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Abstract

In this thesis we study the theoretical properties of several algorithmic problems. The first two
problems aim at completing a certain task in sublinear time, namely using a number of operation
that is sublinear in the input size. A short description of these tasks follows.

• Earth Mover’s Distance: We are given two distribution µ, ν over a generic metric space
(M, d). A transport plan between µ and ν is a distribution ξ over M2 that has µ and ν
as its marginals. We define the cost of a transport plan ξ as E(x,y)∼ξ[d(x, y)]. Our task is
to compute the minimum cost of transport plans between µ and ν.

• Sum estimation via weighted sampling: We are given a set U of items and each item u ∈ U
has a weight w(u). We can sample elements from U with probability proportional to their
weight. Our task is to estimate the combined weight

∑
u∈U w(u) using as few samples as

possible.

Then, we study two problems concerned with online packing of polygons. In both cases, we
give upper and lower bounds on the competitive ratio of these problems, described below.

• Online packing of rectangles: We are given a sequence of axis-parallel rectangles online and
we have to irrevocably place them on the plane so as to minimize the area or perimeter of
their axis-parallel bounding box.

• Translational packing of convex polygons: We are given a sequence of convex polygons
online and we have to irrevocably place them in a given container on the plane without
rotating them. The goal is to use as little container space as possible. We prove a surprising
superconstant lower bound on the competitive ratio for several well-studied container types.

Besides packing, we study hash functions.

• Locally uniform hashing: We design Tornado tabulation, a new tabulation-based hash
function that aims at filling the gap between (unrealistic) fully-random hashing often used
in the analysis of algorithms and practical hash functions with weak theoretical guarantees.
In theory, Tornado has strong distributional properties, ensuring that its keys enjoy a
certain local full randomness. Moreover, Tornado is practical and it is implementable in a
few lines of C code.

Finally, we include a result on clustering.

• Local-search seeding for k-means: The most popular heuristic for k-means clustering,
Lloyd’s algorithm, inherits its theoretical guarantees from the seeding strategy employed
to initialize cluster centers. We design a local-search algorithm to initialize cluster centers
that improves the approximation ratios of previous seeding strategies. We claim that our
algorithm is practical and include experiments to support its effectiveness.
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Resumé

I denne afhandling undersøger vi de teoretiske egenskaber ved adskillige algoritmiske proble-
mer. De første to problemer sigter mod at fuldføre en bestemt opgave på sublineær tid, nemlig
ved hjælp af et antal operationer, der er sublineære i inputstørrelsen. En kort beskrivelse af disse
opgaver følger.

• Earth Mover’s Distance: Vi har to fordelinger µ, ν over et generisk metrisk rum (M, d). En
transportplan mellem µ og ν er en fordeling ξ overM2, der har µ og ν som dens margener.
Vi definerer omkostningen ved en transportplan ξ som E(x,y)∼ξ[d(x, y)]. Vores opgave er
at beregne den minimale omkostning ved transportplaner mellem µ og ν.

• Sum estimation via weighted sampling: Vi har en mængde U af elementer, og hvert element
u ∈ U har en vægt w(u). Vi kan udtrække elementer fra U med sandsynlighed proportionel
med deres vægt. Vores opgave er at estimere den samlede vægt

∑
u∈U w(u) ved at bruge

så få prøver som muligt.

Derefter undersøger vi to problemer vedrørende online-pakning af polygoner. I begge til-
fælde giver vi øvre og nedre grænser for den konkurrencebaserede ratio af disse problemer, som
beskrevet nedenfor.

• Online packing of rectangles: Vi får en sekvens af aksialt parallelle rektangler online, og vi
skal uigenkaldeligt placere dem på planet for at minimere området eller omkredsen af deres
aksialt parallelle begrænsningsboks.

• Translational packing of convex polygons: Vi får en sekvens af konvekse polygoner online, og
vi skal uigenkaldeligt placere dem i en given beholder på planet uden at rotere dem. Målet
er at bruge så lidt beholderplads som muligt. Vi beviser en overraskende superkonstant
nedre grænse for konkurrenceforholdet for flere velundersøgte beholder typer.

Udover pakning studerer vi hashfunktioner.

• Locally uniform hashing: Vi designer Tornado-tabulering, en ny tabuleringsbaseret hash-
funktion, der sigter mod at udfylde kløften mellem (urealistisk) fuldstændig tilfældig hash-
ing, der ofte bruges i analyse af algoritmer, og praktiske hashfunktioner med svage teoretiske
garantier. Teoretisk set har Tornado stærke distributionsmæssige egenskaber, der sikrer,
at dens nøgler nyder en vis lokal fuldstændig tilfældighed. Desuden er Tornado praktisk
og kan implementeres på få linjer C-kode.

Endelig inkluderer vi et resultat om clustering.

• Local-search seeding for k-means: Den mest populære heuristik for k-means clustering,
Lloyds algoritme, arver sine teoretiske garantier fra den såede strategi, der bruges til at
initialisere klyngecentre. Vi designer en lokal søgealgoritme til at initialisere klyngecentre,
der forbedrer approksimationsforholdene for tidligere såningsstrategier. Vi hævder, at vores
algoritme er praktisk, og inkluderer eksperimenter for at understøtte dens effektivitet.
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Preface

The General rules and guidelines for the PhD programme at the Faculty of Science, University
of Copenhagen allows for a PhD dissertation to be written “as a synopsis with manuscripts of
papers or already published papers attached”. The present dissertation has this form.

Throughout my PhD, I have written 5 published papers and 1 unpublished manuscript and
I include all of them. We can subdivide these 6 papers into three thematic blocks. The first two
blocks constitutes the core theme of my PhD thesis: the first block of two papers is concerned with
sublinear-time algorithms, while the second block of two papers is concerned with online packing
of polygons on the plane. I included a third block of two papers that are concerned with hashing
and geometric clustering respectively. This last block can be interpreted as a “miscellana” that
showcases the breadth of my PhD journey and my exploration of other beautiful areas within
theoretical computer science.

Included in the thesis
Sublinear Algorithms. In modern data analysis and machine learning, datasets are huge.
When the size of the dataset is so large that it does not fit in main memory, classical algorithms
designed for the RAM model of computation are no longer practical. As a response, theoreti-
cians came up with new models of computation capturing technologically feasible approaches
like sampling a small part of the input (property testing), reading through the data only once
(streaming) or distributed computation (MPC). If an algorithm is not allowed to read (or store)
the whole input then we say that it is a sublinear algorithm. In this block we design sublinear
algorithms for two problems.

Earth Mover’s Distance: We are given two distribution µ, ν over a generic metric space
(M, d). A transport plan between µ and ν is a distribution ξ over M2 that has µ and ν as its
marginals. We define the cost of a transport plan ξ as E(x,y)∼ξ[d(x, y)] and say that the earth
mover’s distance (EMD) between µ and nu is the minimum cost of transport plans between µ
and ν. We design an algorithm that computes EMD(µ, ν) up to a ε-additive approximation in
time O(n2−δ(ε)), where n is (an upper bound to) the support size of µ and ν and δ(ε) > 0 as
long as ε > 0. Notice that, since the input representation includes a n× n distance matrix, our
algorithm takes sublinear time in the input size.

Sum estimation via weighted sampling: Given a large set U where each item u ∈ U has
weight w(u), we want to estimate the total weight W =

∑
u∈U w(u) to within factor of 1±ε with

some constant probability > 1/2. Since n = |U | is large, we want to do this without looking at
the entire set U . In the traditional setting in which we are allowed to sample elements from U
uniformly, sampling Ω(n) items is necessary to provide any non-trivial guarantee on the estimate.
Therefore, we investigate this problem in different settings: in the proportional setting we can
sample items with probabilities proportional to their weights, and in the hybrid setting we can
sample both proportionally and uniformly. These settings have applications such as counting the
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number of edges in large graphs.

Online Packing of Polygons. Packing problems are omnipresent in our daily lives and like-
wise appear in many large-scale industries. For instance, two-dimensional versions of packing
arise when a given set of pieces has to be cut out from a large piece of material such that waste
is minimized. In this block, we consider the problem of packing a stream of polygons on the
plane online, namely placing them irrevocably on the plane as they come. The objective of
our algorithm is to use as little space as possible. The metric used to evaluate our algorithms’
performance is the competitive ratio, that is the ratio between the cost of the solution obtain
online by the algorithm and the optimal offline solution. In particular, we study the two following
problems.

Online packing of rectangles: Given a stream of online axis-parallel rectangles, our goal is to
place them on the plane without overlaps so as to minimize the area (resp. perimeter) of their
axis-parallel bounding box. We study variants of this problem where we are allowed to rotate
the rectangles and where we are not and we give tight bounds (up to constant factors) on the
competitive ratios for all these problems, both in terms of n and Opt.

Online packing of convex polygons, without rotation: Given a stream of convex polygons, we
have to place them in a container on the plane (e.g., an 1 strip) online and the goal is to minimize
the container space used. We show superconstant lower bounds for several container types. Our
lower bounds are proved by reducing our packing problems to a purely combinatorial problem,
online sorting, that essentially asks to sort a stream of real number online. Interestingly, the
same packing problems admit offline constant-approximation algorithms and a key subroutine of
these algorithms is that they “sort” pieces according to their natural orientation. Thus, we show
that this sorting is, in some sense, necessary to achieve O(1)-approximation, and since sorting
online is hard then packing is also hard.

Miscellanea: hashing and geometric clustering. In this third block, we present two
projects.

Locally uniform hashing: Hashing is a common technique used in data processing, with
a strong impact on resources spent on computation. Hashing also affects the applicability of
theoretical results that often assume access to (unrealistic) uniform/fully-random hash functions.
In this paper, we are concerned with designing hash functions that are practical and come with
strong theoretical guarantees on their performance. To this end, we present tornado tabulation
hashing, which is simple, fast, and exhibits a certain full, local randomness property that provably
makes diverse algorithms perform almost as if (abstract) fully-random hashing was used. For
example, this includes classic linear probing, the widely used HyperLogLog algorithm for counting
distinct elements [FFGM07], and the one-permutation hashing for large-scale machine learning
[LOZ12].

Local-search seeding for k-means: Euclidean k-means is arguably the most popular formu-
lation of center-based clustering. The k-means++ algorithm [AV07] is often the practitioners’
choice algorithm for initializing cluster centers before running Lloyd’s algorithms [Llo57], and is
known to give an O(log k)-approximation algorithm (in expectation) for Euclidean k-means. To
obtain higher quality solutions, k-means++ was augmented with O(k log log k) local search steps,
which yields a c-approximation, where c is a large absolute constant [LS19a]. We generalize and
extend the local search algorithm from [LS19a] by considering larger and more sophisticated local
search neighborhoods hence allowing to swap multiple centers at the same time. Our algorithm
achieves a 9+ ε approximation ratio, which is the best possible for local search. Importantly, we
show that our approach yields substantial practical improvements, we show significant quality
improvements over [LS19a] on several datasets.
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Chapter 1

Introduction

In accordance with the guidelines of the PhD School of the University of Copenhagen, this thesis
is presented as a synopsis of the papers produced over the course of the PhD program. The main
focus is on two topics: sublinear algorithms and online packing of polygons. To demonstrate the
breadth of my PhD work, I also include results related to hashing and clustering.

Organisation. The thesis has been divided into six chapters, each one presenting a different
paper. The first two are related to sublinear algorithms, the following two focus on online packing
of polygons, and the last two are on hashing and clustering respectively.

More specifically, the first chapter develops a sublinear-time algorithm for Earth Mover’s Dis-
tance. The second chapter develops a sample-optimal estimator for the sum of weights problem.
The third chapter discusses online algorithms for packing a stream of axis-parallel rectangles.
The fourth chapter discusses algorithms and lower bounds for online packing of general convex
polygons. The fifth chapter develops a new hash function, Tornado tabulation hashing. Finally,
the sixth chapter covers a new seeding strategy for the popular clustering objective k-means.

The appendix contains the full versions of these 6 papers, in the same order. Each chapter
introduces the related problems, provides a survey of the relevant literature, discusses the results
of the corresponding paper, and eventually considers future directions and open problems. As
each chapter is a synopsis of an actual paper, we refer the reader to the full version of the paper
in appendix for proofs as well as any missing detail. We stress that all but one of the presented
papers have already been peer reviewed and published.
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Chapter 2

Approximate Earth Mover’s
Distance in Truly-Subquadratic
Time

In this chapter, we present the paper “Approximate Earth Mover’s Distance in Truly-Subquadratic
Time”, which is currently under submission at STOC 2024 [BR23]. First, we give a quick intro-
duction to the problem, then we survey some related work and describe our technical contribu-
tions. In the end, we point out some interesting future directions.

2.1 Introduction
Given a generic metric space (M, d) and two probability distributions µ and ν on M we define
the Earth Mover’s Distance (EMD) between µ and µ as

EMD(µ, ν) = min
{

E(x,y)∼ζ [d(x, y)]
∣∣∣ ζ is a coupling of µ and ν

}
. (2.1)

Here, a distribution ζ over M2 is a coupling of µ and ν if µ(x) =
∫
M ζ(x, y) dy and ν(y) =∫

M ζ(x, y) dx.
EMD, often called Optimal Transport, is arguably the most natural distance measure for

distributions over a metric space and has received significant attention in the machine learning
community [V+09, San15, PC19].

If instead of considering EMD over arbitrary distributions we restrict to uniform distributions
over two sets of n points, computing EMD becomes equivalent to computing the cost of a
minimum-weight perfect matching, a problem with a seventy-year history [Kuh55].

The main result of [BR23] is an algorithm that returns an ε-additive approximation of
EMD(µ, ν) in time O(n2−δ(ε)), where n is (an upper bound to) the support size of µ and ν.
Notice that this is the first algorithm to compute EMD in sublinear time, indeed for a generic
metric the input representation includes an n× n distance matrix.

2



2.2 Related Work
Fast computation of Optimal Transport (OT)1 is a first-class citizen in the agenda of the
machine learning community, as it is witnessed by the yearly workshop on OT held at the
past few editions of NeurIPS. Some crucial applications of OT emerged in computer vision
[RTG00, ACB17, SDGP+15] and natural language processing [KSKW15, YCC+19], where the
data is embedded into a vector space as a preprocessing step. For a comprehensive overview of
OT applications in modern machine learning we refer to [PC19].

Solving EMD exactly. A recent breakthrough showed an algorithm to solve min-cost flow
in near linear time [CKL+22]. Thus, by simply casting EMD as a min-cost flow problem we
can solve it exactly in n2+o(1) time. Conversely, any algorithm inspecting less than the whole
n× n matrix cannot solve EMD exactly. Interestingly, a similar fine-grained lower bound holds
for (log n)-dimensional Euclidean space, where the input has just size n log n. In fact, Rohatgi
proved that no exact algorithm can run in time O(n2−ε), assuming the strong exponential time
hypothesis [Roh19].

Solving EMD up to multiplicative approximation. In Euclidean space, solving EMD
exactly requires time quadratic in the input size, thus an extremely natural question is whether
we can provide a multiplicative approximation2. A long line of research studied this and related
questions [Cha02, Ind03, CJLW22, ACRX22, AS14, AZ23, AIK08, ADBIW09, ANOY14].

In summary, EMD in Euclidean space exhibits a typical dichotomy showing up in geomet-
ric optimization problems: in low dimension we have near-linear time approximation schemes,
whereas in high dimension the best trade-off between approximation and running time is given by
Locality Sensitive Hashing, which achieves c-approximation in time n1+Θ(1/c) [HPIS13, AZ23].

General metrics are even harder. Indeed, [BCIS05] shows that o(n2) queries to the distance
matrix cannot guarantee any constant approximation. Thus, a next natural question to investi-
gate is whether an additive approximation3 is achievable in o(n2) time.

Solving EMD up to additive approximation. For general metrics, additive approximation
is natural because, as we have seen, both exact and multiplicative approximation are unachievable
in o(n2) time.

In addition, optimization and machine learning communities have studied additive approxi-
mation to EMD for a long time [ANWR17, BJKS18, DGK18, LXH23, Cut13, LNN+21, PLH+20].
This line of research focused on a regularized version of EMD: Sinkhorn distance. On one hand,
Sinkhorn has proven very successful in practice, on the other hand optimizing Sinkhorn distance
yields an additive approximation to the original EMD objective. Typically, the algorithms from
this line of research run in Oε(n

2) time and return a ε-additive approximation. Contrarily to the
exact min-cost-flow-based solution, these algorithms are practical.

Sublinear algorithms. As mentioned already, the truly-subquadratic complexity of our al-
gorithm is indeed sublinear for general metrics, since the input representation includes a n × n
distance matrix. In [BR23], we initiate the study of EMD in a sublinear model of computation
where we have random access to the distance matrix.

1Earth Mover’s Distance and Optimal Transport are just two names for the same object. The machine learning
community prefers OT, whereas the theory community favors EMD. In this thesis we will mainly use EMD.

2A C-multiplicative approximation to EMD is a value in [EMD(µ, ν), C · EMD(µ, ν)].
3A C-additive approximation to EMD is a value in [EMD(µ, ν), C + EMD(µ, ν)].
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Our access model is justified by scenarios where computing a single distance is expensive. For
instance, consider the problem of computing the minimum cost of a perfect matching (essentially
EMD) with respect to a shortest-path ground metric. If the underlying graph is large, then
minimizing the number of distance computation is crucial. In [ALT21], they studied exactly this
problem and experimented with heuristics to estimate the minimum-cost of a perfect matching
without computing all-pair distances.

In [BR23], we develop the first algorithm that runs a sublinear number of distance computa-
tions and returns a provably accurate additive approximation.

2.3 Our Contribution
The main contribution of [BR23] is the following theorem.

Theorem (Theorem 1 from [BR23]). Suppose we have sample access to two distributions µ, ν
over metric space (M, d) satisfying d(·, ·) ∈ [0, 1] and query access to d. Suppose further that
µ, ν have support size at most n.

For each constant ε > 0 there exists a constant f(ε) > 0 and an algorithm running in time
O(n2−f(ε)) that outputs ÊMD such that

ÊMD ∈ [EMD(µ, ν)± ε].

Moreover, such algorithm takes Õ(n) samples from µ and ν.

In the rest of this section, we give a sketch of the techniques employed to prove the theorem
above. Our proof develops in three steps. First, we reduce EMD to a conceptually simpler
problem that we dub min-weight quasi-perfect matching. Second, we design a non-sublinear
primal-dual schema that solves the latter. Third, we give a sublinear-time implementation of
this schema.

Reduction to min-weight perfect matching. If we take Oε(n) samples from both µ and
ν and compute the EMD between the empirical distributions of the samples, this yields a ε-
additive approximation to EMD(µ, ν). Moreover, since the empirical distributions are actually
uniform distributions over a discrete set, this is equivalent to computing he min-weight perfect
(bipartite) matching between two sets of points in a metric space. From now on, we will thus
focus on the latter problem and aim to approximate the minimum cost of a perfect matching
between two sets A,B ⊆M of size n. For convenience, we define the cost of the matching M as
cost(M) = 1

n

∑
e∈M cost(e).

Min-weight perfect matching with outliers. Since we aim for additive approximation, and
we assume d(·, ·) ∈ [0, 1], we can afford to leave a small fraction of vertices unmatched. Indeed,
if we have a matching M of size ≥ (1− ε)n, then extending it with εn arbitrary edges to make
it perfect will increase its cost by at most an additive term ε.

This observation about the robustness of the additive approximation version of this problem
comes handy while designing our algorithm. Intuitively, whenever a given vertex is hard to
handle we can just label it as an outlier and forget about it, as long as we ensure that the total
number of outliers is a small fraction of all vertices. In what follows we compute (the cost of) a
matching M that is almost perfect (namely, |M | > (1− ε)n) and which cost is not much larger
than the minimum cost of any perfect matching.
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A non-sublinear template algorithm. First, we recall a classic linear program for min-
weight perfect matching. Here we consider a complete bipartite graph on vertices A ∪B and an
integer4 cost function d(·, ·) ∈ [1, C]. We can interpret the following LP so that xu,v = 1 iff u
and v are matched, whereas primal constraints require every vertex to be matched.

Primal

Minimize
∑

u∈A,v∈A

xu,v · c(u, v)

subject to
∑

v∈B

xu,v ≥ 1 ∀u ∈ A

∑

u∈A

xu,v ≥ 1 ∀v ∈ B

xu,v ≥ 0 ∀u ∈ A, v ∈ B.

Dual

Maximize
∑

u∈V

φu

subject to φu + φv ≤ c(u, v) ∀u ∈ A, v ∈ B

φu ≥ 0. ∀u ∈ A ∪B,

Our template algorithm maintains a pair (M,φ), where M is a partial matching and {φ(v)}v∈A∪B

is a potential associated with each vertex. We maintain the invariant that φ(u)+φ(v) ≤ c(u, v)+1
for each u ∈ A, v ∈ B and φ(u) + φ(v) = c(u, v) for each (u, v) ∈ M . Thus, the potential φ
is a quasi-feasible dual variable and the the pair (M,φ) satisfies the complementary slackness
conditions. If M is a quasi-perfect matching (namely, |M | ≥ (1− ε)n) then we also have a quasi-
feasible primal, which together with (approximate) complementary slackness and (approximate)
feasibility of φ implies that M is approximately optimal.

Our objective is now to grow the matching M up until it is large enough. Without delving
into too much detail, it is sufficient to state that the basic operations required to grow M are
two. First, we need to compute maximal sets of node-disjoint augmenting paths5. Second, we
need to compute reachability queries; namely given a set of root vertices R we should output
the set of vertices that are reachable from R. The key contribution of this paper is to design the
right relaxations of these two basic operations that allow them to be implemented in sublinear
time.

Implementing the template algorithm in sublinear time. We have seen that implement-
ing the template algorithm boils down to computing (i) maximal sets of node-disjoint augmenting
paths and (ii) reachability queries. The basic ingredient we used in [BR23] to implement both
(i) and (ii) is an algorithm from [BKS23] that does the following. Given a unweighted bipartite
graph on 2n vertices, it returns a matching of size g(ε)n whenever a matching of size εn exists.
Their algorithm runs in time n2−f(ε)6. It is not too hard to see that repeatedly applying this
algorithm we can find a matching of size (1−ε)n. We define an operation of this kind a matching
query.

Suppose now that we want to compute a set of node-disjoint augmenting paths using matching
queries. If we fix a constant k, a color-coding technique allows us to build Ω(n) node-disjoint
augmenting path of length exactly k in parallel. Thus, using the [BKS23] algorithm we can
compute Ω(n) many node-disjoint shortest paths of constant length in time n2−f(ε). However,
there is one caveat: when there are too few node-disjoint augmenting paths the [BKS23] algorithm

4Extending this result to arbitrary cost functions taking values in [0, 1] is a technicality.
5An augmenting path w.r.t. a matching M is a path in the underlying graph where edges alternate between

∈ M and ̸∈ M . Moreover, we require the first and last edges to be ̸∈ M . Thus, toggling all edges along an
augmenting path increases |M | by one.

6Here, f(ε), g(ε) > 0 are constants that depend on ε.
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does not see them. Therefore, it is necessary to relax the notion of maximal set on node-disjoint
augmenting paths that we used in the template algorithm to quasi-maximal set of short node-
disjoint augmenting paths.

Likewise, to answer a connectivity query we can build a forest in parallel using matching
queries. Here the [BKS23] algorithm fails whenever the forest admits a cut of small size. There-
fore, we relax the notion of connectivity to a weaker notion, where we allow to return that a
vertex u is not connected to the roots R ⊆ A ∪ B as long as there exists a small cut separating
u and R.

If we analyse the impact of both these relaxations on the correctness proof of our template
algorithm, we realize that only a small fraction of vertices does not satisfy the invariants that
hold for the vanilla template algorithm. Hence, labeling these vertices as “outliers” is sufficient
to successfully carry out the analysis. Finally, employing the [BKS23] algorithm to compute
matching keeps the complexity of our algorithm strictly subquadratic (namely, sublinear in the
input size).

2.4 Future Directions
In order to point out interesting future direction, we would like to compare EMD with another
well-known metric optimization problem: Minimum Spanning Tree (MST). For both problem we
will focus on general metrics.

We would like to point out that there is a separation between the complexity of the (approx-
imate) value version of MST and EMD respectively. In fact, [CS09] designs an algorithm that
runs in Õε(n) time and returns the cost of MST up to a multiplicative factor 1+ ε. On the other
hand, as we already mentioned, no constant approximation for EMD can be computed in o(n2)
time [BCIS05]. Intuitively, this happens because the cost of MST depends on the entries of the
distance matrix more robustly than the value of EMD. Indeed, increasing a few entries of the
distance matrix can alter the value EMD arbitrarily, whereas for MST this does not happen.

However, we showed in [BR23] that allowing additive approximation makes EMD more robust,
and thus amenable to sublinear algorithms. We would like to raise as an open problem whether
this additional robustness allows, for instance, for an ε-additive approximation algorithm running
in Õε(n) time, which would match the result for MST [BCIS05].
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Chapter 3

Better Sum Estimation via
Weighted Sampling

In this chapter, we present the paper “Better Sum Estimation via Weighted Sampling”, which was
published at SODA 2022 and received the Best Student Paper Award [BR23]. First, we introduce
the problem, then we survey some related work and finally describe our technical contribution.

3.1 Introduction
Suppose you are given a set of U of size n, such that each u ∈ U has a weight w(u) > 0, and you
are asked to estimate W =

∑
u∈U w(u). If n is so large that we cannot afford to scan through

U , a natural question is whether we can estimate W in sublinear time. The answer, of course,
depends on the access model that we allow. The most natural access model is the one where we
can sample from U uniformly. Unfortunately, it is impossible to give any non-trivial estimate of
W using o(n) uniform samples, since we could have a single element accounting for 99% of W .
The next most natural model is the one where we can sample u ∈ U with probability proportional
to w(u); we dub this access model proportional setting.

How many proportional samples do we need to output Ŵ such that P [Ŵ ∈ (1± ε)W ] ≥ 2/3?

Motwani, Panigrahy, and Xu [MPX07] gave an algorithm for the proportional setting using
Õ(
√
n/ε7/2) queries, as well as a lower bound of Ω(

√
n) queries. In [BT22], we improve both

their upper and lower bound and prove that, up to constant factors,
√
n/ε samples are necessary

and sufficient. The sample complexity of our new algorithm is thus optimal both in terms of n
and ε.

Another natural access model occurs when we allow both proportional and uniform sampling,
and we dub this hybrid setting. This model was already studied in [MPX07] and in [BT22] we
improve their results in this setting as well. Section 3.3 reports our contributions in full detail.

Applications to graph algorithms. The initial problem for a generic set U appears fairly
abstract, and it is not clear why it should occur that we are able to sample from U proportionally
to w(·). A concrete application for the proportional setting is the following. Suppose we have an
extremely large graph G = (V,E), perhaps stored in a distributed fashion, and we would like to
estimate |E|. If we sample an edge uniformly and pick a random endpoint, this corresponds to
sampling a vertex proportionally to its degree. Thus, our algorithm can be employed to estimate
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|E| up to a factor 1 ± ε using O(
√
|V |/ε) edge samples. Notice that this improves over the

natural birthday-paradox based estimator, that takes Θ(
√
|E|) samples.

Likewise, if we are allowed to sample uniformly from both V and E, we can use our results
for the hybrid setting and obtain fast sublinear algorithms for edge counting.

3.2 Related Work
Besides [MPX07], there is no past work on the sum estimation problem in proportional or
hybrid setting. However, similar problems have been considered in the past. Notably, Horvitz
and Thompson [HT52] studied how to estimate

∑
u∈U w(u) while having sample access to a

distribution D on U , as well as the values PD(u) and w(u) for each sample u ∼ D. In the rest of
this section, we will review two lines of research that our paper has an impact on.

First, we review what is known about edge counting in sublinear time. Then, we show how
our result can serve as a bridge between proportional sampling and other well-studied sublinear
access models.

Edge counting in sublinear time. The problem of estimating simple global properties of a
graph G such as |V | or |E| in sublinear time has received significant attention both in theory
and practice [Fei06, GR06, Ses15, ERS17, TT21, KLS11, DKS14]. The motive behind all these
results is that in practice we encounter graphs G that are too large to scan through, and faster
schemes are sought. Not being able to preprocess the graph raises the question about how we
the input is represented or, equivalently, what is the access model1. Several access models have
been explored in the literature for tackling edge counting.

We review how the literature on edge counting in several access models. The algorithm from
[Fei06] uses random vertex queries and degree queries2 and achieves a (2+ε)-approximation using
Õ( n

ε
√
m
) time and queries. Using neighborhood queries3, Goldreich and Ron showed a (1 + ε)-

approximation with time and query complexity of Õ( n
ε9/2

√
m
) [GR06]. The current best algorithm

in this setting is by Eden, Ron and Seshadhri and has complexity Õ( n
ε2

√
m
) [ERS17]. If pair

queries4 along with random vertex and neighbors queries are allowed, Tětek and Thorup designed
an algorithm running in time Õ(

√
n/ε) [TT21]. Incidentally, this is the same complexity5 that

we achieve using only random edge and degree queries.

From proportional sampling to distribution testing. Canonne and Rubinfeld considered
an access model where the following queries are supported: (i) sample u ∈ U according to D; (ii)
given u ∈ U , return PD(u) [CR14]. Similarly, Onak and Sun considered a model where one can
sample from a distribution D on U and both u ∈ U and PD(u) are returned [OS18]. Both these
models are stronger than our proportional setting, indeed they become essentially equivalent to
our proportional setting once we know W .

Both these papers solve several distribution testing problems such as: uniformity testing,
identity testing, entropy estimation and distance to a known distribution, in the respective
models. Moreover, both papers point out that many of their algorithms are robust with respect
to perturbations of probability oracles. Therefore, our results serve as a reduction from the
proportional (hybrid) setting to these stronger models where the probability mass is returned.

1Namely, what set of queries the algorithm is allowed to perform.
2Given a vertex v, returns deg(v).
3Given a vertex v and an index i, returns the i-th neighbor of v.
4Given two vertices u, v, returns (u, v) ∈ E
5up to a logO(1) n factors.
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In fact, a multiplicative approximation of W readily translates to approximate probability mass
values.

3.3 Our Contribution
Our main contribution is establishing that the complexity of sum estimation in the proportional
setting is Θ(

√
n/ε), improving both upper and lower bounds from [MPX07]. As a bonus, our

algorithm is a simple formula and thus it is more practical than its predecessors [MPX07]. We
achieve a similar result in the hybrid setting, where we show that the complexity is essentially
Θ( 3
√
n/ε4/3). See Table 3.1 for a summary of the results in [BT22] and an explicit comparison

with [MPX07].
In [MPX07] it was assumed that n = |U | is known. We extend our results to the case of

unknown n. We consider the case when we have an upper bound ñ ≥ n as well as when we have
no advice on n.

When no advice is given, we design a O(
√
n/ε+log n/ϵ2)-time algorithm for the proportional

setting, thus paying a small price for not having advice. On the other hand, in the hybrid setting
we can show a Ω(

√
n/ε) lower bound, which is substantially worse than the complexity with

advice. All in all, in the proportional setting we may remove the advice without impacting the
complexity much, while in the hybrid setting having an advice gives an advantage. See Table 3.1
for a more direct comparison.

Advice to
the algorithm

This paper Motwani, Panigrahy and Xu [MPX07]

Proportional Hybrid Proportional Hybrid

n known Θ(
√
n/ε)

O(min( 3
√
n/ε4/3, n log n))

Ω(min( 3
√
n/ε4/3, n)

Õ(
√
n/ε7/2)

Ω(
√
n)

Õ( 3
√
n/ε9/2), O(

√
n/ε2)

Ω( 3
√
n)

Known ñ ≥ n
O(
√
ñ/ε)

Ω(
√
n/ε)

O(min(
√
n/ε, n log n))

Ω(min(
√
n/ε, n))

No advice O(
√
n/ε+ log n/ϵ2)

Ω(
√
n/ε)

O(min(
√
n/ε, n log n))

Ω(min(
√
n/ε, n))

Table 3.1: Results in [BT22].

In the rest of this section, we give an overview of the techniques employed in [BT22].

Proportional setting: algorithm. Here we show how to obtain a simple algorithm (a for-
mula, actually) for sum estimation in the proportional setting.

Sample u1, u2 ∈ U proportionally and let Y12 := 1/w(u1) if u1 = u2, and Y12 := 0 otherwise.
Thus, we have E[Y12] = 1/W . Moreover, estimating (1 ± ε)W is equivalent to estimating
(1± ε)/W , thus we can just estimate the latter. A straightforward approach is to sample many
independent copies of Y12, take the average, and use a concentration bound. Unfortunately,
a second-moment analysis shows that we need Ω(n/ε2) independent copies of Y12 to have our
estimator concentrated in (1 ± ε)/W with a constant probability. Instead, we take m samples
u1, · · · , um and consider an estimator Yij for each pair ui, uj for i ̸= j. This gives us a quadratic
speed-up, earning

(
m
2

)
estimators from m samples. The estimators Yij are not independent,

however they are uncorrelated, which is sufficient for a second-moment analysis. Ultimately, this
technique reduces the number of samples from O(n/ε2) to O(

√
n/ε).
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We can condense all we wrote above in a simple formula. Let S = {u1, · · · , um} be the set of
sampled items, and for s ∈ S define cs to be the number of times s is sampled. Then,

Ŵ =

(
m

2

)
·
(∑

s∈S

(
cs
2

)

w(s)

)−1

is a (1 ± ε)-approximation of W with probability 2/3 as long as m = Ω(
√
n/ε). Notice that

choosing a suitable value of m requires to know n or an upper bound ñ ≥ n.
When no advice on n is given, we use a bucketing scheme to reduce to a problem where

estimating the number of items is feasible6. In particular, it is fairly easy to sample a number b
such that Bb = {u ∈ U |w(u) ∈ [2b, 2b+1)} contains Ω(1/ log n) mass in expectation. Then, using
rejection sampling we can sample both proportionally and uniformly from Bb. Using a standard
collision-based estimator we can estimate |Bb| that, in turn, allows us to use the formula above
and estimate Ŵb ≈ Wb =

∑
u∈Bb

w(u). Finally, we estimate P̂b ≈ Pprop(u ∈ Bb) = Wb/W

and return Ŵ = Ŵb/P̂b. The fact that Eb[Pprop(u ∈ Bb)] = Ω(1/ log n) ensures that rejection
sampling only causes a O(log n) overhead in expectation.

Hybrid setting: algorithm. To solve hybrid setting, we heavily leverage our result for pro-
portional setting. The main ingredient here is to restrict ourselves to the set Uheavy of the
n2/3ε2/3 items with largest weights and solve sum estimation on Uheavy through rejection sam-
pling. If the overhead introduced by rejection sampling is small, then we simply run the algorithm
we designed for the proportional setting. Else, the overhead is large, and this implies that the
weight of the lightest element in Uheavy is comparable to the average weight W/n. Then, the
simple estimator 1/w(u) for u ∼ Pprop|Uheavy

is well-enough concentrated to yield the desired
sample complexity.

Notice that the algorithm above uses n explicitly. If we do not have any advice on n, we run
a straightforward collision-based estimator for n that takes O(

√
n) uniform samples and return

a constant approximation of n. This increases the sample complexity of our algorithm from 3
√
n

to
√
n. However, as we can see from the lower bounds in Table 3.1, this is inevitable.

Lower bounds. All lower bounds proven in [BT22] follow a common schema that we outline
here. First, define a uniform mixture of two instances of sum estimation U1 and U2 such that
any (1±ε)-approximation to sum estimation distinguishes between them. Then, we show that it
statistically impossible to distinguish between them with less than a certain number of samples
(depending on the problem at hand).

In order to do so, we prove that if we are able to distinguish between U1 and U2 then we
must be able to solve at least one of the two following problems.

1. Distinguish between a set of size n and on of size (1− ε)n through uniform sampling,

2. Distinguishing between random variables Bern(p) and Bern(p− δ) through sampling,

for some values of n, ε, δ and p. Then, we leverage statistical lower bounds for these two problem
to infer a statistical lower bound for distinguishing between U1 and U2.

Problem 2 is know to require Ω(p/ε2) samples, so we do not need to prove anything new.
As for problem 1, we sketch how we prove a lower bound on its sample complexity. Let S be
the multi-set of uniform samples in problem 1. First, we notice that the ratio R(S) between
the posterior probabilities of the events U1 and U2 depends only on the number ℓ(S) of distinct

6Indeed, using proportional sampling only it is impossible to estimate the total number of items n.
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elements in S. Then, we have that, for i = 1, 2, ℓ(S) |Ui is concentrated around E[ℓ(S) |Ui].
Moreover, E[ℓ(S) |U1] ≈ E[ℓ(S) |U2]. Finally, small variation of ℓ(S) produce small variations
of R(ℓ(S)). These facts are sufficient to infer that R(ℓ(S)) lies in a narrow interval around 1,
with probability ≈ 1. Therefore, the posterior probabilities of U1 and U2 are very close and we
cannot distinguish between them much better than a random guess.
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Chapter 4

Online Packing to Minimize Area or
Perimeter

In this chapter, we present the paper “Online Packing to Minimize Area or Perimeter”, which was
published at SoCG 2021 [AB21]. First, we introduce the problem, then we survey some related
work and finally describe our technical contributions.

4.1 Introduction
Issues associated with packing polygons manifest in various major industries. One example is
where a specified set of pieces needs to be cut from a large material sheet to minimize waste.
This is notably applicable in clothing production, where cutting patterns are extracted from a
fabric roll, as well as in sectors such as leather, glass, wood, and sheet metal cutting.

In some applications, pieces come “online” and decisions on placement must be taken before
knowing about future pieces. This contrasts with “offline” problems, where all pieces are known
in advance. Historically, packing problems were the first test bed for online algorithms when
they were first introduced in the 1970s [FW98].

The paper introduced in this chapter [AB21] tackles online packing of rectangles where pieces
can be positioned anywhere in the plane without overlapping and the objective is to minimize
the size of their axis-parallel bounding box. This size can be measured as the perimeter or the
area of the bounding box. Moreover, we can study two variants of this problem where we allow
or disallow 90◦ rotations. The product of these two conditions defines four distinct problems that
we tackled in [AB21]: PerimeterRotation, PerimeterTranslation, AreaRotation, and
AreaTranslation.

The metric used to evaluate online algorithms is the competitive ratio, that is the worst-case
ratio between the cost of the given online algorithm and the cost of the best offline algorithm.
Essentially, the competitive ratio is an approximation ratio where the algorithm designer has the
additional handicap of handling the input online.

4.2 Previous Work
Literature on packing problems is abundant and we defer to surveys for a comprehensive overview
[CKPT17, EvS18, vS12, vS15, CW98].

12



Figure 4.1: Left: Rectangular pieces packed into bricks. Right: A new piece arrives and it is
packed in a brand new brick. The brand new brick is picked so that is the smallest that can host
the new piece.

Most previous work is concerned with either bin packing (packing the pieces into a minimum
number of unit squares) or strip packing (packing the pieces into a 1×∞ strip so as to minimize
the total width of the pieces) [BS83, CW97, YHZ09, HT01, HIYZ07]. Notice that online strip
packing and bin packing are at the core topic of Chapter 5 in this thesis, which is a synopsis of
[AABK23].

In [AB21], however, we studied a different kind of packing problem where the container
is not fixed upfront, we can place pieces anywhere on the place and we aim to minimize the
size of the bounding box. This setting was already studied by Alt [Alt16], who showed how a ρ-
approximation algorithm for strip packing can be turned into a (1+ε)ρ-approximation algorithm
for the offline version of AreaTranslation or AreaRotation, for any constant ε > 0. The
main idea in [Alt16] is to tentatively apply the strip packing algorithm to strips of increasing
widths and choose the width that results in the smallest area. Clearly, this technique cannot be
easily applied in the online setting.

4.3 Our Contribution
In this section we list the contributions in [AB21] and give a sketch of some of the main technical
ideas used in their proofs. Table 4.1 summarizes all our results.

Minimizing perimeter. We design online algorithms for PerimeterRotation and Peri-
meterTranslationand prove that they attain a competitive ratio slightly less than 4.

The main technical idea here is to partition the positive quadrant into bricks, which are axis-
parallel rectangles with aspect ratio

√
2. Bricks enjoy the property that we can split a brick in

half and obtain two identical bricks a factor
√
2 smaller. When a new piece comes, we find the

smallest brick that can host it and stack it there. If no brick of the correct size has room for
it, a new brick of the correct size is created by partitioning existing bricks. See Figure 4.1 for a
graphical representation of our algorithm.

We also give a lower bound of 4/3 for the version with translations and 5/4 for the version
with rotations. The proof of these bounds are fairly straightforward and follow a general scheme.
First, we feed the online algorithm with a few 1× 1 square pieces, then we adaptively choose the
next piece between a tall-and-skinny rectangle, a short-and-fat rectangle and a 1 × 1 square so
as to maximize the competitive ratio.
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Minimizing area. We study the competitive ratio of AreaRotation and AreaTransla-
tion. We show a lower bound of Ω(

√
n) on the competitive ratio for both problems. This

lower bound is obtained by feeding the online algorithm with n pieces of size 1× 1/n and then,
according to the shape of the current bounding box either a 1× 1 square or a n× 1/n rectangle.
If the aspect ratio of the intermediate bounding box is ≤ √n then we feed the short-and-fat
rectangle, otherwise we feed the square. In both cases we obtain a bounding box which area is√
n times larger than the optimal offline solution.

On the algorithmic side, we design algorithms that achieve O(
√
n) competitive ratio for both

AreaRotationand AreaTranslation, and are thus optimal up to constant factors. The
basic idea behind these algorithms is to use a well-known online shelf-packing algorithm [BS83]
using dynamically-allocated boxes as containers.

Minimizing area: special instances. Since we have such strong lower bounds on competitive
ratio for the area version of our problem, a natural question is whether we can circumvent these
lower bounds by making natural assumptions that invalidate our hard instances. We study two
candidates: (i) input pieces have edge length ≥ 1; (ii) input pieces have aspect ratio upper-
bounded by α ≥ 1.

The assumption that all edge length is ≥ 1 does not exactly invalidate the lower bound above.
Indeed, it is sufficient to scale each piece by a factor n. However, the area of the bounding box
in that instance becomes n2, which is fairly large. In particular, in terms of the optimal offline
solution cost Opt, that same instance gives a Ω( 4

√
OPT ) lower bound on the competitive ratio.

It turns out that we can match that lower bound and give a O( 4
√

Opt)-competitive algorithm
for AreaRotation. Likewise, for AreaTranslationinstead, we prove that Θ(

√
Opt) is the

right competitive ratio in terms of Opt.
This might suggest that we should investigate competitive ratio as a function of Opt. How-

ever, when the pieces can be arbitrary, no function of Opt can bound the competitive ratio for
AreaRotation nor AreaTranslation.

As for (ii), we study the case α = 1 (namely, all pieces are squares) and extend to general
α subsequently. A similar problem had already been studied: online packing of squares into
a square bounding box [FH17a]. There, an 8-competitive algorithm was given. In [AB21], we
improve the analysis from [FH17a] and show that their algorithm is in fact 6-competitive and
that this is tight. Given such result, it easily follows that for any constant bound α ≥ 1 on the
aspect ratio, if the goal is to minimize the area of the axis-parallel bounding rectangle, we also
get a O(1)-competitive algorithm.
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Measure Version Trans./Rot. Lower bound Upper bound

Perimeter General
Translation 4/3 3.98

Rotation 5/4 3.98

Area

General
Translation Ω(

√
n) & ∀f : Ω(f(Opt)) O(

√
n)

Rotation Ω(
√
n) & ∀f : Ω(f(Opt)) O(

√
n)

Sq.-in-sq. N/A 16/9 6

Edge length ≥ 1
Translation Ω(

√
Opt) O(

√
n) = O(

√
Opt)

Rotation Ω(max{√n, 4
√

Opt}) O(min{√n, 4
√

Opt})

Table 4.1: Results in [AB21]. Each entry refers to the competitive ratio of the cooresponding
problem.
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Chapter 5

Online Sorting and Translational
Packing of Convex Polygons

In this chapter, we present the paper “Online Sorting and Translational Packing of Convex
Polygons”, which was published at SODA 2023 [AABK23]. First, we introduce the problem,
then we survey some related work and describe our technical contributions. In the end, we point
out some interesting future directions.

5.1 Introduction
Imagine that you are given an infinitely long roll of fabric (Figure 5.1) and you are asked to
cut some convex pieces of fabric out of this roll so as to minimize the amount of wasted fabric.
Assume that the requests for convex pieces come online, namely you have to deliver them as
they come. Moreover, the fabric has a privileged direction and every piece request comes with a
specific orientation (or, equivalently, you are not allowed to rotate the pieces). We studied this
and other related problems in [AABK23].

More formally, in [AABK23] we studied several online packing problems on the plane, where
the input is a sequence of convex polygons that have to be irrevocably placed in a given container
as they come, without rotating them. If the container is the infinite strip describe above we
talk about Strip-Packing and this will be the container that we consider throughout, unless
otherwise specified.

Figure 5.1: Left: Real-world example of packing on fabric produced using industrial software
from Mirisys. Right: Potential sewing patterns for the clothes arranged on roll of fabric.

For strip packing, if we require pieces to be cut online but we relax the constraint on rotations
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and allow pieces to be rotated, a O(1)-competitive1 algorithm exists [BS83]. Likewise, if retain
the no-rotation constraint but we allow for an offline solution an efficient O(1)-approximation
algorithm exists [AdBK17]. Therefore, it would be natural to conjecture that a O(1)-competitive
online algorithm exists also when we are not allowed to rotate pieces. Surprisingly, in [AABK23]
we proved a superconstant lower bound on the competitive ratio for online strip packing without
rotations.

The key idea behind our proof is a reduction to a combinatorial problem that we dub online
sorting. Essentially, we show that packing convex polygons online is costly because we cannot
sort them by slope online. Formally, we prove that if we had a O(1)-competitive online algorithm
for packing, then we would have a O(1)-competitive algorithm for online sorting. Then, we rule
out the latter with an ad-hoc argument.

It is interesting to observe that the known efficient offline O(1)-approximation algorithm for
packing sort convex pieces by slope [AdBK17]. In [AABK23] we proved that sorting is, in some
sense, a necessary step to obtain a constant-factor approximation.

Packing problems studied. In [AABK23], we studied several packing problems. In Strip-
Packing, we have a horizontal strip of height 1 which is bounded to the left by a vertical segment
and unbounded to the right. The goal is to place the pieces so that they occupy a prefix of the
strip of minimum length. In Bin-Packing, the pieces have to be placed in unit squares, and
the goal is to use a minimum number of squares. In Perimeter-Packing, pieces are placed in
the plane, and the goal is to minimize the perimeter of their axis-parallel bounding box, as in
Chapter 4.

When the pieces are restricted to axis-parallel rectangles, there are online algorithms with
constant competitive ratios solving all the problems above. Indeed, any online algorithm that
works for axis-parallel rectangular pieces extends to arbitrary convex polygon if these can be
rotated, because it is always possible to rotate a convex piece so that it has density 1/2 in its
axis-parallel bounding box. Thus, all the problems above admit constant-competitive algorithm
if we lift the no-rotation constraint.

In [AABK23] we prove that all the problems above admit efficient O(1)-approximation offline
algorithm (through reductions to [AdBK17]).

A surprising lower bound. Even though all the packing problems above admit O(1)-competitive
online algorithms when rotations are allowed and efficient O(1)-approximation offline algorithms,
in [AABK23] we prove superconstant lower bounds on the competitive ratio of all the problems
above, when rotations are forbidden.

5.2 Previous Work
As pointed out in Chapter 4, the literature on online packing problems is vast and we point the
reader to more comprehensive surveys [CKPT17, EvS18, vS12, vS15, CW98]. Below we survey
the most important results related to the packing problems studied in this paper.

Strip packing. If the pieces are simple or convex polygon, exact and efficient approximation
offline algorithms for strip packing have been studied [Mil96, Mil97, MD99, DM97]. If the
pieces are rectangular, constant-competitive algorithms have been studied [BS83, YHZ09, CW97,
HIYZ07].

1The notion of competitive ratio is defined in Chapter 4.
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Bin packing. Online bin packing problems have been studied since the early 1970s [FW98] and
have seen a significant amount of work. A long sequences of papers, brought the upper bound
on the asymptotic competitive ratio2 for this problem down to 2.5545 and the lower bound up
to to 1.907 [HCT+11].

Perimeter packing. The offline versions of this and similar problems has received signif-
icant attention [Mil96, Mil99, MD99, AC12, AH00, LW88, PBAA16, Alt16, AdBK17, LG03,
Spe13, LG09, EG75, CG19] and it has been shown that perimeter packing admits efficient O(1)-
approximation algorithms. The online version has received less attention, nonetheless it has
been proven that if the polygons to be packed are rectangles then O(1)-competitive algorithms
exist [FH17b, AB21].

5.3 Our Contribution
Our main innovative contribution is the definition of an auxiliary problem, Online-Sorting,
that serves as a stepping stone for our lower bound. First, we reduce strip packing to online
sorting and then reduce all our packing problems to strip packing.

r1 r2 . . .

width

r3 r4

Figure 5.2: Strip packing and online sorting.

Online sorting. In Online-Sorting[γ, n], we have an empty array A with ⌊γn⌋ cells for
some γ ≥ 1, and receive a stream of real numbers s1, . . . , sn, si ∈ [0, 1]. Each real has to be
placed into an empty cell of A before the next real is known. The objective is to minimize
the sum of differences of consecutive reals in A, where A[i] and A[j] are consecutive if i <
j and A[i + 1], . . . , A[j − 1] are all empty. The offline optimum is obtained by placing the
reals in sorted order in some n cells of A, hence the name “online sorting”. We show that
Online-Sorting[O(1), n] does not allow for constant factor competitive online algorithms, and
more precisely we prove the following.

Theorem (Theorem 1 in [AABK23]). Suppose that γ,∆ ≥ 1 are such that Online-Sorting[γ, n]
admits a ∆-competitive algorithm, then γ∆ = Ω(log n/ log log n).

In order to prove the theorem above, we need to design an adversarial input that is chosen
adaptively with respect to the algorithm’s placements. At a high level, we would like to force the
algorithm to place far numbers in adjacent positions. We design an adversary that operates in
rounds such that at round i it outputs reals from a given set Si. We design sets Si so that they
are nested (Si+1 ⊆ Si) and we define Si+1 adaptively so that there exists a set D of deserted cells
of A such that either: (i) the algorithm cannot place many reals from Si+1 or (ii) the algorithm
incurs a high cost. In both cases we make progress, indeed in case (i) we have virtually decreased
the factor γ (i.e., the memory slack) and in case (ii) we have come closer to our goal of increasing
the competitive ratio.

2A notion of competitive ratio that only looks at worst-case instances of sufficiently large size.
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Reducing online packing to online sorting. A fundamental step in proving our lower
bound is to reduce all our packing problems to online sorting. Online strip packing is the most
natural problem to reduce to online sorting. It is fairly easy to see that, if we restrict ourselves
to parallelogram pieces which height is exactly the height of the strip, then the two problems are
related. See Figure 5.3.

Figure 5.3: Two strip packings of the same set of parallelograms which height is the same of
the strip’s height. Left: An optimal packing is obtained through sorting. Right: An arbitrary
packing creates some gaps. These gaps are proportional to the overhang of parallelograms, that
we translate to reals in our reduction.

This instance with uniform-height parallelograms might seems contrived, and one may wonder
whether packing is still hard when we restrict ourselves to pieces that have diameter ≤ δ for some
arbitrarily small δ > 0. The same lower bound holds even under such restriction, and it extends
to all studied packing problems too. See Figure 5.4 for a map of our reductions.

Online-Sorting[C, n] Strip-Packing

Strip-Packing, Ø ≤ δ

Bin-Packing, Ø ≤ δ

Square-Packing[δ] Perimeter-Packing

Figure 5.4: An overview of our reductions. Note that an arrow from problem A to problem B
means that an algorithm for B implies an algorithm for A. Here, Ø ≤ δ means that the diameter
of each piece is at most an arbitrary constant δ > 0. The problem Square-Packing[δ] is similar
to bin packing and we refer the reader to the full version of [AABK23] for its definition.

The following theorem summarizes most of the lower bounds for packing in [AABK23].

Theorem (Essentially Theorem 2 in [AABK23]). Fix δ > 0. Given a stream of n pieces, which
are restricted to have diameter ≤ δ:

1. The competitive ratio or Strip-Packing is Ω(
√
log n/ log log n).

2. The competitive ratio or Bin-Packing is Ω(
√
log n/ log log n).

3. The competitive ratio of Perimeter-Packing is Ω( 4
√
log n/ log log n).

Algorithms. We complement our lower bounds with two algorithmic results.

• For Online-Sorting[1+ε, n], we give an online algorithm with competitive ratio 2O(
√
logn·√log logn)).

• For strip packing, we give an online algorithm with competitive ratio O(nlog 3−1 log n).

Both algorithms use recursive schemes to achieve non-trivial competitive ratios. We believe
that these algorithms are of minor interest and their main goal was to initiate the study of the
algorithms as well. Indeed, we would expect it to be possible to achieve much lower competitive
ratios than the ones achieved in [AABK23].

For both online sorting and strip packing there is an exponential gap between the lower and
upper bound on the competitive ratio.
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5.4 Future Directions
Two main future directions were left open in [AABK23]. First, the design of our adversary
was completely adaptive. This implies that our lower bound does not work against randomized
algorithms, unless the adversary has white-box access to the algorithm’s internal state. Therefore,
a natural question is whether there exists a randomized non-adaptive adversary, which would
work also against randomized online algorithms.

Second, there is an exponential gap between the lower and upper bounds on the competitive
ratio of both strip packing and online sorting. We believe that an extremely natural question is
to close this gap.
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Chapter 6

Locally Uniform Hashing

In this chapter, we present the paper “Locally Uniform Hashing”, which was published at FOCS
2023 [BBK+23]. First, we introduce the problem, then we survey some related work and finally
describe our technical contributions.

6.1 Introduction
Hashing is a ubiquitous technique in computer science, with a strong impact on the resources
spent on computation. In theory, algorithms are often analyzed under the unrealistic assumption
that a fully random hash function exists. Such assumption is indeed unrealistic, because a
fully random hash function h : U → R uses |U | log |R| bits of space, and the universe U is
often prohibitively large. In practice, fast hash functions with weak theoretical guarantees are
employed. The goal of [BBK+23] is to develop a practical hash function that provably behaves
as if it was (almost) fully random.

Using weak hash functions can have catastrophic consequences. A prominent example is the
classic linear hashing data structure, implemented with a 2-independent hash function1. If the
input carries enough entropy, then any 2-independent hashing performs well [MV08]. However, if
the input is structured (e.g., an arithmetic sequence) certain 2-independent hash families perform
poorly [TZ12, PT10]. This issue becomes even worse if we shift from data structures to streaming
computation, where it is not even possible to detect an anomaly because our system does not
store the original data. In this setting, our estimators could be flawed without us realizing it.
Only a hash function with worst-case guarantees can prevent such failures.

In [BBK+23], we develop tornado tabulation, a hash function that satisfies a certain local
full randomness property. Local full randomness ensures that tornado tabulation can be used as
a plug-and-play replacement for the (unrealistic) fully random hash function in many analyses
of algorithms. In turn, this allows for a practical implementation of such algorithms that is
still theoretically sound. Examples of these applications are the classic linear probing scheme
[Knu63], HyperLogLog [FFGM07] and One-Permutation Hashing [LOZ12].

6.2 Previous Work
Tabulation-based hashing has received significant attention in the past 15 years [HT22, DKRT14,
DT14, Tho13, PT13, PT12a, KW12, TZ12, TZ04, TZ09, PT12b]. On a practical standpoint,

1A hash function is k-independent if its restriction to any set of keys of size k is fully random.
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tabulation-based hashing is remarkably fast because it uses a few simple bit-wise operation and
small tables that fit in fast cache. On a theoretical standpoint, even though tabulation hashing is
not even 4-independent, it works great inside popular algorithms [PT12b]. Unfortunately, these
applications require ad-hoc proofs showing that tabulation hashing does work. In [BBK+23], we
prove that tornado tabulation satisfies a more general local full randomness property that allows
it to be used inside popular algorithms more like a black box.

An enhanced notion of full randomness. Our notion of local full randomness is inherited2

from [DKRT15] and roughly speaking it says that if we restrict ourselves to a small portion
of the hash table, the elements hashed there are hashed (almost) uniformly at random. This
formulation is sufficient for certain applications but does not work when the interesting portion
of the hash table depends on the hash values of some query keys.

For instance, in the analysis of linear probing, given a query key q, we would like to bound
the number of contiguously occupied cells in the sequence h(q), h(q)+1, . . . known as run length.
In fact, the time spent to lookup (or insert) q is exactly proportional to the run length starting
at h(q). For our analysis to carry over as if we had a fully random hash function we need to
guarantee that the set of keys hashed in a sizeable interval around q are hashed at random.

In [BBK+23], we enhance their notion of local full randomness so that the small portion of
the hash table considered interesting is allowed to depend on the hash values of some query keys.
The notion of local full randomness is rather technical in itself, and we present it in the next
section.

6.3 Our Contribution
In this section we formally define tornado tabulation hashing and present the main theorem in
[BBK+23].

Simple tabulation hashing. We assume that keys are c-tuples of characters (x1 . . . xc) ∈ Σc

and we map them to hash values in R. We then say h : Σc −→ R is a simple tabulation hash
function if

h(x) = T1[x1]⊕ · · · ⊕ Tc[xc]

where, for each i = 1 . . . c, Ti : Σ −→ R is a fully-random function stored as a table.

Tornado tabulation hashing. To define a tornado tabulation hash function h, we use several
simple tabulation hash functions as building blocks. A tornado tabulation function has a number
d of derived characters.

For each i = 0, . . . , d, we let h̃i : Σ
c+i−1 −→ Σ be a simple tabulation hash function. Given

a key x ∈ Σc, we define its derived key h̃(x) ∈ Σc+d as x̃ = x̃1 · · · x̃c+d, where

x̃i =





xi if i < c

xc ⊕ h̃0(x̃1 · · · x̃c−1) if i = c

h̃i−c (x̃1 · · · x̃i−1) if i > c.

(6.1)

We note that each of the d derived characters x̃c+1, . . . , x̃c+d is progressively defined by applying
a simple tabulation hash function to all its preceding characters in the derived key x̃. Finally,
we have a simple tabulation hash function ĥ : Σc+d −→ R, that we apply to the derived key.
The tornado tabulation hash function h : Σc −→ R is then defined as h(x) = ĥ(x̃).

2Although they did not name this property explicitly.
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Implementation of tornado tabulation. The simplicity of tornado tabulation is apparent
from its C implementation below. An important low-level optimization is folding tornado’s tables
together so that it only performs one lookup per character, hence c + d lookups in total. We
implement these folded tables as c+d character tables Σ→ Σd+1×R, where elements of Σd+1×R
are just represented as w-bits numbers.

The C-code implementation below works for 32-bit keys, with Σ = [28], c = 4, d = 4, and
R = [224]. Besides the key x, the function takes as input a randomly initialized array of c + d
tables of size |Σ|. It is worth to notice that the size of Σ is chosen so that a table of size
|Σ| · d · log |R| fits in fast cache.

INT32 Tornado ( INT32 x , INT64 [ 8 ] [ 2 5 6 ] H) {
INT32 i ; INT64 h=0; INT8 c ;
for ( i =0; i <3; i++) {

c=x ;
x>>=8;
h^=H[ i ] [ c ] ; }

h^=x ;
for ( i =3; i <8; i++) {

c=h ;
h>>=8;
h^=H[ i ] [ c ] ; }

return ( ( INT32) h ) ; }

Full randomness on query-selected keys. The main result of [BBK+23] is fairly technical.
We recall that the goal here is to show that if we select a small set X of relevant keys they have
uniformly random hash values. Moreover, whether a given key x is selected or not can depend
on: x, h(x) and h|Q, namely the value of h on all query keys in Q.

An hash value h(x) ∈ R is described using log |R| bits. If we think about a standard
representation, the upper bits identify the dyadic interval that h(x) belongs to whereas the lower
bits identify its position inside such dyadic interval. If we are interested to select elements that
are hashed in a certain interval around h(q) for some q ∈ Q we do not really care about the lower
bits of h(x) nor h|Q, but we do care about the upper bits of h(x) and h|Q. On the other hand,
when we care about h(x) being random within a certain interval, we only care about its lower
bits. This, motivates the following technical definition.

First, we identify R = [2s] × [2t], where s are the upper bits (used to select keys) and [2t]
are the lower bits (that we would like to be random). Formally, we define a selector function
f : Σc × [2s]× [2s]Q −→ {0, 1} and we define the set of selected keys as

Xf,h =
{
x ∈ Σc | f(x, h(s)(x), h(s)|Q) = 1

}

where h(s)(x) represents the upper bits of h(x). We then define

µ :=
∑

x∈Σc

pfx with pfx := max
φ∈RQ

Pr
r∼U(R)

[f(x, r, φ) = 1] ,

where the maximum is taken among all possible assignments of hash values to query keys φ :
Q → R and r is distributed uniformly over R. To help making sense of the expressions above,
it is worth to notice that if h : Σc → R is fully random then E[|Xf,h|] ≤ µ.

Now, we can give our main result
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Theorem (Theorem 5 in [BBK+23]). Let h : Σc → R be a tornado tabulation hash function
with d derived characters and f be a selector function operating on the s upper bits as described
above. If µ ≤ Σ/2, then the t lower bits of h are fully random on Xf,h(s)

with probability at least

1− (7µ3(3/|Σ|)d+1 + 1/2|Σ|/2) .

In a nutshell, the above theorem states that if we select our interesting keys based on the
upper bits of their hash values, then the lower bits of their hash values are fully random with
high probability. This technical condition on upper/lower bits is inevitable, because the upper
bits of a given key could be completely determined by the upper bits of the query keys, if these
are chosen carefully.

It is worth to notice that, unlike [DKRT15], we compute the constants in our failure proba-
bility, which ensures applicability also when Σ is moderately large (and thus fits in cache).

The proof of the theorem above is definitely technical and we point the reader to the full
version of the paper for an overview. The main intuition behind it is that subsequent applications
of simple tabulation help “breaking” dependencies among keys. Indeed, one can observe that as
the number d of derived character increases the failure probability decays exponentially because
more and more (random) dependencies are broken.
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Chapter 7

Multi-Swap k-Means++

In this chapter, we present the paper “Multi-Swap k-Means++”, which was published at NeurIPS
2023 [BCALP23]. First, we introduce the problem, then we survey some related work and
describe our technical contributions. In the end, we point out some interesting future directions.

7.1 Introduction
Clustering is a fundamental problem in unsupervised learning where the objective is to partition
datapoints into clusters so that similar points belong to the same cluster and dissimilar points
do not. Among the wealth of notions of clustering that have been proposed in machine learning,
here we focus on one popular formulation: Euclidean k-means.

The definition of Euclidean k-means is the following. Given a dataset P in Rd we want
to find a set of k centers C so that the sum over p ∈ P of the square Euclidean distances
between p and its closest center in C is minimized. Formally, we want to find C minimizing∑

p∈P minc∈C ||p− c||2.
In [BCALP23], we develop a new seeding strategy for Euclidean k-means that strikes a new

balance between theoretical guarantees and practicality.

7.2 Related Work
In this section we introduce the line of research on seeding algorithms for k-mean that [BCALP23]
contributed to.

Lloyd’s algorithm. The popularity of the k-means objective is partially due to the existence of
an extremely simple and effective heuristic for k-means, the so-called Lloyd’s algorithm [Llo57].
Lloyd’s initializes a set C of k centers arbitrarily, and then it alternates between two steps.
First, it assigns each point in P to its closest center in C defining a partition of P into clusters
C1 . . . Ck. Second, it updates C so that C = {mean(Ci) | i = 1 . . . k}. Despite its great
practical performance, [AV09] showed that Lloyd’s can lead to solutions with arbitrarily high
approximation ratio. However, it is easy to verify that none of the steps of Lloyd’s can increase
the objective function

∑
p∈P minc∈C ||p− c||2. Thus, if a seeding strategy (namely, a way to

initialize the centers) has a provable approximation guarantee, then this guarantee is inherited
by Lloyd’s, if initialized with that strategy.
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k-means++. An extremely simple strategy of this kind exists, it is known as k-means++ and
it gives a O(log k) approximation factor [AV07]. The way it works is the following. We sample
the first center c1 uniformly at random from P , then for i = 2 . . . k we sample ci from P so that
x ∈ P is sampled with probability proportional to minj<i ||x− c||2. In other words, each new
center is sampled from P with probability proportional to its current cost.

Local search k-means++. The extreme simplicity of k-means++ led it to be widely adopted
and be part of the popular scikit-learn library [PVG+11]. Following this successful application
of theory, [LS19b, CGPR20] showed that adding roughly k steps of local search on top of k-
means++ yields a still-practical seeding strategy achieving constant approximation.

The local-search step [LS19b, CGPR20] is the following. Given a set of k centers C, a new
center ck+1 is sampled from P according to the k-means++ distribution, that is x ∈ P is sampled
with probability proportional to minc∈C ||x− c||2. Then, a center cj ∈ {c1 . . . ck+1} is evicted.
In particular, we evict the center cj that, once evicted, makes the current cost increase by the
least amount. This local search strategy yields a constant approximation, however this constant
is very large (∼ 500) and the question on whether this could be improved remained open.

The complexity of approximating Euclidean k-means. From a theoretical standpoint,
Euclidean k-means is hard to solve exactly and even hard to approximate [GI03, ACKS15].
Indeed, a long line of research showed that computing a 1.06-approximation to Euclidean k-
means is NP-hard [LSW17, CK19, CLK22, CKL21]. On the algorithmic side, [CEMN22] recently
improved over a long line of work [KMN+04, JV01, ANFSW19, GOR+22] and obtained a 5.912-
approximation for Euclidean k-means in polynomial time.

Primal-dual vs local search. The approximation algorithms in the literature achieving the
lowest approximation ratios are based on a reduction to facility location together with primal-
dual schema to approximate the latter, and they are arguably impractical [JV01, ANFSW19,
GOR+22, CEMN22, CEMN22]. On the other hand, the algorithm in [KMN+04] uses a simple
local search strategy. In [BCALP23], we give an alternate implementation of the general local
search strategy in [KMN+04] and obtain a more practical algorithm.

Exhaustive local search. Here we review the local search strategy from [KMN+04]. We fix
a parameter p that defines the size of our neighborhood in the local search and initialize a set of
C ⊆ F centers arbitrarily.

We define a local search step as follows. If there is a set C+ of at most p points in Rd together
with a set C− of |C+| points in C such that C \ C− ∪ C+ achieves a better k-means cost than
C, then set C ← C \ C− ∪ C+. We run local search steps until convergence.

The local search strategy above is fairly straightforward, however establishing whether there
exists a set C+ of points in Rd that could be swapped with elements of C to improve the cost is
nontrivial. In [KMN+04] this was done restricting the search to an ε-grid of ε−d discrete points
and searching exhaustively among them, which gives an undesirable exponential dependency in
the dimension d.

To improve the exponential dependency of the exhaustive local search in [KMN+04], we can
use coresets [CLSS22] together with dimensionality reduction techniques [BBC+19, MMR19].
This restricts the search for new centers to a set of size kO(ε−2 log(1/ε)). Thus, a single local
search step takes kO(pε−2 log(1/ε)) time.

Moreover, setting p = Θ(1/ε) suffices to obtain a (9 + ε)-approximation [KMN+04]. There-
fore, the local search step described in [KMN+04], combined with the latest coreset and dimen-
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sionality reduction technology gives a running time of kO(ε−3 log(1/ε)) per step and achieves a
(9+ ε)-approximation. Notice that 9 is the best approximation ratio achievable by an algorithm
performing such local search, for any constant p [KMN+04].

7.3 Our Contribution
In [BCALP23], we interpolate between the local search strategies of [LS19a] and [KMN+04] and
achieve the following results.

• First, we adapt techniques from the analysis of [KMN+04] to obtain a tighter analysis of
the algorithm in [LS19b]. In particular, we show that their algorithm achieves an approx-
imation of ratio of ≈ 26.64, whereas the previous analyses [LS19b, CGPR20] reported an
approximation ratio of 500.

• Second, we extend the local search step from [LS19a] to multi-swaps, where we swap more
than one center simultaneously. This yields a 10.48-approximation in time O(nd · poly(k)).

• Third, borrowing techniques from [CASS21], we further improve our local search step and
bring the approximation ratio down to 9 + ε, which is tight for local-search algorithms
[KMN+04]. Moreover, this matches the approximation achieved by [KMN+04] while being
more efficient. Indeed, we improve the complexity of a local search step from kO(ε−3 log(1/ε))

to kO(ε−2 log(1/ε)).

Finally, we provide experiments where we compare a variant of our algorithm against k-
means++ and [LS19b].

Our Algorithm. Here we present our algorithm. Let p be the swap size. First, we initialize a
set of centers C using k-means++. Then, we run O(ndkp−1) rounds of local search, where each
local search round works as follows.

We sample a set In = {q1 . . . qp} of points from P independently so that each point in x ∈ P

is sampled with probability proportional to its cost with respect to C, minc∈C ||x− c||2. Then,
we iterate over all possible subsets Out = {c1 . . . cp} of P ∪ In of size p and select the set Out
such that performing the swap (In,Out) maximally improves the cost. If swapping In and Out
actually improves the cost, then we do swap In and Out, else we do not perform any swap in
this round.

Our algorithm satisfies the following.

Theorem (Theorem 3 and Corollary 5 in [BCALP23]). For any δ > 0, the p-swap local
search algorithm above runs in Õ(ndk2p) time and, with constant probability, finds an (η2 + δ)-
approximation of k-means, where η satisfies

η2 − (2 + 2/p)η − (4 + 2/p) = 0.

Thus, for p = O(1) large enough, multi-swap local search achieves an approximation ratio < 10.48
in time O(nd · poly(k)).

Notice that setting p = 1 retrieves exactly the algorithm from [LS19a, CGPR20], which proves
that their algorithm actually achieves an approximation ratio < 26.64.
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Figure 7.1: This figure compares the cost of our p-swap local search algorithm (MSLS-G), for
p ∈ {1, 4, 7, 10}, divided by the mean cost of k-means++ (KM++) at each local search step, for
k = 25. The legend reports also the running time of MSLS-G per local search step (in seconds).

Matching the local-search barrier. As we mentioned above, combining our techniques with
those of [CASS21] we manage to match the best approximation achievable by local search algo-
rithm. At a high level, the limitation we found while trying to match the local-search barrier was
that our algorithm as described so far is only allowed to select centers from the original dataset
P . To overcome this, we needed to consider centers that are convex combination of datapoints,
and not just datapoints.

This is exactly what was done in [CASS21], where it was shown that taking the average
of a constant number of samples is sufficient to retrieve a good center. We integrated their
techniques into our framework and obtained a (9 + ε)-approximation. Although this version of
the algorithm is highly impractical, it was an interesting proof-of-concept to see that it is faster
than exhaustive local search, even when we enhance the latter with all the latest coreset and
dimensionality reduction machinery.

Experiments. In [BCALP23], we run experiments on a greedy variant1 of our algorithm and
showed that its performance improves as the number p of centers swapped simultaneously in-
creases. Figure 7.1 provides an example of our experimental work.

In particular, our approach outperforms previous seeding strategies: k-means++ [AV07] and
single-swap local search [LS19b] on popular datasets. See [BCALP23] for a full description of
the experimental setting.

7.4 Future work
An interesting open question is to improve the complexity of our local search step. This should
be done in two ways. First, we should avoid performing exhaustive search over all possible size-p
subsets of centers to swap out. Second, we should prove that fewer than O(k2p) repetitions are
sufficient to sample a good candidate set of centers to swap in. If both goals are achieved, this
would eliminate the term kpoly(ε), leaving hope for an algorithm with running time Õ(f(1/ε)ndk)
also known as efficient PTAS.

1This greedy variant replaces the exhaustive search for the set of centers to swap out with a greedy procedure
that chooses centers to swap out one by one. See [BCALP23] for a detailed description of this more practical
variant.
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Abstract

We design an additive approximation scheme for estimating the cost of the min-weight
bipartite matching problem: given a bipartite graph with non-negative edge costs and ε ą 0,
our algorithm estimates the cost of matching all but Opεq-fraction of the vertices in truly
subquadratic time Opn2´δpεqq.

• Our algorithm has a natural interpretation for computing the Earth Mover’s Distance
(EMD), up to a ε-additive approximation. Notably, we make no assumptions about the
underlying metric (more generally, the costs do not have to satisfy triangle inequality).
Note that compared to the size of the instance (an arbitrary n ˆ n cost matrix), our
algorithm runs in sublinear time.

• Our algorithm can approximate a slightly more general problem: max-cardinality bipar-
tite matching with a knapsack constraint, where the goal is to maximize the number of
vertices that can be matched up to a total cost B.

1 Introduction

Earth Mover’s Distance (EMD - sometimes also Optimal Transport, Wasserstein-1 Distance or
Kantorovich–Rubinstein Distance) is perhaps the most important and natural measure of similarity
between probability distributions over elements of a metric space [PC19; San15; Vil+09]. Formally,
given two probability distributions µ and ν over a metric space pM, dq their EMD is defined as

EMDpµ, νq “ min
!
Epx,yq„ζrdpx, yqs

ˇ̌
ˇ ζ is a coupling1of µ and ν

)
. (1)

When µ and ν are discrete distributions with support size n (perhaps after a discretization
preprocessing), a straightforward algorithm for estimating their EMD is to sample Θpnq elements
from each, compute all Θpn2q pairwise distances, and then compute a bipartite min-weight perfect
matching. This algorithm clearly takes at least Ωpn2q time (even ignoring the computation of the
matching), and incurs a small additive error due to the sampling.

Our main result is an asymptotically faster algorithm for estimating the EMD:

1A distribution ζ over M2 is a coupling of µ and ν if µpxq “ ş
M ζpx, yq dy and νpyq “ ş

M ζpx, yq dx.
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Theorem 1 (Main Theorem). Suppose we have sample access to two distributions µ, ν over metric
space pM, dq satisfying dp¨, ¨q P r0, 1s and query access to d. Suppose further that µ, ν have support
size at most n.

For each constant γ ą 0 there exists a constant ε ą 0 and an algorithm running in time Opn2´εq
that outputs {EMD such that

{EMD P rEMDpµ, νq ˘ γs.
Moreover, such algorithm takes Õpnq samples from µ and ν.

Notably, our algorithm makes no assumption about the structure of the underlying metric. In
fact, it can be an arbitrary non-negative cost function, i.e. we do not even assume triangle inequality.

Beyond bounded support size. Support size is a brittle matter; indeed two distributions that
are arbitrarily close in total variation (TV) distance (or EMD) can have completely different support
size. Moreover, for continuous distributions, the notion of support size is clearly inappropriate and
yet we would like to compute their EMD through sampling. To obviate this issue, Corollary 1.1
generalize Theorem 1 to distributions that are close in EMD to some distributions with support
size n.

Corollary 1.1. Suppose we have sample access to two distributions µ, ν over metric space pM, dMq
satisfying dp¨, ¨q P r0, 1s and query access to d. Suppose further that there exist µ1, ν1 with support
size n such that EMDpµ, µ1q,EMDpν, ν1q ď ξ, for some ξ ą 0.

For each constant γ ą 0 there exists a constant ε ą 0 and an algorithm running in time Opn2´εq
that outputs {EMD such that

{EMD P rEMDpµ, νq ˘ p4ξ ` γqs.
Moreover, such algorithm takes Õpnq samples from µ and ν.

For continuous µ, requiring that µ is close in EMD to a distribution with bounded support size
is equivalent to saying that µ can be discretized effectively for EMD computation. Thus, such as-
sumption is natural while computing EMD between continuous distribution through discretization.

We stress that the algorithm in Corollary 1.1 does not assume knowledge of µ1 (nor ν1) beyond
its support size n. Indeed, the empirical distribution over Õpnq samples from µ (resp. ν) makes
a good approximation in EMD. Finally, the sample complexity in Theorem 1 and Corollary 1.1 is
optimal, up to polylogpnq factors. Indeed, Theorem 1 in [VV10] implies a lower bound of Ω̃pnq on
the sample complexity of testing EMD closeness2.

Matching with knapsack constraint. Applying our main algorithm to a graph-theory setting,
we give an approximation scheme for a knapsack bipartite matching problem, where our goal is to
estimate the number of vertices that can be matched subject to a total budget constraint.

Theorem 2 (Main theorem, graph interpretation). For each constant γ ą 0, there exists a constant
ε ą 0, and an algorithm running in time Opn2´εq with the following guarantees. The algorithm
takes as input a budget B, and query access to the edge-cost matrix of an undirected, bipartite graph
G over n vertices. The algorithm returns an estimate xM that is within ˘γn of the size of the
maximum matching in G with total cost at most B.

