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Abstract

IMU based motion capture data notoriously lacks global positional information, due

to inherent limitations in the sensing hardware. On top of that, it often suffers

from physically implausible data artefacts, such as interpenetration of body parts,

penetration of the floor and foot skating.

The research in this thesis presents methods for reconstructing global position

trajectories from local pose information and improving IMU motion data quality in

an automated fashion.

The first phase of this work introduces a novel method for reconstructing global

positions using neural networks. A U-Net convolutional neural network was trained

to process pose information for real-time position estimation. The work leveraged a

diverse dataset, encompassing a wide range of activities and subjects, to train this

network. Superior error properties were observed with the U-Net compared to a

more standard convolutional neural network architecture, leading to more accurate

global position predictions.

Building upon this foundation, subsequent research refined the global trajectory

reconstruction process and added trajectory reconstruction in the vertical direction.

A a lean U-Net model was developed, designed to integrate local pose informa-

tion with acceleration signals from the IMU sensors. The model estimated short,

character-centered trajectories over a sequence of frames, employing a weighted av-

erage approach to minimize estimation bias and noise. Tested on a novel dataset

comprising actors not included in the training set, this enhanced method showed

good accuracy in reconstructing ground truth trajectories. Acceleration signals were
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shown to play a critical role in maintaining trajectory reconstruction quality when

pose data quality declined.

The final aspect of this thesis tackled inherent limitations in IMU-based motion

capture, such as self-penetrating body parts, foot skating, and floating. These issues

significantly hamper the realism achievable with cost-effective IMU systems. To

overcome this, reinforcement learning was utilised to train an AI agent that could

mimic error-prone sample motions within a simulated environment. This approach

could prevent these common distortions while preserving the unique characteristics

of the sample motions. The agent was trained on a blend of faulty IMU data and

high-quality optical motion capture data. By examining different configurations of

observation and action spaces, optimal settings were identified for use on unseen data.

The efficacy of this approach was validated employing a set of quantitative metrics.

These tests, conducted on a benchmark dataset of IMU-based motion data from

actors outside the training set, demonstrated the method’s capability to enhance the

realism and usability of IMU-based motion capture systems, narrowing the gap with

marker-based alternatives.
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Resumé

IMU-baseret bevægelsesfangstdata mangler notorisk global positionsinformation p̊a

grund af iboende begrænsninger i sensorens hardware. Derudover lider data ofte af

fysisk umulige dataartefakter, s̊asom gennemtrængning af kropsdele, penetration af

gulvet og fodskøjte.

Forskningen i denne afhandling præsenterer metoder til rekonstruktion af glob-

ale positionstrajektorier fra lokal kropspositionsinformation og forbedring af IMU-

bevægelsesdata kvalitet p̊a en automatiseret måde.

Den første fase af dette arbejde introducerer en ny metode til rekonstruktion

af globale positioner ved hjælp af neurale netværk. Vi anvendte et U-Net konvo-

lutionelt neuralt netværk til at behandle kropspositionsinformation til realtidsposi-

tionsestimering. Vores tilgang udnyttede et divers dataset, der omfattede et bredt

udvalg af aktiviteter og emner, for at træne dette netværk. Vi observerede overlegne

fejlegenskaber med U-Net sammenlignet med andre konvolutionelle neurale netværk-

sarkitekturer, hvilket førte til mere nøjagtige globale positionsforudsigelser.

Med dette fundament som udgangspunkt forfiner vores efterfølgende forskning

processen med rekonstruktion af den globale trajektori og tilføjede rekonstruktion

af trajektori i den lodrette retning. Vi udviklede en slank U-Net-model designet

til at integrere lokal kropspositionsinformation med accelerationssignaler fra IMU-

sensorerne. Denne model var dygtig til at estimere korte, karaktercentrerede trajek-

torier over en sekvens af billeder, idet den anvendte en vægtet gennemsnitstilgang

til at minimere estimationsbias og støj. Testet p̊a et nyt datasæt best̊aende af skue-

spillere, der ikke var inkluderet i træningssættet, viste denne forbedrede metode god
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nøjagtighed i rekonstruktionen af sandhedens trajektorier. Den løste effektivt proble-

mer som drift i b̊ade horisontal og lodret bevægelse, hvilket understreger den kritiske

rolle af accelerationssignaler i opretholdelse af kvaliteten af trajektorirekonstruktion,

især n̊ar kropsposition datakvaliteten faldt.

Det sidste aspekt af vores forskning tog fat p̊a iboende begrænsninger i IMU-

baseret bevægelsesfangst, s̊asom forvrængninger som selvpenetrerende kropsdele,

fodskøjte og svævning. Disse problemer hæmmer betydeligt den realisme, der kan

opn̊as med omkostningseffektive IMU-systemer. For at overvinde dette anvendte

vi forstærket læring til at træne en AI-agent, der kunne efterligne fejlbehæftede

prøvebevægelser inden for et simuleret miljø. Denne tilgang gjorde det muligt for os

at forhindre disse almindelige forvrængninger, samtidig med at de unikke karakteris-

tika ved prøvebevægelserne bevares. Vi testede vores metode grundigt mod en bland-

ing af fejlbehæftede IMU-data og højkvalitets optisk bevægelsesfangstdata. Ved at

undersøge forskellige konfigurationer af observations- og handlingrum identificerede

vi optimale indstillinger for vores brugssag. Effektiviteten af vores tilgang blev valid-

eret ved hjælp af et omfattende sæt kvantitative metrikker og kvalitative vurderinger.

Disse tests, udført p̊a et benchmark-datasæt med IMU-baserede bevægelsesdata fra

skuespillere uden for vores træningssæt, demonstrerede vores metodes evne til bety-

deligt at forbedre realisme og brugbarhed af IMU-baserede bevægelsesfangstsystemer

og indsnævre kløften med marker-baserede alternativer.
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Chapter 1

Introduction

This chapter provides an overview of and sets the context for the thesis. In section

1.1, the industrial context of the project is explored, along with a brief introduction

to the technology underpinning inertial measurement unit based motion capture.

The primary challenges addressed by this project are detailed in section 1.2. The

key contributions of the project are outlined in section 1.3. Finally, section 1.4

offers insights into some of the unique challenges encountered as an industrial Ph.D.

student.

1.1 Background

1.1.1 Industrial Setting of the Project

This project has been a collaboration between Rokoko Electronics ApS and the

department of Computer Science at the University of Copenhagen (UCPH).

Rokoko Electronics ApS is a Copenhagen based company that develops motion

capture hardware and software. It was founded in 2014 by students of the National

Film School of Denmark as a traveling theater production for children. In this

production, the children interacted with avatars projected on a large screen. The

avatars were controlled by actors back stage wearing self made motion capture suits.
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The suits were built using inertial measurement units (IMU) to record their motion

in real-time. The choice for a self made suit came from the lack of affordable motion

capture solutions at a time when even the few existing IMU based solutions were

priced at over $10.000 per suit. Over time, the company realised that there was

a broader need for affordable motion capture solutions. This eventually led to the

founding of Rokoko as a motion capture company and the development and release

of the first Smartsuit Pro back in 2016.

Since then a number of new hardware products have followed, with an improved

full body suit, the Smartsuit Pro II, Smartgloves for hand motion capture, and a

camera based face capture solution. Furthermore, a new product, the Coil Pro, is

expected to be released in the beginning of 2024. The Coil Pro is a new type of motion

capture product, that generates an electromagnetic field which is tracked by body

mounted sensors. The advantage with a coil over camera based solutions is that

the electromagnetic field does not suffer from occlusions. Rokoko also developed

a software studio for recording, cleaning and editing of motion capture assets. It

contains filter options to automate cleaning as well as an interface to do manual

editing, all in a collaborative cloud based setting. Finally, it includes a market place

for motion assets where users can find stock motion assets for easy integration into

their projects.

One of the key objectives of Rokoko is to democratise motion capture; i.e. to

create motion capture solutions that are accessible to anyone who has an interest

in recording their motion, but does not have the resources for expensive high-end

(optical) solutions. The company focuses on small production studios for games and

film, and individual creatives; organisations or individuals that do not have the same

resources as high end studios, but also have a lower quality requirement. The result

is that a cornerstone of the company is to find the optimal balance between ease of

use, quality and affordability. This is also a core principle of this project.

This project was conceived in 2019 by Rokoko’s CPO Matias Søndergaard, to-

gether with professor Kenny Erleben and associate proffesor Sune Darkner from the

University of Copenhagen. It has, in part, been funded by the Danish Innovation

Fund (Innovationsfonden Danmark). The project facilitated the sharing of knowledge
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and insights between industry and academia in Denmark by fostering collaboration

in fundamental research. The areas of focus included IMU-based motion capture,

physics simulation for computer graphics, and artificial intelligence. As a result, this

collaboration has led to the publication of theory otherwise ’hidden’ within the com-

pany at the one hand, and the materialisation of cutting-edge theory from academia

into products on the other hand.

1.1.2 IMU Based Motion Capture

The animation industry has seen rapid growth over the last decades and is expected

to remain a growth market in the years to come (Statista Research Department,

2023; Knowledge Sourcing, 2023). Motion capture is a corner stone of this industry,

enabling creators to produces life like and highly detailed digital motion assets. This

section of the animation market has traditionally been dominated by high end optical

motion capture solutions, which has mostly been the result of their high quality

output in combination with a lack of other viable alternatives. However, the last

decade has seen the rise of a serious competitor to these technologies in the form of

IMU based motion capture solutions. Companies such as Rokoko Electronics ApS

and XSens have worked on popularising these types of solutions and bringing motion

capture to a broader market.

Apart from a much lower price point, IMU based solutions come with a number

of other advantages over optical systems. They are generally easier to set up, are

not bound to external hardware constraining the recording volume, and do not suffer

from marker occlusion or interference from daylight (Thewlis et al., 2013).

1.2 Problem Statement

The advantages described in the previous section come with their own unique set

of limitations. Most prominently, the quality of IMU based motion capture is of a

different order due to limitations in the precision of micro-electromechanical system

(MEMS) IMU sensors.
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Typically, an IMU measures nine degrees of freedom, incorporating three triple-

axis sensors that are combined into a single package:

1. a gyroscope, measuring angular velocity in the sensor’s frame of reference

2. an accelerometer, measuring accelerations working on the sensor body, includ-

ing earths gravitational field

3. a magnetometer, measuring the surrounding magnetic field. Although not tech-

nically an inertial property, this helps with stabilising the other measurements

as discussed further on

The two inertial measurement signals from IMU’s, angular velocity and acceler-

ation, can be used to infer the sensor’s orientation and displacement in the world.

However, as these signals are time derivatives of the quantities of interest, we then

rely on integration of the measurements. This is where the problems with IMU

sensor’s originate. As any physical sensor, an IMU sensor contains inherent mea-

surement biases and noise. Integration of a biased, noisy signal will lead to errors

accumulating over time. These may not be noticeable over short periods of time, but

as time progresses these become noticeable in the form of drift.

In the case of orientation estimates, these effects can be mitigated using mea-

surements of earth’s magnetic and gravitational fields from the other sensors. These

measurements are then usually fused with the integrated angular velocities using

sensor fusion algorithms such as a Kalman filter (Sabatelli et al., 2012). In the case

of human motion capture the performance of these sensors can be further optimised

by applying knowledge of the kinematic structure to which an ensemble of sensors

is mounted (Roetenberg et al., 2009). However, these algorithms still have a limited

precision due to inherent limitations in the hardware’s precision. This leads to some

loss in quality, but a generally acceptable level of precision.

For positional estimates, accelerations can be integrated twice to obtain global

displacements (Floor-Westerdijk et al., 2012). However, this comes with additional

complications, as drift effects grow exponentially and not linearly due to the double

integration. Moreover, we do not have access to stabilising measurements, which
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leads to potential unbounded drift over time. Finally, due to errors in the orientation

measurements, we can not perfectly align the sensor with the global frame. This leads

to errors when subtracting earths gravitational field from the measured accelerations.

Due to these limitations, it is not feasible to track global positions from double

integration of the acceleration sensors over longer periods of time. Solutions like

incorporating GPS receivers, cameras, or magnetic field generators are often proposed

to mitigate this problem (Roetenberg et al., 2009; Corrales et al., 2008; Schreiner

et al., 2021b). However, they come with their own limitations including the necessity

to record outdoors, a limited field of view, and/or a limited range. They would thus

diminish some of the inherent advantages of IMU-based systems, rendering them

suboptimal.

Apart from drift, the limitations in hardware precision lead to lower quality pose

estimation, compared to poses recorded from optical systems. This in turn leads

to physically implausible artefacts, examples of which are self-penetration of body

parts due to orientation inaccuracies, and foot skating due to faulty global position

estimates.

The works presented in this thesis aim at solving the problems stated above.

In chapter 2, a method is presented for global position estimation in the horizontal

plane using pose information and a simple convolutional neural network architecture.

In chapter 3 an extension of this method is presented to also estimate displacements

in the vertical direction, while increasing robustness for IMU based motion capture

data by including acceleration information. Finally, chapter 4 presents a method

using reinforcement learning to automate cleaning of IMU based motion capture

data containing physically implausible artefacts. For a comprehensive discussion of

the previous work related to the topics introduced here, the reader is referred to the

corresponding chapters in this thesis.

1.3 Contributions

This section lists the main contributions from this work.
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From the work Global Position Prediction for Interactive Motion Capture (Schreiner

et al., 2021a):

1. We present a learning-based solution for estimating the global centre of mass

position for horizontal planar motion of a character, based on short sequences

of local pose information.

2. We show how a U-Net convolutional neural network architecture can be used

as an estimation model for global positions. This choice outperforms standard

convolutional neural network architectures, and makes our solution history

independent as opposed to recurrent networks.

3. We compare the effects of training on datasets with specialised motions to

training on datasets with a wide variety of motions. We show that training

with specialised motions slightly improves the accuracy for those motion types,

while training with varied motion makes the model more robust to unseen

motions.

4. We show how estimating absolute character height, instead of displacements

in the vertical direction, results in a better height estimate but also improves

overall model performance by reducing the task complexity.

From the work Root3D: Root Position Reconstruction in 3 Dimensions for IMU

Based Motion Capture (Schreiner et al., 2024a):

1. We present a robust method using a feedforward U-Net neural network for

estimating global positions in 3 dimensions, from local pose information and

acceleration signals from IMU sensors.

2. We present and empirically validate a method for improving estimations, by

using a weighted aggregate of all the information from the time series data that

is output by our U-Net.

3. We show how adding acceleration signals to the input of our network improves

the accuracy of predictions and how it is essential when training on lower

quality data such as IMU based data.
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From the work ADAPT: AI-Driven Artefact Purging Technique for IMU Based Mo-

tion Capture (Schreiner et al., 2024b):

1. We present a physics-based framework for cleaning physically implausible arte-

facts from faulty motion capture data.

2. We show that mixing faulty and high quality training data is pivotal in gener-

alising our method to unseen IMU based animation data from unseen actors.

3. We show that the choice of observation and actuation configuration greatly

impacts the agent’s ability to learn and produce quality output, and present

an optimal choice for generalising to unseen data.

1.4 Reflections as an Industrial Ph.D. Student

Being an industrial Ph.D. student comes with a unique set of challenges. In this

section I would like to reflect on some of these challenges, the way I dealt with them

and what I would do differently with the knowledge I have now.

1.4.1 ’Caught Between Two Worlds’

There are two worlds for an industrial Ph.D. student and while they largely overlap,

they do have some distinct differences. I remember an illustrative conversation I had

with a fellow Ph.D. student at the university. This was in the very beginning of my

project when I had a temporary office at the department of computer science for a

few months. I had been working for Rokoko for a few years prior to starting the

project, and my principle supervisor, Kenny Erleben, wanted me to disconnect from

my old role. He was worried that if I would stay at Rokoko’s office full time from

the start, I would have a hard time transitioning to my new role as an industrial

researcher. So he had found me a small office at the top floor of the building, which

housed a number of ”regular” Ph.D students. On one of the first days, I met my

next door neighbour out in the hallway and we started talking. He asked me who I

was and what I was working on. So I, in all my virgin naivety, proudly explained to
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him how I was set to change the world of character animation over the course of the

next few years, revolutionise the state of the art and most importantly democratise

motion capture, so that everybody could enjoy high end motion capture for no money

at all. However naive this all was, the end user’s experience was central in my point

of view: they were the entire justification of my work.

