

U N I V E R S I T Y O F C O P E N H A G E N

D E P A R T M E N T O F C O M P U T E R S C I E N C E

Information Propagation in Modular
Language Modeling and Web Tracking

Zhan Su

Supervised by: Jakob Grue Simonsen, Rasmus Helles

This thesis has been submitted to the PhD School of The Faculty of Science,
University of Copenhagen

29th February 2024

Acknowledgements

This PhD thesis marks the finish of my doctoral journey, a journey that would have been
impossible to complete without the support and encouragement of many. Foremost, I
extend my deepest gratitude to my supervisors, Jakob Grue Simonsen and Rasmus Helles,
whose guidance has been invaluable. Reflecting on my initial paper draft at the start of
my PhD, I am astounded by the progress I’ve achieved through their mentorship.

My sincere thanks also go to the funding bodies that made my research possible:
The Villum Foundation’s Synergy Programme, The Carlsberg Foundation, and the
University of Copenhagen’s Data+ programme. Their support was crucial in my
academic endeavor. Additionally, the vibrant research environment and the freedom to
explore at the University of Copenhagen have been pivotal in maintaining my motivation
and enthusiasm throughout my studies.

I am grateful for the opportunity to collaborate with remarkable colleagues—Lucas
Caccia, Oleksiy Ostapenko, and Alessandro Sordoni at Microsoft, as well as the team at
Mila Lab in Montreal. Their insights have significantly enriched my learning experience.
My heartfelt thanks to my friends—Yuqin Zhou, Benyou Wang, and Qiuchi Li—for
making this journey more enjoyable and fulfilling through their companionship and
support.

Last but certainly not least, I owe a debt of gratitude to my family, Xingwei Ma,
Guolin Su, and Jinmei Jia. Their unwavering support and encouragement have been my
backbone throughout this challenging and rewarding period of my life.

This thesis is not just a reflection of my work, but a testament to the collective effort
and support of all those mentioned above.

i

Abstract

Information propagation is the process through which data are transmitted within a
system. The growth of large-scale web datasets has led to explosive growth in information,
triggering new research areas such as large language models (Brown et al., 2020a) or
digital surveillance (Westerlund et al., 2021).

In the realm of language modeling, this thesis studies information propagation in
modular language modeling, where a subset of training parameters are treated as
modules. Each module can be individually trained using a domain-specific dataset,
leading to the creation of a module uniquely tailored to each domain. Following this,
a routing function determines which module should be activated, and an aggregation
function is then employed to integrate the outputs of the active modules. This study
provides an in-depth analysis of information propagation in modular language modeling,
examining three key aspects: modules, routing, and aggregation. Firstly, a novel module
that incorporates tensor product representation is introduced, making a significant
advancement in parameter efficiency by considerably reducing the number of parameters
needed in the trained model. Secondly, the investigation explores a variety of routing
functions in the context of multi-task learning, focusing on few-shot and zero-shot
scenarios. thirdly, a new aggregation method is presented, designed from the ground up
based on the newly proposed modules. Finally, we take steps to create modular language
models by building and reusing a library of modules, paving the way for efficient and
flexible utilization of language models across a wide array of tasks.

In the domain of digital surveillance, the research also delves into information propagation
in web tracking, with a particular focus on the evolution of web tracking practices over
the past decade. A comprehensive historical analysis of third-party web tracking practices
is conducted by utilizing the Wayback Machine. This approach not only sheds light on
the technical advancements in web tracking but also maps out the changing landscape
of digital surveillance.

ii

Resumé

Informationsformidling er den proces, hvorigennem data transmitteres inden for et
system. Væksten af store webdatasæt har ført til en eksplosiv vækst i information, som
har skabt nye forskningsområder såsom store sprogmodeller (Brown et al., 2020a) og
digital overvågning (Westerlund et al., 2021).

Denne afhandling undersøger informationsformidling i modulær sprogmodellering, hvor
en delmængde af træningsparametre behandles som moduler. Hvert modul kan trænes
individuelt ved brug af et domænespecifikt datasæt, hvilket fører til skabelsen af et
modul, der specifikt ertilpasset hvert domæne. Herefter bestemmer en routing-funktion,
hvilket modul der skal aktiveres, og en aggregerings-funktion anvendes derefter til at
integrere output fra de aktive moduler. Denne undersøgelse giver en dybdegående
analyse af informationsformidling i modulær sprogmodellering, idet den undersøger tre
nøgleaspekter: moduler, routing og aggregering. Først introduceres et nyt modul, der inko-
rporerer tensorproduktrepræsentation – et betydeligt fremskridt i parametereffektivitet
ved betydeligt at reducere antallet af parametre, der er nødvendige i den trænede model.
Dernæst udforskes en række routing-funktioner i kontekst af multi-opgavelæring med
fokus på few-shot og zero-shot-scenarier. Dernæst præsenteres en ny aggregeringsmetode
designet fra bunden baseret på de nyligt foreslåede moduler. Endelig tages der skridt til
at skabe modulære sprogmodeller ved at bygge og genbruge et bibliotek af moduler, som
baner vej for effektiv og fleksibel anvendelse af sprogmodeller på tværs af en bred vifte
af opgaver.

Inden for digital overvågning undersøger afhandlingen information i webtracking med
særligt fokus på udviklingen af webtrackingpraksisser over det seneste årti. En omfattende
historisk analyse af tredjeparts-webtrackingpraksisser udføres ved at anvende Wayback
Machine. Denne tilgang kaster ikke blot lys over de tekniske fremskridt inden for
webtracking, men kortlægger også det skiftende landskab inden for digital overvågning.

iii

Publications

The work presented in this thesis is organized by chapter, listed in order of their
appearance.

• (Caccia et al., 2022). Lucas Caccia, Edoardo Ponti, Zhan Su, Matheus Pereira,
Nicolas Le Roux, Alessandro Sordoni. Multi-Head Adapter Routing for Cross-Task
Generalization. Advances in Neural Information Processing Systems (NeurIPS
2023). 2023.

• Mixture of LoRA Experts Using Tensor Product. (Manuscripts).

• Oleksiy Ostapenko*, Zhan Su*, Edoardo Ponti, Laurent Charlin, Nicolas Le Roux,
Lucas Caccia*, Alessandro Sordoni* Towards Modular LMs by Building and
Reusing a Library of LoRA Adapters. (ICML2024 submitted).

• (Su et al., 2023). Zhan Su, Rasmus Helles, Ali Al-Laith, Antti Veilahti, Akrati
Saxena, Jakob Grue Simonsen. Privacy Lost in Online Education: Analysis of
Web Tracking Evolution. International Conference on Advanced Data Mining and
Applications. 2023. pages 440–455.

The following papers or manuscripts are finished during my Ph.D. study, they are not
highly related to the thesis.

• (Ostapenko et al., 2023). Oleksiy Ostapenko, Lucas Caccia, Zhan Su, Nicolas
Le Roux, Laurent Charlin, Alessandro Sordoni. A Case Study of Instruction
Tuning with Mixture of Parameter-Efficient Experts. NeurIPS 2023 Workshop on
Instruction Tuning and Instruction Following. 2023.

• Zhan Su, Yuqin Zhou, Benyou Wang, Fengran Mo, Jian-Yun Nie, Jakob Grue
Simonsen. Reinforced Query Expansion for Sparse Retrieval. (SIGIR2024 submit-
ted)

• Zhan Su, Yuqin Zhou, Benyou Wang, Qiuchi Li, Jakob Grue Simonsen. Language
Modeling Using Tensor Trains.

iv

Contents

Acknowledgements i

Abstract ii

Resumé iii

Publications iv

1 Introduction 1
1.1 Thesis Outline . 3
1.2 Information Propagation in Language Modeling 5

1.2.1 Concepts and Notation: The Basics 7
1.2.2 Transformer Structure . 10
1.2.3 Modules . 12

Function Composition . 12
Input Composition . 14
Parameter Composition . 15
Hybrid Methods . 15
Contributions . 16

1.2.4 Routing Function: Selection of Active Modules 16
Fixed Routing . 18
Learned Routing . 19
Routing with Different Granularity 20
Routing with Different Input Granularity 20
Contributions . 22

1.2.5 Aggregation Function: How are the outputs of the active modules
aggregated? . 23
Parameter Aggregation . 23
Representation Aggregation . 24
Function Aggregation . 25
Contributions . 25

1.3 Information Propagation in Web Tracking 25
1.3.1 Digital surveillance . 26
1.3.2 Web tracking . 27

Web Tracking Technologies . 27
Third-party Web Tracking . 29

1.3.3 Historical Web Tracking . 30
The Role of Global Diversity in Web Tracking Evolution 31

v

Political and Economic Influences 31
Cultural Reflections Through Web Tracking 31
Contributions . 32

I Modular Language Modeling 33

2 Multi-Head Routing for Cross Tasks Generalization 34
2.1 Introduction . 34
2.2 Related Work . 35
2.3 Background . 36

2.3.1 Adapters: LoRA & (IA)3 . 36
2.3.2 Polytropon: Adapter Routing . 37

2.4 Multi-Head Adapter Routing . 38
2.5 Experiments . 40

2.5.1 Baselines . 41
2.5.2 Datasets . 42

2.6 Results and Discussion . 42
2.6.1 Does the expressivity of the routing function matter? 42
2.6.2 Why do routing-based PEFT methods yield superior performance? 44
2.6.3 Is routing important for task generalization? 44

2.7 Conclusions . 45
2.8 Appendix . 47

2.8.1 Additional Results . 47
2.8.2 Navigating the parameter efficiency / performance trade-off of

tuning only the routing . 47
On the granularity of routing tensor in MHR 48

2.9 Broader Impact . 48

3 Mixture of LoRA Experts Using Tensor Product 50
3.1 Introduction . 50
3.2 Related Work . 52
3.3 Background . 54

3.3.1 Module: LoRA . 54
3.3.2 Tensor, Tensor Product, Entangled Tensor 54
3.3.3 Tensorized Training Parameters with Tensor Product 55

3.4 Methods: TensorPoly . 55
3.4.1 TensorPoly-I . 55
3.4.2 TensorPoly-II . 56

3.5 Experiments . 57
3.5.1 Backbone, Datasets and Evaluation 57
3.5.2 Baselines . 58
3.5.3 Results . 59

Rank and Order Analysis . 60
3.5.4 Routing Analysis . 60
3.5.5 Flop Analysis . 62
3.5.6 Discussion . 62

vi

3.6 Conclusion . 62

4 Towards Modular LMs by Building and Reusing a Library of LoRA
Adapters 64
4.1 Instruction . 64
4.2 Preliminaries . 66
4.3 Building the LoRA Library . 67
4.4 Re-Using the LoRA Library . 69

4.4.1 Routing . 69
Zero-Shot Example Routing . 69
Supervised Task Routing . 70

4.4.2 LoRA Composition . 71
4.5 Experiments . 71

4.5.1 Zero-Shot Results . 72
4.5.2 Supervised Adaptation . 75
4.5.3 Summary of Results . 76

4.6 Related Work . 77
4.7 Conclusion . 78
4.8 Appendix . 79

4.8.1 Analyzing ∥ABTv∥2 for in-distribution and out-of-distribution
samples . 79

4.8.2 Zero-shot routing extended results 80
4.8.3 Few-shot adaptation . 80

II Information Propagation in Web Tracking 83

5 Privacy Lost in Online Education: Analysis of Web Tracking Evolution 84
5.1 Introduction . 84
5.2 Related Work . 86
5.3 Data collection . 87

5.3.1 Collecting Websites . 87
5.3.2 Scanning the Historical Snapshot 88
5.3.3 Extraction of Third-party Trackers 88

5.4 Analysis and Discussion . 89
5.4.1 Evolution of tracker domains per website 89
5.4.2 The number of trackers on educational and non-educational websites 90
5.4.3 Evolution of usage rate for the most common trackers 91
5.4.4 Distribution of trackers in educational and non-educational sites . 92
5.4.5 Evolution of different categories of trackers 92
5.4.6 Discussion . 94

5.5 Conclusions . 95
5.6 Appendix . 95

5.6.1 Tracker Categories . 96

6 Bibliography 97

vii

1Introduction

Information propagation is roughly the process through which data, messages, or signals
are distributed, transmitted, or conveyed within a system. It involves diverse applications
spanning fields such as communication systems, computer networks, social sciences,
and biology. The surge of large-scale web datasets has led to a marked increase in
information, fostering new research areas in computer science and social networks (Chen,
Castillo, et al., 2022).

Information Propagation in Language modeling In natural language processing, the con-
cept of transfer learning, where a model developed for one task is repurposed as the
foundation for a model on a different task, represents a wide-ranging application of
information propagation 1. For instance, in natural language understanding tasks, the
most commonly employed methods involve utilizing pre-trained models, which are typi-
cally trained with a language modeling objective (Devlin et al., 2018). Transfer learning,
leveraging pre-trained language models (PLMs), has emerged as the predominant ap-
proach, yielding strong performance on many NLP tasks (Devlin et al., 2018; Qiu et al.,
2020). The most prevalent method of applying pre-trained language models (PLMs)
to downstream tasks involves fine-tuning all the training parameters of the model (
Full-finetuning). However, there are two notable limitations to this approach:

1. Fine-tuning PLMs requires duplicating the model for each individual task, which
becomes prohibitively expensive when adapting to a large number of tasks (He
et al., 2021). Especially, the expansion of large-scale web datasets has been a pivotal
factor in advancing language modeling (NLP) (Zhao et al., 2023). This progression
promotes a groundbreaking for language models such as Bert (Devlin et al., 2018),
GPT (Brown et al., 2020b), LLama (Touvron et al., 2023) and Mixtral (Jiang
et al., 2024). The advancement of Large Language Models (LLMs) has rendered
the adaptation of full finetuning to multi-task transfer learning impractical and
infeasible.

2. Training tasks independently can lead to the issue of catastrophic forgetting (Mc-
Closkey and Cohen, 1989). This phenomenon occurs when a model, upon learning
from a new task, loses or ’forgets’ the knowledge it acquired from previous tasks.

To tackle these challenges, modular language models have emerged as promising ap-
proaches. Both biological and artificial systems circumvent these weaknesses thanks to
their inherent modularity (Ballard, 1986; Pfeiffer et al., 2023). Expanding upon this
concept, recent research has concentrated on the development of neural networks with

1This statement represents the author’s own original conceptualization of information propagation
within the language modeling.

1

explicit modularity (Jacobs, Jordan, and Barto, 1991; Rosenbaum et al., 2017; Ponti,
2021; Pfeiffer, Kamath, et al., 2020; Huang et al., 2023; Ponti et al., 2023a; Muqeeth et al.,
2024). The primary objective of this approach is to attain functional specialization and
improve the reusability and composability of neural networks. These methods involve
identifying 1) modules that can be updated independently and asynchronously, without
impacting other parts of the model; 2) a routing function responsible for assigning
a subset of relevant modules to each specific example or task; and 3) an aggregation
function tasked with integrating the outputs of the active modules.

This thesis delves into the concept of modular language modeling. In Chapter 3, we
introduce a novel module that employs tensor product representation. To investigate
routing functions, we propose two latent skilled routing functions aimed at enhancing
cross-task generalization, detailed in Chapter 3 and Chapter 2. For zero-shot tasks, we
introduce several routing methods to make the modular LMs generalize to unseen tasks
without training, as detailed in Chapter 4. The implementation of a tensor product-
based aggregation/routing method is presented in Chapter 3. Finally, we present a novel
modular LMs by building and resuing a library of modules in Chapter 4.

Information Propagation in web tracking Within the area of social networks, information
propagation refers to the mechanism through which information spreads among individ-
uals or groups. Take the example of Facebook, where a user named Sally updates her
status or posts on a friend’s wall about a new show she enjoyed. Information regarding
this activity is usually shared with her friends. Consequently, the details of Sally’s action
have the potential to be transmitted transitively throughout the network, illustrating
the dynamics of how information can ripple through a web of social connections. (Chen,
Castillo, et al., 2022). Research in this domain has seen a significant surge over the past
decade (Wang et al., 2015; Lerner et al., 2016; Sims and Bamman, 2020; Chen, Castillo,
et al., 2022; Zhao et al., 2022; Lee et al., 2024). The surge in interest is primarily fueled
by the swift growth of social media and online social networking platforms, which are
expanding at an ever-increasing rate (Lerner et al., 2016; Liu and He, 2020; He and Liu,
2020; Sims and Bamman, 2020; Jerez-Villota et al., 2023; Joseph, 2023). Concurrently,
alongside the remarkable expansion of social media and online social networking sites,
digital tracking methods have become increasingly prevalent on the World Wide Web.
This widespread adoption of tracking techniques raises serious concerns about the protec-
tion of personal privacy. A substantial amount of research focuses on digital surveillance,
particularly through web tracking, as state-based web tracking methods are relatively
easy to identify within the source code of a webpage (Helles et al., 2020; Libert, 2015).
However, studying digital surveillance historically presents several challenges:

1. Amassing a large-scale dataset of web tracking information from previous years is
inherently challenging due to several factors. Primarily, the lack of comprehensive
archives makes it difficult to retrieve past data (Lerner et al., 2016; Karaj et al.,
2018). Additionally, privacy regulations and the proprietary interests of web
services further restrict access to historical tracking data, creating significant gaps
in the available information (Li et al., 2019).

2

2. Exploring the historical development of web tracking techniques involves significant
complexities. The rapid evolution of technology means that tracking mechanism
become quickly outdated, replaced by new methods that are more sophisticated and
harder to detect (Karaj et al., 2018). These challenges underscore the difficulties
in conducting a thorough historical examination of digital surveillance and web
tracking, highlighting the need for innovative methodologies and adaptive strategies
to overcome these obstacles (Agarwal and Sastry, 2022; Graux and Orlandi, 2022;
Gandon and Hall, 2022; Halpin and Henshaw-Plath, 2022).

This thesis embarks upon a historical analysis of information propagation in web tracking.
Specifically, we develop a historical tracker crawler utilizing the Wayback Machine (Lerner
et al., 2016; Karaj et al., 2018). This innovative tool allows us to explore the evolution
and development of third-party trackers over the past decade, providing insights into
their progression and impact on web privacy. Our analysis concentrates on several crucial
aspects: 1) The historical shifts in third-party tracker technologies and their adoption
patterns across different countries. 2) The implications of these developments on user
privacy and data security over time. This thesis provides a thorough understanding
of the evolution and current landscape of web tracking. These insights are vital for
formulating more effective approaches to digital privacy management and grasping the
wider societal implications of web tracking practices.

1.1 Thesis Outline

The contributions of this thesis are categorized into distinct sections for clarity and
organization.

In Section 1.2, we study information propagation within language modeling from three
distinct perspectives. Firstly, under module, we study the implementation details of
modules within the language models, examining their functionalities and the specific
roles they play. Secondly, routing explores the criteria and mechanisms for selecting
the appropriate modules for processing given inputs, highlighting the decision-making
process within the model’s architecture. Lastly, aggregation focuses on the methods
employed to combine the outputs of active modules, detailing how these individual
contributions are synthesized to produce a coherent output.

In section 1.3, we study information propagation in the context of web tracking. Specif-
ically, we focus our analysis on the development of web-tracking practices within the
past decade. This analysis employs statistical methods to understand the evolution and
patterns of web tracking activities.

Information propagation in language modeling: Modules . In language modeling, a module
can be any component of a neural network architecture (Pfeiffer et al., 2023). Section
1.2.3 unfolds the intricate variety of computation functions that constitute the backbone
of modular design, specifically focusing on parameter composition, input composition,
and function composition.

3

Subsequently, in paper 3, we introduce an innovative parameter composition strategy
termed "tensorized modules". This approach leverages the tensor product operation
to reduce training parameters (Panahi et al., 2019). Tensorized modules represent a
significant advancement in modular language models, offering a novel methodology for
parameter-efficient finetuning (PEFT).

In paper 4, we introduce a novel approach to language modeling by proposing a modular
language model (LM) that leverages a pre-trained library of modules. Our investigation
spans various strategies for constructing a module library, aiming to enhance multi-
task transfer capabilities and minimize task interference. Through our research, we
have identified and implemented effective module selection techniques. Notably, our
experimental findings demonstrate that clustering methods based on module (LoRA)
similarity metrics can significantly optimize the process of module selection, thereby
establishing a more efficient and versatile modular language model.

Routing Function: Selection of Active Modules. The mechanism of routing
within language models delineates how active modules are selected for processing specific
tasks, categorized into fixed routing and learned routing. fixed routing operates on a
predefined schema, where the specialization of each module, along with the requisite
module combinations for each task, is predetermined, known as a priori. Conversely,
learned routing involves a dynamic selection process where the parameters governing
the routing mechanism are optimized during the training. This method can further be
subdivided into soft and hard routing. Soft routing is characterized by a distribution of
routing scores. Hard routing, on the other hand, assigns a binary score to each module,
categorically designating them as either active or inactive.

In contexts requiring adaptation to novel tasks with limited data, such as few-shot
learning scenarios, we introduce routing strategies such as the multi-head routing
function MHR detailed in Chapter 2, and the tensor product routing detailed in Chapter 3,
specifically designed for managing latent-skilled experts. For zero-shot learning scenarios,
where the model must adapt to tasks without any prior examples, a task predictor
router and Arrow router are proposed (Chapter 4). This innovative approach enables the
model to infer the most appropriate modules for unseen tasks, leveraging the underlying
structure and semantics of the task description.

Aggregation Function: Integrating Outputs from Active Modules . The aggrega-
tion function plays a crucial role in synthesizing the outputs from active modules within
a language model. It can be implemented through straightforward methods such as a
weighted average or concatenation, or through more sophisticated approaches employing
a learnable neural network that dynamically adapts based on the outputs of all engaged
modules. Typically, the routing and aggregation functions are designed to work seam-
lessly together (Pfeiffer et al., 2023). In alignment with our new tensor product routing
strategy, we introduce a corresponding tensor product aggregation method (Chapter 3).
This approach leverages the tensor product to combine module outputs in a manner
that preserves the multidimensional relationships between different module contributions
(Panahi et al., 2019). Such a tensor-based aggregation is particularly well-suited to

4

complement the tensor product routing, ensuring that the selection and integration of
module outputs are simultaneously optimized for complex task processing.

Finally, we target to build modular language models by building and reusing a library
of modules (Chapter 4). We show the potential achievable by re-using independently or
partially independently trained adapters (modules) with a zero-shot routing strategy.
Overall. We compare different alternatives to build a library of adapters in such a
way that they can perform well on the in-domain tasks and out-of-domain tasks. We
investigate the strategic, modular augmentation of smaller (language) models, offering a
promising direction for research that prioritizes efficiency, flexibility, and performance.

Information Propagation in Web tracking In Section 1.3, we investigate the dynamics of
information propagation in the realm of web tracking, with a particular emphasis on the
utilization of third-party trackers. This analysis is focused on understanding how web
tracking mechanisms have evolved, specifically through the lens of third-party tracking
entities.

In Chapter 5, we compare tracking activities on educational websites by contracting a
sample of these sites with a control group. This comparison is meticulously designed to
unravel the specific patterns and trends of web tracking within educational domains,
offering insights into how these practices diverge from or align with broader web tracking
behaviors. To facilitate this analysis, we developed a specialized historical crawler,
HTracker, capable of extracting data on historical trackers from the vast archives of
the Internet Archive’s WayBack Machine (Lerner et al., 2016). This tool enables us to
traverse back in time and reconstruct the trajectory of third-party tracking practices,
providing a longitudinal perspective on the evolution of web tracking. By employing
statistical analysis methods, we dissect the development of third-party tracking on
educational websites over time. This approach enriches our understanding of web
tracking development and underscores the peculiarities of tracking in educational contexts
compared to the wider web landscape.

1.2 Information Propagation in Language Modeling

In recent years, the de facto paradigm for natural language understanding (NLU) tasks
has been to utilize pre-trained methods, particularly transformer models (Vaswani et al.,
2017a). Typically, these models are customized for particular tasks by fine-tuning all
their parameters (Zhang and Yang, 2021; Ruder, 2017). However, this approach leads to
the creation of a distinct set of fine-tuned model parameters for each task, becoming
prohibitively resource-intensive in scenarios that involve numerous tasks (He et al., 2021).
Meanwhile, fine-tuning all network parameters for each specific task results in a model
uniquely tailored for that task, inhibiting the utilization of shared information across
different tasks (Ruder, 2017).

In multi-task scenarios, there are two main approaches for facilitating information sharing
across various tasks. The first approach involves sequentially fine-tuning pre-trained

5

language models on each task, one after the other (Phang et al., 2018). However, this
approach encounters the problem of catastrophic forgetting wherein the model forgets
previously learned information as it undergoes fine-tuning on subsequent tasks. The
second approach, known as multi-task learning (Ruder, 2017; Vandenhende et al., 2020;
Sanh et al., 2021a; Yang et al., 2023; Hu et al., 2024), involves simultaneously fine-tuning
a pre-trained model on all target tasks by employing a weighted sum of the objective
functions from each task. However, this approach requires simultaneous access to all
tasks during training. Introducing new tasks requires a complete retraining process
with all tasks jointly. Balancing multiple tasks also presents a significant challenge. As
Lee et al. (2017) have demonstrated, these models tend to overfit on tasks with limited
resources and underfit on those with more abundant resources (Pfeiffer, Simpson, et al.,
2020). These difficulties underscore the necessity for a more adaptable and efficient
method of knowledge transfer within multi-task learning.

Parameter-efficient fine-tuning (PEFT) aims to resolve the above challenge by only
training a small set of parameters while keeping most pre-trained parameters frozen
(Lialin, Deshpande, et al., 2023). Recently, A rich body of parameter-efficient fine-tuning
(PEFT) approaches have been proposed (Houlsby et al., 2019a; Zaken et al., 2021; Karimi
Mahabadi et al., 2021; Li and Liang, 2021b; Zhang, Han, et al., 2023). Methods like
Adapter (He et al., 2022), Prefix Tuning (Li and Liang, 2021b), LoRA (Hu et al.,
2021) and IA3 (Liu, Tam, et al., 2022a) often updating less than 1% of the original
model parameters. These approaches have shown performance comparable to full-tuning
in NLU tasks, allowing for separate and simultaneous training of modules for multiple
tasks using the same backbone model. However, despite these advancements, PEFT
approaches still grapple with difficulties in maximizing knowledge transfer across tasks,
encountering similar limitations as seen in sequential fine-tuning and multi-task learning
approaches (Pfeiffer, Kamath, et al., 2020).

Modular deep learning has emerged as a s promising solution (Robbins, 2009; Ballard,
1986). Within this paradigm, computation units are crafted as parameter-efficient
modules. Information is processed by directing it through a chosen subset of these
modules and subsequently aggregating the outcomes (Pfeiffer et al., 2023). Each module
is tailored for a specific purpose, allowing for consistent reuse across different tasks.
This modular architecture facilitates positive transfer and systematic generalization by
decoupling computation from routing and updating modules locally (Pfeiffer, Kamath,
et al., 2020; Poth et al., 2023; Muqeeth et al., 2024). Such properties address the knowledge
transfer challenges inherent in traditional PEFT and multi-task learning approaches,
representing a significant advancement in the field of deep learning.

As a result, various studies have studied the concept of explicitly designing neural
networks with a modular structure (Ponti, 2021; Rosenbaum et al., 2017; Pfeiffer,
Kamath, et al., 2020; Vu et al., 2021; Poth et al., 2023; Huang et al., 2024; Muqeeth et al.,
2024), These methods involve 1) modules (Section 1.2.3) which are sets of trainable
parameters updated locally without impacting the other parameters. 2) A Routing
(Section 1.2.4) mechanism that determine which module should be activated. 3) An
aggregation function (Section 1.2.5) that decides how to integrate the outputs of these
activated modules during the final forward pass.

6

This thesis advances the study of modular language models across three key dimensions.
Initially, Section 1.2.1 lays the groundwork by detailing the foundational concepts and
notations employed throughout the study. Given our emphasis on transformer-based
language models, Section 1.2.2 delves into the fundamental architecture of these models.
Subsequent sections are dedicated to exploring the modules, routing, and aggregation
processes, each addressed in their respective section.

1.2.1 Concepts and Notation: The Basics

This section is dedicated to laying the groundwork for the concepts and notation. we
employ a generalized notation designed to scaffold the conceptual framework connecting
modules (Section 1.2.3), routing (Section 1.2.4), and aggregation (Section 1.2.5). This
notation serves as a preliminary tool to elucidate the interrelationships and founda-
tional principles underlying our study. we use these notations to facilitate an initial
comprehension and to draw a broad outline of the theoretical landscape that our work
navigates.

However, it is crucial to acknowledge that this introductory notation is not carried
forward into the detailed discussions of the specific papers in this thesis. For the concrete
analysis and examination of specific cases, theories, or models, we defer to the original
notations as presented in the respective paper. Readers are encouraged to view the
generalized notation introduced at the outset as a foundational bridge, a means to
facilitate an initial understanding and to prepare for the deeper engagement that follows.
As we progress through the thesis, the adoption of specific notation for each paper is
intended to enhance clarity, foster accurate interpretation, and ensure that our discussion
remains closely aligned with the established discourse within the field.

Notation Definition

x ∈ X Input data
y ∈ Y Output data
h ∈ H Hidden representation
t ∈ T Task index

f : X ×H → Y ×H A computation function
θ Shared parameters

M = {ϕ1, . . . , ϕM} Set of module parameters
α ∈ A Vector of routing scores

r : X ×H× T → A Routing function
ρ Routing parameters
g Aggregation function
γ Aggregation parameters

Table 1.1 Notation and definition of variables, functions, and operators used in this Section.
We use the same notation used in Pfeiffer et al. (2023).

7

Input Layer

Hidden Layers

Output Layer

a[4]

𝑓!" 𝑓!# 𝑓!$

𝒳 𝒴

𝑓!%

Figure 1.1 A linear chain representation of neural network fθ1 ◦ fθ2 ◦ fθ3 ◦ fθ4 .

Consider a neural network fθ : X → Y that can be decomposed into a graph consisting
of sub-functions (Pfeiffer et al., 2023). In its most basic form, this graph takes the shape
of a linear chain, represented as fθ1 ◦fθ2 ◦· · ·◦fθl , where ◦ denotes a function composition.
The subfunction refers to the l layer within the model, each characterized by the uniquely
indexed parameter θi, i = 1, ..., l. These layers can be further broken down recursively
into a network of their individual sub-functions. For instance, fθi could be viewed as
the i-th layer of a transformer model (Vaswani et al., 2017a), which encompasses linear
mappings for the query, key, value, and output, in addition to a nonlinear feed-forward
network and residual connections (Section 1.2.2). The parameters at the beginning of
the training process are denoted as θ0, while the parameters after the training has been
completed are denoted as θ∗.

Any i-th sub-function receiving input x can be adjusted by a module characterized by
parameters ϕ selected from the inventory Mi = {ϕ1, ..., ϕ|M |} in the following ways:

• Function composition: The revised sub-function is given by fnew = fϕ ◦ fθi(x),
wherein the output of the initial function is input into the subsequent function.
This technique is exemplified by the introduction of adapter layers, as explored in
the study by (Houlsby et al., 2019b).

• Input composition: The updated sub-function is represented as fnew = fθi([ϕ, x]),
where [·, ·] denotes concatenation operation. This method finds application in
techniques such as prefix tuning, as discussed by (Li and Liang, 2021b), and
prompting tuning, as described by Lester et al. (2021).

• Parameter composition: The modified sub-function can be expressed as fnew =
fθi⊕ϕ(x), where ⊕ denotes an operation that amalgamates the existing parameters
with new module parameters, thereby generating the updated training parameters.
This approach is exemplified by the use of LoRA adapters as detailed in the work
(Hu et al., 2021).

8

For each i-th sub-function, module selection is governed by a routing function r(·),
which assigns a score αj to each module fϕj based on the data itself, such as a language
token or a visual region x, or on metadata like the task identify t ∈ T . The vector α
can be predetermined through expert knowledge or dynamically learned via a specific
parameterization rρ(·), where ϕ represents the learnable parameters of the routing
function. The routing can take on one of two forms:

• Hard routing. α ∈ {0, 1}|M | is a discrete binary vector indicating the selection or
exclusion of modules.

• Soft routing. α ∈ [0, 1]|M | is a continuous probability distribution, ensuring that∑
j αj = 1, which allows for a weighted combination of module contributions.

The output for each module is combined using an aggregation function g(·). The simplest
form of aggregation function, weighted averaging of outputs, has demonstrated significant
performance benefits (Ponti et al., 2023a; Fedus, Zoph, et al., 2022b; Ostapenko et al.,
2023; Muqeeth et al., 2024).

We present a popular modular language model, a sparse-gated mixture-of-experts(MoE)
as discussed in (Shazeer et al., 2017a). In their approach, a module can function as a feed-
forward layer. A top-k routing taking a token representation x as input, subsequently
routes it to the top-k modules selected from the available inventory Mi = {ϕ1, ..., ϕ|M |}
of M modules. The router function h(x) = Wρx which are normalized via a softmax
distribution over the |M | modules. The routing score for module i is given by:

ri(x) =
eh(x)i∑M
j eh(x)j

(MoE routing)

where the router learns a probability distribution over the available modules. We denote
the set of selected top-k experts indices as K. Consequently, the routing and aggregation
process can be described as follows:

g(x) =
∑
ϕj∈K

r(ϕj)f(x; θi, ϕj) (MoE aggregation)

where ϕj is the module j and θi is represents the parameter of sub layer i. Integrating the
modules with the routing and aggregation functions yields a framework for a modular
language model. We will present a modular language model based on transformer
structure in Section 1.2.2.

9

Figure 1.2 This is an example of the top-k token routing scheme over five experts and three
input tokens (Fedus, Dean, et al., 2022). Each expert is distinguished by a unique color code,
and the router’s weights include a specific representation for each expert. To determine the
routing, the router weights perform a dot product with each token embedding x to produce the
router scores. These scores are then normalized to ensure they sum to 1.

1.2.2 Transformer Structure

In this thesis, we examine language models that are built upon the transformer architec-
ture. Before we present the specific modules, let us first review the foundational aspects
of the transformer structure (Vaswani et al., 2017a).

In the architecture of a standard transformer model, as described by (Vaswani et al.,
2017b), the model is composed of L sequential layers, each of which includes two primary
components: a multi-head attention mechanism (MHA) and a fully connected feed-
forward network (FFN). In the conventional attention function the queries Q ∈ Rn×dk

and key-value pairs K ∈ Rm×dk , V ∈ Rm×dv are mapped as follows:

Attention(Q,K, V) = softmax

(
QKT

√
dk

)
V (1.1)

where n represents the number of queries and m denotes the number of key-value pairs.
The multi-head attention mechanism executes the attention operation concurrently across
Nh distinct heads, where each head is separately parameterized by W

(i)
q , W (i)

k ,W (i)
v ∈

Rd×dh to project inputs to queries, keys and values. Given a sequence of m vectors
C ∈ Rm×d, across which we aim to apply attention, and a query vector x ∈ Rd, multi-head
attention (MHA) calculates the output for each head and concatenates them:

MHA(X) = Concat(head1, ..., headh)Wo (1.2)

headi = Attention(xW (i)
q , CW

(i)
k , CW (i)

v) (1.3)

10

Add & Norm

Feed
Forward

Add & Norm

Multi-Head
Attention

Add & Norm

Add & Norm

Multi-Head
Attention

FFN FFN

𝑋! 𝑋"

𝑌! 𝑌"
Dense Model

Figure 1.3 This figure presents a streamlined view of a transformer structure, highlighting
the core components: Multi-head attention (MHA), Feed-forward network (FFN). The dense
model sends both input tokens to the same FFN (Fedus, Dean, et al., 2022).

where Wo ∈ Rd×d. d is the model dimension, and dh is typically set to d/Nh to save
parameters in MHA. Another crucial component is the fully connected feed-forward
network (FFN), comprising two linear transformations with a ReLU activation function
in between:

FFN(X) = ReLU(XWf1 + b1)Wf2 + b2 (1.4)

where W1 ∈ Rd×dm and W2 ∈ Rdm×d. Transformers often employ a large model dimension,
denoted as dm, e.g. dm = 4d. Subsequently, a residual connection is applied, followed by
layer normalization (Ba et al., 2016).

Recently, a substantial number of Transformer model variations have been introduced,
demonstrating the model’s versatility and impact across different domains. These
range from earlier adaptations such as BERT (Devlin et al., 2018), GPT (Radford et al.,
2019), T5 (Raffel et al., 2020b), Palm (Chowdhery et al., 2023) to more advancements in
recent large language models like Gemini (Team et al., 2023), GPT-3.5 Turbo (OpenAI,
2023) and GPT-4 (Achiam et al., 2023). Additionally, openly released models such
as LLaMA further enrich the landscape, showcasing the continuous innovation and
broad applicability of Transformer-based architectures (Zhang, Han, et al., 2023). Jiang
et al. (2024) introduce Mixtral 8x7B, a modular language model with a Sparse Mixture
of Experts (SMoE), which surpasses GPT-3.5 Turbo, Cemini Pro and LLama 70B.
This development highlights the considerable potential for advancing modular language
models in the future.

For all our papers about modular language models, all the backbone model is based on
transformed structure, including T5 (Raffel et al., 2020b) and T0 (Sanh et al., 2021b)
detailed in paper 3 and paper 2, GPTneo (Black et al., 2021), Phi-2 (Microsoft Research,
2023), Stable-LM (Tow et al., 2023) as detailed in paper 4.

11

Add & Norm

Feed
Forward

Add & Norm

Multi-Head
Attention

Add & Norm

Add & Norm

Multi-Head
Attention

𝑋! 𝑋"

𝑌! 𝑌"
Modular Model

FFN1 FFN2 FFN3 FFN4 FFN1 FFN2 FFN3 FFN4

Figure 1.4 This figure presents a modular language model based on a transformer structure.
In this case, modules are implemented as FFN. The modular model routes each input token
independently among its four modules (experts).

1.2.3 Modules

In language models, modules are most often incorporated into a base architecture whose
parameters are fully shared. For language modeling based on transformer structure
(Vaswani et al., 2017a), recent studies have introduced several Parameter-Efficient Fine-
tuning (PEFT) approaches that only update a minimal additional set of parameters while
keeping the majority of the pre-trained model’s parameters frozen (Houlsby et al., 2019a;
Li and Liang, 2021b; Hu et al., 2021; Liu, Ji, et al., 2022; Liu, Tam, et al., 2022b; Zhang,
Chen, Bukharin, et al., 2023; Zaken et al., 2021; Karimi Mahabadi et al., 2021; Edalati
et al., 2022; Zhang, Han, et al., 2023). PEFT models can be classified in multiple ways
according to their underlying approach or conceptual framework (Lialin, Deshpande,
et al., 2023). In this thesis, we classify the PEFT approaches into three distinct categories:
function composition, input composition, and parameter composition, as outlined by
(Pfeiffer et al., 2023). Each of these methods offers a pathway to extend the functionality
and applicability of language models, enabling them to be tailored to a wide range of
tasks and domains while maintaining efficiency and scalability.