2While deriving the lower bound from [VV10] takes some work, Remark 5.13 in [Can20] explicitly states a
Ωpn{ lognq lower bound for TV closeness testing.
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1.1 Relaed Work

Computing EMD is an important problem in machine learning [PC19] with some exemplary ap-
plications in computer vision [ACB17; RTG00; Sol+15] and natural language processing [Kus+15;
Yur+19]. See [PC19] for a comprehensive overview.

Exact solution. Computing EMD between two sets of n points boils down to computing the
minimum cost of a perfect matching on a bipartite graph, a problem with a 70-years history [Kuh55].
Min-weight bipartite perfect matching can be cast as a min-cost flow (MCF) instance and to date
we can solve it in n2`op1q time (namely, near-linear in the size of the distance matrix) [Che+22a].
Apparently, any exact algorithm requires inspecting the entire distance matrix, thus Θpn2q time is
the best we can hope for. In addition, even in d-dimensional Euclidean space, where the input has
size d ¨ n ! n2, no Opn2´εq algorithm exists3, unless SETH is false [Roh19].

Multiplicative approximation. A significant body of work has investigated multiplicative ap-
proximation of EMD [Aga+22; AIK08; And+09; And+14; AS14; AZ23; Cha02; Che+22b; Ind03],
where the most commonly studied setting is the Euclidean space (or, more generally, ℓp). If the
dimension is constant we have near-linear time approximation schemes [Aga+22; And+14; FL22;
SA12], whereas the high-dimensional case is more challenging. Only recently [AZ23] broke the
Opn2q barrier for p1 ` εq-approximation of EMD, building on [HIS13].

The landscape is much less interesting for general metrics. Indeed, a straightforward counterex-
ample from [Băd+05] shows that any Op1q-approximation requires Ωpn2q queries to the distance
matrix. This suggests that for general metrics we should content ourselves with a additive approx-
imation.

Additive approximation. Additive approximation for EMD has been extensively studied by
optimization and machine learning communities [ANR17; Bla+18; Cut13; DGK18; Le+21; LXH23;
Pha+20].

An extremely popular algorithm to solve optimal transport in practice is Sinkhorn algorithm
[Cut13] (see [Le+21; Pha+20] for recent work). Sinkhorn distance SNK is defined by adding an
entropy regularization term ´η ¨Hpζq to the EMD objective in Equation (1). Approximating SNK
via Sinkhorn algorithm provably yields a εr-additive approximation to EMD and takes Oεpn2q time,
where r is the dataset diameter [ANR17].

Graph-theoretic approaches also led to εr-additive approximations [LMR19] in Oεpn2q time.
Notice that even though all previous approximation algorithms have roughly the same complexity
as the MCF-based exact solution they are backed by experiments showing their practicality, whereas
exact algorithms for EMD are still largely impractical for very large graphs.

Breaking the Opn2q barrier for general metrics. As mentioned above, [AZ23] was the first
work to break the quadratic barrier for approximate EMD. Indeed, they show a p1`εq-multiplicative
approximation algorithm for EMD on Euclidean space running in n2´Ωεp1q time. Matching such
result on general metrics is impossible, since no Op1q-multiplicative approximation can be achieved
in opn2q time [Băd+05]. A natural way to bypass the lower bound in [Băd+05] is to consider
additive approximation. However, no ε-additive approximation algorithm for EMD on general

3The lower bound in [Roh19] holds in dimension d “ 2Ωplog˚ nq.
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metrics faster than Oεpn2q barrier was known prior to this work. Theorem 1 gives the first ε-
additive approximation to EMD for general metrics running in n2´Ωεp1q time, thus breaking the
quadratic barrier for general metrics.

We stress that, despite [AZ23] and this work both prove similar results, they use a completely
different set of techniques. Indeed, in [AZ23] they approximate the complete bipartite weighted
graph induced by Euclidean distances with a p1 ` εq-multiplicative spanner of size n2´Ωεp1q. Their
spanner construction is based on LSH and so it hinges on the Euclidean structure. Then, they run
a near-linear time MCF solver [Che+22a] to solve the matching problem on the metric induced by
the spanner. In this work, instead, we build on sublinear algorithms for max-cardinality matching
[Beh+23; Beh22; BKS23a; BKS23b; BRR23] and do not leverage any metric property, not even
triangle inequality. Section 2 contains a detailed explanation of our techniques.

It is worth to notice that since [AZ23] operates over d-dimensional Euclidean space the input
representation takes d ¨ n space, and so it does not run in sublinear time. On the contrary, our
algorithm assumes query access to the distance matrix and runs in sublinear time.

Sublinear algorithms. Most previous work in sublinear models of computation focuses on
streaming Euclidean EMD [AIK08; And+09; Bac+20; Cha02; Che+22b; Ind04], where the lat-
est work [Che+22b] achieves Õplog nq-approximation in polylogarithmic space. Some other work
[Ba+11] addresses the sample complexity of testing EMD on low-dimensional ℓ1.

In this work we focus on a different access model: we do not make any assumption on the ground
metric and we assume query access to the distance matrix. This model is natural whenever the
underlying metric is expensive to evaluate. For example, in [ALT21] they consider EMD over a
shortest-path ground metric and experiment with heuristics to avoid computing all-pair distances,
which would be prohibitively expensive.

Comparison with MST. Minimum Spanning Tree (MST) and EMD are two of the most studied
optimization problems in metric spaces. It is interesting to observe a separation between the
sublinear-time complexity of MST and EMD for general metrics. Indeed, [CS09] shows a Õεpnq
time algorithm approximating the cost of MST up to a factor 1`ε, whereas no Op1q-approximation
for EMD can be computed in opn2q time [Băd+05]. Essentially, this is due to the fact that MST
cost is a more robust problem than EMD. Indeed, in EMD increasing a single entry in the distance
matrix can increase the EMD arbitrarily, whereas for MST this does not happen because of triangle
inequality.

A valuable take-home message from this work is that allowing additive approximation makes
EMD more robust. A natural question is whether we can find a ε-additive approximation to EMD
in Õεpnq time, thus matching the above result on MST cost. The Ωpn1.2q lower bound on max-
cardinality matching from [BRR23] suggests that this should not be possible4 Indeed, we can reduce
max-cardinality matching to EMD by embedding the bipartite graph into a p1, 2q metric space.

2 Technical Overview

Computing Earth Mover’s Distance between two sets of n points in a metric space can be achieved
by solving Min-Weight Perfect Matching (MWPM) on the complete bipartite graph where edge-

4The lower bound of [BRR23] is proven in a slightly different model of adjacency list.
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costs are given by the metric dp¨, ¨q. Here we seek a suitable notion of approximation for MWPM
that recovers Theorem 1.

Min-weight perfect matching with outliers. Consider the following problem: given a con-
stant γ ą 0, find a matching M of size p1 ´ γqn in a bipartite graph such that the cost of M is at
most the minimum cost of a perfect matching. A natural interpretation of this problem is to label
a γ fraction of vertices as outliers and leave them unmatched; so we dub this problem MWPM with
outliers.

Assuming dp¨, ¨q P r0, 1s, solving MWPM with a γ fraction of outliers immediately yields a γ
additive approximation to EMD, proving Theorem 1.

The main technical contribution of this work is the following theorem, which introduces an
algorithm that solves MWPM with outliers in sublinear time. For the sake of this overview, the
reader should instantiate Theorem 3 with β “ 1 and think of γ “ p1´αq as the fraction of allowed
outliers.

Theorem 3. For each constants 0 ď α ă β ď 1 there exists a constant ε ą 0 and an algorithm
running in time Opn2´εq with the following guarantees.

The algorithm has adjacency-matrix access to an undirected, bipartite graph G “ pV0 Y V1, Eq
and random access to the edge-cost function c : E Ñ R`. The algorithm returns ĉ such that, whp,

cpMαq ď ĉ ď cpMβq
where Mα is a minimum-weight matching of size αn and Mβ is a minimum-weight matching of
size βn.

Moreover, the algorithm returns a matching oracle data structure that, given a vertex u returns,
in n1`fpεq time, an edge pu, vq P M̂ or K if u R V pM̂q, where fpεq Ñ 0 when ε Ñ 0. The matching
M̂ satisfies αn ď |M̂ | ď βn and cpMαq ď cpM̂q ď cpMβq.

Notice that the algorithm in Theorem 3 does not output the matching M̂ explicitly. However,
it returns a matching oracle data structure which implicitly stores M̂ . The rest of this overview
sketches the proof of Theorem 3.

Our algorithm, in a nutshell. A new set of powerful techniques was recently developed to
approximate the size of a max-cardinality matching in sublinear time [Beh+23; Beh22; BKS23a;
BKS23b; BRR23]. Our main contribution is a sublinear-time algorithm which leverages the tech-
niques above to implement (a certain step of) the classic Gabow-Tarjan [GT89] algorithm for
MWPM. Since the techniques above return approximate solutions, the obtained matching will be
approximate as well, in the sense that we have to disregard a fraction of outliers when computing
its cost to recover a meaningful guarantee. Careful thought is required for relaxing the definitions
of certain objects in the Gabow-Tarjan algorithm so as to accommodate their computation in sub-
linear time. The bulk of our analysis is devoted to proving that these relaxations combine well and
lead to the guarantee in Theorem 3.

Roadmap. First, we will review (a certain step of) the Gabow-Tarjan algorithm that we will use
as our template algorithm to be implemented in sublinear time. Then, we will review some recent
sublinear algorithms for max-cardinality matching. Finally, we will sketch how to combine these
tools to approximate the value of minimum-weight matching.
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2.1 A Template Algorithm

The original Gabow-Tarjan algorithm operates on several scales and this makes it (slightly) more
involved. We focus here on a simpler case where all our edge weights are integers in r1, Cs, for
C “ Op1q. We will see in Section 6 that we can reduce to this case (incurring a small additive
error). Here we describe our template algorithm, at a high level.

A linear program for MPWM. First, recall the linear program for MWPM together with its
dual. Here we consider a bipartite graph GpV “ V0 Y V1, Eq and cost function cp¨, ¨q P r1, Cs. We
can interpret the following LP so that xu,v “ 1 iff u and v are matched, whereas primal constraints
require every vertex to be matched.

Primal

Minimize
ÿ

uPV0,vPV0

xu,v ¨ cpu, vq

subject to
ÿ

vPV1

xu,v ě 1 @u P V0

ÿ

uPV0

xu,v ě 1 @v P V1

xu,v ě 0 @u P V0, v P V1.

Dual

Maximize
ÿ

uPV
φu

subject to φu ` φv ď cpu, vq @pu, vq P E

φu ě 0. @u P V,

A high-level description. Essentially, our template algorithm is a primal-dual algorithm which
(implicitly) maintains a pair pM,φq, where M is a partial matching (so primal infeasible), and
tφpvquvPV is a vertex potential function, or an (approximately) feasible dual solution. Moreover,
for each e P M the dual constraint corresponding to e is tight. In other words, the pair pM,φq
satisfies complementary slackness. The algorithm progressively grows the dual variables tφpvquvPV
and the size of M . When M has size ě p1´γqn then we are done. Indeed, throwing out γn vertices
(as well as their associated primal constraints) we have that pM,φq is a (approximately) feasible
primal-dual pair that satisfies complementary slackness, thus it is (approximately) optimal.

The primal-dual algorithm. We maintain an initially empty matchingM . Inspired by the dual,
we define a potential function φ : V Ñ Z and we enforce a relaxed version of the dual constraints:
φpuq ` φpvq ď cpu, vq ` 1 for each pu, vq P E. Moreover, we maintain that φpuq ` φpvq “ cpu, vq
for each pu, vq P M (complementary slackness). Let T be the set of edges s.t. the constraints above
are tight. Orient the edges in T so that all edges in M Ď T are oriented from V0 to V1 and all
edges in T zM are oriented from V1 to V0. We denote the set of free (unmatched) vertices F and
let F0 “ F X V0 F1 “ F X V1. We say that a path P “ pv0 Ñ ¨ ¨ ¨ Ñ v1q is an augmenting path if
v0 P F0, v1 P F1 and P alternates between edges in T zM and M . When we say that we augment
M wrt P we mean that we set M Ð M ‘ P . We alternate between the following two steps:

1. Find a a large set of node-disjoint augmenting paths tP1 . . . Pℓu. Augment M wrt these
paths. Decrement φpvq -= 1 for each v P Ť

i Pi X V1, to ensure the relaxed dual constraints
are satisfied.
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2. Define R as the set of vertices that are T -reachable5 from F0. Increment φpr0q += 1 for each
r0 P R X V0, and decrement φpr1q -= 1 for each r1 P R X V1. This preserves the relaxed dual
constraints and (eventually) adds some more edges to T .

After Oγ,Cp1q iterations, we have |F | ď γn.

Analysis sketch. It is routine to verify that steps 1 and 2 preserve the relaxed dual constraints.
At any point the pair pM,φq satisfies, cpMq ď ř

vPV0YV1
φpvq ď cpM 1q `n for any perfect matching

M 1. We can content ourselves with this additive approximation; indeed in Section 6 we will see
how to charge it on the outliers. To argue that we have few free vertices left after Oγp1q iterations,
notice that at iteration t we have φ|F0 ” t and φ|F1 ” 0. Computing a certain function of potentials
along pM ‘ M 1q-augmenting paths shows that |F | ¨ t ď Opnq. Thus, Oγp1q iterations are sufficient
to obtain |F | ď γn. The arguments above are sufficient to show that our template algorithm finds
an (almost) perfect matching with (almost) minimum weight. We will shove both almost under the
outlier carpet in Section 6.

2.2 Implementing the Template in Sublinear Time

Our sublinear-time implementation of the template algorithm hinges on matching oracles.

Matching oracles. Given a matching M 1 we define a matching oracle for M 1 as a data structure
that given u P V returns v P V if pu, vq P M 1 and K otherwise. Note that given a matching oracle
for M 1, if we are promised that |M 1| “ Ωpnq then Oγplog nq calls to such oracle are enough to
estimate |M 1| ˘ γn. We stress that all matching oracles that we use have sublinear query time.

Finding large matchings in sublinear time. An important ingredient in our algorithm is
the LargeMatchingpG,A, ε, δq subroutine (Theorem 5), which is due to [BKS23a]. Given A Ď V ,
LargeMatchingpG,A, ε, δq returns either K or a matching oracle for some matching M 1 in GrAs.
If there exists a matching in GrAs of size δn, then LargeMatching returns a matching oracle
for some M 1 in GrAs with |M 1| “ Ωδpnq. Else, if there are no matchings of size δn in GrAs
LargeMatching returns K. The parameter ε controls the running time and essentially guarantees
that LargeMatching runs in Opn2´εq time while the matching oracle it outputs runs in Opn1`εq.

We will use LargeMatching to implement both step 1 and step 2 in the template algorithm.
However, this requires us to relax our notions of maximal set of node-disjoint augmenting paths,
as well as that of reachability. A major technical contribution of this work is to find the right
relaxation of these notions so that:

1) We can analyze a variant of the template algorithm working with these relaxed objects and still
recover a a solution which is optimal if we neglect a γ fraction of outliers.

2) We can compute these relaxed objects in sublinear time using LargeMatching as well as previ-
ously constructed matching oracles.

These relaxed notions are introduced in Section 3, point (1) is proven in Section 4 and point (2) is
proven in Section 5.

5Recall that T is oriented.
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Implementing step 1 in sublinear time. In [BKS23a] the authors implement McGregor’s
algorithm [McG05] for streaming Max-Cardinality Matching (MCM) in a sublinear fashion using
LargeMatching (see Theorem 6 in this work). McGregor’s algorithm finds a size-Ωpnq set of node-
disjoint augmenting paths of fixed constant length, whenever there are at least Ωpnq of them. This
notion is weaker than that of a maximal node-disjoint set of augmenting paths required in step 1
of our template algorithm in two regards: first, it only finds augmenting paths of fixed constant
length; second, it finds only a constant fraction of such paths (as long as we have a linear number
of them).

In our template algorithm, the invariant φ|F1
” 0 is maintained (in step 2) because RXF1 “ H.

In turn, R X F1 “ H holds exactly because in step 1 we augment M with a maximal node-disjoint
set of augmenting paths. Since our sublinear implementation of step 1 misses some augmenting
paths, the updates performed in step 2 will violate the invariant φpvq “ 0 for some v P F1.

A careful implementation of step 2 (see next paragraph) guarantees that only missed augmenting
paths that are short lead to a violation of φ|F1

” 0. Moreover, repeatedly running the sublinear
implementation of McGregor’s algorithm from [BKS23a], we ensure that we miss at most γn short
paths, for γ arbitrary small. Thus, we can flag all vertices that belong to missed short augmenting
paths as outliers since we have only a small fraction of them.

Implementing step 2 in sublinear time. We implement an approximate version of the reach-
ability query in step 2 as follows. We initialize the set of reachable vertices R as R Ð F0. Then, for
a constant number of iterations: we compute a large matching M 1 Ď T zM between the vertices of
RXV0 and V1zR; then we add to R all matched vertices in

Ť
M 1 as well as their M -mates, namely

mateM puq for each u P Ť
M 1. Notice that if a Ωpnq-size matching Ď T zM between RXV0 and V1zR

exists, then we find a matching Ď T zM between RXV0 and V1zR of size at least Ωpnq. This ensures
that: (i) after a constant number of iterations LargeMatching returns K; (ii) when LargeMatching

returns K there exists a vertex cover C of ppR X V0q ˆ pV1zRqq X T zM of size γn. Only constraints
corresponding to edges incident to C might be violated during step 2. Furthermore, |C| “ γn is
small and so we can just label vertices in C as outliers.

As we pointed out in the previous paragraph, the invariant φ|F1
” 0 might be violated in step

2 if R X F1 ‰ H. We already showed that whenever we the missed augmenting path causing the
violation of φ|F1

” 0 is short we can charge this violation on a small set of outliers. To make sure
that no long augmenting path leads to a violation of φ|F1 ” 0 we set our parameters so that the
depth of the reachability tree built in step 2 is smaller than the length of “long” paths. Thus, any
long path escapes R and cannot cause a violation.

Everything is an oracle. The implementation of both step 1 and step 2 operates on the graph
T of tight constraints. To evaluate pu, vq P T , we need to compute φpuq and φpvq. In turn, the
potential values depend on previous iterations of the algorithm. None of these iterations outputs
an explicit description of the objects described in the template (potentials, matchings, augmenting
paths or sets of reachable vertices). Indeed, these objects are output as oracle data structures,
which internals call (eventually multiple) matching oracles output by LargeMatching. We prove
that essentially all these oracles have query time Opn1`εq for some small ε ą 0. A careful analysis
is required to show that we can build the oracles at iteration i ` 1 using the oracles at iteration i
without blowing up their complexity.
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Paper organization. In Section 3 we define some fundamental objects that we will use through-
out the paper. In Section 4 we present a template algorithm to be implemented in sublinear time,
and prove its correctness. In Section 5 we implement the template algorithm in sublinear time. In
Section 6 we put everything together and prove the main theorems stated in the introduction.

3 Preliminaries

We use the notation ra, bs :“ ta . . . b ´ 1u, rbs “ r0, bs, and pa ˘ bq :“ ra ´ b, a ` bs meaning that
c¨pa˘bq “ pac˘bcq. We denote our undirected bipartite graph with G “ pV,Eq, and the bipartition
is given by V “ V0 Y V1. Our original graph is complete and for each pu, vq P V0 ˆ V1 we denote
with cpu, vq the cost of the edge pu, vq. We stress that none of our algorithms require cp¨, ¨q to be a
metric. Given a matching M we denote its combined cost with cpMq. For each u P V we say that
u “ mateM pvq iff pu, vq P M . When the matching M is clear from the context we denote with F
the set of unmatched (or free) vertices, and set Fi :“ F X Vi for i “ 0, 1.

When we say that an algorithm runs in time t we mean that both its computational complexity
and the number of queries to the cost matrix cp¨, ¨q are bounded by t. The computational complexity
of our algorithms is always (asymptotically) equivalent to their query complexity, so we only analyse
the latter. All our guarantees in this work hold with high probability.

Definition 3.1 (Augmenting paths). Given a matching M over G “ pV,Eq we say that P “
pv0, v1 . . . v2ℓ`1q is an augmenting path w.r.t. M if pv2i, v2i`1q P EzM for each i “ 0 . . . ℓ and
pv2j`1, v2j`2q P M for each j “ 0 . . . ℓ ´ 1. When we say that we augment M w.r.t. P we mean
that we set M Ð M ‘ P , where ‘ is the exclusive or.

We use the same notion of 1-feasible potential as in [GT89].

Definition 3.2 (1-feasibility conditions). Given a potential φ : V ÝÑ Z we say that it satisfies
1-feasibility conditions with respect to a matching M if the following hold.

(i) For each u P V0, v P V1 φpuq ` φpvq ď cpu, vq ` 1.

(ii) For each pu, vq P M , φpuq ` φpvq “ cpu, vq.
Definition 3.3 (Eligibility Graph). We say that an edge pu, vq is eligible w.r.t. M if: pu, vq R M
and φpuq ` φpvq “ cpu, vq ` 1 or; pu, vq P M and φpuq ` φpvq “ cpu, vq. We define the eligibility
graph as the directed graph GE “ pV,EEq that orients the eligible edges so that, for each eligible
pu, vq P V0 ˆ V1, we have pu, vq P EE if pu, vq R M and pv, uq P EE if pu, vq P M .

Notice that, whenever a potential is 1-feasible w.r.t. M , then all edges in M are eligible.

Definition 3.4 (Forward Graph). We define the forward graph GF “ pV,EF q as the subgraph of
the eligibility graph containing only edges from V0 to V1. That is, we remove all edges pv, uq such
that pu, vq P M .

Now, we introduce two quite technical definitions, which provide us with approximate versions
of the notion of “maximal set of node-disjoint augmenting paths” and “maximal forest”.

Definition 3.5 (pk, ξq-Quasi-Maximal Set of Node-Disjoint Augmenting Paths). Given a graph
G “ pV,Eq and a matching M Ď E we say that a set P of augmenting paths of length at most k
is a pk, ξq-QMSNDAP if for any Q such that Q Y P is a set of node-disjoint augmenting paths of
length ď k we have |Q| ď ξn.
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Intuitively, P is a pk, ξq-QMSNDAP if we can add only a few more node-disjoint augmenting
paths of length ď k to P before it becomes a maximal. Next we introduce an approximate notion
of “maximal forest” F in the eligibility graph GE rooted in F0. F is obtained starting from the
vertices in F0 and adding edges (in a way that we will specify later) so as to preserve the F has
|F0| connected components and has no cycles. This construction will ensure that the connected
component of our forest have small diameter and small size. We maintain that whenever v P V1 is
added to F , then mateM pvq is also added to F . F is approximately maximal in the sense that the
cut pF , V zFq in GE admits a small vertex cover.

Definition 3.6 (pk, δq-Quasi-Maximal Forest). Given the eligibility graph GE “ pV,EEq w.r.t. the
matching M , and the set of vertices F0 Ď V0 we say that F is a pk, δq-QMF rooted in F0 if:

1. F0 Ď F
2. For each v P V1 X F we have mateM pvq P F
3. For each u P F there exists v P F0 at hop distance from u at most k.

4. Every connected component of F has size at most 2k.

5. The edge set EE X pF ˆ V zFq has a vertex cover of size at most δn.

Now, we introduce a few results from past work on sublinear-time maximum caridnality match-
ing. The following theorem, which is the main technical contribution of [BKS23a], states that we
can compute a εn-additive approximation of the size of a maximum-cardinality matching in strongly
sublinear time.

Theorem 4 (Theorem 1.3, [BKS23a]). There is a randomized algorithm that, given the adjacency
matrix of a graph G, in time n2´Ωεp1q computes with high probability a p1, εnq-approximation µ̃ of
µpGq. After that, given a vertex v, the algorithm returns in n1`fpεq time an edge pv, v1q P M or K
if v R V pMq where M is a fixed p1, εnq-approximate matching, where f is an increasing function
such that fpεq Ñ 0 when ε Ñ 0.

The algorithm in Theorem 4 does not exactly output a matching, but rather a matching oracle.
Namely, it outputs a data structure that stores a matching M implicitly. We formalize the notion
of matching oracle below.

Definition 3.7 (Matching Oracle). Given a matching M , we define the matching oracle matchM p¨q
as a data structure such that matchM puq “ v if pu, vq P M and matchM puq “ K otherwise. Through-
out the paper we denote with tM the time complexity of matchM p¨q.

Similarly to matching oracles, we make use of membership oracles memAp¨q and potential oracles
evalφp¨q where A Ď V and φ is a potential function defined on V . As expected, memApuq returns
1uPA and evalφpuq returns φpuq. We denote their running time with tA and tφ respectively. Now,
we recall two theorems from [BKS23a] that constitutes fundamental ingredients of our sublinear-
time algorithm for minimum-weight matching.

Theorem 5 roughly says that, in sublinear time, we can find a matching oracle for a size-Ωpnq
matching, whenever a size-Ωpnq matching exists.
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Theorem 5 (Essentially Theorem 4.1, [BKS23a]). Let G “ pV,Eq be a graph, A Ď V be a vertex
set. Suppose that we have access to adjacency matrix of G and an A-membership oracle memA with
tA query time. We are given as input a sufficiently small ε ą 0 and δin ą 0.

There exists an algorithm LargeMatchingpG,A, ε, δinq that preprocesses G in ÕδinpptA`nq¨n1´εq
time and either return K or construct a matching oracle matchM p¨q for a matching M Ă GrAs
of size at least δoutn where δout “ 1

2000δ
5
in that has ÕδinpptA ` nqn4εq worst-case query time. If

µpGrAsq ě δinn, then K is not returned. The guarantee holds with high probability.

Theorem 6 roughly says that, in sublinear time, we can increase the size of our current matching
(oracle) by Ωpnq, whenever there are Ωpnq short augmenting paths.

Theorem 6 (Essentially Theorem 5.2, [BKS23a]). Fix two constants k, γ ą 0. For any sufficiently
small εin ą 0, there exists εout “ Θk,γpεinq such that the following holds. There exists an algorithm

AugmentpG,Min, k, γ, εinq that makes Ok,γp1q calls to LargeMatching which take Õk,γ

`
n2´εin

˘
time

in total. Further, either it returns an oracle matchMoutp¨q with query time Õk,γpn1`εoutq, for some
matching Mout in G of size |Mout| ě |Min| ` Θk,γp1q ¨ n (we say that it “succeeds” in this case),
or it returns Failure. Finally, if the matching Min admits a collection of γ ¨n many node-disjoint
length p2k ` 1q-augmenting paths in G, then the algorithm succeeds whp.

Theorem 6 differs from Theorem 5.2 in [BKS23a] in that it specifies that the only way Augment

accesses the graph is through LargeMatching. We will use this property crucially to prove Lemma 5.2.

4 A Template Algorithm

In this section we study min-weight matching with integral small costs cp¨, ¨q P r1, Cs, where C
is constant. We will see how to lift this restriction in Section 6. Algorithm 1 gives a template
algorithm realising Theorem 3 that assumes we can implement certain subroutines; in Section 5 we
will see how to implement these subroutines in sublinear time.

Comparison with Gabow-Tarjan. Intuitively, our template algorithm implements the Gabow-
Tarjan algorithm [GT89] for a fixed scale in an approximate fashion. Indeed, instead of finding a
maximal-set of node-disjoint augmenting paths we find a pk, ξq-QMSNDAP and instead of growing
a forest in the eligibility graph we grow a pk, δq-QMF. See Figure 1 for a representation of step 1
and step 2.

Analysis. Here we analyse Algorithm 1 and show that it satisfies the following theorem.

Theorem 7. Fix a constant γ ą 0. Suppose that we have adjacency-matrix access to the bipartite
graph G “ pV0 Y V1, Eq and random access to the cost function c : E Ñ r1, Cs, with C “ Op1q.
Then, with high probability, Algorithm 1 returns ĉ such that

cpM1´γq ď ĉ ď cpMOPTq
where M1´γ is a min-weight matching of size p1 ´ γqn and MOPT is a min-weight matching of size
n.

To prove Theorem 7, we need a series of technical lemmas.
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Algorithm 1 Template Algorithm.

Input: A bipartite graph G “ pV0 Y V1, Eq and a cost function c : E Ñ r1, Cs.
Set T “ C{γ3, ξ “ γ

Tk2k
, δ “ γ

T and k “ 6000p2T ` 1q10{δ5.
Initialize M Ð H and φpvq Ð 0 for each v P V .
Let F0 denote the set of M -unmatched vertices in V0.
For each e P E update cpeq Ð cpeq{γ (this is implemented lazily).
Execute the following two steps for T iterations:

• Step 1. Find a pk, ξq-QMSNDAP P in the eligibility graph GE . Augment M w.r.t. paths in
P. Set φpvq Ð φpvq ´ 1 for each v P V1 X Ť

PPP P .

• Step 2. Find a pk, δq-QMFF rooted in F0 in the eligibility graph GE . Set φpuq Ð φpuq ` 1
for each u P V0 X F and φpvq Ð φpvq ´ 1 for each v P V1 X F .

Sample a set S of Oγ,Cplog nq edges in M with replacement.
Discard the 3γ|S| edges with highest costs and let Σ be the sum of costs of remaining edges.
Output: ĉ “ n

|S|Σ.

Step 1

1 2 3 4

9876
φ(5) -= 1 φ(6) -= 1

V0

V1
φ(8) -= 1 φ(9) -= 1

5

0

Step 2

Step 2

0 1 2 3 4

98765

φ(0) += 1

φ(6) -= 1

V0

V1
φ(7) -= 1 φ(8) -= 1

φ(1) += 1 φ(2) += 1 φ(3) += 1 φ(4) += 1

Figure 1: We color the edges of M in red and the edges of T zM in blue. On the left we have an
example of step 1. Solid edges represent paths in the QMSNDAP P that we augment M along in
step 1. On the right we have an example of step 2. All vertices colored or circled in green belong
to the QMF F . Circles help us visualize the implementation of step 2, described in Section 5. In
Algorithm 3 F is built sequentially, where each iteration (lines 1-5) adds some edges to F . At first,
only the non-circled green vertices belong to F . The first step adds the green-circled black edges,
and the second step adds the green-circled green edges.

Proof Roadmap. The proof of Theorem 7 goes as follows. We prove that, after T iterations, all
free vertices in F0 have potential T . On the other hand, the majority of free vertices in F1 have
potential 0. We call spurious the free vertices in F1 with non-zero potential and we show there
are only few of them. Then, (roughly) we look at the final matching M generated by Algorithm 1
and a perfect matching M 1 and consider the graph G1 having M ‘ M 1 as its set of edges. G1 can
be partitioned into cycles and augmenting paths. Each augmenting path starts in a free vertex in
F0 and ends in a free vertex in F1. If the 1-feasibility conditions are satisfied by all edges, then
computing a certain function of potentials along an augmenting path and combining the results for
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all augmenting paths yields an upper bound on the total number of free vertices. Unfortunately,
not all edges satisfy the 1-feasibility constraints. We fix this by finding a small vertex cover of the
1-unfeasible edges. We say that such cover a suitable set of broken vertices. Ignoring spurious and
broken vertices is sufficient to make our argument work.

Lemma 4.1. After t P rT ` 1s iterations we have φpuq “ t for each u P F0.

Proof. After t “ 0 iterations, we have φpuq “ 0 for each u P V . First, we notice that the set of
unmatched (or free) vertices F only shrinks over time, and so does F0. Moreover, at each iteration
we increase the potential of free vertices in F0 by 1.

Define the set S of v P F1 such that φpvq ‰ 0 as the set of spurious vertices.

Lemma 4.2. After T iterations we have at most γn spurious vertices.

Proof. We prove that at each iteration we increase the number of spurious vertices by at most
γn{T . A vertex cannot become spurious in Step 1. Indeed, in Step 1 we only decrease the potential
of matched vertices. If a vertex v P F1 becomes spurious in Step 2, it means that there exists an
augmenting path P from some u P F0 to v contained in a connected component of F . Let Q be such
that QYP is a maximal set of node-disjoint augmenting paths of length ď k. By Definition 3.5 we
have |Q| ď ξn. Define the set of forgotten vertices as

Ť
QPQ Q. Thanks to item 3 in Definition 3.6,

the path from u to w has length ď k, thus P has length at most k. Recall that P is an augmenting
path w.r.t. the graph obtained augmenting M along P at the end of Step 1. Therefore, P intersects
a path in QY P.

We now argue that that P cannot intersect P 1 P P. Suppose by contradiction that it does. Let
P “ pP0 . . . Pℓq and P 1 “ pP 1

0 . . . P
1
ℓ1 q. Let Ps be the first (w.r.t. the order induced by P ) node

where P and P 1 intersect. We first rule out the case that s is even: for s “ 0, P0 “ u P F0 implies
that u did not belong to an augmenting path P 1 in Step 1. Moreover, for s “ 2i ą 0 if P2i “ P 1

j

then P2i´1 “ mateM pP2iq P tP 1
j´1, P

1
j`1u, where M is the matching obtained at the end of Step 1.

Now suppose that s is odd, and hence Ps P V1 X P 1. Then φpPsq is decreased by 1 at the end of
Step 1, hence no edge outside of M incident to Ps is eligible in Step 2.

Thus, P must intersect a path in Q. On the other hand
Ť

QPQ Q contains at most kξn vertices,
so at most kξn connected component of F contain a forgotten edge. Moreover, by item 4 of
Definition 3.6 every connected component of F has size at most 2k, thus at most kξn2k “ γ{T
vertices become spurious.

We say that B Ď V is a suitable set of broken vertices if all pu, vq P pV0zBq ˆ pV1zBq are
1-feasible.

Lemma 4.3. After T iterations, there exists a suitable set of broken vertices of size at most γn.

Proof. First, we prove that every edge pu, vq P V0 ˆ V1, which is 1-feasible at the beginning of Step
1, is also 1-feasible at the end of Step 1. Suppose that pu, vq becomes 1-unfeasible in Step 1. Let
M and M 1 be the matching at the beginning and at the end of Step 1 respectively. Potentials only
decrease in Step 1, so in order for pu, vq to become 1-unfeasible w.r.t. M 1 we must have pu, vq P M 1.
Moreover, we decrease the potential of v only if pu, vq P P , for some augmenting path P . Thus, at
the beginning of Step 1 we had φpuq ` φpvq “ cpu, vq ` 1, which implies φpuq ` φpvq “ cpu, vq at
the end of Step 1, thus pu, vq is 1-feasible w.r.t. M 1, contradiction.

Now, we grow a set of suitable broken vertices B. We initialize B “ H and show that each
iteration Step 2 increases the size of B by at most γn{T . If pu, vq P V0 ˆ V1 is 1-feasible at the
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beginning of Step 2 and becomes 1-unfeasible in Step 2, then we must have u P F and v R F .
Indeed, by item 2 in Definition 3.6 if pu, vq P M 1 then either both u and v belong to F or neither
of them does. This ensures that the sum of their potentials is unchanged. Else, if pu, vq R M 1 then
in order for it to violate 1-feasibility we must increase φpuq by one and not decrease φpvq, and this
happens only if u P F and v R F . Item 5 in Definition 3.6 ensures that there exists a vertex cover
U Ď V for the set of new 1-unfeasible edges with |U | ď δn “ γn{T . We update B Ð B YU . Thus,
after T iterations we have |B| ď γn.

Lemma 4.4. After T iterations of template algorithm we have have |F0| “ |F1| ď 4γn.

Proof. Denote with M the final matching obtained by Algorithm 1. Let B be a suitable set of
broken vertices with |B| ď γn, as in Lemma 4.3. Partition B “ BM Y BF , where BF :“ B X F
is the set of unmatched vertices in B and BM is the set of matched vertices in B. Consider the
set B1

M of vertices currently matched to vertices in BM , B1
M “ tmateM pbq | b P BMu. We have

|pBM Y B1
M q X V0| “ |pBM Y B1

M q X V1| ď γn. Let S be the set of spurious vertices and recall that
|S| ď γn by Lemma 4.2. Let S1 Ď F0zBF such that |S1 YpV0 XBF q| “ |SYpV1 XBF q|. This implies
that |S1 YpV0XBF q| ď |S|`|B| ď 2γn. Define A0 :“ V0zpBYB1

M YS1q and A1 :“ V1zpBYB1
M YSq

and notice that they have the same size. Define A “ A0 Y A1. Let M
1 be a perfect matching over

A.
The graph GA “ pA,M ‘ M 1q contains exactly ℓ :“ |F0 X A0| “ |F1 X A1| node-disjoint paths

P1 . . . Pℓ where Pi starts in f
piq
0 P F0 XA0 and ends in f

piq
1 P F1 XA1. We define the value of a path

P as
VpP q “

ÿ

pu,vqPM 1XP

pcpu, vq ` 1q ´
ÿ

pu,vqPMXP

cpu, vq.

By 1-feasibility of φ we have

VpPiq ě
ÿ

pu,vqPM 1XP

pφpuq ` φpvqq ´
ÿ

pu,vqPMXP

pφpuq ` φpvqq “ φ
´
f

piq
0

¯
´ φ

´
f

piq
1

¯
“ T

where the last equality holds by definition of (non-)spurious vertices and Lemma 4.1. Then, we

have Cn ě n ` cpM 1q ě řℓ
i VpPiq ě ℓT . Thus, ℓ ď Cn{T “ γn and

|F1| “ |F0| ď |F0 X A| ` |pBM Y B1
M q X V0| ` |S1 Y pV0 X BF q| ď 4γn.

Let φ be the potential at the end of the execution of Algorithm 1. Denote with MALG the
final matching obtained by Algorithm 1 and with MOPT a min-weight perfect matching. Given a
matching M , we denote with Mrαs the matching obtained from M by removing the αn edges with
highest cost.

Lemma 4.5. We have cpMALG
r2γsq ď cpMOPTq.

Proof. Let MALG
zB be the matching obtained from MALG by removing all edges incident to vertices in

B. Since |B| ď γn we have cpMALG
rγs q ď cpMALG

zB q. Notice that all edges in MALG
zB are 1-feasible. For

each pu, vq P MALG
zB we have cpu, vq “ φpuq ` φpvq and for each pu, vq P MOPT we have φpuq ` φpvq ď

cpu, vq ` 1. Thus,

cpMALG
rγs q ď cpMALG

zB q ď
ÿ

uPV
φpuq “

ÿ

pu,vqPMOPT

φpuq ` φpvq ď
ÿ

pu,vqPMOPT

cpu, vq ` 1 “ n ` cpMOPTq.
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Now, it is sufficient to notice that, since all edges have costs in r1{γ,C{γ ´ 1s, removing any γn
edges from MALG

rγs decreases its cost by n. Thus, cpMALG
r2γsq ď cpMOPTq.

Now, we are ready to prove Theorem 7.

Proof of Theorem 7. Thanks to Lemma 4.5, we know that cpMALG
r2γsq ď cpMOPTq. Moreover, by

Lemma 4.4 we have |MALG| “ n ´ |F0| ě p1 ´ 4γqn, thus defining M1´8γ as the min-weight
matching of size p1 ´ 8γqn, we have cpM1´8γq ď cpMALG

r4γsq. We are left to prove that the estimate

ĉ “ n
|S|Σ returned by Algorithm 1 satisfies cpMALG

r4γsq ď ĉ ď cpMALG
r2γsq. Let S and Σ be defined as

in Algorithm 1 and let w be maximum such that 3γ|S| edges in S have cost ě w. If αw ¨ n is the
number of edges in MALG that cost ě w, then using standard Chernoff Bounds arguments we have

that, whp, |αw ´ 3γ| ď γ2{C. From now on we condition on this event. Notice that p1´αwqn
p1´3γq|S|Σ

is an unbiased estimator of cpMALG
rαwsq. Moreover, since all costs are in r1{γ,C{γs, then Oγ,Cplog nq

samples are sufficient to have p1´αwqn
p1´3γq|S|Σ concentrated, up to a factor p1 ˘ γ2

C q, around cpMALG
rαwsq.

Hence, assuming that γ is sufficiently small, we have

n

|S|Σ P p1 ˘ 3γ2{Cq ¨ cpMALG
rαwsq Ď cpMALG

rαwsq ˘ 3γn

where the last containment relation holds because all costs are ď C{γ and so cpMALG
rαwsq ď Cn{γ.

Since all costs are ě 1{γ we have cpMALG
rαw`3γ2sq ď cpMALG

rαwsq ´ 3γn and cpMALG
rαw´3γ2sq ě cpMALG

rαwsq `
3γn. Thus, picking γ small enough to have αw ˘ 3γ2 Ď r2γ, 4γs we have

cpMALG
r4γsq ď n

|S|Σ ď cpMALG
r2γsq.

Therefore, we have cpM1´8γq ď ĉ ď cpMOPTq and rescaling γ gives exactly the desired result.

Observation 8. As in the proof of Theorem 7, define w as the maximum value such that there are
at least 3γ|S| edges with cost ě w in S and define αw such that exactly αw ¨n edges in M have cost
ě w. We have, whp, |αw ´3γ| ď γ2{C, thus for γ small enough cpMALG

rαwsq ď cpMALG
r2γsq ď cpMOPTq and

(up to rescaling γ) |MALG
rαws| ě p1 ´ γqn. Moreover, given an edge e P MALG we can decide whether

e P MALG
rαws simply by checking cpeq ď w.

5 Implementing the Template in Sublinear Time

In this section we explain how to implement Step 1 and Step 2 from the template algorithm in
sublinear time.

5.1 From Potential Oracles to Membership Oracles

Throughout this section, we would like to apply Theorem 5 and Theorem 6 on the eligibility graph
GE “ pV,EEq and forward graph GF “ pV,EF q. However, we do not have random access to the
adjacency matrix of these graphs. Indeed, to establish if pu, vq P V0 ˆV1 is eligible we need to check
the condition φpuq ` φpvq “ cpu, vq ` 1 (or φpuq ` φpvq “ cpu, vq). However, we will see that the
potential φp¨q requires more than a single query to be evaluated. Formally, we assume that we have
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a potential oracle evalφp¨q that returns the value of φp¨q in time tφ. Whenever checking whether
pu, vq is an edge of GF (GEq requires to evaluate a condition of the form φpuq ` φpvq “ cpu, vq ` 1
(or φpuq ` φpvq “ cpu, vq) we say that we have potential oracle access to the adjacency matrix of
GF (GE) with potential oracle time tφ. We can think of tφ as Õpn1`εq and we will later prove that
this is (roughly) the case.

Potential functions with constant-size range. If our potential function φ : V Ñ R has range
size |R| ď R then we say that it is an R-potential. If the eligibility (forward) graph is induced
by R-potentials for R “ Op1q we can rephrase Theorem 5 and Theorem 6 to work with potential
oracle access, without any asymptotic overhead. The following theorem is an analog of Theorem 5
for forward graphs.

Lemma 5.1. Let GF “ pV,EF q be a forward graph w.r.t the R-potential φ, let A Ď V be a vertex
set. Suppose we have a potential oracle evalφ with oracle time tφ and an membership oracle memA
with tA query time. We are given as input constants 0 ă ε ď 0.2 and δin ą 0.

There exists an algorithm LargeMatchingForwardpφ,A, δinq that preprocesses GF in ÕRpptA `
tφ `nq ¨n1´εq time and either returns K or constructs a matching oracle matchM p¨q for a matching

M Ă GF rAs of size at least δoutn where δout “ 1
2000¨R10 δ

5
in “ Θδin,Rp1q that has ÕRpptA`tφ`nqn4εq

worst-case query time. If µpGF rAsq ě δinn, then K is not returned. The guarantee holds with high
probability.

Proof. Without loss of generality, we assume that φ takes values in rRs. Suppose that GF rAs has a
matching of size δinn. We partition the edges EF rAs “ EF X pAˆAq into R2 sets E0,0 . . . ER´1,R´1

such that pu, vq P Ei,j iff φpuq “ i and φpvq “ j. Then, there exist i, j P rRs such that Gi,j “
pV,Ei,jq has a matching of size δinn{R2. Moreover, once we restrict ourselves to Gi,j , each edge
query pu, vq P Ei,j becomes much easier. Indeed, we just need to establish if i ` j “ cpu, vq ` 1.
In order to restrict ourselves to Gi,j it suffices to set A1 “ A X pφ´1ptiuq ˆ φ´1ptjuqq. Then the
membership oracle memA1 runs in time OptA ` tφq. Hence, using Theorem 5 we can find a matching
of size δoutn, where δout “ 1

2000¨R10 δ
5
in. Algorithmically, we run the algorithm from Theorem 5 R2

times (once for each pair pi, jq) and halt as soon as the algorithm does not return K.

The following is an analog of Theorem 6 for eligibility graphs.

Lemma 5.2. Let εin ą 0 be a sufficiently small constant. Let αk,γ and βk,γ be constants that
depend on k and γ and set εout :“ αk,γ ¨ εin. We have an R-potential oracle evalφ with running

time tφ “ Õpn1`εinq, a matching oracle matchMin with running time tMin “ Õpn1`εinq and an
eligibility graph GE “ pV,EEq w.r.t. φ and Min.

There exists an algorithm AugmentEligiblepφ,Min, k, γ, εinq that runs in Õk,γ,R

`
n2´εin

˘
time.

Further, either it returns an oracle matchMoutp¨q with query time Õk,γ,Rpn1`εoutq, for some matching
Mout in GE of size |Mout| ě |Min| ` βk,γ ¨ n (we say that it “succeeds” in this case), or it returns
K. Finally, if the matching Min admits a collection of γ ¨ n many node-disjoint augmenting paths
with length ď k in GE , then the algorithm succeeds whp.

Proof. We derive Lemma 5.2 combining Theorem 6 and Lemma 5.1. First, we notice that Theorem 6
says that the algorithm succeeds (whp) whenever there are γ1n node-disjoint augmenting paths
(NDAP) with length exactly 2k1 ` 1, while Lemma 5.2 has the weaker requirement that there are
at least γn NDAP of length ď k. A simple reduction is obtained invoking Theorem 6 with γ1 “ γ{k
for all k1 such that 2k1 ` 1 ď k (notice that all augmenting paths have odd length). In this way,
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if there exists a collection of γn NDAP of length ď k then there exists a k1 ď pk ´ 1q{2 such that
we have γ1n NDAP of length exactly 2k1 ` 1. All guarantees are preserved since we consider both
γ and k constants. Now, we are left to address the fact that we do not have random access to the
adjacency matrix of GE , but rather potential oracle access.

We notice that, according to Theorem 6, the implementation of Augment from [BKS23a] never
makes any query to the adjacency matrix besides those performed inside LargeMatching. Moreover,
Lemma 5.1 implies that LargeMatchingForward is not asymptotically slower than LargeMatching

as long as R “ Op1q.
Finally, we observe that in Algorithm 1 each potential is increased (or decreased) at most

T “ OC,γp1q times. Hence, φ is a R-potential for R “ 2T ` 1 “ OC,γp1q. Thus, we can consider R
a constant when applying Lemma 5.1 or Lemma 5.2.

5.2 Implementing Step 1

In this subsection we implement Step 1 from the template algorithm in sublinear time. Here we
assume that we have at our disposal a potential oracle evalφin running in time tφin “ Õpn1`εinq
and a matching oracle matchMin with running time tMin “ Õpn1`εinq. We will output a potential
oracle evalφout running in time tφout “ Õpn1`εoutq and a matching oracle matchMout with running

time tMout “ Õpn1`εoutq. We show that there exists a pk, ξq-QMSNDAP A such that: the matching
Mout is obtained from Min by augmenting it along all paths in A; φout is obtained from φin by
subtracting 1 to φinpvq for each v P V1 X Ť

PPA P .

Algorithm 2 Implementation of Step 1.

Set k and γ as in Algorithm 1.
Initialize M Ð Min and ε Ð εin.
Repeat until AugmentEligible returns K:

1. Let AugmentEligiblepGE ,M, k, γ, εq return matchM 1 with running time tM 1 “ Õpn1`ε1 q.
2. Update M Ð M 1 and ε Ð ε1.

Set Mout Ð M and εout Ð ε.

Implement evalφoutpuq as follows:

• If u P V0, return evalφin .

• Else, u P V1, set v Ð matchMoutpuq.
• If v == K, return evalφinpuq.
• Else, we have pu, vq P Mout:

– If cpu, vq ` 1 == evalφinpuq ` evalφinpvq, return evalφinpuq ´ 1.

– Else, return evalφinpuq.
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Analysis. First, we observe that the algorithm above correctly implements the template, with
high probability (all our statements henceforth hold whp). Initialize A Ð H. For each run of
AugmentEligiblepG,M, k, γ, εq we decompose M ‘M 1 into a set of augmenting paths P and a set
of alternating cycles C and we set A Ð A Y P. When AugmentEligiblepG,M, k, γ, εq returns K
it means (by Lemma 5.2) that there are at most γn node-disjoint augmenting paths of length ď k
that do not intersect

ŤA. Hence, A is a pk, ξq-QMSNDAP . Clearly, matchMout implements the
matching obtained from Min by augmenting along the paths in A.

To see that the implementation of evalφoutpuq is correct it is sufficient to notice that in the
template algorithm we decrement φpuq iff: piq u P V1, and piiq there exists an augmenting path
P P A intersecting u. Since every node belongs to at most one path in A then u is matched in Mout

and pu, vq P Mout is an Min-eligible edge. Thus, piiq is equivalent to: piiiq v “ matchMout satisfies
φinpvq ` φinpuq “ cpu, vq ` 1. Finally, we bound εout as a function of εin.

Lemma 5.3. Step 1 can be implemented in Õpn2´εq time for some constant ε ą 0. Moreover, the
oracle matchMout has running time tMout and the oracle evalφout has running time tφout such that

tMout , tφout “ Õpn1`εoutq and εout “ Oγ,kpεinq.
Proof. Let ε ą 0 and βk,γ as in Lemma 5.2. Algorithm 2 runs AugmentEligible at most 1{βk,γ`1 “
Ok,γp1q times because the set A increases by βk,γ ¨n after each successful run of AugmentEligible.
Thus, there can be at most 1{βk,γ successful runs. It is apparent that, by Lemma 5.2, Step 1 can

be implemented in Õk,γpn2´εq time.
Now we prove the bound on oracles time. First, we observe that tφout “ OptMout ` tφinq “

Õpn1`εoutq. Moreover, at every iteration we have ε1 ď αk,γ ¨ε, hence εout ď α
1{βk,γ`1
k,γ εin “ Ok,γpεinq.

5.3 Implementing Step 2

In this subsection we implement Step 2 from Algorithm 1 in sublinear time. Once again, we assume
that we have at our disposal a potential oracle evalφin running in time tφin “ Õpn1`εinq and a

matching oracle matchMin with running time tMin “ Õpn1`εinq. We will output a potential oracle
evalφout running in time tφout “ Õpn1`εoutq. We show that there exists a pk, δq-QMFF with respect
to Min such that φoutpuq “ φinpuq ` 1 for each u P F X V0 and φoutpvq “ φinpvq ´ 1 for each
v P F X V1.

The execution of Algorithm 3 is represented in Figure 1, where vertices colored in the same way
are added to F during the same iteration.

Analysis. First, we prove that Algorithm 3 implements the template (all guarantees hold whp).
Namely, that F is a pk, δq-QMF, where k and δ are defined as in Algorithm 1. With a slight abuse
of notation, in Algorithm 3 we used F to denote the set of nodes in the forest. Here, we understand
that for each u P F 1

tzFt we have an edge pu, matchMt`1
puqq and for each v P F2

t zF 1
t we have an edge

pv, matchMinpvqq. Let τ be the total number of times LargeMatchingForward runs successfully in
Algorithm 3. We will see that τ ď k{2. Notice that Fτ is the last forest produced by Algorithm 3
and for each u P Fτ zF0 we add an edge incident to u, thus Fτ is a forest with |F0| connected
components, one for each u P F0. Now we show that Fτ is a pk, δq-QMFw.r.t. Min. We refer to
the notation of Definition 3.6. Item 1 is clearly satisfied. Item 2 is satisfied because of line 4 in
Algorithm 3.
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Algorithm 3 Implementation of Step 2.

Set δ as in Algorithm 1.
Initialize t Ð 0, F0 Ð F0, where F0 is the set of Min-unmatched vertices in V0.
Implement memF0puq as: matchMinpuq == K.
Repeat until LargeMatchingForward returns K:

1. At Ð pFt X V0q Y pV1zFtq.
2. Let LargeMatchingForwardpφ,At, δq return matchMt

.

3. F 1
t Ð Ft Y tmatchMtpuq | u P Ftu

Implement memF 1
t
puq as: memFtpuq or matchMtpuq P Ft.

4. F2
t Ð F 1

t Y tmatchMinpuq | u P F 1
tu

Implement memF2
t

puq as: memF 1
t
puq or matchMinpuq P F 1

t.

5. Ft`1 Ð F2
t ; t Ð t ` 1.

Implement evalφoutpuq as evalφinpuq ` memFt
puq ¨ p´1q1uPV1

Now we show that Item 3 is satisfied. Define k “ 6000p2T `1q10{δ5 as in Algorithm 1 and recall
that φ is a p2T ` 1q-potential. Thanks to Lemma 5.1, at each step we increment |F | by at least

1
2000p2T`1q10 ¨ δ5n. Thus, no more than r2000p2T ` 1q10{δ5s ď k{2 iterations are performed and we

cannot have more than k hops between u P F and v P F0 if u belongs to the connected component
of v.

Now we prove that Item 4 is satisfied. At each iteration, the size of each connected component
of Ft at most triples. Indeed, let C be a connected component of F . In step 3 we add to C at most
|C| vertices (because we add a vertex for each edge in a matching incident to C) and in step 4 we
add to C at most one more vertex for each new vertex added in step 3.

Now we prove that Item 5 is satisfied. Algorithm 3 halts when LargeMatchingForwardpMin, pFX
V0q Y pV1zFq, δq returns K. This may only happen when there is no matching between of F X V0

and V1zF of size δn. This implies that there exists a vertex cover of size ď δn. Moreover, this is a
vertex cover for the whole EE X pF ˆ V zFq because all edges in EE X V1 ˆ V0 are in Min and by
Item 2 have both endpoints either in F or in V zF .

It is easy to check that φoutpuq “ φinpuq ` 1 for each u P F X V0 and φoutpvq “ φinpvq ´ 1 for
each v P F X V1.

Lemma 5.4. Step 2 can be implemented in Õpn2´εq time for some constant ε ą 0. Moreover, the
oracle evalφout

has running time tφout “ Õpn1`εoutq and εout “ Ok,δpεinq.
Proof. For s “ 0 . . . τ denote with εs ą 0 a constant such that tAs “ Õpn1`εsq, where tAs is the
running time of memAs . Notice that ε0 “ εin. At step s we choose ε̂s :“ 2εs as the ε parameter
in Lemma 5.1. This implies that LargeMatchingForward runs in Õpn1`εs ¨ n1´ε̂sq “ Õpn2´εsq
time. We have already proved that τ ď k, thus Algorithm 2 takes Õpn2´εq time in total, where
ε :“ minsPr0,τs εs “ εin.

Denote with tF the query time of memF . For each s, we have tFs`1 “ tMs`1 ` tMin ` tFs .

Thanks to Lemma 5.1 we have tMs`1 “ ÕpptAs ` tφin ` nqn4ε̂sq. Moreover, tAs “ tFs . Thus,
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tFs`1 “ ptFs ` tφin ` nqn8εs ` tMin ` tFs . Since, tF0 “ tφin “ tMin “ Õpn1`εinq we have tφout “
tφin ` tFτ “ Õpn1`9τ ¨εinq “ Õkpn1`Ok,δpεinqq.

5.4 Implementing the Template Algorithm

We can put together the results proved in the previous subsections and show that Algorithm 1 can
be implemented in sublinear time.

Theorem 9. There exists a constant ε ą 0 such that Algorithm 1 can be implemented in time
Opn2´εq. Moreover, using the notation in Observation 8, we can return a matching oracle matchMALG

rαws
running in time Opn1´εq such that MALG

rαws satisfies |MALG
rαws| ě p1´ γqn and cpMALG

rαwsq ď cpMOPTq and
matchMALG

rαws .

Proof. Algorithm 1 runs T “ OC,γp1q iterations, and a single iterations consists of Step 1 and Step

2. At iteration s denote with ε
psq
in the value of εin for Step 1 input (or, equivalently, the value of

εout for Step 2 output at iteration s ´ 1) and with ε
psq
out the value of εout for Step 1 output (or,

equivalently, the value of εin for Step 2 input at iteration s). Every time we run either Step 1
or Step 2, the value of εout is at most some constant factor larger than εin. This translates into

ε
psq
in “ OC,k,γpεps´1q

out q and ε
psq
out “ OC,k,γpεpsq

in q. Thus, after T iterations ε
pT q
out is arbitrarily small,

provided that ε
p0q
in is small enough. To conclude, we notice that the initial matching is empty and

the initial potential is identically 0, so the first membership oracle and potential oracle run in linear

linear, thus we can set ε
p0q
in arbitrarily small. Finally, let MALG be the last matching computed by

Algorithm 1. We have at our disposal a matching oracle matchMALG running in time Õpn1`ε
pT`1q
in q,

so we can easily sample the a S of Oplog nq edges from MALG in time Õpn1`ε
pT q
out q. This conclude the

implementation of Algorithm 1.
Moreover, we compute w as the largest value such that at least 3γ|S| edges in S have cost

ě w and define αw such that exactly αw ¨ n edges in MALG have cost ě w. Then, we implement a

matching oracle matchMALG
rαws for MALG

rαws running in time Õpn1`ε
pT q
out q as follows: given u P V0 Y V1 we

set v Ð matchMALGpuq; if cpu, vq ă w then we return v, else we return K. Thanks to Observation 8,
we have |MALG

rαws| ě p1 ´ γqn and cpMALG
rαwsq ď cpMOPTq.

6 Proof of our Main Theorems

In this section we piece things together and prove Theorem 3. Then, we use Theorem 3 to prove
Theorem 1, Corollary 1.1 and Theorem 2.

6.1 Proof of Theorem 3

In this subsection we strengthen Theorem 7, extend its scope to arbitrary costs and combine it with
Theorem 9 to obtain Theorem 3. We restate the latter for convenience.

Theorem 3. For each constants 0 ď α ă β ď 1 there exists a constant ε ą 0 and an algorithm
running in time Opn2´εq with the following guarantees.
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The algorithm has adjacency-matrix access to an undirected, bipartite graph G “ pV0 Y V1, Eq
and random access to the edge-cost function c : E Ñ R`. The algorithm returns ĉ such that, whp,

cpMαq ď ĉ ď cpMβq
where Mα is a minimum-weight matching of size αn and Mβ is a minimum-weight matching of
size βn.

Moreover, the algorithm returns a matching oracle data structure that, given a vertex u returns,
in n1`fpεq time, an edge pu, vq P M̂ or K if u R V pM̂q, where fpεq Ñ 0 when ε Ñ 0. The matching
M̂ satisfies αn ď |M̂ | ď βn and cpMαq ď cpM̂q ď cpMβq.

Roadmap of the proof. Theorem 7 works only for weights in r1, Cs. In order to reduce to that
case, we need to find a characteristic cost w̄ of min-weight matchings with size in rαn, βns. Then,
we round every cost to a multiple of 1

2γ
2w̄, where γ is a small constant. We show that, thanks to

certain properties of the characteristic cost w̄, the approximation error induced by rounding the
costs is negligible. Finally, we pad each size of the bipartition with dummy vertices to reduce the
problem of finding a matching of approximate size βn to that of finding an approximate perfect
matching, which is addressed in Theorem 7.

Notation. Similarly to Theorem 3, we denote with Mξ the min-weight matching of size ξn in
G. Likewise, we will define a graph sG and denote with ĎMξ the min-weight matching of size ξn in
sG. As in Section 5, given a matching M , we denote with Mrδs the matching obtained from M by
removing the δn most expensive edges. We denote with µpMq the cost of the most expensive edge
in M . Given w ě 0, we denote with Gďw the graph of edges which cost ď w. Throughout this
subsection, fix a constant 0 ă γ ă pβ ´ αq{4.

Reduction from arbitrary weights to r1, Cs. The next technical lemma shows that, if we can
can solve an easier version of the problem in Theorem 3 where we allow an additive error γ2w̄n on
an instance where w̄ is an upper bound for the cost function; then we can also solve the problem in
Theorem 3. This reduction is achieved by finding a suitable characteristic cost w̄ in sublinear time
and running the aforementioned algorithm on Gďw̄.

Lemma 6.1. Suppose that there exists an algorithm that takes as input a bipartite graph sG “
psV0 Y sV1, sEq endowed with a cost function c̄ : sE Ñ r0, w̄s, outputs an estimate ĉ and a matching
oracle matchM̂ such that (whp) ĉ satisfies

c̄pĎMαq ď ĉ ď c̄pĎMα`γq ` γ2w̄n

while M̂ satisfies |M̂ | ě αn and cpM̂q ď c̄pĎMα`γq ` γ2w̄n. Suppose also that such algorithm runs
in time Opn̄2´εq and matchM̂ runs in time Opn̄1`εq for some ε ą 0, where n̄ “ |sV0| “ |sV1|.

Then, there exists an algorithm that takes as input a bipartite graph G “ pV0 Y V1, Eq endowed
with a cost function c : E Ñ R`, outputs an estimate ĉ and a matching oracle matchM̂ such that
(whp) ĉ satisfies

CpMαq ď ĉ ď cpMβq
while M̂ satisfies |M̂ | ě αn and cpM̂q ď cpMβq. Moreover, such algorithm runs in time Opn2´εq
and matchM̂ runs in time Opn1`εq for some ε ą 0, where n “ |V0| “ |V1|.
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Proof. First, we show how to compute, in time Opn2´εq, a value w̄ such that:

(i) γ ¨ w̄ ď µpMβ
rγsq

(ii) w̄ ě µpMα`3γ
r2γs q.

We sample s “ Θpn log n{γq edges from G uniformly at random. Let w1 ď w2 ď ¨ ¨ ¨ ď ws be
their costs. Recall that Theorem 4 allows us to compute the size of a maximal-cardinality matching
(MCM) of the graph G, up to a γn-additive approximation, in time Opn2´Ωγp1qq. Denote that
algorithm with ApproximateMatchingpG, γq. Using binary search, we find the largest cost wi such
that ApproximateMatchingpGďγwi , γq returns an estimated MCM size ă pβ ´ 2γqn. Then, we set
w̄ :“ wi.

We prove that property piq holds. Suppose that µpMβ
rγsq ă γwi. Then, in Gďγwi

there exists

a matching of size pβ ´ γqn, therefore ApproximateMatchingpGďγwi
, γq finds a matching of size

ě pβ ´ 2γqn whp, contradiction.
We prove that property piiq holds. First, we prove that wi`1 ě µpMα`3γ

rγs q. Indeed, suppose the
reverse (strict) inequality holds. Then, for each matching M of size pβ ´ 2γqn we have

cpMq ě cpMβ´2γq ě cpMα`3γq ą γ ¨ wi`1n

which implies that there exists e P M such that cpeq ą γ ¨ wi`1. However, this cannot hold for
each matching M of size pβ ´ 2γqn because ApproximateMatchingpGďγwi`1

, γq returned (whp)

a matching (oracle) of size ě pβ ´ 2γqn. Contradiction. Therefore, we have wi`1 ě µpMα`3γ
rγs q.

However, since we sampled Θpn log n{γq edges, then for each i there are, whp, at most γ ¨ n edges
which cost w satisfies wi ă w ă wi`1. Hence, removing γn more edges from Mα`3γ

rγs we obtain

wi ě µpMα`3γ
r2γs q.

We define sG :“ Gďw̄ and c̄ “ c| sE , run the algorithm in the premise of the lemma on sG and c̄
and let ĉ, matchM̂ be its outputs. It is apparent that this reduction takes Opn2´εq for some ε ą 0.

Since sG is a subgraph of G, we have cpMαq ď cpĎMαq. Moreover, conditions piq and piiq, together
with 5γ ď β ´ α imply

cpĎMα`γq ď cpMα`3γ
r2γs q ď cpMα`3γq ď cpMβ´γq ď cpMβ

rγsq ď cpMβq´γn ¨µpMβ
rγsq ď cpMβq´γ2w̄n.

Thus, cpĎMαq ď ĉ ď cpĎMα`γq ` γ2w̄n implies cpMαq ď ĉ ď cpMβq and cpM̂q ď cpĎMα`γq ` γ2w̄n
implies ĉ ď cpMβq.

The following lemma shows how to reduce from real-values costs in r0, ws (where possibly w “
ωp1q) to the more tame case where costs are integers in r1, Cs. This reduction is achieved via
rounding.

Lemma 6.2. Suppose that there exists an algorithm that takes as input a bipartite graph sG “
psV0 Y sV1, sEq endowed a cost function c̄ : E Ñ r1, Cs, with C “ Op1q, returns an estimate ĉ and a
matching oracle matchM̂ such that (whp) ĉ satisfies

c̄pĎMαq ď ĉ ď c̄pĎMβq
while M̂ satisfies |M̂ | ě αn and c̄pM̂q ď c̄pĎMβq. Suppose also that such algorithm runs in time
Opn̄2´εq and matchM̂ runs in time Opn̄1`εq for some ε ą 0, where n̄ “ |sV0| “ |sV1|.
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Then, there exists an algorithm that takes as input a bipartite graph G “ pV0 Y V1, Eq endowed
a cost function c : E Ñ r0, ws (possibly w “ ωp1q), returns an estimate c̃ and a matching oracle
matchM̃ such that (whp) c̃ satisfies

cpMαq ď c̃ ď cpMβq ` γ2wn

while M̃ satisfies |M̃ | ě αn and cpM̃q ď cpMβq ` γ2wn. Moreover, such algorithm runs in time
Opn2´εq and matchM̂ runs in time Opn1`εq for some ε ą 0, where n “ |V0| “ |V1|.

Proof. We define c̄peq “
Q
2cpeq
γ2w

U
` 1. Then, the maximum value of c̄ on sG is C :“ 2{γ2 ` 2 “ Op1q.

We set sG “ G and run the algorithm in the premise of the lemma on sG and c̄. Let ĉ, matchM̂ be

its outputs. We define c̃ :“ 1
2γ

2w ¨ ĉ and M̃ :“ M̂ . The definition of c̄ implies that, for each edge e
in sG, cpeq ď 1

2γ
2w ¨ c̄peq ď cpeq ` γ2w. Hence,

1

2
γ2w ¨ c̄pĎMαq ě cpĎMαq ě cpMαq

and
1

2
γ2w ¨ c̄pĎMβq ď 1

2
γ2w ¨ c̄pMβq ď cpMβq ` γ2wn.

Therefore, c̄pĎMαq ď ĉ ď c̄pĎMβq implies cpMαq ď c̃ ď cpMβq ` γ2wn and c̄pM̂q ď c̄pĎMβq implies
cpM̂q ď 1

2γ
2w ¨ c̄pM̂q ď 1

2γ
2w ¨ c̄pĎMβq ď cpMβq ` γ2wn.

Reduction from size-βn matching to perfect matching. The following lemma shows that,
if we can approximate the min-weight of a perfect matching (allowing δn outliers), then we can
approximate the min-weight of a size-βn matching (allowing pβ ´ αqn outliers). This reduction is
achieved by padding the original graph with dummy vertices.

Lemma 6.3. Suppose that, for each δ ą 0, there exists an algorithm that takes as input a bipartite
graph sG “ psV0 Y sV1, sEq endowed a cost function c̄ : E Ñ r1, Cs, with C “ Op1q, returns an estimate
ĉ and a matching oracle matchM̂ such that (whp) ĉ satisfies

c̄pĎM1´δq ď ĉ ď c̄pĎM1q
while M̂ satisfies |M̂ | ě p1 ´ δqn and cpM̂q ď c̄pĎM1q. Suppose also that such algorithm runs in
time Opn̄2´εq and matchM̂ runs in time Opn̄1`εq for some ε ą 0, where n̄ “ |sV0| “ |sV1|.

Then, for each 0 ď α ă β ď 1 there exists an algorithm that takes as input a bipartite graph
G “ pV0 Y V1, Eq and c : E Ñ r1, Cs, returns an estimate c̃ and a matching oracle matchM̃ such
that (whp) c̃ satisfies

cpMαq ď c̃ ď cpMβq
while M̃ satisfies |M̃ | ě αn and cpM̃q ď cpMβq. Moreover, such algorithm runs in time Opn2´εq
and matchM̃ runs in time Opn1`εq for some ε ą 0, where n “ |V0| “ |V1|.
Proof. Fix a constant 0 ă ξ ď pα ´ βq{2. We construct sG, starting from sG “ G and c̄ “ c, as
follows. We add a set of p1´ β ` ξqn dummy vertices on each side of the bipartition: sV0 “ V0 YD0

and sV1 “ V1 Y D1. Add an edge pd0, v1q to E for each pd0, v1q P D0 ˆ V1 and set c̄pd0, v1q “ 1.
Do the same for each pv0, d1q P V0 ˆ D1. Notice that we construct both the adjacency matrix

23



and the cost function implicitly, because an explicit construction would take Ωpn2q time. We have
n̄ :“ |sV0| “ |sV1| “ p2 ´ β ` ξqn.

Set δ “ ξn
2n̄ . Run the algorithm in hypothesis on sG and let ĉ and matchM̂ be its outputs. We

set c̃ “ ĉ ´ p2 ´ 2β ` ξqn. We set M̃ :“ M̂ X pV0 ˆ V1q and implement matchM̃ puq as follows. Let
v Ð matchM̂ puq. If v “ K, return K. If either u or v is dummy, return K; else return v. It is easy
to see that ĎM1 X pV0 ˆ V1q is a min-weight matching of size pβ ´ ξqn in G, hence

c̄pĎM1q “ cpMβ´ξq ` |D0| ` |D1| “ cpMβ´ξq ` 2p1 ´ β ` ξqn ď cpMβq ` p2 ´ 2β ` ξqn.
On the other hand, in ĎM1´δ at most 2δn̄ “ ξn dummy vertices are left unmathced, so at least
p2 ´ 2β ` ξqn dummy vertices are matched in ĎM1´δ. Moreover, ĎM1´δ X pV0 ˆ V1q is a matching in
G of size ě n ´ p1 ´ β ` ξqn ´ δn̄ “ pβ ´ 2ξqn. Hence,

c̄pĎM1´δq ě cpMβ´2ξq ` p2 ´ 2β ` ξqn ě cpMαq ` p2 ´ 2β ` ξqn.
Thus, c̄pĎM1´δq ď ĉ ď c̄pĎM1q implies cpMαq ď c̃ ď cpMβq.

Now we prove the bounds on M̃ . We have that since |M̂ | ě p1 ´ δqn̄, then at most 2δn̄ “ ξn
dummy vertices are left unmatched in M̂ and so

cpM̃q ď c̄pM̂q ´ p2p1 ´ β ` ξqn ´ 2δn̄q
ď c̄pĎM1q ´ p2 ´ 2β ` ξqn
“ cpMβ´ξq ` 2p1 ´ β ´ ξqn ´ p2 ´ 2β ` ξqn
“ cpMβ´ξq ` ξn ď cpMβq.

Moreover, |M̃ | ě p1 ´ δqn̄ ´ 2p1 ´ β ` ξqn “ pβ ´ 3
2ξqn ě αn.

Finally, we can prove Theorem 3.

Proof of Theorem 3. We notice that combining Theorem 7 and Theorem 9 we have a sublinear
implementation of Algorithm 1 that takes a graph bipartite graph G “ pV0 Y V1, Eq and a cost
function c : E Ñ r1, Cs as input, outputs an estimate ĉ and a matching oracle matchM̂ . The estimate

ĉ satisfies cpM1´δq ď ĉ ď cpM1q, M̂ satisfies |M̂ | ě p1 ´ δqn and cpM̂q ď cpMOPTq. Moreover, such
algorithm runs in time Opn2´εq and matchM̂ runs in time Opn1`εq for some ε ą 0.

Then, combining Lemma 6.3, Lemma 6.2 and Lemma 6.1 we obtain an algorithm that takes as
input a bipartite graph G “ pV0 Y V1, Eq endowed with a cost function c : E Ñ R`, outputs an
estimate ĉ and a matching oracle matchM̂ such that (whp) cpMαq ď ĉ ď cpMβq, |M̂ | ě αn, and

cpM̂q ď cpMβq. Moreover such algorithm runs in time Opn2´εq and matchM̂ runs in time Opn1`εq
for some ε ą 0.

6.2 Proof of Theorem 1 and Corollary 1.1

Since Corollary 1.1 is more general than Theorem 1 we simply prove the former.

Corollary 1.1. Suppose we have sample access to two distributions µ, ν over metric space pM, dMq
satisfying dp¨, ¨q P r0, 1s and query access to d. Suppose further that there exist µ1, ν1 with support
size n such that EMDpµ, µ1q,EMDpν, ν1q ď ξ, for some ξ ą 0.
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For each constant γ ą 0 there exists a constant ε ą 0 and an algorithm running in time Opn2´εq
that outputs {EMD such that

{EMD P rEMDpµ, νq ˘ p4ξ ` γqs.
Moreover, such algorithm takes Õpnq samples from µ and ν.

Fix a constant γ ą 0. From each probability distribution µ, ν we sample (with replacement)
a multi-set of m “ Θpn logpnqq points. We use Vµ, Vν to denote the respective multi-sets, and
µ̂, ν̂ to denote the empirical distributions of sampling a random point from Vµ, Vν . Let Tµ, Tν be
the transport plans realizing EMDpµ, µ1q and EMDpν, ν1q respectively. Namely, Tµ is a coupling
between µ and µ1 such that EMDpµ, µ1q “ Epx,yq„Tµ

rdpx, yqs and likewise for Tν . For each sample x
in µ̂ we sample x1 „ T px, ¨q and let V 1

µ be the multi-set of samples x1 for x P Vµ. Define V 1
ν similarly.

Let µ̂1 and ν̂1 be the empirical distributions of sampling a random point from V 1
µ and V 1

ν .

Lemma 6.4. EMDpµ̂, µ̂1q ď ξ ` γ with high probability.

Proof. ErEMDpµ̂, µ̂1qs ď E
”

1
m ¨ řxPVµ

dpx, x1q
ı

“ Epx,x1q„Tµ
rdpx, x1qs “ EMDpµ, µ1q ď ξ. More-

over, Varpx,x1q„Tµ
rdpx, x1qs ď 1, thus m “ Θpn log nq ensures EMDpµ̂, µ̂1q ď ξ ` γ whp.

Lemma 6.5. EMDpµ̂1, µ1q ď TVpµ̂1, µ1q ď γ with high probability.

Proof. First, we observe that V 1
µ is distributed as a multi-set of m samples from µ1. For any point

x1 with at least pγ{4nq-mass in µ1, we expect Ωplog nq samples of x1 in V 1
µ, so by Chernoff bound

we have that with high probability the number of samples of x1 concentrates to within p1 ˘ γ{4q-
factor of its expectation. Furthermore, with high probability at most pγ{2q-fraction of the samples
correspond to points with less than pγ{4nq-mass in the original distribution. Thus overall, the
empirical distribution µ̂1 is within γ TV distance of µ1. Finally, EMDpµ̂1, µ1q ď TVpµ̂1, µ1q beacuse
dp¨, ¨q P r0, 1s.
Lemma 6.6. EMDpµ, µ̂q ď ξ ` 2γ with high probability.

Proof. Combining Lemma 6.4, Lemma 6.5 we obtain the following

EMDpµ, µ̂q ď EMDpµ, µ1q ` EMDpµ1, µ̂1q ` EMDpµ̂1, µ̂q ď 2ξ ` 2γ.

Proof of Corollary 1.1. We consider the bipartite graph with a vertex for each point in Vµ, Vν

and edge costs induced by dp¨, ¨q. We apply the algorithm guaranteed by Theorem 3 to find an
estimate of the min-weight matching over between p1 ´ γqm and m vertices. We return the cost

estimate {EMD on the bipartite graph (normalized by dividing by m). Theorem 3 guarantees that
{EMD P rEMDpµ̂, ν̂q ˘ γs. Then using triangle inequality on EMD, as well as Lemma 6.6 on both µ
and ν we obtain

ˇ̌
ˇ{EMD ´ EMDpµ, νq

ˇ̌
ˇ ď

ˇ̌
ˇ{EMD ´ EMDpµ̂, ν̂q

ˇ̌
ˇ ` EMDpµ, µ̂q ` EMDpν, ν̂q ď 4ξ ` 5γ.

Scaling γ down of a factor 5 we retireve Corollary 1.1.
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6.3 Proof of Theorem 2

Theorem 2 (Main theorem, graph interpretation). For each constant γ ą 0, there exists a constant
ε ą 0, and an algorithm running in time Opn2´εq with the following guarantees. The algorithm
takes as input a budget B, and query access to the edge-cost matrix of an undirected, bipartite graph
G over n vertices. The algorithm returns an estimate xM that is within ˘γn of the size of the
maximum matching in G with total cost at most B.

Proof. Let M be the maximum matching in G with total cost at most B, and let |M | “ ξn. We
perform a binary search for ξ using the algorithm from Theorem 3 as a subroutine. This loses only
a factor logpnq in query complexity, which gets absorbed in Opn2´εq by choosing a suitable constant
ε.

