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A B S T R A C T

Artificial Intelligence (AI) in healthcare, especially based on Machine
Learning (ML) techniques, holds significant promise for the field.
These techniques have been extensively applied to address various
clinical challenges, including pathology detection in X-rays, CT and
MRI scans, mammography, skin cancer detection, diabetic retinopa-
thy identification, and predicting readmissions and post-surgery com-
plications. However, despite these advancements, AI-based systems
remain notably absent in current clinical practice, limiting their clin-
ical impact. One key factor contributing to this gap is the prevalent
technology-centric approach to AI innovation, which often results in
the limited clinical usefulness of AI-based support systems.

Through this thesis, comprising this kappa and four of my publi-
cations, I address the problem of innovating, i.e., designing, develop-
ing, and integrating AI-based systems considered useful by medical
professionals in practice. The research presented in this thesis was
conducted within the framework of the AI4XRAY project (2020-2025)
- an interdisciplinary project aimed at creating a chest X-ray support
tool for radiologists in both Denmark and Kenya.

I used a combination of literature review, ethnographic work, and
design work to investigate the clinical usefulness of AI-based systems
in healthcare. The literature review aimed to identify the challenges
of realising AI in clinical practice, while the ethnographic work in-
volved in-situ observations and interviews with medical profession-
als and AI engineers in Denmark and Kenya. The design work con-
sisted of grounded envisioning and design interventions to explore
the opportunities for AI support in chest X-ray practice and configu-
rations affordances of AI support for chest X-ray practice. I analysed
the collected data using grounded theory and thematic analysis meth-
ods.

This thesis presents five key contributions that contribute to the
understanding of clinical usefulness and inform the realisation of
clinically useful AI-based systems. Moreover, this thesis emphasises
the interdisciplinary nature of clinical AI innovation, making it rele-
vant to practitioners and researchers in Human-Computer Interaction
(HCI), AI, and healthcare domains.

First, I enrich the conceptualisation of clinical usefulness with four
novel perspectives. I demonstrate how the end-users’ expectation for
real-world performance depends on the intended use. Additionally,
I show how the pre-labelling work on medical datasets for training
AI conditions real-world performance, organisational acceptance, and
clinical efficacy. Moreover, I highlight how broadening the AI design
space enables organisational acceptance and clinical efficacy. I explore
how configurable AI boosts organisational acceptance and clinical ef-
ficacy. Importantly, these dependencies are not exhaustive, and fur-
ther research may expand them.
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Second, based on a systematic literature review, I find that chal-
lenges afflicting the realisation of clinical AI in practice stem not
from a single issue but rather from sociotechnical interdependencies
present when introducing AI into a clinical context. I conceptualise
five challenges spanning three technical (training data & ML model,
system integration & data used, and the user interface) and three
social (user & system use, workflow & organisation, and healthcare
institution & political arenas) aspects. I argue that addressing these
challenges necessitates close collaboration among stakeholders with
expertise in HCI, AI, and healthcare throughout the innovation pro-
cesses.

Third, I underscore the importance of attending to the pre-labelling
phase in dataset creation. Particularly, I highlight how external and in-
ternal factors: regulatory constraints, the context of creation and use,
commercial and operational pressures, epistemic differences, and lim-
its of labelling condition the type of data that could be collected, the
purpose for which it could be used, and the design of the ground
truth schemas, i.e., the selection of labels and additional metrics an-
notated on the collected data. These fundamental decisions have con-
sequences for shaping the design space of future AI-based systems
that use such datasets.

Fourth, I propose five visions for AI support grounded in practical
challenges of chest X-ray practice faced across clinical contexts. The vi-
sions include distributing examinations by user’s expertise, detecting
medical emergencies, providing decision support on subtle and diffi-
cult cases, measuring visual features and comparing changes across
historical examinations, and double-checking reports against radio-
graphs for missed or misinterpreted findings. These visions transcend
functionalities traditionally emerging from technology-centred inno-
vation processes and offer nuanced insights into potential AI applica-
tions in radiology.

Finally, I delineate how AI-based systems should be configured
both before and in use to realise previous visions in practice. The pur-
pose of the configuration is to align the technical dimensions of AI-
based systems with clinical needs that depend on social dimensions
of clinical practice. The social dimensions span medical knowledge,
clinic type, user expertise level, patient context, and user situation.
The technical dimensions of AI comprise medical focus, functionality,
decision threshold, and explainability methods. By ensuring align-
ment between these dimensions, AI-based systems can deliver value
in concrete situations for concrete medical professionals in clinical
practice. I advocate for ongoing consideration of these dependencies
to ensure that the AI-based systems undergo necessary configuration
before use and include necessary configurability options in use.
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S A M M E N FAT N I N G

Kunstig intelligens (AI) i sundhedssektoren rummer betydelige
muligheder især ved anvendelse af maskinlæringsteknikker. Disse
teknikker finder omfattende anvendelse for at imødekomme
forskellige kliniske udfordringer, herunder detektion af patologi på
røntgen-, CT- og MR-scanninger indenfor mammografi, hudkræft, og
diabetisk øjensygdom men også til forudsigelse af genindlæggelser
og postkirurgiske komplikationer. På trods af disse fremskridt
forbliver AI-baserede systemer bemærkelsesværdigt fraværende i
klinisk praksis, hvilket begrænser den ønskede effekt. En nøglefaktor,
der bidrager til denne kløft, er den udbredte teknologicentrerede
tilgang til AI-innovation, hvilket ofte resulterer i begrænset klinisk
anvendelighed ved AI-baserede systemer.

Gennem ph.d.-afhandlingen, som udgøres af denne kappa og
fire publikationer, adresserer jeg problemet med AI-innovation,
dvs. design, udvikling og implementering af AI-baserede syste-
mer, der betragtes som anvendelige for sundhedsprofessionnelle i
hverdagspraksis. Den forskning, der præsenteres i denne afhandling,
blev udført inden for rammerne af AI4XRAY-projektet (2020-2025),
som er et tværfagligt projekt, med det formål at skabe et AI-baseret
beslutningsstøtteværktøj til radiologer både i Danmark og Kenya.

Undersøgelserne anvender en kombination af litteraturstudier,
etnografisk feltarbejde samt designmetoder for at undersøge den
kliniske anvendelighed af AI-baserede systemer i sundhedssektoren.
Litteraturstudiet havde til formål at identificere udfordringerne ved
at realisere AI i klinisk praksis, mens det etnografiske feltarbejde
involverede situerede observationer og interviews med sundhedspro-
fessionelle og AI-ingeniører i Danmark og Kenya. Designarbejdet
bestod i at udvikle og forankre visioner gennem designinterventioner
for at udforske mulighederne med AI-understøttelse samt tilpasning
til thorax-røntgenpraksis gennem konfigurationsmuligheder. Jeg
analyserede de indsamlede data ved hjælp af grounded theory og
tematisk analyse.

Denne ph.d.-afhandling præsenterer fem centrale bidrag, der
udvider forståelsen af klinisk anvendelighed ved AI-baserede sys-
temer, samt informerer til realiseringen heraf. Desuden udfolder
denne afhandling den tværfaglige karakter af klinisk AI-innovation,
hvilket gør det relevant for praktikere og forskere inden for
Human-Computer Interaction (HCI), AI og sundhedsområdet.

Først bidrager jeg til udviklingen af begrebet klinisk anvende-
lighed (‘clinical usefulness’ på engelsk) gennem fire nye perspektiver.
Jeg demonstrerer, hvordan forventningen om AI-systemers ydeevne
i den virkelige verden afhænger af det tilsigtede formål, kendt som
‘intended use’ på engelsk. Dernæst viser jeg, hvordan forarbejdet
med opmærkning af medicinske datasæt til træning af AI betinger
systemernes ydeevne i den virkelige verden, organisatorisk accept

v



og klinisk effekt. Desuden fremhæver jeg, hvordan en udvidelse
af designrummet for AI samt dens konfigurerbarhed muliggør
organisatorisk accept og klinisk effekt.

For det andet gennemfører jeg et systematisk litteraturstudie,
som uddyber udfordringerne ved at realisere klinisk AI i praksis
og viser, at problemet består af sociotekniske afhængigheder, der
udspringer fra introduktionen af AI i den kliniske kontekst. Jeg
beskriver særligt fem udfordringer, der spænder over tre tekniske
aspekter (træningsdata og ML-model, systemintegration og dataan-
vendelse samt brugergrænseflade) og tre sociale aspekter (bruger-
og systembrug, arbejdsgange og organisation samt sundhedsinstitu-
tionelle og politiske arenaer). Jeg argumenterer for, at håndteringen
af disse udfordringer kræver tæt samarbejde mellem interessenter
og eksperter inden indenfor HCI, AI og sundhed gennem hele
innovationsprocessen.

For det tredje beskriver jeg vigtigheden af at være særlig opmærk-
som på forhold omkring opmærkning af data i den tidlige fase af
AI-innovation, hvilket vedrører dataopsamling og -klargøring. Især
fremhæver jeg, hvordan eksterne og interne faktorer (regulatoriske
begrænsninger, konteksten for udvikling og brug, kommercielle og
operationelle hensyn, epistemiske forskelle og begrænsninger for op-
mærkning) betinger den type data, der kunne indsamles, formålet,
hvormed den kan anvendes, og designet af såkaldte ’ground truth
schemas’. Dvs. valget af labels og yderligere metrikker, der er an-
noteret på de indsamlede data. Disse grundlæggende beslutninger
har konsekvenser for udnyttelsen af designrummet for fremtidige AI-
baserede systemer, der er baseret på klinisk opmærkede datasæt.

For det fjerde foreslår jeg fem visioner for AI-understøttelse, der
er forankret i praktiske udfordringer ved thorax-røntgenpraksis og
baseret på forskellige kliniske kontekster. Visionerne inkluderer AI-
baseret distribuering af røntgenbilleder efter radiologens ekspertise,
AI-baseret detektion af medicinske nødsituationer, AI-baseret beslut-
ningsstøtte ved subtile og vanskelige tilfælde, måling af visuelle funk-
tioner og sammenligning af ændringer på tværs af historiske un-
dersøgelser samt dobbeltkontrol af rapporter mod røntgenbilleder
for oversete eller misfortolkede fund. Disse visioner transcenderer
funktionaliteter, der traditionelt indgår i teknologifokuserede inno-
vationsprocesser, og tilbyder et nuancerede indblik i potentielle AI-
applikationer inden for radiologi.

Endelig gennemgår jeg, hvordan AI-baserede systemer skal kon-
figureres både før og under brug for at realisere visioner i praksis.
Formålet med konfigurationen er at justere de tekniske dimensioner
af AI-baserede systemer op mod de kliniske behov, som afhænger
af sociale dimensioner af klinisk praksis. De sociale dimensioner
omfatter medicinsk viden, kliniktype, bruger-ekspertiseniveau,
patientkontekst og brugersituationen. AI’s tekniske dimensioner
omfatter medicinsk fokus, funktionalitet, beslutningstærskel og
forklaringsmetoder. Ved at sikre en god forbindelse mellem disse
dimensioner kan AI-baserede systemer levere værdi i konkrete
situationer for konkrete medicinske fagfolk i klinisk praksis. Jeg
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argumenterer for at overveje disse afhængigheder igennem hele
innovationsprocessen for at sikre, at AI-baserede systemer gen-
nemgår nødvendig konfiguration før brug og inkluderer nødvendige
konfigurationsmuligheder i brug.
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1
A D R E A M T H AT H A S N O T Y E T C O M E T R U E

Artificial Intelligence (AI) in healthcare, particularly based on Ma-
chine Learning (ML) techniques, has promised us the moon - easier
and faster access to healthcare, lower cost, higher quality of care, and
increased job satisfaction of medical professionals [48]. There have
been good reasons to believe in the imminent advent of AI-powered
healthcare delivering on these promises. AI techniques have been ap-
plied to a multitude of problems across healthcare domains [137,
325]. The academic community have been consistently outputting
new cutting-edge AI models that were able to increase detection rates
of pathologies on X-rays and CT scans [210], aid breast [126], brain
[176] or skin [324] cancer detection, reduce diagnostic and therapeutic
errors [97, 130, 204, 259], identify arrhythmia on electrocardiograms
[16], or supporting polyp detection [337]. However, when looking at
current clinical practice, AI-based systems are vastly absent, and their
clinical impact is limited [82, 184].

One of the reasons for the hitherto failure in practice is the
technology-centric paradigm of AI innovation [43, 71, 131, 299, 304,
305, 349, 365]. It is important to note that, aware of other connota-
tions of the word innovate, I will use it to refer to the entirety of
work on AI-based systems, from conceptual development to clinical
integration and routine use. AI innovation, then, is often initiated,
shaped, and evaluated with a technology-first outlook [71, 156, 304,
305, 349, 365]. Especially the early data and model work, typically
owned by the AI domain [6], are foundational to the capabilities
of later AI-based systems [240, 289]. This work defines the domain
addressed by the AI model, the ground truth it will use, and the
output it will provide. These aspects define the design space of
future systems. Moreover, due to their costly nature, altering them
past completion may not always be feasible [6, 237, 240].

Despite the technology-centric paradigm, theoretical, methodolog-
ical, and practical competencies from Human-Computer Interaction
(HCI), AI, and health are needed to innovate clinical AI-based sys-
tems [42, 43, 240, 326]. However, this collaboration is afflicted by
several challenges: lack of mutual understanding, shared terminol-
ogy, goals, and methods and techniques of work [43, 132, 343, 355],
which are further compounded by the difficult of working with AI as
a medium [217, 238, 253, 329]. For example, AI-based systems require
large amounts of high-quality training data [65, 341]. Designing and
prototyping depend on AI capabilities [104], which tend to take final
shape only after deployment [355]. Obtaining feedback at the early
stages of development, especially in clinical settings, is challenging
[77, 356]. As a result, AI-based innovation projects are inherently in-
terdisciplinary and collaborative endeavours underlined by complex
and interdependent technology [354].

3



4 a dream that has not yet come true

In such interlinked projects where the work on models, data, and
performance is the primary focus, the human and social aspects may
fade into the background. However, failing to address these issues
throughout the innovation processes could result in uncertainty re-
garding the sociotechnical alignment of future systems [169, 281, 325,
330]. Such misalignments may jeopardise the final clinical usefulness
of the AI-based systems, even if their technical aspects are exceptional.
For example, Beede et al. [26] reported how the differences in avail-
able facilities between the clinic of use and the clinic of development
led to a failure to assess 20% of data by a previously validated and
acclaimed AI model. Similarly, Hollander et al. [155] described a sys-
tem aimed to support decision-making about ED admission due to
heart problems. Due to a misconception of clinical practice, the sys-
tem relied on data that was available only after a clinician had al-
ready made the admission decision, which rendered said support ir-
relevant. Importantly, the sociotechnical hindrances do not refer only
to integration challenges. Lehman et al. [208] conducted a prospective
study of an AI-based decision support system for mammography to
investigate its effect. This modality is one of the few modalities in
radiology that has consistently seen clinical use of AI. However, the
use of AI reportedly had no "established benefit to women." These
studies show that the clinical usefulness of hitherto AI-based support
systems is limited and that the predominantly technology-centric in-
novation process fails to capture the sociotechnical aspects of clinical
work the systems are supposed to contribute to. Or, to quote authors
of a paper describing a positive retrospective study of a clinical AI-
based system, "the usefulness of the proposed... system[s] in clinical
practice is still unknown" [12].



2
W H AT T O E X P E C T F R O M T H I S T H E S I S ?

The problems of realising clinical AI have many origins. Solving all of
them is not my goal and extends far beyond the content of this thesis.
However, these problems lead to the same conclusion - AI-based sys-
tems do not provide enough value in clinical practice. This PhD was
completed as part of a broader innovation project, AI4XRAY. Within
this project, I conducted four studies described in four papers that, to-
gether with this kappa, comprise my thesis. The overarching goal of
this thesis is to improve the understanding of the clinical usefulness of AI-
based systems. I will do this by presenting four concise contributions
that may be used by interdisciplinary teams to support the realisation
of clinically useful AI-based systems. Moreover, each of the studies
deepens the understanding of clinical usefulness. The following four
questions frame the contributions:

rq1 : What are the challenges of realising AI in clinical practice?

rq2 : What factors condition the creation of training data?

rq3 : What are the opportunities for AI support in chest X-ray prac-
tice?

rq4 : How to configure AI-based systems for clinical usefulness
across clinical contexts?

In the following sections, I will provide background information
about the AI4XRAY project and its influence on this thesis (Section
3), introduce and motivate the choice of research methods used
throughout the thesis (Section 4), and unpack the concept of clinical
usefulness (Section 5). Next, I will summarise my four research
papers, including four contributions towards understanding clinical
usefulness related to the intended use of AI, medical datasets, design
space, and AI configurability. Alternatively, readers may engage
with the full papers in this thesis’s second part for in-depth insights.
Finally, I will summarise all the contributions and mark directions
for future research.
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3
R E S E A R C H S E T T I N G

This thesis was conducted on the foundation of a larger project to
innovate an AI-based chest X-ray support system for radiologists in
Denmark and Kenya - AI4XRAY - funded by the Innovation Fund
Denmark (0176-00013B). This means that this project was commenced
primarily as an innovation project with the aim of integrating the de-
veloped system into clinical practice in both countries. All the pa-
pers included in this thesis either resulted from my work for the
AI4XRAY project or work that aimed at supporting it. As a result,
most healthcare-related findings will be grounded in radiology.

AI4XRAY was an interdisciplinary collaboration between the
University of Copenhagen, the Copenhagen University Hospital
(Rigshospitalet), and Unumed. Unumed is a Copenhagen-based
startup delivering hospital management systems primarily in Kenya
and Indonesia. The project group comprised researchers with exper-
tise in HCI, image analysis, and Natural Language Processing (NLP)
from the University of Copenhagen; radiologists and radiographers
from the Copenhagen University Hospital; and machine learning
engineers and business partners from Unumed.

The project group members dictated the choice of Denmark and
Kenya as the focal countries. Denmark was selected due to the ori-
gin of the funding and the involvement of the capital region through
Rigshospitalet. They also granted access to historical data from the
capital region to train the AI model. The capital region is the eastern-
most administrative region of Denmark and is responsible for pro-
viding healthcare services in Copenhagen and adjacent municipali-
ties. Kenya was selected because of the strong business presence of
Unumed, which, in line with the project proposal, is set to commer-
cialise the innovated AI-based system.

3.1 background information about x-rays

First, X-rays, or chest radiographs, are the most commonly utilised
medical imaging globally. They are used to detect lung conditions,
evaluate heart conditions and chest injuries, monitor medical devices,
and conduct screening and pre and post-operative assessments. On
top of the wide range of uses, chest radiographs are cheap, reliable,
fast, and expose patients to significantly lower dosages of radiation in
comparison to more advanced medical imaging, such as Computed
Tomography (CT). As a result, approximately one in every five medi-
cal images captured yearly was a chest X-ray, with a total amount of
about 2 billion images worldwide [4, 346]. This number is expected
to grow as more people gain access to medical care. However, for op-
timal use of radiographs during the diagnostic process, they need to
be interpreted by radiologists. Severe staff shortages worldwide re-
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8 research setting

sult in less time available per examination, stress, and overburdening
of medical professionals.

Second, chest radiographs are one of the most complex medical im-
ages to interpret [124], partially because many conditions share am-
biguous visual impressions. Hence, radiologists rely highly on their
expertise and experience to disambiguate them, which makes the pro-
cess exceptionally subjective. As a result, it has been found that there
is a high level of disagreement among radiologists when interpreting
chest radiographs, with rates reaching as high as 30% [113]. Interest-
ingly, that variability is also present when comparing two interpre-
tations of the same radiograph by the same radiologist at different
points in time [211]. The complexity of chest X-rays is also reflected
in the number of misclassified and missed findings. It was observed
that 3-6% of all chest X-ray studies in the UK included major clin-
ical errors [55, 282], with the ratio growing to 30% for minor ones
[61]. The superimposition of internal organs, tissues, fluids, clothing,
medical devices, and other objects heightens the risk of overlooking
some of the findings. Almost 19% of early lung cancers manifested as
nodules on chest X-rays are missed [38].

3.2 denmark and kenya as focal countries

I will start by briefly introducing both countries and highlighting in-
formation relevant to the understanding of the thesis. Denmark is
characterised by its well-established welfare state and high-income
economy. The Danish state boasts a vast, digitalised public healthcare
system. There are 12,000 people per radiologist, and up to 650,000

chest radiographs are captured yearly [153]. Kenya is an emerging
economy with diverse natural resources, a growing population, and
a colonial history. Kenyan healthcare relies heavily on private prac-
tices to cater to the healthcare needs of its populace. There are ap-
proximately 265,000 people per radiologist, and there are no statistics
about the annual number of captured images [95].

Thanks to the AI4XRAY project, this thesis offers a unique perspec-
tive into the innovation work catered to two culturally, economically,
and geographically distinct countries. Usually, most AI innovation
occurs in the Global North due to the challenge of obtaining access
to large amounts of medical data. These data are more readily avail-
able in the digitised countries of the Global North, which also tend
to host big tech companies and have more resources for research and
development. As a result, a disproportionate number of systems are
developed to meet the needs of the majority in the Global North.
At the same time, the rest of the world often has to adapt or use
sub-optimal or biased systems [30, 228, 229]. This poses additional
challenges, as on top of challenging local innovation, translating such
systems across contexts further exacerbates the complexity [248, 342]
(see, e.g., [26]).

HCI scholars suggest that focusing together on commonalities is
crucial for counterbalancing the predominant northern viewpoint in
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technology design, reducing biases, and facilitating the adaptation of
clinical AI-based systems across different regions [168, 201]. Failure
to address sociotechnical and political disparities within and between
Global North and Global South countries can significantly affect the
design and effective use of clinical IT systems [26, 168, 248, 252, 342].
Hence, bridging these gaps is essential to ensure equitable access
and usefulness of healthcare technologies worldwide. My last three
papers acknowledge these challenges and discrepancies and present
work that aims to bridge these gaps and inform innovation of clinical
AI-based systems applicable across global lines.





4
R E S E A R C H M E T H O D S

The methodologies employed throughout the studies align with the
progress of the AI4XRAY project and reflect my standpoints as a re-
searcher. I see Participatory Design as my epistemological basis. One
may assume this is a natural consequence of having Finn Kensing as
a co-supervisor. However, I must surprise those of you who thought
so. It was primarily the principles and line of reasoning about IT inno-
vation that made participatory design a sensible choice when dealing
with AI innovation (And a little bit of Finn’s guidance).

First, Participatory Design emphasises the need to understand the
environment designers and developers are going into to conduct
IT innovation. The environment spans potential end-users and
their work practices, relations, and the goals and purposes of the
organisations they work at [187]. Designers and developers must
gain this broad understanding through first-hand experience. This
is critical in the context of clinical AI, as a poorly and narrowly
understood environment leads to low clinical usefulness.

Second, Participatory Design stresses the need for meaningful and
broad collaboration that builds on mutual understanding and sup-
ports a real sense of agency [187]. This paradigm of working shies
from extractive collaboration, where participants or colleagues are
only informants in design and development activities. At the same
time, this approach does not require everyone to be a designer. Rather,
it supports joint sensemaking and ideation about possible futures.
Ones that originate in real problems and practices and are not at-
tempts at retrofitting preconceived IT solutions.

These two lessons from Participatory Design can be seen in my
choice and use of methods applied to answer the research questions
and contribute to the AI4XRAY project (Table 2). I can outline three
main types of methods that I used in alignment with the develop-
ments in the project and my improving understanding of innovating
AI-based systems for radiology: (1) literature review, (2) ethnographic
methods, and (3) design methods. While I conducted the systematic
review as the first step of my PhD, the ethnographic and design work
were often intertwined, informing each other.

Before I describe in detail the methods used, I want to highlight
that these methods do not reflect the work necessary to gain access
and establish rapport with potential collaborators. Due to the fact that
my thesis is interdisciplinary at its core and addresses different clini-
cal contexts, the time and effort necessary to conduct the studies was
even longer. In total, I engaged with medical professionals from nine
medical sites in Denmark and Kenya (Table 1), access to which was
partially initiated by the members of the AI4XRAY project and par-
tially resulted from my outreach efforts. Finally, the first six months
of my thesis happened towards the end of the restrictions imposed
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12 research methods

# clinical site type radiologists country

D1 Copenhagen University Hospital Specialised hospital 100+ Denmark

D2 Røntgen - Ultralyd Klinikken Imaging clinic <5 Denmark

D3 North Zealand Hospital General hospital <20 Denmark

D4 Zealand University Hospital General hospital <5 Denmark

K1 The Aga Khan University Hospital Specialised hospital <20 Kenya

K2 Stratus Medical Imaging Solutions Imaging & teleradiology clinic 1 Kenya

K3 Adventist Hospital General hospital 1 Kenya

K4 Coptic Hospital General hospital <5 Kenya

K5 The Nairobi Hospital General hospital 10 Kenya

Table 1: Clinical sites involved in this thesis.

to counter the COVID-19 pandemic, effectively preventing access to
clinical sites for nonessential visitors.

4.1 literature review

Conducted to answer
RQ1: What are the challenges of realising AI in clinical practice?

I considered learning from past research on clinical AI innovation
the best way to locate myself in the field and inform my future stud-
ies. This is why I conducted a systematic review to learn about the
previous work within the AI, HCI, and health communities. System-
atic reviews are invaluable tools for understanding complex issues
[98, 99]. Thanks to their structured approach to data exploration, ex-
traction, and synthesis, systematic reviews provide a rigorous and
profound overview of the current state of knowledge [108]. However,
the issue with this particular task is not the complexity of the studied
phenomenon but the diversity of sources, methods, and conceptual
frameworks. Rather, HCI, AI, and health researchers are interested in
investigating clinical AI innovation from their perspectives. To build
a holistic understanding of the challenges faced, I chose to conduct
a systematic literature review. Findings from this work were also dis-
seminated within the AI4XRAY project to sensitise the working group
about possible challenges ahead.

4.2 ethnographic methods

4.2.1 In-situ observation

Conducted to answer
RQ2: What factors condition the creation of training data?
RQ3: What are the opportunities for AI support in chest X-ray
practice?

In-situ observations are crucial in informing clinical AI innovation by
providing real-world insights into the practical challenges of clinical
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research

question

method details

RQ1

Systematic review: Period: April - October 2021

Papers screened: 9331

Papers eligible: 25

RQ2

In-situ observation: Period: May 2021 - October 2022

Pre-labelling workgroup meetings: 15

Interview: Period: May 2021 - May 2022

Participants: 12

Medical professionals & AI engineers

RQ3

In-situ observation: Period: April 2021 - April 2023

Clinical sites: D1, D2, D3, D4

Total duration: 35 hours

Period: January - February 2023

Clinical sites: K1, K2, K3, K4, K5

Duration: 32 hours

Interview: Period: April 2021 - March 2022

Clinical sites: D1, D2, D3, D4

Participants: 20

Period: January - February 2023

Clinical sites: K1, K2, K3, K4, K5

Participants: 10

Grounded envisioning: Period: April 2021 - April 2023

Clinical sites: D1, D2, D3, D4

Participants: 6

Period: January - February 2023

Clinical sites: K1, K2, K3, K4, K5

Participants: 7

RQ4:

Design interventions: Period: January - November 2023

(incl. design sessions) Sessions: 19

Participants: 13

Clinical sites: D1, D2, K1, K2, K3, K4, K5

Table 2: Overview of data collection.
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work [118]. Inspired by ethnography, a lived experience of practice
provides a profound understanding of the observed problems, pro-
cesses, and relations [187]. Through observations, researchers can see
how the work is really conducted in contrast to learning about it from
written or oral reports, which may often distort (consciously or not)
the view of the work [318]. This is particularly relevant when inves-
tigating matters previously not described in the literature, where my
ability to cross-validate reports would be limited. This is why I con-
ducted participatory observations of work conducted by a group of
AI4XRAY members before data labelling (15 meetings and workshops
between medical professionals and AI engineers). Thanks to first-
hand observations of the collaboration, I could capture its essence
that otherwise was not reflected in produced artefacts or notes taken
by other participants. Namely, the written accounts from the meet-
ings focused on concrete decisions regarding labels and labelling. On
the other hand, through the observations, I uncovered the reasons be-
hind the discussions about labels and captured what motivated its
participants.

Moreover, unlike work reports, in-situ observations do not rely on
the perception of work by other people. To truly learn how the work
is done, one must experience it. Only then will the design of systems
that aim to alter the practice be meaningful. This is one of the core
premises of Computer Supported Cooperative Work (CSCW) [118,
269]. This is why I conducted 67 hours of in-situ observations in nine
medical sites in Denmark and Kenya with 22 radiologists and radio-
graphers. This allowed me to gain a deep understanding of radiolo-
gists’ work in diverse clinical settings. Importantly, this knowledge
included more than just the work of interpreting radiological exami-
nations. I could contextualise specific tasks of radiologists within the
complex realities of healthcare delivery, including variations in pa-
tient populations, clinical practices, and technological infrastructures.
I learned about the broader context of clinical work, a collaboration
between medical professionals, and the rhythm of the clinics - knowl-
edge necessary to design AI-based systems that fit the real clinical
context and not a carved-out and sensitised version of it. I used it to
inform the work in the AI4XRAY project and the development of a
prototype used in the last study.

4.2.2 Interview

Conducted to answer
RQ2: What factors condition the creation of training data?
RQ3: What are the opportunities for AI support in chest X-ray
practice?

It is hard to imagine qualitative or ethnographic studies without in-
terviews. This method is essential to give meaning to observed prac-
tice, to learn about nuance, and to learn participants’ perspectives
on investigated issues [187, 197]. For example, interviews provide an
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opportunity to explore divergent viewpoints and complexities that
may not be apparent through observation or other methods. More-
over, interviews can be used to support mutual learning. Well-defined
open-ended questions may spark reflection and learning about topics
relevant to AI innovation, resulting in more fruitful collaboration at
later stages.

I used interviews throughout the thesis - from interviews with
project members to better understand their roles (Paper II); through
interviews with physicians ordering chest X-rays to understand the
rationale behind using this type of medical imaging (not part of any
of my papers); to interviews during in-situ observations to clarify any
misunderstandings about observed actions (Paper III). This versatility
of contributions was possible thanks to the flexibility of the interview
as a method. I followed a format appropriate to the type of informa-
tion inquired about, i.e., structured questions following a guide when
inquired about feedback on a prototype (part of work described in Pa-
per II) to almost conversation-like when discussing nuances of local
practice (Paper III).

4.3 design methods

4.3.1 Grounded envisioning

Conducted to answer
RQ3: What are the opportunities for AI support in chest X-ray
practice?

Grounded envisioning at its core draws from speculative design [17].
While not part of an established method, similar futuring, described
under varying names, was successfully used in other AI-focused stud-
ies [180, 314, 322]. I used it to investigate how AI-based systems
could support radiologists in their practice, which is a crucial ques-
tion from the perspective of the AI4XRAY project. Due to the low
usefulness of previously evaluated AI-based systems and their pri-
marily technology-driven origin, I wanted to explore the space of AI
support as viewed by radiologists, focusing on their understanding
of valuable support.

To carry it out, I conducted in-situ observations and in relation to
any observed doubts, confusion, or encountered problems, I asked
radiologists whether they could envision any way that AI could help
them in such situations. This approach uncovered ideas transcend-
ing the traditionally explored second opinion and screening, e.g.,
measuring visual features on X-rays or assessing completed reports
against detected radiological findings to ensure that radiologists had
not missed any. We confirmed that the space of radiological AI sup-
port may have been underexplored and that there are opportunities
other than a conventional second opinion worth pursuing.

I think two conditions are critical to the successful use of this
method. First, almost all radiologists I worked with had previous
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exposure to AI-based systems and were disillusioned about AI capa-
bilities, i.e., they did not use AI-based systems in their daily practice,
even if such were available. This condition implicitly anchored their
visions in or close to the space of current AI capabilities, which is
a crucial step of speculation for design [17]. Second, the envisioning
was conducted as part of the in-situ observations. Developing visions
for and ideas about a system’s functionalities in a lab or IT office risks
diverging from the actual needs emerging in practice. By addressing
real issues in the context of their practice, I wanted to maintain the
link between functionality and practice and thus increase the chances
of clinical usefulness.

Finally, the visions of support were used to guide the development
of a prototype of the AI4XRAY system, which was used to conduct
the design interventions. Otherwise, the dissemination of findings
from this work was limited due to two factors. First, the publication
cycle required additional work to finalise Paper III that contained
the results of the grounded envisioning. Second, at the time of writ-
ing, the AI4XRAY project suffered independent data labelling delays,
which resulted in speculation about narrowing the project scope and
focusing on a narrow subset of radiological findings. Due to this direc-
tion, visions explored with radiologists may not be applicable within
AI4XRAY.

4.3.2 Design interventions

Conducted to answer
RQ4: How to configure AI-based systems for clinical usefulness
across clinical contexts?

A design intervention, as defined by Halse and Boffi [141], is a
method that cuts across design and ethnography, a method of com-
plexification, and a method that "enables new forms of experience,
dialogue, and awareness about the problem to emerge" (also [44, 46]).
It is a form of inquiry that is experimental and supports positioning
"in-between what is already there and what is emerging as a possible
future" [9]. The most vivid difference between usability studies or
prototyping and design intervention is its open-endedness. Instead
of informing concrete design decisions, they are used to explore and
direct future work. Design interventions should also occur during
clinical practice, i.e., we as designers should intervene in radiologists’
everyday work settings. This influences participants to consider
solutions and envision alternatives to existing systems, all while
being mindful of the specific needs of their local context. In this
thesis, we used design interventions to map the dependencies of
clinical usefulness rather than seeking numerical or visual answers
to concrete usability questions.

As part of the Paper IV, we conducted eleven design interventions.
Additionally, we conducted eight design sessions, which followed the
same exploratory goals but lacked the interventionist aspect. I will re-
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fer to them jointly as design interventions, as this type comprises
most of this work and better reflects its goals. In total, we conducted
the interventions with thirteen radiologists from seven clinical sites
in Denmark and Kenya (avg. 60 minutes). We strove for each inter-
vention to be grounded in participants’ work practices to situate their
input instead of trying to generalise their practice to undefined con-
texts.

The interventions used three versions of a prototype of an AI-based
support tool to practically explore the topic of usefulness. The proto-
type relied on an AI model developed within the AI4XRAY project.
Consequently, participants engaged with authentic historical data
and corresponding real AI predictions. The only clinical difference
between the practice and the intervention was the anonymisation of
data and the lack of auxiliary clinical information available.

This research approach proved essential for the thesis, as it
grounded visions of how AI could be used in clinical settings
across different hospitals. Moreover, through iterative changes to
the prototype, we explored how configuration affordances can
help align the support offered with the local needs. Consequently,
we conceptualised concrete recommendations for designers and
developers innovating radiological AI-based systems.

Finally, similarly to the results from grounded envisioning, the
results of the design interventions have not yet been published.
Moreover, these findings have not yet been incorporated within the
AI4XRAY project due to its changing focus and delayed development.
However, we hope to see them enacted as ensuring usefulness has
been named the core priority for the future work of the project
group.

4.4 data analysis methods

I employed two analysis methods to make sense of the collected quali-
tative and empirical data: grounded theory [73] and thematic analysis
[56].

I followed the grounded theory principles in my first two papers
(Paper I, and Paper II). This choice was dictated by their goal of open
exploration of a topic. Additionally, the breadth of collected data al-
lowed for building more robust and encompassing conceptual con-
tributions about broader topics, like dependencies of pre-labelling
stages of dataset creation or challenges afflicting the real-world re-
alisation of clinical AI. Without previous assumptions about the data
content, grounded theory proved to be an appropriate method for
rigorous interpretation and analysis.

To analyse data in Paper III and Paper IV, I used thematic analysis.
The analysis performed for these two papers differed from the pre-
vious ones, as I had gained a deeper understanding of the domain
and had better expectations regarding the data. Additionally, the aim
of these papers was not to derive high-level theory but to explore
in-depth the experiences of medical professionals in their work. This
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type of analysis allowed me to understand how radiologists’ work
practices are connected to opportunities for AI support and how AI-
based systems can be configured to provide clinically useful support
across medical contexts.

The analysis of data for all the papers was marked by iterative
reflection. The only way to know that what I conceptualised was true
and valuable was to cross-check it with other data or bring it back
to practitioners to discuss it with them. In most cases, I relied on
revisiting data to understand better its context of creation and joint
sensemaking with my supervisors. In other instances of my work,
especially pertaining to artefacts like the AI-based support system
prototype and a tool designed for labelling work within the AI4XRAY
project, I was able to validate my assumptions with the practitioners.

The problem of when to stop collecting data was solved rather
practically. I could not conduct fieldwork indefinitely in clinical sites
on different continents, countries, and cities. My participants were
busy individuals working in high-stakes environments, so my en-
gagements with them were limited to the prearranged time they felt
comfortable committing. In situations when only limited time was
possible, I aimed at recruiting participants in similar settings to en-
sure enough data coverage. Finally, relatively similar work practices
of doctors in similar clinical settings (described in Paper III) helped
to insights from data collected across settings.
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W H AT D O W E TA L K A B O U T W H E N W E TA L K
A B O U T T H E C L I N I C A L U S E F U L N E S S O F A I ?

In this thesis, clinical usefulness serves as a central concept anchor-
ing the exploration of AI-based systems in clinical practice. Unlike
typical medical interventions evaluated through randomised clinical
trials or conventional IT systems with established methods of inno-
vation, these systems are intricate sociotechnical systems [109]. They
have to dovetail contributions from HCI, AI, and health into a cohe-
sive vision to bring meaningful change to clinical practice [43, 117,
169]. Clinical usefulness encompasses these three domains’ diverse
goals and values and highlights their de facto common goal. Under-
standing this interdisciplinary foundation provides essential context
for engaging with the specific contributions outlined in the four pa-
pers of this thesis.

At this point, it is important to acknowledge other attempts at a
more holistic framing of AI-based systems in clinical practice. Ko-
cak et al. [190] investigated the clinical utility of AI models in radi-
ology, understood as offering "improvements on radiologists’ clinical
evaluation or traditional algorithms". This work made the important
distinction between performance evaluation and clinical value. Re-
cently, Boverhof et al. [53] proposed a 7-step evaluation framework
of AI-based systems for radiology focusing on clinical value. This
framework not only differentiated three distinct ways AI-based sys-
tems may contribute to clinical practice (through diagnostic thinking,
therapeutic, and patient outcome efficacy) but also pointed to local
efficacy as the applicability of a system in the local context. Finally,
Blandford and colleagues [42, 43] opened up the clinical outlook on
AI to HCI concerns and acknowledged the need for organisational
and end-user acceptance. These studies show the change in under-
standing of the nature of AI-based systems as sociotechnical. I build
on this work and attempt to provide the most encompassing defini-
tion of clinical usefulness.

I understand clinical usefulness as the overarching quality of AI-based
systems emerging from the interplay of their real-world performance, clini-
cal efficacy, and organisational acceptance in a situated clinical context for
specific end-users (Figure 1). This definition focuses on the high-level
contributions from each of the domains. While it does not capture
the breadth of considerations attended to within each of the domains,
it provides the necessary high-level perspective to consider them in
unison. I will explore each component to draw on AI, health, and
HCI communities’ theoretical, methodological, and practical compe-
tencies.

19
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Figure 1: The three components of clinical usefulness.

5.1 real-world performance

Clinical usefulness necessitates robust performance. Improvements
in AI performance resulted in the renewed interest in applying it
across different domains, including health. As such, performance is
the cornerstone of clinical AI, and without the ever-improving tech-
nology, current innovation would not be possible [291]. Most notably,
the arrival of Large Language Models (LLMs) may be considered a
technological breakthrough that resulted in a whole new space of op-
portunities for AI use [60].

However, the performance of AI models in retrospective evalua-
tions often does not hold in real-world settings, jeopardising clinical
usefulness. For example, Beede et al. [26] described a peer-reviewed
AI model that failed to successfully evaluate 21% of real-world cases
during a pilot deployment in a new clinical context. This clear prob-
lem with translating AI models across contexts is one of the chal-
lenges afflicting performance in the real world. Reddy et al. [275] pro-
posed a framework to guide AI innovation. A special focus on ethics,
translation, and generalisability should be applied across the innova-
tion stages to achieve similar performance levels across settings.

The ability to translate models across contexts is often linked to
the quality of the training data. Major et al. [220] explored how, in a
clinical setting, the selection of training data may improve the correct
assessment of performance. In many cases, the data work preceding
the model work has a critical influence on final usefulness [250]. For
example, certain training data choices may result in AI models utilis-
ing learning shortcuts, i.e., learning easily recognisable yet irrelevant
correlations that are then used to make general predictions [251]. En-
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suring high-quality and representative data supports the final robust-
ness of AI models.

Finally, robust performance does not mean 100% accuracy. Bansal
et al. [21] showed how understanding AI capabilities, particularly the
reason behind AI’s mistakes, supports the effective use of AI predic-
tions. Focusing on how AI can supplement human decision-making
with imperfect predictions may induce a greater positive effect than
improving absolute accuracy by a few points [20]. Other research has
shown that even imperfect algorithms may be useful in practice [52].

5.2 clinical efficacy

Clinical usefulness necessitates clinical efficacy [184]. Health re-
searchers increasingly engage with AI not only as recipients and
evaluators but also as relevant actors participating in innovation
processes [43, 301]. Their understanding of clinical work is crucial,
as clinical efficacy is not always a direct consequence of robust per-
formance. [37, 303]. For example, despite successful integration and
robust performance, a decision support system for cancer detection
on mammography images was found to have no positive effect on
clinical outcomes [208]. Such studies, especially in radiology, prompt
questions about the clinical value of AI-based systems [206, 313].

In the face of the uncertain clinical value of AI in practice, Bland-
ford et al. [43] suggested closer and more meaningful collaboration
between medical professionals, developers, and designers. They ar-
gued that AI-based systems fail to provide value in practice due to the
lack of understanding and transfer of knowledge across the domains.
Recht et al. [272] echoed these suggestions and called for increased AI
evaluations in clinical practice to understand opportunities for better
support. Importantly, aware of the iterative nature of AI innovation,
healthcare researchers have expressed readiness to challenge the tra-
ditional evaluation methods, like randomised clinical trials. Particu-
larly, iterative, local, and patient-centred approaches that go beyond
technical measures and focus on the quality of care [86, 88, 184, 303].

These propositions foreground change in thinking about the po-
tential value provided by AI-based systems. Traditionally, clinical ef-
ficacy has been understood to focus on improved patient outcomes.
However, health researchers working with information systems have
explored additional ways AI can benefit clinical practice. For example,
van Leeuwen et al. [206] proposed a hierarchy of seven types of effica-
cies that can be used to evaluate AI’s impact on clinical practice: tech-
nical, potential, diagnostic accuracy, diagnostic thinking, therapeutic,
patient outcome, and societal efficacy. Boverhof et al. [53] expanded
this model with cost-effectiveness, which traditionally belonged to
the assessment of clinical efficacy and local efficacy to account for the
translation of models across contexts. Prior to these hierarchies, Bo-
denheimer and Sinksy proposed the quadruple aim for health system
optimisation. Their proposition extended the established Triple Aim:
"improving the health of populations, enhancing the patient experi-
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ence of care, and reducing the per capita cost". The fourth aim per-
tained to medical professionals and called for improving their work
life. This aim is particularly relevant when considering AI, as research
shows that lack of social considerations of work is a common cause
for a failure in practice [169, 281, 325, 330].

5.3 organisational acceptance

Clinical usefulness necessitates clinical organisational acceptance, i.e.,
organisations must see a value in integrating a system, and the end-
users must be willing to use it [187]. In the context of clinical AI,
the latter has been proven more challenging (see, e.g., [25]). The HCI
community explored many avenues to ensure that end users accept
and see value in using AI-based systems, highlighting the need to
consider the current workflows, work practices, and sociotechnical
context [82, 169, 253, 281, 325].

In clinical work, where a single correct answer may not exist, ex-
plaining one’s reasoning and adhering to standard procedures serves
as a strategy to deliver the highest quality of care [105, 110]. Ini-
tially, AI functioned in the exact opposite way - provided an an-
swer without a clear indication of the reason. This proved difficult
to accept for clinical professionals [159] and sparked questions about
ethics [35]. Inadvertently, transparency and explainability are linked
with ethics of healthcare delivery, as they help medical professionals
make the most appropriate decisions for their patients [166]. Even
when an AI-based system does not provide 100% accurate support,
through transparency and explanation, even such input may be found
useful in clinical practice [21, 52, 221]. HCI researchers supported
these clinical decision-making practices by investigating explainable
AI (XAI) methods. These have been found to enhance trust and sup-
port decision-making and oversight over AI-based systems, fostering
the sense of agency in clinical end-users [67, 135, 205, 348].

Another important consideration in healthcare is how the value of
information depends on the interplay between its content, time, the
place it is shared, and the intended recipient. For AI output to be
useful, it has to deliver the right information at the right time and
place [263, 357], as both too early [127] and too late [155] deliver
jeopardises clinical usefulness. Moreover, researchers point out that a
broad range of healthcare workers carry out clinical and care work,
often in the shadow of medical doctors [157, 357]. Finding the best
way to integrate AI remains an active area of HCI research [169, 290,
302, 357].

Moreover, the position given to AI in the clinical workflow deter-
mines how its prediction will be received [179, 356]. This new type
of information presentation in a clinical context prompted more HCI
research on human-AI collaboration and joint reasoning [34, 36, 52,
68, 69, 100]. Even if not left with the power to make the final call,
AI-based systems are often perceived as more capable, effectively am-



5.3 organisational acceptance 23

plifying their input. This multifaceted authority of AI poses more
ethical dilemmas [327].

Finally, HCI researchers point out that there are also mental and
temporal costs associated with using AI-based systems. Understand-
ing AI output, assessing its correctness, and considering how to
weigh it - all these actions take time and effort. Sometimes, this total
cost may be too high to use the AI-based system in daily practice.
Cai et al. described how their tool to interact with AI to increase the
utility of AI predictions led medical professionals to worry that they
spent too much time almost playing with it [67]. On the other hand,
a more common worry is the work needed to discern false positive
predictions. Researchers reported how excessive work needed to
deal with false positive predictions resulted in the failure of clinical
AI-based systems in practice [18, 25, 221, 325]. This happens because
the benefits of a correct AI prediction are undone by the extra work
needed to reap them in a resource-sparse clinical environment.
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S U M M A RY O F PA P E R I : C L I N I C I A N - FA C I N G M L I N
T H E W I L D

Increasingly, we are gaining insight into the challenges of innovating
clinical AI-based systems [355]. Researchers are investigating aspects
such as trust [267], explainability [348], and design methods [358], or
integration [357]. However, these inquiries often focus on exploring
specific problems or challenges. Fewer studies explore the broader is-
sues encountered when transitioning from a lab to clinical practice,
generally considered the "last mile" problems [82]. Before we com-
mitted to the innovation of the AI-based system within the AI4XRAY
project, we wanted to understand the complexity of these problems
better. Through Paper I, we synthesised knowledge from AI, HCI, and
health domains that could help realise ML-based systems in clinical
practice. We build on insights from 25 papers describing evaluations
of clinician-facing ML-based systems, selected through a three-stage
process from 9331 papers. Importantly, due to the vague use of the
term artificial intelligence, we included only articles that described
machine learning-based systems.

6.1 what are the challenges of realising ml in clini-
cal practice?

An answer to this question is twofold. The first part pertains to the
process of clinical ML innovation. The second part addresses the chal-
lenges of an ML-based system in clinical practice.

6.1.1 The challenges of ML innovation process

If the process of innovating clinical ML is flawed, the final clinical
usefulness of created systems may deteriorate. As a relatively new
area, the innovation of clinical ML has not yet developed established
methods to guide the innovation processes. This was observed in
the reviewed studies. The reported methods were diverse, and many
were introduced without proper description. The authors resorted to
phrases like "collaborated," which further complicated the replicabil-
ity of reported processes.

We discussed that these challenges were exacerbated by the need
for close collaboration of participants from different domains (ML,
HCI, and health), as they all represent unique epistemological stand-
points, goals, and terminologies. Particularly, HCI practitioners value
user involvement and iterative design [132], while ML relies on data-
driven experimentation and optimisation [6], and Health emphasises
evidence-based practice and clinical trials [70].

25
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We proposed two approaches for the HCI community based on
previous research into difficult collaborations on how to address this
challenge. First, we suggested joint work among stakeholders on the
"demystification" of clinical ML. This means focusing on collaborative
design methods that help translate the theoretical ML-focused design
decisions to clinical practice frame of reference (see, e.g., [358]). We
hope such joint demystification could increase the agency of involved
participants and lead to more meaningful collaboration. Second, we
advocated for establishing new HCI techniques to address the diffi-
culties of working with ML as a medium. Such new techniques could
take place in a "third space" [241], that is, a space not "owned" by any
of the domains and should function as a means to discuss and ne-
gotiate design, exchange perspectives, terminologies, and ultimately
serve as a mutual learning opportunity for all parties involved [50].
This suggestion was motivated by the relative failure of past meth-
ods and an organic move towards new propositions, e.g., seen in the
"undefined" grounded in "collaboration" methods reported in the re-
viewed papers. These two suggestions aim to narrow the epistemo-
logical and methodological gap between domains that need to col-
laborate to innovate clinically useful ML-based systems. This need
was well captured by Blandford et al. [43], "Until there is much greater
mutual understanding and mutual valuing of the complementary research
traditions than exists at present, people risk disappointment and rejection in
trying to bridge the divide".

6.1.2 The challenges of clinician-facing ML-based systems in practice

We identified five types of challenges afflicting the realisation of clin-
ical ML-based systems, which originated as interdependencies be-
tween the social aspects of the use and clinical environment and the
technical aspects of the systems (Figure 2). The identified technical as-
pects included (1) training data & ML model, (2) system integration &
data used, and (3) user interface. The social aspects spanned (1) user
& system use, (2) workflow & organisation, and (3) health institution
& political arenas.

Training Data & ML Model and User & System Use: The quality and
quantity of the training data affected the performance and accuracy
of the ML model, which in turn influenced users’ trust and adoption
of the system. Moreover, the choice of training data was linked to
how well an ML-based system models clinical practice, affecting its
usefulness.

System Integration & Used Data and Clinical Workflow & Organisation:
Introducing an ML-based system in clinical practice can disrupt the
existing clinical workflows and require changes in roles, responsibil-
ities, and routines. Further, the quality of technical integration into
existing systems affected the usefulness of the systems, e.g., integra-
tion requiring manual data entry or resulting in delays in delivering
ML prediction reduced the clinical usefulness.
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Figure 2: From [362]: Five sociotechnical interdependencies of clinician-
facing ML-based system innovation.

