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Abstrakt

Rav er forstenet harpiks fra gamle n̊aletræer. Det kan findes mange steder, og
hvis man er forsigtig, kan man finde levn fra fortiden indlejret i det. Uanset om
det er planter eller insekter, er disse fossiler millioner af år gamle. I en tid, hvor
man studerer udviklingen af den levende verden omkring os, vil entomologer
gerne kunne studere disse insekter i detaljer, s̊a de kan forbindes med nutidens
insekter. Mens en grundlæggende metode ville være at observere dem under
et mikroskop, ville en anden være at skabe en 3D-model af disse insekter, s̊a
de lettere kan observeres, sammen med muligheden for at foretage m̊alinger
af dem. Denne afhandling undersøger metoder til 3D-rekonstruktion af ob-
jekter, der er nedsænket i brydende medier, med den idé, at det komplekse
tilfælde med rav vil blive behandlet i det fremtidige arbejde. Forskningen inte-
grerer geometriske og fotometriske metoder samt neurale inverse gengivelses-
teknikker for at udvikle robuste og præcise 3D-rekonstruktionspipelines. Det
første fokus er en metode baseret p̊a multi-view, som giver et trekantet net
af et polyeder ved hjælp af hjørnedetektion og estimering af ellipsoide baner.
Med viden om mediets form blev der derefter arbejdet p̊a at tilpasse multi-
view stereo (MVS) metoder til refraktion. Samtidig blev tilpasningen af fo-
tometriske stereometoder i tilfælde af en brydende plan grænseflade mellem
kameraet og objektet ogs̊a undersøgt. Endelig foreslog vi efter arbejdet med
de neurale metoder til 3D-rekonstruktion en pipeline til 3D-rekonstruktion
med høje detaljer ved hjælp af multi-view multi-illuminationsbilleder. Det
seneste arbejde, som endnu ikke er helt afsluttet, har fokuseret p̊a at opn̊a
brydningsnormalkort og p̊a multiview-integration af disse normalkort inden
for rammerne af en polyedrisk brydningsgrænseflade.

3





Abstract

Amber is a fossilised resin from ancient conifers. It can be found in many
places, and if you are careful, you can discover relics of the past embedded
inside. Whether plants or insects, these fossils are millions of years old. At
a time when the evolution of the living world around us is being studied,
entomologists would like to be able to study these insects in detail so that
they can be linked to the insects of today. While one basic method would
be to observe them under a microscope, another would be to provide a 3D
model of these insects so that they can be observed more easily, along with
the ability to take measurements of them. This thesis investigates methods
for the 3D reconstruction of objects immersed in refractive media, with the
idea that in future work, the complex case of amber will be addressed. The
research integrates geometric and photometric methods, as well as neural in-
verse rendering techniques to develop robust and precise 3D reconstruction
pipelines. The first focus is a method based on multi-view, which provides a
triangular mesh of a polyhedron using corner detection and ellipsoid trajectory
estimation. With the knowledge of the shape of the medium, work was then
carried out on adapting multi-view stereo to refraction. At the same time, the
adaptation of photometric stereo in the case of a refractive planar interface
between the camera and the object was also studied. Finally, following the
work on the neural methods for 3D reconstruction, we proposed a pipeline
for 3D reconstruction with high details using multi-view multi-illumination
images. The latest work, which is not yet fully conclusive, has focused on
obtaining refractive normal maps and on the multi-view integration of these
normal maps within the framework of a polyhedral refractive interface.
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Chapter 1

Introduction

1.1 Context

For those lucky enough to travel to Jutland in northern Denmark, a visit to
the picturesque beaches of the region is often a highlight. Among the grains
of sand, it is possible to stumble across what is known as the “tears of the
gods”, more commonly known as amber. These small fossilised resins, with
their warm golden hue, gave the colour amber its eponymous name.

Originating from conifers, the creation of amber began millions of years ago.
Everything takes shape in this sticky, viscous resin that slowly flows down
trunks and branches, sometimes capturing debris, plant fragments, and in-
sects. Over time, the resin hardens and becomes buried under layers of sedi-
ment. There, it undergoes chemical transformations. Over the ages, the resin
is gradually transformed into amber through processes of polymerisation and
fossilisation, ending up as small pieces as we are familiar with today.

What interests us here are the few pieces of amber that contain bits of the
past. The plants and insects trapped in the resin are rare remnants of prehis-
toric species. Entomologists, the scientists who devote their time to the study
of insects, seek not only to understand how insects evolve in today’s world but
also to understand how we arrived at the current diversity of species. This
branch of study, devoted specifically to the understanding of living things and
how they have evolved, is called phylogeny.

The main aim of phylogeny is to place each living organism in a phyloge-
netic tree (see Figure 1.1). In the same way as a family tree, where we try to
find relatives by going further and further back, a phylogenetic tree consists
of grouping individuals with similar characteristics and arranging them in an
evolutionary order. If we take a look at the human being “homo sapiens”, we
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Context

can see that we have an undetermined common ancestor from which the genre
homo derives, such as “homo erectus” or “homo habilis”. And if we go even
further up the tree, we will find nodes linking us to the pan genre including
the bonobo and the chimpanzee. All belonging to the sub-family homininae.

Figure 1.1: Hexapodia phylogenic tree (illustration from [104]).

To be able to reconstruct these trees containing species going back to the
beginning of time, it would be necessary in the absolute to be able to have
specimens still existing, to be able to study them. Since this hypothesis is im-
possible, scientists have fallen back on the remains of the past: fossils such as
bone remains found in soils, plants or shells moulded in sediments and living
organisms trapped in amber.

These pieces of amber contain species ranging from a few million years old
to over 90 million years old in the case of Baltic amber. There are many
unique species in these small fossilised resins. However, the quality of the
pieces, the small size of the insects inside, and other factors mean that the
study of amber is progressing very slowly. Therefore, using more recent meth-
ods may enable us to study these specimens faster.

To place an insect specimen in a phylogenetic tree, entomologists need infor-
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Context

mation about it. This material may be morphological characteristics (wings,
legs, eyes, sexual organs, colour, etc.) or molecular characteristics, with the
analysis of DNA sequences to understand mutations and differences between
the genes in the specimens. This second method, which has become much
more accessible recently, is far more accurate because it allows probabilistic
calculations to be made to propose the most likely phylogenetic tree. This is
in contrast to the morphological classification method, which relies on the di-
rect knowledge of researchers and their ability to describe whether what they
observe is closer to specimen A or B. However, the DNA sequencing method
has its limitations, and the main one is DNA acquisition.

Deoxyribonucleic acid is not “immortal”. DNA has what is known as a half-
life of 521 years. So, every 521 years, half the genetic information is lost.
In the course of one million years, there are 1919 periods of 521 years, so
the probability of there being any remaining is 1/(21919), i.e. one chance in
10578 (approximately), a number far greater than the number of atoms in the
universe (1080) and far greater than googol (10100), which is already exces-
sively huge. Indeed, if you listen to Jérôme Cottanceau: “What is one googol
of a second? To find out, take a snail and make it circle the Earth. Each
lap should take about four billion seconds. Each time it completes a million
revolutions, remove one molecule of water from the Earth. Since there is ap-
proximately 1050, the Earth will be dry in about 1065 seconds. At this point,
prepare a pancake to celebrate. Then replace each water molecule in its place,
and repeat as many times as it takes for the stack of pancakes to reach Prox-
ima Centauri. You will need about 1019 pancakes, which will take you about
1084 seconds. Each time a stack is completed, you will play a euro-million
grid, before starting all over again. The law of large numbers will ensure that
you win approximately once every 140 million grids played. Then continue
the process until you have won the jackpot for the 20 millionth time. You can
then stop, as a googol of a second will have elapsed”.

Even if this half-life value can vary due to preservation conditions, these ex-
tremely large numbers show that it is almost impossible to find even an ounce
of DNA on the specimens trapped in amber. Entomologists will have to resort
to the first method of morphological analysis. The question might be raised
of removing the insect from the amber to observe it, but there are no insects
left inside the amber. The external structure of the insect in the process of
polymerisation of the amber has also been transformed into a thin layer and
the rest of the insect has been reduced to just bones and wings. It is therefore
only possible to observe the insect from the outside.

This is where the PHYLORAMA project comes in. This project, funded
by the UCPH Data+ project from the University of Copenhagen, is seeking
to propose new methods based on 2D and 3D imaging to digitise and analyse
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Amber: A complex medium

current insects and those present in amber. The work on 3D reconstruction
can be adapted to digitally remove amber and provide 3D models of inacces-
sible insects from 2D images. This is exactly the context for this thesis, with
the ideal aim of developing photographic methods for providing 3D models
from pieces of real amber.

There are other methods for 3D scanning, such as those using lasers, based
on time-of-flight or phase difference, and also methods based on triangulation
with the projection of a pattern. However, these methods seemed less suited
to microscopic scales.

Another method is to use X-rays, with medical scanners or synchrotrons. The
resolution of medical scanners would be sufficient for insects measuring a few
centimetres, but their pixel resolution of 100-500 µm is too low for the acqui-
sition of insects measuring millimetres. The synchrotron, with its way lower
resolution (1 nm-5µm), can be used to 3D reconstruct the image of fossils
(see Figure 1.2), enabling the amber to be removed without any problem and
the fossil inside to be reconstructed with very high accuracy. However, this
method cannot capture the various materials constituting the insect and is also
relatively expensive. The Natural History Museum in Copenhagen alone con-
tains a collection of 50,000 pieces of amber, so, the time and money required
to 3D scan them all disqualify this method as precise as it may be. We had to
move in a direction that is affordable and can be easily paralleled if necessary,
which prompted a closer examination of photographic 3D reconstruction in
our work. These methods only require a photographic camera and, in some
cases, the use of lights, which we believe to be the perfect methods.

The primary aim of this thesis, entitled “3D reconstruction with refraction”,
is to propose methods for reconstructing objects within refractive entities by
adapting existing techniques or introducing new approaches. This work pri-
marily focuses on refractive media such as epoxy cuboids, which offer a deep
understanding of the complexities associated with refraction without adding
other difficulties caused by amber.

1.2 Amber: A complex medium

Amber, as we have seen, is a fossilised resin with an intriguing complexity.
This complexity stems naturally from its unique composition and optical prop-
erties. Starting a reconstruction directly with amber pieces would be delicate
and almost impossible, due to the numerous properties to model. Refraction
and reflection, as they seem to be the main properties of the model, were of
particular interest to us. In this section, we will see these different properties
and understand how they could interfere with 3D reconstruction.
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Amber: A complex medium

Figure 1.2: Pseudogarypus synchrotron reconstruction. 1) Arachnid trapped
in Baltic amber; 2) Magnification of the fossil; 3) 3D reconstruction of the
pseudogarypus using the synchrotron at 5.06µm voxel size (dorsal view); 4)
Ventral view. The very high resolution of the synchrotron allows the fine
structures and details of the fossil to be recovered while ignoring the amber.
Illustration from [44].

1.2.1 Refraction and reflection

Refraction and refractive properties are the cornerstones of our ability to
model amber accurately, by explaining the material and its relation in the
presence of light. The compression of light rays within amber and the partial
reflection of some rays at its surface contribute to the material’s transparency
and shininess. These properties can be explained by Snell’s and Fresnel’s laws,
which describe how light interacts with the surface of a dielectric material.

Snell’s laws: These laws take place in the plane formed with the normal
to the surface and the incident ray, which means that the reflected ray, the
refracted ray, the incident ray and the surface normal are coplanar (as mod-
elled in Figure 1.3). In this context, the laws relate the angle of incidence i1
to the angle of refraction i2 and the angle of reflection i3 when light interacts
from one environment to another:

n1 sin i1 = n2 sin i2 (1.1)
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Amber: A complex medium

i1 = −i3 (1.2)

where n1 and n2 are the refractive indices of the respective environments.

i3i1Incident ray Reflected ray

Normal

Refracted ray

Interface

i2

n2

n1

Figure 1.3: Example of the application of Snell’s laws with a medium such
that n2 > n1, causing the light ray to bend (i2 < i1).

In Equation (1.1), n2 represents the index of refraction (IoR) of the refractive
medium. This parameter is strongly related to the light transformation that
can be observed. It determines the level of bending of the light direction as it
enters or leaves the resin. Amber has a refractive index of around 1.54, which
means that light slows down, and its direction bends as it enters the material.

These properties can considerably affect the visual aspect of refractive me-
dia. Looking at a specimen of amber found in nature, its arbitrary shape
mixing concavities and convexities can cause various visual effects on the in-
sect inside, such as areas that may appear greatly distorted (see Figure 1.4).
On the other hand, on pieces that have been reworked by man and cut into
a cuboid shape, the insect is seen to be duplicated on all the visible faces.
Figure 1.5 shows the impact of different IoRs on the same medium, with not
only “order 0” de-multiplications (direct refraction into the visible faces) but
also higher order de-multiplications (multiple bounces on the internal faces
before reaching the ladybird). Note that the higher the refractive index, the
more the rays will bend and, conversely, the more the object will visually tend
to move away from the centre of the image. Finally, we can also see that the
overall clarity of the ladybird image decreases with the IoR. This is due to the
transmittance T coefficient of Fresnel’s law, which weakens as the refractive
index increases, as can be seen in Figure 1.6.
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Amber: A complex medium

Figure 1.4: Renderings made with Blender [10] of a graphosoma inside a
natural shape with an IoR of 1.54. Large deformations of the insect are
noticeable due to refraction.

(a) (b) (c)

Figure 1.5: Renders made with Blender [10] of a ladybird inside a cube with
an IoR of 1.33 in (a), of 1.54 in (b) and of 2.0 in (c). The change in IoR can be
seen both in the visual distance of the ladybird from the centre of the image
and in the loss of clarity.

Fresnel’s laws take place in the same context as Snell’s laws, however, it quan-
tifies the proportions of light that will refract and reflect at the surface. The
transmittance T and reflectance R as they are given by Fresnel’s laws, pro-
vide coefficients about the intensity evolution when the incident ray hits the
refractive surface as follows:

R =
1

2
(Rs + Rp) (1.3)

T = 1 −R (1.4)

Rs =

∣∣∣∣
n1 cos i1 − n2 cos i2
n1 cos i1 + n2 cos i2

∣∣∣∣
2

(1.5)
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Amber: A complex medium

Rp =

∣∣∣∣
n1 cos i2 − n2 cos i1
n1 cos i1 + n2 cos i2

∣∣∣∣
2

(1.6)

with Rs and Rp corresponding to the reflectance of s-polarised and p-polarised
light [5].

Figure 1.6: Fresnel reflectance R and transmittance T values for different IoRs
according to the angle of incidence i1.

In the case of amber, as can be seen in Figure 1.6, the reflectance at its sur-
face is relatively low, when the incident angle is small, allowing more light to
pass through and thus contributing to its transparency. However, when the
angle starts to get high (≥ 60◦), reflectance becomes increasingly important,
causing the camera to primarily capture reflections of the environment rather
than the interior of the refractive object.

This subsection highlighted the visual and physical effects of refraction and re-
flection and how they affect images. To show how crucial it is to model these
laws, Figure 1.7 illustrates 3D reconstructions of a graphosoma in a cuboid of
epoxy with photographic methods ignoring these factors. As expected, they
struggle to explain the de-multiplication of the insect, leading to inaccurate
geometry.
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Amber: A complex medium

Figure 1.7: Illustrations from [16] representing 3D reconstructions of a grapho-
soma inside a refractive cuboid without considering refraction. From left to
right: A naive multi-view stereo (MVS) method; The MVS approach by Mesh-
room [38]; The neural 3D surface reconstruction method NeuS2 [123].

Another visual factor that can interfere with 3D reconstruction methods is the
colour of amber, far away from the white epoxy model. The next subsection
will explain the reason for this colour and the impact on 3D reconstruction.

1.2.2 Composition and colour

When we look at the atomical structure of amber, we can see that it is mainly
composed of hydrocarbons, which are organic compounds made up of hy-
drogen, oxygen and carbon atoms (with chemical formulas varying between
C10H16O - 13C40H64O14 - 12C12H20O). These different formulas explain the
variation in the colour of amber pieces, from pale yellow to dark brown, and
sometimes in red, green or blue. Indeed, hydrocarbons explain why amber
has a particularly significant absorbance of light at wavelengths around 400-
500 nm. These wavelengths correspond to the blue and violet parts of the
spectrum, which are more strongly absorbed as explained by Beer-Lambert’s
law (see Equation (1.7)). And when white light is deprived of its slice of colour
around blue, then the warm amber hue remains.

Beer-Lambert’s law relates the absorption of light to the properties of the
material through which the light travels. It states that absorbance A is di-
rectly proportional to the concentration c of the absorbing species and the
path length l of the light through the material:

A = ϵ c l (1.7)

where ϵ is the molar absorption coefficient.
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Amber: A complex medium

Our choice of working with white transparent epoxy pieces allows us to ignore
this property due to the absence of colour and also because the absorption of
epoxy is in the ultraviolet range. However, for future work where we would
like to get closer to a realistic model of amber, we would need to take ab-
sorption into account to better explain the colours observed and inverse the
absorption process to predict the true colour of the object to be reconstructed.
This property is also fundamental in multi-view 3D reconstruction (see Sub-
section 2.1.5) since the length l travelled in the resin to arrive at a specific 3D
point can greatly vary between different views and thus cause colourimetric
inconsistency.

This subsection shows that absorption allows us to correctly model the colour
of the object to be reconstructed. However, this add-on may not be enough,
indeed, when we look at real pieces of amber, the insect is often not the only
one that has been trapped in the resin, as we will see in the next subsection
dealing with inclusions that can greatly affect the images.

1.2.3 Inclusions

If inclusions in amber carry prehistoric information like insects, these inclu-
sions almost always involve air bubbles as well as dust particles that affect
the optical properties of amber. Our methods for 3D reconstruction are based
on optical paths (see Section 2.1), so, any small obstruction can break our
pipelines. Air bubbles can scatter light, reducing transparency, creating a
hazy appearance and altering optical paths. In addition, dust particles on its
side, block visibility locally, distorting our perception of the object’s colours.

These phenomena will only have a local impact on the quality of the re-
constructions. For the time being, we simply neglect them and leave this
improvement as perspective.

This last part has shown us a final degree of complexity, allowing us to under-
stand amber and its reaction to visible light. While we can stop at studying
the visible spectrum for almost all objects, in the case of amber it is interesting
to look at the ultra-violet spectrum too, as we will do in the next subsection.

1.2.4 Fluorescence and UV reaction

When exposed to ultraviolet (UV) light, amber shows a fluorescence property,
by emitting visible light. This is induced by the fact that the energy of UV
light excites the electrons in the hydrocarbons, moving them to a higher energy
level. When these electrons return to their original levels, they release some
energy, but this time in the form of visible light (blue or green). Figure 1.8
relates this blue colour emitted by amber when exposed to UV light. The use
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Standing assumptions and thesis structure

of fluorescence is a reliable method for identifying and authenticating amber
specimens, and can also be used to obtain low-cost segmentation of the resin in
a photographic acquisition framework. When considering that segmentation
masks are essential for modelling the shape of amber and applying the laws of
refraction and reflection, it is easy to see how this property can have a major
impact on the overall 3D reconstruction process.

Figure 1.8: Photograph of a piece of amber under natural light (left) and
under UV light (right). UV light makes it easier to segment amber based on
colour. Pictures from Eric Geirnaert.

1.3 Standing assumptions and thesis structure

In the previous sections, we have looked at the properties of amber, the im-
portance of knowing how to model its shape and being able to use Snell’s
and Fresnel’s laws and model light interactions. We were able to observe how
Beer-Lambert’s absorption governs its colour, and how simple bubbles and
dust can affect our models visually and physically. While our ultimate goal
is to be able to digitally remove the amber and reconstruct insects in 3D,
this thesis serves first and foremost to show that it is possible to perform
this operation despite refraction. We will start by looking at simple refractive
shapes (cubes/polyhedrons) with a neutral colour (white), to get rid of absorp-
tion and occlusions. In future work, we aim to study more complex models
that require applying the absorption law and accounting for bubbles and dust.

Having established the importance of accounting for refraction in 3D recon-
struction methods, the remainder of this manuscript will focus on explaining
our work, starting with Chapter 2 which will focus on explaining classical pho-
tographic 3D reconstruction methods, with Subsection 2.1.5 covering multi-
view stereo, Subsection 2.1.6 on photometric stereo, and finally, Section 2.2 on
neural methods for 3D reconstruction, highlighting two key methods for our
work: NeRF [83] and NeuS [122]. At the end of this chapter, Section 2.3 will
discuss current 3D reconstruction methods that incorporate refraction into
their models. Next, Chapter 3 will explain our first contribution, a method
to determine the 3D geometry of a polyhedron in a multi-view acquisition
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setup with a turntable. Chapter 4 will demonstrate how to adapt the classic
multi-view stereo method to refraction in the context of a polyhedral or arbi-
trary medium shape. Chapter 5 will illustrate the adaptation of photometric
stereo to an infinite planar refractive interface between two media. Chapter 6
will focus on adapting the NeuS [122] approach to propose a neural method
for 3D reconstruction based on multi-view multi-illumination data, enabling
high-detail 3D reconstructions. Chapter 7 will explain our current work on
photometric stereo in the context of a polyhedral medium, with a focus on
obtaining refracted normal maps and integrating these normal maps based on
current neural methods. Finally, Chapter 8 will address the issues observed
during this thesis, the solutions we propose to address them, and an analysis
of future work in this research field.
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Chapter 2

Photographic 3D
reconstruction

2.1 Classic methods for 3D reconstruction

3D reconstruction is built on several concepts that need to be understood be-
fore we can look at conventional 3D reconstruction methods. Knowledge of
the different modalities of 3D modelling (see Subsection 2.1.1) will enable us to
see their strengths and weaknesses, as well as an understanding of the possible
representation of the scene. A broad overview of 3D rendering engines (see
Subsection 2.1.2) will give us an insight into how to use the information con-
tained in a scene to render it realistically or not. Then, we will look at all the
methods based on photographs for 3D reconstruction (see Subsection 2.1.3),
as well as the different camera modalities and how to calibrate them (see Sub-
section 2.1.4). Finally, we will take a closer look at multi-view stereo (see
Subsection 2.1.5) and photometric stereo approaches (see Subsection 2.1.6),
which are two pillars of classic 3D reconstruction.

2.1.1 3D modelling

3D modelling is mainly used to study subjects (archaeology, medicine, etc.) or
to produce 2D renderings (video games, films, art, etc.). There are many 3D
representations, as can be seen in Figure 2.1, with both surface or volumetric
representation, in explicit or implicit form.

Surface representations focus on describing the surface of an object. Different
modalities can be used to refer to the surface including point clouds, polyg-
onal meshes, parametric surfaces, signed distance functions, etc. Volumetric
representations, on the other hand, describe not only the surface but also the
interior of an object, using concepts such as voxels or density.
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The distinction between implicit and explicit representations is important in
3D modelling. Explicit representations describe surfaces directly, through lists
of vertices and polygons, or parametric equations, as is the case for polygonal
meshes and parametric surfaces. Implicit representations, on the other hand,
use functions to define surfaces and volumes, like the signed distance function
which defines the surface of an object by the points where the function van-
ishes.

Figure 2.1: An overview of classic surface/volume representations (illustration
from [115]).

Here is an in-depth examination of some of the representations used in the
contributions of this thesis:

• Point clouds consist of a set of discrete points in 3D space, representing
the surface of the object without explicit connections between them.

• Polygon meshes, on the other hand, connect points by forming poly-
gons, usually triangles or quadrilaterals, thus creating a continuous sur-
face. These meshes are widely used because of their efficiency and sim-
plicity. Outside of the research community, they are a convention for 3D
modellers.

• Signed distance functions assign to each point in space a value corre-
sponding to its distance from the nearest surface, with a sign indicating
whether the point is inside (-) or outside (+) the object. The surface is
then defined at the zero level-set of the function.

• The volume representing the scene can be discretised into elementary
volumes called voxels, which work in the same way as 2D pixels but
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extended to a third dimension. They mark space as occupied or free,
providing a binary view of occupied space.

• The representation in the form of density or transmittance refers to
the distribution of matter or energy throughout the volume, and is useful
for the physical study and simulation of fluids/lights.

2.1.2 3D rendering

In the image-based 3D reconstruction process, cameras are used to generate
images of the scene/object. When a camera is used to produce a 2D image,
the operation performed is called “photography” or “capture”. In computer
graphics, the process thing can be done using cameras and a virtual 3D scene,
in this case, the operation is called “rendering”. The 3D renderers use a “vir-
tual camera” to capture the light emitted and reflected by a 3D scene defined
by geometric models and material properties. Current rendering softwares
(Blender [10], Maya [4], etc.) allow one to choose between different rendering
engines, enabling to juggle between rendering speed and accuracy, depending
on the application. Figure 2.2 illustrates the difference between two major
techniques, rasterisation and path tracing, the first one being real-time, while
the second one allows one to approach impressive realism.

Figure 2.2: Difference of rendering between rasterisation and path tracing
(illustration from [97]).

A very popular rendering method for video games is called rasterisation,
which is a real-time rendering technique. The process involves a polygonal
representation of the scene and consists of projecting each triangle of the
scene onto the screen plane, and then determining which pixels are covered by
that triangle. In addition, lighting and shading models such as Phong [99] or
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Blinn-Phong [11] are used to create more realistic renderings. However, ras-
terisation has its limitations: it cannot handle global illumination effects such
as multiple reflections, and refraction is almost impossible to compute due to
unknown projection paths induced by refractive interfaces. It is therefore dif-
ficult to understand the full complexity of a scene’s lighting and to represent
the sophisticated materials that are essential for photorealistic rendering.

