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Abstract

Objectives
The research focuses on the impact of radiation therapy (RT) on cardiac health, par-
ticularly by examining how advancements in RT technology and increased awareness
of cardiotoxic risks have affected cardiac dose levels over time. The research exam-
ines the relationship between cardiac radiation doses, patient-specific factors, and
long-term outcomes, including cardiovascular disease (CVD) and overall survival.

Methods
The studies analyzed data from a cohort of over 10,000 patients treated for various
cancers (breast, lung, lymphoma, and esophageal) between 2009 and 2020. Arti-
ficial intelligence (AI) segmentation tools were used to delineate heart structures
from CT scans and calculate dose metrics such as mean heart dose (MHD) and
volumetric measures of these structures. The research also used statistical methods,
including the Aalen-Johansen estimator and Cox proportional hazards, to assess the
relationship between radiation doses, patient characteristics, and adverse outcomes
collected from registry-based data.

Results
Study I found a significant decrease in cardiac doses over the study period, particu-
larly in high-dose exposures. However, a recent increase in high-dose volumes for
breast cancer treatments was noted. Study II revealed that patient-specific factors,
such as pre-existing cardiac conditions and age, were stronger predictors of cardio-
vascular issues than radiation dose itself, with no clear dose-response relationship
established with CVD.

Conclusions Results highlight the potential of AI tools to generate individually
defined structures and calculate precise dose metrics, as well as the value of linking
registry databases to obtain reliable results for a substantial retrospective cohort. We
can conclude that advances in RT techniques and increased clinical awareness have
generally led to improved heart sparing. It is still important to spare heart tissue,
but tumor control should be prioritized. Additional analysis, such as substructure
segmentation or so-called image-based "data mining techniques", seems to be a
promising direction for further understanding of cardiotoxicity and individualization
of radiation therapy.
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Dansk Resumé

Mål
Forskningen fokuserer på virkningen af strålebehandling (RT) på hjertesundhed, især
ved at undersøge hvordan fremskridt inden for RT-teknologi og øget bevidsthed om
kardiotoksiske risici har påvirket hjertedosisniveauer over tid. Studierne undersøger
sammenhængen mellem hjertestråledoser, patientspecifikke faktorer og langsigtede
resultater, herunder kardiotoksicitet og overlevelse.

Metoder
Undersøgelserne analyserede data fra en kohorte på over 10.000 patienter behandlet
for forskellige kræftformer (bryst, lunge, lymfom og kræft i spiserør) mellem 2009
og 2020. AI-segmenteringsværktøjer blev brugt til at indtegne hjertestrukturer fra
CT-scanninger og finde mål for stråledosis såsom middelhjerte dosis (MHD) og
volumetriske mål for disse strukturer. Forskningen brugte også statistiske metoder,
herunder Aalen-Johansen estimator og Cox proportional hazards modeller, til at
vurdere sammenhængen mellem stråledoser, patientkarakteristika og bivirkninger
opsamlet fra registerdata.

Resultater
Undersøgelse I fandt et signifikant fald i hjertedoser i løbet af undersøgelses- pe-
rioden, især for højdosis eksponeringer. Der blev dog noteret en nylig stigning i
højdosisvolumener til brystkræftbehandlinger. Undersøgelse II afslørede, at pa-
tientspecifikke faktorer, såsom allerede eksisterende hjertesygdomme og alder, var
stærkere forudsigere for kardiovaskulære problemer end selve stråledosen, uden at
der er etableret en klar dosis-respons-relation.

Konklusioner
Undersøgelserne fremhæver potentialet i AI-værktøjer til at generere individuelt
definerede strukturer og beregne præcise dosismålinger, såvel som værdien af at
sammenkæde registerdatabaser for at opnå pålidelige resultater for en væsentlig
ret- rospektiv kohorte. Vi kan konkludere, at fremskridt inden for RT-teknikker og
øget klinisk bevidsthed generelt har ført til forbedret hjertesparing. Det er fortsat
vigtigt at skåne hjertevæv, men tumorkontrol bør prioriteres. Yderligere analyser
fx substruktursegmentering eller såkaldte billedbaserede “data mining-teknikker”
synes at være en lovende retning for yderligere forståelse af kardiotoksicitet og
individualisering af stråleterapi.
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Reading Guide

This thesis consists of eight chapters, each contributing to an in-depth exploration of the
impact of radiation therapy (RT) on cardiac health using modern computational resources
on a large cohort. The chapters are organized for either sequential or selective reading
to fit the reader’s interest and background. The first three chapters introduce the rele-
vant background information, objectives, and data materials of this research. The next
three chapters summarize each of the two completed studies and provide a discussion of
how this work contributes to existing research. The next chapter describes the ongoing and
prospective research that may follow. And finally, I tie this work together in a brief conclusion.

Chapter 1 - Background is made up of six sections. The first three sections detail clinical
aspects including cancer prevalence and treatment modalities, RT objectives and techniques,
and potential risks to cardiac health. The last three sections delve into the technical methods
relevant to this data, including segmentation techniques, observational study design, and
statistical methods in survival analysis.

Chapter 2 - Objectives describes the motivation for this research, outlining relevant liter-
ature and emphasizing the importance of studying the cardiotoxic effects of RT in cancer
patients. It presents the research aims and touches on the potential clinical relevance that
such data-driven insights can have on patient care.

Chapter 3 - Data Materials covers the important and arduous process of data collection
and cleaning, including:

• Identifying the patient population through treatment codes
• Extracting associated image and 3D dosimetry data from the record and verify system
• Segmenting whole heart and cardiac substructures on 14000+ CT scans with open-

source artificial intelligence tools
• Validating these models through a visual multi-step review process
• Calculating and converting dose metrics including mean heart dose (MHD) and

volumetric measures.
• Navigating national restrictions to patient protected data and proceeding through the

process of acquiring data approvals
• Linking dose data to demographic characteristics, cardiotoxicity events (via ICD codes

from the LPR database), and mortality events (from the CPR registry)
• Cleaning the real-world data, merging multi-modal datasets, and identifying inconsis-

tencies and outliers
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Chapters 4 & 5 gives a brief overview of each study within the thesis. The full manuscripts
are available in Appendix A and supporting documents can be found in Appendix B:

• Study I: Time trends in cardiac doses in 10,000 patients receiving curative thoracic
radiation therapy between 2009 and 2020

• Study II: Cardiac dose-volume analysis of 9,411 patients with registry-based outcome
data for cardiotoxicity and overall survival

Chapter 6 - Discussion provides a broader perspective on this work. It summarizes the key
findings from the two studies and breaks down their implications. Additionally, I situate the
research within the broader literature and explore its clinical and technical impact.

Chapter 7 - Prospective Work outlines potential directions for future research, highlighting
promising avenues for further studies. It includes a preliminary analysis of ongoing car-
diac substructure dose trends and explores opportunities for continued monitoring, cohort
expansion, more detailed analyses, and the incorporation of additional data.

Finally, Chapter 8 - Conclusion provides a brief final word on the work and the direction of
the field as a whole.

The Audience. This PhD thesis is a multidisciplinary effort that integrates computer science
tools for image analysis with statistical methods applied to large registry databases in RT.
Consequently, I anticipate a diverse audience with varied expertise and have tailored the thesis
accordingly.

xvi



Nomenclature

AI Artificial Intelligence

ART Adaptive Radiotherapy

CAD Coronary Artery Disease

CAC Coronary Artery Calcium

CBCT Cone-Beam Computed Tomography

CCI Charlson Comorbidity Index

CIF Cumulative Incidence Function

CI Confidence Interval

CNNs Convolutional Neural Networks

CPR Central Person Register

CT Computed Tomography

CTV Clinical Target Volume

CV D Cardiovascular Disease

DCCC Danish Comprehensive Cancer Center

DBCG − IMN Danish Breast Cancer Group Internal Mammary Node

DIBH Deep Inspiration Breath Hold

DICOM Digital Imaging and Communications in Medicine

DL Deep Learning

DMCG Danish Multidisciplinary Cancer Groups

DV H Dose-Volume Histogram

EHR Electronic Health Record

EQD2 Equivalent Dose in 2 Gy Fractions

ESTRO European Society for Radiation Oncology

GDPR General Data Protection Regulation

GTV Gross Tumor Volume

Gy Gray (unit of radiation dose)

HER2 Human Epidermal Growth Factor Receptor 2

HF Heart Failure

IBDM Image-Based Data Mining

xvii



ICDCodes International Classification of Diseases Codes

IHD Ischemic Heart Disease

IGRT Image-Guided Radiotherapy

IMRT Intensity-Modulated Radiation Therapy

KM Kaplan-Meier

LASSO Least Absolute Shrinkage and Selection Operator

LPR Landspatientregisteret (National Patient Register)

MHD Mean Heart Dose

MR − Linac Magnetic Resonance Linear Accelerator

ML Machine Learning

NIfTI Neuroimaging Informatics Technology Initiative

NSCLC Non-Small Cell Lung Cancer

NV K Danish National Committee on Health Research Ethics

OAR Organs at Risk

OS Overall Survival

PCA Principal Component Analysis

PCI Prophylactic Cranial Irradiation

PHM Proportional-Hazards Model

PTV Planning Target Volume

QUANTEC Quantitative Analysis of Normal Tissue Effects in the Clinic

RT Radiotherapy

RTTs Radiation Therapy Technologists

SAP Statistical Analysis Plan

SCLC Small Cell Lung Cancer

TNM Tumor size (T), nodal involvement (N), and metastasis (M) Staging

V D Valvular Disease

V 5 Heart volume receiving at least 5 Gy

V 30 Heart volume receiving at least 30 Gy

V MAT Volumetric Modulated Arc Therapy

V MK Danish National Medical Research Ethics Committee

3D − CRT Three-Dimensional Conformal Radiotherapy

xviii



1Background

„The best thing about being a statistician is that you
get to play in everyone’s backyard.

— John Tukey

The following chapter provides essential background information to establish some context
for the presented work. The research in this thesis spans multiple scientific fields, neces-
sitating a multidisciplinary approach. For computer scientists, understanding the clinical
elements (cancer, radiation therapy (RT), and cardiac disease) is beneficial to grasp the
overall impact of the work. Likewise, a description of the more technical analysis methods
(segmentation, study design, and statistical methods) is presented for the medical audience.
A thorough reading of these topics may not be necessary to understand the research con-
tent, but this framing may help clarify the motivation behind the work and emphasize its
significance.

1.1 Cancer

1.1.1 Demographics

In 2022, approximately 20 million new cancer cases were reported worldwide [7]. This
volume is projected to rise to 35 million by 2050, representing a 75% increase [8]. This
substantial increase is not solely attributable to population growth but also reflects rising
age-standardized incidence rates. Furthermore, improvements in cancer screening programs
and diagnostic methods contribute to more frequent diagnoses of cancer and improved
prognoses.

Globally cancer is responsible for 9.7 million deaths per year, accounting for about one
in six deaths and ranking second in leading causes of death. However, cancer survival
has improved substantially due to advancements in prevention strategies, early detection
programs, and treatment options. Currently, an estimated 53.5 million cancer patients
survive five years after diagnosis [7].

The growing number of cancer patients and improvements in survival rates indicate an
increased need to address the chronic side effects of cancer treatment [9]. To provide the
best patient care and achieve the best long-term outcomes for patients, it is essential to
thoroughly understand the associated risks.
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Figure 1.1: Continuum of Cancer Care. Source: National Cancer Strategy, 2017-
2026 [12]

1.1.2 Cancer Care Continuum

A comprehensive cancer care approach includes prevention, early detection, diagnosis,
treatment, and transitions to either survivorship or end-of-life care [10, 11] (Fig. 1.1). Such
an approach depends on a multidisciplinary team of healthcare providers working together
to deliver timely interventions, manage symptoms, and enhance the patient well being. By
tailoring patient care to the specific needs arising throughout their cancer journey, this model
emphasizes the importance of continuous follow-up and monitoring to address late-onset
complications and limit the risk of recurrence.

1.1.3 Cancer Onset

Tumors arise from abnormal cell proliferation, forming irregular masses of tissue. Benign
tumors are typically not harmful and remain localized, whereas malignant tumors (cancers)
can invade nearby tissues and have the capacity to spread (metastasize) into distant parts of
the body.

Cancer develops through genetic mutations, either inherited or caused by random errors or
carcinogen exposure. These mutations disrupt essential cellular processes like growth, divi-
sion, and programmed cell death by interfering with normal cell cycle regulation through a
complex set of mechanisms (Fig. 1.2) [13]. When mutations impair DNA repair mechanisms,
genetic instability increases, leading to further mutations and a higher likelihood of cancer
progression.

Common risk factors for cancer include behavioral factors (excesses weight, sedentary
lifestyle, poor nutrition, heavy drinking, smoking, etc.), environmental exposures (radiation,
carcinogenic chemicals, infections such as HPV, etc.), and individual characteristics (age,
family history, etc.) [14, 15]. Understanding these causes aids in developing prevention
strategies and improving early detection methods for high-risk populations.
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Figure 1.2: "The Hallmarks of Cancer - This illustration encompasses the six hall-
mark capabilities originally proposed in our 2000 perspective. The past
decade has witnessed remarkable progress toward understanding the
mechanistic underpinnings of each hallmark." Source: Hanahan et. al.,
2011 [13]

1.1.4 Diagnosis and Classification

Systematic screening methods, such as mammograms, Pap smears, and colonoscopies,
facilitate early detection [16]. Timely and accurate cancer diagnosis can improve the
prognosis as earlier stage cancers are often less aggressive and more receptive to treatments
[17]. Precise classification of cancer types, which vary in characteristics and behavior, is
essential for delivering personalized care and developing effective treatment strategies [18].

Cancer diagnosis involves a set of examinations - physical assessment, imaging studies,
laboratory tests, and biopsies. These tools help in identifying the type and extent of disease.
Tumor classification is based on various factors, each influencing the overall treatment
approach:

• TNM Staging: A method to describe Tumor size, Nodal involvement, and Metastasis,
with disease ranging from localized (Stage I) to advanced (Stage IV) [19, 20].

• Histology: Microscopic characteristics of cancerous tissue vary depending on the origi-
nating cell type. Tumors are graded on the aggressiveness and extent of differentiation
from normal tissue structure [21].

• Biomarkers: Genetic mutations and molecular phenotypes (e.g., BRCA1 / 2 and
HER2 status for breast cancer) affect cancer behavior and response to treatment [22].

• Site: Treatment response and prognosis vary significantly based on the primary tumor’s
location. Each organ’s unique structure and function shape how cancer develops and
progresses, requiring tailored diagnostic and therapeutic approaches. Primary site
data also aids in tracking epidemiological trends and implementing targeted public
health measures [23].
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1.1.5 Treatment Options
Available treatment options depend heavily on the cancer classification and its progression.
Surgical removal of the tumor and adjacent margins remains a key technique for controlling
many cancers, particularly effective for localized tumors. Radiation therapy destroys
cancerous cells by damaging their DNA with high-energy radiation; this is often employed
when surgery is not feasible or as an adjunct to other treatments. Chemotherapy drugs
target rapidly dividing cells, making them particularly effective against widespread and
metastatic cancers [24]. Cancer care strategies are continually evolving, with the field
of oncology advancing rapidly. Modern treatment modalities - such as targeted therapy,
stem cell therapy, hormone therapy, and immunotherapy - specifically address the biological
characteristics and behaviors of tumors.

The timing of cancer therapies is crucial for optimizing outcomes. Neoadjuvant therapy
(given before primary treatment like surgery) shrinks tumors and targets micrometastases.
Adjuvant therapy (administered afterward) eradicates residual cancer cells to prevent
recurrence. Concomitant therapy (simultaneous delivery such as chemoradiation) enhances
effectiveness by combining treatments. These strategies are tailored to specific cancer types
and patient needs.

1.1.6 Outcome Measures
Patient outcomes are measured to evaluate the quality of care and guide improvements
in support services. The foremost concern in cancer treatment is ensuring the patient’s
survival. Though a cancer patient may survive the initial cancer, they may experience risks
of morbidity and later mortality. Nausea, vomiting, fatigue, pain, and cognitive changes
are immediate effects impact quality of life, tolerance to treatment, and adherence to the
prescribed plan. Late effects of the disease and the treatment can affect the long-term
well-being, functioning, and quality of life of cancer survivors. Physical symptoms can
include chronic pain, fatigue, neuropathy, endocrine disorders, pulmonary complications,
immunosuppression, and cardiovascular issues.

1.2 Radiation Therapy

1.2.1 Objectives of Radiation Therapy
Radiation therapy has one of two primary objectives: 1) Palliative RT is used in advanced
cancer cases where a cure is not feasible due to the extensive spread or aggressive nature of
the disease. The primary goal of palliative RT is to alleviate symptoms (e.g. pain, bleeding,
and pressure on organs) thereby improving the patient’s quality of life. While treatment side
effects are considered, the focus is on managing acute toxicity. These treatments typically
involve lower doses and shorter treatment durations. 2) Curative RT aims to eradicate
cancer cells and achieve long-term remission. This approach involves administering higher
radiation doses over a more extended period, specifically targeting localized cancers to
maximize cancer cell destruction while minimizing damage to surrounding healthy tissues.
The success of curative RT is measured by long-term cancer remission and overall survival
rates.
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1.2.2 Effects and Side Effects

Curative intent RT aims to minimize damage to surrounding healthy tissues while effectively
controlling tumors. For localized tumors, RT is employed to either destroy cancer cells or
inhibit their ability to proliferate, essentially eradicating the cancer. Inadequate initial dosing
can lead to tumor recurrence, potentially with more aggressive behavior. While increasing
the radiation dose can improve tumor control, it also raises the risk of damage to organs
at risk (OAR) and subsequent likelihood of long-term complications. Precision in delivery,
achieved through advanced techniques, allows for higher dose delivery to the cancerous
tissue while preserving normal tissues.

1.2.3 Classic Techniques

Figure 1.3: "Examples of dose distribution of a 3DCRT, IMRT-5, and VMAT treatment
plan calculated on the same patient. The red surface represents the high-
dose regions, the yellow surface the intermediate-high-dose regions, the
dark blue surface the low-dose regions, and the azure blue surface the
intermediate-dose regions." Source: Vanneste et. al., 2016 [25]

Radiation therapy for cancer treatment began in 1895 after the discovery of X-rays and
became a standard practice by the mid-20th century [26, 27]. Three-dimensional conformal
RT (3D-CRT) incorporated 3D imaging techniques to shape the radiation beams to better
target tumors and avoid adjacent tissue. Control over radiation delivered by the beams
became possible in the late 1990s with the development of intensity-modulated RT (IMRT),
revolutionizing treatment by offering more precise targeting of tumors [28]. Volumetric
modulated arc therapy (VMAT) further enhanced the accuracy of tumor targeting through
the rotation of the linear accelerator, changing not only the intensity but also the shape
of the beam during delivery. These innovations have iteratively improved the capacity to
maximize tumor dose while minimizing exposure to healthy tissues (Fig. 1.3) [25].

1.2.4 Treatment Planning

Before treatment can commence, simulation and treatment planning are conducted. The
treatment area is imaged with a computed tomography (CT) scan for anatomical contouring
and dose planning. The radiation oncologist delineates the target areas (Fig. 1.4) and
identifies critical OARs to minimize their exposure. In the thorax, these typically include the
heart, lungs, esophagus, and spinal cord. [29, 30, 31].
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Figure 1.4: "Principles of target definition in radiation therapy planning. Diagram
(top) and axial CT image (bottom) illustrate the definitions of the GTV
(blue), CTV (green), and PTV (red)". Source: Xu-Welliver et. al., 2014
[32]

Radiation Therapy Technologists (RTTs) and Medical Physicists use a 3D treatment planning
system, such as Varian Eclipse, to create a treatment plan. This system considers the contours,
calculates the radiation dose distribution, and simulates how the radiation beams will interact
with the proximal anatomy. The plan involves configuring the number, angles, and shapes of
the radiation beams to optimize target dose accuracy while protecting surrounding tissues.
Dose calculations are commonly performed using algorithms like the Anisotropic Analytical
Algorithm (AAA) for speed and accuracy, and Acuros XB for precision in heterogeneous
tissues [33]. These are improvements from Pencil Beam Convolution and Collapsed Cone
Convolution calculations, but newer computationally heavy Monte Carlo Simulations offer
the most accurate dose calculations.

1.2.5 Treatment Evaluation

A dose volume histogram (DVH), or cumulative dose volume frequency distribution, graph-
ically represents the percentage of an organ at risk (OAR) or a target by dose (Fig. 1.5).
DVHs are critical in the evaluation and optimization of RT plans, as they allow clinicians
to assess whether the intended dose is delivered effectively to the tumor and if healthy
tissue sparing is sufficient. Achieving this balance is essential for minimizing healthy tissue
complication probability (NTCP) and maximizing target control probability (TCP) [35].

Within DVHs, common metrics such as Vx values (e.g., V5, V30) represent the percent of a
volume of tissue receiving at least X a specified radiation dose. These values are crucial for
understanding how much of an organ is exposed to potentially harmful doses. Additional key
metrics derived from DVHs include Dmax, Dmean, and Dmin, which denote the maximum,
mean, and minimum doses within a tissue, respectively. Equivalent Uniform Dose (EUD)
provides a theoretical dose that would result in the same biological effect as the actual
non-uniform dose distribution. Conformity Index (CI) and Homogeneity Index (HI) are used
to measure conformity to a target volume or uniformity of dose distribution across a target
volume, respectively, balancing tumor coverage and healthy tissue sparing [36].
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Figure 1.5: "Average dose-volume histogram (DVH) comparison for PTVs and OARs
with IMRT and VMAT plans. (Solid line is IMRT and dot line is VMAT)."
Source: Zhang et. al., 2021 [34]

Beyond DVHs, other evaluation techniques include direct analysis of dose distribution on CT
or MRI scans, allowing for visual inspection of dose delivery across the anatomy. Isodose
curves, representing lines of equal dose within the tissue, are used alongside DVHs to ensure
adequate tumor coverage and appropriate dose fall-off around OARs. Metrics such as TCP
and NTCP further refine the assessment of treatment success and potential side effects [36].

NTCP modeling serves as a predictive tool for estimating the likelihood of adverse effects in
healthy tissues due to radiation exposure. These models quantify the association between
the delivered dose and the probability of complications, enabling clinicians to optimize
treatment by balancing effective tumor control with minimizing harm to surrounding tissues.
By incorporating patient-specific characteristics and biological parameters, NTCP modeling
contributes to safer and more personalized radiotherapy, particularly when OARs are close
to the tumor [37].

1.2.6 Quality Assurance and Delivery

Once the plan is finalized, it undergoes a quality assurance process to ensure it meets clinical
and safety standards. The plan is reviewed against standardized guidelines, such as those
developed by multidisciplinary cancer groups (DMCGs) in Denmark [38]. Here thresholds
for normal tissue exposure and the prescribed doses for the targets are defined. Standardized
guidelines enhance quality, safety, and effectiveness by ensuring consistency with the latest
scientific evidence and best practices. Additionally, RT guidelines support personalized
treatment by providing protocols tailored to specific cancer types and stages, facilitating
coordination among multidisciplinary teams involved in cancer care.

The full prescribed dose of radiation is split into smaller doses called fractions, typically
delivered in daily sessions over a few weeks. Conventional RT typically delivers 1.8 to 2.2
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Gy per fraction accumulating to 50 to 70 Gy in total prescribed dose over 5 to 7 weeks. This
fractionation schedule maximizes treatment effectiveness while allowing normal tissue the
time to repair in between sessions, reducing risks of side effects. Each session is brief, with
patient positioning verified using imaging guidance, such as cone-beam CT, to ensure precise
alignment before radiation delivery.

1.2.7 Advanced Techniques
Fractionation Changes
Hyperfractionation involves delivering smaller, more frequent doses, which can reduce
late side effects while maintaining treatment effectiveness. This approach is particularly
beneficial for cancers like those in the head and neck, where preserving surrounding tissue
function is crucial. Hypofractionation administers higher doses per session (2.2 to 3.5
Gy) over a shorter period and is increasingly used for breast and prostate cancers. It
offers greater convenience and emerging evidence suggests it may not increase damage to
surrounding tissues as once feared. Stereotactic Body Radiotherapy (SBRT), or Stereotactic
Radiosurgery (SRS) when applied cranially, delivers very high doses (6-20 Gy per fraction)
in just 1 to 5 sessions. This enables precise targeting of small, well-defined tumors, such as
in early-stage lung cancer, where surgery may not be an option. A novel technique, FLASH
therapy, is also being explored, which involves delivering a single ultra-high dose (>40 Gy)
very rapidly to minimize damage to normal tissues.