Function Composition

Function composition methods are the most general as they augment the model with
new task-specific functions: f ′

i (x) = fθi(x)◦fϕi(x) = fϕi(fθi(x)), where ◦ denote function
composition.

The most commonly adopted method for function composition in this context is adapter
layer (Houlsby et al., 2019a). It is viewed as a module fϕi that integrates with the
functions fθi of an existing model. The adapter layer approach inserts small modules
between transformer layers. It generally uses a down-projection with Wdown ∈ Rd×r to

12

Add & Layer Norm

Adapter

Feed Forward

Adapter

Attention

Q K V

𝑊! 𝑊" 𝑊#

Hidden State

Add & Layer Norm

LoRA LoRA

×𝐿

⊕ ⊕
LoRA

𝑃"

𝑃#

𝑊$%&'

𝑊()
Adapter layer (Function composition)Nolinear

Prefix tuning (input composition)

LoRA (Parameter composition)
𝑊()𝑊$%&'

⊕

Figure 1.5 Different modular designs. we select three typical examples for each category.
Function Composition is adapter layers (Houlsby et al., 2019a) that are inserted in each layer
that transforms the hidden representations. Input Composition is the prefix-tuning (Li and
Liang, 2021b) extending the input sequence by pretending tunable matrices to the key and value
in self-attention. Parameter Composition is LORA which updates the incremental low-rank
matrix (Hu et al., 2021).

project the input h to a lower-dimensional space specified by bottleneck dimension r,
followed by a nonlinear activation function σ such as a ReLU unit, and an up-projection
with Wup ∈ Rr×d. These adapters are surrounded by a residual connection, leading to a
final form:

f
′

i (x) = fϕi(fθi(x))

fϕi = σ(hWdown)Wup

h = fθi(x)

(adapter layer)

(Houlsby et al., 2019a) places two adapters sequentially within each layer of the trans-
former, one after the multi-head attention and one after the FFN sub-layer.

Several studies have explored the different variants of adapter tuning (Rebuffi et al.,
2017; Pfeiffer, Kamath, et al., 2020; He et al., 2021; Karimi Mahabadi et al., 2021; Liu,
Tam, et al., 2022a). For example, Karimi Mahabadi et al. (2021) introduce Compacter,
a method designed for the fine-tuning of large-scale language models. This approach
utilizes a hyper-complex, low-rank adapter to reparameterize W in the adapters as:
W =

∑n
i=1Ai ⊗ Bi where Ai ∈ Rn×n is shared across layers (Karimi Mahabadi et al.,

2021; Pfeiffer et al., 2023). IA3 Liu, Tam, et al. (2022a)) scales activations by learned
vectors, attaining stronger performance while only introducing a tiny amount of new

13

parameters. This innovation highlights a significant advancement in the efficiency and
effectiveness of model-tuning techniques.

Input Composition

Input composition methods wrap a model’s input x by merging it with a learnable
parameter vector ϕi : f

′
i (x) = fθi [ϕi, x]. Typically, this augmentation applies to the

model’s initial input, directed into the first layer f1, enriching the input space and
potentially improving model performance by incorporating adaptable parameters directly
into the input process. The conventional approach to prompting language models, as
illustrated by ChatGPT (Brown et al., 2020a; Achiam et al., 2023), involves crafting a
task-specific, discrete text prompt. This method is fundamental for guiding the model
towards generating outputs aligned with the intended task requirements. However,
this approach indeed exhibits sensitivity to how prompts are formulated (Lu et al.,
2021). This sensitivity underscores the importance of carefully designing prompts and
selecting examples to guide models toward desired responses more effectively (Rubin
et al., 2021).

Instead, a continuous prompt vector ϕ can be learned directly and concatenated with
the input (Lester et al., 2021; Liu et al., 2023; Hambardzumyan et al., 2021). However,
as ϕ is only concatenated with the first layer’s input, the model has limited capacity to
adapt to specific tasks. As a result, such continuous (also called soft) prompts perform
poorly at smaller model sizes and on some harder tasks (Karimi Mahabadi et al., 2021;
Liu, Ji, et al., 2022). To mitigate this, initialization via multi-task learning has been
proposed (Vu et al., 2021).

As an alternative, module vectors ϕi can be learned for each layer of the model: f ′
i (x) =

fθi([ϕi, x]) (Figure 1.5); (Li and Liang, 2021b; Liu, Ji, et al., 2022). While this increases
the number of parameters, it provides the model with more flexibility to adapt to a given
task. In practice, module parameters in the form of prefix vectors ϕi = P i

k, P
i
v ∈ Rl×d are

prepended to the keys and values of every multi-head attention layer. Attention is defined
as fi(x) = Atten(xW i

q , CW i
k, CW i

v) where Wq,Wk,Wv ∈ Rd×dh are the projections that
produce the queries, keys, and values and C ∈ Rm×d is a sequence of context vectors.
Prefix tuning thus takes the following forms:

f
′

i (x) = Attn(xW i
q , [P

i
k, CW i

k], [P
i
v, CW i

v]) (prefix tuning)

Overall, input composition methods based on multi-layer prefix tuning (Li and Liang,
2021b; Yang and Liu, 2022) can be seen as a generalization of continuous prompting
methods.

There are many variants of research for the input composition (Zhu et al., 2023; Fang
et al., 2024; Wu et al., 2024; Wang, Caccia, et al., 2024; Razdaibiedina et al., 2023). To

14

resist catastrophic forgetting, Razdaibiedina et al. (2023) introduce a progressive prompt,
they learn a new soft prompt for each task to sequentially concatenate it with the
previous learned prompts. Wang, Caccia, et al. (2024) introduce planning tokens and
add their embeddings to the model parameters to improve the reasoning ability.

Parameter Composition

Parameter composition methods augment the function fW of a base model with weights
W ∈ Ro×i with module parameters Φ ∈ Ro×i, where i is the input dimensionality, and o is
the output dimensionality (Pfeiffer et al., 2023). The resulting function is parameterized
as fθ⊕ϕi , where ⊕ stands for element-wise addition.

The standard parameter composition is the LoRA (Hu et al., 2021). LoRA injects
trainable low-rank matrices into transformer layers to approximate the weight updates.
For the base model with weights W ∈ Ro×i, LoRA represents its update with a low-rank
decomposition W +δW = W +WdownWup, where Wdown ∈ Rd×r, Wup ∈ Rr×k are tunable
parameters. As shown in Figure 1.5. For a specific input x to the linear projection in
multi-head attention, LoRA modifies the projection output h as:

f
′

i (x) = fθ(x) + xWdownWup (LoRA)

Following the development of LoRA, numerous extended works have emerged, including
significant contributions by Dettmers et al. (2024), who introduced QLoRA, an efficient
finetuning approach by backpropagating gradients through a frozen, 4-bit quantized
pre-trained language model into LoRA. Additionally, (Zhang, Chen, Bukharin, et al.,
2023) have introduced AdaLoRA, which adaptively allocates the parameter budget
among weight matrices according to their importance score. Lialin, Muckatira, et al.
(2023) introduces a novel method ReLoRA to train transformer language models and
achieve comparable performance to regular neural network training. Huh et al. (2024)
explores extending LoRA to model training and introduces LoRA-the-Explorer (LTE)
to enable parallel training of multiple low-rank heads across computing nodes.

In this thesis, LoRA modules play a pivotal role. Specifically, in paper 3, we introduce
TLoRA, a novel reparametrization of LoRA utilizing tensor products. In paper 2,
we present the multi-head routing model, which applies fine-grained routing to the
LoRA adapter. Further, in paper 4, we establish a module library built upon LoRA,
subsequently devising various routing algorithms to facilitate the reuse of these LoRA
adapters. Additionally, we explore the expansion of the module library through function
composition and input composition, as elaborated in paper 4.

Hybrid Methods

Several approaches have integrated concepts from different categories of Parameter-
Efficient Fine-Tuning (PEFT), as demonstrated in works by (He et al., 2021; He et al.,

15

2022; Mao et al., 2021). These methods blend techniques from function composition,
input composition, and parameter composition to enhance model tuning and adaptation
capabilities, showcasing the versatility and effectiveness of combining these strategies for
improved performance in various tasks. For example, MAM (Mix-and-match) (He et al.,
2021) incorporates both Adapters and Prompt tuning. UniFELT (Mao et al., 2021) add
use different PEFT approaches as submodules and activate the best one based on a gate
mechanism. Poth et al. (2023) introduce an open-source library that unifies 10 diverse
adapter methods to address the challenges of conventional fine-tuning paradigms and
prompting more efficient and modular and prompting.

A unique hybrid approach identified in our research involves treating the trainable
parameters within the feed-forward and self-attention layers of transformer models as
tensors, followed by applying tensor decomposition techniques (Jie and Deng, 2023; Pan
et al., 2024; Wang, Yang, et al., 2024). These methods have been shown to significantly
enhance parameter efficiency. However, its applicability is somewhat constrained by the
necessity for compatibility with the structural specifics of the backbone model, thereby
limiting its generalizability across different transformer-based architectures.

Contributions

In what follows, we outline the thesis’s contributions to modules.

In our study (Chapter 3), we introduce a new hybrid module (TLoRA) optimization,
using significantly fewer trained parameters. By reparameterizing LoRA’s through a
tensor product framework, our method extends beyond updating merely the self-attention
layer, incorporating the feed-forward layer’s reparameterization as well. This expansion
is critical for enhancing overall performance, showcasing our approach’s novelty and
effectiveness in parameter-efficient model tuning. The training parameters in TLoRA are
represented as finer-grained tensors, allowing for a substantial reduction in the number
of training parameters—utilizing less than 1% compared to traditional full finetuning
methods. In this way, we can reduce the training parameters significantly and use less
than 1% of parameters compared to the full finetuning. TLoRA also induced the tensor
product aggregation function introduced in Chapter 3.

In our Paper (Chapter 4), we build the module library to create our modular language
model. Specifically, we find a positive correlation between the similarity of LoRA weights
of tasks and transfer. We leverage the similarity in weight space, as observed through
LoRA, among privately trained adapters as an indicator for identifying clusters of similar
tasks. Subsequently, we train one module for each identified cluster. This approach
provides deeper insights into how we can develop "new" modules from existing modules.

1.2.4 Routing Function: Selection of Active Modules

In the domain of modular language modeling, a diverse array of modules is accessible
from a predefined inventory, denoted as M = {ϕ1, . . . , ϕ|M |}. To effectively harness

16

Classification Category Description

Soft Routing Probabilistic Decision-making; in-
puts may be partially routed to
multiple modules.

Hard Routing Deterministic decision-making; in-
puts are directed to a single mod-
ule.

Global Routing Routing decisions affect the entire
network.

Per Layer Routing Routing decisions are made at
each layer of the system.

Token Level Routing Routing based on individual to-
kens in the input.

Example Level Routing Routing decisions made for each
input example.

Task Level Routing Routing based on the type of task
being performed.

Table 1.2 Overview of routing functions in modular language models. Routing functions can
be categorized based on whether they are trained, the granularity of routing, or the inputs to
the module. Each of these primary categories is further divided into several subcategories.

the capabilities of these modules, a critical decision-making mechanism is essential for
selecting the active modules based on the input to the model. This selection mechanism
is facilitated by a routing function, r(·), which allocates a score, αi, to each module
within the inventory M . The allocation of these scores is pivotal as it dictates the
subset of modules that will be engaged in the computational process. Such a mechanism
naturally leads to a sparse architectural framework, where only the selected (active)
modules contribute to the model’s computations. This strategic exclusion of inactive
modules also enhances the model’s capacity by focusing resources on the most relevant
modules for a given task (Fedus, Dean, et al., 2022).

Numerous approaches exist to categorize the various routing techniques (Fedus, Dean,
et al., 2022; Pfeiffer et al., 2023). In general, the routing function r(·) can include fixed
routing (or static routing) and learnable routing, each suited to different scenarios based
on the availability and nature of metadata, such as expert knowledge about the sub-
tasks or skills required for a task. Fixed routing is applicable when such metadata is
available, allowing routing decisions to be made a priori, with each module’s involvement
predetermined based on the task’s requirements.

In scenarios lacking prior information, the routing strategy must be learned (Pfeiffer
et al., 2023; Fedus, Dean, et al., 2022). Learning routing can be subdivided into soft
and hard routing. As depicted in Figure 1.6, hard routing involves learning a binary
selection mechanism for modules, where a specific subset of modules is chosen for each
decision-making step, effectively turning on or off certain modules based on the input.

17

Module 1

Module 2

Module 3

Module 4
Router

Module1 Module 2 Module 3 Module 4

Router

Merged Module

Hard Routing Soft Routing

(𝑎) (𝑏)

Figure 1.6 This example is explored in Muqeeth et al. (2023). (a) Hard learned Routing:
learned hard selection modules. Each color symbolizes a distinct module. The router determines
the module to engage by selecting the one with the highest probability. (b) Soft Learned Routing:
soft selection and weighting of modules. The routing process produces a distribution over
modules, and the contributions from all modules are aggregated according to their respective
weights.

Conversely, soft routing aims to learn a probability distribution over modules, assigning
weights to each module’s contribution rather than making a binary choice. This approach
allows for a more nuanced integration of module outputs, reflecting the probabilistic
confidence in each module’s relevance to the task.

Different routing methods can also be differentiated based on the nature of the input, as
outlined by (Kudugunta et al., 2021). Specifically, task-level routing involves directing
the input to various experts based on task-specific information. In contrast, example-level
routing dispatches the input to different experts based on the entire representation, absent
any task-specific details. Token-level routing represents a more fine-grained approach,
where each individual token is directed to distinct experts (Shen et al., 2023).

Specifically, for transformer-based language models, additional methods exist to cate-
gorize routing based on the level of granularity. For instance, routing can be designed
to utilize a shared routing function across all linear layers, a method known as global
routing. Alternatively, finer-grained routing employs a distinct routing function for each
linear layer. Block-wise routing involves using a separate routing function for each block
of attention layers, whereas layer-wise routing applies a unique routing function to each
individual linear layer, as discussed in Section 1.2.4.

Fixed Routing

Fixed routing makes discrete routing decisions a priori. Simplifying the routing function
r(·) to the selection of a subset of modules K ⊂ M for examples characterized by specific

18

metadata. This function can be implemented as a binary matrix A ∈ {0, 1}|T |×|M | where
each row corresponds to a possible task, and the number of columns corresponds to the
size of the module inventory (Pfeiffer et al., 2023; Ponti et al., 2023a; Caccia et al., 2022).
(Roller et al., 2021) show a random routing by hashing the input token can obtain a
competitive performance with the learned routing.

In paper 2, we implement a fixed routing strategy during the fine-tuning process, opting
for a uniform routing distribution across all layers. This approach yields results that
are competitive with those achieved through learned routing. This conclusion is further
supported by the findings in 4, where we apply uniform routing after constructing the
module library, also achieving competitive outcomes in zero-shot scenarios.

Learned Routing

In the case of learned routing, a routing function is denoted as r(·), it can be implemented
through training parameter ρ. This network takes as input the example x and outputs a
routing score α (Pfeiffer et al., 2023).

Hard Learned Routing Hard routing implies that the determination of a module’s activity
within the computation graph is binary, thereby excluding it or making it active. However,
such discrete decisions pose challenges for vanilla gradient descent because it makes a
discrete decision of which modules to select (Fedus, Dean, et al., 2022). Consequently,
alternative methods have been explored to facilitate inference, including reinforcement
learning (Bengio, Bacon, et al., 2015; Rosenbaum et al., 2017; Rosenbaum et al., 2019;
Kirsch et al., 2018; Chang et al., 2018; Clark et al., 2022), evolutionary algorithms
(Fernando et al., 2017; Fernando et al., 2017; Gesmundo, 2022), and stochastic re-
parameterization (Jang et al., 2016; Maddison et al., 2016). Hard routing can also
be achieved through a continuous relaxation approach applied to the discrete latent
variable, which determines module allocation. For instance, variable-size module routing
can be achieved by learning a soft clustering or modules, also known as a soft partition
of modules (Ponti et al., 2023a; Caccia et al., 2022; Pfeiffer et al., 2023).

In Paper 2, we introduce a variable-size module routing mechanism that learns a finer-
grained soft partition of modules. Subsequently, in Paper 3, we explore an alternative
approach to variable-size module routing, employing tensor product techniques. These
innovative routing mechanisms are designed to facilitate information sharing across tasks,
enhancing the adaptability and efficiency of the modular language models.

Soft Learned Routing In soft routing methods, a weighted combination is employed to
select and aggregate all modules, exemplified by the mixture of experts (MOE) model
(Jacobs, Jordan, Nowlan, et al., 1991a; Jordan and Jacobs, 1994). In this approach,
the router learns a probability distribution over the available modules, denoted as
p(M) = rρ(·) (Pfeiffer et al., 2023).

19

A rich body of works trains a continuous weighting of all modules (Eigen et al., 2013;
Meyerson and Miikkulainen, 2017; Wortsman et al., 2020; Muqeeth et al., 2023; Zadouri
et al., 2023). Since all the modules are activated in the forward pass, this may limit the
degree of modularity. Additionally, activating all modules for each example significantly
increases the computational cost (Pfeiffer et al., 2023). To mitigate this, (Shazeer et al.,
2017a) only routed to top-k modules. Top-k MoEs stand between the hard routing and
soft routing, as only a subset of modules is active as their average is weighted by the
routing scores.

SwitchTransfomer Fedus, Zoph, et al. (2022b) demonstrates that even top-1 routing can
achieve competitive results for language modeling. Muqeeth et al. (2023) present the
Soft Merging of Experts with Adaptive Routing (SMEAR) technique, which eschews
traditional hard-routing approaches in favor of creating a singular "merged" expert.
This is achieved by calculating a weighted average of the parameters from all experts
involved. Shen et al. (2023) utilizes Flan-MoE to integrate Mixture of Experts (MoE)
with instruction tuning, effectively merging the advantages of instruction-finetuning
with those of MoE. This strategy offers computational efficiency while also reducing
memory demands. Ostapenko et al. (2023) explore the potential of using Mixture of
Parameter-Efficient Experts (MoPEs) in instruction-tuning using large decoder-only
language models. Their findings indicate that, given the relatively small datasets typically
used for fine-tuning, the effectiveness of MoPEs is constrained.

In paper 4, our investigation encompasses a variety of soft routing strategies for both
zero-shot and supervised fine-tuning contexts. The methods examined include uniform
routing, task predictor routing, and Arrow routing, each offering distinct approaches to
navigate and optimize model performance across different tasks and scenarios.

Routing with Different Granularity

In this subsection, we explore various routing methods categorized by their granularity,
all of which are integrated into the Transformer architecture discussed in Section 1.2.2.
As depicted in Figure 1.7, coarse-grained routing employs a singular routing function
across all linear layers, facilitating a broader, less specific approach to module selection.
In contrast, fine-grained routing applies a distinct routing function to each linear layer,
allowing for more precise and tailored module engagement. Additionally, block-wise
routing involves a routing strategy that is shared among attention layers and the feed-
forward layer, promoting a medium level of granularity. Lastly, layer-wise routing
employs separate routing functions for the self-attention layer and the feed-forward layer
respectively, ensuring a highly detailed and focused routing mechanism.

Routing with Different Input Granularity

The performance of the routing function is significantly influenced by its input, a principle
that holds considerable weight in the realm of natural language processing (NLP) tasks
(Kudugunta et al., 2021). Depending on the granularity of the input, routing functions

20

Add & Norm

Feed Forward

Add & Norm

Multi-Head
Attention

𝑤!

𝑤"

𝑂

𝑉 𝐾 𝑄

𝑍 Z

Z

Z

Z
Z

𝑍

Z

Z
Z

Fine-grained layer-wise Block-wise Coarse

Figure 1.7 Different Routing Granularity. Z is the routing function. Coarse-grained routing
shares the routing information across all linear layers. Conversely, Fine-grained routing applies
a distinct routing to each linear layer. block-wise routing involves a routing that is shared
among attention layers and the feed-forward layer while layer-wise routing employs separate
routing functions for the self-attention layer and the feed-forward layer respectively.

within NLP can be categorized into three distinct levels: token level, which focuses
on the smallest units of text; example level, which deals with individual instances or
samples of data; and task level, which concerns itself with the overarching objectives or
types of tasks being addressed.

Per-token routing Per-token routing is commonly employed in Mixture of Experts (MoE)
models (Jacobs, Jordan, Nowlan, et al., 1991b; Shazeer et al., 2017b). In transformer-
based language models, MoE models direct input tokens to a specific subset of Feed-
Forward Network (FFN) modules. There are a rich body of MoE models using per-token
routing (Shazeer et al., 2017a; Lepikhin et al., 2020; Fedus, Zoph, et al., 2022b; Clark
et al., 2022; Yang et al., 2021; Dua et al., 2021; Rajbhandari et al., 2022; Du et al., 2022;
Zhou, Yang, et al., 2022; Zhou, Lei, et al., 2022). After computing the routing scores,
various types of per-token routing emerge based on the selection of tokens or experts.
For example, 1) each token chooses top-k experts (Shazeer et al., 2017a; Lepikhin et al.,
2020). 2) each expert chooses top-k tokens (Zhou, Lei, et al., 2022; Lei et al., 2024). 2)
globally determine what tokens should be selected for each expert (Lewis et al., 2021;
Clark et al., 2022).

In our paper 4, we propose a per-token routing Arrow which enables dynamic selection
of the most relevant modules for new inputs without the need for retraining.

Example/task level Routing In the example level routing, all tokens of a single example
can be routed to the same experts. Kudugunta et al. (2021) explore two variants of
example-level routing for machine translation. In the case of sentence-level routing, they
employ average pooling across token embeddings and subsequently condition the router
on this aggregated representation. For task-level routing, a task-specific embedding is
developed, upon which the router bases its learning of the distribution across modules
(Pfeiffer et al., 2023). Ponti et al. (2023a) and Caccia et al. (2022) introduce a latent skill
routing function designed to disentangle and recombine various knowledge domains for

21

Figure 1.8 Figure 1.8 is from Fedus, Dean, et al. (2022). In this context, the term "experts"
refers to modules. Upon obtaining the routing scores via an Experts × tokens matrix, we
identify three prevalent categories of per-token routing algorithms. The first category, located
on the left, is "Choose Top-k" which operates along the Experts axis, as discussed by (Shazeer
et al., 2017a). The middle category is "Choose Top-k" but operates along the Tokens axis,
exemplified by (Zhou, Lei, et al., 2022). The third category, on the right, is "Globally Decide
Expert Assignment," akin to the approach used in the Base layer (Lewis et al., 2021).

better generalization to new tasks. They develop a task-module allocation matrix, or
routing mechanism, to determine the activation of specific modules for given tasks.

In our paper, as referenced in paper 4, within a zero-shot scenario, we introduce a
task-predictor routing approach. Here, we conceptualize the routing strategies as a
classifier, with the entire sentence serving as the input. This classifier then assigns a
specific task ID based on the input.

Contributions

In what follows, we discuss this thesis’ contributions to the routing functions.

In our paper 2, we propose a task-level routing function. We discuss Parameter-efficient
fine-tuning (PEFT) for cross-task generalization, involving pre-training adapters on a
multi-task training set before adapting them to test tasks with few-shot learning. In
this paper, we want to answer three questions for routing function: Q1: Is the routing
expressivity important? Q2: Why do routing-based PEFT methods yield superior
performance? Q3: Is routing important in the pretrain or finetuning process? Our
findings reveal that optimizing the routing function through fine-tuning alone can yield
competitive results. In addition, the success of routing functions stems from better
multi-task optimization. Our approach demonstrates the importance of fine-grained
module selection for sample-efficient generalization and holds promise to improve other
modular methods in future research.

In our paper 4, we investigate various routing functions designed to optimize the utiliza-
tion of the pre-established module library in the zero-shot scenario. One straightforward
fix routing method is to route to existing modules by setting the routing distribution to
uniform for all layers. Another variant conceptualizes the routing process as a classifica-

22

tion problem with L distinct outcomes. In this model, the routing function is tasked
with assigning each input to one of L predefined categories. Finally, we propose a Arrow
routing which does not require access to training data for each expert (module). It
can also parameterize a different routing distribution at every layer per token there-
fore potentially increasing overall model capacity. These routing approaches can take
steps to create modular adaptable language models that can outperform traditional
full-finetuning, paving the way for efficient and flexible utilization of LMs across a wide
array of tasks.

1.2.5 Aggregation Function: How are the outputs of the active
modules aggregated?

The routing function in a modular language model dictates which modules are activated.
Following the selection of modules, an aggregation function is employed to integrate the
outputs of all active modules. It is important to note that the processes of routing and
aggregation are inherently inseparable (Pfeiffer et al., 2023).

For a subset of active modules K ⊂ Mi, the aggregation of modular components
can be implemented at various levels. At the parameter level, the aggregation is
represented as f

′
i (x) = fϕ1⊕···⊕ϕ|K|(x) , where ⊕ denotes the operation of combining

parameters from different modules. At the input level, it takes the form f
′
i (x) =

fθi([ϕ1, ..., ϕ|K|, x]), incorporating the activated modules’ outputs directly into the input.
Lastly, at the function level, aggregation is achieved through sequential composition
f

′
i (x) = fϕ1 ◦ · · · ◦ fϕ|K|(x) (Pfeiffer et al., 2023). These strategies for aggregation are

reminiscent of previously discussed for modules (Section 1.2.3). These aggregation
methods will be elaborated upon in the subsequent subsection.

Parameter Aggregation

An intuitive approach for aggregating information from various modules involves interpo-
lating their weights (Pfeiffer et al., 2023). For example, in the weight interpolation, Ansell,
Ponti, Korhonen, et al. (2021) introduces Lottery Ticket Sparse Fine-Tuning (LT-SFT),
where the task-specific modules can be aggregated by simply adding them to the base
model. Hu et al. (2021) introduce LoRA, which represents its update with a low-rank
decomposition W + δW = W +WdownWup. (Liang et al., 2023) presents the modular
retrieval paradigm (REMOP), the modules are implemented as prefix prompt P1, ..., PN ,
Then the final module can be calculated as: Pfinal(x) = Pgeneral +

∑N
i wiPi. Huang

et al. (2023) propose the LoRAHub which combined the LoRA modules using weighted
averaging, the results on the Big-Bench Hard benchmark demonstrate that LoRAHub
can match the performance of in-context learning in few-shot scenarios (Huang et al.,
2024). Poly employs a modular design to recombine different knowledge to generalize to
new tasks. Once the routing function activates specific modules, these are then combined
through a weighted average process, with the weights derived from the routing scores.
Muqeeth et al., 2023 introduce soft merging of experts with adaptive routing (SMEAR),

23

which uses a single "merged" expert constructed via a weighted average of module
weights. All these approaches prove that parameter aggregation can achieve promising
results. Collectively, these strategies underscore the efficacy of parameter aggregation in
achieving notable outcomes, highlighting its potential to enhance the adaptability and
performance of modular systems.

In this thesis, the technique of parameter aggregation is extensively applied across
various chapters. Specifically, in our paper referenced as 3, for the implementations
TensorPoly-I and TensorPoly-II, once the modules are activated, they are aggregated
utilizing the principle of parameter aggregation. In our paper 2, the integration of
multi-head modules is also achieved through the use of parameter aggregation. These
approaches underscore the pivotal role of parameter aggregation in enhancing the
functionality and adaptability of our proposed systems, demonstrating their effectiveness
in synthesizing module outputs for improved performance.

Representation Aggregation

Representation aggregation focuses on combining the outputs from individual modules,
as opposed to merging their weights. In the context of a linear function, the process
of parameter aggregation aligns directly with that of representation aggregation. This
highlights a method where the influence of each module is accounted for in the aggregated
output through their respective contributions.

The most conventional method for representation aggregation is weighted representation
averaging. In the context of the i-th sub-function of the model, where multiple modules
ϕ ∈ Mi, are present, the inputs are processed through the activated modules, yielding
|Ki| latent h1, ..., h|Ki|. An approach to aggregation involves learning the weights to
interpolate across these hidden representations (Pfeiffer et al., 2023):

f
′

i (x) =

Ki∑
j

αjhj (1.5)

where αj is module-specific scalar weighting.

In this thesis, linear functions are predominantly employed to aggregate modules, indi-
cating that parameter aggregation is directly congruent with representation aggregation
in most instances. An exception to this norm is detailed in our paper 3. Within the
TensorPoly-II approach, we introduce a more nuanced routing function that utilizes
tensor product aggregation. Notably, tensor product aggregation at the representation
level is not implemented in the current framework; however, it presents an intriguing
avenue for future exploration and development.

24

Function Aggregation

Finally, aggregation can also occur at the function level, exemplified by f
′
i (x) = fϕ1 ◦

fϕ2(x). The choice of aggregation method dictates whether the model employs a
sequential (Pfeiffer, Vulić, et al., 2020a; Pfeiffer, Vulić, et al., 2020b) or hierarchical
approach (Andreas et al., 2016). For instance, in sequential aggregation, the process
involves conducting a forward pass through multiple modules, with the output of one
module serving as the input for the next. This results in the transformation of the hidden
representations in a sequential manner: fϕ1(fϕ2(...(fϕ|M|(x)))) (Pfeiffer et al., 2023).

In our paper 4, we construct a modular language model utilizing LoRA modules. In the
present iteration of our model, we have opted not to incorporate function aggregation
within our implementation framework. However, we posit that the integration of function
aggregation could yield promising outcomes. The exploration of function aggregation as
a component of our modular language model represents a significant opportunity for
future research.

Contributions

Subsequent discussions will illuminate the distinct contributions made by this thesis to
the domain of aggregation functions.

In paper 2, we employ routing scores to determine which modules are to be activated.
The aggregation of these modules is then accomplished by averaging the products of
the routing scores and their corresponding modules, with the routing scores serving as
the determinant weight in this linear aggregation process. Contrastingly, in the paper 3,
we adopt a tensor product aggregation approach, wherein the routing scores act as the
modulating coefficient for the intricate tensor structure. Although the tensor product
aggregation has the potential to extract more complex patterns from the dataset, our
multi-task experimental findings indicate that a linear combination function may offer
superior capabilities in terms of generalization.

1.3 Information Propagation in Web Tracking

The study of information propagation within social networks has increasingly captured
the interest of researchers over recent years (Zhang and Ghorbani, 2020; Antonakaki
et al., 2021; Chen, Castillo, et al., 2022; Cheng et al., 2022). One distinguishing feature
of online social networks is their capability to facilitate the dissemination of information
through social connections. For instance, information can spread among friends within
these networks, moving from one individual to the next, one hop at a time (Cha et al.,
2009). These interactions between users, often referred to as "word-of-mouth" exchanges,
have the capacity to rapidly and extensively distribute content, ideas, or information
across the network. A rich body of research has proposed viral marketing campaigns to

25

exploit the word-of-mouth effect (Dodds and Watts, 2005; Domingos and Richardson,
2001; Hartline et al., 2008; Kempe et al., 2003).

The study by (Adar and Adamic, 2005) explores the web tracking information flows in
graphs, offering insights into the visualization and analysis of how information spreads.
(Gruhl et al., 2004) studies dynamics of information propagation within the realm of
low-overhead personal publishing, utilizing an extensive dataset of weblogs over time
to understand how information disseminates across such platforms. (Cha et al., 2009)
undertake a comprehensive collection and analysis of large-scale traces of information
dissemination within the Flickr social network, examining the data of 2.5 million users
and 11 million photos to investigate the breadth and speed of information spread in a
social networking context. (Yang and Leskovec, 2010) propose viewing information flows
as diffusion processes across social networks and developing a linear influence model to
predict node influence dynamics, concentrating on how the global influence of a node
affects the diffusion rate throughout the network.

With the proliferation of social networks, the dissemination of information has accelerated,
necessitating a critical examination of the broader consequences. This rapid propagation
of data within social networks is closely linked to the expansion of digital surveillance
capabilities (Elharrouss et al., 2021). Such surveillance is markedly enhanced by the vast
amounts of data harvested from these platforms, enabling a level of monitoring that is far
more extensive and invasive (Xiong et al., 2020; Roger, 2022). The fluidity of information
exchange on the web serves as a foundation for the development of advanced surveillance
systems. These systems, in turn, possess the potential to significantly impinge upon
individual privacy. Thus, as we scrutinize the intricacies of information flow in social
networks, we must also grapple with the implications of such networks becoming tools
for pervasive digital surveillance (Su et al., 2023).

In the following sections, we will explore the mechanisms of digital surveillance in
greater detail, examining how these practices are implemented, and their impact on user
privacy.

1.3.1 Digital surveillance

Within the scope of digital surveillance in social networks, the transmission and handling
of data related to individuals and collectives are essential for comprehending the mecha-
nisms through which this information is accumulated, spread, and evaluated across a
variety of technological platforms Christl and Spiekermann, 2016; Zuboff, 2023. The
adoption of digital surveillance techniques, such as the use of cookies and tracking scripts,
has become increasingly prominent on the World Wide Web, marking a significant shift
in online privacy dynamics over the last decade (Solove, 2004; Zuboff, 2023; Easley,
Kleinberg, et al., 2010; Schneier, 2015; Russell, 2013). This rise in surveillance practices
has introduced a multifaceted set of privacy concerns (Su et al., 2023; Roger, 2022;
Elharrouss et al., 2021).

26

Digital surveillance is characterized by two main features: its ubiquity and its opacity.
Ubiquity reflects the global reach of digital tracking; every nation with a digital infras-
tructure engages in a market for digital surveillance data, including both private and
governmental sectors (Zuboff, 2023). Opacity, on the other hand, denotes the hidden
nature of digital surveillance activities from those being monitored (Ho and Kallberg,
2017). The advancement of digital tracking technologies has notably increased the risk
associated with privacy loss, which involves the unauthorized exposure, distribution, or
access to personal information (Su et al., 2023). Such privacy loss can lead to a range of
negative consequences, from identity theft and financial fraud to reputational damage
and discrimination(Craig and Ludloff, 2011).

Recently, a body of scholarly work has studied ethical, technological, and social di-
mensions of information privacy and security within digital ecosystems (Schneier, 2015;
Tufekci, 2017; Lauer and Lipartito, 2021; Zuboff, 2023). These studies collectively
underscore the critical need for ongoing research, policy development, and technologi-
cal innovation to address the privacy challenges posed by digital surveillance in social
networks and beyond.

1.3.2 Web tracking

Web tracking is a fundamental component of digital surveillance, acting as the technical
mechanism through which data about individuals’ online behaviors is systematically
collected and analyzed (Mayer and Mitchell, 2012). Web tracking employs an array of
technologies such as cookies, pixel tags, and fingerprinting to track and record users’
internet activities (Lerner et al., 2016). This data offers invaluable insights into user
preferences, behaviors, and social interactions, facilitating targeted advertising, content
personalization, and predictive analytics (Karaj et al., 2018). There are several reasons
that the web tracking can help us understand the digital surveillance. First, contrary
to other surveillance methods, the technology of most state-based web tracking is easy
to detect off the source code of the web page (Helles et al., 2020; Libert, 2015). Also,
historical trances of web tracking technology are stored in web archives as a "Wayback
mahcines" (Helmond, Brügger, et al., 2017; Lerner et al., 2016). Therefore, the history of
web tracking can be reconstructed for a longer period and at a level of detail far beyond
other types of surveillance. Second, web tracking has expanded to the entire World
Wide Web and presents itself as a good candidate for international (Samarasinghe and
Mannan, 2019), comparative studies. As a result, web tracking can help us study digital
surveillance from different cultures, politics, and regions (Bilić and Prug, 2021). Finally,
web tracking remains an important source of surveillance information, and all major
actors in the surveillance economy retain an active web tracking operation (Helles et al.,
2020; Libert and Nielsen, 2018).

Web Tracking Technologies

Web tracking involves various technologies designed to monitor and analyze user behavior
online. Here are some key technologies used in web tracking. These technologies

27

underscore the variety of methods available for web tracking, each with its implications
for user privacy and data security.

Cookies are small text files placed on a user’s device by websites visited. They store
data related to users’ website visits, preferences, and activity, allowing for a personalized
web experience and facilitating targeted advertising(Cahn et al., 2016).

Pixel Tags(Web Beacons) are invisible, tiny images embedded in email and web pages.
When accessed, they notify the server, allowing companies to track user behavior, email
opens, and website visits(Shringarpure and Bustamante, 2015).

Browser Fingerprinting is a technique that collects information about a user’s device
and browser settings (such as screen resolution, operating system, and installed fonts)
to create a unique identifier for tracking purposes. It is particularly insidious because it
can track users across the web without relying on cookies (Acar et al., 2013).

ETags(Entity tags) : Web cache validation tools that web servers use to understand if a
user has a version of the web page saved in their cache. ETags can be exploited to track
user uniquely by identifying their browser cache contents (Clausen, 2004).

LocalStorage and SessionStorage : part of the web storage API, these technologies allow
websites to store data directly in a user’s browser more expansively and flexibly than
cookies. They can be used to save information across browsing sessions, aiding in tracking
efforts (Mickens, 2010).

HTTP Referrer : This tracking method uses the HTTP header to determine which site
a user previously visited, providing insights into the user’s web navigation path. It helps
in understanding traffic sources and user behavior(Mansoori et al., 2016).

Social Media Widgets : Buttons like "Like" or "Share" on websites link to social media
platforms and can track users, even if they don’t interact with the widget but are logged
into the social media servicec(Parker, 2008).

Tracking Scripts : JavaScript codes embedded in websites that can collect a wide range of
data about user interaction on the site, such as clicks, page views, and form submissions.
This data is then used for analytics and personalization purposes (Englehardt and
Narayanan, 2016).

Geolocation Tracking : Uses IP addresses, WiFi, and GPS data to determine a user’s
physical location, allowing for location-specific content delivery and analytics (Musicki
et al., 2009).

Web tracking has catalyzed a significant and growing corpus of academic research within
the realms of computer security and privacy. This burgeoning field of study aims to

28

comprehend, quantify, and develop defenses against such tracking practices (Acar et al.,
2014; Nikiforakis et al., 2013; Akkus et al., 2012; Bau et al., 2013; Lerner et al., 2016;
Samarasinghe and Mannan, 2019; Xiong et al., 2020; Shrotri et al., 2021; Urman and
Makhortykh, 2023; Goldberg et al., 2024).

