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Abstract
Recommender systems have gained great success in helping users to navigate online ser-
vices with a large variety of items, such as movies, music, retail and news, by inferring
the users’ preferences from their feedback on items like ratings, views and purchases.
Personalized recommendations are also highly relevant in domains with few items, like
the insurance domain, to guide the users’ decision-making of products that are complex
because they have many components and complex pricing. The process of generating
recommendations in such domains raises some serious challenges with sparse and hetero-
geneous data that are under-researched in the field of recommender systems. Thus this
thesis studies the generation of personalized recommendations under the special character-
istics of complex item domains. Existing methods do not apply to complex item domains,
because of the following reasons. The methods rely on a large volume of user feedback on
items (e.g., purchases), but in complex item domains, the user feedback is sparse. This is
because there may be few different items, and the items are not interacted with very often.
Moreover, existing methods infer users’ preferences for movie actors, music genres and so
forth, whereas users have needs rather than preferences for complex products that tend
to be temporal as their lives change. Finally, in complex item domains, the user feedback
is of multiple types and modalities, such as actions on the website and phone calls with
service agents, that are challenging to handle for existing methods. This is because they
assume all feedback to be interactions with items (e.g., ratings or purchases) and they can,
for example, not deal with a modality being missing. In addition to generating recom-
mendations, we further study the process of generating explanations of recommendations
under the special characteristics of complex item domains. Explanations of recommen-
dations try to address the problem of explaining why items are recommended to a user.
It is required by law and relevant for many domains, including complex item domains,
to increase the trust and transparency of complex product recommendations. In sum-
mary, this thesis contributes improved recommendation and explanation methods that
are suited for the aforementioned challenges within complex item domains, with a par-
ticular focus on tailor-made solutions for sparse-data recommendations, temporal needs
and heterogeneous feedback in recommender systems. Collectively these contributions
advance the state-of-the-art in recommender systems for this particular domain in ways
that are scientifically interesting, timely, and societally relevant.
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Resumé
Anbefalingssystemer har opnået stor succes i at hjælpe brugere med at navigere i online-
tjenester med et stort udvalg af varer, såsom film, musik, detail og nyheder, ved at udlede
brugernes præferencer ud fra deres feedback på varer som anmeldelser, visninger og køb.
Personaliserede anbefalinger er også yderst relevante i domæner med få varer, såsom
forsikringsdomænet, til at vejlede brugernes beslutningstagning af produkter, der er kom-
plekse, fordi de har mange komponenter og en kompleks prissætning. Processen med at
generere anbefalinger i sådanne domæner rejser nogle alvorlige udfordringer med sparsom
og heterogen data, der er underrepræsenteret indenfor forskning i anbefalingssystemer. I
denne afhandling studeres derfor genereringen af personlige anbefalinger under de særlige
karakteristika i komplekse varedomæner. Eksisterende metoder passer ikke til komplekse
varedomæner af følgende årsager. Metoderne er afhængige af en stor mængde brugerfeed-
back på varer (f.eks. køb), men i komplekse varedomæner er brugerfeedbacken sparsom.
Dette skyldes, at der kan være få forskellige varer, og der bliver ikke interageret med var-
erne ret ofte. Desuden udleder eksisterende metoder brugernes præferencer for filmskue-
spillere, musikgenrer og lignende, hvorimod brugere har behov snarere end præferencer
for komplekse produkter, der har tendens til at være tidsbestemte i takt med, at deres
liv ændrer sig. Endelig kan brugerfeedbacken i komplekse varedomæner være flere typer
og have forskellige modaliteter, såsom handlinger på hjemmesiden og telefonopkald med
kunderådgivere, der er udfordrende at håndtere for eksisterende metoder. Det er fordi, de
antager, at al feedback er interaktioner med varer (f.eks. anmeldelser eller køb), og de kan
for eksempel ikke håndtere, at en modalitet mangler. Ud over at generere anbefalinger
studerer vi yderligere processen med at generere forklaringer på anbefalinger under de
særlige karakteristika i komplekse varedomæner. Forklaringer på anbefalinger forsøger at
løse problemet med at forklare, hvorfor bestemte varer anbefales til en bruger. Det er
lovpligtigt og relevant for mange domæner, herunder komplekse varedomæner, til at øge
tilliden til og gennemsigtigheden af komplekse produktanbefalinger. Alt i alt bidrager
denne afhandling med forbedrede anbefalings- og forklaringsmetoder, der er velegnede
til de førnævnte udfordringer inden for komplekse varedomæner med særligt fokus på
skræddersyede løsninger til datasparsomme anbefalinger, tidsmæssige behov og hetero-
gen feedback i anbefalingssystemer. Tilsammen fremmer disse bidrag den nyeste viden
inden for anbefalingssystemer for dette særlige domæne på måder, der er videnskabeligt
interessante, aktuelle og samfundsrelevante.
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Chapter 1

Executive Summary

1.1 Introduction
With the increased development of the World Wide Web, people are to a greater extent
left to themselves when shopping, streaming, browsing and so forth, instead of being
advised by, for example, a salesperson in a physical store. This has created the need
for recommender systems that can help users of online services find relevant content by
inferring their interests from data. Recommender systems have gained great success in
large item domains such as the movie, music, retail, book and news domains, by using the
users’ preferences for genres, actors, colors, styles and similar, to ease the users’ choice
overload with personalized recommendations. In contrast, this thesis focuses on domains
with complex items. Complex items are items with many components and where the
pricing is based on complex factors such as risk and durability. Examples of such domains
are banking, pension, insurance, real estate and automobiles. Like many other domains,
customers of these domains also have an increased interest in online self-service, but sales
activities of complex products require expert knowledge. Recommender systems can offer
great benefits for complex item domains by either improving the efficiency of service
agents or automatizing the decision-making process for the customers.

Although a recommender system is highly relevant for complex item domains, these
domains have some special characteristics that raise new challenges in the research field
of personalized recommendation models:

1. As opposed to the domains where recommender systems have primarily gained trac-
tion by easing the overload of items, the number of different items is typically very
small in complex item domains. There may be only 15 possible items to interact
with. For comparison, there are likely several thousands of movies, music tracks,
books and similar in the traditional domains. In addition, users rarely buy complex
products as they are usually bought for a long-term commitment (e.g., one year)
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Chapter 1 | Executive Summary

because their utility is not realized immediately. For example, the utility of a pen-
sion saving is not realized until you retire or the utility of an insurance product is
not realized until you have an insurance claim (e.g., theft or accident). Both the
small number of items and the low purchase frequency cause a sparse amount of
information of the users over the items, as each user has not interacted with many
items.

2. Lifestyle changes affect customers’ need for complex products. For example, cus-
tomers’ housing and car needs may change when they have children. Therefore
the recommendation task is much more a question of capturing temporal needs
rather than preferences of, for example, movie actors and music genres that are
more connected to previous preferences.

3. Although users’ purchases of items are limited, various other user actions exist in
complex item domains such as updating personal information and claims reporting
in the insurance domain. Moreover, users interact with such domains through more
than one channel like website and call center. Exploiting this heterogeneous user
behavior is essential to understand users’ needs for complex products and generate
personalized recommendations.

Hence, this thesis studies the generation of personalized recommendations under sparse,
temporal and heterogeneous conditions that simultaneously characterize complex item do-
mains. Each condition is itself also relevant for many other domains such as sparsity for
a start-up business. In addition to generating recommendations, explaining why an item
is recommended to a user is an important topic within recommender systems because it
increases the trust and transparency of the system and it is required under various legis-
lations. We further study explanations of temporal recommendations as it is relevant for
complex item domains where temporal recommendations are well-suited and explanations
of complex product recommendations are important.

The remainder of this chapter is structured as follows. Section 1.2 introduces the
context of this project as an industrial PhD as well as the insurance domain that we use
as a focal point. Section 1.3 provides an introduction to recommender systems and the
theoretical background for the challenges related to complex item domains. Section 1.4
gives a detailed overview of the contributions in the papers included as chapters in this
thesis. Section 1.5 summarizes the contributions of this thesis and points to prospects for
future work.

2
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1.2 Industrial Context
This thesis is an industrial PhD carried out in collaboration with a Danish insurance
company called Alka1. I have been employed in Alka in their department for mathematical
modeling. The employment gave me access to Alka’s databases and software as well as
the other employees’ expertise on data, systems, products, and processes like customer
experience and user interface.

Alka was established in 1944 and deals with insurance for individuals and small busi-
nesses. The company approximately has insurance contracts with 350,000 customers and
currently has a five percent market share in Denmark. The company serves its customers
through its website, call center, chat and e-mail communication. Their strategy has a
specific focus on promoting its digital channels including website, chat and e-mail.

The nature of the collaboration with Alka resulted in using the insurance domain as
a recurrent example of a complex item domain in this thesis. This domain is therefore
introduced next.

In the insurance domain, the items to be recommended are insurance products. An
insurance product is a contract between the insurance company and the customer. For
a payment in advance, the company takes the obligation to pay compensation to the
customer if a loss is caused under the terms of policy. Common insurance products for
individuals are car, accident and house insurance. Each insurance product typically has
some additional coverages with extended benefits that are purchased separately from the
base insurance product, for example, roadside assistance for car insurance or dental injury
for accident insurance. Also, additional coverages can be recommendable items. Insurance
products are complex as they comprise many components, like deductibles and liability
limits, and the price is based on the complex risk of claims. Consequently, the insurance
domain shares the challenges for recommendations in complex domains: there are few
different insurance products, users rarely buy insurance products, users have needs rather
than preferences of insurance products, and users have heterogeneous behavior on the
insurance company’s different channels like website and call center.

A recommender system in the insurance domain can serve different purposes. One
purpose is to help new customers identify their needs when they contact the company
for the first time. But when a life event occurs to a customer, it often means that this
customer has to adjust insurance products. For instance, if you have a child, you might
want accident insurance for that child or if you move far away from your job, you may
need additional coverage for your car insurance. Therefore, recommender systems in this
domain often focus on another purpose of insurance recommendations which is to help
existing customers to continuously adjust their insurance products to suit their needs.

The collaboration with the company has given a particular insight into the insurance
1https://www.alka.dk/
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domain and access to real-world data. Alka is experiencing many customers who are
not properly insured because they have not adjusted their insurance products to new
circumstances in their lives. It is most often discovered by insurance agents when they
are speaking with a customer in another context (e.g., claims reporting). Therefore,
a recommender system is relevant to help the customers who are primarily using the
company’s digital channels as well as to support the insurance agents.

The customers mainly interact with Alka through two channels: the company’s web-
site and call center. The company’s website is divided into four sections: (1) on the
e-commerce sections the users can buy insurance products and additional coverages; (2)
on the claims reporting section the users can report claims (e.g., theft or car accident); (3)
on the information section the users can find information about terms of policy, payment
processes and so forth; (4) on the personal account section the users can change their
personal information like employment (required if you have an accident insurance) and
e-mail address. The users can do all the same actions over the phone by contacting the
company’s call center. In this thesis, we exploit all the different actions on the website
and over the phone to learn recommendations.

At the start of this PhD program, the insurance company did not have a recom-
mender system in operation. During the project, Alka had its first recommender system
implemented which currently is in the process of being A/B-tested with real users. This
recommender system is based on our contributions in Papers 2 and 3 (Chapters 3 and 4).
Both on the website interface and in the call center, the user will be recommended up to
three items. This is why we focus on the first three items when evaluating the recom-
mender systems in our contributions.

This thesis makes use of data collected in Alka. The data was collected in the periods
between October 1, 2018 to September 30, 2020 and May 1, 2022 to April 30, 2023. All the
data is collected with consent from the individuals involved as well as stored in accordance
with the legal legislation for data protection and privacy. Along the way, analyses have
been provided to enhance the transparency of our models, including a fairness analysis in
paper 3 (Chapter 4) where we investigate biases of protected demographic characteristics.

1.3 Theoretical Background
This section provides an introduction to the basic concepts in recommender systems as
well as the theoretical background for specific challenges related to complex item domains,
namely heterogeneous and multi-modal data, the sparsity problem, temporal recommen-
dations and explanations of those. The papers included in this thesis are cross-referenced
when relevant.
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1.3.1 Introduction to Recommender Systems
The task of a recommender system is to suggest items relevant to a user [3]. That is,
given a set of users and a set of items, the goal is to rank the top-k most relevant items
for each user, where k is a small number compared to the total number of items (e.g.,
10 or 20 out of thousands of items). This is usually done by estimating a score for each
user-item pair (e.g., predicting ratings or purchase probabilities), and then ranking the
items according to the score.

To solve this problem, we focus on the case where a recommendation model is used
to automatically infer recommendations from data. The recommendation problem can
also be solved by requesting the users to explicitly specify what they want, defined as
knowledge-based recommender systems [69].

1.3.1.1 Key Properties of Feedback Data

A driving force for the development of recommendation models is the ease with which
the World Wide Web enables users to provide feedback about content for example in
terms of ratings or likes/dislikes [3]. Feedback can also be more implicit. If a user buys
a product or listens to a music track it may be seen as a preference for that item. This
type of feedback is even easier to collect on the World Wide Web than explicit feedback
(e.g., ratings or likes), it comes at almost no cost and is available in large amounts [74].
Recommendation models are typically based on the previous feedback given by a user
such that past interests are used as indicators of future choices. The feedback can take
different forms depending on the application setting. It can be in the form of ratings, for
instance, as numerical integer values from one to five, as binary feedback with two values
corresponding to positive or negative feedback, or as unary feedback when the user can
only specify a positive preference for an item. For instance, a purchase can be considered
as positive feedback whereas not purchasing an item is not necessarily a dislike. Note
that the users can provide feedback in non-numerical forms, like a star rating system,
but it will usually be converted to a numerical scale when used in a recommendation
model. In Section 1.3.2 we will cover challenges of feedback data like the heterogeneity
and ambiguity in it, missing feedback and temporal changes in preferences.

1.3.1.2 Basic Approaches for Recommendation Models

The approaches for inferring recommendations from feedback are broadly categorized into
two basic types: collaborative filtering approaches and content-based approaches. Elements
from both can also be combined, which is then called hybrid approaches.

Collaborative filtering approaches use only the users’ historical feedback such as ratings
or purchases of items [124]. A user has typically given feedback on some items, these are
items with observed feedback, while there are other items that the user has not yet
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given feedback on, being items with unspecified feedback. Collaborative filtering uses the
observed feedback to estimate a user’s future feedback on the items that the user has
not given feedback on yet. The items with the most positive estimated feedback (e.g.,
highest ratings or most purchases) are recommended to the user. The basic idea is that
unspecified feedback can be estimated from the observed feedback because it is often
highly correlated across various users and items. For example, if two users have given
similar feedback on some items, the feedback on an item that is only specified by one of
them is also likely to be similar. This similarity can be used to make inferences for the
user who has not yet interacted with that item. See Figure 1.1 for an illustration of the
concepts in collaborative filtering.

Content-based approaches use both descriptive features of the items and the users’
feedback, but only the users’ own feedback [4]. The descriptive features can be tabular
features like actor, genre, color or unstructured features like textual descriptions or images
of the items. The features of items that a user has interacted with are used to predict
whether the user will like an item that the user has not yet interacted with. For example, a
user who is interested in a movie within the history genre is more likely to be interested in
another historical movie rather than in an action movie. See Figure 1.1 for an illustration
of the concepts in content-based approaches.

An advantage of collaborative filtering is that it does not require access to item features
that are not always available. Additionally, the recommendations tend to be more novel
and serendipitous, whereas content-based approaches tend to be overspecialized. This
is because the recommended items do not necessarily share the same features as the
user has previously liked when using collaborative filtering. An advantage of content-
based approaches is that the recommendation for one user does not rely on other users’
feedback, which is a problem when there is a sparse amount of feedback from other users.
Unlike collaborative filtering, the content-based approach also has the advantage that it
can recommend a new item that no one has previously interacted with. This is called
the cold start problem [3]. In content-based approaches, a new item can be recommended
because it shares the same features as the items that have previously received feedback
from the user. In collaborative filtering, a new item needs to receive feedback from some
users before it can be recommended. What applies to both approaches is that they need
a certain amount of previous feedback from a user, to provide this user with high-quality
recommendations.

1.3.1.3 Collaborative Filtering Methods

This thesis focuses on advancing collaborative filtering methods. In collaborative filtering,
the feedback is usually represented in a user-item matrix with users as rows, items as
columns and the feedback in the entries [124]. See Figure 1.2a for an example with unary
feedback (i.e., the user can only specify a positive preference for an item). We want

6
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(a) Collaborative filtering: Two users are
similar because they have liked the same
items. An item that is only observed (and
liked) by user 1 is then recommended to
user 2.

(b) Content-based: Two items are similar be-
cause they share the same features. User 1 has
only observed (and liked) one of the items. The
other item is then recommended to user 1.

Figure 1.1: Illustration of the concepts in collaborative filtering and content-based approaches.

to recommend the unobserved items, and in order to do this, we need to predict the
unobserved feedback from the observed feedback. Traditionally, two types of methods are
used for this task, which are called neighborhood-based methods and matrix factorization
methods.

Neighborhood-based methods can either be user-based or item-based. If they are
user-based, a similarity measure, such as cosine similarity, is used to find the most similar
users (called neighbors) to a target user by computing the similarity between rows in
the user-item matrix. Then the top-k items for that user are determined based on the
neighboring users, for example, as the items with the highest ratings or the most purchases
among the neighbors. Similarly, if they are item-based, the similarity is computed between
columns and the top-k items are determined based on the user’s own ratings/purchases on
neighboring items. Neighborhood-based collaborative filtering has the advantages of being
simple to implement and the recommendations are easy to explain. The disadvantage of
these methods is that they do not work very well when the user-item matrix is sparse. For
example, if none of the nearest neighbors for a user have interacted with a particular item,
it is not possible to estimate a score for this user-item pair, or if only a few neighbors have
interacted with this item the prediction will not be robust. In other words, these methods
might lack full coverage of predictions, meaning that they can not estimate scores for all
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User 1 1 1 1
User 2 1 1
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(a) Matrix representation. (b) Graph representation.

Figure 1.2: Example of representations with unary feedback. For example, user 1 has given
feedback to item 1, 4 and 6, but no feedback to item 2, 3 and 5.

user-item pairs.
Matrix factorization methods have a higher level of coverage even for sparse matrices.

These methods use a dimensionality reduction technique, like non-negative matrix fac-
torization, to project the user-item matrix into a lower dimensional space by exploiting
the correlations between rows and columns in the original matrix. The lower dimensional
representation is a decomposition of the user-item matrix into a set of latent factors repre-
senting row correlation and a set of latent factors representing column correlations. These
sets of latent factors correspond to user factors and item factors, respectively, and they
represent concepts in the user-item matrix, for instance, the affinity of a user towards
the history and romance genres in a movie domain. The score of the ij user-item pair in
the matrix can be estimated as the dot product of the ith user factor and the jth item
factor. In other words, the matrix multiplication of the user factors and item factors is
a fully specified matrix that approximates the original user-item matrix. It can thereby
be used to fill the unobserved entries with scores to rank the top-k items for each user.
Matrix factorization methods have a high coverage because the dimensionality reduction
provides a dense low-dimensional representation in terms of latent factors. This means
that even when two users have very few items in common, their low-dimensional latent
factors can be compared.

1.3.1.4 Explanations of Recommendations

Explanations of recommendations try to address the problem of explaining why items are
recommended to a user and serve several purposes [140]. They can provide transparency
in the recommendation process and lead to more trust and credibility in the system. They
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can also help users to make quicker and more informed decisions, thereby increasing user
satisfaction. Finally, a new AI Act legislation establishes that this is compulsory.

The basic collaborative filtering and content-based recommender systems presented
in Section 1.3.1.2 are typically explained by either item-based or user-based explana-
tions [166]. Item-based explanations can be to tell the user that the recommended item
shares similarities with other items the user has previously liked, for instance by high-
lighting the features they have in common. User-based explanations can be provided by
saying that the user is similar to other users who also liked the recommended item, for
instance by highlighting the similar users’ ratings for this item. Item-based explanations
have proved to be more intuitive for users to understand because users are familiar with
the items they interacted with before, while user-based explanations have proved to be
less convincing, because the target user may know nothing about other “similar” users at
all [58].

1.3.1.5 Evaluation of Recommender Systems

Recommender systems can be evaluated using either an online or offline method [48].
Online methods include user studies, where users are recruited to interact with the rec-
ommender system and give their feedback about the recommendations. Online methods
also include evaluation with users in a real deployment of the system. A typical metric
to measure the effectiveness of a recommender system with real users is the conversion
rate. The conversion rate measures the fraction of times that a user selects a recom-
mended item. Typically, the users are randomly segmented into groups, then various
recommender systems can be tested with each group of users, referred to as A/B testing.
Ultimately, the most important goal is for the recommender system to do well with online
users. However, online methods are often not feasible to use when comparing a lot of
models and settings, because active user participation is expensive and time-consuming.
In an offline method, historical data with feedback (e.g., ratings or purchases) are used.
This method does not require access to real users. Once the data has been collected, it
can be used to compare various recommendation models across a variety of settings.

In offline evaluation, the general experimental design with training, validation and
test split of the dataset is used to not overestimate the performance of the recommender
system [2]. Only the training set is used to build the training model, the validation set
is used for model selection and parameter tuning, and the test set is used to evaluate the
final model. If the same data set is used for training and evaluation, it will not reflect
how the system will perform in a real-world setting with unseen data and the performance
will likely be overestimated. Similarly, if the same data is used for parameter tuning and
evaluation, the performance will be biased with knowledge from the evaluation data and
thereby overestimated.

The data splits can be made with techniques commonly used in machine learning [2].
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The data can for example be split with the hold-out technique, where a fraction of the
feedback is hidden for testing and the remaining is used for training. This method tends to
underestimate the performance since not all data is used for training. Another technique
is k-fold cross-validation, where the data is split into k sets of equal size. One of the k sets
is used for testing and the remaining sets are used for training. This process is repeated
until all k sets have been used as a test set. The average performance over the k different
test sets constitutes the evaluation. This method exploits all the available data, however
it is more computationally expensive than the hold-out technique. Finally, the data can
be split in a temporal manner by using the most recent feedback data as the test set.
This technique mitigates the problem of user preferences changing over time.

Effectiveness is one of the most used measures in offline evaluation [48]. It is a con-
crete goal and easy to implement, therefore it is convenient to use for comparing various
recommendation models across a variety of settings. Effectiveness can be measured in
terms of the prediction effectiveness of a rating. Here standard metrics for evaluating
regression models are used, such as mean absolute error or root mean squared error which
are metrics to quantify the difference between predicted values and observed values. Ef-
fectiveness can also be measured in terms of the effectiveness of ranking the items, which
is particularly relevant for recommender systems that output ranking of items instead of
predicting ratings. In this case, it is usually each user’s top-k recommended items that
are evaluated. For example, the 10 items at the top of a user’s ranked list, because these
items will be shown to the user at the user interface. Different ranking metrics can be
used to evaluate this effectiveness. For example, hit rate that measures the percentage of
users in the test set where a true item was among the user’s list of top-k items. Another
metric that further accounts for the rank of a true item in the recommended list is mean
reciprocal rank. It measures the reciprocal rank of the first true item in a user’s list and
then computes the mean of this reciprocal rank across all the users in the test set.

Finally, several other measures have short and long-term impacts on the conversion
rate as well as the user experience [48]. One such measure is novelty which measures
the likelihood of a recommender system to give recommendations that a user has not
seen before. This is a distinction from items that the user was already aware of but had
not chosen to interact with. Novel recommendations increase the ability of a user to
discover something new. Another example is trust, which measures a user’s faith in the
recommendations. Even if the recommended items are accurate, they are often not useful
if the user does not trust the system and thereby does not use the recommendations.
Explanations of the recommendations can lead to more trust in a recommender system
because they provide a logic behind the recommendations.
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1.3.2 Specific Challenges for Complex Item Recommendations
In complex item domains, the characteristics of heterogeneous and multi-modal data,
sparse information about the users and temporal needs play a critical role. Therefore, we
dive into the theoretical background of these specific challenges in recommender systems.

1.3.2.1 Heterogeneous and Multi-modal Data

Many recommender systems use only a single type of feedback when inferring users’
preferences (e.g., ratings or purchases of items), as it is usually a strong signal to represent
users’ preferences when there is enough of it [33]. However, users provide oftentimes
more than one type of feedback on items. For example on an e-commerce platform
users can click, add-to-cart and purchase items. Here purchase can be seen as the target
feedback representing a strong preference for an item and the others as auxiliary feedback
representing weaker preferences. This multi-typed feedback potentially provides extra
information about user preferences. Therefore some collaborative filtering methods, also
referred to as multi-behavior recommender systems, try to incorporate heterogeneous
feedback on items [33]. There are different strategies to do so.

The most simple strategy is to encode the heterogeneous feedback as ratings, for
example, click is one, add-to-cart is two and purchase is three. A similar strategy is to
encode all the types of feedback as positive feedback but assign them different weights.
The weights can either be manually predefined or automatically learned from data, for
example based on correlations between the different types of feedback [31, 106, 113].

Some recommendation methods require both positive and negative feedback and can
thereby not deal with unary feedback (i.e., the user can only specify a positive preference
for an item) [64]. In this case, negative sampling can be used to randomly select some
items for each user and assign them negative feedback. However, the fact that a user
has not provided feedback for an item can both be because the user disliked the item or
the user was not aware of the item. Therefore, some methods use information from the
auxiliary feedback to better select negative samples [87, 95, 38].

As described in Section 1.3.1, the recommendation task can either be solved by esti-
mating a score for each user-item pair or by predicting the ranking of items for a user.
In the latter case, the model is trained on historical data by minimizing the difference
between the predicted rankings and the true rankings. Some methods incorporate the
auxiliary feedback in the true rankings, for example by ranking purchases over add-to-
cart and items clicked over items with no feedback [93, 39].

Finally, transfer learning is often employed to transfer the auxiliary feedback to assist
the learning task with the target feedback. For example, all types of feedback can be used
collectively to generate a list of candidate items, after which only the target feedback is
used to choose among the candidate items [107]. Knowledge can also be transferred with
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(a) Early Fusion (b) Intermediate Fusion (c) Late Fusion

Figure 1.3: Steps of Multi-modal Recommendation Methods

multi-objective learning, where a model that generates multiple lists of items is trained
simultaneously [167]. For example, lists with items that the user will click, add-to-cart
and purchase

Some recommender systems also deal with multiple modalities, where a modality refers
to the way in which information is expressed such as vision or speech [128]. That con-
cerns content-based recommender systems when the items are associated with features of
multiple modalities, for example when an item is presented to the users with an image
and a textual description. There are some advantages of using multiple modalities [128].
Firstly, using multi-modal information could capture the same pattern from each modality
resulting in a more robust model. Secondly, the different modalities can capture comple-
mentary information that is not present in a single modality. For example, an image can
reflect the user’s preference for the look of a jacket while a textual description can reflect
the user’s preference for the functionality of a jacket.

The methods for using multiple modalities in recommender systems can be categorized
into late fusion [152, 25, 94], intermediate fusion [134, 163, 28] and early fusion [92, 91].
See Figure 1.3 for an illustration of the steps. Late fusion means that a recommendation
model is built for each of the modalities and the model outputs are fused, for instance by
averaging the predictions. With this method, each modality is independent of others. A
disadvantage, however, is that it cannot learn interactions between the modalities, since
the modalities are not jointly modeled in a single recommendation model. It can thereby
not capture if combinations of information from different modalities lead to a user liking
specific items. Intermediate fusion means that item representations are first built for
each of the modalities. For example with a pre-trained text embedding model and image
embedding model, respectively. Then the item representations are concatenated and fed
into the recommendation model. This method might cause data redundancy, as the same
information about the items can lie in multiple representations from different modalities.
Finally, early fusion means that the data of different modalities are first concatenated,
and then a joint item representation is built, for example with an autoencoder.

This thesis advances approaches for recommendation models when the amount of
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feedback data is limited. In complex item domains, each user has a small number of
historical interactions with the items, making existing collaborative filtering approaches
challenging to use. On the other hand, complex items are not always associated with
descriptive features that reflect the users’ preferences like the color of clothes and the
genre of movies, so content-based approaches (that are less dependent on feedback data)
are rarely appropriate. For that reason, a general theme that runs across our contributions
is to advance collaborative filtering approaches to infer recommendations from other types
of user actions that are not interactions with items. This could for instance be the action
of a user updating personal information or reporting a claim in the insurance domain. In
Paper 1 (Chapter 2), we present a method to weigh different types of user actions when
using a graph-based collaborative filtering method. In Paper 2 and 3 (Chapter 3 and
4), we present a way to incorporate various user actions in a session-based collaborative
filtering method and map them to purchases outside sessions. In Paper 4 (Chapter 5),
we present a method that infers recommendations from user actions that not only are of
different types but also different modalities, as user actions often are of different modalities
like clicks and speech in complex item domains (see Section 1.1).

1.3.2.2 The Sparsity Problem

As described in Section 1.3.1, the basic approaches for recommender systems are chal-
lenged when there is not enough historical user feedback on items. This is called the
sparsity problem in recommender systems, and it is particularly prevalent for collabora-
tive filtering. This is because it relies on a lot of feedback from both the user of interest
as well as other users to infer recommendations [68].

As also described in Section 1.3.1, collaborative filtering methods make use of the user-
item matrix representation, and compute either similarities between rows/columns, or use
matrix factorization to decompose the matrix into a lower dimension, and then reconstruct
it as a fully specified matrix. Another way to represent the feedback is as a graph [148]. In
this case, users and items are vertices in the graph and there is an undirected edge between
a user and an item if the user has interacted with this item (possibly weighted by the
rating if the feedback is explicit). See Figure 1.2b for an example. Then the most similar
users to a target user are the ones that are encountered frequently in a random walk in the
graph starting at that user. The advantage of the graph-based method is that it is more
effective than the traditional collaborative filtering methods when the user-item matrix is
sparse. The reason for that is that with the graph-based method, two users do not have to
have liked many of the same items to obtain a high similarity as long as many short paths
exist between the two users. So, this method takes also indirect connectivity between
vertices into account, when computing the similarity between users, and in sparse user-
item graphs, direct connectivity may not exist for many vertices. Besides being able to
handle the traditional collaborative filtering problems, the graph-based methods are also
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Figure 1.4: The task of a sequential or session-based recommender system is to predict the next
item î, the user is going to interact with for every step in a user’s sequence of interactions with
items {i1, i2, i3, ...}

able to model various data relationships. The methods can correlate the user’s preference
for content, while also correlating connections between contents or users by incorporating
knowledge bases or social networks in the graph.

In Paper 1 of this thesis (Chapter 2), we present a novel graph-based recommendation
model that is effective in sparse domains and improves over existing graph-based models
by using a heuristic method to automatically optimize weights in the graph.

1.3.2.3 Temporal Recommendations

The basic approaches for recommender systems use all historical feedback from a user
and do not take into account when the feedback was given. As a result, these models
learn long-term user preferences that are static over time. However, users’ preferences
likely change over time and there might be information lying in the order in which a
user interacts with items, for example, a user more likely purchases a laptop sleeve after
the user purchased a laptop. There are different methods to generate more temporal
recommendations, which are presented next.

Many forms of implicit feedback, such as buying or streaming behaviors, are inherently
temporal. Therefore, sequential recommender systems have become increasingly popular
in academic research and practical applications [147]. In this case, sequential patterns
in users’ historical actions are used to provide recommendations that reflect dynamic
preferences.

Sometimes this implicit feedback is naturally grouped into sessions, defined as multiple
user actions that happen together within a defined period of time, for example, products
clicked in one transaction visit. A sub-type of sequential recommender systems is session-
based recommender systems that base the recommendations only on the actions in a
user’s ongoing session, thereby reflecting the user’s short-term preferences [96]. This type
of recommender system is particularly relevant in many real-world applications where
long-term information is not available because users are anonymous or there are many
first-time users.