The second method, called path tracing, is an advanced rendering technique
that realistically simulates the behaviour of light in a scene by computing the
paths that light rays take through it. Unlike rasterisation, which focuses on
the rapid projection of geometries onto a 2D plane, path tracing combines
simulations of rays leaving the camera, others leaving the light sources and
interacting with the surfaces of the scene, to provide results that are as close
to reality as possible. This process relies mainly on the probabilistic Monte
Carlo model [81], recursivity and Phong bidirectional reflectance model to un-
derstand the effects of light scattering, reflection and refraction with a high
degree of realism. This method also makes it possible to render complex
phenomena such as caustics, self-shadows and global light, offering images of
incredible realism.

However, this precision comes at a cost. Path tracing is extremely compu-
tationally intensive, making it difficult to use for real-time rendering. Each
image requires millions, if not billions, of rays to be traced and their interac-
tions with the surfaces in the scene to be calculated, which takes an extremely
long time. Recently, calculation time has been reduced, and a symbiosis be-
tween the new GPUs and efficient renderers such as Unreal Engine [121] has
made it possible to create video games based on path tracing to run in real
time. Although the rendering cost is still very expensive, the combination
of numerous optimisations and tricks relating to reflection/refraction made it
possible.

2.1.3 Photographic 3D reconstruction methods

Photographic methods for 3D reconstruction can be divided into two groups:
techniques based mainly on geometry and those based on photometry. They
are mostly found under the generic term shape-from-X, with X representing
the approach used to reconstruct a shape from different modalities (silhouette,
shading, etc.). As can be seen in Table 2.1, these techniques can be divided
into single-view and multi-view methods. It is important to note that while the
methods were used separately a decade ago, nowadays geometry and photome-
try are mixed in multi-view as well as single-view. The new neural approaches
that we will see in Section 2.2 no longer carry the name shape-from-X, but
many of them are built on the foundations of these classic methods. In [91],
it was mentioned that photometric techniques were underestimated, however,
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the quality of 3D reconstructions has evolved recently, and the attention to de-
tail and high-frequencies reconstruction offered by these methods has brought
them back to the fore. We will see in Subsection 2.1.6 that the information
contained in the normals provides one with a considerable deal of value.

Geometric techniques Photometric techniques

Single-view Projected structured light [35] Shape-from-shading [46]
techniques Shape-from-shadows [108]
(N = 1 image) Shape-from-contour [13]

Shape-from-texture [125]
Shape-from-template [6]

Multi-view Structure-from-motion [86] Photometric stereo [100]
techniques Multi-view stereo [32]
(N ≥ 2 images) Shape-from-silhouette [30]

Shape-from-focus [93]

Table 2.1: Overview of shape-from-X techniques (taken from [91]).

2.1.4 Camera models

All image-based 3D reconstruction methods require cameras for data acqui-
sition, and also camera calibration to recover 3D modalities from 2D images.
To describe the cameras, so-called “extrinsic” and “intrinsic” parameters have
been introduced.

2.1.4.1 Extrinsic parameters

The extrinsic parameters explain the position and orientation of the camera
in its environment in relation to a reference system that we will refer to as the
world reference frame.

We define the world reference frame as an origin Θw and an orthonormal
basis. We define a translation vector T ∈ R3, which describes the position of
the origin Θw of the world system in the camera system.

The orientation of the camera is defined by a rotation matrix R ∈ SO(3),
which describes the rotation from the world coordinate system to the camera
one. When placed in the camera frame of reference, the x-axis points to the
right, the y-axis to the bottom and the z-axis to the front, in the direction in
which the camera is looking at, as can be seen in Figure 2.3.

Knowing R and T allows us to write the transformation of a 3D point from
the world frame to the camera frame and vice versa:

Xc = RXw + T (2.1)
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Figure 2.3: Perspective projection of a 3D point X onto a pixel p.

with Xc and Xw representing the 3D point X in the camera and in the world
coordinate systems.

2.1.4.2 Intrinsic parameters

The camera’s intrinsic parameters explain how the 3D scene seen by the cam-
era is projected into the 2D pixel coordinate system. There are several models
of computer vision camera, each with its own parameters.

The most common model is that of the perspective camera, which mimics
the behaviour of real cameras. It projects the objects in the scene, taking into
account their distance from the camera, which means that distant objects ap-
pear smaller than nearby ones. Another model is the orthographic one, where
the camera projects objects without taking perspective into account, mean-
ing that objects maintain the same size regardless of their distance from the
camera. Such cameras are used in certain cases, even if they are less realistic.

Perspective projection consists of moving from the camera coordinate sys-
tem to the pixel coordinate system. To do this, we will take the example of
a point X ∈ R3, whose coordinates are denoted Xw in the world coordinate
system and Xc in the camera coordinate system, and compute its projection
p ∈ R2 expressed in the 2D pixel coordinate system (see Figure 2.3).
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The intrinsic parameters are contained in a 3 × 3 triangular matrix:

K =



fx s cx
0 fy cy
0 0 1


 (2.2)

which contains five parameters:

• The focal lengths fx and fy, expressed in pixel width and pixel height.

• The coordinates cx and cy of the principal point c0 (intersection between
the optical axis of the camera and the image plane, see Figure 2.3).

• The skew factor s, which reflects the potential non-orthogonality of the
rows and columns of photosensitive electronic cells that make up the
camera sensor.

For modern cameras, fx = fy = f since the pixels are square, and s is neglected
and therefore takes on a zero value. In practice, the calibration matrix K thus
depends only on three parameters:

K =



f 0 cx
0 f cy
0 0 1


 (2.3)

This allows one to relate, on the one hand, the projection X̃c ∈ R3 on the
plane of equation z = 1 of a 3D point X with coordinates Xc = [xc, yc, zc]

⊤ in
the camera coordinate system:

X̃c =
Xc

zc
=

[
π(Xc)

1

]
(2.4)

with the following definition of transformation π:

π
(

[a, b, c]⊤
)

=

[
a

c
,
b

c

]⊤
(2.5)

and, on the other hand, the projection p = [u, v]⊤ ∈ R2 of X on the image
plane, expressed in the pixel coordinate system. If p̃ = [u, v, 1]⊤ ∈ R3 denotes
the homogeneous coordinates of p, this relation is written:

p̃ = K X̃c (2.6)

Considering perspective projection with extrinsic parameters R and T, and
a calibration matrix K, we call Π the projection operator which allows us to
switch from the world coordinates Xw of a 3D point X to the pixel coordinates
p = [u, v]⊤ of its projection:

p = Π(Xw) (2.7)
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according to the following sequence:

1. We move from the world coordinate system into the camera coordinate
system using (2.1);

2. We project X onto the image plane defined at z = 1 using (2.4);

3. We then move into the pixel coordinate system using (2.6);

4. In the end, we obtain the coordinates p = π(p̃) in the pixel frame using
the definition (2.5) of π.

Combining (2.3), (2.4) and (2.5), the last three steps of this sequence give:

p =

[
f xc

zc
+ cx

f yc
zc

+ cy

]
(2.8)

2.1.4.3 Estimation of camera parameters

Intrinsic parameters

A commonly used method for calibrating intrinsic parameters is to insert
known patterns in the scene, such as planar grids [119, 138] or spheres [43].
The idea consists of taking photographs of these patterns from different angles
and distances. Then, the known reference points of the pattern (intersections
between cells, centre/circle of circles) can be related to establish correspon-
dences between the 2D image and the 3D structure. Finally, by applying
optimisation algorithms, the values that minimise the projection errors can
be found.

While these techniques are still widely used, as they allow an excellent cal-
ibration of intrinsic parameters with a large number of views, studies using
neural networks to automatically determine these parameters are now also
considered [12, 68]. These methods offer more freedom when it comes to data
acquisition by making it possible to “model” the different conditions of illu-
mination and possible shadows that could occult certain parts. However, the
results are still inferior to traditional methods.

Extrinsic parameters

The estimation of extrinsic parameters, i.e. camera positions and orienta-
tions, is generally determined using conventional methods, based either on
calibration patterns (checkerboard [138] or ArUco [34]), using the observed
deformation of the patterns. With the same idea of detection, but this time
with unknown patterns, we can detect common features [107, 8, 74, 135, 28, 7]
in different images. Then, these 2D related points allows one to estimate the
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fundamental and essential matrices using epipolar geometry [42, 41] and to de-
duce the extrinsic parameters. Perspective-n-point can also be used, as in [62].
Recent methods based on neural networks [59, 106] manage to approximate
the ground truth positions/orientations of cameras, but are still less effective
than classic approaches.

All these methods can then be combined with bundle adjustment [118] to
optimise the camera settings by using the observed features and their 3D po-
sitioning, trying to minimise their projection errors on all the images.

2.1.5 Multi-view 3D reconstruction

Multi-view stereo (MVS) is a classic 3D reconstruction method based on a
set of views of a scene, exploiting the epipolar geometry between the overlap
areas as well as the colourimetric consistency between the views, in order to
propose a 3D model of the scene.

Inputs

Considering a set of N views of the scene, for each view i ∈ {1...N}, a ro-
tation matrix Ri, a translation vector Ti, a calibration matrix Ki and an
RGB image Ii are defined. Most of the time, this is supplemented by a binary
segmentation mask Bi of the scene to be reconstructed.

Given the first view referred to as the “reference view”, we can define the
group of views i ∈ {2...N} as the “target views”. When no index is used, this
means that we refer to the reference view, like I instead of Iref.

Let us take a pixel p = [u, v]⊤ ∈ B = Bref belonging to the binary mask
of the reference view. To obtain the 3D point X which projects in this pixel,
with coordinates Xw in the world coordinate system, we will use the inverse
Π−1 = Π−1

ref of the camera projection defined in (2.7):

Xw = Π−1(p) (2.9)

Equation (2.4) shows that the projection process results in the loss of any
notion of depth concerning p. However, X lies on the ray starting from the
optical centre o of the camera and passing through the projection of X on the
plane of equation z = 1, whose coordinates in the camera frame is written,
according to (2.6):

X̃c = K−1 p̃ (2.10)
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We define the following unitary vector supporting this ray:

d =
X̃c − o∥∥∥X̃c − o

∥∥∥
(2.11)

so that for each z ∈ R+, Xz = o+ zd is a plausible candidate for the 3D point
X. We thus introduce the following notation:

Π−1
z (p) = o + zd (2.12)

The idea of MVS consists in reprojecting each candidate in all the target
views, and to define a score to evaluate the depth. This is where colourimetric
consistency comes into play, i.e. the fact that the colour of an object seen
through different views should not change significantly.

For each depth z, the candidate 3D point Xz is projected with the Πi op-
erators of the target views i ∈ {2...N}. The colour Ii ◦ Πi ◦ Π−1

z (p) of point
Xz in target image i is compared to its colour I(p) in the reference image.
This comparison can be made for instance with a norm L1 or L2, giving us a
dissimilarity score between the pixels. The sum of these colour discrepancies
applied to all target views gives an overall score for the tested depth. The
selected 3D point X̂ = o + ẑd corresponds to the depth ẑ giving the lowest
score:

ẑ = argmin
z∈R+

N∑

i=2

∥∥Ii ◦ Πi ◦ Π−1
z (p) − I(p)

∥∥ (2.13)

Problem (2.13) can be solved by carrying out an exhaustive search. This
“brute force” approach can be reduced using preliminary results such as a
shape-from-silhouette [30].

This process is repeated for each pixel of the reference view, and can also
be performed on different sets of views, enabling a dense point cloud of the
3D scene to be reconstructed. This explanation is the most basic version of
MVS. As we will see in Chapter 4, it is not necessary to go any further to un-
derstand our work on refraction. However, most of the time, the point cloud is
then transformed into a mesh using Poisson methods [58], or combinations of
techniques as proposed by the Meshroom tool by AliceVision [38]. Figure 2.4
shows an example of 3D reconstruction via MVS using Meshroom. We can
see that this exhaustive search-based method allows reconstructions of dense
and high-quality 3D models. However, it should not be forgotten that this
method is not very robust to non-textured scenes. In the case of a uniformly
coloured wall, the colour consistency will have great difficulty in finding the
right depths.
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(a) (b) (c)

Figure 2.4: Reconstruction of the “Wooden lion” from Meshroom [38] using
50 views: (a) Triangle mesh with a high density of triangles due to the high
density of points from MVS; (b) Shaded version of the mesh without texture;
(c) Textured version of the mesh. The results are of very high quality, with
many details visible on the illuminated version of the mesh.

Although very simplistic, this brute-force method is very effective and has
been enhanced by work on matching and photometric minimisation [32], on
the management of large scenes [116], on the use of depth assumptions [17],
on the use of visibility maps [79], and on many other aspects.

2.1.6 Multi-illumination 3D reconstruction

The first work to use shading was carried out by Horn [46] in 1970. This
method, known as shape-from-shading, consists of recovering the 3D of an
object based on a single view and a single illumination. However, it is very
limited, as the single illumination cannot resolve geometric ambiguities. For
this reason, the work carried out by Woodham [127] focused on photometric
stereo (PS), which is a multi-illumination shape-from-shading method.

Unlike multi-view methods, which offer a global reconstruction of the ob-
ject with a good understanding of low frequencies, PS only reconstructs a
limited part of the object but can produce fine details in the reconstructions.
This method is also the only method that allows one to estimate different
reflectances, enabling a large spectrum of scenes to be reconstructed.

Input

The most basic case of photometric stereo assumes that the surface S of the
object to be modelled is of Lambertian nature, i.e. the reflection of light is
perfectly diffuse. At any point on the surface, an albedo value ρ ∈ [0, 1] for
greyscale images, or ρ ∈ [0, 1]3 for colour images, can be defined.

Looking at an image I, representing a scene illuminated by a single direc-
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tional light s = [sx, sy, sz]⊤, we choose a pixel p as the projection of a point
X ∈ S, and we note n(X) the normal to surface S at X and ρ(X) its asso-
ciated albedo. The Lambertian assumption gives us the colour I(p) observed
in p as a function of ρ(X), n(X) and s:

I(p) = max {0, ρ(X) ⟨n(X), s⟩} (2.14)

The max operator is used to model shadows, as the surface does not perceive
light when ⟨n(X), s⟩ ≤ 0. Since the measurement of the quantity of light
cannot be negative, a lower bound must be applied.

Normal and albedo prediction

Assuming M ≥ 3 illuminations of the scene, (Ij)j∈{1...M} represent the dif-
ferent images acquired and (sj)j∈{1...M} the associated directional lights. In a
context of greyscale images, i.e. ρ ∈ [0, 1], Equation (2.14) for the M different
illuminations, results in the following system:

P





I1(p) = max {0, ρ(X) ⟨n(X), s1⟩}
I2(p) = max({0, ρ(X) ⟨n(X), s2⟩}
...
IM (p) = max {0, ρ(X) ⟨n(X), sM ⟩}

(2.15)

System P contains M equations and four unknowns at first sight: the three
coordinates of the normal and the albedo. However, the simple rewriting
m(X) = ρ(X)n(X) allows us to reduce these unknowns to three since:

n(X) =
m(X)

∥m(X)∥ (2.16)

ρ(X) = ∥m(X)∥ (2.17)

So, for each pixel p, we can write a linear matrix system:

Sm(X) = I(p) (2.18)

with:

S =
[
s1 s2 ... sM

]⊤
and I(p) =




I1(p)
I2(p)
...

IM (p)


 (2.19)

System (2.18) must be solved in m(X), in order to obtain the normal and
albedo values. The max operator has been ignored in this system, as it is as-
sumed that for a given pixel, if certain illuminations cause the observed colour
to be black, these are ignored to ensure the resolution of the system not to be
biased by inconsistent values.
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This system admits a unique solution if at least three non-coplanar directional
lights are used. This very basic version of PS can be easily improved with the
use of neighbourhood schemes [103] to help introduce spatial regularisation
into the estimation of normals. This means that the normals calculated for
neighbouring pixels are encouraged to be similar, thereby reducing noise and
measurement errors, and improving consistency for the reconstructed surface.

Other approaches such as rank reduction [128] are used to reduce the in-
fluence of outliers. More recently, deep learning-based methods were shown
to overcome such classic approaches in terms of robustness [48].

Normal integration

For each pixel p, we can compute a unique n(X) from (2.18) and (2.16),
which we will denote n(p). Consider S, the parametric surface to infer from
these normals. Its shape will correspond to a graph resulting from the 2D
pixel structure:

p 7−→ z = S(p) (2.20)

Let us denote:

n(p) =



n1(p)
n2(p)
n3(p)


 (2.21)

In addition, n(p) can be derived from S under the orthographic assumption
as follows:

n(p) =
1√

∥∇S(p)∥2 + 1

[
−∇S(p)

1

]
(2.22)

From Equations (2.21) and (2.22), we deduce:

∇S(p) = −
[
n1(p)
n3(p)

, n2(p)
n3(p)

]⊤
(2.23)

Equation (2.23) shows a connection between the gradient of surface S and
the normal values. This relation can be exploited to recover surface S by
integrating its gradient ∇S. However, it requires the knowledge of the depth
of at least one pixel p0 to integrate ∇S. Then, according to [46], S(p) is
obtained as:

S(p) = S(p0) +

∫

λ
∇S(p) · dp (2.24)

with λ a path from p0 to p. Another approach to obtain S is to solve the
following minimisation problem:

min
S

∫

Ω

∥∥∥∥∇S +
[
n1(p)
n3(p)

, n2(p)
n3(p)

]⊤∥∥∥∥
2

+ boundary conditions (2.25)
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This rewriting opened the doors of other techniques using variational meth-
ods [102, 70, 1], which managed to enhance the quality of surface S by using
robust estimators and finite difference approximations of the gradients.

This section has provided us with all the knowledge required to understand
how classic image-based methods work for 3D reconstruction. In the next
section, we will discuss recent techniques based on a combination of classic
approaches and neural networks.

2.2 Neural 3D reconstruction

Subsections 2.1.5 and 2.1.6 gave us an understanding of the classic approaches
for 3D reconstruction methods still used today, with software such as Mesh-
room [38] or Colmap [27]. However, since the arrival of AlexNet in 2012, the
research world has been captivated by neural networks and new neural meth-
ods for 3D reconstruction have emerged.

We have seen the emergence of generic methods attempting to reconstruct
in 3D by learning from large synthetic databases [21, 140] showing low fre-
quencies reconstructions. But also some direct alternatives to classic methods
with the use of feature matching [63], depth map fusion [29, 105], end-to-end
MVS pipelines [66, 122, 134] and structure-from-motion [112, 55, 51]. At the
same time, we saw significant advancement in differentiable rendering, includ-
ing the development of differentiable rasterizers [25, 36, 69] and differentiable
ray tracing methods [95, 65, 110]. In addition to this work on 3D recon-
struction, researchers also got interested in methods for the synthesis of new
views [83, 45, 54].

All these recent developments used different 3D differentiable representations
such as 3D occupancy fields [37, 80, 96], signed distance functions [49, 98, 122],
but also density fields [83], point clouds [136], and triangle meshes [25].

2.2.1 Inverse rendering loop

A large panel of methods appeared after the 2010s, and most of them are
what we might call “optimisation techniques based on an inverse rendering
loop”. They aim to deduce the scene’s properties, such as geometry, materials
and lighting, from images. As shown in Figure 2.5, the idea is to propose a
fully differentiable rendering pipeline. It contains a scene representation and
cameras that can be used by a differentiable renderer to produce rendered im-
ages of the scene at a state t. Then, a comparison between the input images
and the rendered images (made with a similarity loss) is computed. Finally,
the gradient of this loss is back-propagated into the scene representation to
optimise it and create a more accurate representation.
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It is therefore necessary to have a representation model that allows us to
approximate the real images as closely as possible. Otherwise, there is a risk
of converging towards a solution which, in certain cases, will not be able to ex-
plain the images and will result in aberrant data in the reconstruction (noise,
breaks, etc.).

Figure 2.5: Inverse rendering loop. The scene representation with the camera
parameters are used by the renderer to generate images of the scene. These
rendered images are then compared to the input images to finally optimise
the scene representation by back-propagating the gradient of the loss.

2.2.2 NeRF

In 2020, a novel approach called NeRF [83] changed the game for 3D neural
reconstruction. Thousands of papers based on this method have been released
in the last three years, showing the importance of this approach.

NeRF is a neural novel view method, which is based on an inverse render-
ing loop. It contains two key elements: a representation of the scene in the
form of a radiance field and the use of a differentiable volume rendering en-
gine, as shown in Figure 2.6.

The neural radiance field represented as a multi-layer perceptron (MLP), is
a continuous 5D function that predicts a colour radiance Le ∈ R3 as well as
a density σ ∈ R at each point in space according to a given viewing direction d.

Considering a camera of optical centre o, the volumetric rendering of this view
requires a per-pixel rendering. To do this, according to (2.6), we call X̃c the
back-projection of a pixel p in the camera coordinate system. The viewing di-

rection of this pixel is given by d = X̃c−o

∥X̃c−o∥ . The corresponding back-projected
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Figure 2.6: Figure from [83], reflecting an overview of the NeRF pipeline. We
can notice the sampled point along the back-projected rays and a visualisation
of the predicted colour C(r) using the volume rendering.

ray r is therefore described by the parametric equation r(t) = o + td, where
t ∈ R+.

The volume rendering equation tells us that the predicted colour C(r) can
be expressed as follows:

C(r) =

∫ +∞

0
T (t)σ(r(t))Le(r(t), d)dt (2.26)

with σ(r(t)) representing a kind of probability (with no upper bound) of the
presence of information (particles) at the position r(t), and T (t) the transmit-
tance at position r(t):

T (t) = exp

{
−
∫ t

0
σ(r(j))dj

}
(2.27)

This transmittance along the ray starts with a value of 1, but the more the
ray comes across particles with high densities, the more the transmittance
decreases, which explains why the following elements cannot be seen.

The next part consists of converting the integral into a sum, by introducing
a sampling along the ray r. An upper bound tsup will replace +∞ and K
points between 0 and tsup named ti, with i ∈ {1...K}, are chosen to replace
the integral. NeRF chose to use the quadrature rule by [78] in its rewriting of
the integral as the following discrete sum:

C(r) =

K∑

i=1

w(r(ti))Le(r(ti), d) =

K∑

i=1

T (i)αiLe(r(ti), d) (2.28)

T (t) =
i−1∏

j=1

(1 − αj) (2.29)
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with αi defined as the discrete opacity and δi as the difference between two
adjacent samples defined as follows:

αi = 1 − exp {−σ(r(ti))δi} (2.30)

δi = ti+1 − ti (2.31)

The choice of ti samples is important to focus on high-density information, as
explained in the NeRF paper but is not detailed further in this thesis. Once
the rendering formula is determined, the remaining step consists of setting
up a loss to optimise the system. The decision was made in favour of a
colourimetric loss between the colour prediction C(rj) and the ground truth
colour Ĉ(rj) on all rays rj , with j ∈ {1...L}:

L =

L∑

j=1

∥∥∥C(rj) − Ĉ(rj)
∥∥∥ (2.32)

This method gives efficient predictions of new views, as shown in Figure 2.7,
but suffers from a few problems: 3D models are noisy and the computation
time is high (8-16 hours for a single optimisation).

GT NeRF [83] LLFF [82] SRN [111] NV [71]

Figure 2.7: NeRF novel view synthesis comparison (illustration from [83]).
NeRF neural radiance model has learned the entire scene and is capable of
providing high-quality new views compared with other methods.

NeRF can provide 3D reconstruction meshes using density data, but as den-
sity does not produce strong enough gradients at surface level, marching cube
methods [73] have difficulty producing qualitative 3D surfaces, ending up with
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irregularities and inaccuracies as shown in Figure 2.8. To fix this issue, re-
searchers decided to model the geometry with a surface representation. This is
the position taken by NeuS [122], which is also depicted in Figure 2.8, showing
improved surface quality.

Figure 2.8: NeRF and NeuS 3D reconstructions from marching cube (illus-
tration from [124]). The surfaces defined per NeRF are of insufficient quality,
contain holes and do not specifically reflect the geometry. NeuS offers much
cleaner and qualitative reconstructions, even if there are a few misunderstand-
ings like the microphone base.

2.2.3 NeuS

NeuS [122], published one year after NeRF [83], proposes to keep the volume
rendering of NeRF, but to modify the radiance field approach by splitting it
into two distinct networks: a representation of the radiance Le and a repre-
sentation of the scene in the form of a signed distance function f : R3 → R.
Thus, the surface of the object is represented as the zero level-set of the neural
SDF, such that:

S =
{
x ∈ R3| f(x) = 0

}
(2.33)

All NeuS work is therefore based on the function(s) that ensure the SDF in-
formation is transformed into a density in a differentiable way to make the
volume rendering still workable.
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NeuS introduces a probability density function ϕs(f(x)), named S-density,
composed of:

ϕs(x) =
se−sx

(1 + e−sx)2
(2.34)

known as the logistic density distribution and as the derivative of the sigmoid
function:

Φs(x) =
1

1 + e−sx
(2.35)

Combining both these functions, NeuS chose to rewrite Equation (2.30) as
follows:

αi = max

{
Φs(f(r(ti))) − Φs(f(r(ti+1)))

Φs(f(r(ti)))
, 0

}
(2.36)

This rewriting allows an unbiased weight function w(ti) which reaches a local
maximum at the intersection with the surface, i.e. where the SDF vanishes, to
ensure an accurate representation of the surface. It is also sensitive to occlu-
sions, explaining that points closer to the surface must contribute more than
points further away along the same ray, even if their SDF are identical.

