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Abstract

Phylogenetics is a vast and important topic in biology, with far-reaching applications.
Yet the state of the art phylogenetic inference process is currently time consuming
and requires expert knowledge of the clades being analyzed. In this thesis we explore
methods of applying deep learning to the problem of phylogenetic inference. The
application of deep learning to phylogenetics is a broad topic, but our focus is on
the automatic extraction of traits from images of insects and how they could be
used in existing phylogenetic inference methods. In the first part of this thesis we
show how traits extracted from images using deep metric learning techniques carry
a phylogenetic signal and how these traits can be used in conjunction with genetic
data. Combining the morphological traits with traditional genetic traits does have
some advantages, for example, we can place species without genetic data on the
tree, however the accuracy of the trees generated by adding the morphological traits
shows that this area requires further study to be viable.

Eventually, in the interest of exploring explainability in the model, and directly
combining deep learning with the phylogenetic inference methods, we moved to-
wards working with simulated genetic data, as this allows us to work with simulated
ground truth phylogenies and test methods more rigorously without the uncertainty
of the empirical phylogeny. We present methods for directly optimizing deep learnt
traits based on a phylogeny which could lead to further explainability of trait ex-
traction algorithms in the future. Here we show how these methods can be used to
extract traits, but the results are not yet comparable to traditional genetic inference
methods.

Finally we discuss the results of this thesis and potential future areas of explo-
ration.
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Abstrakt

Fylogenetik er et stort og vigtigt emne inden for biologi, med vidtrækkende anven-
delser. Alligevel er den nyeste fylogenetiske inferensproces i øjeblikket tidskrævende
og kræver ekspertviden om de klader, der analyseres. I denne afhandling undersøger
vi metoder til at anvende deep learning på problemet med fylogenetisk inferens.
Anvendelsen af deep learning til fylogenetik er et bredt emne, men vores fokus er
på den automatiske udvinding af karaktertræk fra billeder af insekter, og hvordan
de kan bruges i eksisterende fylogenetiske inferensmetoder. I den første del af
denne afhandling viser vi, hvordan karaktertræk udvundet fra billeder ved hjælp
af deep metric learning teknikker bærer et fylogenetisk signal, og hvordan disse
karaktertræk kan bruges sammen med genetiske data. At kombinere de morfologiske
egenskaber med traditionelle genetiske egenskaber har nogle fordele, for eksempel
kan vi placere arter uden genetiske data på træet, men nøjagtigheden af træerne
genereret ved at tilføje de morfologiske egenskaber viser, at dette område kræver
yderligere undersøgelse for at være fyldestgørende.

Herefter, for at udforske forklarligheden i modellen og kombinere deep learning
med de fylogenetiske inferensmetoder, vil vi arbejde med simulerede genetiske data,
da dette giver os mulighed for at undersøge simulerede ground truth fylogenier
og testmetoder mere stringent uden usikkerhed om den empiriske fylogeni. Vi
præsenterer metoder til direkte optimering af deep learnt egenskaber baseret på en
fylogeni, som kan føre til yderligere forklaring af karaktertræksekstraktionsalgorit-
mer i fremtiden. Her viser vi, hvordan disse metoder kan bruges til at udtrække
karaktertræk, men resultaterne er endnu ikke sammenlignelige med traditionelle
genetiske inferensmetoder.

Til sidst diskuterer vi resultaterne af denne afhandling og mulige fremtidige forskn-
ingsideer.
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Nomenclature

„Individuals can be divided and conquered, but
symbols. . . Symbols endure

— Commander Klaes Ashford, The Expanse

N Number of species

L Number of Latent Variables / Independent Characters / Traits

M Number of Raw Characters / Size of Raw Input Data (ie, Number of Pixels if
using images or Base Pairs if using Genetic Data)

S Number of Examples per Species

τ Tree Topology

q Branch Lengths on Topology τ

V Variance-covariance matrix describing the tree topology and branch lengths.
(’T’ in Felsenstein [20])

X Input data ∈ RNxSxM

Y Reconstruction output of autoencoder data ∈ RNxSxM

W Matrix of independent character traits / latent variable per specimen ∈
RNxSxL, assuming the same number of specimens per species.

Z Matrix of independent character traits / latent variable per species ∈ RNxL

#{S} Cardinality, or size, of set S

AS Align Score

nAS normalized Align Score

nRF normalized Robinson Foulds (metric)

RF Robinson Foulds (metric)
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Reading Guide

This work is separated into 7 chapters. The initial two provide introduction, moti-
vation and background knowledge. Chapters 3 and 4 present papers and therefore
the paper itself is pasted into the text, with further introduction to the work and
analysis provided where enlightening. Chapter 5 presents a body of research not yet
published elsewhere. It is recommended to read the chapters in order. The final two
chapters discuss the work of this thesis and present ideas for future work.

Chapter 3 - Abbey Rove follows our first paper, "Rove-Tree-11" and covers some
important initial steps to investigate how we can generate phylogenetic trees from
images of digitized pinned insect specimens, including:

1. Assembling the Dataset - Publishing a dataset of images of rove beetles along
with an associate phylogeny to be used in deep hierarchical metric learning
research

2. Deep Metric Learning Techniques - Showing how existing deep metric learning
can be used to extract traits from the hierarchical image dataset

3. Phylogenetic Inference and Comparison Methods - Showing how existing
Bayesian phylogenetic inference methods can be applied to said traits

4. Tree Comparison Metrics - Showing that said traits carry a phylogenetic signal
and comparing the resulting trees

Chapter 4 - Gattaca provides follows the second paper "Total-Evidence" and builds
on the work in the first paper by:

1. Gathering Genetic Data - Assembly of a genetic dataset to complement the
Rove-Tree-11 dataset

2. Exploring a total evidence approach - How can the deep learnt morphological
traits be combined with genetic data for total evidence analysis

xvii



3. Use of Maximum Parsimony Inference - Due to software constraints, it was
easiest to use maximum parsimony inference methods to complete the total
evidence analysis as opposed to the bayesian methods used in Chapter 3.

Chapter 5 - What’s under the likelihood - The third preliminary body of work ex-
plores some deeper questions of directly optimizing the phylogenetic inference
using known phylogenetic functions or variants thereof. Here I show some ideas,
preliminary results and hypotheses around the following topics:

1. Independance assumptions - Can we use deep learning to extract traits which
obey the independance assumption of characters

2. Direct optimization - Can we use Felsenstein’s likelihood or Blomberg’s K
to directly optimize deep learnt traits extracted from images which could
eventually add explainability to these models

Chapter 6 - Discussion and Future Work Here we present some ideas for continu-
ation of this work.

Finally Chapter 7 provides a conclusion of our research.

Audience This thesis is mainly written with someone like myself 3 years ago in
mind: Someone with some computer science and deep learning background and
little biological background, who is being introduced to the exciting research area
of phylogenetics. With that in mind, many of the introductory biological topics will
be too basic for the average bioinformatician, but may be completely new to the
average computer scientist. I have tried to also provide some links to introductory
material of the fundamentally related computer science topics.

References for the individual papers are attached at the end of the papers themselves
since the papers are kept in their original published/preprint format.

xviii



1Introduction

„This book was written using 100% recycled
words.

— Terry Pratchett
Wyrd Sisters

The goal of this work is to explore how deep learning could be used to infer explain-
able evolutionary relationships from digitized images of specimens from museums.

1.1 Project Motivation

Phylogenetics as a field: Phylogenetics is the retrospective study of evolutionary
relationships. Phylogenetic inference itself aims to answer surface level questions
such as: How related are two species? At what point in time did these two species
diverge? While on the surface (and certainly before I stepped into this field) these
questions may appear innocuous, they are fundamental stepping stones to further
important biological questions such as which biological traits have stronger evolu-
tionary pressure to evolve (ie, the carcinization theory [56]). This can, for example,
inform us about desirable evolutionary traits.

To put it simply, phylogenetics aims to infer evolutionary trees such as that shown in
fig. 1.1. Such trees have several potential applications in biological research, a few
concrete applications of phylogenetics are:

1. Biodiversity and Conservation: There are many potential measures of biodi-
versity. One of the easiest is simply genetic diversity [11], however, due to
varying evolutionary rates in populations and intraspecific genetic diversity,
this may not reflect endangered taxa and therefore phylogenetic biodiversity
[48]. Phylogenetics is important to determining evolutionary distances which
informs evolutionary diversity and determines where best to place conservation
efforts to maintain the highest ancestral diversity [106].
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creophilus

dinothenarus

ocypus

tasgius

emus

platydracus

staphylinus

ontholestes

Fig. 1.1: Example phylogenetic tree. Lengths of horizontal branches represent calculated
evolutionary distance. Polytomies (nodes with more than two children), such as
the clade (platydracus, staphylinus, ontholestes) indicates uncertainty in the lineage.
Many other ways of representing phylogenetic trees exist. Graphic made in part
using the toytree package [18].

2. Virology: Phylogenetics is used in virology to study how infections spread by
tracing infections and mapping them to the phylogeny of the virus [97].

3. Agriculture: Phylogenetics has applications in agriculture where it is used to
help farmers understand the spread of disease and how to promote disease
resistance in crops [57].

4. Forensics: Phylogenetics has been used in some court cases to prove transmis-
sion, for example in cases regarding HIV transmission [77].

5. Comparative Studies: Phylogenetics is necessary to account for the phyloge-
netic relationship in comparative studies of traits. This was famously used by
Felsenstein to study the relationship between brain size and body weight in
species [23].

The diversity of applications above highlights the wide-reaching real world impact
of the field of phylogenetics.

How could deep learning contribute to phylogenetic research? The field of
deep learning has expanded greatly in the last decade and continues to grow [45].
Deep learning has proven highly effective at learning complex relationships between
datapoints, mirroring or surpassing expert diagnoses in many cases [68, 82].

There are three main areas where I see a strong potential for deep learning to
contribute to the phylogenetic research community:

2 Chapter 1 Introduction



1. Efficiency The common methods of phylogenetic inference, such as maximum
parsimony and bayesian inference, require iterative searches across tree space
using random (or lightly informed) moves [19]. Some work has already shown
promise in applying deep learning to suggesting potential tree moves and
therefore increasing the efficiency of the tree search process [4].

2. Scalability Currently phylogenetic analysis is a meticulous process requiring
taxonomic experts to identify phylogenetically important genes and morpho-
logical traits. This makes phylogenetic inference slow, sometimes taking weeks
to run [24]. Deep learning methods however have shown potential to reach
or surpass expert level classification accuracy [68] and vastly surpass them
in scalability. Therefore it seems natural to assume that with the correct for-
mulation, such methods may outperform experts at phylogenetic inference.
Perhaps not in accuracy, but likely in scalability. The scalability factor is of
particular importance when we consider that there are a estimated 5.5 million
species of insects alone [88] with only 1 million currently described [84]. In
order to understand and analyze life we need methods which can scale with
the breadth of natural diversity. Current methods of phylogenetic inference
can take weeks to analyze 10 000 sequences for a single gene [24]. Supertree
methods, which combine smaller trees into larger ones, can be used to combine
phylogenies from separate inference processes. However they are shown to
have trouble reaching the accuracy of direct inference methods, and require
their own hyperparameter tuning [101]. Therefore if deep learning could be
used to compress the data to make inference methods on larger datasets feasi-
ble, or directly infer phylogenies for large dataset, this could vastly improve
the scalability.

3. Objectivity The process of morphological trait choice is subjective. One study
shows that subjective expert chosen morphological traits perform worse than
objective morphometrics at species delimitation tasks [61]. Taxonomic experts
have some biases due to their history with the clade in question. This bias is
somewhat desirable, as it is based on years of research and understanding of
the biological clade along with evolutionary relationships. Boster and Johnson
[10] even showed that expert trait identification is more varied than novice
trait identification, suggesting that expert trait choice is highly subjective,
although this was in a study of fish similarity. However, if it is possible for us
to embed evolutionary understanding into the deep learning models, or better
yet, have the deep learning models learn these relationships independently, we
can increase objectivity.

Given the above, I expect that deep learning methods may contribute greatly to the
field of phylogenetics.

1.1 Project Motivation 3



Why focus on morphological traits? In this work we choose to focus on mor-
phological traits, even though the phylogenetic community has tended to focus on
the genetic inference methods. The focus on genetic data happens for a variety of
reasons. Firstly, genetic data is typically regarded as carrying a stronger phylogenetic
signal [113], this is supported by systematic issues with morphological traits such
as homologies, mimicry and convergent evolution [113]. Secondly, the high level
of taxon-specific expertise required to score and defend morphological trait choice
make morphological analyses increasingly cumbersome to biologists. Nevertheless,
not only is it not possible to obtain genetic data from some species due to extinction,
dna degradation, or issues with obtaining specimens [49], but this process is also
usually destructive to the specimen [70]. Additionally morphological traits have
been shown to improve phylogenetic inference when traits are chosen appropriately
[49]. That said, the extent to which morphological traits should be used is debated
[79]. We choose to focus on morphological traits, given the above, because we
expect that deep learning can greatly increase the objectivity and scalability of mor-
phological trait extraction, allowing automatic placements of species where genetic
data is not possible to obtain.

Is habitus enough? Dorsal images of insects do not carry information about all
the morphological traits that experts would use in phylogenetics. A fair criticism of
this work is whether the ’habitus’, or overall external features of the organism, can
provide enough evolutionary information to form a phylogeny. While information
from the habitus is not the only information used in morphological traits, it is of
importance, and takes us back to the historic phenetics analysis of Sokal and Sneath
[85], who were among the first to generate phylogenies from morphological traits in
a systematic manner. While we agree that including further internal morphological
traits would be beneficial (as they have proven to be for traditional systematics), we
see using external habitus information as a first step in this direction, and assume
that methods developed in this area of research could be applied to more complex
datasets, of for example, 3d scans of specimens which would include important
morphological features.

1.2 Project and Research Questions

This work is part of the larger PHYLORAMA project, which is a collaborative project
between the University of Copenhagen and the Natural History Museum of Denmark.
Over the course of three phd projects PHYLORAMA aims to use state of the art
computer science and biological methods to improve phylogenetic inference. One of
the PhD projects focuses on traditional methods of phylogenetic reconstruction for
the species-rich group of rove beetles, a focus which this research continues. Another
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PhD project focuses on accurate and cheap 3D reconstruction of fossils preserved
in amber. This would allow widespread accurate digitization of amber specimens,
allowing them to be more easily and automatically integrated into the phylogenetic
inference process. Overall, we hope PHYLORAMA will promote the digitization of
museum specimens, and the use of advanced computer science techniques in the
phylogenetic inference processes.

My thesis focuses on the automatic inference of phylogenies from images of pinned
insects. As introduced above, we are interested in increasing the efficiency, scalability
and objectivity of phylogenetic inference using deep learning on images. To do this,
we first explore if we can use deep learning methods to extract phylogenetic traits
from images, similar to classic phenetic methods. The extraction of these traits
allows us to compress the phylogenetic data in a compact number of traits which
can be efficiently run through existing inference methods. To understand how these
methods compare to existing methods, we then want to gather genetic material and
compare with existing genetic methods in so called total evidence analysis. Finally,
given issues with explainability in deep learning models, we then want to explore
how deep learning might be used to explain phylogenetic trees and add objectivity
to trait extraction.

More specifically the research questions investigated in this work are:

1. How can deep learning best be used to extract phylogenetically relevant traits
from dorsal images of pinned insect specimens?

[Chapter 3] explores this by first assembling a dataset of pinned rove beetle
images, then using existing deep metric learning methods to extract traits
from images, using existing inference methods to infer phylogenetic trees from
the extracted continuous traits and finally assessing the generated trees using
existing metrics.

2. How could such traits be used in conjunction with genetic data for total
evidence analysis?

[Chapter 4] explores this by collaborating with biologists who gathered rele-
vant genetic data and comparing trees inferred from deep learning morpho-
logical traits to trees inferred from molecular traits, and how they could be
combined into total evidence analyses.

3. How can we add explainability to such models, so that deep learning methods
can direct us towards phylogenetically relevant traits?

1.2 Project and Research Questions 5



[Chapter 5] explores how we can use deep learning to explain traits related
to a specific phylogeny and how we can improve the deep learning models.
As a first step to this we first look at if we give the deep learning model the
phylogenetic relationships, can it learn to extract important traits. To do this
we use simulated genetic data to give certainty in the phylogeny and validity
of evolutionary assumptions.

1.3 Potential Impact of Work

Given the above, it is our hope that the integration of deep learning into the
phylogenetic inference process will ensure it is more streamlined, requires less
expert knowledge, add objectivity and most importantly, make it feasible to complete
the inference on larger sets of taxa. This could give us a much better overview of the
natural history of our world and understanding of how to optimize our place in it.

1.4 Related Work

While Sapoval et al. [76] rightly assert that the application of deep learning in
phylogenetics is in its infancy, research in this area is steadily growing. Here I give
a brief reference to other attempts in this domain. Mo et al. [58] provide a more
thorough overview of machine learning methods applied to phylogenetics, however
they focus on methods for genetic data. The following section draws heavily from
their summary paper.

Building upon Mo et al. [58], we can categorize the deep learning methods based
on their goal as follows:

Topological Inference - Here, like with parts of this thesis, the goal is to directly
infer the topology. One intuitive way to do this is to phrase it as a classification
problem, however this quickly becomes computationally unrealistic as the number of
unrooted bifurcating trees is (2N−5)!

2N−3(N−3)! , where N is the number of taxa. Therefore
with as few as 15 taxa the number of possible unrooted bifurcating trees is over 7
trillion. Thus researchers found alternative ways to approach the problem.

One way of doing so are so-called quartet-based methods, which predate modern
deep learning, but are nonetheless intuitively appealing. In these methods we split
the taxa into groups of 4 (a quartet). A quartet has 3 possible unrooted bifurcating
tree topologies, therefore it’s easy to frame as a deep learning classification problem,
which is exactly what Suvorov et al. [91] and Zou et al. [112] did, each using
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different approaches for input, dataset, and network. Solis-Lemus et al. [86] and
Wang et al. [100] took a similar approach but using LSTMs and windowed input,
allowed for variable length sequences which did not require alignment. Despite
the success of neural networks at inferring quartets, there is still no way to merge
quartets than the existing amalgamation algorithms, which provided better results on
large trees when used with traditional methods and not deep learning[108]. There
are also issues posed when trying to transfer these methods which were trained on
simulated data to empirical datasets [108].

Another popular approach are distance-based methods, which also predate modern
deep learning. These define a distance measure between the taxa, and merge leaves
based on said distance according to some algorithm to build a tree. (see section 2.1
for more details on eg, neighbour joining). Therefore the goal of these methods
is to correctly define a distance between taxa. To do this Cuthill et al. [16] used
deep convolutional triplet networks to show that phenotypic distances of butterflies
extracted using deep learning can carry a phylogenetic signal. This was separately
confirmed by Kiel [42] who demonstrated this using classification loss on images
of bivalves and by us in [37] (see Chapter 3) where we compared various loss
functions. More recently Furusawa et al. [26] used variational autoencoders to show
that this can be applied to projections of 3D models of primate mandibles. Adaïmé
et al. [3] used a fusion model of extracted features to generate embeddings and
finally phylogenies using bayesian inference. In 2020, Bhattacharjee and Bayzid
[6] used autoencoders with a simple reconstruction loss to successfully impute
values in incomplete distance matrices and generate resulting phylogenetic trees.
In 2022, Nesterenko et al. [64] presented Phyloformer, which used a transformer
based architecture to perform regression on the distance between two sequences
using mean squared error loss. Jiang et al. [40] introduced DEPP, a neural network
which can place new sequences on a given tree. Smith and Hahn [83] developed
PhyloGAN which uses a discriminator network to distinguish between simulated and
observed alignments in order to improve the simulated phylogeny the alignments
are generated from.

Other related methods of applying deep learning to the problem of phylogenetic
inference, which are not the focus of this thesis include:

1. Methods for improving aspects of the topological inference process, such
as determining the degree of difficulty of a dataset [34], suggesting optimal
tree moves [4], classifying quartets as Felsenstein or Farris [50], or improving
the efficiency of calculating the tree probabilities [109].
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2. Branch length Inference methods which assume the tree topology is known
and the goal is to optimize the branch lengths. Suvorov and Schrider [92]
used a regression model and given phylogeny to predict all branch lengths
at once while Tao et al. [93] used a network to determine which branch-rate
model was appropriate for a given phylogeny.

3. Substitution Model Selection methods which focus on choosing the appro-
priate substitution model to use in the inference process. Abadi et al. [1] and
Burgstaller-Muehlbacher et al. [13] used summary statistics from, for example,
the alignment process, fed into a neural network to predict which substitution
model to use during inference.

