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Eu t6 te explicando
Pra te confundir
Eu t6 te confundindo
Pra te esclarecer
T6 iluminado
Pra poder cegar
To6 ficando cego
Pra poder guiar
Suavemente pra poder rasgar
Olho fechado pra te ver melhor
Com alegria pra poder chorar
Desesperado pra ter paciéncia
Carinhoso pra poder ferir
Lentamente pra nao atrasar
Atras da vida pra poder morrer
FEu t6 me despedindo pra poder voltar
- Tom Zé, To



Abstract

The pursuit of creating machines that can think and communicate like humans
has led to the birth of artificial intelligence. Natural language processing is
at the heart of this effort, a subfield concerning developing models that can
process and generate human language. Recent advances in large language
models (LLMs), trained on massive text corpora with neural architectures,
have led to remarkable conversational capabilities. However, as these models
grow in size and complexity, evaluating their ability to generalize across a
wide range of languages, tasks, and linguistic phenomena becomes increasingly
essential. While classic language model benchmarks have helped compare and
develop models, many of them have already reached a point of saturation,
with near-perfect scores achieved. This thesis explores various aspects of
language model evaluation, reflecting the evolving landscape of model devel-
opment and evaluation in the era of LLMs. It investigates the strengths and
weaknesses of current language models, particularly their ability to generalize
compositionally, a fundamental aspect of human language that allows for
creating novel expressions by combining known building blocks.

The main contributions of this thesis are as follows: (1) We develop a method
to migrate a question-answering dataset from one knowledge base to another
and extend it to diverse languages and domains. The resulting benchmark,
Multilingual Compositional Wikidata Questions (MCWQ), reveals language
models lack the ability of cross-lingual compositional generalization. (2) We
identified generalized quantifiers, i.e., words like “all”, “some”, and “most”,
as a significant challenge for understanding natural language and developed a
benchmark to test this specific reasoning ability. (3) We investigate how lan-
guage models reason with the word “respectively” in various learning settings
and demonstrate the challenge they face in generalizing to the long tails of
linguistic constructions (4) We introduce AGIEval, a bilingual benchmark
comprising high-standard official exams, which uncovers the limitations of
LLMs in human-level reasoning tasks. By pushing the boundaries of how we
evaluate LLMs, this thesis provides valuable insights into their strengths and
weaknesses. Ultimately, we argue that true language understanding requires
more than good performance on existing tests. It requires the ability to
generalize and adapt to new challenges, just like humans do.
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Resumé

Jagten pa at skabe maskiner, der kan teenke og kommunikere som mennesker,
har fort til fadslen af kunstig intelligens. Naturlig sprogbehandling er kernen
i denne indsats, et underfelt, der beskaeftiger sig med at udvikle modeller,
der kan behandle og generere menneskeligt sprog. Nylige fremskridt inden
for store sprogmodeller (LLMs), treenet pa massive tekstkorpora med neurale
arkitekturer, har fort til bemeerkelsesveerdige samtaleevner. Men efterhanden
som disse modeller vokser i storrelse og kompleksitet, bliver det stadig vigtigere
at evaluere deres evne til at generalisere pa tveers af en bred vifte af sprog,
opgaver og sproglige faenomener. Mens klassiske sprogmodel benchmarks har
hjulpet med at sammenligne og udvikle modeller, har mange af dem allerede
naet et maetningspunkt, hvor naesten perfekte scores er opnaet. Denne athan-
dling udforsker forskellige aspekter af sprogmodel evaluering, der afspejler
det udviklende landskab af modeludvikling og evaluering i LLM-geraen. Den
undersgger styrkerne og begraensningerne ved nuvaerende sprogmodeller, isser
deres evne til at generalisere kompositionelt. Det er et grundlaeggende aspekt
af menneskeligt sprog, der muligger skabelsen af nye udtryk ved at kombinere
kendte byggesten.

De vigtigste bidrag fra denne afhandling er som fglger: (1) Vi udvikler en
metode til at migrere et spgrgsmal-svar dataset fra en vidensbase til en anden
og udvider det til forskellige sprog og domeener. Den resulterende benchmark,
Multilingual Compositional Wikidata Questions (MCWQ), afslorer begraen-
sningerne af sprogmodeller i tveer-sproglig kompositionel generalisering. (2)
Vi identificerede generaliserede kvantifikatorer, dvs. ord som “alle”, “nogle”
og “de fleste”, som en betydelig udfordring for forstaelsen af naturligt sprog
og udviklede en benchmark til at teste denne specifikke reesonneringsevne. (3)
Vi undersgger, hvordan sprogmodeller raesonnerer med ordet “henholdsvis” i
forskellige leeringsindstillinger og demonstrerer den udfordring, de star over
for i at generalisere til de lange haler af sproglige konstruktioner. (4) Vi
introducerer AGIEval, en tosproget benchmark bestaende af hgjtstaende
officielle eksamener, som afslgrer begraensningerne af LLMs i menneskelige rae-
sonneringsopgaver. Ved at skubbe graenserne for, hvordan vi evaluerer LLMs,
giver denne athandling veerdifulde indsigter i deres styrker og svagheder. I
sidste ende argumenterer vi for, at segte sprogforstaelse kreever mere end god
praestation pa eksisterende tests. Det kraever evnen til at generalisere og
tilpasse sig nye udfordringer, ligesom mennesker gor.
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Few fields have captured the imagination as profoundly as artificial intelli-
gence in human history. In 1950, Alan Turing proposed the Turing test, a
thought experiment to decide whether a machine exhibits human-like intelli-
gence (Turing, 1950). It inspired people to imagine a future where machines
can act like humans. At the Dartmouth Workshop in 1956, AI was coined as a
research discipline “to proceed on the basis of the conjecture that every aspect
of learning or any other feature of intelligence can in principle be so precisely
described that a machine can be made to simulate it” (McCarthy et al.,
1956). AI has been driving computer science development for more than half
a century, from mechanical inventions and mathematical theories to modern
computing theory and technology (Russell and Norvig, 2016). Moreover, Al
has transcended its field to become a profound artistic inspiration, birthing
countless novels, films, and other creative works (Boden, 2016; Elgammal
et al., 2017). Humans have sparked thinking and discussion about the future
of Al in society.

Language, a fundamental element in our life, allows us to express our
thoughts and experiences to others (Pinker, 2003; Tomasello, 2010). It is
our primary means of storing and sharing knowledge (Clark, 2006; Vygotsky,
2012). The Turing test is essentially a language test; therefore, natural
language processing (NLP) is one of the most critical areas in Al. It focuses
on developing models that can communicate like humans. The fundamental
goal of NLP researchers is to equip computers to process, understand, and
generate text (Jurafsky and Martin, 2000). This goal requires addressing
the inherent complexity of human language, including but not limited to
its syntactic structure, semantic ambiguity, and contextual dependencies
(Manning and Schutze, 1999).

Historically, two mainstream approaches have emerged in modelling lan-
guages: symbolic and connectionist. Symbolic approaches are rooted in formal
linguistics, arguing that language can be effectively modelled through explicit
rules and symbolic representations, aiming to encapsulate the grammatical
structure and semantic relations inherent in language (Chomsky, 1957; Woods,
1970; Winograd, 1971; Schank and Abelson, 1978) In contrast, connectionist
approaches are inspired by the neural structure of the human brain and use
artificial neural networks to learn statistical patterns and representations from
large amounts of language data (Seidenberg and McClelland, 1989; Elman,
1990; Bengio et al., 2000). Despite the carly efforts by connectionists, the
complexity of human language remains an obstacle to developing computa-
tional models that can generate fluent and coherent text due to historical
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limitations in computing power and hardware.

However, the renewed focus on deep learning radically shifted the Al
research paradigm (Krizhevsky et al., 2012). The Transformer architecture
(Vaswani et al., 2017) inspired by the human attention mechanism has made
large-scale model training feasible. Transformer-based models demonstrate
excellent performance on assorted benchmarks (Devlin et al., 2019). Unlike
early efforts in solving tasks individually, they are general language models
(LMs) that can tackle multiple language tasks in a unified approach. The
2022 release of ChatGPT (OpenAl, 2022), with its exceptional conversational
abilities, has captivated global attention. Its coherent and context-aware
dialogue capacity has opened new possibilities for integrating Al across diverse
fields, suggesting a future of seamless human-computer interaction (Bubeck
et al., 2023).

The emergence of large language models (LLMs) undoubtedly marks an
important milestone in Al and NLP. However, as these models evolve in
sophistication and find real-world applications, their impact on human life is
becoming increasingly profound and challenging to predict. Proactive and
rigorous evaluation becomes increasingly essential. Researchers must actively
evaluate the performance, reliability, and security of these systems (Sculley
et al., 2015; Mitchell et al., 2019).

During development, the evaluation of language models focuses on metrics
such as perplexity, which measures how well a model predicts the next word
in a sequence based on the preceding context (Jelinek et al., 1977). While
perplexity provides a helpful benchmark for comparing different models, it does
not fully capture the nuances of human language understanding and generation
(Ethayarajh and Jurafsky, 2020; Sai et al., 2022). As language models have
evolved to tackle more complex tasks, such as question answering, text
summarization, and dialogue generation, the need for more carefully designed,
specialized evaluations is apparent to account for different capabilities and
usage scenarios of language models (Chang et al., 2024).

The introduction of standardized benchmarks, such as the Penn Treebank
(Marcus et al., 1993) and the CoNLL-2003 shared task (Tjong Kim Sang and
De Meulder, 2003), has been significant in language model evaluation. These
benchmarks have become widely adopted in the NLP community and made a
lasting impact on LM development.

Recently, there has been a growing interest in evaluating neural networks
and language models on their compositional generalization abilities (Fodor
and Pylyshyn, 1988). Compositional generalization refers to the ability to
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understand and generate novel combinations from known elements (Lake
and Baroni, 2018). It is a vital aspect of human language, as it allows
us to understand and produce infinite valid sentences using a finite set of
linguistic building blocks (Chomsky, 1965). Researchers have developed tasks
to evaluate the compositional generalization abilities of models (Lake and
Baroni, 2018), but these tasks are primarily English-centric.

In fact, the majority of LM benchmarks arc in English (Sogaard, 2022).
Moreover, LMs nowadays are pre-trained on English-centric datasets, such as
Common Crawl (Kreutzer et al., 2022). There is a significant performance gap
between high-resource and low-resource languages. Developing fair models
across linguistic groups is crucial (Joshi et al., 2020b). A critical step in
this direction is to create benchmarks that assess cross-lingual compositional
generalization abilities. In this dissertation, we introduced a dataset termed
Multilingual Compositional Wikidata Questions (MCWQ), a benchmark for
measuring compositional generalization in semantic parsing (SP) for knowl-
edge base question answering (KBQA) over Wikidata in four typologically
diverse languages. We discover that pretrained multilingual LMs can achieve
similar within-language generalization performances but struggle to transfer
and generalize compositionally across languages.

Linguists and philosophers are among the first to discuss the composi-
tionality nature of languages (Fodor and Pylyshyn, 1988; Partee et al., 1995).
Linguists analyze languages by describing the structure of languages at var-
ious levels, such as syntax (sentence structure), semantics (meaning), and
pragmatics (language use in context) (Chomsky, 1965; Lyons, 1977; Levinson,
1983). The theories have been leveraged for building early NLP models like
rule-based automated translation systems (Nagao, 1984; Nirenburg, 1987) or
dialogue agents (Weizenbaum, 1966; Bobrow et al., 1977). Given the swift
advancements in LLMs, linguistics has shifted from its central role in NLP
research. However, linguistic knowledge remains valuable and essential for
understanding language formalisms in LLMs and analogizing their language
capabilities compared to humans (Bender and Koller, 2020).

Whether LMs display human-like compositionality in language generation
is a critical question. In this thesis, we investigate two linguistic phenom-
ena, generalized quantifiers (GQs; Barwise and Cooper, 1981) and respective
readings (Gawron and Kehler, 2004), as a gateway to the question. Quanti-
fier words, such as “some”, “all”, and “most”, are abstract, important and
vary across languages. Linguists proposed generalized quantifier theory to
account for its complexity in a logical approach (Mostowski, 1957; Lindstrom,
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1966). We analyze how GQs are represented in multilingual natural language
understanding (NLU) benchmarks and how their occurrence at test time
contributes to errors by LMs. We find that GQs systematically cause perfor-
mance drops for LMs even though they are exposed to GQs extensively during
training. Respective reading is another interesting linguistic phenomenon,
which requires various levels of reasoning abilities, such as syntactic-semantic
and commonsense-world knowledge. We create challenge datasets related to
respective readings and investigate whether LMs can compositionally gener-
alize from simple to complex linguistic constructions and from synthetic to
naturally occurring datasets.

Traditional benchmarks have guided LM development a long way. They are
typically created bottom-up, targeting specific domains or abilities. However,
they are often not directly associated with real-world scenarios. Humans’
advanced reasoning abilities in complex tasks demonstrate our capacity to
apply learned knowledge in new contexts. An ideal LLM should be able to
perform human-level complex reasoning. In this thesis, we introduce AGIEval,
a benchmark derived from 20 official, public, and high-standard admission and
qualification exams intended for general human test-takers, such as general
college admission tests, math competitions, and lawyer qualification exams.
AGIEval targets multiple dimensions of model capabilities and underscores
the importance of evaluating LLMs in the context of human-level tasks. Our
findings reveal these models’ understanding, knowledge utilization, reasoning,
and calculation limitations.

1.1 Background

1.1.1 Benchmarking Language Models

Language model benchmarking has become essential in NLP system devel-
opments. As LMs progress rapidly, it is important to have benchmarks that
assess their capabilities across different tasks, languages, and domains. One of
the primary goals of LM benchmarking is to establish a standard of evaluation
metrics and datasets that researchers can use to compare models objectively.
This standardization ensures consistency and robustness in LM evaluation,
regardless of the model architectures or training methodologies. Benchmarks
can help researchers discover limitations and prioritize goals in developing
language models. LM evaluation targets various language capabilities, from
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natural language understanding inference to reasoning and generation.

The General Language Understanding Evaluation benchmark (GLUE;
Wang et al., 2018) is one of the most recognized benchmarks. It comprises
nine existing tasks, including single-sentence classification, natural language
inference and similarity detection to provide a holistic view of model capabili-
ties. GLUE has drawn the attention of researchers, which has consequently
pushed LM’s progress. However, new models have surpassed human-level
performance in just over a year. The following-up benchmark, SuperGLUE
(Wang et al., 2019), was introduced with increased challenging tasks for LMs.
The benchmark requires more complex reasoning abilities, e.g., coreference
resolution, causal reasoning, and multi-hop question answering. SuperGLUE
has pushed the boundaries of more advanced language model development
(Raffel et al., 2020; Brown et al., 2020).

Multilingual evaluation is another essential part of LM benchmarking. As
LMs are being applied in various countries and regions, developing models
that can process and generate multilingual texts becomes crucial. Benchmarks
including XNLI (Conneau et al., 2018), XQuAD (Artetxe et al., 2020b), and
XTREME (Hu et al., 2020) have been proposed to assess their multilingual
and cross-lingual transfer capabilities.

Model developments rely on benchmarking. This requires creating more
datasets targeting LLMs’ increasingly sophisticated abilities. For example,
the recently introduced Beyond the Imitation Game benchmark (BIG-bench;
Srivastava et al., 2023) assesses the performance of LLMs on 204 tasks that
require complex reasoning abilities and common-sense understanding. The
Massive Multitask Language Understanding benchmark (MMLU; Hendrycks
et al., 2020) has been one of the most popular benchmarks for LLM assessment
and development in recent years. It spans 57 academic subjects, including
mathematics, philosophy, law, and medicine.

1.1.2 Semantic Parsing and Compositionality

Vast amounts of data are stored in structured or semi-structured knowledge
bases in today’s world. Therefore, developing technologies that can access
them efficiently is important. Semantic parsing maps natural language utter-
ances to formal meaning representations, such as logical forms or structured
queries. (Kamath and Das, 2019). However, a key challenge in semantic
parsing is compositionality, which is the ability to understand the meaning
of complex expressions by combining the meanings of their parts (Lake and
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Baroni, 2018). Humans exhibit strong compositional reasoning abilities, un-
derstanding novel combinations of previously learned concepts. In contrast,
neural models often struggle with compositional generalization, failing to
correctly interpret new compositions of familiar elements.

Benchmarking efforts in semantic parsing have aimed to test compositional
generalization in LLMs. For example, the SCAN task (Lake and Baroni,
2018) requires models to translate commands presented in simplified natural
language into a sequence of actions. An ideal model should be able to interpret
new commands like “jump twice and walk thrice” when only exposed to
primitive commands, i.e., single elements like “jump”, “twice” and “walk”,
during training. By using advanced neural architectures such as hierarchical
poset decoding (Guo et al., 2020), span representation (Herzig and Berant,
2021) and graph encoding (Gai et al., 2021), researchers have achieved perfect
scores on the dataset. However, more realistic semantic parsing benchmarks
with larger vocabularies still pose significant challenges (Drozdov et al., 2023).

COGS (Kim and Linzen, 2020) is a semantic parsing dataset from English
sentences to logical forms. The training and evaluation splits differ in their
properties, which can only be addressed by compositional generalization; these
include new combinations of familiar syntactic structures or new combina-
tions of familiar words and familiar structures. The Compositional Freebase
Questions (CFQ; Keysers et al., 2020) is another semantic parsing dataset
targeting the evaluation of compositional generalization. The task is to parse
English questions into SPARQL queries executable on Freebase. The instances
in the dataset can be broken down into atoms and compounds so that the
train-test split can satisfy specific compositionality challenges. Nevertheless,
none of the existing works study the multilingual and cross-lingual aspects of
compositional generalization in neural networks and language models.

1.1.3 Generalized Quantifier

Quantifier words have been a subject of extensive study in both logic and
linguistics for over a century (Frege, 1879; Westerstahl, 1989; Peters and West-
erstahl, 2006). Quantifier words express relationships between sets of entities,
events, and properties. Generalized quantifiers (GQs) are a key concept in
formal semantics that allow for a more precise and expressive representation
of natural language quantification. GQs generalize the universal (V) and
existential (3) quantifiers of first-order logic (Mostowski, 1957; Lindstrém,
1966; Montague, 1973; Bach et al., 1995; Keenan and Paperno, 2012).
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Formally, a generalized quantifier is a relation between two sets. For exam-
ple, in the sentence “Most students took the exam”, “most” is the gencralized
quantifier, “students” is the restrictor, and "took the exam” is the scope.
The meaning of this sentence can be represented as: “Most( x.Student(x),
x.TookExam(x))”. This logical form expresses that the set of individuals who
are students and took the exam is larger than the set of individuals who are
students and did not take the exam.

While the study of generalized quantifiers has its roots in English and
other European languages, these linguistic constructions are found across a
wide range of typologically diverse languages. Cross-linguistic research on
generalized quantifiers has revealed universal patterns and language-specific
variations in how quantification is expressed and interpreted (Fintel and
Matthewson, 2008). However, languages also exhibit diversity in their quanti-
fier systems. For example, some languages, like English, have a rich set of
lexical quantifiers, while Mandarin Chinese relies more heavily on numeral
classifiers and adverbial expressions to convey quantification (Cheng, 2009).

Evaluating LMs’ understanding of GQs across languages poses additional
challenges. Models need to capture the core semantic properties of quantifiers
and the language-specific ways in which they are expressed and interpreted.
Multilingual benchmarks like XNLI include some examples testing quantifier
reasoning, but more targeted cross-linguistic evaluation is needed.

1.1.4 Respective Readings

Respective readings are interpretations that arise in specific linguistic con-
structions, particularly those involving coordination and plural entities. In
a respective reading, elements of one set of entities are mapped to elements
of another set one-to-one, often based on their order or some other salient
correspondence (Gawron and Kehler, 2004; Chaves, 2012). For example, in the
sentence “Niels Bohr and Kurt Cobain were born in Copenhagen and Seattle,
respectively”; the first conjunct in the subject (Niels Bohr) corresponds to the
first conjunct in the object (born in Copenhagen). The second conjunct in the
subject (Kurt Cobain) corresponds to the second conjunct in the object (born
in Seattle). Respective readings pose challenges for compositional semantics
because they require mechanisms for establishing and interpreting mappings
between sets of entities that go beyond standard notions of predicate-argument
structure and scope (Dalrymple and Kehler, 1995; Okada, 1999).

In NLP, respective readings are relevant for tasks that require deep natural
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language understanding, such as question answering and natural language
inference. Existing benchmarks do not explicitly target respective construc-
tions but may include some relevant examples. Developing more targeted
datasets and probing techniques for respective readings could help shed light
on how LLMs capture this type of semantic mapping and provide insights
into the generalizability of LMs to complex linguistic constructions.

1.2 Contributions

This dissertation contributes to the field by providing diverse perspectives
on language model evaluation through the lens of generalizability across
languages, tasks and linguistic constructions. We aim to provide a more
comprehensive understanding of current models’ progress, limitations, and
potential. We highlight the generalization limitations of LMs, demonstrate
the continued relevance of linguistic theories in understanding and evaluating
LLMs, and emphasize the need for designing benchmarks that are closely
aligned with humans.

Multilingual Compositional Generalization In Chapter 2, we propose
a method to automatically migrate a KBQA dataset to another knowledge
base (KB) and extend it to diverse languages and domains. Using this method,
we create a multilingual, parallel dataset of question-query pairs grounded in
Wikidata. We call the dataset Multilingual Compositional Wikidata Ques-
tions (MCWQ) and use it to analyze the compositional generalization of
neural networks and language models in four languages: Hebrew, Kannada,
Chinese and English. In our monolingual experiments, we find similar perfor-
mances for within-language generalization. However, in zero-shot cross-lingual
experiments, we show that compositional generalization from English to other
languages fails even with pretrained multilingual encoders.

Generalized Quantifier Reasoning In Chapter 3, we examined the
challenges NLU models face with generalized quantifiers (GQs). Specifically,
we examined GQs in multilingual NLU tasks and proposed a new Natural
Language Inference (NLI) dataset for GQ reasoning. We found that GQs cause
significant performance drop for NLU models, particularly when combined
with other logical operators or when multiple GQs co-occur, despite their
frequent occurrence in pertaining data. We propose a new dataset called
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GQNLI to facilitate researchers in studying and improving model performance
on generalized quantifier reasoning.

Compositionality over Linguistic Constructions: a Case Study of
Respective Readings In Chapter 4, we investigated LMs’ generalizability
of linguistic phenomena through the lens of respective readings. We proposed
two datasets, WikiResNLI (a controlled synthetic dataset) and NatResNLI
(a naturally occurring dataset), to probe their ability in zero-shot and few-
shot settings. We show that LMs can generalize effectively in both few-
shot fine-tuning and in-context learning when the word “respectively” is
present. However, more training instances are required when the reading
is implicitly evoked. It takes significantly more instances to generalize to
naturally occurring datasets than humans. In both studies, we demonstrate
that LMs lack generalizability to linguistic constructions unseen in their
training data.

Benchmarking Human-level Complex Reasoning In Chapter 5, we
introduced AGIEval, a benchmark designed to assess the general abilities
of LLLMs, emphasizing human-level reasoning and real-world relevance. The
benchmark comprises high-standard official exams in both English and Chi-
nese, including general college admission tests (SAT, Gaokao, GRE), law
school admission exams (LSAT), lawyer qualification tests, graduate man-
agement admission tests (GMAT), civil service examinations, and math
competitions (AMC, AIME). Our evaluation indicates impressive perfor-
mance on human-centric exams by LLMs. However, our qualitative analysis
reveals they exhibit limitations in understanding, knowledge, reasoning, and
calculation.
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Compositional Generalization in

Multilingual Semantic Parsing
over Wikidata

Abstract

Semantic parsing (SP) allows humans to leverage vast knowledge resources
through natural interaction. However, parsers are mostly designed for and
evaluated on English resources, such as CFQ (Keysers et al., 2020), the current
standard benchmark based on English data generated from grammar rules
and oriented towards Freebase, an outdated knowledge base. We propose a
method for creating a multilingual, parallel dataset of question-query pairs,
grounded in Wikidata. We introduce such a dataset, which we call Multilingual
Compositional Wikidata Questions (MCWQ), and use it to analyze the
compositional generalization of semantic parsers in Hebrew, Kannada, Chinese
and English. While within-language generalization is comparable across
languages, experiments on zero-shot cross-lingual transfer demonstrate that
cross-lingual compositional generalization fails, even with state-of-the-art
pretrained multilingual encoders. Furthermore, our methodology, dataset
and results will facilitate future research on SP in more realistic and diverse
settings than has been possible with existing resources.
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Lang. Question

En Did Lohengrin ’s ‘male actor marry Margarete Joswig

He M0 0NN DY [ANNN [0N7 7Y M3 N [PRY N DN
Ky WeedoN™ o330 @da Ju Jmedaedd dreredess eoednt

Zh  Lohengrin ] 5 A %% T Margarete Joswig M5

SPARQL Query:
ASK WHERE { 7x0 ‘wdt:P453 wd:Q50807639 . 7x0 wdt:P21 wd:Q6581097 . 7x0 wdt:P26

wd:Q1560129 . FILTER ( 7x0 != wd:Q1560129 )}

Figure 2.1: An example from the MCWQ dataset. The question in every
language corresponds to the same Wikidata SPARQL query, which, upon
execution, returns the answer (which is positive in this case).

2.1 Introduction

Semantic parsers grounded in knowledge bases (KBs) enable knowledge base
question answering (KBQA) for complex questions. Many semantic parsers
are grounded in KBs such as Freebase (Bollacker et al., 2008), DBpedia
(Lehmann et al., 2015) and Wikidata (Pellissier Tanon et al., 2016), and
models can learn to answer questions about unseen entities and properties
(Herzig and Berant, 2017; Cheng and Lapata, 2018; Shen et al., 2019; Sas
et al., 2020). An important desired ability is compositional generalization—
the ability to generalize to unseen combinations of known components (Oren
et al., 2020; Kim and Linzen, 2020).

One of the most widely used datasets for measuring compositional gen-
eralization in KBQA is CFQ (Compositional Freebase Questions; Keysers
et al., 2020), which was generated using grammar rules, and is based on
Freebase, an outdated and unmaintained English-only KB. While the need
to expand language technology to many languages is widely acknowledged
(Joshi et al., 2020Db), the lack of a benchmark for compositional generalization
in multilingual semantic parsing (SP) hinders KBQA in languages other
than English. Furthermore, progress in both SP and KB necessitates that
benchmarks can be reused and adapted for future methods.

