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The cover artwork “Re-birth, learning by creating” is created by the artist Jonas Lundberg 

who uses generative AI models to create art. In this case, he has leveraged an AI model 

called Midjourney (Midjourney 2023) (created by the research lab with the same name) 

that generates art from text.  
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ABSTRACT 

The manufacturing industry is becoming increasingly complex, dynamic, and connected. 

As a result, companies are facing challenges in managing highly nonlinear and stochastic 

activities due to the many uncertainties and interdependencies they face. In recent years, 

the development of artificial intelligence (AI) has shown potential for transforming the 

manufacturing domain through the use of advanced analytics tools for processing large 

amounts of manufacturing data. There are many examples of research investigating how 

AI can be used to optimize performance in manufacturing companies. However, studies 

show that only a small percentage of firms across industries engage in widespread adoption 

of AI. Most companies only run ad hoc pilots or apply AI to a single business process. 

Some researchers claim that AI has the potential to disrupt the manufacturing industry as 

we know it, arguing that companies that only partially commit to an AI transformation will 

be outcompeted by those who can offer new data-driven services. Others, however, 

question the current direction and potential of AI. 

This thesis investigates, from a multidisciplinary point of view, what is required from a 

manufacturing company leader to efficiently support a widespread introduction of AI. It 

combines quantitative and qualitative methods combined with real-life examples of 

introducing AI in an aerospace manufacturing company. While the term AI is commonly 

used in various contexts, there is some confusion surrounding the concept, and a vast 

spectrum of definitions have emerged. Therefore, the thesis begins with describing 

essential concepts within the field of AI as well as their history.  

 

Leaders of manufacturing companies play an important role in achieving widespread 

implementation. However, there is limited research on how leaders best can contribute to 

widespread implementation. The first step of this research was therefore to create a 

capability framework for leaders of manufacturing companies that wish to introduce AI on 

a wide scale. In this work, we identified a willingness to learn about AI as one of the most 

important capabilities leaders could benefit from when supporting the widespread adoption 

of AI. However, this is challenging. The field grows as technologies emerge that could fit 

under the AI umbrella. Additionally, researchers and practitioners lack a coherent 

definition of AI, which has led to a mystification of the term.  
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To gain an understanding of the leadership capabilities required for an effective AI 

implementation, it is necessary to consider the nature of AI technology itself and its use. 

Technological advancements within AI have enabled non-experts to develop AI 

applications that previously required in-depth computer science, statistics, and 

mathematics knowledge. To develop the understanding of these technological 

advancements, we conducted a second study that specifically examined the role of 

abstraction in AI. Our aim was to quantify the level of abstraction in deep learning by 

investigating the number of lines of code utilized in deep learning projects. We saw a 

dramatic decrease in the number of lines of code used, indicating an increase in 

abstraction. Thereafter, we proceeded to investigate implications of this abstraction 

increase, particularly with respect to mimesis. While these developments contribute to the 

democratization of AI, promoting collaboration and allowing us to do more with less, they 

also come with several drawbacks such as convergence on suboptimal solutions, quality 

assurance problems and scarcity of talent that most organizations are not yet strategically 

prepared to handle. 

Much of the research on AI in manufacturing has been conducted outside the daily 

operations of manufacturing companies. Further research has been requested on 

introducing it into daily operations. Against this background, in order to investigate 

implications, considerations, and trade-offs that need to be made when introducing AI into 

daily operations I conducted an action research study using a case study of a global 

manufacturing company deploying AI to develop capabilities and enhance decision-

making.  

This research offers a multidisciplinary investigation of some of the challenges and 

considerations involved in implementing AI in the manufacturing industry and highlights 

the role of manufacturing company leaders in facilitating the adoption of AI in the 

industry. While AI can be a useful tool for solving problems, it may not always be the best 

solution, and companies should carefully consider where and how to use it. The research 

clearly shows the importance of multidisciplinary approach, collaboration, as well as the 

combination of competencies to succeed in AI transformation.  

 

 



10 

 

1. INTRODUCTION 

The focus of this thesis is on AI transformation in the manufacturing industry, and the 

associated leadership challenges and implications. In this thesis, I frequently use the term 

"leader" to refer to individuals who possess the ability or have been appointed to inspire, 

influence, build trust, and create a vision for the future within their organization. This 

definition is intentionally broad, encompassing individuals at all levels and areas of 

responsibility within the company, whether formal or informal. I have chosen to use a term 

that is inclusive, rather than limiting itself to specific levels or areas of responsibility 

within the organization (Saran 2018).  

 

In this first chapter, I outline the content of the thesis.  

Chapter 2 provides a technological framework for the thesis. It covers the concept of AI, 

its history, and introduces essential AI-related concepts that the reader will encounter 

throughout the thesis and in my research studies. The chapter contextualizes subsequent 

chapters and serves as a foundation for an in-depth exploration of the research topic. 

Chapter 3 is focused on AI in the manufacturing industry. It covers the relationship 

between AI and manufacturing, potential areas for AI adoption and the limited adoption of 

AI and barriers to implementing AI. The chapter also discusses the leadership implications 

of these barriers and sets out the research questions aimed at addressing the issues and 

supporting the implementation of AI in the manufacturing industry. 

Chapter 4 sets out the overall research design. In this chapter, I discuss practice-based and 

action research and elaborate on the role of the researcher as the reflective practitioner. I 

conclude the chapter with a short description of the manufacturing context through which I 

have studied the subject, namely aerospace component manufacturing, and introduce the 

company that has funded the research. 

Chapter 5 describes the results and contributions of the thesis and outlines the three papers 

generated as a result of this research.  

In Chapter 6, I conclude the thesis by setting out my conclusions throughout my research 

and providing suggestions for further research. 
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2. TECHNOLOGICAL FRAMEWORK 

This chapter provides an overview of the technological framework that forms the basis of 

my research on the leadership aspects of introducing AI into the manufacturing industry. 

This framework serves as the technological lens through which I have studied the research 

topic and contains descriptions of essential concepts within the field of AI that the reader 

will encounter throughout the thesis and in my research studies.  

Through this chapter, readers can understand the context and significance of the research 

and the technological foundations that inform the subsequent chapters. In my studies, it has 

been important to have an understanding of AI and some fundamental concepts related to it 

to understand both the research problem domain of AI transformation in the manufacturing 

industry on a more general level and the technologies that I have investigated and applied 

in my research studies in particular.  

I will begin by discussing the concept of AI and its history where I also address the 

potential confusion surrounding the definition of AI. Furthermore, I introduce certain 

fundamental concepts related to AI. By providing an understanding of the technological 

framework of the research, this chapter aims to contextualize the subsequent chapters and 

lay the foundation for an in-depth exploration of the leadership aspects of introducing AI 

into the manufacturing industry. 

 

2.1. Artificial Intelligence 

Even though the term AI is frequently used, there is yet to be a generally accepted 

definition (Monett, Lewis and Thórisson 2020). Researchers such as Johnson and 

Verdiccihio that have written about the way AI is discussed and presented posit that there 

is a confusion around what AI is (Johnson and Verdicchio 2017). Since its first use by the 

computer and cognitive scientist John McCarthy, in 1955, when he defined it as the science 

and engineering of intelligent machines that mimic the cognitive functions that we 

associate with the human mind, i.e., the ability to sense, reason, act, learn and adapt 

(McCarthy 2007), a vast spectrum of definitions have emerged.  

Within AI research, over 28 definitions have developed in the last decade, and subsequent 

attempts to systematize the approaches are still being discussed (Monett, Lewis and 

Thórisson 2020). Many subdomains are developing within AI, and the concept can be 
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classified at various levels of generality. Moreover, its meaning will probably change as 

available technologies continue to evolve (Pandl, et al. 2020, Fortuna and Gorbaniuk 

2022). This confusion about AI also appears in research areas, such as general 

management. Here, researchers such as Davenport, Govindarajan, Weill, Bassellier and 

Persaud speak of the subject without defining what they mean by it (Davenport and Foutty 

2018, Govindarajan and Immelt 2019, Bassellier, Benbasat and Reich 2003, Persaud 

2021).  

Below I present the most commonly known definitions of AI apart from McCarthy’s 

definition described above. For a more comprehensive discussion about the definition of 

AI, please see (Russell and Norvig 2009, Legg and Hutter 2007).  

Alan Turing, a British mathematician and computer scientist who is famous for his work 

within theoretical computer science and AI, presented a famous AI definition in his paper 

Computing Machinery and Intelligence (Turing 1950). Turing, however, did not refer to it 

as “artificial intelligence” but as “computing machinery and intelligence”. Turing based his 

AI definition on a test he called the “imitation game”. Based on this test, “Artificial 

intelligence” means any computer that passes the “Turing test”. The Turing test is a game 

played with a human, a computer, and a human judge. The human judge is separated from 

the other two participants, who can only communicate via text. The Turing test is passed if 

the human judge cannot effectively discriminate between the human and the computer.  

Another definition common among AI researchers, such as Stuart Russell and Peter 

Norvig, is that of AI as intelligent agents. For example, Russell and Norvig use the 

following definition: "Artificial intelligence" means an intelligent agent. "Agent" means a 

software system that perceives its environment through sensors and acts upon that 

environment through actuators. "Intelligence" means the ability to select an action that is 

expected to maximize a performance measure (Russell and Norvig 2009). This definition 

of AI as intelligent agents has also been used by, for example, Yann LeCun in the later 

years when discussing how machines could learn as efficiently as humans and animals 

(LeCun 2022). This definition of AI as an agent, where algorithms are used that can select 

an action that is expected to maximize a performance measure, is also what I commonly 

refer to in this thesis. 
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2.2. The history of AI - from myth to probabilistic deep learning 

After introducing the concept of AI, I will provide a brief history of the idea of intelligent 

machines, tracing back the ancient myths of crafted intelligent beings, via the emergence 

of AI research in the mid-1900s until the advent of probabilistic deep learning in more 

recent years. I believe this historical account is helpful in contextualizing the evolution of 

the field of AI, including the challenges and setbacks faced along the way.  

 

2.2.1. Antique myths of crafted intelligent beings 

The idea of intelligent machines began already in ancient times, with myths of crafted 

intelligent beings. In Greek mythology, for example, around 700 B.C., stories spoke of 

Talos, a giant constructed of bronze who guarded the island of Crete (Hunter 2015). 

Throughout history, artisans have created realistic humanoid automata designed to give 

observers the impression that they are operating under their own power. One famous 

example of such automata is the late 18th century chess-playing “mechanical Turk” (a 

fraud with a human chess master hiding inside to operate the machine) (Schaffer 1999, 

McCorduck 2004). 

 

Fig 1: Image of the mechanical Turk from Joseph Friedrich Freiherr von Racknitz’s book 

that tried to explain the illusions behind the chess-playing automaton (Humboldt-

Universität 2022). 
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2.2.2. The emergence of AI research 

In the mid-1900s, neurology research showed that the brain was an electrical network of 

neurons that fired in all-or-nothing pulses. Accordingly, in the 1940s and 50s, scientists 

from mathematics, psychology, engineering, economics, and political science began to 

discuss creating an artificial brain (Russell and Norvig 2009). A fundamental step towards 

creation of AI was taken when Alan Turing discussed that humans use available 

information and reason to solve problems and make decisions and that it should be possible 

to build intelligent machines (Turing 1950). 

However, it was not until 1956, when computer scientist John McCarthy hosted a 

conference at Dartmouth College that the term AI was coined. It is also considered that it 

was at this conference that the research field of AI was born. During the conference the 

participants posited, "every aspect of learning or any other feature of intelligence can be so 

precisely described that a machine can be made to simulate it" (Crevier 1993, Kaplan 

2022). 

 

2.2.3. Symbolic and connectionist AI 

In the 1950s, the field of AI began to take shape as two distinct visions for achieving 

machine intelligence emerged. The first of these visions, known as symbolic AI, proposed 

using computers to create a symbolic representation of the world and systems that could 

reason about it. This approach was championed by notable figures such as Allen Newell, 

Herbert A. Simon, and Marvin Minsky. The second vision, known as the connectionist 

approach, aimed to achieve intelligence through learning (Manyika 2022). This approach 

emphasized the use of neural networks and machine learning algorithms to enable 

machines to learn from experience. 

A famous proponent of the connectionist approach was Frank Rosenblatt. Sparking off the 

ideas of an artificial brain, in 1957, Rosenblatt introduced the perceptron - one of the most 

important building blocks for what later became artificial neural networks (ANNs). ANNs 

are algorithms loosely inspired by the structure of biological neural networks such as the 

human brain. Rosenblatt’s perceptron was a single-layer ANN model that contained an 

input value, a weight and bias, a net sum, and an activation function. It weighed inputs and 

applied an activation function that resulted in an output. Rosenblatt predicted that the 

“perceptron may eventually be able to learn, make decisions, and translate languages”. 
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Subsequent research exposed limitations to what perceptrons could do and that 

Rosenblatt’s predictions had been exaggerated (Russell and Norvig 2009). However, this 

did not mean that the idea of the perceptron went extinct. Today, the perceptron serves as 

the foundation of ANNs – which essentially are multi-layer perceptrons.  