Delivery Methods
While classic RT uses high-energy photons (a.k.a. X-rays) to target tumors, it is possible to
use the other particles. Electron therapy has a shorter penetration than photons and can be
used to treat superficial lessons [39]. Particle therapy is the use of subatomic particles and
may yield potentially greater biological effectiveness against certain types of cancer [40].
Proton therapy is particularly exciting for normal tissue sparing in pediatric patients and
for tumors proximal to critical structures because it now allows for precise dose distribution
with minimal exit dose.

Leveraging Imaging
Image-guided RT (IGRT) was developed to incorporate imaging techniques on the accelera-
tor during treatment, ensuring accurate tumor localization and patient positioning during
treatment delivery. Magnetic Resonance Linear Accelerator (MR-Linac) is an emerging
technique building upon IGRT integrating continuous, real-time MR imaging, to improve soft
tissue visualization and enhanced capabilities for adaptive strategies. Adaptive radiotherapy
(ART) leverages imaging to not only ensure delivery accuracy, but adjustment the RT plan
according to changes in the tumor position, shape, and size over the course of treatment.
The integration of Machine Learning (ML) driven Artificial Intelligence (AI) tools in RT
planning and delivery is improving treatment accuracy and efficiency, optimization of treat-
ment plans, and prediction of outcomes. The goal of these improved techniques is always to
minimize harm to normal tissue while maximizing the therapeutic effect.

1.2.8 Common Thoracically Irradiated Cancers
The table below contains a brief diagnosis-specific description of demographics, risk factors,
treatment options, RT approaches, and prognosis:
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1.3 Cardiac Disease

1.3.1 Demographics

The number one cause of death globally, cardiovascular disease (CVD) claims approximately
17.9 million lives annually, representing almost a third of all deaths worldwide. This statistic
underscores the significant burden CVD places on the population’s health globally. Many
individuals survive cardiac events including strokes and heart attacks, which often leads
to a range of additional impacts. Beyond financial and emotional impacts, survivors can
experience physical effects, including reduced mobility, chronic pain, and other long-term
health complications that require ongoing medical attention.

1.3.2 Disease Types

Cardiovascular diseases encompass a wide array of heart and blood vessel conditions. Among
the most prevalent are:

• Ischemic Heart Disease (IHD): IHD occurs when the heart muscle is damaged due to
reduced blood flow and oxygen supply, typically as a result of atherosclerotic plaque
buildup in the coronary arteries. This can cause chest pain and, in severe cases,
myocardial infarction (MI) or heart attack.

• Valvular Disease (VD): VD involves the dysfunction of one or more heart valves,
which can become either narrowed (stenosis) or leaky (regurgitation), disrupting the
normal blood flow and increasing heart stress.

• Heart Failure (HF): HF arises when the heart isn’t able to pump blood effectively,
leading the body’s needs to be insufficiently met by this poor blood flow. This condition
may be caused by previous myocardial infarctions, hypertension, or cardiomyopathies,
and is characterized by symptoms such as shortness of breath, fluid retention, and
fatigue.

1.3.3 General Risk Factors

Cardiac risk factors encompass lifestyle habits, medical conditions, and genetic predispo-
sitions. Key modifiable risk factors include poor diet, smoking habits, sedentary lifestyle,
and heavy alcohol consumption, all of which increase chances of diabetes, obesity, and high
blood pressure and cholesterol. Such physical conditions increase the likelihood of cardiac
issues including heart attacks and strokes. Environmental factors, such as air pollution, also
play a significant role in heart disease. Additionally, chronic stress and poor mental health
can exacerbate these risks.

Non-modifiable factors, including family history, age, and sex, also contribute significantly.
Older age and genetic predispositions increase the risk of cardiovascular events, with
men facing a higher risk at a younger age, while women’s risk increases post-menopause.
Managing these risks through lifestyle changes, medical treatment, and regular screenings is
critical for preventing cardiovascular diseases [41].
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1.3.4 Treatment-Related Risk Factors
Cardio-oncology is a developing field at the intersection of cardiovascular health and oncol-
ogy. Cancer patients face heightened cardiovascular risk due to shared risk factors, a direct
impact of cancer, and cancer treatments. Cancer treatments, while effective against cancer,
carry significant cardiotoxic risks that vary depending on treatment type and patient factors.
Chemotherapy agents, especially anthracyclines, can cause cardiac problems through oxida-
tive stress and DNA damage. Hormone therapies may increase the risk of cardiovascular
events by altering hormone levels that impact cardiovascular health. Targeted therapies may
affect blood vessel growth and repair. Immunotherapies may enhance immune responses
that also affect the heart. Radiation therapy to the thorax can cause direct damage to the
heart and blood vessels. Combining multiple treatments can amplify cardiotoxic effects,
particularly in patients with pre-existing cardiovascular conditions [42, 43, 44, 45, 46, 47].

1.3.5 Radiation-Induced Cardiotoxicity

Figure 1.6: "Heart Regions Associated With Radiation-Induced Cardiovascular Dis-
ease and or Survival First author and year of publication are listed.
Highlighted colors indicate cancer type (see Key). Studies demon-
strating associations between total heart doses and outcomes are not
included. *Pericardium, not including the heart. LAD = left anterior
descending artery; SVC = superior vena cava." Source: Bergom et. al.,
2021 [48]

History
The concern over radiation-induced cardiotoxicity emerged as RT became a prevalent
treatment for thoracic cancers like breast cancer and lymphoma. Initial cases of radiation-
induced heart damage highlighted serious complications such as pericarditis and myocardial
fibrosis. These early observations laid the groundwork for subsequent research into the
long-term cardiovascular risks associated with RT [49]. The understanding of RT’s impact
on the heart deepened by the 1970s and 1980s, with clinicians systematically studying late
cardiac complications in long-term cancer survivors [50]. Seminal studies in the 1990s and
2000s, such as those by Gagliardi and Darby, quantified the dose-response relationship of
cardiac risk and radiation dose, further solidifying the understanding of radiation-induced
heart disease (Fig. 1.7) [51, 52, 53, 54, 55, 56, 57]. More recent work has focused on
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exploration of detailed dose-response relationships and a shift toward refining radiation
techniques to minimize heart exposure (Fig.1.6) [58, 59, 48].

Figure 1.7: "Rate of Major Coronary Events According to Mean Radiation Dose to
the Heart, as Compared with the Estimated Rate with No Radiation
Exposure to the Heart." Source: Darby et.al., 2013 [54]

Mechanisms and Risk Factors
Radiation can cause acute and chronic damage to the heart, with risks ranging from peri-
carditis to more severe conditions like CAD, cardiomyopathy, and HF. Acute risks include
pericarditis, characterized by inflammation of the pericardium, leading to chest pain, fever,
and abnormal heart rhythms shortly after RT. Chronic risks are more severe and diverse,
involving the acceleration of atherosclerosis, plaque buildup in coronary arteries, and subse-
quent IHD (Fig. 1.8)[60, 61].

The contributions of Albert van der Kogel and Peter van Luijk have been instrumental in
elucidating the biological mechanisms underlying radiation-induced heart damage. Van der
Kogel’s research has provided insights into the vascular and fibrotic changes post-RT, which
contribute to long-term cardiac disease. Van Luijk extended this research to explore how
radiation damage to the heart can exacerbate lung damage in thoracic cancer treatments,
highlighting the need for precise treatment planning to minimize combined cardiopulmonary
complications [62].

Prevention and Monitoring
Mitigating the cardiotoxic effects of radiation therapy (RT) involves both technological
advancements and clinical strategies aimed at minimizing cardiac exposure and enhancing
patient safety. Techniques like proton therapy or deep inspiration breath-holding (DIBH) have
been pivotal in decreasing cardiac exposure during RT, thereby lowering the risk of radiation-
induced heart damage. Regular monitoring of cardiac function using echocardiograms and
biomarkers is also crucial for the early detection and timely intervention of cardiotoxic
effects [63, 64, 65, 66, 67, 68, 69, 70].
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Figure 1.8: "Cardiotoxicity spectrum secondary to RIHD. RCA: right coronary artery;
LAD: left anterior descending; VT: ventricular tachycardia; RV: right
ventricle" Soiurce: Mehta et. al., 2023 [61]

The American Society of Clinical Oncology (ASCO) provides comprehensive a guideline on
managing and preventing cardiotoxicity in cancer patients undergoing treatments including
chemotherapy and radiotherapy. These guidelines emphasize the importance of identifying
patients at risk for CVD at the time of diagnosis and recommend routine screening for
traditional cardiovascular risk factors like hypertension and diabetes [71, 72, 73, 74].

Cardioprotective strategies, including lifestyle modifications and medications (e.g. ACE
inhibitors or beta-blockers), are beneficial for improving long-term outcomes in cancer
patients. For those at high risk, continuous monitoring and potential modifications to
treatment plans are key to balancing the benefits of cancer therapy against the risks of
cardiotoxicity [75, 76].

1.4 Segmentation, Delineation, and Contouring

1.4.1 Terminology

Segmentation, delineation, and contouring are closely related but are often used in specific
contexts. They are sometimes used interchangeably, but they can reflect different stages or
perspectives in the medical imaging and treatment planning process. While they can overlap
in meaning, each term has a nuanced use:

• Segmentation: Broadly categorizing or dividing an image into regions, often used by
computer scientists and in automated processes.

• Delineation: The precise identification and outlining of specific structures, typically
used by medical practitioners.

• Contouring: The drawing of detailed boundaries around areas of interest is commonly
used by physicists in treatment planning.
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Figure 1.9: UNET model. Source: Ronneberger et. al., 2015 [79].

1.4.2 Techniques

Contouring of OAR in CT scans for RT is a critical step to ensure accurate targeting of tumors
while minimizing damage to healthy tissues. Techniques have continuously developed and
evolved overtime, being employed with advances in technology and computational methods.
Here are the primary techniques used historically and currently:

Manual Segmentation
The boundaries of organs and tumors on each CT slice can be manually delineated by the
structures of interest. This can be completed using a simple tool, such as mouse-driven
contouring in RT planning software. This can offer high accuracy and control by experienced
clinicians, but requires significant time and labor and can be subjective and vulnerable to
human error [77].

Atlas-Based Segmentation
This approach uses pre-segmented anatomical atlases (reference images) that are registered
to the patient’s CT images. The atlas is deformed to fit the patient’s anatomy using image
registration techniques, providing a semi-automated way to delineate structures. This is
faster than manual segmentation and leverages prior anatomical knowledge, but accuracy
depends on the quality of the atlas and the registration process and may still require manual
adjustments [78].

Automated Segmentation
U-Net’s capability for pixel-wise segmentation represents a significant advancement over

conventional methods by automatically generating adaptable segmentation masks across var-
ious imaging modalities including CT. It is less time-consuming and less prone to variability
than manual delineation, and unlike atlas-based registration, it does not rely on pre-defined
templates that may not adapt well to individual patient anatomy. This automation has the
potential to enhance efficiency in clinical workflows while reducing the need for extensive
manual input and associated labor [80].
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Well-trained U-Net models can achieve high accuracy and consistency, significantly reducing
time and labor. However, they require large annotated datasets for training, and their
performance may vary depending on imaging modalities and patient anatomies. In contrast,
semi-automated segmentation combines manual input with automated tools like thresh-
olding, edge detection, and region growing. While these tools reduce segmentation time
and maintain clinician control, they still require considerable manual intervention and
fine-tuning.

1.4.3 In Practice

The evolution of OAR delineation techniques on CT scans has progressed from labor-intensive
manual methods to sophisticated automated and AI-driven approaches. Hybrid approaches
combine elements of manual, semi-automated, and fully automated techniques to leverage
the strengths of each. Automated algorithms provide initial contours, which are then re-
viewed and adjusted by clinicians. This balances efficiency and accuracy, reducing workload
while ensuring clinical oversight, but can require integration of multiple tools and processes,
and may still involve some manual effort. Each technique has advantages and limitations,
with current trends focusing on leveraging advanced computational methods and multi-
modal imaging to enhance accuracy, efficiency, and clinical outcomes in RT. While we are
not, and may never be, at a place to implement fully automated segmentation methods
without human oversight in the clinic, it does pose significant research opportunities [81].

1.5 Study Design

1.5.1 Registry Databases

The Danish National Registry databases are some of the world’s most comprehensive and well-
maintained health data systems. For decades, Denmark has been committed to systematic
data collection with the goal of better informing public health, research, and policy.

The Cancer Registry started in 1943, is one of the oldest cancer registries in the world that
tracks incidences, diagnoses, and treatments (Fig. 1.10). Implementing the Central person
register (CPR) in 1968 assigned a unique identification to each Danish resident and allowed
for the linkage of individual data across various databases and registries [82]. In 1977,
the National Patient Registry (LPR) was created as one of the first health-specific registries,
to collect data on hospital admissions, treatments, and procedures. The National Health
Service Register, established in 1990, expanded this data collection to primary care services
and enabled the tracking of outpatient services. The Danish National Prescription Registry,
established in 1994, enabled tracking of pharmacy prescriptions. The Danish National
Biobank was established in 2012 and provided biological samples to support health research.

The digitization of patient health data, through electronic health records (EHR), has im-
proved drastically in recent decades. This development has enabled improved access and
linkage of medical data to aid research and public health efforts. Advancements in technology
and application of data science will allow for further utility and impact of this data.
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Figure 1.10: "Examples of Danish health Registries, serving as valuable research
tools" Source: Sørensen et. al., 2023 [83]

1.5.2 Sensitive Patient Data
Data protection is crucial when accessing and using sensitive health data, and the 2018 im-
plementation of General Data Protection Regulation (GDPR) has reinforced these regulations.
Sensitive patient data encompasses any information that can identify a patient and relate
to their health, including personal identifiers, medical records, genetic and biometric data,
health insurance details, and lifestyle factors. GDPR mandates that data must be processed
lawfully, for specified purposes, minimized, accurate, stored only as long as necessary, and
protected against unauthorized access and breaches.

In Denmark, ethical approval for research involving human subjects is overseen by the
National Scientific Ethics Committee (NVK) and the Scientific Medical Ethics Committees
(VMK). The NVK focuses on complex research areas, such as extensive genome mapping and
health data science without biological material, while the VMK reviews clinical trials and
other medical research to ensure compliance with ethical standards and data protection laws.
To comply with GDPR, organizations are required to maintain data protection strategies (e.g.
encryption, anonymization, access limitations, audits) protect sensitive patient data.

1.5.3 Observational versus Clinical Trials
There is much conversation surrounding the strengths and limitations of observational
studies, especially when compared to clinical trials. The reality is that statistically, the clinical
trial remains the gold standard for reaching scientific conclusions. However, numerous
challenges make them unrealistic in some settings. Firstly, they are exorbitantly expensive,
and research funding is limited. In addition, some scientific questions cannot be ethically
explored through clinical trials, where randomization of patients is not appropriate.

Due to the resource-heavy nature of clinical trials, the size of data sets is often limited. So
another major benefit of an observation study is the sheer size of data sets made possible.
However, often the data available may lack critical information that would not be collected
in a standard process flow (Fig. 1.11) [84].
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Figure 1.11: "A comparison of effect-size estimates from randomized controlled
trials and registry-based analyses. The schematic shows published
effect-size estimates from randomized controlled trials (x-axis) and
registry-based analyses (y-axis). Concordant effect sizes are indicated
by the black identity line. We see examples of registry-based studies
over- and underestimating effects, as well as being relatively in agree-
ment." Source: Vogelius and Bentzen, 2020 [84]

1.6 Statistical Methods

1.6.1 Statistical Analysis Plans (SAP)
A SAP is a comprehensive document that outlines the detailed statistical methods and
procedures to be used in the analysis of study data. It specifies the primary and secondary
endpoints, analysis populations, data handling procedures, and statistical tests to be applied.
In clinical trials, SAPs are particularly crucial, outlining the statistical methodologies for
assessing the efficacy and safety of interventions. This helps ensure that results are robust
and credible, which is vital for regulatory approval and the scientific community’s trust in the
findings. While less common observational studies, SAPs provide a predefined framework
for data analysis, enhancing transparency, reproducibility, and consistency. They are a
good data practice and should become more commonplace, as they help reduce biases by
specifying analysis methods and endpoints in advance, ensuring rigorous and unbiased data
interpretation. [85]

1.6.2 Survival Analysis and Competing Risk
Survival analysis encompasses methods to quantify the waiting time between events, which is
fundamental for medical research analyzing time-to-event data such as the onset of adverse
events [86]. Kaplan-Meier (KM) estimates and competing risk analyses are complementary
methods for approaching survival analysis, each offering unique insights. The KM method
offers a non-parametric survival function estimate for this time-to-event analysis. It provides
a straightforward step function plot to visualize the probability of survival at different times,
making it widely used in clinical settings to evaluate the effectiveness of treatment and event
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Figure 1.12: "Kaplan-Meier curve (or Survival curve) (Blue line represents treatment
group and green line represents control group)" Source: Albarqouni
2018 [87]

timing such as disease onset or recurrence (Fig. 1.12) [88]. The KM method accounts for
censored data, such as patients that are "lost to follow-up" or don’t experience the event
[89].

The Kaplan-Meier (KM) estimator of the survival function is defined as:

Ŝ(t) =
∏
ti≤t

(
1 − di

ni

)

where: ti represents the time of each event, di is the number of events at time ti,
and ni is the number of individuals at risk just before time ti.

Competing risk analysis, on the other hand, accounts for the presence of other potential
events that could impact the probability of the event in question from occurring. The
cumulative incidence function (CIF) gives realistic probabilities of events when competing
risks are significant. It provides correct absolute risks alongside competing events, measuring
the risk of the event occurring conditional on surviving. This can provide a more nuanced
understanding each specific event’s probability of occurring in the presence of others [90].

The unbiased Aalen-Johansen (AJ) estimator of CIF for a specific type of event k

at time t is defined as:

F̂k(t) =
∫ t

0
Ŝ(u−)dΛ̂k(u)

where: Ŝ(u−) is the KM estimator of the survival function just before time u and
Λ̂k(u) is the cumulative hazard function for event k.

For medical providers and researchers, the trade-offs between KM and competing risk anal-
ysis are significant. While neither method is necessarily better or more correct, they offer
distinct advantages based on whether conditional or absolute risk is more appropriate to the
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context. Researchers and clinicians should follow editorial guidelines that recommend spe-
cific methods for defined endpoints, and should always report KM estimates with confidence
intervals or standard error. Understanding when to apply KM versus competing risk analysis
is crucial for accurate survival analysis, as both methodologies offer valuable but different
insights into patient outcomes. Both methods require careful interpretation and selection
based on the goals of the study and the nature of the events being analyzed.

Kaplan-Meier estimates provide conditional risk—the probability of an event occurring over
time, assuming that no competing events occur. This method is most relevant in clinical and
biological studies, where the focus is on understanding the likelihood of specific outcomes
such as survival or disease progression, independent of competing risks.KM estimates are
particularly useful in scenarios like dose-fractionation effects or evaluating new technologies
in normal tissue, as they consider only those individuals still at risk of experiencing the event
at each time point.

On the other hand, competing risk analysis offers absolute risk, incorporating the possibility
that alternative events (such as death) may prevent the event of interest from occurring.
This makes it particularly useful in guiding policy and resource allocation, as it reflects
the realistic incidence of various outcomes within a population. The CIF provides a more
accurate depiction of the absolute likelihood of an event when competing risks are significant,
making it valuable for informing public health decisions by giving a true sense of the overall
burden of different outcomes [91].

1.6.3 Multivariate Methods

Multivariate survival analysis methods allow researchers to examine how multiple variables
affect time-to-event data. One common approach is the Cox proportional hazards model,
which estimates a hazard function, allowing for control of various covariates and providing
a hazard ratio for each, measuring the relative hazard or risk [92].

The Cox Proportional Hazards Model is given by:

h(t|X) = h0(t) exp(β1X1 + β2X2 + . . . + βpXp)

where: h(t|X) is the hazard function at time t given covariates X1, X2, . . . , Xp,
h0(t) is the baseline hazard function, and β1, β2, . . . , βp are the coefficients of
the covariates.

Additionally, the Fine-Gray model is used when considering competing risks, modeling the
subdistribution hazard to provide insights into how covariates affect the CIF. This method
is particularly important for analyzing absolute risks when competing events prevent the
occurrence of the given event, and offers similar trade offs the Cox model as the Aalen-
Johansen estimator offered to the KM estimator [93].

The Fine-Gray Model for the subdistribution hazard of event type k is given by:

hk(t|X) = hk0(t) exp(γ1X1 + γ2X2 + . . . + γpXp)
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where: hk(t|X) is the subdistribution hazard for event type k, hk0(t) is the
baseline subdistribution hazard, and γ1, γ2, . . . , γp are the coefficients of the
covariates.

1.6.4 Hazard versus Risk
In survival analysis, hazard and risk describe related but distinct concepts. The hazard rate
refers to the risk of an event happening at a given moment in time, conditional on surviving
until that point. The hazard ratio (HR) compares the hazard rates between two groups,
such as exposed versus unexposed individuals, and reflects the relative risk over time.

In contrast, Absolute risk refers to the overall probability that an event occurs during a
specified period of time. This is often the most intuitive measure for communicating risk to
patients and is particularly relevant when discussing late adverse effects of cancer treatment,
such as those seen in childhood cancer survivors.

• Relative risk (RR) compares the absolute risk in two different groups. For example, if
a cohort of patients receiving radiation therapy has twice the risk of developing heart
disease compared to a non-exposed group, the relative risk would be 2.0.

• Excess relative risk (ERR) quantifies the additional risk attributable to exposure. It
is calculated as the relative risk minus 1. For instance, an ERR of 0.5 would indicate
that exposure increases the risk by 50% compared to the baseline.

In clinical contexts, researchers often focus on excess absolute risk (EAR) and ERR to provide
clearer estimates of the impact of treatments, particularly when considering long-term
outcomes, as seen in studies of childhood cancer survivors who face increased risks of
adverse health events after radiation therapy [91].

For example, in radiation oncology, understanding both the absolute risk of an adverse event
(such as cardiac toxicity) and the excess relative risk associated with radiation exposure
helps clinicians balance the risks and benefits of treatment. The PENTEC Review highlights
the importance of these metrics, emphasizing that absolute risk is often more helpful in
clinical decision-making, while relative risk and hazard ratios are valuable for assessing the
strength of associations in research settings.
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Figure 1.13: "Risk measures frequently used in pediatric cancer survivorship studies"
Source: Bentzen et. al., 2024 [94]
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2Objectives

2.1 Motivation
The potential cardiotoxic side effects of RT have been documented for decades. These risks
garnered considerable attention following the publication of Darby et al.’s 2013 case-control
study investigating major cardiac events in patients with breast cancer [54]. This was a
pivotal study that quantified a dose-response relationship between increased cardiac dose
and subsequent onset of IHD that was linear. This illustrated the importance of cardiac
sparing and spurred further research into radiation-induced cardiotoxicity, advancing normal
tissue-sparing techniques for thoracically irradiated patients [59]. Multifactorial analysis of
radiation-induced heart disease has been further explored in studies such as Van Nimwegen
et al.’s 2015 retrospective cohort analysis of Hodgkin’s lymphoma survivors [55]. More
recent research has focused on understanding long-term cardiovascular side effects of RT,
extending beyond these major coronary events to further investigate arrhythmias, heart
failure, valvular disease, and more [95].

While these studies have paved the way for a better understanding of cardiac health risks, RT
is an ever-evolving field resulting in much of this foundational work is no longer representa-
tive of modern RT techniques. For example, Darby’s study includes patients treated up until
2001, preceding the broad adoption of VMAT. Further, it excluded newer techniques like
DIBH, which is now standard practice in treating left-sided breast cancer [65]. To accurately
determine current risks and assess the need for improvements in patient care, dose-response
relationships must be evaluated using data that reflects modern RT techniques. By lever-
aging a large, contemporary dataset, our research offers a more representative analysis of
current patients than previous case-control studies, allowing us to validate and extend earlier
findings within the context of today’s clinical practices.