Wikidata is a multilingual KB, with entity and property labels in a
multitude of languages. It has grown continuously over the years and is an
important complement to Wikipedia. Much effort has been made to migrate
Freebase data to Wikidata (Pellissier Tanon et al., 2016; Diefenbach et al.,
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CFQ field Content

questionWithBrackets Did [‘Murder’ Legendre]’s male actor marry [Lillian Lugosi]
questionPatternModEntities  Did MO ’s male actor marry M2

questionWithMids Did m.0h4y854 ’s male actor marry m.0Ohpnx3b

sparql SELECT count(*) WHERE { 7x0 ns:film.actor.film/ns:film.performance.

character ns:m.0h4y854 . 7x0 ns:people.person.gender
ns:m.05zppz . ?x0 ns:people.person.spouse_s/ns:fictional_universe.
marriage_of_ fictional_characters.spouses ns:m.Ohpnx3b .
FILTER ( ?x0 !'= ns:m.Ohpnx3b )}

sparqlPatternModEntities SELECT count(*) WHERE { ?x0 ns:film.actor.film/ns:film.performance.
character MO . 7x0 ns:people.person.gender ns:m.05zppz . ?7x0
ns:people.person.spouse_s
/ns:fictional_universe.marriage_of_fictional_characters.spouses
M2 . FILTER ( 7x0 != M2 )}

Table 2.1: Selected fields in a CFQ entry. questionWithBrackets
is the full English question with entities surrounded by brackets.
questionPatternModEntities is the question with entites replaced by place-
holders. In questionWithMids, the entity codes (Freebase machine IDs;
MIDs) are given instead of their labels. sparql is the fully executable
SPARQL query for the question, and in sparqlPatternModEntities the
entity codes are replaced by placeholders.

2017; Hogan et al., 2021) but only in English. Investigating compositional
generalization in cross-lingual SP requires a multilingual dataset, a gap we
address in this work.

We leverage Wikidata and CFQ to create Multilingual Compositional
Wikidata Questions (MCWQ), a new multilingual dataset of compositional
questions grounded in Wikidata. Beyond the original English, an Indo-
European language using the Latin script, we create parallel datasets of
questions in Hebrew, Kannada and Chinese, which use different scripts and
belong to different language families: Afroasiatic, Dravidian and Sino-Tibetan,
respectively. Our dataset includes questions in the four languages and their
associated SPARQL queries.

Our contributions are:

o a method to automatically migrate a KBQA dataset to another KB
and extend it to diverse languages and domains,

e a benchmark for measuring compositional generalization in SP for
KBQA over Wikidata in four typologically diverse languages,

« monolingual experiments with different SP architectures in each of the
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four languages, demonstrating similar within-language generalization,
and

o zero-shot cross-lingual experiments using pretrained multilingual en-
coders, showing that compositional generalization from English to the
other languages fails.

Our code for generating the dataset and for the experiments, as well
as the dataset itself and trained models, are publicly available on https:
//github.com/coastalcph/seq2sparql.

2.2 Limitations of CFQ

CFQ (Compositional Freebase Questions; Keysers et al., 2020) is a dataset for
measuring compositional generalization in SP. It targets the task of parsing
questions in English into SPARQL queries executable on the Freebase KB
(Bollacker et al., 2008). CF(Q contains questions as in Table 2.1, as well as
the following English question (with entities surrounded by brackets):

“Was [United Artists| founded by [Mr. Fix-it]’s star, founded by
[D. W. Griffith], founded by [Mary Pickford], and founded by
[The Star Boarder|’s star?”

Parsers trained on CFQ transform these questions into SPARQL queries,
which can subsequently be executed against Freebase to answer the original
questions (in this case, “Yes”).

CFQ uses the Distribution-Based Compositionality Assessment (DBCA)
method to generate multiple train-test splits with maximally divergent exam-
ples in terms of compounds, while maintaining a low divergence in terms of
primitive elements (atoms). In these mazimum compound divergence (MCD)
splits, the test set is constrained to examples containing novel compounds,
i.e., new ways of composing the atoms seen during training. For measuring
compositional generalizations, named entities in the questions are anonymized
so that models cannot simply learn the relationship between entities and prop-
erties. CFQ contains 239,357 English question-answer pairs, which encompass
49,320 question patterns and 34,921 SPARQL query patterns. Table 2.1
shows selected fields of an example in CFQ. In their experiments, Keysers
et al. (2020) trained semantic parsers using several architectures on various
train-test splits. They demonstrated strong negative correlation between
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models’ accuracy (correctness of the full generated SPARQL query) and
compound divergence across a variety of system architectures - all models
generalized poorly in the high-divergence settings, highlighting the need to
improve compositional generalization in SP.

By the time CFQ was released, Freebase had already been shut down.
On that account, to our knowledge, there is no existing SP dataset targeting
compositional generalization that is grounded in a currently usable KB, which
contains up-to-date information. We therefore migrate the dataset to such a
KB, namely Wikidata, in §2.3.

Morcover, only few studies have evaluated semantic parsers’ performance
in a multilingual setting, due to the scarcity of multilingual KBQA datasets
(Perevalov et al., 2022b). No comparable benchmark exists for languages other
than English, and it is therefore not clear whether results are generalizable
to other languages. Compositional generalization in typologically distant
languages may posc completely different challenges, as these languages may
have different ways to compose meaning (Evans and Levinson, 2009). We
create such a multilingual dataset in §2.4, leveraging the multilinguality of
Wikidata.

2.3 Migration to Wikidata

Wikidata is widely accepted as the replacement for Freebase. It is actively
maintained and represents knowledge in a multitude of languages and domains,
and also supports SPARQL. Migrating Freebase queries to Wikidata, however,
is not trivial, as there is no established full mapping between the KBs’
properties and entities. An obvious alternative to migration would be a
replication of the original CF(Q generation process but with Wikidata as the
KB. Before delving into the details of the migration process, let us motivate
the decision not to pursue that option: the grammar used to generate CFQ
was not made available to others by Keysers et al. (2020) and is prohibitively
too complex to reverse-engineer. Our migration process, on the other hand,
is general and can similarly be applied for migrating other datasets from
Freebase to Wikidata. Finally, many competitive models with specialized
architecture have been developed for CFQ (Guo et al., 2020; Herzig et al.,
2021; Gai et al., 2021). Our migrated dataset is formally similar and facilitates
their evaluation and the development of new methods.
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Lang. MCWQ field Content
En questionWithBrackets Did [Lohengrin] ’s male actor marry [Mar-
garcte Joswig]
questionPatternModEntities Did MO ’s male actor marry M2
He questionWithBrackets 07AN] DY [NNNN [[017] 79 230 [PRYN DRN
[vor
questionPatternModEntities M2 Dy |hnnin MO 7w M2aN [PNWN DNN

questionWithBrackets [Seeagin®] wad Jobd ®ts Jnedaecs [SRrrdees® z%’.rac;"qzn‘]

Kn ooz
questionPatternModEntities heis gl bl e Eﬂgij d)djaiuimﬁgadm:;
7h questionWithBrackets [Lohengrin| ] 5 R #5745 T [Margarete
Joswig]lg
questionPatternModEntities MOH] 515 A FIM 245 1505
sparql ASK WHERE { ?x0 wdt:P453 wd:Q50807639

. ?7x0 wdt:P21 wd:Q6581097 . ?7x0
wdt:P26 wd:Q1560129 . FILTER ( 7x0
'= wd:Q1560129 )}
sparqlPatternModEntities ASK WHERE { 7x0 wdt:P453 MO . 7x0
wdt:P21 wd:Q6581097 . 7x0 wdt:P26 M2
. FILTER ( ?x0 != M2 )}
recursionDepth 20
expectedResponse True

Table 2.2: The MCWQ example from Figure 2.1. The Fnglish question is
generated from the CFQ entry in Table 2.1 by the migration process described
in §2.3.3, and the questions in the other languages are automatically trans-
lated (§2.4.1). The questionWithBrackets, questionPatternModEntities,
sparqgl and sparqlPatternModEntities fields are analogous to the CFQ
ones. recursionDepth (which quantifies the question complexity) and
expectedResponse (which is the answer returned upon execution of the
query) are copied from the CFQ entry.

2.3.1 Property Mapping

As can be seen in Table 2.1, the WHERE clause in a SPARQL query consists of
a list of triples, where the second element in each triple is the property, e.g.,
ns:people.person.gender. CFQ uses 51 unique properties in its SPARQL
queries, mostly belonging to the cinematography domain. These Freebase
properties cannot be applied directly to Wikidata, which uses different prop-
erty codes known as P-codes, e.g., P21. We therefore need to map the Freebase
properties into Wikidata properties.

As a first step in the migration process, we check which Freebase properties
used in CFQ have corresponding Wikidata properties. Using a publicly
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available repository providing a partial mapping between the KBs,! we identify
22 out of the 51 Freebase properties in CFQ can be directly mapped to
Wikidata properties.? The other 29 require further processing:

Fourteen properties are the reverse of other properties, which do not have
Wikidata counterparts. For example, ns:film.director.film is the reverse
of ns:film.film.directed_by, and only the latter has Wikidata mapping,
P57. We resolve the problem by swapping the entities around the property.

The other 15 properties deal with judging whether an entity has a certain
quality. In CFQ, ?x1 a ns:film.director asks whether 7x1 is a director.
Wikidata does not contain such unary properties. Therefore, we need to
treat these CFQ properties as entities in Wikidata. For example, director is
wd :Q2526255, so we paraphrase the query as 7x1 wdt:P106 wd:Q2526255,
asking whether ?7x1’s occupation (P106) is director. In addition, we substitute
the art director property from CFQ with the composer property because
the former has no cquivalent in Wikidata. Finally, we filter out queries
with reverse marks over properties, e.g., ?7x0 “ns:people.person.gender
MO, due to incompatibility with the question generation process (§2.3.2).

After filtering, we remain with 236,304 entries with only fully-mappable
properties—98.7% of all entries in CFQ. We additionally make necessary
SPARQL syntax modification for Wikidata.?

2.3.2 Entity Substitution

A large number of entities in Freebase are absent in Wikidata. For example,
neither of the entities in Table 2.1 exist in Wikidata. Furthermore, unlike the
case of properties, to our knowledge, there is no comprehensive or even partial
mapping of Freebase entity IDs (i.e., Freebase machine IDs, MIDs, such as
s:m.05zppz) to Wikidata entity IDs (i.e., Q-codes, such as wd:Q6581097).
We replicate the grounding process carried out by Keysers et al. (2020),
substituting entity placcholders with compatible entities codes by executing
the queries against Wikidata:

1. Replacing entity placeholders with SPARQL variables (e.g., 7v0), we

"https://www.wikidata.org/wiki/Wikidata:WikiProject_Freebase/Mapping

2While some Freebase properties have multiple corresponding Wikidata properties, we
consider a property mappable as long as it has at least one mapping.

3CFQ uses SELECT count(*) WHERE to query yes/no questions, but this syntax is not
supported by Wikidata. We replace it with ASK WHERE, intended for boolean queries.
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obtain queries that return sets of compatible candidate entity assign-
ments instead of simply an answer for a given assignment of entities.

2. We add constraints for the entities to be distinct, to avoid nonsensical
redundancies (e.g., due to conjunction of identical clauses).

3. Special entities, representing nationalities and genders, are regarded
as part of the question patterns in CFQ (and are not replaced with
placcholders). Before running the queries, we thus replace all such
entities with corresponding Wikidata Q-codes (instead of variables).

4. We execute the queries against the Wikidata query service* to get the
satisfying assignments of entity combinations, with which we replace
the placeholders in sparqlPatternModEntities fields.

5. Finally, we insert the Q-codes into the English questions in the
questionWithMids field and the corresponding entity labels into the
questionWithBrackets to obtain the English questions for our dataset.

Along this process, 52.5% of the queries have at least one satisfying assign-
ment. The resulting question-query pairs constitute our English dataset. They
maintain the SPARQL patterns in CFQ, but the queries are all executable
on Wikidata.

We obtain 124,187 question-query pairs, of which 67,523 are yes/no
questions and 56,664 are wh- questions. The expected responses of yes/no
questions in this set are all “yes” due to our entity assignment process. To
make MCW(Q comparable to CFQ, which has both positive and negative
answers, we sample alternative queries by replacing entities with ones from
other queries whose preceding predicates are the same. Our negtive sampling
results in 30,418 questions with “no” answers.

2.3.3 Migration Example

Consider the SPARQL pattern from Table 2.1:

SELECT count (x) WHERE { ?x0 ns:film.actor.film /ns: film
.performance.character MO . 7?x0 ns:people.person.
gender ns:m.05zppz . 7x0 ns:people.person.spouse_s/

‘https://query.wikidata.org/
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ns: fictional universe.

marriage_of_fictional characters.spouses M2 .
FILTER ( 7x0 != M2 )}

We replace the properties and special entities (here the gender male: ns:m.05zppz
— wd:Q6581097):

SELECT count (x) WHERE {7x0 wdt:P453 MO .7x0 wdt:P21 wd
: Q6581097 . 7x0 wdt:P26 M2 . FILTER ( 7x0 != M2 )}

Then we replace placeholders (e.g., MO) with variables and add constraints for
getting only one assignment (which is enough for our purposes) with distinct
entities. The resulting query is:

SELECT ?v0 7vl1 WHERE {7x0 wdt:P453 7v0. ?x0 wdt:P21 wd
:Q6581097. ?x0 wdt:P26 ?vl. FILTER ( 7x0 != ?vl ).
FILTER ( ?v0 != ?7v1 )} LIMIT 1

We execute the query and get wd: Q50807639 (Lohengrin) and wd:Q1560129
(Margarete Joswig) as satisfying answers for vO and v1 respectively. Note
that these are different from the entities in the original question (‘Murder’
Legendre and Lillian Lugosi)—in general, there is no guarantee that the same
entities from CFQ will be preserved in our dataset. Then we put back these
answers into the query, and make necessary SPARQL syntax modification for
Wikidata. The final query for this entry is:

ASK WHERE {7x0 wdt:P453 wd:Q50807639. 7x0 wdt:P21 wd:
Q6581097 . ?x0 wdt:P26 wd: Q1560129 . FILTER ( 7x0
lI= wd: Q1560129 )}

As for the English question, we map the Freebase entities in the questionWithMids
field with the labels of the obtained Wikidata entities. Therefore, the English
question resulting from this process is:

Did [Lohengrin] ’s male actor marry [Margarete Joswig]?

2.3.4 Dataset Statistics

We compare the statistics of MCWQ with CFQ in Table 2.3. MCWQ has
29,312 unique question patterns (mod entities, verbs, etcs), i.e., 23.6% of
questions cover all question patterns, compared to 20.6% in CFQ. Furthermore,
MCWQ has 86,353 unique query patterns (mod entities), resulting in 69.5%
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Figure 2.2: Complexity distribution of the MCD; split of CFQ (left) and
MCWQ (right).

CFQ MCWQ
Unique questions 239,357 124,187
Questions patterns 49,320 (20.6%) 29,312 (23.6%)
Unique queries 228,149 (95.3%) 101,856 (82%)
Query patterns 123,262 (51.5%) 86,353 (69.5%)

Yes/no questions 130,571 (54.6%) 67,523 (54.4%)
Wh- questions 108,786 (45.5%) 56,664 (45.6%)

Table 2.3: Dataset statistics comparison for MCWQ and CFQ. Percentages
are relative to all unique questions. Questions patterns refer to mod entities,
verbs, etc. while query patterns refer to mod entities only.

of instances covering all SPARQL patterns, 18% higher than CFQ. Our
dataset thus poses a greater challenge for compositional SP, and exhibits less
redundancy in terms of duplicate query patterns. It is worth noting that less
unique query percentage in MCWQ than CFQ results from the loss during
swapping the entities in §2.3.1.

To be compositionally challenging, Keysers et al. (2020) generated the
MCD splits to have high compound divergence while maintaining low atom
divergence. As atoms in MCWQ are mapped from CFQ while leaving the
compositional structure intact, we derive train-test splits of our dataset
by inducing the train-test splits from CFQ on the corresponding subset of
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Figure 2.3: Complexity distribution of MCWQ, measured by recursion depth,
compared to CFQ.

instances in our dataset.

The complexity of questions in CFQ is measured by recursion depth and
reflects the number of rule applications used to generate a question, which
encompasses grammar, knowledge, inference and resolution rules. While
each question’s complexity in MCWQ is the same as the corresponding CFQ
question’s, some cannot be migrated (see §2.3.1 and §2.3.2). To verify the
compound divergence is not affected, we compare the question complexity
distribution of the two datasets in one of the three compositional splits
(MCD1) in Figure 2.2. The training, development and test sets of the split
in CFQ and MCWQ follow a similar trend in general. The fluctuation in
the complexity of questions in the MCWQ splits reflects the dataset’s full
distribution—see Figure 2.3.

Stemming from its entities and properties, CFQ questions are limited to
the domain of movies. The entities in MCWQ), however, can in principle come
from any domain, owing to our flexible entity replacing method. Though
MCWQ’s properties are still a subset of those used in CFQ, they are primarily
in the movies domain. We also observe a few questions from literature, politics,
and history in MCWQ.
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2.4 Generating Multilingual Questions

To create a typologically diverse dataset, starting from our English dataset (an
Indo-European language using the Latin script), we use machine translation to
three other languages from different families (Afroasiatic, Dravidian and Sino-
Tibetan), which use different scripts: Hebrew, Kannada and Chinese (§2.4.1).
For a comparison to machine translation and a more realistic evaluation with
regards to compositional SP, we manually translate a subset of the test sets
of the three MCD splits (§2.4.2) and evaluate the machine translation quality
(§2.4.3).

2.4.1 Generating Translations

Both question patterns and bracketed questions are translated separately
with Google Cloud Translation® from English.® SPARQL queries remain
unchanged, as both property and entity IDs are language-independent in
Wikidata, which contains labels in different languages for each. Table 2.2
shows an example for a question in our dataset (which is generated from the
same question as the CFQ instance from Table 2.1), as well as the resulting
translations.

As an additional technical necessity, we add a question mark to the end
of each question before translation (as the original dataset does not include
question marks) and remove trailing question marks from the translated
question before including it in our dataset. We find this step to be essential
for translation quality.

2.4.2 Gold Test Set

CFQ and other datasets for evaluating compositional generalization (Lake and
Baroni, 2018; Kim and Linzen, 2020) are generated from grammars. However,
It has not been investigated how well models trained on them generalize to
human questions. As a step towards that goal, we evaluate whether models
trained with automatically generated and translated questions can generalize

Shttps://cloud.google.com/translate

SWe attempted to translate bracketed questions and subsequently replace the bracketed
entities with placeholders as question patterns. In preliminary experiments, we found that
separate translation of question patterns is of higher translation quality. Therefore, we
choose to translate question patterns and bracketed questions individually.
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to high-quality human-translated questions. For that purpose, we obtain the
intersection of the test sets of the MCD splits (1,860 entries), and sample two
translated questions with yes/no questions and two with wh- questions for
each complexity level (if available). This sample, termed test-intersection-MT,
has 155 entries in total. The authors (one native speaker for each language)
manually translate the English questions into Hebrew, Kannada and Chinese.
We term the resulting dataset test-intersection-gold.

2.4.3 Translation Quality

We compute the BLEU (Papineni et al., 2002) scores of test-intersection-MT
against test-intersection-gold using SacreBLEU (Post, 2018), resulting in 87.4,
76.6 and 82.8 for Hebrew, Kannada and Chinese, respectively. This indicates
high quality of the machine translation outputs.

Additionally, one author for each language manually assesses translation
quality for one sampled question from each complexity level from the full
dataset (40 in total). We rate the translations on a scale of 1-5 for fluency and
for meaning preservation, with 1 being poor, and 5 being optimal. Despite
occasional translation issues, mostly attributed to lexical choice or morpho-
logical agreement, we confirm that the translations are of high quality. Across
languages, over 80% of examples score 3 or higher in fluency and meaning
preservation. The average meaning preservation scores for Hebrew, Kannada
and Chinese are 4.4, 3.9 and 4.0. For fluency, they are 3.6, 3.9 and 4.4.

As a control, one of the authors (a native English speaker) evaluates
English fluency for the same sample of 40 questions. Only 62% of patterns
were rated 3 or above. While all English questions are grammatical, many
suffer from poor fluency, tracing back to their automatic generation using
rules. Some translations are rated higher in terms of fluency, mainly due to
annotator leniency (focusing on disfluencies that might result from translation)
and paraphrasing of unnatural constructions by the MT system (especially
for lower complexities).

2.5 Experiments
While specialized architectures have been achieved state-of-the-art results on

CFQ (Guo et al., 2020, 2021; Gai et al., 2021), these approaches are English-
or Freebase-specific. We therefore experiment with sequence-to-sequence
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MCD; MCD; MCD; MCDmean Random

Exact Match (%) En He Kn Zh En He Kn Zh En He Kn Zh En He Kn Zh En He Kn Zh
LSTM+Attention 382 293 271 261 63 56 99 75 136 115 157 151 | 194 155 17.6 162 | 966 80.8 887 86.8
E. Transformer 533 35 307 31 165 &7 1.9 102 182 13 181 155 | 203 189 202 189 | 99 904 937 922
mBERT 495 387 344 356 134 114 123 151 17 18 181 194 | 266 227 216 234 | 987 91 951 93.3
T5-base+RIR 574 - - - 14.6 - - 123 - - - 281 - - - 8”5 - - -

nT5-small+RIR 77.6 578 55 528 13 126 82 211 243 175 31.4 349 | 38.3 203 315 363 | 986 90 938 018
nT5-base+RIR 555 59.5 49.1 302 27.7 16.6 16.6 23 182 23.4 305 356 | 338 33.2 321 206 | 99.1 90.6 942 922

Table 2.4: Monolingual evaluation: exach match accuracies on MCWQ.
MCD,ean is the mean accuracy of all three MCD splits. Random represents
a random split of MCWQ. This is an upper bound on the performance shown
only for comparison. As SPARQL BLEU scores are highly correlated with
accuracies in this experiment, we only show the latter here.

(seq2seq) models, among which T5 (Raffel et al., 2020) has been shown to
perform best on CFQ (Herzig et al., 2021). We evaluate these models for each
lanugage separately (§2.5.1), and subsequently evaluate their cross-lingual
compositional generalization (§2.5.2).

2.5.1 Monolingual Experiments

We evaluate six models” monolingual parsing performance on the three MCD
splits and a random split of MCWQ. As done by Keysers et al. (2020), entities
are masked during training, except those that are part of the question patterns
(genders and nationalities).

We experiment with two seq2seq architectures on MCWQ for each lan-
guage, with the same hyperparameters tuned by Keysers et al. (2020) on
the CFQ random split: LSTM (Hochreiter and Schmidhuber, 1997) with
attention mechanism (Bahdanau et al., 2015) and Evolved Transformer (So
et al., 2019), both implemented using Tensor2Tensor (Vaswani et al., 2018).
Separate models are trained and evaluated per language, with randomly
initialized (not pretrained) encoders. We train a model for each of the three
MCD splits plus a random split for each language.

We also experiment with pretrained language models (PLMs), to assess
whether multilingual PLMs, mBERT (Devlin et al., 2019) and mT5 (Xue
et al., 2020), are as effective for monolingual compositional generalization as
an English-only PLM using the Transformers library (Wolf et al., 2020).

For mBERT, we fine-tune a multi_cased_L-12_H-768_A-12 encoder and
a randomly initialized decoder of the same architecture. We train for 100
epochs with patience of 25, batch size of 128, and learning rate of 5 x 107°
with a linear decay.
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For T5, we fine-tune T5-base on MCWQ English, and mT5-small and mT5-
base on cach language separately. We use the default hyperparameter settings
except trying two learning rates, be=* and 3e~> (see results below). SPARQL
queries are pre-processed using reversible intermediate representations (RIR),
previously shown (Herzig et al., 2021) to facilitate compositional generalization
for T5. We fine-tune all models for 50K steps.

We use six Titan RTX GPUs for training, with batch size of 36 for T5-
base, 24 for mT5-small and 12 for mT5-base. We use two random seeds for
T5-base. It takes 384 hours to finish a round of mT5-small experiments, 120
hours for T5-base and 592 hours for mT5-base.

In addition to exact-match accuracy, we report the BLEU scores of the
predictions computed with SacreBLEU, as a large portion of the generated
queries is partially (but not fully) correct.

Results The results are shown in Table 2.4. While models generalize almost
perfectly in the random split for all four languages, the MCD splits are much
harder, with the highest mean accuracies of 38.3%, 33.2%, 32.1% and 36.3%
for English, Hebrew, Kannada and Chinese, respectively. For comparison, on
CFQ, T5-base+RIR has an accuracy of 60.8% on MCD,,,..,, (Herzig et al.,
2021). One reason for this decrease in performance is the smaller training
data: the MCW(Q dataset has 52.5% the size of CFQ. Furthermore, MCWQ
has less redundancy than CFQ in terms of duplicate questions and SPARQL
patterns, rendering models’ potential strategy of simply memorizing patterns
less effective.

Contrary to expectation, mT5-base does not outperform mT5-small. Dur-
ing training, we found mT5-base reached minimum loss early (after 1k steps).
By changing the learning rate from the default 3¢= to 5e™*, we seem to
have overcome the local minimum. Training mT5-small with learning rate
5e~* also renders better performance. Furthermore, the batch size we use
for mT5-base may not be optimal, but we could not experiment with larger
batch sizes due to resource limitations.

Comparing the performance across languages, mT5-base performs best on
Hebrew and Kannada on average, while mT5-small has the best performance
on English and Chinese. Due to resource limitations, we were not able to look
deeper into the effect of hyperparameters or evaluate larger models. However,
our experiments show that while multilingual compositional generalization
is challenging for seq2seq semantic parsers, within-language generalization
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Figure 2.4: Two mT5 models’ number of correct predictions summing over
the three MCD splits in monolingual experiments, plotted by complexity level.
Each line represents a language. While mT5-small generalizes better overall,
mT5-base is better in lower complexities (which require less compositional
generalization).

is comparable between languages. Nonctheless, English is always the cas-
iest (at least marginally). A potential cause is that most semantic query
languages were initially designed to represent and retrieve data stored in
English databases, and thus have a bias towards English. Consequently,
SPARQL syntax is closer to English than Hebrew, Kannada and Chinese.
While translation errors might have an effect as well, we have seen in §2.4.3
that translation quality is high.

