1] which we may evaluate. More-
over, we assume that the neighbors of a vertex are ordered with respect to
their hash values.

The simplest way to implement hash-ordered neighbor access is to store for
each vertex its neighborhood in an array, sorted by the hash values. This has
no memory overhead as compared to storing the values in an array. One may
also efficiently support hash-ordered access on dynamic graphs using standard
binary search trees.

We believe that the hash-value-ordered array is also a good way to im-
plement pair queries when storage space is scarce. We may tell whether two
vertices u and v are adjacent as follows. We evaluate h(u) and search the
neighborhood of v for a vertex with this hash value. We use that the hash
values are random, thus allowing us to use interpolation search. This way,
we implement the pair query in time O(log log d(v)) ≤ O(log log n) (Peterson
[1957], Armenakis et al. [1985]).

We believe that the hash-ordered neighbor access can be useful for solving
a variety of problems in sublinear time. Specifically, we show that it allows
us to sample higher-degree vertices with higher probability — something that
could be useful in other sublinear-time problems.

Our techniques

In the part of this paper where we consider edge sampling, we replace each
(undirected) edge by two directed edges in opposite directions. We then as-
sume the algorithm is executed on this directed graph.

Sampling One Edge by a Random Length Random Walk

The algorithm for sampling one edge is essentially the same as that for sam-
pling an edge in bounded arboricity graphs from Eden et al. [2019a]. We use
different parameters and a completely different analysis to get the logarithmic
dependence on ε−1.

We call a vertex v heavy if d(v) ≥ θ and light otherwise, for some pa-
rameter θ that is to be chosen later. A (directed) edge uv is heavy/light if u
is heavy/light. Instead of showing how to sample edges from a distribution
close to uniform, we show an algorithm that samples each (directed) edge with
probability in [(1− ε)c/(2m), c/(2m)] for some c > 0 and fails otherwise (with
probability ≈ 1 − c). One may then sample an edge 1 + ε pointwise close to
random by doing in expectation ≈ 1/c repetitions.

It is easy to sample light edges with probability exactly c/(2m) = (nθ)−1 –
one may pick vertex v at random, choose j uniformly at random from [θ] and
return the j-th outgoing edge incident to the picked vertex. Return “failure”
if d(v) < j. We now give an intuition on how we sample heavy edges.

68
CHAPTER 3. EDGE SAMPLING AND GRAPH PARAMETER

ESTIMATION VIA VERTEX NEIGHBORHOOD ACCESSES

Upper bound
previous work

Upper bound
this paper

Lower bound
previous work

Lower bound
this paper

Sampling one edge

Indexed neighbor Õ(n√
εm

) O(n log ε−1
√
m

) Ω(n√
m

)

Sampling s edges

Indexed neighbor Õ(
√
s n
ε
√
m

+ s) Õ(
√
sn+ s) for m≥Ω(n)

Hash-ordered neighbor access Õ(
√
s n√

m
+ s) Ω(n√

m
+ s) Ω(

√
s n√

m
+ s)

Edge counting

Indexed neighbor Õ(n
ε2

√
m

) Õ(
√
n
ε + 1

ε2
) for m≥Ω(n)

Hash-ordered neighbor access Õ(n
ε
√
m

+ 1
ε2

)

Indexed neighbor
+ pair queries

Õ(n
ε
√
m

+ 1
ε4

)

Full neighborhood access Ω(n√
εm

) Ω(n
ε
√
m

) for ε≥Ω(
√
m
n)

Triangle counting

Indexed neighbor
w/ random vertex query

Õ(n
ε10/3T 1/3 + m3/2

ε3T
) Ω(n

T 1/3 + m3/2

T)

Indexed neighbor
w/ random edge query

Õ(m3/2/(ε2T)) Ω(m3/2/T)

Full neighborhood access
w/ random edge query

Õ(m/(ε2T 2/3)) Ω(m/T 2/3)

Full neighborhood access
w/ random vertex query

Õ(n
εT 1/3 +

√
nm

ε2
√
T

) Ω(n/T 1/3 +
√
nm/T)

Full neighborhood access
w/ random vertex, edge queries

Õ(ε−2 min(m
T 2/3 ,

√
nm
T)) Ω(min(m

T 2/3 ,
√

nm
T))

Table 3.1: Comparison of our results with previous work. Note that the empty
cells in the table do not imply that nothing is known about the problems —
an algorithm that works in some model can also be used in any stronger model
and similarly a lower bound that holds in some model also holds in any weaker
model. Any problem can be trivially solved in O(n + m). We do not make
this explicit in the bounds. Similarly, any stated lower bound is assumed to
hold in the sublinear regime, unless specified otherwise.

We set θ such that at least one half of the neighbors of any heavy vertex
are light (we need a constant factor approximation of m for this; we use one
of the standard algorithms to get it). Consider a heavy vertex v. We use the
procedure described above to sample a (directed) light edge uw and we con-
sider the vertex w. Since at least one half of the incoming edges of any heavy
vertex are light, the probability of picking v is in [cd(v)/(4m), cd(v)/(2m)].
Sampling an incident edge, we thus get that each heavy edge is sampled with
probability in [c/(4m), c/(2m)].

Combining these procedures for sampling light and heavy edges (we do not
elaborate here on how to do this), we may sample edges such that for some
c′ > 0 we sample each light edge with probability c′/(2m) while sampling each
heavy edge with probability in [c′/(4m), c′/(2m)] (the value c′ is different from
c due to combining the procedures for sampling light and heavy edges).

INTRODUCTION 69

We now show how to reduce the factor of 2 to 1 ± ε. Consider a heavy
vertex v. Pick a directed edge uw from the distribution of the algorithm we

just described and consider w. The probability that w = v is in [3c
′d(v)
8m , c

′d(v)
2m],

as we now explain. Let hv be the fraction of neighbors of v that are heavy.
Light edges are picked with probability c′/(2m) and at least half of the in-
coming edges are light. The remaining edges are picked with probability in
[c′/(4m), c′/(2m)]. The probability of sampling v is then ≥ (1− hv)c′/(2m) +
hvc

′/(4m) ≥ 3c′

8m because hv ≤ 1/2. The probability is also clearly ≤ c′/(2m),
thus proving the claim. Combining light edge sampling and heavy edge sam-
pling (again, we do not elaborate here on how to do this), we are now able to
sample an edge such that each light edge is sampled with probability c′′/(2m)
and each heavy edge with probability in [3c

′′

8m ,
c′′

2m] (again, the value c′′ is dif-
ferent from c, c′ due to combining light and heavy edge sampling). Iterating
this, the distribution converges pointwise to uniform at an exponential rate.

One can show that this leads to the following algorithm based on con-
strained random walks of random length. The length is chosen uniformly at
random from [k] for integer k ≈ lg ε−1. The algorithm returns the last edge
of the walk. The random walk has constraints that, when not satisfied, cause
the algorithm to fail and restart. These constraints are (1) the first vertex v
of the walk is light and all subsequent vertices are heavy except the last one
(which may be either light or heavy) and (2) picking X ∼ Bern(d(v)/

√
2m)

10, the first step of the walk fails if X = 0 (note that this is equivalent to using
rejection sampling to sample the first edge of the walk).

Sampling Multiple Edges and Edge counting using Hash-Ordered
Neighbor Access

The problems of edge counting and sampling share the property that in solving
both these problems, it would be of benefit to be able to sample vertices in a
way that is biased towards vertices with higher degree. This is clearly the case
for edge sampling as it can be easily seen to be equivalent to sampling vertices
with probabilities proportional to their degrees. Biased sampling is also useful
for edge counting. If we let v be chosen at random from some distribution and
for a fixed vertex u define pu = P (v = u), then X = d(v)

2pv
is an unbiased esti-

mate of the number of edges, called the Horvitz-Thompson estimator Horvitz

and Thompson [1952a]. The variance is V ar(X) ≤ E(X2) =
∑

v∈V pv

(
d(v)
p(v)

)2
which decreases when high-degree vertices have larger probability pv. The
crux of this part of our paper, therefore, lies in how to perform this biased
sampling.

10Bernoulli trial Bern(p) is a random variable having value 1 with probability p and 0
otherwise.

70
CHAPTER 3. EDGE SAMPLING AND GRAPH PARAMETER

ESTIMATION VIA VERTEX NEIGHBORHOOD ACCESSES

Biased sampling procedure. We first describe how to perform biased
sampling in the case of the indexed neighbor access model and then describe
a more efficient implementation in the hash-ordered neighbor access model.
We say a vertex v is heavy if d(v) ≥ θ for some value θ and we say it is light
otherwise. The goal is to find all heavy vertices in the graph as that will allow
us to sample heavy vertices with higher probability. In each step, we sample a
vertex and look at its neighborhood. This takes in expectation O(m/n) time
per step. After Θ(n log(n)/θ) steps, we find w.h.p. all vertices with degree at
least θ. We call this technique high-degree exploration.

How to exploit hash-ordered neighbor access? We do not actually need
to find all heavy vertices in order to be able to sample from them when we
have the vertex hash queries. We make a sample S of vertices large enough
such that, w.h.p., each heavy vertex has one of its neighbors in S (|S| =
Θ(n log(n)/θ suffices). Pick all heavy vertices incident to the sampled vertices
that have h(v) ≤ p. We can find these vertices in constant time per vertex
using hash-ordered access. Since each heavy vertex has at least one of its
neighbors in S, these are in fact all heavy vertices v with h(v) ≤ p. Since
the hash values are independent and uniform on [0, 1], each heavy vertex is
(w.h.p.) picked independently with probability p. This allows us to sample
heavy vertices with larger probability than if sampling uniformly.

We apply this trick repeatedly for k = 1, · · · , log n with thresholds θk =
2kθ and pk = 2kp. This way, instead of having one threshold θ and one
probability of being sampled for each v with d(v) ≥ θ, we have logarithmically
many thresholds and the same number of different probabilities. Since the
ratio between θk and pk is constant, we see that the probability of each vertex
v with d(v) ≥ θ being sampled is up to a factor of 2 proportional to d(v).
Moreover, for each vertex, we know exactly its probability of being sampled.

Edge sampling. We describe how to sample each edge independently with
some probability p. This setting is called Bernoulli sampling. Light edges
can be sampled in a way similar to that used for sampling light edges in the
algorithm for sampling one edge. Using the biased sampling algorithm allows
us to sample heavy vertices with higher probability. We then prove that for
each vertex v, the probability that v is sampled is at least the probability
that one of the edges incident to v is sampled when sampling each edge in-
dependently with probability p. This allows us to use rejection sampling to
sample each vertex v with a probability equal to the probability of at least
one of its incident edges being sampled. By sampling k incident edges of such
vertex where k is chosen from the right distribution, we get that each heavy
edge is sampled independently with some fixed probability p. Sampling light
and heavy edges separately and taking union of those samples gives us an
algorithm that performs Bernoulli sampling from the set of all edges.

One can use Bernoulli sampling to sample edges without replacement.

INTRODUCTION 71

Specifically, when it is desired to sample s edges without replacement, one
may use Bernoulli sampling to sample in expectation, say, 2s samples and if
at least s are sampled, then return a random subset of the random edges,
otherwise repeat.

To sample s edges with replacement, we perform Bernoulli sampling Θ(s)
times, setting the probability such that each time, we sample in expectation
O(1) edges. From each (non-empty) Bernoulli sample, we take one edge at
random and add it into the sample. While implementing this naively would
result in a linear dependence on s, this can be prevented. The reason is that
it is sufficient to perform the pre-processing for Bernoulli sampling only once.
This allows us to spend more time in the “high-degree exploration phase”,
making the Bernoulli sampling itself more efficient.

Edge counting by sampling. When using Bernoulli sampling with some
inclusion probability p, the number of sampled edges |S| is concentrated
around pm. We estimate m as |S|/p and prove that for an appropriate choice
of p, the approximation has error at most ε with high probability. The “ap-
propriate value” of p depends on m. We find it using a geometric search.

Counting edges directly. We also give an independent algorithm for edge
counting based on a different idea. We use the biased sampling procedure
to sample higher-degree vertices with higher probability. We then use the
above-mentioned Horvitz-Thompson estimator; sampling higher-degree ver-
tices with higher probability reduces the variance. We then take the average
of an appropriate number of such estimators to sufficiently further reduce the
variance.

Edge Counting Using Pair Queries

Seshadhri [2015] shows a bound on the variance of the following estima-
tor: sample a vertex v, get a random neighbour u of v, if (d(v), id(v)) <
(d(u), id(u)) 11 then answer nd(v), otherwise answer 0. This is an unbiased
estimate of m. We combine this idea with the technique of high-degree explo-
ration. Direct all edges from the endpoint with lower degree to the one with
higher degree. The biggest contributor to the variance of the estimator from
Seshadhri [2015] are the vertices that have out-degree roughly

√
m (one can

show that there are no higher-out-degree vertices). Our goal is to be able to
sample these high out-degree (d+(v) ≥ θ for some parameter θ) vertices with
higher probability. Using the Horvitz-Thompson estimator for vertices of out-
degree at least θ will decrease the variance. We use an estimator inspired by
the one from Seshadhri [2015] for vertices with out-degree < θ.

11We are assuming id is a bijection between V and [n] and < on the tuples is meant with
respect to the lexicographic ordering.

72
CHAPTER 3. EDGE SAMPLING AND GRAPH PARAMETER

ESTIMATION VIA VERTEX NEIGHBORHOOD ACCESSES

We make a sample S of vertices and let S′ be the subset of S of vertices
having degree ≥ θ. The intuition for why we consider S′ is the following. If
we pick S to be large enough (|S| = Θ(n log(n)/θ) is sufficient), any vertex
v with d+(v) ≥ θ will have at least one of its out-neighbors sampled in S.
Moreover, it holds d(v) ≥ d+(v) ≥ θ; since we direct edges towards higher-
degree endpoints, these sampled out-neighbors also have degree ≥ θ. This
means that they also lie in S′. Any high-out-degree vertex thus has, w.h.p., a
neighbor in S′. At the same time, S′ has the advantage of being significantly
smaller than S as there can only be few vertices with degree ≥ θ in the graph
(at most 2m/θ, to be specific), so each vertex of S lies in S′ with probability
≤ 2m/(nθ).

Now we pick each incident edge to S′ with a fixed probability p and for
each picked edge uv for u ∈ S′, mark the vertex v. A vertex v is then marked
with probability pv = 1 − (1 − p)r(v) where r(v) = |N(v) ∩ S′|. It then
holds pv ≈ pr(v) (we ensure r(v) is not too large, which is needed for this to
hold). This is (w.h.p.) roughly proportional to the out-degree of v. Using the
Horvitz-Thompson estimator, this reduces the variance. This suffices to get
the improved complexity.

It remains to show how to efficiently compute r(v) (we need to know the
value in the Horvitz-Thompson estimator). We set the threshold θ so as to
make sure that only a small fraction of all vertices can have degree greater
than the threshold. Then, S′ will be much smaller than S (as S is a uniform
sample). In fact, it will be so small that we can afford to use pair queries to
check which of the vertices in S′ are adjacent to v. This is the main trick of
our algorithm.

Another obstacle that we have to overcome is that when we are given a
vertex, we cannot easily determine its out-degree. We need to know this to
decide which of the above estimators to use for the vertex. Fortunately, the
cost of estimating it is roughly inverse to the probability we will need the
estimate, thus making the expected cost small.

Triangle Counting Using Full Neighborhood Access

Warmup: algorithm with random edge queries. We now show a warmup
which assumes that we may sample edges uniformly at random. We then use
this as a starting point for our algorithm. This warmup is inspired by and
uses some of the techniques used in Kallaugher et al. [2019].

Consider an edge e = uv. By querying both endpoints, we can determine
the number of triangles containing e (because this number is equal to |N(u)∩
N(v)|). Let t(e) be the number of triangles containing e. One of the basic ideas
that we use is that we assign each triangle to its edge with the smallest value
t(e). This trick has been used before for edge counting in Seshadhri [2015]
and for triangle counting in Kallaugher et al. [2019]. We denote by t+(e) the
number of edges assigned to e. Consider a uniformly random edge e = uv and

INTRODUCTION 73

a uniform vertex w ∈ N(u) ∩ N(v). Let X = t(e) if uvw is assigned to uv

and X = 0 otherwise. The expectation is E(X) =
∑

e∈E
1
m ·

t+(e)
t(e) t(e) = T/m

and we may thus give an unbiased estimator of T as mX. The variance of

X is V ar(X) ≤
∑

e∈E
1
m ·

t+(e)
t(e) t(e)

2 = 1
m

∑
e∈E t

+(e)t(e). A bound used in

Kallaugher et al. [2019] can be used to prove that this is O(T 4/3/m). Taking
s = Θ(m/(ε2T 2/3)) samples and taking the average then gives a good estimate
with probability at least 2/3 by the Chebyshev inequality.

We prove that this is optimal up to a constant factor in terms of m and T
when only random edge queries (and not random vertex queries) are allowed.
We will now consider this problem in the full neighborhood access model,
which only allows for random vertex queries (and not random edge queries).
Combining this algorithm with our edge sampling algorithm results in com-
plexity O(

√
s n√

m
+ s) = O(n

εT 1/3 + m
ε2T 2/3) in the full neighborhood access

model. This, however, is not optimal.

Sketch of our algorithm: algorithm with random vertex queries.
We will now describe a more efficient algorithm that uses both random edge
and random vertex queries. We then remove the need for random edge queries
by simulating them with our algorithm for edge sampling. Perhaps surpris-
ingly, black-box application of our edge sampling algorithm results in near-
optimal complexity.

In order to find out the value t(e) for as many edges as possible, one
may sample each vertex independently with some probability p. For any edge
e whose both endpoints have been sampled, we can compute t(e) with no
additional queries. The sum of t(e)’s that we learn in this way is in expectation
3p2T . We may thus get an unbiased estimator of T . We may express the
variance by the law of total variance and a standard identity for the variance
of a sum. By doing this, we find out that there are two reasons the variance
is high. First, the variance of the number of triangles contributed to the
estimate by one edge can be large12. This is true for edges that are contained
in relatively many triangles. The second reason is the correlations between
edges: if we have edges e, e′ sharing one vertex and both endpoints of e have
been sampled, it is more likely that both endpoints of e′ are sampled, too.
This introduces correlation between the contributions coming from different
edges, thus increasing the variance. We now sketch a solution to both these
issues.

The first issue could be solved by applying the above-described trick with
assigning each triangle to its edge e = uv with the smallest value t(e). Pick
w uniformly from N(u) ∩ N(v) and let Xe = t(e) if uvw is assigned to uv
and let Xe = 0 otherwise. An analysis like the one described above would
give good bounds on the variance of Xe. The issue with this is that for each

12Formally, we are talking about the variance of a random variable Xe equal to t(e) if
both endpoints of e are sampled and 0 otherwise.

74
CHAPTER 3. EDGE SAMPLING AND GRAPH PARAMETER

ESTIMATION VIA VERTEX NEIGHBORHOOD ACCESSES

edge with non-zero t(e), we query the vertex w. If the number of edges in
the subgraph induced by the sampled edges is much greater than the number
of sampled vertices, this will significantly increase the query complexity. To
solve this issue, we separately consider two situations. If an edge has many
triangles assigned to it, we do the following. We sample a set of vertices N
(this set is shared for all edges) large enough such that, by the Chernoff bound,
|{w∈N∩N(u)∩N(v), s.t. uvw is assigned to uv}|

|N∩N(u)∩N(v)| ≈ t+(e)/t(e). Instead of sampling w

uniformly from N(u) ∩ N(v), we then sample from N ∩ N(u) ∩ N(v). Since
we do not need to query any vertex twice, we may bound the cost of this by
|N |. On the other hand, if the number of triangles assigned to e is small,
the variance of Xe (which is proportional to t+(e)t(e)) is relatively small (as
t+(e) is small). We then may afford to only use the estimator Xe with some
probability p′ and if we do, we use Xe/p

′ as the (unbiased) estimate of t+(e).
This increases the variance contributed by the edge e, but we may afford this
as it was small before applying this trick. This way, we have to only make an
additional query with probability p′, thus decreasing the query complexity of
this part of the algorithm.

The second problem is created by vertices whose incident edges have many
tiangles (at least θ) assigned to them (as becomes apparent in the analysis). A
potential solution would be to not use this algorithm for the vertices with more
than θ triangles assigned to incident edges and instead estimate the number of
these triangles by the edge-sampling-based algorithm from the warm-up. Why
is this better than just using that algorithm on its own? There cannot be many
such problematic vertices. Namely, there can only be ℓ = T/θ such vertices.
This allows us to get a better bound on the variance. Specifically, instead
of bounding the variance by O(T 4/3/m), we prove a bound of Õ(ℓT/m). An
issue we then have to overcome is that we cannot easily tell apart the “heavy”
and “light” vertices. Let us have a vertex v and we want to know whether it
is light (it has at most θ triangles assigned to its incident edges) or whether
it is heavy. The basic idea is to sample some vertices (this set is common for
all vertices) and then try to infer whether a vertex is with high probability
light or whether it may potentially be heavy based on the number of triangles
containing edges between v and this set of sampled vertices.

These techniques lead to a bound of Õ(n
εT 1/3 +

√
nm

ε2
√
T

). One can always

read the whole graph in n full neighborhood queries, leading to a bound of
Õ(min(n, n

εT 1/3 +
√
nm

ε2
√
T

)).

Lower bounds. Our lower bounds match our algorithms in terms of depen-
dency on n,m, T . The lower bound of Ω(n/T 1/3) is standard and follows from
the difficulty of hitting a clique of size T 1/3. We thus need to prove a lower
bound of Ω(min(n,

√
nm/T)). This amounts to proving Ω(

√
nm/T) under

the assumption T ≥ m/n. We thus assume for now this inequality.

Our lower bound is by reduction from the OR problem (given booleans

PRELIMINARIES 75

x1, · · · , xn, compute
∨n

i=1 xi) in a style similar to the reductions in Eden and
Rosenbaum [2018b]. The complexity of the OR problem is Ω(n). For an
instance of the OR problem of size

√
nm/T , we define a graph G with Θ(n)

vertices and Θ(m) edges. The number of triangles is either ≥ T if
∨n

i=1 xi = 1
or 0 if

∨n
i=1 xi = 0. Moreover, any query onG can be answered by querying one

xi for some i ∈ [n]. It follows that any algorithm that solves triangle counting
in G in Q queries can be used to solve the OR problem of size Θ(

√
nm/T) in

Q queries. This proves the desired lower bound.

We now describe the graph G. We define a few terms. A section consists
of 4 groups of

√
nT/m vertices. The whole graph consists of sections and

m/n non-section vertices. There are
√
nm/T sections, one for each xi. In

the i-th section, there is a complete bipartite graph between the first two
groups of vertices if xi = 0 and between the third and fourth if xi = 1.
There is a complete bipartite graph between each third or fourth group of
a section and the non-section vertices. See Figure 3.1 on page 123 for an
illustration of this construction.If xi = 0 for all i, then G is triangle-free. If
xi = 1, then the i-th section together with the non-section vertices forms√
nT/m ·

√
nT/m ·m/n = T triangles. At the same time, a query “within a

section” only depends on the value xi corresponding to that section, so we can
implement it by one query to the instance of the OR problem. A query that
does not have both endpoints within the same section is independent of the
OR problem instance. The number of vertices and edges is Θ(n) and Θ(m)
as desired, and G thus satisfies all conditions.

Preliminaries

Graph access models

Since a sublinear-time algorithm does not have the time to pre-process the
graph, it is important to specify what queries the algorithm may use to access
the graph. We define the indexed neighbor access model by the following
queries:

• For i ∈ [n], return the i-th vertex in the graph

• For v ∈ V , return d(v)

• For v ∈ V and i ∈ [d(v)], return the i-th neighbor of v

• For a given vertex v, return id(v) such that if v is the i-th vertex, then
id(v) = i

where the vertices in the graph as well as the neighbors of a vertex are assumed
to be ordered adversarially. Moreover, the algorithm is assumed to know n.
This definition is standard; see Goldreich and Ron [2008] for more details. Pair

76
CHAPTER 3. EDGE SAMPLING AND GRAPH PARAMETER

ESTIMATION VIA VERTEX NEIGHBORHOOD ACCESSES

queries are often assumed to be available in addition to the queries described
above:

• Given vertices u, v, return whether the two vertices are adjacent

This has been used, for example, in Eden et al. [2017a], Eden and Rosenbaum
[2018a], Assadi [2020].

In this paper, we introduce a natural extension of the above-described
setting without pair queries, which we call the hash-ordered neighbor access
model. In this model, there is the following additional query

• For v ∈ V , return h(v)

where the hash of v, denoted h(v), is a number picked independently uniformly
at random from [0, 1]. Moreover, neighborhoods of vertices are assumed to be
ordered with respect to the hashes of the vertices. Our algorithms do not
require the vertices to be ordered with respect to the hash values (in contrast
to the neighborhoods), although that would also be a natural version of this
model.

We define the full neighborhood access model as follows. Each vertex v has
a unique id(v) ∈ [n]. We then have one query: return the id’s of all neighbors
of the i-th vertex. We then measure the complexity of an algorithm by the
number of queries performed, instead of the time complexity of the algorithm.

Pointwise ε-Approximate sampling

Definition 20. A discrete probability distribution P is said to be pointwise
ε-close to Q where P,Q are assumed to have the same support, denoted |P −
Q|P ≤ ε, if

|P(x)−Q(x)| ≤ εQ(x), or equivalently 1− ε ≤ P(x)

Q(x)
≤ 1 + ε

for all x from the support.

In this paper, we consider distributions pointwise ε-close to uniform. This
measure of similarity of distributions is related to the total variational dis-
tance. Specifically, for any P,Q, it holds that |P − Q|TV ≤ |P − Q|P Eden
and Rosenbaum [2018a].

Conditioning principle

Let X,Y be two independent random variables taking values in a set A and
let f be a function on A. If Y ∼ f(X), then X ∼ X|(f(X) = Y). In other
words, if we want to generate a random variable X from some distribution, it
is sufficient to be able to generate (1) a random variable from the distribution
conditional on some function of X and (2) a random variable distributed as

PRELIMINARIES 77

the function of X. We call this the conditioning principle. We often use this
to generate a sample – we first choose the sample size from the appropriate
distribution and then sample the number of elements accordingly.

Notation

We use relations f(x) ≲ g(x) with the meaning that f(x) is smaller than
g(x) up to a constant factor. The relations ≃,≳ are defined analogously. The
notation f(x) ∼ g(x) has the usual meaning of f(x)/g(x) → 1 for x → ∞.
We use lg x to denote the binary logarithm of x. We use N(v) to denote the
set of neighbors of v. Given a vertex v and integer i, we let v[i] to be the
i-th neighbor of v. Given a (multi-)set of vertices S, we let d(S) =

∑
v∈S d(v)

and dS(v) = |N(v) ∩ S|. For an edge e = uv, we denote by N(e) the set of
edges incident to either u or v. In addition to sampling with and without
replacement, we use the less standard name of Bernoulli sampling. In this
case, each element is included in the sample independently with some given
probability p which is the same for all elements. Given a priority queue Q,
the operation Q.top() returns the elements with the lowest priority. Q.pop()
returns the element with the lowest priority and removes it from the queue.

We use Bern(p) to denote a Bernoulli trial with bias p, Unif(a, b) to be
the uniform distribution on the interval [a, b], Bin(n, p) to be the binomial
distribution with universe size n and sample probability p. For distribution
D and event E , we use X ∼ (D|E) to denote that X is distribution according
to the conditional distribution D given E .

Algorithms with advice

Many of our algorithms depend on the value of m or T . We are however not
assuming that we know this quantity (in fact, these are often the quantities
we want to estimate). Fortunately, for our algorithms, it is sufficient to know
this value only up to a constant factor. There are standard techniques that
can be used to remove the need for this advice.

Specifically, we use the advice removal procedure from Tětek [2021]. Sim-
ilar advice removal procedures have been used before, for example in Eden
et al. [2017a], Goldreich and Ron [2006], Aliakbarpour et al. [2018a], Assadi
et al. [2019b], Eden and Rosenbaum [2018a]. This advice removal can be
summarized as follows.

Fact 21. Let us have a graph parameter ϕ that is polynomial in n. Suppose
there is an algorithm that takes as a parameter ϕ̃ and has time complexity
T (n, ϕ̃, ε) decreasing polynomially in ϕ̃. Moreover, assume that for some c > 1,
it outputs ϕ̂ such that P (ϕ̂ ≥ cϕ) ≤ 1/3 and if moreover ϕ ≤ ϕ̃ ≤ cϕ, then
P (|ϕ̂−ϕ| > εϕ) ≤ 1/3. Then there exists an algorithm that has time complexity
O(T (n, ϕ, ε) log log n) and returns ϕ̂ such that P (|ϕ̂− ϕ| > εϕ) (and does not
require advice ϕ̃).

78
CHAPTER 3. EDGE SAMPLING AND GRAPH PARAMETER

ESTIMATION VIA VERTEX NEIGHBORHOOD ACCESSES

We now give a sketch of the reduction. We start with ϕ̃ with a polynomial
upper-bound on ϕ. For m, this may be n2, for T , we can use n3. We then
geometrically decrease ϕ̃. For each value of ϕ̃, we perform probability ampli-
fication. Specifically, we have the algorithm run Θ(log log n) times and take
the median estimate. We stop when this median estimate is ≥ cϕ̃ and return
the estimate. See [Tětek, 2021, Section 2.5] for details.

Sampling without replacement

Suppose we want to sample k elements with replacement from the set [n].
This can be easily done in expected time O(k). If k > n/2, we instead sample
n−k items without replacement and take the complement. We may, therefore,
assume that k ≤ n/2. We repeat the following k times: we sample items with
replacement until we get an element we have not yet seen before, which we
then add into the sample. Since k ≤ n/2, each repetition takes in expectation
O(1) time and the total time is in expectation O(k).

Edge sampling

We start with some definitions which we will be using throughout this section.
Given a threshold θ (the exact value is different in each algorithm), we say a
vertex v is heavy if d(v) ≥ θ and light if d(v) < θ. We denote the set of heavy
(light) vertices by VH (VL). In this section, we replace each unoriented edge
in the graph by two oriented edges in opposite directions. We then assume
the algorithm is executed on this oriented graph. We then call a (directed)
edge uv heavy (light) if u is heavy (light). If we can sample edges from this
oriented graph, we can also sample edges from the original graph by sampling
an edge and forgetting its orientation.

Sampling one edge in the indexed neighbor access model

In this section, we show Algorithm 10 which samples an edge pointwise ε-
approximately in expected time O(n√

m
log 1

ε). This algorithm is, up to a

change of parameters, the one used in Eden et al. [2019a] but we provide
a different analysis that is tighter in the case of general graphs (in Eden et al.
[2019a], the authors focus on graphs with bounded arboricity). This algo-
rithm works by repeated sampling attempts, each succeeding with probability

≈
√
m

n log ε−1 . We then show that upon successfully sampling an edge, the dis-
tribution is pointwise ε-close to uniform.

We show separately for light and heavy edges that they are sampled almost
uniformly. The case of light edges (Observation 22) is analogous to the proof
in Eden and Rosenbaum [2018a]. We include it here for completeness.

EDGE SAMPLING 79

Algorithm 9: Sampling attempt(k) subroutine

1 θ ← ⌈
√

2m⌉
2 Sample a vertex u0 ∈ V uniformly at random
3 If u0 is heavy, return “failure”
4 Choose a number j ∈ [θ] uniformly at random
5 Let u1 be the j’th neighbor of u0; return “failure” if d(u0) < j
6 for i from 2 to k do
7 If ui−1 is light, return “failure”
8 ui ← random neighbor of ui−1

9 Return (uk−1, uk).

Algorithm 10: Sample an edge from distribution pointwise ε-close
to uniform

1 Pick k from {1, · · · , ℓ = ⌈lg 1
ε⌉+ 2} uniformly at random

2 Call Sampling attempt(k), if it fails, go back to line 1, otherwise
return the result

Observation 22. For k chosen uniformly from [ℓ], any fixed light edge e = uv
is chosen by Algorithm 9 with probability 1

ℓnθ

Proof. The edge uv is chosen exactly when k = 1 (this happens with prob-
ability 1

ℓ), u0 = u (happens with probability 1
n), and j is such that v is the

j-th neighbor of u (happens with probability 1
θ). This gives total probability

of 1
ℓnθ .

We now analyze the case of heavy edges. Before that, we define for v being
a heavy vertex hv,1 = dH(v)

d(v) and for i ≥ 2

hv,i = hv,1
∑

w∈nH(v)

hw,i−1/dH(v)

For light vertices, the h-values are not defined.

Lemma 23. For k chosen uniformly from [ℓ], for any heavy edge vw

P (uk−1 = v, uk = w|k ≥ 2) = (1− hv,ℓ−1)
1

(ℓ− 1)nθ

Proof. Let k be chosen uniformly at random from {2, · · · , r}. We show by

induction on r that P (uk−1 = v|r) = (1− hv,r−1)
d(v)

(r−1)nθ for any heavy vertex
v. If we show this, the lemma follows by substituting r = ℓ and by uniformity
of uk on the neighborhood of uk−1.

For r = 2, the claim holds because when k = 2, there is probability 1
nθ

that we come to v from any of the (1− hv,1)d(v) adjacent light vertices.

80
CHAPTER 3. EDGE SAMPLING AND GRAPH PARAMETER

ESTIMATION VIA VERTEX NEIGHBORHOOD ACCESSES

We now show the induction step. In the following calculation, we denote by
Pr(E) the probability of event E when k is chosen uniformly from [r]. Consider
some vertex v and take a vertex w ∈ N(v). It now holds Pr(uk−2 = w) =
Pr−1(uk−1 = w). We have

Pr(uk−1 = v) =
∑

w∈N(v)

Pr(uk−2 = w)P (uk−1 = v|uk−2 = w) (3.1)

=
∑

w∈NL(v)

P (u0 = w)P (u1 = v|u0 = w)P (k = 2) (3.2)

+
∑

w∈NH(v)

Pr−1(uk−1 = w|k > 1)P (uk = v|uk−1 = w)P (k > 2)

(3.3)

=
∑

w∈NL(v)

1

n

1

θ

1

r − 1
+

∑
w∈NH(v)

(1− hw,r−2)
d(w)

(r − 2)nθ

1

d(w)

r − 2

r − 1

(3.4)

=(1− hv,2)
d(v)

(r − 1)nθ
+

∑
w∈NH(v)

(1− hw,r−2)
1

(r − 1)nθ
(3.5)

=(1− hv,1)
d(v)

(r − 1)nθ
+ hv,1d(v)

(
1−

∑
w∈NH(v)

hw,r−2/dH(v)
) 1

(r − 1)nθ

(3.6)

=(1− hv,1)
d(v)

(r − 1)nθ
+ (hv,1 − hv,r−1)

d(v)

(r − 1)nθ
(3.7)

=(1− hv,r)
d(v)

(r − 1)nθ
(3.8)

Before putting it all together, we will need the following bound on hv,i.

Lemma 24. For any v ∈ VH(G) and k ≥ 1 it holds that

hv,k ≤ 2−k

Proof. We first prove that for any v ∈ V (G), it holds that hv,1 ≤ 1/2. This
has been shown in Eden and Rosenbaum [2018a] and we include this for com-
pleteness. We then argue by induction that this implies the lemma.

Since v is heavy, it has more than θ neighbors. Moreover, there can be at
most m

θ heavy vertices, meaning that the fraction of heavy neighbors of v can
be bounded as follows

hv,1 ≤
m

θ

1

θ
=

m

⌈
√

2m⌉
1

⌈
√

2m⌉
≤ 1

2

EDGE SAMPLING 81

We now show the claim by induction. We have shown the base case and
it therefore remains to prove the induction step:

hv,i = hv,1
∑

w∈nH(v)

hw,i−1/dH(v) ≤ 1

2

∑
w∈nH(v)

2−(i−1)/dH(v) = 2−i

We can now prove the following theorem

Theorem 25. For ε ≤ 1
2 , the Algorithm 10 runs in expected time O(n√

m
log 1

ε)

and samples an edge from a distribution that is pointwise ε-close to uniform.

Proof. We first prove the correctness and then focus on the time complexity.