The recommendation task in sequential and session-based recommender systems can
be formulated as the task of predicting the next item for a user for every step in the user’s
interaction sequence, with the output usually being a top-k ranked item list. See Figure 1.4
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for an illustration. The earliest and most simple methods applied for this task include
sequential pattern mining, Markov models and neighborhood-based methods [6, 56, 67].
Pattern mining strives to use association rules to mine frequent patterns with sufficient
support and confidence [6]. In the sequential and session-based recommendation task,
patterns refer to the sets of items that are frequently co-occurring within a sequence in a
specific order. Although this method is easy to implement and relatively simple to explain
to users, it is very time-consuming to match patterns in a large number of sequential com-
binations and the method is limited to univariate discrete sequences. In Markov models,
the sequential information is encoded in the form of states [56]. A k order Markov model
defines a state based on the last k items the user interacted with. The probability of
transition from one state to another is estimated for all the states on historical data and
is used to predict the next item for a user given the current state. In order to reduce
computation time, the Markov method relies on the memoryless property. The idea is
to choose a small number for k such that the recommendation depends only on the last
few interactions. This constraint makes the method unable to leverage the dependencies
among items in long sequences. The neighborhood-based methods are similar to the tradi-
tional neighborhood-based collaborative filtering presented in Section 1.3.1, but estimate
either item neighborhoods by finding items that often occur together within sequences or
sequence neighborhoods by computing the similarity across entire sequences [67]. These
methods do not consider the sequential dependencies among items.

More recent methods applied to the sequential and session-based recommendation
task are based on neural networks such as recurrent neural networks and attention net-
works [43]. These methods efficiently train a parametric model that can capture non-linear
and high-order sequential dependencies between items and are flexible to deal with mul-
tivariate and continuous sequence information. However, the neural methods are known
as data-hungry and non-interpretable because of their complexity. Neural networks have
a huge number of parameters, and the interactions between these parameters are non-
linear. This makes it prone to overfitting if it is not trained on enough data and difficult
to understand how each parameter contributes to the final prediction.

In this thesis, we introduce the first-ever session-based approach for insurance recom-
mendations, in order to learn users’ dynamic needs of complex items rather than static
preferences. In Paper 2 and 3 (Chapter 3 and 4), we use the sequence of a user’s sessions
on the insurance website to provide temporal context when learning recommendations.
In Paper 3 (Chapter 4), we further explore the temporal dimension by using attention
mechanism to pay different attention to the sessions in a user’s historical sequence. In
addition, we propose a new loss function for session-based recommendation models that
account for the fact that users often have multiple sessions in complex item domains
before they purchase.
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1.3.2.4 Explanations of Temporal Recommendations

As described in Section 1.3.2.3, sequential and session-based recommender systems do
not compute item or user similarities in the same way as the basic recommendation
models, and explanations can thereby not be generated with the same methods. Rather
explanations of these models can be provided by highlighting how the actions in a user’s
sequence contributed to the recommendation, for example, “because you clicked item x
and y, we recommend you item z” or “many users clicked item a after item b” [30, 168, 153].
This task is similar to the general task of explaining the prediction from a machine learning
model [100]. Methods for explaining machine learning models can be classified as intrinsic
or post hoc. The intrinsic approach develops more interpretable models, whose logic
is to a higher degree transparent, and thus can more easily provide explanations for a
prediction. The post hoc approach allows the machine learning model to be a black
box and develops a separate model to generate an explanation of a prediction after the
prediction has been made. The methods can also be classified as model-specific or model-
agnostic. Model-specific methods are limited to specific model classes. Methods that can
only explain neural networks for example are model-specific. Model-agnostic methods on
the other hand can be used on any machine learning model as they usually only look at
feature input and output pairs and do not have access to model internals. While post
hoc methods can be both model-specific and model-agnostic, intrinsically interpretable
models will always be model-specific.

The most prominent type of post hoc explanation methods are feature attribution
methods. They explain a model prediction by assigning attribution scores to individual
input variables that reflect how the variables contributed to the prediction. Feature attri-
bution methods can be perturbation-based, such as input occlusion [75], which estimates
the contribution of input variables to a model’s prediction by occluding variables from the
input and measuring the corresponding changes in the model’s prediction. Some occlusion
methods also marginalize over input features to be explained [27, 109]. Feature attribu-
tion methods can also be gradient-based, such as vanilla gradient [127], which computes
the gradient of the output with respect to the input, and extensions of that, which im-
proves saturation and stability problems [129, 138]. The saturation problem occurs if the
network to be explained changes locally only very little since it will then produce a small
gradient close to zero. The stability problem occurs because gradients of complicated
functions change very quickly as you change the input.

A subgroup of feature attribution methods is additive feature attribution methods
which require the sum of the attribution scores to equal the prediction. These are very
popular as the scores become more intuitive for humans to understand. Additive feature
attribution methods can be both perturbation-based, such as Shapley additive explana-
tions [98], and gradient-based, such as integrated gradients [138]. Moreover, they can be
simplification-based, such as local interpretable model-agnostic explanations [117]. This
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method trains a simple interpretable model for each instance to be explained to approxi-
mate the local decision boundary of the original model.

Paper 5 in this thesis makes contributions to the methods for generating explanations
of session-based recommendations, as no such work exists and is relevant for complex
item domains where session-based recommendations are well-suited and explanations of
complex product recommendations are important. In this paper, we do the first-ever study
of using post hoc attribution methods to highlight how the actions in a user’s sessions
contributed to the recommendation.

1.4 Scientific Contributions
This section provides a detailed overview of the papers included in the thesis. The pa-
pers cover three main themes of generating recommendations and explanations of those,
namely the sparsity problem, temporal recommendations and heterogeneous user actions.
Table 1.1 maps the sparsity, temporal and heterogeneous contributions of each paper
along the recommendation and explanation axes, which are all themes arising from rec-
ommender systems in complex item domains (see Section 1.1).

Table 1.1: Overview of the main contributions of the papers in this thesis by theme, sparsity
problem, temporal recommendations and heterogeneous user actions, and type of contri-
bution, generating recommendations (R) and generating explanations of recommendations (E).
These themes arise from complex item domains, where users have sparse interactions with items,
they have temporal needs rather than preferences for complex products and they have hetero-
geneous behavior in terms of website actions and phone calls.

Sparsity Temporal Heterogeneous
R E R E R E

Paper 1 [21] 7 7

Paper 2 [20] 7 7 7

Paper 3 [22] 7

Paper 4 [23] 7

Paper 5 [24] 7
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1.4.1 Paper 1: Graph-based Recommendation for Sparse and
Heterogeneous User Interactions

Recommender systems heavily rely on previous user interactions to infer recommendations
(see Section 1.3.1), and a lot of research focuses on recommendation models based on
complex machine learning and deep learning methods that can be very data-demanding.
However, many domains have a limited availability of user interaction data, for instance,
a startup business that has not collected much data yet because it is in its early stages,
or a domain like insurance that is inherently data-sparse because of few different items
and the fact that users rarely interact with insurance products. This paper contributes a
novel recommendation model that is able to work in data-sparse domains.

General machine learning techniques to solve small data problems include the use of
transfer learning, side information or knowledge graphs [84, 155, 150, 7]. More specific
to the recommendation task, graph-based methods are helpful when data is sparse (see
Section 1.3.2). Previous work has tried to improve the graph-based methods by adding
item or user attributes to the graph or by creating predefined paths or weights from expert
knowledge [85, 165, 159, 162]. We propose a new method that does not require access to
other domains, as it simply uses user interaction data and it is automatically optimized
without the need for expert knowledge.

We present a graph-based recommendation model, but unlike previous methods, our
model represents the user interactions in a heterogeneous graph, where edges denote
different types of interactions. The edges are associated with weights representing the
strength of the relationship between users and content. In that way, users can be more
similar if they are connected by one interaction type rather than another. We furthermore
include various types of user interactions in the graph, also interactions with content that
is not recommendable, to supplement the sparse data. Finally, we use genetic algorithm
to automatically find the optimal weights [61].

We evaluate our model on two data-sparse use cases: (1) An educational social net-
work dataset collected from a startup business providing a social platform for students;
(2) An insurance dataset with purchases of insurance products and clicks on the insur-
ance website. Experimental results confirm that graph-based methods (including our
proposed graph-based model and the existing graph-based baselines) perform better than
the traditional collaborative filtering methods when users have few interactions with items.
Moreover, our proposed model outperforms the existing graph-based models with no or
predefined weights. Furthermore, our model is more robust than a complex neural graph
model when there are few users in the dataset.
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1.4.2 Paper 2: Learning Recommendations from User Actions
in the Item-poor Insurance Domain

This paper contributes a recommendations model that deals with three important char-
acteristics of complex item domains with the insurance domain as a focal point, namely
(1) Customers have dynamic needs of insurance products rather than static preferences
as they are often related to life events like birth of child, moving house, retiring, etc.;
(2) The insurance domain is data-sparse because there are few different items, and be-
cause insurance products typically are bought for a long-term commitment; (3) Many
users browse the insurance website but prefer to finalize the purchase over the phone. In
addition, we publish a real-world recommendation dataset from the insurance domain to
facilitate future research on this topic.

To deal with these characteristics, we propose a session-based approach that uses ses-
sions on the insurance website to give temporal context for the recommendations, since
the sessions reflect the users’ recent and sequential behavior (see Section 1.3.2). Session-
based recommender systems usually learn from user interactions with items. However,
various other actions on an insurance website can be used as signals for inferring recom-
mendations. For example, if a user has just tried to report a claim that was not covered
by the user’s current insurance products. Therefore, we use various types of actions to
infer recommendations, also actions that are not associated with items. Finally, we model
relationships between user sessions and insurance purchases that do not take place within
the sessions.

Our approach differs from the related work in the insurance domain, where state-of-
the-art is to categorize users based on insurance portfolios (i.e., what insurance products
the user currently has) and demographic characteristics such as age, employment and
residence, then make recommendations based on these categories [161, 122, 111, 112]. It
also differs from the traditional session-based task, that is to predict the next item the
user is going to interact with, for every step within the ongoing session [43].

Our proposed model is a recurrent neural network with gated recurrent units, that
takes as input the ordered sequence of a user’s past sessions each being a set of actions,
and predicts what items the user will buy after the last session. We propose different
ways of passing sessions through the recurrent neural network: (1) We encode a session
by aggregating over the actions with a maximum pooling operation. Then the sequence of
encoded sessions is passed through the network; (2) We concatenate all sessions of a user
into a single session. Then the actions are directly passed as input to the network; (3)
We use an autoencoder to automatically learn encodings of sessions. The autoencoded
sessions are then passed to the network.

In an experimental evaluation on a real-world dataset, our model outperforms base-
lines from previous research in the insurance domain showing that users’ sessions are
stronger signals for insurance recommendations than portfolios and demographics. Fur-
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thermore, our model outperforms state-of-the-art session-based baselines showing that
the traditional session-based approach (i.e., recommending the item most likely to be
the next item the user interacts with on the website) is not well suited for insurance
recommendations, and our recurrent neural network approach is important for modeling
the relationship between actions on the website and purchases outside sessions. Further
analysis reveals, that all considered action types are beneficial for the model and that
the two types of information, sessions and demographics, capture different aspects of the
problem, why a hybrid approach is best.

1.4.3 Paper 3: Recommending Target Actions Outside Sessions
in the Data-poor Insurance Domain

This paper is an extended version of Paper 2 (Chapter 3) and contributes two new ap-
proaches that account for temporal aspects in recommendations of complex items and
additional analyses that give particular insights into our models.

Because users often have multiple sessions on the insurance website prior to their
purchase, we extend the recommendation model presented in Paper 2 (Chapter 3) with
an attention mechanism that automatically learns the importance of each session in a
user’s history [9]. In that way, more weight can be given to more important sessions, for
instance, more recent sessions, when generating recommendations.

At the time of recommending, we do not know when a user will purchase (i.e., after how
many sessions). For that reason, we further propose a new loss function for session-based
recommendation models that accounts for the time of purchase. Rather than estimating
the likelihood of an item being purchased after the last session, we now estimate the time
to the next purchase of an item after every session in a user’s sequence of sessions. We
then use the Weibull distribution to define our loss function as its properties are well-
suited for time-to-event data. Furthermore, we use a censored version of the Weibull
distribution, since a user typically has not purchased all of the items by the end of the
training period [99].

Experimental results on the insurance dataset show that the attention mechanism
assigns the most importance to the last session in a user’s history while the rest of the
sessions are assigned equal importance. Moreover, using a loss function that accounts for
the time of purchase, gives more accurate recommendations earlier in the user’s sequence of
sessions, which is desirable in a real-life scenario where we want to make recommendations
already from the user’s first session.

Combining sessions with demographic features improves recommendation accuracy,
motivating and investigation of potential demographic biases in recommendations of com-
plex items. Therefore, we perform a fairness analysis of our model, by exploring the
recommendation accuracy for age, gender and income of the users, which should not be
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discriminated against. The analysis shows that our models are not unfair with respect to
these protected characteristics of the users.

1.4.4 Paper 4: Dataset and Models for Item Recommendation
Using Multi-Modal User Interactions

Complex item domains are not only diverse in the type of user feedback (e.g., purchases
and claims reporting) but also the modality of user feedback is very diverse since users
interact with the companies through different channels like website and call center. Al-
though there are various examples of user interaction modalities in recommender sys-
tems such as social tagging, image posting and location sharing [40, 80, 10], previous
research on combining different modalities has exclusively focused on multi-modal recom-
mender systems for items represented by different modalities [55, 152, 134, 91]. In this
paper, we contribute a recommendation dataset with multi-modal user interactions that
allows progress in this research area. Furthermore, we experimentally compare several
approaches for combining multi-modal user interactions in recommendation models.

The dataset that we publish is a real-world dataset from the insurance domain with
(1) 115,045 web sessions on the insurance website; (2) 25,515 transcribed conversations
between users and insurance agents; (3) 62,401 purchases of insurance products. The
data can be used to predict insurance recommendations based on users’ web sessions and
conversations with the insurance company. A particular characteristic of this dataset is
that incomplete modalities naturally occur since not all users interact through all the
available channels. This is a problem for existing multi-modal recommendation models
which only work when all modalities are available. As our second contribution, we com-
pare several methods from the broader field of machine learning that deal with missing
modalities, such as different imputation methods [26, 141, 144] and knowledge distilla-
tion [145]. These methods deal with modalities that are missing for technical reasons like
problems with the measurements. In our case, however, the modalities are missing for
natural reasons, for example, some users choose to purchase items through the website,
while others prefer to purchase over the phone. For that reason, we propose a novel recom-
mendation approach that specifically deals with modalities with innate incompleteness.
Our approach maps the different modalities into a common feature space such that we
can jointly model user interactions of multiple modalities. A missing modality will not
affect the model since they can be treated equally once they are represented in the same
space.

Experimental results show that the two modalities contain different information about
the users that supplement each other well in the recommendation task. Furthermore,
our approach of mapping the modalities into the same representation space manages
to capture important interactions between the modalities. Especially, a less frequent
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modality benefits from being modeled together with a more frequent modality.

1.4.5 Paper 5: Feature Attribution Explanations of Session-
based Recommendations

Session-based recommender systems are useful for complex item domains as well as many
other domains [96]. Advanced machine learning models constitute the majority of so-
lutions for session-based recommender systems to capture item relationships in short
sessions. However these models are not easily explainable, and explaining why an item
is recommended to a user is important to increase the trust and transparency of the
recommender system. Moreover, the recent AI Act legislation requires explanations of
recommendations that are understandable for humans.

This paper studies the generation of explanations in session-based recommendation
models. Explanations of these models belong to the kind of explanation that highlights
the contribution of the features involved in modeling, for example, words or clicks (see
Section 1.3.2). In the broader field of machine learning, additive feature attribution
methods have come to the fore for this kind of explanation as they can work post hoc
with any trained model without affecting prediction accuracy. This is opposed to intrinsic
methods that work by restricting the complexity of the model [100]. However, we posit
that existing additive feature attribution methods are not ideal for explaining session-
based recommendation models due to two special characteristics of these models: (1)
sequential dependencies, occurring when the model finds patterns in the order in which a
user interacts with items; (2) repeated interactions, occurring when a user interacts with
the same item multiple times in a session. These two phenomena are not accounted for
in the existing methods, as they assume that interactions occur independently from each
other, which is not the case with sequential dependencies. Furthermore, they fail when
the features are correlated which is the case with repeated interactions.

In this paper, we unfold the reason why additive feature attribution fails to explain
session-based recommendations, we empirically confirm the extent of the problem and
contribute a feature attribution approach that is designed to overcome the issue with
session-based recommendation models. Our method computes joint feature attributions
for sets of interactions with sequential dependencies and sets of repeated interactions.

Experiments over a variety of datasets, recommendation models and explainability
methods show that additive feature attribution does not reflect the attribution coming
from sequential dependencies and correlated user interactions in session-based recom-
mendation models. Furthermore, our approach of incorporating non-additive attribution
scores for these sets of interactions obtains notably more faithful explanations than state-
of-the-art feature attribution methods.
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1.5 Summary and Future Work
The papers included in this thesis collectively contribute in advancing methods for recom-
mender systems for complex item domains. Our investigation of these domains highlights
specific challenges in existing methods for recommender systems, namely that they rely on
a large volume of user feedback, they infer users’ preferences rather than needs and they
are designed for homogeneous user interactions with items. In particular, we contribute
(1) a work on recommendations based on sparse and heterogeneous user interactions;
(2) a work on inferring recommendations from web sessions with various types of user
actions; (3) an extension on temporal recommendations based on web sessions; (4) a
dataset and methods for learning recommendations from multi-modal user interactions;
and (5) a study of explaining session-based recommendations. Overall in this thesis, we
have reviewed the literature on sparse, temporal and heterogeneous recommender systems
as well as explanation methods of these. Then we have evaluated existing methods under
the special conditions arising from complex item domains. Finally, we have empirically
validated our findings on real-world datasets that we have made freely available to the
research community.

While this thesis has focused on the generation of recommendations, there are still
questions left unanswered regarding the use of a recommender system in complex item
domains like the insurance domain. One of the purposes of a recommender system in
such domains is to help customers through the company’s digital channels where there
is no service agent to advise them. The advantages of having more customers buying
online include the possibility to sell on a 24-hour basis, sell on bank holidays, and ease
the pressure on the service agents so they have time to focus on the difficult cases only.
While one important step is to learn what products a customer needs, another important
step is to learn what information we should provide to the customer along with the
recommendation for the customer to be able to make an informed decision. Papers 2 and 3
(Chapters 3 and 4) showed for example that 75% of the customers in the insurance domain
started to browse on the insurance website but ended up purchasing over the phone. If
we learn what information a customer needs, we can accommodate the recommendations
on the website with that information. We can thereby help the customer to finalize the
purchase on the website. An additional question is how can we personalize the way we
present recommendations and information to customers on digital channels. For example,
it may differ how familiar customers are with insurance products. While some customers
prefer a high degree of detail, other customers find it very complex and prefer simplicity.
In this case, textual descriptions of products, terms of policy, payment processes and so
forth can be formulated with a different degree of complexity depending on the customer’s
preference.

When evaluating the generated recommendations, this thesis has focused on effec-
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tiveness in terms of hit rate and other ranking evaluation metrics on historical data. A
risk of focusing on effectiveness only is that we persuade the customers to buy insurance
products they may not need. Another direction for future work is to explore measures
for evaluating the long-term effect of recommending complex items. For instance, how it
affects the cancellation rate of insurance products or the actual use of insurance products.
Optimizing the recommendation model with respect to such kind of metrics could help
avoid persuasion to buy products that the customers do not need.

With the rise of recommender systems, movies, books, news, and other items concern-
ing many aspects of life are generated by an algorithm rather than a person. This has led
to new challenges from an ethical perspective including threats to individual autonomy,
possible negative social effects, fairness, system opacity and privacy violations.

The concern of individual autonomy and social effects arises from the influence of
recommender systems on users’ decision processes. Since recommender systems present
only selected items to a user and keep the rest less visible to the user, the user tends to
interact with the recommended items only, regardless of the items’ actual relevance. This
is problematic if the recommendations are inaccurate or manipulated to promote business
goals as users are pushed toward items that do not reflect their interests and original
intentions. Even if the recommendations are relevant, the user might miss important
aspects in their decision-making by only considering the items selected by the system.
Since recommender systems can have such strong influences on users, they eventually can
impact society. This ethical challenge requires awareness, not least when recommender
systems are deployed in complex item domains as these domains can be morally loaded.
For example, consider the impact a real estate recommender system could have on the
housing market in specific areas. It could potentially lead to scarcity of certain types
of housing and population groups who cannot find affordable housing anymore. In rela-
tion to that, the issue of fairness concerns recommender systems that perform differently
across demographic divisions constituted by characteristics such as gender and nation-
ality. This can also affect society in terms of systematic discrimination. For example,
certain users may not receive recommendations for certain housing based on wrong or
biased predictions.

System opacity is the lack of transparency in the system’s decision making and it is
closely connected to recommendation decisions that are not explainable to humans. Opac-
ity is an ethical issue because if the reason behind a recommendation cannot be understood
it is difficult for users to object to recommendations they find wrong or unfair. While
this thesis has taken a step towards better explanations of temporal recommendations,
the influence of sparsity and heterogeneity on the quality and generation of explainable
recommendations is still left for future work.

Finally, privacy violations arise because of the need for a recommender system to access
users’ private data such as user behavior. This can be a threat to user privacy because
users are not always properly aware of the collection and use of this data and because
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of the risk of the data being leaked to third parties. This thesis contributes methods
for generating higher-quality recommendations from sparse data and without the use of
demographic data. It thereby paves the way for recommender systems to collect less
private data about users without compromising the quality of the recommendations.
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Chapter 2

Graph-based Recommendation for
Sparse and Heterogeneous User
Interactions

Abstract
Recommender system research has oftentimes focused on approaches that operate on
large-scale datasets containing millions of user interactions. However, many small busi-
nesses struggle to apply state-of-the-art models due to their very limited availability of
data. We propose a graph-based recommender model which utilizes heterogeneous in-
teractions between users and content of different types and is able to operate well on
small-scale datasets. A genetic algorithm is used to find optimal weights that represent
the strength of the relationship between users and content. Experiments on two real-world
datasets (which we make available to the research community) show promising results (up
to 7% improvement), in comparison with other state-of-the-art methods for low-data envi-
ronments. These improvements are statistically significant and consistent across different
data samples.

2.1 Introduction
With the advent of the internet, huge amounts of data have become available. This allows
to design and develop novel Recommender Systems (RSs) based on complex Machine
Learning (ML) and Deep Learning (DL) approaches, often characterized as data-hungry
approaches. Many recent recommender models belong to this category, so a recommender
dataset of size 100K might already be considered small [82]. Moreover, when using such
datasets, a pre-processing step is often applied to remove all users with less than a certain
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number of interactions, e.g., 5, because several models are not able to learn with only few
data points per user [137, 97, 83, 52].

In the era of big data, Small and Medium Enterprises (SMEs) struggle to find their
way, given that they might not have access to such a huge amount of data. However,
SMEs are fundamental actors in the global economy, as they represent about 90% of
businesses and more than 50% of employment worldwide [47]. In these cases, RSs able to
cope with low data scenarios are necessary [51].

In ML and DL, small data problems are notoriously hard and are usually solved with a
number of well-studied techniques [102]: (1) data augmentation, where synthetic samples
are generated from the training set [86, 146, 158]; (2) transfer learning, where models learn
from a related task and transfer the knowledge [84, 155]; (3) self supervision, where models
learns from pseudo or weak labels [154, 126]; (4) few-shot learning, i.e., (meta-)learning
from many related tasks with the aim of improving the performance on the problem of
interest [135, 133, 123]; (5) exploiting prior knowledge manually encoded, for example
external side information and Knowledge Graphs (KGs) [150, 7]. However, except for
hand-coded knowledge, the above approaches still require a considerable amount of initial
data or access to a different, but similar domain, where plenty of data is available. On the
other side, knowledge bases are application dependent, require access to expert knowledge,
and are not always available.

In this paper, we contribute a novel recommender approach able to operate in small
data scenarios: our model does not require large volumes of initial data and is not ap-
plication dependent. We use a heterogeneous graph, where vertices denote entities, e.g.,
users and different types of content, and edges represent interactions between users and
content, e.g., a user posting a message on a social media. Then we use Personalized
PageRank (PPR) to recommend items. Note that, edges represent any interaction with
users and content, not only interaction with recommendable items. We assign weights to
edges in the graph, which represent the strength of the relationship between users and
content. In previous work within RSs [85, 159, 162], such weights are usually pre-defined
depending on the application. We do not make any assumption on the values of such
weights and optimize them with a genetic algorithm [61]. To the best of our knowledge,
heuristic algorithms have never been applied to learn edge weights in the context of RSs.
Our approach is evaluated on two real-world use cases: (1) an emergent educational social
network, where there are few user interactions due to the initial stage of the platform,
but a large number of items; (2) an insurance e-commerce platform, where there are
many users but few user interactions, because users do not interact often with insurance
products, and few items by nature of the insurance domain. Experimental results are
promising, showing up to a 7% improvement over state-of-the-art baselines.
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2.2 Related Work
Recommendation with small data has been tackled heuristically, i.e., by recommending
items based on a set of specific rules [66]. Such rules have to be designed for each use
case, making these models application dependent. Hybrid RSs have also been proposed
for small data, for instance by merging Content Based (CB) and association rules [76, 77].
Note that the datasets in [76, 77] are not publicly available. Item-to-item recommendation
is addressed in [125] with a CF approach as a counterfactual problem, where a small
collection of explicit user preferences is used to improve propensity estimation. We cannot
use this in our work because: (1) our task is not item-to-item recommendations; (2) we
do not have access to explicit user preferences; (3) a large dataset (MovieLens 25M [54])
is still needed to estimate propensity (the small annotated dataset is only used to debias
the propensity estimate). In [131], a hybrid user-based model combines CF, rule-based
recommendation, and the top popular recommender with domain-specific and contextual
information in the area of a small online educational community. The dataset is not
publicly available and the approach is domain-dependent, hence not applicable to our
work. Finally, conversion rate prediction for small-scale recommendation is used in [108],
with an ensemble of deep neural networks that are trained and evaluated on a non-public
dataset of millions of users, impressions, and clicks. Our small data scenario does not
include enough data to train this ensemble model.

Solutions for cold start cases (where users or items have few or no interactions) are
hybrid combinations of CF, CB, demographic and contextual information [115, 11, 50], or
ML methods such as data augmentation [158], transfer learning [5, 155], etc. (see §2.1).
Data augmentation is used in [86], where a CF model creates synthetic user ratings and is
then combined with a CB model. We cannot use this in our task because we do not have
explicit ratings (we use any user interaction as implicit feedback). In [154], self-supervision
and data augmentation are combined on the user-item graph, and in [126], self-supervision
on the user-item graph is enhanced with features extracted from user reviews. Few shot
learning and meta-learning have also been used. In [123], a neural recommender is trained
over head items with frequent interactions, and this meta-knowledge is transferred to learn
prototypes for long-tail items. In [133], recommendations for cold users are generated
with a meta-learner that accounts for interest drift and geographical preferences. In [7],
knowledge bases (KG) are used to enrich feature representations, and in [150] a neural
attention mechanism learns the high order relation in the user-item graph and the KG.

All above approaches [158, 5, 155, 154, 126, 123, 133, 7, 150] are evaluated on pop-
ular publicly available datasets, e.g., MovieLens [54], Yelp, Amazon, CiteULike [143],
Weeplaces, etc. These datasets are much larger than those in our case (see Tables 2.1
and 2.2) and allow using self-supervision, few-shot learning, attention mechanisms, and
other neural models that we cannot use due to the extremely low amount of data. Trans-
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fer learning and domain adaptation require large amounts of training data from a similar
task or a related domain, which are not (publicly) available for our use cases.

Lastly, graph-based RSs can be robust as they enable information to propagate through
vertices, unlike matrix completion which is affected by data sparsity [148]. This motivates
recent approaches using GNN [149, 121, 126, 154, 158]. However, these are not applica-
ble to small data problems because there are not enough samples to train GNN models.
PathRank [85] uses a heterogeneous user-item graph with additional vertices that are at-
tributes of items, e.g., movie genre, director, etc. Recommendations are generated with a
random walk similar to PPR, but constraints are used to ensure that the random walks
follow certain predefined paths. These are application dependent. In [165], the user-item
graph is extended with item attributes, and meta-paths are defined to determine how two
entities in the graph (vertices of different types) are connected (this encodes entity similar-
ity). A preference diffusion score is defined for specific meta-paths, based on user implicit
feedback and co-occurrences of entities, and used to recommend items. Unlike [85, 165],
we build the heterogeneous graph from all user interactions, not only interactions with
items. We also do not include item attributes in the graph and we do not use predefined
paths or meta-paths. We assume any possible path and optimize edge weights with a
genetic algorithm.

Injected Preference Fusion (IPF) [159] extends PPR with a session-based temporal
graph (STG) that includes both long- and short-term user preferences. STG is a bipartite
graph where users, items, and sessions are vertices. Non-negative weights are associated
with edges, which control the balance between long- and short-term preferences. Multi-
Layer Context Graph (MLCG) [162] is a three-layer graph, where each layer represents
a different type of context: (1) user context, e.g., gender and age; (2) item context, e.g.,
similarity between items; and (3) decision context, e.g., location and time. Different
weights are associated with intra- and inter-layer edges, defined as functions of vertice
co-occurrence. Unlike [159, 162], (1) we represent in the graph all user interactions (not
only those with recommendable items); (2) we do not consider temporal, contextual, or
demographic features, which may not be available; (3) we do not use predefined weights,
but we optimize them with a genetic algorithm.

2.3 Approach
Usually, graph-based recommendation consists of 2 steps: (1) building the graph structure
(§2.3.1), and (2) recommending items (§2.3.2). We introduce an intermediate step between
(1) and (2), where we optimize weights associated to different edge types (§2.3.3).
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2.3.1 Heterogeneous graph representation of user interactions
Let us consider a set of users who interact with content of various types, for example
posts and comments in social networks or items and services in an online store. We
represent users and content (vertices), and their relationships (edges) with a heterogeneous
graph [136]. Vertices belong to different types, e.g., users, items, posts, etc. Edges have
different types depending on the action that they represent, e.g., the edge with the type
“like” can connect a user with a post. Moreover, edges have a direction because some
actions are not symmetric, e.g., a user can follow another user, but not be followed by
the same user. Note that all types of user interactions are included in the graph, i.e., also
interactions with objects that are not recommendable items, for example, a user creating
a post or reporting a claim.

A heterogeneous graph, or heterogeneous information network, is a type of directed
graph G = (V , E ,A,R), where vertices and edges represent different types of entities and
relationships among them. Each vertex v ∈ V and edge e ∈ E is associated to its type
through a mapping function τ : V → A and φ : E → R respectively. A is the set of vertex
types, or tags, e.g., users or various type of content. R is the set of edge types, e.g., a
user liking a post.

We denote edges as e = (i, j), where i and j ∈ V and i 6= j. Edge types are
mapped to positive weights representing the strength of the relationship between two
vertices. Formally, given an edge (i, j), we define a weight function W : R → R+ such
thatW (φ((i, j))) = wi,j, with the constraint that wi,j > 0 (§2.3.3 explains how to compute
optimal weights wi,j).

Since G is a directed graph, φ((i, j)) 6= φ((j, i)), i.e., R contains distinct types for in-
going and outgoing edges. Therefore, each user interaction is represented as two weighted
edges1, wi,j from the user to another vertex and wj,i from that vertex to the user vertex,
e.g., a user liking a post and a post being liked by a user. The weights for those outgoing
and ingoing edges might differ. Edges can also exist between two content vertices when
two entities are related (for example a comment that was created under a post). In case
of multiple interactions between 2 vertices, e.g., a user can both create a post and like it,
we define a different type of edge, i.e., a new value in R, which represents the two actions.
The weight of such edge corresponds to the sum of the weights of each individual type,
e.g., the creation and liking of a post. In practice, this happens only for a few actions
and does not affect the size of R significantly.

Figure 2.1 illustrates an example of a heterogeneous graph in an educational social
network, where user 1 follows course 1 (note that course means university course in an
educational setting), user 2 follows course 2, and user 1 and 3 follow user 2. Furthermore,
user 2 has created post 1, user 1 has created comment 1 under post 1 and user 3 has liked
comment 1.

1Except for non-symmetric actions, e.g., following a user.
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Figure 2.1: Example of the heterogeneous graph in a social network.