4. Discordance Quantification methods which focus on quantifying the differ-
ence between inferred gene trees and inferred phylogenetic trees. Gene trees
and phylogenetic trees may not match due to ancestral polymorphisms, hori-
zontal gene transfer, gene duplication or loss, introgression, natural selection,
genetic drift, or recombination. Both Rosenzweig et al. [74] and Zhang et al.
[111] showed an improvement to traditional discordance quanitification using
deep learning.

5. Introgression detection methods which focus is on using machine learning to
detect genetic regions which cause discordance Schrider and Kern [78], Ray
et al. [69], Gower et al. [33], Blischak et al. [7], Burbrink and Gehara [12],
and Hibbins and Hahn [36] all used neural networks for this purpose, typically
convolutional neural networks.

6. Diversification rate inference methods focus is on determining the net rate
of change in biodiversity, such that rdiversification = rspeciation − rextinction. To
do this Voznica et al. [98] introduced a novel matrix method to encode the
phylogenetic tree, called CBLV which Lambert et al. [47] then expanded upon.

7. Viral Transmission - Sun et al. [90] used a vectorized representation of
the nodes and edges in the phylogenetic graph as input to predict pathogen
transmission rates.

8. Ancestral State Reconstruction methods focus is on predicting the state of
internal nodes, or rather, traits of ancestral species. Moreta et al. [59] used a
deep generative protein model to complete ancestral sequence reconstruction.
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1.4.1 Deep Learnt Morphological Traits for Use in
Phylogenetic Analysis

The above related work is heavily focused on genetic data. Currently relatively few
studies focus on deep learning methods of extracting phylogenetically relevant traits
from morphological data. There are many reasons for this. One is that prior to
Rove-Tree-11 [37] there was no standardized image dataset aimed at phylogenetic
inference. Although Cuthill et al. [16], Kiel [42] and Furusawa et al. [26] used their
own image datasets, they focused mainly on the biological results of their work, and
not exploring the deep learning methodology itself.

Another reason that deep learning has been more frequently applied to genetic
datasets for phylogenetic inference, is that empirical datasets are uncertain of the
true phylogenetic tree. Genetic phylogenetic datasets on the other hand can be
readily simulated, giving a known phylogenetic tree which is more reliable for
proving methodological superiority. There is currently no reliable way to simulate
morphological changes and thus generate a realistic simulated dataset with a known
tree. On the other hand, methods of simulating genetic data are well established,
with many software packages [51, 25] available. Although the extent to which these
genetic simulations accurately represent reality is questionable [95].

1.4 Related Work 9





2Background

„Life is like this dark tunnel. You may not always
see the light at the end of the tunnel, but if you
keep moving, you will come to a better place.

— Uncle Iroh
Avatar the Last Airbender

In this chapter I briefly introduce the background knowledge pertinent for this work.
I focus on the background knowledge which I did not have when beginning this
project, and that I expect most computer scientists would not have prior to working
with phylogenetics.

2.1 Phylogenetic Inference Methods

This section provides a simple overview of the different phylogenetic inference
methods. For a more complete introduction please see Felsenstein’s book "Inferring
Phylogenies" [19].

Phylogenetic inference is the process of inferring a phylogenetic tree from observed
traits (ie, morphological traits such as the presence of opposable thumbs, or genetic
traits such as nucleotide sequences). Below is a brief introduction to popular
methods.

2.1.1 Distance Based Methods

As mentioned in section 1.4, distance based methods simply define a distance matrix
between the species, and use an algorithm to determine how to merge nodes based
on these distances. One of the simplest and oldest distance based inference methods
is neighbour-joining, where the two closest taxa (as determined by some measure of
distance) are merged into a clade and their traits are aggregated into a new node
[75]. This process repeats until all taxa are on the tree. Waterman et al. [102]
showed that given a distance matrix which perfectly represents the topology, the
perfect topology can always be inferred, and since these methods tend to be faster
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than iterative inference methods, they have a strong computational advantage. The
difficulty, however, lies in calculating the distance accurately.

2.1.2 Iterative Methods

Unlike neighbour joining, the following methods score how well the traits match a
given candidate tree. Unfortunately it is difficult to analytically optimize these scores
in tree space. Therefore we rely on iterative updates with random initializations
of the tree topology / sub tree topologies and branch lengths to find the best tree.
To do this, in the simplest case, the tree is randomly initialized. Then random
’moves’ are made on the tree (such as nearest neighbor interchange (NNI), Subtree
pruning and regrafting (SPR), and tree bisection and reconnection (TBR)), and the
loss is recalculated. Monte Carlo Markov Chain methods, such as the Metropolis
Hasting sampling algorithm [35], are typically used to accept or reject tree moves.
After the topology has been adjusted, the preferred branch lengths can be found,
and the score of the new topology can be calculated. The move is then typically
rejected or accepted based on the Metropolis Hastings algorithm, and the algorithm
repeats until convergence or it reaches a set number of updates and burnins. Several
computational improvements have been made throughout the years to this process,
for example, once the optimal branch lengths of a specific clade are found, they are
not recalculated as this is not necessary (see Felsenstein’s pruning algorithm [20]).

Maximum Parsimony is an iterative method which calculates the ’parsimony’ of
the tree, or rather, attempts to find the tree that requires the fewest/smallest total
changes along the branches (depending if we are dealing with discrete traits or
continuous traits). For discrete traits this is also referred to as the "edit distance"
in computer science. While it has been shown that the most parsimonious tree is
not necessarily the most likely given the evolutionary process, maximum parsimony
is still used today [103], and in some cases is still preferred over other methods
[32].

Maximum Likelihood defines a probability model of observing the traits Z given
the tree topology τ with branch lengths q, p(Z|τ, q), and uses this to compute
the likelihood of the topology and branch lengths based on the traits. Originally
introduced by Cavalli-Sforza and Edwards [14] and made practically feasible by
Felsenstein [21], this method is the precursor to Bayesian Inference methods, but is
also used today in its own right.

Bayesian Inference builds upon the maximum likelihood approach, but using Bayes
rule allows us to instead optimize p(τ, q, r|Z) = p(Z|τ,q,r)p(τ,q,r)

p(Z) by allowing us to
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put priors on the topology τ , branch lengths q, and perhaps more importantly the
evolutionary rates r.

In maximum likelihood and Bayesian inference typically multiple trees are produced
as output, and then probabilities of observing each branch can be calculated based
on this output. Burn-in and bootstrapping are also commonly used in the probability
calculation [55].

2.2 Deep Metric Learning

Deep metric learning, also known as representation learning, is a subfield of deep
learning concerned with learning useful representations or embeddings of a dataset.
Kaya and Bilge [41] amd Ghojogh et al. [31] provide an overview of deep metric
learning methods. Deep metric learnt representations are typically in some way
either more condensed, more disentangled, or otherwise advantageous to work with
compared to the original data. In this thesis we mainly are interested in three areas
of deep metric learning research:

Disentanglement is the process by which dependant variables are transformed into
independent variables. A simple example is images of a single colored pixel on a
black 20x20 pixel background, this could easily be represented by 5 variables, the x
and y coordinates of the pixel, and the rgb values of the pixel. However, the original
data has 20x20x3 = 1200 variables. DL disentanglement algorithms attempt to use
deep learning to find the independent variables and extract them automatically from
the data. For a recent overview of disentangled representation learning methods see
Wang et al. [99].

Trait Extraction is arguably what deep metric learning is all about, however, we
are specifically interested in extracting phylogenetically relevant traits, as we know
that due to convergent evolution, homologies, mimicry, not all traits (particularly
morphological traits) carry a phylogenetic signal [44]. However, this field is just
beginning and we return to this issue in Chapters 3 and 5.

Hierarchical Deep Metric Learning is an important area of study for us. Hierarchical
data and categorization appear in many areas in our society. From coarse to fine-
grained taxonomies of objects, to phylogenetic trees. The area of hierarchical deep
metric learning concerns itself with either using a hierarchical representation to
better complete a downstream task, or itself determining the hierarchy, as we are
interested in. Badirli et al. [5] relevantly used a hierarchical Bayesian classifer in
their model to complete zero-shot classification of insects using DNA and images.
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Ge [28] modified the classic triplet loss function to infer hierarchies during training,
and use these hierarchies to dynamically adjust the triplet margin.

2.3 Tree Comparison

In order to compare methods we need quantitative measures of how similar two
trees are. Kuhner and Yamato [46] provide a thorough comparison of many different
methods. Since most of this work focuses on topology-only phylogenies (ie, they do
not contain branch length information), we focus on explaining two metrics which
do not need branch lengths: The Robinson-Foulds metric (RF), the Align Score (AS)
and the normalized versions of those (nRF and nAS).

2.3.1 Robinson-Foulds

The Robinson-Foulds metric [73] is the most widely used metric in the biological
community for comparing phylogenetics trees. To understand how it works, let’s
assume we are comparing two tree topologies τ1 and τ2 with sets of nodes nτ1 and
nτ2 , with cardinalities J and K, respectively. Here a tree topology is defined as a
directed acyclic graph for rooted trees, and an undirected connected acyclic graph
for unrooted trees. Note that the number of internal nodes in each tree does not
necessarily need to match (J ̸= K). However, both trees must have the same set of
leaves Lτ1 = Lτ2 = L = {L1, L2...LN }.

First we need to recognize that each node i in a tree, nτ1,i can be said to separate the
leaves of the tree into a partition of two disjoint sets, a and b, or Lτ1,i,a and Lτ1,i,b.
For the purpose of this calculation we can then say each node is defined as this leaf
partition, ie, nτ1,i = {Lτ1,i,a, Lτ1,i,b} We can then define a set of partitions for each
topology, representing all the splits in the tree . Pτ1 = {nτ1,1, nτ1,2...nτ1,J}

Then, the RF score is defined as the number of nodes which exist in τ1 but not in τ2

plus the number of nodes which exist in τ2 but not in τ1:

RF = #{nτ1,i /∈ Pτ2} + #{nτ2,i /∈ Pτ1} (2.1)

To normalize this value we can simply divide it by the total number of nodes in both
trees.
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Fig. 2.1: Toy trees based on species from the ATLA series for highlighting sensitivity of
the RF score. The only difference between τ1 and τ2 is that the Badgermole and
ElephantKoi have switched positions, and yet if we look at the nodes 0-6, we see
that none of them have exact matches between the trees. Therefore these two
trees have a RF score of 14 (7*2), and a maximum RF score of 14, so therefore an
nRF of 1, despite being similar in many respects.

nRF = RF

J + K
(2.2)

The Robinson-Foulds metric, while attractive for its simplicity has some problems.
For one, it does not account for branch lengths. For another, and most importantly
for us, it can be very sensitive to small changes in a tree. The toy example in fig. 2.1
illustrates this.

2.3.2 Align Score

Due to the sensitivity issue highlighted in fig. 2.1 we prefer to measure methods
against the Align Score [65], also sometimes referred to as a kind of generalized
Robinson-Foulds, or the Nye Score.

The Align Score works on a similar principle to RF, except instead of giving a binary
score to each match between trees, the Align Score first finds a matching between
nodes in the trees, and then scores each match between 0 and 1 based on the
intersection over union of the best match. Using the terminology above, the Align
Score is calculated as follows:

First, they define the measure ’a’ between two sets of leaves (Lτ1,ni,a, Lτ2,nj ,b) from
the trees τ1 and τ2 as the proportion of shared leaves:
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aτ1nia,τ2njb =
Lτ1,ni,a∩Lτ2,nj ,b

Lτ1,ni,a∪Lτ2,nj ,b

Given two nodes, nτ1i and nτ2j , one from each tree, each of which partitions two sets
of leaves, there are 4 sets of leaves Lτ1,ni,a, Lτ1,ni,b, Lτ2,nj ,a, Lτ2,nj ,b. There are there-
fore 4 possible ways to calculate a for two nodes: (Lτ1,ni,a, Lτ2,nj ,a), (Lτ1,ni,b, Lτ2,nj ,a),
(Lτ1,ni,a, Lτ2,nj ,b), (Lτ1,ni,b, Lτ2,nj ,b).

Since Nye et al. [65] are interested in finding the ’best’ match, they calculate a
similarity score for each node as:

s(ni, nj) = max(min(aτ1nia,τ2nja, aτ1nib,τ2njb), min(aτ1nia,τ2njb, aτ1nib,τ2nja)) (2.3)

Using this similarity score, Nye et al. [65] build a KXJ matrix of similarity scores,
and use linear sum assignment to find the matches which give the lowest overall
’cost’, and therefore present the best overall matches between nodes. Here, if the
number of nodes in the trees differ, the smallest number of node matches is made. If
J = 6, K = 4, then only 4 matches are made.

Thankfully the Align Score is easy to normalize as follows:

nAS = AS

min(J, K) (2.4)

The trees in fig. 2.1 give an Align Score of 3.5 and a normalized Align Score of 0.5,
compared to a Robinson Foulds score of 14 and a normalized Robinson Foulds score
of 1. The normalized Align Score therefore seems more fair as the trees share many
similarities.

2.4 Measuring Phylogenetic Signal

Several methods for measuring the phylogenetic signal of a trait exist. Münkemüller
et al. [60] provides a thorough overview of these. The two referred to in this thesis
are Abouheif’s Cmean [2] and Blomberg’s K [8] and they are defined as they are used.
Briefly, Abouheif’s Cmean calculates the autocorrelation of the trait arranged on the
tree and is calculated based only on the topology. Blomberg’s K instead compares
the expected variance of the trait along the tree based on Brownian motion with
the calculated variance and requires branch length information. Both use random
shuffling of the trait values to show significance.
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3Abbey Rove: The Rove-Tree-11
Dataset

„Reality leaves a lot to the imagination.

— John Lennon
The Beatles

This chapter contains the Rove-Tree-11 paper, first published in Lecture Notes in
Computer Science, vol 13845, pp 425–441, 2022, Reproduced with permission from
Springer Nature:

Roberta Hunt and Kim Steenstrup Pedersen. Rove-Tree-11: The Not-so-
Wild Rover, a Hierarchically Structured Image Dataset for Deep Metric Learning
Research. In: Wang, L., Gall, J., Chin, TJ., Sato, I., Chellappa, R. (eds) Computer
Vision – ACCV 2022. ACCV 2022. Lecture Notes in Computer Science, vol 13845.
Springer, Cham. https://doi.org/10.1007/978-3-031-26348-4_25

The following dataset is included in this chapter:

Roberta Hunt, Kim Steenstrup Pedersen; (2023) ’Rove-Tree-11 Dataset v1’.
Available at: http://doi.org/10.17894/ucph.39619bba-4569-4415-9f25-d6a0ff64f0e3
(Accessed June 2024).

This paper was our first attempt to show how deep learning could be used to extract
phylogenetically relevant morphological traits from images. The dataset properties
and acquisition are explained in the paper. See the background section regarding
recent research into deep metric learning, tree comparison methods, and measures
of phylogenetic signal.

There are two important corrections that we would make to this paper if we did it
now. The first is that we were in fact not the first group to extract morphological traits
from images as claimed, Cuthill et al. [16] and Kiel [42] also explored this. However,
as far as we know we are still the first whose goal was to test the methodology and
present a dataset for benchmarking.
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The second correction is that the use of the unnormalized Align Score can be
problematic as it favors trees with polytomies. We only realized this after publishing
this paper, which uses unnormalized values. That said, the overall conclusion of the
Rove-Tree-11 paper that the phylogenetic signal is contained in the traits, is still valid
as we have checked the scores in the second paper. However, ideally the comparison
across loss functions at a species level would be redone to use the normalized Align
Score, although we can also see from the second paper that this does not significantly
affect the result (most loss functions produced similar nAS values).
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Rove-Tree-11: The not-so-Wild Rover
A hierarchically structured image dataset for

deep metric learning research

Roberta Hunt1 and Kim Steenstrup Pedersen1,2

1 Department of Computer Science,
University of Copenhagen, Universitetsparken 1, 2100, Copenhagen, Denmark

{r.hunt,kimstp}@di.ku.dk
2 Natural History Museum of Denmark, Øster Voldgade 5 - 7, 1350, Copenhagen,

Denmark kimstp@snm.ku.dk

Abstract. We present a new dataset of images of pinned insects from
museum collections along with a ground truth phylogeny (a graph repre-
senting the relative evolutionary distance between species). The images
include segmentations, and can be used for clustering and deep hierar-
chical metric learning. As far as we know, this is the first dataset re-
leased specifically for generating phylogenetic trees. We provide several
benchmarks for deep metric learning using a selection of state-of-the-art
methods.

Keywords: Phylogeny · Dataset · Tree · Hierarchy · Hierarchical Dataset
· Rove · Staphylinidae · Phylogenetic Tree

1 Introduction

A phylogeny is a fundamental knowledge frame which hypothesizes how different
species relate to each other [11]. A fully annotated phylogeny, i.e. a tree of life
anchored in time scale, placed in the geographic context, and with a multitude
of organismal traits mapped along the tree branches is an important tool in bi-
ology. It explains biodiversity changes over millennia or geological epochs, traces
organismal movements in space and evolution of their properties, models popu-
lations response to climate change, navigates new species discovery and advises
classification and taxonomy. An example phylogeny from our dataset is shown
in fig. 1 along with some example images from the most abundant species in the
dataset.

Traditionally biologists generate phylogenies [9,10] using genetic data or mor-
phological features (relating to the shape or development of the organism, for
example the head shape, or the pattern of the veins on the wings). Despite genetic
data dominating phylogenetic research in recent years, morphological features
extracted by visual inspection of specimens are still of use. Fossils, for example,
contain no genetic data, but morphological features on the fossils can be used to
relate them to existing biodiversity [26]. Occasionally morphological and genetic
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heterothops dis.

quedius cru.

philonthus car.

bisnius fim. gabrius spl. paederus rip. astenus lyon.

rugilus orb.

lathrobium bru.

tetartopeus ter.

Fig. 1. Subset of phylogeny from the Rove-Tree-11 dataset, for the 10 genera with
the most images in the dataset. Each leaf represents a genus. Genera which are closer
together on the tree are more closely related, and nodes in the tree represent common
ancestors. Nodes with more than two branches are considered not yet fully resolved.
Many phylogenetic trees include estimations of time representing when the speciation
event occurred (when the common ancestor split into two species). These dates are
usually based on fossil evidence. This dated information is unfortunately not currently
available for our ground truth tree. Example specimens from each genera are shown
for reference.

data are even combined to generate a so called ’total-evidence’ phylogeny [34].
Morphological features are also of importance for species/specimens which lack
good quality genetic data. Much of phylogenetic research on insects is done from
museum specimens captured many years ago. Often the DNA of such specimens
has degraded and is no longer of use. Genetic extraction is also expensive, time
consuming, and a destructive process which can require completely destroying
the specimen, particularly in the case of small insects.

However, the traditional process of generating morphological features is slow,
meticulous and introduces some aspects of subjectivity by the researcher per-
forming the analysis. Typically a phylogenetic researcher would generate a ma-
trix of discrete traits (although the use of continuous traits has recently been
explored [35]) which they hypothesize are of use in distinguishing the species and
are evolutionary important. With thousands of new species of insects discovered
each year [1], it is difficult for phylogeneticists to keep up.

Deep metric learning [38,22] is a proven technique to generate informative
embedding matrices from images, and we posit that it can be used to generate
morphological embeddings which more objectively represent the morphological
features of a specimen. In this dataset we are unfortunately only looking at one
view of the insect, in our case, the dorsal view (the back), whereas biologists
would ideally examine and compare all external and internal features of the
insect. However, we hypothesize that this can be offset by the model’s ability
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to learn minute details. Our intention is that these methods could eventually
be improved and used as a tool for biologists to inform their decision making
process. Additionally, many natural history museums worldwide [8,20] are dig-
itizing their collections, including in many cases, taking images of millions of
museum insects. The Natural History Museum of Denmark (NHMD) alone es-
timates they have over 3.5 million pinned and dried insect specimens spanning
100,000 described species [32] and is in the process of digitizing their collections
[31]. The importance of such digitization efforts have been studied from a biol-
ogy research perspective [17,36]. Thus, given the increased data availability, we
predict that phylogenetic generation from images will become a growing field of
research within computer vision and related areas of artificial intelligence.