The final step consists of the addition of a second loss term to enforce the
MLP representation to mimic a signed distance function. The main charac-
teristic of an SDF is its gradient, whose norm is equal to 1 at almost any point
in space (i.e. skeleton). An eikonal loss term, exploiting this property over
the samples ti of the rays rj , for i ∈ {1...K} and j ∈ {1...L}, was then added
as follows to constrain the MLP:

Leik =
1

KL

∑

i

∑

j

(∥∇(f(ti,j)∥ − 1)2 (2.37)

Among the many works that have resulted from NeuS, [129, 123] propose
algorithmic optimisation to reduce the computation time, [50, 72] perform
reconstructions with a limited amount of views, [24] works on complex re-
flectance materials, [124] on fine structures, and many others.

Publications show methods that are more and more open to different image
modalities, using normal maps and depths, with research increasingly focused
on reconstructing details, very large scenes and understanding complex mate-
rial.

All the methods mentioned above are based on MVS. However, there are
also rendering loop methods based on PS or multi-view PS data [133, 57, 56,
140, 19]. These approaches are currently the best in understanding complex
reflectances, and in acquiring fine details [14].
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Recent work using Gaussian splatting [60] overturned NeRF-based methods
on novel view synthesis, introducing optimisations in reasonable time and the
creation of novel views in real-time (up to 600 FPS). In addition to this, the
recent work of Guédon et al. [39] provided a 3D mesh explanation of the op-
timized Gaussians, opening new doors for the future of 3D reconstruction.

This section showed the importance of new methods using neural networks
for 3D reconstruction and demonstrated that they should no longer be ne-
glected and be applied in symbiosis with the classic methods to constrain the
neural 3D representations.

2.3 When 3D reconstruction meets refraction

Refraction has been extensively studied in the field of rendering due to its
significant impact on producing realistic images, especially when dealing with
elements like windows, water and caustics. The field of 3D reconstruction
has predominantly focused on underwater scenarios involving air/glass/water
interfaces. However, there is a notable lack of research addressing situations
similar to ours, which involve objects inside a refractive medium.

2.3.1 Existing work

The first studies on refraction/reflection focused on the deformations linked
to lenses and thin refractive layers, which were realised by Maas et al. [77] in
the case of applying a fine layer of glass between air and water.

Much subsequent work has focused on data acquisition and reconstruction
of underwater scenes, with some work on image correction that used epipo-
lar geometry [75, 53, 52], or those by [2, 130] using neural networks. Some
approaches are centred on the use of light field cameras [47, 137] to anal-
yse light directions to cancel refraction and predict refractive index. Morris
et al. [84, 85] have focused on surface and depth predictions in the context
of air/water interfaces using refracted patterns. Chen et al. [23] worked on
the projection of fringes onto the refractive surface to understand its geometry.

For underwater reconstruction, there have also been significant contributions
based on photometric stereo methods with [120, 90, 88] that address the chal-
lenges posed by light absorption in water. These studies consider factors such
as the loss of colour at greater depths and light absorption by unclear water,
which impacts accuracy and quality of the reconstructed images. Narasimhan
et al. [92] studied refraction in photometric stereo in the context of a fronto-
parallel plane interface between two media, modelling the different intensities
of light rays and their transformation as they pass through the refractive inter-
face. Fan et al. [31] have carried out similar studies using laser triangulation.
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Going back to theoretical studies, the work of Sturm [114] on camera models
for structure-from-motion, including those with refracted axes, is particularly
noteworthy. A few years later, Chari and Sturm proposed in [22] a rewriting
of the epipolar geometry for the case of refractive planar interfaces between
the scene and the camera. In the same vein, Haner et al. [40] propose a wider
method for estimating camera poses in the case of planar interfaces.

Li et al. [61], as well as [132], were interested in single-view 3D reconstruction
using bi-prisms, providing two views of the scene from different angles in the
same image, unlocking access to photometric stereo methods. Chen [26] and
Gao [33] focused on the rotation of refractive panels between the camera and
the scene to provide multi-view information. Others, such as [139, 94], have
preferred to use mirrors in the scene to obtain additional information. Recent
work [3] has even gone so far as to use iris reflection to reconstruct 3D scenes.

Other projects [89, 126, 18] referred under the term bathymetry (i.e. the
measurement of ocean depths and relief) also kept interest in refraction.

Recently, with the use of differentiable rendering, some work on the recon-
struction of transparent objects has appeared. For example, [9] attempted
to fit surface models onto images distorted by refraction in the case of very
basic geometry (cube, sphere). Lyu et al. [76] proposed an approach mixing
multiview and patterns to recover a triangular mesh. Li et al. [67] mixed a
neural approach and a rendering applying Snell’s laws, and Shao [109] studied
the understanding of polarization for 3D reconstruction.

Finally, we find the work of Xion et al. [131] modelling the surface of waves
over time to reconstruct the seabed, and Tong et al. [117] proposing in 2023 a
neural multiview approach to reconstruct objects trapped inside cuboids with
refractive properties.

2.3.2 Contributions

The contributions of this thesis will refer to the adaptation to refraction of
the different approaches presented in this chapter. We will start in Chapter 3
with a presentation of our work on a method based on shape-from-silhouette
allowing both the calibration of extrinsic camera parameters and the 3D re-
construction of polyhedra. Chapter 4 will focus on a multi-view refracted
reconstruction method for providing 3D point clouds of objects trapped in
polyhedral shapes and arbitrary shapes. Chapter 5 will concern the imple-
mentation of a refracted PS method in an infinite plane framework. Chapter 6
will be a bridge between classic and neural methods, with a work based on
NeuS [122] using multi-view PS (MVPS) data, proposing a re-parametrisation
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of the input data in the form of normal and reflectance maps to generate 3D re-
constructions with numerous fine details. Chapter 7 will discuss current work
on a two-stage method using refracted MVPS data to compute and integrate
refracted normal maps. Finally, the last chapter will discuss the limitations
and perspectives of this work to conclude this 3-year project.
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Chapter 3

3D reconstruction of convex
polyhedra using

shape-from-silhouette

As explained in the introduction, we began our work on insects imprisoned in
transparent white resin cuboids with a refractive index of 1.56, close to the 1.54
of amber. This led naturally to the idea of modelling a cuboid/polyhedron in
a scene using a shape a priori. Moreover, this method can also be used to cal-
ibrate external camera parameters. This work was published at the Quality
Control by Artificial Vision (QCAV) conference and is entitled: “A Shape-
from-silhouette Method for 3D Reconstruction of a Convex Polyhedron”[15].

This method, not limited to cuboids but also polyhedrons, represents an ac-
curate and robust pipeline for the 3D reconstruction of convex polyhedral
objects based on multi-view data obtained with a circular motion (turntable).
The first step consists of detecting the corners of the polyhedron, and then
mapping them into elliptical trajectories. These trajectories can then be inter-
preted to provide a triangular mesh and external parameters for the cameras
without any use of markers. Detecting the corners of polyhedra and mapping
them to the elliptical trajectories they explain, not only provides us with an
easy-to-use method that requires no markers but also a triangular mesh of the
polyhedron and calibration of the cameras’ internal parameters, as shown in
Figure 3.1.

As polyhedron corner detection is silhouette-based, this method is robust to
complex/textureless materials. This is, in general, no the case for structure-
from-motion methods. Note however that concave cases are impossible to
reconstruct because of silhouette-based corner detection. In addition, pro-
cessing polyhedra with more than 10 faces can lead to errors. Indeed, the
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(a) (b) (c) (d)

Figure 3.1: Overview of our method: (a) Input image of a box on a turntable;
(b) Segmentation of the box and corner detection for all views; (c) Estimation
of elliptical trajectories; (d) Reconstructed triangular mesh of the box.

corner detection can fail due to the increase of obtuse angles. Moreover, ellip-
tical trajectories will become increasingly more difficult to detect because of
the overlapping between the corners. Though it is possible to robustify this
method, for the application case of insects in resin cuboids, this is perfectly
sufficient.
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Chapter 4

Refracted multi-view stereo

In the previous chapter, we obtained calibrated cameras and a triangular
mesh representation of the refractive medium supposedly polyhedral. With
this knowledge, we can now turn our attention to reconstructing the object
inside it. In this context, which is very suitable for MVS methods, we will add
our knowledge regarding the laws of refraction to propose a refracted MVS
pipeline as seen in Subsection 2.1.5 to reconstruct the insect inside the refrac-
tive medium.

This is how we led to the paper entitled “Multi-view stereo of an object im-
mersed in a refractive medium” [16], proposing a complete 3D reconstruction
pipeline based on refracted multi-view data. This pipeline is an extension
of the method of Brument et al. [15] and the work of Cassidy et al. [20] on
refracted stereo multi-view reconstruction. The main idea is to model the
light paths according to Snell’s equations for projection and back projection
through the medium within the MVS method.

This article also includes work to refine and robustify the method in [20]
by adding reconstruction of polyhedral media with more complex geometry,
as shown in Figure 4.1, as well as studies on the determination of the refractive
index of the medium. Finally, we also studied the consequences of the usage
of different levels of precision in the definition of the shape of the medium
(number of faces).

The main constraint of this method is the computation time: restricted to
polyhedral refractive media, the results can be obtained within 10 to 24 hours,
depending on the precision required. In a time frame, due to the complexity
of the number of faces and despite the optimisations implemented to process
only the faces required during optimisation, this time evolves from one day to
one week.
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Figure 4.1: First row: Examples of input images of a graphosoma inside a
dodecahedron and inside a refractive medium of arbitrary shape. Second row:
Corresponding 3D reconstructions using our method.

It is also worth noting that just as we were finishing fine-tuning this method,
neural applications such as Tong et al. [117] appeared, allowing in the case
of a cuboid to model the surface insect representation with superior quality.
The unavailability of the code prevented us from comparing our method with
their, but it encouraged us to explore neural methods such as [83, 122] for our
future work, rather than seeking to optimise this pipeline even further.
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Chapter 5

Refractive photometric stereo

Chapter 4 highlighted that our adaptation of a geometric method (MVS) to
refraction has shown positive results when it comes to the use of Snell’s laws
to adapt 3D reconstruction methods. However, we must not forget a second
important family for 3D reconstruction, as seen in Table 2.1: photometric
methods. Fan et al. [31] explored the case of an underwater camera, with
refraction caused by the encasing of the camera. In this work, we focus on a
different situation: a refractive photometric stereo method with an (infinite)
planar refractive interface.

In this contribution, entitled “On Photometric Stereo in the Presence of a
Refractive Interface” [101], the aim is to adapt the model seen in Subsec-
tion 2.1.6 to refraction by taking into account an infinite plane separating two
homogeneous media. The difference with the work of [31] lies in the use of a
plane that is not necessarily fronto-parallel, in the presence of an orthographic
camera model instead of a perspective one, and in the absence of a laser to
calibrate depth.

This article shows how to modify the directions of both the camera and the
directional lights according to Snell’s laws, as well as the intensity of the lights
by applying Fresnel’s laws. Following these principles, we can create a bijec-
tion with a new underwater scene, this time without refraction, enabling us
to solve a classic photometric stereo problem, as shown in Figure 5.1.

Our results show that taking refraction into account provides higher-quality
3D reconstructions, while ignoring it leads to much flatter results. We also
point out that the depth ambiguity prevents us from using Beer-Lambert’s
law (see Equation (1.7)), because of the unknown length l, causing the impos-
sibility of modelling the colour absorbance in our model.
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Figure 5.1: Photometric stereo 3D reconstructions on synthetic data. From
left to right: In air (no interface), and in water (air/water interface), without
and with refraction usage for the reconstruction.
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Chapter 6

Reflectance and normal-based
neural inverse rendering

Around 2020, as we saw in the introduction, neural inverse rendering methods
have exploded, including approaches involving 3D reconstruction. NeuS [122]
emerged at this time as a very convenient method for understanding the logic
applied with volumetric rendering. While learning how it works, and mod-
ifying its code to make our version of ReNeuS [117] (original code is still
unavailable at the time of writing this thesis), we worked on its adaptation
to MVPS data to exploit the best of photometric and geometric methods to
reconstruct objects with high fidelity on low and high frequencies. However,
this method in not based on refraction.

This contribution to general 3D reconstruction, based on NeuS, is called “RNb-
NeuS: Reflectance and Normal-based Multi-View 3D Reconstruction” [14].
Our initial insight emerged from recognizing that existing methods using this
type of data were inadequate at leveraging multi-illumination data to recover
fine details. After considering an excess of parameters for optimisation, which
often did not accurately reflect the real data, we developed a single-objective
method.

The first phase consists of using any PS method to obtain normal and re-
flectance maps for each view. With these new inputs, we proposed a per-pixel
re-parameterization to render MVPS images mixing normal, reflectance maps
and per-pixel optimal illumination. Our method is based on simple reflectance
modelling focusing purely on albedo, but it can be adapted to more complex
models. The joint optimisation of normals as a gradient of the neural SDF
and albedo as a prediction of the colour network (independent of the viewing
direction) has enabled us to recover many details in the 3D reconstructions,
as shown in Figure 6.1.
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Figure 6.1: Comparison between our method and state-of-the-art approaches
on the Buddha from the DiLiGenT-MV dataset [64] .

A major limitation of this method is its optimisation time: each scene op-
timisation can take between 6 and 15 hours, depending on the graphics card.
To compensate for this, we have adapted our method to NeuS2 [123], a new
version of NeuS based mainly on CUDA, optimising scenes in 5 minutes. How-
ever, especially for new methods, this backbone transition is not free of charge,
as the absence of an automatic differentiator like Pytorch requires manual cal-
culation of the gradients to be propagated in the code for any modification.

This knowledge of neural methods and this observation of the 3D reconstructed
details using MVPS data encouraged the work in the next chapter, this time
based on refraction.
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Chapter 7

Refractive normal acquisition
and integration

In Chapter 6, we proposed a 3D reconstruction method based on MVPS data.
This work provided us with sufficient knowledge to start adapting the neural
approaches to refraction. The idea is to set up a pipeline based on images of
an object inside a refracting cuboid under multi-view and multi-illumination.
For this refractive MVPS approach, we propose a two-step pipeline. The first
stage involves the understanding of illumination propagation inside a cuboid
shape to generate refracted normal maps. The second step requires integrating
these normal maps using multiple views. This step adapts the NeuS volumet-
ric approach to estimating normals instead of transmittance while considering
refraction.

To implement this pipeline, we assume the same data as before: perspec-
tive cameras and calibrated directional lights. The object to be reconstructed
will be assumed to be Lambertian, and the interface surrounding it a known
cuboid shape of constant refractive index and neutral white colour. Contrarily
to the previous chapters which all appeared in published paper, the results will
be provided only on synthetic data, the method still having to be evaluated
on real data.

7.1 Obtaining refractive normal maps

Input data This step consists of estimating the normal map for each view
i ∈ {1...N}, independently. Each view is calibrated and captured under M
varying directional illuminations sj , j ∈ {1...M}. The binary masks Bi of each
view of the object are also needed, as well as the refractive cuboid medium
mesh, expressed in the world coordinate system, and its index of refraction.
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As seen in Subsection 2.1.6, under the Lambertian assumption, to obtain the
normal n(p) corresponding to a given pixel p, photometric stereo tells us that
we need at least 3 non-coplanar illuminations. Following Equation (2.19), this
normal is obtained by estimating the vector m(p) that best solves the linear
system Sm(p) = I(p). Therein, vector I(p) contains the input greyscale values
at pixel p, and matrix S contains the illuminations, which must be carefully
modeled to account for refraction.

Our work in [101] showed that in the case of an infinite planar interface be-
tween the camera and the object to reconstruct, it is possible, in a directional
multi-illumination framework, to obtain the normal n(p) at each pixel p by
solving the same linear system as before, by applying Snell’s and Fresnel’s laws.
However, with a cuboid representation, geometry causes light contributions at
a pixel to be far more complex than a refracted direction and Fresnel-affected
intensity.

Figure 7.1 shows a 2D case with a square medium and a circle representing the
object to be reconstructed. In this figure, we have simulated the propagation
of a single directional light, and we can see that not all areas of the object
are illuminated in the same way. Indeed, some parts of the circle will receive
direct refracted light, but some other parts will also receive additional light
contributions due to reflections/bounces in the cuboid. Figure 7.2 shows the
light distribution when the light enters from two edges. As expected, the light
contribution is even more complicated to predict. In the case of a cube, the
light would enter most of the time from three different faces and would bounce
more than twice.

Figure 7.1: 2D simulation of rays in a refractive square with a circle object
inside. The light enters from the bottom edge. We can see, from left to right,
the different bounces inside the medium, and on the right, the final lights
by summing all contributions. The colours orange, green and magenta
correspond to the distribution on the circle of areas hit by 0, 1 or 2 different
illuminations.
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Figure 7.2: Same simulation as in Figure 7.1, but with a second row showing
the simulation with the light propagation from a second edge of the square,
and finally the expected light distribution after only 2 bounces.

From these simulations, we realised that we would need a simulation of the
light contributions in the cuboid, as well as an a priori of the back-projection
of each pixel in the medium, to predict the light contributions.

For each known light direction, we simulated its propagation through the
medium, ignoring the internal object to simplify the modelling of intersec-
tions and to store the light bounces more easily. With our knowledge of the
cuboid and the preliminary 3D reconstruction, we obtained an approximate
3D position for each pixel. For a given pixel p and its corresponding 3D point
X, we can query the ray simulator to identify all the light rays arriving at this
point, denoted as Q(X). Next, we eliminate all rays that cannot physically
reach that point due to the estimated 3D reconstruction, with RQ(X) repre-
senting these removed light contributions. This involves reversing the path of
all these rays and ensuring they do not intersect the object, as illustrated in
Figure 7.3. Once this validation is complete, we sum the remaining light con-
tributions, weighted by their intensities α (which vary according to Fresnel’s
laws), and use in the linear system this new light s(X)∗:

s(X)∗ =
∑

(si,αi)∈Q(X)

αisi −
∑

(sj ,αj)∈RQ(X)

αjsj (7.1)
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Figure 7.3: Simulation similar to that in Figure 7.2, ignoring the collisions
with the circle. Looking at a specific point on the circle, we can see in the
orange dashed line the path of light to reach this particular point on different
levels of bounces. When the dot is black, no light is contributing. When it
is red, a light reaches this position, but intersections with the object (as red
crosses) are on the way, so this contribution has to be removed. Finally, when
the dot is blue, light reaches the position without intersecting the object,
adding a contribution to the real dot illumination.

7.2 Refractive normal integration

Multi-view normal integration consists of reconstructing the surface of an ob-
ject by merging the normal maps from different points of view. Based on
NeuS2 [123], we have built a neural normal integrator that we will use as a
backbone for refraction.

NeuS2 was introduced as a fusion of InstantNGP [87] and NeuS [122]. It
combines the optimised architecture of InstantNPG with the neural SDF (f)
representation of the surface of the object to be reconstructed, allowing NeuS-
like reconstruction in 5 minutes instead of 8-16 hours.

The optimisation is the same used by NeuS (see Equation (2.32)) including
the same colour prediction (see Equation (2.28)). This architecture lends itself
particularly well to multi-view reconstruction, however, it is not suitable for
integrating normals. While remaining based on a volume rendering function,
we have chosen to adapt its formula to predict a normal rather than a radiance.
As our object is represented using f , we have changed the colour prediction
term Le(r(ti), d) by n(r(ti)) = ∇f(r(ti)), which gives us the following normal
prediction of a given ray r:

N(r) =
K∑

i=1

w(ti)n(r(ti)) =
K∑

i=1

T (i)αi∇f(r(ti)) (7.2)

With this new rewriting, the multi-view normal integration is possible. For
our purpose, we would like to be able to apply it to refractive normal maps.
At this stage, we expect the geometry of the medium and its refractive index

60



Results and issues

to be known. The required change, to take the medium into account, is to ap-
ply Snell’s laws to the back-projected rays r used for volume rendering and to
compute their refractive version r̂. These new rays will replace the originals,
allowing the reconstruction of a scene in a single, refraction-free environment.

One of the NeuS2 constraints is its need for analytical gradients in the code.
Changing the loss term requires updating all the old gradients related to the
colourimetric loss with the new ones related to our three losses:

Lnormal =
1

L

L∑

j=1

∥∥∥N(r̂j) − N̂(rj)
∥∥∥
2

(7.3)

Leikonal =
1

KL

K∑

i=1

L∑

j=1

(∥∇f(r̂j(ti))∥ − 1)2 (7.4)

Lmask =
1

L

L∑

j=1

[
−B(rj) log

(
Φ
(
W j

))
+ (1 −B(rj)) log

(
1 − Φ

(
W j

))]
(7.5)

with:

W j =
K∑

i=1

w(r̂j(ti,j)) (7.6)

7.3 Results and issues

The most traditional method for evaluating 3D reconstruction algorithms is to
generate synthetic data, ensuring perfect camera calibration and the absence
of noise in the data. Tools such as Blender, however, are unable to generate
data using the refracted MVPS model, because of the null measurement phe-
nomena it generates.

This phenomena can be understood as follows. In the path-tracing rendering
process, as discussed in Subsection 2.1.2, one starts from the camera or the
light source and then shoots numerous rays to define paths from the camera
to the light, passing through the objects in the scene. Typically, as illustrated
in Figure 7.4, when encountering a Lambertian object, the algorithm checks if
the diffusion hemisphere includes the direction of the directional lighting. If it
does, this direct lighting is accounted for. However, with a refractive medium,
this calculation becomes very expensive because this requires finding the nor-
mal to the surface that accounts for a refracted direction similar to that of
light, and then finding out if there is a similar normal on the medium that
can be reached from the hemisphere. Since rendering engines do not perform
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(a) (b)

Figure 7.4: Illustration representing the light-object-camera path for path
tracing with a Lambertian object. (a) In the absence of a refractive medium,
the light direction is found inside the hemisphere around the normal at the
surface. (b) In the presence of a refractive medium, the path of light from
the object to the light is not straightforward and requires heavy optimisation
computations.

this optimisation, they only shoot a lot of rays, but none of them emerge from
the medium in a direction similar to that of light, which explains the zero
measurement.

To validate our method, we thus opted to develop our own rendering engine,
distinct from path tracing. This engine is based on simulating rays within
the medium to determine light contributions at every point within it, thereby
addressing the null measurement problem.

Once our synthetic data had been generated, we used a homemade version
of [117] based on NeuS2 to do an initial 3D reconstruction. Using this ini-
tial reconstruction, we used our light ray simulator to compute the refracted
illumination matrix S, and subsequently estimate the refracted normal maps
using photometric stereo. Figure 7.5 shows the mean angular error (MAE)
between our normals and the ground-truth normals. We can see a reduction
in the angular deviation between the normal maps obtained from the first
ReNeuS2 estimation and those obtained with the MVPS data and the ray
simulation.

Figure 7.6 shows the difference in reconstruction between refractive MVS and
refractive MVPS (after integration of the normals). We can see that our
method provides smoother surfaces with more details, as well as a correction
on some poorly reconstructed areas. However, concerning real data, our initial
tests were inconclusive, as this method requires a high degree of precision
when it comes to calibrating the various elements (cameras, lights, cuboids).
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(a) (b)

Figure 7.5: Angular error on the normals for a graphosoma trapped inside a
refractive cuboid, using: (a) ReNeuS2 from the reconstructed mesh; (b) Our
approach.

Future acquisitions will focus on the improvement of the quality of the data,
to prevent these issues and to enable us to validate our method or not.
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(a) (b) (c)

Figure 7.6: Two 3D reconstructions of a graphosoma inside a cuboid (synthetic
data), using: (a) ReNeuS2; (b) Our solution. The ground truth is shown in
(c).
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Chapter 8

General conclusion

8.1 Conclusion

As we have seen at the beginning of this thesis, this work is set within the
context of exploring ways to provide 3D models of insects trapped in amber.
However, three years is not enough time to propose a complete reconstruction
pipeline to overcome all the complexities of amber. Considering that, we have
chosen to focus on the major property of amber, which is the notion of reflec-
tion and refraction, described by Snell’s and Fresnel’s laws. Our contributions
have shown how both classical and recent neural methods can be modified
to suit the refractive scene. Our initial work involved using multi-view data
to propose a method for estimating the shape of a polyhedral interface, and
then using this new knowledge to adapt the multi-view stereo (MVS) method
by applying Snell’s laws for the back-projection and projection of light rays.
This approach enabled us to understand that it was possible to produce 3D
reconstructions that were faithful to the geometry of the insect, whatever the
geometry of the medium. We also demonstrated that the algorithmic cost of
the projection operations, which consist of finding the shortest path for the
light to take, was directly related to the complexity of the shape of the medium.

Our work also focused on the adaptation of photometric stereo to refraction in
an infinite planar interface (aquarium) framework. This contribution allowed
us to show how the orthographic camera model, as well as the directional
light model, were affected by refraction. We were able to observe a bijection
in this specific case between the scene and a second scene involving a unique
medium (air). Although the use of orthographic cameras provided a simplistic
solution to the refraction problem, this solution remains rather limited in our
context, as the depth ambiguity does not allow colour absorption to be taken
into account, and mainly because the planar model is very far from the shape
of amber.
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The work of Tong et al. [117] in 2023 on a neural refracted MVS method
subsequently allowed us to look at new neural methods. Indeed, by repro-
ducing their method on the data from our classic refractive MVS method,
we were able to notice the quality of the 3D reconstruction of the insects, no
longer in the shape of a point cloud but in a surface shape. The second strong
point of this method is that there is no need to solve the projection equation,
which can considerably reduce computing time. However, Tong et al. did not
generalise their approach to all types of shapes and restricted themselves to
a cuboidal shape, which is much more acceptable for simulating rebounds in
the medium. In future work, we will present a method adapted from theirs,
using masks to get rid of luminous bounces and to be able to use much more
diverse shapes of medium.