User Interface and User & System Use: The user interface design af-
fected how users perceived and interacted with the systems. Explain-
ability, interpretability, and transparency especially affected decision-
making practices and the professional agency of medical profession-
als. New types of information associated with ML output prompted
questions of bias and ethical use. The type of explanations influenced
the

User & System Use and ML-based System: Clinicians’ attitudes sig-
nificantly shaped their acceptance of ML-based systems, with scepti-
cism and resistance hindering adoption. Additionally, diverse clinical
roles and needs led to varied preferences for system functionality, e.g.
when using the same system, nurses favoured actionable suggestions
while physicians sought dynamic output they could engage with [22].
Finally, barriers such as insufficient end-user training and low com-
puter literacy further impeded successful use in practice.

Healthcare Institution & Political Arenas and Use of ML-based Systems:
The innovation of a clinical ML-based system can be influenced by
wider institutional and political factors, such as regulations, policies,
standards, and incentives. The type of healthcare system and its in-
centives affected how actionable ML outputs were, thus affecting their
clinical usefulness. Further, in medical cases where the diagnosis and
treatment are less defined, clinicians may find it more difficult to in-
corporate another variable into an already ill-defined process. Lastly,
ethical considerations invoked by ML outputs were found to affect
the perceived usefulness.

We proposed three recommendations for addressing these chal-
lenges during ML innovation processes. First, there is a pressing need
to adopt an approach of iterative co-configuration, recognising that
the successful integration of ML technologies into clinical practice
requires ongoing adjustment and alignment of sociotechnical com-
ponents, including data, ML models, user interfaces, clinical work-
flows, and organisational goals. This includes viewing the innovation
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process as one of organisational change and continuous collabora-
tion. Second, we advocate conducting near-live and real-world ex-
perimentation with prototypes and early versions of ML-based sys-
tems within clinical settings. Such engagement provides invaluable
insights into the practical challenges and opportunities for design, de-
velopment, and deployment, facilitating meaningful adjustments that
enhance system usefulness. Third, design, development, and evalua-
tion activities should be merged into an iterative and cyclical pro-
cess, ensuring that clinical practice’s evolving needs and complexi-
ties are addressed throughout the innovation life cycle. By embracing
these strategies, coupled with ethical considerations and regulatory
oversight, the innovation of clinician-facing ML-based systems can
progress toward delivering high-quality care and improving patient
outcomes effectively.

6.2 clinical usefulness : the expectation of real-world

performance depends on the intended use

In this paper, we used the intended use concept to tease out the dif-
ferent purposes and goals of ML in clinical practice. Based on the
reviewed systems, we conceptualised the following intended uses:
decision support, prioritisation, and automation. Decision support
ML-based systems aid healthcare professionals in making informed
decisions for individual patients. Prioritisation ML-based systems op-
erate in the context of multiple patients. They conduct an individ-
ual assessment of all relevant patients based on predefined criteria
and highlight patients who need providers’ attention. Finally, when
machine learning-based systems are given autonomous agency and
authority, they may replace medical providers instead of supporting
them in clinical tasks during healthcare delivery.

We discovered that different intended uses altered clinician’s ex-
pectations towards the systems. Clinicians using decision support
systems prioritised explainability over perfect performance. Factors
such as contributing factors, raw input data, and historical context
were emphasised, enabling clinicians to interpret predictions effec-
tively and enhancing their clinical skills with a new outlook. When
ML was utilised for prioritisation, attention was directed towards pos-
itive predictive value, even at the expense of explainability or other
technical metrics. The high positive predictive value was considered
crucial to reducing false positives, which demanded additional work
and resources from the staff, clinic, and patients. As an intended use,
automation showed the highest reliance on predictive performance,
as it involved AI making the final decision.

I recommend establishing a clearly defined intended use to guide
the innovation of ML-based systems from the earliest stages. Such
guidance could facilitate better alignment between the technical as-
pects, user interface and explainability affordances, and the expecta-
tions of clinical end-users, resulting in improved clinical usefulness.
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S U M M A RY O F PA P E R I I : G R O U N D T R U T H O R
D A R E

The development of clinical AI conventionally starts either from data
or model work. In the AI context, data work is a general term for
preparing data for AI development. For supervised training, this
work usually spans four stages: data collection, data processing,
design of ground truth schema, and data labelling, as conceptualised
in Paper II. The downstream effects of this work, beyond the deliv-
ered artefacts, are often poorly understood, as data work used to be
considered of lesser quality and importance [289].

Critical data scholars and HCI researchers have started in recent
years to deconstruct data labelling as the moment in the data work-
flow where a range of workers use their knowledge and intellect to
transform data into a format usable by AI models. This great work de-
scribed how politics, power, and views are embedded in data through
the act of labelling [228, 229, 231]. Even labels applied to medical data
by subject matter experts result from a situated design process [240].
The quality of these labels has been shown to affect the performance
of clinical AI models [139, 170, 234]. The relationship between the
quality of training data and the final AI-based system may be more
profound than just affecting AI’s performance. Oakden-Rayner et al.
found that AI trained on incompletely labelled medical datasets may
lead to negative clinical outcomes [251]. This is why we investigated
pre-labelling data work and its influence on the final shape of medical
datasets.

7.1 what factors condition the creation of training

data?

We analysed data collected during fieldwork in three European health
tech organisations (ORG I, II, and III). I collected data within the
AI4XRAY project (Org I in the paper). Natalia Rozalia Avlona col-
lected data from the other two organisations. During the course of
the AI4XRAY project, the pre-labelling phase spanned nearly a year,
during which I was deeply involved from its inception (also described
in Paper 5). Initially, I joined as an observer of the collaborative efforts
between ML engineers and radiologists, occasionally contributing to
the discussions with insights from fieldwork in other hospitals (de-
scribed in Paper III). As the project progressed, my responsibilities
evolved, and I actively contributed to the dataset creation by design-
ing and evaluating a specialised labelling tool in collaboration with
radiologists. The work was finalised using the tool to label data to
train the AI4XRAY AI model.
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Figure 3: From [361]: A simplified medical dataset creation process ex-
panded with the design of ground truth schema and factors condi-
tioning the pre-annotation stages.

7.1.1 The Design of Ground Truth Schema

It is necessary to delineate the activities involved in the process to
discuss factors affecting the creation of medical datasets for AI pur-
poses. In this paper, we conceptualised a previously omitted stage of
data work - designing a ground truth schema, which we defined as
"a collection of relational labels and metrics, as well as their defini-
tions and examples that are used during data labelling" [361]. This
critical stage was observed within the AI4XRAY project but also rem-
iniscent in ORG II and III. This work aimed to decide what medical
conditions should be labelled, what additional metrics should be la-
belled, and how the labelling should be conducted. All of these deci-
sions were motivated by creating high-quality data that can be used
to train clinically useful AI models within the context of each respec-
tive organisation. All of them were also influenced by the five factors
conceptualised (Figure 3).

7.1.2 External Factors

Three external factors (Table 3) play a role in determining the space
for creating medical datasets and what data can be collected and
made available for labelling. Thereby, they impact the ultimate struc-
ture of the datasets even before the start of labelling.

Regulatory constraints: These are laws (e.g., EU’s General Data Pro-
tection Regulation or US’s Health Insurance Portability and Account-
ability Act) and standards (ISO 2700013001, and Good Medical or
Good Manufacturing Practices) that specify what data can be col-
lected and for what purpose it can be used. They ensure that data
collection and processing respect the patients’ privacy, consent, and
rights. However, they have the broadest consequences for the final AI-
based systems. These regulations determine the extent and purpose
of data collection, which has downstream effects on every aspect of
AI innovation.

Context of creation and use: These are the geographic, demographic,
and linguistic aspects that shape both the data (sourced from spe-
cific hospitals and specific populations) and the ground truth schema
(the choice and meaning of labels). The labelled data has inherent
characteristics of the local population, which may not correspond to
the populations from the intended country of use. Moreover, medical
professionals designing the ground truth schemas defined the labels
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regulatory constraints

Extent of Collected Data

Predetermination of Purpose

context of creation and use

Geographic context of use

Demographic context of production

Linguistic context

commercial and operational pressures

Business model and organisation scalability

Competition and health tech market

Intended future use within the healthcare type

Table 3: From [361]: External factors and their dimensions.

according to local standards and practices. These factors affected the
transferability of AI-based systems trained on medical datasets. The
collaboration at this stage focused on addressing the needs of med-
ical professionals from the intended context of use to support final
clinical usefulness across contexts.

Commercial and operational pressures: These are the business and mar-
ket factors that determine the resources and goals of clinical AI inno-
vation. The available resources affect data collection and the amount
of data that can be physically labelled. Meanwhile, market compe-
tition may influence choices during the design of the ground truth
schemas, e.g., which medical conditions to label.

7.1.3 Internal Factors

Two internal factors (Table 4) shape the negotiations between the med-
ical and technical domains over specific labels. They spark debates,
discussions, and disagreements that have implications for both the
ground truth schema and the resultant datasets.

Epistemic differences: This factor refers to the diverging perspectives,
values, and understandings of concepts among domain experts, such
as medical professionals, data scientists, and designers. Communica-
tion challenges afflicted the close collaboration of practitioners from
different domains, which has also been highlighted in Paper I. More-
over, the observed data work was considered part of the "data sci-
ence" domain. Thus, the organisation and goal-setting remained with
the AI engineers. This led to the misapprehension of medical prac-
tice and misapprehension of medical knowledge. These misappre-
hensions manifested in the assumptions about what kind of med-
ical conditions can be labelled and what other information medi-
cal professionals can supply. During the collaboration on ground
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epistemic differences

Miscommunication between domains

Misapprehension of medical practice

Misapprehension of medical knowledge

limits of labelling

Domain expert buy-in

Onboarding to the labelling task

Labelling hardware and software

Similarity to the clinical practice

Table 4: From [361]: Internal factors and their dimensions.

truth schemas, medical professionals challenged the assumptions and
made changes to the schemas. These changes altered the intended
capabilities of the AI model and, in turn, affected the final clinical
usefulness of systems trained on this data.

Limits of labelling: This factor refers to the practical and technical
constraints that influence the labelling process and the schema. These
constraints include domain expert buy-in, onboarding to the labelling
task, clinical practice familiarity, and labelling hardware and software.
The expert buy-in was a crucial factor that affected what kind of data
was collected in the AI4XRAY project. Initially, during the labelling,
radiologists marked the location of each finding. This task proved to
be too tedious for crucial participants. The task was altered not to
collect this metric to keep their contribution to the project. Similarly,
the other constraints affected the quality of annotated labels, e.g. the
screens used for the labelling task were not diagnostic quality. This
means that less experienced labellers may have missed some of the
subtle findings. Altogether, these limits altered what kind of data was
collected and how it was annotated, affecting the accuracy and con-
sistency of the annotated labels and the schema.

7.2 clinical usefulness : medical datasets condition

real-world performance , organisational accep-
tance , and clinical efficacy

This paper foregrounded the extent of factors affecting the creation of
medical datasets prior to data labelling. These factors may affect the
labels’ quality, validity, and reliability, as well as their alignment with
medical knowledge and practice. However, their influence does not
end on the quality of the collected data. In fact, the factors that shape
the datasets indirectly condition the real-world performance, the de-
sign space of possible AI functionalities, and their medical focus.

I advocate that the pre-labelling stages of data work, especially
the design of ground truth schemas, undergo increased scrutiny by
researchers and practitioners. Moreover, it is crucial to increase the
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involvement of domain experts and clinical practitioners in the pre-
labelling stages of data work. Such collaboration is critical to ensure
that AI-based systems trained on the resulting data meet the needs of
their intended users by achieving high real-world performance, sup-
porting flexibility during design, e.g., of explainable AI methods, and
providing clinically accurate and factual information.
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H U M A N - C E N T R E D C L I N I C A L A I

AI innovation has been driven by the implementation of novel mod-
els and improving performance captured through technical metrics,
sidelining social considerations of use and value delivered in practice
[183, 277]. This techno-centric approach resulted in a gap between
the needs of end-users and the functionalities offered by contempo-
rary AI-based systems [272, 313, 362]. Consequently, such systems are
not widely used in practice [43, 131, 299, 349, 365].

This study was part of the work conducted to support the AI4XRAY
innovation project. Aware of the challenges afflicting the realisation
of AI in clinical practice [362], I undertook a broad field study to
understand radiologists’ work and investigate opportunities for AI
support across clinical sites and across countries, mindful of the goal
of AI4XRAY to make the future system clinically useful in Denmark
and Kenya.

I recruited eighteen radiologists and four radiographers from nine
medical sites in Denmark and Kenya. Together, I visited two spe-
cialised hospitals offering tertiary and quaternary care (DK: 1, KE:
1), five general hospitals providing primary and secondary care and
serving as referral centres for specialised treatments (DK: 2, KE: 3),
and two imaging clinics, which offered medical imaging and teleradi-
ology services (DK: 1, KE: 1).

During the field study, I conducted observations (DK: 35 hours,
KE: 32 hours) and interviews with the participants. The primary goal
of the observations was to understand the visited clinic’s operations,
organisational structure, division of labour, patient demographics
and statistics, daily workflows, procedures for handling chest radio-
graphs, and previous encounters with AI-based systems. Moreover,
during the observation, when possible, I asked my participants about
their visions of useful AI support in regard to the actions they were
taking. Finally, I used the interviews to clarify any uncertainties

Figure 4: From [360]: A shared workflow of chest X-ray practice observed in
Denmark and Kenya.

35
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selection

Challenge: Backlog of X-rays to report exceeding daily processing capacity

Vision: AI distributing examinations by user’s expertise

Challenge: Selecting the next most relevant examination to report without an
easy overview

Vision: AI detecting medical emergencies

interpretation

Challenge: Interpreting visually ambiguous findings

Vision: AI providing decision support on subtle and difficult cases

Challenge: Time-consuming process of obtaining additional clinical informa-
tion

Vision: AI measuring visual features and comparing changes across histori-
cal examinations

reporting

Challenge: Conveying the right information in a report

Vision: AI double-checking reports against radiographs for missed or misin-
terpreted findings

Table 5: From [360]: Challenges encountered in chest X-ray practice and en-
visioned AI support.

pertaining to the areas of observation throughout and after the
observations.

8.1 what are the opportunities for ai support in chest

x-ray practice?

Similarly to the process in Paper II, to engage in meaningful dis-
cussion about the opportunities rooted in practice, I needed first to
understand the practice. Surprisingly, the practice of handling chest
X-rays was fairly uniform across all the settings in both countries.
We observed three main stages: selection, interpretation, and report-
ing (Figure 4). The differences revealed themselves when comparing
work division, type of seen patients, and the expertise of radiologists.
However, they were visible along the types of clinics and not coun-
tries. This means that the work practices and clinical context were
very similar across clinical sites.

Participating radiologists envisioned five ways AI-based systems
could realistically help them in practice. These five visions were a
response to five concrete challenges (Table 5).

8.1.1 Opportunities for AI support during the selection of chest radio-
graphs for reporting

AI distributing examinations by user’s expertise: Radiologists who pro-
posed this vision aimed to reduce the backlog of X-rays to report
by assigning cases to radiologists based on their level of experience
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and specialisation. In the visited sites, the number of chest X-rays
to report often exceeded daily capacity. This resulted in delays, stress,
and reduced quality of care. Within this vision, examinations deemed
normal by AI could be checked by junior radiologists, while examina-
tions deemed by AI to have radiological findings could be reserved
for senior radiologists. This way, the AI could optimise the workflow
to reduce a backlog. Importantly, this functionality was reserved only
for periods of increased workload, not to jeopardise junior radiolo-
gists learning.

AI detecting medical emergencies: This vision aimed to support pri-
oritising urgent cases. Radiologists had little overview of the content
and context of the X-rays before opening them. They relied on the
referrals, urgency attributes provided by ordering clinicians and in-
formation about the ordering department. However, these methods
usually catch only the most urgent cases and do not account for find-
ings not foreseen by the ordering clinicians. Radiologists envisioned
an AI-based system that could flag cases with life-threatening condi-
tions, such as pneumothorax, and move them to the top of their work
list. This way, the AI could help radiologists identify critical cases
faster and potentially save lives.

8.1.2 Opportunities for AI support during the interpretation of chest ra-
diographs

AI providing decision support on subtle and difficult cases: This vision in-
troduces an AI-based system that can provide a second opinion on
examinations with visually ambiguous findings or otherwise chal-
lenging to interpret. Such challenges are often induced by noise or
overlapping structures that make it difficult to identify pathologies.
Additionally, cases with subtle or rare findings require more expertise
and experience to diagnose correctly. Consultations on such cases are
common in clinical sites with several experienced radiologists. How-
ever, in smaller settings or in the case of junior doctors who cannot
consult their supervisors about every case, such a system could help
radiologists resolve doubts, increase confidence, and avoid errors.

AI measuring visual features and comparing changes across historical ex-
aminations: Some parts of X-ray examination do not require medical
expertise but must be conducted and are time-consuming, e.g., mea-
suring heart-to-chest ratio to exclude enlarged heart diagnosis. Ra-
diologists speculated whether AI could not automatically measure
visual features on the radiographs, saving them precious time. Simi-
larly, whenever possible, radiologists compare findings against histor-
ical images. In this vision, the AI-based system could also compare
the current radiograph with previous ones and highlight any changes
or progression of the findings. These functionalities would help radi-
ologists to save time, reduce manual work, and improve accuracy.
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8.1.3 Opportunities for AI support during the reporting of chest radio-
graphs

AI double-checking reports against radiographs for missed or misinterpreted
findings: At this stage, radiologists envisioned a system that could pre-
vent errors and maintain the quality and accuracy of their reports. In
practice, radiologists must report all relevant findings to avoid confu-
sion or concern for the clinicians who ordered the X-ray. Additionally,
reports need to be tailored to meet the needs and expertise of the
recipients, considering factors like their clinical questions and avail-
able resources. To support this effort, the envisioned system would
analyse a radiologist’s report and compare its content against the ra-
diological findings detected in an X-ray. The system would notify the
radiologist if any discrepancies or omissions were found. This process
would provide an extra layer of quality control without requiring the
radiologists to interact with the system actively, thus reducing their
workload.

8.2 clinical usefulness : broadening ai design space en-
ables organisational acceptance and clinical effi-
cacy

When evaluating current AI-based systems for radiology, researchers
question the actual benefits of using them in practice, pointing to un-
clear clinical value [206, 313]. This motivated us to start this study by
understanding the clinical practice and engaging with radiologists
to identify areas where AI could add value. We conceptualised five
visions for AI support proposed by our participants and rooted in
practice. The unfolded visions contest and expand the traditionally
technology-centric outlook on what constitutes valuable AI support.
Rather, they centred around practically aiding clinical practice, e.g.,
by measuring visual features or double-checking reports, thus im-
proving clinical outcomes and supporting radiologists at work.

Overall, envisioning AI support at the point of practice provided
new insights about what makes such systems useful. By encourag-
ing end-users to explore their ideas of AI support rather than at-
tempting to retrofit preconceived systems, we may uncover previ-
ously unexplored avenues for providing useful support. We advocate
that such early grounded engagements can facilitate the transition
towards human-centred AI in healthcare.
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In the Paper III, we discovered new opportunities for AI support in ra-
diological practice. However, successful innovation of the envisioned
systems hinges on their final clinical usefulness, i.e., they must deliver
robust real-world performance [207, 334, 362], prove clinical efficacy
[37, 184, 216], and fit the different intended clinical contexts [62, 67,
169, 360].

Achieving these qualities, and thus clinical usefulness, requires
meaningful before-use and in-use configuration of a system to the en-
vironment it is going to be used in [135, 169, 263, 356]. The before-use
configuration refers to the design decisions taken before a system’s
integration into clinical practice. In contrast, the in-use configuration
refers to the adjustments made after the integration [151].

To explore how configurability may improve the clinical usefulness
of AI-based systems in radiology, we conducted nineteen design ses-
sions and interventions with thirteen radiologists across seven clini-
cal sites in Denmark (2) and Kenya (5) (Figure 5). The design sessions
were centred around a prototype of an AI-based support system us-
ing real data and an AI model developed within the AI4XRAY project.
The prototype explored the clinical usefulness of such a system, espe-
cially focusing on the aspects that could be configured. Throughout
the study, we iteratively improved the prototype based on intermedi-
ate feedback. The design sessions were held both online and in per-
son. The design interventions were conducted in-situ to "intervene"
in real-world practice. While not using prospective data, we aimed to
simulate real use to ground the interaction with the prototype and
the feedback received.

9.1 how to configure ai-based systems for clinical use-
fulness across clinical contexts?

Based on the data collected during design sessions and interventions,
we delineated four technical dimensions of clinical AI that can be
configured for clinical usefulness in relation to the social dimensions
of the clinical context. The technical dimensions span AI functionality,
AI medical focus, AI decision threshold, and AI explainability (Figure
6). The clinical context was defined to comprise five dimensions.

Medical knowledge encompasses the meaning of medical concepts,
definitions, and procedures that are relevant to the AI-based system,
for example, the meaning of radiological findings. Clinic type high-
lights the differences in patients, resources, focus, and type of offered
care between clinical sites of different types. User expertise level points
attention to the fact that medical professionals have different exper-
tise even if they work at the same clinical site in the same position.
Patient context comprises their current location (admitted to a hospi-

39
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Figure 5: From [363]: Online and collocated design sessions and design in-
terventions with user interface mock-ups and working prototypes
(version I, II, II).

tal or not) and medical history. User situation describes the workload,
available time, and resources of medical professionals using the sys-
tem.

9.1.1 Configuration of AI Functionality

AI functionalities should be aligned with the needs of the local clinic and the
expertise of their radiologists. Different clinics may have different work-
flows, resources, and patient populations, affecting the suitability and
applicability of certain AI functionalities. For example, radiologists in
a primary care clinic may benefit more from quality assurance than
radiologists at a specialised hospital.

AI should be easily accessible whenever necessary or function in the back-
ground rather than being an obligatory step in new work practices. End-
users should have control over which AI functionalities are integrated
into their routine, as clinical work is constantly changing. Moreover,
within the same clinical practice, clinical end-users with different ex-
pertise levels may benefit from other types of AI support.

9.1.2 Configuration of AI Medical Focus

In the context of this study, the AI medical focus refers to the set of
radiological findings that the AI detects on chest X-rays.

AI-based systems should be configured to detect the findings typically ob-
served at the local clinical site before use. During this study, we observed
that the type of clinic determines the patient demographics seen by
radiologists, influencing the prevalence of certain findings.

End-users should be able to select their preferred findings for AI support
from the pool of relevant radiological findings. Similar to selecting AI func-
tionality, certain findings may be more challenging for less experi-
enced doctors to assess, while senior radiologists may find support
for these findings redundant. Additionally, the clinical significance
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Figure 6: From [363]: A matrix of technical AI dimensions must be config-
ured to achieve clinical usefulness in local practice. The accom-
panying social dimensions of the local clinical practice condition
configuration of each technical dimension. Conceptualised based
on design interventions with an AI-based prototype.

of radiological findings varies depending on the patient’s context. In-
tegrating this information when defining the medical focus would
enhance the fidelity and usefulness of AI support.

9.1.3 Configuration of AI Decision Threshold

AI decision threshold is a technical dimension that determines how
confident the AI model has to be to make a prediction, effectively
influencing the positive and negative predictive values. This value is
arbitrarily selected in many AI-based systems to optimise technical
performance metrics. We advocate for its more flexible configuration
to introduce tailored support and reduce additional work caused by
false positive predictions.

Clinical end-users should be able to select a specific threshold per radiologi-
cal finding. In line with previous configuration needs, certain findings
may be perceived as more clinically important. Radiologists could
specify the relevancy of specific findings by lowering the threshold,
thereby accepting more false positives to ensure the AI system alerts
them to these findings. Conversely, raising the threshold value would
result in fewer predictions. This functionality could help radiologists
manage the work of discerning false positive predictions.

Clinical end-users should be able to adjust the AI decision threshold in re-
lation to clinical parameters (e.g., patient location). From [360], we know
that clinical importance depends on factors other than just the defi-
nition of a finding. For example, some radiological findings may be
more critical if found in an out-patient. To account for that, we sug-
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gest that the threshold configuration consider other clinical parame-
ters.

AI decision threshold should be pre-defined to match the requirements of
the local clinical site. To further minimise the necessary work by end-
users, an AI-based system should be aligned with the type of patients
and other requirements of the local clinical site.

9.1.4 Configuration of AI Explainability

In this study, we evaluated three distinct methods of explaining AI
output on chest X-rays: heat maps, arrows pointing towards radiolog-
ical findings, and boxes bounding the radiological findings.

Clinical end-users should be able to select their preferred XAI method
for each finding, either globally or individually. In general, the methods
should allow radiologists to assess the quality of the prediction by in-
specting the underlying X-ray and locating the finding. However, the
visual representations of radiological findings on chest X-rays vary.
This is why a single method for explaining AI predictions in radiol-
ogy is not a viable solution, e.g., explaining a diffused finding with a
fixed box or an arrow may cause consternation and confusion. Rather,
selecting the most appropriate method for each finding should be pos-
sible.

9.2 clinical usefulness : configurable ai enhances or-
ganisational acceptance and clinical efficacy

In Paper III, we explored the link between the work practices of ra-
diologists across different clinical contexts and envisioned opportuni-
ties for AI support. However, the described visions are not a panacea
that can be applied to boost the clinical usefulness. In Paper IV, we
built on the gained knowledge of radiological practice and iteratively
developed a prototype to test some of the proposed visions. Particu-
larly, we looked into the practical caveats of configuring an AI-based
system to increase clinical usefulness in concrete clinical contexts and
scenarios.

We observed that radiologists wished to configure the system to
maximise patient benefits and minimise additional workload. In this
light, we advocate that clinical usefulness can be enhanced by match-
ing the AI-based systems offering with the characteristics of the local
clinical context. Particularly, it is crucial to consider how to make clini-
cal AI systems configurable so that the offered support corresponds to
the needs of specific end-users in a specific situation in a local clinical
site. We caution that configurability must be considered throughout
the innovation process to ensure encompassing configuration before
use and appropriate flexibility to configure the system in use.
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Surrounded by the hype around AI, I started my PhD in December
2020. During this journey, the hype became louder and louder (look-
ing at you, Large Language Models), and my experiences with AI in
clinical practice became bleaker and bleaker. After the ethnographic
work and observing how radiologists work across clinical contexts
and across countries, I learned virtually no AI-based systems were
actually used in practice. I could not help but think, how is it possible
that the technology that is said to disrupt virtually every aspect of our
lives is barely even used in radiology - one of the most technology-
embracing specialities in healthcare?

Within this project, I was given an opportunity to investigate the
reasons behind the low use of AI and act on them from the very begin-
ning of an innovation process. I actively participated in shaping the
data creation, engaged with real-world medical practices, designed
tools and prototypes based on insights from practitioners, and evalu-
ated them in practice. Furthermore, my involvement in the AI4XRAY
project enabled me to challenge conventional approaches to AI sys-
tem development typically seen in the Global North. From the very
beginning of the project, I focused my work on crossing boundaries
and borders, looking for ways that AI can be beneficial across con-
texts beyond the confines of a single hospital in Denmark.

The essence of this thesis lies in its unapologetic commitment to in-
novating an AI-based system driven by clinical usefulness. In Section
5, I presented a comprehensive understanding of clinical usefulness
that guided all the other contributions. To recall its definition, it is an
overarching quality of AI-based systems emerging from the interplay
of their real-world performance, clinical efficacy, and organisational
acceptance in a situated clinical context for specific end-users. I also
explored how researchers in AI, health, and HCI domains understand
and contribute to achieving these constituting qualities. Finally, I con-
tributed to the conceptualisation of clinical usefulness from four new
angles.

1. I conceptualised how the expectation of real-world performance
depends on the intended use of AI. Particularly how the empha-
sis on the real-world performance of AI increases, and the value
of explainability decreases with the increasing AI agency.

2. I showed how medical datasets condition real-world per-
formance, organisational acceptance, and clinical efficacy. I
shed light on the previously invisible pre-labelling work and
foregrounded how its considerations condition the final space
of AI abilities.

43
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3. I foregrounded how broadening AI design space enables organ-
isational acceptance and clinical efficacy. Specifically, based on
grounded envisioning, I conceptualised AI support functionali-
ties that transcend the traditionally evaluated (in radiology) sec-
ond opinion.

4. I explored how configurable AI enhances organisational accep-
tance and clinical efficacy. This work showed that even well-
thought functionalities need to be configured in relation to so-
cial dimensions of clinical work to provide value to end users
in practice.

Moreover, I hope this thesis may inform future research and practi-
cal innovation projects in clinical AI. Like my studies supported the
AI4XRAY project, the answers to the four research questions in this
thesis may support the innovation of clinically useful AI-based sys-
tems.

rq1 : what are the challenges of realising ai in clini-
cal practice?

I answered this question in Paper I, where we conceptualised five
challenges that originate from the dependencies between the social
and technical aspects of AI use in clinical practice. The dependencies
spanned: training data & ML model and user & system use, system
integration & data used and workflow & organisation, user interface
and user & system use, user & system use and ML-based system, and
healthcare institution & political arenas and use of ML-based system.
In this paper, we explored how the challenges of realising AI do not
stem from singular issues, like explainability, but are a product of
interlinked dependencies. We argued that to address them, there is
a need for earlier, closer, and more frequent collaboration between
researchers and practitioners from HCI, AI, and health. Additionally,
we proposed that early exploration of ideas in clinical practice, e.g.,
through design interventions, could reveal insights typically acquired
after a system has been deployed. This, in turn, could enhance the de-
velopment of a cohesive vision for the AI-based system, ultimately
increasing its chances of being clinically useful.

rq2 : what factors condition the creation of training

data?
In Paper II, we conceptualised five factors that affect the creation of

medical datasets. The factors divided between external and internal
to the process of labelling spanned regulatory constraints, the context
of creation and use, commercial and operational pressures, epistemic
differences, and limits of labelling. We deconstructed how these fac-
tors affected what data could be collected, the purpose for which it
could have been used, and the design of ground truth schemas used
to label the data. These very real consequences fundamentally influ-
enced the final shape of medical datasets used for AI training, thus
conditioning the capabilities of future AI-based systems.
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rq3 : what are the opportunities for ai support in chest

x-ray practice?
This question motivated the work described in Paper III. When

conducting observations of chest X-ray practice across clinical sites
in Denmark and Kenya, we witnessed five problems that afflicted
the work of radiologists. These problems prompted our participants
to envision five ways AI could help radiologists at work. The visions
included distributing examinations by user’s expertise, detecting
medical emergencies, providing decision support on subtle and
difficult cases, measuring visual features and comparing changes
across historical examinations, and double-checking reports against
radiographs for missed or misinterpreted findings. These visions
suggest that the design space of clinically useful AI-based support
for radiology has the potential to expand beyond the traditionally
seen second opinion. Moreover, their conceptualisation suggests
that grounded envisioning may be a relevant method to investigate
alternative opportunities for AI support in practice.

rq4 : how to configure ai-based systems for clinical use-
fulness across clinical contexts?

Paper IV directly resulted from our work on Paper III. We investi-
gated how to practically realise the conceptualised visions in line with
the progress and goals of the AI4XRAY project. To support the useful-
ness of the visions, we recognised that four key technical dimensions
of AI-based systems need to be configured in relation to the five social
dimensions of the local clinical context. First, AI functionalities must
provide value relevant to the type of intended clinical site and their
intended end-users medical expertise level. Second, the findings that
an AI-based system for radiology detects should be aligned with the
population cared for at the local clinic, end-users medical expertise
level, and the context of the patients. Third, the AI decision thresh-
old should respond to the clinical significance of the findings, end
users’ medical expertise level, current workload, and the context of
the patients. Finally, the explainable AI methods should offer visual
cues appropriate to the visual representation of explained radiologi-
cal findings.

10.1 final remarks

Together, following my own recommendation from the first paper,
I believe that the work described in this thesis embraced the inter-
disciplinary nature of AI innovation. I hope the description and use
of clinical usefulness as the leading quality of AI-based systems will
guide future collaborations. Finally, I hope that the four contributions
captured in this thesis will generally contribute to the fields of HCI,
AI, and health and, more practically, inform the innovation of future
clinically useful AI-based systems.
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exploring the generative abilities of large language

models . It should be noted that, as of February 2024, a notable
absence is evident throughout the thesis. In any of the papers, we
consider LLMs, which took both the research and popular scenes by
storm in late 2022. This, both a choice and a consequence, is related
to the AI4XRAY project, which commenced in autumn 2020. At that
time, LLMs were but one of the possible research directions and were
not considered by the project. Framing the project around imaging
data and detection steered the project away from the generative as-
pects of AI.

I believe that the contributions of this thesis are relevant regardless
of the underlying AI technology. However, I also believe that LLMs
offer unique abilities that could further enhance AI support. I see in-
vestigating how to responsibly incorporate them into clinical practice
to empower and provide value to end-users as the next critical step
in advancing healthcare innovation.

exploring interventional methods for design of ai

With the ever-faster progress of AI technologies, the conditions for
design change as well. New technologies escape traditional design
methodologies, as their final capabilities are often realised only in the
real context of use. This clashes with the traditional approaches to
evaluation in healthcare, resulting in difficulties in obtaining access,
risking discouragement of potential end-users or outright rejection
of envisioned ideas.

In my thesis, I demonstrated the significance of collaborating
with practitioners from the earliest stages of AI innovation. While
no prospective design study was conducted, I strove to engage in
practice in the real context of use. However, I see this work as a first
step towards new interventional methods for AI design. I encourage
future research to investigate methods that combine early realisation
with the flexibility of design in the context of real-world practice.
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abstract

Artificial Intelligence (AI) in medical applications holds great
promise. However, the use of Machine Learning-based (ML) sys-
tems in clinical practice is still minimal. It is uniquely difficult
to introduce clinician-facing ML-based systems in practice, which
has been recognised in HCI and related fields. Recent publications
have begun to address the sociotechnical challenges of designing,
developing, and successfully deploying clinician-facing ML-based
systems. We conducted a qualitative systematic review and provided
answers to the question: “How can HCI researchers and practi-
tioners contribute to the successful realisation of ML in medical
practice?” We reviewed 25 eligible papers that investigated the
real-world clinical implications of concrete clinician-facing ML-based
systems. The main contributions of this systematic review are: (1)
an overview of the technical aspects of ML innovation and their
consequences for HCI researchers and practitioners; (2) a description
of the different roles that ML-based systems can take in clinical
settings; (3) a conceptualisation of the main activities of medical
ML innovation processes; (4) identification of five sociotechnical
interdependencies that emerge from medical ML innovation; and
(5) implications for HCI researchers and practitioners on how to
mitigate the sociotechnical challenges of medical ML innovation.
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12.1 introduction

Artificial Intelligence (AI) is receiving growing attention from policy-
makers, scientists, and society at large, as well as massive public and
private investments, suggesting a new "AI spring" [219]. The revived
interest in AI is also happening in healthcare where the number of
publications indexed in PubMed with “AI” in their title has increased
almost tenfold in recent years [66]. In this systematic literature review,
we focus on Machine Learning (ML) algorithms–a subset of AI that
can find patterns and dependencies in complex and unwieldy data
[65] without being explicitly programmed [325]. Such algorithms, like
deep learning, random forest, and others, have been shown to outper-
form statistical models when applied to health data (see e.g. [258]).
Multiple ML models for the detection and prediction of clinical out-
comes have been validated in many disease areas, including diabetes
[137], cancer [178], mental health [325], and heart disease [258]. Lab-
based studies show that ML may provide promise for clinical practice
and clinical outcomes, e.g., predicting health outcomes for improved
clinical decision-making [246], reducing diagnostic and therapeutic
errors [97, 130, 204, 259], and obviating repetitive clinical tasks [116].

Despite the promising outlook, only few medical devices based on
ML have been regulatory approved [238] indicating that clinician-
facing ML-based systems are particularly challenging to realise in
clinical practice [82, 184]. Going the "last mile" of medical AI inno-
vation is afflicted by many challenges compared to conventional sys-
tems [82]. Unlike rule-based algorithms, whose decision-making pro-
cesses can be inspected, ML models are often criticised of the “black-
box” problem [72], i.e., obscuring the reasoning behind a model out-
put [116]. ML requires also large amounts of labelled training data
[65, 341], in contrast to conventional statistics-based algorithms. It
may also require adjusted modes of interaction, e.g., users participate
in improving the algorithm through continuous use [2], or through
the use of a system, they take part in the training of a human-in-the-
loop ML model. [158].

In Human-Computer Interaction (HCI), Human-AI interaction has
been of key interest for more than 20 years [6]. Studies have benefited
a user- and human-centred perspective in the pursuit of developing
fair, accountable, and useful computer applications that increase au-
tomation while augmenting and empowering people [299, 304]. HCI
contributions have centred on tackling Human-AI interaction issues
by developing conceptual frameworks [336], models and principles
[79, 106, 195], methods and techniques [77, 191, 345], and design
guidelines [8] for ML-based systems, as well as undertaking exper-
iments with users to empirically explore the challenges of human
and AI engagements [169].

Despite HCI’s longstanding contribution to Human-AI interaction,
many researchers voice concerns that ML-based systems are uniquely
difficult to design, develop, and deploy (see e.g. [355]) in compari-
son to traditional systems, especially in safety critical and complex
settings like healthcare [238, 253, 329]. Challenges arise on various
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levels, for example, designers, or HCI researchers and practitioners,
find it hard to understand the capabilities of ML [104, 355]; interdisci-
plinary collaborations between designers, ML engineers, and clinical
domain experts require more work than usual [354]; early feedback
for iteration is often unavailable in the development phase [77, 356];
and the unpredictable outcomes of ML models or “imperfect algo-
rithms” make it difficult to obtain purposeful and trustful interfaces
for prototyping ML [191, 355]. Many issues arise because of the dy-
namic nature of ML models and the challenges of interdisciplinary
collaboration in the innovation process of designing, developing, and
deploying ML-based systems. These issues have been attributed to in-
herently different methodological approaches among researchers and
practitioners from HCI, ML, and Health [43, 132, 343, 355] and the
lack of mutual understanding, shared conceptual frameworks, and
well-established interdisciplinary methods and techniques [43, 132,
343, 355].

More recently, scholars have engaged with designing, developing,
and deploying ML-based systems for healthcare settings called for
revisiting and re-framing the problem of designing Human-AI inter-
action as a matter of designing an ML-based sociotechnical system [26,
82, 109, 169, 221, 253, 299, 325]. In their systematic review of HCI
literature on ML in mental health [325], the authors caution that the
development of effective and implementable ML systems “is bound up
with an array of complex, interwoven sociotechnical challenges”. Research
shows how integrating an ML-based system in a clinical setting may
result in breakages of social structures that require "repair work" [26],
and how an ML model with high accuracy in the lab was heavily im-
pacted in practice by "socio-environmental" factors like clinical work-
flows and patient experience [26]. These and several other studies
form an important emerging discourse in HCI that warns against de-
veloping ML models apart from clinician-facing systems that incorpo-
rate them and without the involvement of end-users. These systems
should rather be understood as “complex sociotechnical system[s]”,
which only become effective through an innovation process that suc-
cessfully inter-works “complex sets of people, practices, technologies, and
infrastructures” [109].

In this review, we follow the sociotechnical turn and acknowledge
the lack of well-established conceptual frameworks, models, princi-
ples, methods, and techniques supporting the interdisciplinary de-
sign, development, and deployment processes of clinician-facing ML-
based systems. Our analysis builds on literature that qualitatively ex-
plores real-world implications of clinician-facing ML-based systems
and engages with the issues encountered during medical ML inno-
vation. Throughout the paper, we use innovation to describe all the
activities from the conception of an idea for an ML-based medical
system to its use "in the wild" [284]. We posed 6 research questions
(RQ) to guide this review and form a basis for our contributions: a
conceptual framework (1-4) to support medical ML innovation, and
opportunities (5) for how to tackle challenges faced during the reali-
sation of clinician-facing ML-based systems.
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1. Overview of the technical aspects and their consequences for
HCI researchers and practitioners
RQ.1 What kind of health data, ML algorithms, integration methods,
and ML development approaches are present across the literature?

2. Description of the different roles that ML-based systems can
take in clinical settings
RQ.2 What are the intended uses of ML-based systems in clinical set-
tings?

3. Conceptualisation of the main activities of the medical ML in-
novation process
RQ.3 Which main activities were reported, and what were their pur-
poses in the ML innovation processes?
RQ.4 Who were the end-users and other stakeholders, and how were
they involved in the ML innovation processes?

4. Identification of five key sociotechnical interdependencies that
emerge from medical ML innovation.
RQ.5 Which sociotechnical challenges were encountered during the
use of medical professional-facing ML-based systems?

5. Implications and opportunities for HCI researchers and practi-
tioners on how to navigate and contribute to the complex col-
laborative space for innovating such novel systems.
RQ.6 How can HCI contribute to the medical ML innovation processes

In the following section, we describe the systematic review method.
The results section includes four main sections where we analyse data
extracted from the included articles to address the research questions.
We follow the results by contextualising them within the broader HCI
literature. Lastly, we highlight five opportunities for HCI researchers
and practitioners: how to engage in interdisciplinary collaboration
during the ML innovation process; and how to tackle the sociotechni-
cal challenges that afflict it.

12.2 materials and methods

12.2.1 Search strategy

The literature search was completed on April 7, 2021. We searched
three databases: ACM DL, PubMed, and arXiv. Given the transla-
tional nature of our focus, we included outlets aggregating studies
from Computer Science, Health, and unpublished work. We included
all types of publications written in English and did not constrain the
publication date. To include the widest possible array of studies, we
constructed queries for each of the databases in collaboration with
an information specialist from the Royal Danish Library. Respective
queries are attached as appendices A.1.1 – ACM DL, A.1.2 - PubMed,
and A.1.3 – arXiv. The queries returned 9,672 publications eligible for
screening (ACM = 4109, PubMed = 5561, arXiv = 37). We included
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one external publication that was not returned by the queries but
was known to the authors of this paper. It was submitted to JMIR in
January 2021 and accepted in October 2021.

12.2.2 Selection process

The selection process took place between April 7, 2021, and Septem-
ber 23, 2021. Five authors took part in the process (HDZ, DL, XD,
FK, TOA). We used Rayyan.ai [254] to conduct the screening process,
which comprised 3 phases. A flow diagram of Preferred Reporting
Items for Systematic reviews and Meta-Analyses (PRISMA) [255] of
the process can be seen in Figure 7. The selected articles had to meet
six inclusion criteria described in Table 6. Ultimately, 25 publications
were selected for the review.

Figure 7: A PRISMA flow diagram of the literature search and study selec-
tion
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Table 6: Eligibility criteria.

criterion inclusion exclusion

Machine
Learning-based

Studies that described sys-
tems that used machine learn-
ing. We considered machine
learning as algorithms that
make predictions or decisions
without being explicitly pro-
grammed [194, 325]. Relevant
algorithms included but were
not limited to neural net-
works, random forests, ge-
netic algorithms, Bayesian net-
works, support vector ma-
chines.

Studies that described rule-
based systems, knowledge
bases, or conventional sta-
tistical models that rely on
domain experts to “specify the
variables that are relevant for a
particular analysis.” [325]

ML produces
relevant medical
outcomes

Studies that described medi-
cal systems affecting patients’
clinical outcomes e.g. patholo-
gies detection, treatment sug-
gestion, and health state pre-
diction.

Studies that described medi-
cal systems that were not di-
rectly related to patients’ clin-
ical outcomes e.g. cost estima-
tion, designing and following
medical guidelines, adminis-
trative task automation, Inter-
national Classification of Dis-
eases (ICD) codes prediction,
or model comparisons.

Investigates
implications for
clinical practice

Studies that reported on impli-
cations of ML-based systems
for clinical practice, e.g., eval-
uation of a system in use [334],
perspectives on interaction de-
sign in the context of clinical
use [67], and investigation of
barriers to successful clinical
use [261].

Studies that focused on an
ML-based system outside of
the scope of clinical use, e.g.
solely in a patient’s home [94].

Includes some
version of the
system

Studies that included a sys-
tem, prototype, or a mock-up
thereof. Any data created in
relation to ML should stem
from interactions with a con-
crete system.

Studies that described theoret-
ical and non-realised systems.

Collects sub-
jective and
qualitative data

Studies that reported on in-
formation about sociotechni-
cal aspects of ML implementa-
tion in healthcare.

Studies that reported solely on
technical metrics.

Involves medical
professionals

Studies that involved health-
care professionals.

Studies that included only pa-
tients, administrative staff, IT
specialists, or dentists.

12.2.3 Data extraction and synthesis

In our analysis, we strove to follow qualitative systematic review prin-
ciples [58, 99]. Our first working principle was iteration. Due to the
nature of the sought-after insight, we were unable to extract all the
data using pre-piloted forms. Instead, HDZ and TOA conducted a
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preliminary analysis of several relevant articles using the construct-
ing grounded theory approach [74] in NVivo 13 (QSR International).
The two authors coded line-by-line excerpts relevant to the inclusion
criteria and the research questions. No code book was present and
ambiguous excerpts were coded. Interpretative categories resulted
from axial coding. Not all of the initial codes were assigned to a con-
ceptually richer category. At the end of the preliminary analysis, we
created an open codebook that served as the starting point of the
main analysis and the initial research questions.

During the main analysis, we followed the procedure from the pre-
liminary stage and used the previously developed codebook to in-
crease code fidelity. The open coding was followed by an axial cod-
ing phase, which resulted in several levels of grounded concepts. We
did not limit ourselves to the pre-existing categories but rather used
them to search for previously unmentioned concepts. Throughout the
review process and especially during synthesis work, we repeatedly
returned to the original texts to extend and modify the codebase. We
sought for the first-level codes to be grounded in the data instead of
our interpretation. This was especially important towards the end of
the analysis, as our understanding of the described phenomenon was
deeper, and we were abstracting the data. Hence, we continuously
compared the codes against the corresponding quotes to ensure their
verity.

Based on the first-level codes, we produced several high-level syn-
thetic categories like "data and feature quality" and "accuracy and
performance". We followed an iterative process of coding, refinement,
reorganisation, and redefinition. For example, when analysing so-
ciotechnical challenges, we moved between creating synthetic cate-
gories and grouping into sub-insights, followed by adding an inter-
pretive layer to the themes that emerged, e.g., "AI algorithms and
data" became a relation between "Training Data & ML Model and
User & System Use." During the overall analysis process, we continu-
ously revisited the main research questions as new insights emerged.
We did this to ensure a connection between the data and the findings
that we deemed relevant and interesting for HCI. Meetings between
three authors (HDZ, TOA, FK) to discuss the synthetic categories,
their underlying codes, and the relationships between them formed
the backbone of the process. In our discussion, we took a reflexive
stance to remain critical of our interpretation and to stay true to the
original authors’ meaning.

12.3 results

12.3.1 Studies Overview

Included articles targeted predominantly Health outlets. Out of 25

included publications, 13 were published in Health Informatics, 4 in
Health, 6 in Human-Computer Interaction, and 2 in Machine Learn-
ing outlets. A majority of the articles were published in 2020 (11),
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followed by 2019 (6), 2021 (3), 2017 (2), 2018 (1), 2014 (1), and 2004 (1).
The total distribution can be seen in Figure 8.

Figure 8: A distribution of the included articles grouped by publish year
and highlighted domains

The 25 included articles describe 23 distinct clinician-facing ML-based
systems, as shown in Table 7. The only system described in more
than one publication that met our criteria was Sepsis Watch [290, 301,
302]. Although medical specialities in focus were not always explicitly
stated in the article text, we derived them based on the authors’ de-
scription of (1) the place of the study - clinical facility or department;
(2) the focal condition; and (3) the involved medical professionals.
We did not find a medical speciality that was more receptive to ML
innovation than others. The speciality targeted by most systems (3)
was emergency medicine, and 5 systems were classified as targeting
interdisciplinary settings.