Correctness. We first show that in an iteration of Algorithm 10, each edge
is sampled with probability in [(1− ε) 1

ℓnθ ,
1

ℓnθ]. For light edges, this is true by
Observation 22. We now prove the same for heavy edges. Similarly, a heavy
edge (v, w) is chosen when k ≥ 2, uk−1 = v and w = uk. Using Lemma 23,

P (k ≥ 2, uk−1 = v, uk = w) = P (k ≥ 2)P (uk−1 = v, uk = w|k ≥ 2) (3.9)

=
ℓ− 1

ℓ
(1− hv,ℓ−1)

1

(ℓ− 1)nθ
(3.10)

= (1− hv,ℓ−1)
1

ℓnθ
(3.11)

We can now use Lemma 24 to get a lower bound of

≥ (1− 2−ℓ+1)
1

ℓnθ
≥ (1− 1

2ε)
1

ℓnθ
(3.12)

Similarly, since the value hv,ℓ is always non-negative, it holds

P (k ≥ 2, uk−1 = v, uk = w) ≤ 1

ℓnθ
(3.13)

Consider one execution of Algorithm 9 with k chosen uniformly from [ℓ] and
let S denote the event that the execution does not end with failure. Let e be
the sampled edge and e′, e′′ some fixed edges. Then since P (e = e′|S) = P (e=e′)

P (S)
and for any fixed e′ it holds that

(1− 1
2ε)

1

ℓnθ
≤ P (e′ = e) ≤ 1

ℓnθ

it follows that

1− 1
2ε ≤

P (e = e′)

P (e = e′′)
≤ (1− 1

2ε)
−1 ≤ 1 + ε

where the last inequality holds because ε ≤ 1
2 . Algorithm 9 perform sam-

pling attempts until one succeeds. This means that the returned edge comes
from the distribution conditional on S. As we have noted, this scales the
sampling probabilities of all edges by the same factor of P (S) and the output
distribution is, therefore, pointwise ε-close to uniform.

82
CHAPTER 3. EDGE SAMPLING AND GRAPH PARAMETER

ESTIMATION VIA VERTEX NEIGHBORHOOD ACCESSES

Time complexity. Consider again one execution of Algorithm 9. Since for
every fixed edge e′, the probability that e = e′ is at least (1− ε) 1

ℓnθ , the total
success probability is

P (S) = P (
∨
e = e′) =

∑
e′∈E

P (e = e′) ≥ m(1− ε) 1

ℓnθ

where the second equality holds by disjointness of the events. The expected
number of calls of Algorithm 9 is then

ℓnθ

(1− ε)m
=

√
2(⌈lg 1

ε⌉+ 1)n

(1− ε)
√
m

= O

(
n√
m

log
1

ε

)
Each call of Algorithm 9 takes in expectation O(1) time because in each

step of the random walk, we abort with probability at least 1/2 (we are on a
heavy vertex as otherwise we would have aborted, in order not to abort, the
next vertex also must be heavy; the fraction of neighbors that are heavy is
hv,1 ≤ 1/2). Therefore, the complexity is as claimed.

Biased vertex sampling using hash-ordered access

We now describe a sampling procedure (Algorithm 12) which allows us to
sample vertices such that vertices with high degree are sampled with higher
probability. We will then use this for sampling multiple edges and later in
Line 6for approximate edge counting. The procedure is broken up into two
parts – one for pre-processing and one for the sampling itself. We do not
make it explicit in the pseudocode how the data structures built during pre-
processing are passed around for the sake of brevity.

In the rest of this section, let pV = 2 logn+log δ−1

θ . pN is a parameter
that determines the sampling probabilities; see Lemma 27 for the exact role
this parameter plays. The algorithm works as follows. We make lg n vertex
samples (line 2) which we call Sk’s. We will then have a priority queue for each
Sk called Qk which allows us to iterate over N(Sk) in the order of increasing
value of h(v). This could be done by inserting all vertices in N(Sk) into the
priority queue. We, however, use a more efficient way based on the hash-
ordered neighbor access. We start with a priority queue that has for each
vertex v from Sk its first neighbor (as that is the one with the lowest hash
value) represented as (v, 1) with the priority equal to its hash. Whenever we
use the pop operation, popping the i-th neighbor of v ∈ Sk represented (v, i),
we insert into Qk the next neighbor of v, represented as (v, i+1) with priority
equal to its hash. This allows us to access N(Sk) in the order of h(v).

To be able to perform multiple independent runs of the biased vertex sam-
pling algorithm, we will have to resample the hash value from an appropriate
distribution for any vertex that the algorithm processes. We will call these
resampled hash values virtual and will denote them h′(v). At the beginning,

EDGE SAMPLING 83

h′(v) = h(v) for all vertices v. When a vertex v from N(Sk) is processed,
we put it, represented as (v, “virtual”), back into the priority queue Qk with
priority equal to the virtual hash. Each priority queue Qk therefore contains
vertices of the form (v, i), representing v[i], which have not been used by the
algorithm yet and vertices of the form (v, “virtual”) that have been processed
already but they have been re-inserted into the priority queue with a new
priority h′(v).

Note that that a vertex may be present in the priority queues multiple
times (for example, if v is the i-th neighbor of u and j-th neighbour of w, then
v may be once inserted as (u, i) and once as (w, j) and once as (v, “virtual”)).
We make sure that all copies of one vertex always have the same priority,
namely h′(v). We assume in the algorithm that the hash values of all vertices
are different (this happens with probability 1). One may also use (h′(v), id(v))
as the priority of the vertex v (with comparisons performed lexicographically)
to make the algorithm also work on the event when two vertices have the same
hash. This may be useful if implementing the algorithm in practice.

In the pre-processing phase, we initialize the priority queues Q1, · · · ,Qlgn.
These will be then used in subsequent calls of the biased vertex sampling
algorithm. As we mentioned, we do not make it explicit how they are passed
around (they can be thus though of as global variables).

In what follows, we let v(a) = w[i] for for a = (w, i) and v(a) = w for
a = (w, “virtual”). We assume that the variables Tk are sets (as opposed to
multisets).

Algorithm 11: Biased vertex sampling – preprocessing algorithm,
given a tradeoff parameter θ

1 for k ∈ {0, · · · , lg n} do
2 Sk ← sample npV /2

k = n log(2n/δ)
2kθ

vertices with replacement

3 If d(Sk) ≥ 4m log(2n/δ)
2kθ

, go back to line 2

4 for v ∈ Sk do
5 Insert into Qk the tuple (v, 1) with priority h′(v[1])

Remark. In practice, implementing Algorithm 12 poses the problem that the
virtual hash values h′(v) may be quickly converging to 1 as ℓ increases, making
it necessary to use many bits to store them. This can be circumvented as
follows. Whenever 1−(1−pN2k)ℓ ≥ 1/2 during the execution of the algorithm,
we access the whole neighborhood of the vertex, allowing us to resample the
hashes (by setting virtual hashes) from scratch. In other words, when we
have seen in expectation half of the vertices adjacent to a vertex, we get all
of them, allowing us to resample them from the same distribution they had
at the beginning. (Using this approach would require a minor modification to
Algorithm 12.)

84
CHAPTER 3. EDGE SAMPLING AND GRAPH PARAMETER

ESTIMATION VIA VERTEX NEIGHBORHOOD ACCESSES

Algorithm 12: Biased vertex sampling – sampling algorithm, given
parameters θ, pN

1 Let ℓ be such that this is the ℓ-th execution of the algorithm.
2 for k ∈ {0, · · · , log n} do
3 Tk ← ∅
4 while either h′(v(a)) ≤ 1− (1− pN2k)ℓ or pN2k ≥ 1 for

a← Qk.top() do
5 while v(b) = v(a) for b← Qk.pop() do
6 if b is of the form (v, i) then
7 Replace (v, i) by (v, i+ 1) in Qk, set priority to

h′(v[i+ 1])

8 if d(v(a)) ̸∈ [2kθ, 2k+1θ) then
9 Skip a, continue with next iteration of the loop

10 Tk ← Tk ∪ {v(a)}
11 h′(v(a))← Unif([1− (1− pN2k)ℓ, 1]) or 1 if

1− (1− pN2k)ℓ > 1
12 Add to Qk an item (v(a), “virtual”) with priority h′(v(a))

13 return T0 ∪ · · · ∪ Tlgn

In what follows, let h′ℓ(v) be the virtual hash at the beginning of the ℓ-th
execution of Algorithm 12 and let kv = ⌊lg(d(v)/θ)⌋.

Lemma 26. Condition on each heavy vertex v having a neighbor in Skv .
At the beginning of the ℓ-th execution of Algorithm 12, for all heavy v with
pN2kv < 1, h′(v) is distributed uniformly on [1 − (1 − pN2kv)ℓ−1, 1] and the
events h′ℓ(v) ≤ 1− (1− pN2kv)ℓ for v ∈ V and ℓ ∈ Z+ are jointly independent.
Moreover, any a such that v(a) = u in Qk has priority h′(u).

Proof. We first focus on the distribution of the virtual hashes; we prove that
the priorities are equal to the hashes afterwards. The proof of both parts is
by induction on ℓ.

We define Xv,ℓ to be the indicator for h′ℓ(v) ≤ 1 − (1 − pN2kv)ℓ. We
now focus on one vertex v and drop it in the subscript. We prove by induc-
tion that, conditioned on X1, · · ·Xℓ−1, the distribution of hℓ(v) is uniform on
1− (1−pN2kv)ℓ−1. This implies that the (unconditional) distribution of h′ℓ(v)
is as claimed. We will also use this below to prove independence. The distri-
bution of h1(v) is as claimed as the virtual hash values are initially equal to
the original (non-virtual) hash values which are assumed to be uniformly dis-
tributed on [0, 1] and we are conditioning on an empty set of random variables.
Consider hℓ−1(v) conditioned on X1, · · · , Xℓ−2. The distribution is uniform on
[1− (1−pN2kv)ℓ−2, 1] by the inductive hypothesis. Conditioning on Xℓ−1 = 1,

EDGE SAMPLING 85

we resample h′(v) uniformly from [1 − (1 − pN2kv)ℓ−1, 1]. Conditioning on
Xℓ−1 = 0, is equivalent to conditioning on h′(v) > 1 − (1 − pN2kv)ℓ−1. This
conditional distribution is uniform on [1− (1− pN2kv)ℓ−1, 1]. Either way, the
distribution is as claimed. This proves the inductive step.

We now argue independence across vertices. The algorithm has the prop-
erty that the virtual hash value of one vertex does not affect the values of
other vertices (note that when processing vertex v, all conditions in the algo-
rithm only depend on h′(v) and independent randomness). This implies that
Xu,1, Xu,2, · · · and Xv,1, Xv,2, · · · are independent for u ̸= v. This together
with what we have shown above implies joint independence. To prove this
formally, consider some finite subset S ⊆ V × Z+ and let us have xa ∈ {0, 1}
for each a ∈ S. Let V (S) = {v|∃ℓ ∈ Z+, (v, ℓ) ∈ S} and let ≺ be arbi-
trary total ordering on V (S). Let Zv(S) = {ℓ|(v, ℓ) ∈ S}. Consider now
P (
∧

a∈S Xa = xa). We can re-write this as∏
u∈V (S)

P (
∧

(v,ℓ)∈S
v=u

Xv,ℓ = xv,ℓ|{Xw,ℓ′}(w,ℓ′)∈S,w≺u) =
∏

u∈V (S)

P (
∧

(v,ℓ)∈S
v=u

Xv,ℓ = xv,ℓ)

(3.14)

where the equality holds by the independence ofXu,1, Xu,2, · · · andXv,1, Xv,2, · · · .
We can further rewrite

P (
∧

(v,ℓ)∈S
v=u

Xv,ℓ = xv,ℓ) =
∏

ℓ∈Zv(S)

P (Xu,ℓ = xu,ℓ|{Xu,ℓ′}ℓ′∈Zu,ℓ′<ℓ) =
∏

ℓ∈Zv(S)

P (Xu,ℓ = xu,ℓ)

(3.15)

where the second equality holds because (as we have shown above) the virtual
hash h′ℓ(v) is independent of Xv,1, Xv,2, · · · , Xv,ℓ−1. Putting this together, we
have

P (
∧
a∈S

Xa = xa) =
∏
a∈S

P (Xa = xa)

which means that the random variables Xv,ℓ (and thus the events hℓ(v) ≤
1− (1− pN2kv)ℓ) are jointly independent.

We now argue that the priorities are equal to the virtual hashes. Whenever
a vertex is added to Qk, its priority is equal to its virtual hash. The only way
it may happen that the priorities and virtual hashes are not equal is that the
virtual hash of some vertex u changes while there exists a ∈ Qk such that
v(a) = u. This never happens as the virtual hash of v(a) changes only on
line 11 after all a ∈ Qk such that v(a) = u have been removed. Note that we
are using the fact that different vertices have different virtual hashes (which
we assume without loss of generality as we discussed above), which ensures
that all a with v(a) = u are removed on line 5.

86
CHAPTER 3. EDGE SAMPLING AND GRAPH PARAMETER

ESTIMATION VIA VERTEX NEIGHBORHOOD ACCESSES

Lemma 27. Let us have integer parameters θ, t ≥ 1. When executed t times,
Algorithm 12 returns samples T1, · · · , Tt. Assume Algorithm 12 is given the
priority queues {Qk}lgnk=1 produced by Algorithm 11. Then there is an event E
with probability at least 1 − δ such that, conditioning on this event, for any
i ∈ [t] and any vertex v such that d(v) ≥ θ, it holds that

P (v ∈ Ti) = min(1, pN2⌊lg
d(v)
θ

⌋) ∈ [min(1,
d(v)

2θ
pN),min(1,

d(v)

θ
pN)]

and, conditionally on E, the events {e ∈ Ti}e∈E,i∈[t] are jointly independent.

Algorithm 11 has expected time complexity O(n logn log(n/δ)
θ). Algorithm 12 has

expected total time complexity O
(
t
(
1 + pNm log2 n log(n/δ)

θ

))
.

Proof. We start by specifying the event E and bounding its probability. The
probability that a vertex of degree at least 2kθ does not have a neighbor in Sk
after one sampling of Sk (that is, not considering the repetitions) on line 2is
at most

(1− 2kθ

n
)
n log(2n/δ)

2kθ ≤ exp
(
− log(2n/δ)

)
=

δ

2n

Therefore, taking the union bound over all vertices, the probability that there
exists an integer k and a vertex with degree at between 2kθ and 2k+1θ that
does not have at least one neighbour in Sk after sampling Sk on line 2, is at
most δ/2. We now bound the probability that this holds for some Sk on line
line 4.

There are npV /2
k = n log(2n/δ)

2kθ
vertices sampled on line 2 of Algorithm 11.

The expected size of the neighborhood of a vertex picked uniformly at random
is 2m

n . The expectation of d(S) is then 2m log(2n/δ)
2kθ

. By the Markov’s inequality,

the probability that d(S) ≥ 4m log(2n/δ)
2kθ

is at most 1/2. We repeatedly sample

Sk until it satisfies d(S) ≤ 4m log(2n/δ)
2kθ

. Its distribution is thus the same as
if we conditioned on this being the case. It can be easily checked (by the

Bayes theorem) that conditioned on the event d(S) < 4n log(2n/δ)
2kθ

, any vertex

with degree between 2kθ and 2k+1θ has at least one neighbour in Sk, with
probability at least 1− δ. Therefore, on line 4, it holds that with probability
at least 1 − δ, there does not exist an integer k and a vertex v such that
2k ≤ d(v) ≤ 2k+1 and v has no neighbor in Sk. We call E the event that this
is the case. In the rest of this proof, we condition on E .

We now prove correctness. Consider a vertex v and let again k = ⌊lg(d(v)/θ)⌋.
Consider the case pN2k ≥ 1. Conditioned on E , one of its neighbours is in Sk.
Since pN2k ≥ 1, the condition on line 4 is satisfied in the k-th iteration of the
loop on line 2. Therefore, the whole neighborhood of Sk is added to Tk and
the returned sample thus contains v.

We now consider the case pN2k < 1. Conditioned on E , a vertex v is
included in Tk when 2kθ ≤ d(v) < 2k+1θ and h′(v) ≤ 1 − (1 − pN2k)ℓ. Since

EDGE SAMPLING 87

h′(v) is uniformly distributed in [1 − (1 − pN2k)ℓ−1, 1], this happens with
probability

1− (1− pN2k)ℓ − (1− (1− pN2k)ℓ−1)

1− (1− (1− pN2k)ℓ−1)
= pN2k

Let h′ℓ(v) and kv be defined as in the statement of Lemma 26. We know
from that lemma that the events {h′ℓ(v) ≤ 1− (1−pN2kv)ℓ}v∈V,ℓ∈[t] are jointly

independent, conditioned on E . h′ℓ(v) ≤ 1−(1−pN2kv)ℓ is equivalent to v ∈ Tℓ.
This implies that the events {v ∈ Tℓ}v∈V,ℓ∈[t] are also jointly independent, as
we set out to prove.

We now prove the claimed query complexity. We first show the complexity
of Algorithm 11. As we argued, the probability of resampling Sk because
the condition on line 3 is satisfied, is at most 1/2. Therefore, the time spent
sampling the set Sk (including the repetitions) is O(|Sk|). For every k, |Sk| =
n log(2n/δ)

2kθ
. Therefore, the total size of the sets Sk is upper-bounded by

∞∑
k=0

n log(2n/δ)

2kθ
=

2n log(2n/δ)

θ

Since all values that are to be inserted into Qk in Algorithm 11 are known in
advance, we can build the priority queues in time linear with their size. This
means that the preprocessing phase (Algorithm 11) takes O(n log(n/δ)

θ) time.

We now focus on Algorithm 12. We now prove that an execution of the
loop on line 2 of Algorithm 12 takes in expectation O(1 + pNm logn log(n/δ)

θ)
time for any k ∈ {0, · · · , log n}, from which the desired bound follows. Specif-

ically, we prove that the number of executions of lines 6-8 is O(pNm log(n/δ)
θ)

from which this bound follows as every iteration takes O(log n) time (as the
time complexity of an iteration is dominated by the operations of the priority
queue).

Lines 6-8 are executed once for each item a in Qk such that the priority of
a is ≤ 1− (1−pN2k)ℓ if pN2k < 1 or when pN2k ≥ 1. As we have argued, this

happens with probability min(1, pN2k) ≤ pN2k. There are n log(2n/δ)
2kθ

vertices
in Sk. Since these vertices are chosen at random, there is in expectation
2m log(2n/δ)

2kθ
incident edges. We consider an item for such incident edge with

probability ≤ pN2k. This means that we consider on the mentioned lines in
expectation O(pNm log(2n/δ)

θ) edges, as we wanted to prove.

Bernoulli sampling with hash-ordered neighbor access

We now show how to sample each edge independently with some fixed prob-
ability p in the hash-ordered neighbor access model. Our approach works by
separately sampling light and heavy edges, then taking union of the samples.

88
CHAPTER 3. EDGE SAMPLING AND GRAPH PARAMETER

ESTIMATION VIA VERTEX NEIGHBORHOOD ACCESSES

In fact, we solve a more general problem of making t Bernoulli samples with
time complexity sublinear in t for some range of parameters. We will need this
for sampling edges with replacement. We first give an algorithm to sample
edges, assuming we can sample separately light and heavy edges.

Algorithm 13: Make t Bernoulli samples from E with inclusion
probability p

1 if p > 0.9 then
2 Perform the sampling by a standard linear-time algorithm in time

O(n+ tpm).

3 θ ←
√

log(n) log(n/δ)
pt

4 Run Algorithm 11 with parameter θ to prepare data structures for
Algorithm 12 (used within Algorithm 15)

5 for i from 1 to t do
6 SL,i ← sample each light edge with probability p using

Algorithm 14 with parameter θ
7 SH,i ← sample each heavy edge with probability p using

Algorithm 15 with parameter θ

8 return (SL,1 ∪ SH,1, · · · , SL,t ∪ SH,t)

Theorem 28. Given a parameter t, with probability at least 1 − δ, Algo-
rithm 13 returns t samples T1, · · · , Tt. Each edge is included in Ti with prob-
ability p. Furthemore, the events {e ∈ Ti}e∈E,i∈[t] are jointly independent. The

expected time complexity is O
(√
tpn
√

log(n) log(n/δ)+t
(
1+pm log2 n log(n/δ)

))
.

Proof. If p > 0.9, we read the entire graph in O(n + m) and compute the
sample in time O(tm) = O(tpm). This is less than the claimed complexity.
In the rest, we assume that p ≤ 0.9.

Correctness follows from lemmas 29 and 30 which imply that light and
heavy edges, respectively, are separately sampled independently with the right
probability. Moreover, there is no dependency between the samples of the light
and heavy edges, as the sample of light edges does not depend on the hashes.
The same lemmas give running times of O(tpnθ) and O(tpm log2 n log n/δ)

spent on lines 6 and 7 respectively. Algorithm 11 takes n logn log(n/δ)
θ time.

Substituting for θ, the expected time complexity is as claimed.

Sampling light edges

Now we show how to sample from the set of light edges such that each light
edge is sampled independently with some specified probability p.

As essentially the same algorithm already appeared in Eden and Rosen-
baum [2018a], we defer the proof of the following lemma to the full version.

EDGE SAMPLING 89

Algorithm 14: Sample each light edge independently with proba-
bility p

1 k ∼ Bin(nθ, p)
2 T ← ∅
3 M ← ∅
4 repeat k times
5 v ← pick vertex uniformly at random
6 ℓ← random number from [θ]
7 if (v, ℓ) ∈M then
8 Go to line 5.

9 If v is light and d(v) ≥ ℓ, add the ℓ-th edge incident to v to T
10 M ←M ∪ {(v, ℓ)}
11 return T

Lemma 29. Algorithm 14 samples each light edge independently with proba-
bility p ≤ 0.9 and its expected query complexity is O(pnθ).

Proof. Consider the set B of pairs (v, ℓ) where v ∈ V and ℓ ∈ [θ]. We sample
k ∼ Bin(nθ, p) such pairs without replacement. By the choice of k and the
conditioning principle, it holds that each pair (v, ℓ) has been sampled with
probability p, independently of other pairs. Each light edge has exactly one
corresponding pair in B, namely a light edge uv where v is the i-th neighbor
of u corresponds to (u, i). The algorithm returns all light edges whose corre-
sponding pair was sampled. This happened for each pair independently with
probability p, thus implying the desired distribution of T .

By the assumption p ≤ 0.9, we have P (k ≤ 0.95nθ) ≥ 1 − exp(−Ω(nθ)).
On this event, sampling each edge (that is, sampling a pair (v, ℓ) that is not
in M) takes in expectation O(1) queries. Moreover E(k) = pnθ. Therefore,
it takes in expectation O(pnθ) queries to sample the k pairs (combining the
expectations using the Wald’s equation). It always takes O(nθ log(nθ)) time
to sample k edges due to coupon collector bounds, so the event k > 0.95nθ
only contributes o(1) to the expectation since P (k > 0.95n) is exponentially
small.

Sampling heavy edges

We now show an algorithm for Bernoulli sampling from the set of heavy edges.
The algorithm is based on Algorithm 12.

Lemma 30. Assume that Algorithm 15 is given {Qk}lgnk=1 as set by Algo-
rithm 11. With probability at least 1 − δ, Algorithm 15 samples each heavy
edge independently with probability p. Moreover, when executed multiple times,

90
CHAPTER 3. EDGE SAMPLING AND GRAPH PARAMETER

ESTIMATION VIA VERTEX NEIGHBORHOOD ACCESSES

Algorithm 15: Sample each heavy edge independently with proba-
bility p, given parameter θ

1 S ← Use Algorithm 12 with pN = min(1, 2θp)
2 S′ ← heavy vertices from S
3 T ← ∅
4 for v ∈ S′ do

5 With probability 1−(1−p)d(v)

min(1,pN2⌊lg
d(v)
θ

⌋)
, skip v and continue on line 3

6 k ∼ (Bin(d(v), p)|k ≥ 1)
7 Sample k edges incident to v without replacement, add them to T

8 return T

the outputs are independent. It has time complexity O(pm log2 n log n/δ) with
high probability.

Proof. We first show that the probability on line 4 is between 0 and 1 (oth-
erwise, the algorithm would not be valid). It is clearly non-negative, so it

remains to show that 1− (1− p)d(v) ≤ min(1, pN2⌊lg
d(v)
2θ

⌋). If 1 ≤ pN = 2θp ,

then 1 ≤ pN2⌊lg
d(v)
2θ

⌋, and the inequality then clearly holds. Otherwise,

pN2⌊lg
d(v)
2θ

⌋ ≥ 2θp2lg(
d(v)
θ

)−1 ≥ pd(v) ≥ 1− (1− p)d(v)

We now show correctness. That is, we show that edges are sampled indepen-
dently with the desired probabilities. By Lemma 27, for heavy v, it holds that

P (v ∈ S|E) = min(1, pN2⌊lg
d(v)
2θ

⌋). This means that the probability of v being
in S and not being skipped is

min(1, pN2⌊lg
d(v)
2θ

⌋)
1− (1− p)d(v)

min(1, pN2⌊lg
d(v)
θ

⌋)
= 1− (1− p)d(v)

This is equal to the probability of X ≥ 1 for X ∼ Bin(d(v), p). Since
k is picked from (Bin(d(v), p)|k ≥ 1), the distribution of number of edges
incident to v that the algorithm picks is distributed as Bin(d(v), p). Let Xv

be the number of edges incident to v that are picked. Since each vertex v
is picked independently by Lemma 27, we have that these random variables
are independent and Xv ∼ Bin(d(v), p). Consider the vector (Xv1 , · · · , Xvn).
Consider experiment where we pick each edge independently with probability
p (this is the desired distribution) and let Yv be the number of edges incident to
v that are picked. Then (Yv1 , · · · , Yvn) ∼ (Xv1 , · · · , Xvn). By the conditioning
principle, we get that each (directed) edge is sampled independently with
probability p.

EDGE SAMPLING 91

Assume Algorithm 15 is executed t times, outputting sets H1, · · · , Ht. By
Lemma 27, we know that the events {e ∈ Hi}e∈E,i∈[t] are jointly indepen-
dent. Algorithm 15 only depends on the virtual hashes in the calls of Algo-
rithm 12 and the rest only depends on independent randomness. The samples
H1, · · · , Ht are thus independent.

We now argue the time complexity. Algorithm 12 has expected time complex-

ity O(pNm log2 n log(n/δ)
θ) = O(pm log2 n log(n/δ)). We now prove this domi-

nates the complexity of the algorithm. The rest of the algorithm has time
complexity linear in |S|+ |T |. The complexity of Algorithm 12 clearly domi-
nates |S| (as S is the output of this algorithm). It holds E(|T |) = pm, so the
expected size of T is also dominated by the complexity of Algorithm 12.This
completes the proof.

Sampling edges without replacement with hash-ordered
neighbor access

We now show how Bernoulli sampling can be used to sample vertices without
replacement.

Algorithm 16: Sample without replacement s edges

1 p← 1/n2

2 S ← sample each edges with probability min(1, p) using Algorithm 13

with failure probability δ
3 lgn

3 if |S| < s then
4 p← 2p
5 Repeat from line 1

6 return random subset of S of size s

Theorem 31. Algorithm 16 samples s edges uniformly without replacement
with probability at least 1 − δ. Moreover, Algorithm 16 has expected query
complexity O(

√
sn log(n) log(n/δ)√

m
+ s log2 n log(n/δ)).

Proof. In each iteration, Algorithm 13 fails with probability at most δ
3 lgn .

There are at most lg n2 iterations in which p < 1. After this number of
iterations, each additional iteration can happen only if Algorithm 13 fails.
This happens with probability < 1/2, so we get in expectation < 2 additional
iterations. Putting this together by the Wald’s equation13, we see that the

13We use the Wald’s equation on the indicators that in the i-th iteration fails. The bound
is, in fact, on the expected number of failures, which is an upper bound on the probability
of failure (by the Markov’s inequality).

92
CHAPTER 3. EDGE SAMPLING AND GRAPH PARAMETER

ESTIMATION VIA VERTEX NEIGHBORHOOD ACCESSES

failure probability is at most (2 lg +2) δ
3 lgn < δ. In the rest of the analysis, we

condition on no errors happening in any of the calls of Algorithm 13.

Condition on the ℓ-th iteration being the first to succeed. What is the
conditional distribution of the sample? Note that repeating an experiment
until the outcome satisfies some property ϕ results in the outcome of the ex-
periment being distributed as if we conditioned on ϕ. Consider additionally
conditioning on |S| = k. Then, by symmetry, S is a sample without replace-
ment of size |k|. If k ≥ s, it holds that taking a sample without replacement of
size k and taking a random subset of size s, we get a sample with distribution
of a sample without replacement of size s. Since this distribution is the same
for all values of k ≥ s, the distribution is unchanged if we only condition on
the union of the events |S| = k for k ≥ s or, in other words, if we condition
on |S| ≥ s. Similarly, the distribution is the same independently of the value
of ℓ. Therefore, the unconditioned distribution is the same. This proves that
the algorithm gives a sample from the right distribution. .

Since the probability p increases exponentially, so does the expected time
complexity of each iteration. Therefore, the time complexity is dominated by
the complexity of the last iteration. Consider an iteration with p < 2s

m . Then
the time complexity of this iteration is no greater than the desired bound.
Consider now the case p ≥ 2s

m . By the Chernoff bound, the probability that
|S| < s is then at most 1/3. The probability of performing each additional
iteration thus decreases exponentially with base 1/3. The expected time com-
plexity of an iteration, on the other hand, increases exponentially with base
2. This means that the expected time complexity contributed by each addi-
tional iteration decreases exponentially. The asymptotic time complexity is
therefore equal to that of the iteration with s

m ≤ p < 2s
m . The complexity

of an iteration is dominated by line 2. Therefore, by Theorem 28, the time
complexity is as claimed.

Sampling edges with replacement with hash-ordered neighbor
access

The algorithm for Bernoulli sampling can be used to sample multiple edges
with replacement. The proof of the theorem below appears in the full version.
We now sketch intuition of correctness of the algorithm. Suppose S1 is non-
empty. Picking from each non-empty Si one edge at random gives us a sample
without replacement of size equal to the number of non-empty Si’s. Since the
number of Si’s is 2s, if we pick p large enough, then with high probability at
least s of them will be non-empty. In that case, we have a sample without
replacement of size ≥ s and taking a random subset of size s gives a sample
with the desired distribution.

Theorem 32. Given s ≤ n, with probability at least 1 − δ, Algorithm 17
returns s edges sampled with replacement. Moreover, the algorithm runs in

EDGE SAMPLING 93

Algorithm 17: Sample s edges with replacement

1 p← 1/n2

2 S1, · · · , S2s ← Bernoulli samples with min(1, p) using Algorithm 13

with failure probability δ
3 lgn

3 T ← from each non-empty Si pick a random edge
4 if |T | < s then
5 p← 2p
6 Go to line 2

7 return random subset of T of size s

time O(
√
s n√

m
log n log n/δ + s log2 n log(n/δ)) with high probability.

Proof. By exactly the same argument as in Theorem 31, with probability at
least 1− δ, there are no errors in the calls of Algorithm 13. In the rest of the
proof, we condition on this being the case.

We now argue that the returned sample has the correct distribution. The
argument is again very similar to that in Theorem 31. Consider one of the
Si’s. If we condition on |Si| = k, then by symmetry, the distribution is that
of sampling k edges without replacement. Picking at random one of those
edges (assuming k ≥ 1), we get one edge uniformly at random. Since this
distribution is independent of k for k ≥ 1, this is also the distribution we
get if we only condition on k ≥ 1. Therefore, T has a distribution of |T |
edges picked uniformly at random with replacement at random, where |T | is a
random variable. The effect on the distribution of T of repeating the sampling
until |T | ≥ s is the same as conditioning on |T | ≥ s. Taking a random subset
of size s, it has a distribution of s edges being sampled with replacement.

The time complexity of the algorithm is dominated by line 2. The expected
time complexity of each iteration increases exponentially with base 2 as this
is the rate at which p increases. The probability that Si = ∅ is (1 − p)m ≤
e−pm. Consider the case p ≥ 2/m. Then the probability that |T | < s can be
upper-bounded by the Chernoff inequality by 1/3. Therefore, after p ≥ 2/m,
the probability of each additional iteration decreases exponentially with base
3. Therefore, the expected time complexity contributed by each additional
iteration then decreases exponentially. The expected time complexity is thus
dominated by the first iteration in which p ≥ 2/m. The expected complexity
is thus as claimed by Theorem 28.

Implementing our algorithms with batched access

Let d denote the average degree rounded up and consider the following setting.
Suppose we have access to the following queries: (1) random vertex query
and (2) query that, given a vertex v and an index i, returns neighbors (i −

94
CHAPTER 3. EDGE SAMPLING AND GRAPH PARAMETER

ESTIMATION VIA VERTEX NEIGHBORHOOD ACCESSES

1)d + 1, · · · , i d of v (where the neighborhoods are assumed to be ordered
arbitrarily). As we argued in Chapter 3, this setting is relevant in many
practical situations, such as when accessing a graph through a (commonly
used) API interface or when the graph is stored on a hard drive.

Consider sampling a vertex uniformly and then querying it to learn its
whole neighborhood. In expectation, this takes ≤ 2 queries14 as the expected
neighborhood size is d and we may get ≥ d neighbors in one query. Algo-
rithm 14, has the property that it only accesses the neighborhoods of uni-
formly random vertices. In Algorithm 15, we access neighborhoods on line
7 and within calls of Algorithms 11 and 12 which also have this property.
On line 7, we only access in expectation O(pm) neighbors, adding a cost of
at most O(pm) queries, thus not increasing the complexity. For the other
vertices whose neighborhoods we will be accessing, we may learn their entire
neighborhood and simulate the hash-ordered neighbor access at a cost of O(1)
queries per vertex. This allows us to implement Algorithms 13 and 16 to 19
in this model without increasing their asymptotic query complexity.

Sampling multiple edges without hash-ordered neighbor access

We now show an algorithm that does not use the hash function, at the cost
of a slightly worse running time. The only place where we have used the hash
function in the above algorithms is when sampling heavy edges, specifically
in Algorithm 12. We show how to simulate Algorithm 12 in the indexed
neighbor access model. We can then use this to get Bernoulli sampling as
well as sampling with and without replacement. We actually show how to
simulate any algorithm from the hash-ordered neighbor access model in the
indexed neighbor access model. We then analyze the running time of the
simulation of Algorithm 12. Our algorithm improves upon the state of the art
when ε = õ(

√
n
m).

Theorem 33. There are algorithms that, with probability at least 1 − δ, re-
turn sample (1) of edges such that each such edge is sampled independently
with probability s

m (where s does not have to be an integer), (2) of s edges
sampled without replacement, or (3) of s edges sampled with replacement. As-
suming m = Ω(n), these algorithms run in expected time O(

√
sn log n/δ +

s log2 n log(n/δ)) with high probability.

Proof. We show a general way to simulate hash-ordered neighbor access. The
first time the algorithm wants to use a neighborhood query on some vertex v,
we look at the whole neighborhood of v, generate virtual hashes h′(u) for all
u ∈ N(v) for which it has not been generated yet, and sort N(v) with respect
to the virtual hash values. This clearly allows us to run any algorithm from
the hash-ordered neighbor access model in the indexed neighbor access model.

14It is 2 and not 1 due to rounding. For example, if O(1) vertices have degree 0 and the
rest have degree just above d, then ≈ 2 queries will be needed on average.

ESTIMATING THE NUMBER OF EDGES BY SAMPLING 95

In Algorithm 12, we access neighborhoods of the vertices sampled in Algo-
rithm 11, of total size at most O(m logn

θ). The time complexity is, therefore, by

the same argument as in lemmas 27, 29 and 30, at most O(m logn/δ
θ +snθ/m+

s log2 n log(n/δ)). We now set θ = median(1, m̃

√
log(n/δ)

ns , n
√

log(n/δ)).

We may use, for example, the algorithm from Goldreich and Ron [2006]
to get m̃ such that it holds m ≤ m̃ ≤ 2m with probability at least 1 −
1

sn2 . We call this event E . Conditioning on E , θ = Θ(m

√
log(n/δ)

ns) and

the complexity is as claimed. The time complexity is always O(m log n/δ +
sn2 log(n/δ)/m+ s log2 n log(n/δ)) as 1 ≤ θ ≤ n

√
log(n/δ). It holds P (EC) ≤

1
sn2 . Therefore, this event contributes only to the expected time complexity

only O(log2 n log(n/δ). Thus, the event EC does not increase the asymptotic
time complexity.