In order to familiarise ourselves with neural methods, we worked on a project
involving the use of multi-view, multi-illumination data to reconstruct objects
with attention to fine details. This contribution enabled us to understand how
volumetric methods work for 3D reconstruction and to see the potential for
using them to understand different materials. This contribution will be valu-
able for refraction, giving us access to a backbone to modify that can already
understand the fine details of insects and possibly take complex materials into
account.

Our latest work has focused on the integration of refracted normals within
the context of a cuboid shape for the medium but with the idea of using poly-
hedra in the future. This contribution, which is still in progress, should enable
us to better model the behaviour of light rays in a non-infinite medium. As
seen in Chapter 7, light rays in a refractive medium will bounce in a manner
that generates an almost infinite number of different light contributions with
intensities that are initially close to the original intensity but become progres-
sively smaller until they are infinitesimal. The approximation of this infinite
sum of light contributions made in Chapter 7, which seemed accurate to us,
is in fact slightly incorrect when we compare our results with real images.
Indeed, we have chosen to ignore light contributions below a certain intensity
level, but the sum of all these small contributions is likely non-negligible. It
will be important, in future work, to be able to model the interaction of light
in the medium more precisely, to exploit these photometric data and produce
accurate 3D reconstructions.

In the end, the impact of this work was to demonstrate the feasibility of
3D reconstruction of objects trapped in a refractive medium. We were able to
show that it was possible to adapt traditional methods, enabling us to obtain
results that respected the geometry of the objects. We were also able to use
the new neural methods to produce surface reconstructions of the same order
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of quality as those in the air. We also need to keep in mind that the quality of
3D reconstructions involving refraction is very dependent on the calibration of
the various components of the scene (cameras, lights and refractive medium),
and that future work on both the macroscopic and microscopic scales will re-
quire a great deal of rigour when it comes to data acquisition.

This thesis has shown that the initial project of reconstructing insects in am-
ber is certainly achievable. There are still many challenges ahead before we
can achieve even the first microscopic-scale reconstructions, but current work
on refraction, different materials, detail reconstruction and fine structures will
eventually make it possible to reconstruct insects with a high degree of fidelity
and then do the same for versions embedded in amber.

So, we should not be surprised if, in a few years, museums offer visitors the
chance to see not only the dinosaurs of yesteryear, but also insects from those
same eras, and to explain how they got here by following the almost eternal
path of fossilisation.

8.2 Limitations

Despite the simple cuboid form, when dealing with refraction, we were con-
fronted with several serious problems and limitations we will need to under-
stand before progressing to more accurate amber models.

8.2.1 Synthetic data

Synthetic data is essential for verifying that 3D reconstruction methods work
properly under quasi-optimal conditions. As we saw earlier, these tools easily
allow us to render realistic scenes with different materials, while maintaining
colour consistency across the different views. However, creating PS data with
these models becomes significantly more complex, especially when trying to
follow the physical models. The most complex problem is adding the refrac-
tive medium to the scenes. The modelling of Snell’s and Fresnel’s laws is
not always strictly respected because it can lead to zero measurements and
prevent images from being generated. At the current time, the generation of
MVPS data with refraction is impossible because it is too far away from real-
ity. Normally, with directional lighting, a shadow cast by object A on object
B produces a shadow with sharp edges. In the case of refraction, with B inside
a refractive medium, the cast-shadow will be shifted due to the refracted rays,
but the edge must remain sharp. However, looking at the difference between
(a) and (b) in Figure 8.1, we can see that the shadow of the circle has shifted
in (b), but the edges are no longer sharp and the luminosity has dropped
drastically, which is not physically reliable.
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(a) (b)

Figure 8.1: Rendering with Blender of a scene with a 45◦ azimut rotation
directional light, a plane and a circle between the plane and the light. (a)
The circle casts a sharp shadow on the plane. (b) When the plane is inside
a refractive medium, as expected, the shadow is deviated due to refraction.
However, for no reason, the shadow is no longer sharp and the brightness is
much lower.

Figure 8.2 shows in the real case of a cuboid with a flower trapped inside, how
the faces of the cuboid cast shadow on the flower, validating Blender incorrect
renderings.

(a) (b)

Figure 8.2: (a) Image of a flower trapped inside an epoxy cuboid illuminated
by a directional light. In (b), we emphasize the faces borders projected into
the flower, which exhibit sharp boundaries.
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Rendering engines are built for artistic purposes for the most part, which is
why care must be taken when using them to produce physically realistic data.
Taking a survey of the existing set of engines for future work could be useful
to generate images that can be used for photometry.

8.2.2 Data acquisition

Acquiring data with refraction poses significant challenges due to the need for
highly precise calibration. The complex paths between the camera, the object,
and the light require accurate modelling of the medium: any imprecision can
hinder the reconstruction of fine structures. Distortions in light direction or
intensity can lead to inaccuracies in the light contributions after reflections,
complicating image interpretation.

Another challenge is the acquisition of objects within amber or simpler mod-
els such as resin cuboids. These epoxy models are not abundant and often
objects trapped inside do not follow the Lambertian assumption. The mate-
rials are more complex than expected and tend to break our naive models.
Moreover, working with actual pieces of amber introduces additional difficul-
ties. The amber pieces can vary from a few millimetres to several centimetres,
with insects to be reconstructed at millimetric scale. This requires modifying
the acquisition setup to include microscopic cameras and their related camera
models. Furthermore, issues related to focus and calibration for these new
cameras must be addressed.

8.2.3 Refraction/reflection complexity

Fresnel’s laws explain that for high incident angles, the reflectance coefficient
R will be significant, causing a white filter on the surface of the medium. This
effect partially damages the images by causing them to lose sharpness. In real
acquisition cases, we also observe specular points on the medium due to the
lights, which deviate from the directional model. They behave essentially as
punctual light sources, causing this detrimental effect on our data.

Although the modelling of reflection/refraction is relatively straightforward
at first sight when dealing with a single interface, it becomes much more com-
plex when bounces have to be taken into account, as seen in Chapter 7. We
expected real data to fit our simulated model with the presence of a lot of light
patterns projected on the object, in reality, looking at the actual data, we do
not find this pattern of light bouncing off the surface of the object. Some
sharp lines can be seen, but beyond that, the impression is more an ambient
lighting as a blend of all the rebounds. This analysis of the behaviour of light
in the event of bounces requires more in-depth work to be able to figure out
how to better model the lights.
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8.3 Future work

Future work will focus on implementing a faster neural refracted MVS method
than the one proposed by [117], building on our work adapting NeuS2 or trying
to adapt new methods such as SuperNormal [19] or those based on Gaussian
splatting [39].

We would also like to continue our work on multi-view, multi-illumination
data to gain a better understanding of lighting patterns with bounces, but
also to exploit the information in the normals to produce real results. Know-
ing that methods using photometric stereo can be adapted to explain fairly
complex reflectances, we would eventually like to go beyond albedo and model
reflective, transparent and metallic surfaces. In the future, we are looking to
set up a kit to acquire refractive MVS or refractive MVPS data as accurately
as possible, and with as little effort as possible. In addition, a polarising filter
could be added during image capture to eliminate reflections on the faces of
the medium. As well as simplifying the model a little, this would probably
improve the sharpness of the images.

Future work will then focus on gradually adding the elements seen in Sec-
tion 1.2, such as taking account of colour/absorption. Then, when we are
able to acquire real data, bubbles and dust will have to be taken into account.
Finally, attention can be paid to the smallness of the real data, given that it
is possible to model everything on macroscopic data.

For microscopic data acquisition, we have already started creating a few se-
tups based on the model in [113]. The current version would be for multi-view
reconstruction (MVS) and insect acquisition/reconstruction. However, once
it has been validated, we plan to modify it so that it can also be used for pho-
tometric stereo. With these initial tests, we will be able to look at the case of
amber, although the scale is not the same, and the cameras and calibrations
shall need revision.
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Jiménez. Automatic generation and detection of highly reliable fiducial
markers under occlusion. Pattern Recognition, 47(6):2280–2292, 2014.
34

[35] J. Geng. Structured-light 3D surface imaging: a tutorial. Advances in
Optics and Photonics, 3(2):128–160, June 2011. 31

[36] K. Genova, F. Cole, A. Maschinot, A. Sarna, D. Vlasic, and W. T. Free-
man. Unsupervised Training for 3D Morphable Model Regression. In
Conference on Computer Vision and Pattern Recognition, pages 8377–
8386, 2018. 40

[37] K. Genova, F. Cole, A. Sud, A. Sarna, and T. Funkhouser. Local Deep
Implicit Functions for 3D Shape. In Conference on Computer Vision
and Pattern Recognition, pages 4857–4866, 2020. 40

[38] C. Griwodz, S. Gasparini, L. Calvet, P. Gurdjos, F. Castan, B. Maujean,
G. Lillo, and Y. Lanthony. AliceVision Meshroom: An open-source 3D
reconstruction pipeline. In ACM Multimedia Systems Conference, 2021.
23, 36, 37, 40
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31

[92] S. G. Narasimhan, S. K. Nayar, B. Sun, and S. J. Koppal. Structured
light in scattering media. In International Conference on Computer
Vision, volume 1, pages 420–427, 2005. 46

78



BIBLIOGRAPHY

[93] S. Nayar and Y. Nakagawa. Shape from focus. Pattern Analysis and
Machine Intelligence, 16(8):824–831, 1994. 31

[94] T.-N. Nguyen, H.-H. Huynh, and J. Meunier. 3D reconstruction with
time-of-flight depth camera and multiple mirrors. IEEE Access, 6:38106–
38114, 2018. 47

[95] M. Niemeyer, L. Mescheder, M. Oechsle, and A. Geiger. Differentiable
Volumetric Rendering: Learning Implicit 3D Representations without
3D Supervision. In Conference on Computer Vision and Pattern Recog-
nition, pages 3504–3515, 2020. 40

[96] M. Niemeyer, L. Mescheder, M. Oechsle, and A. Geiger. Differentiable
volumetric rendering: Learning implicit 3D representations without 3D
supervision. In Conference on Computer Vision and Pattern Recogni-
tion, pages 3504–3515, 2020. 40

[97] Nvidia. https://www.nvidia.com. 29

[98] J. J. Park, P. Florence, J. Straub, R. Newcombe, and S. Lovegrove.
DeepSDF: Learning Continuous Signed Distance Functions for Shape
Representation. In Conference on Computer Vision and Pattern Recog-
nition, pages 165–174, 2019. 40

[99] B. T. Phong. Illumination for computer generated pictures. In Seminal
graphics: pioneering efforts that shaped the field, pages 95–101. 1998. 29
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Thesis, Université de Toulouse, 2015. 31

[101] Y. Quéau, R. Bruneau, J. Mélou, J.-D. Durou, and F. Lauze. On Pho-
tometric Stereo in the Presence of a Refractive Interface. In Scale Space
and Variational Methods, pages 691–703, 2023. 53, 58
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ABSTRACT

We present a pipeline to recover precisely the geometry of a convex polyhedral object from multiple views under
circular motion. It is based on the extraction of visible polyhedron vertices from silhouette images and matching
across a sequence of images. Compared to standard structure-from-motion pipelines, the method is well suited
to the 3D-reconstruction of low-textured and non-Lambertian materials. Experiments on synthetic and real
datasets show the efficacy of the proposed framework.

1. INTRODUCTION

Many man-made objects have a relatively simple geometry. Among them, convex polyhedra are abundant,
especially rectangular blocks. Estimating their 3D-geometry from the optical acquisition is of interest in multiple
application domains. For example, nearly all parcels show polyhedric shapes (Figure 1). Automating their
logistics requires knowledge of their dimensions to solve the bin packing problem. Another example is the
reconstruction of artifacts encased in polyhedral transparent media (Figure 6). Knowledge of the container
geometry is of utmost importance to model the distortion of the image artifact caused by refraction, so as to
develop adapted 3D-reconstruction pipelines.

To estimate such a geometry, one could rely on special markers such as AruCo or April Tags (Figure 1e).
Yet, this can slow down the acquisition process of large datasets and be cumbersome to manipulate. To avoid
markers, we use a semi-controlled image acquisition setup: the block/object is positioned on a turntable and
viewed by a static camera whose pose relative to the table is unknown. From the collection of views, we estimate
the positions of the polyhedron vertices and the camera poses relative to the polyhedron by combining shape-
from-silhouette1 with point correspondences across the views (Figure 1). This allows one to 3D-reconstruct a
polyhedron without assuming Lambertian materials.

The steps of our solution are: extract the silhouette of the polyhedron in each view; detect the edges of the
polygon formed by each silhouette; extract the polygon vertices which correspond to the vertices of the imaged
polyhedron (Figure 1b); robustly match the imaged polyhedron vertices across the views (Figure 1c); robustly
3D-reconstruct the polyhedron vertices along with its topology (Figure 1d). Robustness is important, especially
when controlling the lighting is not possible, which may lead to some aberrant silhouette extractions. We apply
the method to datasets of real turntable images of five convex polyhedra. As an evaluation of our approach, we
also use the geometry and poses information to recover from images a 3D-point cloud of an insect encased in a
box-shaped block of epoxy resin using the refractive MVS method.

Our main contribution is thus a robust extraction and matching algorithm for images of points whose tra-
jectories should be parallel 3D-circles. This yields an easy-to-use, marker-free pipeline for 3D-reconstruction of
convex polyhedra, which only requires a turntable. Code and datasets will be made publicly available.

After reviewing related work in Section 2, we describe our notations in Section 3. The matching of imaged
polyhedron vertices is described in Section 4. An evaluation of the method is then provided in Section 5, and
Section 6 draws our conclusions.
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(a) (b) (c) (d)

(e) (f) (g) (h)
Figure 1. Top row: overview of our 3D-reconstruction pipeline. (a) One (out of 40 images) of a parcel placed on a
turntable. The silhouettes vertices, displayed in red in (b), are located on ellipses (c). Our method retrieves the point
correspondences from the set of points displayed in (b), namely the subsets of points belonging to the ellipses (c). From
these correspondences, we perform the 3D-reconstruction of the polyhedron (d), without using markers. Bottom row:
State-the-art results, where the camera poses are computed from markers (e). Multi-view stereo (MVS) results from (f)
Meshroom,2 (g) COLMAP,3 and (h) the very recent NeRF-based instant-NGP.4 3D-reconstruction fails in (f-g) due to
the lack of texture and glossy material, while (h) is very noisy.

2. PREVIOUS WORK

Determining the shape of an object placed on a turntable is already a well-studied problem.5–8 Multi-view geom-
etry can be recovered from epipolar tangents.8 Yet, this method assumes smooth object, hence it does not work
well with polyhedra. Assuming knowledge of the two-view fundamental5 is also a restrictive assumption. It is
for example not possible when reconstructing a tetrahedron comprising four vertices: four point correspondences
are available while seven are required to estimate the fundamental matrix, or five in a calibrated scenario.

The geometry can also be recovered by the shape-from-silhouette technique, which computes an object en-
velope from its silhouettes in different views.1,9, 10 In the case of a polyhedron, reconstructing the planar faces
is however impossible in practice because, for every face, the camera optical center must be located in the face
supporting plane in at least one view, which is very unlikely. In addition, the camera poses are required and
must be computed beforehand. A workaround could consist in placing planar markers11,12 on the turntable, to
compute camera poses before doing the 3D-reconstruction either by shape-from-silhouette or multi-view stereo
(MVS). Yet, shape-from-silhouette would fail due to markers moving along with the polyhedron, making the
silhouette extraction fail in most views. On the other hand, MVS13,14 does not perform well in the case of a
poorly textured object or non-Lambertian materials (Figure 1f), or for transparent objects (Figure 6e). In the
latter case, MVS delivers a mesh comprising a large number of vertices and edges which do not correspond to
the real polyhedron faces. Retrieving the latter requires complex post-processing: mesh denoising, holes filling,
face segmentation, plane fitting, and plane intersection computation. On the contrary, our method computes the
polyhedron faces directly.

The method we propose takes inspiration from the work of Jiang et al.,6,7 who remark that the trajectories
of the points on an object placed on a turntable are parallel 3D-circles whose centres are located on the rotation
axis. Their images, therefore, lie on elliptical images of these trajectories. Jiang et al. make use of these ellipses
to compute the camera poses. To fit the conics, the authors assume reliable point correspondences across the
images collection from marked points. Yet, in our scenario such correspondences are not available and must be
computed automatically. This can be particularly challenging in the case of non-Lambertian materials, for which
tracking or wide baseline keypoint-based matching algorithms15–18 perform poorly. Instead, we use the imaged
vertices of the object obtained from its polygonal silhouettes.
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3. NOTATIONS

We consider a scene consisting of a convex polyhedron with N vertices, placed on a turntable. The vertices
coordinates Xn, n ∈ {1, . . . , N}, are expressed in a 3D-frame Rref attached to the turntable whose origin is
located at the intersection between the supporting plane of the table and the rotation axis, and its two first axes
define the supporting plane of the table. The third axis is a normal vector to the table directed upwards.

A series of J views of this scene is acquired by a static camera with known intrinsics, and we denote by xj
n

the image of vertex Xn in the jth image, j ∈ {1, . . . , J}.
In homogeneous Cartesian coordinates x = [x, y, 1]⊤, an ellipse can be represented as x⊤Ax = 0, where A is

a symmetric 3× 3 matrix under suitable conditions on its coefficients. The interior (resp. exterior) of the ellipse
is given by the points x for which x⊤Ax < 0 (resp. x⊤Ax > 0).

4. MATCHING OF IMAGED VERTICES

The first step consists in creating polygonal silhouettes of each view. This is obtained by simple operations: back-
ground subtraction from a reference image, thresholding, morphological processing, extraction, and simplification
of the convex hull. Then the collection V of all the polygon vertices for all the silhouettes is created.

In the second step, V must be robustly partitioned in subsets of points located on common ellipses, as these
ellipses should be the images of parallel circular trajectories in 3D-space. The partition size, which should match
the number of vertices of the polyhedron, is unknown. In the remainder of this section, a point refers to an
element of V . The cardinality of V is denoted by |V |.

(a) (b) (c) (d)
Figure 2. Main steps of the proposed matching. The input data is the silhouettes vertices V in all views, shown in red in
(a). (i) The ellipses formed by the point triplets showing the highest numbers of points located in their neighborhood are
kept, displayed in blue in (b). (ii) Robust regression of the imaged circular points from the obtained ellipses. It provides
a Euclidean rectification of the points V , displayed in (c), computed from an intersection of a pair of ellipses (in red in
(b)) associated with the trajectories of two polyhedron vertices. (iii) Collection of the correspondences resulting from
the partitioning of points located on circles, displayed in (c), each colour being associated with a vertex. The matching
solution is shown in (d). The red crosses are unclassified vertices.

4.1 Exhaustive Search

Five points are needed to determine an ellipse. The partitioning problem can therefore be solved by an exhaustive
search for subsets of five points such that a large enough number of the remaining points are located near the
ellipse passing through the five selected points. In practice, the number

(|V |
5

)
of subsets of five points is too

high to perform an exhaustive search. Two assumptions enable us to drastically reduce it: we assume that the
rotation axis of the turntable projects vertically into the image and that the common abscissa of the centres
of the ellipses is known. The estimation of an ellipse is then reduced to the computation of three parameters,
namely both semi-axes and the center ordinate, requiring only three points. If the optical axis is roughly pointing
towards the rotation axis, then the abscissa of the ellipse formed by the turntable is shared with the ellipses
formed by the vertices trajectories. This property makes the abscissa, common to all ellipses centers, easy to
get in practice, for example by manually selecting the abscissa of the turntable extremities and considering their
mean values. Deviations to our assumptions are evaluated in the supplementary material.19
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We build the
(|V |

3

)
triplets of points that can be formed from the point set V . Triplets containing at least two

points extracted in the same image are removed since a vertex can only have one image per view. The ellipses
are estimated for the set of remaining triplets. The obtained set of ellipses is denoted E. For a polyhedron of
general geometry in a noise-free scenario, when the number of views is greater than the number of vertices, i.e.
J > N , the ellipses of E passing through the largest number of points are the trajectories of the images of the
polyhedron vertices, and the associated subsets of points the solution to our matching problem. The computed
ellipses are sorted according to the number of points located in their neighborhood. Ellipses with the highest
scores should correspond to the subsets of points with the highest probability of representing images of the same
vertex. This number of points, or score, is computed as follows.

Score – A point is located near an ellipse A if it is inside the elliptical envelope E(A+δ,A−δ): A+δ (resp.
A−δ) denotes the ellipse having the same centre and orientation as A, and whose semi-axes are those of A
enlarged (resp. shortened) by δ. This is an approximation of the δ-tubular neighborhood of A proposed in:20

it avoids the computation of the distance of a point to an ellipse, which involves solving quartic equations
and can become demanding. A point with Cartesian homogeneous coordinates x belongs to E(A+δ,A−δ) if
(x⊤A+δx)(x

⊤A−δx) < 0, and outside otherwise. The score of an ellipse A is the number of points that are
contained in E(A+δ,A−δ). The value of δ is computed automatically.19

Singularity A – The trajectory of a vertex located on the rotation axis of the table is reduced to a point. Such
a configuration is a singularity for the score computation. Elliptical envelopes containing this point generally
obtain very high scores while associating the images of the vertex with those of other vertices. We circumvent
this problem by partitioning the points of V beforehand. Groups consisting of at least four very close points,
i.e., located at a distance of less than a given threshold (0.01 in practice) from each other∗, are excluded from
the score computation.

4.2 Error Pruning

Highest score ellipses may include in some cases images of several vertices, because of the δ-tolerance in the
score computation, the presence of measurement noise, or imaged trajectories crossing each other. An exam-
ple of ellipses associated with the highest scores corresponding to aberrant groupings is shown in Figure 2a.
However, ellipses representing the imaged vertices trajectories are among the ellipses of highest scores, reducing
consequently the search space.

At this stage, the parallelism of the supporting plane of the vertices trajectories has not been used. This
property can be exploited by using a pair of points at infinity, which are conjugate complex points included
in the trajectories of all polyhedron vertices. They are the circular points21 of the supporting plane of the
turntable. Since the intersections of conics are invariant to any projective transformation,21 the set of ellipses
that are imaged vertices trajectories intersect the images of common conjugate complex points, referred to as
ICP (for images of circular points). If the ICP are identified, it then becomes possible to classify the set of
ellipses collected in Section 4.1 into two classes: those which belong to the family of imaged vertices trajectories,
namely when intersecting the ICP, and the others.

ICP identification – In theory, the only set of ellipses in E, whose cardinality is strictly greater than two,
that intersect in the same pair of complex conjugate points (the ICP) are the imaged vertices trajectories. This
property allows us to compute the ICP of the supporting plane of the table as the solution of a robust regression
problem of the intersection points of the ellipses E. Note that chance can produce a subset of at least three
ellipses of E intersecting at the same pair of complex conjugate points other than the ICP. It is however highly
unlikely that a subset of ellipses intersecting at the same pair of points other than the ICP has a number of
elements greater than that of a family of imaged vertices trajectories. Only the subset of ellipses of the highest
cardinality, sharing common intersections, is retained.

∗After normalizing all the points so that they are located within [−1, 1]2.
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The solution of the robust regression problem is computed as follows. For each pair of ellipses (A1,A2) ∈ E2,
we count the number of ellipses of E \ {A1,A2} passing through the intersections of (A1,A2). The intersections
contained by the largest number of ellipses of E are assumed to be the ICP of the supporting plane of the table.

The proposed solution for the identification of the ICP raises however the following two sub-problems.

Sub-problem 1 – The first sub-problem is how to count the number of ellipses of E passing through the
intersections of a pair of ellipses. Two ellipses images of parallel 3D-circles intersect in a pair of real points and
a pair of complex points or in two pairs of complex points, one of which is the ICP. In the presence of noise, the
ellipses images of the vertices trajectories do not contain the ICP of the table supporting plane. More generally,
these ellipses do not intersect in the same pair of points. For this reason, none of the ellipses pass through the
ICP in practice. The complex projective space CP2 is not endowed with a metric that would allow us to use a
threshold on the distance from a point to an ellipse, to determine whether or not an ellipse contains a given pair
of complex conjugate points. We propose to circumvent this problem by considering that an ellipse A intersects
the ICP if the ellipse H⊤AH, rectifying A by some homography

H = [h1 h2 ∗], (1)

where h1 and h2 are the real and imaginary parts of one of the IPC, is a circle. Concretely, the rectification
is considered to be a circle if the ratio of the semi-axes of H⊤AH is close to 1. For a pair of disjoint ellipses,
two homographies composed of the real and imaginary parts of the two pairs of points are applied to the set of
ellipses. The homography with the highest number of good rectifications is retained. In the case of a pair of
ellipses with real intersections, only the complex conjugate intersections are tested (see Figure 3).

(a) (b)

Figure 3. Example of Euclidean rectifications of a set of points V (black asterisks) from a pair of ellipses, highlighted
in red, out of all the Kbest ellipses (in blue) from the exhaustive search. Ellipses rectified in circles are shown in solid
line, in dashed line otherwise. Red circles are the rectifications of the pair of ellipses used to compute the rectifications.
(a) The two red ellipses (left) do not intersect, hence two rectifications are therefore computed from their intersections,
namely from the two pairs of conjugate complex points. Top: no circle is found. Bottom: four ellipses, highlighted in
blue, are rectified into circles. (b) When the red ellipses intersect into two real points, only one rectification is computed.
Five ellipses are then rectified into circles. The ellipses rectified into circles are images of polyhedron trajectories.