2.3.2 Generating recommendations using random walks
Given a user, the recommendation task consists in ranking vertices from the heterogeneous
graph. To do this, we use PPR [105]. Starting at a source vertex s, the PPR value of
a target vertex, t, is defined as the probability that an α-discounted random walk from
vertex s terminates at t. An α-discounted random walk represents a random walker that,
at each step, either terminates at the current vertex with probability α, or moves to a
random out-neighbor with probability 1 − α. Formally, let G be a graph of n vertices,
let O(i) denote the set of end vertices of the outgoing edges of vertex i, and let the edge
(i, j) be weighted by wij > 0. The steady-state distribution of an α-discounted random
walk in G, starting from vertex s, is defined as follows:

π = (1− α)P Tπ + αes where P = (pi,j)i,j∈V =
wi,j∑

k∈O(i) wi,k

· 1{j∈O(i)} (2.1)

α ∈ (0, 1), P is the transition matrix, es is a one-hot vector of length n with es(s) = 1,
and 1 is the indicator function, equal to one when j ∈ O(i). Equation (2.1) is a linear
system that can be solved using the power-iteration method [105].

Solving Equation (2.1) returns a π for each user containing the PPR values (i.e., the
ranks) of all the content vertices with respect to that user. A recommendation list is then
generated by either ordering the content vertices by their ranks and selecting the top-k,
or by selecting the most similar neighbors by their ranks, then ordering the content by
the neighbors’ interaction frequency with the content. We implement both methods (see
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§2.4.3).

2.3.3 Optimizing edge weights using genetic algorithm
Next, we explain how to compute the weight function W , which assigns the optimal
weights for outgoing and ingoing edges of each interaction type. In our data (which is
presented in §2.4.1), the number of interaction types was 11 and 9, which required to
optimize respectively 22 and 18 parameters (see Table 2.3). With such a large search
space, using grid search and similar methods would be very inefficient. Instead, we use a
heuristic algorithm to find the optimal weights. Heuristic methods can be used to solve
optimization problems that are not well suited for standard optimization algorithms, for
instance, if the objective function is discontinuous or non-differentiable. In particular,
we use a genetic algorithm [61] as our optimization algorithm, as it is a widely known
and used algorithm, which is relatively straightforward to get started with and has been
shown to serve as a strong baseline in many use cases [104]. The algorithm in [61] consists
of 5 components, which in our case are specified as follows: 1. Initial population:
A population consisting of a set of gene vectors is initialized. In our case, each gene
vector is a vector of weights with size |R|, and each gene is uniformly initialized from a
predefined range. 2. Fitness function: Each of the initialized gene vectors is evaluated.
In our case, recommendations are generated with PPR as described in §2.3.2 where the
graph is weighted by the genes. The fitness function can be any evaluation measure that
evaluates the quality of the ranked list of recommendations, e.g., normalized Discounted
Cumulative Gain (nDCG), Mean Average Precision (MAP), etc. 3. Selection: Based on
the fitness score, the best gene vectors are selected to be parents for the next population.
4. Crossover: Pairs of parents are mated with a uniform crossover type, i.e., offspring
vectors are created where each gene in the vector is selected uniformly at random from
one of the two mating parents. 5. Mutation: Each gene in an offspring vector has a
probability of being mutated, meaning that the value is modified by a small fraction.
This is to maintain diversity and prevent local optima. Finally, new offspring vectors are
added to the population, and step 2 to 5 are repeated until the best solution converges.

2.4 Experiments
Next we describe the experimental evaluation: the use cases and datasets in §2.4.1; train-
ing and evaluation in §2.4.2; baselines and hyperparameters in §2.4.3; and results in §2.4.4.
The code is publicly available2.

2https://github.com/simonebbruun/genetically_optimized_graph_RS
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Table 2.1: Dataset statistics: educational social network.

Type of
interaction

Follow Post Comment Source Join UniversityCourse User Create Like Create Like Create Rate

Training 1578
(28.12%) 842

(15%)
92

(1.64%)
339

(6.04%)
116

(2.07%)
96

(1.71%)
75

(1.34%)
113

(2.01%)
1400

(24.95%)Validation 415
(7.39%)

Test 546
(9.73%)

Table 2.2: Dataset statistics: insurance dataset.

Type of
interaction Purchase items E-commerce Personal account Claims reporting Information

Items Services Items Services Items Services Items Services

Training 4853
(13.65%) 6897

(19.4%)
1775

(4.99%)
287

(0.81%)
17050

(47.96%)
154

(0.43%)
6

(0.02%)
1129

(3.18%)
2118

(5.96%)Validation 601
(1.69%)

Test 680
(1.91%)

2.4.1 Use Cases and Datasets
To evaluate our model, we need a dataset that satisfies the following criteria: (1) inter-
action scarcity; (2) different types of actions which might not be directly associated with
items. To the best of our knowledge, most publicly available datasets include only clicks
and/or purchases or ratings, so they do not satisfy the second criterion. We use two real-
world datasets described next. The educational social network dataset was collected
from a social platform for students between March 17, 2020 to April 6, 2022. We make
this dataset public available3. The users can, among others, follow courses from different
universities, create and rate learning resources, and create, comment and like posts. The
content vertices are: courses, universities, resources, posts, and comments and the goal
is to recommend courses. The platform is maintained by a SME in the very early stage
of growth and the dataset from it contains 5088 interactions, made by 878 different users
with 1605 different content objects resulting in a data sparsity of 0.996. Dataset statistics
are reported in Table 2.1.

The second dataset is an insurance dataset [20] collected from an insurance vendor
between October 1, 2018 to September 30, 20204. The content vertices are items and ser-
vices within a specified section of the insurance website being either e-commerce, claims
reporting, information or personal account. Items are insurance products (e.g., car insur-
ance) and additional coverages of insurance products (e.g., roadside assistance). Services

3https://github.com/carmignanivittorio/ai_denmark_data
4https://github.com/simonebbruun/cross-sessions_RS
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can, among others, be specification of “employment” (required if you have an accident
insurance), and information about “the insurance process when moving home”. User in-
teractions are purchases and clicks on the insurance website. The goal is to recommend
items. The dataset contains 432249 interactions, made by 53569 different users with 55
different item and service objects resulting in a data sparsity of 0.853. Dataset statistics
are reported in Table 2.2.

2.4.2 Evaluation Procedure
We split the datasets into training and test set as follows. As test set for the educational
social network dataset, we use the last course interaction (leave-one-out) for each user
who has more than one course interaction. The remaining is used as training set. All
interactions occurring after the left-out course interaction in the test set are removed to
prevent data leakage. As test set for the insurance dataset, we use the latest 10% of
purchase events (can be one or more purchases made by the same user). The remaining
interactions (occurring before the purchases in the test set) are used as training set.

For each user in the test set, the RS generates a ranked list of content vertices to be
recommended. For the educational social network dataset, courses that the user already
follows are filtered out from the ranked list. For the insurance dataset, it is only possible
for a user to buy an additional coverage if the user has the corresponding base insurance
product, therefore we filter out additional coverages if this is not the case, as per [2].

As evaluation measures, we use Hit Rate (HR) and Mean Reciprocal Rank (MRR).
Since in most cases, we only have one true content object for each user in the test set
(leave-one-out), MRR corresponds to MAP and is somehow proportional to nDCG (they
differ in the discount factor). For the educational social network, we use standard cutoffs,
i.e., 5 and 10. For the insurance dataset, we use a cutoff of 3 because the total number of
items is 16, therefore with higher cut-offs all measures will reach high values, which will
not inform on the actual quality of the RSs.

2.4.3 Baselines, Implementation, and Hyperparameters
The focus of this work is to improve the quality of recommendations on small data prob-
lems, such as the educational social network dataset. Therefore, we consider both simple
collaborative filtering baselines that are robust on small datasets as well as state-of-the-
art neural baselines: Most Popular recommends the content with most interactions across
users; UB-KNN is a user-based nearest neighbor model that computes similarities between
users, then ranks the content by the interaction frequency of the top-k neighbors. Simi-
larity is defined as the cosine similarity between the binarized vectors of user interactions;
SVD is a latent factor model that factorizes the matrix of user interactions by singular
value decomposition [35]; NeuMF factorizes the matrix of user interactions and replaces
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Table 2.3: Optimized interaction weights averaged over five runs of the genetic algorithm.

(a) Educational social network dataset.

Trained for Course follows
Direction of edge Out In
User follows user 0.95 0.86
User follows course 0.73 1.88
User creates post 1.11 1.09

User creates resource 1.27 0.55
User creates comment 0.91 1.03

User likes post 1.27 0.61
User likes comment 0.42 0.99
User rates resource 0.77 0.84
Comment under post 0.91 1.17
User joins university 0.28 1.06

(b) Insurance dataset.

Trained for Purchase items
Direction of edge Out In
Purchase items 0.24 1.05

E-commerce items 0.64 1.49
E-commerce services 1.21 1.18

Personal account items 1.06 0.36
Personal account services 0.92 0.66
Claims reporting items 0.93 0.58
Claims reporting services 0.90 1.32

Information items 1.60 0.79
Information services 0.64 0.51

the user-item inner product with a neural architecture [57]; NGCF represents user in-
teractions in a bipartite graph and uses a graph neural network to learn user and item
embeddings [151]; Uniform Graph is a graph-based model that ranks the vertices using
PPR [105] with all edge weights equal to 1; User Study Graph is the same as uniform, but
the weights are based on a recent user study conducted on the same educational social
network [15]. Users assigned 2 scores to each action type: the effort required to perform
the action, and the value that the performed action brings to the user. We normalized the
scores and used effort scores for outgoing edges and value scores for ingoing edges. The
exact values are in our source code. A similar user study is not available for the insurance
domain.

All implementation is in Python 3.9.
Hyperparameters are tuned on a validation set, created from the training set in the

same way as the test set (see §2.4.2). For the educational social network, optimal hyperpa-
rameters are the following: damping factor α = 0.3; PPR best predictions are obtained by
ranking vertices; 30 latent factors for SVD; and number of neighbors k = 60 for UB-KNN.
Optimal hyperparametrs in the insurance dataset are: damping factor α = 0.4; PPR best
predictions are obtained by ranking user vertices and select the closest 90 users; 10 latent
factors for SVD; and number of neighbors k = 80 for UB-KNN.

The genetic algorithm is implemented with PyGAD 2.16.3 with MRR as fitness function
and the following parameters: initial population: 10; gene range: [0.01, 2], parents mating:
4; genes to mutate: 10%; mutation range: [−0.3, 0.3]. We optimize the edge weights using
the training set to build the graph and the validation set to evaluate the fitness function.
The optimal weights are reported in Table 2.3. In order to provide stability of the optimal
weights, we report the average weights obtained by five runs of the genetic algorithm.
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Table 2.4: Performance results (†mean/std). All results marked with * are significantly different
with a confidence level of 0.05 from the genetically optimized graph (ANOVA [81] is used for
MRR@k and McNemar’s test [37] is used for HR@k). The best results are in bold.

Dataset Educational social network Insurance
Measure MRR@5 MRR@10 HR@5 HR@10 MRR@3 HR@3

Most Popular 0.0797* 0.0901* 0.1978* 0.2729* 0.4982* 0.6791*
SVD 0.3639* 0.3767* 0.5275* 0.6209* 0.5787* 0.7399*

NeuMF 0.3956* 0.4110* 0.5604* 0.6740* 0.5937* 0.7448*
UB-KNN 0.4304* 0.4456* 0.6172* 0.7271* 0.6238* 0.7569*
NGCF 0.4471 0.4592 0.6245* 0.7143* 0.6517 0.8043*

Uniform Graph 0.4600 0.4735 0.6300* 0.7289* 0.6263* 0.7730*
User Study Graph 0.4162* 0.4330* 0.5952* 0.7179* - -

Genetically Undirected Graph 0.4809 0.4957 0.6410 0.7509 0.6339 0.7760*
Genetically

Directed Graph†
0.4907/
0.0039

0.5045/
0.0037

0.6505/
0.0052

0.7520/
0.0055

0.6435/
0.0029

0.7875/
0.0044

2.4.4 Results
Table 2.4 reports experimental results. On both datasets, UB-KNN outperforms SVD
and NeuMF, and the best-performing baseline is the uniform graph-based model on the
educational social network dataset and the NGCF model on the insurance dataset. This
corroborates previous findings, showing that graph-based RSs are more robust than ma-
trix factorization when data is sparse [148] and neural models need a considerable amount
of data to perform well. Graph-based methods account for indirect connectivity among
content vertices and users, thus outperforming also UB-KNN, which defines similar users
on subsets of commonly interacted items. Our genetically optimized graph-based model
outperforms all baseline models on the educational social network dataset and obtains
competing results with the NGCF model on the insurance dataset, showing that the
genetic algorithm can successfully find the best weights, which results in improved ef-
fectiveness. In order to account for randomness of the genetic algorithm, we run the
optimization of weights five times and report the mean and standard deviation of the
results in Table 2.4. The standard deviation is lowest on the insurance dataset, but even
on the very small educational dataset, the standard deviation is relatively low, so for
different initializations, the algorithm tends to converge toward similar results. Moreover,
we tried a version of our model where we let the graph be an undirected graph, meaning
that for each edge type the weight for the ingoing and the outgoing edge is the same.
The results show that the directed graph outperforms its undirected version. For the
educational social network, weights based on the user study result in worse performance,
even lower than UB-KNN. Overall, scores are higher on the insurance data. This might
happen because: (1) data from the educational social network is sparser than insurance
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(a) Educational social network dataset. (b) Insurance dataset.

Figure 2.2: MRR@k for varying choices of the cutoff threshold k.

data (see §2.4.1); (2) the insurance data has a considerably larger training set; (3) there
are fewer items to recommend in the insurance domain (16 vs. 388).

Figure 2.2 shows MRR at varying cutoffs k. We have similar results for HR, which are
omitted due to space limitations. It appears that the results are consistent for varying
thresholds. Only on the insurance dataset, we see that the UB-KNN is slightly better
than the uniform graph-based model for smaller thresholds.

Inspecting the optimal weights in Table 2.3, we see that for the educational social net-
work all the interaction types associated with courses (following course, creating resource,
creating comment, creating and liking posts) are highly weighted. This is reasonable since
courses are the recommended items. Moreover, a higher weight is assigned when a user
follows a user compared to when a user is followed by a user. This reasonably suggests that
users are interested in courses attended by the users they follow, rather than the courses
of their followers. For the insurance dataset, we observe that the greatest weights are
given when a user clicks on items in the information and personal account section, when
items are purchased by a user, and when items and services are clicked in the e-commerce
section, which are all closely related to the process of purchasing items.

We further evaluate the performance of our models, when trained on smaller samples
of the insurance dataset. We randomly sample 10%, 25% and 50% from the training
data, which is then split into training and validation set as described in §2.4.3. In order
to account for randomness of the genetic algorithm, we sample 5 times for each sample
size and report the mean and standard deviation of the results. We evaluate the models
on the original test set for comparable results. The results are presented in Table 2.5.
While the genetically optimized graph-based model only partially outperforms the NGCF
model on large sample sizes (50% and 100%) it outperforms all the baselines on small
sample sizes (10% and 25%). This shows that our genetically optimized model is more
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Table 2.5: Results on smaller samples of the insurance dataset. The notation is as in Table 2.4.

Percentage of
insurance dataset 10% 25% 50% 100%

Measure MRR@3 HR@3 MRR@3 HR@3 MRR@3 HR@3 MRR@3 HR@3
Most popular 0.5003* 0.6856* 0.4981* 0.6789* 0.5003* 0.6856* 0.4982* 0.6791*

SVD 0.5785* 0.7336* 0.5794* 0.7395* 0.5758* 0.7379* 0.5787* 0.7399*
NeuMF 0.5792* 0.7326* 0.5759* 0.7291* 0.5849* 0.7466* 0.5937 0.7448
UB-KNN 0.6183 0.7661* 0.6180* 0.7494* 0.6243 0.7524* 0.6238* 0.7569*
NGCF 0.5937* 0.7199* 0.6030* 0.7405* 0.6397 0.7894 0.6517 0.8043*

Uniform Graph 0.6196 0.7687* 0.6206* 0.7687* 0.6253 0.7746 0.6263* 0.7730*
Genetically

Undirected Graph 0.6238 0.7672* 0.6224 0.7601* 0.6286 0.7741 0.6339 0.7760

Genetically
Directed Graph†

0.6267/
0.0052

0.7784/
0.0084

0.6353/
0.0039

0.7845/
0.0073

0.6397/
0.0045

0.7903/
0.0071

0.6435/
0.0029

0.7875/
0.0044

Figure 2.3: Plot of how the outgoing edge weights evolve for different sizes of the insurance
dataset.

robust for small data problems than a neural graph-based model. In addition, it is still
able to compete with the neural graph-based model when larger datasets are available.

In Figure 2.3 we inspect how the outgoing edge weights evolve when optimized on dif-
ferent sizes of the insurance dataset. We have similar results for the ingoing edge weights,
which are omitted due to space limitation. It appears that the optimized weights only
change a little when more data is added to the training set, and the relative importance
of the interaction types remains stable across the different sizes of the dataset. Only the
interaction type “information services“ has large variations across the different dataset
sizes, and in general, the biggest development of the weights happens when the dataset
is increased from 10% to 25%. It shows that once the genetic algorithm has found the
optimal weights in offline mode, the weights can be held fixed while the RS is deployed
online, and the weights only need to be retrained (offline) once in a while, reducing the
need for a fast optimization algorithm.
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2.5 Conclusions and Future Work
We have introduced a novel recommender approach able to cope with very low data sce-
narios. This is a highly relevant problem for SMEs that might not have access to large
amounts of data. We use a heterogeneous graph with users, content and their interactions
to generate recommendations. We assign different weights to edges depending on the in-
teraction type and use a genetic algorithm to find the optimal weights. Experimental
results on two different use cases show that our model outperforms state-of-the-art base-
lines for two real-world small data scenarios. We make our code and datasets publicly
available.

As future work we will consider possible extensions of the graph structure, for example,
we can include contextual and demographic information as additional layers, similarly to
what is done in [162]. Moreover, we can account for the temporal dimension, by encoding
the recency of the actions in the edge weight, as done in [159]. We will further experiment
with the more recent particle swarm [79] and ant colony optimization algorithms [41]
instead of the genetic algorithm to find the optimal weights. Finally, we will investigate
how to incorporate the edge weights into an explainability model, so that we can provide
explanations to end users in principled ways as done in [8].
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Chapter 3

Learning Recommendations from
User Actions in the Item-poor
Insurance Domain

Abstract
While personalised recommendations are successful in domains like retail, where large volumes of
user feedback on items are available, the generation of automatic recommendations in data-sparse
domains, like insurance purchasing, is an open problem. The insurance domain is notoriously
data-sparse because the number of products is typically low (compared to retail) and they are
usually purchased to last for a long time. Also, many users still prefer the telephone over the
web for purchasing products, reducing the amount of web-logged user interactions. To address
this, we present a recurrent neural network recommendation model that uses past user sessions
as signals for learning recommendations. Learning from past user sessions allows dealing with
the data scarcity of the insurance domain. Specifically, our model learns from several types
of user actions that are not always associated with items, and unlike all prior session-based
recommendation models, it models relationships between input sessions and a target action
(purchasing insurance) that does not take place within the input sessions. Evaluation on a
real-world dataset from the insurance domain (ca. 44K users, 16 items, 54K purchases, and
117K sessions) against several state-of-the-art baselines shows that our model outperforms the
baselines notably. Ablation analysis shows that this is mainly due to the learning of dependencies
across sessions in our model. We contribute the first ever session-based model for insurance
recommendation, and make available our dataset to the research community.
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3.1 Introduction
Within the domain dealing with insurances for individuals such as home insurance, car insurance
and accident insurance, personalised recommendations can help customers continuously adjust
their insurances to suit their needs.

Recommender systems (RSs) most often learn from user feedback on items such as books
purchased, movies watched, and/or ratings given to those items. These systems need a consid-
erable amount of previous feedback on items to give high quality recommendations. This is a
problem in the insurance domain, where typically there are few different items to purchase, and
insurance products typically are bought to be used for a long time, so the purchase frequency is
low.

Another problem in insurance recommendation is that several state-of-the-art RSs, e.g.,
collaborative filtering and content-based, assume that user preferences are static. However, user
needs in insurance evolve over time as they are closely connected to life events like marriage,
birth of child, buying a home, changing jobs, retirement, etc.

To deal with the above idiosyncrasies of the insurance domain, we focus on a session-based
approach to model insurance recommendations. Session-based RSs do not use information about
long-term user preferences. Instead recommendations are based on short-term user-item in-
teractions within the ongoing session. In that way, session-based RSs capture dynamic user
preferences using the session as temporal context for the recommendation. However, current
session-based RSs cannot be applied to our insurance domain because many users buy insur-
ance products over the phone after having sessions on the insurance website. Thus, when using
past user sessions on the insurance website as signals for learning recommendations, the target
action (i.e., the user’s purchase of items) does not happen within the input sessions. This is an
important difference from the usual session-based task, where the target action is the next item
the user interacts with in the ongoing session.

Session-based RSs usually learn from user interactions with items e.g., view of videos or
books added to cart. However, on an insurance website there are several other user actions
that can be useful signals for learning recommendations. For instance, if a user has recently
tried to report a claim that the user’s current insurance products did not cover or if a user has
recently updated his/her employment at the personal account. We thus explore the usefulness of
such signals by learning recommendations from several types of user actions that are not always
directly associated with items.

We present a recurrent neural network (RNN) recommendation model that learns from
several types of user actions, and unlike all prior session-based recommendation models, it
models relationships between input sessions and a target action that does not take place within
the input sessions. We call this approach a cross-sessions recommendation model. Evaluation
on a real-world dataset from the insurance domain and against several state-of-the-art baselines
shows that our model outperforms the baselines notably. We contribute the first ever cross-
sessions model for insurance recommendation and make our dataset publicly available.
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3.2 Related Work
We present related work focusing on RSs within the insurance domain (Section 3.2.1) and session-
based RSs (Section 3.2.2).

3.2.1 Insurance Domain
Previous research on RSs for the insurance domain is limited. In principle, a knowledge-based RS
could be used for this task, which would mine highly personalised user information through user
interactions [65], however to our knowledge no prior work reports this. Most of it supplements
the small volume of user feedback with user demographics, such as age, marital status, income
level, and many more. We overview these next.

Xu et al. [161] cluster users into different groups based on their demographics. Then they
make association rule analysis within each group on the users’ set of purchased items. Recom-
mendations are extracted directly from the association rules. Sanghamitra Mitra [122] estimate
similarities between users based on demographic attributes using a similarity measure (e.g., co-
sine similarity). Then they make recommendations to a user based on the feedback on items by
the top-N similar users. Qazi et al. [111, 112] train a Bayesian network with user demographics
and previously purchased items as input features, aiming to predict the last purchased item
of a user. They further train a feed forward neural network to provide recommendations to
potential users where only external marketing data is available. All these methods show more
effective recommendations compared to standard RS approaches, such as matrix factorization
and association rule mining solely applied to the feedback data. In addition, these methods solve
the problem of cold start users occurring when recommending items to users with no previous
feedback on items. Unlike these methods above, which assume that the preference dynamics are
homogeneous within demographic segments, our model allows the changes in user preferences
to be individual by using sessions generated by the individual user.

Bi et al. [14] propose a cross-domain RS for the insurance domain. They use knowledge
from an e-commerce source domain with daily necessities (clothes, skincare products, fruits,
electronics products, etc.) to learn better recommendations in the insurance target domain
when data is sparse. They employ a Gated Recurrent Unit (GRU) [34] to model sequential
dependencies in the source domain. Our model differs from this model by using user sessions
on the website in the target domain, thereby not having the need of overlapping users across
multiple domains. Moreover, the model in [14] is not session-based, but it is based on users’
long-term preferences in both source and target domain.

3.2.2 Session-based Recommender Systems
Session-based RSs model users’ short-term preferences within the ongoing session [43], commonly
using item-to-item recommendations [36, 90]: similarities between items are computed based on
the session data, i.e., items that are often interacted with together in sessions achieve a high
similarity. The item similarities are then used during the session to recommend the most similar
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items to the item that the user has currently interacted with. This approach only considers the
last interaction of the user, ignoring even the information of the past interactions in the ongoing
session. Moreover, this approach requires the target action to happen within sessions, thus this
approach cannot be applied to our task.

An extension of the item-to-item approach is Session-based K-Nearest Neighbors (SKNN) [67,
62], which considers all user interactions in the session. In this approach similarities between
entire sessions are computed using a similarity measure (e.g., cosine similarity). The recommen-
dations are then based on selecting items that appeared in the most similar past session. This
approach does not take into account the order of the input sequence.

A sequential extension to the SKNN method is Vector Multiplication SKNN [96], which puts
more weight on the most recent user interactions of a session when computing the similarities.
Another extension is Sequence and Time Aware Neighborhood [45], which uses the position of
an item in the current session, the recency of a past session with respect to the current session,
and the position of a recommendable item in a neighbouring session. The latter model depends
on the target actions occurring within sessions, and so does not fit our task where the target
actions occur outside the session.

Neural session-based approaches have also been proposed. One of the most cited is GRU4REC [59,
60]. This approach models user sessions with the help of GRU in order to predict the probabil-
ity of the subsequent interaction given the sequence of previous interactions. Neural Attentive
Session-based Recommendation [88] extends GRU4REC by using an attention mechanism to
capture the user’s main purpose in the current session. Moreover, Graph Neural Networks have
been used [156]. This approach models session sequences as graph structured data, thereby
being capable of capturing transitions of items and generating item embedding vectors corre-
spondingly.

The above methods use only the user’s single ongoing session. Attempts to use past user
sessions when predicting the next interaction for the current session have also been proposed [114,
120, 164, 63, 110]. However, an in-depth empirical investigation of these methods [83] shows
that they did not improve over heuristic extensions of existing session-based algorithms that
e.g., extend the current session with previous sessions or boost the scores of items previously
interacted with. Unlike all above methods, we use different types of actions, not only with items
(see Section 3.4.1).

3.3 Approach
We present the problem formulation (Section 3.3.1) and our model for addressing it (Sec-
tion 3.3.2).

3.3.1 Problem Formalization
The goal of our cross-sessions RS is to recommend the next items that a user will buy, given the
user’s past sessions. As opposed to standard session-based RSs, which predict the next step in
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Figure 3.1: Example of session on insurance website. A session is a list of 3-tuple actions in the
order of time.

the input sequence given the sequence so far, in our task: (1) the target action, i.e., purchase,
occurs outside the session; (2) we use user actions across multiple sessions; (3) we use all user
actions, not only actions with items. We extend the notation in [43] to accommodate these
differences.

A session, si, is a sequence of user actions, {ai1, ai2, ai3, ..., ain}, on the website. An action,
aij , is represented by a 3-tuple, i.e., aij = (cij , bij , dij), where:

• cij : action section, refers to the section of the website in which the user interacts;

• bij : action object, refers to the object on the website that a user chooses to interact with;
and

• dij : action type, refers to the way that a user interacts with objects.

Fig. 3.1 illustrates a session where the user starts (action type di1) by interacting with employ-
ment (object bi1) in the personal account section of the website (section ci1). Then, the user
changes (di2) the employment (bi2) in the same personal account section (ci1). Section 3.4.1 and
Tab. 3.2 present different sections, objects, and action types.

The past sessions of a user is a list of sessions, si, chronologically ordered. We do not include
all historical sessions of a user as we assume that only recent sessions are relevant for the current
task. We use an inactivity threshold, t, to define recent sessions, and reason that two sessions
belong to the same task if there is no longer than t (time) between them. We describe how we
estimate the threshold t from real data in Section 3.4.1. The task is to learn a function, f , for
predicting the probability that a user will buy each item k after the last session sm based on
the input sequence of user’s past sessions:

f(s1, s2, s3, ..., sm) = (p̂1, p̂2, p̂3, ..., p̂K), (3.1)

where each element in {s1, s2, s3, ..., sm} is a sequence of actions, p̂k is the estimated probability
that item k will be bought by the user, and K is the total number of items.

3.3.2 Proposed Approach
Our model is inspired by GRU4REC [59], an RNN with a single GRU [34] layer that models
user interactions with items in a single session. The RNN has as input the ordered sequence of
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Figure 3.2: Architecture
of cross-sessions encode

Figure 3.3: Architecture of cross-sessions concat

Figure 3.4: Architecture of cross-
sessions auto

items interacted with in the session, and outputs for every time step the likelihood of each item
being the item that the user interacts with next. Our cross-sessions RS extends GRU4REC by
(1) taking multiple sessions of each user as input, as in Eq. (3.1); (2) using various types of
input actions that are not always associated with items; (3) predicting what items the user will
buy after the last time step as opposed to predicting the next interaction for every time step in
the sequence. Next we explain different ways of passing input sessions through the RNN.

In the first way, which we call Cross-sessions Encode (see Fig. 3.2), we encode a session by
aggregating over the actions in the session with a max pooling operation:

si = maxelement(ai1, ai2, ai3, ..., ain), (3.2)

where aij is the binarized vector marking the presence of an action section, action object and
action type performed by a user at time step j in session i, and maxelement(·) is a function that
takes the element-wise maximum of vectors. Then, for every time step i in the sequence of a
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user’s sessions, an RNN with a single GRU layer computes the hidden state

hi = (1− zi) · hi−1 + zi · ĥi
zi = σ(Wzsi + Uzhi−1),

ĥi = tanh(Wsi + U(ri · hi−1)),

ri = σ(Wrsi + Urhi−1),

for i = 1, ..,m,

(update gate)

(candidate gate)

(reset gate)

(3.3)

where Wz, Uz,W,U,Wr and Ur are weight matrices and σ(·) is the sigmoid function. The reset
gate plays the role of forgetting information about the past that is not important given the
current session. The update gate plays the role of judging whether the current session contains
relevant information that should be stored. The hidden state, hi, is a linear interpolation between
the previous hidden state and the candidate gate.

Our second way of passing input sessions through the RNN is called Cross-sessions Concat
(see Fig. 3.3). Here, we concatenate all sessions of a user into a single session s = {a11, .., a1n, a21, ..,
a2n, .., am1, .., amn}. Now the hidden state in Eq. (3.3) is computed for every time step (ij) in s.
Thereby this approach takes into account the overall order of actions across sessions, whereas
the cross-sessions encode only accounts for the order of sessions.

In both cases, the RNN returns an output vector, o, of length K after the last time step.
Because a user can buy multiple items at the same time, we consider the learning task as multi-
label classification and use the sigmoid function, σ(·), on each element of o as output activation
function to compute the likelihood of purchase

p̂k = σ(ok), for k = 1, . . . ,K. (3.4)

During training the loss function is computed by comparing p̂ with the binarized vector of the
items purchased, p. Due to the learning task being multi-label classification, we define the loss
function as the sum of the binary cross entropy loss over all items. The loss function is thereby
different from the ranking loss used in GRU4REC and is given by

L = −
K∑
k=1

(
pk · log(p̂k) + (1− pk) · log(1− p̂k)

)
. (3.5)

We also use another variation of session encoding, Cross-sessions Auto (see Fig. 3.4), which
automatically learns encodings of sessions with an autoencoder, instead of Eq. (3.2). We train
an RNN-based autoencoder with a single GRU layer that takes as input the ordered sequence
of actions in a session and is evaluated on recreating the input using categorical cross-entropy
loss on each of the 3 features: action section, action object and action type. Once trained, the
encoder is used to encode a session into a single vector, si, that can be used as input for Eq. (3.3).
The architecture of the autoencoder in Fig. 3.4 is then combined with the architecture for the
recommendation part in Fig. 3.2.

Finally, we use a hybrid of a cross-sessions and a demographic model where the hidden
state from a cross-sessions RNN is merged with the hidden state (a dense layer) from a feed
forward neural network with demographic input features of the user. The concatenation of the
two is passed through a dense layer. The architecture of Cross-sessions Encode combined with
demographics is illustrated in Fig. 3.5. The loss functions is cross entropy as in Eq. (3.5).
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Figure 3.5: Architecture of a hybrid model between a cross-sessions and a demographic model.
x denotes an input vector representing demographic features of the user.

Table 3.1: Main properties of the dataset
(*mean/std).

Users 44,434
Items 16
Purchase events 53,757
Sessions 117,163
Actions 1,256,156

Purchase events per user* 1.21/0.51
Sessions before purchase event* 2.18/1.68
Actions per session* 10.72/7.85

Table 3.2: Amount of different actions in
the dataset.