Both Symbolic AI and connectionist approaches had their own strengths and weaknesses, 

and the debate between the two approaches continues to shape the field of AI today. 

Symbolic AI was criticized for its inability to handle the complexity and uncertainty of 

real-world problems, while the connectionist approach was criticized for its lack of 

transparency and interpretability. 

 

 

 

Fig 2: Frank Rosenblatt in 1960 with a Mark I Perceptron (Santa Barbara Museum of Art 

2022). 
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2.2.4. The first AI winter 

In the 1960s and 1970s, researchers within the field of AI were convinced that symbolic 

approaches would ultimately lead to the creation of a machine with artificial general 

intelligence (Newquist 2020). Some experts, such as Herbert Simon, predicted that 

machines would be capable of performing any task that a human could do within the next 

20 years. Similarly, Minsky believed that the problem of creating AI would be 

substantially solved within a generation. However, these researchers failed to fully grasp 

the complexity and difficulty of the remaining tasks (Crevier 1993). While AI research 

received much support and funding during the 1950s and 1960s, in the 1970s it became 

clear that researchers had underestimated the challenges associated with creating AI, and 

the field experienced major critiques and financial setbacks (Russell and Norvig 2009). In 

1974, AI research was defunded by the U.S. and British Governments, leading to a difficult 

period for AI research known as an "AI winter", during which obtaining funding for AI 

projects became increasingly difficult (Russell and Norvig 2009). 

 

2.2.5. Expert systems 

This “AI winter” continued until the 1980s when a new form of AI technology referred to 

as “expert systems” emerged and became the new focus of AI research (Newquist 2020). 

There are several types of expert systems, including rule-based (that uses rules as the 

knowledge representation for knowledge coded into the system) (Grosan and Abraham 

2011) and frame-based (that processes problem-specific information in the working 

memory, with a set of frames contained in the knowledge base) (Rattanaprateep and 

Chittayasothorn 2006). Expert systems rely on deductive inference, restrict themselves to 

small domains of specific knowledge and use logical rules derived from the knowledge of 

experts to solve problems within these specific domains. The expert systems proved for the 

first time that AI could be useful. However, expert systems proved expensive and difficult 

to administer (Russell and Norvig 2009, Cowan 2001). Each small domain required its 

own expert system, and the systems required manual updates. After these limitations 

became apparent in the 1990s and early 2000, the research field of AI faced additional 

setbacks. 
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2.2.6. Emergence of deep learning 

The next fundamental shift within the field of AI occurred around 2010 when deep 

learning models emerged. While in 2010, ANNs were nothing new (Russell and Norvig 

2009), the access to large amounts of data and cheaper and faster computers combined 

with for example groundbreaking research by Alex Krizhevsky et al. in creating AlexNet 

(Krizhevsky, Sutskever and Hinton 2012), allowed researchers to develop powerful AI 

models for image and video processing, text analysis, and speech recognition (LeCun, 

Bengio and Hinton, Deep learning 2015). In many aspects, the advent of deep learning 

transformed how we process vision and speech data. Given enough data, deep learning 

systems proved powerful enough to identify patterns between a given set of inputs and a 

set of corresponding outputs (Marcus 2018).  

However, even though many AI applications today use deep learning, soon after its 

emergence, its limitations started to show. François Chollet (author of the deep learning 

software framework Keras and one of the main contributors to Google’s deep learning 

software framework TensorFlow) said, already at the end of 2017 (only five years after 

Krizhevsky et al. published their major paper), that: 

 

 “For most problems where deep learning has enabled transformationally better solutions 

(vision, speech), we've entered diminishing returns territory in 2016-2017.” (Chollet 2017). 

 

2.2.7. The advent of probabilistic deep learning 

Deep learning works best when there are many, many training examples. However, it risks 

falling short when training examples are few or very complex. In 2014, Kingma and 

Welling proposed a way of dealing with these limitations of regular deep learning by 

combining traditional statistical methods with deep learning – so-called probabilistic deep 

learning (Kingma and Welling 2014). This approach has been gaining popularity in recent 

years as a way to improve the performance and robustness of deep learning models (Tran 

2020). 

The main advantage of probabilistic deep learning is that it accounts for uncertainty, both 

model uncertainty and data uncertainty (Tran 2020, Chang 2021). 

 

 



18 

 

2.3. Fundamental concepts of AI 

In this section, I provide an introduction to several key concepts within the field of AI. 

While this section is not intended to be an exhaustive list of all concepts within the field, it 

is essential to understand these common concepts to follow the discussions and analyses 

presented throughout this thesis and my research studies. Please note that this section 

serves as an introductory guide and is intended to provide a basic understanding of the key 

concepts. Further reading may be necessary for a more in-depth understanding of these 

concepts and their practical applications. 

 

2.3.1. Machine learning and deep learning 

As mentioned above, what I often refer to in this research is the definition of AI as an 

intelligent agent, where algorithms are used that can select an action that is expected to 

maximize a performance measure. The technology that is often used to achieve this is 

referred to as machine learning. Machine learning has been defined in various ways, and is 

often divided into two categories: traditional machine learning and deep learning, although 

this division is sometimes debated (Yang, et al. 2018, Pin, En and Peng 2021). Traditional 

machine learning relies on established statistical methods like linear regression and support 

vector machines, while deep learning uses ANNs with multiple layers to make predictions 

(Marcus 2018). It is important to note that all deep learning methods, including 

probabilistic deep learning methods, fall under the umbrella of machine learning, but not 

vice versa. 

 

2.3.2. Supervised, unsupervised & semi-supervised learning 

A common division within machine learning, apart from that between traditional machine 

learning and deep learning, is between supervised, unsupervised, and semi-supervised 

learning. Supervised learning (or supervised models) makes use of labeled datasets to train 

or “supervise” the algorithms to predict outcomes accurately. Labeled inputs and outputs 

allow the model to measure its accuracy and improve. Supervised learning, rely on 

techniques such as logistic regression and decision trees and is commonly used for tasks 

such as email spam filtering (Dada, et al. 2019, Sivakumar, et al. 2018). 

Unsupervised learning models use techniques such as k-means to analyze unlabeled data 

sets. These algorithms detect hidden patterns in data without the need for human 
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intervention (hence, they are “unsupervised”) and are used in areas such as image 

segmentation and handwriting recognition (Ahmed, Seraj and Islam 2020). 

Semi-supervised learning models use training datasets with both labeled and unlabeled 

data to solve tasks such as text and image classification (Ouali, Hudelot and Tami 2020). It 

relies on techniques such as generative models (such as the semi-supervised variational 

autoencoder) or semi supervised support vector machines (Hady and Schwenker 2013). 

Semi-supervised learning is interesting because it can use unlabeled data to improve 

supervised learning tasks when there are low amounts of labeled data (Xiaojin and Andrew 

2009). 

 

2.3.3. Discriminative vs. generative models 

Yet another major division in machine learning is between generative and discriminative 

modeling. In discriminative modeling, the aim is to learn a predictor based on observed 

data, such as classifying emails as spam or not spam using previous training examples. In 

contrast, generative modeling aims to learn a joint probability distribution over all 

variables, allowing for the generation of new data (Kingma and Welling 2014). This 

capability makes generative modeling useful in a range of applications, including image 

and language generation, as well as protein design. 

 

2.3.4. Deduction, induction, abduction 

In the context of AI, inference refers to the process of using a model or system to make 

predictions or decisions based on input data. In other words, the process of drawing 

conclusions from observed data (Russell and Norvig 2009). AI models typically rely on 

two types of inference. Deductive inference and inductive inference. 

Deductive inference is a type of reasoning where if the premises (A) are true, then the 

conclusion (B) is necessarily true (Johnson‐Laird 2010). A classic example of deductive 

inference is the syllogism: "If all men are mortal, and Socrates is a man, then Socrates is 

mortal." In computer science, deductive reasoning is often used in automated theorem 

proving, where a computer program derives logical consequences from a set of given 

axioms or premises. The expert systems of the 1980s often relied on deductive inference.  

Today, most machine learning algorithms are inductive inference engines, i.e. the model is 

able to make predictions based on patterns observed in data. Inductive inference is based 
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on statistical data and observed frequencies and is a type of reasoning where if the 

premises (A) are true, then the conclusion (B) is likely to be true (Angluin and Smith 

1983). For example: if (A) most dogs are friendly, then knowing that an animal is friendly, 

(B) increases the probability that the animal is a dog.  

There is also a third type of inference called abductive inference. Abductive inference is a 

type of reasoning where if the premises (A) are true, then the best explanation for the 

conclusion (B) is inferred from the available evidence (Kettner 1991). Humans often rely 

on abductive inference, but then refer to it as “common sense”. In machine learning, 

abductive inference can be seen as the process of constructing a range of models worthy of 

consideration given the data. 

The concepts that I have explored above refer to AI on a more general level. Throughout 

my research, I have focused much on deep learning and probabilistic deep learning. 

Therefore, I will spend some time explaining important concepts within these specific 

areas. 
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2.4. Artificial Neural Networks and Deep Learning 

Loosely inspired by the structure of biological neural networks, ANNs are computational 

processing systems consisting of interconnected computational nodes that work 

collectively to learn from the input to optimize its final output. Deep learning networks are 

simply ANNs with many hidden layers stacked upon each other (Goodfellow, Bengio and 

Courville 2016). 

 

 

Fig 3: Illustration of an ANN showing the relationship between the layers and how the 

network nodes are interconnected. 

 

A multidimensional vector is loaded into the input layer that transforms it into the hidden 

layers. Each node in the hidden layers has its own weights, bias, and activation function. 

For each node, the input values x are multiplied by their corresponding weight W, added 

together with a bias term b, and an activation function is applied to provide an output. 
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Fig 4: Illustration of how each node of an ANN has its inputs, weights, and activation 

function. The node takes an input x and scales it by the weights W and biases b. 

Subsequently, a nonlinear activation function , such as Sigmoid, ReLU etc., is applied, 

which renders an output. Image taken from (Bisong 2023). 

 

2.4.1. Activation Functions 

ANNs use activation functions within the hidden layers to ensure a nonlinear 

transformation of the input vector and in the output layer to ensure that the neural network 

provides the desired output. The activation function provides for if a neuron should be 

activated and transforms the summed weighted input at a node into an output value to be 

fed to the next hidden layer or as final output (Nwankpa, et al. 2018). There are different 

activation functions with different areas of use – often divided based on their ranges or 

shapes of their curves. For example, the curves of the activation functions Sigmoid and 

Tanh, typically used for binary classification, both have an S-shape. The Sigmoid function 

outputs a value between 0 and 1 while the Tanh ranges from -1 to 1. Since the range of 

Tanh is between -1 to 1 the mean will be close to 0 in the Tanh graph (Nwankpa, et al. 

2018). 
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Fig 5: Graphs of Sigmoid and Tanh activation functions compared, image taken from 

(Nwankpa, et al. 2018). 

 

The Softmax function another type of sigmoid function, often used for classification of 

more than two classes (Nwankpa, et al. 2018). ReLU is one of the most commonly used 

activation functions within deep learning i.a. since it is less computationally expensive than 

Sigmoid and Tanh because it involves simpler mathematical operations that enable better 

training of deeper networks. As of 2017, was is the most popular activation function for 

deep neural networks (Glorot, Bordes and Bengio. 2011, Nwankpa, et al. 2018, 

Ramachandran, Zoph and Le 2017). ReLU has a range of 0 to infinity. It gives an output of 

x if x is positive and otherwise 0. 

 

 

Fig 6: The graph of a ReLU activation function. 
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2.4.2. Loss function and gradient descent 

The hidden layers of ANNs perform nonlinear transformations of the inputs entered into 

the network from the previous layer. Once the model has produced an output, it compares 

the output against the given target output using a loss function. A loss function (sometimes 

also referred to as a cost function) is a function that compares the target and predicted 

output values and aims to minimize loss between the predicted and target outputs - usually 

using gradient descent. Gradient descent allows for the optimization of weights and biases 

to minimize the average loss. This adjustment process is referred to as “learning”. 

 

 

Fig 7: Illustration of gradient descent. The gradient descent starts at an arbitrary point to 

evaluate the performance. From there, the algorithm will gradually inform the update of 

the weights and bias until the slope reaches the lowest point on the curve, known as the 

point of convergence. (Image taken from (JavaPoint 2023). 