Despite the rapidly growing availability of images of pinned insects from
natural history museums, the ongoing push from the biological community to
generate phylogenies, and the increasing ability of deep learning to learn com-
plex shapes and relationships, few publicly available datasets exist targeting the
generation of phylogenies from images using deep learning techniques. There are
several reasons for this, as we will explore in more detail in sec. 2.1, when we
compare with existing datasets. In brief, although the number of image analysis
datasets is steadily growing, often the graphs which are included in the datasets
are subjectively resolved (such as [5]) or the groupings they provide are too
coarse-grained (such as [12]) or, particularly for biological datasets, the images
are natural photos taken in the wild, meaning they are from various viewpoints
and often obscured (such as [40],[41]). This makes it difficult for the model to
learn which distinct morphological features are more related to those from oth-
ers species. Typical morphology based phylogenies are generated from careful
inspection and comparison of features, meaning we expect direct comparison to
be very important for this task.

In this paper we present ’Rove-Tree-11’, a dataset of 13,887 segmented dorsal
images of rove beetles along with a ground truth phylogeny down to genus level‡.
The species-level phylogeny is not included, because this level of information
is not yet readily available. Our intention with releasing this data is that it
can further research on deep hierarchical metric learning and computer vision
solutions for building morphological phylogenies on interesting biological groups,
leveraging the current digitization-wave that is gripping natural history museums
worldwide.

The contributions of this paper are:

1. The release of a new hierarchically structured image dataset in-
cluding segmentations and ground truth genus-level phylogeny

2. We provide baseline results on this dataset for the tasks of classi-
fication, clustering, and for predicting phylogenetic trees.

‡ to genus-level means that each species within a genus is considered unresolved, or
equally likely to be related to any other species within that genus.
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2 Related Work

2.1 Comparison with Existing Datasets

Hierarchically structured data is often found in computer vision related tasks.
Examples include cognitive synonym relations between object categories such as
clothing items[27] and is especially found in tasks concerning nature. However,
current datasets which present a ground truth hierarchical grouping of the data
are not intended for morphological phylogenetic research, and therefore poorly
suited to the task.

There are several natural history related image datasets which do, or could
easily be adapted to, include a taxonomy (ie IP102 [44], CUB-200-2011 [41],
iNaturalist [40], Mammal dataset [12], PlantCLEF 2021 [13] and ImageNet [6]).
With the exception of PlantCLEF, these are however all ’in the wild’ images and
identification has typically been done by non-experts with the naked eye. The
phylogenies are also usually superficial - including only a few levels, and typically
based only on the current taxonomy, which is not fine-grained and not necessarily
representative of the state of the art phylogenetic tree, as taxonomies have a
longer review process§. In the case of PlantCLEF the majority of the training
images are of herbaria sheets, and therefore not ’in-the-wild’, however only a
shallow taxonomy is provided with the PlantCLEF dataset. In the case of IP102,
the hierarchical tree is grouped by the plant the insect parasitizes, and is not
related to ancestral traits at all. With the exception of CUB-200-2011, iNaturalist
and PlantCLEF, the species are also easily identified by a layman/amateur by
the images alone, which is not necessarily the case in our dataset, where many
of the identifications traditionally require a microscope or dissection. It is also
often the case that the taxonomy is not properly updated until years after the
phylogeny has been altered, particularly in the case of entomology where new
species are discovered regularly, so using the most recent taxonomy may not
actually represent the state-of-the-art knowledge of the evolution of the species.
In the case of iNaturalist, the dataset does include a tree with the same number of
levels as Rove-Tree-11, however, this depth begins from kingdom-level, whereas
ours begins from family level (four taxonomic ranks lower on the taxonomic
hierarchy), and represents the most recent phylogeny.

Additionally there are non-biological hierarchical datasets, such as DeepFash-
ion [27], for which others have created their own hierarchy [5]. This hierarchy is
however based on loose groupings of clothing items which are highly subjective.
For example, the top-level groupings are: top, bottom, onepiece, outer and spe-
cial, where special includes fashion items such as kaftan, robe, and onesie, which
might morphologically be more related to coats, which are in the ’outer’ cate-

§ the taxonomy represents how the organism is classified - ie which class, order, family
the organism belongs to, and is a non binary tree. The phylogeny represents how
related different species are together, and would ideally be a binary tree. In an ideal
world the taxonomy would be a congruent to the phylogeny, but in reality they tend
to diverge as taxonomic revisions take longer
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Table 1. Comparison of dataset properties. The table indicates number of images and
categories, tree depth and whether or not the images are ’in the wild’. Tree depth is
calculated as the maximum number of levels in the tree. For example, with iNaturalist
this is 7 (corresponding to: kingdom, phylum, class, order, family, genus and species)

Dataset No. Images No. Cat. Tree Depth Wild? year

Rove-Tree-11 13,887 215 11 No 2022
ImageNet [6] 14,197,122 21,841 2 yes 2018

IP102 [44] 75,222 102 4 yes 2019
CUB-200-2011 [41] 11,788 200 4 [2] yes 2011

Cars196 [24] 16,185 196 1 yes 2013
INaturalist 2021 [40] 857,877 5,089 7 yes 2021
PlantCLEF 2021 [13] 330,772 997 3 mixed 2021

DeepFashion [27] 800,000 50 4 ¶ yes 2016

gory. This kind of subjective hierarchy can be useful in other applications, but
not particularly for research on generating relationships based on morphology.

The Rove-Tree-11 dataset on the other hand is a well-curated museum col-
lection, where the identification has been done by experts, often using a micro-
scope, and the ground truth phylogeny is as up to date as possible. Additionally,
because the images are of museum collections and not ’in-the-wild’, the spec-
imen is always fully visible, and the dataset has been curated to include only
whole dorsal images. Whether dorsal-view images are sufficient to generate a
phylogeny remains to be seen. Typically biologists would use features from all
over the body, including ventral and sometimes internal organs. We hypothesize
that dorsal view may be sufficient given the ability of deep learning models to
learn patterns which are difficult for the human eye to distinguish. Additionally
results from our classification experiments shown in table 3 suggest that dis-
tinguishing features can be learnt from the images, supporting our belief that
phylogenies may be learnt from this dataset.

2.2 Related Methodologies

Classification Classification is one of the most developed fields in computer
vision and deep learning, with numerous new state of the art architectures and
methods discovered each year. However, there are some architectures which have
gained widespread usage in recent years, which we will use to give baselines for
this dataset. In particular, we will compare classification results using ResNet
[16] and EfficientNet B0 [39]. ResNet is a series of models, introduced in 2015,
which uses residual convolution blocks. EfficientNet was introduced in 2019 and
is known for achieving high accuracies with few parameters. Classification is not
the main focus of this dataset, but we provide classification results for comparison
with similar datasets.

¶ hierarchy presented in [5]
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Fig. 2. Example image of museum unit tray from Stage 1 of image processing.

Deep Metric Learning The goal of deep metric learning (DML) is to learn
an embedding of the data which represents the dataset and distances between
datapoints meaningfully. This could be through clustering related data together,
or through creating independence and interpretability in the variables. Recent
research into deep metric learning can be split into three groups [38]. Ranking-
based methods attempt to pull instances from the same class (positive exam-
ples) closer together in the embedding space, and typically push examples from
other classes further away (eg, [15] [43]). Classification-based methods, such
as ArcFace[7], work by modifying the discriminative classification task. Finally
Proxy Based methods, such as Proxy NCA [29] compare each sample with a
learned distribution for each class.

In this paper we demonstrate results for this dataset using seven deep metric
learning methods; Five ranking-based losses: margin loss [43], triplet loss [43],
contrastive loss [15], multisimilarity loss [42], lifted loss [45], one classification-
based loss: arcface loss [7] and one proxy-based loss: proxynca [29]. With many
state of the art methods and variations on these, choosing which to use is difficult.
We chose these firstly because they are all used in [38] as benchmarks, making
our results directly comparable. Of the 23 described in [38], we focus on seven
which represented some of the better results and show a variety of methods. For
a detailed description of each loss we refer the reader to [38].

During training DML models are typically evaluated not just on the loss, but
also on a number of clustering metrics. In our case, to do this the dataset is evalu-
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ated using nearest neighbors Recall@1 (R1) and Normalized Mutual Information
(NMI) after clustering using the k-means algorithm [28]. NMI is presented in our
main results, and R1 in the supplemental material. NMI is a symmetric quantity
measuring the overlap between clusters. A NMI of 1 indicates that the clusters
are the same. Recall@1 is a measure of the % of results with a nearest neighbour
in the same class. Both are described in further detail in [38].

Generating a Phylogeny from Embeddings In order to use this dataset
for deep phylogenetic generation, we need methods to generate binary graphs
from embedding spaces. We could treat this as a classification problem, however,
with only one graph to generate, this dataset is not large enough to perform di-
rect graph generation. Instead, the graph can be generated indirectly from the
embedding space and compared with the ground truth. This is analogous to
how biologists would traditionally generate phylogenetic trees for small datasets
using morphological matrices. Biologists use maximum parsimony or bayesian
methods [10] to find the best-fitting tree based on discrete characters (either
morphological or genetic). However, the use of continuous characters in improv-
ing phylogeny generation has been recently explored [35]. Therefore if we assume
our embedding space represents morphological features and is a morphological
space, this could similarly be used to generate a phylogeny using the same con-
tinuous trait bayesian phylogenetic inference methods. We use RevBayes[19], a
popular bayesian inference package to complete the analysis. Similar methods
have been used to generate phylogenetic trees [23].

Phylogenetic Comparison The main purpose of this dataset is to allow ex-
ploration of methods for generating phylogenetic trees based on morphology. To
do this, we need methods for comparing phylogenies. There are many standard
methods of doing this in biology, a thorough comparison of them is provided in
[25]. In brief, the metrics can be split into those which do and do not compare
branch lengths. As branch lengths (i.e. evolutionary time) are not yet avail-
able in our ground truth phylogeny, we will focus on those which do not include
branch lengths, called topology-only comparison methods. The most widely used
of these is called the Robinson-Foulds (RF) metric, introduced in 1981 [37]. The
RF metric defines the dissimilarity between two trees as the number of oper-
ations that would be required to turn one tree into another∗. However, it has
some notable disadvantages, including that apparently similar trees can have a
disproportionately high RF score.

One of the more recently introduced metrics is called the Align Score [33].
The Align Score works in two stages. In the first stage, a 1:1 mapping of edges
from each tree (T1 and T2) is assigned. This is done by calculating a similarity
score s(i, j) between the edges, i and j in T1 and T2 respectively, based on how
similarly they partition the tree. More concretely, in tree T1, edge i will partition
the tree into two disjoint subsets Pi0 and Pi1. The similarity scores can then by

∗ it is, however, different from the edit distance popular in computer science
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Fig. 3. Examples of specimen images before (above) and after (below) segmentation
and rotation adjustment.

computed as:

s(i, j) = 1−max(min(a00, a11),min(a01, a10)) (1)

where ars is the intersection over the union of the partitions:

ars = |Pir ∩ Pjs

Pir ∪ Pjs
| (2)

The munkres algorithm is then used to find the edge j = f(i) that minimizes
the assignment problem, and then the group with the minimum pairs are summed
as follows to calculate the total align score for the two trees:

∑

i∈T1

s(i, f(i)) (3)

Unlike the RF score, for each set of partitions the align score calculates the
similarity, s(i, j), as a continuous variable instead of a binary value. That said,
it has the disadvantage that the value is not normalized - a larger tree will likely
have a larger align score, making the result difficult to interpret. Despite this,
we choose to use it as it is a more accurate representation of the topological
similarity between two trees[25].

3 An Overview of Rove-Tree-11

3.1 Image Collection

The images in the dataset were collected and prepared in 4 stages [14]:

Stage 1: Unit Tray Image Collection Rove-Tree-11 was collected by taking
overview images of 619 unit trays from the entomology collection at Natural
History Museum of Denmark, see fig. 2. A Canon EOS R5 mounted on a camera
stand with a macro lens was used to take images of 5760 × 3840 pixels (px)
resolution. Since the camera height and focus were kept fixed, the images can
be related to physical distance as approx. 400 px per cm. Artificial lighting was
used to minimize lighting variance over the images.
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Table 2. Species-level classification results on segmented and unsegmented images.
We can see that using segmentations drastically reduces the accuracy, indicating that
the model is learning from the background and not the morphology of the beetle, as
desired. Top-1 and Top-5 represent accuracies. Uncertainties represent 95% confidence
intervals.

Model Dataset Top-1 Top-5

ResNet-18[16] segmented 90.9 ± 1.2 99.1 ± 1.2
ResNet-18[16] unsegmented 99.1 ± 0.3 99.9 ± 0.3

Stage 2: Bounding Box Identification and Sorting After image capture,
bounding boxes for the individual specimens were then manually annotated us-
ing Inselect [18]. Images of 19,722 individual specimens were then sorted. Only
dorsal views (views from the ’back’ of the beetle) where the specimen was largely
intact and limbs were mostly visible were included, resulting in images of 13,887
specimens in final dataset. See fig. 3 for examples of bounding boxes around spec-
imens. Estimates of body rotation were also annotated in 45 degree increments
which allows for coarse correction of the orientation of the crops.

Stage 3: Segmentation Segmentations were then generated through an it-
erative process. First 200 images were manually segmented. Then U-Net was
trained on these 200 images and was used to generate predictions for the rest of
the images. 3000 of these segmentations were considered good enough. U-Net was
then retrained with these images, then rerun and new segmentations produced.
The final segmentations were then manually corrected. Examples of segmenta-
tion masks and final segmented specimens can be seen in fig. 3 and fig. 4. The
dataset is released with both the original crops and the segmentation masks,
however, as we show in table 2, the segmentations are extremely important for
phylogenetic analysis, as the background of the image is highly correlated with
the species. This is because many of the same species were collected at the same
time in the same place by the same person, meaning whether the specimen was
glued to a card, the age and color of the card, could be correlated with the species,
despite being unrelated to the phylogeny. The segmentations are not perfect. In
particular they cut off some of the finer hairs on the body; It could therefore
be the case that the segmentations are removing vital information which the
model can use to complete classification. We consider this unlikely and suspect
the model is instead learning from the backgrounds.

Stage 4: Rotation Adjustment Rotations were corrected by finding the prin-
cipal axis of inertia of the segmentation masks, (see [21] for details). Since all
the beetles are more or less oval shaped, the minimal axis of rotation of their
masks tends to line up well with their heads and tails. Using this we further
standardized the rotations of the segmentations. This process is shown in fig. 4.
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Fig. 4. Illustration of rotation adjustment algorithm. Example original masks (top) and
rotated masks (bottom). The red line represents the principal axis of inertia found.

3.2 Preparation of phylogeny

A current genus-level phylogeny of the closely related subfamilies Staphylini-
nae, Xantholininae and Paederinae is provided for the sample of genera used in
our analysis. The full phylogeny is visualized in fig. 1 our supplementary mate-
rial. A subset is shown in fig. 1. This phylogeny represents the current state of
knowledge as it was pieced together from the most relevant recently published
phylogenetic analyses, such as [47] for sister-group relationships among all three
subfamilies and the backbone topology of Xantholininae and Staphylininae, [3]
for the subtribe Staphylinina, [4] for the subtribe Philonthina and [46] for the
subfamily Paederinae. Below genus-level the phylogeny is considered unresolved
as we were unable to find species-level phylogenies for the 215 species included
in Rove-Tree-11. A newick file of the phylogeny is provided with the dataset.

3.3 Dataset Statistics

In total, 13,887 images of beetles from the family Staphylinidae, commonly
known as rove beetles, are included from 215 species - spanning 44 genera, 9
tribes and 3 subfamilies. Example images are shown in fig. 1.

The distribution of the dataset per genus is shown in fig. 7. A species-level
distribution is provided in the supplementary material. From this we can see
that the dataset is not evenly distributed, with the species with the highest
number of specimens having 261 examples and the lowest having 2 with the
genus Philonthus accounting for 24.8% of the dataset. This is due to the number
of specimens the museum had in the unit trays that were accessed and imaged at
the time, although the curators also includes samples of species which were easily
distinguishable from each other, and examples which were hard and can only
usually be determined by genital extraction by experts (ie Lathrobium geminum
and Lathrobium elongatum. Examples from these two species are shown in fig.
5 to demonstate the difficulty of the task). The distribution of image sizes in the
dataset is shown in fig. 6. The majority of the images (82%) are under 500×250
pixels.
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Fig. 5. Example images of Lathrobium geminum (top) and Lathrobium elongatum
(bottom) from the dataset. Typically even experts need to dissect the specimen to
complete the determination between these two species.

Fig. 6. Distribution of image sizes included in the dataset. The majority (82%) of
images are under 500 × 250 pixels.

Fig. 7. Distribution of specimens per genus (bottom left) and per subfamily (top right).
Each slice in the stacked bar chart represents a different species within that genus.
Subfamily distribution is included as it is used to generate the validations and test sets
for the clustering results in sec. 4.2. A full species level distribution is shown in the
supplemental material.
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Table 3. Classification results using deep learning architectures. Top-1 and Top-5
represent accuracies. Uncertainties represent 95% confidence intervals based on 3 runs.

Species Genus
Model Params Top-1 Top-5 Top-1 Top-5

ResNet-18 [16] 11.4 M 90.9±1.2 99.2±1.2 98.9±0.3 100±0.3
ResNet-50 [16] 23.9 M 89.4±1.4 99.2±1.4 98.2±0.4 100±0.4

EfficientNet B0 [39] 5.3 M 91.9±1.8 99.3±1.8 99.1±0.2 100±0.2

4 Evaluation

Here we evaluate the dataset by performing benchmark experiments. As stated
previously, the main purpose of this dataset is for deep metric learning on hier-
archical phylogenetic relationships, so this is also the focus of the benchmarks,
although we also provide benchmarks for the classification and clustering tasks.
The same augmentations were applied to the dataset as for CUB200 and Cars176
and as in [38], with the exception that the RandomHorizontalFlip was changed
to a RandomVerticalFlip, as this makes more sense for the Rove-Tree-11 dataset.
Gradient accumulation was also used in some cases due to memory constraints
on the available clusters. The details of which experiments this was applied to
are provided in the codebase.

4.1 Classification

Results from classification experiments are provided in table 3. For these exper-
iments the official pytorch implementations were used with default parameters:
categorical cross entropy loss with an initial learning rate of 0.1, momentum of
0.9, weight decay of 1e − 4 and SGD optimizer. Training details are released
with the code for this dataset. The only alterations from the defaults were to
reduce the batch-size to 32 due to memory constraints and to alter the data
augmentations, detailed in the code. A species-stratified train/val/test split of
70/15/15 was used. The split is provided with the code.

As shown in table 3, the models are able to achieve a top-1 species-level
accuracy of 92% with no hyperparameter tuning, and a top-1 genus level of
almost 100%. These results suggest that although this dataset could be used for
classification tasks and might be useful as such for biologists, classification of
this dataset is not particularly difficult, and this dataset is probably not ideal
as a benchmark for classification in deep learning.

4.2 Clustering and Phylogenetic Results

In table 4, we present benchmark results of applying state of the art methods
for deep metric learning to the Rove-Tree-11 dataset and comparing phylogenies
generated using phylogenetic bayesian methods on the embedding space to the
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ground truth phylogeny as described in sec. 2. A more complete table showing
R1 scores and Cars176 results, is provided for reference in the supplementary
material (table 1). The ’Random’ row represents the align score of a randomly
generated tree with the 9 genera leaves included in the test set, against the
ground truth tree based on 5 random initializations. Since the align score is not
normalized, this random baseline is useful to gauge our results and represents an
upper bound our models should achieve. Following best practice, as described in
[30], the dataset was split into three groups for training, validation and testing.
To properly test the ability of the model to generalize, the groups were split
at subfamily level, so the train, validation and test sets should be as phyloge-
netically distinct as possible, in the sense that they belong to different parts of
the phylogenetic tree. This results in 8534 training images from the subfamily
Staphylininae, 4399 validation images from the subfamily Paederinae and 954
test images from the subfamily Xantholininae.

All results on Rove-Tree-11 were generated using implementations used in
[38], modified to calculate the align score. A forked codebase is provided as a
submodule in the github repository.

Based on the clustering results in table 4, we see that Rove-Tree-11 has
similar NMI scores to CUB200, suggesting this dataset has a similar clustering
difficulty to CUB200 and may be appropriate as a clustering benchmark. As with
CUB200, the best models on Rove-Tree-11 are Triplet [43] and Multisimilarity
[42]. We can also see that the align score results somewhat correspond with
the NMI, with the best results being achieved with Triplet Loss. We can also
see that the best test set align score of 4.0 is a marked improvement to the
random align score baseline of 6.6, but still significantly far away from a perfect
align score of 0, suggesting there is room for improvement. We find it surprising
that the align score of the best model on the CUB200 dataset shows a 60%
improvement to the random score, while on Rove-Tree-11 the improvement is
only 40% on the test set and 51% on the validation set. This suggests that
either CUB200 is an easier dataset to generate phylogenies from, or could be
an artifact of the align score on trees of different depths (CUB200 has a depth
of 4, while Rove-Tree-11 has a depth of 11). It is surprising that it could be an
easier dataset, given that the images are in-the-wild, but this could also be due
to phylogenetically close birds having similar backgrounds in the images (water-
faring birds might typically have ocean backgrounds, for example, and be more
closely phylogenetically related). The phylogenetic tree produced by the best
model is provided in the supplementary material along with the ground truth
tree for visual inspection.