Lower bound for sampling multiple edges

As the last result on sampling edges, we prove that algorithms 13, 16 and 17
are optimal up to logarithmic factors.

Theorem 34. Any algorithm in the hash-ordered neighbor access model that
samples pointwise 0.9-close to uniform (1) each edge independently with prob-
ability s

m , (2) s edges without replacement, or (3) s edges with replacement,
has to use in expectation Ω(

√
s n√

m
+ s) queries.

Proof. The term s is dominant (up to a constant factor) for s ≳ n2

m and the
lower bound holds on this interval as any algorithm that returns s edges has
to run in time Ω(s). Now we consider the case when s ≲ n2

m .

Let G be a graph consisting of s cliques, each having m/s edges, and the
remaining vertices forming an independent set. Due to the assumption on s,
the total number of vertices used by the cliques is no more than n and this
graph, therefore, exists.

Consider the case of sampling s edges pointwise 0.9-close to uniform at
random in either of the three settings. They hit in expectation Ω(s) distinct
cliques. Since the algorithm has to hit each clique from which an edge is
sampled, it has to hit in expectation Ω(s) cliques by uniformly sampling ver-
tices. The probability that a uniformly picked vertex lies in one fixed clique is

O(
s
√

m/s

n) = O(
√
sm
n). To hit in expectation s cliques, the number of samples

the algorithm has to perform is then Ω(s n√
sm

) = Ω(
√
s n√

m
).

Estimating the Number of Edges by Sampling

The Bernoulli sampling from Line 13 allows us to estimate the number of
edges efficiently. The idea is that if we sample each edge independently with

96
CHAPTER 3. EDGE SAMPLING AND GRAPH PARAMETER

ESTIMATION VIA VERTEX NEIGHBORHOOD ACCESSES

probability p, then the number of sampled edges is concentrated around pm,
from which we can estimate m (assuming we know p).

Algorithm 18: Estimate the number of edges by edge sampling

1 p← 1/n2

2 S ← sample each edge with probability p using Algorithm 13

3 if |S| < 6(log δ−1+log 8 lgn)
ε2

then
4 p← 2p
5 Go to line 2

6 return |S|/p

Lemma 35. Given ε < 1, Algorithm 18 returns an estimate m̂ of m such
that P (|m̂−m| > εm) < δ. It runs in time O(n

ε
√
m

log n log n/δ+ logn logn/δ
ε2

).

Proof. The proof works as follows. We first show that if p < 3(log δ−1+log 8 lgn)
ε2m

,

then with sufficiently high probability |S| < 6(log δ−1+log 8 lgn)
ε2m

and the algo-

rithm will continue. We then show that if p ≥ 3(log δ−1+log 8 lgn)
ε2m

, then |S| is
sufficiently concentrated. Taking the union bound over all iterations, we get

that with good probability, in all iterations with p < 3(log δ−1+log 8 lgn)
ε2m

, it holds

that the algorithm continues and for all p ≥ 3(log δ−1+log 8 lgn)
ε2m

, the estimate is
ε-close to the true number of edges. This implies correctness.

Consider the case p < 3(log δ−1+log 8 lgn)
ε2m

. By the Chernoff bound,

P (|S| ≥ 3(log δ−1 + log 8 lg n)

ε2m
) ≤ exp(−pm

3
) <

δ

2 lg n2

Consider now the case p ≥ 3(log δ−1+log 8 lgn)
ε2m

by the Chernoff bound,

P (||S| − E(S)| > εE(|S|)) < 2 exp(−ε
2pm

3
) ≤ δ

2 lg n2

Using theorems 28 and 33 to sample the edges for X, we get the following
theorem.

Theorem 36. There is an algorithm that uses hash-ordered neighbor access
and returns a 1 + ε-approximate of the number of edges with probability at
least 1− δ in expected time O(n

ε
√
m

log n log n/δ + logn logn/δ
ε2

).

There is an algorithm that does not use hash-ordered neighbor access and
returns a 1 + ε-approximate of the number of edges with probability at least

1− δ in expected time O(
√
n
ε log n log n/δ).

DIRECTLY ESTIMATING THE NUMBER OF EDGES 97

In the algorithm without hash-ordered neighbor access, the second term
does not have to be present, as it only becomes dominant when the expected
time complexity is Ω(n), in which case we may use a trivial O(n) algorithm.

Directly Estimating the Number of Edges

We now give two algorithms for approximate edge counting. The first uses
hash-ordered neighbor access and runs in time Õ(n

ε
√
m

+ 1
ε2

). This is the

same complexity as that of Algorithm 18 which approximates the number
of edges by Bernoulli sampling. The algorithm we give now is more straight-
forward and solves the problem of approximating the number of edges directly.
We then give a different algorithm which replaces the need for hash-ordered
neighbor access by the more standard pair queries. It has time complexity

of Õ(n
ε
√
m

+ 1
ε4

). We then show a lower bound of Ω(n
ε
√
m

) for ε ≥
√
m
n . This

matches, up to logarithmic factors, the complexity of our algorithms for ε ≥√
m
n and ε ≥ m1/6

n1/3 , respectively.

Algorithm with hash-ordered neighbor access

We combine our biased sampling procedure with the Horvitz-Thompson esti-
mator. When we appropriately set the parameters of biased sampling, we get
an estimator with lower variance than the estimator on which the algorithm
in Seshadhri [2015] is built.

It is also possible to simulate this algorithm without hash-ordered neighbor
access. This algorithm has the same time complexity as the one of the algo-
rithm from Theorem 36. The simulation can be done by the same approach
as in Line 7; we do not repeat the argument.

In our analysis, we assume we have an estimate m̃ such that m ≤ m̃ ≤ 2m.
We also prove that even when these inequalities do not hold, the algorithm is
unlikely to return an estimate that is more than a constant factor greater than
m. As a consequence of this guarantee, the advice of m̃ then can be removed
by standard techniques. See Chapter 3 for details, including a sketch of how
the advice can be removed.

Theorem 37. Algorithm 19 returns an estimate m̂ such that P (m̂ ≥ 8m) ≤
1/3. It has expected time complexity O(n

√
logn

ε
√
m̃

+ log2 n
ε2

). If, moreover, m̃ ≤ m,

then with probability at least 2/3, it holds |X −m| ≤ εm.

Proof. We first focus on the time complexity. Line 2 runs in expected time

O(n logn
θ). On line 3, we spend in expectation O(n logn

θ) = O(n
√
logn

ε
√
m

+ log2 n
ε2

)

time by Lemma 27 and our choice of pN . This dominates the complexity of
the rest of the algorithm.

98
CHAPTER 3. EDGE SAMPLING AND GRAPH PARAMETER

ESTIMATION VIA VERTEX NEIGHBORHOOD ACCESSES

Algorithm 19: Estimate the number of edges in a graph

1 θ = min(ε
√

1
32m̃(log n+ log 12), 1

64ε
2n/ log n)

2 SL ← sample k = 2n(logn+log 12)
θ vertices with replacement, keep those

with degree < θ
3 SH ← sample vertices using Algorithm 12 with parameters θ,

pN = n
m̃ logn , t = 1, and δ = 1/12

4 Define Pv = min(1, pN2⌊lg
d(v)
θ

⌋)

5 return X = n
2k

∑
v∈SL

d(v) + 1
2

∑
v∈SH

d(v)
Pv

In the rest of the proof, we prove correctness. We break up the estimator
X into three estimators XL, XM , XH such that XL + XM + XH = X. We
first prove separately bounds on each of the three estimators, and then put it
together.

We say a vertex is light if d(v) < θ, medium if θ ≤ d(v) < 2θ
pN

and heavy if

d(v) ≥ 2θ
pN

(note that this definition is different from that in Chapter 3). The
threshold between medium and heavy vertices is set such that heavy vertices
are sampled with probability 1, whereas the probability that a fixed medium
vertex is sampled is strictly less than 1. We call the sets of light, medium,
and heavy vertices VL, VM , VH , respectively. We define XL = n

2k

∑
v∈SL

d(v)

and X• for • ∈ {M,H} as 1
2

∑
v∈S∩V•

d(v)
Pv

(Pv is defined in the algorithm) and
X = XL +XM +XH .

Light vertices. Let vi be the i-th vertex sampled on line 1. The expectation
of XL is

E(XL) = E
(n

2k

∑
v∈SL

d(v)
)

=
n

2k

k∑
i=1

E
(
I(d(vi) ≤ θ)d(vi)

)
=
n

2
E
(
I(d(v1) ≤ θ)d(v1)

)
=

1

2
d(VL)

and the variance can be bounded as15

V ar(XL) = V ar
(n

2k

k∑
i=1

d(v)
)

(3.16)

=
n2

4k
V ar

(
I(d(v1) ≤ θ)d(v1)

)
(3.17)

≤ n2

4k
sup

(
I(d(v1) ≤ θ)d(v1)

)
E
(
I(d(v1) ≤ θ)d(v1)

)
(3.18)

≤ n2θd(VL)

4kn
(3.19)

15We define sup(X) as the smallest x such that P (X > x) = 0.

DIRECTLY ESTIMATING THE NUMBER OF EDGES 99

The first inequality holds because V ar(X) ≤ sup(X)E(X) whenever P (X ≥
0) = 1. The second holds because sup

(
I(d(v1) ≤ θ)d(v1)

)
≤ θ and E

(
I(d(v1) ≤

θ)d(v1)
)

= d(VL)/θ. Because θ ≤ ε
√

1
32m̃(log n+ log 12), k = 2n(logn+log 12)

θ

and m̃ ≤ 2m, we get the following upper bound:

≤ θ2d(VL)

4(log n+ log 12)
≤ 1

32
(εm)2 (3.20)

where the last inequality holds because d(VL) ≤ 2m and by substituting for
the other variables. By the Chebyshev bound, it now holds that

P (|XL −
1

2
d(VL)| ≥ εm/2) ≤ V ar(XL)

(2εm)2
≤ 1

8

Medium vertices. For the medium vertices, we consider the conditional
expectation and variance, conditioned on E where E is the event on which
Algorithm 12 succeeds. The expectation is

E(XM |E) =
1

2

∑
v∈VM

Pv
d(v)

Pv
=

1

2
d(VM)

and the variance is

V ar(XM |E) ≤ 1

4

∑
v∈VM

E
((d(v)

Pv

)2|E) ≤ 1

4

∑
v∈VM

Pv

(d(v)

Pv

)2 ≤ 1

2

∑
v∈VM

d(v)θ

pN
≤ mθ

pN
≤ 2m2θ log n2

n
≤ 1

32
(εm)2

(3.21)

where the last inequality holds because θ ≤ 1
64ε

2n/ log n and the one before
that because pN = n

m̃ logn ≥
n

2m logn . By the Chebyshev bound, it now holds
that

P (|XM −mM | ≥ εm/2|E) ≤ V ar(XM)

(εm/2)2
≤ 1

8

Heavy vertices. Since the heavy vertices are, conditioned on E , sampled
with probability 1, it is the case that P (XH = mH |E) = 1.

Putting it all together. We first prove P (m̂ ≥ 8m) ≤ 1/3. By the
Markov’s inequality, we have that P (XL ≥ 8E(XL)) ≤ 1/8 and P (XM +XH ≥
8E(XM +XH |E)|E) ≤ 1/8. We now have

P (m̂ ≥ 8m) = P (XL +XM +XH ≥ 8(E(XL) + E(XM +XH |E))) (3.22)

≤ P (XL ≥ 8E(XL)) + P (XM +XH ≥ 8E(XM +XH |E)|E) + P (EC)
(3.23)

≤ 1

8
+

1

8
+

1

12
=

1

3
(3.24)

100
CHAPTER 3. EDGE SAMPLING AND GRAPH PARAMETER

ESTIMATION VIA VERTEX NEIGHBORHOOD ACCESSES

Finally, we prove the concentration. We use the union bound and the bounds
on XL, XM , XH that we have proven above.

P (|X −m| ≥ εm) ≤P (|XL −mL| ≥ εm/2) + P (|XM −mM | ≥ εm/2 ∨XH ̸= mH)

(3.25)

≤P (|XL −mL| ≥ εm/2) + P (|XM −mM | ≥ εm/2 ∨XH ̸= mH |E) + P (EC)
(3.26)

≤P (|XL −mL| ≥ εm/2) + P (|XM −mM | ≥ εm/2|E) + (XH ̸= mH |E) + P (EC)
(3.27)

≤1

8
+

1

8
+ 0 +

1

12
=

1

3
(3.28)

By using Fact 21, we may remove the need for advice, giving us

Corollary 38. There is an algorithm that runs in expected time O(n
√
logn

ε
√
m

+

log2 n
ε2

) and returns m̂ such that with probability at least 2/3, it holds |X−m| ≤
εm.

Algorithm with pair queries

We define u ≺ v if d(u) < d(v) or d(u) = d(v) and id(u) ≤ id(v). We consider
an orientation of edges such that uv is oriented from u to v such that u ≺ v.
We use d+(v) to denote the out-degree of v.

In this section, we use a notion of light and heavy vertices that is slightly
different from the one we have used above. We divide the vertices into a
set of light VL and a set of heavy vertices VH . We assume that for every
v ∈ VH , d

+(v) ≥ θ/2 and for every v ∈ VL, d
+(v) ≤ 2θ. The vertices with

d+(v) between θ/2 and 2θ can be assigned to either VL or VH (but not both).

We now describe two algorithms we use to classify vertices between being
light or heavy. We need this classification to be consistent. When we first
decide whether a vertex is light or heavy, we store this decision and use it if
the same vertex is later queried. Assume we are given access to independent
Bernoulli trials with bias p. The algorithm of Lipton et al. [1993] give p̂ such

that P ((1 − ε)p ≤ p̂ ≤ (1 + ε)p) ≥ 1 − δ while running in time O(log δ
−1

pε2
)

16. Using this algorithm, we can classify v with high probability in time
O(d(v) logn

d+(v)
). Alternatively, using standard Chernoff bounds, one may classify

vertices w.h.p. in time O(d(v) lognθ). We assume that, with probability 1−1/n,
all classifications are correct.

16In that paper, the authors in fact solve a more general problem. For presentation of
this specific case, see Watanabe [2005]

DIRECTLY ESTIMATING THE NUMBER OF EDGES 101

Algorithm 20: Approximately count edges of G given advice m̃

1 m↑ = m̃/2
2 m↓ = 2m̃
3 θ ← ε

√
m↓

4 τ ←
√
m↓/(8ε)

5 A1 ← 0

6 repeat k = 432 θn
ε2m↑

times

7 v ← random vertex
8 w ← random neighbor of v
9 if v ≺ w and v is light (use the algorithm from Lipton et al. [1993]

to classify vertices as light/heavy) then
10 A1 ← A1 + d(v)

11 d̂+L ←
nA1
k

12 S ← sample 48n logn
θ vertices with replacement // Note that S, S′

are multisets, not sets

13 S′ ← vertices of S with degree ≥ θ
14 if |S′| > 576m↓ logn

θ2
or d(S′) >

1152m↓ logn
θ then

15 return “failure”

16 for i from 1 to k2 = 468
ε2

do

17 T ← Sample each edge u⃗v incident to S′ with probability p = θ
m↑

18 T ′ ← Set of all vertices v such that uv ∈ T , d(v) ≤ τ and v is
heavy (use the standard Chernoff-bound-based algorithm
described above to classify vertices as light/heavy)

19 For each vertex v ∈ T ′, let r(v) = |N(v) ∩ S′| // Compute by

using a pair query for each pair v, w for w ∈ S′

20 A2,i ← 0
21 for v ∈ T ′ do
22 w ← random neighbor of v
23 if v ≺ w then

24 A2,i ← A2,i + d(v)/(1− (1− p)r(v))

25 d̂+H ←
∑k2

i=1 A2,i

k2

26 return d̂+L + d̂+h

102
CHAPTER 3. EDGE SAMPLING AND GRAPH PARAMETER

ESTIMATION VIA VERTEX NEIGHBORHOOD ACCESSES

We will again use the algorithm described in Chapter 3 to remove the need
for advice m̃. In the following theorem, we prove two deviation bounds. The
second one is the one that will give us the approximation guarantee of the
final algorithm, while the first one will allow us to remove the need for advice.

We are assuming in the algorithm that conditions in if statements are
evaluated in order and the evaluation is stopped when the result is already
known (e.g., in if(ϕ ∧ ψ), if ϕ evaluates to false, ψ would not be evaluated).

Theorem 39. Given m̃ and ε > 0, Algorithm 20 returns m̂ such that P (m̂ >

7m) ≤ 1/3 and runs in time O(n logn

ε
√
m̃

+ log2 n
ε4

). If, moreover, m ≤ m̃ ≤ 2m,

then with probability at least 2/3, m̂ ∈ (1± ε)m.

Proof. We start by proving that when m ≤ m̃ ≤ 2m, then with probability at
least 2/3, m̂ ∈ (1±ε)m (“correctness”). We then prove that P (m̂ > 4m) ≤ 1/3
(“bounds for advice removal”). We then finish by proving the time complexity
(“time complexity”).

We now prove correctness. Let d+l , d
+
h be the sum of out-degrees of the light

and heavy vertices, respectively. It holds m = d+L +d+h . Throughout the proof,
we condition on all light vertices having out-degree at most 2θ and all heavy
vertices having out-degree at least θ/2. As we said above, we are assuming
this holds with probability at least 1− 1/n for all vertices. We call this event
E .

We now prove that d̂+l is a good estimate of d+l . Let A1,i be the increment
of A1 in the i-th execution of the loop on line 6.

E(A1,i) =
∑
u∈V

I(u is light)P (u = v)P (w ≻ v)d(v) (3.29)

=
∑
u∈V

I(u is light)
1

n
· d

+(v)

d(v)
d(v) (3.30)

=
∑
u∈V

I(u is light)
1

n
d+(v) = d+l /n (3.31)

V ar(A1,i) ≤ E(A2
1,i) =

∑
u∈V

I(u is light)P (u = v)P (w ≻ v)d(v)2 (3.32)

=
∑
u∈V

I(u is light)
1

n
d+(v)d(v) (3.33)

≤
∑
u∈V

1

n
2θd(v) =

4θm

n
(3.34)

Therefore, d̂+l is an unbiased estimate of d+l (conditioning on the correct clas-

sification of all light/heavy vertices). Its variance is n2

k2
· k · 4θmn ≤ 1

108ε
2m2.

DIRECTLY ESTIMATING THE NUMBER OF EDGES 103

By the Chebyshev inequality, we have that

P (|d̂+L − d
+
l | > εm/3) ≤ ε2m2/108

(εm/3)2
≤ 1/12 (3.35)

We now focus on the heavy vertices. There are at most 2m/θ heavy
vertices. Each one is sampled into S in expectation 48 logn

θ times. Therefore,

there are in expectation at most 2m
θ ·

48 logn
θ = 96m logn

θ2
vertices in S′. Similarly,

because each vertex is sampled in expectation 48 logn
θ times, it holds that

E(d(S′)) ≤ E(d(S)) ≤ 2m48 logn
θ = 96m logn

θ .

The condition on line 14 is set such that the algorithm only fails on line 15
when |S′| > 12E(|S′|) or |d(S′)| > 12E(|d(S′)|). By the Markov’s inequality
and the union bound, with probability at least 1/6, neither of these inequal-

ities is satisfied. In the rest of the algorithm, it holds |S′| ≤ 576m↓ logn
θ2

and

|d(S′)| ≤ 1152m↓ logn
θ . We will use this when arguing the time complexity.

When analyzing correctness, we do not condition on the condition on line 14
not being satisfied.

We now argue that d̂+h is a good estimate of d+h . Specifically, we prove

that it holds with probability at least 11/12 that d̂+H ∈ d
+
H ±

2
3εm. Let u be a

heavy vertex with d(u) ≤ τ . It holds d+(u) ≥ θ/2. Consider the value r(u).
Since each vertex is sampled into S in expectation 48 logn

θ times, it holds that

E(r(u)) ≥ d+(u)48 lognθ ≥ θ/2 · 48 lognθ = 24 log n for any heavy vertex u. It

holds with probability at least 1 − 1/n2 that r(u) ≥ 24d+(u) logn
θ because by

the Chernoff bound, we have that

P (r(u) <
24d+(u) log n

θ
) ≤ P (r(u) < E(r(u))/2) (3.36)

≤ exp(−E(r(u))

12
) (3.37)

≤ exp(−2 log n) = 1/n2 (3.38)

and by the union bound, this inequality holds for all heavy vertices simul-
taneously with probability at least 1 − 1/n. We condition on this event in
what follows, we call it E ′. In fact, we will condition on S′, and we assume
that this inequality holds for S′. We now analyze the conditional expectation
E(A2,1|S′) (note that the expectation E(A2,i|S′) is the same for all i and we
may thus focus on i = 1).

104
CHAPTER 3. EDGE SAMPLING AND GRAPH PARAMETER

ESTIMATION VIA VERTEX NEIGHBORHOOD ACCESSES

E(A2,1|S′) =
∑
u∈V

P (u ∈ T ′|S′)P (w ≻ v)
d(v)

(1− (1− p)r(v))
(3.39)

=
∑
u∈V

I(d(u) ≤ τ and u is heavy)(1− (1− p)r(v)) · d
+(u)

d(u)
· d(v)

(1− (1− p)r(v))
(3.40)

=
∑
u∈V

I(d(u) ≤ τ and u is heavy)d+(u) (3.41)

This counts all heavy edges whose lower-degree endpoint has degree at most
τ . All the uncounted edges are therefore in the subgraph induced by these
high-degree vertices. There are at most 2m

τ =
√
εm/2 vertices with degree

> τ . This means that there can be at most
(√εm/2

2

)
< εm/3 uncounted edges.

Therefore, it follows that |E(A2,1|S′)− d+h | ≤ εm/3.

We now analyze the conditional variance. Recall that we are assuming

that for S′, it holds that all heavy vertices v have r(v) ≥ 24d+(v) logn
θ .

V ar(A2,1|S′) ≤ E(A2
2,1|S′) =

∑
u∈V

P (u ∈ T ′|S′)P (w ≻ v)
(d(u)

(1− (1− p)r(u))

)2
(3.42)

≤
∑
u∈V

I(u is heavy)(1− (1− p)r(u))d
+(u)

d(u)
· d(u)2

(1− (1− p)r(u))2

(3.43)

≤
∑
u∈V

I(u is heavy)
d+(u)

d(u)
· d(u)2

(1− (1− p)
d+(u)

θ)
(3.44)

≤
∑
u∈V

2d+(u)d(u)
d+(u)

θ · θ
m

(3.45)

= 2
∑
u∈V

d(u)m = 4m2 (3.46)

where the second inequality holds because we are conditioning on r(u) ≥
24d+(v) logn

θ ≥ d+(v)
θ

17 and the third holds because for x, y such that xy <
1, 1 > x > 0, y ≥ 1, it holds that 1 − (1 − x)y ≥ xy/2 and p = θ/m↑ ≥ θ/m.
On the event E ′, the expectation E(A2,1|S′) is independent of S′. By the law
of total variance, V ar(A2,1|E ′) = E(V ar(A2,1|S′, E ′)|E ′) ≤ 4m2. Therefore,

17We intentionally do not use the tightest possible bound in order to allow us to use the
next inequality. It is possible to slightly improve the constants by a more technical analysis.

DIRECTLY ESTIMATING THE NUMBER OF EDGES 105

V ar(d̂+H |E ′) ≤
ε2

468V ar(A2,1|E ′) ≤ ε2m2/117. It now holds by the (conditional)
Chebyshev inequality that

P (|d̂+H − E(d̂+h)| > εm/3|E ′) ≤ ε2m2/117

(εm/3)2
≤ 1/13 (3.47)

Putting this together with the union bound with probability bounds on the
events of failure on line 15 (probability ≤ 1/6), event of |d̂+L − d

+
l | > εm/3

(probability ≤ 1/12) and the events EC , E ′C (probability ≤ 1/n), we get that
with probability at least 2/3, it holds |d̂+L−d

+
l | ≤ εm/3, |d̂+H−E(d̂+h)| ≤ εm/3,

and |E(d̂+h) − d̂+h | ≤ εm/3. On this event, it holds by the triangle inequality
that |m̂−m| ≤ εm. This proves correctness.

We now prove the bounds for advice removal. We have shown that E(d+l) = d+l
and E(d+H |E ′) ≤ d+h . By the Markov’s inequality, P (d̂+L |E ′ ≥ 7d+k) ≥ 1/7 and

P (d̂+H |E ′ ≥ 7d+h) ≥ 1/7. By the union bound, both hold with probability at

least 2/7. Adding the probability of EC and E ′C , upper bounded by 1/n, we
get that P (m̂ ≥ 7m) ≤ 1/3

We now prove the claimed time complexity bound. We first focus on the
first part (lines 5 - 13). There are O(θn

ε2m
) = O(n

ε
√
m

) repetitions. It holds

P (v ≺ w) = d+(v)/d(v). Determining whether v is light on line 9 takes

O(d(v) logn
d+(v)

). However, we only need to determine whether v is light when v ≺

w, which happens with probability d+(v)
d(v) . This, therefore, takes in expectation

O(log n) time. This dominates the expected cost of an iteration, leading to
total expected running time of O(n logn

ε
√
m

).

We now focus on the second part of the algorithm (lines 14 - 31). Comput-
ing S clearly takes O(n logn

θ) time. We now analyze one iteration of the loop on

line 16. It holds that d(S′) ≤ O(m logn
θ). Each of the incident edges is sampled

with probability ≤ 2θ
m . The expected size of T is thus O(m logn

θ)· 2θm = O(log n).
This is also an upper bound on the size of T ′ as well as on the time it takes
to compute T . In computing T ′, we classify each endpoint v of an edge u⃗v of
T with d(v) ≤ τ . The running time of this is O(d(v) lognθ) ≤ O(logn

ε3/2
). Since

|T | = O(log n), it takes O(log
2 n

ε3/2
) time to compute T ′. To calculate r(v) for

all v, we must query |S′||T ′| vertex pairs. Since |S′| ≤ O(m logn
θ2

), it holds

that E(|S′||T ′|) ≤ O(m logn
θ2

)E(|T ′|) ≤ O(m log2 n
θ2

) = O(log
2 n

ε2
). The rest of

the iteration has time complexity O(|T ′|), thus not increasing the total time
complexity. Since there are O(1

ε2
) iterations, this gives a bound on the time

complexity of the second part of O(n logn
θ + log2 n

ε4
) = O(n logn

ε
√
m

+ log2

ε4
). This is

then also the time complexity of the whole algorithm.

By using the methods described in Chapter 3, we get the following:

106
CHAPTER 3. EDGE SAMPLING AND GRAPH PARAMETER

ESTIMATION VIA VERTEX NEIGHBORHOOD ACCESSES

Corollary 40. There is an algorithm that, given ε > 0, returns m̃ such that
with probability at least 2/3, m̂ ∈ (1 ± ε)m and has expected time complexity

O(n logn

ε
√
m̃

+ log2 n
ε4

).

Lower bound

In this section, we show a lower bound for approximate edge counting of

Ω(n
ε
√
m

) for ε ≳
√
m
n . This improves on this range over the previously known

Ω(n√
εm

) of Goldreich and Ron [2008]. Similarly to their result, our proof works

even for the query complexity in the model where, for each accessed vertex,
the algorithm gets the whole connected component of that vertex at unit cost.
This is a considerably stronger model than our hash-ordered neighbor access
model as well as the full neighborhood access model.

Our improvement comes from the fact that we are using anti-concentration
results instead of relying just on the difficulty of hitting once a subset of
vertices. Specifically, our proof relies on the following lemma:

Lemma 41. Suppose we have a finite set A of tuples (i, t) where i is a unique
identifier and t ∈ {0, 1}. Then any procedure M that can distinguish with
probability at least 2/3 between the case when of all (i, t) ∈ A, a 1

2 − ε-fraction
have t = 0 and 1

2+ε-fraction have t = 1 and the case when a 1
2+ε-fraction have

t = 0 and 1
2 − ε-fraction have t = 1, has to use in expectation Ω(min(|A|, 1

ε2
))

uniform samples from A.

Proof. Assume the existence ofM that uses o(min(|A|, 1
ε2

)) samples. We show
that this entails a contradiction.

If we sample k elements without replacement instead of with replacement,
it is possible to simulate sampling k elements with replacement, assuming we
know |A|. Existence of such M would imply the existence of algorithm M′

with the same guarantees (distinguishing with probability at least 2/3 between
the cases when 1

2 − ε-fraction have t = 0 and 1
2 + ε-fraction have t = 1 and

the case when a 1
2 + ε-fraction have t = 0 and 1

2 − ε-fraction have t = 1 using
o(min(|A|, 1

ε2
)) samples) which uses the same sample size but samples without

replacement.

By symmetry, there is an optimal algorithm which does not use the knowl-
edge of i of the sampled elements. Therefore, if there is such a procedure
M′, there also has to be a procedure M′′ with the same guarantees that de-
pends only on the number of sampled elements with t = 1 and the number
of sampled elements with t = 0. That is, M′′ distinguishes the distributions
H1 ∼ HGeom(n, (12 − ε)n, k) and H2 ∼ HGeom(n, (12 + ε)n, k) with proba-
bility at least 2/3. Specifically, P (M′′(Hi) = i) ≥ 2/3 for i ∈ {0, 1}. We now
show that such M′′ cannot exist, thus proving the lemma.

Let B1 ∼ Bin(k, 12 − ε) and B2 ∼ Bin(k, 12 + ε). It is known ([Diaconis
and Holmes, 2004, Theorem 3.2]) that ∥Bin(k, p) − HGeom(n, pn, k)∥TV ≤

DIRECTLY ESTIMATING THE NUMBER OF EDGES 107

(k− 1)/(n− 1). Thus, there exists a coupling of B1, B2 and H1, H2 such that
for fixed i ∈ {0, 1}, it holds that P (Bi ̸= Hi) ≤ (k− 1)/(n− 1). For k ≤ n/11,
it then holds that P (B1 ̸= H1) ≤ 1/10 for n sufficiently large (specifically,
larger than 10). Now

P (M′′(Bi) = i) ≥ P (M′′(Bi) = i)− P (B1 ̸= H1) ≥ 2/3− 1/10 ≥ 0.55

It is known ([Anthony and Bartlett, 1999, Lemma 5.1]) that Bin(k, 12 − ε)
and Bin(k, 12 + ε) cannot be distinguished with probability at least 0.55 when
k = o(1

ε2
). This implies that M′′ does not exist. Therefore M cannot use

o(min(|A|, 1
ε2

)) samples cannot exist (note the first branch of the min which
comes from the assumption that k ≤ n/11).

Using this lemma, we can now prove the following theorem. In the proof,
we use the notation ∼ f(x), for example saying that the graph has ∼ m edges.
The meaning in this case is that the graph has m′ edges such that m′ ∼ m.

Theorem 42. For ε ≥ 4
√
m

n , any algorithm that with probability at least 2/3
outputs m̃ such that m̃ = (1± ε)m, has to use Ω(n

ε
√
m

) samples.

Proof. We construct two graphs G1, G2, one with ∼ (1− 2ε)m and the other
with ∼ (1 + 2ε)m edges and then show that it is hard to distinguish between
them. Define dense chunk Sd as a complete graph with β vertices. Similarly,
define a sparse chunk Ss as an independent set on β vertices.

We now describe the graphs G1, G2. They both consist of α chunks and an
independent set of size n−αβ. The graph G1 has a (12 + ε)-fraction of chunks
being sparse and the rest being dense, whereas G2 has a (12 − ε)-fraction of
the chunks being sparse and the rest being dense.

Note that this means that the sparse chunks form, together with the ver-
tices which are not part of any chunk, an independent set. Nevertheless, it
will be useful to separately consider the sparse chunks and vertices not part
of any chunk.

We set β = ε
√
m and α = 4

ε2
. The graph G1 now has

(
1

2
− ε)α

(
β

2

)
∼ (1− 2ε)

(ε
√
m)2

ε2
= (1− 2ε)m

edges. By a similar calculation, G2 has ∼ (1 + 2ε)m edges. Note that the
number of vetrtices in the chunks is

αβ = ε
√
m

4

ε2
=

4
√
m

ε
≤ n

where the last inequality holds by the assumption on ε. The described graph,
therefore, does exist.

We now define graphsG1, G2, corresponding to the two cases from Lemma 41.
It then follows from the lemma that any algorithm that can tell apart with

108
CHAPTER 3. EDGE SAMPLING AND GRAPH PARAMETER

ESTIMATION VIA VERTEX NEIGHBORHOOD ACCESSES

probability at least 2/3 between G1 and G2 has to use Ω(n
ε
√
m

) samples. In

fact, we prove a stronger statement, namely that this is the case even if the
algorithm receives for each sampled vertex information about which chunk the
vertex is from as well as the type of the chunk (or that it does not belong to
a chunk).

Assuming the algorithm makes k samples, let Xi for i ∈ [k] be indicator for
whether the i-th sample hit one of the chunks. It holds that E(Xi) = αβ

n for
any i. It follows from Lemma 41 that any algorithm satisfying the conditions
from the statement has to hit the chunks in expectaton at least Ω(1

ε2
) times.

If k is the number of samples, this implies that

E(k)
αβ

n
= E(

k∑
i=1

X1) ≳
1

ε2

which, solving for E(k), gives

E(k) ≳
n

ε
√
m

Triangle counting with full neighborhood access

We start by giving several definitions that we use in this section. Given an edge
e, we denote by t(e) the number of triangles that contain e. Note that in the
full neighborhood model, t(e) may be computed in O(1) queries. Specifically,
for e = uv, it holds t(e) = |N(u) ∩N(v)|. We now define order of edges ≺ so
that e1 ≺ e2 iff t(e1) < t(e2) or t(e1) = t(e2) and id(e1) ≤ id(e2). We assign
each triangle to its edge that is minimal with respect to ≺. Given an edge e,
we let t(e) be the number of triangles assigned to e. Note that, in contrast
with t(e), we may not in general compute t+(e) in O(1) queries. Given a set
S ⊆ V , we define t+S (e) to be the number of triangles assigned to e = uv that
have non-empty intersection with S \ {u, v}. If we are given the endpoints of
an edge e and the set S, we may compute t+S (e) without making any additional
queries.

Algorithm with edge sampling

We now prove a bound which we will later need in order to bound variance.
Essentially the same bound has been proven in Kallaugher et al. [2019]. We
give a slightly different proof, which we later modify to prove Lemma 48.

Lemma 43. It holds that ∑
e∈E

t+(e)t(e) ≤ 46T 4/3

TRIANGLE COUNTING WITH FULL NEIGHBORHOOD ACCESS 109

Algorithm 21: Count triangles approximately, given advice T̃

1 A← 0
2 repeat k = 138 m

ε2T̃ 2/3 times

3 uv = e← pick an edge uniformly at random
4 w ← random vertex from N(u) ∩N(v)
5 if uv ≺ uw and uv ≺ vw then
6 A← A+ t(e)

7 return mA
k

Proof. We start by arguing several inequalities which we will use to bound
the variance. We pick a permutation π of the vertices such that t(eπ(1)) ≥
t(eπ(2)) ≥ · · · ≥ t(eπ(m)). Let us have i ∈ {2k−1 + 1, · · · , 2k}, it holds (a) that

t(eπ(i)) ≤ 3T
2k−1 . Otherwise, the first i edges in the π-ordering would have total

of i 3T
2k−1 > 3T edge-triangle incidencies, which is in contradiction with T being

the number of triangles. We now bound
∑2k

i=2k−1+1 t
+(eπ(i)). It clearly holds

(b) that
∑2k

i=2k−1+1 t
+(eπ(i)) ≤ T . For any triangle eπ(i)eπ(j)eπ(ℓ) assigned to

eπ(i), it holds that i > j,i > ℓ. Therefore, any triangle assigned to an edge eπ(i)

is formed by edges in {eπ(j)}2
k

j=1. On 2k edges, there can be at most
√

2 23k/2

triangles18. Therefore, we have (c) that
∑2k

i=2k−1+1 t
+(eπ(i)) ≤

√
2 23k/2.

In what follows, we use (in a slight abuse of notation) the convention
t(eπ(i)) = t+(eπ(i)) = 0 for i > m. We may now use the above bounds to prove

18The argument is as follows. Consider a graph on m edges. Order vertices in the order of
decreasing degrees. Each vertex has to its left d+(v) ≤

√
2m of its neighbors: this is clearly

the case for the first
√
2m vertices; it is also the case for any other vertices as otherwise

the graph would necessarily have > m edges. Then for T ≤
∑

v d
+(v)2 ≤

√
2m

∑
v d

+(v) =√
2m3/2.