In addition, the analytic techniques applied in these foundational studies do not take full
advantage of the capabilities of modern computational improvements. Estimating doses to
normal tissues in retrospective data can be challenging and individual reconstruction is often
impractical [56]. Conventional methods for contouring OARs rely on computationally heavy
atlas-based approaches that apply deformable registration to a reference patient. Modern
machine learning models offer greater flexibility and efficiency, providing an opportunity to
analyze large and varied research cohorts. Well-trained U-net segmentation algorithms can
provide high-quality fully-automatic delineation of individual contours that can outperform
atlas-based registration techniques [96, 97]. By fostering collaboration between radiation
oncology and computer science, we can harness the strengths of medical expertise and
computational resources; by implementing these AI tools we achieve organ-at-risk contouring
and assess complex dose estimation in a large retrospective cohort.

The acquisition of reliable data on risk factors and outcomes remains a challenge in obser-
vational longitudinal research. In an open healthcare system, loss to follow-up is rampant,
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which limits power, poses the risk of biased results, and restricts the ability to appropriately
assess treatment outcomes. The transition to EHR systems enables researchers to access
much larger datasets. The development of national registry databases in Denmark allows for
the linkage of a wide array of detailed patient medical data. We can leverage these power-
ful resources to identify preexisting conditions, late effects, and comprehensive mortality
information.

2.2 Research Aims
The overarching research aim is to elucidate the association between cardiac dose and
toxicity. We leverage clinical and public health datasets paired with advanced computational
tools to achieve this goal. The specific research aims are described as follows:

Quantify the change in radiation dose to the heart over time. Awareness,
technical improvements, and shifting clinical priorities may result in differences
in radiation exposure to the heart. We aim to quantify these changes by
assessing a cohort of thoracically irradiated cancer patients from 2009 to 2020.
Specifically, we use 3D-dosimetry data and AI segmentation tools on CT scans
extracted from the record and verify system. This aim is addressed in Study I.

Characterize the associations between mean heart dose (MHD) and vol-
umetric dose measures. The MHD is a metric typically calculated in older
epidemiological studies; this metric often relies on estimations from atlas pa-
tients. We compare MHD to a high and low volumetric measure - volume
receiving at least five or thirty Gy (V5 or V30). This aim spans Studies I and II.

Quantify the risk of cardiac exposure on patient death and late cardiotoxic
effects. This research investigates cumulative incidences of death and three
cardiac diseases; We primarily focus on IHD, but also explore VD and HF.
Outcomes are obtained via the Danish national patient registries - CPR and LPR.
This aim is addressed in Study II.

Measure the comparable effect of risks that are treatment-related versus
individual patient-specific factors on outcomes. The risk of cardiotoxic late
effects and death are assessed using univariate KM models and multivariate
Cox proportional-hazards models (PHM). Factors considered included cardiac
dose and patient demographics (age, sex, and prior cardiac disease). This aim
is addressed in Study II.

This research presents an opportunity to enhance data quality and methodological rigor,
thereby bolstering the robustness of our findings. Leveraging detailed treatment records,
advanced analytical techniques, and access to comprehensive patient data, we develop a
methodology tailored to this multimodal dataset. Our approach aims to elucidate dose-
response relationships across a significant cohort of patients receiving thoracic radiation for
four cancer types over a 12-year period. Ultimately, this study directly addresses a critical
clinical gap by providing insights that can refine risk assessments for cardiotoxicity and
improve patient care outcomes.
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2.3 Clinical Relevance
The aims of this research directly address an unmet clinical need by providing insights
that can refine cardiotoxicity risk assessments and enhance patient care. Moreover, these
research aims align with the priorities outlined in the 2010 IJROBP special issue focused
on Quantitative Analysis of Normal Tissue Effects in the Clinic (QUANTEC) (Fig. 2.1)
[98]. By addressing these aims, our work will contribute to a deeper clinical understanding
of the cardiotoxic risks faced by patients receiving thoracic radiation. The findings will
support improvements in individualized patient care, paving the way for data-driven, tailored
treatment approaches that ultimately strive for better patient outcomes.

Figure 2.1
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3Data Materials

3.1 Overview
This chapter contains a detailed description of materials and methods used for generating
data for this PhD research. For further study-specific details please refer to the manuscripts
in the appendix. Below is a consort diagram detailing the cohort selection process:

Figure 3.1: Consort Diagram

The data is presented in the following order, preceeded by a section on data formating and
storage structure:

• Image Data: Accessing CT scans, segmenting hearts, and validating AI algorithms
• Dose Data: Calculating and converting dose metrics
• Registry Data: Generating usable patient demographics and outcomes data
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3.2 Data Formats and Structure

3.2.1 Digital Imaging and Communications in Medicine
Digital Imaging and Communications in Medicine (DICOM) is an internationally recognized
standardized form for data storing and transmission of medical images. At Rigshospitalet,
RT data is managed through a user interface system and subsequently stored in a DICOM-
formatted database. Although working with DICOM data requires more upstart skills, its
standardization and high data quality make it superior to other formats, particularly given
the large volume of data involved in this project.

3.2.2 Neuroimaging Informatics Technology Initiative
Nearly Raw Raster Data (NRRD) files, a raster-based format for representing spatial data,
posed significant challenges outside the DICOM environment, therefore the decision was
made to standardize on Neuroimaging Informatics Technology Initiative (NIfTI) for this
project. NIfTI, originally developed for neuroimaging, has now become common in broader
radiological applications. The Python package NiBabel is used for reading and writing NIfTI
files. This format can support up to seven dimensions: the first three for spatial orientation,
the fourth for time, and the remaining for additional uses. A 348-byte header contains crucial
information such as voxel size and orientation, which are necessary for spatial alignment
and accurate volumetric calculations. NiLearn’s image processing and resampling tools are
employed to ensure that all images align correctly in space.

3.2.3 Data Storage
All data is securely stored on a hospital computer network drive, accessible through a secure
shell connection for running Python scripts. Each patient’s treatment is associated with a
course serial number (prefix ‘cs’), resulting in a dedicated folder for each course. Within each
course folder, there are subfolders for each CT scan (prefix ‘ct’), containing the planning CT
scan file (planningct.nii) and the associated heart segmentation file (heart.nii). Additionally,
there is a subfolder for each radiation plan (prefix ‘rp’), containing the dose matrix file
(RD.‘dose_id’.nii). Below is an example of the data structure for one radiotherapy course in
this cohort, which includes two separate plans. The identification numbers are notably long
and complex due to the use of DICOM data sources (Fig. 3.2).

Figure 3.2: Example of the data structure for course 2221
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3.3 Image Data

3.3.1 CT scans

CT scans are presented as a 3D grayscale image, with the voxel values representing
Hounsfield units, which is a linearly standardized value representing radiodensity. For
example, the air is represented by the color black at value -1000, water is represented by a
medium gray color at value zero and cortical bone is represented by the color white at a
value of >1000. The CT scans were initially required for us to create a segmentation model
for the heart. Additionally, the dose matrix was presented in same coordinate system as CT
scan.

In most cases, there is only one planning CT per course, but depending on the treatment
adherence and disease progression, treatment adaptation and re-planning may occur and
a new planning CT might be taken. In these cases, we used the CT scan associated with
the majority of delivered fractions. Furthermore, if a patient had a secondary site treated
simultaneously, there were additional scans and plans present. Non-thoracic scns and plans
were omitted.

3.3.2 Whole Heart Segmentation

We used an open-source AI algorithm, RootPainter3D, which is a corrective annotation U-net
model trained from manual delineations on 933 CT scans [5, 99]. This model was then
executed on the entire population, yielding heart classification decisions (represented as a
binary value; 1 = heart and 0 = not heart) for each of the voxels of the planning CT scans
described above. This data is then used as a mask on top of the dose matrix to define which
values to include for heart metric calculations.

Figure 3.3: Screenshot of RootPainter3D software showing the outline view with
segmentation and annotation hidden. The axial view is shown on the
right and sagittal view on the left. The user is able to change what data
is shown via keyboard shortcuts or with the checkboxes shown in each
viewer. Source: Smith et al. 2022 [5]
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3.3.3 Whole Heart Validation
We developed a software interface to validate the cardiac delineations in 2D 3.4. The user
toggles through each CT scan overlaid with the segmentation and determines acceptability
of the segmentation Undecided cases underwent secondary review in 3D and/or and the
decision of usability was determined by an oncologist. All unacceptable cases were excluded
from the analysis. The primary reasons for failures were anatomic abnormalities, artifacts,
or incomplete hearts in the field of view. 6% of all images fed to the model did not contain
a heart in the field of view and in 30% of these scans the model correctly identified no
voxels as belonging to the heart. This is impressive because the purpose of the model
is not classification but segmentation. Notably, 98.1% were accepted initially and 99.2%
were included following secondary review. Unsurprisingly, the acceptance rate was a bit
higher among patients with diagnoses matching the training data (98% vs 95%). When
extending this model to out-of-distribution data we expected some failures, hence the need
for thorough visual confirmation of the output, but the model did perform reasonably well.

Figure 3.4: (Study I: FigA1) "Software interface used for validation of the cardiac
delineations. The top row displays the CT scan overlayed by the cardiac
delineations in all three anatomical planes – axial, sagittal, and coronal
(left to right) – taken at the center of mass of the delineation. The
bottom row represents a rendering of the 3D cardiac delineation, where
a more intense yellow color indicates a thicker section of the heart."
Source: Forbes et. al., 2024 [1]

3.3.4 Heart Substructure Segmentation
Detailed automated segmentation for medical image analysis is rapidly advancing. Multiple
open source tools for cardiac substructure delineation have been published during the course
of this PhD. Two of them caught our attention for the purposes of this research:

PlatiPy is an open-source Python toolkit for medical image processing and analysis, partic-
ularly useful in radiation therapy [100, 101]. The cardiac segmentation tool features an

30 Chapter 3 Data Materials



advanced algorithm designed to automatically segment the heart and seventeen cardiac
sub-structures in standard radiotherapy CT scans (Fig. 3.5). Utilizing a hybrid approach,
the algorithm begins by segmenting the entire heart with a deep learning nnUNet model.
It then employs multi-atlas mapping for contouring the great vessels and chambers of the
heart, and concludes with geometric modeling to accurately capture the smaller cardiac
structures (nodes, valves, and small vessles). The auto-segmentation algorithm generates
cardiac structures following American Association of Physicists in Medicine (Task Group
263) guidelines [102].

Figure 3.5: PlatiPy Segmentation

TotalSegmentator is an open-source tool designed to facilitate the automatic segmentation
of medical images on CT scans [103]. It leverages a nnUNet architecture to identify and
delineate various anatomical structures within these images [104]. The tool is known for
its versatility, ease of use, and high accuracy in segmenting a wide range of tissues and
organs. The Cardiovascular Segmentation Tools contain specialized modules that focus
on the detailed segmentation of cardiovascular structures 3.6. These tools enable precise
identification and delineation of key cardiovascular components such as:

• Heart Chambers: Segments the left and right atria and ventricles, allowing for
detailed analysis of the heart’s internal structure.

• Great Vessels: Identifies major blood vessels like the aorta, pulmonary arteries, and
veins, which are crucial for diagnosing and treating cardiovascular diseases.

• Coronary Arteries: Segments the coronary arteries, providing valuable insights for
assessing coronary artery disease and planning interventions like stent placements or
bypass surgeries.

• Valves: Segments heart valves (aortic, mitral, pulmonary, and tricuspid), which are
essential for diagnosing valvular heart diseases and planning surgical or interventional
treatments.
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Figure 3.6: TotalSegmentator Segmentation

3.3.5 Heart Substructure Validation

Validation of the heart substructures is still underway and falls under prospective work.
Notably, these two segmentation processes differ in their approach and in the cardiac
substructures they include; however, they did both include the 4 chambers and 3 big vessels
(aorta, pulmonary artery, and superior cava). While PlatiPy has been validated externally,
we still must take steps to ensure that it is working well on our dataset [105, 106]. However,
it was clear that the review process for the whole heart would not work, as there are now
seventeen substructures to consider, which could not be visualized in 2D together and would
take too much time to review individually. Additionally, since the substructures are generated
using multi-atlas mapping and geometric modeling, the failures would be far more difficult
to identify without proper medical knowledge of the anatomy. Therefore we decided that
leveraging TotalSegmentator to Validate PlatiPy would allow us to identify potential outliers
which required more scrutiny [107].

Note: We can also avoid some expected failures by excluding all hearts already determined
to have a failed whole heart segmentation with Root Painter since these were often odd
cases that would pose a challenge to automated AI tools. Additionally, we can exclude all
hearts that are partially out of the field of view, since it is expected that the algorithms will
struggle to accurately segment them.
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3.4 Dose Data

3.4.1 3D dosimetry data

On the planning CT scan, a radiation technician delineates the target tumor and nearby
OAR. Then a medical physicist will create a plan that defines the location, angles, and dose
for each beam of the linear accelerator. This plan takes into account the varying density of
tissues in the body and optimizes delivered target dose while preserving surrounding healthy
tissue. This dataset does include multiple dose calculation methods, since we used the dose
calculated by the software at the time of delivery, rather than recalculating. The plan itself is
made up of continuous projections of the radiation beam, however, when we render this into
an image it becomes discrete. Therefore, we get an image format where each voxel describes
the quantity of dose delivered at that specific voxel volume. Doses are reported in Gy, the
international standard unit for measuring the absorption of ionizing radiation amounting to
one joule of energy per kilogram of tissue [108].

Figure 3.7: Example of a patient with a high cardiac dose. CT scan with whole
heart segmentation (in red) overlaying a dose matrix (continuous scale
with blue being low and yellow being high)

For cases with a single treatment plan, the total dose was determined by summing the
doses across all delivered fractions. When multiple plans existed, it was possible to sum
these together too yield a total dose, if they were made on the same planning CT. However,
when different CT scans informed multiple plans, it was not feasible to simply add the
fractions together. In these scenarios, we used the most delivered plan to estimate total dose
by upscaling to the total delivered dose. We had to excluded cases where the treatment
schedule was altered, since we could not be appropriately estimate the total dose via the
above method. Additionally, courses deliver with electron plans, MR-linac, or using Ethos
systems were excluded due to the inability to automate data extraction from these systems
[1].

Note: Patients who experience a recurrence of cancer or a secondary malignancy may
undergo multiple treatment courses. In Study I, primary treatment status was not a concern
since outcome data was not analyzed, but in Study II, all non-primary treatments were
excluded.
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A mapping file was created to link the course-level data from the dose calculations to the
plan-level information from the fraction and dose file. This file also has additional patient
demographic information (e.g. sex, birthdate, breast cancer sidedness) acquired from the
DICOM database. Dose statistics are summarized by course, making sure to aggregate cases
with multiple plans and CT scans. In cases where a course contains multiple plans, we sum
them across the fractions.

3.4.2 Dose Calculations
• Clipped segmentation: During validation, I observed some CT scans with hearts

only partially in frame. While we expect no dose to be delivered outside the field
of view, this could effect mean heart dose calculations and atlas-based substructure
segmentation. Therefore clipped hearts, with positive voxels along the perimeter, were
identified for possible exclusions or adjusted calculations.

• Volume: Voxel volume varies with image resolution, so measurement units were
extracted from the NIfTI header’s "pixdim" values, which define the spatial units. This
is later used to cancluate mean dose.

• EQD2: As previously mentioned, plans vary in fractional dose and quantity of fractions
delivered, even within the same diagnosis. Therefore, it is useful to standardize these
plans to represent their relative biological effect. The way to do this is through
Equivalent Dose at 2- Gray (EQD2) [36]:

EQD2 = D ·
d

α/β + 1
2

α/β + 1
(3.1)

where:

D = Total dose (at given voxel)

d = Fraction dose (at given voxel)

α/β = Tissue-specific parameter (2 Gy)

By adjusting values in each voxel, we will end up getting lower values in almost all
voxels (since the D is almost always less than twice the fractions delivered) and thus
lower dose statistics overall.

• Mean Heart Dose: The important step to enable simple calculation of the MHD was
the resampling with affine matrix, described in the materials. Once the segmentation
and dose are both at the resolution of the CT scan, we can simply overlay them and
use the segmentation as a mask. In other words, for all cases where there is a heart
segmentation, we sum up the dose only in voxels when the U-net has identified it as
heart, and then divide it by the volume of the heart.

• Near Max Heart Dose: However, MHD is not very meaningful on its own, since
you can conceptualize highly varied dose distributions that would yield the same
mean (i.e. a uniform distribution at the mean value of one very high region in a
mostly unirradiated heart). Therefore, we want to calculate a maximum value, since
extremely high dose values can lead to serious damage to tissue. However, taking the
single hottest voxel would lead to a lot of noise. Therefore, I took the distribution of
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all the points (flattened from the 3D matrix and excluding non-heart regions) and
selected the 95% percentile as a near-max value.

• Dose Volume Histogram Metrics (VX): Furthermore, we want to quantify the heart
volume exposed to a given threshold of dose or higher. These types of metrics are
used in Dose Volume Histograms, which are standard tools in medical physics for
radiotherapy planning guidelines to quantify and control patient risks. It is typical
to summarize these at the integer level, so I calculated the number of voxels and
subsequent volume contained in each 1 Gy bin.

3.5 Registry Data

3.5.1 PERSIMUNE Data Warehouse
While the existence of national registries provided a promising opportunity to conduct
national research, accessing and curating that data posed significant challenges. The Centre
of Excellence for Personalized Medicine of Infectious Complications in Immune Deficiency
(PERSIMUNE)is a multidisciplinary research group at Rigshospitalet. PERSIMUNE has
developed a data warehouse providing access to patient records and registries for medical
researchers at Rigshospitalet. It contains many data sources including clinical data across
multiple departments, biomedical laboratory data, and imaging data. Researchers can access
this data following a structured application process, which involves feasibility analysis,
project proposal, data request, and data delivery. PERSIMUNE emphasizes collaboration,
expecting researchers to contribute to data cleaning and validation efforts.

Through PERSIMUNE we were able to access critical Danish registry data to link to cardio-
vascular diseases before and after cancer treatment, as well as data on death and emigration.
Cardiovascular events were defined using ICD-10 codes:

• Ischemic heart disease: I20-I25
• Valvular disease: I00-I09, I34-I39
• Heart failure: I50

3.5.2 Registries
For this research, we primarily used two registry databases:

• The LPR (Danish National Patient Register) in Denmark is a comprehensive health
database that collects data on patient interactions within the national healthcare
system. This includes information on hospital admissions, outpatient visits, and
treatments. The LPR aims to support clinical research, healthcare planning, and
quality assurance. It contains detailed records dating back several decades, making it
a valuable resource for epidemiological studies and healthcare analyses.

• The CPR (Central Person Registry) in Denmark is a nationwide system that assigns a
unique personal identification number to each resident. This number is used across
various public and private sectors for identification purposes. The CPR contains vital
information, such as name, address, birth date, and marital status, which facilitates
the efficient administration of services, healthcare, and social benefits. The registry
is a cornerstone of the Danish administrative system, ensuring seamless interaction
between individuals and institutions.
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3.5.3 Data approvals
Once we had identified where and how to access the necessary registry data, gaining approval
to access it posed more challenging than expected. In Denmark, the NVEK (Nationalt
Videnskabsetisk Komité) is responsible for the ethical review and approval of medical and
health science research projects. It ensures that research on human data meets regulations
and ethical standards, safeguarding participants’ rights and welfare. Researchers must obtain
NVEK approval before commencing studies that involve human subjects, biological material,
or personal data.

The NVEK underwent significant changes in its approval rules in 2020. These changes were
implemented to streamline the ethical review process and ensure more robust compliance
with international standards and ethical considerations. The revisions aimed to enhance the
efficiency of the review process and improve transparency and accountability in research
involving human subjects. To access imaging data, researchers must follow a structured
approval process that includes obtaining ethical and regulatory clearances. This process
involves submitting a detailed project proposal, undergoing a feasibility analysis, and
completing a data request form. The goal is to ensure compliance with data protection laws
and ethical standards, safeguarding sensitive patient information.

These NVEK changes occurred at the onset of this PhD, so the approvals needed to conduct
this research were not in place when I began. Additionally, since it was a new protocol it
took significant effort to formulate the proposal and navigate the requirements. We went
through numerous rounds of approval issues were made worse due to the ongoing COVID-19
crisis, which took priority. This resulted in a full year of navigating the system to gain access
to the data needed to conduct this research.
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4STUDY I:
Time Trends in Cardiac Doses

This chapter contains a brief description of the research pertaining to the following prepared
manuscript and associated ethics report:

Forbes, N. J., ..., Peterson, J.*, and Vogelius, I.*; (2024-02). Time trends
in cardiac doses in 10,000 patients receiving curative thoracic radiation therapy
between 2009 and 2020. medRxiv. DOI: 10.1101/2024.02.18.24303007. [1]
***Submitted to Journal of Clinical Oncology

Forbes, N., and Vogelius, I.; (2021). Radiotherapy exposure and association
with observed cardiovascular toxicity in patients treated for cancer at Rigshospitalet
[Report to the Scientific Ethics Committees]. National Videnskabsetisk Komité,
82427.

This manuscript is currently under review at the Journal of Clinical Oncology. The
full manuscript, including supplementary material, is located in Appendix A and
available online at MedRxiv. See references for DOI.

4.1 Brief Study Outline
In this study, we present methods for generating a large cohort data set of extracted
treatment dose metrics using AI tools. This cohort study aims to determine how
improvements in RT and cardiac irradiation reduction efforts have altered cardiac
doses delivered over a 12-year study period. Eligible treatments include patients
receiving curative intent RT in the thoracic region from 2009 to 2020. Patients were
identified using treatment codes at Rigshospitalet; treatment exclusions are listed
in the consort diagram (Fig. 3.1). Dose matrices and CT scans were included for
system verification.

4.2 Key Findings
We included 10,215 treatments on 9,966 patients eligible for analysis. Treatments in-
cluded four cancer diagnoses - breast cancer, lung cancer, lymphoma, and esophageal
cancer. An in-house AI segmentation tool was leveraged to generate individually
delineated hearts. A 2D manual review was conducted on every delineation; when
needed, a secondary 3D review was conducted under medical guidance (Fig. 3.4).
Dose metrics were calculated, including MHD and volumetric measures (e.g., V5,
V20, and V40). Cardiac doses were quantified using time trends across the 12 years.
A decrease in these cardiac dose measures was observed, and this was more evident
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in high-dose exposures. Unexpectedly, in the most recent years, patients receiving
breast cancer treatment increased in high-dose volume (V40Gy) to the heart.

4.3 Considerations
Increased awareness of cardiotoxic risks and advances in RT techniques that im-
proved tumor targeting, likely contribute to a decrease in cardiac radiation exposure,
as quantified in this large patient study. The application of custom AI methods
allowed for the generation of high-quality, time-independent individual delineations.
While critical for understanding observed treatment exposure, retrospective obser-
vational studies are unable to determine causal inference. New and unaccounted
for factors, such as changing patient demographics, increase the complexities of
real-world data. Although a decrease in cardiac dose has been observed, linking this
treatment data to registry-based outcomes is necessary to understand the impact of
these dose trends on patient outcomes.

4.4 Perspectives
AI models have the potential to provide high-quality patient-specific delineations
and dose calculations for large cohorts. These methods are of particular interest in
large-scale research settings, where manual delineation is impractical. Improvements
in segmentation methods continue; segmentation tools are now widely available,
including our open-source AI model. Validation of these AI tools with external patient
cohorts is important to detect critical failures of outlier cases and out-of-distribution
data. While rare, such errors are of particular concern in clinical processes informing
diagnostics and treatment planning, and thus human-in-the-loop approaches will
continue to be the standard.

38 Chapter 4 STUDY I:

Time Trends in Cardiac Doses



5STUDY II:
Cardiotoxicity Analysis

This chapter contains a brief description of the research pertaining to the following
prepared manuscript and associated SAP:

Forbes, N. J., ..., and Vogelius, I.; (2024-08). Cardiac dose-volume analysis
of 9,411 patients with registry-based outcome data for cardiotoxicity and overall
survival. medRxiv. DOI: 10.1101/2024.08.16.24312108. [2]
***Submitted to Journal of the European Society for Radiotherapy and Oncology

Forbes, N.; (2023). Clinical and dosimetric risk factors for ischemic heart disease
[Statistical Analysis Plan]. DOI: 10.6084/m9.figshare.24247372.v1. [3]

This manuscript is currently under review at the Journal of the European Society for
Radiotherapy and Oncology. The full pre-print manuscript, including supplementary
material, is located in Appendix A. The manuscript is available online at MedRx. The
SAP is available on Figshare.