The study conducted by Acar et al. (2014) marks one of the pioneering large-scale
investigations into the mechanisms of web tracking, establishing a foundation for future
high-quality research in privacy measurement. Complementing this, Englehardt, Eubank,
et al. (2015) introduced OpenWPM, a comprehensive and adaptable platform tailored
for the analysis of web privacy. Leveraging OpenWPM, they further examined the
implications of web tracking on surveillance in a follow-up study (Englehardt, Reisman,
et al., 2015). In a different vein, Han et al. (2012) investigated the realm of third-party
tracking through mobile applications, specifically focusing on how user data is captured
and shared across apps on Android smartphones. Nikiforakis et al. (2013) concentrated on
the dynamics of web-based device fingerprinting, revealing the techniques websites use to
track users without depending on conventional client-side identifiers like cookies. These
studies collectively provide a broad and detailed perspective on the various dimensions
and methods of web tracking, highlighting its implications for privacy and surveillance
in the digital age.

Third-party Web Tracking

Building upon the foundational understanding of web tracking mechanisms and their
privacy implications, we now turn our attention to a specific and pervasive form of
tracking: third-party web tracking. This practice involves entities (trackers) that do
not have a direct relationship with users but are nonetheless capable of collecting,
storing, and analyzing user behavior across multiple sites (Li et al., 2015). These trackers
are embedded in websites through various means like scripts, images, or advertising
networks, enabling the collection of detailed information about users without their direct
interaction with the tracker’s own site (Roesner et al., 2012).

Third-party web tracking raises significant privacy concerns due to its invisible nature
and the extensive data it can amass without explicit user consent (Lerner et al., 2016;
Bekos et al., 2023; Müller and Bach, 2023). The implications of such tracking are far-
reaching, influencing not only individual privacy rights but also broader societal norms
regarding surveillance and data use. As users browse the web, their interactions with
content, their search queries, and even the timing of their activities can be meticulously
logged and analyzed, often without their knowledge or understanding of the extent of
this surveillance (Mayer and Mitchell, 2012).

Moreover, the ecosystem of third-party tracking is complex and multifaceted, involving
a range of actors from advertising networks and analytics companies to social media
platforms (Mayer and Mitchell, 2012; Hoofnagle et al., 2012; Yang et al., 2022). These
entities leverage tracked data for various purposes, from targeted advertising and market
research to enhancing user experience and website functionality. However, the lack of
transparency and control over personal data collection and use has sparked a significant

29

public and regulatory debate, emphasizing the need for more robust privacy protections
and user empowerment in the digital age (Ermakova et al., 2018). Lerner et al. (2016)
presents a longitudinal study of third-party web tracking behaviors from 1996-2016, they
propose a tool TrackingExcavator to collect the trackers from the Internet Archive’s
Wayback Machine. Schelter et al. (2018) utilized the extensive CommonCrawl dataset, as
introduced by Patel and Patel (2020), to conduct a large-scale analysis of web tracking
across the global internet landscape. This dataset, recognized as the most substantial
empirical collection of web tracking data available, served as the foundation for their
investigation. The findings from their analysis unequivocally demonstrate the pervasive
presence of web trackers, highlighting the dominance of major entities like Google,
Facebook, and Twitter in most regions.

In this thesis, our objective is to examine the evolution of web tracking over time. Ob-
taining historical data on dynamic tracking mechanisms like "cookies" proves challenging
when relying on historical snapshots. As outlined in the section referenced as Paper 5,
we adopt the use of third-party domains as proxies for trackers, a method commonly
employed in the analysis of web tracking’s history (Karaj et al., 2018; Schelter et al.,
2018).

1.3.3 Historical Web Tracking

Examining the history of web tracking is critical for understanding how digital surveillance
technologies have evolved in response to diverse political, economic, and cultural contexts
across the globe (Zuboff, 2023). In the past decades, web tracking has witnessed
significant shifts in the landscape of digital tracking, shaped by varying regulatory
environments, technological advancements, and societal attitudes toward privacy and
data security (Krishnamurthy and Wills, 2009; Karaj et al., 2018; Gandon and Hall,
2022; Halpin and Henshaw-Plath, 2022). (Krishnamurthy and Wills, 2009) explored how
third parties disseminate users’ private information, presenting a longitudinal analysis
over a four-year period to understand the dynamics of information diffusion. Karaj et al.
(2018) introduced a methodology for measuring web tracking via a browser extension,
utilizing data from 1.5 billion page loads collected over a 12-month period to analyze
tracking practices. Agarwal and Sastry (2022) examined the top 100 Alexa-ranked
websites using data from the Internet Archive (Wayback Machine) spanning 25 years,
investigating the fluctuating popularity and categorization of these sites. Graux and
Orlandi (2022) delved into a niche area of the web by analyzing papers accepted by
the Web Conference and its annual gatherings, offering insights into the conference’s
evolution over time. Gandon and Hall (2022) traced the historical milestones in the
development of the web, highlighting significant phases of its evolution. Halpin and
Henshaw-Plath (2022) focused on tracking advancements in web history through the
lens of status updates, providing a unique perspective on the web’s progression.

30

The Role of Global Diversity in Web Tracking Evolution

The development of web tracking technologies has unfolded differently across countries
and cultures (Rule and Greenleaf, 2010; Mansell and Raboy, 2011), reflecting local
values, legal frameworks, and market dynamics. In the European Union, the advent of
laws like the General Data Protection Regulation (GDPR) has forced a reevaluation of
tracking practices, prompting greater transparency and user consent (Regulation, 2018;
Li et al., 2019; Voigt and Von dem Bussche, 2017; Peloquin et al., 2020). Conversely, in
countries with less regulatory oversight, tracking technologies have proliferated more
freely, often raising concerns about user privacy and data protection.

Political and Economic Influences

The political climate of a region can significantly impact web tracking practices (Landau,
2011). For example, in authoritarian regimes, web tracking has been leveraged as a tool
for surveillance and control, often without the knowledge or consent of the populace.
This contrasts with more democratic societies, where surveillance through tracking is
often done for commercial rather than political reasons (Moreira et al., 2013; Deville and
Van der Velden, 2015; Haddara et al., 2023; González-Bailón et al., 2023).

Economically, the growth of the digital advertising industry has been a major driver
of web tracking technologies (Sevignani, 2015; Modi and Singh, 2023). The desire for
more effective targeting and personalization of ads has spurred innovations in tracking
methods, leading to more sophisticated ways of profiling and segmenting users. However,
this has also led to a backlash among consumers and privacy advocates, prompting a
reexamination of ethical practices within the industry.

Cultural Reflections Through Web Tracking

Cultural attitudes towards privacy have also influenced the acceptance and implementa-
tion of web tracking technologies (Acquisti et al., 2007; Lyon, 2018; Stier et al., 2020).
In cultures where privacy is highly valued, there has been more resistance to invasive
tracking practices, leading to the development of more privacy-centric technologies and
policies. On the other hand, cultures with different conceptions of privacy may be more
accepting of certain forms of surveillance, influencing the types of tracking technologies
that are developed and deployed. For instance, while Germany and France exhibit a
high sensitivity towards privacy concerns, their commercial web tracking practices are
similar to those in Denmark, which may indicate a complex interplay between cultural
perceptions of privacy and the technological landscape (Helles et al., 2020).

The evolution of web tracking over the past two decades highlights the complex interplay
between technology, society, politics, and the economy. It reflects broader debates
about the balance between innovation and privacy, the role of government regulation,
and the ethical considerations of digital surveillance. As we move forward, the history
of web tracking serves as a reminder of the need for a nuanced approach to digital

31

technology—one that respects individual rights while embracing the benefits of the
digital age.

Contributions

In what follows, we discuss this thesis’ contributions to historical web tracking develop-
ment.

In our paper 5, we study the privacy loss in online educational websites from 2012-
2021. Our work highlights the pervasive threat of digital tracking to personal privacy,
especially on educational websites, where users, including young individuals, may not
fully understand the privacy implications. The paper’s focus is on historical tracking
practices on these websites and proposes a framework for comparing them to a control
group. The findings show that while educational websites initially had lower tracking
levels, they have grown significantly over the past decade, partly due to the increased
use of interactive features and third-party services.

Our analysis raises concerns about privacy and independence in education. Privacy
issues in educational websites should be prioritized, as they can lead to unauthorized
disclosure of confidential information and loss of trust. Furthermore, researchers may
wish to analyze privacy lost in other areas, such as news or sports, from a historical
perspective. Our framework offers a convenient solution for creating comparable websites
and collecting historical third-party tracker data in these domains.

32

Part I
Modular Language Modeling

2Multi-Head Routing for Cross
Tasks Generalization

2.1 Introduction

The ability to train effective models with a relatively small number of training data
is of paramount importance due to the paucity of annotated examples for most tasks.
One effective few-shot learning approach is to leverage large models pre-trained on a
vast amount of unlabelled data and fine-tune them on the few examples available for
each downstream task. To reduce the memory cost of duplicating the entire array of
parameters for each downstream task, recent approaches resort to parameter-efficient
fine-tuning (PEFT) methods, such as LoRA (Hu et al., 2021), SFT (Ansell, Ponti,
Korhonen, et al., 2021), or (IA)3 (Liu, Tam, et al., 2022a). These only fine-tune adapters
while leaving the pre-trained model ‘frozen’.

Nevertheless, it remains unclear how to best exploit a set of training tasks to better
generalize to a set of unseen test tasks in a sample-efficient fashion, based on just a few
examples. One straightforward solution is to perform multi-task pre-training, i.e. first
train the large model on the union of the examples from the training tasks, then fine-tune
the obtained model to the test task (Liu, Tam, et al., 2022a; Ye et al., 2021a). However,
this solution does not take into account that test tasks may require solving different
combinations of sub-problems compared to training tasks (Vu et al., 2020a), thus failing
to achieve compositional generalization (Rosenbaum et al., 2019; Ponti, 2021). Moreover,
specializing the model towards different tasks during training may result in negative
transfer, due to their corresponding gradients being misaligned (Wang et al., 2021).

Several PEFT approaches have been proposed to enable better cross-task generalization
by training adapters (or soft prompts) on each task independently (Pfeiffer, Kamath,
et al., 2020; Vu et al., 2021; Asai et al., 2022; Chronopoulou et al., 2023). Given a
new test task, parameters from similar training tasks are aggregated, which enables
transfer. While solely having task-specific parameters is an effective strategy to mitigate
interference across training tasks, it also inhibits any positive transfer within the same
task pool. Polytropon (Poly) was recently proposed by Ponti et al. (2023b) to address
these issues: the model assumes that task-specific adapters are learned combinations
of a reusable inventory of basis adapters or modules. In practice, each module is
implemented as a LoRA (Hu et al., 2021) adapter, which modifies a large pre-trained
model, such as T5 (Raffel et al., 2020b). During both multi-task pre-training and few-shot
adaptation, Poly learns both the inventory of adapters and a (continuously relaxed)
binary task-module routing matrix, which determines which module is active for each
task. While Poly shows promising results, several questions remain unanswered: 1) Does
the expressivity of the routing function matter? 2) Why do routing-based PEFT methods

34

yield superior performance? 3) Is routing useful during both multi-task pre-training and
few-shot adaptation?

To answer the first question, we propose a new routing function, MHR, that mixes adapters
at a more granular level. Differently from Poly, where routing decisions are made for
each adapter as a whole, in MHR we linearly combine blocks of the adapter dimensions
(i.e. heads), each with different combination coefficients. We evaluate MHR and a series of
competitive baselines for few-shot task adaptation on the T0 task suite (Sanh et al., 2022)
and Super-Natural Instructions (SuperNI; Wang, Mishra, et al., 2022a). Based on our
results, we report that MHR outperforms Poly and single adapter baselines. Additionally,
we show that, thanks to the increased expressivity of the routing function, it becomes
possible to fine-tune only the parameters of the routing function (and not the adapters)
during few-shot adaptation: the resulting method, MHR-z, yields competitive performance
while requiring orders of magnitude fewer parameters.

Regarding the second and third questions, we uncover that optimization during multitask
pretraining plays a key role in explaining the downstream performance of routing-based
PEFT approaches. Specifically, we find that MHR exhibits a higher cosine similarity
between gradients from different tasks than Poly and single-adapter multi-task training.
Hence, routing enables more knowledge transfer and less interference across tasks during
multi-task pre-training. This finding led us to investigate whether routing is useful also
during few-shot adaptation. It has been hypothesized (Ponti et al., 2023b) that one
of the reasons behind Poly’s performance resides in the inductive bias of the modular
architecture, which allows test tasks to recombine and locally adapt the most relevant
modules. To test this hypothesis, we propose MHR-µ, where the routing function is
discarded and all available adapter parameters are averaged before a few-shot adaptation.
We find that MHR-µ can recover the performance of MHR, hinting that Poly/MHR gains are
only a result of better multi-task optimization. Finally, we show that MHR-µ can also be
used as an effective zero-shot transfer method by training the average of the pre-trained
adapters for a few additional steps on the multi-task training set. This yields gains up
to 3% on absolute accuracy w.r.t. to strong baselines such as T0-11B.

2.2 Related Work

Multi-task learning is effective for low-resource tasks (Wei et al., 2022; Aribandi et al.,
2022; Sanh et al., 2022), as knowledge can be borrowed from similar tasks by sharing
the model parameters. Multi-task learning has also been applied across languages
and modalities (Ponti et al., 2019; Bugliarello et al., 2022). In the context of NLP,
several families of methods enable learning new tasks from a limited set of labelled
examples. Few-shot in-context learning (ICL; Brown et al., 2020a), where examples
of a new task are concatenated into an input prompt, enables models to generalize to
unseen tasks without any gradient-based training. Such approaches are however sensitive
to the prompt format and example ordering (Zhao et al., 2021). More importantly,
ICL methods incur a significant compute overhead, as for every prediction, the full
set of examples must be processed by the model (Liu, Tam, et al., 2022a). To remedy

35

this, many parameter-efficient fine-tuning (PEFT) methods have been proposed as an
alternative to ICL, where a small number of new parameters are added over the frozen
pre-trained network. To name a few, LoRA (Hu et al., 2021) injects learnable low-rank
matrices into each Transformer layer. Alternatively, the learnable matrix can be sparse,
selecting nonzero shifts via the Lottery-Ticket hypothesis (Ansell, Ponti, Pfeiffer, et al.,
2021) or via their approximate Fisher information (Sung et al., 2021). Finally, prefix-
tuning methods (Li and Liang, 2021a) prepend learnable embeddings to the input or
intermediate representations to specialize the model towards a downstream task.

Modular networks partition their parameters into several expert modules, each of them
specialized to handle specific sub-tasks (Jacobs, Jordan, Nowlan, et al., 1991a; Kirsch
et al., 2018). Modular networks are an appealing solution to the problem of adapting to
unseen tasks (Corona et al., 2021), as the model can leverage its existing modules and
recombine them in a novel way, thus achieving systematic generalization (Bahdanau
et al., 2019). They have also been tested in learning scenarios with data presented
sequentially (Ostapenko et al., 2021), and with changing environments Goyal et al., 2019.
In NLP, mixture-of-experts (MoE) models (Shazeer et al., 2017a; Fedus, Zoph, et al.,
2022a), where a learned gating mechanism routes token representations to appropriate
experts (Feed-Forward layers), have shown success in scaling the number of parameters
while retaining time efficiency. This results in higher performance when compared to
their dense counterparts using a similar computing budget.

2.3 Background

In cross-tasks scenarios, we have a set of tasks T = {T1, ..., T|T |}. These tasks are
partitioned into the train and test Ttrain and Ttest. The multi-task transfer learn is to
transfer the knowledge in the Ttrain to the test tasks T . There are two phases (pretraining
and finetuning) for all the methods discussed, excluding the unsupervised pre-trained of
the language model backbone on the large-scale training corpus. The first phase consists
of multi-task pre-training using the dataset in tasks Ttrain. The second consists of a
few-shot adaptation, where the learned adapters are fine-tuned independently on each
test task in Teval. We follow the procedure from (Raffel et al., 2020b) and formulate each
task as a text-to-text problem, enabling standard maximum-likelihood training with
teacher forcing (Bengio, Vinyals, et al., 2015) and a cross-entropy loss.

2.3.1 Adapters: LoRA & (IA)3

LoRA (Hu et al., 2021) and (IA)3 (Liu, Tam, et al., 2022a) are two recently proposed
adapter architectures that achieve competitive trade-offs between performance and
parameter efficiency (Mahabadi et al., 2021; Liu, Tam, et al., 2022a). For each linear
transformation corresponding to the query (q), key (k), value (v) and output (o) of the
self-attention layers, LoRA modifies the base model parameters as follows:

hq,k,v,o = W q,k,v,o
0 x+ s · Aq,k,v,o(Bq,k,v,o)⊤x, (LoRA)

36

where W0 are the (frozen) weights of the pre-trained model (e.g. T5 (Raffel et al.,
2020b)). A,B ∈ Rd×r are low-rank learnable parameters and s ≥ 1 is a tunable scalar
hyperparameter. (IA)3, on the other hand, modifies key and value representations in
self-attention element-wise, and also modifies the feed-forward MLP (f):

hk,v = lk,v ⊙ (W k,v
0 x); hf = (lf ⊙ γ(W f

1 x))W
f
2 , ((IA)3)

where lk,v,f ∈ Rd are learnable parameters, W f
1,2 the frozen parameters of the feed-forward

layer in the backbone, and γ a non-linearity. For clarity, we will drop the superscripts
q, k, v, o in the rest of the paper.

2.3.2 Polytropon: Adapter Routing

Typical adapter methods either fully share adapters across tasks or train individual
adapters for each task. Poly addresses the multi-task problem by softly sharing adapter
parameters across tasks. Each Poly layer contains 1) an inventory of adapter modules
M = {ϕ1, . . . , ϕm} with |M| ≪ |T |; 2) a routing function r(·) that chooses which subset
of the modules to combine for each task.

Each module corresponds to a LoRA adapter, where ϕi are its associated parameters
A(i), B(i) ∈ Rd×r. r(·) is implemented as a task–module routing matrix Z ∈ R|T |×|M|.
zτ = Zτ,: ∈ R|M| is a routing vector of task Tτ , with cell Zτ,j being the probability
logits of using module ϕj for task Tτ in the current layer. Differently from mixture-of-
experts (Fedus, Zoph, et al., 2022a), which perform token-level top-k routing, Z converges
to a binary matrix, defining a soft partition over modules. This is achieved by using a
Gumbel-sigmoid distribution (Jang et al., 2016) during training, with Ẑτ,j ∼ Gumbel(Zτ,j).
At each forward pass, Poly can be defined as :

Aτ =
∑
i

αiA
(i); Bτ =

∑
i

αiB
(i) (Poly)

where αi =
Ẑτ,i∑
j Ẑτ,j

, and A(i), B(i), Aτ , Bτ ∈ Rd×r. We normalize the mixing coefficients

Ẑτ,i for each task to ensure that the number of active modules does not affect the norm
of Aτ , Bτ . Overall, this approach enables different subsets of modules to be activated
for the current layer and combined in a task-specific way. Following LoRA, the output
of the Poly layer is added to the output of the original layer of the frozen backbone:
h = W0x+ sAτ (Bτ)⊤x.

During multi-task pre-training, for each query, key, value, and output projection in self-
attention layers, the parameters learned by Poly are the adapter parameters, {Ai, Bi}|M|

i=1 ,
and the routing matrices Z. During fine-tuning, for each test task τ , Poly randomly
initialize the routing vector zτ ∈ R1×|M| and fine-tunes both zτ and all the modules
parameters M.

37

Method Pre-Training Fine-Tuning Inference

Full FT d× d d× d d× d

LoRA d× 2r d× 2r d× 2r
Poly d× 2r × |M|+ |T | × |M| d× 2r × |M|+ |M| d× 2r
Poly-z d× 2r × |M|+ |T | × |M| |M| |M|

MHR-µ d× 2r × |M|+ |T | × |M| d× 2r d× 2r
MHR-z d× 2r × |M|+ |T | × |M| × h |M| × h |M| × h
MHR d× 2r × |M|+ |T | × |M| × h d× 2r × |M|+ |M| × h d× 2r

Table 2.1 Number of parameters (per layer) used for each method. The calculation uses
LoRA as the base adapter, modifying a linear transform in Rd×d. Note that the total number of
parameters changed by Full FT is larger, given that the method also changes parameters for
layers not modified by LoRA.

2.4 Multi-Head Adapter Routing

In Poly, module combination remains coarse: only linear combinations of modules are
possible, and thus the resulting aggregated adapter remains a linear function of the
modules. We propose to augment the expressivity of the module combination while
keeping the parameter count similar. MHR (Fig. 2.1) takes inspiration from multi-head
attention (Vaswani et al., 2017c): it partitions the input dimensions into h different
disjoint blocks, performs a separate Poly-style combination for each of them, and finally
concatenates them. This corresponds to learning a different routing matrix Z for each
block of input features, therefore enabling the model to select different adapters for
different blocks of the input dimensions. This aggregation approach is piecewise linear
(i.e., linear within disjoint intervals), which allows for more expressive combinations of
modules.

In each MHR layer, the routing function is a third-order tensor Z ∈ R|T |×|M|×h, where
Z:,:,h ∈ R|T |×|M| is a 2D slice of the tensor Z. A slice represents the routing matrix for
each of the h heads. Let us denote with W [k] ∈ R d

h
×r the k-th partition along the rows

of the matrix W ∈ Rd×r. The adapter parameters Aτ ∈ Rd×r for task τ , and for each
adapter layer, are computed as (similarly for Bτ):

Aτ
k =

∑
j

Aj[k] ·
Ẑτ,j,k∑
j Ẑτ,j,k

with Aτ
k ∈ R

d
h
×r, (MHR)

Aτ = concat(Aτ
1, . . . , A

τ
h)

where concat concatenates along the first dimension. Multi-task pre-training and fine-
tuning are similar to Poly. Note that MHR results in only a negligible increase in the
total amount of parameters, since most of the parameters are contained in the LoRA
weights A,B (Tab. 2.1).

38

Add & Norm

Feed-Forward

Multi-Head
Attention

Add & Norm

Wpretrained LoRA +

A BT

Head # 2

Head # 1

Tasks

Active Task

Modules

Z = Multi-Head Routing
(MHR)

Head # 2

Head # 1

GLUE-rte

…

ZMHR-

Q

W0

K V O

W1

Figure 2.1 Left: A LoRA adapter with weight AB⊤ is trained on top of a frozen, pre-trained
linear layer W . Our method MHR partitions the A,B parameter indexes into h blocks (or heads).
For each block, a separate routing function selects the active modules for the current task
among m copies with different parameter values, and combines them via averaging to form a
task-specific head. The heads are then concatenated to form the LoRA adapter. Using multiple
heads allows for more fine-grained mixing of task parameters with a negligible increase in overall
parameter count. Right: During few-shot adaptation, one can fine-tune only the multi-head
routing parameters (MHR-z), keeping the modules frozen, resulting in highly parameter-efficient
adaptation.

Routing-Only Fine-Tuning (MHR-z) Prior work Shao et al. (2023, inter alia) has shown
that compositional generalization can be achieved by learning to (re-)combine in novel
ways pre-existing modules. We investigate whether fine-tuning the module parameters
is really needed for few-shot adaptation in the context of both Poly and MHR. Therefore,
we name MHR-z and MHR-z the variants that, during few-shot adaptation, keep the
parameters of the modules learned during multi-task pre-training fixed and just update
the routing parameters Z. Crucially, this enables highly parameter-efficient adaptation:
for LoRA adapters, A and B matrices constitute the overwhelming majority of parameters.
Therefore, by freezing the A,B matrices and only updating Z, we can significantly reduce
the parameter cost when transferring knowledge to a new task.

Adapter Average Fine-Tuning (MHR-µ) To assess the importance of the routing parameters
during few-shot adaptation, we propose an additional variant of MHR, MHR-µ, which
shares the same multi-task pre-training procedure as MHR, but for each test task τ , fixes
zτ = (1/|M|, . . . , 1/|M|) during few-shot adaptation. This is equivalent to discarding
the routing parameters and averaging the module parameters into a single one before
fine-tuning. Specifically, the adapter used during fine-tuning is initialized with (similarly
for Bτ):

Aτ =
1

|M|
∑
i

A∗
i ; A

τ ∈ Rd×r (MHR-µ)

39

Head # 2

MHR

Head # 1

Modules

𝐵!

concat

𝐴

Routing and Merging Task Adapter

LoRA

Train parameters

(a) Finetuning process of MHR.

Head # 2

MHR-Z

Head # 1

Modules

𝐵!

concat

𝐴

Routing and Merging Task Adapter

LoRA

Train parameters

Frozen parameters

(b) Finetuning process of MHR-z.

Figure 2.2 In the finetuning process of MHR, there is no specific task id information. So the
routing function become a matrix Z ∈ R|M|×h. MHR-z keep the parameters of the modules
learned during multi-task pre-training fixed and just updates the routing parameters Z.

where A∗
i are the parameters of the adapters after MHR multi-task pre-training. Note

that, differently from MHR, MHR-µfine-tunes the same amount of parameters as the single
adapter baseline. Thus, any difference in performance between the single adapter
baseline and MHR-µcomes from differences in the adapter initialization and must be due
to the optimization process taking place in the multi-task pre-training, before few-shot
adaptation.

Routing Granularity In the original Poly, (Ponti et al., 2023a) showed that learning a
routing matrix Z for each model layer gave better performance than sharing a single
Z matrix across all layers. We therefore investigate whether this holds true also for its
multi-head counterpart, MHR. In addition, we explore intermediate approaches between
one Z per layer and a single one shared for the entire model. In particular, we consider
sharing Z 1) for the adapter layers belonging to the same Transformer block; or 2) for
every block of l layers, which enables us to easily trade off expressivity for parameter
efficiency. As we will demonstrate in section 2.6.1, this is an efficient mechanism to
navigate this Pareto front in regimes of very small budgets of parameters per task.

2.5 Experiments

Our experimental evaluation aims to answer three research questions: 1) Does the
expressivity of the routing function matter? 2) Why do routing-based PEFT methods
yield superior performance? 3) Is routing useful during both multi-task pre-training and
few-shot adaptation? We first present the baselines and datasets used in our evaluation
and then discuss each question in turn.1

1We note that all experiments were run on a single NVIDIA A100 GPU.

40

T0 Dataset Avg. Test

Backbone T5-XL-LM
(IA)3 62.40.4
AdapterSoup 62.11.0
LoRA 66.01.6
LoRA-big 65.40.9
Poly-z 66.40.3
Poly 68.01.0
MHR-z 68.30.8
MHR 69.11.0
Backbone T0-3B
Tfew Liu, Tam, et al., 2022b 66.20.5
AdapterSoup 66.10.6
LoRA 67.40.8
Poly-z 65.31.0
Poly 69.00.8
MHR-z 68.41.2
MHR 69.31.2

IA3

AdapterSoup

LoRA

LoRA-big

Poly-z

Poly

MHR

5K 500K 5M 50M

62

63

64

65

66

67

68

69

Adaptation Parameters

A
c
c
u

r
a
c
y

SOTA results

MHR-z

Figure 2.3 Left: Results of few-shot adaptation on T0 dataset (Sanh et al., 2022). We report
the mean of the best validation accuracy for each test task. Subscripts correspond to standard
deviation. Right: Accuracy of PEFT methods on the T0 dataset when applied on top of T5-XL.
The x-axis shows the parameter count during the fine-tuning process.

2.5.1 Baselines

In addition to Poly, we compare MHR to the following baselines for task-level generaliza-
tion.

LoRA/(IA)3 trains a single adapter common to all pre-training tasks, which is then
fine-tuned on each test task separately. This is arguably the most widespread approach
for parameter-efficient cross-task generalization (Liu, Tam, et al., 2022a; Pfeiffer et al.,
2023).

AdapterSoup (Chronopoulou et al., 2023) trains a different adapter for each task. The
method only averages the adapter weights of the training tasks most similar to a given
test task, before proceeding with few-shot adaptation. To compute task relatedness,
we measure the cosine similarity of sentence embeddings for each task averaged over
their training dataset. Notably, unlike the methods proposed in this paper, there is no
knowledge sharing (nor interference) during multi-task pre-training as task adapters are
trained independently.

41

2.5.2 Datasets

We test our methods on the T0 (Sanh et al., 2022) evaluation suite, following the same
setup as Liu, Tam, et al., 2022a, and SuperNI (Wang, Mishra, et al., 2022a), a large-scale
dataset with more than 1,600 training tasks.

T0 Tasks We follow the pre-training and fine-tuning procedure discussed in (Liu, Tam,
et al., 2022a), using hyper-parameters and losses suggested in the public codebase for
T-Few.2

All methods were tested with T5-XL (Raffel et al., 2020b) and T0-3B (Sanh et al., 2022)
as the backbone model. Crucially, T5 is simply pre-trained on (masked) language
modelling, whereas T0 is further instruction tuned: in particular, the full model is
fine-tuned on examples from multiple training tasks that have been augmented with
task instructions. To ensure fairness for all methods, we report the median and standard
deviation of the best validation accuracy for each test task across 3 seeds, when evaluated
every 50 training epochs. We treat each data subset–template pair as a unique task,
yielding a total of 313 tasks.

SuperNI To limit computational costs, we report the result on 20 out of 119 test tasks.
Tasks were chosen at random, with the requirement that at least 300 examples were
available, and were equally split into 100 training, 100 validation and 100 test examples.
For every method, we perform early stopping on the validation set. We report results
with Rouge-L averaged across 3 seeds. All methods use T5-XL (Raffel et al., 2020b) as
the backbone and not T0, as T0 training tasks and SuperNI test tasks may overlap.

2.6 Results and Discussion

2.6.1 Does the expressivity of the routing function matter?

MHR outperforms PEFT approaches We start our analysis by evaluating the effectiveness
of our proposed technique when applied over a backbone that has not undergone prior
training on instruction-following data (T5-XL). As indicated in the T0 benchmark
results in the top table of Fig. 2.3, it is clear that multi-head routing techniques
have a distinct advantage, outperforming both single-head routing Poly by 1.1%, and
surpassing standard LoRA approaches by an impressive 3.1%. We also study the impact
of performing instruction tuning of the full backbone before adapter training. To this
end, we also experiment with T0-3B as a backbone. In the bottom table of Fig. 2.3, we
can observe that while the relative gap between MHR and baselines is smaller, multi-head
routing still manages to yield favourable results. Hence, the gains of MHR compound
with other multi-task methods such as instruction tuning. Finally, we turn our attention

2https://github.com/r-three/t-few

42

https://github.com/r-three/t-few

towards the SuperNI dataset (Tab. 2.2). Here, MHR continues to surpass analogous
baselines.

MHR-z facilitates extreme parameter efficiency Fig. 2.3 (right) reveals intriguing findings
regarding MHR-z. When we restrict training to only the routing parameters Z in the
original Poly, the results are unfortunately not up to par with its version where both
routing and adapters are updated. However, when we apply the same constraint to
MHR, the performance is significantly closer to the optimum achieved in this setting. In
fact, MHR-z surpasses prior baselines while simultaneously necessitating fewer parameters
for effective adaptation to new tasks. Moreover, by controlling the number of layers
which share the same Z allocation (see sec. 2.4), MHR-z is able to trade-off performance
for parameter efficiency, even surpassing Poly-z in settings with only 3K trainable
parameters per test task (see also § 2.8.2 for a more in-depth analysis). This trend is
similarly observed in the SuperNI benchmark (Tab. 2.2), where updates restricted to the
routing parameters yield performance on par with standard fine-tuning. We therefore
conclude that the MHR-z represents a robust approach for achieving extreme parameter
efficiency in adaptation.

SuperNI Dataset Rouge-L

LoRA 67.60.8
LoRA-big 67.20.7
Poly-z 64.60.3
Poly 67.80.8
MHR-z 68.00.2
MHR 68.50.3

Table 2.2 Results on SuperNI dataset.
Subscripts are standard deviation.

Additional routing heads is more beneficial
than extra modules In the original Poly
approach, a tradeoff between capacity and
parameter efficiency can be achieved by
adding extra modules for each adapter
layer. However, this results in a linear
increase in the number of multi-task pa-
rameters, which can become impractical.
To explore a more effective tradeoff, we
investigate the option of adding additional
routing heads instead of extra modules.
Fig 2.4 (right) presents the comparison
between the two approaches. It demonstrates that increasing the number of routing
heads leads to better performance compared to adding more modules. Importantly, the
benefit of multi-head routing is twofold: it provides increased expressivity for the model,
while also maintaining parameter efficiency. This finding highlights the advantage of
multi-head routing as a more effective approach for balancing expressivity and parameter
count in few-shot adaptation scenarios.

T0 Dataset Avg. Test

Backbone T0-11B
T-Few 72.50.9
LoRA 72.31.0
Poly-z 70.00.6
Poly- 74.90.6
MHR-z 72.90.8
MHR 74.70.6

Table 2.3 Few-shot results over 11B
parameter backbones.

Routing-based methods also excel at the 11B scale We
proceed to evaluate if Poly and MHR surpass estab-
lished PEFT approaches when trained over a larger
model backbone. To accomplish this, we employ
the 11B version of T0. As depicted in Tab. 2.3,
routing-based methods once again outshine stan-
dard adapter training, surpassing our reproduction
of the previous state-of-the-art in Liu, Tam, et al.,
2022a by over 2%. We observe that Poly and MHR

43

show similar performance in standard fine-tuning, but MHR z-tuning remains more per-
formant in routing-only fine-tuning. Indeed, MHR-z (221K params) outperforms Poly-z
(3.5K params) by 2.9%, while still remaining more parameter efficient than Liu, Tam,
et al. (2022a) (1.1M params).

2.6.2 Why do routing-based PEFT methods yield superior
performance?

While our proposed methods have demonstrated promising results across a broad
spectrum of datasets and varying adaptation parameter budgets, the question of why
routing-based PEFT exhibits superior performance remains unanswered. In this section,
we aim to uncover the key components that drive MHR’s superior performance.

Learning the Routing Function is essential Given that Poly and MHR have access to more
parameters than standard adapters during multi-task pretraining, we investigate whether
this, and not the routing mechanism, is responsible for their superior performance. To
do so, we compare them to a baseline approach. Instead of learning the routing function,
we randomly assign a binary module allocation to each data point in a minibatch,
disregarding task information. This random routing approach, akin to Wang, Mukherjee,
et al., 2022, allows us to directly assess the influence of additional parameters during
multi-task training. At test time, the learned modules are averaged into a single one
before fine-tuning; we therefore refer to this baseline as Random-µ.

MHR fosters transfer and mitigates interference across pretraining tasks Recognizing the piv-
otal role of the multi-task pretraining step in bolstering Poly’s performance, we explore
the extent of transfer and interference across training tasks. By monitoring the average
gradient alignment for each task pair (in terms of cosine similarity) throughout the
training process, we are able to gauge the level of positive transfer. As Fig. 2.4 (left)
shows, MHR displays a greater degree of gradient cosine similarity across tasks compared
to other PEFT alternatives, including Poly. This finding suggests that the enhanced
flexibility offered by multi-head routing may serve to mitigate interference across tasks to
a larger extent than standard routing while simultaneously promoting positive transfer.

2.6.3 Is routing important for task generalization?

We assessed the importance of routing during pre-training. We now proceed to verify
whether it is important to learn routing during few-shot adaptation, too. Polym and
MHRm consistently outperform LoRA, and match the performance of Poly / MHR (Tab. 2.4).
This demonstrates that, for few-shot adaptation, the average of the pre-trained modules
provides a better initialization than learning an adapter shared across all the tasks during
pre-training. The consistently superior performance of Polym with respect to Random-µ
and AdapterSoup stresses the importance of routing during multi-task pre-training (but
not during adaptation), which provides an effective adapter initialization for few-shot

44

102 103 104 105

Training Steps

0

2

4

6

8

10

12

14
Cu

m
ul

at
iv

e
Co

sin
e

Si
m

ila
rit

y Cumulative Gradient Cosine Similarity
MHR
Poly
LoRA

20 40 60 80 100 120 140
Multi-Task pre-training trainable params (M)

67.8

68.0

68.2

68.4

68.6

68.8

69.0

T0
 Te

st
 A

cc
ur

ac
y

8 modules 32 modules 64 modules

8 heads

32 heads

64 heads

128 heads

Test Performance w.r.t Trainable Parameter Budget
MHR
Poly

Figure 2.4 Left: Gradient alignment between tasks during multi-task pretraining. Right:
Increasing the number of heads offers better scaling properties than increasing the number of
modules.

learning. This finding could potentially inspire future work for improving meta-learning
and weight-averaging approaches (Izmailov et al., 2018).

T0 Dataset Test Acc.

LoRA 66.01.6
AdapterSoup 62.11.0
Poly 68.00.8
Poly-µ 67.80.6
MHR 69.11.1
MHR-µ 69.10.9

SuperNI Rouge-L

LoRA 67.60.8
Poly 67.80.8
Poly-µ 68.30.5
MHR 68.50.6
MHR-µ 68.50.8

Table 2.4 Evaluating the impact of mod-
ular adaptation at test time.

MHR-µ excels at zero-shot learning For many
downstream tasks of interest, additional la-
belled data may not be available. In such set-
tings, it is unclear how to leverage MHR-µ and
Poly-µ methods. To address this, we fine-tune
the average of the multi-task trained adapters
on the multi-task pre-training data (instead
of using the downstream few-shot data), for
an additional k steps. The results are pre-
sented in Table 2.5. We find that without any
additional fine-tuning (k = 0), averaging the
adapters does not yield good results. This is
due to a potential mismatch between adapters
learned via task-specific routing, and the uni-
form routing strategy. We can observe that
when fine-tuning the average of the adapters
on the multi-task pre-training data for an ad-
ditional k steps, MHR-µ show strong performance when evaluated in a zero-shot manner.
For a fair comparison, we also additionally fine-tune LoRA for the same number of
additional steps. Our best model achieves a zero-shot performance of 64.5 on top of
T0-11B, achieving an absolute gain of 3.5% accuracy points.

2.7 Conclusions

In this paper, we tackle the challenge of generalizing to new tasks based on a few
examples after multi-task pre-training. Specifically, we focus on Polytropon (Ponti et al.,
2023a), a model where each task is associated with a subset of adapters by a routing

45

Method Zero-Shot Test with k-shot Extra Training
k = 0 k = 1000 k = 5000 k = 10000

Backbone T5-XL-LM 43.2
LoRA 56.5 56.0 56.1 55.7
Poly-µ 46.0 53.0 56.8 56.3
MHR-µ 48.0 58.0 57.1 56.3

Backbone T0-11B (Sanh et al., 2022) 61.0
LoRA 61.2 61.6 61.5 61.5
Poly-µ 62.1 63.6 63.9 64.4
MHR-µ 63.5 64.5 64.5 64.4

Table 2.5 Zero-shot performance for MHR and the baselines, reported as the average over
the 11 evaluation datasets from Sanh et al., 2022. To obtain these zero-shot results, we average
the learnt Poly/MHR adapters before performing k additional fine-tuning steps on the multi-task
pretraining data. This effectively enables zero-shot transfer to downstream tasks using the
same amount of parameters/flops as the baseline LoRA. MHR outperform baseline LoRA by up
to 3% absolute accuracy points on T0-11B.

function. We investigate how varying the level of control afforded by the routing function
impacts performance on two comprehensive benchmarks for multi-task learning, T0 and
Super-Natural Instructions. First, a newly proposed variant of the routing function,
where multiple heads are responsible for different blocks of input dimensions, improves
consistently over all other baselines, including LoRA and (IA)3 adapters. Second, we
identify the cause of the success of routing in its ability to prevent interference between
tasks, as it yields a better alignment between their gradients. Third, we find that
simple averaging of all multi-task pre-trained adapters before few-shot adaptation to
new tasks provides comparable performance, thus offering state-of-the-art performance
for single-adapter few-shot learning. Multi-head routing demonstrates the importance
of fine-grained adapter selection for sample-efficient generalization and holds promise
to improve other modular methods, such as Mixtures of Experts (MoEs; Fedus, Zoph,
et al., 2022a) in future research.