5 Conclusions

In this paper we present Rove-Tree-11, a novel dataset of segmented images of
and research-grade classifications of rove beetles for researching methods for gen-
erating phylogenies from images. We provide an eleven-level fine-grained ground
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Table 4. Benchmark clustering and Align-Score results on Rove-Tree-11 dataset. ’Ran-
dom’ represents the average align score of 5 randomly generated trees. This gives us a
metric to compare our results with. A perfect align score would be 0. 95% confidence
errors are provided based on 5 runs.

CUB200 Rove-Tree-11
Test Validation Test

Loss NMI Align NMI Align NMI Align

Random - 21.9±0.2 - 15.8±0.9 - 6.6±0.5
Triplet 64.8±0.5 9.9±0.9 68.9±0.4 7.8±1.1 66.3±0.3 4.1±0.5
Margin 60.7±0.3 10.6±1.2 68.0±0.7 8.2±0.7 65.9±0.5 4.2±0.7
Lifted 34.8±3.0 15.9±2.0 55.0±0.6 10.5±0.7 56.0±1.1 4.9±0.8

Constrast. 59.0±1.0 11.0±1.2 66.7±0.5 8.5±1.0 65.4±0.5 4.5±0.6
Multisim. 68.2±0.3 8.6±0.8 70.7±0.2 8.2±0.4 67.3±0.5 4.0±0.5

ProxyNCA 66.8±0.4 9.8±0.8 67.5±0.7 9.0±0.8 65.5±0.3 4.2±0.4
Arcface 67.5±0.4 9.8±0.8 66.9±0.9 8.5±0.4 64.8±0.5 4.1±0.4

truth phylogeny for the 44 (train, validation and test) genera included in this
dataset.

We start by demonstrating the importance of the provided segmentations
as the model can learn from the background. We show benchmark results on
this dataset for classification, deep metric learning methods and tree alignment.
We further demonstrate that this dataset shows similar clustering results to the
CUB200 dataset suggesting it may be appropriate as an alternative clustering
benchmark. Finally, we demonstrate how this dataset can be used to generate
and compare phylogenies based on the align score, and show that while it is
possible to generate such trees, there is plenty of room for improvement and we
hope this will be a growing field of research. Code and data are available (code:
https://github.com/robertahunt/Rove-Tree-11, data: http://doi.org/10.17894
/ucph.39619bba-4569-4415-9f25-d6a0ff64f0e3).

Ethical Concerns Models similar to those described, if applied to images of
faces, could be used to generate family trees for humans. This could result in
public images being used to infer familial relationships which could have a nega-
tive societal impact. The authors strongly discourage this form of misuse of the
proposed methods.
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1 Rove-Tree-11: Full Phylogenetic Trees

In fig. 1 we show the gold standard genus-level phylogeny for the train, validation
and test sets. This phylogeny represents the current state of knowledge as it was
pieced together from the most relevant recently published phylogenetic analyses,
(from the main text): ”such as [1] for sister-group relationships among all three
subfamilies and the backbone topology of Xantholininae and Staphylininae, [2]
for the subtribe Staphylinina, [3] for the subtribe Philonthina and [4] for the
subfamily Paederinae. In this work we did not complete species-level phylogeny,
so each species within the genera is assumed to be equally related.”

In figs. 2 and 4 we show the species-level phylogenies produced by our model
which performed best on the test set (multisimilarity, seed 2) on the validation
set, and the test set, respectively. The best model gave an Align Score of 3.5
when compared against the gold standard (4.1 on average over 5 runs). The
align score for each individual node is shown to provide some insight into the
align score.

From figs. 2 and 4 we can easily see that most species and specimens in the
dataset are mostly grouped close to those of the same genus, despite not telling
the model these species are related. Which is encouraging. And using the align
score as an indicator, we can see that many groups are well organized, however,
there is still plenty of room for improvement.

With this visual comparison we can conclude that the model is learning some
interesting phylogenetic features, but there is significant room for improvement,
making this an interesting dataset for further research.

2 Species-level data distribution

We also show a species-level data distribution in fig. 6. From this we can see that
the data is not uniformly distributed per species, with the largest group, rugilus
orbiculatus having 262 specimens and the smallest, lathrobium castaneipenne,
having 4. This of course may negatively affect our results and a uniform distri-
bution would be preferred.
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3 Expanded Results

Further results from experiments are shown in table 1 and expands on the results
presented in the paper. Showing R1 scores and results on the Cars196 dataset
for easy reference. It should be noted that the Cars196 data was taken directly
from [5].
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Fig. 1. Gold standard genera-level phylogenetic tree. Tree is split into training set
(green), validation set (blue) and test set (red). Genera-level is used here instead of
species level to make the tree more compact.
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Fig. 2. Species-level phylogenetic tree produced by our best model for the validation
set. The number on each node represents the align score of that node to it’s matched
node in the ground truth phylogeny (the format for this is [node number]:[align score]).
Node numbers for the ground truth phylogeny on the validation set are provided in fig.
3. The shade of the node corresponds to the value of the align score - darker shades
have higher (undesirable) align scores. The total score for this tree (from summing the
score of each node) is 8.35.
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Fig. 3. Species-level ground truth phylogenetic tree for the validation set. The number
on each node represents the number of that node, to link it to the align scores presented
in fig. 2, which are somewhat synonymous to the most similar nodes in the other tree.
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Fig. 4. Species-level phylogenetic tree produced by our best model for the test set. he
number on each node represents the align score of that node to it’s matched node in
the ground truth phylogeny (the format for this is [node number]:[align score]). Node
numbers for the ground truth phylogeny on the validation set are provided in fig. 5.
The shade of the node corresponds to the value of the align score - darker shades have
higher (undesirable) align scores. The total score for this tree (from summing the score
of each node) is 8.35.
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Fig. 5. Species-level ground truth phylogenetic tree for the test set. The number on
each node represents the number of that node, to link it to the align scores presented
in fig. 4, which are somewhat synonymous to the most similar nodes in the other tree.
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Fig. 6. Species-level data distribution. Here we can more clearly see that the images per
species are not uniformly distributed, with Rugilus orbiculatus having 262 specimens
and Lathrobium castaneipenne having 4.

´
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4Gattaca: Adding Genetic Data

„Everything is gaussian if you just add enough
numbers together

— Kim Steenstrup Pedersen

This chapter contains the following paper that continues the work from the previous
chapter:

Roberta Hunt, José L. Reyes-Hernández, Josh Jenkins Shaw, Alexey Solodovnikov,
Kim Steenstrup Pedersen. „Integrating Deep Learnt Morphological Traits and
Molecular Data for Total-Evidence Phylogenetics: Lessons from Digitized Collec-
tions“ Revised edition, resubmitted to: Systematic Biology, 2024, Under Review
after major revision.

The following dataset is included in this thesis:

Roberta Hunt, José L. Reyes-Hernández, Josh Jenkins Shaw, Alexey Solodovnikov
and Kim Steenstrup Pedersen; (2024) ’Rove-Tree-11 Genes’. Available at:
https://erda.ku.dk/archives/78bc5d7c5746eca509bbd8fb2ea68205/published-archive.
html (Accessed June 2024).

All supplemental material for this preprint is available in a frozen archive in case any
changes are made during the peer review process: https://erda.ku.dk/archives/
78bc5d7c5746eca509bbd8fb2ea68205/published-archive.html. Example code
and trained models are available in the supplemental material. Deep learning code
is available from the Rove-Tree-11 code repository [37].

After completing the Rove-Tree-11 dataset, we wanted to explore how the deep
learnt morphological traits might compare to and be combined with genetic traits
and inference methods. We also wanted to present our ideas to systematic biologists
to get their input and feedback.

Therefore we teamed up with the Coleoptera group at the Natural History Museum
of Denmark, who gathered the genetic data and completed the sequence alignments,
as well as advised on the inference process.
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Unfortunately, but not unexpectedly, it was not possible to obtain genetic data for
most of the individual species in the Rove-Tree-11 dataset. Therefore the analyses
for this paper was completed at genus level instead of species level.

This paper is currently under review after resubmission.
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Abstract

Deep learning has previously shown success in learning morphological traits which carry a1

phylogenetic signal. In this paper we explore combining deep learnt morphological traits2

from digitized natural history collections with molecular data for total-evidence3

phylogenies and we reveal challenges. Deep-learnt morphological traits, while informative,4

underperform when used in isolation compared to molecular analyses. However, their use5

in total evidence analyses shows some promise. We explore these results and propose6

avenues for methodological enhancement.7

Key words : Phylogenetics, deep representation learning, continuous morphological8

matrices, cladistics, total evidence analysis, image analysis, neural networks9

10

Phylogenetics or reconstructing the Tree of Life at the fine detail is at the core of11

modern biology (Soltis and Soltis, 2003; Cavender-Bares et al., 2009; Yang and Rannala,12

2012; Hassler et al., 2023). Although in recent decades phylogenetic inference has been a13

high throughput endeavor due to the availability of molecular data (Yang and Rannala,14

2012), for more than two centuries it was a practice based on the visual study of the15

© The Author 2024. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com
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anatomical details of the organisms (Giribet, 2015). Despite the recent emphasis on16

molecular data in the phylogenetic analysis, morphology remains crucial (Giribet, 2015;17

Lee and Palci, 2015; de Almeida et al., 2023), particularly for including fossils and dating18

evolutionary events through a total evidence approach (Ronquist et al., 2012; Zhang et al.,19

2015; Pyron, 2015). Contrary to molecular data, the high throughput use of the20

morphological traits in statistical phylogenetics is strongly hindered by the complex nature21

of morphology and as a consequence lesser developed tools for its analysis (Tarasov, 2019).22

It is therefore noteworthy that recent research has shown that morphological traits23

automatically extracted from habitus images of the organisms using deep learning-based24

image analysis carry a phylogenetic signal (Furusawa et al., 2023; Cuthill et al., 2019; Kiel,25

2021; Hunt and Pedersen, 2022). However, because the deep learnt traits are not sliced into26

homologous and non-homologous traits (characters), this signal is not amplified as such27

and could be blurred with non-phylogenetic clustering.28

Manual, expert-based crafting of the morphological data matrix for phylogenetic29

analysis is so tedious and time consuming exactly because of the task of the formulating30

these traits (characters) and their states. This task is achieved by comparison of multiple31

species with various morphologies and, using the extensive knowledge of an expert about32

anatomy and its diversity of a group under investigation, only homologous character states33

are aligned for analysis among species. As shown in Cuthill et al. (2019), euclidean34

phenotypic distances calculated using a deep convolutional triplet network, captured the35

wing phylogeny pattern reflecting Müllerian mimicry and thus convergence between the36

interspecies co-mimics in the Heliconius erato and H. melpomene butterfly complex.37

Would they be able to capture other, less obvious (or less visual) pattern reflecting38

synapomorphic similarity and thus an overall species (not their single traits or genes)39

phylogeny? Lacking of the critical filter in the automatic capture of the phenotypic40

similarity in butterflies in this example and other organisms is a remaining problem to41

solve. Kiel (2021) well recognized the issue of convergent evolution that is “invisible” for42
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the CNN he trained for assessing bivalve phylogeny from thousands of images of 75 bivalve43

families. Therefore, he trained two further CNNs on the same images but grouped by the44

orders and subclasses these families belonged to. He demonstrated that this improved the45

inferred phylogenetic relationships even for families, which these extra CNNs were not46

trained for. Furusawa et al. (2023) presented the morphologically regulated variational47

AutoEncoder (Morpho-VAE) for analyzing shapes of primate mandibles to overcome the48

difficulty of encoding shapes usually tediously done by comparing anatomically prominent49

landmarks. Their goals were not phylogenetic but they showed that their automatically50

extracted morphological features reflected the families to which the organisms belong, i.e.51

they were phylogenetically meaningful. These experiments show that further exploration of52

how to overcome the convergency problem in the automatic capture of phenotypic data for53

phylogenetic analysis are promising and needed.54

Moreover, even in the expert-based data capture, apart from the prohibitively high55

time and expensive expertise consumption of this task, ultimately, it is an overall56

phylogeny itself that finally informs us which particular similarity is homology57

(synapomorphy)-based and which is homoplastic. Thus, to avoid subjectivity and increase58

efficiency of the phylogenetic analysis of the phenotypic data, developing automatic and59

rigorous methods of data capture is the way to go. If these methods can be improved and60

reconciled with the mass digitization initiatives currently ongoing within the major natural61

history collections and resulting in millions of specimen images being easily available62

(Baird, 2010; Smith and Blagoderov, 2012; Wilson et al., 2023), this could revolutionize63

phylogenetics by making phylogenetic research scalable and accessible. Therefore, it is of64

great interest to determine how this signal could be strengthened and how it might be65

integrated into existing methodologies. In this paper we explore this using a dataset of the66

habitus (here interpreted as the dorsal view of the entire beetle body) images of the rove67

beetles obtained from museum collections. We aim to determine how strong this signal is,68

and how the deep learnt continuous morphological traits that are made available from the69
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images of the digitized specimens might be used for phylogenetic inference alone or in70

combination with molecular data. Before proceeding to our methods and results, we first71

introduce several important themes and considerations that determined our study design.72

Is habitus enough? — Since Linnaeus (Linné et al., 1788), if not before,73

hierarchical grouping has been at the core of understanding the diversity of life on Earth74

with the evolutionary theory elevating the importance of constructing genealogical75

relationships to decipher the connections among both extant and extinct species. The ’Tree76

of life’ became a universal metaphor depicting relationships between living and extinct77

organisms (Mindell, 2013; Hossfeld and Levit, 2016). Historically, in the absence of78

sophisticated optical and anatomical instruments, the habitus served as the primary means79

for comparing organismal phenotypes. However, evolutionary biology’s advancements have80

highlighted the complexity of phenotypes, underscoring that the habitus represents merely81

a subset of an organism’s morphological information. The maturing concepts of homology82

guided the division of a holistic phenotype into single morphological traits and their83

assessment as shared ancestry or, on the contrary, cases of convergence, a division crucial84

in phylogenetics (Wagner, 1989). In modern statistical phylogenetics, intuitive or even85

statistical phenetic assessment of the overall morphological similarity among organisms86

(Sokal and Sneath, 1963) gave way to the analysis of morphology partitioned into87

homological characters (Goloboff, 2022). A concept of a morphological trait and its88

homological states in phylogenetics is rather complex (Wiens, 2001) and raises questions89

about data automatically obtained from the specimen images. The suitability of utilizing90

images capturing the external morphology, or habitus, of organisms for phylogenetic91

analysis warrants initial examination.92

The role of continuous traits in phylogenetics. — The first stochastic process93

model of the evolution of continuous trait data on a phylogeny was Brownian motion,94

proposed early in the history of statistical phylogenetics (Edwards, 1970; Felsenstein,95
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1985). Among the great diversity of morphological characters used in phylogenetics,96

continuous characters of shape are rare due to lack of tools for their proper coding and97

assessment. The majority of homological morphological traits used in the phylogenetic98

analysis are the so-called discrete characters (MacLeod and Forey, 2002). However, various99

studies suggest that continuous characters are very informative and even may be preferable100

over discrete characters (Parins-Fukuchi, 2017).101

The growing role of computer vision in phylogenetics. — Advancements in102

computer vision and machine learning are enabling the collection of morphological data for103

phylogenetic analysis at a scale similar to phylogenomics. With digital images, algorithms104

can quickly convert these into numerical vectors that mimic DNA sequences, providing a105

new form of data for analysis. Numerical vectors automatically generated from habitus106

photos return us to an early trend of the morphology-based phylogenetics called phenetics107

which was abandoned early in the history of statistical phylogenetics for several important108

reasons (Jensen, 2009). However, phenetics played an important role as an early stepping109

stone towards modern phylogenetics and perhaps it was abandoned due to the lack of good110

tools to generate informative data at the time. Also, the idea that the overall similarity111

between taxa may have a phylogenetic signal if properly assessed, was never rejected and112

does have support, especially when dealing with lower taxonomic categories (Jensen, 2009).113

The role of deep learning. — Deep learning, a subfield of machine learning, has114

proven to be an effective method to extract traits across various fields, from natural115

language processing (Otter et al., 2021) to image processing (Jiao and Zhao, 2019). In the116

field of entomology, deep learning has proven quite successful at classification and117

quanitification of mimicry (Valan et al., 2019; Kelly et al., 2021; Høye et al., 2021;118

MacLeod et al., 2022; Li Fan and Cui, 2022; Pichler and Hartig, 2023), and has already119

been applied to extracting morphological traits from images of various animals for120

phylogenetics (Cuthill et al., 2019; Kiel, 2021; Hunt and Pedersen, 2022; Furusawa et al.,121
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2023). As the field of deep learning has grown over the last decade, there are thousands of122

model architectures, loss functions, and parameters to choose from, and testing them all is123

not feasible. Instead, this paper focuses on how simpler methods of boosting the124

phylogenetic signal might be completed. Therefore, for simplicity, we use only one125

well-known architecture, ResNet50 (He et al., 2016), and a few selected loss functions126

commonly used in the field of deep metric learning (Roth et al., 2020).127

Deep metric learning, an advanced subfield of machine learning, focuses on128

understanding and quantifying the similarity or dissimilarity between data points in a129

high-dimensional space. By leveraging deep neural networks, this approach aims to learn a130

distance function that effectively maps data points such that similar items are brought131

closer together, while dissimilar items are pushed apart, in the embedding space. This132

methodology is particularly pertinent to phylogenetic trait extraction over traditional133

classification models due to its ability to capture nuanced relationships and continuous134

variations among biological species. Unlike classification models, which categorize data into135

discrete classes and often overlook the intricate relationships between them, deep metric136

learning accommodates the complexity and continuity of evolutionary traits. This makes it137

exceptionally suitable for phylogenetics, where the objective is to unravel the evolutionary138

distances and ancestral linkages among species. By focusing on relative distances rather139

than absolute categorizations, deep metric learning facilitates a more nuanced140

understanding of phylogenetic traits, enabling researchers to uncover subtle evolutionary141

patterns that classification models might miss. Loss functions utilized in deep metric142

learning can be categorized into three distinct types: ranking-based, classification-based,143

and proxy-based approaches. Ranking-based approaches modulate the latent space by144

endeavoring to minimize the distance between analogous images and maximize the145

separation between dissimilar images within this space. Classification-based approaches146

presuppose that executing a classification task will inherently organize the latent space147

into clusters. Conversely, proxy-based approaches create a distribution for each class and148

54 Chapter 4 Gattaca: Adding Genetic Data



P
re
-P
ri
nt

INTEGRATING DEEP LEARNT MORPHOLOGICAL TRAITS 7

evaluate each data point relative to these distributions. To ensure a comprehensive149

understanding, our investigation encompasses loss functions from each of these categories.150

It is imperative to acknowledge that deep learning methodologies have been extensively151

applied to the elucidation of phylogenetic relationships using molecular traits. A detailed152

exposition of these applications is provided in Mo et al. (2024).153

Methods of Phylogenetic Inference. — Studies such as the present one would154

ideally compare different statistical methods or approaches to phylogenetic reconstruction.155

Each phylogenetic method has different strengths and weaknesses and is highly dependent156

on the nature of the data, philosophical viewpoint of the practitioner and available157

computational resources (Yang and Rannala, 2012). Despite Bayesian Inference is a widely158

used method for inferring phylogenetic relationships based on molecular (Huelsenbeck159

et al., 2001) and morphological (Wright, 2019) data, we experienced some constraints in160

analyzing continuous trait data within a Bayesian framework. As far as we know, of all the161

Bayesian phylogenetic Inference software only RevBayes (Höhna et al., 2016) currently162

supports using continuous trait data, however it does not yet support missing values/taxa163

in said data (Zhang, 2022). Therefore we present our results using only Maximum164

Parsimony (Fitch, 1971).165

Our contributions. — In this paper we show how deep learning can be used to166

extract continuous morphological traits that carry a phylogenetic signal, and how these167

traits can be used independently or combined with molecular data in a total-evidence168

framework. We compare and evaluate the results of these analyses across different169

methodological choices.170

Materials and Methods171

The analysis pipeline can be split into several steps — a graphical overview of the172

process is shown in figures 1 and 2. Each step is explained in the following sections.173
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Input
images

Genus
Determinations

Deep
Learning
Model

Average Continuous
Traits Per Species

genus trait0 ... trait128

g. 1 0.124 ... 0.124

g. 2 1.453 ... -4.792

... ... ... ...

g. 44 -0.569 ... 2.223

174

Fig. 1. Pipeline for generation of continuous morphological traits per genus. A deep metric learning model is
trained on the dataset images. It uses the species determinations to pull specimens from the same genus closer
together in space. A vector of 128 traits is output from the model for each image. The average vector for each genus
is then calculated.