Sub-problem 2 – The second sub-problem is an excessive cost for computing the intersections of |E|(|E|−1)/2
pairs of ellipses of E. To address it, we argued in Subsection 4.2 that the ellipses of the family of imaged vertices
trajectories are among the ellipses presenting the best scores. The number of intersection computations is thus
reduced to Kbest(Kbest − 1)/2, by only considering the Kbest best ellipses. The value of Kbest is important but
not critical. Its empirically fixed value must be large enough to guarantee that the Kbest best ellipses include
the ellipses images of the trajectories of at least two distinct vertices. We choose Kbest = 5|V |, which reduces
the computation of the intersections to the solution of around 25|V |2/2 systems of two quadratic equations in
two variables. A result of the ICP computation is shown in Figure 2b, where the pair of ellipses maximising the
number of ellipses rectified into circles is shown in red in the rectified representation.
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Partitioning – Instead of directly classifying the ellipses intersecting the ICP as belonging to the family of the
imaged vertices trajectories and collecting the associated correspondences, Euclidean rectification to the points
based on the knowledge of the ICP is first applied and the rectified points are partitioned into subsets of points
located on circles. This strategy shows the best results. This can most likely be explained by a distribution of
points in the rectified representation that is very well suited to partitioning in cases of ambiguous configurations,
such as points distributed along portions of very close ellipses, as seen in the example at the top of Figure 2d,
or very low angle shots.

Concretely, the points are rectified by the homography H−1 in its form (1). The circles formed by every point
triplets of V in the rectified representation are computed. The circles are then sorted in descending order of the
score described in Section 4.1. For each circle, processed by descending order of score, the subset of points in its
vicinity is removed from V , until the number of points remaining is less than 5. The correspondence solution to
our problem is provided by the obtained non-empty subsets of points.

Singularity B – The polyhedron might be positioned such that the images of the trajectories of two vertices
lie on the same ellipse. The proposed method cannot separate the two subsets of correspondences in that case.
In practice, the user can avoid such a configuration by off-centering the polyhedron with respect to the rotation
axis of the table.

The 3D-reconstruction of the polyhedron and camera poses from the ICP h1 ± ih2 and the imaged vertices
correspondences delivered by our matching algorithm can then be performed, following the work of Jiang et al.7

However, the provided set of correspondences may still comprise some outliers, namely silhouette vertices located
on ellipses that are found and which are not imaged polyhedron vertices. The method of Jiang et al. does not
explicitly address this problem, hence we modified it to make it robust. The details of the complete method can
be found in the supplementary material.19

5. EXPERIMENTAL RESULTS

We conducted a large number of experiments with synthetic and real images to quantify the performance of the
proposed method.

5.1 Synthetic Data

Synthetic polyhedra are generated as follows. Their vertices are obtained by computing the convex envelope of a
set of 3D-points of arbitrary cardinality much greater than eight. The coordinates of the 3D-points are sampled
randomly within [−1, 1]3. Points are removed from the convex envelope until sets of 8, 7, 6, 5, and 4 points are
obtained, which provides us with five sets of convex polyhedron vertices. The remaining points are scaled so
that the three coordinates of all the points Xn belong to [−1, 1]. Forty polyhedra per number of vertices are
generated which represents a total of 40× 5 = 200 polyhedra.

The camera resolution is 1000 × 1000. The focal length is 2000 pixels and the principal point is set at the
image center. The camera is located at a randomly selected distance from the centre of rotation of the turntable
in the range [6, 7]. The camera points towards the table rotation axis. For each polyhedron geometry, five camera
tilts are generated, randomly taken nearby a regular angle distribution between -15 and -50 degrees. A series of
J = 35 angles θj of the turntable are randomly sampled according to a Gaussian distribution with 0 mean and
a standard deviation of 3 degrees applied on angles regularly distributed between 0 and 360 degrees. Vertices
reprojections are generated and, for each view, only those located on the convex hull of all the reprojections are
considered as visible. White Gaussian noise of standard deviation varying from 0 to 2 pixels is added to both
coordinates of the obtained reprojections. Outliers are introduced in the reprojections bounding box.

The results are expressed using the rate of successful matching and the root mean squared error (RMSE)
between the estimated vertex positions and the ground truth ones. Given a polyhedron, matching is considered
as successful if (i) the number of partitions found in the matching is equal to the number of ground truth
partitions, namely the number of vertices, if (ii) there is no misclassified point, and (iii) at least three points
per partition are found. Matching accuracy, namely the rate of correctly classified matches is also evaluated.
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Figure 4. (a,b,c) Success rates (solid lines) and accuracy (dashed lines) of the proposed matching. (d,e,f) RMSE evaluated
on the 3D-reconstruction performed when the matching is successful. RMSE reported in (f) has a low correlation with
the percentage of outliers, as long as the robustness of the method is not compromised.

The rates of successful matching and matching accuracy are reported in Figure 5.1a-c, and RMSE evaluated
over the successful matching cases in Figure 5.1d-f. They are functions of the level of noise and the number of
views, evaluated with 3% of outliers, and function of the amount of outliers.

For each polyhedron, the method is run over all the camera tilts and the best solution is automatically
selected. It is the one showing the lowest reprojection error. Acquiring a collection of views of the polyhedron
with several camera tilts is straightforward in practice, for example using a standard camera tripod.

The matching shows overall a success rate greater than about 80% apart from the case with lowest number
of views (15) and the highest level of noise (2 pixels) and reaches 100% for all polyhedra, from 25 to 35 views
and from 0 to 1.5 pixels of noise with 5 camera tilts. Additional results evaluating the proposed ICP estimation
method are provided in the supplementary material.19

5.2 Real Data

The entire pipeline was evaluated on five real datasets. The first dataset corresponds to the views of a tetrahedron
which is the polyhedron with the minimum number of vertices, namelyN = 4. The other datasets correspond to a
square-based pyramid (N = 5), two parallelepipeds (N = 8), and a 9-vertex polyhedron. The two parallelepipeds
are two transparent resin blocks, the first with an encased beetle, the second with an encased grasshopper. The
other polyhedra are opaque. The view acquisitions are performed with a single camera tilt. The results are shown
in Figure 5. The results of refractive MVS22 from camera poses and polyhedron computed with markers12 glued
on the polyhedron and with our method are shown in Figure 6. It is therefore possible to use the marker-based
results as a control reconstruction to assess the quality of the proposed reconstruction pipeline. MVS fails to
reconstruct the resin block. The proposed method shows nearly identical refractive MVS results to the marker-
based ones. Results of MVS without refraction2 for the beetle, results for the grasshopper, and additional results
showing that the method performs well under uncontrolled challenging lighting conditions are reported in the
supplementary material.19
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(a) (b) (c) (d) (e)
Figure 5. Top row: Set of points V input of the processing chain for the datasets tetrahedron, square pyramid,
parallelepiped A, parallelepiped B and 9-vertex polyhedron. Middle row: Results of the proposed matching. A colour
is associated with each vertex. Red crosses indicate unclassified points and black ones indicate ambiguous correspondence
class. Both are excluded from the input data for 3D-reconstruction. Bottom row: Solutions of the 3D-reconstructions.
The matching and reconstruction succeeds on the five datasets.

6. CONCLUSION

We presented a pipeline for 3D-reconstruction of a convex polyhedron. The method is well suitable for poorly
textured and non-Lambertian materials without controlled lighting. Robustness and accuracy of the method is
evaluated on synthetic and real data. The method shows to perform well even for transparent medium.

We observed that the matching success drops for a number of vertices greater than 10. We plan to improve
our method by adding a final guided matching step so as to retrieve correspondences that are missed using the
estimated camera poses.

(a) (b) (c) (d)
Figure 6. (a-b) Excerpt of the input images of a resin block with an encased beetle. (a) Markers are placed on the
block to compute a control reconstruction using Meshroom2 with AprilTag.12 (b) Block without markers used to evaluate
our method. (c) Results of the 3D-reconstructions using refractive MVS22 from camera poses and interface geometry
computed with (c) markers, and (d) our method. The proposed method shows a reconstruction nearly identical to the
one computed with the interface geometry obtained using markers. Standard MVS (Meshroom) fails to reconstruct the
beetle with camera poses computed with markers (see supplementary material19).
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ABSTRACT. In this article, we show how to extend the multi-view stereo technique when the
object to be reconstructed is inside a transparent but refractive medium, which
causes distortions in the images. We provide a theoretical formulation of the problem
accounting for a general non-planar shape of the refractive interface, and then a
discrete solving method. We also present a pipeline to recover precisely the geom-
etry of the refractive interface, considered as a convex polyhedral object. It is based
on the extraction of visible polyhedron vertices from silhouette images and matching
across a sequence of images acquired under circular camera motion. These con-
tributions are validated by tests on synthetic and real data.
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1 Introduction
Natural history museums often house valuable specimens in transparent mediums, like insects in
amber or animals in formaldehyde (see Fig. 1). These specimens are crucial for evolutionary
studies but challenging to digitize due to the need for 3D see-through techniques. CT scans are
a standard method but are costly and not feasible for large collections. Photogrammetric 3D
scanning presents a viable alternative, though it faces challenges due to refraction effects and
the shape of the interface between air and the medium. We propose a 3D reconstruction method
for objects in a homogeneous refractive medium. Building on previous works,1,2 this paper con-
tributes a revised algorithm for calculating the shortest optical path between a 3D point and
its projection in the target image, for interfaces of any shape. Its main contribution, however,
is a comprehensive 3D reconstruction pipeline for objects in refractive media.

1.1 Assumptions
This paper introduces a novel 3D reconstruction method for objects within a refractive medium
under the following assumptions: we assume homogeneous refractive media and smooth inter-
faces, a given index of refraction (or a range), binary masks of the object and of the interface,
known camera parameters and triangular mesh representing the interface. In practice, assuming
multiple views at fixed rotations on a turntable and visible edges of the medium, camera extrin-
sics and a convex polyhedron representing the interface can automatically be recovered.

*Address all correspondence to Robin Bruneau, rb@di.ku.dk
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1.2 Paper Organization
We start by reviewing existing studies on refraction in Sec. 2. Section 3 details the adaptation of
the multi-view stereo (MVS) technique in the presence of an interface, focusing on predicting the
image projection of a 3D point in the refractive medium, a computationally difficult part.
Synthetic image tests in Sec. 4 validate this method. Validation with real data, shown in
Sec. 5, involves developing a robust 3D reconstruction method for polyhedral interfaces and
an innovative technique for estimating index of refraction without specialized equipment.
The paper concludes in Sec. 6, suggesting further extensions.

2 Related Work
Refraction in computer vision varies in treatment: as a bias to correct in classic vision techniques,
an element in active systems, or a feature in refractive 3D reconstruction pipelines.

2.1 Refraction Compensation in Classic Vision
Lenses converge light rays from point sources at an image point, essential in optical instruments.
Precise lens alignment minimizes aberrations or undesired refraction effects. Transparent objects
in a scene can distort the appearance of opaque objects behind them. Studies have addressed
these distortions, particularly with transparent objects like window panes attached to cameras,
allowing calibration for standard 3D reconstruction pipelines. Maas in Ref. 3 showed how refrac-
tion through aquarium glass improves photogrammetry measurements. Łuczyński et al. in Ref. 4
corrected images from underwater cameras to restore epipolar geometry. Image pre-correction
has been explored in Refs. 5 and 6, with neural network-based correction in Ref. 7. Light field
cameras for refraction correction are discussed in Refs. 8 and 9.

2.2 Active Refraction Techniques
Studies termed active refraction use refraction for single-view 3D reconstruction, duplicating
images using bi-prisms10,11 or rotating glass plates.12,13

2.3 Estimation of a Refractive Interface
Morris utilized refracted patterns on water surfaces,14 and with Kutulakos, mapped points seen
through transparency.15 Ben-Ezra and Nayar16 fit surface models to distorted images of known
geometries. Neural network advancements for 3D reconstruction of transparent objects are noted
in Refs. 17 and 18.

2.4 Bathymetry
Refraction correction is essential in remote-sensing bathymetry, and is exemplified by Murase,19

Woodget,20 and Cao.21

2.5 Classical Framework with Refraction Adaptation
3D vision systems have adapted to refractive interfaces, covering calibration, camera pose esti-
mation, and techniques like refractive structure-from-motion, refractive MVS, and refractive

Fig. 1 (a) Prehistoric beetle trapped in amber (seen under a microscope). (b) Reptiles specimens
in jars. Images: A. Solodovnikov (a) and A. D. Jordan (b), courtesy of the Natural History Museum
of Denmark.
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photometric stereo. Sturm22 discussed camera models for structure-from-motion, including
refractive axial cameras. Chari and Sturm23 extended epipolar geometry for planar interfaces.
Łuczyński et al.4 proposed a pinhole/axial camera model with calibration, and Chen et al.24 stud-
ied fringe projection systems. Challenges in underwater camera use and implications are detailed
in works by Jordt et al.25–27 and others. Pose optimization under flat refractive interfaces is
discussed in Ref. 28, with validations primarily on underwater images.29 Scenarios like viewing
aerial objects from underwater are covered in Refs. 30 and 31 and air to water transitions in
Ref. 32. Underwater photometric stereo extensions are investigated in studies like Refs. 33–36.

2.6 Inverse Rendering and Novel Views
Differentiable rasterisers37–39 and ray tracing inverse renderers40–42 are emerging in inverse
rendering, alongside NeRF adaptations for refraction.43,44 NeuS45 and its updated version46 com-
bine neural Signed Distance Function (SDF) and radiance fields for 3D reconstructions. A frame-
work for objects in cuboid refractive mediums47 incorporates ambient lighting and ray tracing
with Snell–Descartes and Fresnel laws, yet its results are not available for comparison.

We focus on 3D reconstruction by MVS in refractive media, building upon previous works
like patch-based MVS,48 Kang et al.,49 and Agrawal,50 targeting also non-planar interfaces, a gap
in current research.

3 From Multi-view Stereo to Refracted Multi-view Stereo

3.1 Multi-view Stereo
MVS aims to maximize photometric coherence across different images in a 3D scene for dense
3D reconstruction, as summarized in Ref. 51. Given tþ 1 images and their camera poses, the
image of the first pose is chosen as the reference image. Let P denote a 3D point visible in all
images, p ¼ πðPÞ its projection in the reference image and pj ¼ πjðPÞ, j ∈ f1; : : : ; tg, and its
projections in the t other images, called control images. The Lambertian assumption is written

EQ-TARGET;temp:intralink-;e001;117;412Ij ∘ πj ∘ π−1z ðpÞ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
pj

¼ IðpÞ; j ∈ f1; : : : ; tg; (1)

where Ij and I denote the gray level functions of the j 0th control and reference images. The index
z in π−1z is necessary as the point P ¼ π−1z ðpÞ is defined only if its depth z is known.

The MVS technique consists in searching for the point P ¼ π−1z ðpÞ, conjugate of p,
satisfying the system of Eqs. (1), by solving, for instance, the least squares problem

EQ-TARGET;temp:intralink-;e002;117;321min
z∈R

Xt

j¼1

½Ij ∘ πj ∘ π−1z ðpÞ − IðpÞ�2: (2)

In practice, the comparison between the gray levels Ij and I is performed between neigh-
borhoods of pj and of p, the use of a robust estimator is recommended (see the overview pre-
sented in Ref. 51).

When the medium is homogeneous, the π−1z transformation from the reference view to the
3D scene consists in inverting the central projection. Denoting by K the camera’s calibration
matrix, this transformation is written

EQ-TARGET;temp:intralink-;e003;117;204π−1z ðpÞ ¼ zK−1
�
p
1

�
: (3)

The reprojection on the j 0th control image is also obtained by central projection, considering
the camera pose change as a known rigid transformation between the reference pose and
the j 0th with rotation matrix Rj and translation vector tj. With the projection operator
fð½a; b; c�⊤Þ ¼ ½a∕c; b∕c�⊤, this second transformation is written

EQ-TARGET;temp:intralink-;e004;117;116πjðPÞ ¼ fðKðRjPþ tjÞÞ: (4)

Carrying over Eqs. (3) and (4) into Eq. (2), the problem of 3D reconstruction by MVS is
rewritten
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EQ-TARGET;temp:intralink-;e005;114;509min
z∈R

Xt

j¼1

½Ij ∘ fðK ðzRjK−1½p
1
� þ tjÞÞ − IðpÞ�2: (5)

The objective in Eq. (5) is nonlinear non-differentiable and/or non-convex, making optimi-
zation potentially difficult. Solving Eq. (5) is thus usually done by an exhaustive search
(brute-force) in a predefined list of values of depth z [see Fig. 2(a)]. This simplistic strategy
has shown to be very effective for the 3D reconstruction of scenes with sufficiently textured
surfaces.52 As Fig. 2(b) indicates, the scenario is more complex when the 3D scene is immersed
in a refractive medium.

3.2 Refractive Multi-view Stereo
The image of an object in a refractive medium, with an index of refraction (IoR) over 1, becomes
distorted, altering its epipolar geometry. In this context, a point in one image correlates to a curve
whose form is influenced by the IoR and the interface shape between the medium and air. Chari
and Sturm’s work in Ref. 23 generalizes epipolar geometry’s matrix formalism with a 12 × 12

fundamental matrix, important for camera pose estimation in structure-from-motion. Since
refraction adaptation in this field is covered in Refs. 27 and 53, our paper focuses on adapting
the MVS technique for 3D scenes in refractive mediums. This new challenge, refractive MVS
(RMVS), involves addressing Eq. (2) at each point p in the reference image, with necessary
adjustments. In the context of refraction:

• Back-projection of image point p: the back-projection of p in refractive conditions involves
tracing a broken line from C through p [see Fig. 2(b)]. The back-projection formula is
more complex than Eq. (3), expressed as

EQ-TARGET;temp:intralink-;e006;114;223π−1z̄ ðpÞ ¼ Pþ z̄v; (6)

where P is the point of incidence at the interface, the unit director vector v of the refracted
ray follows Snell–Descartes refraction law (see Sec. 3.3), and z̄ ≥ 0 is the distance between
P and P along the refracted ray [see Fig. 2(b)]. Determining P varies in complexity with the
interface’s shape, while computing v is straightforward if interface normals are accurately
known. Tests on synthetic images (with known normals) and real images (assuming a poly-
hedral interface) are conducted, leaving generalization to any interface shape and effects of
normal estimation inaccuracies for future exploration.

• Reprojection of 3D point P: computing the reprojection pj ¼ πjðPÞ with refraction is more
complex than Eq. (4), involving solving a shortest optical path problem (see Sec. 3.3).

• Image multiplication: refraction can cause a single 3D point P to project to multiple image
points, as shown in Fig. 6. Each projection is equally viable for solving Eq. (2).

Fig. 2 (a) MVS in a homogeneous medium: the different proposals for the point P, which are
materialized by red dots, are reprojected in the control images. (b) MVS with refraction: the repro-
jection of P in the control images is more difficult to compute, due to refraction.
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Compared to the MVS technique, the main difficulty of RMVS is the reprojection
pj ¼ πjðPÞ, j ∈ f1; : : : ; tg, of a 3D point P into the different control images. Let us first consider
the case of a planar interface, before tackling the case of an interface of any shape.

3.3 Planar Interface
The first Snell–Descartes law asserts that the refracted ray lies in the plane of incidence, spanned
by the incident ray, and the interface normal in Pj: the phenomenon is planar [see Fig. 3(a)].

Let i1 be the angle between the interface normal and the ray in IoR n1 medium, and i2 be the
angle between the normal and the ray in IoR n2 medium. The second Snell–Descartes law asserts
that

EQ-TARGET;temp:intralink-;e007;117;613n1 sin i1 ¼ n2 sin i2: (7)

For a planar interface, squaring both sides of Eq. (7) and using notations from Fig. 3(a),
we get

EQ-TARGET;temp:intralink-;e008;117;565n21
ðu1 − uÞ2

ðu1 − uÞ2 þ v21
¼ n22

ðu2 − uÞ2
ðu2 − uÞ2 þ v22

: (8)

To find the point of incidence Pj on the u-axis, we need to solve a quartic equation in ū

EQ-TARGET;temp:intralink-;e009;117;512a4u4 þ a3u3 þ a2u2 þ a1uþ a0 ¼ 0; (9)

whose coefficients are based on u1, v1, u2, v2, and α ¼ n2∕n1.50 For planar interfaces, Eq. (9)
typically has one real solution, found using methods like Newton–Raphson. To compute
pj ¼ πjðPÞ, first solve Eq. (9) for Pj, then project it into the j 0th control image as per Eq. (4).

3.4 Interface of Any Shape
The Huygens–Fresnel principle predicts wave surfaces orthogonal to light rays. Dijkstra’s
algorithm55 offers a discrete method to calculate these wave surfaces, enabling the shortest path
identification between graph vertices. For tracing light rays, the scene can be divided into voxels,
serving as the vertices of an undirected graph. The process simplifies in a homogeneous refrac-
tive medium, where light propagates straight, similar to air.

The path of a light ray from a 3D point P to the center of projection Cj of a control camera,
j ∈ f1; : : : ; ng, forms a broken line with a single break at the interface, as illustrated in Fig. 2(b).
As previously discussed, locating the shortest optical path between P and Cj boils down to find-

ing the incidence point Pj. Solving this for a planar interface equates to solving a quartic equation
(see Sec. 3.3), but it becomes analytically challenging with more complex interface shapes.

One might wonder if the πj transformation preserves point alignment, specifically if the πj
image of a refracted light ray remains straight in the j 0th control image. Figure 3(b) shows that

Fig. 3 (a) Second Snell–Descartes law on refraction. (b) The back-projected ray, which has two
breaks as it crosses the refractive cube, does not project into the control camera along the red
epipolar line. For reasons of clarity, this graphical representation does not perfectly conform to
the Snell–Descartes laws.
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this can be the case with a planar interface, however, with a continuous interface as in Fig. 17,
the ray image in no more straight.

For general cases, finding the incidence point Pj involves discretizing the interface and

minimizing the optical path of the ray ðCj; P̂;PÞ through potential points P̂ on the discretized

interface, via a potentially heavy exhaustive search on “eligible points” P̂

EQ-TARGET;temp:intralink-;e010;114;342Pj ¼ argmin
P̂

fn1dðCj; P̂Þ þ n2dðP̂;PÞg; (10)

where dð·; ·Þ denotes the Euclidean distance in R3.
Practically, the interface is discretized into a 3D mesh with triangular faces. The eligible

points P̂ for incidence point search are the barycenters of the mesh triangles visible from the
projection center Cj, as depicted in Fig. 4. The solution of Problem (10) corresponds to the

blue-colored triangle in Fig. 5. To refine this result, Pj is then sought in the plane of this triangle,
following the method in Sec. 3.3. The solution is accepted if it is inside the triangle. If not, a
similar search is conducted on all adjacent triangles (colored purple in Fig. 5). In the absence of a
solution within the triangles, the initial solution of Problem (10) is chosen as the incidence point.
A more precise search involving optimization under linear constraints defining the triangle is
possible but significantly increases computation time. Therefore, despite testing this approach,
it has been omitted from our current methodology.

4 Validation on Synthetic Images

4.1 Cubic Interface
We begin by validating our method on a scene featuring a graphosoma insect, approximately
30 mm in size, immersed in a refractive cube with an IoR matching that of epoxy resin
(n2 ¼ 1.56). The focal length of the camera is 50 mm, with an average distance of about
180 mm from the scene. Figure 6 displays two synthetic images (out of a total of 18) of this
scene, generated using the ray tracing capabilities of Blender software.

Fig. 4 The point of incidence Pj between a 3D point and the center of projection Cj of the j 0th
control camera is determined by testing the set of barycenters P̂ of the triangles of the 3D mesh
of the interface that are seen by this camera.

Fig. 5 Once the triangle corresponding to the solution of problem (10) has been identified (triangle
indicated in blue), and the search for the point of incidencePj is refined using the method described
in Sec. 3.3. In the case where the solution of this second problem is outside the triangle, a search is
performed on the set of adjacent triangles (triangles indicated in purple).
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Figure 7 presents three views of the colored 3D point cloud reconstructed using our RMVS
method. Figure 8 displays this point cloud post-processing, where it has been “cleaned” using the
Connected-component labeling tool in the Cloud Compare software.

Figure 9 compares results obtained without considering refraction, utilizing three different
algorithms: a basic MVS from Eq. (5), the Meshroom-proposed MVS pipeline56 aligned with
state-of-the-art algorithms, and neural reconstruction with NeuS2.46 These methods, not account-
ing for refraction, fail to interpret the distortions and image duplications of the graphosoma,

Fig. 6 Two synthetic images (among 18) of a graphosoma immersed in a cube of epoxy resin.
In both cases, the insect is visible through three faces of the cube (only partially, regarding
the top face). Due to reflection phenomena, fragments of the object are visible at the boarders
of the immersion medium. These image fragments have not been used by our solving method.
Source of the 3D model: LIRIS’s datasets library.54

Fig. 7 3D reconstruction of a graphosoma immersed in a cube of epoxy resin, seen from three
angles, obtained by our RMVS solving method from 18 synthetic images such as those in Fig. 6.

Fig. 8 Result of Fig. 7 after “cleaning” the 3D point cloud by the Connected-component labeling
tool of the Cloud Compare software.
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leading to poorly reconstructed scenes (a comparison with ReNeuS (Ref. 47), a refraction-
inclusive extension of NeuS, would be ideal, but its code is unavailable). Table 1 confirms these
shortcomings with high root mean square error (RMSE) scores. Conversely, our RMVS solving
method, tailored for refraction, demands significantly more computational time: from 5 to 16 min
for Fig. 9’s results to 24 h for Fig. 7’s reconstruction (using CPU Intel Xeon Silver 4110 2.10
GHz with all 32 threads for parallel computing), for roughly 500,000 3D points in each instance.