To investigate further, we plot the complexity distribution of true pre-
dictions (exactly matching the gold SPARQL) per language by the two best
systems in Figure 2.4. We witness a near-linear performance decay from com-
plexity level 19. We find that mT5-base is better than mT5-small on lower
complexity despite the latter’s superior overall performance. Interestingly,
translated questions seem to make the parsers generalize better at higher com-
plexity, as shown in the figure. For mT5-small, the three non-English models
successfully parse more questions within the complexity range 46-50 than
English, for mT5-base 44-50. As is discussed in §2.4.3, machine-translated
questions tend to have higher fluency than English questions; we conjecture
such a smoothing method helps the parser to understand and learn from
higher complexity questions.
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MCDmean Random
SPARQL BLEU En He Kn Zh En He Kn Zh
mT5-small+RIR 87.5 53.8 53.2 59 99.9 60.4 59.9 63.8
mT5-base+RIR 86.4 46.4 46 52.7 99.9 63.2 63.5 70.6
Exact Match (%)
mT5-small+RIR 38.3 0.2 0.3 0.2 98.6 0.5 0.4 1.1
mT5-base+RIR 33.8 0.4 0.7 1.5 99.1 1.1 0.9 7.2

Table 2.5: Mean BLEU scores and exact match accuracies on the three MCD
splits and on a random split in zero-shot cross-lingual transfer experiments on
MCWQ. The grey texts represent the models’ monolingual performance on
English, given for reference (the exact match accuracies are copied from Table
2.4). The black texts indicate the zero-shot cross-lingual transfer performances
on Hebrew, Kannada and Chinese of a model trained on English. While the
scores for individual MCD splits are omitted for brevity, in all three MCD
splits, the accuracies are below 1% (except on MCDy Chinese, being 4%).

2.5.2 Zero-shot Cross-lingual Parsing

Zero-shot cross-lingual SP has witnessed new advances with the development
of PLMs (Shao et al., 2020; Sherborne and Lapata, 2022). Since translating
datasets and training KBQA systems is expensive, it is beneficial to leverage
multilingual PLMs, fine-tuned on English data, for generating SPARQL
queries over Wikidata given natural language questions in different languages.
While compositional generalization is difficult even in a monolingual setting,
it is interesting to investigate whether multilingual PLMs can transfer in
cross-lingual SP over Wikidata. Simple seq2seq T5/mT5 models perform
reasonably well (> 30% accuracy) on monolingual SP on some splits (see
§2.5.1). We investigate whether the learned multilingual representations of
such models enable compositional generalization even without target language
training. We use mT5-small+RIR and mT5-base+RIR, the best two models
trained and evaluated on English from previous experiments, to predict on
the other languages.

Results The results are shown in Table 2.5. Both BLEU and exact match
accuracy of the predicted SPARQL queries drop drastically when the model
is evaluated on Hebrew, Kannada and Chinese. mT5-small+RIR achieves
38.3% accuracy on MCD,,,.., English, but less than 0.3% in zero-shot parsing
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test-intersection-MT test-intersection-gold
SPARQL BLEU En He Kn Zh En  He Kn Zh
mT5-small+RIR 86.1 825 789 851 - 81.8 777 86
mT56-base+RIR 85.5 83.7 818 83.2 - 83.8 80.9 838

Exact Match (%)

mT5-small4+RIR 45.6  35.7 32.7 385 - 359 282 398
mT5-base+RIR 40.4 419 40.2 38.7 - 41.1 34 38.9

Table 2.6: Mean BLEU scores and accuracies of monolingual models (§2.5.1)
on test-intersection-MT and test-intersection-gold. The numbers are averaged
over the accuracies of the predictions from the monolingual models trained
on three MCD splits. Overall, there is no substantial difference between the
performances on the two intersection sets, demonstrating the reliability of
evaluating on machine translated data in this case.

on three non-English languages.

Even putting aside compositionality evaluation, as seen in the random
split, the exact match accuracy in the zero-shot cross-lingual setting is still
low. The relatively high BLEU scores can be attributed to the small overall
vocabulary used in SPARQL queries. Interestingly, while mT5-base+RIR
on MCD,,,cqr. English does not outperform mT5-small+RIR, it yields better
performance in the zero-shot setting. For Hebrew, Kannada and Chinese,
the accuracies are 0.2%, 0.4% and 1.3% higher. For mT5-base, Chinese is
slightly easier than Kannada and Hebrew to parse in the zero-shot setting,
outperforming 1.1% and 0.8%.

To conclude, zero-shot cross-lingual transfer from English to Hebrew,
Kannada and Chinese fails to generate valid queries in MCWQ. A potential
cause for such unsuccessful transfer is that all four languages in MCWQ
belong to different language families and have low linguistic similarities. It
remains to be investigated whether such cross-lingual transfer will be more
effective on related languages, such as from English to German (Lin et al.,
2019).
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2.6 Analysis

2.6.1 Evaluation with Gold Translation

Most existing compositional generalization datasets focus on SP (Lake and
Baroni, 2018; Kim and Linzen, 2020; Keysers et al., 2020). These datasets
are composed either with artificial language or in English using grammar
rules. With test-intersection-gold proposed in §2.4.2, we investigate whether
models can generalize from a synthetic automatically translated dataset to a
manually translated dataset.

We use the monolingual models trained on three MCD splits to parse test-
intersection-gold. In Table 2.6, we present the mean BLEU scores and exact
match accuracy of the predicted SPARQL queries. There is no substantial
difference between the performances on the two intersection sets, except
for Kannada, which has a 4% accuracy drop on average. These results
testify that MCWQ has sufficiently high translation quality and that models
trained with such synthetic data can be used to gencralize to high-quality
manually-translated questions.

2.6.2 Categorizing Errors

In an empirical analysis, we categorize typical prediction errors on test-
intersection-gold and test-intersection-M'T into six types: missing property,
extra property, wrong property (where the two property sets have the same
numbers of properties, but the elements do not match), missing entity, extra
entity and wrong entity (again, same number of entities but different entity
sets). We plot the mean number of errors per category, as well as the number
of predictions with multiple errors, in Figure 2.5 for monolingual mT5-small
models. Overall, model predictions tend to have more missing properties and
entities than extra ones. Different languages, however, vary in error types.
For example, on Hebrew, models make more missing property /entity errors
than other languages; but on Kannada they make more extra property/entity
errors than the others. About 70 out of the 155 examples contain multiple
errors for all languages, with Kannada being slightly more.

Comparing errors on test-intersection-gold and test-intersection-MT, we
find missing properties are more common in gold for all languages. For Hebrew
and Kannada, extra properties and entities are also more common in gold.
However, for Chinese, these and missing entities are less common in gold
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Figure 2.5: Number of errors per category in different SPARQL predictions on
test-intersection-MT and test-intersection-gold, averaged across monolingual
mT5-small+RIR models trained on the three MCD splits. The total number
of items in each test set is 155.

compared to MT.

In Figure 2.6 we plot the error statistics for zero-shot cross-lingual trans-
fer using mT5-small models. We can see there are drastically more error
occurrences. For both missing and extra property/entity, the numbers are
about double those from monolingual experiments. The number of wrong
property /entity errors remain similar, due to the difficulty of even predicting
a set of the correct size in this setting. For all three target languages, nearly
all predictions contain multiple errors. The statistics indicate the variety and
pervasiveness of errors.

2.6.3 Other Observations

We also find that comparatively, parsers perform well on short questions on
all four languages. This is expected as the compositionality of these questions
is inherently low. On languages other than English, the models perform well
when the translations are faithful. On occasions when they are less faithful
or fluent but still generate correct queries, we hypothesize that translation
acts as data regularizers, especially at higher complexities, as demonstrated
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Figure 2.6: Number of errors per category in different zero-shot cross-
lingual SPARQL predictions on test-intersection-MT, averaged across mT5-
small+RIR models trained on the three MCD splits in English. Additionally,
mean error counts on the English set are given for comparison. The total
number of items in each test set is 155.

in Figure 2.4.

Among wrong entity errors, the most common cause across languages
is the shuffling of entity placeholders. In the example shown in Figure 2.7,
we see that the model generates M1 wdt:P57 M2 instead of MO wdt:P57 M2,
which indicates incorrect predicate-argument structure interpretation.

2.7 Related Work

Compositional Generalization Compositional gencralization has wit-
nessed great developments in recent years. SCAN (Lake and Baroni, 2018), a
synthetic dataset consisting of natural language and command pairs, is an
early dataset designed to systematically evaluate neural networks’ general-
ization ability. CFQ and COGS are two more realistic benchmarks following
SCAN. There are various approaches developed to enhance compositional
generalization, for example, by using hierarchical poset decoding (Guo et al.,
2020), combining relevant queries (Das et al., 2021) using span representation
(Herzig and Berant, 2021) and graph encoding (Gai et al., 2021). In addition
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Question  Was MO written by and directed by M1 , M2 , and M3
Gold ASK WHERE { MO wdt:P57 M1 . MO wdt:P57

M2 . MO wdt:P57 M3 . MO wdt:P58 M1 . MO

wdt:P58 M2 . MO wdt:P58 M3 }
Inferred ASK WHERE { MO wdt:P57 M1 . M1 wdt:P57

M2 . MO wdt:P58 M3 }

Figure 2.7: Example for an error reflecting incorrect predicate-argument
structure. wdt:P57 is director and wdt:P58 is screenwriter. Incorrect triples
are shown in red and missed triples in blue.

to pure language, the evaluation of compositional generalization has been
expanded to image captioning and situated language understanding (Nikolaus
et al., 2019; Ruis et al., 2020). Multilingual and cross-lingual compositional
generalization is an important and challenging field to which our paper aims
to bring researchers’ attention.

Knowledge Base Question Answering Comparing to machine reading
comprehension (Rajpurkar et al., 2016; Joshi et al., 2017; Shao et al., 2018;
Dua et al., 2019; d’'Hoffschmidt et al., 2020), KBQA is less diverse in terms
of datasets. Datasets such as WebQuestions (Berant et al., 2013), Simple-
Questions (Bordes et al., 2015), ComplexWebQuestions (Talmor and Berant,
2018), FreebaseQA (Jiang et al., 2019), GrailQA (Gu et al., 2021),CFQ and
*CFQ (Tsarkov et al., 2021) were proposed on Freebase, a now-discontinued
KB. SimpleQuestions2Wikidata (Diefenbach et al., 2017) and ComplexSe-
quentialQuestions (Saha et al., 2018) are based on Wikidata, but like most
others, they are monolingual English datasets. Related to our work is RuBQ
(Korablinov and Braslavski, 2020; Rybin et al., 2021), an English-Russian
dataset for KBQA over Wikidata. While the dataset is bilingual, it uses
crowdsourced questions and is not designed for compositionality analysis. Re-
cently, Thorne et al. (2021) proposed WIKINLDB, a Wikidata-based English
KBQA dataset, focusing on scalability rather than compositionality. Other
related datasets include QALM (Kaffee et al., 2019), a dataset for multilingual
question answering over a set of different popular knowledge graphs, intended
to help determine the multilinguality of those knowledge graphs. Similarly,
QALD-9 (Ngomo, 2018) and QALD-9-plus (Perevalov et al., 2022a) support
the development of multilingual question answering systems, tied to DBpedia
and Wikidata, respectively. The goal of both datasets is to expand QA
systems to more languages rather than improving compositionality. KQA Pro
(Cao et al., 2022), a concurrent work to us, is an English KBQA dataset over
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Wikidata with a focus on compositional reasoning.

Wikidata has been leveraged across many NLP tasks such as coreference
resolution (Aralikatte et al., 2019), frame-semantic parsing (Sas et al., 2020),
entity linking (Kannan Ravi et al., 2021) and named entity recognition (Nie
et al., 2021). As for KBQA, the full potential of Wikidata is yet to be
explored.

Multilingual and Cross-lingual Modelling Benchmarks such as XGLUE
(Liang et al., 2020) and XTREME (Hu et al., 2020) focus on multilingual
classification and generation tasks. Cross-lingual learning has been studied
across multiple fields, such as sentiment analysis (Abdalla and Hirst, 2017),
document classification (Dong and de Melo, 2019), POS tagging (Kim et al.,
2017) and syntactic parsing (Rasooli and Collins, 2017). In recent years,
multilingual PLMs have been a primary tool for extending NLP applications
to low-resource languages, as these models ameliorate the need to train
individual models for each language, for which less data may be available.
Several works have attempted to explore the limitations of such models in
terms of practical usability for low-resource languages (Wu and Dredze, 2020),
and also the underlying elements that make cross-lingual transfer learning
viable (Dufter and Schiitze, 2020). Beyond these PLMs, other works focus
on improving cross-lingual learning by making particular changes to the
encoder-decoder architecture, such as adding adapters to attune to specific
information (Artetxe et al., 2020b; Pfeiffer et al., 2020).

For cross-lingual SP, Sherborne and Lapata (2022) explored zero-shot
SP by aligning latent representations. Zero-shot cross-lingual SP has also
been studied in dialogue modelling (Nicosia et al., 2021). Yang et al. (2021)
present augmentation methods for Discourse Representation Theory (Liu
et al., 2021c). Oepen et al. (2020) explore cross-framework and cross-lingual
SP for meaning representations. To the best of our knowledge, our work is
the first on studying cross-lingual transfer learning in KBQA.

2.8 Limitations

MCWQ is based on CFQ, a rule-base generated dataset, and hence the
inherited unnaturalness in question-query pairs of high complexity. Secondly,
we use machine translation to make MCWQ multilingual. Although this is
the dominant approach for generating multilingual datasets (Ruder et al.,
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2021) and we have provided evidences that MCWQ has reasonable translation
accuracy and fluency with human evaluation and comparative experiments in
§2.4.3 and §2.5.1, machine translation would nevertheless create substandard
translation artifacts (Artetxe et al., 2020a). One alternative way is to write
rules for template translation. The amount of work can possibly be reduced
by refering to a recent work (Goodwin et al., 2021) in which English rules
are provided for syntactic dependency parsing on CFQ’s question fields.
Furthermore, the assumption that an English KB is a “canonical” con-
ceptualization is unjustified, as speakers of other languages may know and
care about other entities and relationships (Liu et al., 2021a; Hershcovich
et al., 2022). Therefore, future work must create multilingual SP datasets by
sourcing questions from native speakers rather than translating them.

2.9 Conclusion

The field of KBQA has been saturated with work on English, due to both the
inherent challenges of translating datasets and the reliance on English-only
DBs. In this work, we presented a method for migrating the existing CFQ
dataset to Wikidata and created a challenging multilingual dataset, MCWQ),
targeting compositional generalization in multilingual and cross-lingual SP.
In our experiments, we observe that pretrained multilingual language models
struggle to transfer and generalize compositionally across languages. Our
dataset will facilitate building robust multilingual semantic parsers by serving
as a benchmark for evaluation of cross-lingual compositional generalization.
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Abstract

Logical approaches to representing language have developed and evaluated
computational models of quantifier words since the 19th century, but today’s
NLU models still struggle to capture their semantics. We rely on Generalized
Quantifier Theory for language-independent representations of the semantics
of quantifier words, to quantify their contribution to the errors of NLU models.
We find that quantifiers are pervasive in NLU benchmarks, and their occur-
rence at test time is associated with performance drops. Multilingual models
also exhibit unsatisfying quantifier reasoning abilities, but not necessarily
worse for non-English languages. To facilitate directly-targeted probing, we
present an adversarial generalized quantifier NLI task (GQNLI) and show that
pre-trained language models have a clear lack of robustness in generalized
quantifier reasoning.

3.1 Introduction

Quantifier words—such as each or most or more than three—have been
extensively studied, both in logic and in linguistics (Westerstahl, 1989; Peters
and Westerstahl, 2006), going all the way back to Frege (1879). In this paper,
we examine the extent to which they present a challenge to modern NLU
systems. Our analysis is motivated by three observations:

Quantifier words are abstract Unlike nouns, verbs and adjectives,
quantifier words do not have referents out in the world. Rather, quantifier
words specify relationships between sets of entities, events and properties. To
provide intuitions about the semantics of quantifier words, and to be able to
refer to quantifiers in a language-independent way, we rely on the notion of
generalized quantifiers (Mostowski, 1957), as described in §2.

Quantifier words vary across languages Quantifier word inventories
differ across languages. Often what is considered rough translation equivalents
also differ in syntax, fine-grained semantics or pragmatics. Stateva et al. (2019)
show, e.g., that perceptions of the numerical bounds of existential quantifiers
differ across speakers of English, French, Slovenian, and German. Other
papers showing discrepancies between quantifier systems include comparisons
of Salish to English (Matthewson, 2001), Adyghe to English (Nikolaeva, 2012),
or of Dutch, Hebrew and Bengali (Gil, 1982). The cross-linguistic differences
in how generalized quantifiers are expressed motivates a cross-lingual error

36



Chapter 3 | Generalized Quantifiers as a Source of Error in Multilingual NLU

Benchmarks
< CONTEXT: A piece of paper was later found on which he had written his last
o statements in two languages, Latin and German. Only one statement was in
é Latin and the rest in German.

QUESTION: In what language were most statements written?  ANSWER: German
PREDICTED ANSWER: Latin and German

PREMISE: Mds de tres personas resultaron heridas en un accidente de dos
vehiculos el lunes por la noche. (translation: More than three people were
injured in a two-vehicle crash Monday evening.)

HypoOTHESIS: Habia 4 personas involucradas. (translation: There were 4 people
involved.  LABEL: Neutral PREDICTED LABEL: Entailment

IWLI_ Spanish QA

Table 3.1: Examples of quantifiers (marked in bold texts) in NLP tasks,
with RoBERTa’s prediction for QA and XLM-R’s prediction for NLI after
fine-tuning.

analysis, since quantifiers may contribute more to error when processing some
languages rather than others.

Quantifier words are important Quantifier words are extremely im-
portant for tasks that require inference, including natural language inference,
question answering, fact-checking, etc. Datasets have, for example, been
developed for numerical reasoning in English (Dua et al., 2019). Several
researchers have identified quantifier words as important sources of errors for
natural language processing systems (Joshi et al., 2020a); see Table 3.1 for
examples of such errors. Unfortunately, most efforts have concentrated on
subsets of quantifier words and on English.

Contributions We analyze how quantifiers are represented in NLU bench-
marks, and how their occurrence at test time contributes to errors by neural
language models (LMs). We derive a linguistically motivated 11-way catego-
rization set for generalized quantifiers and look into their distribution in three
steps: (a) monolingual NLI; (b) cross-lingual NLI; (c) cross-lingual question
answering. We also propose GQNLI!, an adversarial generalized quantifier
NLI challenge dataset. Our work shows that (i) generalized quantifiers are
pervasive and cause overall performance drops in NLU benchmarks; (ii) the
contribution of quantifier words to system error varies across languages; and
(iii) generalized quantifiers are particularly difficult for LMs in interaction
with negation and subsumption.

'https://github.com/ruixiangcui/GQNLI
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Generalized Quantifiers Logical Denotation Example

some(A)(B) =1 ANB#o This process is known to in-
crease security in several ways.

all(A)(B) =1 ACB Everyone agreed the food was
terrible.

more than k the(A)(B) =1 |[ANB| >k They do let them go more than
twice a week.

less than k the(A)(B) =1 [ANB| <k San Augustin Acolman has less
than 1,000 residents.

k (A)B) =1 [ANB| =k Please donate 100 million to
the School of Nursing.

between p and k the(A)(B) =1 p<|ANB|<k The USA added ten states to
its nation between 1800 and
1850.

the p/k (A)(B) =1 |[ANB|=p- (|A|/k) Captain Blood has 20/20 vi-
S1011.

the k% (A)(B) =1 |[ANB| = k- (|A]/100) The lending fund is always
guaranteed 9% interest.

most (A)(B) =1 |AN B| > |A\B| Most ZIP Codes cover roughly
ten thousand addresses.

few (A)(B) =1 |[AN B| < |A\B| Only a few teenagers were still
listening to Rock 'n’ Roll.

each other (A)(B) =1 Va € (ANB)3dbe (ANB)(a# All of these trails are located

b) within the a one hour drive of

each other.

Table 3.2: The categorization set of quantifiers for task analysis. The first six
are Aristotelian/counting quantifiers and the following four are proportional
quantifiers. The last one is a Ramsey quantifier (Schmerl and Simpson, 1982).
For each quantifier, its logical denotation is listed in the second column. The
third conlumn contains English examples with quantifiers taken from XNLI.

3.2 Background

Generalized quantifiers (GQs) are developed upon first-order predicate logic,
denoting relations between sets (Mostowski, 1957). Given a universe E, a
quantifier () would be treated as a mapping Qg from the Cartesian product
of powersets P(E) x P(E) to the set {false,true} or, as a binary relation on
subsets of £ (Dvordk and Holcapek, 2015). GQs are generalizations of the
V,3 quantifiers from first-order predicate logic (Mostowski, 1957; Lindstrom,
1966; Montague, 1973; Bach et al., 1995; Keenan and Paperno, 2012). A
generalized quantifier is, abstractly, a relation between sets. Generalized
quantifier theory, while developed by logicians, is used by formal linguists
to analyze the meaning of quantifier words in combination with referential
expressions (Barwise and Cooper, 1981; Higginbotham and May, 1981).
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Most human languages contain ways of expressing generalized quantifiers,
and their semantics exhibit striking similarities across languages (Matthew-
son, 2004; Fintel and Matthewson, 2008; Steinert-Threlkeld, 2019). At the
same time, generalized quantifiers can be instantiated very differently across
languages due to pragmatic considerations (Grice, 1989) or cognitive economy
and cost-benefit optimisation in the exchange of information (Levinson et al.,
2000; Steinert-Threlkeld, 2021; Uegaki, 2022). Quantifier words also exhibit
syntactic differences, e.g., with some languages having specialized words to
express quantity, while others rely on metaphorical usage of common nouns
(Katsos et al., 2012). In English, most is a determiner, but Spanish and
French express the same concept through common nouns, la mayoria and la
majorité. The relative stability of the core semantics of quantifiers makes a
cross-linguistic comparison possible, but the syntactic and pragmatic variation
associated with the expression of generalized quantifiers poses a challenge
for multilingual NLU. We consult quantifier taxonomy studies (Keenan and
Westerstahl, 1997; Peters and Westerstahl, 2006; Szymanik and Thorne, 2015;
Szymanik, 2016) and derive a categorization set for quantifier analysis in
NLU benchmarks. In Table 3.2, we list the 11-way quantifier categorization
set and their logical denotation based on set theory.

While other foci of formal linguistics have attracted the attention of NLP
researchers—including coreference (Ogrodniczuk et al., 2019, 2020), negation
(Hossain et al., 2020; Hartmann et al., 2021), and consistency (Li et al., 2019;
Ribeiro et al., 2019; Asai and Hajishirzi, 2020; Geva et al., 2022)—there
has been little work on generalized quantifiers as a source of error in NLU,
let alone in multilingual NLU. It remains an open problem whether LMs
represent the semantics of quantifiers words adequately, or if they provide a
basis for resolving scopal ambiguities.?

3.3 NLU Benchmarks

We conduct an error analysis focusing on the role of generalized quantifiers in
two NLU tasks, Natural Language Inference (NLI) and Question Answering
(QA), which generally require understanding of quantifiers. For each type

2Note that generalized quantifiers are not always explicit in discourse. The sentence
inadequate sleep causes obesity should be interpreted as Most of those who do not sleep
adequately, gain weight (Zadeh, 1983). Such implicit quantifiers related to pragmatic
variation are important for language understanding, but will be ignored in this work.
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of task, both monolingual and cross-lingual evaluation are conducted. We
focus on generalized quantifiers in the hypotheses in NLI examples—and on
generalized quantifiers in the question fields in question answering. To

English Cross-
E .

Quantifier E‘ E‘ = & e lingual

—_ — \ | \

= - = = 3 3 =

z  Z = z . =

= = »n < < < >
some 171 132 191 5 1 17 115
all 255 239 65 15 8 29 166
>k 14 23 8 10 16 14 16
<k 3 3 0 6 7 5 1
k 266 269 988 55 62 48 159
between 2 3 0 3 2 0 1
p/k 1 5 1 1 1 0 2
k% 10 7 0 0 0 1 5
most 35 39 1 0 2 1 9
few 14 15 11 0 0 6 11
cach other 4 3 35 0 0 2 5
Total 775 738 1300 95 99 124 499

Frequency 7.9% 7.5% 132% 9.5% 9.9% 12.4% 10.0%

Table 3.3: Quantifier distribution in four NLI tasks, among which three are
monolingual English and one is cross-lingual. The table show statistics of the
test set, if not available, dev set, of the target task. All but the last rows
show the occurrence time of the type of quantifier in the first column. The
last row represents the distribution rate of any quantifier in the dataset.

this end, we identify quantifiers by the lemma and the universal dependency
relation (Nivre et al., 2020) of a quantifier after preprocessing the sentences
using Stanza (Qi et al., 2020). Take the sentence “The Yiddish culture
has survived for more than a thousand years.”, we annotate it as “The/det
Yiddish/amod culture/nsubj have/auz survive/root for/case more/advmod
than/fized a/det thousand/nummod year/obl . /punct”. By matching the regex
pattern of the quantifier “more than k”, in this case “((more/great)\ /advmod
than)\ /(fized/case)[at\ /case least| /nmod) .+\ /nummod .+ /(nsubjlobjlobl)”,
we approximate the surface form of the type “more than k”.Through match-
ing quantifier patterns, we are able to find entries in which quantifiers are
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Figure 3.1: Relative distribution of quantifiers in NLI and QA tasks ranked by
semantic complexity. The bars show the relative frequency of such quantifier
and the lines indicate the cumulative frequency for a task.

instantiated. See Appendix 3.A for the list of regex patterns we write to
identify GQs. In Table 3.3 and Table 3.6, we present the statistics of the
quantifier distributions in NLI and QA tasks, respectively. As can be seen,
quantifiers are indeed widespread in NLU tasks, accounting for roughly 10%
in NLI tasks and 5% in QA tasks. We will further discuss the statistics and
experiments in the following section.

3.4 Quantifiers in English NLI Benchmarks

NLI is commonly framed as a three-way classification task with labels en-
tailment, contradiction and neutral (Bowman et al., 2015a). While SOTA
models exhibit low error rates on NLI benchmarks, it is unclear when they
succeed or fail in their underlying reasoning. We are interested in whether
generalized quantifers challenge modern NLI models. In our error analysis,
we initially focus on three English NLI datasets, MultiNLI (MNLI; Williams
et al., 2018), SNLI (Bowman et al., 2015a) and ANLI (Nie et al., 2020) as
testbeds.
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BERT RoBERTa

Quantifier g é = = & 2 S g é 3 = & 2 S

| \ ! | | \ 3 \ | ! \ \ | 3

= S 7 < < < 5 S S & < < < 5
some 82.5 84.1 86.9 100 0 47.1 83.4 83 84.8 86.9 100 100 41.1 83.7
all 85.9 88.3 89.2 46.7 37.5 34.5 83.2 85.9 92.1 90.8 66.7 37.5 34.5 85.3
>k 85.7 100 87.5 70 43.8 42.9 73 85.7 91.3 87.5 80 37.5 28.5 68.2
<k 100 100 33.3 571 80 66.7 | 100 100 83.3 857 100 917
k 87.2 81.8 92.4 43.6 43.5 33.3 84.8 88.3 88.8 92.9 56.3 61.3 43.8 87.8
between 100 100 66.7 50 80 | 100 66.7 66.7 50 70
p/k 100 60 100 100 100 77.8 | 100 80 100 100 0 77.8
k% 90 100 100 944 | 70  85.7 0 722
most 743 795 0 50 0 744 | 7T 87.2 100 59 0 809
few 78.6 73.3 90.9 33.3 73.9 | 857 80 90.9 33.3 78.3
cach other 75 100  85.7 50 84.1 | 50 100 88.6 50  84.1
all GQs 85 84.8 91.2 50.5 444 39 83.3 | 854 888 91.7 653 565 40.3 85.5
full 86.5 861 91.3 586 48 432 844 | 895 894 923 TL7T 496 49  87.3

Table 3.4: BERT and RoBERTa performance on NLI tasks. The weig. column
represents the percentage of all true predictions in six subtasks over total
instances. The penultimate row stands for the overall performance when
quantifiers exist in a dataset. The last row reports the overall performance
in a dataset. Number marked in bold signifies a lower score than the overall
performance.