Acknowledgments. We thank Erik Waingarten for inspiring discussions. We thank Tal Herman
and Greg Valiant for pointing out the sample complexity lower bound implied by [VV10].
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Andy Nguyen, Tao Du, and Leonidas Guibas. “Convolutional wasserstein distances:
Efficient optimal transportation on geometric domains”. In: ACM Transactions on
Graphics (ToG) 34.4 (2015), pp. 1–11.

[Vil+09] Cédric Villani et al. Optimal transport: old and new. Vol. 338. Springer, 2009.

[VV10] Gregory Valiant and Paul Valiant. “A CLT and tight lower bounds for estimating
entropy.” In: Electron. Colloquium Comput. Complex. Vol. 17. 2010, p. 179.

[Yur+19] Mikhail Yurochkin, Sebastian Claici, Edward Chien, Farzaneh Mirzazadeh, and Justin
M Solomon. “Hierarchical optimal transport for document representation”. In: Ad-
vances in neural information processing systems 32 (2019).

29



Appendix B

SODA: Better Sum Estimation via
Weighted Sampling

68



Better Sum Estimation via Weighted Sampling

Lorenzo Beretta ∗

beretta@di.ku.dk

BARC, Univ. of Copenhagen

Jakub Tětek ∗
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Abstract

Given a large set U where each item a ∈ U has weight w(a), we want to estimate the total
weight W =

∑
a∈U w(a) to within factor of 1± ε with some constant probability > 1/2. Since

n = |U | is large, we want to do this without looking at the entire set U . In the traditional
setting in which we are allowed to sample elements from U uniformly, sampling Ω(n) items is
necessary to provide any non-trivial guarantee on the estimate. Therefore, we investigate this
problem in different settings: in the proportional setting we can sample items with probabilities
proportional to their weights, and in the hybrid setting we can sample both proportionally
and uniformly. These settings have applications, for example, in sublinear-time algorithms and
distribution testing.

Sum estimation in the proportional and hybrid setting has been considered before by Mot-
wani, Panigrahy, and Xu [ICALP, 2007]. In their paper, they give both upper and lower bounds
in terms of n. Their bounds are near-matching in terms of n, but not in terms of ε. In this
paper, we improve both their upper and lower bounds. Our bounds are matching up to con-
stant factors in both settings, in terms of both n and ε. No lower bounds with dependency on ε
were known previously. In the proportional setting, we improve their Õ(

√
n/ε7/2) algorithm to

O(
√
n/ε). In the hybrid setting, we improve Õ( 3

√
n/ε9/2) to O( 3

√
n/ε4/3). Our algorithms are

also significantly simpler and do not have large constant factors.
We then investigate the previously unexplored scenario in which n is not known to the

algorithm. In this case, we obtain a O(
√
n/ε+ log n/ε2) algorithm for the proportional setting,

and a O(
√
n/ε) algorithm for the hybrid setting. This means that in the proportional setting,

we may remove the need for advice without greatly increasing the complexity of the problem,
while there is a major difference in the hybrid setting. We prove that this difference in the
hybrid setting is necessary, by showing a matching lower bound.

Our algorithms have applications in the area of sublinear-time graph algorithms. Consider
a large graph G = (V,E) and the task of (1±ε)-approximating |E|. We consider the (standard)
settings where we can sample uniformly from E or from both E and V . This relates to sum
estimation as follows: we set U = V and the weights to be equal to the degrees. Uniform sam-
pling then corresponds to sampling vertices uniformly. Proportional sampling can be simulated
by taking a random edge and picking one of its endpoints at random. If we can only sample
uniformly from E, then our results immediately give a O(

√
|V |/ε) algorithm. When we may

sample both from E and V , our results imply an algorithm with complexity O( 3
√
|V |/ε4/3).

Surprisingly, one of our subroutines provides an (1 ± ε)-approximation of |E| using Õ(d/ε2)
expected samples, where d is the average degree, under the mild assumption that at least a
constant fraction of vertices are non-isolated. This subroutine works in the setting where we
can sample uniformly from both V and E. We find this remarkable since it is O(1/ε2) for sparse
graphs.
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1 Introduction.

Suppose we have a large set U , a weight function w : U → [0,∞) and we want to compute a
(1 ± ε)-approximation of the sum of all weights W =

∑
a∈U w(a). Since n = |U | is very large, we

want to estimate W by sampling as few elements as possible. In the traditional setting in which
we are allowed to sample elements from U uniformly, sampling o(n) items cannot provide any
non-trivial guarantee on the approximation as we may miss an element with a very large weight.
This led Motwani, Panigrahy, and Xu [12] to study this problem when we are allowed to sample
elements proportionally to their weights (i.e., sample a with probability w(a)/W ). In particular,
they studied two settings: the proportional setting, where we can sample items proportionally to
their weights, and the hybrid setting where both proportional and uniform sampling is possible.
In this paper, we revisit these two settings and get both improved lower and upper bounds. We
also extend the results to more general settings and show how our techniques imply new results for
counting edges in sublinear time.

Motwani et al. [12] give upper and lower bounds for both proportional and hybrid settings.
Their bounds are matching up to polylogarithmic factors in terms of n, but not in terms of ε.
In this paper, we improve both their upper and lower bounds. Our bounds are matching up to
constant factors in both settings, in terms of both n and ε. No lower bounds with dependency on
ε were known previously.

In the proportional setting, we improve their Õ(
√
n/ε7/2) algorithm to O(

√
n/ε). In the hybrid

setting, we improve Õ( 3
√
n/ε9/2) to O( 3

√
n/ε4/3). Our algorithms are also significantly simpler.

In the same paper, Motwani et al. [12] write: “to efficiently derive the sum from [proportional]
samples does not seem straightforward”. We would like to disagree and give a formula that outputs
an estimate of W from a proportional sample. This formula is not only optimal in terms of sample
complexity but also very simple. Our other algorithms, although not as simple, do not have large
hidden constants and we believe they are both practical and less involved than their predecessors.

In their work, Motwani et al. [12] always assume to know the size of the universe n = |U |.
We extend these results to the case of unknown n. In this case, we obtain a O(

√
n/ε + log n/ε2)

algorithm for the proportional setting, and a O(
√
n/ε) algorithm for the hybrid setting. This means

that in the proportional setting we may remove the need for advice without significantly impacting
the complexity of the problem, while there is a major difference in the hybrid setting. We prove
that this difference in the hybrid setting is necessary, by showing a matching lower bound.

We give lower bounds for all our estimation problems, both for proportional and hybrid settings,
and when n is either known or unknown. This is the most technically challenging part of the paper.
We prove lower bounds for n known and unknown as well as proportional and hybrid settings; all
our lower and upper bounds are matching up to a constant factor. See Table 1 for a summary of
our results.

Our algorithms have particularly interesting applications in the area of sublinear-time graph
algorithms, which are explained in detail in Section 1.1.

The paper is structured as follows. In what is left of Section 1 we explain applications and
related work, give an overview of the techniques employed, and provide the reader with formal
definitions of problems and notations. Section 2 contains our algorithms for proportional setting,
while Section 3 contains algorithms for hybrid setting. In Section 4 we prove all our lower bounds.
In Section 5 we show how to apply our algorithms to the problem of counting the number of edges
in a graph in sublinear time. In Section 6 we raise several open problems.
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Advice to
the algorithm

This paper Motwani, Panigrahy and Xu [12]

Proportional Hybrid Proportional Hybrid

n known Θ(
√
n/ε)

O(min( 3
√
n/ε4/3, n log n))

Ω(min( 3
√
n/ε4/3, n)

Õ(
√
n/ε7/2)

Ω(
√
n)

Õ( 3
√
n/ε9/2), O(

√
n/ε2)

Ω( 3
√
n)

Known ñ ≥ n O(
√
ñ/ε)

Ω(
√
n/ε)

O(min(
√
n/ε, n log n))

Ω(min(
√
n/ε, n))

No advice
O(
√
n/ε+ log n/ε2)

Ω(
√
n/ε)

O(min(
√
n/ε, n log n))

Ω(min(
√
n/ε, n))

Table 1: Results of this paper.

1.1 Related Work and Applications.

In this section, we show that our algorithms can be applied to get sublinear-time graph algorithms
and distribution testing and discuss how this relates to previous work in these areas. We also
discuss here how the widely used Metropolis-Hastings algorithm in fact implements the proportional
sampling. We suggest that this could be an application domain worth investigating.

Counting edges in sublinear time.

When a graph G = (V,E) is very large, we may want to approximately solve certain tasks without
looking at the entire G, thus having a time complexity that is sublinear in the size of G. In
particular, estimating global properties of G such |V | or |E| in this setting is an important problem
and has been studied in both theoretical and applied communities [4, 5, 6, 8, 10, 14, 16]. Since the
algorithm does not have the time to pre-process (or even see) the whole graph, it is important to
specify how we access G. Several models are employed in the literature. The models differ from each
other for the set of queries that the algorithm is allowed to perform. A random vertex query returns
a random vertex, a random edge query returns a random edge, a pair query takes two vertices u, v
as arguments and returns (u, v) ∈ E, a neighbourhood query takes a vertex v and an index i as
arguments and returns the i-th neighbour of v (or says that d(v) < i), a degree query, given a vertex
v, returns its degree deg(v). We parameterize the complexities with an approximation parameter
ε, n = |V | and m = |E|.

The problem of estimating the number of edges in a graph in sublinear time has been first
considered by Feige [6]. Their algorithm works in the model where only random vertex queries
and degree queries are allowed and achieves a (2 + ε)-approximation algorithm using Õ( n

ε
√
m

) time

and queries. Their algorithm does not use neighborhood queries and the authors showed that
without neighborhood queries, 2− ε approximation requires a linear number of queries. Goldreich
and Ron [8] broke the barrier of factor 2 by using neighborhood queries. Indeed, they showed a
(1 + ε)-approximation with time and query complexity of Õ( n

ε9/2
√
m

). Currently, the best known

algorithm is the one by Eden, Ron and Seshadhri [5] and has complexity Õ( n
ε2
√
m

). If pair queries

are allowed, the algorithm of Tětek and Thorup [16] has complexity Õ( n
ε
√
m

+ 1
ε4

); in the same paper

the authors showed a lower bound which is near-matching for ε ≥ m1/6/n1/3 as well as an algorithm
with complexity Õ( n

ε
√
m

+ 1
ε2

) in what they call the hash-ordered access model. They also show an

algorithm in the more standard setting with random vertex and neighborhood queries, that runs
in time Õ(

√
n/ε). This is the same complexity (up to a logO(1) n factor) that we achieve in the

3



setting with random edge queries, as we discuss below. Our techniques are, however, completely
different and share no similarity with the techniques used in [16].

Our algorithms can be applied to solve the edge counting problem when either (i) random
edge queries only are allowed, or (ii) both random edge and random vertex queries are allowed.
While edge counting has not been explicitly considered in these settings before, these settings are
established and have been used in several papers [1, 2, 7, 15]. We instantiate our algorithm for
this graph problem setting U = V and w(v) = deg(v) for each v ∈ V . Uniform sampling then
corresponds to sampling vertices uniformly. Proportional sampling can be simulated by taking a
random edge and picking one of its endpoints at random. Degree query allows us to get the weights
of sampled vertices. Since these settings have not been explicitly studied before, we compare our
results with what follows directly from the known literature.

If we can only sample uniformly from E, the algorithm by Motwani et al. implies an algorithm for
this problem that has complexity Õ(

√
n/ε7/2). Using an algorithm from [5] and standard simulation

of random vertex queries using random edge queries, one would get time Õ(
√
m/ε2 + m

ε
√
n′

) for n′

being the number of non-isolated1 vertices2. Our results immediately give a O(
√
n/ε) algorithm,

or Õ(
√
n/ε+ 1/ε2) when n is not known.

When we may sample both from E and V , the algorithms by Motwani et al. imply algorithms
with sample complexities of Õ( 3

√
n/ε9/2) and O(

√
n/ε2). We may also use the algorithm of [5] that

relies on random vertex query only. This has complexity from O( n
ε2
√
m

). Our results imply an

algorithm with complexity O( 3
√
n/ε4/3). Surprisingly, one of our subroutines provides an (1 ± ε)-

approximation of |E| using Õ(d/ε2) expected samples, where d is the average degree, under the
mild assumption that at least a constant fraction of vertices are non-isolated (in fact, we prove a
more complicated complexity which depends on the fraction of vertices that are isolated). This
subroutine works in the setting where we can sample uniformly from both V and E. We find this
remarkable since it is O(1/ε2) for sparse graphs.

Distribution testing.

Consider a model in which we are allowed to sample from a distribution D on U , and when we do,
we receive both a ∈ U and PD(a). This model is stronger than the one we considered throughout
the paper. In fact, it is a special case of our model obtained by fixing W = 1. Similarly, we may
consider such stronger variant of the hybrid setting. This model has received attention both in
statistics and in theoretical computer science literature. Most notably, Horvitz and Thompson [9]
in 1952 showed how to estimate the sum

∑
a∈U v(a), for value function v : U → R when having

access to a sample a from D and PD(a). More recently, many distribution testing problems have
been considered in this and similar models.

First, Canonne and Rubinfeld [3] considered the model where one can (i) sample a ∈ U according
to D; (ii) query an oracle that, given a ∈ U , returns PD(a). This allows us to both get the
probability of a sampled item, but also the probability of any other item. For every permutation-
invariant problem, any sublinear-time algorithm in this model may be transformed so that it only
queries the oracle on previously sampled items or on items chosen uniformly at random 3. This

1A vertex is isolated if it has degree zero.
2One may simulate uniform sampling from the set of non-isolated vertices at multiplicative overhead of O(m/n′)

by sampling proportionally and using rejection sampling. We may then use set size estimation by bithday paradox
in time O(

√
n′/ε) to learn n′ and the algorithm of [5].

3Since we consider permutation invariant problems, we may randomly permute the elements. Whenever we query
an element that has not yet been sampled, we may assume that it is sampled uniformly from the set of not-yet-sampled
elements. This can be simulated by sampling elements until getting a not-yet-seen item (sublinearity ensures that
the step adds multiplicative O(1) overhead).
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setting is stronger than our hybrid setting. However, the two models become equivalent if we know
W .

Second, Onak and Sun [13] considered exactly the model described above, where one can sample
from a distribution D, and both a ∈ U and PD(a) are returned. This setting is again stronger than
our proportional setting, and it becomes equivalent once we know W .

In both of these papers, the authors solved several distribution testing problems such as: uni-
formity testing, identity testing, and distance to a known distribution, in the respective models.
Canonne and Rubinfeld [3] also considered the problem of providing an additive approximation of
entropy. Both [3] and [13] proved several lower bounds, showing that many of their algorithms
are optimal up to constant factors. These lower bounds also imply a separation between the two
models for the problems mentioned above.

In both of the papers, the authors make a point that many of their algorithms (all the ones
we mentioned) are robust with respect to noise of multiplicative error (1 ± ε/2) in the answers
of the probability oracles. Our algorithms can then serve as a reduction from the weaker models
we consider in this paper to these stronger models where we know the probabilities and not just
the weights. The reason is that we can get an approximation of W , meaning that we may then
approximately implement the above-described models. Since the mentioned algorithms [3, 13] are
robust, a (1± ε/2)-approximation of W is sufficient to simulate them.

Proportional sampling in practice: Metropolis-Hastings.

Proportional sampling is often implemented in practice using the Metropolis-Hasting algorithm.
This algorithm is widely used in statistics and statistical physics, but can also be used to sample
combinatorial objects. It can be used to sample from large sets which have complicated structures
that make it difficult to use other sampling methods. Just like our algorithms, it is suitable
when the set is too large to be stored explicitly, making it impossible to pre-process it for efficient
sampling. One of the main appeals of Metropolis-Hasting is that it does not require one to know the
exact sampling probabilities, but it is sufficient to know the items’ weights like in the proportional
setting described in this paper. We believe that our algorithm can find practical applications in
combination with Metropolis-Hasting as Metropolis-Hasting performs proportional sampling with
weight function that would be usually known in practice.

1.2 Overview of employed techniques.

Here we provide a summary of the techniques employed throughout the paper. We denote with
Punif (·) and Pprop(·) the probabilities computed according to uniform and proportional sampling,
respectively. Although often not specified for brevity, all guarantees on the approximation factors
of estimates in this section are meant to hold with probability 2/3.

1.2.1 Proportional setting with advice ñ ≥ n.

Consider sampling two elements a1, a2 ∈ U proportionally and define Y12 = 1/w(a1) if a1 = a2, and
Y12 = 0 otherwise. It is easy to show that Y12 is an unbiased estimator of 1/W . We could perform
this experiment many times and take the average. This would give a good approximation to 1/W
and taking the inverse value, we would get a good estimate on W . Unfortunately, we would need
Θ(n/ε2) repetitions in order to succeed with a constant probability. We can fix this as follows:
we take m samples a1, · · · , am and consider one estimator Yij for each pair of samples ai, aj for
i 6= j. This allows us to get

(
m
2

)
estimators from m samples. We show that estimators Yij are

uncorrelated. This reduces the needed number of samples from O(n/ε2) to O(
√
n/ε).
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We now describe the estimator formally. Let S = {a1, · · · , am} be the set of sampled items,
and for each s ∈ S define cs to be the number of times item s is sampled. Then,

Ŵ =

(
m

2

)
·
(∑

s∈S

(
cs
2

)

w(s)

)−1

is a (1 ± ε)-approximation of W with probability 2/3 for m = Θ(
√
n/ε). If, instead of knowing n

exactly, we know some ñ ≥ n we can achieve the same guarantees by taking Θ(
√
ñ/ε) samples.

1.2.2 Proportional setting, unknown n.

We partition U into buckets Bi = {a ∈ U |w(a) ∈ [2i, 2i+1)}. We choose some b ∈ Z and compute
two estimates: Ŵb approximates Wb =

∑
a∈Bb w(a), and P̂b approximates Pb = Pprop(a ∈ Bb) =

Wb/W . We then return Ŵb/P̂b, as an estimate of W . If both estimates are accurate, then the
returned value is accurate. To choose b, we sample a1 and a2 proportionally and define b so that
max{a1, a2} ∈ [2b, 2b+1). We prove that, surprisingly4, E[1/Pb] = O(log n). Computing P̂b is simply
a matter of estimating the fraction of proportional samples falling into Bb. This can be done using
O(1/(Pbε

2)) samples, where ε is the approximation parameter. Therefore the expected complexity
of computing P̂b is O(log n/ε2). Computing Ŵb is more involved. First, we design two subroutines
to sample from Bb, one for proportional sampling and one for uniform. These subroutines work
by sampling a ∈ U until we get a ∈ Bb; the subroutine for uniform sampling then uses rejection
sampling. These subroutines take, in expectation, O(1/Pb) samples to output one sample from Bb.
Since we can now sample uniformly from Bb, we sample items uniformly form Bb until we find the
first repeated item and use the stopping time to infer |Bb| up to a constant factor. In expectation,
we use O(

√
|Bb|) uniform samples and compute ñb, such that |Bb| ≤ ñb ≤ O(|Bb|). Since we can

also sample proportionally from Bb, we may use the algorithm for proportional setting with advice
ñb to estimate Wb. This yields a total sample complexity of O(

√
n/ε+ log n/ε2).

1.2.3 Hybrid setting.

We now present the techniques used in the hybrid setting. Before giving a sketch of the main
algorithms, we introduce two subroutines.

Coupon-collector-based algorithm. In the hybrid setting, we can sample elements uniformly.
If we know n = |U | a well-known result under the name of “coupon collector problem” shows that
we can retrieve with high probability all n elements by performing Θ(n log n) uniform samples.
We extend this result to the case of unknown n. We maintain a set of retrieved elements S ⊆ U
and keep on sampling uniformly and adding new elements to S until we perform Θ(|S| log |S|)
samples in a row without updating S. It turns out that this procedure retrieves the whole set
U with probability 2/3 and expected complexity O(n log n). According to our lower bounds, this
algorithm is near-optimal when ε = O(1/

√
n). Therefore, we can focus on studying hybrid sampling

for larger values of ε.

Harmonic mean and estimating W/n with advice θ̃ ≥ W/n in hybrid setting. If we
sample a ∈ U proportionally, then 1/w(a) is an unbiased estimator of n/W . Unfortunately, we
may have very small values of w(a), which can make the variance of this estimator arbitrarily large.

4Notice that, if we just define b = a1, then we have E[1/Pb] = n in the worst case. Therefore, taking the maximum
of two samples entails an exponential advantage.
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To reduce variance, we can set a threshold φ and define an estimator Yφ as 1/w(a) if w(a) ≥ φ,
and 0 otherwise. Set p = Punif (w(a) ≥ φ), then we have E[Yφ] = pn/W and V ar(Yφ) ≤ pn/(φW ).
If we define Ȳφ as the average of θ̃/(pφε2) copies of Yφ, we have V ar(Ȳφ) ≤ (εE[Yφ])2. With such
a small variance, Ȳφ is a good estimate of pn/W . Estimating p is simply a matter of estimating
the fraction of uniform samples having w(•) ≥ φ. This can be done taking O(1/(pε2)) uniform
samples. Once we have estimates of both p and pn/W we return their ratio as an estimate of W/n.

We employed in total O((1 + θ̃
φ)/(p ε2)) proportional and uniform samples.

Perhaps surprisingly, this corresponds to taking the harmonic mean of the samples with weight
at least φ and adjusting this estimate for the weight of the items with weight < φ.

Hybrid setting, known n. We now sketch the algorithm for sum estimation in the hybrid
setting with known n. We combine our formula to estimate W in the proportional setting and
the above algorithm to estimate W/n in hybrid setting to obtain an algorithm that estimates W
using O( 3

√
n/ε4/3) uniform and proportional samples. Define U≥θ = {a ∈ U |w(a) ≥ θ}. We find

a θ such that Punif (a ∈ U≥θ) ≈ n−1/3ε−2/3, this can be done taking enough uniform samples and
picking the empirical (1 − n−1/3ε−2/3)-quantile5 . We define p = Pprop(a ∈ U≥θ) ≥ Punif (a ∈
U≥θ) ≈ n−1/3ε−2/3. We compute an estimate p̂ of p counting the fraction of proportional samples
falling in U≥θ. Now we have two cases. If p̂ ≥ 1/2, we can simulate sampling from the proportional
distribution on U≥θ with O(1) overhead by sampling proportionally until we get an element of U≥θ.
Then, we use the algorithm for sum estimation under proportional sampling restricted to elements
in U≥θ to estimate

∑
a∈U≥θ w(a) = pW . Dividing by the estimate p̂ ≈ p, we get an estimate for

W . Else, p̂ < 1/2, and thus p ≤ 2/3 (assuming p̂ is a good enough estimate of p). We then have
θn ≥∑a6∈U≥θ w(a) = (1− p)W ≥W/3. This allows us to use the harmonic-mean-based algorithm

to estimate W/n with φ = θ and θ̃ = 3θ. In both cases we manage to provide an estimate of W
using O( 3

√
n/ε4/3) samples.

Hybrid setting, unknown n. We now sketch our technique for sum estimation in the hybrid
setting with unknown n. First, we sample items uniformly until we find the first repeated item and
use the stopping time to infer the total number of items n. In expectation, we use O(

√
n) uniform

samples and compute ñ, such that n ≤ ñ and E[ñ] = n. Now, we can use our algorithm for sum
estimation in the proportional setting with advice ñ. This uses in expectation O(

√
ñ/ε) = O(

√
n/ε)

samples. As we prove, this complexity is optimal up to a constant factor for ε ≥ 1/
√
n. Again,

if ε ≤ 1/
√
n, then we use our coupon-collector-based algorithm that retrieves every element of U

using O(n log n) samples.

1.2.4 Lower bounds.

The most technically challenging part of our paper is Section 4, where we prove lower bounds
for all estimation problems we address in the first part of the paper. All our lower bound proofs
follow a common thread. We now sketch the main ideas. First, we define two different instances of
the estimation problem at hand (U1, w1) and (U2, w2) such that a (1 ± ε)-approximation of W is
sufficient to distinguish between them. Then, we define our hard instance as a mixture of the two:
we take (U1, w1) with probability 1/2 and (U2, w2) otherwise. We denote these events by E1 and
E2 respectively. Second, we show that a Bayes classifier cannot distinguish between the two cases

5We may assume that ε ≥ 8/
√
n by running the coupon-collector-based algorithm when ε < 8/

√
n. Under this

assumption, it holds n−1/3ε−2/3 ∈ [0, 1] and taking the (1− n−1/3ε−2/3)-quantile then is meaningful.
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with probability 2/3 using too few samples; since Bayes classifiers are risk-optimal6 this implies
that no classifier can have misclassification probability less than 1/3 while using the same number
of samples. To show that a Bayes classifier has a certain misclassification probability, we study the
posterior distribution, conditioned on the samples it has seen. Let the multiset S represent the
outcome of the samples. Since the prior is uniform, applying the Bayes theorem gives

P (E1 |S)

P (E2 |S)
=
P (S | E1)

P (S | E2)
.

We denote this likelihood ratio by R(S). We show that whenever |S| is (asymptotically) too small,
we have R(S) ≈ 1 with probability close to 1. When R(S) ≈ 1, the posterior distribution is very
close to uniform. This entails misclassification probability close to 1/2. If X and Y are some
random variables sufficient to reconstruct S (that is, there exists an algorithm that, given (X,Y ),
generates S′ with the same distribution as S), we can define

R(X) =
P (X | E1)

P (X | E2)
and R(Y |X) =

P (Y |X, E1)

P (Y |X, E2)

and we have, thanks to the Bayes theorem, R(S) = R(X) · R(Y |X). In this way, we can break
the problem of proving R(S) ≈ 1 into proving R(X) ≈ 1 and R(Y |X) ≈ 1. This allows us to
reduce all our lower bounds to prove concentration of likelihood ratios for two basic problems: (1)
distinguishing between two sets of size n and (1− ε)n by uniform sampling and (2) distinguishing
between two sequences of i.i.d. random variables from Bern(p) and Bern(p− ε).

We now sketch how we bound the likelihood ratio R(S) for problem (1), the same technique
applies to problem (2). In problem (1), we call E1 the event |U | = n and E2 the event |U | = (1−ε)n,
and we set P (E1) = P (E2) = 1/2. First, we notice that R(S) depends only on the number `(S)
of distinct elements in S. Then, we prove three facts. First, `(S) | Ei is concentrated around
E[`(S) | Ei]. Second, E[`(S) | E1] ≈ E[`(S) | E2]. Third, for small deviations of `(S), we have small
deviations of R(`(S)). These three facts are sufficient to conclude that, with probability close to 1,
R(`(S)) lies in a very narrow interval; further computations show that 1 lies in that interval, hence
R(S) ≈ 1 with probability close to 1.

1.3 Preliminaries.

Problem definition. We now give a formal definition of the two settings that we consider. Let
us have a set U of cardinality n and a weight function w : U → [0,∞). We denote by W the
sum

∑
a∈U w(a). The following operations are allowed in the proportional sampling setting: (1)

proportionally sample an item, this returns (a,w(a)) with probability w(a)/W ; (2) given two items
a, a′, check whether a = a′. This is the only way we can interact with the items. In the hybrid
setting, we may in addition (3) sample an item uniformly (that is, return (a,w(a)) for any a ∈ U
with probability 1/n). In both settings, we want to compute an estimate Ŵ of W such that
(1− ε)W ≤ Ŵ ≤ (1 + ε)W with probability 2/3.

Notation. When (1−ε)W ≤ Ŵ ≤ (1+ε)W holds, we say that such Ŵ is a (1±ε)-approximation
of W . Some of our subroutines require “advice” in the form of a constant factor approximation
of some value. For sake of consistency, we denote this constant factor approximation of • by •̃.
Similarly, if we want to estimate some value •, we use •̂ to denote the estimate. Let us have
some predicate φ that evaluates true on some subset of U and false on the rest. We denote by

6Risk of a classifier refers to the misclassification probability under some fixed distribution. For the Bayes classifier,
we implicitly assume that this distribution is the same as the prior.
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Punif (φ(a)) and Pprop(φ(a)) the probability of φ evaluating to true for a being picked uniformly
and proportionally, respectively.

We use Õ with the slightly non-standard meaning of f(n) ∈ Õ(g(n)) being equivalent to f(n) ∈
g(n) logO(1) n, rather than f(n) ∈ g(n) logO(1) g(n). We state all our results (both upper and lower
bound) for some constant success probability > 1/2. These probabilities can be amplified to any
other constants without increasing the asymptotic complexity. In pseudocode, we often say that we
execute some algorithm with some failure probability. By this, we mean that one uses probability
amplification to achieve that failure probability.

Relative bias estimation of a Bernoulli random variable. Let X1, X2, · · · be i.i.d. random
variables distributed as Bern(p). [11] gave a very simple algorithm that returns p̂ such that, with
probability at least 2/3, p̂ is a (1± ε)-approximation of p7. It can be summarized as follows.

Proposition 1 (follows from [11]). Let X1, X2, · · · be i.i.d. random variables distributed as Bern(p).
There exists an algorithm that uses in expectation O( 1

ε2p
) samples and returns p̂ such that E[1/p̂] =

1/p and

P (|p̂− p| > εp) ≤ 1

3
.

We call this algorithm BernoulliEstimator(ε). We assume that this algorithm has access
to the sequence X1, X2, · · · ; we specify these random variables when invoking the algorithm.

Probability amplification and expected values. Consider an estimator that gives a guarantee
on the estimate x̂ that holds with some probability (say, guarantee that a proposition φ(x̂) holds
with probability at least 2/3) and at the same time, we know that E[x̂] ≤ y for some value y. We
sometimes need to amplify the probability of the guarantee (that is, amplify the probability that
φ(x̂) holds) but would like to retain a bound E[x̂] = O(y). We now argue that using the standard
median trick is sufficient. Namely, we prove that

Lemma 2. Let us have non-negative i.i.d. random variables X1 · · ·X2t−1 for some integer t, and
let X = median(X1 · · ·X2t−1). It holds E[X] ≤ 2E[X1].

Proof. Let X ′1, · · · , X ′2t−1 be the random variables X1, · · · , X2t−1 sorted in increasing order. We
then have

E[X] ≤ E
[

1

t
·

2t−1∑

i=t

X ′i

]
≤ E

[
1

t
·

2t−1∑

i=1

Xi

]
≤ 2t− 1

t
· E[X1].

2 Sum Estimation by Proportional Sampling.

In this section, we focus on sum estimation in the proportional setting. We design algorithms to
estimate W and our objective is to minimize the total number of samples taken in the worst case.
We present two different algorithms that provide an (1± ε)-approximation of W with probability
2/3. The first one, PropEstimator, assumes to have an upper bound on the number of elements
ñ ≥ n, and achieves sample complexity of O(

√
ñ/ε). The second one, NoAdvicePropEstimator,

does not assume any knowledge of n, and produce an ε-estimate using O(
√
n/ε+ log n/ε2) samples

in expectation.

7In that paper, the authors in fact solve a more general problem. For presentation of this special case, see [17].
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2.1 Algorithm with advice ñ ≥ |U |.
Let a1 . . . am be m items picked independently at random from U with probabilities proportional
to their weights. Let S be the set of sampled items, and for each s ∈ S define cs to be the number
of times item s is sampled. For each i, j ∈ [m]2 define Yij to be 1/w(ai) if ai = aj and 0 otherwise.
We now estimate W as follows:

Algorithm 1: PropEstimator(ñ, ε):

Given a parameter 0 < ε < 1 and advice ñ ≥ n, perform m =
√

24ñ/ε+ 1 samples and return the
estimate

Ŵ =

(
m

2

)
·
(∑

s∈S

(
cs
2

)

w(s)

)−1

.

In case cs = 1 for all s ∈ S set Ŵ =∞.

Before we prove correctness, we need the following lemma.

Lemma 3. Given pairwise distinct i, j, k ∈ [m], we have E[Yi,j ] = 1/W , V ar(Yi,j) ≤ n/W 2, and
Cov[Yi,j , Yi,k] = 0

Proof.

E[Yij ] =
∑

a∈U

1

w(a)
P (xi = xj = a) =

∑

a∈U

w(a)

W 2
=

1

W

V ar(Yij) ≤ E[Y 2
ij ] =

∑

a∈U

1

w(a)2
P (xi = xj = a) =

∑

a∈U

1

W 2
=

n

W 2

As for the covariance, it holds Cov[Yi,j , Yi,k] = E[Yi,j · Yi,k]−E[Yj,k] ·E[Yi,k]. This is equal to 0 as

E[Yi,j · Yi,k] =
∑

a∈U

1

w(a)2
P (xi = xj = xk = a) =

∑

a∈U

w(a)

W 3
=

1

W 2
= E[Yj,k] · E[Yi,k]

Theorem 4. Given parameters ñ and 0 < ε < 1, PropEstimator(ñ, ε) has sample complexity

O(
√
ñ
ε ) and returns an estimate Ŵ such that E[1/Ŵ ] = 1/W . If, moreover, ñ ≥ n, then P (|Ŵ −

W | ≤ εW ) ≥ 2/3.

Proof. The sample complexity is clearly as claimed. We now prove that 1/Ŵ is an unbiased
estimator of 1/W :

1

Ŵ
=

(
m

2

)−1∑

s∈S

(
cs
2

)

w(s)
=

(
m

2

)−1 ∑

1≤i<j≤m
Yij

and thus

E

[
1

Ŵ

]
=

(
m

2

)−1 ∑

1≤i<j≤m
E [Yij ] =

1

W
.
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When i, j, k, ` are all distinct, Yij and Yk` are independent. Moreover, by Theorem 3, Yij and Yik
are uncorrelated for j 6= k. Using the bound on V ar(Yij) from Theorem 3, we then have that

V ar

[
1

Ŵ

]
=

(
m

2

)−2 ∑

1≤i<j≤m
V ar(Yij)

≤
(
m

2

)−1 n

W 2

≤ 1

12
·
( ε

W

)2

By Chebyshev inequality, it holds that

P

(∣∣∣∣
1

Ŵ
− 1

W

∣∣∣∣ >
ε

2W

)
≤
V ar

[
1/Ŵ

]

(ε/2W )2 ≤ 1

3

Finally, for ε ≤ 1 we have

(1− ε)W ≤ (1 + ε/2)−1W ≤ Ŵ ≤ (1− ε/2)−1W ≤ (1 + ε)W

This means that |1/Ŵ−1/W | ≤ ε/(2W ) implies |Ŵ−W | ≤ εW . Thus P
(
|Ŵ −W | ≤ εW

)
≥ 2/3.

2.2 Algorithms for |U | unknown.

In this section, we present the algorithm NoAdvicePropEstimator, which samples elements from
U proportionally to their weights, and computes an (1 ± ε)-approximation of W with probability
2/3, without any knowledge of n = |U |.

NoAdvicePropEstimator takes O(
√
n/ε + log n/ε2) samples in expectation and works as

follows. We partition U into buckets such that items in one bucket have roughly the same weight.
We pick one bucket such that the items in this bucket are likely to have a sufficiently large total
weight. We then estimate the sum restricted to this bucket. If we are able to do that, we can
estimate the total weight by looking at what fraction of the proportional samples end up in this
bucket. We estimate the sum restricted to the bucket as follows. Since the weights are roughly
the same for all items in the bucket, we may use rejection sampling to efficiently simulate uniform
samples from the bucket. That allows us to estimate the number of items in it, up to a constant
factor. We use the algorithm PropEstimator with this estimated bucket size as the advice ñ.

Estimating |U | through uniform sampling.

As a preliminary step, we assume that we are able to sample elements from U uniformly, rather than
according to their weights. Under this assumption, we introduce the algorithm SetSizeEstimator
that, using O(

√
n) expected samples, estimates n = |U | up to a constant factor with probability 2/3.

The intuition behind SetSizeEstimator is fairly simple: if we sample uniformly with replacement
from a universe of size n and we see the first repetition after t samples, then it is likely that t ≈ √n.

Theorem 5. SetSizeEstimator has expected sample complexity of O(
√
n). It returns an estimate

N̂ such that P (n ≤ N̂) ≥ 2/3 and E[N̂ ] = O(n).
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Algorithm 2: SetSizeEstimator()

1 S0 ← ∅
2 for i ∈ N do
3 Sample ai ∈ U uniformly
4 if ai ∈ Si then
5 ŝ← |Si|
6 N̂ ← 4ŝ2

7 return N̂

8 Si+1 ← Si ∪ {ai}

Proof. We prove that when the algorithm aborts, it holds P (
√
n/2 ≤ ŝ) ≥ 2/3. The bound on

P (n ≤ N̂) follows by the definition of N̂ . Define the event Ei = {ai ∈ Si}, where we define that
ai 6∈ Si whenever the algorithm terminates before step i. It then holds P (Ei) ≤ P (Ei |

⋂
j<i Ēj) =

i/n. We have

P

(
ŝ <

√
n

2

)
= P



√
n/2−1⋃

i=0

Ei




≤
√
n/2−1∑

i=0

P (Ei)

≤
√
n/2−1∑

i=0

i

n

=
1

n
·
(√

n/2

2

)
<

1

6
.

After
√
n samples, each additional sample is a repetition with probability at least 1/

√
n. The num-

ber of iterations before the algorithm returns is thus stochastically dominated by
√
n+Geom(1/

√
n).

We may thus bound the expectation as

E
[
N̂
]

= E
[
4ŝ2
]
≤ O

(
n+ E

[
Geom(1/

√
n)2
])
≤ O(n)

where the last inequality is a standard result on the second moment of the geometric random
variable.

Simulating uniform sampling.

We define buckets Bi = {a ∈ U |w(a) ∈ [2i, 2i+1)} for each i ∈ Z, and we show how to sam-
ple elements uniformly from Bi, while allowed to sample elements proportionally to their weight
w. First, we show how to sample elements from a bucket Bb given a b ∈ Z proportionally in
PropBucketSampler. We then use rejection sampling to obtain a uniform sample through
UnifBucketSampler.

Lemma 6. Let pb = P (w(a) ∈ [2b, 2b+1)) for a ∈ U sampled proportionally. Then, the ex-
pected sample complexity of both PropBucketSampler and UnifBucketSampler is O(1/pb).
PropBucketSampler returns an item from the b-th bucket with distribution proportional to the
weights. UnifBucketSampler returns an item from the b-th bucket distributed uniformly.
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Algorithm 3: PropBucketSampler(b)

1 Sample (a,w(a)) proportionally

2 while w(a) 6∈ [2b, 2b+1) do
3 Sample (a,w(a)) proportionally

4 return (a,w(a))

Algorithm 4: UnifBucketSampler(b)

1 (a,w(a))← PropBucketSampler(b)

2 while Uniform([0, 1]) > 2b

w(a) do

3 (a,w(a))← PropBucketSampler(b)

4 return (a,w(a))

Proof. PropBucketSampler performs samples until it samples an item a from bucket Bb; it
returns a. This is equivalent to sampling proportionally conditioned on a ∈ Bb. This proves that
the output has the claimed distribution. In each step, we finish with probability pb, independent of
other steps. The expected number of steps is, therefore, 1/pb. This proves the sample complexity.

Similarly, we terminate UnifBucketSampler after sampling a ∈ Bb and Uniform([0, 1]) ≤
2b

w(a) . Sampling until a ∈ Bb is equivalent to sampling item a from Bb with probability w(a)/Ab
where Ab is the total weight of items in bucket Bb. Therefore, a is sampled in each step with
probability

pb ·
w(a)

Ab
· 2b

w(a)
=
pb2

b

Ab

Since this probability is the same for all items a ∈ Bb, the resulting distribution is uniform. The
rejection probability is upper-bounded by 1/2. Therefore, UnifBucketSampler also has expected
sample complexity of O(1/pb)

Putting it together: Estimating W without advice.

Finally, we are ready to show the algorithm NoAdvicePropEstimator, that estimatesW without
relying on any advice ñ ≥ n. To analyze it, we first need a lemma.

Algorithm 5: NoAdvicePropEstimator(ε)

1 Sample (a1, w(a1)), (a2, w(a2)) proportionally
2 bi ← blogw(ai)c for i = 1, 2
3 b← max(b1, b2)
4 ñb ← SetSizeEstimator() using UnifBucketSampler(b) as sampling subroutine, with

success probability 9/10
5 Ŵb ← PropEstimator( ε3 , ñb) using PropBucketSampler(b) as sampling subroutine,

with success probability 9/10
6 P̂b ← BernoulliEstimator

(
ε
3

)
to estimate P (a ∈ Bb) with success probability 9/10

7 Ŵ ← Ŵb/P̂b
8 return Ŵ

To analyze NoAdvicePropEstimator, we first need a lemma:
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Lemma 7. Consider b1, b2 and b as defined in NoAdvicePropEstimator, and let a ∈ U be a
random element sampled proportionally. Then,

E

[
1

Pprop (a ∈ Bb | b)

]
= O(log n).

Moreover, if we define nb as the number of items in Bb we have

E

[ √
nb

Pprop (a ∈ Bb | b)

]
= O(

√
n).

.

Proof. Throughout this proof, we assume a to be sampled proportionally. We first prove the first
statement. Define k = max{j |Bj 6= ∅}, and set B = {Bj |k − 2 log n < j ≤ k and Bj 6= ∅}. Notice
that |B| ≤ 2 log n and, for each Bj 6∈ B, x ∈ Bj we have

P (a = x) ≤ 2k−2 logn+1

W
= 2−2 logn+1 · 2k

W
≤ 2

n2

since there exists y ∈ Bk and therefore W ≥ w(y) ≥ 2k. Hence, sampling a ∈ U proportionally we
have

P (Ba 6∈ B) = P (∃j, s.t. a ∈ Bj ∧Bj 6∈ B)

≤
∑

x∈⋃Bj 6∈B Bj
P (a = x)

≤ n · 2

n2
=

2

n
.

Now, we notice that for each Bj , it holds

P (b ∈ Bj) ≤ 2 · P (b1 ∈ Bj) · P (∃i ≤ j : b2 ∈ Bi) (1)

= 2 · P (a ∈ Bj) · P (∃i ≤ j : a ∈ Bi)
≤ 2 · P (a ∈ Bj)

where the factor two is given by the union bound, and we used a ∼ b1 ∼ b2. Then, we can write

E

[
1

P (a ∈ Bb | b)

]
=
∑

Bj 6=∅

P (b ∈ Bj)
P (a ∈ Bj)

=
∑

Bj∈B

P (b ∈ Bj)
P (a ∈ Bj)

+
∑

Bj 6∈B
Bj 6=∅

P (b ∈ Bj)
P (a ∈ Bj)

≤ 2 · |B|+
∑

Bj 6∈B
Bj 6=∅

2P (∃i ≤ j : a ∈ Bi)

≤ 2 · |B|+
∑

Bj 6∈B
Bj 6=∅

2P (Ba 6∈ B)

≤ 4 log n+ 2n · P (Ba 6∈ B)

≤ 4 log n+ 4 = O(log n).
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The fist inequality is obtained using eq. (1). The second inequality descends from the fact that
Bj 6∈ B and i ≤ j imply Bi 6∈ B. The last two inequalities are obtained using n as an upper bound
on the number of nonempty buckets Bj and recalling that P (Ba 6∈ B) ≤ 2/n.

Now we can prove the second statement. Denote by nb the number of elements in Bb and define
` = arg maxi∈Z ni2

i/2. If we define Si =
∑

j≤i
∑

a∈Bj w(a), then we can rewrite the already proven

inequality P (b ∈ Bj) ≤ 2 · P (a ∈ Bj) · P (∃i ≤ j : a ∈ Bi) as

P (b ∈ Bj) ≤ 2 · P (a ∈ Bj) ·
Sj
W
. (2)

We now prove that there exists a constant C > 0 such that, for all i ∈ Z it holds S`−i ≤ C ·S` ·2−i/2.
Notice that, by definition of `, we have nj · 2j/2 ≤ n` · 2`/2 for all j ∈ Z. We can now bound

S`−i ≤
∑

j≤`−i
nj · 2j+1

≤ n` ·
∑

j≤`−i
2`/2−j/2 · 2j+1

= 2n`2
` ·
∑

j≤`−i
2j/2−`/2

≤ 2S` ·
∑

j≤`−i
2j/2−`/2 ≤ C · S`2−i/2.

Therefore, we have
∑

j<` Sj = O(S`). Notice that by the definition of ` we have n`+i ≤ n` · 2−i/2
for each i ≥ 0. Now we are ready to prove our final result.

E

[ √
nb

P (a ∈ Bb | b)

]
=
∑

j∈Z
P (b ∈ Bj) ·

√
nj

P (a ∈ Bj)

≤
∑

j∈Z
2
Sj
W
· √nj

≤
∑

j<`

2
Sj
W
· √n+

∑

j≥`
2
√
nj

≤ O(S`)

W
· √n+

∑

i≥0

2
√
n` · 2−i/4 = O(

√
n).

The first inequality uses eq. (2), the second inequality is obtained splitting the series in two parts
and using Sj ≤W . The last inequality is obtained plugging in

∑
j<` Sj = O(S`) and n`+i ≤ n`·2−i/2

for i ≥ 0.

Now we are ready to analyze NoAdvicePropEstimator.

Theorem 8. Let Ŵ be the estimate returned by NoAdvicePropEstimator. Then Ŵ is an
(1± ε)-approximation of W with probability 2/3. Moreover, its expected sample complexity is

O

(√
n

ε
+

log(n)

ε2

)
.

Proof. We start by proving correctness. Define Wb =
∑

x∈Bb w(x) and Pb = P (a ∈ Bb | b) = Wb/W .

Notice that Wb and Pb are random variables, since they depend on b. Now we prove that Ŵ is

15



a (1 ± ε)-approximation of W with probability 2/3. Define the event E1 = {n ≤ ñb}, we have
P (E1) ≥ 9/10 (where we use Theorem 5 together with probability amplification to amplify the
success probability of 2/3 to 9/10). Define the event

E2 =
{

(1− ε/3)Wb ≤ Ŵb ≤ (1 + ε/3)Wb

}

then, we have P (E2 | E1) ≥ 9/10 (where we use Theorem 4 and probability amplification). Define
the event

E3 =
{

(1− ε/3)Pb ≤ P̂b ≤ (1 + ε/3)Pb

}

then it holds P (E3 | b) ≥ 9/10 (where we use Theorem 1 and probability amplification). On the
event E2 ∩ E3, it holds

(1− ε) ·W ≤ 1− ε/3
1 + ε/3

· Wb

Pb
≤ Ŵb

P̂b
≤ 1 + ε/3

1− ε/3 ·
Wb

Pb
≤ (1 + ε) ·W.

Then we can apply union bound and prove

P
(
Ŵ < (1− ε)W or Ŵ > (1 + ε)W

)
≤

P
(
Ē2 ∪ Ē3

)
≤

P
(
Ē1

)
+ P

(
Ē2 | E1

)
+ P (Ē3) ≤

1

10
+

1

10
+

1

10
≤ 1

3
.

It remains to prove that the expected number of samples that NoAdvicePropEstimator uses
is as claimed. Denote by σ1 the total number of samples taken on line 4, by σ2 the total number
of samples taken on line 5 and by σ3 the total number of samples taken on line 6. We denote the

number of samples employed during the i-th call to UnifBucketSampler(b) on line 4 with η
(i)
1 ;

similarly, we denote the number of samples taken during the i-th call to PropBucketSampler(b)

on line 5 with η
(i)
2 . We can then write

σ1 =

τ1∑

i=1

η
(i)
1 and σ2 =

τ2∑

i=1

η
(i)
2

where τ1 and τ2 are the number of calls to UnifBucketSampler(b) performed on line 4 and
line 5, respectively. First we notice that, thanks to Lemma 6, there exists a constant K > 0

such that E[η
(i)
1 | b], E[η

(i)
2 | b] ≤ K

P (a∈Bb | b) . Thanks to Theorem 5, we have E[τ1 | b] = O(
√
nb) and

τ2 = O(
√
ñb/ε). Now we are ready to bound E[σ1] and E[σ2]. We have

E [σ1] = E

[
E

[
τ1∑

i=1

η
(i)
1

∣∣ b
]]

= E
[
E
[
τ1

∣∣ b
]
· E
[
η

(1)
1

∣∣ b
]]

≤ E
[
K ·O(

√
nb)

P (a ∈ Bb | b)

]
= O

(√
n
)
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where the first equality is by the Wald’s identity and the last equality is obtained applying Lemma 7.
Similarly,

E [σ2] = E

[
E

[
τ2∑

i=1

η
(i)
2

∣∣ b
]]

= E
[
E
[
τ2

∣∣ b
]
· E
[
η

(1)
2

∣∣ b
]]

≤ E
[
K ·

(√
80ñb/ε+ 1

)

P (a ∈ Bb | b)

]

= O

(√
n

ε
+ log n

)
= O

(√
n

ε

)

where we used that E[
√
ñb] ≤

√
E[ñb] ≤

√
n, which holds thanks to Theorem 5 and Jensen

inequality. In order to bound E[σ3 | b], recall that, thanks to Theorem 1, there exists a C > 0
such that, conditioning on the value of b, BernoulliEstimator( ε3) takes in expectation at most

C
P (a∈Bb | b)ε2 samples in order to estimate P (a ∈ Bb). Therefore we have

E[σ3] = E [E[σ3 | b]] ≤ E
[

C

P (a ∈ Bb | b) ε2

]
= O

(
log n

ε2

)
.

where the last equality holds by Theorem 7. This concludes the proof, since the total number of
samples taken by NoAdvicePropEstimator is σ1 + σ2 + σ3. By the bounds we have proven
above, the expectation of σ1 + σ2 + σ3 is as claimed.

3 Sum Estimation by Hybrid Sampling.

In this section, we assume that we can sample elements both proportionally and uniformly. Again,
we solve the task of providing an estimate Ŵ of W such that Ŵ is a (1± ε)-approximation of W
with probability 2/3.

We notice that if we take Θ(n log n) uniform samples then, with probability 2/3, we see every
element of U . This simple analysis is well-known under the name of Coupon Collector problem.
If we know n (or any constant-factor approximation of it) we may simply take Θ(n log n) samples,
assume we have seen every element at least once, and compute W exactly. However, if we do not
know n, a more complex scheme is required to achieve a complexity of O(n log n), which we describe
in Section 3.2. Therefore, it is sufficient to show an algorithm with complexity T (n, ε) to obtain a
complexity of the form O(min(T (n, ε), n log n)), as we can just run the coupon-collector algorithm
in parallel and take the result provided by the first of the two algorithms to finish its execution. In
what follows we only show how to achieve a complexity of O( 3

√
n/ε4/3) when |U | is known, and of

O(
√
n/ε) when |U | is unknown. As a consequence, the complexities that we achieve in this settings

are O(min( 3
√
n/ε4/3, n log n)) and of O(min(

√
n/ε, n log n)) respectively.

3.1 Algorithms for |U | known.

In this section, we show an algorithm that, given n = |U |, returns a (1±ε)-approximation of W with
probability 2/3 using O( 3

√
n/ε4/3) samples. First, we introduce a subroutine that uses harmonic

mean to estimate the average weight W/n; then we combine it with PropEstimator to obtain
the main algorithm of this section.
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Harmonic-mean-based estimator.

Here we show the algorithm HarmonicEstimator(ε, θ̃, φ) that returns an (1± ε)-approximation
θ̂ of W/n with probability 2/3. HarmonicEstimator(ε, θ̃, φ) takes as advice an upper bound on
the average weight θ̃ ≥ W/n, and a parameters φ such that we expect Punif (w(a) ≥ φ) not to be
too small and θ̃/φ not to be too large. A more formal statement follows.

Algorithm 6: HarmonicEstimator(ε, θ̃, φ)

1 p̂← BernoulliEstimator
(
Punif (w(a) ≥ φ), ε3

)
with success probability 9/10

2 k ← 45 · θ̃
φ(1−ε/3)p̂ε2

3 Sample a1 . . . ak proportionally
4 for i = 1 . . . k do
5 if w(ai) ≥ φ then
6 bi = 1/w(ai)

7 else
8 bi = 0

9 H =
∑k

i=1 bi/k

10 θ̂ ← p̂/H

11 return θ̂

To see the intuition behind this algorithm, consider the case when φ ≤ w(a) for all a ∈ U . It
then holds p̂ ≈ 1. We take k samples, and let 1/H be the harmonic mean of the weights of the
sampled items. We have E[H] = n/W , and θ̂ ≈ 1/H as p̂ ≈ 1. Unfortunately H might have a
high variance due to elements having very small weights. To fix this, we consider a parameter φ
such that w(a) < φ for some a ∈ U . Instead of E[H] = n/W , we then have E[H] = n′/W for
n′ = |{a ∈ U |w(a) ≥ φ}|. We then multiply 1/H by p̂ in order to adjust for the fraction of items
that were ignored. Note that, while increasing φ, the variance of 1/H decreases; however, also
n′ decreases and this means that computing an estimate p̂ ≈ n′/n requires more samples. This
introduces a trade-off between the algorithm’s complexity and the variance of H.

Lemma 9. Given parameters θ̃ and 0 < ε < 1, HarmonicEstimator(ε, θ̃, φ) has expected sample

complexity O((1 + θ̃
φ)/(p ε2)) where p = Punif (w(a) ≥ φ). It returns an estimate Ŵ such that

P (θ̂ < W/(20n)) ≤ 1/20. If, moreover, θ̃ ≥W/n, then P (|Ŵ −W | ≤ εW ) ≥ 2/3.

Proof. We start by proving that θ̂ is a (1 + ε)-approximation of W/n with probability 2/3 when
θ̃ ≥ W/n. Define the event E = {p̂ is a (1 ± ε/3)-approximation of p}. By Theorem 1 and using
probability amplification, we have P (E) ≥ 9/10. For each i = 1 . . . k we have

E[bi] =
∑

a∈U,
w(a)≥φ

1

w(a)
· w(a)

W
=
n≥φ
W

=
p · n
W

where n≥φ is the number of elements in a ∈ U with w(a) ≥ φ. Notice that this implies E[H] =
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p · n/W . Moreover, for each i = 1 . . . k

V ar(bi) ≤ E
[
b2i
]

=
∑

a∈U,
w(a)≥φ

1

w2(a)
· w(a)

W
≤

n≥φ
φ ·W =

p · n
φ ·W .

Conditioning on E , we have that (1− ε/3)p̂ ≤ p. The way we have set k allows us to bound

V ar(H | E) =
V ar(bi)

k
=

p · n
φ ·W · ε

2(1− ε/3)p̂

45
· φ
θ̃
≤

(p · n
W

)2
· ε

2

45
= E[H]2 · ε

2

45

where we used that θ̃ ≥W/n. It holds E[H | E ] = E[H]. We may thus apply Chebyshev’s inequality
to get

P

(
|H − E[H]| > ε

3
E[H]

∣∣∣∣ E
)
≤ V ar(H | E)
(
ε
3E[H]

)2 ≤
9

45
=

1

5

Since ε < 1, we have (1− ε/3)−1 ≤ 1 + ε/2 and (1 + ε/3)−1 ≥ 1− ε/2. Therefore

P

(∣∣∣∣
1

H
− 1

E[H]

∣∣∣∣ >
ε

2
· 1

E[H]

∣∣∣∣ E
)
≤ 1

5
.

Again, since ε < 1, we have (1 + ε/3) · (1 + ε/2) ≤ 1 + ε and (1− ε/3) · (1− ε/2) ≥ 1− ε. Hence,
using the union bound

P

(∣∣∣∣∣
p̂

H
− p

E[H]

∣∣∣∣∣ > ε · p

E[H]

)
≤

P (Ē) + P

(∣∣∣∣
1

H
− 1

E[H]

∣∣∣∣ >
ε

2
· 1

E[H]

∣∣∣∣ E
)
≤ 1

3
.

Since p/E[H] = W/n, we have that the estimate θ̂ = p̂/H is a (1 + ε)-approximation of W/n with
probability ≥ 2/3.

We now argue the sample complexity. The expected number of samples used on line 1 is by
Theorem 1 equal to O(1/(p ε2)). In the rest of the algorithm, we use k samples. It holds

E [k] = E

[
1

p̂

]
·O
(

θ̃

φ ε2

)
= O

(
θ̃

p φ ε2

)

where the second equality holds by Theorem 1. The sample complexity is thus as claimed.
Finally, we prove that, regardless of θ̃, it holds P (θ̂ < W/(20n)) ≤ 1/20. It holds E[H/p̂] =

E[H]E[1/p̂] = n/W where E[1/p̂] = 1/p by Theorem 1. Therefore, by the Markov’s inequality

P

(
p̂

H
≤ W

20n

)
= P

(
H

p̂
≥ 20n

w

)
≤ 1

20
.
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Combining the two algorithms.

Here, we combine HarmonicEstimator with PropEstimator to obtain HybridEstimator. It
works in the hybrid setting and provides a (1± ε)-approximation of W with probability 2/3, using
in expectation O( 3

√
n/ε4/3) samples. While analysing HybridEstimator, we can restrict ourselves

to ε ≥ 8/
√
n. Indeed, for very small values of ε (namely, ε ≤ 1/(

√
n log n)) we use the coupon-

collector algorithm, and for intermediate values of ε (namely, 1/(
√
n log n) < ε < 8/

√
n) we use

PropEstimator(n, ε). The coupon collector algorithm gives a sample complexity of O(n log n),
that is better than O( 3

√
n/ε4/3) for ε < 1/(

√
n log n). PropEstimator gives a sample complexity

of O(
√
n/ε), that is better than O( 3

√
n/ε4/3) for ε < 8/

√
n.

Algorithm 7: HybridEstimator(n, ε)

Abort this algorithm if it uses more than C n1/3

ε4/3
samples, where C is a large enough

constant.

1 Find θ such that P

(
n2/3

ε2/3
≤
∣∣∣∣
{
a ∈ U

∣∣w(a) ≥ θ
} ∣∣∣∣ ≤ 2 · n2/3

ε2/3

)
≥ 19

20

2 p̂← BernoulliEstimator
(
Pprop(w(a) ≥ θ), ε3

)
with success probability 19/20

3 if p̂ ≥ 1/2 then

4 ñ≥θ ← 2 · n2/3

ε2/3

5 Ŵ≥θ ← PropEstimator
(
ñ≥θ, ε3

)
with success probability 19/20, run on proportional

samples conditioned on w(a) ≥ θ, obtained by rejecting elements with w(a) < θ
6 Ŵ ← Ŵ≥θ/p̂
7 else
8 ρ̂← HarmonicEstimator(ε, 3θ, θ) with success probability 19/20

9 Ŵ ← n · ρ̂
10 return Ŵ

To implement line 1 it is sufficient to sample uniformly 120n1/3ε2/3 elements of U and define θ
as the element with the 180-th largest weight. (Note that for ε ≥ 8/

√
n we have 120n1/3ε2/3 ≥ 480,

so this is well-defined.) Let k be such that there are k elements a ∈ U with w(a) ≥ θ. A standard

analysis using Chebyshev inequality shows that k is concentrated around 3
2
n2/3

ε2/3
.

Theorem 10. Given ε such that 8/
√
n ≤ ε < 1, HybridEstimator(n, ε) uses O( 3

√
n/ε4/3)

samples. With probability at least 2/3, the returned estimate Ŵ is a (1± ε)-approximation of W .

Proof. We first analyze a variant of the algorithm that does not abort. (That is, an algorithm with
the same pseudocode except for the abortion condition removed.) We now show that this algorithm
returns a (1± ε)-approximation with probability at least 5/6.

The scheme summarized above to find θ at line 1 succeeds with probability at least 19/20.
We call this event E1. Define the event E2 = {p̂ is a (1 ± ε/3)-approximation of p}. It holds
P (E2) ≥ 19/20.

We now consider the case p̂ ≥ 1/2. On line 5 we employ the algorithm PropEstimator. When-
ever it performs a sample, we simulate a proportional sample from the set Uθ = {a ∈ U |w(a) ≥ θ}
by sampling until we sample item a such that w(a) ≥ θ. It is easy to see that the distribution
obtained with this sampling scheme is exactly the proportional distribution on the set Uθ. Con-
ditioning on E1, ñ≥θ is a valid advice and (by Theorem 4) PropEstimator returns a (1 ± ε/3)-
approximation of Wθ =

∑
w(a)≥θ w(a) with probability at least 2/3. We amplify this probability to
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19/20. Hence, we have

P
({
Ŵθ is a (1± ε)-approximation of W≥θ

}
∩ E2

)
≥

1−
(

1

20
+ P (Ē1) + P (Ē2)

)
≥ 5

6
.

On this event, since ε < 1, we have

(1− ε)W ≤ 1− ε/3
1 + ε/3

W ≤ Ŵ ≤ 1 + ε/3

1− ε/3W ≤ (1 + ε)W.

Now we analyse the case p̂ < 1/2. Whenever 3θ ≥W/n, HarmonicEstimator(ε, 3θ, θ) returns a
(1 ± ε)-approximation of W/n with probability 2/3 (by Theorem 9). We amplify that probability
to 19/20. Now we argue that, conditioning on E2, we have 3θ ≥W/n. Define p = Pprop(w(a) ≥ θ),
then (on E2) we have p ≤ (1 + ε/3)p̂ ≤ (1 + 1/3)1/2 ≤ 2/3. Hence, nθ ≥ (1− p)W ≥W/3 and thus
3θ ≥W/n, where the first inequality is obtained using

∑
w(a)<θ w(a) = (1− p)W . Applying union

bound gives that HarmonicEstimator(ε, 3θ, θ) succeeds with probability at least 1 − (1/20 +
P (Ē2))) ≥ 5/6.

Therefore, regardless of the value of p̂, we have shown that Ŵ is a (1 ± ε)-approximation of
W with probability at least 5/6. Thus, the modified algorithm without abortion is correct with
probability at least 5/6. We now argue that the probability that Algorithm 7 is aborted is at most
1/6 (for C large enough). By the union bound, its success probability is at least 2/3.

In what follows, we compute how many samples are taken on each line. On line 1, we use
only 120n1/3ε2/3 samples. Thanks to Theorem 1, BernoulliEstimator on line 2 uses O(1/(pε2))
samples in expectation. In what follows, we condition on E1∩E2. It holds p ≥ Punif (w(a) ≥ θ) and
thus we have p ≥ 1

ε2/3n1/3 . The number of samples used on line 2 is then in expectation O(n1/3/ε4/3).

By the (conditional) Markov’s inequality the probability that we use more than C1n
1/3/ε4/3 is at

most 1/30, for some C1 large enough. PropEstimator uses O(
√
n2/3/ε2/3/ε) = O(n1/3/ε4/3)

samples in the worst case. The rejections cause only constant factor expected slowdown. Again,
by the (conditional) Markov’s inequality, for C2 large enough, we use more than C2n

1/3/ε4/3 with
probability at most 1/30. Since we have p ≥ 1

ε2/3n1/3 , on line 8 HarmonicEstimator takes

O(n1/3/ε4/3) samples in expectation (by Theorem 9). Thus, there exists a constant C3 such that
on line 8 we use more than C3n

1/3/ε4/3 samples with probability at most 1/30.
Set C = 120+C1 +C2 +C3. It then holds by the union bound that we use more than C 3

√
n/ε4/3

samples (and thus abort) with probability at most P (Ē1) + P (Ē2) + 1/30 + 1/30 = 1/6.

3.2 Algorithms for |U | unknown.

In this section we show an algorithm that, without any knowledge of n = |U |, provides a (1 ± ε)-
approximation of W with probability 2/3 using O(

√
n/ε) samples. This complexity is strictly higher

than the one of Section 3.1 for ε = ω(1/
√
n). However, it is near-optimal when we do not know n,

as we will see in Section 4.

Algorithm 8: NoAdviceHybridEstimator(ε)

1 ñ← SetSizeEstimator(), with success probability 5/6 (using uniform sampling)

2 Ŵ ← PropEstimator(ñ, ε), with success probability 5/6 (using proportional sampling)

3 return Ŵ
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Theorem 11. NoAdviceHybridEstimator(ε) uses in expectation O(
√
n/ε) samples and, with

probability at least 2/3, we have (1− ε)W ≤ Ŵ ≤ (1 + ε)W .

Proof. By Theorem 5, SetSizeEstimator takes O(
√
n) samples and returns ñ such that n ≤ ñ

with probability 2/3. We amplify this probability to 5/6. Conditioning on n ≤ ñ, PropEstimator
returns (1 ± ε)-estimate of W with probability at least 2/3 by Theorem 4. We amplify this prob-
ability to 5/6. By the union bound, the algorithm returns a (1 ± ε)-estimate with probability at
least 2/3.

Moreover, by Theorem 5 and Theorem 2, E[ñ] = O(n). By the Jensen inequality, PropEstimator
then uses in expectation O(

√
n/ε) samples.

Coupon collector algorithm.

In this section, we give an algorithm that returns W exactly in time O(n log n), with probability
at least 2/3. In fact, we show that we may learn the whole set U , along with all the weights, with
probability 2/3 in this sample complexity. From this, the sum can be easily computed. We can use
this to ensure we never use more than O(n log n) samples in the hybrid setting. Specifically, we may
execute in parallel this algorithm together with one of the above algorithms and abort when one
of them returns an estimate. If one wishes to implement this in practice, it is possible to instead
do the following. Given the parameter ε, compute a threshold n0 such that we would like to (if we
knew n) execute NoAdviceCouponCollector if n ≤ n0 and NoAdviceHybridEstimator if
n > n0. We then run NoAdviceCouponCollector and we abort if in case we find n0 distinct
elements. If this happens, we then run NoAdviceHybridEstimator.

Algorithm 9: NoAdviceCouponCollector()

1 S ← ∅
2 k = 0
3 while k < 4|S| log 3|S| do
4 Sample a ∈ U uniformly
5 if k 6∈ S then
6 k ← 0
7 S ← S ∪ {a}
8 else
9 k ← k + 1

10 return
∑

a∈S w(a)

Theorem 12. NoAdviceCouponCollector has expected sample complexity O(n log n) and re-
turns, with probability at least 2/3 the whole set U .

Proof. Thanks to the analysis of the standard coupon collector problem, we know that it takes in
expectation O(n log n) samples before S = U . After that, we spend no more than 4|S| log 3|S| =
n log n additional samples. The sample complexity is thus as claimed. It remains to argue correct-
ness.

The returned result is not correct if the algorithm returns S too early. This happens exactly if
there exists some ` such that it takes more than 4` log 3` samples to get the (`+ 1)-th element. At
step `, there are n− ` elements that are not in S, hence the probability that none of the 4` log 3`
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elements fall in the set U \ S is

(`/n)4` log 3` ≤ (1− 1

2`
)4` log 3` ≤ (1/e)2 log 3` =

1

9`2
.

The first inequality holds since for ` ∈ [1, n− 1], it holds `/n ≤ 1− 1/2`. Taking the union bound
over all 1 ≤ ` ≤ n−1, we have that the failure probability is upper-bounded by

∑∞
`=1

1
9`2

< 1/3.

4 Lower Bounds.

In this section, we give lower bounds for the problems we study in this paper. The proofs of the
lower bounds all follow a common thread. In what follows, we use the term risk to refer to the
misclassification probability of a classifier.

The roadmap of all our proofs follows. First, we define two different instances of the problem
(U1, w1) and (U2, w2) such that a (1 ± ε)-approximation of W is sufficient to distinguish between
them. Then, we define our hard instance as an equally likely mixture of the two, namely we
take (U1, w1) with probability 1/2 and (U2, w2) otherwise. We denote these events by E1 and E2

respectively. Second, we show that a Bayes classifier8 cannot distinguish between the two cases
with probability 2/3 using too few samples; since Bayes classifiers are risk-optimal this implies that
no classifier can have risk less than 2/3 while using the same number of samples. To show that a
Bayes classifier has a certain risk, we study the posterior distribution. Let S represent the outcome
of the samples. Since the prior is uniform, applying Byes theorem gives

P (E1 |S)

P (E2 |S)
=
P (S | E1)

P (S | E2)
.

We call this ratio R(S) and show that R(S) ≈ 1 with probability close to 1. When R(X) ≈ 1, the
posterior distribution is very close to uniform, and this entails a risk close to 1/2. First, we show
this formally with some technical lemmas, and then we instantiate our argument for each of the
studied problems.

Lemma 13. Given two disjoint events E1, E2 such that P (E1) = P (E2) = 1/2 and a random variable
X, we define the ratio

R(X) =
P (X | E1)

P (X | E2)
.

Notice that R(X) is a random variable since it depends on the outcome of X. If

P

(
7

8
≤ R(X) ≤ 8

7

)
≥ 14

15

then any classifier taking X and classifying E1, E2 has risk ≥ 2/5.

Proof. First, we notice that since Bayes classifiers are risk-optimal, then it is sufficient to prove
our statement for a Bayes classifier. Define pi = P (Ei |X) for i = 1, 2, then Bayes classifier simply
returns arg maxi=1,2 pi. By Bayes theorem and because P (E1) = P (E2) we have R(X) = p1/p2. If
7/8 ≤ R(X) ≤ 8/7, then

1

p2
=
p1 + p2

p2
= 1 +R(X) ∈

[
15

8
,
15

7

]

8Suppose we have a partition of the probability space Ω into events E1, · · · , Ek. We want to guess which event
happened, based on observation X. Bayes classifier outputs as its guess E` that maximizes P (E`|X).
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and the same holds for p1, therefore 7/15 ≤ p1, p2 ≤ 8/15. Hence, conditioning on 7/8 ≤ R(X) ≤
8/7, the probability of correct classification is at most 8/15. Finally, we have

P (Classifier returns correct answer) ≤

P

(
R(X) <

7

8
∨R(X) >

8

7

)
+ P

(
Classifier returns correct answer

∣∣∣∣
7

8
≤ R(X) ≤ 8

7

)
≤

1

15
+

8

15
=

3

5
.

Before proving the main theorems, we need several lemmas.

Lemma 14. Consider an instance of our problem (U,w) so that n = |U | and w(a) = 1 for each
a ∈ U . We perform m independent samples and denote with ` the number of distinct elements
obtained. Then, V ar(`) ≤ m2/n. Moreover, for each δ > 0

P

(∣∣`− E[`]
∣∣ ≥ 1√

δ
· m√

n

)
≤ δ.

Note that, since all weights are the same, the proportional sampling is equivalent to sampling
uniformly from U .

Proof. We use the Efron-Stein inequality to prove a bound on the variance of `. Let Xi be the i-th
sample. Now ` is a function of X1, · · · , Xm and we write it as ` = f(X1, · · · , Xm). Let X ′1, · · · , X ′m
be an independent copy of X1, · · · , Xm. Let `′i = f(X1, · · · , Xi−1, X

′
i, Xi+1, · · · , Xm). It clearly

holds that |`−`′i| ∈ {0, 1}, moreover `−`′i = 1 if and only if Xi does not collide with with any Xj for
j 6= i and X ′i does collide with some Xk for k 6= i. It holds that |{X1, · · · , Xi−1, Xi+1, · · ·Xm}| ≤ m.
Therefore, the probability that a X ′i lies in this set is ≤ m/n. Since ` and `′i are symmetric, we
have that also `− `′i = −1 with probability ≤ m/n. Hence, E[(`− `′i)2] = P (|`− `′i| = 1) ≤ 2m/n.
Applying Efron-Stein we get

V ar(`) ≤ 1

2
·
m∑

i=1

E
[(
`− `′i

)2] ≤ m2

n

Now we just plug this bound on the variance into Chebyshev inequality and we get the desired
inequality.

Fingerprints. Given a sample S, we define its fingerprint F as the set of tuples (ca, w(a)) where
for each distinct item a in S, we add to F such a tuple with ca being equal to the number of copies
of a in S. Having a fingerprint of S is sufficient for any algorithm, oblivious of (U,w), to produce
a sample S′ that is equal to S, up to relabeling of the elements. Since the only allowed queries
are testing equality of two items and the weight query, one may easily prove that the execution of
the algorithm on these two samples is the same (indeed, these two samples are indistinguishable
by the equality and weight queries). Therefore, we can safely assume that an algorithm in the
proportional setting takes as an input the fingerprint F of S, rather than S. For algorithms in the
hybrid setting, we can assume that it takes as input separately the fingerprint of the proportional
and the fingerprint of the uniform samples.
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Lemma 15. Let us have parameters n and ε < 1/3. Let N = n with probability 1/2, and N =
(1 − ε)n otherwise. Consider the random instance of the sum estimation problem (U,w) with
|U | = N and w(a) = 1 for each a ∈ U . Consider a sample of size m and its fingerprint Fm =
{(ci, w(ai)}i=1...` and define the ratio

R(Fm) =
P (Fm |N = n)

P (Fm |N = (1− ε)n)
.

If m = o(
√
n/ε) and m = o(n), then

P

(
98

100
≤ R(Fm) ≤ 100

98

)
≥ 99

100

for n large enough.

Proof. We can explicitly compute the likelihood of a given fingerprint Fm = {(ci, w(ai)}i=1...` where
` is the number of distinct elements as

P
(
Fm
∣∣N = r

)
=
`!

rm

(
r

`

)(
m

c1 . . . c`

)

=
1

rm−`

`−1∏

i=1

(
1− i

r

)(
m

c1 . . . c`

)

and therefore

R(Fm) = (1− ε)m−` ·
`−1∏

i=1

1− i/n
1− i/(1− ε)n

= (1− ε)m−` ·
`−1∏

i=1

(
1 +

εi

(1− ε)n− i

)

Note that R(Fm) depends only on `. From now on we denote it with R(`).
Now we define an interval [a, b] such that P (` ∈ [a, b]) ≥ 99/100. To do so, we first compute

the expectation of ` and then use the concentration bound of Lemma 14. We prove that

E [`|N = n] ≤ E [`|N = (1− ε)n] ≤ E [`|N = n] +O

(
ε
m2

n

)
.

The expression of E [`|N = n] is given by

E [`|N = n] = n ·
(

1−
(

1− 1

n

)m)

since each item is not sampled with probability (1− 1
n)m. From this expression, it is apparent that

E [`|N = n] is increasing in n. Expanding this formula, we get

E [`|N = (1− ε)n]− E [`|N = n] = ε
m2

2n
+O

(
ε
m3

n2

)
= O

(
ε
m2

n

)

where the last estimate uses the m = o(n) assumption. Now we define a = E [`|N = (1− ε)n] −
10m/

√
n and b = E [`|N = n] + 10m/

√
n. Using the last result we proved, we have

|b− a| = 20
m√
n

+O

(
ε
m2

n

)
= o

(
1

ε

)
.
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Note that, like all asymptotics in this proof, the o(1/ε) is for the limit n → +∞ and makes sense
even for ε being a constant. Thanks to Lemma 14 we have P (` 6∈ [a, b] |N = n) ≤ 1/100 and
P (` 6∈ [a, b] |N = (1− ε)n) ≤ 1/100, and therefore P (` 6∈ [a, b]) ≤ 1/100.

Now we give bounds on R(a) and R(b). It is apparent from the explicit formula above that
` 7→ R(`) is an increasing function. We have

R(a) · 99

100
≤ R(a)

∑

k∈[a,b]∩Z
P (` = k |N = (1− ε)n)

≤
∑

k∈[a,b]∩Z
R(k)P (` = k |N = (1− ε)n)

≤
∑

k∈[a,b]∩Z
P (` = k |N = n) ≤ 1

and thus, R(a) ≤ 100/99. Analogously,

1

R(b)
· 99

100
≤ 1

R(b)

∑

k∈[a,b]∩Z
P (` = k |N = n)

≤
∑

k∈[a,b]∩Z

1

R(k)
P (` = k |N = n)

≤
∑

k∈[a,b]∩Z
P (` = k |N = (1− ε)n) ≤ 1

and thus, R(b) ≥ 99/100. We now have an upper bound on R(a) and a lower bound on R(b).
However, we need a lower bound on R(a) and an upper bound on R(b) (that is, the other way
around). For each k < m we have

R(k + 1)

R(k)
=

1

1− ε ·
(

1 +
εk

(1− ε)n− k

)
≤ (1 + 2ε) ·

(
1 +

2εm

n

)
≤ 1 + 3ε

for n large enough, where we used k < m = o(n) and ε ≤ 1/3. Hence,

R(b) ≤ R(a) · (1 + 3ε)d|b−a|e

≤ 100

99
· e3εd|b−a|e

≤ 100

99
· eo(1) ≤ 100

98

where the last inequality holds for n large enough because m = o(
√
n/ε).

R(a) ≥ R(b) · (1 + 3ε)−d|b−a|e

≥ 99

100
· e−3εd|b−a|e

≥ 99

100
· e−o(1) ≥ 98

100

Finally, we have for n large enough that

P

(
R(`) 6∈

[
98

100
,
100

98

])
≤ P (` 6∈ [a, b]) ≤ 1

100
.
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Using the same approach as Lemma 15, we prove a similar result for the task of estimating the
bias p of a Bernoulli random variable up to an additive ε. In this setting, we provide an asymptotic
lower bound on the number of samples, where the asymptotics are meant for the limit (p, ε)→ 0.

Lemma 16. Let 0 < ε < p and set q = p with probability 1/2, and q = p − ε otherwise. Let
X1 . . . Xm be a sequence of i.i.d. Bernoulli random variables with bias q, and let ` =

∑m
i=1Xi ∼

Bin(m, q). Define the ratio

R(`) =
P (` | q = p)

P (` | q = p− ε) .