Table 7: Overview of included studies. Authors’ evaluation denotes origi-
nal authors’ high-level assessment of the overall results of a study.
Adoption refers to systems in clinical use and comprises two types:
low and high, which denote the degree to which the majority of the
end-users used it in their daily practice. Response refers to systems
at a stage before clinical use and comprises two types: positive and
mixed, which reflect users’ sentiments towards the systems.

author medical

speciality

intended use ml output system status authors’
evaluation

Barda et al. [22] Paediatrics Prioritisation
Decision sup-
port

Prediction
(Overall mortal-
ity risk)

Pre-
deployment
Prototype

Positive
responses

Baxter et al.
[25]

Internal
medicine

Prioritisation Prediction
(Overall un-
planned read-
mission risk)

In clinical use
Operational
system

Ineffective
adoption

Beede et al. [26] Ophthalmology Automation
(Issuing refer-
rals)

Detection and
severity rating
(diabetic
retinopathy)

Deployment
Operational
system

Ineffective
adoption

Benda et al.
[28]

Interdisciplinary Prioritisation Prediction
(potential cost
and care needs)

Pre-
deployment
Mock-up

N/A
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Table 7

author medical

speciality

intended use ml output system status authors’
evaluation

Brennan et al.
[57]

Surgery Decision sup-
port
(Risk assess-
ment)

Prediction
(Eight types of
postoperative
complications)

Deployment
Prototype

Mixed
responses

Cai et al. [68] Laboratory
medicine
Oncology

Decision sup-
port
(Diagnosis)

Detection and
severity rating
(Prostate cancer)

Pre-
deployment
Prototype

N/A

Cai et al. [67] Laboratory
medicine
Oncology

Decision sup-
port
(Case-based
reasoning)

Similar historical
cases
(Prostate cancer)

Pre-
deployment
Prototype

Positive
responses

Cho et al. [80] Clinical care Prioritisation
Decision sup-
port
(Prevention
of adverse
effects)

Prediction
(Falling risk)
Intervention rec-
ommendations

In clinical use
Operational
system

Mixed
adoption

Gastounioti et
al. [122]

Vascular
medicine

Decision sup-
port
(Diagnosis)

Prediction
(Atherosclerosis
risk)
Similar historical
cases

Deployment
Operational
system

N/A

Ginestra et al.
[127]

Emergency
medicine

Prioritisation Prediction
(Sepsis risk)

In clinical use
Operational
system

Ineffective
adoption

Gu et al. [134] Oncology Decision sup-
port
(Case-based
reasoning)

Similar historical
cases
(Breast cancer)

In clinical use
Operational
system

Positive
responses

Hollander et al.
[155]

Cardiology Decision sup-
port
(Diagnosis)

Prediction
(Acute coro-
nary syndrome
risk and acute
myocardial
infraction)

In clinical use
Operational
system

Ineffective
adoption

Jauk et al. [171] Interdisciplinary Prioritisation Prediction
(Delirium risk)

In clinical use
Operational
system

Ineffective
adoption

Jin et al. [172] Interdisciplinary Decision sup-
port
(Diagnosis,
treatment,
case-based
reasoning)

Diagnosis sug-
gestion
Intervention
suggestions
Treatment simu-
lation
Similar historical
cases

Pre-
deployment
Operational
system

Positive
responses

Matthiesen et
al. [221]

Cardiology Prioritisation
Decision sup-
port

Prediction
(Ventricular
tachycardia
and ventricular
fibrillation)

Pre-
deployment
Mock-up

Mixed re-
sponses

McCoy et al.
[223]

Emergency
medicine

Prioritisation Prediction
(Sepsis risk)

Deployment
Operational
system

Successful
adoption

Morrison et al.
[237]

Neurology Decision sup-
port
(Diagnosis)

Detection and
severity rating
(Multiple Sclero-
sis)

Pre-
deployment
Prototype

Positive
responses

Petitgand et al.
[261]

Emergency
medicine

Decision sup-
port

Compilation of
relevant medical
information

Deployment
Operational
system

Ineffective
adoption
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Table 7

author medical

speciality

intended use ml output system status authors’
evaluation

Romero-Brufau
et al. [286]

Interdisciplinary Prioritisation Prediction
(Overall un-
planned read-
mission risk)

Deployment
Operational
system

Successful
adoption

Romero-Brufau
et al. [285]

Internal
medicine

Prioritisation
Decision sup-
port

Prediction
(Diabetes risk)
Intervention rec-
ommendations

In clinical use
Operational
system

Ineffective
adoption

Sandhu et al.
[290]

Emergency
medicine

Prioritisation
Decision sup-
port

Prediction
(Sepsis risk)

In clinical use
Operational
system

Successful
adoption

Sendak et al.
[301]

Emergency
medicine

Prioritisation
Decision sup-
port

Prediction
(Sepsis risk)

Deployment
Operational
system

Successful
adoption

Sendak et al.
[302]

Emergency
medicine

Prioritisation
Decision sup-
port

Prediction
(Sepsis risk)

Deployment
Operational
system

Successful
adoption

Wang et al.
[334]

General prac-
tice

Decision sup-
port
(Diagnosis,
treatment,
case-based
reasoning

Diagnosis sug-
gestions
Intervention rec-
ommendations
Similar historical
cases
Knowledge base

In clinical use
Operational
system

Ineffective
adoption

Yang et al. [356] Cardiology
Surgery

Decision sup-
port

Prediction
(Postoperative
lifespan)

Pre-
deployment
Mock-up

Mixed
responses

Between the different Health domains, the ML-based systems deliv-
ered different types of outputs. 14 of the projects evaluated ML that
predicted a diverse set of medical events relevant to the medical spe-
ciality in focus. 4 studies focused on the use of ML to retrieve similar
historical cases, and 3 projects involved ML that detected and rated
the severity of a focal condition. Notably, the same type of ML output
was used to serve different purposes and thereby different intended
uses of ML.

Intended use can be understood as the primary purpose of an ML-
based system and the reasons for using ML to reach that goal. Below,
in section 3.3 we provide an in-depth conceptualisation of intended
uses. Across the articles, we identified 3 main intended uses of ML in
a medical setting: (1) decision support, (2) prioritisation, and (3) au-
tomation of tasks. Many of the systems supported more than one in-
tended use. 18 systems focused on decision support, 9 systems utilised
ML for prioritisation, and a single one was used for automation. This
distribution suggests that using ML for decision support in medical
settings is more mature and better understood than using ML for
prioritisation and automation of clinical tasks.

To provide an overview of the high-level results of the studies, we
reported on systems’ adoption or responses from clinical end-users.
Out of the 23 distinct systems, 12 were deployed and evaluated in
the wild. While only 3 deployments were deemed successful by the
authors, some of the remaining systems may see increased use in
the future, e.g. Jauk et al. [171] outlined several steps to increase
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adoption. Pre-deployment evaluations received better responses on
average. No system received solely negative responses. 5 out of 10

systems received positive responses, and two lacked an overall assess-
ment. We opted for the high-level results due to the high variability
of the reported metrics and their complex influence on adoption and
responses. The metrics reported in the articles included, among oth-
ers: F-score [134], time spent on a task [122], sensitivity and specificity
[134, 286], area under the receiver operating characteristic curve [57,
134], and Positive Predictive Value (PPV) [286], i.e., the probability
that disease prediction corresponds to a patient having that disease.

12.3.1.1 Intended use affects performance needs

Articles that described systems primarily used for decision support
tended to pay greater attention to the explainability of their output
rather than perfect predictive values. Providing contributing factors,
raw input data, and historical context helped clinicians to "explore
and interpret prediction results for better clinical decisions" [172] and aug-
mented their current clinical skills while providing previously un-
available resources [67, 237]. In some cases, the lack of such addi-
tional information reduced trust in the predictions [334, 356]. Sim-
ilarly, Morrison et al. [237] pointed out that simply displaying the
algorithmic decision-making process may lead to misunderstandings
and confusion among the end-users due to radically different reason-
ing between humans and algorithms.

When a system was used primarily for prioritisation, researchers
paid great attention to positive predictive value, even at the cost of ex-
plainability [301, 302] or other technical metrics, e.g., with high PPV,
even a relatively low sensitivity (67%) was deemed satisfactory [286].
Baxter et al. [25] argued that high PPV is pivotal, as false positives
require additional work and resources. A similar point was raised
by clinicians interviewed by Matthiesen et al. [221] who reported ter-
minating the clinical use of an alert in a remote monitoring system,
which had a high false positive rate. While explainability was often
not the primary quality sought after when prioritising, presentation of
additional information, e.g., raw input data, or factors that had a sig-
nificant positive and negative effect on the prediction, was considered
beneficial to the end-users [301, 302].

Lastly, automation evinced the highest reliance on predictive per-
formance among the three intended uses. In the single study that fo-
cused on this intended use, low PPV was tied to an increased need for
resources which cost had to be borne primarily by the patients [26].
However, in contrast to prioritisation and decision support, the cost of
low negative predictive value could have been even higher. After the
pilot, would the system overlook a case of retinopathy, the patient
would miss a potentially sight-saving referral.
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12.3.2 Technical Overview

Machine Learning has a profound influence on a system’s success
in the wild. Different types of ML algorithms offer varying capabili-
ties and impose varying limitations. They not only produce different
types of outputs but also reach their conclusions in different ways.
Lack of technical understanding by HCI practitioners is one of the
known challenges in the meaningful conceptualisation of ML-based
systems [355]. Based on the reviewed articles, we distinguished four
technical aspects that require varying resources and distinct consider-
ation from HCI practitioners during the innovation process: type of
the ML algorithm used, type of the data used, integration method,
and ML development approach. The overview can be seen in Table 8.

Table 8: Overview of machine learning algorithms, used data, and ML de-
velopment approach.

Data Structured
(EHR data)

Barda et al. [22] Baxter et al. [25], Cho et
al. [80], Gastounioti et al. [122], Ginestra
et al. [127], Gu et al. [134], Hollander et
al. [155], Jauk et al. [171], Jin et al. [172],
McCoy et al. [223], Romereo-Brufau et al.
[285], Romero-Brufau et al. [286], Sandhu
et al. [290], Sendak et al. [301], Sendak et
al. [302], Wang et al. [334], Yang et al. [356]

Image
(retina image, ultra-
sound image, mam-
mogram, physical
examination recording,
biopsy image)

Beede et al. [26], Cai et al. [67], Cai et al.
[68], Gastounioti et al. [122], Gu et al. [134],
Morrison et al. [237]

Text
(sociodemographic
data, insurance claims,
patient’s self reported
data)

Romero-Brufau et al. [285], Romero-
Brufau et al. [286], Benda et al. [28], Pe-
titgand et al. [261]

Time series
(defibrillator implants
transmissions)

Matthiesen et al. [221]

Machine learning Knowledge-driven
(random forest, SVM)

Barda et al. [22], Ginestra et al. [127], Jauk
et al. [171], Matthiesen et al. [221], Morri-
son et al. [237], Romero-Brufau et al. [285],
Gastounioti et al. [122]

Data-driven
(deep learning, neural
network)

Beede et al. [26], Cai et al. [68], Cai et al.
[67], Jin et al. [172], Petitgand et al. [261],
Sandhu et al. [290], Sendak et al. [301],
Sendak et al. [302], Hollander et al. [155]

Implementation depen-
dent
(bayesian network)

Cho et al. [80]

Other
(genetic algorithm, cus-
tom classifier, n/a)

Gu et al. [134], Baxter et al. [25], Bren-
nan et al. [57], Romero-Brufau et al. [286],
Wang et al. [334], Yang et al. [356], Benda
et al. [28], McCoy et al. [223]
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Table 8

Integration method Standalone application
(Web application, PC
program)

Beede et al. [26], Brennan et al. [57], Cai
et al. [68], Gaastounioti et al. [122], Jin et
al. [172], Morrison et al. [237], Romero-
Brufau et al. [285], Romero-Brufau et al.
[286], Sandhu et al. [290], Sendak et al.
[301], Sendak et al. [302]

EHR Barda et al. [22], Baxter et al. [25], Cho
et al. [80], Ginestra et al. [127], Jauk et al.
[171], Wang et al. [334]

Other
(Printouts, phone call)

Hollander et al. [155], Matthiesen et al.
[221], McCoy et al. [223], Petitgand et al.
[261], Yang et al. [356]

N/A Benda et al. [28], Cai et al. [67], Gu et al.
[134]

ML development
approach

Cohesive Barda et al. [22], Ginestra et al. [127], Gu
et al. [134], Jin et al. [172], Matthiesen et
al. [221], Sandhu et al. [290], Sendak et al.
[301], Sendak et al. [302]

Discrete Beede et al. [26], Benda et al. [28], Brennan
et al. [57], Cai et al. [68], Hollander et al.
[155], Jauk et al. [171], Morrison et al. [237]

Third-party Baxter et al. [25], McCoy et al. [223],
Romero-Brufau et al. [285], Romero-
Brufau et al. [286]

N/A Cai et al. [67], Cho et al. [80], Petitgand et
al. [261], Wang et al. [334], Yang et al. [356]

12.3.2.1 Types of medical data

Most popular machine learning algorithms are developed for specific
data types, e.g., convolutional neural networks have become domi-
nant in various computer vision tasks, whereas recurrent neural net-
works mainly are used for modelling sequential data, such as text.
Different data types pose various challenges to innovation processes.
We categorised four data types: structured, image, text, and time se-
ries. Each data type has different qualities relevant that influence the
choice of an ML algorithm, design opportunities, and in-the-wild use.

The majority of the described systems (15) used structured data
accessible through an Electronic Health Record (EHR) system. While
this data type is characterised by semantic richness and objectivity, it
often offers limited datapoints per patient. For example, Polubriagi-
nof et al. [266] assessed the quality of family history data captured in
an established commercial EHR at a medical centre. After analysing
differences between 10,000 free-text and 9,121 structured family his-
tory observations, they found that free-text notes contain more infor-
mation than structured ones. Moreover, the variance of datapoints be-
tween similar patients may also vary, e.g., "quality of the EHRs collected
in Chinese hospitals were much worse than those of the MIMIC dataset"
[172]. A final challenge when using structured EHR data is availabil-
ity. In comparison to other data types like image or text, available
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training data is sparse, which hinders progress in developing the ML
algorithms that rely on it.

6 systems utilised image data ranging from single retina images
[26] to videos from a depth camera [237]. This data type is charac-
terised by objectivity, and format consistency between patients, how-
ever, the quality of the input may vary [26]. Thanks to the wide avail-
ability of training data, ML algorithms that use image data are rela-
tively advanced and offer high performance.

5 systems relied on text data as their input. Similar to image-based
algorithms, these algorithms benefit from a plethora of training data,
which results in many high-performing models available to the re-
searchers. However, this type is also burdened with nuance and noise
that must be examined. Clinical notes are usually written by practi-
tioners under time pressure, they include a lot of abbreviations and
jargon that result in challenging transferability [145]. In the reviewed
articles, text data was accessed through public and private databases
of sociodemographic data based on a patient’s postal code or Medi-
care claims (in the USA) [28, 285, 286]. A common denominator of
these studies was the heavy influence of social determinants on their
focal conditions. A different approach was employed by Petitgand et
al. [261], who analysed patients’ self-reported data.

Lastly, a single article reported on using time series data, which,
like text data, can be described as a noisy sequence. Unlike text, time
series data suffers from limited available training data: "11,921 trans-
missions from 1,251 patients ... followed over a 4-year period." The low
number of transmissions resulted in the need for collaborative fea-
ture engineering with domain experts and low performance of data-
driven algorithms [221].

12.3.2.2 Machine learning algorithms

We divided the reported ML-based systems based on their de-
pendency on domain (i.e., medical) expertise: knowledge-driven,
data-driven, implementation-dependent, and others. Such division
not only exemplifies the varying needs — including data needs —
during the innovation process, but also, e.g., informs about their
explainability potential.

We identified 7 out of 23 ML algorithms as knowledge-driven
because they show more direct dependency on domain knowledge
elicited from experts, e.g., through feature engineering [121, 350].
Engineering informative features for available resources signifies
that these algorithms do not have to derive them implicitly from
the data. Thus, knowledge-driven ML algorithms require, in general,
smaller labelled datasets to produce accurate output. Moreover,
knowledge-driven algorithms provide substantial opportunity for
explainability, as weights associated with manually designed features
can be used to explain their output [309], e.g. "The dataset ... consisted
of 11,921 transmissions. The Random Forest ML method was selected ...
because it provided optimal results when considering the tradeoffs between



12.3 results 65

model performance and explainability ... show top five features that increase
or decrease the likelihood of [an ...] event" [221].

7 out of 23 systems used a data-driven ML algorithm. This type
of algorithm does not require direct knowledge input from domain
experts to engineer data features. Instead, it derives them from
annotations provided by domain experts [203]. Due to this, they
require much larger data sets compared to knowledge-driven algo-
rithms. Because they derive features automatically, they may not be
easily understandable to humans; hence, their output explainability
is not straightforward and remains an active research area in the
machine learning community [308]. However, in cases where domain
experts cannot be involved to a satisfactory degree or it is difficult to
analyse multi-dimensional data, data-driven algorithms offer better
performance. As remarked by Sendak et al. [301] "dataset contained
over 32 million data points ... a broad range of features, including medical
history and all repeated vital sign and laboratory measurements ... model
explainability was not prioritized ... The model extended prior work using
recurrent neural networks".

9 out of 23 articles described ML algorithms that could not have
been assigned to any of the above categories, either due to the versa-
tility of the algorithm (bayesian network [80]) or the lack of technical
description beyond claims about using machine learning.

12.3.2.3 Integration method

The third technical aspect relevant to the design, development, and
in-the-wild use is access to an ML output. In this review, we call it an
integration method. Its relevance was described by one practitioner in
the following words: "[m]ake sure that’s in their workflow. If you expect
someone to go to a third-party system or to a website, you’ve lost" [28]. The
described systems were integrated into clinical workflows in three
distinct modes: as a standalone application, within a hospital’s EHR
system, or in other (oftentimes analogue) ways.

Although 15 systems relied on EHR data as their data source, only
6 of them presented their output within corresponding EHR instances.
In fact, standalone systems prevailed as the preferred workflow inte-
gration method. 9 out of 23 systems were accessible via a web appli-
cation or a PC programme. The rest of the systems opted for alter-
native methods, e.g., Petitgand et al. [261] and Yang et al. [356] used
printouts as a way to communicate the ML algorithm’s predictions. A
single system’s output was communicated via a phone call to the at-
tending physician [223]. In a few instances, the authors did not report
in detail on the integration method.

12.3.2.4 ML development approach

ML development approach is a term we introduced to denominate the
relationship between the development of an ML algorithm and the
software embedding it. We distinguished two approaches – cohesive
and discrete. A cohesive approach informs us that the development of



66 paper i : clincian-facing ai in the wild

an ML algorithm is an integral part of the overall ML innovation pro-
cess and that it is subject to change along with the final system. Con-
versely, in a discrete approach an ML algorithm is developed prior
to and independently of the final system. In this approach, the ML
algorithm becomes a virtually immutable part of the final system.

Based on the accounts of various development activities, we con-
cluded that the cohesive approach was applied 7 times, the same
number of times as the discrete approach. Out of all the described
systems, 9 of them cannot be assigned to any of the categories. In
5 cases, the original authors did not supply enough information to
determine the approach, or the study took place before development.
Similarly, we did not assume the ML development approach of systems
supplied by third-party vendors.

12.3.3 Intended Uses of Clinician-Facing ML-Based Systems

We distinguished three overall roles of clinician-facing ML-based sys-
tems in clinical practice: decision support, prioritisation, and automa-
tion. We employed the concept of intended use to scrutinise the diver-
sity of these roles. It has also been used in the engineering domain of
medical device development, where it is an important part of receiv-
ing regulatory approval [238]. However, in the following, we used
it to encapsulate the sociotechnical intricacies of clinicians’ needs,
systems requirements, clinical utility, and its situated use. This way,
the intended use connects the technical choices described above (i.e.
ML development approach, machine learning algorithm, and integration
method) with the intended purpose of the ML-based system and its
use in clinical practice.

12.3.3.1 Decision support

A clinician-facing ML-based system designed for decision support as-
sisted healthcare professionals in decision-making within the context
of a single patient (Figure 9). The contributions of ML-based systems
during that process can vary. We recognised two main types of assis-
tance reported in the articles, which were not mutually exclusive and
were used in concord: alternative outlook and quality assurance.

Figure 9: A clinician-facing ML-based system supports clinicians at work.
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Alternative outlook denotes use cases where ML adds to the under-
standing of a patient’s condition. We distinguished five different sub-
types that stem from the reviewed articles. Quality assurance includes
any intended use where ML acts as a safety net helping providers avoid
mistakes. We distinguished three different sub-types grounded in the
reviewed articles. The types are described in detail in Table 9.

Table 9: Descriptions and examples of the intended use: decision support.

decision support : alternative outlook

ML diagnoses patients

ML helps providers make a correct diagnosis. Cai et al. [67] reported on
a system that they could consider a peer who provides a second opin-
ion about the presence and severity of prostate cancer. Similar systems,
though with less agency, were described by Gastounioti et al. [122], Hol-
lander et al. [155], and Morrison et al. [237]. In their scenarios, physicians
received the probability of specific diagnoses the systems were designed
to detect. Jin et al. [172] and Wang et al. [334] reported on more advanced
systems that predicted the probability of multiple conditions. That ability
was remarked by one of the evaluating physicians, as especially useful to
novice doctors [172].

ML finds similar historical cases

The reported accounts of ML-based systems that retrieved similar pa-
tients contributed two-fold to the diagnostic process. First, historical data
provided an outlook on similar patients’ development, alternative treat-
ment methods, or diagnoses [68, 134, 172]. Second, Cai et al. [67] reported
that physicians reflected on their judgement when the system presented
patients they did not expect to see.

ML presents available information in a new way

Morrison et al. [237] described how offering a new perspective on existing
data led to a better diagnosis. The authors achieved that by comparing
focal patient data to historical data points of a larger cohort.

ML provides new information

Brennan et al. [57], Jin et al. [172], Yang et al. [356] explored ML-based
medical systems that generated a completely new type of data. Based on
historical data, ML returned a prediction of the future state of a patient.
The prediction was bound to a focal medical intervention [57, 356] or
could be triggered by selecting an intervention to see its predicted impact
on a patient [172].

ML provides intervention recommendations

Among the reviewed applications, we discovered two types of recommen-
dations: preventive interventions and treatments. Benda et al. [28], Cho
and Jin [80], and Romero-Brufau et al. [285] described systems that es-
timated risks of certain adverse events and helped mitigate those risks.
Responses collected by Benda and colleagues conveyed that providers
accepted suggestions when the adverse event was a complex issue [28].
Similarly, Jin et al. [172] and Wang et al. [334] evaluated systems that
suggested treatments to described conditions.
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Table 9

decision support : quality assurance

ML double-checks provider’s decision

Such systems can assess providers’ decisions or diagnoses, e.g., for ad-
verse effects. This use-case was reported in two studies [172, 334]. Similar
to asking a peer for a second opinion on a diagnosis, physicians consulted
the ML to check for unanticipated adverse effects or other mistakes.

ML provides consistent diagnoses

In certain conditions, a definitive diagnosis was not possible, e.g., due to
the lack of unequivocal testing methods (sepsis [127]) or a high degree of
subjectivity in the existing ones (multiple sclerosis [237]). In such situa-
tions, ML-generated diagnoses provided consistent output that served as
a reference point for providers making a decision.

ML enhances data access

Healthcare providers had often limited time to make a diagnosis [172].
Two articles reported on clinician-facing ML-based systems that expe-
dited access to relevant health information. This was achieved by refining
condition qualities, which eased the identification of similar patients [67],
and pre-screening of patients to highlight historical information relevant
to the current condition [261].

12.3.3.2 Prioritisation

An ML-based system designed for prioritisation assists healthcare
providers within the context of multiple patients (Figure 10). It con-
ducts an individual assessment of all the relevant patients according
to predefined criteria. The outcome of such assessment is available to
medical professionals and helps them plan their work. The goal of the
ML-based prioritisation system is to alter the order of providers’ ac-
tions and highlight who needs their attention. We distinguished four
sub-categories of the types of additional information supplied by the
systems (Table 10).

Figure 10: A clinician-facing ML-based system conducts prioritisation of pa-
tients requiring attention.
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Table 10: Descriptions and examples of the intended use: prioritisation.

prioritisation

Only prioritisation

Baxter et al. [25] evaluated a clinician-facing ML-based system that pro-
vided a readmission risk score for all patients. Two of the three reviewed
systems that predicted sepsis onset did not provide any additional infor-
mation except the onset risk [127, 223]. In both cases, the attending staff
received a notification and proceeded with standard examinations and
care. Benda et al. [28] conducted a study based on a system that solely
returned a risk score. However, interviewed physicians were open to con-
sidering intervention recommendations.

Prioritisation and explanation

Four systems explained their risk scores [22, 171, 221, 290, 301, 302]. Be-
sides risk prediction, healthcare providers could use their expertise to
judge the prediction or adjust their actions based on the supplemented
explanations of the risk scores. The systems offered, among other things,
a list of the most contributing factors, e.g., test results, medications, de-
mographic data, and historical diagnoses.

Prioritisation and recommendation

Cho and Jin [80], and Romero-Brufau et al. [285] described two systems
that, in addition to risk scores of potential adverse effects, returned a list
of recommendations on how to mitigate them.

Prioritisation and explanation and recommendation

Only one of the reviewed articles reported on a system that explained its
risk prediction and provided recommendations on how to address them
[286].

12.3.3.3 Automation

When autonomous agency and authority are delegated to ML-based
systems, they may substitute instead of support medical providers in
clinical tasks of the healthcare delivery process (Figure 11). Among
the reviewed articles, only one system was described as being del-
egated such autonomy. Beede et al. [26] implemented a deep learn-
ing system capable of assessing retinal images and issuing binding
ophthalmologist referrals. Before the ML introduction, retinal images
taken at a local healthcare centre were sent for evaluation by a spe-
cialised clinician who decided whether to refer a patient to an oph-
thalmologist. The clinician-facing ML-based system was able to con-
duct such an assessment autonomously by detecting and determining
the severity of diabetic retinopathy, and issuing referrals. This func-
tionality, aimed at reducing the waiting time for patients, effectively
automated the work conducted by the specialised clinician.

12.3.3.4 Positive side effects of ML integration

The described intended uses did not account for all the effects ML-
based systems had on medical professionals and their work. ML had
a much more profound influence on work practices. We examined
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Figure 11: A clinician-facing ML-based system is responsible for a single
task of the healthcare delivery process.

three accounts of positive unintended consequences that stemmed
from the use of ML.

First, ML served as a discussion catalyst and communication
booster [127], which the care team perceived positively. Multiple
clinicians emphasised the collaborative nature of their work. Whereas
a system may be designed to support a single clinician at the time,
in reality, clinicians primarily work as a team [28]. The exact role
of the clinician-facing ML-based system within these teams differed
depending on the context. However, we discovered a few recurring
themes. Clinicians used ML output as a discussion starter about
patients highlighted by the system that needed attention [134, 285,
286]. Benda et al. [28] noted that such output could help when
discussing requests for additional resources. ML could also support
an ongoing discussion. Such output could add gravity to otherwise
ignored points raised by staff members with less expertise, e.g.,
nurses or junior physicians [26, 127, 356] or when trying to convince
a patient [26, 221].

Second, the articles reported on a learning opportunity when in-
teracting with ML – an effect that was especially prominent in the
decision support intended use. Systems supporting case-based reason-
ing were considered a means to transfer domain knowledge from
more-experienced to less-experienced clinicians [134, 172, 334]. Addi-
tionally, inexperienced medical professionals used ML’s prioritisation
and contributing factors to develop expertise and learn about the fo-
cal conditions [22, 80, 221, 302]. Clinicians also hypothesised that ex-
ploiting new forms of data visualisation provided by the ML-based
system could have research applications [237].

Third, the authors reported increased vigilance of medical profes-
sionals. In two of the studies targeting sepsis risk prediction [127,
290], clinicians argued that the presence of an ML-based prioritisa-
tion system made them more aware of the risk [301] and increased
their monitoring [127].
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author goal of the study p n m nm o it

Barda et al. [22] C Designing AI explanations

Baxter et al. [25] C Identifying barriers to AI utilisation

Beede et al. [26] I System deployment and observation

Benda et al. [28] C Identifying facilitators, challenges, and recommendations

Brennan et al. [57] C Prospective evaluation of usability and accuracy

Cai et al. [68] C Gathering pre-deployment information needs

Cai et al. [67] C Designing interactions

Cho et al. [80] C Prospective qualitative evaluation

Gastounioti et al. [122] C Design, development, deployment

Ginestra et al. [127] C Post deployment evaluation

Gu et al. [134] C Development

Hollander et al. [155] C Pre-post deployment evaluation

Jauk et al. [171] I Development and deployment

Jin et al. [172] C Design and development

Matthiesen et al. [221] C Near-live feasibility and qualitative evaluation

McCoy et al. [223] I Development and deployment

Morrison et al. [237] C Visualising AI output

Petitgand et al. [261] C Identifying post-deployment adoption barriers

Romero-Brufau et al. [286] C Pre-post deployment evaluation

Romero-Brufau et al. [285] I Design, development, and deployment

Sandhu et al. [290] C Investigating factors influencing integration

Sendak et al. [301] I Design, development, and deployment

Sendak et al. [302] I Design, development, and deployment

Wang et al. [334] C Post deployment evaluation

Yang et al. [356] C Design

Figure 12: Overview of study goals (divided between Confined (C) and In-
novation (I) types) and involved stakeholders.
P - Physicians, N - Nurses, M - Other Medical Professionals, NM
- Non-medical professionals, O - Other, IT - IT specialists. Un-
derlined numbers represent the end users of a given system. X
denotes an unspecified number of involved stakeholders. The
darker the colour of the background the more people were in-
volved in relation to other studies.

12.3.4 Stakeholders involved in medical ML innovation

The reviewed studies presented a range of different goals. To meet
them, diverse groups of stakeholders and clinical end-users were in-
volved in various ways. To support researchers and practitioners from
the HCI, ML, and Health domains in navigating medical ML innova-
tion processes, we explored the situated approaches characterised by
the heterogeneity of involved stakeholders and employed methods.
We compiled an overview (Table 12) of the studies’ reported goals
and stakeholders (divided into six professional groups). We specified
evaluations conducted in the wild as a distinct study goal in order
to highlight post-deployment evaluation as opposed to evaluations
completed during design, development, and deployment.

Among the reviewed studies, we distinguished two major types.
First, 19 confined studies explored a particular aspect of medical ML
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innovation, e.g., identifying general facilitators and challenges for a
particular vision of a system [28] or gathering pre-deployment infor-
mation needs [68]. Second, six studies described an innovation pro-
cess, i.e. covering some steps of design, development, and deploy-
ment and bringing their system into the wild [26, 171, 223, 286, 301,
302].

Innovation studies involved more diverse stakeholders compared
to confined ones. To gain a better overview of the types of stake-
holders that were involved, we divided them into six groups based
on their position and background, reported their numbers, and high-
lighted which groups were the intended end users of the systems.
While all of the studies involved relevant end-users and stakehold-
ers, they differed in the diversity of their participants. The confined
studies mostly involved one to two professions and focused primar-
ily on end-users. By comparison, the innovation studies involved a
more diverse group of stakeholders. On average, representatives of
3.5 groups were involved in these studies. It suggests that while it is
possible to study certain aspects of medical ML innovation, realising
ML in a clinical context is a joint effort of representatives from many
different domains.

Physicians and nurses were the most involved groups, with physi-
cians involved in all but three studies. Other medical professionals
included, e.g., radiographers or technicians, who were a part of only
three studies[26, 285, 286]. Non-medical professionals served as ad-
ministrative workers - secretaries, clerks, administration [223], man-
agers and board members [28]. Other stakeholders were people who
did not fit into any other category, e.g., statisticians [302], designers
[172, 261, 301, 302], or self-reported as "other position" [285]. Lastly,
some of the studies involved IT specialists - hospital’s information
officers [28], ML engineers [171], other professionals [171, 301], de-
velopers [261, 301], data scientists, and engineers [302]. The diversity
of involved stakeholders spotlights the breadth of medical ML inno-
vation projects and foreshadows potential challenges that may arise
from it.

12.3.5 Activities and techniques of medical ML innovation

To guide medical ML innovation processes and learn from existing
studies, we analysed the modes in which stakeholders, including
clinical end-users, participated. Overall, we found that stakeholder
participation differed across activities and input from stakeholders
was rather diverse. We conceptualised 10 unique activities that cor-
respond to 10 distinct goals described in the articles. We did this
to accommodate for the high degree of situated differences, the lack
of clarity of some of the reports, the interrelatedness of techniques
and goals, and the varying order of activities in the medical ML in-
novation process. Despite the non-standardised descriptions of the
reported activities and their varying order of application, the stud-
ies provided attainable and well-defined goals. Focusing on the goals
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allowed us to progress from fixed stages to, often parallel, activities.
Although the order in which we describe the activities may suggest
a sequential process, the activities were often overlapping or applied
across phases of design, development, and deployment. Progressing
from phases to activities enabled us to recognise the complexity and
interrelatedness of activities in the medical ML innovation processes.
The concrete deconstruction of the activities, employed techniques,
and involved stakeholders can be seen in Table 11.

Table 11: 10 synthesised activities of medical ML innovation processes de-
rived from both innovation and confined studies. Each activity in-
cludes its goal, employed techniques, and involved stakeholders.

problem framing

Goal Framing the problem space based on a situated and interdisci-
plinary perspective. Expanding understanding of the focal problem
beyond the superficial causes.

Techniques Interview: "informing the implementation of a predictive algorithm"
[28] "discussed challenges ... when making diagnosis" [172] "under-
stand complexities in addressing the problem" [302]
In-situ observation: "Observe frontline staff in clinical settings where
the problem occurs" [301]
Undefined collaboration: "assembling [a] team around the problem,"
"front-line physicians [...] work with a local innovation team to im-
prove detection and treatment of sepsis" [301]
Data analysis: "curating the data to better characterize the problem"
[301, 302]

Involvement End-users: Physicians [28, 172, 301, 302], Nurses [301]
Other stakeholders: IT specialists [28, 301, 302], Non-medical Profes-
sionals [28]

understanding current practices

Goal Understanding current work practices and mapping used technolo-
gies. It involved learning about future end-users’ goals, struggles,
and motivations, as well as locating areas that could benefit from
ML support.

Techniques Interview: "questions pertaining to current readmission workflows"
[25], "15 hours of interviews" [26], "understand how the decision
making process ... unfolds" [356] (in [357])
In-situ observation: " to ... understand the eye screening process" [26],
"to understand the clinical workload" [221], "user-centered observa-
tions, workflow-mapping ... were conducted to determine how best
to incorporate the tool into existing workflows" [285], "how an im-
plant decision is reached across many clinician roles and contexts"
[356] (described in [357])
Undefined collaboration: "collaborated ... to map local workflows"
[286], "working with front-line clinicians to understand ... the care
delivery process" [302]
Undefined work: "assessments ... to determine how best to incorpo-
rate the tool into existing workflows" [285]

Involvement End-users: Physicians [25, 221, 285, 302, 356], Nurses [25, 26, 285,
302], Other Medical Professionals [25, 285], Non-medical Profession-
als [25]
Other stakeholders: Undefined [286]

defining needs and requirements
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Table 11

Goal Devising high-level requirements for the new ML system. Clarify-
ing assumptions and shaping the future work direction.

Techniques Interview: "to understand pathologists’ needs" [67] "they expressed
a desire for ... they wished the tool to..." [172]
Mock-up experimenting: "paper prototypes ... to understand pathol-
ogists’ needs" [67]
Workshop: "to understand the information ... they ... use in their
decision-making.", "[rapidly sketch their ideas] ... to discuss and
clarify requirements." [237]
Undefined collaboration: "requirements ... specified in collaboration"
[122] "invested ... effort into gathering requirements" [301]

Involvement End-users: Physicians [67, 122, 172, 237], Nurses [301]
Other stakeholders: Physicians, Other Medical Professionals, Other,
IT specialists [301]

system design

Goal Refining, clarifying requirements, materialising future solutions,
and developing a working vision. A platform for discussion and
early testing of the future system.

Techniques Workshop: "a guided group review and critique of ... prototypes"
[22], "repeatedly met with ... nurses to iterate on functions, informa-
tion, control, and visual components of the design" [301], "co-design
... focusing on ... sketching the user interface" [221]
Prototyping: "created ... functional prototypes and iterated on
[them] with further feedback" [67], "an interactive ... prototype ...
was demonstrated to ... refine the initial requirements" [172], "pre-
senting the design ... opportunity to try the app" [237]
Design feedback: "present a set of visualisations" [237], "iterated on
the design based on feedback" [356]
Interview: "we informally interviewed nine neurologists and asked
them to discuss three potential visualisations" [237]
Survey: "a questionnaire to indicate preferred design options" [22]

Involvement End-users: Physicians [22, 67, 172, 221, 237, 356], Nurses [22, 301]

new workflow design

Goal Conceptualising the future work practice with the new system as
an integral part of the new workflow.

Techniques Undefined collaboration: "interdisciplinary team ... designed a work-
flow" [290], "collaboration ... to finalize workflow decisions" [301],
"collaborated ... to identify how to ... integrate the tool" [286], "a
transdisciplinary team ... designed the ... workflow." [302]
Team decision: "To situate a DST into the current VAD decision-
making routine ... we chose the ... meetings" [356]

Involvement End-users: Physicians [286, 356], Nurses [290, 301, 302]
Other stakeholders: Physicians, Non-medical professionals, IT spe-
cialists [290, 302]

ml model development

Goal Sensitising development team to domain knowledge and informing
the ML model development.
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Table 11

Techniques Interview: "probes regarding ... the model including external rules
and regulations, internal organization, clinical content" [28], "to enu-
merate diagnostically important concepts" [67],
Workshop: "Feature engineering was carried out ... during five co-
design workshops." [221]
Focus groups: "feedback ... reported to the ... developers during fo-
cus groups" [261]
Previous implementations: "sensitivity ... was determined a priori and
informed by our experience with EWS 1.0" [127]
Delphi method: "attribute weights elicited from experts using a Del-
phi method" [134]
Data-focused collaboration: "[data-generating examinations] were cho-
sen by our MS expert clinicians" [237] (in [192]), "Clinical experts
specified and reviewed .. all [the used] data" [302], "the department
of nursing [requested removing a data point]" [80]

Involvement End-users: Physicians [28, 67, 134, 221, 237, 261, 302], Nurses [80,
261, 302]
Other stakeholders: Non-medical professionals, IT specialists [28]

system development

Goal Realising the complete system through progressing from concepts
and ideas to an operational system. Includes parts of solution con-
ceptualisation, new workflow design, and ML algorithm develop-
ment.

Techniques Pilot study: "to assess the usability and accuracy ... using a simu-
lated workflow" [57], "comments ... during ... expert group meetings
before and during the pilot", "the expert group suggested improve-
ments ... and new functionalities ..." [171]
Iterative development: "cycles to evaluate processes and incorporate
clinical feedback" [223], "iterations that explore the best way to com-
municate visually sensed data" [237], "feedback loops were crucial
to improving Sepsis Watch" [302], "reviewed multiple versions of
the user interface", "clinicians specified the most relevant informa-
tion to accompany the risk level" [301]
Case study: "to validate ... the refinement mechanisms", "how SMILY
... affects user experience and search practices during a medical
task." [68], "provide evidence [of] the usefulness of the system."
[172]
Interview: "usefulness, ease of use, general pros and cons of the pro-
totype system, visualization designs, and insights" [172]
Survey: "regarding the usability of the algorithm and web interface"
[57]

Involvement End-users: Physicians [57, 68, 171, 172, 223, 237], Nurses [171, 302]
Other stakeholders: Non-medical professionals [223]

deployment preparation

Goal Anchoring a vision of the new system within the organisation, in-
forming end-users about the upcoming changes, training affected
staff in the use of the new system and preparing the technical in-
frastructure for the eventual deployment.
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Techniques Training session: "training necessary for effective human-AI collab-
oration" [68], "guidance on how to use [the system]" [80], "various
training sessions" [171], "education sessions to train ... on the proper
uses" [223], "in the program workflow and application" [290], "one-
on-one training sessions" [301]
Training materials: "preparing training materials" [286], "collabora-
tion ... to develop training material", "A “Model Facts” sheet" [301]
Promotion: "via emails" [127], "promoted the application through-
out all participating departments" [171], "in faculty meetings and
via email" [290, 301]
Undisclosed training: "training staff" [286], "instructed to consider
the list of recommendations" [285], "educated on the model’s aggre-
gate performance measures" [290]

Involvement End-users: Nurses [68, 80, 127, 171, 285, 290, 301], Physicians [127,
171, 223, 285, 290]

deployment

Goal Physical installation of the system, transitioning to the new work-
flow. Supporting affected staff members, solving problems encoun-
tered after increased real-world usage, and assessing the new sys-
tem’s effects.

Techniques Continuous feedback: "weekly feedback phone calls" [26], "quality
improvement team met regularly" [223], "formal and informal lines
of communication" [301]
Gradual deployment: "some oncologists have begun to use the system
on trial" [134], "During this cycle ... implemented into ... ED" [223],
"rolled out to a small group of RRT nurses" [301]
Parallel workflows: "use of the [ML] scores ... [and] continuing
standard procedure" [223], "A 3-month silent period" [302]

Involvement End-users: Physicians [134], Nurses [26, 223, 301]
Other s‘takeholders: IT specialists [301]

evaluation

Goal Measuring staff’s acceptance level, sentiment, and actual use of the
new system. Although it is not strictly an improvement initiative, it
includes collecting feedback for future developments. Usually the
final activity of a development process.

Techniques Survey: "The first survey ... after launching the service", "The second
survey ... 9 months later." [80], "user acceptance ... using question-
naires seven months after implementation" [171], "end-user satis-
faction ... questionnaire" [122], "web-based questionnaires to assess
clinician perceptions" [127], "a survey of the users" [134], "[a sur-
vey] after completion of the trial" [155], " user acceptance ... using
questionnaires seven months after implementation" [171], "the post
intervention survey" [285]
In-situ observation: "Observations focused on ... the use of systems"
[334]
Interview: "The interviews focused on ... user experience and per-
ceptions of [the ML-based system]" [334]

Involvement End-users: Physicians [122, 127, 134, 155, 171, 285, 334], Nurses [80,
127, 171, 285]
Other stakeholders: Other [285]

Similar to the conceptualisation of activities, the accounts of tech-
niques varied in naming conventions and description styles. To pro-
vide a more general overview, we interpreted the use of tools and
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techniques and grouped them into categories. The authors’ descrip-
tions differed in their degree of detail. The descriptions that were
more abstract were categorised as undefined collaboration, e.g., "collabo-
rated ... to identify how to ... integrate the tool" [286]. Perhaps due to their
goals or varying target audiences, some articles offered in-depth de-
scriptions, while others were limited to a few words about the essence
of their technique, e.g. "[used] paper prototypes ... to understand pathol-
ogists’ needs" [67] vs "requirements ... specified in collaboration" [122],
which were reported in two confined studies, in the defining needs
and requirements activity. Interviews were the most used technique -
reported in 7 of the activities. The remaining activities that did not
incorporate it were new workflow design, deployment preparation, and
deployment. The second most used technique was workshops - pre-
sented throughout three activities: defining needs and requirements, sys-
tem design, and ML algorithm development.

While undefined or informal techniques were present throughout
most of the studies, they were used to a greater extent in the articles
describing innovation studies. This could be linked to the fact that
the innovation studies more closely resembled real-world innovation
processes, and involved more diverse groups of stakeholders. We ob-
served that undefined collaboration was present in the following ac-
tivities: problem framing, understanding current work practices, defining
needs and requirements, and new workflow design. Most of these activ-
ities involved diverse groups of stakeholders. Moreover, they took
place before a coherent vision for the future system was ready. At
the time of their execution, there were no complete systems, realised
designs, or clinical decisions, which may have imposed more abstract
modes of collaboration. This suggests that there may be fewer dissem-
inated methods and techniques for collaboration during medical ML
innovation.

12.3.6 Sociotechnical Challenges

In this section, we present five sociotechnical challenges that emerged
from the studies. As a way to disambiguate the intimate connections
between the technical and social, we discuss five interdependencies
that emerge as particular challenges for the innovation of clinician-
facing ML-based systems. We can analytically distinguish between
three technical and three social areas where problems with the ML-
based medical systems were rooted (Figure 13). The technical areas
were (i) training data & ML model, (ii) system integration & data
used, and (iii) user interface. The social areas comprised (iv) users &
system use, (v) workflow & organisation, and (vi) healthcare institu-
tion & political arenas. While problems may be categorised according
to where they are rooted, we found that challenges emerge from being
sociotechnically constituted and cannot be analysed detached from
their context. These relationships suggest that using measures that
tackle only one of the aspects may not be enough and that more com-
prehensive actions during the ML innovation process may be needed.
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Figure 13: Five sociotechnical interdependencies of clinician-facing ML-
based systems’ innovation.

12.3.6.1 Training Data & ML Model <—> User & System Use

Poor training data quality and inadequate ML models were described
as causing challenges during clinical use. Across the studies, we
found three characteristics of poor quality training data: quantity,
consistency, and comprehensiveness. For example, clinicians re-
marked that "the quality of the EHRs collected in Chinese hospitals were
much worse than those of the MIMIC dataset [an open data set]" [172].
They explained that the low quality of local training data was due to
missing and inconsistent data points. Moreover, because clinics were
only starting to use digital EHRs, not all of the data was digitalised,
which reduced the possibility of longitudinal analysis. Interestingly,
even when the data was recorded, access to codified, quantified, and
structured data could be limited, as described by Romero-Brufau et
al. [286]. Lastly, challenges arose when some of the data were not
considered during modelling e.g. patient individual information
[334], or social stressors like unemployment or loss of a family
member [25, 285].

The above examples resulted in modelling issues, poor precision
and alignment with clinical reasoning, which negatively affected how
useful clinical end-users perceived the systems. Weakness in mod-
elling the complexities of healthcare work manifested as unduly gen-
eral and simplistic recommendations that did not provide new in-
sights. These complaints were described as, e.g., “the physicians in-
terviewed considered that the AI-based system was ... very poor at making
sense of multicomplaint conditions (pain throughout the body, pain related
to severe pre-existing conditions, etc.).” [261] or returning not useful in-
formation like “a high-risk prediction for a sedated and paralysed patient”
[22]. In such cases, the ML output not only led to no change in clini-
cal action [127] but also connoted that ML does not “understand” the
clinician’s job [285] and undermined its perception of usefulness [22].
Several studies also described issues with the low accuracy of the
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ML models. For example, inaccurate classification of standard-risk
patients as high-risk patients led to dissatisfaction among health pro-
fessionals in primary care [285] and low accuracy in sepsis detection
led to significant alarm fatigue [301, 302].

These findings indicate that technical factors like training data and
ML models are highly bound to the social or human elements, such
as clinicians’ experiences. For example, inconsistent training data gen-
erated "concerns", and inadequate models led to "confusion". This
means that training data and machine learning models need to be
understood as interdependent with clinical end-users and their use
of the ML-based system. In other words, training data and models
may have seemed promising in the lab. Yet, when exposed to clini-
cians in real-world situations or simulated workflows, it became overt
whether the quality of the training data was good or bad and whether
the ML models were adequate or not.

12.3.6.2 System Integration & Data Used <—> Workflow & Organisation

While challenges may be rooted in training data and ML modelling,
issues also arose from systems’ integration and real-world data avail-
able after deployment. Several studies described how these techni-
cal challenges negatively affected local clinical workflows. Across the
studies, we distinguished four types of system integration issues and
real-world system performance that affected the flow of work.

First, issues with integration of the ML-based system into the ex-
isting suite of technological solutions [80, 122, 134, 261, 285, 334,
356]. Second, integration issues affected quality of the available
data, e.g., a system investigated by Wang et al. [334] lacked a con-
nection to the local pharmaceutical system, which resulted in the use
of outdated prescriptions. Similarly, Matthiesen et al. [221] reported
on possible structural data differences on a patient level, i.e., medical
devices feeding data to the AI-based system could have been config-
ured to detect and transmit only certain events. Third, the real-world
data affected ML performance, which caused challenges to the work-
flows and organisations [22, 26, 285, 301, 302] e.g. algorithm using
real-world data significantly increased the number of false positives
[301, 302] or real-world images could not be graded in 21% of all
cases [26]. Lastly, untimely delivery of ML output decreased its use-
fulness. Several studies described temporal issues afflicting system
integration. For example, poor timing was an issue that manifested
through notifications arriving “too late" [28, 155], or pertaining to an
already diagnosed patient [127], which was perceived as irrelevant
“in-the-moment" of the current workflow [67].

The above-mentioned integration issues had several repercus-
sions on the flow of work at the clinical sites. In the study by Beede
et al. [26], the real-world integration introduced a new image quality
check that increased the average time needed to screen one patient.
Local contextual issues like poor lighting conditions, which always
had been a factor for nurses taking photos, “but only through using the
deep learning system did it present a real problem, leading to ungradable
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images and user frustration”. For example, the availability of dedicated
rooms, inconsistent screening procedures, and a high number of
patients had consequences on how useful the underlying ML model
and system were found. Similarly, Sandhu et al.’s [290] account
of how physicians in the emergency department had difficulties
with aligning the team-based approach (physicians, nurses, and
residents) with sharing new information coming from the ML output
and system: “For me to have to track them both down to give them that
information would be burdensome and that’s what would get in the way of
flow in the [emergency department]”.

Moreover, issues of poor performance on real-world data related
directly to increased workload and being overburdened. Medical pro-
fessionals were often concerned about the additional time that was
necessary to operationalise the ML-based systems. In the world of
understaffed and underfunded clinics, spending additional time on
data entry [285, 334], overthinking [67] or outright pursuing wrong
diagnoses suggested by the system [261], waiting for ML output [122],
or filtering through a sea of false-positive alerts [301, 302] completely
disrupted so-far functioning work practices, and shifted clinician’s
attention from patients to the systems. Clinicians from two studies
warned against an over-utilisation of healthcare resources [28] and
painted a picture where not all of the required bedside assessments
would be possible [223]. The additional costs of complying with rec-
ommended clinical actions were of concern to nurses in the study by
Cho et al. [80], who observed that some of the recommendations by
the ML-based systems were deliberately ignored.

These findings suggest that while the underlying ML model and
system may prove to have promising performance in laboratory set-
tings, success in clinical practice hinges on the quality of integration,
interoperability with other IT systems, and access to good-quality
data when the ML-based systems are deployed. This means that the
technical aspects of the ML-based system needs to be considered as
interdependent with workflows and real-world contextual factors like
clinical staff, build environments, and monetary resources.

12.3.6.3 User Interface <—> User & System Use

The third technical area from where problems emerged was the user
interface of an ML-based system. More than two-thirds of the studies
described critical issues with the user interfaces and the interpretabil-
ity of the ML output. Among them, we identified four main types of
problems. First, missing or poor explanations and failing to present
reasons for the ML-based output negatively affected the use of the
systems. For example, exposing intricacies of algorithmic decision-
making that were incomprehensible to clinicians [237], triggering ML-
based alerts of severe sepsis and not providing reasons for the result
[127], or presenting predictions of diagnosis without revealing the
impact of historic data [172] created issues with the utilisation of the
output. Second, we observed that interactive ML models could be
too captivating. For example, some clinicians interacted with the ML-
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based systems by choosing relevant features and receiving updated
predictions to test their hypotheses [22, 67, 127, 172], however, some
clinicians cautioned against "going too deep down a tangential rabbit
hole" [67]. Third, missing contextual patient information alongside
the ML output surfaced as a critical issue in several cases e.g. when
minimal patient information was missing for assessing the clinical
relevance of a prediction [22] or when the ML-output alone was not
enough to support clinical action [290]. Fourth, poor presentation
of the ML output in the user interface created interpretation issues.
The issues occurred when presenting: multiple risk scores at the same
time [25]; risk predictions in exact percentages instead of broader risk
categories [221]; or too many confounding features [67]. Providing
clear, understandable, clinically relevant, and actionable output was
regarded as essential for utilising the system’s output [28, 67, 171, 221,
237].