175

176

177

178

Combined Continuous and Molecular Traits

genu trait0 ... trait128 bp0 ... bp4553

g. 1 0.124 ... 0.124 G ... A

g. 2 1.453 ... -4.792 T ... A

... ... ... ... ... ... ...

Phylogenetic
Inference

Model

Phylogenetic Tree

179

Fig. 2. Pipeline of phylogenetic tree generation. First the continuous traits given by the deep learning model are
combined with the molecular data. Both of these are then fed into the phylogenetic inference model which
generates a tree.

180

181

182

Datasets for phylophenomics. — Deep learning methods require training datasets183

in order to learn representations of the data directly from the data. Few datasets for184

phylogenetic inference from images exist at present. iNaturalist (Van Horn et al., 2021),185

the butterfly dataset (Cuthill et al., 2019) and Rove-Tree-11 (Hunt and Pedersen, 2022)186

are the most notable of these. Other datasets are in-the-wild, making morphological187

analysis difficult, and/or only provide a shallow reference phylogeny, e.g. (Fink and188

Ullman, 2008; Wu et al., 2019; Goëau et al., 2021). However, iNaturalist has the189

disadvantage that the images are in-the-wild (images taken from non-standardized angles,190
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lighting, backgrounds, etc.) making morphological trait extraction more difficult and both191

iNaturalist and the butterfly dataset have the problem that the phylogenies derived from192

such datasets are not particularly fine-grained. Therefore, here we focus our attention on193

the Rove-Tree-11 dataset which provides over 13,000 dorsal images of rove beetles and194

associated 11 level deep reference phylogeny. Additionally, none of these datasets come195

with associated DNA sequences. In gathering the DNA data for the Rove-Tree-11 dataset196

for this paper we hope to open many new research opportunities.197

Dataset198

Images and the reference phylogeny used in this analysis are from Rove-Tree-11199

(Hunt and Pedersen, 2022). Rove-Tree-11 is a dataset of 13,887 segmented dorsal images of200

pinned beetles from the family Staphylinidae (rove beetles) housed in the Entomology201

collection at the Natural History Museum of Denmark which includes species labels and an202

associated reference phylogeny based on the state-of-the-art knowledge in the field. The203

reference phylogeny was generated by expert coleopterists at the Natural History Museum204

of Denmark by combining recently published phylogenies from (Chani-Posse et al., 2018;205

Brunke and Smetana, 2019; Ży la and Solodovnikov, 2020; Ży la et al., 2022).206

The dataset was specifically released to explore deep-learning image based207

phylogenetic research, and as far as we know, it is the highest-depth publicly available208

dataset, which is why we focus our analysis on this dataset. Examples from the209

Rove-Tree-11 dataset can be seen in figure 3 along with a subset of the reference phylogeny.210

The distribution of the dataset on genus and sub-family level is shown in figure 4.211

Molecular Data. — The initial Rove-Tree-11 dataset does not include molecular219

data, and indeed these would be difficult if not impossible to obtain for the exact220

specimens included in the dataset as they are pinned specimens, likely to have degraded221

DNA (Mandrioli, 2008). Therefore molecular data was gathered from GenBank to augment222
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Heterothops dis.

Quedius cru.

Philonthus car.

Bisnius fim. Gabrius spl. Paederus rip. Astenus lyon.

Rugilus orb.

Lathrobium bru.

Tetartopeus ter.

212

Fig. 3. Subset of the reference phylogeny from the Rove-Tree-11 dataset, for the 10 genera with the most images in
the dataset. Each leaf represents a genus. Example specimens from each of the genera are shown in black and white
for reference. Reproduced from Hunt and Pedersen (2022) with permission.

213

214

215

216

Fig. 4. Distribution of specimens per genus (bottom left) and per subfamily (top right). Each slice in the stacked bar
chart represents a different species within that genus. Reproduced from Hunt and Pedersen (2022) with permission.

217

218

the Rove-Tree-11 images and phylogeny. Since molecular data is not available for all223

individual species, we focused on covering examples from every genus. Genus Velleius from224

the original Rove-Tree-11 is downgraded to a subgenus of Quedius and therefore it is not225

present in our analyses. Seven genes were used in order to cover the majority of the genera226

present in the dataset: carbamoyl- phosphate synthetase (cadA and cadC), topoisomerase I227
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(topo), arginine kinase (argK), wingless (Wg), mitochondrial protein-encoding COI (COI)228

and nuclear ribosomal 28S (28S). These were chosen based on their wide use and229

availability in molecular phylogenies focused on Staphylininae, Paederinae, and230

Xantholininae (Chatzimanolis et al., 2010; Brunke et al., 2016; Schomann and231

Solodovnikov, 2017; Chani-Posse et al., 2018; Ży la and Solodovnikov, 2020; Jenkins Shaw232

et al., 2020). All molecular data used in this analysis is provided in the supplemental233

material. For protein-coding genes, the reading frame was found with Aliview (Larsson,234

2014). Individual gene fragments were aligned using MAFFT 7 (Katoh and Standley,235

2013). Trimming was performed on alignments using TrimAl 1.3 (Capella-Gutiérrez et al.,236

2009) with -gappyout setting. The alignments were concatenated with FASconCAT-G237

(Kück and Longo, 2014). The best partition scheme and model selection were obtained238

under the Bayesian inference criterion using PartitionFinder 2.1.1 (Lanfear et al., 2016).239

The following parameters were considered: ”all models”, the lengths of the branches were240

established so that they were ”unlinked” and the search was established in the algorithm241

”greedy” (Lanfear et al., 2012).242

Deep learning model243

Following the methodology used by Hunt and Pedersen (2022) and Roth et al.244

(2020), we used a ResNet50 architecture (He et al., 2016) pretrained on the ImageNet245

dataset (Russakovsky et al., 2015) with 128 latent features and compared across various246

deep metric learning loss functions, described below. Models were trained for 50 epochs247

with the best checkpoint based on the validation results used to generate the continuous248

traits. For all training sessions, we fixed mini-batch size to 8 samples with gradient249

accumulation after 14 batches (an effective batch size of 112), a learning rate of 1e-5 with a250

step scheduler and a weight decay of 1e-4. Data augmentation was applied to improve the251

generalizability of the model. Details of the augmentations is available in the supplemental252

materials. Unlike Hunt and Pedersen (2022) we trained the deep learning model on253
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genus-level, since molecular data is not available at species level and therefore the total254

evidence analysis is performed at genus-level.255

Loss Functions. — Various deep metric learning loss functions were compared,256

based on those used by Hunt and Pedersen (2022) and Roth et al. (2020). We focused on257

six popular deep metric learning loss functions out of thousands available. These include258

four ranking-based losses: triplet (Wu et al., 2017), margin (Wu et al., 2017), contrastive259

(Hadsell et al., 2006), and multisimilarity (Wang et al., 2019). Lifted was not used contrary260

to Hunt and Pedersen (2022) because it did not appear to properly converge. Furthermore,261

we also explore one proxy-based loss: proxyNCA (Movshovitz-Attias et al., 2017) and one262

classification-based loss: arcface (Deng et al., 2018). We adopted a beta parameter of 0.6263

for the margin loss, consistent with prior work by Hunt and Pedersen (2022).264

Distance-based batch mining was applied to margin, contrastive, and triplet losses.265

Additional details can be found in Roth et al. (2020).266

Dataset split. — In order to train and evaluate the performance of deep learning267

methods a dataset is usually split into training, validation and test datasets. How the268

chosen dataset is split into these subsets can greatly affect the results obtained by deep269

learning algorithms (Tyagi and Mittal, 2020). The original Rove-Tree-11 dataset is divided270

into training, validation, and test sets based on sub-family classification: Staphylininae for271

training, Paederinae for validation, and Xantholininae for testing, termed the ’Clade’ split.272

This arrangement aims to assess a deep learning model’s capacity to learn phylogenetic273

relationships. However, we aim to investigate whether utilizing a typical stratified274

classification split could enhance the model’s ability to discern phylogenetically significant275

features by exposing it to examples from all species during training. Hence, we introduce276

an additional dataset split called ’Stratified’. A stratified dataset split involves dividing the277

dataset into training, validation, and test sets in such a way that each set contains278

approximately the same percentage of samples of each target class as the original dataset,279
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ensuring representative distribution of classes across each split.280

For the stratified dataset split, we maintain the training, validation, and test set281

divisions but randomly allocate 70% of the images from each species to the training set,282

with the remaining 30% split equally between validation and test sets. This split conforms283

to standard practice in deep learning classification tasks. The new split’s details are284

provided in a supplemental csv file for reproducibility purposes. No other model285

parameters were altered for this investigation beyond the adjustment in the training split.286

Maximum Parsimony Analysis287

Due to software limitations, as mentioned earlier, we exclusively employ maximum288

parsimony for our analyses. This decision stems from the constraint that RevBayes is the289

sole Bayesian program supporting continuous traits; unfortunately, combining it with290

missing molecular data yielded convergence issues, as noted in an open issue on the291

RevBayes GitHub repository (Zhang, 2022). We utilize TNT (Goloboff et al., 2008) for292

maximum parsimony analyses, employing random addition sequences with TBR branch293

swapping across 100 replicates, followed by generating a Nelsen strict consensus and294

conducting bootstrapping with 100 repetitions. In total evidence analyses with maximum295

parsimony, we enforce monophyly within genera to enable tree score calculation at the296

genus level. Example scripts are included in the supplemental material.297

Quantitatively Comparing Trees298

To assess the quality of trees obtained through various methods, we employ299

quantitative techniques for comparing them to a reference phylogenetic tree. A common300

metric in phylogenetics is the normalized Robinson-Foulds (nRF) score (Robinson and301

Foulds, 1981). While advantageous for comparing trees of different sizes and depths, it has302

limitations; it relies on binary matching of tree edges, potentially inflating scores for trees303

with few errors. Alternatively, the align score (Nye et al., 2006) computes the intersection304
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over union for matched edges, providing a fairer representation of tree differences.305

However, it lacks normalization, making direct comparisons across trees of different sizes306

challenging. To address this, we propose normalizing the align score based on the upper307

bound of matched edges. Both metrics are utilized: the align score is adept at detecting308

subtle differences between trees, while the nRF score is widely accepted and easier to309

interpret. Since our reference tree lacks branch length information, other methods focusing310

on branch length differences are irrelevant. Further details and comparisons between the311

two metrics are provided in Kuhner and Yamato (2014).312

Quanitifying Phylogenetic Signal in Traits313

Numerous methods are available to quantify the phylogenetic signal in traits, with a314

comprehensive comparison provided in Münkemüller et al. (2012). Among these methods,315

Abouheif’s Cmean (Abouheif, 1999) stands out as it does not rely on branch lengths and316

our phylogeny does not have branch lengths. This method evaluates the autocorrelation of317

trait values across the tree’s leaves and tests its significance against a randomly permuted318

dataset. Specifically, the function computes the sum of squared differences between319

adjacent trait values along the ordered list of leaves, divided by the total difference. The320

equation for Abouheif’s Cmean is shown in (1), where yi represents the trait value for321

species i, yi+1 denotes the trait value for the neighboring species in the ordered list of322

leaves, and N indicates the total number of species. As a result, the function is normalized,323

and higher values indicate a stronger phylogenetic signal. The Cmean is defined as324

Cmean(y) = 1 −
∑N−1

i=0 (yi+1 − yi)
2

2
∑N

i=0 y
2
i

. (1)

Gene Ablations325

To assess the impact of adding genetic data on continuous traits results, we326

conducted maximum parsimony analyses using all possible combinations of the seven genes327

(argK, cadA, cadC, COI, 28S, topo, Wg) employed in this study. This entails 127 total328
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combinations. Due to computational constraints, we focused on a single model with the329

lowest normalized Align Score — Triplet loss trained on the Stratified dataset split with a330

random seed of 4—to investigate how altering the number of genes affects total evidence331

results.332

Given that not all genes were available for all genera, the resulting tree sizes varied333

in the molecular-only ablation study. As the normalized Align Score remains somewhat334

sensitive to tree size despite normalization, total evidence trees with more genera may face335

a slight disadvantage. To mitigate this, when calculating the normalized Align Score for336

total evidence trees compared to the reference tree, we excluded any genera lacking337

molecular data.338

Results339

Deep Learnt Morphological Traits: Phylogenetic Signal and the Effect of the Dataset Split340

To demonstrate that the deep learnt morphological traits have captured some341

phylogenetic signal, we report normalized Robinson Foulds (nRF) scores and normalized342

Align Scores (nAS) for trees inferred from the traits using maximum parsimony and343

varying dataset splits and loss functions (table 1) and cmean values for the traits of each344

model along with their p values (table 2). To gain some insight into the traits, a sample of345

gradcam saliency maps (Selvaraju et al., 2017) is shown in figure 5.346

The positive examples (top) in figure 5 show that the deep learnt traits can focus353

on phylogenetically important morphological features. In this case the model appears to354

mainly look at the abdomen for this trait. However, the negative examples (bottom) show355

the model focussing on different areas in the same trait. Rugilus (f) shows the model356

focussing on the narrow neck, a distinctive Ruglilus trait. For Nudobius (e) this trait is357

looking at the majority of the beetle, showing that there is no direct relationship between358
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(a) (b) (c)

(d) (e) (f)

Fig. 5. Examples of gradcam saliency maps (trait 30 from the stratified dataset with triplet loss, seed 4). Saliency
maps are shown superimposed on the mask of the beetle with brighter pixel values indicating higher influence on
the latent variable. Saliencies in the top row are from genera (a) Atrecus, (b) Lithocharis and (c) Ontholestes, these
show the model focusing on the abdomen for this trait. And (d) Gyrohypnus, (e) Nudobius and (f) Rugilus
demonstrate some counter examples for this trait. In the case of Rugilus (f) the model focuses instead on the neck
region which is distinctively small in the Rugilus genus.

347

348

349

350

351

352

the trait and the morphological area of interest, making the results difficult to interpret.359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

Table 1. Tree Inference Results. Each row is the average of 5 runs. As a baseline for
the scores, five randomly generated trees of this size gave a nASa of 0.702±0.022 and a
nRF b score of 0.993 ± 0.007. Results are reported with 95% confidence intervals, using
a student’s t-distribution. Best results in bold. Results within confidence interval of the
best score are underlined.

nAS nRF
Dataset Split Loss Function Average Median Average Median

Clade Arcface

0
.5

9
6
±

0
.0

2
0

0.627 ± 0.022 0.625

0
.9

4
7
±

0
.0

1
9

0.975 ± 0.017 0.969
Clade Contrastive 0.629 ± 0.017 0.637 0.967 ± 0.005 0.969
Clade Margin 0.615 ± 0.045 0.616 0.975 ± 0.017 0.970
Clade Multisim. 0.506± 0.034 0.512 0.877 ± 0.043 0.897
Clade Proxy 0.638 ± 0.009 0.634 0.987 ± 0.022 1.000
Clade Triplet 0.560 ± 0.045 0.563 0.901 ± 0.065 0.903

Stratified Arcface

0
.5

9
5
±

0
.0

3
1

0.692 ± 0.042 0.708

0
.9

1
3
±

0
.0

2
8

0.992 ± 0.022 1.000
Stratified Contrastive 0.531 ± 0.024 0.538 0.829± 0.026 0.815
Stratified Margin 0.596 ± 0.036 0.597 0.928 ± 0.045 0.925
Stratified Multisim. 0.524 ± 0.076 0.505 0.845 ± 0.057 0.825
Stratified Proxy 0.699 ± 0.009 0.699 1.000 ± 0.000 1.000
Stratified Triplet 0.530 ± 0.067 0.532 0.886 ± 0.062 0.900

From table 1 we can make a few immediate observations about the tree inference.380

First, we can see that the dataset split has almost no influence over the average results,381

and the best overall model on average according to the normalized Align Score was using382

anormalized Align Score
bnormalized Robinson-Foulds
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the cladistic dataset split. Next we see some preference for different loss functions. In383

particular contrastive, multisimilarity and triplet losses provide the best results. The384

normalized Align and Robinson Foulds scores also show a significant improvement to385

randomly generated trees in 10 out of 12 models, further indicating that the continuous386

traits can carry a phylogenetic signal, but also that model choice is important.387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

Table 2. Phylogenetic Signal Quanitification Using Abouheif ’s Cmean. Each row is the
average of the 128 traits of all 5 runs. Results are reported with 95% confidence intervals,
using a student’s t-distribution. Best results in bold. Results within confidence interval
of the best score are underlined.

p value < 0.05
Average Cmean Maximum Cmean with Cmean

Dataset Split Loss Function Cmean p value Cmean p value > 0.3 > 0.5 > 0.7

Clade Arcface 0.107 ± 0.010 0.219 ± 0.019 0.480 0.001 9% 0% 0.0%
Clade Contrastive 0.288± 0.014 0.067 ± 0.011 0.794 0.001 46% 14% 0.6%
Clade Margin 0.188 ± 0.012 0.118 ± 0.015 0.610 0.001 21% 2% 0.0%
Clade Multisim. 0.208 ± 0.013 0.118 ± 0.016 0.658 0.001 28% 4% 0.0%
Clade Proxy 0.101 ± 0.010 0.226 ± 0.020 0.519 0.001 6% 0% 0.0%
Clade Triplet 0.244 ± 0.012 0.076 ± 0.011 0.683 0.001 35% 5% 0.0%

Stratified Arcface −0.028 ± 0.007 0.511 ± 0.022 0.241 0.008 0% 0% 0.0%
Stratified Contrastive 0.281 ± 0.012 0.050 ± 0.009 0.706 0.001 44% 8% 0.2%
Stratified Margin 0.164 ± 0.011 0.138 ± 0.015 0.578 0.001 16% 1% 0.0%
Stratified Multisim. 0.128 ± 0.010 0.179 ± 0.018 0.517 0.001 10% 0% 0.0%
Stratified Proxy −0.025 ± 0.008 0.498 ± 0.023 0.273 0.007 0% 0% 0.0%
Stratified Triplet 0.232 ± 0.011 0.076 ± 0.012 0.645 0.001 31% 4% 0.0%

Abouheif’s Cmean values in table 2 show relatively low average trait values, and a408

high variation in the maximum phylogenetic signal per trait in the different models.409

However, all maximum Cmeans have a significant p value (less than 0.05), indicating a410

strong and significant phylogenetic relationship obtained in some traits. The final three411

columns show the percent of traits which have a significant p value (less than 0.05) and a412

Cmean above a certain threshold, indicating the percentage of traits with a significantly413

strong phylogenetic signal. Of these, relatively few have a Cmean above 0.5. From this the414

Cladistic dataset split appears to have a positive influence on the phylogenetic signal, with415

the cladistic split, contrastive loss model significantly outperforming the other models. It is416

interesting to contrast this with the results in table 1 where the cladistic split, contrastive417

loss model performs worse than the average. This shows the strong influence of the metric418
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on the results. When interpreting these results, we prefer to favor the align score as it419

directly measures the performance of phylogenetic inference from the traits, while420

Abouheif’s Cmean, as an autocorrelation function is also influenced by the order the leaves421

are presented in the tree.422

Adding Molecular Sequences: Total Evidence Analysis423

Here we report results from the total evidence analysis where we combine both deep424

learnt morphological traits and molecular traits to complete the phylogenetic inference. We425

compare this combined result with using molecular data alone.426

From table 3 we can make a couple of observations. First, the dataset split does427

significantly affect the results, with the clade split providing the best Align Score on428

average. This can be contrasted with the deep learnt traits only results in table 1, where429

the dataset split results were well within eachother’s confidence intervals. Secondly, we can430

see that the results are on average slightly improved using total evidence compared with431

molecular traits only, however 10 out of 12 models have average nAS scores within the432

confidence interval of the molecular only model, suggesting we should be cautious in433

drawing conclusions. That said, only two models have average nRF scores within the434

molecular only model’s confidence interval. This further highlights the discrepancies435

between these metrics, however, we believe the nAS is a more fair metric, for reasons436

explored in the methods section.437

Qualitative Tree Comparison — In figure 6 we show (a) the reference phylogeny459

which we use as a gold standard, (b) the best molecular tree (c) the best total-evidence460

tree tree. Differences between them are labelled as groups 1-4 and examined as follows:461