If m = o(p/ε2) then

P

(
98

100
≤ R(`) ≤ 100

98

)
≥ 99

100
.

for p (and thus also ε) small enough.

Proof. We follow the same scheme we adopted in the proof of Lemma 15. First, we compute R(`)
explicitly

R(`) =
p`(1− p)m−`

(p− ε)`(1− p+ ε)m−`
=

(
1 + ε

1−p

)`−m

(
1− ε

p

)` .

We have E[` | q = p] = mp, E[` | q = p − ε] = m(p − ε), V ar(` | q = p) ≤ mp, and V ar(` | q =
p − ε) ≤ mp. We define a = m(p − ε) − 10

√
mp and b = mp + 10

√
mp, and using Chebyshev

inequality we have P (` ∈ [a, b] | q = p) ≥ 99/100 and P (` ∈ [a, b] | q = p − ε) ≥ 99/100. Hence,
P (` ∈ [a, b]) ≥ 99/100. Notice that |b − a| = mε + 20

√
mp = o(p/ε) where the second equality

holds by the assumption that m = o(p/ε2). Now, we bound R(a) and R(b). Again, we notice that
` 7→ R(`) is an increasing function.

R(a) · 99

100
≤ R(a)

∑

k∈[a,b]∩Z
P (` = k | q = p− ε)

≤
∑

k∈[a,b]∩Z
R(k)P (` = k | q = p− ε)

≤
∑

k∈[a,b]∩Z
P (` = k | q = p) ≤ 1

and thus, R(a) ≤ 100/99. Analogously, we prove R(b) ≥ 99/100. For each k < m we have

R(k + 1)

R(k)
=

1 + ε
1−p

1− ε
p

≤ 1 + 3
ε

p

for p and ε sufficiently small. Hence,

R(b) ≤ R(a) ·
(

1 + 3
p

ε

)d|b−a|e

≤ 100

99
· e3 p

ε
d|b−a|e

≤ 100

99
· eo(1) ≤ 100

98
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where the last inequality holds for p and ε sufficiently small. Analogously, we prove R(a) ≥ 98/100.
Finally, we have

P

(
R(`) 6∈

[
98

100
,
100

98

])
≤ P (` 6∈ [a, b]) ≤ 1

100
.

4.1 Proportional sampling.

In this section, we assume, as we did in Section 2, that we can sample only proportionally. We prove
that Ω(

√
n/ε) samples are necessary to estimate W with probability 2/3, thus PropEstimator is

optimal up to a constant factor.

Deciding the number of samples at run-time. In all our lower bounds, we show that it
is not possible that an algorithm takes m = o(T (n, ε)) samples in the worst case and correctly
approximates W with probability 2/3. All these lower bounds safely extend to lower bounds on the
expected number of samples E[m]. All our proofs work by showing that the Bayes classifier has risk
1/2− o(1). Suppose now that we have an algorithm A that uses in expectation µ(n, ε) = o(T (n, ε))
samples. We now define a classifier as follows. We run A and abort if it uses more than 20µ(n, ε)
samples9. We return the answer given by A or an arbitrary value if we have aborted the algorithm.
By the Markov’s inequality, the probability that we abort is at most 1/20. Our classifier has risk
1/3 + 1/20 < 2/5. Since any constant success probability greater than 1/2 is equivalent up to
probability amplification, we also have a classifier with risk 1/3 that uses O(µ(n, ε)) = o(T (n, ε)
samples. Since a Bayes classifier with such parameters does not exist (as we show) and Bayes
classifiers are risk-optimal, this is a contradiction.

Theorem 17. In the proportional setting, there does not exist an algorithm that, for every instance
(U,w) with |U | = n, takes m samples for m = o(

√
n/ε) and returns a (1± ε)-approximation of W

with probability 2/3. This holds also when n is known to the algorithm.

Proof. As already proven, we may assume that the algorithm only gets the fingerprint Fm of the
sample S of size m, instead of S itself. In the rest of the proof, we separately consider two cases:
ε ≥ 1/

√
n and ε < 1/

√
n.

Case ε ≥ 1√
n
: We first define the hard instance (U,w). Define the random variable k as k =

(1− ε)n with probability 1/2 and k = n otherwise, then let U = {a1 . . . an} and

w(ai) =

{
1 if i ≤ k
0 otherwise.

Items with weight zero are never sampled while sampling proportionally while we are sampling
uniformly from those with weight 1. Moreover m = o(

√
n/ε) = o(n) for ε ≥ 1/

√
n. Hence, this

is exactly the settings of Lemma 15. If we let Fm to be the fingerprint of the samples and define
R(Fm) as in Theorem 15, we have

P

(
98

100
≤ R(Fm) ≤ 100

98

)
≥ 99

100
.

Applying Lemma 13 gives us the desired result.

9Note that, while the algorithm does not know µ(n, ε), this is not an issue in this argument. The reason is that
a classifier is defined as an arbitrary function from the set of possible samples and private randomness to the set of
classes. This allows us to “embed” µ into the classifier
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Case ε < 1√
n
: For convenience, we show an instance of size n + 1 instead of n. First, we define

s2 = min
{√n
εm ,

n
4

}
and notice that s = ω(1) and s ≤ √n/2. Define the random variable k as

k = n− s√n with probability 1/2 and k = n otherwise. Define the events E1 = {k = n− s√n} and
E2 = {k = n}. We construct (U,w) so that U = {a0 . . . an} and

w(ai) =





s
√
n
ε − n if i = 0

1 if 1 ≤ i ≤ k
0 otherwise.

Notice that our choice of s together with ε < 1/
√
n guarantees n−s√n ≥ n/2 and s

√
n/ε−n = ω(n).

We have that W =
∑n

i=0w(ai) differs by more than a factor of (1 + ε) between events E1 and E2.
Consider an element a ∈ U sampled proportionally and define pi = P (a 6= a0 | Ei) for i = 1, 2.

Then,

p2 =
n

n− s√n+ w(a0)
=
ε
√
n

s

p1 =
n− s√n

n− s√n+ w(a0)
=
p2 − ε
1− ε

and |p1 − p2| ≤ ε. We perform m samples in total and define the random variable X counting the
number of times items other than a0 are sampled. We define FX as the fingerprint of the sampled
items different from a0. Given FX , we may easily reconstruct the fingerprint of the whole sample
by adding the tuple (m−X,w(a0)). It thus holds P (Fm|Ei) = P (FX |Ei) for i ∈ {1, 2}.

Now we define the event L = {X ≤ 30E[X]} and by Markov’s inequality P (L) ≥ 29/30.
Moreover,

E[X] = m(p1 + p2)/2 ≤ m(p2 + ε) ≤ m(ε
√
n/s+ ε) ≤ 2εm

√
n/s = o

(n
s

)
.

Define ε′ = s/
√
n. Conditioning on L, we have X ≤ 30E[X] = o(

√
n/ε′) = o(n). If we further

condition on X = x for some x ≤ 30E[X] and we look at FX , we are exactly in the setting of
Lemma 15. Therefore,

P

(
98

100
≤ P (FX |X = x, E1)

P (FX |X = x, E2)
≤ 100

98

)
≥ 99

100

and integrating over L we obtain

P

(
98

100
≤ P (FX |X, E1)

P (FX |X, E2)
≤ 100

98

∣∣∣∣L
)
≥ 99

100
.

Now, we will bound the ratio

R(X) =
P (X | E1)

P (X | E2)
.

We haveX =
∑m

i=1Xi, whereXi is an indicator for the i-th sample not being equal to a0. Therefore,
X | Ej ∼ Bin(m, pj) for j = 1, 2. It holds, |p1−p2| ≤ ε. Because m = o(

√
n/ε) and by the definition

of s, we have m = o(
√
n/(sε)) = o(p2/ε

2). We can apply Theorem 16 and obtain

P

(
98

100
≤ R(X) ≤ 100

98

)
≥ 99

100
.
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Finally, we put the bounds together. We consider the ratio

R(Fm) =
P (Fm | E1)

P (Fm | E2)
=
P (FX | E1)

P (FX | E2)
=
P (X | E1) · P (FX |X, E1)

P (X | E2) · P (FX |X, E2)
.

By the union bound, along with 7/8 < (98/100)2, we get

P

(
R(Fm) 6∈

[
7

8
,
8

7

])
≤

P
(
L̄
)

+ P

(
P (FX |X, E1)

P (FX |X, E2)
6∈
[

98

100
,
100

98

] ∣∣∣∣L
)

+ P

(
P (X | E1)

P (X | E2)
6∈
[

98

100
,
100

98

])
≤

1

30
+

1

100
+

1

100
≤ 1

15
.

We can apply Theorem 13 and conclude the proof.

4.2 Sum estimation in hybrid setting, known n.

In this section, we assume, as we did in Section 3, that we can sample both proportionally and
uniformly. We will prove that Ω(min( 3

√
n/ε4/3, n)) samples are necessary to estimate W with prob-

ability 2/3. This complexity is the minimum of the sample complexity of the HybridEstimator
and (up to a logarithmic factor) the complexity of the standard coupon collector algorithm.

Theorem 18. In the hybrid setting, there does not exist an algorithm that, for every instance
(U,w) with |U | = n, takes m = o(min( 3

√
n/ε4/3, n)) proportional and uniform samples and returns

a (1±ε)-approximation of W with probability 2/3. This holds also when n is known to the algorithm.

Proof. It is enough to prove that for ε ≥ 8/
√
n, any algorithm returning a (1 ± ε)-approximation

of W with probability 2/3 must take Ω( 3
√
n/ε4/3) samples. Indeed, if ε < 8/

√
n, a (1 ± ε)-

approximation is also a (1± 8/
√
n)-approximation, and then Ω(n) samples are necessary. In either

case we then need Ω(min( 3
√
n/ε4/3, n)) samples.

Define the random variable k as k = (1 − ε)n2/3/ε2/3 with probability 1/2 and k = n2/3/ε2/3

otherwise. Define the events E1 = {k = (1− ε)n2/3/ε2/3} and E2 = {k = n2/3/ε2/3}. We construct
(U,w) so that U = {a1 . . . an} and

w(ai) =

{
1 if 1 ≤ i ≤ k
0 otherwise.

We have that W =
∑n

i=1w(ai) differs by more than a factor of (1 + ε) between events E1 and E2.
Notice that k ≤ n/4 as ε ≥ 8/

√
n. Let Sp be the multiset of proportional samples and Su the

multiset of uniform samples. Let Th = (Sp ∪ Su) ∩ {k + 1, · · · , n} and Tl = (Sp ∪ Su) ∩ {1, · · · , k}.
Let Fl = {(ci, w(ai))}i be the fingerprint of Tl and Fh = {(ci, w(ai))}i of be the fingerprint of Th.
We now argue hat (Fl, Fh) is sufficient for any algorithm, oblivious of the choice of k, to reconstruct
sample multisets S′u and S′p distributed as Su and Sp. We pick |Fl| −m items at random from Fl
and let S′u be the multiset of these items, together with all items in Fh. We let S′p be the multiset
of the items left in Fl. It is easy to verify that (S′u, S

′
p) ∼ (Su, Sp). Thus, we can assume that the

algorithm is given (Fl, Fh) as input, instead of the sample multisets Su and Sp.
Consider a ∈ U sampled uniformly, and define pi = P (w(a) = 1 | Ei) for i = 1, 2. Then,

p1 =
n2/3/ε2/3

n
=

1

n1/3ε2/3

p2 =
(1− ε)n2/3/ε2/3

n
=

1

n1/3ε2/3
− ε1/3

n1/3

30



and defining ε′ = ε1/3/n1/3 we obtain p2 = p1 − ε′. Let X = |Su ∩ {1, · · · , k}|. Since X | Ej ∼
Bin(m, pj) for j = 1, 2 and m = o(n1/3/ε4/3) = o(p1/ε

′2), we can apply Theorem 16 and obtain

P

(
98

100
≤ P (X | E1)

P (X | E2)
≤ 100

98

)
≥ 99

100
.

Conditioning on X = x for some x = 1 . . .m, Fl represents a sample of x + |Sp| items drawn
uniformly from a set of cardinality k, so we are in the setting of theorem 15. Moreover, we have

|Fl| ≤ |Sp|+ |Su| = o

(
3
√
n

ε4/3

)
= o

(√
n2/3/ε2/3

ε

)
.

Hence, Theorem 15 holds and we have

P

(
98

100
≤ P (Fl |X = x, E1)

P (Fl |X = x, E2)
≤ 100

98

)
≥ 99

100

and integrating over x = 1 . . .m we have

P

(
98

100
≤ P (Fl |X, E1)

P (Fl |X, E2)
≤ 100

98

)
≥ 99

100
.

Similarly, we have that |Fh| ≤ |Su| = o( 3
√
n/ε4/3) = o(

√
n/ε) where the second inequality holds

because we are assuming ε > 8/
√
n. Moreover, conditioning on X = x for some x = 1 . . .m, Fh

represent a sample of |Su|−x items drawn uniformly from a set of size n−k. It holds n−k ≥ 3n/4,
and n− k thus differs by at most a factor 1− ε between the two events E1, E2. Again, we are in the
right setting to apply Theorem 15, and integrating over x = 1 . . .m gives

P

(
98

100
≤ P (Fh |X, E1)

P (Fh |X, E2)
≤ 100

98

)
≥ 99

100
.

We are now ready to put everything together. Note that Fl and Fh are independent once conditioned
on (E1, X) or (E2, X). Define the ratio

R(Fl, Fh) =
P ((Fl, Fh) | E1)

P ((Fl, Fh) | E2)
=
P (X | E1) · P (Fl |X, E1) · P (Fh |X, E1)

P (X | E2) · P (Fl |X, E2) · P (Fh |X, E2)

Using the union bound, along with 7/8 < (98/100)3, we get

P

(
R(Fl, Fh) 6∈

[
7

8
,
8

7

])
≤

P

(
P (X | E1)

P (X | E2)
6∈
[

98

100
,
100

98

])
+ P

(
P (Fl |X, E1)

P (Fl |X, E2)
6∈
[

98

100
,
100

98

])
+

P

(
P (Fh |X, E1)

P (Fh |X, E2)
6∈
[

98

100
,
100

98

])
≤

1

100
+

1

100
+

1

100
<

1

15
.

We can apply Theorem 13 and conclude the proof.
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4.3 Sum estimation in hybrid setting, unknown n.

We now prove a lower bound for the hybrid setting, in case the algorithm does not know n.

Theorem 19. In the hybrid setting, there does not exist an algorithm that, for every instance
(U,w), takes m = o(min(

√
n/ε, n)) samples and returns a (1±ε)-approximation of W with probabil-

ity 2/3. This holds also when the algorithm is provided with an advice ñ such that (1−ε)n ≤ ñ ≤ n.

Proof. Employing the same argument as in Theorem 18, it is sufficient to prove that for ε ≥ 1/
√
n

a lower bound of Ω(
√
n/ε) holds.

Consider the instance (U,w) where w(a) = 1 for each a ∈ U and we set |U | = n with probability
1/2 and |U | = (1 − ε)n otherwise. Providing a (1 ± ε)-approximation of W is equivalent to
distinguishing between the two cases. On this instance, sampling uniformly and proportionally is
the same. Therefore, we are in the setting of Theorem 15. Combining Theorem 15 and Theorem 13
like in the proofs above, we get that no classifier can distinguish between |U | = n and |U | = (1−ε)n
with probability 2/3 using o(

√
n/ε) samples.

5 Counting Edges in a Graph.

In this section, we show an algorithm that estimates the average degree of a graph G = (V,E) in
the model in which we are allowed to perform random vertex queries, random edge queries, and
degree queries. Recall that a random vertex query returns a uniform sample form V , a random edge
queries returns a uniform sample from E, and a degree queries returns deg(v) when we provide
v ∈ V as argument. In this section, we denote the number of vertices and edges with n and m
respectively.

Here, we show that HarmonicEstimator from Section 3, can be adapted to estimate the
average degree d. It achieves a complexity of O(m log logn

n′ε2 + n
n′ε2 ) in expectation, where n′ is the

number of non-isolated10 vertices. This is very efficient when there are few isolated vertices and
the graph is sparse. Moreover, the only way we use sampling of vertices is to estimate the number
of non-isolated vertices. Therefore, if we assume that there are no isolated vertices in the graph, it
is sufficient to only be able to uniformly sample edges.

Our approach is similar to that of [10] but the authors in the paper do not prove bounds on the
time complexity. Moreover, their algorithm only works when there are no isolated vertices.

Theorem 20. Given a graph G = (V,E), consider a model that allows (1) random vertex queries,
(2) random edge queries, and (3) degree queries. In this model, there exists an algorithm that, with
probability at least 2/3, returns a (1 ± ε)-approximation d̂ of the average degree d = 2m/n. This
algorithm performs O(m log log d

n′ε2 + n
n′ε2 ) queries in expectation, where n′ is the number of non-isolated

vertices.

Proof. We first show an algorithm that is given θ̃ such that d ≤ θ̃, has time complexityO( θ̃n
ε2n′+

n
ε2n′ ),

and is correct with probability 2/3. We define a sum estimation problem (U,w). We set the universe
to be U = V and for each vertex v ∈ U , we set its weight w(v) = deg(v). Then W =

∑
a∈U w(a) =

2m and W/n = d. Sampling an edge uniformly at random and picking one of its endpoints at
random corresponds to sampling a vertex proportionally to its weight. Moreover, we can sample
vertices uniformly. Therefore, we are able to implement both queries of the hybrid setting. We
run HarmonicEstimator(ε, θ̃, 1). By Theorem 9, it returns with probability at least 2/3 a 1± ε-
approximation of d, and its sample complexity is O( θ̃n

ε2n′ +
n
ε2n′ ) since what is called p in Theorem 9

is now n′/n.

10Recall that a vertex is isolated if it has degree 0.
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It remains to get rid of the need for advice θ̃. We use the standard technique of performing a
geometric search. See, for example, [8] for more details. We initialize θ̃ = 1 and in each subsequent
iteration, we double θ̃. Let K be a large enough constant. In each iteration, we run K log log θ̃
independent copies of HarmonicEstimator(ε, θ̃, 1) and denote with d1 . . . dK log log θ̃ the returned

estimates. We define d̂ as the median of d1 . . . dK log log θ̃. We say that the di succeeds if both the

following hold: (i) di ≥ d/20, (ii) θ̃ < d or di is a (1±ε)-approximation of d. Otherwise we say that
di fails. We extend this definition to d̂. Thanks to Theorem 9, di fails with probability ≤ 1/3+1/20.
By a standard argument based on the Chernoff bound, for K large enough, we have that d̂ fails
with probability at most 2/(π log2(2θ̃)). Denote with Ej the event that d̂ succeeds at iteration j
(i.e., when θ̃ = 2j−1). Define E =

⋂
j≥0 Ej . Union bound gives P (E) ≥ 1 − 2

π

∑
j>0

1
j2

= 2/3.

We stop our algorithm when d̂ ≤ θ̃/20 and return d̂. Conditioning on {d̂ ≤ θ̃/20} ∩ E , we have
θ̃/20 ≥ d̂ ≥ d/20. This implies that θ̃ ≥ d and hence d̂ is a (1 ± ε)-approximation of d. Since
P (E) ≥ 2/3, we have that with probability 2/3 the returned value is a (1± ε)-approximation of d.

One iteration of our algorithm has time complexity O( θ̃n log log θ̃
ε2n′ ). We argue that the expected

complexity is dominated by the first iteration in which θ̃ ≥ 40 d. The time complexity of each
additional iteration (conditioned on being executed) increases by a factor 2 +o(1). Each additional
iteration is executed only if the previous one resulted in an estimate d̂ > θ̃/20 ≥ 2 d. This happens
only when d̂ is not a (1± ε)-approximation of d, and assuming a correct advice θ̃ ≥ d this happens
outside of E . Therefore, we execute each additional iteration with probability ≤ 1/3. Since the
time spend in each iteration increases by a factor 2 + o(1) while the probability of executing
the iteration decreases by a factor of 3, the expected complexity contributed by each additional
iteration for θ̃ ≥ 40 d decreases by a factor of 2/3 + o(1). Therefore, the expected complexity is
dominated (up to a constant factor) by the first execution with θ̃ ≥ 40 d. If d ≥ 1, then in this
iteration, we have θ̃ = Θ(d). The time complexity is then O(m log log d

ε2n′ ). If d < 1, then it holds
θ = O(1) in this execution. The complexity is then O( n

n′ε2 ). This gives total time complexity of

O(m log log d
n′ε2 + n

n′ε2 ).

6 Open Problems.

We believe there are many interesting open problems related to our work. We now give a non-
comprehensive list of questions that we think would give more understanding of weighted sampling
and its applications.

More efficient algorithm for spacial classes of inputs. Are there some large classes of inputs
for which it is possible to get a more efficient algorithm? Can the problem be parameterized by some
additional parameters apart from n, ε (e.g. empirical variance) that tend to be small in practice?

Different sampling probabilities. Are there settings where one may efficiently sample with
probability depending on the value of an item but not exactly proportional? Could this be used to
give a general algorithm for estimating the sum W? An example of such a result is [4] where the
authors show an efficient algorithm for estimating the average degree of a graph when sampling
vertices with probabilities proportional to m

n + d(v).

Get a complete understanding of edge counting. The complexity of the problem of approx-
imately counting edges in a graph is understood in terms of n,m in the setting where we can only
sample vertices uniformly at random. What is the complexity of counting edges when we allow
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only random edge queries? What if both random edge and random vertex queries are allowed?
As we show, it may be useful to parameterize the problem by the fraction of vertices that are not
isolated. What is the complexity of the problem under such parameterization?
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Online Packing to Minimize Area or Perimeter
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Abstract

We consider online packing problems where we get a stream of axis-parallel rectangles. The
rectangles have to be placed in the plane without overlapping, and each rectangle must be placed
without knowing the subsequent rectangles. The goal is to minimize the perimeter or the area of the
axis-parallel bounding box of the rectangles. We either allow rotations by 90◦ or translations only.

For the perimeter version we give algorithms with an absolute competitive ratio slightly less than
4 when only translations are allowed and when rotations are also allowed.

We then turn our attention to minimizing the area and show that the asymptotic competitive
ratio of any algorithm is at least Ω(

√
n), where n is the number of rectangles in the stream, and

this holds with and without rotations. We then present algorithms that match this bound in both
cases and the competitive ratio is thus optimal to within a constant factor. We also show that the
competitive ratio cannot be bounded as a function of Opt. We then consider two special cases.

The first is when all the given rectangles have aspect ratios bounded by some constant. The
particular variant where all the rectangles are squares and we want to minimize the area of the
bounding square has been studied before and an algorithm with a competitive ratio of 8 has been
given [Fekete and Hoffmann, Algorithmica, 2017]. We improve the analysis of the algorithm and
show that the ratio is at most 6, which is tight.

The second special case is when all edges have length at least 1. Here, the Ω(
√
n) lower bound still

holds, and we turn our attention to lower bounds depending on Opt. We show that any algorithm
for the translational case has an asymptotic competitive ratio of at least Ω(

√
Opt). If rotations are

allowed, we show a lower bound of Ω( 4
√
Opt). For both versions, we give algorithms that match

the respective lower bounds: With translations only, this is just the algorithm from the general case
with competitive ratio O(

√
n) = O(

√
Opt). If rotations are allowed, we give an algorithm with

competitive ratio O(min{√n, 4
√
Opt}), thus matching both lower bounds simultaneously.

1 Introduction

Problems related to packing appear in a plethora of big industries. For instance, two-dimensional versions
of packing arise when a given set of pieces have to be cut out from a large piece of material so as to
minimize waste. This is relevant to clothing production where cutting patterns are cut out from a roll
of fabric, and similarly in leather, glass, wood, and sheet metal cutting.

In some applications, it is important that the pieces are placed in an online fashion. This means that
the pieces arrive one by one and we need to decide the placement of one piece before we know the ones
that will come in the future. This is in contrast to offline problems, where all the pieces are known in
advance. Problems related to packing were some of the first for which online algorithms were described
and analyzed. Indeed, the first use of the terms “online” and “offline” in the context of approximation
algorithms was in the early 1970s and used for algorithms for bin-packing problems [14].

In this paper, we study online packing problems where the pieces can be placed anywhere in the plane
as long as they do not overlap. The goal is to minimize the region occupied by the pieces. The pieces are
axis-parallel rectangles, and they may or may not be rotated by 90◦. We want to minimize the size of
the axis-parallel bounding box of the pieces, and the size of the box is either the perimeter or the area.
This results in four problems: PerimeterRotation, PerimeterTranslation, AreaRotation, and
AreaTranslation.

∗Basic Algorithms Research Copenhagen (BARC), University of Copenhagen. BARC is supported by the VILLUM
Foundation grant 16582. Lorenzo Beretta received funding from the European Union’s Horizon 2020 research and innovation
program under the Marie Sk lodowska-Curie grant agreement No. 801199.
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Competitive analysis The competitive ratio of an online algorithm is the equivalent of the approx-
imation ratio of an (offline) approximation algorithm. The usual definitions [7, 9, 11] of competitive
ratio (or worst case ratio, as it may also be called [11]) can only be used to describe that the cost of
the solution produced by an online algorithm is at most some constant factor higher than the cost Opt
of the optimal (offline) solution. In the study of approximation algorithms, it is often the case that the
approximation ratio is described not just as a constant, but as a more general function of the input. In
the same way, we generalize the definition of competitive ratios to support such statements about online
algorithms.

Consider an algorithm A for one of the packing problems studied in this paper. Let L be the set
of non-empty streams of rectangular pieces. For a stream L ∈ L, we define A(L) to be the cost of the
packing produced by A and let Opt(L) be the cost of the optimal (offline) packing. We say that A has
an absolute competitive ratio of f(L), for some function f : L −→ R+ which may just be a constant, if

sup
L∈L

A(L)

Opt(L)f(L)
≤ 1.

We say that A has an asymptotic competitive ratio of f(L) if

lim sup
c−→∞

(
sup

{
A(L)

Opt(L)f(L)
| L ∈ L and Opt(L) = c

})
≤ 1.

In this paper, the functions f(L) that we consider will be (i) constants, (ii) functions of the number
of pieces n = |L|, (iii) functions of Opt(L).

By definition, if A has an absolute competitive ratio of f(L), then A also has an asymptotic compet-
itive ratio of f(L), but A may also have a smaller asymptotic competitive ratio g(L) < f(L). However,
the following easy lemma shows that for the problems studied in this paper, any constant asymptotic
competitive ratio can be matched to within an arbitrarily small difference by an absolute competitive
ratio.

Lemma 1. For the problems studied in this paper, if an algorithm A has an asymptotic competitive ratio
of some constant c > 1, then for every ε > 0, there is an algorithm A′ with absolute competitive ratio
c+ ε. It follows that any constant lower bound on the absolute competitive ratio is also a lower bound on
the asymptotic competitive ratio.

Proof. Let n > 0 be so large that when Opt(L) ≥ n, we have A(L)
cOpt(L) ≤ 1 + ε/c. When the first piece

p of a stream L is given, A′ chooses a scale factor λ > 0 big enough that when p is scaled up by λ, the
resulting piece p′ := λp alone has cost n (i.e., the area or the perimeter of p′ is n). The algorithm A′

now imitates the strategy of A on the stream λL we get by scaling up all pieces of L by λ. We then get
that

A′(L)

(c+ ε)Opt(L)
=

A(λL)

(c+ ε)Opt(λL)
≤ (1 + ε/c)c

c+ ε
= 1.

For this reason, we do not distinguish between absolute and asymptotic competitive ratios when the
ratio is a constant. Note that the argument does not work when the competitive ratio is a non-constant
function of Opt.

Results and structure of the paper We develop online algorithms for the perimeter versions Peri-
meterRotation and PerimeterTranslation, both with a competitive ratio slightly less than 4.
These algorithms are described in Section 2. The idea is to partition the positive quadrant into bricks,
which are axis-parallel rectangles with aspect ratio

√
2. In each brick, we build a stack of pieces which

would be too large to place in a brick of smaller size. Online packing algorithms using higher-dimensional
bricks were described by Januszewski and Lassak [15] and our algorithms are inspired by an algorithm
of Fekete and Hoffmann [13] that we will get back to. Interestingly, we show in Section 2.2 that a more
direct adaptation of the algorithm of Fekete and Hoffmann has a competitive ratio of at least 4, and
is thus inferior to the algorithm we describe. We also give a lower bound of 4/3 for the version with
translations and 5/4 for the version with rotations.

In Section 3, we study the area versions AreaRotation and AreaTranslation. We show in
Section 3.1 that for any algorithm A processing a stream of n pieces cannot achieve a better competitive
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Measure Version Trans./Rot. Lower bound Upper bound

Perimeter General
Translation 4/3, Sec. 2.3 4− ε, Sec. 2.1
Rotation 5/4, Sec. 2.3 4− ε, Sec. 2.1

Area

General
Translation

Ω(
√
n) & ∀f : Ω(f(Opt)),

Sec. 3.1
O(
√
n), Sec. 3.2

Rotation
Ω(
√
n) & ∀f : Ω(f(Opt)),

Sec. 3.1
O(
√
n), Sec. 3.2

Sq.-in-sq. N/A 16/9, Sec. 3.3 6, Sec. 3.3

Long edges
Translation Ω(

√
Opt), Sec. 3.4

O(
√
n) = O(

√
Opt),

Sec. 3.5

Rotation
Ω(max{√n, 4

√
Opt}),

Sec. 3.1 and 3.4
O(min{√n, 4

√
Opt}),

Sec. 3.5

Table 1: Results of this paper.

ratio than Ω(
√
n), and this holds for all online algorithms and with and without rotations allowed. It

also holds in the special case where all the edges of pieces have length at least 1. We furthermore
show that when the pieces can be arbitrary, there can be given no bound on the competitive ratio as a
function of Opt for AreaRotation nor AreaTranslation. In Section 3.2 we describe the algorithms
DynBoxTrans and DynBoxRot, which achieve a O(

√
n) competitive ratio for AreaTranslation

and AreaRotation, respectively, for an arbitrary stream of n pieces. This is thus optimal up to a
constant factor when measuring the competitive ratio as a function of n. Both algorithms use a row of
boxes of exponentially increasing width and dynamically adjusted height. In these boxes, we pack pieces
using a next-fit shelf algorithm, which is a classic online strip packing algorithm first described by Baker
and Schwartz [6].

We then turn our attention to two special cases.
The first special case is when the aspect ratio is bounded by a constant α ≥ 1. A case of particular

interest is when all pieces are squares, i.e., α = 1. It is natural to have the same requirement to the
container as to the pieces, so let us assume that the goal is to minimize the area of the axis-parallel
bounding square of the pieces, and call the problem SquareInSquareArea. This problem was studied
by Fekete and Hoffmann [13], and they gave an algorithm for the problem and proved that it was 8-
competitive. We prove that the same algorithm is in fact 6-competitive and that this is tight. It easily
follows that if the aspect ratio is bounded by an arbitrary constant α ≥ 1 or if the goal is to minimize
the area of the axis-parallel bounding rectangle, we also get a O(1)-competitive algorithm.

The second special case is when all edges are long, that is, when they have length at least 1 (any
other constant will work too). In Section 3.4, we show that under this assumption, there is a lower bound
of Ω(

√
Opt) for the asymptotic competitive ratio of AreaTranslation, whereas for AreaRotation,

we get the lower bound Ω( 4
√
Opt). In Section 3.5, we provide algorithms for the area versions when the

edges are long. For both problems AreaRotation and AreaTranslation, we give algorithms that
match the lower bounds of Section 3.4 to within a constant factor. With translations only, this is just the
algorithm from the general case with competitive ratio O(

√
n) = O(

√
Opt). The algorithm with ratio

O( 4
√
Opt) for the rotational case follows the same scheme as the algorithms for arbitrary rectangles of

Section 3.2, but differ in the way we dynamically increase boxes’ heights. We finally describe an algo-
rithm for the rotational case with competitive ratio O(min{√n, 4

√
Opt}), thus matching the lower bounds

Ω(
√
n) and Ω( 4

√
Opt) simultaneously. Actually, the two lower bounds for AreaRotation can be sum-

marized by Ω(max{√n, 4
√
Opt}), while we manage to achieve a competitive ratio of O(min{√n, 4

√
Opt}).

However, this gives no contradiction, it simply proves that the edge cases that have a competitive ratio
of at least Ω( 4

√
Opt) must satisfy Opt = O(n2), and those for which the competitive ratio is at least

Ω(
√
n) satisfy n = O(

√
Opt).

We summarize the results in Table 1.

Related work The literature on online packing problems is rich. See the surveys of Christensen, Khan,
Pokutta, and Tetali [9], van Stee [25, 26], and Csirik and Woeginger [11] for an overview. It seems that
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the vast majority of previous work on online versions of two-dimensional packing problems is concerned
with either bin packing (packing the pieces into a minimum number of unit squares) or strip packing
(packing the pieces into a strip of unit width so as to minimize the total height of the pieces). From a
mathematical point of view, we find the problems studied in this paper perhaps even more fundamental
than these important problems in the sense that we give no restrictions on where to place the pieces,
whereas the pieces are restricted by the boundaries of the bins and the strip in bin and strip packing.

Another related problem is to find the critical density of online packing squares into a square. In
other words, what is the maximum Σ ≤ 1 such that there is an online algorithm that packs any stream
of squares of total area at most Σ into the unit square? This was studied, among others, by Fekete and
Hoffmann [13] and Brubach [8]. Lassak [16] and Januszewski and Lassak [15] studied higher-dimensional
versions of this problem.

Milenkovich [20] studied generalized offline versions of the minimum area problem: Translate k given
m-gons into a convex container of minimum area with edges in n fixed directions. When the m-gons
can be non-convex, the running time is O((m2 + n)2k−2(n + logm)), and when they are convex, the
running times are O((m + n)2k(n + logm)) or O(mk−1(n2k+1 + logm)). Milenkovich and Daniels [22]
described different algorithms for the same problems. Milenkovich [21] also studied the same problem
when arbitrary rotations are allowed and the container is either a strip with a fixed width, a homothet
of a given convex polygon, or an arbitrary rectangle (as in our work). He gave (1 + ε)-approximation
algorithms (no explicit running times are given, but they are apparently also exponential).

Some algorithms have been described for computing the packing of two or three convex polygons that
minimizes the perimeter or area of the convex hull or the bounding box [1, 5, 17, 23].

Alt [2] demonstrated how a ρ-approximation algorithm for strip packing (axis-parallel rectangles
with translations) can be turned into a (1+ε)ρ-approximation algorithm for the offline version of Area-
Translation, for any constant ε > 0. The same technique works for AreaRotation. The idea is to
apply the strip packing algorithm to strips of increasing widths and in the end choose the packing that
resulted in the smallest area. Therefore, the same technique cannot be applied in the online setting,
where we need to choose a placement for each piece and stick with it. Alt also mentioned that finding
a minimum area bounding box of a set of convex polygons with arbitrary rotations allowed can be
reduced to the problem where the pieces are axis-parallel rectangles with only translations allowed. This
reduction increases the approximation ratio by a factor by 2. The reduction does not work when the
pieces can be only translated, but Alt, de Berg, and Knauer [4] gave a 17.45-approximation algorithm
for this problem using different techniques.

Lubachevsky and Graham [18] used computational experiments to find the rectangles of minimum
area into which a given number n ≤ 5000 of congruent circles can be packed; see also the follow-up work
by Specht [24]. In another paper, Lubachevsky and Graham [19] studied the problem of minimizing the
perimeter instead of the area.

Another fundamental packing problem is to find the smallest square containing a given number of
unit squares, with arbitrary rotations allowed. A long line of mathematical research has been devoted
to this problem, initiated by Erdős and Graham [12] in 1975, and it is still an active research area [10].

2 The perimeter versions

In Section 2.1, we present two online algorithms to minimize the perimeter of the bounding box: the algo-
rithm BrickTranslation solves the problem PerimeterTranslation, where we can only translate
pieces; the algorithm BrickRotation solves the problem PerimeterRotation, where also rotations
are allowed. Both algorithms achieve a competitive ratio of 4. In Section 2.3, we show a lower bound of
4/3 for the version with translations and 5/4 for the version with rotations.

2.1 Algorithms to minimize perimeter

Algorithm for translations We pack the pieces into non-overlapping bricks; a technique first de-
scribed by Januszewski and Lassak [15] which was also used by Fekete and Hoffmann [13] for the prob-

lem SquareInSquareArea. Let a k-brick be a rectangle of size
√

2
−k ×

√
2
−k−1

if k is even and√
2
−k−1 ×

√
2
−k

if k is odd. A brick is a k-brick for some integer k.
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Bk

Bk+1

Bk+2

Bk+3

B † 1

B † 2 † 1

B † 2 † 2

Figure 1: Left: Fundamental bricks. Middle: Splitting a brick. Right: Rectangular pieces packed in a
brick.

Figure 2: Left: Some pieces have been packed by the algorithm. The bricks in D are drawn with fat
edges. Right: A new piece arrives. There is already a brick of the suitable size in D, but there is not
enough room, so a new brick of the same size is added to D where the piece is placed.

We tile the positive quadrant using one k-brick Bk for each integer k as in Figure 1 (left): if k is

even, Bk is the k-brick with lower left corner (0,
√

2
−k−1

) and otherwise, Bk is the k-brick with lower

left corner (
√

2
−k−1

, 0). The bricks Bk are called the fundamental bricks. We define B>k :=
⋃

i>k Bi

and B≥k := B>k−1, so that B>k is the k-brick immediately below (if k is even) or to the left (if k is
odd) of Bk.

An important property of a k-brick B is that it can be split into two (k + 1)-bricks: B † 1 and B † 2;
see Figure 1 (middle). We introduce a uniform naming and define B † 1 to be the left half of B if k is
even and the lower half of B if k is odd.

We define a derived brick recursively as follows: a derived brick is either (i) a fundamental brick Bk

or (ii) B † 1 or B † 2, where B is a derived brick. We introduce an ordering ≺ of the derived k-bricks
as follows. Consider two derived k-bricks D1 and D2 such that D1 ⊂ Bi and D2 ⊂ Bj . If i > j, then
D1 ≺ D2. Else, if i = j then the bricks D1 and D2 are both obtained by splitting the fundamental brick
Bi, and the number of splits is ` := i−k. Hence the bricks have the forms D1 = Bi †b11 †b12 † . . .†b1` and
D2 = Bi † b21 b22 . . . b2`, where bij ∈ {1, 2} for i ∈ {1, 2} and j ∈ {1, . . . , `}. We then define D1 ≺ D2 if
(b11, b12, . . . , b1`) precedes (b21, b22, . . . , b2`) in the lexicographic ordering.

We say that a k-brick is suitable for a piece p of size w×h if the width and height of the brick are at
least w and h, respectively, and if that is not the case for a (k + 1)-brick. We will always pack a given
piece p in a derived k-brick that is suitable for p.

We now explain how we pack pieces into one specific brick; see Figure 1 (right). The first piece p that
is packed in a brick B is placed with the lower left corner of p at the lower left corner of B. Suppose now
that some other pieces p1, . . . , pi have been packed in B. If k is even, then p1, . . . , pi form a stack with
the left edges contained in the left edge of B, and we place p on top of pi (again, with the left edge of p
contained in the left edge of B). Otherwise, p1, . . . , pi form a stack with the bottom edges contained in
the bottom edge of B, and we place p to the right of pi (again, with the bottom edge of p contained in
the bottom edge of B). We say that a brick has room for a piece p if the packing scheme above places p
within B, and it is apparent that an empty suitable brick for p has room for p.

The algorithm BrickTranslation maintains the collection D of non-overlapping derived bricks,
such that one or more pieces have been placed in each brick in D; see Figure 2. Before the first piece
arrives, we set D := ∅. Suppose that some stream of pieces have been packed, and that a new piece p
appears. Choose k such that a k-brick is suitable for p. If there exists a derived k-brick D ∈ D such that

5



B3

B2 † 2

B1 † 1

B1 † 2 † 2

Figure 3: Brick B3 is sparse, brick B2 † 2 is empty, brick B1 † 1 is dense. Brick B1 † 2 † 2 is free, but not
empty, since it is contained in B1 † 2.

D has room for p, then we pack p in D. Else, let D be the minimum derived k-brick (with respect to
the ordering ≺ described before) such that D is interior-disjoint from each brick in D; we then add D to
D and pack p in D.

Theorem 2. The algorithm BrickTranslation has a competitive ratio strictly less than 4 for Peri-
meterTranslation.

Proof. We can assume, without loss of generality, that after we have packed the last rectangle, we have⋃D ⊆ B≥0 and
⋃D 6⊆ B≥1. As shown in Figure 3, we define a derived k-brick B ⊆ B≥0 to be

• sparse if B ∈ D and the total height (if k is even, else width) of pieces stacked in B is less than
half of the height (if k is even, else width) of B,

• dense if B ∈ D and B it is not sparse,

• free if B is interior-disjoint from each brick in D, and

• empty if B is a maximal (w.r.t. inclusion) free brick.

Remark 3. Sparse, dense and empty bricks together cover B≥0, in fact every brick in D is either sparse
or dense, and any brick in B≥0 that is interior-disjoint from bricks in D is contained in some empty brick.

Remark 4. Every k-brick D ∈ D contains pieces for which it is suitable. Therefore, if k is odd D

contains a piece of height at least
√

2
−k
/2, and if k is even D contains a piece of width at least

√
2
−k
/2.

Remark 5. Every k-brick D ∈ D that is dense contains pieces with total area at least 1/4 of the area

of D. To see this, suppose that k is even, so that D is
√

2
−k ×

√
2
−k−1

, then thanks to density the total
height of pieces in D is at least half of its height, moreover thanks to Remark 4 all the pieces contained

in D have width at least
√

2
−k
/2. If k is odd we prove it analogously.

Remark 6. Consider two k-bricks M and N . If M ≺ N and M is free, then N is free. To prove this it is
sufficient to consider the step in which the first piece p is placed within N and N † b1 † . . . † b` is added to
D. Then, N †b1†. . .†b` should be the ≺-minimum free suitable k-brick, but M †b1†. . .†b` ≺ N †b1†. . .†b`
gives a contradiction. It follows that whenever we have a set S of k-bricks that contains a free k-brick,
then also max≺ S is free. This turns out to be useful multiple times along the proof, choosing S to be
the set of k-bricks not contained in a strictly larger empty brick.

Remark 7. There exists no empty 0-brick, otherwise D ⊆ B≥1. Moreover, for every k ≥ 1 we can have
at most one sparse k-brick and one empty k-brick. In fact, a new empty (resp. sparse) k-brick is created
only when no empty (resp. sparse) k-brick exists.
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h

M

Case (1) Case (2.1)

M

Case (3.1.1.1.2) Case (3.1.1.2)

M

M

w
Case (3.2.1.1.1)

M

w
Case (3.2.1.2)

M

w
Case (3.2.1)

M

w
Case (3.2.1.2.2.1.2)

M

w
Case (3.2.1.2.2.2)

M M M

Case (3.2.2) Case (3.2.2.1) Case (3.2.2.2.2.1)

Figure 4: Some of the cases listed in the proof of Theorem 2 are shown. The grey area must fit within
the bounding box considered in the case analysis.

In the following we prove an upper bound on the competitive ratio Alg/Opt, where Alg is the
perimeter of the bounding box achieved by our online algorithm and Opt is the optimal perimeter
computed offline. Hence, we need some techniques to provide an upper bound on Alg and a lower
bound on Opt. For Alg, we will simply show a bounding box, in fact the perimeter of any bounding
box containing all the pieces provides an upper bound to the minimum perimeter bounding box. For
Opt, let A be the total area of pieces and L be the maximum length of an edge of a piece. If L2 > A
then the minimum perimeter bounding box cannot have a smaller perimeter than a box of size L×A/L.
Otherwise, if L2 ≤ A we have a weaker lower bound given by the box

√
A×
√
A. Throughout the analysis

we consider semiperimeters instead of perimeters to improve readability.
We denote with A(empty), A(sparse), A(dense) the total area of empty, sparse and dense bricks

respectively. Thanks to Remark 3, we have that A(empty)+A(sparse)+A(dense) = A(B≤0) =
√

2. We
denote with Apcs the total area of pieces in the stream. Thanks to Remark 5, we have Apcs ≥ A(dense)/4.
From now on the proof branches in many cases and subcases. We will perform a depth-first visit of the
case tree, and for each leaf of this tree we will prove that the competitive ratio is strictly less than 4.
Let k be the smallest integer such that there exists a k-brick in D, and let M ∈ D be the ≺-maximal
k-brick. From our assumptions, it follows that k ≥ 0.

Case Tree Case (1) [M is a 0-brick ]
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Thanks to Remark 4 every piece in M has width at least 1/2. Let h be the total height of pieces
stacked in M , then a bounding box of size size 1 × (

√
2/2 + h) is obtained cutting the topmost part of

M ; see Figure 4. We can easily bound Opt with 1/2× h, and we get

Alg

Opt
≤ 1 +

√
2

2 + h
1
2 + h

≤ 2 +
√

2 < 4.

Case (2) [M is a k-brick for k ≥ 2]
Here we have two cases.

Case (2.1) [There exist a 1-brick N1 and a 2-brick N2 that are empty ]
Thanks to Remark 6 we can choose N1 = B0 †2 and N2 = B0 †1†2. In fact, for B0 †2 it is sufficient to

choose S as the set of all 1-bricks, while for B0 †1†2 we can choose S to be the set of all 2-bricks that are
not contained in a larger free brick. Thus, we can cut the topmost half of B0 and get Alg ≤ 1+3/4 ·

√
2;

see Figure 4. We have

A(empty) ≤
∑

i≥1

A(Bi) ≤
√

2

2

A(sparse) ≤
∑

i≥2

A(Bi) =

√
2

4
(thanks to case (2) clause there is no sparse 1-brick)

Apcs ≥
A(dense)

4
≥ A(B≥0)−A(sparse)−A(empty)

4
≥
√

2

16

Now we are ready to bound Opt:

Opt ≥ 2 ·
√
Apcs =

√√
2

4

Alg

Opt
≤ 1 + 3

4

√
2√√

2
4

≈ 3.47 < 4.

Case (2.2) [For j = 1 or j = 2 there does not exist an empty j-brick ]
In this case we just use Alg ≤ 1 +

√
2. Then we have

A(empty) ≤
∑

i≥1∧i 6=j

A(Bi) ≤
3

8

√
2 (worst case is when j = 2)

A(sparse) ≤
∑

i≥2

A(Bi) =

√
2

4

therefore performing the same computations of case (2.1), Apcs ≥ 3/32 ·
√

2, and finally

Opt ≥ 2 ·
√

3

32

√
2 =

√
3

8

√
2

Alg

Opt
≤ 1 +

√
2√

3
8

√
2
≈ 3.32 < 4.

Case (3) [M is a 1-brick ]
For the rest of the proof L will be the length of the longest edge among all pieces. Since M is a

1-brick, we have
√

2/4 < L ≤
√

2/2. Here we have two cases.
Case (3.1) [There does not exists an empty 1-brick ]

Here we have two cases.
Case (3.1.1) [For j = 2 and j = 3 there exists an empty j-brick ]

Here we have three cases.
Case (3.1.1.1) [M is the fundamental brick B1]
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Thanks to Remark 6 we can assume B0 † 2 † 2 and B0 † 2 † 1 † 2 to be empty. Here we have two cases.
Case (3.1.1.1.1) [M is dense]

Since M = B1 is the ≺-maximal k-brick in D, then there does not exist a sparse 1-brick.

A(empty) ≤
∑

i≥2

A(Bi) ≤
√

2

4

A(sparse) ≤
∑

i≥2

A(Bi) =

√
2

4

therefore Apcs ≥
√

2
8 , and finally

Opt ≥ 2 ·

√√
2

8
=

√√
2

2

Alg

Opt
≤ 1 +

√
2√√

2
2

≈ 2.87 < 4.

Case (3.1.1.1.2) [M is sparse]
Then, we can cut the rightmost part of B≥0 and get a 3/4×

√
2 bounding box; see Figure 4. We have

A(empty) ≤
∑

i≥2

A(Bi) ≤
√

2

4

A(sparse) ≤
∑

i≥1

A(Bi) ≤
√

2

2

hence Apcs ≥
√

2/16. Since L2 > 1/8 >
√

2/16 we finally have

Opt ≥ L+
Apcs

L
≥
√

2

4
+

1

4
(minimizing over L ∈ [

√
2/4,
√

2/2])

Alg

Opt
≤ 3/4 +

√
2

√
2

4 + 1
4

≈ 3.59 < 4.

Case (3.1.1.2) [M = B0 † 1]
Thanks to Remark 6 we can assume B0 † 2 † 2 to be empty. Then, we can cut the topmost part of

B≥0 and get a 1×
√

2/2 + L bounding box; see Figure 4. We have

A(empty) ≤
∑

i≥2

A(Bi) ≤
√

2

4

A(sparse) ≤
∑

i≥1

A(Bi) ≤
√

2

2

hence Apcs ≥
√

2/16. Since L2 > 1/8 >
√

2/16 we finally have

Opt ≥ L+
Apcs

L
≥ L+

√
2

16L

Alg

Opt
≤ 1 +

√
2/2 + L

L+
√

2
16L

≤ 2 +
√

2 < 4. (maximizing over L ∈ [
√

2/4,
√

2/2])

Case (3.1.1.3) [M = B0 † 2]
This case is analogous to the previous one, in fact thanks to Remark 6 we can assume B0 † 1 † 2 to

be empty and cut the topmost part of B≥0.
Case (3.1.2) [For j = 2 or j = 3 there does not exist an empty j-brick ]
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A(empty) ≤
∑

i≥2∧i 6=j

A(Bi) ≤
3

16

√
2 (worst case is when j = 3)

A(sparse) ≤
∑

i≥1

A(Bi) ≤
√

2

2

hence Apcs ≥ 5
64 ·
√

2. Since L2 > 1/8 > 5
64 ·
√

2 we finally have

Opt ≥ L+
Apcs

L
≥
√

2

4
+

5

16
(minimizing over L ∈ [

√
2/4,
√

2/2])

Alg

Opt
≤ 1 +

√
2

√
2

4 + 5
16

≈ 3.62 < 4.

Case (3.2) [There exists an empty 1-brick ]
Thanks to Remark 6 we can assume B0 † 2 to be empty. Here we have two cases.

Case (3.2.1) [M is the fundamental brick B1]
Let w be the total width of pieces stacked in M . Since B0 † 2 is empty, we can cut the rightmost

part of B≥0 and get a (1/2 +w)×
√

2 bounding box; see Figure 4. Since increasing w only improves our
estimates, we consider the corner case w = 0. Now we have two cases.
Case (3.2.1.1) [There does not exist an empty 2-brick ]

Here we have two cases.
Case (3.2.1.1.1) [For j = 3 and j = 4 there exists an empty j-brick ]

Thanks to Remark 6 we can assume B0 † 1 † 2 † 2 and B0 † 1 † 2 † 1 † 2 to be empty. Thus, we can cut
the topmost part of B≥0 and get a 1/2× (7/8 ·

√
2) bounding box; see Figure 4. We have

A(empty) ≤
∑

i≥1∧i6=2

A(Bi) ≤
3

8

√
2

A(sparse) ≤
∑

i≥1

A(Bi) ≤
√

2

2

hence Apcs ≥
√

2/32. Since L2 > 1/8 >
√

2/32 we finally have

Opt ≥ L+
Apcs

L
≥
√

2

4
+

1

8

Alg

Opt
≤ 1/2 + (7/8 ·

√
2)

√
2

4 + 1
8

≈ 3.63 < 4.

Case (3.2.1.1.2) [For j = 3 or j = 4 there does not exist an empty j-brick ]

A(empty) ≤
∑

i≥1∧i6=2,j

A(Bi) ≤
11

32

√
2 (worst case is when j = 4)

A(sparse) ≤
∑

i≥1

A(Bi) ≤
√

2

2

hence Apcs ≥ 5/128 ·
√

2. Since L2 > 1/8 > 5/128 ·
√

2 we finally have

Opt ≥ L+
Apcs

L
≥
√

2

4
+

5

32

Alg

Opt
≤ 1/2 +

√
2

√
2

4 + 5
32

≈ 3.75 < 4.

10



Case (3.2.1.2) [There exists an empty 2-brick ]
Thanks to Remark 6 we can assume B0 † 1 † 2 to be empty. Thus, we can cut the topmost part of

B≥0 and get a 1/2× (3/4 ·
√

2) bounding box; see Figure 4. Here we have two cases.
Case (3.2.1.2.1) [There does not exist an empty 3-brick ]

A(empty) ≤
∑

i≥1∧i 6=3

A(Bi) ≤
7

16

√
2

A(sparse) ≤
∑

i≥1

A(Bi) ≤
√

2

2

hence Apcs ≥
√

2/64. Since L2 > 1/8 >
√

2/64 we finally have

Opt ≥ L+
Apcs

L
≥
√

2

4
+

1

16

Alg

Opt
≤

1
2 + 3

4

√
2

√
2

4 + 1
16

≈ 3.75 < 4.

Case (3.2.1.2.2) [There exists an empty 3-brick ]
Thanks to Remark 6 we can assume B0 † 1 † 1 † 2 to be empty. Here we have two cases.

Case (3.2.1.2.2.1) [There does not exist an empty 4-brick ]
Here we have two cases.

Case (3.2.1.2.2.1.1) [For j = 5 or j = 6 there does not exist an empty j-brick ]

A(empty) ≤
∑

i≥1∧i 6=4,j

A(Bi) ≤
59

128

√
2 (worst case is when j = 6)

A(sparse) ≤
∑

i≥1

A(Bi) ≤
√

2

2

hence Apcs ≥ 5/512 ·
√

2. Since L2 > 1/8 > 5/512 ·
√

2 we finally have

Opt ≥ L+
Apcs

L
≥
√

2

4
+

5

128

Alg

Opt
≤

1
2 + 3

4

√
2

√
2

4 + 5
128

≈ 3.98 < 4.

Case (3.2.1.2.2.1.2) [For j = 5 and j = 6 there exists an empty j-brick ]
Thanks to Remark 6 we can assume B0 † 1 † 1 † 1 † 2 † 2 and B0 † 1 † 1 † 1 † 2 † 1 † 2 to be empty. Then,

we can cut the topmost part of B≥0 and get a 1/2× (11/16 ·
√

2) bounding box; see Figure 4. We have

A(empty) ≤
∑

i≥1∧i 6=4

A(Bi) ≤
15

32

√
2

A(sparse) ≤
∑

i≥1

A(Bi) ≤
√

2

2

hence Apcs ≥
√

2/128. Since L2 > 1/8 >
√

2/128 we finally have

Opt ≥ L+
Apcs

L
≥
√

2

4
+

1

32

Alg

Opt
≤

1
2 + 11

16

√
2

√
2

4 + 1
32

≈ 3.83 < 4.

Case (3.2.1.2.2.2) [There exists an empty 4-brick ]
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Thanks to Remark 6 we can assume B0 † 1 † 1 † 1 † 2 to be empty. Then, we can cut the topmost part
of B≥0 and get a 1/2 × (5/8 ·

√
2) bounding box; see Figure 4. Now it remains to bound Opt, and we

just assume Opt ≥ L ≥
√

2/4, finally

Alg

Opt
≤

1
2 + 5

8

√
2

√
2

4

≈ 3.92 < 4.

Case (3.2.2) [M = B0 † 1]
For the rest of the proof let L be the length of the longest of pieces’ edges then, according to Remark 4,√

2/4 ≤ L ≤
√

2/2. We can cut the topmost part of B≥0 and get a 1 × (
√

2/2 + L) bounding box; see
Figure 4. Here we have two cases.
Case (3.2.2.1) [There exists a 2-brick in D]

Thanks to Remark 4, we have a piece of width at least 1/4, and combining this with the fact that we
have a piece of height L, it is apparent that Opt ≥ 1/4 + L; see Figure 4. Thus,

Alg

Opt
≤ 1 +

√
2

2 + L
1
4 + L

≤ 2 +
√

2 < 4 (maximizing over L ∈ [
√

2/4,
√

2/2]).

Case (3.2.2.2) [There does not exist a 2-brick in D]
Here we have two cases.

Case (3.2.2.2.1) [There does not exist an empty 2-brick ]

A(empty) ≤
∑

i≥1∧i6=2

A(Bi) ≤
3

8

√
2

A(sparse) ≤
∑

i≥1

A(Bi) ≤
3

8

√
2

hence Apcs ≥
√

2/16. Since L2 > 1/8 >
√

2/16 we finally have

Opt ≥ L+
Apcs

L
≥ L+

√
2

16L

Alg

Opt
≤ 1 +

√
2

2 + L

L+
√

2
16L

≤ 2 +
√

2 < 4 (maximizing over L ∈ [
√

2/4,
√

2/2]).

Case (3.2.2.2.2) [There exists an empty 2-brick ] Thanks to Remark 6 we can assume B1 †2 to be empty.
Here we have two cases.
Case (3.2.2.2.2.1) [There exists an empty 3-brick ]

Thanks to Remark 6 we can assume B1 † 1 † 2 to be empty. Then, we can cut the rightmost part of
B≥0 and get a 3/4× (

√
2/2 + L) bounding box; see Figure 4. Now it remains to bound Opt. We have

A(empty) ≤
∑

i≥1

A(Bi) ≤
√

2

2

A(sparse) ≤
∑

i≥1∧i 6=2

A(Bi) ≤
3

8

√
2

hence Apcs ≥
√

2/32. Since L2 > 1/8 >
√

2/32 we finally have

Opt ≥ L+
Apcs

L
≥ L+

√
2

32L

Alg

Opt
≤

3
4 +

√
2

2 + L

L+
√

2
32L

≤ 3.79 < 4 (maximizing over L ∈ [
√

2/4,
√

2/2]).
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Case (3.2.2.2.2.2) [There does not exist an empty 3-brick ]

A(empty) ≤
∑

i≥1∧i 6=3

A(Bi) ≤
7

16

√
2

A(sparse) ≤
∑

i≥2∧i6=2

A(Bi) ≤
3

8

√
2

hence Apcs ≥ 3/64 ·
√

2. Since L2 > 1/8 > 3/64 ·
√

2 we finally have

Opt ≥ L+
Apcs

L
≥ L+

3
√

2

64L

Alg

Opt
≤ 1 +

√
2

2 + L

L+ 3
√

2
64L

≤ 3.82 < 4 (maximizing over L ∈ [
√

2/4,
√

2/2]).

Algorithm using rotations The algorithm BrickRotation is almost identical to BrickTranslation,
but with the difference that we rotate each piece so that its height is at least its width.

Theorem 8. The algorithm BrickRotation has a competitive ratio of strictly less than 4 for Peri-
meterRotation.

Proof. The analysis of BrickTranslation carried out in the proof of Theorem 2 still holds, in fact all
the estimates on Opt derived from consideration about area are still valid, and the only delicate spot
is case (3.2.2.1). In that case we assume to have a piece p having an edge of length L ∈ [

√
2/4,
√

2/2],
and that there exists a 2-brick in D. Thanks to Remark 4 there exists a piece q of size wq × hq with
wq ≥ 1/4, moreover we rotate every piece so that 1/4 ≤ wq ≤ hq. Finally, a box that contains both p
and q must have size at least L× wq or L× hq, hence

Opt ≥ min {L+ wq, L+ hq} ≥ L+
1

4
.

This gives exactly the same bound showed in case (3.2.2.1) and completes the proof.

2.2 A similar but inferior algorithm

Here we consider the algorithm we get by making a slight change to BrickTranslation. Suppose
that the very first piece p arrives and that a k-brick is suitable for p. Instead of placing p in Bk (as
BrickTranslation would do), we consider the brick B>k to be a fundamental brick (although in the
original algorithm, it was an infinite union of fundamental bricks) and we place p in B>k. Thus, we are
never going to use the fundamental bricks Bi individually, for i > k. From here on, the algorithm does as
BrickTranslation: Whenever a new piece arrives, we place it in the first derived brick of the suitable
size that has room. This behavior is similar to the algorithm for the problem SquareInSquareArea
that was described by Fekete and Hoffmann [13]. That problem is studied in more detail in Section 3.3,
and for that problem, the algorithm seems to be no worse than ours.

Interestingly, the following theorem together with Theorem 2 implies that the modified algorithm is
worse for the problem PerimeterTranslation.

Theorem 9. The modified version of BrickTranslation has a competitive ratio of at least 4 for the
problem PerimeterTranslation.

Proof. For any ε′ > 0, we can make an instance realizing a competitive ratio of more than 4 − ε′ as
follows. Figure 5 shows the packing produced by the modified and the original algorithm. We first give
the algorithm the rectangle (1/2

√
2 + ε) × ε for an infinitesimal ε > 0. The rectangle is placed in B>1

by the modified algorithm. For a large odd integer k, we then feed the algorithm with small rectangles

of size (
√

2
−k−1

+ ε) × (
√

2
−k

+ ε) until B1 † 1 has been completely split into (k − 2)-bricks, each of
which contains one small rectangle. We now give the algorithm a piece of size ε × (1/4 + ε), which is

13



B>1

B1 † 1

B1 † 2
B0 † 2

B>1

B1

B0 † 1 † 1

B0 † 2

B0 † 1 † 2 † 1

B0 † 1 † 1 † 2

B0 † 1 † 1 † 1 B0 † 1 † 2 † 1

Figure 5: Left: A configuration produced by the modified version of BrickTranslation. Right: The
configuration produced by the original algorithm BrickTranslation.

placed in B1 †2. We again give the algorithm many small rectangles until B0 †1 †1 †1 has been split into
(k − 2)-bricks. Now follows a rectangle of size (1/4

√
2 + ε)× ε, which is placed in B0 † 1 † 1 † 2. Finally,

we fill B0 † 1 † 2 † 1 with small rectangles.
Note that as k −→ ∞, the bounding box of the produced packing converges to B≥0, so it has a

perimeter as B−1. On the other hand, observe that as ε −→ 0, we have Σ −→ A(B1)/4 = A(B3), since
the small rectangles fill out bricks with a total area of A(B1) and with density 1/4. In the limit, all the
pieces can actually be packed into B3, so Opt is at most the perimeter of B3. But the perimeter of B−1

is 4 times that of B3, which finishes the proof.

2.3 Lower bounds

Lemma 10. Consider any algorithm A for the problem PerimeterTranslation. Then the competitive
ratio of A is at least 4/3.

Proof. We first feed A with two unit squares. Let the bounding box of the two squares have size a × b
and suppose without loss of generality that a ≤ b. Then a ≥ 1 and b ≥ 2. We now give A a rectangle
of size 2× ε for a small value ε > 0. The produced packing has a bounding box of perimeter more than
8, whereas the optimal has perimeter 6 + 2ε. Therefore, the competitive ratio is 8

6+2ε = 4
3+ε . By letting

ε −→ 0, we get that the ratio is at least 4/3.

Lemma 11. Consider any algorithm A for the problem PerimeterRotation. Then the competitive
ratio of A is at least 5/4.

Proof. We first feed A with three unit squares. Let the bounding box of the three squares have size a× b
and suppose without loss of generality that a ≤ b. Suppose first that b < 3. Then we must have a ≥ 2
for the box to contain the squares. We then give the algorithm the rectangle ε × 3 for a small value
ε > 0. The produced packing has a bounding box of size at least (2 + ε) × 3 and perimeter more than
10, while the optimal solution has size (1 + ε)× 3 and perimeter 8 + 2ε.

On the other hand, if b ≥ 3, we give the algorithm one more unit square. The produced packing has
a bounding box of size at least 2× 3 or at least 1× 4, and thus perimeter at least 10, while the optimal
packing has size 2× 2 and perimeter 8.

We get that the competitive ratio is at least 10
8+2ε = 5

4+ε , and by letting ε −→ 0, we get that the ratio
is at least 5/4.
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3 Area versions

3.1 General lower bounds

In this section we show that, if we allow pieces to be arbitrary rectangles, we cannot bound the competitive
ratio for neither AreaTranslation nor AreaRotation as a function of the area Opt of the optimal
packing. However we will be able to bound the competitive ratio as a function of the total number n of
pieces in the stream.

Lemma 12. Consider any algorithm A solving AreaTranslation or AreaRotation and let any
m ∈ N and p ∈ R be given. There exists a stream of n = m2 + 1 rectangles such that (i) the rectangles
can be packed into a bounding box of area 2p2, and (ii) algorithm A produces a packing with a bounding
box of area at least mp2.

Proof. We first feed A with m2 rectangles of size p× p
m2 . These rectangles have total area p2. Let a× b

be the size of the bounding box of the produced packing.
Suppose first that a ≥ p

m and b ≥ p
m hold. We then feed A with a long rectangle of size pm2 × p

m2 .
The produced packing has a bounding box of area at least p

m · pm2 = mp2. The optimal packing is to
pack the m2 small rectangles along the long rectangle, which would produce a packing with bounding
box of size pm2 × 2p

m2 = 2p2.
Otherwise, we must have b > pm or a > pm, since ab ≥ p2. We then feed A with a square of size

p × p. The produced packing has a bounding box of area at least p · pm = mp2. The optimal packing
is obtained stacking the m2 thin rectangles on top of the big square, which produces a packing with
bounding box of size p× 2p = 2p2.

Corollary 13. Let A be an algorithm for AreaTranslation or AreaRotation. Then A does not
have an asymptotic, and hence also absolute, competitive ratio which is a function of Opt.

Proof. Let f be any function of Opt. For any value Opt = c, we choose p :=
√
c/2. We now choose

m > 2f(c) and obtain that the competitive ratio is at least mp2

2p2 = m/2 > f(c) = f(Opt).

Corollary 14. Let A be an algorithm for AreaTranslation or AreaRotation. If A has an asymp-
totic competitive ratio of f(n), where n = |L| is the number of pieces in the stream, then f(n) = Ω(

√
n).

This holds even when all edges of the pieces are required to have length at least 1.

Proof. We choose p := m2. Then all edges have length at least 1, and the competitive ratio is at least
mp2

2p2 = m/2 = Ω(
√
n). Here, Opt can be arbitrarily big by choosing m big enough, so it is a lower bound

on the asymptotic competitive ratio.

3.2 Algorithms for arbitrary pieces

In this section we provide algorithms that solve AreaTranslation and AreaRotation with a com-
petitive ratio of O(

√
n), where n is the total number of pieces. Thus we match the bounds provided in

the previous section.
We first describe the algorithm DynBoxTrans that solves AreaTranslation. We assume to

receive a stream of pieces p1, . . . , pn of unknown length n, such that piece pi has size wi × hi. For each
k ∈ Z, we define a rectangular box Bk with a size varying dynamically. After pieces p1, . . . , pj have been
processed Bk has size 2k × Tj , where Tj := Hj

√
j + 7Hj and Hj := maxi=1,...,j hi. We place the boxes

with their bottom edges on the x-axis and in order such that the right edge of Bk−1 is contained in the
left edge of Bk; see Figure 6. Furthermore, we place the lower left corner of box B0 at the point (1, 0).
It then holds that all the boxes are to the right of the point (0, 0).

We say that the box Bk is wide enough for a piece pi = wi × hi if wi ≤ 2k. If a box Bk is wide
enough for pi, we can pack pi in Bk using the online strip packing algorithm NFSk that packs rectangles
into a strip of width 2k. The algorithm NFSk is the next-fit shelf algorithm first described by Baker and
Schwartz [6]. The algorithm packs pieces in shelves (rows), and each shelf is given a fixed height of 2j

for some j ∈ Z when it is created; see Figure 7. The width of each shelf is 2k, since this is the width of
the box Bk.
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BkBk−1Bk−2
Tj

2k

Figure 6: The algorithm DynBoxTrans packs pieces into the boxes Bk that form a row. Every box
has height Tj that is dynamically updated.

Figure 7: A packing produced by the next-fit shelf algorithm using four shelves.

16



A piece of height h, where 2j−1 < h ≤ 2j , is packed in a shelf of height 2j . We divide the shelves into
two types. If the total width of pieces in a shelf is more than 2k−1 we call that shelf dense, otherwise we
say it is sparse. The algorithm NFSk places each piece as far left as possible into the currently sparse
shelf of the proper height. If there is no sparse shelf of this height or the sparse shelf has not room for
the piece, a new shelf of the appropriate height is created on top of the top shelf, and the piece is placed
there at the left end of this new shelf. This ensures that at any point in time there exists at most one
sparse shelf for each height 2j .

If we allow the height of the box Bk to grow large enough with respect to shelves’ heights, the space
wasted by sparse shelves becomes negligible and we obtain a constant density strip packing, as stated in
the following lemma.

Lemma 15. Let H̃ be the total height of shelves in Bk, and Hmax be the maximum height among pieces
in Bk. If H̃ ≥ 6Hmax, then the pieces in Bk are packed with density at least 1/12.

Proof. Let 2m−1 < Hmax ≤ 2m, so that H̃ ≥ 3 · 2m. For each i ≤ m we have at most one sparse shelf of
height 2i and each shelf of Bk has height at most 2m, hence the total height of sparse shelves is at most∑

i≤m 2i = 2m+1, so the total height of dense shelves is at least H̃ − 2m+1 ≥ H̃/3. Thus, the total area

of the dense shelves is at least 2k · H̃/3.
Consider a dense shelf of height 2i. Into that shelf, we have packed pieces of height at least 2i−1,

and the total width of these pieces is at least 2k−1. Hence, the density of pieces in the shelf is at least
1/4. Therefore, the total area of pieces in Bk is at least 2k · H̃/12. On the other hand, the area of the

bounding box is 2k · H̃, that yields the desired density.

Now we are ready to describe how the algorithm works. When the first piece p1 arrives, let 2k−1 <
w1 ≤ 2k, then we pack it in the box Bk according to NFSk and define Bk to be the active box. Suppose
now that Bi is the active box when the piece pj arrives, first we update the value of the threshold Tj−1

to Tj , then we have two cases. If wj > 2i we choose ` such that 2`−1 < wj ≤ 2`, pack pj in B` and define
B` to be the active box. Else, Bi is wide enough for pj and we try to pack pj into Bi. Since Bi has size
2i × Tj it may happen that NFSi exceeds the threshold Tj while packing pj , generating an overflow. In
this case, instead of packing pj in Bi, we pack pj into Bi+1 and define that to be the active box.

Theorem 16. The algorithm DynBoxTrans has an absolute competitive ratio of O(
√
n) for the problem

AreaTranslation on a stream of n pieces.

Proof. First, define Σj as the total area of the first j pieces, W := maxi=1,...,n wi and recall that Hj =
maxi=1,...,j hi and Tj = Hj

√
n+7Hj . Let Bk be the last active box, so that we can enclose all the pieces in

a bounding box of size 2k+1×Tn, and bound the area returned by the algorithm as Alg = O(2kHn
√
n).

On the other hand we are able to bound the optimal offline packing as Opt = Ω(Σn +WHn).
If the active box never changed, then we have 2k < 2W that implies Alg = O(WHn

√
n) = Opt ·

O(
√
n). Otherwise, let B` be the last active box before Bk, and pj be the first piece put in Bk. Here we

have two cases.
Case (1) [wj > 2`] In this case we have 2k < 2W that implies Alg = O(WHn

√
n) = Opt ·O(

√
n).

Case (2) [wj ≤ 2`] In this case we have k = ` + 1. Denote with H̃i the total height of shelves in Bi.

Then we have H̃` ≥ Tj − Hj = Hj
√
n + 6Hj , otherwise we could pack pj in B`. Thus, we can apply

Lemma 15 and conclude that the box B` of size 2`×Tj is filled with constant density. Here we have two
cases.
Case (2.1) [H̃k ≤ Tj ] In this case we have Alg = O(2kTj) and, thanks to the constant density packing

of B` we have Σj = Θ(2`H̃`) = Θ(2kTj). Since Opt ≥ Σj , we get Alg = O(Opt).

Case (2.2) [H̃k > Tj ] In this case we have Alg = O(2kH̃k). Moreover, H̃k = O(Hn + Σn/2
k), in fact if

2s−1 < Hn ≤ 2s, then the total height of sparse shelves is
∑

i≤s 2i = 2s+1 = O(Hn). Furthermore, dense

shelves are filled with constant density, therefore their total height is at most O(Σn/2
k). Finally, we need

to show that 2k = O(W
√
n). Thanks to the constant density packing ofB`, we have 2kHj

√
j = O(2`Tj) =

O(Σj). We can upper bound the size of every piece pi for i ≤ j with W ×Hj and obtain Σj ≤ n ·WHj .
Plugging it in the previous estimate and dividing both sides by Hj

√
n we get 2k = O(W

√
n). Now we

have Alg = O(2kH̃k) = O(2kHn + Σn) = O(WHn
√
n+ Σn) = Opt ·O(

√
n).
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D

Figure 8: Left: A 2× 2 square inside a bounding square having edges shorter than 4. Right: The 2× 2
square has been dragged in the bottom left corner of the bounding square. Four 1×1 squares Q1, . . . , Q4

are placed within the bounding square.

The algorithm DynBoxRot is obtained from DynBoxTrans with a slight modification: before
processing any piece pi we rotate it so that wi ≤ hi. In this way, it still holds that Opt = Ω(Σn +WHn)
and the proof of Theorem 16 works also for the following.

Theorem 17. The algorithm DynBoxRot has an absolute competitive ratio of O(
√
n) for the problem

AreaRotation on a stream of n pieces.

3.3 Bounded aspect ratio

In this section, we will consider the special case where the aspect ratio of all pieces is α = 1, i.e., all the
pieces are squares. Furthermore, we will measure the size of the packing as the area of the minimum
axis-parallel bounding square, and we call the resulting problem SquareInSquareArea. Since we get
a constant competitive ratio in this case, it follows that for other values of α and when allowing the
bounding box to be a general rectangle, one can likewise achieve a constant competitive ratio. We first
give a lower bound.

Lemma 18. Consider any algorithm A for the problem SquareInSquareArea. Then the competitive
ratio of A is at least 16/9.

Proof. We first give A four 1×1 squares. Let the bounding square have size `× `. If ` ≥ 3, the bounding
square of the four 1× 1 squares has size at least 3× 3, while the optimal packing has size 2× 2, which
gives ratio at least 9/4. Otherwise, if ` < 3, we give a 2× 2 square and we will prove that the bounding
square has size at least 4×4 while the optimal packing fits in a 3×3 square, so the ratio is at least 16/9.

Let us assume by contradiction that there exists a (4 − ε) × (4 − ε) bounding square containing
both a 2 × 2 square and four 1 × 1 squares, with the additional hypothesis that the 1 × 1 squares fit
in a (3 − δ) × (3 − δ) bounding box. We refer to notation in Figure 8 (left) and notice that we have
a < 1 or b < 1, and analogously c < 1 or d < 1. Without loss of generality, we can assume a, d < 1.
Hence, starting from the configuration in Figure 8 (left) we can drag the 2× 2 square to the bottom left
corner and obtain the configuration in Figure 8 (right), that still fulfill the hypotheses we assumed by
contradiction.

From now on we employ the notation of Figure 8 (right). Let (xi, yi) be the coordinates of the bottom
left corner of square Qi. Stating that Qi and Qj are disjoint is equivalent to max{|xi−xj |, |yi−yj |} ≥ 1.
Consider now the two rectangular regions ABDE and GCDF : note that each of them can contain at
most two squares. Indeed, given Qi and Qj completely contained in ABDE, it holds |yi − yj | ≤ 1 − ε
thus |xi − xj | ≥ 1. If three squares Q1, Q2, Q3 are completely contain in ABDE then we have, without
loss of generality, x1 ≤ x2 − 1 ≤ x3 − 2 and the minimal bounding square of Q1, Q2, Q3 has size at least
3× 3, that gives a contradiction. The same holds for GCDF .
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F2
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U2k
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B>2k
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E3

E5

U2k

B>2k

Figure 9: Left: A 2k-packing. The grey bricks are non-empty and may have been split into smaller
bricks. Right: The 2k-packing produced by BrickTranslation when providing the algorithm with
enough copies of the square Sk (the small grey squares), showing that the competitive ratio can be
arbitrarily close to 6.

Finally, every Qi is either fully contained in ABDE or GCDF hence, without loss of generality,
we can assume that Q1, Q2 are contained in ABDE and Q3, Q4 are contained in GCDF . This implies
that x1 ≤ x2 − 1 and y4 ≤ y3 − 1, again without loss of generality. Observe that x2 ≤ x3 + 1 − ε
and y3 ≤ y2 + 1 − ε. Q2 and Q3 are disjoint, using the previous characterization we have two cases.
First, |x2 − x3| ≥ 1 and thanks to the observation above it cannot be x2 > x3, therefore we have
x1 ≤ x2−1 ≤ x3−2. Else, |y2−y3| ≥ 1 and thanks to the observation above we have y4 ≤ y3−1 ≤ y2−2.
In both cases that gives a contradiction since we cannot pack all Qis in a (3 − δ) × (3 − δ) bounding
square.