110
CHAPTER 3. EDGE SAMPLING AND GRAPH PARAMETER

ESTIMATION VIA VERTEX NEIGHBORHOOD ACCESSES

the desired bound:

∑
e∈E

t+(e)t(e) =

m∑
i=1

t+(eπ(i))t(eπ(i)) (3.48)

=

⌈log2 m⌉∑
k=1

2k∑
i=2k−1+1

t+(eπ(i))t(eπ(i)) (1)

≤ 6

⌈log2 m⌉∑
k=1

T

2k

2k∑
i=2k−1+1

t+(eπ(i)) (2)

≤ 6

⌈log2 m⌉∑
k=1

T

2k
min(

√
2 23k/2,

√
2T) (3)

≤
√

2 6

(⌊ 2
3
log2 T ⌋∑
k=1

2k/2T +
∞∑

k=⌈ 2
3
log2 T ⌉

T 2

2k

)
(3.49)

≤
√

2 6
(

(2 +
√

2) · 2
1
3
log2 TT + 2

T 2

2
2
3
log2 T

)
(3.50)

< 46T 4/3 (3.51)

where (1) is using the convention t(eπ(i)) = t+(eπ(i)) = 0 for i > m, (2) holds
by inequality (a) and (3) holds by inequalities (b) and (c). Note that in the
second branch of min, we are using the upper-bound

√
2T instead of T for

convenience.

Lemma 44. Given T̃ , Algorithm 21 returns T̂ which is an unbiased estimator
of T . It has query complexity O(m

ε2T̃ 2/3). If, moreover, T̃ ≤ T , then with

probability at least 2/3, it holds T̂ ∈ (1± ε)T .

Proof. The query complexity is clearly as claimed. We now argue unbiasedness
and the deviation bounds. Let Ai be the increment in A in the i-th iteration
of the loop. We now compute E(A1) and upper-bound V ar(A1). It holds

E(A1|e) = P (uv ≺ uw ∧ uv ≺ vw)t(e) =
t+(e)

t(e)
t(e) = t+(e) (3.52)

By the law of total expectation, E(A1) = E(t+(e)) = T/m as each triangle is
assigned to one edge, and the average number of triangles assigned per edge

TRIANGLE COUNTING WITH FULL NEIGHBORHOOD ACCESS 111

is thus T/m. We now analyze the variance.

V ar(A1) ≤ E(A2
1) =

1

m

∑
e∈E

t+(e)

t(e)
t(e)2 (3.53)

=
1

m

∑
e∈E

t+(e)t(e) (3.54)

=
46T 4/3

m
(3.55)

We thus have E(A) = kT/m and V ar(A) = kV ar(A1) and hence E(T̂) =
T and

V ar(T̂) = m
46T 4/3

k
=

1

3
ε2T 4/3T̃ 2/3 ≤ 1

3
ε2T 2

where the last inequality holds for T̃ ≤ T . The expectation of T̂ is thus as
desired. By Chebyshev’s inequality, we have that

P (|T̂ − T | > εT) <
1/3ε2T 2

(εT)2
= 1/3

Algorithm with both vertex and edge sampling

Finding Heavy Subgraph

Definition 45. Let us be given a parameter θ > 0. A vertex v is heavy with
respect to a set S if

∑
uv,u∈S t(uv) ≥ 8

√
θ log n. Otherwise, it is light. Let

VH(S), VL(S) be the set of heavy and light vertices w.r.t. S, respectively.

We use just VH , VL when the set S is clear from the context. When testing
whether a vertex is heavy, we assume we are already given the set S and the
vertex v. We then do not make any additional queries to tell whether v is heavy
or light (as the sum in the definition of a heavy vertex only depends on the
neighborhoods of S, v, which we know since we have already queried v as well
as all vertices of S). In our algorithm, we will set S to be a subset of vertices
such that each vertex is in S independently with probability 16 log n/

√
θ. We

now prove some guarantees on which vertices will be heavy and how many
heavy vertices there will be.

Lemma 46. Let us have a parameter θ and a vertex v. Assume S includes
each vertex independently with probability 16 log n/

√
θ. Assume that at least θ

triangles are assigned to the edges incident to v. That is, assume
∑

e∋v t
+(e) ≥

θ. Then, with probability at least 1− 1/n2, the vertex v is heavy.

112
CHAPTER 3. EDGE SAMPLING AND GRAPH PARAMETER

ESTIMATION VIA VERTEX NEIGHBORHOOD ACCESSES

Proof. In the whole proof, we treat v as given and define values based on v
without explicitly specifying this throughout the proof. Let t+max = maxe∋v t

+(e).
For an edge e, we define tm(e) = min(t+max, t(e)). Let Tm

v =
∑

e∋v t
m(e).

We will now argue that for any edge e incident to vertex v, it holds tm(e) ≤√
Tm
v . Consider the triangles assigned to e. Each of the t+(e) triangles as-

signed to e consists of e, one other edge e′ incident to v and one edge not inci-
dent to v. It holds t(e′) ≥ t(e) ≥ t+(e) for otherwise the triangle would be as-
signed to e′ instead of e. Thus, it also holds tm(e′) = min(t+max, t(e

′)) ≥ t+(e).
Since there are t+(e) such edges e′ (as there is a 1-to-1 correspondence be-
tween such edges and triangles assigned to e) they contribute at least (t+(e))2

to Tm
v and thus Tm

v ≥ (t+(e))2. Rearranging this, we get t+(e) ≤
√
Tm
v .

Since this holds for any e ∋ v, it also holds t+max ≤
√
Tm
v and thus also

tm(e) = min(t+max, t(e)) ≤
√
Tm
v .

This bound on tm(e) allows us to now use the Chernoff bound to prove con-
centration of

∑
uv,u∈S t

m(uv) around E(
∑

uv,u∈S t
m(uv)) = 16Tm

v log n/
√
θ.

This gives us that
∑

uv,u∈S t(uv) is not too small and v is thus heavy. Specif-
ically, we get that

P (
∑

uv,u∈S
t(uv) < 8

√
θ log n) ≤ P (

∑
uv,u∈S

tm(uv) < 8Tm
v log n/

√
θ) < exp(−16Tm

v log n/
√
θ

8
√
Tm
v

) ≤ 1/n2

where the first inequality holds because Tm
v ≥

∑
e∋v t

+(uv) ≥ θ and thus√
θ ≤ Tm

v /
√
θ, the second inequality holds by the Chernoff bound, and the

third holds again because Tm
v ≥ θ.

Lemma 47. Assume S includes each vertex independently with probability
16 log n/

√
θ. It holds E(|VH(S)|) ≤ 6T/θ.

Proof. Let Tv be the number of triangles containing vertex v. We can now
bound E(|VH |) as follows

E(|VH |) =
∑
v∈V

E(I(v ∈ VH)) (3.56)

=
∑
v∈V

P (
∑

u∈N(v)∩S

t(uv) ≥ 8
√
θ log n) (3.57)

≤
∑
v∈V

E(
∑

u∈N(v)∩S t(uv))

8
√
θ log n

(3.58)

=
∑
v∈V

16Tv log n/
√
θ

8
√
θ log n

= 6T/θ (3.59)

where the inequality holds by the Markov’s inequality.

TRIANGLE COUNTING WITH FULL NEIGHBORHOOD ACCESS 113

Algorithm 22: CountTrianglesVertexSampling(T̃ , ε)

1 if T̃ ≥ m3

n3 log6 n
then

2 Use Algorithm 21 instead

3 θ ←
√

mT̃
n

4 S ← sample each vertex with probability p1 = 16 log n/
√
θ

5 Sv ← sample each vertex with probability p2 = 100
√

log nθ/(ε2T̃)

6 St ← sample each vertex with probability p3 = θ log n/T̃

7 N ← sample each vertex with probability p4 = θ log n/(ε2T̃)
8 Av,1 ← 0
9 Av,2 ← 0

10 for uv ∈ E(G[Sv]) do
11 if both u and v are light w.r.t. S then
12 if t+St

(uv) < 162 log n/ε2 then

13 B ∼ Bern(ε2T̃ 2/θ3)
14 if B = 1 then
15 w ← random vertex from N(u) ∩N(v)
16 if uv ≺ uw and uv ≺ vw then

17 Av,1 ← Av,1 + θ3t(uv)/(ε2T̃ 2)

18 else
19 w ← random vertex from N ∩N(u) ∩N(v)
20 if uv ≺ uw and uv ≺ vw then
21 Av,2 ← Av,2 + t(uv)

22 Av ← Av,1 +Av,2

23 T̂L ← Av/p
2

24 Se ← sample k = 432m(log(n)+2)
ε2θ

edges with replacement
25 Ae ← 0 for uv ∈ Se do
26 if either u or v is heavy w.r.t. S then
27 w ← random vertex from N(u) ∩N(v)
28 if uv ≺ uw and uv ≺ vw then
29 Ae ← Ae + t(uv)

30 T̂H ← mAe
k

31 return T̂L + T̂H

114
CHAPTER 3. EDGE SAMPLING AND GRAPH PARAMETER

ESTIMATION VIA VERTEX NEIGHBORHOOD ACCESSES

Putting it Together

In the analysis of this algorithms, we will need the following inequality. It is
similar to Lemma 43 but is tighter when we are only considering edges with
non-empty intersection with some small given set of vertices. We will be using
this lemma with the “small set of vertices” being the set of heavy vertices VH .

Lemma 48. Let us have a set V ′ ⊆ V and let ℓ = |V ′|. It holds that

∑
e∈E

e∩V ′ ̸=∅

t+(e)t(e) ≤ 6(2 + logm)ℓT

Proof. Just like in the proof of Lemma 43, we start by arguing several inequal-
ities. We pick a permutation π of the vertices such that t(eπ1) ≥ t(eπ2) ≥ · · · ≥
t(eπm). Let us have i ∈ {2k−1 + 1, · · · , 2k}, it holds (a) that t(eπ(i)) ≤ 3T

2k−1 .

Otherwise, the first i edges in the π-ordering would have total of i 3T
2k−1 > 3T

edge-triangle incidencies, which is in contradiction with T being the number

of triangles. We now bound
∑2k

i=2k−1+1 t
+(eπ(i)). It clearly holds (b) that∑2k

i=2k−1+1 t
+(eπ(i)) ≤ T . For any triangle eπ(i)eπ(j)eπ(ℓ) assigned to eπ(i), it

holds that i > j,i > ℓ. Therefore, any triangle assigned to an edge eπ(i) is

formed by edges in {eπ(j)}2
k

j=1. In a graph on 2k edges, the number of triangles
with non-empty intersection with some given subset V ′ of vertices of size at

most ℓ is at most ℓ2k. Therefore, we have (c) that
∑2k

i=2k−1+1 I(eπ(i) ∩ V ′ ̸=
∅)t+(eπ(i)) ≤ l2k. Like in the previous proof, in what follows, we use (in a
slight abuse of notation) the convention t(eπ(i)) = t+(eπ(i)) = 0 for i > m. We

TRIANGLE COUNTING WITH FULL NEIGHBORHOOD ACCESS 115

may now use these inequalities to bound the variance:

∑
e∈E

e∩V ′ ̸=∅

t+(e)t(e) =

m∑
i=1

I(eπ(i) ∩ V ′ ̸= ∅)t+(eπ(i))t(eπ(i)) (3.60)

=

⌈log2 m⌉∑
k=1

2k∑
i=2k−1+1

I(eπ(i) ∩ V ′ ̸= ∅)t+(eπ(i))t(eπ(i)) (4)

≤ 6

⌈log2 m⌉∑
k=1

T

2k

2k∑
i=2k−1+1

I(eπ(i) ∩ V ′ ̸= ∅)t+(eπ(i)) (5)

≤ 6

⌈log2 m⌉∑
k=1

T

2k
min(l2k, T) (6)

=

(log2 T/ℓ∑
k=1

ℓT +
∞∑

k=log2 T/ℓ

T 2

2k

)
(3.61)

≤ 6
(
ℓT logm+ 2ℓT

)
(3.62)

= 6(2 + logm)ℓT (3.63)

where (4) is using the convention t(eπ(i)) = t+(eπ(i)) = 0 for i > m, (5) holds
by inequality (a) and (6) holds by inequalities (b) and (c).

We now prove three lemmas, one on (conditional) expectation and variance
of Av,1, one on Av,2 and one on (conditional) expectation of T̂H . Before we
can state the lemmas, we will need several definitions.

Let EL be the set of edges whose both endpoints are light and EH = E\EL

be the set of edges that have at least one heavy endpoint (note the asymmetry
in the definitions). Let EL,1 be the subset of EL of edges e that have t+St

(e) <
162 log n and EL,2 = EL \ES,2. Let TL be the number of triangles assigned to
edges in G[VL(S)] and let TH = T − TL be the number of triangles assigned
to edges having at least one vertex in VH(S). Let

TL,1 =
∑

u,v∈VL

t+St
(uv)<162 logn

t+(uv) TL,2 =
∑

u,v∈VL

t+St
(uv)≥162 logn

t+(uv) (3.64)

(3.65)

Note that TL = TL,1 + TL,2. Let us define for an edge uv such that t+St
(e) ≥

162 log n

FN,uv =
|{w ∈ N ∩N(u) ∩N(v), s.t. uv ≺ uw, uv ≺ vw}|

|N ∩N(u) ∩N(v)|

116
CHAPTER 3. EDGE SAMPLING AND GRAPH PARAMETER

ESTIMATION VIA VERTEX NEIGHBORHOOD ACCESSES

and we define FN,uv = t+(e)/t(e) otherwise (note that in this case, the
value does not depend on N). We now argue concentration of FN,e around
t+(e)/t(e).

Lemma 49. With probability at least 1 − 3/n, it holds for all edges e that
FN,e = (1± ε/3)t+(e)/t(e).

Proof. For an edge e with t+St
(e) < 162 log n, the claim holds by the way

we define FN,e for such edge. Consider now the case t+St
(e) ≥ 162 log n. By

a standard argument based on the Chernoff bound over the choice of St, if
t+(e) < 81T̃ log n/θ, then t+St

(e) ≥ 162 log n only on some event E with proba-

bility ≤ 1/n3. Conditioned on Ē (that is, assuming t+(e) ≥ 81T̃ log n/θ), an-
other application of the Chernoff bound gives that FN,uv = (1±ε/3)t+(e)/t(e)
with probability at least 1−2/n3. It then holds by the union bound that with
probability at least 1− 3/n, we have that FN,e = (1± ε/3)t+(e) for all edges
e.

Lemma 50. It holds E(T̂L|S) = TL and, with high probability, E(T̂L|S, St, N) =
(1± ε/3)TL (where the high probability is over the choice of S, St, N)19.

Proof. We start by analyzing E(Av,1|S, St). For any edge e ∈ EL,1, the
probability that it is in the induced subgraph G[Sv] is p22. The probabil-
ity that B = 1 is ε2T̂ 2/θ3. Conditioned on both of this happening, the
probability that w satisfies the condition on line 16 (that is, that the tri-
angle uvw is assigned to e) is t+(e)/t(e) in which case we increment Av,1 by
θ3t(e)/(T̂ 2ε2). In expectation (conditioned on S and St), e contributes to

Av,1 exactly p22 · T
2ε2

θ3
· t

+(e)
t(e) ·

t(e)θ3

T 2ε2
= p22t

+(e). Any edge not in EL,1 con-

tributes 0 (conditioned on S, St). By the linearity of expectation, it holds
that E(Av,1|S, St) = p22TL,1. Moreover, Av,1 is clearly independent of N and
it thus also holds E(Av,1|S, St, N) = p22TL,1.

We now analyze E(Av,2|S, St, N). For any edge e ∈ EL,2, the probability
that it is in the induced subgraph G[Sv] is p22. Conditioned on this happening,
the probability that w satisfies the condition on line 20 (that is, that the
triangle uvw is assigned to e) is FN,uv in which case we increment Av,2 by
t(e). In expectation (conditioned on S, St, N), e contributes to Av,2 exactly
Ce = p2FN,uvt(e). By Lemma 49, we have with probability at least 1 − 3/n
that for all edges e, Ce = (1± ε/3)p22t

+(e). By the linearity of expectation, it
then holds that E(Av,2|S, St, N) = (1± ε/3)p22TL,2.

Putting this together, we have E(Av|S, St, N) = p22TL,1+(1±ε/3)p22TL,2 =

(1± ε/3)p22TL and thus E(T̂L|S, St, N) = E(Av|S, St, N)/p22 = (1± ε/3)TL.

It holds E(Ce|S, St) = E(FN,e|S, St)t(e) = t+(e). It thus holds E(Av,2|S, St) =
p22TL,2. Putting this together, we have E(Av|S, St) = p22TL,1 + p22TL,2 = p22TL
and thus E(T̂L|S, St) = TL.

19In fact, it is sufficient to consider the probability over St, N but we will not need this.

TRIANGLE COUNTING WITH FULL NEIGHBORHOOD ACCESS 117

Lemma 51. It holds with high probability that V ar(T̂L|S, St, N) = 1
8(εT)2.

(where the high probability is over the choice of S, St, N).

Proof. We now analyze the variance of Av = Av,1 + Av,2, conditional on

S, St, N and assuming FN,e = (1 ± ε/3) t
+(e)
t(e) (and thus also Ce = (1 ±

ε/3)p22t
+(e)); recall that this holds for all edges e with probability at least

1−3/n. We analyze the variance using the law of total variance, conditioning
on Sv. We start by upper-bounding the variance of the conditional expecta-
tion.

LetXuv = FN,uvt(uv) if u, v ∈ Sv and u, v ∈ VL, and letXuv = 0 otherwise.
If t+St

(uv) < 162 log n/ε2, then it holds Xuv = t(uv)P (uv ≺ uw ∧ uv ≺ vw) =

θ3/(ε2T̃ 2)t(uv)P (B = 1)P (uv ≺ uw ∧ uv ≺ vw) for w ∼ N(u) ∩ N(v). For
t+St

(uv) ≥ 162 log n/ε2, it holds Xuv = t(uv)P (uv ≺ uw ∧ uv ≺ vw) for
w ∼ N ∩N(u) ∩N(v) (note the different distribution of w). We then have

E(Av|S, Sv, St, N) =
∑

u,v∈Sv
u,v∈VL

t+St
(e)<162 logn/ε2

t(uv)Pw∼N(u)∩N(v)(uv ≺ uw ∧ uv ≺ vw)+

(3.66)∑
u,v∈Sv
u,v∈VL

t+St
(e)≥162 logn/ε2

t(uv)Pw∼N∩N(u)∩N(v)(uv ≺ uw ∧ uv ≺ vw) =
∑
e∈EL

Xe

(3.67)

Calculating the conditional variance of this expectation, we get

V ar(E(Av|S, Sv, St, N)|S, St, N) = V ar(
∑
e∈EL

Xe|S, St, N) (3.68)

≤
∑
e∈EL

V ar(Xe|S, St, N) +
∑

e1,e2∈EL
e1∩e2 ̸=∅

E(Xe1Xe2 |S, St, N)

(3.69)

where we are using that Xe1 and Xe2 are independent when e1 ∩ e2 = ∅,
conditionally on St, S,N . We can further bound∑

e∈EL

V ar(Xe|S, St, N) ≤ p22
∑
e∈EL

((1 + ε/3)t+(e))2 ≤ 92p22T
4/3

where the first inequality holds because V ar(Xe|St, S,N) ≤ E(X2
e |St, S,N) ≤

p22((1+ε/3)t+(e))2 and the second inequality holds by Lemma 43 and because

118
CHAPTER 3. EDGE SAMPLING AND GRAPH PARAMETER

ESTIMATION VIA VERTEX NEIGHBORHOOD ACCESSES

(1 + ε/3)2 < 2 because ε < 1. We now bound∑
e1,e2∈EL
e1∩e2 ̸=∅

E(Xe1Xe2 |St, S,N) = p32
∑

e1,e2∈EL
e1∩e2 ̸=∅

FN,e1FN,e2t(e1)t(e2) (3.70)

≤ 2p32
∑

e1,e2∈EL
e1∩e2 ̸=∅

t+(e1)

t(e1)
· t

+(e2)

t(e2)
· t(e1)t(e2) (3.71)

= 2p32
∑

e1∈EL

t+(e1)
∑

e2∈N(e1)

t+(e2) (3.72)

w.h.p.
≤ 2p32θ

∑
e∈EL

t+(e) = 2p32θTL (3.73)

(3.74)

where the second inequality holds with probability at least 1−1/n2 by Lemma 46
since we are assuming both endpoints of e are light. The first holds for the
following reason. As we already mentioned, we are assuming that for N , it

holds FN,e = (1 ± ε/3) t
+(e)
t(e) for any edge e (this happens with probability at

least 1−O(1/n)). We thus have

FN,e1FN,e2 ≤ (1 + ε/3)2
t+(e1)

t(e1)
· t

+(e2)

t(e2)
≤ 2

t+(e1)

t(e1)
· t

+(e2)

t(e2)

Together, this gives us a bound

V ar(E(Av|S, Sv, St, N)|S, St, N) ≤ 92p22T
4/3 + 2p32θT

We now bound the expectation of variance. Let Ye be the increment to Av

contributed by an edge e ∈ E(G[Sv]). It holds that

V ar(Av|S, Sv, St, N) =
∑

e∈E(G[Sv])

V ar(Ye|S, St, N) (3.75)

=
∑

e∈E(G[Sv])

t+St
(e)<162 logn

V ar(Ye|S, St, N) +
∑

e∈E(G[Sv])

t+St
(e)≥162 logn

V ar(Ye|S, St, N)

(3.76)

≤
∑

e∈E(G[Sv])

t+St
(e)<162 logn

θ3

ε2T̃ 2
· t+(e)t(e) +

∑
e∈E(G[Sv])

t+St
(e)≥162 logn

FN,et(e)
2

(3.77)

w.h.p.
≤ 205

θ2 log n

ε2T̃

∑
e∈E(G[Sv])

t+St
(e)<162 logn

t(e) + (1 + ε/3)
∑

e∈E(G[Sv])

t+St
(e)≥162 logn

t+(e)t(e)

(3.78)

TRIANGLE COUNTING WITH FULL NEIGHBORHOOD ACCESS 119

where the first inequality holds because Ye = t(e)θ3/(ε2T̃) with probability
t+(e)/t(e)·ε2T̃ 2/θ3 and Ye = 0 otherwise. The second inequality holds because
by the Chernoff and the union bound, it holds that, with probability at least
1 − 1/n. for any edge e such that t+St

(e) < 162 log n, it holds that t+(e) <

205T̃ log n/θ. It, therefore, holds by the linearity of expectation that

E(V ar(Av|S, St, Sv, N)S, St, N) ≤ 205
θ2 log n

ε2T̃

∑
e∈E

t+St
(e)<162 logn

p22t(e) + (1 + ε/3)
∑
e∈E

t+St
(e)≥162 logn

p22t
+(e)t(e)

(3.79)

≤ 615
p22θ

2T log n

ε2T̃
+ 62p22T

4/3

By the law of total variance, it holds

V ar(Av|S, St, N) = E(V ar(Av|S, St, Sv, N)|S, St, N) + V ar(E(Av|S, St, Sv, N)|S, St, N)

(3.80)

≤ 615
p22θ

2T log n

ε2T̃
+ 62p22T

4/3 + 92p22T
4/3 + 2p32θT (3.81)

≤ 1

16
(εp2T)2 +

1

160
(εp2T)2 +

1

100
(εp2T)2 +

1

50
(εp2T)2 <

1

8
(εp22T)2

(3.82)

where the second inequality holds because of the way we set p2, θ and because
T < m3/n3. We thus have V ar(T̂L|S) = V ar(Av|S)/p42 = 1

8(εT)2.

Lemma 52. It holds E(T̂H |S, St, N) = TH and E(V ar(TH |S, St, N)|St, N) ≤
1
12(ε2T 2)2

Proof. We now focus on Ae. Let ∆iAe be the i-th increment of Ae. It holds

E(∆iAe|S, St, N) =
1

m

∑
e,e∩VH ̸=∅

t+(e)

t(e)
t(e) =

1

m

∑
e,e∩VH ̸=∅

t+(e) = TH/m

Therefore, E(Ae|S, St, N) = E(
∑k

i=1 ∆iAe|S, St, N) = kTH/m and thus E(T̂H |S, St, N) =
TH . Let Y be the number of heavy vertices with respect to S. We have

V ar(∆iAe|S, St, N) ≤ 1

m

∑
e∈E

e∩VH ̸=∅

t+(e)

t(e)
t(e)2 =

∑
e∈E

e∩VH ̸=∅

t+(e)t(e) ≤ 6(2+log n)Y T/m

where the last inequality holds by Lemma 48. We thus have V ar(TH |S) =
m2V ar(∆1Ae|S)/k ≤ 6m(2 + log n)Y T/k. It thus holds by Lemma 47 that

E(V ar(TH |S, St, N)|St, N) ≤ 36(2 + log n)mT 2

θk
=

1

12
(ε2T 2) (3.83)

where the equality holds by our choice of k.

120
CHAPTER 3. EDGE SAMPLING AND GRAPH PARAMETER

ESTIMATION VIA VERTEX NEIGHBORHOOD ACCESSES

We are now in position to state and prove the main lemma.

Lemma 53. Algorithm 22 returns an unbiased estimate T̂ of T and has ex-

pected query complexity of O(min(m
ε2T̃ 2/3 ,

√
nm logn

ε2
√

T̃
)). Moreover, if T̃ ≤ T ,

then with probability at least 2/3, it holds T̂ = (1± ε)T .

Proof. We first argue the query complexity. We then argue the last part of
the lemma, namely the deviation bounds on T̂ . Finally, we then prove that
the returned estimate is unbiased.

We now argue the complexity of the algorithm. In the case T̃ ≥ m3/(n3 log6 n),
the dominant branch of the min is m/(ε2T̃ 2/3). In this case, we execute
Algorithm 21 and by Lemma 44, the complexity is O(m

ε2T̃ 2/3) as desired.

We now consider the case T̃ < m3/(n3 log6 n). On line 4, we perform in

expectation np1 = O(n log n/
√
θ) ⊆ O(

√
nm logn√

T̃
) queries. On lines 5 to 7,

we perform in expectation O(nθ log n/(ε2T̃)) = O(
√
nm logn

ε2
√

T̃
) queries. We now

calculate the expected number of queries performed on line 15. Each of the
m edges is in G[Sv] with probability p22 = Θ(θ2/(ε4T̃ 2)). For each such edge,
we make a query only when B = 1, which happens with probability ε2T̃ 2/θ3.
This gives us expectation of (up to a constant factor)

m · θ2/(ε4T̃ 2) · ε2T̃ 2/θ3 =
m

ε2θ
=

√
nm

ε2
√
T̃

On line line 19, we only access vertices that have previously been queried, as
w ∈ N . This therefore does not increase the query complexity. On line 24,

we sample k = O(m logn
ε2θ

) = O(
√
nm

ε2
√
T

) edges. On line 27, we sample at most

one vertex for each of these sampled edges, thus not increasing the asymp-
totic complexity. Putting all the query complexities together, the total query
complexity is as claimed.

We now prove the deviation bounds. We condition on the high-probability
events from Lemmas 50 and 51. We do not make this conditioning explicit in
the rest of the proof. We have by Lemma 50 that E(T̂L|S, St, N) = (1±ε/3)TL
and by Lemma 52 that E(T̂H |S, St, N) = TH . Therefore, E(T̂ |S, St, N) =
E(T̂L+ T̂H |S, St, N) = (1+ε/3)T . By Lemma 51, it holds V ar(T̂L|S, St, N) ≤
1
8(εT)2 and by Lemma 52, we have V ar(T̂H |S, St, N) ≤ 1

8(εT)2. The random

variables T̂L, T̂H can be easily seen to be independent conditionally on S.
Since T̂H is independent of St and N , it holds that T̂L and T̂H are also in-
dependent conditionally on S, St, N . It thus holds that V ar(T̂ |S, St, N) =
V ar(T̂L|S, St, N) + V ar(T̂H |S, St, N). We now use the law of total variance,
conditioning on S, to bound V ar(T̂ |St, N). Since E(T̂ |S, St, N) = (1±ε/3)T ,

TRIANGLE COUNTING WITH FULL NEIGHBORHOOD ACCESS 121

it holds V ar(E(T̂ |S, St, N)|St, N) ≤ (2εT/3)2/4 = 1/9(εT)2. It then holds

V ar(T̂ |St, N) = E(V ar(T̂ |S, St, N)|St, N) + V ar(E(T̂ |S, St, N)|St, N)

(3.84)

≤ 1

8
(εT)2 +

1

12
(εT)2 +

1

9
(εT)2 ≤ 72

23
(εT)2 (3.85)

where the first of the three terms of the bound comes from Lemma 51,
the second comes from Lemma 52, and the third from the above bound on
V ar(E(T̂ |S, St, N)|St, N). Therefore, by the Chebyshev inequality, we have
that

P (|T̂ − T | > εT) ≤ V ar(T̂)

(εT)2
≤ 72/23

Adding probability of O(1/n) of the complement of the events we are condi-
tioning on, we have that P (|T̂ − T | > εT) ≤ 1/3 for n large enough.

We now argue unbiasedness. We now argue that the algorithm gives an unbi-
ased estimate of T . It holds

E(T̂) = E(E(T̂L + T̂H |S)) = TL + TH = T

By standard advice removal (as we discussed in Chapter 3), we get the
following theorem.

Theorem 54. There is an algorithm in the full neighborhood access model
with random vertex and edge queries, that returns T̂ such that, with probability
at least 2/3, it holds T̂ = (1 ± ε)T and has expected query complexity of

O(min(m
ε2T 2/3 ,

√
nm logn

ε2
√
T

)).

We may modify the algorithm so that Algorithm 21 is called on line 2
whenever T̂ ≥ m3/(ε3n3). We simulate the random edge queries using Algo-
rithm 17. The number of random edge queries in the case T̂ ≥ m3/(ε3n3) is
then s = m/(ε2T 2/3) and the complexity is thus O(n

√
s/m + s) = O(n

εT 1/3).

In the case T̂ < m3/(ε3n3), we make s = O(
√
nm logn

ε2
√
T

) queries and the com-

plexity is thus O(n
√
s/m+ s) = O(

√
nm logn

ε2
√
T

). This gives total complexity of

O(n
εT 1/3 +

√
nm logn

ε2
√
T

):

Theorem 55. There is an algorithm in the full neighborhood access model
with random vertex queries, that returns T̂ such that, with probability at least

2/3, it holds T̂ = (1± ε)T and has query complexity of O(n
εT 1/3 +

√
nm logn

ε2
√
T

)).

122
CHAPTER 3. EDGE SAMPLING AND GRAPH PARAMETER

ESTIMATION VIA VERTEX NEIGHBORHOOD ACCESSES

Lower Bound

Proving Ω(m/T 2/3) and Ω(n/T 1/3)

Theorem 56. Any algorithm that returns T̂ such that T̂ = (1±ε)T with prob-
ability at least 2/3 and uses (1) only random vertex queries and solves, (2)
only random edge queries, (3) both random vertex and edge queries has to have
query complexity at least (1) Ω(n/T 1/3), (2) Ω(m/T 2/3), (3) Ω(min(n/T 1/3,m/T 2/3)).

Proof. Given n and m, we construct two graphs with Θ(n) vertices and Θ(m)
edges with the same number of vertices and edges. We than prove that the
two graphs are hard to distinguish using o(n/T 1/3) random vertex samples
and o(m/T 2/3) random edges. The three lower bounds follow. Let H be a
triangle-free graph on n vertices and m edges. We let G1 be a disjoint union
of H with a clique of size k = Θ(T 1/3) that has at least T triangles and ℓ
edges. Let G2 be the disjoint union of H with a bipartite graph on k vertices
with ℓ edges. This means that G1 has ≥ T triangle while G2 is triangle-free.

Consider sampling a pair of vertices v1 ∈ G1, v2 ∈ G2 as follows. With
probability n/(n + k), we sample a vertex v uniformly from H and set v1 =
v2 = v. Otherwise, we sample v1 independently uniformly from G1 \ H and
v2 from G2 \H. One can easily verify that v1 is sampled uniformly from G1

and v2 from G2. It holds P (v1 ̸= v2) ≤ k/(n + k) = Θ(T 1/3/n) (the equality
holds because k = Θ(T 3) ≤ O(n)).

Similarly, we sample e1 ∈ G1 and e2 ∈ G2 as follows. We sample with
probability m/(m + ℓ) an edge e uniformly from H and set e1 = e2 = e.
Otherwise, we sample e1, e2 independently from G1 \H,G2 \H, respectively.
It holds P (e1 ̸= e2) ≤ ℓ/(n + ℓ) = Θ(T 2/3/m) (the equality holds because
ℓ = Θ(T 2/3) ≤ O(m)). Making o(n/T 1/3) vertex samples and o(m/T 2/3) edge
samples from the above couplings, it holds by the union bound that, with
probability 1 − o(1), the samples are equal. This means that any algorithm
executed (with the same randomness) on these two samples, has to give the
same answer on G1 and G2 with probability at least 1 − o(1). This is in
contradiction with the algorithm being correct with probability 2/3.

Proving Ω(
√
nm/T)

The proof is via reduction from the OR problem: given (x1, · · · , xn) ∈ {0, 1}n,
the OR problem asks for the value

∨n
i=1 xi. It is known that any algorithm

that solves the OR problem with probability at least 2/3 has complexity Ω(n).
See for example Assadi for a proof of this.

Theorem 57. Assume T ≤ m3/n3. Any algorithm that returns T̂ such that
T̂ = (1 ± ε)T with probability at least 2/3 and uses both random vertex and
edge queries must have query complexity at least Ω(

√
nm/T).

TRIANGLE COUNTING WITH FULL NEIGHBORHOOD ACCESS 123

m/n non-section vertices

i-th section j-th section
xi = 0 xj = 1

Figure 3.1: The hard instance used in the proof of Theorem 57.

Proof. The proof is by reduction from the OR problem of size ℓ =
√
nm/T .

Specifically, we show that if we have an algorithm that solves the triangle
counting problem in expectation using Q full neighborhood queries, then we
can also solve the OR problem of size ℓ in Q queries. This implies the bound
as one needs Ω(ℓ) = Ω(

√
nm/T) queries to solve the OR problem of size ℓ.

Given a vector x = x1, · · · , xℓ, we define a graph Gx = (V,Ex). The
graph consists of ℓ sections s1, · · · sℓ and m/n non-section vertices, where
each section consists of 4

√
nT/m section vertices. Each section is divided

into four subsections, with each subsection having
√
nT/m vertices. We call

the subsections top-left, top-right, bottom-left, and bottom-right. We order
vertices within a section such that vertices in the top-left subsection come
first, then top-right, bottom-left, and bottom-right in this order. We order
the sections arbitrarily. Together with the orders on the vertices within a
section, this induces an order on all section vertices. We put the non-section
vertices at the end of this order.

We have specified the vertex set; we now specify the edges of Gx. There
is an edge between each right subsection vertex and each non-section vertex.
Consider the i-th section in the ordering. If xi = 0, then there is an edge
between each top-left vertex and top-right vertex. That is, for xi = 0, the top
subsections induce a complete bipartite graph and the bottom subsections in-
duce an independent set. If xi = 1, the top subsections induce an independent
set and there is an edge between each bottom-left and bottom-right vertex.
We represent each edge e consisting of vertices u and v as a pair (u, v) such
that u comes in the order before v. We order edges contained within a section
lexicographically, with edges incident to the non-section vertices coming at
the end.

In the rest of the proof, we argue that (1) the graph Gx has Θ(n) vertices,
Θ(m) edges (2)

∨ℓ
i=1 xi = 0 iff Gx is triangle-free and

∨ℓ
i=1 xi = 1 iff Gx has at

least T triangles, and (3) that we can simulate a query on Gx by a single query
on x. Proving these three things means that any algorithm that solves the

124
CHAPTER 3. EDGE SAMPLING AND GRAPH PARAMETER

ESTIMATION VIA VERTEX NEIGHBORHOOD ACCESSES

approximate triangle counting problem can be used to give an algorithm for
the OR problem of size ℓ with the same query complexity. This then implies
the lower bound.