1. The total evidence tree figure 6(c) correctly places Heterothops and Aclyophorus in462

Staphylininae. while the molecular only tree figure 6(b) clades them as a sister group463

to Xantholininae and Staphylininae.464
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1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

Table 3. Results of Total Evidence Analysis - Combining Molecular data and Deep
Learnt Morphological Traits. Confidence intervals are 95% level based on 5 runs. As
a baseline comparison for the scores, five randomly generated trees of this size would
give a nAS of 0.702 ± 0.022 and a nRF Score of 0.993 ± 0.007. Best results in bold.
Results within confidence interval of the best score are underlined.

nAS nRF
Traits Dataset Split Loss Function Average Median Average Median

Molecular Only - - 0.141 ± 0.017 0.147 0.382 ± 0.040 0.405
Total Evidence Clade Arcface

0
.1

2
8
±

0
.0

0
6

0.139 ± 0.021 0.138

0
.3

2
0
±

0
.0

1
0

0.337 ± 0.024 0.333
Total Evidence Clade Contrastive 0.119± 0.014 0.119 0.311 ± 0.033 0.315
Total Evidence Clade Margin 0.127 ± 0.017 0.127 0.319 ± 0.025 0.315
Total Evidence Clade Multisim. 0.135 ± 0.024 0.136 0.316 ± 0.045 0.306
Total Evidence Clade Proxy 0.127 ± 0.013 0.126 0.324 ± 0.041 0.315
Total Evidence Clade Triplet 0.121 ± 0.023 0.118 0.309± 0.031 0.324
Total Evidence Stratified Arcface

0
.1

4
7
±

0
.0

1
1

0.166 ± 0.037 0.160

0
.3

3
9
±

0
.0

1
2

0.383 ± 0.028 0.389
Total Evidence Stratified Contrastive 0.141 ± 0.032 0.139 0.313 ± 0.019 0.306
Total Evidence Stratified Margin 0.162 ± 0.058 0.143 0.324 ± 0.011 0.324
Total Evidence Stratified Multisim. 0.135 ± 0.016 0.133 0.337 ± 0.026 0.333
Total Evidence Stratified Proxy 0.155 ± 0.028 0.149 0.365 ± 0.021 0.361
Total Evidence Stratified Triplet 0.121 ± 0.012 0.119 0.310 ± 0.017 0.315

2. The total evidence tree figure 6(c) places Gauropterus inside the majority of465

Xantholininae, as expected, while the molecular only tree figure 6(b) erroneously466

places Gauropterus outside the majority of Xantholininae.467

3. The total evidence tree figure 6(c) pushes these clades to be unresolved, closely468

reflecting our current empirical data about these clades while the molecular-only tree469

figure 6(b) undesirably resolves these clades470

4. The total evidence tree figure 6(c) erroneously nests Quedius and Euryporus inside471

the tribe Staphylinini, while the molecular only tree figure 6(b) correctly places them472

outside Staphylinini.473

In total, three out of four controversial groups in this example are better placed by474

the total evidence tree.475
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(a) Reference (b) Molecular (c) Total Evidence

476

Fig. 6. Comparison of a) reference phylogeny, b) best total evidence tree and c) best molecular-only tree.
Differences between best molecular-only and best total evidence tree highlighted by indicating the controversial
groups 1,2,3,4 on both trees. Plots produced in part using iTOL (Letunic and Bork, 2021)

477

478

479

Varying amounts of Molecular Sequences: Gene Ablation Study480

Figure 7 shows how changing the number of genes included in the analysis affects481

the results. We notice that the total evidence ablation results are slightly improved on482
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average compared to the molecular-only results. However, there is a large variation in the483

normalized Align Score. This variation is decreased as we add more genes, which also484

makes sense as the number of possible combinations decreases and the algorithm has more485

data to converge on.486

487

Fig. 7. Violin plot of the effect of including different gene combinations on the normalised Align Score. In each
column the results to the left (darker) are for molecular-only ablations, and to the right (lighter) are for total
evidence ablations. Each point represents an individual result.

488

489

490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

Table 4. Best subset of genesc given the number of genes. Best results in bold.

Molecular Only Total Evidence

No. Best Gene Combination nAS nRF Best Gene Combination nAS nRF
Genes

0 - - - - 0.461 0.846
1 28S 0.228 0.433 28S 0.214 0.420
2 28S, ArgK 0.171 0.362 28S, ArgK 0.159 0.408
3 28S, COI, wing 0.129 0.275 28S, ArgK, topo 0.135 0.286
4 28S, COI, topo, wing 0.130 0.314 28S, CADb, COI, wing 0.111 0.278
5 28S, ArgK, CADb, COI, wing 0.133 0.432 28S, CADb, COI, topo, wing 0.111 0.288
6 28S, ArgK, CADa, CADb, COI, topo 0.127 0.342 28S, ArgK, CADb, COI, topo, wing 0.126 0.324
7 All 0.136 0.378 All 0.124 0.315

In table 4 we see disagreement between the nRF and nAS scores, and in this case503

we follow the nAS scores as they are more stable. This indicates that the best model504

includes continuous deep learnt traits and the 4 genes 28S, CADb, COI, and Wg. On505

cGenes used in this analysis: nuclear ribosomal 28S (28S), arginine kinase (ArgK), carbamoyl- phosphate synthetase (cadA
and cadC), mitochondrial protein-encoding COI (COI) topoisomerase I (topo) and wingless (Wg)
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average we can see both from table 4 and from figure 7 that the nAS in the total evidence506

results are generally lower and therefore better than they are in the molecular only results,507

further suggesting that deep learnt continuous traits can add to phylogenetic analyses.508

Discussion509

Deep Learnt Morphological Traits: Phylogenetic Signal510

Table 1 shows that all of the models on average have a better align score than511

random trees, and 10 out of 12 models are outside of the confidence intervals for the512

random trees, indicating that the deep learnt traits can indeed carry a significant513

phylogenetic signal. However, that signal is still difficult to directly interpret as514

demonstrated by the saliency maps in figure 5. While applying saliency maps that are515

normally used in classification to latent variables is itself questionable, we can see that this516

deep learnt trait does appear to primarily focus on a single body part, however the517

saliency map can deviate from this, and while we can explain some of this through our518

knowledge of the distinctive traits (like the slim neck of Rugilus), others are difficult to519

interpret. We assume that this, in part, demonstrates the dependencies between these520

traits, and potentially demonstrates that further exploration is necessary into explaining521

these traits. We have put no constraints on the traits to be independent, and indeed we522

can see that many traits focus on the same area for example from the same genera. It523

could be that interpreting such models could be made easier by the use of disentangled524

networks. We discuss this further in the future work section.525

The Effect of the Dataset Split526

Tables 1 and 3 also provide insight into the dataset split. Both indicate a preference527

for the cladistic split, but in table 3 this preference is significant. This is interesting as we528

might expect to see the opposite - that the difference would be more pronounced when the529

molecular traits have no influence on the results. We are also surprised that the preference530
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is not for the stratified split. We might expect that allowing the model to learn from all531

subfamilies would improve the model’s ability to learn phylogenetically important traits for532

other groups. However, these results are encouraging, in the sense that they indicate that533

models trained on one clade may be highly successful in inferring relationships in unseen534

clades, reducing the necessity for retraining the model. However, further investigation into535

this phenomena on a variety of datasets would be required to firm up a conclusion on this536

aspect.537

Loss Functions538

When comparing across loss functions in table 1 and table 3 we see a clear539

preference for contrastive, multisimilarity and triplet losses. This is in line with results540

obtained in Hunt and Pedersen (2022). What is interesting is that the results from541

Abouheif’s Cmean and the total evidence analysis in tables 2 and table 3 suggest a strong542

preference for the contrastive loss, which is not necessarily reflected in the results in table543

1 where we infer the phylogeny directly from the morphological traits. A high value of544

Abouheif’s Cmean is highly correlated to deeper phylogenetic relationships. Therefore one545

hypothesis could be that the contrastive loss is better at picking up deeper (tribe-level and546

above) phylogenetic relationships, but not so good at picking up more shallow547

relationships, making it result in traits which have a relatively high Cmean, but relatively548

poor overall tree. However, since molecular data is quite good for picking up shallow549

relationships, when combined with these morphological traits, this could result in a good550

total evidence tree. This is one potential explanation, but this would need to be551

investigated further and is outside the scope of this analysis.552

Qualitative Tree Comparison553

The total-evidence best tree topology (figure 6c) reveals improved placements of the554

Heterothops and Gauropterus inside Staphylininae, as well as it reflects the uncertainty in555
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the unresolved position of the Xantholinus and Megalinus clades. However, it places the556

Erichsonius+(Quedius+Europorus) clade inside the tribe Staphylinini. Alternative557

phylogenetic placement of these groups suggests that deep learnt traits improved558

phylogenetic resolution at deeper nodes, in our case at the subfamily level, but failed with559

more terminal resolution, in our case at the tribal level.560

Gene Ablation Study561

From figure 7 and table 4 we can see that the total-evidence analysis with four562

genes (28S, CADb, COI and Wg) provides the best result of the ablation studies. From563

figure 7 we can see that there is significant variation in the results when a single gene is564

added, reinforcing the notion that gene choice is important for phylogenetic analyses.565

Figure 7 further demonstrates that good results can be obtained with relatively few genes,566

and that this result is not drastically affected by adding deep learnt morphological traits.567

We can further say that deep learnt morphological traits can indeed improve the568

phylogenetic analysis, with mean values below that of the molecular results, however this569

result should be used with caution as for the gene ablation study we used traits from the570

model which performed the best. Therefore a comparison of different models on the data of571

interest should be completed to make further conclusions from these analyses.572

Conclusion573

Quantitative morphological characteristics, extracted through the application of574

deep learning techniques applied to images of pinned insect specimens produced for mass575

collections digitization purposes, have been demonstrated to possess phylogenetic576

relevance. These traits, when integrated into molecular phylogenies, have the potential to577

augment the phylogenetic framework in a comprehensive total-evidence based approach,578

offering the possibility of incorporating species lacking molecular data into phylogenetic579

trees. However, the improvement of phylogenetic reconstructions by the inclusion of such580
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morphological data derived through deep learning methodologies remains minimal. While581

this approach has shown promise, scaling up its implementation is still not feasible for two582

reasons. First, the phylogenetic signal of the deep learnt traits, at least in our dataset, was583

not too strong to justify further effort in gathering the same type of data in the same way.584

Second, the effort required for our image-based dataset compilation, even though obviously585

lesser than an effort by the expert to assemble a traditional morphological phylogenetic586

matrix, is still significant. Despite these challenges, as will be elaborated in the section on587

future research directions, we stress the opportunities for removal of both impediments. It588

is conceivable to amplify the phylogenetic signal automatically extracted from the589

collections specimen images via improved models, targeted loss functions, transfer learning.590

At the same time improved imaging, image processing and on-going optimization of these591

steps should enhance the data acquisition and thus large-scale non-destructive use of the592

digitized collections.593

Future Work594

Several promising directions exist within the burgeoning domain of deep metric595

learning, which could augment the phylogenetic signal gleaned from these models. Firstly,596

with natural history museums worldwide embarking on the digitization of their collections597

(Davies and et al, 2017; Hedrick et al., 2020; Popov et al., 2021; Ahlstrand, 2023; Johnson598

et al., 2023), an expansion of publicly accessible data to nearly complete sampling of big599

taxa is anticipated. Given that the performance of deep learning models is generally600

enhanced by training on more representative datasets (Sun et al., 2017), it is anticipated601

that the increased availability of image datasets in this domain will significantly enhance602

the efficacy of resultant models.603

Secondly, the domain of deep learning is experiencing rapid evolution, characterized604

by the emergence of numerous sub-fields. It is still unclear which improvements to deep605

learning models may significantly increase the extracted phylogenetic signal. Two areas, in606
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particular, hold significant promise. A growing body of research (Eddahmani et al., 2023)607

is investigating the enforcement of independence among continuous traits, which could lead608

to more explainable traits and enable their statistical dissociation. Another area of interest609

pertains to the application of variational autoencoders to encourage the continuous trait610

space to conform to specific distributions (e.g., a normal distribution), which has been611

demonstrated to improve clustering outcomes in various instances (Kingma and Welling,612

2019). Invoking the central limit theorem, the normal distribution possesses intrinsic613

appeal in biological contexts and may facilitate a better structured trait space. More work614

also should be done into how to measure the phylogenetic signal in these models.615

Thirdly, the integration of deep learning-derived molecular embeddings with616

morphological embeddings in phylogenetics remains an underexplored avenue, despite617

significant investment in the development of deep learning approaches for molecular traits618

(Mo et al., 2024).619

Fourthly, there is a necessity for further investigation into the quantification and620

elucidation of deep learning-derived traits. The identification of loss functions capable of621

incentivizing models to discern phylogenetically pertinent traits remains elusive. Moreover,622

existing metrics for quantifying the informational content of traits, such as Abouheif’s623

Cmean or align scores, lack intuitiveness. While saliency maps offer a generalized624

explanation of model behaviors, their applicability to latent variable models is not625

straightforward, and a comparison of different latent variable saliency methods should be626

completed.627

Lastly, we advocate for the conceptualization of deep learning-derived traits as628

distributions rather than singular values. Morphological traits are traditionally represented629

as binary values across clades; however, we contend that recognizing each species as a630

continuous distribution of traits could hold substantial value. The employment of631

continuous variables in conjunction with Bayesian methodologies appears particularly632

conducive to this perspective.633

74 Chapter 4 Gattaca: Adding Genetic Data



P
re
-P
ri
nt

INTEGRATING DEEP LEARNT MORPHOLOGICAL TRAITS 27

Environmental Footprint634

Using carbontracker (Anthony et al., 2020) we estimate that the training of each635

deep learning model in this paper used 1.32 kWh of power (based on one full model run),636

translating to 192g of CO2. The full published deep learning results from this paper637

therefore produced an estimated 2.304 kg of CO2. The carbon production from the638

phylogenetic models and from early experimentation is not included in this estimate.639
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List of Figure Captions897

1 Pipeline for generation of continuous morphological traits per genus. A deep898

metric learning model is trained on the dataset images. It uses the species899

determinations to pull specimens from the same genus closer together in space.900

A vector of 128 traits is output from the model for each image. The average901

vector for each genus is then calculated. . . . . . . . . . . . . . . . . . . . . 8902

2 Pipeline of phylogenetic tree generation. First the continuous traits given by903

the deep learning model are combined with the molecular data. Both of these904

are then fed into the phylogenetic inference model which generates a tree. . . 8905

3 Subset of the reference phylogeny from the Rove-Tree-11 dataset, for the 10906

genera with the most images in the dataset. Each leaf represents a genus.907

Example specimens from each of the genera are shown in black and white for908

reference. Reproduced from Hunt and Pedersen (2022) with permission. . . . 10909

4 Distribution of specimens per genus (bottom left) and per subfamily (top910

right). Each slice in the stacked bar chart represents a different species within911

that genus. Reproduced from Hunt and Pedersen (2022) with permission. . . 10912

5 Examples of gradcam saliency maps (trait 30 from the stratified dataset with913

triplet loss, seed 4). Saliency maps are shown superimposed on the mask of914

the beetle with brighter pixel values indicating higher influence on the latent915

variable. Saliencies in the top row are from genera (a) Atrecus, (b) Lithocharis916

and (c) Ontholestes, these show the model focusing on the abdomen for this917

trait. And (d) Gyrohypnus, (e) Nudobius and (f) Rugilus demonstrate some918

counter examples for this trait. In the case of Rugilus (f) the model focuses919

instead on the neck region which is distinctively small in the Rugilus genus. . 16920
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6 Comparison of a) reference phylogeny, b) best total evidence tree and c) best921

molecular-only tree. Differences between best molecular-only and best total922

evidence tree highlighted by indicating the controversial groups 1,2,3,4 on923

both trees. Plots produced in part using iTOL (Letunic and Bork, 2021) . . 20924

7 Violin plot of the effect of including different gene combinations on the nor-925

malised Align Score. In each column the results to the left (darker) are for926

molecular-only ablations, and to the right (lighter) are for total evidence ab-927

lations. Each point represents an individual result. . . . . . . . . . . . . . . . 21928
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5What’s under the Likelihood?

„Colon didn’t reply. I wish Captain Vimes were
here, he thought. He wouldn’t have known what
to do either, but he’s got a much better
vocabulary to be baffled in.

— Terry Pratchett
Guards! Guards!

After the work of the previous chapter, we can clearly identify a gap between the
amount of phylogenetic signal the deep learnt morphological traits can extract
and what can be inferred from genetic data. However, the cause of this gap is yet
unknown. Do rove beetles simply have too many homologies to easily pick out the
phylogenetic signal? Perhaps genetics will always give a stronger phylogenetic signal
due to convergent evolution? Is there something more we should be doing in the
deep learning model to extract traits with a higher signal?

To explore these questions we first choose a simulated dataset so we can rule out
empirical dataset issues. Then we explore if enforcing some of the fundamental
assumptions of phylogenetic inference could help the deep learning models extract
meaningful traits. Finally we flip the problem, and ask ’if we give the model the
hierarchy, could it learn to extract the most phylogenetically meaningful traits?’. If so,
can these point us to phylogenetically important features in the original dataset?

This chapter stands apart from the previous two in two important ways: first, it is
not yet peer reviewed or formed as a paper, but rather an exploration of prototypes.
Secondly, it does not directly follow from the work with the Rove-Tree-11 dataset
or morphological datasets. Rather we hope that eventually methods spawned from
this area of research will be able to be applied to such a morphological dataset
and improve automated morphological phylogenetic inference, however simulated
genetic data gives us more control over assumptions and gives us certainty of the
ground truth phylogenetic tree.

Code for experiments in this chapter is available on github (https://github.com/
robertahunt/PyTorch-VAE). Code is forked from AntixK’s PyTorch-VAE framework
[89].
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5.1 Dataset

In order to identify if the issue is with the deep learning model, we need a dataset
where we can directly compare phylogenetic inference results to our deep learnt
trait extraction results. The easiest way to do this is using genetic data directly in
our deep learning model. Unfortunately it is not feasible to obtain enough genetic
data samples for the Rove-Tree-11 dataset that would allow deep learning from the
genetic data alone. Therefore we started by looking at other empirical datasets which
contain large numbers of image and associated genetic data. We presently know
of two: INSECT [5] and BIOSCAN [30]. However the images in both are not from
standard poses. Additionally neither contain a hierarchical representation aside from
the taxonomy, and using a taxonomy as a phylogeny could conflate our problem.
So finally we decide to use simulated genetic/phylogenetic data which gives us full
certainty of the phylogeny and genetic sequence, at the potential cost of realistic
sequences [95] and lack of specimen images and thereby lack of morphological
traits.

Most simulated datasets enforce independence between traits, and one of our
hypotheses is that deep learning models could be effective at disentanglement of
dependant traits, leading to better inference overall. Thankfully some work has
already been done on how the dependencies between traits affect the phylogenetic
inference results using simulated data. Nasrallah et al. [63] used simulated data to
show that dependencies between nucleotides negatively affected the phylogenetic
results. Magee et al. [53] followed up on this in 2021 and showed that including
dependant characters still improved phylogenetic results compared to removing
them completely, however they are not as informative as independent characters.

Magee et al. [53] provide a repository for their code, so we choose to use their
simulation setup to generate simulations with dependencies among nucleotides. We
chose to base our study on their tunicates dataset which includes 50 species. The
tunicates phylogenetic tree is shown in fig. 5.1. The tunicates tree is built from an
empirical dataset of 18S genes from Tsagkogeorga et al. [96]. After the empirical
tree is generated it is assumed to be ground truth, and traits extracted from it such
as rate heterogeneity and stationary frequencies are used in the simulation step.

The simulation model used by us is directly from Magee et al. [53] which is based
on that of Nasrallah and Huelsenbeck [62]. We briefly reiterate key points of their
model here.

The model defines two kinds of sites: dependant and independent. Independent
sites are modeled as evolving according to the classic GTR+G substitution model
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[94]. The classic Generalized Time Reversible (GTR) model defines a symmetric rate
matrix of transition probabilities from each nucleotide to another. It is symmetric in
that it is assumed that the probability, for example, of A changing to G is the same as
the probability of G changing to A. The +G means the model incorporates gamma
distributed rate variation among sites. This simulates that some sites evolve slower
than others. This is typically incorporated by discretizing the gamma distribution
into a number of categories of rates, and assigning each site a category.