 

The aim of using gradient descent is to find the parameters of the ANN that incurs the 

lowest loss. Automatic differentiation is used to get the gradient, and the gradient descent 

starts at an arbitrary point to evaluate the loss. From there, the algorithm will gradually (in 

what is known as learning steps) find the slope and can thereafter use a tangent line to 

observe the steepness of the slope. The slope will inform the update of the weights and bias 

until the slope gradually reaches the lowest point on the curve, known as the point of 

convergence (Bottou 2010). 
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2.4.3. Convolutional Neural Networks 

Convolutional Neural Networks (CNNs) are a type of ANN that was first introduced in 

1998 in a paper by LeCun, Bottou, Bengio and Haffner (LeCun, Bottou, et al. 1998). 

CNNs are, due to their ability to assign importance to spatial relationships within the data, 

primarily used in the field of pattern recognition within images (O’Shea and Nash 2015). 

This ability allows encoding image-specific features into the architecture, making the 

network more suited for image-focused tasks while reducing the parameters required to set 

up the model. 

Apart from the input layer, CNNs usually have three types of layers. These are:  

 

(i) Convolutional layers, where kernels move across the input image to detect local features 

at different positions. To produce the feature map, the kernel convolves with the input 

image by computing the dot product between the input image and the kernel (O’Shea and 

Nash 2015). 

 

 

 

Fig 8: An illustration of a convolutional layer where the white section represents a 5x5x1 

pixel input image. The kernel (a 3x3x1 matrix represented in the color blue) moves across 

the input image and convolves with the input image by computing the dot product between 

the input image and kernel to produce the feature map (the 3x3x1 red matrix). 

 

(ii) Pooling layers, that reduce the dimensions by combining each group of the outputs of 

the convolutional layer(s) into a single neuron in the next layer - thereby reducing the 

computational complexity of the next set of layers. There are two common variations of 
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pooling operations: average pooling and max pooling. An average pooling layer averages 

its input values by taking their mean, while max pooling takes the biggest value. 

 

 

 

Fig 9: An illustration of max pooling and average pooling. 

 

(iii) Fully connected layers, that attempt to produce class scores from the activations to be 

used for classification. 

A CNN architecture is formed when input, convolutional, pooling, and fully connected 

layers are stacked (O’Shea and Nash 2015). 

 

 

Fig 10: Illustration of the constituents of a CNN with input, convolution, pooling, fully 

connected and output layers.  

 

CNNs improve the ability to compute complex datasets by identifying and reducing the 

number of relevant features. However, one of the most significant limitations of traditional 
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ANNs is that they tend to struggle with the computational complexity required to compute 

image data.  

Machine learning benchmarking datasets such as the MNIST are suitable for most forms of 

ANNs due to its relatively small image dimensionality. With MNIST, a single neuron in 

the first hidden layer will contain 784 weights (28×28×1 since MNIST is normalized to 

black and white values), which is manageable for most forms of ANNs. However, 

considering a more substantial image, such as the X-ray images we processed in one of our 

studies with an image size of 256x256 pixels (even when normalized to black and white 

values), the number of weights on just a single neuron of the first layer could increase 

significantly. When we consider that to deal with this input scale, the network will also 

need to be much larger than one used to classify color-normalized MNIST digits, the 

benefits of CNNs become even more apparent. 

 

2.4.4. Autoencoders, variational autoencoders and semi-supervised variational 

autoencoders 

AutoEncoders 

The variational autoencoder (VAE) builds on the autoencoder (AE) architecture, an ANN 

architecture that contains an encoding function, which maps an input to a compressed 

latent space representation, and a decoding function, which maps from the latent space 

back into the original space. The idea originated in the 1980s and was later promoted by 

Hinton & Salakhutdinov (Hinton and Salakhutdinov 2006). The word “auto” indicates that 

its learning is unsupervised, and the word “encoder” means that it learns encodings of data 

(Maheshwari, Mitra and Sharma 2022). The simplest architecture for constructing an AE is 

to limit the number of nodes of the network’s hidden layer(s), restricting the amount of 

information that can flow through the network. That way, the architecture of an AE 

includes a bottleneck that forces a compressed representation of the original input.  
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Fig 11: An illustration of the network architecture of an AE where the hidden layer works 

as a bottleneck that forces a compressed representation of the original input. The decoding 

layer maps from the bottleneck to the output layer. 

 

The AE makes it possible to take an unlabeled dataset and task the network with outputting 

y, a reconstruction of the original input x. The AE is trained by minimizing the 

reconstruction error, which measures the differences between our original input and the 

reconstruction.  

 

VAEs 

VAEs maps output of the encoder model into parameters of a probability distribution over 

latent space. In other words, where the ordinary AE maps the input to a single latent 

representation vector, the VAE maps the input to a distribution over latent space vectors. 

Before diving deeper into the description of the VAE, I will briefly describe Bayes’ 

theorem and probabilistic reasoning and how they relate to VAEs. 

 

2.4.5. Bayes’ theorem and graphical models 

The idea of VAEs is deeply rooted in Bayesian statistics and graphical models, making use 

of variational Bayes methods for parameter inference (Kingma and Welling 2014). I start 

with explaining Bayesian statistics. At the heart of Bayesian statistics lies Bayes’ theorem. 

Bayes theorem states that if there are two events A and B that each have probabilities P(A) 

and P(B) of occurring, then: 𝑃(B|A) =
𝑃(𝐴|B)P(B)

𝑃(𝐴)
. Bayesian statistics makes use of Bayes’ 

theorem to construct a probability distribution over the parameters of a model given data.  
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 In Bayesian statistics, Bayes’s theorem relates four factors to each other: “prior”, the 

“likelihood”, the “posterior”, and the“evidence”. 

 

𝑃𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 =
𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 ∗ 𝑝𝑟𝑖𝑜𝑟

𝑒𝑣𝑖𝑑𝑒𝑛𝑐𝑒
 

Written in terms of latent variables z and data x this becomes: 

 

𝑃(𝒛|𝒙) =
𝑝(𝒙|𝒛)𝜋(𝒛)

𝑝(𝒙)
 

I explain each of these terms in turn. 

 

Prior - 𝜑(z) 

The Bayesian prior is the probability distribution of a parameter before any data is 

observed. This can be considered as a way of including “prior knowledge” in the model, 

hence the name. A prior can be chosen based on precise quantitative reasoning related to 

the nature of the parameter or empirical domain knowledge.  

 

Likelihood - p(x|z) 

The likelihood describes the probability of observing the data given the parameters of the 

model.  

 

Posterior - p(z|x) 

The posterior probability is the object of interest in Bayesian inference. It is the probability 

distribution of the parameters of the model given the data. The posterior can be considered 

as the prior updated with new information (brought in by the likelihood). 

 

Evidence - p(x) 

The probability of observing the data is referred to as the evidence. The evidence is the 

marginal probability of the data.  

 

Using the Bayesian terminology above, the VAE can be illustrated as follows: 
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Using the Bayesian terminology above, prior = p𝜃(z) , likelihood = p𝜃(x|z) , posterior = 

q𝜑(z|x) (which works as the approximation of the Bayesian posterior), evidence = p(x) 

(not included in the figure above). 

 

2.4.6. Variational Bayes 

Variational Bayes is a method for approximating complex probability distributions using a 

simpler distribution known as a variational distribution. In the context of a VAE, 

variational Bayes is used to estimate the parameters of the VAE. In a VAE, the latent 

variable z is indirectly observable, leading to a scenario where both the marginal 

probability and the posterior distribution of z are computationally intractable. This forms 

an obstacle for the direct optimization of these parameters using gradient descent 

methodologies. To overcome this challenge, it is possible to use an auxiliary distribution, 

known as a variational distribution, q, to approximate the true posterior distribution over 

the latent variable. By introducing this auxiliary distribution, we can integrate ("sum out") 

z from the likelihood function, making it possible to use gradient descent to estimate the 

parameters of the VAE. The specific technique used to accomplish this is known as the 

reparameterization trick. The reparameterization trick involves re-parameterizing the 

sampling process of z in a way that allows the gradients to be computed with respect to the 

parameters of the VAE model. In practice, a quantity called the Evidence Lower Bound 

(ELBO) is maximized, which minimizes the difference between the posterior and the 

variational approximation in terms of the Kullback-Leibler (KL) divergence. The KL 

divergence is a standard way to evaluate the similarity of two probability distributions or 

densities.  

 

It is important to note that while variational Bayes is "Bayesian" about the latent variable z 

(as z has a distribution), it is not Bayesian about the parameters of the neural network. For 

the parameters of the neural network, the VAE finds a single best value using gradient 

descent. 

 

2.4.7. Variational AutoEncoders 

VAEs consist of two interdependent but independently parameterized ANNs:  
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The decoder with its own parameters (weights and biases, 𝜃), denoted by p(x|z), 

reconstructs data x based on the prior z and p(x|z)  

The encoder, with parameters , denoted as q(z|x). The encoder works as an approximation 

that is needed to estimate the parameters of the decoder. The encoder takes a data point Di 

as input and encodes a latent representation of this data to the latent space z. The encoder 

maps Di to parameters of a distribution over and shares variational parameters across data 

points – a process referred to as amortization (Kingma and Welling 2014). 

The optimization objective of the VAE is the evidence lower bound, abbreviated as ELBO. 

Maximizing the ELBO corresponds to maximizing the evidence, p(x). 

As it happens, minimizing the distance between these two distributions in terms of KL 

divergence, also means maximizing the ELBO - something that Kingma and Welling 

explore in detail (Kingma and Welling 2014).  

To provide a concrete example of how the VAE works, I will again use MNIST as an 

example. x is a 28x28-pixel image of a handwritten number. The encoder encodes the data 

of 784 dimensions into the parameters of a probability distribution p(z|x) over the latent 

space . The latent variable or latent representation has a much lower dimensionality than 

784 (say, 50-dimensional). Typically, a Gaussian distribution is used for p(z|x). The 

images in MNIST are black and white. Each pixel can thus be represented as 0 or 1, and 

the probability distribution of a single pixel can be represented using a Bernoulli 

distribution. The decoder gets as input the latent representation of a digit z. The decoder 

then decodes the latent representation into 784 real numbers between 0 and 1 (the 

parameters of 784 Bernoulli distributions). 
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Fig 12: A graphical representation of a VAE. z=latent space, x=data, 𝜃=parameters of the 

model, 𝜑=parameters of guide. 

 

2.4.8. SS-VAEs 

In cases where the label of the input data is missing, it is possible to use the architecture of 

the VAE to estimate the label by using a so-called SS-VAE. This concept, first explored by 

Kingma and Welling, uses the encoding model to improve classification (Kingma and 

Welling 2014). If the label is missing, the decoder samples it from a partially observed 

latent variable y. In this instance, the classifier q𝜑(y|x) serves as both the inference module 

for the supervised task and as an approximate posterior (and encoder) for the y variable 

(Kingma and Welling 2014). 

 

2.4.9. MNIST 

In this thesis, I sometimes refer to the MNIST (Modified National Institute of Standards 

and Technology) database (MNIST). MNIST is a dataset containing 70 000, 28x28 pixel 

black and white images of handwritten digits. It has historically been and continues to be, 

widely used for training and testing in the field of machine learning (Yann, Corinna and 

Bruges 2022). 
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Fig 13: Sample images from MNIST test dataset of handwritten digits, image taken from 

(Lim, Young and Patton 2016). 
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3. RESEARCH PROBLEM DOMAIN 

In this chapter, the focus is on the research problem domain and the research questions 

related to AI transformation in the manufacturing industry. The chapter begins by 

establishing the relationship between AI and manufacturing companies, exploring how AI 

can be utilized in various manufacturing processes and the potential benefits associated 

with its adoption. The chapter also investigates the barriers that could prevent an AI 

transformation of the manufacturing industry, including technical, human and 

organizational, and societal barriers. A discussion of the leadership implications of these 

barriers to introducing AI follows. Finally, the chapter sets out the research questions 

aimed at effectively supporting a widespread implementation of AI in the manufacturing 

industry. This chapter aims to further contextualize the subsequent chapters and continues 

the in-depth exploration of the leadership aspects of introducing AI into the manufacturing 

industry. 

 

3.1. AI and how it relates to manufacturing companies 

According to researchers such as Govindarajan and Immelt, Foutaine et al., and Ancona, 

AI will transform the manufacturing industry, bringing significant consequences for 

companies, workers, and consumers (Govindarajan and Immelt 2019, Fountaine, 

McCarthy and Saleh 2019, Ancona 2019). AI is already widely used in medical image 

analysis, bioinformatics, drug discovery, recommendation systems, financial fraud 

detection, visual art processing, and the military (Kim et. al 2022).  