The number of vertices is m/n+
√

nm
T · 4

√
nT/m = Θ(n). The number of

edges is m/n ·
√

nm
T ·
√
nT/m+

√
nm
T ·nT/m = Θ(m)+ n3/2T 1/2

m1/2 ≤ Θ(m) where

the last inequality is true by assumption T ≤ m3/n3. This proves property
(1).

Consider the case
∨ℓ

i=1 xi = 0. Each section induces a disjoint union of a
complete bipartite graph and an independent set. Each section only neighbors
the non-section vertices. Moreover, the non-section vertices induce an inde-
pendent set. Thus, any triangle has to contain one non-section vertex and
two section vertices. Since the non-section vertices only neighbor the bottom
subsections, these two section vertices have to be in the bottom subsections. If
xi = 0, there are no edges between the bottom subsections of the i-th section.
Therefore, these two vertices cannot be from the i-th section. If xi = 0 for all
i ∈ [ℓ], there cannot be any triangles in the graph.

If
∨ℓ

i=1 xi = 1, there exists i such that xi = 1. Consider the i-th section.
There is a triangle for each triplet of vertices u, v, w for u in the bottom-
left subsection, v being in the bottom-right subsection and w being a non-
section vertex from the same unit. This means that the graph contains at
least (

√
nT/m)2 ·m/n = T triangles. This proves property (2).

We finally argue that any full neighborhood query on G can be simulated
using a query on xj for some j ∈ [ℓ]. Specifically, we prove that, given i ∈ [|V |]
(i ∈ [|Ex|]), the neighborhood of vi (of v, w for ei = vw) only depends on the
value of xj for some j (respectively). The neighborhood of any non-section
vertex is the same regardless of x (and the query can thus be answered without
making any queries on x). The neighborhood of a vertex in the j-th section is
determined by the value of xi. Vertex queries can thus be simulated by a single
query on x. We now argue that this is also the case for edge queries. The
edges are ordered such that for j < j′, all edges incident to the j-th section
are in the ordering before those incident to the j′-th section. The number of
edges within a section is independent of x. We call this number k. The i-th
edge is then the (i− k⌊(i− 1)/k⌋)-th vertex in the (⌊(i− 1)/k⌋+ 1)-th section
and it thus only depends on x⌊(i−1)/k⌋+1. This proves the property (3).

Chapter 4

Sampling an Edge in
Sublinear Time Exactly and
Optimally

Talya Eden1

talyaa01@gmail.com

Bar Ilan University

Shyam Narayanan2

shyamsn@mit.edu

MIT
Jakub Tětek

j.tetek@gmail.com

BARC, Univ. of Copenhagen

Abstract

Sampling edges from a graph in sublinear time is a fundamental
problem and a powerful subroutine for designing sublinear-time algo-
rithms. Suppose we have access to the vertices of the graph and know a
constant-factor approximation to the number of edges. An algorithm for
pointwise ε-approximate edge sampling with complexity O(n/

√
εm) has

been given by Eden and Rosenbaum [SOSA 2018]. This has been later
improved by Tětek and Thorup [STOC 2022] to O(n log(ε−1)/

√
m). At

the same time, Ω(n/
√
m) time is necessary. We close the problem, by

giving an algorithm with complexity O(n/
√
m) for the task of sampling

an edge exactly uniformly.

126
CHAPTER 4. SAMPLING AN EDGE IN SUBLINEAR TIME EXACTLY

AND OPTIMALLY

Introduction

Suppose we have a graph too big to even read the whole input. We then need
an algorithm running in time sublinear in the input size. Such algorithms
have recently received a lot of attention. In the sublinear-time settings, one
usually has direct access to the vertices of the input graph, but not to the
edges. Because of this, one tool commonly used for designing sublinear-time
graph algorithms is an algorithm for sampling edges. This allows us to design
an algorithm that uses random edge queries, as we can simulate these queries
by the edge sampling algorithm.

The task and query access. Our goal is to sample an edge uniformly,
i.e., to return an edge so that each edge is returned with exactly equal prob-
ability. We assume that the algorithm may (i) ask for the i-th vertex of the
input graph, (ii) ask for the degree of a given vertex, and (iii) ask for the
j-th neighbor of a given vertex. We assume the algorithm has (approximate)
knowledge of the number of edges m. This assumption of knowing m was not
made in the previous work, and we think getting rid of this assumption is a
very interesting open problem. This assumption is, however, not a barrier to
using our algorithm as a subroutine for implementing random edge queries,
as we discuss below.

Ours and previous results. In past work only algorithms for sampling
ε-approximately uniformly in the pointwise distance (or equivalently approxi-
mately in the ℓ∞ metric) were given, where the state-of-the-art complexity for
that problem was O(n log(ε−1)/

√
m) given by Tětek and Thorup [2022b]. Our

algorithm is not only exact, but also more efficient. Specifically, the expected
complexity of our algorithm is O(n/

√
m). This is known to be the best pos-

sible. If we have a graph with n−Θ(
√
m) isolated vertices and a clique over

Θ(
√
m) vertices with m edges, we need to sample Ω(n/

√
m) vertices before

we expect to see a single edge, giving us a simple matching lower bound.

Using our algorithm as a subroutine and the necessity of knowing m.
As we said above, our algorithm needs to have a constant-factor approximation
of the number of edges. This was not necessary in previous works. The reason
is that the previous state-of-the-art has complexity in which one can also afford
to independently estimate the number of edges; the possibility of the estimate
being incorrect is then added to the bias of the edge sampling algorithm.
However, as our algorithm is more efficient, we are not able to estimate m in
that complexity, and since we want to sample exactly, we cannot accept that
the estimate could be wrong.

Suppose we have an algorithm A that performs random edge queries. We
may then use our algorithm in a black box manner to implement these queries

INTRODUCTION 127

(unlike, for example, the algorithm for sampling multiple edges from Eden
et al. [2021b] which has polynomial dependency on ε). Specifically, if A uses
q random edge queries, then we may set ε = 1/(10q) and it will only decrease
the success probability of A by at most 1/10. 3

If the goal is to get an algorithm with a constant success probability (which
can then be amplified) that uses our edge sampling algorithm as a subroutine,
then we may remove the need for having an a priori constant-factor approxi-
mation m̃ of m by computing it using the algorithm from Feige [2006b], only
adding a constant to the failure probability. The algorithm from Feige [2006b]
has expected complexity O(n/

√
m). The complexity of our algorithm will also

still be as desired: it follows from our analysis that the complexity is O(n
√
m̃

m).

It holds by the Jensen inequality that E[n
√
m̃

m] ≤ n
√

E[m̃]

m +log ε−1 = O(n/
√
m)

since it holds E[m̃] = O(m).

To summarize, we may remove the assumption of a priori knowledge of m
when sampling multiple edges at the cost of adding a constant failure probabil-
ity. This means that we may use our algorithm as a subroutine in an algorithm
with constant probability of error, even without knowing m a priori.

Technical overview

The starting point of our algorithm is the algorithm by Eden and Rosenbaum
[2018d], which we now shortly recall.

The algorithm by Eden and Rosenbaum [2018d].

Consider each undirected edge as two directed edges, and let θ be a degree
threshold. We refer to vertices with degree at most θ as light vertices, and to
all other vertices as heavy. We refer to edges originating in light vertices as
light edges, and to all other edges as heavy edges. Using rejection sampling,
light edges can be sampled with probability exactly 1

nθ : by sampling a uniform
vertex v, then sampling one of its incident edges u.a.r., and then returning
that edge with probability d(v)

θ . Sampling heavy vertices is done by first
sampling a light edge uv as described above, and if the second endpoint v of the
sampled light edge is heavy, sampling one of its incident edges. This procedure
results in every heavy edge vw being sampled with probability dℓ(v)

nθ ·
1

d(v) ,

where dℓ(v) is the number of light neighbors of v. In (Eden and Rosenbaum
[2018d]), θ is set to

√
2m/ε which implies that for every heavy vertex v, dℓ(v) ∈

3This holds because the total variation distance from uniform of each query is at most
1/(10q), so the total variation distance from uniform of the sequence of q queries is at most
1/10, meaning that the output from the algorithm has total variation distance at most 1/10
from the distribution the output would have if the queries were answered exactly.

128
CHAPTER 4. SAMPLING AN EDGE IN SUBLINEAR TIME EXACTLY

AND OPTIMALLY

[(1 − ε)d(v), d(v)].4 Hence, each (heavy) edge is sampled with probability in

[(1−ε)
nθ , 1

nθ]. The total probability of sampling some edge (with the algorithm

failing otherwise) is thus at least (1−ε)m
nθ ≈

√
εm
n . Therefore, the number of

attempts needed before we expect to sample an edge is O(n√
εm

), implying a

multiplicative dependence on ε.

Improving the dependency on ε.

In order to avoid the multiplicative dependency in ε, we instead set the thresh-
old θ to

√
cm for some constant c. Considering the same sampling procedures

as before, light edges can still be sampled with probability exactly 1
nθ . For

heavy edges, however, the values dℓ(v)/d(v) can vary up to a constant factor
between the different heavy vertices, leading to a large bias towards heavy
edges originating in vertices v with higher values of dℓ(v)

d(v) . If for each vertex v,

we knew the value of dℓ(v), we could use rejection sampling with probability

q that is inversely proportional to p = dℓ(v)
d(v) , e.g., q = d(v)

2dℓ(v)
= 1

2p (we may

assume that, say, p ≥ 2/3 and thus q < 1, by making c large enough). This
would result in each heavy edge being sampled with exactly equal probability
dℓ(v)
nθ ·

d(v)
2dℓ(v)

= 1
2nθ .

While we do not know the exact value of dℓ(v), we can approximate it up to
a (1±Θ(ε))-multiplicative factor using O(1/ε2) neighbor queries. This results
in (1 ± Θ(ε))-approximation of q and thus leads to a distribution that is ε-
close to uniform. Note that we only need to approximate q when the algorithm
samples a heavy edge. Moreover, when we do that, we return the edge with
constant probability. Thus, in expectation, we only need to approximate q a
constant number of times. This means that the total expected time complexity
is O(n/

√
m+ 1/ε2).

To remove the dependence on 1/ε2, our main observation is that we do
not actually need to (approximately) learn the value of p, in order to reject
with probability proportional to q = 1/(2p). Rather, we can “simulate” a
Bernoulli trial with probability exactly 1

2p by using the results of only O(1)
many Bern(p) trials in expectation (though possibly more in the worst case),
using the Bernoulli Factory technique of Nacu and Peres [2006].

When we sample a uniform neighbor of a heavy vertex v, we see a light
neighbor of v with probability exactly p = dℓ(v)

d(v) , where, as discussed above,

we can set θ so that p > 2/3. Therefore, we have access to a Bernoulli trial
that succeeds with probability Bern(p) for p > 2/3. As previously explained,
in order to achieve uniformity, we need to perform rejection sampling (corre-
sponding to a Bernoulli trial) that succeeds with probability = 1

2p . We can

4Since, denoting by H the set of heavy vertices, and by dh(v) the number of heavy
neighbors of vertex v, we have the following. For every v ∈ H, dh(v) ≤ |H| ≤ 2m

θ
=√

2εm = εθ ≤ εd(v). Therefore, dℓ(v) > (1− ε)d(v).

PRELIMINARIES 129

simulate Bern(1/(2p)) by relying on the results of an expected O(1) inde-
pendent copies of Bern(p). Namely, we perform an expected O(1) neighbor
queries where each results in a light neighbor with probability p, giving us an
independent copy of a random variable distributed as Bern(p). If we knew
that p is bounded away from 1, we could directly use the result of Nacu and
Peres [2006]. We can ensure that this is the case by first rejecting with prob-
ability, say, 1/2. The probability of getting a light neighbor and not rejecting
is then p/2 ∈ [1/3, 2/3]. We then use the result of Nacu and Peres [2006] with
the function 1/(4x), thus simulating Bern(1/(4p/2)) = Bern(1/(2p)).

Related work

Using uniform edge samples as a basic query in the sublinear time setting was
first suggested by Aliakbarpour et al. [2018b] in the context of estimating the
number of s-stars in a graph, where they showed that this access allows to
circumvent lower bounds that hold in the standard adjacency list access. It
was later used for the more general tasks of estimating and uniformly sampling
arbitrary subgraphs in sublinear time (Assadi et al. [2019a], Fichtenberger
et al. [2020b], Biswas et al. [2021a], Tětek and Thorup [2022b]).

As mentioned in the introduction, sampling edges from a distribution that
is pointwise close to uniform in sublinear time was first suggested by Eden and
Rosenbaum [2018d] who gave an algorithm with complexity O (n/

√
εm). This

was later improved by Tětek and Thorup [2022b] to an algorithm with com-
plexity O(n log(ε−1)/

√
m). They also considered two additional access models

(full neighborhood access and hash-ordered access) and gave new lower and
upper bounds for these settings. Eden et al. [2021b] gave an upper bound for
the problem of sampling k edges from a pointwise close to uniform distribution.

The complexity of their algorithm is O
(√

k · n√
m
· log

2 n
ε2.5

+ k
)

. This was later

shown to be essentially optimal (i.e., up to the dependencies on ε and log n)

by Tětek and Thorup [2022b]. Eden et al. [2019b] gave an O
(
nα
m ·

log3 n
ε

)
algorithm for sampling edges in graphs with arboricity at most α. They also
showed their algorithm is optimal up to the poly(log n, ε−1) dependencies.

The task of sampling close to uniform edges was also recently considered
in the setting where the access to the graph is given via Bipartite Independent
Set (BIS) queries (Lapinskas et al. [2019], Bhattacharya et al. [2022], Addanki
et al. [2022]).

Preliminaries

The query model: Since we do not have time to read the whole input (and
thus to change its representation), it matters how exactly we are able to query
it. Throughout this paper, we assume that the graphs’ vertices are labeled
arbitrarily in [n], the edges of every vertex v are labeled arbitrarily by [d(v)],

130
CHAPTER 4. SAMPLING AN EDGE IN SUBLINEAR TIME EXACTLY

AND OPTIMALLY

and that the algorithm knows n. We then assume the following standard set
of queries:

• Uniform vertex queries: given i ∈ [n], return the i-th vertex

• Degree queries: given a vertex v, return its degree d(v)

• Neighbor queries: given a vertex v and j ∈ [d(v)], return the j-th
neighbor of v

This setting has been previously called the adjacency list or indexed neigh-
bor access model and is among the most-studied settings for sublinear-time
algorithms.

A model with an additional query

• Uniform edge queries: given i ∈ [m], return vertices u, v such that
uv is the i-th edge of the graph

has also been considered. Our algorithm can be thought of as a reduction
between the two models. One can show (by randomly permuting the edges)
that up to a logarithmic factor this setting is equivalent to just assuming
random edge queries (with replacement). Our algorithm then allows us to
simulate random edge queries in the indexed neighborhood access model.

Sampling an edge

In this section, we give our algorithm for sampling an edge. We start by
stating a result of Nacu and Peres [2006] about “Bernoulli factories”. We
recall that a function f from a closed interval I to R is said to be real analytic

if for any point x0 in the interior of I, f(x) =
∑∞

n=0
f (n)(x0)

n! · (x− x0)n where

f (n)(x0) represents the nth derivative of f at x0. Equivalently, f matches its
Taylor series about x0 for all of I.

Theorem 58. Let I ⊂ (0, 1) be a closed interval and f : I → (0, 1) be a real
analytic function. Let p be a number in I. Then, there exists an algorithm
independent of p that performs in expectation O(1) independent trials from
Bern(p) and returns one Bernoulli trial with distribution Bern(f(p)). In
addition, the probability of using more than k independent trials is at most
Cρk, for some constants C ≥ 1, 0 < ρ < 1 that only depend on I.

Theorem 58 gives us the following corollary.

Corollary 59. There is an algorithm that for any p ∈ [2/3, 1] performs in ex-
pectation O(1) trials from Bern(p) and returns one Bernoulli trial distributed
as Bern(1/(2p)). (Note that the algorithm may also use its own randomness,
independent of the Bern(p)’s given.)

SAMPLING AN EDGE 131

Algorithm 23: Sample an edge pointwise Θ(1)-close to uniform

1 u← uniformly random vertex

2 j ← Unif([θ]), where θ = ⌈
√

6m⌉.
3 Fail if d(v) > θ or d(v) ≤ j
4 v ← j-th neighbor of u
5 B ∼ Bern(1/3)
6 if B = 1 then
7 return uv
8 else if B = 0 and v is heavy then
9 w ← random neighbor of v

10 return vw

11 return Fail

Proof. First, note that for any p we can simulate Bern(p/2) from a single
Bern(p), by simulating an independent Bern(1/2) and considering the event
where both Bern(p) and Bern(1/2) equal 1. Then, it is well-known that 1

4x
is real analytic on the interval [1/2, 2/3], and 1

4x is contained in [3/8, 1/2]
for x ∈ [1/2, 2/3]. Since we can generate Bern(p/2), we can therefore apply

Theorem 58 to get a trial from Bern
(

1
4(p/2)

)
= Bern

(
1
2p

)
.

We now give an algorithm for sampling an edge. The algorithm closely
follows the approach from Eden and Rosenbaum [2018d] but uses the Bernoulli
factory of Nacu and Peres [2006] to reduce the sampling error in a significantly
more efficient way than in Eden and Rosenbaum [2018d]. We first give an
algorithm for Θ(1)-approximate edge sampling.

Throughout this section, we assume for sake of simplicity that we know
the number of edges exactly. The analysis of correctness only uses that we
have an upper bound, while the analysis of the complexity needs that we have
a lower bound up to a constant factor. Putting this together, it is in fact
sufficient to have a constant-factor approximation.

Lemma 60. Let e be the edge returned by Algorithm 23 if successful. Then
for any light edge e′, it holds that P(e = e′) = 1/(3nθ), and for any heavy

edge, it holds that P(e = e′) = 2
3 ·

dℓ(v)
d(v) ·

1
nθ .

Proof. Fix a light edge e′ = uv. Recall that by definition, uv is light iff
d(u) ≤ θ for θ = ⌈

√
6m⌉. The edge uv is returned only in the case that (1)

u is sampled in Step 1, (2) the chosen index j in Step 2 is the label of v, and
(3) B = 1 in Step 5. Therefore, Pr[e = e′] = 1

n ·
1

⌈
√
6m⌉ ·

1
3 = 1

3nθ .

Now fix a heavy edge e′ = vw. The edge vw is returned in the event that
(1) the sampled vertex u in Step 1 is a light neighbor of v, (2) the chosen index
j in Step 2 is the label of v, (3) B = 0 in Step 5, and (4) w is the sampled

132
CHAPTER 4. SAMPLING AN EDGE IN SUBLINEAR TIME EXACTLY

AND OPTIMALLY

Algorithm 24: Sample an edge 1± ε-pointwise-close to uniform

1 repeat
2 vw ← Algorithm 23
3 if v is light then
4 return vw

5 if v is heavy then
6 Let w1, . . . , be random neighbors of v
7 Y ← use Corollary 59 on Bernoulli trials defined as

Bi = [d(wi) ≤
√

6m]
8 if Y = 0 then
9 return vw

10 until;

neighbor in Step 9. Therefore, if we define ΓL(v) to be the set of light neighbors

of v, then Pr[e = e′] =
∑

u∈ΓL(v)
1
n ·

1
⌈
√
6m⌉ ·

2
3 ·

1
d(v) = 2

3 ·
dℓ(v)
d(v) ·

1
nθ .

We are now able to give an algorithm for sampling an edge perfectly uni-
formly. Simply re-running the above algorithm until it succeeds would result
in Θ(1)-pointwise close to uniform sampling. The algorithm below differs in
that if Algorithm 23 returns a heavy edge (which has some bias), we use
rejection sampling based on Bernoulli factories to reduce the bias.

Theorem 61. Algorithm 24 returns a perfectly uniform edge. Its expected
complexity is O(n/

√
m).

Proof. We start with proving the correctness of the algorithm. By Lemma 60,
each invocation of Algorithm 23 returns each light edge with probability 1

3nθ ,

and each heavy edge with probability 2
3 ·

dℓ(v)
d(v) ·

1
nθ . If Algorithm 23 returns a

heavy edge vw, then for every wi sampled in Step 6 in Algorithm 24, it holds
that the indicator of the event [d(wi) ≤ ⌈

√
6m⌉] is the result of a Bernoulli

trial Bern(p) with p = dℓ(v)
d(v) . Let H denote the set of vertices with degree

greater than ⌈
√

6m⌉. Then degH(v) ≤ |H| ≤ 2m
⌈
√
6m⌉ ≤

√
2
3m ≤

1
3d(v), where

the last is since v is heavy (so d(v) > ⌈
√

6m⌉). Therefore, p = dℓ(v)
d(v) ∈ [23 , 1].

Hence, by Corollary 59, the value Y returned by Algorithm 24 has distribution
Y ∼ Bern(1

2p). Therefore, in a single iteration of the repeat loop, every fixed

heavy edge vw is returned with probability 2
3 ·

dℓ(v)
d(v) ·

1
nθ ·

(
1
2p

)
∈ 1

3nθ , as

p = dℓ(v)
d(v) .

Therefore, every edge is sampled with probability exactly 1
3n , so condition-

ing on some edge being returned, each edge is returned with probability in 1
m ,

as claimed.

SAMPLING AN EDGE 133

We turn to analyze the complexity of the algorithm. By the above analysis,
every invocation of the loop returns an edge with probability at least m · 1

3nθ ≥√
m

10n . Also, note that each invocation is independent. Therefore, the expected
number of iterations until an edge is returned is O(n/

√
m). Furthermore, each

invocation of the loop invokes Algorithm 23 once, and Corollary 59 at most
once. Algorithm 23 clearly takes a constant number of queries. If Algorithm 23
returns a heavy edge, then sampling the wi neighbors in Step 6 takes O(1)
queries in expectation. Therefore, the expected number of queries in each loop
is constant. Hence, the expected query complexity is Θ (n/

√
m).

Acknowledgments

We thank Nima Anari and Peter Occil for informing us about the existence of
Bernoulli factories in the literature, and Nima for pointing us to the reference
Nacu and Peres [2006].

Chapter 5

Better Differentially Private
Approximate Histograms and
Heavy Hitters using the
Misra-Gries Sketch

Christian Janos Lebeda
chle@itu.dk

BARC, IT Univ. of
Copenhagen

Jakub Tětek
j.tetek@gmail.com

BARC, Univ. of Copenhagen

Abstract

We consider the problem of computing differentially private approx-
imate histograms and heavy hitters in a stream of elements. In the
non-private setting, this is often done using the sketch of Misra and
Gries [Science of Computer Programming, 1982]. Chan, Li, Shi, and Xu
[PETS 2012] describe a differentially private version of the Misra-Gries
sketch, but the amount of noise it adds can be large and scales linearly
with the size of the sketch; the more accurate the sketch is, the more noise
this approach has to add. We present a better mechanism for releasing
a Misra-Gries sketch under (ε, δ)-differential privacy. It adds noise with
magnitude independent of the size of the sketch; in fact, the maximum
error coming from the noise is the same as the best known in the pri-
vate non-streaming setting, up to a constant factor. Our mechanism is
simple and likely to be practical. We also give a simple post-processing
step of the Misra-Gries sketch that does not increase the worst-case er-
ror guarantee. It is sufficient to add noise to this new sketch with less
than twice the magnitude of the non-streaming setting. This improves
on the previous result for ε-differential privacy where the noise scales
linearly to the size of the sketch. Finally, we consider a general setting
where users can contribute multiple distinct elements. We present a new
sketch with maximum error matching the Misra-Gries sketch. For many

135

136

CHAPTER 5. BETTER DIFFERENTIALLY PRIVATE APPROXIMATE
HISTOGRAMS AND HEAVY HITTERS USING THE MISRA-GRIES

SKETCH
parameters in this setting our sketch can be released with less noise under
(ε, δ)-differential privacy.

Introduction

Computing the histogram of a dataset is one of the most fundamental tasks in
data analysis. At the same time, releasing a histogram may present significant
privacy issues. This makes the efficient computation of histograms under
privacy constraints a fundamental algorithmic question. Notably, differential
privacy has become in recent years the golden standard for privacy, giving
formal mathematical privacy guarantees. It would thus be desirable to have
an efficient way of (approximately) computing histograms under differential
privacy.

Histograms have been investigated thoroughly in the differentially private
setting (Dwork et al. [2006b], Ghosh et al. [2012], Geng et al. [2015], Cormode
et al. [2012], Korolova et al. [2009], Balcer and Vadhan [2019], Aumüller et al.
[2022]). These algorithms start by computing the histogram exactly and they
then add noise to ensure privacy. However, in practice, the amount of data
is often so large that computing the histogram exactly would be impracti-
cal. This is, for example, the case when computing the histogram of high-
volume streams such as when monitoring computer networks, online users,
financial markets, and similar. In that case, we need an efficient streaming
algorithm. Since the streaming algorithm would only compute the histogram
approximately, the above-mentioned approach that first computes the exact
histogram is infeasible. In practice, non-private approximate histograms are
often computed using the Misra-Gries (MG) sketch (Misra and Gries [1982]).
The MG sketch of size k returns at most k items and their approximate fre-
quencies f̂ such that f̂(x) ∈ [f(x)− n/(k + 1), f(x)] for all elements x where
f(x) is the true frequency and n is the length of the stream. This error is
known to be optimal (Bose et al. [2003]). In this work, we develop a way of
releasing a MG sketch in a differentially private way while adding only a small
amount of noise. This allows us to efficiently and accurately compute approx-
imate histograms in the streaming setting while not violating users’ privacy.
This can then be used to solve the heavy hitters problem in a differentially
private way. Our result improves upon the work of Chan et al. [2012] who
also show a way of privately releasing the MG sketch, but who need a greater
amount of noise; we discuss this below.

In general, the issue with making approximation algorithms differentially
private is that although we may be approximating a function with low global
sensitivity, the algorithm itself (or rather the function it implements) may have
a much larger global sensitivity. This increases the amount of noise required
to achieve privacy using standard techniques. We get around this issue by
exploiting the structure of the difference between the MG sketches for neigh-

INTRODUCTION 137

boring inputs. This allows us to prove that the following simple mechanism
ensures (ε, δ)-differential privacy: (1) We compute the Misra-Gries sketch, (2)
we add to each counter independently noise distributed as Laplace(1/ε), (3)
we add to all counters the same value, also distributed as Laplace(1/ε), (4)
we remove all counters smaller than 1+2 ln(3/δ)/ε. Specifically, we show that
this algorithm satisfies the following guarantees:

Theorem 73 (simplified). The above algorithm is (ε, δ)-differentially pri-
vate, uses 2k words of space, and returns a frequency oracle f̂ with maximum
error of n/(k+ 1) +O(log(1/δ)/ε) with high probability for δ being sufficiently
small.

A construction for a differentially private Misra-Gries sketch has been
given before by Chan et al. [2012]. However, the more accurate they want
their sketch to be (and the bigger it is), their approach has to add more noise.
The reason is that they directly rely on the global ℓ1-sensitivity of the sketch.
Specifically, if the sketch has size k (and thus error n/(k + 1) on a stream
of n elements), its global sensitivity is k, and they thus have to add noise of
magnitude k/ε. Their mechanism ends up with an error of O (k log(d)/ε) for ε-
differential privacy with d being the universe size. This can be easily improved
to O (k log(1/δ)/ε) for (ε, δ)-differential privacy with a thresholding technique
similar to what we do in step (4) of our algorithm above. This also means

that they cannot get more accurate than error Θ
(√

n log(1/δ)/ε
)

, no matter

what value of k one chooses. We achieve that the biggest error, as compared
to the values from the MG sketch, among all elements is O(log(1/δ)/ε) assum-
ing δ is sufficiently small (we show more detailed bounds including the mean
squared errors in Theorem 73). This is the same as the best private solution
that starts with an exact histogram (Korolova et al. [2009]). In fact, for any
mechanism that outputs at most k heavy hitters there exists input with error
at least n/(k+ 1) in the streaming setting (Bose et al. [2003]) and input with
error at least O(log(min(d, 1/δ))/ε) (Balcer and Vadhan [2019]) under differ-
ential privacy. In Section 8 we discuss how to achieve ε-differential privacy
with error n/(k + 1) +O(log(d)/ε). Therefore the error of our mechanisms is
asymptotically optimal for approximate and pure differential privacy, respec-
tively. The techniques used in Section 8 could also be used to get approximate
differential privacy, but the resulting sketch would not have strong competi-
tiveness guarantees with respect to the non-private Misra-Gries sketch, unlike
the sketch that we give in Section 5.

Chan et al. Chan et al. [2012] use their differentially private Misra-Gries
sketch as a subroutine for continual observation and combine sketches with
an untrusted aggregator. Those settings are not a focus of our work but our
algorithm can replace theirs as the subroutine, leading to better results also
for those settings. However, the error from noise still increases linearly in the
number of merges when the aggregator is untrusted. As a side note, we show
that in the case of a trusted aggregator, the approach of Chan et al. [2012]

138

CHAPTER 5. BETTER DIFFERENTIALLY PRIVATE APPROXIMATE
HISTOGRAMS AND HEAVY HITTERS USING THE MISRA-GRIES

SKETCH
can handle merge operations without increasing error. While that approach
adds significantly more noise than ours if we do not merge, it can with this
improvement perform better when the number of merges is very large (at least
proportional to the sketch size).

Furthermore, we consider the setting where users contribute multiple ele-
ments to the stream. The algorithms discussed above can be adjusted for this
setting by scaling the noise linearly proportional to the number of elements per
user. This is the optimal scaling for ε-differential privacy or when users can
contribute many copies of the same element. However, under (ε, δ)-differential
privacy in the non-streaming setting the magnitude of noise scales only with
the square root of the number of elements if they are distinct Wilkins et al.
[2024]. We give a generalized version of the Misra-Gries sketch that requires
less noise for many parameters when users contribute multiple distinct ele-
ments. It remains an open problem to achieve optimal error in this setting
under (ε, δ)-differential privacy.

Another approach that can be used is to use a randomized frequency oracle
to recover heavy hitters. However, it seems hard to do this with the optimal
error size. In its most basic form ([Ghazi et al., 2019, Appendix D]), this
approach needs noise of magnitude Θ(log(d)/ε), even if we have a sketch with
sensitivity 1 (the approach increases the sensitivity to log(d), necessitating the
higher noise magnitude), leading to maximum error at least Ω(log(k) log(d)/ε).
Bassily et al. [2017] show a more involved approach which reduces the maxi-
mum error coming from the noise to Θ((log(k) + log(d))/ε), but at the cost of
increasing the error coming from the sketch by a factor of log(d). This means
that even if we had a sketch with error Θ(n/k) and sensitivity 1, neither of
these two approaches would lead to optimal guarantees, unlike the algorithm
we give in this paper.

Relation to Böhler and Kerschbaum Böhler and Kerschbaum [2021]
Essentially the same result as Theorem 73 has been claimed in (Böhler and
Kerschbaum [2021]). However, their approach ignores the discrepancy be-
tween the global sensitivity of a function we are approximating and that of
the function the algorithm actually computes. Their mechanism adds noise
scaled to the sensitivity of the exact histogram which is 1 when a user con-
tributes a single element to the stream. But as shown by Chan et al. [2012]
the sensitivity of the Misra-Gries sketch scales linearly with the number of
counters in the sketch. The algorithm from Böhler and Kerschbaum [2021]
thus does not achieve the claimed privacy parameters. Moreover, it seems
unlikely this could be easily fixed – not without doing something along the
lines of what we do in this paper.

See https://github.com/JakubTetek/Differentially-Private-Misra-Gries for sam-
ple implementations of the algorithms we present in this paper.

https://github.com/JakubTetek/Differentially-Private-Misra-Gries

TECHNICAL OVERVIEW 139

Technical overview

Misra-Gries sketch Since our approach depends on the properties of the
MG sketch, we describe it here. Readers familiar with the MG sketch may
wish to skip this paragraph. We describe the standard version; in Section 5
we use a slight modification, but we do not need that here.

Suppose we receive a sequence of elements from some universe. At any
time, we will be storing at most k of these elements. Each stored item has
an associated counter, other elements have implicitly their counter equal to 0.
When we process an element, we do one of the following three updates: (1) if
the element is being stored, increment its counter by 1, (2) if it is not being
stored and the number of stored items is < k, store the element and set its
counter to 1, (3) otherwise decrement all k counters by 1 and remove those
that reach 0. The exact guarantees on the output will not be important now,
and we will discuss them in Section 5.

Our contributions We now sketch how to release an MG sketch in a dif-
ferentially private way.

Consider two neighboring data streams S = (S1, · · · , Sn) and S′ = (S1, · · · , Si−1, Si+1, · · · , Sn)
for some i ∈ [n]. At step i − 1, the state of the MG sketch on both inputs
is exactly the same. MGS then receives the item Si while MGS′ does not.
This either increments one of the counters of MGS (possibly by adding an
element and raising its counter from 0 to 1) or decrements all its counters.
In ℓ1 distance, the vector of the counters thus changes by at most k. One
can show by induction that this will stay this way: at any point in time,
∥MGS −MGS′∥1 ≤ k. By a standard global sensitivity argument, one can
achieve pure DP by adding noise of magnitude k/ε to each count. This is the
approach used in (Chan et al. [2012]). Similarly, we could achieve (ε, δ)-DP by
using the Gaussian mechanism (Dwork and Roth [2014]) with noise magnitude
proportional to the ℓ2-sensitivity, which is supS,S′ ∥MGS−MGS′∥2 ≤

√
k. We

want to instead achieve noise with magnitude O(1/ε) at each count. To this
end, we need to exploit the structure of MGS −MGS′ .

What we just described requires that we add the noise to the counts of
all items in the universe, also to those that are not stored in the sketch. This
results in the maximum error of all frequencies depending on the universe’s
size, which we do not want. However, it is known that this can be easily solved
under (ε, δ)-differential privacy by only adding noise to the stored items and
then removing values smaller than an appropriately chosen threshold (Ko-
rolova et al. [2009]). This may introduce additional error – for this reason, we
end up with error O(log(1/δ)/ε). As this is a somewhat standard technique,
we ignore this in this section, we assume that the sketches MGS and MGS′

store the same set of elements; the thresholding allows us to remove this as-
sumption, while allowing us to add noise only to the stored items, at the cost
of only getting approximate differential privacy.

140

CHAPTER 5. BETTER DIFFERENTIALLY PRIVATE APPROXIMATE
HISTOGRAMS AND HEAVY HITTERS USING THE MISRA-GRIES

SKETCH
We now focus on the structure of MGS −MGS′ . After we add to MGS

the element Si, it either holds (1) that MGS −MGS′ is a vector of all 0’s and
one 1 or (2) that MGS −MGS′ = −1k (We use 1k the denote the dimension
k vector of all ones). We show by induction that this will remain the case as
more updates are done to the sketches (note that the remainders of the streams
are the same). We do not sketch the proof here, as it is quite technical.

How do we use the structure of MGS −MGS′ to our advantage? We add
noise twice. First, we independently add to each counter noise distributed as
Laplace(1/ε). Second, we add to all counters the same value, also distributed
as Laplace(1/ε). That is, we release MGS + Laplace(1/ε)⊗k + Laplace(1/ε)1k

(For D being a distribution, we use D⊗k to denote the k-dimensional dis-
tribution consisting of k independent copies of D). Intuitively speaking, the
first noise hides the difference between S and S′ in case (1) and the second
noise hides the difference in case (2). We now sketch why this is so for worse
constants: 2/ε in place of 1/ε. When proving this formally, we use a more
technical proof which leads to the better constant.

We now sketch why this is differentially private. Let mS be the mean of
the counters in MGS for S being an input stream. We may represent MGS as
(MGS −mS1,mS) (note that there is a bijection between this representation
and the original sketch). We now argue that the ℓ1-sensitivity of this represen-
tation is < 2 (treating the representation as a (k + 1)-dimensional vector for
the sake of computing the ℓ1 distances). Consider the first case. In that case,
the averages mS ,mS′ differ by 1/k. As such, MGS−mS1

k and MGS′−mS′1k

differ by 1/k at k−1 coordinates and by 1−1/k at one coordinate. The overall
ℓ1 change of the representation is thus

(k − 1) · 1

k
+ (1− 1/k) + 1/k = 2− 1/k < 2.

Consider now the second case when MGS−MGS′ = −1k. Thus, MGS−mS =
MG′

S − mS′ . At the same time |mS − mS′ | = 1. This means that the ℓ1
distance between the representations is 1. Overall, the ℓ1-sensitivity of this
representation is < 2.