Such issues with interpretability, interactivity, and presentation af-
fected clinicians and the ways they used the systems. Physicians’
trust in the system deteriorated due to poor explainability and
black-box issues, e.g., “[w]e sometimes hesitate to trust the machine learn-
ing models because they usually fail in providing reasons” [172]. The dis-
trust was deepened by not displaying contextual patient information.
Clinicians reported the need for more individual and cohort informa-
tion to assess the relevance and to trust the predictions: "Historical
events can provide evidence for us to determine whether the prediction is
trustworthy” [172]. Similarly, nurses that received a sepsis alert were
uncomfortable making decisions based on the minimal patient infor-
mation available [290], and electrophysiologists’ interpretation of risk
predictions were, in some cases, dependent on contacting the patient
for more information [221]. In paediatrics, clinicians lacked patient
information like current disease state or baseline risk to assess the
clinical relevance of the predictions [22]. In this way, the interpretabil-
ity of the algorithmic ML output was, for many clinicians, dependent
on the contextualisation of the model’s classification next to relevant
patient information. Moreover, clinicians’ intuition was hampered, as
described in one case where the display of important variables, not
previously associated with the outcomes, led to poor interpretabil-
ity [127]. Clinical accountability was also found to be affected by
insufficient explainability, e.g., Sandhu et al. [290] reported how
nurses took on a responsibility to explain the ML risk score to physi-
cians, which created a mismatch in understanding and disturbed the
nurse-physician relationships. Similarly, Cho et al. [80] described how
nurses’ accountability was affected by interaction with the ML model
through data entry - “nurses said that they became very careful about doc-
umentation due to the thoughts that the data they entered will be used to
infer risks of falling”. Providing ways for interacting with the under-
lying ML model was sought-after [67, 172] but also led to possible
confirmation bias as described in one case: "If I’m adjusting that bar;
[...] I’m injecting too much of my interpretation into it, how much of this
is me putting in my subjective interpretation hoping to get that response
back?". Finally, when the visual characteristics of the ML-based user
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interface were unclear, clinicians found it to generate "confusion" [25],
muddy the results [67], or make it "hard to translate" into clinically
relevance [221].

The interdependencies between the context of use and ML out-
put visualisation, contextualisation, and interactivity, suggest that so-
ciotechnical challenges emerge from the interplay between the ML-
infused user interface and the clinical end user. This means that the
visualisations of ML output and the user interface need to be concep-
tualised, designed, and developed in connection to each other.

12.3.6.4 User & System Use <—> ML-based System

Issues emerging from the misalignment between clinical end-users
and their use of ML-based systems were described in more than half
of the publications. We found three human and user-related factors
that affected the experience of the capabilities and limitations of the
clinician-facing ML-based systems.

First, clinicians general attitudes and feelings about machine
learning influenced the experience of the performance and use-
fulness of the overall ML-based system: “Fear of overstepping”,
“feeling uncomfortable”, "resistance to change"[290], and "sceptical
attitudes"[261]. In some cases, physicians felt their knowledge of
patients’ histories and circumstances was more accurate than risk
score estimations generated by the system [25, 127]. Some clinicians
reported that peer-reviewed publications on an ML-based system’s
performance were the preferred form of reporting and that such
publications would increase their trust in the system [221, 356].
However, when physicians were too optimistic about what ML can
do, and when they had too high expectations about the capabilities
of ML-based predictions, the perceived usefulness of the system was
affected negatively [221].

Second, diverse clinical roles and diverse needs affected the per-
ceived usefulness of the overall ML-based systems. Several studies
highlighted that systems which engaged multiple clinical speciali-
ties had to conform to mixed preferences. For example, using overall
mortality risk predictions [22] in paediatrics, nurses wanted minimal,
actionable information and generally preferred simple and static ex-
planations. On the other hand, physicians preferred more dynamic
output that they could engage. Similarly, nurses and providers had
different needs and perceptions of an ML-based warning system for
sepsis prediction: almost half of the nurses found the overall system
helpful as opposed to less than a fifth of "providers" [127]. Different
needs also arose from differences in the level of expertise, e.g., junior
and less experienced nurses were more open to the ML predictions
and recommendations than senior and experienced nurses [80].

Third, lack of end-user training and promotion, unfamiliarity
with the ML-based systems, and insufficient computer literacy
among clinical end-users were described as barriers to successful
clinical implementation of the ML-based systems. Despite positive
feedback about the usefulness of the ML-based system, "the actual



12.3 results 83

system use was low" due to modest outreach and promotion among
medical professionals in the department [171]. “Misperception” [127],
“misunderstanding” [290] and “confusion” [172] were attributed to
the unfamiliarity with machine learning and the lack of training:
“We (doctors) spend years in school to learn how to make [a] diagnosis based
on those [traditional] statistical tools and diagrams... your tool is obviously
more informative but we just need more time to get familiar with it.” [172].
Lack of knowledge about the capabilities and limitations of the ML
tool could also lead to degradation of trust among clinical end-users
[68, 285]. When providers had little knowledge about ML and pre-
dictive modelling, they found themselves unable to assess and verify
the ML model information and credibility [22]. While the absence of
training was reported as problematic, some physicians considered
trust in the ML-based system as something that emerge over time
and from multiple engagements and experiences with actually using
the new technology: “Just like with all other new technology based on
machine learning: the first 2 months I sit and read through to see what I
have, but in month 3, I will look at the [ML] output alone. Because then I
trust that it has pulled out what is appropriate [. . . ]”. [221]

These findings suggest that ineffective adoption of ML-based med-
ical systems may be rooted in human and social dimensions related
to the clinical end-users rather than in the technical aspects of the
ML-based systems. This means that professionally diverse end-users,
their attitudes, perspectives, expectations, and training need to be
considered as bound to the complete ML-based system. This sug-
gests the existence of important interdependencies between clinical
end-users and the system’s capabilities and limitations. This has im-
plications for HCI by imposing a strong need for simultaneous config-
uration of the technical and social areas of clinician-facing ML-based
systems and recognising that successful innovation requires iterations
or, at best, convergence between phases of design, development, and
deployment.

12.3.6.5 Healthcare Institution & Political Arenas <—> Use of ML-based
System

Issues that were rooted in the context of healthcare institution and
political arenas were reported in half of the publications. Four factors
stood out as being broader in scope and addressing the wider in-
stitutional arenas that included: the political, economic, ethical, and
medical professional arenas. These higher-order institutional factors
affected the use and perception of ML-based systems in various criti-
cal ways.

First, factors related to the wider medical professional and aca-
demic arenas affected the perceived usefulness of the complete ML-
based system. For example, ML provided a novel way of clinically
looking at multiple sclerosis. However, there was a mutual agreement
among clinicians that it was hard to imagine how it would be of bene-
fit as part of everyday clinical practice [237]. Similarly, issues emerged
when, e.g., there was weak consensus on definitions of clinical diag-
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nosis [122, 223]; ways of applying clinical guidelines differed across
clinical sites [67], or when the unpredictability of the disease in cur-
rent medical practice was high [237]. These issues suggest that poor
clinical utility can arise from the disconnect between existing medi-
cal circumstances and the potential and actual use of the ML-based
system.

Second, clinical efficacy and cost-effectiveness of ML-based inter-
ventions were critical for acceptance and adoption. This includes the
perceived clinical utility and the clinical outcomes, i.e., the measured
effects on patients as a result of an intervention, which were critical
factors for acceptance and adoption. Poor clinical outcomes afforded
by the ML-based system were problematic and led to non-use in clin-
ical practice. For example, Yang et al. [356] reported that due to low
clinical outcomes, merely 7% of the physicians used the neural net-
work score in clinical decision-making. Hollander et al. [155] found
that despite success in the lab, the ML-based clinical decision sup-
port tool failed to induce a significant improvement in healthcare out-
comes. The poor clinical utility hampered the use of the ML-based
system. For example, the ML-based clinical decision support tool
made no difference in the clinic’s effectiveness in reducing compli-
cations among diabetic patients [285]. Clinicians considered the ML-
based prediction tool as “nice to have” rather than a “need to have”
[221, 334], or only half of the physicians deemed the new technology
helpful [57]. Moreover, if the use of the ML-based system required
actions but insufficient resources were available for carrying out the
intervention it led to frustration and growing distrust [28].

Third, political and legislative factors were decisive for the suc-
cess of the complete ML-based system. Benda et al. [28] described a
reimbursement system as a core part of the existing clinical reality.
As a result, ensuring adherence to external regulation emerged as an
issue during deployment in clinical environments.

Fourth, ethics considerations were also found to affect the over-
all perceived usefulness of the ML-based medical systems. Although
surprisingly few papers explicitly addressed ethical concerns (8 out
of 25 articles), some papers did describe important findings on this
matter. In the study by Beede et al. [26], nurses were burdened with
weighing the trade-offs and deciding whether or not to enrol patients
to be assessed by the evaluated system: “some nurses felt the need to
’warn’ patients that they would need to travel should a referral be given.
Given the far distance and inconvenience of getting to Pathum Thani Hospi-
tal, 50% of patients at clinic 4 opted out of participating in the study”.

These four issues demonstrate that problems with realising ML-
based systems in clinical settings are bound to broader institutional
arenas. This means that the race for getting the technology right in
laboratory settings is not enough. There are political, economic, eth-
ical, professional, and academic arenas that are interdependent with
the organisational implementation and use of ML-based systems. In
order to achieve successful adoption and acceptance with the innova-
tion of clinician-facing ML-based systems, there is an inherent need
to attend to wider institutional factors, which are deeply embedded
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in the clinical realities and which often challenge the design, develop-
ment, and deployment of ML-based systems in healthcare.

12.4 discussion

Design, development, and successful deployment of clinician-facing
ML-based systems is a uniquely complex endeavour. This systematic
review shows that going beyond confined studies and undertaking
a successful medical ML innovation process pose particular method-
ological challenges for HCI and the interdisciplinary collaboration
with ML and Health researchers and practitioners, as well as pro-
fessionals from wider political and economic arenas. In the follow-
ing, we first outline the conceptual contribution of this paper. This
is followed by a discussion of key findings in relation to existing lit-
erature and their implications for HCI. We conclude each section by
describing opportunities for HCI and collaboration with Health and
ML partners.

12.4.1 Towards a Conceptualisation of Medical ML Innovation

Researchers and practitioners from HCI, ML, and Health can use the
results of this systematic review as a conceptual framework to base
their collaboration on and find a common understanding. We concep-
tualised four areas that can be relevant in the context of medical ML
innovation.

First, we analysed the technical aspects of the systems described
in the reviewed articles (see section 12.3.2). Designers’ lack of under-
standing of the technical aspects of ML is known to be a key issue
in HCI when designing human-AI interaction [354, 355]. We inves-
tigated the influence of technical aspects on the innovation process.
The discussed topics included, among others, reliance on domain ex-
perts’ knowledge, data needs, and explainability potential. The in-the-
wild consequences of these technical aspects may help researchers
and practitioners from HCI and Health to engage on a more equal
footing with their ML partners.

Second, we used the concept of intended use to tease out the dif-
ferent purposes and goals of the clinician-facing ML-based systems
(see section 12.3.3). While a clear definition of the intended use is re-
quired to obtain regulatory approval [238], research points out that
conceptualising functionalities and future use of ML-based systems
is a nontrivial task [104, 355]. Nonetheless, it is imperative for clini-
cal adoption that the ML model is designed and developed with its
real-world deployment in mind, which can be achieved by ensuring
a robust link between ML and meaningful clinical and operational
capabilities [215]. We propose to use the conceptualisation of the in-
tended uses to guide the collaborative effort of working and re-working
a shared vision continuously and throughout the collaborative activi-
ties of design, development, and deployment of the ML-based system
in clinical settings.
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Third, we conceptualised ten activities and related techniques that
were employed in confined studies and during medical ML innova-
tion processes (see section 12.3.5). While the activities do not cover
all domain-specific tasks, e.g., data acquisition or clinical trials, the
collection of 10 activities may serve as a basis for successfully under-
taking the design, development, and deployment of clinician-facing
ML-based systems.

Fourth, we characterised five sociotechnical challenges that are par-
ticular to medical ML innovation processes, which arise from the in-
terdependencies between the social and technical areas of clinician-
facing AI-based systems and their use (see section 12.3.6). Our anal-
ysis of the challenges can direct research and development teams to-
wards the non-trivial interrelations that constitute these types of sys-
tems and that require special attention during the innovation process.

12.4.2 Bridging Disciplinary Differences between HCI, ML, and Health

Research described that achieving collaboration across the disci-
plines of HCI, ML, and Health is difficult due to epistemological
and methodological differences. Blandford et al. [43] contrasted the
disciplinary variances between Health and HCI and emphasise the
lack of mutual understanding as a grand challenge for research and
development of interactive digital health interventions: "until there is
much greater mutual understanding and mutual valuing of the complemen-
tary research traditions than exists at present, people risk disappointment
and rejection in trying to bridge the divide".

The disciplinary differences between HCI and ML are also found
to be challenging in ML-based projects. Grudin [132] argued that the
HCI and ML paradigms differ so much that they are, historically,
contradicting [132]. Similar perspectives are raised in the respective
communities [128, 181, 353] and it is recognised that success with ML-
based systems requires an extra effort of the ongoing collaboration
between Health, ML, and HCI team members [1, 7, 77, 354].

Health research and evidence-based medicine are committed to
sequential development processes and randomised control trials
[43]. In Health research and development, ML-based medical systems
fall under digital health interventions. Historically, based on drug de-
velopment processes, Medical Research Council in the UK guided
the development and evaluation of complex interventions [70]. Their
approach can be characterised by its sequential nature, starting with
a hypothesis and finishing with a Randomised Control Trial (RCT)
that measures the effectiveness of an intervention or a drug. The pro-
cess is systemic, rigorous, and shielded from external factors [43]. Al-
though new, more flexible approaches have been proposed [83] and
new guidelines that suggest iterative development are in place [86],
the sequential nature is deeply rooted in healthcare development pro-
cesses [43].

ML research and development processes are characterised by data
work, the mutability of capabilities, and late realisation. ML (as part
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of the AI community) and HCI have been portrayed as "having oppos-
ing views of how humans and computer[s] should interact" [343]. Wino-
grad, similar to Grudin, recognises the historical differences between
these two communities. They accentuate the differences in how soft-
ware should be created, and how interactions should be accounted
for. To some extent, the ML community represents the "rationalistic"
approach that assumes human actions and thought processes can be
"captured in a formal symbolic representation". Such capture is achieved
through data, which is one of the main focuses of ML engineers. In
a nine-stage iterative ML development process proposed by Amer-
shi et al. [6], three initial stages target data collection, cleaning, and
labelling. These stages are collectively called "data wrangling" and ac-
count for up to 80% of all the resources spent on data science projects
[138, 177, 271]. It comes as no surprise that given such disparity, data
and data-centric approaches are at the core of ML work. After all,
model evaluation can happen only after extensive data work [6]. The
previous steps are characterised by the constant mutability of ML ca-
pabilities through retraining, parameter changes, and more data work.
Due to the nature of that process, it is impossible to conceptualise all
the aspects of ML-based medical systems before their use. Such late
realisation means that final capabilities take shape only after the ML-
based system’s deployment [128, 354].

HCI is committed to understanding users and the context of use.
HCI researchers and practitioners have developed principles, overall
methods, and techniques that focus on mutual learning and are nec-
essary to foster a collaborative development process and meaningful
involvement of stakeholders. There has been a longstanding interest
of the HCI community in engaging with software engineering and
practice [133]. Several methodologies aiming to incorporate HCI per-
spectives into and support the development process have been pro-
posed throughout the years [297]. HCI also offers a closer look into
collaboration during such processes. Piorkowski et al. [265] highlight
three communication challenges in interdisciplinary environments.
The major themes centre on "knowledge gaps across roles", "establish-
ing trust", and "setting expectations". Drawing from the HCI theory,
researchers and practitioners are in a position to foster collaborative
interdisciplinary development processes.

12.4.2.1 Success with medical ML-based innovation hinges on interdisci-
plinary approaches and extended stakeholder involvement

In this systematic review, we found that machine learning and the re-
lated technical choices affect the requirements for multi-disciplinary
expertise and collaboration between HCI, ML, and Health researchers
and practitioners. Moreover, innovation studies increasingly engage
a diversity of stakeholders and apply informal or unspecified tech-
niques.

ML affected collaboration among end-users and other stakehold-
ers. The choice of the ML algorithm determined the dependency on
domain input (see section 12.3.2). Knowledge-driven algorithms re-
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quired in-depth collaboration on feature engineering [221]. By con-
trast, data-driven algorithms that derived features from annotated
data [203] required less collaboration and afforded fewer opportuni-
ties for mutual learning and the ML development approach shaped the
collaboration space between the partners from HCI, ML, and Health,
e.g., Beede et al. [26] used open data sets to discretely create their
ML model, and the collaboration with domain experts was limited
to providing annotations [137]. Moreover, ML-based medical systems
delivered by third-party providers limited the opportunities for mu-
tual learning, especially during the initial activities, e.g., [223, 285].

Innovation studies applied additional informal techniques and
engaged a diverse set of stakeholders. Innovation studies applied
well-cited HCI techniques like user-centred observations [285] and in-
terviews [302], however, the same studies also applied unspecified, in-
formal techniques using formulations like "working with frontline clini-
cians" [302], "assessments [...] to determine" [285], and "cycles to evaluate
processes and incorporate clinical feedback" [223]. On the contrary, con-
fined studies tended to apply only well-established techniques like
interviews [25, 28, 172] and prototyping [67, 172, 237]. These findings
suggest that the process of successfully transitioning clinician-facing
ML-based systems into medical settings, to some extent, will have to
escape traditional domain-specific techniques. Innovation studies also
involved a more diverse set of stakeholders. While most studies in
the review included clinical end-users, innovation studies stood out
by engaging other medical professionals, administrative personnel
(e.g. secretaries, clerks, administration), managers and board mem-
bers, and IT specialists (e.g. hospital’s information officers, software
developers). This means that while it is beneficial to engage clinical
end-users, the lab-to-clinic transition requires extensive collaboration
between a broader range of professional expertise.

12.4.2.2 Implication for HCI: Need for interdisciplinary collaboration and
striving for mutual learning

Fostering meaningful collaboration and aligning stakeholders from
various domains with different traditions and values is historically a
part of HCI’s agenda. Researchers from the Computer Supported Co-
operative Work (CSCW) and Participatory Design (PD) domains de-
veloped methods for close collaboration and balanced software devel-
opment [185, 249]. However, as presented in this review, the technical
possibilities are realised late in the ML innovation projects, and best
practices are often developed within separate domains. Moreover, ML
poses additional challenges to the innovation processes, like shaping
the interaction space or requiring new forms of interdisciplinary en-
gagement. With these challenges at play, it is pivotal for the collabora-
tion to create shared understandings and to foster mutual learning be-
tween the stakeholders, researchers, and practitioners. Despite these
challenges, the HCI community is particularly well-suited to support
such interdisciplinary and uncertain collaboration. In particular, PD
offers principles, tools, and techniques to shift power to end-users,
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while considering organisational goals, work practices, and changes
that need to follow [187, 306].

Opportunity #1: Focus on the joint demystification of ML when
long-term engagements are impossible. Innovation of clinician-
facing ML-based systems oftentimes involves stakeholders whose
participation in the project is only a fraction of their daily responsibil-
ities [25, 28, 57, 221, 261]. In such cases, costly and time-consuming
engagements proposed by PD, while fruitful in the long run, may not
always be feasible. Instead, researchers have explored new methods
of collaborative demystification of ML. Yu et al. [358] concentrated on
increasing designers’ and end-users understanding of the trade-offs
between design objectives and helping them navigate the model
selection. The developed method employed a visualisation tool that
translated the trade-offs into the end-user’s practice. Another group
has focused on alleviating the challenge of using AI as a design
material [104, 181]. Subramonyam et al. [316] propose using end-user
data as a data probe to facilitate "divergent thinking, material testing,
and design validation". The pairwise collaboration of User Experience
(UX) designers and AI engineers informed future designs, as well as
the design of "AI architecture". Further, methods for improving user
experiences and expectations have been centred on the problem of
collaboration between HCI designers, ML engineers, and end-users
(see e.g. [352, 354]). The uncertainty of possibilities and constraints
of ML is one of the core design challenges that should be tackled by
intentional interdisciplinary collaboration.

Opportunity #2: HCI researchers and practitioners should step
out of the comfort of established and contained techniques. Miti-
gating the interdependent challenges of medical ML innovation, as
well as supporting profound interdisciplinary collaboration require
intentional effort. As pointed out by Bødker et al. [49], collaboration
and mutual learning during software development are too rich and
nuanced to be captured by a single technique. Instead, there is space
for building relationships and mutual understanding during collab-
oration through "participatory infrastructuring" before, in between,
and after the execution of conventional techniques. Similar flexibility
and openness in creating design spaces were advocated by Bjørn et
al. [40], who underscore the agency of HCI and CSCW researchers
and practitioners in the design of collaborative space-time, in con-
trast to serving solely as providers of appropriate techniques. Such
spaces could serve a purpose of a "third space" [241], which is a space
not "owned" by HCI collaborators or used solely to elicit knowledge
from participants. Rather, it should be used to negotiate design, ex-
change perspectives, vocabularies, traditions, and goals, and become
a mutual learning opportunity [50]. With all collaborators on a level
playing field, such spaces would foster mutual learning and under-
standing, needed for the successful innovation of clinician-facing ML-
based systems. Moreover, HCI researchers’ and practitioners’ analyti-
cal sensibility and deeply rooted interdisciplinarity can yield a better
understanding among other parties who often lack collaborative ex-
pertise.
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12.4.3 Mitigating Sociotechnical Interdependencies in Medical ML Inno-
vation

We identified five challenges of clinician-facing ML-based systems,
which are characterised by how they emerge as social and technical
interdependencies. The conceptualisation of challenges as sociotech-
nical showed that problems were neither purely technical nor purely
social, but an effect of their interaction. Several scholars and more
recent studies applied a similar lens and call for sociotechnical ap-
proaches to the design, development, and deployment of AL-based
systems in healthcare [26, 82, 109, 169, 221, 253, 299, 325]. While this
is a turn away from a technology-centred approach and a turn to-
wards a human-centred and sociotechnical approach to AI innovation
in healthcare, the orientation is not entirely new. Berg and colleagues
[31, 33], who studied the introduction of EHRs in the 1990s, have
been influential with their conceptualisation of healthcare work as
"messy" and "ad hoc" in nature and as an interrelated assembly of
humans and things. They argued that attempts to structure this work
through the formal, standardised, and rational nature of IT systems
is challenging and that optimal utilisation of health IT applications is
"dependent on the meticulous interrelation of the system’s functioning with
the skilled and pragmatically oriented work of health care professionals" [31,
243]. They proposed to undertake a sociotechnical approach [243] to
systems development projects and to employ participatory design for
early and continuous facilitation of user involvement, as discussed
above.

Unique sociotechnical challenges of clinician-facing ML-based
systems. The more recent sociotechnical turn and the call for partici-
patory design in medical ML innovation is therefore rather a re-turn
and an effort to alert fellow researchers, designers, and practition-
ers not to reproduce the age-old mistakes. However, our systematic
review and analysis of the emergent challenges demonstrate that so-
ciotechnical issues with healthcare IT are not only reproduced but
also exacerbated by the introduction of machine learning and large-
scale healthcare data. The added technical elements like healthcare
data, ML models, and ML-based user interfaces increase the com-
plexity of successfully designing, developing, and deploying clinician-
facing IT systems.

The five sociotechnical challenges do have similarities with well-
known HCI issues like difficulties with clinical workflow integration,
not addressing the needs of clinical end-users, or inability to demon-
strate improved clinical outcomes. However, they also signify the
uniqueness of how ML-based systems are inherently more challeng-
ing to realise as part of real-world clinical practice than traditional
non-ML-based systems. For example, the dependencies between
good quality training data, the ML model and the perceived clinical
usefulness, or the dependencies between the ML-based user interface
and the achievement of interpretability and trust among clinical
end-users. Other examples of what is uniquely at play include
the increased need for end-user training and adhering to existing
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attitudes and feelings about machine learning and automation.
Lastly, the interdependencies highlight how real-world deployment
and commercialisation hinge on ethical concerns, the interaction
with the medical professional and academic arenas, and the unique
legislation practices for approving ML-based systems in healthcare.

12.4.3.1 Implication for HCI: Need for iterative co-configuration of so-
ciotechnical system

HCI has contributed to mitigating some of the sociotechnical chal-
lenges. To a large extent, research on human-AI interaction has re-
volved around the problem of the interface between the human end-
user and the AI- or ML-based system. Research provided guidelines
for increasing acceptance of AI-infused systems by improving the in-
terpretability of ML output through explainable and interactive in-
terfaces (see e.g. [6, 79, 191, 213, 336]. Lim et al. [213], for example,
recommended generating reasoning explanations to novice users for
improvement of understanding and trust in the system. Amershi et al.
[8] provided guidelines for designing effective human-AI interaction.
Other works have developed models and principles for interactivity
with explanations to improve users’ comprehension by allowing them
to explore an ML algorithm behaviour through visualisations or in-
teractive interfaces [79, 106, 195]. Research also presented concrete
frameworks and lessons that can be used to address the uncertainties
and help focus other early-stage collaborative activities. Yang et al.
[355] propose and demonstrate the usefulness of a conceptual frame-
work for discovering and assessing potential design challenges. They
suggest a two-by-two matrix that uses two attributes of AI projects
that are central to the struggles of human-AI interaction design: ca-
pability uncertainty and output complexity. Similarly, Mohseni et al.
[235] offer high-level guidelines for multidisciplinary teams on build-
ing explainable AI-based (XAI) systems. Their framework links the
design goals of XAI with ready-to-use evaluation methods.

While this work provides significant help in tackling some of the
unique challenges, the sociotechnical lens has several implications for
HCI and the interdisciplinary innovation process of clinician-facing
ML-based systems. There is a need for extending the design space
from focusing on the ML-based interface and the interactions to fo-
cusing on the "interrelation" [31, 32] between the ML-based system
and the corresponding workflows, organisation, healthcare institu-
tion, and political arenas. There are several opportunities in attend-
ing to the interrelations [31, 32] or the "sociotechnical configurations"
[46, 319], wich we discuss in the following. First, there is a need to
approach the innovation process as one of organisational change and
as a matter of "growing" [107] and "configuring" working relations
[46] between data, ML models, user interfaces, users, workflows, and
so forth. Second, there is a need for deploying mock-ups, prototypes
and early versions of ML-based systems close to or within real-world
clinical work practices. Third, there is a need for merging activities
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of design, development, and deployment in an iterative and cyclical
process.

Opportunity #3: Approach medical ML-based innovation as a pro-
cess of sociotechnical co-configuration. To mitigate the unique chal-
lenges of making ML-based system work in everyday clinical prac-
tices, we suggest approaching the overall innovation process as a pro-
cess of co-configuration. It can be crucial for successful innovation to
recognise that the design, development, and deployment of ML-based
systems in clinical environments does not happen in distinct and sep-
arate phases but during the continuous arrangement and adjustment
of working sociotechnical relations. The metaphor of "growing" [107]
has been proposed as an attempt to capture the somewhat organic
ways in which a new IT system needs to be adapted, cultivated, and
reshaped jointly with the existing environment. An example from the
reviewed articles is the work on Sepsis Watch. Such continuous and
meaningful collaboration during design, development, and deploy-
ment resulted in an effective and trustful ML-based system [290, 301,
302]. This extended view of the innovation process, as one of config-
uration [311], or what we would like to call co-configuration, implies
that success with ML in medical contexts is a matter of continuous
efforts of evolving the components of the technology (e.g. training
data, ML models, user interface) alongside the social dimensions of
the environment (e.g. existing clinical practices, workflows, and or-
ganisation).

Opportunity #4: Near-live and real-world experimentation is nec-
essary for innovation of clinician-facing ML-based systems. A sec-
ond important strategy to mitigate the sociotechnical challenges is the
commitment to introducing prototypes, paper mock-ups, and early
versions of ML-based systems close to or within real-world clinical
contexts. This systematic review evinces that critical insight to sup-
port an overall process of ML-based innovation is discovered only by
the qualitative engagement with some form of test or evaluation with
healthcare professionals. This can happen either in a lab, a clinical
setting, or as part of everyday clinical work. With this review, we find
that lab-based experiments and evaluations circumvent several diffi-
culties with fully anticipating the impact of a complete ML-based sys-
tem. This means that early testing with mock-ups or ML-based pro-
totypes in lab environments provides critical, although speculative,
insights for further design, development, and deployment. However,
it is the near-live (see e.g. [221]) and actual deployments (see e.g. [26,
109]) that provide real-world evidence and opportunities for engag-
ing in re-design and appropriation of the ML-based system and cor-
responding workflows. This proposal of striving for early in-the-wild
evaluation, and ideally deployment in authentic healthcare settings,
has been collectively put forward before [115]. However, the unique
challenges with machine learning, e.g., the unanticipated outcomes
of ML models and their impact on clinical workflows, require special
attention to real-world experimentation.

Recent HCI work on clinician-facing ML-based systems follows
a similar line of action. Studies of specific clinical decision-making
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processes propose several concrete recommendations which can help
navigate the uncertainties of AI/ML design and real-world deploy-
ment [135, 169, 356]. They suggest that intelligent decision support
technologies should be tailored for a specific time, place, and deci-
sion context rather than pursuing a one-size-fits-all approach. Simi-
larly, some of the included articles described such adjustments as an
opportunity to engage clinical end-users and induce their trust in the
system [67, 221, 286]. Researchers also highlight the need for min-
imising the extra effort incurred by the operationalisation of the ML
output. Yang et al. [356] described it as unremarkableness, i.e., being
situated naturally in an existing decision-making routine and only
noticing when it might add value to the decision. Similarly, Jacobs et
al. [169] described how the ML output and clinical action needed to
be connected in ways that support workflows, which often involved
additional healthcare providers.

Opportunity #5: Merge activities of design, development, and
evaluation in an iterative and cyclical process. Striving for generat-
ing real-world evidence early on is, we argue, crucial for succeeding
in tackling the inevitable challenges that emerge when transitioning
laboratory ML models and systems into clinical settings. A final im-
plication, derived from the identified sociotechnical challenges and
related literature, is the need for merging activities of design, devel-
opment, and evaluation. In their recent work, Elish and Watkins [109]
raise a similar argument based on their participation in getting a deep
learning model for sepsis detection to work in the wild. Undertaking
sociotechnical interventions, they emphasise, is necessary to counter
the risk of ML-based medical systems remaining potential solutions.
They propose the concept of “repair work” to emphasise that inno-
vation occurs “throughout the implementation process and not just in the
research or design phase”. With their proposal, they increase attention
to the skills, background, and invisible work required to make the
ML-based system work for clinical practice. Earlier work has raised
comparable advice by proposing a “radical refiguring of the rela-
tions of design and use” and by recognising the extent to which
design activities must continue after the system has been deployed
and put into use [319]. Other research has similarly proposed pro-
cesses of "co-realisation” [144], “bricolage” [63], and “bootstrapping”
[143]. Collectively, this research argues that innovation of disruptive
technologies only happens by committing to design-in-use and real-
world interventionist experiments. Inspired by this work, and taking
into account the unique problems encountered in the included lit-
erature, we propose to carefully consider concrete ways of merging
activities of design, development, and evaluation in an iterative and
cyclical process when engaging in the innovation of clinician-facing
ML-based systems. It is, nonetheless, critical that this methodological
rethinking considers ethics (see e.g. [225]) and regulatory oversight to
manage patient risk and to ensure final approval of what essentially
will be classified as a medical device [238]. This can be achieved by
committing to robust clinical evaluations that aim at the high quality
of care and attractive patient outcomes [184, 329].
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12.5 limitations

The aim of this qualitative systematic review was to unpack studies
on the real-world implications of concrete ML-based medical systems.
Taking an HCI perspective on medical ML innovation, we excluded
articles that reported solely quantitative data. While this criterion
aligns with the overall goal of this paper, the descriptions of the tech-
nical aspects and medical specialities may be incomplete, overlooking
systems that were evaluated only through quantitative studies. More-
over, due to the ambiguous nomenclature used in computer science
and Health to describe ML development, we decided to search for
relevant publications using broad queries, ensuring we did not miss
any relevant publications. The queries yielded a considerable number
of articles (9,672); hence, we restrained our search to three databases
where one was covering Health an two were covering computer sci-
ence. We acknowledge that this decision may have resulted in some
publications missing from this review.

12.6 conclusions

Recent years have seen a resurgence of interest in ML-based sys-
tems for clinical practice. Lab-based studies have provided promis-
ing results and suggest that ML outperform statistical methods and
is capable of supporting the work of healthcare professionals and
improve clinical outcomes. However, clinician-facing ML-based sys-
tems are particularly challenging to realise in clinical practice and, de-
spite the favourable outlook, ML-based systems have not been widely
adopted. To support researchers and practitioners from the HCI, ML,
and Health domains in ML innovation, we systematically and qualita-
tively analysed articles that investigated the real-world implications
of concrete ML-based medical systems. The compilation of 25 articles
provided a comprehensive overview and deep insights into the chal-
lenges and opportunities for design, development, and deployment
of ML in healthcare settings.

Through the reviewed literature, we identified key difficulties
with medical ML innovation. First, an interdisciplinary collaboration
among HCI, ML, and Health is particularly challenging and consti-
tuted by: technical choices, the intended role of ML, the activities and
techniques applied, and the ways in which clinical end-users and
other relevant stakeholders are engaged in the innovation process.
Based on grounded theory analysis, we developed a semantically rich
conceptual framework that, by our suggestion, can be instrumental
for medical ML innovation processes. We conclude that shared
terminology and striving for mutual understanding among project
participants are pivotal to the realisation of medical ML innovation.
Second, there are certain sociotechnical interdependencies that,
if not addressed, can hinder the successful clinical adoption of
ML-based systems. Mitigating these complexities require new modes
of interdisciplinary collaboration. Opportunities for successful
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ML-based innovation, we suggest, can happen through iterative
co-configuration and near-live and real-world experimentation. We
call on the HCI community to take the lead in the development of
novel, yet much-needed participatory design principles, methods,
and techniques to contribute to going the last mile of realising ML in
healthcare settings.
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One of the core goals of responsible AI development is ensuring high-
quality training datasets. Many researchers have pointed to the impor-
tance of the annotation step in the creation of high-quality data, but
less attention has been paid to the work that enables data annota-
tion. We define this work as the design of ground truth schema and
explore the challenges involved in the creation of datasets in the med-
ical domain even before any annotations are made. Based on exten-
sive work in three health-tech organisations, we describe five external
and internal factors that condition medical dataset creation processes.
Three external factors include regulatory constraints, the context of
creation and use, and commercial and operational pressures. These
factors condition medical data collection and shape the ground truth
schema design. Two internal factors include epistemic differences and
limits of labelling. These directly shape the design of the ground truth
schema. Discussions of what constitutes high-quality data need to pay
attention to the factors that shape and constrain what is possible to
be created, to ensure responsible AI design.
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Figure 14: A simplified medical dataset creation process expanded with the
design of ground truth schema and factors conditioning the pre-
annotation stages.

13.1 introduction

Advances in applications of Artificial Intelligence (AI) in the medical
domain promise to improve efficiency, promote accuracy and bring
cost savings across many areas of medical subspecialty, yet there are
also many concerns about ethics and responsibility in the deployment
of these technologies [96]. The idea of responsible AI has been exten-
sively discussed in the literature and received much attention from
both commercial entities and regulatory bodies [92, 234]. There is
considerable agreement that high-quality training data is key to the
development of responsible AI systems [156]. Yet research shows that
the creation of high-quality data also tends to be an undervalued step
in the development of machine learning systems [289, 293].

The process of dataset creation is typically broken down into three
steps - data collection, data pre-processing and cleaning, and finally,
data annotation[6, 245]. This is especially so in the medical domain
where high-quality training data is obtained through a range of an-
notation practices such as data quality enhancement [75], generat-
ing labels using Natural Language Processing models [139], deriv-
ing image labels from medical documentation [170], and following
labelling guidelines and principles focusing on fairness and inclusion
[202, 295]. This paper investigates the factors that affect the creation
of high-quality medical datasets demonstrating that the preparatory
work involved in the design of ground truth schema used in data an-
notation is an important preceding step that tends to be overlooked
in the literature. Following the work of Mueller and colleagues [240],
we define the ground truth schema as a collection of relational labels
and metrics, as well as their definitions and examples that are used
during data labelling.

Recent research on the creation of training datasets [125] has dis-
cussed annotation activities as a matter of power relations in projects
crowdsourced in the Global South [228, 229, 232], the social design of
labelled data by domain experts [240], and annotation process recom-
mendations [119]. While understanding data annotation is important,
data design work begins before the first data points are labelled. Data
is always designed and constructed through situated and emergent
processes [114, 240] as domain experts, data scientists, other stake-
holders, and diverse political interests imprint their values on the
data. However, little is known about the preparatory work necessary
to produce high-quality data [164]. Accounts of decisions that shaped
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the datasets are rarely documented and get dismissed as soon as the
data creation work concludes [293],thus become impossible to inspect
in the future [240, 250, 310].

In this article, we consider what factors affect the design of medical
datasets prior to data annotation. We ground our findings in ethno-
graphic research conducted across three organisations developing
medical AI for (I) screening chest x-rays, (II) supporting the diagnosis
of lung and pancreatic diseases (III) automating patients-to-clinical
trials matchmaking. We explore the decisions made by medical pro-
fessionals, data scientists, designers, and other relevant stakeholders
in their quest to create medical AI datasets in highly constrained
environments. Our data include approximately 50 hours of obser-
vations, interviews with 46 medical professionals, data scientists,
and designers, as well as observation notes, email communication,
reports, and artefacts. We followed a grounded theory approach
[73]that led us to identify and define factors that influence the
design of the ground truth schema that underpins the production of
high-quality training data.

Our contribution is twofold. First, we identify five factors, three
external and two internal, that influence medical dataset creation by
affecting data collection, ground truth schema design, and data anno-
tation stages (see Figure 14). The external factors condition the medi-
cal dataset creation processes by determining the data collection and
shaping the possibilities for the design of ground truth schemas:

• Regulatory Constraints

• Context of Creation and Use

• Commercial and Operational Pressures

The internal factors define the negotiations between the medical and
technical domains:

• Epistemic Differences

• Limits of Labelling

Second, we show how these factors affect the final shape and qual-
ity of the resulting medical datasets. While we define each factor
separately for analytical purposes, the factors are interrelated and
affect each other, structuring the limits of responsible data creation
approaches. We argue that these factors condition the stages that pre-
cede data labelling and mediate the design of what is aspired to be
responsible AI.

13.2 related work

While the idea of responsible AI has received much attention from
both commercial entities and regulatory bodies, concerns about the
quality of data and the challenges in the creation of quality data are
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increasingly in focus. The now-emerging guidelines list several data-
related challenges as key obstacles that hinder the path towards re-
sponsible AI: skewed data (issues that originate during data collec-
tion), tainted data (issues that stem from labelling e.g. hidden strati-
fication [251]), or limited features (an inadequate number of features
represented in data) [24]. There is broad agreement that dataset cre-
ation processes deserve greater attention, despite scholars repeatedly
pointing to a strong bias against data work [91, 289, 293].

13.2.1 How datasets are created and annotated

In computer science, dataset creation is often seen as an activity con-
stituting a step in the larger development processes of ML-based sys-
tems [6, 76, 152, 245, 335]. However, scholars have also discussed the
dataset creation process on its own merits. For example, Hutchin-
son drew parallels between software development and dataset cre-
ation practices by sharing conceptual stages like requirement analysis,
design, implementation, testing, and maintenance[164]. Similarly, in-
creased focus can be observed in the medical area, where researchers
describe in greater detail the creation of publicly available medical
datasets [64, 90, 167, 173, 227, 339]. Typically, dataset creation is de-
scribed as a process that spans all activities related to work on medi-
cal data, collected under the umbrella of data collection, data cleaning
and processing, and data annotation.

Data annotation is one of the most researched aspects of dataset
creation. Data annotation or labelling usually happens as part of the
curation or preparation step of larger data science projects, follow-
ing data acquisition and cleaning, and preceding feature engineering
[6]. These activities are usually iterative and highly collaborative. Lin-
guistic scholars and Natural Language Processing researchers [119,
161, 332] offer guidance on how to carry out data labelling. They
distinguish three focal points: the creation and improvement of an
annotation guide [119], schema [332], or manual [161]; the labelling
performed by trained annotators; and the adjudication of the anno-
tated data.

In this paper, we use the terms data labelling and data annotation
interchangeably and understand them as the action of assigning and
adjudicating predefined labels to concrete data points. When consid-
ering this step alone, there is a multitude of decisions that need to
be taken to complete it. Scholars have pointed to data annotation
activities as a site of political struggle, challenges to the labour condi-
tions, as well as the stage in dataset creation that can result in adverse
downstream outcomes for trained models. For example, Schumann
et al. [295] and Hanley et al. [142] demonstrate how the design of
categories (or labels) can reinforce harmful stereotypes and exclude
underrepresented groups of people. Badly annotated data can reduce
the performance of AI models [75, 139, 170, 234, 276] and perpetuate
exclusion and inequality [202, 295].
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In the medical domain, data annotation challenges can be com-
pounded by the requirements for specialised knowledge and train-
ing. Despite initiatives like the Unified Medical System [214], the
clinical meaning of labels can be unclear [250], and medical knowl-
edge remains difficult to capture for computer use. Li and colleagues
[211] explored the inter- and intra-rater agreement between six radi-
ologists of different experience levels when labelling chest x-rays. In
some cases, even the experienced radiologists reached only a moder-
ate level of agreement with themselves [224]. This could occur due to
not following the best medical practices when labelling data, due to
resource constraints [289] or because of the disconnect between the
practices of labelling and the actual usage of medical data in regular
practice [250].

What much of this research points to is the fact that labelling and
annotation as practices are heavily reliant on the creation of anno-
tation guides and schemas [119]. Yet, despite the growing interest in
the creation of datasets, current discussions tend to omit and overlook
the pre-labelling activities and their potential impact on the quality
of the resulting training data [359].

13.2.2 The design of the ground truth schema

Many scholars investigated the dynamic and situated work of domain
experts, data scientists, designers, and other stakeholders engaged
with data [150, 239, 289, 298]. For example, Muller and colleagues
investigated how domain experts label data, highlighting that the
ground truth contained in datasets is a human contribution result-
ing from improvised and iterative adjustments to principled design
processes [240]. Discussing the design of ground truth schema im-
plies that ground truth captured in medical AI datasets is not an
objective representation of reality but is a result of a situated design
process [54]. In other words, data is never raw [129], instead, all data
is actively constructed [15, 230, 264]. Feinberg emphasises the impor-
tance of recognising the subjectivity involved in dataset creation and
the need to consider the potential biases and limitations inherent in
choices that stem from the social and organisational context in which
data is produced [114].

Researchers who investigate AI datasets suggest that access to all
of the “subtle design decisions”, made during the dataset creation,
is vital to ensuring a high-quality labelling process [112, 250] and
thus high-quality datasets. However, documenting design decisions
in data science work is not common [264, 287, 364]. To address this
gap, researchers developed a range of documentation frameworks to
support the accountability, use, and maintenance of complex datasets
[11, 231]. These frameworks range from general purpose and qualita-
tive - Datasheets for Datasets [123], NLP-focused - Data Statements
[29], quantitative - Dataset Nutrition Label [154], to fairness focused
- data briefs [112] and accountability [164]. Some of these tools [112,
123, 164] include a query for the origin of the labels, but most do not
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pay much attention to the pre-labelling activities involved in annota-
tion schema creation.

While the existing scholarship has problematised the stage of the
data labelling and the power relations and conditions affecting the
data annotation work [240], little is known about the stages preced-
ing the data labelling. Particularly, how these stages influence the
final shape of medical datasets. We explore the collaborative and sit-
uated work of medical professionals, data scientists, and designers
that takes place before the labelling stage, within the design stage pro-
posed by Hutchinson et al. [164] or the preparatory work proposed
by Fort [119].

13.3 methodology

We investigated three organisations in the Global North developing
medical AI-based systems that engaged in the medical dataset cre-
ation processes. We focused on the work conducted before the data
annotation task by participants described in Table 12.

13.3.1 Research context and data collection

13.3.1.1 ORG I

was an interdisciplinary collaboration between academia, business,
and the public healthcare sector, aiming to create AI-based chest x-
ray prioritisation software for global use. The project’s first step was
designing the ground truth schema for labelling chest x-rays, which
is the process investigated in this study.

Our engagement in ORG I spanned May 2021 to Feb 2023. During
that time, we conducted participatory observations of the design pro-
cess of the ground truth schema. The working group developing the
system was based in a Northern European country (Table 12.1). Ad-
ditionally, a feedback group comprising medical professionals from
the Northern European country and an East African country pro-
vided feedback on the schema (Table 12.2). We participated in fifteen
working group meetings ranging from 26 minutes to 2 hours and
12 minutes in length. Additionally, we conducted twelve interviews
and observed external medical professionals evaluating and provid-
ing feedback on the intermediate results of the design work. Addi-
tional material included observation notes, meeting summaries from
other participants, a work progress report, email communication, and
produced artefacts - a labelling guide and the ground truth schema.

13.3.1.2 ORG II

was a large tech company in Western Europe with part of the busi-
ness involved in the development of complex medical devices. We
primarily engaged with sections of the company that focused on the
development of AI-based diagnostic tools and systems for oncologi-
cal radiology.
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org i position exp.

P1 Radiologist Junior

P2 ML Engineer Senior

P3 ML Engineer Senior

P4 Computer Scientist Senior

P5 Data Scientist Senior

P6 Radiologist Senior

P7 Radiologist Senior

P8 HCI Researcher Junior

P9 HCI Researcher Senior

org i position exp.

P10 Radiologist Senior

P11 Radiologist Junior

P12 Radiologist Junior

P13 Radiologist Mid

P14 Radiologist Senior

P15 Radiologist Senior

P16 Radiologist Senior

P17 Radiologist Senior

P18 Radiologist Senior

P19 Radiologist Senior

P20 Radiologist Senior

P21 Physician Junior

org ii position exp.

P21 Data scientist Senior

P22 Product Owner Mid

P23 Strategic Designer Senior

P24 Data scientist Mid

P25 Usability Designer Senior

P26 Data scientist Senior

P27 Data scientist Senior

P28 Data Designer Mid

P29 Interaction Designer Senior

P30 Data scientist Senior

P31 Data Designer Senior

P32 HCI Researcher Mid

P33 Data Designer Senior

org iii position exp.

P34 Product owner Mid

P35 Software Engineer Junior

P36 Software Engineer Mid

P37 Software Engineer Mid

P38 Data Scientist Mid

P39 Data Scientist Senior

P40 UX Designer Senior

P41 Software Developer Mid

P42 Medical Operations Senior

P43 Quality Assurance Senior

P44 UX Designer Mid

P45 Neurobiologist Senior

P46 Product Owner Mid

Table 12: List of participants, their simplified positions, and experience lev-
els. Respectively in ORG I (working group), ORG I (feedback
group, participants 10-14 were located in the northern European
country, and participants 15-21 were located in the East African
country), ORG II, and ORG III.
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Our work with ORG II was split into a preliminary exploratory
period online from February to May 2022 and in situ participant ob-
servations and semi-structured interviews conducted in June 2022 in
a Western European country. Due to the size of the organisation, we
employed snowball sampling. In ORG II, we conducted thirteen semi-
structured interviews with experts (Table 12.3), with an average dura-
tion of 65 minutes.

13.3.1.3 ORG III

was a mid-size start-up in Western Europe that aimed at developing
an AI-based platform for matching patients with advanced clinical tri-
als for new drug and experimental procedure development. The com-
pany primarily dealt with two data sources. First, they collected data
from medical practitioners and their patients. Second, they collected
data from public registries in the EU and US and pharmaceutical com-
panies about clinical trial requirements or experimental treatments.
Their goal was to match the patients with unmet medical needs and
their physicians with the requirements of BioPharma companies that
need to enhance drug development and recruit participants for clini-
cal trials.

Our engagement with ORG III spanned February to May 2022. The
preliminary period involved online semi-formal meetings and inter-
views from February to April 2022. In-situ ethnographic research was
conducted during May and June 2022 at the headquarters of ORG III
in Western Europe. We conducted participant observation by joining
the daily stand-up sessions of the engineering department and shad-
owing the workflow of the AI team experts leading the data labelling
process for the match-making platform. In total, we interviewed 13

participants (Table 12.4).

13.3.2 Data analysis

The main focus of our analysis was to identify factors affecting med-
ical dataset creation. We analysed decisions made during the design
work, tensions and misunderstandings that needed to be reconciled,
looking both outside and within the organisations where the design
work took place. We explicitly decided to explore the wider socioe-
conomic factors that condition the medical dataset creation and in-
fluence the final AI-based systems even before the first label is anno-
tated.

Data analysis relied on techniques of grounded theory and situa-
tional analysis [73, 81]. First, we conducted line-to-line open coding,
coming up with 850 initial codes. We then reflexively proceeded to
thematic coding, in an iterative manner, discussing the themes and
patterns emerging in our three sites of ethnographic inquiry. Dur-
ing this step, we designed visual maps to lay out the human, tech-
nological, and discursive dynamics of the organisations under study
[81]. Second, we conducted axial coding to reflexively group the avail-
able themes into dimensions. Finally, we assessed these dimensions
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against the codes and situational maps, converging on the five final
factors (regulatory constraints, context of creation and use, commer-
cial and operational pressures, epistemic differences, and limits of
labelling).

13.3.3 Positionality statement

Our qualitative data was obtained from three health-tech organisa-
tions in the Global North. The analysis was shaped by the following
standpoints. First, we differentiated our roles in studying the three or-
ganisations. Researchers in ORG I had the dual position of the expert
who on the one hand designed the labelling software, whilst they
conducted participant observation and semi-constructed interviews
in order to study the process of the ground truth schema design. Re-
searchers working with ORG II and ORG III employed ethnographic
methods as a research approach without having a prior engagement
with the organisations. Second, we are researchers currently working
for Northern European institutions. Third, we have mixed epistemic
backgrounds in computer science and law and policy. Finally, we em-
phasise the situatedness of our research, which focuses on the devel-
opment of medical AI at the specific loci of our studied organisations.
We acknowledge that the factors we identify as defining the medi-
cal dataset creation bear the geographical and epistemic limitations
of the Northern European context. On this note, we acknowledge
that the divide between Global North and Global South we make be-
low has been problematised by scholars in human geography and
decolonial studies as a limiting one, reinforcing stereotypes and re-
ducing the polyphony of southern standpoints [160, 333]. For this
reason, we use this divide in this paper to (I) acknowledge the limita-
tions of our standpoints in a northern institution and the privilege of
our funded projects; (II) tackle assumptions about data universalism
[233] by showing the particularities of the northern context in medi-
cal datasets creation and their effect on the intended use of such data
in different contexts.

13.4 findings : five factors that influence medical

dataset creation

The datasets used for medical AI benefit from the impression that
they are a result of an age-old medical practice that is seamlessly
transitioning to the digital age, unaffected by external influences, and
focused on the pursuit of medical excellence. However, the reality is
often different. Our ethnographic data suggest that even before med-
ical professionals have had the chance to annotate or make their first
label, many critical design decisions have been made, which frame
the labelling space, thus limiting the extent to which medical profes-
sionals can use their expertise.