Table 3.3 presents statistics of quantifier distribution in these datasets,
where we observe that, across, about 10% of all hypotheses contain quanti-
fier words, indicating the pervasiveness of quantification. We also plot the
frequency of quantifiers in NLI in Figure 3.1 and find the quantifier word
distribution follows Zipf’s law (Zipf, 1949). Note the top three most common
quantifiers account for more than 90% of all.

Experiments and Results In order to investigate whether NLU systems
can solve quantifiers in NLI, we experiment with two pretrained LMs: BERT?
(Devlin et al., 2019) and RoBERTa* (Liu et al., 2019). We use the codebase
by Nie et al. (2020). The training data combines SNLI, MNLI, FEVER-NLI
(Nie et al., 2019) and ANLI

In Table 3.4, we report the test set performance on SNLI and ANLI, and
the dev set performance on MLNI matched and mismatched sections. We
can observe that SOTA models suffer from performance drops across almost
all quantification phenomena in every task. When it comes to performance

Swwm_cased_L-24_H-1024_A-16
4roberta—large
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over all quantifiers, the improvement from RoBERTa to BERT (2.2%) is
less prominent than that over full datasets (2.9%), suggesting RoBERTa is
particularly challenged.

Taking a closer look at error by category, proportional quantifiers seem
harder to solve than Aristotelian/counting quantifiers. Except for k%, all
proportional quantifiers—p/k, most, and few—are about 10% lower than the
five counting quantifiers (except less than k) with BERT; and about 5% lower
with RoBERTa. RoBERTa is not generally superior to BERT; e.g., for k%,
BERT outperforms it by 22%. We show a pairwise analysis of how GQs affect
performance when they appear in both the premises and hypotheses in the
Appendix 3.B. Generally, our results attest to the difficulty of resolving GQs
in NLI benchmarks.

3.5 Quantifiers in Cross-lingual NLU Bench-
marks

Quantifiers are acquired in similar orders across languages (Katsos et al., 2016),
although languages express quantifiers in different ways. For example, there
are eight different universal quantifiers with different level of distributivity in
Malagasy (Matthewson, 2008). This poses challenges to training multilingual
LMs and transfer learning. We are interested in whether quantifiers are
universally and evenly challenging for all languages.

Quantifiers in Cross-lingual NLI We choose XNLI (Conneau et al.,
2018), a manual translation of the development and test set of MNLI into
15 languages, for this multilingual error analysis. We should clarify that for
XNLI, the authors annotate entailment labels for the English data only and
apply them to the other languages. We do not assume label changes due
to translation in this study, but it is worth investigate in the future. We
choose five languages belonging to different language families, namely Arabic,
Chinese, German, Spanish and Vietnamese as targets. The last column in
Table 3.3 shows the numbers of quantifiers in XNLI. The distribution rate
is 10%. Note that the universal quantifier is the most common quantifier in
XNLI.
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e mBERT XLM
Quantifier zh es ar vi de  weig. | en zh es ar vi de  weig.
some 8.2 69.6 8 63.5 67.8 748 734 (8.2 703 791 713 739 69.6 69.6
all 80.1 65.7 72.8 693 63.9 741 70.9 |825 62.7 741 675 7T1.7 735 72
>k 87.5 50 68.8 43.8 56.2 62.5 61.6 | 81.2 62.5 56.2 62.5 50 75 75
<k 100 100 100 100 100 100 100 | 100 100 100 100 100 100 100
k 86.2 69.1 80.5 717 767 824 777 | 8 667 786 717 742 811 758
between 100 100 100 100 100 100 100 | 100 100 100 100 100 100 100
p/k 100 50 100 100 100 100 91.7 | 100 0 100 100 50 50 66.7
E% 100 100 80 100 100 100 96.7 | 80 80 8 100 100 80  86.7
most 55.6 55.6 66.7 66.7 33.3 66.7 57.4 |55.6 33.3 66.7 55.6 44.4 778 55.6
few 72.7 54.5 72.7 63.6 455 727 63.6 | 63.6 36.4 54.5 63.6 54.5 727 57.5
each other 60 60 60 60 80 80 66.7 | 80 20 60 20 40 60 46.7
all GQs 83 67.1 76.7 68.1 683 769 733|824 64.2 757 693 71.4 748 73
full 82.6 889 747 656 707 714 724|831 648 763 669 716 713 723

Table 3.5: Results of mBERT and XLM performance on XNLI tasks decom-
posed by quantifier categories.

We fine-tune mBERT® (Devlin et al., 2019) and XLM® (Lample and Con-
neau, 2019) on the MNLI training set and evaluate them on XNLI. We report
the results in Table 3.5. We find that performance varies across languages.
For Chinese and Vietnamese, we see significant drops in performance for
examples with GQs, whereas for Arabic and German, we see improvements.
The results per quantifier are more homogeneous, however.

Similar to our results for English, we can see that the lowest accuracies
in XNLI are with proportional quantifiers, such as most and few. But the
gap in non-English languages is wider for these two categories, especially for
Chinese, the difference reaches 30%. Other hard quantifiers include all, > k,
< k, and each other.

Quantifiers in Cross-lingual QA Cross-lingual question answering (XQA)
is another important NLU task that evaluates the cross-lingual transferability
of LMs. We evaluate the effect of quantifiers on system errors across two
XQA datasets, namely XQuAD (Artetxe et al., 2020b) and MLQA (Lewis
et al., 2020). As demonstrated in Figure 3.1, quantifier word distributions
in XQA tasks also follow Zipf’s law, as in NLI tasks, but k is more frequent
(perhaps because of a traditional emphasis on numerical reasoning), and
we see less variance across languages. This is probably because question

Smulti_cased L-12 H-768_A-12
6x1m-mlm-100-1280
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. MLQA XQuAD
Quantifier zh es ar vi de  all_lang
some 66 39 41 44 37 33 12
all 31 14 26 21 19 16 7
<k 1 0 0 0 1 0 0
k 322 168 166 195 204 149 32
between 4 2 2 2 3 0 3
p/k 1 1 1 0 0 0 0
k% 1 1 0 1 0 0 0
most 27 19 11 30 17 9 5
Total 453 244 247 293 281 207 59

Frequency 3.9% 4.7% 4.7% 54% 5.1% 45%  5.0%

Table 3.6: Quantifier distribution in two multilingual QA tasks, MLQA
and XQuAD. We choose six common languages apprearing in both tasks to
facilitate comparisons. XQuAD is strictly parellel while MLQA is not, hence
only the latter has statistics by languges. Categories that no entry exists are
omitted.

answering is targeting quantification less directly. To evaluate cross-lingual
QA performance on GQs, we fine-tune mBERT and XLM-R” (Conneau et al.,
2020) using Hu et al. (2020)’s architecture. We present results for mBERT in
Table 3.7; for XLM-R results, please refer to Appendix 3.D.

Just as with XNLI, LMs suffer from performance drops across all lan-
guages for almost all GQ phenomena with significant, cross-lingual variation.
The most distinguished is that Exact Match (EM) suffers from a greater
deterioration than F'1 scores for all languages. For example, the weighted EM
difference for mBERT on MLQA is 2.9% while the weighted F1 is 1%. As
one example in Table 3.1, we observe that the plausible answers selected by
models, while being incorrect, result in a sharper decrease of EMs comparing
to Fls. Questions containing GQs also tend to have less verbal answers
comparing to those without GQs, and therefore require higher precision.

Regarding cross-lingual comparisons, Chinese and Arabic are the two
languages that do not have lower performance over GQs compared to the
performance over the complete dataset. Despite the overall trends, subtle
differences from XNLI performance still exist. For example, XLM-R is worse

7xlm—roberta—large
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XQuAD MLQA
Quantifi en zh os ar vi de weighted cn zh os ar vi de weighted
EM F1 EA F1 EM F1 EM F1 EM F1 EM F1 EM F1 EM F1 EM F1 EM F1 EM F1 EM F1 EM F1 EM F1
some 75 84.2 50 55.5 583 761 50 50 16.6 424 33.3 43.8 472 587 59 S0 28.2 52.1 34.1 59.2 363 549 5.4 24 33.3 584 32.7 54.8
all 28.5 62.2 14.2 35.2 28.5 82 128 523 14.2 294 285 56 26,1 529|677 79.8 112 46.4 38.4 62.8 333 579 10.5 30.1 31.2 51.6 32.6 54.8
<k 0 ) 0 13.3 0 6.7
k 781 90.1 687 804 56.2 721 40.6 613 12.5 357 56.2 771 521 70 749 794 17 634 41.5 659 27.6 503 6.3 23.7 38.2 53 39.3 56
betwee: 100 100 33.3 72.2 66.6 933 100 100 0 19 0 56.5 50 73.5 50 88.5 50 83.3 0 26.6 0 6R.7 0 26.6 20 58.7
plk 100 100 0 0 0 0 33.3 33.3
k% 100 100 0 26.6 0 23.7 33.3 50.1
40 53.3 40 40 0 10 (1] 26.6 0 0 20 49.3 16.7 29.9 |55.5 76 173 621 454 61.7 30 46.8 5.8 15.7 33.3 40.7 36.2 50.3
70 83.2 55 66.7 50 70.3 116 532 11.6 325 43.3 65 45.3 62.7 | 63.5 79.2 418 603 39.6 63.7 293 513 6.4 23.6 36.1 53.2 36.1 55.2
full 718 83.7 48 59.1 56 745 408 5T 139 324 507 672 469 625 | 67.2 806 375 579 473 66 30 4ax4 112 28 40.8 56 39 56.2

Table 3.7: Results of mBERT performance on XQA tasks decomposed by
quantifier categories.

than mBERT on quantifier reasoning on XQuAD Chinese, especially at
proportional quantifiers, but this is not the case on MLQA Chinese.

3.6 GQNLI

We have seen how quantifiers present challenges to NLI and QA models.
Using an approach similar to ANLI (Nie et al., 2020) and DynaBench (Kiela
et al., 2021), we use model difficulty (RoBERTa’s) as a heuristic to select
hard examples for a challenge dataset that can hopefully be used to evaluate
any future progress on this. We propose GQNLI, a generalized quantifier NLI
challenge dataset, consisting of 30 premises and 300 hypotheses. The average
sentence lengths of hypothesis and premises are 15.97 and 7.35, respectively.
Both numbers are comparable to those of MNLI, but lower than ANLI’s
(Williams et al., 2022). It should be noted that GQNLI is designed for
evaluating future models; obviously not for benchmarking RoBERTa.

Dataset Creation Firstly, we manually create 100 premise-hypothesis pairs,
in which various types of GQs appear. For cach premise and hypothesis, the
number of GQs varies from one to three. To choose the premises, we randomly
sampled 100 premises with GQs from SNLI and ANLI test sets, respectively,
and selected 10 premises in total, that we consider are semantically adequate
for adding GQs and making simple hypotheses.

To construct the hypotheses, we rely on RoBERTa fine-tuned on MNLI
and manually select examples about which the model is unsure or incorrect.
To focus on GQs, we keep the challenge examples otherwise simple (Ribeiro
et al., 2020), and avoid lexical variations in the hypotheses. Hard examples
were found to be characterized by (i) mixing generalized quantifiers with
other logical operators, such as subsumption or negation, and (ii) combining
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Quantifier some  all >k <k k between p/k k% most few each other Querall
# Occurrence 27 51 51 33 170 21 24 45 18 9 36 485
Model Training Data % Performance

BERT S,M,F,ANLI 40.7  41.2 333 30.3 30.6 14.3 375 222 611 222 41.7 30
ELECTRA S,M,F;ANLI 37.0 17.6 549 273 38.2 14.3 62.5 31.1 61.1 0.0 16.7 ! 38.0
SBERT S,M,F,ANLI 66.7 43.1 47.1 242 324 14.3 25.0 31.1 77.8 66.7 36.1 39.3
RoBERTa MNLI 55.6 255 17.6 273 24.7 23.8 45.8 17.8 33.3 333 11.1 28.2
© ) S,M,F,ANLI 63.0 41.2 412 273 341 28.6 75.0 33.3 50.0 33.3 38.9 39.3
ALBERT S,M,F,ANLI 704 451 353 333 365 19.0 375 378 50.0 11.1 36.1 41.7
BART MNLI 40.7 21.6 60.8 364 50.6 66.7 375 46.7 278 333 22.2 41.3
S,M,F,ANLI 59.3  51.0 353 303 353 19.0 66.7 20.0 50.0 66.7 47.2 42.7

MNLI 48.1 373 333 333 359 33.3 41.7 333 333 333 A1.7 34.7
DeBERTa-v3 M,F,ANLI 81.5 549 49.0 333 44.7 28.6 50.0 48.9 66.7 55.6 44.4 48.0
M,F,Ling,DocNLI  77.8 70.6 49.0 54.5 44.7 4.8 333 422 500 66.7 58.3 45.0

Table 3.8: GQNLI statstics and seven types of models’ performance with
different combinations of training data. The second row shows the occurrence
time of the type of GQ in GQNLI. The following rows show models’ perfor-
mance on the dataset. We tested most competitive models fine-tuned for NLI
available on Hugging Face. All but ALBERT (xxlarge) and DeBERTa-v3
(base) are size large. S, M, F, Ling, A, DocNLI refer to SNLI, MNLI,
Fever-NLI, LingNLI (Parrish et al., 2021), ANLI and DocNLI (Yin et al.,
2021), respectively. Numbers in bold represent the highest accuracy in one
category. Due to space limitation we provide the link to each model in the
Appendix 3.H.

multiple different generalized quantifiers. We discuss these observations in
Section 3.7.

Two of the authors annotated the examples. The inter-annotator agree-
ment (Fleiss’ kappa) was 0.895, substantially higher than ANLI’s (0.672-0.740).
It is worth noting that the level of semantic or pragmatic interpretation dif-
ference of GQs is reflected in the measurement.

We augmented the examples by substituting non-quantifier words (e.g.,
replacing “dogs” with “cats”) while keeping the labels, to exclude the effect of
specific lexical items. The resulting labels are uniformly distributed. Table 3.8
presents GQNLI statistics. Since the dataset is curated to probe the ability
to reason with quantifiers, the distribution of generalized quantifiers does not
follow Zipf’s law; see §3.4. A list of GQNLI examples per category is shown
in Appendix 3.E.
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Experiments and Results We evaluate seven types of models on GQNLI,
fine-tuned with different combinations of NLI datasets. As data creation only
relied on RoBERTa and MNLI, nothing prevents that models with different
architectures and training data will perform well. They do not, however. The
results are shown in Table 3.8.

We see that all models have great difficulty with GQNLI. With more
training data, models improve, but the best performance is 48%, less than 15
points above chance level. In general, the counting quantifiers, especially the
existential and universal quantifiers, are easier than proportional quantifiers.
Particularly, most models struggle with less than k and between. This is in
some contrast with the NLU tasks studied above, where these quantifiers
were among the easiest.

We also observe unstable G(Q) reasoning ability in simple word substitution
cases. For instance, it happens for DeBERTa fine-tuned with M, F| Ling,
DocNLI that it predicted correctly the contradiction relation between “There
are six children standing on top of a yellow mountain. Two thirds wear red
tops and one third wear green.” and “Between 80% and 90% children do
not wear red tops.”, but incorrectly when “red” is substituted with “beige”
and “green” with “cyan”. We are yet to study what kind of cues lead to
the instability. Our experiments suggest a lack of testing proportionality
reasoning and robustness in existing benchmarks.

3.7 Discussion

Negation The interaction between negation words and quantifiers increases
semantic complexity (Partee, 1970; Horn, 2010). We investigate whether this
holds for NLI tasks, using negation cue detection to find all cases where a
negation word and a quantifier appear in the hypotheses.

We break down the performances on negation of the seven models in
Appendix 3.F. As indicated, LMs overall have polarized results for negation
cases comparing to the entire dataset. We can see a majority of the models
even predicted opposite labels for some GQ categories, with 0% accuracy.
BART is no longer the second best model, replaced by RoBERTa. The
improvement by training with more data is overall consistent for reasoning
over GQs with negation.

For a cross-lingual investigation of the interaction of GQs and negation,
we find that in XNLI, the number of cases combining both phenomena is
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insufficient: we identified four such cases, involving only the quantifiers “all”
and “more than.” For English, mBERT predicted two cases successfully. For
Chinese, German, Vietnamese and Arabic, one is correct. For Spanish, all
are wrongly predicted.

It is evident that NLU models suffer from reasoning difficulties in certain
cases when negation interacts with GQs, especially in cross-lingual evaluation.
In future work, we are interested in expanding GQNLI to more instances and
more languages to facilitate qualitative investigations.

Subsumption In generalized term subsumption languages (TSLs; Yen,
1991; Ali and Shapiro, 1993), a term a subsumes another term b if and
only if the extension of a is a superset of the extension of b . Rather than
surface number comparison, subsumption reasoning requires knowledge of
the relations between supersets and subsets. For example, to decide whether
“There are six dogs. Three brown dogs, a black dog and a white dog run
along the green grass” entails “One dog sits”, LMs should be aware that “six
dogs” is a superset of the extension of the “brown dogs”, “black dog” and
“white dog”. Another example in GQNLI is to infer whether “There are twelve
singers on a stage, less than half from Argentina and one from Cape Verde”
entails “Several singers do not come from Chile”.

We annotate 63 cases out of the first 100 in GQNLI requiring subsumption
reasoning. We show the statistics and results regarding subsumption in
Appendix 3.G. It can be seen that more training data leads to higher accuracies.
Especially, DeBERTa fine-tuned with DocNLI, which unifies the two classes
“neutral” and “contradict” into a new class “not entail”, has a significant
improvement on subsumption cases with neutral label. The training bias give
an advantage to the model on the subsumption subset, half cases of which
are labelled neutral. But such bias has a negative effect on non-subsumption
cases; the accuracy drops by 20.2% comparing to the model without training
with DocNLI. It is worth investigating whether DocNLI is truly helping
subsumption reasoning in future work. Subsumption is a key concept in the
study of knowledge representation (Woods, 1991), but is neglected in current
NLP research. The fact that LMs struggle to perform subsumption reasoning
asserts the necessity to explicit tackle the problem.
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3.8 Related Work

We examine the sensitivity of NLU models to generalized quantifiers. These
models are designed to induce correlations from large volumes of data, not to
reason symbolically with logical quantifiers. Such models have, nevertheless,
been probed for logical knowledge.

Mul and Zuidema (2019), for example, show neural networks encode frag-
ments of first-order logic and exhibit zero-shot generalization ability. Evans
et al. (2018) present a neural architecture that improves performance on
propositional logical inference. Bowman et al. (2015b) also suggest neural
networks learn semantic representations for logical inference in natural lan-
guages. However, on the same task, Veldhoen and Zuidema (2017) find neural
networks fail to do so on a more stringent test. Geiger et al. (2019) also
show that neural networks fail to exhibit robust logical inference. Srivastava
et al. (2018) use semantic parsers to encode quantifiers and improve zero-shot
learning in classification tasks. Haruta et al. (2020) present a system that
computes logical inference over GQs and see improvements on two specialized
datasets, FraCaS (Cooper et al., 1994) and MED (Yanaka et al., 2019). None
of these papers explicitly discussed generalized quantifiers, and all were limited
to studying the ability of neural networks to capture the logical semantics of
English.

Many studies have instead focused on LMs’ ability to capture negation
(Gururangan et al., 2018; Naik et al., 2018; Hossain et al., 2020; Ettinger, 2020;
Hartmann et al., 2021) or coreference (Ye et al., 2020; Varkel and Globerson,
2020; Abdou et al., 2020). Others have focused on LMs’ ability to reason
with numbers (Johnson et al., 2020). DROP (Dua et al., 2019), for example,
is a question answering dataset designed specifically to probe LMs’ ability to
count, add and subtract for answering factoid questions. Models have also
been tailored for numerical reasoning (Geva et al., 2020; Zhang et al., 2020).
Cobbe et al. (2021) proposes to use a verification task during pretraining
of LMs to improve their ability to solve math word problems. Others have
studied monotonicity inference (Hu et al., 2019; Yanaka et al., 2019, 2020),
and Fang and Lou (2021) recently focused on the two quantifier words part
and whole in an error analysis for named entity recognition.

Many NLU benchmarks contain quantifier words, but their influence on
performance has not been studied systematically. One exception to this is that
generalized quantifiers have been used to generate adversarial examples in the
context of numerical reasoning (Naik et al., 2018; Nie et al., 2020). TaxiNLI
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(Joshi et al., 2020a), which categorizes 15 types of reasoning abilities, is a
dataset drawn from MNLI. In their taxonomy, the Quantifier category only
refers to universal and existential quantifiers, not to generalized quantifiers,
and ditto for Kim et al. (2019). All of the above focused on English, but in
an extension to TaxiNLI, K et al. (2021) incorporated quantifiers into the
Logic class and found a large cross-lingual transfer gap on LMs.

3.9 Conclusion

Quantifiers lie in the intersection of logic, linguistics and NLP research. It
is essential for NLU systems to learn quantifier reasoning. We examined
generalized quantifiers in multilingual NLU tasks with regards to their ex-
pressiveness and logical reasoning requirement. Our survey and experiments
indicate quantifiers are neglected to a degree and cause significant perfor-
mance drops for neural LMs. To better understand LMs’ reasoning abilities,
we release GQNLI, a novel generalized quantifier NLI challenge dataset. With
the pervasiveness of generalized quantifiers, we stress that more efforts are
necessary to investigate: (1) when and why models systematically fail when
quantifiers interact with other operators; (2) how to improve cross-lingual
transferability of quantifiers; (3) how we can exploit the theoretical results
about generalized quantifiers from logic and linguistic studies, so as to improve
the logical inference ability of neural LMs.
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Appendix

3.A Regular Expressions for Generalized Quan-
tifiers

Table 3.9 lists the regex we use to parse generalized quntifiers in sentences
augmented with universal dependency tags. The approach does not find all
the generalized quantifiers exhuastively but rather approximates the common
distributions.

Figure 3.2: Fine-grained analysis of RoBERTa performance on 6 English
NLI subtasks. Each heatmap represents hypotheses with a type of quantifier.
The rows stand for premises with the quantifier of that label. The numbers
are calculated as the accuracy over the whole dataset minus the fine-grained
accuracy given a specific premise and hypothesis (the higher the number, the
worse the performance). For each heatmap, the last column represents the
accuracy gap weighted by all 6 tasks. “UN” stands for an entry where no
explicit quantifier is identified.
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Generalized Quantifiers

Regular Expressions

some(A)(B) =1

[
—

all(A)(B)

more than k the(A)(B) =1

less than k the(A)(B) =1

k (A)(B) =1

between p and k the(A)(B) =1

the p/k (A)(B) = 1

the k% (A)(B=1)

most (A)(B) =1

few (A)(B) = 1

each other (A)(B) =1

(some|several |much|many)\/det .x\/(nsubj|obj|obl)|(some]|several |much]|
many) \/nsubj | (some|several |much|many)\/amod \w+\/nsubj: pass

(every|all|each)\/det .x\/(nsubj|obj|obl)|all\/det:predet .x\/(nsubj|
objlobl) |everything|everyone|everybody

((more| great)\/advmod than)\/(fixed |case)|at\/case least\/nmod) .+\/
nummod .+\/(nsubj|obj|obl)

((few|less)\/advmod than\/(fixed |case)|at\/case most\/amod) .+\/nummod
.4+\/(nsubj|obj|obl)

\w+\/nummod .+\/(nsubj|obj|obl)

between\/case \w+\/(nummod|nsubj|obj|obl) and\/cc \w+\/conj|between\/
case .+\/(nummod|nsubj|obj|obl) %\/obl

\d+\/\d+\/(nummod | nsubj | obj|obl) | half\/nummod| third\/(nsubj|obj|obl) |
fourth\/(nsubj|obj|obl)| fifth\/(nsubj|obj|obl)

\d+\/nummod %)\ /(nsubj|obj|obl)

most\ /amod \w+\/(nsubj|obj|obl)|most\/nsubj:pass of\/case .+\/nmod

few\/amod \w+\/(nsubj|obj|obl) |few\/nsubj:pass of\/case .4\ /nmod

each\/det other\/(nsubj|obj|obl)

Table 3.9: Regular Expressions for generalized quantifiers.
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3.B Pairwise Observation

While the analysis in Section 3.4 is based on quantifiers in hypotheses, next
we consider the interaction of quantifiers in hypotheses and quantifiers in
premises. To this end, we calculate the difference between overall perfor-
mance and performance for premise-hypothesis pairs of GQs. In Figure 3.2,
we visualize the results as heatmaps (see Table 3.10 for exact numbers of
occurences and accuracies). Surprisingly, whenever quantifiers appear in both
the premise and the hypothesis, LMs largely fail to predict the entailment.
Percentage quantifiers, supposed to be semantically more complex than count-
ing quantifiers, are not de facto harder in NLI. We studied all 27 cases of
percentage quantifiers in the English NLI datasets, and found that in most
cases, percentage quantifiers occurrences are identical across premises and
hypotheses, i.e., triggering little or no inference. The other two proportional
quantifiers, most and few, are hard for LMs to resolve, e.g., in some quantifier
pairs, models yield 0% accuracy. Although each other is supposed to be
hardest to resolve due to the complex semantics of reciprocals (Szymanik and
Thorne, 2015), it is not reflected in NLI tasks as such. The reason is similar to
percentage quantifiers, while annotators intend to alter counting quantifiers
when writing hypotheses, reciprocality is seldomly considered a linguistic
ability that needs testing for NLU systems. And the annotation for Ram-
sey quantifier is simply a knockoff, making reciprocal relation identification
unwarranted through shallow correlations.