This means that adding noise from Laplace(2/ε)⊗k+1 to this representation
of MGS satisfies ε-DP. The resulting value after adding the noise is (MGS −
mS1

k + Laplace(2/ε)⊗k,mS + Laplace(2/ε)). In the original vector represen-
tation of MGS , this corresponds to MGS + Laplace(2/ε)⊗k + Laplace(2/ε)1k

and, by post-processing, releasing this value is also differentially private. But
this is exactly the value we wanted to show is differentially private!

Preliminaries

Setup of this paper We use U to denote a universe of elements. We assume
that U is a totally ordered set of size d. That is, U = [d] where [d] = {1, . . . , d}.

PRELIMINARIES 141

Given a stream S ∈ UN we want to estimate the frequency in S of each element
of U . Our algorithm outputs a set T ⊆ U of keys and a frequency estimate
ci for all i ∈ T . The value cj is implicitly 0 for any j /∈ T . Let f(x) denote
the true frequency of x in the stream S. Our goal is to minimize the largest
error between cx and f(x) among all x ∈ U . In Section 8 we consider a more
general setting where each item in the stream is a set i.e. Si ⊆ U . In that
setting we want to estimate the frequency of sets containing each element such

that f(x) =
∑|S|

i=1[x ∈ Si] for any x ∈ U , where [x ∈ Si] equals 1 if x ∈ Si and
0 otherwise.

Differential privacy Differential privacy is a rigorous definition for describ-
ing the privacy loss of a randomized mechanism introduced by Dwork et al.
[2006b]. Intuitively, differential privacy protects privacy by restricting how
much the output distribution can change when replacing the input from one
individual. This is captured by the definition of neighboring datasets. We use
the add-remove neighborhood definition for differential privacy.

Definition 62 (Neighboring Streams). Let S be a stream of length n. Streams
S and S′ are neighboring denoted S ∼ S′ if there exists an i such that S =
(S′

1, . . . , S
′
i−1, S

′
i+1, . . . , S

′
n+1) or S′ = (S1, . . . , Si−1, Si+1, . . . , Sn).

Definition 63 (Differential Privacy Dwork and Roth [2014]). A randomized
mechanism M : UN → R satisfies (ε, δ)-differential privacy if and only if for
all pairs of neighboring streams S ∼ S′ and all measurable sets of outputs
Z ⊆ R it holds that

Pr[M(S) ∈ Z] ≤ eε Pr[M(S′) ∈ Z] + δ .

Samples from a Laplace distribution are used in many differentially private
algorithms, most notably the Laplace mechanism Dwork et al. [2006b]. We
write Laplace(b) to denote a random variable with a Laplace distribution with
scale b centered around 0. We sometimes abuse notation and write Laplace(b)
to denote the value of a random variable drawn from the distribution. Our
mechanism also works with other noise distributions. We briefly discuss this
in Section 8.

Definition 64 (Laplace distribution). The probability density and cumulative
distribution functions of the Laplace distribution centered around 0 with scale
parameter b are fb(x) = 1

2be
−|x|/b, and Pr[Laplace(b) ≤ x] = 1

2e
x/b if x < 0

and 1− 1
2e

−x/b for x ≥ 0.

The sensitivity of a deterministic function taking a stream as input re-
stricts the distance between the outputs for neighboring streams. We use the
term sensitivity to describe any predicate that holds for the outputs for all
pairs of neighboring streams. Two commonly used sensitivities in differen-
tial privacy are the ℓ1/ℓ2-sensitivities. They are special cases of ℓp-sensitivity

142

CHAPTER 5. BETTER DIFFERENTIALLY PRIVATE APPROXIMATE
HISTOGRAMS AND HEAVY HITTERS USING THE MISRA-GRIES

SKETCH
which bounds the distance between outputs for neighboring streams in the
ℓp-norm.

Definition 65 (ℓp-sensitivity). Let g : UN → Rd be a deterministic function
mapping a stream to a vector of real values. The ℓp-sensitivity of g for any
p ≥ 1 is

∆p = max
S∼S′

∥g(S)− g(S′)∥p

where ∥g(S)− g(S′)∥p is the ℓp-distance between g(S) and g(S′) defined as

∥g(S)− g(S′)∥p :=

(
d∑

i=1

|g(S)− g(S′)|p
)1/p

Related work

Chan et al. Chan et al. [2012] show that the global ℓ1-sensitivity of a Misra-
Gries sketch is ∆1 = k. (They actually show that the sensitivity is k + 1
but they use a different definition of neighboring datasets that assumes n is
known. Applying their techniques under our definition yields sensitivity k.)
They achieve privacy by adding noise with scale k/ε to all elements in the
universe and keep the top-k noisy counts. This gives an expected maximum
error of O(k log(d)/ε) with ε-DP for d being the universe size. They use the
algorithm as a subroutine for continual observation and merge sketches with
an untrusted aggregator. Those settings are not a focus of our work but our
algorithm can replace theirs as the subroutine.

Böhler and Kerschbaum Böhler and Kerschbaum [2021] worked on differ-
entially private heavy hitters with no trusted server by using secure multi-
party computation. One of their algorithms adds noise to the counters of a
Misra-Gries sketch. They avoid adding noise to all elements in the universe by
removing noisy counts below a threshold which adds an error of O(log(1/δ)/ε).
This is a useful technique for hiding differences in keys between neighboring
sketches that removes the dependency on d in the error. Unfortunately, as
stated in the introduction their mechanism uses the wrong sensitivity. The
ℓ1-sensitivity of the sketch is k. If the magnitude of noise and the threshold
are increased accordingly the error of their approach is O(k log(k/δ)/ε).

If we ignore the memory restriction in the streaming setting, the problem
is the same as the top-k problem Mir et al. [2011], Durfee and Rogers [2019],
Carvalho et al. [2020], Qiao et al. [2021]. The problem we solve can also be
seen as a generalization of the sparse histogram problem. This has been in-
vestigated in Cormode et al. [2012], Korolova et al. [2009], Balcer and Vadhan
[2019], Aumüller et al. [2022]. Notably, Balcer and Vadhan Balcer and Vad-
han [2019] provides a lower bound showing that for any (ε, δ)-differentially
private mechanism that outputs at most k counters, there exists input such
that the expected error for some elements is Ω(min(log(d/k)/ε, log(1/δ)/ε, n))

DIFFERENTIALLY PRIVATE MISRA-GRIES SKETCH 143

(assuming ε2 > δ). The noise that we add in our main contribution in fact
matches the second branch of the min over all elements.

A closely related problem is that of implementing frequency oracles in
the streaming setting under differential privacy. This has been studied in
e.g. Zhao et al. [2022b], Pagh and Thorup [2022], Ghazi et al. [2019]. These
approaches do not directly return the heavy hitters. The simplest approach
for finding the heavy hitters is to iterate over the universe which might be
infeasible. However, there are constructions for finding heavy hitters with
frequency oracles more efficiently (see Bassily et al. Bassily et al. [2017]).
However, as we discussed in the introduction, the approach of Bassily et al.
[2017] leads to worse maximum error than what we get unless the sketch size
is very large and the universe size is small.

The heavy hitters problem has also received a lot of attention in local
differential privacy, starting with the paper introducing the RAPPOR mecha-
nism Erlingsson et al. [2014] and continuing with Qin et al. [2016], Zhao et al.
[2022a], Wang et al. [2019], Bun et al. [2019], Wu and Wirth [2022], Bass-
ily et al. [2017]. This problem is practically relevant, it is used for example
by Apple to find commonly used emojis Apple. The problem has also been
recently investigated when using cryptographic primitives Zhu et al. [2020].

Blocki et al. [2022], Tětek [2022] have recently given general frameworks
for designing differentially private approximation algorithms; however, if used
naively, they are not very efficient for releasing multiple values (not more
efficient than using composition) and they are thus not suitable for the heavy
hitters problem.

In Section 8 we consider a more general setting where each item in the
stream is a set of size at most m instead of a single element. Both Chan et al.
[2012] and Böhler and Kerschbaum [2021] also consider the setting where mul-
tiple elements differ between neighboring sketches and they achieve privacy by
scaling the noise linearly to m. This scaling is required for mechanisms based
on Laplace noise even if we ignore the memory restriction of the streaming
setting. However, when the items are distinct we can instead add noise from
a normal distribution. The magnitude of the noise scales only with the square
root of the number of differing counts. We use such a mechanism in Section 8
based on work by Karrer, Kifer, Wilkins, and Zhang Wilkins et al. [2024].
We discuss their results further in Theorem 80.

Differentially Private Misra-Gries Sketch

In this section, we present our algorithm for privately releasing Misra-Gries
sketches. We first present our variant of the non-private Misra-Gries sketch
in Algorithm 25 and later show how we add noise to achieve (ε, δ)-differential
privacy. The algorithm we use differs slightly from most implementations of
MG in that we do not remove elements that have weight 0 until we need to

144

CHAPTER 5. BETTER DIFFERENTIALLY PRIVATE APPROXIMATE
HISTOGRAMS AND HEAVY HITTERS USING THE MISRA-GRIES

SKETCH
re-use the counter. This will allow us to achieve privacy with slightly lower
error.

At all times, k counters are stored as key-value pairs. We initialize the
sketch with dummy keys that are not part of U . This guarantees that we never
output any elements that are not part of the stream, assuming we remove the
dummy counters as post-processing.

The algorithm processes the elements of the stream one at a time. At
each step one of three updates is performed: (1) If the next element of the
stream is already stored the counter is incremented by 1. (2) If there is no
counter for the element and all k counters have a value of at least 1 they are
all decremented by 1. (3) Otherwise, one of the elements with a count of zero
is replaced by the new element.

In case (3) we always remove the smallest element with a count of zero.
This allows us to limit the number of keys that differ between sketches for
neighboring streams as shown in Lemma 67. The choice of removing the
minimum element is arbitrary but the order of removal must be independent
of the stream so that it is consistent between neighboring datasets. The limit
on differing keys allows us to obtain a slightly lower error for our private
mechanism. However, it is still possible to apply our mechanism with standard
implementations of MG. We discuss this in Section 8.

Algorithm 25: Misra-Gries (MG)

Input: Positive integer k and stream S ∈ UN

1 T ← {d+ 1, . . . , d+ k} // Start with k dummy
counters

2 ci ← 0 for all i ∈ T
3 foreach x ∈ S do
4 if x ∈ T then // Branch 1
5 cx ← cx + 1
6 else if ci ≥ 1 for all i ∈ T then // Branch 2
7 ci ← ci − 1 for all i ∈ T
8 else // Branch 3
9 Let y ∈ T be the smallest key satisfying

cy = 0
10 T ← (T ∪ {x}) \ {y}
11 cx ← 1

12 return T, c

The same guarantees about correctness hold for our version of the MG
sketch, as for the original version. This can be easily shown, as the original
version only differs in that it immediately removes any key whose counter is
zero. Since the counters for items not in the sketch are implicitly zero, one

DIFFERENTIALLY PRIVATE MISRA-GRIES SKETCH 145

can see by induction that the estimated frequencies by our version are exactly
the same as those in the original version. We still need this modified version,
as the set of keys it stores is different from the original version, which we use
below. The fact that the returned estimates are the same however allows us
to use the following fact

Fact 66 (Bose et al. Bose et al. [2003]). Let f̂(x) be the frequency estimates
given by an MG sketch of size k for n being the input size. Then for all x ∈ U ,
it holds that f̂(x) ∈ [f(x)− n/(k + 1), f(x)], where f(x) is the true frequency
of x in S.

Note that this is optimal for any mechanism that returns a set of at most
k elements. This is easy to see for an input stream that contains k+1 distinct
elements each with frequency n/(k + 1) since at least one element must be
removed.

We now analyze the value of MGS −MGS′ for S, S′ being neighboring
inputs (recall Definition 62). We will then use this in order to prove privacy.
As mentioned in Section 5, Chan et al. Chan et al. [2012] showed that the
ℓ1-sensitivity for Misra-Gries sketches is k. They show that this holds after
processing the element that differs for neighboring streams and use induction
to show that it holds for the remaining stream. Our analysis follows a sim-
ilar structure. We expand on their result by showing that the sets of stored
elements for neighboring inputs differ by at most two elements when using
our variant of Misra-Gries. We then show how all this can be used to get
differential privacy with only a small amount of noise.

Lemma 67. Let T, c ← MG(k, S) and T ′, c′ ← MG(k, S′) be the outputs of
Algorithm 25 on a pair of neighboring streams S ∼ S′ such that S′ is obtained
by removing an element from S. Then |T ∩ T ′| ≥ k − 2 and all counters not
in the intersection have a value of at most 1. Moreover, it holds that either
(1) ci = c′i − 1 for all i ∈ T ′ and cj = 0 for all j /∈ T ′ or (2) there exists an
i ∈ T such that ci = c′i + 1 and cj = c′j for all j ̸= i.

Proof. Let S ∼ S′ be pair of neighboring streams where S′ is obtained by
removing one element from S. We show inductively that the Lemma holds for
any such S and S′. Let w = T − T ′ and w′ = T ′ − T denote the set of keys
that are only in one sketch. Let c0 and c′0 denote the smallest element with
a zero count in the respective sketch when such an element exists. Then at
any point during execution after processing the element removed from S the
sketches are in one of the following states:

(S1) T = T ′ and ci = c′i − 1 for all i ∈ T .

(S2) There exist x1, x2 ∈ U such that w = {x1} and w′ = {x2}, cx1 = 0,
c′x2

= 1 and ci = c′i − 1 for all i ∈ T ∩ T ′.

146

CHAPTER 5. BETTER DIFFERENTIALLY PRIVATE APPROXIMATE
HISTOGRAMS AND HEAVY HITTERS USING THE MISRA-GRIES

SKETCH
(S3) T = T ′ and there exists x1 ∈ U such that cx1 = c′x1

+ 1 and ci = c′i for
all i ∈ T \ {x1}.

(S4) There exist x1, x2 ∈ U such that w = {x1} and w′ = {x2}, cx1 = 1,
c′x2

= 0 and ci = c′i for all i ∈ T ∩ T ′.

(S5) There exist x1, x2, x3 ∈ U such that cx1 = c′x1
+ 1, w = {x2}, w′ = {x3},

cx2 = 0, c′x3
= 0 and ci = c′i for all i ∈ T ∩ T ′ \ {x1}.

(S6) There exist x1, x2, x3, x4 ∈ U such that w = {x1, x2} and w′ = {x3, x4},
cx1 = 1, cx2 = c′x3

= c′x4
= 0, ci = c′i for all i ∈ T ∩ T ′ and x4 = c′0.

Let x = Si be the element in stream S which is not in stream S′. Since
the streams are identical in the first i − 1 steps the sketches are clearly the
same before step i. If there is a counter for x in the sketch we execute Branch
1 and the result corresponds to state S3. If there is no counter for x and no
zero counters we execute Branch 2 and the result corresponds to state S1.
Otherwise, the 3rd branch of the algorithm is executed and c0 is replaced by x
which corresponds to state S4. Therefore we must be in one of the states S1,
S3, or S4 for T, c← MG(k, (S1, . . . , Si)) and T ′, c′ ← MG(k, (S′

1, . . . , S
′
i−1)).

We can then prove inductively that the Lemma holds since the streams are
identical for the elements (Si+1, . . . , Sn). We have to consider the possibility
of each of the branches being executed for both sketches. The simplest case is
when the element has a counter in both sketches and Branch 1 is executed on
both inputs. This might happen in all states and we stay in the same state
after processing the element. But many other cases lead to new states.

Below we systematically consider all outcomes of processing an element
x ∈ U when the sketches start in each of the above states. When processing
each element, one of the three branches is executed for each sketch. This gives
us up to 9 combinations to check, although some are impossible for certain
states. Furthermore, when Branch 3 is executed we often have to consider
which element is replaced as it leads to different states. We refer to T, c and
T ′, c′ as sketch 1 and sketch 2, respectively.

State S1: If x ∈ T then x ∈ T ′ and Branch 1 is executed for both sketches.
Similarly, if Branch 2 is executed for sketch 1 it must also be executed for
sketch 2 as all counters are strictly larger. Therefore we stay in state S1 in
both cases. It is impossible to execute Branch 3 for sketch 2 since all counters
are non-zero by definition. As such the final case to consider is when x /∈ T
and there is a counter with value 0 in sketch 1. In this case, we execute Branch
3 for sketch 1 and Branch 2 for sketch 2. This results in state S4.

State S2: If x ∈ T we execute Branch 1 on sketch 1 and there are two
possible outcomes. If x ̸= x1 we also execute Branch 1 on sketch 2 and remain
in state S2. If x = x1 we execute Branch 2 on sketch 2 in which case there
are no changes to T or T ′ but now cx = 1 and ci = c′i for all i ∈ T ∩ T ′. As
such, we transitioned to state S4.

DIFFERENTIALLY PRIVATE MISRA-GRIES SKETCH 147

Since cx1 = 0 by definition Branch 2 is never executed on sketch 1 and
Branch 3 is never executed on sketch 2 as all counters are non-zero. If x = x2
Branch 3 is executed on sketch 1 and Branch 1 is executed for sketch 2. If
c0 = x1 the sketches have the same keys after processing x and transition to
state S1, otherwise if c0 ̸= x1 the sketches still differ for one key and remain
in state S2.

Finally, if Branch 3 is executed on sketch 1 and Branch 2 is executed on
sketch 2 we again have two possibilities. In both cases, the sketches store the
same count on all elements from T ∩ T ′ after processing x. If c0 = x1 it is
removed from T and replaced by x with cx = 1 which corresponds to state
S4. If c0 ̸= x1 we must have that c0 ∈ T ∩ T ′. The two sketches now differ
on exactly two keys after processing x. One of the two keys stored in sketch
2 that are not in sketch 1 must be the minimum zero key since the elements
c0 and x2 now have counts of zero in sketch 2 and c0 was the minimum zero
key in T ∩ T ′. Therefore we transition to state S6.

State S3: The simplest case is x ∈ T since then x ∈ T ′ and Branch 1 is
executed for both sketches. If Branch 2 is executed for sketch 1 and c′x1

̸= 0
Branch 2 is also executed for sketch 2. For both cases, we remain in state S3.
Instead, if c′x1

= 0 Branch 3 is executed for sketch 2. Since all counters are
decremented for sketch 1 and x1 is replaced in sketch 2 we transition to state
S2. Lastly, if Branch 3 is executed for sketch 1 it is also executed for sketch
2 and there are two cases. If the same element is removed we remain in state
S3. Otherwise, if x1 is replaced in sketch 2 we transition to state S4.

State S4: Sketch 2 contains a counter with a value of zero in states S4,
S5, and S6. Therefore Brach 2 is never executed on sketch 2 in the rest of
the proof. If Branch 1 is executed for both sketches we stay in the same state
as always but if x = x1 Branch 1 is executed for sketch 1 and Branch 3 is
executed for sketch 2. If c′0 = x2 then T = T ′ after processing x and we
transition to state S3. If c′0 ̸= x2 another element is removed from sketch 2
which must also have a count of zero in sketch 1 and we go to state S5.

If Branch 2 is executed on sketch 1 we know that c′x2
must be the only zero

counter in sketch 2. Therefore it does not matter if Branch 1 or 3 is executed
on sketch 2. For both cases, we set cx = 1 and the sketches differ in one key
which corresponds to state S2.

Finally, if Branch 3 is executed on sketch 1 we again have two cases that
lead to the same state. If x = x2 or c′0 = x2 the counter c′x2

is updated
or replaced but the counter that was removed from sketch 1 still remains in
sketch 2. Otherwise, we have c0 = c′0 and we replace the same counter in
sketches 1 and 2. Therefore we remain in state S4 in both cases.

State S5: Since by definition both sketches contain counters with a value
of zero, Branch 2 is never executed while in this state. If x ∈ T ∩T ′ we remain
in the same state as always. We have to consider the cases where x = x2,
x = x3, and x /∈ T ∪ T ′. The resulting state depends on the elements that are
replaced in the sketch. For x = x2 we transition to state S3 if c′0 = x3 and

148

CHAPTER 5. BETTER DIFFERENTIALLY PRIVATE APPROXIMATE
HISTOGRAMS AND HEAVY HITTERS USING THE MISRA-GRIES

SKETCH
remain in state S5 otherwise. The same argument shows that we transition
to state S3 or S5 based on c0 if x = x3. When x /∈ T ∪ T ′ we execute Branch
3 on both sketches. We transition to state S3 only if c0 = x2 and c′0 = x3
since otherwise both sketches still have a zero counter that is not stored in
the other sketch and we stay in state S5.

State S6: Similar to state S5, Branch 2 is never executed from this state.
Here we have to consider the five cases where x ∈ T ∩ T ′, x = x1, x = x2,
x ∈ w′, and x /∈ T ∪ T ′. We know that x4 is replaced whenever x /∈ T ′. If
x ∈ T ∩ T ′ we execute Branch 1 on both sketches and remain in state S6.
If x = x1 we transition to state S5 and for x = x2 we transition to state
S4. When x ∈ w′ there are two possibilities. We always have cx = c′x after
updating. If c0 = x2 the sketches will share k− 1 keys and transition to state
S4. If c0 ̸= x2 then another element that has a count of zero in both sketches
is replaced in sketch 1. We know that either this element or the remaining
zero-valued element of w′ must be the smallest zero-valued element in sketch
2. Therefore we remain in state S6.

The final case to consider is when x /∈ T ∪ T ′. In this case Branch, 3 is
executed for sketch 2 and x4 is replaced with x in T ′. If c0 = x2 we transition
to state S4. Otherwise, either x3 or the element that was replaced from sketch
1 must be the minimum element with a count of zero in sketch 2. As such, we
remain in state S6.

Next, we consider how to add noise to release the Misra-Gries sketch under
differential privacy. Recall that Chan et al. Chan et al. [2012] achieves privacy
by adding noise to each counter which scales with k. We avoid this by utilizing
the structure of sketches for neighboring streams shown in Lemma 67. We
sample noise from Laplace(1/ε) independently for each counter, but we also
sample one more random variable from the same distribution which is added
to all counters. Small values are then discarded using a threshold to hide
differences in the sets of stored keys between neighboring inputs. This is
similar to the technique used by e.g. Korolova et al. [2009]. The algorithm
takes the output from MG as input. We sometimes write PMG(k, S) as a
shorthand for PMG(MG(k, S)).

DIFFERENTIALLY PRIVATE MISRA-GRIES SKETCH 149

Algorithm 26: Private Misra-Gries (PMG)

Parameters: ε, δ > 0
Input : Output from Algorithm 25:

T, c← MG(k, S)
1 T̃ ← ∅
2 Sample η ∼ Laplace(1/ε)
3 foreach x ∈ T do
4 cx ← cx + η + Laplace(1/ε)
5 if cx ≥ 1 + 2 ln(3/δ)/ε then

6 T̃ ← T̃ ∪ {x}
7 c̃x ← cx

8 return T̃ , c̃

We prove the privacy guarantees in three steps. First, we show that chang-
ing either a single counter or all counters by 1 does not change the output
distribution significantly (Corollary 69). This assumes that, for neighboring
inputs, the set of stored elements is exactly the same. By Lemma 67, we have
that the difference between the sets of stored keys is small and the correspond-
ing counters are ≤ 1. Relying on the thresholding, we bound the probability
of outputting one of these keys (Lemma 70). Finally, we combine these two
lemmas to show that the privacy guarantees hold for all cases (we do this in
Lemma 71).

Lemma 68. Let us have x, x′ ∈ Rk such that one of the following three cases
holds

1. ∃i ∈ [k] such that |xi − x′i| = 1 and xj = x′j for all j ̸= i.

2. xi = x′i − 1 for all i ∈ [k].

3. xi = x′i + 1 for all i ∈ [k].

Then we have for any measurable set Z that

Pr[x+Laplace(1/ε)⊗k+Laplace(1/ε)1k ∈ Z] ≤ eε Pr[x′+Laplace(1/ε)⊗k+Laplace(1/ε)1k ∈ Z]

Proof. Throughout the proof, we construct sets by applying a translation to
all elements of another set. That is, for any ϕ ∈ Rk and measurable set Z we
define Z − ϕ = {a ∈ Rk|a+ ϕ ∈ Z}. We first focus on the simpler case (1). It
holds by the law of total expectation that

Pr[x+ Laplace(1/ε)⊗k + Laplace(1/ε)1k ∈ Z] =

EN∼Laplace(1/ε)

[
Pr[Laplace(1/ε)⊗k ∈ Z − x−N1k|N]

]
≤

eεEN∼Laplace(1/ε)

[
Pr[Laplace(1/ε)⊗k ∈ Z − x′ −N1k|N]

]
=

eε Pr[x′ + Laplace(1/ε)⊗k + Laplace(1/ε)1k ∈ Z]

150

CHAPTER 5. BETTER DIFFERENTIALLY PRIVATE APPROXIMATE
HISTOGRAMS AND HEAVY HITTERS USING THE MISRA-GRIES

SKETCH
where to prove the inequality, we used that for any measurable set A, it holds

Pr[Laplace(1/ε)⊗k ∈ A] ≤ eε Pr[Laplace(1/ε)⊗k ∈ A− ϕ]

for any ϕ ∈ Rk with ∥ϕ∥1 ≤ 1 (see Dwork et al. [2006b]). Specifically, we have
set A = Z − x−N1k and ϕ = x− x′ such that ∥ϕ∥1 = 1.

We now focus on the cases (2), (3). We will prove below that for x, x′

satisfying one of the conditions (2), (3) and for any measurable A,Z and N1 ∼
Laplace(1/ε)⊗k, it holds

Pr[x+N1 + Laplace(1/ε)1k ∈ Z|N1 ∈ A] ≤ eε Pr[x′ +N1 + Laplace(1/ε)1k ∈ Z|N1 ∈ A]

This allows us to argue like above:

Pr[x+ Laplace(1/ε)⊗k + Laplace(1/ε)1k ∈ Z] =

EN1∼Laplace(1/ε)⊗k

[
Pr[x+N1 + Laplace(1/ε)1k ∈ Z|N1]

]
≤

eεEN1∼Laplace(1/ε)⊗k

[
Pr[x′ +N1 + Laplace(1/ε)1k ∈ Z|N1]

]
=

eε Pr[x′ + Laplace(1/ε)⊗k + Laplace(1/ε)1k ∈ Z]

which would conclude the proof. Let g : R → Rk be the function g(a) = a1k

and define g−1(B) = {a ∈ R|g(a) ∈ B} and note that g is measurable. We
focus on the case (2); the same argument works for (3) as we discuss below.
It holds

Pr[x+N1 + Laplace(1/ε)1k ∈ Z|N1 ∈ A] =

Pr[Laplace(1/ε)1k ∈ Z − x−N1|N1 ∈ A] =

Pr[Laplace(1/ε) ∈ g−1(Z − x−N1)|N1 ∈ A] =

Pr[Laplace(1/ε) ∈ g−1(Z − x′ − 1k −N1)|N1 ∈ A] =

Pr[Laplace(1/ε) ∈ g−1(Z − x′ −N1)− 1|N1 ∈ A] ≤
eε Pr[Laplace(1/ε) ∈ g−1(Z − x′ −N1)|N1 ∈ A] =

eε Pr[Laplace(1/ε)1k ∈ Z − x′ −N1|N1 ∈ A] =

eε Pr[x′ +N1 + Laplace(1/ε)1k ∈ Z|N1 ∈ A].

To prove the inequality, we again used the standard result that for any mea-
surable A, it holds that Pr[Laplace(1/ε) ∈ A] ≤ eε Pr[Laplace(1/ε) ∈ A − 1].
The same holds for A + 1; this allows us to use the exact same argument in
case (3), in which the proof is the same except that −1 on lines 4,5 of the
manipulations is replaced by +1.

Corollary 69. Let T, c and T ′, c′ be two sketches such that T = T ′ and one
of following holds:

1. ∃i ∈ T such that |ci − c′i| = 1 and cj = c′j for all j ̸= i.

DIFFERENTIALLY PRIVATE MISRA-GRIES SKETCH 151

2. ci = c′i − 1 for all i ∈ T .

3. ci = c′i + 1 for all i ∈ T .

Then for any measurable set of outputs Z, we have:

Pr[PMG(T, c) ∈ Z] ≤ eε Pr[PMG(T ′, c′) ∈ Z]

Proof. Consider first a modified algorithm PMG′ that does not perform the
thresholding: that is, if we remove the condition on line 5. It can be easily
seen that PMG′ only takes the vector c and releases c + Laplace(1/ε)⊗k +
Laplace(1/ε)1k. We have just shown in Lemma 68 that this means that for
any measurable Z ′,

Pr[PMG′(T, c) ∈ Z ′] ≤ eε Pr[PMG′(T ′, c′) ∈ Z ′].

Let τ(x) = x for x ≥ 1 + 2 ln(3/δ)/ε and 0 otherwise. Since PMG(T, c) =
τ(PMG′(T, c)), it then holds

Pr[PMG(T, c) ∈ Z] = Pr[PMG′(T, c) ∈ τ−1(Z)] ≤
eε Pr[PMG′(T ′, c′) ∈ τ−1(Z)] = eε Pr[PMG(T ′, c′) ∈ Z]

as we wanted to show.

Next, we bound the effect on the output distribution from keys that differ
between sketches by δ.

Lemma 70. Let T, c and T ′, c′ be two sketches of size k and let T̂ = T ∩ T ′.
If we have that |T̂ | ≥ k − 2, ci = c′i for all i ∈ T̂ , and for all x /∈ T̂ , it holds
cx, c

′
x ≤ 1. Then for any measurable set Z, it holds

Pr[PMG(T, c) ∈ Z] ≤ Pr[PMG(T ′, c′) ∈ Z] + δ

Proof. Let PMG′(T, c) denote a mechanism that executes PMG(T, c) and
post-processes the output by discarding any elements not in T̂ . It is easy
to see that (a) Pr[PMG′(T, c) ∈ Z] = Pr[PMG′(T ′, c′) ∈ Z] since the in-
put sketches are identical for all elements in T̂ . Moreover, for any output
T̃ , c̃ ← PMG(T, c) for which T̃ ⊆ T̂ , the post-processing does not affect
the output. This gives us the following inequalities: (b) Pr[PMG(T, c) ∈
Z] ≤ Pr[PMG′(T, c) ∈ Z] + Pr[T̃ ̸⊆ T̂] and (c) Pr[PMG′(T ′, c′) ∈ Z] ≤
Pr[PMG(T, c) ∈ Z]+Pr[T̃ ′ ̸⊆ T̂]. Combining equations (a)−(c), we get the in-
equality Pr[PMG(T, c) ∈ Z] ≤ Pr[PMG(T ′, c′) ∈ Z]+Pr[T̃ ̸⊆ T̂]+Pr[T̃ ′ ̸⊆ T̂].

As such, the Lemma holds if Pr[T̃ ̸⊆ T̂] + Pr[T̃ ′ ̸⊆ T̂] ≤ δ. That is, it
suffices to prove that with probability at most δ any noisy count for elements
not in T̂ is at least 1 + 2 ln(3/δ)/ε. The noisy count for such a key can only
exceed the threshold if one of the two noise samples added to the key is at least
ln(3/δ)/ε. From Definition 64 we have Pr[Laplace(1/ε) ≥ ln(3/δ)/ε] = δ/6.

152

CHAPTER 5. BETTER DIFFERENTIALLY PRIVATE APPROXIMATE
HISTOGRAMS AND HEAVY HITTERS USING THE MISRA-GRIES

SKETCH
There are at most 4 keys not in T̂ which are in T ∪T ′ and therefore at most 6
noise samples affect the probability of outputting such a key (the 4 individual
Laplace noise samples and the 2 global Laplace noise samples, one for each
sketch). By a union bound the probability that any of these samples exceeds
ln(3/δ)/ε is at most δ.

We are now ready to prove the privacy guarantee of Algorithm 26.

Lemma 71. Algorithm 26 is (ε, δ)-differentially private for any k.

Proof. The Lemma holds if and only if for any pair of neighboring streams
S ∼ S′ and any measurable set Z we have:

Pr[PMG(T, c) ∈ Z] ≤ eε Pr[PMG(T ′, c′) ∈ Z] + δ,

where T, c ← MG(k, S) and T ′, c′ ← MG(k, S′) denotes the non-private
sketches for each stream.

We prove the guarantee above using an intermediate sketch that “lies be-
tween” T, c and T ′, c′. The sketch has support T ′ and we denote the counters
as ĉ. By Lemma 67, we know that |T ∩ T ′| ≥ k − 2 and all counters in c and
not in T ∩ T ′ are at most 1. We will now come up with some conditions on ĉ
such that if these conditions hold, the lemma follows. We will then prove the
existence of such ĉ below. Assume that ĉi = ci for all i ∈ T ∩ T ′ and ĉj ≤ 1
for all j ∈ T ′ \ T . Lemma 70 then tells us that

Pr[PMG(T, c) ∈ Z] ≤ Pr[PMG(T ′, ĉ) ∈ Z] + δ.

Assume also that one of the required cases for Corollary 69 holds between ĉ
and c′. We have

Pr[PMG(T ′, ĉ) ∈ Z] ≤ eε Pr[PMG(T ′, c′) ∈ Z].

Therefore, if such a sketch T ′, ĉ exists for all S and S′ the lemma holds since

Pr[PMG(T, c) ∈ Z] ≤ Pr[PMG(T ′, ĉ) ∈ Z] + δ ≤ eε Pr[PMG(T ′, c′) ∈ Z] + δ .

It remains to prove the existence of ĉ such that ĉi = ci for all i ∈ T ∩ T ′

and ĉj ≤ 1 for all j ∈ T ′ \ T and such that one of the conditions (1) − (3) of
Corollary 69 holds between ĉ and c′. We first consider neighboring streams
where S′ is obtained by removing an element from S. From Lemma 67 we have
two cases to consider. If ci = c′i − 1 for all i ∈ T ′ we simply set ĉ = c. Recall
that we implicitly have ci = 0 for i /∈ T . Therefore the sketch satisfies the two
conditions above since ĉi = ci for all i ∈ U and condition (2) of Corollary 69
holds. In the other case where ci = c′i + 1 for exactly one i ∈ T there are
two possibilities. If i ∈ T ′ we again set ĉ = c. When i /∈ T ′ there must exist
at least one element j ∈ T ′ such that c′j = 0 and j /∈ T . We set ĉj = 1 and
ĉi = c′i for all i ̸= j. In both cases ĉi = ci for all i ∈ T ∩ T ′ and ĉj is at most

DIFFERENTIALLY PRIVATE MISRA-GRIES SKETCH 153

one for j /∈ T . There is exactly one element with a higher count in ĉ than c′

which means that condition (1) of Corollary 69 holds.

If S is obtained by removing an element from S′ the cases from Lemma 67
are flipped. If ci − 1 = c′i for all i ∈ T and c′j = 0 for j /∈ T we set ĉi = ci
if i ∈ T and ĉi = 1 otherwise. It clearly holds that ĉi = ci for all i ∈ T ∩ T ′

and ĉj ≤ 1 for all j /∈ T . Since ĉi = c′i + 1 for all i ∈ T ′ condition (3) of
Corollary 69 holds. Finally, if ci + 1 = c′i for exactly one i ∈ T ′ we simply
set ĉ = c. ĉi = ci clearly holds for all i ∈ T ∩ T ′, ĉj = 0 for all j /∈ T , and
condition (1) of Corollary 69 holds between ĉ and c′.

Next, we analyze the error compared to the non-private sketch. We state
the error in terms of the largest error among all elements of the sketch. Recall
that we implicitly say that the count is zero for any element not in the sketch.

Lemma 72. Let T̃ , c̃← PMG(T, c) denote the output of Algorithm 26 for any
sketch T, c with |T | = k. Then with probability at least 1− β we have

c̃x ∈

[
cx −

2 ln
(
k+1
β

)
ε

− 1−
2 ln

(
3/δ
)

ε
, cx +

2 ln
(
k+1
β

)
ε

]

for all x ∈ T and c̃x = 0 for all x /∈ T .

Proof. The two sources of error are the noise samples and the thresholding
step. We begin with a simple bound on the absolute value of the Laplace
distribution.

Pr

[
|Laplace(1/ε)| ≥ ln((k + 1)/β)

ε

]
= 2·Pr

[
Laplace(1/ε) ≤ − ln((k + 1)/β)

ε

]
= β/(k+1) .