We are now going to analyze the competitive ratio of the algorithm BrickTranslation (in fact,
the algorithm BrickRotation has the exact same behavior when the pieces are squares). Note that a
brick can never contain more than one piece. The algorithm is almost the same as the one described by
Fekete and Hoffmann [13]. The slight difference is addressed in Section 2.2 and it is shown there that the
behavior as described by Fekete and Hoffmann makes a worse algorithm for the problem Perimeter-
Translation. However, even though the two algorithms will not always produce identical packings
for the problem SquareInSquareArea, the analysis of the following theorem seems to hold for both
versions, so for the problem SquareInSquareArea, the algorithms are equally good.

Theorem 19. The algorithm BrickTranslation has a competitive ratio of 6 for SquareInSquare-
Area. The analysis is tight.

Proof. Suppose a stream of squares have been packed by BrickTranslation, and let Alg be the area
of the bounding square of the resulting packing. Let Bk be the largest elementary brick in which a square
has been placed. Suppose without loss of generality that k = 0, so that Bk has size 1× 1/

√
2 and B≥k,

which contains all the packed squares, has size 1×
√

2.
We now recursively define a type of packing that we call a 2k-packing, for a non-negative integer

k; see Figure 9 (left). As k increases, so do the requirements to a 2k-packing, in the sense that a
(2k + 2)-packing is also a 2k-packing, but the other way is in general not the case. Define F0 := B≥1

and U0 := B0. A packing is a 0-packing if pieces have been placed in U0 (the brick U0 may or may
not have been split in smaller bricks). Hence, the considered packing is a 0-packing by the assumption
that a piece has been placed in B0. Suppose that we have defined a 2k-packing for some integer k. A
(2k + 2)-packing is a 2k-packing with the additional requirements that
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• the brick U2k has been split into L := U2k † 1 and E2k+1 := U2k † 2,

• the right brick E2k+1 is empty,

• the left brick L has been split into F2k+2 := L † 1 and U2k+2 := L † 2, and

• U2k+2 is non-empty, and thus also F2k+2 is non-empty.

The symbols Uj , Ej , Fj have been chosen such that the brick is a j-brick, i.e., the index tells the size
of the brick.

Consider a 2k-packing. It follows from the definition that along the top edge of B≥0 from the
right corner (1,

√
2) to the left corner (0,

√
2), we meet a sequence E1, E3, . . . , E2k−1 of empty bricks of

decreasing size, and finally meet a non-empty brick U2k which may have been split into smaller bricks.

Claim 20. If the packing is a 2k-packing and not a (2k + 2)-packing, then Alg/Opt < 6.

Since we pack a finite number of squares, the produced packing is a 2k-packing but not a (2k + 2)-
packing for some sufficiently large k, so Claim 20 implies Theorem 19.

Let us now prove Claim 20. We first compute the area of the brick U2k and the total areas of the
bricks F0, F2, . . . , F2k, as these areas will be used often:

uk := |U2k| = 2−2k/
√

2 (1)

fk :=
k∑

i=0

|F2i| =
2|B≥0| − uk

3
=

4− 4−k

3
√

2
. (2)

1) Suppose first that U2k has not been split into smaller bricks. Then, since U2k is non-empty by as-

sumption, we know that U2k contains a square S of size s×s where s ∈ (sl, sh] =
(√

2
−2k−2

,
√

2
−2k−1

]
.

Since the bricks E1, E3, . . . , E2k−1 are all empty, we get that the upper edge of the bounding square
coincides with the upper edge of S, and we thus have

Alg ≤ Alg(s) := (
√

2− (
√

2
−2k−1 − s))2.

The largest empty brick in the bricks F2i can have size |U2k|/2, so the total size of empty bricks in
F0, F2, . . . , F2k is |U2k|. Moreover, the density of squares into bricks is at least 1/2

√
2 and by (2),

we get that

Opt ≥ Opt(s) :=
fk − uk

2
√

2
+ s2 =

1− 4−k

3
+ s2.

In the case that k = 0, we get

Alg

Opt
≤ Alg(s)

Opt(s)
=

2s
√

2 + 2s2 + 1

2s2
.

A simple analysis shows that the fraction is largest when s = sl, so we get the bound

Alg

Opt
≤ 2sl

√
2 + 2s2

l + 1

2s2
l

= 3 + 2
√

2 < 5.83

Suppose now that k > 0. We divide into two cases of whether s is in the lower or the upper half
of the range (sl, sh]. For the lower half, that is, s ∈ (sl,

sl+sh
2 ], we get

Alg

Opt
≤ Alg( sl+sh

2 )

Opt(sl)
=

96 · 4k + (24
√

2− 48) · 2k − 6
√

2 + 9

16 · 4k − 4
.

It is straightforward to check that (24
√

2− 48) · 2k − 6
√

2 + 9 < 6 · (−4) for all k ≥ 1, so it follows
that the ratio is less than 6.

For the upper half, that is, s ∈ [ sl+sh
2 , sh], we get

Alg

Opt
≤ Alg(sh)

Opt( sl+sh
2 )

=
96 · 4k

16 · 4k + 6
√

2− 7
.

As 6
√

2− 7 > 0, the ratio is less than 6.
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2) We now assume that U2k has been split into a L and E2k+1, which are the left and right halfs of
U2k, respectively.

2.1) We first suppose that E2k+1 is not empty. This implies that there is no empty (2k + 1)-
brick in F0, F2, . . . , F2k, U2k. Hence, each empty brick in the bricks F0, F2, . . . , F2k, U2k is a
(2k + 2)-brick or smaller, so these empty bricks have total size at most uk/2. We then get

Opt ≥ fk + uk − uk/2
2
√

2
=

1

3
+

4−k

24
>

1

3
.

Since Alg ≤ 2, it follows that Alg
Opt < 6.

2.2) We now suppose that E2k+1 is empty.

2.2.1) Suppose now that L has not been split into smaller bricks. Then L contains a square S

of size s× s for s ∈ (sl, sh] =
(√

2
−2k−3

,
√

2
−2k−2

]
. As in case 1, we get

Alg ≤ Alg(s) := (
√

2− (
√

2
−2k−1 − s))2.

Note that there is no empty (2k + 1)-brick in the bricks F0, F2, . . . , F2k, so these bricks
contain a total area of at most uk/2 empty bricks. We then get

Opt ≥ Opt(s) :=
fk − uk/2

2
√

2
+ s2.

We then get the bound

Alg

Opt
≤ Alg(sh)

Opt(sl)
=

24 · 4k + (12
√

2− 24) · 2k − 6
√

2 + 9

4 · 4k − 1
.

Here, it is straightforward to verify that (12
√

2 − 24) · 2k − 6
√

2 + 9 < 6 · (−1) for all
k ≥ 0, and hence the ratio is less than 6.

2.2.2) We now assume that L has been split into F2k+2 and U2k+2, which are the bottom and
top parts, respectively.

2.2.2.1) Suppose that U2k+2 is empty. Since also E1, E3, . . . , E2k+1 are empty, we get that

Alg ≤ (
√

2−
√

2
−2k−1

/2)2.
Note that each empty bricks in the bricks F0, F2, . . . , F2k+2 can have size at most
uk/8, so the total size of the empty bricks is at most uk/4 = uk+1, and we get

Opt ≥ fk+1 − uk+1

2
√

2
.

We therefore get
Alg

Opt
≤ 48 · 4k − 24 · 2k + 3

8 · 22 k − 2
.

Here, it is straightforward to check that −24 · 2k + 3 < 6 · (−2) for all k ≥ 0, so the
ratio is less than 6.

2.2.2.2) We are finally left with the case that U2k+2 is not empty. But then all the requirements
are satisfied for the packing to be a (2k + 2)-packing.

We now observe that the analysis is tight. To this end, we show that for any given k and a small
ε > 0, we can force the algorithm to produce a 2k-packing, such that as k −→∞ and ε −→ 0, the ratio
Alg
Σ tends to 6, where Σ is the total area of the packed squares. Let εk := ε

√
2
−k

, `k :=
√

2
−k
/2 + εk,

and let Sk be a square of size `k× `k. We now feed the algorithm with copies of Sk. This will eventually
result in a 2k-packing, where each non-empty brick is a 2k-brick; see Figure 9 (right). Let nk be the

number needed to produce the 2k-packing. The density in each non-empty brick is ρε := |Sk|
|B2k| . As

ε −→ 0, we get that ρε −→ 1
2
√

2
. As k −→ ∞, the area of non-empty bricks converges to

2|B≤0|
3 = 2

√
2

3 .

Hence, we have Σ −→ 1
2
√

2
· 2
√

2
3 = 1

3 . We then get Alg
Σ −→ 2

1/3 = 6. Furthermore, the optimal packing

of the squares is to place them so that their bounding box is a square of size d√nke`k × d
√
nke`k. As

k −→∞, we then have Σ
Opt −→ 1. Hence, we have Alg

Opt −→ 6.
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3.4 More lower bounds when edges are long

We already saw in Corollary 14 that as a function of n, the competitive ratio of an algorithm for Area-
Translation or AreaRotation must be at least Ω(

√
n), even when all edges have length 1. In this

section, we give lower bounds in terms of Opt for the same case. Note that the assumption that the
edges are long is needed for these bounds to be matched by actual algorithms, since Corollary 13 states
that without the assumption, the competitive ratio cannot be bounded as a function of Opt.

Theorem 21. Consider any algorithm A for the problem AreaTranslation with the restriction that
all edges of the given rectangles have length at least 1. If A has an asymptotic competitive ratio f(Opt)
as a function of Opt, then f(Opt) = Ω(

√
Opt).

Remark 22. Note that when the edges are long, Ω(
√
Opt) = Ω(

√
n), so this bound is stronger than

the Ω(
√
n) bound of Corollary 14.

Proof of Theorem 21. For any n ∈ N, we do as follows. We first provide A with n2 unit squares. Let the
bounding box of the produced packing of these squares have size a×b. Assume without loss of generality
that a ≤ b, so that b ≥ n. We now give A the rectangle n2 × 1. The optimal offline solution to this set
of rectangles has a bounding box of size n2 × 2. The packing produced by A has a bounding box of size
at least n2 × n = Ω(

√
Opt) ·Opt.

Theorem 23. Consider any algorithm A for the problem AreaRotation with the restriction that all
edges of the given rectangles have length at least 1. If A has a competitive ratio f(Opt) as a function of
Opt, then f(Opt) = Ω( 4

√
Opt).

Proof. For any n ∈ N, we do as follows. We first provide A with n2 unit squares. Let the bounding
box of the produced packing of these squares have size a × b. Assume without loss of generality that
a ≤ b. If a ≥ n1/2, we give A the rectangle 1 × n2. Otherwise, we have b > n3/2, and then we give A
the square n × n. In either case, there is an optimal offline solution of area 2n2, but the bounding box
of the packing produced by A has area at least n5/2 = Ω( 4

√
Opt) ·Opt.

3.5 Algorithms when edges are long

In this section, we describe algorithms that match lower bounds of Section 3.4. We analyze these
algorithms under the assumption that we feed them with rectangles with edges of length at least 1 (of
course, any other positive constant will also work), but we require no bound on the aspect ratio. Under
this assumption, we observe that DynBoxTrans has absolute competitive ratio O(

√
Opt) for Area-

Translation. We then describe the algorithm DynBoxRot 4√
Opt, which we prove to have absolute

competitive ratio O( 4
√
Opt) for AreaRotation. By Theorems 21 and 23, both algorithms are optimal

to within a constant factor.
In previous sections we proved lower bounds of Ω(

√
n) and Ω( 4

√
Opt) for AreaRotation. They

can be summarized stating that AreaRotation has a competitive ratio of Ω(max{√n, 4
√
Opt}). The

last theorem of this section, describes the algorithm DynBoxRot√n∧ 4√
Opt that simultaneously matches

both lower bounds achieving a competitive ratio of O(min{√n, 4
√
Opt}. At a first sight it may seem

that this algorithm contradicts the lower bound of Ω(max{√n, 4
√
Opt}); however this simply proves that

the edge cases that have a competitive ratio of at least Ω( 4
√
Opt) must satisfy Opt = O(n2). Likewise,

those for which the competitive ratio is at least Ω(
√
n) satisfy n = O(

√
Opt).

Translations only Under the long edge assumption, we have n ≤ Opt. Therefore, DynBoxTrans
achieves a competitive ratio of O(

√
n) = O(

√
Opt) for AreaTranslation and matches the bound

stated in Theorem 21.

Rotations allowed Now we tackle the AreaRotation problem and describe the algorithm Dyn-

BoxRot 4√
Opt. We define the threshold function Tj = Σ

3/4
j + 7Hj , where Hj = maxi=1,...,j hi and Σj is

the total area of pieces p1, . . . , pj . DynBoxRot 4√
Opt is obtained by running DynBoxRot, as described

in Section 3.2, employing this new threshold Tj .
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Theorem 24. The algorithm DynBoxRot 4√
Opt has an absolute competitive ratio of O( 4

√
Opt) for the

problem AreaRotation, where Opt is the area of the optimal offline packing.

Proof. This proof is similar to the one of Theorem 16. Define W := maxi=1,...,n wi. Recall that in
DynBoxRot we preprocess every piece p rotating it so the wp ≤ hp, hence W ≤ √Σn. Let Bk be the
last active box, so that we can enclose all the pieces in a bounding box of size 2k+1× Tn, and bound the

area returned by the algorithm as Alg = O(2kHn + 2kΣ
3/4
n ). On the other hand we are able to bound

the optimal offline packing as Opt = Ω(Σn +WHn).

If the active box never changed, then we have 2k < 2W that implies Alg = O(WHn + Σ
5/4
n ) =

Opt ·O( 4
√
Opt). Otherwise, let B` be the last active box before Bk, and pj be the first piece put in Bk.

Here we have two cases.
Case (1) [wj > 2`] In this case we have 2k < 2W that implies Alg = O(WHn+Σ

5/4
n ) = Opt·O( 4

√
Opt).

Case (2) [wj ≤ 2`] In this case we have k = ` + 1. Denote with H̃i the total height of shelves in Bi.

Then we have H̃` ≥ Tj − Hj = Σ
3/4
j + 6Hj , otherwise we could pack pj in B`. Thus, we can apply

Lemma 15 and conclude that the box B` of size 2`×Tj is filled with constant density. Here we have two
cases.
Case (2.1) [H̃k ≤ Tj ] In this case we have Alg = O(2kTj) and, thanks to the constant density packing

of B` we have Σj = Θ(2`H̃`) = Θ(2kTj). Since Opt ≥ Σj , we get Alg = O(Opt).

Case (2.2) [H̃k > Tj ] In this case we have Alg = O(2kH̃k). Moreover, H̃k = O(Hn + Σn/2
k), in fact if

2s−1 < Hn ≤ 2s, then the total height of sparse shelves is
∑

i≤s 2i = 2s+1 = O(Hn). Furthermore, dense

shelves are filled with constant density, therefore their total height is at most O(Σn/2
k). Finally, we need

to show that 2k = O( 4
√

Σn). Thanks to the constant density packing of B`, we have 2kΣ
3/4
j = O(2`Tj) =

O(Σj). Dividing both sides by Σ
3/4
j we get 2k = O(Σ

1/4
j ). In the end notice that, thanks to the long edge

hypotheses Hn ≤ Σn and we have Alg = O(2kH̃k) = O(2kHn + Σn) = O(Σ
5/4
n ) = Opt ·O( 4

√
Opt).

So far we managed to match the competitive ratio lower bounds of Ω(
√
n) and Ω( 4

√
Opt) employing

two different algorithms: DynBoxRot and DynBoxRot 4√
Opt. A natural question is whether is it

possible to match the performance of these algorithms simultaneously, having an algorithm that achieves
a competitive ratio of O(min{√n, 4

√
Opt}). We give an affirmative answer by describing the algorithm

DynBoxRot√n∧ 4√
Opt.

Again, we employ the same scheme of DynBoxRot with a different threshold function. This time
the definition of Tj is slightly more involved. First define

T̃j =

{
Σ

3/4
j + 7Hj , if Σj < j2

Hj
√
n+ 7Hj , otherwise.

Later we will write T̃j as T̃j = 1{Σj<j2} · Σ3/4
j + 1{Σj≥j2} ·Hj

√
n+ 7Hj . We now define

Tj =

{
0, if j = 0

max
{
Tj−1, T̃j

}
, if j ≥ 1.

This two-step definition is necessary for a correct implementation of the algorithm because we must
guarantee that Tj does not decrease.

Theorem 25. When used on the problem AreaRotation, the algorithm DynBoxRot√n∧ 4√
Opt has an

absolute competitive ratio of O(min{√n, 4
√
Opt}), where Opt is the area of the optimal offline packing

and n is the total number of pieces in the stream.

Proof. Again, we define W := maxi=1,...,n wi. Recall that in DynBoxRot we preprocess every piece p
rotating it so the wp ≤ hp, hence W ≤ √Σn. Let Bk be the last active box, so that we can enclose all

the pieces in a bounding box of size 2k+1×Tn. There exists a n′ ≤ n such that Tn = T̃n′ . We can bound
the area returned by the algorithm as

Alg = O
(

2kT̃n′
)

= O
(

2kHn′ + 1{Σn′<n′2} · 2kΣ
3/4
n′ + 1{Σn′≥n′2} · 2

kHn′
√
n′
)
.
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We bound the optimal offline packing as Opt = Ω(Σn + WHn). If the active box never changed, then
we have 2k < 2W that implies

ALG = O
(
WHn + 1{Σn′<n′2} ·WΣ

3/4
n′ + 1{Σn′≥n′2} ·WHn′

√
n′
)

= O
(
WHn + 1{Σn′<n′2} · Σn

4
√

Σn′ + 1{Σn′≥n′2} ·WHn

√
n′
)

≤ Opt ·O
(

min
{

4
√

Σn′ ,
√
n′
})

= Opt ·O
(

min
{

4
√
Opt,

√
n
})

.

Otherwise, let B` be the last active box before Bk, and pj be the first piece put in Bk. Here we have
two cases.
Case (1) [wj > 2`] In this case we have, again, 2k < 2W and we use the same argument employed
above.
Case (2) [wj ≤ 2`] In this case we have k = ` + 1. Denote with H̃i the total height of shelves in Bi.

Then we have H̃` ≥ Tj −Hj ≥ T̃j −Hj ≥ 6Hj , otherwise we could pack pj in B`. Thus, we can apply
Lemma 15 and conclude that the box B` of size 2`×Tj is filled with constant density. Here we have two
cases.
Case (2.1) [H̃k ≤ Tj ] In this case we have Alg = O(2kTj) and, thanks to the constant density packing

of B` we have Σj = Θ(2`H̃`) = Θ(2kTj). Since Opt ≥ Σj , we get Alg = O(Opt).

Case (2.2) [H̃k > Tj ] In this case we still have Alg = O(2kH̃k). Moreover, H̃k = O(Hn + Σn/2
k), in

fact if 2s−1 < Hn ≤ 2s, then the total height of sparse shelves is
∑

i≤s 2i = 2s+1 = O(Hn). Furthermore,

dense shelves are filled with constant density, therefore their total height is at most O(Σn/2
k).

Finally, we need to show that 2k = O(min{ 4
√

Σn,
√
n}). Let Tj = T̃j′ , we have two cases.

Case (2.2.1) [Σj′ < j′2] We have T̃j′ ≥ Σ
3/4
j′ . And thanks to the constant density packing of B`, we

have also 2kΣ
3/4
j′ = O(2`Tj) = O(Σj′). Dividing both sides by Σ

3/4
j′ we get 2k = O( 4

√
Σj′).

Case (2.2.2) [Σj′ ≥ j′2] In this case we have T̃j′ ≥ Hj′
√
j′. Using the constant density argument

we get 2kHj′
√
j′ = O(2kT̃j′) = O(Σj′) ≤ O(j′ · WHj′). Dividing both sides by Hj′

√
j′ we obtain

2k = O(W
√
j′). Therefore, we have

2k =

{
O( 4
√

Σj′) if Σj′ < j′2

W
√
j′ otherwise.

In the end notice that, thanks to the long edge hypotheses Hn ≤ Σn, thus

Alg = O
(

2kH̃k

)
= O

(
2kHn + Σn

)

= O
(
1{Σj′<j′2} ·Hn

4
√

Σj′ + 1{Σj′≥j′2} ·WHn

√
j′ + Σn

)

≤ Opt ·O
(

min
{

4
√

Σj′ ,
√
j′
})

= Opt ·O
(

min
{

4
√
Opt,

√
n
})

.

4 Further questions

It is natural to consider problems where the given pieces are more general, such as convex polygons. Here,
we may allow the pieces to be rotated by arbitrary angles. In that case, it follows from the technique
described by Alt [2] that one can obtain a constant competitive ratio for computing a packing with a
minimum perimeter bounding box: For each new piece, we rotate the piece so that a diameter of the
piece is horizontal. We then use the algorithm BrickRotation to pack the bounding boxes of the
pieces. Since the area of each piece is at least half of the area of its bounding box, the density of the
produced packing is at least half of the density of the packing of the bounding boxes. This results in an
increase of the competitive ratio by a factor of at most

√
2.

For the problem of minimizing the perimeter of the bounding box (or convex hull) with convex
polygons as pieces and only translations allowed, we do not know if it is possible to get a competitive
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ratio of O(1), and this seems to be a very interesting question for future research. In order to design
such an algorithm, it would be sufficient to show that for some constants δ > 0 and Σ > 0, there is an
online algorithm that packs any stream of convex polygons of diameter at most δ and total area at most
Σ into the unit square, which is in itself an interesting problem. The three-dimensional version of this
question has a negative answer, even for offline algorithms: Alt, Cheong, Park, and Scharf [3] showed
that for any n ∈ N, there exists a finite number of 2D unit disks embedded in 3D that cannot all be
packed by translation in a cube with edges of length n.
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Abstract

We investigate various online packing problems in which convex polygons arrive one by one and have
to be placed irrevocably into a container before the next piece is revealed; the pieces must not be rotated,
but only translated. The aim is to minimize the used space depending on the specific problem at hand,
e.g., the strip length in strip packing, the number of bins in bin packing, etc.

We draw interesting connections to the following online sorting problem Online-Sorting[γ, n]: We
receive a stream of real numbers s1, . . . , sn, si ∈ [0, 1], one by one. Each real must be placed in an
array A with γn initially empty cells without knowing the subsequent reals. The goal is to minimize the
sum of differences of consecutive reals in A. The offline optimum is to place the reals in sorted order so
the cost is at most 1. We show that for any ∆-competitive online algorithm of Online-Sorting[γ, n], it
holds that γ∆ ∈ Ω(logn/ log logn).

We use this lower bound to answer several fundamental questions about packing. Specifically, we
prove the non-existence of competitive algorithms for various online translational packing problems of
convex polygons, among them strip packing, bin packing and perimeter packing. These results remain
true even if the diameter of all pieces is bounded by any small constant δ > 0, and even in the asymptotic
case, i.e., for arbitrarily large values of OPT. This also implies that there exists no online algorithm that
can pack all streams of pieces of diameter and total area at most δ into the unit square, i.e., the critical
packing density is 0. These results are in contrast to the case when the pieces are restricted to rectangles,
for which competitive algorithms are known. Likewise, the offline versions of packing convex polygons
have constant factor approximation algorithms. These offline algorithms sort the convex polygons by the
slope of their spine segment so that they form a fan-like pattern. In essence, our result shows that the
impossibility of solving the online sorting problem implies the non-existence of a competitive algorithm,
as it prevents arranging the pieces in a fan-like pattern.

On the positive side, we present an algorithm with competitive ratio O(n0.59) for online translational
strip packing of convex polygons. This beats the trivial n-competitive algorithm that places each new
piece as far into the strip as possible.

For Online-Sorting[1, n], i.e., if A has n cells, we show that any online algorithm has a competitive
ratio in Ω(

√
n), and describe an algorithm with competitive ratio O(

√
n). This can be seen as an

asymptotically tight analysis of an online variant of the traveling salesperson problem on the real line. In
the case of Online-Sorting[C, n] for any constant C > 1, we present an O(2O(

√
logn log logn))-competitive

algorithm.
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the VILLUM Foundation grant 16582. Lorenzo Beretta receives funding from the European Union’s Horizon 2020
research and innovation program under the Marie Sk lodowska-Curie grant agreement No. 801199. Linda Kleist was
able to visit BARC by the support of a postdoc fellowship of the German Academic Exchange Service (DAAD).

ar
X

iv
:2

11
2.

03
79

1v
1 

 [
cs

.C
G

] 
 7

 D
ec

 2
02

1



1 Introduction

Packing problems are omnipresent in our daily lives and likewise appear in many large-scale industries. For
instance, two-dimensional versions of packing arise when a given set of pieces have to be cut out from a
large piece of material such that waste is minimized. This is relevant in clothing production where pieces
are cut out from a strip of fabric, and similarly in leather, glass, wood, and sheet metal cutting. In these
settings, it is often important that the inherent structure of the host material (grain of fabric, patterns, etc.)
is respected, i.e., the pieces should not be arbitrarily rotated, but merely translated. In some applications,
the objects appear in an online fashion, i.e., the pieces appear one after the other, and each of them must be
placed before the next one is known. This is in contrast to offline problems, where all the pieces are known
in advance. Problems related to packing were some of the first for which online algorithms were described
and analyzed. Indeed, the first use of the terms “online” and “offline” in the context of approximation
algorithms was in the early 1970s and used for algorithms for bin-packing problems [20]. Most existing
research on packing, and all research on online translational packing that we are aware of, is concerned with
axis-parallel rectangular pieces.

In this paper, we study online translational packing of convex polygons. The pieces arrive one by one
and have to be placed irrevocably into a horizontal strip (or into bins, a square, the plane) before the next
piece is revealed, and only translations of the pieces are allowed. The aim is to minimize the used space
depending on the specific problem at hand, e.g., the used length of the strip, the number of bins, etc.

To develop lower bounds for these packing problems, we introduce the problem Online-Sorting[γ, n]
which we believe to be of independent interest. In this problem, we have an empty array A with γn cells,
γ ≥ 1, and receive a stream of real numbers s1, . . . , sn, si ∈ [0, 1]. Each real has to be placed into an empty
cell of A before the next real is known. The goal is to minimize the sum of differences of consecutive reals
in A. The offline optimum is obtained by placing the reals in sorted order in some n cells of A. We show
that Online-Sorting does not allow for constant factor competitive online algorithms.

Theorem 1. Suppose that γ,∆ ≥ 1 are such that Online-Sorting[γ, n] admits a ∆-competitive algorithm,
then γ∆ = Ω(log n/ log log n).

We then use this insight to show that various packing problems do not allow for constant factor asymp-
totically competitive online algorithms. In Strip-Packing, we have a horizontal strip of height 1 which
is bounded to the left by a vertical segment and unbounded to the right. The goal is to place the pieces
so that we use a part of the strip of minimum length. In Bin-Packing, the pieces have to be placed in
unit squares, and the goal is to use a minimum number of these squares. In Perimeter-Packing, we can
place the pieces anywhere in the plane, and the goal is to minimize the perimeter of their convex hull. In
Square-Packing[δ], we receive a stream of pieces with diameter at most δ and total area at most δ, and
the goal is to place them in a unit square. For more background on each of these packing problems and their
relation to previous work, we refer to Section 1.2.

Theorem 2. The following holds, where n is the number of pieces:

(a) Strip-Packing does not allow for a competitive online algorithm, even if all pieces have diame-
ter at most δ for any constant δ > 0. In particular, the competitive ratio of any algorithm is
Ω(
√

log n/ log log n).

(b) Bin-Packing does not allow for a competitive online algorithm, even if all pieces have diameter at most
δ for any constant δ > 0. In particular, the competitive ratio of any algorithm is Ω(

√
log n/ log log n).

(c) Perimeter-Packing does not allow for a competitive online algorithm, even if all pieces have di-
ameter at most δ for any constant δ > 0. In particular, the competitive ratio of any algorithm is
Ω( 4
√

log n/ log log n).

(d) Square-Packing[δ] does not allow for an online algorithm for any δ ∈ (0, 1]. In particular, for any
algorithm and infinitely many n, there exists a stream of n pieces of total area O(

√
log log n/ log n)

that the algorithm cannot pack in the unit square.

Here, (a) and (b) even hold in the asymptotic sense, i.e., if we restrict ourselves to instances with offline
optimal cost at least C, for any constant C > 0.
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On the positive side, we present online algorithms for both online sorting and strip packing. For Online-
Sorting[γ, n], we distinguish two scenarios: the case without any extra space, i.e., γ = 1, and the case
γ = 1 + ε a constant ε > 0. In the case γ = 1, we can provide an asymptotically tight analysis.

Theorem 3. There exists an online algorithm for Online-Sorting[1, n] with competitive ratio at most
18
√
n. Every online algorithm of Online-Sorting[1, n] has competitive ratio at least

√
n/2.

As we describe in Section 1.3, this can be seen as an asymptotically tight analysis of an online version
of the travelling salesperson problem (TSP) on the real line. Indeed, we can imagine that we must visit n
cities on [0, 1] at time steps 1, . . . , n. The position of each city is revealed to us in an online fashion and
we immediately have to decide the time step where we visit this city. In addition to packing and TSP, we
believe that the online sorting problem can be useful when studying other online problems as well.

In contrast to Theorem 3, when the available space is a constant factor larger than n, there exists an
algorithm with competitive ration no(1).

Theorem 4. For any ε > 0, there exists an algorithm for Online-Sorting[1 + ε, n] with competitive ratio

2O(
√

logn log logn).

We note that there is an exponential gap between the lower and upper bounds in Theorem 1 and Theo-
rem 4. It is an interesting open problem to close this gap, say for Online-Sorting[2, n].

There is a trivial n-competitive algorithm Strip-Packing that places each of the n pieces as deep into
the strip as possible. Improving upon this turns out to be quite challenging. We present an online algorithm
with competitive ratio O(nlog 3−1 log n) = O(n0.59), where log x denotes the base-2 logarithm of x.

Theorem 5. There exists an algorithm for Strip-Packing with competitive ratio O(nlog 3−1 log n), where
n is the number of pieces.

Another interesting open problem is to improve upon this. Is it for example possible to obtain an no(1)-
competitive algorithm for Strip-Packing as we have for Online-Sorting[1 + ε, n]? Because the sorting
problem is much simpler than the packing problem, the lower bound from Theorem 1 implies a lower bound
for Strip-Packing, but the algorithm behind Theorem 4 does not lead to any packing algorithm.

1.1 The necessity of sorting pieces by slope

Our results in Theorem 2 are in contrast to translational offline packing of convex polygons for which
constant factor approximations exist. In a recent paper, Alt, de Berg, and Knauer [5, 6] gave a constant-
factor approximation algorithm for offline translational packing of convex polygons so as to minimize the area
of their bounding box. The algorithm works by first grouping the pieces into exponentially increasing height
classes and then sorting the pieces in each height class by the slopes of their spine segments; see Figure 1.
The spine segment of a piece is the line segment from the bottommost to the topmost corner. Placing the
pieces in rows in this sorted order (so that each row appears as a fan-like pattern) yields a compact packing
with constant density.

Figure 1: A fan-like packing of pieces of nearly equal height. The pieces are sorted according to the slope of their
spine segments (dashed).

We show that similar procedures yield constant factor approximations for the offline version of strip
packing, bin packing, square packing and perimeter packing.
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Theorem 6. There are polynomial-time offline algorithms for the following packing problems:

(a) Offline-Strip-Packing, 32.7-approximation algorithm.

(b) Offline-Bin-Packing, 10.1-approximation algorithm if the diameter of all pieces is bounded by 1/10.

(c) Offline-Perimeter-Packing, 8.9-approximation algorithm.

(d) Offline-Square-Packing[1/10], in particular, every set of convex polygons of diameter and total
area at most 1/10 can be packed into the unit square.

The contrast between Theorem 2 and Theorem 6 shows that sorting the pieces by the slope of their
spine segments is essential for obtaining an efficient packing. In particular, we use the lower bound from
Theorem 1 to create an adaptive stream of pieces that will force any packing algorithm to use excessive
space. In the reduction, the numbers to be sorted in the online sorting problem correspond to the slopes of
the spine segments in the packing problems, and the impossibility of placing the numbers in nearly sorted
order implies that the packing algorithm is forced to produce an arrangement that is far from an optimal
fan-like pattern.

1.2 Relation to previous work on packing

The literature on online packing problems is vast. See the surveys of Christensen, Khan, Pokutta, and
Tetali [13], Epstein and van Stee [17], van Stee [41, 42], and Csirik and Woeginger [15] for an overview. Below
we survey the most important results for each of the types of packing problems mentioned in Theorem 2.
Let us highlight that when the pieces are restricted to axis-parallel rectangles, there are online algorithms
with constant competitive ratios solving all the problems of Theorem 2.

Strip packing. In strip packing, we have a horizontal strip of height 1 bounded by a vertical segment to
the left but unbounded to the right. The goal is to place the pieces in the strip so as to minimize the length
of the part of the strip that has been used. Milenkovich [34] and Milenkovich and Daniels [35] described
exact algorithms for offline strip packing where the pieces are simple or convex polygons.

Baker and Schwarz [9] described the first algorithms for online strip packing of rectangular pieces. The
FFS (First Fit Shelf) algorithm has a competitive ratio of 6.99 under the assumption that the height of
each rectangle is at most 1. Ye, Han, and Zang [43] improved the algorithm and obtained a competitive
ratio of 7/2 +

√
10 ≈ 6.6623 without the restriction on rectangle heights. Restricting the attention to large

instances, FFS has an asymptotic competitive ratio that can be made arbitrarily close to 1.7. Csirik and
Woeginger [16] described an improved algorithm with an asymptotic competitive ratio arbitrarily close to
h∞ ≈ 1.69103. This was later improved to 1.58889 by Han, Iwama, Ye, and Zhang [24]. In contrast, we
show that when the pieces are convex polygons, then no competitive algorithm exists (Theorem 2 (a)).

Bin packing. In bin packing, we have an unbounded supply of identical containers, and the goal is to
pack the pieces into as few containers as possible. As mentioned, online bin packing problems have been
studied since the early 1970s [20]. Many papers have been devoted to the study of online translational bin
packing axis-parallel rectangular pieces into unit square bins. In long sequences of papers, the upper bound
on the asymptotic competitive ratio for this problem has been decreased from 3.25 to 2.5545 and the lower
bound has been increased from 1.6 to 1.907 [23]. In this paper, we show that when packing convex polygons
instead of axis-parallel rectangles, there is no competitive algorithm (Theorem 2 (b)).

Perimeter packing. In some packing problems, the “container” has no predefined boundaries (contrary to
the cases of strip and bin packing and the study of critical densities), but the pieces can be placed anywhere
in the plane and the container is dynamically updated as the bounding box or the convex hull of the pieces.
The goal is then to minimize the size of the container. In 2D versions of this problem, natural measures of
size are the area or the perimeter of the container. Many papers have been written about offline versions of
these problems [2, 4, 5, 8, 14, 18, 29, 30, 31, 33, 34, 35, 37, 40].
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Online versions have received relatively little attention. Fekete and Hoffmann [19] studied online packing
axis-parallel squares so as to minimize the area of their bounding square, and gave an 8-competitive algo-
rithm for the problem. Abrahamsen and Beretta [1] gave a 6-competitive algorithm for the same problem
and studied the more general case where the pieces are axis-parallel rectangles and we want to minimize
the bounding box, with or without rotations by 90◦ allowed. They gave a 3.98-competitive algorithm for
minimizing the perimeter and showed that there exists no competitive algorithm for minimizing the area,
when the pieces can be arbitrary rectangles.

If the pieces are convex polygons that can be arbitrarily rotated, then the minimum perimeter problem
can be reduced to the case of packing axis-parallel rectangles by first rotating each piece so that a diameter
of the piece is horizontal. Then the density of the piece in its axis-parallel bounding box is at least 1/2,
and the algorithm for rectangles can be applied to the bounding box. An interesting question that remained
open was therefore whether there is a competitive algorithm for minimizing the perimeter when the pieces
are convex polygons that can not be rotated. We answer this question in the negative (Theorem 2 (c)).

Critical densities and square packing. The study of critical densities dates back at least to the 1930s.
In the famous Scottisch Book [32], Auerbach, Banach, Mazur and Ulam gave the following theorem (slightly
rephrased) and corollary without a proof.

Theorem (Potato Sack Theorem, [32]). If {Kn}∞n=1 is a sequence of convex bodies in R3, each of diameter
≤ δ and the sum of their volumes is ≤ V , then there exists a cube with sidelength s = f(δ, V ) such that all
the given bodies can disjointly be placed into it when rotations are allowed.

Corollary. One kilogram of potatoes can be put into a finite sack.

A simple proof of the theorem, generalized to an arbitrary dimension, was given by Kosiński [27]. It was
asked in [32] to determine the function f(δ, V ), which, in modern terms, means to determine the critical
density. That is, to find the largest value of V such that a sequence of convex bodies of diameters at most δ
and total volume V can always be placed in the unit cube. This theorem has sprouted a lot of interest
in determining critical densities in various settings. For instance, Moon and Moser [36] proved that any
sequence of d-dimensional cubes of total volume 1/2d−1 can be packed into the unit cube. As two cubes with
sidelengths 1/2 + ε, for any ε > 0, cannot be packed in the unit cube, this shows that the critical density
of packing cubes into a unit cube is 1/2d−1 for any d ≥ 1. Alt, Cheong, Park, and Scharf [7] showed that
there exist n 2D unit disks embedded in 3D (with different normal vectors) such that whenever they are
placed in a non-overlapping way, their bounding box has volume Ω(

√
n). It follows that when rotations are

not allowed, the critical density of packing convex bodies of bounded diameter into a cube is 0, or, in other
words, that one kilogram of potatoes cannot always be put into a finite sack by translation. In contrast to
this, the critical density of packing convex polygons of bounded diameter into the unit square by translation
is positive when the diameter is sufficiently small, as we prove in Theorem 6 (d).

The study of critical densities likewise makes sense when the pieces appear in an online fashion. A lower
bound on the critical density of online packing squares into the unit square has been improved in a sequence
of papers [11, 19, 25, 26] from 5/16 [26] to 2/5 [11]. Interestingly, Januszewski and Lassak [26] proved that
in dimension d ≥ 5, the critical density of online packing cubes into the unit cube is 1/2d−1, just as in the
offline case.

Lassak and Zhang [28] proved that the Potato Sack Theorem also holds for any dimension d ≥ 1 when the
convex bodies appear online, if rotations are allowed. In order to achieve this, each convex body of volume
V is rotated so that it has an axis-parallel bounding box of volume at most d! · V . The problem is therefore
reduced to online packing axis-parallel boxes. In simplified terms, it is then proved that for some constant
δ = δ(d) > 0, any sequence of axis-parallel boxes of diameter and total area at most δ can be packed online
in the d-dimensional unit hypercube. Determining whether the critical density of translational and online
packing convex 2D polygons is positive remained an interesting question: On one hand, this packing problem
is harder than the 2D offline version which has positive critical density (Theorem 6 (d)), and on the other
hand, it is easier than the 3D online version which has 0 critical density (since also the 3D offline version
has 0 critical density [7]). In this paper, we prove that the 2D online version also has critical density 0
(Theorem 2 (d)).
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1.3 Online sorting, TSP and scheduling

Theorem 3 can be seen as an asymptotically tight analysis of the traveling salesperson problem (TSP) on
the real line, following the online-list paradigm: We want to visit n cities in the unit interval [0, 1] over the
course of n days, one city per day. The positions of the cities are revealed sequentially to us in an online
fashion, and for each city, we have to immediately decide which day to visit that city. Our goal is to minimize
the total distance travelled. In fact, we could equally well imagine that we had γn days for our tour which
corresponds to Online-Sorting[γ, n].

The usually studied version of online TSP follows the online-time paradigm. Here, a server starts at
point 0 at time 0 and moves with at most unit speed. Each request σi = (ti, ri) is revealed at some time ti
and should be visited by the server at time ri or later. We want to minimize the time before the server has
visited all requests σ1, . . . , σn. This problem has been intensely studied [10]. The distinction between these
two paradigms is common in the area of scheduling, but the online-list variant of TSP has apparently not
received any attention so far.

Fiat and Woeginger [21] studied a scheduling problem following the online-list paradigm that seems
particularly related to online sorting: The goal is to minimize the average job completion time in a system
with n jobs and a single machine. In every step, a single new job arrives and must be scheduled to its time
slot immediately and irrevocably and without knowledge of the jobs that arrive in later steps. The offline
optimum is to schedule the jobs according to their processing times in sorted order. It was shown that no
algorithm can be log n-competitive, but that there is a O(log1+ε n)-competitive algorithm for all ε > 0. For
surveys on (online) scheduling, see [3, 12, 22, 38, 39].

1.4 Structure of the paper

In Section 2, we introduce our terminology and notation. In Section 3, we describe the connection between
the problems of online sorting and online strip packing. In Section 4, we analyze the online sorting problem
and prove Theorems 1, 3 and 4. In Section 5, we study online packing problems and present proofs for
Theorems 2 and 5. Finally, in Section 6, we consider the offline versions of the packing problems and prove
Theorem 6. See Figure 2 for an overview of the reductions we make.

Online-Sorting[C, n] Strip-Packing

Strip-Packing, Ø ≤ δ

Bin-Packing, Ø ≤ δ

Square-Packing[δ] Perimeter-Packing

Figure 2: An overview of our reductions. Note that an arrow from problem A to problem B means that an
algorithm for B implies an algorithm for A. Here, Ø ≤ δ means that the diameter of each piece is at most an
arbitrary constant δ > 0.

2 Terminology

In the online problems studied in this paper, the input is a stream σ1, . . . , σn of objects, and we need to
handle each object σi before we know the next ones σi+1, . . . , σn. Here, objects are either real numbers from
the unit interval [0, 1], in which case we call them reals, or they are convex polygons, in which case we call
them pieces. The problems will be defined in more detail in Section 3.

Let us now revisit the standard terminology of competitive analysis for an online algorithm A of a
minimization problem P. For any instance I of P, let OPT(I) denote the cost of the offline optimum
solution and A(I) denote the cost of the solution that A produces on input I. Let f be a function from the
set of instances to the real numbers (the functions f we consider will in fact only depend on n, the number
of pieces in I). We say that A has (absolute) competitive ratio f(I) if for all instances I it holds that

A(I) ≤ f(I) ·OPT(I).
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If A has competitive ratio f(I) ≤ c for some constant c, then we say that A is competitive.
Similarly, we say that A has asymptotic competitive ratio f(I) if there exists β > 0 such that for all

instances I it holds that
A(I) ≤ f(I) ·OPT(I) + β.

For a point p ∈ R2, we denote by x(p) and y(p) the x- and y-coordinates of p, respectively. For a compact
set of points S ⊂ R2, we define the diameter of S as maxp,q∈S |p− q|. We furthermore define the width and
height of S as

width(S) := max
p,q∈S

|x(p)− x(q)| and height(S) := max
p,q∈S

|y(p)− y(q)|.

If S is a polygon, we denote the area of S as area(S).
A parallelogram P is horizontal if P has a pair of horizontal edges. The horizontal edges of P are then

called the base edges. The shear of a horizontal parallelogram P is x(t) − x(b), where t and b are the top
and bottom endpoints of a non-horizontal edge of P , respectively.

3 The connection between online sorting and packing

In (translational) Strip-Packing, we have a horizontal strip S of height 1 which is bounded to the left by
a vertical segment and unbounded to the right; see Figure 3. We have to pack a stream of convex polygonal
pieces appearing online. We must place each piece before we know the next. Specifically, each piece must be
placed in S by a translation such that it is interior disjoint from all previously placed pieces. The occupied
part of S is the part from the left end of S to the vertical line through the rightmost corner of a piece placed
in S. The width or the cost of a packing is the width of the part of S that is occupied, i.e., the horizontal
distance from the left end of S to the rightmost corner of a piece placed in S.

r1 r2 . . .

width

r3 r4

Figure 3: Strip packing and online sorting.

In the problem Online-Sorting[γ, n], we are given an array A with γn cells. Each arriving real is
contained in the unit interval [0, 1]. After all n reals have been placed, define r := (r1, . . . , rn) to be the
numbers according to their left-to-right order in A. Furthermore, define the sentinel values r0 := 0 and
rn+1 := 1. Then the cost is given by

cost(r) :=
n∑

i=0

|ri+1 − ri|.

The offline optimum is achieved when the reals are in sorted order and is then exactly 1.
Figure 2 gives an overview of reductions we make. Arguably, the crucial reduction is that from Online-

Sorting to Strip-Packing, as described by the following lemma.

Lemma 7. If there exists a C-competitive algorithm for Strip-Packing, then there exists a 4C-competitive
algorithm for Online-Sorting[2C, n].

Proof. Suppose that we have a C-competitive algorithm A1 for Strip-Packing. Let s1, . . . , sn, si ∈ [0, 1],
be a stream of reals that we wish to sort online in an array A of size 2Cn. For each real si, we construct
a parallelogram Pi with height 1, base edges of length 1/n, and shear si. We then present A1 with Pi and
observe where the bottom left corner of Pi is placed in the strip. Let xi be the x-coordinate of this corner
(suppose that the line x = 0 forms the left boundary of the strip). We then place si in the cell of index
bnxic in the array A, and denote the resulting algorithm A2. Since the base segments of the parallelograms
have length 1/n, this will not cause any collisions in A.

By sorting the pieces P1, . . . , Pn in order of increasing shear and placing them in this order in the strip,
we obtain a packing of width at most 2, so A1 will place all pieces within a prefix of size 2C × 1 of the strip.
Hence, A2 will place each real in A.
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Figure 4: Two strip packings of the same set of parallelograms. Left: The packing we use as an upper bound for
the optimum (which is in fact the optimum). Right: An arbitrary packing with the gaps and segments that we count
shown as segments outside the strip.

Let r := (r1, r2, . . . , rn) be the numbers in the resulting left-to-right order in A produced by A2, and
let P ′i be the parallelogram corresponding to ri. We have the following contributions to the width of the
resulting packing; see also Figure 4.

• Between the vertical left boundary of the strip and the top edge of P ′1, there is a gap of length at least
r1 = |r1 − r0|.

• If ri ≤ ri+1, then there is a gap between the top edges of P ′i and P ′i+1 of length at least |ri+1 − ri|.

• If ri > ri+1, then there is a gap of length at least |ri+1− ri| between the bottom edges of P ′i and P ′i+1.

• The bottom base edges of the pieces have total length 1 ≥ |rn+1 − rn|.

The sum of all these gaps is at least cost(r), and as half of the sum appear as distances along the top or the
bottom edge bounding the strip, we get that the width of the produced packing is at least cost(r)/2. Now,
since A1 is C-competitive, we get that cost(r)/2 ≤ 2C, and hence cost(r) ≤ 4C.

4 Online sorting

In this section, we present upper and lower bounds for the online sorting problem. As a warm up, we consider
in Section 4.1 the case where we have no extra space, i.e., we are given n reals in [0, 1] in an online fashion to
be inserted into an array of length n. We prove Theorem 3, which gives an asymptotically tight analysis of
the optimal competitive ratio in this case. In Section 4.2, we proceed to prove Theorem 1, thereby obtaining
a general lower bound on the competitive ratio for Online-Sorting[γ, n]. Finally, in Section 4.3, we give
an upper bound on the competitive ratio of Online-Sorting[γ, n] for γ > 1.

4.1 Tight analysis of Online-Sorting[1, n]

For online sorting n numbers in an array A of size n, we can prove asymptotically tight bounds on the
optimal competitive ratio.1 We restate Theorem 3 below.

Theorem 3. There exists an online algorithm for Online-Sorting[1, n] with competitive ratio at most
18
√
n. Every online algorithm of Online-Sorting[1, n] has competitive ratio at least

√
n/2.

Proof. We start out by proving the lower bound. Let N := b
√

2nc. Consider a fixed but arbitrary online
algorithm A. We are taking the role of the adversary and present reals of the form k/N with k = 0, 1, . . . , N .
Clearly, if all reals are placed in an increasing fashion, the resulting cost is 1. This is the value A has to
compete against.

For a partially filled array, a real is expensive if it does not appear in a cell with an empty adjacent cell.
Our strategy is as follows. While there exists one, we present an expensive real. If we are able to present
n expensive reals, then any two consecutive entries are distinct and differ by at least 1/N. Consequently,
the cost is at least n+1

N ≥
√
n/2. On the other hand, if we reach a point where no real of the form k/N is

expensive, we present 0’s until all entries are filled. Then, any real of the form k/N will appear next to a 0

in the array, so the total cost is at least
∑N
k=0

k/N = (N + 1)/2 >
√
n/2.

Next we describe an algorithm A for Online-Sorting[1, n] with competitive ratio at most 18
√
n. Define

N1 := b√nc and partition [0, 1] into N1 intervals, J1, . . . , JN1
, each of length 1/N1. Further define N2 := 2N1

1We thank Shyam Narayanan for improving our initial O(
√
n logn) upper bound to the asymptotically tight O(

√
n).
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and partition the array A into N2 subarrays of contiguous cells, A1, . . . , AN2 , each of size either bn/N2c or
dn/N2e. Whenever A receives a real x ∈ Ji, it checks whether there exists a j such that Aj is not full and
already contains a number from Ji. If so, A places x in the leftmost empty cell of Aj . Otherwise, A checks
if there exists a j such that Aj is empty. If so, A places x in the leftmost cell of such an Aj .

Finally, if neither of the two above cases occur, then A recurses on the subarray formed by the union of
the empty cells of A.

Ignoring the sentinel values r0 := 0 and rn+1 := 1, we prove by induction on n that the total cost never

exceeds T (n) = α
√
n, where α := 5

√
2√

2−1
≈ 17.1. This clearly holds for n ≤ α2, as then T (n) ≥ n which is a

trivial upper bound on the total cost. So let n > α2 and assume inductively that the result holds for arrays
of length n′ < n. Let B ⊂ {1, . . . , n} denote the set of indices i such that A[i] is full when the algorithm
recurses for the first time. At this point, at most N1 − 1 of the N2 := 2N1 subarrays A1, . . . , AN2

can
be not completely filled, and each subarray must contain at least one real. In particular, |B| ≥ n/2. Let
Bc := {1, . . . , n} \ B and define D1 := {1 ≤ i < n | {i, i+ 1} ⊂ Bc}, and D2 := {1, . . . , n− 1} \D1. Define
Tj :=

∑
i∈Dj

|A[i+ 1]−A[i]| for j ∈ {1, 2}. The total cost incurred by the algorithm is then T1 +T2. By the

induction hypothesis, T1 ≤ T (|Bc|) ≤ T (bn/2c). Furthermore, we can upper bound T2 as

T2 ≤
n

N1
+

3N2

2
.

Here the first term comes from consecutive entries internal to a subarray that are both filled before the
algorithm recurses for the first time (these have pairwise distance at most 1/N1). The second term comes
from consecutive entries A[i], A[i+ 1] where A[i] is in some subarray Aj and A[i+ 1] is in the next Aj+1, or
A[i] is full when the algorithm recurses for the first time and A[i+ 1] becomes full in the recursion (in which
case we simply bound |A[i]−A[i+ 1]| ≤ 1). The total cost is therefore upper bounded by

T1 + T2 ≤ T (bn/2c) +
n

N1
+

3N2

2
≤ α

√
n

2
+ 5
√
n = α

√
n.

It is easy to check that including the sentinel values, the total cost incurred by the algorithm never exceeds
18
√
n. This completes the proof.

We remark that the constant 18 in Theorem 3 can be significantly reduced by optimizing over N1 and
N2 and using less crude bounds. We have abstained from doing so in order to obtain a simple exposition.

Having dealt with the case where we have no extra space, we turn to the setting where the array has
length γn for some γ > 1. This is the setting which is important for our reductions to the online packing
problems. In the following two sections, we prove lower and upper bounds, respectively, on how good online
sorting algorithms can perform in this case.

4.2 Lower bound for the general case of Online-Sorting

Let us restate our lower bound for the competitive ratio of any algorithm for Online-Sorting[γ, n], γ ≥ 1.

Theorem 1. Suppose that γ,∆ ≥ 1 are such that Online-Sorting[γ, n] admits a ∆-competitive algorithm,
then γ∆ = Ω(log n/ log log n).

Before delving into the proof, we first describe the high level idea on how to generate an adversarial
stream that incurs a high cost for any given algorithm. Assume for simplicity that γ is a constant, e.g.,
γ = 2 and that we want to prove a lower bound of ∆ on the total cost for some ∆ = (log n)Θ(1). We will
start by presenting the algorithm with reals coming from a set S of the form S = {i/n0 | 0 ≤ i ≤ n0} for
some n0 ≤ n. At any point, we consider the set of maximal intervals of empty cells of the array, call them
I1, . . . , I`. For each real x ∈ S, we define the home H(x) as the union of all such intervals Ij such that placing
x in Ij incurs no extra cost, i.e., the first non-empty cell to the left or right of Ij contains the real x. (In fact,
we will be a little more generous in the actual proof and allow for some small extra cost). If |H(x)| < n

∆n0
for

some x ∈ S, we simply present the algorithm with copies of x until one is placed outside H(x) and thus has
distance at least 1/n0 to its neighbours. This will essentially contribute a total cost of 1/n0 to the objective
function, i.e., an average cost of ∆/n per presented copy of x. Note that this is the correct average cost for
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a lower bound of ∆. However, it may well be the case that no such x ∈ S exists (the average size of H(x)
for x ∈ S is ≈ γn/n0 which is much larger). In this case, we coarsen the set S to a set S′ ⊂ S consisting
of every s’th element of S for some s = polylogn and only present the algorithm with reals from S′ from
this point on. Now for most x ∈ S, it holds that H(x) = O(n/n0) and that the distance from x to any
real in S′ is Ω(s/n0). Intuitively, this means that filling up H(x) with elements from S′ has a high cost of
s/n� ∆/n per presented real. We prove that this implies that we can point to a ‘deserted space’ consisting
of Ω(n/∆) empty cells, in which the algorithm can only place a negligible number of reals without incurring
a large total cost of ∆. Now we continue the process starting with S′. In each coarsening step, we specify a
‘deserted space’ of size Ω(n/∆) and we can importantly enforce that these spaces be disjoint. As the array
has 2n cells in total, this coarsening can happen at most O(∆) times. To ensure that we can in fact perform
this coarsening Ω(∆) times, we must ensure that s∆ � n, which in turn implies that ∆ = O(log n/ log log n).

Proof of Theorem 1. Let A denote any online algorithm for Online-Sorting[γ, n]. We may assume that n
is sufficiently large and that γ ≤ log n/ log log n. We will present the algorithm with an (adaptive) stream
that incurs a cost of Ω (log n/γ log log n).

Let C ∈ [3, 4] be minimal such that s := logC n is an integer and define δ := logn
16Cγ log logn . For i ∈ N, we

define

Si :=

{
k · s

i

n

∣∣∣∣ 0 ≤ k ≤ n/si
}

such that S1 ⊃ S2 ⊃ · · · . We also let i∗ ∈ N be maximal with si
∗ ≤ n. In other words, we define

i∗ := blog n/C log log nc. Our adversarial stream will consist of several phases, where in phase i ≥ 1, we
present A with reals coming from the set Si. By the end of each phase, we will mark a certain set of currently
empty cells of the array. The marked cells will represent parts of the array where A can only place a limited
number of reals without incurring a high cost. Identifying the array with [m], at any given point in time t,
i.e., after t reals in [0, 1] have been presented to A, we let Ft ⊂ [m] denote the full cells, Mt ⊂ [m] denote
the marked cells, and Rt := [m] \ (Ft ∪Mt) denote the remaining cells. We remark that Ft and Mt need not
be disjoint — even though a cell can only get marked when it’s empty, A might insert a real in that cell at
a later point in time.

Suppose that we are at time t and in some phase i. For an empty cell p ∈ Rt, we define Nt(p) ⊂ [m] to be
the set consisting of the first non-empty cell to the left and to the right of p. Thus |Nt(p)| ≤ 2. Furthermore,
for x ∈ Si, we define the home of x at time t to be the set

Ht(x) :=

{
p ∈ Rt

∣∣∣∣ ∃q ∈ Nt(p) such that |A[q]− x| < si

2n

}
.

By construction, a cell of A can be contained in at most two homes. We say that the home of x is small at

time t if |Ht(x)| < si

δ . In this case, we say that x is expensive at time t.
The adversarial stream is constructed in the phases (were we stop as soon as the array contains n reals).

Phase 0:
Present A with any real from S1. Proceed to phase 1.

Phase i ≥ 1:
While there exists an expensive real x ∈ Si (at some time t):

– Present A with copies of x until one is placed in a cell of Rt \Ht(x).
– Leave the set of marked cells unchanged.

If no expensive real exists at the current time t:

– Define the set of well-sized reals at phase i as Wi :=
{
x ∈ Si

∣∣ si
δ ≤ |Ht(x)| ≤ 4γsi

}
.

– Define the set of deserted reals at phase i as Di :=
{
x ∈Wi

∣∣∀y ∈ Si+1 it holds that |y−x| ≥ si+1

12n

}
.

– Define the deserted space at phase i as Di :=
⋃
x∈Di

Hi(x).
– Mark all the cells in Di (so that Mt := Mt−1 ∪ Di).

Note that si
∗+2/δ ≥ sn/δ > γn, so in phase i∗ + 2, the real 0 is always expensive and the process will

therefore eventually stop.
We prove three lemmas below which combine to give our desired result.

Lemma 8. Let i ≤ i∗ − 2. If the algorithm does not terminate in phase i, then |Di| ≥ n
8δ .
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Proof. We consider the situation in the end of a phase i where the algorithm has not terminated. Since for
each x ∈ Si \Wi, we have Ht(x) > 4γsi and a cell can lie in at most two homes, it follows that |Si \Wi| ≤
2· γn4γsi ≤ |Si|/2, and so |Wi| ≥ |Si|/2. Now Si+1 can be obtained from Si by including every s’th elements from

Si in increasing order starting with 0. If we define D′i :=
{
x ∈ Si | ∀z ∈ Si+1 it holds that |z − x| ≥ si+1

12n

}
,

it then follows that |D′i| ≥ 3
4 |Si|. Here we used the assumption that i ≤ i∗ − 2 which implies that that Si

consists of sufficiently many reals (at least s2) for the bound to hold. It follows that |Di| = |Wi∩D′i| ≥ |Si|/4.
Again using that each cell is contained in at most two homes, we have that

|Di| ≥
1

2
· |Si|

4
· s

i

δ
≥ n

8δ
.

Lemma 9. Let α > 0 and assume that the algorithm does not terminate in phase i. If at least 56αnγ/s
reals from Si+1 are placed in Di, then the total cost is at least α.

Proof. Write Di =
⋃
` J` as a disjoint union of maximal intervals of empty cells in Di. For each `, we have

that |J`| ≤ 4γsi. If at least 56αnγ/s reals are placed in Di, it follows that at least 14αn/si+1 of the intervals
receive at least one real from Si+1. For such an interval J`, we have by the definition of a home, that one of
the (up to two) non-empty cells immediately to the left and right of J` contains a real x of distance at most
si

2n to an element of Di. However, any x′ ∈ Si+1 placed in J` has distance at least si+1

12n to any element of

Di. It follows that |x − x′| ≥ si

2n ( s6 − 1) ≥ si

2n
s
7 = si+1

14n , assuming that n and hence s are sufficiently large.

Since the J` are disjoint, it easily follows that the total cost is at least si+1

14n · 14αn
si+1 = α.

Lemma 10. If A assigns n0 reals to unmarked cells, during phases 1, . . . , i∗, then the total cost is at least
δn0

4n − 1.

Proof. Write ai for the number of reals that the algorithm assigns to unmarked cells during phase i, so that∑
i≤i∗ ai = n0. Let bi := ai

dsi/δe and ci := bbic. We make the following claim.

Claim. The total cost is at least
∑
i≤i∗ ci · s

i

2n .

Proof of Claim. Note that during the while-loop of our algorithm, the assumption that the home of x is small
implies that it must happen at least ci times during phase i that a real from Si is placed outside its home.
When an real x gets placed in a cell p ∈ Rt \Ht(x) outside its home, the reals stored in the cells in Nt(p)

have distance at least si

2n to x. We say that an interval of cells [p1, p2] form an i-jump if |A[p1]−A[p2]| ≥ si

2n .
We say that an i-jump [p1, p2] and a j-jump [p′1, p

′
2] are disjoint if (p1, p2) ∩ (p′1, p

′
2) = ∅. We will show that

we can find a collection J of such jumps such that (1) the jumps in J are pairwise disjoint and (2) we
can make a partition J =

⋃
i≥1 J (i) such that J (i) contains at least ci i-jumps. The claim then follows

immediately by the triangle inequality.
To show the existence of such a collection J , suppose we at step t in some phase i are given a collection

of (≤ i)-jumps Jt and a partition Jt =
⋃
j≤i J

(j)
t such that J (j)

t consists of j-jumps. Suppose further that
we place a real x in a cell p ∈ Rt \Ht(x) at step t. Since x was placed outside of its home, any of the (up to
two) intervals with one endpoint at p and the other at a cell of Nt(p) will form an i-jump. Now if p is not

contained in a jump of Jt, we can easily extend to a collection Jt+1 =
⋃
j≤i J

(j)
t+1 which still satisfies (1) and

where J (i)
t+1 contains one further i-jump. We simply add the i-jump between p and either of its neighbours

in Nt(p). Suppose on the other hand that p is contained in a j-jump [q1, q2] of J (j)
t for some j ≤ i. In this

case, we in particular have that |Nt(p)| = 2 and we write Nt(p) = {p1, p2} where p1 < p2. Then [p1, p] and
[p, p2] are both i-jumps and in particular j-jumps for j ≤ i. We then replace [q1, q2] with [p1, p] in J jt+1 and

include [p, p2] in J it+1 to obtain a collection Jt+1 =
⋃
j≤i J

(j)
t+1 having the same number of j-jumps for j < i

but one extra i jump compared to Jt. The existence of the collection J follows immediately from these
observations.
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Now assuming that n is sufficiently large, we have that bi ≥ δai
2si . Moreover, using the definition of i∗, it

is easy to check that
∑
i≤i∗ s

i ≤ 2n. Combining this with the claim, we can lower bound the total cost by

∑

i≤i∗
ci ·

si

2n
≥
∑

i≤i∗
(bi − 1) · s

i

2n
≥
∑

i≤i∗

δai
4n
−
∑

i≤i∗

si

2n
≥ δn0

4n
− 1,

as desired.

We now combine the two lemmas to prove a lower bound on the cost incurred by the algorithm on our
adversarial stream. Recall that C = 3 and δ = logn

16Cγ log logn . Suppose for contradiction that the algorithm

has not terminated by the end of phase i∗ − 2. Using Lemma 8 and the fact that the sets (Dj)j≤i∗−2 are
disjoint, we obtain that ∣∣∣∣∣∣

⋃

j<i∗
Dj

∣∣∣∣∣∣
≥ (i∗ − 2)

n

8δ
>

log n

2C log log n

n

8δ
≥ γn,

assuming that n is sufficiently large. This is a contradiction as there are only γn cells in A. Thus, the
algorithm must terminate during some phase i0 ≤ i∗ − 2. Now the algorithm must either place at least n/2
reals in marked cells or n/2 reals in unmarked cells. In the former case, there must be a phase i in which
n

2i∗ reals a placed in Di, and hence it follows from Lemma 9 that the total cost is Ω( s
i∗γ ) = Ω(log n). In the

latter case, it follows from Lemma 10 that the total cost is at least δ
8 − 1 = Ω

(
logn

γ log logn

)
.

4.3 Upper bound for the general case of Online-Sorting

In this section, we design an algorithm that shows the following theorem.

Theorem 4. For any ε > 0, there exists an algorithm for Online-Sorting[1 + ε, n] with competitive ratio

2O(
√

logn log logn).

First, we prove a slightly more general lemma, and then we instantiate it with the right set of parameters
to obtain Theorem 4.

Lemma 11. Let δ ∈ (0, 1/2) and [α, α+β) ⊆ [0, 1]. Then, for any k ≥ 1 with k ≤ 1/(2δ) + 1 there exists an
algorithm that solves Online-Sorting [1 + 2kδ, n] over any stream of reals r1, . . . , rn ∈ [α, α+ β) achieving
a cost of β · n1/(k+1)δ−O(k+1).

Proof. We prove the statement by induction on k. The base case of k = 1 follows directly from Theorem 3:
in fact, it is sufficient to apply the mapping x 7→ α + βx to the reals in our stream and notice that the
resulting cost also shrinks by a factor β. We call this version of the algorithm OnlineSorter1.

For the induction step, we define the algorithm OnlineSorterk using OnlineSorterk−1 as a subroutine.
Let b := bn1/(k+1)c, n′ := δnk/(k+1) and w := (1 + 2(k − 1)δ) · n′. For i ≥ 1, we define the box

Bi := [(i− 1) · w, i · w) .

We define the pointer vector p : [b] −→ N and initialize p(i) = i for each i ∈ [b]. We define the set of
active boxes A := {Bp(i) | i ∈ [b]} and let R := maxi∈[b] p(i) · w denote the rightmost cell index in any
active box. We say Bp(i) is full if it contains n′ reals. Given a real x ∈ [α, α + β), let i ∈ [b] be such that
(i − 1) · β ≤ (x − α)b < i · β. If Bp(i) is not full, we place x into Bp(i) using OnlineSorterk−1. Otherwise,
we assign a new active box and set p(i) := maxj∈[b] p(j) + 1, update A and R accordingly, and then place x
into Bp(i) using OnlineSorterk−1.

By the inductive hypothesis, OnlineSorterk−1 can place n′ reals into an array of size w. Hence, to
prove correctness we only have to ensure that the set of used boxes are contained in the array, i.e., that
R ≤ (1 + 2kδ)n. We show that the total number of empty cells in [1,R] is at most 2kδn and therefore there
must be n full cells in [1, (1 + 2kδ)n].

Let {B1, . . . , B`} be the set of boxes we used (either full or active), so that [1,R] =
⋃`
i=1Bi. We

partition [`] into F and E so that F := {i ∈ [`] |Bi is full} and E := [`] \ F . Denote with E(Bi) the number
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of empty cells in box Bi. If i ∈ F , we have E(Bi) ≤ w − n′ = 2(k − 1)δ · n′. Moreover, |F | ≤ n/n′ and
therefore ∑

i∈F
E(Bi) ≤

n

n′
· 2(k − 1)δ · n′ = 2(k − 1)δn.

If i ∈ E, we use the trivial bound E(Bi) ≤ w, moreover j ∈ E implies Bj ∈ A, hence |E| ≤ b. This yields

∑

i∈E
E(Bi) ≤ wb ≤ (1 + 2(k − 1)δ)n′ · n1/(k+1) = (1 + 2(k − 1)δ) · δn.

Putting everything together, we obtain

∑

i∈[`]

E(Bi) ≤ 2(k − 1) · δn+ (1 + 2(k − 1)δ) · δn ≤ 2kδn,

where the last inequality holds because 2(k − 1)δ ≤ 1 by assumption on k.
We are left to bound the total cost for which we likewise use induction. By cost(k)(r1, . . . , rn), we denote

the cost incurred by algorithm OnlineSorterk when facing the stream of reals r1, . . . , rn. We prove that
there exists C > 0 such that cost(k)(r1, . . . , rn) ≤ β ·n1/(k+1)δ−C·(k+1) for any stream of reals r1, . . . , rn with
ri ∈ [α, α+ β). For k = 1, we already explained above how Theorem 3 implies that OnlineSorter1 places a
stream r1, . . . , rn ∈ [α, α+ β) with a cost of cost(1)(r1, . . . , rn) = 18β

√
n, and we can choose C accordingly.

Now suppose k > 1, and let {B1, . . . , B`} be the set of full or active boxes. We have ` ≤ R/w ≤
(1 + 2kδ)n/w ≤ 3n1/(k+1)δ−1. We can think of our algorithm as partitioning the stream r1, . . . , rn into
substreams according to the box in which each real is placed. For i ∈ [`], denote the substream of length Li
placed in Bi with yi1, . . . , y

i
Li

so that we have {r1, . . . , rn} =
⋃`
i=1{yi1, . . . , yiLi

}. Moreover, Li ≤ n′ for each

i ∈ [`]. Define α′ := (i−1)·βn−1/(k+1) and β′ := βn−1/(k+1), then for each j ∈ [Li] it holds α′ ≤ yij < α′+β′.
By the induction hypothesis, the cost induced by the recursive call of OnlineSorterk−1 on box Bi is bounded
by

cost(k−1)
(
yi1, . . . , y

i
Li

)
≤ β′ · δ−Ck (Li)

1/k

≤ βn−1/(k+1) · δ−Ck
(
δnk/(k+1)

)1/k

≤ β · δ−Ck.

Now we are ready to estimate the total cost of OnlineSorterk as the sum of costs generated inside a box Bi
or between any two consecutive boxes:

cost(k) (r1 . . . rn) ≤ `β +
∑̀

i=1

cost(k−1)
(
yi1, . . . , y

i
Li

)

≤ `β ·
(
1 + δ−Ck

)

≤ 3n1/(k+1)δ−1β ·
(
1 + δ−Ck

)

≤ β · n1/(k+1)δ−C·(k+1)

where the last inequality holds if we choose C large enough.

Finally, we can prove Theorem 4.

Proof of Theorem 4. We apply Lemma 11 choosing α := 0, β := 1, k :=
√

log n/ log log n and δ := ε/(2k).
It uses (1 + 2kδ)n ≤ (1 + ε)n memory cells and yields a cost of

n1/(k+1) · δ−O(k+1) = 2O(logn/k+k log(2k/ε)) = 2O(
√

logn log logn).
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5 Online packing

In this section, we consider various online packing problems. In Section 5.1, we show that Strip-Packing
does not allow for a competitive online algorithm. In fact, the argument generalizes to the other important
online packing problems Square-Packing, Perimeter-Packing and Bin-Packing. This holds even when
all pieces have diameter less than an arbitrarily small constant δ > 0.

In Section 5.2, we present an online algorithm for convex strip packing. A naive greedy algorithm for
this problem places each new piece as deep into the strip as possible, and this algorithm is n-competitive,
where n is the number of pieces. Our algorithm is O(n0.59)-competitive.

5.1 Lower bounds — no competitive algorithms

Theorem 1 and Lemma 7 yield the following corollary.

Corollary 12. Strip-Packing does not allow for a competitive online algorithm, even when the diameter
of each piece is at most 2. Specifically, for every online algorithm A, there exists a stream of n parallelograms
of diameter at most 2 such that A produces a packing of width Ω(

√
log n/ log log n), while the optimal offline

packing has width at most 2.

Proof. Suppose that Strip-Packing has a C-competitive algorithm A. By Lemma 7, we get a 4C-
competitive algorithm A2 for Online-Sorting[2C, n]. Theorem 1 implies that 8C2 = Ω(log n/ log log n).
In particular, C = Ω(

√
log n/ log log n).

Specifically, the proof of Theorem 1 yields a stream of n reals whereA2 incurs a cost of Ω(
√

log n/ log log n).
By the proof of Lemma 7, this translates to a stream of n parallelograms that can be packed in a strip of
width 2, while A1 produces a packing of width Ω(

√
log n/ log log n).

We even get a non-constant asymptotic lower bound.

Corollary 13. For any algorithm A for Strip-Packing, a lower bound on the asymptotic competitive ratio
of A is Ω(

√
log n/ log log n), where n is the number of pieces, even when restricted to pieces of diameter less

than 2.

Proof. Assume for contradiction that A has asymptotic competitive ratio g(n) = o(
√

log n/ log log n). Let

P(A) be the stream described in Corollary 12, where A produces a packing of width Ω(
√

log n/ log log n),
while the optimal packing has width at most 2.

There exists a function f such that: (i) f(n) · g(n) ≤
√

log n/ log log n, (ii) f(n) ≤ n2, (iii) f(n) = ω(1),

and (iv) f is non-decreasing. If we append
√
f(n) unit squares to the stream P(A), we obtain a stream Q(A)

of n′ := n+
√
f(n) ≤ 2n pieces. Taking Q(A) as input, A produces a packing of width Ω(

√
log n/ log log n)

while the optimum is Θ(
√
f(n)). This implies that A has a competitive ratio of Ω

(√
logn/ log logn

f(n)

)
=

ω

(√
logn′/ log logn′

f(n′)

)
on instances having arbitrary large (at least

√
f(n)) optimal offline cost, contradiction.

The insights of Corollaries 12 and 13 imply negative answers also for various other online packing prob-
lems.

Theorem 2. The following holds, where n is the number of pieces:

(a) Strip-Packing does not allow for a competitive online algorithm, even if all pieces have diame-
ter at most δ for any constant δ > 0. In particular, the competitive ratio of any algorithm is
Ω(
√

log n/ log log n).

(b) Bin-Packing does not allow for a competitive online algorithm, even if all pieces have diameter at most
δ for any constant δ > 0. In particular, the competitive ratio of any algorithm is Ω(

√
log n/ log log n).

(c) Perimeter-Packing does not allow for a competitive online algorithm, even if all pieces have di-
ameter at most δ for any constant δ > 0. In particular, the competitive ratio of any algorithm is
Ω( 4
√

log n/ log log n).
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(d) Square-Packing[δ] does not allow for an online algorithm for any δ ∈ (0, 1]. In particular, for any
algorithm and infinitely many n, there exists a stream of n pieces of total area O(

√
log log n/ log n)

that the algorithm cannot pack in the unit square.

Here, (a) and (b) even hold in the asymptotic sense, i.e., if we restrict ourselves to instances with offline
optimal cost at least C, for any constant C > 0.

Proof. For each of the four packing problems, we consider an arbitrary algorithm A∗, where A∗ packs pieces
into a container S∗. Here, S∗ may be a strip, a set of bins etc., depending on the problem at hand. The main
idea in all the proofs is to cover S∗ by (rotated) substrips of a strip S of height 1/c for a (large) constant c,
so that we get a correspondence between points in S∗ and S. By feeding A∗ with a stream of parallelograms
and observing where they are placed in S∗, we get an online algorithm A for packing (slightly modified)
parallelograms into S. We can then by Corollary 13 choose a stream that forces A to produce a packing
much larger than the optimal one, which implies that A∗ has likewise produced a bad packing. This gives a
lower bound on the competitive ratio of A∗.

For a horizontal parallelogram P , a 2-extended copy is a parallelogram obtained by taking two copies of
P and identifying the bottom base segment of one with the top segment of the other copy. We now prove
each statement in the theorem.

(a) Suppose that A∗ is an algorithm for Strip-Packing restricted to pieces of diameter at most δ > 0.
The algorithm A∗ packs pieces into a strip S∗ of height 1. We define c := d4/δe. Recall that S is a
strip of height 1/c. We cut S into substrips S1, S2, . . ., each of which is a rectangles of size 1× 1/c. We
rotate these by 90◦ and use them to cover the strip S∗. Let S∗i be the part of S∗ corresponding to Si,
so that the rectangles S∗1 , S

∗
2 , . . . appear in this order from left to right in S∗; see Figure 5.

S∗ S∗
1 S

∗
2 S1 S2S P

P ∗

Figure 5: The figure shows the correspondence between the strips S∗ and S.

We now define an algorithm A for strip packing horizontal parallelograms of height 1/c and diameter
at most 2/c into S as follows. Let P be a piece to be packed in S, and let P ∗ be the piece obtained
from rotating the 2-extended copy of P by 90◦. Then P ∗ has diameter at most 4/c = δ. We now feed
P ∗ to A∗. We observe where A∗ places P ∗ in S∗. Since P ∗ has width 2/c, it intersects both the left
and right vertical edge of a substrip S∗i . Then, in particular, P ′ := P ∗ ∩S∗i is congruent to P . We now
place P in the substrip Si as specified by the placement of P ′ in S∗i . As A∗ does not place pieces in
S∗ so that they overlap, this approach will produce a valid packing in S.

By Corollary 13, there exists for arbitrarily large n and α a stream I of n pieces of total area α where
OPT(I) = O(α) whereas A(I) = Ω(

√
log n/ log log n). Let I∗ be the stream of 2-extended pieces

which we feed to A∗. We then have OPT(I∗) = O(α), as we can just sort the pieces I∗ by the slope
of their spine segments and place them in one long row in S∗, which will form a packing of cost at
most OPT(I) + 2/c = O(α). Since A(I) ≤ c ·A∗(I∗), we also have A∗(I∗) = Ω(

√
log n/ log log n). The

statement then follows.

(b) The proof is almost identical to that of (a), so we only describe the parts that are different. Suppose
that A∗ is an algorithm for Bin-Packing restricted to pieces of diameter at most δ > 0. Here, A∗
packs pieces into unit square bins B1, B2, . . ..

We again partition S into substrips and cover the boxes B1, B2, . . . with these, as shown in Figure 6.
We then get a strip packing algorithm A in S in a similar way as in (a), and obtain a lower bound on
the asymptotic competitive ratio of A∗ in a similar way.

(c) Suppose there exists a C-competitive online algorithm A∗ for Perimeter-Packing. We prove that
this implies the existence of an algorithm for Square-Packing[1/160C2], and it follows from (d) that
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B1

S∗
1 S

∗
2 S1 S2S P

P ∗

. . .