Action section

E-commerce 256,319 (20.41%)
Claims reporting 11,188 (0.89%)
Information 198,147 (15.77%)
Personal account 790,502 (62.93%)

Action object
Items 249,378 (19.85%)
Services 655,574 (52.19%)
No object 351,204 (27.96%)

Action type

Click 811,747 (64.62%)
Start 388,215 (30.90%)
Act 47,713 (3.80%)
Complete 8,481 (0.68%)

3.4 Dataset
To the best of our knowledge, there exists no publicly available dataset that satisfies the criteria
of our setup, namely: (1) item scarcity, (2) target action happening outside the session, and (3)
actions of several types that are not always associated with items. We use a real-life dataset
that we have obtained from a commercial insurance vendor and that we make freely available1

to the research community. Next, we describe this dataset.

3.4.1 Dataset Description
Tab. 3.1 shows general statistics of the dataset that was collected from the website of an insurance
vendor between October 1, 2018 to September 30, 2020. During this time, there was no RS
running on the website that could influence the behaviour of users. We collected purchase

1https://github.com/simonebbruun/cross-sessions_RS
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events of insurance products and additional coverages made by existing customers. Customers
were identified through log-in and cookies. Both purchases made on the website and over the
phone are included. 75% of the users navigate through the company website, but still prefer to
make the purchase over the phone. This resulted in 53K purchases corresponding to 44K users.
We observe no major seasonal effects in the purchase frequency.

For each user in the dataset, we collected all sessions that occurred before the user’s purchase
event. A session consists of user actions on the website. The actions come with timestamps,
action section (e-commerce, claims reporting, information, and personal account), action object
(items and services), and action type (click, start, act, and complete). Tab. 3.2 shows all the
actions and their frequency in the dataset. Most actions occur on the personal account page
(63%) and the e-commerce section (20%) because the sessions are generated by existing cus-
tomers in the period before they make a new purchase. Users interact mainly with services
(52%). Example of services are specification of “employment” (required if you have an accident
insurance), specification of “annual mileage” (required if you have a car insurance), and infor-
mation about “the insurance process when moving home”. Users can also click on the different
sections without interacting with any objects, we denote this with “no object”. Not surprisingly,
most of the actions are clicks (65%) or start (31%). Examples of type “act” are “change”, e.g.,
employment or “fill out” claims report. The action type “complete” can occur when a user
completes a change, of e.g., employment, or completes a filled out claims report.

The dataset includes also demographic attributes and portfolios of each user. Demographic
attributes include age, employment, income, residence, marital status, children, etc. These
features are aggregated at the address level, i.e., they represent the average across users living
in the same area. Portfolios represent the user history within the insurance company, e.g.,
items that the user has already bought. Note that our cross-sessions models do not exploit
demographic attributes or portfolios, but these are needed by state-of-the-art RSs we consider
as baselines (see Section 3.5.1).

This dataset is different from publicly available datasets for session-based recommender
tasks, e.g., Last.fm, RecSys Challenge (RSC) datasets, etc. in the following ways. There is
scarcity both in terms of items and user interactions. The total number of items is 16, much
smaller than usual item sets, for example RSC15 contains 29K items and Last.fm 91K items. In
terms of user interactions, there are only 1.2 purchase and 2.2 sessions per users over a period
of time spanning 2 years. Motivated by the scarcity of user interactions, we decided to log all
types of user actions. Therefore, we do not include only clicks and purchases/views, as in most
of the available datasets, but we also record the whole user experience through the company
website.

3.4.2 Estimation of Session Threshold
A common challenge when mining log data is how to determine the session length [71, 72]: we
can record the start timestamp of a user session but we cannot always record the end timestamp,
for example when a user leaves the browser window open without logging out. We face a similar
problem but with respect to the length of the list of sessions instead of the length of a single
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Figure 3.6: Histogram of logarithmically scaled inter-session times and fitted Gaussian mixture
model.

session, i.e., we need to determine the amount of time such that two sessions can be grouped
under the same task. Specifically, we need to estimate the threshold t, such that given two
subsequent sessions s1 and s2 from the same user, if start_time(s2) − start_time(s1) ≤ t,
then s1 and s2 belong to the same task. This threshold will determine the maximum number of
sessions to be considered by our RSs.

A rule of thumb for Web sessions is to set the session end after 30 minutes of inactivity, but
a similar estimate does not exist with respect to inter sessions inactivity time. Halfaker et al.
[49] estimate when a session ends directly from log data, i.e., as the amount of inactivity time
that allows to deem a session as concluded. We follow a similar approach applied on the whole
list of sessions instead of actions within a single session to estimate when a task ends.

First, we compute inter-session times, that is the times between consecutive sessions by
the same user. Then we plot the logarithmically scaled histogram of inter sessions times (see
Fig. 3.6). As reported in [49], we observe a bimodal distribution with a valley. Therefore we fit
a two components Gaussian mixture model using Expectation Maximization and assume that
the inter-session times are a mixture of times between: (1) sessions within the same task (blue
line) and, (2) sessions belonging to different tasks (orange line). We set the inactivity threshold
t equal to the point where an inter-session time is equally likely to belong to one of the two
distributions. As illustrated in Fig. 3.6, the resulting threshold is 10 days. Thus two sessions
belong to the same task if there is no longer than 10 days between them.

3.4.3 Dataset Pre-processing
We pre-process the data as described next. All statistics in Tab. 3.1 and 3.2 refer to the pre-
processed dataset.

From the purchase events we remove items that have frequency < 0.1% and from the actions
we remove sections, objects and types that have frequency < 0.1%, since low frequency items
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and actions are not optimal for modeling. Consecutive repeated actions of the same kind are
discarded, because they very likely represent noise, e.g., a user clicking twice due to latency from
the website. All sessions with < 3 actions are removed, as they are poorly informative sessions.
All sessions are truncated in the end to have maximum 30 actions (the 95th percentile), to avoid
very long training times. All users are kept, even those that have only a single recent session.
Lastly, the 10 days threshold estimated in Section 3.4.2 motivates two additional pre-processing
steps. First, sessions that exceed the 10 days threshold are discarded. Second, within the 10
days rule, the list of recent sessions for each user is truncated to maximum 7 sessions (the 95th
percentile).

3.5 Experiments
We present the experimental set-up (Section 3.5.1) and the results (Section 3.5.2). Our source
code is publicly available2.

3.5.1 Experimental Set-up
First we describe the evaluation procedure, then the baselines, implementation details and hy-
perparameter tuning.

Evaluation Procedure As test set, we use the latest 10% of purchase events with associated
past sessions. The remaining 90% is used for training. Since some users have had multiple
purchase events, we remove purchase events from the training data, if their associated past
sessions also appear in the test set.

The RS generates a prediction for what items the user will buy as a ranked list, i.e., items
are ranked by their predicted probability: the closer to the top of the ranking, the higher the
estimated probability of the item. There are two types of items: new insurance products and
additional coverage. Since it is only possible for a user to buy an additional coverage if the user
has the corresponding base insurance product, we use a post filter to set the probability to 0 if
that is not the case, as per [2]. The resulting list of ranked items is evaluated with Hit Rate
(HR), Mean Reciprocal Rank (MRR), Precision, Recall, and Mean Average Precision (MAP).
We use a cutoff threshold of 3 because: (1) the total number of items is 16, therefore high
cut-offs, e.g., ≥ 10, will increase recall and all measures will reach high values, which will not
inform on the actual quality of the RSs; (2) on the user interface the user will be recommended
up to 3 items. Additionally, we report HR and MRR scores for all cut-offs value from 1 to 5.

Experimental results are supported by statistical testing. For HR we use McNemar’s test
[37] and for all other measure we use one-way ANOVA [81], both with a confidence level of 0.05,
and post hoc tests to control the family-wise error rate due to multiple comparisons.

2https://github.com/simonebbruun/cross-sessions_RS
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Baselines We compare our models against the following state-of-the-art baselines:

• Random recommends random items to the user.

• Popular recommends the items with the largest number of purchases across users.

• SVD is a method that factorizes the user-item matrix by singular value decomposi-
tion [35]. The portfolio data forms the user-item matrix, where a user-item entry is 1
if the user has bought the item and 0 otherwise. Since in the insurance domain a user can
buy the same item again (e.g., a second car insurance) and matrix factorization cannot
be used for repeated recommendations, we add repeated items as new items (columns) to
the matrix.

• Demographic is a classification model, as per [111, 112], that uses user demographics
and their portfolios as input features. The portfolios are represented with a feature for
each item counting how many of the items the user has already bought. Demographic
features and portfolio features are concatenated. We use a feed forward neural network
to make a fair comparison with the neural session-based approaches.

• GRU4REC is a neural session-based model [59, 60]. Its input is the last session of a
user, consisting of the 3-tuple user actions described in Section 3.3.2. For every time step,
the model outputs the likelihood for each action to be the one the user interacts with
next. Recommendations are based on the output after the final time step.

• GRU4REC Concat is the same as GRU4REC, but all recent user sessions are concate-
nated into a single session.

• SKNN_E is a session-based nearest neighbour model as the one presented in [67] with
the extension suggested in [83]. The nearest neighbours are determined based on the set
of actions in all recent sessions of each user. A user’s set of actions is a vector computed
with a max pooling operation over all actions generated by the user (in recent sessions).
We then adapt this baseline to our task, so the recommendations are based on the items
purchased by the neighbours of the target user rather than the items interacted with in
the ongoing session.

• SKNN_EB is the same as SKNN_E, but with a further extension suggested in [83]:
scores of items previously interacted with are boosted with a factor. The factor is tuned
as a hyperparameter.

Note that SVD and the demographic model make use of user portfolio, i.e., users past purchases,
while this is not the case for all cross-sessions models, GRU4REC and SKNN. GRU4REC is
included as it has shown best performance under identical conditions on various datasets among
all the neural models compared in [97] and in [83].

We tried the sequential extension to SKNN, Vector Multiplication SKNN, which is presented
in [96], but did not obtain better performance than the original one. Sequence and Time Aware
Neighborhood [45] is not included as baseline since it was not possible to adapt it to the task
under consideration (for the reasons discussed in Section 3.2.2).
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Table 3.3: Hyperparameters (*autoencoder/RNN)

Model Batch size Units Dropout

Demographic 32 32 0.3
GRU4REC 32 256 0.2
GRU4REC Concat 32 256 0.2
Cross-sessions Concat 128 64 0.3
Cross-sessions Encode 32 64 0.3
Cross-sessions Auto* 128/32 512/64 -/0.4

Implementation & Hyperparameters All implementation is in Python 3.7.4 and Ten-
sorFlow 2.6.03. We used Adam as the optimizer with TensorFlow’s default settings for the
learning rate, exponential decay rates and the epsilon parameter. Early stopping was used to
choose the number of epochs based on the minimum loss on the validation dataset. We used
two-layer networks4 with dropout regularization on the first hidden layer.

We partitioned the training set in the same way as the whole dataset, so the validation
set includes the latest 10% of purchases with associated sessions and the remaining is used for
training. We tuned the hyperparameters of each neural model (batch size, number of units, and
dropout rate) on the validation set using grid search. We test powers of 2 for the batch size and
number of units ranging from 16 to 512. For the dropout rate, we test values in [0.1, 0.5] with
step size 0.1. The final hyperparameters used are reported in Tab. 3.3.

For GRU4REC and GRU4REC Concat we tried the 3 different loss functions: cross-entropy,
BPR [116] and TOP1 [59]. Cross-entropy was finally chosen for both models, as it performed
best on the validation set. For the non-neural models, the optimal number of latent factors for
the SVD model was 1, the optimal number of neighbours for both SKNN_E and SKNN_EB
was 30, and the optimal boost factor for SKNN_EB was 0.5. Neural models were trained on
Nvidia GeForce MX250 equipped with 2GB of GPU memory. The maximum training time was
6 hours.

3.5.2 Experimental Results
Next we compare our cross-sessions against state-of-the-art baselines. Furthermore, we combine
cross-sessions models with the demographic model. We further breakdown the analysis of our
model to understand the impact of exploiting all past sessions and actions instead of only the
most recent ones and their order. Lastly, we conduct an ablation study to show how different
actions (sections, objects, and type) affect the performance of our models.

Performance Analysis Tab. 3.4 compares our cross-sessions models against the baselines.
The simple Popular model is a quite strong baseline, unlike in domains like retail and video

3We used Tensorflow’s implementation of padding and masking to deal with variable length input in
the RNNs.

4In all models the second layer is a dense layer with ReLU activation function.
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Table 3.4: Performance results. All results marked with * are significantly different from cross-
sessions encode. The best score for each measure is in bold. Percentages in brackets denote the
difference of our models from the strongest baseline (SKNN_EB).

Model HR@3 Precision@3 Recall@3 MRR@3 MAP@3

Random 0.3235* 0.1114* 0.2940* 0.1910* 0.1839*
Popular 0.6217* 0.2145* 0.5855* 0.4764* 0.4540*
SVD 0.6646* 0.2372* 0.6327* 0.4997* 0.4829*
Demographic 0.7392* 0.2649* 0.7095* 0.5620* 0.5446*
GRU4REC 0.6479* 0.2313* 0.6208* 0.5443* 0.5264*
GRU4REC Concat 0.6616* 0.2365* 0.6362* 0.5620* 0.5453*
SKNN_E 0.8106* 0.2914* 0.7848* 0.6740* 0.6567*
SKNN_EB 0.8132* 0.2922* 0.7872* 0.6785* 0.6610*

Cross-sessions Encode 0.8380 (3.04%) 0.3030 (3.67%) 0.8145 (3.46%) 0.7093 (4.53%) 0.6923 (4.73%)
Cross-sessions Concat 0.8265 (1.62%) 0.2984 (2.12%) 0.8019 (1.87%) 0.7051 (3.92%) 0.6876 (4.02%)
Cross-sessions Auto 0.8356 (2.74%) 0.3024 (3.48%) 0.8128 (3.24%) 0.7085 (4.41%) 0.692 (4.69%)

Table 3.5: The versions of our models enhanced with demographic data. The rest of notation is
as in Tab. 3.4.

Model HR@3 Precision@3 Recall@3 MRR@3 MAP@3

Cross-sessions Encode with Demographic 0.8542* (5.03%) 0.3103* (6.17%) 0.8313* (5.6%) 0.7268* (7.11%) 0.7099* (7.41%)
Cross-sessions Concat with Demographic 0.8497* (4.48%) 0.3087* (5.64%) 0.8269* (5.04%) 0.7298* (7.55%) 0.7131* (7.88%)
Cross-sessions Auto with Demographic 0.8460 (4.03%) 0.3072 (5.13%) 0.8228 (4.52%) 0.7223 (6.45%) 0.7050 (6.66%)

services [59, 44], because of the few different items and the role of the post filter to make sure
not to recommend items that the user cannot buy.

As in prior work on insurance RSs [111], we also see a significant improvement in using a de-
mographic RS compared to the traditional matrix factorisation method, SVD, due to the sparse
feedback on items in the insurance domain (see Tab. 3.1) and users’ demographic characteristics
being good signals for learning insurance recommendations.

The session-based methods, SKNN_E, SKNN_EB and cross-sessions, significantly outper-
form the non-session-based methods, while this is not the case for GRU4REC and GRU4REC
Concat. This shows that users’ recent sessions are stronger signals for learning insurance rec-
ommendations than long-term preferences and demographic characteristics, but recommending
the item that the user is most likely to interact with next on the website is not appropriate
for insurance recommendations. All cross-sessions methods significantly outperform SKNN_E
and SKNN_EB suggesting that an RNN is better at modeling relationships between the user
actions that lead to the purchase of specific items.

The results suggest that encoding of sessions is better than the trivial concatenation of
sessions indicating that dependencies across sessions are important. The results further suggest
that the encoding of sessions with a max-pooling operation is better than the automatically
learned encodings of sessions (using an autoencoder). This is most likely because the order of
actions (which the autoencoder takes into account) adds more noise to the model than signal,
or the autoencoder needs a larger amount of training data in order to effectively learn to encode
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Figure 3.7: HR@k and MRR@k for varying choices of the cutoff threshold k.

Figure 3.8: HR@3 for different number of recent sessions and actions.

sessions.
Fig. 3.7 shows HR and MRR at varying cutoffs k from 1 to 5. We have similar results

for recall, precision, and MAP, which are omitted due to space limitations. The results are
consistent over varying choices of the cutoff threshold, with the exception of GRU4REC Concat
which is better than SVD and Demographic for smaller cutoff thresholds (1-2), but not for larger.
Across all choices of the cutoff threshold there is a clear gap between cross-sessions models and
the others. The general trend for both measures is that they tend to increase as the cut-off
k increases. As expected, this happens because, by increasing the cutoff threshold, it is more
likely to include the purchased items.

Finally, we combine our cross-sessions models with the demographics. The results are shown
in Tab. 3.5. The hybrid approach between a cross-sessions and a demographic model yields
better performance than the individual models for all models and evaluation measures. This
indicates that the two types of information, sessions and demographic, capture different aspects
of the problem. The best results are obtained with Cross-sessions Encode and Cross-sessions
Concat and both models are statistically significantly different from the Cross-sessions Encode
model without demographic data.
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Table 3.6: Study of session order. Relative change in parentheses.

Model HR@3 Precision@3 Recall@3 MRR@3 MAP@3

Cross-sessions Encode original session order 0.8380 0.3030 0.8145 0.7093 0.6923
shuffled session order 0.8345 (-0.41%) 0.3008 (-0.7%) 0.8096 (-0.60%) 0.7058 (-0.49%) 0.688 (-0.61%)

Cross-sessions Concat original session order 0.8265 0.2984 0.8019 0.7051 0.6876
shuffled session order 0.8209 (-0.20%) 0.2935 (-0.52%) 0.7925 (-0.37%) 0.6978 (-0.28%) 0.6759 (-0.49%)

Cross-sessions Auto original session order 0.8356 0.3024 0.8128 0.7085 0.6920
shuffled session order 0.8305 (-0.61%) 0.3003 (-0.70%) 0.8069 (-0.72%) 0.704 (-0.64%) 0.6867 (-0.76%)

Analysis of Number of Sessions and Actions Next, we analyse how the number of
sessions affects our cross-sessions models. We break down the performance scores of our models
based on the number of sessions, starting with only the most recent session, up to including
all the available sessions (the maximum number of sessions per user is 7, see Sections 3.4.2
and 3.4.3). Fig. 3.8 (left) shows HR@3 computed for our cross-sessions models with respect to
varying numbers of user sessions. In general, there is an increasing trend in performance with the
number of recent sessions, emphasising the additional contribution brought by all recent sessions
of each user rather than just the last one. We can observe that Cross-sessions Encode and Cross-
sessions Auto consistently outperform Cross-sessions Concat for each number of sessions. We
observe similar results for MRR, recall, precision, and MAP, which are not included here due to
space limitations.

We do the same analysis with number of actions per session. Fig. 3.8 (right) shows that
HR@3 generally increases with the number of actions. The growth is particularly steep up to
about 10 actions per session after which it flattens out. We observe similar results for MRR,
recall, precision, and MAP, which are not included here due to space limitations.

Analysis of Session Order We analyse the importance of session order by randomly
shuffling the order of sessions and retraining the models. We shuffle the order in both training,
validation and test data, and perform the experiment 5 times to account for randomness. The
mean performance is presented in Tab. 3.6. Across all our models and evaluation measures,
performance drops when shuffling the session order, but the decrease is limited to less than 1%.
The results indicate that the superiority of the cross-sessions models is not due to sequential
dependencies, rather they are simply better at capturing the relationships between user actions
and the purchase of specific items.

Analysis of Actions We use ablation to analyse the influence of different actions, i.e.,
sections, objects, and types. Each time we remove all actions of a given type and evaluate our
cross-sessions models after re-training without the action type under analysis. The results are
presented in Tab. 3.7 for all our models and evaluation measures. We did not consider the
action type “click” in the ablation study because removing clicks results in removing most of
the actions (65%), but also most of the objects and sections, since users interact with objects
and sections mainly through clicks.
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Table 3.7: Ablation study of actions. Relative change in parentheses.

Model HR@3 Precision@3 Recall@3 MRR@3 MAP@3

Cross-sessions Encode

all actions 0.8380 0.3030 0.8145 0.7093 0.6923
without E-commerce 0.7526 (-10.19%) 0.2698 (-10.95%) 0.7249 (-11.00%) 0.5951 (-16.09%) 0.5764 (-16.74%)
without Claims reporting 0.8250 (-1.55%) 0.2979 (-1.68%) 0.8012 (-1.64%) 0.7006 (-1.22%) 0.6829 (-1.35%)
without Information 0.8317 (-0.75%) 0.3000 (-0.98%) 0.8072 (-0.89%) 0.7045 (-0.68%) 0.6863 (-0.87%)
without Personal account 0.8067 (-3.73%) 0.2894 (-4.48%) 0.7803 (-4.19%) 0.6604 (-6.89%) 0.6438 (-7.00%)
without Items 0.7379 (-11.94%) 0.2652 (-12.46%) 0.7116 (-12.63%) 0.5720 (-19.36%) 0.5548 (-19.86%)
without Services 0.8032 (-4.15%) 0.2880 (-4.93%) 0.7765 (-4.66%) 0.6639 (-6.40%) 0.6465 (-6.61%)
without Start 0.8162 (-2.60%) 0.2935 (-3.11%) 0.7906 (-2.94%) 0.6771 (-4.55%) 0.6592 (-4.77%)
without Act 0.8318 (-0.73%) 0.3005 (-0.80%) 0.8082 (-0.77%) 0.7035 (-0.82%) 0.6864 (-0.85%)
without Complete 0.8317 (-0.75%) 0.3005 (-0.82%) 0.8078 (-0.82%) 0.7036 (-0.80%) 0.6861 (-0.89%)

Cross-sessions Concat

all actions 0.8265 0.2984 0.8019 0.7051 0.6876
without E-commerce 0.7456 (-9.79%) 0.2677 (-10.30%) 0.7188 (-10.37%) 0.5918 (-16.08%) 0.5723 (-16.77%)
without Claims reporting 0.8287 (+0.27%) 0.2987 (+0.08%) 0.8037 (+0.22%) 0.7067 (+0.22%) 0.6879 (0.04%)
without Information 0.8308 (+0.53%) 0.3009 (+0.81%) 0.8076 (+0.71%) 0.7133 (+1.15%) 0.6958 (1.19%)
without Personal account 0.8130 (-1.63%) 0.2914 (-2.35%) 0.7872 (-1.84%) 0.6795 (-3.64%) 0.6633 (-3.52%)
without Items 0.7348 (-11.10%) 0.2630 (-11.87%) 0.7077 (-11.76%) 0.5783 (-17.99%) 0.5555 (-19.21%)
without Services 0.8119 (-1.76%) 0.2914 (-2.37%) 0.7856 (-2.04%) 0.6798 (-3.59%) 0.6635 (-3.50%)
without Start 0.8162 (-1.24%) 0.2943 (-1.39%) 0.7913 (-1.32%) 0.6851 (-2.84%) 0.6676 (-2.90%)
without Act 0.8304 (+0.47%) 0.3001 (+0.56%) 0.8063 (+0.55%) 0.7083 (+0.44%) 0.6908 (0.47%)
without Complete 0.8276 (+0.14%) 0.2995 (+0.35%) 0.8038 (+0.23%) 0.7065 (+0.19%) 0.6912 (0.91%)

Cross-sessions Auto

all actions 0.8356 0.3024 0.8128 0.7085 0.6920
without E-commerce 0.7473 (-10.57%) 0.2691 (-11.02%) 0.7206 (-11.34%) 0.5953 (-15.97%) 0.5776 (-16.53%)
without Claims reporting 0.8227 (-1.54%) 0.2966 (-1.93%) 0.7979 (-1.83%) 0.7001 (-1.19%) 0.6819 (-1.45%)
without Information 0.8287 (-0.82%) 0.2999 (-0.82%) 0.8048 (-0.99%) 0.7055 (-0.42%) 0.6881 (-0.56%)
without Personal account 0.8175 (-2.17%) 0.2925 (-3.27%) 0.7916 (-2.60%) 0.6809 (-3.89%) 0.6639 (-4.07%)
without Items 0.7398 (-11.46%) 0.2649 (-12.41%) 0.7110 (-12.52%) 0.5771 (-18.55%) 0.5585 (-19.29%)
without Services 0.8051 (-3.64%) 0.2892 (-4.37%) 0.7792 (-4.13%) 0.6741 (-4.86%) 0.6574 (-5.00%)
without Start 0.8183 (-2.07%) 0.2942 (-2.71%) 0.7924 (-2.50%) 0.6842 (-3.43%) 0.6661 (-3.74%)
without Act 0.8287 (-0.82%) 0.2993 (-1.03%) 0.8047 (-1.00%) 0.6994 (-1.28%) 0.6817 (-1.49%)
without Complete 0.8257 (-1.18%) 0.2987 (-1.23%) 0.8025 (-1.27%) 0.7024 (-0.85%) 0.6852 (-0.98%)

For the Cross-sessions Encode and Cross-sessions Auto models, all actions contribute pos-
itively to the model performance, i.e., their removal causes a drop in the measure score. We
can have a similar conclusion for the Cross-sessions Concat model with the exception that the
removal of actions in the section “information” and “claims reporting”, or of type “act” and
“complete” increases performance instead of decreasing it, but the actual difference is negligible
(less than 1.5%). The Cross-sessions Concat model is more prone to overfitting when including
these actions with weaker preference signals because it estimates weights for every action and
takes the order of actions into account while e.g., the Cross-sessions Encode model only accounts
for the order of sessions.

Not surprisingly, the most negative impact (up to−19.86% in MAP) is obtained when actions
with the object type “item” are removed. Even if these are not the most frequent objects (see
Tab. 3.2), they are highly informative as they provide information on the user interests. The
most frequent objects are “services”, twice more frequent than items, and their removal affects
negatively performance even if with a less severe impact (up to −6.61% in MAP).

The second greatest negative impact is obtained when the actions from the section “e-
commerce” are removed (up to −16.77% in MAP). Again, this is not the most frequent section,
but it is highly informative since the user needs to access the e-commerce section to inspect and
compare different insurance products. The most frequent section is the “personal account”, 3
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times more frequent than the e-commerce section. Its removal has a negative impact, but not
as severe as for e-commerce (up to −7% in MAP).

In terms of action type, the removal of the type “start” has the greatest negative effect, even
if limited with respect to the other two categories (up to −4.77% in MAP). The types “act”
and “complete” have a negligible impact (less than 1.5%), but they also represent a very sparse
signal (less than 5% of all types together).

3.6 Conclusions and Future Work
We have tackled the problem of recommendation of insurance products. This is a highly relevant
industrial problem, to which no satisfying solution currently exists, because of the low number of
items and sparsity of user interactions. We propose three different cross-sessions recommendation
models, which exploit both the current and past user sessions to predict items that the user will
buy. Our models take as input an ordered sequence of sessions each being a list of actions
and model the dependencies across sessions using RNNs with GRU units. Experimental results
on a real world dataset show that our models outperform state-of-the-art baselines. Further
analysis confirms the positive effect of considering multiple past sessions and an ablation study
shows that all considered action types are beneficial for the models. Demographic features
boost performance of the cross-sessions model, giving rise for future work on potential biases of
demographic insurance recommendations.

As future work we further plan to run an A/B testing experiment to evaluate our cross-
sessions models with online users. Furthermore, we will investigate the explainability of our
models and we will generate user readable explanations to be shown when an item is recom-
mended.
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Chapter 4

Recommending Target Actions
Outside Sessions in the Data-poor
Insurance Domain

Abstract
Providing personalized recommendations for insurance products is particularly challenging due
to the intrinsic and distinctive features of the insurance domain. First, unlike more traditional
domains like retail, movie etc., a large amount of user feedback is not available and the item
catalog is smaller. Second, due to the higher complexity of products, the majority of users
still prefer to complete their purchases over the phone instead of online. We present different
recommender models to address such data scarcity in the insurance domain. We use recurrent
neural networks with 3 different types of loss functions and architectures (cross-entropy, censored
Weibull, attention). Our models cope with data scarcity by learning from multiple sessions and
different types of user actions. Moreover, differently from previous session-based models, our
models learn to predict a target action that does not happen within the session. Our models
outperform state-of-the-art baselines on a real-world insurance dataset, with ca. 44K users, 16
items, 54K purchases and 117K sessions. Moreover, combining our models with demographic
data boosts the performance. Analysis shows that considering multiple sessions and several
types of actions are both beneficial for the models, and that our models are not unfair with
respect to age, gender and income.

4.1 Introduction
We present the problem of providing automatic personalised recommendations in the insurance
purchasing domain. That is to recommend insurances for individuals such as home insurance, car
insurance and accident insurance that can help customers of an insurance company continuously
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adjust their insurances to suit their needs. The following reasons make this problem particularly
challenging: (i) the item catalog is small (only a few types of insurance products are available
for purchase), unlike the common scenarios of e-commerce or movie recommendation, where
the item catalog is very large; (ii) insurance products are purchased less often and tend to
last longer, than items commonly bought in common recommendation scenarios; (iii) most
users prefer to complete their purchases of insurance products in a telephone conversation with
a human insurance agent who can interactively address their concerns, instead of fully and
exclusively online. Collectively, the above reasons result in a limited amount of user interactions
and feedback on the items available for recommendation, making the problem of automatically
learning recommendations non-trivial.

To address this problem, we present three different architectures of recurrent neural network
recommender models, which deal with the data scarcity problem outlined above in two ways.
Firstly, they learn user preferences not only from single sessions and from user actions that are
associated with an item, but from multiple past user sessions and several different types of user
actions that are not necessarily associated with an item. Secondly, unlike existing session-based
and session-aware recommender models, our models learn to predict a target action (purchase of
an insurance item) that does not happen within the input session (because the purchase happens
on the telephone conversation with a human insurance agent, for instance).

We show experimentally that these two features of our models make them outperform state-
of-the-art recommender baselines on a real-world insurance dataset of ca. 44K users, 16 items,
54K purchases and 117K sessions (which is freely available to the research community).

This paper is an extended version of the conference full paper [20] accepted at RecSys 2022.
We contribute by extending the previous work with (1) two new approaches to design the loss
function and architecture of the proposed cross-sessions recommender system; (2) an evaluation
of the novel approaches against the state-of-the-art and the original cross-session recommender
system; (3) additional analysis (e.g., fairness analysis, analysis of the dependency on the temporal
threshold); and (4) more details on the exploited dataset.

4.2 Related Work
We present prior work on insurance recommendation (Section 4.2.1) and session-based recom-
mendation (Section 4.2.2).

4.2.1 Insurance Recommendation
There is not much prior work on insurance recommendations. In principle, knowledge-based
recommendations should work for this task by mining highly personalised user information from
user interactions [65], but to our knowledge, no prior work reports this. Instead, most prior
work on insurance recommendations supplements the small volume of user feedback with user
demographics. We overview these next.

59



Chapter 4 | Recommending Target Actions Outside Sessions in the Data-poor Insurance Domain

Xu et al. [161] cluster users based on their demographics and make association rule anal-
ysis within each cluster on the users’ set of purchased items. They extract recommendations
directly from the association rules. Sanghamitra Mitra [122] estimate user similarity based on
demographic attributes using a similarity measure (e.g., cosine similarity). Then they make
recommendations to a user based on the feedback on items by the top-N similar users. Qazi
et al. [111, 112] train a Bayesian network with user demographics and previously purchased
items as input features, aiming to predict the last purchased item of a user. They also train
a feed-forward neural network to give recommendations to potential users when only external
marketing data is available. All the above methods outperform standard RS approaches, such as
matrix factorization and association rule mining solely applied to the feedback data. In addition,
these methods are not susceptible to cold start issues when recommending items to users with
no previous feedback on items [50]. However, the above methods assume that the preference
dynamics are homogeneous within demographic segments, which is not necessarily true. Our
model addresses this by accommodating individual changes in user preferences through the use
of sessions generated by the individual user.

Bi et al. [14] present a cross-domain approach for insurance recommendation. They use
knowledge from an e-commerce domain (clothes, skincare products, fruits, electronics products,
etc.) to learn better recommendations in the insurance domain when data is sparse. They employ
a Gated Recurrent Unit (GRU) [34] to model sequential dependencies in the e-commerce domain.
Our model differs from this approach: we use user sessions directly from the insurance target
domain instead of another source domain like an e-commerce website with clothes etc., thereby
not having the need for overlapping users between the target domain and a source domain.
Moreover, we cannot use the approach of [14] in our work because it is not session-based; it is
based on users’ long-term preferences in both the e-commerce and the insurance domain.