Since k + 1 samples are drawn we know by a union bound that the absolute
value of all samples is bounded by ln((k + 1)/β)/ε with probability at least
1−β. As such the absolute error from the Laplace samples is at most 2 ln((k+
1)/β)/ε for all x ∈ T since two samples are added to each count. Removing
noisy counts below the threshold potentially adds an additional error of at
most 1 + 2 ln(3/δ)/ε. It is easy to see that c̃x = 0 for all x /∈ T since the
algorithm never outputs any such elements.

Theorem 73. PMG(k, S) satisfies (ε, δ)-differential privacy. Let f(x) denote
the frequency of any element x ∈ U in S and let f̂(x) denote the estimated
frequency of x from the output of PMG(k, S). For any x with f(x) = 0 we
have f̂(x) = 0 and with probability at least 1− β we have for all x ∈ U

f̂(x) ∈

f(x)−
2 ln

(
k+1
β

)
ε

− 1− 2 ln(3/δ)

ε
− |S|
k + 1

, f(x) +
2 ln

(
k+1
β

)
ε

154

CHAPTER 5. BETTER DIFFERENTIALLY PRIVATE APPROXIMATE
HISTOGRAMS AND HEAVY HITTERS USING THE MISRA-GRIES

SKETCH
Moreover, the algorithm outputs all x, such that f̂(x) > 0 and there are

at most k such elements. PMG(k, S) uses 2k words of memory. The mean
squared error for any fixed element x ∈ U is bounded by E[(f̂(x) − f(x))2] ≤
3
(

1 + 2+2 ln(3/δ)
ε + |S|

k+1

)2
.

Proof. The space complexity is clearly as claimed, as we are storing at any time
at most k items and counters. We focus on proving privacy and correctness.

If f(x) = 0 we know that x /∈ T where T is the keyset after running
Algorithm 25. Since Algorithm 26 outputs a subset of T we have f̂(x) = 0.
The first part of the Theorem follows directly from Fact 66 and Lemmas 71
and 72.

We now bound the mean squared error. There are three sources of error.
Let r1 be the error coming from the Laplace noise, r2 from the thresholding,
and r3 the error made by the MG sketch. Then

E[(f̂(x)− f(x))2] = E[(r1 + r2 + r3)
2] ≤ 3(E[r21] + E[r22] + E[r23])

by equivalence of norms (for any dimension n vector v, ∥v∥1 ≤
√
n∥v∥2).

The errors r2, r3 are deterministically bounded r2 ≤ 1 + 2 ln(3/δ)/ε and
r3 ≤ |S|/(k + 1). E[r21] is the variance of the Laplace noise; we added two
independent noises each with scale 1/ε and thus variance 2/ε2 for a total
variance of 4/ε2. This finishes the proof.

Privatizing standard versions of MG

The privacy of our mechanism as presented in Algorithm 26 relies on our
variant of the Misra-Gries algorithm. Our sketch can contain elements with
a count of zero. However, elements with a count of zero are removed in the
standard version of the sketch. As such, sketches for neighboring datasets
can differ for up to k keys if one sketch stores k elements with a count of
1 and the other sketch is empty. It is easy to change Algorithm 26 to handle
these implementations. We simply increase the threshold to 1 + 2 ln

(
k+1
2δ

)
/ε

since the probability of outputting any of the k elements with a count of 1 is
bounded by δ.

Tips for practitioners

Here we discuss some technical details to keep in mind when implementing
our mechanism.

The output of the Misra-Gries algorithm is an associative array. In Al-
gorithm 26 we add appropriate noise such that the associative array can be
released under differential privacy. However, for some implementations of as-
sociative arrays such as hash tables the order in which keys are added affects
the data structure. Using such an implementation naively violates differential

PURE DIFFERENTIAL PRIVACY 155

privacy but it is easily solved either by outputting a random permutation of
the key-value pairs or using a fixed order e.g. sorted by key.

We present our mechanism with noise sampled from the Laplace distribu-
tion. However, the distribution is defined for real numbers which cannot be
represented on a finite computer. This is a known challenge and precision-
based attacks still exist on popular implementations Haney et al. [2022]. Since
the output of MG is discrete the distribution can be replaced by the Geometric
mechanism Ghosh et al. [2012] or one of the alternatives introduced in Bal-
cer and Vadhan [2019]. Our mechanism would still satisfy differential privacy
but it might be necessary to change the threshold in Algorithm 26 slightly
to ensure that Lemma 70 still holds. Our proof of Lemma 70 works for the
Geometric mechanism from Ghosh et al. [2012] when increasing the threshold
to 1 + 2⌈ln(6eε/((eε + 1)δ))/ε⌉.

Lastly, it is worth noting that the analysis for Lemma 70 is not tight. We
bound the probability of outputting a small key by bounding the value of all
relevant samples by ln(3/δ)/ε which is sufficient to guarantee that the sum of
any two samples does not exceed 2 ln(3/δ)/ε. This simplifies the proof and
presentation significantly however one sample could exceed ln(3/δ)/ε without
any pair of samples exceeding 2 ln(3/δ)/ε. A tighter analysis would improve
the constant slightly which might matter for practical applications.

Pure Differential Privacy

In this section, we discuss how to achieve ε-differential privacy. We cannot use
our approach from Section 5 where we add the same noise to all keys because
the set of stored keys can differ between sketches for neighboring datasets.
Instead, we achieve privacy by adding noise to all elements of U scaled to
the ℓ1-sensitivity. Chan et al. Chan et al. [2012] showed that the sensitivity
of Misra-Gries sketches scales with the number of counters. We show that a
simple post-processing step reduces the sensitivity of the sketch to 2 and the
worst-case error of the sketch is still n/(k + 1) where n = |S|. This allows us
to achieve an error of n/(k + 1) +O(log(d)/ε).

The ℓ1-sensitivity scales with the size of the sketch since the counts can
differ by 1 for all k elements between neighboring datasets. This happens
when the decrement step is executed on a given input one fewer or one more
time than on a neighboring input. We get around this case by post-processing
the sketch before adding noise. We first run the Misra-Gries algorithm on the
stream but we count how many times the counters were decremented. That
is, we count the number of times Branch 2 of Algorithm 25 was executed and
denote this count as γ. The Misra-Gries algorithm decrements the counters at
most ⌊n/(k + 1)⌋ times. We use this fact by first adding γ and then subtract-
ing n/(k + 1) from each counter in the sketch. We then remove all elements
with negative counters. Although we increase the error of the sketch for some

156

CHAPTER 5. BETTER DIFFERENTIALLY PRIVATE APPROXIMATE
HISTOGRAMS AND HEAVY HITTERS USING THE MISRA-GRIES

SKETCH
datasets, the worst-case error guarantee is still the same as at most n/(k+ 1)
has been subtracted from each count. Next, we show how this post-processing
step reduces the ℓ1-sensitivity to 2.

Let S ∼ S′ denote any pair of neighboring streams where S′ is obtained
by removing one element from S. Consider the effect of running the following
procedure on the Misra-Gries sketches for both streams (1) add γ and γ′ to
the counters of MGS and MGS′ , respectively (2) subtract |S|/(k + 1) from
the counters in both sketches (3) remove any negative counters from both
sketches. It can be shown that the new sketches are either identical or differ
by 1 in a single counter. Specifically, we may use the argument from the proof
of Lemma 67 to argue that we end in one of the 6 states introduced in that
proof before running the procedure. One may verify that the claim holds in
all 6 states. Specifically, we get γ = γ′ + 1 in the first 2 states and γ = γ′

for the final 4 states. The post-processing step we introduced in the previous
paragraph uses the length of the stream which differs by 1 between S and S′.
As such, there is an additional difference of 1/(k + 1) for each counter. The
ℓ1-sensitivity is bounded by 2 since 1 + k/(k + 1) < 2.

We achieve ε-differential privacy by adding noise to our new sketch. We
essentially use the same technique as Chan et al. Chan et al. [2012] but the
noise no longer scale linearly in k as the sensitivity is bounded by 2. Specif-
ically, we add noise sampled from Laplace(2/ε) independently to the count
of each element from U and release the top-k noisy counts. A simple union
bound shows us that with probability at least 1− β the absolute value of all
samples is bounded by 2 ln(d/β)/ε. Note that it might be infeasible to actu-
ally sample noise for each element when U is large; we refer to previous work
on how to implement this more efficiently Chan et al. [2012], Cormode et al.
[2012], Balcer and Vadhan [2019].

It is worth noting that the low sensitivity of the post-processed sketch
can also be utilized under (ε, δ)-differential privacy. We can use an approach
similar to Korolova et al. [2009]. They add noise to all non-zero counters and
remove noisy counts below a threshold to hide small counters. Applying the
standard approach for histograms would require a threshold with a small de-
pendence on k as neighboring sketches might disagree on all keys. However,
Aumüller et al. [2022] extended the technique to real-valued vectors by prob-
abilistically rounding elements with a value less than the ℓ1-sensitivity. If we
apply their technique directly we get a threshold of 4 + 2 ln(1/δ)/ε. This ap-
proach has error guarantees that match those from Theorem 73 up to constant
factors. However, this approach has worse guarantees than Algorithm 26 when
comparing to the non-private Misra-Gries sketch. By Lemma 72 the error of
Algorithm 26 is O(log(1/δ)/ε) with high probability (for sufficiently small δ).
Here the error is n/(k+ 1) +O(log(1/δ)/ε) since we subtract up to n/(k+ 1)
from the counters before adding noise.

PRIVATIZING MERGED SKETCHES 157

Privatizing merged sketches

In practice, it is often important that we may merge sketches. This is for ex-
ample commonly used when we have a dataset distributed over many servers.
Each dataset consists of multiple streams in this setting, and we want to
compute an aggregated sketch over all streams. We say that datasets are
neighboring if we can obtain one from the other by removing a single element
from one of the streams. If the aggregator is untrusted we must add noise to
each sketch before performing any merges. This is the setting in Chan et al.
[2012] and we can run their merging algorithm. However, since we add noise
to each sketch the error scales with the number of sketches. In particular, the
error from the thresholding step of Algorithm 26 scales linearly in the number
of sketches for worst-case input. In the rest of this section, we consider the
setting where aggregators are trusted. We can apply the post-processing step
from the previous section to each sketch before aggregating the counters of
each element. The ℓ1-sensitivity of the aggregated sketch is still bounded by 2
so we can use the approach from the previous section. However, the aggregated
sketch might have much more than k counters. This approach increases the
memory requirement of the aggregator. Next we consider a merging algorithm
where aggregators never store more than 2k counters.

Agarwal, Cormode, Huang, Phillips, Wei, and Yi Agarwal et al. [2013]
introduced the following simple merging algorithm in the non-private set-
ting. Given two Misra-Gries sketches T1, c1 ← MG(k, S(1)) and T2, c2 ←
MG(k, S(2)) they first compute the sum of all counters c1 + c2. There are up
to 2k counters at this point. They subtract the value of the k + 1’th largest
counter from all elements. Finally, any non-positive counters are removed
leaving at most k counters. They show that merged sketches have the same
worst-case guarantee as non-merged Misra-Gries sketches. That is, if we com-
pute a Misra-Gries sketch for each stream (S(1), . . . , S(l)) and merge them into
a single sketch, the frequency estimate of all elements is at most N/(k + 1)
less than the true frequency. Here N is the total length of all streams. This
holds for any order of merging and the streams do not need to have the same
length.

Unfortunately, the structure between neighboring sketches where either a
single counter or exactly k counters differ by 1 breaks down when merging.
Therefore we cannot run Algorithm 26 on the merged sketch. However, as we
show below, the global sensitivity of merged sketches is independent of the
number of merges. The sensitivity only depends on the number of counters.
We first show a property for a single merge operation; this will allow us to
bound the sensitivity for any number of merges. Note that unlike in the pre-
vious section, we do not limit the number of keys that differ between sketches
and we do not store keys with a count of zero.

Lemma 74. Let T1, c1, T
′
1, c

′
1 and T2, c2 denote Misra-Gries sketches of size k

158

CHAPTER 5. BETTER DIFFERENTIALLY PRIVATE APPROXIMATE
HISTOGRAMS AND HEAVY HITTERS USING THE MISRA-GRIES

SKETCH
and denote the sketches merged with the algorithm above as T̂ , ĉ← Merge(T1, c1, T2, c2)
and T̂ ′, ĉ′ ← Merge(T ′

1, c
′
1, T2, c2). If T

′
1 ⊆ T1 and c1i−c′1i ∈ {0, 1} for all i ∈ U

then at least one of the following holds (1) T̂ ′ ⊆ T̂ and ĉi − ĉ′i ∈ {0, 1} for all
i ∈ U or (2) T̂ ⊆ T̂ ′ and ĉ′i − ĉi ∈ {0, 1} for all i ∈ U .

Proof. Let c̄ and c̄′ denote the merged counters before subtracting and remov-
ing values. Then clearly c̄i − c̄′i ∈ {0, 1} for all i ∈ U . Therefore we have that
c̄k+1−c̄′k+1 ∈ {0, 1} where c̄k+1 denotes the value of the k+1’th largest counter
in c̄. Note that it does not matter if the k + 1’th largest counter describes a
different element. If c̄k+1 = c̄′k+1 we subtract the same value from each sketch
and we have ĉi − ĉ′i ∈ {0, 1} for all i ∈ U . If c̄k+1 − c̄′k+1 = 1 we subtract one
more from each count in ĉ and we have ĉ′i − ĉi ∈ {0, 1} for all i ∈ U .

Corollary 75. Let (S(1), . . . , S(l)) and (S′(1), . . . , S′(l)) denote two sets of
streams such that S(i) ∼ S′(i) for one i ∈ [l] and S(j) = S′(j) for any j ̸= i.
Let T, c and T ′, c′ be the result of merging Misra-Gries sketches computed on
both sets of streams in any fixed order. Then c and c′ differ by 1 for at most
k elements and agree on all other counts.

Proof. It is clearly true for sketches of a pair of neighboring datasets by
Lemma 67. It holds by induction after each merging operation by Lemma 74.

Since the ℓ1-sensitivity is k we can use the algorithm in Chan et al. [2012]
that adds noise with magnitude k/ε to all elements in U and keeps the top-
k noisy counts. If we only add noise to non-zero counts we can hide that
up to k keys can change between neighboring inputs with a threshold. The
two approaches have expected maximum error compared to the non-private
merged sketch of O(k log(d)/ε) and O(k log(k/δ)/ε), respectively. For (ε, δ)-
differential privacy we can also utilize that the ℓ2-sensitivity is

√
k because

counters only differ by 1. This allows us to add noise that scales slower with k
using the Gaussian Sparse Histogram Mechanism Wilkins et al. [2024] which
we discuss further in the next section.

User-level Differential Privacy

So far we considered the setting where a user has exactly one element. In this
section, we consider the more general setting where a user contributes up to
m distinct elements. Specifically, this means that the input is a stream S =
(S1, S2, . . . , Sn−1, Sn) where for all i ∈ [n] we have Si ⊆ U and |Si| ≤ m. Our
goal is to estimate the frequency of each element that is f(x) =

∑
i∈[n][x ∈ Si].

We denote the total length of the stream as N =
∑

i∈[n] |Si|. If we want to
compute a MG sketch in this setting we have to flatten the input. We denote
by Ŝ a stream created by processing the sets in S one at a time by iterating
over each element in the set in some fixed order (e.g. ascending order).

USER-LEVEL DIFFERENTIAL PRIVACY 159

We first show that Algorithm 26 satisfies differential privacy in this setting.
The magnitude of noise and the threshold increase as a function of m. We
then introduce a new sketch with similar error guarantees to the MG sketch
that can be released with less noise than Algorithm 26 for many parameters
in this setting. Note that throughout this section we assume that k > m.
This is a fair assumption because the error guarantees of the MG sketch are
meaningless when m > k because N/(k+ 1) = (n ·m)/(k+ 1) ≥ n if |Si| = m
for all i.

We start by restating the group privacy property of differential privacy.

Lemma 76 (Group Privacy (Following Dwork and Roth [2014])). Let M be
a mechanism satisfying (ε, δ)-differential privacy where one stream of a neigh-
boring pair of streams is obtained by removing 1 element from the other. Then
M satisfies (mε,memεδ)-differential privacy for neighboring streams where
one stream is obtained by adding or removing at most m elements from the
other.

This allows us to upper bound the privacy parameters when streams differ
by multiple elements.

Lemma 77. Let Ŝ be the flattened version of the stream S. Then releasing
PMG(k, Ŝ) with parameters ε = ε′/m and δ = δ′/(meε

′
) satisfies (ε′, δ′)-

differential privacy.

Proof. PMG(k, Ŝ) satisfies (ε, δ)-differential privacy for streams differing in a
single element by Lemma 71. For any neighboring streams S ∼ S′ we have
that wither Ŝ can be created by removing at most m elements from Ŝ′ or vice-
versa. It follows from Lemma 76 that PMG(k, Ŝ) satisfies (ε′, δ′)-differential
privacy as ε′ = mε and δ′ = memεδ.

Since the proof above does not depend on the fact that the elements of a
user are distinct and appear in consecutive order the algorithm can be used
in an even more general setting.

Corollary 78. Algorithm 26 with the parameters of Lemma 77 satisfies (ε′, δ′)-
differential privacy under a definition of neighboring streams where one stream
is obtained from the other by adding or removing up to m (possibly duplicate)
elements.

We can use a similar argument to achieve pure differential privacy when
streams differ by multiple elements using our technique from Section 8.

Lemma 79. Let S ∈ UN be a stream of elements where a neighboring stream
S′ is obtained from S by adding or removing up to m elements. If we compute
a MG sketch of S followed by the post-processing step from Section 8, we can
release the sketch under ε-DP using the technique of Chan et al. [2012] when
noise is sampled from Laplace(2m/ε).

160

CHAPTER 5. BETTER DIFFERENTIALLY PRIVATE APPROXIMATE
HISTOGRAMS AND HEAVY HITTERS USING THE MISRA-GRIES

SKETCH
Proof. It follows from Lemma 76 since the mechanism satisfies (ε/m)-differential
privacy for streams differing by 1 element because the ℓ1-sensitivity is bounded
by 2 as discussed in Section 8.

Algorithm 26 and the mechanism by Chan et al. [2012] relies on noise from
the Laplace distribution. This choice works well for the settings of Sections 5
and 8. However, when users have multiple distinct items we can instead use
Gaussian noise under (ε, δ)-differential privacy. The magnitude of Gaussian
noise required for differential privacy scales with the ℓ2-sensitivity rather than
the ℓ1-sensitivity which is the case for Laplace noise. If we consider this setting
of this section without the memory constraints it is clear that a user changes at
most m distinct counts by 1 each. The ℓ1-sensitivity is m but the ℓ2-sensitivity
is only

√
m.

We next discuss a general mechanism for releasing sketches using Gaussian
noise. The mechanism is similar to the technique with Laplace noise by Ko-
rolova et al. [2009]. The idea is to add noise from a Gaussian distribution to
all non-zeroes counters and then remove small noisy counts. This is known
as the Gaussian Sparse Histogram Mechanism. Karrer, Kifer, Wilkins, and
Zhang Wilkins et al. [2024] gave an exact analysis of the parameters required
for the mechanism to satisfy (ε, δ)-DP. They consider a more general version
of the mechanism, and we restate their result for our setting in Theorem 80.

Theorem 80 (Gaussian Sparse Histogram Mechanism (GSHM) - Follow-
ing [Wilkins et al., 2024, Theorem 5.4]). Let T, c and T ′, c′ be frequency
sketches for streams S and S′, such that for any neighboring pair S ∼ S′, the
counters c and c′ differ for at most l counts and agree on the count for all other
elements. The differing counts are either (a) all 1 higher in c than in c′ or (b)
all 1 lower in c than in c′. Then the Gaussian Sparse Histogram Mechanism,
denoted GSHM(T, c, l, σ, τ), is the mechanism that adds noise from N (0, σ2)
independently to each non-zero count in c and removes all noisy counts below
the threshold 1 + τ . The mechanism satisfies (ε, δ)-differential privacy if and
only if the following inequality holds

max

[
1− Φ

(τ
σ

)l
,

max
j∈[l]

1− Φ
(τ
σ

)l−j
+ Φ

(τ
σ

)l−j
[
Φ

(√
j

2σ
− (ε− γ)σ√

j

)
− eε−γΦ

(
−
√
j

2σ
− (ε− γ)σ√

j

)]
,

max
j∈[l]

Φ

(√
j

2σ
− (ε+ γ)σ√

j

)
− eε+γΦ

(
−
√
j

2σ
− (ε+ γ)σ√

j

)]
≤ δ,

where γ = (l − j) log Φ
(
τ
σ

)
.

The inequality of Theorem 80 can be difficult to parse. We present simpler
parameters for the Gaussian Sparse Histogram Mechanism below. Note that
our analysis is far from tight and a deployment of the GSHM should preferably

USER-LEVEL DIFFERENTIAL PRIVACY 161

set parameters using the exact analysis presented in Theorem 80. We present
the version with worse parameters only because it is easier to read off the
asymptotic behavior of the mechanism.

Lemma 81. Let T, c, T ′, c′ and GSHM(T, c, l, σ, τ) all be defined as in Theo-
rem 80. GSHM(T, c, l, σ, τ) satisfies (ε, δ)-differential privacy when ε < 1 for
σ =

√
l2 ln(2.5/δ)/ε and τ =

√
2 ln(2l/δ)σ.

Proof. We use a proof similar to that currently used for the Google Differential
Privacy library Google Anonymization Team where the budget for δ is split
between the noise and the threshold. Let E0 denote the event where only
counters that are in both sketches are above the threshold. We useM(x) and
M(x′) to denote GSHM(T, c, l, σ, τ) and GSHM(T ′, c′, l, σ, τ), respectively. We
have that

Pr[M(x) ∈ Z] = Pr[M(x) ∈ Z|E0] Pr[E0] + Pr[M(x) ∈ Z|¬E0] Pr[¬E0]

≤ Pr[M(x) ∈ Z|E0] Pr[E0] + δ/2

≤ (eε Pr[M(x′) ∈ Z|E0] + δ/2) Pr[E0] + δ/2

≤ eε Pr[M(x′) ∈ Z and E0] + δ/2 + δ/2

≤ eε Pr[M(x′) ∈ Z] + δ .

The first inequality follows from a union bound and the fact that Pr[N (0, σ2) >
t] ≤ e−(t/σ)2/2 for any positive t. The second inequality follows from [Dwork
and Roth, 2014, Theorem A.1] since ∆2 =

√
l.

As seen above the noise and threshold for the Gaussian Sparse Histogram
Mechanism scales with the ℓ2-sensitivity rather than the ℓ1-sensitivity which
is the case for the Laplace noise. Adding or removing a user to or from the
stream only changes the true frequency of any x ∈ U by 1. As such the ℓ2
distance between the frequencies for any pair of neighboring streams S ∼ S′

is
√∑

x∈U (f(x)− f(x′))2 ≤
√
m. We might hope that the ℓ2-sensitivity of

the MG sketch is low, or perhaps that we can use a technique similar to
Algorithm 26 with Gaussian noise. Alternatively, we could remove small values
using the post-processing from Section 8 if that guaranteed low ℓ2-sensitivity.
Unfortunately, that is not the case because there exist neighboring streams
where a single counter differs by m. The statement is true even if we perform
the post-processing from Section 8.

Lemma 82. Let T, c and T ′, c′ denote MG sketches of size k for a pair of
neighboring streams S ∼ S′. There exist neighboring streams such that cx −
c′x = m for some element x ∈ U .

Proof. There are many such pairs of streams, here we give an example of a
pair where all counters for elements other than x are zero in both sketches. Let
Sk+1 be the user that is removed from S to obtain S′. Let (S1, S2, . . . , Sk−1, Sk)

162

CHAPTER 5. BETTER DIFFERENTIALLY PRIVATE APPROXIMATE
HISTOGRAMS AND HEAVY HITTERS USING THE MISRA-GRIES

SKETCH
contain exactly m copies of k distinct elements that does not include x. This is
always possible for any m ≤ k by cycling through the same order of k elements
and taking m elements at a time. E.g, for m = 2 and items {1, 2, 3} the stream
could be ({1, 2}, {3, 1}, {2, 3}). If Sk+1 contains m elements not in the sketch
all counters are decremented and the sketch for S is empty after processing
Sk+1. Now, the rest of the stream contains only copies of the singleton {x}.
After processing Sk+1+m the sketch for S has a single counter cx = m while
the sketch for S′ is empty. Furthermore, if we extend the streams further we
have cx = |S| − k − 1 and c′x = |S| − k − 1−m.

Since there exist neighboring streams for which the MG sketch differs by m
for a single counter we must add noise with magnitude scaled to m to satisfy
differential privacy. We also cannot hope to avoid these problematic inputs
using some post-processing on small counters similar to Section 8 because the
counter that differs by m can be arbitrarily large for long streams. We must
use a different sketching algorithm to remove the linear dependency on m.
In Algorithm 27 we present a novel frequency sketch. Our sketch is similar
in spirit to the MG sketch as it is a generalization of the original MG sketch
for sets. The key difference is that we always increment all counters for the
elements of a user and decrement at most once per user instead of once per
element.

Algorithm 27: Privacy-Aware Misra-Gries
Sketch (PAMG)

Input: Positive integer k and stream
S = (S1, S2, . . . , Sn−1, Sn)

1 T ← ∅
2 foreach Si ∈ S do
3 foreach x ∈ Si do
4 if x ∈ T then
5 cx ← cx + 1
6 else
7 T ← T ∪ {x}
8 cx ← 1

9 if |T | > k then
10 foreach x ∈ T do
11 cx ← cx − 1
12 if cx = 0 then
13 T ← T \ {x}

14 return T, c

USER-LEVEL DIFFERENTIAL PRIVACY 163

We start our analysis by showing that the error guarantees of Algorithm 27
match the MG sketch.

Lemma 83. Let f̂(x) be the frequency estimates given by Algorithm 27 with
size k for N being the input size. Then for all x ∈ U , it holds that f̂(x) ∈
[f(x)− ⌊N/(k + 1)⌋, f(x)], where f(x) is the true frequency of x in S.

Proof. The proof is similar to the analysis of the MG sketch by Bose et al.
[2003]. Notice that similar to the MG sketch, we only introduce errors when
decrementing counters. The error of any estimate f̂(x) is exactly the number
of times the counter for x was decremented on line 11. As such, we can bound
the maximum error of all counters by the number of times the condition on
line 9 evaluates to true. Notice that whenever the condition is true the sum of
all counters is decreased by at least k+1. Since the sum is incremented exactly
N times and counters are never negative this happens at most ⌊N/(k + 1)⌋
times.

Next, we bound the sensitivity of Algorithm 27.

Lemma 84. Let T, c← PAMG(k, S) and T ′, c′ ← PAMG(k, S′) be the outputs
of Algorithm 27 on a pair of neighboring streams S ∼ S′. Then it holds that
either, (1) T ′ ⊆ T and ci − c′i = {0, 1} for all i ∈ T or (2) T ⊆ T ′ and
c′i − ci = {0, 1} for all i ∈ T ′.

Proof. We first show that the condition holds after processing the user that
is only present in one of the streams. Without loss of generality consider the
case where S′ is obtained by removing Si from S. Since the two cases of the
lemma are symmetric the proof is the same if S is obtained by removing some
user S′

i from S′. Since the sketch is deterministic the sketches for the two
streams are identical after processing Si−1. The sketch for S then processes
Si. After running the loop on Lines 3-8 the count for each element in Si is
1 higher compared to the sketch for S′. If the condition on Line 9 evaluates
to false we finished processing Si and the state corresponds to case (1) of the
lemma. If the condition is true we decrement all counters by 1 and remove
elements with a count of 0. The state then corresponds to case (2) of the
lemma.

We now show that if one of the conditions holds before processing some
user Sj one of the conditions holds after processing Sj . This proves the lemma
by induction. Assume that case (1) of the lemma holds before processing Sj .
The proof is identical for case (2) due to symmetry. In each iteration of the
loop on Lines 3-8 we increment the same counter in both sketches which does
not affect the condition of case (1). As such, we only have to consider the
effect of decrementing counters. If we either do not decrement the counters
in any sketch or we decrement the counters in both sketches the state after
processing Sj still corresponds to case (1). However, if |T | > k ≥ |T ′| we only

164

CHAPTER 5. BETTER DIFFERENTIALLY PRIVATE APPROXIMATE
HISTOGRAMS AND HEAVY HITTERS USING THE MISRA-GRIES

SKETCH
decrement the counters in c. The state then corresponds to case (2). Note
that we never decrement the counters in c′ without decrementing the counters
in c since we have that |T | ≥ |T ′|.

As mentioned in Section 8 it is often important in practice that we can
merge sketches. A nice property of Algorithm 27 is that the sensitivity has the
structure we used to bound the sensitivity of merged sketches. The PAMG
sketch can be seen as a special case of the merging algorithm discussed in
Section 8. As such, merging the sketches from Algorithm 27 does not increase
sensitivity.

Corollary 85. Let (S(1), . . . , S(l)) and (S′(1), . . . , S′(l)) denote sets of streams
such that S(i) ∼ S′(i) for one i ∈ [l] and S(j) = S′(j) for any j ̸= i. Let T, c
and T ′, c′ be the result of merging PAMG sketches computed on both sets of
streams in any fixed order using the merging algorithm from Section 8. Then
it holds that either, (1) T ′ ⊆ T and ci− c′i = {0, 1} for all i ∈ T or (2) T ⊆ T ′

and c′i − ci = {0, 1} for all i ∈ T ′.

Proof. It holds by induction and Lemma 74. The condition required by
Lemma 74 holds for sketches of any pair of neighboring streams by Lemma 84.

Lemma 86. Let T, c be the result of merging PAMG sketches of size k com-
puted on a set of streams using the merging algorithm from Section 8. Let f(x)
be the true frequency of x across all streams and let M be the total number of
elements across all streams. Then for all x ∈ U it holds that

cx ∈
[
f(x)− M

k + 1
, f(x)

]
Proof. Agarwal et al. Agarwal et al. [2013] show that this holds for the MG
sketch in Lemma 1 and Theorem 1 of their paper. They used the properties
of the MG sketch that error is only introduced when decrementing counters,
and counters for k + 1 distinct elements are decremented each time. Since at
least k+1 counters for distinct elements are decremented in Algorithm 27 the
lemma follows from their proof.

We are now ready to state our theorem for this section.

Theorem 87. Let (S(1), . . . , S(l)) and (S′(1), . . . , S′(l)) denote sets of streams
such that S(i) ∼ S′(i) for one i ∈ [l] and S(j) = S′(j) for any j ̸= i. Let T, c
and T ′, c′ be the result of merging PAMG sketches of size k computed on both
sets of streams in any fixed order using the merging algorithm from Section 8.
Then releasing the output of GSHM(T, c, k, σ, τ) where σ and τ are chosen
according to Theorem 80 satisfies (ε, δ)-differential privacy. Let f̂(x) be the
estimate of the true frequency f(x) across all streams and let M denote the

OPEN PROBLEMS 165

total number of elements across all streams. Then we have for all x ∈ U with
probability at least 1− 2δ that

f̂(x) ∈
[
f(x)− M

k + 1
− 2τ − 1, f(x) + τ

]
Proof. The privacy guarantees follow directly from Corollary 85 and Theo-
rem 80. The three sources of error are the estimation error of the non-private
sketch, the noise added to each counter, and the error from removing val-
ues below the threshold. The error of the merged sketch is at most M

k+1 by
Lemma 86. From the first part of the condition of Theorem 80 we have that
1−Φ(τσ)k ≤ δ. That is, the k samples of Gaussian noise are all bounded by τ
with probability at least 1− δ. By symmetry and a union bound the absolute
value of the noise is bounded by τ with probability at least 1− 2δ. Removing
noisy counters below the thresholding adds error at most 1 + τ .

Open Problems

In Section 8 we introduced a frequency sketch for a stream of users each with
up to m elements. Our sketch has error guarantees similar to the MG sketch
and the ℓ2-sensitivity of the sketch with size k is

√
k. The main open prob-

lem that we leave is if there exists a sketch with similar error guarantees and
ℓ2-sensitivity of

√
m or O (

√
m). This would allow us to add noise to the

sketch with magnitude matching the non-streaming setting. The sensitivity
of our sketch exceeds O (

√
m) because the number of elements that are decre-

mented when the sketch is full can differ between neighboring sketches. A
counter-based sketch with low sensitivity likely must ensure that the number
of decremented counters remains stable. We experimented with some variants
that decremented a fixed number of elements. Unfortunately, they had higher
sensitivity than our sketch as they did not have the property that all counts
differ by at most 1.

Bibliography

Get followers/ids — docs — twitter developer platform. URL
https://developer.twitter.com/en/docs/twitter-api/v1/

accounts-and-users/follow-search-get-users/api-reference/

get-followers-ids.

Raghavendra Addanki, Andrew McGregor, and Cameron Musco. Non-
adaptive edge counting and sampling via bipartite independent set queries.
arXiv preprint arXiv:2207.02817, 2022.

Pankaj K. Agarwal, Graham Cormode, Zengfeng Huang, Jeff M. Phillips,
Zhewei Wei, and Ke Yi. Mergeable summaries. ACM Trans. Database
Syst., 38(4), dec 2013. ISSN 0362-5915. doi: 10.1145/2500128. URL https:

//doi.org/10.1145/2500128.

Maryam Aliakbarpour, Amartya Shankha Biswas, Themis Gouleakis, John
Peebles, Ronitt Rubinfeld, and Anak Yodpinyanee. Sublinear-Time Algo-
rithms for Counting Star Subgraphs via Edge Sampling. Algorithmica, 80
(2):668–697, feb 2018a. ISSN 14320541. doi: 10.1007/s00453-017-0287-3.

Maryam Aliakbarpour, Amartya Shankha Biswas, Themis Gouleakis, John
Peebles, Ronitt Rubinfeld, and Anak Yodpinyanee. Sublinear-time algo-
rithms for counting star subgraphs via edge sampling. Algorithmica, 80(2):
668–697, 2018b.

Martin Anthony and Peter L. Bartlett. Neural Network Learning: Theo-
retical Foundations. Cambridge University Press, 1999. doi: 10.1017/
CBO9780511624216.

Apple. Differential privacy overview - apple. https://www.apple.com/

privacy/docs/Differential_Privacy_Overview.pdf. [Online; accessed
12-August-2023].

AC Armenakis, LE Garey, and RD Gupta. An adaptation of a root finding
method to searching ordered disk files. BIT Numerical Mathematics, 25(4):
561–568, 1985.

167

https://developer.twitter.com/en/docs/twitter-api/v1/accounts-and-users/follow-search-get-users/api-reference/get-followers-ids
https://developer.twitter.com/en/docs/twitter-api/v1/accounts-and-users/follow-search-get-users/api-reference/get-followers-ids
https://developer.twitter.com/en/docs/twitter-api/v1/accounts-and-users/follow-search-get-users/api-reference/get-followers-ids
https://doi.org/10.1145/2500128
https://doi.org/10.1145/2500128
https://www.apple.com/privacy/docs/Differential_Privacy_Overview.pdf
https://www.apple.com/privacy/docs/Differential_Privacy_Overview.pdf

168 BIBLIOGRAPHY

Sepehr Assadi. Lecture 3. URL https://people.cs.rutgers.edu/~sa1497/

courses/cs514-s20/lec3.pdf.

Sepehr Assadi. CS 514: Advanced Algorithms II-Sublinear Algorithms 1
Sublinear Time Algorithms for Graphs. Technical report, Rutgers Uni-
versity, 2020. URL https://www.cs.rutgers.edu/{~}sa1497/courses/

cs514-s20/lec3.pdf.

Sepehr Assadi, Michael Kapralov, and Sanjeev Khanna. A simple sublinear-
time algorithm for counting arbitrary subgraphs via edge sampling. In In-
novations in Theoretical Computer Science Conference ITCS, volume 124 of
LIPIcs, pages 6:1–6:20. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik,
2019a.

Sepehr Assadi, Michael Kapralov, and Sanjeev Khanna. A Simple Sublinear-
Time Algorithm for Counting Arbitrary Subgraphs via Edge Sampling.
In Avrim Blum, editor, 10th Innovations in Theoretical Computer Sci-
ence Conference (ITCS 2019), volume 124 of Leibniz International Proceed-
ings in Informatics (LIPIcs), pages 6:1–6:20, Dagstuhl, Germany, 2019b.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik. ISBN 978-3-95977-095-
8. doi: 10.4230/LIPIcs.ITCS.2019.6. URL https://drops-dev.dagstuhl.

de/entities/document/10.4230/LIPIcs.ITCS.2019.6.