B2

Figure 6: The figure shows the correspondence between the bins B1, B2, . . . and S.

C = Ω( 4
√

log n/ log log n). By Theorem 6 (c), every set of convex polygons of diameter at most 1/10
and total area at most 1/10 can be packed in a 1 × 1 square. Scaling by 1/4C, we get that convex
polygons of diameter at most 1/40C and total area at most 1/160C2 can be packed in a 1/4C× 1/4C-
square. In particular, the same holds if we bound the diameters to be at most 1/160C2. Hence, such a
set of polygons can be packed in a box of perimeter 1/C. It follows that A∗ will produce a packing with
a convex hull of perimeter at most 1. Therefore, the packing will be contained in the disk of radius
1/2 centered at any corner of the first piece P1, and in particular in the unit square centered at this
corner. In other words, we have defined an algorithm for the problem Square-Packing[1/160C2],
and the claim follows.

(d) Consider an online algorithm A∗ for packing a stream of pieces of diameter at most δ ∈ (0, 1] into the
unit square. For arbitrarily large values of n, we prove that there exists a stream of pieces of diameter
at most δ and total area O(

√
log log n/ log n) that A∗ cannot pack into the unit square. Let d > 0

be a lower bound on the multiplicative constant hidden in the first Ω-symbol of Corollary 13. We use
the same setup as in (b), just with a single box B, which is covered by the c := b 4

√
d2 log n log log nc

first substrips of S. By Corollary 13, there exists a stream P1, . . . , Pn of pieces such that A produces a
packing of width 4

√
d2 log n/ log log n, so that A∗ cannot fit the stream of 2-extended pieces in B. We

may without loss of generality assume that n is sufficiently large that 4/c ≤ δ, so that the 2-extended
pieces have diameter at most δ. The pieces have total area O(1/c2) = O(

√
log log n/ log n), and the

statement follows.

5.2 A better-than-naive algorithm for strip packing

You are asked to suggest an algorithm for online translational strip packing of convex pieces. What is the
first approach that comes to your mind? It may very well be the following greedy algorithm: For each piece
Pi that appears, place Pi as far left into the (horizontal) strip as possible. This algorithm is n-competitive:
Indeed, it will occupy no more than n ·maxi width(Pi) of the strip, and the optimum must occupy at least
maxi width(Pi). This bound is unfortunately also essentially tight: Consider a sequence of very skinny pieces
of height 1 and width 1, but with slopes alternating between 1 and −1. The algorithm will produce a packing
of width n, while the optimum has width slightly more than 2 (depending on the actual fatness of the pieces).

We found it surprisingly difficult to develop an algorithm provably better than the naive algorithm, but
in the following, we will describe an O(nlog 3−1 log n)-competitive algorithm (note that log 3− 1 < 0.59). We
denote the algorithm OnlinePacker.

We first describe the algorithm and carry out the analysis when all the pieces are parallelograms of a
restricted type and then show, in multiple steps, how the method generalizes to arbitrary convex pieces.
By rescaling, we may without loss of generality assume that the first piece presented to the algorithm has
width 1.

5.2.1 Algorithm for horizontal parallelograms of height 1 and width ≤ 1

In the following we describe and analyze the algorithm OnlinePacker for online translational strip packing
under the assumption that all pieces P are horizontal parallelograms where height(P ) = 1 and width(P ) ≤ 1.

We define an infinite family of box types as follows. The box types can be represented by an infinite ternary
box type tree; see Figure 7. The empty vector [ ] denotes the basic box type, which is simply a rectangle of
size 2×1. Each box type will be defined as a horizontal parallelogram of height 1. A box type is represented
by a vector [x1, . . . , xd] ∈ {−1, 0,+1}d. Given a d-dimensional box type T := [x1, . . . , xd] ∈ {−1, 0,+1}d, we
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1

Figure 7: The top three layers of the box type tree.

define (d+ 1)-dimensional box types T ⊕ [xd+1] = [x1, . . . , xd, xd+1] for xd+1 ∈ {−1, 0,+1}, as follows. Let b
and t be the bottom and top edges of T . We partition b and t into three equally long segments b−1, b0, b+1

and t−1, t0, t+1, respectively, in order from left to right. For xd+1 ∈ {−1, 0,+1}, we then define T ⊕ [xd+1]
to be the parallelogram spanned by the segments b0 and txd+1

. It follows that a box of type [x1, . . . , xd] has

base edges of length 2 · 3−d and the other pair of parallel edges have width 2
∑d
i=1

xi/3i.

Lemma 14. For every d ≥ 0 and every line segment s of height 1 and width at most 1, there exists a
d-dimensional box type T that can contain s when the lower endpoint of s is placed at the midpoint of the
bottom segment of T .

Proof. We prove the lemma by induction on d. The claim clearly holds for d = 0, because the basic box
type is a rectangle of size 2 × 1 and s has height 1 and width at most 1. Suppose that for some dimension
d ≥ 0, there is a box type T that satisfies the lemma. We then partition the bottom and top edges of T ,
as described in the definition of the box types. We choose xd+1 ∈ {−1, 0,+1} such that txd+1

contains the
upper endpoint of s. Then T ⊕ [xd+1] is a (d+ 1)-dimensional box type that satisfies the claim.

Lemma 15. For every horizontal parallelogram P where height(P ) = 1 and width(P ) ≤ 1, there exists a
box type T such that P can be packed into T and area(T ) ≤ 6 area(P ).

Proof. Let ` be the length of the horizontal segments of P . Choose d ≥ 0 as large as possible such that
3−d ≥ `; this is possible because ` ≤ 1. Let s be a segment of height 1 parallel to the non-horizontal edges of
P and consider the d-dimensional box type that contains s as described in Lemma 14. If the top endpoint
of s is in the right half of the top edge of T , then we place P to the left of s, i.e., with the right edge of P
coincident with s. Otherwise, we place P to the right of s. Since the horizontal segments of T have length
2 · 3−d ≥ 2`, it follows that T can contain P . Moreover, by maximality of d, the base edges have length less
than 6`, so it follows that area(T ) ≤ 6 area(P ).

If a piece P can be packed into a box type T and area(T ) ≤ 6 area(P ), as in the lemma, then we say that
T matches P . We say that a box type T is suitable for a piece P if T is an ancestor in the box type tree of
a box type that matches P . In particular, P can be packed in a box B of a suitable type, but the area of B
may be much more than 6 area(P ). We consider a type T to be an ancestor of itself.

Our algorithm will allocate space of the strip for boxes of the various box types. Each box of type T
contains either:

• a piece P that T matches, or

• one, two, or three boxes of types that are children of T in the box type tree.

We now explain the behavior of our algorithm OnlinePacker when a new piece P arrives; see Figure 8.
Suppose first that there exists a box B1 that satisfies the following properties.
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Figure 8: An evolving packing produced by the algorithm. In each case, the green piece has just been placed. In
the third step, there was no box suitable for the piece which also had room for it, so we allocated a new basic box.

• The type T1 of B1 is suitable for P , i.e., T1 is an ancestor of a type Tk that matches P in the box type
tree. Here, T1, . . . , Tk be the path from T1 to Tk in the box type tree.

• The box B1 has room for one more box of type T2.

If more than one such box exist, we choose B1 as small as possible, i.e., with maximum dimension.
If B1 exists, we do the following for each i = 1, . . . , k − 1: We allocate in Bi an empty box Bi+1 of type

Ti+1 which is placed in Bi as far left as possible. At last, we place P in the box Bk. Thus, each of the new
boxes B2, . . . , Bk−1 will contain a single box, and Bk will contain P .

If such a box B1 does not exist, we allocate a new box of the basic type and place it as far left in the
strip as possible (that is, without overlapping with any already allocated box). We then define it to be our
box B1 and do as explained above; allocating a chain of nested boxes until we get to a type that matches P
and place P there.

We say that a d-dimensional box is near-empty if there is exactly one (d+ 1)-dimensional box allocated
in it. A crucial property of OnlinePacker is that it does not produce an excessive number of near-empty
boxes, as described in the following lemma.

Figure 9: For any type T it holds that a box of type T can contain two boxes B1, B2 of types that are children of
T if B1 and B2 have the same type or one of them has type T ⊕ [0]. Here, it is shown for the base type T := [ ].

Lemma 16. There can be at most two near-empty boxes of each type in a packing produced by OnlinePacker.

Proof. Suppose that there are two near-empty boxes B1 and B2 of type T , where B1 was created first. Let
P be the piece that caused B2 to be allocated. We first see that one of the two boxes, say B1, must contain
a box B′1 of type T ⊕ [−1] and the other, B2, must contain a box B′2 of type T ⊕ [+1]: If B′1 and B′2 had
the same type or one of them had type T ⊕ [+0], then they could be packed in the same box of type T ; see
Figure 9. Hence, P could have been placed in B1 instead of allocating the new box B2, contradicting that
we allocate new boxes in a smallest possible existing box.

But since B′1 has type T ⊕ [−1] and B′2 has type T ⊕ [+1], it follows that the next box of type T ⊕ [x], for
x ∈ {−1, 0,+1}, can be placed in B1 or B2. Therefore, the algorithm will never allocate a third near-empty
box of type T .

We will now analyze the density under the assumption that there are no near-empty boxes. We shall
then reduce the general case to this restricted case.

Lemma 17. Suppose that OnlinePacker has produced a packing of n horizontal parallelograms of height 1
and width at most 1, where there are no near-empty boxes. Then the density of the pieces in the occupied
part of the strip is at least Ω(n1−log 3).
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Proof. We prove that when there are no near-empty boxes, then the density in each basic box is at least
n1−log 3, and the lemma follows. So consider a basic box B and let nB be the number of pieces packed in
B. The box B and the boxes allocated in it can be represented as a rooted tree T1. Here, the root is B
and the children of a d-dimensional box are the (d+ 1)-dimensional boxes that it contains, and each leaf is
a box that contains a piece. Since there are no near-empty boxes, each internal node in T1 has two or three
children. To get a lower bound on the density in B, we construct a sequence of trees T1, T2, . . . , Tk, where
each tree corresponds to a packing in a basic box. The density of these packings decreases, and we will see
in the end that the density in Tk is at least Ω(n1−log 3).

The final tree Tk is balanced in the sense that all leaves are contained in two neighbouring levels d and
d+ 1. If a tree Ti is not balanced, we construct Ti+1 in the following way. Let d be the maximum dimension
of a box in Ti. We can find two or three leaves of dimension du that have the same parent u. If there are
three, we remove one of them and the unique piece it contains from the packing, which decreases the density,
and then proceed as in the case where there are two, as described in the following. Let u1, u2 be the two
leaves. Suppose that there is also a leaf v at level dv ≤ du − 2. Recall that a d-dimensional box has area
2 · 3−d. Thus, the area of pieces in the boxes u1, u2, v combined is at least

A := 2 · 2 · 3−du/6 + 2 · 3−dv/6 = 2 · 3−(du+1) + 3−(dv+1).

We now make a replacement argument: We “move” the leafs u1, u2, so that they become children of v
instead of u, and argue that this only decreases the density. So, we construct a tree Ti+1 that is similar to
Ti, except u is now a leaf and v has two children v1, v2. For this to be a conceivable packing, we must remove
the pieces that were before in u1, u2, v and place new pieces in u, v1, v2. We place pieces in u, v1, v2 that fills
the boxes with density 1/6. These new pieces have total area

A′ := 2 · 3−du+1/6 + 2 · 2 · 3−dv−1/6 = 3−du + 2 · 3−(dv+2).

It is now straightforward to verify that since dv + 2 ≤ du, we have A′ ≤ A. Hence, the density in Ti+1 is
smaller than the density in Ti.

In the end, we obtain the packing represented by a balanced tree Tk, where all leaves are d- or (d + 1)-
dimensional for some value d ≥ 0. We then have d ≤ log nB + 1. Therefore, each piece has area at least
2 ·3− lognB−1/6 = Ω(3− logn), and the total area of the pieces is Ω(3− lognB ·nB) = Ω(n1−log 3

B ) = Ω(n1−log 3),
which is also a lower bound on the density.

We now prove that when the total area of pieces is at least 1, then the density of an arbitrary packing
produced by the algorithm, i.e., where there may also be near-empty boxes, is not much smaller.

Lemma 18. Suppose that OnlinePacker has packed n horizontal parallelograms of height 1 and width at
most 1. If the total area of the pieces is at least 1, the resulting packing has density Ω(n1−log 3/ log n).

Proof. Let A be the area of the strip used by the algorithm, and let Σ be the total area of the pieces. We show
that by replacing some boxes and pieces, so that the total area of pieces increases by at most F = O(log n),
we obtain a packing with m pieces, where m ≤ n, and no near-empty boxes. We then get from Lemma 17
that the resulting packing has density

Σ + F

A
= Ω(m1−log 3) = Ω(n1−log 3).

Using that Σ ≥ 1, it then follows that the original density is

Σ

A
=

Σ + F

A
· Σ

Σ + F
≥ Σ + F

A
· Σ

Σ +O(log n)
≥ Σ + F

A
· Σ

Σ ·O(log n)
= Ω(n1−log 3/ log n).

Consider a maximal near-empty box B1, i.e., a near-empty box that is not contained in a larger near-
empty box. We remove all boxes contained in B1 and the pieces they contain and instead place a single
piece in B1 that completely fills B1. This operation cannot increase the number of pieces, because there was
at least one piece contained in B1 before.

Let d be maximum such that there are at least 2d near-empty d-dimensional boxes. We first observe that
d ≤ log n: Each of the near-empty d-dimensional boxes contains a distinct piece. We therefore have 2d ≤ n,
so that d ≤ log n.
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Let F≤d be the total area of pieces that we add to eliminate maximal near-empty boxes of dimension at
most d and let F>d be the remaining ones, so that F = F≤d + F>d.

In order to bound F≤d, we note that there are 3i types of i-dimensional boxes, each of which has area
O(3−i). For each maximal near-empty i-dimensional box, we add a piece of area O(3−i). As there are at
most two near-empty boxes of each type by Lemma 16, we add boxes of total area O(3i · 3−i) = O(1) for
each i ≤ d. As d = O(log n), we have F≤d = O(log n).

By similar arguments, we get

F>d <
∞∑

i=d+1

2i ·O(3−i) =
∞∑

i=d+1

O((2/3)i) = O(1),

so we conclude that F = O(log n), which finishes the proof.

5.2.2 Algorithm for horizontal parallelograms of extended width ≤ 1

We now describe an extension of OnlinePacker in order to handle horizontal parallelograms of arbitrary
height (at most 1) and bounded extended width, to be defined shortly. Here, we partition the pieces into
height classes, so that a piece P belongs to class h if 2−h−1 < height(P ) ≤ 2−h. For height class h, the base
type is a rectangle of size 2 × 2−h, and in the strip we allocate boxes of this size in which to pack pieces
from the height class. We define an infinite ternary box type tree for each height class, exactly as when all
the pieces have height 1.

When a piece P arrives, we determine the height class h of P . We extend the non-horizontal segments
of P until we obtain a horizontal parallelogram of height exactly 2−h, and we denote the resulting piece P ′

so that P ⊂ P ′. We then define the extended width of P as extwidth(P ) := width(P ′). Note that since
2−h−1 < height(P ), we have height(P ′) < 2 height(P ) and extwidth(P ) = width(P ′) < 2 width(P ). We
then pack P ′ (including P ) into a minimum suitable box that has already been allocated, if possible, and
otherwise allocate a new basic box.

We stack the basic boxes of different height classes if possible. When a new basic box of height class h is
created, we stack it on the leftmost pile of basic boxes that has room for it. This choice implies that there
can be at most one stack of basic boxes that is less than half full.

Lemma 19. Suppose that OnlinePacker has packed n horizontal parallelograms of width at most 1/2 and
total area more than 2. The resulting packing has density Ω(n1−log 3/ log n).

Proof. Let U be the union of the base boxes (across all height classes), and let A be the area of the part of
the strip occupied by the packing. Since the total area of pieces is more than 2, we also have area(U) ≥ 2.
Suppose first it holds that the density in U is at least Ω(n1−log 3/ log n). We have that area(A) ≤ 2 area(U)+2,
since there is at most one stack of base boxes of height less than 1/2 in the packing. Since 2 < U , we then
also have area(A) < 3 area(U). We can therefore also conclude that the density of the occupied part of the
strip is Ω(n1−log 3/ log n).

We now prove the density bound in U . Let Σ be the total area of the pieces. For each height class h for
which there are some pieces, we feed the algorithm with a rectangle of size 1× 2−h. Let F be the total area
of these pieces, and we have F <

∑∞
h=0 2−h = 2. We therefore have 2Σ ≥ Σ +F . Let U ′ be the union of the

base boxes in this expanded packing. We then have that the original density is

Σ

area(U)
≥ Σ + F

2 area(U)
≥ Σ + F

2 area(U ′)
.

Since the area of pieces in each non-empty height class h is at least 2−h, we can now apply Lemma 18
(by scaling the y-coordinates by a factor of 2, we obtain a packing of parallelograms of height 1). Let
nh be the number of pieces in height class h. We get that the density in the base boxes of height 2−h

is Ω(n1−log 3
h / log nh) = Ω(n1−log 3/ log n), so this is a bound on the density in all of U ′. Hence we have

Σ
areaU = Ω(n1−log 3/ log n), and this concludes the proof.
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5.2.3 Algorithm for all horizontal parallelograms

We now describe an extension of OnlinePacker that handles horizontal parallelograms of arbitrary height
and arbitrary width. We partition the parallelograms into width classes. Pieces of width class i are packed
in base boxes of width 2i. Consider a parallelogram P . If extwidth(P ) ≤ 1, then the width class of P is
i = 1. Otherwise, P belongs to the width class i such that 2i−1 < 2 extwidth(P ) ≤ 2i. We handle each
width class independently, so that pieces from each class are packed in stacks as described in Section 5.2.2.
In particular, each width class i is subdivided into height classes, and we allocate in the strip rectangles of
size 2i × 1, where we can place a stack of base boxes of sizes 2i × 2−h, for various values of h ≥ 0.

When a new piece P arrives, we determine its width class w and height class h. Then, we pack it into a
rectangle of size 2w × 1, in a base box of size 2w × 2−h that has room for it. If no rectangle of that size has
room for P , a new rectangle of size 2w × 1 is created and placed as far left in the strip as possible.

Lemma 20. The competitive ratio of OnlinePacker when applied to n horizontal parallelograms of arbitrary
width is O(nlog 3−1 log n).

Proof. After OnlinePacker has packed the n parallelograms, we denote the cost of the produced solution
as ALG and the optimal offline solution as OPT. We then feed the algorithm with four rectangles of size
2i−2 × 1 for each width class i for which there are some pieces. We denote the cost of the resulting packing
as ALG+ and the cost of the optimal offline solution as OPT+. Suppose that the largest width class is class
k. We now claim that some piece P has extended width more than 2k−2. If k > 1 this holds for any piece
in width class k, and if k = 1, it follows since we assume that the first piece presented to the algorithm has
width 1. We then have OPT ≥ width(P ) > extwidth(P )/2 > 2k−3. Since the added pieces are rectangles of
height 1, the optimal packing is similar to the optimal packing for the original instance with the extra pieces
added in the end. We therefore have

OPT+ ≤ OPT +
k∑

i=1

2i < OPT + 2k+1 < 17 ·OPT.

Let ni and Σi be the number and total area of the pieces in width class i, respectively. Note that Σi > 2i,
so that we can apply Lemma 19 to each width class (under proper scaling). The bound on the competitive
ratio becomes

ALG

OPT
≤ ALG+

OPT+/17
≤ 17

∑k
i=1 n

log 3−1
i log ni · Σi
OPT+ ≤ 17nlog 3−1 log n · Σ

Σ
= O(nlog 3−1 log n).

5.2.4 Algorithm for all convex pieces

We now describe the extension of OnlinePacker to handle arbitrary convex pieces; see Figure 10. When
a new piece P arrives, we find a horizontal parallelogram P ′ such that P ⊂ P ′, area(P ′) ≤ 2 area(P ) and
width(P ′) ≤ 2 width(P ); then we apply OnlinePacker to the parallelogram P ′ (with P inside).

We define P ′ as follows. Let `b and `t be the lower and upper horizontal tangent to P , respectively, and
let cb ∈ P ∩ `b and ct ∈ P ∩ `t. Let `l and `r be the left and right tangent to P parallel to the segment cbct,
respectively. We then define P ′ to be the horizontal parallelogram enclosed by the lines `b, `t`l, `r.

It is straightforward to check that area(P ′) ≤ 2 area(P ), because P is convex. Now we prove that
width(P ′) ≤ 2 width(P ). Define L to be the length of the horizontal edges of P ′ and note that width(P ′) =
width(cbct) + L. On the other hand, width(P ) ≥ max{width(cbct), L}, and this proves the claim.

In the proof of Lemma 20 we only bound OPT using the width of the widest piece and the total area Σ.
With respect to both width and area, the value for an arbitrary convex pieces P is at least 1/2 of that of
the containing parallelogram P ′. Therefore, the bound on the competitive ratio carries over up to constant
factors when the algorithm is applied to the parallelograms P ′, as stated in the following.

Theorem 5. There exists an algorithm for Strip-Packing with competitive ratio O(nlog 3−1 log n), where
n is the number of pieces.
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Figure 10: The horizontal parallelogram P ′ has area at most twice that of the piece P .

6 Constant-factor approximations for offline packing

In this section we show how to obtain offline approximation algorithms for the packing problems of Theorem 2.

Theorem 6. There are polynomial-time offline algorithms for the following packing problems:

(a) Offline-Strip-Packing, 32.7-approximation algorithm.

(b) Offline-Bin-Packing, 10.1-approximation algorithm if the diameter of all pieces is bounded by 1/10.

(c) Offline-Perimeter-Packing, 8.9-approximation algorithm.

(d) Offline-Square-Packing[1/10], in particular, every set of convex polygons of diameter and total
area at most 1/10 can be packed into the unit square.

Proof. Alt, de Berg, and Knauer [5, 6] presented an algorithm that packs any set P of convex polygons
(with n vertices in total, using O(n log n) time) into an axis-aligned rectangular container B such that
area(B) ≤ 23.78 · opt, where opt is the minimum area of any axis-aligned rectangular container for P. As
an intermediate step, they obtain a collection of rectangular mini-containers that together contain all objects
of P. Let wmax and hmax denote the maximum width and height among all objects of P, respectively. For
some fixed constants c > 0, α ∈ (0, 1), each mini-container has width (c + 1)wmax and a height hi where
hi := αihmax for some appropriate i. The total area AC of all mini-containers can be bounded by

AC ≤ (1 + 1/c) ·
[

2

α
· area(P) +

c+ 2/α

1− α · hmaxwmax

]
. (1)

In order to prove (a), (b), (c), and (d), we repeatedly make use of the mini-containers and this equation.

We first consider strip packing and prove (a). When packing a set of convex polygons P into a horizontal
strip of height 1, the minimal width opt-w is at least max{wmax, area(P)}. Therefore,

AC ≤ (1 + 1/c) ·
[

2

α
+
c+ 2/α

1− α

]
· opt-w.

We group the mini-containers greedily into stacks of height at most 1, which we place in the strip. Note
that all but possibly one stack have a height of at least 1/2; otherwise two of these should have been put
together. Therefore, the number of stacks is at most 2AC

(c+1)wmax
+ 1. Together with α := 0.545 and c := 2.2,

this translates into a width of

2AC + (c+ 1)wmax ≤
(

2 · (1 + 1/c) ·
[

2

α
+
c+ 2/α

1− α

]
+ c+ 1

)
· opt-w < 32.7 · opt-w.
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We now turn our attention to (d), and our findings will later be used to prove (b). Let S denote the
unit square in which we want to pack a given set P of convex polygons, each of diameter at most δ. We
choose α := 1/2 and choose the width of the mini-containers to be 1, i.e., (c + 1)wmax = 1.2 We stack all
mini-containers on top of each other. Suppose that the total height of the mini-containers exceeds 1. We
prove that the total area of pieces is then more than the constant ρ := (1− 5δ)(1− 2δ)/4. For δ := 1/10, we
get ρ := 1/10, and the claim in the theorem follows.

We call a mini-container full if the bounding box of all contained pieces has width more than 1 − δ;
otherwise there is room for a further piece. A mini-container that is not full is called near-empty. We can
pack the pieces such that in each height class, there is at most one near-empty mini-container. Therefore,
the total height of near-empty mini-containers is at most

∑
i hi = hmax

∑
i α

i ≤ δ/(1 − α) = 2δ. Since the
mini-containers (full and near-empty) have a total height of more than 1, the full mini-containers in S have
a total height of more than 1− 2δ, and a total area of more than 1− 2δ.

Let B be the bounding box of a full mini-container of height hi (and area hi) and denote the set of
contained polygons by P ′. By [5, 6], we obtain

(1− δ)hi ≤ area(B) ≤ 2/α ·
(
area(P ′) + hiwmax

)
≤ 4
(
area(P ′) + hiδ

)
.

Consequently, area(P ′) ≥ (1− 5δ)hi/4 and thus the density in any full mini-container is at least (1− 5δ)/4.
As the total area of the full mini-containers in S is more than 1 − 2δ, the total area packed into S is more
than ρ := (1− 5δ)(1− 2δ)/4.

We use the described algorithm for square packing to prove statement (b). By the above strategy, if
area(P) ≤ 1/ρ, where ρ := (1 − 5δ)(1 − 2δ)/4, then the algorithm will use only one bin, so the packing
achieves the optimum in this case. We may therefore assume area(P) > 1/ρ. We can guarantee a density
of at least ρ in all but one bin. Consequently, the number of bins is at most area(P)/ρ + 1. Clearly, the
number of bins in the optimal solution is at least area(P). Therefore, the approximation ratio is at most

area(P)/ρ+ 1

area(P)
≤ 1/ρ+ ρ.

Using δ := 1/10 yields the ratio 10.1 as stated in the theorem.
We finally prove (c). In order to obtain a bounding box with small perimeter, we consider the mini-

containers in a greedy fashion (from largest to smallest height) and pack them on top of each other into
stacks of height at most H :=

√
AC + hmax and width (c + 1)wmax. Clearly the height of each stack

except possibly the last one is at least
√
AC . Consequently, the number of stacks is at most

√
AC

(c+1)wmax
+ 1.

Hence, we obtain a bounding box with perimeter of at most 4
√
AC + 2hmax + 2(c + 1)wmax. Because the

optimal perimeter opt-p is at least max{2wmax + 2hmax, 4
√

area(P)}, we have hmaxwmax ≤ opt-p2/8 and
area(P) ≤ opt-p2/16. We then get from Equation (1) that

AC ≤ (1 + 1/c) ·
[

2

α
· 1

16
+
c+ 2/α

1− α ·
1

8

]
opt-p2.

Finally, choosing α := 0.5 and c := 1.06, we obtain

4
√
AC + 2hmax + 2(c+ 1)wmax ≤

(
4

√
(1 + 1/c) ·

[
2

α
· 1

16
+
c+ 2/α

1− α ·
1

8

]
+ 1 + c

)
· opt-p < 8.9 · opt-p.

This completes the proof.

2In fact, we can choose α depending on δ to get a denser packing. It turns out that α := 1 −
√

3δ3−4δ2+δ
1−δ is the optimal

value, but we stick to α := 1/2 to keep the analysis simpler.
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from the New Scottish Book. 2015. doi: 10.1007/978-3-319-22897-6.

[33] Victor J. Milenkovic. “Rotational polygon containment and minimum enclosure using only robust 2D
constructions”. In: Computational Geometry 13.1 (1999), pp. 3–19. issn: 0925-7721. doi: 10.1016/
S0925-7721(99)00006-1.

[34] Victor J. Milenkovic. “Translational polygon containment and minimal enclosure using linear program-
ming based restriction”. In: Proceedings of the twenty-eighth annual ACM symposium on Theory of
Computing (STOC 1996). 1996, pp. 109–118. doi: 10.1145/237814.237840.

24



[35] Victor J. Milenkovic and Karen Daniels. “Translational polygon containment and minimal enclosure
using mathematical programming”. In: International Transactions in Operational Research 6.5 (1999),
pp. 525–554. doi: 10.1111/j.1475-3995.1999.tb00171.x.

[36] J.W. Moon and L. Moser. “Some packing and covering theorems”. In: Colloquium Mathematicum.
Vol. 17. 1. 1967, pp. 103–110. doi: 10.4064/cm-17-1-103-110.

[37] Dongwoo Park, Sang Won Bae, Helmut Alt, and Hee-Kap Ahn. “Bundling three convex polygons to
minimize area or perimeter”. In: Computational Geometry 51 (2016), pp. 1–14. issn: 0925-7721. doi:
10.1016/j.comgeo.2015.10.003.
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Abstract

Hashing is a common technique used in data processing, with a strong impact on the time
and resources spent on computation. Hashing also affects the applicability of theoretical results
that often assume access to (unrealistic) uniform/fully-random hash functions. In this paper, we
are concerned with designing hash functions that are practical and come with strong theoretical
guarantees on their performance.

To this end, we present tornado tabulation hashing, which is simple, fast, and exhibits a
certain full, local randomness property that provably makes diverse algorithms perform almost
as if (abstract) fully-random hashing was used. For example, this includes classic linear probing,
the widely used HyperLogLog algorithm of Flajolet, Fusy, Gandouet, Meunier [AOFA’97] for
counting distinct elements, and the one-permutation hashing of Li, Owen, and Zhang [NIPS’12]
for large-scale machine learning. We also provide a very efficient solution for the classical
problem of obtaining fully-random hashing on a fixed (but unknown to the hash function) set
of n keys using Opnq space. As a consequence, we get more efficient implementations of the
splitting trick of Dietzfelbinger and Rink [ICALP’09] and the succinct space uniform hashing of
Pagh and Pagh [SICOMP’08].

Tornado tabulation hashing is based on a simple method to systematically break dependen-
cies in tabulation-based hashing techniques.



1 Introduction

The generic goal of this paper is to create a practical hash function that provably makes important
algorithms behave almost as if (unrealistic) fully random hashing was used. By practical, we mean
both simple to implement and fast. Speed is important because hashing is a common inner loop
for data processing. Suppose for example that we want to sketch a high-volume data stream such
as the packets passing a high-end Internet router. If we are too slow, then we cannot handle the
stream at all. Speed matters, also within constant factors.

The use of weak hash functions is dangerous, not only in theory but also in practice. A good
example is the use of classic linear hashing. Linear hashing is 2-independent and Mitzenmacher and
Vadhan [27] have proved that, for some applications, 2-independent hashing performs as well as fully
random hashing if the input has enough entropy, and indeed this often works in practice. However,
a dense set has only 1 bit of entropy per element, and [36, 30] have shown that with a linear hashing
scheme, if the input is a dense set (or more generally, a dense subset of an arithmetic sequence),
then linear probing becomes extremely unreliable and the expected probe length1 increases from
constant to Ωplog nq. This is also a practical problem because dense subsets may occur for many
reasons. However, if the system is only tested on random inputs, then we may not discover the
problem before deployment.

The issue becomes even bigger with, say, sampling and estimation where we typically just trust
our estimates with no knowledge of the true value. We may never find out that our estimates are
bad. With 2-independent hashing, we get the right variance, but not exponential concentration.
Large errors can happen way too often, yet not often enough to show up in a few tests. This
phenomenon is demonstrated on synthetic data in [2] and on real-world data in [1]. All this shows
the danger of relying on weak hash functions without theoretical guarantees for all possible inputs,
particularly for online systems where we cannot just change the hash function if the input is bad,
or in situations with estimates whose quality cannot be verified. One could instead, perhaps, use
hash functions based on cryptographic assumptions, but the hash function that we propose here is
simple to implement, fast, and comes with strong unconditional guarantees.

In this paper, we introduce tornado tabulation hashing. A tornado tabulation hash function
h : Σc Ñ R requires Opc |Σ|q space and can be evaluated in Opcq time using, say, 2c lookups in
tables with |Σ| entries plus some simple AC0 operations (shifts, bit-wise xor, and assignments). As
with other tabulation schemes, this is very fast when Σ is small enough to fit in fast cache, e.g., for
32-bit keys divided into c “ 4 characters of 8 bits (namely, |Σ| “ 28), the speed is similar to that
of evaluating a degree-2 polynomial over a Mersenne prime field.

Tornado hashing has the strong property that if we hash a set of |Σ| {2 keys, then with high
probability, the hash values are completely independent. For when we want to handle many more
keys, e.g., say |Σ|3 (as is often the case when Σ is small), tornado tabulation hashing offers a certain
local uniformity that provably makes a diverse set of algorithms behave almost as if the hashing
was fully random on all the keys. The definition of local uniformity is due to Dahlgaard, Knudsen,
Rotenberg, and Thorup [10]. The definition is a bit complicated, but they demonstrate how it
applies to the widely used HyperLogLog algorithm of the Flajolet, Fusy, Gandouet, Meunier [18]
for counting distinct elements in data streams, and the One-Permutation Hashing of Li, Owen, and
Zhang [26] used for fast set similarity. They conclude that the estimates obtained are only a factor

1The probe length is defined as the number of contiguous cells probed to answer a query of a linear probing hash
table.
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1 ` op1q worse than if fully-random hashing was used. Interestingly, [10] proves this in a high-level
black-box manner. Loosely speaking, the point is that the algorithm using locally uniform hashing
behaves as well as the same algorithm using fully-random hashing on a slightly worse input.

As a new example, we will demonstrate this on linear probing. Knuth’s original 1963 analysis
of linear probing [25], which started the field of algorithms analysis, showed that with fully-random
hashing and load p1 ´ εq, the expected probe length is p1 ` 1{ε2q{2. From this, we conclude that
tornado tabulation hashing yields expected probe length p1 ` op1qqp1 ` 1{ε2q{2, and we get that
without having to reconsider Knuth’s analysis.

For contrast, consider the work on linear probing with k-independent hashing. Pagh, Pagh,
Ružić [29] showed that 5-independence is enough to obtain a bound of Op1{ε13{6q on the expected
probe length. This was further improved to Op1{ε2q by Pǎtraşcu and Thorup [31], who achieved
the optimal Op1{ε2q. They matched Knuth’s bound modulo some large constants hidden in the
O-notation and needed a very different analysis.

In practice, the guarantee that we perform almost like fully-random hashing means that no set
of input keys will lead to substantially different performance statistics. Thus, if we tested an online
system on an arbitrary set of input keys, then we do not have to worry that future input keys will
degrade the performance statistics, not even by a constant factor.

The definition of local uniformity is due to Dahlgaard, Knudsen, Rotenberg, and Thorup [10].
They did not name it as an independent property, but they described it as a property of their
new hashing scheme: mixed tabulation hashing. However, the local uniformity of mixed tabulation
assumes table size |Σ| Ñ 8, but the speed of tabulation hashing relies on |Σ| being small enough to
fit in fast cache and all reported experiments use 8-bit characters (see [31, 2, 1, 11]). However, none
of the bounds from [10] apply to 8 or even 16-bit characters, e.g., they assume Oplog |Σ|qc ă |Σ|.
Our new scheme avoids the exponential dependence on c, and we get explicit error probability
bounds that are meaningful, not just in theory, but also for practice with tables in fast cache.

For when we want full randomness on more keys than fit in fast cache, we could, as above,
increase |Σ| in all Opcq lookup tables. In this paper, we show that it suffices to augment the in-
cache tornado hashing with just 2 lookups in tables of size 2n to get full randomness on n keys with
high probability. This would work perfectly inside a linear space algorithm assuming fully-random
hashing, but it also leads to more efficient implementations of the spitting trick of Dietzfelbinger
and Rink [13] and the succinct space uniform hashing of Pagh and Pagh [28].

In Section 1.1 we define our hash function, and in Section 1.2 we present our technical results,
including the definition of local uniformity. In Section 1.3, we discuss more explicitly how our work
compares to mixed tabulation and explain some of our techniques in comparison. In Section 1.4
we discuss several applications. In Section 1.5, we relate our work to previous work on achieving
highly independent hash functions. Finally, in Section 1.6 we discuss how tornado tabulation can
be employed to improve the so-called “splitting trick” and succinct uniform hashing.

1.1 Tornado tabulation hashing

Simple tabulation hashing. We first introduce our main building block, which is the sim-
ple tabulation hash function dating back to at least Zobrist [38] and Wegman and Carter [37].
Throughout the paper, we will consider keys to come from the universe Σc and hash values to be
in R “ r2rs. More concretely, we interpret a key x as the concatenation of c characters x1 . . . xc
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from Σ. We then say that a function h : Σc ÝÑ R is a simple tabulation hash function if

hpxq “ T1rx1s ‘ ¨ ¨ ¨ ‘ Tcrxcs
where, for each i “ 1 . . . c, Ti : Σ ÝÑ R is a fully-random function stored as a table.

We think of c as a small constant, e.g., c “ 4, for 32-bit keys divided into 8-bit characters, yet
we will make the dependence on c explicit. We assume that both keys and hash values fit in a
single word and that |Σ| ě 28.

Tornado tabulation hashing. To define a tornado tabulation hash function h, we use several
simple tabulation hash functions. A tornado tabulation function has a number d of derived char-
acters. Think of d as, say, c or 2c. It will later determine our error probability bounds. We will
always assume d “ Opcq so that d characters from Σ can be represented in Op1q words of memory
(since a key from Σc fits in a single word).

For each i “ 0, . . . , d, we let rhi : Σc`i´1 ÝÑ Σ be a simple tabulation hash function. Given a
key x P Σc, we define its derived key rhpxq P Σc`d as rx “ rx1 ¨ ¨ ¨ rxc`d, where

rxi “

$
’&
’%

xi if i ă c

xc ‘ rh0prx1 ¨ ¨ ¨ rxc´1q if i “ c
rhi´c prx1 ¨ ¨ ¨ rxi´1q if i ą c.

(1)

We note that each of the d derived characters rxc`1, . . . , rxc`d is progressively defined by applying
a simple tabulation hash function to all its preceding characters in the derived key rx. Hence, the
name tornado tabulation. The step by which we obtain rxc corresponds to the twist from [32]. By
Observation 1.1. in [32], x1 . . . xc ÞÑ rx1 . . . rxc is a permutation, so distinct keys have distinct derived
keys. Finally, we have a simple tabulation hash function ph : Σc`d ÝÑ R, that we apply to the
derived key. The tornado tabulation hash function h : Σc ÝÑ R is then defined as hpxq “ phprxq.

Implementation. The simplicity of tornado tabulation is apparent from its C implementation
below. In the code, we fold tornado’s lookup tables together so we can implement them using c` d
character tables Σ Ñ Σd`1 ˆR. Elements of Σd`1 ˆR are just represented as w-bits numbers. For
memory alignment and ease of implementation, we want w to be a power of two such as 64 or 128.

We now present a C-code implementation of tornado tabulation for 32-bit keys, with Σ “ r28s,
c “ 4, d “ 4, and R “ r224s. Besides the key x, the function takes as input an array of c` d tables
of size |Σ|, all filled with independently drawn 64-bit values.

INT32 Tornado ( INT32 x , INT64 [ 8 ] [ 2 5 6 ] H) {
INT32 i ; INT64 h=0; INT8 c ;
for ( i =0; i <3; i++) {

c=x ;
x>>=8;
hˆ=H[ i ] [ c ] ; }

hˆ=x ;
for ( i =3; i <8; i++) {

c=h ;
h>>=8;
hˆ=H[ i ] [ c ] ; }

return ( ( INT32 ) h ) ; }

3



Speed. As we can see in the above implementation, tornado hashing uses c ` d lookups and
Opc ` dq simple AC0 operations. The speed of tabulation hashing depends on the tables fitting in
fast cache which means that Σ should not be too big. In the above code, we used Σ “ r28s, as in
all previously reported experiments with tabulation hashing. (see [31, 2, 1, 11]).

The speed of tabulation schemes is incomparable to that of polynomial methods using small
space but multiplication. Indeed, the ratio between the cost of cache lookups and multiplication de-
pends on the architecture. In line with previous experiments, we found our tornado implementation
for 32-bit keys to be as fast as a degree-2 polynomial over a Mersenne prime (289 ´ 1) field.

We note that our implementation for the random table H only needs a pointer to an area filled
with “fixed” random bits, and it could conceivably be made much faster if we instead of cache had
access to random bits stored in simple read-only memory (ROM or EPROM).

1.2 Theoretical Results

The main aim of our paper is to prove that, with high probability (whp), a tornado tabulation hash
function is fully random on some set X of keys. The challenge is to characterize for which kinds of
sets we can show such bounds.

Full randomness for fixed keys. We begin with a simpler result that follows directly from our
main technical theorem. In this case, the set X of keys is fixed.

Theorem 1. Let h : Σc Ñ R be a random tornado tabulation hash function with d derived char-
acters. For any fixed X Ď Σc, if |X| ď |Σ|{2, then h is fully random on X with probability at
least

1 ´ 7|X|3p3{|Σ|qd`1 ´ 1{2|Σ|{2 .

With c, d “ Op1q, Theorem 1 gives an Op|Σ|q space hash function that can be evaluated in
constant time and, with high probability, will be fully random for any fixed set X of at most |Σ| {2
keys. This is asymptotically tight as we need |X| random hash values to get this randomness.

The random process behind the error probability that we get will be made clear in the next
paragraph. We note here that, since |X| ď |Σ|{2, we have that 7|X|3p3{|Σ|qd`1 ď 24p3{|Σ|qd´2.
With |Σ| ě 28, the bound is below 1{300 for d “ 4, and decreases rapidly for larger d. For c ě 4, if
we set d “ 2c, we get an error probability below 1{u where u “ |Σ|c is the size of the universe. We
can get error probability 1{uγ for any constant γ with d “ Opcq, justifying this assumption on d.

Linear independence. The general structure of our results is to identify some error event such
that (1) if the event does not occur, then the hash function will be fully random on X, and (2) the
error event itself happens with low probability. The error event that we consider in Theorem 1 is
inherent to all tabulation-based hashing schemes. Namely, consider some set Y of keys from some
universe Σb. We say that Y is linearly independent if and only if, for every subset Y 1 Ď Y , there
exists a character position i P t1, . . . , bu such that some character appears an odd number of times
in position i among the keys in Y 1. A useful connection between this notion and tabulation-based
hashing was shown by Thorup and Zhang [36], who proved that a set of keys is linearly independent
if and only if simple tabulation hashing is fully random on these keys:

Lemma 2 (Simple tabulation on linearly independent keys). Given a set of keys Y Ď Σb and a
simple tabulation hash function h : Σb Ñ R, the following are equivalent:

(i) Y is linearly independent
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(ii) h is fully random on Y (i.e., h|Y is distributed uniformly over RY ).2

To prove Theorem 1, we employ Lemma 2 with sets of derived keys. Namely, given a set of keys

X Ď Σc, we consider the error event that the set rX “
!
rhpxq | x P X

)
of its derived keys is linearly

dependent. We then show that this happens with probability at most 7|X|3p3{|Σ|qd`1 ` 1{2|Σ|{2. If
this doesn’t happen, then the derived keys are linearly independent, and, by Lemma 2, we get that
the tornado tabulation hash function h “ ph ˝ rh is fully random on X since it applies the simple
tabulation hash function ph to the derived keys rX. We note that the general idea of creating linearly
independent lookups to create fully-random hashing goes back at least to [33]. The point of this
paper is to do it in a really efficient way.

Query and selected keys. Our main result, Theorem 5, is a more general version of Theorem 1.
Specifically, while Theorem 1 holds for any fixed set of keys, it requires that |X| ď |Σ| {2. For a
fast implementation, we want |Σ| to be small enough to fit in fast cache, e.g., |Σ| “ 28, but in most
applications, we want to hash a set S of keys that is much larger, e.g., |S| „ |Σ|3. Moreover, we
might be interested in showing full randomness for subsets X of S that are not known in advance:
consider, for instance, the set X of all the keys in S that hash near to hpqq for some fixed key q P S.
In this case, Theorem 1 would not help us, since the set X depends on hpqq hence on h.

To model this kind of scenario, we consider a set of query keys Q Ď Σc and define a set of
selected keys X Ď Σc. Whether a key x is selected or not depends only on x, its own hash value
hpxq, and the hash values of the query keys h|Q (namely, conditioning on hpxq and h|Q makes x P X
and h independent). In Theorem 5, we will show that, if the selected keys are few enough, then
h|X is fully random with high probability.

Formally, we have a selector function f : Σc ˆ R ˆ RQ ÝÑ t0, 1u and we define the set of
selected keys as

Xf,h “ tx P Σc | fpx, hpxq, h|Qq “ 1u .
We make the special requirement that f should always select all the query keys q P Q, that is,
fpq, ¨, ¨q “ 1 regardless of the two last arguments. We then define

µf :“
ÿ

xPΣc

pfx with pfx :“ max
ϕPRQ

Pr
r„UpRq

rfpx, r, ϕq “ 1s . (2)

Here the maximum is taken among all possible assignments of hash values to query keys ϕ : Q Ñ R
and r is distributed uniformly over R. Trivially we have that

Observation 3. If h : Σc Ñ R is fully random then Er|Xf,h|s ď µf .

When f and h are understood, we may omit these superscripts. It is important that X depends
on both f and h while µ only depends on the selector f . We now have the following main technical
theorem:

Theorem 4. Let h “ ph ˝ rh : Σc Ñ R be a random tornado tabulation hash function with d derived
characters and f as described above. If µf ď Σ{2 then the derived selected keys rhpXf,hq are linearly
dependent with probability at most DependenceProbpµf , d,Σ), where

DependenceProbpµ, d,Σq :“ 7µ3p3{|Σ|qd`1 ` 1{2|Σ|{2 .
2In general, we employ the notation h|S to denote the function h restricted to the keys in some set S.
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Note that Theorem 4 only bounds the probability of the error event. Similarly as in Theorem 1,
we would like to then argue that, if the error event does not happen, we could apply Lemma 2
to claim that the final hash values via the simple tabulation function ph are fully random. The
challenge, however, is the presence of an inherent dependency in how the keys are selected to begin
with, namely that h “ ph ˝ rh is already used to select the keys in Xf,h. In other words, by the time
we want to apply ph to the derived selected keys rhpXf,hq, we have already used some information
about ph in selecting them in Xf,h.

Local uniformity. Nevertheless, there is a general type of selector functions for which we can
employ Theorem 4 in conjunction with Lemma 2 to claim full randomness. Namely, we consider
selector functions that partition the bit representation of the final hash values into s selection bits
and t free bits so that R “ RsˆRt “ r2ssˆr2ts. Given a key x P Σc, we then denote by hpsqpxq P Rs

and hptqpxq P Rt the selection and free bits of hpxq respectively. We then say that a selector function
f is an s-selector if, for all x P Σc, the output of fpx, hpxq, h|Qq only depends on the selection bits
of the hash function, i.e., fpx, hpxq, h|Qq “ fpx, hpsqpxq, hpsq|Qq.

We now crucially exploit the fact that the output bits of a simple tabulation hash function are
completely independent. Formally, we split the simple tabulation ph into two independent simple
tabulation functions: phpsq producing the selection bits and phptq producing the free bits. We then
apply Theorem 4 to hpsq “ phpsq ˝ rh to conclude that the set of selected derived keys rhpXf,hpsq q is
linearly independent with high probability. Assuming this, we then apply Lemma 2 to conclude

that phptq is fully random on rhpXf,phpsq q, hence that hptq “ phptq ˝ rh is fully random on Xf,hpsq
.

Theorem 5. Let h : Σc Ñ R be a tornado tabulation hash function with d derived characters
and f be an s-selector as described above. If µf ď Σ{2, then hptq is fully random on Xf,hpsq

with
probability at least

1 ´ DependenceProbpµf , d,Σq .
While the concept of an s-selector function might seem a bit cryptic, we note that it intuitively

captures the notion of locality that linear probing and other applications depend on. Namely, the
effect of the (high order3) selector bits is to specify a dyadic interval4 of a given length such that all
the keys with hash values falling in that interval are possibly selected (with this selection further
depending, perhaps, on the query keys Q, or on other specific selector bits, leading to more refined
dyadic intervals). Theorem 5 then says that the (low order) free bits of these selected keys will be
fully-random with high probability. In other words, the distribution inside such a neighborhood is
indistinguishable from what we would witness if we had used a fully-random hash function.

As mentioned earlier, the concept of local uniformity stems from [10], except that they did not
consider query keys. Also, they didn’t name the concept. They demonstrated its power in different
streaming algorithms. For those applications, it is important that the selection bits are not known
to the algorithm. They are only set in the analysis based on the concrete input to demonstrate good
performance on this input. The problem in [10] is that their error probability bounds only apply
when the alphabet is so large that the tables do not fit in fast cache. We will describe this issue
closer in Section 1.3. In Section 1.4 we will sketch the use of local uniformity on linear probing
where the locality is relative to a query key.

3Thinking about selector bits as higher order bits helps our intuition. However, they do not have to be higher-order
bits necessarily. More generally, any representation of R as a product Rs ˆ Rt would do the job.

4Recall that a dyadic interval is an interval of the form rj2i, pj ` 1q2iq, where i, j are integers.
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Upper tail Chernoff bounds. Theorem 5 is only concerned with the distribution of the free
bits of the selected keys, but to employ it in our applications, we often require that the number of
selected keys is not much larger than µf with high probability (see Sections 1.4 and 1.6). We show
that this size can be bounded from above with the usual Chernoff bound when the set of derived
selected keys is linearly independent.

Lemma 6. Let h “ ph ˝ rh : Σc Ñ R be a random tornado tabulation hash function with d derived
characters, query keys Q and selector function f . Let IXf,h denote the event that the set of derived
selected key rhpXf,hq is linearly independent. Then, for any δ ą 0, the set Xf,h of selected keys
satisfies the following:

Pr
”ˇ̌
ˇXf,h

ˇ̌
ˇ ě p1 ` δq ¨ µf ^ IXf,h

ı
ď

ˆ
eδ

p1 ` δq1`δ

˙µf

.

For a nice direct application, consider hash tables with chaining, or throwing n keys into n bins
using tornado hashing. We can select a given bin, or the bin of a given query key. In either case
we have µf “ 1 and then Lemma 6 together with Theorem 4 says that the probability of getting k
keys is bounded by

ek´1{kk ` 7p3{ |Σ|qd`1 ` 1{2|Σ|{2. (3)

If k is not too large, the first term dominates.

Lower bound. Finally, we show that our upper bound for the error probability in Theorem 4 is
tight within a constant factor.

Theorem 7. Let h “ ph ˝ rh : Σc Ñ R be a random tornado tabulation hash function with d derived
characters. There exists a selector function f with µf ď Σ{2 such that the derived selected keys
rhpXf,hq are linearly dependent with probability at least Ωpp3{|Σ|qd´2q.

Full randomness for larger sets of selected keys. As mentioned earlier, for a fast implemen-
tation of tabulation hashing, we pick the alphabet Σ small enough for the tables to fit in fast cache.
A common choice is 8-bit characters. However, we only get full randomness for (selected) sets of
(expected) size at most |Σ| {2 (c.f. Theorems 5 and 1).

To handle larger sets, we prove that it suffices to only increase the alphabet of the last two
derived characters; meaning that only two lookups have to use larger tables. This is close to best
possible in that we trivially need at least one lookup in a table at least as big as the set we want
full randomness over. More precisely, if we use alphabet Ψ for the last two derived characters, then
our size bound increases to |Ψ| {2. The error probability bound of Theorems 5 becomes

14pµf q3p3{|Ψ|q2p3{|Σ|qd´1 ` 1{2|Σ|{2 .

With the above mix of alphabets, we have tornado hashing running in fast cache except for the
last two lookups that could dominate the overall cost, both in time and space. Because they
dominate, we will consider a slight variant, where we do not store derived characters in any of the
two large tables. Essentially this means that we change the definition of the last derived character
from rxc`d “ rhdprx1 ¨ ¨ ¨ rxc`d´1q to rxc`d “ rhdprx1 ¨ ¨ ¨ rxc`d´2q. This is going to cost us a factor two
in the error probability, but in our implementation, we will now have c ` d ´ 2 lookups in tables
Σ Ñ Σd´1 ˆΨ2 ˆR (where the values are represented as a single w-bit numbers), and 2 lookups in
tables Ψ Ñ R. We shall refer to this scheme as tornado-mix. Corresponding to Theorem 5, we get
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Theorem 8. Let h “ ph ˝ rh : Σc Ñ R be a random tornado-mix tabulation hash function with d
derived characters, the last two from Ψ, and an s-selector function f . If µ “ µf ď |Ψ| {2 then hptq
is fully random on Xf,h with probability at least

1 ´ 14µ3p3{|Ψ|q2p3{|Σ|qd´1 ´ 1{2|Σ|{2 .

An interesting case is when we want linear space uniform hashing for a fixed set X, in which
case µ “ |X| above. This leads to a much better implementation of the uniform hashing fo Pagh
and Pagh [28]. The main part of their paper was to show a linear space implementation, and this
would suffice for all but the most succinct space algorithms. They used highly independent hashing
[33, 35] as a subroutine, but this subroutine alone is orders of magnitude slower than our simple
implementation (see, e.g., [1]). They combined this with a general reduction from succinct space
to linear space, for which we now have a really efficient construction.

1.3 Techniques and relation to mixed tabulation

In spirit, our results are very related to the results on mixed tabulation [10]. For now, we only
consider the case of a single alphabet Σ. Indeed, tornado and mixed tabulation are very similar to
implement. Both deal with c-character keys from some alphabet Σ, produce a derived key with c`d
characters, and then apply a top simple tabulation to the resulting derived keys. Both schemes can
be implemented with c` d lookups. The difference is in how the two schemes compute the derived
keys. For ease of presentation, let rhi : Σ˚ Ñ Σ, that is, rhi adjusts to the number of characters in
the input. Now for mixed tabulation, we define the derived key rx1 ¨ ¨ ¨ rxc`d by

rxi “
#
xi if i ď c
rhi´c prx1 . . . rxcq if i ą c.

The analysis from [10] did not consider query keys, but ignoring this issue, their analysis works in
the limit |Σ| Ñ 8. For example, the analysis from [10] requires that 5

plog |Σ|qc ď |Σ|{2.
This is true for c “ Op1q and |Σ| Ñ 8, but simply false for realistic parameters. Assuming
the above condition to be satisfied, if we consider scenarios with non-constant c and d, the error
probability from [10] becomes

pOpcdqc{|Σ|qtd{2u´1 ` 1{2Ωp|Σ|q.

Now, even if we replace Opcdq with cd, the error probability is not below 1 even with 16-bit
characters and c “ 4. In contrast, practical tabulation schemes normally use 8-bit characters for
efficiency, and our explicit bound of 7µ3p3{|Σ|qd`1 ` 1{2|Σ|{2 from Theorem 4 works fine even in
this case, implying that our theory actually applies to practice.

The reason that mixed tabulation has the problematic exponential dependency on c is that for
a set of linearly dependent keys, it uses a clever encoding of each of the c characters in some of the
keys. With tornado, the only encoding we use is that if we have a zero set of keys, then each key
is the xor of the other keys in the zero set, and this is independent of c. 6

5While using their Lemma 3, if t goes up to s in case D.
6A set is linearly dependent if it contains a subset that is a zero set. See Section 2 for the precise definition.
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To describe the advantage of tornado tabulation over mixed tabulation, it is easier to first
compare with what we call simple tornado where the derived key rx1 ¨ ¨ ¨ rxc`d is defined by

rxi “
#
xi if i ď c
rhi´c prx1 . . . rxi´1q if i ą c.

The implementation difference is that with simple tornado, each derived character uses all preceding
characters while mixed tabulation uses only the original characters. This difference gives tornado a
big advantage when it comes to breaking up linear dependence in the input keys. Recall that a set
Y Ă Σc`d of derived keys is linearly independent if and only if, for every subset Y 1 Ď Y , there exists
a character position i P t1, . . . , c ` du such that some character appears an odd number of times in
position i among the keys in Y 1. Intuitively, the strategy is to argue that whatever linear dependence
exists in the input key set to begin with (essentially, in the first c characters of the derived keys)
will, whp, be broken down by their d derived characters (and hence, disappear in the derived keys).
In this context, the way we compute the derived characters becomes crucial: in mixed tabulation,
each derived character is computed independently of the other derived characters. Thus, whether
a derived character breaks a dependency or not is independent of what other derived characters
do. In contrast, we make the derived characters in tornado tabulation depend on all previously
computed derived characters such that, if we know that some derived character does not break
a dependency, then we also know that none of its previously computed derived characters have
broken it either. Or, in other words, each successive tornado-derived character benefits from the
dependencies already broken by previously computed derived characters, i.e., the benefits compound
each time we compute a new derived character.

This structural dependence between tornado-derived characters turns out to be very powerful
in breaking linear dependencies among the input keys and indeed, leads to a much cleaner analysis.
The most important benefit, however, is that tornado tabulation has a much lower error probability.
For simple tornado, we get an error probability of

7pµf q3p3{|Σ|qd ` 1{2|Σ|{2 ,

which essentially gains a factor p3{|Σ|q for each derived character. It turns out that we gain an extra
factor p3{|Σ|q if we twist the last original character as we did in the original tornado definition (1),
and then we get the bound from Theorem 5, the point being that this twisting does not increase
the number of lookups.

One might wonder if twisting more characters would help further, that is, setting rxi “ xi ‘
rhiprx1 ¨ ¨ ¨ xi´1q for i “ 2, . . . , c, but it doesn’t. The point is that the bad key set from our lower
bound in Theorem 7 is of the form r0sc´2 ˆ r2s ˆ A for some A Ď Σ, and then it is only the last
character where twisting makes a difference.

As a last point, recall tornado-mix which was designed to deal with larger sets. There it only
costs us a factor 2 when we let the last derived character rxc`d depend only on rx1 . . . rxc`d´2 and
not on rxc`d´1. This is essentially like switching to mixed tabulation on the last two derived keys,
hence the name tornado-mix. This only works for the last two derived characters that can play a
symmetric role.

The exponential dependence on c. We note that having an exponential dependence on c is
symptomatic for almost all prior work on tabulation hashing, starting from the original work in
[31]. Above, we discussed how tornado tabulation hashing avoided such exponential dependence on
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c in the error probability from mixed tabulation. The dependence on c was particularly destructive
for mixed tabulation because it pushed the error probability above 1 for the relevant parameters.

Concentration bounds. Tornado hashing inherits the strongest concentration bounds known
for mixed tabulation [22]. The reason is that they only require one derived character and tornado
tabulation can be seen as applying mixed tabulation with one character to a derived tornado key
with one less character. Unlike our Lemma 6, which essentially only applies for expected values
µ ď |Σ| {2, the concentration bounds we get from [22] work for unbounded µ and for both the upper
and lower tail. They fall exponentially in µ{Kc where Kc is exponential in c, but this still yields
strong bounds when µ is large. Inheriting the strongest concentration bound for mixed tabulation
implies that tornado tabulation can replace mixed tabulation in all the applications from [10] while
improving on the issue of local uniformity.

1.4 The power of locally uniform hashing

We now describe, on a high level, how the notion of locally uniform hashing captures a type
of randomness that is sufficient for many applications to work almost as if they employed full
randomness. For the discussion, we will assume the parameters from Theorem 8 with tornado-mix.
The main observation is that, for many algorithms, the performance measure (i.e., its distribution)
depends, whp, only on the behavior of keys that hash inside a local neighborhood defined via some
selected bits of the hash value (the selection may depend both on the algorithm and on the concrete
input since the selection is only used for analysis). Moreover, the set of keys Xf,h that land in that
selected neighborhood has expected size ď |Ψ| {2. For any such neighborhood, our results imply
that the keys in Xf,h have fully random free bits whp.

To understand the role of the free bits, it is helpful to think of hashing a key x as a two-stage
process: the selector bits of hpxq tell us whether x hashes in the desired neighborhood or not,
while the remaining free bits of hpxq determine how x hashes once it is inside the neighborhood.
This suggests a general coupling, where we let both fully-random hashing and tornado tabulation
hashing first choose the select bits and then the free bits. Since both are fully random on the free
bits (for us with high probability), the only difference is in the selection, but here concentration
bounds imply that we select almost the same number of keys as fully-random hashing.

In [10], this approach was demonstrated for the HyperLogLog algorithm of Flajolet, Fusy,
Gandouet, Meunier [18] for counting distinct elements in data streams, and the One-Permutation
Hashing of Li, Owen, and Zhang [26] used for fast set similarity in large scale machine learning.
In [10] they implemented the local uniformity with mixed tabulation, but with tornado hashing
we get a realistic implementation. This also includes later application of mixed tabulation, e.g.,
the dynamic load balancing from [3]. Below, as a new example, we illustrate how local uniformity
makes classic linear probing perform almost as if fully random hashing was used.

We briefly recall the basic version of linear probing. We employ an array T of length m and
hash keys to array entries using a tornado tabulation hash function h : Σc Ñ rms. Thus, in
Theorem 8, we have R “ rms “ r2rs. Upon insertion of a key x, we first check if entry T rhpqqs
is empty. If it is, we insert the key in T rhpqqs. Otherwise, we scan positions in T sequentially
starting with T rhpqq ` 1s until we find an empty position and store x in this next available free
entry. To search for x, we inspect array entries sequentially starting with T rhpqqs until we find x
or we find an empty array entry, concluding that the key is not in the array. The general concept
that dominates the performance of linear probing is the run of q, which is defined as the longest
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interval Iq Ď rms of full (consecutive) array entries that hpqq is part of. The run affects the probe
length (the length of the interval from hpqq till the end of Iq) and other monotone measures such
as insertion and deletion time (i.e., monotonically increasing in the number of keys). Thus, any
corresponding analysis depends only on the set Xq of keys that fall in the interval Iq, and it is there
that we are interested in showing full randomness.

The first step is to argue that the behavior of Iq is local in nature, in that it is affected only by the
keys that hash in a fixed length interval around hpqq. To that end, we show that, whp, the length of
the run is no bigger than a specific ∆ “ 2ℓ. This ∆ implies locality: consider the interval Jq Ď rms,
centered at hpqq, which extends ∆ entries in each direction, i.e., Jq “ tj P rms | |j ´ hpqq| ď ∆u.
Then, whp, any run that starts outside Jq is guaranteed to end by the time we start the run of q.
In other words, whp, the behavior of Iq depends only on the set Xq of keys that hash inside the
fixed length neighborhood Jq (and specifically where in Jq the keys hash). A similar argument can
be made for other variants of linear probing, such as linear probing with tombstones [6], where the
run/neighborhood must also take into account the tombstones that have been inserted.

At this point, it is worthwhile pointing out that the set Xq is no longer a fixed set of keys but
rather a random variable that depends on the realization of hpqq. We cannot just apply Theorem 1.
Nevertheless, in the second step, we argue that Xq can be captured by our notion of selector
functions. For this, we cover Jq with three dyadic intervals, each of length ∆: one including hpqq
and the corresponding ones to the left and to the right. Since each interval is dyadic, it is determined
only by the leftmost r ´ ℓ bits of the hash value: for example, an element x P Σc hashes into the
same dyadic interval as q iff the leftmost r´ ℓ bits of hpxq match those of hpqq. We can then design
a selector function that returns a 1 if and only if x is in the input set and the leftmost r ´ ℓ bits of
hpxq (its selector bits) hash it into any of the three specific dyadic intervals we care about. Such
a selector function is guaranteed to select all the keys in Xq. By setting ∆ appropriately, we get
that the expected size of the selected set is at most Σ{2, and can thus apply Theorem 5. We get
that inside the intervals, keys from Xf,h hash (based on their free bits) in a fully random fashion.

Finally, what is left to argue is that the number of keys hashing inside each of the three dyadic
intervals is not much bigger than what we would get if we used a fully-random hash function for
the entire set (one in which the selector bits are also fully random). For this, we employ Lemma 6,
and can conclude that we perform almost as well with fully-random hashing. In particular, from
Knuth’s [25] analysis of linear probing with fully-random hashing, we conclude that with load
p1 ´ εq, the expected probe length with tornado hashing is p1 ` op1qqp1 ` 1{ε2q{2.

The above type of analysis could be applied to other variants of linear probing, e.g., including
lazy deletions and tombstones as in the recent work of Bender, Kuszmaul, and Kuszmaul [6]. We
would need to argue that the run, including tombstones, remains within the selected neighborhood
and that we have concentration both on live keys and tombstones. However, since the analysis
from [6] is already based on simple hash functions, we would not get new bounds from knowing
that tornado hashing performs almost as well as fully-random hashing.

1.5 Relation to high independence

The k-independence approach to hashing [37] is to construct hash functions that map every set of
k keys independently and uniformly at random. This is much stronger than getting fully random
hashing for a given set and, not surprisingly, the results for highly independent hashing [9, 33, 35]
are weaker. The strongest high independence result from [9] says that we get |Σ|1´ε-independent
hashing in Oppc{εq logpc{εqq time, but the independence is much less than our |Σ|{2. Experiments
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from [1] found that even the simpler non-recursive highly independent hashing from [35] was more
than an order of magnitude slower than mixed tabulation which is similar to our tornado tabulation.

We also note that the whole idea of using derived characters to get linear independence between
keys came from attempts to get higher k-independence Indeed, [15, 23, 36] derive their characters
deterministically, guaranteeing that we get k-independence. The construction for k “ 5 is efficient
but for larger k, the best deterministic construction is that from [36] using d “ pk ´ 1qpc ´ 1q ` 1
derived characters, which for larger k is much worse than the randomized constructions.

1.6 Relation to the splitting trick and to succinct uniform hashing

We will now describe how tornado-mix provides a much more efficient implementation of the suc-
cinct uniform hashing by Pagh and Pagh [28] and the splitting trick of Dietzfelbinger and Rink [13].
This further illustrates how our work provides a component of wide applicability within hashing.

Succinct uniform hashing. The main contribution in [28] is to obtain uniform hashing in linear
space. The succinct construction is then obtained through a general reduction from the linear-space
case. They achieved uniform hashing in linear space using the highly independent hashing of Siegel
[33] as a subroutine in combination with other ideas. Now, thanks to Theorem 8, we know that
tornado-mix offers an extremely simple and efficient alternative to implement that. Indeed, if n is
the size of the set we want linear space uniform hashing on, then setting |Ψ| to the power of two
just above 2n is sufficient to ensure the degree of independence that we need. Moreover, we can set
|Σ| „ ?

Ψ and c so that we obtain (i) c|Σ| “ op|Ψ|q and (ii) setting d “ 2c`1 the probability bound
in Theorem 8 becomes 1´Op1{uq where u is the size of the universe. The two previous conditions
ensure respectively that tornado-mix uses linear space and that it is, whp, fully random.

The splitting trick. We now explain how our tornado-mix tabulation hashing provides a very
simple and efficient implementation of the splitting trick of Dietzfelbinger and Rink [13] which is
a popular method for simulating full-randomness in the context of data structures, most notably
various dictionary constructions [14, 16, 19, 5]. This is an especially relevant application because it
usually requires hashing keys into a range of size Θpnq and, in this context, employing the uniform
hashing of Pagh and Pagh [28] would be too costly, i.e., (compared to the size of the overall data
structure). This trick was also used to obtain a simpler and exponentially faster implementation
of succinct uniform hashing [28]. We note that the splitting idea had also been used earlier works
of Dietzfelbinger and Meyer auf der Heide [12] and Dietzfelbinger and Woelfel [15].

The idea is to first split the input set S of size n into n1´δ subsets S1, . . . , Sm, for some δ P p0, 1q.
The splitting is done through a hash function h1 : Σc Ñ rn1´δs such that Si is defined as all the
keys in S that hash to the same value, i.e., Si “ tx P S | h1pxq “ iu. In many applications, we want
the splitting to be balanced, that is, we need a joint upper bound s on all set sizes with s close to
the expected size nδ. On top of this, we need a shared hash function h2 : Σ

c Ñ R which with high
probability is fully random on each set Si and we ensure this with a hash function that w.h.p. is
fully random on any set of size at most s. The problem is then solved separately for each subset
(e.g., building n1´δ dictionaries, each responsible for just one subset Si).

The above splitting trick can be easily done with tornado-mix hashing from Theorem 8. The
dominant cost for larger s is two lookups in tables of size at most 4s. We let h1 be the select bits
(with the strong concentration from Lemma 6) and h2 as the remaining free bits. Getting both for
the price of one is nice, but the most important thing is that we get an efficient implementation of
the shared hash function h2. Specifically, we compare this with how h1 and h2 were implemented
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in [13] to get uniform hashing. For the splitter h1, instead of using Siegel’s [33] highly independent
hashing, [13, §3.1] uses that if h1 has sufficiently high, but constant, independence, then it offers
good concentration (though not as good as ours from Lemma 6).

The bigger issue is in the implementation of the shared h2 from [13, §3.2]. For this, they first
employ a hash function f : rss Ñ rs1`εs such that, whp, f has at most k “ Op1q keys that get the
same hash value. For small ε and k, this forces a high independence of f . Next, for every i P rs1`εs,
they use a k-independent hash function gi : Σ

c Ñ R, and finally, h2 is implemented as gfpxqpxq.
The space to implement h2 is dominated by the Ops1`εq space to store the s1`ε k-independent hash
functions gi, and time-wise, we have to run several sufficiently independent hash functions. This
should be compared with our tornado-mix that only uses Opsq space and runs in time corresponding
to a few multiplications (in tests with 32-bit keys).

1.7 Paper Organization

The remainder of our paper is structured as follows. In Section 2, we introduce some notation, a
more general notion of generalized keys and Lemma 9 (the corresponding version of Lemma 2 for
them). Our main technical result, Theorem 4, is proved in three steps: we first define obstructions,
the main combinatorial objects we study, in Section 3. In Section 4 we present a simplified analysis
of Theorem 4 that achieves a weaker error probability. We then show in Section 5 a tighter
analysis that finally achieves the desired bound. The Chernoff bounds for the upper tail are proved
in Section 6. The details for the linear probing analysis can be found in Section 7. Finally, the
lower bound from Theorem 7 is proved in Section 8.

2 Preliminaries

Notation. We use the notation n!! “ npn ´ 2q ¨ ¨ ¨ . More precisely, n!! “ 1 for n P t0, 1u, while
n!! “ npn ´ 2q!! for n ą 1. For odd n, this is exactly the number of perfect matchings of n ` 1
nodes. We use the notations

nk “ npn ´ 1q ¨ ¨ ¨ pn ` 1 ´ kq “ n!{pn ´ kq!
nk “ npn ´ 2q ¨ ¨ ¨ pn ` 2p1 ´ kqq “ n!!{pn ´ 2kq!

Here nk appears to be non-standard, though it will be very useful in this paper in connection with
something we will call greedy matchings. We note that

nk ď nk ď nk.

Position characters and generalized keys. We employ a simple generalization of keys going
back to Pǎtraşcu and Thorup [31]. Namely, a position character is an element of t1 . . . bu ˆ Σ,
e.g., where b “ c or c ` d. Under this definition a key x P Σb can be viewed as a set of b position
characters p1, x1q . . . pb, xbq, and, in general, we consider generalized keys that may be arbitrary
subsets of t1 . . . bu ˆ Σ. A natural example of a generalized key is the symmetric difference x△y of
two (regular) keys. We then have that

hpxq “ hpyq ðñ hpx△yq “ 0.
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These symmetric differences will play an important role in our constructions, and we shall refer to
x△y as a diff-key. A diff-key is thus a generalized key where we have zero or two characters in each
position. For a generalized key x, we can then define

xris “ tpi, aq P xu, xră is “ tpj, aq P x | j ă iu and xrď is “ tpj, aq P x | j ď iu.
For example, if we have a regular key x “ x1, . . . , xc, then xris “ xi and xrď is “ x1 . . . , xi. Also
note that px△yqrď is “ xrď is△yrď is. We shall also apply this indexing to sets X of generalized
keys by applying it to each key individually, e.g.,

Xră is “ txră is | x P Xu.

Generalized keys and linear independence. A generalized key x can also be interpreted as
a p|Σ| ¨ bq-dimensional vector over F2, where the only entries set to 1 are those indexed by position

characters in x. The generalized key domain is denoted by Ft1...buˆΣ
2 . Now, if we have a simple

tabulation hash function h : Σb Ñ R using character tables T1, . . . , Tb, then h can be lifted to hash

any generalized key x P Ft1...buˆΣ
2 by

hpxq “ à

pi,aqPx
Tiras.

Thus h provides a mapping Ft1...buˆΣ
2 to R.

As for (regular) keys, for a set Y of generalized keys, we can then define △Y to be the set of
position characters that appear an odd number of times across the keys in Y . We then say that Y
is a zero-set if △Y “ H. We also say that Y is linearly dependent if it contains a subset which
is a zero-set, and linearly independent otherwise. It is apparent then that a set of generalized keys
is linearly independent if and only if the set of their vector representations is linearly independent.
Indeed, the proof of Thorup and Zhang [36] for Lemma 9 works quite directly in this generality.
Thus we have

Lemma 9 (Simple tabulation on linearly independent generalised keys). Given a set of general-

ized keys Y Ď
´
Ft1...cuˆΣ
2

¯
and a simple tabulation hash function h : Σc Ñ R, the following are

equivalent:

(i) Y is linearly independent

(ii) h is fully random on Y (i.e., h|Y is distributed uniformly over RY ).

3 Obstructions with simple tornado tabulation

We prove Theorem 4 by first considering a simpler version of tornado tabulation hashing, which
we call simple tornado hashing, where we do not change the last character of the (original) key.
Formally, for a key x “ x1 ¨ ¨ ¨ xc, its corresponding derived key rx “ rx1 . . . rxc`d is computed as

rxi “
#
xi if i “ 1, . . . , c
rhi´c prx1 . . . rxi´1q otherwise.
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Note that, in the original tornado hashing, we had rxc “ xc ‘ rh0prx1 . . . rxc´1q. Removing this extra
step is thus equivalent to fixing rh0p¨q “ 0. While this step comes at almost no cost in the code, it
allows us to gain a factor of 3{ |Σ| in the overall error probability. See Section 5.3 for details. For
the simple tornado hashing, we will prove a slightly weaker probability bound.

For ease of notation, for every key x, we use rx to denote the corresponding derived key rhpxq; and
likewise for any set of keys. We also define X “ Xf,h to be the set of selected keys and rX “ h̃pXq.
We want to argue that the derived selected keys rX are linearly independent with high probability.
To prove this, we assume that rX is linearly dependent and hence, contains some zero-set rZ. From
rZ we construct a certain type of “obstruction” that we show is unlikely to occur.

3.1 Levels and matchings

We first define some necessary concepts. We use the notion of level i to refer to position c ` i in
the derived keys. Let M Ď `|Σ|c

2

˘
be a (partial) matching on the keys Σc.7 We say that M is an

i-matching if for all tx, yu P M , it holds that rxrc ` is “ ryrc ` is, namely if every pair of keys in M
matches on level i. Our obstruction will, among other things, contain an i-matching Mi for each
level i.

Recall that a diff-key x△y is the symmetric difference of two keys x and y in terms of their
position characters. We then say that M is an i-zero, i-dependent, or i-independent matching if

DiffKeyspM, iq “ tprx△ ryqrď c ` is | tx, yu P Mu
is a zero-set, linearly dependent, or linearly independent, respectively. In other words, for each
pair tx, yu in the matching, we consider the diff-key corresponding to the first c ` i characters of
their derived keys. We then ask if this set of diff-keys now forms a zero-set or contains one as a
subset, by looking at their (collective) symmetric difference. We employ this notion to derive the
probability that the function rh satisfies a certain matching as such:

Lemma 10. Let M be a partial matching on Σc. Conditioning on M being pi ´ 1q-independent,
M is an i-matching with probability 1{|Σ||M |.

Proof. First, we notice that the event “M is pi ´ 1q-independent” only depends on rhj for j ă i.

Then, by Lemma 9, when we apply the simple tabulation hash function rhi : Σc`i Ñ Σ to the
linearly independent generalized key set DiffKeyspM, i ´ 1q, the resulting hash values rhpzqrc ` is
for z P DiffKeyspM, i´ 1q are independent and uniform over Σ. Hence, so are the resulting derived
characters rhpzqrc ` is for z P DiffKeyspM, iq. The probability that they are all 0 is therefore
1{|Σ||M |.

Similarly, as for matchings, we say that a set of keys Z Ď Σc is i-zero, i-dependent, or i-
independent if rZrď c ` is is a zero-set, linearly dependent, or linearly independent, respectively.
We note the following relations:

Observation 11. LetM be a partial matching on Σc and Z “ Ť
M . ThenM is an i-zero matching

iff Z is an i-zero set. Furthermore, if M is i-dependent then Z is also i-dependent (but not vice
versa).

7Here, we mean the graph-theoretic definition of a matching as a set of edges with disjoint endpoints. In our
case, the vertices of the graph are keys in Σc, and the edges of the matching are represented as tx, yu P M .
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We will also make use of the following observation repeatedly:

Observation 12. If Z is an i-zero set, then there is a perfect j-matching on Z for every level j ď i.

3.2 Constructing an obstruction

In this section, we show that whenever the set of selected derived keys rX is linearly dependent, it
gives rise to a certain obstruction. We now show how to construct such an obstruction.