46

2.8 Appendix

2.8.1 Additional Results

More detailed numbers on the T0 Sanh et al., 2022 and SuperNI Wang, Mishra, et al.,
2022a datasets using different backbones, and different adapter layouts over the base
model are found in Table 2.6. Multi-Task params is the number of additional
parameters that must be conserved after multi-task pretraining to enable transfer to a
downstream task. Adaptation Params refers to the number of parameters required to
learn a new downstream task. For e.g. Poly and MHR, the multi-task parameters include
the learned modules, but not the routing over the training tasks, as these are not required
for transfer on a new task. Moreover, variants that average the learned modules prior to
fine-tuning (MHR-µ and Poly-µ) will have both multi-task and adaptation parameters
equal to that of a single shared adapter, since after multi-task pretraining one can
average the modules.

2.8.2 Navigating the parameter efficiency / performance
trade-off of tuning only the routing

Here we provide additional results on how different routing based methods can be more
expressive when only learning a new routing function (over frozen modules) to adapt to
a new task.

Head # 2

Head # 1

Tasks

Active Task

Modules

Tasks

Active Task

Modules

Feed-Forward

Add & Norm

Multi-Head
Attention

Add & Norm

W0

W1

V

O

Q K

Tasks

Modules

Polytropon Multi-Head Routing (MHR) Sharing Z allocation in MHR

Figure 2.5 Different ways to control the expressivity of routing based methods. Left : In
Polytropon, one can only add additional modules, resulting in a linear parameter increase.
Right : In MHR, additional heads only introduce routing matrices Z, resulting in a negligible
parameter increase.

In Fig. 2.5 (left), we see that in order to build more expressive routing functions Z, in
Poly one can only do so by increasing the number of skills at each layer. However, this

47

has a significant impact on the number of multi-task parameters which much be kept in
order to perform few-shot transfer. MHR on the other hand, can increase routing capacity
in a much more parameter efficient way.

On the granularity of routing tensor in MHR

Here we provide additional results when modifying the granularity of Z for MHR. We see
that one can easily trade-off more parameters for better performance.

103 104 105

Test-task param count
65.5

66.0

66.5

67.0

67.5

68.0

68.5

T0
 Te

st
 A

cc
ur

ac
y

Performance when tuning only Z w.r.t Test Parameter Budget

MHR
Poly

Figure 2.6 Routing-Only Fine-Tuning (MHR-z)

2.9 Broader Impact

In our work, we focus on advancing parameter-efficient fine-tuning methods for cross-task
generalization. While our research primarily addresses technical challenges and perfor-
mance improvements, when applying such methods, it is crucial to consider the potential
negative societal impacts. Specifically, we believe that prior to applying our proposed
adaptation method, critically examining the potential biases and ethical implications of
the underlying large language model, and the data itself must be properly addressed.
This includes issues related to fairness, privacy, and the spread of misinformation.

48

Model Multi-Task Params Adaptation Params Avg. Test

T0 Dataset

Backbone T5-XL-LM
Multi-Task Full Finetuning + LoRA 2.8B 2.2M 68.9x.x
(IA)3 540K 540K 62.40.4
AdapterSoup 84M 2.2M 62.11.0
LoRA 2.2M 2.2M 66.01.6
LoRA-big 35M 35M 65.40.9
Poly-z 17M 3.5K 66.40.3
Poly 17M 2.2M 68.01.0
MHR-z (64 h) 17M 220K 68.30.8
MHR (64 h) 17M 2.2M 69.11.0

Backbone T0-3B
T-Few Liu, Tam, et al., 2022a 540K 540K 66.20.5
AdapterSoup 84M 2.2M 66.10.6
LoRA 2.2M 2.2M 67.40.8
LoRA-big 35M 35M 68.00.8
Poly-z 17M 3.5K 65.31.0
Poly 17M 2.2M 69.00.8
MHRz (64 h) 17M 220K 68.41.2
MHR (8 h) 17M 2.2M 69.31.2

Backbone T0-3B light version : (k, v, ff layers only)
l -LoRA (rank 1) 934K 934K 66.20.9
l -LoRA (rank 16) 15M 15M 67.61.1
AdapterSoup (l -LoRA) 35M 934K 64.91.0
l -Poly-z 7.5M 2.1K 62.91.2
l -Poly 7.5M 934K 68.00.5
l -MHRz (32 h) 7.5M 74K 66.81.1
l -MHR (8 h) 7.5M 934K 68.50.7

SuperNI Dataset Rouge-L

Backbone T5-XL-LM light version : (k, v, ff layers only)
l -LoRA 934K 934K 67.60.8
l -LoRA-big 18M 18M 67.20.7
l -Poly-z 7.5M 2.1K 64.60.3
l -Poly 7.5M 934K 67.80.8
l -MHRz (64 h) 7.5M 147K 68.00.2
l -MHR (8 h) 7.5M 934K 68.50.3

Table 2.6 (top) Results on T0 dataset Sanh et al., 2022, we report the mean of the best
validation accuracy for each test task, when evaluated every 50 train epochs. T-Few is our
reproduction of the results in Liu, Tam, et al., 2022a. LoRA-big means a LoRA adapter with a
larger rank. (bottom) Results on SuperNatural Instructions dataset.

49

3Mixture of LoRA Experts Using
Tensor Product

3.1 Introduction

Recently, the de facto paradigm for natural language understanding (NLU) tasks has
centered on leveraging large language models (He et al., 2021). These models are pre-
trained on a vast corpus of unlabelled data and subsequently fine-tuned for specific
tasks (Qiu et al., 2020; Ye et al., 2021b). While this approach has significantly advanced
the field, it often requires substantial computational resources and may not efficiently
transfer knowledge across diverse tasks. In addition, training tasks independently can
lead to negative transfer, where the lack of shared information across tasks, fails to
achieve compositional generalization (Ponti et al., 2023a; Caccia et al., 2022).

To address the aforementioned issues, there are two lines of research. To mitigate the
computation and memory issue, several lightweight alternatives known as parameter-
efficient finetuning (PEFT) have been proposed to update only a small number of
extra parameters while keeping most pre-trained (Houlsby et al., 2019b; Li and Liang,
2021b; Hu et al., 2021). However, these solutions need to train each adapter for each
task, which does not take into account that test tasks may require solving different
combinations of sub-problems compared to training tasks (Vu et al., 2020b), thus failing
to achieve compositional generalization (Rosenbaum et al., 2019; Ponti, 2021). Moreover,
specializing the model toward different tasks during training can yield gradients that
are poorly aligned, resulting in negative transfer (Wang et al., 2020; Lialin, Deshpande,
et al., 2023).

To facilitate information sharing across multiple tasks, two primary approaches are
employed: : sequentially finetuning and multi-task learning. Sequentially finetuning
involves finetuning a pre-trained language model on one task after another in a specific
order (Phang et al., 2018). However, this process will suffer from catastrophic forgetting
issue (McCloskey and Cohen, 1989; French, 1999), where language models will lose
the knowledge trained by the previous task when training the new task. Multi-task
learning (MTL) (Caruana, 1997; Zhang and Yang, 2021; Liu et al., 2019) simultaneously
trains the model on several tasks, allowing it to learn shared representations that benefit
all tasks involved. However, MTL necessitates access to all training tasks during the
training phase, meaning that incorporating new tasks requires retraining the model from
scratch. This requirement significantly increases the computational burden and limits
the flexibility of the model to adapt to new tasks efficiently.

50

A promising approach to address the above issues is the adoption of modular deep
learning (Pfeiffer et al., 2023). In this framework, computational units are typically
implemented as parameter-efficient modules. Information flow is conditionally routed to
a subset of these modules, where it is then aggregated. This design facilitates the positive
transfer and systematic generalization (Pfeiffer et al., 2023). Recently, Polytropon(Poly)
was proposed as a novel framework designed to tackle diverse tasks by leveraging different
combinations of latent modular skills (Ponti et al., 2023a). This approach allows for the
recombination of previously learned skills to solve test tasks more effectively, showcasing
a significant advancement in task adaptability and learning efficiency. During both
the multi-task pre-trained and few-shot finetuning, Poly concurrently optimizes the
parameters of the skill inventory and a binary task-skill routing matrix. This matrix
plays a critical role in determining which skills are activated for each training task.

∑

Router

Router

LoRA
TensorPoly-I

TensorPoly-II

Rank 1 Rank 2

Order 1 Order 2 Order 3 Order 1 Order 2 Order 3

Figure 3.1 LoRA reparamarized by an en-
tangled tensor with a rank = 2 and order =
3. Different granularity of modules induces two
routing approaches, TensorPoly-I will select
the rank of the tensor while TensorPoly-II
select the finer-grained order of the entangled
tensor.

In this paper, we propose a variant Poly
model: TensorPoly using tensor product
operation (Smolensky, 1990). A tensor
product is an operation that takes two or
more tensors and combines them to pro-
duce a new tensor. This process enables
the capturing of higher-order interactions
and structural relationships between the in-
put tensors (Panahi et al., 2019; Kye, 2023;
Gan et al., 2022). As depicted in Figure
3.1, we have reparameterized LoRA (Hu
et al., 2021) adapters by employing an "en-
tangled" tensor structure. Consequently,
the traditional training matrix M ∈ Rd×r

in LoRA is reparamerized into a more finer-
grained tensor L ∈ RN×r×⌈ N√

d⌉×R), named
as TLoRA. This reparameterization allows
for a more nuanced manipulation of the
model’s parameters, facilitating a more precise and efficient adapter process. The en-
tangled tensor configuration introduces two critical hyper-parameters: the tensor rank
(R) and the tensor order (N). Leveraging these parameters, we have developed two
distinct routing functions designed to select modules with varying levels of granularity.
As depicted in Figure 3.1, TensorPoly-I employs a routing mechanism that assigns
distribution scores to different tensor ranks, facilitating the selection of modules based
on their rank granularity. Further advancing this concept, we propose a more refined
routing function, TensorPoly-II, which targets even finer-grained tensors as activated
modules. Each module is associated with a specific order of the entangled tensor. Once
modules are selected via the routing function, they are aggregated through a tensor
product operation, enabling a sophisticated and dynamic assembly of modular skills.

We evaluate our methods against a series of competitive baselines for few-shot task
adaptations benchmark (Victor et al., 2022). The experimental outcomes reveal several
key insights: 1) modular language models, specifically Poly and TensorPoly frameworks,
consistently outperform traditional PEFT approaches, such as LoRA and its tensorized

51

variant TLoRA. This superiority underscores the effectiveness of our routing function
in facilitating positive transfer across multi-task environments, as opposed to the more
conventional dense model approaches. 2) TensorPoly-I demonstrates competitive
results as Poly, while simultaneously reducing the number of training and adaptation
parameters required. This efficiency gain highlights the benefits of our tensorized
module approach in achieving high performance with lower parameter overhead. 3)
A comparative analysis between TensorPoly-I and TensorPoly-II indicates that the
latter’s finer-grained routing mechanism does not contribute to improved performance
in tensor product routing scenarios. This outcome suggests that while granularity in
module selection is valuable (Caccia et al., 2022), there is a complexity threshold beyond
which additional granularity may not yield further benefits.

In summary, our contributions are as follows:

• We propose a novel modular language model TensorPoly using tensorized modules
TLoRA, designed to enhance positive transfer and generalization across multi-task
scenarios.

• TLoRA achieves competitive, and in some cases superior, results while utilizing
only a 60% training parameters required by LoRA, highlighting our approach’s
high parameter efficiency.

• The findings from our T0 benchmark demonstrate that our modular language
model significantly enhances the performance of a single module, underscoring the
critical role of routing in scenarios involving multiple tasks.

3.2 Related Work

PEFT

Parameter efficient fine-tuning (PEFT) methods facilitate efficient adaptation of LLMs
without updating all the training parameters, thereby reducing the memory and compu-
tation cost (Zhang, Han, et al., 2023). One kind of PEFT approach focuses on adding
some modules to LLMs and only these small modules will be trained, the backbone
model is kept frozen and shared across tasks. For example, adapter tuning inserts
small neural modules (adapters) between the layers of the basic model (Houlsby et al.,
2019a). Prefix tuning and Prompt tuning add some tunable vectors to the input or
hidden layer of the base model (Li and Liang, 2021b; Lester et al., 2021). These mod-
els can achieve comparable performance to full-finetuning while only using less than
1% training parameters. Another kind of research model is the incremental update
of the pre-trained weights in a parameter-efficient way, without modifying the model
architecture. Bit kit fixed all training parameters and only finetuned the additive bias
term (Zaken et al., 2021). Diff Pruning learns a task-specific "diff" vector that extends
the original pre-trained parameters. As the number of tasks increases, diff pruning
only requires storing only a small diff vector for each task (Guo et al., 2020). Hu et al.

52

(2021) propose a method named LoRA, which parameterizes incremental weights ∆ as a
low-rank matrix by the product of the down projector matrix and up projector matrix.
LoRA achieves comparable or even better performance than full fine-tuning (Hu et al.,
2021). Zhang, Chen, Bukharin, et al. (2023) demonstrates that weight matrices in the
top layers are more important than those in the bottom layers. They propose a new
method: Adaptive Low Rank Adaptation (AdaLoRA) which dynamically allocates the
parameter budget among weight matrices during LoRA-like finetuning (Zhang, Chen,
Bukharin, et al., 2023). AdaLoRA adjusts the rank of incremental matrices for different
layers. Critical matrices are assigned with high rank so that they can capture more
task-specific information. Less important ones are pruned to have lower rank. In our
approach, TLoRA reparameterize LoRA with tensor product. It utilizes the finer-grained
tensors as modules.

MTL

To share the information across multiple tasks. AdapterSoup Chronopoulou et al. (2023)
trains each adapter for each domain, then it performs weight-space averaging of adapters
trained on different domains. (Huang et al., 2023) introduce LoRAhub to aggregate the
LoRA modules trained on diverse tasks. They first train a group of LoRA modules
which are specialized in each task. Then they randomly select a subset of modules. They
learn a set of weights to combine these LoRA models using gradient-free optimization.
AdapterFusion (Pfeiffer, Kamath, et al., 2020) proposes a two-stage algorithm that
leverages knowledge from multiple tasks. The same as LoRAhub, they learn a group
of task-specific adapters to encapsulate the task-specific information. In the second
stage, they learn a fusion layer to combine the trained adapters. Ponti et al. (2023a)
introduce a variable-size module routing mechanism, Poly, predicated on the notion that
each task correlates with a specific subset of latent skills drawn from a comprehensive
inventory of modules. They concurrently train both the modules and the routing function,
facilitating a more dynamic and task-specific approach to model learning. Building upon
Poly, (Caccia et al., 2022) introduce a finer-grained multi-head routing function MHR,
the experimental findings underscore the significance of the routing function during the
pre-training phase. Remarkably, by solely fine-tuning the routing function, MHR attains
competitive results, demonstrating exceptional parameter efficiency.

Model Merging Model merging can be seen as a parameter level aggregation, which is
defined as combining multiple models into one single model in parameter space without
access to data (Matena and Raffel, 2022). The simplest operation of merging is averaging
the weights of different models. Wortsman et al. (2022) show that averaging the weights
of multiple models finetuned with different hyperparameter configurations often improves
accuracy and robustness. Matena and Raffel (2022) take the aggregation function can
be seen as maximizing the joint likelihood of the posteriors of the model’s parameters
and propose a "Fisher merging" technique. Yadav et al. (2023) propose a TIES-Merging
method to address interference due to redundant parameter values and disagreement on
the sign of a given parameter’s values across models. Ilharco et al. (2022) edits models
with task arithmetic operations. (Jin et al., 2022). Jin et al. (2022) propose a dataless
knowledge fusion method (Regression Mean) that merges models in their parameter
space.

53

3.3 Background

In scenarios involving multiple tasks, we define a set of tasks as T = {T1, ..., T|T |}.
This set is divided into two subsets train Ttrain and test Ttest. The goal of multi-task
transfer learning is to apply the knowledge from the training tasks Ttrain to the test
tasks within Ttest. This process involves two main phases, The first phase consists of
multi-task pre-training using the dataset in tasks Ttrain. The second consists of a few-shot
adaptation, where the learned adapters are fine-tuned independently on each test task
in Ttest. We follow the procedure from (Raffel et al., 2020b) and formulate each task as
a text-to-text problem, enabling standard maximum-likelihood training with teacher
forcing (Bengio, Vinyals, et al., 2015) and a cross-entropy loss.

3.3.1 Module: LoRA

LoRA are recently proposed adapter architecture that achieves a competitive balance
between performance and parameter efficiency (Hu et al., 2021; Mahabadi et al., 2021).
For each linear transformation corresponding to the query (q), key (k), value (v), and
output (o) of the self-attention layers, LoRA modifies the base model parameters as
follows:

hq,k,v,o = W q,k,v,o
0 x+ s · Aq,k,v,o(Bq,k,v,o)⊤x, (3.1)

where W0 are the (frozen) weights of the pre-trained model (e.g. T5 (Raffel et al.,
2020b)). A,B ∈ Rd×r are low-rank learnable parameters and s ≥ 1 is a tunable scalar
hyperparameter. We show the LoRA in Figure 3.2.

3.3.2 Tensor, Tensor Product, Entangled Tensor

Tensor. The tensor A is a multidimensional array of elements (called components) of R,
each denoted by its integer coordinates in the array; e.g., for a two-dimensional array,
the component at position i, j ∈ N is denoted Ai,j. The order of a tensor is how many
indices it has (e.g., a vector v is a first-order tensor, a matrix M is a second-order tensor,
etc.)

Tensor Product. The tensor product V ⊗W of two vector spaces V and W is a vector
space to which is associated a bilinear map V ×W → V ⊗W that maps a pair (v, w),
v ∈ V,w ∈ W to an element of V ⊗W denoted v ⊗ w. We can create tensor product
spaces by more than one application of the tensor product, H = U ⊗ V ⊗ W, with
arbitrary bracketing, since the tensor product is associative. The tensor product space
of the form is said to have tensor order of n.

n⊗
j=1

Hj = H1 ⊗H2 ⊗ ...⊗Hn (3.2)

54

Entangled Tensor. The n-order tensor product space ⊗n
j=1Hj consists of vectors of the

form v = ⊗n
j=1vj , where vj ∈ Hj , are called simple tensor. Vectors need to be represented

as the sum of multiple simple tensors called entangled tensors :

r∑
k=1

n⊗
j=1

Hj =
r∑

k=1

H1 ⊗H2 ⊗ ...⊗Hn (3.3)

where tensor rank r is the smallest number of simple tensors that sum up to v. For
example, ψ0⊗ϕ0+ψ1⊗ϕ1√

2
is a tensor of rank 2.

3.3.3 Tensorized Training Parameters with Tensor Product

Any training parameters v ∈ Rd can be expressed as an entangled tensor of rank r and
order n by:

v =
r∑

k=1

n⊗
j=1

vjk, (3.4)

Here, vjk ∈ Rq, yielding a resultant vector v of dimension p = qn. Its storage requirements
are efficiently managed, consuming only rnq = O(rq log p/q). If qn > d, the excess part
of the generated vector will be cut off. The number of vector parameters can be reduced
from d to rn

√
d. For example, when d = 512, q = 8, n = 3, and r = 2, the number of

parameters of a vector can be reduced from 512 to 48.

3.4 Methods: TensorPoly

In section 2.3.2, we introduced the Poly model. This section delves into two variant mod-
els, TensorPoly-I and TensorPoly-II. TensorPoly-I employs a routing mechanism
that assigns distribution scores to tensor ranks while TensorPoly-II assigns distribution
scores to the finer-grained tensor order.

3.4.1 TensorPoly-I

As illustrated in Figure 3.2, the TensorPoly model innovatively incorporates the Ten-
sorized Low-Rank Adaptation (TLoRA) as its core module. This approach adopts
finer-grained tensors for training parameters, thereby enabling a more nuanced parame-
ter manipulation. The routing matrix Z ∈ R|T |×R plays a pivotal role in this framework,
determining which rank within the entangled tensor is to be activated for a given task.
Upon activation of the selected rank, the model performs a linear combination of the
selected tensor, weighted by a factor α:

55

⊗

⊗

⊗

∑ 𝑊!"#$
%

𝒜&,(

𝒜),(

𝒜*,(

𝒜+,(

3×5×5

3×25×5

3×625×5 625×5

N

R

TensorPoly-I

TensorPoly-II

𝑍 ∈ ℝ 𝒯 ×#
𝑍 ∈ ℝ 𝒯 ×#×$

LoRA

𝑊!"#$
% 𝑊,-%

Add & Layer Norm

Adapter

Feed Forward

Adapter

Attention

Q K V

𝑊. 𝑊(𝑊/

Hidden State

Add & Layer Norm

LoRA LoRA

×𝐿

⊕ ⊕
LoRA

Transformer

Figure 3.2 TensorPoly-I and TensorPoly-II. We illustrate how to reparametrized the
LoRA matrix R625×5 with 4 tensor A ∈ R3×5×5. In this case, the tensor rank R = 3, tensor
order N = 4. For TensorPoly-I, the routing function Z is designed to select which rank of
the entangled tensor is activated for a given task. Conversely, TensorPoly-II introduces a
more granular control by selecting tensor rank and tensor order. The Blue color indicates a
non-trainable component and the reddish color indicates a trainable component.

Aτ =
∑
i

αiA
(i); Bτ =

∑
i

αiB
(i) (3.5)

Aτ =
R∑
k=1

α
N⊗
i=1

Ai,k;B
τ =

R∑
k=1

α
N⊗
i=1

Bi,k (3.6)

where R is the rank of the entangled tensor. N is the order of the tensors. α =
ẑτ,i∑
j ẑτ,j

.

Ai,k ∈ RN×r×⌈ N√
d⌉ is a third-order tensor.

3.4.2 TensorPoly-II

In TensorPoly-II, we implement a fine-grained routing function that selects both the
tensor rank and tensor order, enabling precise control over the model’s adaptation to
specific tasks. This sophisticated routing mechanism facilitates the selection of finer-
grained tensor elements, which are then aggregated through a tensor product operation
followed by a linear combination. The routing itself is conceptualized as a third-order
tensor Z ∈ R|T |×R×N , which offers an unprecedented level of granularity in directing the
model’s focus across different ranks and orders of the tensor space.

Aτ =
R∑
k=1

N⊗
i=1

αAi,k;B
τ =

R∑
k=1

N⊗
i=1

αBi,k (3.7)

56

3.5 Experiments

Model Natural Language Inference Sentence Completion Co-reference WSD ACC Param
RTE CB ANLI1 ANLI2 ANLI3 COPA H-SWAG Story WSC Wino WiC

Baselines (w/o pretrain)

FullFT 79.8 87.5 46.6 41.3 40.0 81.0 46.4 93.8 65.4 56.5 57.7 63.3 3B

BitFit (with LN) 72.2 57.1 36.5 35.3 36.6 75.0 29.5 88.6 61.5 56.6 51.7 54.6 1.3M
LayerNorm 71.8 57.1 36.5 35.1 36.3 76.0 29.6 88.7 63.5 49.4 52.2 54.2 250K
Adapter 76.2 87.5 45.1 40.4 35.3 84.0 41.9 91.7 65.4 54.7 55.5 61.6 12.9M
Compacter 75.8 82.1 40.8 37.4 35.8 84.0 46.4 93.5 64.4 55.5 55.2 61.0 807K
Compacter++ 76.9 82.1 41.7 38.3 36.9 86.0 46.3 93.5 65.4 55.1 54.1 61.5 540K
Prompt(10) 52.7 66.1 34.2 33.5 33.5 67.0 29.9 84.2 54.8 51.9 51.6 50.9 41K
Prompt(100) 48.0 53.6 33.4 33.8 33.3 60.0 26.8 74.0 60.6 51.1 50.0 47.7 409K
Prefix tuning 68.6 84.0 43.3 37.5 36.5 71.0 42.1 90.2 56.7 52.0 54.2 57.8 576K
FishMask (0.2%) 76.9 83.9 43.7 39.7 37.2 82.0 44.1 94.2 63.5 54.5 52.5 61.1 6M
FishMask (0.02%) 75.5 76.8 39.9 38.1 36.2 84.0 38.2 93.6 61.5 53.9 53.5 59.2 600K
SAID 69.0 80.4 40.4 35.4 35.5 77.0 36.7 89.3 61.5 52.7 55.0 57.5 500K
SAID 66.1 83.9 41.3 38.5 35.8 76.0 38.3 89.7 55.8 50.9 55.3 57.4 20K
LoRA 78.3 85.7 45.1 41.0 39.5 88.0 47.1 93.6 60.6 56.8 55.2 62.8 9.1M
(IA)3 78.0 87.5 48.6 40.8 40.8 87.0 49.4 94.7 68.3 59.8 56.0 64.6 540K

w/ pretrain

LoRA 81.9 89.3 41.2 40.3 41.3 93.7 59.8 96.2 66.0 67.9 56.8 66.8 2.2M
TLoRA 80.7 90.5 39.9 40.9 41.2 93.0 54.4 95.3 66.3 67.4 57.3 66.1 1.4M
Poly 84.7 89.3 46.0 42.8 42.7 93.0 63.3 96.6 68.9 70.1 59.9 68.8 17M
MHR 85.2 90.5 44.7 42.3 42.8 94.7 63.3 96.7 70.5 70.6 59.8 69.2 17M
TensorPoly-I 85.2 91.7 45.0 42.5 42.5 96.7 63.1 96.6 68.6 69.8 60.6 69.3 27.8M
TensorPoly-II 86.9 90.5 44.9 41.6 42.2 93.0 58.3 96.3 68.3 66.7 58.3 67.9 13.3M

Table 3.1 Results on the T0 few-shot benchmark. All the results in our implementation are
the median score of 3 seeds [0,1024,42]. For all the baseline scores, we report the results from
Liu, Tam, et al., 2022a. The bold is the best score. The underline is the second best in the
same training setting.

To test the effectiveness of our approach, we conduct experiments on multi-task transfer
learning in few-shot scenarios.

3.5.1 Backbone, Datasets and Evaluation

Backbone To ensure our model retains high performance with a limited number of
labeled examples after fine-tuning, it is crucial to select an appropriate pre-trained model
as the backbone. To facilitate a fair comparison with baseline methodologies, we have
chosen the T0 model, consistent with the approach described in the IA3 paper by Liu,
Tam, et al. (2022a). T0 was created by finetuning the T5 model on a multi-task mixture
of datasets (Raffel et al., 2020b). Each dataset is associated with multiple prompt
templates that are used to format the example to (input, target) pairs. Examples in
the datasets to train the T0 were prompted by applying the prompt templates from the
Public Pool of Prompts (P3) (Bach et al., 2022). As a result, all the different types of
natural language tasks can trained with sequence-to-sequence structure (Victor et al.,
2022).

Datasets To evaluate the generalization capabilities of our models, we adopt the same
benchmarking strategy as (Liu, Tam, et al., 2022a), utilizing a subset of tasks designated
as held-out from the multitask training. This benchmark encompasses a diverse array of

57

tasks, including sentence completion (COPA (Roemmele et al., 2011), H-SWAG(Zellers
et al., 2019) and Story Cloze (Sharma et al., 2018) datasets), natural language inference
(ANLI (Nie et al., 2019), CB (De Marneffe et al., 2019) and RTE (Dagan et al., 2005)),
coreference resolution (WSC (Levesque et al., 2012), Winogrande(Sakaguchi et al., 2021)),
and word sense disambiguation (WIC (Pilehvar and Camacho-Collados, 2018)). For
each task, our evaluation strategy involves constructing sets of five few-shot training
examples, which are generated by sampling subsets from each dataset using different
seeds. We then report the median performance. It is noted that the prompt examples
from each dataset using the prompt templates from P3 (Bach et al., 2022), using a
randomly-sampled prompt template for each example.

Evaluation For the evaluation of our models, we employ the rank classification method-
ology as outlined by the Liu, Tam, et al. (2022a) study. This approach involves ranking
the model’s log probabilities for all possible label strings associated with each task. The
model’s prediction is deemed correct if the label string with the highest log probability
ranking corresponds to the correct answer. This method allows for a nuanced assessment
of the model’s predictive accuracy by examining its ability to prioritize the correct label
over others based on their calculated log probabilities, offering a precise measure of its
understanding and processing of the task at hand.

3.5.2 Baselines

In our comparative analysis, we initially set the benchmark by evaluating the performance
of the TLoRA model against the traditional full fine-tuning approach, referred to as
FullFT. In the FullFT scenario, we do not freeze any parameters of the pre-trained
model, nor do we insert any adapters, allowing for a comprehensive update of the model’s
parameters during fine-tuning. Subsequently, we contrast our method against a suite
of established parameter-efficient fine-tuning (PEFT) baselines to study the efficiency
and effectiveness of each in terms of training parameter utilization. These baselines
include:

• Adapter, as introduced by Houlsby et al. (2019b), which involves inserting trainable
layers while keeping the pre-trained model’s parameters fixed.

• BitFit by Zaken et al. (2021), which only fine-tunes the bias terms within the
model.

• LoRA proposed by Hu et al. (2021), adjusting the low-rank adaptations of the
weight matrices.

• Compacter and Compacter++ by Karimi Mahabadi et al. (2021), which extend
the adapter methodology with compact and efficient training strategies.

• Prompt tuning (Lester et al., 2021) and Prefix tuning Li and Liang, 2021b add
some tunable vectors to the input or hidden layer of the base model.

58

• FishMask by Sung et al. (2021), identifying and training a subset of parameters.

• Intrinsic SAID as described by Aghajanyan et al. (2020), focusing on intrinsic
sparse activations.

• IA3 (Liu, Tam, et al., 2022a), emphasizing adaptability and efficiency.

We undertake a comparative analysis between routing approaches TensorPoly, Poly
and employing a single expert mechanism without routing, specifically TLoRA and
LoRA. This comparison aims to evaluate the impact of routing techniques on model
performance and efficiency. By contrasting these models, we seek to understand how the
dynamic allocation of tasks to specific experts in TensorPoly and Poly compares to the
single expert models without shared information across tasks.

3.5.3 Results

Method Pre-Training Fine-Tuning
FullFT d× d d× d
LoRA 2× d× r 2× d× r

TLoRA 2×N × r × ⌈ N
√
d⌉ ×R 2×N × r × ⌈ N

√
d⌉ ×R

Poly 2× d× r × |S|+ |T | × |S| 2× d× r × |S|+ |S|
TensorPoly-I 2×N × r × ⌈ N

√
d⌉ ×R+ |T | ×R 2×N × r × ⌈ N

√
d⌉ ×R + R

TensorPoly-II 2×N × r × ⌈ N
√
d⌉ ×R+ T ×R×N 2×N × r × ⌈ N

√
d⌉ ×R + R×N

Table 3.2 Number of parameters (per layer) used for each method. d is the input and output
dimension of the training parameters. We assume they are identical. r is the rank in the LoRA,
where r ≪ d. N and R are the order and rank of entangled tensors respectively. S is the
number of modules in Poly.

Table. 3.1 presents the mean downstream accuracy for 11 held-out tasks in the T0
benchmark. Notably, we did not train all these PEFT approaches, all the results are
reported from (Liu, Tam, et al., 2022a). When evaluating the performance of various
PEFT approaches against single expert performances, it is observed that many PEFT
strategies achieve similar outcomes while utilizing a significantly smaller subset of training
parameters compared to the FULLFT (Full Fine-Tuning) method. Additionally, the
implementation of Low-Rank Adaptation (LoRA) within our training framework further
illustrates the efficiency of these methods. Specifically, TLoRA achieves a competitive
score of 66.1, closely trailing the original LoRA’s score of 66.8, while requiring only
about 60% of the training parameters used by LoRA. This demonstrates that TLoRA
not only matches the effectiveness of LoRA in terms of performance but also surpasses
it in terms of parameter efficiency.

In our analysis, we initially contrast the modular model against the dense model, followed
by a comparison of routing-based approaches with a single adapter strategy. Within
this context, we utilize both LoRA and TLoRA as baselines for these routing techniques.
According to the results presented in Table 3.1, the Poly model demonstrates superior

59

performance over LoRA by a margin of 2.0 points. Moreover, TLoRA exhibits an
improvement of 3.2 points over the base TLoRA model, underscoring the efficacy of
routing in enhancing multi-task generalization within the realm of multi-task transfer
learning.

When evaluating various Poly variants, TensorPoly-I stands out by not only surpassing
recent state-of-the-art achievements but also by outperforming TensorPoly-II, despite
the latter employing a more granular routing function. This finding is particularly
noteworthy, as it suggests that the increased specificity of the routing function in
TensorPoly-II does not necessarily translate to superior performance. We will discuss
this in Section 3.5.6.

Rank and Order Analysis

1.4M

4.2M
7.0

12.2M

27.8M

0 5 10 15 20

66

66.5

67

67.5

68

68.5

69

69.5

Rank R in the Entangled Tensor

A
c
c
u

r
a
c
y

SOTA

Figure 3.3 Explore the tensor Rank in the
Entangled Tensor. We set order N = 2 in this
setting.

The rank of an entangled tensor serves
as a measure of its capacity, denoting the
fewest number of rank-one tensors required
for its original tensor (§3.3.2). We focus
on examining the relationship between the
rank of tensor and the associated training
parameters. Table 3.2 illustrates how the
tensor rank R and tensor order N impact
the selection of training and fine-tuning pa-
rameters. Illustrated in Figure 3.3, when
the tensor rank is set to 1, it corresponds
to the original TLoRA configuration. An
increase in tensor rank necessitates a larger
number of training parameters. Concomi-
tantly, there is a notable enhancement in
performance. This progression underscores
the direct correlation between the tensor rank and the model’s capability.

Then tensor order N , correlates with the granularity of training parameters; a tensor
of order 4 yields a finer-grained module compared to one of order 2. Our research
examines the impact of varying tensor orders on performance outcomes. For simplicity,
we constrain our analysis to tensors of order 2 and 4. Our results demonstrate that a
tensor of order 2 outperforms one of order 4 by a margin of 1.7 for the TensorPoly-I.
For TensorPoly-II, an order-2 tensor exceeds the performance of an order-4 tensor by
4.8, suggesting a balance must be struck between the size of experts and its efficacy.
While higher-order tensors may conserve training parameters, this comes at the cost of
diminished performance.

3.5.4 Routing Analysis

In the paper referenced as Caccia et al. (2022), the MHR study demonstrates that fine-
tuning solely the routing function can yield competitive outcomes. This insight provides

60

Model Adaptation Params ACC

LoRA[r=1] 2.2M 66.8
TLoRA [r=16] 1.4M 66.1
Poly[r=1] 17 M 68.8
TensorPoly-I[N=2] 12.2M 68.7
TensorPoly-I[N=4] 4.3M 66.9
TensorPoly-II[N=2] 13.3M 67.9
TensorPoly-II[N=4] 7.6M 63.1

Table 3.3 Results on T0 dataset, with T0-3B. The Adaptation parameter is the number of
parameters in the finetuning process.

a valuable perspective for our investigation into various routing strategies within the
TensorPoly framework. In line with this approach, we focus on fine-tuning exclusively
the routing function during the few-shot adaptation process, indicated by the notation
-z. This methodological choice allows us to isolate the impact of the routing function’s
optimization on the overall performance of the TensorPoly model, thereby offering
a clearer understanding of how dynamic routing contributes to the adaptability and
efficiency of the model in few-shot learning scenarios.

As detailed in Table 3.4, an initial observation reveals that the routing parameters
necessitate a remarkably small number of training parameters. The performance metrics
of Poly-z, TensorPoly-I-z, and TensorPoly-II-z lag behind their counterparts where
both the modules and the routing function undergo fine-tuning. This disparity highlights
the critical role that modules play in the fine-tuning process for TensorPoly. The
findings suggest that while optimizing the routing function alone can contribute extreme
parameter efficiency, the integration of module fine-tuning is indispensable for achieving
the best possible performance. This underlines the synergy between modules and routing
functions in the TensorPoly architecture.

Model Adaptation Params ACC ∆

Poly-z 3.5k 65.4 -3.4
MHR-z 220K 68.3 -0.9
TensorPoly-I-z[N=2] 3.5k 64.3 -4.4
TensorPoly-I-z[N=4] 3.5k 62.7 -0.4

TensorPoly-II-z[N=2] 6.9k 62.5 -5.4
TensorPoly-II-z[N=4] 13.8k 60.3 -2.8

Table 3.4 Results on T0 dataset, with T0-3B. We only fine-tuning the routing function. The
symbol ∆ represents the difference in ACC (accuracy) scores between the ’modules+routing’
configuration and the ’only routing’ configuration.

61

3.5.5 Flop Analysis

TLoRA aims to reduce the number of training parameters by parameterizing the original
LoRA architecture, yet it does not alter LoRA’s computational process. This implies
that TLoRA might incur additional computational overhead compared to LoRA. To
understand this, we analyze the floating-point operations (FLOPs) involved in TLoRA.

Considering the tensor product of a vector a of size n× 1 with a vector b of size 1× n,
we obtain a matrix C of size n× n. This operation involves n2 multiplications due to
the n elements in vector a and n elements in vector b, each contributing to an entry
of the resulting matrix. As outlined in Table 3.2 and illustrated in Figure 3.2, the
additional computational effort in TLoRA stems from the tensor product operations,
which are dictated by the order of the tensor. Specifically, for parameterizing a dimension
d with rank r and tensor rank R, the extra computation required can be approximated
as d × r × R. This calculation helps quantify the additional computational resources
necessary for TLoRA.

3.5.6 Discussion

In modular language models, tensor product routing is poised to construct more intricate
patterns. This capability arises from its method of aggregating activated modules through
tensor products, as opposed to the conventional linear routing approach. However,
our experimental results diverged from theoretical expectations, revealing that tensor
product routing did not contribute to improved final performance in our models. This
discrepancy prompts a future line of inquiry: we plan to explore whether there exist
specific benchmarks or conditions under which tensor product routing could demonstrate
its purported benefits. Identifying such scenarios will be crucial for harnessing the
potential advantages of tensor product routing in modular language models.