I, of course, then went on to ask him about his work, and he started telling

me an extensive story about higher order polynomials and abstract mathematical

concepts I had never heard of before. I have to admit I had a hard time following

what he was talking about, but I thought I could lead the conversation towards a

more easily understandable direction and I asked him: ”So what can this be used

for in practise?” He stared at me for a few seconds, apparently for the first time

considering that question, and then replied: ”I am not sure... I haven’t thought of

that before...”

This conversation was pivotal for me in understanding that there is a difference

between the academic and industrial realities. There are different mindsets involved,

different motives and different incentives. Neither of these realities is better or worse

than the other, they are just different.

Understanding this did not come immediately. I remember feeling a form of re-

sentment at first. How could someone do something without having a clear idea of

what its purpose could be, for themselves or for others? But that conversation made

me think. It made me wonder about what it is that scientists do and what drives

them. It made me think about the gathering of knowledge for the sake of understand-

ing new things; of taking a tiny step ahead in the huge scheme of things, without

maybe even knowing where exactly it will lead. It is in that sense that science as a

whole is at the service of humanity, however small or seemingly insignificant some-

thing might look. Scientific value is not necessarily measurable by monetary means

or user satisfaction.

And that is quite the contrast with the industrial reality, where everything is

focused on direct and measurable effect. If there is no direct outlook on how a

project can advance the state of the company - be that in terms of revenue, or
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customer satisfaction, or potential new verticals and business models - then there

is no place for it, especially in smaller companies. There are always exceptions, big

tech giants such as Google and Nvidia have large departments of researchers who are

quite free to explore what they deem interesting, but the leading idea is still that

this will eventually benefit the company or produce a unicorn.

1.4.2 Balancing Industrial and Academic Expectations

Now, as an industrial Ph.D. student working for a small company, I have to navigate

both the academic as well as the industrial reality, and I have found that quite

challenging at times. In my experience, the company expects monetisable results,

that are, as a figure of speech, packaged and ready to ship. On the other hand, the

university expects novel research, that is publishable in high profile peer reviewed

journals. These two expectations do not always integrate well, so part of my work

as an industrial Ph.D. student has been to manage these expectations on both sides.

An example is the global position estimation project, discussed in detail further

on in this thesis. The work is scientifically sound and was a great success from that

perspective: it resulted in a peer reviewed publication at SCA 2021/PACMCGIT

Schreiner et al. (2021a) and it shows a novel approach to solving the problem of

global position estimation for IMU-based motion capture systems. We even success-

fully extended it from trajectories in the horizontal plane to multilevel 3D trajectory

estimation, a work we have currently under review. However, academic success does

not mean that this work can now directly be implemented as a product. The ex-

periments were conducted under controlled circumstances: the work is a proof of

concept. The step from there to implementation is huge and maybe even bigger

than we realised beforehand. The result was that deployment did not go as hoped,

while at the same time the reality at the company moved on. Other solutions that

could solve part of the same cases solved by our work turned out easier to imple-

ment, and strategical changes in direction of the company all made the work less

acutely relevant. We eventually decided to move away from implementation of the

project and shelve it for the time being, leaving everyone involved with a feeling of
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dissatisfaction.

I would not say now that the project was a waste of time, even though at the time

I probably did feel that way for a while. But in hindsight it taught me some valuable

lessons on how to conduct research in an industrial setting and how to safeguard

against this kind of disappointment. One of the key take-aways in that regard are

that it is crucial to organise a project so that it does not become a long runway to

a single final result. In my experience, it is much safer to organise it around sub-

deliverables, that each have their own value for the company, even if the end goal

is not achieved. These deliverables in turn do not necessarily have to be of great

scientific importance, and conversely the end-goal of the project may not be of huge

impact to the company. As long as there is some kind of symbiosis where both sides

benefit from the development of the other side.
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Chapter 2

Global Position Prediction in the

Horizontal Plane

This chapter presents the article:

Schreiner et al. (2021a):

Paul Schreiner, Maksym Perepichka, Hayden Lewis, Sune Darkner, Paul G. Kry,

Kenny Erleben, and Victor B. Zordan. Global position prediction for interactive

motion capture. Proc. ACM Comput. Graph. Interact. Tech., 4(3), sep 2021a. doi:

10.1145/3479985. URL https://doi.org/10.1145/3479985,

It was presented at the Symposium on Computer Animation held from 7 to 10

September 2021 (online due to Covid-19). The full manuscript is contained in this

chapter. The text and figures retain their original content as presented in the pub-

lished version; however, they have been reformatted to comply with the style of this

thesis.

https://doi.org/10.1145/3479985
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2.1 Abstract

We present a method for reconstructing the global position of motion capture where

position sensing is poor or unavailable. Capture systems, such as IMU suits, can

provide excellent pose and orientation data of a capture subject, but otherwise need

post processing to estimate global position. We propose a solution that trains a

neural network to predict, in real-time, the height and body displacement given

a short window of pose and orientation data. Our training dataset contains pre-

recorded data with global positions from many different capture subjects, performing

a wide variety of activities in order to broadly train a network to estimate on like

and unseen activities. We compare training on two network architectures, a universal

network (u-net) and a traditional convolutional neural network (CNN) - observing

better error properties for the u-net in our results. We also evaluate our method

for different classes of motion. We observe high quality results for motion examples

with good representation in specialized datasets, while general performance appears

better in a more broadly sampled dataset when input motions are far from training

examples.

2.2 Introduction

Motion capture is making the transition from the studio to the home and consumer

markets with virtual reality (VR) game consoles and related hardware demanding

lower cost, less cumbersome, and interactive/real-time performance capture tech-

nologies. As the go-to commercial technology today, camera-based motion capture

systems are quite common and offer attractive solutions for both marker-based and

markerless capture solutions. However, consumer motion capture solutions, such as

IMU suits, have the advantages of being untethered, do not suffer from occlusion,

and avoid the need for dedicated space with carefully calibrated cameras. Addition-

ally, in most cases, the equipment, such as inertial measurement units (IMUs), is

considerably less expensive than camera-based hardware.

The problem with IMU-based motion capture is that it does not provide a direct
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measurement of position. IMUs typically include accelerometers, magnetometers,

and gyroscopes, which allow for an excellent measurement of rotation that can be

used to reconstruct the pose of limbs as well as the orientation of the capture subject.

In contrast, it is prohibitive to calculate useful position estimates through integration

of the accelerometer signal due to noise and bias in their measurements. To the best

of our knowledge, standard commercial (proprietary) solutions apply heuristics, such

as reconstructing from assumed foot-ground contacts for interactive playback, and

otherwise assume that errors can be corrected with post processing. But we note

that this problem is also not unique to IMU capture, it exists for many measure-

ment systems which focus on joint angle measurements, such as exoskeletons, strain

sensors, and monocular camera systems.

In this paper, we propose a learning-based solution to compute the global po-

sition of joint or “pose” based motion capture by exploiting a large collection of

previously recorded (optical) motion capture data. To this end, we train a neural

network offline to predict the global body displacement from pose data based on a

short-horizon trajectory of current pose data. We hypothesize that the information

present in this short trajectory contains sufficient detail about the dynamics being

captured that a short temporal window of such data will provide key information

to predict the character’s global motion. Namely, following training, the network

predicts the vertical position of the center of mass and its horizontal displacements

per frame. The latter is integrated to reconstruct the global motion. The use of a

fixed temporal window makes the solution history independent, in contrast to, for

instance, a recurrent neural network or other global optimization solution which con-

siders a full trajectory. Further, because our solution requires only a short window

of data, it is ideal for real-time use. Specifically, we showcase the use of a universal

network (u-net) Ronneberger et al. (2015) to accomplish this effort, while we contrast

it to other network architectures as well as their sensitivity to training data, window

length, and a number of other system and network hyper-parameters. Once trained,

the u-net prediction is much faster than real-time with our unoptimized code running

at around 200 fps (further discussion on the timing appears later in the paper.)

Figure 2.1 shows a preview of our results. In addition to the qualitative evaluation



14 Chapter 2. Global Position Prediction in the Horizontal Plane

Figure 2.1: Example of captured motion where our method can create global position
for unseen motion capture data. Because we train our u-nets with a large corpus of
motion capture data, we are able to reconstruct global position for a wide variety of
behaviors, even this unusual zombie-style walk.

of our animations, we compute errors for our reconstructions compared to (held-out)

test data and independent reconstructions. We evaluate our design decisions through

ablation studies, and choice of data representations. Finally, we present results and

comparisons on multiple data subsets, and discuss the limitations and advantages as

well as future improvements.

2.3 Related Work

Motion capture data recording and reuse has received a tremendous amount of atten-

tion in the research of human computer animation and analysis. We refer readers to

additional sources, such as the book by Menache (2011), for the basics of the topic as

a research domain, and instead focus here on the specific competing technology and

approaches related to this work. Namely, we see our effort as an alternative to the

common marker-based optical recording technologies, which require controlled envi-

ronments and a relatively cumbersome set up Thewlis et al. (2013). While optical

systems provide precision data, they require expert operators and are (still) rather

expensive, relegating them to specialized and high-end studios or labs that are well

funded and have ample space to devote to motion capture.

Because of their low cost, and relative ease-of-use, inertial motion recording sys-

tems in particular have attracted the attention of practitioners in commercial ap-

plications including sports, medicine, and entertainment. Research to address the
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position problem, the focus of our paper, also appears in sports and medicine, where

the aim is high accuracy under very specific conditions. A number of solutions have

been proposed to meet the needs of the specific domain Lapinski et al. (2009); Coyte

et al. (2013); Kok et al. (2017); Suh (2014); Li et al. (2020); Widagdo et al. (2017).

For example, biomedical researchers have proposed to correct special cases of er-

rors for rehabilitation Coyte et al. (2013). Others have focused on reducing drift in

specialized highly dynamic behaviors of interest Fasel et al. (2017).

In the animation research community, the requirement for accuracy may be re-

laxed in favor of lower cost and more flexible solutions. For example, in support of

recording alternatives, animation researchers have offered a variety of solutions for

systems that compete with marker-based optical systems Vlasic et al. (2007); Slyper

and Hodgins (2008); Shiratori et al. (2011).

Alternative motion capture systems have been commercially available for many

years, e.g., IMU suits Roetenberg et al. (2009), and researchers have been offer-

ing solutions for computing and improving collected data from such for nearly as

long Roetenberg et al. (2009); Schwarz et al. (2012); Floor-Westerdijk et al. (2012).

However, to date, non-optical motion capture solutions have not become mainstream

due to their limitations.

Finding global positions from pose information has also been studied extensively

in the field of computer vision, where global trajectories are estimated from images

Mehta et al. (2017); Zhou et al. (2018); Véges and Lőrincz (2019); Pavllo et al.

(2019); Shimada et al. (2020). These techniques rely on 2D pose representations

in an image space, i.e., with respect to a (normalized) camera focal point. This

representation implicitly encodes 3D space in a 2D projection and is intrinsically

different to our problem where we try to estimate 3D global coordinates from local

3D pose parameters.

2.3.1 Inertial Motion Capture

For inertial systems, motion capture data is extracted readily to provide body orien-

tations Roetenberg et al. (2009) and, from these, joint angles and body orientation for



16 Chapter 2. Global Position Prediction in the Horizontal Plane

a given skeleton. While one can estimate sensor position displacement by integration

of the acceleration from the IMUs, the calculation is prone to errors Floor-Westerdijk

et al. (2012). Some researchers have proposed methods, for example particle filters,

to extract better position data Schwarz et al. (2012). Others suggest the addition

of complementary sensors, such as global positioning systems (GPS) Roetenberg

et al. (2009) or ultraWide band (UWB) sensors for indoor positioning Corrales et al.

(2008).

Clearly, an attractive option is to avoid additional hardware and instead employ

a software solution derived from the input. Several solutions have been proposed in

this area as well. The most straightforward approach is to employ the knowledge of

the kinematics, for example extracting foot contact phases and then using this as a

root to dictate forward motion through kinematics Yuan et al. (2011); Zheng et al.

(2014). While we cannot be certain, we believe proprietary solutions for commercial

packages use heuristics, kinematics, and Kalmann filtering, to extract foot contacts.

Furthermore, various methods have been proposed to determine locomotion phase

including special sensors to detect foot and heal strikes Foxlin (2005); Ju et al.

(2015). Unfortunately, both heuristic and sensor techniques are prone to errors when

contact changes occur and in behaviors that include flight phases, e.g., running Suh

(2014). Our technique aims to follow the current trends in machine learning (ML)

to address the root positioning problem of such systems, especially for real-time

applications, such as gaming and direct playback. While some IMU-based research

has employed ML, for example to handle noisy IMU placement Xiao and Zarar (2018),

to our knowledge, no research has been published concerning use of ML in position

estimation for real-time capture to date. Zhou et al. (2020) present a synthesis tool

for keyframing which includes a global path predictor with some like characteristics

to our own, although they solve a synthesis problem for ‘in-betweening” while we

solve a reconstruction problem in comparison. Notably, they report a precision of

0.7 cm/frame which is on the order of 100 times larger than our results.
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Figure 2.2: Input data preprocessing pipeline for motion capture data imported from
Rokoko’s Motion Library and targets for training a neural network, u-net, to predict
center of mass positions given a time-window of relative joint data input.

2.3.2 Neural Networks for Motion Capture

The fields of computer animation and motion capture have had a multitude of ML

techniques employed in both academia and industry. Recurrent neural networks

(RNNs) are an evident choice for dealing with time-series data and have been em-

ployed for motion learning Fragkiadaki et al. (2015); Martinez et al. (2017). However,

RNN-based approaches often suffer from noisy outputs, a problem that has been ad-

dressed by a multitude of authors. Ghosh et al. (2017) combine dropout autoencoders

with LSTM (DAE-LSTM), i.e., using LSTMs to predict motion poses and denoising

autoencoders (DAEs) to filter output reducing accumulative error. Recently, Wang

et al. (2019) propose spatio-temporal recurrent neural networks (STRNN) consisting

of three networks: a network to encode temporal dependencies, a spatial network

to learn body-part dependencies, and a residual component to smooth out high fre-

quency noise.

Holden et al. (2015, 2016) introduced the usage of convolutional neural nets

(CNNs) to the domain of computer animation, using temporal convolutional lay-

ers to learn motion manifolds on the CMU motion capture dataset. Overlapping

windows of motion are computed on animation data and provided as input to the

network. CNNs have the advantage of being typically easy to train and producing

smooth motion output, but suffer from their inability to deal with long-term de-

pendencies. Recently, specialized models designed for animation data have achieved
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state-of-the-art results, such as phase function neural networks (PFNN) Holden et al.

(2017), which explicitly use footstep phase information to dynamically change net-

work weights to drive character controllers. However, this method requires prior

explicit manual labeling of motion phase information. Mode adaptive neural net-

works (MANN) Zhang et al. (2018) address this issue by automatically extracting

phase information. Starke et al. (2020) improve upon this by considering local motion

phases, determined by joint contacts with external objects.

Processing of time-series (e.g. motion capture) with neural networks has primarily

been performed using RNNs which are specifically designed for this purpose.