3.C Fine-grained NLI Analysis
3.D XQA Result: mBERT and XLM-R

Table 3.11 compares the results of mBERT and XLM-R on two XQA tasks,
XQuAD and MLQA.

3.E GQNLI Examples

Table 3.12 list one example per category in GQNLI.
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3.F GQNLI Negation Cases

We present the results of seven models’ performance on cases with negation
cues in GQNLI in Table 3.13.

3.G GQNLI Subsumption Cases

See Table 3.14 for models 'performance on cases requiring subsumption
reasoning in GQNLI. We also break down subsumption results by entailment
labels into two categories: neutral and non-neutral.

3.H GQNLI Experiment Details

We reused the fine-tuned BERT and RobERTa in Section 3.4. The other
fine-tuned LMs are from Hugging Face. We list the models and thier links in
Table 3.15.
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Hypothesis  Premise MNLI_m_dev MNLL_mm_dev SNLI_test ANLL_R1_test ANLI_R2_test ANLL_R3_test Total
%iAce FiAce %Ace FiAce FAce %iAce FAce  #
some some 15 933 38 568 16 938 1 100 6 167 106 568 92
all B AT 50 3 100 3 0 22 636 14
>k
<k
K 12 5 10 50 10 90 4 000 2 50 68 853 38
between
ost
few 2 50 2 50 1
p/k
K%
eachother
“unmatched” 1o 9.0 83 813 137 554 1 w1 0 8 5 310 526 281
all some i 00 12 00 2 100 1 00 26 100 26
all 73 822 T4 85 3 00 4 2 2 50 6 50 162 815 132
>k 1 0 1 0 0
<k
k 2 85719 w022 s18 9 2.2 10 13 281 9% 08 6y
between 1 100 1 0 2 50 1
few 4 00 2 100 6 00 6
p/k ! 0 1
K%
cachother 0 0 1 00 0 0 0 1 001
“unmatched” 151 861 144 s15 41 927 5 w0 2 0 13 308 35 851 303
>k some 1 w2 50 1 0 4 50 2
all 1 0 2 0 2 50 5 20 1
>k 2 100 ! 100 2 50 5 50 1
<k
k 1 0 3 00 2 00 3 6.7 9 556 10 40 28 571 16
between 2 2 50 1
most
few 1 100 1 001
p/k

eachother

“unmatched” 12 w18 w5 0 ¢ w7 G 3 w7 50 2w
<k some
all
>k
<k
K 3 33 5 P} w1 545 6
between
most
few 1 0 1 0 0
p/k
K%
eachother
“unuatchied” 3 w0 3 100 33 2 00 2 0 13 769 10
K some 8 ™o ™6 2 857 2 0 2 0 4 0 58 24 a2
all 12 s33 14 T4 2 %55 1 003 0 4 w56 s04 45
>k 3 6.7 2 0 w0 2
<k 2 100 1 w00 3 w00 3
140 813 121 769 503 22 a2 429 49 449 37 324 o032 825 810
between 2 00 2 100 1 0 5 6w 3
st
w 1 100 1 w01
p/k 1 w1 100 1 w1 100 4 w04
K%
eachother 7 100 7 0o T
“unmatched 18 s05 137 861 383 27 1 364 13 35 11 364 673 88 502
between  some 1 100 1 w01
all
K 1 100 1 0 2 50 1 00 2
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>p/kemore/greaterthanp/k
<p/kifewer/lossthanp/k
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K%
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“unmatched” 2 w1 100 1 100 4 w4
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few 1 100 1 w001
p/k
K%
eachother
“unmatched” 2 79 30 833 1 0 54 s 42
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all 1 001 0 0 2 5 1
>k 1 100 0 1 w01
<k 0 0 0
K 4 w3 33 4 100 3 333 14 613 9
between
most 0 1 0 0 1 0 0
few 0 2 w0 0 1 0 3 667 2
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K%
eachother
“unmatched” 9 s Y 8o 7 857 2 O S5 22
p/k some
all
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K 2 00 0 1 00 0 0 3 00 3
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few
/k 2 100 1 100 3 w00 3
%
cachother
“unmatched” 1 00 3 ma 1 00 0 1 00 0 6 667 4
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>k
<k
K G 833 G 100 1 w0 13 023 12
between
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few
p/k
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eachother
“unmatched” 4 wo 1 100 5 w00 3
eachother  some 1 w001 w00 1
all 3 100 3 w00 3
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between
ost
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%
cachather 1 100 1 w001
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Table 3.10: Statistics of pairwise analysis in Monolingual NLI Benchmarks
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Benchmarks
mBERT XLM-R

Quant. en zh es ar vi de weighted en zh es ar vi de weighted

EA F1 EM F1 EM F1 EM F1 EM F1 EM F1 EM F1 EM F1 EM 1 EM F1 EM F1 EM F1 EM F1 EM F1

XQuAD |

some; 7 84.2 50 55.5 583  76.1 50 50 16.6 424 33.3 43.8 2 587 66.7 76.1 41.6 51.3 50 715 667 736 667 76.9 66.7 =0.6 59.7 TL7
all 28.5 62.2 14.2 35.2 28.5 82 428 52.3 14.2 294 285 56 26.1 52.9|57.1 0l.8 14.2 21.4 57.1 78.6 42.8 54.9 857 857 57.1 793 52.3 68.6
>k
<k
k 78.1 90.1 687 804 562 72.1 40.6 643 12.5 357 56.2 T7.1 521 70 7 874 53.1 088 46.8 774 656 863 6205 854 625 869 609 804
between 100 100 33.3 722 666 933 100 100 0 19 0 56.5 50 735 | 100 100 66.7 66.7 33.3 60 100 100 100 100 33.3 55.5 722 804
p/k
k%
most: 40 53.3 40 40 0 10 0 26.6 0 0 20 49.3 16.7 29.9 | 40 48 20 333 40 50 0 26.6 0 0 20 493 20 345
few

each other

all GQs 70 832 55 66.7 50 70.3 416 65 45.3 83.6 43.3 50.2 48.3 73.6 60 76 683 836 583 803 58 T46
comp, TL8 837 48 500 56 T45 408 672 46.9 86 43 528 61 80 533 71T 581 T8 GLI 771 585 T43
MLOA

soe 59 80 28.2 52.1 34.1 59.2 363 24 333 584 32.7 54.8 69.6 861 33.3 606 41.4 T0 431 629 43.2 78 454 61.1 46 69.8
all 677 79.8 14.2 46.4 38.4 62.8 333 301 31.2 51.6 32.6 54.8| 774 906 357 70 42.3 66.4 38 60 578 798 37.5 51 48.1 69.6
>k

<k 0 0 0 13.3 0 6.7 0 40 0 20 0 30

k 74.9 794 47 634 41.5 65.9 27.6 503 6.3 237 382 53 393 56 |69.2 821 452 662 48.7 733 43 649 48.5 719 46.3 62.1 50.2 70.1
between 50 885 50 833 0 26.6 0 68.7 0 26.6 20 587 | 50 885 50 50 50  65.3 0 54.6 0 774 30 67.2
p,’k 100 100 0 0 0 0 3 33.3| 100 100 100 100 100 100 100 100
k% 100 100 0 26.6 0 23.7 3 50.1 | 100 100 0 26.6 0 714 33.3 66

most 55.5 7 473 621 454 61.7 30 46.8 5.8 15.7 33.3 40.7 36.2 50.3 [59.2 76 473 69.5 45.4 59.5 40 632 47 757 222 317 43.5 62.6

each other

all GQs 63.5 79.2 418 603 39.6 63.7 29.3 513 6.4 23.6 36.1 53.2 36.1 55.2| 69 83 43 656 46,9 TL5 41.9 641 47.6 732 444 59.8 48.8 69.5
comp. 672 80.6 375 579 473 66 30 484 112 28 408 56 39 562 | 704 833 387 625 541 722 425 (29 505 723 522 673 514 701

Table 3.11: Results of mBERT and XLM-R performance on XQA tasks
decomposed by quantifier categories.

57



Chapter 3 | Generalized Quantifiers as a Source of Error in Multilingual NLU

Benchmarks
Quantifier Premise Hypothesis Label
some “There are six dogs. Three brown dogs, a “Some dogs sit.” Neutral
black dog and a white dog run along the
green grass.”
all “In 2021, there are 490 million people in “Not all people in  Entailment
Africa living in extreme poverty, or 36% of ~Africa live in extreme
the total population.” poverty.”
>k “Two young men in blue stand over a “At least two men wear Contradiction
stove and look at the camera while another red.”
young man in red stands behind them.”
<k “More than five guys chased two girls in  “No less than four guys  Entailment
the classroom.” chased two girls in the
classroom.”
k “There are twelve singers on a stage, less “Two singers come Neutral
than half from Argentina and one from from Argentina.”
Cape Verde.”
between “Only half out of six cleaners are sweeping “Between four and five Contradiction
up animal faeces from the street during a cleaners are sweeping
parade.” up animal faeces.”
p/k “More than 50% but less than 65% of “Two thirds of Amer- Contradiction
Americans worry about global warming” icans worry about
global warming.”
k% “More than five guys chased two girls in  “100% of the guys Neutral
the classroom.” chased two girls in the
classroom.”
most “Two young men in blue stand over a “Most men wear blue”  Entailment
stove and look at the camera while another
young man in red stands behind them.”
few “More than 50% but less than 65% of “A few people from  Entailment
Americans worry about global warming.”  America do not worry
about global warming.”
each other  “There are 100 villagers and 100 townsmen. “All villagers and all Neutral

Most villagers and most townsmen hate
each other.”

townsmen hate each
other.

Table 3.12: GQNLI examples.
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Benchmarks
Quantifier some  all >k <k k between p/k k% most few each other Ouverall
# Occurrence with negation cues 9 6 6 9 18 3 6 6 6 9 3 81
Model Training Data % Performance
BERT S,M,F,ANLI 0 66.7 100 33.3 50 0 50 0 50 22.2 33.3 ‘ 39.2
ELECTRA S,MLF,ANLI 333 50.0 100.0 33.3 50.0 0.0 50.0 0.0 66.7 0.0 0.0 ! 43.1
SBERT S,M,F,ANLI 55.6  50.0 66.7 11.1 278 0.0 50.0 0.0 0.0 54.9
MNLI 333 16.7 0 33.3 278 66.7 33.3 333 33.3 314
RoBERTa g\ 1 ANLI 66.7 83.3 1000 33.3 66.7 100.0  50.0 50.0 66.7 58.8
ALBERT S,M,F,ANLI 88.9 50.0 66.7 33.3 55.6 100.0 0.0 50.0 50.0 11.1 0.0 49.0
BART MNLI 33.3 0.0 50.0 66.7 66.7 100.0 0.0 100.0 0.0 33.3 0.0 35.3
S,M,F,ANLI 66.7 50.0 100.0 33.3 50.0 0.0 50.0 0.0 500 66.7 100.0 52.9
MNLI 33.3 0.0 50.0 33.3 50.0 100.0  66.7 50.0 0.0 333 0.0 37.3
DeBERTa-v3  M,F,ANLI 55.6  66.7 100.0 33.3 66.7 100.0 50.0 50.0 100.0 55.6 33.3 66.7
M,F,Ling,DocNLI 33.3  100.0 100.0 0.0 33.3 0.0 83.3 0.0 50.0 66.7 100.0 51.0

Table 3.13: Models’ performance on instances with negation cues in GQNLI.

Type Subsumption (neutral) Subsumption (non-neutral) Subsumption (total) Non-subsumption

# Occurrence 90 99 189 111

Model Training Data % Performance
BERT S,M,F,ANLI 22.2 24.2 23.3 41.4
ELECTRA S,M,F,ANLI 3.3 52.5 29.1 53.2
SBERT S,M,F,ANLI 68.9 35.4 51.3 18.9
MNLI 27.8 18.2 22.8 37.8
RoBERTa S,\M,F,ANLI 21.1 33.3 27.5 59.5
ALBERT S,M,F,ANLI 33.3 384 36.0 49.5
MNLI 36.7 46.5 41.8 40.5
BART S,M,F,ANLI 44.4 23.2 33.3 58.6
MNLI 45.6 26.3 35.4 33.3
DeBERTa-v3 M,F,ANLI 52.2 37.4 444 54.1
M,F,Ling,DocNLI 86.7 17.2 50.3 36.0

Table 3.14: Models’ performance on instances requiring subsumption reason-
ing.

Model Training Data Model’s link
ELECTRA S.M,F,ANLI https://huggingface.co/ynie/electra-large-discriminator-snli_mnli_fever_anli_R1_R2_R3-nli
SBERT S.M,F,ANLI https://huggingface.co/usc-isi/sbert-roberta-large-anli-mnli-snli
BART MNLI https://huggingface.co/facebook/bart-large-mnli

) S,M,F,ANLI https://huggingface.co/ynie/bart-large-snli_mnli_fever_anli_R1_R2_R3-nli
ALBERT S,M,F,ANLI https://huggingface.co/ynie/albert-xxlarge-v2-snli_mnli_fever_anli_R1_R2_R3-nli

MNLI https://huggingface.co/MoritzLaurer/DeBERTa-v3-base-mnli

DeBERTa-v3 M,F,ANLI https://huggingface.co/MoritzLaurer/DeBERTa-v3-base-mnli-fever-anli

M,F,Ling,DocNLI https://huggingface.co/MoritzLaurer/DeBERTa-v3-base-mnli-fever-docnli-ling-2c

Table 3.15: Links to the models we use to test on GQNLI.
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Chapter 4

What does the Failure to
Reason with “Respectively” in
Zero/Few-Shot Settings Tell Us
about Language Models?

Abstract

Humans can effortlessly understand the coordinate structure of sentences
such as “Niels Bohr and Kurt Cobain were born in Copenhagen and Seattle,
respectively”. In the context of natural language inference (NLI), we examine
how language models (LMs) reason with respective readings (Gawron and
Kehler, 2004) from two perspectives: syntactic-semantic and commonsense-
world knowledge. We propose a controlled synthetic dataset WikiResNLI and
a naturally occurring dataset NatResNLI to encompass various explicit and
implicit realizations of “respectively”. We show that fine-tuned NLI models
struggle with understanding such readings without explicit supervision. While
few-shot learning is easy in the presence of explicit cues, longer training is
required when the reading is evoked implicitly, leaving models to rely on
common sense inferences. Furthermore, our fine-grained analysis indicates
models fail to generalize across different constructions. To conclude, we
demonstrate that LMs still lag behind humans in generalizing to the long tail
of linguistic constructions.
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Bohr and Cobain werebornin Copenhagen and Seattle respectively .

Bohr and Cobain werebornin Copenhagen and Seattle .

Bohr wasbornin Copenhagen .

Cobain wasbornin Seattle .

Figure 4.1: An example of explicit (top, evoked by “respectively”) and implicit
(middle, with no overt marker) respecitve readings. Humans can infer that
both sentences have the same “cross-serial” meaning (bottom) by relying on
commonsense knowledge (that a person is only born in one location) and
world knowledge (that Copenhagen and Seattle are mutually exclusive).

4.1 Introduction

Transformer-based language models (LMs) (Devlin et al., 2019; Raffel et al.,
2020; Brown et al., 2020) induce useful representations for a wide range of
natural language understanding (NLU) tasks, including natural language
inference (NLI; Wang et al., 2018; Hu et al., 2020), especially in in zero-shot
or few-shot settings. To what extent this usefulness results from memorization,
generalization or the ability of LMs to draw common sense inferences remains
an open question.

To approach it, the linguistic phenomenon of respective readings (Gawron
and Kehler, 2004) serves as an excellent probe. This phenomenon has so far
been underexplored in NLP, even though it has been studied extensively in
linguistic semantics (McCawley, 1968; Pullum and Gazdar, 1982; Dalrymple
and Kehler, 1995; Eggert, 2000). In English, “respectively” is a rare word!
used to establish a one-to-one mapping between two sets of participants and
to distribute predicates over sets (Okada, 1999). For example, in Figure 4.1,
the first conjunct in the subject corresponds to the first conjunct in the object
and the second conjunct in the subject corresponds to the second conjunct
in the object. The respective relation is bijective and respects the relative
order of the elements of two different coordinate expressions; it is, in other
words, cross-serial. “Respectively” can have different syntactic or semantic
properties depending on the context, e.g., as a conjunction or adverb.

'In terms of frequency, in the British National Corpus, “respectively” is ranked 13,606th
among 18,089 words, and 233rd among 429 adverbs (Leech et al., 2014).
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In this paper, we investigate how LMs reason with respective readings.
We propose two datasets, WikiResNLI (a controlled synthetic dataset) and
NatResNLI (a naturally occurring dataset) to cover various explicit and
implicit realizations of “respectively”. Our research questions are:

1. Can NLI models reason with “respectively” constructions in zero-shot
settings?

2. Can LMs generalize from explicit to implicit respective readings?
3. Can LMs generalize from synthetic to natural respective readings?
4. What cues do LMs leverage for prediction?

We experiment with state-of-the-art LMs and analyze the results to gain
insights into the limitations of current models and potential directions for
future rescarch. We show that LMs are able to generalize effectively in a few-
shot learning scenario when the word “respectively” is present. However, when
the reading is evoked implicitly, a greater number of training instances are
necessary. LMs require significantly more instances to generalize to naturally
occurring datasets than humans. In conclusion, our study demonstrates that
LMs continue to exhibit a deficit in generalizability to infrequent linguistic
constructions with limited coverage in their training data.

4.2 Respective Readings

Respective readings are closely related to several types of readings instantiated
by plurals and mass terms: distributive readings, collective readings and
cumulative readings (Champollion, 2015).

Distributive readings. These usually refer to the application of a predicate
to the subsets of a set or group. As for sentence 1(a), it is equivalent to “John
smiled and Mary smiled”. The reading is available because of the nature of
the predicate is atomic (Winter, 2002), similar instances including “sing” and
“sleep”. Distributive reading can be enforced with overt distributive markers,
i.e., “every” and “each” (Scha, 1984). In example 1(b), we enforce the reading
by adding “each” at the end of the sentence so as to rule out the reading
“John and Mary earn 200 dollars together”.
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1. (a) Distributive reading: Johnand Marysmiled.

(b) Distributive reading with an enforced marker: Johnand Mary
earn200dollars each.

Collective readings. These are the opposite of distributive readings in
that the predicates apply to the whole plural entity instead of individuals.
The quantifiers “all” and “most” instead of “every” and “each” are usually
compatible with collective readings as in example 2(b) (Dowty et al., 1987).

2. (a) Collective reading: Themen gathered.

(b) Collective reading with overt marker: Allofthemengathered.

Cumulative readings. These involves two entities but in a symmetric
non-scopal relation as in the canonical example 3 (Scha, 1984). The sentence
can be paraphrased into “There are three boys and two girls, each of the three
boy saw at least one of the two girls, and each of the two girls was seen by at
least one of the three boys.”. It is discussed sometimes with weak reciprocity
(Langendoen, 1978).

3. Cumulative reading: Threeboyssaw twogirls.

Respective readings. These are thought to be a special case of cumulative
readings in which a bijective relation holds between the two (or more) sets of
entities that enter into the cumulative relation (Chaves, 2012). For example
4(a), the pair (Emiliano Zapata, Morelos) and the pair (Gerhart Miinch,
Michoacén) are grouped under the died in relation. Respective reading can
also arise without the adverb respectively, and the absence is even sometimes
preferred. As in example 4(b), the binomial expression “husband and wife” is
so strong that the adverb “respectively” is unwarranted.

4. (a) Respective reading with overt marker: EmilianoZapataand Ger-
hart Miinch. died in Morelosand Michoacan, respectively.

(b) Respective reading without overt marker: Johnand Maryarehus-
band and wife.
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4.3 An NLI Benchmark for “Respectively”

Understanding the coordinate structures in respective readings is effortless for
humans, but it remains a question whether LMs, after being pre-trained on
billions of tokens and fined-tuned on thousands of NLI instances, can reliably
process them.

To probe LMs’ behaviour in the presence of respective readings, we
construct two English NLI datasets: WikiResNLI, a synthetic dataset based
on an analogy corpus, and NatResNLI, a dataset sourced and created from
natural occurrences. We release both datasets on Github? and describe the
detailed creation steps below.

4.3.1 Synthetic Dataset: WikiResNLI

To generate a controlled synthetic challenge set for reasoning with respective
readings, we exploit a useful relationship between coordination constructions
and analogies. Analogy is concerned with similarities between observable
properties and causal similarities.

Analogy dataset. Garneau et al. (2021) proposed WiQueen, a multilingual
analogy dataset consisting of 78,000 analogies extracted from Wikidata. A
subset of 9,000 instances is annotated where all four entities are unique. These
are the analogies in which all relations are informative (Newman-Griffis et al.,
2017). See Table 4.1 for an example. Their experiment showed that pretrained
LMs can predict 29% of analogous entities in a zero-shot setting and 41%
after training. This indicates that analogical knowledge already exists in
pretrained models and can be enhanced by training.

Generating premises with “respectively”. Given four analogical entities
(wy, wy, w3, wy) and the predicate p, we form a natural language premise
consisting of the analogical information in a respective reading setting of 5(a)
after adapting p for phrasing and conjugation. Such a premise is unambiguous
and equivalent to 5(b), where the predication is distributed over the two pairs
of entities. 5(a) is marked by an explicit respective reading indicator. As
an implicit respective reading case, 5(c) has the same meaning as 5(b) but
there is no explicit respective operator. In such implicit cases, the predicate

’https://github.com/ruixiangcui/WikiResNLI_NatResNLI
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Denotation Natural Language Example
Premise: wy and ws p Emiliano Zapata and  Gerhart Minch  died in
wy and wy , Morelos and Michoacdn , respectively
respectively.
Hypotheses:
Entailment (1), @y p ws . Emiliano Zapata died in Morelos .
1510
Entailment (2), w3 p wy . Gerhart Minch died in Michoacdn .
1510
Contradiction wy p wy . Emiliano Zapata died in Michoacdn .
(1),1S10
Contradiction w3 p wa . Gerhart Miunch died in Morelos .
(2),1S510
Contradiction wy p we and Emiliano Zapata died in Morelos and Michoacdn .
(3),1820 Wy .
Contradiction w3 p wy and Gerhart Munch died in Morelos and Michoacdn .
(4),1520 Wy -
Contradiction wy and w3 p Emiliano Zapata and  Gerhart Minch  died in
(5),2810 wy . Morelos .
Contradiction wi and aws p Emiliano Zapata and  Gerhart Minch died in
(6),2510 =3 - Michoacan .

Table 4.1: Example analogy in the spirit of Garneau et al. (2021). Both entity
pairs (awy, wy; ws, wy ) share the p relation. Object entities are unique
in that given an entity pair and a subject, the fourth is uniquely determined.
We generate eight hypotheses for each premise: 1S10 refers to one subject
and one object, 1520 refers to one subject and two objects and 2510 refers
to two subjects and one object.

p is usually mutually exclusive in that each subject can have only one object.
For example, in Sentence 6(a) a person can only die in one place but not
two places. Non-mutually exclusive predicates are disqualified for an implicit
respective reading since they causes ambiguity, as in Sentence 6(b).

5. (a) wyandwspwsandwg,respectively.

(b) wy pwoandwspwy.
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(¢) wiandwspwsandwy.

6. (a) EmilianoZapataand Gerhart Miinchdiedin Morelosand Michoacan.
(b) Johnand Maryateafalafelandatortilla.

Generating hypotheses. We subsequently generate hypotheses and pair
them with the generated explicit and implicit premises. In Table 4.1, we show
the rules to write entailment or contradiction hypotheses given a premise
created from the analogical entities and properties.

Statistics. The resulting dataset, which we call WikiResNLI.xpyicir, con-
tains 2,317 premises with different analogical entities, each of which has two
entailment hypotheses and six contradiction hypotheses, resulting in 18,536
premise-hypothesis pairs in total. The dataset has 139 different predicates
derived from Wikidata properties. For the development set, we randomly
sample 13 predicates from the 126 predicates left and trimmed them if the
number of premises for each predicate exceeds 100. We have 1,312 premise-
hypothesis pairs for the development set. The rest is used as the training set,
with 1,577 premises and 12,616 premise-hypothesis pairs.

Generating premises with implicit “respectively”. We aim to test
whether LMs can reason with respective readings and generalize from explicit
construction to instances without overt markers. For this purpose, we derive
an implicit dataset from WikiResNLIgyppicir by simply removing the word
“respectively” from the premises. We call this dataset WikiResNLIyppicrr-
In this process, we need to pay special attention to the fact that ambiguity
usually occurs in the 1S20 setting when the predicates allow conjunction
of objects; given the sentence 6(b), it is ambiguous whether the hypothesis
“John ate a falafel and a tortilla” is entailed. To form a high-quality test
set for WikiResNLIypriorr, We first need to exclude the ambiguous contradic-
tion hypotheses. Therefore, two of the authors manually annotate the 139
predicates for whether they allow a single subject predicating conjunction
of two objects. In total, 13 predicates are annotated by both authors as
unambiguous. Subsequently, we keep only the premises with these predicates
from the complete WikiResNLI, and for each predicate, we cap it if the
number of premises exceeds 100. Eventually, we are left with 451 premises
for the 13 predicates. The 3,608 premise-hypotheses pairs are used as the test
set.
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Human Entailment Neutral Contradiction
Reference

Entailment 934 2.1 4.5
Contradiction 5.9 4.1 90

Table 4.2: NatResNLI human annotated label distribution in percentages for
each assigned reference label. Humans mostly agree with the pre-assigned
reference labels (demonstrated in Table 4.1), but not always.

4.3.2 Naturally-occurring Dataset: NatResNLI

While the synthetic dataset is well-controlled, it does not necessarily cover
the natural usage of “respectively”. To address this, we also collect a dataset
of naturally-occuring usages.

Collecting premises. As data resources for “respectively” in publicly
available naturally-occuring data, we leverage two online dictionaries® and a
writing advice blog,* which provide English examples containing specific words
in real-world examples. We curate the sentences that included “respectively”
and further filter some of them to avoid context ambiguity. In total, 76
sentences remain as the premise set.

Generating hypotheses. Two of the authors manually write hypotheses
based on the fine-grained categorization of Table 4.1 for each collected premise.
Given that the labels are pre-assumed, and to determine whether these
inference relations align with humans, we employ crowd workers to verify
them. See the annotation details in Appendix 4.A.

Statistics. The resulting dataset, which we call NatResNLI, consists of 76
premises and 608 hypotheses. The average sentence lengths of NatResNLI’s
premise and hypothesis are 20.1 and 10.1, respectively. Sentences have 2.32
conjnucts in average, with 4 as the maximum.

3https://sentence.yourdictionary.com/respectively and https://www.
dictionary.com/browse/respectively
‘https://crosstalk.cell.com/blog/how-to-use-respectively-respectfully
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Variety. NatResNLI's sentences have more complicated linguistic constuc-
tions than WikiResNLI, such as relative clauses, e.g., sentence 7(a), implicit
coreferences in sentence 7(b), and inverted sentences in sentence 7(c).