The dependant sites are modelled using a modified GTR+G model, where sites are
paired together in doublets x = (x1, x2). The stationary frequencies of the doublets
is defined as π = (πAA, πAC , ...πT T ). And the substitution matrix is denoted as
S ∈ R4x4. [62] define a set of Watson-Crick doublets, W = {AT, TA, CG, GC}. The
probability of each doublet evolving into another doublet, y = (y1, y2) is defined by
the instantaneous rate matrix Q with entries Qx,y such that,

Q =



ζπySx1y1 , if single substitution of x1

ζπySx2y2 , if single substitution of x2

ζπySx1y1Sx2y2d, if double substitution and x, y ∈ W

0, if any other substitution

−
∑

x ̸=y Qx,y, if x = y

(5.1)

Where ζ a scaling factor to ensure the rates stay overall similar between the indepen-
dent sites and the dependant sites, and d is a scaling factor representing the overall
dependency between doublets. The rate matrix and gamma shape parameter are
shared between the independent and dependant sites.

5.1.1 Modelling Individuals

Normally in simulated phylogenetic studies, only one nucleotide sequence is gener-
ated per taxa. However, for the purposes of deep learning, you typically want many
examples per species. In order to do this in the simulation software, and ensure that
each specimen is related properly to the others in the tree, we expanded the tree so
each species would have 200 leaves, each representing a single specimen. Another
option would have been to run the normal simulation, and then run an intraspecies
simulation for each species, generating mutations. However, this seems simpler and
ensures that all mutation rates are shared along both the full tree and the individual
specimens. We chose 200 specimens per species because based on experience this
seems like a reasonable number of examples per class for deep learning classification
algorithms. This means the total dataset has 10,000 sequences.
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Botrylloid
BotryXtama
SymplegmaX
Metandroca
CnemidoXfi
PolycarXmi
PelonaiaXc
MicrocoXsq
MicrocoXpo
PyuraXgang
HerdmanXmo
PyuraXdura
BolteniaXv
HalocynXsp
MolgXoccul
MolgulaXci
MolgulaXbl
MolgulaXpa
MolgulaXma
MolgulaXar
MolgulaXco
MolgXoccid
OikopleuXl
OikopleuXs
CorellaXin
CorellaXeu
Chelyosoma
Megalodico
ClavelinaX
Pycnoclave
EcteinXher
EcteinXtur
AscidiaXah
Ascidiella
PyrosomaXg
PyrosomaXa
SalpaXcyli
DoliolumXd
DoliolumXn
EudistomaX
LepXmadara
DidemnXsp1
Trididemnu
LissXtimor
LissXbadiu
DXsimilegu
DiploXooru
DiplXsimil
DiplXviren
DiploXsp2X

Fig. 5.1: Phylogenetic tree for tunicates dataset at species level [53]
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Fig. 5.2: PDF of beta distribution with α = 2, β = 8

To add the branch lengthswefirst halved the species branch length to account for the
specimen brancheswewould add.wethen sampled the specimen branch lengths from
a beta distribution (α = 2, β = 8) multiplied by half the species branch length. A
plot of the distribution is shown for reference in fig. 5.2. The beta distribution seems
like a reasonable choice as it always falls between 0 and 1, and with the chosen
parameters is biased towards low values, representing little mutation per specimen.
The resulting tree is provided as a nex file in the supplemental data.

For this study we chose to use made the following hyperpameter choices, and left
the rest as the default from the original study [53]:

1. Number of independent characters: 200

2. Number of dependant characters: 200

3. Strength of dependency between traits (d variable in [53]): 1000

Hyperparameter Choices Magee et al.’s implementation [53] allows for specifying
the level of dependency between traits and the number of traits. We chose the
strength of the dependency to be high. For reference, in [53] they describe d = 1000
as an extreme case of epistatic dependency, and report that their empirical datasets
had measured dependency values, d, between 0.5 and 8. We chose to use an extreme
value in order to more easily see if our hypotheses have merit. We chose to use a
70/15/15 train/validation/test split.

5.2 Model Architecture and Preprocessing

Now that we have a dataset where we can rule out empirical errors, we can begin to
explore how to improve the deep learning methodology. To do this, we first must
choose a deep learning architecture. Since we are working with genetic data, it does
not make sense to use the large image models from our previous work. Instead, we
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look at existing genetic models. Marin et al. [54] provide a good overview of these
for DNA sequences and Gao et al. [27] provide a good overview for protein models.
We want something relatively simple so we can quickly prototype the models, but
it must be complex enough to be able to capture the dependencies between pairs
in the sequence. We also know that we want to be able to measure the model’s
ability to capture the information contained in the dataset, which already leads us
to some autoencoder based reconstruction loss. We further know that variational
autoencoders have some appeal due to the Gaussian nature of Brownian motion,
which the simpler continuous trait models are based on. Therefore, we decide
to use the architecture from Riesselman et al. [72]. Riesselman et al. [72] show
that this architecture is effective at predicting mutation rates in empirical protein
sequence datasets, so therefore we expect it would be similarly effective at nucleotide
substitutions. It is also a relatively simple autoencoder architecture, as shown in fig.
5.3. To preprocess the dataset we chose to use one-hot encoding, as was also used
in Riesselman et al. [72]. This is fairly standard for dna sequences, although other
methods do exist [58]. Models were trained for 200 epochs without early stopping.
No data augmentation was used.

Autoencoders are a kind of unsupervised deep metric learning model where the
goal is to learn a latent representation of the dataset by making the model learn to
reconstruct each input datapoint. There are many variants of reconstruction loss
functions. In this work we use L2 loss, described below.

Given an input datapoint Xi and a reconstruction produced by the model, Yi, and a
batch size of B, the L2 reconstruction loss is

Reconstruction Loss =
∑B

i=0(Xi − Yi)2

B
. (5.2)

5.3 Phylogenetic Probability Model

Before looking at the methodology, we first review our understanding of the proba-
bility model behind the generative trait process. This is based partially on Felsenstein
[19], and partially our own ideas.

5.3.1 The Generative Process

We assume that τ , the tree topology, q, the branch lengths, X, the input data and
Z, the latent representations, or independent traits per species, are involved in the
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Fig. 5.3: The Deep Sequence architecture based on [72], including preprocessing steps.
First the original input sequence of nucleotides is one-hot encoded, where each
nucleotide (A,C,G,T) is mapped to a column, with the fifth column reserved for
gaps. The input sequence is then flattened, and fed into the encoder (highlighted
in orange). If a variational autoencoder is used, then both 1500x30 layers are
used, the top in orange is used to produce the mean vector, and the bottom in blue
is used to produce the variance vector. These two are then combined using the
reparameterization trick to produce the latent vector. If a variational autoencoder
is not used, then the blue steps do not occur, and the mean vector is used as the
latent space directly. Finally, if reconstruction loss is used, the latent vector is then
fed into the decoder (pink) to produce the reconstruction. FC stands for Fully
Connected.
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τ , q Z X

Fig. 5.4: Generative phylogenetic process. The ancestral topology τ and branching process
q dictate the distribution of traits in each species, The individual specimens in
each species are then assumed to be independantly sampled from the traits Z, a
non-linear process then transforms the independent traits Z into X. White nodes
refer to unobserved variables, grey nodes refer to observed variables.

generative process given by fig. 5.4. If we assume independent Brownian motion is
responsible for the evolution process [20], then we can say that the distribution of
the traits per species, Z, is based on the tree topology τ and the branch lengths q

and that Z ∼ N (µ, σ2) [20] where µ and σ2 are functions of the topology τ and the
branch lengths q. We can then say that there is some non-linear process which maps
the independently evolved traits Z to the observed phenotypes / genotypes X.

5.3.2 Probability Model

In phylogenetic inference we are often interested in modelling p(τ, q, X), the proba-
bility of a given tree topology, τ , with branch lengths, q and traits X. Traditionally,
in order to make the inference computationally feasible the phenotypes/genotypes
X are assumed to be independent and the number of samples per species in X
is assumed to be 1 (S=1), which is typically a consensus sequence in the case
of genetic data, or the morphological traits of a type specimen for morphological
characters. This greatly reduces the complexity of the problem and allows us to
use the product rule for independent events to break the problem into the opti-
mization of each trait, Xi individually, and then multiplying the result, such that,
p(τ, q, X) =

∏M
i=1 p(τ, q, Xi). In order to complete the inference, this can be further

factored using the definition of conditional probability

p(τ, q, X) =
M∏

i=1
p(Xi|τ, q)p(τ, q) (5.3)

.

However, we know that both morphological and genetic traits are not independant
[63], and additionally that each species has a distribution of phenotypes / geno-
types. To account for this we propose Z, which gives the distribution of the hidden
independent traits over each species. Z can then be mapped to X through some
non-linear process allowing X to be dependent.
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This change means we are now interested in modelling p(τ, q, X, Z). Using the
definition of conditional probability we can repetitively factor this to obtain

p(τ, q, X, Z) = p(X|Z, τ, q)p(Z|τ, q)p(τ, q) (5.4)

which is consistent with the generative model in fig. 5.4.

Now, given that we assume these variables follow the generative process shown in
fig. 5.4, we can say that X is conditionally independent from τ, q given Z and Z is
conditionally independent from τ, q given X. Equation (5.4) then simplifies to

p(τ, q, X, Z) = p(X|Z)p(Z|τ, q)p(τ, q) (5.5)

.

Now, we can choose a model for each of the probabilities above as follows:

• p(τ, q) Since we have no information about which trees might be favourable, it
seems natural to assume all topologies and branch lengths are equally likely,
although this has been shown to produce some issues when assuming uniform
priors on branch lengths [107].

• p(Z|τ, q) If we assume Brownian motion, then it is natural to assume that Z ∼
N (µ, Σ) This is the typical optimization likelihood in phylogenetic inference
and has been well studied. For simplicity we would like to use continuous
traits and can therefore use Felsenstein’s Brownian motion likelihood [20] (see
equation (5.14))

• p(X|Z) We can assume that this is a generative neural network that can map
from Z to X

5.4 Methodology

With the dataset, architecture and a probability model, we are now ready to begin
experimenting. Below we describe the methodology behind each of the models.
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5.4.1 Inference Methods

The nucleotide inference used for the baseline model is completed using the analysis
scripts provided by Magee et al. [53]. These set priors on the stationary frequencies
and exchangeability rates. Together these specify the rate matrix, Q (see section
5.1). Site rates are modelled with a gamma distribution. The model is run twice,
each with a burnin of 2,000 generations, and MCMC is run for 20,000 generations
in total. Every 10th generation is logged, and the results used to form a probability
distribution over the trees.

For the deep learnt traits, trees are inferred from the continuous traits using the
RevBayes software following Parins-Fukuchi [66]. This could present some difficul-
ties since said script was meant to be applied to continuous morphological traits.
However, we compare the results to simple neighbour joining of average training
data species traits to explore this. We also modify the Revbayes scripts to the same
amount of runs, burnin and generations as the baseline model so the tree results are
directly comparable.

5.4.2 Baseline Model - Direct Inference

We start with setting the baseline to compare our results against. To do this, we
can use the analysis scripts from Magee et al. [53] described in section 5.4.1 to
directly perform the inference on the DNA in Revbayes [38]. However, we have 200
sequences per species in our new dataset, giving us 10,000 sequences in total, which
is computationally infeasible to run. Therefore we follow the standard procedure in
biology and obtain consensus sequences for each of the 50 species instead. Concensus
sequences were made using the ConcensusSequence function in the DECIPHER R
package [104] with a threshold of 0.05 and a minInformation of 0.75. To calculate
the distribution of RF scores from the trees we use the analysis scripts provided by
[53].

5.4.3 Triplet Loss

To compare any of the below methods with the methods from our previous papers,
we use the triplet loss. Triplet loss [15] is a relatively simple loss function that
provided reasonable results in the Rove-Tree-11 paper. Triplet loss takes triplets
of inputs from the batch: an anchor (Za), a positive example (Zp) from the same
species as the anchor, and a negative example (Zn) from a different species from
the anchor. A simple way to think about triplet loss is as pull the positive example
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towards the anchor and push negative examples away. Mathematically it is defined
as:

Triplet Loss = max(d(Za, Zp) − d(Za, Zn) + α, 0) (5.6)

Where d is a distance measure (Euclidean in this case), α is a margin representing
how far the algorithm should push the clusters apart.

5.4.4 Hierarchical Triplet Loss

Hierarchical triplet loss was introduced by Ge et al. [29] as a method of learning
hierarchical relationships from datasets. Their loss function is almost the same as
that of normal triplet loss, except the margin changes between triplets depending on
the distance along the hierarchy between datapoints. In Ge et al. [29] they learn the
hierarchy dynamically from the data, however, since we would like to learn from the
hierarchy, we attempt to use the loss directly.

Given a triplet of three data points, an anchor (Za), a positive sample (Zp) and
a negative sample (Zn), where if ci represents the class label of datapoint Zi,
ca = cp ̸= cn and a distance function d which calculates the distance between two
latent points, and α, which represents the triplet margin, the hierarchical triplet loss
can be defined the same as in equation (5.6), except that the margin α is variable
and defined to be the distance (sum of branch lengths) along the tree from ca to
cn.

5.4.5 Disentanglement with Variational Autoencoders

Most phylogenetic inference methods rely on an assumption of independence be-
tween the characters / traits (either morphological traits, or genetic basepairs). This
assumption significantly simplifies the calculation of the likelihood and makes it
feasible with iterative methods. However, there are non-phylogenetically related
dependencies between characters, particularly in genetics. The evolution of exons
(genes which code for protein sequences) for example, is influenced by the protein
folding structure which can produce dependencies across the entire gene [87]. Nas-
rallah et al. [63] showed that this can significantly affect the resulting phylogenetic
inference if not handled. Many methods for detecting these dependencies have been
explored [81, 62, 53]. However, we do not know of any methods, deep learning
or otherwise for removing such dependencies. We suspect this is either due to a
lack of searching with the correct jargon on my part, or because it is impossible to
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separate the non-phylogenetic dependencies from the phylogenetic ones without
first knowing the phylogeny, which of course we will never be 100% certain about.

Brownian Motion Assumption: Many inference methods for continuous traits
assume the evolution can be accurately approximated with Brownian motion. This
has the attractive property that the resulting probability distribution over the traits
is therefore Gaussian, which has some simplifying properties for the likelihood
calculation, as shown by Felsenstein [20]. One trouble with deep metric learning
models is that the distribution of datapoints in the latent space is typically not
Gaussian by default, and in fact can lie on an exceedingly complex manifold Shao
et al. [80].

It should be noted that Blomberg et al. [9] propose another method after finding is-
sues with Brownian Motion models and the alternatively popular Ornstein-Uhlenbeck
Process Models introduced in Felsenstein [22], we have not yet explored other more
complex methods.

Deep Learning Model: Disentangled networks (networks which attempt to enforce
independence between traits) present a growing body of scientific research in the
deep learning community. A relevant survey paper of research can be found in Kaya
and Bilge [41]. Variational autoencoders are one such method which we hypothesize
have potential in this context since they both push for disentanglement of the traits
and a Gaussian distribution in the latent space.

In order to see if variational autoencoders can disentangle the traits well enough, we
compare results of trees obtained from the latent variables of a simple autoencoder
architecture and a variational autoencoder architecture. This architecture is based on
that used in Riesselman et al. [72] which was used for encoding protein sequences.
The architectures are shown in fig. 5.3.

A thorough introduction to variational autoencoders is given in Kingma, Welling,
et al. [43]. Here we briefly explain some main concepts used in this work.

VAEs are autoencoders (see section 5.2 for a brief intro to autoencoders) which
define a prior, typically Gaussian, on the latent space. Instead of directly encoding
the datapoint, the encoder learns to predict the parameters of a distribution for that
datapoint, which are then sampled through the reparameterization trick and fed
into the encoder. How well this overall distribution matches the prior distribution
is calculated through the Kullback–Leibler (KL) divergence loss function, which
effectively pulls the latent space towards a specified distribution. VAEs also typically
have a reconstruction loss element, which pulls the latent space to represent the
data.
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For our variational autoencoder we chose to weight the KL divergence by 0.01
relative to the reconstruction loss (with a weight of 1 the model did not converge).

The KL divergence we use, between a Gaussian prior p(x) ∼ N(0, 1) and a Gaussian
posterior with diagonal covariance matrix q(x) ∼ N(µq, σq) is defined as:

KL(q||p) = 1
2[µT

q µq +
∑

σq − k − log(
∏

σq)] (5.7)

5.4.6 Blomberg’s K

Blomberg’s K (Blomberg et al. [8]) is a measure of phylogenetic signal. It compares
the observed mean squared error and the expected mean squared error of continuous
traits based on Brownian motion. A K value of 1 indicates they match perfectly, K
values between 0 and 1 indicate lower phylogenetic signal, and above one indicates
higher than expected phylogenetic signal.

Blomberg’s K is described as the difference between the ratio of the observed mean
squared error ratio, and the expected mean squared error ratio based on Brownian
motion. It is calculated for a single trait (i) at a time. (Equations taken from [8])

Ki = MSERobserved,i

MSERexpected
(5.8)

MSERobserved,i =
(X:i−µ̂)T (X:i−µ̂)

N−1
(X:i−µ̂)T V−1(X:i−µ̂)

N−1

= (X:i − µ̂)T (X:i − µ̂)
(X:i − µ̂)T V−1(X:i − µ̂) (5.9)

MSERexpected =
( 1

N − 1

) (
tr(V) − N

ΣΣV−1

)
(5.10)

Where X:i is a vector of values of trait i for all taxa, N is the total number of taxa,
V ∈ RNxN is the covariance matrix of the tree, specified from the branch lengths of
the tree topology such that V13 is the length along the tree from the root to the latest
common ancestor of species 1 and species 3 (see Felsenstein [20]) is the variance-
covariance matrix generated from the tree topology, tr() represents the trace function
of a matrix, and µ̂ is the phylogenetically corrected mean. The phylogenetically
corrected mean can either be calculated iteratively using the independent contrasts
methods [20] or through the following method, whichwecould not find an analytical
reference for but is implemented in phylosig in the phytools package of R [71] as
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µ̂i =
∑

V−1Xi∑
V−1 (5.11)

.

Importantly, the K value itself is not enough to prove phylogenetic signal, as Blomberg
pointed out in Blomberg et al. [8]. A measure of significance has to be calculated for
each trait to ensure the phylogenetic signal is not just due to randomness. To do this,
the traits are randomly arranged on the tree a number of times, and the percentage
of times the arrangement results in a K value higher than the calculated value, gives
our p value. A typically assumption of 0.05 significance is used.

One way to formulate the above functions into loss functions is to attempt to
minimize the mean squared error between the calculated loss and the expected
loss:

Blomberg K Loss =
∑L

i=0(MSERobserved,i − MSERexpected)2

L
(5.12)

This attempts to push the observed variance as close as possible to the expected
variance, and since it is squared, penalizes large deviances. Another potential way
to formulate the loss would be as max(1 − K, 0), however the extra penalty to large
deviances is appealing.

equation (5.12), however, does not account for the test of significance. We can
attempt to incorporate this using a shuffled version of the observed ratio, where the
traits are shuffled relative to the tree, MSERshuffled,i as follows:

Blomberg K Shuffled Loss =
∑L

i=0(MSERobserved,i − MSERexpected)2

L
+∑L

i=0 max((MSERshuffled,i − MSERobserved, 0))
L

(5.13)

where L is the number of latent variables.

This should encourage significance of the resulting traits.
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5.4.7 Optimizing the Likelihood

Felsenstein [20] calculated the likelihood of continuous traits given a tree and used
this to infer a tree from the already extracted traits. We are interested in exploring
if the likelihood could be directly optimized in a deep learning setting. Therefore,
we want to explore if we can optimize the traits given a known tree. This is not our
initial application, but it does have some merit. Imagine we have a good reference
tree for a dataset, however, we wish to know which traits are most highly correlated
with that tree. Statistical methods to do this do already exist, such as Blomberg’s K
described above, but they assume that the independent traits are already extracted,
and they assume a small number of input variables so statistical significance is easy
to prove. If we have an image, for example, with thousands of pixels, or a long
nucleotide sequence with thousands of base-pairs, it becomes difficult for statistical
methods to prove significance, although this can be accounted for using, for example,
the Bonferroni correction [17].