4.2.2 Session-based Recommender Systems
Session-based RSs capture the user’s short-term preferences in a session [43], often using item-
to-item recommendations [36, 90]: similarities between items are computed based on the session
data such that items that often co-occur and/or co-interact in a session fetch a high similarity.
Such item similarities are then used during a session to recommend the most similar items to
the item that the user currently interacts with. This approach only considers the last user
interaction; it ignores information on past interactions even in the same session. Moreover, this
approach requires the target action to happen within sessions, thus this approach cannot be
applied to our task.

An extension of the item-to-item approach is session-based clustering, which considers all
user interactions in the session. Sessions are then clustered in various ways, for instance as
Markov chains [51], or using K-Nearest Neighbors (SKNN) [67, 62], which computes similarities
between entire sessions using a similarity measure (e.g., cosine similarity). The recommendations
are then based on selecting items that appeared in the most similar past session. This approach
does not take into account the order of the input sequence.

A sequential extension to the SKNN method is Vector Multiplication SKNN [96], which
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rewards the most recent user interactions of a session when computing the similarities. Another
extension is Sequence and Time Aware Neighborhood [45], which considers the position of an
item in the current session, the recency of a past session with respect to the current session,
and the position of a recommendable item in a neighbouring session. The latter model depends
on the target actions occurring within sessions, and so does not fit our task where the target
actions occur outside the session.

Neural session-based methods have also been used. A popular one is GRU4REC [59, 60],
which models user sessions with a GRU in order to predict the probability of the subsequent
interaction given the sequence of previous interactions. Neural Attentive Session-based Recom-
mendation [88] extends GRU4REC with an attention mechanism that captures the user’s main
purpose in the current session. Graph Neural Networks have also been used [156] to model
session sequences as graph structures, thereby capturing transitions of items and generating
item embedding vectors correspondingly.

The above methods use only the single ongoing session of a user, whereas we use multiple
past sessions of a user. Methods that use past user sessions when predicting the next interaction
for the current session have been proposed [114, 120, 164, 63, 110]. However, a comprehensive
empirical study of these methods [83] shows that they did not improve over heuristic extensions
of existing session-based algorithms that for instance extend the current session with previous
sessions or boost the scores of items previously interacted with. Unlike all the above methods,
we use different types of actions, not only with items (see Section 4.4.1).

Although session-based RSs provide temporal context for the recommendations in terms of
the sequential order of interactions, they do not account for the actual time of interactions. Other
types of RSs exploit time as a contextual variable in the learning of recommendations [130, 18].
However, these methods use the specific property of time at the level of specificity of the hour,
day, week, month or season to learn the recommendations. Other RSs integrate methods from
survival analysis to predict users’ return time to a service [42, 73] that for instance can help in
planning advertising inventories. Our approach to account for time in the RS differs from these,
since we do not focus on a single return time to estimate when a user comes back, rather we
model times for each item to be used for the ranking task.

4.3 Approach
In this section, we present the problem formulation (Section 4.3.1) and how we address it with
our approach (Section 4.3.2).

4.3.1 Problem Formalization
The task of our cross-sessions RS is to predict what items a user will buy based on the user’s
past sessions. Compared to the traditional task of a session-based RS, which is to predict the
next action in the session based on the actions so far, our task differs because: (1) the target
action (i.e., purchase) occurs outside the session; (2) the user may have multiple sessions leading
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Figure 4.1: Example of a session on the insurance website. A session is a list of 3-tuple actions
ordered by time.

to the purchase; (3) the sessions consist of many different actions, not only actions with items.
We extend the notation in Fang et al. [43] to accommodate these differences when formulating
the problem.

A session, si, is a sequence of user actions, {ai1, ai2, ai3, ..., ain}, on the website. An action,
aij , is represented by the 3-tuple aij = (cij , bij , dij), where:

• cij : action section, refers to the section of the website in which the user interacts;

• bij : action object, refers to the object on the website that the user interacts with; and

• dij : action type, refers to the way that the user interacts.

Figure 4.1 illustrates a session where a user interacts with employment (object bi1) at the personal
account section of the website (section ci1) by starting it (action type di1). Then, the user changes
(di2) the employment (bi2) still at the personal account section (ci1). Section 4.4.1 and Table 4.2
present the different sections, objects and action types.

We represent users’ past sessions in lists ordered by time. We do not include all historical
sessions of a user as we assume that only recent sessions are relevant to the current task. We
use an inactivity threshold, t, to define recent sessions, and define two sessions to belong to the
same task if there is no longer than the threshold t between them. We describe how we estimate
t from observed data in Section 4.4.1. The problem is to learn a function, f , of a user’s session
sequence that estimates the probability of the user to buy each item k after the last session sm:

f(s1, s2, s3, ..., sm) = (p̂1, p̂2, p̂3, ..., p̂K), (4.1)

where each element in {s1, s2, s3, ..., sm} is a session (defined as a sequence of actions as explained
above), p̂k is the predicted probability that item k will be bought by the user, and K is the total
number of items in the whole dataset.

4.3.2 Proposed Approach
Our model for learning the above function is based on GRU4REC [59]: an RNN with a single
GRU [34] layer that models user interactions with items in single user sessions. The RNN takes
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Figure 4.2: Architecture
of cross-sessions encode.

Figure 4.3: Architecture of cross-sessions concat.

Figure 4.4: Architecture of cross-
sessions auto.

as input the ordered sequence of items interacted with in the session, and outputs for every
time step the likelihood of each item to be the item that the user interacts with next. Our
cross-sessions RS extends GRU4REC by: (1) taking multiple sessions of each user as input, as
in Eq. (4.1); (2) using various types of input actions that are not always associated with items;
(3) predicting what items the user will buy after the last time step as opposed to predicting the
next interaction for every time step in the sequence.

Model input Next, we propose three different ways of passing the input sessions through
the RNN.

In the first way, which we call Cross-sessions Encode (see Figure 4.2), we encode a session
by aggregating the actions in the session with a maximum pooling operation:

si = maxelement(ai1, ai2, ai3, ..., ain), (4.2)

where aij is the binarized vector indicating the presence of an action section, action object and
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action type performed by a user at time step j in session i, and maxelement(·) is a function that
takes the element-wise maximum of vectors. Then, for every time step i in the sequence of a
user’s sessions, an RNN with a single GRU layer computes the hidden state as follows:

hi = (1− zi) · hi−1 + zi · ĥi
zi = σ(Wzsi + Uzhi−1),

ĥi = tanh(Wsi + U(ri · hi−1)),

ri = σ(Wrsi + Urhi−1),

for i = 1, ..,m,

(update gate)

(candidate gate)

(reset gate)

(4.3)

where Wz, Uz,W,U,Wr and Ur are weight matrices and σ(·) is the sigmoid function. The reset
gate makes sure to forget information about the past that is not important given the current
session. The update gate decides whether the current session contains relevant information that
should be stored. The hidden state, hi, is a linear interpolation between the previous hidden
state and the candidate gate.

Our second way of passing input sessions through the RNN is called Cross-sessions Con-
cat (see Figure 4.3). Here, we concatenate all sessions of a user into a single sequence s =
{a11, .., a1n, a21, .., a2n, .., am1, .., amn}. Now the hidden state in Equation (4.3) is computed for
every time step (ij) in s. Whereas the cross-sessions encode only accounts for the order of
sessions, the cross-sessions concat further takes into account the order of actions.

Finally, we propose another variation of session encoding, Cross-sessions Auto (see Fig-
ure 4.4), which automatically learns encodings of sessions with an autoencoder, instead of
Equation (4.2). We train an RNN-based autoencoder with a single GRU layer that takes as
input the ordered sequence of actions in a session and is evaluated on the task of recreating the
input using categorical cross-entropy loss on each of the 3 features: action section, action object
and action type. Once trained, the encoder is used to encode a session into a single vector, si,
that can be used as input for Equation (4.3). Hence, the architecture of the autoencoder in
Figure 4.4 is combined with the architecture in Figure 4.2.

Cross-Entropy Loss In all three cases, the RNN returns an output vector, o, of length K
after the last time step. Because a user can buy multiple items at the same time, we consider
the learning task as multi-label classification and use the sigmoid function, σ(·), on each element
of o as output activation function to compute the likelihood of purchase:

p̂k = σ(ok), for k = 1, . . . ,K. (4.4)

During training, the loss function is computed by comparing p̂ with the binarized vector of the
items purchased, p. Due to the learning task being multi-label classification, we define the loss
function as the sum of the binary cross-entropy loss over all items. The loss function is thereby
different from the ranking loss used in GRU4REC and is given by:

L = −
K∑
k=1

pk · log(p̂k) + (1− pk) · log(1− p̂k). (4.5)
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Censored Weibull Loss Because users often have multiple sessions before they purchase,
and at the time of prediction we do not know when they will purchase, we furthermore propose
another loss function that takes the time of purchase into account. Instead of predicting the
probability of each item being purchased after the last time step, we now predict the time to
the next purchase (time-to-purchase) of each item after every time step in the input sequence
of the user’s sessions, where time is measured in days. The loss function should then compare
the predicted time-to-purchase with the true time-to-purchase. However, only some of the true
times are observed, since a user typically has not purchased all of the items by the end of the
training period. This is what is called censored data since it is only partially observed. For that
reason, we use the loss function presented in Martinsson [99] that takes into account censored
time data.

Let yi,k be the observed time-to-purchase of item k at time step i. Moreover, let ui,k be the
censoring variable that indicates whether the purchase of item k has occurred after time step i
and before the end of the training period. We assume that yi,k is a realisation of the random
variable Yi,k that follows a discrete Weibull distribution with positive parameters αi,k and βi,k
and probability mass function given by:

P (Yi,k = yi,k) = exp
(
−
( yi,k
αi,k

)βi,k
)
− exp

(
−
(yi,k + 1

αi,k

)βi,k
)
, for yi,k = 0, 1, 2, ... (4.6)

We use the Weibull distribution as it is commonly used to model time-to-event data because
it is positive, has infinite support, and contrary to other time-to-event distributions, like the
exponential distribution and log-logistic distribution, the Weibull distribution has a discrete
version, that can be used when time is measured in, for example, days. The RNN returns
two output vectors o1i and o2i , both of length K for every time step i = 1, ...,m, which are then
transformed with an output activation function into valid parameters of the Weibull distribution
(i.e., positive values). We use an exponential activation function to compute αi,k as it has shown
to give fast training time in Chen et al. [32] due to logarithmic effect of change in αi,k, and we
use a sigmoid activation function to compute βi,k as we want slow changes when βi,k gets close
to 0: (

αi,k

βi,k

)
=

(
exp(o1i,k)

σ(o2i,k)

)
, for k = 1, ...,K and i = 1, ...,m. (4.7)

The loss function is given by:

Li = −
K∑
k=1

ui,k log
(
P (Yi,k = yi,k)

)
+ (1− ui,k) log

(
P (Yi,k > yi,k)

)
, for i = 1, ...,m, (4.8)

where P (Yi,k > yi,k) is the right tail probability given by:

P (Yi,k > yi,k) = exp
(
−
(yi,k + 1

αi,k

)βi,k
)
. (4.9)

Thus the loss function is given by the negative log-likelihood, where the likelihood is defined
as the probability mass under the estimated parameters αi,k and βi,k when the true time-to-
purchase of item k is uncensored (ui,k = 1), and the likelihood is given by the probability of
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Figure 4.5: Architecture of
Cross-sessions Encode with
censored Weibull loss.

Figure 4.6: Architecture of
Cross-sessions Encode with
attention mechanism.

Figure 4.7: Architecture of a
hybrid model between a cross-
sessions and a demographic
model. x denotes an input vec-
tor representing demographic
features of the user.

the purchase to occur at some point after the end of training period when the true time-to-
purchase is censored (ui,k = 0). Finally, the loss is summed up over all items. The architecture
of Cross-sessions Encode with censored Weibull loss is illustrated in Figure 4.5. The architecture
of Cross-sessions Concat is similar, but the input is as in Figure 4.3 and the censored Weibull
loss is computed for every action instead of every session. The architecture for Cross-sessions
Auto with censored Weibull loss is the same as the one for Cross-sessions Encode, but combined
with the architecture in Figure 4.4 to encode the input sessions. In the recommendation phase,
the time-to-purchase for each item is computed as the median of the Weibull distribution under
the predicted αi,k and βi,k parameters. The score for each item is then given by the negative
time-to-purchase, such that the shorter time-to-purchase of an item the higher the score.

Attention Model We propose to extend our cross-sessions models with an attention mech-
anism to account for the importance of different time steps in the input sequence. For instance,
more weights could be given to more recent input passed to the RNN. We do this by adding
an attention mechanism on the top of the GRU layer in our models that automatically learns
attention weights. We use the Bahdanau attention introduced in Bahdanau et al. [9] to permit
the decoder of the network to use the most relevant parts of the input sequence, by a weighted
combination of all the hidden states, with the most relevant states being given the highest
weights. Formally, instead of returning an output vector o after the last time step in the recur-
rent layer, the RNN returns attention scores ei for each time step i. The attention scores are
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then normalised into attention weights, λi, using a softmax function:

λi =
exp(ei)∑
i exp(ei)

. (4.10)

Subsequently, a context vector c is computed as the sum of all the hidden states weighted by
the attention weights:

c =
∑
i

λihi. (4.11)

The output vector o of length K is now returned from this attention layer and activated with
the sigmoid function as in Equation 4.4. The architecture of Cross-sessions Encode with at-
tention mechanism is illutrated in Figure 4.6, where the loss function is cross-entropy as in
Equation (4.5).

Hybrid Model Finally, we propose a hybrid of a cross-sessions and a demographic model
where the hidden state from the cross-sessions’ RNN is merged with the hidden state from a
feed-forward neural network with demographic input features of the user. This concatenation
is then passed through a dense layer. The architecture of Cross-sessions Encode combined
with demographics is illustrated in Figure 4.7, where the loss function is cross-entropy as in
Equation (4.5). The combination with demographics is similar in the other cases.

4.4 Dataset
To the best of our knowledge, there is only one publicly available dataset that satisfies the criteria
of our set-up [20], specifically: (1) item scarcity; (2) target action happening outside the session;
and (3) different types of actions which might not be directly associated to an item or a purchase
event. In the following, we describe such dataset (Section 4.4.1), we present how to estimate the
temporal threshold to deem two sessions as belonging to the same task (Section 4.4.2), and we
describe data pre-processing (Section 4.4.3).

4.4.1 Dataset Description
We use a publicly available dataset for the insurance domain1. Table 4.1 reports overall statistics
about the dataset. The dataset consists of user logs on an insurance vendor website collected
between October 1, 2018 and September 30, 2020. During this period no recommender system
was implemented on the insurance website that could have affected the user behavior (e.g.,
exposure bias or position bias [29]). The dataset includes interaction logs of 44K users, who were
uniquely identified either by log-in or cookies. There is a total of 16 items, including insurance
products or additional insurance coverages. An additional coverage can be bought only if the
customer already has the corresponding base product. There are around 53K purchase events

1https://github.com/simonebbruun/cross-sessions_RS/tree/main/extended
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Table 4.1: Main properties of the dataset (*mean/std).

Users 44,434
Items 16
Purchase events 53,757
Sessions 117,163
Actions 1,256,156

Purchase events per user* 1.21/0.51
Sessions before purchase event* 2.18/1.68
Actions per session* 10.72/7.85

Figure 4.8: Number of purchases per month for all items (total) and for three selected items
(caravan, vacation house and travel insurance).

that happened online or over the phone. Around 75% of the users prefer to complete their
purchases over the phone instead of online. Figure 4.8 shows that there is no strong seasonal
effect over the purchase frequency that the model should account for. Even caravan insurance,
vacation home insurance and travel insurance have only minor seasonal trends.

Note that this dataset differs from other publicly available datasets typically used to evaluate
session-based RSs, Last.fm, Recsys Challenge (RSC) datasets, etc. First, the total number of
items is 16, much lower than the 91K items in Last.fm or the 29K items in RSC15. Second,
insurance customers interact less frequently with the insurance website, indeed there are on
average 1.2 purchases per user and 2.2 sessions before each purchase over a period of 2 years.
Third, due to this scarcity of user interactions, the dataset is a collection of not only clicks
and purchases in connection with items, but all types of actions, even if they are not directly
associated with items. Therefore, this is one of the few publicly available datasets which contains
several types of actions.

For each user-purchase pair, all sessions occurring before the purchase event are collected.
This corresponds to around 100K sessions. A session (see Section 4.3.1) is represented as a
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Table 4.2: Actions included in the dataset with their description and frequency.

Action section

E-commerce Includes all products and their information, description, price, etc.
Users can purchase products in this section. 256,319 (20.41%)

Claims reporting Contains a form where users can report claims. 11,188 (0.89%)
Information Information about e.g., payment methods and contact details. 198,147 (15.77%)

Personal account
Users can log in and see their current insurances and claims in progress,
change their personal information and adjust e.g., deductibles of current
insurances.

790,502 (62.93%)

Action object
Items Insurance product or additional coverage. 249,378 (19.85%)

Services All objects that are not items, e.g., payment methods and
personal information. 655,574 (52.19%)

No object Click, without any object,
e.g., a tab, drop down menu or front pages. 351,204 (27.96%)

Action type

Click Click on the webpage. 811,747 (64.62%)
Start Start of e.g., purchase or claims report. 388,215 (30.90%)
Act Add product to cart, fill out claims report, etc. 47,713 (3.80%)
Complete Complete e.g., purchase or claims report. 8,481 (0.68%)

sequence of actions sorted by their timestamp, where each action has 3 different components:

• Action section: e-commerce, claims reporting, information and personal account;

• Action object: item and service:

• Action type: click, start, act and complete.

Table 4.2 provides an overview of the actions and their frequency in the dataset. Most of the
actions (63%) occur in the personal account section because the users are existing customers,
and most of them log in to their personal account. The second most frequent section is the
e-commerce section (20%) because items are displayed in this section and sessions are collected
before purchase events. Among the objects, the most frequent are services (52%). The insurance
website allows the user to access a number of administrative services, for example, specifying or
updating the employment type, this is needed for accident insurances, or specification of annual
mileage, required by car insurances, or information about the insurance coverage when moving
to a new house. Actions can happen without a specified object, in this case, they are denoted
as “no object” (30%). This happens when a user interacts with a section, but without an object
in the section, for example when a user enters the front page of a section. Clicks are the most
frequent action type (64%). This does not surprise as clicks are the primary mean of interaction
with a website. The second most frequent action is “start” (31%), which occurs when a user
starts for example a purchase or a claims report. The action types “act” and “complete” are
rather infrequent (less than 5% together). Examples of actions “act” are “change”, when a user
changes the employment type on the personal account page, or “fill out” when a user fills a form
to report a claim. The action “complete” occurs when a user completes a change, for example,
when a user completes the change of employment or the report of a claim.
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Besides user actions and purchases, the dataset includes additional features, namely demo-
graphic attributes and portfolios of users. Demographic attributes are aggregated at a geographic
area level, meaning they represent the average attribute of people living in the same area and not
the exact value for every single user. The dataset includes the following demographic attributes:
age, employment, income, residence, marital status, children and education. User portfolios
include the purchase history of users within the insurance company, that is all items bought
by each user. Our cross-sessions models exploit only user interactions (sessions and purchases)
and do not use the demographic attributes or the user portfolios. However, these are needed by
some state-of-the-art RS models, as SVD or the demographic model (see Section 4.5.1).

4.4.2 Estimation of Session Threshold
We consider a user task as a sequence of sessions that belong to the same task, that is the same
user need, which eventually concludes in a purchase. Next, we explain how to deem two sessions
as belonging to the same task. We need to estimate a temporal threshold t, such that given two
subsequent sessions s1 and s2, if:

start_time(s2)− start_time(s1) ≤ t =⇒ s1 and s2 belong to the same task. (4.12)

That is, if the elapsed time between s1 and s2 is lower or equal to t, we will consider the two
sessions as belonging to the same task.

This problem is similar to the one of estimating session boundaries for web users. It is
straightforward to get the starting time of a user session, but it is not always possible to get
the end time, for example, whenever a user leaves a browser window open and goes ahead with
other non-related tasks, for example checking emails [71, 72]. A rule of thumb for web sessions
is to consider the session as concluded after 30 minutes of inactivity. A similar estimate does
not exist for inactivity time between sessions, therefore we estimate the threshold t directly from
log data.

Halfaker et al. [49] propose a data-driven approach to estimate the inactivity time for web
sessions. We apply the same approach to estimate the task inactivity time between two consecu-
tive sessions. We start by computing the inter-session times between 2 consecutive sessions from
the same user. This is the difference between the starting time of the most recent session and
the older session (see Equation (4.12)). Figure 4.9 shows the logarithmically scaled histogram of
the inter-sessions times for all users in the dataset. We can observe a bi-modal distribution with
a valley, similar to inter-action times for web users in [49]. We use Expectation Maximization
(EM) to fit a two-component Gaussian mixture model. We assume that the distribution of
inter-session times is a mixture of times corresponding to: (1) sessions belonging to the same
task, i.e., the blue line in Figure 4.9, and (2) sessions belonging to different tasks, i.e., the orange
line in Figure 4.9. The intersection point between the blue and orange lines represents the point
where an inter-session time belongs to the two distributions with equal probability. We use this
point, which corresponds to 10 days, as the threshold t. This means that 2 sessions belong to
the same task if no more than 10 days elapsed between their starting times.
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Figure 4.9: Histogram of logarithmically scaled inter-session times and fitted Gaussian mixture
model.

4.4.3 Dataset Pre-processing
In the following, we describe all pre-processing steps. Tables 4.1 and 4.2, and Figure 4.8 are
computed with the pre-processed dataset.

We removed items and actions that occur with very low frequency because they are not
optimal for modeling. We remove all items with a frequency lower than 0.1%, and from actions,
all sections, objects, and types with a frequency lower than 0.1%. Consecutive repeated actions
of the same type, for example two clicks on the same object and section, are removed because
they very likely represent noise due to the latency of the website or other connection issues.
Very short sessions are poorly informative, thus we remove all sessions with less than 3 actions.
On the other side, very long sessions lead to long training times, thus we truncate all sessions in
the end to have a maximum of 30 actions (the 95th percentile). Based on the 10 days threshold
estimated in Section 4.4.2, we discard all sessions with inter-session time greater than 10 days.
Then, within the 10 days rule, we keep only the 7 most recent sessions for each user (the 95th
percentile), which allows to reduce training times. We keep all users, even those with a single
session and purchase.

4.5 Experiments
In this section, we outline the experimental set-up (Section 4.5.1) as well as present and analyse
the results (Section 4.5.2). Our source code is publicly available2.

2https://github.com/simonebbruun/cross-sessions_RS/tree/main/extended
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4.5.1 Experimental Set-up
We start by describing the evaluation procedure, then the baseline models and finally our im-
plementation and hyperparameter tuning.

Evaluation Procedure As a test set, we use the latest 10% of purchase events with as-
sociated past sessions. The remaining 90% is used for training. Since some users have had
multiple purchase events, we remove purchase events from the training data, if their associated
past sessions also appear in the test set. This resulted in 54 out of 48.381 purchase events in
the training set being removed.

The models generate a score for how likely the user will buy each item, which is then sorted
as a ranked list (i.e., the closer to the top of the ranking, the higher the estimated score of the
item). Among the two types of items, new insurance products and additional coverages, it is
only possible for a user to buy an additional coverage if the user has the corresponding base
insurance product. For that reason, we use a post filter to set the score to the lowest score if that
is not the case, as per Aggarwal [2]. The list of ranked items is evaluated with Hit Rate (HR),
Mean Reciprocal Rank (MRR), Precision, Recall and Mean Average Precision (MAP). We use
a cutoff threshold of 3 because: (1) the total number of items is 16, therefore high cut-offs (e.g.,
≥ 10), will increase recall and all measures will reach high values, which will not inform on the
actual quality of the RSs; (2) on the user interface the user will be recommended up to 3 items.
Additionally, we report HR and MRR scores for all cut-offs value from 1 to 5.

Experimental results are supported by statistical testing. For HR we use McNemar’s test
[37] and for all other measures we use one-way ANOVA [81], both with a confidence level of
0.05, and post hoc tests to control the family-wise error rate due to multiple comparisons.

Baselines We compare our models against the following state-of-the-art baselines:

• Random recommends random items to the user.

• Popular recommends the items with the largest number of purchases across users.

• SVD is a method that factorizes the user-item matrix by singular value decomposi-
tion [35]. The portfolio data forms the user-item matrix, where a user-item entry is 1
if the user has bought the item and 0 otherwise. In the insurance domain it is likely for
a user to buy the same item multiple times (e.g., a second car insurance), but matrix
factorization cannot make repeated recommendations. Therefore, we add repeated items
as new items (columns) to the matrix.

• Demographic is a classification model, as per Qazi et al. [111, 112], that uses user
demographics and their portfolios as input features. The portfolios are represented with
a feature for each item counting how many of the items the user has already bought.
Demographic features and portfolio features are concatenated. We use a feed forward
neural network to make a fair comparison with the neural session-based approaches.
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• GRU4REC is a neural session-based model [59, 60] for single user sessions. As input, we
use the last session of a user, consisting of the 3-tuple user actions described in Section
4.3.2. For every time step, the model outputs the likelihood for each action to be the one
the user interacts with next. Recommendations are based on the output after the final
time step.

• GRU4REC Concat is the same as GRU4REC, but all recent sessions of a user are
concatenated into a single session.

• SKNN_E is a session-based nearest neighbour model as the one presented in Jannach
and Ludewig [67] with the extension suggested in Latifi et al. [83]. The nearest neighbours
are determined based on the set of actions in all recent sessions of each user. A user’s
set of actions is a vector computed with a maximum pooling operation over the actions
generated by the user. We then adapt this baseline to our task, so the recommendations
are based on the items purchased by the neighbours of the target user rather than the
items interacted with in the ongoing session.

• SKNN_EB is the same as SKNN_E, but with a further extension suggested in Latifi
et al. [83]: scores of items previously interacted with are boosted with a factor. The factor
is tuned as a hyperparameter.

Note that the SVD and the demographic model make use of portfolio data, that is users’ past pur-
chases, while this is not the case for all cross-sessions models, GRU4REC and SKNN. GRU4REC
is included as it has shown the best performance under identical conditions on various datasets
among all the neural models compared in Ludewig et al. [97] and in Latifi et al. [83].

We tried the sequential extension to SKNN, Vector Multiplication SKNN, which is presented
in Ludewig and Jannach [96], but did not obtain better results than the original one. Sequence
and Time Aware Neighborhood [45] is not included as a baseline since it was not possible to
adapt it to the task under consideration (for the reasons discussed in Section 4.2.2).

Implementation & Hyperparameters All implementation is in Python 3.7.4 and Ten-
sorFlow 2.6.03. We used Adam as the optimizer with TensorFlow’s default settings for the
learning rate, exponential decay rates and the epsilon parameter. Early stopping was used to
choose the number of epochs based on the minimum loss on the validation set (explained below).
We used two-layer networks4 with dropout regularization on the first hidden layer.

We extracted a validation set from the training set in the same way as we extracted the
test set from the whole dataset, so the validation set includes the latest 10% of purchases with
associated sessions and the remaining is used for training. We tuned the hyperparameters of
each neural model (batch size, number of units and dropout rate) on the validation set using
grid search. We tested powers of 2 for the batch size and number of units ranging from 16 to 512.

3We used Tensorflow’s implementation of padding and masking to deal with variable length input in
the RNNs.

4In all models the second layer is a dense layer with ReLU activation function.
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Table 4.3: Hyperparameters (*autoencoder/RNN)

Model Batch size Units Dropout

Demographic 32 32 0.3
GRU4REC 32 256 0.2
GRU4REC Concat 32 256 0.2
Cross-sessions Encode 32 64 0.3
Cross-sessions Concat 128 64 0.3
Cross-sessions Auto* 128/32 512/64 -/0.4
Cross-sessions Encode with Weibull Loss 16 64 0.3
Cross-sessions Concat with Weibull Loss 128 128 0.3
Cross-sessions Auto with Weibull Loss* 128/64 512/128 -/0.4
Cross-sessions Encode with Attention 32 64 0.3
Cross-sessions Concat with Attention 128 64 0.3
Cross-sessions Auto with Attention* 128/32 512/64 -/0.4

For the dropout rate, we tested values in [0.1, 0.5] with step size 0.1. The final hyperparameters
used are reported in Table 4.3.

For GRU4REC and GRU4REC Concat we tried three different loss functions: cross-entropy,
BPR [116] and TOP1 [59]. Cross-entropy was finally chosen for both models, as it performed
best on the validation set. For the non-neural models, the optimal number of latent factors for
the SVD model was 1, the optimal number of neighbours for both SKNN_E and SKNN_EB
was 30, and the optimal boost factor for SKNN_EB was 0.5. Neural models were trained on
Nvidia GeForce MX250 equipped with 2GB of GPU memory. The maximum training time was
6 hours.

4.5.2 Experimental Results
First, we compare our cross-sessions models against state-of-the-art baselines. Then we eval-
uate the best cross-sessions models combined with demographics. We further break down the
performance of our models to understand the impact of the time of prediction, the number of
sessions and actions, the order and recency of sessions as well as the size of the session threshold.
Lastly, we conduct an ablation study to show how different actions (sections, objects and types)
affect the performance of our models and a fairness analysis to show how the models perform
on customers with different age, gender and income level.

Performance Analysis Table 4.4 presents a comparison of our cross-sessions models against
the baselines. Unlike domains like retail and video services [59, 44], the simple popular model is
quite a strong baseline, because of the small number of different items in the insurance dataset
and the role of the post filter to make sure not to recommend items that the user cannot buy.

As seen in prior work on insurance RSs [111], we also see a significant improvement in using
a demographic RS compared to the traditional matrix factorisation method, SVD. This is likely
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Table 4.4: Performance results. All results marked with * are significantly different from Cross-
sessions Encode with Attention. The best score for each measure is in bold. Percentages in
brackets denote the difference between our models and the strongest baseline (SKNN_EB).

Model HR@3 Precision@3 Recall@3 MRR@3 MAP@3

Random 0.3235* 0.1114* 0.2940* 0.1910* 0.1839*
Popular 0.6217* 0.2145* 0.5855* 0.4764* 0.4540*
SVD 0.6646* 0.2372* 0.6327* 0.4997* 0.4829*
Demographic 0.7392* 0.2649* 0.7095* 0.5620* 0.5446*
GRU4REC 0.6479* 0.2313* 0.6208* 0.5443* 0.5264*
GRU4REC Concat 0.6616* 0.2365* 0.6362* 0.5620* 0.5453*
SKNN_E 0.8106* 0.2914* 0.7848* 0.6740* 0.6567*
SKNN_EB 0.8132* 0.2922* 0.7872* 0.6785* 0.6610*

Cross-sessions Encode 0.8380 (3.04%) 0.3030 (3.67%) 0.8145 (3.46%) 0.7093 (4.53%) 0.6923 (4.73%)
Cross-sessions Concat 0.8265 (1.62%) 0.2984 (2.12%) 0.8019 (1.87%) 0.7051 (3.92%) 0.6876 (4.02%)
Cross-sessions Auto 0.8356 (2.74%) 0.3024 (3.48%) 0.8128 (3.24%) 0.7085 (4.41%) 0.692 (4.69%)

Cross-sessions Encode with Weibull Loss 0.8378 (3.02%) 0.3013 (3.10%) 0.8120 (3.15%) 0.7039 (3.74%) 0.6852 (3.66%)
Cross-sessions Concat with Weibull Loss 0.8289 (1.92%) 0.2994 (2.44%) 0.8048 (2.23%) 0.7017 (3.41%) 0.6843 (3.53%)
Cross-sessions Auto with Weibull Loss 0.8352 (2.70%) 0.3031 (3.71%) 0.8124 (3.20%) 0.7076 (4.28%) 0.6909 (4.52%)

Cross-sessions Encode with Attention 0.8385 (3.11%) 0.3026 (3.56%) 0.8141 (3.41%) 0.7118 (4.90%) 0.6941 (5.00%)
Cross-sessions Concat with Attention 0.8317 (2.26%) 0.3016 (3.23%) 0.8090 (2.76%) 0.7091 (4.50%) 0.6928 (4.81%)
Cross-sessions Auto with Attention 0.8324 (2.36%) 0.3012 (3.08%) 0.8095 (2.83%) 0.7103 (4.69%) 0.6932 (4.87%)

Table 4.5: The versions of our cross-sessions encode models enhanced with demographic data.
The rest of the notation is as in Table 4.4 (i.e., percentages in brackets denote the difference
from the strongest baseline).