Our analysis challenged our initial understanding of the dataset
creation process drawn from the literature. Our data made clear that



106 paper ii : ground truth or dare

the preparatory work should be conceptualised as a crucial stage in
dataset creation taking place before data labelling because it defines
what becomes captured as ground truth within a training dataset.
This is the step where the ground truth schema is designed, which,
when applied to an unlabelled dataset through expert annotation, em-
beds the intended ground truth within it.

We identified five factors that influenced the creation of medical
datasets in the organisations we studied. Three of these factors were
external to the activities directly involved in pre-labelling activities.
External factors defined and delineated the limits and possibilities for
labelling activities. Two internal factors on the other hand affected the
negotiations around what needed to be labelled and how the labelling
was to proceed through the design of the schema. Below we describe
each factor and demonstrate how they affected the final shape of the
medical datasets focusing on the data collection and ground truth
schema design stages.

It is important to note that the organisations and processes exam-
ined in this paper were largely driven by data scientists as the owners
of the dataset creation process, with representatives of other domains
contributing to the dataset creation activities. As a result, data science
as an epistemology dominated the design work by primarily embed-
ding data scientists’ perspectives, inadvertently compromising other
domain-based practices and understandings. As datasets in our re-
search were created for the purpose of AI development, the power
distribution was uneven, leaving little room for misconceptions from
data scientists to be challenged and addressed.

13.4.1 External factors: defining the ground truth schema design space

Despite the best intentions of the experts engaged in the medical
dataset creation process, many of their decisions and actions were
structured by different external factors. We identified three such fac-
tors - Regulatory Constraints, Context of Creation and Use, and
Commercial and Operational Pressures - that shaped the space of
medical dataset creation and thus influenced the final shape of the
datasets themselves even before the labelling could begin (Table 13).
Each factor consists of several distinct features. We describe these be-
low in detail.

13.4.1.1 Regulatory constraints

The medical data space is highly controlled through a variety of lo-
cal, national, and international regulatory constraints. This was par-
ticularly challenging for the data collection step of the process. We
observed two areas where compliance with regulatory standards af-
fected the creation of medical data: the extent of the collected data
and the predetermination of purpose. Experts in all of the organisa-
tions we studied were concerned about compliance with diverse stan-
dards that intersected with their work on medical dataset creation.
These standards originated from European binding legislative acts, in-
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regulatory constraints

Extent of Collected Data

Predetermination of Purpose

context of creation and use

Geographic context of use

Demographic context of production

Linguistic context

commercial and operational pressures

Business model and organisation scalability

Competition and health tech market

Intended future use within the healthcare type

Table 13: External factors and their dimensions.

ternational standard organisations, or industry standards. GDPR, the
main legal standard for data protection in the European Union, was
the most prominent example of a binding legislative act, regulating
the conditions under which personal data is collected and processed.
The industry and international organisations imposed, among others,
ISO 2700013001, HIPAA, and Good Medical or Good Manufacturing
Practices. In ORG III, a data scientist (P39) listed 21 unique regula-
tions they felt they needed to consider. As a larger and more mature
organisation, ORG II also had internal ethics boards, which at times
imposed even stricter interpretations. However, these standards and
limits legitimised the data collection and processing activities.

Constraints on data collection. While experts in all organisations
were striving to create what they saw as high-quality data, comply-
ing with relevant regulatory standards required concessions from all
participants. For data scientists, the regulatory constraints delimited
what data was available for collection, at times inadvertently intro-
ducing bias in different ways. For example, P26, a data scientist from
ORG II, explained: "what is the data that we are allowed to use, especially
if you look at ... bias ... people will want to look at bias and, and see if ...
their product was fair to all, some demographics, and [we are] just not able
to use the data because of privacy issues or GDPR". Similarly, in ORG
II, the contractual agreement with a single local hospital, on the one
hand, provided a controlled supply of high-quality data, on the other
hand, reduced data representativeness: "we have a strong relationship
with them. How do you expect that the data is not going to be biased right?"
(P24). While ORG II was able to create highly detailed and structured
training data for their models, this data was clearly not representative
of populations that would eventually encounter the resulting tech-
nologies.
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Limitations imposed on data collection could compromise the re-
sulting datasets in ways that created challenges for subsequent data
creation steps. For example, participants of ORG I could collect only
chest x-rays and their linked radiological reports. Privacy concerns
here also resulted in the loss of the chronological links between the
images during data collection. This selection significantly diverged
from the usual assortment of data available to radiologists in clinical
practice, introducing challenges at the later stages of medical dataset
creation, such as schema creation and annotation.

Regulatory standards and contractual agreements determined the
purpose and context of use. Data protection regulations have recently
focused intently on the purpose of use as one area of emphasis, tied
to notions of data minimisation and data subject notification. Com-
panies in our research had to negotiate the legal basis for their data
collection with contracted data providers such as hospitals. For exam-
ple, GDPR and contractual agreements with a local hospital bounded
ORG II to use the collected data within the predefined purpose and
context. Deviations from the initially stated purposes and context of
use required new agreements that could be obtained only through sig-
nificant time and resource investments. As a product owner (P22) ex-
plained the process of collecting data from the local hospital, "maybe
the new study that we want to do has a slightly different scope and it’s
not covered by the original contract, then we need to make a new contract".
ORG I encountered a similar predicament where the data collection
phase was negotiated based on what the data scientists believed to be
a necessary and sufficient dataset given the available resources and
legal constraints of local regulations. By the time domain experts ex-
plained that the dataset was lacking important data dimensions, it
was too late.

13.4.1.2 Context of creation and use

The context of production and the context of use influenced the cre-
ation of medical datasets. In our studies, each medical dataset was
created for a specific intended use that was embedded in the col-
lected medical data, e.g., clinical trial repositories, hospitals, and pa-
tients. These sources cover specific geographical populations, which
has consequences for the final medical dataset. We identified three di-
mensions where that influence was prevalent: the geographic context
of use, the demographic context of production, and the linguistic
context (Table 13).

The geographic context of use affected the selection of labels.
While medicine strives to deliver replicable results that generalise
across populations, the ground truth schemas are designed to serve
specific needs in specific contexts. Some of them are defined by the
intended use of the future AI-based systems in the geographic con-
text, in which they are going to be used. In ORG I, the project group
designed the first version of the ground truth schema based on lo-
cal data from a Northern European country. As a result, the first
version of the schema captured the locally prevalent conditions well
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but missed conditions relevant within the countries of intended use,
which were almost never encountered locally. To account for that,
direct and indirect input from medical professionals from the East
African country was collected and incorporated into the schema dur-
ing joint design work, as seen in this exchange between a radiologist
and an ML engineer.
"So if you wanted that in the hierarchy, it could be there." (P1)
Is it aortic unfolding? Because I clearly remember this sentence from [the
East African country] reports, "aortic unfolding due to chronic hyperten-
sion" (P2). Yet despite having a broader ground truth schema, the
same project also struggled to ensure enough examples of common
medical conditions across expected countries of use available for an-
notation, since the data was originally only collected from one coun-
try.

The demographic context affected representativeness concerns In
both ORG I and ORG II, data in medical datasets were collected
from a single country, which had several consequences. For exam-
ple in ORG II, the data was predominantly collected from a single
local hospital, where ORG II had a contractual agreement. Not only
was this problematic due to a more homogeneous patient population,
but the collected medical imaging data originated on machines from
the same producer. This created many concerns since imaging ma-
chines from different manufacturers often produce slightly different
artefacts in their output. Yet the information about which machines
were used to produce the images was rarely included in the resulting
dataset.

Similarly, due to the characteristics of the population embedded
in medical datasets, experts worried about how portable the result-
ing AI models would be. As a usability designer (P25) from ORG II
noted, "you can have all sorts of differences in patient demographics ... and
you cannot just apply a model that you train on population A to population
B". However, despite the designers’ and data scientists’ awareness, a
senior radiologist from the East African country emphasised that "in
the [developing world]1 we are usually consumers, not producers of tech.
We may find ourselves hitched to tech that doesn’t serve our needs" (P15).
When evaluating the ground truth schema, the same medical profes-
sional elaborated, "I’ve done this for 10 years since my graduation. I’ve
never seen certain diseases like cystic fibrosis, but whenever I read the books,
there’s a lot of stuff about cystic fibrosis [prevalent in the Global North],"
which highlights the effect of local ground truth schemas on the trans-
ferability of the final AI-based systems.

Linguistic context and local understanding of medical terms
challenged the application and transferability of the ground truth
schemas. The design of ground truth schemas included naming
the labels, defining and organising their relations, and providing
examples. However, medical concepts are not always used in the
same way across different countries. In ORG I when discussing the
naming convention for a chest x-ray finding, one radiologist noted

1 edited to avoid pejorative language
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"I know that it’s not proper, but [in the Northern European country] they
use ’infiltrat’ as a synonym of consolidation ... I think the direct translation
consolidation would be ’consolidering’ but they don’t use that, they use
’infiltrat’... I think maybe our infiltrate is broader" (P1). As a result, a pre-
sentation of infiltration by an AI-based system could be understood
differently by medical professionals from different countries. To
account for that, data scientists and medical professionals evaluated
the ground truth schema against English translations. In ORG III,
which operates globally, the data scientists and designers recounted
a similar challenge of re-translating medical terms during the data
annotation process. The limitations of the locality of medical terms
prohibited the aspiration of designing a ground truth schema that
can operate universally. As a UX designer (P40) remarked: "there are
also challenges around that because different cultures will refer to different
diseases in different ways. It’s global and we re-translate some of our stuff
into different pages. We also have to consider localisation, how you turn this
medical term into a layman term, but that’s also relevant in like different
countries as well."

13.4.1.3 Commercial and operational pressures

The three organisations each had a different business model and ex-
hibited different relations to the market and the public sector. This
often determined the availability of the resources (human and ma-
terial) allocated for dataset creation and affected the organisations’
ability to collect data and design the ground truth schema. We identi-
fied three dimensions of commercial and operational pressures (Table
13): business model and scalability of the organisation, the compe-
tition in the health tech market, and intended future use within the
healthcare type.

The business model and scalability of the organisation deter-
mined the amount of collected and labelled data. Every investigated
organisation represented a different business model. ORG I inter-
sected with the public sector, whilst ORG II and III were situated
entirely in the private sector. The business models of the organisation
determined the way in which data was collected. The business model
of ORG III relied on providing free use of the AI-based platform to
patients but also providing paid services to BioPharma by enrolling
patients into clinical trials. To do that, ORG III collected data from
the public clinical trial registries in the EU and US, as well as patient
medical information. Such data collection was heavily dependent on
the organisation’s scalability, as well as the "fine" balance between
the data requested by their BioPharma clients and the data that could
have been collected. As a data scientist (P38) explained: "sometimes
it’s difficult to decide what kind of data you collect, right? Or what
patients. (...) there’s a balance between what’s actually feasible to col-
lect and what will give us the highest chance of getting as much data
as possible. So those I think are tricky decisions." These conditions
affected how much data was finally collected, hence, the ideal of rep-
resentativeness of the created dataset was compromised.
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In ORG I, the budget allocation for the data annotation process
played a vital role in the amount of data possible to be labelled by
medical professionals. Due to the high cost of labelling by experi-
enced medical professionals, ORG I had to cap the maximum number
of labelled images. This cap limited the number of distinct labels that
could be annotated in the created dataset and remained statistically
significant. "We have a limited budget for the test data that we can
collect because we need several radiologists board-certified possibly
to look at images" (P3). The limited resources defined the amount of
data that was possible to be annotated, putting ORG I at a compet-
itive disadvantage: "What the [competitors] do (...) there is no way
we can reach what they do. They have 127 findings and they use a
hundred plus radiologists to annotate, and they annotated 800,000

images each image by three radiologists. So the scale is completely
different" (P2).

Market standards and industry competition affect the design of
the ground truth schemas. Since all organisations under study oper-
ated in the health tech sector, the experts engaged in the processes of
designing ground truth schemas had to both consider existing state-
of-the-art solutions and methods, as well as address market competi-
tion. In ORG I, the choice of a specific machine learning model archi-
tecture was dictated by the industry standard. However, this choice
had consequences for the label needs during the design of the ground
truth schemas. At the same time, addressing market competition in-
fluenced the work on the ground truth schema design, as seen here,
"so this is [a competitor’s system] and this is their output. they ... split
consolidation and nodules, which at this stage of the hierarchy we are
not doing. And so I was wondering why we’re not doing it" (P2). In
this organisation competition directly influenced the design work.

Due to the large size of ORG II, the matter of competition fed to
internal business processes whose results other experts relied on dur-
ing the dataset creation, as explained by a product owner (P22), "it’s
a combination of ... alignment with the business priorities and that is
also strongly driven by customer requests and customer demands. So
that is actually very important ... try to find the alignment". Finally,
market competition created time pressures that could structure and
limit how data creation had to be organised: "if you want to validate
something properly, it costs time. If you want to validate across do-
mains, it costs time. And we are often in very competitive domains
where being fast to market or, or fast at the FDA is also important. So
there are some time trade-offs, need to be made there." (P27).

The intended use and type of healthcare system affected the con-
tent and the level of detail of the ground truth schemas. Visions
of future intended use permeated the design work on the ground
truth schemas. The imagined intended use of a future AI-based sys-
tem factored into decisions about the validity of label choices. Imag-
ined use did not fit in with current domain-specific practices and
resulted in confusion and concerns during the design of the ground
truth schema. Consider the following discussion between a medical
professional and data scientists from ORG I about the implication of
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different intended uses of the future system for the selection of labels.
We have two priorities, one is decision support. So it might be easy for you
to see the mass, so that won’t help you. But there’s also the pre-screening -
prioritisation. So that might be relevant to detect mass prematurely, right?
(P3)
So if you use it for like a warning, a prioritisation, it can be useful, but for
detection... we can see a mass. It’s not difficult to find (P1).

Medical AI-based systems in our organisations were designed to
operate across the world within public or private healthcare systems.
Yet medical systems in different countries operate differently based
on public values, profit, incentives, and conventions. The design de-
cisions during dataset creation are a product of all these components.
The dependency on the healthcare type was well captured by a data
scientist from ORG I when discussing the level of detail of the ground
truth schema, "if it was in the US where you actually pay, then from a busi-
ness point of view, you really wanna find everything. First of all, you don’t
get sued, and secondly, you can make a lot of money by treating them. But
here it’s very different, right? Because it’s a public system and you only
treat things that are necessary, that need to be treated, right?" (P4). These
concerns manifested in debates about what could and needed to be
annotated as expert annotators infused the values of their local sys-
tem into data creation activities.

13.4.2 Internal factors: designing the ground truth schema

While external factors were key in shaping what data was collected
and made available for annotation and highlighted the importance of
local considerations and their implication for the resulting datasets,
two internal factors drove debates, discussions, and disagreements
that affected the ground truth schema and the resulting datasets.
These were Epistemic Differences and Limits of Labelling (Table
14). The effort going into the creation of medical datasets as training
data had two purposes that sometimes came into conflict. First, med-
ical datasets were seen as a means of capturing the current state of
medical knowledge and the tacit knowledge of medical professionals
who focused on medical practice and clinical usefulness. Second, the
same datasets served computer scientists as complex input data to
solve problems through mathematical operations, where consistency
and accuracy were in the spotlight. These two perspectives, while not
opposing, often prioritised distinct qualities of the same datasets.

13.4.2.1 Epistemic differences

While in ORG II and ORG III, we engaged with relatively homoge-
neous teams within each company, in ORG I, our research process
was focused on supporting the data creation process by working to-
gether with the data science and radiologist teams. As such, in ORG
I, we were able to observe first-hand how teams with domain ex-
pertise often disagreed on what constituted legitimate knowledge as
they discussed what was worth annotating and how things ought to
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epistemic differences

Miscommunication between domains

Misapprehension of medical practice

Misapprehension of medical knowledge

limits of labelling

Domain expert buy-in

Onboarding to the labelling task

Labelling hardware and software

Similarity to the clinical practice

Table 14: Internal factors and their dimensions.

be annotated. We consider three sources of epistemic differences that
affected the final design of the ground truth schemas (Table 14), com-
munication challenges within the teams, misapprehension of medical
practice, and misapprehension of medical knowledge. Within these
dimensions, team members from different domains expressed diverg-
ing priorities, values, and understanding of concepts, which needed
to be reassured and negotiated.

Communication challenges within teams. The three organisations
involved stakeholders from different backgrounds, such as health,
data science, and design. All of these brought their own traditions,
meanings, and domain knowledge that needed to be shared, trans-
lated, and understood by other parties for worthwhile collaboration.
It is no secret that interdisciplinary teams must spend time finding
common ground before they can work together productively [59].
In our research, we observed how medical professionals, designers,
and data scientists constantly translated and explained concepts from
their respective domains to maintain a shared understanding. For ex-
ample, at the beginning of the study in ORG I, medical professionals
designed labels based on their, at times naive assumptions of machine
learning capabilities, such as when they included two medical con-
cepts under the same label, "but couldn’t that be, if you put nodule, mass
in the same category, couldn’t you just program it, later on, to say that if the
thing that they have marked nodule/mass is over I think ... five millimetres
or something, you call it a mass" (P1), which was not possible given the
collected data and was later clarified through a joint discussion. Simi-
larly in ORG II medical professionals had to explain to data scientists
that to detect some types of cancer it is necessary to look at more than
just the organ in question, and that doctors need to use other infor-
mation, such as the condition of bile ducts or the blood flow around
the organ, affecting data collection and subsequent labelling set up.

Misapprehension of medical practice. Across the organisations
the expectations for the quality of the datasets were closely aligned
with concepts such as consistency or bias. This focus was clearly visi-
ble when discussing the goal of the labelling task in ORG 1. In the pur-
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suit of consistent and unbiased data, data scientists initially framed
labelling as a "different task" to clinical work: "We need to know what’s in
the image and we need it without them being biased towards looking for only
stasis" (P6). As a result, the labelling task did not provide what was
seen by the data scientists as "extraneous and potentially biasing" in-
formation, such as the background information of a patient. However,
situating the labelling task further away from the medical practice af-
fected the quality of the input medical professionals could provide,
impairing the ability of medical professionals to use their knowledge.
As one senior radiologist (P10) noted: "Asking a radiologist to categorise
something on a picture only without getting any information on the patient.
Is like asking a surgeon to look at the scars on a patient and having him tell
you what kind of surgery that patient had".

The pursuit of objective and unbiased labels isolated labelling from
what data scientists saw as extraneous, potentially biasing informa-
tion. Yet this transformed the work of the radiologists into a new task
that was incompatible with medical practice. To deliver the expected
results in this new unfamiliar process, radiologists attempted to re-
construct their medical practice by drawing from their tacit knowl-
edge or, simply, guessing: I have to create something about the patient
myself, which is, [or] might not be true. And I then describe the picture from
there... (P10).

Misapprehension of medical knowledge. Specific data was
needed to train AI models that provide clinically useful func-
tionalities. However, due to the misapprehension of practice, the
assumptions about what clinical knowledge was possible to extract
from the clinical data provided were also at times flawed. As the
schema went through iterative rounds of design, we observed
how both sides struggled to understand why particular data was
requested or why a particular request seemed to be difficult to fulfil.
For example, in ORG I, radiologists were asked to assign one of
three possible values as a patient’s general state based solely on a
single chest x-ray, so that relevant cases could be later prioritised
using the resulting AI system. This task proved to be particularly
problematic to radiologists who do not use such metrics in their
daily practice, so they had to develop a range of new approaches
to assign them, like "I chose to interpret it from the view that it could
be the worst situation" (P12) or "I think it was mostly a gut feeling"
(P11). In the end, the radiologists produced the kind of data that
data scientists expected to see as labels. However, what these labels
actually captured diverged from the original intention.

13.4.2.2 Limits of labelling

Finally, we turn to the mechanics of labelling itself that affected the
final design of the ground truth schema. We observed schema design
and testing in situ directly in ORG I, while in ORG II and ORG III,
our data come from post-hoc interviews. We find that four features
affected the final design of the ground truth schema (Table 14), do-
main expert buy-in, onboarding to the labelling task, clinical practice
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familiarity, and labelling hardware and software. These dimensions
manifested when evaluating the labelling processes. Unlike the Epis-
temic Differences, where data science was the defining domain, the
Limits of Labelling emerged as medical professionals confronted the
intermediate results of the epistemic negotiations discussed above.
These limits altered what kind of data was collected and affected the
quality of the labelling.

Domain expert buy-in. Our data showed that domain expert buy-
in was crucial and required concessions on the type and amount of
collected data. Some ML models require specific types of annotated
data, such as "what we’re asking them is for each patient to go through 500
images and for each image to annotate [...] at pixel level" (P21). Not only
are such tasks typically outside of the scope of clinical practice but
are also mentally challenging. For example, when P1 was asked to
oversee the labelling process performed by external radiologists, they
recalled: "I think that he [a senior radiologist] opened the program, saw how
difficult it was, and just closed it and just never had the energy to start it
again" (P1). Monetary compensation turned out to be a necessary but
not sufficient strategy in ORG I for recruiting medical professionals
with high expertise to annotate data.

Once the experts agreed to annotate data, limited training for the
labelling task reduced the chance for a "shared mindset". Addi-
tional metrics were a relevant part of the ground truth schemas. These
metrics usually included concepts not used in daily clinical practice.
In ORG I, the medical professionals were supplied with written guide-
lines to boost common understanding and were briefly introduced to
the labelling task. However, some annotators referred to the guide-
lines only when in doubt: [the labelling software worked] right out of the
box ... I didn’t really read this part because it was not necessary (P12). Not
knowing the exact guidelines, medical professionals relied on an in-
tuitive understanding of the metrics and labels, which often resulted
in discrepancies between the annotators as they attributed different
meanings.

Hardware configuration and user interface of the labelling soft-
ware affected the quality of the annotations. These challenges were
observed to a greater extent in ORG I, as to assess medical data
like CT scans and x-rays, radiologists usually use diagnostic displays.
Thus, when they annotate on a "non-diagnostic screen, you miss details
... maybe small, smaller changes would be missed ... we don’t annotate them
because we cannot see them" (P13). Similar comments were shared dur-
ing the evaluation of the labelling software, medical professionals
marked the location of findings using touchpads, which resulted in
frustration and low precision.

Labelling software design could have influenced the final quality
of the medical dataset to an even greater extent if not caught during
the evaluation. Labelling medical data requires "[a] professional tool
that could do the job in a very efficient way” (P21). However, the
design of this software could have influenced radiologists in ORG
I to overreport radiological findings per x-ray during an evaluation
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period, "...maybe it’s an interface. Maybe they forgot the normal button
was there because they only saw the [labels]" (P1).

The overreporting was not solely caused by the labelling software.
Expectations and habits influenced what medical professionals no-
ticed in medical data. For example, a radiologist who reported on an
evaluation of the ground truth schema in ORG I reported, "I told my
participants that there would be some normal, but they have not marked any
of them normal or I can’t find them" (P1). This phenomenon was later
explained by a senior radiologist who pointed to the expectation of
labelling a dataset with findings and the fact that when the ratio of
abnormal to normal cases is skewed, radiologists tend to overreport
to remain on the safe side, "that’s [why] they thought they saw something
that was not there" (P6).

13.5 discussion

In the creation of high-quality training data, our research shows that
the design of ground-truth schema is a crucial but often overlooked
step. We highlight five factors that represent external and internal
constraints that directly affect the quality of the resulting medical
datasets. The external constraints condition the data collection pro-
cess, affecting this way the design of the ground truth schema, while
the internal constraints strongly affect the resulting ground truth
schema and can lead to disagreements and debates among domain
experts, predominantly data scientists and medical professionals.

13.5.1 Conditioning the data collection

Our findings demonstrate that the regulatory constraints, along with
the geographical, demographic, and linguistic context of creation and
intended use, and the organisations’ scalability crucially affect the
amount and type of data that was possible to be collected by the
organisations we studied. In this sense, specific data quality met-
rics were already compromised since the first stage of the medical
datasets creation. For example, in ORG I and II the geographical and
demographic distribution of the collected data reflected not only how
much data was possible to be collected by the contractual agreements
in place but also manifested a lack of representativeness, given the
regional and local source of data collection.

In ORG III, the aspirations for creating datasets of global coverage
stumbled upon the linguistic contextuality of medical terms, which
proved to become an issue during the ground truth schema design
for the match-making platform. Similarly, in ORG I, the geographical,
demographic, and linguistic context of the medical data collection
shaped the type of the collected data, such as that when the experts
came to decide on how to design the ground truth schema, dilemmas
did not only concern the different understanding of the same medical
terms across countries and continents but also possible omissions of
local lung diseases. In this sense, the aspiration of designing "transfer-
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able" ground truth schemas proved to be both dependent and limited
by the standards that regulate the data collection and the context of
its collection.

A further insight that emerged in our studies was that the business
models and scalability of each organisation affected differently its ca-
pacity to collect data. For example, ORG I, being a small-size start-up,
having however the public sector involved in its entity, had easier ac-
cess to timely data (x-ray images of multiple years) from regional hos-
pitals. Yet, the organisation’s limited scalability defined the amount of
data that was possible to be labelled by medical professionals. In Org
III, a similarly small-size start-up, the data collection from both public
registries and patients was shaped by the organisation’s availability
of resources. The constraints were imposed on the recruitment of data
scientists designing the platform’s ground truth schema and medical
professionals who assisted the patients in submitting their medical
information into an appropriate and structured format. On the other
hand, in ORG II, due to its large size and scalability, the limitations
of the data collection were shaped by market demands. This was re-
flected in the need to collect quality data, i.e., particularly structured,
consistent, and contextual medical images from a controlled environ-
ment (the contracted local hospital). This push for one type of quality
reduced another, in this case, the representativeness of the acquired
data.

So far, scholarship has defined and treated data acquisition as a
particular step in the data creation process, existing in a vacuum [6,
76, 152, 245, 335]. Very little is known about how this step influences
the stages that precede the data labelling, eventually affecting the
shape of the final medical dataset. Our studies show that regulatory
constraints, the context of data creation and use, and the business
models and scalability of the organisations, crucially affect the extent
and the type of data that is possible to be collected and processed.

13.5.2 Conditioning the ground truth design

Within this context, we identified the design of the ground truth
schema as a crucial stage of medical dataset creation. In our stud-
ies, the externally imposed constraints shaped the amount and type
of data that reached the stage of designing ground truth schema.
This has implications for scholarly discussions that focus on develop-
ing documentation frameworks that support the responsible and in-
formed use of complex datasets [11, 29, 123, 164, 231]. We showed that
the decisions taken during the design of the ground truth schemas
were foundational to the succeeding stages of dataset creation. We
argue that in this stage, experts do not deal with ideal conditions, but
there are inherent limitations which we conceptualised as epistemic
differences and limits of labelling. We further argue that the exter-
nal constraints influence how these inherent limitations manifest in
situated collaborative domain settings.
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The amount and type of data that reach the ground truth schema
design is already shaped by the necessity of organisations to comply
with regulatory standards. This has led the experts from ORG I and II
to work with data that had limited representativeness from the start,
further affected by the predefined purpose of use and geographical,
demographic, and linguistic context for its collection and use. These
had implications for the negotiations between data scientists, design-
ers, and medical professionals on what "makes sense" to be labelled.

Domain negotiations that we observed, were grounded in epistemic
differences that did not take place with symmetrically allocated roles,
where the “separation of concerns” of each domain expertise is often
negotiated against the tacit medical knowledge but where data sci-
entists have the first say [165, 278, 315]. Having the development of
AI models as the purpose of medical dataset creation, data scientists
were positioned as the problem owners of the data creation processes.
This further distanced the design of the labels from the medical do-
main experts and was manifested through misapprehensions about
medical knowledge and practice. The tensions with the medical pro-
fessionals often led to negotiations about what was medically impor-
tant to be annotated versus what would lead to high-quality datasets
from a data science perspective. At the same time, both of these stand-
points had to correspond to the demands of the health-tech market.

We found that the externally imposed concerns, such as compli-
ance with regulatory standards, the context of creation, and the in-
tended use of the data, along with the commercial and operational
pressures, condition the data collection and can affect ground-truth
schema design. In fact, many crucial decisions and negotiations rele-
vant to the final shape of the medical datasets take place during the
stage of ground truth schema design. All three organisations under
study were committed to developing AI systems in a responsible way.
As such, the creation of high-quality training data was a crucial step.
Yet, no matter how hard they tried to create representative, consis-
tent, well-structured, high-quality data, the resulting datasets were
already limited in different ways. We showed how these limits were
predefined even before any data labelling occurred. The combination
of external constraints that limit and structure data collection with
the misapprehension of domain practice resulted in highly paid ex-
perts having to imagine and invent additional information to perform
the tasks asked of them. A limited understanding of what is required
for diagnosing various conditions from medical images could have
consequences. Either new datasets would have to be created, which
translates into a new data collection process, with all the regulatory
constraints attached, or the labelling software would have to be more
aligned with the existing professional practices following the guid-
ance of expert annotators. Even where these issues were resolved,
medical professionals annotated data based on their particular expe-
rience and tacit knowledge. This means that the geographical location
of the experts affected what they expected to see in the data, show-
casing that expertise does not account for the uneven distribution of
diseases in different parts of the world.
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13.6 limitations and future work

Our contribution builds on qualitative data from three organisations
located in countries of the Global North. Creating medical AI datasets
in different countries of the Global South may present different chal-
lenges and be influenced by a different set of factors that were not
captured in our data. Further research is needed to better understand
how medical AI data creation varies across different regions and cul-
tures.

Our study focuses on only two medical areas: radiology and clini-
cal trials. While we engaged with diverse types of medical data, cre-
ators of other medical datasets could face challenges unique and de-
pendent on different types of medical specialisations. Future research
should aim to explore the factors that influence the design of medical
AI datasets across a wider range of medical specialisations to develop
a more comprehensive understanding of the factors that influence it.

13.7 conclusions

In this paper, we investigated the work of data scientists, medical pro-
fessionals, and designers that takes place before the labelling of med-
ical data. Building on the qualitative accounts of our ethnographic
findings, our main contributions are:

• conceptualising five factors that influence the creation of medi-
cal datasets;

• disclosing how these factors condition the design of ground
truth schemas;

• suggesting identified relationships amongst these factors;

• staging the design of the ground truth schemas as a highly con-
tested, yet crucial step in the creation of medical datasets that
precedes and conditions data annotation.

These overarching factors had a fundamental influence on the final
shape of medical datasets created for AI use. First, the externally im-
posed constraints should be systematically taken into account during
the entirety of the medical dataset creation processes, as these fac-
tors define the data collection and condition the design of the ground
truth schemas. Second, we have exemplified the breadth of decisions
taken before the annotation of medical data. Foundational decisions
about the final shape of medical datasets take place during the design
of a ground truth schema. Future endeavours in data science, law, and
policy should consider this stage as crucial to achieving responsible
medical AI.
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abstract

Despite advancements in Artificial Intelligence (AI), its clinical adop-
tion remains low, mainly due to its technology-centric development.
This challenge calls for designing human-centred AI which takes into
account the differences in medical contexts. To inform the design of
clinically useful AI in radiology, we conducted a field study of chest X-
ray practices with eighteen radiologists and four radiographers from
nine medical sites in Denmark and Kenya. During the observations,
we asked about their visions of AI support. The findings present nu-
ances of chest X-ray practices and show how they generalise into
three stages across countries and medical sites: selecting, interpreting,
and reporting. We discuss how HCI can expand the design space of
clinical AI by situated future envisioning. Finally, we reflect on how
clinical usefulness depends on the configurability and flexibility of
AI across three dimensions: type of clinical site, expertise of medical
professionals, and situational and patient contexts.
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14.1 introduction

Artificial Intelligence (AI) has been hoped to significantly transform
healthcare by improving patient care, lowering cost, and elevating the
work life of healthcare providers [48]. A plethora of studies have sub-
stantiated these hopes by demonstrating increased detection rates of
pathologies on medical images in controlled environments [210], sup-
porting the detection of cancer on mammograms [126], identifying
brain tumours on magnetic resonance images [176], detecting arrhyth-
mia on electrocardiograms [16], or supporting polyp detection during
colonoscopy [337]. However, only a small percentage of these systems
make it from the lab to the real world [82]. And even if they do, their
positive impact on practice and patient outcomes is not guaranteed
[26, 208]. Consequently, despite the growing popularity and ongoing
technological developments, the successful use of AI in clinical prac-
tice remains low. [10, 82, 147, 184, 273, 292, 338, 362].

This has been particularly apparent in radiology, which is one of
the first medical fields to confront the potential of increasingly ca-
pable AI. There are two confounding factors that make radiology a
promising domain to benefit from AI support: (1) the abundance of
digital data, the relative use of medical imaging across specialities,
and recent progress in vision algorithms performance [312]; and (2)
the fact that most countries suffer from severe staff shortages that
result in less time available per examination, stress, and overburden-
ing of medical professionals [279]. However, the benefits of using AI
in practice have been vague. For example, from 62 models aimed to
help with the detection and prognostics of COVID-19 on chest radio-
graphs (X-rays) and thoracic CT, none were identified as clinically
useful [280]. Currently, only a handful of systems targeting chest ra-
diography are approved by authorities in the United States and Euro-
pean Union [3] and their clinical utility remains mostly unclear [206].

Current clinical AI development efforts focus primarily on imple-
menting new models and evaluation focused on technical metrics
[183, 277], rather than in-situ usage and real-world implementations
[313, 340]. This predominantly techno-centric paradigm has con-
tributed to the poor adoption of clinical AI [43, 131, 299, 349, 365].
Prioritising work on algorithms, data, and performance rather than
the human and social aspects of AI has been described to result
in insufficient and delayed attention to the social considerations of
work and, consequently, a mismatch between end-users needs and
delivered functionalities [272, 313, 362].

This resembles the beginning of clinical information systems [87],
where insufficient understanding of medical work practices resulted
in adoption failures [148, 149]. For example, a histology expert system
aiming to support pathologists failed due to integration to workflows
requiring constant context switching, time-consuming manual data
entry, and user resistance [149]. Koppel described how "machine rules
that do not correspond to work organisation or usual behaviours"
in physician order entry systems facilitated medication errors [193].
Finally, McCauley & Ala called expert systems "a solution (perhaps)
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lacking an agreed-upon problem" [222], which highlighted the detach-
ment of motivation for system development from practical challenges
[148].

These issues were recognised by the HCI and Computer Supported
Cooperative Work (CSCW) communities, who turned towards ethno-
graphic research to understand the organisational context and work
practices within entities implementing new information systems [41,
103, 188, 242, 262, 270, 320]. Engaging in formative research within
the healthcare domain [23, 51, 78, 111, 157, 174, 256, 257, 274, 296, 367,
368], e.g. through ethnographic inquiries, workplace studies, and user
studies, has empowered researchers to design systems addressing the
sociotechnical context, human factors, and aligned with end-users
needs. For example, Chen identified a functionality gap in Electronic
Health Record (EHR) systems and suggested including support for
transitional information, which at the time was crucial to the clini-
cal workflow and unaccounted for by the EHR system [78]. Similarly,
Zhou et al. discovered that a physician order entry system was not
used as intended due to "a change in physical location, sufficient con-
venience, visibility of the information, and permanency of informa-
tion". They suggested reframing the requirements for such systems to
include both formal and informal work practices [367]. These forma-
tive studies transformed the early health information systems from a
technological novelty to an integral part of clinical practice [115].

In response to the prevailing technology focus in AI development,
the HCI community calls for a turn towards Human-Centred AI
(HCAI), emphasising the facilitation of social participation among
end-users and the creation of AI that supports self-efficacy, responsi-
bility, and oversight [71, 304, 305]. With AI facing similar challenges
to the early clinical information systems, inspired by the rich history
of HCI and CSCW engagements, researchers are advocating for stud-
ies investigating the sociotechnical context of end-users work in the
wild [82, 169, 253, 281, 325, 362], particularly, when designing with
such difficult medium as AI [355]. New studies emerge, investigating
AI’s place in the broader ecosystem of collaborative medical work
practices [169, 290, 302, 357], origin of trust [169, 267], explainability
[205], bias [18], or collaboration [34]. However, to develop useful
HCAI systems, designers and developers have to engage in "more
holistic and in-the-wild" methods [10].

This paper contributes to these ongoing efforts of the HCI com-
munity by investigating how work practices in medical sites across
Denmark and Kenya shape the opportunities for AI support. We con-
ducted a field study through participatory observations in nine med-
ical sites in Denmark and Kenya with four radiographers and eigh-
teen radiologists. Observing first-hand the daily collaborative work
and challenges faced revealed significant similarities across Denmark
and Kenya in practices and opportunities for AI in medical settings
of similar type – defined by the specialisation of provided services
and staff.

To explore the connection between the practice of radiologists
and opportunities for AI support, we asked our participants how
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AI could support their work. Drawing inspiration from prior future-
oriented HCI research, we encouraged our participants to be critical
towards technology and envision their ideal future [180, 314, 322].
Moreover, we asked our participants about their visions at their
workplaces, in the context of their practice. Through grounding in
practice, we wanted to ensure that their visions were pragmatic
responses to actual challenges rather than hypothetical exercises
attempting to retrofit preconceived AI models into their workflows.

This study contributes the following to a growing body of HCI and
HCAI research that investigates practice to inform design opportuni-
ties for clinical AI-based support systems:

1. Unpacking radiology work practices into three stages across dif-
ferent clinical sites in Denmark and Kenya: selecting, interpret-
ing, and reporting;

2. Showing how HCI may expand the technology-shaped design
space of clinical AI and bring it closer to the ideals of HCAI by
engaging end-users and ideating visions for AI support at the
point of practice;

3. Reflecting on how clinical usefulness depends on the config-
urability and flexibility of AI across three dimensions: type of
clinical site, expertise of medical professionals, and situational
and patient context.

14.2 related work

14.2.1 Technology-Centred AI Development

To some extent, the current state of AI in healthcare resembles the
reality of computer science on the eve of the formation of HCI as a
research domain in the 1980s. The development of computer systems,
in this case, AI-based systems, is claimed, defined, and envisioned
through predominantly technology-centric approaches [304, 305, 349,
365]. This state of affairs is partially understandable, as technological
progress enabled this new type of system. However, the main draw-
back of technology-centred AI development is the foundational char-
acter of the early decision [6]. Research has shown how the very early
decisions taken during data work affect the capabilities of AI models
[240, 289, 361]. Going further, the capabilities of AI models determine
the design space of potential solutions [237]. Any misunderstandings
and misconceptions before and during AI model development would
propagate to the final system. Unfortunately, it is often difficult to
mitigate them later, as that part of development requires the most
effort and resources to conduct [6, 240, 355]. Consequently, the capa-
bilities of an AI model often determine the final system’s capabilities.
This remains true even for Large Language Models applied to expert
tasks, which healthcare arguably falls under [5].

As a result, AI-based systems perform inconsistently when de-
ployed in clinical settings, and their added clinical value is often
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dubious [199, 207, 226, 313, 321]. Petitgand et al. investigated the
implementation of an AI-based Decision Support System (DSS) in
an Emergency Department (ED). They discovered that the system
did not integrate with other IT systems and poorly modelled clinical
practice. This resulted in support that was technically correct but
not useful in practice [261]. Another system evaluated by Hollander
et al. intended to support admission to ED decisions due to heart
problems [155]. However, the system’s output relied on specific
cardiac markers available in the hospital’s system after a clinician
already made the admission decision, rendering the support irrele-
vant. Similarly, Beede et al. [26] and Wang et al. [334] highlighted
issues with AI-based systems developed for work practice that was
not reflected in reality, which challenged or outright impeded their
use in clinical settings.

Similar issues can be observed in radiology. The almost exclusive fo-
cus on detection performance in environments isolated from clinical
practice was reflected in the reported challenges hindering the clini-
cal utilisation of AI in radiology [340]. Moreover, AI-based systems in
radiology have been found to be often designed for narrowly defined
pathology detection cases with limited external validation and dispo-
sition to bias [183, 277]. Consequently, when reviewing AI’s ability to
improve efficiency and health outcomes, van Leeuwen et al. reported
that the clinical value of such systems is still unknown [206]. Whereas,
Strohm et al. pointed out that one of the main reasons for hitherto AI
failure in radiology is the "uncertain added value for clinical practice
of AI applications" [313]. This is an opportunity for HCI researchers
and practitioners to engage in formative work with radiology practi-
tioners to explore alternatives to the technology-shaped design space
of AI-based support systems in radiology and to inform the design
and development of AI-based systems focusing on providing clinical
value.

14.2.2 HCI Push for Human-Centred AI

HCI researchers noticed the challenges of developing useful AI-based
systems in healthcare and argued for a shift in AI development to
achieve human-centred AI by focusing on human values, responsi-
bility, participation, and oversight [304, 305]. So far, there has been
no definitive approach to developing HCAI [71]. Instead, researchers
explored different avenues. Trust has been widely recognised as a
necessary component of the successful adaptation of AI. Among oth-
ers, the HCI community informed its clinical and practical origin [18,
62], relationship with accepting and acting on AI output [307], and
dependency on organisational accountability [267]. Linked to trust is
the "black box" problem - a problem particular to AI, where users
cannot inspect and understand the inner workings of a system [72].
Explainable AI (XAI) has been the most promising answer to opening
that box, enhancing trust, supporting oversight, but also increasing
the perceived usefulness of medical AI [67, 135, 205, 348]. These new



126 paper iii : towards clinically useful ai

ways of reasoning by and with AI models prompted research into
modes and premises of human-AI collaboration [34, 52, 68, 100, 236],
investigating reliance, bias, and its potential mitigation techniques
[18], problematising AI’s authority in such arrangement [179], and its
place in the broader ecosystem of collaborative medical work prac-
tices [169, 236, 290, 302, 357]. Particularly, the alignment with work
practices and sociotechnical context and responding to the actual
needs of clinical end-users has been considered crucial when transi-
tioning from technology-centred to human-centred AI [169, 281, 325,
330, 362].

The importance of understanding the clinical context, work prac-
tices, and end-users should come as no surprise. HCI researchers
showed time and time again that insufficient and delayed attention to
the social considerations of work leads to inadequacy of developed
systems and inevitable failure in practice [162, 163, 317]. The response
to these challenges is one of the most foundational contributions of
the HCI and CSCW communities – the push for ethnography-based
user and workplace studies to inform system design [23, 41, 51, 78,
85, 103, 111, 157, 162, 174, 188, 218, 242, 256, 257, 262, 270, 274, 294,
296, 320, 367, 368].

The need to understand end-users’ clinical context and the sociality
of work is just as important now as it was at the beginning of personal
computing. HCI researchers describe how formative user studies may
serve as an essential foundation for designing and developing clini-
cally useful AI-based systems for pathology detection [136], chronic
conditions [314], mental health [326], and collaborative environments
of Intensive Care Units [175]. However, conducting meaningful for-
mative studies for AI in a clinical context is afflicted by difficulty in
obtaining access, engaging medical professionals, and using AI as a
design medium [84, 196, 300, 355]. In the context of still technology-
driven AI development, HCI is in need of investigating new ways of
involving users in foundational work to shape future systems and
make them useful to medical professionals in clinical practice.

14.2.3 Performance Does Not Equal Clinical Usefulness

The natural consequence of centring AI development around algo-
rithms, models, and data is evaluation based on technical metrics,
such as an area under a receiver operating characteristic curve (AUC),
accuracy, sensitivity, and specificity. The performance-first evaluation
approach permeates the general research of clinical AI. Li et al. re-
viewed the added value of AI when diagnosing thoracic pathologies.
The primary metrics reported were sensitivity, specificity, accuracy,
AUC, and time spent diagnosing [210]. According to Wang et al.,
such retrospective cohort studies constituted 98% of all the studies
between 2015 and 2019 on AI in radiology [338].

Excelling at narrowly defined technical metrics may not be enough
to bring meaningful change to medical practice [37, 182]. Keane et
al. argued that none of these metrics ultimately relate to a change in
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patient outcomes [182]. For example, breast radiography (mammog-
raphy) has seen a significant uptake in the use of Computer-Aided
Detection (CAD) systems. However, successful use in clinical practice
did not improve patient outcomes [208]. This conundrum exemplifies
that performance metrics are ultimately relevant during development
but do not reflect the benefits of using an AI-based system in clinical
practice [303].

This dichotomy has also been noticed by HCI researchers, who
have been focusing on human-centred qualities of AI-based systems
like trust [18, 62, 169] and usability [67, 195, 237], which support the
actual use of a system in practice. However, similarly to the techni-
cal metrics, on their own, they do not guarantee a positive impact
on clinical practice and patient outcomes. Other researchers investi-
gated what other qualities make an AI-based system clinically useful,
which was used as a general term describing positive contribution to
clinical practice and patient outcomes [27, 117, 334]. Bossen and Pine
found that flexible integration into the clinical workflow, support for
sensemaking, awareness of unreliability, practitioners remaining in
control, and ability to experiment contributed to medical profession-
als considering the AI-based tool useful [52]. Similarly, Wang et al.
investigated the use of a clinical DSS. They found that the perceived
usefulness stemmed from the tool supporting the clinical diagnostic
process, facilitating information search, offering training opportuni-
ties, and preventing adverse events [334]. These findings are crucial
to our understanding of factors influencing the clinical usefulness of
AI-based systems. However, to design for clinical usefulness, we need
a better understanding of end-users’ needs and expectations [326].

14.3 methodology

14.3.1 Study Design

The goal of this study is two-fold: (1) to inform the design and de-
velopment of an AI-based chest X-ray support system and (2) to con-
tribute to the understanding of opportunities for AI support in chest
X-ray practice across countries like Denmark and Kenya.

To capture the diversity of work performed by radiologists,
account for the differences, and identify commonalities, we encom-
passed various medical sites providing medical imaging services.
This field study comprised in-situ participatory observations with
radiographers and radiologists in nine medical sites in Denmark (4)
and Kenya (5) (Table 15). We grouped the visited sites by the catered
population, specialisation level of medical staff, available resources,
and size. Two specialised hospitals (D1, K1) provided tertiary and
quaternary care, handling the most complex medical procedures in
their respective countries. Five general hospitals (D3, D4, K3, K4, K5)
offered primary and secondary care and referred patients requiring
more specialised care. Lastly, two imaging clinics (D2, K2) provided
medical imaging services to patients referred by external physicians
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site type work lists

grouped by

radiologists country

D1 Specialised hospital Speciality 100+ Denmark

D2 Imaging clinic Single list <5 Denmark

D3 General hospital Modality <20 Denmark

D4 General hospital Modality <5 Denmark

K1 Specialised hospital Speciality <20 Kenya

K2 Imaging clinic Single list 1 Kenya

K3 General hospital Single list 1 Kenya

K4 General hospital Single list <5 Kenya

K5 General hospital Modality 10 Kenya

Table 15: Visited medical sites.

for chest radiographs, ultrasounds, or CT scans (only K2). K2 also
provided teleradiology services to clinics and hospitals in Kenya.

14.3.2 Participants

We recruited participants through email and professional contacts of
our collaborators; in total - 18 radiologists and 4 radiographers (Ta-
ble 16). Senior (consultant) radiologists accounted for 15 participants.
This means their reports did not have to be approved by another ra-
diologist. Junior radiologists’ reports had to be approved by a senior
colleague before they could be shared with ordering clinicians. Radio-
graphers, or radiologic technicians, were trained medical profession-
als who captured medical images, including chest radiographs.

Fifteen participants had previous experiences with various AI-
based systems. The evaluated systems covered a range of modalities.
Particularly, radiologists from D1 and D4 had DSS for CT thorax at
their disposal. These systems offered functionalities like generating
a 3D model, correcting motion, segmenting lungs, and detecting
findings. Participants working in K5 piloted a DSS detecting selected
findings on chest X-rays and were approached by other companies
offering AI-based support (see Figure 15). Finally, doctors from
K1 and K2 had past experiences with systems detecting tumours
in breast mammography, and the single doctor from K3 had past
research experience with AI for chest X-rays.

14.3.3 Data Collection

Data collection took place from April 2021 to February 2023. We vis-
ited D1 in April 2021, D3 and D4 in February and March 2022, K1 -
K5 in January and February 2023, and D2 in February 2023. If such
an arrangement was possible, we scheduled our visits to observe
work on chest radiographs. No personal information was recorded
at any time. In cases where particular X-rays were discussed, they
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position seniority works with

chest x-rays

experience

with ai in

radiology

site

P1 Radiographer Senior Daily Yes D1

P2 Resident Radiologist Junior Training depen-
dent

Yes D1

P3 Resident Radiologist Junior Training depen-
dent

Yes D1

P4 Radiologist Senior Daily Yes D1

P5 Radiologist Senior Daily No D1

P6 Resident Radiologist Junior Training depen-
dent

Yes D1

P7 Radiologist Senior Daily Yes D1

P8 Radiologist Senior Daily Yes D1

P9 Radiologist Senior Few days a week Yes D3

P10 Radiologist Senior Few days a week No D4

P11 Resident Radiologist Junior Training depen-
dent

No D4

P12 Radiologist Senior Daily No D2

P13 Radiographers Senior Daily Yes K2

P14 Radiologist Senior Daily Yes K2

P15 Radiographer Junior Training depen-
dent

No K3

P16 Radiologist Senior Daily Yes K3

P17 Radiologist Senior Daily No K4

P18 Radiographer Senior Daily No K4

P19 Radiologist Senior Few days a week Yes K5

P20 Radiologist Senior Few days a week Yes K5

P21 Radiologist Senior Few days a week Yes K5

P22 Radiologist Senior Daily Yes K1

Table 16: Participants, ordered by sites.

Figure 15: A mouse pad advertising an AI-based system in one of the visited
hospitals. The system was not used in the clinic.



130 paper iii : towards clinically useful ai

were pseudonymised, leaving out personal information, e.g., name
and identification number.

We conducted 67 hours of in-situ participatory observations - 35

hours in Denmark and 32 hours in Kenya. The length of observations
varied based on the subject and situation in the clinic. This means
that our participants decided the times and length of observations.
On average, we observed each participant’s work for 3 hours and 25

minutes (min. 30 minutes - max. 16 hours). Observations of P1, P9 -
P22 were audio recorded, transcribed, and supplied with handwritten
notes; during observations of P2 - P8, only handwritten notes were
taken.