Notably, the computation time has been reduced since only those barycenters P̂ of the mesh
triangles (see Fig. 4) that project within the insect’s silhouette in all the control images are
considered.

This first example provides insights into our solving method. The 3D reconstruction in Fig. 7
is derived from merging eight colored 3D point clouds, each generated as follows.

• One image is selected as the reference image. Five others serve as control images: in four,
the main image of the insect is viewed through the same cube face as in the reference
image; in the fifth, it is through an adjacent face.

• For each pixel p in the reference image, we consider each point P on the refracted ray from
the back-projection of p, for each control image, and for each cube face visible in the
control image (up to three per control image). A quartic equation of type Eq. (9) is then
solved using the Newton–Raphson method.

• After finding a solution, if its projection pj in the j 0th control image falls inside the insect’s
silhouette on the relevant face, the similarity between the neighbourhoods of p and pj is
computed using a robust estimator, here sum of absolute deviations (SAD). If the SAD is
calculable for multiple faces in the j 0th control image (up to three), only the smallest value
is kept. If no SAD can be calculated, another point P is tested from a predefined list of
3D points. The chosen point P is the one that minimizes the SAD, it is assigned the color of
the pixel p in the reference image. If no SAD can be calculated, no 3D point is associated
with pixel p.

Since all the graphosoma images are synthetic, we can measure the deviations from the
ground truth for each of the eight 3D point clouds whose fusion yields the result in Fig. 7.
Table 2 lists the square root of both the mean and median of these squared deviations.

Fig. 9 3D reconstruction results without considering refraction. From left to right: a basic MVS
derived from Eq. (5); the MVS approach by Meshroom;56 the neural 3D surface reconstruction
method NeuS2.46 The duplication of the graphosoma caused by refraction leads to inaccurate
reconstructions.

Table 1 Root mean square error (RMSE, inmm) comparison between our method and three other
methods, which do not take refraction into account. The lowest score (in bold) is unsurprisingly
our method which takes refraction into account.

Method Basic MVS Meshroom NeuS2 Ours

RMSE (mm) 6.12 5.44 6.44 0.57

Bruneau et al.: Multi-view stereo of an object immersed in a refractive medium

Journal of Electronic Imaging 033005-8 May∕Jun 2024 • Vol. 33(3)



These values are considerably low relative to the scale of the reference 3D model and its distance
from the camera, providing quantitative validation for our RMVS solving method.

Figure 10(a) illustrates that the image of a point P within a refractive medium can produce
multiple images, each representing a local minimum of the optical path between P and the pro-
jection center (Fermat principle). Thus, it is feasible to match this image of the insect, effectively
applying our RMVS solving method with a single view, as demonstrated in Refs. 10 and 11. The
result, shown in Figs. 10(b) and 10(c), is rough and incomplete, comprising just a single point
cloud. However, this technique differs from other single-view 3D reconstruction methods like
shape-from-shading,57 as it relies on the principle of triangulation.

4.2 Spherical Interface
The second experiment involves a graphosoma immersed in an epoxy resin sphere. Figure 11
presents two synthetic images of this setup, alongside images of the graphosoma from identical
angles but outside the refractive medium. The notable differences between these image pairs,
apart from the magnification effect of the resin sphere acting like a convex lens are visible
in the deformed appearance of the insect’s legs and antennae due to refraction. Unlike the images
in Fig. 6, the images in Figs. 11(a) and 11(b) are not multiplied. They are rendered using ray
tracing, approximating the sphere with a triangular mesh of 327,000 faces, generated in Blender
from an icosphere with applied subdivisions.

Figure 12 presents the colored 3D point cloud from 3 angles, reconstructed using our RMVS
method from 18 images like those in Figs. 11(a) and 11(b). This cloud is formed by merging
eight 3D point clouds. Notably, the legs and antennae of the insect align perfectly across these
clouds, and even very fine details are captured. It is important to note that these 3D point clouds
are merged with no post-processing, except for cleaning by the Cloud Compare’s Connected-
component labeling tool. However, the high number of faces on the sphere significantly increases
the computation time, from 24 h for the result of Fig. 7 to 1 week for that of Fig. 12.

Table 2 Second line: root mean square error (RMSE, in mm) of the eight 3D point clouds whose
fusion provides the result of Fig. 7. Third line: root median square error (RMedSE, inmm). The last
column gives these estimates for all eight 3D point clouds.

Face Front Front-right Right Back-right Back Back-left Left Front-left All

RMSE (mm) 0.25 0.48 0.85 0.98 0.40 0.73 0.60 0.65 0.57

RMedSE (mm) 0.15 0.30 0.40 0.40 0.25 0.33 0.33 0.40 0.30

Fig. 10 (a) Example demonstrating the tripling of the graphosoma’s image. A 3D point cloud is
derived from this single image, selecting the “main” image (right face) as the reference. (b) and
(c) Two perspectives of the 3D point cloud reconstructed by our RMVS solving method, using just
this single image.

Bruneau et al.: Multi-view stereo of an object immersed in a refractive medium

Journal of Electronic Imaging 033005-9 May∕Jun 2024 • Vol. 33(3)



For comparison, Fig. 13 shows that when refraction is not considered, MVS struggles to
accurately reconstruct the 3D shape, resulting in ghosted legs and antennae. This issue highlights
the inconsistency among the eight 3D point clouds.

The choice of interface discretization scale balances precision with computing time. Table 3
demonstrates the impact of reducing the number of triangular faces in the sphere’s 3D mesh
(using Cloud Compare’s decimation tool), which implies a less precise interface representation.
This is assessed through the same two estimators introduced in Sec. 4.1 (RMSE and RMedSE),
along with the percentage of 3D points successfully reconstructed, and the required CPU time.

Figure 14 shows the 3D reconstructions corresponding to Table 3. As anticipated, the first
3D points to “disappear” (those conjugated with pixels p for which no SAD similarity value is
calculable) are on the thinnest parts of the 3D model, specifically the legs and antennae.

Fig. 12 3D reconstruction of the graphosoma immersed in an epoxy resin sphere, viewed from 3
angles, obtained with our RMVS solving method with 18 images such as those in Figs. 11(a) and
11(b). The reconstruction was refined using the Connected-component labeling tool of the Cloud
Compare software.

Fig. 11 (a) and (b) Two synthetic images of the graphosoma immersed in an epoxy resin sphere.
(c) and (d) Synthetic images of the graphosoma from the same angles but outside the refractive
medium. Along with the magnification effect from the resin’s convex shape, the insect’s legs and
antennae appear deformed.
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Table 3 Impact of reducing the number of triangular faces in the sphere’s 3D mesh on the 3D
reconstruction of the graphosoma using our RMVS solving method (the number of faces used to
approximate the sphere is indicated in parentheses).

Percentage of faces 100% (327k) 50% (164k) 25% (82k) 10% (33k) 5% (16k) 1% (1.6k) 0.5% (820)

RMSE (mm) 1.77 1.82 1.90 2.03 2.25 3.72 4.32

RMedSE (mm) 0.30 0.33 0.35 0.45 0.57 2.10 3.05

Reconstructed 3D points 98.0% 97.4% 96.2% 93.9% 91.6% 77.8% 69.4%

CPU time (min) 498 272 147 49 37 28 23

Fig. 13 3D reconstruction using MVS from 18 images such as those in Figs. 11(a) and 11(b)
results in ghostly legs and antennae due to inconsistencies among the eight 3D point clouds.

Fig. 14 Six 3D reconstructions of the graphosoma immersed in an epoxy resin sphere, illustrating
the effect of reducing the percentage of triangular faces of the sphere used in our RMVS solving
method (refer to Table 3). Figure 12 displays the outcome when all 327,000 faces are utilized.
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4.3 Other Interfaces
Figure 15 presents two synthetic images of the graphosoma inside a regular dodecahedron made
of the same epoxy resin. Our RMVS 3D reconstruction is shown in Fig. 16. The deviations from
the ground truth are only marginally higher than those in Table 2, despite the images being more
challenging for 3D interpretation compared to those in Fig. 6. While the RMSE for the entire
point cloud increases from 0.57 to 1.10mm, the RMedSE rises less significantly, from 0.30 to
0.35mm. This higher RMSE value is likely due to substantial image deformation, potentially
skewing the SAD estimator’s similarity measurement.

Figure 17 shows that images can undergo even more distortion with a block of any convex
shape. The 3D reconstruction achieved by our RMVS solving method, as shown in Fig. 18,

Fig. 15 Two images of the graphosoma immersed in an epoxy resin regular dodecahedron.

Fig. 16 3D reconstruction of the graphosoma immersed in an epoxy resin regular dodecahedron,
viewed from three angles. This was created using our RMVS solving method from 18 images such
as those in Fig. 15, followed by refinement using the Connected-component labeling tool of the
Cloud Compare software.

Fig. 17 Two images of the graphosoma immersed in a convex block of epoxy resin.
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remains true to the original form but is slightly less precise than the reconstruction in Fig. 7. This
reduced precision is due to some grazing rays, where the angle i2 in the Snell–Descartes law (7)
approaches π∕2. Consequently, since the derivative of the arcsin function tends towards infinity
at 1, this results in calculation inaccuracies for the angle i1 in Eq. (7). In contrast, Fig. 19 illus-
trates that neglecting refraction in the reconstruction process yields a result resembling a random
3D point cloud.

In this section, we validated our RMVS solving method only on synthetic images, but pur-
posely. Indeed, to be able to process real images, several additional data are necessary, in addition
to the images themselves and the intrinsic parameters of the camera: the shape of the interface
(with more or less precision, see Table 3), the poses of the camera and the IoR of the transparent
medium.

5 Implementation on Real Images
The primary challenge in applying our 3D reconstruction method to real images lies in estimating
camera poses. While the refractive structure-from-motion method suggested in Ref. 53 is an
option, it requires prior knowledge of the medium’s IoR, which is one of the unknown factors.
Additionally, since recovering the 3D shape of the interface is essential, we propose in Sec. 5.1
a simultaneous estimation method for both camera poses and the interface 3D shape. This
approach relies on multi-view matching of polyhedron vertices detected in the images and does
not rely on the IoR. Consequently, the IoR can be determined a posteriori, as we will discuss
in Sec. 5.2.

5.1 Estimating the Camera Poses and the Interface 3D Shape
In this subsection, we detail a method for acquiring the camera poses and the 3D shape of the
interface in a shared 3D frame. This involves fixing the camera opposite the object positioned on

Fig. 18 3D reconstruction of the graphosoma immersed in a convex block of epoxy resin, seen
from three angles, using our RMVS solving method from 18 images such as those in Fig. 17.

Fig. 19 3D reconstruction by MVS, from 18 images such as those in Fig. 17: the result resembles
a random 3D point cloud.
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a rotating table, simulating camera movement around the object. Figures 20(a) and 21(a) illus-
trate this setup.

We could have concurrently estimated the camera poses and the 3D shape of the interface
using shape-from-silhouettes, a technique independent of the IoR of the medium. However, this
method struggles with arbitrary shapes, as it computes an enclosing volume by intersecting
silhouette back-projections. For satisfactory accuracy, an infinite number of poses are ideal,
unless we limit to polyhedral interfaces with a few vertices. For insects in amber, as mentioned
in Sec. 1, this is feasible by shaping the amber into a polyhedron with multiple planar faces.

We thus consider a scene with a convex polyhedron of q vertices on a turntable. The vertices’
coordinatesXi ∈ R3, i ∈ f1; : : : ; qg, are in a 3D frameRref affixed to the turntable. The origin of
Rref lies at the table’s supporting plane and rotation axis intersection, with its first two axes
defining the plane and the third as an upward normal vector. A static camera with known intrin-
sics captures r views of this scene. The homogeneous coordinate vector xij ∈ R3 of the j0th
image, j ∈ f1; : : : ; rg, of vertex Xi satisfies the equation

EQ-TARGET;temp:intralink-;e011;114;122xij ∼ Pj

�
Xi

1

�
(11)

with the perspective projection matrix Pj corresponding to the j 0th view defined as

Fig. 20 (a) The acquisition setup involves placing a polyhedron on a turntable and capturing views
with a static camera. The origin tref is at the intersection of the table and its rotation axis. The
rotation matrix Rref, having columns r1, r2, and r3, defines the turntable’s pose relative to the
camera frame. (b) In consecutive images j and j þ 1, a vertex at a distance ρi from the rotation
axis, oriented along di

j and di
jþ1, belongs to an ellipse of equation x⊤Aix ¼ 0 in the image plane.

The imaged center ci of this ellipse satisfies the pole-polar relationship ci ¼ ½Ai �−1l∞.

Fig. 21 (a) One of 40 images depicting a parcel on a turntable. In all views, the silhouettes of the
parcel, treated as a convex polyhedron, are extracted. (b) The collection V of all silhouette vertices
is shown in red.
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EQ-TARGET;temp:intralink-;e012;117;736Pj ¼ K½RrefRjj tref �: (12)

where K represents the calibration matrix. The transformation from Rref to the camera frame is
specified by ðRref ; trefÞ. The matrix Rj indicates the table’s rotation by an angle θj around its axis

EQ-TARGET;temp:intralink-;e013;117;693Rj ¼
2
4 cos θj − sin θj 0

sin θj cos θj 0

0 0 1

3
5: (13)

In homogeneous Cartesian coordinates x ¼ ½x; y; 1�⊤, an ellipse is represented as x⊤Ax ¼ 0,
where A is a symmetric 3 × 3 matrix under suitable conditions on its coefficients.

The first step is to create a polygonal silhouette for each view and is obtained by simple
operations: background subtraction from a reference image, thresholding, morphological
processing, extraction, and simplification of the convex hull to get the silhouette vertices.
We then assemble the collection V of all these vertices. An example of extracted silhouette
vertices V, highlighted in red, is shown in Fig. 21(b).

The second step requires robustly partitioning V into subsets on common ellipses,
representing parallel circular trajectories in 3D space. The partition size, corresponding to the
polyhedron’s vertices, is unknown. A partitioning solution is detailed in Ref. 2, utilizing the
parallelism of vertices’ trajectories. The images of circular points (ICP)58 of the turntable, two
complex conjugate vectors in C3 denoted as h1 � ih2, are estimated along with correspondences.
Details can be found in Ref. 2.

With the ICP h1 � ih2, correspondences fxijg and calibration matrix K known, the problem
is to determine the vertices’ positions and the polyhedron’s poses in the camera frame.
Specifically, this includes calculating the rotation matrix Rref , the translation vector tref, the
3D coordinates of the vertices fXigi∈f1;: : : ;qg, and the angles fθjgj∈f1;: : : ;rg. Matrix Rref and
vector tref are computed using the method from Ref. 59.

The rotation angle θj of the turntable in view number j is measured from a reference position
θ1 as follows:

EQ-TARGET;temp:intralink-;e014;117;397θj ¼
Xj−1
k¼1

θk;kþ1; (14)

where θk;kþ1 represents the rotation angle between two consecutive acquisitions k and kþ 1.
Its value is determined as the median cosine of the estimated angles from the visible vertices

EQ-TARGET;temp:intralink-;e015;117;330θk;kþ1 ¼ acosðmedian
i∈Dk

fdi⊤k dikþ1gÞ; (15)

where Dk ⊂ f1; : : : ; qg represents the set of vertex indices detected in both the kth and ðkþ 1Þth
images. The unit vectors dik and dikþ1 point towards the images by H−1 of the corresponding
points xik and xikþ1, where H ¼ ½h1 h2 ��, in the sequential views k and kþ 1, specifically

EQ-TARGET;temp:intralink-;e016;117;260dik ¼
fðH−1xikÞ − fðH−1ciÞ

kfðH−1xikÞ − fðH−1ciÞk ; (16)

and likewise for dikþ1. In Eq. (16), fð½u; v; w�⊤Þ ¼ ½u∕w; v∕w�⊤, and ci is the homogeneous coor-
dinate vector of the image of the trajectory’s center, assumed circular, of the vertex number i, and
derived from the pole-polar relation ci ¼ ½Ai�−1l∞. Here l∞ is the vanishing line vector of the
table plane, and is the cross-product l∞ ¼ h1 × h2 andAi the matrix of the ellipse image of vertex
number i’s trajectory [see Fig. 20(b)]. The table rotation during acquisition is assumed to be
counterclockwise. The θk;kþ1 values are supposed to be between 0 and 180 deg.

At this point, all camera poses are known, and the 3D coordinates of the vertices fXig are
obtained by triangulating the correspondences fxijg. Both are further refined through a bundle
adjustment minimizing the Euclidean distances between the correspondences and their
reprojections.
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5.2 Validation on Real Images
Estimating the index of refraction can typically be done using a dedicated instrument known as a
refractometer. However, we suggest an alternative estimation method in this subsection, lever-
aging the joint estimation of camera poses and the 3D shape of the interface, as outlined in the
previous subsection. Specifically, our RMVS solving method, detailed in Sec. 3 and tested on
synthetic images in Sec. 4, can be applied with varying IoR values, ideally within a range close to
its “plausible” value. The challenge lies in identifying a sufficiently discriminating criterion for
this estimation. As illustrated in Figs. 22 and 23, the number of effectively reconstructed 3D
points serves as such a criterion, since it shows the maximum number of points for the exact
IoR and the lowest Chamfer distance score for the associated reconstruction.

We can now apply the complete RMVS solving pipeline to real data, provided the interface
is polyhedral. Figures 24 and 25 display tests conducted on two epoxy-resin parallelepipeds,
containing a beetle and a grasshopper, respectively.

The 3D reconstructions of these two insects, shown in Figs. 26 and 27, reveal a noticeably
better reconstruction of the beetle compared to the grasshopper. This disparity primarily stems
from the resin block containing the grasshopper, which fails to fully meet the assumptions under-
lying our RMVS solving method. First, one of the block’s faces is not as planar as required.

Fig. 22 Percentage of reconstructed 3D points (red) and Chamfer distance (blue) variation with
the index of refraction (IoR) of the refractive medium surrounding the graphosoma. When simu-
lating the images, the IoR used (n2 ¼ 1.56) aligns exactly with the peak of the red curve and
the lowest CD, validating our proposed criterion.

Fig. 23 Evolution of the percentage of reconstructed 3D points, in function on the IoR of the refrac-
tive medium in which the real beetle from Fig. 25 is immersed. The maximum of this curve gives us
an estimate of the IoR equal to n2 ¼ 1.50.
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Fig. 24 Two real images of a beetle immersed in a parallelepipedic block of resin, placed on
a turntable, and zooms on the block.

Fig. 25 Two real images of a grasshopper immersed in a parallelepipedic block of resin, placed on
a turntable, and zooms on the block.
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Fig. 26 3D reconstruction of the beetle from 24 images, such as those in Fig. 24, using our RMVS
method.

Fig. 27 3D reconstruction of the grasshopper from 24 images, such as those in Fig. 25, using
our RMVS method.

Fig. 28 Comparison of our RMVS method, tested on the same 24 real images of the beetle (see
Fig. 24). We used either the IoR value estimated by the method illustrated in Fig. 23 (n2 ¼ 1.50),
or a slightly overvalued IoR (n 0

2 ¼ 1.56). The first result is obviously more accurate.
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Second, the resin exhibits layered structure visible to the naked eye, indicating that light rays
within the refractive medium may not travel in perfectly straight lines. Additionally, a significant
distinction between the results in Figs. 26 and 27 lies in the insects themselves. Certain parts of
the grasshopper’s body appear somewhat translucent, challenging a fundamental premise of the
MVS technique and its variants, which is the assumption that the surface being reconstructed
should be opaque and Lambertian.

A final experiment with the beetle images aimed to qualitatively assess how using an incor-
rect IoR value affects the reconstruction outcome. Figure 28 displays two 3D reconstructions of
the beetle, each derived using different IoR values: the right image, produced with a slightly
overvalued IoR (n 0

2 ¼ 1.56), is noticeably less accurate than the left image, where the IoR
(n2 ¼ 1.50) was determined using the previously described method (refer to Fig. 23).

6 Conclusion and Perspectives
In this paper, we adapted the MVS technique for objects immersed in a refractive medium. Given
that refraction distorts images, it is crucial to model light ray paths accordingly. We introduced a
fully discrete RMVS solving method, with promising initial results on real data, despite several
challenges before it becomes a practical tool for entomologists.

A future direction involves assessing the RMVS method’s robustness against imperfect
knowledge of interface geometry, such as non-planar polyhedron faces. The use of UV, IR, and
polarized lights could also help us to constrain the interface geometry and to reduce some refrac-
tion/reflection effects. Another area for development is automating the detection of silhouettes
within the refractive medium. Neural methods, as suggested by Ref. 60, could be a solution.

Furthermore, methods using differentiable rendering, like ReNeuS, are increasingly
important. We were unfortunately unable to test ReNeuS as its code is not publicly available
(and it does consider only boxed-shaped media). However, such approaches remain a short-term
goal, whether to solve the RMVS problem addressed in this paper or to solve photometric stereo
under refraction.36

A longer-term goal is to develop a pipeline for acquiring and processing data, particularly
prehistoric insects trapped in amber. Overcoming numerous challenges is necessary, as the poor
result in Fig. 27 is due to both the resin block and the contained object not fully meeting our
RMVS method’s assumptions. The pipeline needs to be robust against predictable flaws, par-
ticularly when the index of refraction is not uniform. Additionally, even under the Lambertian
assumption, coloration in the refractive medium can alter a 3D point’s appearance across images
due to varying light travel distances. Focus blur, a small-scale challenge we have overlooked also
needs consideration. Addressing these factors should enhance the quality of our results.

Code and Data Availability
Our real/synthetic data and code will be available on demand.
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Abstract. We conduct a discussion on the problem of 3D-reconstruction
by calibrated photometric stereo, when the surface of interest is embed-
ded in a refractive medium. We explore the changes refraction induces
on the problem geometry (surface and normal parameterization), and we
put forward a complete image formation model accounting for refracted
lighting directions, change of light density and Fresnel coefficients. We
further show that as long as the camera is orthographic, lighting is direc-
tional and the interface is planar, it is easy to adapt classic methods to
take into account the geometric and photometric changes induced by
refraction. Moreover, we show on both simulated and real-world experi-
ments that incorporating these modifications of PS methods drastically
improves the accuracy of the 3D-reconstruction.

1 Introduction

Photometric stereo (PS) is a 3D computer vision technique which was pioneered
by Woodham in the late 70s [27]. It aims at inferring the shape of an opaque
surface from a series of images captured under the same viewing angle, but vary-
ing illumination. Compared to other 3D-reconstruction techniques, PS excels at
recovering the thinnest geometric variations (high-frequency information given
by surface normals), and it is the only photographic 3D-reconstruction method
which is also able to infer the reflectance of the surface. Such properties are
essential in applications such as relighting or cultural heritage artifacts digitiza-
tion.

However, a fundamental assumption in PS is that the light sources, the cam-
era and the pictured surface all lie in the same homogeneous medium – usually
the air. In the present paper, we revisit PS in the presence of a refractive inter-
face i.e., when the camera and the light sources both lie in one homogeneous
medium, while the surface is immersed in another homogoneous medium with
a different index of refraction (pure water, glass, alcohol, etc.). This particular
setting finds applications, for instance, in underwater imaging (Fig. 1a) or in the
digitization of natural historic museal objects preserved in amber or alcohol.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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Fig. 1. We discuss the problem of recovering through photometric stereo the 3D-shape
and the albedo of a surface immersed in a refractive medium, as in (a) where a white
sphere is immersed in an aquarium filled with pure water. In particular, we show how to
adapt classic PS methods when the lighting is directional, the camera is orthographic
and the interface is planar, as illustrated in the sketch (b) which summarizes our
notations. Therein, given a plane D with normal a, Snell’s law (2.3) gives the relation
between an incident ray i in medium M, and the refracted one o in medium M. Even
if the camera is orthographic, a point x on the surface projects non-orthogonally onto
the image plane C: a pixel (u, v) first deprojects onto D along the viewing direction e3,
and then travels the distance z(u, v) along the refracted viewing direction r. Besides,
the effective lighting direction s differs from the direction s which is calibrated outside
the refractive medium.

The difference with classic PS lies in the presence of an interface between the
two media, which have different indices of refraction. Refraction will have pro-
found consequences in 3D shape recovery techniques, as it modifies the geometry
of image acquisition, and light direction and density will be changed as well (this
is, after all, the principle behind a lot of lensing effects). While these points are
well-understood by designers of optical systems, either to use them or for limit-
ing some of their undesirable consequences, they have seldom been investigated
from the photometric shape recovery side.

Assumptions and Contributions. We address the PS problem, in the pres-
ence of a Lambertian surface (specularities are viewed as outliers) embedded in
a homogeneous refractive medium with known geometry, imaged in the visible
spectrum. After reviewing related works in Sect. 2, we explore the impact of a
planar (but not necessarily fronto-parallel) refractive interface on the geometry
of PS under orthographic projection in Sect. 3. In Sect. 4, we derive a complete
image formation model for this case, under directional lighting calibrated outside
the refractive medium. This model accounts for refraction of lighting directions,
attenuation of lighting densities, and Fresnel coefficients. Then, we discuss in
Sect. 5 the inversion of this model by adapting classic PS algorithms. Even-
tually, in Sect. 6 we draw our conclusions, and mention possible extensions of
our work to more complicated setups (pinhole camera, non-directional lighting,
non-planar interface, and light absorption).
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2 Background

Photometric Stereo. In the traditional PS setup, the pictured surface S is
assumed Lambertian i.e., it reflects light diffusively, as the reflectance at x ∈ S
is characterized by the albedo ρ(x) ∈ [0, 1]. Let us consider a surface lit by a
single, known point light source at infinity (calibrated directional lighting) rep-
resented by unit direction s ∈ R

3 and density ϕ > 0, and denote n(x) ∈ R
3 the

unit outward normal to the surface at x. Then, the measured brightness at pixel
(u, v) = p(x), which is the projection of the surface point x onto the camera
image plane, is I(p) ∝ ϕ max{0, ρ(x)n(x)�s}, with the proportionality constant
independent of x. Omitting the max{} operator, which models self-shadows (they
are usually dealt with robust estimators), integrating the proportionality coef-
ficient into the albedo (which can be normalized a posteriori), and considering
k ≥ 3 light sources yields the following image formation model:

Ii(p) = ϕi ρ(x)n(x)�si, i ∈ {1, . . . , k}. (2.1)

This model can be inverted as long as the light directions si are non-coplanar,
so as to compute the Lambertian reflectance ρ(x) and the surface normal n(x)
for each p. This approach can also be extended to non-Lambertian reflectance
and uncalibrated lighting, for instance by resorting to deep neural networks [7].