On the one hand, AI’s current direction has been questioned by some researchers. They 

argue that it cannot distinguish causation from correlation and cannot deal with the 

unexpected (Marcus 2018). They have also pointed out drawbacks associated with the 

interpretability of AI models (Kim et. al 2022), and that we are in a diminishing returns 

territory in relation to AI (Chollet 2017). 

On the other hand, other researchers argue that AI has the potential to disrupt the 

manufacturing industry and that it is widely agreed that AI is transformative (Govindarajan 

and Immelt 2019, Davenport and Foutty 2018, Fountaine, McCarthy and Saleh 2019). 

They believe that it can improve operational performance and provide new business 

models and that those manufacturing companies that do not commit fully to an AI 
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transformation will be outcompeted by those who can offer new data-driven services 

(Govindarajan and Immelt 2019, Ancona 2019).  

Many manufacturing companies are challenged in meeting throughput, quality, and cost 

objectives while ensuring a safe working environment. Meeting these goals can be 

increasingly difficult with the multitude of demands stemming from growing product and 

process complexity, higher variability in customer demand and preferences, and relentless 

competitive pressures (Arinez, et al. 2020, Govindarajan and Immelt 2019, Soldatos and 

Kyriazis 2020).  

This leads to the question if computers can help meet these challenges. This is not a new 

question. In the 1980s, one of the most discussed topics in manufacturing was computer-

integrated manufacturing (CIM). CIM was an effort to integrate activities in manufacturing 

through the medium of computers. Now it is widely accepted that CIM leads to widespread 

improvement in productivity (Adiga 1993). While researchers such as Adiga posits that 

computers can improve operational performance, the actual benefit of AI in manufacturing 

is still unclear. Even though researchers such as Arinez et al. and Govindarajan and Immelt 

and Deveraux claim that recent developments indicate that AI could be one of the most 

disruptive enablers of Industry 4.0 (a German strategic initiative, aimed at creating 

intelligent factories where manufacturing technologies are upgraded and transformed by 

cyber-physical systems), with the potential to transform the manufacturing domain through 

advanced analytics tools, they have not quantified the level of disruption or potential that 

AI can provide (Arinez, et al. 2020, Govindarajan and Immelt 2019, Deveraux 2019, Lee, 

Bagheri and Kao 2015). According to a recent report from McKinsey, among 

manufacturing companies that have implemented AI on a wide scale, it is not uncommon 

to see 30-50% reductions in machine downtime, 10-30% increases in throughput, 15-30% 

improvements in labor productivity, and 85% more accurate forecasting (McKinsey, 

Capturing the true value of Industry 4.0 2022). However, I have not seen these numbers 

verified in other research. 

 

Irrespective of its potential, many manufacturing companies have invested in the digital 

transformation of their production processes to transition to Industry 4.0 (Palensky, et al. 

2008, Pan 2016). In Cyber-Physical Systems (CPS), with backbone technologies like cloud 

computing, and internet of things (IoT), AI applications can be used to analyze data from 
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embedded sensors and instrumentation or data generated from manufacturing processes 

(Govindarajan and Immelt 2019, Soldatos and Kyriazis 2020, Arinez, et al. 2020).  

Advances in computational hardware and sensing technology for collecting critical 

process/machine data have made the application of AI feasible in a practical sense and led 

to an interest in the capabilities and benefits they offer (Arinez, et al. 2020, Chien, et al. 

2020). Furthermore, new advanced machine learning frameworks allow for novel 

algorithms suitable for large-scale problems in realistic settings (Lwakatare, et al. 2020). 

The increased industrial interest in AI is also reflected in the number of journal articles on 

AI in manufacturing, mainly driven by research from China and USA, (Zeba, et al. 2021). 

 

 

 

Fig 14: the number of journal articles by year during the period between 2011 and 2019 on 

the topic of AI in manufacturing, image taken from (Zeba, et al. 2021). 

 

3.2. Related research on the use of AI in manufacturing 

This thesis investigates leadership implications and challenges associated with the effective 

and widespread implementation of AI in manufacturing companies. To obtain an overview 

of relevant research on areas of AI applications in the manufacturing industry, I conducted 

a literature search using the following key concepts as inclusion criteria: “AI and 

manufacturing,” “deep learning and manufacturing,” and “machine learning and 

manufacturing.”. However, obtaining an overview of research related to this study proved 

challenging due to the broad search criteria. 
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Therefore, I refined the search results and combined the key concepts with the keyword 

“systematic review”. “Systematic review” was chosen to gain insights from comprehensive 

compilations of available research within the defined subject area. Systematic reviews are 

typically positioned at the top of evidence hierarchies as they adhere to strict 

methodologies and criteria, mitigate the risk of bias and ensure the inclusion of all relevant 

research. They allow the researcher to synthesize and critically appraise a number of 

studies in a specific context to provide evidence-based conclusions, (Okoli and Schabram 

2010, Webster and Watson. 2002), which enables a more focused understanding of the 

existing research landscape. This approach allowed me to scan and read through the review 

articles to qualitatively select further articles for deeper insights on relevant studies and use 

of AI in manufacturing application areas. 

 

3.2.1. Overview of the findings 

The literature search identified 15 studies that met the search criteria. The search results 

revealed that extensive research has been conducted to explore the potential benefits of AI 

within the manufacturing industry. After excluding systematic review studies investigating 

unrelated topics such as comparisons of inherent differences of smart manufacturing and 

intelligent manufacturing (Wang et al. 2021), and the role of circular economy in 

manufacturing (Acerbi, Forterre and Taisch 2021), I ended up with eight systematic review 

articles offering systematic reviews of studies on application of AI in manufacturing. 

These reviews serve as a foundation for understanding the current state of applications in 

the field. 

These articles identified multiple areas where AI could be applied in manufacturing 

companies. For example Arinez et al. concluded that AI could be used for job dispatching, 

scheduling and resource allocation (Arinez, et al. 2020) and Fahle et al. identified research 

that AI could be used for assistance and learning systems, assembly assistance and logistics 

(Fahle 2020). Based on the qualitative analysis of the articles, five recurring themes 

emerged regarding areas in manufacturing where AI could be introduced.   

Specifically, the studies conducted by Fahle et al., Arinez et al., Hansen and Bøgh, Jamwal 

et al., Cioffi et al., and Kofi Nti et al. identified the significance of AI in predictive 

maintenance (where data from sensors and other sources are analyzed to detect patterns 

that can help predict when a machine is likely to fail or require maintenance) and quality 
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control (where AI is used to detect patterns that may indicate a defect, allowing allows 

businesses to catch issues earlier in the production process), which could lead to improved 

manufacturing processes and reduced downtime. The same studies emphasized the 

potential of AI in enhancing human-robot collaboration, making robots more adept at 

sensing their surroundings, understanding human intent, and adapting to changing 

environments. This can help robots work more effectively with humans, leading to 

increased efficiency and safety in the manufacturing environment. Additionally, these 

studies highlighted the potential of AI in optimizing and controlling various manufacturing 

processes, which could improve throughput and potentially affect the production quality 

(Fahle 2020, Arinez, et al. 2020, Hansen and Bøgh 2021, Jamwal et al. 2022). 

Furthermore, research conducted by Fahle et al., Jamwal et al., and Cioffi et al. 

demonstrated that AI and machine learning had applications in streamlining supply chain 

activities enabling better demand forecasting, inventory management, and production 

planning (Fahle 2020, Jamwal et al. 2022, Cioffi et al. 2020). Finally, Cioffi et al. and 

Sung et al. highlighted the role of AI in managing energy consumption in manufacturing, 

which could lead to reduced costs and increased environmental sustainability (Cioffi et al. 

2020, Sung, et al. 2022). 

 

3.2.2. Implications of the literature search 

The studies mentioned above provide insights into the field of AI applications in 

manufacturing, with a majority of research being conducted in recent years. Notably, 

China has surpassed the United States as the leading producer of research in this domain 

(Zeba, et al. 2021). Initial studies primarily focused on topics such as “flexible 

manufacturing systems” and “decision support”, while more recent articles have shifted 

their attention to “cyber-physical”, “deep machine learning and big data” and “neural 

networks”. This indicates an increased emphasis on investigations of the potential of deep 

learning to process large amounts of data to build cyber-physical manufacturing systems, 

as noted by Zeba et al (Zeba, et al. 2021). This trend is also supported by the increased use 

of neural networks and decision tree algorithms in recent years (Fahle 2020). Further, it is 

anticipated that emerging topics, such as cyber-physical integration manufacturing 

strategies, smart and sustainable manufacturing, computational sciences for smart factories, 

and the development and implementation of novel technologies, will garner increased 
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research interest in the future (Zeba, et al. 2021). The growing adoption of AI technologies 

across small and medium-sized enterprises illustrates the broad applicability of these 

technologies in manufacturing companies of varying sizes and scopes (Hansen and Bøgh 

2021).  

The results of the literature study provide insights into potential AI applications in the 

manufacturing industry, focusing on the manufacturing process as such. To a lesser degree 

they investigate the how or why of their introduction. Moreover, I identified a gap 

concerning the organizational aspects of introduction and how it affects management 

practices and the research failed to examine the practical implications of effectively 

implementing AI in this context. While general management literature, such as the works 

of Govindarajan and Immelt and Fountaine et al. often referenced in this thesis, attempts to 

address the questions of how and why manufacturing companies should adopt AI, it does 

so without specifying particular areas of application or considering the practical challenges 

during implementation (Govindarajan and Immelt 2019, Fountaine, McCarthy and Saleh 

2019).  

Furthermore, the research in the systematic literature reviews tends to overlook AI's 

potential to transform workflows, promote innovative business models, and support the 

adoption of new management practices, which enable AI-driven decision-making (Lee, et 

al. 2019). Zeba et al. affirm the need for research exploring these transformative effects 

(Lee, et al. 2019). While the impact of AI on business model innovation in other industries, 

as demonstrated by companies like Airbnb and Uber, is well-documented, its influence 

within the manufacturing industry remains uncertain (Lee, et al. 2019). 

Nonetheless, the management consultancy firm Marketsandmarkets estimates that AI in 

manufacturing will be valued at USD 2.3 billion in 2022, with a projection of reaching 

16.3 billion by 2023, growing at a CAGR of 47.9% from 2022 to 2027 

(MarketsandMarkets 2022). This growth can be attributed not only to productivity 

enhancements but also to emerging trends such as product personalization, mass 

personalization, and products-as-a-service (Wang, et al. 2017). For instance, Nike has 

generated over $185 million in revenue from non-fungible tokens (NFTs) for digital 

sneakers and similar products (McKinsey, Value creation in the metaverse 2022), while 

GE has shifted from selling engines or engine spare parts to providing "engine 
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availability," charging customers based on engine usage hours (Govindarajan and Immelt 

2019, GE Aviation 2022). 

 

3.3. Lack of adoption of AI 

Although the literature study confirmed that there are multiple areas and applications 

where manufacturing companies could use AI, research indicates that the implementation 

of AI in non-tech industries remains limited. Few companies have integrated AI into their 

operations and business strategy in a way that fundamentally changes how the organization 

functions, adds value, and engages with stakeholders (Agrawal, Gans and Goldfarb 2018, 

Holmström 2022, Govindarajan and Immelt 2019, Davenport and Foutty 2018).  

According to Arinez, most research on AI in manufacturing has been conducted outside the 

daily operations of manufacturing companies (Arinez, et al. 2020). Further, as indicated by 

Fountaine et al., companies often apply AI to a single business process (Fountaine, 

McCarthy and Saleh 2019). Consequently, even if companies have begun to adapt and 

implement AI into operations to improve production efficiency and flexibility and reduce 

cost, its spread seems to be limited (Arinez, et al. 2020). According to Fountaine et al., 

only 8% of firms across industries engage in widespread adoption. 92% either do nothing, 

run ad hoc pilots, or apply it to a single business process (Fountaine, McCarthy and Saleh 

2019). A Danish study in which only three percent of Danish companies actively use AI in 

their operations supports this view (Humlum and Meyer 2020). 

It is paradoxical that despite the urgency highlighted by experts like Govindarajan and 

Ancona, few manufacturing companies seem to have adopted AI on a wide scale. This 

raises the question of whether the lack of widespread implementation, although research 

points to the possibility of AI providing benefits for manufacturing companies, is due to a 

lack of urgency or if it is because implementing AI is more difficult than anticipated. 

Against this background, it is crucial to explore some of the reasons behind the limited 

adoption of AI in the manufacturing industry. 

 

3.4. Barriers to an AI transformation of the manufacturing industry 

Below, I will explore barriers that I have identified through my literature studies of state of 

the art literature within the research domain, throughout my research studies as well as 

through my practical work in implementing AI in the manufacturing industry. The section 
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does not provide an exhaustive list of barriers, but is rather intended to bring the awareness 

of the reader to some of the obstacles to AI transformation that current research has 

identified. 