Model HR@3 Precision@3 Recall@3 MRR@3 MAP@3
Cross-sessions Encode 0.8542* (5.03%) 0.3103* (6.18%) 0.8313* (5.60%) 0.7268* (7.11%) 0.7099* (7.41%)
Cross-sessions Encode with Weibull Loss 0.8529* (4.87%) 0.3100* (6.09%) 0.8310* (5.55%) 0.7219 (6.39%) 0.7055 (6.74%)
Cross-sessions Encode with Attention 0.8514* (4.69%) 0.3093* (5.83%) 0.8284* (5.23%) 0.7301* (7.59%) 0.7134* (7.93%)

due to the sparse feedback on items in the insurance domain (see Table 4.1) and the fact that
users’ demographic characteristics are good signals for learning insurance recommendations.

The session-based methods, SKNN_E, SKNN_EB and cross-sessions, significantly outper-
form the non-session-based methods, while this is not the case for GRU4REC and GRU4REC
Concat. This shows that users’ sessions are stronger signals for insurance recommendations
than long-term preferences and demographic characteristics, but recommending the item that
the user is most likely to interact with next on the website is not appropriate for insurance
recommendations. Moreover, all the cross-sessions models significantly outperform SKNN_E
and SKNN_EB suggesting that an RNN is better at modeling relationships between the user
actions that lead to the purchase of specific items.

The results suggest that encoding of sessions is better than the trivial concatenation of
sessions indicating that dependencies across sessions are important. The results further suggest
that the encoding of sessions with a maximum pooling operation is better than an autoencoding
of sessions. This is most likely because the order of actions (which the autoencoder takes into
account) adds more noise to the model than signal, or the autoencoder needs a larger amount of
training data in order to effectively learn to encode sessions. The best results of our cross-sessions
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Figure 4.10: HR@k and MRR@k for varying choices of the cutoff threshold k.

Figure 4.11: HR@3 and MRR@3 for each step in the users’ sequences of sessions.

models trained with censored Weibull loss are obtained with Cross-sessions Encode and Cross-
sessions Auto, but the models do not improve over Cross-sessions Encode trained with cross-
entropy loss. Below, we further examine how the censored Weibull loss affects the performance
at different times of recommendation. The performance of the cross-sessions models enhanced
with attention mechanism slightly improves over the models without attention. The degree of
improvement is similar across the three variations of encodings. Below, we further explore the
attention mechanism by extracting the learned attention weights. Overall, encoding of sessions
with a maximum pooling operation performed best. Hence in the rest of the analysis, we focus
on Cross-sessions Encode trained with and without Weibull loss and attention mechanism.

Figure 4.10 shows HR and MRR at varying cutoffs k from 1 to 5. We observe similar results
for recall, precision and MAP. The results are consistent over varying choices of k, with the
exception of GRU4REC Concat which is better than SVD and Demographic for smaller cutoff
thresholds (1-2), but not for larger. Across all choices of k there is a clear gap between the
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cross-sessions models and the others. The general trend for both measures is that they tend to
increase as the cut-off k increases. This is expected to happen since it is more likely to include
the purchased items when k increases.

The results of our cross-sessions models combined with demographics are shown in Table 4.5.
This hybrid approach yields better performance than the individual models for all evaluation
measures. This indicates that the two types of information, sessions and demographic, capture
different aspects of the problem. The best results are obtained with Cross-sessions Encode and
Cross-sessions Encode with Attention and both models are significantly different from the best
model without demographic data.

Overall, the results show that user sessions are stronger signals for insurance recommenda-
tions than insurance portfolios and users’ demographics, but recommending the item that the
user is most likely to interact with next on the website is not appropriate for insurance recom-
mendations. Moreover, an RNN is better at modeling the relationship between user actions and
purchases than an SKNN, and the results suggest that encoding of sessions is better than the
trivial concatenation of sessions. Finally, the results show that the two types of information,
user sessions and demographics, capture different aspects of the problem.

Analysis of the Time of Recommendation. Until now, we have evaluated all models
after the final step in the users’ sequences of sessions, when most information is available.
However, when executing the models in a real-life scenario with online users, we do not know
when each user will buy and we want to make recommendations already from their first session.
In Figure 4.11 we compare our cross-sessions models, where we evaluate them for each step in
the sequences of users’ sessions. We see that the model trained with Weibull loss performs better
than the models trained with cross-entropy loss for earlier steps. It is most likely because the
censored Weibull loss takes into account the time of purchase. Hence, at the final step in the
users’ sequences of sessions, the two types of loss function result in similar performance, but
the censored Weibull loss gives better results for earlier steps, which is desirable in a real-life
scenario. We observe similar results for precision, recall and MAP.

Analysis of Number of Sessions and Actions Next, we analyse how the number of
sessions affects our cross-sessions models. We break down the performance of our models based
on the number of sessions, starting with only the most recent session, up to including all the
available sessions (the maximum number of sessions per user is 7, see Sections 4.4.2 and 4.4.3).
Figure 4.12 (left) shows HR@3 computed for our cross-sessions models for varying numbers of
user sessions. In general, there is an increasing trend in performance with the number of recent
sessions, emphasising the additional contribution brought by all recent sessions of each user
rather than just the last one. We observe similar results for MRR, recall, precision and MAP.

We do the same analysis with the number of actions per session. Figure 4.12 (right) shows
that HR@3 generally increases with the number of actions. The growth is particularly steep up
to about 10 actions per session after which it flattens out. We observe similar results for MRR,
recall, precision and MAP.
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Figure 4.12: HR@3 for different number of sessions and actions.

Table 4.6: Study of session order. Relative change in parentheses.

Model HR@3 Precision@3 Recall@3 MRR@3 MAP@3

Cross-sessions Encode original session order 0.8380 0.3030 0.8145 0.7093 0.6923
shuffled session order 0.8345 (-0.41%) 0.3008 (-0.7%) 0.8096 (-0.60%) 0.7058 (-0.49%) 0.688 (-0.61%)

Cross-sessions Encode
with Weibull Loss

original session order 0.8378 0.3013 0.8120 0.7039 0.6852
shuffled session order 0.8299 (-0.95%) 0.2992 (-0.68%) 0.8053 (-0.82%) 0.6991 (-0.68%) 0.6813 (-0.56%)

Cross-sessions Encode
with Attention

original session order 0.8385 0.3026 0.8141 0.7118 0.6941
shuffled session order 0.835 (-0.42%) 0.3012 (-0.46%) 0.8105 (-0.44%) 0.7038 (-1.12%) 0.6863 (-1.12%)

Analysis of Session Order We analyse the importance of session order by randomly
shuffling the order of sessions, then retraining the models. We shuffle the order in both training,
validation and test set, and perform the experiment 5 times to account for randomness. The
mean performance is presented in Table 4.6. Across all our models and evaluation measures,
performance drops when shuffling the session order, but the decrease is limited to less than 1.5%.
The results indicate that the superiority of the cross-sessions models is not due to sequential
dependencies, rather they are simply better at capturing the relationships between user actions
and the purchase of specific items.

Analysis of Input Recency We analyse the importance of different time steps in the
input sequence to our cross-sessions models, specifically, if more weights should be given to
more recent input passed to the RNNs. We do this by extracting the attention weights, λi (see
Equation (4.10)), from the cross-sessions encode model with attention mechanism. The weights
are presented in Table 4.7. The model learns an attention weight for every step in the sequence
of the user’s past sessions. Since not all users have had 7 sessions (the maximum number of
sessions), we present the attention weights averaged over users with the same number of sessions.
For the users with only one session, the average attention weight is simply 1. For users with
more than one session, we observe that the last session is assigned the greatest weight, while the
previous sessions are weighted almost equally. This shows that the importance of input sessions
does not decay linearly with the recency of the sessions, rather the last session is most important
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Table 4.7: Attention weights averaged over users with the same number of sessions. Columns
represent the number in the sequence of sessions and rows represent subsets of users with the
same number of sessions.

Total number
of sessions

Session number
1 2 3 4 5 6 7

1 0 0 0 0 0 0 1
2 0 0 0 0 0 0.3059 0.6941
3 0 0 0 0 0.2326 0.2201 0.5473
4 0 0 0 0.1942 0.1735 0.1824 0.4498
5 0 0 0.1353 0.1509 0.1418 0.1537 0.4183
6 0 0.1453 0.1040 0.1169 0.1148 0.1350 0.3840
7 0.1243 0.1015 0.0867 0.1039 0.1112 0.1273 0.3451

Figure 4.13: HR@k and MRR@k for varying choices of the session threshold.

and the rest of the sessions are equally important.

Analysis of Session Threshold In Section 4.4.2 we described how we estimated the 10
days threshold based on the approach in Halfaker et al. [49]. This threshold was then used in
Section 4.4.3 to discard sessions that exceed 10 days. We now empirically analyse the estimated
threshold by varying it, then retrain and evaluate how our models perform with different choices
of threshold. The results are presented in Figure 4.13. We observe that the performance of our
models drops when decreasing the threshold to less than 10, while an increase of the threshold
has less impact on the performance. It shows that the additional sessions that are added to
the input of our models when increasing the threshold above 10 are not used by the models.
Only the model with attention has increasing performance when the threshold exceeds 10 days.
It is likely due to the attention mechanism being able to use the right information from the
additional sessions.
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Table 4.8: Ablation study of actions. Relative change in parentheses.

Model HR@3 Precision@3 Recall@3 MRR@3 MAP@3

Cross-sessions Encode

all actions 0.8380 0.3030 0.8145 0.7093 0.6923
without E-commerce 0.7526 (-10.19%) 0.2698 (-10.95%) 0.7249 (-11.00%) 0.5951 (-16.09%) 0.5764 (-16.74%)
without Claims reporting 0.8250 (-1.55%) 0.2979 (-1.68%) 0.8012 (-1.64%) 0.7006 (-1.22%) 0.6829 (-1.35%)
without Information 0.8317 (-0.75%) 0.3000 (-0.98%) 0.8072 (-0.89%) 0.7045 (-0.68%) 0.6863 (-0.87%)
without Personal account 0.8067 (-3.73%) 0.2894 (-4.48%) 0.7803 (-4.19%) 0.6604 (-6.89%) 0.6438 (-7.00%)
without Items 0.7379 (-11.94%) 0.2652 (-12.46%) 0.7116 (-12.63%) 0.5720 (-19.36%) 0.5548 (-19.86%)
without Services 0.8032 (-4.15%) 0.2880 (-4.93%) 0.7765 (-4.66%) 0.6639 (-6.40%) 0.6465 (-6.61%)
without Start 0.8162 (-2.60%) 0.2935 (-3.11%) 0.7906 (-2.94%) 0.6771 (-4.55%) 0.6592 (-4.77%)
without Act 0.8318 (-0.73%) 0.3005 (-0.80%) 0.8082 (-0.77%) 0.7035 (-0.82%) 0.6864 (-0.85%)
without Complete 0.8317 (-0.75%) 0.3005 (-0.82%) 0.8078 (-0.82%) 0.7036 (-0.80%) 0.6861 (-0.89%)

Cross-sessions Encode
with Weibull Loss

all actions 0.8378 0.3013 0.8120 0.7039 0.6852
without E-commerce 0.7433 (-11.28%) 0.266 (-11.71%) 0.714 (-12.07%) 0.5791 (-17.74%) 0.5603 (-18.23%)
without Claims reporting 0.8265 (-1.35%) 0.2971 (-1.40%) 0.8004 (-1.43%) 0.6901 (-1.97%) 0.6717 (-1.97%)
without Information 0.8329 (-0.59%) 0.3006 (-0.22%) 0.8081 (-0.48%) 0.7013 (-0.37%) 0.6835 (-0.25%)
without Personal account 0.8095 (-3.38%) 0.2887 (-4.19%) 0.7821 (-3.68%) 0.6674 (-5.18%) 0.65 (-5.14%)
without Items 0.7349 (-12.28%) 0.2622 (-12.97%) 0.7053 (-13.14%) 0.5628 (-20.05%) 0.5446 (-20.52%)
without Services 0.8096 (-3.37%) 0.2891 (-4.04%) 0.7817 (-3.73%) 0.6609 (-6.12%) 0.6429 (-6.17%)
without Start 0.8149 (-2.73%) 0.2909 (-3.46%) 0.787 (-3.07%) 0.6722 (-4.50%) 0.6538 (-4.59%)
without Act 0.8279 (-1.18%) 0.2979 (-1.11%) 0.8026 (-1.16%) 0.6993 (-0.65%) 0.6813 (-0.57%)
without Complete 0.8283 (-1.13%) 0.2973 (-1.32%) 0.8019 (-1.24%) 0.6925 (-1.62%) 0.674 (-1.63%)

Cross-sessions Encode
with Attention

all actions 0.8385 0.3026 0.8141 0.7118 0.6941
without E-commerce 0.745 (-11.15%) 0.2675 (-11.61%) 0.7181 (-11.79%) 0.5938 (-16.57%) 0.5753 (-17.11%)
without Claims reporting 0.8341 (-0.53%) 0.3002 (-0.82%) 0.8091 (-0.62%) 0.7036 (-1.15%) 0.6853 (-1.26%)
without Information 0.8336 (-0.59%) 0.3015 (-0.36%) 0.81 (-0.50%) 0.7085 (-0.46%) 0.6914 (-0.38%)
without Personal account 0.8147 (-2.84%) 0.2917 (-3.60%) 0.7886 (-3.13%) 0.676 (-5.02%) 0.6592 (-5.03%)
without Items 0.7399 (-11.76%) 0.2645 (-12.61%) 0.7117 (-12.58%) 0.5696 (-19.98%) 0.5522 (-20.44%)
without Services 0.8171 (-2.55%) 0.2927 (-3.27%) 0.7906 (-2.88%) 0.6741 (-5.29%) 0.6569 (-5.36%)
without Start 0.8194 (-2.28%) 0.2953 (-2.44%) 0.7942 (-2.44%) 0.6831 (-4.03%) 0.6651 (-4.17%)
without Act 0.8348 (-0.44%) 0.3002 (-0.82%) 0.8088 (-0.65%) 0.7034 (-1.18%) 0.6848 (-1.33%)
without Complete 0.8385 (0%) 0.3028 (0.06%) 0.8142 (0.02%) 0.706 (-0.81%) 0.689 (-0.73%)

Analysis of Actions We use ablation to analyse the influence of different actions (i.e.,
sections, objects and types). Each time, we remove all actions of a given type and evaluate our
cross-sessions models after retraining without the action type under analysis. The results are
presented in Table 4.8 for all our models and evaluation measures. We did not consider the
action type “click” in the ablation study because removing clicks results in removing most of
the actions (65%), but also most of the objects and sections since users interact with objects
and sections mainly through clicks.

For the Cross-sessions Encode and Cross-sessions Encode with Weibull Loss, all actions
contribute positively to the model performance as their removal causes a drop in performance.
We have a similar conclusion for the Cross-sessions Encode with Attention model with the
exception that the removal of actions of the type “complete” increases performance instead of
decreasing it, but the actual difference is negligible (less than 0.5%).

Not surprisingly, the most negative impact (up to−20.52% in MAP) is obtained when actions
with the object type “item” are removed. Even if these are not the most frequent objects (see
Table 4.2), they are highly informative as they provide information on the user’s interests. The
most frequent objects are “services”, twice more frequent than items, and their removal affects
negatively the performance even if with a less severe impact (up to −6.61% in MAP).

The second greatest negative impact is obtained when the actions from the section “e-
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Figure 4.14: HR@k and MRR@k for different ages of the users. The grey bars illustrate the
percentage of the different groups in the dataset.

commerce” are removed (up to −18.23% in MAP). Again, this is not the most frequent section,
but it is highly informative since the user needs to access the e-commerce section to inspect
and compare different insurance products. The most frequent section is the “personal account”,
which is 3 times more frequent than the e-commerce section. Its removal has a negative impact,
but not as severe as for e-commerce (up to −7% in MAP).

In terms of action type, the removal of the type “start” has the greatest negative effect, even
if limited with respect to the other two categories (up to −4.77% in MAP). The types “act” and
“complete” have a negligible impact (less than 2%), but they also represent a very sparse signal
(less than 5% of all types together).

Fairness Analysis We analyse group fairness of our models compared to the baseline models
by exploring the performance for different age, gender and income level of the users, as these
are protected characteristics that should not be discriminated against. The results of HR and
MRR are illustrated in Figures 4.14, 4.15 and 4.16. The results for the remaining measures are
similar, but not included for brevity. We further explore statistical significance, where Wald test
is used for HR and t-test is used for MRR to compare the performance of the same model for
different groups. In order to focus on variations between different types of models, we included
the best-performing model among the non-sessions-based models, the best-performing version of
the GRU4REC model, the best-performing version of the SKNN model and the best-performing
model among our cross-sessions models.

We observe that the session-based models (GRU4REC Concat, SKNN_EB and Cross-
sessions Encode with Attention) have lower performance when increasing age of the users. Es-
pecially the GRU4REC model has very poor performance for users from the age of 60, even
though this group is well represented in the data. This is also supported by statistical tests,
showing that the performance for users younger than 30 is significantly higher and the perfor-
mance for users from the age of 60 is significantly lower than the rest. It does not apply to the
same extent for the demographic model. It indicates that is it more difficult to learn insurance
recommendations from user sessions generated by older users.
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Figure 4.15: HR@k and MRR@k for different genders of the users. The grey bars illustrate the
percentage of the different groups in the dataset.

Figure 4.16: HR@k and MRR@k for different income levels of the users on a scale from 1− 10,
where 1 is the lowest income level and 10 is the highest. The grey bars illustrate the percentage
of the different groups in the dataset.

We further observe that none of the models are unfair towards gender, even though male
users are over-represented in the dataset compared to female users. Only the demographic model
has slightly better performance for male users than female users. Statistical tests show that none
of the models have significantly different performances between genders.

Finally, we do not observe any strong trends in the performance for different income levels
of the users. The demographic model has slightly decreasing performance for users with higher
income level (only income level 1 − 2 is statistically different from the others), while all the
session-based models have slightly lower performance for users with middle-income level (it is
only statistically significant for the SKNN model).
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4.6 Conclusions and Future Work
The insurance domain is a data-scarce domain, where there is a limited amount of user feedback,
interactions and number of items. These features make insurance recommendations particularly
challenging. We have addressed the problem of insurance recommendation with our cross-
sessions models, which learn to recommend items from past user sessions and different types of
user actions. These actions are not always directly associated with items, for example a user
reporting a claim on the insurance website. Unlike state-of-the-art session-based and session-
aware models, our models predict a target action that does not occur within the session. Our
cross-sessions models are all based on RNNs with GRU units. These are combined with 3
different ways to represent user sessions: maximum pooling encoding, concatenation of multiple
sessions and an autoencoder approach; and 3 different loss functions and architectures: cross-
entropy, censored Weibull and attention mechanism.

Experimental results on a real-world dataset show that all our cross-sessions models out-
perform several state-of-the-art baselines. Moreover, combining our models with demographic
features boosts the performance even further. Additional analyses on the results shows that:
(1) considering past user sessions is beneficial for cross-sessions models; (2) the removal of any
type of action harms the performance, thus considering several types of actions is also beneficial.
Finally, an analysis of group fairness with respect to age, gender, and income level, shows that
our cross-session models are not biased against specific groups.

The output vector o, which was introduced in Section 4.3.2, contains a score for each item.
The length of the vector is thereby equal to the total number of items. In item-poor domains like
the insurance domain, the size of vector o is consequently small, but in other domains like music
and retail, it is not rare to have hundreds of thousands of items. In such a case, calculating
a score for each item would not be the most efficient approach. A possible solution could be
to sample the output and only compute the score for a small subset of the items together with
some negative examples. In future work, the effect of the size of vector o in our proposed models
could be studied in large item domains with different sampling strategies.

As future work, we further plan to run an online A/B testing experiment to evaluate our
models in an online scenario with users interacting in real-time. Moreover, we will investi-
gate how to combine ML interpretability models [100], for example Local Surrogate (LIME),
SHapley Additive exPlanations (SHAP), with our cross-sessions models to generate automatic
explanations that will be shown to online customers. Finally, we will combine our models with
other types of data, for example transcripts of user conversations over the phone, and develop a
multi-modal extension of our models.
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Chapter 5

Dataset and Models for Item
Recommendation Using
Multi-Modal User Interactions

Abstract
While recommender systems with multi-modal item representations (image, audio, and text),
have been widely explored, learning recommendations from multi-modal user interactions (e.g.,
clicks and speech) remains an open problem. We study the case of multi-modal user interactions
in a setting where users engage with a service provider through multiple channels (website and
call center). In such cases, incomplete modalities naturally occur, since not all users interact
through all the available channels. To address these challenges, we publish a real-world dataset
that allows progress in this under-researched area. We further present and benchmark various
methods for leveraging multi-modal user interactions for item recommendations, and propose
a novel approach that specifically deals with missing modalities by mapping user interactions
to a common feature space. Our analysis reveals important interactions between the different
modalities and that a frequently occurring modality can enhance learning from a less frequent
one.

5.1 Introduction
Recommender systems (RSs) most often learn from the users’ actions such as ratings or purchases
of items. In many domains, users interact with the system through multiple channels like website
and call center, social tagging [40], image posting [80] and location sharing [10]. We refer to
these different interaction types (e.g., clicks and speech) as multi-modal user interactions. We
study the generation of recommendations when the user interactions have different modalities
and thereby cannot simply be combined and used in existing recommender methods that are
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designed for uni-modal user interactions. Previous work on multi-modal RSs exclusively focuses
on multi-modal representations of items such as image, audio, and text [55, 152, 134, 91]. These
methods are not designed for our scenario with multi-modal user interactions. In particular,
existing methods only work when all modality information is available during training and
inference. This is a problem when dealing with multi-modal user interactions where incomplete
modalities naturally occur, since not all users interact through all the available channels. For
example, in the insurance domain, where items are rather complex, some users purchase items
through the website, while others prefer to make the purchase over the phone. Note that our
scenario distinguishes from previous work on multi-behavior RSs [157, 160, 89], that try to infer
user preferences with feedback of different categories, such as view, add-to-cart and purchase,
but do not learn from user interactions of different modalities.

While multi-modal user interactions have great potential to be utilized in RSs, the lack of
public datasets is a major roadblock to progress in this area. Therefore, the primary contribution
of this paper is the creation and release of a real-world dataset to facilitate RSs research on
multi-modal user interactions. The data is collected from a company dealing with insurance
products for individuals and consists of (1) user sessions logged from the company’s website, (2)
transcribed conversations between users and the company’s insurance agent, and (3) purchase
actions. This data opens up novel research opportunities to predict product purchases based on
rich, multi-modal interactions. Unlike commonly studied domains like movie, restaurant, or book
recommendations, which are considered low-risk scenarios, the purchase of insurance products
is a high-stakes domain where decisions can have a long-lasting impact on an individual’s life,
marking a significant departure from traditional RSs research. As our second contribution,
we present and experimentally compare several approaches for combining different modalities
for recommendation. We consider existing methods, such as different imputation approaches
[26, 141, 144] and knowledge distillation [145]. We also propose a novel approach to jointly
model different modalities, that suffer from naturally induced incompleteness, by mapping them
into a common feature space. Specifically, we explore the following research questions.

RQ1 How can we effectively learn recommendations from multi-modal user interactions?

RQ2 How does it affect the quality of recommendations to jointly model the multiple modalities
compared to separately?

A crucial factor for RQ1 is how we can represent multi-modal user interactions so they can be
combined. In RQ2 it is essential to investigate if there are important interactions between the
modalities and whether information from one modality can be useful when learning recommen-
dations from another modality. Experimental results show that the two modalities represent
different information that supplement each other well in the recommendation task. Compared
to the existing methods, our proposed approach manages to capture important interactions be-
tween the modalities as well as use information from the most frequent modality when learning
recommendations from the less frequent modality.

In summary, this paper makes the following contributions: (1) we create and release a
dataset of multi-modal user interactions for the recommendation of financial products; (2) we
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present and experimentally compare various approaches for leveraging multi-modal user inter-
actions; and (3) we conduct an in-depth analysis of the results to shed light on what makes
this problem challenging. All resources developed within this study, including the dataset and
implementations of the models, are made publicly available on GitHub1.

5.2 Related work
We present related work focusing on multi-modal recommendation datasets, RSs for the insur-
ance domain, conversation-based recommendations, and multi-modal recommendation models.

Multi-modal Recommendation Datasets We contribute a novel dataset for multi-
modal recommender tasks which is different from publicly available ones as follows. First,
our dataset contains multi-modal user interactions while existing datasets contain multi-modal
item representations, e.g., visual and textual representations of movies, books, and music [169],
video and textual representations of micro-videos [139], and acoustic and textual representations
of music [12]. Second, in our dataset missing modalities naturally occur since users might
not interact through all channels, while in [169, 139, 12] missing modalities only occur due to
technical reasons.

Insurance Domain In this domain, user feedback on items is sparse, because of few different
items and because users rarely interact with insurance products. Most prior work supplements
the small volume of user feedback with user demographics, such as age, income level, and
employment. In this case, different techniques are used to categorize users based on demographic
characteristics, then make recommendations within these categories [161, 122, 111]. Bi et al. [14]
propose a cross-domain RS for the insurance domain. They use knowledge from an e-commerce
source domain with daily necessities to learn better recommendations in the insurance target
domain when data is sparse. In [20] and [22] a session-based approach is presented that uses
a recurrent neural network (RNN) to learn insurance recommendations from web sessions with
several types of user actions. None of the above methods use conversations or multiple modalities
to learn insurance recommendations.

Conversation-based Recommendations The way we utilize conversations is not to be
confused with conversational RSs, which are interactive systems that allow the user to disclose
preferences, ask questions about items, and provide feedback [70]. Instead, we learn recommen-
dations from past observed conversations and make recommendations in one-shot interactions.
Few studies have focused on RSs based on past conversations. Gentile et al. [46] exploit e-mail
conversations to learn user profiles utilizing different techniques (keyword extraction, extraction
of named entities, and concept extraction). The profiles are then used to estimate the similar-
ity between users. Rosa et al. [119] analyze text messages posted on social networks with the

1https://anonymous.4open.science/r/RS_multi_modal_user_interactions-5893
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purpose of detecting users with potential psychological disorders (depression and stress). Then,
if needed, an RS is used to send messages of happiness, calm, relaxation, or motivation. Text
sentences are analyzed employing neural network approaches. Haratinezhad Torbati et al. [53]
explore past online chats between users to learn search-based recommendations. They leverage
language modeling techniques such as entity detection and entity-based expansions to represent
the chats that are then used for ranking. However, none of these works combine the conversations
with any other modalities.

Multi-modal Recommendation Models Multi-modal RSs can model relationships be-
tween different modalities and possibly benefit from the complementary and diverse sources of
information that can not be captured by a uni-modal RS. He and McAuley [55] address cold
start and data sparsity with matrix factorization on the user-item matrix complemented with
visual representations. Wei et al. [152] use graph neural networks to learn the representation of
each modality and then fuse them together as the final item representations. Instead of fusing
the modality representations, Sun et al. [134] use knowledge graphs to include side information
of different modalities. Liu et al. [91] introduce an attention neural network when fusing vi-
sual and textual representations, which can recognize users’ varied preferences. All the above
methods focus on multi-modal item representations, while we address the distinct challenge of
multi-modal user interactions across different channels. Also, these methods rely on complete
modality information during training and inference, which is unrealistic for multi-modal user
interactions where not all users engage through all channels.

To deal with missing modalities, some imputation methods have been proposed in the
broader field of machine learning. Tran et al. [141] concatenate all the modalities to form a
large matrix, then apply a cascaded residual autoencoder to impute the missing elements. Cai
et al. [26] use adversarial learning to complete the missing modalities, and Wang et al. [144] use
a generative model to reconstruct the modality-specific embedding. In all these scenarios, the
missing modalities existed in the real world but were missing in the dataset for technical reasons,
such as problems with the measurement/tracking, or synthetically generated by removing obser-
vations from the dataset. This is a major difference from our scenario, where missing modalities
are a result of “normal use.” For instance, if a user did not interact with the website, then it
might not be the most appropriate method to generate web sessions that did not take place.
Furthermore, there might be some information in the user choosing not to have a conversation
or web session, which is lost when using imputation. Wang et al. [145] use knowledge distillation
to avoid imputation: they first train teacher models on each modality independently, then the
student models are trained on complete modalities with soft labels from the teacher models and
the true label. This method does not work well when only a small amount of the samples have
complete modalities, as in our case.
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5.3 Dataset
To the best of our knowledge, there exists no publicly available dataset that contains user
interactions of different modalities and with a naturally induced incompleteness of modalities.
We use a real-life dataset that we have obtained from a commercial insurance vendor and that
we make freely available to the research community. Next, we describe the application context
as well as the dataset.

5.3.1 Application Context
The data is collected from a vendor that deals with insurance for individuals. The items to be
recommended are insurance products such as car, house and accident insurance or additional
coverages, like roadside assistance for car insurance or chewing injury for accident insurance.
The objective of an RS in this domain is to help customers continuously adjust their insurances
to suit their needs.

The company’s website is divided into four sections: (1) e-commerce, where users can buy
insurance products, (2) claims reporting, where users can report insurance claims, (3) informa-
tion section with information about payment methods, contact details, etc., and (4) personal
account, where users can log in. In that way, users can interact with items, like buying a
car insurance or reporting a house insurance claim, and can interact with services, like finding
information about the payment methods or changing personal information such as address.

The company’s call center has only inbound calls (i.e., the user calling the company). Here,
the user can call for exactly the same purposes as on the website; for example, to buy insurances,
report claims, ask about payment methods, and change address.

5.3.2 Dataset Description
The dataset was collected between May 1, 2022, to April 30, 2023. We collected purchases of
insurance products and additional coverages made by existing customers. A purchase consists
of one or more items bought by the same user at the same time. Both purchases made on
the website and over the phone are included. For each user in the dataset, we collected all
conversations that occurred before the user’s purchase. A conversation consists of transcribed
sentences from phone calls between a user and an insurance agent. The sentences in the dataset
come with the order of the sentences, the speaker (user or agent), and the transcribed text. For
each user in the dataset, we moreover collected all web sessions that occurred before the user’s
purchase. A web session consists of user actions on the insurance website. The actions in the
dataset come with the order they are performed and action tags describing the section of the
website in which the user interacts, the object on the website that a user chooses to interact
with, and the way that a user interacts with objects.

All data has been anonymized to protect the identities and personal information of the
individuals involved. Personal identifiers such as names, addresses, and contact information were
removed; demographic information is not included. This ensures that individual participants
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Table 5.1: Main properties of the dataset (*mean/std).
Users 51,877
Items 24
Purchases 62,401
Conversations 25,515
Web sessions 115,045
Conversations before purchase* 1.38/0.82
Web sessions before purchase* 2.3/1.98

cannot be identified or singled out from the dataset. The anonymization of data was carried out
in compliance with applicable data protection laws and regulations. We thus expect this data
to be useful for a long time without requiring frequent updates. We might release updated text
embeddings as needed to accommodate the latest advancements in language models.

5.3.3 Dataset Pre-processing
The dataset is pre-processed in the following way. All items with frequency of less than 1% are
removed from the purchases since low-frequency items are not optimal for modeling. Consecutive
repeated actions of the same kind are discarded in web sessions because they very likely represent
noise (e.g., double click due to latency). All conversations with less than four sentences and all
web sessions with less than three actions are removed, as they offer limited insights. To avoid slow
processing, all conversations and web sessions are truncated in the end to have a maximum of 541
sentences and 40 actions respectively (the 99th percentiles). Not all historical conversations and
web sessions are kept for each user as only recent conversations and web sessions are assumed
to be relevant to the current task. An inactivity threshold is used to define recent events (i.e.,
conversations/web sessions) such that two events belong to the same task if the time duration
between them does not exceed a specific threshold, which is set to be 14 days based on [20].
Conversations and web sessions that exceed this threshold are thereby discarded. In addition
within the 14 days rule, the list of recent events for each user is truncated to a maximum of 10
events (the 99th percentile) to reduce training time. Text embeddings are generated for each
sentence in the conversations using a pre-trained language-specific BERT model 2 on the raw
text. Keywords are extracted from the sentences by removing stop words, lemmatization, and
using part-of-speech tagging to identify nouns.