5.1 Brief Study Outline
We aimed to assess the affect of cardiac exposure on long-term cardiotoxicity and
overall survival. Study II builds on the work conducted in Study I by linking the
calculated radiation doses to registry-based outcome data. This was made possible
through access to the LPR and CPR registry databases via the PERSIMUNE data
warehouse. All nonprimary treatments were excluded from the analysis.

5.2 Key Findings
9,411 patients were included in the 12-year retrospective cohort study. The cumula-
tive incidences of patient outcomes with competing risks (cardiovascular events and
death) were calculated using the Aalen-Johansen estimator. The effects of cardiac
dose and patient factors on OS and the development of IHD were evaluated with the
KM method and Cox models. The risk of cardiotoxicity was relatively low compared
to death, especially for lung and esophageal cancers. Patient-specific factors (e.g.
existing cardiac disease and age) were far stronger predictors of cardiotoxicity com-
pared to dose. In dose-response studies, overall survival was not a reliable indicator
of cardiotoxicity due to the confounding effects of the disease stage.
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5.3 Considerations
This study could only include one site in Denmark over a 12-year period, due to the
complex nature of these data, therefore generalizability of these results should be
cautioned. Disease characteristics (e.g. lymph node involvement or overall extent)
likely confound the impact of treatment-related toxicity. In future studies, additional
cancer classification, such as subtypes of lymphoma (Hodgkins vs Non-Hodgkins)
and NSCLC cancer (e.g., Adenocarcinoma, Squamous Cell Carcinoma), might control
for dose- and prognosis-related heterogeneity; this data is advised for inclusion in
smaller studies.

5.4 Perspectives
For most patients, contemporary high-quality approaches to radiotherapy effectively
minimize the risk of heart toxicity, rendering it a minor clinical concern. However,
the lack of a significant result does not indicate the absence of a dose relationship;
still, a significant dose-response relationship was not established despite with a large
cohort of 9,411 patients.
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6Discussion

„If I have seen further it is by standing on the
shoulders of giants.

— Isaac Newton

Through this work, we aim to better understand the negative side effects of RT
through the application of modern computational tools to clinical and public health
datasets. Machine learning segmentation tools applied to medical images enabled
the quantification of RT dose to individual tissues. The impacts of radiation on
patient outcomes were further quantified by linking image and dose data with
negative side effects experienced by cancer patients.

6.1 Principal Findings
How has radiation delivered to the heart changed over time? Study I, presented
in [Chapter 4], investigates the evolution of cardiac radiation dose delivery to the
heart. Results support the understanding that advancements in RT technology,
such as the adoption of IMRT and VMAT, significantly improve the precision of
treatment plans which minimizes unnecessary radiation to surrounding healthy
tissues. Increased awareness of cardiac radiosensitivity and its risks to cardiovascular
health resulted in changes to existing guidelines reducing cardiac exposure. The
sole exception to this trend was found in more recent breast cancer patients. This
unexpected finding can be explained by new guidelines implementing a cardiac
dose threshold, which were higher than standard practice. Let this finding serve as
an example of potential inadvertent impacts of guideline changes and as a call to
continue monitoring delivered doses to this cohort.

Is cardiac exposure associated with subsequent cardiotoxicity or increased
mortality? Study II, presented in [Chapter 5], explores the correlation between
cardiac radiation doses and the onset of cardiotoxicity and increased mortality rates.
No clear dose-response relationship between cardiac doses and risks of adverse
cardiac events was found. However, an absence of such a relationship should not
be interpreted to contradict previous research findings; rather, the relationship
was not found in this relatively low radiation exposure cohort. Years of awareness
of cardiotoxic risks and ongoing advancements in RT have improved treatment
efficiency and lowered observed cardiac doses. Dose-response relationships were
observed for OS. The priority of target coverage is clear, as the risk of death far
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outweighed that of cardiac events. This study highlights the need for continued care
in planning and monitoring cardiac doses, especially in individuals with risk factors
for heart disease, specifically existing cardiovascular events.

6.2 Research Impact
The integration of AI in RT, through tools like Varian’s Ethos system, is offering
greater precision and personalization of treatment planning [109]. Such advance-
ments result in better sparing of healthy tissues and improved patient outcomes
[110]. Existing studies on cardiotoxicity often lack consistent dosimetry data and
use conventional methods for dose calculation, such as traditional ATLAS registra-
tion techniques. By individually segmenting hearts with an in-house AI tool and
leveraging detailed 3D dosimetry data, Study I demonstrates that AI can enhance
dose calculation accuracy and consistency in large cohorts. This offers improvements
over prior studies and enabling the analysis of more precise dose-response relation-
ships. AI-driven deep learning frameworks can further enhance automatic organ
segmentation and provide more accurate dose calculations [111, 112].

Advancements in treatment planning and delivery techniques are enabling more
acurate targeting of tumors, reducing radiation exposure to surrounding healthy
tissues while maintaining adequate target coverage [25]. These improvements aim
to minimize side effects without compromising treatment effectiveness. Current
research in cardiotoxicity emphasize the risks of cardiac exposure and advance-
ments in RT techniques, indicating cardiac sparing as a priority [113]. However,
large-scale retrospective studies evaluating actual delivered doses remain limited.
Study I demonstrates that radiation delivered to the heart is decreasing, highlighting
this trend in high-dose exposure. This contributes to the growing body of work in
radiation-induced cardiotoxicity by investigating trends in a modern large compre-
hensive high-quality dataset across multiple diagnoses over 12 years. Further, it
identifies an interesting and unexpected recent increase in dose among breast cancer
patients.

National registry data offers significant advantages in medical research, particularly
in centralized healthcare systems like Denmark’s. These systems enable more reliable
tracking of patient outcomes, reducing the issues of incomplete or inconsistent follow-
up data often seen in fragmented healthcare systems. Many cardiotoxicity studies
lack detailed cardiovascular outcome data and tend to focus on survival rather than
chronic conditions that may develop years after treatment [114, 115, 116, 53, 117].
In Study II, utilized detailed diagnostic coding from Denmark’s LPR registry to
investigate prior and subsequent cardiac events — including IHD, VD, and HF —
resulting in more accurate assessments of cardiotoxic risks. Additionally, detailed
mortality and emigration data were extracted from the CPR registry to ensure high-
quality censoring. These findings demonstrate the value of comprehensive registry
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data in enhancing the quality and completeness of patient data, which is crucial
for accurate outcome-focused research. Such insights would be more challenging
to achieve in less integrated healthcare systems, where fragmented data and high
population mobility hinder long-term follow-up.

As treatment precision improves, patient outcomes are expected to follow suit.
However, long-term cardiovascular risks, especially for patients receiving radiation
near the heart, require more focused attention [118, 119]. Study II leveraged
Denmark’s robust registry data, linking it with detailed dose data to assess the
impact of cardiac exposure on long-term patient outcomes. Despite a cohort of
nearly 10,000 individuals, no direct correlation was found between radiation dose
and adverse cardiac outcomes, likely due to the lower doses achieved by modern
RT techniques. This highlights the impact of recent RT advancements and the need
for even larger sample sizes to detect potential trends. By minimizing data loss and
ensuring comprehensive follow-up, the use of registry data enhances the reliability
of research findings, ultimately leading to improved guidelines and better patient
outcomes in RT.

This body of work contributes significantly to the field of radiotherapy safety and
optimization. It underscores the critical balance between effective cancer treatment
and the minimization of harmful side effects. The insights gained not only enhance
our understanding of RT effects on cardiac health but also pave the way for future
research focused on improving patient outcomes through comprehensive clinical
data analysis and advanced computational techniques. The integration of big data
analytics and AI is transforming RT, improving precision and personalization in
treatment delivery. Continued validation of these advances is essential to ensure
consistency with RT conventions, ultimately leading to better patient care and
outcomes.
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7Prospective Work

While the existing work has enabled a deeper understanding of the cardiotoxic risks
associated with contemporary RT, there are clear opportunities to build on the latest
findings. This section outlines promising directions for expanding current research
and refining methodologies, with the aim of further personalizing cancer treatment,
resulting in improved patient outcomes.

7.1 Continued Monitoring and Cohort Expansion
This study successfully analyzed dose trends and dose-response relationships for a
cohort of nearly 10,000 patients. Given the significant efforts in data extraction and
analysis, continued monitoring of this cohort is feasible with minimal additional
effort. Long-term follow-up, particularly for breast cancer and lymphoma patient
subsets, is crucial as these groups tend to have better survival rates. Many of
these patients are still alive and free from CVD after five years, but the risk of
CVD increases with time, highlighting the importance of extended follow-up to
detect longer-term late effects. Continuous monitoring under changed priorities is
necessary to understand relevant trends.

Rigshospitalet is the largest research hospital in Denmark and therefore plays a
significant role in providing highly specialized care. Expanding the cohort to include
other hospitals in the capital region, or even those in Eastern Denmark, would
strengthen the statistical power of the study. Further expanding the dataset to
include international hospitals would significantly enhance the diversity of the
cohort and improve the generalizability of the findings. Barriers to expanding beyond
the current scope include data approval and access. The current NVEK approval
lists only Rigshospitalet and the Danish Data Protection Authority (Datatilsynet)
umbrella agreement currently terminates in Feb 2022, both of which would require
an update. Extracting data from external EHR system always poses challenges,
but established collaborations (e.g. Herlev Hospital) offer the lowest hurdle for
accessing this data and expanding the cohort. Leveraging Denmark’s national registry
databases, combined with efforts to foster collaboration through initiatives like the
Danish Comprehensive Cancer Center (DCCC) and data infrastructure projects such
as DcmCollab could aid in broadening the dataset [120, 121, 122]. Additionally,
international collaborations, such as those with Swedish institutions through the
Öresund Workshop on Radiotherapy, present opportunities for data expansion and a
more comprehensive understanding of the study outcomes [123].
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7.2 Detailed Dose Distribution Analysis

7.2.1 Volumetric Analysis

Volumetric measures provide a more detailed understanding of radiation dose
distribution across tissues compared to summary statistics like mean dose. The DVHs
allow for the evaluation of OAR volume (absolute or relative) receiving specific dose
levels, aiding in risk stratification and toxicity prediction. While some aspects of
volumetric analysis were explored in this study, much remains to be analyzed.

A notable challenge with volumetric analysis is the high correlation between dose
metrics. For instance, different dose-volume parameters (e.g. MHD, V5, and V30)
can be highly interdependent, which may introduce multicollinearity issues in
statistical models. This high level of correlation complicates efforts to identify
independent predictors of toxicity and can obscure the relationship between specific
dose levels and clinical outcomes. Principal component analysis (PCA) could be
employed to help decrease the data dimensions by transforming the correlated
dose metrics into fewer uncorrelated components. This reduces redundancy and
allows for a more robust analysis of the underlying relationships between dose
distributions and outcomes. Similarly, least absolute shrinkage and selection operator
(LASSO) regression can handle multicollinearity by performing variable selection and
regularization, helping to identify the most relevant dose metrics while penalizing
less important ones. Due to limitations of time and resources, we decided to prioritize
the work required for completing Studies I and II, rather than further investigation
of these volumetric analyses, especially given the weak preliminary evidence for a
dose-response relationship.

Further, these volumetric measures do not offer spatial information, making it
challenging to assess how the location of high-dose regions effects outcomes. This is
important because OARs are not uniform with certain substructures being potentially
more vulnerable to radiation-induced damage. To further address the limitations
of volumetric measures, future research should combine volumetric analysis with
spatial techniques. These approaches may provide a more precise understanding of
dose-response relationships potentially improving patient care by targeting radiation
more effectively [124].

7.2.2 Substructure Analysis

Background and Motivation. Building on Studies I and II, we hypothesize that a
more granular dose-response could be uncovered with the segmentation of the heart
into substructures. Determining the radio-sensitivity of cardiac tissue could in turn
lead to opportunities for clinically meaningful optimizations that selectively avoid
high-risk regions while maintaining appropriate coverage of target areas [95, 125].
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Whole heart dose calculations, while informative, fail to capture the detailed anatom-
ical variations within the heart. These calculations can mask important substructure-
level information that may be critical for understanding the risk of radiation-induced
cardiac damage [126]. This proposed research seeks to elucidate the role of radiation
dose to specific substructures and its impact on patient outcomes.

The objective of this prospective analysis is to examine the variation in dose distri-
bution across different regions of the heart, assess how these have changed over
time, and investigate whether specific locations of radiation exposure correlate with
negative patient outcomes. Further, this study aims to demonstrate the utility of
automated segmentation in cardiac substructure analysis, while emphasizing the
need for rigorous validation and cross-verification.

Preliminary Methods and Results. We have started an analysis and provide some
preliminary results to show feasibility. As described in Chapter 3 - Data Materials,
we were able to generate cardiac substructure segmentations for this cohort by
leveraging an open-source AI tool known as PlatiPy. Dose metrics on 8,643 patient
hearts were successfully calculated for all seventeen substructures provided. The
dose distribution trends observed in these substructures paralleled those seen in the
whole heart, with significant decreases over time across the diagnoses. We identified
significantly higher doses in the left anterior descending Artery (LAD) of left-sided
breast cancer, right coronary artery (RCA) of right-sided breast cancer, pulmonary
artery (PA) of lymphoma, left atrium (LA) of esophageal cancer, and superior vena
cava (SVC) of lung cancer (Fig. 7.1). The extent to which these substructure
exposures relate to an increased risk of IHD or OS is still being investigated.

Future Work. Cardiac substructure delineation was performed using the open-source
AI tool PlatiPy, which segments seventeen distinct cardiac substructures. However,
further validation is required to ensure robustness. To validate these results, we
plan to compare PlatiPy’s segmentations with those obtained from TotalSegmentator,
another open-source AI tool with broader anatomical segmentation capabilities. We
will segment the four cardiac chambers (LA, RA, LV, RV) and major vessels (AA, PA,
and SVC) using both tools. The agreement between segmentations will be assessed
using Dice similarity coefficients. Additionally, we will utilize the in-house quick
review tool previously used for validating whole-heart segmentations to evaluate
any major discrepancies (Fig. 3.4). This will be followed by a comprehensive
dose-response analysis to further assess the impact of these segmentations on dose
calculations. Our ongoing manuscript explores substructure dose trends and outcome
analysis, demonstrating the potential of AI tools in refining dose calculations.

Considerations and Perspectives. Conventional RT planning often quantifies
cardiac sparing across the whole heart, overlooking anatomical differences that
could explain varying substructure sensitivities. Literature suggests that whole heart
dose-response relationships may serve as proxies for substructure effects, but further
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Figure 7.1: Boxplots of mean heart structure dose by cancer type. Outliers not in-
cluded. (H = Whole Heart, LV = Left Ventricle, RV = Right Ventricle, LA
= Left Atrium, RA = Right Atrium, AA = Aorta Artery, PA = Pulmonary
Artery, LAD = Left Anterior Descending Artery, LCX = Circonflex Artery,
LMCA = Left Coronary Artery, RCA = Right Coronary Artery, SVC =
Superior Vena Cava, MV = Mitral Valve, TV = Tricuspid Valve, AV =
Aortic Valve, PV = Pulmonic Valve, SAN = Sinoatrial Conduction Node,
AVN = Atrioventricular Conduction Node)
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study is needed. This research explores substructure doses across multiple cancer
types — breast, esophageal, lymphoma, and lung cancers. Building on findings
like the correlation between LAD dose and heart disease in breast cancer [126], we
explore relative doses between substructures and with the whole heart, as well as
time trends and outcome analysis.

The integration of open-source AI tools in RT is advancing rapidly, providing ac-
cessible resources for enhancing treatment planning and analysis. Tools such as
PlatiPy for automated contouring and TotalSegmentator for multi-organ delineation
show promise in refining dose-response analyses [100, 103]. However, the adoption
of these tools requires thorough validation to ensure robustness, especially with
outlier cases or out-of-distribution data [127]. Dose calculation errors, particularly
in smaller substructures, underscore the need for continued scrutiny of AI-based
segmentation methods.

Findings from substructure dose analysis may call for more detailed anatomical data
in normal tissue exposure studies, potentially informing updates to RT threshold
guidelines. Standardizing AI tool applications across clinical practice will require
careful comparison and validation to ensure consistent accuracy and reliability,
ultimately improving RT planning and reducing cardiac complications in thoracic RT
patients.

In parallel with refining AI segmentation tools, integrating complementary methods
like image-based data mining (IBDM) could help address tissue-specific radiosen-
sitivity [114]. As imaging technology advances, AI segmentation is anticipated to
increasingly contribute to the fields of radiation oncology, supporting personalized
treatment strategies that minimize adverse effects while maintaining therapeutic
efficacy.

7.2.3 Image-Based Data Mining

Background and Motivation. The field of IBDM has evolved significantly, with early
studies laying the foundation for its current use in RT. Acosta et al. (2013) introduced
voxel-based population analysis, linking dose distributions with clinical outcomes
such as rectal toxicity [128]. This was followed by improvements in statistical
methods by Chen et al. (2013) and Sörensen et al. (2017), who incorporated
permutation tests and false discovery rate corrections to ensure the reliability of
IBDM results [129, 130]. These advances allow for more sophisticated analyses,
such as those by Green et al. utilizing per-voxel Cox regression to map dose-response
relationships and predict patient outcomes more accurately (Fig. 7.2) [114].

Methods in IBDM offer a unique advantage over conventional methods, which
often treat anatomical structures as if they are uniformly sensitive, overlooking the
heterogeneity of tissue responses. By analyzing dose-response relationships at a voxel

7.2 Detailed Dose Distribution Analysis 49



Figure 7.2: "Cox-IBDM performed considering only PS (A) and dose (B). Shown
by the dashed white line is the region inside the mask, where hazard
ratio calculations were performed. In unfilled contours, hazard ratio
percentiles are shown, while hazard ratios are shown in filled contours...
Note that the hazard ratio scale is different in each subfigure." Source:
Green et. al., 2020 [114]

level, IBDM provides a more granular understanding of how radiation affects specific
subregions within organs. This approach uncovers complex spatial relationships that
conventional models might miss, allowing for a deeper understanding of the effects of
RT on both target and adjacent tissues. As radiation therapy techniques evolve, IBDM
becomes increasingly valuable for identifying subtle patterns of toxicity or damage
that may emerge only under specific spatial configurations or dose distributions.

Future Work. The next steps in this project will involve applying IBDM techniques
to our cohort, focusing on analyzing dose-response relationships at a voxel level
within specific substructures. We could use patient imaging data to assess radiation
exposure across different tissue types and substructures, particularly in complex
thoracic cases. Our goal is to map these dose distributions to clinical outcomes,
identifying regions of interest that correlate with adverse effects. Validation of the
IBDM results will be crucial, requiring thorough testing against external datasets to
ensure reliability.

Considerations and Perspectives. Despite its potential, IBDM requires careful
validation to avoid misinterpretations. As Shortall et al. (2021) caution, voxel-based
analyses can sometimes produce misleading results if the complexity of spatial data
is not adequately addressed [131]. The heterogeneity within substructures and
the possibility that radio-sensitive tissues extend beyond traditional anatomical
boundaries highlight the importance of rigorous evaluation and external validation.
Moreover, dose-response behavior is unlikely to be uniform within organs or tissues.
This complexity underscores the need for complementary approaches, such as deep
learning, which can enhance the capabilities of IBDM by providing richer datasets
and more robust predictive models. These advancements will help tailor RT to
individual patients, improving treatment precision and contributing to a deeper
understanding of how RT impacts various tissue structures [19].
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7.2.4 Surrounding organs delineation

Future studies could include additional OARs in the analysis. This expansion would
allow for a more comprehensive assessment of the potential side effects and risks
associated with radiation therapy, particularly about cumulative doses received by
various critical structures. When balancing dose to the heart and lungs, normal
tissue sparing becomes a complex trade-off in thoracic radiotherapy. The goal
is to minimize radiation exposure to both organs, but reducing dose to one can
inadvertently increase dose to the other. For instance, reducing heart dose in left-
sided breast cancer using DIBH or other techniques may increase lung exposure,
potentially leading to pulmonary complications. Similarly, prioritizing lung sparing
could elevate cardiac risks, such as ischemic heart disease. This delicate balance
requires careful consideration of organ sensitivities and potential long-term toxicities.

The integration of IBDM techniques can aid in navigating these trade-offs by iden-
tifying subtle dose-response patterns in both cardiac and pulmonary tissues. By
delineating critical structures within both organs and analyzing how different treat-
ment plans affect these structures, clinicians can make more informed decisions
about dose allocation. Future studies could expand the analysis to include a broader
range of OARs and integrate machine learning to develop predictive models that
optimize normal tissue sparing while maintaining effective tumor coverage.

7.3 Additional Late Effects
Expanding the scope of outcomes to include additional thoracic RT-related late effects
could contribute to a more thorough understanding of long-term consequences for
cancer patients. While IHD, HF, and VD were explored in this work, there are
more potential impacts of RT on the cardiovasular system. Radiation can lead to
acute or chronic complications due to inflammation of the pericardium (pericarditis),
with the potential to cause pericardial effusion or even constrictive pericarditis.
Additionally, radiation can induce damage to the major blood vessels increasing the
risk of stroke and peripheral vascular disease years after treatment. These vascular
issues, although less frequently discussed than direct cardiac damage, represent
significant long-term risks for thoracically irradiated patients.

In the pulmonary system, radiation pneumonitis can result from thoracic RT, particu-
larly in lung cancer patients. This acute inflammation of the lung tissue can progress
to pulmonary fibrosis (poor functioning and scarring lungs). Chronic obstructive
pulmonary disease (COPD) or other preexisting lung conditions can increase a pa-
tients risk of exacerbated symptoms or the development of new chronic lung diseases
following radiation. Long-term monitoring of these patients is critical to detect and
manage the onset of chronic pulmonary conditions that may reduce quality of life
and overall survival.

7.3 Additional Late Effects 51



Immune system effects are an key consideration. Radiation-induced lymphopenia
is common during and after thoracic RT, with studies estimating that a significant
portion of circulating lymphocytes can receive substantial radiation doses. This
depletion of lymphocytes compromises the immune system, leading to an increased
risk of infections, potentially reducing the effectiveness of concurrent or subsequent
immunotherapy [6]. Further, the immunosuppressive effects of lymphopenia can
exacerbate other treatment-related toxicities and negatively impact OS, underscoring
the importance of monitoring immune function during and after treatment.

7.4 Additional Sources of Multi-Modal Data

7.4.1 Treatment Details

This research has focused primarily on the cardiotoxic effects of RT, but it’s im-
portant to acknowledge that cancer patients also face significant cardiac risks
from chemotherapy. Approximately 30-50% of irradiated cancer patients receive
chemotherapy, including adjuvant, neoadjuvant, or concomitant regimens. In the
case of breast cancer, 50-60% of patients undergoing chemotherapy are treated with
anthracyclines, a class of drugs known for their efficacy but also for their heightened
risk of cardiotoxicity, particularly when combined with RT [132]. Incorporating
chemotherapy data into the analysis could have provided better control for these
confounding factors. However, challenges with pharmaceutical database integration
prevented its inclusion within the timeframe of interest. Expanding this analysis
to include chemotherapy data could yield a more thorough understanding of the
cumulative cardiac risks across various cancer diagnoses [133].

Further, incorporating details about advanced treatments could have provided a
more comprehensive understanding of cardiotoxicity risks. For example, the use of
targeted therapies like trastuzumab, which is known for its cardiotoxic effects, and
immunotherapies like checkpoint inhibitors, could have influenced cardiac outcomes
when combined with RT.

7.4.2 Disease Characteristics

Expanding the available data with additional pathology and tumor staging infor-
mation could have significantly enhanced the precision of this analysis, particularly
in addressing the heterogeneity in diagnostic groupings. Tumor staging, such as
TNM classification, and detailed tumor delineations could have provided essential
insights into disease progression and its impact on treatment outcomes. For example,
understanding whether patients had early-stage localized tumors versus more ad-
vanced metastatic disease would have allowed for more accurate adjustments in the
analysis, particularly for confounding factors like regional nodal irradiation, which
can influence both treatment planning and dose distributions.
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The absence of staging and receptor status data limits our ability to fully control for
these potential confounders, which could obscure important relationships between
radiotherapy and cardiac outcomes. Furthermore, when exploring the relationship
between OS and heart dose, preliminary findings from Study II suggest that OS
does not serve as a good surrogate for RT-related heart damage, as it is the disease
that dominates OS. This could be due to the multifactorial nature of OS, which is
influenced by a variety of factors beyond cardiotoxicity, such as disease progression,
response to therapy, and other treatment-related toxicities. Therefore, more focused
endpoints, such as cardiac-specific morbidity or mortality, may provide a clearer
picture of the cardiotoxic effects of RT.