In summary, technical challenges such as the dynamic and complex nature of 

manufacturing environments and the need for high-performing AI models, human and 

organizational factors such as lack of trust and awareness of AI, difficulty in integrating 

traditional and new ways of working, and scarcity of required talent and societal barriers 

such as a lack of successful examples to emulate and the challenge of keeping pace with 

rapid advancements in AI methodologies all play a contributing role. 

 

3.4.1. Technical barriers 

Sung et al. argues that applications of AI in manufacturing industries have been 

particularly challenging due to the demand for high level performance of models in a 

highly nonlinear environment and in a high-dimensional space (Sung, et al. 2022) In 

addition, AI technologies applied in manufacturing are naturally different from those 

applied in other fields. In a manufacturing environment, AI must help people, machines, 

and systems communicate with each other. In contrast, in other fields, AI technologies are 

mostly applied to assist people (Chen and Wang 2022).  

Further, the development, implementation and maintenance of large and complex AI 

systems is difficult. The difficulty is accounted for by, among other things, the dynamic 

and complex context where different components interact with one another and the 

environment (Sculley, et al. 2015, Dahlmeier 2017). Other researchers have raised 

concerns in relation to adaptability, scalability, safety and privacy of AI solutions in 

manufacturing and highlight these as some of the main barriers to a widespread 

implementation (Lwakatare, et al. 2020).  

Even though the above indicates that there are several technical barriers to overcome to 

succeed with an AI transformation other researchers posit that an AI transformation is 

primarily a cultural and organizational challenge (Govindarajan and Immelt 2019, 

Fountaine, McCarthy and Saleh 2019, Davenport and Foutty 2018, Brock and 

Wangenheim 2019). 
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3.4.2. Lack of awareness, trust and complacency 

One such challenge is, according to Sung et al, that there is still a reluctance among 

manufacturing companies to adopt AI in their operations (Sung, et al. 2022). Many 

companies need more awareness of where and how it should be incorporated, lack trust in 

the technology, and have workers or leaders who fear becoming obsolete (Sung, et al. 

2022, Fountaine, McCarthy and Saleh 2019, Ancona 2019). 

Fitzgerald et al., and Govindarajan and Immelt highlight complacency among leaders, 

often rooted in ignorance about AI, as one of the main obstacles to a successful 

transformation (Fitzgerald, et al. 2013, Govindarajan and Immelt 2019). They posit that 

manufacturing companies often have no history of working with data and base their 

business models on producing hardware. Since these old models often perform at their 

peak at this stage, the incentive for change is at its lowest. In addition, the returns on long-

term AI investments usually take time to realize and often pay off long after the current 

leadership is gone (Govindarajan and Immelt 2019). 

 

3.4.3. Ambidexterity challenge; combining traditional ways of working while 

pioneering new ways 

Another challenge is the balancing act between keeping what functions well in the 

company against the need to change (Govindarajan and Immelt 2019). Govindarajan and 

Immelt and Teece point out the traditional ways of working as some of the main obstacles 

to succeeding with an AI transformation (Govindarajan and Immelt 2019, Teesce 2014). 

Others point out that these traditional ways of working, the best practices and 

bureaucracies, often are what made companies so successful in the first place (Westerman, 

Soule and Eswaran 2019, Fitzgerald, et al. 2013). They mention that bringing too much 

change at the same time or changing things too quickly risks destroying the foundation on 

which they capitalize. Further, they argue that companies that push the transformation too 

hard and fail could risk destroying what works well, losing their credibility, and scaring off 

their best employees (Westerman, Soule and Eswaran 2019, Fitzgerald, et al. 2013).  

Further, according to Fountaine et al., AI has the most significant impact when developed 

by cross-functional teams with a mix of skills and perspectives. Business and operational 

people working alongside analytics experts will ensure that initiatives address broad 

organizational priorities, not just isolated business issues (Fountaine, McCarthy and Saleh 
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2019). However, bringing these practices to companies whose structures, values, and 

governance rules are designed for cautious stability is difficult (Westerman, Soule and 

Eswaran 2019). 

The above indicates that, in order to succeed with an AI transformation, manufacturing 

companies need to establish ways of working where they keep what works well while 

simultaneously being able to explore new ways. Such “ambidextrous organizations,” as 

Charles A. O’Reilly and Michael L. Tushman call them, allow pioneering of radical or 

disruptive innovations while also pursuing incremental gains (O Reilly and Tushman 

2004). 

 

3.4.4. Scarcity of talent 

Yet another challenge is the lack of skilled staff needed to develop and implement AI 

(Brock and Wangenheim 2019). Succeeding with an AI transformation requires access to 

the programmers able to build AI models (Fountaine, McCarthy and Saleh 2019). 

However, according to an article in the Economist from 2022, only 25 million people 

worldwide are fluent in standard programming languages. In 2025, there will be an 

estimated global shortage of about 4 million programmers (Economist 2022). In addition, it 

is often challenging to recruit and retain the non-technical experts required to develop and 

implement AI solutions, such as project managers and what Fountaine et al. refers to as 

“translators” (Fountaine, McCarthy and Saleh 2019). Naturally, the competition for both 

technical and non-technical talent is fierce, and it can be difficult for manufacturing 

companies to compete for this talent. Even if they manage to recruit them, they may 

struggle to retain them. Manufacturing companies often have no natural place to put these 

people other than in a traditional technology function such as IT or engineering, where 

they risk succumbing under the bureaucratic processes and best practices that characterize 

traditional functions (Teesce 2014). 

However, the technical and organizational barriers mentioned above do not fully explain 

the challenges in transforming the manufacturing industry. Challenges on a societal level 

also have an impact. 
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3.4.5. Lack of mimetic models for both companies and researchers 

The American-French anthropologist and cultural theorist René Girard posited that humans 

turn to others to understand how we should act because humans imitate others’ behavior. 

Girard refers to those we imitate as “mimetic models” (Palaver 2013). Govindarajan and 

Immelt, Fountaine et al., Sung et al., and Davenport posit that there are not many “AI-

driven” manufacturing companies to benchmark against (Govindarajan and Immelt 2019, 

Fountaine, McCarthy and Saleh 2019, Sung, et al. 2022, Davenport and Foutty 2018). 

Accordingly, the manufacturing industry lacks successful mimetic models to imitate and 

learn from. Instead, every company needs to make its exploratory journey, figuring out the 

best way to introduce AI. This exploratory journey often forces them to draw their game 

plans on the fly (Govindarajan and Immelt 2019). In an environment used to making long-

term plans and steering innovation, this often leads to tension and, consequently, a slow 

transformation pace.  

Additionally, the absence of successful examples means that researchers struggle to find 

suitable manufacturing companies to study. Researchers such as Govindarajan and Immelt, 

and Fountaine et al. speak of what companies need to do, drawing from their experience of 

working with other industries or from what they have learned in working with digital 

transformation in manufacturing companies (Govindarajan and Immelt 2019, Fountaine, 

McCarthy and Saleh 2019). However, many of their conclusions seem to be based on 

isolated experiences and anecdotal evidence. 

 

3.4.6. Keeping up with methodological progress 

While the AI transformation of the manufacturing industry appears to be moving at a slow 

pace, the methodological progress within AI is moving at a high rate (Bommasani 2021). 

This creates additional challenges for manufacturing companies willing to explore AI. 

Within the field of AI, new methods, e.g. encapsulated in new programming frameworks, 

continuously emerge and replace current ones (Davenport and Foutty 2018, Govindarajan 

and Immelt 2019, Weill 2019, Bassellier, Benbasat and Reich 2003, Persaud 2021, 

Bommasani 2021). In less than a decade, this development has made it possible to develop 

AI applications that previously required in-depth knowledge of computer science, 

statistics, and mathematics (Bommasani 2021). Fountaine et al. and Davenport argue that 

the rapid progress within AI, which to some extent is reflected in a significant increase in 
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the research literature on AI in manufacturing, makes it increasingly important to be able 

to use the latest methods to innovate rapidly (Fountaine, McCarthy and Saleh 2019, 

Davenport and Foutty 2018, Zeba, et al. 2021). Govindarajan and Immelt and Ancona 

point out that, failing to do so, manufacturing companies risk wasting time using obsolete 

methods and ultimately risk being outcompeted by those who quickly adopt the latest 

methods (Govindarajan and Immelt 2019, Ancona 2019). 

 

3.5. The leadership perspective 

From the above, it becomes clear that implementing AI is a leadership challenge. This has 

been confirmed in previous research showing that implementation of AI requires that 

leaders of manufacturing companies understand how to best work with AI and what 

consequences it may bring (Fountaine, McCarthy and Saleh 2019, Sung, et al. 2022, Brock 

and Wangenheim 2019). However, it can be difficult for leaders to understand how to best 

support an AI transformation (Fountaine, McCarthy and Saleh 2019, Brock and 

Wangenheim 2019) since different, and sometimes conflicting views are spread across 

different research disciplines. Additionally, much of the research focuses on the 

implementation of AI in isolated areas of the business and not a widespread 

implementation (Arinez, et al. 2020).  

Despite the lack of direction on the best way for leaders to support an AI transformation, 

researchers such as Govindarajan, Immelt, and Ancona point out the urgency to change. 

They state that if leaders fail, their companies will be outcompeted by those who can offer 

new data-driven services, risking extinction (Govindarajan and Immelt 2019, Ancona 

2019). 

Different researchers have tried to advise leaders on how to effectively support an AI 

transformation from different perspectives (Arinez, et al. 2020, Govindarajan and Immelt 

2019, Ancona 2019, Kolbjørnsrud, Amico and Thomas 2017). However, since not many 

companies beyond the tech industry leverage AI on a wide scale, it is a little speculative to 

understand how to best support a widespread implementation in a manufacturing company 

(Davenport and Foutty 2018). There is also little research integrating the technical 

implications of implementing AI on a wide scale in manufacturing companies with the 

leadership challenges that follow. In light of the above, further research is needed to 
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understand what it takes for a leader to effectively support an AI transformation of a 

manufacturing company (Govindarajan and Immelt 2019, Davenport and Foutty 2018). 

 

3.6. Research questions and aim 

Many gaps still exist that could be addressed on what is required to integrate AI into 

manufacturing companies on a wide scale. This thesis aims to bridge some of these gaps by 

answering the following overarching research problem; what are leadership implications 

and challenges for the effective widespread implementation of AI in manufacturing 

companies?  

 

I address the research problem through the following research questions:  

(i) What capabilities can benefit leaders who wish to implement AI in a manufacturing 

company, and how do these capabilities affect how leaders support an AI transformation? 

 

In order to fully understand capabilities required, it is necessary to consider the nature of 

AI technology itself and its potential implications on AI implementation. Therefore, I 

conducted a second study, aiming to investigate:  

 

(ii) What is the impact of the nature of AI technology on efficiency, democratization and 

ethical concerns and how can the increasing abstraction in deep learning software 

frameworks reshape the relationship between technology and society?  

 

After investigating the leadership aspects and technology aspects of effective AI 

implementation, I saw it necessary to gain practical experience in AI implementation. 

Against this background, I took an action research approach to answer the research 

question:  

(iii) What challenges and considerations might arise when implementing an AI solution in 

a manufacturing company's daily operations?  How can these companies adequately 

develop in-house AI capabilities and what factors influence their decision to continue 

developing these capabilities or outsource them? 
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4. OVERALL RESEARCH DESIGN 

In this chapter, I discuss the research design of this thesis, which draws inspiration from 

practice-based research and utilizes action research methodology. I reflect on my role as a 

reflective practitioner and the challenges this poses to objectivity. Additionally, I introduce 

the company that funded my research, GKN Aerospace, and provide an overview of the 

study's results, study cases, and contributions. 

I describe the three studies that I conducted as part of my research. The first study aimed to 

establish a leadership competency framework for leaders of manufacturing companies that 

wish to implement AI on a wide scale in their business. The second study focused on 

quantifying the increase in the abstraction of deep learning and discussing its implications 

with respect to technological advancement, democratization, ethical concerns, and 

concentration of power. The third study aimed to provide guidance on developing in-house 

AI capabilities and examined factors that influence the decision to continue developing 

these capabilities or outsource them. 