7. (a) Theannualvalueofthe Hulseendowmentisbetween £800and £900, of which
eight-tenthsgototheprofessorof divinity and one-tenth tothe prizeandlecture-
ship,respectively.

(b) In1910theexportofpalmkernelswas6,141tons, of palmoil 2,160 tons; in 1916
thefigureswere 22,391 tonsand 3,852 tonsrespectively.

(c) Abovethis,approached byastair,arethe Lescheand thetheatre, occupyingre-
spectively thenorth-east and northwest corner ofthe precinct.

Inter-annotator Agreement. The inter-annotator agreement (Fleiss’
kappa; Fleiss, 1971) of the workers for NatResNLI is 0.65, lower than ANLI’s
(0.67-0.74) and SNLI’s (0.70). This can be attributed to that we have five
annotators rather than the commonly chosen three annotators, as a larger
number of annotators can sometimes lead to more diverse interpretations and
disagreements, potentially lowering the inter-annotator agreement.

Verification of pre-assigned labels. In Table 4.2, we calculate the average
agreement percentage of human annotation with reference labels, showing
that humans do not always agree with them. Investigating the examples
where the majority votes are distinct from the pre-assigned labels, we find nine
instances distributed over four premises. For the sentence in 8(a), humans
actually correct the label as the respective reading here does not cause a
mutually exclusive effect. For sentence 8(b), humans show more caution
towards sentence ambiguity caused by unknown world knowledge of Kilia and
Dniester’s locations, and hence the neutral label.

8. (a) Premise: Theannualvalueofimportsandexportsexceedssevenand ninemil-
lionsterlingrespectively. Hypothesis: Theannual valueofimportsand exports
exceedssevenmillionsterling. Pre-assigned Label: contradiction. Ma-
jority Vote: entailment

(b) Premise: Inthat yearaTurkish fleet captured thestrongholdsofKiliaand Akker-
man,commandingrespectively themouthsofthe Danubeand Dniester. Hy-
pothesis: Inthat yeara Turkish fleet captured thestronghold of Kilia, command-
ingthemouthsofthe Danubeand Dniester. Pre-asigned Label: contra-
diction. Majority Vote: neutral
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Model Training data entailment contradiction overall
1S10 1S20 2S10
MNLI 99.7 479 0.3 4.5 38.1
RoBERTa g\ 1 ANLI 100 551 0.1 1 39.1
ALBERT S,M,F,ANLI 99.8 316 3.1 3.9 34.6
MNLI 99.4 36.1 0.6 3.9 35
DeBERTa-v3 M,F ,ANLI 98.8 40.2 3.9 10.8 38.4
M,F,Ling, WANLI 100 778  36.7 594 68.5

Table 4.3: Zero-shot performance on the WikiResNLIypriorr test set.

Considering human annotations as ground truth, we discard the pre-assigned
labels and adopt the majority votes as the final labels for NatResNLI.

4.4 Experiments

We begin our experiments with the datasets by addressing our first research
question:

Theorem 4.1. Can NLI models reason with the coordinate structure in
“respectively” construction in zero-shot settings?

Given the popularity of NLI as a classification task to test LMs’ ability of
language understanding, many works have proposed new models achieving
state-of-the-art results on datasets such as SNLI (Bowman et al., 2015a),
MultiNLI (MNLI; Williams et al., 2018) and ANLI (Nie et al., 2020). On the
GLUE leaderboard,’ the state-of-the-art models have surpassed 90% and 95%
accuracy on MNLI and QNLI which are deemed as solved challenges. ANLI
has been one of the most challenging tasks in recent years, and the latest
models such as DeBERTa-v3-large (He et al., 2021; Moritz et al., 2022) and
PaLM 540B (Huang et al., 2022) can achieve 64% and 67.9%, respectively.
While many works use ANLI as a medium to exhibit the models’ growing
reasoning ability, few of them analyze in depth in which case it fails and at
which stage it gets to learn certain linguistic abilities.

We report the zero-shot performances of three LMs fine-tuned with differ-
ent combinations of NLI corpora. The models include RoBERTa (Liu et al.,
2019), ALBERT (Lan et al., 2019) and DeBERTa with fine-tuning data of

Shttps://gluebenchmark.com/leaderboard
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Model Training data entailment contradiction overall
1S10  1S20 2S10
MNLI 97.1 264 04 8.6 33.1
RoBERTa g\ 1 ANLI 99.9 235 03 34 318
ALBERT S,M,F,ANLI 100 14 0.1 0.8 28.7
MNLI 99.3 25.5 1.4 5.2 32.9
DeBERTa-v3 M,F ,ANLI 96.9 26.6 5.7 16.9 36.5
M,F,Ling, WANLI 100 59.3 24 13.2 43.7

Table 4.4: Zero-shot performance on the WikiResNLIpricrr test set.

MNLI, SNLI, ANLI, FEVER-NLI (Nie et al., 2019), LingNLI (Parrish et al.,
2021) and WANLI (Liu et al., 2022).

The experiment results on WikiResNLIxppiorr and WikiResNLIyprcr are
presented in Table 4.3 and Table 4.4, respectively.

As can be scen in Table 4.3, models cannot fully correctly reason with
respective readings. The best model, DeBERTa, only achieves 35% accuracy
if fine-tuned with MNLI, and will reach 68.5% if fine-tuned with almost all
NLI training datasets mentioned above. It gains a large increase in the 1510
setting by 41.7%. However, the accuracy on 1S20 is still at a chance level,
and the 2510 setting performance is only approaching around 60%, leaving
room for improvement.

The performance on WikiResNLIyprorr is even worse, as indicated in
Table 4.4. Similarly, DeBERTa is again the best performance model on the
dataset, with an accuracy of 43.7% if fine-tuned with all NLI corpora. The
accuracy is just 10% above the chance level, and it completely fails in the
1520 and 2510 settings.

Results on both datasets show that when training with more data, models
improve on respective readings. However, the question of what leads to
improvement remains. We examine how many times explicit respective
readings appear in the training and testing datasets of MNLI, SNLI Fever-
NLI and ANLI. We find that the adverb “respectively” occurs 177 and 12
times in the MNLI training and dev sets, 15 and 0 times in the SNLI training
and test sets, 1,064 and 64 times in the Fever-NLI training and test sets,
and 216 and 5 times in the combined ANLI training and dev sets. We
randomly sampled a subset of each dataset and manually check whether they
tackle reasoning over coordination structure. We find that in most cases,
“respectively” works simply as a context word and has little to do with the
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Figure 4.2: Overall performance of DeBERTa WikiResNLIpxpycir, WikiResNLI
wienicrr and NatResNLI from zero-shot to fully supervised. Wiki__ex- Wiki_ex
refers to training with WikiResNLIyxporr instances and evaluating on

WikiResNLIxpriorr test set. Similarly, Wiki im-Nat refers to training with
WikiResNLIporr and testing on NatResNLI.

actual inference relations. Thus it is still not clear whether it is simply the
exposure to the explicit cues (the word “respectively”) or some instances with
implicit coordinate structures that result in the performance improvement.
We thus ask the following three research questions and experiment with
few-shot learning.

Theorem 4.2. Can LMs Generalize from FEzxplicit to Implicit Respective
Readings?

Instances of WikiResNLI have the coordinate structures of an equal
number of conjuncts, and linguists have argued that such semantic relations
are reflected in the syntactic relations (Goodall, 1987; Moltmann, 1992). It is
essentially semantic but also relies on pragmatically available information of
the truth conditions. Respective readings in fact also commonly omit explicit
lexical indicators but remain available and preferred as 2(a) (Gawron and
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# Shots 1 2 4 8 16 32 64 Full

Type
All 8§ 16 32 64 128 256 512 12,616
Basic 4 8 16 32 64 128 256 6,308

Table 4.5: Number of training instances for each number of shots. A “shot”
contains multiple training instances since we always take a premise along with
all of its generated hypotheses—8 in the general case and 4 in the basic case.

Kehler, 2004). We are therefore interested in whether LMs can learn the
semantic-pragmatic meaning of respective reading sentences rather than only
making use of lexical and syntactic cues.

We fine-tune the DeBERTa model previously fine-tuned with M, F, Ling
and WANLI with different numbers of WikiResNLIxpioir €xamples without
a dev set, since we do not want to bias the model towards our datasets hence
hurting performance on the other NLI tasks.

We fine-tune the model with WikiResNLIixppcrr and WikiResNLIyppicir
separately and report the overall accuracy on both dataset in Figure 4.2.
Training with WikiResNLI;xppcir contributes to a steady performance in-
crease on both WikiResNLIxpricir and WikiResNLIypricir. Especially, 1-shot
learning enhances the performance clearly, with a 10% increase for in-domain
evaluation, and a remarkable 30% increase for explicit to implicit generaliza-
tion. The improvements are small from 1-shot to 8-shot. Only at 16-shot, both
WikiResNLIgxpriorr in-domain learning and transferring to WikiResNLIypricrr
reach 100% accuracy. This shows the possibility to learn respective readings,
despite the need to see relevant instances 128 times (see Table 4.5).

Interestingly, in-domain few-shot learning of WikiResNIL;ypicir Witnesses
a relatively cold start. The accuracy does not increase above 60% until 16
shots. Generalization from implicit respective reading to explicit reading is
surprisingly not reaching 100% accuracy even after full supervision. We are
keen to investigate what types of instances are difficult to learn for explicit
to implicit respective reading generalization. In Figure 4.3, we break down
WikiResNLIyppicir with contradiction labels by categories (1510, 1520 and
2510) and plot the accuracy against number of shot.

As can be seen, the performance on explicit readings is always better
than on implicit readings across all three contradiction types. Among them,
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Figure 4.3: DeBERTa’s Performances on WikiResNLIyp1crr after fine-tuning
on WikiResNLIxporr 0r WikiResNLIypicrr- The result is broken down by
contradiction fine-grained set.

1520 and 2S10 instances are the most difficult. Their accuracies are below
40% and 20%, respectively before 16 shots. And only until 32 shots do both
types reach above 95% accuracy. Unlike in-domain learning, 1520 never gets
perfectly solved.

Theorem 4.3. Can LMs Generalize from Synthetic to Natural Respective
Readings?

WikiResNLI is a synthetic dataset, and it remains unclear whether models
can reason with respective readings in realistic settings if we generate enough
synthetic data and feed it to models. With NatResNLI, we are able to
investigate LM’s respective reading reasoning generalizability from synthetic
to natural data and its alignment with humans.

We evaluate the models fine-tuned with WikiResNLI;xp1crr 0n NatResNLI
and plot the performance in Figure 4.4. We can observe that scores on
NatResNLI are almost always lower than on WikiResNLI due to domain drift.
Particularly, 1S20 and 2S10 are 10% and 20% lower in zero-shot settings.

73



Chapter 4 | What does the Failure to Reason with “Respectively” in Zero/Few-Shot
Settings Tell Us about Language Models?

100 e

"’"'
90 +
. /i

80 / i
i

> 70 7]
8 1
o 1
i
< 60 T
1
'I
50 _wy-===o  —¥— Wiki_ex_all-Wiki_ex_1S10
v’/ Wiki_ex_all-Nat_1S10
- e T
40 .’ =¥~ Wiki_ex_all-Wiki_ex_1S20
v’ Wiki_ex_all-Nat_1S20
Wiki_ex_all-Wiki_ex_2S10
30 Wiki_ex_all-Nat_2S10
0 1 2 4 8 16 32 64 full
Num of shot

Figure 4.4: Performance of DeBERTa on NatResNLI after being fine-tuned
on WikiResNLIxporr- To facilitate comparison, we mark performances on
WikiResNLI;ypriorr i darker colours.

1520 manage to reach on-par performance with WikiResNLI after 16 shots,
while 2510 after 32 shots.

Interestingly, the models are able to surpass 95% after 32 shots, while
pre-assigned labels only have 90% match (see Table 4.2). Although we are
comparing a rule-based method with 32-shot (256 examples) training, we can
conclude that models are able to align with humans for respective reading
reasoning. In addition, we notice that for 1520 and 2510 generalization, the
complex linguistic structures discussed in Section 4.3.2 do have a high impact
in the low-number few-shot learning, but the difficulty diminished as more
training data are used.

Theorem 4.4. What Cues do LMs Rely on?

So far we have discussed LMs’ ability to generalize on the syntactic-
semantic level, from explicit to implicit and from synthetic to natural in
respective readings. But it is yet to be determined whether the model is
simply adopting the lexical-syntactic heuristics for prediction and whether it
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Figure 4.5: Performance of DeBERTa on WikiResNLIyp;oir and WikiResNLI
neucrr after being fine-tuned only with the basic types (entailment and 1510
contradiction) of WikiResNLIyxppcrr-

leverages common sense and world knowledge. If models can reason over basic
hypothesis structures (1S10 entailment and 1S10 contradiction), it would
be expected they are aware that the one-to-one relation correspondences
should exclude 1520 and 2510 propositions due to common sense and world
knowledge. Although there are cases such as 8(a) where one object entity
includes the other in NatResNLI, all cases of the WikiResNLI test set disallow
the situation due to the mutually exclusive properties.

Therefore, we fine-tuned the DeBERTa models with only WikiResNLIzxpricrr
instances of basic structures and evaluated their performances on both
WikiResNLIiypriorr and WikiResNLIypicr 1520 and 2510. The results can
be seen in Figure 4.5. We can observe that the generalization from basic struc-
tures to unseen structures is indeed difficult: while training with all structures
and evaluating will all structures achieve perfect scores on 1520 and 2510 of
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WikiResNLIxpricir at 16 shots, training with basic structures are only 58%
and 75% accuracies. It is worth noting that all fine-tuning instances have
either entailment or contradiction labels, and therefore a random-guessing
baseline would be 50% instead of 33.3%.

The generalization performances from explicit respective readings with
basic structures to implicit 1520 and 2510 are more disappointing. At 16
shots, the accuracies are only 18% and 30%, respectively, well below the
chance level. Even full supervision can only achieve around 60% accuracy
for both structures. The results indicate that the models do not effectively
learn the abstract respective reading relations due to not understanding the
commonsense and world knowledge.

We look into the intersection errors of 32-shot, 64-shot and fully-supervised
models which are fine-tuned on WikiResNLI  p o and are evaluated on
WikiResNILypricrr- There are 358 1520 and 248 2S10 instances that are
consistently mistaken by the models. The top-5 frequent properties are:
twinned administrative bodies, took place, are capitals of, buried in, and
family names. Knowledge about relative location 9(a) and knowledge about
humans 9(b) thus seem to play an important role in reasoning with implicit
respective readings.

9. (a) Premise: Battleof Toursand Battleof Verdun took placein Poitiersand Ver-
dun. Hypothesis: Battleof Tourstook placein Poitiersand Verdun. WikiResNLI
Label: contradiction. Prediction: entailment

(b) Premise: Theresaof Leénand MariaSolé Cunatdied in Galiciaand Catalonia.
Hypothesis: Theresaof Leénand MariaSolé Cunat died in Galicia. WikiResNLI
Label: contradiction. Prediction: entailment

Impact on other NLI tasks. We evaluate all models fine-tuned with
WikiResNLI above on other NLI tasks, i.e, MNLI-m and ANLI-R3, to check
whether fine-tuning on such a label-imbalanced dataset hurts performance.
Interestingly, full supervision with WikiResNILyprcir of basic structures
results in new state-of-the-art performance for DeBERTa. On MNLI-m, the
score improves from 90.8% to 91.4%; and on ANLI-R3, the performance rises
from 63.6% to 64.1%.

Experiments on LLaMA, FLAN-T5 and GPT-JT Significant advance-
ments in large generative LMs have been achieved in the realm of general
natural language understanding. These improvements can be attributed
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Figure 4.6: LLaMA, FLAN-T5, GPT-JT and DeBERTa’s performances on
WikiResNLIypricrr after in-context learning of WikiResNLIzxpricrr. The last
suffix ent of a legend means the performance on entailment pairs and con on
contradiction pairs.

to enhanced training strategies, such as incorporating code and human in-
structions into pretraining/fine-tuning data and RLHF (Christiano et al.,
2017; OpenAl, 2023). We assess the zero-shot and in-context learning abil-
ities of three open-source generative models, that is, LLaMA-7B (Touvron
et al., 2023), FLAN-T5-XL. (Chung et al., 2022) and GPT-JT-6B (Wang
and Komatsuzaki, 2021; Together, 2022). In this study, our focus is on two
representative scenarios, namely generalizing from explicit to implicit readings
and generalizing from synthetic to natural readings. We adopt the template
{premise} Question: Does this imply that {hypothesis}? as it attains top-tier
results for NLI tasks (Webson and Pavlick, 2022).

Figure 4.6 illustrates the explicit to implicit generalization results. No-
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Figure 4.7: LLaMA, FLAN-T5, GPT-JT and DeBERTa’s performances on
NatResNLI after in-context learning of WikiResNLIgxpiorr-

tably, FLAN-T5 achieved a near-perfect score on zero-shot entailment pairs,
comparable to the fine-tuned DeBERTa. However, GPT-JT, despite being
instruction-tuned on NLI datasets, performed at a mere chance level on
entailment pairs, while LLaMA scored below 10% accuracy. In terms of
contradiction instances, all three models scored below 60% accuracy, with in-
context learning offering limited improvement at the 4-shot level. Specifically,
FLAN-T5’s performance decreased after in-context learning.

For the generalization from WikiResNLI to NatResNLI, in Figure 4.7, we
observed similar trends as in the previous experiments. FLAN-T5 outper-
formed the other models on entailment instances, and LLaMA demonstrated
significant improvement within a few shots. However, for contradiction pairs,
all models experienced only a modest increase in accuracy from 1 to 4 shots,
with the highest accuracy remaining below 60%.
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To conclude, while large generative models have made significant strides
in natural language understanding, they still face substantial challenges in
reasoning with respective readings, highlighting the need for further research
and development in the long tail of linguistic constructions.

4.5 Related Work

Logical relations between two sentences are a core aspect of language under-
standing (Frege, 1879; Heijenoort, 1967; Blackburn et al., 2006). To facilitate
large-scale model evaluation, NLP researchers have developed manually la-
belled NLI corpora, typically for 2/3-way classification (Dagan et al., 2013;
Bowman et al., 2015a; Williams et al., 2018). In recent years, researchers
start to analyze the characteristics of these datasets, such as annotation
artefacts (Gururangan et al., 2018), syntactic heuristics (McCoy et al., 2019)
and adversarial collection process (Williams et al., 2022).

In computational linguistics, distributive predication has been analyzed
through means of distributivity operators (Massey, 1976; Link et al., 1983;
Roberts, 1987; Lasersohn, 1998). And linguists have been working on extend-
ing first-order logical forms to include distributive and collective readings
(Martin, 1981; Alshawi and van Eijck, 1989). Scha and Stallard (1988) present
a recursive translation rule scheme to account for multi-level plurals. Aone
(1991) proposed a reasoner consisting of domain-dependent constraints and
domain-independent axioms for collective and distributive ambiguity. Shaw
and McKeown (2000) described a simplified quantifier system to minimize
distributive and collective ambiguities.

Respective readings have not yet been studied in modern NLP. Relevant
works include plural understanding, which has been studied as a coreference
resolution task (Jain et al., 2004; Zhou and Choi, 2018; Yu et al., 2020b).
Manshadi et al. (2011) proposed quantifier scope annotation in which plurals
are annotated with distributive and collective readings at the constraint level.
Yu et al. (2020a) show that LMs are better at reflexive anaphora tasks with
distributive than collective constructions.
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4.6 Conclusions

The “respectively” construction is simple yet entails multiple levels of reasoning
skills, including syntactic-semantic and commonsense-world knowledge. It is
crucial that when an out-of-the-box model cannot reason over it, it should be
able to learn with as few examples as possible. We proposed two datasets,
WikiResNLI (a controlled synthetic dataset) and NatResNLI (a naturally
occurring dataset) to probe their ability to do so in zero-shot and few-shot
settings. We find that explicit reasoning is easier to learn than implicit
reasoning, and LMs fail to generalize when common sense inference is needed.
We confirm that diverse and complex training data are necessary to achieve
human-level performance.

4.7 Limitation

Linguistic studies have shown that respective readings are not necessary
to have two coordinate structures in the same sentence (Dalrymple and
Kehler, 1995). Both WikiResNLI and NatResNLI have only one sentence in
the premise and do not exhaust all possible and complicated realizations of
respective readings. However, we are able to discuss and investigate LMs’
generalizability with “respectively” with three constructions, i.e., 1510, 1520
and 2510.

Our experiments are English-specific and are limited to LMs that can be
run with an academic budget. However, our conclusions about the general-
izability towards respective readings should be viewed as language-agnostic
given there are linguistic constructions under-discussed in many other lan-
guages and it is worth rescarchers’ attention to study them.
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Appendix

4.A Annotation Details

We employ Amazon Mechanical Turk workers. A qualified worker is one
who has completed more than 10,000 HITs and has an approval rate greater
than 99%. We set the location to the United States as there was no option
to choose language proficiency. They are shown only three examples with
entailment, neutral and contradiction labels before annotation. For each
premise-hypothesis pair, five workers were asked to annotate the entailment
relation (entailment, neutral or contradiction) following the guidelines of Nie
et al. (2020). The worker gains a reward of 12 cents. Based on the workers’
feedback, our hourly rate ranges between 16 to 27 US dollars, which is above
the federal or Californian hourly wage. In total, 170 annotators participated
in the step of label annotation of the hypotheses written by the authors. The
number of HITs (annotation) per worker ranges from 5 to 200 based on their
wishes. We assure to have 5 annotations per each premise-hypothesis pair.
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Chapter 5

AGIEval: A Human-Centric
Benchmark for Evaluating
Foundation Models

Abstract

Assessing foundation models’ abilities for human-level tasks is crucial for
Artificial General Intelligence (AGI) development. Traditional benchmarks,
which rely on artificial datasets, may not accurately represent these capabilities.
In this paper, we introduce AGIEval, a novel bilingual benchmark designed
to assess foundation models in the context of human-centric standardized
exams, such as college entrance exams, law school admission tests, math
competitions, and lawyer qualification tests. We evaluate several state-of-
the-art foundation models on our benchmark. Impressively, we show that
GPT-4 exceeds the average human performance in SAT, LSAT, and math
contests, with 95% accuracy on SAT Math and 92.5% on the Chinese college
entrance English exam. This demonstrates the exceptional performance of
contemporary foundation models. In contrast, we also find that GPT-4 is less
proficient in tasks requiring complex reasoning or specific domain knowledge.
Our comprehensive analyses of model capabilities (understanding, knowledge,
reasoning, and calculation) reveal their strengths and limitations, providing
valuable insights into future directions for enhancing general capabilities. By
concentrating on tasks pertinent to human cognition and decision-making,
our benchmark delivers a meaningful and robust evaluation of foundation
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Figure 5.1: The performance of LLMs (text-davinci-003, ChatGPT, and GPT-
4) was evaluated on several human-centric exams under zero-shot learning
with a Chain-of-Thought (CoT) prompting setting. Human performance
(avg.) refers to the average performance of all test takers, while human
performance (top) refers to the performance of the top 1% of test takers.
Compared to the averaged human performance, GPT-4 achieves better scores
on the SAT, LSAT, and math competitions.

models’ performance in real-world scenarios!.

5.1 Introduction

Recently, large foundation models, such as the large language models (LLMs)
ChatGPT(OpenAl, 2022) and GPT-4 (OpenAl, 2023), exhibited remarkable
versatility and adaptability, with plethora of applications spanning various
domains as a decision-making assistant, from processing daily events to assist-
ing in specialized fields such as law and finance. With these advancements, Al
systems are inching closer to achieving Artificial General Intelligence (AGI).
As these Al systems continue to evolve and become more integrated into
our daily lives, it is essential to effectively assess their general abilities in
handling human-centric tasks, identify potential shortcomings, and ensure
that they can handle complex, human-centric tasks effectively. Moreover,
evaluating their reasoning abilities is also crucial to ensure their reliability
and trustworthiness across diverse settings.

Traditional benchmarks for evaluating foundation models often fall short
in providing an accurate assessment of their general abilities in handling
human-level tasks. This is primarily due to the use of artificial datasets
and a lack of emphasis on real-world tasks that require human-like cognitive

!The data, code, and all model outputs are released in https://github.com/
ruixiangcui/AGIEval
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capabilities. Moreover, these benchmarks often focus on tasks that do not
truly represent the complexities and nuances of real-world human cognition
and decision-making, leading to a skewed evaluation of models’ capabilities
and limiting their ability to provide meaningful insights into the models’
real-world applicability. Consequently, there is a growing need for a more
human-centric benchmark that allows for a robust evaluation of foundation
model in the context of tasks that are relevant to human reasoning and
problem-solving.

We introduce a human-centric benchmark, AGIEval, specifically designed
to evaluate the general abilities of foundation models in tasks pertinent to
human-level problem-solving. This benchmark is derived from official, public,
and high-standard admission and qualification exams intended for general
human test-takers, such as general college admission tests (e.g., Chinese
College Entrance Exam (Gaokao) and American SAT), law school admission
tests, math competitions, lawyer qualification tests, and national civil service
exams. These exams are taken by a diverse range of individuals seeking
entry into higher education institutions or new career paths, with millions
participating annually (e.g., 12 million for the Chinese Gaokao and 1.7 million
for the American SAT). As a result, these exams establish officially recognized
standards for assessing human-level capabilities. Additionally, the benchmark
covers bilingual tasks in both Chinese and English, allowing for a more
comprehensive evaluation. By concentrating on these tasks, our benchmark
provides a more meaningful and comprehensive evaluation of large language
model performance in scenarios directly relevant to human decision-making.

We employ 20 human-centric tasks across a wide variety of subjects in
our benchmark to assess the performance of cutting-edge foundation models,
encompassing close-source models, i.e., text-davinci-003, ChatGPT and GPT-
4, and an open-source model, Vicuna (Chiang et al., 2023). Our experiments
explore their performance under various settings, including few-shot learning,
zero-shot learning, and chain-of-thought prompting techniques. We compare
the performance of these models with human performance, as illustrated
in Fig. 5.1. Remarkably, the results reveal that GPT-4 outperforms the
average human performance on LSAT, SAT, and math competitions under
the zero-shot chain-of-thought (CoT) setting, demonstrating its capability on
human-centric tasks. However, there remains a gap between GPT-4 and the
top human performance, indicating opportunities for future improvement. We
also discover that these models struggle with tasks requiring complex reasoning
(e.g., LSAT-analytical reasoning and physics) or specific domain knowledge,
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such as law and chemistry. Moreover, our comprehensive qualitative analyses
of the four dimensions of model capabilities (i.e., understanding, knowledge,
reasoning, and calculation) delve into their respective strengths and limitations,
providing valuable insights into their general capabilities. This multi-faceted
approach enables us to examine the models’ single-task behavior and identify
general patterns, ultimately contributing to a more robust understanding
of these state-of-the-art models and their potential applications in tackling
human-level tasks.