The main goal of the observations was to learn about the clinic’s
profile, organisation and division of work at the clinic, patient charac-
teristics and statistics, daily routines, work involved in handling chest
radiographs, and past experiences with AI-based systems. Each obser-
vation started with informing about the study and observation goals
and, if any gaps remained, ended by asking clarifying questions. Dur-
ing the observations, we took place behind the participants’ side to
observe and ask questions about their work. We halted observations
and waited in common areas during meetings or other activities in-
volving patients or unrelated to the focus of the observations. Since
we aimed to introduce as little disruption as possible, we engaged in
discussion only when our participants indicated readiness by open-
ing up for conversation. Usually, these exchanges occurred during
their breaks between examinations or when they encountered some-
thing they considered worth sharing regarding the observation goals.
Inspired by design anthropological approaches and ethnographic in-
quiries into possible futures [141, 314], during these breaks, we en-
couraged radiologists to envision AI support in relation to the work
conducted. This approach ensured that their ideas were related to
their practice and practical challenges. As a result, the participants
generated ideas during the observations, which aligned with their
routines.

Participants were not compensated. We collected written consent
from all participants. Our study was considered a non-interventional,
observational study, thus exempt from a formal ethical review accord-
ing to the authors’ institutions’ institutional review boards (IRBs).

14.3.4 Data Analysis

Based on the lived experience, information gathered during the
interviews, and observation notes, < anonymised pair of authors
who conducted the observations> mapped the observed practice
of handling chest X-rays by different radiologists across different
settings. Next, focusing on high-level outcomes of recorded actions,
< anonymised group of authors> iteratively simplified the mapped
workflows into a single model of handling chest X-rays comprising
three stages: selection, interpretation, and reporting (Figure 16). This
workflow model was validated by domain experts - co-authors of
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this paper (anonymised). This work was conducted through April
and May 2023 in Miro 1 - a collaborative digital whiteboard.

We used thematic analysis [56] to analyse the data collected dur-
ing the in-situ participatory observations: recordings and handwrit-
ten notes. We conducted this analysis in Dovetail2 - a web application
for qualitative data analysis. First, the first author familiarised them-
selves with the data by manually correcting machine-transcribed au-
dio recordings from the observations and interviews and transferring
handwritten notes to a digital format. Second, guided by the gained
experience from the empirical work, the first author manually coded
any references to work practices, radiographs, and AI (both past expe-
riences and envisioned future use) made by our participants. Third,
employing Dovetail’s digital canvas, three authors < anonymised>
explored the codes for themes. Through weekly meetings through
May and June 2023, they iterated the breadth and meaning of created
themes in the context of observed practice. As a result, we conceptu-
alised five themes representing challenges encountered in radiologist
practice and related visions of AI support.

Figure 16: A shared workflow of chest X-ray practice observed in Denmark
and Kenya.

14.3.5 Methodological Limitations

Several methodological limitations in our study should be acknowl-
edged. First, we did not engage administrative workers who may play
a role in determining the distribution of work within the departments.
Second, we did not include ordering clinicians in this study. This
choice was dictated by the focus on radiologists’ practice regardless
of the origin of the X-ray orders. Third, we acknowledge that the re-
porting stage was not explored with as much depth as other stages
of the practice. This can be attributed to the fact that the participants’
perspective on AI support was largely shaped by their practical expe-
riences and challenges. Fourth, we acknowledge the recent develop-
ments and potential of large language models. However, as they were
not brought up in the visions for future AI support, we do not have
enough basis to address them. Finally, while Denmark and Kenya
are two countries from the Global North and the Global South, re-

1 https://miro.com
2 https://dovetail.com
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spectively, there is a chance other practices may be observed in other
countries, and visions for AI support may differ.

14.4 vision of clinically useful ai support rooted in

chest x-ray practice

We expected stark differences between the radiologists’ work prac-
tices from different countries, primed by the differences in Danish
and Kenyan healthcare systems. However, we observed three com-
mon steps of handling a single chest radiograph: selection, interpre-
tation, and reporting, present across all the visited medical sites in
Denmark and Kenya. Contrary to our expectations, the work prac-
tices were remarkably similar in medical sites of similar types across
the countries, such as the specialised hospitals (D1, K1), the imag-
ing clinics (D2, K2), and the general hospitals (D3, D4, K3, K4, K5).
Notably, the entire process of handling a chest radiograph was re-
markably fast. The simplest of radiographs were said to be reported
within thirty seconds to five minutes. More complex ones reportedly
took between five to fifteen minutes. These estimates included all the
work from selecting an examination from a list of radiographs cap-
tured in the system to disseminating a report. These stages do not ac-
count for all the other activities during a regular workday, like confer-
ences with clinicians, supervising junior radiologists, preparing pro-
tocols for CT scans, and performing ultrasounds or CT-guided biop-
sies. They merely simplify the subset of radiologist work dedicated
to handling chest radiographs.

To explore the connection between the practice of our participants
and opportunities for clinically useful AI support, we inquired about
their visions of how AI could help them at work. Their visions
stemmed from practical challenges faced during everyday work and
focused on providing actionable support rather than automating
some of their tasks (Table 17). This was well-captured by P4, a
senior radiologist from a specialised hospital in Denmark (D1),
Make AI that helps me do my work better or faster. Increasing efficiency
and improving patient health outcomes were the basis for every
envisioned functionality.

14.4.1 Selection: Practice of Prioritising

Radiologists in both countries started their work by logging in to
the Picture Archiving and Communication System (PACS), their pri-
mary working tool. This is where they selected, viewed, interpreted,
and reported examinations. PACS also allowed for accessing histori-
cal images and referrals. A referral also called a clinical history or an
indication, typically includes a short description of a patient’s current
state and a clinical question justifying the X-ray order. In cases where
PACS was not integrated with a system used by ordering clinicians,
the paper-based referrals were either delivered physically to the ra-
diologist (K2), entered to PACS by radiographers when capturing a
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selection

Challenge: Backlog of X-rays to report exceeding daily processing capacity

Vision: AI distributing examinations by user’s expertise

Challenge: Selecting the next most relevant examination to report without an
easy overview

Vision: AI detecting medical emergencies

interpretation

Challenge: Interpreting visually ambiguous findings

Vision: AI providing decision support on subtle and difficult cases

Challenge: Time-consuming process of obtaining additional clinical informa-
tion

Vision: AI measuring visual features and comparing changes across histori-
cal examinations

reporting

Challenge: Conveying the right information in a report

Vision: AI double-checking reports against radiographs for missed or misin-
terpreted findings

Table 17: Challenges encountered in chest X-ray practice and envisioned AI
support.

radiograph (K3), or scanned and uploaded to PACS when capturing a
radiograph (K4, K5). PACS was independent of the Electronic Health
Record (EHR) system in every visited site, and there was little to no
integration between them.

14.4.1.1 Challenge: Backlog of X-rays to Report Exceeding Daily Process-
ing Capacity

In PACS, radiologists accessed their work lists for a given day and
gained an overview of the examinations to be reported. At that time,
the radiographs captured in the evening the previous day or at night
were available for reporting. More X-rays were taken during the day.
In most of the general hospitals in both countries (D3, D4, K4, K5) and
the imaging clinic in Kenya (K2), the number of chest radiographs
taken daily often reached or exceeded their reporting capabilities per
day, which was voiced by P10, a senior radiologist from a general
hospital in Denmark, I just dream one day. I will open my list and just see
ten examinations —- always around or more than 50. Usually, the num-
ber of patients fluctuated depending on the day of the week, season,
or proximity of important dates, e.g., beginning or end of school or
holidays.

Typically, with several radiologists in a clinic, one radiologist was
responsible for a single work list daily. A work list in PACS held ex-
aminations of the same type that needed to be reported. The type
was defined on the hospital or clinic level and could be based on, e.g.,
modality or the department of the ordering clinician. This means that
radiologists were responsible for reporting examinations assigned to
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their specific list, which were usually similar. Sometimes, a radiolo-
gist was responsible for more than a single work list, especially in
specialised hospitals and during increased patient visits. How radiol-
ogists and examinations were assigned to work lists varied depend-
ing on the medical site (Table 15).

• Specialised hospitals (D1, K1): Work lists were created based on
medical specialisations and departments in the hospitals, e.g.,
infectious diseases, oncology, or heart medicine, and all types
of the captured imaging were included as captures as part of
their work, e.g., radiographs, CT, or MRI.

• Big general hospitals (D3, D4, and K5): The work lists were created
per imaging type (modality), i.e., all CTs were assigned to one
list, and all radiographs were assigned to another, sometimes
with few exceptions, e.g. oncological CTs. In these hospitals, ra-
diologists worked on a weekly schedule, assigned to one of such
lists a day.

• Small general hospitals and medical imaging clinics (D2, K2, K3, K4):
Usually, there was only one list, which could have been filtered
for a specific imaging type.

vision : ai distributing examinations by user’s expertise .
Radiologists envisioned an AI-based system that would "filter the nor-
mal radiographs" in times of increased workload. It would screen all
incoming chest radiographs for findings and assign them to one of
two categories: those with abnormal findings and those without. P19,
the head of the radiology department in a large Kenyan general hos-
pital (K5) suggested that the ones that are not flagged as abnormal are
given to junior radiologists to clear the dispute. This means that junior ra-
diologists would ensure that a radiograph is truly normal and correct
for errors. P19 continued, And then the ones that have findings, I would
assign to one of the senior radiologists. That would be useful. This way,
senior radiologists would use their time efficiently, focusing only on
radiographs with findings. This suggestion sprouted when we asked
about the backlog of 500 unreported radiographs. Through such an
AI-supported distribution, P19 hoped for more radiographs to be
reported within a given period to reduce the backlog to normal.

This suggestion was considered a useful tool to support the smooth
work of a radiology department in times of increased workload. How-
ever, radiologists were aware of the potential negative effects on the
education of junior radiologists should such a system be used daily,
which was not their intention. Such a system was envisioned as a tem-
porary means of support in moments of greater stress on the health-
care system for the purpose of clearing the backlog. 500 [cases] is not too
much. Once you get down to a reasonable number, then, of course, they can
stop. But it’ll be a good filtering tool to clear the queue [P19]. After clear-
ing this temporary backlog, the distribution of examinations would
return to normal to re-engage junior radiologists in education.
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Figure 17: A note from D4 indicating medical emergency. The emergency
was indicated by an ordering clinician. A radiographer capturing
the radiograph would take note of the emergency and bring this
note to a reporting radiologist to prioritise it.

14.4.1.2 Challenge: Selecting the Next Most Relevant Examination to Re-
port Without an Easy Overview

When selecting the next examination to report, radiologists in Den-
mark and Kenya constantly scanned for the next most relevant ex-
amination. In the observed sites, medical emergencies constituted ur-
gency and were always prioritised by radiologists. A medical emer-
gency was usually indicated by ordering clinicians on an X-ray or-
der, as they were the ones who knew patients’ health conditions (see
Figure 17). Importantly, these medical emergencies did not account
for accidental findings, i.e., conditions that could constitute an emer-
gency but were not expected by the ordering clinician.

The meaning of urgency varied between the sites and situations.
Not all the consequential radiological findings, e.g. cancer, consti-
tuted urgency. This was explained by P22, a specialised radiologist
from K1, if you look at the medical emergency, things that need to be ac-
tioned, it’s not everything. A lung nodule that has been sitting there for a
few months, even if I report it on Monday [after a weekend], doesn’t make a
big difference, but a pneumothorax... makes sense. This quote emphasises
the importance of timely treatment for selected conditions, e.g., pneu-
mothorax, which almost always constitutes a medical emergency, as
a delay of even a few days can negatively impact patient outcomes.
Whereas prospects with other conditions, despite their seriousness,
are less affected by a delay of a few days. Moreover, the conditions
prevalent in different hospitals may depend on the type of medical
site and the population these sites serve. P17 highlighted the inherent
complexity of deciding a priority among other cases that do not con-
stitute a medical emergency. I can’t say this [a single radiological finding]



136 paper iii : towards clinically useful ai

is a high priority and ignore the other because it is one scenario, one package.
I can’t tell which one’s more important. In different contexts, different
findings may be more or less critical, e.g., the air in the abdomen
is an expected finding in a post-operative X-ray but an uncommon
one in routine assessment, mandating immediate action in a routine
X-ray.

While the utmost priority was given to urgent medical cases, med-
ical professionals, whenever possible, tried to alleviate patient incon-
venience. This prioritisation was observed when a patient had to wait
for the report, often to bring it to the ordering clinician (K2, K4, K5).
Such patients were noted by secretaries or radiographers, who in-
formed radiologists about their situation. This way, the waiting pa-
tients’ examinations were picked before other non-urgent examina-
tions but after any constituting a medical urgency, as explained by
P21: You see some of these people are not waiting here. They got the exam
and went home; others are sitting at the reception. So there’s a receptionist
there who comes to tell you: "This one is waiting here; please prioritise". So
we will do that one and then move on with the rest of the list.

Medical emergencies were communicated in several ways and, to
varying degrees, supported by the existing IT systems. Radiologists
typically received communication about the most critical cases
through phone calls from the ordering clinicians. This was observed
in both countries even when a priority attribute could be indicated
on a radiograph order. Such calls were made primarily between
doctors within the same hospital, as noted by P17 : [Even at night]
they call us. If there is an urgent [case], they have to call me: "We have an
urgent case. Please report it immediately." So I have to wake up and report.
However, maintaining the delicate balance between medical urgency
and convenience was difficult. Some phone calls were motivated
by the organisation of work at the requesting institution and not
a patient emergency. <After putting down the phone> Urgent thing...
or it’s urgent because they’re closing around five. It’s always urgent. So
around this time, everyone starts calling [P14]. In such cases, the phone
calls may not always achieve the desired prioritisation but instead
introduce breakages to the workflow.

Instead, radiologists preferred the urgency conveyed through PACS
as an attribute of a radiograph order. Using this attribute, they could
order their work list to select the next most relevant examination to
report. In K1, examinations were colour-coded based on the urgency
attribute: The red is an urgent, very urgent examination... So this one you
want to report within 1-2 hours, preferably before 1... The next colour will
be semi-urgent, so within two hours, preferably before. Then there is this
<colour>. Usually, the turnaround time is 24 hours. So the colour codes
help us to know which exams we need to report first [P22]. This way,
radiologists could get an overview of their patients, plan their work
accordingly, and minimise interruptions caused by phone calls.

Without the prioritisation in PACS, radiologists relied on secre-
taries and radiographers informing them about patients requiring im-
mediate attention, or established other processes to gain an overview
of their work lists and select the most relevant examination next. Not
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every PACS in the visited sites supported that functionality (D2, D3,
K2, K3, K4), and the system in K5, which did, was rendered unusable
due to organisational challenges. Every examination in K5’s PACS
system was marked as urgent, while almost none of them were. As
a result, radiologists ignored the urgency attribute and did not use it
for prioritisation. P17, from a small general hospital in Kenya, usually
quickly browsed through all the paper referrals, which were scanned
in PACS and linked to the examinations, to see which examination to
report next.

Lastly, in all of the hospitals, the work and expertise of radiogra-
phers were crucial for radiologists’ prioritisation of cases. They con-
veyed the urgency assigned by an ordering clinician in some of the
general hospitals (D3, D4, K3, K4). Moreover, whenever assessing the
quality of the captured X-rays, radiologists would gain experience in
distinguishing certain findings. P9 explained why this was impor-
tant, Technicians [radiographers], they were wondering what this was in the
breast, but she had both her breasts removed, and I think she had a hematoma,
and that’s what’s remaining... It’s good for them to learn because then they
can see if there’s something urgent, and they will call us. Based on this
experience and patient interactions, radiographers could spot certain
conditions on X-rays that necessitated urgency and inform radiolo-
gists about them.

vision : ai detecting medical emergencies In all the vis-
ited sites, radiologists received examinations chronologically and con-
stantly engaged in prioritisation work at the scene to report the most
relevant examinations first. However, they had a little overview of the
content of the examinations before opening them and relied primar-
ily on clinician-indicated emergencies, which meant that inevitably,
some of the urgent findings remained undetected until a radiologist
saw the radiograph. Participants from Denmark and Kenya shared
similar visions when asked whether they could envision AI support-
ing them in this prioritisation.

Radiologists envisioned an AI-based system that would screen all
the incoming radiographs and detect findings constituting medical
emergencies (K1, K2, K3, K5, D2, D4). While the desired findings to
screen for varied between contexts and practitioners, pneumothorax
- a lung collapse that may lead to respiratory or heart failure - al-
most always constituted a medical emergency. P14 envisioned AI
that would detect it, you can use it to triage trauma patients, ICU pa-
tients, and generally walk-ins... If there’s a pneumothorax, it’ll let me know.
That’s a very useful thing. They would use that knowledge to priori-
tise relevant cases in their work lists and deliver crucial reports faster.
Such screening would improve patient outcomes by faster diagnosis
in time-sensitive cases. The main clinical value comes from providing
faster diagnoses for patients with undetected medical emergencies.
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14.4.2 Interpretation: Practice of Drawing Conclusions

After selecting an X-ray, radiologists proceeded to interpret it. The
interpretation of chest radiographs involved understanding (1) a pa-
tient’s situation, (2) visually detecting findings, and (3) interpreting
them in the context of a patient’s situation, i.e., why the X-ray was or-
dered, the patient’s current state, their location (admitted to a hospital
or at home), or their medical history. This results in a high degree of
subjectivity. P20, a senior radiologist from a large general hospital in
Kenya, warned us that you can ask each of us [three senior radiologists
in the room] and everybody will give a different opinion. That’s the biggest
problem with chest X-rays [P20]. We observed two main reasons: the
visual complexity of chest X-rays and the variation in the additional
medical information required to interpret them.

14.4.2.1 Challenge: Interpreting Visually Ambiguous Findings.

Chest radiographs are visually complex, making distinguishing and
interpreting single findings difficult. P14 explained how X-rays are
merely shadows of the complex structures in the human body cast
on a plane. On the surface, it <an x-ray> is extremely simple, but as you
look at it, it becomes extremely complex ... because of all the things that
are in the chest and even the different densities within the chest from the
lung, all the way to bones, mediastinum, and everything in between. How-
ever, even when spotted, many abnormalities cannot be categorised
unequivocally. Shadows of different conditions look the same; some
pathologies may hide behind others. For example, during an obser-
vation P9 explained, So I’m looking at this area and wonder if there is
anything relevant. But there is something like this on the other side, so it
probably is nothing. This is one of the very difficult areas because there are
too many bones... and this patient is like this [wrongly positioned], and he’s
overweight. P9 explained that they relied on their experience with
similar cases to interpret such findings accurately.

One of the main ways radiologists are resolving doubts about their
interpretations is through collaborative interpretation with their col-
leagues (Figure 18). Such collaboration was well-supported by a local
PACS in D3. As a result, such consultations became a norm. I think
this is one of the best things about our PAC system. We use it a lot... Instead
of calling and saying, “Look at this CPR number [personal identification
number]”, and she is plotting it in, now this is so easy [P9]. Later, they
encountered an X-ray that they were uncertain about. P9 decided to
ask for a second opinion from their colleague: So I just want to show
her this. I don’t know what happened, but it doesn’t look good at all. Maybe
it’s nothing. Then, they concurred at the colleague’s desk and worked
together to interpret the examination. This effort was deemed worth-
while even when faced with additional labour needed to consult with
peers. As the only radiologist in K2, P14 had to rely on collaborating
with other radiologists remotely, e.g., I have a friend who’s in the US...
maybe two, three months ago, there was one case that... boggled my mind,
he specialised in paediatric radiology, but he’s also done musculoskeletal ra-
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Figure 18: In K5, the reporting room was occupied by three radiologists at
the time of the study. Radiologists often chatted about examina-
tions to resolve doubts. They either turned and looked together
at an examination on a single workstation or read out loud an
identification number, which other radiologists used to find the
examination in question and interpret within their own worksta-
tion.

diology so I would consult with him. There’s another radiologist who works
at (K5) whom I consult with.

Junior radiologists relied even more on collaboration with their se-
nior colleagues. As part of their training, they held regular meetings
with their supervisor, which offered an opportunity to ask questions
about difficult cases and their interpretations. However, when stuck
on a particularly difficult case, junior radiologists would reach out to
their senior colleagues outside of the regime of scheduled meetings,
as explained by P11, if I have any questions, I just need to find anyone
who is at work [senior doctor qualified to approve x-rays] and I can just
confer with them. These scenarios exemplify the collaborative practices
among radiologists from different medical sites and the critical role
of such collaboration in chest radiograph interpretation.

vision : ai providing decision support on subtle and dif-
ficult cases Doctors from the majority of the clinical sites (D1,
D2, K1, K2, K3, and K5) envisioned two AI-based functionalities that
would help them during the interpretation of the radiographs: (1) pro-
viding decision support to increase certainty in difficult cases, and (2)
detecting subtle finding to reduce the risk of overlooking.

First, our participants wished AI could provide decision support
when unsure about their interpretation. While our participants con-
sulted their colleagues and friends when interpreting difficult cases,
this support was often burdened with extra work to share the exami-
nations, connect over the internet, or walk to another room to discuss
them. P16, the only radiologist at a small general hospital in Kenya
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(K3), depicted the following intended use, I think for me the utility will
be more... like a second opinion. I would want it to be like a second opinion
to be more confident. Similarly, P4 explained that in cases when they
were not completely sure of a diagnosis, AI providing decision sup-
port could help decide on their interpretation, If I’m 95% sure about the
diagnosis, and find something else [an AI prediction] that suggests it, then
I’m 100% sure. While consulting colleagues may be more beneficial, it
also takes more resources. Due to the high workload, radiologists of-
ten could not read through all the available medical history, let alone
consult all the cases among each other. These constraints would not
afflict an AI that could opinion a difficult radiograph in question.

Second, they envisioned a system that could help them not to miss
subtle findings during the interpretation. You are often in a hurry. It’ll
always help if a machine can... show me something I haven’t seen. Of course,
I can’t see everything. Of course, I’ll make failures [P12]. The awareness
of the possibility of missing subtle findings was common among our
participants. Similarly, P22 from K1 reflected, As human beings, some-
times you miss something. You miss a small, tiny nodule in the chest x-ray,
which after six months... the patient comes back, and it’s a big mass which
you had missed, which happens. We’re humans. In these visions, radiol-
ogists wanted to ensure they had not missed anything by having an
AI double-check the radiograph for subtle findings.

These envisioned AI-based systems were contingent on the useful-
ness of the detected findings. Namely, the need for support was very
low when interpreting simple cases with "obvious" findings. This
was emphasised by radiologists from Denmark and Kenya alike, e.g.,
P20 who previously evaluated an AI-based chest x-ray decision sup-
port tool mentioned, when the findings are obvious, it wouldn’t even be
faster because then... you’ll see them quickly. It’s with those subtle [find-
ings] that AI could be useful. The obviousness of the findings was also
relative. While most radiologists found decision support detecting
pneumothorax extremely useful, a specialised radiologist interpret-
ing post-operative X-rays, where pneumothorax is a relatively fre-
quent finding, held a contrary opinion: Your tool will most likely detect
pneumothorax. It’s not that useful. We can easily see a pneumothorax P7.
These comments highlight the lack of clinical usefulness of AI-based
systems providing decision support for obvious findings relative to
the medical site and professional expertise. With extra work needed
to assess and understand these predictions, they offered no value to
radiologists or patients.

14.4.2.2 Challenge: Time-consuming Process of Obtaining Additional
Clinical Information

Chest X-rays were only one of many diagnostic tools medical profes-
sionals in Denmark and Kenya employed to understand patient con-
ditions. Insights from chest X-rays were only as good as radiologists’
understanding of patients’ context. Radiologists in both countries fa-
miliarised themselves with a radiograph referral to understand the
clinical questions associated with a particular X-ray. Then, they gath-
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ered other available clinical information, e.g., historical images, to
create a coherent story about a patient’s condition. Only then, in the
light of their understanding of a particular patient’s situation, they
interpreted the radiological findings seen on an X-ray. P9 pointed
out the broader focus of radiologists’ work: It’s all the big picture, and I
can’t do a proper description of the picture if I don’t have all the information.

A referral was typically available in digital (as a scanned document
or a digital entry) or paper form. Radiologists used referrals to focus
their efforts and guide their interpretation of visually similar findings.
P17 stressed out that if they [ordering clinician] didn’t write it, I don’t
know what they look for, why this patient did the chest X-ray. Are we looking
for an infection or pneumonia? But the patient had a trauma, so we are
looking for a fracture. Maybe I would have missed it if they hadn’t told me.
For this reason, all of our participants considered a referral necessary
information and often would not report an X-ray without it.

Historical radiographs were another important source of informa-
tion. Comparing patients’ current X-rays against previous ones was
useful to exclude potentially life-threatening diagnoses and discern
between visually similar findings. P12 , from an imaging clinic in
Denmark (D2), captured this by referring to old X-rays as gold: they
are gold because when you can see he [a patient] was seen five years ago, you
find the old picture and it looks exactly the same. Then you say, "Oh, it’s
not cancer". In this scenario, P12 found the same finding of the same
size on a historical X-ray. Hence, they could rule out cancer. Similarly,
P21 from a large general hospital in Kenya (K5) used historical X-
rays to guide their interpretation of ambiguous findings: The images
can look alike. But interpretation will differ depending on the history [P21].
While providing invaluable insights, fetching historical images and
comparing the development of findings across the radiographs was
repetitive, time-consuming, and poorly supported by PAC systems.
It takes a lot of time to open one [radiograph], look at it and see what was
happening, then open the next one and see if it had resolved. [P22]. The
need for extra time to use historical radiographs was a concern dur-
ing times of heavy workload.

Medical records provided a wealth of information, e.g., test results
or treatment progress, yet radiologists had to go out of their way to
access them. Since radiologists worked in PACS and could access the
referral and historical images directly, switching systems to search for
patient information in EHR was usually time-consuming. Because of
this, it was used as a source of last resort for most complex cases.
P10 explained: Not all of us will do this because we do not have enough
time. I can’t check every patient in the SP [the local EHR system]. However,
information obtained in such a way was considered very helpful, as
expressed by P22: I prefer to check the records cause you’re able to get even
more [information] than the clinician may give you. EHR was available
in Danish hospitals, in the specialised hospital (K1), and the bigger
general hospital (K5) in Kenya. Paper versions of the records were
not used.

Finally, despite the overwhelming subjectivity of the interpreta-
tions, radiologists pointed out that they also use some objective met-
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rics. Frequently, radiologists manually measured ratios or sizes of
visual features on a radiograph to discern certain conditions. For ex-
ample, they measured the width of the cardiac silhouette and the
thoracic cavity. A ratio greater than 0.5 suggested cardiomegaly (en-
larged heart). Similarly, P14 explained, I am trying to discern whether
this area is normal vascularity or whether it’s an infection. An objective
way to do that is to compare the intercostal spaces. While measuring such
features was common and not difficult for radiologists, it takes their
valuable time away from using their expertise.

vision : ai measuring visual features and comparing

changes across historical examinations To reduce
the probability of errors and streamline their interpretative work,
radiologists envisioned AI-based systems that could (1) pre-process
radiographs by measuring visual features and (2) compare detected
findings against historical radiographs.

First, AI could assist with manual measurements of visual features.
P22 envisioned an AI-based system that could support their inter-
pretation by conducting such measurements: AI could just measure for
me the heart size and tell me if it’s within normal. Because it’s very manual,
time-wasting. . . But you know, you can easily train a machine to do that.
This way, radiologists would only have to inspect the results, which
would realistically reduce the time needed to interpret a radiograph.

Second, AI could automatically compare changes between histori-
cal radiographs. Similarly to the manual measurements, fetching his-
torical images and assessing their differences was a common and
time-consuming task. Participants from K1, K5, D1, D3, and D4 envi-
sioned an AI-based system that automatically fetched historical radio-
graphs, detected relevant findings using image recognition, and com-
pared their development over time. Providing such support would
expedite the manual search for findings across historical images and
help radiologists assess whether changes currently observed are new
developments or have been already present, resulting in improved
clinical outcomes. Rather than spending time on manual fetching and
comparing historical radiographs, P22 , working in a specialised hos-
pital in Kenya, envisioned: It would help to have an AI that just com-
pares... say the last five scans... highlights those changes for you so that you
can just interpret what has happened. So that would be nice. In this vision,
the AI-based system would use image recognition to detect changes
between historical chest radiographs and bring them to the radiol-
ogist’s attention for interpretation. P9 , from a general hospital in
Denmark, envisioned a similar support tool to find the same finding
across historical images and inform radiologists about its progression.
There are some small nodules in the right lung, and I have to compare... I
think artificial intelligence could be very helpful here to spot the nodules and
then compare them. The envisioned functionality would allow radiolo-
gists to focus on interpreting the changes rather than fetching images
and localising the changes.
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Figure 19: In D1, conferences with clinicians were a part of the dissemi-
nation practices aimed at increasing the knowledge transfer be-
tween radiologists and ordering clinicians. In this room, radiolo-
gists responsible for one work list presented and explained the
most important, difficult, or interesting cases to clinicians from
the departments that ordered them. This was also when they
could ask questions about the reports of other patients.

14.4.3 Reporting: Practice of Contribution

The final stage of handling a chest radiograph encompassed writing
a report. A report may seem to be solely a plain summary of an X-
ray interpretation. This part of radiologists’ work was also mediated
by a patient’s context and the expertise of the report recipient. In the
visited sites, radiologists usually communicated the three following
elements in their reports: their impressions of what they saw on the
radiograph, their interpretation of these findings in relation to the
patient’s condition, and recommendations on the next steps for the
ordering clinician (Figure 19).

14.4.3.1 Challenge: Conveying the Right Information in a Report

Radiologists framed their reports to provide maximum benefit to the
patient based on the ordering clinic and the report recipient. The level
of detail in their descriptions was finer if they knew the ordering
clinician could use this information. They also mentioned all the vi-
sual findings that may concern ordering clinicians to avoid confusion,
even if they were not clinically relevant. There are some [findings] that I
can ignore mentioning. But the others not... they [ordering clinicians] might
think that you missed it because they’re not aware what it is, they might
worry that maybe it is something when it’s not [P16]. Similarly, the type
of guidance radiologists provided varied between the recipients. P14

from a medical imaging and teleradiology clinic in Kenya mentioned,
My reports vary depending on who has sent it [an X-ray order]. So if it’s a
medical centre in Nairobi, I know they’re going to interact with a healthcare
practitioner who’s fairly experienced... but the further out you go out, the
less you have... P14 explained that clinics in the remote parts of Kenya
lack medical doctors. As a result, nurses and clinical officers take care
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of patients. However, they may lack the necessary medical training to
navigate the complexities of diagnosing certain conditions. P14 con-
tinued, I need to use my expertise to sort of guide them. Cause they’ll put
a lot of weight on what I say... You want to give them some ideas: "This is
what I think is going on. Please check for 1, 2, 3." And then they may not
have thought of it and said: "Oh well, the child doesn’t have a fever, and
the child hasn’t been coughing, so it’s unlikely to be pneumonia." But if I
write pneumonia, they’re going to put the child on antibiotics whether or not
the child has symptoms. So they say, "The doctor from Nairobi says pneu-
monia, so it’s pneumonia." It’s tricky... Overall, these quotes underscore
the adaptability and responsibility of radiologists to provide tailored
guidance in their reports based on the specific needs and capabilities
of the recipients they report to.

vision : ai double-checking reports against radio-
graphs for missed or misinterpreted findings As a
response to the problem originating at the interpretation stage - the
complexity of reporting chest X-rays and the high temporal cost
of accessing support - and the reporting stage - the fallibility of
transcription software used, radiologists envisioned a system that
would double-check whether all the relevant findings detected on
the X-ray were mentioned in the report. This system would use two
types of AI: Natural Language Processing (NLP) to read through a
radiologist’s report and image detection to detect relevant findings
on an X-ray. Subsequently, the system would assess whether all the
findings detected on an X-ray were also present in the accompanying
report. In case of divergence or missing a finding, it would notify
radiologists about potential errors.

Radiologists acknowledged their fallibility, which could be min-
imised with such AI use as envisioned by P17 , Even for us as con-
sultants... everyone is making mistakes, right? So I can report everything,
and just with one click, I can... see if I was wrong, if I missed something, if
I have to think more about this, if I have to ignore this. It’ll help everyone.
The report analysis is the main difference between this vision and the
decision support described before. In this envisioned future, the AI’s
assessment of the radiograph is not available to radiologists before
finishing the report. Thus, radiologists benefit from seamless quality
assurance and interact with the AI only when an issue with the report
is discovered, avoiding another layer of work for every radiograph.

14.5 discussion

This study offers a unique perspective on radiology work practices
and AI opportunities in two diverse countries. HCI researchers sug-
gest that such joint focus on commonalities is necessary to balance
the northern narrative in technology design, minimise biases, and "en-
able translation across geographies" of clinical AI-based systems [168,
201]. If not addressed, sociotechnical and political differences both
within and between Global North and Global South countries im-
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pact the design and successful use of clinical IT systems [26, 168, 248,
252, 342]. We observed such differences in, among others, the type
of healthcare systems, IT infrastructure, available IT systems, and the
quality of medical data. While their effect on concrete AI implemen-
tation should be assessed, the radiologists’ practices in Kenya and
Denmark were surprisingly similar. The reasons may be due to com-
parable medical education where the biomedical model of medicine,
scientific constructs and medical ethics are largely the same.

We contribute to this line of work by showing how similarities be-
tween chest X-ray practices in Kenya and Denmark can be generalised
across three main stages of work that are more collaborative than ex-
pected and possess unique human contributions. We also detailed the
ways in which local and contextual aspects of radiology work are im-
portant for visions of AI support. These findings have implications for
AI in radiology but also for HCI and the design of human-centred AI.
Finally, we discuss these lessons and share reflections on what this
means for designing clinically useful AI.

14.5.1 Practice-grounded Envisioning of AI Futures: Searching for New
Design Opportunities

Previous HCI studies revealed a disconnect between the functional-
ity provided by AI-based systems and the functionality needed in
clinical settings [169, 175, 267]. This suggests gaps in understanding
the problems and needs of clinical end-users before considering AI-
based solutions. To bridge this gap, researchers in the HCI commu-
nity are increasingly voicing their concerns and advocating for an
AI-paradigm change going from technology-centric to human-centric
[10, 42, 281, 304, 305, 344, 359]. Results presented in this study adopt
a human practice-centric perspective on AI support. We have demon-
strated the potential to uncover new ways for AI support that align
more closely with the needs and wishes of clinical end-users.

HCI researchers should envision AI functionality through en-
gagement with real-world practices rather than merely following
the trajectory of AI development. Engaging communities of practice
before the development of AI systems is critical [175, 236, 314, 326], as
once completed, AI model capabilities often dictate the final system’s
capabilities and, due to the high cost of the data and model work,
they are unlikely to change [6, 362]. We advocate for a paradigm shift
where clinical support opportunities arise from the practice, and not
from retro-fitting already conceived AI models born out of access to
data or external pressures to adopt AI. Practice-grounded envision-
ing of AI futures can reveal new ways these systems can support
practitioners. Thanks to such engagements, in this study, we revealed
opportunities for support in the complex, nuanced radiological work-
flows and collaborative dynamics inherent in clinical practices. There-
fore, as AI continues to increase its presence in healthcare, it is essen-
tial to shift the driving force behind AI development, from a techno-
logical opportunity to a desirable vision of the future rooted in the
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local sociotechnical context (local practices, hospital settings, exper-
tise of clinical end-users).

14.5.2 New Design Opportunities for Clinically Useful AI in Radiology

The current understanding of handling chest X-rays has centred
around an individual radiologist’s interpretation work. This is
reflected by hitherto AI-based support systems that have so far been
aiming at supporting the interpretation and detection of findings
on X-rays, also referred to as second-opinion [89, 183, 189, 277, 340].
However, the clinical use of such systems in radiology remains low
[147, 292, 338]. Research points out that one of the main reasons
for the failure of AI in radiology is the "uncertain added value for
clinical practice of AI applications" [313].

Our study reveals that the low uptake of AI in radiology may be
due to the application of AI in a confined design space which can lead
to missed opportunities for providing clinical value with AI. The ex-
tent of visions for AI presented in this study brings attention to the
importance of broadening the design space to include all three stages
of chest X-ray practice, transcending the narrow potential of AI-based
second opinion. This conceptual contribution is not merely specula-
tive; it is grounded in the insights of radiologists who advocate for a
pragmatic shift towards support mechanisms that enhance their pro-
fessional expertise, as opposed to replacing them with models simpli-
fying their practice [200, 209, 323, 351]. Our contribution lies in high-
lighting new directions for designing clinically useful AI in radiology
and recommending improvements in how AI can support radiology
work.

AI support has to account for the subtle collaborative practices
in chest X-ray practice we showed the collaboration between radiol-
ogists and other actors involved in the treatment process of patients.
Fridell et al. previously argued that radiologists are active partners to
clinicians in the diagnostic process [120]. We expand this understand-
ing by describing the subtle collaboration often mediated through
various artefacts such as referrals, urgency attributes, and other data
associated with X-rays. These findings contrast the dominant under-
standing of radiological practice, which, based on current AI-based
systems offerings, focuses on the visual detection of findings on ra-
diological examinations almost out of clinical context. We argue that
to support radiologists in their practice, designers and developers of
AI-based systems have to be aware of the, in fact, collaborative work
practices. For example, the collaboration on prioritisation of relevant
examinations. To truly contribute to radiologist work and have a pos-
itive effect on patient care, future AI-based systems must account
for the already existing practices rather than ignore them, as these
practices enable radiologists to work and support the best clinical
outcomes for patients.

Meaningful AI support should not simplify the practice to one-
dimensional finding detection. Our study foregrounded the human
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aspect and the range of tasks in radiologists’ practice. Previously, Pes-
pane et al. highlighted, among others, educating students, commu-
nicating diagnoses, and performing interventional procedures [260].
We add to this tasks related to handling medical images, e.g., drawing
from various data sources to understand patient situations, anticipat-
ing ordering clinicians’ questions, and framing reports to contribute
to clinicians’ decision-making processes. These tasks are radiologists’
contributions to the diagnostic process beyond the sole identification
of findings on examinations. They require empathy and complex rea-
soning. This is a second account where the radiological practice is
miscomprehended by hitherto AI-based systems. Otherwise, to use
AI output in practice, radiologists would have to spend additional re-
sources, which the support often aimed to free in the first place. To be
able to contribute to radiological practice, designers and developers
alike should be aware of their complexity and take them into account
when designing support functionalities.

To provide useful second opinions, AI needs to limit additional
work needed to use it by adjusting to local conditions. Our find-
ings do not negate the premise of supporting image interpretation.
We argue that AI, as a second opinion, should be configurable to
the local conditions, including the type of clinic, radiologist exper-
tise, current workload, and patient characteristics, to reduce the addi-
tional work required to benefit from the predictions. Our participants
stressed the difficulty and subjectivity of interpreting chest X-rays, in
line with previous research - the disagreement rates among radiolo-
gists on chest radiograph interpretations reach as high as 30% [113].
However, providing a second opinion on every examination based on
an arbitrary set of pathologies, as experienced by some of our partic-
ipants, resulted in a significant overhead. We know that the mental
and temporal cost of discerning false positive AI predictions may re-
sult in the failure of AI in clinical practice [18, 25, 221, 325]. This is
critical in radiology where staff shortages and the increasing num-
ber of examinations result in reduced time available per examination,
stress, and overburdening [146, 279]. We argue that to provide a clini-
cally useful second opinion, radiologist must be able to configure AI
to reduce the additional work and spend their time on predictions
relevant to their practice.

AI support for radiology can transcend second-opinion. In this
study, we explored the space of AI support thought clinically use-
ful by radiologists. By contextualising chest X-ray practice within the
broader diagnostic process, encompassing all its interdependencies,
we uncovered several new opportunities for AI assistance. Particu-
larly, we point to the selection and reporting stages as promising do-
mains for AI designers and developers. Within these stages, radiol-
ogists envisioned AI to provide a much-needed overview of urgent
cases, optimise case distribution based on the current clinic work-
load, or double-check reports. Interestingly, none of the AI-based sys-
tems encountered by participating radiologists explored these prac-
tical tasks. Promising work on other modalities has been made to
support the work in the selection stage. For instance, Arbabshirani et
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al. [13] evaluated a system that screened and prioritised intracranial
haemorrhage on CT scans, significantly reducing its time to diagno-
sis. However, such work for other modalities has not been described
yet. This underscores the need for diverse support approaches, as the
role of radiologists extends beyond pathology detection in medical
images [260].

14.5.3 Clinically Useful AI Requires Configurable And Flexible AI

AI accuracy has historically been the main measure for evaluating
the usefulness of AI systems in healthcare [207, 210]. Achieving high
AI accuracy has been the ethos of what entails a ’good’ AI model,
resulting in the pursuit of getting technology ’right’ before anything
else. However, technical excellence does not guarantee a positive im-
pact on patient outcomes or the work of medical professionals [313,
340]. Researchers from both HCI and Health point out that technical
excellence rarely translates directly to clinical usefulness [37, 68, 169].

14.5.3.1 Clinic Type and End-User Expertise Condition AI Support

Different types of clinical sites demand different types of AI support.
This study revealed unexpected parallels in radiology work between
Denmark and Kenya. However, while radiology work exhibited gen-
eral similarities across the two countries, nuanced yet important dif-
ferences appeared when comparing across the types of medical sites.
For example, in specialised hospitals in both Denmark and Kenya,
X-ray work lists were created based on the hospital departments and
according to medical specialisation, which stood in stark contrast to
small general hospitals, where there was usually only one work list.
These organisational differences affected the opportunities with AI
for each medical site. For instance, the AI-based distribution of exam-
inations by expertise was only envisioned in medical facilities with
diversity among the employed radiologists. Similarly, differences in
available resources in the radiology department were reflected in the
envisioned AI support. In smaller hospitals with a shortage of radi-
ology staff, obtaining a second opinion was harder, which deemed
visions for AI-based interpretation support more desirable. This sug-
gests that the characteristics of the organisational context are impor-
tant to consider when designing AI support in radiology. It highlights
the fact that different types of medical sites require different types of
AI support.

Junior and senior radiologists have different needs for AI support.
Besides organisational differences, we also found that differences in
radiologists’ expertise may condition specific user requirements for
AI. For example, on visually complex X-rays where shadows of dif-
ferent conditions looked the same, radiologists relied on their experi-
ence with similar cases to accurately interpret the findings. Similarly,
junior radiologists who were undergoing training relied on collabo-
ration with senior radiologists, especially when examinations were
difficult to interpret. This suggests that end-users level of expertise
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is a deciding factor with regard to which type of AI is considered
useful. This, we argue, has several implications for the design and
development of AI in radiology.

Clinician-facing AI needs to be configurable to the clinic and end-
user. It is common knowledge, both in academia and the software
industry, that favourable outcomes can be attributed to the config-
urability of clinical information systems [151, 212]. While designing
for system configurability and tailorability is somewhat old news for
HCI, it has yet to become part of the discourse on designing clin-
ically useful AI. Emerging HCI studies investigating clinical AI in-
dicate this direction. Researchers emphasise the significance of poor
workflow integration, highlighting its equal importance alongside the
well-known challenge of establishing trust by means of transparency
and explainability [52, 169, 334]. Varma et al. [330] ascribe the limited
impact of AI in medical practice to the poor connection between AI
capabilities and clinical workflows. They argue for the importance of
diverging from the existing “one-size-fits-all” paradigm within HCAI
discourses. Similarly, Wang et al. [334] report on tensions with the de-
sign of AI-based clinical decision-support systems in a rural clinical
context and stress the reason being the misalignment with local con-
text and workflow. Solutions to workflow integration problems with
clinical AI have revolved around human-AI interaction, with exten-
sive work on guidelines present (see e.g. [8]) but also suggestions of
creating multi-user systems and designing for time-constraint medi-
cal environments have been proposed [169]. When reflecting on the
results of this study, we suggest that designers need to look beyond
the interaction components of the interface. Specifically, there is a
need to carefully consider how to make clinical AI systems config-
urable so that the set of AI features corresponds to the local needs
of the medical site. This includes designing functionalities that can
be adjusted according to e.g., the division of work and the number
of medical staff. This configurability should ideally extend to the ex-
pertise of the end-users. This will, if done well, ensure a better fit
between human competencies and the capabilities of AI.

14.5.3.2 Situational Circumstances and Patient Context Influence Require-
ments for AI

Finally, radiologists rooted their visions for AI support in concrete
situations and challenges from their local practice. For example, in
time-limited situations where radiologists were "in a hurry," the de-
mand increased for AI that double-checks the radiographs for subtle
findings or screens a list of examinations for medical emergencies that
should be treated before the end of a radiologist’s shift. Similarly, the
type of welcomed support depended on patient context, e.g., notify-
ing radiologists about the detection of air in the abdomen may be a
crucial safety feature when dealing with outpatients and a superflu-
ous hindrance when applied to patients from a surgical ward. This
means that radiologists’ needs for AI are not constant; rather, they
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may change over time according to the situational circumstances and
patient context.

Designing flexible AI is critical for ensuring clinical relevance.
Bossen and Pine [52] have similarly found that AI being "flexible" is
an important factor for the successful use of AI in healthcare contexts.
In their study of a Natural Language Processing-based tool in the
wild, they found that AI’s utility was derived from its ability to act as
an imperfect assistant that could be appropriated in use to fit particu-
larly well with individual needs. While the timing of AI is important,
i.e. it should be available when needed, HCI researchers suggest in-
teractive machine learning as a way to make AI more useful for “in-
the-moment diagnostic needs” [67]. Cai et al. [67] provide important
design recommendations for ways to improve AI’s clinical relevance
by enabling pathologists to interact with the AI tool in ways that fit
with the particular cases. In both studies, it is clearly demonstrated
how erroneous and imperfect AI algorithms can be made more clini-
cally useful if designed for flexible use accommodating the needs of
the situation. In light of these findings, we advise researchers and de-
signers of clinician-facing AI to identify situational requirements and
design for the appropriation of AI during use.

14.6 conclusions

In this article, we present findings from a field study in nine medical
sites in Denmark and Kenya. We unpacked work practices shared by
participating radiologists from both Denmark and Kenya and concep-
tualised them in three stages: selection, interpretation, and reporting.
Radiology work was found to be more collaborative than anticipated
by being part of the overall diagnostic work. Moreover, the unique
human contributions of radiologists surfaced as important yet often
omitted when designing AI-based systems for chest X-rays.

Findings from this study suggested a misalignment between the
dominant technology-centred development of AI and the contextual
needs of radiologists. By investigating work practices and engaging
radiologists in envisioning AI futures at the point of practice, we ex-
panded the design space of AI in radiology. This includes visions
for AI-based distribution of examinations, measurements of visual
features, assessments of historical changes, and double-checking re-
ports. These visions transcend the traditional second-opinion systems
and suggest that more opportunities for AI support that target other
stages than interpretation should be explored.

Finally, we discussed how the clinical usefulness of AI is dependent
on its configurability and flexibility with regard to the type of clinical
site, expertise of medical professionals, and situational and patient
context. These reflections have implications for the design of clinician-
facing AI and suggest new directions for future research on human-
centred AI in health.
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Artificial Intelligence (AI) models repeatedly match or outright out-
perform radiologists in narrowly defined detection tasks. However,
real-world implementations of radiological AI-based systems are
found to provide little to no clinical value. In this paper, we explore
how to design AI for clinical usefulness in different clinical contexts.
We conducted 19 design interventions with 13 radiologists from
7 clinical sites in Denmark and Kenya. The interventions centred
around the iteratively improved prototype of an AI-based system.
We conceptualised four technical dimensions of radiological AI that,
to achieve clinical usefulness, must be configured in relation to the
intended clinical context of use: AI functionality, AI medical focus,
AI decision threshold, and AI Explainability. We present four design
recommendations on how to address dependencies pertaining to the
medical knowledge, clinic type, user expertise level, patient context,
and user situation that condition the configuration of these technical
dimensions.
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15.1 introduction

Artificial Intelligence (AI) models repeatedly match or outright out-
perform radiologists in narrowly defined detection tasks [14, 244, 268,
283]. There are multiple studies claiming that AI-based systems en-
hance radiologists’ work, either by increasing accuracy or reducing
time spent on each examination [210]. These claims, however, are
based on retrospective evaluations conducted in laboratory settings.
When looking closer into the state of the art of clinician-facing AI, the
claims of utility weaken [362]. For example, Roberts et al. [280] found
that out of the 62 AI models detecting and predicting COVID-19 on
chest X-rays and CT scans that were described in the literature, none
were deemed to be useful for clinical purposes. Furthermore, evalu-
ations of the handful of systems approved by the authorities in the
United States and European Union [3] revealed that their clinical im-
pact when integrated into practice remains mostly unclear [206, 340].
A similar study by Lehman et al. [208] showed no improvement in
patient outcomes after the successful integration of an AI-based sup-
port tool for mammography screenings. Strohm et al. claimed that
one of the primary causes of AI’s lack of success in radiology until
now is due to "uncertain added value for clinical practice of AI appli-
cations" [313]. What these studies show is that the clinical usefulness
of hitherto AI-based support systems is limited.

Researchers with diverse backgrounds (AI, Health, and Human-
Computer Interaction (HCI)) investigated what makes AI-based sup-
port systems clinically useful. Based on the previous work, we de-
fine clinical usefulness as the overarching quality of AI-based sup-
port systems emerging from the interplay of their real-world perfor-
mance, clinical efficacy, local applicability, and end-user acceptance
in a situated clinical context for concrete end-users. First, robust per-
formance in real-world settings is essential, as subpar performance
has been found to increase workload and disrupt clinical routines
[207, 334, 362]. Second, the evaluations, primarily assessing technical
performance metrics through randomised clinical trials (RCTs), must
encompass tangible clinical outcomes and patient benefits. Health re-
searchers have been advocating for more flexible assessment method-
ologies aligned with the iterative nature of AI deployment [37, 184,
216]. Third, end-user acceptance, supported by qualities like trust and
usability, emerges as pivotal for successful use in clinical practice [62,
67, 169]. Altogether, for an AI-based system to be clinically useful, it
must perform well, benefit patients, and be accepted by clinical end-
users working in different clinical contexts.

In this paper, we investigate how to design AI for clinical usefulness
in different clinical contexts. This study was conducted as a part of a
larger research and development project focused on innovating an
AI-based system to assist examinations of chest X-rays in Denmark
and Kenya. Here, we define innovation as the entirety of work con-
ducted to create an AI-based system, from creating the datasets the
AI is trained on through design and development to its integration
and use in practice. We conducted 19 design sessions and design in-
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terventions (online and collocated) with 13 radiologists from 7 clin-
ical sites in Denmark and Kenya. Throughout the design study, we
explored a range of user interface mock-ups and three versions of a
web-based prototype of an AI-based support system with prioritisa-
tion and decision-support functionalities.

We conceptualised four technical dimensions of radiological AI
support that need to be configured to maximise its clinical useful-
ness. The technical dimensions uncovered through the design inter-
ventions span AI functionality, AI medical focus, AI decision threshold,
and AI Explainability. These decisions constitute the critical aspects
of radiological AI-based support systems and must be configured in
relation to the local social dimensions of clinical AI.