7.4.3 Patient Characteristics

A comprehensive analysis of CVD risk factors could greatly enhance the under-
standing of variability in treatment responses among cancer patients undergoing
radiotherapy. In addition to conventional risk factors like hypertension, smoking
status, and obesity, detailed patient characteristics such as genetic profiles, lifestyle
factors, and pre-existing co-morbidities should be considered. For example, coronary
artery calcium (CAC) scoring is a valuable predictor of increased CVD risk, particu-
larly in patients already exposed to radiation [134]. CAC scoring, when integrated
with other imaging and biomarker data, could provide a more nuanced assessment
of cardiotoxicity risk. Further, there are emerging automated methods which would
make it possible to acquire this measure for a large cohort.

Additionally, inclusion of more comprehensive data on risk factors would be valuable.
We did have access to indices like the Charlson Comorbidity Index (CCI) to help in
quantifying the burden of co-morbidities and accounts for various conditions (e.g.
diabetes, prior myocardial infarction, and chronic pulmonary disease) that increase
risks of treatment-related issues [135, 136] . We hoped it could have allowed for
better stratification of patients based on their overall health status and pre-existing
conditions, which directly impact their response to cancer treatment and their risk
of developing treatment-related CVD. However, it was insufficient and unreliable
and lacked the detail needed for such an investigation, therefore further metrics are
needed.

However, much of this detailed information was not readily available for the cohort
under study. Acquiring data on genetic profiles, lifestyle factors, and co-morbidities,
as well as scoring indices like CAC, would require a significant review of patient
charts and would likely be more feasible in a smaller, more focused subset of the
population. This detailed data collection could ultimately enhance the predictive
models for cardiotoxicity, allowing for more personalized and targeted interventions
that take into account both the cancer treatment and the overall patient health
status.
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8Conclusion

„. . . the disciplines are the place where we begin,
but not where we end.

— Allen F. Repko

This thesis demonstrates the immense potential of collaborations between computer
science and oncology in addressing complex healthcare challenges. The integration
of advanced computational techniques into oncological research and clinical practice
exemplifies the benefits of multidisciplinary work. Modern methods, including
automated segmentation and dose calculation, can significantly improve the accuracy
and efficiency of RT planning and delivery, enhancing clinical outcomes. AI models
can provide high-quality, patient-specific delineations for large cohorts, a task that
would be impractical through manual efforts alone. This collaboration highlights
the power of observational studies, which can provide valuable real-world insights
and contribute to the continuous improvement of treatment strategies.

As segmentation methods evolve, the availability of open-source AI tools, such as
the models leveraged in this work, is expanding. These tools show great promise
but also highlight the critical need for ongoing validation, particularly with external
patient cohorts. Validation is essential to identify and address potential failures in
outlier cases or when dealing with out-of-distribution data. While these occurrences
are rare, they are particularly concerning in clinical processes that inform diagnostics
and treatment planning. Therefore, human-in-the-loop approaches will remain a
vital standard, ensuring that AI tools become robust and reliable assets in clinical
settings, where human oversight plays a crucial role in preventing errors.

The findings from this research contribute to the growing body of knowledge on
RT-related cardiotoxicity. Although a significant dose-response relationship was not
observed within the studied cohort, the work emphasizes the importance of careful
cardiac dose management in reducing long-term cardiovascular risks for cancer
patients. As the field progresses towards more refined, individualized treatment
strategies, contemporary high-quality RT approaches are effectively minimizing heart
toxicity, rendering it a minor clinical concern. Future research that delves into more
granular dose-response relationships, leveraging substructure delineation or IBDM
methods, can further enhance our understanding of the radiosensitivity of cardiac
and surrounding tissues. As tools continue to advance, the application of AI in RT is
poised to become an increasingly valuable and ubiquitous tool.
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Looking forward, the field promises exciting advancements that could revolutionize
cancer care. As imaging analysis technologies and computational power and models
continue to evolve, the integration of AI in RT is expected to further enhance
precision and personalization in treatment planning. The potential for AI to play a
pivotal role not only in delineation and dose calculation but also in diagnostics and
predictive analytics is becoming more apparent. This would enable more tailored
treatments based on individual patient profiles. Additionally, the growing availability
of large-scale data will allow for more comprehensive analyses, improving our
knowledge about the long-term impacts of RT and other treatments. This progression
holds the potential to deliver more effective, safer, and patient-centered cancer care,
with AI and data-driven insights leading the way.

56 Chapter 8 Conclusion



Glossary

Source: Encyclopedia Britannica [137]

Aalen-Johansen Estimator A method used in survival analysis to estimate cumula-
tive incidence functions in the presence of competing risks.
Atlas-Based Segmentation A semi-automated technique using pre-segmented anatom-
ical atlases to guide the segmentation of structures in medical images.
Beta-Blockers Medications that reduce blood pressure and heart rate, often used to
manage heart conditions.
Cardiac Sparing Techniques and strategies used to minimize radiation exposure to
the heart during radiotherapy.
Central Person Register (CPR) A national registry in Denmark containing personal
data for statistical and administrative use.
Dose-Volume Histogram (DVH) A graphical representation commonly used in radi-
ation therapy to evaluate the distribution of radiation doses within a target volume
(such as a tumor) and surrounding organs at risk (OAR).
Echocardiograms An ultrasound of the heart used to monitor cardiac function and
detect abnormalities.
Fully Automated Segmentation Uses advanced algorithms, including machine
learning, to automatically segment organs and tumors without manual input.
Kaplan-Meier (KM) A statistical method used to estimate survival probabilities over
time.
Landspatientregisteret (LPR) The Danish National Patient Register, containing data
on all patients admitted to hospitals in Denmark.
Manual Segmentation The process of manually outlining the boundaries of organs
and tumors in medical imaging.
Mean Heart Dose (MHD) The mean dose of radiation received by cardiac tissue
during radiotherapy.
Neuroimaging Informatics Technology Initiative (NIfTI) A file format used for
storing neuroimaging data.
Organs at Risk (OAR) Healthy tissues that are sensitive to radiation and must be
protected during radiotherapy.
Overall Survival (OS) The duration of time from baseline to death from any cause.
Pericarditis Inflammation of the pericardium, the sac surrounding the heart, which
can cause chest pain, fever, and abnormal heart rhythms.
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Proton Therapy A type of radiotherapy that uses protons instead of X-rays, allowing
for more precise targeting of tumors with minimal damage to surrounding tissues.
Semi-Automated Segmentation Combines manual input with automated algo-
rithms to delineate structures in medical imaging.
Statistical Analysis Plan (SAP) A document detailing the statistical methods to be
used in analyzing data from a study.
Valvular Disease Disorders involving the heart valves, including conditions such as
aortic stenosis and mitral regurgitation.
V5 and V30 The volume of the cardiac tissue receiving 5 or 30 Gy, respectively. of
radiation at least
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Highlights
10,215 radiation therapy plans extracted and analyzed
Hearts were re-delineated with machine learning on the therapy CT-scan to ensure time-
independent delineations
Cardiac doses were found to decrease over time, especially high dose exposure of intrathoracic 
lesions
An unexpected increase in cardiac high dose volume (V40Gy) for breast cancer treatment plans 
in recent years was observed

Abstract
Background and purpose
In the last 20 years, it has become well-documented that incidental cardiac exposure to ionizing radiation 
is associated with a clinically relevant increased risk of cardiovascular morbidity. In parallel, radiation
therapy technologies have been developed to provide target dose coverage with less exposure to 
adjacent organs at risk. In the current work, we investigate trends in cardiac exposure among patients 
treated with curative intent radiotherapy from a single institution between 2009 to 2020. 
Materials and methods
10,215 treatment courses were analyzed from 9,966 patients treated with curative intent for intrathoracic 
or breast cancers in the period 2009-2020. All hearts were re-delineated using an AI model to ensure 
consistency over time. Cardiac doses were extracted in 3D from the record-and-verify system and 
converted, voxel-by-voxel, to equi-effective doses in 2 Gy fractions (EQD2) using / =2 Gy. Mean heart 
dose (in EQD2) and volume exposed to 5 and 40 Gy (V5 and V40Gy), respectively, were extracted. Time 
trends in these cardiac dose-volume metrics were investigated for each diagnosis.
Results
Patients with esophageal cancer had the highest mean heart dose (median = 11.67 Gy; IQR = 2.85, 
18.18), while the lowest was observed in patients with breast cancer (median = 0.60 Gy; IQR = 0.30, 
1.08) and lymphoma (median = 0.01 Gy; IQR = 0.00, 0.38). A decreasing trend over time was seen most 
clearly for patients with esophageal and lung cancers (p<0.05). Among patients with breast cancer, V40 
decreased from 2009-2015 after which we observed an increase.
Conclusion
There has been a significant reduction in radiation exposure to the heart in patients treated in the period 
2009-2020, likely due to increased awareness of cardiovascular toxicity and technological developments.
The study also found a significant increase in V40 from 2015 to 2020 for patients with breast cancers,
possibly related to increased prioritization of target coverage.
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Introduction
The heart used to be considered a relatively radioresistant muscular structure, but publications in the 
modern era have demonstrated a clear association between cardiac exposure and risk of subsequent 
cardiovascular morbidity (Cutter et al., 2015; Darby et al., 2005, 2013; Van Nimwegen et al., 2016; van 
Velzen et al., 2022).

As a consequence, a number of technical developments have been introduced with the aim of minimizing 
the exposure of the heart to radiation. Examples of techniques with a documented dosimetric benefit 
during conventional exposure include proton therapy (Hassan et al., 2023) and deep inspiration breath 
hold (Nissen & Appelt, 2013; Pedersen et al., 2004; Petersen et al., 2015), whereas Intensity modulated 
radiotherapy (IMRT) has been shown to decrease cardiac exposure, but possibly at the expense of an
increase in low dose bath (Chun et al., 2017).

Even for patients with a high risk of cancer recurrence, there have been reports of survival detriments 
with higher cardiac exposures (Atkins et al., 2021; Brink et al., 2022). Conversely, the Danish Breast 
Cancer Collaborative group showed that omitting an elective target to decrease cardiac dose may be
unacceptable in terms of treatment efficacy (Thorsen et al., 2016a).

It remains to be defined to what extent increased awareness and technological advances allowing for 
more conformal treatment have impacted cardiac exposure in clinical practice. This study investigates
trends in the cardiac dose received by patients treated with curative intent radiotherapy at a tertiary 
hospital in Denmark over the last decade (2009 to 2020). This study utilizes a previously presented 
method and pipeline for analyzing large cohorts of patients with detailed individual 3D dosimetry data and 
consistently delineate hearts (Smith et al., 2022). The study aim is to elucidate changes in dose delivered 
to the heart over time, to display the cumulative impact of gradual improvements in radiotherapy 
techniques and concerted efforts to reduce heart irradiation.

Methods
We included all patients receiving curative intent radiotherapy at Copenhagen University Hospital -
Rigshospitalet, Denmark between 2009 and 2020 with breast cancer, esophageal cancer, lymphoma, 
non-small cell lung cancer (NSCLC), or small cell lung cancer (SCLC), cf. Figure 1. Patients were 
identified in the ARIA record and verify system by local radiation therapy codes for treatments with 
curative intent. We extracted CT scans and 3D dose matrices using the Digital Imaging and 
Communications in Medicine (DICOM) protocol for automated access. Dose matrices obtained from the 
system represented dose calculations based on Anisotropic Analytical Algorithm or Acuros as employed 
at the time of treatment. Finnegan et al. showed that the guidelines and practice of contouring the heart 
have changed between 2009 and 2014, and this in turn will affect the dose-volume metrics for heart
(Finnegan et al., 2020). Therefore, we used an in-house and open-source AI software, RootPainter3D, 
which facilitates the training of a 3D U-net model via corrective-annotation (Smith et al., 2022), to 
redelineate all hearts. Our cardiac delineations model was trained on 933 manually corrected CT scans 
from a prior immune toxicity study (Terrones-Campos et al., 2023). This model was then used to delineate
all 14,044 CT scans within the entire population, yielding cardiac delineation on each CT scan. For quality 
assurance, all delineations were reviewed for gross errors in 2D with an in-house review tool (Figure A1).
The average time to review each delineation was less than 5 seconds, which equated to approximately 
16 hours of work. Questionable cases were extracted in 3D and assessed with a physician to determine 
inclusion.

Fraction delivery times and dates were extracted from the record and verify system to aid dose 
assessment. When only one plan existed, the total dose was calculated as the sum over the fractions 
delivered. If two or more plans existed based on the same CT scan, the total dose was calculated as the 
sum over the total delivered fractions for each plan and then added together. If multiple plans existed
based on different CT scans, it was not possible to directly sum fractions. In such cases, the plan with the 
most delivered fractions was used and we scaled up the dose to correspond to the number of fractions 
delivered in total across all CT scan/treatment plans. Cases with multiple plans, changes in treatment
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schedule, or otherwise not possible to reliably process as above were excluded. Similarly, we excluded
electron plans and a small number of cases treated on an MR accelerator or Ethos as these systems 
could not be accessed automatically.

Fractionation correction was performed using Withers formula for equi-effective dose in 2 Gy fractions 
(EQD2) voxel-wise on the 3D dose matrix:

 

where D was the total dose at that voxel, d was the fraction was 
set to 2 Gy.

The mean heart dose (MHD) was calculated in EQD2. The dose volume histogram (DVH) values for each 
1-Gy bin were extracted using EQD2 and calculated in cubic centimeters. We focused on one low dose-
volume metric (V5 volume receiving at least 5 Gy) and one high dose-volume metric (V40 - volume 
receiving at least 40 Gy).

Outliers in dose (several metrics) for all diagnoses were reviewed manually and compared to the record 
and verify system doses together with a medical physicist and/or oncologist to ensure that the automated 
dose extraction was accurate. This led to some necessary exclusion criteria to avoid erroneous cases (for 
example changes from curative to palliative intent).

The density of MHD was plotted for each of the patient groups. Scatter plots and trend plots were 
generated for each metric Rho correlation was calculated for each metric and for each 
group.

R (R Core Team, 2023) was used within the RStudio environment (Posit team, 2023) to conduct analysis 
and generate figures along with the ggplot2 (Wickham, 2016), tidyverse (Wickham et al., 2019), and 
gridextra (Auguie, 2015) packages.

Results
14,826 treatment courses on 13,855 patients in ARIA were eligible for 
this study, as shown in the consort flow diagram (Figure 1). Of these, 10,215 treatments on 9,966 patients 
could be included in the final analysis. Details of reasons for exclusion are given in the appendix, but in 
short,

10,215 treatments were included in the final analysis (Figure 1). Of these, the majority of treatments were 
patients with breast cancer (70%) and the smallest group was patients with SCLC (2%) (Table 1). The 
most common fractionation schemes are reported in Table 2. 

We observed a decrease over time in the annual number of patients receiving radiotherapy at
Rigshospitalet for the indications considered here. This change reflects the transition of a satellite center 
to become a separate clinic causing a change in uptake area.

The dosimetric results are shown in Figures 2-4 with further details in supplementary figures. Starting with 
breast cancer, 92% of patients had a MHD below 2 Gy (Figure 2). The median MHD, V5, and V40 was 
second lowest across all analysis groups, while the means were the lowest (Table 1). The median MHD 
decreased significantly across the timeframe (p < 0.001) (Figure 3, Table 1). Neither the median V5 nor
V40 decreased significantly (p = 0.37 and p = 0.065, respectively) (Figure 4, Table 1). High dose outlier 
cases decreased for both V5 and V40 (Figure A2). However, in the second half of the time period, the
median MHD, V5, and V40 of breast cancer patients increased significantly (p < 0.001).
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Patients with lymphoma did not have a significant decrease in heart exposure over time (Table 2, Figure 
3). Rather, there as a weak trend toward an increasing dose, which was driven by a decrease in cases 
with no heart exposure. Specifically, in the first 3 years 57% of MHD were zero, while in the last 3 years 
this fell to 38%. Mean MHD was 1.5 Gy, with 82% of the patients exposed to less than 2 Gy and 95% of
the patients exposed <10 Gy.

Patients with Esophageal cancer had the highest MHD, V5, and V40. Only 22% of esophageal patients 
received less than 2Gy MHD. This is where we see the largest improvement in cardiac doses over time,
especially V40 is reduced substantially. Specifically, median MHD decreased from 18.1 Gy in the first 4 
years to 12.0 Gy in the last for years for the esophageal group. For NSCLC, median MHD decreased from 
7.0 Gy in the first 4 years to 3.5 Gy in the last 4 years. The corresponding decrease for SCLC was from 
6.9 Gy to 3.0 Gy. The dose reduction in MHD is driven by the decrease in the high dose exposure. We 
also observe that the occurrence of high dose outliers decreasing over time (Figure 3, Figure A2). Only 
patients with SCLC and NSCLC had a significant decrease in V5. Only patients with Esophageal and 
NSCLC had a significant decrease in V40.

Discussion
Using an AI method, we were able to assess the MHD, and cardiac V5 and V40 of 10,000 patients 
treated with curative intent radiotherapy from 2009 to 2020 in key diagnostic groups. This real-world data 
analysis provides the end-result of cardiac exposures because of all combined changes of treatment in 
the study period, with a time-independent cardiac delineation method.

Starting with breast cancer the key findings were that cardiac exposures among patients with breast 
cancer in the Danish cohort were much lower compared to historical data, including the patients studied 
by Darby et al. (Darby et al., 2013). According to Darby et al., a MHD increase of 2 Gy is associated with 
a 14.8% excess relative risk of major coronary events. For a patient exposed to 2 Gy at age 50, this 
excess relative risk converts to an excess absolute risk of death from ischemic heart disease of just 0.1 % 
at attained age of 70 years (Calculated from cumulative incidence data derived from Darby et al 
supplemental table 13). Given that 92% of patients have lower exposure than 2 Gy, our data supports 
that cardiac risk pertaining to modern radiotherapy for most breast cancer patients is extremely low. 

The Danish Breast Cancer Collaborative Group, DBCG, published the results of a population-based 
cohort study on the effect of internal mammary node irradiation in early node-positive breast cancer in 
2016 with the main conclusion that omission of irradiation to spare the heart may negatively affect 
survival and disease control (Thorsen et al., 2016b). The DBCG data was also included in a recent 

meta-analysis of 14,324 participants in clinical trials. The EBCTCG data shows an excess non-cancer 
related mortality in older trials when adding regional node irradiation, but this effect was absent in trials 
accruing from 1989-2013. In the more recent trials, a benefit was seen in reduction of breast cancer 
mortality without an adverse effect on non-breast cancer mortality. More specifically, the EBCTCG 
analysis report an absolute risk reduction in breast cancer mortality of 3% (95% CI: 1.1-4.9%) at 15 years 
and a risk reduction of 3% (95% CI: 1.0-5.0 %) for overall mortality when adding regional node 
radiotherapy. These numbers compared to the estimated 0.1% excess absolute risk of cardiac mortality 
clearly support for the increased prioritization of coverage of the target for breast cancer patients 
introduced in national and departmental guidelines after the IMN study in 2016. This clinical prioritization 
may explain the slight increase in cardiac exposure observed in recent years.

Nevertheless, continued monitoring, as presented here, can still point to continued optimization potential. 
Future work includes omission of radiotherapy for select patients (e.g., NCT03646955) or advanced 
techniques, such as proton therapy (e.g., ISRCTN14220944). It should be noted that the continued 
potential to gradually reduce high doses in outlier cases in recent years may imply that patient volume 
estimates for proton therapy trials using historical data, as in the DBCG proton trial, may overestimate the 
frequency of proton therapy indications for future patients (Stick et al., 2021).
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The lymphoma patients are a quite different cohort, where the disease localization is highly 
heterogeneous. Lymphoma cases with high dose likely have a mediastinal target at the level of the heart, 
and this will effectively drive the incidental dose to the heart. DIBH was available as a treatment option 
from the early years for this treatment group (Rechner et al., 2017) which reduces cardiac exposure, but it 
appears that further improvement is difficult with current available methods. However, increased 
conformity to target should still be sought, including adaptation of the plan to daily patient anatomy and
proton therapy as possible avenues for dose reductions to the heart.

We now turn to discuss lung and esophageal cancers. Among the intrathoracic solid cancers cardiac 
exposures vary considerably depending on target position. The observed reduction in MHD is driven by 
the reduction in high dose regions which is consistent with the increased high dose conformity and 
increased low dose bath associated with intensity modulated techniques (Bergom et al., 2021).
Additionally, the reduction is accompanied by reduced number and severity of high dose outlier cases. 
IMRT and volumetric arc techniques are used routinely for these patients in the later years. Deep 
inspiration breath-hold techniques have been evaluated for these patient groups but are not yet uniformly 
offered and do depend on patient compliance (Josipovic et al., 2019). Thus, there appears to be potential 
for further improvement in these patient groups. Central versus non-central location and mediastinal 
lymph node involvement will be important factors for individual exposure. Knowledge based planning is
one way to individualize the expected achievable dose plan and the present work could be used as an 
avenue to increase the training data from the current standard of ~100 patients (Li et al., 2017).

The decrease in patient volume at Rigshospitalet is due to a change in treatment center capacity in our
historical uptake area. While there may be some differences in the patient population (e.g.,
socioeconomic status and lifestyle) it is not expected that this would have an association with the severity 
of cancer nor prescription of dose. Therefore, we do not anticipate this change in demographics to yield 
relevant bias to our conclusions.

Machine learning models for structure delineation combined with modern archival systems means that 
large-scale dosimetric analyses have been made possible as also demonstrated previously in breast 
cancer trial datasets (Finnegan et al., 2020). In the current study we used such methods to documents 
trends in incidental cardiac irradiation in a variety of diagnoses and over a period of 12 years in a single 
institution and in a very large patient cohort. Unfortunately, it is not possible to draw a specific causal
relationship between individual changes in guidelines and the decrease in cardiac dose, however this 
serves as an overarching description of the combined impact of all these changes. Data points to 
improved cardiac sparing over time. A formal health economics perspective is outside of the scope of this 
paper, but we still find it relevant to emphasize that the employed techniques in later years (IMRT, dose 
planning expertise, awareness, and breath hold) come at a very modest if any excess resource 
expenditure per patient once the investment in equipment has been made.

The scalability of ML algorithms, of which the present study is one example of several, is a potential game 
changer in several areas (Vogelius et al., 2020). Here we demonstrated the ability to closely monitor 
doses to organs at risk across disease sites and over time in an unselected patient cohort. We were able 
to monitor detailed dose-volume data, including low dose bath and high dose exposure to the heart. The 
methods could be combined with machine learning techniques to account for the 3D heart exposure, one 

knowledge-based
or claims-based outcome data to elucidate new knowledge of rare, high-grade toxicities.

In conclusion, the analysis of a large consecutive dataset of patients documented continuous 
improvements in cardiac sparing over time consistent with continued technical improvements as well as 
clinical awareness.
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Tables and Figures

Figure 1. Consort diagram.
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Table 1. Demographics and dose statistics, including mean heart dose (MHD), heart volume 
receiving at least 5 Gy (V5), and heart volume receiving at least 40 Gy (V40).