In the current methodology, each tensor-based module is not specialized towards any
particular domain. In the future, we intend to explore a more tailored training strategy.
This will involve dedicating each tensor to a specific domain and subsequently aggregating
these domain-specialized tensors using tensor product operations. Our objective is to
assess whether this domain-specific aggregation approach can yield superior generalization
capabilities.

3.6 Conclusion

In this paper, we introduce a novel modular language model named TensorPoly. This
model incorporates tensorized modules, specifically TLoRA, to significantly reduce the
number of training parameters required by the traditional LoRA approach. We employ
two distinct strategies for aggregating activated modules: a linear routing function,
referred to as TensorPoly-I, and a more finely trained tensor product routing, named
TensorPoly-II. Our evaluation across various multi-task learning scenarios reveals

62

that modular language models, such as TensorPoly, surpass the performance of single-
adapter models. This underscores the importance of sharing task information through
a routing function in multi-task learning contexts. Notably, TensorPoly-I achieves
state-of-the-art results, highlighting the effectiveness of the TensorPoly framework. How-
ever, TensorPoly-II does not outperform TensorPoly-I in our experimental settings,
suggesting areas for further investigation in future research.

63

4Towards Modular LMs by
Building and Reusing a Library of
LoRA Adapters

4.1 Instruction

The multiplicity of adaptations of a base language model (LM) via parameter-efficient
adapters calls for studying whether reusing such trained adapters can improve perfor-
mance for new tasks or new inputs. In this paper, we study how to best build a library of
adapters given multi-task data and study techniques for zero-shot inference and effective
task adaptation through routing in such library. We benchmark existing approaches to
build this library and introduce a clustering-based method MBC (“model-based clustering”)
which groups tasks based on the similarity of their adapter weights, indirectly optimizing
for transfer across the multi-task dataset. To re-use this library of adapters, we present a
novel zero-shot routing mechanism, Arrow, which enables dynamic selection of the most
relevant adapters for new inputs without the need for retraining. We make steps towards
creating modular, adaptable LMs that can outperform traditional full-finetuning, paving
the way for efficient and flexible utilization of LMs across a wide array of tasks.

Adapting pretrained Language Models (LMs) to downstream tasks, domains, or user
profiles is of paramount importance given the recent democratization of their usage,
catalyzed by the release of open-weight LMs (Zhang, Han, et al., 2023; Microsoft Research,
2023, inter alia). Most adaptation techniques rely on an adapter, a parameter-efficient
mechanism built on top of the base LM (Hu et al., 2021; Liu, Tam, et al., 2022a; Li and
Liang, 2021a; Zhang, Han, et al., 2023).

With the growing number of adaptations of a base model (Beck et al., 2021; Mangrulkar
et al., 2022), it is natural to ask how to re-use such adaptations to process new inputs or
to solve new tasks. Prior works show that previously trained adapters can accelerate
supervised adaptation for unseen tasks (Ponti et al., 2023b; Vu et al., 2021; Huang et al.,
2024). If one considers these trained adapters as experts at their respective tasks, there
is an opportunity to build a more expressive, “modular” LM that can also route to
pre-existing adapters zero-shot, i.e. for new inputs. In contrast to standard mixture-
of-experts approaches (MoE) (Fedus, Zoph, et al., 2022a), there is the need to devise
post-hoc routing strategies that can handle multiple adapters without requiring joint
training of the routing mechanism and expert weights.

In this paper, we study techniques to create a modular LM “end-to-end” by first building
and then re-using a library of adapters, both for supervised adaptation and zero-shot

64

generalization. We first identify a base LM, such as Phi2 (Microsoft Research, 2023)
or StableLM (Tow et al., 2023). Then, we investigate building a library of adapters by
leveraging a multi-task dataset such as Flan-v2, which is composed of 264 tasks.1 We
focus on LoRA adapters (Hu et al., 2021) and leave the extension to other adapter types
and combinations thereof for future work. Once the adapters have been built, we devise
routing strategies to deal with both zero-shot generalization on 10 downstream tasks
comprising common-sense reasoning and coding (ARC (Clark et al., 2018), MBPP Austin
et al., 2021, inter alia) and 12 SuperNatural Instructions (SNI) tasks (Wang, Mishra,
et al., 2022b), which we also use to study supervised adaptation.

How to build the adapter library? One straightforward approach is to operate
in a private scenario, in which one trains one adapter for each task in the multi-task
data and mix those adapters for unseen tasks (Chronopoulou et al., 2023; Vu et al., 2021;
Huang et al., 2024). This method is useful when the multi-task data cannot be shared
for privacy concerns but adapters can (Mireshghallah et al., 2020). To favour transfer
between training tasks, recent approaches compress the multi-task data into a smaller set
of reusable, composable adapters (Ponti et al., 2023b; Caccia et al., 2023). Additionally to
benchmarking these approaches in our setting, we propose a simple two-stage approach
to build a library of adapters. We find a positive correlation between the similarity
of LoRA weights of tasks and transfer. Therefore, we first exploit LoRA similarity in
weight space between privately trained adapters as a proxy for detecting clusters of
similar tasks, then train one adapter for each cluster. Our approach empirically improves
performance and surpasses the state-of-the-art while matching compute budget. We
refer to this method with MBC (Model-Based Clustering).

How to reuse the library for new scenarios? Given a library of trained adapters, we
examine strategies on how to re-use the library in two settings: zero-shot generalization
and parameter-efficient supervised adaptation to new tasks. If the latter has received
extensive attention from the research community (Ponti et al., 2023b; Vu et al., 2021;
Huang et al., 2024), the former remains relatively unexplored. Re-using adapters in a
zero-shot manner is significantly more challenging because we do not have downstream
labelled data to learn a routing mechanism to select which adapter to use. In this
respect, we experiment with a routing mechanism that automatically routes new inputs
to relevant adapters without re-training. For each layer in the base LM, we compute an
adapter representation by computing the direction of maximum variance induced by the
adapter weights. This is computed only once after adapter training. At inference time, we
route each hidden state by computing its alignment with each adapter representation.

We dub our method Arrow (↗↗) routing.

In summary, our contributions are the following:

• We study how to create a parameter-efficient, modular LM “end-to-end”. We
demonstrate that we can outperform full-finetuning and competitive baselines on
a set of 10 well-established downstream tasks.

1We held-out SNI tasks to test supervised adaptation.

65

shared
lib size = 1

private
lib size = 3

poly/mhr
lib size = 2

model-based clustering
lib size = 2

lora
library

multi-task
dataset

similar

lora training
1 2

Building a LoRA library

Figure 4.1 Different solutions for building a library of LoRA adapters. Shared trains one
adapter via multi-task training. Private trains one adapter per task. Poly/MHR train a set of
basis adapters (2 in the figure) that can be recombined to obtain task adapters. MBC i) trains
private adapters, ii) clusters tasks based on LoRA similarity, iii) trains one adapter per cluster
ensuring transfer between similar tasks.

• We propose a clustering approach (MBC) to train a library of adapters given multi-
task data which improves 1.7% absolute accuracy in zero-shot generalization over
existing baselines, and 3.3% over Phi-2 and 4.3% over StableLM.

• We propose a zero-shot routing approach to select which adapters to use from the
library (Arrow). This improves performance further by 0.6% accuracy for Phi-2
and enables the routing of independently trained experts without requiring access
to their training data.

4.2 Preliminaries

We are given a set of tasks T = {t1, . . . , tT}, with each task ti a dataset containing a set
of samples Di = {(x1, y1), ..., (xn, yn)}. The union of the training sets constitutes our
multi-task dataset D, i.e. Flan (Longpre et al., 2023). In order to create our library of
task adapters, we use LoRA (Hu et al., 2021). LoRA achieves competitive trade-offs
between performance and parameter efficiency (Mahabadi et al., 2021) by modifying the
linear transformations in a base LM. For each linear transformation in the base LM,
LoRA modifies the base model parameters as follows:

h = Wx+ s · AB⊤x, (LoRA)

where W are the (frozen) weights of the base LM and A,B ∈ Rd×r are low-rank learnable
parameters and s ≥ 1 is a tunable scalar hyperparameter. LoRA achieves parameter
efficiency because of the reduced rank r (≪ d).

66

4.3 Building the LoRA Library

We present different alternatives to build a library L of adapters in such a way that they
can perform well on the tasks they have been trained on but also such that they are
versatile enough to be effective for other inputs and tasks (e.g. obtain high performance).
To do so, one should seek methods that enhance multi-task transfer while reducing task
interference (Wang et al., 2021; Chen, Shen, et al., 2022).

Private Adapters One straightforward solution is to train separate adapters on each
of the training tasks, i.e. the library will be composed of T adapters (see Fig. 4.1).
Several existing methods operate in this setting, such as LoraHub (Huang et al., 2024),
AdapterSoup (Chronopoulou et al., 2023) and SPoT (Vu et al., 2021). Although this
solution does not exploit multi-task training, it is useful in settings where the task data
is private, e.g., user data, and cannot be shared (Mireshghallah et al., 2020).

Shared Adapter To encourage transfer, one solution is to train a single adapter on all the
multi-task training data. One possible shortcoming is the reduced capacity allowed to
fit the multi-task training data and the possibility of interference between the multitude
of training tasks (Ponti et al., 2023b). Training a single adapter may result in negative
transfer because task gradients are misaligned (Wang et al., 2021). An obvious solution
to reduce the amount of interference is to augment the number of trainable parameters,
e.g. to fine-tune the whole base LM on the multi-task data (Liu, Tam, et al., 2022a).

Poly / MHR Adapters Polytropon (Poly) and Multi-Head Routing (MHR) (Ponti et al.,
2023b; Caccia et al., 2023) explore intermediate approaches between private and shared,
where K < T “basis” adapters are trained on the multi-task training data. These K
adapters can be considered “latent skills”, as each task adapter in the multi-task training
set can be expressed as a linear combination of these basis adapters. If private training
for all the tasks learns a matrix of parameters Φ ∈ RT×D, where D is the dimensionality
of the LoRA adapters, Poly decomposes Φ = UΦ̂, where U ∈ RT×K , Φ̂ ∈ RK×D, Φ̂
storing the latent skills and U the linear combination coefficients for each task which
specify the task-specific routing w.r.t. the latent skills. Both U and Φ̂ are trained
jointly on the multi-task training set by gradient descent. Note that the skills Φ̂ do not
correspond to specific tasks and therefore it is not clear how to re-use them for zero-shot
generalization (Caccia et al., 2023).

Model-Based Clustering In this paper, we propose another approach to compress multi-
task data into a set of reusable adapters; we cluster tasks based on their similarity and
then train one adapter per task cluster. Ideally, one wants the similarity between two
tasks to be correlated with the benefit of training a single model on both tasks compared
to having two independent models (Fifty et al., 2021; Vu et al., 2020a). One intuition is
that we can approximate the amount of transfer between a pair of tasks by computing
the similarity of their private LoRA parameter vectors. To confirm this, we devise the
following experiment: we sample pairs of tasks (ti, tj), t ∈ T from the multi-task dataset,
and we train both a) a LoRA on each task independently b) a LoRA on the union

67

0.2 0.4 0.6 0.8
Similarity

0.1

0.0

0.1

Tr
an

sf
er

r = 0.75

0.2 0.4 0.6 0.8 1.0
Similarity

0.15

0.05

0.05

0.15 r = 0.51

Figure 4.2 We report the cosine similarity of LoRAs adapters for pairs of tasks vs. the
transfer (see text). Similarity between LoRAs correlates with transfer, indicating that if LoRA
embeddings are dissimilar, then we should abstain from multi-task training.

Algorithm 2 Model-Based Clustering
Input: Multi-task data D1, . . . ,DT , base model LM, number of library adapters K
Output: Library L
L = {}, AB = {} # LoRA parameters
for t = 1 to T do

At, Bt = Train(Dt; LM) # Train LoRA on task t
AB = AB ∪ {concat(flatten(At), flatten(Bt))}

end for
ÂB = SVD(AB) # Reduce LoRA dim
S = cos_similarity(ÂB, ÂB

T
) # T × T similarities

c1, . . . , cK = K-Means(S,K) # Cluster similarities
for k = 1 to K do

Dk =
⋃
Dt,∀t ∈ ck # Join datasets in cluster

Ak, Bk = Train(Dk; LM) # Train LoRA on cluster
L = L ∪ {(Ak, Bk)}

end for
Returns L =0

of the tasks’ training datasets. We then compute the cosine similarity between the
flattened LoRA parameters. We quantify transfer as the difference in the average test
log-likelihood induced by the joint and private models when evaluated on the test set
of the two tasks. In Fig. 4.2, we see that, for two different base models (GPT-Neo and
Phi-2), the closer the tasks are in parameter space, the more transfer we observe when
we train on the joint dataset.

The previous observation warrants our simple two-stage training procedure illustrated in
Fig. 4.1 (right-most). Given a fixed computation training budget of N training steps
per task, we use the first n steps to train private LoRAs. We then use these LoRA
parameters to group tasks into K clusters by running a standard clustering algorithm
(K-Means). In the second stage of training, we train one adapter per cluster for an
additional N − n training steps, which keeps the total amount of computation similar to

68

other approaches. We refer to this method as Model-Based Clustering (MBC) as it uses
the model-based information encoded in the weights to determine a similarity metric
between tasks (see Alg. 2).

4.4 Re-Using the LoRA Library

We study the re-use of a trained library L in two scenarios: for new inputs x∗, i.e. 0-shot,
and in a supervised adaptation setting, where new tasks t∗ come equipped with their
training data Dt∗ . While the latter has been addressed in recent works (Huang et al.,
2024; Caccia et al., 2023; Vu et al., 2021), the former scenario remains less explored. We
first devise routing strategies in the 0-shot setting and supervised setting, and then we
briefly describe how to aggregate the contributions of adapters selected by the routing
strategies.

4.4.1 Routing

Let us denote the hidden state for any token at each transformer layer produced by the
input token x∗ as h∗. Similar to MoE approaches, we seek to parameterize a routing
distribution for each layer in the transformer model that prescribes which adapters to
use. We denote this categorical distribution over L outcomes as p(a | h∗, x∗), where
we drop the dependence on the layer for simplicity. For example, in standard MoE
approaches (Fedus, Zoph, et al., 2022a), p(a | h∗, x∗) = softmax(λWh∗), where λ is a
temperature parameter, W ∈ RL×D are routing parameters jointly learnt with the expert
library during pre-training and L is the size of the library L. As we will see in Section
4.2, we only consider averaging schemes in this paper, but one could imagine sampling
from the routing distribution instead. Given that we relax the assumption that the
routing and the library should be trained together, we must devise ways to learn such
the routing distribution a posteriori.

Zero-Shot Example Routing

µ Routing One straightforward method to route to existing experts is to set the routing
distribution to uniform for all layers, p(aℓ | h∗

ℓ , x
∗) = [1/L, . . . , 1/L]. This type of routing

has shown to be quite effective in recent work (Caccia et al., 2023; Chronopoulou et al.,
2023) and, due to the linearity of the LoRA adapters, effectively boils down to averaging
uniformly weights of the trained adapters.

TP Routing Another variant is to treat routing as an L-way classification problem.
Specifically, given an input x belonging to task t in our multi-task training set, we train a
task predictor f by minimizing y = − log f(x)[t], where f(x) is a probability distribution
obtained by softmax, and set p(aℓ|h∗

ℓ , x
∗) = f(x∗) for every layer at inference time. We

use a smaller T5 model to parameterize f (Raffel et al., 2020a). We call this predictor
TP (Task Predictor).

69

Algorithm 3 Arrow Routing ↗↗ initialization
Input: LoRA library L, layer ℓ
Output: Routing parameters for layer ℓ, Wℓ

for i = 1 to L do
Ai, Bi = L[i, ℓ] # Get weights for expert i
U,D, V = SVD(AiB

T
i)

Wℓ[i] = V [:, 0] # First right singular vector
end for
Returns Wℓ =0

CM Routing Centroid Matching (CM) routing amounts to representing the expert’s
prototype as the average hidden representation h̄l calculate on the i’s expert’s dataset:
h̄l =

1
|Di|

∑|Di|
j=1 h(xj). The routing distribution is then calculated per-token by normalizing

the vector of cosine similarities between the new hidden state and expert’s prototype.
This routing is similar in spirit to existing works (Jang et al., 2023; Belofsky, 2023).

Arrow Routing ↗↗ The rows of the routing matrix Wℓ of standard MoE routing can be
interpreted as expert “prototypes”. Arrow prescribes a way to learn such routing matrix
in a 0-shot fashion with no further training. Let’s denote by {Ai, Bi} the parameters for
expert i at layer ℓ, where we drop the dependency on ℓ. LoRA expert i transforms each
token’s hidden state h∗ as h∗

i = AiB
T
i h

∗. Therefore, a prototype for the expert i can
be found by decomposing with SVD the outer product AiB

T
i and taking the right first

singular vector of this transformation (see Alg. 3). This determines the direction of most
variance induced by expert i in the space of hidden states h. If the LoRA adapters are of
rank 1, i.e. Ai, Bi ∈ DD×1 the prototype for the expert i will be equal to the normalized
Bi vector, i.e. argmaxv,∥v∥2=1∥(AiB

T
i v)∥2 = Bi/∥Bi∥2. The advantages of such per-token

routing include a) it doesn’t require access to training data for each expert which is
useful when experts are added from heterogeneous sources; b) it can parameterize a
different routing distribution at every layer per token therefore potentially increasing
overall model capacity; and c) it is compute efficient since it requires no further training
and SVD decomposition can be computed efficiently for low-rank matrices Elhage et al.,
2021; Nakatsukasa, 2019. In Section 4.8.1, we provide empirical evidence that indeed,
∥AiB

T
i v∥2 is larger when v belongs to task i, thus motivating this routing approach.

Supervised Task Routing

When generalizing to a new task, we can learn the optimal routing given the task data
D∗. This setting is similar to previous task generalization works (Ponti et al., 2023b;
Caccia et al., 2023; Huang et al., 2024). We compare results in this supervised setting to
both Poly (Ponti et al., 2023b) and LoraHub (Huang et al., 2024).

Poly Routing treats the distribution over experts at each layer as an L-dimensional
parameter that is learned by minimizing the LM-loss on the new task D∗. It optimizes
the merging coefficients of LoRA adapters for the new task, i.e. A∗ =

∑L
i=1w

iAi,
{Ai, Bi} ∈ L together with parameters {Ai, Bi}. Here p(a|h∗, x) = (w1, . . . , wn) is the
(input-independent) learnable routing distribution for a given layer.

70

LoraHub Routing is similar to Poly with the exception that a) it recurs to gradient-free
optimization to learn routing coefficients and b) it doesn’t fine-tune the library adapters
incurring in the linear combination (Huang et al., 2024).

4.4.2 LoRA Composition

Given the routing weights w = p(a | h∗, x) obtained using any routing method, we
linearly combine adapters in the library. Unless stated otherwise, we combine A and
B of LoRA separately before the outer product, i.e. A∗ =

∑L
i=1 wiAi, B∗ =

∑L
i=1wiBi

and use the resulting adapter to perform inference at every patched layer of the base
LM (Ponti et al., 2023b; Huang et al., 2024).

4.5 Experiments

Our experimental evaluation aims to answer the following questions: 1) How do methods
for building LoRA library compare? 2) How large is the gap between privately trained
libraries and libraries which assume access to multi-task data? 3) To what extent is
routing important when working with a library of LoRA adapters?

Multi-Task Dataset We train expert modules on 264 tasks built from the original
FlanV2 dataset Longpre et al., 2023. We excluded the SNI tasks (> 1000 tasks) Wang,
Mishra, et al., 2022b for computational reasons induced by training Private libraries.
We reserved 12 SNI tasks for downstream out-of-domain evaluation. After removing
our downstream evaluation tasks from the training set, our multi-task training set
results in 256 training tasks in total. Similarly to Wang et al. (2023), we sub-sampled
10,000 examples per task to ensure computational feasibility. Within these samples,
1,000 are allocated for validation and early-stopping. We will release our dataset for
reproducibility.

Evaluation For our supervised adaptation study, we use 12 held-out SNI tasks, each
corresponding to a different SNI category, and we cut the number of training examples to
10,000 examples per task. We evaluate performance with RougeL scores Lin and Hovy,
2003. For 0-shot evaluation, we use ten tasks commonly used in the literature, including
common-sense reasoning (WinoGrande Sakaguchi et al., 2021, HellaSwag Zellers et al.,
2019, piqa Bisk et al., 2020), Q&A (boolQ Clark et al., 2019, OpenbookQA Mihaylov
et al., 2018, ARC-easy and hard Clark et al., 2018) coding (HumanEval Chen et al., 2021,
mbpp Austin et al., 2021) as well as BBH2 tasks Suzgun et al., 2022. We remove any
overlap between the downstream evaluation task and the Flan multi-task training set
(boolQ, ARC, winogrande, hellaswag, openbookqa and piqa).

Models & Training This work focuses on augmenting LMs with a library of adapters
to transform them into multi-task learners. Our primary focus is on the Phi2 model

2We test on a subset of randomly sampled 1000 examples to reduce evaluation costs.

71

Microsoft Research, 2023, a state-of-the-art pretrained model with 2.7 billion parameters,
leading its class of models with parameter counts below 3 billion, according to the
open leaderboard Beeching et al., 2023. Additionally, we conducted experiments using
the GPT-Neo 1.3B Black et al., 2021 model, a smaller and less powerful pretrained
transformer model. We also experimented with the StableLM 3B Tow et al., 2023, which
yields capabilities between GPT-Neo and Phi2. For all models, we only patch attention
layers with LoRA adapters. Unless stated otherwise, for all our multi-task training and
single-task adaptation scenarios, we use LoRA rank of 4, dropout of 0.05 and learning
rate of 1e-4. Unless specified, we set the number of clusters for MBC to 10, resulting in
the best performance for both Phi2 and StableLM models as demonstrated in Fig. 4.3.

Methods In both 0-shot and adaptation scenarios, we consider the following methods.
Base – the base model tested without any adaptation; Shared – a single expert LoRA
finetuned on the joint training set of all tasks (e.g. 256 in case of Phi2 model) on top of
the base model using multi-task learning; FullFT – same as Shared but the full model is
finetuned. We adopt the following naming convention for the models using a library of
multiple experts: “library type”-“routing”. For the library type, we study Poly, MHR,
Private and MBC libraries described in Sec. 4.3. For MBC, we match the total amount of
compute, meaning that we use half of the training steps to compute the LoRA clustering
and the other half to compute the final cluster embeddings. For routing, we use µ,
TP, Arrow in the 0-shot scenario and Poly and LoraHub3 for the supervised scenario,
described in Sec. 4.4. We also include oracle baselines: 1-Oracle – a single expert that
performs the best on all downstream tasks; N-Oracle – we select best performing expert
for each tasks.

4.5.1 Zero-Shot Results

In the 0-shot scenario downstream tasks are evaluated without further fine-tuning.
Tab. 4.1 presents the mean downstream accuracy for 10 held-out Flan tasks, while
Tab. 4.5 provides the complete per-task view. Focusing on the Phi-2 model, we observe
that MHR-µ delivers a strong 0-shot model achieving competitive performance w.r.t.
Shared and FullFT, in line with the results of in Caccia et al. (2023). Interestingly,
training one adapter per task and then taking the average, Private-µ, still achieves
gains w.r.t. Base, albeit falling short on multi-task training, highlighting the power of
uniform adapter averaging (Chronopoulou et al., 2023). Comparing the performance of
our proposed MBC approach for library construction (MBC-µ) to previous approaches,
we notice a sizable bump in performance of 1.2% absolute accuracy points over the
strongest baseline. We make similar observations for the Stable LM model as well as
0-shot performance of Phi2 on 12 SNI tasks in the Tab. 4.9.

Next, we analyze whether a more sophisticated routing strategy can improve perfor-
mance w.r.t. uniform routing. We see that both TP, CP and Arrow routing improve

3For LoraHub, we match the amount of compute used by SGD. Assuming the backward pass is twice
the compute of a forward pass, and since nevergrad (NG) Rapin and Teytaud, 2018 only does
forward passes, to match the compute of 5 SGD training epochs, we perform 30 epochs of NG with
1/2 of the training data used by SGD methods.

72

Library Routing L Mean Acc.

P
hi

2
(2

.8
B
)

Base - - 63.8
FullFT - - 65.6
Shared - 1 65.5
Poly µ 1 65.7
MHR µ 1 65.9

Private µ 256 64.8
Private TP 256 65.7
Private CM 256 65.7
Private ↗↗ 256 66.0
MBC µ 10 67.1
MBC TP 10 66.8
MBC CM 10 67.1
MBC ↗↗ 10 67.7

Private 1-Oracle 256 66.6
Private n-Oracle 256 68.2

S
ta

bl
eL

M
(3

B
)

Base - - 51.6
Shared - 1 52.5

Private µ 100 54.8
Private TP 100 53.2
Private ↗↗ 100 55.2
MBC µ 10 55.9
MBC TP 10 55.9
MBC ↗↗ 10 55.9

Table 4.1 0-shot results for Phi-2 and StableLM base models on 10 held-out Flan tasks (see
Tab. 4.5 for the full per-task view and Tab. 4.9 for SNI tasks). L denotes the library size. We
only train 100 experts for StableLM for computational reasons in the Private scenario. The
best results are underlined.

the performance over µ routing for the Private library, gaining 0.9% and 1.2% points,
surpassing the performance of FullFT and 1-Oracle4. This highlights the importance
of routing for larger libraries. Interestingly, inline with Jang et al. (2023) we find that
1-Oracle outperforms both FullFT and Shared. Notably, arrow routing almost reaches
the quasi-upper bound of N-Oracle5.

TP routing decreases performance when compared to uniform routing for MBC, while
MBC-↗↗ improves over MBC-µ by 0.9% accuracy points on average and appear as a more
robust routing method for both Private and MBC libraries. Overall, MBC-↗↗ improves
over 3.9% absolute accuracy points over the base model and 2.1% absolute over FullFT.

For StableLM, we see a similar trend with MBC libraries achieving the best performance.
Arrow routing contributes in a 0.4% increase in average performance over uniform routing

4The best performing expert here corresponds to the task ropes_plain_no_background.
5Its only an upper bound for top-1 hard selection.

73

Figure 4.3 0-shot performance on 10 held-out Flan tasks plotted against the number of MBC
clusters for Phi2 and StableLM.

when using a Private library (Private-↗↗ vs. Private-µ). We do not see any gains
from using other routing methods for 10 experts in MBC library in this case.

Analysis MBC enhances performance of the library across all our results. To investigate
further, we compare different clustering techniques. First, we compare to clusters
obtained by randomly selecting examples (RandomExamples). This is equivalent to
randomly partitioning the joint multi-task dataset. Then, we compare to clusters
obtained by randomly choosing tasks from the entire set of training tasks (RandomTask).
Finally, we cluster task embeddings, which are obtained by forwarding task-specific
examples in the model, and averaging their representation at the model’s penultimate
layer (Embeddings). For all the methods, we set the number of clusters to 10. The results
are in Table 4.2. RandomTask surpasses RandomExamples by 1.6%, which indicates that
grouping tasks rather than task examples is crucial for transfer ability. Embeddings
underperform MBC and supports our observation that the cosine similarity between the
weights of privately-trained LoRA correlates better than using representation similarity
for 0-shot generalization. Further evidence of MBC effectiveness is given when analyzing
0-shot generalization for SNI (see Table 4.7), where MBC outperforms RandomTask by 2.4
Rouge-L points. Additionally, we also report average pairwise cluster “similarity" (as
measured by the cosine similarity of the cluster LoRA weights) and observe a tendency
that expert clusters with lower similarity, i.e. higher diversity, tend to result in higher
performance. We hypothesize that this is an artifact of different clusters contributing
distinct features to the joint model and leave further investigation in this direction for
future work (Jolicoeur-Martineau et al., 2023). Finally, we assess the the importance of
model-based clustering by looking at the in-distribution performance on the test sets of
the tasks that are in the library assuming known task ids. As shown in Fig, 4.4, MBC
also results in a significant increment in the in-distribution performance for all clusters.
Interestingly, we observe that in-distribution Shared under-performs Private, which
can be attributed to negative task interference observed also by e.g. Jang et al. (2023)
for T5 Raffel et al., 2020a fine-tuning.

74

Clustering Mean Acc. Similarity

RandExamples∗-µ 64.8 0.82
RandTask∗-µ 66.4 0.58
RandTask-µ 66.4 0.58
Embeddings∗-µ 66.1 0.37
MBC∗-µ 66.7 0.37
MBC-µ 67.1 0.27

Table 4.2 Analysis for different task clustering approaches: random tasks clusters, random
examples, embedding-based clustering and model-based clustering. ’*’ means we train these
clustering approaches with one epoch to save computation. We also report average pairwise
similarity of cluster adapters.

0 1 2 3 4 5 6 7 8 9
Cluster

0

50

100

R
ou

ge
-L

MBC Private Shared

Figure 4.4 In-distribution performance on test sets of 256 training tasks for Shared, Private
and MBC baselines on Phi2 library.

4.5.2 Supervised Adaptation

In Table 4.8 we present our detailed supervised adaptation results for Phi2, additionally
in Table 4.4 we summarize the results for two additional models. First, for all models
(Phi2, GPT-Neo and StableLM) we observe a significant performance boost coming from
using Private and MBC libraries w.r.t. No Library, which optimizes a LoRA for each
downstream task by starting from a random initialization, and Shared, which starts from
the multi-task trained LoRA solution. Secondly, similarly to 0-shot results, we observe
that MBC significantly boosts the performance with both Poly and µ routing: for Phi2
the performance of MBC-µ tops Private-µ. Additionally, we see that randomly grouping
tasks RandomTask-Poly outperforms the non library baselines but doesn’t quite match
MBC-based clustering for all the models with exception of StableLM, where it performs
on par.

The low performance of LoraHub can be attributed to the fact that LoraHub does not
fine-tune the LoRA experts’ weights but only their routing coefficients (due to gradient
free optimization). Refer to App. 4.8.3 for more analyses on this point. Finally, MBC-µ
performs similarly to MBC-Poly echoing results in (Caccia et al., 2023).

75

Method L Rouge-L

No Library 1 75.5

Shared 1 75.8
Poly 10 75.8

Private-µ 256 76.9
MBC-µ 256 78.8

MBC-LoraHub 10 45.3

RandTask-Poly 10 76.7
MBC-Poly 10 78.9

Table 4.3 Rouge-L supervised adaptation results averaged over 12 held-out SNI tasks for
different libraries built on top of Phi-2. Complete per-task results are presented in Table 4.8 in
the appendix.

StableLM 3B GPT Neo 1.3B

Base 15.0 11.7
No Library 80.9 67.9
Shared 81.9 71.1

RandTask-Poly 82.3 70.9
MBC-Poly 82.3 71.7

Table 4.4 Adaptation results on SNI12 for StableLM and GPT-Neo.

4.5.3 Summary of Results

The first takeaway from our results is that, when appropriately routed (Private-↗↗),
independently trained adapter experts can match zero-shot performance of multi-task
training. This was a rather surprising result given that sharing data and re-training from
scratch might be a hard constraint to meet in many realistic settings (Mireshghallah
et al., 2020). If sharing is possible, then clustering tasks by their similarity and averaging
the LoRA adapters obtained through MBC (MBC-µ) constitutes a very effective model.
Our zero-shot and supervised adaptation results underscore the importance of task-based
clustering. For supervised adaptation, training both adapters are routing coefficients
seem crucial. Although MBC outperforms random task clustering in most scenarios, the
effectiveness of the latter merits further investigation. Our zero-shot routing MBC-↗↗
helped push performance further for Phi-2, outperforming 0.6% accuracy points over
uniform averaging. Overall, if routing seems beneficial for large libraries of adapters,
the gains for smaller libraries seems diminishing. This seems to be in contrast with
standard MoE models, where routing is crucial (Jiang et al., 2024). This could be due to
the linearity of LoRA experts. For MLP experts (Fedus, Zoph, et al., 2022a), uniform
averaging may not be as effective as a simple routing strategy. We leave this investigation
for future work.

76

4.6 Related Work

Multi-task learning involves training on a joint set of all tasks Caruana, 1997,
potentially leading to performance degradation due to task interference Zhao et al., 2018.
Extensive literature studies how to partition learnable parameters into shared and task-
specific Ding et al., 2023; Strezoski et al., 2019; Bragman et al., 2019; Zaremoodi et al.,
2018; Wallingford et al., 2022; Fifty et al., 2021. We operate in the parameter-efficient
multi-task learning setting (Ponti et al., 2023b; Vu et al., 2021; Chronopoulou et al., 2023;
Pfeiffer, Kamath, et al., 2020). Vu et al. (2021) train one prefix adapter (Li and Eisner,
2019) per task and learn to re-use them for other tasks based on the adapter similarities.
MBC can be seen as an extension of this approach where we cluster tasks based on the
weight similarity to ensure more transfer during multi-task pre-training.

Mixture of experts (MoEs), when coupled with sparse routing, are notable for
augmenting model capacity with minimal computational overhead Fedus, Zoph, et al.,
2022a. Among the most important differences in this work i) adapter experts are not
trained during base model pre-training, ii) they are parameter-efficient and iii) they
correspond to models tailored to specific tasks instead of being opaque computation
units whose specialization is not easily interpretable (Jiang et al., 2024). Regarding ii),
recent work by Caccia et al. (2023), Ponti et al. (2023b), and Ostapenko et al. (2023)
investigate the effectiveness of densely routed adapter experts trained end-to-end with an
expert library for MTL fine-tuning. For expert aggregation, we employ parameter-space
weighted averaging Wortsman et al., 2022 with weights induced by a learned router, a
technique akin to those in previous works Ostapenko et al., 2023; Zadouri et al., 2023.
Several recent works have also proposed techniques for learning how to route queries to
specialized pretrained open-source LLMs Lu et al., 2023; Shnitzer et al., 2023.

Model ensembling techniques aim to enhance model robustness and generalization
by integrating multiple distinct models. Parameter space averaging of independent
models Frankle et al., 2020; Wortsman et al., 2022 serves as an efficient ensembling
method for full models Ilharco et al., 2022; Ainsworth et al., 2022 and adapters Zhang,
Chen, Liu, et al., 2023, requiring only a single forward pass through the model, unlike
output space ensembling Dietterich, 2000; Breiman, 1996, that requires many forward
passes. Efficient output ensembling techniques that can be applied in conjunction with
our work are in Wen et al., 2020. Similarly, Pfeiffer, Kamath, et al. (2020) proposes
ensembling bottleneck style adapters with the subsequent fine-tuning step. In contrast to
the existing works that usually study the merging of a small number of models (typically
≤ 10), here we tackle the problem of ensembling of over 200 experts.

Data Clustering for LMs have been proposed to improve performance and decrease
task interference Fifty et al., 2021; Gururangan et al., 2023. These methods include clus-
tering using similarities computed by tf-idf and neural embeddings, K-means clustering
with balanced linear assignment, and soft clustering with GMMs (Gross et al., 2017;
Chronopoulou et al., 2023; Chronopoulou et al., 2021; Gururangan et al., 2023; Duan
et al., 2021; Caron et al., 2018). Recent work by Zhou, Xu, et al. (2022) observes the
potential of adapter parameters as effective task embeddings for clustering purposes, a

77

concept we leverage in this work. A similar observation, but regarding task gradients,
has been made by Vu et al. (2020b).

Building libraries of composable experts has been envisioned in several previous
works. Beck et al. (2021) and Poth et al. (2023) orchestrated a framework for assembling
diverse adapters, offering flexibility in both training and inference. Most related to this
work, Huang et al. (2023) build LoRaHub, a library of task-specific LoRas that can be
combined for few-shot generalization. We extend and complement these works by i)
analyzing performance with different libraries of experts, ii) proposing novel methods to
build a library, and iii) proposing techniques for zero-shot post-hoc routing independently
trained adapters.

4.7 Conclusion

We investigate how to build and re-use a library of adapters “end-to-end”. We show
the potential achievable by re-using independently or partially independently trained
adapters with a zero-shot routing strategy. Overall, we investigate the strategic, modular
augmentation of smaller (language) models, offering a promising direction for research
that prioritizes efficiency, flexibility, and performance.

The current investigation focuses on LoRA adapters. We are excited by the exploration
of a heterogeneous “universe” of adapters (including soft and hard prompts (Lester
et al., 2021; Wen et al., 2023), MLPs (Houlsby et al., 2019b), etc.) and combinations
thereof. Different adapter types might be more suited for different capabilities (reasoning,
knowledge, etc.) The scalability of our approach to a broader range of tasks and
the optimization of routing mechanisms for even greater accuracy remain for further
investigation.

78

4.8 Appendix

4.8.1 Analyzing ∥ABTv∥2 for in-distribution and
out-of-distribution samples

In this section, we analyze whether the motivation behind Arrow routing holds in practice.
Recall that at each layer, Arrow routing initializes prototypes in the linear router for
expert i with the unit vector vi maximizing ∥ABTv∥2. Concretely, we hypothesize that
for a hidden activation h computed from x ∈ Di, we have ∥AiB

T
i v∥2 > ∥AjB

T
j v∥2, for

experts i, j. In other words, the norm of the linearly transformed prototype will be
higher under the expert belonging to the same task as the input h.

To test this hypothesis, we run the following experiment. Let hl denote the input to the
expert at layer l, and (ABT)il denote the linear transformation of expert i at layer l. We
first sample 5000 examples from the multitask dataset. Then, for a given input x ∈ Di

at each layer l, we compute both ∥(ABT)il · hl∥2 and ∥(ABT)jl · hl∥2 where j is another
randomly sampled expert such that i ≠ j. We then compute the average norm ratio r
across all layers, i.e.

r =
L∑
l

1

L

∥(ABT)il · hil∥2
∥(ABT)jl · hil∥2

.

Note that the random expert j is sampled at every layer, and the output of the in-
distribution expert is propagated to the next layer. As such, r > 1 indicates that on
average, the in-distribution expert produces a higher norm output, which would validate
the use of the norm-maximizing initialization that Arrow routing uses. In figure 4.5, we
see that for all the points considered, this ratio is positive, indicating that in-distribution
experts tend to be maximize the norm of the linearly transformed input.

1.000 1.002 1.004 1.006 1.008 1.010 1.012 1.014 1.016
average norm ratio r

0

50

100

150

200

250

300

pr
ob

ab
ilit

y
de

ns
ity

Norm Ratio r of in-distribution over out-of-distribution experts

Figure 4.5 Histogram of the ratios r computed over 5000 samples.

79

Library Routing L piqa boolq wgrande hswag arcE arcC HE oqa bbh mbpp Acc.