 

4.1. Practice-based and action research 

This research concerns the leadership practice of implementing AI in the manufacturing 

industry. Research that takes the nature of practice as its central focus is called ‘practice-

based’ research and is usually carried out by practitioners such as designers, writers, 

programmers etc. (Candy 2006). This approach has influenced this research. The concept 

of practice-based research originates from the idea that knowledge can be partly advanced 

through practice in certain disciplines. In practice-based research, the researcher can take 

the practice of their discipline as the research subject. The research program then consists 

of a continual reflection upon that practice and on the resulting informing of practice 

(Candy 2006). Even though the term practice-based research is widespread, it is not yet 

defined in a way that is agreed upon across the various fields of research where it is in use 

(Candy 2006). Practices are often complex, and one is not an isolated instance; instead, one 

is often intertwined with other practices (Nicolini 2012). As practices emerge, new 

requirements of practice can occur. The current research has been shaped over almost four 

years through continuous reflections considering what was learned in the previous parts of 
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the research. These reflections have informed the decisions made on which further research 

to pursue.  

 

In the context of practice-based research, it is helpful to distinguish between a “pure” 

practitioner and a practice-based researcher. According to Scrivener, the critical difference 

is that the practice-based researcher aims to generate novel apprehensions that are “not just 

novel to the creator or individual observers” (Scrivener 2002). While parts of the research 

are a result of the researcher’s particular goals of the time, the aim is also to add to the 

shared store of knowledge around this subject in a more general sense, providing insights 

that are not only new to the creator. The research set out in this thesis is a result of both 

quantitative and qualitative studies. The direction of the research has been informed by 

practitioner needs identified in current research. The research as such has been conducted 

according to the structured research process common to professional practice. 

Another main difference is the form that the generated knowledge takes. While the 

practitioner is mainly interested in furthering its own individual goals of the time rather, 

the practice-based research outcome is shared with a broader community and arises from a 

structured process. A vital element of this process is that the research results are 

transferable to a broader research community. In the current case, I have generated 

research articles and this thesis to transfer my research conclusions to the research 

community.  

In addition to the research approach being practice-based, parts of it draw inspiration from 

a qualitative research approach that follows the methodology of so-called action research, a 

term commonly used in information systems research. In action research, the researchers 

insert themselves into the context of their investigation (Järvinen 2001). This approach is 

unusual compared to other methods, where the researcher typically acts as an unbiased 

observer (Reason and Bradbury 2001). 

In action research, action can inform practice, as theory can be created through practice. 

Action research emphasizes the collaboration between practitioners and researchers 

(Avison, et al. 1999, Baskerville and Wood-Harper 1996, Brydon-Miller, Greenwood and 

Maguire 2003, McKay and Marshall 2001). The research in this thesis results from 

collaborations between the researcher in his role as a practitioner, other industry 

practitioners such as programmers, and researchers from various fields.  
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The research approach has also been inspired by an action research model created by 

Mathiassen et al. (Mathiassen, Chiasson and Germonprez 2012). 

 

 

Fig 15: An illustration of the research model for action-based research based on the work 

by Mathiassen et al., where the research question is based both on relevant literature and a 

real world problem (Mathiassen, Chiasson and Germonprez 2012). The research 

contributes both to solving the real world problem and to relevant research within the area. 

Image taken from (Islind 2018). 

 

According to this model, and in this research, the research questions, as well as the 

research, are continuously informed by relevant streams of research and real-world 

problems. Similarly, the research contributes to a solution to real-world problems and the 

shared store of knowledge around this subject in a more general sense. The stream of 

literature (A in the figure) consists of the work generated in this thesis and the results of 

the literature studies. The real-world problem (P in the figure) is the question of what is 

required from a manufacturing company leader to efficiently support an introduction of AI 

and the barriers to such an introduction. The theoretical framing (F in the figure) consists 

of the practice-based research lens as well as the technological framework as well as 

literature studies. The method (M in the figure) is a mixed-method. The research questions 

are in the middle of the figure below, and guides the researcher´s approach to its 

contributions, and the contribution (C in the figure) consists of three articles. 
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In this thesis, I am using a mixed methods research approach. In parts of the thesis, I have 

explored the complexities of social phenomena by achieving an empathic understanding of 

how the research subjects view the world. Collis and Hussey describe this as the 

interpretivism research philosophy. It sees reality as highly subjective because our 

perceptions shape it. In other parts, I have been inspired by a positivist approach, making 

use of statistical hypothesis testing where needed (Collis and Hussey 2014). 

 

4.2. The role of the researcher - the reflective practitioner 

Coming from a background in law, I have spent the last years leading digital 

transformation. Throughout this research, I have led a team responsible for digital 

innovation at GKN Aerospace. Holding two roles - both the role of researcher and 

practitioner has given me a position to conduct practice-based research, immediately trying 

out what I have learned in my research in the field. Similarly, the experiences from my 

position in the company have provided valuable insights for my research. Combining the 

outside-in perspective of the researcher with the inside-out perspective of the practitioner, I 

base the foundation of this thesis on industry and practitioner needs that I have identified in 

the research literature and have experienced first-hand. These needs and works have 

informed my writing at every level while ensuring academic stringency in my research 

studies and historical accounts. In addition, theories learned during the research have 

furthered the practical experiences learned in the manufacturing industry.  

When I started this research, the first challenge I faced was where to begin. My role as a 

practitioner was to ensure that the company I worked for leveraged AI in the best possible 

way. In this work, I asked myself the question; what is required from a person in my 

position to advance the implementation of AI within a manufacturing company? I was 

looking for guidance in this regard. An AI transformation requires the support of the 

business leadership and must begin at a leadership level (Fountaine, McCarthy and Saleh 

2019, Brock and Wangenheim 2019). This view seems to be shared by Ngwenyama and 

Nørbjerg, who suggest that large-scale software transformations depend on a firm 

commitment from top management (Ngwenyama and Nørbjerg 2010). However, as I 

mentioned above, even though researchers have identified a need for research on how to 

support a widespread implementation of AI, there is limited research on what it takes to be 

an AI-driven manufacturing company leader.  
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Practice-based research, where the researcher is partly subject to the research, can be 

criticized for the notion that it can be challenging for researchers to be objective about the 

research context while being heavily involved within the context (Baskerville and Wood-

Harper 1996, Bryman 2015). In this research, I have not always been “a fly on the wall”, 

but rather “a fly in the soup”. By that, I mean that as a leader and researcher, I have aimed 

to be a part of the change process and intervene. It has been complex being a leader 

responsible for implementing AI and a researcher simultaneously, as this approach 

naturally eliminates the role of a neutral observer. Aiming to maintain objectivity as a 

researcher (Baskerville and Wood-Harper 1996, Bryman 2015), I have ensured to include 

other researchers and practitioners. In the first study I conducted, the aim was to 

understand what was required from a leader to advance the implementation of AI within a 

manufacturing company. Throughout this study, my principal supervisor (Assoc. Prof. 

Thomas Hamelryck), and Prof. Ulrika Lundh Snis, University West, were heavily 

involved. In the second study, I participated in the practical steps of programming and 

analysis of GitHub repositories with an industry programmer. I also led the development of 

the theory. The theory, however, was developed together with my principal supervisor, a 

researcher with a background in anthropology and philosophy (Cadell Last, PhD, 

University of Brussels, VUB), and Prof. Ulrika Lundh Snis In the third study, I provided 

direction in the development of the models and led the discussions with the internal and 

external stakeholders and the external service provider. All this while simultaneously 

studying the subject. However, the model was used in the study was developed with an 

industry expert and my principal supervisor with assistance from a researcher within 

computer science specialized in probabilistic models in close collaboration with the 

inspection operators of the business. The theory, however, was developed together with 

Prof. Ulrika Lundh Snis. 

Much published research does not contribute to advances in academic knowledge while at 

the same time enlightening professional practice (Van De Ven 2007). Donald Schön 

describes academia as “institutions committed to a particular epistemology, a view of 

knowledge that fosters selective inattention to practical competence and professional 

artistry” (Schön 2016). Similarly, I have experienced a reluctance among practitioners to 

adopt the thoughtfulness and systematic methodology used in academia. Against this 
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background, I want to promote a view of knowledge, as promoted by Schön and Jonna 

Bornemark, that bridges the gap between the knowledge honored in academia and the 

kinds of competence valued in professional practice, where both views contribute to one 

another (Schön 2016, Bornemark 2018). 

 In light hereof, the thesis investigates, from a highly multidisciplinary point of view, some 

of the challenges I have faced in my learning journey over the past three years when 

leading an introduction of AI in a manufacturing company. I combine quantitative methods 

and qualitative methods with real-life examples. 

 

4.3. The aerospace research context 

The aerospace component manufacturing corporation GKN Aerospace Engines – a branch 

of GKN Aerospace, funds this research. Initially founded as Dowlais Ironworks Co in 

1759 in Dowlais, South Wales, GKN’s aerospace branch, GKN Aerospace, today employs 

about 15,000 employees at 38 manufacturing locations and 4 R&D-centers in 12 countries 

around the world. It serves the world’s leading aircraft and aero-engine manufacturers with 

its advanced technologies that improve the performance of more than 100,000 flights daily. 

GKN Aerospace has a unique reputation for quality and innovation and collaborates 

closely with universities, knowledge institutes, suppliers, and customers. It leads the 

industry in developing new technology to improve aircraft efficiency: lowering aircraft 

cost, weight, and emissions (GKN 2023). 

GKN Aerospace would like to understand the potential that AI may bring to its business 

and it runs pilots in parts of its business. Like many other manufacturing companies, GKN 

Aerospace would benefit from increased machine uptime, increased production throughput 

and labor productivity, and more accurate forecasting. However, it still assesses the best 

ways AI could help with this. Against this background, GKN Aerospace Engines decided 

to fund this PhD research. The research in this thesis is concerned with implementation of 

AI in the manufacturing industry. However, I have studied this through the lens of a 

practitioner within an aerospace manufacturing company. The aerospace manufacturing 

industry has thus been a study object of the manufacturing industry.  
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5. RESULTS AND CONTRIBUTIONS 

5.1. Paper 1: An AI leadership competency framework, Appendix 1 - published at 

the 26th Biennial Nordic Academy of Management Conference, Örebro, Sweden, 

August 24-26, 2022 

There are principles guiding other parts of leadership within manufacturing companies 

than AI implementation. An example of such a leadership framework is the LEAN 

principles, which provide a framework for creating an efficient and effective organization, 

allowing managers to reduce waste and deliver better customer value (hence the name 

“Lean”) (Dombrowski and Mielke 2013). However, there has yet to be a consensus on 

what capabilities leaders of manufacturing companies require to implement AI. Different 

views are spread across different research disciplines. Neither are there many “AI-driven” 

manufacturing companies to benchmark against (Govindarajan and Immelt 2019, 

Davenport and Foutty 2018, Teesce 2014). In light hereof, researchers within general 

management have pointed out the need for a framework describing what capabilities 

leaders of manufacturing companies need to develop and establish to implement AI (Felin, 

et al. 2012, Govindarajan and Immelt 2019, Davenport and Foutty 2018). 

 

In this context, against these practitioner needs identified in the literature, I initiated my 

first study to establish a leadership capability framework for leaders of manufacturing 

companies that wish to implement AI on a wide scale in their business. I also wanted to 

understand how differences in leaders’ ability to live up to the constituents of my 

framework affected how they implement AI and, consequently, the AI maturity of their 

companies. Against this background, I designed a study using a mixed methods approach, 

combining a literature study, a survey, and in-depth interviews. I conducted the study with 

my supervisor Thomas Hamelryck, Dpt. of Computer Science, KU and Ulrika Lundh Snis 

from the Department of Business and IT at University West.  

 

Literature study 

I first made a literature study on articles on AI and leadership where I identified and 

analyzed relevant streams of research on AI competence, leadership, and management by 

studying articles from high impact journals within general management (the study of the 
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techniques, practices, or sciences related to managing a company), innovation management 

(the study of the process of managing innovative ideas) and information systems (the study 

of the interaction between hardware, software, users and business processes) respectively. 

Based on this literature study, I found that even if there is no consensus in the literature on 

what characterizes an “AI leader” and hence no playbook to adhere to (Davenport and 

Foutty 2018, Govindarajan and Immelt 2019, Fountaine, McCarthy and Saleh 2019), there 

were some recurring themes of abilities and routines that characterize leaders that 

successfully implement AI. These themes came to form my proposed AI-leadership 

capability framework. In summary, I found that leaders must be “learners” and proficient 

strategists, provide and communicate a compelling vision and have strong social skills. 

Finally, they must be prepared to change both how they lead the companies and how their 

companies work. 

 

Survey 

In the second step of this study, we identified companies with different AI maturity to 

understand how their leaders' ability to live up to the capability framework's constituents 

affected their AI maturity. We created a web-based survey to assess the AI maturity of 

companies. The survey focused on deep learning to avoid confusion about the meaning of 

AI. We distributed the survey to senior executives within general management, IT, 

engineering, HR, and R&D at 11 major high-tech multinational manufacturing companies 

within the aerospace sector. We received 21 responses from leaders representing ten 

different companies. On the question of to what extent they had implemented deep learning 

solutions, four companies (referred to as "Laggards") scored significantly lower compared 

to the other six companies (the "Other Companies"). In this context, it should be mentioned 

that the survey did not measure the extent to which the companies had successfully 

implemented AI. The AI maturity of the Laggards and the Other Companies was self-

assessed and not an absolute measure of their AI maturity. Nor was there any way we 

could fact-check to what extent the respondents had implemented AI. 