Breast Esophageal Lymphoma Non-Small 
Cell Lung

Small Cell 
Lung

Treatments 
(N)

7113 663 1624 623 192

Male,
n (%)

27
(0.38)

461
(69.5)

859
(52.9)

339
(54.4)

89
(46.4)

Age,
median (IQR)

62.5
(54.4, 68.8)

66.3
(60.7, 71.7)

63.7
(50.0, 72.4)

67.0
(60.3, 71.9)

65.7
(60.2, 71.0)

MHD in Gy,
median (IQR)
rho (P)

0.60
(0.30, 1.08)

11.67 
(2.85, 18.18)

0.010
(0.00, 0.38)

4.28
(1.26, 9.95)

4.43   
(1.65, 8.13)

-0.071 (<0.001)* -0.29 (<0.001)* 0.12 (<0.001)* -0.28 (<0.001)* -0.23 (0.0011)*

V5 in cubic cm,
median (IQR)
rho (P)

2.245
(0.00, 13.92)

466.55 
(93.46, 681.42)

0.00    
(0.00, 0.00)

132.8 
(33.9, 314.0)

156.62 
(48.39, 329.76)

0.011 (0.37) -0.081 (0.37) 0.054 (0.029)* -0.17 (<0.001)* -0.17 (0.021)*

V40 in cubic cm,
median (IQR)
rho (P)

0.00
(0.00, 0.012)

41.74
(4.99, 84.72)

0.00
(0.00, 0.00)

11.86
(0.00, 50.02)

0.84
(0.00, 7.81)

-0.022 (0.065) -0.36 (<0.001)* -0.004 (0.86) -0.39 (<0.001)* -0.015 (0.84)
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Table 2. Fractionation schemes with at least 5% of each analysis group
Group Fractionation Scheme N Proportion

Breast 15 X 2.7 Gy 3184 44.8%
25 X 2 Gy 2742 38.5%

Esophageal 25 X 2 Gy 551 83.1%
Lymphoma 20 X 2 Gy 268 16.5%

10 X 3 Gy 215 13.2%
15 X 2 Gy 187 11.5%
17 X 1.8 Gy 139 8.6%
13 X 2 Gy 124 7.6%
5 X 5 Gy 123 7.6%
12 X 2 Gy 107 6.6%

Non-Small Cell Lung 33 X 2 Gy 455 73.0%
32 X 2 Gy 41 6.6%

Small Cell Lung 30 X 1.5 Gy 157 81.8%
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Figure 2. Cumulative density plot showing the proportion of patients by mean heart dose (MHD)
in each analysis group. For example, approximately 92% of treatments in the breast cancer 
group received less than 2 Gy in MHD. The X-axis is scaled by a square root transform for 
clarity across the range of doses. Dose is reported in equivalent dose in 2 Gy fractions. 
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Figure 3. Annual trend plots (above) of median mean heart dose (MHD) for each analysis 
group, with lower (Q1) and upper (Q3) bounds. Scatter plots (below) of MHD for each analysis 
group. Note that each panel has an independent y-axis scale, and in particular the breast 
cancer scale is relatively small. 
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Figure 4. Annual trend plots of median heart volume receiving at least 5 Gy (V5) and heart 
volume receiving at least 40 Gy (V40) for each analysis group, with lower (Q1) and upper (Q3) 
bounds. Note that each panel has an independent y-axis scale, and in particular the breast 
cancer scale is relatively small.
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Appendix

Figure A1. Example of software interface used for validation of the cardiac delineations. The 
top row displays the CT scan overlayed by the cardiac delineations in all three anatomical 
planes axial, sagittal, and coronal (left to right) taken at the center of mass of the 
delineation. The bottom row represents a rendering of the 3D cardiac delineation, where a more 
intense yellow color indicates a thicker section of heart. The user toggles through all patients 
and decides whether the delineation is acceptable, unacceptable, or undecided (which required 
further review with an oncologist).
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Figure A2. Scatter plots of heart volume receiving at least 5 Gy (V5) and heart volume receiving 
at least 40 Gy (V40) for each analysis group. Note that each panel has an independent y-axis 
scale, and in particular the breast cancer scale is relatively small.
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Highlights 
• Age and existing heart disease far outweighed heart dose as predictors of ischemic heart disease 

• Overall survival is not a useful surrogate for cardiac toxicity in dose-response studies due to 

confounding by disease stage 

• With modern RT techniques, the excess absolute risk attributable to radiotherapy is so small 

that a statistically significant dose-response could not be observed even in 9,411 patients 

• For most patients, good quality contemporary radiotherapy is sufficient to limit heart toxicity as 

a clinically relevant concern 
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Abstract 

Background and purpose  
Radiation therapy (RT) to the thorax poses risks of radiation-induced cardiotoxicity, potentially 

increasing cardiovascular diseases (CVD) incidence. Advances in RT strive to minimize these risks by 

reducing heart radiation dose exposure. 

 

This study integrates detailed 3D dosimetry on individually delineated hearts with registry-based 

outcome data to assess the impact of radiation dose on cardiovascular morbidity and overall survival 

(OS) across multiple cancer types. It also examined the influence of patient-specific factors on 

cardiotoxicity risk and survival outcomes. 

 

Materials and methods 

We analyzed data from 9,411 patients receiving RT at Rigshospitalet between 2009 and 2020 for breast, 

esophageal, lymphoma, and lung cancers. Cumulative incidence of CVD and death in the presence of 

competing risks was calculated with the Aalen-Johansen estimator. The impact of radiation dose and 

patient characteristics on ischemic heart disease (IHD) onset and OS were assessed using Kaplan-Meier 

and Cox Proportional-Hazards Models. 

 

Results 
Higher mean heart dose (MHD) was associated with poorer OS in breast and lung cancer patients 

(Hazard ratio 2.8 and 1.2), but no significant relationship was found between MHD and IHD. Established 

cardiac risk factors (age, sex, and existing IHD) outweighed cardiac dose as a risk factor for subsequent 

cardiac events for all diagnoses. The risk of death was greater than subsequent CVD, especially in 

esophageal and lung cancers (cumulative incidence 60% versus 17% and 60% versus 14%), despite 

comparatively high heart doses. 

 

Conclusion  
The study demonstrates that risk of death from primary cancer is of far greater concern than risk of 

subsequent cardiac events from cardiac radiation dose exposure in the range achievable with 

contemporary RT techniques, especially for lung and esophageal cancer patients. Further sparing of the 

heart should not be prioritized at the expense of adequate treatment of the index cancer.  
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Introduction 
Radiation therapy (RT) is a critical treatment modality for cancer, offering effective control for many 

tumor types. Despite therapeutic benefits, RT can pose significant risks of adverse events from 

unavoidable irradiation of normal tissue surrounding the target. Radiation-induced cardiotoxicity is a 

concern among thoracically irradiated patients [1,2]. It can manifest as ischemic heart disease (IHD) 

among other cardiovascular diseases (CVD).  

 

Radiation-induced cardiotoxic late-effects are an increasing concern for cancer patients [3–10]. The 

focus on cardiotoxicity mitigation is increasing with the establishment of guidelines including thresholds 

on delivered cardiac dose [11]. Darby et. al quantified the risk of CVD in breast cancer patients in 2013; 

recent work has extended findings into lymphoma and lung cancers [10,12]. Ongoing advances in 

radiation technology and techniques aim to reduce CVD risks by minimizing the mean heart dose (MHD) 

and other critical dosimetric parameters. These measures resulted in significant decreases in cardiac 

dose [13].  

 

Many studies highlight the complex interplay between radiation dose, patient characteristics, and 

cancer stage on cardiac outcomes [14]. Particularly, the relationship between radiation-induced 

cardiotoxicity and overall survival (OS) has garnered attention, with evidence suggesting higher radiation 

doses to the heart correlate with poorer survival outcomes in certain cancers [15–18]. Therefore, there 

is a need for precise dosimetric assessments and comprehensive outcome data to understand the dose 

effect on overt cardiotoxicity. 

 

The current study integrates detailed 3D dosimetry data on 9,411 individually delineated hearts with 

outcomes from national registry systems to analyze cardiotoxicity and mortality following standard 

cancer treatment with RT. We aimed to quantify and contextualize the impact of radiation dose and 

patient-specific factors on cardiotoxic side effects and OS. These findings can inform optimal directions 

for future refinement of treatment planning and delivery. 

 

Methods 
Data Curation 
Eligible patients included those treated with curative intent at Rigshospitalet in 2009-2020. Patients with 

breast cancer, esophageal cancer, lymphoma, and non-small cell (NSCLC) or small cell (SCLC) lung cancer 

were included. We identified patients by departmental codes used in the record and verify system.  

 

Associated computed tomography (CT) scans and 3D dose matrices were acquired through the record 

and verify system. Heart segmentation on all planning CT scans were performed using an open-source AI 

software [19]. All heart delineations were validated by manual review in 2D. Questionable cases were 

secondarily reviewed in 3D with a physician and unacceptable cases were omitted. Calculated dose 

metrics included mean heart dose (MHD), absolute volume receiving at least 5 Gy (V5), and absolute 

volume receiving at least 30 Gy (V30) - all converted to equivalent doses in 2 Gy (EQD2) fractions (α/β 

ratio = 2 Gy). Sex and birthdate were collected from patient records, as previously detailed in Forbes et 

al. 2024 [13]. 
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Outcome data were extracted through electronic health records (EHR) maintained at the Centre of 

Excellence for Personalized Medicine of Infectious Complications in Immune Deficiency (PERSIMUNE) 

data warehouse. Diagnostic codes were sourced from The National Patient Register 

(Landspatientregisteret (LPR)) database. Death and emigration records were sourced from the Central 

Person Register (CPR).  

 

Statistical Analysis 
A statistical analysis plan (SAP) was established and published prior to analysis [20]. Modifications were 

made to the original SAP (Table A1).  

 

The primary endpoint was onset of IHD following RT, defined by ICD-10 codes I20-I25 occurring after 

baseline, defined as the date of the last fraction of RT. Additionally, a broader outcome of CVD including 

valvular disease (VD; I00-I09, I34-I39) and heart failure (HF; I50) was assessed. OS was also analyzed. 

 

All analyses were conducted separately on each cancer diagnosis due to heterogeneity among patient 

populations. The reverse Kaplan-Meier (KM) method was used to report follow-up in the absence of an 

event [21]. Absolute risk estimates of the competing events of the three CVD outcomes and death from 

other causes were analyzed using Aalen-Johansen estimates.  

 

To predict risk of IHD, KM and Cox Proportional-Hazards Model (PHM) were used. Univariable KM curves 

were generated for each independent variable. Survival distributions were compared between factor 

levels with a log rank test (for variables with 2 levels) or test for trend analysis (for variables with >2 

levels). Multivariable analysis of these variables was conducted with the Cox PHM. Patients were 

censored at the date of emigration, death, or the last potential follow-up (December 31st, 2020). These 

KM and Cox PHM were then replicated with OS as the outcome. 

 

Independent variables of interest included sex, age, existing IHD, and MHD. Sex was omitted for the 

breast cancer cohort as the very few males were excluded. Age was calculated at baseline and fit as a 

categorical variable with three levels (<60, 60-70, and >70). Existing IHD was defined as the same 

diagnostic codes as the outcome occurring prior to baseline. For the KM analyses, MHD was presented 

as below or above the group specific median for visual simplicity. For the Cox PHM, MHD was fitted as a 

linear predictor.  

 

Sub-analyses were conducted on populations with and without existing IHD as a secondary analysis and 

among lymphoma patients receiving high MHD (>5 Gy). Young patients in the breast and lymphoma 

cohorts were further subdivided into age groups (<40, 40-50, and 50-60), due to their abundance and 

heterogeneity. The KM and Cox PHM were replicated with the broader definition of diagnosis codes to 

represent CVD in place of IHD. This was for both the outcome and independent variable of pre-existing 

disease. The impact of including a low (V5) and high (V30) volumetric dose measure on model 

performance was assessed with log-rank tests comparing nested Cox PHMs. 

 

All analyses were conducted using R statistical software [22,23]. Packages ‘prodlim’, ‘survival’, and ‘rms’ 

were used to conduct analysis [24–26]. Additionally, we leveraged ‘ggplot2’, ‘ggfortify’, ‘sjPlot’, and 

‘cowplot’ to generate figures [27–30]. p<0.05 was considered significant. 
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Results 
9,411 patients were included in the outcome analysis (Figure 1). Prior cancer was the main reason for 

exclusion. Breast cancer formed the largest proportion with 6808 patients, followed by lymphoma with 

1251, esophageal with 627, and lung with 729. Breast cancer and lymphoma had the youngest 

populations, see Table 1. In terms of dosimetric data, MHD was less than 1.74 Gy in 90% of breast 

cancer cases. 

 

The median follow-up time was 6.3 years (IQR 3.1-8.9). The 3-year cumulative incidence [95% CI] of CVD 

was greatest at 17% [13-21%] in esophageal, followed by 14% [11-17%] in lung, 9% [7-11%] in 

lymphoma, and 5.3% [5-6%] breast cancer patients (Figure 2). The 3-year cumulative incidence of death 

far outweighed that of CVD, especially in esophageal at 60% [56-64%] and in lung at 60% [56-63%], and 

to a lesser extent at 20% [17-22%] in lymphoma and 5% [4-5%] in breast cancer patients. Patients with 

breast cancer had a steady linearly increasing risk of death across time, while the other patient groups 

had a higher initial risk of death in the first year.   

 

Existing IHD had a large impact on subsequent IHD across all groups (Figure 3) and was associated with 

poor OS in all but lung cancer patients (Figure 4). In contrast, the effect of MHD on IHD was small and 

non-significant, except for patients with lymphoma where the relationship was inverse, see Figure 3. A 

high MHD was significantly associated with poorer OS in breast and lung cancer patients, see Figure 4. 

Patients with lymphoma and a MHD above 5 Gy were also significantly younger than those with a lower 

MHD (median age of 44.9 compared to 63.3; P < 0.001 (Table A2)). Age had a significant impact on IHD 

in patients with breast cancer and lymphoma, and on OS in all cancers except esophageal. 

 

The multivariable analysis demonstrated how the magnitude of existing IHD far outweighed the other 

predictors for subsequent IHD, see Figure 5. MHD was not significantly associated with IHD in any group. 

There was a large significant effect of MHD on OS in patients with breast cancer (HR 2.8) and a smaller, 

but still significant effect of high MHD on OS in patients with lung cancer (HR 1.2). Age was significantly 

associated with OS for all groups apart from esophageal cancer, while the effect was particularly strong 

in lymphoma patients. There was no significant effect of sex in any group for either outcome, though the 

direction of the effect was as expected with males having higher hazards than females (Figure A1).  

 

As sensitivity analyses, we separately analyzed populations with and without existing IHD, but this did 

not vary greatly from the primary results (Figure A2; Figure A3; Figure A4). Younger patients with breast 

cancer and lymphoma did show distinct trends (Figure A5; Figure A6). Results for the broader definition 

of CVD did not differ significantly from IHD (Figure A7; Figure A8). There was substantial correlation 

observed between dose parameters (Figure A9; Table A3). Adding V5 or V30 to models including MHD 

therefore did not add significant explainability, and thus results and discussion focus on models without 

volumetric dose measures.  
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Discussion 
This study first quantifies mortality and cardiotoxic side effects in thoracically irradiated cancer patients. 

It then analyzes the relative impact of radiation dose and other patient-specific factors on outcomes.  

We found the risk of death from cancer far exceeded the risk of cardiac disease, particularly among 

patients with lung and esophageal cancer. Contrary to earlier findings, no significant relationship was 

found between cardiac irradiation parameters and subsequent IHD [8–10]. Subsequent IHD risk was 

dominated by known background population factors of existing IHD, age, and gender in this study. Our 

findings support that modern RT cardiac sparing advancements limit radiation-related cardiotoxicity and 

tumor control remains the main clinical problem across all diagnoses studied. Known patient-specific 

prognostic risk factors impact outcomes significantly more than dose in the achievable cardiac dose 

range in this series. While these factors are not controllable, they may help identify high-risk patients 

and inform treatment planning [21].  

 

Overall Survival 
There is a dose-related association between high MHD and poorer OS in breast and lung cancer patients 

in accordance with other reports in literature [15]. For breast cancer patients, the guidelines define the 

extent of radiation, particularly parasternal lymph node irradiation, according to disease stage. 

Therefore, the observed dose relationship with OS may be confounded by patients receiving regional 

node irradiation having a higher dose to the heart and a less favorable survival of the index cancer. 

Similarly, different subtypes of lung cancer may tend to occur in different parts of the lungs. 

Additionally, the size of the primary tumor will influence the risk of irradiating the heart. Therefore, an 

endpoint specific analysis is necessary for further understanding. 

 

It should surprise no-one that age influences the survival in patients with a favorable cancer prognosis 

(Figure 4; Figure A5). In addition to the obvious association with general mortality, there may be age-

related staging effects and challenges such as poor adherence to treatment protocol. For breast cancer, 

mammography screening is not recommended after age 70 in Denmark, meaning a higher proportion of 

patient-detected and thus poorer-prognosis cases [31–33]. For lymphoma, the magnitude of this age 

effect is much larger than what we observed for breast cancer. The lymphoma data are complex due to 

confounding with lymphoma subtypes with very different prognoses being diagnosed at different ages 

and may be treated with radiotherapy at primary treatment or relapse. Nevertheless, the data shows 

that the prognosis of elderly patients is poor. The systemic treatment for lymphomas, typically 

developed on younger trial patients, is generally quite aggressive and older patients often do not 

tolerate this treatment well. The role of radiotherapy is therefore even more important in older patients 

where the detrimental effects of radiation to the heart need to be carefully balanced against the 

necessity for adequate treatment of the active cancer. 

 

Ischemic Heart Disease 

Existing IHD was found to increase the risk of subsequent IHD as the strongest predictor in the model 

(Figure 3). The scale of existing IHD’s impact can be quantified relative to the dose effect. For breast 

cancer, the presence of existing IHD is equivalent to a MHD increase of 12.5 Gy – doses that should not 

be seen after contemporary treatment. Similarly, the HR between the oldest age group compared to the 

youngest is equivalent to an additional 5.4 Gy. Pre-existing disease status and age must therefore be 
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considered when selecting patient interventions, such as late effects surveillance or proton therapy 

[34,35].  

 

MHD is inversely related to IHD in lymphoma. This result is confounded by the association of age and 

lymphoma subtype. Younger patients more often have mediastinal disease, typically Hodgkin lymphoma 

or primary mediastinal large cell lymphoma, which have good prognoses. The combination of young age 

and good prognoses, even paired with a greater risk of irradiating the heart due to mediastinal RT, 

seems to confer a lower risk of IHD. However, in a multivariable analysis, this MHD effect on IHD is non-

significant. 

 

For breast cancer patients, the observed impact of MHD on OS is unlikely to be mediated by an 

association with subsequent IHD or CVD . This suggests the dominant effect of OS may be related to the 

higher disease stage associated with the wider tangential RT fields to cover regional lymph nodes. Prior 

studies have shown a clear link between MHD and CVD. However, the doses being observed in this 

contemporary cohort are lower than the doses in previous studies [36]. Guidelines in Denmark were 

updated to emphasize target coverage over cardiac dose following the 2016 DBCG-IMN’s findings [37]. 

Our data support this decision. The primary disease should be the main concern and sparing of normal 

tissue should largely be achieved through technological advances rather than compromising the target 

dose. 

 

For patients with lung cancer, this study supports the detrimental effect on OS from higher MHD 

reported by the Manchester group [15]. Yet, we did not observe a corresponding increase in risk of IHD, 

again putting a question mark over cause and effect. This suggests that survival impacts may be more 

related to disease characteristics rather than treatment toxicity, as is the case with breast cancer 

patients. This could include confounding by association between cardiac exposure and mediastinal 

lymph node involvement or disease extent. Additionally, most lung cancer patients experience 

recurrence and therefore the competing risk of death due to cancer is high compared to risk of death 

due to cardiac disease. Access to the specific endpoints of cardiotoxicity improves the interpretability of 

the dose-response findings compared to assessing OS alone. Our data contributes to quantifying the 

discussion of the prioritization between target coverage and cardiac risk in lung cancer patients. Still, 

there is a possibility of significant detrimental effect of radiation to the heart, given the large confidence 

intervals for the estimate of the effect of dose. Nevertheless, disease control should remain the top 

priority in lung cancer patients (Figure 5). 

 

Strengths & Limitations 
This study integrates detailed 3D dosimetry on 9,411 patients from a single institution with individually 

delineated hearts and linked outcome data from Denmark’s national registry systems. The dataset 

enables the investigation and quantification of cardiotoxic side effects of radiation doses over a 12-year 

period. Such data can inform the clinically important discussion of balancing exposure of normal tissue 

against the need to treat the active cancer in patients undergoing radiotherapy with greater confidence 

than smaller studies with manual data analysis.  

 

A limitation is the study’s lack of chemotherapy data. Cardiotoxicity of some chemotherapy drugs, such 

as anthracyclines, are well established [38]. Unfortunately, the registries did not allow reliable extraction 
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of chemotherapy data. Similarly, other data, such as diabetes status or BMI, could have been valuable; 

this data was not reliably available for such a large cohort, but could potentially in the future be 

extracted using natural language processing of patient charts [39,40]. Additionally, inclusion of staging 

and tumor characteristics would have added substantial information to a predictive model. Inclusion of 

coronary artery calcium (CAC) scoring may also contribute to better predictions [41]. Despite these 

limitations, the model captures important patient related factors combined with dose. 

 

Another limitation is that the median follow-up time of 6.5 years is limited due to data availability within 

EHR systems. The statistical power is sufficient to solidly resolve conventional risk factors of age and pre-

existing disease, but despite 540 events of IHD we do not observe a significant dose response 

relationship. Supplementary Figure A10 converts our results to excess relative risk (ERR) per Gy for 

comparison with Darby and Nimwegen and demonstrates overlapping but much wider confidence 

intervals in this cohort study [9,10]. It may be the narrow range of heart doses in the contemporary 

patients which challenges the fitting process and limits the power of the current study. Extended follow-

up would be advantageous, and the method here could be expanded to larger collaborations for further 

confirmation.  

 

Future studies could consider target coverage in addition to cardiac dose. For lung cancers, the 

competing risk of death is so high that a much larger population is needed to detect the effect of MHD 

on IHD, due to endpoint rarity. The point estimate is still trending as expected, suggesting a trend 

consistent with observed toxic effects of cardiac exposure [1]. However, the scale of the impact of this 

aggressive disease significantly overshadows the detrimental impact of radiation on cardiovascular 

health. 

 

An alternative approach to using whole heart dose metrics is a focus on dose effects on cardiac 

substructures. Some studies investigating the relationship between cardiac dose, cardiac events and 

mortality suggest that dose to cardiac substructures is more important than whole heart dose 

[12,18,42,43]. Zhang et al performed a systematic review of eighteen studies published before 2018 

which included locally advanced NSCLC patients treated with concurrent chemo-radiotherapy [44]. All 

twenty parameters were found to be associated significantly with OS and IHD, the most frequent being 

MHD, V5, and V30. However, unlike this study, consistent heart dose-volume parameters associated 

with OS of patients with NSCLC were not identified. Several heart contouring atlases have been 

published aiming at consistent dose reporting to cardiac substructures [15,16,42,45]. Additionally, 

multiple open-access AI tools have been published which may allow us to investigate substructure dose 

trends[46,47] . Furthermore, localization of radio-sensitive regions can be assessed with image-based 

data mining tools  [48–50]. Despite these future prospects, the small magnitude of effect of radiation 

dose to the whole heart compared to patient related risk factors would suggest the probability of finding 

a strong association with a substructure of the heart is probably modest. 

 

In conclusion, we have analyzed a large dataset for registry-based assessment of radiation dose effect 

for the heart. Within the confidence intervals, our dose-effect estimates are consistent with Darby’s 

famous ERR=7.4 %/Gy, but the risk of cardiac radiation exposure with contemporary treatment 

techniques is dwarfed by patient-related risk factors and the competing risk of death for most patients. 