P
hi

2
(2

.8
B
)

Base - - 79.2 82.7 75.7 72.5 77.5 52.9 45.1 49.8 48.0 56.0 63.8
FullFT - - 80.3 80.8 77.0 73.2 83.5 57.9 50.0 48.0 47.7 57.2 65.6
Shared - 1 80.4 82.4 76.6 73.4 83.2 55.8 46.3 50.4 48.4 58.4 65.5
Poly µ 1 80.6 82.3 76.7 71.7 82.7 55.3 48.2 50.4 49.8 59.1 65.7
MHR µ 1 80.1 83.0 77.1 70.4 83.2 55.5 46.3 53.4 52.0 58.0 65.9

Private µ 256 79.5 83.2 76.0 73.1 81.4 54.5 43.9 47.8 48.5 59.9 64.8
Private TP 256 79.5 83.4 76.9 73.1 83.0 55.4 47.6 48.8 49.4 59.5 65.7
Private CM 256 79.5 83.3 76.5 73.1 81.7 55.2 47.0 48.4 53.0 59.1 65.7
Private ↗↗ 256 79.6 83.4 76.6 73.2 82.8 56.3 48.2 50.8 48.5 60.7 66.0
MBC µ 10 80.3 85.1 77.3 73.1 84.3 57.7 48.8 50.2 51.6 62.3 67.1
MBC TP 10 80.2 84.7 78.2 73.1 84.3 57.6 50.0 50.4 47.1 62.3 66.8
MBC CM 10 79.8 84.8 77.7 73.1 84.5 58.0 50.6 50.8 50.0 61. 67.1
MBC ↗↗ 10 79.7 84.8 77.7 72.9 84.8 57.2 51.8 52.0 53.3 63.0 67.7

Private 1-Oracle 256 79.7 84.4 77.0 71.3 85.2 56.7 52.8 48.2 48.0 61.1 66.6
Private n-Oracle 256 80.9 85.3 78.1 75.2 86.1 58.5 53.0 53.2 49.7 61.8 68.2

S
ta

bl
eL

M
(3

B
)

Base - - 78.2 73.1 66.6 73.7 59.6 41.5 18.3 37.6 34.7 32.3 51.6
Shared - 1 79.4 80.3 68.0 71.3 74.7 42.1 11.6 38.0 38.3 21.0 52.5

Private µ 100 79.1 76.2 67.6 74.4 72.7 43.9 18.3 42.4 39.6 33.9 54.8
Private TP 100 79.3 75.2 65.6 74.1 76.6 45.3 14.0 41.8 35.2 24.5 53.2
Private ↗↗ 100 79.4 77.2 66.6 74.9 74.8 46.1 17.1 41.8 38.9 35.0 55.2
MBC µ 10 80.3 80.3 67.6 74.8 76.6 47.4 15.2 42.8 39.0 35.0 55.9
MBC TP 10 80.4 80.2 68.3 74.7 76.6 47.1 16.5 42.6 38.0 34.6 55.9
MBC ↗↗ 10 80.5 80.5 68.0 74.8 76.3 46.9 15.9 43.2 39.9 33.5 55.9

Table 4.5 0-shot results for Phi-2 and StableLM base models. L denotes the library size.
We only train 100 experts for StableLM for computational reasons in the Private scenario.
The best results are underlined. Here (ma) stands for “Merging After” and refers to aggregation
strategy where instead of merging LoRA’s A and B separately, we merge them after performing
the outer product, resulting in a higher maximal rank of the resulting weight matrix as discussed
in Ostapenko et al., 2023.

4.8.2 Zero-shot routing extended results

In Tab. 4.5 we present the extended view of the zero-shot routing results. We also include
merging variant that merges the LoRA aprameters after performing the outer produce.
This variant is denoted with (ma) – “Merging After”. Formally, this variant modifies base
model as h = Wx+ s · ABx, , where AB = 1

L

∑L
i=1AiB

⊤
i . As discussed in Ostapenko

et al., 2023, merging after the outer product requires more memory, since the weight
matrix has to be computed explicitly. However, it allows for a the maximum rank of
the resulting matrix AB to be bounded by the sum of the ranks of the individual AiB

⊤
i

summands (which is L · r), whereas in case of separate merging of A and B the resulting
rank is always r. We observe that this strategy does not result in any improvement
for a compressed MBC µ (ma) library, yet leads to a 1 rouge point improvement for the
Private library highlighting the effectiveness of the (ma) approach for larger libraries.

4.8.3 Few-shot adaptation

We apply some of the proposed methods to a data scarce setting with up to only 0.5% of
the original training data per task (approx. 40 examples per task). We show the results in
Table 4.6. Even in this setting gradient based method MBC-Poly considerably outperforms

80

LoraHub, where the LoraHub is given compute equivalent to training gradient based
methods on full dataset. Additionally, we observe that MBC-PolyZ, a method similar to
MBC-Poly that only updates the routings and not the expert’s weights, performs similarly
to LoraHub. Interestingly, when data amount is lowered, the oerfromance of MBC-PolyZ
is reduced by a relatively smaller margin than MBC-Poly which can be explained by a
smaller amount of updated parameters.

Method L SNI Tasks Rouge-L
202 304 614 613 362 242 1728 1557 035 1356 039 1153

Full data
MBC-LoraHub 10 41.5 21.9 37.4 17.5 78.1 68.3 48.0 82.0 62.6 21.2 33.5 31.1 45.3
MBC-Poly 10 96.9 84.4 67.2 53.9 96.4 97.8 60.2 87.9 91.3 29.4 81.7 99.7 78.9
MBC-PolyZ 10 37.7 27.9 36.2 12.6 75.9 74.4 48.7 81.3 58.9 22.5 36.1 31.1 45.3

10%
MBC-Poly 10 89.6 53.3 64.5 44.5 93.5 98.5 58.5 75.7 87.3 27.2 65.6 66.8 68.8
MBC-PolyZ 10 34.3 27.5 36.2 12.4 76.5 74.3 47.5 86.2 57.9 22.7 35.3 31.4 45.2

5%
MBC-Poly 10 87.0 43.0 61.3 41.7 92.0 95.2 55.3 77.3 89.0 25.4 59.1 47.8 64.5
MBC-PolyZ 10 32.6 28.6 36.0 13.0 76.4 73.9 47.3 86.3 57.7 22.7 36.6 31.0 45.2

0.5%
MBC-Poly 10 49.7 30.4 43.7 20.3 77.3 78.4 48.2 86.5 72.2 23.2 43.0 29.1 50.2
MBC-PolyZ 10 32.0 27.4 34.3 12.6 77.6 78.1 47.2 86.5 53.2 22.2 37.0 29.1 44.8

Table 4.6 Rouge-L score for Phi2 model after adaptation with different portions of data per
task ranging from full dataset down to 10% and 5% of data per task.

81

Method PIQA Boolq Wgrande Hswag Arc-E Arc-C HE OQA BBH (200b) Mbpp AVG

Base 70.7 61.4 54.7 47.4 44.4 27.4 4.9 32.6 35.0 5.8 38.4
Private-µ 70.9 61.0 54.9 48.3 50.8 27.9 6.1 33.0 31.1 5.4 39.0
MBC-µ 71.3 62.9 55.0 48.6 59.6 28.9 4.3 33.2 31.0 5.4 40.0

Table 4.7 Our preliminary results on GPt-Neo 0-shot evaluation on 10 Flan tasks.

Method L SNI Tasks Rouge-L
202 304 614 613 362 242 1728 1557 035 1356 039 1153

No Library 1 93.2 74.2 64.9 51.4 95.9 96.2 59.3 81.4 90.5 26.9 73 99.1 75.5

Shared 1 93.1 73.4 65.0 48.9 96.0 95.9 58.4 86.8 91.2 29.0 73.4 98.4 75.8
Poly 10 96.2 69.3 65.7 47.2 96.4 99.3 57.7 87.3 90.8 28.2 73.7 98.0 75.8

Private-µ 256 93.6 78.1 65.0 50.7 94.8 97.8 59.7 87.9 90.7 28.1 76.4 99.7 76.9
MBC-µ 256 96.4 83.2 67.6 53.5 96.2 98.0 60.5 88.2 90.7 29.8 82.3 99.5 78.8

MBC-LoraHub 10 41.5 21.9 37.4 17.5 78.1 68.3 48.0 82.0 62.6 21.2 33.5 31.1 45.3

RandTask-Poly 10 96.4 77.1 66.5 48.6 96.7 98.9 59.9 85.1 90.7 28.6 73.9 97.5 76.7
MBC-Poly 10 96.9 84.4 67.2 53.9 96.4 97.8 60.2 87.9 91.3 29.4 81.7 99.7 78.9

Table 4.8 Rouge-L supervised adaptation results for Phi-2 on 12 held-out SNI tasks given
different libraries. LoraHub follows the original implementation and optimizes the weighting
coefficients for the adapters in the library with a non-gradient based optimizer.

Method L SNI Tasks Rouge-L
202 304 614 613 362 242 1728 1557 035 1356 039 1153

Base - 4.0 3.3 26.4 3.5 16.2 32.5 35.2 62.5 54.2 12.8 8.2 7.6 22.2

Shared 1 38.3 17.9 36.4 11.5 77.2 39.4 45.8 84.5 40.7 21.5 34.3 24.1 39.3

Private-µ 256 10.6 16.1 35.6 9.6 64.8 58.2 42.6 72.2 61.7 17.5 25.1 24.0 36.5
MBC-µ 10 31.8 26.9 33.9 12.7 77.6 77.9 47.2 86.0 49.2 22.4 37.0 29.8 44.4
RandTask-µ 10 35.9 25.1 33.8 12.6 78.8 44.6 44.4 81.9 54.0 23.6 40.2 29.1 42.0

Table 4.9 Zero-shot performance on 12 SNI tasks for library built arount the Phi2 base model.
Similar to the main paper, we observe a significant performance boost induced by applying
MBC over both Shared, Private-µ as well as RandTask-µ baselines.

82

Part II
Information Propagation in Web Tracking

5Privacy Lost in Online Education:
Analysis of Web Tracking
Evolution

5.1 Introduction

Privacy lost occurs when an individual’s personal information or data is disclosed,
shared, or accessed by others without their permission, which can result in various
negative consequences, such as identity theft, financial fraud, damage to reputation,
and discrimination. To investigate these issues, researchers may examine the historical
practice of third-party web tracking, as described by Lerner et al. (2016). Third-party
web tracking involves third-party entities, such as advertisers, social media widgets, and
website analytics engines, that are embedded in the first-party sites that users directly
visit and are capable of re-identifying users across domains while they browse the web.
The proliferation of web tracking has spurred a growing body of research in the computer
security and privacy community, which seeks to understand, quantify, and counteract
these privacy risks posed by tracking companies compiling lists of websites that users
have visited (Lerner et al., 2016; Agarwal and Sastry, 2022; Amos et al., 2021).

As the education industry transitions from traditional offline models to online or hybrid
models, the need for privacy protection on educational websites is becoming increasingly
prominent. This issue is crucial because the loss of privacy on educational websites
can undermine the fundamental principles of privacy and security that are essential for
individuals to feel safe and empowered while using the internet for educational purposes.
By protecting users’ privacy, educational websites can promote trust, openness, and
responsibility, which are essential for fostering a positive and inclusive online learning
experience. Therefore, several researchers have started studying the practice of web
tracking in educational websites (Vlajic et al., 2018; Jordan, 2018; Saxena et al., 2019;
Jarke and Breiter, 2019).

To deepen our comprehension of the nature and progression of tracking on educational
websites, we propose an analytical framework that enables a comparative analysis of
tracking on a specific type of site (in this case, education) in relation to a control group
of sites with comparable traffic levels but of different types. The framework involves
three steps: we construct a sample of educational websites, and a control sample of
non-educational websites that have similar levels of traffic (Section 5.3.1). We then
retrieve the historical websites from the Internet Archive’s Wayback Machine1 for both
samples. Third, we scan the HTML file snapshots of the collected websites using the

1https://archive.org/

84

https://archive.org/

Wayback Machine (Section 5.3.2), and extract third-party trackers embedded in the
HTML files (Section 5.3.3).

We aim to answer the following research questions, which we present along with our
main findings:

RQ1: How has the use of trackers on educational websites evolved from 2012
to 2021?

In Section 5.4.1, we examine the average number of trackers from 2012 to 2021 and observe
a general trend of tracker growth. Until 2018, both educational and non-educational
sites sees substantial growth, but they diverge around the time of the introduction of
the GDPR in 2018: at this point there is a minor drop in tracking on non-educational
sites, which is not seen on educational sites, where the development merely stagnates.

RQ2: How does the evolution of the use of trackers differ between educational
and non-educational websites?

Section 5.4.1 also addresses differences between educational and non-educational websites
in the evolution of tracking between 2012 and 2021. The results show that despite the
similarity of the underlying trend, the intensity of tracking has grown relatively more on
educational sites and that the growth has not similarly reverted as on non-educational
websites after the introduction of the GDPR. The results are further supported by a
Wilcoxon signed rank (WS) test conducted in Section 5.4.2, demonstrating that the
intensity of tracking on educational sites surpassed that of non-educational sites in
2017.

RQ3: Is there a qualitative difference in what kind of trackers are used on
educational and non-educational websites?

The quantitative difference between tracking on educational and non-educational sites
that we find in the average number of trackers also shows up in the different compositions
of the portfolios of trackers found at the two types of sites. We substantiate this
statistically by using the Kolmogorov-Smirnov test (KS) to compare the distribution of
trackers in these two groups of sites. To investigate the source of these differences, Section
5.4.3 examines the occurrence of some of the most popular trackers, demonstrating
that the use of Twitter, Youtube, and Facebook has evolved very differently between
educational and non-educational websites. In addition, Section 5.4.5 compares the
presence of trackers presenting particular categories, demonstrating that tracking related
to enhancing customer interaction in particular seems to have become relatively more
common on educational websites over the past few years.

Our contributions can be summarized in two main points: (I) We develop a list of both
educational and non-educational websites to investigate the issue of privacy lost in online
education. The complete code and dataset we compiled can be accessed at 2. (II) We

2https://github.com/shuishen112/Privacy_Lost.git

85

https://github.com/shuishen112/Privacy_Lost.git

conduct a quantitative and qualitative analysis of third-party tracking on educational
websites, focusing on third-party services from 2012 to 2021. Our findings highlight
potential concerns regarding the autonomy and fairness of education.

5.2 Related Work

Tracking through third-party cookies and scripts has been extensively studied from
various perspectives. A significant portion of this research has focused on mapping the
prevalence of trackers across samples of websites, such as those found on the Alexa top
lists (Acar et al., 2014; Englehardt and Narayanan, 2016; Mathur et al., 2019; Englehardt
and Narayanan, 2016). Other studies have investigated tracking on different platforms,
including the mobile ecosystem (Binns, Lyngs, et al., 2018; Binns, Zhao, et al., 2018).

Karaj et al. (Karaj et al., 2018) proposed a method for measuring web tracking using a
browser extension, resulting in a dataset covering 1.5 billion page loads collected over 12
months period from real users. Krishnamurthy and Wills (Englehardt and Narayanan,
2016) presented a dataset on tracking based on a crawl of the top 1 million websites. They
developed an open-source web privacy measurement tool called OpenWPM, which allows
researchers to detect, quantify, and characterize emerging online tracking behaviors. Our
work is related to several general areas:

Historical web tracking. Krishnamurthy and Wills provided early insights into
web tracking, demonstrating the evolution of third-party organizations between 2005
and 2008 (Krishnamurthy and Wills, 2009). Lerner et al. presented longitudinal
measurements of third-party web tracking behaviors from 1996-2016 (Lerner et al., 2016).
Karaj et al. conducted a large-scale and long-term measurement of online tracking
based on real users (Karaj et al., 2018). Agarwal and Sastr analyzed the top 100 Alexa
websites over 25 years using data from the Internet Archive, studying changes in website
popularity and examining different categories of websites and their popularity trends
over time (Agarwal and Sastry, 2022). Amos et al. curated a dataset of 1,071,488
English language privacy policies spanning over two decades and encompassing more
than 130,000 different websites (Amos et al., 2021).

Web tracking after GDPR. Numerous studies have investigated web tracking following
the implementation of the GDPR (General Data Protection Regulation) in the EU in
May 2018, which imposed constraints on online data collection. These studies generally
indicate a pattern of diminished tracking activity (Dabrowski et al., 2019; Sørensen and
Kosta, 2019; Sanchez-Rola et al., 2019), but they also reveal that most sites appear
unable or unwilling to fully comply with regulations (Kretschmer et al., 2021; Urban
et al., 2020; Hu and Sastry, 2019), and tracking companies can still likely monitor user
behavior (Sanchez-Rola et al., 2019).

Web tracking in educational websites. A body of research focuses explicitly on
educational websites, which are known to have a higher incidence of tracking technology
than sites aimed at minors (Vlajic et al., 2018). In particular, university websites exhibit

86

a substantial prevalence of major tracking companies (e.g., Google, Facebook) (Jordan,
2018). While several recent papers discuss the implications of tracking on educational
websites, there seems to be a lack of studies investigating third-party tracking on
substantial samples of educational websites post-2018 or examining the development of
tracking over time for these websites.

5.3 Data collection

We provide a concise overview of our data collection framework, which comprises three
main components. Firstly, we discuss the process of gathering educational and non-
educational websites, as detailed in Section 5.3.1. Secondly, we present the methodology
for scanning historical snapshots from Internet Archive’s Wayback machine, which is
described in Section 5.3.2. Finally, we discuss the approach for extracting third-party
trackers from HTML files, which is outlined in Section 5.3.3.

5.3.1 Collecting Websites

To understand the evolution of web tracking in educational websites, we compare them
to a control set of non-educational websites to see whether there are any changes related
to education in particular. The comparison set is explicitly controlled for popularity
so that the two sets consisting of educational and non-educational websites have equal
rank distribution. The studied websites must also have available historical data stored
in Internet Archive.

We construct the two rank-matched sets of educational and non-educational websites as
follows:

Step 1. We extract the educational websites from DMOZ3. DMOZ is a large communally
maintained open directory that categorizes websites based on webpage content, and we
use the DMOZ classification of educational websites. There are 146,941 websites in the
DMOZ database labeled as educational websites.

Step 2. Next, we limit the set of educational websites to those occurring on the Open
PageRank Initiative4, which maintains a list of the top 10 million websites ranked based
on their Open PageRank. There are 55,390 educational websites present among the top
10 million. This filtering is done so that we can create a comparable control set.

Step 3. We use the Internet Archive’s Wayback Machine5 for archived data. Therefore,
the set of educational websites is further limited to those with at least one snapshot
per year in every year from 2012 through 2021 to ensure that annual comparisons are
balanced. This results in 17,975 educational websites altogether.

3https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/OMV93V
4https://www.domcop.com/top-10-million-websites
5https://archive.org

87

https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/OMV93V
https://www.domcop.com/top-10-million-websites
https://archive.org

Step 4. Based on the list of educational websites from Step 3, we construct a set of
non-educational websites with rank (Open Pagerank) distribution matching educational
websites. Starting with the educational website of the highest rank, this is done recursively
by choosing for each educational website a non-educational website that satisfies the
following three conditions:

For instance, if there are two educational websites of ranks 19 and 20, then ranks 21 and
22 would be chosen to the control set of non-educational sites, provided that they are
not educational websites and have archived versions available. We study the rank gap
(The rank of non-educational websites minus the rank of matching educational websites)
distribution. The mean rank gap is 2.86, while the maximum gap is 255. We also find
that 99% of the rank gap is below 16.

5.3.2 Scanning the Historical Snapshot

There are two primary methods for scanning historical snapshots: the Wayback CDX
Server6 and the waybackpy Python library 7. The Wayback CDX Server is a standalone
HTTP servlet that serves the index used by the Wayback Machine to search for captures.
The second method involves using the WaybackMachineCDXServerAPI provided by the
waybackpy library to retrieve historical snapshots at specific times. For our research, we
opted to use the Wayback CDX Server as our scanning method.

5.3.3 Extraction of Third-party Trackers

Each website is examined for requests to other URLs initiated during the website’s
loading. These requests will always be embedded in three HTML-elements: "iframe"
, "script" and "img". We only consider the requests generated automatically without
user action. That is why we omitted the "a"-element8.

The list of third-party services (TPSs) was compiled by extracting all URLs found in
the three HTML elements mentioned earlier across the entire dataset. For each website
and URL, we checked whether the main domain of the linked URL (e.g., ’google’ in
’www.google.dk’) differed from the main domain of the website. If the domains were
different, the URL was considered a ’third party’ and the domain (e.g., ’google’) along
with the suffix (e.g., ’dk’) were added to the list of TPSs.

To clarify our terminology, we will use the term ’trackers’ instead of ’third-party services’
for the remainder of this paper. While many third-party services serve various functions,
such as providing weather data or chat services, some are solely designed for tracking
and provide data that is used for personalized banner ads. However, even third-party
services that seemingly provide non-tracking functionality have the potential to gather

6https://github.com/internetarchive/wayback/tree/master/wayback-cdx-server
7https://akamhy.github.io/waybackpy/
8A "ping"-attribute in the "a"-element allows requests to be made to multiple URLs without the user

being aware of this, but there were no ping-attributes used in the data used in this study

88

https://github.com/internetarchive/wayback/tree/master/wayback-cdx-server
https://akamhy.github.io/waybackpy/

valuable data from users, such as their timestamped IP addresses and the websites they
visit when the third-party service is activated. This information may be used by the
third-party provider or sold to data brokers, or both. As all third-party services can
track users, we refer to all such services invoked through websites as trackers (Libert,
2015).

We utilized the trackers list9, which covers the period between May 2017 and August
2022(Karaj et al., 2018). The trackers on the list are ranked according to their tracker
reach, which is a metric defined in the aforementioned paper (Karaj et al., 2018). It
should be noted that each tracker corresponds to multiple tracker domains. For instance,
Doubleclick is associated with three tracker domains: ’2mdn.net’, ’doubleclick.net’, and
’invitemedia.com’. In total, the tracker list comprises 1,285 tracker domains.

5.4 Analysis and Discussion

Our analysis focuses on the changes in web tracking between 2012 and 2021, with a
particular emphasis on the qualitative and quantitative differences in tracker usage
between educational and non-educational websites.

5.4.1 Evolution of tracker domains per website

Figure 5.1 Evolution of the average number
of tracker domains per webiste.

To begin our analysis, we computed the
average number of trackers per website for
each year. Figure 5.1 displays the trends
in tracker usage on educational and non-
educational websites between 2012 and
2021. In general, a striking 94.5% increase
in the average number of trackers on edu-
cational websites was observed, while the
control group experienced a comparatively
modest 31.3% increase from 2012-2021.
Specifically, when observing the trends of
growth each year, we notice a plateau or
slight reversal in growth occurring after
2017. Notably, the vertical line in Figure
5.1 represents the formal implementation of GDPR in 2018. It is interesting to observe
that the number of trackers on non-educational sites experienced a slight decline, whereas
tracker usage on educational sites appeared to taper off around the same time.

Figure 5.2a shows a box plot of the number of trackers per year for educational websites.
The plot suggests that the evolution in the average number of trackers after 2018 observed
in Figure 5.1 is driven by an increased dispersion in tracking across distinct educational
sites, as the third quartile increases from 2017-2018, while the median (the horizontal

9https://whotracks.me/trackers.html

89

line in each box) remains almost the same in the period 2017-2021. As a comparison,
Figure 5.2b shows a boxplot for non-educational websites. The plot also suggests the
evolution in the average number of trackers in Figure 5.1. The third quartile increased
from 2017-2018 but has dropped since 2019. Especially, the first quartile decrease in
2021.

(a) educational websites. (b) non-educational websites.

Figure 5.2 Number of trackers in each year for educational websites and non-educational
websites.

According to the findings, it appears that users who browse educational websites are at a
higher risk of having their online behavior information collected and potentially utilized
by various services and websites. This disparity between educational and non-educational
websites highlights the potential inadequacy of the GDPR in addressing privacy concerns
specific to educational sites.

5.4.2 The number of trackers on educational and
non-educational websites

Table 5.1 Summary of the WS-test
showing differences in each year, N =
17975.

WS-test
Year p-value Z
2012 5.2× 10−86 -19.66
2013 6.8× 10−55 -15.6
2014 1.6× 10−46 -14.32
2015 6.7× 10−28 -10.95
2016 7.1× 10−11 -6.52
2017 6.6× 10−2 -1.84
2018 1.5× 10−5 -4.33
2019 8.7× 10−18 -8.59
2020 3.2× 10−20 -9.21
2021 2.3× 10−30 -11.45

The tracking trends presented in Section 5.4.1 are
purely descriptive, hence we conducted a statistical
test to determine if there is a significant difference
between educational and non-educational websites.
Specifically, we performed a matched-pairs Wilcox-
son signed rank(WS)10 test to evaluate if the medi-
ans of the educational and non-educational samples
are different for each year. This test is appropriate
for paired data, which is the case for our study due
to the rank-based construction of the data, and does
not make any assumptions about the underlying
distributions, making it a non-parametric test.

10http://www.biostathandbook.com/wilcoxonsignedrank.html

90

http://www.biostathandbook.com/wilcoxonsignedrank.html

The input of the WS test is the number of tracker domains for each educational and
non-educational website. The results of the tests are summarized in Table 5.1; as usual,
small p-values indicate statistical significance; for all years, except 2017 p < 0.01 for
both tests. The sole exception is 2017, where p > 0.05 for the WS-test, consistent with
the prevalence curves (see Figure 5.1) crossing that year.11

5.4.3 Evolution of usage rate for the most common trackers

To understand how tracking development differs between educational and non-educational
sites, we compare how the ten most commonly occurring trackers have changed during
the measurement period. We compute the usage of trackers based on the usage rate
and select the top ten most used trackers in educational websites in 2012. The top ten
trackers are on the vertical axis in Figure 5.3.

We define the usage rate of each tracker as f(t) = N(t)
N(w)

where N(t) is the total number of
websites where tracker t occurs, and N(w) is the total number of websites in the sample.
We calculate the relative increase I in usage rates of the top ten trackers most common
on educational websites from 2012 to 2012 as I = f(t)2021−f(t)2012

f(t)2012
. The relative change of

usage rate is shown in Figure 5.3. We observe that the overall usage rate increased for
the five top trackers on educational websites, including the social media sites Twitter,
Facebook, and Youtube. It also increased for two Google-related trackers.

It decreased for five trackers, including Twimg (operated by Twitter) decrease by 66.4%,
Addthis (-46.9%), Google-analytics (-32.5%), Adobe (-31.6%) and Googlesyndication
(-1.1%) on educational websites. For non-educational websites, the usage rate increased
only for the three Alphabet-operated trackers (Youtube, Googleapis and Google) and
saw the largest decrease for Twimg, by 78.4%.

Figure 5.3 Top usage rate change of trackers. X-axis is the percentage change of usage rate.
Y-axis is the tracker name.

11Note that the level of statistical significance in the test means that correcting the alpha level for
multiple comparisons does not alter the finding. This also holds for table 2.

91

Notably, the use of Twitter, Youtube, and Facebook has evolved very differently between
educational and non-educational websites. All three have an increased presence on
educational sites, whereas their use has declined (Twitter and Facebook) or grown
much slower (Youtube) on non-educational sites. The presence of trackers from these
companies on educational sites helps target ads at the users when they visit the platforms
and can also help educational sites to advertise their services to new, potential users
with profiles similar to their existing users.

5.4.4 Distribution of trackers in educational and
non-educational sites

The results in Section 5.4.1 show that the level of tracking differs significantly between
educational and non-educational sites. We will investigate if the difference also relates to
the composition of trackers used on the two groups of sites and differences in intensity.
As stated in 5.3.3, all third-party services may collect data that can be used for tracking.
However, the value proposition to the website owner differs between different services
since they provide various functionalities to the site. Therefore, an analysis of the other
functionalities also indicates what the site owner has sought to gain from embedding the
service (or tracker), irrespective of the tracking of user behavior it enables. This analysis
will, in turn, show if educational sites have followed a different path in integrating
trackers than other sites.

Table 5.2 Summary of the KS-test showing
differences in each year.

KS-test
Year p-value Statistic
2012 4.7× 10−6 0.25
2013 6.0× 10−5 0.22
2014 4.1× 10−5 0.23
2015 2.7× 10−3 0.18
2016 1.4× 10−3 0.19
2017 1.4× 10−3 0.19
2018 2.8× 10−4 0.21
2019 1.2× 10−3 0.19
2020 4.4× 10−4 0.2
2021 3.3× 10−3 0.17

For each year, we employ the two-sample
Kolmogorov-Smirnov(KS) test–the stan-
dard non-parametric test for comparing
distributions–to test whether the educa-
tional, resp. non-educational samples are
drawn from the same underlying distri-
bution. The test is suitable for paired
data, similar to the WS test reported be-
fore. As indicated in Table 5.2, there is
a significant difference in the distribution
of trackers found on the two groups of
sites in each year between 2012 and 2021.
This indicates that in addition to the dif-
ferent quantitative trends, there appears
to be a qualitative difference in the kind
of trackers used on educational and non-
educational websites.

5.4.5 Evolution of different categories of trackers

To understand how the overall differences in tracker distribution identified in the previous
section relate more closely to different purposes of web functionality, we look at the

92

(a) Advertising (b) Customer (c) Audio Video (d) Site Analytics

(e) Cdn (f) Social Media (g) Misc (h) Essential

Figure 5.4 Evolution of different categories of trackers from 2012 to 2021.

changes across different types of trackers. Since no exhaustive categorization of trackers
exists, we use the tracker typology made available by the WhoTracksMe initiative in
June 2022, which to our knowledge, is the most comprehensive and up-to-date list, that
is openly available 12.

This typology matches 1285 trackers in our dataset. While this represents only a subset
of the total number of trackers, the list coincides with 213 of the 1285 most common
trackers in our analysis. In the following, we examine the distribution of trackers across
categories but only do so for the subset of the most common trackers. The WhoTracksMe
list categorizes most common trackers into one of Site Analytics, Customer Interaction,
Advertising, Cdn, Social Media, Audio Video Player, Essential, Misc. A more detailed
explanation of the eight tracker categories is found in Appendix 5.6.1.

For each category c of trackers, we calculate usage rate f(c) as f(c) = N(c)
N(w)

where N(c)

is the number of websites this type of trackers occur on, and N(w) is the total number of
websites in the sample. We calculated the usage rate f(c) for each category c of trackers
as f(c) = N(c)

N(w)
, where N(c) is the number of websites on which this type of tracker occurs,

and N(w) is the total number of websites in the sample. The evolution of different
tracker categories in Figure 5.4 indicates that, when comparing the levels in 2012 and
2021, educational sites have increased their use of all trackers except for Site Analytics.
Even though Advertising and Cdn trackers have dropped slightly since their peak, they
are still at a higher level than in 2012. In contrast, the usage rate for Site Analytics,
Advertising, and Social Media is lower in 2021 than in 2012 for non-educational sites.

When comparing the two groups, two significant trends are apparent. Firstly, educational
sites exhibit higher growth in the use rate of trackers related to interactive site features
and audio-visual content. For instance, the Audio Video Player category witnessed
a growth of 225.0% on educational websites from 2012-2021 compared to 73.1% for
non-educational websites. While the increase slowed down in 2018 or was even reverted
for non-educational websites, it has increased again since 2019 and decreased since

12https://whotracks.me/trackers.html

93

2020. Additionally, Cdn services and Customer Interaction trackers have become more
commonly used and grown more on educational sites than non-educational sites during
the period. The increase from 2012-2021 was 63.7% for educational websites and 32.5%
for non-educational websites in the case of Customer Interaction trackers. This growth
in interactive features and audio-visual content on educational sites is consistent with
the evolution of online learning, which has become more interactive and audio-visually
engaging over the years (Elisabeta and Alexandru, 2018). Moreover, these trends make
the sites more bandwidth-consuming, which is also in line with the growth of Cdn
services.

Second, the use of Social Media (increased by 66.2%) and Advertising (18.0%) related
trackers grow for educational sites but display a net drop for non-educational sites.
Compared to the level in 2012, the use of both trackers is higher in 2021, whereas both
are lower on non-educational sites. For both categories, the educational sites begin at a
lower level than the non-educational sites. In both categories, the difference becomes less
pronounced over time, and for Social Media ends up at the same level. This indicates that
purely commercial tracking on educational sites has evolved from being comparatively
less common than on other types of sites to be similar. For both types of sites, the use
of trackers for Advertising has gone down in recent years, but for educational sites, the
peak is more recent (2018) than for non-educational sites (2014). For non-educational
sites, this is consistent with the overall development in commercial tracking, which has
seen a general trend toward concentration around a few major players. In 2012, the
market for commercial tracking was less dominated by monopolies such as Alphabet
and Meta than it has since become (Bilić and Prug, 2021). The market domination of
fewer players is consistent with the falling trend in the use rate. For educational sites,
the continued growth is consistent with them catching up to the market standard for
commercial tracking, which is also suggested by the strong growth of trackers from the
top market players observed in section 5.4.3.

5.4.6 Discussion

GDPR implementation in the EU influenced web tracking trends as expected, but
its effect on educational websites was less than on non-educational ones. While non-
educational sites saw a decrease in tracker use post-GDPR, tracker usage on educational
sites not only increased but remained consistently higher. Commercial tracking, like ads
and social media, is now nearly as common on educational sites as it is on non-educational
ones.

Third-party tracking services offer functionalities like chat features on websites, while
also collecting user data. The rise in tracking on educational websites means users are
more likely to have their online behavior information gathered and possibly used across
various platforms. Notably, this raises privacy concerns as the use of educational sites is
often mandatory, making consent to tracking less meaningful. These sites are used across
educational systems and for corporate training. The growing use of both commercial
and other third-party trackers suggests increasing commercial exploitation of learning
activities.

94

The trends of tracking we have identified also suggest that the associated business
model(s) remain active and are of increasing relevance in the online education sector.
Our paper particularly raises the concern whether the GDPR in its current form suitably
addresses privacy issues related to websites whose use is not predominantly voluntary,
such as educational websites, but also many other sites like public websites, where
the trends of tracking form an important research question on its right and should be
addressed in studies in the future.

Reviewing the results, we do not find convincing evidence that tracking on educational
websites has been substantially impacted by the COVID-19 pandemic. Despite the
fact that additional traffic to these types of sites during the lock-down periods would
represent a valuable asset for site owners, no trends in the data meaningfully relate to
this. This may be related to the fact that educational sites had already adjusted their
portfolio of commercial tracking in particular to facilitate monetization of increased
traffic, e.g. through re-targeting of potential students on social media.

5.5 Conclusions

In this paper, we present a framework for examining historical web tracking within a
defined set of sites and apply it to a sample of educational websites. We constructed a
sample comprising educational websites and a control group of non-educational websites
that shared similar ranking positions. Utilizing the Internet Archive’s Wayback Machine,
we analyze 17,975 pairs of websites and their corresponding controls, spanning the
period from 2012 to 2021. We observed a notable overall rise in tracking activities on
educational sites.

Then we conduct a quantitative and qualitative analysis of third-party tracking on
educational websites. We discover that the growth rate of educational websites has
surpassed the control group from 2012-2021. Our investigation into the relative expansion
of various tracker types suggests that the accelerated growth of tracking on educational
websites may be attributed to the rising use of customer interaction, audio-visual content,
and social media integration within these platforms.

Our analysis raises concerns about privacy and independence in education. Privacy
issues in educational websites should be prioritized, as they can lead to unauthorized
disclosure of confidential information, loss of trust, legal consequences, and intellectual
property compromise. Furthermore, researchers may wish to analyze privacy lost in
other areas, such as news or sports, from a historical perspective. Our framework offers a
convenient solution for creating comparable websites and collecting historical third-party
tracker data in these domains.

5.6 Appendix

95

5.6.1 Tracker Categories

Trackers differ both in the technologies they use, and the purpose they serve. Based on
the the service they provide to the site owner, we have categorized the trackers in the
following:

Advertising Provides advertising or advertising-related services such as data collection,
behavioral analysis or re-targeting.

Customer Interaction Includes chat, email messaging, customer support, and other
interaction tools

Essential Includes tag managers, privacy notices, and technologies that are critical to
the functionality of a website

Site Analytics Collects and analyzes data related to site usage and performance. Social
Media Integrates features related to social media sites

Audio Video Player Enables websites to publish, distribute, and optimize video and
audio content

CDN (Content Delivery Network) Content delivery network that delivers resources
for different site utilities and usually for many different customers.

Misc (Miscellaneous) This tracker does not fit in other categories.

Essential Includes tag managers, privacy notices, and technologies that are critical to
the functionality of a website

96

6Bibliography

Acar, Gunes, Christian Eubank, Steven Englehardt, Marc Juarez, Arvind Narayanan,
and Claudia Diaz (2014). „The web never forgets: Persistent tracking mechanisms
in the wild“. In: Proceedings of the 2014 ACM SIGSAC conference on computer and
communications security, pp. 674–689.

Acar, Gunes, Marc Juarez, Nick Nikiforakis, Claudia Diaz, Seda Gürses, Frank Piessens,
and Bart Preneel (2013). „FPDetective: dusting the web for fingerprinters“. In: Proceed-
ings of the 2013 ACM SIGSAC conference on Computer & communications security,
pp. 1129–1140.

Achiam, Josh, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia
Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat,
et al. (2023). „Gpt-4 technical report“. In: arXiv preprint arXiv:2303.08774.

Acquisti, Alessandro, Stefanos Gritzalis, Costos Lambrinoudakis, and Sabrina di Vimer-
cati (2007). Digital privacy: theory, technologies, and practices. CRC Press.

Adar, Eytan and Lada A Adamic (2005). „Tracking information epidemics in blogspace“.
In: The 2005 IEEE/WIC/ACM International Conference on Web Intelligence (WI’05).
IEEE, pp. 207–214.

Agarwal, Vibhor and Nishanth Sastry (2022). „“Way back then”: A Data-driven View
of 25+ years of Web Evolution“. In: Proceedings of the ACM Web Conference 2022,
pp. 3471–3479.

Aghajanyan, Armen, Luke Zettlemoyer, and Sonal Gupta (2020). „Intrinsic dimension-
ality explains the effectiveness of language model fine-tuning“. In: arXiv preprint
arXiv:2012.13255.

Ainsworth, Samuel K, Jonathan Hayase, and Siddhartha Srinivasa (2022). „Git re-basin:
Merging models modulo permutation symmetries“. In: arXiv preprint arXiv:2209.04836.

Akkus, Istemi Ekin, Ruichuan Chen, Michaela Hardt, Paul Francis, and Johannes Gehrke
(2012). „Non-tracking web analytics“. In: Proceedings of the 2012 ACM conference on
Computer and communications security, pp. 687–698.

Amos, Ryan, Gunes Acar, Eli Lucherini, Mihir Kshirsagar, Arvind Narayanan, and
Jonathan Mayer (2021). „Privacy policies over time: Curation and analysis of a million-
document dataset“. In: Proceedings of the Web Conference 2021, pp. 2165–2176.

Andreas, Jacob, Marcus Rohrbach, Trevor Darrell, and Dan Klein (2016). „Neural
module networks“. In: Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 39–48.