Although their application has been successful in the context of text and speech

Chiu and Nichols (2016); Graves et al. (2013) and EEG series in sleep classification

Biswal et al. (2017), they are notoriously hard to train Pascanu et al. (2013). To

overcome the challenges of RNNs Perslev et al. (2019) propose the u-net architecture

Ronneberger et al. (2015) for time-series data as an alternative, and report superior

performance, significantly increased stability, and ability to be trained on very large

data sets Perslev et al. (2021). The scale-space convolutional structure of the u-net

enables the modeling of temporal-spatial correlation over a fixed time-window and by

modifying the u-net architecture to a regression output provides us with an ensemble

of predictors. Ensembles are know for robustness and accuracy Hastie et al. (2009)

and the average the set of predictions from our ensemble provides the final prediction.

The choice of u-net offers faster training compared RNNs, increased stability during

training and real-time inference Perslev et al. (2019).

2.4 Method

In this section, we introduce the u-net architecture and present the data pre- and

post-processing pipeline that we use to optimize the learning capacity of the network.

A core idea behind the use of this type of network architecture is the ability to

learn correlations between pose data and its spatial-temporal correlation structure

at multiple temporal scales. Figure 2.2 provides an overview of different parts of our

training pipeline that we describe throughout the remainder of this section.
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2.4.1 U-net Architecture

Through empirical experimentation we opt to employ the u-net architecture for our

specialized problem. To adapt this tool for our needs, our u-net is modified for

regression and acts as an ensemble of regression models from which we construct

our prediction. Its layout is summarized in Figure 2.3. This network consists of

an encoder stage and a decoder stage with skip connections relaying information at

different temporal scales. In the encoder stage, the input data is encoded in the tem-

poral dimension while being expanded in the feature dimension using convolutional

layers. The input to the network is a 2D tensor, with time in the vertical dimension

and features in the horizontal dimension.

We use T to denote the time-window size and N for the dimension of the com-

bined feature vectors. A description of the layers, sizes, and features of the network

architecture are as follows:

1616 16

6464 6464 64

16

Output

Pred64

32

32 32 32 32 32

128
8

128

Input
16 16

Conv + ReLu

MaxPool
Skip

Deconv

Figure 2.3: Illustration of our u-net layout, observe that skip connections and
up/down sampling allow the u-net to handle time-series data and perform analy-
sis of data at different frequency levels.

• The u-net operates at 3 different scales in the encoding and 3 scales in the
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decoding. At each scale 2 consecutive convolutions of the input to that scale

are performed.

• The first convolution is 2 dimensional with a kernel spanning the entire feature

dimension N. In the temporal dimension we have experimented with kernels

of size 3 and 5 and found that a kernel of size 5 generally provides the best

results.

• With an input of [Batch × Channels in × T × N ] the output of the first

convolution looks like [Batch × Channels out × T ×1]. Channel in is generally

1 in our use case.

• The number of output channels of the first convolution doubles for each up

sampling layer and is halved for each down sampling layer.

• The second convolution is exclusively in the temporal dimension, over all the

output channels from the first convolution.

• The activation functions used throughout the network are rectified linear units

(ReLU).

• After each set of convolutions the output of that step is reshaped so that the

input to the next layer is again of the form [Batch × 1 × T × F ]. Here F =

Channels out can be seen as a new abstract feature dimension.

• At the end of the layer the current output is stored for later use in the skip

connections. Then the output is down sampled in the temporal dimension

using a maxpool operation with a length of 2. The feature dimension is kept

constant during this step.

• Between each down and up sampling layer of the same temporal scale, there is a

skip connection which passes the output of the encoder directly to its temporal

counter part in the decoder side of the network. This ensures that the network

can extract information and process it in the output for multiple timescales.
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• The decoder structure follows an inverse description of the encoding process,

where the up sampling is performed using linear interpolation.

In our implementation, we use the ADAM optimizer with a weight decay of 1e−5 as

the only non-default parameter. We use the MSE loss function from the PyTorch

library with all parameters set to default values.

2.4.2 Source Data

Our raw data is a rich collection of assets each containing the performance of a

single motion or a short sequence of motions. Our training motion set comes from

commercially available databases for human motion data, with 577 different assets

from 61 unique actors, totalling 629,093 frames. Note, we purposefully include data

from different motion capture studios (authors) and individuals (actors) to support

diversity with respect to capture variance, and character size, shape, and gender.

Each asset also may have individually distinct bone dimensions. Further, the range

of motion types contained is also diverse, examples include walking, dance, jumps,

martial arts, idle motion, and more. The animation data is encoded in a hierarchical

format using a skeleton consisting of 19 bones plus a root bone (the pelvic bone).

Each bone’s motion is stored as an offset from its parent and a rotational trajectory.

The root’s motion is represented by positional and rotational trajectories with respect

to a global frame.

For training the data was split into 3 subsets: a training set, a validation set and

a left-out test set. The training set is used to train the model, the validation set is

used to calculate a validation loss at the end of each training epoch. Finally, the

left-out test set is used after training has converged to determine error statistics and

all other results in the result section of this paper.

2.4.3 Pre-Processing of Input Data

In preparation for training, we re-sample the data to a uniform frame rate of 100 Hz

as is typical with IMU motion capture systems (similar to Perslev et al. (2019)). This
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is necessary because the input to the u-net requires a consistent temporal frequency,

that is, each pose window must be the same size and span the same period. However,

our training motion assets come from different sources with different frame rates.

Subsequently, we preprocess the data by extracting short temporal windows, and

mapping data into a generic forward facing reference frame (see also the pipeline

diagram in Figure 2.2).

The data is passed to the network in short sequences of frames which we call

windows. Each window is conceptually a short (less than one second) animation,

with a fixed length of time. We chose a window size of T = 64 throughout this

work. This windowing is performed online at training time, and has the advantage

that we do not need to store duplicate frame data, hence reducing memory usage

during training. This has negligible impact on training time as it is simply an array

of pointers to memory. The windows overlap with a stride of 1 causing every frame

in the data to be passed to the network in T consecutive windows. During training,

the windows are shuffled in order to avoid bias from temporal correlation.

In addition, rather than using the local hierarchical joint angles, we preprocess

each asset based on its skeletal dimensions by calculating 3D position vectors that

indicate joint positions with respect to the root (the pelvic bone) and use those to

represent poses. For our pose data, we assume the root that has a fixed position at

the origin of a world frame. Further, as motion within the physical world is invariant

to facing direction in the horizontal plane, we also define a generic rotation in which

our model is to be trained. We align the vertical axis of our reference frame to

match the the global vertical, opposite the direction of gravity. Next, the axes of

the horizontal plane of our reference frame is set from the orientation of the root at

the first frame of each window. That is, the root forward axis is projected to the

global forward direction and the lateral axis is orthogonal to both the forward and

the vertical.

The 19 joint position vectors are stacked and zero padded to form a 1D array

f ∈ R64 for each frame. The root is not included in the input tensor because it is

assumed to be poor or missing in the input data. The padding is done to maintain

identical dimensions across the down- and up-sampling layers of the u-net. Finally,
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each series of 64 consecutive frames are concatenated to form [64×64] tensors which

are fed to the network in batches of 16 windows, thus [16× 64× 64] is the size of the

input tensors to our networks.

2.4.4 Processing of Training Targets

To compute the training targets, we adjust the input samples by: 1) computing

the center of mass and treating this signal as the target; and 2) zeroing the root

displacement at the start of the temporal window.

The root of our character is defined as the pelvic body which is subject to its own

oscillations, for example, as the hips shift left and right in forward walking. Instead

of estimating the root, we predict the center of mass (CM) positions, as it is less

oscillatory and more indicative of the dynamics of the behavior. The CM estimates

of the training targets are computed by summing a weighted approximation of each

limb’s center of mass. The weighting of each limb was performed using a re-targeting

of the parameters from Dumas and Wojtusch (2017). In our experiments, we found

this simple approach of computing the CM to be sufficient. In addition, to make

the network invariant to the starting position of a time window, the trajectory in

the horizontal plane of each window is reset to start at the origin. In the result, the

training target is a time series representing the displacement of the character over

the time period of the window.

In post processing, to recover global root data, the system performs an inverse of

the target pre- processing. As the same frame in time is present in multiple target

windows (due to the windowing), the network provides multiple predictions for the

CM target of the same frame. So, we opt to collect all estimations and compute a

mean value for our final CM position prediction.

2.5 Implementation and Results

Our u-net framework is implemented in Python, using PyTorch 1.7.0 for training the

neural networks and NumPy/SciPy for data pre-processing. The experiments were
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all trained on a cluster using NVIDIA TITAN RTX GPUs. The memory use on the

GPU during training is approximately 3 GB. The focus of the experiments is to show

that we can solve the global positioning problem using a neural network in real time.

After training, the u-net runs above speeds needed for real time, in excess of 200 fps.

However, there is an inherent delay due to the window size, as follows. If a window

has size T , then the first T frames the u-net makes no estimation. Between frames

T and 2T it can make a suboptimal estimation, and from frame 2T it can make the

reported estimate - in real time - with a T frame delay. In our results we chose a

value of T as 64 frames, or approximately 0.64 s.

We compare the u-net with conventional CNNs to demonstrate its benefits and

drawbacks. A 4 layer CNN with Batch Normalization and Leaky ReLU activations

is used for comparison. One-dimensional convolution is performed along the time

dimension, with sliding windows identical to those of our u-net. The input/output

channels of the 4 layers are as: (1) in: T × N , out: 40; (2) in: 40, out: 20; (3) in:

20, out: 10; and (4) in: 10, out: 3.

We conducted the following experiments and discuss their results later in this

section:

• All data vs specialized dataset. We investigate use of a more specialized

dataset than the whole set (ALL), expecting that this would result in a better

performance for selected motion types. To this end, we produce a reduced

dataset containing only assets that are either Run, Walk, or Idle (RWI).

• Absolute vertical vs vertical displacement. An inherent problem with

estimating displacement is that integration is needed. Any bias in the esti-

mation, however small, will therefore eventually grow without bounds. In this

experiment, we estimated the absolute height of the character against vertical

displacements to avoid drift on the vertical axis.

• Center of mass vs root position estimation. We proposed the use of the

CM in the estimation as a more stable signal than the root position for global

displacement prediction. We compare the two to ascertain the impact of this

decision.
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Figure 2.4: Validation loss plots for all data (ALL) or run walk idle (RWI), and
different network architectures. Note the discontinuities in most plots caused by
restarting the ADAM optimizer. The jump in the curve of the of the u-net in the
RWI plot is caused by over fitting. Note that the blue (u-net) and red (CNN) curves
are consistently in the same loss range within experiments.

To improve the visual quality of the results, we optionally post process the results

with inverse kinematics (as noted in the video). To this end, foot ground contact

labels are extracted from the motion using a method based on Lee et al. (2002),

comparing each foot joint’s positions and velocities against predefined thresholds.

Ground contact labels are subsequently cleaned using thresholds to avoid false pos-

itives and false negatives by removing short contacts less than 5 frames and filling

gaps between contacts that are less than 15 frames. Using the contact labels, feet

target positions are generated. For frames where contact is detected, the target is set

to a static point where the horizontal plane coordinates correspond to the position

of the foot, and vertical coordinate corresponds to the previously determined floor

height. Cubic Hermite spline interpolation is used to blend in and out from this

contact point. Finally, the feet are made to track the target positions using analyti-

cal two joint inverse kinematics. Note that this is not a full foot skate cleanup, but

provides a moderate improvement to our final results.

2.5.1 Validation

The typical training times for all experiments were in the order one to two weeks.

Figure 2.4 shows the validation loss for both conventional nets and u-nets, and serves

as a sanity check that training converges in all cases. Table 2.1 provides an overview



26 Chapter 2. Global Position Prediction in the Horizontal Plane

-1 -0.5 0 0.5 1

Forward errors [cm/frame]
-1 -0.5 0 0.5 1

Lateral errors [cm/frame]
-20 -10 0 10 20

Vertical errors [cm]

ALL u-net

ALL CNN

Figure 2.5: Probability density functions showing the distribution of the per frame
error on each axis for the all data experiment.

of the error statistics of the different experiments. The u-net version of the ALL

dataset outperformed the other scenarios. Mean errors result in drift when integra-

tion is performed. While all models had some degree of mean error, albeit low, our

u-net performed best for all parameters that contribute to drift, with mean errors in

the sub millimeter range. We did see a larger mean error in the vertical direction,

however this does not contribute to any drift as these estimates are not integrated.

Observe how the standard deviation is always an order of magnitude larger than the

mean error, indicating that the errors are predominantly local and less systematic.

To take a closer look at the somewhat large mean errors of the height estimates,

we refer to the plots in Figure 2.5. Here probability density functions are shown for

the errors of both networks. We can see that while the main body of errors for the

u-net model in the forward direction is centered around zero, the errors from the

CNN model are more biased. For the vertical axis we see a bias in the distribution

of both models, however this bias is significantly smaller than µv in Table 2.1 and

has an opposite sign.

2.5.2 Robustness and Generalizations

For a comprehensive view of what our results look like in final render we refer readers

to the supplementary video. However, the snapshots in Figure 2.6 give an impres-

sion of what a walk motion predicted by our u-net looks like. Note the solid foot

positioning as an indicator that the global position is estimated with high precision

and minimal visible drift.
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Table 2.1: Comparison between different networks and datasets, either ALL, or
run, walk and idle (RWI). The error mean µ and standard deviation σ is shown for
forward, lateral, and vertical directions as denoted by subscripts. All units are cm
per frame except for those where the vertical output is an absolute position estimate,
in which case the units are cm.

Model Data µf µl µv σf σl σv

u-net ALL -0.004 0.002 -4.062 0.191 0.185 23.123
CNN ALL 0.034 0.007 -4.202 0.211 0.219 24.274
u-net RWI -0.026 0.034 -5.886 3.331 0.203 29.010
CNN RWI -0.017 -0.040 -14.582 3.349 0.303 78.551

Figure 2.6: This walk motion shows solid foot plants for this walking data that does
not need any clean up as it is well represented in our database and the u-net is able
to predict the motion with minimal error.

A comparison between the walking results of the u-net model and the CNN model

can be seen in Figure 2.7. The trajectory estimated by both models as well as the

reference trajectory can be seen. The u-net predicts estimates very close to the

original motion while the CNN estimate displays significant drift over the range of

motion.

A more complex motion asset of a character’s motion is plotted in Figure 2.8

(for the u-net alone). The character is initially standing still, then, at approximately

frame 130, starts accelerating to full-speed walking, reached around frame 350. The

character maintains a constant cyclic walking motion for a duration, until frame

2050 where the character decelerates and come to full stand still. Our system proves



28 Chapter 2. Global Position Prediction in the Horizontal Plane

-200 0 200 400 600 800 1000120014001600
[cm]

-600

-400

-200

0

200

400

600

[c
m

]

Horizontal plane

UNet
CNN
Reference

Figure 2.7: Top view of a trajectory of a character walking in a straight line. Notice
how the u-net estimate is close to the reference while the CNN shows significant
drift.

capable of accurately reconstructing the entire motion sequence. Both displacements

in the horizontal plane as well as the position on the vertical axis are estimated to a

high precision.

2.5.3 Ablation Studies

Figure 2.9 shows plots of a character’s height during a run together with the abso-

lute height estimates and integrated displacement estimates (both u-net). A natural

approach to train a network to predict motion would be to make it learn the same

type of parameter on all axes. However, the kinematic constraints present in the

human morphology and an assumption of ground contact justify attempting to es-

timate absolute vertical positions instead. We compared the performance in both

scenarios. While the absolute height estimate follows the reference trajectory, the
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Figure 2.8: Horizontal displacement and vertical position estimates for a compound
motion using the u-net architecture. Observe how the system is able to estimate
standstill as well as cyclic motion, acceleration and deceleration in all axes.

integrated displacements introduce a downward drift caused by biased estimations

of the displacements as the figure reveals.