The primary cancer diagnosis remains the single greatest health risk across studied populations, pointing 

to the importance of reducing cardiac radiation without compromising the target coverage. 
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Tables and Figures 
 

Figure 1. Consort diagram. 
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Table 1. Patient characteristics presented as independent variables – sex, age, existing cardiovascular 

disease (CVD), and dose metrics – and outcomes – subsequent CVD, death, and follow-up time. CVD 

includes ischemic heart disease (IHD), valvular disease (VD), and heart failure (HF). Existing CVD is 

defined as occurring before baseline (delivery date of last fraction) and subsequent CVD is defined as 

occurring after baseline. Dose metrics include mean heart dose (MHD), absolute volume receiving at 

least 5 Gy (V5), and absolute volume receiving at least 30 Gy (V30). Doses are presented in equivalent 

dose in 2 Gy fractions (EQD2). Continuous variables are presented as the median (MDN) and 

interquartile range (IQR). Categorical variables are presented as the number (N) and percentage (%) of 

patients. Follow-up time to first event is calculated using the reverse Kaplan-Meier estimator. 
 BREAST 

CANCER 

(N = 6804) 

ESOPHAGEAL 
CANCER 

(N = 627) 

LYMPHOMA 

(N = 1251) 
NON-SMALL CELL 
LUNG CANCER 

(N = 553) 

SMALL CELL 
LUNG CANCER 
(N = 176) 

 INDEPENDENT VARIABLES      

MALE, N (%) 0 (0%) 437 (70%) 666 (53%) 304 (55%) 82 (47%) 

AGE (YRS), MDN (IQR) 
   < 60, N (%) 
   60-70, N (%) 
   >70, N (%) 

62 (54,69) 
2820 (41%) 
2634 (39%) 
1350 (20%) 

66 (61,72) 
141 (22%) 
282 (45%) 
204 (33%) 

63 (47,72) 
555 (44%) 
310 (25%) 
386 (31%) 

67 (60,72) 
135 (24%) 
220 (40%) 
198 (36%) 

66 (60,71) 
43 (24%) 
81 (46%) 
52 (30%) 

EXISTING CVD, N (%) 618 (9%) 136 (22%) 166 (13%) 111 (20%) 28 (16%) 

     EXISTING IHD, N (%) 506 (7%) 119 (19%) 134 (11%) 98 (18%) 26 (15%) 

     EXISTING VD, N (%) 100 (1%) 13 (2%) 28 (2%) 15 (3%) 4 (2%) 

     EXISTING HF, N (%) 119 (2%) 29 (5%) 47 (4%) 30 (5%) 7 (4%) 

MHD (GY) MDN (IQR) 0.61 (0.31,1.1) 12.1 (2.8,18.3) 0.02 (0,0.8) 4.2 (1.3,10.0) 4.8 (1.6,8.5) 

V5 (CM3), MDN (IQR) 2 (0,14) 471 (95,689) 0 (0,9) 132 (39,310) 167 (48,330) 

V30 (CM3), MDN (IQR) 0 (0,1) 72 (10,148) 0 (0,0) 19 (0.2,74) 22 (2, 69) 

OUTCOMES      

FOLLOW-UP (YRS), MDN (IQR) 6.5 (3.2,9.1) 5.02 (3.0,8.3) 5.3 (2.3,8.1) 5.7 (3.7,7.3) 6.7 (4.4,9.5) 

DEATH, N (%) 874 (13%) 424 (68%) 339 (27%) 393 (71%) 125 (71%) 

SUBSEQUENT CVD, N (%) 603 (9%) 94 (15%) 127 (10%) 72 (13%) 18 (10%) 

     SUBSEQUENT IHD, N (%) 342 (5%) 61 (10%) 73 (6%) 49 (9%) 15 (9%) 

     SUBSEQUENT VD, N (%) 184 (3%) 17 (3%) 28 (2%) 9 (2%) 2 (1%) 

     SUBSEQUENT HF, N (%) 210 (3%) 41 (7%) 63 (5%) 35 (6%) 5 (3%) 
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Figure 2. Stacked cumulative incidence plots for each outcome – death, heart failure (HF), valvular 

disease (VD), and ischemic heart disease (IHD), separated by diagnosis. Numbers at risk available in 

supplementary Tables A4-6. 
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Figure 3. Kaplan-Meier plots for freedom from ischemic heart disease (IHD), by mean heart dose (MHD) 

level (below or above median), existing IHD, and age group (<60, 60-70, and >70 years old), separated by 

diagnosis. P-values generated from log-rank test (MHD level and existing IHD) and test for trend (age 

group). Note that the Breast cancer y-axis is truncated at 0.5 to better show separation. Numbers at risk 

available in supplementary Table A4. KM plots for overall CVD available in supplement Figure A7. For the 

effect of sex on freedom from IHD see supplementary Figure A1.  
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Figure 4. Kaplan-Meier plots for overall survival (OS), by mean heart dose (MHD) level (below or above 

median), existing ischemic heart disease (IHD), and age group (<60, 60-70, and >70 years old), separated 

by diagnosis. Note that the Breast cancer y-axis is truncated at 0.5 to better show separation.  P-values 

generated from log-rank test (MHD level and existing IHD) and test for trend (age group). Numbers at 

risk available in supplement Table A5. For the effect of sex on OS see supplementary Figure A1. 
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Figure 5. Forest plots of hazard estimates with 95% CI for predictors in eight Cox proportion hazards 

models on two outcomes - ischemic heart disease (IHD) and overall survival (OS) - separated by four 

diagnoses. The Breast cancer cohort only includes females. A hazard estimate above one indicates an 

increased risk of the outcome. Forest plots for overall CVD in supplement Figure A8. P-value thresholds 

are 0.05(*), 0.01 (**), and 0.001(***).  
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Appendix A – Supplementary Tables and Figures 
Table A1. Rationale for changes in methodology from statistical analysis plan (SAP) to manuscript 

Aspect SAP Manuscript Rationale 

Cohort size Estimated cohort size is 10,492 
patients. 

Final cohort analyzed includes 
9,411 patients. 

Cohort size was reduced due to limiting 
ICD code list to I20-I25. This was not 
implemented at the time of estimation.  

High Dose 
Metric 

Plans to use volume receiving 
at least 40 Gray (V40) as the 
high dose metric. 

Analysis used volume receiving 
at least 30 Gray (V30) as the 
high dose metric. 

V40 was zero-dominant for the largest 
cohorts - breast and lymphoma. After 
discussing with physicians, we decided 
to use a slightly more informative 
variable. Upon testing, this did not 
seem to have an impact. 

Volumetric 
dose measure 
analysis 

Plans to investigate mean 
heart dose (MHD) and 
considers additional low and 
high volumetric dose 
measures. 

Analyzes MHD as the primary 
metric. Limited assessment of 
volumetric measures included.  

These volumetric measures did not 
significantly enhance the model. This is 
likely due to the high amount of 
correlation. They were excluded to 
prioritized simplicity and explainability. 
Future work may explore this further. 

Stratification The analysis was intended to 
be stratified by diagnostic 
group. 

Separate models were run for 
each diagnostic group.  

 It was not reasonable to assume that 
predictors had a similar effect across 
different strata due to distinct 
characteristics of each diagnostic 
group. 

Splines Proposed using spline models 
for MHD and age, depending 
on AIC performance. 

Used only linear predictors for 
MHD and a categorical variable 
for age. 

Testing revealed no significant 
improvement of models with inclusion 
of splines. Prioritized simplification of 
the statistical model to avoid 
overfitting and aid interpretation. 

Competing 
Risk Model 

Fine & Gray method proposed 
for competing risk analysis. 

Aalen-Johansen Estimator used 
for competing risk analysis. 

Preference for a non-parametric 
approach to handle competing risks, 
which provides a method for 
cumulative incidence estimation. 
Covariates were assessed with the Cox 
proportional hazards model.  

Exploratory 
Analyses 

Suggested potential time-
dependent Cox regression and 
separate analyses for 
esophageal and lung cancers. 

Includes sensitivity analyses 
and sub-analyses, including 
separation by age and existing 
IHD status. 

The additional analyses provided 
further granularity based on specific 
patient characteristics, improving the 
depth of findings. 

Endpoints 
Scope 

Focuses on Ischemic Heart 
Disease (IHD) as the primary 
endpoint. 

Analyzes both IHD and a 
broader category of 
cardiovascular disease (CVD), 
including valvular disease and 
heart failure. 

Expanded focus on a broader range of 
cardiovascular outcomes reflects a 
more comprehensive analysis. 

Cause of 
death 

Death from IHD considered an 
event. Death from other 
causes considered a censor. 

Only death from IHD coded 
correctly by ICD codes in the 
LPR were captured in events.  

Cause of death is notoriously 
unreliable. Therefore, we stuck to ICD 
codes from LRP for defining CVD events 
and censored deaths from CPR. 

Outcome 
Measures 

Primary analysis centered 
around Cox Proportional 
Hazards Models for time to 
IHD. 

Expands to include overall 
survival (OS) as a critical 
endpoint in addition to IHD 
and CVD. 

Inclusion of OS allows for a more 
holistic view of patient outcomes, 
beyond just IHD. 
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Table A2. Number of lymphoma patients with mean heart dose (MHD) > 5 Gy by age group. Chi-squared 

test for independence yields a p-value < 0.001. 

 MHD <5 Gy MHD >5 Gy 

<60 years old 449 103 

60-70 years old 285 23 

>70 years old 359 32 
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Figure A1. Kaplan-Meier plots for overall survival (OS), ischemic heart disease (IHD), and cardiovascular 

disease (CVD) by sex in three diagnosis groups. Note: Breast cancer was excluded since only females 

were analyzed.  P-values generated from test for trend. 
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Figure A2. Secondary sub-analyses on populations without existing IHD by diagnosis group. Kaplan-

Meier plots for overall survival (OS), ischemic heart disease (IHD), and cardiovascular disease (CVD) by 

mean heart dose (MHD) level – above and below the group median.  P-values generated from test for 

trend. 

  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 19, 2024. ; https://doi.org/10.1101/2024.08.16.24312108doi: medRxiv preprint 

Appendix A: Study II 110



   

 

26 
 

 
Figure A3. Secondary sub-analyses on populations with existing IHD, by diagnosis group. Kaplan-Meier 

plots for overall survival (OS), ischemic heart disease (IHD), and cardiovascular disease (CVD) by mean 

heart dose (MHD) level – above and below the group median. P-values generated from test for trend. 
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Figure A4. Forest plots hazard estimates with 95% CI for per Gy mean heart dose (MHD) in eight Cox 

proportion hazards models separated by four diagnoses and existing IHD status (with or without). A 

hazard estimate above one indicates an increased risk of subsequent IHD.  
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Figure A5. Kaplan-Meier plots for overall survival (OS) by detailed age group (<40, 40-50, 50-60, 60-70, 

and >70 years old) for breast and lymphoma. P-values generated from test for trend. 
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Figure A6. Secondary sub-analysis of youngest patients in the breast and lymphoma cohorts (<60 years 

old). Kaplan-Meier plots for overall survival (OS) and ischemic heart disease (IHD) by existing IHD as well 

as  cardiovascular disease (CVD) by existing CVD. Note that the Breast cancer y-axis is truncated at 0.5 to 

better show separation.  P-values generated from test for trend. 
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Figure A7. Kaplan-Meier plots for CVD, by mean heart dose (MHD) level (below or above median), 

existing ischemic heart disease (IHD), and age group (<60, 60-70, and >70 years old), separated by 

diagnosis. P-values generated from log-rank test (MHD level and existing IHD) and test for trend (age 

group). Note that the Breast cancer y-axis is truncated at 0.5 to better show separation. Numbers at risk 

available in supplementary Table A6. For the effect of sex on freedom from CVD see supplementary 

Figure A1. 
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Figure A8. Forest plots of hazard estimates with 95% CI for predictors in Cox proportion hazards models 

on CVD separated by four diagnoses. The Breast cancer cohort only includes females. A hazard estimate 

above one indicates an increased risk of the outcome. P-value thresholds are 0.05(*), 0.01 (**), and 

0.001(***). 
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Table A3. Kendall correlations between mean heart dose (MHD) and low (V5) and high (V30) volumetric 

dose measures, by diagnosis group.  

 MHD X V5 MHD X V30 V5 X V30 

Breast 0.775 0.636 0.745 

Esophageal 0.684 0.833 0.661 

Lung 0.812 0.808 0.703 

Lymphoma 0.727 0.581 0.748 

 

 
Figure A9. Scatter plot of mean heart dose (MHD) and low (V5) and high (V30) volumetric dose 

measures, by diagnosis group 
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Table A4. Numbers at risk for ischemic heart disease (IHD) shown in Figure 3 

Dx Subset 0 yrs 1 yr 2 yrs 3 yrs 4 yrs 5 yrs 6 yrs 7 yrs 8 yrs 9 yrs 10 yrs 

Breast Total 6804 6216 5579 4994 4465 4003 3426 2727 2018 1484 929 

 MHD Level: Low 3394 3130 2830 2508 2237 1972 1673 1318 963 678 399 

 MHD Level: High 3410 3086 2749 2486 2228 2031 1753 1409 1055 806 530 

 Existing IHD: No 6298 5761 5187 4652 4168 3738 3207 2553 1897 1399 882 

 Existing IHD: Yes 506 455 392 342 297 265 219 174 121 85 47 

 Age: <60 2788 2491 2202 1947 1749 1558 1330 1069 805 611 382 

 Age: 60-70 2638 2480 2296 2118 1911 1745 1530 1225 923 683 440 

 Age: >70 1378 1245 1081 929 805 700 566 433 290 190 107 

Esophageal Total 627 394 257 176 125 92 71 48 31 20 16 

 MHD Level: Low 313 199 123 76 45 33 25 15 8 5 5 

 MHD Level: High 314 195 134 100 80 59 46 33 23 15 11 

 Existing IHD: No 508 332 228 160 115 87 67 47 31 20 16 

 Existing IHD: Yes 119 62 29 16 10 5 4 1 0 0 0 

 Age: <60 136 89 65 49 37 27 22 16 13 8 8 

 Age: 60-70 283 184 111 83 53 37 29 21 12 8 5 

 Age: >70 208 121 81 44 35 28 20 11 6 4 3 

Lymphoma Total 1251 949 823 706 605 493 399 297 224 157 88 

 MHD Level: Low 584 438 381 325 283 238 200 154 119 84 49 

 MHD Level: High 667 511 442 381 322 255 199 143 105 73 39 

 Existing IHD: No 1117 869 754 651 564 460 373 279 211 148 82 

 Existing IHD: Yes 134 80 69 55 41 33 26 18 13 9 6 

 Age: <60 552 472 419 376 331 280 240 179 139 99 56 

 Age: 60-70 308 236 204 172 144 127 99 79 58 43 27 

 Age: >70 391 241 200 158 130 86 60 39 27 15 5 

Lung Total 729 500 340 233 168 125 82 54 35 26 14 

 MHD Level: Low 364 258 184 121 87 64 40 26 16 12 7 

 MHD Level: High 365 242 156 112 81 61 42 28 19 14 7 

 Existing IHD: No 605 429 300 209 153 114 74 50 31 24 14 

 Existing IHD: Yes 124 71 40 24 15 11 8 4 4 2 0 

 Age: <60 176 137 92 74 53 39 27 16 12 10 6 

 Age: 60-70 295 199 140 92 68 55 35 24 15 12 5 

 Age: >70 258 164 108 67 47 31 20 14 8 4 3 
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Table A5. Numbers at risk for overall survival (OS) shown in Figure 4 

  0 yrs 1 yr 2 yrs 3 yrs 4 yrs 5 yrs 6 yrs 7 yrs 8 yrs 9 yrs 10 yrs 

Breast Total 6804 6292 5698 5157 4638 4199 3624 2907 2160 1591 1005 

 MHD Level: Low 3394 3171 2894 2588 2318 2063 1761 1395 1019 723 435 

 MHD Level: High 3410 3121 2804 2569 2320 2136 1863 1512 1141 868 570 

 Existing IHD: No 6298 5797 5252 4750 4274 3860 3336 2674 1992 1473 937 

 Existing IHD: Yes 506 495 446 407 364 339 288 233 168 118 68 

 Age: <60 2788 2508 2228 1989 1789 1607 1381 1113 843 646 408 

 Age: 60-70 2638 2509 2351 2180 1983 1823 1611 1302 983 730 477 

 Age: >70 1378 1275 1119 988 866 769 632 492 334 215 120 

Esophageal Total 627 418 281 199 145 104 79 53 35 23 18 

 MHD Level: Low 313 209 131 85 53 37 28 16 9 7 6 

 MHD Level: High 314 209 150 114 92 67 51 37 26 16 12 

 Existing IHD: No 508 338 236 168 121 90 70 47 31 21 17 

 Existing IHD: Yes 119 80 45 31 24 14 9 6 4 2 1 

 Age: <60 136 91 70 53 42 29 23 16 13 8 8 

 Age: 60-70 283 195 121 92 63 44 35 25 16 11 7 

 Age: >70 208 132 90 54 40 31 21 12 6 4 3 

Lymphoma Total 1251 974 853 743 640 528 433 323 242 167 96 

 MHD Level: Low 584 451 399 347 303 261 223 170 130 91 55 

 MHD Level: High 667 523 454 396 337 267 210 153 112 76 41 

 Existing IHD: No 1117 877 769 671 582 480 392 295 222 153 87 

 Existing IHD: Yes 134 97 84 72 58 48 41 28 20 14 9 

 Age: <60 552 477 428 385 340 292 251 189 148 103 59 

 Age: 60-70 308 242 212 185 157 138 110 88 62 46 29 

 Age: >70 391 255 213 173 143 98 72 46 32 18 8 

Lung Total 729 522 360 250 179 135 93 62 41 30 17 

 MHD Level: Low 364 269 194 127 92 69 44 26 17 12 8 

 MHD Level: High 365 253 166 123 87 66 49 36 24 18 9 

 Existing IHD: No 605 434 306 216 155 116 78 52 34 25 15 

 Existing IHD: Yes 124 88 54 34 24 19 15 10 7 5 2 

 Age: <60 176 141 95 78 55 42 31 19 14 12 7 

 Age: 60-70 295 207 148 98 73 59 39 28 18 13 7 

 Age: >70 258 174 117 74 51 34 23 15 9 5 3 
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Table A6. Numbers at risk for cardiovascular disease (CVD) shown in Figure A7. 

   0 yrs 1 yr 2 yrs 3 yrs 4 yrs 5 yrs 6 yrs 7 yrs 8 yrs 9 yrs 10 yrs 

Breast Total 6804 6216 5579 4994 4465 4003 3426 2727 2018 1484 929 

  MHD Level: Low 3394 3103 2789 2464 2190 1916 1627 1275 926 653 385 

  MHD Level: High 3410 3044 2697 2434 2175 1968 1694 1363 1014 775 511 

  Existing CVD: No 6186 5621 5045 4523 4043 3601 3091 2455 1813 1339 849 

  Existing CVD: Yes 618 526 441 375 322 283 230 183 127 89 47 

  Age: <60 2788 2479 2183 1926 1726 1533 1306 1046 787 599 376 

  Age: 60-70 2638 2457 2262 2081 1871 1696 1479 1182 884 652 420 

  Age: >70 1378 1211 1041 891 768 655 536 410 269 177 100 

Esophageal Total 627 394 257 176 125 92 71 48 31 20 16 

  MHD Level: Low 313 190 117 71 41 30 23 14 8 5 5 

  MHD Level: High 314 186 129 96 74 56 44 33 23 14 11 

  Existing CVD: No 491 312 214 150 104 80 63 46 31 19 16 

  Existing CVD: Yes 136 64 32 17 11 6 4 1 0 0 0 

  Age: <60 136 88 65 49 37 27 22 16 13 8 8 

  Age: 60-70 283 176 104 76 48 35 27 20 12 7 5 

  Age: >70 208 112 77 42 30 24 18 11 6 4 3 

Lymphoma Total 1251 949 823 706 605 493 399 297 224 157 88 

  MHD Level: Low 584 427 365 309 268 227 193 149 114 80 48 

  MHD Level: High 667 504 433 371 308 241 188 138 101 72 39 

  Existing CVD: No 1085 843 727 623 534 437 357 268 202 142 80 

  Existing CVD: Yes 166 88 71 57 42 31 24 19 13 10 7 

  Age: <60 552 469 414 371 324 273 235 176 136 98 55 

  Age: 60-70 308 230 197 164 133 117 91 75 55 42 27 

  Age: >70 391 232 187 145 119 78 55 36 24 12 5 

Lung Total 729 500 340 233 168 125 82 54 35 26 14 

  MHD Level: Low 364 251 176 115 85 62 40 26 15 12 7 

  MHD Level: High 365 240 153 112 79 59 41 27 19 14 7 

  Existing CVD: No 590 418 289 202 149 110 72 49 31 24 14 

  Existing CVD: Yes 139 73 40 25 15 11 9 4 3 2 0 

  Age: <60 176 136 89 72 53 39 27 16 12 10 6 

  Age: 60-70 295 195 137 90 67 54 35 24 14 12 5 

  Age: >70 258 160 103 65 44 28 19 13 8 4 3 
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Figure A10. Converted excess relative risk (and 95% confidence intervals) of per Gy mean heart dose by 

diagnosis and compared with existing literature (Darby and Van Nimwegen) [9,10]. The x-axis is 

displayed on a pseudo logarithmic scale. 
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1: Projektets originale titel 

Radiotherapy exposure and association with cardiovascular toxicity in 

patients treated for cancer at Rigshospitalet 

Dansk titel: 

 

Stråledosis og sammenhæng med observeret frekvens af hjerte-kar-

bivirkninger i patienter behandlet for kræftsygdomme på 

Rigshospitalet 

2: Forsøgsansvarliges navn og forsøgssted 

Forsøgsansvarlig er Professor, PhD, Dr. Med. Ivan Richter Vogelius, ansat på Rigshospitalets 

Onkologiske Klinik. Adressen for forsøget er Onkologisk Klinik, Rigshospitalet, Blegdamsvej 9, 

2100 København Ø 

 

3: Hvilke typer af data og hvorfra de stammer 

Billedata og stråledoser 

Data for stråledosis og registrering af hvilke område der er blevet bestrålet med en givet dosis 

haves fra de rutinemæssige scanninger taget i forbindelse med planlægning af 

strålebehandlingen. Dette involverer CT og somme tider også MR og PET scanninger. Disse 

scanninger og data om stråledosis haves fra planlægningen af strålebehandlingen inden første 

behandling. 

 

Data for den daglige dosis haves fra scanninger taget på behandlingsapparaterne under 

behandling, typisk hver dag i 4-6 uger. Disse er som oftest CT scanninger, men kan også være 

2D røntgenbilleder og i senere år MR scanninger for de relativt få patienter, der bliver behandlet 

på afdelingens MR accelerator 

 

Data for opfølgende billeddiagnostik haves fra de rutinemæssige scanninger taget i patientens 

opfølgningsprogram. 

 

Bivirkningsdata 

Registrerede bivirkningsdata vil komme fra registerkoder fra landspatientregistret samt 

overlevelseskoder fra CPR registret. I enkelte tilfælde kan disse data blive suppleret med eller 

kontrolleret ved opslag i patientjournal. 
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4 Forsøgets formål 

Forsøgets overordnede formål er at forbedre vores evne til at forudsige risikoen for hjerte-kar 

bivirkninger fra en stråleterapi planlægning. Dette vil gøre os bedre i stand til at vælge den mest 

optimale strålebehandlingsstrategi for fremtidige patienter. 

Moderne stråleterapiudstyr giver os stærke muligheder for at forme dosis meget præcist. 

Uanset præcisionen af den afgivne dosis er man dog nødt til at “få dosis ind til svulsten”, hvilket 

betyder medbestråling af rask væv i strålens vej. Forsøget vil gøre os bedre i stand til at 

prioritere de bedste veje ind til svulsten, der giver lavest risiko for bivirkninger. 

 

5 Forsøgets metode 

I forsøget søger vi at sammenholde dosis til normalt væv med risikoen for bivirkninger. Dosis til 

patienten registreres ved analyse af scanningerne brugt til planlægning af behandlingen - disse 

scanninger og den tilgængelige dosisplan giver os fordelingen af stråledosis i kroppen. 

Bestråling af hjerte og de store kar registreres ved manuel eller automatiseret analyse af disse 

data. 

 

Dosis til de enkelte områder i patienten sammenholdes med forekomsten af bivirkninger i et 

stort antal patienter for at give os mulighed for at observere sjældne, men alvorlige bivirkninger.  

 

Statistiske metoder vil inkludere ”traditionelle” metoder (logistisk regression, Cox proportional 

hazards modeller mv), men også data drevne metoder, herunder metoder baseret på kunstig 

intelligens. 

 

De oplysninger, der skal bruges i projektet videregives til forsker. Forsker har således ikke 

direkte adgang til journaloplysninger. 

 

6 forsøgspersoner, herunder inklusions- og eksklusionskriterier 

 

Forsøget vil som udgangspunkt inkludere alle patienter behandlet med stråleterapi på 

Rigshospitalet i perioden 2009-2020 med forventet forlængelse hvis forsøget er succesfuldt.  
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7 Økonomiske forhold 

Studiet er igangsat af forskere og klinisk personale på Rigshospitalet. Økonomisk støtte søges 

løbende og haves i skrivende stund fra to bevillinger fra Kræftens Bekæmpelse samt en 

bevilling fra den kommercielle partner i radioterapi-udstyr (Varian Medical Systems, Palo Alto, 

USA – i skrivende stund under opkøb af Siemens Healthineers, Erlangen, Tyskland). 