Ansell, Alan, Edoardo Maria Ponti, Anna Korhonen, and Ivan Vulić (2021). „Composable
sparse fine-tuning for cross-lingual transfer“. In: arXiv preprint arXiv:2110.07560.

Ansell, Alan, Edoardo Maria Ponti, Jonas Pfeiffer, Sebastian Ruder, Goran Glavaš, Ivan
Vulić, and Anna Korhonen (Nov. 2021). „MAD-G: Multilingual Adapter Generation for

97

Efficient Cross-Lingual Transfer“. In: Findings of the Association for Computational
Linguistics: EMNLP 2021, pp. 4762–4781.

Antonakaki, Despoina, Paraskevi Fragopoulou, and Sotiris Ioannidis (2021). „A survey
of Twitter research: Data model, graph structure, sentiment analysis and attacks“. In:
Expert Systems with Applications 164, p. 114006.

Aribandi, Vamsi, Yi Tay, Tal Schuster, et al. (2022). „ExT5: Towards Extreme Multi-Task
Scaling for Transfer Learning“. In: International Conference on Learning Representa-
tions.

Asai, Akari, Mohammadreza Salehi, Matthew E Peters, and Hannaneh Hajishirzi
(2022). „Attempt: Parameter-efficient multi-task tuning via attentional mixtures of
soft prompts“. In: Proceedings of the 2022 Conference on Empirical Methods in Natural
Language Processing, pp. 6655–6672.

Austin, Jacob, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski,
David Dohan, Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. (2021). „Program
Synthesis with Large Language Models“. In: arXiv preprint arXiv:2108.07732.

Ba, Jimmy Lei, Jamie Ryan Kiros, and Geoffrey E. Hinton (2016). Layer Normalization.
arXiv: 1607.06450 [stat.ML].

Bach, Stephen H, Victor Sanh, Zheng-Xin Yong, Albert Webson, Colin Raffel, Nihal V
Nayak, Abheesht Sharma, Taewoon Kim, M Saiful Bari, Thibault Fevry, et al. (2022).
„Promptsource: An integrated development environment and repository for natural
language prompts“. In: arXiv preprint arXiv:2202.01279.

Bahdanau, Dzmitry, Shikhar Murty, Michael Noukhovitch, Thien Huu Nguyen, Harm
de Vries, and Aaron Courville (2019). „Systematic Generalization: What Is Required
and Can It Be Learned?“ In: International Conference on Learning Representations.

Ballard, Dana H (1986). „Cortical connections and parallel processing: Structure and
function“. In: Behavioral and brain sciences 9.1, pp. 67–90.

Bau, Jason, Jonathan Mayer, Hristo Paskov, and John C Mitchell (2013). „A promising
direction for web tracking countermeasures“. In: Proceedings of W2SP.

Beck, Tilman, Bela Bohlender, Christina Viehmann, Vincent Hane, Yanik Adamson,
Jaber Khuri, Jonas Brossmann, Jonas Pfeiffer, and Iryna Gurevych (2021). „Adapter-
hub playground: Simple and flexible few-shot learning with adapters“. In: arXiv
preprint arXiv:2108.08103.

Beeching, Edward, Clémentine Fourrier, Nathan Habib, Sheon Han, Nathan Lambert,
Nazneen Rajani, Omar Sanseviero, Lewis Tunstall, and Thomas Wolf (2023). Open
LLM Leaderboard. https://huggingface.co/spaces/HuggingFaceH4/open_llm_
leaderboard.

Bekos, Paschalis, Panagiotis Papadopoulos, Evangelos P Markatos, and Nicolas Kourtellis
(2023). „The Hitchhiker’s Guide to Facebook Web Tracking with Invisible Pixels and
Click IDs“. In: Proceedings of the ACM Web Conference 2023, pp. 2132–2143.

Belofsky, Joshua (2023). „Token-level Adaptation of LoRA Adapters for Downstream
Task Generalization“. In: arXiv preprint arXiv:2311.10847.

Bengio, Emmanuel, Pierre-Luc Bacon, Joelle Pineau, and Doina Precup (2015). „Condi-
tional computation in neural networks for faster models“. In: arXiv preprint arXiv:1511.06297.

Bengio, Samy, Oriol Vinyals, Navdeep Jaitly, and Noam Shazeer (2015). „Scheduled
sampling for sequence prediction with recurrent neural networks“. In: Advances in
neural information processing systems 28.

98

https://arxiv.org/abs/1607.06450
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard

Bilić, Paško and Toni Prug (2021). The Political Economy of Digital Monopolies: Con-
tradictions and Alternatives to Data Commodification. Policy Press.

Binns, Reuben, Ulrik Lyngs, Max Van Kleek, Jun Zhao, Timothy Libert, and Nigel
Shadbolt (2018). „Third party tracking in the mobile ecosystem“. In: Proceedings of
the 10th ACM Conference on Web Science, pp. 23–31.

Binns, Reuben, Jun Zhao, Max Van Kleek, and Nigel Shadbolt (2018). „Measuring
third-party tracker power across web and mobile“. In: ACM Transactions on Internet
Technology (TOIT) 18.4, pp. 1–22.

Bisk, Yonatan, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. (2020). „Piqa: Reasoning
about physical commonsense in natural language“. In: Proceedings of the AAAI
conference on artificial intelligence. Vol. 34. 05, pp. 7432–7439.

Black, Sid, Gao Leo, Phil Wang, Connor Leahy, and Stella Biderman (Mar. 2021). GPT-
Neo: Large Scale Autoregressive Language Modeling with Mesh-Tensorflow. Version 1.0.
If you use this software, please cite it using these metadata.

Bragman, Felix JS, Ryutaro Tanno, Sebastien Ourselin, Daniel C Alexander, and Jorge
Cardoso (2019). „Stochastic filter groups for multi-task cnns: Learning specialist
and generalist convolution kernels“. In: Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 1385–1394.

Breiman, Leo (1996). „Bagging predictors“. In: Machine learning 24, pp. 123–140.
Brown, Tom, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla

Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al.
(2020a). „Language models are few-shot learners“. In: Advances in neural information
processing systems 33, pp. 1877–1901.

Brown, Tom, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla
Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al.
(2020b). „Language models are few-shot learners“. In: Advances in neural information
processing systems 33, pp. 1877–1901.

Bugliarello, Emanuele, Fangyu Liu, Jonas Pfeiffer, Siva Reddy, Desmond Elliott, Edoardo
Maria Ponti, and Ivan Vulić (17–23 Jul 2022). „IGLUE: A Benchmark for Transfer
Learning across Modalities, Tasks, and Languages“. In: Proceedings of the 39th Interna-
tional Conference on Machine Learning. Ed. by Kamalika Chaudhuri, Stefanie Jegelka,
Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato. Vol. 162. Proceedings of
Machine Learning Research. PMLR, pp. 2370–2392.

Caccia, Lucas, Edoardo Ponti, Lucas Liu, Matheus Pereira, Nicolas Le Roux, and
Alessandro Sordoni (2022). „Multi-Head Adapter Routing for Data-Efficient Fine-
Tuning“. In: arXiv preprint arXiv:2211.03831.

Caccia, Lucas, Edoardo Ponti, Zhan Su, Matheus Pereira, Nicolas Le Roux, and Alessan-
dro Sordoni (2023). Multi-Head Adapter Routing for Cross-Task Generalization. arXiv:
2211.03831 [cs.AI].

Cahn, Aaron, Scott Alfeld, Paul Barford, and Shanmugavelayutham Muthukrishnan
(2016). „An empirical study of web cookies“. In: Proceedings of the 25th international
conference on world wide web, pp. 891–901.

Caron, Mathilde, Piotr Bojanowski, Armand Joulin, and Matthijs Douze (2018). „Deep
clustering for unsupervised learning of visual features“. In: Proceedings of the European
conference on computer vision (ECCV), pp. 132–149.

Caruana, Rich (1997). „Multitask learning“. In: Machine learning 28, pp. 41–75.

99

https://arxiv.org/abs/2211.03831

Cha, Meeyoung, Alan Mislove, and Krishna P Gummadi (2009). „A measurement-driven
analysis of information propagation in the flickr social network“. In: Proceedings of the
18th international conference on World wide web, pp. 721–730.

Chang, Michael B, Abhishek Gupta, Sergey Levine, and Thomas L Griffiths (2018). „Au-
tomatically composing representation transformations as a means for generalization“.
In: arXiv preprint arXiv:1807.04640.

Chen, Mark, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira
Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman,
et al. (2021). „Evaluating large language models trained on code“. In: arXiv preprint
arXiv:2107.03374.

Chen, Wei, Carlos Castillo, and Laks VS Lakshmanan (2022). Information and influence
propagation in social networks. Springer Nature.

Chen, Zitian, Yikang Shen, Mingyu Ding, Zhenfang Chen, Hengshuang Zhao, Erik
Learned-Miller, and Chuang Gan (2022). Mod-Squad: Designing Mixture of Experts
As Modular Multi-Task Learners. arXiv: 2212.08066 [cs.CV].

Cheng, Ruizhi, Nan Wu, Matteo Varvello, Songqing Chen, and Bo Han (2022). „Are
we ready for metaverse? A measurement study of social virtual reality platforms“. In:
Proceedings of the 22nd ACM Internet Measurement Conference, pp. 504–518.

Chowdhery, Aakanksha, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra,
Adam Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann,
et al. (2023). „Palm: Scaling language modeling with pathways“. In: Journal of Machine
Learning Research 24.240, pp. 1–113.

Christl, Wolfie and Sarah Spiekermann (2016). „Networks of Control: A Report on
Corporate Surveillance“. In: Digital Tracking, Big Data & Privacy.

Chronopoulou, Alexandra, Matthew E Peters, and Jesse Dodge (2021). „Efficient hi-
erarchical domain adaptation for pretrained language models“. In: arXiv preprint
arXiv:2112.08786.

Chronopoulou, Alexandra, Matthew E Peters, Alexander Fraser, and Jesse Dodge (2023).
„Adaptersoup: Weight averaging to improve generalization of pretrained language
models“. In: arXiv preprint arXiv:2302.07027.

Clark, Aidan, Diego De Las Casas, Aurelia Guy, Arthur Mensch, Michela Paganini,
Jordan Hoffmann, Bogdan Damoc, Blake Hechtman, Trevor Cai, Sebastian Borgeaud,
et al. (2022). „Unified scaling laws for routed language models“. In: International
Conference on Machine Learning. PMLR, pp. 4057–4086.

Clark, Christopher, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins,
and Kristina Toutanova (2019). „BoolQ: Exploring the Surprising Difficulty of Natural
Yes/No Questions“. In: NAACL.

Clark, Peter, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa
Schoenick, and Oyvind Tafjord (2018). „Think you have solved question answering?
try arc, the ai2 reasoning challenge“. In: arXiv preprint arXiv:1803.05457.

Clausen, Lars (2004). „Concerning etags and datestamps“. In: 4th International Web
Archiving Workshop (IWAW’04). Citeseer.

Corona, Rodolfo, Daniel Fried, Coline Devin, Dan Klein, and Trevor Darrell (June 2021).
„Modular Networks for Compositional Instruction Following“. In: Proceedings of the
2021 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies. Online: Association for Computational
Linguistics, pp. 1033–1040.

100

https://arxiv.org/abs/2212.08066

Craig, Terence and Mary E Ludloff (2011). Privacy and big data: the players, regulators,
and stakeholders. " O’Reilly Media, Inc."

Dabrowski, Adrian, Georg Merzdovnik, Johanna Ullrich, Gerald Sendera, and Edgar
Weippl (2019). „Measuring cookies and web privacy in a post-gdpr world“. In: Inter-
national Conference on Passive and Active Network Measurement. Springer, pp. 258–
270.

Dagan, Ido, Oren Glickman, and Bernardo Magnini (2005). „The pascal recognising
textual entailment challenge“. In: Machine learning challenges workshop. Springer,
pp. 177–190.

De Marneffe, Marie-Catherine, Mandy Simons, and Judith Tonhauser (2019). „The com-
mitmentbank: Investigating projection in naturally occurring discourse“. In: proceedings
of Sinn und Bedeutung. Vol. 23. 2, pp. 107–124.

Dettmers, Tim, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer (2024). „Qlora:
Efficient finetuning of quantized llms“. In: Advances in Neural Information Processing
Systems 36.

Deville, Joe and Lonneke Van der Velden (2015). „Seeing the invisible algorithm: The
practical politics of tracking the credit trackers“. In: Algorithmic Life. Routledge,
pp. 87–106.

Devlin, Jacob, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova (2018). „Bert:
Pre-training of deep bidirectional transformers for language understanding“. In: arXiv
preprint arXiv:1810.04805.

Dietterich, Thomas G (2000). „Ensemble methods in machine learning“. In: International
workshop on multiple classifier systems. Springer, pp. 1–15.

Ding, Chuntao, Zhichao Lu, Shangguang Wang, Ran Cheng, and Vishnu Naresh Boddeti
(2023). „Mitigating Task Interference in Multi-Task Learning via Explicit Task Routing
With Non-Learnable Primitives“. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 7756–7765.

Dodds, Peter Sheridan and Duncan J Watts (2005). „A generalized model of social and
biological contagion“. In: Journal of theoretical biology 232.4, pp. 587–604.

Domingos, Pedro and Matt Richardson (2001). „Mining the network value of customers“.
In: Proceedings of the seventh ACM SIGKDD international conference on Knowledge
discovery and data mining, pp. 57–66.

Du, Nan, Yanping Huang, Andrew M Dai, Simon Tong, Dmitry Lepikhin, Yuanzhong Xu,
Maxim Krikun, Yanqi Zhou, Adams Wei Yu, Orhan Firat, et al. (2022). „Glam: Efficient
scaling of language models with mixture-of-experts“. In: International Conference on
Machine Learning. PMLR, pp. 5547–5569.

Dua, Dheeru, Shruti Bhosale, Vedanuj Goswami, James Cross, Mike Lewis, and An-
gela Fan (2021). „Tricks for training sparse translation models“. In: arXiv preprint
arXiv:2110.08246.

Duan, Zhibin, Hao Zhang, Chaojie Wang, Zhengjue Wang, Bo Chen, and Mingyuan Zhou
(2021). „EnsLM: Ensemble language model for data diversity by semantic clustering“.
In: Proceedings of the 59th Annual Meeting of the Association for Computational Lin-
guistics and the 11th International Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pp. 2954–2967.

Easley, David, Jon Kleinberg, et al. (2010). Networks, crowds, and markets: Reasoning
about a highly connected world. Vol. 1. Cambridge university press Cambridge.

101

Edalati, Ali, Marzieh Tahaei, Ivan Kobyzev, Vahid Partovi Nia, James J Clark, and
Mehdi Rezagholizadeh (2022). „Krona: Parameter efficient tuning with kronecker
adapter“. In: arXiv preprint arXiv:2212.10650.

Eigen, David, Marc’Aurelio Ranzato, and Ilya Sutskever (2013). „Learning factored
representations in a deep mixture of experts“. In: arXiv preprint arXiv:1312.4314.

Elhage, Nelson, Neel Nanda, Catherine Olsson, Tom Henighan, Nicholas Joseph, Ben
Mann, Amanda Askell, Yuntao Bai, Anna Chen, Tom Conerly, et al. (2021). „A
mathematical framework for transformer circuits“. In: Transformer Circuits Thread 1.

Elharrouss, Omar, Noor Almaadeed, and Somaya Al-Maadeed (2021). „A review of video
surveillance systems“. In: Journal of Visual Communication and Image Representation
77, p. 103116.

Elisabeta, Păduraru Monica and Mihăilă Robert Alexandru (2018). „Comparative Anal-
ysis of E-Learning Platforms on The Market“. In: 2018 10th International Conference
on Electronics, Computers and Artificial Intelligence (ECAI). IEEE, pp. 1–4.

Englehardt, Steven, Chris Eubank, Peter Zimmerman, Dillon Reisman, and Arvind
Narayanan (2015). „OpenWPM: An automated platform for web privacy measurement“.
In: Manuscript. March.

Englehardt, Steven and Arvind Narayanan (2016). „Online tracking: A 1-million-site
measurement and analysis“. In: Proceedings of the 2016 ACM SIGSAC conference on
computer and communications security, pp. 1388–1401.

Englehardt, Steven, Dillon Reisman, Christian Eubank, Peter Zimmerman, Jonathan
Mayer, Arvind Narayanan, and Edward W Felten (2015). „Cookies that give you away:
The surveillance implications of web tracking“. In: Proceedings of the 24th International
Conference on World Wide Web, pp. 289–299.

Ermakova, Tatiana, Benjamin Fabian, Benedict Bender, and Kerstin Klimek (2018).
„Web tracking-A literature review on the state of research“. In.

Fang, Taoran, Yunchao Zhang, Yang Yang, Chunping Wang, and Lei Chen (2024). „Uni-
versal prompt tuning for graph neural networks“. In: Advances in Neural Information
Processing Systems 36.

Fedus, William, Jeff Dean, and Barret Zoph (2022). „A review of sparse expert models
in deep learning“. In: arXiv preprint arXiv:2209.01667.

Fedus, William, Barret Zoph, and Noam Shazeer (2022a). „Switch Transformers: Scaling
to Trillion Parameter Models with Simple and Efficient Sparsity“. In: Journal of
Machine Learning Research 23.120, pp. 1–39.

Fedus, William, Barret Zoph, and Noam Shazeer (2022b). „Switch transformers: Scaling
to trillion parameter models with simple and efficient sparsity“. In: The Journal of
Machine Learning Research 23.1, pp. 5232–5270.

Fernando, Chrisantha, Dylan Banarse, Charles Blundell, Yori Zwols, David Ha, Andrei A
Rusu, Alexander Pritzel, and Daan Wierstra (2017). „Pathnet: Evolution channels
gradient descent in super neural networks“. In: arXiv preprint arXiv:1701.08734.

Fifty, Chris, Ehsan Amid, Zhe Zhao, Tianhe Yu, Rohan Anil, and Chelsea Finn (2021).
„Efficiently identifying task groupings for multi-task learning“. In: Advances in Neural
Information Processing Systems 34, pp. 27503–27516.

Frankle, Jonathan, Gintare Karolina Dziugaite, Daniel Roy, and Michael Carbin (2020).
„Linear mode connectivity and the lottery ticket hypothesis“. In: International Confer-
ence on Machine Learning. PMLR, pp. 3259–3269.

102

French, Robert M (1999). „Catastrophic forgetting in connectionist networks“. In: Trends
in cognitive sciences 3.4, pp. 128–135.

Gan, Guobing, Peng Zhang, Sunzhu Li, Xiuqing Lu, and Benyou Wang (2022). „Morphte:
Injecting morphology in tensorized embeddings“. In: Advances in Neural Information
Processing Systems 35, pp. 33186–33200.

Gandon, Fabien and Wendy Hall (2022). „A never-ending project for humanity called
“the Web”“. In: Proceedings of the ACM Web Conference 2022, pp. 3480–3487.

Gesmundo, Andrea (2022). „A Multi-Agent Framework for the Asynchronous and Col-
laborative Extension of Multitask ML Systems“. In: arXiv preprint arXiv:2209.14745.

Goldberg, Samuel G, Garrett A Johnson, and Scott K Shriver (2024). „Regulating
privacy online: An economic evaluation of the GDPR“. In: American Economic Journal:
Economic Policy 16.1, pp. 325–358.

González-Bailón, Sandra, David Lazer, Pablo Barberá, Meiqing Zhang, Hunt Allcott,
Taylor Brown, Adriana Crespo-Tenorio, Deen Freelon, Matthew Gentzkow, Andrew M
Guess, et al. (2023). „Asymmetric ideological segregation in exposure to political news
on Facebook“. In: Science 381.6656, pp. 392–398.

Goyal, Anirudh, Alex Lamb, Jordan Hoffmann, Shagun Sodhani, Sergey Levine, Yoshua
Bengio, and Bernhard Schölkopf (2019). „Recurrent independent mechanisms“. In:
arXiv preprint arXiv:1909.10893.

Graux, Damien and Fabrizio Orlandi (2022). „Through the Lens of the Web Conference
Series: A Look Into the History of the Web“. In: Proceedings of the ACM Web
Conference 2022, pp. 3458–3464.

Gross, Sam, Marc’Aurelio Ranzato, and Arthur Szlam (2017). „Hard mixtures of experts
for large scale weakly supervised vision“. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 6865–6873.

Gruhl, Daniel, Ramanathan Guha, David Liben-Nowell, and Andrew Tomkins (2004).
„Information diffusion through blogspace“. In: Proceedings of the 13th international
conference on World Wide Web, pp. 491–501.

Guo, Demi, Alexander M Rush, and Yoon Kim (2020). „Parameter-efficient transfer
learning with diff pruning“. In: arXiv preprint arXiv:2012.07463.

Gururangan, Suchin, Margaret Li, Mike Lewis, Weijia Shi, Tim Althoff, Noah A Smith,
and Luke Zettlemoyer (2023). „Scaling Expert Language Models with Unsupervised
Domain Discovery“. In: arXiv preprint arXiv:2303.14177.

Haddara, Moutaz, Ab Salazar, and Marius Langseth (2023). „Exploring the Impact of
GDPR on Big Data Analytics Operations in the E-Commerce Industry“. In: Procedia
Computer Science 219, pp. 767–777.

Halpin, Harry and Evan Henshaw-Plath (2022). „From Indymedia to Tahrir Square: The
Revolutionary Origins of Status Updates on Twitter“. In: Proceedings of the ACM
Web Conference 2022, pp. 3465–3470.

Hambardzumyan, Karen, Hrant Khachatrian, and Jonathan May (2021). „Warp: Word-
level adversarial reprogramming“. In: arXiv preprint arXiv:2101.00121.

Han, Seungyeop, Jaeyeon Jung, and David Wetherall (2012). „A study of third-party
tracking by mobile apps in the wild“. In: Univ. Washington, Tech. Rep. UW-CSE-12-03
1.

Hartline, Jason, Vahab Mirrokni, and Mukund Sundararajan (2008). „Optimal marketing
strategies over social networks“. In: Proceedings of the 17th international conference
on World Wide Web, pp. 189–198.

103

He, Daobing and Xiaoyang Liu (2020). „Novel competitive information propagation
macro mathematical model in online social network“. In: Journal of Computational
Science 41, p. 101089.

He, Junxian, Chunting Zhou, Xuezhe Ma, Taylor Berg-Kirkpatrick, and Graham Neubig
(2021). „Towards a unified view of parameter-efficient transfer learning“. In: arXiv
preprint arXiv:2110.04366.

He, Shwai, Liang Ding, Daize Dong, Miao Zhang, and Dacheng Tao (2022). „Sparseadapter:
An easy approach for improving the parameter-efficiency of adapters“. In: arXiv preprint
arXiv:2210.04284.

Helles, Rasmus, Stine Lomborg, and Signe Sophus Lai (2020). „Infrastructures of tracking:
Mapping the ecology of third-party services across top sites in the EU“. In: New Media
& Society 22.11, pp. 1957–1975.

Helmond, Anne, Niels Brügger, et al. (2017). „Historical website ecology. Analyzing past
states of the web using archived source code“. In.

Ho, Monte and Jan Kallberg (2017). Black Code: Surveillance, Privacy, and the Dark
Side of the Internet.

Hoofnagle, Chris Jay, Ashkan Soltani, Nathaniel Good, and Dietrich J Wambach (2012).
„Behavioral advertising: The offer you can’t refuse“. In: Harv. L. & Pol’y Rev. 6, p. 273.

Houlsby, Neil, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Larous-
silhe, Andrea Gesmundo, Mona Attariyan, and Sylvain Gelly (2019a). „Parameter-
efficient transfer learning for NLP“. In: International Conference on Machine Learning.
PMLR, pp. 2790–2799.

Houlsby, Neil, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Larous-
silhe, Andrea Gesmundo, Mona Attariyan, and Sylvain Gelly (2019b). „Parameter-
efficient transfer learning for NLP“. In: International Conference on Machine Learning.
PMLR, pp. 2790–2799.

Hu, Edward J, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang,
Lu Wang, and Weizhu Chen (2021). „Lora: Low-rank adaptation of large language
models“. In: arXiv preprint arXiv:2106.09685.

Hu, Xuehui and Nishanth Sastry (2019). „Characterising third party cookie usage in
the EU after GDPR“. In: Proceedings of the 10th ACM Conference on Web Science,
pp. 137–141.

Hu, Yuzheng, Ruicheng Xian, Qilong Wu, Qiuling Fan, Lang Yin, and Han Zhao (2024).
„Revisiting scalarization in multi-task learning: A theoretical perspective“. In: Advances
in Neural Information Processing Systems 36.

Huang, Chengsong, Qian Liu, Bill Yuchen Lin, Tianyu Pang, Chao Du, and Min Lin
(2023). „Lorahub: Efficient cross-task generalization via dynamic lora composition“.
In: arXiv preprint arXiv:2307.13269.

Huang, Chengsong, Qian Liu, Bill Yuchen Lin, Tianyu Pang, Chao Du, and Min Lin
(2024). LoraHub: Efficient Cross-Task Generalization via Dynamic LoRA Composition.
arXiv: 2307.13269 [cs.CL].

Huh, Minyoung, Brian Cheung, Jeremy Bernstein, Phillip Isola, and Pulkit Agrawal
(2024). „Training Neural Networks from Scratch with Parallel Low-Rank Adapters“.
In: arXiv preprint arXiv:2402.16828.

Ilharco, Gabriel, Marco Tulio Ribeiro, Mitchell Wortsman, Suchin Gururangan, Ludwig
Schmidt, Hannaneh Hajishirzi, and Ali Farhadi (2022). „Editing models with task
arithmetic“. In: arXiv preprint arXiv:2212.04089.

104

https://arxiv.org/abs/2307.13269

Izmailov, Pavel, Dmitrii Podoprikhin, Timur Garipov, Dmitry P. Vetrov, and Andrew
Gordon Wilson (2018). „Averaging Weights Leads to Wider Optima and Better
Generalization“. In: CoRR abs/1803.05407. arXiv: 1803.05407.

Jacobs, Robert A, Michael I Jordan, and Andrew G Barto (1991). „Task decomposition
through competition in a modular connectionist architecture: The what and where
vision tasks“. In: Cognitive science 15.2, pp. 219–250.

Jacobs, Robert A, Michael I Jordan, Steven J Nowlan, and Geoffrey E Hinton (1991a).
„Adaptive mixtures of local experts“. In: Neural computation 3.1, pp. 79–87.

Jacobs, Robert A, Michael I Jordan, Steven J Nowlan, and Geoffrey E Hinton (1991b).
„Adaptive mixtures of local experts“. In: Neural computation 3.1, pp. 79–87.

Jang, Eric, Shixiang Gu, and Ben Poole (2016). „Categorical reparameterization with
gumbel-softmax“. In: arXiv preprint arXiv:1611.01144.

Jang, Joel, Seungone Kim, Seonghyeon Ye, Doyoung Kim, Lajanugen Logeswaran, Moon-
tae Lee, Kyungjae Lee, and Minjoon Seo (2023). „Exploring the benefits of training
expert language models over instruction tuning“. In: arXiv preprint arXiv:2302.03202.

Jarke, Juliane and Andreas Breiter (2019). „The datafication of education“. In: Learning,
Media and Technology 44.1, pp. 1–6.

Jerez-Villota, Eleana, Francisco Jurado, and Jaime Moreno-Llorena (2023). „Under-
standing the Role of the User in Information Propagation on Online Social Networks:
A Literature Review and Proposed User Model“. In: International Conference on
Ubiquitous Computing and Ambient Intelligence. Springer, pp. 304–315.

Jiang, Albert Q., Alexandre Sablayrolles, Antoine Roux, et al. (2024). Mixtral of Experts.
arXiv: 2401.04088 [cs.LG].

Jie, Shibo and Zhi-Hong Deng (2023). „Fact: Factor-tuning for lightweight adaptation on
vision transformer“. In: Proceedings of the AAAI Conference on Artificial Intelligence.
Vol. 37. 1, pp. 1060–1068.

Jin, Xisen, Xiang Ren, Daniel Preotiuc-Pietro, and Pengxiang Cheng (2022). „Data-
less knowledge fusion by merging weights of language models“. In: arXiv preprint
arXiv:2212.09849.

Jolicoeur-Martineau, Alexia, Emy Gervais, Kilian Fatras, Yan Zhang, and Simon Lacoste-
Julien (2023). PopulAtion Parameter Averaging (PAPA). arXiv: 2304.03094 [cs.LG].

Jordan, Katy (2018). „Degrees of intrusion? A survey of cookies used by UK Higher
Education institutional websites and their implications“. In: A Survey of Cookies Used
by UK Higher Education Institutional Websites and Their Implications (March 16,
2018).

Jordan, Michael I and Robert A Jacobs (1994). „Hierarchical mixtures of experts and
the EM algorithm“. In: Neural computation 6.2, pp. 181–214.

Joseph, Nimish (2023). „Understanding information propagation in social media“. PhD
thesis. IIT Delhi.

Karaj, Arjaldo, Sam Macbeth, Rémi Berson, and Josep M Pujol (2018). „WhoTracks.
Me: Shedding light on the opaque world of online tracking“. In: arXiv preprint
arXiv:1804.08959.

Karimi Mahabadi, Rabeeh, James Henderson, and Sebastian Ruder (2021). „Compacter:
Efficient low-rank hypercomplex adapter layers“. In: Advances in Neural Information
Processing Systems 34, pp. 1022–1035.

105

https://arxiv.org/abs/1803.05407
https://arxiv.org/abs/2401.04088
https://arxiv.org/abs/2304.03094

Kempe, David, Jon Kleinberg, and Éva Tardos (2003). „Maximizing the spread of
influence through a social network“. In: Proceedings of the ninth ACM SIGKDD
international conference on Knowledge discovery and data mining, pp. 137–146.

Kirsch, Louis, Julius Kunze, and David Barber (2018). „Modular networks: Learning
to decompose neural computation“. In: Advances in neural information processing
systems 31.

Kretschmer, Michael, Jan Pennekamp, and Klaus Wehrle (2021). „Cookie banners
and privacy policies: Measuring the impact of the GDPR on the web“. In: ACM
Transactions on the Web (TWEB) 15.4, pp. 1–42.

Krishnamurthy, Balachander and Craig Wills (2009). „Privacy diffusion on the web:
a longitudinal perspective“. In: Proceedings of the 18th international conference on
World wide web, pp. 541–550.

Kudugunta, Sneha, Yanping Huang, Ankur Bapna, Maxim Krikun, Dmitry Lepikhin,
Minh-Thang Luong, and Orhan Firat (2021). „Beyond distillation: Task-level mixture-
of-experts for efficient inference“. In: arXiv preprint arXiv:2110.03742.

Kye, Seung-Hyeok (2023). „Compositions and tensor products of linear maps between
matrix algebras“. In: Linear Algebra and its Applications 658, pp. 283–309.

Landau, Susan (2011). Surveillance or security?: The risks posed by new wiretapping
technologies. Mit Press.

Lauer, Josh and Kenneth Lipartito (2021). Surveillance capitalism in America. University
of Pennsylvania Press.

Lee, Charles Cheolgi, Jafar Afshar, Arousha Haghighian Roudsari, Woong-Kee Loh, and
Wookey Lee (2024). „A bitwise approach on influence overload problem“. In: Data &
Knowledge Engineering 150, p. 102276.

Lee, Jason, Kyunghyun Cho, and Thomas Hofmann (2017). „Fully character-level neural
machine translation without explicit segmentation“. In: Transactions of the Association
for Computational Linguistics 5, pp. 365–378.

Lei, Tao, Junwen Bai, Siddhartha Brahma, Joshua Ainslie, Kenton Lee, Yanqi Zhou, Nan
Du, Vincent Zhao, Yuexin Wu, Bo Li, et al. (2024). „Conditional adapters: Parameter-
efficient transfer learning with fast inference“. In: Advances in Neural Information
Processing Systems 36.

Lepikhin, D, H Lee, Y Xu, D Chen, O Firat, Y Huang, M Krikun, N Shazeer, and
Z Gshard (2020). „Scaling giant models with conditional computation and automatic
sharding“. In: arXiv preprint arXiv:2006.16668.

Lerner, Ada, Anna Kornfeld Simpson, Tadayoshi Kohno, and Franziska Roesner (2016).
„Internet jones and the raiders of the lost trackers: An archaeological study of web
tracking from 1996 to 2016“. In: 25th USENIX Security Symposium (USENIX Security
16).

Lester, Brian, Rami Al-Rfou, and Noah Constant (2021). „The power of scale for
parameter-efficient prompt tuning“. In: arXiv preprint arXiv:2104.08691.

Levesque, Hector, Ernest Davis, and Leora Morgenstern (2012). „The winograd schema
challenge“. In: Thirteenth international conference on the principles of knowledge
representation and reasoning.

Lewis, Mike, Shruti Bhosale, Tim Dettmers, Naman Goyal, and Luke Zettlemoyer (2021).
„Base layers: Simplifying training of large, sparse models“. In: International Conference
on Machine Learning. PMLR, pp. 6265–6274.

Li, He, Lu Yu, and Wu He (2019). The impact of GDPR on global technology development.

106

Li, Tai-Ching, Huy Hang, Michalis Faloutsos, and Petros Efstathopoulos (2015). „Track-
advisor: Taking back browsing privacy from third-party trackers“. In: Passive and
Active Measurement: 16th International Conference, PAM 2015, New York, NY, USA,
March 19-20, 2015, Proceedings 16. Springer, pp. 277–289.

Li, Xiang Lisa and Jason Eisner (Nov. 2019). „Specializing Word Embeddings (for
Parsing) by Information Bottleneck“. In: Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing and the 9th International Joint
Conference on Natural Language Processing (EMNLP-IJCNLP). Hong Kong, China:
Association for Computational Linguistics, pp. 2744–2754.

Li, Xiang Lisa and Percy Liang (Aug. 2021a). „Prefix-Tuning: Optimizing Continuous
Prompts for Generation“. In: Proceedings of the 59th Annual Meeting of the Association
for Computational Linguistics and the 11th International Joint Conference on Natural
Language Processing (Volume 1: Long Papers). Online: Association for Computational
Linguistics, pp. 4582–4597.

Li, Xiang Lisa and Percy Liang (2021b). „Prefix-tuning: Optimizing continuous prompts
for generation“. In: arXiv preprint arXiv:2101.00190.

Lialin, Vladislav, Vijeta Deshpande, and Anna Rumshisky (2023). „Scaling down to scale
up: A guide to parameter-efficient fine-tuning“. In: arXiv preprint arXiv:2303.15647.

Lialin, Vladislav, Sherin Muckatira, Namrata Shivagunde, and Anna Rumshisky (2023).
„ReLoRA: High-Rank Training Through Low-Rank Updates“. In: Workshop on Ad-
vancing Neural Network Training: Computational Efficiency, Scalability, and Resource
Optimization (WANT@ NeurIPS 2023).

Liang, Juhao, Chen Zhang, Zhengyang Tang, Jie Fu, Dawei Song, and Benyou Wang
(2023). Modular Retrieval for Generalization and Interpretation. arXiv: 2303.13419
[cs.IR].

Libert, Timothy (2015). „Exposing the hidden web: An analysis of third-party HTTP
requests on 1 million websites“. In: arXiv preprint arXiv:1511.00619.

Libert, Timothy and R Nielsen (2018). „Third-party web content on eu news sites:
Potential challenges and paths to privacy improvement“. In: Reuters Institute for the
Study of Journalism.

Lin, Chin-Yew and Eduard Hovy (2003). „Automatic evaluation of summaries using
n-gram co-occurrence statistics“. In: Proceedings of the 2003 human language technol-
ogy conference of the North American chapter of the association for computational
linguistics, pp. 150–157.

Liu, Haokun, Derek Tam, Mohammed Muqeeth, Jay Mohta, Tenghao Huang, Mohit
Bansal, and Colin A Raffel (2022a). „Few-shot parameter-efficient fine-tuning is better
and cheaper than in-context learning“. In: Advances in Neural Information Processing
Systems 35, pp. 1950–1965.

Liu, Haokun, Derek Tam, Mohammed Muqeeth, Jay Mohta, Tenghao Huang, Mohit
Bansal, and Colin A Raffel (2022b). „Few-shot parameter-efficient fine-tuning is better
and cheaper than in-context learning“. In: Advances in Neural Information Processing
Systems 35, pp. 1950–1965.

Liu, Xiao, Kaixuan Ji, Yicheng Fu, Weng Tam, Zhengxiao Du, Zhilin Yang, and Jie
Tang (2022). „P-tuning: Prompt tuning can be comparable to fine-tuning across
scales and tasks“. In: Proceedings of the 60th Annual Meeting of the Association for
Computational Linguistics (Volume 2: Short Papers), pp. 61–68.

107

https://arxiv.org/abs/2303.13419
https://arxiv.org/abs/2303.13419

Liu, Xiao, Yanan Zheng, Zhengxiao Du, Ming Ding, Yujie Qian, Zhilin Yang, and Jie
Tang (2023). „GPT understands, too“. In: AI Open.

Liu, Xiaodong, Pengcheng He, Weizhu Chen, and Jianfeng Gao (2019). „Multi-task deep
neural networks for natural language understanding“. In: arXiv preprint arXiv:1901.11504.

Liu, Xiaoyang and Daobing He (2020). „Information propagation and public opinion
evolution model based on artificial neural network in online social network“. In: The
Computer Journal 63.11, pp. 1689–1703.

Longpre, Shayne, Le Hou, Tu Vu, Albert Webson, Hyung Won Chung, Yi Tay, Denny
Zhou, Quoc V Le, Barret Zoph, Jason Wei, et al. (2023). „The flan collection: Designing
data and methods for effective instruction tuning“. In: arXiv preprint arXiv:2301.13688.

Lu, Keming, Hongyi Yuan, Runji Lin, Junyang Lin, Zheng Yuan, Chang Zhou, and
Jingren Zhou (2023). „Routing to the Expert: Efficient Reward-guided Ensemble of
Large Language Models“. In: arXiv preprint arXiv:2311.08692.

Lu, Yao, Max Bartolo, Alastair Moore, Sebastian Riedel, and Pontus Stenetorp (2021).
„Fantastically ordered prompts and where to find them: Overcoming few-shot prompt
order sensitivity“. In: arXiv preprint arXiv:2104.08786.

Lyon, David (2018). The culture of surveillance: Watching as a way of life. John Wiley
& Sons.

Maddison, Chris J, Andriy Mnih, and Yee Whye Teh (2016). „The concrete distri-
bution: A continuous relaxation of discrete random variables“. In: arXiv preprint
arXiv:1611.00712.

Mahabadi, Rabeeh Karimi, Sebastian Ruder, Mostafa Dehghani, and James Hender-
son (2021). „Parameter-efficient multi-task fine-tuning for transformers via shared
hypernetworks“. In: arXiv preprint arXiv:2106.04489.