Moreover, to support configuration during innovation, we decon-
structed social dimensions, conditioning how each of the technical
dimensions supports final clinical usefulness. Namely, how medical
knowledge, clinic type, user expertise level, patient context, and user situa-
tion affect the clinical usefulness of technical dimensions.

Finally, we discuss how these dependencies should be accounted
for throughout the innovation processes to successfully configure fu-
ture systems before-use and enable meaningful configuration in-use.
Based on the design interventions, we offer four concrete design rec-
ommendations addressing the configuration needs of each of the con-
ceptualised technical dimensions of clinical AI.

15.2 related work

15.2.1 Clinical Usefulness of AI Systems in Healthcare

The hitherto evidence of AI’s positive influence on clinical practice
is limited [207, 226, 321]. Research on the real-world effect of AI in
healthcare tends to be discrete, focusing on confined goals [362]. How-
ever, to provide clinical value AI-based systems have to dovetail con-
tributions from Human-Computer Interaction, AI, and Health into a
cohesive vision [117, 334, 362].

First, clinical usefulness necessitates robust performance [362]. This
primarily has to be true in real-world settings, retrospective evalua-
tions in lab environments do not speak to the final performance of
a system. For example, in a real-world evaluation of an acclaimed
ML model for detecting diabetic retinopathy, 21% of all cases were
deemed ungradable [26]. Poor performance also leads to increased
workload [261, 285, 334], additional time spent on discerning false
positive predictions [301, 302], or breakages to work routines [122].
Van Leeuwen et al. [207] reported that out of 100 CE-approved radi-
ological AI-based systems, 64 showed no peer-reviewed evidence of
clinical efficacy. Most evidence for the remaining 36 systems focused
on diagnostic accuracy, not real-world clinical outcomes.

Second, clinical usefulness necessitates clinical efficacy [184]. How-
ever, randomised clinical trial (RCT) - a focused, systematic, rigorous,
and insulated method commonly used to evaluate the validity of clin-
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ical interventions independent of external confounders - is often fol-
lowing the traditional sequential paradigm of work characteristic for
drug development [43]. In this tradition, the intervention is evaluated
only when deemed complete [70]. When translating this mentality to
AI-based systems, not only does it hinder innovation, but it also re-
sults in the evaluation of AI through the measure of technical perfor-
mance [216]. While technical performance is the backbone of useful
AI, clinical efficacy is not its immediate consequence [37, 303]. For
example, Lehman et al. [208] conducted a prospective evaluation of a
computer-aided detection system supporting mammography report-
ing. Researchers concluded that the use of AI had no "established
benefit to women." Instead, healthcare researchers are opening up
towards more flexible evaluation approaches that align with the iter-
ative and situated nature of AI innovation and "go beyond measures
of technical accuracy to include quality of care and patient outcomes"
[88, 184]. Achieving high performance but in metrics that are clini-
cally relevant is the next step towards clinically useful AI-based sys-
tems.

Third, clinical usefulness necessitates clinical organisational accep-
tance. HCI community’s claim to fame is understanding that regard-
less of a system’s performance, it will not have any impact if no one
wants to use it. Thus, many facets of making clinical AI an appeal-
ing solution were explored. Trust has been hallmarked as a critical
quality of clinical AI. HCI researchers investigated its origin [18, 62]
and dependencies [267], as well as issued recommendations for de-
sign [169]. Explainable AI (XAI) has been the most promising answer
to enhance trust, support oversight, but also increase the perceived
usefulness of clinical AI [67, 135, 205, 348]. AI as a new source of
information and agency prompted the exploration of new ways of
reasoning and human-AI collaboration [34, 52, 68, 100]. Researchers
also investigated AI’s position in a clinical decision-making process
[179] and the rationale behind integration opportunities into clinical
practice [169, 290, 302, 357]. They argued that the workflows, current
work practices, and the broader sociotechnical context should also be
taken into account when implementing clinical AI-based systems [82,
169, 253, 281, 325, 362]. Addressing these concerns is crucial for AI to
have a chance at benefiting patients and being accepted by healthcare
professionals.

Altogether, for an AI-based system to be clinically useful it must
perform well, benefit patients, and be accepted by clinical end-users.
However, oftentimes the innovation of clinical AI is conducted in silos
and the work is not guided by the ultimate goal of clinical usefulness
[43, 362]. We need to investigate how AI-based systems can be con-
figured to support these three goals and ultimately result in clinically
useful AI.
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15.2.2 System Configurability

Configurability has been long considered crucial to the appropriation
of IT systems [101, 102, 198]. There are two types of configurability
that should be explored in the context of this study: before-use and
in-use [151].

Before-use configurability typically involves the active participa-
tion of end-users in the design processes, aiming to tailor systems to
their specific needs and preferences [151]. Various methods and ap-
proaches have emerged to facilitate meaningful engagement with end-
users, such as participatory design techniques [198]. Acquiring an un-
derstanding of work practices and work environment, but also tech-
nology aspects of a future system and changes it may introduce, is
crucial for developing systems that effectively respond to user needs
[186]. This understanding enables developers and designers to imple-
ment systems that are not only technically sound but also contextu-
ally appropriate.

However, according to Stewart and Williams [311], the paradigm
of user-centred design does not properly answer the challenges of
implementing useful systems. Rather, the final usefulness of a system
is created iteratively through the acts of in-use configuration. This
stance echoes Suchman who recognised the need for design activities
to continue after a system’s deployment [319].

The in-use configuration may cover functionalities, user interface,
or other settings that let the end-users adjust the system to their pref-
erence and work environment [347]. However, the system is not the
only configurable arena. The environment also undergoes a process
of configuration to the new system. The in-use configuration pro-
cesses encompass changes to the "technical environment, organisa-
tional relations, space technology relations, as well as people’s con-
nections to other people, to other places, and work materials" [19].
Dourish [102] highlights how the appropriation of IT systems in prac-
tice is an act of both adapting the technology and adapting the prac-
tices to fit into the new reality.

As usual with AI, the matter of configuration is burdened by the im-
mutability of certain aspects of the system in-use and the dependency
of early design decisions on the use context [362]. HCI researchers in-
vestigating the design of AI-based systems learned that it is not possi-
ble to envision all aspects of clinical AI-based systems before they are
deployed. As a result, the final capabilities of such systems only take
shape after they have been deployed. [128, 354]. On the opposite end
of AI innovation, i.e., prior to data labelling, Zając & Avlona [362] es-
tablished that very concrete choices and assumptions about the final
context of AI use form the data used for AI training and, by exten-
sion, shape the space of capabilities of future AI-based systems. This
vicious cycle of dependencies prompted researchers into new ways of
thinking about AI innovation. Edwards et al. [107] proposed the con-
cept of "growing" to foreground the need for almost organic adoption
and adaptation of new IT systems in an existing environment. Elish
and Watkins presented a similar argument [109] who emphasise that
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# type radiologists country

K1 Small General Hospital <5 Kenya

K2 Small General Hospital 1 Kenya

K3 Imaging / Teleradiology Clinic 1 Kenya

K4 Specialised Hospital <20 Kenya

K5 Big General Hospital 10 Kenya

D1 Specialised Hospital 100+ Denmark

D2 Imaging Clinic <5 Denmark

Table 18: Clinical sites included in the study.

early realisation of clinical AI and acknowledgement and support of
the necessary "repair work" are crucial to counter the risk of a sys-
tem remaining "a potential solution", i.e., a solution that is not viable
when actually implemented.

We see the problem of configuration of clinical AI, as a problem of
obtaining reliable information related to design decisions made dur-
ing the innovation. The emergence and propagation of dependencies
at the point of deployment hamper the ability to configure clinical AI-
based systems in-use. At this point, the assumptions about the con-
text of use are already ingrained in the AI model. We want to support
the configuration of radiological AI-based systems for clinical useful-
ness by uncovering the dependencies anchored in clinical contexts
and linking them with specific design decisions. This extended un-
derstanding of contextual factors will allow developers and designers
to implement radiological AI support configurable and useful across
clinical contexts.

15.3 methodology

In this paper, we explored how to design radiological AI-based
systems for clinical usefulness across contexts. This study was
part of a larger project set to design and develop an AI-based
support tool for radiologists examining chest X-rays. The project is
a multidisciplinary collaboration between <anonymised university>,
<anonymised hospital>, and <anonymised private partner>. Due to
the project’s goals, the future system should support radiologists in
Denmark and Kenya. To take into account the diversity of practices
and contexts, we conducted design research in seven different health-
care settings across the two countries (Table 18), which included:
(1) imaging clinics - where medical imaging services such as chest
radiographs, ultrasounds, or CT scans (only K3) are provided to
patients referred by external physicians, (2) general hospitals - that
offer primary and secondary care and refer patients requiring more
specialised care to other facilities, and (3) specialised hospitals - that
provide tertiary and quaternary care, handling the most complex
medical procedures in their respective countries.
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# participant expertise clinical site length prototype

I01 P01 Senior K1 60m I

I02 P02 Senior K2 60min I

I03 P03 Senior K3 120min I

I04 P04 Senior K4 50min I

I05 P05 Senior K5 80min I

I06 P06 Senior K5 80min I

I07 P07 Senior K5 60min I

I08 P08 Junior D1 70min II

I09 P09 Junior D1 50min II

I10 P10 Senior D1 30min II

I11 P11 Senior D1 / D2 30min II

I12 P08 Junior D1 60min II

I13 P10 Senior D1 30min III

I14 P12 Junior D1 80min III

I15 P11 Senior D1 / D2 45min III

I16 P10 Senior D1 30min III

I17 P13 Junior D1 40min III

I18 P05 Senior K5 95min III

I19 P04 Senior K4 70min III

Table 19: Participants that took part in the study.

The participants were recruited through email and the professional
networks of our project members. Nine senior (consultant) radiolo-
gists and four junior (in-training) radiologists joined the study (Table
19). Junior radiologists’ reports must be approved by a senior col-
league before sharing with clinicians. The senior radiologist’s assess-
ment is final. Participants were not compensated, and we collected
written consent from all participants. According to the authors’ insti-
tutions’ institutional review boards (IRBs), our study was considered
non-interventional and thus exempt from a formal ethical review.

15.3.1 Research-Trough-Design: Design Interventions with working proto-
types

To explore the clinical usefulness of AI in different radiology con-
texts, we undertook a research-through-design approach [369]. We
conducted three iterations based on a series of design sessions and
design interventions using mock-ups of user interfaces (Prototype I)
and working prototypes (II and III) (Fig. 20). The design sessions were
carried out both online and collocated with radiologists in hospital of-
fices. During these sessions, we obtained medical domain knowledge,
typically by clarifying questions about radiology work and X-rays,
but we also collectively explored the design space through a range
of mock-ups and prototypes. The design interventions were carried
in-situ with the performative purpose of exploring how the proposed
solutions would be enacted close to real-world radiology practices. A
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Figure 20: Online and collocated design sessions and design interventions
with user interface mock-ups and working prototypes (version I,
II, II).

design intervention, as defined by Halse and Boffi [140], is a method
that integrates design and ethnography and "enables new forms of
experience, dialogue, and awareness about the problem to emerge"
(see also [45, 47]). It is an experimental form of inquiry that enables a
positioning "in-between what is already there and what is emerging
as a possible future" [9].

In our case, this meant that we intervened in the radiologists’ ev-
eryday work settings with design artefacts as a vehicle for exploring
the dependencies of AI usefulness in situated contexts. During obser-
vations of the radiologists’ work practices, we brought in the proto-
types and mock-ups as a way to enact while experimenting with new
forms of AI support in radiology. The benefit of this approach was the
possibility to engage radiologists in moving between considering the
proposed solutions and envisioning alternatives while constrained by
the requirements of the local context. This mode of research was im-
portant for this study because it provided more grounded and real-
istic visions of how AI could become clinically useful across hospital
contexts.

In total, we conducted seven design sessions and eleven design
interventions (Table 19) with thirteen radiologists in Denmark and
Kenya, lasting between 30 and 120 min (avg. 60 minutes). In between
sessions and interventions, we designed a range of user interface
mock-ups using Figma, consisting of different AI functionalities and
alternatives to interactive features. We also developed three versions
of a web-based prototype, which included an AI model developed in
the greater part of the project. This meant that the participants inter-
acted with real data and real output from the AI model during design
interventions. Importantly, the data was completely anonymised, and
no other medical information about the patients was available. The
mock-ups, prototypes and feedback from the participants became in-
put for multiple design meetings within a group of three of the au-
thors (<anonymised>). Here, insights were discussed, and decisions
were made regarding what the following design explorations should
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consist of. All design sessions and interventions were audio-recorded
and machine-transcribed to support thematic analysis.

15.3.1.1 Prototypes

As part of the greater project, a deep learning-based model was de-
veloped to detect selected radiological findings <references left out
for review>. The first prototype was merely its proof of concept, i.e.,
it was trained on a small subset of project data, and the final architec-
ture of the model was not finalised. The project was granted access
to fully anonymised chest X-rays, which were used in the prototypes.
Importantly, it was not a prototype designed for the purpose of col-
lecting feedback from external domain experts. It was developed to
guide future work in terms of model development and data labelling.
However, inspired by earlier research [362], we considered it an op-
portunity to engage in more concrete discussions on the merit of clin-
ical usefulness with medical professionals.

The second and third iteration of the prototype consisted of an in-
teractive web application designed to emulate a DICOM viewer. The
web application integrated with the AI model developed within the
bigger project. This connection enabled us to work with real data and,
thus, explore with fidelity the interactions of the radiologists with the
system. For the design interventions, radiologists were given access
to the prototype, either in-person or remotely. They were requested to
choose the next examination to report, following their usual practice
and using information displayed in the prototype. Then, they were
asked to interpret the selected examination without the use of AI and
with AI decision support. Moreover, they were asked to configure the
AI tool using available options to fit their practice. Finally, they were
encouraged to explore the prototype independently and interact with
any element of the user interface.

15.3.2 Analysis Positionality

The data analysis was conducted by <anonymised> with back-
grounds in Healthcare Informatics, HCI, and AI (5+ & 15+ years of
experience). Moreover, before the analysis of the data from design
interventions, the two co-authors concluded extensive ethnographic
investigations into the work practices of radiologists from the visited
sites with a particular outlook on opportunities for AI support
(described elsewhere). First-hand experience with the work practices
and similarities and differences across clinical settings informed the
initial analysis of this data.

15.3.3 Data Analysis

We used reflective thematic analysis [56] to analyse collected data
(transcriptions of the design interventions). The analysis took place
in Dovetail - a web application for qualitative data analysis. Except
for the transcription software, no AI-based analysis support was used
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Figure 21: The collage contained three iterations of the AI prototype. Fi-
nally, four main aspects of the system can be configured: (1) AI
functionality (prioritisation and decision support), (2) radiologi-
cal findings detected on an X-ray, (3) the AI decision thresholds
of the AI model (globally or per finding), and (4) AI explainabil-
ity method.
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in this study. The two authors familiarised themselves with the col-
lected data after every iteration of the design interventions when de-
ciding on the next focus. Moreover, the two authors, prior to cod-
ing, based on their fieldwork experience (60+ hours) and a literature
review [362], devised three bucket themes to support the later or-
ganisation of codes: type of clinical site, domain expertise of med-
ical professionals, and patient and situational context. Additionally,
a fourth residual category was added not to limit coding. Next, to
test the bucket themes, the two authors coded one transcript each for
any references to challenges, preferences, dependencies, and config-
urations in relation to AI and their clinical practice. After this test,
the fourth bucket theme was renamed to technical dependencies. The
first author coded the remaining transcripts following the same di-
rections. The two authors met weekly to discuss the coverage of the
coding and future conceptualisation of themes. The themes were cre-
ated within their respective bucket themes based on their grounding
in the clinical context. Importantly, the division of codes between the
bucket themes was never final and was used only to support analy-
sis of the significant amount of codes (260). Through discussion, re-
flection on data across the interventions, and fieldwork experience,
the authors iteratively clarified themes and reorganised data, mov-
ing away from the original bucket themes (while maintaining their
initial assignment known). This interpretative work was conducted
twice, creating fourteen reflective themes. The fourteen themes were
framed as dependencies conditioning four specific design decisions
that formed an AI-based support design space.

15.4 configuring four technical dimensions of clini-
cally useful radiological ai

We conceptualised ten dependencies that emerge from the social di-
mensions of clinical AI and condition the configuration of four techni-
cal dimensions of clinical AI for radiology (see Figure 22). Each of the
technical dimensions needs to be configured in relation to the local
clinical context to achieve clinical usefulness. In this section we will
briefly explain the social dimensions of clinical AI to then explore
in-depth the conceptualised dependencies.

15.4.1 Social Dimensions of Clinical AI

medical knowledge . This dimension includes concepts and
definitions relevant to the medical domain addressed by the inno-
vated AI-based system, for example, the meaning of radiological
findings detected by our AI-based system. Familiarity with them sup-
ports meaningful collaboration between designers, developers, and
medical professionals and reduces the risk of incorrect assumptions
throughout the innovation process.
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Figure 22: A matrix of technical AI dimensions that need to be configured to
achieve clinical usefulness in local practice. Configuration of each
of the technical dimensions is conditioned by the accompanying
social dimensions of the local clinical practice. Conceptualised
based on design interventions with an AI-based prototype.

clinic type . This social dimension includes types of clinical sites.
Imaging clinics, general hospitals, and specialised hospitals provide
unique healthcare services and, thus, cater to the needs of patients
with different conditions. Thus, it was closely related to the patient
context. Moreover, the type of clinical site determines the available
resources, the speciality of medical professionals working there, their
workflows, and their goals.

user expertise level . All medical professionals have different
domain expertise. This is evident when comparing junior to senior
medical professionals. However, it was also observed between board-
certified radiologists. The level of expertise also determines the work-
load and clinical responsibilities.

patient context. This context encompasses the current location
of a patient (in or out of a hospital) and their medical history. Patients
are the centre of medical work, and their health and well-being are
their final goals. Thus, by extension, any system supporting health-
care professionals should support the patients. Additionally, any clin-
ical action always depends on the patient’s context.

user situation. This dimension pertains to the workload, avail-
able time, and resources of medical professionals. While the other
four dependencies describe relatively stable medical practice, situa-
tional context introduces a temporal factor to the work done and may
affect the priorities of medical professionals.
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Figure 23: Two UI elements allowing to select prioritisation and decision
support on their respective pages.

15.4.2 AI Functionality

Which AI functionality should the system provide? Answering
this question defines this technical dimension. The functionalities
explored during design interventions (prioritisation and decision
support Figure 23) were linked to the AI model developed for the
project this study was a part of. We explored the conditions for
these functionalities to provide clinical value and propose a third
functionality: quality assurance, which originated during the design
interventions.

dependency 1 : ai functionality depends on clinic type .
Each clinical site has different (1) positions within the healthcare sys-
tem, (2) amounts of resources available and (3) workloads related to
the size of a clinic. This is why it is important to ensure that AI func-
tionality is implemented in a way that makes sense for the clinical
site in which it will be deployed.

First, while every radiologist puts the well-being of their patients
first, the healthcare systems that they are a part of operate under dif-
ferent incentives. Public and private clinics face different challenges
and may require adjusted AI functionalities, for example, The number
of cases in court, medical and legal cases, is way more than what you would
get in the public sector. So from the medical director’s office [point of view],
they would want .... any small thing to be flagged so that we don’t get into
problems later... it would be different in K5, compared to the public sector,
where even if you missed this, people are rarely taken to court but in a pri-
vate setting... if they [K5 administration] were to purchase this software, they
would insist that it’s set... to catch it all but you know of course this would
irritate some radiologists. [I18, Senior, Big general hospital, Kenya] The
difference in the prevalence of legal litigation against medical profes-
sionals in public and private healthcare centres highlighted by P05

may run along different axes in other countries. However, it is imper-
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ative for the creators of AI-based support systems to envision alter-
native motivations for the use of their systems and allow appropriate
configuration.

Second, each of the healthcare centres will have different financial
resources available. This factor, which has virtually never been con-
sidered during the design of clinical AI-based systems, is a very real
limitation for which functionalities will be considered worth the in-
vestment. What is the harm in having a second opinion for each and every
case? ... What is the cost? Is it a cost implication that we have to choose which
images to prioritise or what? [I18, Senior, Big general hospital, Kenya]
The different business models implemented may be detrimental to
the usefulness of a system in practice. Providing decision support on
all the examinations and detecting all the radiological findings may
be too costly for clinics that could use such support the most, e.g.,
rural hospitals suffering from the lack of qualified radiologists.

Third, the clinical usefulness of AI functionalities may vary depend-
ing on the size of a clinical site, as recounted by a senior radiologist
from a busy specialised hospital, For me, the most relevant aspect of it
is triage [prioritisation], but if I have five X-rays to report, then I’m not too
worried because I’ll get to the 5th X-ray in 20 minutes. But if I have 100
X-rays to go through, I don’t want to get to the 100th X-ray and see that it
was the one with critical findings. So in a setup where you’re not very busy,
I don’t think it would be very useful. [I19, Senior, Specialised hospital,
Kenya] Conversely, in smaller clinics that serve mostly outpatients,
implementing AI that provides quality assurance functionality would
provide more value to both radiologists and patients. For example, If
I look at it [an examination] and [my colleague] looks at it, no one looks at it
until the patient comes back four weeks later, two years later... and then "Oh,
look! That’s the damn thing." [e.g., a missed tumour] It could be very nice to
have this second opinion. [I15, Senior, Imaging clinic, Denmark] In this
imaging clinic, radiologists, rather than being afraid of not reaching a
critical patient in time, are worried about missing a critical but subtle
finding, e.g., a small nodule, which may signify cancer. This means
that the same AI functionality may provide useful support depending
on the size of a clinic.

dependency 2 : ai functionality depends on user exper-
tise level . The value of support in detecting findings on a med-
ical examination decreases with increasing experience. Instead, the
assigned workload increases with seniority. Thus, prioritisation and
quality assurance functionalities gain importance.

Radiological AI-based decision support typically presents a list of
findings detected on an examination accompanied by an XAI visuali-
sation, as also explored in our prototypes. While this mode of support
seems straightforward, it misses the reality of clinical practice. Senior
radiologists spend a very short time interpreting chest X-rays. To ask
them to revisit every examination to discern the validity of AI pre-
dictions is wishful. However, when discussing the potential value of
AI-based decision support, they focused on quality assurance. Thus,
AI should be treated not as an all-knowing peer who is going to point
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out every finding on an examination but as a safety net that activates
only in time of need. For example, It could read the text we write and
say: "Oh, you missed that." That could be good. [I11, Senior, Imaging
clinic, Denmark] This way, the envisioned system would not require
the mental effort and time to discern AI output but would inform
a radiologist about potentially missed findings based on the report
they were writing.

On the other hand, junior radiologists in clinical settings usually
take significantly more time to report every examination. Moreover,
all of their reports have to be confirmed by a senior colleague. For
them, reporting serves as a primary learning exercise. In this context,
they envisioned using AI support not as a quality assurance but as
a new source of information used to draw their own conclusions.
I would take a look at a chest X-ray, formulate my opinion, and then see
what the AI says... If it agrees... good, if it disagrees or finds something
that I hadn’t, I’ll examine it critically... I like getting almost overwhelmed
by data, and I sort it out afterwards... [I14, Junior, Specialised hospital,
Denmark] These two perspectives highlight how workflow, workload,
and the act of detecting findings on a medical examination changes
with expertise. The educational value created for junior radiologists
by verbose explanations of AI’s predictions may become a burden for
senior radiologists who expect minimal disruption to their existing
workflows.

Configuring AI Functionality recommendation: Allow users to select
their preferred forms of functional support provided by the AI.

15.4.3 AI Medical Focus

Which radiological findings should the AI detect? This is where our
participants, for the first time, responded, starting with "It depends..."
(see Figure 24). Let’s explore how to ensure the detected findings are
clinically useful in the real world.

dependency 3 : ai medical focus depends on clinic type .
Different clinics take care of different types of patients suffering from
different conditions. Types of patients seen in different clinical set-
tings result in a local prevalence of observed radiological findings.
As a result, a single fit-them-all system that detects an arbitrarily
selected set of findings is not going to provide a similar quality of
support across the different clinical contexts.

Imaging clinics and general hospitals usually examine patients re-
ferred by general practitioners. Of such patients the majority of the
examinations are deemed "normal" or with findings related to in-
fections. Hospitals with emergency departments may observe an in-
creased prevalence of trauma-related findings, whereas specialised
hospitals of post-operative, oncological, and chronic nature, as exem-
plified in these quotes: That depends on the setting. If you’re in a private
clinic, most of the X-rays are normal... [I11] If there’s something wrong,
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Figure 24: A configuration panel allowing users to select radiological find-
ings detected by the AI model.

that could be pneumonia or a tumour, but usually, it’s pneumonia when
you go out to a private clinic. [I15, Senior, Specialised Hospital / Imag-
ing Clinic, Denmark] However, detecting pneumonia would not bring
value in other types of settings as highlighted by P05: If you’re work-
ing in a trauma centre, the number of critical findings [e.g. pneumothorax or
hemothorax] would definitely be more than in [K5], where most of the time
it’s just coughs and fever. [I18, Senior, Big General Hospital, Kenya] We
argue that to deliver a clinically useful AI-based system for radiolo-
gists, it is imperative to understand the local population served by
the clinical site where the system is implemented. Otherwise, the de-
velopers may risk deploying a system detecting findings that may be
objectively relevant to patient management yet not prevalent at the
deployment site.

dependency 4 : ai medical focus depends on user exper-
tise level . Junior radiologists may interpret a single X-ray for up
to tens of minutes. Whereas, according to our senior participants, in-
terpreting a chest X-ray takes around 1 to 2 minutes. This means that
with experience, many findings become "obvious" and are no feat to
detect. When discussing the decision support functionality of our pro-
totypes and previous systems that our participants had piloted, the
common complaint related to the detection of "obvious" radiological
findings, which took additional time to discern.

If it’s an obvious finding, we’ll see that one quickly, and we all agree on
it. The problem comes when it’s something more subtle. [I06, Senior, Big
General Hospital, Kenya] Detecting the difficult or "subtle" radiolog-
ical findings is where the value lies for senior radiologists. However,
the less experienced, the more support a radiologist may accept. This
was captured by P01: Maybe it’ll help the resident radiologist in the first
or second year, but I don’t think it will help a specialised radiologist with
experience because once we can have a look, we can’t miss something like
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this. [I01, Senior, Small General Hospital, Kenya] This means that in
order to support different radiologists in practice, AI-based systems
may need to allow users to select findings to receive support with.
Without such configuration, discerning AI predictions regarding "ob-
vious" findings, even when true, would result in more time spent and
annoyance.

dependency 5 : ai medical focus depends on patient con-
text. Radiologists are not interpreting medical imaging to find ev-
ery possible finding. Rather, they are interpreting them to help the
ordering clinicians take action in patient management. Such actions
usually occur when a new condition is being diagnosed, or a patient’s
health may be at risk. However, the clinical meaning of certain radi-
ological findings depends on the location of a patient. This means a
finding observed in an examination of a patient who is admitted to
a hospital may be expected. Whereas the same finding observed in
an examination of a patient who is not admitted to a hospital may
warrant immediate action.

Our participants stressed that useful prioritisation should consider
patients’ medical history to filter out already-known findings, which
our prototype could not do. But how urgent is it? We know that pneu-
mothorax has decreased. It’s a big heart, but it’s much smaller than it was
a week ago. It has [pleural] effusion, but much, much less than it was a
week ago. That’s the thing we miss with this. [I11, Senior, Specialised
Hospital / Imaging Clinic, Denmark] In this quote, P11 explains that
the examination they looked at may not be urgent at all despite the
fact that the AI correctly detected three findings, one of them (pneu-
mothorax) being life-threatening. These findings would not be urgent
if they were already known to the ordering clinician. In such a case,
the patient would have already been undergoing treatment, and this
examination’s sole purpose was to control its progress. In specialised
hospitals and bigger general hospitals, patients often have taken sev-
eral X-rays to monitor the progress of treatment. This means that the
same findings, but of different severity, will be visible on their ex-
aminations. The ability to assess the detected findings in the light of
patient history is crucial to correctly prioritise findings that warrant
clinical action.

When looking at radiologists’ work from the perspective of
contributing to the broader clinical work, it is counterproductive to
prioritise findings that clinicians taking care of a patient are already
aware of. In other words, a radiological finding may be relevant to
detect on examinations from patients who are not admitted to a
hospital, but not so much for patients currently admitted. A senior
radiologist explained, It depends on the findings, and it depends on the
patient... some findings in the out-patients would be more important to
be prioritised than if they’re in-house. Because if they’re in-house, then I
would suspect that someone not from the radiology department would have
looked at them. If it’s out-patient, then nobody has looked at them... [I10,
Senior, Specialised Hospital, Denmark] Whereas, as explained by
P10, patients referred from outside of a hospital are more likely to
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Figure 25: A configuration panel allowing users to select AI decision thresh-
old globally and per finding. In this version, we introduced two
levels for quick access depending on the user situation: high con-
fidence and medium confidence.

have conditions that their doctors are unaware of. Thus, the location
of the patient is crucial to selecting which findings are relevant to
receiving support from an AI-based system.

Configuring AI Medical Focus recommendation: Enable users to se-
lect which radiological findings they prefer support with.

15.4.4 AI Decision Threshold

At what certainty level should the AI inform a user about detected
findings? Specifying when a radiological AI-based system should in-
form a user about a finding is usually done by specifying a decision
threshold (see Figure 25). Selecting a specific threshold value deter-
mines the measured performance of an AI model captured by evalu-
ation metrics like specificity, sensitivity, or positive and negative pre-
dictive values. Arguably, in practice, a decontextualised performance
value is less important than the practical consequences of selecting
a specific threshold level. Every time an AI model detects a finding
(based on a selected threshold), a radiologist may have to take action
to assess it. The balance between clinical value and additional burden
is thus closely tied to how well the threshold is configured to match
the local clinical context. We conceptualised four dependencies that
influence the configuration of the AI decision threshold.

dependency 6 : ai decision threshold depends on medi-
cal knowledge . While some of the radiological findings are well
understood across the contexts, some definitions are more subjective
and their meanings change across countries. Infiltration or consolida-
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tion are two examples of radiological findings which have been found
to be used differently in clinical practice in Denmark and Kenya.
Moreover, some of the findings were too vague for the radiologists
to decide how to assess them, for example, I think vascular changes
can mean one of two things if it’s the big vessels - I think it’s important to
have it if the computer can say the aorta is big... It could also be about... the
small vessels, and then it’s more like stasis. Then it’s quite different. [I17,
Junior, Specialised hospital, Denmark] The underlying definition of
a finding, in this described case, affected how P13 understood the
condition and what threshold level they deemed appropriate. Within
radiology, chest X-rays are a particularly subjective modality. Due to
their visual complexity, radiologists rely on their expertise to inter-
pret the observed findings. Precise definitions used to label data the
AI model was trained on are crucial to assess the predictions.

dependency 7 : ai decision threshold depends on user

expertise level . Often, junior and senior radiologists are jux-
taposed as two groups of AI support end-users with different needs.
This is also visible in the strategy for selecting thresholds.

When used by junior radiologists, both junior and senior radiolo-
gists (who supervised them) leaned towards accepting AI predictions
only with a high degree of certainty. As explained before, the inter-
pretation of chest X-rays is uniquely subjective. It takes experience to
report them with a high degree of certainty. In this context, an uncer-
tain AI prediction would jeopardise the learning process and intro-
duce more confusion, resulting in more work for the junior students
and their supervisors.

On the other hand, allowing senior radiologists to set the threshold
for different findings according to their personal preferences could
entice them to utilise the system in their own way. P05, who also had
senior administrative experience, explained that senior radiologists
do not always have the same level of expertise and may need different
levels of support. This would be amazing. I wouldn’t want to do it [adjust
threshold] at the administrative level because ... not all the radiologists in
the department have the same capabilities. So I’d rather people set it for
themselves. [I18, Senior, Big general hospital, Kenya] By enabling users
to select the AI decision threshold on their own, they could build trust
by incrementally including AI in their own practice.

dependency 8 : ai decision threshold depends on patient

context. Diverging from a fixed threshold level defined at a sys-
tem level towards finding-level threshold specification may boost the
clinical usefulness of AI-based systems for radiology. A finding-level
threshold specification would allow radiologists to stratify which
findings in a given context are more relevant.

They could do it by lowering the threshold. A lower threshold
would be associated with a higher rate of false positive prediction
for that particular radiological finding. Thus, more work for radiolo-
gists. However, for a subset of findings, our participants were willing
to accept more false positive detections if it would benefit their pa-
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tients. For pneumothorax, I would probably lower the threshold because you
would want to find every pneumothorax there is. But for some other stuff,
like fibrosis, I would probably have a higher threshold because that’s not
critical. [I13, Senior, Specialised hospital, Denmark] Based on design
interventions with the third prototype, our participants saw a util-
ity in such fine-grained configuration I think the relevance of certainty
[threshold] is the clinical implication of the diagnosis. So, something like a
pneumothorax needs some form of intervention... whereas on a suspected in-
fection, a clinician may go ahead and treat it even if the X-ray is normal.
So that’s why it may not be such a big deal whether I call a pneumonia
or not. Whereas a pneumothorax might need a chest tube insertion. It’s a
do-or-die call. [I19, Senior, Specialised hospital, Kenya] As shown in
this quote, the clinical implications for a patient made radiologists
more accepting of false positives. Meanwhile, findings that were less
severe or that could be discerned using other indicators, e.g., clini-
cal indicators (cough, fever) to decide on pneumonia diagnosis, were
less preferred to lower the threshold. This suggests that configuring
AI decision threshold on a finding level could reduce the workload
associated with false positive predictions and help focus AI support.

dependency 9 : ai decision threshold depends on user

situation. Radiologists’ approach to AI support changes with
time. In this paper, we uncovered two temporal aspects that affected
how radiologists thought of configuring AI decision thresholds: the
time spent using the system and the rhythm of clinical work.

One of the common comments when discussing the threshold
with our participants was about its arbitrary nature. Radiologists
wondered what the real-life consequences of changing the threshold
would be. Based on these concerns, our final prototype included
an estimate of false positive predictions. These values, while more
relatable, were still considered difficult to imagine in real practice
both for senior and junior radiologists. I mean, it’s a bit arbitrary
at this moment because you don’t have any idea what the effect is. [I17,
Junior, Specialised hospital, Denmark] It would be nice to be able
to adjust this... try all this out and see in real life how many cases it’s
missing or over-calling. [I19, Senior, Specialised hospital, Kenya] These
quotes highlight that such essential development tasks as selecting a
threshold have little to no basis in clinical practice. They uncover a
need for a better translation between the domains of AI and Health
to support meaningful configuration. Currently, this translation has
to be conducted through real-world experimentation in the final
context of use. This way, medical professionals may gain a practical
understanding of what the changes to the threshold mean and
further purposefully and consciously adjust it to fit their work.

The second temporal aspect of selecting an appropriate threshold
relates to the routine of end users. Radiologists saw an advantage in
adjusting the threshold depending on their workload. For example,
a specialised radiologist from a busy specialised hospital mentioned,
on Fridays, we tend to be more active because if you leave a long list on
Friday, the turnaround time will be way longer - there is very low coverage
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over the weekend [few on-call doctors]... and then Monday tends to be very
busy. [I04, Senior, Specialised hospital, Kenya] During this conver-
sation, the radiologist concluded that lowering the threshold could
help them ensure that no examinations with critical findings were
left to be reported after the weekend. These two aspects highlight
that what radiologists consider a useful level of detection (including
false positive predictions) may vary throughout the use.

Configuring AI Decision Threshold recommendation: Empower
users to set personalised AI decision thresholds.

15.4.5 AI Explainability

How should the AI explain its decisions? Understanding AI predic-
tions supports building trust towards AI-based systems. In this study,
we explored three visual ways of explaining AI predictions: heat
maps, bounding boxes, and arrows (Figure 26). We discovered that
no single method can support the explainability of all the radiologi-
cal findings.

Figure 26: Different XAI methods available in the prototype. From left to
right: gradient overlay, bounding box, arrow.

dependency 10 : ai explainability depends on medical

knowledge . The visual appearance of radiological findings
dictates the best way to highlight them for radiologists for inspection.
Radiologists discern between different radiological findings based on
their visual appearance. Their presentation ranges from barely visible
nodules to diffused opacities (areas of less transparency) present
across both lungs. The breadth of visual impressions suggests the
need for flexibility, I think that both ways of displaying the findings
are fine, but for different pathologies. I mean, the heat map makes sense
in this case for pneumothorax because it’s a very extensive finding. And
for the fracture, it makes sense to see it with a box, whereas the heat
map doesn’t make that much sense. It becomes too blurry... [I13, Senior,
Specialised hospital, Denmark] Radiologists preferred bounding
boxes for more contained findings, whereas the more diffused, the
more inclined they were towards the heat map. An important factor
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when designing XAI for chest X-rays is allowing for inspection of
the underlying examination. The main purpose of XAI is to direct
radiologists’ attention to the detected findings. To assess the validity
of a prediction, radiologists have to inspect the examination itself
without additional overlays.

Configuring AI Medical Focus recommendation: Enable users to
choose the most suitable XAI method for each radiological finding.

15.5 discussion

In this paper, we investigated how to design AI for clinical useful-
ness in different clinical contexts of radiology practice. Based on an
extended design study, we provided four practical recommendations
on addressing dependencies emerging from the social dimensions of
clinical practice (Figure 27). In this section, we will discuss how these
recommendations may be enacted during the innovation process of
clinical AI.

Figure 27: Four design recommendations on how to achieve clinically use-
ful AI-based systems. Accompanied by more in-depth considera-
tions.

15.5.1 Allow users to select their preferred forms of functional support
provided by the AI

Configuring clinical AI-based support systems to suit local environ-
ments is essential, as one-size-fits-all approaches often fail to address
their unique needs [135, 169, 263, 356]. In this study, we discovered
how social dimensions of clinical practice condition what kind of AI
functionality is considered useful. We argue that for AI to match lo-
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cal requirements, it needs to be configured throughout the innovation
process with the intended context of use in mind, i.e., the expertise
of the end-users and the work performed in their clinical site. This is
especially relevant, as clinical AI is often afflicted by the problem of
late realisation [128, 354].

When addressing expertise-related needs for support, previous re-
search in radiology showed that AI-based systems have different ef-
fects on junior and senior radiologists [366]. Even more, Tong et al.
[328] investigated two strategies, what they called "optimised" and
"all-AI", for AI support of junior and senior radiologists in thyroid
nodule management. They reported that the best results were ob-
tained when the type of support was configured to the expertise of
the radiologist. However, our study showed that personal preferences
play a deciding factor only if AI functionality is appropriate in the
context of the local clinic. Selecting the best way to prioritise findings
will not make sense if there are only a few examinations to prioritise
to begin with. AI-based systems should be designed to respond to fit
the utility gap in a clinic and then be configured to the varying needs
and preferences of different end-users, depending on their level of
experience, knowledge, and confidence.

The personal configuration of functionality also captures the inte-
gration - a famously difficult task when innovating clinical AI [263,
326, 357]. Many AI-based systems fail in practice due to providing
support at the wrong time [28, 67, 127, 155]. Some of the AI integra-
tions introduce a new step in the practice. A step that sometimes can-
not be skipped [28]. This study shows, seconding previous research,
that the integration of AI into work practices has to be flexible [52].
Clinical work is always changing, and so are the needs for AI support.
Thus, we recommend that clinical end-users should be in control of
which AI functionalities are a part of their current routine.

15.5.2 Enable users to select which radiological findings they prefer sup-
port with

The innovation of AI-based systems is often initiated and defined
by technical opportunities, e.g., access to medical data [304, 305, 349,
365]. As such, the medical and social aspects of the systems are some-
times addressed only after the technology has gone through several
rounds of development [6]. This inadvertently means that certain as-
sumptions about the medical focus are made [361]. Present radiolog-
ical AI models tend to detect findings relevant to the local radiolo-
gists involved in the data creation process [167, 247, 339]. However,
we showed that the prevalence and clinical meaning of radiological
findings varies based on the clinic type and patient context. This af-
fects the usefulness of clinical systems in different settings and their
transferability [248, 361]. Thus, it is critical to investigate the intended
clinical context of use prior to deciding on the medical focus of the
AI-based system and to allow medical professionals to set the scope
of support relevant to them and their practice.
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Moreover, the clinical meaning of radiological findings is tied to
the patient context and not only the type of medical condition, i.e.,
a radiological finding expected in an in-patient examination can be
life-threatening when found in an out-patient one. This discovery
deepens our understanding of how medical professionals make de-
cisions and in what situations they may need AI support in contrast
to systems where certain radiological findings are consistently consid-
ered urgent in patient care [348], linking clinical information about a
patient with detected findings may better reflect radiologists’ actual
decision-making practices and result in improved usefulness of the
AI-based system. This is why we recommend including clinical infor-
mation in conjunction with AI predictions to better respond to the
real-world needs of medical professionals.

15.5.3 Empower users to set personalised AI decision thresholds

Selecting AI decision threshold has significant ethical [39], perfor-
mance [288], and clinical [331] consequences for AI-based systems,
and it has been a notable research topic in the AI and Health com-
munities. Recently, it gained footing in the HCI design community.
Kocielnik et al. [191] explored how the decision threshold affects the
number of false positive and false negative predictions, significantly
altering a user’s system perception. While from the technical point
of view, the accuracy may be the same, the distribution of false posi-
tives and false negatives may have severe clinical consequences. Our
participants warned that false positive predictions require additional
time and resources to discern and that the potential benefits of AI
often do not justify this additional cost, resulting in the failure of the
AI-based systems in clinical practice [18, 25, 221, 325].

However, until AI reaches 100% accuracy, false positive predictions
are the reality of AI-based systems. Improving performance is only
one way of addressing them. In this paper, we offer another outlook,
namely, addressing the cost-benefit ratio of AI prediction. This ra-
tio is not static. Just like clinical practice, it fluctuates and depends
on time, workload, known critical cases, and available resources. In
certain situations, medical professionals may accept more false pos-
itive predictions, e.g. when making sure that there are no critical
findings in a queue of examinations that will not be looked at over
the weekend. This means that regardless of how well an AI decision
threshold is preset, AI will not provide the same value throughout its
use in clinical practice. Supporting end-users in configuring the AI
decision threshold depending on their local needs can improve the
clinical usefulness of AI-based systems. Thus, designers and devel-
opers should enable end-user configuration of decision thresholds in
clinician-facing AI systems.
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15.5.4 Enable users to choose the most suitable XAI method for each radi-
ological finding

It has been long established that explainable AI fosters trust and in-
creases the usefulness of the predictions [93, 169]. Especially in the
healthcare domain, the reasoning and explanations are sometimes
more valuable to end users than the predictions themselves [67, 221]
or can lead to envisioning new ways of using an AI-based system alto-
gether [172]. However, simply revealing the decision-making process
of machines to humans is not enough to provide useful explanations
[237]. Instead, our study suggests that for XAI methods to be effec-
tive in explaining medical conditions, they must be configured to how
medical professionals assess those conditions. This means that even
proven methods used in medical imaging, like heat maps or bonding
boxes, when used to highlight incompatible conditions, may cause
confusion and require additional work to discern. To this end, we rec-
ommend that to ensure the clinical usefulness of XAI methods, they
should be configurable in accordance with medical knowledge.

15.6 limitations and future work

This work is not without its limitations. As explored in this paper,
when interacting with the prototype, radiologists envisioned support
functionalities like quality assurance through the assessment of writ-
ten reports against AI’s interpretation of findings on a chest X-ray.
This functionality was outside of the prototyped prioritisation and de-
cision support. This choice was dictated by the capabilities of the un-
derlying AI model and the innovation direction of the greater project
this study was a part of. We believe that this mismatch perfectly exem-
plifies the difficulty of innovating clinically useful AI-based systems
and motivates further research into a meaningful configuration of AI-
based systems, especially at the defining early stages of work.

We also acknowledge the limited variability of clinical sites in Den-
mark compared to the visited sites in Kenya due to difficulties gain-
ing access. Moreover, this project commenced before large language
models experienced a performance leap. We believe that their ability
to parse and produce text may be an opportune avenue for support
to explore.

15.7 conclusions

Innovating clinical AI-based systems is a challenging task. By inves-
tigating design interventions conducted with radiologists across di-
verse clinical contexts in Denmark and Kenya, we identified four key
technical dimensions that require careful configuration: AI function-
ality, AI medical focus, AI decision threshold, and AI explainability.
To support the innovation of clinically useful AI-based systems, we
derived four concrete recommendations pertaining to the four key
technical dimensions.
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Moreover, we explored how dependencies originating from the so-
cial dimensions of local clinical practice condition the clinical useful-
ness of the uncovered technical dimensions. AI functionalities (e.g.,
prioritisation or decision support) should be configured to provide
value in the intended type of clinical site and to match the level of
medical expertise of end users. AI medical focus (the detected find-
ings in radiology-focused systems) should be configured in relation
to the patient’s context, the level of medical expertise of the end-users,
and the type of clinical site. The AI decision threshold should be con-
figured according to the medical knowledge (e.g., the clinical mean-
ing of radiological findings), the patient’s context, the level of medical
expertise of the end users, and the user situation (e.g. time of day). Fi-
nally, the explainable AI should be configurable in accordance with
medical knowledge to provide maximum value to the end-users.

Our findings highlight the need for designers and developers to
consider these dependencies throughout the innovation process, both
before-use and in-use, to ensure that AI-based systems are effectively
configured to meet the needs and requirements of their intended clin-
ical contexts. By adhering to these recommendations and consider-
ing the dependencies uncovered in our study, designers and devel-
opers can contribute to the successful innovation of clinically useful
AI-based systems in radiology, ultimately improving patient care and
clinical outcomes.
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Adela Kapuścińska, Suzanne Currie, J. Marc Overhage, Erika
S Poole, and Jofish Kaye. “Healthcare AI Treatment Decision
Support: Design Principles to Enhance Clinician Adoption and
Trust.” In: Proceedings of the 2023 CHI Conference on Human Fac-
tors in Computing Systems. Vol. 19. ACM, Apr. 2023, pp. 1–19.
doi: 10.1145/3544548.3581251.

[63] Monika Büscher, Satinder Gill, Preben Mogensen, and Dan
Shapiro. “Landscapes of Practice: Bricolage as a Method
for Situated Design.” In: Computer Supported Cooperative
Work (CSCW) 10.1 (Mar. 2001), pp. 1–28. doi: 10 . 1023 / A :

1011293210539.

http://www.ncbi.nlm.nih.gov/pubmed/23536732%20http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC3609674
http://www.ncbi.nlm.nih.gov/pubmed/23536732%20http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC3609674
http://www.ncbi.nlm.nih.gov/pubmed/23536732%20http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC3609674
https://doi.org/10.1191/1478088706qp063oa
https://doi.org/10.1016/j.surg.2019.01.002
https://doi.org/10.1258/135581902320432732
https://doi.org/10.1038/525315a
https://commoncrawl.org/the-data/
https://commoncrawl.org/the-data/
https://doi.org/10.1148/rg.2015150023
https://doi.org/10.1145/3544548.3581251
https://doi.org/10.1023/A:1011293210539
https://doi.org/10.1023/A:1011293210539


184 bibliography

[64] Aurelia Bustos, Antonio Pertusa, Jose-Maria Salinas, and
Maria de la Iglesia-Vayá. “PadChest: A large chest x-
ray image dataset with multi-label annotated reports.”
In: Medical Image Analysis 66 (Dec. 2020), p. 101797. doi:
10.1016/j.media.2020.101797.

[65] Danilo Bzdok, Naomi Altman, and Martin Krzywinski. “Statis-
tics versus machine learning.” In: Nature Methods 15.4 (Apr.
2018), pp. 233–234. doi: 10.1038/nmeth.4642.

[66] Federico Cabitza, Andrea Campagner, and Clara Balsano.
“Bridging the “last mile” gap between AI implementation
and operation: “data awareness” that matters.” In: Annals
of Translational Medicine 8.7 (Apr. 2020), pp. 501–501. doi:
10.21037/atm.2020.03.63.

[67] Carrie J Cai, Emily Reif, Narayan Hegde, Jason Hipp,
Been Kim, Daniel Smilkov, Martin Wattenberg, Fernanda
Viegas, Greg S. Corrado, Martin C. Stumpe, and Michael
Terry. “Human-Centered Tools for Coping with Imperfect
Algorithms During Medical Decision-Making.” In: Pro-
ceedings of the 2019 CHI Conference on Human Factors in
Computing Systems. CHI ’19. ACM, May 2019, pp. 1–14. doi:
10.1145/3290605.3300234.

[68] Carrie J. Cai, Samantha Winter, David Steiner, Lauren Wilcox,
and Michael Terry. “"Hello AI": Uncovering the Onboarding
Needs of Medical Practitioners for Human-AI Collaborative
Decision-Making.” In: Proceedings of the ACM on Human-
Computer Interaction 3.CSCW (Nov. 2019), pp. 1–24. doi:
10.1145/3359206.

[69] Sabrina Caldwell, Penny Sweetser, Nicholas O’Donnell,
Matthew J. Knight, Matthew Aitchison, Tom Gedeon, Daniel
Johnson, Margot Brereton, Marcus Gallagher, and David
Conroy. “An Agile New Research Framework for Hybrid
Human-AI Teaming: Trust, Transparency, and Transferabil-
ity.” In: ACM Transactions on Interactive Intelligent Systems 12.3
(Sept. 2022), pp. 1–36. doi: 10.1145/3514257.

[70] Michelle Campbell, R Fitzpatrick, A Haines, A L Kinmonth,
P Sandercock, D Spiegelhalter, and P Tyrer. “Framework for
design and evaluation of complex interventions to improve
health.” In: BMJ 321.7262 (Sept. 2000), pp. 694–6. doi: 10.1136/
bmj.321.7262.694.

[71] Tara Capel and Margot Brereton. “What is Human-Centered
about Human-Centered AI? A Map of the Research Land-
scape.” In: Proceedings of the 2023 CHI Conference on Human
Factors in Computing Systems. ACM, Apr. 2023, pp. 1–23. doi:
10.1145/3544548.3580959.

[72] Davide Castelvecchi. “Can we open the black box of AI?” In:
Nature 538.7623 (Oct. 2016), pp. 20–23. doi: 10.1038/538020a.