Surface Parameterization. The surface S is parameterized as (u, v) �→
x(u, v) = S(u, v) and its normal at x is written as

n(x) = ± Su × Sv

|Su × Sv| , (2.2)

where Su and Sv are the partial derivatives of S, and where the ± ambiguity is
resolved by taking arbitrarily the normal oriented towards the camera. Once the
normal field n(x) is estimated, retrieving S then comes down to a 2D integration
problem, for which various solutions exist [20]. The parameterization S is a right-
inverse to the projection: p(S(u, v)) = (u, v). It is constrained by the form that
p takes (orthographic projection, perspective projection, etc.), and this has of
course important consequences on the integration process.

Refraction. The index of refraction (IoR) n of a material is the ratio c/v of the
speed of light in vacuum and the velocity in the medium. Snell’s laws assert that
1) the normal a to the interface, the incident light direction i and the refracted
light direction o are coplanar; and 2) the refracted and incident angles satisfy
the relation n sin θi = n sin θo, with n the IoR of the first medium, n the IoR of
the second one, θi the angle between i and a, and θo the angle between a and o
(see Fig. 1b). In vectorial form [14], defining μ = n/n:

o = Snellaμ(i) = μ i +
(√

1 − μ2 (1 − (i�a)2) − μ (i�a)
)

a. (2.3)
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Refractive 3D-Vision. Snell’s law (2.3) of refraction has been considered in
few 3D-vision contexts. For instance, the epipolar geometry theory has been
extended to the case where the camera and the surface are separated by a
refractive plane [5]. This constitutes the basis for the development of refrac-
tive structure-from-motion algorithms [4,13]. Multi-view stereo in the pres-
ence of a refractive interface has also been recently explored [3,6,11]. In the
photometric stereo context, underwater imaging has attracted some atten-
tion [10,16,17,25,26]. These works focus mostly on light absorption, which
occurs when scattering is involved (inhomogeneous medium such as murky
water) or in near-infrared imaging. Yet, other refraction effects (e.g., change
of incident light direction and density, and of surface parameterization) are
neglected. For instance, it is usually assumed that all the sources have the same
relative intensity, and that their directions can be obtained using a calibra-
tion target immersed in the medium. Yet, even if all the sources outside the
refractive medium have exactly the same intensity, the refractive interface will
induce luminous fluxes with different densities (see Sect. 4). Therefore, it would
be more convenient to calibrate light directions and densities outside the refrac-
tive medium, and account for refraction within the image formation model. This
has been achieved in [18] but only for a fronto-parallel interface and with a
somehow naive numerical solution, and in [9] but by relying on laser triangu-
lation. Instead, the present paper aims at modeling and evaluating the effects
of a refractive interface with arbitrary orientation on shape recovery by pure
PS, and at providing an efficient numerical solution by adapting state-of-the-art
algorithms.

3 Geometry of Refractive PS

Notations. As illustrated in Fig. 1b, we work in R
3 with its canonical frame

(O, e1, e2, e3), where O is the camera’s principal point, e3 is the optical axis
direction and C := e⊥

3 is the image plane. A generic point in R
3 is denoted

by x, while p(x) = (u, v)� denote the 2D coordinates of its conjugate pixel
in the frame (O, e1, e2). The projection from R

3 → R
2 keeping the first two

coordinates is represented by the matrix Π =
(

1 0 0
0 1 0

)
, whose transpose is the

canonical injection R
2 → R

3. The interface plane D is given by the equation
a�x+α = 0, α ∈ R, where a = (a1, a2, a3)� ∈ S

2 is a known unit normal vector
to D (S2 being the unit sphere of R3), oriented towards the camera (a�e3 ≤ 0).
We assume that a�e3 �= 0. The medium containing the camera is located in
M = {x ∈ R

3,a�x + α > 0} and has IoR n, while the medium containing the
object under scrutiny is located in M = {x ∈ R

3,a�x + α ≤ 0} and has IoR n,
and we denote μ = n/n < 1. Lastly, for a plane P of equation v�x + β = 0 and
w ∈ R

3 with v�w �= 0, we define the projection on plane P along direction w
as

Pw
P (x) = x − v�x + β

v�w
w =

(
id −wv�

w�v

)
x − βw

v�w
. (3.1)

The orthogonal projection on v�x = 0 is simply denoted by P v⊥ .
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Depth from the Interface. In the orthographic case, all the light rays reaching
the camera are orthogonal to the image plane, i.e., parallel to e3. In the absence
of a refractive interface (or when the interface is fronto-parallel as in [16,18]), the
projection is simply p(x) = Πx and the surface parameterization, as its right
inverse, is S(u, v) = (u, v, z(u, v))� with z the depth map. However, when a non
fronto-parallel refractive interface comes into play, the projection becomes non-
orthogonal (see Fig. 1b). In this case, the rays reaching the camera are parallel
to direction e3, and come from parallel incident rays with common direction
r ∈ S

2 within the refractive medium M as the interface is planar. Vector r is
fully determined by Snell’s law (2.3) as it must refract to viewing direction e3:

r = Snell−a
μ (e3), (3.2)

where the sign before a comes from the fact that a is oriented towards the
camera, while e3 and r are oriented towards the surface (see Fig. 1b).

Therefore, a point x ∈ M on the immersed surface first projects non-
orthogonally onto D along the refracted viewing direction r, before being orthog-
onally projected onto the camera image plane along the viewing direction e3:

p(x) = ΠP e⊥
3
(P r

D(x)). (3.3)

This leads to a straightforward model where we deproject pixel (u, v)� in the
image plane to a point on the refractive interface D, and then follow the incident
ray up to the object: S(u, v) = P e3

D (u, v, 0)� + z̄(u, v)r, with z̄ the pseudo-
depth (distance travelled along the refracted ray r). One readily checks that
p(S(u, v)) = (u, v)�. Using (3.1), we can write

S(u, v) = P e3
D (u, v, 0)� + z̄(u, v)r = A(u, v, 0)� + t + z̄(u, v)r, (3.4)

with known quantities

A =

⎛
⎝ 1 0 0

0 1 0
−a1

a3
−a2

a3
0

⎞
⎠ , t = − α

a3
e3. (3.5)

Surface Normals. Now, let us establish the link between the pseudo-depth z̄
from the interface, and the normal n to the surface. To do this, let us consider the
partial derivatives of the parameterization. They are given by Su = Ae1 + z̄ur
and Sv = Ae2+z̄vr. An (unnormalized) normal to the surface S(u, v) is Su×Sv =
(Ae1+ z̄ur)×(Ae2+ z̄vr). Set b1 = r×Ae2, b2 = Ae1×r and b3 = Ae2×Ae1.
Then Su × Sv = z̄ub1 + z̄vb2 − b3. By letting B be the matrix −(b1,b2,b3),

n(u, v) = n(S(u, v)) ∝ B
(∇z̄(u, v)

−1

)
, B =

⎛
⎝

a2r2
a3

+ r3 −a1r2
a3

a1
a3−a2r1

a3

a1r1
a3

+ r3
a2
a3−r1 −r2 1

⎞
⎠ . (3.6)

Equation (3.6) relates the surface normals to the underlying gradient of the
pseudo-depth from the interface. When the interface is fronto-parallel, a = −e3,
r = e3 and z̄ = z − β. Hence, B = I3 and the formula matches the classic one
obtained in the absence of refraction: n(u, v) ∝ (∇z(u, v)�,−1

)�.
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4 Image Formation Model Under Directional Lighting

Now, we turn our attention to extending the image formation model (2.1) to the
refractive case. We assume to have at hand a series of k images I1, . . . , Ik, with
lighting directions s1, . . . , sk and densities ϕ1, . . . , ϕk calibrated inside M. The
effective lighting inside M will however be different from the calibrated one, due
to refraction.

Fig. 2. Light refraction by a planar interface
with normal a, with s the light direction cali-
brated outside the refractive medium, and s the
effective refracted direction (in this drawing, the
light source is on the right). Light direction is
changed according to Snell’s law, while its den-

sity is multiplied by
a�s

a�s
.

Effective Lighting Directions
and Densities. We assume that
light directions and densities are
known in the camera medium
M thanks to calibration, and we
denote these calibrated parame-
ters by si and ϕi. However, the
directions si and densities ϕi of
the effective light beams reaching
the surface differ from calibrated
values, see Fig. 2.

After crossing the refractive
interface, the incident light beams
obviously remain parallel, yet
their directions become, accord-
ing to Snell’s law (2.3):

si = −Snell−a
μ (−si), i ∈ {1, . . . , k}. (4.1)

Moreover, the size of the surface elements orthogonal to the rays also changes,
according to dΣ̄i

a�s̄i
= dΣD = dΣi

a�si
. Then:

ϕi =
a�si

a�si
ϕi, i ∈ {1, . . . , k}. (4.2)

Let us emphasize that, even if all the sources have exactly the same intensity
i.e., ϕi = ϕj ,∀i �= j, the effective densities will be different. For instance, when
n = 1, n = 1.5, and ϕ1 = ϕ2 = 1, a lighting orthogonal to the interface yields
ϕ1 = 1, while an incident angle of 30◦ yields ϕ2 = 0.91. This effect is thus far
from negligible in a calibrated PS setup.

Fresnel Coefficients. The interface may act partially as a mirror, with the
amount of transmitted light being a function of the incident angle. This happens
twice in the process: first when going from the light source in M to the surface
embedded in M, and then when going from the latter to the camera, back in M.

The incident and outgoing angles when going from M towards M will vary
depending on the incident direction si, i ∈ {1, . . . , k}: each light source will thus
induce a different transmission rate. This rate is however the same whatever the
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point x, since lighting is assumed directional - this would not be the case for
instance under a near point light source. Assuming that all the light beams are
unpolarized, each transmission rate is given by the Fresnel coefficient

TM→M
i = 1 − 1

2

((
μa�si − a�si

)2

(μa�si + a�si)
2 +

(
μa�si − a�si

)2

(μa�si + a�si)
2

)
, i ∈ {1, . . . , k}.

(4.3)
Taking again as an example the case n = 1, n = 1.5, an incident lighting orthog-
onal to the interface yields TM→M

1 = 0.9600, while an incident angle of 30◦

yields TM→M
2 = 0.9585. This shows that this Fresnel coefficient is non-negligible,

although less dramatic than the change in the incident densities.
When going from M to M, the incident and outgoing angles are the same for

all images I1, . . . , Ik (viewing direction is independent from the incident lighting
directions), therefore the transmission rate simply scales all the brightness values
at pixel p conjugate to x by the same coefficient TM→M(x), ∀i ∈ {1, . . . , k}.
Besides, since we assume orthographic viewing, these angles are the same for all
pixels, hence TM→M is independent from x as well - this would not be the case
under pinhole projection. The Fresnel coefficient is then written as

TM→M = 1 − 1
2

((−a�r + μa�e3

)2

(−a�r − μa�e3)
2 +

(−a�e3 + μa�r
)2

(−a�e3 − μa�r)2

)
. (4.4)

Note that this second Fresnel coefficient simply scales all the observations by the
same constant, hence it can be taken into account by normalization.

Forward Model for Refractive PS. To summarize the effects described
above, in the presence of refraction the classic image formation model (2.1)
becomes

Ii(p) =
(
ϕiT

M→M
i

)
︸ ︷︷ ︸

:=ψi

(
TM→Mρ(x)

)
︸ ︷︷ ︸

:=�(x)

n(x)� (−Snell−a
μ (−si)

)
︸ ︷︷ ︸

:=si

, i ∈ {1, . . . , k},

(4.5)
where:

– the effective lighting directions si must be deduced from the calibrated ones
si according to Snell’s law (4.1);

– the effective lighting densities ψi must be deduced from the calibrated ones
ϕi using (4.2) (density attenuation) and (4.3) (Fresnel coefficients);

– the Fresnel-scaled albedo �(x) (see (4.4)) and the surface normal n(x)
(see (3.6)) constitute the unknowns of the PS problem.

To summarize, we have established the geometric parameterization of the
surface, and shown how to deduce the effective lighting directions and densities
from the ones calibrated outside the refractive medium. In the next section, we
turn our attention to the numerical resolution of the system of Eqs. (4.5), by
adapting state-of-the-art strategies.
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5 Solving Refractive PS

To invert the image formation model (4.5), it is possible to either sequentially
estimate normals and the 3D-shape, or to directly compute the 3D-shape.

Normal and Albedo Estimation. Estimating the surface normals and albedo
comes down to solving the system of Eqs. (4.5) with known effective lighting
densities ψi and effective incident lighting directions si. This system of equations
admits a unique approximate solution as long as k ≥ 3 and the effective directions
si are non-coplanar (which is the case if the incident directions si are themselves
non-coplanar). Any calibrated PS method can be applied for this task, simply
changing the light directions and densities so as to take refraction into account.
For instance, defining m := �n, one may consider the following pixelwise linear
least-squares solution, ∀p:

m(p) = argmin
m∈R3

k∑
i=1

(
ψis

�
i m − Ii(p)

)2
, �(x) = |m(p)|, n(x) =

m(p)
|m(p)| , (5.1)

which can be computed in closed-form by using the pseudo-inverse. If robust-
ness (e.g., to shadows or specularities) needs to be addressed, more evolved solu-
tions based on deep neural networks [7] can be considered. Semi-calibrated algo-
rithms [8] could also be employed for automatically inferring the coefficients ψi.
Provided that the integrability constraint [28] is adapted to the refractive case,
uncalibrated algorithms [12] would even provide the si up to a generalized bas-
relief ambiguity [2], which could be resolved a posteriori using one of the methods
discussed in [24].

Normal Integration. The next stage consists in obtaining the surface from
its normals. Equation (3.6) tells us that once n(u, v) is estimated, computing
B−1n(u, v) using the definition in (3.6) of B, and then normalizing both its
first components by the third one provides an estimate for ∇z̄(u, v). Given these
gradient estimates, the pseudo-depth map from the interface can be obtained
by integration. Any approach designed for the classic case can be employed
at this stage, just changing the input gradient estimates (see [20]). Once the
pseudo-depth has been computed, one simply has to apply Eq. (3.4) to obtain
the 3D-surface.

Direct Differential Approach. To avoid bias accumulation due to the sequen-
tial estimation of normals and shape, it is also possible to follow a direct differ-
ential approach. Plugging (3.6) into (4.5), we get, ∀(i,p):

Ii(p) = ψi

�(x)∣∣∣∣B
(∇z(p)

−1

)∣∣∣∣︸ ︷︷ ︸
:=�̃(p)

(
B�si

)�
︸ ︷︷ ︸

:=s̃�
i

(∇z(p)
−1

)
, (5.2)
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which is a system of nonlinear PDEs. Therein, �̃ will be considered as the
unknown “pseudo-albedo” and vectors s̃i as known “pseudo light vectors”. The
direct joint estimation of the pseudo-albedo and the pseudo-depth from the
interface can then be written as a variational problem:

min
z,�̃

∑
p

∑
i

Φ

(
ψi�̃(p)s̃i

�
(∇z̄(p)

−1

)
− Ii(p)

)
, (5.3)

using some robust estimator Φ and a finite differences approximation of the
gradient operator. Once the depth from the interface and the pseudo-albedo
have been estimated, it only remains to deduce the true Fresnel-scaled albedo �
from �̃ and ∇z̄ using the definition in Eq. (5.2), and eventually the 3D-surface
by using Eq. (3.4). Again, such a differential approach can be extended to the
semi-calibrated scenario [21], or even to refine the pseudo light vectors [22].

Validation on Synthetic and Real-World Data. In order to empirically
validate our forward model and its inversion, we first generated synthetic PS
images using Blender [1]. The Lambertian surfaces were placed inside glass (n =
1.5) while the light sources and the orthographic camera were placed inside air
(n = 1). In each experiment, 12 images were rendered under varying parallel
lighting, whose direction and relative density are provided by the engine.

We first considered images of a perfect sphere. We used the sequential app-
roach (5.1) followed by DCT integration [20], as well as the differential app-
roach (5.3) with Cauchy estimator [22]. In both cases, we carried out 3D-
reconstruction first neglecting all refraction effects, and then with refraction
considered. To quantitatively evaluate the results, we fit a sphere to the 3D-
reconstruction using least-squares, and compute the normalized RMSE between
the 3D-reconstruction and the spherical fit. Results are shown in Table 1. It can
be seen that for both approaches, considering refraction drastically improves the
3D-reconstruction, even when the interface is not rotated. Indeed, as can be seen
in Fig. 3, neglecting refraction causes the 3D-reconstruction to “flatten”.

Table 1. Normalized root mean square error between the estimated surface and a
least-squares spherical fit, for a planar refractive interface (the angles stand for the
rotations around the horizontal and vertical axes, respectively). Considering refrac-
tion systematically improves performance, for both the sequential and the differential
approaches.

No interface (0◦, 0◦) (11.5◦, 0◦) (11.5◦, 22.5◦)

Sequential w/o refraction 0.0035 0.0195 0.0232 0.0403

Sequential w/ refraction 0.0035 0.0116 0.0129 0.0261

Differential w/o refraction 0.0020 0.0202 0.0239 0.0396

Differential w/ refraction 0.0020 0.0114 0.0127 0.0254



700 Y. Quéau et al.

Fig. 3. 3D-reconstructions of the spheres from Table 1 using the differential approach,
neglecting (top) or considering (bottom) refraction. The light grey spheres are the least-
squares spherical fits to the estimated surfaces used for the quantitative evaluation in
Table 1. Neglecting refraction induces a severe “flattening”.

Then, we replaced the sphere by two objects with a more complex shape:
an insect (imaged with the interface rotated by 5◦ around the horizontal axis)
and a skull (imaged with the interface rotated by 20◦ around the horizontal
axis, and by 11.25◦ around the vertical one). The results in Fig. 4, obtained with
the differential approach, show that it is possible to achieve a 3D-reconstruction
which is indistinguishable from the one obtained in the absence of refraction. In
particular, the “flattening” effect is corrected.

Fig. 4. 3D-reconstruction of an insect (top) and a skull (bottom). In each row, the
first image represents one of the input images (out of 12); the second one shows the
3D-reconstruction obtained in the absence of the interface (for reference); and the other
ones show the 3D-reconstruction in the presence of the interface, while neglecting or
considering refraction.
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Lastly, we conducted experiments on a real-world dataset. Our acquisition
setup, illustrated in Fig. 1a, consists of 8 calibrated directional light sources. A
diffuse sphere was imaged in the air, and then immersed in an aquarium filled
with pure water (see Fig. 5). We performed the 3D-reconstruction using (5.3),
and compared the results neglecting or considering refraction effects. For both
a fronto-parallel and a rotated interface, considering refraction largely reduces
the flattening and distortion effects, which empirically validates our method.

Fig. 5. 3D-reconstruction of a real-world sphere. On the left, we show two of the input
images, in the absence (“air”) and in presence (“water”) of a refractive interface which is
rotated by 15.0◦ around the vertical axis. On the right, we show the 3D-reconstruction
of the sphere, taking into account (top) or not (bottom) refraction effects, in three cases:
in the air, with a fronto-parallel interface, and with a rotated interface. Neglecting
refraction leads to flattened and distorded 3D-reconstructions, while these effects are
much attenuated with the proposed approach.

6 Conclusion and Future Work

In this paper, we have explored the impact of the presence of a refractive interface
on the modeling of the photometric stereo problem, both in terms of geometry
and of photometric image formation model. We further showed how to adapt
existing solutions so as to take into account geometric deformation, refraction of
incident directions, attenuation of densities and Fresnel coefficients. We showed
that taking into account such phenomena largely improves the accuracy of the
3D-reconstruction. However, the explicit modeling of refraction effects was eased
by a few simplifying assumptions: orthographic viewing, directional lighting, pla-
nar interface and absence of light absorption. In the future, we plan to explore
the changes induced by the relaxation of these assumptions. This can partially
be achieved by making the forward more realistic through the incorporation of,
e.g., a refractive near-field illumination model [23] or distance-dependent light
attenuation [16,26]. However, we believe that differentiable inverse rendering
frameworks may constitute an even more promising track for solving nonstan-
dard photometric 3D-reconstruction problems in a somehow generic manner.
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Such approaches have recently been successfully employed for solving complex
multi-view 3D-reconstruction problems [15], yet for now they remain limited to
cases where the surface projection onto the camera comes down to a simple
rasterization. To cope with evolved refractive effects, one could thus imagine
combining differentiable inverse rendering with powerful renderers such as Mit-
suba 2 [19].
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Abstract

This paper introduces a versatile paradigm for inte-
grating multi-view reflectance (optional) and normal maps
acquired through photometric stereo. Our approach em-
ploys a pixel-wise joint re-parameterization of reflectance
and normal, considering them as a vector of radiances
rendered under simulated, varying illumination. This re-
parameterization enables the seamless integration of re-
flectance and normal maps as input data in neural volume
rendering-based 3D reconstruction while preserving a sin-
gle optimization objective. In contrast, recent multi-view
photometric stereo (MVPS) methods depend on multiple,
potentially conflicting objectives. Despite its apparent sim-
plicity, our proposed approach outperforms state-of-the-art
approaches in MVPS benchmarks across F-score, Chamfer
distance, and mean angular error metrics. Notably, it sig-
nificantly improves the detailed 3D reconstruction of areas
with high curvature or low visibility.

1. Introduction
Automatic 3D reconstruction is pivotal in various fields,
such as archaeological and cultural heritage (virtual recon-
struction), medical imaging (surgical planning), virtual and
augmented reality, games and film production.

Multi-view stereo (MVS) [5], which retrieves the geom-
etry of a scene seen from multiple viewpoints, is the most
famous 3D reconstruction solution. Coupled with neural
volumetric rendering (NVR) techniques [22], it effectively
handles complex structures and self-occlusions. However,
dealing with non-Lambertian scenes remains a challenge
due to the breakdown of the underlying brightness consis-
tency assumption. The problem is also ill-posed in certain
configurations e.g., poorly textured scene [25] or degener-

*Equal contributions. brument.bcb@gmail.com / rb@di.ku.dk

Figure 1. One image from DiLiGenT-MV’s Buddha dataset [12],
and 3D reconstruction results from several recent MVPS methods:
[11, 26, 27] and ours. The latter provides the fine details closest to
the ground truth (GT), while being remarkably simpler.

ate viewpoints configurations with limited baselines. More-
over, despite recent efforts in this direction [13], recovering
the thinnest geometric details remains difficult under fixed
illumination. In such a setting, estimating the reflectance of
the scene also remains a challenge.

On the other hand, photometric stereo (PS) [24], which
relies on a collection of images acquired under varying
lighting, excels in the recovery of high-frequency details
under the form of normal maps. It is also the only pho-
tographic technique that can estimate reflectance. And,
with the recent advent of deep learning techniques [8], PS
gained enough maturity to handle non-Lambertian surfaces
and complex illumination. Yet, its reconstruction of geom-
etry’s low frequencies remains suboptimal.

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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Given these complementary characteristics, the integra-
tion of MVS and PS seems natural. This integration, known
as multi-view photometric stereo (MVPS), aims to recon-
struct geometry from multiple views and illumination con-
ditions. Recent MVPS solutions jointly solve MVS and PS
within a multi-objective optimization, potentially losing the
thinnest details due to the possible incompatibility of these
objectives – see Fig. 1. In this work, we explore a simpler
route for solving MVPS by decoupling the two problems.

We start with the observation that recent PS techniques
deliver exceptionally high-quality reflectance and normal
maps, which we use as input data. To accurately recon-
struct the surface reflectance and geometry, we need to fuse
these maps, a challenging task within a single-objective op-
timization due to their inhomogeneity. Our method provides
a solution to this problem by combining NVR with a simple
and effective pixel-wise re-parameterization.

In this method, the input reflectance and normal for each
pixel are merged into a vector of radiances simulated un-
der arbitrary, varying illumination. We then adapt an NVR
pipeline to optimize the consistency of these simulations
wrt to the scene reflectance and geometry, modeled as the
zero-level set of a trained signed distance function (SDF).
Coupled with a state-of-the-art PS method such as [8] for
obtaining the input reflectance and normals, this approach
yields an MVPS pipeline reaching an unprecedented level
of fine details, as illustrated in Fig. 1. Besides being the
first to exploit reflectance as a prior, our proposed MVPS
paradigm is extremely versatile, compatible with any exist-
ing or future PS method, whether calibrated or uncalibrated,
deep learning-based, or classic optimization procedures.

The rest of this work is organized as follows. Sect. 2 dis-
cusses state-of-the-art MVPS methods. The proposed 3D
reconstruction from reflectance and normals is detailed in
Sect. 3. Sect. 4 then sketches a proposal for an MVPS algo-
rithm based on this approach. Sect. 5 extensively evaluates
this algorithm, before our conclusions are drawn in Sect. 6.