 

Deep interviews 

We deep interviewed twelve senior leaders, including the CEOs, from the executive teams 

of the Laggards based on the capability framework. In the in-depth interviews, we 
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discussed the leaders’ understanding of AI, how they strategically work to implement AI, 

the need to develop and implement an AI vision, and their and their colleagues’ aptitude to 

change. 

 

5.2. Paper 2: Abstraction, Mimesis and the Evolution of Deep Learning, Appendix 

2 – published in the journal AI & Society, May 2023 

To fully understand leadership capabilities required for an effective AI implementation, it 

is necessary to consider the nature of AI technology itself and its use. In a second study, 

we specifically investigate the role of abstraction in AI.  

Abstraction is the process to derive general rules and concepts from individual facts or 

situations and from these build formal descriptions of the underlying facts or situations. 

"An abstraction" is the outcome of this process. Instead of accounting for every detail of 

each fact or situation, a higher abstraction level generalizes the relevant patterns that 

characterize a larger set. The opposite of abstraction is specification, which describes the 

process of breaking down general rules and concepts into concrete facts or situations 

(Ganascia 2015). Ganascia provides the following illustrative description of abstraction 

and the meaning of higher abstraction levels:  

 

“[…] figures such as triangles, spheres or pyramids are abstractions of shapes of objects, 

geometry is an abstraction of figures and algebraic geometry is an abstraction of 

geometry. In the same way, integers are abstractions of sets of objects, real numbers are 

abstraction of measures and associative rings – algebraic structures – are abstractions of 

integers and real numbers” (Ganascia 2015)  

 

In building deep learning algorithms, programmers typically use so-called deep learning 

software frameworks (“DLSF”) – simply described as prepackaged programming tools. 

New DLSFs progressively encapsulate mathematical, statistical, and computational 

complexity and provide higher levels of abstraction (Bommasani 2021). Advancements 

have made it much easier for people to collaborate and build off each other’s work 

allowing for a surge in technological innovation and progress (Bommasani 2021). In less 

than a decade, this development has made it possible to develop AI applications that 

previously required in-depth knowledge of computer science, statistics, and mathematics. 
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However, these new higher levels of abstraction pose new challenges for leaders of 

manufacturing companies. Manufacturing company leaders need to be aware of the 

implications of increased abstraction and be prepared to adapt to the changing landscape of 

AI technology to effectively support the widespread implementation of AI in their 

organization. 

The second study involved collaboration with researchers in philosophy, computer science, 

IT, and business management, as well as an industry expert specializing in AI 

programming. The aim was to quantify the increase in deep learning abstraction, the rate of 

development, and its implications, using data from GitHub - a leading software repository. 

To achieve this, we searched for deep learning repositories on GitHub using keywords 

such as “deeplearning”, “deep learning”, and “deep-learning”. We identified 605 403 

repositories that fit these descriptions. The intention was to download and analyze a 

random sample amounting to half of these 605 403 repositories. To ensure a representative 

sample, we employed uniform sampling that selects a random subset of data from a larger 

dataset, with each data point having an equal probability of being chosen. After 

constructing the random sample and initiated the download process (that took over eight 

months to complete), some of the repositories of the sample had changed from public to 

private or been deleted. We therefore ended up with a random sample of 317 428 

repositories. After removing all instances of forked repositories (i.e. repositories copied 

from other repositories) we ended up with a final dataset of 37 915 repositories. 

From the downloaded repositories, we extracted information such as the creation date, last 

commit, programming language used, and number of lines of code. As most of the 

repositories used Python, we investigated the increase in the number of projects and the 

reduction in the number of lines of code in view of the initial release dates of important 

Python DLSFs. 

 

We found that the number of deep learning projects increased significantly during the 

studied period, while the median number of lines of code used in the repositories decreased 

substantially. These findings were discussed from a technological advancements 

perspective, exploring the potential implications on AI models' competence, governance, 

security, bias, usability, and reliability. 



57 

 

We concluded that this process, which we call “abstraction explosion”, contributes to 

"ephemeralization," which is the ability to do more with less through technological 

advancement. Additionally, we discussed that the abstraction explosion has led to 

technological feedback loops that have enabled advancements within adjacent areas such 

as GPU development. This, in its turn, leads to the enablement of rapid paradigm shifts in 

technology. 

The abstraction explosion also contributes to democratizing deep learning, making it easier 

for people to collaborate and build on each other's work. However, the abstraction 

explosion also makes it increasingly important to keep up with the development and to 

adopt timely levels of abstraction. Further, we found that the democratization of deep 

learning can lead to mimetic deadlocks and herd behavior which in its turn can lead to 

convergence towards the use of suboptimal solutions. The interplay between abstraction 

and mimesis also risks leading to a gradual reduction of nuance and complexity, 

contributing to a homogenized and streamlined perception of reality. 

The democratization of deep learning increases the risk of fairness, privacy, and quality 

assurance problems as more people are able to use the higher abstraction levels. Non-

experts often lack skills in quality control and reliability and organizations are not yet 

prepared on how to respond to AI failures. Incomprehensible error messages further 

exacerbate this issue, making it challenging to correct malfunctioning algorithms. As a 

consequence, external experts are often needed to solve these issues, but they are scarce 

and expensive to hire. Therefore, unfair algorithms can unintentionally (or intentionally) be 

unleashed due to the decreased explainability of deep learning and the lack of 

understanding of its workings or for which tasks they are suitable. 

Finally, large corporations have outcompeted academia in the development of new 

abstraction levels, influencing and steering the democratization of deep learning. These 

companies control a significant amount of data shared on the internet and employ an 

increasing fraction of experts, influencing the progress of abstraction and providing access 

to experts in developing and using these abstractions.  

 

This study highlights opportunities and challenges that leaders may face in adapting to the 

changing landscape of AI technology. It explores important concepts and implications 

related to the nature of AI itself and provides insights into the challenges and opportunities 
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presented by widespread AI implementation, which can inform decision-making and 

strategy development for leaders of manufacturing companies. 

 

5.3. Paper 3: AI Implementation and Capability Development in Manufacturing: 

An action research case, Appendix 3 – accepted for publication at HICSS-57 

(Hawaii International Conference on System Sciences), 2024 

My first two studies allowed me to gain at least some understanding of the leadership 

aspect associated with implementing AI in a manufacturing company and a more general 

understanding of the nature of AI itself and its potential societal implications. However, I 

also found it important to gain practical experience with the challenges a leader can face 

when implementing AI in a manufacturing company which has been called for in current 

research (Arinez, et al. 2020, Govindarajan and Immelt 2019, Davenport and Foutty 2018). 

The opportunity to gain practical experience showed itself when my team (the Team) was 

requested to assess a model from an external service provider specializing in detecting 

defects in images with limited labeled data (the Proprietary model). I viewed this as an 

opportunity to gain insights into the challenges and considerations that arise during an AI 

implementation project. Against this background, a case was set up in close collaboration 

between practitioners, researchers, and third-party experts and was designed to assess AI as 

a method to enhance the generation of insights and inform decision-making. The work 

resulted in an action research study where I gained experience in developing and 

implementing an advanced AI model. The aim with the study was to investigate the 

implications, considerations, and trade-offs of introducing AI into daily operations of a 

manufacturing company, leading up to the decision of whether to develop AI capabilities 

in-house or outsource them and the factors that influenced this decision. The case study 

focuses on the in-house development of an AI model for defect detection in X-rays of 

welds of aerospace components (the In-House Model). 

In the current case, the GKN Aerospace (the Company) was increasing production of a 

critical component, the turbine exhaust case (TEC), and an increasing number of welds 

required inspection using X-ray. Three operators spent thousands of hours inspecting 

hundreds of thousands of images per year, and the process was expensive and prone to 

human error. In this case, the Company's senior leadership requested my digital innovation 

team (the Team) to create an in-house model that allowed for benchmarking against the 
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Proprietary model. The Team had limited experience of developing AI models in general 

and models for defect detection in particular and therefore needed to develop these 

capabilities. The Team collaborated with external experts in deep probabilistic 

programming (the Experts) and internal X-ray inspection operators (the Operators) who 

provided insights and recommendations based on their expertise. To further conceptualize 

the results, ensuring they were research-grounded and contributed to the academic 

discourse, I collaborated with Prof. Ulrika Lundh-Snis, which resulted in insights that 

enhanced the practical experiences gained in the manufacturing industry, making the 

results both practically and scientifically grounded. 

Considering the Proprietary model's ability to operate with limited labeled data, and the 

fact that there was a fair amount of unlabeled data available, the Experts advised the Team 

to develop a model that could efficiently utilize unlabeled data without relying on 

extensive labeled data. With this in mind, they recommended the Team to construct a SS-

VAE. To expedite the development process and meet the leadership's goal of making a 

decision soon, the Experts recommended the Team to adopt a publicly accessible model 

(the Baseline model) from https://pyro.ai/examples/ss-vae.html. This approach, they 

suggested, would provide an adequate benchmark for comparison purposes.  

Through this research, I gained in-depth practical experience of the process of model 

selection, creation of training and validation datasets, adopting an AI model based on a 

publicly available model, as well as training of the same along with final model 

assessment. It also describes how decisions were made and addresses the organizational 

considerations and obstacles that needed to be overcome and, most importantly, how 

decisions and considerations were made. The Proprietary model was found to be superior 

to the In-house Model, both in terms of training time and accuracy. The Company 

therefore concluded that further work on the In-House Model therefore should be 

discontinued. 

In the work of identifying and developing necessary capabilities of AI implementation, the 

hands-on work of developing a solution and dealing with the obstacles and considerations 

encountered along the way eventually proved to be more important than the solution itself 

and provided several learnings. These learnings include the need to acquire diverse skill 

sets and to strengthen the IT infrastructure and the IT department's capabilities for AI 

development. 
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The study also revealed broader concepts and insights that contribute to a more generalized 

understanding of AI capability development:  

- The Company decided against developing an in-house solution due to challenges 

integrating the model with sub-images, long training time, and the superior 

performance of a proprietary model. This underscores the importance of evaluating 

costs and benefits in AI development, considering expertise, resources, and time. 

Leveraging existing AI solutions or outsourcing to external providers may be more 

efficient. However, overcoming such efforts can also enhance organizational 

capabilities and aid future decision-making on in-house development or 

outsourcing opportunities. 

- Collaboration with Experts and Operators played an important role in overcoming 

challenges for the Team. This shows internal or external expertise is important for 

gaining knowledge, overcoming challenges, and advancing organizational 

capabilities in AI development. Collaboration is an essential component in building 

in-house AI capabilities, fostering open communication, knowledge sharing, and 

strengthening collaborative capabilities among employees, management, and 

external experts. This enhances creativity, innovation, and helps organizations 

overcome complex problems. 

- The Team achieved progress by adopting an agile and experimental approach that 

emphasized flexibility and collaboration. Continuous feedback from stakeholders 

allowed the Team to refine the project design and enhance the In-house Model's 

performance iteratively.  

- Subject matter expertise proved integral to the AI development process. The 

Operators' domain-specific knowledge was crucial in developing both the dataset 

and the model in a way that accurately detected defects. By leveraging subject 

matter experts’ knowledge and expertise, organizations can develop AI models that 

are more accurate, effective, and useful, ultimately benefiting both workers and the 

organization as a whole.  

- Involving internal subject matter experts in AI development can help address 

concerns about obsolescence and highlights the value of workers in the process. In 

this case, it became evident that neither the In-house nor Proprietary models could 

fully replace human capabilities. This experience indicates the importance of 
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acknowledging the limitations of AI models and using them as tools to augment 

human labor rather than entirely replacing it. By integrating AI into the workforce, 

job satisfaction can be improved as workers can focus on higher-level tasks that 

require human expertise, rather than repetitive and mundane tasks. Emphasizing the 

collaborative relationship between AI models and humans allows organizations to 

foster a culture that values the contributions of both parties and maximizes the 

benefits of AI in the workforce. 