To support our choice of the CM as the estimation value, we trained two net-

works: one predicting the global position of the root and one predicting that of the

CM. We evaluate the two by reconstructing the root position of the character using

the estimate of the CM and compare it with the directly estimated root position. In

support of our proposed approach, we found that the root reconstruction from the

CM network produces quantitatively better results in general. We show a represen-

tative plot in Figure 2.10. It should be noted that even though the root estimation

seems to outperform the CM when it comes to the vertical axis prediction, these

prediction errors are not integrated; i.e., the vertical position error does not grow in

time. The forward and lateral predictions are velocities, which must be integrated

in order to get a final position.
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Figure 2.9: Comparison between (u-net) estimates of the absolute height and height
by integrating displacements. Note the drift in the integrated result due to the
accumulation of the error.

In the case of the animation in Figure 2.10, the center of mass predictions follow

the reference more closely in several places in the motion for the lateral and forward

displacement while it shows a constant offset with respect to the reference for the

vertical direction. When integrating the forward displacements of this animation,

the positional error at the end of the motion is 1.5 cm for the CM while it is 58

cm for the root. In comparison, the difference in mean absolute error of the vertical

estimation is 3.4 cm for the CM prediction versus 1.6 cm for the root predictions.

In light of this, we deem the CM estimation to be a better predictor than the root

overall.

We highlight how the system performs differently for the RWI training motion

in comparison to training on ALL the data in Figure 2.11. Here we showcase two

assets, one a run and the second a dance. The first motion is that of a character

accelerating from standstill to a running motion, and then after a period of constant

motion slowing down again to end in standstill. We note the specialized model

trained with the RWI dataset performs slightly better for running. For the second,
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Figure 2.10: Comparison between center of mass and root as the estimation target.
The center of mass estimation has been projected back to the root (pelvis). Note
that the unit of the forward and lateral predictions is cm/frame while the vertical
prediction is in cm.

a dancing motion, a similar comparison is performed. We note that for this motion

the model trained with the ALL data performs better. In aggregate, from Table 2.1

we see that the networks trained using the ALL data set outperform the specialized

RWI trained networks. From this result, we conclude that training with more data

is generally preferable over training with specialized data. More experimentation

would likely benefit specific applications.

Running motion is typically a difficult type of motion for heuristic methods due

to the highly dynamic nature of the run cycle, which includes a flight phase, making

it difficult to predict displacements even if proper foot contacts are determined. In

Figure 2.12, snapshots of a running motion are shown where the displacement and

height were predicted using our method. Note how the right foot does not move with

respect to the tile borders once it is planted, indicating a solid stance phase (see also

the supplementary video). Note, no inverse kinematics clean up is performed to

obtain this result.
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Figure 2.11: Comparison between a u-net trained using the ALL data set and a u-net
trained using the more specialized RWI data set. The left plot shows a character
running. Notice the larger error in the estimation of the ALL trained model, espe-
cially in the vertical prediction. The right plot shows a character dancing, which is a
motion type not available in the RWI data set. Observe how the RWI trained model
has more difficulty predicting the motion, for example, in the lateral motion around
frame 1000.
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Figure 2.12: Running motion with a flight phase is particularly difficult for heuristic
based solutions. Our approach can estimate good lateral motion, as exhibited by the
lack of foot skate, and predicts the vertical trajectory that is nearly imperceptible
from ground truth. Please refer to the video for this and other comparisons.

2.5.4 IMU Data Evaluation

We use real IMU based motion capture data recorded with Rokoko’s Smartsuit Pro,

to compare our trained u-net to Rokoko’s heuristic approach (in the video). The

supplemental video also shows position reconstruction for other motions recorded

using an IMU suit. While our network was trained on optical motion capture data,

we show we can also reconstruct global positions for motion captured with the IMU

suit. We do note, however, that the raw IMU pose data was poorer quality in general

and had larger errors, assumably because the IMU error accumulates at all joints

from the root to the extremities.

2.6 Discussion and Conclusion

Our experiments show that a trained network can reasonably estimate the position

of a humanoid character in a global coordinate frame interactively from local joint

angle and orientation data alone. We propose to apply this estimation method for

IMU motion capture but feel it is particularly valuable for interactive applications

where position is needed, especially as it runs at faster than real-time rates. Within

the scope of our investigations, we compare standard CNNs with the u-net archi-

tecture, and found that u-nets are capable of estimating motion with a higher level

of precision. Notably the u-net both drifted significantly less and produced smaller
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Figure 2.13: Estimation plot of a character jumping at time t = 0. Note that the
network is unable to track the height as the character lifts off but recovers as soon
as the character touches down again.

per-frame errors in comparison to the CNN. In addition, our approach was able to

eliminate drift in the vertical dimension by estimating an absolute position, instead

of displacement, thereby eliminating the need for integration. While this relies on

the assumption that motion appears on a horizontal plane, it could also be reverted

to the displacement (with errors as reported) if elevation change is required for an

application.

We compare networks trained using test data from a wide span of motion with

models trained on a more specialized dataset. We found that the specialized network

was slightly better at predicting motions similar to those present in the specialized

training data. We see this as useful for in-depth studies where the motion type is

known in advance, and the luxury of a dedicated dataset is justified. In contrast,

when the trained system is presented with novel data, such as that of a character

dancing, the specialized model performed less well than the one trained on the more

general dataset. From this we conclude that the model trained on the broader dataset

is likely able to estimate new motion types better. This experimentation also spurs
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the pursuit of more complex systems where clusters of networks might compete for

optimal prediction in future work.

We observe that our method fails in cases where the character is not in physical

contact with the world over a prolonged period of time. The results for one such

asset is plotted in Figure 2.13. In this asset, a character starts with a jump. The

model initially tracks the motion until the feet lift off the ground and the model

poorly estimates the motion in the air. Once the characters feet touch down, an

accurate prediction is restored. As the capacity to estimate positions depends on

the presence of like data in the database, in order to estimate general free fall, the

model would need to incorporate additional training data or perhaps a model of

the dynamics itself. For example, with parameters for gravity and momentum, we

believe reconstructed flight phases could be improved. Incorporating these types of

dynamic constraints within this scope is, to the best of our knowledge, unexplored

and an additional interesting topic of future work.

Our method is meant to be used in real-time in order to get an on-the-fly estimate

of global displacement. To this regard execution time has to be fast enough to run

concurrently with a motion capture solution. Our solution is light enough to execute

at 200 fps on a modern CPU, far faster than the 100 fps it is designed for. This is

without any hardware acceleration such as GPU or code optimisations implemented,

leaving room for far higher frame rates. Due to the windowing of data, estimates do

include a short delay of less than one second.

Returning to our original motivation, we show that our solution is capable of

estimating global placement for data from IMU systems alone but note the output

quality is lower than of the optical examples, which is not surprising since the input

data to the network is also lower quality. We expect that introducing IMU data

to the training will improve the performance for this type of data. This is a key

direction to make this approach practical for future commercialization with IMUs.

However, as is, our solution still represents a significant step forward in the potential

for global positioning from joint angle and orientation data, especially in real-time

applications.
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Chapter 3

Root Position Reconstruction in 3

Dimensions For IMU Data

This chapter presents the article:

Schreiner et al. (2024a):

Paul Schreiner, Sune Darkner, and Kenny Erleben. Root3D: Root position recon-

struction in 3 dimensions for imu based motion capture. Under review at the Sym-

posium on Interactive 3D Graphics and Games, 2024a

The full manuscript is contained in this chapter.
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3.1 Abstract

Lightweight global trajectory reconstruction in 3 dimensions is a yet to be solved

problem for animation data from IMU based motion capture systems. In this work

we use a lean U-Net neural network architecture to estimate global displacements

in a stable and accurate manner. Our network takes as an input a combination

of local pose information and acceleration signals from IMU sensors and estimates

short, character centred trajectories of 8 frames. We use a weighted average of the

predictions to reduce the effect of estimation bias and noise during integration of the

displacement and empirically show its advantage over other methods. We test our

trained model on a dataset of unseen data, from actors that were not included in the

training set. Our method is capable of accurately reconstructing the ground truth

trajectory, without significant drift effects, for both horizontal planar motion as well

as motion in the vertical direction. We further show how with declining pose data

quality, estimation accuracy deteriorates and how acceleration signals are pivotal to

maintain high quality trajectory reconstruction.

3.2 Introduction

The animation industry in 2023 is a multibillion global industry (Statista Research

Department, 2023; Knowledge Sourcing, 2023). Within this industry motion capture

serves a key role in the creation of artistically free and realistic animation. Apart

from the animation industry, motion capture has many applications in other fields

such as sports and medicine.

For decades, optical marker based solutions have dominated the field of motion

capture due to their high accuracy and the lack of serious competition from other

technologies. However, their high startup and operational costs reserves them to a

large degree for high end production studios and the like and puts them out of reach

of smaller studios or individual creatives.

Because of these limitations, and the wide availability of cameras in everyday life

appliances, alternative methods are gaining traction, like monocular motion capture,
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where poses and positions are estimated from video from low cost cameras. However

quality can still not compare to high end optical systems.

Inertial systems form a more mature alternative for marker based motion capture,

at a much lower price point. These systems, where poses are estimated from body

mounted inertial measurement units (IMUs), have the additional advantage of being

untethered, and are insensitive to daylight. These, however, are advantages that

come at the cost of quality and a lack of state information. A problem central to

IMU based motion capture, is that of estimating global positions. As the sensor

measures derivative signals of the quantities of interest, namely, angular velocity for

orientation and acceleration for position, we rely on the integration of these signals

to recover orientations and positions. Orientation measurement can be stabilized

using knowledge about earth’s magnetic and gravitational fields, as measured by a

magnetometer and accelerometer respectively. However, there are no passive sensors

that can stabilise integration of the acceleration signals. To complicate things more,

in order to obtain position from acceleration, we would need to integrate twice,

causing hardware related noise and bias errors to accumulate exponentially over

time.

To date, a simple, robust solution to this problem, that does not require additional

external hardware such as camera sensors, GPS or high frequency magnetic field

generators, has not been found.

In this work, we build on top of the work from Schreiner et al. (2021a) and

propose a method to robustly estimate global positions from local pose information

and acceleration signals.

The main contributions of this work are:

• A robust method based on a feedforward U-Net neural network for estimat-

ing global positions from sequences of local pose information and acceleration

signals from IMU sensors

• An extension of the method proposed by Schreiner et al. (2021a) to include

displacements in the vertical direction, enabling us to track multilevel motions

such as stair walking
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• The presentation and empirical validation of a method for improving estima-

tions, by making use of all the information from the time series data that is

output by the U-Net

3.3 Related Work

Global position estimation A shortcoming of wearable IMUs is their lack of

accurate global position information. Positional information could be obtained by

double integration of the acceleration signal (Floor-Westerdijk et al., 2012), but this

is vulnerable to drift problems, due to the presence of sensor noise and biases. Drift

can be limited by incorporating contact detection with the environment (Roetenberg

et al., 2009; Yuan et al., 2011; Zheng et al., 2014) but this limits the use of the

method to contact rich motions and requires specialised contact detection algorithms.

Alternatively, the IMU data can be fused with data from other sources (Roetenberg

et al., 2009; Corrales et al., 2008; Schreiner et al., 2021b); however this implies the

use of additional hardware, potentially constraining the user to a specific recording

volume.

This work seeks to solve the positioning problem by employing machine learning

in the form of neural networks. It is an extension of the work from Schreiner et al.

(2021a), who successfully employed U-Nets to reconstruct global trajectories in a

horizontal plane from sequences of local pose information. We address two topics

that were left open, namely improving robustness by including acceleration signals

and extending the framework to the 3D space.

Computer vision In recent years, camera based motion capture has become a

serious competitor to inertial motion capture. This branch of motion capture suffers

from its own difficulties with global position estimation. In this case the positions

have to be transformed from a 2D projection (the image) to a 3D representation.

A number of works have contributed to solving this problem (Mehta et al., 2017;

Zhou et al., 2018; Véges and Lőrincz, 2019; Pavllo et al., 2019; Shimada et al., 2020,

2021; Wang et al., 2020). However, the computer vision problem is fundamentally
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different to ours, in that it utilizes the embedding of 3D positions in a 2D encoding.

Closer to our approach is the resent work of Yuan et al. (2022a) who had impressive

results with a combination of motion infilling and global trajectory estimation. They

employed conditional variational auto encoders in combination with an optimisation

strategy that aligns the estimated trajectories with information extracted from the

images.

Bio-mechanical approaches Using IMUs for capturing information about human

motion and the topic of position estimation is also explored in the fields of sports

and medicine where precise measurements under particular conditions are crucial.

Various methods have been developed to fulfill these domain-specific requirements

(Lapinski et al., 2009; Kok et al., 2017; Suh, 2014; Li et al., 2020; Widagdo et al.,

2017; Coyte et al., 2013; Fasel et al., 2017).

Deep learning: pose estimation, motion synthesis, and generative AI

Over the last decade, deep learning has earned its place within the field of motion

capture. It has seen a wide variety of applications, ranging from pose estimation

to motion synthesis, and more recently, generative applications. Motion synthesis,

correction and de-noising saw early breakthroughs with the works of Holden et al.

(2015) and Holden et al. (2016) where motion data was formatted as 2D tensors

with pose information on one axis and the temporal dimension on the other, making

them suitable for convolutional neural networks (CNN). These would learn motion

manifolds, allowing the authors to de-noise motion data, and synthesise transforma-

tions by performing inbetweening. These works established the potential of CNNs

for motion data and could estimate global trajectories between start and end points,

however, they did not deal with the problem of unconstrained global position estima-

tion. In Holden et al. (2017) the authors introduce phase-functioned neural networks

(PFNN) as a form of neural motion matching. Their method uses an input from the

character’s current motion phase to calculate an optimal set of network weights to

predict the next step of a motion. This concept is further improved by Zhang et al.

(2018) who replace the phase-function with another neural network for quadruped
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control and Starke et al. (2020), who exploit joint contacts with the environment to

calculate local motion phases.

The past year has seen the rise and the becoming mainstream of large language

models (LLM) and generative AI models such as the GPT and DALL-E series (Brown

et al., 2020; Ramesh et al., 2021). Inspired by these works, researchers have at-

tempted to employ these techniques in various fields, likewise in the field of character

animation. A broad range of works propose generative solutions that are capable of

generating motion from text prompts (Tevet et al., 2022; Yuan et al., 2023; Petrovich

et al., 2022). However the quality of the motion that is output by these models is

still far behind on motion capture quality.

Recurrent neural networks (RNN) are an attractive option for motion data due

to their ability to remember. In Ghosh et al. (2017) the authors performed motion

synthesis over long time-horizons using RNNs, while Martinez et al. (2017) predict

future poses based on past sequences. These types of models are notoriously hard

to train, tending to either converge to the mean motion of the dataset or diverge

to produce jittery motion. Wang et al. (2019) proposes to mitigate some of these

issues by using spatio-temporal RNNs (STRNN). In Huang et al. (2018), full body

poses are estimated using sparse IMU sensor configurations in combination with bi-

directional RNNs. The authors do not address the positioning problem, but they

show how including raw acceleration signals is essential for performance and helps

avoiding overfitting. More recently, a number of works have sought to reconstruct full

pose information including global translations from sparse IMU sensor configurations

(Yi et al., 2021, 2022; Van Wouwe et al., 2023). These methods show impressive

results considering the small amount of sensors they operate on, but still depend on

constraints such as that the motion is contact rich and over flat ground. In Pan et al.

(2023) the authors fuse sparse IMU data with monocular video inputs as they seek

to eliminate global drift. Another problem with RNNs is that they are notoriously

hard to train (Pascanu et al., 2013). As an alternative to RNNs Perslev et al. (2019)

and Perslev et al. (2021) show improved training performance and stability over

RNNs, using the U-Net architecture from Ronneberger et al. (2015) to work with

time-series data from sleep-cycles. U-Nets are also implemented by Schreiner et al.
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(2021b) to predict global position information in a horizontal plane for high quality

motion capture and are shown to outperform a standard CNN.

In contrast to previous work, we use a straight forward, easy to train, convolu-

tional neural network. Moreover, we do not rely on additional hardware for con-

straining inputs or make assumptions about the space that we are moving in.