Table 5.1 and Fig. 5.1 show general statistics of the dataset after pre-processing. There are
approximately 62K purchases made by 52K different users. As observed from Fig. 5.1, not all
users have had a conversation prior to their purchase (32%). Likewise, not all users have had
a web session prior to their purchase (87%) why conversations and web sessions are naturally
missing for part of the users. Only 19% of the users have had both conversations and web
sessions prior to their purchase.

2https://huggingface.co/Maltehb/danish-bert-botxo
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Figure 5.1: Distribution of the users having conversations and web sessions.

Figure 5.2: Example of a user’s past events. An event can either be a conversation, in the form
of text, or a web session, in the form of action tags.

5.4 Multi-modal Recommendations
The core modeling issue consists of representing multi-modal user interactions. Next, we for-
malize the problem for this new task (Section 5.4.1), present existing approaches (Section 5.4.2),
and propose three models that specifically address the issue of naturally occurring incomplete
modalities (Section 5.4.3). Together these models are meant to serve as a strong set of baselines
for this new dataset.

5.4.1 Problem Formalization
The goal of our RS is to recommend the next items that a user will buy, given the user’s
past conversations and web sessions. As opposed to existing multi-modal RSs, which deal
with items with multi-modal representations, in our task: (1) we deal with multi-modal user
interactions, and (2) parts of the modalities are naturally missing. We collectively refer to web
sessions and conversations as events and represent a user as the list of the user’s past events, ei,
chronologically ordered. Depending on the user’s history, the event list can either exclusively
contain conversations, web sessions, or a combination of both. In the latter case, the order of
conversations and web sessions can vary for different users. Moreover, the events have different
modalities. A web session is a sequence of user actions, {ai1, ai2, ai3, ..., ain}, on the website,
where an action is a set of tags. A conversation is a sequence of sentences, {ti1, ti2, ti3, ..., tin},
between a user and an insurance agent, in the form of text. Fig. 5.2 illustrates a user that has
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(a) Late Fusion model (b) Knowledge Distillation model

(c) Imputation models

Figure 5.3: Schematic overview of the baseline models.

had a web session followed by a conversation, and finally a web session again.
The task is to learn a function, f , for predicting the probability that a user will buy each

item j after the last event em based on the input sequence of a user’s past events:

f(e1, e2, e3, ..., em) = (p̂1, p̂2, p̂3, ..., p̂J), (5.1)

where each element in {e1, e2, e3, ..., em} can either be a conversation or web session, p̂j is the
estimated probability that item j will be bought by the user, and J is the total number of items.

5.4.2 Existing Approaches
The following existing approaches can be applied to our problem.

• Popular recommends the items with the largest number of purchases across users.

• Conversation is a model trained only on the conversations. For that, we use a neural
text classifier that takes as input the average text embeddings of a user’s past conversations
and predicts the purchase probability of each item. Note that this model only provides
recommendations for users that had conversations.

• Web Session is a model trained only on the web sessions, using the session-based RS pre-
sented in [20], which takes into account the special characteristics of the insurance domain.
Note that this model only provides recommendations for users that had web sessions.
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• Late Fusion combines the output from the Conversation and Web Session models. It uses the
recommendations from the Conversation model for those users that had only conversations
and the recommendations from the Web Session model for those users that had only web
sessions. Finally, it fuses the output from the two separate models for those users that have
had both conversations and web sessions by averaging the predictions from the two models.
This model is illustrated in Fig. 5.3a.

• Knowledge Distillation trains a joint model on users that had both conversations and web
sessions. The model uses information from the two separate models as done in [145]. For
users with only one modality, it uses the recommendations from the respective model for that
modality; see Fig. 5.3b.

• Generative Imputation trains a model that generates the missing modality from the other
modality as done in [26, 141, 144]. Once the missing modalities are imputed by the generative
model, the modalities can be concatenated and jointly modeled. For a fair comparison, we use
a neural network with the same architecture as the separate models. This model is illustrated
in Fig. 5.3c.

• Neutral Imputation is similar to Generative Imputation. Because the modalities are not
missing for technical reasons, we try a more neutral imputation strategy, so that fabricated
conversations/web sessions do not corrupt the model. Missing conversations are imputed with
the average text embedding in the training set and missing web sessions are imputed with the
most frequent web session in the training set.

5.4.3 Proposed Methods
Next, we present novel models that aim to address the aspect of the problem concerning naturally
induced incompleteness.

5.4.3.1 Data Representation

Our approach builds on top of the session-based RS proposed in Bruun et al. [20] that takes
into account the special characteristics of the insurance domain, namely (1) web sessions consist
of various actions, not only interactions with items; (2) users can have multiple web sessions
before the target action (i.e., purchase); and (3) the purchase occurs outside the web session.
We propose three different approaches to map the conversations into the same feature space as
the web sessions and jointly model the two modalities with the session-based framework. In
the session-based model, a user is represented by the sequence of the user’s past web sessions
{s1, s2, s3, ..., sm}. A web session can be encoded in different ways. Based on Bruun et al. [20],
we encode a web session with a maximum pooling operation:

si = maxelement(ai1, ai2, ai3, ..., ain), (5.2)

where maxelement(·) is a function that takes the element-wise maximum of vectors, and aij is
a binarized vector of the action performed by a user. Then, the ordered sequence of encoded
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sessions is passed through an RNN with gated recurrent units (GRU) that predicts what items
the user will buy after the last time step. We extend this framework to the multi-modal case,
such that a user is now represented by the sequence of the user’s past events {e1, e2, e3, ..., em},
where each event, ei, can either be a conversation, ci, or a web session, si. Next, we explain
different ways of mapping the conversations and web sessions into the same feature space, so
the events can be passed together through the RNN. In this way, a missing modality will not
affect the model, since the events can be handled equally, once they are mapped into a common
representation space.

5.4.3.2 Keyword Model

In the first way, called the Keyword model, the conversations are represented by keywords
extracted from the text. We then manually match the keywords with the actions from the
web sessions. Each event is thereby a binarized sequence of keywords, that can be encoded in
the same way as the actions in Eq. (5.2), into a sequence of keyword vectors {k1, k2, k3, ..., km}
representing the events. Then, for every time step i in the sequence of a user’s events, an RNN
with a single GRU layer computes the hidden state3

hi = (1− zi) · hi−1 + zi · ĥi
zi = σ(Wzki + Uzhi−1),

ĥi = tanh(Wki + U(ri · hi−1)),

ri = σ(Wrki + Urhi−1),

for i = 1, ..,m,

(update gate)

(candidate gate)

(reset gate)

(5.3)

where Wz, Uz,W,U,Wr and Ur are weight matrices and σ(·) is the sigmoid function. The Key-
word model is illustrated in Fig. 5.4a, with the corresponding neural architecture shown in
Figure 5.5a.

5.4.3.3 Latent Feature Model

The second way of mapping the two modalities into a common feature space is called the Latent
Feature model. Here, conversations are represented by text embeddings, and web sessions are
represented by action encodings (cf. Eq. (5.2)). The two different representations are passed as
input to the same neural network, where the first layer maps them into a common representation
of latent features. Formally, the following hidden state is computed for all the events in a user’s
sequence:

li = tanh(Wcei · 1{ei=ci} +Wsei · 1{ei=si}), for i = 1, ..,m, (5.4)

where Wc and Ws are weight matrices used to map the conversations and web sessions respec-
tively into the vector, li, of common latent features, and 1{} is an indicator function ensuring
that Wc is used whenever the event is a conversation and Ws is used whenever the event is a ses-
sion. We use the hyperbolic tangent as the activation function for this hidden layer to promote

3Note that bias terms are omitted when hidden states are presented.
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(a) Keyword model (b) Latent Feature model

(c) Relative Representation model

Figure 5.4: Schematic overview of our models.

the task of mapping the real-valued conversations and the binarized sessions into features on
the same scale. Then, for every time step in the sequence, li is passed through the hidden state
in Eq. (5.3) instead of ki. The weight matrices in Eq. (5.4) are optimized during the training of
the full network. In that way, the latent features are automatically learned with respect to the
task of generating recommendations. The Latent Feature model is illustrated in Fig. 5.4b, with
the neural architecture shown in Fig. 5.5b.

In both cases, the neural network returns an output vector o of length J after the last time
step. Because a user can buy multiple items at the same time, the learning task is considered
a multi-label classification, and the sigmoid function is used on each element of o as the output
activation function to compute the likelihood of purchase:

p̂j = σ(oj), for j = 1, . . . , J. (5.5)

During training, the loss function is computed by comparing p̂ with the binarized vector of the
items purchased, p. Due to the learning task being multi-label classification, the loss function
is defined as the sum of the binary cross-entropy loss over all items:

L = −
J∑

j=1

(
pj · log(p̂j) + (1− pj) · log(1− p̂j)

)
. (5.6)

5.4.3.4 Relative Representation Model

We propose a third way, called the Relative Representation model. We use relative represen-
tation [101] that encodes the intrinsic information of a dataset learned by a neural network.
Each data point becomes a set of coefficients that encode the point as a function of other data
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(a) Keyword model (b) Latent Feature model

(c) Relative Representation model

Figure 5.5: Neural architectures of our models.

samples. It thereby enables the comparison of latent spaces across different neural networks.
Hence, we train two separate neural networks from where latent representations of the two
modalities can be extracted. We then use the method in [101] to make the two representations
relative and thereby comparable to each other. The conversations and web sessions can now
jointly be modeled by using their relative representations. Particularly, the two separate net-
works take individual conversations/web sessions as input (as opposed to the users’ sequences
of conversations/web sessions) and have an intermediate hidden state that can be used to create
latent representations of single conversations/web sessions. They are trained on the same down-
stream recommendation task. Formally, a conversation, ci, is represented by text embeddings
and passed through a dense layer that computes a latent representation

c̃i = tanh(Wcci), (5.7)

where Wc is a weight matrix. As in the Latent Feature model, we use the hyperbolic tangent as
the activation function to promote the transformation of the different modalities into a common
latent space. This representation is then used to solve the downstream recommendation task by
passing it through another dense layer that computes the output o to be used in Eq. (5.5):

o = Woc̃i, (5.8)

where Wo is another weight matrix. A web session, si, is represented by action encodings and
similarly transformed into a latent representation, s̃i, that can be used to solve the downstream
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recommendation task:

s̃i = tanh(Wssi), (5.9)
o = Wos̃i. (5.10)

Once the weights are optimized with respect to the recommendation task, the first part of the
networks (i.e., Eq. (5.7) and (5.9)) are used to convert conversations and web sessions into latent
representations. Following the method in [101], a subset, X , of the training set, denoted anchors,
is selected. In our case, the anchors are selected among the users that are represented by both
modalities. Given the indices of the anchor users in an arbitrary ordering x1, x2, . . . , x|X |, the
relative representation, ri, of a conversation is computed as a function of the anchor users’
conversations:

ri = (sim(c̃i, c̃x1), sim(c̃i, c̃x2), . . . , sim(c̃i, c̃x|X|)), (5.11)

where sim() is a similarity function yielding a scalar score. Similarly, the relative representation
of a session is given by

ri = (sim(s̃i, s̃x1), sim(s̃i, s̃x2), . . . , sim(s̃i, s̃x|X|)). (5.12)

A sequence of events is now represented by {r1, r2, . . . , rm}, where each ri is either the relative
representation of a conversation or a web session. The two modalities are jointly modeled by
passing ri through the hidden state in Eq. (5.3) instead of ki for every time step in the sequence.
This model is shown in Figs. 5.4c and 5.5c.

5.5 Experimental Setup
First, we describe the evaluation procedure, then the baselines, implementation details, and
hyperparameter tuning.

5.5.1 Evaluation Procedure
As a test set, we use the latest 10% of purchases with associated past conversations and web
sessions. The remaining 90% is used for training.

The models generate a score for how likely the user will buy each item, which is then
sorted as a ranked list. There are two types of items: new insurance products and additional
coverage. Since it is only possible for a user to buy additional coverage if the user has the
corresponding base insurance product, we use a post filter to set the score to the lowest score if
that is not the case, as per Aggarwal [2]. The list of ranked items is evaluated with Hit Rate
(HR) and Mean Average Precision (MAP). Besides reporting HR and MAP averaged across
all users in the test set (the union), we further break down the performance by the users that
have only had conversations (the conversations-only), the users that have only had web sessions
(the web sessions-only), and the users that have both had conversations and web sessions (the
intersection), since this is of interest to our research questions. Because some of these subsets
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Table 5.2: Hyperparameters
Model Batch size Units Dropout

Conversation 512 64 0.2
Web Session 256 256 0.3
Knowledge Distillation 256 128 0.4
Generative Imputation 128 256 0.2
Neutral Imputation 128 128 0.2
Keyword 512 256 0.2
Latent Feature 512 256 0.3
Relative Representation 256 256 0.3

of users are relatively small (e.g., only 13% conversations-only), we report the average of the
performance measures over five models trained from different seeds to account for randomness.
We use a cutoff threshold of three because (1) the total number of items is 24, therefore high
cut-offs (e.g., ≥ 10) will not inform on the actual quality of the RSs; (2) on the user interface
the user will be recommended up to three items. Additionally, we report MAP scores for all
cut-off values from one to five. Experimental results are supported by statistical testing. For
HR we use McNemar’s test [37] and for all other measures we use one-way ANOVA [81], both
with a confidence level of 0.05.

5.5.2 Implementation & Hyperparameters
All implementation is in Python 3.9.13 and TensorFlow 2.10.0. We used Adam as the optimizer
with TensorFlow’s default settings for the learning rate, exponential decay rates, and the epsilon
parameter. Early stopping was used to choose the number of epochs based on the minimum
loss on the validation dataset. We used two-layer networks4 with dropout regularization on the
first hidden layer. We partitioned the training set in the same way as the whole dataset, so the
validation set includes the latest 10% of purchases with associated conversations/web sessions,
and the remaining is used for training. Depending on the model, we remove action tags or
keywords that have a frequency of less than 0.1 percent. We tuned the hyperparameters of each
neural model (batch size, number of units, and dropout rate) on the validation set using grid
search. We test powers of two for the batch size and number of units ranging from 64 to 256. For
the dropout rate, we test values in {0.2, 0.3, 0.4}. The final hyperparameters used are reported
in Table 5.2. In the Knowledge Distillation model, we use as distillation loss the sum of the
binary cross-entropy loss over all items, as we are dealing with a multi-label classification task.
The α and β parameters, which are used to control how much knowledge the student model
gets from the teacher models, are set in proportion to how much data the student models are
trained on. That is α = 0.32 for the Conversation model and β = 0.87 for the Web Session
model. In the Relative Representation model, we use cosine similarity as the similarity measure
(see Eqs. (5.11) and (5.12)). We tune the number of anchors on the validation set and find the
optimal number to be 125 which are sampled from each class in the training set.

4In all models the second layer is a dense layer with ReLU activation function.
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Table 5.3: Performance results. All results marked with * are significantly different from the
Latent Feature model. The best scores for each measure are boldfaced. Percentages in brackets
denote relative differences w.r.t. the strongest baseline (Imputation).

Model Union Conversations-only Web Sessions-only Intersection
HR@3 MAP@3 HR@3 MAP@3 HR@3 MAP@3 HR@3 MAP@3

Popular 0.4595* 0.2742* 0.5249* 0.3318* 0.4287* 0.2424* 0.5111* 0.3340*
Conversation - - 0.6623* 0.4975 - - 0.6184* 0.4497*
Web Session - - - - 0.6642* 0.5188 0.6512* 0.4750*
Late Fusion 0.6703* 0.5179* 0.6623* 0.4975 0.6642* 0.5188 0.6949* 0.5287
Knowledge Distillation 0.6697* 0.5168* 0.6623* 0.4975 0.6642* 0.5188 0.6921* 0.5235*
Generative Imputation 0.6685* 0.5156* 0.6582* 0.4878* 0.6635* 0.5180 0.6910* 0.5270
Neutral Imputation 0.6767* 0.5161* 0.6843* 0.5053 0.6687 0.5151 0.6966* 0.5265*
Keyword 0.6840 (1.08%) 0.5250 (1.74%) 0.6940 (1.42%) 0.5198 (2.86%) 0.6681* (-0.09%) 0.5141 (-0.18%) 0.7270 (4.37%) 0.5629 (6.91%)
Latent Feature 0.6872 (1.55%) 0.5339 (3.46%) 0.7145 (4.42%) 0.5415 (7.17%) 0.6712 (0.38%) 0.5238 (1.69%) 0.7183 (3.12%) 0.5603 (6.44%)
Relative Representation 0.6846 (1.16%) 0.5308 (2.85%) 0.7105 (3.84%) 0.5369 (6.25%) 0.6696 (0.14%) 0.5216 (1.27%) 0.7138 (2.46%) 0.5554 (5.49%)

5.6 Results
Next, we compare the different approaches presented in Section 5.4.3 in order to answer our
research questions. Table 5.3 presents performance results. Figure 5.6 shows MAP at varying
cutoffs k. We have similar results for HR which are omitted to save space.

RQ1 How can we effectively learn recommendations from multi-modal user inter-
actions?

We look at the overall results of the models on the union (i.e., the entire dataset). The results
show that even though there are few items, all the models outperform the simple Popular baseline
considerably, showing there is information in the multiple modalities that can be learned.

Simply averaging the predictions from the two separate models, as is done in the Late
Fusion model, proves to be a strong baseline; we observe that the Knowledge Distillation and
Imputation models do not manage to improve over the Late Fusion model by jointly modeling the
two modalities. It is reasonable that the training data is too small for the Knowledge Distillation
model which is trained on the intersection data alone, even though it uses information from the
two separate models. For the Imputation models, especially the Generative Imputation model,
it is likely that the synthetic imputation adds too much noise to the data.

The results show that our approach of mapping the two modalities into the same feature
space significantly outperforms all the existing methods with the Latent Feature model being
the best.

RQ2 How does it affect the quality of recommendations to jointly model the mul-
tiple modalities compared to separately?

We look further into the results broken down by conversations-only, web sessions-only, and
intersection. We observe that the Web Session model performs better than the Conversation
model on the intersection. This is likely because there are considerably more web sessions than
conversations in the training data. Note that the Late Fusion and the Knowledge Distillation
models use the recommendations from the separate models on the conversations-only and web
sessions-only, hence the identical performance in these cases.
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(a) Union (b) Conversations-only

(c) Web Sessions-only (d) Intersection
Figure 5.6: MAP@k for varying choices of the cutoff threshold k.

We find that the strength of the Late Fusion model is due to a considerable improvement
on the intersection compared to the Conversation and Web Session models. This shows that
the modalities capture different aspects of the problem. The results further show that the
Keyword, Latent Feature and Relative Representation models successfully manage to model
important interactions between the two modalities, while this is not the case for the Knowledge
Distillation and Imputation models, as performance increases considerably on the intersection
compared to the baselines, with the Keyword model being best.

The Neutral Imputation model improves slightly on the conversations-only subset, suggesting
that the smaller conversation data benefits from the larger web session data when jointly mod-
eling the two modalities. This does not apply to the Generative Imputation model, even though
the modalities are also jointly modeled with this model. We observe that the Keyword, Latent
Feature and Relative Representation models all improve considerably on the conversations-only
subset while preserving the same performance on the web sessions-only subset compared to the
existing methods. It shows that the small conversation dataset successfully benefits from the
larger web session data when mapping the two modalities into the same feature space. The im-
provement is greatest with the Latent Feature and Relative Representation models. It is likely
due to a loss of information when representing the conversations by keywords compared to text
embeddings.

Figure 5.6 shows that the results are consistent across various cutoff thresholds. Across
all cutoff values, there is a clear gap between our proposed models and the existing methods
with the exception of the Keyword model on the web sessions-only where performance does not
improve over the existing methods.
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(a) Union (b) Conversations-only

(c) Web Sessions-only (d) Intersection
Figure 5.7: MAP@3 for a different number of events.

Note that our models do not have more steps, more parameters or longer training times than
the existing models, why they are not more computationally expensive.

5.7 Analysis
We conduct further analysis to understand what makes this dataset and problem challenging. We
break down the performance of our proposed models to understand the impact of the number of
past conversations and web sessions as well as the order of them. Then we use t-SNE to visualize
the representations of the modalities before and after they are passed through the neural models.

5.7.1 Number of Events
We analyze how the number of events (i.e., conversations and web sessions) affects our models.
Figure 5.7 shows MAP@3 broken down by the number of events, starting with only the most
recent event, up to including all the available events. In general, performance increases with the
number of events up to about five events, after which it flattens out. It is less important for
users with only conversations to include many historical events. Particularly, the Keyword and
Relative Representation models do not benefit from more than two/three conversations. The
Relative Representation model generally outperforms the two others when only a few events
are included, except for the intersection where the Keyword model is best. It is likely because
the relative representations are computed individually for each conversation and web session,
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Table 5.4: Study of the event order. Relative changes are in parentheses.
Model Union Conversations-only Sessions-only Intersection

HR@3 MAP@3 HR@3 MAP@3 HR@3 MAP@3 HR@3 MAP@3
Keyword original event order 0.6840 0.5250 0.6940 0.5198 0.6681 0.5141 0.7270 0.5629

shuffled event order 0.6775 (-0.95%) 0.5216 (-0.65%) 0.6935 (-0.07%) 0.5181 (-0.34%) 0.6645 (-0.54%) 0.5154 (0.26%) 0.7073 (-2.71%) 0.5433 (-3.49%)
Latent Feature original event order 0.6872 0.5339 0.7145 0.5415 0.6712 0.5238 0.7183 0.5603

shuffled event order 0.6722 (-2.18%) 0.5164 (-3.27%) 0.7135 (-0.14%) 0.5300 (-2.13%) 0.6610 (-1.52%) 0.5133 (-2.01%) 0.6791 (-5.45%) 0.5171 (-7.71%)
Relative Representation original event order 0.6846 0.5308 0.7105 0.5369 0.6696 0.5216 0.7138 0.5554

shuffled event order 0.6776 (-1.03%) 0.5232 (-1.43%) 0.6992 (-1.59%) 0.5314 (-1.03%) 0.6664 (-0.49%) 0.5183 (-0.63%) 0.6978 (-2.23%) 0.5329 (-4.05%)

(a) Keyword model (b) Latent Feature model (c) Relative Representation model
Figure 5.8: t-SNE visualization of the input representations.

making it less dependent on the whole user history. We observe similar results for HR, which
are not included due to space constraints.

5.7.2 Event Order
We analyze the importance of event order by randomly shuffling the order of events and retrain-
ing the models. We shuffle the order in both training and test data and perform the experiment
five times to account for randomness. The mean performance is presented in Table 5.4. We
observe that the performance of the Keyword model drops less than that of the Latent Feature
and Relative Representation models on the union (less than -0.95%). It shows that the Latent
Feature and Relative Representation models are more successful in capturing dependencies in
the sequential order of events. In addition, it is also likely that these models overfit the data,
as they have more parameters than the Keyword model. The Latent Feature model is more
affected than the Relative Representation model when shuffling the order. It is likely because
the relative representations are computed individually for each conversation and web session
while the latent features are learned from the users’ sequences of conversations/web sessions.
For all models, the biggest drop in performance is seen on the intersection (up to −7.71%). It
explains part of the superiority of mapping the modalities into a common feature space since
sequential dependencies across the two modalities prove to be important.

5.7.3 Visualization
We use t-SNE to visualize the input representations of our three different approaches in Fig. 5.8.
That is, we visualize the keywords, the latent features, and the relative representations, respec-
tively. We observe that the conversations and web sessions are clustered together, showing that
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(a) Keyword model (b) Latent Feature model (c) Relative Representation model
Figure 5.9: t-SNE visualization of the model output.

the two modalities contain different information about the users. It likely differs from RSs for
items with multi-modal representations, where for instance an image and a text description of
the same item typically contain more similar information about the item. In Fig. 5.9, we visu-
alize the output after the conversations and web sessions have been passed through the neural
models. Now modalities of the same type are more separated, as the different information is
learned as signals for the same recommendations. Note that the users with both conversations
and web sessions (the intersection) have one joint output. Overall, the visualization shows that
the gain of learning recommendations from multi-modal user interactions is partly because the
modalities contain different information about users that complement each other well for the
task.

5.8 Conclusion and Future Work
We have taken an important first step in the problem of learning recommendations from multi-
modal user interactions. This is a highly relevant problem to which no satisfying solution
currently exists, as prior work and public datasets focused only on items with multi-modal
representations and complete modalities. Our contributed dataset contains real-world user in-
teractions of multiple modalities in terms of website actions and call center conversations that are
naturally missing for some users. Experimental comparison of several approaches for combining
the modalities reveals that they contain very different information that complement each other
well for the recommendation task. Investigation of three new ways of representing the modalities
shows that a model which automatically learns latent features is most effective while a model
based on relative representations has the advantage of being less dependent on long user history.
Finally, a method using keyword extraction is particularly good at capturing feature interactions
between the modalities. Overall, we demonstrate that it is particularly beneficial to include user
interactions of different modalities for generating effective personalized recommendations.

Since this work focuses on the fusion part of different modalities, the conversations are treated
as generic text and could be any text related to a user such as e-mails, chats, and social media
posts. As future work, we plan to do a dedicated work on effectively learning recommendations
from past conversations by taking into account the context, like time and speaker.
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Chapter 6

Feature Attribution Explanations of
Session-based Recommendations

Abstract
Session-based recommender systems often employ black-box models to dynamically make rec-
ommendations based on current session interactions. However, explaining why an item is rec-
ommended is needed, not only to increase the trust and transparency of the system but also
as a requirement under various legislations. One popular approach to generate explanations of
recommendations is additive feature attribution, which assigns a score of how much each feature
contributed to the prediction, such that the sum of the scores equals the prediction score. In this
work, we posit that applying additive feature attribution to explain session-based recommen-
dations suffers from two major limitations. First, additive feature attribution does not reflect
the attribution coming from sequential dependencies of session interactions learned by the
recommendation model. It assumes that interactions occur independently of each other. Sec-
ond, as additive feature attribution relies on independent features, it fails when the features are
correlated due to repeated interactions in sessions. We empirically verify the impact of these
limitations upon explanation faithfulness. We further rectify these limitations, by presenting a
simple occlusion-based feature attribution approach that is specifically tailored to session-based
recommendations. Our method computes joint feature attributions for sets of interactions with
sequential dependencies and sets of repeated interactions to account for their non-linear relations.
Experimental results on multiple datasets and recommendation models confirm the superiority
of our proposed method over state-of-the-art attribution-based explanation methods.

6.1 Introduction
Recommender systems (RSs) often make use of complex models that are not easily explainable.
Providing explanations for why an item is recommended to a user can increase the trust and
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Figure 6.1: Example of a session in the e-commerce domain. A user interacts with items in a
sequential order and can interact with the same item multiple times. Here interaction i1 and i4
are with the same item.

transparency of an RS. Moreover, recent legislation makes it compulsory to offer recommenda-
tions that are explainable by humans.

Explanations can either be global and explain the entire model behavior or local and explain
an individual prediction. This work concerns local explanations that explain the recommenda-
tions given to a single user. Explainability methods can further be divided into intrinsic and post
hoc methods. With an intrinsic method, explainability is achieved by restricting the complexity
of the model, while a post hoc method achieves explainability by applying methods that analyze
the model after training. Post hoc explainability methods can be used to explain most RSs as
they can operate over a variety of trained models, while not affecting predictive performance. A
major line of work within post hoc explainability methods is additive feature attribution meth-
ods, such as local interpretable model-agnostic explanations (LIME) [117], Shapley additive
explanations (SHAP) [98] and integrated gradients (IG) [138]. These methods explain a model
prediction by assigning attribution scores to individual input features, such that the sum of the
scores equals the prediction score. The feature attributions indicate how much each feature in
a model contributed to the predictions for each given instance. Additive feature attribution
methods are popular because they are easy to implement and intuitive to humans. However,
we posit that these methods are not suitable for explaining session-based RSs that dynamically
provide recommendations based on a user’s interactions in an ongoing session, instead of user
profiles based on static preferences. In this paper, we identify the reason why additive feature
attribution fails due to two special characteristics of session-based RSs namely (1) sequential
dependencies, occurring when the recommendation model learns relationships in the order in
which a user interacts with items; and (2) repeated user interactions occurring when a user
interacts with the same item multiple times in a session (see Figure 6.1 for an example of a
session).

Previous work only covers intrinsic explainability methods for session-based RSs, which affect
the recommendation accuracy [30, 168, 153], or the application of additive feature attribution to
the traditional matrix completion task in RSs [103, 19, 118], which do not deal with the issues
of sequential dependencies and repeated interactions that are present in session-based RSs. To
our knowledge, no prior work has addressed the two problems of additive feature attribution for
session-based RSs that we identify.

In this paper, we empirically confirm the extent of these issues for session-based RSs. In
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addition, we present a feature attribution approach that is designed to overcome these limitations
in the setup of session-based RSs. To the best of our knowledge, both of the above are novel
contributions.

6.2 Related Work
In this section, we first overview related work that studies different methods particularly designed
to explain session-based RSs. Then we present related work that focuses on additive feature
attribution for explaining recommendations.

6.2.1 Explaining Session-based Recommender Systems
Previous work on this topic includes studies on session-based RSs that are inherently explainable
(i.e. intrinsic explainability methods). Chen et al. [30] propose a session-based RS based on
data mining to make it inherently explainable. Their model generates recommendations and
explanations by considering three factors: sequential patterns, repetition clicks and item simi-
larity. First, candidate items are selected according to users’ sequential patterns and repeated
interactions, and then they are ranked by considering short-term interest with item similarity
computations. Zheng et al. [168] use a knowledge graph with item attributes to explore item
dependencies in sessions that can be used to generate recommendations. Then they explore
pathways over the knowledge graph that can explain the recommendations. Wu et al. [153]
explore the relationship between items from a causality and correlation perspective to construct
graphs from sessions that are then modeled with a graph neural network recommendation ap-
proach. They use the separation between causality and correlation to facilitate the explanation
of recommendations. All the above methods of explaining session-based recommendations are
model-specific and can thereby not be used to explain any session-based recommendation model
and explainability is achieved by restricting the complexity of the model which will affect the
recommendation accuracy.

6.2.2 Additive Feature Attribution of Recommender Systems
Other work has studied additive feature attribution methods for generating post hoc explana-
tions of RSs that are not model-specific. Most prior work extends or adapts the simplification-
based method LIME [117] or the perturbation-based method SHAP [98], two well-known feature
attribution methods. For each instance in the dataset, LIME trains a linear model to approx-
imate the local decision boundary for that instance. SHAP is based on the Shapley Values
approach that computes the average marginal contribution of each feature across all possible
feature perturbations. Nóbrega and Marinho [103] propose an adaption of LIME to explain
traditional RSs that model long-term user profiles. They use real data instead of synthetic ones
(as normally used in LIME) for training the interpretable model. The idea is to fix the user of
interest and sample items according to their empirical distribution. Brunot et al. [19] introduce
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another approach of sampling around the recommendation instance in LIME. As opposed to
[103], they use an out-of-sample prediction mechanism to predict ratings for yet unseen per-
turbed users instead of limiting the perturbation to existing users. Moreover, they show that it
improves the quality of explanations to consider implicit preferences as expressed by comparisons
of pairs of ratings instead of considering the ratings directly. Roberts et al. [118] evaluate LIME
and SHAP on a movie recommendation task. They find that LIME provides the most faithful
explanations in dense data segments while SHAP is the best in sparse segments. They trace
the superiority of SHAP in sparse segments to the completeness constraint property inherent
in SHAP and introduce the same constraint into LIME to obtain an explanation method that
performs well on both dense and sparse data. All the above studies only apply to the tradi-
tional matrix completion task, and no previous work has evaluated or adapted additive feature
attribution for the session-based recommendation task.