Since rX is linearly dependent, there must be some d-zero set Z Ď X. We are going to pick a
d-zero set that (1) minimizes the number of elements contained that are not in the query set Q
and, subject to (1), (2) minimizes the number of elements from Q contained. In particular, Z is
contained in Q if rQ is not linearly independent.

If Z is not contained in Q, we let x˚ be any element from ZzQ. Then Q Y Zztx˚u must be
linearly independent since any strict subset Z 1 would contradict (1). If Z is contained in Q, then
we let x˚ be an arbitrary element of Z.

The top two levels. By Observation 12, we have a perfect d-matching Md̊ and a perfect pd´1q-
matching Md̊´1 on Z (we also have perfect matchings on other levels, but they will be treated
later). These two perfect matchings partition Z into alternating cycles.

We will now traverse these cycles in an arbitrary order except that we traverse the cycle con-
taining x˚ last. For all but the last cycle, we start in an arbitrary vertex and its cycle starting with
the edge from Md̊´1. When we get to the last cycle, we start at the Md̊ neighbor of x˚ and follow
the cycle from the Md̊´1 neighbor of this key. This ensures that x˚ will be the very last vertex
visited. The result is a traversal sequence x1, . . . , x|Z| of the vertices in Z ending in x|Z| “ x˚. Note
that Md̊´1 contains the pairs tx1, x2u, tx3, x4u, . . .. For Md̊ it is a bit more complicated, since its
pairs may be used to complete a cycle (and hence are not visible in the traversal).

We now define W “ tx1 . . . xwu to be the shortest prefix of x1 . . . x|Z| such that Md̊´1 restricted
to the keys in W is a pd´1q-dependent matching, i.e., we go through the pairs tx1, x2u , tx3, x4u , . . .
until the set of their diff-keys (up to level d ´ 1) contains a zero-set. Note that such a W Ď Z
always exists because Md̊´1 itself is a pd´1q-zero matching. Also note that W ztxwu Ď Zztx˚u. Let
ed´1 :“ txw´1, xwu be the last pair in the prefix, and as ed´1 P Md̊´1, we get that w is even. We then
define Md´1 to be the restriction of Md̊´1 to the keys in W and Md to be the restriction of Md̊ to
the keys in W z txwu. Note that Md´1 is a perfect matching on W while Md is a maximal matching
on W ztxwu. Since Md´1 is pd´1q-dependent, we can define a submatching Ld´1 Ď Md´1 such that
Ld´1 is a pd ´ 1q-zero matching (this corresponds exactly to the subset of DiffKeyspMd´1, d ´ 1q
that is a zero-set). By construction, ed´1 P Ld´1. Finally, we set Zd´1 “ Ť

Ld´1 and notice that
Zd´1 is an pd ´ 1q-zero key set (by Observation 11).

A special total order. We now define a special new total order ĺ on Σc that we use in order to
index the keys in W and describe matchings on levels ă d ´ 1. Here xw has a special role and we
place it in a special position; namely at the end. More precisely, we have the natural ď-order on Σc,
i.e, in which keys are viewed as numbers ă |Σ|c. We define ĺ to be exactly as ď except that we set
xw to be the largest element. Moreover, we extend the total order ĺ to disjoint edges in a matching
M : given tx1, x2u, ty1, y2u P M , we define tx1, x2u ĺ ty1, y2u if and only if minxi ă mini yi.
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Lower levels. Now for i “ d´2 . . . 0, we do the following: from level i`1, we have an pi`1q-zero
set Zi`1. By Observation 12, there exists a perfect i-matching Mi̊ over Zi`1. Notice that Mi̊ is an
i-zero matching. We define Mi as the shortest prefix (according to ĺ) of Mi̊ that is i-dependent.
Denote by ei the ĺ-maximum edge in Mi. Define the submatching Li Ď Mi such that Li is an
i-zero set. By construction, ei P Li. Finally, we set Zi “ Ť

Li and notice that Zi is an i-zero set.

3.3 Characterizing an obstruction

Our main proof strategy will be to show that an obstruction is unlikely to happen, implying that
our selected derived keys rX are unlikely to be linearly dependent. To get to that point, we first
characterize such an obstruction in a way that is independent of how it was derived in Section 3.2.
With this classification in hand, we will then be able to make a union bound over all possible
obstructions.

Corresponding to the two top levels, our obstruction consists of the following objects:

• A set of keys W Ď Σc of some size w “ |W |.
• A special key xw P W , that we put last when we define ĺ.

• A maximal matching Md on W ztxwu.
• A perfect matching Md´1 on W , where ed´1 is the only edge in Md´1 incident to xw.

• A submatching Ld´1 Ď Md´1, which includes ed´1, and its support Zd´1 “ Ť
Ld´1.

Note that the above objects do not include the whole selected set Xf,h, the d-zero set Z, or the
perfect matchings Md̊´1,Md̊ that we used in our construction of the obstruction. Also, note that
thus far, the objects have not mentioned any relation to the hash function h.

To describe the lower levels, we need to define greedy matchings. We say a matching M on a
set Y is greedy with respect to the total order ĺ on Y if either: (i) M “ H or; (ii) the key minĺ Y
is incident to some e P M and Mzteu is greedy on Y ze. Assuming that |Y | is even, we note that
M is greedy if and only if it is a prefix of some ĺ-ordered perfect matching M˚ on Y .

For the lower levels i “ d ´ 2, . . . , 1, we then have the following objects:

• A greedy matching Mi on Zi`1. Denote with ei the ĺ-maximum edge in Mi.

• A submatching Li Ď Mi which includes ei, and its support Zi “ Ť
Li.

Note that the above objects describe all possible obstructions that we might construct. More-
over, any obstruction can be uniquely described as the tuple of objects

pW,xw,Md,Md´1, ed´1, Ld´1, Zd´1, . . .M1, e1, L1, Z1q .

3.4 Confirming an obstruction

In order for a given obstruction to actually occur, the tornado tabulation hash function h “ ph ˝ rh
must satisfy the following conditions with respect to it:

• The keys in W are all selected, that is, W Ď Xf,h.
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• Either W Ď Q or Q Y W ztxwu is d-independent.

• For i “ 1, . . . , d, Mi is an i-matching.

• Md is pd ´ 1q-independent.
For i “ 1, . . . , d ´ 1,

• Mizteiu is pi ´ 1q-independent.
• The submatching Li is i-zero (implying that Zi “ Ť

Li is an i-zero set).

When a hash function h satisfies the above conditions, we say that it confirms an obstruction.
We now need to argue two things. We need (1) to verify that our construction of an obstruction
from Section 3.2 satisfies these conditions on h, and (2) that, given a fixed obstruction, the proba-
bility that a random h confirms the obstruction is very small. This is captured by the two lemmas
below.

Lemma 13. The obstruction constructed in Section 3.2 satisfies the conditions on h “ ph ˝ rh.
Proof. Since W ztxwu Ď Zztx˚u, the choice of Z implies that either W Ď Q or Q Y W ztxwu is
d-independent.

The matchings Mi were all submatchings of perfect i-matchings. We also picked Mi is minimally
i-dependent, but for an i-matching Mi this also implies that Mi is minimally pi ´ 1q-dependent,
and therefore Mizteiu is pi ´ 1q-independent. Finally, we constructed Li and Zi to be i-zero.

Lemma 14. Given the objects of an obstruction, the probability that h “ ph ˝ rh confirms the
obstruction is at most ¨

˝ ź

xPW ztxwu
px

˛
‚
N

|Σ|w´2`řd´2
i“1 p|Mi|´1q.

Proof. For simplicity, we group the conditions above in the following events: we define the event
CS to be the event that W ztxwu Ď Xf,h given that the set W ztxwu is d-independent. Then, for
each i P t1, . . . , d ´ 1u, we define Cpiq to be the event that Mizei is an i-matching conditioned on
the fact that it is pi ´ 1q-independent. Finally, we define the last event Cpdq to be the event that
Md is a d-matching conditioned on the fact that it is pd ´ 1q-independent. It is then sufficient to
show that:

Pr

˜
CS ^

dľ

i“1

Cpiq
¸

ď
¨
˝ ź

xPW ztxwu
px

˛
‚
N

|Σ|w´2`řd´2
i“1 p|Mi|´1q.

We proceed from the bottom up, in the following sense. For every i P t1, . . . , d ´ 1u, the
randomness of the event Cpiq conditioned on

Źi´1
j“1 Cpjq depends solely on rhi. We invoke Lemma 10

for Mizei and get that

Pr

˜
Cpiq

ˇ̌
ˇ

i´1ľ

j“1

Cpjq
¸

ď 1{ |Σ||Mi|´1 .
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When it comes to level d, from Lemma 10 applied to Md, we get that the probability of Cpdq
conditioned on

Źd´1
j“1 Cpjq is at most 1{ |Σ||Md|. We now notice that |Md´1| ` |Md| “ w ´ 1 by

construction, and so:

Pr

˜
dľ

j“1

Cpjq
¸

ď 1{ |Σ|w´2`řd´2
i“1 p|Mi|´1q .

Finally, we know that either W Ď Q or Q Y W ztxwu is d-independent. If W Ď Q, then px “ 1
for all x P W , and therefore, trivially,

Pr

˜
CS

ˇ̌
ˇ

dľ

j“1

Cpjq
¸

ď
ź

xPW ztxwu
px “ 1 .

Otherwise Q Y W ztxwu is d-independent. This means that the derived keys rhpQ Y W ztxwuq
are linearly independent. We can then apply Lemma 9 to this set of derived keys and the final
simple tabulation hash function ph. We get that the final hash values hpQ Y W ztxwuq are chosen
independently and uniformly at random. For any one element x, by definition, Pr

`
x P Xf,h

˘ ď px
and so:

Pr

˜
CS

ˇ̌
ˇ

dľ

j“1

Cpjq
¸

ď
ź

xPW ztxwu
px .

This completes the claim.

4 Simplified analysis

In this section, we present a simplified analysis showing that, under the hypotheses of our theorem,
rhpXf,hq is linearly dependent with probability at most Θpµ3p17{|Σ|qdq ` 2´|Σ|{8. Later, we will
replace p17{|Σ|qd with p3{|Σ|qd, which essentially matches the growth in our lower bound.

For now we use a fixed limit w0 “ |Σ|{25{2 on the set size w “ |W |. With this limited set size,
we will derive the Θpµ3p17{|Σ|qdq bound. The 2´|Σ|{8 bound will stem for sets of bigger size and
will be derived in a quite different way.

Our goal is to study the probability that there exists a combinatorial obstruction agreeing with
a random tornado hash function h; if not, rhpXf,hq is linearly independent. To do this, we consider
a union bound over all combinatorial obstructions as such:

ÿ

W,xw,Md,Md´1,ed´1,Ld´1,Zd´1,...M1,e1,L1,Z1

Pr
h

rh confirms the obstructions (4)

The above sum is informally written in that we assume that each element respects the previous
elements of the obstruction, e.g., for i ă d´ 2, Mi is a greedy matching over Zi`1. Likewise, in the
probability term, it is understood that h is supposed to confirm the obstruction whose combinatorial
description is pW,xw,Md,Md´1, ed´1, Ld´1, Zd´1, . . .M1, e1, L1, Z1q .
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Using Lemma 14, we bound (4) by

ÿ

W,xw,Md,Md´1,ed´1,Ld´1,Zd´1,...M1,e1,L1,Z1

¨
˝ ź

xPW ztxwu
px

˛
‚
N

|Σ|w´2`řd´2
i“1 p|Mi|´1q

ď
¨
˝ ÿ

W,xw,Md,Md´1,ed´1,Ld´1,Zd´1

¨
˝ ź

xPW ztxwu
px

˛
‚|Σ|2´w2w{4´1

˛
‚ (5)

ˆ
d´2ź

i“1

max
Zi`1

˜ ÿ

Mi,ei,Li,Zi

|Σ|1´|Mi|
N

2p|Zi`1|´|Zi|q{4
¸
. (6)

Above , W,xw,Md,Md´1, ed´1, Ld´1, Zd´1 are all the elements from the top two levels and we refer
to (5) as the “top” factor. We refer to Equation (6) as the “bottom” factor which is the product
of “level” factors.

For each lower level i ď d ´ 2, the elements Mi, ei, Li, Zi are only limited by Zi`1, so for a
uniform bound, we just consider the maximizing choice of Zi`1. For this to be meaningful, we
divided the level factor (6) by 2p|Zi`1|´|Zi|q{4 and multiplied (5) by 2w{4´1 ě śd´2

i“1 2p|Zi`1|´|Zi|q{4.
This inequality follows because |Zd´1| ď w and |Z1| ě 4. The exponential decrease in |Zi`1| helps
ensuring that the maximizing choice of Zi`1 has bounded size (and is not infinite). We note here
that our bound |W | ď w0 “ |Σ|{25{2 is only needed when bounding the level factors, where it
implies that |Zi`1| ď w0.

4.1 The top two levels and special indexing for matchings and zero sets

We now wish to bound the top factor (5) from the two top levels. Below, we will first consider w
fixed. Later we will sum over all relevant values of w.

We want to specify the w keys in W using the fact that the keys from W ztxwu hash indepen-
dently. Thus, we claim that we only have to specify the set V “ W ztxwu, getting xw for free. By
construction, we have xw in the zero-set Zd´1, so

xw “ △pZd´1ztxwuq. (7)

To benefit from this zero-set equality, we need the special ordering ĺ from the construction. It
uses the standard ordering ď of V since all these keys are known, and then it just places the yet
unknown key xw last. The special ordering yields and indexing x1 ă x2 ă ¨ ¨ ¨ ă xw (this is not
the order in which we traversed the cycles in the construction except that xw is last in W in both
cases). Formally, we can now specify all the Mi, Li, Zi over the index set t1, . . . , wu. For i ă w, we
directly identify xi as the ith element in V . This way we identify all xi P Zd´1ztxwu, and then we
can finally compute the special last key xw; meaning that we completely resolve the correspondance
between indices and keys in W . As a result, we can bound (5) by

ÿ

V :|V |“w´1

˜ź

xPV
px

¸
ˆ

ÿ

Md,Md´1,ed´1,Ld´1,Zd´1

|Σ|2´w2w{4´1.

For the first part, with v “ w ´ 1, we have

ÿ

V : |V |“v

˜ź

xPV
px

¸
“ 1

v!

ÿ

px1,...,xvq

vź

i“1

pxi ď 1

v!

vź

i“1

p
ÿ

x

pxq “ µv

v!
. (8)
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For the second part, we note Md´1 and Md can both be chosen in pw´ 1q!! ways and we know that
ed´1 is the edge in Md´1 incident to w. Since the submatching Ld´1 of Md´1 contains the known
ed´1, it can be chosen in at most 2|Md´1|´1 “ 2w{2´1 ways. Putting this together, we bound (5) by

µw´1

pw ´ 1q! ppw ´ 1q!!q2 2w{2´1|Σ|´w`22w{4´1 “ µw´1

|Σ|w´2
¨ pw ´ 1q!!

pw ´ 2q!! ¨ 23w{4´2

ď µ3

|Σ|2 2
4´w ¨ pw ´ 1q!!

pw ´ 2q!! ¨ 23w{4´2 “ µ3

|Σ|2 ¨ pw ´ 1q!!
pw ´ 2q!! ¨ 22´w{4 (9)

Above we got to the second line using our assumption that µ ď |Σ|{2. This covers our top factor
(5), including specifying the set Zd´1 that we need for lower levels.

Union bound over all relevant sizes. We will now sum our bound (9) for a fixed set size w
over all relevant set sizes w ď w0, that is, w “ 4, 6, . . . , w0. The factor that depends on w is

fpwq “ pw ´ 1q!!
pw ´ 2q!!{2

w{4.

We note that fpw ` 2q “ fpwqw`1?
2w

and w`1?
2w

ă 4{5 for w ě 8, so

w0ÿ

Even w“4

fpwq ă fp4q ` fp6q ` 5fp8q ă 4.15.

Thus we bound the top factor (5) over all sets W of size up to w0 by

w0ÿ

Even w“4

ˆ
µ3

|Σ|2 ¨ pw ´ 1q!!
pw ´ 2q!! ¨ 22´w{4

˙
ă 16.6pµ3{|Σ|2q. (10)

4.2 Lower levels with greedy matchings

We now focus on a lower level i ď d ´ 2 where we will bound the level factor

max
Zi`1

˜ ÿ

Mi,ei,Li,Zi

|Σ|1´|Mi|
N

2p|Zi`1|´|Zi|q{4
¸
. (11)

We want a bound of Op1{|Σ|q, implying a bound of Op1{|Σ|qd´2 for all the lower levels in (6).
All that matters for our bounds is the cardinalities of the different sets, and we set mi “ |Mi|

and zi “ |Zi|. For now we assume that zi`1 ď w0 and mi are given.

Lemma 15. With a given linear ordering over a set S of size n, the number of greedy matchings
of size k over S is pn ´ 1qk.
Proof. We specify the edges one at the time. For greedy matchings, when we pick the jth edge, the
first end-point is the smallest free point in S and then there are n ´ 2j ` 1 choices for its match,
so the number of possible greedy matchings of size k is pn ´ 1qk.
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Recall that ei denotes the last edge in our greedy matching Mi and that ei P Li. In our case,
we are only going to specify M 1

i “ Mizteiu and L1
i “ Lizteiu. The point is that if we know M 1

i and
L1
i, then we can compute ei. More precisely, we know that ei is the next greedy edge to be added

to M 1
i , so we know its first end-point x. We also know that Zi “ Ť

Li is a zero-set, so the other
end-point can be computed as key

y “ △ptxu Y
ď

L1
iq (12)

Above we note that even though the keys in x and L1
i are only specified as indices, we know how

to translate between keys and indices, so we can compute the key y and then translate it back to
an index.

By Lemma 15, we have pzi`1 ´ 1qmi´1
choices for M 1

i , and then there are 2mi´1 possible
submatchings L1

i Ă M 1
i . The number of combinations for Mi, ei, Li is thus bounded by

pzi`1 ´ 1qmi´1 ¨ 2mi´1.

We want to multiply this by
|Σ|1´mi{2pzi`1´ziq{4.

Here zi “ 2|Li| ď 2mi, so we get a bound of

pzi`1 ´ 1qmi´1 ¨ p23{2{|Σ|qmi´1{2zi`1{4´1{2 ď 21{2p23{2zi`1{|Σ|qmi´1{2zi`1{4. (13)

We now note that
p23{2zi`1{|Σ|q ď 1{2.

since zi`1 ď w ď w0 “ |Σ|{25{2. Having this factor bounded below 1 is critical because it implies
that the term decreases as mi grows.

Still keeping zi`1 fixed, we will now sum over all possible values of mi. Since Mi contains a
zero-matching Li of size at least 2, that is 2 edges covering 4 keys, we have that mi ě 2. Moreover,
the terms of the summation are halving, hence they sum to at most twice the initial bound, so we
get ÿ

miě2

21{2p23{2zi`1{|Σ|qmi´1{2zi`1{4 ď 23{2p23{2zi`1{|Σ|q{2zi`1{4. (14)

The maximizing real value of zi`1 is 4{ ln 2 “ 5.77, but zi`1 also has to be an even number, that is,
either 4 or 6, and 6 yeilds the maximum bound leading to the overall bound of 16.98{|Σ| for (6).
Together with our bound (10), we get a total bound of

16.6pµ3{|Σ|2q ¨ p17{|Σ|qd´2. (15)

4.3 Large set sizes

We now consider sets W of sizes w ą w0. In this case, we will only consider the two top levels
of the obstructions. Recall that we have a cycle traversal x1, . . . , xw. If w ą w0, we only use
the prefix x1, . . . , xw0 , where we require that w0 is even. The two matchings Md and Md´1 are
reduced accordingly. Then Md´1 is a perfect matching on W0 “ tx1, . . . , xw0u while Md is maximal
excluding xw0 . Each of these matchings can be chosen in pw0 ´ 1q!! ways.
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This time we know that we have full independence. We know that ĂW0 is a strict subset of the
original minimimal zero set rZ of derived keys, so the keys in W0 all hash independently. Therefore
the probability that they are all selected is bounded by

ś
xPW0

px.
Also, since we terminate the traversal early, we know that Md´1 is pd´2q-linearly independent,

and Md must be d´2-linearly independent, so the probability that these two matchings are satisfied
is 1{|Σ||Md´1|`|Md| ď 1{|Σ|w0´1.

The total bound for all w ą w0 “ |Σ|{25{2 is now

ÿ

W0: |W0|“w0,Md,Md´1

˜ ź

xPW0

px

¸
{|Σ|w0´1 ď µw0

w0!
ppw0 ´ 1q!!q2{|Σ|w0´1 ď w0|Σ|{2w0 (16)

ď 1{2|Σ|{8. (17)

The last step holds easily for |Σ| ě 256. We note that (16) holds for any choice of w0, limiting the
probability of any obstruction with |W | ă w.

5 Tighter analysis

We will now tighten the analysis to prove that

Theorem 5. Let h : Σc Ñ R be a tornado tabulation hash function with d derived characters
and f be an s-selector as described above. If µf ď Σ{2, then hptq is fully random on Xf,hpsq

with
probability at least

1 ´ DependenceProbpµf , d,Σq .

5.1 Bottom analysis revisited

We first tigthen the analysis of the bottom factor (6) so as to get a bound of Opp3{Σqd´2q and,
together with our top bound (10), obtain an overall bound of Opµ3p3{Σqdq matching our lower
bound within a constant factor. We are still using our assumption that w ď w0 ď |Σ|{25{2 implying
that zi`1 ď |Σ|{25{2.

First we look at a single level i. For a tighter analysis of the level factor (11), we partition into
cases depending on zi`1 and to some degree on zi “ 2mi. Recall that zi`1 is given from the level
above.

If zi`1 ď 6, then we must have zi “ zi`1, since we cannot split into two zero sets each of size at
least 4. This implies that the factor 2|Zi`1|´|Zi| is just one. Also, in this case, Mi “ Li must be a
perfect matching on Zi`1 “ Zi, and such a perfect matching can be in pzi`1 ´ 1q!! ways. Thus, for
given zi`1 ď 6, we bound the level factor by

pzi`1 ´ 1q!!{|Σ|zi`1{2´1 ď 3{|Σ|. (18)

with equality for zi`1 “ 4. As a result, if zd´1 ď 6, then we have already achieved a bound of
p3{|Σ|qd´2 for the bottom factor.
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Split levels. We now consider zi`1 ě 8. Now it is possible that Zi`1 can split into two sets so
that zi ă zi`1. For a given mi and zi`1, we already had the bound (13)

21{2p23{2zi`1{|Σ|qmi´1{2zi`1{4.

Since p23{2zi`1{|Σ|q ď 1{2, the worst case is achieved when mi “ 2, but here we can do a bit better.
In (13) we had a factor 2mi´1 to specify the subset Li of Mi containing ei, but since Li should have
size at least 4, we have Li “ Mi. Thus, for mi “ 2 and given zi`1, we improve (13) to

2pzi`1{|Σ|q{2zi`1{4.

For zi`1 ě 8, this is maximized with zi`1 “ 8. Thus for mi “ 2 and zi`1 ě 8, the level factor (11)
is bounded by

p2 ¨ 8{|Σ|q{22 “ 4{|Σ|.
Now, for mi ě 3, we just use the bound (13). As in (14), we get

ÿ

miě3

21{2p23{2zi`1{|Σ|qmi´1{2zi`1{4 ď 2 ¨ 21{2p23{2zi`1{|Σ|q2{2zi`1{4

Over the reals, this is maximized with zi`1 “ 2 ¨ 4{ ln 2 « 11.52, but we want the maximizing even
zi`1 which is 12, and then we get a bound of 1.6{|Σ|.

We now want to bound the whole bottom factor in the case where zd´1 ě 8. Let j be the lowest
level with zj`1 ě 8. For all lower levels, if any, the level factor is bounded by p3{|Σ|q. Also, for
all higher levels i ą j, we have 2mi “ zi ě 8, hence mi ě 4, so the level factor for higher levels is
bounded by our last 1.6{|Σ|. The worst case is the level j, where we could get any ms (note that if
s “ 1, we have no guarantee that mi ď 2), hence we have to add the bound 4{|Σ| for ms “ 2 with
the bound 1.6|Σ| for ms ě 3, for a total bound of 5.6{|Σ|.

Thus, for a given j, the bottom factor is bounded by

p3{|Σ|qj´1p5.6{|Σqp1.6{|Σ|qd´2´j “ p3{|Σ|qd´2 ˚ p5.6{3q ˚ p1.6{3qd´2´j .

Summing, this over j “ 1, . . . , d ´ 2 ě 1, we get a bound of at most

p3{|Σ|qd´2p5.6{3qp1{p1 ´ 1.6{3q ´ 1q ă 4p3{|Σ|qd´2 . (19)

This is our bound for the whole bottom factor when we maximized with zd´1 ě 8. Since it is larger
than our bound of 3{|Σ|qd´2 when we maximized with zd´1 ď 6, we conclude that it is also our
bound if we maximize over any value of zd´1. In combination with our top factor, 16.6pµ3{|Σ|2q
from (10), we get a combined bound of

16.6pµ{|Σ|2q4p3{|Σ|qd´2 ď 7µ3p3{|Σ|qd. (20)

5.2 Increasing the maximization range

We will now show how to deal with larger sets up to size w`
0 “ 0.63|Σ|. The level factor with a

fixed zi`1 and mi has the following tight version from (13)

pzi`1 ´ 1qmi´1 ¨ p23{2{|Σ|qmi´1{2zi`1{4´1{2

“ 21{4fpmi ´ 1, zi`1 ´ 1q where fpx, yq “ yx ¨ p23{2{|Σ|qx{2y{4.
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We want to find the sum over relevant mi with the maximizing zi. However, we already considered
all even zi`1 ď |Σ|{25{2, so it suffices to consider zi`1 P p|Σ|{25{2, |Σ|{2s. Also, for a given zi`1, we
have to sum over all mi P r2, zi`1{2s. Thus we want to bound

max
odd yPr|Σ|{25{2, |Σ|{2q

ty{2uÿ

x“1

fpx, yq.

Note that fpx`1, yq “ fpx, yq¨py´2xqp23{2{|Σ|q. Hence fpx`1, yq ă fpx, yq ðñ y´2x ă |Σ|{23{2.
Assume that y ě |Σ|{23{2 and consider the smallest integer xy such that y ´ 2xy ă |Σ|{23{2.

For a given value of y this xy maximizes fpxy, yq.
To bound fpxy, yq, we note that

yx ă py ´ x ` 1qx
We have y ă w`

0 “ 0.63|Σ| and y ´ 2xy ă |Σ|{23{2, so

y ´ xy ` 1 ď p0.63 ` 1{23{2q|Σ|{2 ` 1 ď |Σ|{2.
Therefore

fpxy, yq ď y
xy ¨ p23{2{|Σ|qxy{2y{4 ď ppy ´ xy ` 1q23{2{|Σ|qxy{2y{4 ď 1{2py´2xyq{4.

We also have y ´ 2pxy ´ 1q ě |Σ|{23{2, so we get

fpxy, yq ď 1{2p|Σ|{23{2´2q{4 “ 1{2|Σ|{27{2´1{2.

For |Σ| ě 256, this is below 0.015{|Σ|2, so even if we sum over all x ď y{2 ď |Σ|{2, we get a bound
below 0.008{|Σ|, that is,

max
yPr|Σ|{23{2, w`

0 s

ty{2uÿ

x“1

fpx, yq ď 0.08{|Σ|.

Now consider y ă |Σ|{23{2. Then fpx, yq is decreasing in x starting fp0, yq “ 1{2y{4. Summing
over all x ď y{2, we get py{2q{2y{4. This expression is maximized with y “ 4{ ln 2, so for y ě |Σ|{4,
we get a maximum of p|Σ|{8q{2|Σ|{16. Now 2|Σ|{16 ě |Σ|2 for |Σ| ě 256, so we end up with

max
yPr|Σ|{4|,|Σ|{23{2s

ty{2uÿ

x“1

fpx, yq ď 1{p8|Σ|q.

Finally we consider y P r|Σ|{25{2, |Σ|{4s. Then fpx ` 1, yq ď fpx, yqpy 23{2{|Σ|q ď fpx, yq{21{2, so

8ÿ

x“0

fpx, yq ď fp0, yq{p1 ´ 2´1{2q ď 1{pp1 ´ 2´1{2q2y{4q.

With y ě |Σ|{25{2, this is maximized with y “ |Σ|{25{2, so we get the bound

max
yPr|Σ|{25{2, |Σ|{4s

8ÿ

x“0

fpx, yq ď 1{pp1 ´ 2´1{2q2p|Σ|{29{2qq ď 0.344{|Σ|.
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Putting all our bounds together, we conclude that

max
odd yPr|Σ|{25{2, w`

0 q

ty{2uÿ

x“1

fpx, yq ď 0.344{|Σ|.

Our bound for the level factor with zi`1 ă p|Σ|{25{2, |Σ|{2s is 21{2 times bigger, but this is still
much smaller than all the bounds from Section 5.1 based on smaller zi`1. Thus we conclude that
the analysis from Section 5.1 is valid even if allow zi`1 to go the whole way up to w`

0 “ 0.63|Σ|.
Therefore (20) bounds the probability of any obstruction with set size |W | ď w`

0 .
However, for the probability of obstructions with sets sizes |W | ą w`

0 , we can apply (16),
concluding that they happen with probability bounded by

w`
0 |Σ|{2w`

0 “ 0.63|Σ|2{20.63|Σ| ă 1{2|Σ|{2.

The last step used |Σ| ě 256. Together with (20) we have thus proved that the probability of any
obstruction is bounded by

7µ3p3{|Σ|qd ` 1{2|Σ|{2. (21)

This is for simple tornado hashing without the twist.

5.3 Tornado hashing including the twist

We will now return to the original tornado hashing with the twisted character

rxrcs “ xrcs ‘ rh0pxră csq.
This twist does not increase the number of lookups: it is still c ` d with c input characters and d
derived characters, so the speed should be almost the same, but we will gain a factor 3{|Σ| in the
probability, like getting an extra derived character for free.

The obstruction is constructed exactly as before except that we continue down to level 0 rather
than stopping at level 1. All definitions for level i are now just applied for i “ 0 as well. However,
we need to reconsider some parts of the analysis. First, we need to prove that Lemma 10 also holds
for i “ 0:

Lemma 10 Let M be a partial matching on Σc. Conditioning on M being pi ´ 1q-independent,
M is an i-matching with probability 1{|Σ||M |.

Proof. Since M is p´1q-independent, we know that

DiffKeyspM,´1q “ tprx△ ryqră cs | tx, yu P Mu
is linearly independent. We note here that prx △ ryqră cs “ px △ yqră cs. We want to know the
probability that M is a 0-matching, that is, the probability that x̃rcs “ ỹrcs for each tx, yu P M .
For i ą 0, we had

x̃rc ` is “ ỹrc ` is ðñ rhipprx△ ryqră c ` isq “ 0.

However, for i “ 0, we have

x̃rcs “ ỹrcs ðñ h̃0pprx△ ryqră csq “ xrcs ‘ yrcs.
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However, Lemma 9 states that the simple tabulation hash function h̃0 is fully random on the
linearly indepedent DiffKeyspM,´1q, so we still conclude that M is a 0-matching with probability
1{Σ|M |.

There is one more thing to consider. We have generally used that if Z is an i-zero set, that is, if
rZrď c ` is is a zero-set, then Z is also a zero-set. However, this may no longer be the case. All we
know is that rZrď cs is a zero-set. This also implies that Zră cs “ rZră cs is a zero-set. However,
we claim that à

Z “ 0 (22)

Here
À

Z is xoring that keys in Z viewed as bit-strings. Note that △Z “ H implies
À

Z “ 0.
Since Zră cs is a zero set, we know that trh0pxră csq | x P Zu is a zero set. We also know that rZrcs
is a zero set and it is equal to trh0pxră csq ‘ xrcs | x P Zu. Thus we have

àtrh0pxră csq ‘ xrcs | x P Zu “ 0 “ àtrh0pxră csq | x P Zu
implying

Àtxrcs | x P Zu “ 0. Together with Zră cs being a zero set, this settles (22). As a result,
for the coding key coding in (7) and (12), we just have to replace △ with

À
.

No other changes are needed. Level 0 gives exactly the same level factor (11) as the levels i ą 0,
so it is like getting an extra level for free. Therefore with tornado hashing we improve the bottom
factor for simple tornado hashing (19) to 4p3{|Σ|qd´1 and the probability of any small obstruction
from (20) to 7µ3p3{|Σ|qd`1. The probability of any obstruction is thus improved from (21) to

7µ3p3{|Σ|qd`1 ` 1{2|Σ|{2. (23)

5.4 Full randomness for large sets of selected keys

While implementing tabulation hashing we often want to set the character size so that all tables fit
in cache. Indeed, this is the main reason why tabulation-based hashing schemes are extremely fast
in practice. However, restricting the size of Σ constrains how many keys we can expect to be hashed
fully randomly: in particular, Theorem 5 states that a set of characters Σ allows for up to |Σ|{2
selected keys to hash fully randomly with high probability. Most experiments on tabulation-based
hashing [1, 2], though, use 8-bit characters (namely |Σ| “ 28). This implies that whenever the
selected keys are s ď 27 then they hash uniformly at random with high probability. However, we
may want local full randomness for s keys, where s " 27. A trade-off between memory usage and
number of keys hashed uniformly is of course unavoidable, however we can improve over the one in
Theorem 5 with a clever observation.

More precisely, Theorem 5 states that given a set Xf,h of query-selected keys with µf ď |Σ|{2
their derived keys are linearly dependent with probability at most DependenceProbpµ, d,Σq “
7µ3p3{|Σ|qd`1 ` 1{2|Σ|{2 while tornado is using Opc|Σ|q words of memory and exactly c` d lookups
in tables of size |Σ|. Recall that µf here is the expected size of Xf,h for a fully random h, when
the queries are chosen by an adaptive adversary. If we want to handle larger sets of selected keys
with µf " |Σ|{2 using Theorem 5, then we need to use Opc ` dq larger tables of size roughly 2µf .
The clever observation we make here is that, in order to obtain a meaningful probability bound,
it is not necessary at all to employ Opc ` dq of such larger tables. Indeed, we just need the tables
in the top two levels to have size |Ψ| ě 2µf to obtain that the derived keys are linearly dependent
with probability at most
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14|X|3p3{|Ψ|q2p3{|Σ|qd´1 ` 1{2|Σ|{2

losing a factor two with respect to Theorem 5. We name this variant of tornado tabulation tornado-
mix tabulation, because the last two derived characters can be evaluated in parallel as in mixed
tabulation hashing [10].

Formal definition of tornado-mix. For each i “ 0, . . . , d ´ 2 we let rhi : Σc`i´1 ÝÑ Σ be a
simple tabulation hash function. For i “ d ´ 1, d we let rhi : Σc`d´2 ÝÑ Ψ be a simple tabulation
hash function. Given a key x P Σc, we define its derived key rx P Σc`d´2 ˆ Ψ2 as rx “ rx1 ¨ ¨ ¨ rxc`d,
where

rxi “

$
’’’’&
’’’’%

xi if i “ 1, . . . , c ´ 1

xc ‘ rh0prx1 . . . rxc´1q if i “ c
rhi´cprx1 . . . rxi´1q if i “ c ` 1, . . . , c ` d ´ 2.
rhi´cprx1 . . . rxc`d´2q if i “ c ` d ´ 1, c ` d.

Finally, we have a simple tabulation hash function ph : Σc`d´2 ˆ Ψ2 ÝÑ R, that we apply to the
derived key. The tornado-mix tabulation hash function h : Σc ÝÑ R is then defined as hpxq “ phprxq.

Cache efficiency. It is worth to notice that such construction allows us to store in cache all
|Σ|-sized tables while the two |Ψ|-sized tables might overflow cache. However, these larger tables
are accessed only once while evaluating tornado and they can be accessed in parallel.

Local uniformity theorem. Now we are ready to state an analogous of Theorem 4 for larger
sets of selected keys. In what follows we use f , µf and Xf,h as defined in Section 1.2.

Theorem 16. Let h “ ph ˝ rh : Σc Ñ R be a random tornado-mix tabulation hash function with d
derived characters, the last two from Ψ, and select function f . If µ “ µf ď |Ψ| {2 then the derived
selected keys rhpXf,hq are linearly dependent with probability at most

14µ3p3{|Ψ|q2p3{|Σ|qd´1 ` 1{2|Σ|{2 .

Proof. This proof works exactly as the proof of Theorem 4, except for a few slight differences. We
limit ourselves to listing such small differences. In Section 3.2 we define Z as the smallest d-zero
set among those d-zero sets minimizing the number of elements not in Q. This definition implies
that there exists x˚ P Z such that Zztx˚u is d-independent. Moreover, either Z Ď Q or we can
choose x˚ P ZzQ. In the original proof, we considered the alternating-cycle structure induced by
the top level matchings Md̊´1 and Md̊ and traversed these cycles leaving x˚ last. This ensured
that the edges from Md̊ were always “surprising” in the sense that the probability of any such
edge being realised by our random choice of h was 1{|Σ|, even after conditioning on all previously
discovered edges (these events were, indeed, independent). This observation allowed us to bound
the probability of our obstruction being realised by h. In fact, we wanted our obstruction to be
constituted by edges which realisations were independent, exluding the last edge. This is exactly
what we did in Section 3.2, where all edges but the last edge ed´1 P Md̊´1 were realised by h
independently.

In the current scenario, it is not obvious that the realisations of traversed edges from Md̊ are
all independent and the first edge introducing a dependence belongs to Md̊´1. Here, instead, we
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traverse the alternating-cycle graph until we find a prefix W “ tx1 . . . xwu such that either (i) Md̊´1

restricted to W or (ii) Md̊ restricted to W is pd ´ 2q-dependent. Case (i) is identical to the case
already analysed, but in case (ii) we need some small changes, essentially swapping the roles of Md

and Md´1.
To understand the interplay between the two cases, note that every time we add a vertex xw,

we add an edge to Md̊´1|W if w is odd, and to Md̊ |W if w is even. Case (i) can only happen if w is
even while Case (ii) can only happen if w is odd. If we get to xw “ x˚, then we have have W “ Z
and then we are in case (i) since Z is even. Thus, if we end in case (ii), then x˚ R W .

We now consider the slightly reduced traversal sequence where we simply drop the first vertex in
the last cycle considered in the traversal. The point is that this vertex was not matched in Md̊ |W ,
but if we skip it then Md̊ |W is a perfect d ´ 2-dependent matching while Md̊´1|W is a maximal
matching. Since we did not have x˚ in W , we have W Ď Zz tx˚u implying full independence of
the hash values over W . Thus, using this reduced traversal sequence, we have swapped the roles of
the two top levels. Since we now have two cases, our union based probability bounds are doubled
(increasing the leading constant from 7 to 14).

The rest of the analysis is unchanged except that two top levels use the different alphabet Ψ.
This means Ψ replaces Σ in our bound (9) for the two top levels. This implies that our overall
bound is multiplied by |Σ|2 { |Ψ|2. Combined with the doubling, we get an overall probability bound
of

14|X|3p3{|Ψ|q2p3{|Σ|qd´1 ` 1{2|Σ|{2 .

From Theorem 16, using Lemma 2, we derive the following analogous of Theorem 5 which was
already stated in the introduction. Here we use the same notation as in Theorem 5, where hpsq are
the selection bits and hptq are the free bits.

Theorem 8. Let h “ ph ˝ rh : Σc Ñ R be a random tornado-mix tabulation hash function with d
derived characters, the last two from Ψ, and an s-selector function f . If µ “ µf ď |Ψ| {2 then hptq
is fully random on Xf,h with probability at least

1 ´ 14µ3p3{|Ψ|q2p3{|Σ|qd´1 ´ 1{2|Σ|{2 .

6 Upper Tail Chernoff

In this section, we show a Chernoff-style bound on the number of the selected keys Xf,h.

Lemma 6. Let h “ ph ˝ rh : Σc Ñ R be a random tornado tabulation hash function with d derived
characters, query keys Q and selector function f . Let IXf,h denote the event that the set of derived
selected key rhpXf,hq is linearly independent. Then, for any δ ą 0, the set Xf,h of selected keys
satisfies the following:

Pr
”ˇ̌
ˇXf,h

ˇ̌
ˇ ě p1 ` δq ¨ µf ^ IXf,h

ı
ď

ˆ
eδ

p1 ` δq1`δ

˙µf

.

Proof. We follow the proof of the Chernoff bound for the upper tail. Mainly, we let Jx denote the
indicator random variable for whether the key x gets selected in Xf,h. Then

ˇ̌
Xf,h

ˇ̌ “ ř
xPΣc Jx.
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For simplicity, we let a “ 1 ` δ. Then for any s ą 0:

Pr
”ˇ̌
ˇXf,h

ˇ̌
ˇ ě a ¨ µf ^ IXf,h

ı
“ Pr

”ˇ̌
ˇXf,h

ˇ̌
ˇ ¨ rIXf,hs ě a ¨ µf

ı

“ Pr
”
es|Xf,h|¨rIXf,hs ě esa¨µf

ı

ď
E
”
M|Xf,h|¨rIXf,hspsq

ı

esa¨µf ,

where M|Xf,h|¨rIXf,hspsq is the moment generating function of the random variable pˇ̌Xf,h
ˇ̌ ¨ rIXf,hsq,

and is equal to:

M|Xf,h|¨rIXf,hspsq “ E
”
es¨|Xf,h|¨rIXf,hsı “

8ÿ

i“0

si

i!
¨ E

„ˇ̌
ˇXf,h

ˇ̌
ˇ
i ¨ rIXf,hs


.

Since
ˇ̌
Xf,h

ˇ̌ “ ř
xPΣc Jx, each moment E

”ˇ̌
Xf,h

ˇ̌i ¨ rIXf,hs
ı
can be written as the sum of expectations

of the form ErśxPS Jx ¨ rIXf,hss, where S Ď Σc is a fixed subset of size ď i. In general, the
moment generating function can be written as a sum, with positive coefficients, of terms of the
form ErśxPS Jx ¨ rIXf,hss for some fixed subset S. Moreover, each such term amounts to

E

«ź

xPS
Jx ¨ rIXf,hs

ff
“ Pr

”
S Ď Xf,h ^ IXf,h

ı
.

We now condition on the hash values of the query keys h|Q. For any set S Ď Σc, we let ISYQ

denote the event that the derived keys in rhpS YQq are linearly independent. Note that IXf,h being
true implies that ISYQ is true. Moreover, since S YQ is a fixed (deterministic) set, the event ISYQ

only depends on the randomness of rh. We get the following:

Pr
”
S Ď Xf,h ^ IXf,h

ˇ̌
ˇ h|Q

ı
ď Pr

”
S Ď Xf,h ^ ISYQ

ˇ̌
ˇ h|Q

ı

“ E
”

rISYQs ¨ Pr
´
S Ď Xf,h

ˇ̌
ˇ rh, h|Q

¯ ˇ̌
ˇ h|Q

ı

“ E
”ź

xPS
J ˚

x

ˇ̌
ˇ h|Q

ı
,

where tJ ˚
xuxPX denotes the indicator random variables for choosing to select the keys in S

independently and uniformly at random when we fix the hash values of the query keys. This last
step is due to the fact that the event if ISYQ is true then, then ph|S , h|Qq is fully random and it
has the same distribution as ph˚|S , h|Qq, where h˚ is a fully-random hash function. If ISYQ is false,
then the entire expression is 0. We can thus continue the proof of Chernoff’s as if

ˇ̌
Xf,h

ˇ̌
were a

sum of independent random variables. The claim follows by noticing that, when IXf,h is true, we
have that E

“
Xf,h

‰ ď µf .
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6.1 Upper Tail Chernoff for larger µf

We now consider the case in which we have a selector function for which µf ą |Σ| {2. In this case,
even though we cannot guarantee that the set of derived selected keys is linearly independent whp,
we show that, whp, its size still cannot be much larger than µf . This particular case will be useful
in the analysis of linear probing from Section 7.

Lemma 17. Let h “ ph ˝ rh : Σc Ñ R be a random tornado tabulation hash function with d derived
characters, query key Q with |Q| ă |Σ| {2, and selector function f such that µf ą |Σ| {2. Then, for
any δ ą 0, the set of selected derived keys Xf,h satisfies the following:

Pr
”ˇ̌
ˇXf,h

ˇ̌
ˇ ě p1 ` δq ¨ µf

ı
ď 4 ¨

ˆ
eδ0

p1 ` δ0q1`δ0

˙|Σ|{2
` 4 ¨ DependenceProbp|Σ| {2, d,Σq ,

where

δ0 “ µf

µf ´ |Q| ¨ |Σ| {2 ´ |Q|
|Σ| {2 ¨ δ ě

ˆ
1 ´ |Q|

|Σ| {2
˙

¨ δ .

Proof. We modify the given selector function f to get another selector function fp with the same
set of query keys Q but with a much smaller µfp . Selection according to fp is done such that, once
f selects a key in ΣczQ, fp further sub-selects it with some probability p. This sub-selection is done

independently for every selected key. It follows that, for all x P ΣczQ, p
fp
x “ pfx ¨ p. Taking into

account query keys, we also get that µfp “ pµf ´ |Q|q ¨ p ` |Q| “ pµf ` p1 ´ pq |Q|.
Moreover, one can show that, as long as µfp ď |Σ| {2, all our results about linear indepen-

dence also hold for such sub-sampled select function. In particular, the only aspect of the proof

of Theorem 4 that depends on the probabilities p
fp
x is the proof of Lemma 14. There, we in-

voke Lemma 9 to get an upper bound on the probability that the set W ztxwu is selected, given
that it is d-independent. Notice that, if, additionally, we sub-sample elements from W ztxwu each
independently with probability p, we obtain the same bounds as if we initially selected elements

with probability p
fp
x . Therefore, when µf ą |Σ| {2, we can pick any p ď p|Σ| {2´ |Q|q{pµf ´ |Q|q to

get that the set of derived keys for the sampled selection rXfp,h is indeed linearly independent with
probability at least 1 ´ DependenceProbpµfp , d,Σq. We use IXfp,h to denote this event.

The next step is to notice that, conditioned on
ˇ̌
Xf,h

ˇ̌ ´ |Q|, the distribution of
ˇ̌
Xfp,h

ˇ̌ ´ |Q|
is exactly the binomial distribution Bpˇ̌Xf,h

ˇ̌ ´ |Q| , pq. Then, for p ą 1{pˇ̌Xf,h
ˇ̌ ´ |Q|q, we have

from [20] that

Pr
”ˇ̌
ˇXfp,h

ˇ̌
ˇ ě E

”ˇ̌
ˇXfp,h

ˇ̌
ˇ |

ˇ̌
ˇXf,h

ˇ̌
ˇ
ı

|
ˇ̌
ˇXf,h

ˇ̌
ˇ
ı

ą 1{4 .

Therefore, for any t ą 0:

Pr
”ˇ̌
ˇXfp,h

ˇ̌
ˇ ě p ¨ t ` p1 ´ pq |Q|

ˇ̌
ˇ
ˇ̌
ˇXf,h

ˇ̌
ˇ ě t

ı
ą 1{4 .

We now use this to derive an upper bound on Pr
`ˇ̌
Xf,h

ˇ̌ ě t
˘
as such:
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Pr
´ˇ̌
ˇXf,h

ˇ̌
ˇ ě t

¯
ă 4 ¨ Pr

´ˇ̌
ˇXfp,h

ˇ̌
ˇ ě p ¨ t ` p1 ´ pq |Q|

ˇ̌
ˇ
ˇ̌
ˇXf,h

ˇ̌
ˇ ě t

¯
¨ Pr

´ˇ̌
ˇXf,h

ˇ̌
ˇ ě t

¯

ď 4 ¨ Pr
´ˇ̌
ˇXfp,h

ˇ̌
ˇ ě p ¨ t ` p1 ´ pq |Q|

¯

ď 4 ¨ Pr
´ˇ̌
ˇXfp,h

ˇ̌
ˇ ě p ¨ t ` p1 ´ pq |Q| ^ IXfp,h

¯
`

` 4 ¨ DependenceProbpµfp , d, |Σ|q .

We now plug in t “ p1 ` δq ¨ µf , and get that p ¨ t ` p1 ´ pq |Q| ě p1 ` δ0q ¨ µfp for

δ0 ď pµf

µfp
¨ δ .

We then invoke Lemma 6 to get that

Pr
´ˇ̌
ˇXfp,h

ˇ̌
ˇ ě p1 ` δ0q ¨ µfp ^ IXfp,h

¯
ď
ˆ

eδ0
p1 ` δ0q1`δ0

˙µfp

.

Finally, we instantiate p “ p|Σ| {2´ |Q|q{pµf ´ |Q|q such that µfp “ |Σ| {2. and notice that indeed,
p ą 1{pˇ̌Xf,h

ˇ̌ ´ |Q|q when
ˇ̌
Xf,h

ˇ̌ ě p1 ` δq ¨ µf and |Q| ă |Σ| {2. We notice that, in this case,

δ0 “ µf

µf ´ |Q| ¨ |Σ| {2 ´ |Q|
|Σ| {2 ¨ δ ě

ˆ
1 ´ |Q|

|Σ| {2
˙

¨ δ .

The argument follows.

7 Linear Probing with Tornado Tabulation

In this section we show how to formally apply our framework to obtain results on linear probing
with tornado tabulation. We present the following main result comparing the performance of linear
probing with tornado tabulation to that of linear probing using fully random hashing on a slightly
larger keyset.

Theorem 18. Let S, S˚ Ď Σc be sets of keys of size n and n˚ “ p1`15
a

logp1{δq{|Σ|qn, respectively,
for some δ P p0, 1{6q. Let T , T ˚ be arrays of size m, a power of two. Now consider inserting the
keys in S (S˚) into T (T ˚) with linear probing using tornado tabulation (fully random hashing).
Let X and X˚ be the number of comparisons performed when inserting a new key x in each of
T and T ˚ (i.e., x R S Y S˚). Given the restrictions listed below there exists an event E with
PrpEq ě 1 ´ p1{|Σ| ` 6δ ` 61 log n ¨ DependenceProbp|Σ|{2, d,Σqq such that, conditioned on E, X is
stochastically dominated by X˚.
Restrictions:

• n{m ď 4{5
• |Σ| ě 216
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• |Σ| ě 30 ¨ log n
•
a

logp1{δq{|Σ| ď 1{18
From Theorem 18, it follows that linear probing using tornado tabulation achieves the same

expected number of comparison as in the fully random setting, a proof is given in Section 7.4.

Corollary 19. Setting δ “ Θp1{|Σ|q, d ě 5, log n ď op|Σ|q in Theorem 18 we have

ErXs ď ErX˚s ` op1q .
The result of Corollary 19 is to be contrasted with previous work on practical implementations

of linear probing. While Knuth’s analysis serves as evidence of linear probing’s efficieny in terms
of the number of comparisons performed, the advantage of linear probing (over other hash table
implementations) is that each sequential memory access is much faster than the random memory
access we do for the first probe at T rhpxqs. How much faster depends on the computer system as
does the cost of increasing the memory to reduce the load. Some experimental studies [7, 21, 34]
have found linear probing to be the fastest hash table organization for moderate load factors (30-
70%). If the load is higher, we could double the table size.

However, using experimental benchmarks to decide the hash table organization is only meaning-
ful if the experiments are representative of the key sets on which linear probing would be employed.
Since fully random hashing cannot be efficiently implemented, we might resort to weaker hash func-
tions for which there could be inputs leading to much worse performance than in the benchmarks.
The sensitivity to a bad choice of the hash function led [21] to advice against linear probing for
general-purpose use. Indeed, Mitzenmacher and Vadhan [27] have proved that 2-independent hash-
ing performs as well as fully random hashing if the input has enough entropy. However, [36, 30] have
shown that with the standard 2-independent linear hashing scheme, if the input is a dense set (or
more generally, a dense subset of an arithmetic sequence), then linear probing becomes extremely

unreliable and the expected probe length increases from Knuth’s 1`1{ε2
2 to Ωplog nq, while the best

known upper bound in this case is nop1q [24].8

In a breakthrough result, Pagh, Pagh and Ružić [29] showed that if we use 5-independent hashing
and the load gap ε “ Ωp1q, then the expected probe length is constant. Pǎtraşcu and Thorup [31]
generalized this to an Op1{ε2q bound for arbitrary ε, and showed that this also holds for simple
tabulation hashing. However, in both cases, the analysis hides unspecified large constants in the
O-notation. Thus, with these hashing schemes, there could still be inputs for which linear probing
performs, say, 10 times worse in expectation, and then we would be better off using chaining.

Our result is of a very different nature. We show that whp, for any given query key x, the probe
length corresponding to hpxq when we use tornado tabulation hashing is stochastically dominated
by the probe length in a linear probing table that hashes slightly more keys but uses fully random
hashing. In particular, this implies that whp, the expected probe length with tornado tabulation

hashing is only a factor 1 ` op1q away from Knuth’s 1`1{ε2
2 . We get this result without having to

revisit Knuth’s analysis from [25], but simply because we know that we are almost as good as fully
random hashing, in a local sense that is sufficient for bounding the probe length (see Section 7.1).

As a further consequence of our results, we get that any benchmarking with random keys that
we do in order to set system parameters will be representative for all possible sets of input keys.

8We note that if we only know that the hash function is 2-independent, then the lower bound for the expected
probe length is Ωp?

nq and this is tight. [36, 30]
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Moreover, the fact that tornado tabulation hashing only needs locality to perform almost as well
as fully random hashing means that our arguments also work for other variants of linear probing.
For instance, ones where the maintenance of the hash table prioritizes the keys depending on when
they were inserted, as first suggested in [4]. Examples of this include Robin hood hashing where
keys with the lowest hash value come first [8] or time-reversed linear probing [34] where the latest
arrival comes first. In all these cases, tornado tabulation hashing performs almost as well as with
fully-random hashing.

7.1 Proof of Theorem 18

We let α “ n{m denote the fill of the hash table and ε “ 1 ´ α. The basic combinatorial measure
that we study and employ is the run length: If cells T ras, T ra` 1s, . . . , T rb´ 1s are all occupied by
elements from S but both T ra ´ 1s and T rbs are freem these b ´ a cells are called a run of length
b ´ a. Let Rpx, Sq be the length of the run intersecting T rhpxqs and note that Rpx, Sq ` 1 is an
upper bound on the number of comparisons needed to insert some element y into the table when
y hashes to the same location as x.

Let ∆ be the largest power of two such that 3α∆ ` 1 ď |Σ|{2. The following lemma, proven in
Section 7.3, gives an upper bound on the probability that hpxq intersects a long run.

Lemma 20.

PrrRpx, Sq ě ∆s ď 1

|Σ| ` 60 log n ¨ DependenceProbp|Σ|{2, d,Σq .

Let A be the event pRpx, Sq ě ∆q. AssumingA, there exists at least one unoccupied cell in table
T between T rhpxq´∆s and T rhpxqs and likewise between T rhpxqs and T rhpxq`∆s. Hence the inser-
tion of x only depends on the distribution of the much smaller key-set

 
s P S

ˇ̌ |hpsq ´ hpxq| ď ∆
(
.

The second step of our proof bounds the probability that tornado tabulation behaves like a fully
random hash function when restricted to this small set of keys. As Theorem 5 doesn’t apply for
arbitrary intervals we will instead cover the necessary interval with three dyadic intervals. Recall
that a dyadic interval is an interval of the form rj2i, pj ` 1q2iq, where i, j are integers. In the
following we will exclusively consider a number of dyadic intervals all of length ∆. Let IC denote
the dyadic interval that contains hpxq, and similarly let IR and IL denote the dyadic intervals to
the left and right, respectively, of IC . We further let XC be the set of keys in S that hash into the
interval IC , i.e., XC “ tx P S | hpxq P ICu, and similarly, XR and XL are the pre-image of h in IR
and IL, respectively. Given A, the distribution of X is completely determined by the distribution
of the keys in XL Y XC Y XR and hpxq.

The expected size of each preimage is α∆ and our choice of ∆ thus allows us to apply Theorem 5
to all three intervals at once. Let B be the event that the keys hashing into these intervals are
distributed independently:

Corollary 21. With probability at least 1 ´ DependenceProbp|Σ|{2, d,Σq, h̃pXR Y XC Y XL Y txuq
is linearly independent, such that h hashes the keys in XR Y XC Y XL Y txu independently and
uniformly in their respective intervals.

We now define the analogous terms in the fully random setting. We let IC̊ denote the dyadic
interval in T ˚ that contains h˚pxq and IR̊ and IL̊ the right and left neighboring dyadic intervals.
Similarly, we let XC̊ , XR̊ and XL̊ denote their preimages under h˚. The following lemma compares
the two experiments in terms of the sizes of these preimages, and is proven in Section 7.2.
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Lemma 22. Let C be the event |XL| ď |XL̊| ^ |XC | ď |XC̊ | ^ |XR| ď |XR̊|, then
Pr

“
B ^ C̄

‰ ď 6δ

Let C be the event that each of the preimages Xi contain at most as many elements as the
corresponding preimage Xi̊ . Finally, define E “ A X B X C. We will now present a coupling X̃ of
X which, when conditioned on E , satisfies X̃ ď X˚.

For every realization of |XL|, |XC | and |XR|, we consider the following random process: starting
from an emtpy table of size m and using the fully random h˚, insert the first |XL| elements from
XL̊, then the first |XR| elements from XR̊ and finally, the first |XC | elements from XC̊ (we do
not insert any more elements after this). Note that, conditioned on C, we have that it is possible
to choose such elements (i.e., |XR| ď |XR̊| etc.). Now let X̃ denote the number of comparisons
performed when inserting x into the table at this point in time.

We now have that X (defined for the tornado tabulation) is identically distributed as X̃ (defined
for a fully random hash function). This is because event A implies that the distribution of X only
depends on XR, XC and XL. Event B further implies that, on these intervals, h behaves like a
fully random hash function. Now note that X̃ ď X˚, since we can continue the random process
and add the remaining keys in S˚ and this can only increase the number of comparisons required
to insert x (i.e., “more is worse”).

Left is to compute the total probability that any of our required events fail:

Pr
“
Ē
‰ “ Pr

“
Ā _ B̄ _ C̄

‰

“ Pr
“pĀ _ C̄q ^ B

‰ ` Pr
“
B̄
‰

ď Pr
“
Ā
‰ ` Pr

“
B ^ C̄

‰ ` Pr
“
B̄
‰

ď 1{|Σ| ` 6δ ` 61 ¨ log n ¨ DependenceProbp|Σ|{2, d,Σq .
This concludes the proof.

7.2 Proof of Lemma 22

As ∆ is chosen to be the largest power of two such that 3α∆ ď |Σ|{2 we get |Σ|
12α ď ∆. Let t be a

constant, to be decided later. For each i P tL,C,Ru let Ei be the event (|Xi| ď t) and Ei̊ be the
event (t ď |Xi̊ |).

Pr
“
B ^ C̄

‰ “ PrrB ^ Di P tL,C,Ru : |Xi| ą |Xi̊ |s
ď Pr

“
B ^ Di P tL,C,Ru : Ēi _ Ēi̊

‰

ď
ÿ

iPtL,C,Ru
pPrrB ^ |Xi| ą ts ` PrrB ^ |Xi̊ | ă tsq

ď
ÿ

iPtL,C,Ru
pPrrB ^ |Xi| ą ts ` Prr|Xi̊ | ă tsq

Let µ “ Er|Xi|s “ ∆α, k “ a
3 logp1{δq{µ and t “ p1 ` kqµ. Applying the tail-bound of
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Lemma 6 we have

PrrB ^ |Xi| ą ts “ PrrB ^ |Xi| ą p1 ` kqµs
ď exp

`´k2µ{3˘

“ δ .

As µ “ α∆ ě |Σ|{12 we have

k “ a
3 logp1{δq{pα∆q

ď a
36 logp1{δq{|Σ|

ď 1{3 .

As n˚ “ p1`15
a

logp1{δq{|Σ|qn ě p1`2.5kqn, µ˚ “ Er|Xi̊ |s ě p1`2.5kqµ. Next, let k˚ “ k ¨a2{3.
Then

µ˚ ¨ p1 ´ k˚q ě p1 ` 2.5kq ¨ µ ¨ p1 ´ k˚q
“ p1 ` 2.5kq ¨ µ ¨ p1 ´ a

2{3 ¨ kq
ě µ ¨ p1 ` kq
“ t .

Hence

Prr|Xi̊ | ă ts ď Prr|Xi̊ | ă p1 ´ k˚qµ˚s
ď expp´pk˚q2µ˚{2q
“ expp´k2µ˚{3q
ď expp´k2µ{3q
“ δ .

Summing over the six cases we see PrrB ^ Di P tL,C,Ru : |Xi| ą |Xi̊ |s ď 6δ.

7.3 Proof of Lemma 20

Our proof relies on the simple observation that if T ras through T rbs are all occupied and the run
starts in T ras (i.e. T ra ´ 1s is free which excludes the possibility of prior positions spilling over),
then the preimage h´1pra, bsq “ ts P S |hpxq P ra, bsu must have size at least |b ´ a|. It must also
be the case that either (1) the preimage h´1pra ` 1, bsq has size at least pb ´ aq ¨ p1 ´ γq or (2) the
preimage h´1pra, asq is of size at least pb ´ aq ¨ γ, for any parameter γ ě 0.

We can generalize this to consider a run starting in any position T rbs within some interval
b P ra, cs which continues through T rds, then either (1)

ˇ̌
h´1prc, dsqˇ̌ ě pd ´ cq ¨ p1 ´ γq or (2)ˇ̌

h´1pra, csqˇ̌ ě pd´cq ¨γ. We will refer to ra, cs as the start-interval and to rc, ds as the long interval.
Our strategy is to make both of these events unlikely by balancing the size of the start-interval

with the number of keys needed to fill up the long interval. Larger difference pd ´ cq allows for
a larger start-interval. With a collection of roughly log1`ε{p6αq m such start-intervals we cover all
possible starting poisitions before T rhpxq ´∆s, ruling out the possibility that a run starting before
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T rhpxq ´ ∆s reaches T rhpxqs. The same strategy applied once more rules out the possibility that
the run intersecting T rhpxqs will continue through T rhpxq ` ∆s.

For our proof we set γ “ ε{3 where ε “ 1´n{m is the fill gap of T . The first pair of intervals we
consider is the long interval I0 “ rhpxq´∆, hpxqs and the start-interval I 1

0 of size ∆ε{p6αq preceding
I0. Next follows the long interval I1 “ I 1

0 Y I0 with start-interval I 1
1 of length |I1| ε{p6αq preceding

it, and so forth. Let ∆i “ |Ii| and ∆1
i “ |I 1

i|. Observe how ∆i “ ∆ ¨ p1 ` ε{p6αqqi, bounding the
number of needed interval-pairs at log1`ε{p6αqpm{∆q.

Depending on the length of the interval being inspected we can apply either Lemma 6 or
Lemma 17 to bound the probability that the preimage exceeds the given threshold. Taking the
maximum of the two bounds simplifies the analysis. Letting X be the size of a preimage, µ “ ErXs
and δ ď 1 we obtain

PrrX ě p1 ` δqµs ď DependenceProbp|Σ|{2, d,Σq ` 4 ¨ exp `´δ2 ¨ min t|Σ|{2, µu {3˘ .

Let Xi be the size of the preimage of the long interval Ii of length ∆i with µi “ α∆i. Then

PrrXi ě p1 ´ ε{3q∆is “ Pr

„
Xi ě

ˆ
1 ` 2ε

3α

˙
α∆i



ď Pr

„
Xi ě

ˆ
1 ` 2ε

3

˙
µi



ď DependenceProbp|Σ|{2, d,Σq ` 4 ¨ exp
˜

´
ˆ
2ε

3

˙2

¨ min tµi, |Σ|{2u
3

¸

Notice how the probability is non-increasing for increasing sizes of the intervals. Thus we bound
each of the probabilites for a long interval exceeding its threshold by the probability obtained for
I0 with µ0 “ α∆ ď |Σ|{2.

For start-interval I 1
i of length ∆1

i with µ1
i “ α∆1

i “ ∆i ¨ ε{6 we observe the same pattern

Pr
“
X 1

i ě ε{3∆i

‰ “ Pr
“
X 1

i ě 2µ1
i

‰

ď DependenceProbp|Σ|{2, d,Σq ` 4 ¨ exp
ˆ

´max tµ1
i, |Σ|{2u
3

˙
,

where we can bound the probability that each start-interval is too large by the probability obtained
for I 1

0 with µ1
0 “ ∆ε{6.

The probability that any of our intervals is too large is thus at most

2 log1`ε{p6αq m ¨ `DependenceProbp|Σ|{2, d,Σq ` 4 exp
`´4{27 ¨ ε2α∆˘˘

where use that 4{9 ¨ ε2α∆ ď ε∆{9 ď ε∆{6 as ε ` α “ 1, hence the probability obtained for I0 is
larger than that for I 1

0.
Let us rewrite this expression in terms of n and |Σ|, our main parameters.

log1`ε{p6αq m “ log1`ε{p6αq n ` log1`ε{p6αqp1{αq
ď log n ¨ log1`ε{p6αqp2q ` 6

ď log n ¨ 6α{ε ` 6

ď 30 ¨ log n ,
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using ε ě 1{5. As α∆ ě |Σ|{12, we get

4 exp
`´4{27 ¨ ε2α∆˘ ď 4 exp

`´4{27 ¨ ε2|Σ|{12˘

ď 4 exp p´1{2025 ¨ |Σ|q
ď 1

2|Σ|2
as |Σ| ě 216. Assuming 30 ¨ log n ď |Σ| the total error-probability becomes

1{p2|Σ|q ` 30 ¨ log n ¨ DependenceProbp|Σ|{2, d,Σq .
Repeating the process once more to ensure that the run at T rhpxqs doesn’t continue past

T rhpxq ` ∆s doubles the error-probability and proves the lemma.

7.4 Proof of Corollary 19

To bound the expected number of comparisons we rely on the following lemma from [31] which
gives strong concentration bounds for the runlength when applied to our simple tabulation ph.
Lemma 23 (Corollary 3.2 in [31]). For any γ “ Op1q and ℓ ď n1{p3pc`dqq{α,

PrrRpx, Sq ě ℓs ď
"

2e´Ωpℓε2q ` pℓ{mqγ if α ě 1{2
αΩpℓq ` pℓ{mqγ if α ď 1{2

where the constants hidden in O and Ω are functions of c` d, the size of the derived keys on which
we apply simple tabulation.

In particular this implies that, for some ℓ “ Θ
`plog nq{ε2˘, we have that Rpq, Sq ě ℓ with

probability at most 1{n10. Let E be the event of stochastic dominance, as given by Theorem 18,
and A the event pRpx, Sq ď ℓq. Then

ErXs “ ErX | Es ¨ PrrEs ` E
“
X | Ē ^ A

‰ ¨ Pr“Ē ^ A
‰ ` E

“
X | Ē ^ Ā

‰ ¨ Pr“Ē ^ Ā
‰
.

First, observe

ErX | Es ¨ PrrEs “
ÿ

i“1

PrrX ě i | Es ¨ PrrEs

ď
ÿ

i“1

PrrX˚ ě i | Es ¨ PrrEs

“
ÿ

i“1

PrrX˚ ě i ^ Es

ď
ÿ

i“1

PrrX˚ ě is

“ ErX˚s .
With δ “ 1{|Σ| and d ě 5, Pr

“
Ē
‰ ď 9{|Σ|. Assuming A, the next open cell of T is at most ℓ

positions away,

E
“
X | Ē ^ A

‰ ¨ Pr“Ē ^ A
‰ ď ℓ ¨ Pr“Ē‰

ď Θ

ˆ
log n

ε2

˙
¨ 9

|Σ|
ď op1q .
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Finally, no more than n comparisons will ever be necessary. Hence

E
“
X | Ē ^ Ā

‰ ¨ Pr“Ē ^ Ā
‰ ď n ¨ Pr“Ā‰

ď 1{n9 .

This gives the desired bound on ErXs,
ErXs ď ErX˚s ` op1q ` 1{n9 .

8 Lower Bound for Tornado Tabulation

In this section, we show that the probability obtained in Theorem 4 is tight up to constant factors.
Specifically, we will prove the following:

Theorem 7. Let h “ ph ˝ rh : Σc Ñ R be a random tornado tabulation hash function with d derived
characters. There exists a selector function f with µf ď Σ{2 such that the derived selected keys
rhpXf,hq are linearly dependent with probability at least Ωpp3{|Σ|qd´2q.

Our strategy will mimic that in the proof of Theorem 4 and show that the set of derived selected
keys will contain a zero-set with probability at least Θppµf q3p3{|Σ|qd`1q. We begin by establishing
some initial general bounds. In the following, we define rh1 : Σc Ñ Σc`d to map keys in Σc to simple
derived keys in Σc`d by applying the same functions as rh except with rh0p¨q “ 0, i.e., for all i ą 1,
rh1
c`i “ rhc`i.

Definition 1. We say that a zero-set Y Ď Σc survives d rounds of tornado tabulation if the set
rh1pY q Ď Σc`d of its simple derived keys is also a zero-set.

We focus on zero-sets of size 4 and lower bound the probability that they survive successive
rounds of tornado tabulation. We first define some terminology necessary to describe how each
new derived character in rx1 behaves. Specifically, let Y “ tx1, x2, x3, x4u be a zero-set, for some
fixed ordering of its keys. We distinguish between four types of positions i P t1, . . . , cu as such:
(1) position i is of Type A iff x1ris “ x2ris and x3ris “ x4ris, (2) it is of Type B iff x1ris “ x3ris,
x2ris “ x4ris, (3) it is of Type C iff x1ris “ x4ris and x2ris “ x3ris and, (4) it is of Type D iff
x1ris “ x2ris “ x3ris “ x4ris. We now prove that”

Lemma 24. Let Y Ď Σc be a zero-set with |Y | “ 4. Then, for any c ě 2, Y survives one round of
tornado tabulation with probability p3 ´ 2{ |Σ|q { |Σ| .

Proof. Since the original keys in Y already form a zero-set, the set of simple derived keys rh1pY q is a
zero-set iff the set of simple derived characters rh1

c`1pY q is a zero-set. Moreover, the cases in which
rh1
c`1pY q is a zero-set can be classified based on the type of position c ` 1. Specifically, let Ac`1

denote the event that position c`1 is of Type A, i.e., rh1
c`1px1q “ rh1

c`1px2q and rh1
c`1px3q “ rh1

c`1px4q,
and similarly for Bc`1, Cc`1, and Dc`1. Then

Pr pY survives one roundq “ Pr
´
rh1
c`1pY q is a zero-set

¯

“ Pr pAc`1 _ Bc`1 _ Cc`1q
“ Pr pAc`1q ` Pr pBc`1q ` Pr pCc`1q ´ Pr pAc`1 ^ Bc`1q ´
Pr pAc`1 ^ Cc`1q ´ Pr pBc`1 ^ Cc`1q ` Pr pAc`1 ^ Bc`1 ^ Cc`1q
“ 3Pr pAc`1q ´ 2Pr pDc`1q ,
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where the last equality follows from the fact that the events Ac`1, Bc`1 and Cc`1 are equivalent up
to a permutation of the elements in Y , and the fact that the conjunction of any pair of events in
Ac`1, Bc`1 and Cc`1 implies Dc`1, and vice-versa.

We now bound Pr pAc`1q and Pr pDc`1q. Recall that, by definition, the simple derived character
rh1
c`1pxq is the output of a simple tabulation hash function applied to the key x. Specifically, for

each i P t1, . . . , cu, let Ti : Σ Ñ Σ denote a fully random function. Then

rh1
c`1pxq “ T1pxr1sq ‘ . . . ‘ Tcpxrcsq .

Let IA, IB, IC and ID partition the set of positions in the original keys t1, . . . , cu based on their type,
i.e., IA consists of positions that are of Type A but not Type D, similarly for IB and IC , and finally
ID denotes the positions of Type D. We then define TApxq “ ‘iPIATirxriss and similarly TBpxq,
TCpxq, and TDpxq. When Ac`1 happens, we have that rh1

c`1px1q “ rh1
c`1px2q, which is equivalent to

TBpx1q ‘ TCpx1q “ TBpx2q ‘ TCpx2q ,
since TApx1q “ TApx2q and TDpx1q “ TDpx2q by definition. Similarly, rh1

c`1px3q “ rh1
c`1px4q, is

equivalent to
TBpx3q ‘ TCpx3q “ TBpx4q ‘ TCpx4q .

Note that, by definition, x1ris “ x3ris and x2ris “ x4ris for all i P IB, and hence TBpx1q “ TBpx3q
and TBpx2q “ TBpx4q. Similarly, TCpx1q “ TCpx4q and TCpx2q “ TCpx3q. Therefore, both equalities
are equivalent to

TBpx1q ‘ TCpx1q ‘ TBpx2q ‘ TCpx2q “ 0 .

Given that x1ris ‰ x2ris for all i P IB Y IC and the Ti’s are independent, we have that

PrrTBpx1q ‘ TCpx1q ‘ TBpx2q ‘ TCpx2q “ 0s “ 1{ |Σ| .

In order to bound Pr pDc`1q, we first note that

Pr pDc`1q “ Pr pAc`1 ^ Bc`1q “ Pr pAc`1q ¨ Pr pBc`1 | Ac`1q “ 1{ |Σ| ¨ Pr pBc`1 | Ac`1q .

A similar argument as before shows that event Bc`1 is equivalent to

TApx1q ‘ TCpx1q ‘ TApx3q ‘ TCpx3q “ 0 .

Note, in particular, that the event Bc`1 depends on positions in IA and IC , while the event Ac`1

depends on positions in IB and IC . Moreover, it cannot be that both IA and IB are empty, since
then we would not have a zero-set of size 4 (i.e., we would get that x1 “ x4 and x2 “ x3). Therefore,
IB Y IC ‰ IA Y IC and the two events Ac`1 and Bc`1 are independent, and so Pr pDc`1q “ 1{ |Σ|2.
The claim follows.

As a corollary, we get the following:

Corollary 25. For any c ě 2, a zero-set Y Ď Σc with |Y | “ 4 survives d rounds of tornado
tabulation with probability pp3 ´ 2{ |Σ|q { |Σ|qd .
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Proof. We prove the claim by induction on d and note that the case in which d “ 1 is covered
in Lemma 24. Now assume that the statement is true for d ´ 1. Recall that rx1 denotes the simple
derived key and that rx1rď c`d´1s denotes the first c`d´1 characters of rx1. By extension, let rY 1
denote the set of simple derived keys of Y and similarly, rY 1rď c`d´1s “ trx1rď c ` d ´ 1s | x P Y u
and rY 1rc ` ds “ trx1rc ` ds | x P Y u. Finally, let Ed´1 and Ed denote the events that the set rY 1 and
rY 1rď c ` d ´ 1s, respectively, are zero-sets. Then:

Pr pEdq “ Pr
´
Ed´1 and rY 1rc ` ds is a zero-set

¯

“ Pr pEd´1q ¨ Pr
´
rY 1rc ` ds is a zero-set | Ed´1

¯

“ pp3 ´ 2{ |Σ|q { |Σ|qd´1 ¨ Pr
´
rY 1rc ` ds is a zero-set | Ed´1

¯
,

where the last equality holds by the inductive hypothesis. To finish things up, we note that the
event rY 1rc ` ds conditioned on Ed´1 is equivalent to the set rY 1rď c ` d ´ 1s surviving one round of
tabulation hashing. Hence, it happens with probability p3 ´ 2{ |Σ|q { |Σ| and the claim follows.

8.1 Proof of Theorem 7

The hard instance. Consider the set of keys S “ t0, 1u ˆ Σ and note that rh0 on this set induces
a permutation of the characters in Σ. Specifically, every key of the form 0c for some c P Σ will be
mapped to the element 0c1, where c1 “ rh0p0q ‘ c and the mapping c Ñ rh0p0q ‘ c is a permutation.
Similarly for keys 1c. Therefore, we can assume without loss of generality that rh0p¨q “ 0 and get
that:

Pr
´
rhpXf,hq is linearly dep.

¯
“ Pr

´
D a four-set Y Ď Xf,h that survives d rounds of tornado tab.

¯
.

We then define the selector function to select a key x if x P S and the two leftmost output
characters of hpxq are both 0. Note then than that the probability that an x P S gets selected
to Xf,h is 1{4 and hence, µf “ |Σ{2|. We now focus on zero-sets from S of size 4 and, for any
c1, c2 P Σ with c1 ă c2, we denote the zero-set of size four t0c1, 1c1, 0c2, 1c2u by Y pc1, c2q. We then
let Y “ tY pc1, c2q | c1 ă c2 P Σu and let EipY q denote the event that a zero-set Y survives i rounds
of tornado tabulation. We lower bound the probability that rhpXf,hq is linearly dependent by only
focusing on zero-sets in Y:

Pr
´
rhpXf,hq is linearly dep.