3.4 Method

In previous work, Schreiner et al. (2021a) reconstructed global trajectories, using

local pose information. They demonstrated good results on high quality data, how-

ever they struggled with transferring these results to recordings with lower quality

motion capture data. To improve performance for this type of motion data, they

suggest including acceleration signals from IMU sensors into the training data of

the neural network. In this work, we pick up on this idea and show how adding

acceleration data is an effective and essential improvement for estimating global tra-

jectories. We further improve on their work, by extending the prediction framework

from horizontal planar motion to including the vertical dimension.

3.4.1 Data, Network Architecture, Feature Vector and Tar-

gets

Data For this work we recorded a custom dataset using Rokoko’s Smartsuit Pro II,

an IMU based motion capture suit, and an Optitrack optical motion capture setup.

We recorded a total of 434 motion assets, with 17 different actors. The actors were

asked to perform three types of motion: walking in the horizontal plane, walking up

stairs, and walking down stairs. Each motion was recorded using both the optical

setup and the IMU suit, using a trigger to synchronize recording start and stop. All

recordings were exported at 100 frames per second.

Network architecture Our model takes a window of W motion data frames and

predicts an equally long mini-trajectory of the root position of the character. We
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choose a U-Net convolutional neural network as our model architecture for its ability

to handle time series data. In Schreiner et al. (2021a) this choice is discussed in

detail and shown to be superior over standard CNNs. We refer to that work for a

more in-depth analysis of the performance of U-Nets for this type of problem. The

main difference with our implementation is that our network adds a small set of

fully connected layers right after the input to pre-process the data. The rationale

behind this is that the U-Net uses convolutional layers, which are optimised to find

patterns between adjacent features in the feature tensor. Human motion data has

a hierarchical structure, where there are clear physical relations between the data

points. However, these relations are not necessarily represented in the partition of

the input tensor. Hence, the fully connected layers serve to extract an abstract rep-

resentation of the feature tensor, more suitable for use with convolutional layers.The

convolutional layers in our network each contain 9 input and output channels except

for the first and last layers. These layers serve to increase the channels from 1 to 9

and decrease them from 9 to 1 respectively. Our network architecture is represented

in figure 3.1. The result is a very lean network, containing a little under 40k param-

eters, making it suitable for real time computation and potentially even possible to

integrate it on dedicated devices.

Feature vector The feature vector of our network consists of a combination of

local pose information and acceleration signals. We define our feature vector as

x ≡
{

pjoints a
}
∈ R117 , (3.1)

Here pjoints ∈ R60 is the 20 joint positions, in 3D space, of the character with

respect to its root, flattened to form a 1D tensor. The acceleration signals, a ∈
R57 are recorded using 19 body-mounted IMU sensors. Each IMU sensor measures

acceleration along its own three axes. In order to obtain accelerations in global space,

we use the IMU sensor’s orientation estimate, to rotate the signals from sensor frame

to world frame. We then subtract gravity to obtain the free body accelerations in
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Figure 3.1: Illustration of our U-Net layout. We have added two fully connected
layers in the beginning of the network, to optimise the feature partitioning for the
convolutional layers. All convolutional layers have 9 in and output channels, apart
from the first (1 input channel, 9 output) and the last (9 input channels, 1 output).

the world frame. For each body n we have

an = qIMU,n ⊗ aIMU,n ⊗ q∗
IMU,n − g . (3.2)

Here aIMU,n is the measured acceleration in sensor frame of the nth sensor, qIMU,b is

the rotation of the sensor with respect to the world frame, ⊗ indicates a quaternion

multiplication, and q∗ is the conjugate of unit-quaternion q.

Finally, we assemble windows of W feature vectors as the input to our model:

XW ≡
[
x0 x1 · · · xW

]
(3.3)

In our particular setup we use W = 8 which is a huge improvement over Schreiner

et al. (2021a) that used W = 64.
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Target Our model predicts mini-trajectories of W consecutive frames at every

iteration. We define the predictions of the model at the nth step as

Sn ≡
[
sn,0 sn,1 · · · sn,W

]
(3.4)

where W is the window size and sn,j ∈ R3 is the root prediction of the jth time slice

in the nth step with respect to the current position of the character.

Pre-processing During training we align each window with the global frame. We

take the forward axis of the character root at the first frame of the window, and

rotate it in the horizontal plane, such that it aligns with the global forward axis.

This is done to reduce the complexity of the task by eliminating global heading as a

factor in the reconstruction problem.

3.4.2 Trajectory Reconstruction Using One or More Predic-

tion Steps

Reconstruction of the full animation trajectory is then done by using one or more

of these predictions to increment one step of the full trajectory. We denote a full

trajectory with length L as

T ≡ [T0, T1, · · · , TL], (3.5)

where Ti ∈ R3 is the root position in global space.

Now we can define a function,

F(Sn) ≡ dn . (3.6)

that maps the predictions to a root displacement dn ∈ R3, so we can increment the

full trajectory with one step as

Tn+1 ← Tn + dn , (3.7)
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and obtain any point in the trajectory by recursively applying (3.7):

Tn ← T0 +
n−1∑
j=0

dj . (3.8)

The most straightforward candidate for 3.6 would be

dn ≈ F0(Sn) ≡ sn,0 , (3.9)

which would simply return the first prediction element of the model. This would be

the ideal definition if we had a perfect estimator. Unfortunately, we do not have this.

Hence, we wish to utilise more information to make a more effective prediction. Since

we are predicting small trajectories of W steps at each iteration of our model, we

have a level of redundancy in our data. For example, let us consider the estimation

vector, Sn, defined in 3.4. Taking the second term, we know that we can write this

as

sn,1 = sn,0 + dn,0 , (3.10)

where dn,0 is the displacement between the first and the second step. Hence, sn,1

includes information about sn,0. Based on this, our idea is to use this relation to

reduce noise and bias effects inherently present in our model’s estimations, by aggre-

gating multiple predictions in one single prediction. For a basic first-order correction,

time-normalising the second step’s prediction as 1
2
sn,1 and averaging leads to

F1(Sn) ≡
sn,0 +

1
2
sn,1

2
. (3.11)

to estimate the displacement instead of 3.9. The idea can be extended to include

higher-order information as well. This leads to the definition of the W th-order pre-
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diction,

FW (Sn) ≡
1

W + 1

W∑
k=0

sn,k
k + 1

. (3.12)

3.4.3 Further Intuition About The First Order Prediction

Scheme

We will now try to write up an expression that allows us to build more intuition

about the error of our 1st-order prediction scheme. Let us examine the following

prediction sequence. We can write the recurrence relation

T1 ≈ T0 + F1(S0) ,
T2 ≈ T1 + F1(S1) , (3.13)

...

Tn ≈ Tn−1 + F1(Sn−1) .

To derive an expression for the error of our scheme we will assume we have a perfect

model. This means that for the first two terms of the prediction Sn:

sn,0 = dn , (3.14)

sn,1 − sn,0 = dn+1 , (3.15)

sn,1 = dn+1 + dn . (3.16)

Substituting this in definition in (3.11) we get:

F1(Sn) =
3dn

4
+

dn+1

4
, (3.17)
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Now we can rewrite the recurrence relation from (3.13) as

T1 ≈ T0 +
3d0

4
+

d1

4
,

T2 ≈ T1 +
3d1

4
+

d2

4
, (3.18)

...

Tn ≈ Tn−1 +
3dn−1

4
+

dn

4
.

Back substitution gives us

Tn ≈ Tn ≡ T0 +
3d0

4
+

(
n−1∑
j=1

dj

)
+

dn

4
. (3.19)

Using (3.8), we can define the error of the first order scheme in step n with respect

to the real trajectory as,

ϵ1,n ≡ Tn −Tn =
d0 − dn

4
. (3.20)

We conclude this is a shift of the trajectory with respect to the ground truth. More

importantly, the error at each position in the trajectory remains stable, bound to

the first and last displacement, and it does not accumulate. Especially for longer

trajectories, as Tn grows large, d0 ≪ Tn and dn ≪ Tn so ϵ1,n becomes negligible.

This example was meant to create some intuition behind this form of integration of

the predictions, therefore we worked out the simple ’first order’ example, to reduce

the mathematical complexity. However, this approach can be extended to the W th

order. In Section 3.5, we show empirically that using the full prediction order is

beneficial for both the precision and accuracy of the trajectory estimation.
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3.5 Results

In this section we show that global displacements in 3D space can be estimated by a

simple convolutional neural network, using local pose information and acceleration

signals from body mounted IMUs.

All the models discussed in this section were implemented in PyTorch/Lightning

AI and trained using a Nvidia RTX A5500 GPU.

All experiments are performed using the same dataset, discussed in section 3.4.1.

We split the dataset into three parts: a training set on which the model is fitted,

a validation set used to monitor training performance as training progresses, and a

test set to evaluate the fitted model’s performance. The test set was about 10 % of

the total dataset size and exclusively contained motions from actors that were not

present in the training data. The remaining data was split 80/20 between training

and validation sets.

3.5.1 Assessing Model Performance in 3D Trajectory

Estimation and the Choice of Estimation Function

We found that the batch-wise L1 loss, while effective for training, falls short in

measuring full trajectory estimation accuracy. This is because it overlooks the effect

of biases in error estimation, which, unlike larger unbiased errors, can accumulate

significantly over a trajectory. To address this, we incorporate Mean Squared Error

(MSE) across the entire trajectory as a complementary metric:

eMSE ≡
1

3T

T∑
t=0

∥ pt − p̄t ∥2 . (3.21)

This accounts for drift effects which accumulate in the estimated trajectory. Addi-

tionally, analysing the distribution of estimation errors provides insight into potential

biases and under or overestimation tendencies of our model. Finally we use visual

inspections of the results, which are available as a supplementary video to this work.
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In section 3.4.1 we discussed different methods of reconstructing a motion tra-

jectory given the short mini-trajectories that our model estimates. To test these

methods we reconstructed the root trajectories of the assets in our test dataset using

equation 3.12, with

Fw(Sn), w ∈ {0, 1, 2, 3, 4, 5, 6, 7}. (3.22)

Figure 3.2 shows the effect on the eMSE metric . A larger W has a positive impact

on the model’s prediction power, reducing the average eMSE over all trajectories in

the test dataset. Apart from a lower error, the predictions become more reliable, as

witnessed by the lower variance, visualised with the blue shaded area in the figure.

We conclude that this is because the final prediction used to increment the trajectory

becomes a weighted average of several prediction values, helping to reduce bias and

variance that would be present in the individual terms. In the remainder of this work

we therefore use equation 3.12 with W = 8 to reconstruct root trajectories.
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Figure 3.2: Average Errors in Trajectory Reconstruction: the figure shows the rela-
tion between the number of prediction steps, W, used to reconstruct the trajectories
and the average value of eMSE over all assets in the test dataset. The shaded area
gives the variance. Note how both the average and variance decrease significantly
for higher values of W.
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Figure 3.3: Reconstructed root trajectory: still frames from an animation of a char-
acter walking up stairs. The white line shows the reconstructed trajectory.

3.5.2 Evaluating Root Trajectory Reconstruction: Accuracy

and Error Analysis

Figure 3.3 shows still frames of an animation where our method reconstructed the

global root trajectory of a character walking up stairs. The full rendered animation

is included in the supplementary video. The white line in the plot shows the root

trajectory of the character. The character first moves forward in the horizontal plane,

before ascending the stairs, indicating our model can distinct and switch between

these modes of the motion.

In figure 3.4 we have plotted the trajectories for three types of motions. The

corresponding animations are included in the supplementary video for a more pro-

found and visual inspection of these results. The first two plots show a side view

of a character walking up and down the stairs respectively. Our method effectively

reconstructs the trajectory within an error margin of a few centimetres, faithfully
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following the motion dynamics of the ground truth.

IMU
Optical
GT

Figure 3.4: Plots of three reconstructed trajectories compared to the ground truth
(dashed black). The blue line is estimated using high quality optical pose data, while
the red line uses poses estimated from IMU signals. From left to right, a character
walks up the stairs, down the stairs and in a counter-clockwise circle in the horizontal
plane. The models both effectively track the ground truth trajectory, however slight
drift effects are visible, especially when using IMU poses.

The last plot shows a top view of a character walking in a counter clockwise

circle in the horizontal plane, while the predicted and ground truth trajectories are

nearly perfectly matched. The entire trajectory is several meters long while the final

misalignment error is at most a few centimeters. For more examples of trajectory

plots, we refer to appendix 3.7.

We have not found any persistent tendencies of the model, such as structural over

or underestimation, bias, etc. However, we do notice these tendencies on a per-actor

basis. An example is subject 2, whose planar walks tend to show a slight downward

drift, as exhibited by figure 3.5. This figure plots the height of the character per

frame against the ground truth. We think that these actor specific effects are an

indication that our training data lacks some diversity in terms of actors. This is

important because there can be a large variation in sensor placement configuration

from actor to actor.

The trajectory plots from figure 3.4 are only a selection of our model’s per-

formance on the test data. To give a better insight into the prediction errors,
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Figure 3.5: Height plot of a character walking in the horizontal plane. The model is
capable of reconstructing the higher frequency dynamics of the motion, however it
also introduces a low frequency downward motion, not present in the ground truth.

e = estimate − target, we plot their probability density functions (PDF) in for-

ward, lateral and vertical direction in figure 3.6 (blue). The error distributions are

narrow and centred around zero, indicating stable and accurate predictions of our

model. The vertical direction shows a slight offset from zero, we argue that this is

caused by the downward trend in a portion of the motions.

In conclusion, we observe that prediction errors, however small, can have great

visual impact when they cause for example foot-skating. These artefacts are easily

fixed in post-processing using a simple anti foot-skate filter which sets foot velocities

to zero when they fall under a small threshold. An example of this is shown in the

supplementary video.

3.5.3 IMU Only Data

In the previous section, we used real acceleration signals from body-mounted IMU

sensors, while the pose data was taken from recordings with a high quality optical

motion capture system. In this section, we will evaluate the effects on performance

when training with poses estimated from the IMU sensor data. Our dataset of IMU
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IMU
Optical

Figure 3.6: Estimation Error Probability Density Functions: The plot shows the
PDFs of two models. Blue was trained using high quality pose data from an optical
motion capture setup. Red uses poses estimated from IMU signals. We observe a
larger spread of the forward and lateral errors when using the IMU poses, indicating
a negative impact on the estimation accuracy.

poses was recorded synchronously with the previous dataset, so that the underlying

motions contained in the training, validation and test sets are identical to those used

in the previous section.

Upon evaluation of the test dataset, we report an average eMSE of µe,IMU = 0.0266

with a standard deviation σe,IMU = 0.0768. This is significantly higher than the

values reported when using the optical pose data, which were µe,opt = 0.0041 and

σe,opt = 0.0069.

The red plots in figure 3.4 show ground truth trajectories estimated by this model.

We observe that the displacements are accurate and close to those of the optical

trained model, however, with some loss of accuracy. This is most apparent in the

circular walk in the horizontal plane, where the model trained using IMU poses

slightly undershoots the ground truth. This reduction of quality was to be expected

due to the lower quality pose information. The effects are visible in the final mo-

tion, in the form of foot skating. Post processing this with our anti foot-skate filter

fixes this in most of the cases. For an extensive qualitative review of this model’s

performance, including comparison with and without foot skating filter, we refer to

the supplementary video.
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These results are further confirmed by inspecting the (red) PDFs in figure 3.6,

which shows the PDF of the estimation errors for the model trained on IMU poses

and acceleration signals, together with the same distributions from the model trained

with optical poses and IMU acceleration signals. Also here we see an increase in

errors, as witnessed by the broader distributions.