Martin Aumüller, Christian Janos Lebeda, and Rasmus Pagh. Represent-
ing sparse vectors with differential privacy, low error, optimal space, and
fast access. Journal of Privacy and Confidentiality, 12(2), Nov. 2022. doi:
10.29012/jpc.809. URL https://journalprivacyconfidentiality.org/

index.php/jpc/article/view/809.

Victor Balcer and Salil Vadhan. Differential privacy on finite computers. Jour-
nal of Privacy and Confidentiality, 9(2), Sep. 2019. doi: 10.29012/jpc.
679. URL https://journalprivacyconfidentiality.org/index.php/

jpc/article/view/679.

Daniel Barth-Jones. The’re-identification’of governor william weld’s medical
information: a critical re-examination of health data identification risks and
privacy protections, then and now. Then and Now (July 2012), 2012.

Raef Bassily, Kobbi Nissim, Uri Stemmer, and Abhradeep Guha Thakurta.
Practical locally private heavy hitters. Advances in Neural Information
Processing Systems, 30, 2017.

Omri Ben-Eliezer, Talya Eden, Joel Oren, and Dimitris Fotakis. Sampling
multiple nodes in large networks: Beyond random walks, 2021.

Suman K Bera and C Seshadhri. How to count triangles, without seeing
the whole graph. In Proceedings of the 26th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, pages 306–316, 2020.

https://people.cs.rutgers.edu/~sa1497/courses/cs514-s20/lec3.pdf
https://people.cs.rutgers.edu/~sa1497/courses/cs514-s20/lec3.pdf
https://www.cs.rutgers.edu/{~}sa1497/courses/cs514-s20/lec3.pdf
https://www.cs.rutgers.edu/{~}sa1497/courses/cs514-s20/lec3.pdf
https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2019.6
https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2019.6
https://journalprivacyconfidentiality.org/index.php/jpc/article/view/809
https://journalprivacyconfidentiality.org/index.php/jpc/article/view/809
https://journalprivacyconfidentiality.org/index.php/jpc/article/view/679
https://journalprivacyconfidentiality.org/index.php/jpc/article/view/679

BIBLIOGRAPHY 169

Lorenzo Beretta and Jakub Tětek. Better sum estimation via weighted
sampling. ACM Trans. Algorithms, mar 2024. ISSN 1549-6325. doi:
10.1145/3650030. URL https://doi.org/10.1145/3650030. Just Ac-
cepted.

Anup Bhattacharya, Arijit Bishnu, Arijit Ghosh, and Gopinath Mishra.
Faster counting and sampling algorithms using colorful decision oracle. In
39th International Symposium on Theoretical Aspects of Computer Science
(STACS 2022). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2022.

Amartya Shankha Biswas, Talya Eden, and Ronitt Rubinfeld. Towards a
decomposition-optimal algorithm for counting and sampling arbitrary mo-
tifs in sublinear time. In Approximation, Randomization, and Combinato-
rial Optimization. Algorithms and Techniques, APPROX/RANDOM 2021,
to appear, 2021a.

AS Biswas, T Eden, and R Rubinfeld. Towards a decomposition-optimal
algorithm for counting and sampling arbitrary motifs in sublinear time. In
Random, 2021b.

Jeremiah Blocki, Elena Grigorescu, Tamalika Mukherjee, and Samson
Zhou. How to make your approximation algorithm private: A black-box
differentially-private transformation for tunable approximation algorithms
of functions with low sensitivity. arXiv preprint arXiv:2210.03831, 2022.

Jonas Böhler and Florian Kerschbaum. Secure multi-party computation of
differentially private heavy hitters. In Yongdae Kim, Jong Kim, Giovanni
Vigna, and Elaine Shi, editors, CCS ’21: 2021 ACM SIGSAC Conference
on Computer and Communications Security, Virtual Event, Republic of Ko-
rea, November 15 - 19, 2021, pages 2361–2377. ACM, 2021. doi: 10.1145/
3460120.3484557. URL https://doi.org/10.1145/3460120.3484557.

Prosenjit Bose, Evangelos Kranakis, Pat Morin, and Yihui Tang. Bounds for
frequency estimation of packet streams. In Jop F. Sibeyn, editor, SIROCCO
10: Proceedings of the 10th Internaltional Colloquium on Structural Infor-
mation Complexity, June 18-20, 2003, Ume̊a Sweden, volume 17 of Pro-
ceedings in Informatics, pages 33–42. Carleton Scientific, 2003.

Mark Bun, Jelani Nelson, and Uri Stemmer. Heavy hitters and the structure
of local privacy. ACM Transactions on Algorithms (TALG), 15(4):1–40,
2019.

Clément Canonne and Ronitt Rubinfeld. Testing probability distributions
underlying aggregated data. In Javier Esparza, Pierre Fraigniaud, Thore
Husfeldt, and Elias Koutsoupias, editors, Automata, Languages, and Pro-
gramming, pages 283–295, Berlin, Heidelberg, 2014. Springer Berlin Heidel-
berg. ISBN 978-3-662-43948-7.

https://doi.org/10.1145/3650030
https://doi.org/10.1145/3460120.3484557

170 BIBLIOGRAPHY

Clément L Canonne. Topics and techniques in distribution testing. Now Pub-
lishers, 2022.

Ricardo Silva Carvalho, Ke Wang, Lovedeep Gondara, and Chunyan Miao.
Differentially private top-k selection via stability on unknown domain.
In Conference on Uncertainty in Artificial Intelligence, pages 1109–1118.
PMLR, 2020.

T-H Hubert Chan, Mingfei Li, Elaine Shi, and Wenchang Xu. Differentially
private continual monitoring of heavy hitters from distributed streams. In
International Symposium on Privacy Enhancing Technologies Symposium,
pages 140–159. Springer, 2012.

Flavio Chiericetti, Anirban Dasgupta, Ravi Kumar, Silvio Lattanzi, and
Tamás Sarlós. On sampling nodes in a network. In Proceedings of the
25th International Conference on World Wide Web, pages 471–481, 2016.

Flavio Chierichetti and Shahrzad Haddadan. On the complexity of sampling
vertices uniformly from a graph. In Leibniz International Proceedings in
Informatics, LIPIcs, volume 107. Schloss Dagstuhl- Leibniz-Zentrum fur
Informatik GmbH, Dagstuhl Publishing, jul 2018. ISBN 9783959770767.
doi: 10.4230/LIPIcs.ICALP.2018.149.

Graham Cormode, Cecilia M. Procopiuc, Divesh Srivastava, and Thanh T. L.
Tran. Differentially private summaries for sparse data. In ICDT, pages
299–311. ACM, 2012. doi: 10.1145/2274576.2274608.

Anirban Dasgupta, Ravi Kumar, and Tamas Sarlos. On estimating the average
degree. In Proceedings of the 23rd International Conference on World Wide
Web, WWW ’14, page 795–806, New York, NY, USA, 2014a. Association
for Computing Machinery. ISBN 9781450327442. doi: 10.1145/2566486.
2568019. URL https://doi.org/10.1145/2566486.2568019.

Anirban Dasgupta, Ravi Kumar, and Tamas Sarlos. On estimating the average
degree. In Proceedings of the 23rd international conference on World wide
web, pages 795–806, 2014b.

Persi Diaconis and Susan Holmes. Lecture Notes – Monograph Series. Institute
of Mathematical Statistics, 2004. ISBN 0-940600-62-5.

David Durfee and Ryan M Rogers. Practical differentially private top-k selec-
tion with pay-what-you-get composition. Advances in Neural Information
Processing Systems, 32, 2019.

Cynthia Dwork and Aaron Roth. The algorithmic foundations of differential
privacy. Foundations and Trends in Theoretical Computer Science, 9(3-4):
211–407, 2014. doi: 10.1561/0400000042.

https://doi.org/10.1145/2566486.2568019

BIBLIOGRAPHY 171

Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating
noise to sensitivity in private data analysis. In Theory of Cryptography:
Third Theory of Cryptography Conference, TCC 2006, New York, NY, USA,
March 4-7, 2006. Proceedings 3, pages 265–284. Springer, 2006a.

Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating
noise to sensitivity in private data analysis. In Theory of Cryptography:
Third Theory of Cryptography Conference, TCC 2006, New York, NY, USA,
March 4-7, 2006. Proceedings 3, pages 265–284. Springer, 2006b.

Talya Eden and Will Rosenbaum. On sampling edges almost uniformly. In
1st Symposium on Simplicity in Algorithms (SOSA 2018). Schloss-Dagstuhl-
Leibniz Zentrum für Informatik, 2018a.

Talya Eden and Will Rosenbaum. Lower Bounds for Approximating Graph
Parameters via Communication Complexity. In Eric Blais, Klaus Jansen,
José D. P. Rolim, and David Steurer, editors, Approximation, Random-
ization, and Combinatorial Optimization. Algorithms and Techniques (AP-
PROX/RANDOM 2018), volume 116 of Leibniz International Proceedings
in Informatics (LIPIcs), pages 11:1–11:18, Dagstuhl, Germany, 2018b.
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. ISBN 978-3-95977-
085-9. doi: 10.4230/LIPIcs.APPROX-RANDOM.2018.11. URL http:

//drops.dagstuhl.de/opus/volltexte/2018/9415.

Talya Eden and Will Rosenbaum. On sampling edges almost uniformly. In
1st Symposium on Simplicity in Algorithms (SOSA 2018). Schloss-Dagstuhl-
Leibniz Zentrum für Informatik, 2018c.

Talya Eden and Will Rosenbaum. On Sampling Edges Almost Uniformly. In
Raimund Seidel, editor, 1st Symposium on Simplicity in Algorithms (SOSA
2018), volume 61 of OpenAccess Series in Informatics (OASIcs), pages
7:1–7:9, Dagstuhl, Germany, 2018d. Schloss Dagstuhl–Leibniz-Zentrum fuer
Informatik. ISBN 978-3-95977-064-4. doi: 10.4230/OASIcs.SOSA.2018.7.
URL http://drops.dagstuhl.de/opus/volltexte/2018/8300.

Talya Eden, Amit Levi, Dana Ron, and C. Seshadhri. Approximately Count-
ing Triangles in Sublinear Time. Proceedings - Annual IEEE Symposium
on Foundations of Computer Science, FOCS, 2015-Decem:614–633, apr
2015. doi: 10.1109/FOCS.2015.44. URL http://arxiv.org/abs/1504.

00954http://dx.doi.org/10.1109/FOCS.2015.44.

Talya Eden, Dana Ron, and C. Seshadhri. Sublinear time estimation of degree
distribution moments: The degeneracy connection. In Leibniz International
Proceedings in Informatics, LIPIcs, volume 80. Schloss Dagstuhl- Leibniz-
Zentrum fur Informatik GmbH, Dagstuhl Publishing, jul 2017a. ISBN
9783959770415. doi: 10.4230/LIPIcs.ICALP.2017.7.

http://drops.dagstuhl.de/opus/volltexte/2018/9415
http://drops.dagstuhl.de/opus/volltexte/2018/9415
http://drops.dagstuhl.de/opus/volltexte/2018/8300
http://arxiv.org/abs/1504.00954 http://dx.doi.org/10.1109/FOCS.2015.44
http://arxiv.org/abs/1504.00954 http://dx.doi.org/10.1109/FOCS.2015.44

172 BIBLIOGRAPHY

Talya Eden, Dana Ron, and C. Seshadhri. Sublinear Time Estimation of
Degree Distribution Moments: The Degeneracy Connection. In Ioannis
Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl, editors,
44th International Colloquium on Automata, Languages, and Program-
ming (ICALP 2017), volume 80 of Leibniz International Proceedings in
Informatics (LIPIcs), pages 7:1–7:13, Dagstuhl, Germany, 2017b. Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik. ISBN 978-3-95977-041-5. doi:
10.4230/LIPIcs.ICALP.2017.7. URL http://drops.dagstuhl.de/opus/

volltexte/2017/7374.

Talya Eden, Dana Ron, and Will Rosenbaum. The Arboricity Captures the
Complexity of Sampling Edges. In Christel Baier, Ioannis Chatzigiannakis,
Paola Flocchini, and Stefano Leonardi, editors, 46th International Collo-
quium on Automata, Languages, and Programming (ICALP 2019), vol-
ume 132 of Leibniz International Proceedings in Informatics (LIPIcs), pages
52:1–52:14, Dagstuhl, Germany, 2019a. Schloss Dagstuhl–Leibniz-Zentrum
fuer Informatik. ISBN 978-3-95977-109-2. doi: 10.4230/LIPIcs.ICALP.2019.
52. URL http://drops.dagstuhl.de/opus/volltexte/2019/10628.

Talya Eden, Dana Ron, and Will Rosenbaum. The Arboricity Captures the
Complexity of Sampling Edges. In Christel Baier, Ioannis Chatzigiannakis,
Paola Flocchini, and Stefano Leonardi, editors, 46th International Collo-
quium on Automata, Languages, and Programming (ICALP 2019), vol-
ume 132 of Leibniz International Proceedings in Informatics (LIPIcs), pages
52:1–52:14, Dagstuhl, Germany, 2019b. Schloss Dagstuhl–Leibniz-Zentrum
fuer Informatik. ISBN 978-3-95977-109-2. doi: 10.4230/LIPIcs.ICALP.2019.
52. URL http://drops.dagstuhl.de/opus/volltexte/2019/10628.

Talya Eden, Saleet Mossel, and Ronitt Rubinfeld. Amortized Edge Sampling.
aug 2020. URL http://arxiv.org/abs/2008.08032.

Talya Eden, Saleet Mossel, and Ronitt Rubinfeld. Sampling Multiple Edges
Efficiently. In Mary Wootters and Laura Sanità, editors, Approximation,
Randomization, and Combinatorial Optimization. Algorithms and Tech-
niques (APPROX/RANDOM 2021), volume 207 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 51:1–51:15, Dagstuhl, Germany,
2021a. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. ISBN 978-
3-95977-207-5. doi: 10.4230/LIPIcs.APPROX/RANDOM.2021.51. URL
https://drops.dagstuhl.de/opus/volltexte/2021/14744.

Talya Eden, Saleet Mossel, and Ronitt Rubinfeld. Sampling multiple edges
efficiently. In Approximation, Randomization, and Combinatorial Opti-
mization. Algorithms and Techniques (APPROX/RANDOM 2021). Schloss
Dagstuhl-Leibniz-Zentrum für Informatik, 2021b.

http://drops.dagstuhl.de/opus/volltexte/2017/7374
http://drops.dagstuhl.de/opus/volltexte/2017/7374
http://drops.dagstuhl.de/opus/volltexte/2019/10628
http://drops.dagstuhl.de/opus/volltexte/2019/10628
http://arxiv.org/abs/2008.08032
https://drops.dagstuhl.de/opus/volltexte/2021/14744

BIBLIOGRAPHY 173

Talya Eden, Shyam Narayanan, and Jakub Tětek. Sampling an Edge
in Sublinear Time Exactly and Optimally, pages 253–260. 2023. doi:
10.1137/1.9781611977585.ch23. URL https://epubs.siam.org/doi/abs/

10.1137/1.9781611977585.ch23.

Úlfar Erlingsson, Vasyl Pihur, and Aleksandra Korolova. Rappor: Random-
ized aggregatable privacy-preserving ordinal response. In Proceedings of the
2014 ACM SIGSAC conference on computer and communications security,
pages 1054–1067, 2014.

Uriel Feige. On sums of independent random variables with unbounded vari-
ance and estimating the average degree in a graph. SIAM J. Comput., 35:
964–984, 01 2006a. doi: 10.1137/S0097539704447304.

Uriel Feige. On sums of independent random variables with unbounded vari-
ance and estimating the average degree in a graph. SIAM Journal on Com-
puting, 35(4):964–984, 2006b.

Hendrik Fichtenberger, Mingze Gao, and Pan Peng. Sampling Arbitrary Sub-
graphs Exactly Uniformly in Sublinear Time. In Artur Czumaj, Anuj
Dawar, and Emanuela Merelli, editors, 47th International Colloquium on
Automata, Languages, and Programming (ICALP 2020), volume 168 of
Leibniz International Proceedings in Informatics (LIPIcs), pages 45:1–45:13,
Dagstuhl, Germany, 2020a. Schloss Dagstuhl–Leibniz-Zentrum für Infor-
matik. ISBN 978-3-95977-138-2. doi: 10.4230/LIPIcs.ICALP.2020.45. URL
https://drops.dagstuhl.de/opus/volltexte/2020/12452.

Hendrik Fichtenberger, Mingze Gao, and Pan Peng. Sampling arbitrary
subgraphs exactly uniformly in sublinear time. In Artur Czumaj, Anuj
Dawar, and Emanuela Merelli, editors, 47th International Colloquium on
Automata, Languages, and Programming, ICALP 2020, July 8-11, 2020,
Saarbrücken, Germany (Virtual Conference), volume 168 of LIPIcs, pages
45:1–45:13. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020b. doi:
10.4230/LIPIcs.ICALP.2020.45. URL https://doi.org/10.4230/LIPIcs.

ICALP.2020.45.

Quan Geng, Peter Kairouz, Sewoong Oh, and Pramod Viswanath. The stair-
case mechanism in differential privacy. IEEE Journal of Selected Topics in
Signal Processing, 9(7):1176–1184, 2015. doi: 10.1109/JSTSP.2015.2425831.

Badih Ghazi, Noah Golowich, Ravi Kumar, Rasmus Pagh, and Ameya Vel-
ingker. On the power of multiple anonymous messages. IACR Cryptol.
ePrint Arch., page 1382, 2019. URL https://eprint.iacr.org/2019/

1382.

https://epubs.siam.org/doi/abs/10.1137/1.9781611977585.ch23
https://epubs.siam.org/doi/abs/10.1137/1.9781611977585.ch23
https://drops.dagstuhl.de/opus/volltexte/2020/12452
https://doi.org/10.4230/LIPIcs.ICALP.2020.45
https://doi.org/10.4230/LIPIcs.ICALP.2020.45
https://eprint.iacr.org/2019/1382
https://eprint.iacr.org/2019/1382

174 BIBLIOGRAPHY

Arpita Ghosh, Tim Roughgarden, and Mukund Sundararajan. Universally
utility-maximizing privacy mechanisms. SIAM Journal on Computing, 41
(6):1673–1693, 2012.

Oded Goldreich. Introduction to property testing. Cambridge University
Press, Cambridge, United Kingdom ; New York, NY, USA, 2018. ISBN
9781107194052.

Oded Goldreich and Dana Ron. Approximating average parameters of graphs.
In Josep Dı́az, Klaus Jansen, José D. P. Rolim, and Uri Zwick, editors, Ap-
proximation, Randomization, and Combinatorial Optimization. Algorithms
and Techniques, pages 363–374, Berlin, Heidelberg, 2006. Springer Berlin
Heidelberg. ISBN 978-3-540-38045-0.

Oded Goldreich and Dana Ron. Approximating average parameters of
graphs. Random Structures and Algorithms, 32(4):473–493, jul 2008. ISSN
10429832. doi: 10.1002/rsa.20203. URL http://doi.wiley.com/10.1002/

rsa.20203.

Google Anonymization Team. Delta for thresholding. https:

//github.com/google/differential-privacy/blob/main/common_

docs/Delta_For_Thresholding.pdf. [Online; accessed 15-April-2024].

Samuel Haney, Damien Desfontaines, Luke Hartman, Ruchit Shrestha, and
Michael Hay. Precision-based attacks and interval refining: how to break,
then fix, differential privacy on finite computers. CoRR, abs/2207.13793,
2022. doi: 10.48550/arXiv.2207.13793. URL https://doi.org/10.48550/

arXiv.2207.13793.

D. G. Horvitz and D. J. Thompson. A generalization of sampling without
replacement from a finite universe. Journal of the American Statistical
Association, 47(260):663–685, 1952a. ISSN 01621459. URL http://www.

jstor.org/stable/2280784.

D. G. Horvitz and D. J. Thompson. A generalization of sampling without
replacement from a finite universe. Journal of the American Statistical
Association, 47(260):663–685, 1952b. ISSN 01621459. URL http://www.

jstor.org/stable/2280784.

Alon Itai and Michael Rodeh. Finding a minimum circuit in a graph. In Pro-
ceedings of the Ninth Annual ACM Symposium on Theory of Computing,
STOC ’77, page 1–10, New York, NY, USA, 1977. Association for Comput-
ing Machinery. ISBN 9781450374095. doi: 10.1145/800105.803390. URL
https://doi.org/10.1145/800105.803390.

http://doi.wiley.com/10.1002/rsa.20203
http://doi.wiley.com/10.1002/rsa.20203
https://github.com/google/differential-privacy/blob/main/common_docs/Delta_For_Thresholding.pdf
https://github.com/google/differential-privacy/blob/main/common_docs/Delta_For_Thresholding.pdf
https://github.com/google/differential-privacy/blob/main/common_docs/Delta_For_Thresholding.pdf
https://doi.org/10.48550/arXiv.2207.13793
https://doi.org/10.48550/arXiv.2207.13793
http://www.jstor.org/stable/2280784
http://www.jstor.org/stable/2280784
http://www.jstor.org/stable/2280784
http://www.jstor.org/stable/2280784
https://doi.org/10.1145/800105.803390

BIBLIOGRAPHY 175

Christian Janos Lebeda and Jakub Tetek. Better differentially private ap-
proximate histograms and heavy hitters using the misra-gries sketch. SIG-
MOD Rec., 53(1):7–14, may 2024. ISSN 0163-5808. doi: 10.1145/3665252.
3665255. URL https://doi.org/10.1145/3665252.3665255.

John Kallaugher, Andrew McGregor, Eric Price, and Sofya Vorotnikova.
The complexity of counting cycles in the adjacency list streaming model.
In Proceedings of the 38th ACM SIGMOD-SIGACT-SIGAI Symposium
on Principles of Database Systems, PODS ’19, page 119–133, New
York, NY, USA, 2019. Association for Computing Machinery. ISBN
9781450362276. doi: 10.1145/3294052.3319706. URL https://doi.org/

10.1145/3294052.3319706.

Liran Katzir, Edo Liberty, and Oren Somekh. Estimating sizes of so-
cial networks via biased sampling. In Proceedings of the 20th Interna-
tional Conference on World Wide Web, WWW ’11, page 597–606, New
York, NY, USA, 2011. Association for Computing Machinery. ISBN
9781450306324. doi: 10.1145/1963405.1963489. URL https://doi.org/

10.1145/1963405.1963489.

Tali Kaufman, Michael Krivelevich, and Dana Ron. Tight bounds for testing
bipartiteness in general graphs. SIAM Journal on computing, 33(6):1441–
1483, 2004.

Mihail N. Kolountzakis, Gary L. Miller, Richard Peng, and Charalampos E.
Tsourakakis. Efficient triangle counting in large graphs via degree-based
vertex partitioning. Internet Mathematics, 8(1-2):161–185, 2012. doi: 10.
1080/15427951.2012.625260. URL https://doi.org/10.1080/15427951.

2012.625260.

Aleksandra Korolova, Krishnaram Kenthapadi, Nina Mishra, and Alexandros
Ntoulas. Releasing search queries and clicks privately. In WWW, pages
171–180. ACM, 2009. doi: 10.1145/1526709.1526733.

John A Lapinskas, Holger Dell, and Kitty Meeks. Approximately counting and
sampling small witnesses using a colourful decision oracle. In ACM-SIAM
Symposium on Discrete Algorithms (SODA20), 2019.

Richard J. Lipton, Jeffrey F. Naughton, Donovan A. Schneider, and S. Se-
shadri. Efficient sampling strategies for relational database operations.
Theoretical Computer Science, 116(1):195–226, 1993. ISSN 0304-3975.
doi: https://doi.org/10.1016/0304-3975(93)90224-H. URL https://www.

sciencedirect.com/science/article/pii/030439759390224H.

Ryan MacCarthy. The average twitter user now has 707 fol-
lowers, Jun 2016. URL https://kickfactory.com/blog/

average-twitter-followers-updated-2016/.

https://doi.org/10.1145/3665252.3665255
https://doi.org/10.1145/3294052.3319706
https://doi.org/10.1145/3294052.3319706
https://doi.org/10.1145/1963405.1963489
https://doi.org/10.1145/1963405.1963489
https://doi.org/10.1080/15427951.2012.625260
https://doi.org/10.1080/15427951.2012.625260
https://www.sciencedirect.com/science/article/pii/030439759390224H
https://www.sciencedirect.com/science/article/pii/030439759390224H
https://kickfactory.com/blog/average-twitter-followers-updated-2016/
https://kickfactory.com/blog/average-twitter-followers-updated-2016/

176 BIBLIOGRAPHY

Darakhshan J. Mir, S. Muthukrishnan, Aleksandar Nikolov, and Rebecca N.
Wright. Pan-private algorithms via statistics on sketches. In Maurizio
Lenzerini and Thomas Schwentick, editors, Proceedings of the 30th ACM
SIGMOD-SIGACT-SIGART Symposium on Principles of Database Sys-
tems, PODS 2011, June 12-16, 2011, Athens, Greece, pages 37–48. ACM,
2011. doi: 10.1145/1989284.1989290. URL https://doi.org/10.1145/

1989284.1989290.

J. Misra and David Gries. Finding repeated elements. Science of Computer
Programming, 2(2):143–152, 1982. ISSN 0167-6423. doi: https://doi.org/
10.1016/0167-6423(82)90012-0. URL https://www.sciencedirect.com/

science/article/pii/0167642382900120.

Rajeev Motwani, Rina Panigrahy, and Ying Xu. Estimating sum by weighted
sampling. In Proceedings of the 34th International Conference on Automata,
Languages and Programming, ICALP’07, page 53–64, Berlin, Heidelberg,
2007. Springer-Verlag. ISBN 3540734198.

Şerban Nacu and Yuval Peres. Fast simulation of new coins from old. SIAM
Journal on Computing, 35(4):964–984, 2006.

Arvind Narayanan and Vitaly Shmatikov. How to break anonymity of the
netflix prize dataset. arXiv preprint cs/0610105, 2006.

Joseph P Near and Chiké Abuah. Programming differential privacy. URL:
https://uvm, 2021.

Krzysztof Onak and Xiaorui Sun. Probability-revealing samples. In AISTATS,
2018.

Rasmus Pagh and Mikkel Thorup. Improved utility analysis of
private countsketch. In Advances in Neural Information Pro-
cessing Systems, volume 35, pages 25631–25643, 2022. URL
https://proceedings.neurips.cc/paper_files/paper/2022/file/

a47f5cdff1469751597d78e803fc590f-Paper-Conference.pdf.

W Wesley Peterson. Addressing for random-access storage. IBM journal of
Research and Development, 1(2):130–146, 1957.

Gang Qiao, Weijie Su, and Li Zhang. Oneshot differentially private top-k
selection. In International Conference on Machine Learning, pages 8672–
8681. PMLR, 2021.

Zhan Qin, Yin Yang, Ting Yu, Issa Khalil, Xiaokui Xiao, and Kui Ren. Heavy
hitter estimation over set-valued data with local differential privacy. In Pro-
ceedings of the 2016 ACM SIGSAC Conference on Computer and Commu-
nications Security, pages 192–203, 2016.

https://doi.org/10.1145/1989284.1989290
https://doi.org/10.1145/1989284.1989290
https://www.sciencedirect.com/science/article/pii/0167642382900120
https://www.sciencedirect.com/science/article/pii/0167642382900120
https://proceedings.neurips.cc/paper_files/paper/2022/file/a47f5cdff1469751597d78e803fc590f-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/a47f5cdff1469751597d78e803fc590f-Paper-Conference.pdf

BIBLIOGRAPHY 177

Seagate. Seagate® desktop HDD, ST4000DM000, ST3000DM003,
2014. URL https://www.seagate.com/www-content/product-content/

desktop-hdd-fam/en-us/docs/100710254f.pdf.

C Seshadhri. A simpler sublinear algorithm for approximating the triangle
count. arXiv preprint arXiv:1505.01927, 2015.

Jakub Tětek. Additive noise mechanisms for making randomized approxi-
mation algorithms differentially private. arXiv preprint arXiv:2211.03695,
2022.

Jakub Tětek and Mikkel Thorup. Edge sampling and graph parameter esti-
mation via vertex neighborhood accesses. In Proceedings of the 54th annual
ACM SIGACT symposium on theory of computing, pages 1116–1129, 2022.

Toshiba. Enterprise hard drives MG series, 2019. URL https:

//www.toshiba-storage.com/wp-content/uploads/2019/09/TOSH_

DS_MG_Series_print.pdf.

Jakub Tětek. Approximate Triangle Counting via Sampling and Fast Ma-
trix Multiplication. In Miko laj Bojańczyk, Emanuela Merelli, and David P.
Woodruff, editors, 49th International Colloquium on Automata, Languages,
and Programming (ICALP 2022), volume 229 of Leibniz International Pro-
ceedings in Informatics (LIPIcs), pages 107:1–107:20, Dagstuhl, Germany,
2022. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. ISBN 978-3-
95977-235-8. doi: 10.4230/LIPIcs.ICALP.2022.107. URL https://drops.

dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2022.107.

Jakub Tětek and Mikkel Thorup. Edge sampling and graph parameter esti-
mation via vertex neighborhood accesses. In Proceedings of the 54th An-
nual ACM SIGACT Symposium on Theory of Computing, STOC 2022,
page 1116–1129, New York, NY, USA, 2022a. Association for Computing
Machinery. ISBN 9781450392648. doi: 10.1145/3519935.3520059. URL
https://doi.org/10.1145/3519935.3520059.

Jakub Tětek and Mikkel Thorup. Edge sampling and graph parameter esti-
mation via vertex neighborhood accesses. In Proceedings of the 54th An-
nual ACM SIGACT Symposium on Theory of Computing, STOC 2022,
page 1116–1129, New York, NY, USA, 2022b. Association for Computing
Machinery. ISBN 9781450392648. doi: 10.1145/3519935.3520059. URL
https://doi.org/10.1145/3519935.3520059.

Jakub Tětek. Approximate Triangle Counting via Sampling and Fast Matrix
Multiplication. arXiv:2104.08501 [cs], May 2021. URL http://arxiv.

org/abs/2104.08501. arXiv: 2104.08501.

https://www.seagate.com/www-content/product-content/desktop-hdd-fam/en-us/docs/100710254f.pdf
https://www.seagate.com/www-content/product-content/desktop-hdd-fam/en-us/docs/100710254f.pdf
https://www.toshiba-storage.com/wp-content/uploads/2019/09/TOSH_DS_MG_Series_print.pdf
https://www.toshiba-storage.com/wp-content/uploads/2019/09/TOSH_DS_MG_Series_print.pdf
https://www.toshiba-storage.com/wp-content/uploads/2019/09/TOSH_DS_MG_Series_print.pdf
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2022.107
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2022.107
https://doi.org/10.1145/3519935.3520059
https://doi.org/10.1145/3519935.3520059
http://arxiv.org/abs/2104.08501
http://arxiv.org/abs/2104.08501

178 BIBLIOGRAPHY

Tianhao Wang, Ninghui Li, and Somesh Jha. Locally differentially private
heavy hitter identification. IEEE Transactions on Dependable and Secure
Computing, 18(2):982–993, 2019.

Osamu Watanabe. Sequential sampling techniques for algorithmic learning
theory. Theoretical Computer Science, 348(1):3–14, 2005. ISSN 0304-
3975. doi: https://doi.org/10.1016/j.tcs.2005.09.003. URL https://www.

sciencedirect.com/science/article/pii/S0304397505005219. Algo-
rithmic Learning Theory (ALT 2000).

Arjun Wilkins, Daniel Kifer, Danfeng Zhang, and Brian Karrer. Exact
privacy analysis of the gaussian sparse histogram mechanism. Journal
of Privacy and Confidentiality, 14(1), Feb. 2024. doi: 10.29012/jpc.
823. URL https://journalprivacyconfidentiality.org/index.php/

jpc/article/view/823.

Hao Wu and Anthony Wirth. Asymptotically optimal locally private heavy
hitters via parameterized sketches. In International Conference on Artificial
Intelligence and Statistics, pages 7766–7798. PMLR, 2022.

Dan Zhao, Suyun Zhao, Hong Chen, Ruixuan Liu, Cuiping Li, and Wenjuan
Liang. Efficient protocols for heavy hitter identification with local differen-
tial privacy. Frontiers of Computer Science, 16(5):1–11, 2022a.

Fuheng Zhao, Dan Qiao, Rachel Redberg, Divyakant Agrawal, Amr El Ab-
badi, and Yu-Xiang Wang. Differentially private linear sketches: Efficient
implementations and applications. In Advances in Neural Informa-
tion Processing Systems, volume 35, pages 12691–12704, 2022b. URL
https://proceedings.neurips.cc/paper_files/paper/2022/file/

525338e0d98401a62950bc7c454eb83d-Paper-Conference.pdf.

Wennan Zhu, Peter Kairouz, Brendan McMahan, Haicheng Sun, and Wei
Li. Federated heavy hitters discovery with differential privacy. In Interna-
tional Conference on Artificial Intelligence and Statistics, pages 3837–3847.
PMLR, 2020.

https://www.sciencedirect.com/science/article/pii/S0304397505005219
https://www.sciencedirect.com/science/article/pii/S0304397505005219
https://journalprivacyconfidentiality.org/index.php/jpc/article/view/823
https://journalprivacyconfidentiality.org/index.php/jpc/article/view/823
https://proceedings.neurips.cc/paper_files/paper/2022/file/525338e0d98401a62950bc7c454eb83d-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/525338e0d98401a62950bc7c454eb83d-Paper-Conference.pdf

	Contents
	Introduction
	Better Sum Estimation via Weighted Sampling
	Edge Sampling and Graph Parameter Estimation via Vertex Neighborhood Accesses
	Hash-ordered access
	Full neighborhood access

	Sampling an Edge in Sublinear Time Exactly and Optimally
	Better Differentially Private Approximate Histograms and Heavy Hitters using the Misra-Gries Sketch
	Preliminaries on differential privacy
	The Misra-Gries sketch
	Our contribution

	Better Sum Estimation via Weighted Sampling
	Introduction.
	Related Work and Applications.
	Overview of employed techniques.
	Preliminaries.

	Sum Estimation by Proportional Sampling.
	Algorithm with advice ntilde-geq-n.
	Algorithms for u unknown.

	Sum Estimation by Hybrid Sampling.
	Algorithms for u known.
	Algorithms for u unknown.

	Lower Bounds.
	Proportional sampling.
	Sum estimation in hybrid setting, known n.
	Sum estimation in hybrid setting, unknown n.

	Counting Edges in a Graph.
	Open Problems.

	Edge Sampling and Graph Parameter Estimation via Vertex Neighborhood Accesses
	Introduction
	What is a vertex access?
	Our techniques

	Preliminaries
	Graph access models
	Pointwise epsilon-Approximate sampling
	Conditioning principle
	Notation
	Algorithms with advice
	Sampling without replacement

	Edge sampling
	Sampling one edge in the indexed neighbor access model
	Biased vertex sampling using hash-ordered access
	Bernoulli sampling with hash-ordered neighbor access
	Sampling edges without replacement with hash-ordered neighbor access
	Sampling edges with replacement with hash-ordered neighbor access
	Implementing our algorithms with batched access
	Sampling multiple edges without hash-ordered neighbor access
	Lower bound for sampling multiple edges

	Estimating the Number of Edges by Sampling
	Directly Estimating the Number of Edges
	Algorithm with hash-ordered neighbor access
	Algorithm with pair queries
	Lower bound

	Triangle counting with full neighborhood access
	Algorithm with edge sampling
	Algorithm with both vertex and edge sampling
	Lower Bound

	Sampling an Edge in Sublinear Time Exactly and Optimally
	Introduction
	Technical overview
	Related work

	Preliminaries
	Sampling an edge

	Better Differentially Private Approximate Histograms and Heavy Hitters using the Misra-Gries Sketch
	Introduction
	Technical overview
	Preliminaries
	Related work
	Differentially Private Misra-Gries Sketch
	Privatizing standard versions of MG
	Tips for practitioners

	Pure Differential Privacy
	Privatizing merged sketches
	User-level Differential Privacy
	Open Problems

	Bibliography