¯
ě Pr

´
DY P Y s.t. EdpY q ^ Y Ď Xf,h

¯

ě Pr
´

DY P Y s.t. EdpY q ^ Y Ď Xf,h
¯

ě Pr pDY P Y s.t. EdpY qq ¨ Pr
´
a fixed Y P Y, Y Ď Xf,h

ˇ̌
ˇ EdpY q

¯

ě 1{43 ¨ Pr pDY P Y s.t. EdpY qq ,

where the last two inequalities above are due to the fact that the probability that some fixed
set Y P Y gets selected in Xf,h given that it survived d rounds of tabulation hashing is the same
across all sets in Y and, furthermore, it is exactly 1{43.
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Surviving zero-sets. We now employ Corollary 25 to lower bound the probability that some
zero-set in Y survives d rounds of tornado tabulation. Note that we already have that the expected
number of zero-sets in Y that survive d rounds of tornado tabulation is

Θp|Σ|2 ¨ pp3 ´ 2{ |Σ|q { |Σ|qdq “ Ωpp3{ |Σ|qd´2q ,
which exhibits the desired dependency on d. The challenge with turning this expectation into a
probability is that the events of sets in Y surviving a round are not independent. To address this,
we decompose the event of some set Y surviving d rounds of tornado tabulation into the event
that some set survives the first two rounds of tornado tabulation and the event that this set also
survives the remaining d ´ 2 rounds:

Pr
´
rhpXf,hq is linearly dep.

¯
ě 1{43 ¨ Pr pDY P Y s.t. EdpY qq
ě 1{43 ¨ Pr pDY P Y s.t. E2pY qq ¨ Pr

´
Ed´2prhpY qrď c ` 2sq

ˇ̌
ˇ E2pY q

¯

“ 1{43 ¨ pp3 ´ 2{ |Σ|q { |Σ|qd´2 ¨ Pr pDY P Y s.t. E2pY qq .

To finish the argument and prove the main claim, we show the following:

Lemma 26. With constant probability, at least one set in Y survives the first two rounds of tornado
tabulation.

Proof. The proof proceeds in two stages: first, we will argue that, with constant probability, Θp|Σ|q
of the sets in Y survive the first round of tornado tabulation. These sets will have a specific structure
that guarantees that they then survive the second round of tornado tabulation independently.

Let T
p1q
1 , T

p1q
2 : Σ Ñ Σ be the two fully random hash functions involved in computing the first

derived character, and let C1 denote the event that T
p1q
1 p0q ‰ T

p1q
1 p1q. Note that C1 happens with

probability 1 ´ 1{ |Σ|. Conditioned on C1, all the sets in Y that survive have position 3 of Type

B or C. For any Y pc1, c2q P Y , position 3 is of Type B if T
p1q
2 pc1q “ T

p1q
2 pc2q and of Type C if

T
p1q
2 pc2q “ T

p1q
1 p0q ‘ T

p1q
1 p1q ‘ T

p1q
2 pc1q. These events are mutually exclusive and each occurs with

probability 1{ |Σ|.
We now show that, with constant probability, at least Θp|Σq| of sets in Y will survive and

futher, have position 3 be of Type B. We model this as a balls-into-bins game in which there

is a bin for each character α P Σ and the characters in Σ hash into bins using T
p1q
2 . We let Nα

denote the number of characters c P Σ with T
p1q
2 pc1q “ α, i.e., the occupancy of the bin for α. We

are interested in events in which Nα ě 2, because this implies that there exists at least one set

Y pc1, c2q P Y where T
p1q
2 pc1q “ T

p1q
2 pc2q “ α. The probability that this occurs is:

Pr pNα ě 2q “ 1 ´ Pr pNα “ 0q ´ Pr pNα “ 1q “ 1 ´ p1 ´ 1{ |Σ|q|Σ| ´ p1 ´ 1{ |Σ|q|Σ|´1 ,

since each character hashes independently and uniformly into the bins. Now, for each α P Σ,
define Iα to be the indicator random variable for whether Nα ě 2 and let I “ ř

αPΣ Iα. We will
argue that I “ ΘpΣq with constant probability. First note that the random variables tIαuαPΣ are
negatively associated since bin occupancies are negatively associated [17]. Let µ “ EpIq and note
that µ ě |Σ| {4 for |Σ| ě 2. As such, we can apply Chernoff’s bound and get that:
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Pr pI ď |Σ| {8q ď Pr pI ď p1 ´ 1{2q ¨ µq ď e´µ{8 ď 1{2 ,

where the last inequality holds when |Σ| ě 23.

Now let Y 1 Ă Y denote the set of zero-sets constructed as such: we partition the bins into subsets

of the form tα,α1u where α ‘ α1 “ T
p1q
1 p0q ‘ T

p1q
1 p1q. The event that I ě |Σ| {8 implies that there

are at least |Σ| {16 such subsets where at least one bin, say α, has Nα ě 2. Now let c1 ă c2 be
two such characters that hash into the bin and add the zero-set Y pc1, c2q to Y 1. Note that every
subset of bins contributes at most one zero-set to Y 1. Furthermore, the sets in Y 1 have the following
properties:

• for any two distinct sets Y pc1, c2q, Y pc3, c4q P Y 1, it holds that tc1, c2u X tc3, c4u “ H, since
the characters c1, c2 hash into a different bin from c3, c4,

• if we denote the derived characters of Y pc1, c2q by rh3p0c1q “ x1 and rh3p1c1q “ x2 and similarly,
the derived characters of Y pc3, c4q by rh3p0c3q “ y1 and rh3p1c3q “ y2, we have further that
tx1, x2u X ty1, y2u “ H. This is due to the way the derived characters are computed: on

one hand, x1 “ T
p1q
1 p0q ‘ T

p1q
2 pc1q ‰ T

p1q
1 p0q ‘ T

p1q
2 pc3q “ y1 because T

p1q
2 pc1q ‰ T

p1q
2 pc3q and

similarly for x2 ‰ y2. On the other hand, x1 ‰ y2 because otherwise we would get that

T
p1q
2 pc1q ‘ T

p1q
2 pc3q “ T

p1q
1 p0q ‘ T

p1q
1 p1q, which would contradict the fact that Y pc1, c2q and

Y pc3, c4q were generated by different subsets of bins.

In this context, the events in which sets in Y 1 survive the second round of tornado tabulation are
independent. Specifically, let Y pc1, c2q P Y 1 be a set as before with derived characters rh3p0c1q “
rh3p0c2q “ x1 and rh3p1c1q “ rh3p1c2q “ x2. We distinguish between whether the newly derived

character is of Type A, B, or C. To this end, let T
p2q
1 , T

p2q
2 , T

p2q
3 : Σ Ñ Σ be the fully random hash

functions involved in its computation. Then position 4 is of Type A if

T
p2q
1 p0q ‘ T

p2q
3 px1q “ T

p2q
1 p1q ‘ T

p2q
3 px2q . (24)

Position 4 is of Type B if

T
p2q
2 pc1q “ T

p2q
2 pc2q , (25)

and of Type C if

T
p2q
1 p0q ‘ T

p2q
2 pc1q ‘ T

p2q
3 px1q “ T

p2q
1 p1q ‘ T

p2q
2 pc2q ‘ T

p2q
3 px2q . (26)

Similar conditions hold for some other Y pc3, c4q P Y 1, and moreover, each of them depends on
values that are chosen independently from the values in Y pc1, c2q. Specifically, the analogues
of Equation (24) for Y pc3, c4q depends on the lookup table values of y1 and y2, where y1 and y2
are the derived characters rh3p0c3q “ y1 and rh3p1c3q “ y2, respectively. As noted before, we know
that tx1, x2u X ty1, y2u “ H, and so the analogue of Equation (24) for Y pc3, c4q is independent of
Equations (24), (25), and (26). Similar arguments can be made for the other cases.

Now fix some instantiation Y 1 of Y 1 of size |Σ| {16 and let XY 1 denote the number of sets in Y 1
that survive the second round of tornado tabulation. We know from Lemma 24 that each set in
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Y 1 survives the second round of tornado tabulation with probability p3 ´ 2{ |Σ|q{ |Σ| ě 2.75{16 for
|Σ| ě 8. Furthermore, each set survives this second round independently from the others. It follows
from Chernoff’s inequality that X is then tightly concentrated around its mean. In particular,

Pr
´
XY 1 ď 0.01 ¨ 1{8

ˇ̌
ˇ C1

¯
ď Pr

´
XY 1 ď p1 ´ 0.99q ¨ ErXY 1 s

ˇ̌
ˇ C1

¯

ď e´ErXY1 s¨0.992{2 ď e´2.75¨0.992{32 ď e´0.08 .

For our purposes, let XY 1 denote the random variable that counts the number of sets in Y 1 that
survive the second round of tabulation hashing. Conditioned on the fact that |Y 1| ě |Σ| {16, we
can always pick an instantiation Y 1 of Y 1 on which to use the above bound. We then get that:

Pr
´
XY 1 ě 0.01{8

ˇ̌
ˇ
ˇ̌
Y 1 ˇ̌ ě |Σ| {16 ^ C1

¯
ě 1 ´ e´0.08 .

To put it all together, let IY denote the event that there exists Y pc1, c2q P Y such that Z2pc1, c2q.
Recall that we defined the event C1 to be that T

p1q
1 p0q ‰ T

p1q
1 p1q. Then:

Pr pIYq ě Pr pIY ^ C1q
“

ˆ
1 ´ 1

|Σ|
˙

¨ Pr
´
IY

ˇ̌
ˇ C1

¯

ě
ˆ
1 ´ 1

|Σ|
˙

¨ Pr
´
IY ^ ˇ̌

Y 1 ˇ̌ ě |Σ| {16
ˇ̌
ˇ C1

¯

ě
ˆ
1 ´ 1

|Σ|
˙

¨ 1
2

¨ Pr
´
IY

ˇ̌
ˇ
ˇ̌
Y 1 ˇ̌ ě |Σ| {16 ^ C1

¯

ě
ˆ
1 ´ 1

|Σ|
˙

¨ 1
2

¨ Pr
´
XY 1 ě 1

ˇ̌
ˇ
ˇ̌
Y 1ˇ̌ ě |Σ| {16 ^ C1

¯

ě
ˆ
1 ´ 1

|Σ|
˙

¨ 1
2

¨ p1 ´ e´0.08q .
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[32] Pǎtraşcu, M., and Thorup, M. Twisted tabulation hashing. In Proc. 24th ACM/SIAM
Symposium on Discrete Algorithms (SODA) (2013), pp. 209–228.

[33] Siegel, A. On universal classes of extremely random constant-time hash functions. SIAM
Journal on Computing 33, 3 (2004), 505–543. See also FOCS’89.

[34] Thorup, M. Timeouts with time-reversed linear probing. In Proc. IEEE INFOCOM (2011),
pp. 166–170.

[35] Thorup, M. Simple tabulation, fast expanders, double tabulation, and high independence.
In FOCS (2013), pp. 90–99.

[36] Thorup, M., and Zhang, Y. Tabulation-based 5-independent hashing with applications
to linear probing and second moment estimation. SIAM Journal on Computing 41, 2 (2012),
293–331. Announced at SODA’04 and ALENEX’10.

[37] Wegman, M. N., and Carter, L. New classes and applications of hash functions. Journal
of Computer and System Sciences 22, 3 (1981), 265–279. See also FOCS’79.

[38] Zobrist, A. L. A new hashing method with application for game playing. Tech. Rep. 88,
Computer Sciences Department, University of Wisconsin, Madison, Wisconsin, 1970.

47



Appendix F

NeurIPS: Multi-Swap k-Means++

207



Multi-Swap k-Means++

Lorenzo Beretta∗

University of Copenhagen
lorenzo2beretta@gmail.com

Vincent Cohen-Addad
Google Research

cohenaddad@google.com

Silvio Lattanzi
Google Research

silviol@google.com

Nikos Parotsidis
Google Research

nikosp@google.com

Abstract

The k-means++ algorithm of Arthur and Vassilvitskii (SODA 2007) is often the
practitioners’ choice algorithm for optimizing the popular k-means clustering ob-
jective and is known to give an O(log k)-approximation in expectation. To obtain
higher quality solutions, Lattanzi and Sohler (ICML 2019) proposed augmenting
k-means++ with O(k log log k) local search steps obtained through the k-means++
sampling distribution to yield a c-approximation to the k-means clustering problem,
where c is a large absolute constant. Here we generalize and extend their local
search algorithm by considering larger and more sophisticated local search neigh-
borhoods hence allowing to swap multiple centers at the same time. Our algorithm
achieves a 9 + ε approximation ratio, which is the best possible for local search.
Importantly we show that our approach yields substantial practical improvements,
we show significant quality improvements over the approach of Lattanzi and Sohler
(ICML 2019) on several datasets.

1 Introduction
Clustering is a central problem in unsupervised learning. In clustering one is interested in grouping
together “similar” object and separate “dissimilar” one. Thanks to its popularity many notions of
clustering have been proposed overtime. In this paper, we focus on metric clustering and on one of
the most studied problem in the area: the Euclidean k-means problem.

In the Euclidean k-means problem one is given in input a set of points P in Rd. The goal of
the problem is to find a set of k centers so that the sum of the square distances to the centers
is minimized. More formally, we are interested in finding a set C of k points in Rd such that∑

p∈P minc∈C ||p− c||2, where with ||p− c|| we denote the Euclidean distance between p and c.

The k-means problem has a long history, in statistics and operations research. For Euclidean k-
means with running time polynomial in both n, k and d, a 5.912-approximation was recently shown
in Cohen-Addad et al. [2022a], improving upon Kanungo et al. [2004], Ahmadian et al. [2019],
Grandoni et al. [2022] by leveraging the properties of the Euclidean metric. In terms of lower bounds,
the first to show that the high-dimensional k-means problems were APX-hard were Guruswami and
Indyk [2003], and later Awasthi et al. [2015] showed that the APX-hardness holds even if the centers
can be placed arbitrarily in Rd. The inapproximability bound was later slightly improved by Lee et al.
[2017] until the recent best known bounds of Cohen-Addad and Karthik C. S. [2019], Cohen-Addad
et al. [2022d] that showed that it is NP-hard to achieve a better than 1.06-approximation and hard to
approximate it better than 1.36 assuming a stronger conjecture. From a more practical point of view,
Arthur and Vassilvitskii [2009] showed that the widely-used popular heuristic of Lloyd Lloyd [1957]
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can lead to solutions with arbitrarily bad approximation guarantees, but can be improved by a simple
seeding strategy, called k-means++, so as to guarantee that the output is within an O(log k) factor of
the optimum Arthur and Vassilvitskii [2007].

Thanks to its simplicity k-means++ is widely adopted in practice. In an effort to improve its
performances Lattanzi and Sohler [2019], Choo et al. [2020] combine k-means++ and local search to
efficiently obtain a constant approximation algorithm with good practical performance. These two
studies show that one can use the k-means++ distribution in combination with a local search algorithm
to get the best of both worlds: a practical algorithm with constant approximation guarantees.

However, the constant obtained in Lattanzi and Sohler [2019], Choo et al. [2020] is very large (several
thousands in theory) and the question as whether one could obtain a practical algorithm that would
efficiently match the 9+ ε-approximation obtained by the nO(d/ϵ) algorithm of Kanungo et al. [2004]
has remained open. Bridging the gap between the theoretical approach of Kanungo et al. [2004] and
k-means++ has thus been a long standing goal.

Our Contributions. We make significant progress on the above line of work.
• We adapt techniques from the analysis of Kanungo et al. [2004] to obtain a tighter analysis

of the algorithm in Lattanzi and Sohler [2019]. In particular in Corollary 4, we show that
their algorithm achieves an approximation of ratio of ≈ 26.64.

• We extend this approach to multi-swaps, where we allow swapping more than one center at
each iteration of local search, improving significantly the approximation to ≈ 10.48 in time
O(nd · poly(k)).

• Leveraging ideas from Cohen-Addad et al. [2021], we design a better local search swap that
improves the approximation further to 9 + ε (see Theorem 12). This new algorithm matches
the 9+ε-approximation achieved by the local search algorithm in Kanungo et al. [2004], but
it is significantly more efficient. Notice that 9 is the best approximation achievable through
local search algorithms, as proved in Kanungo et al. [2004].

• We provide experiments where we compare against k-means++ and Lattanzi and Sohler
[2019]. We study a variant of our algorithm that performs very competitively with our
theoretically sound algorithm. The variant is very efficient and still outperforms previous
work in terms of solution quality, even after the standard postprocessing using Lloyd.

Additional Related Work. We start by reviewing the approach of Kanungo et al. [2004] and a
possible adaptation to our setting. The bound of 9 + ε on the approximation guarantee shown by
Kanungo et al. [2004] is for the following algorithm: Given a set S of k centers, if there is a set
S+ of at most 2/ε points in Rd together with a set S− of |S+| points in S such that S \ S− ∪ S+

achieves a better k-means cost than S, then set S := S \ S− ∪ S+ and repeat until convergence.
The main drawback of the algorithm is that it asks whether there exists a set S+ of points in Rd that
could be swapped with elements of S to improve the cost. Identifying such a set, even of constant
size, is already non-trivial. The best way of doing so is through the following path: First compute
a coreset using the state-of-the-art coreset construction of Cohen-Addad et al. [2022b] and apply
the dimensionality reduction of Becchetti et al. [2019], Makarychev et al. [2019], hence obtaining
a set of Õ(k/ε4) points in dimension O(log k/ε2). Then, compute grids using the discretization
framework of Matousek [2000] to identify a set of ε−O(d) ∼ kO(ε−2 log(1/ε)) grid points that contains
nearly-optimum centers. Now, run the local search algorithm where the sets S+ are chosen from
the grid points by brute-force enumeration over all possible subsets of grid points of size at most,
say s. The running time of the whole algorithm with swaps of magnitude s, i.e.: |S+| ≤ s, hence
becomes kO(s·ε−2 log(1/ε)) for an approximation of (1 + ε)(9 + 2/s), meaning a dependency in k

of kO(ε−3 log(1/ε)) to achieve a 9 + ε-approximation. Our results improves upon this approach in
two ways: (1) it improves over the above theoretical bound and (2) does so through an efficient and
implementable, i.e.: practical, algorithm.

Recently, Grunau et al. [2023] looked at how much applying a greedy rule on top of the k-means++
heuristic improves its performance. The heuristic is that at each step, the algorithm samples ℓ centers
and only keeps the one that gives the best improvement in cost. Interestingly the authors prove that
from a theoretical standpoint this heuristic does not improve the quality of the output. Local search
algorithms for k-median and k-means have also been studied by Gupta and Tangwongsan [2008] who
drastically simplified the analysis of Arya et al. [2004]. Cohen-Addad and Schwiegelshohn [2017]
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demonstrated the power of local search for stable instances. Friggstad et al. [2019], Cohen-Addad
et al. [2019] showed that local search yields a PTAS for Euclidean inputs of bounded dimension (and
doubling metrics) and minor-free metrics. Cohen-Addad [2018] showed how to speed up the local
search algorithm using kd-trees (i.e.: for low dimensional inputs).

For fixed k, there are several known approximation schemes, typically using small coresets Becchetti
et al. [2019], Feldman and Langberg [2011], Kumar et al. [2010]. The state-of-the-art approaches
are due to Bhattacharya et al. [2020], Jaiswal et al. [2014]. The best known coreset construction
remains Cohen-Addad et al. [2022c,b].

If the constraint on the number of output centers is relaxed, then we talk about bicriteria approxima-
tions and k-means has been largely studied Bandyapadhyay and Varadarajan [2016], Charikar and
Guha [2005], Cohen-Addad and Mathieu [2015], Korupolu et al. [2000], Makarychev et al. [2016].

2 Preliminaries
Notation. We denote with P ⊆ Rd the set of input points and let n = |P |. Given a point set Q ⊆ P
we use µ(Q) to denote the mean of points in Q. Given a point p ∈ P and a set of centers A we denote
with A[p] the closest center in A to p (ties are broken arbitrarily). We denote with C the set of centers
currently found by our algorithm and with O∗ an optimal set of centers. Therefore, given p ∈ P ,
we denote with C[p] and O∗[p] its closest ALG-center and OPT-center respectively. We denote by
cost(Q,A) the cost of points in Q ⊆ P w.r.t. the centers in A, namely

cost(Q,A) =
∑

q∈Q

min
c∈A
||q − c||2 .

We use ALG and OPT as a shorthand for cost(P, C) and cost(P,O∗) respectively. When we sample
points proportionally to their current cost (namely, sample q with probability cost(q, C) /cost(P, C))
we call this the D2 distribution. When using Oε(·) and Ωε(·) we mean that ε is considered constant.
We use Õ(f) to hide polylogarithmic factors in f . The following lemma is folklore.
Lemma 1. Given a point set Q ⊆ P and a point p ∈ P we have

cost(Q, p) = cost(Q,µ(Q)) + |Q| · ||p− µ(Q)||2 .

Let O∗
i be an optimal cluster, we define the radius of O∗

i as ρi such that ρ2i · |O∗
i | = cost(O∗

i , oi),
where oi = µ(O∗

i ). We define the δ-core of the optimal cluster O∗
i as the set of points p ∈ O∗

i
that lie in a ball of radius (1 + δ)ρi centered in oi. In symbols, core(O∗

i ) = P ∩B(oi, (1 + δ)ρi).
Throughout the paper, δ is always a small constant fixed upfront, hence we omit it.
Lemma 2. Let O∗

i be an optimal cluster and sample q ∈ O∗
i according to the D2-distribution

restricted to O∗
i . If cost(O∗

i , C) > (2 + 3δ) · cost(O∗
i , oi) then Pr[q ∈ core(O∗

i )] = Ωδ(1).

Proof. Define α := cost(O∗
i , C) /cost(O∗

i , oi) > 2 + 3δ. Thanks to Lemma 1, for each c ∈ C we
have ||c− oi||2 ≥ (α− 1)ρ2i . Therefore, for each y ∈ core(O∗

i ) and every c ∈ C we have

cost(y, c) = ||y − c||2 ≥
(√

α− 1− (1 + δ)
)2 · ρ2i = Ωδ(αρ

2
i ).

Moreover, by a Markov’s inequality argument we have |O∗
i \ core(O∗

i )| ≤ 1
1+δ · |O∗

i | and thus
|core(O∗

i )| ≥ Ωδ(|O∗
i |). Combining everything we get

cost(core(O∗
i ) , C) ≥ |core(O∗

i ) | · min
c∈C

y∈core(O∗
i )

cost(y, c) = Ωδ(|O∗
i |) · Ωδ(αρ

2
i )

and |O∗
i | · αρ2i = cost(O∗

i , C), hence cost(core(O∗
i ) , C) = Ωδ(cost(O∗

i , C)).

3 Multi-Swap k-Means++
The single-swap local search (SSLS) k-means++ algorithm in Lattanzi and Sohler [2019] works
as follows. First, k centers are sampled using k-means++ (namely, they are sampled one by one
according to the D2 distribution, updated for every new center). Then, O(k log log k) steps of local
search follow. In each local search step a point q ∈ P is D2-sampled, then let c be the center among
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the current centers C such that cost(P, (C \ {c}) ∪ {q}) is minimum. If cost(P, (C \ {c}) ∪ {q}) <
cost(P, C) then we swap c and q, or more formally we set C ← (C \ {c}) ∪ {q}.
We extend the SSLS so that we allow to swap multiple centers simultaneously and call this algorithm
multi-swap local search (MSLS) k-means++. Swapping multiple centers at the same time achieves a
lower approximation ratio, in exchange for a higher time complexity. In this section, we present and
analyse the p-swap local search (LS) algorithm for a generic number of p centers swapped at each
step. For any constant δ > 0, we obtain an approximation ratio ALG/OPT = η2 + δ where

η2 − (2 + 2/p)η − (4 + 2/p) = 0. (1)

The Algorithm. First, we initialize our set of centers using k-means++. Then, we run O(ndkp−1)
local search steps, where a local search step works as follows. We D2-sample a set In = {q1 . . . qp}
of points from P (without updating costs). Then, we iterate over all possible sets Out = {c1 . . . cp}
of p distinct elements in C ∪ In and select the set Out such that performing the swap (In,Out)
maximally improves the cost2. If this choice of Out improves the cost, then we perform the swap
(In,Out), else we do not perform any swap for this step.

Theorem 3. For any δ > 0, the p-swap local search algorithm above runs in Õ(ndk2p) time and,
with constant probability, finds an (η2 + δ)-approximation of k-means, where η satisfies Equation (1).

Notice that the SSLS algorithm of Lattanzi and Sohler [2019] is exactly the p-swap LS algorithm
above for p = 1.
Corollary 4. The single-swap local search in Lattanzi and Sohler [2019], Choo et al. [2020] achieves
an approximation ratio < 26.64.
Corollary 5. For p = O(1) large enough, multi-swap local search achieves an approximation ratio
< 10.48 in time O(nd · poly(k)).

3.1 Analysis of Multi-Swap k-means++

In this section we prove Theorem 3. Our main stepping stone is the following lemma.
Lemma 6. Let ALG denote the cost at some point in the execution of MSLS. As long as ALG/OPT >
η2 + δ, a local search step improves the cost by a factor 1− Ω(1/k) with probability Ω(1/kp−1).

Proof of Theorem 3. First, we show that O(kp log log k) local steps suffice to obtain the desired
approximation ratio, with constant probability. Notice that a local search step can only improve the
cost function, so it is sufficient to show that the approximation ratio is achieved at some point in time.
We initialize our centers using k-means++, which gives a O(log k)-approximation in expectation.
Thus, using Markov’s inequality the approximation guarantee O(log k) holds with arbitrary high
constant probability. We say that a local-search step is successful if it improves the cost by a factor of
at least 1−Ω(1/k). Thanks to Lemma 6, we know that unless the algorithm has already achieved the
desired approximation ratio then a local-search step is successful with probability Ω(1/kp−1). To go
from O(log k) to η2+δ we need O(k log log k) successful local search steps. Standard concentration
bounds on the value of a Negative Binomial random variable show that, with high probability, the
number of trial to obtain O(k log log k) successful local-search steps is O(kp log log k). Therefore,
after O(kp log log k) local-search steps we obtain an approximation ratio of η2 + δ.

To prove the running time bound it is sufficient to show that a local search step can be performed in
time Õ(ndkp−1). This is possible if we maintain, for each point x ∈ P , a dynamic sorted dictionary3

storing the pairs (cost(x, ci) , ci) for each ci ∈ C. Then we can combine the exhaustive search
over all possible size-p subsets of C ∪ In and the computation of the new cost function using time
O(ndkp−1 log k). To do so, we iterate over all possible size-(p− 1) subsets Z of C ∪ In and update
all costs as if these centers were removed, then for each point x ∈ P we compute how much its cost
increases if we remove its closest center cx in (C ∪ In) \ Z and charge that amount to cx. In the end,
we consider Out = Z ∪ {c} where c is the cheapest-to-remove center found in this way.

The rest of this section is devoted to proving Lemma 6. For convenience, we prove that Lemma 6
holds whenever ALG/OPT > η2 +O(δ), which is wlog by rescaling δ. Recall that we now focus on

2If In ∩Out ̸= ∅ then we are actually performing the swap (In \Out,Out \ In) of size < p.
3Also known as dynamic predecessor search data structure.
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a given step of the algorithm, and when we say current cost, current centers and current clusters we
refer to the state of these objects at the end of the last local-search step before the current one. Let
O∗

1 . . . O
∗
k be an optimal clustering of P and let O∗ = {oi = µ(O∗

i ) | for i = 1 . . . k} be the set of
optimal centers of these clusters. We denote with C1 . . . Ck the current set of clusters at that stage of
the local search and with C = {c1 . . . ck} the set of their respective current centers.

We say that ci captures oj if ci is the closest current center to oj , namely ci = C[oj ]. We say that
ci is busy if it captures more than p optimal centers, and we say it is lonely if it captures no optimal
center. Let Õ = {oi | cost(O∗

i , C) > δ · ALG/k} and C̃ = C \ {C[oi] | oi ∈ O∗ \ Õ}. For ease of
notation, we simply assume that Õ = {o1 . . . oh} and C̃ = {c1 . . . ch′}. Notice that h′ > h.

Weighted ideal multi-swaps. Given In ⊆ P and Out ⊆ C̃ of the same size we say that the
swap (In,Out) is an ideal swap if In ⊆ Õ. We now build a set of weighted ideal multi-swaps
S. First, suppose wlog that {c1 . . . ct} is the set of current centers in C̃ that are neither lonely nor
busy. Let L be the set of lonely centers in C̃. For each i = 1 . . . t, we do the following. Let In
be the set of optimal centers in Õ captured by ci. Choose a set Li of |In| − 1 centers from L, set
L ← L \ Li and define Out = Li ∪ {ci}. Assign weight 1 to (In,Out) and add it to S. For each
busy center ci ∈ {ct+1 . . . ch′} let A be the set of optimal centers in Õ captured by ci, pick a set Li

of |A| − 1 lonely current centers from L (a counting argument shows that this is always possible).
Set L ← L \ Li. For each oj ∈ A and cℓ ∈ Li assign weight 1/(|A| − 1) to (oj , cℓ) and add it to
S. Suppose we are left with ℓ centers o′1 . . . o

′
ℓ ∈ Õ such that C[o′i] ̸∈ C̃. Apparently, we have not

included any o′i in any swap yet. However, since |C̃| ≥ |Õ|, we are left with at least ℓ′ ≥ ℓ lonely
centers c′1 . . . c

′
ℓ′ ∈ C̃. For each i = 1 . . . ℓ we assign weight 1 to (o′i, c

′
i) and add it to S.

Observation 7. The process above generates a set of weighted ideal multi-swaps such that: (i) Every
swap has size at most p; (ii) The combined weights of swaps involving an optimal center oi ∈ Õ is 1;
(iii) The combined weights of swaps involving a current center ci is at most 1 + 1/p.

Consider an ideal swap (In,Out). Let O∗
In =

⋃
oi∈In O

∗
i and COut =

⋃
cj∈Out Cj . Define the

reassignment cost Reassign(In,Out) as the increase in cost of reassigning points in COut \O∗
In to

centers in C \Out. Namely,

Reassign(In,Out) = cost(COut \O∗
In, C \Out)− cost(COut \O∗

In, C) .

We take the increase in cost of the following reassignment as an upper bound to the reassignment
cost. For each p ∈ COut \ O∗

In we consider its closest optimal center O∗[p] and reassign p to the
current center that is closest to O∗[p], namely C[O∗[p]]. In formulas, we have

Reassign(In,Out) ≤
∑

p∈COut\O∗
In

cost(p, C[O∗[p]])− cost(p, C[p])

≤
∑

p∈COut

cost(p, C[O∗[p]])− cost(p, C[p]) .

Indeed, by the way we defined our ideal swaps we have C[O∗[p]] ̸∈ Out for each p ̸∈ O∗
In and this

reassignment is valid. Notice that the right hand side in the equation above does not depend on In.

Lemma 8.
∑

p∈P cost(p, C[O∗[p]]) ≤ 2OPT + ALG + 2
√

ALG
√

OPT.

Proof. Deferred to the supplementary material.

Lemma 9. The combined weighted reassignment costs of all ideal multi-swaps in S is at most
(2 + 2/p) · (OPT +

√
ALG
√

OPT).
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Proof. Denote by w(In,Out) the weight associated with the swap (In,Out).
∑

(In,Out)∈S
w(In,Out) · Reassign(In,Out) ≤

∑

(In,Out)∈S
w(In,Out) ·

∑

p∈COut

cost(p, C[O∗[p]])− cost(p, C[p]) ≤

(1 + 1/p) ·
∑

cj∈C

∑

p∈Cj

cost(p, C[O∗[p]])− cost(p, C[p]) ≤

(1 + 1/p) ·


∑

p∈P

cost(p, C[O∗[p]])− ALG


 .

The second inequality uses (iii) from Observation 7. Applying Lemma 8 completes the proof.

Recall the notions of radius and core of an optimal cluster introduced in Section 2. We say that a
swap (In,Out) is strongly improving if cost(P, (C ∪ In) \Out) ≤ (1 − δ/k) · cost(P, C). Let
In = {o1 . . . os} ⊆ Õ and Out = {c1 . . . cs} ⊆ C̃ we say that an ideal swap (In,Out) is good
if for every q1 ∈ core(o1) . . . qs ∈ core(os) the swap (Q, Out) is strongly improving, where
Q = {q1 . . . qs}. We call an ideal swap bad otherwise. We say that an optimal center oi ∈ Õ is
good if that’s the case for at least one of the ideal swaps it belongs to, otherwise we say that it is bad.
Notice that each optimal center in Õ is assigned to a swap in S, so it is either good or bad. Denote
with G the union of cores of good optimal centers in Õ.
Lemma 10. If an ideal swap (In,Out) is bad, then we have

cost(O∗
In, C) ≤ (2 + δ)cost(O∗

In,O∗) + Reassign(In,Out) + δALG/k. (2)

Proof. Let In = {o1 . . . os}, Q = {q1 . . . qs} such that q1 ∈ core(o1) . . . qs ∈ core(os).
Then, by Lemma 1 cost(O∗

In,Q) ≤ (2 + δ)cost(O∗
In,O∗). Moreover, Reassign(In,Out) =

cost(P \O∗
In, C \Out) − cost(P \O∗

In, C) because points in P \ COut are not affected by the
swap. Therefore, cost(P, (C ∪ Q) \Out) ≤ (2 + δ)cost(O∗

In,O∗) + Reassign(In,Out) +
cost(P \O∗

In, C). Suppose by contradiction that Equation (2) does not hold, then

cost(P, C)− cost(P, (C ∪ Q) \Out) =

cost(P \O∗
In, C) + cost(O∗

In, C)− cost(P, (C ∪ Q) \Out) ≥ δALG/k.

Hence, (Q, Out) is strongly improving and this holds for any choice of Q, contradiction.

Lemma 11. If ALG/OPT > η2 + δ then cost(G, C) = Ωδ(cost(P, C)). Thus, if we D2-sample q
we have P [q ∈ G] = Ωδ(1).

Proof. First, we observe that the combined current cost of all optimal clusters in O∗ \ Õ is at most
k · δALG/k = δALG. Now, we prove that the combined current cost of all O∗

i such that oi is bad is
≤ (1− 2δ)ALG. Suppose, by contradiction, that it is not the case, then we have:

(1− 2δ)ALG <
∑

Bad oi∈Õ

cost(O∗
i , C) ≤

∑

Bad (In,Out)∈S
w(In,Out) · cost(O∗

In, C) ≤

∑

Bad (In,Out)

w(In,Out) · ((2 + δ)cost(O∗
In,O∗) + Reassign(In,Out) + δALG/k) ≤

(2 + δ)OPT + (2 + 2/p)OPT + (2 + 2/p)
√

ALG
√

OPT + δALG.

The second and last inequalities make use of Observation 7. The third inequality uses Lemma 10.

Setting η2 = ALG/OPT we obtain the inequality η2 − (2 + 2/p±O(δ))η− (4 + 2/p±O(δ)) ≤ 0.
Hence, we obtain a contradiction in the previous argument as long as η2 − (2 + 2/p ± O(δ))η −
(4 + 2/p±O(δ)) > 0. A contradiction there implies that at least an δ-fraction of the current cost is
due to points in

⋃
Good oi∈Õ O∗

i . We combine this with Lemma 2 and conclude that the total current
cost of G =

⋃
Good oi∈Õ core(O∗

i ) is Ωδ(cost(P, C)).
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Finally, we prove Lemma 6. Whenever q1 ∈ G we have that q1 ∈ core(o1) for some good o1.
Then, for some s ≤ p we can complete o1 with o2 . . . os such that In = {o1 . . . os} belongs
to a good swap. Concretely, there exists Out ⊆ C such that (In,Out) is a good swap. Since
In ⊂ Õ we have cost(O∗

i , C) > δOPT/k for all oi ∈ In, which combined with Lemma 2 gives
that for i = 2 . . . s P [qi ∈ core(oi)] ≥ Ωδ(1/k). Hence, we have P [qi ∈ core(oi) for i =
1 . . . s] ≥ Ωδ,p(1/k

p−1). Whenever we sample q1 . . . qs from core(o1) . . . core(os), we have that
(Q, Out) is strongly improving. Notice, however, that (Q, Out) is a s-swap and we may have s < p.
Nevertheless, whenever we sample q1 . . . qs followed by any sequence qs+1 . . . qp it is enough to
choose Out′ = Out ∪ {qs+1 . . . qp} to obtain that ({q1 . . . qp}, Out′) is an improving p-swap.

4 A Faster (9 + ε)-Approximation Local Search Algorithm
The MSLS algorithm from Section 3 achieves an approximation ratio of η2 + ε, where η2 − (2 +
2/p)η − (4 + 2/p) = 0 and ε > 0 is an arbitrary small constant. For large p we have η ≈ 10.48. On
the other hand, employing p simultaneous swaps, Kanungo et al. [2004] achieve an approximation
factor of ξ2 + ε where ξ2 − (2 + 2/p)ξ − (3 + 2/p) = 0. If we set p ≈ 1/ε this yields a (9 +O(ε))-
approximation. In the same paper, they prove that 9-approximation is indeed the best possible for
p-swap local search, if p is constant (see Theorem 3.1 in Kanungo et al. [2004]). They showed that 9
is the right locality gap for local search, but they matched it with a very slow algorithm. To achieve a
(9 + ε)-approximation, they discretize the space reducing to O(nε−d) candidate centers and perform
an exhaustive search over all size-(1/ε) subsets of candidates at every step. As we saw in the related
work section, it is possible to combine techniques from coreset and dimensionality reduction to
reduce the number of points to n′ = k · poly(ε−1) and the number of dimensions to d′ = log k · ε−2.
This reduces the complexity of Kanungo et al. [2004] to kO(ε−3 log ε−1).

In this section, we leverage techniques from Cohen-Addad et al. [2021] to achieve a (9 + ε)-
approximation faster 4. In particular, we obtain the following.
Theorem 12. Given a set of n points in Rd with aspect ratio ∆, there exists an algorithm that
computes a 9 + ε-approximation to k-means in time ndkO(ε−2) logO(ε−1)(∆) · 2−poly(ε−1).

Notice that, besides being asymptotically slower, the pipeline obtained combining known techniques
is highly impractical and thus it did not make for an experimental test-bed. Moreover, it is not obvious
how to simplify such an ensemble of complex techniques to obtain a practical algorithm.

Limitations of MSLS. The barrier we need to overcome in order to match the bound in Kanungo
et al. [2004] is that, while we only consider points in P as candidate centers, the discretization
they employ considers also points in Rd \ P . In the analysis of MSLS we show that we sample
each point qi from core(O∗

i ) or equivalently that qi ∈ B(oi, (1 + ϵ)ρi), where ρi is such that O∗
i

would have the same cost w.r.t. oi if all its points were moved on a sphere of radius ρi centered
in oi. This allows us to use a Markov’s inequality kind of argument and conclude that there must
be Ωϵ(|O∗

i |) points in O∗
i ∩ B(oi, (1 + ϵ)ρi). However, we have no guarantee that there is any

point at all in O∗
i ∩ B(oi, (1 − ε)ρi). Indeed, all points in O∗

i might lie on ∂B(oi, ρi). The fact
that potentially all our candidate centers q are at distance at least ρi from oi yields (by Lemma 1)
cost(O∗

i , q) ≥ 2cost(O∗
i , oi), which causes the zero-degree term in ξ2−(2+2/p)ξ−(3+2/p) = 0

from Kanungo et al. [2004] to become a 4 in our analysis.

Improving MSLS by taking averages. First, we notice that, in order to achieve (9 + ε)-
approximation we need to set p = Θ(1/ε). The main hurdle to achieve a (9 + ε)-approximation is
that we need to replace the qi in MSLS with a better approximation of oi. We design a subroutine
that computes, with constant probability, an ε-approximation ôi of oi (namely, cost(O∗

i , ôi) ≤
(1 + ε)cost(O∗

i , oi)). The key idea is that, if sample uniformly O(1/ε) points from O∗
i and define

ôi to be the average of our samples then cost(O∗
i , ôi) ≤ (1 + ε)cost(O∗

i , oi)

Though, we do not know O∗
i , so sampling uniformly from it is non-trivial. To achieve that, for each

qi we identify a set N of nice candidate points in P such that a poly(ε)/k fraction of them are from
O∗

i . We sample O(1/ε) points uniformly from N and thus with probability (ε/k)O(1/ε) we sample
only points from O∗

i . Thus far, we sampled O(1/ε) points uniformly from N ∩ O∗
i . What about

4The complexity in Theorem 12 can be improved by applying the same preprocessing techniques using
coresets and dimensionality reduction, similar to what can be used to speed up the approach of Kanungo et al.
[2004]. Our algorithm hence becomes asymptotically faster.
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the points in O∗
i \N? We can define N so that all points in O∗

i \N are either very close to some
of the (qj)j or they are very far from qi. The points that are very close to points (qj)j are easy to
treat. Indeed, we can approximately locate them and we just need to guess their mass, which is
matters only when ≥ poly(ε)ALG, and so we pay only a logO(1/ε)(1/ε) multiplicative overhead to
guess the mass close to qj for j = 1 . . . p = Θ(1/ε). As for a point f that is very far from qi (say,
||f − qi|| ≫ ρi) we notice that, although f ’s contribution to cost(O∗

i , oi) may be large, we have
cost(f, o) ≈ cost(f, oi) for each o ∈ B(qi, ρi) ⊆ B(oi, (2 + ε)ρi) assuming qi ∈ core(oi).

5 Experiments
In this section, we show that our new algorithm using multi-swap local search can be employed to
design an efficient seeding algorithm for Lloyd’s which outperforms both the classical k-means++
seeding and the single-swap local search from Lattanzi and Sohler [2019].

Algorithms. The multi-swap local search algorithm that we analysed above performs very well
in terms of solution quality. This empirically verifies the improved approximation factor of our
algorithm, compared to the single-swap local search of Lattanzi and Sohler [2019].

Motivated by practical considerations, we heuristically adapt our algorithm to make it very competitive
with SSLS in terms of running time and still remain very close, in terms of solution quality, to the
theoretically superior algorithm that we analyzed. The adaptation of our algorithm replaces the phase
where it selects the p centers to swap-out by performing an exhaustive search over

(
k+p
p

)
subsets of

centers. Instead, we use an efficient heuristic procedure for selecting the p centers to swap-out, by
greedily selecting one by one the centers to swap-out. Specifically, we select the first center to be the
cheapest one to remove (namely, the one that increases the cost by the least amount once the points
in its cluster are reassigned to the remaining centers). Then, we update all costs and select the next
center iteratively. After p repetitions we are done. We perform an experimental evaluation of the
“greedy” variant of our algorithm compared to the theoretically-sound algorithm from Section 3 and
show that employing the greedy heuristic does not measurably impact performance.

The four algorithms that we evaluate are the following: 1) KM++: The k-means++ from Arthur
and Vassilvitskii [2007], 2) SSLS: The Single-swap local search method from Lattanzi and Sohler
[2019], 3) MSLS: The multi-swap local search from Section 3, and 4) MSLS-G: The greedy variant
of multi-swap local search as described above.

We use MSLS-G-p = x and MSLS-p = x, to denote MSLS-G and MSLS with p = x, respectively.
Notice that MSLS-G-p = 1 is exactly SSLS. Our experimental evaluation explores the effect of
p-swap LS, for p > 1, in terms of solution cost and running time.

Datasets. We consider the three datasets used in Lattanzi and Sohler [2019] to evaluate the perfor-
mance of SSLS: 1) KDD-PHY – 100, 000 points with 78 features representing a quantum physic task
kdd [2004], 2) RNA - 488, 565 points with 8 features representing RNA input sequence pairs Uzilov
et al. [2006], and 3) KDD-BIO – 145, 751 points with 74 features measuring the match between a
protein and a native sequence kdd [2004]. We discuss the results for two or our datasets, namely
KDD-BIO and RNA. We deffer the results on KDD-PHY to the appendix and note that the results are
very similar to the results on RNA.

We performed a preprocessing step to clean-up the datasets. We observed that the standard deviation
of some features was disproportionately high. This causes all costs being concentrated in few
dimensions making the problem, in some sense, lower-dimensional. Thus, we apply min-max scaling
to all datasets and observed that this causes all our features’ standard deviations to be comparable.

Experimental setting. All our code is written in Python. The code will be made available upon
publication of this work. We did not make use of parallelization techniques. To run our experiments,
we used a personal computer with 8 cores, a 1.8 Ghz processor, and 15.9 GiB of main memory
We run all experiments 5 times and report the mean and standard deviation in our plots. All our
plots report the progression of the cost either w.r.t local search steps, or Lloyd’s iterations. We run
experiments on all our datasets for k = 10, 25, 50. The main body of the paper reports the results for
k = 25, while the rest can be found in the appendix. We note that the conclusions of the experiments
for k = 10, 50 are similar to those of k = 25.

Removing centers greedily. We first we compare MSLS-G with MSLS. To perform our experi-
ment, we initialize k = 25 centers using k-means++ and then run 50 iterations of local search for both
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Figure 1: Comparison between MSLS and MSLS-G, for p = 3, for k = 25, on the datasets KDD-
BIO and RNA. The y axis shows the solution cost divided by the means solution cost of KM++.

algorithms, for p = 3 swaps. Due to the higher running of the MSLS we perform this experiments on
1% uniform sample of each of our datasets. We find out that the performance of the two algorithms is
comparable on all our instances, while they both perform roughly 15%-27% at convergence. Figure 1
shows the aggregate results, over 5 repetitions of our experiment.

It may happen that MSLS, which considers all possible swaps of size p at each LS iteration, performs
worse than MSLS-G as a sub-optimal swap at intermediate iterations may still lead to a better local
optimum by coincidence. Given that MSLS-G performs very comparably to MSLS, while it is much
faster in practice, we use MSLS-G for the rest of our experiments where we compare to baselines.
This allows us to consider higher values of p, without compromising much the running time.

Results: Evaluating the quality and performance of the algorithms. In our first experiment we
run KM++ followed by 50 iterations of MSLS-G with p = 1, 4, 7, 10 and plot the relative cost w.r.t.
KM++ at each iteration, for k = 25. The first row of Figure 2 plots the results. Our experiment shows
that, after 50 iterations MSLS-G for p = 4, 7, 10 achieves improvements of roughly 10% compared
to MSLS-G-p = 1 and of the order of 20%− 30% compared to KM++. We also report the time per
iteration that each algorithm takes. For comparison, we report the running time of a single iteration of
Lloyd’s next to the dataset’s name. It is important to notice that, although MSLS-G-p = 1 is faster,
running more iterations MSLS-G-p = 1 is not sufficient to compete with MSLS-G when p > 1.

Results: Evaluating the quality after postprocessing using Lloyd. In our second experiment,
we use KM++ and MSLS-G as a seeding algorithm for Lloyd’s and measure how much of the
performance improvement measured in the first experiment is retained after running Lloyd’s. First,
we initialize our centers using KM++ and the run 15 iterations of MSLS-G for p = 1, 4, 7. We
measure the cost achieved by running 10 iterations of Lloyd’s starting from the solutions found by
MSLS-G as well as KM++. In Figure 2 (second row) we plot the results. Notice that, according to
the running times from the first experiment, 15 iterations iterations of MSLS-G take less than 10
iterations of Lloyd’s for p = 4, 7 (and also for p = 10, except on RNA). We observe that MSLS-G
for p > 1 performs at least as good as SSLS from Lattanzi and Sohler [2019] and in some cases
maintains non-trivial improvements.

Results: Evaluating the quality and performance of the algorithms against a fixed deadline.
In this experiment we run KM++ followed by MSLS-G with p = 1, 4, 7, 10, for a set of fixed
amounts of time. This setting allows the versions of MSLS-G with smaller swap size to perform
more iterations compared to the versions of the algorithm with a larger swap size, as smaller swap size
leads to lower running time per iteration. Let τ be the average time that Lloyd’s algorithm requires
to complete a simple iteration on a specific instance. We plot the cost of the solution produced by
each algorithm after running λ× τ for each λ ∈ {1, · · · , 20} in Figure 3. Our experiment shows that
MSLS-G for p = 4, 7, 10 achieves improvements of more than 5% compared to MSLS-G-p = 1
even when compared against a fixed running time, and of the order of 20% − 30% compared to
KM++.

Conclusion and Future Directions
We present a new algorithm for the k-means problem and we show that it outperforms theoretically
and experimentally state-of-the-art practical algorithms with provable guarantees in terms of solution
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Figure 2: The first row compares the cost of MSLS-G, for p ∈ {1, 4, 7, 10}, divided by the mean
cost of KM++ at each LS step, for k = 25. The legend reports also the running time of MSLS-G
per LS step (in seconds). The second row compares the cost after each of the 10 iterations of Lloyd
with seeding from MSLS-G, for p ∈ {1, 4, 7, 10} and 15 local search steps and KM++, for k = 25.

Figure 3: Comparison of the cost produced by MSLS-G, for p ∈ {1, 4, 7, 10} and k = 25 on the
datasets KDD-BIO and KDD-PHU, divided by the mean cost of KM++ after running for fixed
amount of time in terms of multiplicative factors to the average time for an iteration of Lloyd’s
algorithm (i.e., for deadlines that are 1×, . . . , 20× the average time of an iteration of Lloyd).

quality. A very interesting open question is to improve our local search procedure by avoiding the
exhaustive search over all possible size-p subsets of centers to swap out, concretely an algorithm with
running time Õ(2poly(1/ε)ndk).
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Supplementary Material

Proofs from Section 3

Lemma 8.
∑

p∈P cost(p, C[O∗[p]]) ≤ 2OPT + ALG + 2
√

ALG
√

OPT.

Proof.
∑

p∈P

cost(p, C[O∗[p]]) =

∑

oi∈O∗

∑

p∈O∗
i

cost(p, C[oi]) =

∑

oi∈O∗

|O∗
i | · cost(oi, C[oi]) + cost(O∗

i , oi) =

OPT +
∑

p∈P

cost(O∗[p], C[O∗[p]]) ≤

OPT +
∑

p∈P

cost(O∗[p], C[p]) ≤

OPT +
∑

p∈P

(||O∗[p]− p||+ ||p− C[p]||)2 =

2OPT + ALG + 2
∑

p∈P

||O∗[p], p|| · ||p, C[p]|| ≤ 2OPT + ALG + 2
√

ALG
√

OPT.

The second equality is due to Lemma 1 and the last inequality is due to Cauchy-Schwarz.

Proofs from Section 4

In this section, we prove the following.

Theorem 12. Given a set of n points in Rd with aspect ratio ∆, there exists an algorithm that
computes a 9 + ε-approximation to k-means in time ndkO(ε−2) logO(ε−1)(∆) · 2−poly(ε−1).

We start with a key lemma showing that a sample of size O(1/ε) is enough to approximate 1-mean.

Lemma 13 (Form Inaba et al. [1994]). Given an instance P ⊆ Rd, sample m = 1/(εδ) points
uniformly at random from P and denote the set of samples with S. Then cost(P, µ(S)) ≤ (1 +
ε)cost(P, µ(P )) with probability at least 1− δ.

Proof. We want to prove that with probability 1 − δ we have ||µ(S) − µ(P )||2 ≤
εcost(P, µ(P )) /|P |. Then, applying Lemma 1 gives the desired result. First, we notice that
µ(P ) is an unbiased estimator of µ(P ), namely E[µ(S)] = µ(P ). Then, we have

E
[
||µ(S)− µ(P )||2

]
=

1

m

|S|∑

i=1

E
[
||si − µ(P )||2

]
=

cost(P, µ(P ))

m · |P |

where si are uniform independent samples from P . Applying Markov’s inequality concludes the
proof.

The algorithm that verifies Theorem 12 is very similar to the MSLS algorithm from Section 3 and
we use the same notation to describe it. The intuition is that in MSLS we sample Q = {q1 . . . qp}
hoping that qi ∈ core(oi) for each i; here we refine qi to a better approximation ôi of oi and swap
the points (ôi)i rather than (qi)i. Our points ôi are generated taking the average of some sampled
point, thus we possibly have ôi ̸∈ P while, on the other hand, qi ∈ P .
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A (9+ε)-approximation MSLS algortihm. First, we initialize our set of centers using k-means++.
Then, we run ndkO(ε−2) · 2poly(ε−1) local search steps, where a local search step works as follows.
Set p = Θ(ε−1). We D2-sample a set Q = {q1 . . . qp} of points from P (without updating costs).
Then, we iterate over all possible sets Out = {c1 . . . cp} of p distinct elements in C ∪ Q. We define
the set of temporary centers T = (C ∪ Q) \ Out and run a subroutine APX-CENTERS(T ) which
returns a list of poly(ε−1) · logO(ε−1)(∆) size-s sets În = {ô1 . . . ôs} (where s = |Q \Out|). We
select the set În in this list such that the swap (În,Out \ Q) yields the maximum cost reduction.
Then we select the set Out that maximizes the cost reduction obtained in this way. If (În, Out \ Q)
actually reduces the cost then we perform that swap.

A subroutine to approximate optimal centers. Here we describe the subroutine
APX-CENTERS(T ). Let Q \Out = {q1 . . . qs}. Recall that s ≤ p = O(ε−1). This subroutine out-
puts a list of 2poly(ε

−1) ·logO(ε−1)(∆) size-s sets În = {ô1 . . . ôs}. Here we describe how to find a list
of 2poly(ε

−1) · log(∆) values for ô1. The same will apply for ô2 . . . ôs and taking the Cartesian product
yields a list of 2poly(ε

−1) · logO(ε−1)(∆) size-s sets. Assume wlog that the pairwise distances between
points in P lie in [1,∆]. We iterate over all possible values of ρ1 ∈ {1, (1 + ε) . . . (1 + ε)⌈log1+ε ∆⌉}.
We partition P in three sets: the set of far points F = {x ∈ P | cost(x, q1) > ρ21/ε

3}, the set of
close points C = {x ∈ P \ F | cost(x, T ) ≤ ε3ρ21} and the set of nice points N = P \ (C ∪ F ).
Then, we sample uniformly from N a set S of size Θ(ε−1). For each (s+ 1)-tuple of coefficients
α0, α1 . . . αs ∈

{
1, (1− ε), (1− ε)2, . . . (1− ε)⌈log1−ε(ε

7)⌉
}
∪{0}we output the candidate solution

given by the convex combination

ô1 = ô1(α0 . . . αs) =
α0µ(S) +

∑s
i=1 αiqi∑s

i=0 αi
(3)

so, for each value of ρ1, we output 2poly(ε
−1) values for ô1. Hence, 2poly(ε

−1) · log(∆) values in total.

Analysis

The key insight in the analysis of the MSLS algorithm form Section 3 was that every qi was a proxy
for oi because qi ∈ core(oi), and thus qi provided a good center for O∗

i . In the analysis of this
improved version of MSLS we replace qi with ôi which makes a better center for O∗

i . Formally, fixed
Out, we say that a point ôi is a perfect approximation of oi when cost(O∗

i , (C ∪ {ôi}) \Out) ≤
(1 + ε)OPTi + εOPT/k. We define Õ and C̃ as in Section 3, except that we replace δ with ε (which
here is not assumed to be a constant). Likewise, we build the set S of ideal multi-swaps as in Section 3.
Recall that we say that a multi-swap (In,Out) is strongly improving if cost(P, (C ∪ In) \Out) ≤
(1 − ε/k) · cost(P, C). Let In = {o1 . . . os} ⊆ Õ and Out = {c1 . . . cs} ⊆ C̃, we overload
the definition from Section 3 and say that the ideal multi-swap (In,Out) is good if for every
În = {ô1 . . . ôs} such that each ôi is a perfect approximation of oi for each i = 1 . . . s the swap
(În, Out) is strongly improving. We call an ideal swap bad otherwise. As in Section 3, we define
the core of an optimal center; once again we replace δ with ϵ, which is no longer constant. The two
following lemmas are our stepping stones towards Theorem 12.

Lemma 14. If ALG/OPT > 9 + O(ε) then, with probability k−O(ε−1) · 2−poly(ε−1), there exists
Out ⊆ C ∪ Q such that:

(i) If Q \Out = {q1 . . . qs} then q1 ∈ core(o1) . . . qs ∈ core(os) for some o1 . . . os ∈ O∗

(ii) If we define In = {o1 . . . os} then (In,Out \ Q) is a good ideal swap.

Lemma 15. If (i) from Lemma 14 holds, then with probability k−O(ε−2) · 2−poly(ε−1), the list
returned by APX-CENTERS contains În = {ô1 . . . ôs} such that ôi is a perfect approximation of oi
for each i = 1 . . . s.

Proof of Theorem 12. Here we prove that our improved MSLS algorithm achieves a (9 + O(ε))-
approximation, which is equivalent to Theorem 12 up to rescaling ε. Combining Lemma 14 and
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Lemma 15 we obtain that, as long as ALG/OPT > 9 + O(ε), with probability at least k−O(ε−2) ·
2−poly(ε−1), the list returned by APX-CENTERS contains În = {ô1 . . . ôs} such that (În, Out \ Q)
is strongly improving. If this happens, we call such a local step successful. Now the proof goes
exactly as the proof of Theorem 3. Indeed, We show that kO(ε−2) · 2poly(ε−1) local steps suffice to
obtain Ω(k log log k/ε) successful local steps, and thus to obtain the desired approximation ratio,
with constant probability.

To prove the running time bound it is sufficient to notice that a local search step can be performed in
time nd logO(ε−1)(∆) · 2poly(ε−1).

In the rest of this section, we prove Lemma 14 and Lemma 15.
Observation 16. If we assume δ = ε non-constant in Lemma 2, then performing the computations
explicitly we obtain Pr[q ∈ core(O∗

i )] ≥ poly(ε).

In order to prove Lemma 14, we first prove the two lemmas. Lemma 17 is the analogous of Lemma 10
and Lemma 18 is the analogous of Lemma 11. Overloading once again the definition from Section 3,
we define G as the union of cores of good optimal centers in Õ, where an optimal center is defined to
be good if at least one of the ideal multi-swaps in S it belongs to is good (exactly as in Section 3).
Lemma 17. If an ideal swap (In,Out) is bad, then we have

cost(O∗
In, C) ≤ (1 + ε)cost(O∗

In,O∗) + Reassign(In,Out) + εALG/k. (4)

Proof. Let In = {o1 . . . os}, În = {ô1 . . . ôs} such that ôi is a perfect approximation of oi for each
i = 1 . . . s. Recall that O∗

In :=
⋃s

i=1 O
∗
i , then

cost
(
O∗

In, (C ∪ În) \Out
)
≤

s∑

i=1

cost(O∗
i , (C ∪ {ôi}) \Out) ≤ (1 + ε)cost(O∗

In,O∗) . (5)

Moreover, Reassign(In,Out) = cost(P \O∗
In, C \Out) − cost(P \O∗

In, C) because points

in P \ COut are not affected by the swap. Therefore, cost
(
P, (C ∪ În) \Out

)
≤ (1 +

ε)cost(O∗
In, O

∗) + Reassign(In,Out) + cost(P \O∗
In, C). Suppose by contradiction that Equa-

tion (4) does not hold, then

cost(P, C)− cost
(
P, (C ∪ În) \Out

)
=

cost(P \O∗
In, C) + cost(O∗

In, C)− cost
(
P, (C ∪ În) \Out

)
≥ ϵALG/k.

Hence, (În,Out) is strongly improving and this holds for any choice of În, contradiction.

Lemma 18. If ALG/OPT > 9 + O(ε) then cost(G, C) ≥ cost(P, C) · poly(ε). Thus, if we
D2-sample q we have P [q ∈ G] ≥ poly(ε).

Proof. First, we observe that the combined current cost of all optimal clusters in O∗ \ Õ is at most
k · εALG/k = εALG. Now, we prove that the combined current cost of all O∗

i such that oi is bad is
≤ (1− 2ε)ALG. Suppose, by contradiction, that it is not the case, then we have:

(1− 2ε)ALG <
∑

Bad oi∈Õ

cost(O∗
i , C) ≤

∑

Bad (In,Out)∈S
w(In,Out) · cost(O∗

In, C) ≤

∑

Bad (In,Out)

w(In,Out) · ((1 + ε)cost(O∗
In,O∗) + Reassign(In,Out) + εALG/k) ≤

(1 + ε)OPT + (2 + 2/p)OPT + (2 + 2/p)
√

ALG
√

OPT + εALG.

The second and last inequalities make use of Observation 7. The third inequality uses Lemma 17.

Setting η2 = ALG/OPT we obtain the inequality η2 − (2 + 2/p±O(ε))η− (3 + 2/p±O(ε)) ≤ 0.
Hence, we obtain a contradiction in the previous argument as long as η2− (2+ 2/p±O(ε))η− (3+

16



2/p±O(ε)) > 0, which holds for p = Θ(ε−1) and η2 = 9+O(ε). A contradiction there implies that
at least an ε-fraction of the current cost is due to points in

⋃
Good oi∈Õ O∗

i . Thanks to Observation 16,
we have Pq∼cost(q,C)[q ∈ core(O∗

i ) | q ∈ O∗
i ] ≥ poly(ε). Therefore, we can conclude that the

current cost of G =
⋃

Good oi∈Õ core(O∗
i ) is at least a poly(ε)-fraction of the total current cost.

Proof of Lemma 14. Thanks to Lemma 18, we have that P [q1 ∈ G] ≥ poly(ε). Whenever q1 ∈ G
we have that q1 ∈ core(o1) for some good o1. Then, for some s ≤ p we can complete o1 with
o2 . . . os such that In = {o1 . . . os} belongs to a good swap. Concretely, there exists Out ⊆ C such
that (In,Out) is a good swap. Since In ⊂ Õ we have cost(O∗

i , C) > εOPT/k for all oi ∈ In,
which combined with Observation 16 gives that, for each i = 2 . . . s, P [qi ∈ core(oi)] ≥ poly(ε)/k.
Hence, we have P [qi ∈ core(oi) for i = 1 . . . s] ≥ 2−poly(ε−1)k−O(ε−1). Notice, however, that
(În, Out) is a s-swap and we may have s < p. Nevertheless, whenever we sample q1 . . . qs followed
by any sequence qs+1 . . . qp it is enough to choose Out′ = Out ∪ {qs+1 . . . qp} to obtain that
({q1 . . . qp}, Out′) is an improving p-swap.

In order to prove Lemma 15 we first need a few technical lemmas.
Lemma 19 (Lemma 2 from Lattanzi and Sohler [2019]). For each x, y, z ∈ Rd and ε > 0,
cost(x, y) ≤ (1 + ε)cost(x, z) + (1 + 1/ε)cost(z, y).

Lemma 20. Given q ∈ Rd and Z ⊆ Rd such that cost(Z, q) ≤ ε2Γ then, for each o ∈ Rd

(1−O(ε))cost(Z, o)−O(ε)Γ ≤ |Z|cost(q, o) ≤ (1 +O(ε))cost(Z, o) +O(ε)Γ

Proof. To obtain the first inequality, we apply Lemma 19 to bound cost(z, o) ≤ (1+ε)cost(z, o)+
(1 + 1/ε)cost(z, q) for each z ∈ Z. To obtain the second inequality, we bound cost(q, o) ≤
(1 + ε)cost(z, o) + (1 + 1/ε)cost(z, q) for each z ∈ Z.

Lemma 21. Let X = {x1 . . . xℓ} be a weighted set of points in Rd such that xi has weight wi.
Let µ be the weighted average of X . Let µ̂ = µ̂(α1 . . . αℓ) be the weighted average of X where xi

has weight αi. If wi ≤ αi ≤ wi/(1 − ε) for each i = 1 . . . ℓ, then if we interpret cost(X,C) as∑
xi∈X wi · cost(xi, C) we have cost(X, µ̂) ≤ (1 +O(ε))cost(X,µ).

Proof. We note that µ minimizes the expression cost(X,µ). Moreover, cost(X, z) ≤∑ℓ
i=1 αi ·

cost(xi, z) ≤ cost(X, z) /(1 − ε). Since µ̂ minimizes the expression
∑ℓ

i=1 αi · cost(xi, z) it
must be cost(X, µ̂) ≤ cost(X,µ) /(1− ε).

Adopting the same proof strategy, we obtain the following.
Observation 22. Thanks to Lemma 20, we can assume that the points in Z are concentrated in q for
the purpose of computing a (1 +O(ε))-approximation to the 1-means problem on Z, whenever an
additive error Γ is tolerable. Indeed, moving all points in Z to q introduces a 1+O(ε) multiplicative
error on cost(Z, ·) and a O(ε)Γ additive error.

The next lemma shows that a point z that is far from a center o experiences a small variation of
cost(z, o) when the position of o is slightly perturbed.

Lemma 23. Given o, z ∈ Rd such that ||o − z|| ≥ r/ε we have that for every o′ ∈ B(o, r),
cost(z, o′) = (1±O(ε))cost(z, o).

Proof. It is enough to prove it for all o′ that lie on the line L passing through o and z, any other
point in o′′ ∈ B(o, r) admits a point o′ ∈ B(o, r) ∩ L with ||o′ − z|| = ||o′′ − z||. It is enough to
compute the derivative of cost(z, ·) with respect to the direction of L and see that ∂cost(z,·)

∂L |B(o,r) =

(1±O(ε))r/ε. Thus, cost(z, o′) = cost(z, o)± (1±O(ε))r2/ε = (1±O(ε))cost(z, o).

Proof of Lemma 15. Here we prove that for each o1 . . . os there exist coefficients α
(i)
0 . . . α

(i)
s ∈{

1, (1− ε) . . . (1− ε)⌈log1−ε(ε
7)⌉
}
∪ {0} such that the convex combination ôi = ôi(α

(i)
0 . . . α

(i)
s )

is a perfect approximation of oi, with probability k−O(ε−2) · 2−poly(ε−1). Wlog, we show this
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for o1 only. Concretely, we want to show that, with probability k−O(ε−1) · 2−poly(ε−1), there
exist coefficients α0 . . . αs such that ô1 = ô1(α0 . . . αs) satisfies cost(O∗

1 , (C ∪ {ô1}) \Out) ≤
(1 + O(ε))OPT1 + O(ε)OPT/k. Taking the joint probability of these events for each i = 1 . . . s

we obtain the success probability k−O(ε−2) · 2−poly(ε−1). Note that we are supposed to prove that
cost(O∗

1 , (C ∪ {ô1}) \Out) ≤ (1+ ε)OPT1 + εOPT/k, however we prove a weaker version where
ε is replaced by O(ε), which is in fact equivalent up to rescaling ε.

Similarly to C[·] and O∗[·] define T [p] as the closest center to p in T . Denote with C1, F1 and N1 the
intersections of O∗

1 with C,F and N respectively. In what follows we define the values of α0 . . . αs

that define ô1 = ô1(α0 . . . αs) and show an assignment of points in O∗
1 to centers in (C ∪{ô1})\Out

with cost (1 + O(ε))OPT1 + O(ε)OPT/k. Recall that we assume that qi ∈ core(oi) for each
i = 1 . . . s.

In what follows, we assign values to the coefficients (αi)i. It is understood that if the final value
we choose for αi is v then we rather set αi to the smallest power of (1− ε) which is larger than v,
if v > ε7. Else, set αi to 0. We will see in the end that this restrictions on the values of αi do not
impact our approximation.

In what follows, we will assign the points in O∗
1 to C \Out, if this can be done inexpensively. If it

cannot, then we will assign points to ô1. In order to compute a good value for ô1 we need an estimate
of the average of points assigned to ô1. For points in N1, computing this average is doable (leveraging
Lemma 13) while for points in O∗

1 \N1 we show that either their contribution is negligible or we
can collapse them so as to coincide with some qi ∈ Q without affecting our approximation. The
coefficients (αi)i≥1 represent the fraction of points in O∗

i which is collapsed to qi. α0 represents the
fraction of points in O∗

i which average we estimate as µ(S). Thus, Equation (3) defines ôi as the
weighted average of points qi, where the weights are the (approximate) fractions of points collapsed
onto qi, together with the the average µ(S) and its associated weight α0.

Points in C1. All points p ∈ C1 such that T [p] ̸∈ Q can be assigned to T [p] ∈ C \Out incurring a
total cost of at most ε6OPT1, by the definition of C1. Given a point p ∈ C1 with T [p] ∈ Q we might
have T [p] ̸∈ C \Out and thus we cannot assign p to T [p]. Denote with W the set of points p with
T [p] ∈ Q. Our goal is now to approximate µ(W ). In order to do that, we will move each p ∈ W
to coincide with qi = T [p]. We can partition W into W1 . . .Ws so that for each z ∈Wi T [z] = qi.
If p ∈ Zi then we have ||p − qi||2 ≤ ε3ρ21. Hence, thanks to Observation 22, we can consider
points in Wi as if they were concentrated in qi while losing at most an additive factor O(ε)OPT1

and a multiplicative factor (1 + ε) on their cost. For i = 1 . . . s, set αi ← |Wi|/|O∗
1 |. In this way,∑s

i=1 αi · qi/
∑s

i=1 αi is an approximates solution to 1-mean on W up to a multiplicative factor
(1 + ε) and an additive factor O(ε)OPT1.

Points in N1. Consider the two cases: (i) cost(N1, T ) > ε2OPT/k; (ii) cost(N1, T ) ≤
ε2OPT/k.

Case (i). We show that in this case µ(S) is a (1 + ε)-approximation for 1-mean on N1, with
probability k−O(ε−1) · 2−poly(ε−1). First, notice that if we condition on S ⊆ N1 then Lemma 13
gives that µ(S) is a (1 + ε)-approximation for 1-mean on N1 with constant probability. Thus, we are
left to prove that S ⊆ N1 with probability k−O(ε−1) · 2−poly(ε−1). We have that the Pp∼cost(p,T )[p ∈
N1 | p ∈ N ] ≥ ε2/k, however the costs w.r.t. T of points in N varies of at most a factor
poly(ε−1), thus Pp∼Unif [p ∈ N1 | p ∈ N ] ≥ poly(ε)/k. The probability of S ⊆ N1 is thus
(poly(ε)/k)|S| = k−O(ε−1) · 2−poly(ε−1). In this case, we set α0 ← |N1|/|O∗

1 | because µ(S)
approximates the mean of the entire set N1.

Case (ii). Here we give up on estimating the mean of N1 and set α0 ← 0. The point x ∈ N1 such that
T [x] ̸∈ Q can be assigned to T [x] incurring a combined cost of ε2OPT/k. We partition the remaining
points in N1 into Z1 ∪ . . . Zs where each point x is placed in Zi if T [x] = qi. Now, we collapse the
points in Zi so as to coincide with qi and show that this does not worsen our approximation factor. In
terms of coefficients (αi)i, this translates into the updates αi ← αi + |Zi|/|O∗

i | for each i = 1 . . . s.

Indeed, using Observation 22 we can move all points in Zi to qi incurring an additive combined cost
of εOPT/k and a multiplicative cost of 1 +O(ε).
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Points in F1. Points in F1 are very far from q1 and thus far from o1, hence even if their contribution
to cost(O∗

1 , o1) might be large, we have cost(F1, o1) = (1±O(ε))cost(F1, o
′) for all o′ in a ball

of radius ρ1/ε centered in o1, thanks to Lemma 23.

Let H be the set of points that have not been assigned to centers in C\Out. In particular, H = W∪N1

if points in N1 satisfy case (i) and H = W ∪ Z1 . . . Zs if points in N1 satisfy case (ii). We consider
two cases.

If ||µ(H) − q1|| ≤ ρ/ε, then ||µ(H) − o1|| ≤ ρ(1 + ε + 1/ε) because q1 ∈ core(o1). Since
for each f ∈ F1 we have ||f − o1|| ≥ ||f − q1|| − (1 + ε)ρ ≥ Ω(ρ/ε3) then cost(f, o′) =
(1±O(ε))cost(f, o1) for each o′ in a ball of radius O(ρ/ε) centered in o1, and so in particular for
o′ = µ(H). Thus in this case we can simply disregard all points in F1 and computing ô1 according
to the (αi)i defined above yields a perfect approximation of oi.

Else, if ||µ(H) − q1|| > ρ/ε, a similar argument applies to show that cost(H, o′) = (1 ±
ε)cost(H, o) for each o′ in ball of radius O(ρ) centered in o1. Indeed, we can rewrite cost(H, o′)
as |H| · cost(µ(H), o′) + cost(µ(H), H). If ||µ(H)− q1|| < ρ/ε the first term varies of at most a
factor (1 + ε) and the second term is constant. Thus in this case ô1 = q1 is a perfect approximation
of o1 and we simply set α1 = 1 and αj = 0 for j ̸= 1. In other words, here µ(N1 ∪H) is too far
from q1 (and thus o1) to significantlyt influence the position of ô1 and the same holds for any point in
F1. This works, of course, because we assumed q1 ∈ core(o1).

Discussing the limitations on the coefficients values. The proof above would work smoothly if
we were allowed to set αi to exactly the values discussed above, representing the fractions of points
from O∗

i captured by different qis. However, to make the algorithm efficient we limit ourselves to

values in
{
1, (1− ε) . . . (1− ε)⌈log1−ε(ε

7)⌉
}
∪ {0}. Lemma 21 shows that as long as the values of

(αi)i estimate the frequencies described above up to a factor 1±O(ε) then the approximation error
is within a multiplicative factor 1±O(ε).

We are left to take care of the case in which αi is set to a value < ε7. We set αi when dealing
with points in C1 ∪ N1 and for each x ∈ C1 ∪ N1 we have, for each o′ ∈ B(q1, (1 + ε)ρ),
cost(x, o′) ≤ 2cost(q1, o′)+ 2cost(x, q1) = O(ρ1ε

−6). Thus, if we simply set αi ← 0 whenever
we have αi < ε7 then the combined cost of points in O∗

1 with respect to o′ varies by ε7|O∗
1 | ·ρ1ε−6 =

O(ε)OPT1. Effectively, ignoring these points does not significantly impact the cost. hence solving
1-mean ignoring these points finds a (1 +O(ε))-approximate solution to the original problem.

Additional Experimental Evaluation

In this section we report additional experiments which presentation did not fit in the main body. In
particular, we run experiments on the dataset KDD-PHY and for k = 10, 50.

In Figure 4 we compare MSLS-G with MSLS. To perform our experiment, we initialize k = 25
centers using KM++ and then run 50 iterations of local search for both algorithms, for p ∈ {2, 3}
swaps. We repeat each experiment 5 times. For ease of comparison, we repeat the plot for the
KDD-BIO and RNA datasets that we present in the main body of the paper. Due to the higher running
of the MSLS we perform this experiments on 1% uniform sample of each of our datasets. We find
out that the performance of the two algorithms is comparable on all our instances, while they both
perform roughly 15%-27% better than k-means++ at convergence.

In Figure 5 we run KM++ followed by 50 iterations of MSLS-G with p = 1, 4, 7, 10 and k =
10, 25, 50 (expcluding the degenerate case p = k = 10) and plot the relative cost w.r.t. KM++ at
each iteration. The results for k = 25 on KDD-BIO and RNA can be found in Figure 2. We repeat
each experiment 5 times. Our experiment shows that, after 50 iterations MSLS-G for p = 4, 7, 10
achieves improvements of roughly 5 − 10% compared to MSLS-G-p = 1 and of the order of
20%− 40% compared to KM++. These improvements are more prominent for k = 25, 50. We also
report the time per iteration that each algorithm takes. For comparison, we report the running time
of a single iteration of Lloyd’s next to the dataset’s name. Notice that the experiment on RNA for
k = 50 is performed on a 10% uniform sample of the original dataset, due to the high running time.

In Figure 6, we use KM++ and MSLS-G as a seeding algorithm for Lloyd’s and measure how much
of the performance improvement measured is retained after running Lloyd’s. First, we initialize
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Figure 4: Comparison between MSLS and MSLS-G, for p = 2 (left column) and p = 3 (right
column), for k = 25, on the datasets KDD-BIO (first row), KDD-PHY (second row) and RNA (third
row). The y axis shows the mean solution cost, over the 5 repetitions of the experiment, divided by
the means solution cost of KM++.
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Figure 5: We compare the cost of MSLS-G, for p ∈ {1, 4, 7, 10}, divided by the mean cost of KM++
at each LS step, for k ∈ {10, 25, 50}, excluding the degenerate case p = k = 10. The legend reports
also the running time of MSLS-G per LS step (in seconds). The experiments were run on all datasets:
KDD-BIO, RNA and KDD-PHY, excluding the case of k = 25 for KDD-BIO and RNA which are
reported in the main body of the paper.
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our centers using KM++ and the run 15 iterations of MSLS-G for p = 1, 4, 7. We measure the
cost achieved by running 10 iterations of Lloyd’s starting from the solutions found by MSLS-G as
well as KM++. We run experiments for k = 10, 25, 50 and we repeat each experiment 5 times. We
observe that for k = 25, 50 MSLS-G for p > 1 performs at least as good as SSLS from Lattanzi
and Sohler [2019] and in some cases maintains non-trivial improvements. These improvements are
not noticeable for k = 10; however, given how Lloyd’s behave for k = 10 we conjecture that k = 10
might be an “unnatural” number of clusters for our datasets.
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Figure 6: We compare the cost after each of the 10 iterations of Lloyd with seeding from MSLS-G,
for p ∈ {1, 4, 7, 10} and 15 local search steps and KM++, for k ∈ {10, 25, 50}. We excluded the
degenerate case p = k = 10, and the experiments reported in the main body of the paper.
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