3.5.4 Confirming the Importance of Acceleration Signals:

Training on IMU Poses

We started section 3.4 by mentioning difficulties in past work with transferring learn-

ing from high quality pose data to lower quality IMU based pose data. In order to

confirm the pivotal role that acceleration information plays in effective trajectory

reconstruction for IMU based motion capture data, we trained a model exclusively

on IMU pose information. The training data, targets and model configuration were

all identical to the previous experiments, with the exception of the feature vector,

which now is defined as exclusively the pose information

x ≡
{

pjoints

}
∈ R117 , (3.23)

dropping the acceleration signals. Even though training converges, the resulting

trajectory estimates massively undershoot the ground truth, as witnessed by fig-

ure 3.7 which shows the trajectory estimate and height plot for the same circular

walk from figure 3.4. Note, how apart from underestimating the displacements, the

network also struggles with determining the correct direction of motion and drifts

significantly downwards.

3.6 Discussion and Conclusion

In this work we have presented a method that accurately and stably predicts motion

trajectories from a combination of local pose information, and acceleration signals

from body mounted IMU sensors. Our method was trained for two different data
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no acc
GT

Figure 3.7: Trajectory and height reconstructions using only IMU pose data. The
model heavily underestimates the displacements and displays a downward drift, un-
derlining the importance of including acceleration information in the data. We also
observe that at several points, the model struggles with finding the direction of mo-
tion altogether.

modalities: high quality pose data stemming from an optical motion capture setup,

and lower quality pose data estimated from IMU sensors. Both models used accel-

eration signals from IMU sensors. Our models both accurately reconstructed the

ground truth trajectories, although higher quality poses from optical motion capture

equipment improved the model’s estimation power.

The model predicts mini-trajectories of the character’s root, consisting of 8 posi-

tions with respect to the character’s current position. It makes it predictions from a

window of pose and acceleration information of the same length. To improve estima-

tion accuracy and optimally exploit the information present in the model’s output,

we presented an integration method that uses a weighted average displacement, es-

timated from these 8 positions.

Finally, we showed how using acceleration information is essential to ensure satis-

factory performance when training on poses estimated from the IMU signals. Leaving

this information out had a detrimental effect on the predictions of the model, ren-

dering it incapable of reconstructing the root motion trajectories.

Our model showed some actor specific drift tendencies, which we suspect are
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the result of a lack of variety in actors included in the data set. Furthermore,

we note that the data used in this work was somewhat homogeneous in terms of

the motions contained. Future work should focus on training on larger datasets,

containing a bigger variety of actors and motion types. Additionally, future work

could investigate normalising the sensor signals in such a way that they become less

susceptible to differences in placement.

The type of data needed for the datasets used in this work is scarce and recording

is tedious and expensive, as it requires the use of both optical and IMU based motion

capture simultaneously. Another interesting direction for future work would be to

investigate realistic synthesis of IMU like acceleration signals and pose information.

This would enable the use of more widely available optical motion capture datasets.
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3.7 Appendix A: Trajectory Plots
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Figure 3.8: Additional trajectory plots as predicted by our model trained on optical pose
data (blue lines), IMU pose data (red lines), and compared to the ground truth.
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Chapter 4

ADAPT: Ai-Driven Artefact

Purging Technique for IMU Based

Motion Capture

This chapter presents the article:

Schreiner et al. (2024b)

Paul Schreiner, Rasmus Netterstrøm, Sune Darkner, Hang Yin, and Kenny Erleben.

ADAPT: Ai-driven artefact purging technique for imu based motion capture. Under

review at Computer Graphics Forum, 2024b,

The full manuscript is contained in this chapter.
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4.1 Abstract

While IMU based motion capture offers a cost-effective alternative to premium

camera-based systems, it often falls short in matching the latter’s realism. Com-

mon distortions, such as self-penetrating body parts, foot skating, and floating, limit

the usability of these systems, particularly for high-end users. To address this, we

employed reinforcement learning to train an AI agent that mimics erroneous sam-

ple motion. Since our agent operates within a simulated environment, it inherently

avoids generating these distortions. Impressively, the agent manages to mimic the

sample motions while preserving their distinctive characteristics. We assessed our

method’s efficacy across various types of input data, showcasing an ideal blend of

artefact-laden IMU-based data with high-grade optical motion capture data. Fur-

thermore, we compared the configuration of observation and action spaces with other

implementations, pinpointing the most suitable configuration for our purposes. All

our models underwent rigorous evaluation using a spectrum of quantitative metrics

complemented by a qualitative review. These evaluations were performed using a

benchmark dataset of IMU-based motion data from actors not included in the train-

ing data.

4.2 Introduction

IMU-based motion capture is affordable and untethered, however, it lacks the quality

of higher end marker based solutions. In this work, we present a physics-based, AI-

enhanced method for improving motion data quality. The last decade has seen a

rise in the popularity of IMU-based motion capture systems, making this technology

common ground. It has proven itself as a reasonable alternative to marker based

optical motion capture systems, in scenarios dictated by limited budgets or a need

to capture ’in the wild’. Nevertheless, these systems lack the quality of high end

marker based solutions. Physically implausible artefacts are common ground in the

raw capture data. Examples of artefacts are self-collisions, foot skating, and, floating.

For visual examples, see Figure 4.1.
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Figure 4.1: Examples of typical artefacts as seen in IMU-based motion capture
recordings. On the left is an example of two frames from an animation clip where
we see foot skating: both the foot in motion (rear foot), and the foot from the sup-
porting leg, are displaced. On the right is an example of self-collision, where one leg
is penetrating the other near the ankle.

In this work, we present a method for cleaning motion data while maintaining

natural human-like motion qualities. We use a combination of physics simulation

and learned AI behavior, through reinforcement learning. Our agent learns to mimic

faulty sample motions and generalise this learning to motion data that was not seen

during training. The core idea of our approach is that since our agent ’lives’ in a

physically accurate simulated environment it is not capable of reproducing errors

that are in contest with the laws of physics, resulting in visually pleasing and physi-

cally plausible output motion. Our method builds on top of recent developments in

the state of the art in this field. However, it distinguishes itself by its capability to

operate on unseen motion data, stemming from unseen characters. One of our major
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findings is the importance of the choice of data source when training the agent. We

show that the key to a robust and versatile agent is training on a mix of high qual-

ity and faulty motion capture data from different sources. Agents trained solely on

either high quality or faulty data lack the robustness to generalise to unseen data.

Finally, we compare fundamental differences in the configuration of the observation

and actuation spaces of our agent for our use case. We demonstrate an optimal con-

figuration and its impact on the agent’s capabilities to produce high quality output

motion. In summary, the contributions presented in this work are:

• A physics-based framework for cleaning artefacts from motion capture data.

• A method that focuses on generalising to unseen IMU data, from unseen actors.

This is in contrast to most other motion-mimicking methods, that draw their

sample motions from known distributions.

• We show that mixing faulty and high quality training data is pivotal in gener-

alising our method to unseen animation data.

• We show that the choice of observation and actuation configuration greatly

impacts the agent’s ability to learn and produce quality output.

4.3 Related Work

Imperfections are a common trait in real-world data, motion capture data being no

exception. Inherent hardware limitations can cause missing or faulty sensor infor-

mation. In the case of optical motion capture, common sources of error are missing

information due to occluded markers or markers going out of view of the cameras.

For IMU based motion capture, errors are mostly due to signal noise and bias, limi-

tations in sensor precision, and resolution. These imperfections can cause a range of

faults in the resulting animations, such as jittering limbs, self-collisions, foot-skating,

and others.

Recognizing the challenges posed by these imperfections in motion capture data,

both researchers and industry professionals have continuously sought efficient and
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effective solutions to assist animators in the data cleaning process. While a significant

portion of this cleaning is still manually performed, aided by a range of commercial

software suites the quest for full automation remains an unsolved challenge. The

following sections delve into some of the innovative approaches in this domain.

4.3.1 Non-Physics Based Methods

Existing techniques often focus on eliminating these artefacts using straightforward

kinematic and/or geometric techniques (Pejsa and Pandzic, 2010). A shared trait

by many of these methods is that they don’t take the physics of the character into

account, leading to unnatural poses and dynamic behaviour and they rely on post-

clean-up techniques using IK solvers (Girard and Maciejewski, 1985; Bodenheimer

et al., 1997; Choi and Ko, 1999; Lee and Shin, 1999; Kovar et al., 2002; Glardon

et al., 2006; Lu and Liu, 2014). Recent deep learning approaches focus on robust

detection of foot planting or global root position and apply IK as a post-clean-up

process (Schreiner et al., 2021a; Mourot et al., 2022a). It is known that the IK clean-

up is somewhat inferior in quality and that humans are extremely sensitive to even

small foot sliding errors (Pražák et al., 2011).

Deep learning approaches have also been adopted to train generative models to

directly produce believable dynamic behaviours, possibly taking a pre-clean-up sam-

ple in an encoding step for reconstruction. Care is often taken to the model design

for effectively capturing the motion data statistics. Examples include MoGlow us-

ing latent flow models (Henter et al., 2020) and its variant encoding skeleton data

with graph neural networks (Yin et al., 2021). Generative models demonstrate high

performance in synthesizing complex human movements of various styles and rich

contextual input (Valle-Pérez et al., 2021; Dong et al., 2020; Yin et al., 2023b). Phys-

ical constraints, however, tend to not be explicitly enforced but with an expectation

of extracting them solely from the motion data. As a result, state-of-the-art such

as diffusion models are often exploited to represent the behaviours to imitate (Tevet

et al., 2023; Yin et al., 2023a), in combination with physically-grounded approaches

reviewed below.
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4.3.2 Deep Reinforcement Learning (DRL)

Ever since the 1980’s physics simulation has been a topic within (interactive) charac-

ter animation, steadily gaining traction over the past decades. A detailed overview

of the early stages of this research was made by Geijtenbeek and Pronost (2012).

More recently DRL for character animation has become an active field of research,

as shown by Mourot et al. (2022b). The ability to incorporate physics makes DRL

an attractive approach for motion data cleaning. DRL with physics simulations give

these methods an inherent sense of realism: they allow for interactivity, and they can

be employed online and in real-time. In this class of methods, an agent is trained

to reproduce sample motions in a physically simulated environment. These methods

can be subdivided into two sub-classes: methods that employ a phase variable to give

the agent a notion of timing of the sample motion and those that directly supply the

agent with a sample of motion data. Where the former can be used to learn single

motions and general behaviour, the latter is more suitable to mimic diverse sets of

sample motions closely.

4.3.2.1 Phase Variable Methods

A number of works successfully mimicked reference motion by relying on the use

of a phase variable, providing the policy with information about the timing of the

reference motion. With their groundbreaking work, DeepMimic, Peng et al. (2018)

showed that an agent could learn to mimic complex behaviours while a user could

set high-level task objectives, such as hitting a target when performing a spin kick.

In follow-up work, Peng et al. (2021) used GANs to have an agent learn similar

behaviour from unstructured data sets. Ma et al. (2021) improved sample efficiency

using a set of constraints called spacetime bounds, effectively limiting the action

search space. Inspired by NLP models, Peng et al. (2022) map a set of motions into

latent motion embeddings. The authors then train a low-level policy to generate

motions from these embeddings, using adversarial imitation learning. Subsequently,

they train a high-level policy to complete new tasks by passing latent embeddings to

the low-level policy.
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In Xu et al. (2022) a differentiable physics simulator is used in combination with a

new policy learning algorithm, short horizon actor-critic (SHAC), to improve training

time. They showcase a speed up in training humanoid agents compared to the state of

the art, reducing training time by a factor of up to 17x. Ren et al. (2023) proposes

a method to directly learn a policy by back-propagating through a differentiable

physics simulation, thereby speeding up the learning process and eliminating the

need for reinforcement learning altogether.

While phase-variable methods are successful in training an agent to imitate single

motions, general motion behaviours and styles, they are less suitable for use in our

case where the requirement is to mimic a large variety of specific sample motions.

This is due to the lack of information available to the agent during inference about

the sample motions.

4.3.2.2 Increasing the Variety of Learned Skills

A more suitable approach for close reference tracking of diverse motion capture data

is to replace the phase variable with a sample of the reference motion in the state

information of the agent. The first to implement this idea were Chentanez et al.

(2018), whose agent was trained on a large body of unstructured motion capture

data. It was able to mimic a large variety of human motion tasks, even some from

unseen data. While impressive in their versatility, the output motion quality does

not compare to the phase variable methods earlier discussed. Different works have

since tried to improve diversity in the agent’s skill set and quality of the output

motion. Multiple works focused on making their agent robust for in game use and

interactivity. Park et al. (2019) and Bergamin et al. (2019) concurrently came with

a two layer pipeline. They first generated kinematic motion samples from a user’s

control input and subsequently mimicked the motion through a RL agent. The latter

step improves the generated motion by making it physically plausible, while the first

allows for flexible high-level user control, perfect for in-game use. On top of that

they enable interaction between the character and their environment. Similarly, Luo

et al. (2020) proposes a framework for user control of quadrupeds, using GANs to
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map high-level user control inputs, such as direction and velocity, to influence factors

for primitive motor actions. The controller is then fine-tuned using deep RL to im-

prove robustness. In Merel et al. (2020) the authors encoded latent task intentions

from motion trajectories to learn interactive tasks such as catching a ball or carrying

an object to a specified target. These works focused on real-time performance, for

example for in-game use. Unlike our approach, they rely on a fixed body of under-

lying data during inference, which stems from the same data source and has been

seen during training. This makes them less suitable for tracking arbitrary reference

motions, which is a hard requirement for our case.

Other works focused on anatomical features of agents. Won and Lee (2019) and

Lee et al. (2021) used parameterised controllers to accommodate for body shape

variations on the fly or changing environmental and motion characteristics. Lee

et al. (2019) do motion mimicking with a musculoskeletal model to study the effects

of anatomical symptoms and prosthetics on locomotion. While they were effective for

their purpose, the complex anatomical model makes the simulations and subsequent

policy training computationally heavy and slow. Each of these contributions serves

a clear purpose for each of their individual use cases, however they do not intend to

solve the problem of generalising to unseen motion data while maintaining output

motion quality and they do not address the topic of diverse data modality for training,

which we found to be essential for generalisation to unseen IMU data.

More interesting for our objective are those works that explicitly focus on im-

proving skill diversity. To this end, Won et al. (2020) designed a mixture of experts

policy but they relied on high quality motion data. One of the few works that

do report diverse data sources is Wang et al. (2020). They introduced constrained

multi-objective reward optimisation to avoid domination of individual reward terms,

a motion balancer to ensure a uniform distribution of motion classes during train-

ing, and adaptive policy variance control to avoid local minima. They demonstrate

spectacular results in terms of versatility, robustness, and generalisability, even to

unseen motion samples. However, their robustness seems to come at too high of a

cost of motion quality for our purpose, specifically for unseen motion data.

Possibly most relevant to our work, Yuan et al. (2022b) used motion mimicking to
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clean up physically implausible artefacts from motion data generated by a diffusion

model. The core difference here is that the diffusion model and mimicking policy

are both trained and evaluated on the same dataset. The policy subsequently never

sees real unseen data during training, but rather samples drawn from the known

distribution. In our work we focus on making our method robust towards unseen

data, by combining different data modalities and a large observation space.

4.4 Method

Unique to our approach is the way we focus on generalising to unseen data, from

unseen actors. We achieve this by mixing lower-quality and faulty IMU-based motion

capture data with high-quality optical motion capture data. This is in contrast to

other methods that usually rely on high-quality motion capture data, often from a

single source.

Our method follows three general stages. During data preparation we first

record a dataset of animations using IMU-based motion capture suits. These record-

ings are post-processed with industry-standard clean-up filters. We then select

recordings such that the resulting data set contains a mixture of faulty and clean

recordings (add a figure showing examples of faulty and non faulty assets?). Finally,

we mix in a set of high-quality recordings from an optical motion capture source.

We have compared this approach to using only IMU-based data and found this last

step crucial in getting optimal performance on unseen motion data. Section 4.4.1

describes the data in more detail.