6.3 Limitations of Additive Feature Attribution

6.3.1 Problem Definition
We consider a session as consisting of a user’s interactions with items, for example clicks or
views. Formally, we define a user’s session, s, with interactions {i1, i2, ..., in} and a session-based
recommendation model f(·) that generates a recommendation score from the input session.
In this paper, we focus on local explanations within sessions. That is, we are interested in
explaining the recommendations given to a single user (in a single session). Specifically, we
focus on explanations in the form of feature attribution scores that reflect how each feature
contributed to the prediction1. In the framework of session-based RSs, the features are the
user’s interactions with items. Hence, the explanation of f(s) constitutes an attribution score
φk for each interaction, ik, in the input session. The problem to be solved here is how to compute
the best attribution score φk for each user interaction in a session.

6.3.2 Limitations
The above problem has been currently addressed by additive feature attribution methods, such
as LIME, SHAP and IG. These methods compute feature attributions, such that the sum of
the attribution scores equals the prediction, as explained in Section 6.2. We posit that these
methods are not suitable for explaining session-based RSs for the following two reasons.

Limitation 1. Sequential Dependency Sequence modeling is prevalent for session-
based RSs in order to learn sequential dependencies of interactions between users and items.
Additive feature attribution does not reflect attribution coming from the sequential order of

1Feature attributions typically use the term prediction. In RSs, these predictions are recommenda-
tions, and we use these two terms interchangeably in this paper.
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Table 6.1: Statistics of the preprocessed dataset (*minimum/median/mean/maximum).
Diginetica 30Music

Items 3,652 3,261
Sessions 26,176 28,699
Sessions with Repeated Interactions 17,870 (68%) 11,112 (39%)
Session Length* 5/6/7.4/20 5/8/11.6/73
Interactions 194,334 331,653
Interactions Repeated in Sessions 43,997 (23%) 82,655 (25%)

features (i.e. the user-item interactions in session-based RSs), as the attribution scores are not
tailored to the position of the features. This means that sequential information, which is key to
the recommendation, is lost when computing attribution.

Limitation 2. Repeated Interactions Repeated user interactions occur in session-based
RSs when a user interacts with the same item multiple times within a session (note that repeated
interactions do not mean that the interactions need to be adjacent in the session). Empirically,
this happens frequently in session-based RSs (23%-25% of the times in our two datasets, see
Table 6.1). However, additive feature attribution fails to give meaningful scores because these
methods rely on independent features, and in the case of repeated interactions, the features are
correlated and thereby not independent. So, the assumption of additive feature attribution that
features are independent does not hold for session-based RSs.

In the remainder of the paper, we present first an empirical investigation of the extent of the
two limitations identified above (in Section 6.4), and then our proposed solution (in Section 6.5).

6.4 Empirical Investigation of the Limitations
We empirically investigate how sequential dependencies and repeated interactions affect expla-
nations of session-based RSs. In this section, we present the experimental setup and our findings.
We use publicly available datasets and make our code publicly available.

6.4.1 Experimental Setup
6.4.1.1 Datasets

We experiment with two commonly used datasets for session-based RSs: the Diginetica dataset
(we use the item views data2) and the 30Music dataset [142]. We use a dataset from the e-
commerce domain because users are most often anonymous on e-commerce websites, so session-
based RSs are highly relevant for this domain where it is not possible to construct the user
profiles typically used in traditional RSs. In addition, we use a dataset from the music domain
because music is commonly consumed within listening sessions in sequential order.

2https://competitions.codalab.org/competitions/11161
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Table 6.2: Hyperparamters.
GRU4REC SASRec

Diginetica 30Music Diginetica 30Music
Batch Size 128 128 256 256
Units 256 256 64 128
Dropout 0.3 0.4 0.4 0.3

We preprocess the datasets as follows. Note that the datasets do not contain user IDs since
the users are anonymous and only identified through their session IDs. We filter out sessions
with less than five interactions. We remove items with a frequency less than 20 in the Diginetica
dataset and 50 in the larger 30Music dataset such that an item appears in at least 0.01 percent
of the sessions. We do this because sparse sessions/items make the evaluation of explanations
more unstable, and we are not particularly interested in measuring cold-start recommendation
quality in this paper. Finally, we truncate the sessions to have a maximum of 20 interactions
in the Diginetica dataset and 73 interactions in the 30Music dataset (the 99th percentiles) to
reduce computational cost. The statistics of the datasets after the preprocessing are summarized
in Table 6.1. We observe that the Diginetica dataset has slightly more items than the 30Music
dataset, while the 30Music dataset has more sessions and interactions. In both datasets, about
a quarter of the interactions are repeated interactions, meaning that an interaction with the
same item occurs multiple times in the same session. In the Diginetica dataset, the repeated
interactions are spread over more sessions (68% of the sessions contain repeated interactions),
while in the 30Music dataset, they are concentrated on fewer sessions (39% of the sessions). We
split the datasets into training and test sets, such that the test set constitutes the most recent
10 percent of the sessions.

6.4.1.2 Recommendation Models

We experiment with state-of-the-art models for session-based recommendations which we treat
as black-box models to be explained. We use GRU4REC [59] to experiment with an RNN-
based architecture and SASRec [78] to experiment with a transformer-based architecture. While
GRU4REC simply contains a GRU layer, SASRec is a much larger network containing an em-
bedding layer, several self-attention blocks and a prediction layer. We do not experiment with
the simple item-to-item recommendation model [36, 90] and Session-based K-Nearest Neighbors
[67, 62], as we are interested in black-box models that need explanations. There are extensions of
GRU4REC and SASRec that are relevant to explain, for example Neural Attentive Session-based
Recommendation [88] that extends GRU4REC with an attention mechanism, and BERT4Rec
[132] that extends SASRec with another masking scheme, but the base architectures are the
same. We choose GRU4REC and SASRec to experiment with different base architectures that
might affect the feature attributions in different ways.

These models have many hyperparameters and it is neither efficient nor customary to tune
all of them. We follow the literature [59, 78] and tune only the ones shown in Table 6.2. For
the rest, we use default values as per [59, 78]. The optimal hyperparameters found by grid
search are presented in Table 6.2. We use early stopping during training with a validation split
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Table 6.3: Effectiveness (HR@10 and MRR@10) of the two recommenders per dataset. Best
scores are in bold.

Diginetica
HR@10 MRR@10 HR@20 MRR@20

GRU4REC 0.4175 0.1592 0.5760 0.1702
SASRec 0.4580 0.1860 0.6176 0.1971
30Music

HR@10 MRR@10 HR@20 MRR@20
GRU4REC 0.4663 0.3143 0.5204 0.3180
SASRec 0.4828 0.3364 0.5446 0.3407

of the most recent 10 percent of sessions in the training set. The models are typically trained
with the ranking losses proposed in GRU4REC and the negative sampling used in SASRec,
as these losses are more efficient. However, these losses are not directly compatible with our
explainability setup. This is because the models then directly compute rankings of items rather
than prediction scores for each item (that can then be used to rank the items). Our explainability
setup relies on measuring differences in prediction scores for an individual item. For that reason,
we compute a logit score for each item and use the categorical cross-entropy loss. We further
added dropout regularization in GRU4REC, as this is suggested in [59] to make it more stable
when using cross-entropy loss. SASRec already has dropout regularization. We measure the
effectiveness of the models on the last interaction for each session in the test set. We use hit
rate (HR) and mean reciprocal rank (MRR), and report the results with a cutoff threshold of
10 and 20 in Table 6.3. We observe that the models generally perform better on the 30Music
dataset, which is likely because this dataset is less sparse and generally has longer sessions. We
further observe that the SASRec model with most parameters performs best on both datasets.

6.4.1.3 Explainability Methods

We select explainability methods representing three different groups of attribution-based meth-
ods: simplification-based, perturbation-based and gradient-based. We present these next. Note
that previous work only uses simplification-based and perturbation-based methods to explain
RSs (see Section 6.2). We further include gradient-based methods which are designed to explain
neural networks, since neural network approaches are common for session-based RSs.

We select the simplification-based technique LIME [117]. For each instance in the dataset,
LIME trains a linear model to approximate the local decision boundary for that instance. This
is done by generating a local dataset consisting of perturbed samples of the instance to explain
and the corresponding predictions of the black-box model. On this new dataset, LIME then
trains an interpretable model, which is weighted by the proximity of the sampled instances to
the instance of interest. Finally, the prediction of interest is explained by interpreting the local
model.

We further select the perturbation-based technique Deep Shap. It is based on the Shapley
Values that compute the average marginal contribution of each feature across all possible feature
perturbations. The average marginal contribution of a feature is the average change in the
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prediction that the group of features already present receives when the feature value joins them.
The Deep variant is a faster approximation of Shapley Values for deep learning models that uses
the per-node attribution rules in DeepLIFT to approximate Shapley Values [98].

Finally, we select the gradient-based technique IG. IG is a variation of computing the gra-
dient of the model’s prediction to its input features. Gradients are the derivative of the output
with respect to the inputs. This means that the gradients explain the attribution of features by
telling us how small changes of the input features change the output. If the prediction function
flattens at the input, it has zero gradient despite the feature value changing the output. IG
addresses this issue by computing the path integral of the gradient along a path from a baseline
to the input.

We use the explainability methods to explain the top-1 recommendation given to a user.
In LIME, we use 5000 samples as the size of the neighborhood to learn the linear model. In
Deep Shap, we integrate over the 100 most recent sessions from the training set, as it is only
necessary (and most efficient) to integrate over a smaller sample of the training set. In IG, we
use as baseline a session with all the interactions replaced by the padding value ignored by the
model (e.g. zero), as this should act as an input with no information. We use Deep Shap and
IG directly on the logit values (predicted from the model). In LIME, we convert the logit values
to probabilities and train local classification models.

In all, we experiment with two different datasets, two different recommendation models,
and three different explainability methods resulting in 12 different combinations. The feature
attribution methods are computationally expensive. For instance, LIME generates samples and
trains a linear model for each instance in the dataset. In addition, it is computationally expensive
to investigate sequential dependencies as we do in Section 6.4.2.1 since we need to compare each
pairwise combination of interactions in a session. For an average session with 10 interactions
that is 45 combinations. For that reason, it is extremely computationally expensive for each
dataset, recommendation model and explainability method we include in the experiment, so we
focus on datasets and models that best represent the diversity in session-based RSs.

6.4.1.4 Evaluation Procedure

Since we do not have datasets annotated with the ground true explanations, we use the metrics
outlined by [1, 13] to indicate the explanations’ faithfulness to a model’s rationale when no
ground truth is available, namely rank correlation and attribute correlation. We explain
these next.

We use rank correlation to evaluate how good an explainability method is to rank the
importance of the features, where a higher absolute value of attribution scores means higher
importance. For each session, we compute rank correlation by first ranking all features by
their absolute attribution score, provided by the explainability method. Then we rank the
absolute differences in prediction outputs that result from ablating each feature. Finally, we
compute Spearman’s rank correlation, ρ(·, ·), to assess the monotonic relationship between these
two rankings. Formally, for a session, s, with interactions {i1, i2, ..., in} and corresponding
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attribution scores {φ1, φ2, ..., φn}, the rank correlation is given by

Rank Correlation = ρ(φ̃, d̃), (6.1)

where φ̃ is the vector of feature rankings, φ̃k, obtained by taking the absolute value of the
attribution scores, that is

φ̃k = |φk|, for k = 1, ..., n (6.2)
and d̃ is the vector containing the absolute prediction differences (of the top-1 recommendation)
given by

d̃k = |dk|, (6.3)
dk = f(s)− f(s\ik), for k = 1, ..., n, (6.4)

where the operation \ik means all except ik. In GRU4REC and SASRec, we compute f(s\ik) by
setting ik to a padding value (e.g. zero) that is masked by the model such that the interaction
is ignored. The rank correlation measure varies between −1 and 1, with higher being better.

We use attribute correlation to evaluate the direction and strength of the attribution
scores (e.g. if a feature contributed negatively or positively to the prediction and how much
it contributed). We compute the Pearson’s correlation, r(·, ·), to assess the linear relationship
between the attribution of features and the difference in output when ablating those features:

Attribute Correlation = r(φ,d) (6.5)

where φ is the vector of attribution scores and d is defined in Equation 6.4. The attribute
correlation measure also varies between -1 and 1, with higher being better.

We compute both rank correlation and attribute correlation for each session in the test set
and report the average of the test set.

6.4.2 Experimental Findings
6.4.2.1 Experiment 1. Effect of Sequential Dependencies on Additive Attri-

bution.

We investigate the influence of sequential dependencies on additive feature attribution. The
problem is that the attribution scores computed by the additive feature attribution methods
are not tailored to the position of the features. Thus they should be invariant to the order of
interaction, but we posit that this is not the case. We show this by evaluating the explanations
when swapping the order of interaction pairs within a session with different degrees of sequential
dependencies. Specifically, we evaluate when there is no swap, when we swap the weakest
sequential dependency, and when we swap the strongest sequential dependency. For each session
in the test set, we detect sequential dependencies by measuring the difference in prediction output
when swapping each combination of interaction pairs. That is, for a pair of interactions {ik, il},
we quantify the difference as

|f(.., ik, .., il, ..)− f(.., il, .., ik, ..)|, (6.6)
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Table 6.4: Influence of sequential dependencies on additive feature attribution. Percentages in
brackets denote the difference from no swap. No swap uses the original sequence of interactions
in the session. Swap weakest/strongest dependency swaps the order of the weakest/strongest
interactions in the session.

(a) Diginetica

GRU4REC SASRec
LIME LIME

Rank Correlation Attribute Correlation Rank Correlation Attribute Correlation
No swap 0.1806 0.1373 0.3103 0.8142
Swap weakest dependency 0.1475 (-18.35%) 0.1236 (-10.00%) 0.2032 (-34.52%) 0.5569 (-31.60%)
Swap strongest dependency 0.0127 (-92.98%) 0.0817 (-40.52%) -0.0169 (-105.44%) -0.0854 (-110.49%)

Deep Shap Deep Shap
Rank Correlation Attribute Correlation Rank Correlation Attribute Correlation

No swap 0.4207 0.2857 0.4571 0.9326
Swap weakest dependency 0.3424 (-18.59%) 0.2510 (-12.13%) 0.3203 (-29.92%) 0.6464 (-30.69%)
Swap strongest dependency 0.0691 (-83.58%) 0.1924 (-32.64%) -0.0208 (-104.54%) -0.1304 (-113.99%)

IG IG
Rank Correlation Attribute Correlation Rank Correlation Attribute Correlation

No swap 0.4060 0.3683 0.5439 0.9528
Swap weakest dependency 0.3358 (-17.27%) 0.3272 (-11.14%) 0.3785 (-30.41%) 0.6620 (-30.52%)
Swap strongest dependency 0.0783 (-80.71%) 0.2488 (-32.44%) -0.0162 (-102.97%) -0.1261 (-113.24%)

(b) 30Music

GRU4REC SASRec
LIME LIME

Rank Correlation Attribute Correlation Rank Correlation Attribute Correlation
No swap 0.1420 0.2404 0.2563 0.7906
Swap weakest dependency 0.1335 (-5.98%) 0.2239 (-6.85%) 0.2213 (-13.67%) 0.6644 (-15.96%)
Swap strongest dependency 0.0172 (-87.86%) 0.1326 (-44.84%) 0.0160 (-93.75%) 0.0473 (-94.02%)

Deep Shap Deep Shap
Rank Correlation Attribute Correlation Rank Correlation Attribute Correlation

No swap 0.4911 0.6327 0.3784 0.9056
Swap weakest dependency 0.4405 (-10.30%) 0.5901 (-6.73%) 0.3354 (-11.38%) 0.7524 (-16.92%)
Swap strongest dependency 0.1298 (-73.57%) 0.3621 (-42.77%) -0.0405 (-110.70%) 0.0531 (-94.14%)

IG IG
Rank Correlation Attribute Correlation Rank Correlation Attribute Correlation

No swap 0.5181 0.7341 0.4240 0.9352
Swap weakest dependency 0.4743 (-8.46%) 0.6905 (-5.95%) 0.3800 (-10.36%) 0.7779 (-16.82%)
Swap strongest dependency 0.1551 (-70.06%) 0.4298 (-41.45%) -0.0097 (-102.29%) 0.0549 (-94.13%)

where | · | denotes the absolute value. The pair of interactions that obtains the greatest value in
Equation 6.6 for a session is then defined as the strongest sequential dependency for that session,
and the pair of interactions that obtains the value closest to zero in Equation 6.6 is defined as
the weakest sequential dependency for that session.

The results are presented in Table 6.4. Across all the explainability techniques, both datasets
and both models, we observe less faithful attribution scores, in terms of lower rank correlation
and attribute correlation, when we swap the order of the stronger sequential dependencies in a
session (up to -113% in correlation drop). Further, we observe a drop in the correlation (hence
less faithful attribution) even when we swap the order of the weakest dependencies, compared to
the original sequence. Especially Deep Shap and IG with SASRec seem to have the most faithful
attribution scores when there is no swap, but they have the largest drop in rank correlation and
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Table 6.5: Influence of repeated interactions on additive feature attribution. Percentages in
brackets denote the difference from all types of interactions.

(a) Diginetica

GRU4REC SASRec
LIME LIME

Rank Correlation Attribute Correlation Rank Correlation Attribute Correlation
All types of interactions 0.1863 0.1034 0.3062 0.4485
Repeated interactions 0.1330 (-28.62%) 0.0551 (-46.73%) 0.2551 (-16.70%) 0.4212 (-6.08%)

Deep Shap Deep Shap
Rank Correlation Attribute Correlation Rank Correlation Attribute Correlation

All types of interactions 0.4421 0.2273 0.4789 0.5584
Repeated interactions 0.3617 (-18.17%) 0.1266 (-44.32%) 0.4772 (-0.36%) 0.5196 (-6.96%)

IG IG
Rank Correlation Attribute Correlation Rank Correlation Attribute Correlation

All types of interactions 0.4163 0.3518 0.5167 0.7320
Repeated interactions 0.3325 (-20.13%) 0.1844 (-47.59%) 0.5019 (-2.86%) 0.6291 (-14.06%)

(b) 30Music

GRU4REC SASRec
LIME LIME

Rank Correlation Attribute Correlation Rank Correlation Attribute Correlation
All types of interactions 0.0968 0.1390 0.1885 0.4483
Repeated interactions 0.0967 (-0.14%) 0.1032 (-25.80%) 0.1510 (-19.90%) 0.4459 (-0.54%)

Deep Shap Deep Shap
Rank Correlation Attribute Correlation Rank Correlation Attribute Correlation

All types of interactions 0.4754 0.4218 0.3660 0.6236
Repeated interactions 0.4001 (-15.84%) 0.2892 (-31.45%) 0.3652 (-0.20%) 0.5556 (-10.89%)

IG IG
Rank Correlation Attribute Correlation Rank Correlation Attribute Correlation

All types of interactions 0.4827 0.5478 0.4046 0.6626
Repeated interactions 0.4042 (-16.25%) 0.3465 (-36.74%) 0.4078 (0.81%) 0.5381 (-18.79%)

attribute correlation when swapping the sequential dependencies. This is likely because SASRec
better captures sequential dependencies than GRU4REC.

Overall, the impact of sequential dependency to feature attribution faithfulness is notable,
meaning that the order of interactions within sessions cannot be ignored in session-based RS
explainability.

6.4.2.2 Experiment 2. Effect of Repeated Interactions on Additive Feature
Attribution

We further investigate how additive feature attribution is affected by the repeated user in-
teractions that occur in session-based RSs. The problem is that all features are handled as
independent features by the additive feature attribution methods, but repeated interactions are
correlated and thereby not independent. We investigate this by evaluating the explanations
solely over repeated interactions compared to evaluating the explanations over all types of inter-
actions that can be both repeated and non-repeated. Since the evaluation measures are affected
by sample size, we want to evaluate over the same number of interactions in the two groups that
we compare. For that reason, we randomly sample from the group with all types of interactions,
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such that this group has the same sample size as the group with repeated interactions.
The results are presented in Table 6.5. Overall, the faithfulness of feature attribution is

notably lower in the data subset that contains only repeated interactions than in the original
data, across the different explainability techniques, models and datasets. This is especially
the case for the attribute correlation. This is likely because it has a different effect on the
prediction score when a user interacts with the same item twice compared to once. The largest
drop in faithfulness on repeated interactions compared to all types of interactions is seen with
GRU4REC. It is presumably because the repeated interactions are less correlated in SASRec,
since they have different positional embeddings.

Overall, the impact of repeated interactions to feature attribution faithfulness is notable,
meaning that repeated interactions cannot be ignored in session-based RS explainability.

6.5 Proposed Explainability Approach
In this section, we propose a simple method to address the above problems with sequential
dependencies and repeated interactions, and we evaluate our method against the additive feature
attribution methods.

6.5.1 Our Session-based Occlusion Method
In order to address the problem of explaining session-based recommendations, we propose an
approach that computes joint attribution scores for sets of interactions with sequential depen-
dencies and sets of repeated interactions, since these feature sets represent non-linear relations.
With standard additive feature attribution, the attribution score of a set of features is com-
puted as the sum of their individual scores. Differently from this, we choose an occlusion-based
explainability method that we can adapt so that we can compute non-additive attributions of
feature sets. Occlusion-based approaches compute the attribution score of a feature by measur-
ing the prediction difference caused by ablating that particular feature. Instead of ablating each
feature individually, we ablate sets of interactions with sequential dependencies or with repeated
interactions at the same time, thereby measuring the joint attribution from these specific sets
of features.

We extend the occlusion-based method called Randomized Input Sampling for Explanation
(RISE) [109], as it is efficient and context-independent. RISE was originally designed to explain
image recognition models. The idea is to probe the base model by sub-sampling the input
image via random masks and recording the prediction differences in each of the masked images.
The final attribution map is generated as the average of the prediction differences weighted by
the masks. We adapt RISE to fit our scenario as follows. For a session s = {i1, i2, ..., in}, let
{m1, ...mM} be M random sub-samples of the interactions in s. The attribution score of an
interaction ik is given by

φk =
1

|Sk|
∑

mj∈Sk

f(s)− f(s\mj
), (6.7)
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Table 6.6: Our approach compared to additive feature attribution. Best scores are in bold.
The percentage difference of our method from the strongest and weakest baseline respectively
is presented in parentheses.

(a) Diginetica

GRU4REC SASRec
Rank Correlation Attribute Correlation Rank Correlation Attribute Correlation

LIME 0.2502 0.2150 0.4839 0.8151
Deep Shap 0.3691 0.2924 0.5774 0.8838
IG 0.3814 0.3439 0.6551 0.9358
Session-based Occlusion 0.4025 (6%-61%) 0.6425 (87%-199%) 0.7076 (8%-46%) 0.9504 (2%-17%)

(b) 30Music

GRU4REC SASRec
Rank Correlation Attribute Correlation Rank Correlation Attribute Correlation

LIME 0.2095 0.2711 0.4411 0.6655
Deep Shap 0.3908 0.4474 0.4748 0.6729
IG 0.4160 0.5232 0.4878 0.6862
Session-based Occlusion 0.4261 (2%-103%) 0.6328 (21%-133%) 0.5276 (8%-20%) 0.7286 (6%-9%)

where Sk = {mj |ik ∈ mj} is the set of sub-samples containing ik and |Sk| denotes the cardinality
of Sk. We extend the above to jointly compute an attribution score of a set of interactions:

φI =
1

|SI |
∑

mj∈SI

f(s)− f(s\mj
), (6.8)

where SI = {mj |I ∈ mj} and I ⊆ {1, 2, .., n} is a set of interaction indices.
We call our method session-based occlusion and it comprises two steps. (1) Detect sets of

interactions with sequential dependencies and sets of repeated interactions; (2) Use the occlusion-
based method to compute joint attribution scores for the detected sets of interactions and
individual attribution scores for the rest. In (1), we detect sets of interactions with sequential
dependencies by using Equation 6.6. Theoretically, there should be a sequential dependency if
the difference is greater than zero. However, we require the difference to be larger than a small
threshold of 2 to avoid negligible sequential dependencies. As opposed to the experiment in
Section 6.4.2.1, where we simply wanted to swap interactions that cause the smallest and largest
prediction difference, respectively, we now want to detect exactly which pairs of interactions
cause prediction differences when swapping the order. If we, for example, have a session with
interactions {i1, i2, i3, i4, i5} and we swap the position of i1 and i3, the order of i1 and i2 as
well as i2 and i3 will also change. For that reason, we replace all other interactions than the
two we are investigating with the padding value that is masked by the model (e.g. zero) to
measure the isolated prediction difference when detecting sequential dependencies. Moreover,
we merge overlapping pairs, for example, if interaction i1 and i2 have a sequential dependency
and interaction i2 and i3 (or i1 and i3) have a sequential dependency, we compute a joint
attribution score for the set {i1, i2, i3}. Finally, we select only repeated interactions that are not
in the sets with sequential dependencies. In (2), we use Equation 6.8 to compute the attribution
scores.
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Table 6.7: Effect of joint attribution scores: We evaluate our approach when attribution scores
are computed individually for each feature.

(a) Diginetica

GRU4REC SASRec
Rank Correlation Attribute Correlation Rank Correlation Attribute Correlation

Session-based Occlusion without Joint Attributions 0.3491 0.4600 0.5760 0.7822
Session-based Occlusion 0.4025 0.6425 0.7076 0.9504

(b) 30Music

GRU4REC SASRec
Rank Correlation Attribute Correlation Rank Correlation Attribute Correlation

Session-based Occlusion without Joint Attributions 0.3707 0.5460 0.4960 0.6942
Session-based Occlusion 0.4261 0.6328 0.5276 0.7286

6.5.2 Results
We compare our approach against the additive feature attribution methods evaluated in Sec-
tion 6.4.2 (Table 6.4 and 6.5), where the attribution scores of the detected sets of sequential
dependencies and repeated interactions are computed as the sum of their individual scores.
The results are presented in Table 6.6. We see that our session-based occlusion method com-
putes the most faithful attribution scores across both models and datasets. In Section 6.4.2,
we saw that explanations of GRU4REC were the most affected by the repeated interactions,
while explanations of SASRec were the most affected by the sequential dependencies, and we
see an improvement on both now. The biggest improvement is seen in the attribute correla-
tion on GRU4REC, which was also found to be most affected by the repeated interactions in
Section 6.4.2.

To further test the effect of computing the joint attribution scores of the sequential de-
pendencies and repeated interactions, we evaluate our method when the scores are computed
individually (i.e. with Equation 6.7 instead of Equation 6.8). We do this to measure the isolated
effect of computing joint attribution. The results are presented in Table 6.7. We observe that
our method is considerably more faithful when jointly computing the attribution scores of the
sequential dependencies and repeated interactions.

6.5.3 Analysis of Results
We further break down the faithfulness of our method to see how it compares to LIME, Deep
Shap and IG on sessions with sequential dependencies and sessions with repeated interactions.
We do that by measuring the percentage change in attribute correlation of our method over
LIME, Deep Shap and IG. A high percentage change means that the attribute correlation of our
method is better than the one we compare against. We break down the analysis on sessions in the
test set containing sequential dependencies and repeated interactions detected by our method.
The analysis is presented in Figure 6.2. We observe that our method generally has the greatest
improvement over LIME, Deep Shap and IG on the sessions containing repeated interactions.
On the other hand, there are generally more sessions with sequential dependencies than sessions
with repeated interactions (with the exception of the SASRec model on the Diginetica dataset),
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GRU4REC SASRec
(a) Diginetica

GRU4REC SASRec
(b) 30Music

Figure 6.2: Percentage change in attribute correlation of our method over LIME, Deep Shap
and IG (left axis). The grey bars indicate the percentage of sessions in the test set containing
sequential dependencies and repeated interactions detected by our method (right axis). Note
that our method selects only repeated interactions that are not in the sets with sequential
dependencies. When a session contains both sequential dependencies and repeated interactions,
it is included in both groups.

so the improvement on sequential dependencies affects more sessions. LIME generally has the
biggest gap between the two groups, while IG has the smallest gap. For example with the SASRec
model on the Diginetica dataset, the attribute correlation of our method is approximately 6%
greater than LIME on the sessions with sequential dependencies but more than 20% greater
on the sessions with repeated interactions, while the attribute correlation of our method is
approximately 2% greater than IG on both the sessions with sequential dependencies and the
sessions with repeated interactions.

Next, we find examples where the faithfulness of our method is better than LIME, Deep Shap
and IG to illustrate how the difference affects the resulting explanations. Figure 6.3 presents
an example with attribution scores (normalized) generated for a session with a sequential de-
pendency between interaction i1 and i2 (detected by our method). The session is an example
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Sequential Dependency︷ ︸︸ ︷
i1 i2 i3 i4

Rank
Correlation

Attribute
Correlation

-1.60 1.17 0.43 0.33 -0.96LIME (-0.50, -1.10)
-1.28 -0.18 1.46 -1.00 -0.40Deep Shap (-0.71, -0.57)
-1.16 -0.33 1.49 -1.00 -0.30IG (-0.60, -0.56)

Session-based
Occlusion 1.00 -1.01 0.01 1.00 1.00

Figure 6.3: Example of attribution scores (normalized) generated for a session with a sequential
dependency between two interactions. For LIME, Deep Shap and IG, the attribution score
for the sequential dependency is computed as the sum of their individual scores indicated in
parentheses.

i1 i2

Repeated Interaction︷ ︸︸ ︷
i3 i4 i5 i6

Rank
Correlation

Attribute
Correlation

-0.31 -0.44 -0.97 -0.32 2.04 0.40 0.97LIME (-0.54, -0.43)
-0.52 -0.49 -0.78 -0.19 1.98 0.00 0.98Deep Shap (-0.41, -0.37)
-0.34 -0.43 -0.90 -0.37 2.04 0.40 0.98IG (-0.45, -0.45)

Session-based
Occlusion -0.43 -0.45 -0.44 -0.46 1.78 1.00 1.00

Figure 6.4: Example of attribution scores (normalized) generated for a session with a pair of
repeated interactions (i.e. interaction i3 and i4 is with the same item). For LIME, Deep Shap
and IG, the attribution score for the repeated interactions is computed as the sum of their
individual scores indicated in parentheses.

from the Diginetica dataset and the GRU4REC model. For LIME, Deep Shap and IG, the
attribution score for the interactions with a sequential dependency is computed as the sum of
their individual scores. We see that all three methods find that the individual scores for these
two interactions are negative, but the joint attribution score computed by our method is posi-
tive. This is likely because the isolated contribution to the prediction of these two interactions is
negative, but the model has learned a sequential dependency, so when they appear in this partic-
ular order, they have a positive contribution to the prediction. We see that this also affects the
attribution score of the other interactions in the session, as the attribution scores for i3 and i4
found by LIME, Deep Shap and IG are very different from the ones found by our method. This
is because the additive feature attribution methods try to distribute the contributions between
the interactions. In this example, both the rank correlation and the attribute correlation are
worse with LIME, Deep Shap and IG than with our method. Figure 6.4 presents an example of
attribution scores (normalized) generated for a session where i3 and i4 are interactions with the
same item (i.e. repeated interactions). This session is an example from the Diginetica dataset
and the SASRec model. We see that LIME, Deep Shap and IG assign to each of the repeated
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interactions approximately the same contribution as our method assigns to both of them in total.
This is likely because this interaction has the same contribution to the prediction no matter how
many times it appears in the session. This is captured by our method, but not by the standard
additive feature attribution methods. In this example, the attribute correlation is almost the
same for all the methods, but the rank correlation is lower with LIME, Deep Shap and IG than
with our method, because they assign too much importance to the repeated interactions.

6.6 Conclusion
In this work, we study feature attribution methods for explaining session-based recommenda-
tions. These are highly popular explainability methods that work post hoc without affecting
recommendation accuracy, but they have not yet been adapted to the session-based recom-
mendation task. We identify two limitations of using existing feature attribution methods to
explain session-based recommendations, namely that these methods do not account for (1) se-
quential dependencies and (2) repeated user interactions that are present in session-based RSs.
The consequences are unfaithful explanations that do not reflect the attribution coming from
sequential dependencies and correlated user interactions. We further present a simple feature
attribution method that overcomes these limitations. Our method uses occlusion to incorporate
non-additive attribution scores for sets of interactions with sequential dependencies and sets of
repeated interactions. Experimental results on real-life datasets and session-based recommen-
dation models show that our method outperforms state-of-the-art feature attribution methods
notably. Our work paves the way for further research on feature attribution explanations for
session-based recommendations.
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