2. Related work
Classical methods The first paper to deal with MVPS is
by Hernandez et al. [6]. To avoid having to arbitrate the
conflicts between the different normal maps, a 3D mesh is
iteratively deformed, starting from the visual hull until the
images recomputed using the Lambertian model match the
original images, while penalizing the discrepancy between
the PS normals and those of the 3D mesh. No prior knowl-
edge of camera poses or illumination is required. Under the
same assumptions, Park et al. [19, 20] start from a 3D mesh
obtained by SfM (structure-from-motion) and MVS. Simul-
taneous estimation of reflectance, normals and illumination
is achieved by uncalibrated PS, using the normals from the
3D mesh to remove the ambiguity, and estimating the de-
tails of the relief through 2D displacement maps.

MVPS is solved for the first time with a SDF representa-
tion of the surface by Logothetis et al. [14]. Therein, illumi-
nation is represented as near point light sources which are
assumed calibrated, as well as the camera poses. Thanks to
a voxel-based implementation, the surface details are better
rendered than with the method of Park et al. [20].

Li et al [12] refine a 3D mesh obtained by propagating
the SfM points according to [17], and estimate the BRDF
using a calibrated setup. The creation of the public dataset
“DiLiGenT-MV” validates numerically the improved re-
sults, in comparison with those of [20].

Deep learning-based methods Kaya et al. [10] pro-
posed a solution to MVPS based on neural radiance fields
(NeRFs) [16]. For each viewpoint, a normal map is ob-
tained using a pre-trained PS network, before a NeRF is
adapted to account for input surface normals from PS in
the color function. The recovered geometry yet remains
perfectible, according to [9]. Therein, the authors propose
learning an SDF function whose zero level set best explains
pixel depth and normal maps obtained by a pre-trained
MVS [21] or PS network [7], respectively. To manage con-
flicting objectives in the proposed multi-objective optimiza-
tion and get the best out of MVS and PS predictions, both
networks are modified to output uncertainty measures on
depth and normal predictions. The SDF optimization is then
carried out while accounting for the inferred uncertainties.

PS-NeRF [26] solves MVPS by jointly estimating the ge-
ometry, material and illumination. To this end, the authors
propose to regularize the gradient of a UNISURF [18] us-
ing the normal maps from PS, while relying on multi-layer
perceptrons (MLPs) to explicitly model surface normals,
BRDF, illumination, and visibility. These MLPs are op-
timized based on a shadow-aware differentiable rendering
layer. A similar track is followed in [2], where NeRFs are
combined with a physically-based differentiable renderer.

Such NeRF-based approaches provide undeniably better
3D reconstructions than classical methods, yet they remain
computationally intensive. Recently, Zhao et al. [27] pro-
posed a fast deep learning-based solution to MVPS. Ag-
gregated shading patterns are matched across viewpoints so
that to predict pixel depths and normal maps.

In [11], the authors proposed to complement the solu-
tion of [9] by adding a NVR loss term in order to benefit
from the reliability of NVR in reconstructing objects with
diverse material types. However, this results in a multi-
objective optimization comprising three loss terms (besides
the Eikonal term). However, similar to [9], the uncertainty-
based hyper-parameter tuning does not completely elimi-
nate conflicting objectives, which may induce a loss of fine-
scale details. In contrast, we propose a single objective opti-
mization based on an ad hoc re-parametrization which leads
to the seamless integration of PS results in standard NVR
pipelines. This is detailed in the next paragraph.
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Figure 2. Overview of the proposed MVPS pipeline. The reflectance and normal maps provided for each view by PS are fused, by
combining volume rendering with a pixel-wise re-parameterization of the inputs using physically-based rendering.

3. Proposed approach

Our aim is to infer a surface whose geometric and photo-
metric properties are consistent with the per-view PS re-
sults. To do so, we resort to a volume rendering framework
coupled with a re-parameterization of the inputs, as illus-
trated in Fig. 2 and detailed in the rest of this section.

3.1. Overview

Input data From the N image sets captured under fixed
viewpoint and varying illumination, PS provides N re-
flectance and normal maps, out of which we extract a batch
of m posed reflectance and normal values {rk ∈ R,nk ∈
S2}k=1...m. Here, the normal vectors are expressed in
world coordinates using the known camera poses. The in-
put reflectance is without loss of generality represented by
a scalar (albedo). Let us emphasize that this assumption
does not imply that the observed scene must be Lambertian,
but rather that we use only the diffuse component of the
estimated reflectance. Using other reflectance components
(specularity, roughness, etc.), if available, would represent a
straightforward extension to more evolved physically-based
rendering (PBR) models. Yet, we leave such an extension
to perspective for now, since there are few PS methods reli-
ably providing such data. Also, if the PS method provides
no reflectance, one can set rk ≡ 1 and use the proposed
framework for multi-view normal integration.

Surface parameterization Our aim is to infer a 3D
model of a scene, which consists of both a geometric map
f : R3 → R and a photometric one ρ : R3 → R.
Therein, f associates a 3D point with its signed distance
to the surface, which is thus given by the zero level set of f :
S = {x ∈ R3 | f(x) = 0}. Regarding ρ, it encodes the re-
flectance associated with a 3D point. For input consistency,
ρ is considered as a scalar function (albedo), though more
advanced PBR models could again be incorporated.

Objective function Our method builds upon a re-
parameterization v : S2 × R → Rn which combines a
surface normal nk ∈ S2 and a reflectance value rk ∈ R
into a vector v(nk, rk) ∈ Rn of n radiance values that
are simulated by physically-based rendering, using an ar-
bitrary image formation model under varying illumination.
Given this re-parameterization, the 3D reconstruction prob-
lem amounts to minimizing the difference between a batch
of m intensity vectors simulated either from the input data
or from volume rendering with the same PBR model, along
with a regularization on the SDF:

min
f,ρ

m∑

k=1

∥v(nk, rk)− ṽk(f, ρ)∥1 + λLreg(f). (1)

Here, {(nk, rk)}k=1...m stands for the batch of input re-
flectance and normal values, v(nk, rk) for the k-th in-
tensity vector simulated from the input data, ṽk(f, ρ) for
the corresponding one simulated by volume rendering, and
λ > 0 is a tunable hyper-parameter for balancing the data
fidelity with the regularizer Lreg. The actual optimization
can then be carried out seamlessly by resorting to a vol-
ume rendering-based 3D reconstruction pipeline such as
NeuS [22], given that both ṽk(f, ρ) and v(nk, rk) cor-
respond to pixel intensities. Let us now detail how we
simulate the latter intensities v(nk, rk) from the input re-
flectance and normal data.

3.2. Reflectance and normal re-parameterization

The input reflectance {rk ∈ R}k and normals {nk ∈ S2}k
values constitute inhomogeneous quantities: the former are
photometric scalars, and the latter geometric vectors lying
on the three-dimensional unit sphere. Direct optimization
of their consistency with the scene normal ∇f

∥∇f∥ and albedo
ρ would lead to multiple objectives balanced by hyper-
parameters.
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Instead, we propose to jointly re-parameterize the re-
flectance and normal data into a set of vectors {v(nk, rk) ∈
Rn}k of homogeneous quantities, namely radiance val-
ues simulated using a PBR model under varying illu-
mination. In order to enforce the bijectivity of this
re-parameterization, we choose as PBR model the lin-
ear Lambertian one, under pixel-wise varying illumina-
tion represented by n = 3 arbitrary illumination vectors
lk,1, lk,2, lk,3 ∈ R3:

v(nk, rk) = rk[n
⊤
k lk,1,n

⊤
k lk,2,n

⊤
k lk,3]

⊤ (2)
= rkLk nk,

with Lk = [lk,1, lk,2, lk,3]
⊤ the arbitrary per-pixel illumina-

tion matrix.
For the re-reparameterization to be bijective, the re-

flectance rk must be non-null (a basic assumption in pho-
tographic 3D vision), and Lk must be non-singular i.e., the
lighting directions must be chosen linearly independent.
Then, the original reflectance and normal can be retrieved
from the simulated intensities by rk = ∥L−1

k v(nk, rk)∥ and

nk =
L−1
k v(nk,rk)

∥L−1
k v(nk,rk)∥

. Considering n > 3 illumination vec-
tors and resorting to the pseudo-inverse operator might in-
duce more robustness but at the price of losing bijectivity
and thus not entirely relying on the PS inputs. We leave
this as a possible future work, which might be particularly
interesting when the PS inputs are uncertain, or when con-
sidering more evolved PBR models involving additional re-
flectance clues such as roughness, anisotropy or specularity.

In practice, the choice of each arbitrary triplet of light
directions lk,1, lk,2, lk,3 can be made to minimize the uncer-
tainty on the normal estimate. To this end, the illumination
triplet proposed in [4] can be considered. Therein, the au-
thors show that the optimal configuration for three images
is vectors that are equally spaced in tilt by 120 degrees, with
a constant slant of 54.74 degrees (wrt to nk).

Let us remark that with the above linear model, it is
possible to simulate negative radiance values, when one
of the dot products between the normal and the lighting
vectors is negative, which corresponds to self-shadowing.
While negative radiance values are obviously non physi-
cally plausible, this is not a problem for the proposed re-
parameterization, as long as it remains consistent with the
NVR strategy, which we are now going to detail.

3.3. Volume rendering-based 3D reconstruction

We now turn our attention to deriving the volume rendering
function ṽk arising in Eq. (1). The role of this function is
to simulate, from the scene geometry f and albedo ρ, an
intensity vector ṽk which will be compared with the vec-
tor vk that is simulated from the inputs as described in the
previous paragraph.

Our solution largely takes inspiration from the NeuS
method [22], that was initially proposed as a solution to the
single-light multi-view 3D surface reconstruction problem.
Therein, the rendering function follows a volume render-
ing scheme which accumulates the colors along the ray cor-
responding to the k-th pixel. Denoting by ok ∈ R3 the
camera center for this observation, and by dk the corre-
sponding viewing direction, this ray is written {xk(t) =
ok + tdk | t ≥ 0}. By extending the NeuS volume renderer
to the multi-illumination scenario, each coefficient ṽk,l of
ṽk is then given, ∀l ∈ {1, 2, 3}, by:

ṽk,l =

∫ tf

tn

w(t, f(xk(t))) cl(xk(t)) dt, (3)

where tn, tf stand for the range bounds over which the col-
ors are accumulated. The weight function w is constructed
from the SDF f in order to ensure that it is both occlusion-
aware and locally maximal on the zero level set, see [22]
for details. As for the functions cl : R3 → R, they represent
the scene’s apparent color. In the original NeuS framework,
this color depends not only on the 3D locations, but also on
the viewing direction dk, and it is directly optimized along
with the SDF f . Our case, where the albedo is optimized in
lieu of the apparent color, and the illumination varies with
the data index k and the illumination index l, is however
slightly different.

As a major difference with this prototypical NVR-based
3D reconstruction method, we optimize the SDF f and the
surface albedo i.e., the scene’s intrinsic color ρ rather than
its apparent color cl. The dependency upon the viewing di-
rection must thus be removed, in order to ensure consistency
with the Lambertian model used for simulating the inputs.
More importantly, contrarily to NeuS where the illumina-
tion is fixed, each input data vk,l := rkn

⊤
k lk,l is simulated

under a different, arbitrary illumination lk,l. For the NVR to
produce simulations ṽk,l matching this input set of intensi-
ties, it is necessary to explicitly write the dependency of the
apparent color cl upon the scene’s geometry f , reflectance
ρ and illumination lk,l. Our volume renderer is then still
given by Eq. (3), but the color of each 3D point must be
replaced by:

cl(xk(t)) = ρ(xk(t))∇f(xk(t))
⊤lk,l, (4)

where the illumination vectors lk,l are the same as those in
Eq. (2).

Let us remark that the scalar product above corresponds,
up to a normalization by ∥∇f(xk(t))∥, to the shading. Yet,
we do not need to apply this normalization, because the reg-
ularization term Lreg(f) in (1) will take care of ensuring the
unit length of ∇f . Indeed, as in the original NeuS frame-
work, the SDF is regularized using an eikonal term:

Lreg(f) =

∑m
k=1

∫ tf
tn
(∥∇f(xk(t))∥2 − 1)2 dt

m (tf − tn)
. (5)
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Similarly to the original NeuS, an additional regularization
based on object masks can also be utilized for supervision,
if such masks are provided.

Plugging (4) into (3) yields the definition of our volume
renderer accounting for the varying, arbitrary illumination
vectors lk,l. Next, plugging (2), (3) and (5) into (1), we ob-
tain our objective function, which ensures the consistency
between the simulations obtained from the input, and those
obtained by volume rendering. It should be emphasized
that, besides the eikonal regularization – which is standard
and only serves to ensure the unit-length constraint of the
normal, our strategy leads to a single objective optimization
formulation for NVR-based 3D surface reconstruction from
reflectance and normal data.

The discretization of the variational problem (1) is then
achieved exactly as in the original NeuS work [22]. It is
based on representing f and ρ by MLPs and hierarchically
sampling points along the rays.

4. Application to MVPS
We present a standalone MVPS pipeline that is built on top
of the proposed reflectance and normal-based 3D recon-
struction method. Our MVPS pipeline includes the follow-
ing steps:
1. Compute the reflectance and normals maps for each

viewpoint through PS;
2. Select a batch of the most reliable inputs {rk} and {nk};
3. Scale the reflectance values {rk} across the entire image

collection;
4. Simulate the radiance values following Eq. (2), using a

pixel-wise optimal lighting triplet Lk;
5. Optimize the loss in Eq. (1) over the SDF f and

albedo ρ;
6. Reconstruct the surface from the SDF.

Step 1: PS-based reflectance and normal estimation
Any PS method is suitable for obtaining the inputs for each
viewpoint. However, not all PS methods actually provide
reflectance clues, and not all of them can simultaneously
handle non-Lambertian surfaces and unknown, complex il-
lumination. CNN-PS [7], for instance, provides only nor-
mals, and for calibrated illumination. For these reasons,
we base our MVPS pipeline on the recent transformers-
based method SDM-UniPS [8], which exhibits remarkable
performance in recovering intricate surface normal maps
even when images are captured under unknown, spatially-
varying lighting conditions in uncontrolled environments.
As advised by the author of [8], when the number of images
is too large for the method to be applied, one can simply
take the median of the results over sufficiently many Ntrials
random trials, each trial involving the random selection of a
few number of images.

Step 2: Uncertainty evaluation To prevent poorly esti-
mated normals from corrupting 3D reconstruction, we dis-
card the less reliable ones. To this end, we use as uncer-
tainty measure the average absolute angular deviation of the
normals computed over the Ntrials random trials in Step 1.
Pixels associated with an uncertainty measure higher than a
threshold (τ = 15◦ in our experiments) are excluded from
the optimization. Advanced uncertainty metrics, as pro-
posed by Kaya et al. [9], could further refine this process.

Step 3: Reflectance maps scaling The individual re-
flectance maps computed by PS need to be appropriately
scaled. This is because in an uncalibrated setting, the re-
flectance estimate is relative to both the camera’s response,
and the incident lighting intensity. Consequently, each re-
flectance map is estimated only up to a scale factor. To es-
timate this scale factor, the complete pipeline is first run
without using the reflectance maps. This provides pairs
of homologous points that are subsequently used to scale
the reflectance maps. Concretely, given a pair of neigh-
boring viewpoints, the ratios of corresponding reflectance
values between the two viewpoints are stored, and their me-
dian is used to adjust each reflectance map’s scale factor.
This operation is repeated across the entire viewpoint col-
lection. Note that, if the camera’s response and the illumi-
nation were known i.e., a calibrated PS method was used
in Step 1, then the reflectance would be determined without
scale ambiguity and this step could be skipped.

Step 4: Radiance simulation To simulate the radiance
values, we choose as lighting triplet the one which is op-
timal, relative to the normal nk [4]. The actual formula is
provided in the supplementary material.

Step 5: Optimization The actual optimization of the loss
function is carried out using a straightforward adaptation
of the NeuS architecture [22], where viewing direction was
removed from the network’s input to turn radiance into
albedo. In all our experiments, we let the optimization run
for a total of 300k iterations, with a batch size of 512 pix-
els. To ensure that the networks have a better understanding
of our MVPS data, we decided to train each iteration not
only on a random view, but also on all rendered images of
this view under varying illumination. The backward oper-
ation is then applied only after the loss is computed on all
pixels for all the illumination conditions. In terms of com-
putation time, our approach is comparable with the original
NeuS framework, requiring in our tests from 8 to 16 hours
on a standard GPU for the 3D reconstruction of each dataset
from DiLiGenT-MV [12].

Step 6: Surface reconstruction Once the SDF is esti-
mated, we extract its zero level set using the marching cube
algorithm [15].
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5. Experimental results
5.1. Experimental setup

Evaluation datasets We used the DiLiGenT-MV bench-
mark dataset [12] to perform all our experiments, statistical
evaluations, and ablations. It includes five real-world ob-
jects with complex reflectance properties and surface pro-
files, making it an ideal choice for the proposed method
evaluation. Each object is imaged from 20 calibrated
viewpoints using the classical turntable MVPS acquisition
setup [6]. For each view, 96 images are acquired under
different illuminations. Given the large volume of images,
which is impractical for transformers-based methods, our
implementation of Step 1 (PS) employs SDM-UniPS [8]
with only 10 input images. To this end, we computed each
rk and nk as the medians of the computed reflectances and
normals over Ntrials = 100 random trials, each trial involv-
ing the random selection of 10 images from the 96 available
in the DiLiGenT-MV dataset.

Evaluation scores We performed our quantitative evalua-
tions using F-score and Chamfer distance (CD), to measure
the accuracy of the reconstructed vertices. We also mea-
sured the mean angular error (MAE) of the imaged meshes,
to evaluate the accuracy of the reconstructed normals wrt
the ground truth normals provided in DiLiGenT-MV. We
report both the results averaged over all mesh vertices, and
those on vertices clustered in two particularly interesting
classes, namely high curvature and low visibility areas, as
illustrated in Fig. 3. To identify the high curvature areas,
we used the library VCGLib [1] and the 3D mesh process-
ing software system Meshlab [3], taking the absolute value
of the curvature to merge the convex and concave zones and
retaining the vertices whose curvature is higher than 1.6. To
segment the low visibility areas, we summed the boolean
visibility of each vertex in each view. Low visibility then
corresponds to vertices visible in less than 5 viewpoints,
among the 20 ones of DiLiGenT-MV.

Figure 3. High curvature (left) and low visibility (right) areas, on
the Buddha and Reading datasets.

5.2. Baseline comparisons

We first provide in Fig. 4 a qualitative comparison of our re-
sults on four objects, and compare them with the three most
recent methods from the literature, namely PS-NERF [26],
Kaya23 [11] and MVPSNet [27]. In comparison with these
state-of-the-art deep learning-based methods, the recovered
geometry is overall more satisfactory.

This is confirmed quantitatively when evaluating Cham-
fer distances and MAE, provided in Tables 1 and 2. Therein,
beside the aforementioned methods we also report the re-
sults from the Kaya22 method [9] and those from the non
deep learning-based ones Park16 [20] and Li19 [12] (which
is not fully automatic). From the tables, it can be seen
that our method outperforms other fully automated stan-
dalone ones, and is competitive with the semi-automated
one. On average, our method reports a Chamfer distance
which is 17.4% better than the second best score, obtained
by MVPSNet [27]. Regarding MAE, our score is similar
to Kaya23 [11] with a small average difference of 0.2 de-
gree. The superiority of our approach can also be observed
by considering the F-scores, which are reported in Fig. 5.

Chamfer distance ↓
Methods Bear Budd. Cow Pot2 Read. Aver.
Park16 0.92 0.39 0.34 0.94 0.53 0.62
Li19 † 0.22 0.28 0.11 0.23 0.27 0.22
Kaya22 0.39 0.4 0.3 0.4 0.35 0.37
PS-NeRF 0.32 0.28 0.24 0.24 0.33 0.28
Kaya23 0.33 0.21 0.22 0.37 0.28 0.28
MVPSNet 0.28 0.3 0.25 0.27 0.25 0.27
Ours 0.22 0.22 0.25 0.16 0.27 0.23

Table 1. Chamfer distance (lower is better) averaged overall all
vertices. Best results. Second best. Since † requires manual
efforts, it is not ranked.

Normal MAE ↓
Methods Bear Budd. Cow Pot2 Read. Aver.
Park16 9.64 12.6 8.23 11.1 9.01 10.1
Li19 † 3.85 11.0 2.82 5.88 6.30 5.97
Kaya22 4.89 12.5 4.44 8.68 6.52 7.41
PS-NeRF 5.48 11.7 5.46 7.65 9.13 7.88
Kaya23 3.24 8.12 3.04 5.63 5.66 5.14
MVPSNet 5.26 14.1 6.28 6.69 8.58 8.18
SDM-UniPS* 4.79 9.60 5.46 5.56 10.1 7.12
Ours 2.70 8.17 3.61 4.11 6.18 4.95

Table 2. Normal MAE (lower is better) averaged over all views.
For reference, the mono-view PS results from SDM-UniPS [8] (*)
are also provided, although it does not provide a full 3D recon-
struction and thus its Chamfer distance cannot be evaluated.
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Figure 4. Reconstructed 3D mesh and corresponding angular error of four objects from the DiLiGenT-MV benchmark.
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Figure 5. F-score (higher is better) as a function of the distance
error threshold, in comparison with other state-of-the-art methods
(a), and disabling individual components of our method (b).

5.3. High curvature and low visibility areas

To highlight the level of details in the 3D reconstructions,
Figs. 1 and 6 provide other qualitative comparisons focusing
on one small part of each object. Ours is the only method
achieving a high fidelity reconstruction on the ear, the knot
and the navel of Buddha, and on the spout of Pot2. To quan-
tify this gain, we also report in Table 3 the average CD and
MAE over all datasets, yet taking into account only the high
curvature and low visibility areas. It is worth noticing that
the CD error of PS-NeRF and MVPSNet on high curvature
areas increases by 36% and 96%, respectively, in compari-
son with that averaged over the entire set of vertices. Ours,
on the contrary, increases by 4% only. Similarly, on low
visibility areas their error increases by 78% and 81%, and
Kaya23 by 46%, while ours increases only by 13%.

All High curv. Low vis.
% Vertices 100% 8.27% 8.70%
Scores CD MAE CD MAE CD MAE
Park16 0.62 10.1 0.88 29.0 0.68 29.6
Li19 † 0.22 5.97 0.51 26.2 0.67 33.3
Kaya22 0.37 7.41 0.45 28.0 0.54 31.7
PS-NeRF 0.28 7.88 0.38 25.8 0.5 24.0
Kaya23 0.28 5.14 0.29 23.6 0.41 20.7
MVPSNet 0.27 8.18 0.53 23.9 0.49 28.9
Ours 0.23 4.95 0.24 23.1 0.26 17.8

Table 3. Chamfer distance and normal MAE (lower is better) on
high curvature and low visibility areas.

5.4. Ablation study

Lastly, we conducted an ablation study, to quantify the im-
pact of some parts of our pipeline. More precisely, we
quantify in Fig. 5b and Table 4 the impact of providing PS-
estimated reflectance maps, in comparison with providing
only normals (“W/o reflectance”). We also evaluate that of
the pixel-wise optimal lighting triplet, in comparison with
using the same arbitrary one for all pixels in one view (“W/o
optimal lighting”). Lastly, we evaluate the impact of dis-
carding the less reliable inputs, in comparison with using
all of them (“W/o uncertainty”). The feature that influences
most the accuracy of the 3D reconstruction is the use of re-
flectance. The other two features also positively impact the
reconstruction, but to a lesser extent.
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Chamfer distance ↓
Methods Bear Budd. Cow Pot2 Read. Aver.
W/o reflect. 0.23 0.22 0.39 0.16 0.31 0.26
W/o opt. l. 0.32 0.22 0.20 0.19 0.27 0.24
W/o uncert. 0.22 0.22 0.27 0.16 0.27 0.23
Ours 0.22 0.22 0.25 0.16 0.27 0.23

Table 4. Chamfer distance (lower is better) averaged overall all
vertices, while disabling individual features of the pipeline (re-
flectance estimation, optimal lighting, and uncertainty evaluation).

5.5. Limitations

Our approach heavily relies on the quality of the PS normal
maps. In our experiments, we used SDM-UniPS [8], which
generally yields high quality results. Yet, it occasionally
yields corrupted normals, leading to inconsistencies across
viewpoints that may result in errors in the reconstruction
(cf. supplementary material). This could be handled in the
future by replacing the PS method by a more robust one. A
second limitation, similar to PS-NeRF, is the computation
time, which falls within the range of 8 to 16 hours for one
object in DiLiGenT-MV. Fortunately, NeuS2 [23], a signif-
icantly faster version of NeuS, will allow us to reduce the
computation time to around ten minutes.

6. Conclusion
We have introduced a neural volumetric rendering method
for 3D surface reconstruction based on reflectance and nor-
mal maps, and applied it to multi-view photometric stereo.
The proposed method relies on a joint re-parameterization
of reflectance and normal as a vector of radiances rendered
under simulated, varying illumination. It involves a single
objective optimization, and it is highly flexible since any ex-
isting or future PS method can be used for constructing the
input reflectance and normal maps. Coupled with a state-
of-the-art uncalibrated PS method, our method reaches un-
precedented results on the public dataset DiLiGenT-MV in
terms of F-score, Chamfer distance and mean angular er-
ror metrics. Notably, it provides exceptionally high quality
results in areas with high curvature or low visibility. Its
main limitation for now is its computational cost, which we
plan to reduce by adapting recent developments within the
NeuS2 framework [23]. Using reflectance uncertainty in ad-
dition to that of normal maps offers room for improvement.
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