Next, during the training stage, our policy is optimised to mimic the presented

sample motions. In a large parallel physically simulated environment, we collect a

number of rollouts from our policy. For each rollout, we select a random sample asset

and initialise it at a random frame in the animation. Rollouts have a maximum length

of 300 frames. After collecting a fixed number of rollouts, we optimise our policy

using the RL-games implementation of PPO from Makoviichuk and Makoviychuk

(2021), as PPO is the de facto standard for policy gradient optimisation for this type

of problem. We repeat this until the policy converges in terms of reward collection
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and episode length. A general overview of the motion-mimicking formulation is

given in Section 4.4.2. Choices for our agent’s state observation and action spaces

are described in Sections 4.4.2.2 and 4.4.2.1 respectively. Section 4.4.2.3 discusses

the way we calculate the agent’s rewards. Details about our policy and value network

configuration are given in Section 4.4.2.4 and the remaining details on our training

and simulation setup are discussed in Section 4.4.2.5.

In the last stage, our policy is evaluated on unseen data using a set of per-

formance metrics that we found descriptive for our context. These metrics are the

episode length ratio compared to the ground truth, the mean squared error between

the sample and ground truth root trajectories, the survival rate of the agent and the

ratio between achieved and maximum achievable reward. To this end, we collect 20

rollouts for each asset in our test data set and evaluate our model in terms of the

performance metrics. We repeat this every 400 epochs to find the best policy from

a training run. The performance metrics are described in detail in Section 4.4.2.6.

4.4.1 A Mixed IMU and Optical Mocap Data Set

For this project, we used both high-quality motion capture data from optical sources

and IMU-based motion capture recorded using Rokoko’s Smartsuit Pro II. This sec-

tion describes the details concerning data collection, hardware used, and total num-

bers. For details about specific training datasets, we refer to Section 4.5.2.

Optical Data The optical data is sourced from a large, commercially available

motion asset library. These assets have been recorded at various motion capture

studios, using optical systems such as Optitrack and Vicon. The exact hardware is

not known by the authors. All assets are recorded at 120 frames per second (fps)

and are down-sampled to 60 fps. We used a total of 107 assets, containing a total of

80102 frames, in this project, which were exclusively used during training and not

for testing.



4.4. Method 71

IMU Data The IMU-based motion data was recorded on different occasions using

Rokoko’s Glove Ready Smartsuit Pro II. These suits contain 17 IMU sensors dis-

tributed over the body. The sensors record bone orientations, which are fitted to a

body model through Rokoko’s studio software to produce animations of a humanoid

character. Since these sensors exclusively record orientations, the animations ini-

tially lack a sense of global placement. Through post-processing filters provided by

the studio software, the animations are cleaned and augmented with global position

estimates. The resulting animations still contain artefacts, such as self-collisions,

foot-skating, and jittering limbs.

In this work, we use a total of 118 such recordings, recorded using 13 actors. The

actors had various body shapes, dimensions, and genders. Of these recordings, 13

assets were exclusively used as test data. To ensure that the test result is representa-

tive of both cleaning abilities as well as the agent’s ability to mimic motion, the test

assets were carefully selected to contain both fairly clean and vivid animations as

well as animations with typical flaws. The actors used to record these 11 test assets

were kept out of the training data.

The IMU-based animations were initially recorded at 200 fps and subsequently

exported to FBX files, sampled at 60 fps during training and inference.

4.4.2 Motion Mimicking for Artefact Clean Up

We aim to fix physical implausibilities in the mocap data, such as self-collisions, foot

skating, floating, ground penetrations, and jitter. To this end, we train an AI-based

agent that is capable of mimicking a given sample motion. The agent constitutes

a physically plausible model of a humanoid and ’lives’ in an environment, which

is a physically simulated approximation of the real world. Hence the agent must

adhere to common laws of physics while mimicking sample motions, prohibiting it

from copying the above artefacts from sample motions.

The agent’s joints are actuated by joint torques computed from PD controllers

within the simulation environment. A policy π(a|s), constitutes the probability of an

action a given the agent’s current state s. The actions in this setting are joint angle
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targets for the PD controllers. After applying actions a, the environment computes

the agent’s new state and a reward, r, based on how well the agent performed. See

Figure 4.2 for a schematic overview of this process.

at

rt

st

ōt

ot

π(at|st) +
PPO

Simulation
Environment

Motion
Sampler

Figure 4.2: Schematic of the policy evaluation loop used to create rollouts from
policy π(at|st). The simulation and motion sampler both generate parts the state
vector st. The policy computes the most likely action given the state, which is
applied to the character by the simulation environment. This results in a new state
and reward. After a batch of rollouts is collected, the policy is updated using the
collected rewards. We use PPO to optimise the policy.

4.4.2.1 State Observation

We use a skeleton containing 20 bodies, connected by 19 joints. The elbows and

knees are modeled as 1-DoF hinge joints. All other joints are modeled as 3 hinge

joints connected in series to achieve a 3-DoF rotational joint. The total number of
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DoF is 13× 3DoF+4× 1DoF = 43DoF. Hand motion is not actuated, and therefore

their joints are not counted for the total number of DoF. The pelvic bone is assigned

to be the character’s root.

The agent’s policy gets information about its own state in the form of a state

vector. Based on this it computes the actions for the next step. As discussed in

Section 4.3, one key feature is that we want the policy to use the information on

the desired state, as well as its own state, in order to enhance its ability to mimic

arbitrary reference motions. Therefore we include information about the simulated

character’s motion and the reference motion to the state vector. In Table 4.1 we

present our state vector st ∈ R273 at time step t and its components.

Table 4.1: The agent’s state observation vector. The state observation vector is
composed of a number of key observations on the agent’s state, stacked as a 1D
vector of 273 elements.

Symbol Dim. Description

vcom R3 Center of Mass (CoM) velocity of the agent
v̄com R3 CoM velocity of the reference motion
∆vcom R3 vcom − v̄com

v̄hor R2 The reference motion’s velocity in the horizontal plane
∆vhor R2 vhor − v̄hor

pa R60 Positions of all 20 rigid bodies of the agent with respect to its CoM
va R60 Global velocities of all 20 rigid bodies of the agent
∆pa R60 pa − p̄a

∆va R60 va − v̄a

at−1 R20 Smoothed actions from the previous time step (see section 4.4.2.2)

st R273 {vcom, v̄com,∆vcom, v̄hor,∆vhor,pa,va,∆pa,∆va, at−1}

All velocity quantities are expressed in the global reference frame. The rigid body

origin positions, pa, are expressed in the frame whose origin is attached at the agent’s

centre of mass (CoM) and whose axes are parallel to the global frame. To compute

the difference between the agent’s and the reference motion’s rigid body positions, we

compute the reference motion’s rigid body positions p̄a in a similar frame attached

to the reference motion’s CoM. We then simply calculate the difference between the
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two vectors: ∆pa = pa − p̄a.

The last entry of the state vector is the smoothed actions from the previous time

step. This is done in accordance with Bergamin et al. (2019) to give the policy

information about the smoothing process.

4.4.2.2 Action Space

In this section, we give a brief overview of our action space. For our implementa-

tion, we took inspiration from the work of Bergamin et al. (2019). We follow their

implementation of the action space closely but with a few tweaks.

Our agent’s joints are actuated by torques computed by PD controllers. All

computations are on a per-frame basis, but in our notation, we omit the frame

number for clarity.

τd = kped + kdėd , (4.1)

ed ≡ θd − θ̃d . (4.2)

Here θd is the current angle of degree of freedom d and θ̃d is the target angle for that

degree of freedom. The target angles are computed using the reference motion and

a correction term from our policy:

θ̃d ≡ θ̄d + αdad . (4.3)

Here θ̄d is the angle of degree of freedom d from the reference motion at the current

frame, which serves as a feed-forward open-loop action. Our policy computes the

closed-loop action ad based on the current state of the agent. Finally, αd is a fixed

binary operator that can be either 0 or 1, thus excluding certain degrees of freedom

from closed-loop actuation. We set αd = 1 for the degrees of freedom of a set of key

joints:

{Right shoulder, Right hip, Right knee (1D), Right ankle, (4.4)

Left shoulder, Left hip, Left knee (1D), Left Ankle} .
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In contrast to Bergamin et al. (2019), we found that actuating any of the spinal

elements in a closed-loop occasionally causes unnatural spinal wobbling and therefore

we excluded all spinal elements from the closed-loop actuation.

In order to avoid high-frequency oscillations in the control signal, we further

follow the example from Bergamin et al. (2019) and perform a smoothing operation

on our closed-loop action signals:

at ← β araw,t + (1− β) at−1 . (4.5)

Here at are the smoothed actions at time t, araw,t are the actions generated by the

policy, and β is a smoothing factor. For details and a justification for the value of

this parameter, we refer to the original work. We use β = 0.2 as reported by the

authors for all experiments in this work.

4.4.2.3 Rewards

Our agent is rewarded based on the similarity between the simulated character state

and the sample motion state. We use a compound reward based on the similarity be-

tween the simulated and the sample’s joint angles, positions of bone landmarks, and

bone landmark velocities. The reward scaling and threshold parameters discussed

further in this section are listed in Table 4.2.

Table 4.2: Reward scaling parameters and threshold parameters. The weights were
empirically chosen to ensure different reward terms contribute equally to the total
reward.

Parameter αlocal αp αv ϵdiscount

Value 2.5 1.0 0.1 0.025
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Local Pose Reward We calculate a local pose reward based on the sum of the

local joint angles for the J joints of the skeleton, using:

rlocal ≡ exp

(
−αlocal

1

J

J∑
j=0

∥ qj ⊖ q̄j ∥q
)

. (4.6)

Here qj represents the rotation of the j-th joint in a local frame attached to the

joint’s origin and whose axes are fixed to the joint’s parent body. The operator ⊖
indicates the difference between two quaternions and ∥ · ∥q indicates the angle of

the enclosed quaternion. J is the number of joints. The ¯ indicates ground truth.

The parameter αlocal is an empirically chosen weighing factor for the local joint angle

reward.

Position Reward The position and velocity rewards are calculated using the po-

sitions and velocities of landmarks on the simulated character and the sample motion

skeleton, much like Bergamin et al. (2019). These landmarks are the 6 face centres of

unit cubes mounted at each bone’s origin. This is done to account for both positional

and rotational errors of the respective bodies. The position error is calculated as:

rp ≡ exp

(
−αp

1

J

J∑
j=1

6∑
k=1

∥ pjk − p̄jk ∥2
)

. (4.7)

Here pjk and p̄jk are the positions of face centre k of the jth body with respect to the

root bone of the simulation and sample skeletons respectively. The weighing factor

αp is empirically chosen.

Velocity Reward The velocity reward is computed analogously to the position

reward, except that we now use the norm of the difference between the face centre

velocities:

rv ≡ exp

(
−αv

1

J

J∑
j=1

6∑
k=1

∥ vjk − v̄jk ∥2
)

. (4.8)
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Finally, the entire reward is discounted based on a deviation discount, again

similar to Bergamin et al. (2019). This discount is calculated as a difference between

the head position of the sample motion and the head position of the simulated

character, both in a global reference frame. The discount factor serves as a correction

on the reward, in case the simulated character falls behind on the sample motion.

ediscount ≡ clamp(1.3− 1.4 ∥ phead − p̄head ∥2, 0, 1) . (4.9)

The resulting reward function is:

r ≡ ediscount(rlocal + rp + rv) . (4.10)

Finally, we terminate the episode in case the agent either falls behind beyond a given

threshold, ediscount < ϵdiscount or when the agent has fallen. Falling is detected as 3

or more spinal elements being in contact with the ground plane at the same time.

The termination threshold is set to ϵdiscount = 0.025.

4.4.2.4 Policy and Value Networks

Our policy and value functions are approximated using neural networks, both with an

identical architecture. We follow the approach of Yuan et al. (2022b) and use multi-

layer perceptrons (MLPs) with 3 fully connected layers of size [1024, 1024, 512].

At each layer output, we use tanh activation functions as suggested by Bergamin

et al. (2019). The policy network estimates the mean of a normal distribution.

During training, the agent’s actions are sampled from this distribution, using a fixed

variance. This variance determines to a high degree the amount of exploration an

agent performs. We found empirically that a value of σ2 = 0.03 gave a good balance

between exploration and stable training. Table 4.3 gives an overview of these and

other hyperparameters and simulation parameters.
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4.4.2.5 Training & Simulation

We trained all our agents using NVIDIA’s Isaac Gym. This choice was driven by Isaac

Gym’s ability to do massive, GPU accelerated parallel simulations, reducing training

times to a minimum. As a reinforcement learning algorithm, we use PPO (Schulman

et al. (2017)), as it is the de facto standard for these types of tasks as can be seen in

Bergamin et al. (2019); Peng et al. (2018, 2021). We use the PPO implementation

from RL-games by Makoviichuk and Makoviychuk (2021), which comes shipped with

Isaac Gym. The training was performed on an NVIDIA RTX A5500 with 24GB of

memory. For more information about our training and simulation configuration, we

refer to Table 4.3.

Table 4.3: Training and simulation parameters for our motion mimicking agent’s
policy optimisation.

Parameter Value Parameter Value

Discount factor γ 0.99 PPO clipping ϵclip 0.2
GAE τ 0.95 Batch size 65536
Episode horizon 16 Minibatch size 16384
Number of environments 4096 Mini epochs 6

Network layers [1024, 1024, 512] Simulation time step 0.0166 s (60 Hz)
Activation tanh # of substeps 2
Learning rate 5 · 10−5 Control frequency 30 Hz
Distribution variance σ2 0.03 Episode length 300

4.4.2.6 Performance Metrics

To determine performance on unseen motion data, we use four metrics discussed in

this section. The metrics are effective on the condition that the ground truth assets

all have the same length, as only then does it make sense to calculate statistics on

episode length ratio, root displacement errors, survival rate, and maximum achievable

rewards.

We discuss the metrics here as they are computed per rollout. For the evaluation
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of policies, we then calculate mean and standard deviations for each metric, after

evaluating them on a test dataset of unseen motion assets.

Episode Length Ratio The episode length ratio is defined as the length of rollout

i, divided by the length of the ground truth motion asset (gt):

ELRi ≡
length(rollouti)

length(gti)
. (4.11)

This metric provides information about the ability of a policy to mimic sample

motions well enough to not terminate early. If the metric is one, then the rollout

was not terminated early; if the metric is zero, it does not mimic a single pose.

Root Displacement Error This metric measures the mean squared error (MSE)

between the root trajectories of rollout i and its ground truth motion asset:

RDEi ≡
1

N

N−1∑
n=0

∥ pi,n − p̄i,n ∥22 . (4.12)

We use N for the number of frames of the rollout. The RDE provides information

about the accuracy with which the policy tracks the ground truth motion trajectory.

Survival Rate .9 The survival rate measures the probability of a policy success-

fully mimicking a given asset from the start until a given percentage of the ground

truth length. The “.9” means the probability of an agent surviving 90% of the given

ground truth asset. If the metric is one, the agent survives 90% or more of the given

asset.

SRi ≡
{

1 if len(rollouti) ≥ len(gt) · 0.9
0 else

. (4.13)
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Max Reward Ratio The max reward ratio measures the fraction of the maximum

cumulative reward an agent achieves over rollout i:

MRRi ≡
Ri

Rmax,i

. (4.14)

The cumulative reward is calculated as:

Ri =
N−1∑
n=0

rn . (4.15)

For a rollout with length N and using Equation 4.10. For the maximum cumulative

reward, Rmax,i we use N = length(gti) and ediscount = rlocal = rp = rv = 1.0.

Note that due to using exponential rewards and the choice of weights, achieving the

maximum reward is rather unlikely and in practice the score for this metric falls well

below 1.0.

4.5 Results

In this work, we hypothesise that a humanoid agent, trained using reinforcement

learning, is capable of fixing common physically implausible motion artefacts in un-

seen IMU-based motion capture data. We seek to find answers to questions, such

as what data mixture is optimal for training, and which configurations of the state

and action spaces result in the most robust agent. In this section, we discuss the

experiments and their results that provide answers to these questions.