Bevillingerne håndteres som forskningsbevillinger underlagt revision i Rigshospitalets system. 

Bevillingerne udbetales aldrig personligt til forskere, men går primært til finansiering af 

lønudgifter via de involverede forskeres institutioner. Et mindre beløb går til udstyr (fx. 

højtydende computere) samt rejse- og konferenceaktivitet. 

 

8 Offentliggørelse af forsøgsresultater 

Forsøgets resultater vil løbende blive publiceret i internationale faglige tidsskrifter og indsendt til 

faglige konferencer. Det vil ikke være muligt for tilskudsgivere at blokere for offentliggørelse og 

resultaterne vil blive offentliggjort uanset om de er “positive” eller “negative” eller ”inkonklusive” 

for såvel forskere som tilskudsgivere. 
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1: Title 

Radiotherapy exposure and association with observed cardiovascular 

toxicity in patients treated for cancer at Rigshospitalet 

 
2: Data origin 

The data used in this study is imaging data acquired as part of routine treatment planning and 

clinical care of patients diagnosed with cancer and with indication for radiotherapy and 

acceptance of this offered treatment at Rigshospitalet between Jan 2009- Dec 2020. Three 

levels of data sources will be used in the study: 

2.1 Treatment planning imaging and radiotherapy dose exposure 

Treatment planning imaging data are acquired as part of the clinical routine before radiotherapy 

and include CT scans and possibly MR and PET scans as requested by the treating physician in 

the individual case. Dose exposure is calculated as part of the treatment planning process and 

stored as a 3D matrix in the same coordinate system as the treatment planning images. This data 

is stored for the lifetime of the patient in the clinical systems since the knowledge of prior 

exposure is critical to safely deliver a possible second (or later) exposure to a patient on clinical 

indication. 

 
2.2 Treatment verification imaging 

Treatment verification imaging is acquired during radiotherapy to verify accuracy of the daily 

treatment fraction as part of the clinical routine. This will involve 3D Cone-beam CT imaging, 

2D portal imaging or 3D MR scan depending on the treatment machine. Consent to these 

imaging procedures at the time of treatment are an integral part of the consent to receive 

radiotherapy. 

 
2.3 Follow-up imaging 

Follow-up imaging by CT MR or PET as acquired as part of the routine clinical follow up 

program and requested by the treating physician. In the clinical routine consent for this 

procedure is taken in connection with the follow-up visit, most likely verbal. 

 
2.4 Outcome data 

Outcome data will originate from electronic patient records and the Danish registries 

as described in detail below in section 8 and 9 

 
Data will be provided to the researcher, such that the researcher does not have direct access to 

the patient records. 
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3: Research 

We will publish the results in international peer reviewed publications and new protocols for 

prospective testing of the results produced under this project will be implemented as separate 

prospective clinical investigations. Reproducibility and generalizability are core discussion of all 

our research and we also expect methodological publications including a “levels of evidence” 

ladder for risk models together with international collaborators as a spinoff (without direct 

access to data).  

 
4: Purpose of the research 

The purpose of the research is to estimate the association between radiotherapy exposure and 

cardiovascular toxicity after radiotherapy. In particular the aim is to establish quantitative 

associations between normal tissue exposure and incidence/prevalence of side effects. Side effects 

can be estimated by 

a. Manual assessment of patient charts 

b. Coupling with registry data with vital status, procedural codes or laboratory 

values (e.g. ICD10 codes or laboratory test results excluding genetic sequencing) 

 

 
The hypothesis is that there is an association between radiotherapy exposure and the risk of 

cardiovascular side effects. We furthermore seek to quantify the association between radiotherapy 

exposure and the probability of the above-mentioned endpoints of toxicity. 

 
The rationale for the project is to improve our understanding of such associations, which will in 

turn allow us to better tailor our radiotherapy to minimize the risk of the observed cardiovascular 

toxicity while maintaining or improving the probability of durable disease control. 

 
Literature 

The importance of the research question is documented through the impact of the 2010 special 

issue of the primary radiotherapy research journal Int. J. Radiation Oncology Biol. Phys. 

focused on Quantitative Analysis of Normal Tissue Effects in the Clinic (QUANTEC)(1-3). The 

effect of radiation exposure on cardiovascular disease has been studied in several publications, 

across many patient diagnoses and with varying definitions of cardiovascular disease (4). For 

example, in Breast cancer the rate of major coronary events increased linearly by 7.4% per gray 

of mean radiation dose to the heart (5).  

 
An effort to update the 2010 QUANTEC approach has been initiated with a Beyond Quantec 

meeting as initiator held in Maryland Feb 2020 with the research responsible for the current 

project (Ivan Richter Vogelius) as member of steering committee. 
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5 Method 

This is a non-randomized observational study with a large sample size to estimate radiation 

dose-effect relationships. All patients diagnosed with cancer who receive radiotherapy at 

Rigshospitalet between 2009-2020 will be eligible for inclusion in the study. This is an 

observational study and thus will use only data collected a part of routine treatment and clinical 

care. 

 
Detailed statistical analysis plan will be made prior to any analysis being conducted. 

 

5.1 Assessment of organ specific radiation exposure 

Organ-specific (i.e. heart or substructures thereof) exposure will be assessed through 

delineation of structures using a combination of manual annotation of the structures on the CT 

scan and interactive deep learning models to identify the same structures. Manual delineations 

of organs at risk are time consuming and is thus effectively limited to populations in the <200 

patient range. Interactive deep learning annotation is available and is expected to be used when 

data are in the 100-1500 patient range, see (6) for a description of a 2D interactive annotation 

algorithm which will be expanded to a 3D algorithm for medical images. Finally, fully automated 

organ annotation will be applied in patient cohorts significantly exceeding 1000 patients and 

will generally be based on convolutional neural nets architectures optimized for the data in 

question, see (7-9) for details. 

 
5.2 Correlation with outcome with traditional statistics 

Correlation between cardiovascular toxicity and important clinical outcome data (i.e. overall 

survival and disease control) will be assessed using traditional statistical methods such as 

multivariate logistic regression, Cox proportional hazards modeling or the Fine and Gray 

methods and derivatives for competing risk assessments(10,11). 

For such methods, the covariables to include will be defined in detail depending on the 

baseline rates when data has been extracted and after a consideration of the plausible cause-

effects and collinearities in the data in a review session with both statisticians and medical 

doctors. A statistical analysis plan will be made accordingly.  

However, we will stratify according to the index cancer treatment and to exemplify we expect to 

use patient age, gender, comorbidity status as covariables of interest together with a measure 

of hematological toxicity. In addition, the exposure to the organs delineated above will be 

included after appropriate considerations of collinearities in the data. Further covariables will 

depend on the above-mentioned consensus between statisticians and medical doctors when 

reviewing baseline data. 

 

Classic statistical survivapproaches to survival analysis often require strict assumptions, such 

as proportional hazards, and have limitations when dealing with missingness, heterogeneous 

cohorts, and high dimensionality (12). Therefore, we will also develop machine learning 

approaches, which have advantages in modeling complex survival data (. This will include 

application of random survival forests, a non-parametric ensemble approach that can robustly 
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handle non-linear effects and multiple variable interactions (13). Additionally, we will explore 

Cox-based penalized regression models (i.e. LASSO, Ridge, and Elastic Net), which introduce 

regularization and improve variable selection in high dimensional data thereby providing a 

supplement to the consensus selection of predictor variables above  (14). We will also explore 

deep survival neural networks with the same objective (15). Regardless of methods, the 

structures from 5.1 will be included as a predicting variable together with patient baseline data.  

 
5.3 Inverse learning methods 

As an exploratory part of the study, we will attempt reversing the association process by 

conducting machine learning analysis without the prior annotation of scans as described in 5.1. 

Such methods are exploratory and in development, with the goal to identify substructures that 

have an increased influence on toxicity prediction (16). For example, Ibragimov et al.  has 

recently used CNNs, supplemented with transfer learning, on CT images and RT dose plan data 

to identify radiosensitive regions of the liver which should be spared to reduce toxicity (17). 

In our case, input to the methods will be a subset of treatment planning images, radiotherapy 

dose exposure, treatment verification images, and possibly patient related factors as in 5.2 and 

follow-up images. Output will be hematological toxicity, overall survival and disease control 

and possibly hospitalizations suspected to be associated with hematological toxicity. The goal is 

to be able to predict patient and population-level saliency maps, a 3D matrix of probabilistic 

values indicating important regions within the image, for a given outcome. Methods will be 

based on convolution and/or transformer neural networks (18), in addition to exploring 

techniques based on large-scale hypothesis testing (19). To allow learning from limited 

amounts of outcome data, techniques such as self-supervision may be used to build useful 

representations (20). 

 

6 Statistical considerations 

This is a large-sample non-randomized study, so the primary concern is bias(7). With 

approximately 4000 patients treated per year over a 11-year period of inclusion, sample size will 

only be an issue in rare outcomes or sub-indications.  

 

 
7 Study subjects 

a) Inclusion criteria 

i) All patients referred for radiotherapy at Rigshospitalet between 2009 and 2020 

b) Exclusion criteria 

i) Explicit requests not to allow use of medical data for research as reported by 

treatment staff when implemented 

1) A procedure to register a denial of use is currently under implementation 

with inspiration from vævsanvendelsesregistret but only covering 

radiotherapy at Rigshospitalet. 

Up to 4,000 patients per year will be included starting in 2009 and continuing to 2020. This 
yields a total number of 44,000 patients. 
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8 Secondary findings 

It should be stressed that the risk of secondary findings is very small: The image workup of 

patients treated with radiotherapy for cancer at Rigshospitalet involves both the image 

assessment performed during diagnosis but also the subsequent treatment planning image 

assessment. Both of these steps in the clinical routine involve specialized and time-consuming 

image assessment by experienced radiologists, nuclear medicine physicians and oncologists in 

collaboration and subsequent image annotation by experienced radiographers. The probability 

of a severe finding passing undetected at the original treatment stage and being detected by a 

researcher at the analysis stage is deemed highly unlikely to occur even once despite the 

relatively large data set studied here. 

 
In the case that secondary findings do occur, a committee will be settled consisting of the 

responsible physician for the radiotherapy department (at the time of writing Jeppe Friborg, 

MD) and head of department (At time of writing prof. Ulrik Lassen). The two will be responsible 

for establishing a committee adapted to the clinical case, which will consist of Jeppe Friborg, 

Ulrik Lassen and Anne Kiil Berthelsen. The two first are oncologists and the last is radiologist. 

All specialists and senior consultants  “Overlæge”. 

 

Reporting of secondary findings to the participant can occur if it is certain or very likely that the 

finding is a severe or life-threatening condition, which 

 

• Can be prevented or treated with aim of cure or symptom relief 

• The disease has significant impact on the patient and 

• The secondary finding can be validated clinically and 

• The method used to assess the secondary finding is considered certain 
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9 Patient chart information 

Manual review of patient charts may be required in individual cases to resolve incongruency 

or missingness in data sources. This may involve registration of precise disease type (i.e.  

diagnosis, stage, and intent to treat), patient comorbidities (i.e. BMI, smoking status, history 

of COPD, history of diabetes) and related parameters (i.e. medication) and at the time of 

treatment. See below for registry assessment. 

 

Data extracted from the patient charts from dates prior to the date of treatment for the cancer 

diagnosis in question will consist of the items corresponding to a Charlson comorbidity index 

assessment, see (21) for details. The patient chart information prior to treatment is necessary 

to control for confounders associated with patient comorbidity and stage and extend of disease. 

 
The data will be forwarded to the researcher through electronic registration without direct chart 

access. 
 

 
10 Access to registries 

Access to the registries will be used to obtain data necessary for analysis. From the CPR 

registry we will extract birth date and vital status/mors date. From Landspatientregister  (and 

automated extraction from electronic patient records at hospital level) we will extract data on 

prior disease history corresponding to an established comorbidity scoring (by procedural or 

ICD10 codes).  

• We have typically used the Charlson comorbidity index.  

• Unfortunately, the Charlson index has shown limitations in our prior research. We will 

therefore also use other scoring systems. Such variation will rely on the same conditions 

to be extracted from landspatientregistret as the Charlson index, but add data for a 

severity of each event.  

The registry coupling will be performed through an already established protocol at 

PERSIMUNE research center at Rigshospitalet with appropriate approvals. PERSIMUNE is 

the Danish National Research Foundation Centre of Excellence for Personalized Medicine of 

Infectious Complications in Immune Deficiency. The data warehouse contains prospective and 

historic data derived from patients treated at clinical departments at Rigshospitalet including 

data from para-clinical departments, laboratories and imaging. Full details can be found at 

www.persimune.dk . 

 
Data extracted from the registries up to the date of treatment are corresponding to the Charlson 

comorbidity index assessment as in the case of chart review (21) although the patient registry 

data is less detailed they will often suffice (22) and thus be preferred to manual review when 

deemed of sufficient quality. 
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Data extracted from registries after the date of treatment of the index cancer will be procedural 

codes for the toxicity under analysis and date of occurrence of such toxicity. For example, the 

following ICD10 codes are of interest for the analysis of the risk of cardiac toxicity: I00-I50.  

 

Only “dry” data will be accessed meaning that no new analyses of biological data will be made 

for this project. 
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Only data relevant for assessment of treatment related cardiovascular toxicity will be extracted 

for the current project. Procedural codes of relevance to the research question will be 

identified prior to data extraction and only those data will be accessed. Data will be 

pseudoanonymized. 

 
Information prior to treatment is necessary to control for confounders associated with patient 

comorbidity and stage and extend of disease. Date acquired from later dates than the date of 

treatment of the index cancer is necessary for scoring the toxicity outcome. 

 
The data will be forwarded to the researcher through electronic registration without direct chart 

access. 

 

 
11 General data protection rules 

General Data Protection Rules will be respected and we will adhere to the Danish 

“Databeskyttelsesforordningen” and the law of “databeskyttelsesloven”. Approvals are already in 

place for the coupling of radiotherapy data from Rigshospitalet to PERSIMUNE. Investigator is 

responsible for adhering to these regulations. 

 
12 Economy 

The project is investigator-initiated by researchers and clinical staff at Rigshospitalet. 

The project receives financial support from a number of foundations with continuous efforts to 

secure further funding. At present funding bodies include: 

 
Danish Cancer Society 

Evidensbaseret dosisplanlægning af strålebehandling af lymfom under hensyntagen til alle potentielle senfølger og 

individuelle patientfaktorer. Principal investigator: Professor, dr.med. Lena Specht. Supported in 2021 - 2023 by 

2.325.000 kr. 

 
Brug af registerdata til at modellere sammenhæng mellem dosis og effekt af strålebehandling. 

Principal investigator: Ivan Richter Vogelius. Supported in 2020 - 2022 with 1.600.000 kr. 

 
Support from Danish Comprehensive Cancer Center for PhD salary: 400.000 DKK 

 
Varian Medical systems 

Machine learning for detailed normal tissue exposure assessment, longitudinal imaging and associated damage of 

normal tissue substructures. Principal Investigator: Ivan Vogelius. Supported by 835.000 DKK 

 
Computer Science, Copenhagen University 

PhD salary support for typically one of the three years, currently 900.000 DKK in value. 
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12.c Use of economical support 

The funding from all grants is used predominantly for salary support to investigators and PhD 

candidates with a minor fraction (currently less than 100.000 DKK) spent on supportive 

equipment and also a fraction of the budget for conference participation and associated costs. 

 
Economical support will always follow Rigshospitalet’s rules for research funding and 

consequently be paid to accounts at Rigshospitalet and never directly to researchers. The 

management of the grants are subject to review by Rigshospitalet’s accounting. 

 
The investigators have no financial interests in the research. Varian Medical Systems is an 

industrial partner with some financial interest in the success of the project. The collaboration 

with Varian is regulated by Rigshospitalet’s legal department and none of the funding bodies can 

prevent publication of negative results. We collaborate with Varian Medical Systems, but Varian 

Medical systems does not have access to personally identifiable data or other privileged access to 

data based on this protocol 

 

 
13 Publication of results 

Study results will be published in reputable international medical journals whether they are 

deemed “positive” or “negative” or “inconclusive”. Similarly, results will be presented at 

international scientific meetings. 

 

 
14 Research ethics 

 
14.1 Protection of the participant’s right to privacy and integrity 

All regulations related to general data protection rules will be followed. The integration with 

PERSIMUNE has all relevant approvals for the secure communication and de-identification 

within the database. 

 
Access to data will always follow an approach where the minimum identifiable information is 

used or stored on local hard-drives, also including cache. 

 
14.2 Burden to the participant 

 

 
As described above, it is highly unlikely that a secondary finding is identified and, consequently, 

it is highly unlikely that there will be any excess burden on the participants. 

 
14.3 Justification of project in terms of potential to improve therapy to future 
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patients 
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Problem addressed 

Modern radiotherapy equipment represents investments of several hundred mio DKK at 

Rigshospitalet alone, at it provides us with the opportunity to “sculpt” the dose distribution in 

patients with very high precision. The current biggest barrier to better use of these investments 

are the gaps in knowledge about the biological impact of dose for normal tissue and tumor 

exposure. This is what we aim to improve with the current effort. 

 
Value of project to future patients 

The project will facilitate more gentle radiotherapy for future patients by providing more 

detailed information of regions to avoid during radiotherapy planning and delivery and by 

providing more solid bases for clinical decision making when comparing therapeutic options. 

This includes the generation of more robust models for shared decision making in difficult 

clinical cases where risk of toxicity and risk of recurrence are challenging to manage. 

 
Furthermore, the results will potentially allow a new paradigm of radiotherapy optimization 

based on robust risk models, see (23) for a conceptual example limited by the access to 

reliable risk models. 

 
Considering the minimal burden on patients we therefor believe that the project is justified 

ethically. 
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Introduction
The Guidelines for the Content of Statistical Analysis Plans in Clinical Trials were used to guide

the generation of this statistical analysis plan.

The treatment of cancer with radiotherapy has been known to yield negative long-term effects,

including cardiotoxicity. By combining machine learning on medical images, detailed 3D

dosimetry data, and registry-based outcomes in a large cohort, we can better quantify the effect

of radiation on cancer patients.

The purpose of this document is to present a brief analysis plan. The analysis shall describe the

incidence and trends in ischaemic heart disease (IHD) as a function of cardiac exposure adjusting

for a number of clinical factors. The objective is to generate an IHD risk model based on mean

heart dose (MHD). Additionally, we will determine if other dose volume histogram (DVH)

parameters can improve the prediction of IHD.

The overall objective is to use a comparatively large dataset with detailed exposure data from

the record and verify system coupled with outcome data from the Danish registries to get a

contemporary model able to predict the risk of cardiotoxicity from radiotherapy in the thoracic

region.

Study Methods and Trial Population
This is an observational retrospective cohort study. A current estimate of crude numbers of

treatments and events are as follows:

Breast Esophageal Lung Lymphoma

Treatments 7230 683 871 1708

No IHD After RT IHD After RT Total

No Prior IHD 8,696 499 9,195

Prior IHD 894 403 1,297

Total 9,590 902 10,492

The study cohort will include all curative intent radiotherapy (RT) patients for Breast, Esophageal,

Lung (NSCLC and SCLC) or Lymphoma cancers at Rigshospitalet from 2009 to 2020. These will be

identified by treatment code in Aria. Exclusions in the extraction, computation, and analysis of

the data will be detailed in a CONSORT flowchart. Patients with missing data will be excluded, as

no imputation will be conducted.

Patients will be followed up in the Landspatientregisteret (LPR) and the Centrale Personregister

(CPR) for the endpoint date. Baseline characteristics, including sex, age, and prior IHD, will be

acquired in the LPR as well. Radiotherapy data will be acquired in the Aria database. This data

will be acquired through the PERSIMUNE Data warehouse.
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Statistical Principles and Analysis
R Statistical Software or Python will be used to conduct analyses. We will use an alpha level of

0.5 to determine statistical significance. Any modifications to this statistical analysis plan will be

detailed in the corresponding manuscript.

The primary endpoint for this study will be Ischemic Heart Disease (IHD) as identified by ICD-10

codes I20-I25 recorded in the national patient register after the baseline date.

The baseline date will be the date of the last RT fraction. The endpoint date will be the first of

the follow: the date of hospital admission for IHD (event), the date of death from IHD (event),

date of death from other causes (censoring), date of emigration (censoring), or the last follow-up

date (censoring).

Independent variables will include prior IHD (defined as the above ICD10 codes occurring before

the baseline date), age at baseline date, heart dose as extracted in the study Time trends in

cardiac doses in a real-world data series of 11,000 curative thoracic radiation therapy courses

from 2009-2020 by Forbes et al (in preparation) and patient sex as identified in the registry.

Firstly a descriptive analysis of cumulative incidence for each diagnosis group will be performed

as follows: Cumulative Incidence will be calculated for each diagnosis (Breast, Lung, Esophageal,

and Lymphoma), using the Fine & Gray method for competing risk, with the three outcomes

being IHD, death, or still living at 31-12-2020. Data will be presented as stacked plots of

incidences.

The primary analysis will be a Cox Proportional Hazards Regression to evaluate the time until

IHD. The analysis will be stratified by diagnostic group (Breast, Lymphoma, Esophageal, and Lung

cancer, any histology). Mean Heart Dose (MHD), Sex, Age, and prior IHD will be included in the

model. Age will be fit with a spline model. MHD will either be included as a linear predictor or a

spline model - an initial analysis will be conducted to determine which is a more appropriate fit

as determined by AIC with preference towards linear predictor for simplicity in case of similar

performance.

The fitted model will be made available as a R structure.

Following an analysis of MHD, we will separately add in a low (V5) and a high (V40) dose metric.

We will then run a log rank test on the nested models to determine whether either of these

variables add a significant amount of explainability to the model.

Planned exploratory analyses

Depending on the results of the primary analysis above, we intend the following extensions:

1) Methodological exploration: Time dependent Cox regression from age 0 with time

dependent exposure variable and/or use attained age as the time unit

2) Separate analysis of Esophageal and Lung cancers according to the method described in

primary analysis. Here the purpose will be to clarify if the proposed stratification for

diagnosis in the primary analysis is sufficient or if there is a need to handle the

diagnostic groups completely separately.
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Purpose or Objective
The effect of radiation exposure on cardiovascular disease has been studied in several publications, across many patient diagnoses and with varying

definitions of cardiovascular disease. For example, in Breast cancer the rate of major coronary events increased linearly by 7.4% per gray of mean radiation

dose to the heart.  

The purpose of the research is to estimate the association between radiotherapy exposure and cardiovascular toxicity after radiotherapy. In particular the

aim is to establish quantitative associations between normal tissue exposure and incidence/prevalence of side effects. The rationale for the project is to

improve our understanding of such associations, which will in turn allow us to better tailor our radiotherapy to minimize the risk of the observed

cardiovascular toxicity while maintaining or improving the probability of durable disease control. 

Materials and Methods
This is a non-randomized retrospective study with a large sample size to estimate radiation dose-effect relationship with cardiotoxicity, specifically myocardial

infarction (MI) defined by ICD-10 code I21. Eligible patients were diagnosed with cancer and received curative intent radiotherapy at Rigshospitalet between

2009 and 2016. Manual delineations of organs at risk are time consuming and thus effectively limited to small populations. Therefore, heart annotation was

conducted using RootPainter3D trained from 933 manually delineated CT scans in a hematological toxicity study. All delineations were reviewed by a researcher

and questionable cases were discussed with a physician.  

Results
Of the patients considered for inclusion, 5544 were eligible for analysis. The diagnoses of greatest interest with regard to heart exposure are Breast (n = 2139),

NSCLC (n = 411), Upper GI (n = 406), and SCLC (n = 106). Of those 2.6% of Breast (n = 55), 10.1% of NSCLC (n = 45), 7.1% of Upper GI (n = 29), and 8.5% SCLC (n =

9) experienced MI following radiotherapy treatment. 
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Conclusion
This abstract represents preliminary findings for a large retrospective cohort study. This study supports a direction away from mean organ at risk analysis and

toward distributional dose quantification. Additional organs at risk should be segmented and accounted for. Furthermore, quantification of dose to substructures

of the heart may provide further insights. While this is a large study compared to the existing literature on this topic, there is an opportunity to expand the

timeframe as well as location, which may improve generalizability  and power of the study. 
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