5.2 Background and Related Work

Large Foundation Model: Recently, large foundation models, like LLMs
(e.g., GPT-3 (Brown et al., 2020), GPT-4 (OpenAl, 2023), OPT (Zhang et al.,
2022a) and FLAN-T5 (Chung et al., 2022)) have successfully demonstrated
unprecedented performance in a wide range of natural language tasks. The
success of these models can be attributed to advances in deep learning tech-
niques, architectural improvements, and the availability of massive amounts
of data for training. The most recent cutting-edge language models, such
as ChatGPT(OpenAl, 2022) and GPT-4 (OpenAl, 2023), have continued to
demonstrate substantial adaptability to a diverse array of tasks and domains
and have served as a daily decision-making assistant for human beings. How-
ever, despite their impressive performance on various benchmarks, concerns
have been raised about the reasoning abilities, trustfulness and real-world
applicability of these models (Marcus and Davis, 2019).

Evaluation of Language Models: Constructing benchmarks is a reliable
way to establish evaluation standards and monitor model performance. Nu-
merous benchmarks (Thorne et al., 2018; Rajpurkar et al., 2016) have been
proposed and widely adopted for evaluating single-task performance, such as
SQuAD (Rajpurkar et al., 2016) for assessing answer extraction ability and
SNLI (Bowman et al., 2015a) for evaluating natural language inference capa-
bility. The emergence of general language models (LMs) like BERT (Devlin
et al.,; 2019) has made it increasingly essential to develop more comprehensive
benchmarks to assess the general capabilities of these LMs. GLUE (Wang
et al., 2018) and SuperGLUE (Wang et al., 2019) are popular benchmarks
that evaluate language model performance across diverse NLP tasks. GLUE
series benchmarks have significantly influenced language model development,
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encouraging researchers to enhance their models’ generalization capabilities.
The LAMBADA language modeling task (Paperno et al., 2016) assesses
language models’ ability to capture long-range dependencies in text. SentE-
val (Conneau and Kiela, 2018) and DecaNLP (McCann et al., 2018) also set
benchmarks for evaluating models’ general capabilities. ToxiGen (Hartvigsen
et al., 2022) and BOLD (Dhamala et al., 2021) evaluate the bias in language
models. Despite their broad applicability, these benchmarks mainly consist
of artificially curated datasets designed to evaluate specific machine skills,
rather than real-world problems aimed at assessing human behaviors. Conse-
quently, these benchmarks primarily focus on simpler textual understanding
rather than complex reasoning abilities aligned with real-world applicability.
MMLU (Hendrycks et al., 2020) addresses this issue by collecting questions
from online sources covering a diverse set of subjects (e.g., history, humanities)
that humans learn, pushing towards human-centric evaluation. Our work
differs from MMLU in two main ways: (1) We derive our benchmark from
high-standard human-centric exams like college admissions tests, ensuring a
robust, standardized evaluation, unlike MMLU which lacks explicit sourcing
details. (2) AGIEval is bilingual (English and Chinese), broadening the
assessment scope across languages and cultures, whereas MMLU is solely
English-based. The official technical report of GPT-4 (OpenAl, 2023) also
underscored the importance of evaluating models’ behaviors on human exams
and analyzed GPT-4’s performance on several such exams. However, the
relevant benchmarks in these reports and the corresponding model outputs
are not publicly available, and the evaluation metric is also not transparent.
These factors limit further research to follow up their evaluation.

5.3 Human-Centric Benchmark

5.3.1 Design Principles

Emphasis on human-level cognitive tasks: Our human-centric bench-
mark is designed to mimic human cognition and problem-solving, aiming for
a comprehensive evaluation of foundation models. We use a diverse set of
public, official exams, such as college admission tests, law tests, and national
civil service exams. These exams, taken by millions seeking further education
or careers, provide standards for assessing human-level capabilities, making
our benchmark directly relevant to human cognition and decision-making.
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Relevance to real-world scenarios: The second design principle is
cmphasizing tasks relevant to real-world situations. By utilizing high-standard
admission and qualification exams, we capture the complexity and practicality
of challenges in various fields. This not only measures model performance
against human cognition, but also their applicability in real-life scenarios,
fostering Al development that is reliable, practical, and capable of solving

diverse real-world problems.

Exams #Participants Language Tasks Subject #Instance #Avg. Token

GK-geography  Geography 199 144

GK-biology Biology 210 141

GK-history History 243 116

GK-chemistry Chemistry 207 113

Gaokao 12M Chinese GK-physics Physics 200 124

GK-En English 306 356

GK-Ch Chinese 246 935

GK-Math-QA Math 351 68

GK-Math-Cloze Math 118 60

) SAT-En. English 206 656

SAT LM English  gAT-Math Math 220 54

JEC-QA-KD Law 1000 146

Lawyer Qualification Test 820K Chinese JEC-QA-CA Law 1000 213

LSAT-AR Law-Analytics 230 154

Law School 170K English ~ LSAT-LR Law-Logic 510 178

AdmissionTest (LSAT) LSAT-RC Law-Reading 260 581

o ) o 2M English LogiQA-en Logic 651 144

CivilService Examination  onp Chinese LogiQA-ch Logic 651 9249
GRE 340K English

GMAT 150K English ~ AQuA-RAT Math 254 7
AMC 300K English

AIME 3000 English MATH Math 1000 40

Table 5.1: Exams included in AGIEval. We highlight the number of human
participants taking these exams annually (column “# Participants”). We also
report the number of instances and average token number in AGIEval.

5.3.2 Exam Selection

Our human-centric benchmark features various standardized exams, each
serving unique assessment roles. Some exams are participated by millions of
human test-takers annually. For example, 12 millions of students participate
in Gaokao. Statistics of annual human participants are reported in Table 5.1.
Dataset collection is introduced in Appendix 5.B. The following
categories of human-centric exams are included in our benchmark:
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General College Entrance Exams: Including the GRE, SAT, and
Gaokao, these exams assess critical thinking, problem-solving, and analytical
skills for entry into higher education. We selected tasks from eight subjects in
the Gaokao and mathematical questions from the GRE and SAT. These exams
are designed to assess the general aptitude and subject-specific knowledge of
humans.

Law School Admission Test: LSAT measures reasoning and analytical
skills of prospective law students. These tests include sections on logical
reasoning, reading comprehension, and analytical reasoning, aiding us in
evaluating language models’ legal rcasoning abilities and ability to analyze
complex information and draw accurate conclusions.

Lawyer Qualification Test: Including the bar exam, these tests assess
legal knowledge, analytical skills, and ethical understanding. Questions from
Chinese lawyer qualification tests are included. By incorporating lawyer quali-
fication tests in our benchmark, we can evaluate language models’ performance
in the context of professional legal expertise and ethical judgment.

Graduate Management Admission Test (GMAT): The GMAT is a
standardized exam designed to assess the analytical, quantitative, verbal, and
integrated reasoning skills of prospective graduate business school students.
It assess LLLMs’ potential to assist in decision-making and problem-solving in
management scenarios.

High School Math Competitions: Math competitions like American
Mathematics Competitions (AMC) and the American Invitational
Mathematics Examination (AIME) test mathematical abilities, creativity,
and problem-solving skills, helping to evaluate models’ proficiency in tackling
complex mathematical problems.

Chinese Civil Service Examination: This exam assesses a range of
competencies for prospective civil servants. These exams evaluate a range of
competencies, such as general knowledge, reasoning abilities, language skills,
and subject-specific expertise, allowing us to gauge models’ performance in
public administration contexts.
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5.4 Evaluation of Foundation Models

5.4.1 Model Selection

In this section, we evaluate the performance of various state-of-the-art lan-
guage models on our benchmark dataset. (1) GPT-4: The fourth iteration
of the GPT series, GPT-4 is a large-scale, generative pre-trained transformer
with enhanced performance and a broad knowledge base. It exhibits human-
level performance in numerous scenarios, including factuality, steerability,
and adherence to guardrails. (2) ChatGPT: An OpenAl-developed con-
versational model, ChatGPT is trained on extensive instruction data and
fine-tuned using reinforcement learning with human feedback, enabling contex-
tually relevant responses. (3) text-davinci-003: As an intermediate version
between GPT-3 and GPT-4, GPT-3.5 offers improved performance, providing
a comparative perspective. We specifically evaluate the text-davinci-003
variant. (4) Vicuna-13B (Chiang et al., 2023): It is an open-source
LLM, trained on user-shared conversations from ShareGPT by fine-tuning
LLaMA. It achieves over 90% of the quality of OpenAI’s ChatGPT.

5.4.2 Experimental Setup

Few-shot CoT Prompting

Zero-shot CoT Prompting

[ Zero-shot Prompting

Input: [Question]
Among A to D, the answer is:

Output: <Answer>

Few-shot P pting

Input: Here are the answers for the
questions in exams.

Q1 : [Question 1] The answer is [Answer 1]
Q2 : [Question 2] The answer is [Answer 2]

Step 1: Rationale Generation

!
‘ 1
!
| Input: [Question] }
} Let's think step by step. |

!
|

!
|

!
|

|

Output: <Explanation>

Step 2: Answer Generation
Input: [Question]

Input: Here are the answers for the questions in
exams.

Q1: [Question 1] Explanation is: [Explanation].
The answer is [Answer 1]

Q2: [Question 2] Explanation is: [Explanation].
The answer is [Answer 2]

Qn: [Question n] Explz;{l.a!ion is: [Explanation].
The answer is [Answer n]
[Question n + 1]

Output: Explanation is <Explanation>.
The answer is <Answer>

Qn: [Question n] The answer is [Answer n]

[Question n + 1]

i
I
I
| N
| Let’s think step by step. [Explanation]
} Among A to D, the answer is:
|

|

Output: <Answer>

Output: The answer is: <Answer>

Figure 5.2: Prompting examples of different settings.

To gauge the adaptability of LLMs, we conduct two types of evaluations:
zero-shot and few-shot. We further implement a “Chain-of-Thought (CoT)”
reasoning evaluation. Fig. 5.2 describes the concrete prompting examples for
zero-shot testing, few-shot testing and chain-of-thought prompting.
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5.4.2.1 Zero-shot and Few-shot Evaluation

In the zero-shot setting, models were evaluated on the questions without
being provided examples of the specific tasks. This scenario tests the models’
innate ability to reason and solve problems without explicit training. In the
few-shot setting, models were given a small number of examples (e.g., 5) from
the same task before being evaluated on the test samples. This evaluation
setup tests the models’ ability to quickly adapt from limited examples.

5.4.2.2 Chain-of-Thought (CoT) Reasoning

We employ the Chain-of-Thought (CoT) prompting method (Wei et al., 2022)
to assess models’ reasoning capabilities. CoT enables large language models to
break down a complex question to a series of decomposed reasoning steps. As
shown in Fig. 5.2, CoT involves two steps: Firstly, with prompt “/question/
Let’s think step by step: ”(Zhang et al., 2022b), the model generates an
explanation for a given question, which evaluates its comprehension and
problem-solving strategy identification. Secondly, the model provides an
answer based on its explanation, testing its ability to generate a solution
using its self-derived reasoning, mirroring human problem-solving processes.
In the few-shot CoT setting, the explanation and answer are generated
simultaneously.

5.4.2.3 Evaluation Metrics

We use both quantitative and qualitative evaluation metrics. Quantitative
metrics included accuracy for multi-choice questions and use Exact Match
(EM) for fill-in-blank questions. We also perform qualitative evaluations,
which involved human evaluators assessing the models’ responses in terms of
semantic understanding capability, knowledge utilization, and reasoning and
calculation.

5.4.3 Main Results

The results of closed-source models are reported in Table 5.2, while the results
of the open-source model are reported in Table 5.3. We also report average
and top human performance on each task. From the results, we highlight the
following findings.
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Human Zero-Shot Zero-Shot CoT Few-Shot Few-Shot CoT

Task/Model

Avg. Top TD CG G4 TD CG G4 TD CG G4 TD CG G4
AQuA-RAT 85 100 29.9 319 40.6 42.1 559 73.2 30.3 31.1 50.8 472 60.6 74.0
MATH 40 90 119 26.4 357 19.1 319 477 103 148 151 151 30.1 253

LogiQA (English) 8 95 22.7 35.0 49.3 369 39.9 578 43.5 43.5 63.9 375 389 627
LogiQA (Chinese) 88 96 40.3 41.0 58.8 36.7 38.9 57.5 432 46.2 65.0 40.0 38.6 61.9

JEC-QA-KD 7178 219 21.1 334 184 21.2 319 224 27.6 413 23.6 234 40.4
JEC-QA-CA 58 8 21.0 22.0 31.1 16.7 19.6 29.8 222 251 374 16.1 20.0 34.7
LSAT-AR 56 91 21.7 244 352 239 226 344 226 257 339 226 252 31.7
LSAT-LR 56 91 475 52.6 80.6 50.0 52.6 80.6 60.4 59.2 859 51.2 52.2 84.5
LSAT-RC 56 91 64.7 654 859 57.6 62.1 851 70.6 67.7 87.7 64.3 57.6 87.7
SAT-Math 66 94 355 427 64.6 54.6 70.9 95.0 44.6 409 71.8 555 65.0 89.6
SAT-English 66 94 748 81.1 888 757 77.7 859 84.0 81.1 888 T76.7 782 859
GK-Cn 65 8 439 39.0 53.3 354 33.7 447 25,6 415 614 293 37.8 51.6
GK-En 69 91 814 849 919 83.0 843 925 869 86.3 93.8 80.7 84.6 93.1
GK-geography 65 8 533 59.8 76.9 48.7 55.8 724 598 638 759 52.3 61.8 76.4
GK-history 64 85 473 59.7 774 370 50.2 76.5 49.0 57.6 77.8 51.9 584 78.2
GK-biology 68 89 40.5 529 757 30.0 424 719 443 524 80.0 329 50.0 729
GK-chemistry 66 8 27.1 38.7 51.7 24.6 33.8 522 324 44.0 54.6 35.8 33.8 54.1
GK-physics 7194 220 33.0 39.0 185 29.5 455 31.0 33.5 435 275 36.5 54.5
GK-Math-QA 73 96 28.2 36.5 47.0 288 333 50.7 27.6 31.3 399 33.1 31.6 49.0
GK-Math-Cloze 73 9 170 76 161 42 51 153 59 59 11.0 593 85 16.1
Average 67 91 38.1 429 56.4 374 432 584 41.2 444 59.2 404 45 61.3

Table 5.2: Performance of close-source LLMs on 20 tasks under zero-shot,
zero-shot CoT, few-shot and few-shot CoT settings. We also report
human performance on each task. For LSAT, Gaokao and SAT, we report
average (50%) and top (1%) human performance. The Text-Davinci-003 is
abbreviated as TD, ChatGPT is abbreviated as CG, and GPT-4 is abbreviated
as G4.

Task/Model Computation  LogiQA  JEC-QA LSAT SAT GK

AQaA MATH En. Cn. KD CA AR LR RC Math En. Cn En Geo. His. Bio. Che. Phy. M.-QA M.-Cloze
Vicuna (4S) 26.4 6.8 184 235 143 124 222 255 30.5 246 50.5 25.6 50.7 24.6 289 20.5 266 15 22.5 2.5
Vicuna (2S-CoT) 22.1 6.6 30.3 27.1 149 152 209 36.1 442 355 57.8 23.6 67 28.6 349 243 232 17 21.7 1.7

Table 5.3: Performance of Vicuna-13B under zero-shot and zero-shot CoT
setting. Task names are abbreviated.

(1) Superior Performance of GPT-4: On average, GPT-4 significantly
outperforms its counterparts (e.g., ChatGPT) across all settings. Impressively,
GPT-4 achieves 93.8% accuracy on Gaokao-English and 95% accuracy on
SAT-MATH, demonstrating its superior capabilities.

(2) ChatGPT v.s. TD-003: ChatGPT excels over text-davinci-003 in
tasks requiring extensive knowledge like geography, biology, chemistry, physics,
and mathematics, implying a stronger knowledge base of ChatGPT. In tasks
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emphasizing simple comprehension and logical reasoning, like English and
LSAT tasks, both models perform comparably, indicating their proficiency in
language understanding and logical reasoning.

(3) Challenge of Complex Tasks: All models face difficulties with
complex tasks, such as those in MATH or LSAT-AR, revealing limitations in
handling advanced reasoning. This presents future research opportunities to
bolster models’ reasoning abilities.

(4) Few-shot Learning vs. Zero-shot Learning: Few-shot learning
marginally outperforms zero-shot learning, suggesting that LLMs’ zero-shot
capabilities arc nearing their few-shot performance. This development, a
marked improvement from the original GPT-3 (few-shot performance of GPT-
3 is significantly better), may stem from enhanced human-alignment and
instruction tuning in recent models. This progress demonstrates the effec-
tiveness of recent advancements in LLM tuning, which allows them to better
understand the meaning and context of tasks even in zero-shot settings. As
shown in Fig. 5.3, Vicuna, despite excelling on OpenLLLM leaderboard (Beech-
ing et al., 2023) and its claimed comparable ability with ChatGPT, falls
short on AGIEval, highlighting the valuable challenges AGIEval presents to
open-source models.

5.4.4 Analyses of Chain-of-thought Prompting

As reported in Table 5.2, the CoT prompting demonstrates its potential by
improving performance. However, the performance gains from CoT are not
consistently observed across all tasks. Our analysis leads to the following
findings:

(1) Performance Variability: CoT mainly enhances performance in
English math and logic reasoning tasks but degrades performance in others,
implying inconsistent effects on different tasks, which may be a consequence
of the generated misleading reasoning processes. It’s vital to understand what
drives these variations to uniformly optimize CoT for diverse tasks.

(2) Backbone Dependency: CoT’s efficacy is linked to the base model.
GPT-4, for instance, generates more illustrative reasoning processes, improv-
ing CoT performance. This underscores the importance of model compatibility
with CoT.

(3) Language Sensitivity: CoT performance varies with language. For
LogiQA, CoT improves English tests but decreases Chinese ones. Similar
findings are observed in mathematical tests, where performance increase on
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English math tests (MATH, AQuA) but decrease on Chinese math exam in
Gaokao. This suggests CoT’s sensitivity to language differences, necessitating
further optimization across languages to ensure its consistent and generalizable
reasoning capabilities.

In conclusion, CoT’s effectiveness is relevant to task, model capability,
and language. These factors need careful consideration when employing CoT
or developing future models.

5.4.5 Qualitative Analyses of Model Capabilities

We conduct a qualitative analysis of ChatGPT’s outputs under a zero-shot
CoT setting, with 100 erroneously answered instances for each task, to assess
its alignment with human capabilities. We enlist human annotators with
expert knowledge, such as Ph.D. students and professional researchers, to
evaluate the model outputs (i.e., explanations and answers) along the following
four dimensions and report average scores for tasks. (1) Understanding:
Assessing whether the model comprehends the context and questions. (2)
Knowledge: Evaluating the model’s ability to recall relevant knowledge or
formula for problem-solving. (3) Reasoning: Determining the model’s ability
to reason accurately. (4) Calculation: Evaluating the model’s correctness
in mathematical calculations.

Each instance is scored 1 for correct skill application and 0 otherwise.
Certain tasks like LSAT and English reading tasks, primarily emphasize
understanding not requiring external knowledge or calculations, were excluded
from respective skill analyses. This detailed evaluation provides insights into
the models’ strengths and weaknesses, guiding future improvements of LLMs.
Annotators also provided insights into the models’ behavior patterns. We
summarize the overall trend in the paper and give detailed analyses about
strength and weaknesses in Appendix 5.D.

5.4.5.1 Overall Trend of Model Capabilities

The average scores on tasks for the four dimensions of capabilities are shown
in Fig. 5.3. As shown From the qualitative analysis, we summarize the
following observations:

Understanding: The model generally performs well in understanding.
For most tasks, it can accurately interpret the meaning of questions, demon-
strating its ability to comprehend context.
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Knowledge: In the knowledge dimension, the model demonstrates pro-
ficiency in identifying correct knowledge or formulas for tasks. However, it
encounters difficulties in recalling specific domain knowledge, such as law, bi-
ology, and physics. This observation emphasizes the significance of integrating
more domain-specific knowledge into the model, potentially through the uti-
lization of specialized domain-specific knowledge bases or knowledge-enhanced
pre-training techniques.

Reasoning: Among the four dimensions, the model’s reasoning capability
appears to be relatively worse. For tasks necessitating complex, multi-step
reasoning (e.g., LSAT-AR, LogiQA, and GK-Physics), the model struggles
to accurately execute multi-step reasoning process. This underlines the
importance of research concentrating on augmenting the model’s reasoning
capabilities, potentially through the exploration of prompting methods or
training strategies that encourage complex reasoning and problem-solving
skills.

Calculation: The model’s calculation ability is weaker than their un-
derstanding capacity and displays variability across different subjects. They
perform better in math exams, but face challenges in chemistry and biology
exams, which often require variable substitution involving chemical elements.
This suggests that enhancing the calculation and combinatorial abstraction
and calculation ability of the model, particularly in subject areas with spe-
cialized notations or customized symbol substitutions, is a crucial challenge
for further improvement.

5.4.6 Data Contamination Issue

The issues surrounding data contamination and future web scrapes on training
data for LLMs are noteworthy. Most of current benchmarks and datasets up to
date suffer from these vulnerabilities. To exam the situation of contamination,
we provided timestamp for the 4 new Gaokao datasets and we can evaluate
on the latest tests (later than 2022) released later than the training data
timestamp of ChatGPT and GPT-4. Hereinafter, from AGIEval, we provide
results comparing the GPT-4 zero-shot performance on six Gaokao subjects
with and without risk of data contamination (Chinese, English, and History
have not been included in this analysis due to the constrained size of the exams
for these subjects). The uncontaminated dataset comprises entries released
in 2022, which postdates the GPT-4 training data’s timestamp (September
2021). The results are reported on Table 5.4. Evidently, we observe that
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barring the Mathematics subjects, the performance experiences a minor drop
in the absence of contamination, yet remains proximate to the performances
on the complete datasets. This finding substantiates that while AGIEval
still retains its value as a useful and effective human-centric benchmark for
evaluating the abilities of foundation models against complex human-oriented
tasks.

#test  Full acc. Un. acc.
Gaokao-geo. 37 76.9% 73%
Gaokao-bio. 58 75.7% 77.6%
Gaokao-chem. 64 51.7% 42.2%
Gaokao-phy. 20 40% 40%

Table 5.4: Analysis on data contamination risk on AGIEval. The uncontami-
nated set (performance on the last column) includes examples released later
than the time stamp of training data of ChatGPT and GPT-4.

5.5 Conclusion

We introduce AGIEval, a novel benchmark specifically designed to assess the
general capabilities of large foundation models with respect to human-level
cognition. The benchmark comprises high-quality official admission tests,
qualification exams, and advanced competitions tailored for human partici-
pants, including law school admission tests and college entrance examinations.
These assessments establish officially recognized standards for gauging hu-
man capabilities, making them well-suited for evaluating foundation models
in the context of human-centric tasks. Additionally, AGIEval incorporates
bilingual tasks in both Chinese and English, offering a more comprehensive
assessment of model behavior. We have carried out an extensive evaluation
of three cutting-edge large foundation models: text-davinci-003, ChatGPT,
and GPT-4, using AGIEval. Remarkably, GPT-4 surpasses average human
performance on LSAT, SAT, and math competition, attaining a 95% accuracy
rate on the SAT Math test and a 92.5% accuracy on the Gaokao English
test, demonstrating the impressive performance of contemporary foundation
models. Despite their significant achievements, our in-depth manual anal-
yses also reveal the limitations of these large language models in terms of
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understanding, knowledge utilization, reasoning and calculation. Guided by
these findings, we explore potential future research avenues in this domain.
By assessing these foundation models on human-centric tasks and probing
their capabilities more deeply, we strive to foster the development of models
that are more closely aligned with human cognition.

5.6 Limitation

Until the time we finished this work, state-of-the-art foundation models, such
as text-davinci-003, ChatGPT, and GPT-4, only have publicly available APIs
for language-only tasks. Therefore, we release the language-only version of
AGIEval and focus on evaluating a wider range of large language models in
the present paper. In the future, we will study on the multi-modal test set.

Appendix

5.A Discussion about Future Directions

In light of the findings and limitations identified in our analysis, we point out
several potential future directions for the development of large foundation
models. These directions aim to address the weaknesses observed and further
improve the models’ capabilities in various human-centric tasks.

Inclusion of External Knowledge and Formulas: Enriching the mod-
els with external knowledge sources, like formulas and domain-specific knowl-
edge can help enhance their performance in mathematical and knowledge-
intensive tasks. Specifically, developing models that can effectively handle
domain-specific tasks, such as those in law, biology, or physics, requires the
integration of specialized knowledge bases and expertise into the model, and
enables the model to adapt to different verticals more effectively. This could
involve integrating structured knowledge repositories, mathematical and sci-
entific concepts into the models with pre-training or knowledge-enhanced
prompting methods, allowing them to access and apply relevant information
more efficiently.

Strict Complex Logical Reasoning: Improving the models’ capacity
for strict complex logical reasoning is crucial for their performance in a wide
range of human-centric tasks. This could involve the creation of new datasets
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that emphasize complex reasoning, as well as incorporating APIs and external
symbolic compilers that can execute strict logical or mathematical deduction,
and use the execution results to further facilitate logical analysis and reasoning
verification.

Multi-lingual Reasoning Capabilities Generalization: As men-
tioned in Sec. 5.4.4, the reasoning capabilities of models are variant across
different language, where the reasoning ability is relatively better for rich-
resourced language like English. Enhancing the models’ multi-lingual rea-
soning capabilities is essential for their applicability in a diverse range of
real-world scenarios. Therefore, future directions can put more focus on
enhancing the multilingual generalization of the reasoning capability of foun-
dation models.

Multi-modal Evaluation: Expanding the evaluation framework to
include multi-modal tasks can provide a more comprehensive assessment of
the models’ capabilities. This could involve incorporating visual, auditory,
or interactive tasks that require the models to process and reason with
multiple types of input simultaneously and generate multi-modal outputs for
comprehensive real-world applications. In future work, we will focus on the
multi-modal version of AGIEval.

Better Automatic Evaluation Metrics for Human-centric Tasks:
Developing more robust and meaningful automatic evaluation metrics is
crucial for the objective assessment of large language models’ performance.
Future research should focus on devising metrics that can accurately capture
the models’ understanding, knowledge, and reasoning abilities while taking
into account the nuances and complexities of real-world tasks.