 

Apart from providing me with practical experience from AI implementation, the study 

showed how capability development can be facilitated through hands-on experiences and 

collaboration among technical experts, business leaders, end-users, and researchers, as well 

as through the integration of AI models and human expertise. The implications we 

identified can support manufacturing companies in making informed decisions about 

sustained AI capability development. The study provides practical guidance on how to 

balance in-house development with external acquisition. While in-house development can 

provide control and potential competitive advantages, external acquisition can offer quick 

access to expertise. Companies must carefully consider factors such as cost, time, 

expertise, and long-term benefits. Even though in-house development can prove 

challenging, we argue that such efforts can strengthen organizational capabilities and 

enable informed decisions about future in-house development or outsourcing. The study 

also contributes to theory on AI implementation, confirming the need for a balanced 

evaluation of in-house versus outsourced solutions, considering costs, expertise, and 

performance. It emphasizes the importance of collaboration with internal and external 

stakeholders as well as researchers, agile and experimental methodologies, and the 

integration of human expertise in AI development. Furthermore, the study underscores the 

role of AI as a tool to augment rather than replace human labor, adding to the discourse on 

human-machine collaboration, organizational strategy, and AI capability development. 

6. CONCLUSION 

This thesis is about AI transformation in the manufacturing industry and the leadership 

challenges and implications that follow. The research highlights the key findings from 

three papers, addresses gaps in existing literature, and emphasizes the practical 
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implications of implementing AI solutions. In the following chapter I present my research 

contributions, findings, discuss these in relation to current research and propose areas for 

further research. 

 

6.1. Research contributions 

There seems to be a consensus in the research literature across various disciplines that AI 

can benefit manufacturing companies. While there is research investigating the 

implementation of AI in manufacturing in isolated areas, the limited adoption suggests that 

implementing it company-wide may be challenging. Additionally, research within the field 

of general management indicates that AI transformations require support from business 

leaders and should begin at the leadership level (Fountaine, McCarthy and Saleh 2019, 

Govindarajan and Immelt 2019). This literature highlights the need for further research to 

help leaders understand how to best support an AI transformation.  

 

Therefore, based on the personal need to develop knowledge in this area and the needs 

identified in the research literature, this research aims to contribute to the research on 

leadership implications and challenges for the effective widespread implementation of AI 

in manufacturing companies. The research uses a mixed methods approach, combining 

qualitative literature studies, surveys, interviews, and practical hands-on work with 

quantitative research. 

The three research questions set out in this thesis have resulted in the generation of three 

papers. Due to the multidisciplinary nature of the research, they contribute to different 

bodies of knowledge.  

The first article aims to answer the research question “What capabilities can benefit leaders 

who wish to implement AI in a manufacturing company, and how do these capabilities 

affect how leaders support an AI transformation?”. Its contribution is addressing the 

explicit need identified in the general management literature: understanding what 

capabilities are required from a manufacturing company leader to support the effective 

widespread implementation of AI.  

The second article aims to answer what impact does the nature of AI technology the 

research question “What is the impact of the nature of AI technology efficiency, 

democratization and ethical concerns and how can the increasing abstraction in deep 
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learning software frameworks reshape the relationship between technology and society?”. 

Here, the contribution concerns the rapid development of AI, which has made it possible to 

develop increasingly powerful AI applications but has also increased the risk of fairness, 

privacy, and quality assurance problems with AI models. Current research has identified 

that there is a constant and rapid development of new technologies and techniques and that 

this development affects leaders (Govindarajan and Immelt 2019, Davenport and Foutty 

2018, Persaud 2021). This research aims to address these concerns and provide guidance 

for leaders on how to navigate them. 

The third article aims to answer the research question “What are some key challenges and 

considerations in implementing an AI solution in the daily operations of a manufacturing 

company, how companies can adequately develop in-house AI capabilities and what 

factors influence their decision to continue developing these capabilities or outsource 

them?”. The contribution of this article concerns the understanding of the practical 

implications of an AI transformation. This research study aims to contribute to bringing 

clarity to leadership challenges and considerations, and the practical implications of 

implementing AI.  

Together, and individually, the three papers all aim to contribute to the research on general 

management, information systems, work-integrated learning, the ethical implications of 

AI, manufacturing science and engineering, and innovation management. 

 

6.2. Findings and propositions for further research 

The capability framework presented in the first article provides a preliminary description 

of the attributes that may benefit manufacturing company leaders in their implementation 

of AI. However, it is not exhaustive and requires further refinement through additional 

research. Further investigation is needed to fully understand the leadership capabilities 

required for a successful AI transformation. 

As more leaders engage in the widespread adoption of AI, it is important to encourage 

knowledge sharing and collaboration with the research community. However, some leaders 

may be hesitant to share their experiences due to fear of losing power or facing criticism 

for their failures, as noted by Ancona, Fountaine et al. It is crucial for researchers to 

establish a trust-building environment that fosters open communication and enables leaders 

to feel comfortable sharing their experiences. 
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In addition, researchers can play a critical role in mitigating these fears by emphasizing the 

importance of collaboration between academia and practitioners (Bommasani 2021). Given 

the rapid developments in AI, close collaboration between these two groups is essential for 

advancing the field. 

In the second article, we discussed how the development within the field of AI has 

reshaped the relationship between technology and society in terms of efficiency, 

democratization and ethical concerns. The implications raised in the study are important 

for manufacturing company leaders who need to understand the consequences of increased 

abstraction and spread of deep learning to effectively support the widespread 

implementation of AI in their organization.  

In this article, the GitHub results indicated that in the last few years, there has been a 

significant reduction in the number of lines of code used to build deep learning 

applications. The reduction in the number of lines of code is an indication of the ongoing 

advancements in AI technology and the increasing accessibility of AI development. The 

results imply that AI development is becoming more accessible and easier to use, requiring 

less specialized knowledge and expertise. Solutions that once required in-depth knowledge 

of computer science, statistics, and mathematics can now be developed by a wider range of 

individuals. We discussed how the ongoing advancements in AI technology, often referred 

to as ephemeralization, allow us to do "more and more with less and less until eventually, 

you can do everything with nothing" (Fuller 1938). These advancements are driving the 

democratization of AI, making it increasingly important for manufacturing companies to 

stay up-to-date with the latest methods and trends. Otherwise, they risk wasting time using 

obsolete methods and falling behind in the competitive landscape. 

Recent developments within the field of AI confirm this trend. Examples include AI 

systems that generate art based on text prompts (Midjourney 2023) and predict the three-

dimensional shape of proteins (Jumper, et al. 2021) or the introduction of large language 

models such as ChatGPT (OpenAI 2023). 

However, in the second article we conclude that, while the adoption of AI technology may 

seem urgent, it is important for leaders to carefully consider the implications of 

implementing the latest AI methods. In many cases, we do not have a full understanding of 

how AI models make their decisions (Castelvecchi 2016), and are only informed of the 

final outcome (Holweg 2022). Additionally, there is a growing homogenization in the way 



65 

 

AI models are selected and used (Bommasani 2021), which could lead to the convergence 

of suboptimal solutions. Instead of finding the best way to solve a problem, developers 

may end up using the same algorithms and methods as their peers, without fully 

considering their potential drawbacks. 

 

Additionally, the widespread use of AI risks increasing the number of cases of AI failures 

that many organizations are not yet strategically prepared to handle (Holweg 2022). The 

more widespread the implementation of AI becomes, the more instances we could have of 

such failures. It is possible to counter many drawbacks by hiring skilled staff responsible 

for developing and implementing AI. Optimally, when this staff has skills in standard 

processes for debugging and testing for quality control and reliability of AI models, they 

can correct these errors. However, recruiting and retaining these competencies could be a 

challenging endeavor.  

Suppose the above is not considered and dealt with appropriately. In that case, leaders 

could initiate AI transformations without sufficient understanding of its implications, 

which could have fatal consequences. An illustrating example from the aerospace industry, 

when refitting the 737 Max with larger engines, instead of redesigning the airframe (body 

of the aircraft), Boeing relied on an AI system called AI Maneuvering Characteristics 

Augmentation System (MCAS). Unfortunately, the MCAS later showed to contribute to 

two plane crashes that killed a total of 346 people (Nicas, et al. 2019).  

 

Such events risk adding to the reluctance and general fear of AI among leaders and 

workers that several researchers have identified (Babic, et al. 2020, Fountaine, McCarthy 

and Saleh 2019, Schepman and Rodway 2020). This fear can add to the resistance to 

change, pointed out as one of the main barriers to widespread adoption of AI 

(Govindarajan and Immelt 2019, Fountaine, McCarthy and Saleh 2019). Resisting change 

can be a good thing and can contribute to leaders not bringing too much change at the same 

time or changing things too quickly. Companies that push the transformation too hard and 

fail could risk destroying what works well, losing their credibility, and scaring off their 

best employees (Westerman, Soule and Eswaran 2019, Fitzgerald, et al. 2013). However, 

when the resistance to change is based on fear rather than informed decision-making, it can 

risk preventing a sustainable AI transformation. Ultimately, this could make companies 
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take one step back from becoming more efficient rather than moving forward. Against this 

background, further research is needed to understand the implications of technological 

advancements within AI and the leadership implications that this could bring. Research 

within explainable AI, causality, informative error messages and ethical implications are 

important in this regard (Brown 1983, Ko 2014, Holweg 2022). 

Through the practical work conducted in the third study, I was able to apply the knowledge 

gained from previous parts of my research and gain important insights into specific 

challenges and considerations that can only be gained through hands-on experience. The 

challenges discussed throughout the thesis, such as uninformative error messages and a 

scarcity of experts to correct errors, were encountered and overcome in this work. The 

experience also highlighted the difficulty in predicting required capabilities beforehand and 

emphasized the importance of co-creation and collaboration with internal and external 

stakeholders, recognizing the value of human expertise, and leveraging AI models as 

productivity tools that augment human labor. While it is possible to talk about the 

challenges and considerations of an AI transformation on a general level, this study 

exemplified what it could mean from a more practical standpoint. Through the study we 

identified a need for further research investigating the relationships between in-house and 

outsourced AI development, exploring how different industries, organizational sizes, or 

technological complexities influence the decision-making process. Additionally, studies 

examining human-AI collaboration across various sectors could provide insights into 

optimizing the blend of human expertise and AI, potentially leading to new models for 

organizational efficiency, innovation, workforce satisfaction, and capability development. 

 

To some extent, the experiences from the practical work are anecdotal. However, they are 

experiences that can only be made when practically working with implementing AI. 

Discussions with my peers in other manufacturing companies have confirmed that they 

often face similar problems. I therefore also see a need of further research where 

manufacturing company leaders share their practical experiences implementing AI in 

manufacturing companies. Perhaps, when we have access to enough of these anecdotal 

stories, we can start to generalize across cases. 
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6.3. Transferability of the results to other industries 

While parts of this research have been conducted based on the needs and requirements of 

the aerospace manufacturing industry, the results are transferable to other manufacturing 

industries, as well as other industries, such as transportation, mining, healthcare, energy, 

and agriculture. Leaders of these industries can use the insights from this research to 

inform their decisions on implementing an AI transformation, taking into account the 

potential consequences of moving too quickly or implementing AI without a full 

understanding of its implications.  

By emphasizing the significance of the research in the broader context of AI 

transformation in the manufacturing industry, our study contributes valuable knowledge to 

the ongoing discussions and has the potential to inform future research and practical 

applications. 

 

6.4. Concluding remarks 

In this thesis, I have explored leadership challenges and implications of AI transformation 

in the manufacturing industry. The thesis aims to make significant contributions to our 

understanding of AI transformation in the manufacturing industry, particularly concerning 

leadership challenges and implications. By addressing key research questions, identifying 

gaps in the literature, sharing practical experiences, and emphasizing the importance of a 

multidisciplinary approach, the research intends to inform both future research and real-

world applications. As the research has shown, implementing AI in the manufacturing 

industry presents numerous challenges that leaders must navigate. It requires that technical, 

organizational and societal aspects are taken into consideration.  

The long-term implications of an AI transformation are difficult to predict, as American 

scientist and futurist Roy Amara noted, “we tend to overestimate the effect of a technology 

in the short run and underestimate the effect in the long run” (Searls 2012). Furthermore, 

the historical underestimation of challenges related to AI indicates the complexity and 

unpredictable nature of integrating AI into our systems. 

While incremental improvements in manufacturing processes through AI integration are 

undeniably valuable, there is potential for transformative change by reimagining the role of 

AI in this sector. To unlock this potential, I would argue that it is imperative to adopt a 

multidisciplinary approach that brings together researchers, industry practitioners, and 
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experts from diverse fields such as philosophy, art, or other disciplines that can provide 

fresh insights and perspectives. By challenging the boundaries of conventional thinking 

and promoting an open dialogue among stakeholders from diverse areas of expertise, it 

becomes possible to identify novel ways to leverage AI that can transform the 

manufacturing landscape and create unprecedented value. It is our hope that this research 

will inspire further exploration into the transformative potential of AI within the 

manufacturing industry and beyond, leading to innovative solutions that can transform the 

way we work, create, and live. 
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