4.5.1 Unseen Data Study

To determine how well our method generalises to unseen data, we tested our agent’s

performance on a set of motion data that was not present during training. The test

data consists of 15 IMU-based recordings from four different actors, with different

body types and genders. The recordings were split into 27 segments of 300 frames

long. This was done to mitigate the effects of failure due to specifically difficult
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Table 4.4: The results of our method, in bold, compared for models trained on
different training data and configurations of the observation and action spaces. The
models are compared based on the ratio of the episode lengths and the original asset’s
lengths, the fraction of episodes that reached at least 90% of the original asset length,
the MSE of the root trajectories per frame in m, and the ratio of the obtained and
maximum obtainable reward.

Episode length ratio SR90 Root MSE / frame Max reward ratio
Experiment µel σel µmse σmse µr σr

IMU + Optical (50 assets, 39270 frames) 0.969 0.081 0.889 5.118 · 10−05 4.789 · 10−05 0.400 0.114

IMU large data (107 assets, 80102 frames) 0.961 0.120 0.907 6.386 · 10−05 5.639 · 10−05 0.371 0.111
IMU (33 assets, 28925 frames) 0.889 0.191 0.757 6.949 · 10−05 5.882 · 10−05 0.386 0.121
Optical, large data (103 assets, 68392 frames) 0.782 0.248 0.469 1.424 · 10−04 1.107 · 10−04 0.257 0.070
Optical (17 assets, 10345 frames) 0.468 0.212 0.017 2.132 · 10−04 1.325 · 10−04 0.329 0.095

Configuration Drecon Bergamin et al. (2019) 0.942 0.141 0.885 5.863 · 10−05 5.598 · 10−05 0.372 0.110
Conf. full state & action space 0.924 0.168 0.839 6.251 · 10−05 7.980 · 10−05 0.273 0.099

movements in long recordings, which would otherwise render large parts of the test

data inaccessible. This was justified by the fact that we wanted to test the agent for

overall capabilities and not so much for surviving for the longest possible amount of

time.

The first row of Table 4.4 shows the performance in terms of our metrics. For each

of the 27 segments, 20 rollouts were collected all starting at slightly different timings.

The metrics were calculated on a total of 540 rollouts. The standard deviations in

the table give a measure of how much the mean values differed between rollouts.

Figure 4.3 is a visual comparison of a ground truth asset with heavy self-collisions,

and the same asset reproduced by our agent. The agent manages to faithfully keep

key features and details of the motion intact, while not exhibiting any self-collisions.

Our method also improves the CoM position of the character: in the last frame of

the sequence, the ground truth character can be seen to lean unnaturally to a side,

causing the projection of the CoM on the floor to lie outside of the base of support

of the feet. This is unusual for human motion and would cause the character to risk

losing balance in a real-world setting Hof et al. (2005). In contrast, our character

has a more natural, upright stance, causing the CoM projection to be within the

base of support. Our agent was also successful in improving the root motion of



82 Chapter 4. ADAPT

Figure 4.3: Collision fixing on a flawed animation. The image shows still frames from
an animation before and after processing by our method. The ground truth (pink)
displays self-collisions at the legs in 3 of the still frames while the agent (green) does
not. The agent also maintains a more natural pose throughout the animation, while
the ground truth leans in unnaturally in the last still frame, placing its center of
mass far outside of its foot base.

unseen ground truth animations that were flawed. In figure 4.4 we demonstrate

an example, where the ground truth contained heavy foot skating and a generally

unstable CoM trajectory. Our agent maintained a smoother CoM trajectory while

eliminating foot skate. For full visualisations of these and other examples, we refer

to the supplementary video which contains full side-by-side recordings of our agent

with the ground truth.

4.5.2 Data Ablation Study

A question we sought to answer was to what extent the type and mixture of the

training data impact the performance of the agent. Generally speaking, optical

motion capture data is high quality and low on noise while it is confined in recording

space. IMU data, on the other hand, is easy to record, untethered, and low cost,

but this comes at the expense of data quality and high noise. We trained models

on different mixtures and sizes of datasets and evaluated them on our performance

metrics. The following 5 datasets were compared:
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Figure 4.4: A visualisation of our agent (green) applied to an animation containing
foot skating (pink/red). The color gradient represents the flow of time, where brighter
is later in the sequence. The white lines are the character’s centers of mass (CoM)
projected onto the horizontal plane. Note how in the ground truth the character
floats backward between frames 2 and 3, while our agent follows a much smoother
CoM trajectory.

1. IMU: This dataset contained 33 motions recorded with an IMU based motion

capture suit, totaling 28925 frames at 60 frames per second. Some assets con-

tained artefacts common to IMU setups, such as jittery limbs, self-penetration

and foot skate.

2. Optical This dataset contains 17 high-quality motion assets recorded with

high-end optical motion capture hardware. It contained a total of 10345 frames

at 60 frames per second.

3. IMU + Optical: This dataset is the combination of the above two datasets

(50 motion assets, 39270 frames at 60 frames per second).

4. IMU Large: To rule that the IMU+Optical agent outperformed the other

agents on sheer data size, we also trained the single source agents on larger

datasets. The IMU Large dataset contained 107 assets, with a total of 80102

frames of motion data.
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5. Optical Large: This dataset contained 107 high-quality optical based motion

assets with a total of 68392 frames.

Each agent was trained for approximately 35000 epochs. To get an indication of

the agent’s general performance the agents were evaluated with our test metrics on

a dataset of unseen IMU-based motion assets. The actors recorded in this dataset

were not present in the training data. The results for the best scoring epoch for each

model can be found in table 4.4. The results for all epochs are plotted in figure 4.5,

except for the agent trained on small optical data, as it did not manage to reproduce

most of the motions in the test dataset.
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Figure 4.5: Effects of training data modality in terms of performance metrics. The
model trained using the IMU+Optical dataset outperforms other dataset configura-
tions on all metrics, except the 90% survival rate. The model trained exclusively on
optical data scores lowest on all metrics.

The agent trained on a mixture of IMU and optical-based data outperformed the
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other agents, including those trained on larger bodies of motion data. It held the

highest score for episode length ratio, max reward ratio, and root MSE per frame,

while the IMU Large agent scored slightly better on the 90% survival rate metric.

This led us to conclude that introducing different types of data to the training

dataset is beneficial and preferable over simply increasing the dataset size. Our

combined IMU and optical motion capture dataset was about half the size of the

IMU Large dataset, yet still performed better. This superior performance is rooted

in two key factors: On the one hand, introducing different data types makes the

agent more robust to different types of input data, which is crucial when evaluating

unseen data. On the other hand, the high-quality motion data aids the agent in

compensating for flaws in the IMU data.

The agent trained solely on optical motion data exhibited poor performance.

The likely reason is a substantial change in the input data distribution across differ-

ent motion capture sources. Consequently, training on one source and inferring on

another is ineffective.

4.5.3 Configuration Ablation Study

In order to find the most robust agent for inference on unseen data, we compared

different state and action configurations for our agent. In Bergamin et al. (2019) the

authors showed how a reduced state and action space was beneficial for their case

(for simplicity called the Drecon configuration here). However, we argue that a con-

figuration with a similar action space but with state information on all bones/joints

is beneficial for robustness against unseen data. We therefore tested their proposed

configuration against the configuration described in the method section of this work.

Finally, we tested whether using the full action space would be beneficial for our

case. Figure 4.6 shows six frames of an animation comparing all three configura-

tions as well as the ground truth. While our agent (the green character) faithfully

follows the reference motion, the Drecon configuration falls (from frame 4) after a

sharp turn. The agent with full state and action space manages to perform the full

motion, but introduces blandness to the motion, as witnessed, for example, by the
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lesser pronounced arm motion in frames 2, 4, 5 and 6.

1 2 3

654

Figure 4.6: A comparison of performance between configurations: The pink character
is the ground truth, green is our configuration, blue has reduced state and action
spaces, and orange has full state and action spaces. Note how the blue character
falls in frames 5 and 6, while the orange character adds an increased blandness to
the motion (frames 4 and 5).

Both the Drecon configuration and the full action space configuration were tested

against our performance metrics, using the same test dataset as in the previous

comparisons. The metric scores of the best epochs for this comparison can be found

in the lower section of Table 4.4. The metrics over all training epochs are plotted in

Figure 4.7.

Our agent trained with full state information and reduced action space (top

row, IMU + Optical) performed best on all metrics, closely followed by the Drecon

configuration. We attribute this advantage to the agent having more information to

go on than the Drecon agent, adding to its robustness against unseen data.

We confirmed the findings from Bergamin et al. (2019) that using the full action

space is not beneficial and that it does not contribute to the case of unseen data.

This is due to the problem becoming unnecessarily complex for the policy, leading to

reduced motion quality, as witnessed by the lower max reward ratio. This is further

confirmed visually in the supplementary video.
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Figure 4.7: Effects of state and action space configurations in terms of performance
metrics. The model trained using our full state and reduced action space outperforms
other configurations on all metrics, closely followed by the Drecon configuration from
Bergamin et al. (2019).

4.6 Discussion and Conclusion

We demonstrated how motion mimicking using reinforcement learning can be effec-

tively deployed to purge faulty motion data from physically implausible artefacts.

Our agent was evaluated on a test dataset of IMU based motion capture recording

from multiple actors, that were not included in the training data. It could repro-

duce sample motions faithfully and in their entirety in almost 90% of the cases while

fixing artefacts such as self-collisions, foot-skating, and jittery limbs. Moreover, it

produced more realistic centre of mass trajectories.

For training of our agent we used a mixture of high and low quality motion data
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from different sources. This mixture benefited the performance of our agent, making

it more robust to unseen data. Even when the homogeneous dataset was larger

then the mixed dataset, training with the mixed dataset yielded better performance.

Training exclusively on high quality motion data did not produce an agent that was

capable of generalising to unseen IMU based data.

Finally, we proposed a configuration of the observation and action spaces that

improved our agent’s performance on unseen data. The agent had access to informa-

tion about all its joints, while it could only actuate a set of key joints. We compared

this configuration to other configurations, one where both action and observation

spaces were reduced, and one where the agent had access to the full observation and

action space. Our configuration showed the best results during validation on unseen

data.

As a final note, we observe that we expect our agent to solve two contradicting

problems: on the one hand the agent is incentivised to mimic motion closely through

joint angle and position rewards, while on the other we want it to deviate from close

mimicking when there is unnatural phenomena such as self-collisions. This nuance

is not explicitly represented in the reward setup, occasionally causing our agent to

try and mimic artefacts as close as possible without breaking the laws of physics.

This causes undesirable behaviours in the output motion, such as stumbling or in-

termediate steps. As a direction for future work, one proposed path to solving this

contradiction is combining conventional rewards with a reward from a discriminator

network, like the one proposed in Peng et al. (2021), to reward the agent on a global

style, rather than exactly mimicking the reference motion.
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Chapter 5

Summary and Discussion

This chapter summarises the contents of this thesis. It starts with a summary of

the articles from chapter 2 and 3, includes their main conclusions and proposes

suggestions for future directions. This chapter concludes with a similar reflection on

the work discussed in 4.

5.1 Global Root Trajectory Reconstruction

As discussed in section 1.2, global root trajectory reconstruction is necessary for

IMU based motion capture. It is not feasible to measure it directly from the sensors

without accumulation of errors that would result in large and unbounded drift of the

estimates. In chapter 2 a method was presented to recover global position trajectories

using sequences of pose information. The intuition was that a sequence of poses

contains enough information about the global displacement of a character to make

an accurate prediction about this displacement. A U-Net neural network was used to

estimate short global trajectories of 64 frames in a character centred reference frame.

This network could run predictions at rates well over the frame rate of the motions,

making it suitable for real time inference in cases where this is of interest. It was

shown that the U-Net architecture had better estimation accuracy compared to a

more standard convolution neural network architecture. Furthermore, the model was
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able to estimate absolute height rather than vertical displacements, thus eliminating

vertical drift. This ability indicates that the model was able to exploit kinematic

relations of the skeleton, thus inferring height from pose information. A consequence

of this, however, was that the model failed to estimate correct height for motions

where the character was not in contact with the surrounding environment for a longer

period of time, as would be the case for example in jumping motion.

Finally, it was shown that the selection of motion assets in the training dataset

had an effect on the model’s accuracy for known and unknown motion types. A

model trained on a dataset specialised for specific types of motion would perform

better on those types of motion compared to a model trained on a dataset with

a broad variety of motions. The latter, however, turned out to perform better for

unseen motion types.

Although the method had some success on IMU pose data, the reduced quality

of the poses greatly impacted the performance of the model, indicating a high level

of sensitivity towards the quality and modality of the motion data.

In chapter 3 the above method was extended by including acceleration signals from

IMU sensors in the network’s feature vector. The aim of this change was to improve

performance, especially on low quality data from IMU based motion capture. Fur-

thermore, the prediction targets and training data were adapted to accommodate

for displacement predictions in the vertical direction, thus enabling trajectory recon-

struction in all three dimensions rather than just the horizontal plane. Finally, the

estimation window size was reduced from 64 to only 8 frames, making the solution

more lean and with lower prediction latency.

The presented method was capable of accurately reconstructing global trajecto-

ries in all three dimensions, as witnessed by reconstructions of walking up and down

stairs, as well as walking in the horizontal plane. A decrease in accuracy was still

visible when using pose information from IMU based motion capture instead of poses

from an optical setup. However, the predictions were still highly accurate compared

to the ground truth trajectories. This robustness was shown to be due to using

acceleration signals, as removing them from the network’s feature vector made the
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estimations unusable.

The model trained in chapter 3 was trained and tested using a dataset that included

a wide variety of actors with different body shapes and proportions. However, sensor

placements can vary widely from user to user and even from recording session to

recording session. Moreover, the motion types contained in the data were somewhat

homogeneous, potentially raising questions about the model’s capability to gener-

alise.

As a direction for future work, this should be investigated more by collecting

larger and more diverse datasets in terms of actors and motions contained and train-

ing on them. A problem that arises here is that collecting this type of data is rather

tedious and expensive, due to the need of both optical and IMU based motion cap-

ture setups. Alternatively, future work could focus on generating realistic synthetic

IMU-like acceleration signals, which would enable the use of existing large optical

motion capture datasets.

5.2 Artefact Cleaning for IMU Based Motion Data

Chapter 4 addressed the orthogonal problem of fixing physically implausible artefacts

common to IMU based motion capture hardware, such as self penetration, floating

and foot-skate.

A method was presented using deep reinforcement learning to train a humanoid

agent that was capable of mimicking sample motions containing these types of arte-

facts, without reproducing them. The agent’s policy used information about the

agent’s own state as well as the sample motion’s state, to compute actions to trans-

form the agent to its next state. These actions represented joint target angles for

PD-controllers located at the agent’s joint. The method focused on optimising per-

formance on unseen motion data. Using a mixture of data modalities in the training

data was found to be beneficial for this purpose and more so than simply increasing

the amount of training data.

The resulting agent was able to mimic a test set from entirely unseen actors in
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almost 90% of the cases, without reproducing artefacts present in the data. Addi-

tionally, it produced more realistic centre of mass trajectories when compared to the

ground truth motion.

Finally, a configuration of the observation and action spaces was proposed that

improved the agent’s performance on unseen data. The agent had access to infor-

mation about all joints, while it was only able to actuate a selection of them. The

other joints were actuated directly by feeding the joint angles of the sample motion

as targets for the agent. This was found to perform better on unseen data when

compared to configurations that either had reduced state and action configurations

or had full state and action configurations.

One problem that became evident during this work, was that the agent’s task

contains an inherent contradiction, in that it must reproduce the sample motion

closely, while not reproducing certain specific behaviours. This contradiction should

be mitigated through the reward system, and an interesting way to approach this

could be the use of discriminator networks, to more abstractly assess the motion on

similarity while also taking into account a certain desired distribution of motion data.

This could also be a way to implement style transfer on arbitrary motion assets.
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