Robustness of Reasoning Capability: Improving the robustness of
the models’ reasoning capabilities is essential for ensuring their consistency
and reliability across various contexts. This can be achieved by exploring
techniques that enhance the models’” ability to maintain consistent reasoning
performance, even when faced with changes in the surrounding context or
variations in the input data.

By addressing these future directions, foundation models can be further
developed and refined to exhibit more advanced capabilities that align closely
with human cognition, ultimately enabling them to tackle a broader range of
complex, human-centric tasks with greater accuracy and reliability.
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5.B Dataset Collection

As previously mentioned, our human-centric benchmark comprises questions
from a diverse range of official and high-quality exams, originally designed
for human test-takers. These exams include general college admission tests
(GRE, Gaokao, SAT), entrance exams for specific majors (such as LSAT and
GMAT), high school math competitions (AMC and AIME), as well as the
national civil service examination and lawyer qualification test in China.

Since evaluating model performance on subjective questions is challenging
without human expert scoring, we believe such questions are unsuitable for
inclusion in this benchmark for consistent assessment. To ensure a robust
and standardized evaluation metric, we have removed all subjective questions,
retaining only objective ones, such as multiple-choice and fill-in-the-blank
questions.

With regard to data collection, we gather Gaokao? and SAT questions®
from publicly available online sources, along with their corresponding solutions
or explanations. Throughout our data collection phase, we encountered vari-
ous challenges. Consider the instance of Gaokao: our approach encompassed
not only discerning reliable sources while respecting copyright regulations,
but also the annotation and removal of examples with multi-modal com-
ponents, elimination of duplications, identification of items unsuitable for
the QA format, as well as reformatting and connecting passages and ques-
tions. Furthermore, we invite professional human experts to manually check
the correctness of latex formula in each question and answer, to ensure the
correctness and robustness of QA pairs.

For the LSAT, we utilize data from Wang et al. (2022) and Zhong et al.
(2022), which encompasses three tasks (logical reasoning, reading compre-
hension, and analytical reasoning) from the LSAT administered between
1991 and 2016. For Chinese civil service examinations, we repurpose data
from LogiQA (Liu et al., 2021b), a dataset built on various types of logical
reasoning questions collected from the National Civil Servants Examination of
China. It is worth noting that LogiQA consists of bilingual questions (English
and Chinese), where the English version is a translated version of the original
Chinese version.

2Gaokao questions are collected from officially announced exam questions and answers
like http://www.hbccks.cn/html/gkgzzt/ggsjjda/.

Shttps://satsuite.collegeboard.org/sat/practice-preparation/
practice-tests/paper
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For high school math competitions, we employ data from the MATH
dataset (Hendrycks et al.), comprising questions from AMC and AIME. Fur-
thermore, we incorporate GRE and GMAT questions from AQaA-RAT (Ling
et al., 2017), which emphasizes algebraic word problems. In the case of the
Chinese Civil Service Examination, we reuse instances from JEC-QA (Zhong
et al., 2020), a large-scale dataset derived from the National Judicial Exami-
nation of China. We down-sample the two types of JEC-QA and MATH to
1,000 instances each.

As a result, we construct a benchmark consisting of 8,062 questions for
evaluation. Detailed data statistics are presented in Table 5.1. It is worth
noting that our benchmark is bilingual, encompassing both English and
Chinese tests. This design enables the evaluation of a broader scope of model
capabilities, reflecting their performance and adaptability across different
languages. A few data examples in Gaokao are shown in Fig. 5.4, and an
example in SAT and the corresponding Chain-of-Thought rcasoning process
generated by GPT-4 is shown in Fig. 5.5.

5.C Implementation Details

5.C.1 API Details

All experiments were conducted using the respective language models’ API
provided by Azure OpenAl Service*. The Azure OpenAl services offer two
types of APIs: completion and chat completion. The completion API generates
text based on prompts, while the chat completion API generates the next
AT response based on the conversation history and new human input. For
text-davinci-003 and few-shot ChatGPT, we use the completion API, and for
zero-shot ChatGPT and GPT-4, we use the chat completion API. Notably,
only the chat completion API is available for GPT-4 at present. We use
a temperature of zero to generate output using greedy search and set the
maximum number of tokens for generation to 2048. Additionally, we set the
frequency penalty to zero and top p to 1, which are the default values for
these APIs.

The Chat Completion API exhibits distinct properties in comparison
to the Completion API. In a zero-shot context, the Chat Completion API

‘https://azure.microsoft.com/en-us/products/cognitive-services/
openai-service
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has the potential to autonomously generate reasoning steps, eliminating the
necessity for prompt engineering and potentially enhancing performance.
For few-shot scenarios, it is imperative to adapt the few-shot examples into
conversational history, as recommended in the Azure guidelines. The inquiry
is transformed into a user input, while the AI’s response is composed of
a chain-of-thought explanation and answer. However, we have observed
that the models, particularly ChatGPT, encounter difficulties in adhering to
the pattern using the Chat Completion API. Consequently, we employ the
Completion API to conduct few-shot experiments with ChatGPT, which is
analogous to text-davinci-003, in order to gain a deeper understanding of
the disparities between text-davinci-003 and ChatGPT. If a completion API
for GPT-4 become accessible in the future, we will revise and update the
few-shot outcomes accordingly.

5.C.2 Few-shot Examples Construction:
For AQuA-RAT, LogiQA and LSAT, we randomly sample five examples

of medium sentence length of the test set from the provided training set.
Similarly, for Gaokao and SAT, we randomly select five examples of medium
sentence length from the dataset that was initially collected and exclude
them from the test set. For JEC-QA, given that the test set is not publicly
available, we take the first 1,000 examples from the training set as the test
set and again sample five examples of medium sentence length from the rest.
For MATH, we use the same instances as in the appendices of Lewkowycz
et al. (2022).

To generate explanations for few-shot CoT experiments, for AQuA-RAT
and MATH, we use the existing rationales from these datasets. For Gaokao
and SAT, we collected expert annotations. For LogiQA, JEC-QA and LSAT,
we use ChatGPT to generate explanations given the questions and the answers.
We release all CoT demonstrations in the Github repository.

5.D Qualitative Analysis Details

By closely examining the models’ output explanations and analyzing their
behavior patterns, we identify several strengths that highlight the capabilities
of these models in handling various aspects of problem-solving. The models
demonstrate remarkable performance in the following areas:
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Good Understanding: The models excel in accurately comprehending
the semantic meaning of context and questions. They effectively discern nu-
ances, interpret complex questions, and parse intricate sentences, showcasing
their strong natural language understanding skills. This capability enables
them to grasp the core concepts of a problem and lays the foundation for
subsequent reasoning and problem-solving steps.

Proficiency in Simple Reasoning and Deduction: The models are
adept at handling tasks that require simple reasoning and deduction. They can
draw straightforward conclusions, identify logical connections, and perform
basic inference, which is crucial for addressing a wide variety of problems.
Their ability to effectively perform simple reasoning tasks is an essential
component of their overall problem-solving skillset.

For example, the model can comprehend “could be true except” is equals
to “cannot be true”. Also, taking a question in the LSAT-AR task as an
example, it requires the model to place 8 books to a bookcase with three
shelves following conditions: “each shelf should have at least 2 books and more
books should be placed on the bottom shelf than on the top shelf”. The model
successfully deduced that “there are at least 3 books on the bottom shelf and
at most 2 books on the top shelf.”

Grasping General Reasoning Process: The models demonstrate an
ability to understand and generate the general idea of reasoning processes.
They can identify the main components of a problem, recognize the structure
of a solution, and outline a high-level reasoning strategy. This capability
allows them to generate meaningful explanations and provides a starting
point for more detailed reasoning and problem-solving tasks.

These strengths indicate that the models have made significant progress in
aligning with human problem-solving capabilities. However, there is still room
for improvement, especially in complex reasoning tasks and domain-specific
knowledge, as discussed in the subsequent section on weaknesses.

5.D.1 Weaknesses

Despite the significant strengths displayed by the models, there are certain
limitations that need to be addressed to improve their overall performance.
We outline these weaknesses based on the analysis of the models’ output
explanations:

Understanding:
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o Difficulty with Variable Substitution: The models struggle to understand
questions that require variable substitution, often failing to recognize
the need for this operation and how it should be applied to solve the
problem. This limitation can hinder their ability to tackle a wide range
of mathematical and logical tasks. For instance, the model frequently
struggles to answer chemistry questions that involve substituting a
variable in a chemical equation with a chemical element and analyzing
its properties.

o Challenges with Complex Math Concepts and Symbols: The models
find it difficult to comprehend complex mathematical concepts and
interpret the meaning of symbols, particularly when multiple symbols
are involved. This weakness limits their ability to effectively address
advanced mathematical problems.

o Confusion with Similar Concepts: The models can easily be confused by
similar concepts or terms, sometimes leading to incorrect or misleading
reasoning. For example, in the physics exam, the model is confused by
the difference between vertical speed and horizontal speed of moving
object. This issue underscores the need for better disambiguation and
concept understanding techniques in future model iterations.

o Difficulty in Handling Long Contexts: The models are prone to being
disrupted by long contexts, leading to a decline in their comprehension
and reasoning abilities. Improving the models’ capacity to maintain
focus and process extensive information is essential for enhancing their
performance in real-world scenarios.

Knowledge:

o Insufficiency in Commonsense and Domain-Specific Knowledge: The
models occasionally demonstrate a lack of commonsense or domain-
specific knowledge, which hinders their ability to generate plausible
explanations and provide accurate answers. This limitation underscores
the importance of incorporating diverse knowledge sources into the
training data and exploring techniques that can more effectively in-
tegrate and access this information within the models. Moreover, it
emphasizes the necessity to broaden the models’ exposure to a wider ar-
ray of subjects and fields, ensuring a more comprehensive understanding
of various domains.
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For instance, given the conditions “if Julio and Kevin both lead morning
sessions, we know that Kevin and Rebecca must lead sessions that meet on
the same day,” the model incorrectly deduces that “ Therefore, Rebecca
must also lead a morning session.” This indicates a lack of commonsense
knowledge about the relationship between morning and day, leading to
an erroneous explanation. Additionally, the model generally performs
poorly on tasks requiring specific domain knowledge, such as law and
chemistry.

o Difficulty Identifying Correct Formulas: The models occasionally strug-
gle to recall and apply the appropriate formulas necessary to solve
particular problems, especially in tasks that demand specialized knowl-
edge or expertise. This shortcoming suggests that there is potential for
improvement in the models’ knowledge retrieval mechanisms and their
ability to recognize the relevance of specific formulas to a given problem.
Developing strategics to enhance the models’ proficiency in identifying
and applying correct formulas will be essential for improving their per-
formance in tasks requiring a deep understanding of domain-specific
concepts and techniques.

Addressing these weaknesses in knowledge will contribute to the develop-
ment of more robust and versatile large language models, better equipped to
tackle a broader range of human-centric tasks and exhibit a more comprehen-
sive understanding of various domains.

Reasoning:

o Challenges in Strict Logical Deduction: The models frequently en-
counter difficulties when attempting to perform strict logical deduction
accurately. Common issues include ignoring premise conditions, miscon-
struing sufficient and necessary conditions, or making errors in logical
chaining. These types of errors are commonly observed in manual
analyses.

For instance, given a condition, “If Myers is on the team, neither Ortega
nor Paine can be”, and a solution, “Ortega, Paine, Thomson, and Zayre
are on the team”, the model incorrectly states that this solution is wrong
because “Paine and Ortega are on the team”, neglecting to first satisfy
the premise condition “If Myers is on the team”. Furthermore, the model
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demonstrates a misunderstanding of the difference between sufficient
and necessary conditions in its explanation of another question and
states: “If Kayne is assigned to an ambassadorship, then so is Jaramillo.
This constraint is essentially the same as the given constraint that if
Jaramillo is assigned to one of the ambassadorships, then so is Kayne’.

To address these limitations, it is essential to improve the models’ abili-
ties to recognize and apply logical rules and refine their understanding
of logical structures.

o Difficulty with Counterfactual Reasoning: The models consistently strug-
gle with counterfactual reasoning tasks. They have difficulty generating
alternative scenarios, evaluating hypothetical outcomes, or exploring
potential consequences based on varying assumptions. For instance, the
models frequently make incorrect judgments for counterfactual ques-
tions in the LSAT-AR task: “Which one of the following, if substituted
for the constraint that [Constraint A], would have the same effect in
determining the assignment?” Enhancing the models’ capabilities in
handling counterfactual reasoning tasks is vital for developing a more
comprehensive problem-solving skillset.

o Struggles in Multi-hop Complex Reasoning: The models have difficulty
accurately executing multi-hop complex reasoning tasks, often display-
ing inconsistent logic, omitting inference steps, or producing flawed
reasoning chains. To address a broader range of complex problems, it is
crucial to improve the models’ abilities to systematically navigate and
process multi-step reasoning tasks.

o FEstablishing Incorrect Conclusions and Contradictory Reasoning: The
models occasionally set an incorrect conclusion first and then generate
contradictory reasoning based on that faulty foundation. This behav-
ior emphasizes the need for improved reasoning verification and error
correction techniques in the models’ problem-solving processes.

o Concealed Substitution of Concepts: The models sometimes covertly
substitute one concept with another similar one, leading to inaccurate
or misleading reasoning. For example, in a biology exam, the model
replaces the concept of “isotopically labeled amino acids” with “iso-
topically labeled tRNA (a tool for transporting amino acids)”, resulting
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in erroneous reasoning. This issue underscores the importance of bet-
ter concept disambiguation and reasoning coherence in future model
iterations.

o Difficulty in Identifying Solutions: The models occasionally struggle
to discover feasible solutions for specific problems, possibly due to
limitations in their knowledge, reasoning capabilities, or problem-solving
strategies. Addressing this shortcoming involves refining the models’
ability to explore, evaluate, and select appropriate solutions based on
the given problem context.

o Vulnerability to Contextual Disturbance: The reasoning ability of large
language models is often easily disrupted by changes in the surrounding
context. When the context is modified, the models may produce different
deductions for the same condition, suggesting that the robustness of
their reasoning ability is not yet sufficient. This observation emphasizes
the need to develop models that can maintain consistent reasoning
performance, even in the presence of varying contextual information,
ensuring more reliable and stable problem-solving capabilities.

Calculation: The model is prone to making calculation errors, par-
ticularly when dealing with complex variable substitutions. This may be
attributed to the inherent limitations of the model’s computation process in
handling mathematical operations, as well as its difficulty in parsing intricate
relationships between variables. Consequently, the model may struggle to
maintain accuracy and precision when attempting to solve problems involving
advanced algebraic manipulations or multi-step calculations. To address this
issue, future iterations of the model should focus on enhancing its mathemat-
ical reasoning capabilities and improving its ability to recognize and apply
relevant mathematical rules. This could involve incorporating specialized
modules or mechanisms specifically designed to handle complex calculations,
variable substitutions, and numerical problem-solving tasks. By refining
the model’s ability to accurately process and solve intricate mathematical
problems, we can expand its applicability across a broader range of disciplines
and domains, ensuring a more comprehensive and robust problem-solving
skillset.

By addressing these reasoning weaknesses, future large language models
can be developed with more robust problem-solving capabilities, enabling
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them to effectively tackle a broader range of human-centric tasks and exhibit
more sophisticated reasoning skills that align closely with human cognition.
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Figure 5.3: Qualitative assessment of inaccurately answered questions by the
model focuses on four dimensions of capabilities: understanding, knowledge
acquisition, reasoning and calculation.
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Example in Gaokao-MathQA

Question:i& 0 HAHRER, HLk x = a SR C: 5~ =1(a>0,b > 0)

HIRMEHTLE 25T D,E &, # A ODE ERA 8, ) € MERRMNR/IMER ()?

(Let O be the origin of the coordinate system, and let the line x = a intersect the two asymptotes of the
2 2

hyperbola C: z—z = Z—z =1(a > 0,b > 0) at points D and E. If the area of triangle A ODE is 8, what is the

minimum value of the focal length of C?)
Options: (A)4, (B)8, (C)16, (D)32
Answer: (B)

Example in Gaokao-Biology

Question AA T EfNE A AN MW TIRE, the—LiBEFRRMPIESM. TFHXTEROR HRNE
LI (The hypothalamus in the human body has endocrine functions and is also the location of some
regulatory centers. Which of the following statements about the hypothalamus is incorrect?)

Options:

(AT EANEE B2 ARSI R BB E I Z 1L (The hypothalamus can sense changes in the osmotic pressure of
extracellular fluid)

(B) T L AXBE 43 i Al R 8 2= AR R R AR L E (The hypothalamus can secrete antidiuretic hormone and
thyroid-stimulating hormone)

(O T ERS5KEFERNIET: TENEKFEEIET S (The hypothalamus is involved in the regulation
of water-salt balance; the hypothalamus has a water balance regulation center)

D) T EMAEERZARENT X, TEMEAZIET H4R (The hypothalamus can sense changes in body
temperature; the hypothalamus has a body temperature regulation center)

Answer: (B)

Figure 5.4: Data examples in Gaokao.

Example in SAT-Math

3x + 4y = 23
Question: 2;‘} t xy= 19 What is the solution (x,y) to the system of equations above?
Options: (A). (-5,-2) (B). (3,-8) (C). (4,-6) (D). (9,-6)
Answer: (B)

Chain-of-Thought Reasoning by GPT-4

Step 1: Rewrite the second equation to isolate x.
3x +4y = -23
2y —x =-19
Step 2: Substitute the expression for x from the second equation into the first equation.
Substitute x in the first equation: 3(2y + 19) + 4y = —23

Step 3: Solve fory.

Distribute the 3: 6y + 57 + 4y = —23

Combine like terms: 10y + 57 = —23

Subtract 57 from both sides: 10y = —80

Divide by 10: y = —8

Step 4: Substitute the value of y back into the expression for x. x = 2(—8) + 19

Step 5: Solve forx. x =3

Step 6: Write the solution as an ordered pair (%, y)

The solution to the system of equations is (3, -8), which corresponds to answer choice (B).

Given: Rewrite the second equation as x = 2y + 19

Figure 5.5: Data example in SAT and corresponding CoT reasoning process.
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Conclusion

This thesis explores various facets of language model evaluation, reflecting the
evolving landscape of both LLMs and their assessment. From multilingual
compositional generalization, our research progresses towards linguistic theory-
motivated probing and benchmarking against human-level general abilities.

A unifying focus throughout this work is the exploration of generalizabil-
ity in neural networks. Chapter 2 examined the multilingual dimensions of
generalizability, investigating how well models trained on entities in multiple
languages transfer knowledge across them. Chapter 3 leveraged the theo-
retical framework of generalized quantifiers and revealed systematic errors
in LM performance on natural language inference tasks involving quantifier
reasoning. This highlighted the limitations of current models in generalizing
to unseen quantifier constructions and reasoning over them. Chapter 4 further
investigated linguistic phenomena by dissecting the challenges LMs face in
comprehending respective readings. This chapter identified specific failure
cases and explored training strategies to enhance the models’ ability to gener-
alize this understanding. Finally, Chapter 5 culminated in an investigation of
how LLMs, immersed with knowledge from the vast World Wide Web, fare
when tasked with reasoning challenges at a human level.

In conclusion, this thesis provides valuable insights into the strengths
and limitations of contemporary language models, particularly concerning
their generalizability. We designed datasets and probe model capabilities
across diverse linguistic phenomena and reasoning tasks. This research
contributes to developing more robust and reliable AI models and, ultimately,
superintelligences.
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Multilingual Compositional Generalization In pursuing a future with-
out language barriers, researchers hypothesize that models should be able to
communicate and solve problems equally for every language. However, the
availability of training resources varies significantly across languages, with
English being the most commonly studied and accepted as the universal
language for research communication. Consequently, it is essential to develop
models capable of effectively transferring learned knowledge from one lan-
guage to another, treating all individuals equally regardless of their spoken
language. Previous works have focused on English tasks in compositional
generalization in neural networks. For example, SCAN is constructed for
English to synthetic translation, while CFQ is based on English to SPARQL
parsing of an outdated knowledge base.

In Chapter 2, we present pioneering research on the compositional gen-
eralization ability of neural networks and language models in the context of
cross-lingual knowledge transfer. Specifically, we investigate the semantic
parsing task of text to SPARQL. We propose a method to migrate the CFQ
dataset to Wikidata and extend it to three typologically distant languages
and domains. The resulting dataset, MCWQ), enables researchers to perform
analyses and improve the compositionality of models. Our monolingual ex-
periments suggest that current models can achieve a degree of compositional
generalization but fail to perform zero-shot transfer to other languages.

Generalized Quantifier Probing Generalized quantifiers (GQs) are ubig-
uitous in human language and lie at the intersection of logic, linguistics,
and NLP research. While Al researchers have recently focused more on the
mathematical reasoning abilities of LLMs, they have largely overlooked the
phenomenon of quantifiers in natural languages. In Chapter 3, we derive a
categorization set for quantifier analysis based on quantifier taxonomy studies.
Our findings reveal that GQs account for 10% of the corpora in natural
language inference and question-answering tasks, and they systematically
contribute to model failure. We analyze the multilingual performance of
models and highlight discrepancies in quantifier reasoning across different
languages. In the end, we introduce GQNLI, the first benchmark in modern
NLP research designed to study the GQ reasoning abilities of LMs. Our
results demonstrate that GQ) reasoning remains challenging for models, par-
ticularly with proportional quantifiers compared to existential or universal
quantifiers. We also observe that models lack robustness in GFQ reasoning
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when subjected to simple ablation studies. The challenge becomes even more
significant when GQs interact with other logical operators. These findings
underscore the need for further research and development of models that can
effectively handle the complexities of (G(Q) reasoning.

Compositional Learning of Linguistic Constructions: Respective
Readings Researchers have attempted to investigate specific aspects of
linguistic reasoning in LMs over the years. For instance, negation has been
extensively studied in the NLP community. However, countless linguistic
constructions, particularly those with long tails, cannot receive such thorough
examination. In Chapter 4, we focus on the respective reading construction
as a representative example to study compositional learning of linguistic
constructions. Despite its simplicity, it requires multiple levels of reasoning
skills, including syntactic-semantic and commonsense-world knowledge. We
examine the ability of LMs to generalize from simple to complex linguistic
constructions in zero-shot and few-shot settings. Our findings indicate that
LMs struggle to comprehend respective readings without explicit supervision
and learn more effectively with explicit reasoning than implicit reasoning.
Nevertheless, they can achieve perfect generalization with a relatively large
number of training examples. This confirms that diverse and complex training
data are vital for attaining human-level language skills.

Benchmarking Human-level Complex Reasoning As LLMs advance,
traditional benchmarks such as SQuAD and GLUE have become increasingly
saturated, with models achieving near-perfect performance. This underscores
the need for more challenging, human-centric benchmarks that reflect real-
world tasks. In Chapter 5, we introduce AGIEval, a benchmark specifically
designed to assess the general cognitive abilities of LLMs in tasks that mirror
human problem-solving and cognition. Our benchmark comprises 20 high-
quality tasks, including general college admission tests, law school admission
tests, math competitions, lawyer qualification tests, and national civil service
exams, all designed for human test-takers. AGIEval covers bilingual tasks in
both Chinese and English. Our evaluation of state-of-the-art models, including
GPT-4, reveals that while they excel in certain areas, they struggle with tasks
that require more complex reasoning or domain-specific knowledge. Through
qualitative analyses across four key aspects - understanding, knowledge,
reasoning, and calculation - we shed light on the strengths and weaknesses of
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LLMs, providing valuable insights to inform future development directions.

6.1 Future Directions

Benchmarking has made significant progress in recent years. As the capabili-
ties of language models continue to expand in various dimensions, researchers
must stay ahead of the curve and anticipate future challenges. In composi-
tional generalization studies, existing English-based benchmarks such as CFQ
have been perfectly solved (Drozdov et al., 2023). However, limited effort
has been dedicated to enhancing the cross-lingual generalizability of LLMs
(Zhang et al., 2023). It is important to investigate the influence of neural
architectures and training data on the cross-lingual generalization abilities of
LLMs. This line of research can lead to the development of more robust and
inclusive models that perform well across a diverse range of languages.

Regarding generalized quantifiers, there is a pressing need for more exten-
sive and more systematically designed benchmarks to facilitate comprehensive
evaluation. Recent works have proposed promising directions to address this
gap. For instance, Madusanka et al. (2023) construct a large-scale GQ dataset
using algorithms defined purely logically. This approach offers a principled
and scalable way to generate diverse and challenging test cases. On the other
hand, Li et al. (2023) crowd-source a dataset of human-annotated generalized
quantifiers in Wikipedia sentences, capturing the nuances and complexities
of real-world language use. Despite approaching the research question from
different perspectives, both works converge on the conclusion that there is
significant room for improvement in the reasoning capabilities of LLMs when it
comes to generalized quantifiers. Another important direction is to investigate
the relations between quantifier reasoning and world knowledge, especially
multimodal knowledge. Therefore, developing multimodal quantifier datasets
and evaluating multimodal models is the next straightforward step.

To achieve a more comprehensive understanding of LLMs’ linguistic abili-
ties, it is necessary to foster collaboration between LLM trainers and linguists.
This interdisciplinary approach will enable a rigorous evaluation and analysis
of how LLMs learn, generalize, and process language at a level comparable
to human language understanding. We can gain deeper insights into the
strengths and limitations of these models, identifying the linguistic phenomena
that LLMs capture effectively and the areas where they struggle or exhibit bi-
ases. To effectively assess the linguistic reasoning abilities of language models,
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particularly for low-resource languages, it is crucial to design more challenging
and comprechensive benchmarks. One valuable resource that can be leveraged
is the International Linguistics Olympiad (IOL), an annual competition that
tackles self-sufficient linguistics problems in theoretical, mathematical, and
applied linguistics. Researchers can develop benchmarks that are challenging
and grounded in real-world linguistic phenomena by drawing inspiration from
the IOL problem sets.

As LLMs advance rapidly, it is important to consider three key aspects
when creating comprehensive and effective benchmarks. Firstly, benchmarks
should be dynamic, allowing for continuous updates and adaptation to reflect
the language’s evolving nature and usage. This can be achieved by incor-
porating real-time data sources and crowdsourced annotations. Secondly,
benchmarks should cover a range of everyday life domains, such as agent-
based interactions, medical consultations, and legal discourse, to ensure that
LLMs are evaluated on their ability to understand and generate text relevant
to real-world applications. Finally, benchmarks should prioritize inclusivity,
encompassing the breadth and depth of multilingual and multicultural as-
pects, including diverse linguistic, cultural, and socio-economic perspectives,
to guarantee that LLMs serve the needs of a global and diverse user base.
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