However, this is where we believe deep learning methods can be highly effective.
They have already been shown to be very successful at information compression,
and indeed this is one of the major applications of the field of deep metric learning.
Therefore the goal of this experiment is to determine how we can use deep learning
to extract the most phylogenetically relevant traits from images or DNA sequences
given a known tree.

Felsenstein [20] defines the probability of a single continuous trait evolving according
to Brownian motion given a tree topology as,

p(Z:i|V, µ̂, σ2) = 1
(2π)

N
2 |σ2V|

1
2

e− 1
2 (Z:i−µ̂i)T (σ2V−1)(Z:i−µ̂i) (5.14)

.

where Z:i ∈ RN is the column of the species trait matrix Z ∈ RNxL which contains
trait i, V ∈ RNxN is the variance-covariance matrix generated from the tree topology
described in section 5.4.6, σ2 is the variance of the trait, N is the total number of
species / leaves, L is the number of latent variables, and µ̂ is the phylogenetically
corrected mean as described in section 5.4.6.

This equation is essentially, p(Z:i|τ, q) in our probability model from section 5.3.2.
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Given that the traits are assumed to be independent and that all traits have the same
variance Felsenstein then uses the definition of independent probabilities to obtain

p(Z|V, µ̂, σ2) =
L∏
i

p(Z:i|V, µ̂, σ2) = 1
(2π)

NL
2 |σ2V|

L
2

e− 1
2

∑L

i=1(Z:i−µ̂i)T (σV−1)(Z:i−µ̂i)

(5.15)
.

If we assume each trait has its own variance, we can pull σ out of the determinant
for each individual trait in equation (5.14) using the property that |cA| = cN |A|
given A ∈ RNxN [67] this equation instead becomes

p(Z|V, µ̂, σ2) = 1
(2π)

NL
2 |V|

L
2

∏L
i σN

i

e− 1
2

∑L

i=1(Z:i−µ̂i)T (σ2
i V−1)(Z:i−µ̂i) (5.16)

.

where σ2 is now a L length vector of the variances for each trait.

Felsenstein treated equation (5.15) as the likelihood function f(τ, q) = p(Z|τ, q)
of the tree given the traits, however, since we want to optimize the traits, we can
directly use the probability from equation (5.15). It seems advantageous to assume
trait independent variances, so taking the log of equation (5.16) as the log probability
is typically easier to optimize and provides the same maxima we get the following

log(p(Z|V, µ̂, σ2)) = −NL

2 log(2π) − L

2 log(|V|) − N
L∑

i=1
log(σi)

− 1
2

L∑
i=1

(Z:i − µ̂i)(σ2
i V−1)(Z:i − µ̂i)T (5.17)

.

We are interested in obtaining the traits with maximum probability (ie the maxima
of this function), and in order to optimize with gradient descent, we then take the
negative of equation (5.17):

− log(p(Z|V, µ̂, σ2)) = NL

2 log(2π) + L

2 log(|V|) + N
L∑

i=1
log(σi)

+ 1
2

L∑
i=1

(Z:i − µ̂i)(σ2
i V−1)(Z:i − µ̂i)T (5.18)
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Now we are almost ready to use equation (5.18) directly as a loss function in a deep
learning algorithm.

We also note that we can attempt to specify the phylogenetically corrected mean, µ

and the variance σ2 to 0 and 1, respectively, giving:

− log(p(Z|V, µ̂, σ2)) = NL

2 log(2π) + L

2 log(|V|) + 1
2

L∑
i=1

Z:iV−1Z:i
T (5.19)

We first explore how this affects the results with the reconstruction loss directly, and
then apply the best model to the following experiments. This is denoted as ’standard
likelihood’ in our results.

However, if we look at it we can see that if the trait matrix Z collapses to 0 this
will give a trivial minimum. Therefore we need another term in our loss function to
counteract this. The reconstruction loss from above is a clear choice, however there
are others that come to mind to counteract the trivial solution of equation (5.18):

Variance Loss: This attempts to push the variance for each trait to be 1

Variance Loss =
∑N

i=1(σ2
i − 1)2

N
(5.20)

.

MSE µ̂ loss: This attempts to push the variance for each trait to be 1 and µ̂ to be
0.

MSE µ̂ =
∑N

i=1 µ̂2
i

N
(5.21)

Covariance Loss: This attempts to push the variance-covariance matrix to be closer
to the expected covariance matrix V,

Covariance Loss =
∑N

i=1
∑N

j=1(Σij − Vij)2

N2 (5.22)

where Σ is the covariance matrix calculated from the trait data Σ = (Z−µ̂)T (Z−µ̂)
N
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5.4.8 Random Trees

Random tree results are shown in tab. 5.2. We include the random tree results
to compare the deep learning models against as a way to show they are learning
phylogenetically significant traits. These are generated the same way as in Chapters
3 and 4, by randomly generating a Nx2 trait matrix, then using single linkage
neighbour joining to generate a hierarchy. For the results in this chapter we used
1000 random initializations to show significance.

5.5 Results

We train the deep learning model from 5.3 using the loss functions described above
using the synthetic dataset from section 5.1. The results are shown in tab. 5.2 and
tab. 5.1.

First we can see that none of the deep learnt models outperform direct genetic
inference, despite some being given direct information about the hierarchy of interest.
Second we can see that all models outperform even the best random tree after 1000
initializations (RF of 88). Next we see that of the different deep learning variations
which use the hierarchical information, our likelihood-loss model appears to perform
the best, and the Blomberg-K models appear to perform the worst. Finally we can see
that the models which use the hierarchical information, while some outperform the
non-hierarchical deep learnt traits methods, models which do not use the hierarchy
still provide comparable, or better results. Using only reconstruction loss provides
an average RF score of 57. Using only triplet and reconstruction losses gives us the
second best deep learning model overall.

Looking at how the Bayesian inference results compare to neighbour joining using
the average species traits, we can see that there is not a large difference, suggesting
that the inference methodology itself is not the main issue here.

Of course the results in 5.2 should be taken lightly. They are result of only a single
deep learning model initialization.

In tab. 5.1 we can see that the reconstruction accuracies are quite high (all above
98.9% for the validation set). To give a baseline comparison, constructing a sequence
of the most frequent nucleotides at each loci gives a top-1 accuracy of 86.2%,
demonstrating that the models are able to model the data.
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Top 1 Accuracy ↑
Loss Function Train Val

Triplet (5.6) and Reconstruction (5.2) 99.6% 99.4%
Hierarchical Triplet (5.6) and Reconstruction (5.2) 99.3% 99.2%
Blomberg K w P (5.13) and Reconstruction (5.2) 98.9% 98.9%

Covariance (5.22) & Reconstruction (5.2) 99.3% 99.3%

Tab. 5.1: Top-1 accuracy of nucleotide reconstructions for different models.
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Bayesian Inference NJ
Model Uses Hierarchy? Loss Functions RF (min) ↓ RF (avg) ↓ RF ↓

Direct Inference No - 8 23 -
Autoencoder No Recons. (5.2) 44 56 64

VAE No KL Divergence (5.7) & Reconstruction (5.2) 52 57 64
Encoder No Triplet (5.6) 46 58 60

Autoencoder No Triplet (5.6) and Reconstruction (5.2) 32 44 52
Encoder Yes Hierarchical Triplet (5.6) 48 57 60

Autoencoder Yes Hierarchical Triplet (5.6) and Reconstruction (5.2) 50 59 64
Encoder Yes Blomberg K (5.12) 82 83 86
Encoder Yes Blomberg K Shuffled (5.13) 72 76 78

Autoencoder Yes Blomberg K Shuffled (5.13) and Reconstruction (5.2) 82 84 84
Encoder Yes Covariance (5.22) 48 55 60

AutoEncoder Yes Covariance (5.22) & Reconstruction (5.2) 32 43 48
Autoencoder Yes Likelihood (5.18) & Reconstruction (5.2) 28 52 58

Encoder Yes Likelihood (5.18) & Covariance (5.22) 44 55 60
Autoencoder Yes Standard Likelihood (5.19) & Reconstruction (5.2) 36 49 56

Encoder Yes Standard Likelihood (5.19) & Covariance (5.22) 48 55 52
Encoder Yes Standard Likelihood (5.19) & Variance (5.20) 52 57 54
Encoder Yes Standard Likelihood (5.19) & Variance (5.20) & MSE Mean (5.21) 66 67 64

Tab. 5.2: Results of various loss functions on phylogenetic inference of deep learning traits. Best models highlighted in bold. Second best models underlined.
NJ is short for Neighbour Joining. For comparison randomly generated trees had a minimum RF of 88 and an average RF of 93 over 1000 random
initializations.



5.6 Discussion

5.6.1 Direct Inference vs Deep Learning

Perhaps the most surprising result from this chapter is the large gap between the
direct inference results and the deep learning results. The best tree from all the
experiments, including those taking the hierarchy into account (RF of 28) does not
improve upon the average direct inference model which gives an RF of 23.

Since deep learning models have proven that they are able to learn complex rela-
tionships and interactions such as substitution rates, transition matrices, mutation
rates [72], it seems that we are missing some key elements which would push the
models to incorporate these factors. That said, it is also hard to understand this,
as we are directly using an architecture which worked well for predicting mutation
rates in protein sequences [72]. This leads me to believe that either, 1) the models
for learning the hierarchical relationships are simply not strong enough, or 2) there
are some important assumptions of priors made in the inference models which are
not reflected in the deep learning models, which requires a deeper understanding
of the inference models and underlying assumptions for genetic data or 3) to have
some healthy skepticism of my implementation. Testing this will require further
experimentation to rule out experimental error, further work with existing hierarchi-
cal models and comparison with external results and further understanding of the
genetic inference models which underline the phylogenetic inference.

5.6.2 Random Trees vs Deep Learning

Similar to the results of previous chapters, we can see that the deep learning models
do still learn some of the phylogenetic relationships. Even with 1000 random
initializations, the average tree RF score from all deep learning models tested still
beats the best randomly initialized tree. This suggests that all of the deep learning
models are able to learn some of the hierarchical relationships and push the latent
space to represent these.

5.6.3 Bayesian Inference vs Neighbour Joining

If we compare the Bayesian inference results to the neighbour joining results we can
see that they are similar (within 8 of the average inference result). This suggests
that the main issue is not a major error in the Bayesian continuous traits inference,
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although it could be that a different kind of model, like the Ornstein–Uhlenbeck
process would improve the results. Knowing that a perfect distance matrix will
produce a perfect topology with neighbour joining leads me to believe that the error
in these models is not simply an issue with the inference parameters.

5.6.4 Triplet vs Hierarchical Triplet

Surprisingly the Triplet and Hierarchical Triplet models show similar performance,
despite the triplet model only being given information of which sequences are from
the same species, and the hierarchical triplet model being given the full hierarchy.
We suspect a grid search of the multiplying factor applied to the distances could
provide better results. Other work with triplet losses has also shown that the choice
of batch miner can greatly affect the results [105], so perhaps a more informed
choice here would improve the results.

5.6.5 Architecture - Latent Space Size

One possible explanation could be that the latent space size of 30 variables is simply
too small to encapsulate the variation in this data and the hierarchical relationships in
50 species. To explore this, we can first look at the accuracies of the reconstructions
in tab. 5.1 which are all above 98.9%, suggesting that the models are able to learn
most of the variation in this dataset. Next we can look at a t-SNE representation
of the latent variables to see how they are distributed. For this we look both at
the VAE latent variables shown in fig. 5.5, as the KL divergence directly affects the
latent distribution, the triplet reconstruction model, as this performed best of the
unsupervised models, and the covariance & reconstruction model, as this performed
best of the supervised models.

From fig. 5.5 we can see that all models cluster the data well, which is not too
surprising. Further we can see the triplet loss appears to keep the distances between
groups rather consistent as expected. The variational autoencoder stretches the
clusters into thin elongated structures in the t-SNE representation, most likely to fit
them closer to a Gaussian distribution in R30x1, as expected.

5.7 Conclusion

In this work we have explored various deep learning methods for directly optimiz-
ing the hierarchical output of the deep learnt phylogenetic traits. Results show
that there is much more work to be done in this area, as models underperform
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(a) Covariance and Reconstruction (b) Triplet and Reconstruction

(c) VAE

Fig. 5.5: t-SNE [52] plot of latent space for VAE, Covariance & Reconstruction, and Triplet &
Reconstruction models. Each color represents a different species, and the coloring
is consistent across all subplots.

classic inference methods. However they still show a significant improvement to
random tree construction, indicating that they capture part of the phylogenetic
signal. Further experiments exploring the effect of different simulated assumptions,
such as the varying evolutionary rates should be explored to determine where the
model is failing to capture evolutionary relationships. Once better methods are
established, the use of these models to explain evolutionary important traits should
be explored. Unfortunately we think the models need to be improved before this
can be completed.
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6Discussion and Future Work

„“Yes," said the skull. "Quit while you’re a head,
that’s what I say."

— Terry Pratchett
Soul Music

6.1 Discussion

The goal of this PhD project is to explore methods of applying deep learning to
the problem of phylogenetic inference from images. Three research questions were
identified and experiments conducted to explore these. Answers to each research
question from this body of work follow.

1. How can deep learning best be used to extract phylogenetically relevant traits
from dorsal images of pinned insect specimens?

[Chapter 3] explores this. Here we introduce a novel dataset and show
that deep metric learning methods can be used to extract phylogenetically
relevant traits from images. These traits can then be directly used in existing
phylogenetic inference methods. We have shown that said traits do carry a
phylogenetic signal, but further work is necessary to improve the accuracy of
trees inferred from these traits.

2. How could such traits be used in conjunction with genetic data for total
evidence analysis?

[Chapter 4] explores this. Here we show that deep learnt morphological traits
underperform molecular traits in inferring trees for the Rove-Tree-11 dataset.
These traits show some promise when combined with molecular traits in a
total evidence analysis, however the additional effort to extract and verify the
traits render such total evidence analyses cost-ineffective at this point in time.

113



3. How can we add explainability to such models, so that deep learning methods
can direct us towards phylogenetically relevant traits?

[Chapter 5] explores this. Here we show using simulated genetic data that
known likelihood and phylogenetic signal functions can be adapted to deep
learning loss functions which can then directly optimize traits based on a given
tree. However, this study shows that our implementation of such optimization
is not yet capable of extracting all the evolutionarily relevant information from
the original traits and underperforms current molecular inference methods.
We suggest further simulated experiments which quantify the effect of various
evolutionary mechanisms on the trait extraction.

Overall, we explored the research questions of interest. We showed that there is
potential in this area of research, however there are many unanswered questions
and possibilities to explore further.

6.2 Future Work

The results of the previous chapter highlight challenges in this field. We believe there
is much potential in the field of deep learnt phylogenetic relationships, as indicated
by the increase in recent research in this area [58]. However, a lot of work needs to
be done before we can reach that potential. Below are my thoughts on avenues that
should be explored further.

Probability Modelling Further work on understanding the underlying evolutionary
processes and how to implement them effectively in deep learning models is one of
the areas that seems most promising. A further development of the probability model
itself is necessary here, as well as methods to effectively include them directly into
the deep learning process. Zhang and Matsen IV [110] and the subsplit networks
they work with present a particularly interesting avenue of research.

Comparison with other protein/dna models Sequence models have developed
much further since DeepSequence, the architecture which Chapter 5 utilized, was
published. Transformer models such as [39] have shown promise in various genetic
applications, but to my knowledge have yet to be applied to phylogenetics. The
ability of such models to capture long range dependencies could provide the key.

Simulated Rove-Tree-11 DNA Since the simulation model used in Magee et al.
[53] and Chapter 5 is based on an empirical dataset, it is promising that the same
simulations could be done with the Rove-Tree-11 dataset to further explore ar-

114 Chapter 6 Discussion and Future Work



eas of improvement in phylogenetic inference, and offer a comparison between
morphological trait extraction and genetic extraction.

Disentangling Traits - We are interested in further exploration of the possibility to
disentangle dependant traits while preserving evolutionary trait relationships, and if
it is possible, how this affects the resulting inference methods.

Simulation Experiments and Model Improvement - An exploration of how differ-
ent simulated parameters such as the variable evolutionary rates of the model affects
the deep learning model’s ability to infer the phylogeny should be explored, and
might provide insight into new approaches. I envision this including changing the
variables in the simulation itself and measuring the effect on the resulting inference
from the deep learnt traits.

Explanatory Models We believe a strong path to understanding how we can improve
the models, is understanding how we can push them to extract phylogenetically
explanatory traits. In particular, if we can show that these models can learn to find
synapomorphies1 automatically, this would be an interesting step forward.

1traits shared exclusively in evolutionarily-related clades, such as mobile shoulder joints in apes
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7Conclusion

„By the end of my PhD I could swing a
sledgehammer.

— Jocelyn Bell Burnell

The intention of this PhD project is to explore how deep learning can be used
to generate phylogenies from digitized images of pinned insect collections. To
do this we show that first, in our Rove-Tree-11 chapter, it is possible to extract
phylogenetically relevant traits from images automatically using deep learning and
that current deep metric learning loss functions produce similar results. While
this provides hope, we also show in the Gattaca chapter that these deep learnt
morphological traits are still currently inferior to genetic data and inference methods,
although they show some promise in total evidence analyses. Finally we explore
methodological improvements through novel loss functions for the extraction of
traits from simulated genetic data. In this we also find that traditional genetic
inference methods outperform deep learning, even when deep learnt methods are
directly trained on the phylogenetic tree. This suggests that there is a large potential
for improvement in deep learnt phylogenetic methods, probably requiring a stronger
model of the underlying mechanisms of evolution.
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Glossary

allele a version of many unique versions of a gene that exists in a population. 121

base pair A genetic base pair from a DNA string, ie A,C,G or T. Used interchangeably
in this work with nucleotide. 120

carcinization The tendency for crustaceans to independently evolve into crab-like
morphologies. 1

clade a monophyletic group; A group of taxa which share a common ancestor. Ie,
given some set of species, A, the subset M ⊂ A is monophyletic if there exists
a node in the phylogenetic tree topology τ that splits A into two disjoint sets,
M ′ (the complement of M) and M . 3, 120

convergent evolution A genetic base pair from a DNA string, ie A,C,G or T. Used
interchangeably in this work with nucleotide. 4

diversification rate the net rate of change in biodiversity, defined as the rate of
speciation (new species formation) minus the rate of extinction. 8

dorsal The ’back’ of an organism. Usually associated with the spine in vertibrates.
As opposed to ventral. 4

embedding Typically used by deep learning practitioners to refer to a vector of
learnt latent variables of the original data, extracted through an encoder neural
network. Used interchangeably in this work with trait, morphological trait,
continuous trait and latent variable vector. 120

exon a protein coding region of a gene or genome. 99
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gene duplication or loss when a gene in an organism is copied into another part
of the genome, or is lost entirely from the genome. 8

gene tree A tree representing how a gene evolved. This may or may not coincide
with the phylogenetic tree. 8

group a subset of taxa; Ie, given some set of taxa, A, any subset B ⊂ A can be
considered a group. 119

habitus Overall outer appearance of an organism. 4

homologies Traits which are the same across different groups, for example, some
species of beetle may have the same antennae shape. 4

horizontal gene transfer when a gene is transferred from one organism to another
non-sexually. Common in bacteria. 8

introgression the process of gene transfer between related species through sexual
reproduction of hybrids with ancestral species. 8

latent variable Typically used by deep learning practitioners to refer to a learnt
variable of the original data, extracted through an encoder neural network.
Used interchangeably in this work with trait, morphological trait, continuous
trait and embedding. 121

mimicry The biological phenomena where distantly related species evolve to look
alike, for example Emus hirtus, a species of rove beetle which mimics a bee in
coloration and fuzziness. 4

monophyletic a set of species derived from a single common ancestor. See also
clade. 119

nucleotide A basic building block of DNA. Used interchangeably in this work with
base pair. 119

phenotypic relating to the phenotype. A phenotype is an observable trait or char-
acteristic of an organism. ie, shape, size, color, bird call. 7
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phylogenetic tree A tree representing the evolution of taxa and their ancestors. 8

polymorphism when more than one allele exists in a population for a given gene.
8

recombination the process of gene exchange between chromosomes during meiosis,
in the process of sexual reproduction. 8

taxa short for taxonomic group. In this thesis typically refers to any taxonomic
group at the leaves of a tree, for example a genus or species. 6

trait Typically used by biologists to refer to a feature of a species, such as size, shape,
color. Used interchangeably in this work with latent variable, morphological
trait, continuous trait, embedding. 3, 119, 120

ventral The ’front’ of the organism, usually associated with the belly or abdomen.
119
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