Mangrulkar, Sourab, Sylvain Gugger, Lysandre Debut, Younes Belkada, Sayak Paul, and
Benjamin Bossan (2022). PEFT: State-of-the-art Parameter-Efficient Fine-Tuning
methods. https://github.com/huggingface/peft.

Mansell, Robin and Marc Raboy (2011). „Introduction: Foundations of the theory and
practice of global media and communication policy“. In: The handbook of global media
and communication policy, pp. 1–20.

Mansoori, Masood, Yuichi Hirose, Ian Welch, and Kim-Kwang Raymond Choo (2016).
„Empirical analysis of impact of HTTP referer on malicious website behaviour and
delivery“. In: 2016 IEEE 30th International Conference on Advanced Information
Networking and Applications (AINA). IEEE, pp. 941–948.

Mao, Yuning, Lambert Mathias, Rui Hou, Amjad Almahairi, Hao Ma, Jiawei Han, Wen-
tau Yih, and Madian Khabsa (2021). „Unipelt: A unified framework for parameter-
efficient language model tuning“. In: arXiv preprint arXiv:2110.07577.

Matena, Michael S and Colin A Raffel (2022). „Merging models with fisher-weighted
averaging“. In: Advances in Neural Information Processing Systems 35, pp. 17703–
17716.

Mathur, Arunesh, Gunes Acar, Michael J Friedman, Elena Lucherini, Jonathan Mayer,
Marshini Chetty, and Arvind Narayanan (2019). „Dark patterns at scale: Findings from
a crawl of 11K shopping websites“. In: Proceedings of the ACM on Human-Computer
Interaction 3.CSCW, pp. 1–32.

Mayer, Jonathan R and John C Mitchell (2012). „Third-party web tracking: Policy and
technology“. In: 2012 IEEE symposium on security and privacy. IEEE, pp. 413–427.

108

https://github.com/huggingface/peft

McCloskey, Michael and Neal J Cohen (1989). „Catastrophic interference in connectionist
networks: The sequential learning problem“. In: Psychology of learning and motivation.
Vol. 24. Elsevier, pp. 109–165.

Meyerson, Elliot and Risto Miikkulainen (2017). „Beyond shared hierarchies: Deep
multitask learning through soft layer ordering“. In: arXiv preprint arXiv:1711.00108.

Mickens, James (2010). „Silo: Exploiting {JavaScript} and {DOM} Storage for Faster
Page Loads“. In: USENIX Conference on Web Application Development (WebApps
10).

Microsoft Research (2023). Phi-2: The Surprising Power of Small Language Models. url:
https://www.microsoft.com/en-us/research/blog/phi-2-the-surprising-
power-of-small-language-models/.

Mihaylov, Todor, Peter Clark, Tushar Khot, and Ashish Sabharwal (2018). „Can a suit
of armor conduct electricity? a new dataset for open book question answering“. In:
arXiv preprint arXiv:1809.02789.

Mireshghallah, Fatemehsadat, Mohammadkazem Taram, Praneeth Vepakomma, Ab-
hishek Singh, Ramesh Raskar, and Hadi Esmaeilzadeh (2020). „Privacy in deep learning:
A survey“. In: arXiv preprint arXiv:2004.12254.

Modi, Nandini and Jaiteg Singh (2023). „Understanding online consumer behavior at
e-commerce portals using eye-gaze tracking“. In: International Journal of Human–
Computer Interaction 39.4, pp. 721–742.

Moreira, Silvio, David S Batista, Paula Carvalho, Francisco M Couto, and Mario J Silva
(2013). „Tracking politics with POWER“. In: Program 47.2, pp. 120–135.

Müller, Philipp and Ruben L Bach (2023). „Populist alternative news use and its role
for elections: Web-tracking and survey evidence from two campaign periods“. In: New
media & society 25.10, pp. 2663–2683.

Muqeeth, Mohammed, Haokun Liu, Yufan Liu, and Colin Raffel (2024). „Learning to
Route Among Specialized Experts for Zero-Shot Generalization“. In: arXiv preprint
arXiv:2402.05859.

Muqeeth, Mohammed, Haokun Liu, and Colin Raffel (2023). „Soft Merging of Experts
with Adaptive Routing“. In: arXiv preprint arXiv:2306.03745.

Musicki, Darko, Regina Kaune, and Wolfgang Koch (2009). „Mobile emitter geolocation
and tracking using TDOA and FDOA measurements“. In: IEEE transactions on signal
processing 58.3, pp. 1863–1874.

Nakatsukasa, Yuji (2019). „The low-rank eigenvalue problem“. In: arXiv preprint arXiv:1905.11490.
Nie, Yixin, Adina Williams, Emily Dinan, Mohit Bansal, Jason Weston, and Douwe Kiela

(2019). „Adversarial NLI: A new benchmark for natural language understanding“. In:
arXiv preprint arXiv:1910.14599.

Nikiforakis, Nick, Alexandros Kapravelos, Wouter Joosen, Christopher Kruegel, Frank
Piessens, and Giovanni Vigna (2013). „Cookieless monster: Exploring the ecosystem of
web-based device fingerprinting“. In: 2013 IEEE Symposium on Security and Privacy.
IEEE, pp. 541–555.

OpenAI (2023). GPT-3.5 Turbo: Fine-Tuning and API Updates. https://openai.com/
blog/gpt-3-5-turbo-fine-tuning-and-api-updates.

Ostapenko, Oleksiy, Lucas Caccia, Zhan Su, Nicolas Le Roux, Laurent Charlin, and
Alessandro Sordoni (2023). „A Case Study of Instruction Tuning with Mixture of
Parameter-Efficient Experts“. In: NeurIPS 2023 Workshop on Instruction Tuning and
Instruction Following.

109

https://www.microsoft.com/en-us/research/blog/phi-2-the-surprising-power-of-small-language-models/
https://www.microsoft.com/en-us/research/blog/phi-2-the-surprising-power-of-small-language-models/
https://openai.com/blog/gpt-3-5-turbo-fine-tuning-and-api-updates
https://openai.com/blog/gpt-3-5-turbo-fine-tuning-and-api-updates

Ostapenko, Oleksiy, Pau Rodriguez, Massimo Caccia, and Laurent Charlin (2021). „Con-
tinual Learning via Local Module Composition“. In: Advances in Neural Information
Processing Systems 34.

Pan, Yu, Ye Yuan, Yichun Yin, Zenglin Xu, Lifeng Shang, Xin Jiang, and Qun Liu
(2024). „Reusing Pretrained Models by Multi-linear Operators for Efficient Training“.
In: Advances in Neural Information Processing Systems 36.

Panahi, Aliakbar, Seyran Saeedi, and Tom Arodz (2019). „word2ket: Space-efficient word
embeddings inspired by quantum entanglement“. In: arXiv preprint arXiv:1911.04975.

Parker, Philip M (2008). The 2009-2014 World Outlook for Advertising for Social Media
and Widgets. Icon Group International.

Patel, Jay M and Jay M Patel (2020). „Introduction to common crawl datasets“. In:
Getting Structured Data from the Internet: Running Web Crawlers/Scrapers on a Big
Data Production Scale, pp. 277–324.

Peloquin, David, Michael DiMaio, Barbara Bierer, and Mark Barnes (2020). „Disruptive
and avoidable: GDPR challenges to secondary research uses of data“. In: European
Journal of Human Genetics 28.6, pp. 697–705.

Pfeiffer, Jonas, Aishwarya Kamath, Andreas Rücklé, Kyunghyun Cho, and Iryna
Gurevych (2020). „AdapterFusion: Non-destructive task composition for transfer
learning“. In: arXiv preprint arXiv:2005.00247.

Pfeiffer, Jonas, Sebastian Ruder, Ivan Vulić, and Edoardo Maria Ponti (2023). „Modular
deep learning“. In: arXiv preprint arXiv:2302.11529.

Pfeiffer, Jonas, Edwin Simpson, and Iryna Gurevych (2020). „Low Resource Multi-Task
Sequence Tagging–Revisiting Dynamic Conditional Random Fields“. In: arXiv preprint
arXiv:2005.00250.

Pfeiffer, Jonas, Ivan Vulić, Iryna Gurevych, and Sebastian Ruder (2020a). „Mad-x: An
adapter-based framework for multi-task cross-lingual transfer“. In: arXiv preprint
arXiv:2005.00052.

Pfeiffer, Jonas, Ivan Vulić, Iryna Gurevych, and Sebastian Ruder (2020b). „UNKs
everywhere: Adapting multilingual language models to new scripts“. In: arXiv preprint
arXiv:2012.15562.

Phang, Jason, Thibault Févry, and Samuel R Bowman (2018). „Sentence encoders on
stilts: Supplementary training on intermediate labeled-data tasks“. In: arXiv preprint
arXiv:1811.01088.

Pilehvar, Mohammad Taher and Jose Camacho-Collados (2018). „WiC: the word-in-
context dataset for evaluating context-sensitive meaning representations“. In: arXiv
preprint arXiv:1808.09121.

Ponti, Edoardo (2021). „Inductive Bias and Modular Design for Sample-Efficient Neural
Language Learning“. PhD thesis. University of Cambridge.

Ponti, Edoardo Maria, Helen O’Horan, Yevgeni Berzak, Ivan Vulić, Roi Reichart, Thierry
Poibeau, Ekaterina Shutova, and Anna Korhonen (2019). „Modeling language variation
and universals: A survey on typological linguistics for natural language processing“.
In: Computational Linguistics 45.3, pp. 559–601.

Ponti, Edoardo Maria, Alessandro Sordoni, Yoshua Bengio, and Siva Reddy (2023a).
„Combining Parameter-efficient Modules for Task-level Generalisation“. In: Proceedings
of the 17th Conference of the European Chapter of the Association for Computational
Linguistics, pp. 687–702.

110

Ponti, Edoardo Maria, Alessandro Sordoni, Yoshua Bengio, and Siva Reddy (May 2023b).
„Combining Parameter-efficient Modules for Task-level Generalisation“. In: Proceedings
of the 17th Conference of the European Chapter of the Association for Computational
Linguistics. Dubrovnik, Croatia: Association for Computational Linguistics, pp. 687–
702.

Poth, Clifton, Hannah Sterz, Indraneil Paul, Sukannya Purkayastha, Leon Engländer,
Timo Imhof, Ivan Vulić, Sebastian Ruder, Iryna Gurevych, and Jonas Pfeiffer (2023).
„Adapters: A Unified Library for Parameter-Efficient and Modular Transfer Learning“.
In: arXiv preprint arXiv:2311.11077.

Qiu, Xipeng, Tianxiang Sun, Yige Xu, Yunfan Shao, Ning Dai, and Xuanjing Huang
(2020). „Pre-trained models for natural language processing: A survey“. In: Science
China Technological Sciences 63.10, pp. 1872–1897.

Radford, Alec, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever,
et al. (2019). „Language models are unsupervised multitask learners“. In: OpenAI blog
1.8, p. 9.

Raffel, Colin, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael
Matena, Yanqi Zhou, Wei Li, and Peter J Liu (2020a). „Exploring the limits of transfer
learning with a unified text-to-text transformer“. In: The Journal of Machine Learning
Research 21.1, pp. 5485–5551.

Raffel, Colin, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael
Matena, Yanqi Zhou, Wei Li, Peter J Liu, et al. (2020b). „Exploring the limits of
transfer learning with a unified text-to-text transformer.“ In: J. Mach. Learn. Res.
21.140, pp. 1–67.

Rajbhandari, Samyam, Conglong Li, Zhewei Yao, Minjia Zhang, Reza Yazdani Aminabadi,
Ammar Ahmad Awan, Jeff Rasley, and Yuxiong He (2022). „Deepspeed-moe: Advancing
mixture-of-experts inference and training to power next-generation ai scale“. In:
International Conference on Machine Learning. PMLR, pp. 18332–18346.

Rapin, J. and O. Teytaud (2018). Nevergrad - A gradient-free optimization platform.
https://GitHub.com/FacebookResearch/Nevergrad.

Razdaibiedina, Anastasia, Yuning Mao, Rui Hou, Madian Khabsa, Mike Lewis, and
Amjad Almahairi (2023). „Progressive prompts: Continual learning for language
models“. In: arXiv preprint arXiv:2301.12314.

Rebuffi, Sylvestre-Alvise, Hakan Bilen, and Andrea Vedaldi (2017). „Learning multiple
visual domains with residual adapters“. In: Advances in neural information processing
systems 30.

Regulation, General Data Protection (2018). „General data protection regulation (GDPR)“.
In: Intersoft Consulting, Accessed in October 24.1.

Robbins, Philip (2009). „Modularity of mind“. In.
Roemmele, Melissa, Cosmin Adrian Bejan, and Andrew S Gordon (2011). „Choice of

plausible alternatives: An evaluation of commonsense causal reasoning“. In: 2011 AAAI
Spring Symposium Series.

Roesner, Franziska, Tadayoshi Kohno, and David Wetherall (2012). „Detecting and
Defending Against {Third-Party} Tracking on the Web“. In: 9th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 12), pp. 155–168.

Roger, Alexis (2022). „A review of modern surveillance techniques and their presence in
our society“. In: arXiv preprint arXiv:2210.09002.

111

https://GitHub.com/FacebookResearch/Nevergrad

Roller, Stephen, Sainbayar Sukhbaatar, Jason Weston, et al. (2021). „Hash Layers For
Large Sparse Models“. In: Advances in Neural Information Processing Systems 34,
pp. 17555–17566.

Rosenbaum, Clemens, Ignacio Cases, Matthew Riemer, and Tim Klinger (2019). „Routing
networks and the challenges of modular and compositional computation“. In: arXiv
preprint arXiv:1904.12774.

Rosenbaum, Clemens, Tim Klinger, and Matthew Riemer (2017). „Routing networks:
Adaptive selection of non-linear functions for multi-task learning“. In: arXiv preprint
arXiv:1711.01239.

Rubin, Ohad, Jonathan Herzig, and Jonathan Berant (2021). „Learning to retrieve
prompts for in-context learning“. In: arXiv preprint arXiv:2112.08633.

Ruder, Sebastian (2017). „An overview of multi-task learning in deep neural networks“.
In: arXiv preprint arXiv:1706.05098.

Rule, James B and Graham William Greenleaf (2010). Global privacy protection: the
first generation. Edward Elgar Publishing.

Russell, Matthew A (2013). Mining the social web: data mining Facebook, Twitter,
LinkedIn, Google+, GitHub, and more. " O’Reilly Media, Inc."

Sakaguchi, Keisuke, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi (2021).
„Winogrande: An adversarial winograd schema challenge at scale“. In: Communications
of the ACM 64.9, pp. 99–106.

Samarasinghe, Nayanamana and Mohammad Mannan (2019). „Towards a global per-
spective on web tracking“. In: Computers & Security 87, p. 101569.

Sanchez-Rola, Iskander, Matteo Dell’Amico, Platon Kotzias, Davide Balzarotti, Leyla
Bilge, Pierre-Antoine Vervier, and Igor Santos (2019). „Can i opt out yet? gdpr and
the global illusion of cookie control“. In: Proceedings of the 2019 ACM Asia conference
on computer and communications security, pp. 340–351.

Sanh, Victor, Albert Webson, Colin Raffel, Stephen H Bach, Lintang Sutawika, Zaid
Alyafeai, Antoine Chaffin, Arnaud Stiegler, Teven Le Scao, Arun Raja, et al. (2021a).
„Multitask prompted training enables zero-shot task generalization“. In: arXiv preprint
arXiv:2110.08207.

Sanh, Victor, Albert Webson, Colin Raffel, Stephen H Bach, Lintang Sutawika, Zaid
Alyafeai, Antoine Chaffin, Arnaud Stiegler, Teven Le Scao, Arun Raja, et al. (2021b).
„Multitask prompted training enables zero-shot task generalization“. In: arXiv preprint
arXiv:2110.08207.

Sanh, Victor, Albert Webson, Colin Raffel, et al. (2022). „Multitask Prompted Training
Enables Zero-Shot Task Generalization“. In: The Tenth International Conference on
Learning Representations.

Saxena, Akrati, Pratishtha Saxena, Harita Reddy, and Ralucca Gera (2019). „A survey
on studying the social networks of students“. In: arXiv preprint arXiv:1909.05079.

Schelter, Sebastian et al. (2018). „On the ubiquity of web tracking: Insights from a
billion-page web crawl“. In: The Journal of Web Science 4.

Schneier, Bruce (2015). Data and Goliath: The hidden battles to collect your data and
control your world. WW Norton & Company.

Sevignani, Sebastian (2015). Privacy and capitalism in the age of social media. Routledge.
Shao, Nan, Zefan Cai, Hanwei xu, Chonghua Liao, Yanan Zheng, and Zhilin Yang (2023).

„Compositional Task Representations for Large Language Models“. In: The Eleventh
International Conference on Learning Representations.

112

Sharma, Rishi, James Allen, Omid Bakhshandeh, and Nasrin Mostafazadeh (2018).
„Tackling the story ending biases in the story cloze test“. In: Proceedings of the 56th
Annual Meeting of the Association for Computational Linguistics (Volume 2: Short
Papers), pp. 752–757.

Shazeer, Noam, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey
Hinton, and Jeff Dean (2017a). „Outrageously large neural networks: The sparsely-
gated mixture-of-experts layer“. In: arXiv preprint arXiv:1701.06538.

Shazeer, Noam, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey
Hinton, and Jeff Dean (2017b). „Outrageously large neural networks: The sparsely-
gated mixture-of-experts layer“. In: arXiv preprint arXiv:1701.06538.

Shen, Sheng, Le Hou, Yanqi Zhou, Nan Du, Shayne Longpre, Jason Wei, Hyung Won
Chung, Barret Zoph, William Fedus, Xinyun Chen, et al. (2023). „Mixture-of-experts
meets instruction tuning: A winning combination for large language models“. In: arXiv
preprint arXiv:2305.14705.

Shnitzer, Tal, Anthony Ou, Mırian Silva, Kate Soule, Yuekai Sun, Justin Solomon, Neil
Thompson, and Mikhail Yurochkin (2023). „Large Language Model Routing with
Benchmark Datasets“. In: arXiv preprint arXiv:2309.15789.

Shringarpure, Suyash S and Carlos D Bustamante (2015). „Privacy risks from genomic
data-sharing beacons“. In: The American Journal of Human Genetics 97.5, pp. 631–
646.

Shrotri, Madhumita, Tui Swinnen, Beate Kampmann, and Edward PK Parker (2021).
„An interactive website tracking COVID-19 vaccine development“. In: The Lancet
Global Health 9.5, e590–e592.

Sims, Matthew and David Bamman (2020). „Measuring information propagation in
literary social networks“. In: arXiv preprint arXiv:2004.13980.

Smolensky, Paul (1990). „Tensor product variable binding and the representation of
symbolic structures in connectionist systems“. In: Artificial intelligence 46.1-2, pp. 159–
216.

Solove, Daniel J (2004). The digital person: Technology and privacy in the information
age. Vol. 1. NyU Press.

Sørensen, Jannick and Sokol Kosta (2019). „Before and after gdpr: The changes in third
party presence at public and private european websites“. In: The World Wide Web
Conference, pp. 1590–1600.

Stier, Sebastian, Nora Kirkizh, Caterina Froio, and Ralph Schroeder (2020). „Populist
attitudes and selective exposure to online news: A cross-country analysis combining
web tracking and surveys“. In: The International Journal of Press/Politics 25.3,
pp. 426–446.

Strezoski, Gjorgji, Nanne van Noord, and Marcel Worring (2019). „Many task learning
with task routing“. In: Proceedings of the IEEE/CVF International Conference on
Computer Vision, pp. 1375–1384.

Su, Zhan, Rasmus Helles, Ali Al-Laith, Antti Veilahti, Akrati Saxena, and Jakob Grue
Simonsen (2023). „Privacy Lost in Online Education: Analysis of Web Tracking
Evolution“. In: International Conference on Advanced Data Mining and Applications.
Springer, pp. 440–455.

Sung, Yi-Lin, Varun Nair, and Colin A Raffel (2021). „Training neural networks with
fixed sparse masks“. In: Advances in Neural Information Processing Systems 34,
pp. 24193–24205.

113

Suzgun, Mirac, Nathan Scales, Nathanael Schärli, Sebastian Gehrmann, Yi Tay, Hyung
Won Chung, Aakanksha Chowdhery, Quoc V Le, Ed H Chi, Denny Zhou, et al. (2022).
„Challenging big-bench tasks and whether chain-of-thought can solve them“. In: arXiv
preprint arXiv:2210.09261.

Team, Gemini, Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-Baptiste Alayrac,
Jiahui Yu, Radu Soricut, Johan Schalkwyk, Andrew M Dai, Anja Hauth, et al.
(2023). „Gemini: a family of highly capable multimodal models“. In: arXiv preprint
arXiv:2312.11805.

Touvron, Hugo, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux,
Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al.
(2023). „Llama: Open and efficient foundation language models“. In: arXiv preprint
arXiv:2302.13971.

Tow, Jonathan, Marco Bellagente, Dakota Mahan, and Carlos Riquelme (2023). StableLM
3B 4E1T.

Tufekci, Zeynep (2017). Twitter and tear gas: The power and fragility of networked
protest. Yale University Press.

Urban, Tobias, Dennis Tatang, Martin Degeling, Thorsten Holz, and Norbert Pohlmann
(2020). „Measuring the impact of the gdpr on data sharing in ad networks“. In:
Proceedings of the 15th ACM Asia Conference on Computer and Communications
Security, pp. 222–235.

Urman, Aleksandra and Mykola Makhortykh (2023). „You are how (and where) you
search? Comparative analysis of web search behavior using web tracking data“. In:
Journal of Computational Social Science, pp. 1–16.

Vandenhende, Simon, Stamatios Georgoulis, Marc Proesmans, Dengxin Dai, and Luc
Van Gool (2020). „Revisiting multi-task learning in the deep learning era“. In: arXiv
preprint arXiv:2004.13379 2.3.

Vaswani, Ashish, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Łukasz Kaiser, and Illia Polosukhin (2017a). „Attention is all you need“. In:
Advances in neural information processing systems 30.

Vaswani, Ashish, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Łukasz Kaiser, and Illia Polosukhin (2017b). „Attention is all you need“. In:
Advances in neural information processing systems 30.

Vaswani, Ashish, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N.
Gomez, Lukasz Kaiser, and Illia Polosukhin (2017c). „Attention Is All You Need“. In:
CoRR abs/1706.03762. arXiv: 1706.03762.

Victor, Sanh, Webson Albert, Raffel Colin, Bach Stephen, Sutawika Lintang, Alyafeai
Zaid, Chaffin Antoine, Stiegler Arnaud, Raja Arun, Dey Manan, et al. (2022). „Mul-
titask prompted training enables zero-shot task generalization“. In: International
Conference on Learning Representations.

Vlajic, Natalija, Marmara El Masri, Gianluigi M Riva, Marguerite Barry, and Derek
Doran (2018). „Online Tracking of Kids and Teens by Means of Invisible Images:
COPPA vs. GDPR“. In: Proceedings of the 2nd International Workshop on Multimedia
Privacy and Security, pp. 96–103.

Voigt, Paul and Axel Von dem Bussche (2017). „The eu general data protection regulation
(gdpr)“. In: A Practical Guide, 1st Ed., Cham: Springer International Publishing
10.3152676, pp. 10–5555.

114

https://arxiv.org/abs/1706.03762

Vu, Tu, Brian Lester, Noah Constant, Rami Al-Rfou, and Daniel Cer (2021). „Spot:
Better frozen model adaptation through soft prompt transfer“. In: arXiv preprint
arXiv:2110.07904.

Vu, Tu, Tong Wang, Tsendsuren Munkhdalai, Alessandro Sordoni, Adam Trischler,
Andrew Mattarella-Micke, Subhransu Maji, and Mohit Iyyer (Nov. 2020a). „Explor-
ing and Predicting Transferability across NLP Tasks“. In: Proceedings of the 2020
Conference on Empirical Methods in Natural Language Processing (EMNLP). Online:
Association for Computational Linguistics, pp. 7882–7926.

Vu, Tu, Tong Wang, Tsendsuren Munkhdalai, Alessandro Sordoni, Adam Trischler,
Andrew Mattarella-Micke, Subhransu Maji, and Mohit Iyyer (2020b). „Exploring and
predicting transferability across NLP tasks“. In: arXiv preprint arXiv:2005.00770.

Wallingford, Matthew, Hao Li, Alessandro Achille, Avinash Ravichandran, Charless
Fowlkes, Rahul Bhotika, and Stefano Soatto (2022). „Task adaptive parameter sharing
for multi-task learning“. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 7561–7570.

Wang, Haixin, Xinlong Yang, Jianlong Chang, Dian Jin, Jinan Sun, Shikun Zhang,
Xiao Luo, and Qi Tian (2024). „Parameter-efficient tuning of large-scale multimodal
foundation model“. In: Advances in Neural Information Processing Systems 36.

Wang, Xinyi, Lucas Caccia, Oleksiy Ostapenko, Xingdi Yuan, William Yang Wang, and
Alessandro Sordoni (2024). Guiding Language Model Math Reasoning with Planning
Tokens. arXiv: 2310.05707 [cs.CL].

Wang, Yaqing, Subhabrata Mukherjee, Xiaodong Liu, Jing Gao, Ahmed Hassan Awadal-
lah, and Jianfeng Gao (2022). „AdaMix: Mixture-of-Adapter for Parameter-efficient
Tuning of Large Language Models“. In: arXiv preprint arXiv:2205.12410.

Wang, Yizhong, Hamish Ivison, Pradeep Dasigi, Jack Hessel, Tushar Khot, Khyathi
Raghavi Chandu, David Wadden, Kelsey MacMillan, Noah A Smith, Iz Beltagy, et al.
(2023). „How Far Can Camels Go? Exploring the State of Instruction Tuning on Open
Resources“. In: arXiv preprint arXiv:2306.04751.

Wang, Yizhong, Swaroop Mishra, Pegah Alipoormolabashi, Yeganeh Kordi, Amirreza
Mirzaei, Anjana Arunkumar, Arjun Ashok, Arut Selvan Dhanasekaran, Atharva Naik,
David Stap, et al. (2022a). „Super-naturalinstructions: Generalization via declarative
instructions on 1600+ nlp tasks“. In: arXiv preprint arXiv:2204.07705.

Wang, Yizhong, Swaroop Mishra, Pegah Alipoormolabashi, Yeganeh Kordi, Amirreza
Mirzaei, Anjana Arunkumar, Arjun Ashok, Arut Selvan Dhanasekaran, Atharva Naik,
David Stap, et al. (2022b). „Super-naturalinstructions: Generalization via declarative
instructions on 1600+ nlp tasks“. In: arXiv preprint arXiv:2204.07705.

Wang, Zhefeng, Enhong Chen, Qi Liu, Yu Yang, Yong Ge, and Biao Chang (2015).
„Maximizing the coverage of information propagation in social networks“. In: Twenty-
Fourth International Joint Conference on Artificial Intelligence.

Wang, Zirui, Yulia Tsvetkov, Orhan Firat, and Yuan Cao (2020). „Gradient vaccine:
Investigating and improving multi-task optimization in massively multilingual models“.
In: arXiv preprint arXiv:2010.05874.

Wang, Zirui, Yulia Tsvetkov, Orhan Firat, and Yuan Cao (2021). „Gradient Vaccine: In-
vestigating and Improving Multi-task Optimization in Massively Multilingual Models“.
In: International Conference on Learning Representations.

115

https://arxiv.org/abs/2310.05707

Wei, Jason, Maarten Bosma, Vincent Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester,
Nan Du, Andrew M. Dai, and Quoc V Le (2022). „Finetuned Language Models are
Zero-Shot Learners“. In: International Conference on Learning Representations.

Wen, Yeming, Dustin Tran, and Jimmy Ba (2020). BatchEnsemble: An Alternative
Approach to Efficient Ensemble and Lifelong Learning. arXiv: 2002.06715 [cs.LG].

Wen, Yuxin, Neel Jain, John Kirchenbauer, Micah Goldblum, Jonas Geiping, and Tom
Goldstein (2023). „Hard prompts made easy: Gradient-based discrete optimization for
prompt tuning and discovery“. In: arXiv preprint arXiv:2302.03668.

Westerlund, Mika, Diane A Isabelle, and Seppo Leminen (2021). „The acceptance of
digital surveillance in an age of big data“. In.

Wortsman, Mitchell, Gabriel Ilharco, Samir Ya Gadre, Rebecca Roelofs, Raphael Gontijo-
Lopes, Ari S Morcos, Hongseok Namkoong, Ali Farhadi, Yair Carmon, Simon Kornblith,
et al. (2022). „Model soups: averaging weights of multiple fine-tuned models improves
accuracy without increasing inference time“. In: International Conference on Machine
Learning. PMLR, pp. 23965–23998.

Wortsman, Mitchell, Vivek Ramanujan, Rosanne Liu, Aniruddha Kembhavi, Mohammad
Rastegari, Jason Yosinski, and Ali Farhadi (2020). „Supermasks in superposition“. In:
Advances in Neural Information Processing Systems 33, pp. 15173–15184.

Wu, Junda, Tong Yu, Rui Wang, Zhao Song, Ruiyi Zhang, Handong Zhao, Chaochao Lu,
Shuai Li, and Ricardo Henao (2024). „Infoprompt: Information-theoretic soft prompt
tuning for natural language understanding“. In: Advances in Neural Information
Processing Systems 36.

Xiong, Jiangmei, Yulin Hswen, and John A Naslund (2020). „Digital surveillance for
monitoring environmental health threats: A case study capturing public opinion from
twitter about the 2019 Chennai water crisis“. In: International journal of environmental
research and public health 17.14, p. 5077.

Yadav, Prateek, Derek Tam, Leshem Choshen, Colin Raffel, and Mohit Bansal (2023).
„TIES-Merging: Resolving Interference When Merging Models“. In: Thirty-seventh
Conference on Neural Information Processing Systems.

Yang, An, Junyang Lin, Rui Men, Chang Zhou, Le Jiang, Xianyan Jia, Ang Wang, Jie
Zhang, Jiamang Wang, Yong Li, et al. (2021). „M6-t: Exploring sparse expert models
and beyond“. In: arXiv preprint arXiv:2105.15082.

Yang, Enneng, Junwei Pan, Ximei Wang, Haibin Yu, Li Shen, Xihua Chen, Lei Xiao,
Jie Jiang, and Guibing Guo (2023). „Adatask: A task-aware adaptive learning rate
approach to multi-task learning“. In: Proceedings of the AAAI Conference on Artificial
Intelligence. Vol. 37. 9, pp. 10745–10753.

Yang, Jaewon and Jure Leskovec (2010). „Modeling information diffusion in implicit
networks“. In: 2010 IEEE international conference on data mining. IEEE, pp. 599–608.

Yang, Zhiju, Weiping Pei, Monchu Chen, and Chuan Yue (2022). „Wtagraph: Web
tracking and advertising detection using graph neural networks“. In: 2022 IEEE
Symposium on Security and Privacy (SP). IEEE, pp. 1540–1557.

Yang, Zonghan and Yang Liu (2022). „On robust prefix-tuning for text classification“.
In: International Conference on Learning Representations.

Ye, Qinyuan, Bill Yuchen Lin, and Xiang Ren (Nov. 2021a). „CrossFit: A Few-shot
Learning Challenge for Cross-task Generalization in NLP“. In: Proceedings of the 2021
Conference on Empirical Methods in Natural Language Processing, pp. 7163–7189.

116

https://arxiv.org/abs/2002.06715

Ye, Qinyuan, Bill Yuchen Lin, and Xiang Ren (2021b). „Crossfit: A few-shot learning
challenge for cross-task generalization in nlp“. In: arXiv preprint arXiv:2104.08835.

Zadouri, Ted, Ahmet Üstün, Arash Ahmadian, Beyza Ermiş, Acyr Locatelli, and Sara
Hooker (2023). „Pushing mixture of experts to the limit: Extremely parameter efficient
moe for instruction tuning“. In: arXiv preprint arXiv:2309.05444.

Zaken, Elad Ben, Shauli Ravfogel, and Yoav Goldberg (2021). „Bitfit: Simple parameter-
efficient fine-tuning for transformer-based masked language-models“. In: arXiv preprint
arXiv:2106.10199.

Zaremoodi, Poorya, Wray Buntine, and Gholamreza Haffari (2018). „Adaptive knowledge
sharing in multi-task learning: Improving low-resource neural machine translation“.
In: Proceedings of the 56th Annual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers), pp. 656–661.

Zellers, Rowan, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi (2019). „Hel-
laswag: Can a machine really finish your sentence?“ In: arXiv preprint arXiv:1905.07830.

Zhang, Jinghan, Shiqi Chen, Junteng Liu, and Junxian He (2023). „Composing parameter-
efficient modules with arithmetic operations“. In: arXiv preprint arXiv:2306.14870.

Zhang, Qingru, Minshuo Chen, Alexander Bukharin, Pengcheng He, Yu Cheng, Weizhu
Chen, and Tuo Zhao (2023). „Adaptive budget allocation for parameter-efficient
fine-tuning“. In: arXiv preprint arXiv:2303.10512.

Zhang, Renrui, Jiaming Han, Aojun Zhou, Xiangfei Hu, Shilin Yan, Pan Lu, Hongsheng
Li, Peng Gao, and Yu Qiao (2023). „Llama-adapter: Efficient fine-tuning of language
models with zero-init attention“. In: arXiv preprint arXiv:2303.16199.

Zhang, Xichen and Ali A Ghorbani (2020). „An overview of online fake news: Character-
ization, detection, and discussion“. In: Information Processing & Management 57.2,
p. 102025.

Zhang, Yu and Qiang Yang (2021). „A survey on multi-task learning“. In: IEEE Trans-
actions on Knowledge and Data Engineering 34.12, pp. 5586–5609.

Zhao, Wayne Xin, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou,
Yingqian Min, Beichen Zhang, Junjie Zhang, Zican Dong, et al. (2023). „A survey of
large language models“. In: arXiv preprint arXiv:2303.18223.

Zhao, Xiangyun, Haoxiang Li, Xiaohui Shen, Xiaodan Liang, and Ying Wu (2018). „A
modulation module for multi-task learning with applications in image retrieval“. In:
Proceedings of the European Conference on Computer Vision (ECCV), pp. 401–416.

Zhao, Yan, Sheng Bin, Gengxin Sun, et al. (2022). „Research on information propagation
model in social network based on BlockChain“. In: Discrete Dynamics in Nature and
Society 2022.

Zhao, Zihao, Eric Wallace, Shi Feng, Dan Klein, and Sameer Singh (2021). „Calibrate
before use: Improving few-shot performance of language models“. In: International
Conference on Machine Learning. PMLR, pp. 12697–12706.

Zhou, Kaiyang, Jingkang Yang, Chen Change Loy, and Ziwei Liu (2022). „Conditional
prompt learning for vision-language models“. In: Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pp. 16816–16825.

Zhou, Wangchunshu, Canwen Xu, and Julian McAuley (2022). „Efficiently tuned param-
eters are task embeddings“. In: arXiv preprint arXiv:2210.11705.

Zhou, Yanqi, Tao Lei, Hanxiao Liu, Nan Du, Yanping Huang, Vincent Zhao, Andrew M
Dai, Quoc V Le, James Laudon, et al. (2022). „Mixture-of-experts with expert choice
routing“. In: Advances in Neural Information Processing Systems 35, pp. 7103–7114.

117

Zhu, Beier, Yulei Niu, Yucheng Han, Yue Wu, and Hanwang Zhang (2023). „Prompt-
aligned gradient for prompt tuning“. In: Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 15659–15669.

Zuboff, Shoshana (2023). „The age of surveillance capitalism“. In: Social Theory Re-Wired.
Routledge, pp. 203–213.

118

	Acknowledgements
	Acknowledgements
	Abstract
	Abstract
	Resumé
	Resumé
	Publications
	Publications
	Introduction
	Thesis Outline
	Information Propagation in Language Modeling
	Concepts and Notation: The Basics
	Transformer Structure
	Modules
	Function Composition
	Input Composition
	Parameter Composition
	Hybrid Methods
	Contributions

	Routing Function: Selection of Active Modules
	Fixed Routing
	Learned Routing
	Routing with Different Granularity
	Routing with Different Input Granularity
	Contributions

	Aggregation Function: How are the outputs of the active modules aggregated?
	Parameter Aggregation
	Representation Aggregation
	Function Aggregation
	Contributions

	Information Propagation in Web Tracking
	Digital surveillance
	Web tracking
	Web Tracking Technologies
	Third-party Web Tracking

	Historical Web Tracking
	The Role of Global Diversity in Web Tracking Evolution
	Political and Economic Influences
	Cultural Reflections Through Web Tracking
	Contributions

	I Modular Language Modeling
	Multi-Head Routing for Cross Tasks Generalization
	Introduction
	Related Work
	Background
	Adapters: LoRA & (IA)3
	Polytropon: Adapter Routing

	Multi-Head Adapter Routing
	Experiments
	Baselines
	Datasets

	Results and Discussion
	Does the expressivity of the routing function matter?
	Why do routing-based PEFT methods yield superior performance?
	Is routing important for task generalization?

	Conclusions
	Appendix
	Additional Results
	Navigating the parameter efficiency / performance trade-off of tuning only the routing
	On the granularity of routing tensor in MHR

	Broader Impact

	Mixture of LoRA Experts Using Tensor Product
	Introduction
	Related Work
	Background
	Module: LoRA
	Tensor, Tensor Product, Entangled Tensor
	Tensorized Training Parameters with Tensor Product

	Methods: TensorPoly
	TensorPoly-I
	TensorPoly-II

	Experiments
	Backbone, Datasets and Evaluation
	Baselines
	Results
	Rank and Order Analysis

	Routing Analysis
	Flop Analysis
	Discussion

	Conclusion

	Towards Modular LMs by Building and Reusing a Library of LoRA Adapters
	Instruction
	Preliminaries
	Building the LoRA Library
	Re-Using the LoRA Library
	Routing
	Zero-Shot Example Routing
	Supervised Task Routing

	LoRA Composition

	Experiments
	Zero-Shot Results
	Supervised Adaptation
	Summary of Results

	Related Work
	Conclusion
	Appendix
	Analyzing ABTv2 for in-distribution and out-of-distribution samples
	Zero-shot routing extended results
	Few-shot adaptation

	II Information Propagation in Web Tracking
	Privacy Lost in Online Education: Analysis of Web Tracking Evolution
	Introduction
	Related Work
	Data collection
	Collecting Websites
	Scanning the Historical Snapshot
	Extraction of Third-party Trackers

	Analysis and Discussion
	Evolution of tracker domains per website
	The number of trackers on educational and non-educational websites
	Evolution of usage rate for the most common trackers
	Distribution of trackers in educational and non-educational sites
	Evolution of different categories of trackers
	Discussion

	Conclusions
	Appendix
	Tracker Categories

	Bibliography