[73] K Charmaz. Constructing Grounded Theory (2nd ed.) 2014.

https://doi.org/10.1016/j.media.2020.101797
https://doi.org/10.1038/nmeth.4642
https://doi.org/10.21037/atm.2020.03.63
https://doi.org/10.1145/3290605.3300234
https://doi.org/10.1145/3359206
https://doi.org/10.1145/3514257
https://doi.org/10.1136/bmj.321.7262.694
https://doi.org/10.1136/bmj.321.7262.694
https://doi.org/10.1145/3544548.3580959
https://doi.org/10.1038/538020a


bibliography 185

[74] Kathy Charmaz. Constructing grounded theory: a practical guide
through qualitative analysis. SAGE, 2006. url: https://cir.nii.
ac.jp/crid/1130282272823478400.

[75] Haihua Chen, Jiangping Chen, and Junhua Ding. “Data eval-
uation and enhancement for quality improvement of machine
learning.” In: IEEE Transactions on Reliability 70.2 (June 2021),
pp. 831–847. doi: 10.1109/TR.2021.3070863.

[76] Po-Hsuan Cameron Chen, Yun Liu, and Lily Peng. “How to
develop machine learning models for healthcare.” In: Nature
Materials 18.5 (May 2019), pp. 410–414. doi: 10.1038/s41563-
019-0345-0.

[77] Quan Ze Chen, Tobias Schnabel, Besmira Nushi, and Saleema
Amershi. “HINT: Integration Testing for AI-based features
with Humans in the Loop.” In: 27th International Conference on
Intelligent User Interfaces. Vol. 22. ACM, Mar. 2022, pp. 549–565.
doi: 10.1145/3490099.3511141.

[78] Yunan Chen. “Documenting transitional information in
EMR.” In: Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems. ACM, Apr. 2010, pp. 1787–1796.
doi: 10.1145/1753326.1753594.

[79] Hao-Fei Cheng, Ruotong Wang, Zheng Zhang, Fiona
O’Connell, Terrance Gray, F. Maxwell Harper, and Haiyi
Zhu. “Explaining Decision-Making Algorithms through
UI.” In: Proceedings of the 2019 CHI Conference on Human
Factors in Computing Systems. ACM, May 2019, pp. 1–12. doi:
10.1145/3290605.3300789.

[80] Insook Cho and Insun Jin. “Responses of staff nurses to an
EMR-based clinical decision support service for predicting in-
patient fall risk.” In: Studies in Health Technology and Informatics.
Vol. 264. IOS Press, Aug. 2019, pp. 1650–1651. doi: 10.3233/
SHTI190579.

[81] Adele Clarke. Situational Analysis. SAGE Publications, Inc.,
July 2005. doi: 10.4135/9781412985833.

[82] Enrico Coiera. The last mile: Where artificial intelligence meets re-
ality. 2019. doi: 10.2196/16323.

[83] Linda M Collins, Susan A Murphy, Vijay N Nair, and Victor
J Strecher. “A Strategy for Optimizing and Evaluating Behav-
ioral Interventions.” In: (2005).

[84] David Coyle and Gavin Doherty. “Clinical evaluations and
collaborative design: developing new technologies for mental
healthcare interventions.” In: Proceedings of the SIGCHI Confer-
ence on Human Factors in Computing Systems. ACM, Apr. 2009,
pp. 2051–2060. doi: 10.1145/1518701.1519013.

[85] Andrew Crabtree, Tom Rodden, Peter Tolmie, and Graham
Button. “Ethnography considered harmful.” In: Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems.
ACM, Apr. 2009, pp. 879–888. doi: 10.1145/1518701.1518835.

https://cir.nii.ac.jp/crid/1130282272823478400
https://cir.nii.ac.jp/crid/1130282272823478400
https://doi.org/10.1109/TR.2021.3070863
https://doi.org/10.1038/s41563-019-0345-0
https://doi.org/10.1038/s41563-019-0345-0
https://doi.org/10.1145/3490099.3511141
https://doi.org/10.1145/1753326.1753594
https://doi.org/10.1145/3290605.3300789
https://doi.org/10.3233/SHTI190579
https://doi.org/10.3233/SHTI190579
https://doi.org/10.4135/9781412985833
https://doi.org/10.2196/16323
https://doi.org/10.1145/1518701.1519013
https://doi.org/10.1145/1518701.1518835


186 bibliography

[86] Peter Craig, Paul Dieppe, Sally Macintyre, Susan Mitchie, Ir-
win Nazareth, and Mark Petticrew. Developing and evaluating
complex interventions: The new Medical Research Council guidance.
2008. doi: 10.1136/bmj.a1655.

[87] D Cramp and O. M. Goodyear. “Expert systems in medicine-
Report on a European survey.” In: London: Healthcare Informat-
ics Foundation (1989).

[88] Kathrin M Cresswell, Ann Blandford, and Aziz Sheikh.
Drawing on human factors engineering to evaluate the effective-
ness of health information technology. 2017. doi: 10 . 1177 /

0141076817712252.

[89] Karin Dembrower, Alessio Crippa, Eugenia Colón, Martin Ek-
lund, and Fredrik Strand. “Artificial intelligence for breast
cancer detection in screening mammography in Sweden: a
prospective, population-based, paired-reader, non-inferiority
study.” In: The Lancet Digital Health 0.0 (Sept. 2023). doi: 10.
1016/S2589-7500(23)00153-X.

[90] Dina Demner-Fushman, Marc D. Kohli, Marc B. Rosenman,
Sonya E. Shooshan, Laritza Rodriguez, Sameer Antani, George
R. Thoma, and Clement J. McDonald. “Preparing a collection
of radiology examinations for distribution and retrieval.” In:
Journal of the American Medical Informatics Association 23.2 (Mar.
2016), pp. 304–310. doi: 10.1093/jamia/ocv080.

[91] Emily Denton, Mark Díaz, Ian Kivlichan, Vinodkumar
Prabhakaran, and Rachel Rosen. “Whose Ground Truth?
Accounting for Individual and Collective Identities Un-
derlying Dataset Annotation.” In: (Dec. 2021). url: http :

//arxiv.org/abs/2112.04554.

[92] Advait Deshpande and Helen Sharp. “Responsible AI Sys-
tems: Who are the Stakeholders?” In: Proceedings of the 2022
AAAI/ACM Conference on AI, Ethics, and Society. ACM, July
2022, pp. 227–236. doi: 10.1145/3514094.3534187.

[93] Shipi Dhanorkar, Christine T. Wolf, Kun Qian, Anbang Xu, Lu-
cian Popa, and Yunyao Li. “Who needs to know what, when?:
Broadening the Explainable AI (XAI) Design Space by Look-
ing at Explanations across the AI Lifecycle.” In: DIS 2021 -
Proceedings of the 2021 ACM Designing Interactive Systems Con-
ference: Nowhere and Everywhere 12 (June 2021), pp. 1591–1602.
doi: 10.1145/3461778.3462131.

[94] Tom Diethe, Miquel Perello Nieto, Emma Tonkin, Mike
Holmes, Kacper Sokol, Niall Twomey, Meelis Kull, Hao Song,
and Peter Flach. “Releasing eHealth analytics into the wild:
Lessons learnt from the SPHERE project.” In: Proceedings of the
ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining. Association for Computing Machinery, July
2018, pp. 243–252. doi: 10.1145/3219819.3219883.

https://doi.org/10.1136/bmj.a1655
https://doi.org/10.1177/0141076817712252
https://doi.org/10.1177/0141076817712252
https://doi.org/10.1016/S2589-7500(23)00153-X
https://doi.org/10.1016/S2589-7500(23)00153-X
https://doi.org/10.1093/jamia/ocv080
http://arxiv.org/abs/2112.04554
http://arxiv.org/abs/2112.04554
https://doi.org/10.1145/3514094.3534187
https://doi.org/10.1145/3461778.3462131
https://doi.org/10.1145/3219819.3219883


bibliography 187

[95] Digital X-ray On-The-Go in Kenya. url: https://radiology.
ucsf.edu/blog/digital-x-ray-go-kenya.

[96] Virginia Dignum. “Responsibility and artificial intelligence.”
In: Oxford Handbook of Ethics of AI. Ed. by Markus D. Dubber,
Frank Pasquale, and Sunit Das. Oxford University Press, June
2020. Chap. 11, pp. 215–231.

[97] Steven E. Dilsizian and Eliot L. Siegel. “Artificial intelligence
in medicine and cardiac imaging: Harnessing big data and ad-
vanced computing to provide personalized medical diagnosis
and treatment.” In: Current Cardiology Reports 16.1 (Jan. 2014),
pp. 1–8. doi: 10.1007/s11886-013-0441-8.

[98] Mary Dixon-Woods, Sheila Bonas, Andrew Booth, David R.
Jones, Tina Miller, Alex J Sutton, Rachel L. Shaw, Jonathan
A. Smith, and Bridget Young. How can systematic reviews incor-
porate qualitative research? A critical perspective. 2006. doi: 10.
1177/1468794106058867.

[99] Mary Dixon-Woods, Debbie Cavers, Shona Agarwal, Ellen An-
nandale, Antony Arthur, Janet Harvey, Ron Hsu, Savita Kat-
bamna, Richard Olsen, Lucy Smith, Richard Riley, and Alex
J Sutton. Conducting a critical interpretive synthesis of the litera-
ture on access to healthcare by vulnerable groups. July 2006. doi:
10.1186/1471-2288-6-35.

[100] Kate Donahue, Alexandra Chouldechova, and Krishnaram
Kenthapadi. “Human-Algorithm Collaboration: Achieving
Complementarity and Avoiding Unfairness.” In: 2022 ACM
Conference on Fairness, Accountability, and Transparency. ACM,
June 2022, pp. 1639–1656. doi: 10.1145/3531146.3533221.

[101] Paul Dourish. “Accounting for system behaviour: Representa-
tion, reflection and resourceful action.” In: Computers and de-
sign in context. MIT Press Cambridge, 1997, pp. 145–170.

[102] Paul Dourish. “The Appropriation of Interactive Technologies:
Some Lessons from Placeless Documents.” In: Computer Sup-
ported Cooperative Work (CSCW) 12.4 (Dec. 2003), pp. 465–490.
doi: 10.1023/A:1026149119426.

[103] Paul Dourish and Sara Bly. “Portholes: supporting awareness
in a distributed work group.” In: Proceedings of the SIGCHI con-
ference on Human factors in computing systems - CHI ’92. ACM
Press, 1992, pp. 541–547. doi: 10.1145/142750.142982.

[104] Graham Dove, Kim Halskov, Jodi Forlizzi, and John Zimmer-
man. “UX Design Innovation: Challenges for Working with
Machine Learning as a Design Material.” In: Proceedings of the
2017 CHI Conference on Human Factors in Computing Systems
(2017). doi: 10.1145/3025453.

[105] Jack Dowie. “Decision Analysis: The Ethical Approach to Most
Health Decision Making.” In: Principles of Health Care Ethics.
Wiley, June 2006, pp. 577–583. doi: 10.1002/9780470510544.
ch79.

https://radiology.ucsf.edu/blog/digital-x-ray-go-kenya
https://radiology.ucsf.edu/blog/digital-x-ray-go-kenya
https://doi.org/10.1007/s11886-013-0441-8
https://doi.org/10.1177/1468794106058867
https://doi.org/10.1177/1468794106058867
https://doi.org/10.1186/1471-2288-6-35
https://doi.org/10.1145/3531146.3533221
https://doi.org/10.1023/A:1026149119426
https://doi.org/10.1145/142750.142982
https://doi.org/10.1145/3025453
https://doi.org/10.1002/9780470510544.ch79
https://doi.org/10.1002/9780470510544.ch79


188 bibliography

[106] John J. Dudley and Per Ola Kristensson. “A Review of User
Interface Design for Interactive Machine Learning.” In: ACM
Transactions on Interactive Intelligent Systems 8.2 (June 2018),
pp. 1–37. doi: 10.1145/3185517.

[107] Paul N Edwards, Steven J Jackson, Geoffrey C Bowker, and
Cory P Knobel. “Report of a Workshop on “History & Theory
of Infrastructure: Lessons for New Scientific Cyberinfrastruc-
tures".” In: (2007).

[108] Matthias Egger, George Davey Smith, and Keith O’Rourke.
“Introduction: Rationale, Potentials, and Promise of System-
atic Reviews.” In: Systematic Reviews in Health Care. Wiley, Jan.
2001, pp. 1–19. doi: 10.1002/9780470693926.ch1.

[109] Madeleine Clare Elish and Elizabeth Anne Watkins. Repair-
ing Innovation: A Study of Integrating AI in Clinical Care. Tech.
rep. Data & Society Research Institute, 2020. url: https://
datasociety.net/pubs/repairing-innovation.pdf.

[110] Arthur S Elstein and Alan Schwartz. “Clinical problem solving
and diagnostic decision making: selective review of the cog-
nitive literature.” In: BMJ (Clinical research ed.) 324.7339 (Mar.
2002), pp. 729–32. doi: 10.1136/bmj.324.7339.729.

[111] Yrjo Engestrom, Ritva Engestrom, and Osmo Saarelma.
“Computerized medical records, production pressure and
compartmentalization in the work activity of health center
physicians.” In: Proceedings of the 1988 ACM conference on
Computer-supported cooperative work - CSCW ’88. ACM Press,
1988, pp. 65–84. doi: 10.1145/62266.62272.

[112] Alessandro Fabris, Stefano Messina, Gianmaria Silvello, and
Gian Antonio Susto. “Algorithmic fairness datasets: the story
so far.” In: Data Mining and Knowledge Discovery 2022 36:6 36.6
(Sept. 2022), pp. 2074–2152. doi: 10.1007/S10618-022-00854-
Z.

[113] Nicholas Fancourt et al. “Standardized Interpretation of
Chest Radiographs in Cases of Pediatric Pneumonia From the
PERCH Study.” In: Clinical Infectious Diseases 64.suppl_3 (June
2017), S253–S261. doi: 10.1093/CID/CIX082.

[114] Melanie Feinberg. “A Design Perspective on Data.” In: Proceed-
ings of the 2017 CHI Conference on Human Factors in Computing
Systems. Vol. 2017-May. ACM, May 2017, pp. 2952–2963. doi:
10.1145/3025453.3025837.

[115] Geraldine Fitzpatrick and Gunnar Ellingsen. A review of 25
years of CSCW research in healthcare: Contributions, challenges and
future agendas. Aug. 2013. doi: 10.1007/s10606-012-9168-0.

[116] Alexander L Fogel and Joseph C Kvedar. “Artificial intelli-
gence powers digital medicine.” In: npj Digital Medicine 1.1
(2018), p. 5. doi: 10.1038/s41746-017-0012-2.

https://doi.org/10.1145/3185517
https://doi.org/10.1002/9780470693926.ch1
https://datasociety.net/pubs/repairing-innovation.pdf
https://datasociety.net/pubs/repairing-innovation.pdf
https://doi.org/10.1136/bmj.324.7339.729
https://doi.org/10.1145/62266.62272
https://doi.org/10.1007/S10618-022-00854-Z
https://doi.org/10.1007/S10618-022-00854-Z
https://doi.org/10.1093/CID/CIX082
https://doi.org/10.1145/3025453.3025837
https://doi.org/10.1007/s10606-012-9168-0
https://doi.org/10.1038/s41746-017-0012-2


bibliography 189

[117] Riccardo Fogliato, Shreya Chappidi, Matthew Lungren, Paul
Fisher, Diane Wilson, Michael Fitzke, Mark Parkinson, Eric
Horvitz, Kori Inkpen, and Besmira Nushi. “Who Goes First?
Influences of Human-AI Workflow on Decision Making
in Clinical Imaging.” In: 2022 ACM Conference on Fairness,
Accountability, and Transparency. Vol. 22. ACM, June 2022,
pp. 1362–1374. doi: 10.1145/3531146.3533193.

[118] Diana E. Forsythe. ““It’s Just a Matter of Common Sense”:
Ethnography as Invisible Work.” In: Computer Supported Co-
operative Work (CSCW) 8.1-2 (Mar. 1999), pp. 127–145. doi: 10.
1023/A:1008692231284.

[119] Karën Fort. Collaborative Annotation for Reliable Natural Lan-
guage Processing. John Wiley & Sons, Inc., May 2016, pp. 1–164.
doi: 10.1002/9781119306696.

[120] Kent Fridell, Lars Edgren, Lars Lindsköld, Peter Aspelin, and
Nina Lundberg. “The impact of PACS on radiologists’ work
practice.” In: Journal of digital imaging 20.4 (Dec. 2007), pp. 411–
21. doi: 10.1007/s10278-006-1054-1.

[121] Vijay N. Garla and Cynthia Brandt. “Ontology-guided fea-
ture engineering for clinical text classification.” In: Journal
of Biomedical Informatics 45.5 (Oct. 2012), pp. 992–998. doi:
10.1016/j.jbi.2012.04.010.

[122] Aimilia Gastounioti et al. “CAROTID - A web-based platform
for optimal personalized management of atherosclerotic pa-
tients.” In: Computer Methods and Programs in Biomedicine 114.2
(2014), pp. 183–193. doi: 10.1016/j.cmpb.2014.02.006.

[123] Timnit Gebru, Jamie Morgenstern, Briana Vecchione, Jennifer
Wortman Vaughan, Hanna Wallach, Hal Daumé III, and Kate
Crawford. “Datasheets for datasets.” In: Communications of the
ACM 64.12 (Dec. 2021), pp. 86–92. doi: 10.1145/3458723.

[124] Warren B. Gefter, Benjamin A. Post, and Hiroto Hatabu. “Com-
monly Missed Findings on Chest Radiographs.” In: Chest 163.3
(Mar. 2023), pp. 650–661. doi: 10.1016/j.chest.2022.10.039.

[125] R. Stuart Geiger, Dominique Cope, Jamie Ip, Marsha Lotosh,
Aayush Shah, Jenny Weng, and Rebekah Tang. ““Garbage in,
garbage out” revisited: What do machine learning application
papers report about human-labeled training data?” In: Quanti-
tative Science Studies 2.3 (Nov. 2021), pp. 795–827. doi: 10.1162/
QSS{\_}A{\_}00144.

[126] Krzysztof J. Geras, Stacey Wolfson, Yiqiu Shen, Nan Wu,
S. Gene Kim, Eric Kim, Laura Heacock, Ujas Parikh, Linda
Moy, and Kyunghyun Cho. “High-Resolution Breast Cancer
Screening with Multi-View Deep Convolutional Neural
Networks.” In: (Mar. 2017). url: http://arxiv.org/abs/1703.
07047.

https://doi.org/10.1145/3531146.3533193
https://doi.org/10.1023/A:1008692231284
https://doi.org/10.1023/A:1008692231284
https://doi.org/10.1002/9781119306696
https://doi.org/10.1007/s10278-006-1054-1
https://doi.org/10.1016/j.jbi.2012.04.010
https://doi.org/10.1016/j.cmpb.2014.02.006
https://doi.org/10.1145/3458723
https://doi.org/10.1016/j.chest.2022.10.039
https://doi.org/10.1162/QSS{\_}A{\_}00144
https://doi.org/10.1162/QSS{\_}A{\_}00144
http://arxiv.org/abs/1703.07047
http://arxiv.org/abs/1703.07047


190 bibliography

[127] Jennifer C. Ginestra, Heather M. Giannini, William D. Schwe-
ickert, Laurie Meadows, Michael J. Lynch, Kimberly Pavan,
Corey J. Chivers, Michael Draugelis, Patrick J. Donnelly, Barry
D. Fuchs, and Craig A. Umscheid. “Clinician Perception of
a Machine Learning-Based Early Warning System Designed
to Predict Severe Sepsis and Septic Shock.” In: Critical care
medicine 47.11 (Nov. 2019), pp. 1477–1484. doi: 10.1097/CCM.
0000000000003803.

[128] Fabien Girardin and Neal Lathia. “When user experience de-
signers partner with data scientists.” In: AAAI Spring Sympo-
sium - Technical Report. Vol. SS-17-01 -. 2017, pp. 376–381. url:
www.aaai.org.

[129] Lisa Gitelman. “Raw Data” Is an Oxymoron. MIT Press,
2013, pp. 9–10. url: https : / / nyuscholars . nyu . edu / en /

publications/raw-data-is-an-oxymoron.

[130] Mark L. Graber, Nancy Franklin, and Ruthanna Gordon.
“Diagnostic error in internal medicine.” In: Archives of
Internal Medicine 165.13 (July 2005), pp. 1493–1499. doi:
10.1001/archinte.165.13.1493.

[131] Ben Green and Salomé Viljoen. “Algorithmic realism: Expand-
ing the Boundaries of Algorithmic Thought.” In: Proceedings of
the 2020 Conference on Fairness, Accountability, and Transparency.
ACM, Jan. 2020, pp. 19–31. doi: 10.1145/3351095.3372840.

[132] Jonathan Grudin. “AI and HCI: Two fields divided by a com-
mon focus.” In: AI Magazine 30.4 (Sept. 2009), pp. 48–57. doi:
10.1609/aimag.v30i4.2271.

[133] Jonathan Grudin and Steven Poltrock. “Software engineering
and the CHI & CSCW communities.” In: Lecture Notes in Com-
puter Science (including subseries Lecture Notes in Artificial Intel-
ligence and Lecture Notes in Bioinformatics). Vol. 896. Springer
Verlag, 1995, pp. 93–112. doi: 10.1007/bfb0035809.

[134] Dongxiao Gu, Changyong Liang, and Huimin Zhao. “A Case-
Based Reasoning System Based on Weighted Heterogeneous
Value Distance Metric for Breast Cancer Diagnosis.” In: Artif.
Intell. Med. 77.C (Mar. 2017), pp. 31–47. doi: 10.1016/j.artmed.
2017.02.003.

[135] Hongyan Gu, Jingbin Huang, Lauren Hung, and Xiang
’Anthony’ Chen. “Lessons Learned from Designing an AI-
Enabled Diagnosis Tool for Pathologists.” In: Proceedings of
the ACM on Human-Computer Interaction 5.CSCW1 (Apr. 2021),
pp. 1–25. doi: 10.1145/3449084.

[136] Hongyan Gu et al. “Improving Workflow Integration with
xPath: Design and Evaluation of a Human-AI Diagnosis Sys-
tem in Pathology.” In: ACM Transactions on Computer-Human
Interaction 30.2 (Apr. 2023), pp. 1–37. doi: 10.1145/3577011.

https://doi.org/10.1097/CCM.0000000000003803
https://doi.org/10.1097/CCM.0000000000003803
www.aaai.org
https://nyuscholars.nyu.edu/en/publications/raw-data-is-an-oxymoron
https://nyuscholars.nyu.edu/en/publications/raw-data-is-an-oxymoron
https://doi.org/10.1001/archinte.165.13.1493
https://doi.org/10.1145/3351095.3372840
https://doi.org/10.1609/aimag.v30i4.2271
https://doi.org/10.1007/bfb0035809
https://doi.org/10.1016/j.artmed.2017.02.003
https://doi.org/10.1016/j.artmed.2017.02.003
https://doi.org/10.1145/3449084
https://doi.org/10.1145/3577011


bibliography 191

[137] Varun Gulshan et al. “Development and Validation of a Deep
Learning Algorithm for Detection of Diabetic Retinopathy in
Retinal Fundus Photographs.” In: JAMA 316.22 (Dec. 2016),
p. 2402. doi: 10.1001/jama.2016.17216.

[138] Philip J Guo, Sean Kandel, Joseph M Hellerstein, and Jef-
frey Heer. “Proactive wrangling: mixed-initiative end-user
programming of data transformation scripts.” In: Proceedings
of the 24th annual ACM symposium on User interface software and
technology (2011).

[139] James Thomas Patrick Decourcy Hallinan, Mengling Feng,
Dianwen Ng, Soon Yiew Sia, Vincent Tze Yang Tiong, Pooja
Jagmohan, Andrew Makmur, and Yee Liang Thian. “Detection
of Pneumothorax with Deep Learning Models: Learning From
Radiologist Labels vs Natural Language Processing Model
Generated Labels.” In: Academic Radiology 29.9 (Sept. 2022),
pp. 1350–1358. doi: 10.1016/J.ACRA.2021.09.013.

[140] Joachim Halse and Laura Boffi. “Design interventions as a
form of inquiry.” In: Design Anthropological Futures. Ed. by
Rachel Charlotte Smith, Kasper Tang Vangkilde, Mette Gislev
Kjærsgaard, Ton Otto, Joachim Halse, and Thomas Binder.
Bloomsbury, 2016. url: https://adk.elsevierpure.com/en/
publications/design-anthropological-futures.

[141] Joachim Halse and Laura Boffi. “Design Interventions as a
Form of Inquiry.” In: Design Anthropological Futures. Routledge,
May 2020, pp. 89–103. doi: 10.4324/9781003085188-8.

[142] Margot Hanley, Solon Barocas, Karen Levy, Shiri Azenkot, and
Helen Nissenbaum. “Computer Vision and Conflicting Values:
Describing People with Automated Alt Text.” In: Proceedings of
the 2021 AAAI/ACM Conference on AI, Ethics, and Society. ACM,
July 2021, pp. 543–554. doi: 10.1145/3461702.3462620.

[143] O. Hanseth and M. Aanestad. “Design as Bootstrapping. On
the Evolution of ICT Networks in Health Care.” In: Methods
of Information in Medicine 42.04 (Feb. 2003), pp. 385–391. doi:
10.1055/s-0038-1634234.

[144] Mark Hartswood, Rob Procter, Roger Slack, Alex Vob,
Monika Buscher, Mark Rouncefield, and Philippe Rouchy.
“Co-realisation: Towards a principled synthesis of eth-
nomethodology and participatory design.” In: Scandinavian
Journal of Information Systems 14.2 (Jan. 2002). url: https :

//aisel.aisnet.org/sjis/vol14/iss2/2.

[145] Hamed Hassanzadeh, Anthony Nguyen, Sarvnaz Karimi, and
Kevin Chu. “Transferability of artificial neural networks for
clinical document classification across hospitals: A case study
on abnormality detection from radiology reports.” In: Journal
of Biomedical Informatics 85 (Sept. 2018), pp. 68–79. doi: 10 .

1016/j.jbi.2018.07.017.

https://doi.org/10.1001/jama.2016.17216
https://doi.org/10.1016/J.ACRA.2021.09.013
https://adk.elsevierpure.com/en/publications/design-anthropological-futures
https://adk.elsevierpure.com/en/publications/design-anthropological-futures
https://doi.org/10.4324/9781003085188-8
https://doi.org/10.1145/3461702.3462620
https://doi.org/10.1055/s-0038-1634234
https://aisel.aisnet.org/sjis/vol14/iss2/2
https://aisel.aisnet.org/sjis/vol14/iss2/2
https://doi.org/10.1016/j.jbi.2018.07.017
https://doi.org/10.1016/j.jbi.2018.07.017


192 bibliography

[146] Joseph Hawkins. “Addressing the Shortage of Radiolo-
gists.” In: Radiology management 23.4 (2001), pp. 26–29. url:
www.merritthawkins.com.

[147] Jianxing He, Sally L. Baxter, Jie Xu, Jiming Xu, Xingtao Zhou,
and Kang Zhang. “The practical implementation of artificial
intelligence technologies in medicine.” In: Nature Medicine 25.1
(Jan. 2019), pp. 30–36. doi: 10.1038/s41591-018-0307-0.

[148] H A Heathfield and J Wyatt. “Philosophies for the design and
development of clinical decision-support systems.” In: Meth-
ods of information in medicine 32.1 (Feb. 1993), pp. 1–8. url:
http://www.ncbi.nlm.nih.gov/pubmed/8469157.

[149] Heather Heathfield. “The rise and ‘fall’ of expert systems in
medicine.” In: Expert Systems 16.3 (Aug. 1999), pp. 183–188.
doi: 10.1111/1468-0394.00107.

[150] Anne Henriksen and Anja Bechmann. “Building truths in AI:
Making predictive algorithms doable in healthcare.” In: Infor-
mation Communication and Society 23.6 (2020), pp. 802–816. doi:
10.1080/1369118X.2020.1751866.

[151] Morten Hertzum and Jesper Simonsen. “Configuring informa-
tion systems and work practices for each other: What compe-
tences are needed locally?” In: International Journal of Human-
Computer Studies 122 (Feb. 2019), pp. 242–255. doi: 10.1016/j.
ijhcs.2018.10.006.

[152] Charles Hill, Rachel Bellamy, Thomas Erickson, and Margaret
Burnett. “Trials and tribulations of developers of intelligent
systems: A field study.” In: 2016 IEEE Symposium on Visual
Languages and Human-Centric Computing (VL/HCC). IEEE, Sept.
2016, pp. 162–170. doi: 10.1109/VLHCC.2016.7739680.

[153] Birthe Hojlund Bech. “Danish Society of Radiology.” In: Health-
Management (2006). url: https://healthmanagement.org/c/
imaging/issuearticle/danish-society-of-radiology.

[154] Sarah Holland, Ahmed Hosny, Sarah Newman, Joshua
Joseph, and Kasia Chmielinski. “The Dataset Nutrition Label:
A Framework To Drive Higher Data Quality Standards.” In:
(May 2018). url: http://arxiv.org/abs/1805.03677.

[155] Judd E. Hollander, Keara L. Sease, Dina M. Sparano, Frank D.
Sites, Frances S. Shofer, and William G. Baxt. “Effects of neural
network feedback to physicians on admit/discharge decision
for emergency department patients with chest pain.” In: An-
nals of Emergency Medicine 44.3 (Sept. 2004), pp. 199–205. doi:
10.1016/j.annemergmed.2004.02.037.

[156] Naja Holten Møller, Irina Shklovski, and Thomas T. Hilde-
brandt. “Shifting Concepts of Value.” In: Proceedings of the 11th
Nordic Conference on Human-Computer Interaction: Shaping Expe-
riences, Shaping Society. Vol. 20. ACM, Oct. 2020, pp. 1–12. doi:
10.1145/3419249.3420149.

www.merritthawkins.com
https://doi.org/10.1038/s41591-018-0307-0
http://www.ncbi.nlm.nih.gov/pubmed/8469157
https://doi.org/10.1111/1468-0394.00107
https://doi.org/10.1080/1369118X.2020.1751866
https://doi.org/10.1016/j.ijhcs.2018.10.006
https://doi.org/10.1016/j.ijhcs.2018.10.006
https://doi.org/10.1109/VLHCC.2016.7739680
https://healthmanagement.org/c/imaging/issuearticle/danish-society-of-radiology
https://healthmanagement.org/c/imaging/issuearticle/danish-society-of-radiology
http://arxiv.org/abs/1805.03677
https://doi.org/10.1016/j.annemergmed.2004.02.037
https://doi.org/10.1145/3419249.3420149


bibliography 193

[157] Naja L. Holten Møller and Signe Vikkelsø. “The Clinical Work
of Secretaries: Exploring the Intersection of Administrative
and Clinical Work in the Diagnosing Process.” In: From Re-
search to Practice in the Design of Cooperative Systems: Results
and Open Challenges. Springer London, 2012, pp. 33–47. doi:
10.1007/978-1-4471-4093-1{\_}3.

[158] Andreas Holzinger. “Interactive machine learning for health
informatics: when do we need the human-in-the-loop?” In:
Brain Informatics 3.2 (June 2016), pp. 119–131. doi: 10.1007/
s40708-016-0042-6.

[159] Andreas Holzinger, Chris Biemann, Constantinos S. Pattichis,
and Douglas B. Kell. “What do we need to build explainable
AI systems for the medical domain?” In: (Dec. 2017). url:
https://arxiv.org/abs/1712.09923v1.

[160] Rory Horner. “Towards a new paradigm of global develop-
ment? Beyond the limits of international development.” In:
Progress in Human Geography 44.3 (June 2020), pp. 415–436. doi:
10.1177/0309132519836158.

[161] Eduard Hovy and Julia Lavid. “Towards a ’Science’ of Cor-
pus Annotation: A New Methodological Challenge for Corpus
Linguistics.” In: INTERNATIONAL JOURNAL OF TRANSLA-
TION 22.1 (2010).

[162] John Hughes, Val King, Tom Rodden, and Hans Andersen.
“Moving out from the control room: Ethnography in System
Design.” In: Proceedings of the 1994 ACM conference on Com-
puter supported cooperative work - CSCW ’94. ACM Press, Oct.
1994, pp. 429–439. doi: 10.1145/192844.193065.

[163] John A Hughes and Dan Shapiro. “Faltering from Ethnogra-
phy to Design.” In: Proceedings of the 1992 ACM conference on
Computer-supported cooperative work. (Dec. 1992), pp. 115–122.

[164] Ben Hutchinson, Andrew Smart, Alex Hanna, Emily Denton,
Christina Greer, Oddur Kjartansson, Parker Barnes, and Mar-
garet Mitchell. “Towards Accountability for Machine Learning
Datasets.” In: Proceedings of the 2021 ACM Conference on Fair-
ness, Accountability, and Transparency. ACM, Mar. 2021, pp. 560–
575. doi: 10.1145/3442188.3445918.

[165] Ben Hutchinson, Andrew Smart, Alex Hanna, Emily Denton,
Christina Greer, Oddur Kjartansson, Parker Barnes, and Mar-
garet Mitchell. “Towards Accountability for Machine Learning
Datasets.” In: Proceedings of the 2021 ACM Conference on Fair-
ness, Accountability, and Transparency. ACM, Mar. 2021, pp. 560–
575. doi: 10.1145/3442188.3445918.

[166] Giulia Inguaggiato, Suzanne Metselaar, Bert Molewijk, and
Guy Widdershoven. “How Moral Case Deliberation Supports
Good Clinical Decision Making.” In: AMA Journal of Ethics
21.10 (Oct. 2019), pp. 913–919. doi: 10.1001/amajethics.2019.
913.

https://doi.org/10.1007/978-1-4471-4093-1{\_}3
https://doi.org/10.1007/s40708-016-0042-6
https://doi.org/10.1007/s40708-016-0042-6
https://arxiv.org/abs/1712.09923v1
https://doi.org/10.1177/0309132519836158
https://doi.org/10.1145/192844.193065
https://doi.org/10.1145/3442188.3445918
https://doi.org/10.1145/3442188.3445918
https://doi.org/10.1001/amajethics.2019.913
https://doi.org/10.1001/amajethics.2019.913


194 bibliography

[167] Jeremy Irvin et al. “CheXpert: A Large Chest Radiograph
Dataset with Uncertainty Labels and Expert Comparison.” In:
33rd AAAI Conference on Artificial Intelligence, AAAI 2019, 31st
Innovative Applications of Artificial Intelligence Conference, IAAI
2019 and the 9th AAAI Symposium on Educational Advances in
Artificial Intelligence, EAAI 2019 (Jan. 2019), pp. 590–597. url:
http://arxiv.org/abs/1901.07031.

[168] Azra Ismail and Neha Kumar. “AI in Global Health: The View
from the Front Lines.” In: Proceedings of the 2021 CHI Conference
on Human Factors in Computing Systems. ACM, May 2021, pp. 1–
21. doi: 10.1145/3411764.3445130.

[169] Maia Jacobs, Jeffrey He, Melanie F. Pradier, Barbara Lam, An-
drew C. Ahn, Thomas H. McCoy, Roy H. Perlis, Finale Doshi-
Velez, and Krzysztof Z. Gajos. “Designing AI for Trust and
Collaboration in Time-Constrained Medical Decisions: A So-
ciotechnical Lens.” In: Proceedings of the 2021 CHI Conference on
Human Factors in Computing Systems. ACM, May 2021, pp. 1–
14. doi: 10.1145/3411764.3445385.

[170] Saahil Jain, Akshay Smit, Andrew Y. Ng, and Pranav Ra-
jpurkar. “Effect of Radiology Report Labeler Quality on Deep
Learning Models for Chest X-Ray Interpretation.” In: (Apr.
2021). url: http://arxiv.org/abs/2104.00793.

[171] Stefanie Jauk, Diether Kramer, Alexander Avian, Andrea
Berghold, Werner Leodolter, and Stefan Schulz. “Technology
Acceptance of a Machine Learning Algorithm Predicting
Delirium in a Clinical Setting: a Mixed-Methods Study.” In:
Journal of Medical Systems 45.4 (2021). doi: 10.1007/s10916-
021-01727-6.

[172] Zhuochen Jin, Shuyuan Cui, Shunan Guo, David Gotz, Jimeng
Sun, and Nan Cao. “CarePre: An Intelligent Clinical Decision
Assistance System.” In: ACM Trans. Comput. Healthcare 1.1
(Mar. 2020). doi: 10.1145/3344258.

[173] Alistair E. W. Johnson, Tom J. Pollard, Nathaniel R. Green-
baum, Matthew P. Lungren, Chih-ying Deng, Yifan Peng, Zhiy-
ong Lu, Roger G. Mark, Seth J. Berkowitz, and Steven Horng.
“MIMIC-CXR-JPG, a large publicly available database of la-
beled chest radiographs.” In: (Jan. 2019). url: http://arxiv.
org/abs/1901.07042.

[174] Rose Johnson, Kenton O’Hara, Abigail Sellen, Claire Cousins,
and Antonio Criminisi. “Exploring the potential for touchless
interaction in image-guided interventional radiology.” In: Pro-
ceedings of the SIGCHI Conference on Human Factors in Comput-
ing Systems. ACM, May 2011, pp. 3323–3332. doi: 10.1145/
1978942.1979436.

[175] Annika Kaltenhauser, Verena Rheinstädter, Andreas Butz, and
Dieter P. Wallach. “"You Have to Piece the Puzzle Together"
- Implications for Designing Decision Support in Intensive
Care.” In: Proceedings of the 2020 ACM Designing Interactive

http://arxiv.org/abs/1901.07031
https://doi.org/10.1145/3411764.3445130
https://doi.org/10.1145/3411764.3445385
http://arxiv.org/abs/2104.00793
https://doi.org/10.1007/s10916-021-01727-6
https://doi.org/10.1007/s10916-021-01727-6
https://doi.org/10.1145/3344258
http://arxiv.org/abs/1901.07042
http://arxiv.org/abs/1901.07042
https://doi.org/10.1145/1978942.1979436
https://doi.org/10.1145/1978942.1979436


bibliography 195

Systems Conference. ACM, July 2020, pp. 1509–1522. doi:
10.1145/3357236.3395436.

[176] Konstantinos Kamnitsas, Enzo Ferrante, Sarah Parisot, Chris-
tian Ledig, Aditya V. Nori, Antonio Criminisi, Daniel Rueck-
ert, and Ben Glocker. “DeepMedic for Brain Tumor Segmenta-
tion.” In: Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioin-
formatics). Vol. 10154 LNCS. Springer Verlag, 2016, pp. 138–149.
doi: 10.1007/978-3-319-55524-9{\_}14.

[177] Sean Kandel, Andreas Paepcke, Joseph Hellerstein, and Jef-
frey Heer. “Wrangler: Interactive Visual Specification of Data
Transformation Scripts.” In: Proceedings of the SIGCHI Confer-
ence on Human Factors in Computing Systems. ACM, May 2011,
pp. 3363–3372. doi: 10.1145/1978942.1979444.

[178] John Kang, Olivier Morin, and Julian C. Hong. “Closing
the Gap Between Machine Learning and Clinical Cancer
Care—First Steps Into a Larger World.” In: JAMA Oncology
6.11 (Nov. 2020), p. 1731. doi: 10.1001/jamaoncol.2020.4314.

[179] Shivani Kapania, Oliver Siy, Gabe Clapper, Azhagu Meena SP,
and Nithya Sambasivan. “”Because AI is 100% right and safe”:
User Attitudes and Sources of AI Authority in India.” In: CHI
Conference on Human Factors in Computing Systems. ACM, Apr.
2022, pp. 1–18. doi: 10.1145/3491102.3517533.

[180] Naveena Karusala, Shirley Yan, Nupoor Rajkumar, Vic-
toria G, and Richard Anderson. “Speculating with Care:
Worker-centered Perspectives on Scale in a Chat-based Health
Information Service.” In: Proceedings of the ACM on Human-
Computer Interaction 7.CSCW2 (Sept. 2023), pp. 1–26. doi:
10.1145/3610210.

[181] Claire Kayacik, Sherol Chen, Signe Noerly, Jess Holbrook,
Adam Roberts, and Douglas Eck. “Identifying the In-
tersections: User experience + research scientist collab-
oration in a generative machine learning interface.” In:
Extended Abstracts of the 2019 CHI Conference on Human Fac-
tors in Computing Systems. ACM, May 2019, pp. 1–8. doi:
10.1145/3290607.3299059.

[182] Pearse A. Keane and Eric J. Topol. “With an eye to AI and au-
tonomous diagnosis.” In: npj Digital Medicine 1.1 (Aug. 2018),
p. 40. doi: 10.1038/s41746-018-0048-y.

[183] Brendan S Kelly, Conor Judge, Stephanie M Bollard, Simon M
Clifford, Gerard M Healy, Awsam Aziz, Prateek Mathur, Shah
Islam, Kristen W Yeom, Aonghus Lawlor, and Ronan P Killeen.
“Radiology artificial intelligence: a systematic review and eval-
uation of methods (RAISE).” In: European radiology 32.11 (Nov.
2022), pp. 7998–8007. doi: 10.1007/s00330-022-08784-6.

https://doi.org/10.1145/3357236.3395436
https://doi.org/10.1007/978-3-319-55524-9{\_}14
https://doi.org/10.1145/1978942.1979444
https://doi.org/10.1001/jamaoncol.2020.4314
https://doi.org/10.1145/3491102.3517533
https://doi.org/10.1145/3610210
https://doi.org/10.1145/3290607.3299059
https://doi.org/10.1038/s41746-018-0048-y
https://doi.org/10.1007/s00330-022-08784-6


196 bibliography

[184] Christopher J Kelly, Alan Karthikesalingam, Mustafa Suley-
man, Greg Corrado, and Dominic King. “Key challenges for
delivering clinical impact with artificial intelligence.” In: BMC
medicine 17.1 (Oct. 2019), p. 195. doi: 10.1186/s12916-019-
1426-2.

[185] Finn Kensing and Joan Greenbaum. “Heritage: having a say.”
In: Routledge International Handbook of Participatory Design.
Routledge, Oct. 2012, pp. 41–56. doi: 10.4324/9780203108543-
9.

[186] Finn Kensing and Andreas Munk-Madsen. “PD: structure in
the toolbox.” In: Communications of the ACM 36.6 (June 1993),
pp. 78–85. doi: 10.1145/153571.163278.

[187] Finn Kensing, Jesper Simonsen, and Keld Bodker. “MUST:
A Method for Participatory Design.” In: Human–Computer
Interaction 13.2 (June 1998), pp. 167–198. doi: 10 . 1207 /

s15327051hci1302{\_}3.

[188] Finn Kensing, Jesper Simonsen, and Keld Bødker. “Participa-
tory Design at a Radio Station 1.” In: Computer Supported Coop-
erative Work 7 (1998), pp. 243–271.

[189] David Killock. “AI outperforms radiologists in mammo-
graphic screening.” In: Nature Reviews Clinical Oncology 17.3
(Mar. 2020), pp. 134–134. doi: 10.1038/s41571-020-0329-7.

[190] Burak Kocak, Ozlem Korkmaz Kaya, Cagri Erdim, Ece Ates
Kus, and Ozgur Kilickesmez. “Artificial Intelligence in Renal
Mass Characterization: A Systematic Review of Methodologic
Items Related to Modeling, Performance Evaluation, Clinical
Utility, and Transparency.” In: American Journal of Roentgenol-
ogy 215.5 (Nov. 2020), pp. 1113–1122. doi: 10.2214/AJR.20.
22847.

[191] Rafal Kocielnik, Saleema Amershi, and Paul N. Bennett. “Will
You Accept an Imperfect AI?” In: Proceedings of the 2019 CHI
Conference on Human Factors in Computing Systems. ACM, May
2019, pp. 1–14. doi: 10.1145/3290605.3300641.

[192] Peter Kontschieder et al. “Quantifying progression of multiple
sclerosis via classification of depth videos.” In: Medical image
computing and computer-assisted intervention : MICCAI ... Inter-
national Conference on Medical Image Computing and Computer-
Assisted Intervention 17 (2014), pp. 429–437.

[193] Ross Koppel. “Role of Computerized Physician Order Entry
Systems in Facilitating Medication Errors.” In: JAMA 293.10

(Mar. 2005), p. 1197. doi: 10.1001/jama.293.10.1197.

[194] John R. Koza, Forrest H. Bennett, David Andre, and Martin A.
Keane. “Automated Design of Both the Topology and Sizing
of Analog Electrical Circuits Using Genetic Programming.” In:
Artificial Intelligence in Design ’96. Springer, Dordrecht, 1996,
pp. 151–170. doi: 10.1007/978-94-009-0279-4{\_}9.

https://doi.org/10.1186/s12916-019-1426-2
https://doi.org/10.1186/s12916-019-1426-2
https://doi.org/10.4324/9780203108543-9
https://doi.org/10.4324/9780203108543-9
https://doi.org/10.1145/153571.163278
https://doi.org/10.1207/s15327051hci1302{\_}3
https://doi.org/10.1207/s15327051hci1302{\_}3
https://doi.org/10.1038/s41571-020-0329-7
https://doi.org/10.2214/AJR.20.22847
https://doi.org/10.2214/AJR.20.22847
https://doi.org/10.1145/3290605.3300641
https://doi.org/10.1001/jama.293.10.1197
https://doi.org/10.1007/978-94-009-0279-4{\_}9


bibliography 197

[195] Josua Krause, Adam Perer, and Kenney Ng. “Interacting with
Predictions: Visual Inspection of Black-box Machine Learning
Models.” In: Proceedings of the 2016 CHI Conference on Human
Factors in Computing Systems. ACM, May 2016, pp. 5686–5697.
doi: 10.1145/2858036.2858529.

[196] Leah Kulp and Aleksandra Sarcevic. “Design in the “medi-
cal” wild: Challenges of technology deployment.” In: Extended
Abstracts of the 2018 CHI Conference on Human Factors in Com-
puting Systems. Vol. 2018-April. ACM, Apr. 2018, pp. 1–6. doi:
10.1145/3170427.3188571.

[197] Steinar Kvale. InterViews: an introduction to qualitive research in-
terviewing. Sage, 1996.

[198] Morten Kyng and Lars Mathiassen. Computers and design in
context. MIT Press, 1997. url: https://cir.nii.ac.jp/crid/
1130282270228481664.

[199] Chantelle C. Lachance and Melissa Walter. “Artificial In-
telligence for Classification of Lung Nodules: A Review
of Clinical Utility, Diagnostic Accuracy, Cost-Effectiveness,
and Guidelines.” In: Artificial Intelligence for Classification of
Lung Nodules: A Review of Clinical Utility, Diagnostic Accu-
racy, Cost-Effectiveness, and Guidelines (Oct. 2020), pp. 1–23.
url: http : / / europepmc . org / books / NBK562929 % 20https :

//europepmc.org/article/nbk/nbk562929.

[200] Curtis P. Langlotz. “Will Artificial Intelligence Replace Radi-
ologists?” In: Radiology: Artificial Intelligence 1.3 (May 2019),
e190058. doi: 10.1148/ryai.2019190058.

[201] Shaimaa Lazem, Danilo Giglitto, Makuochi Samuel Nkwo,
Hafeni Mthoko, Jessica Upani, and Anicia Peters. “Challenges
and Paradoxes in Decolonising HCI: A Critical Discussion.”
In: Computer Supported Cooperative Work (CSCW) 31.2 (June
2022), pp. 159–196. doi: 10.1007/s10606-021-09398-0.

[202] Susan Leavy, Eugenia Siapera, and Barry O’Sullivan. “Ethical
Data Curation for AI: An Approach based on Feminist Episte-
mology and Critical Theories of Race.” In: AIES 2021 - Proceed-
ings of the 2021 AAAI/ACM Conference on AI, Ethics, and Society
(July 2021), pp. 695–703. doi: 10.1145/3461702.3462598.

[203] Yann Lecun, Yoshua Bengio, and Geoffrey Hinton. Deep learn-
ing. May 2015. doi: 10.1038/nature14539.

[204] Cindy S Lee, Paul G Nagy, Sallie J Weaver, and David E
Newman-Toker. Cognitive and system factors contributing to
diagnostic errors in radiology. Aug. 2013. doi: 10.2214/AJR.12.
10375.

[205] Min Hun Lee and Chong Jun Chew. “Understanding the
Effect of Counterfactual Explanations on Trust and Reliance
on AI for Human-AI Collaborative Clinical Decision Making.”
In: Proceedings of the ACM on Human-Computer Interaction
7.CSCW2 (Sept. 2023), pp. 1–22. doi: 10.1145/3610218.

https://doi.org/10.1145/2858036.2858529
https://doi.org/10.1145/3170427.3188571
https://cir.nii.ac.jp/crid/1130282270228481664
https://cir.nii.ac.jp/crid/1130282270228481664
http://europepmc.org/books/NBK562929%20https://europepmc.org/article/nbk/nbk562929
http://europepmc.org/books/NBK562929%20https://europepmc.org/article/nbk/nbk562929
https://doi.org/10.1148/ryai.2019190058
https://doi.org/10.1007/s10606-021-09398-0
https://doi.org/10.1145/3461702.3462598
https://doi.org/10.1038/nature14539
https://doi.org/10.2214/AJR.12.10375
https://doi.org/10.2214/AJR.12.10375
https://doi.org/10.1145/3610218


198 bibliography

[206] Kicky G van Leeuwen, Maarten de Rooij, Steven Schalekamp,
Bram van Ginneken, and Matthieu J C M Rutten. “How does
artificial intelligence in radiology improve efficiency and
health outcomes?” In: Pediatric radiology 52.11 (Oct. 2022),
pp. 2087–2093. doi: 10.1007/s00247-021-05114-8.

[207] Kicky G van Leeuwen, Steven Schalekamp, Matthieu J C M
Rutten, Bram van Ginneken, and Maarten de Rooij. “Artificial
intelligence in radiology: 100 commercially available products
and their scientific evidence.” In: European radiology 31.6 (June
2021), pp. 3797–3804. doi: 10.1007/s00330-021-07892-z.

[208] Constance D. Lehman, Robert D. Wellman, Diana S. M.
Buist, Karla Kerlikowske, Anna N. A. Tosteson, and Diana L.
Miglioretti. “Diagnostic Accuracy of Digital Screening Mam-
mography With and Without Computer-Aided Detection.”
In: JAMA Internal Medicine 175.11 (Nov. 2015), p. 1828. doi:
10.1001/jamainternmed.2015.5231.

[209] Christian Leibig, Moritz Brehmer, Stefan Bunk, Danalyn Byng,
Katja Pinker, and Lale Umutlu. “Combining the strengths of
radiologists and AI for breast cancer screening: a retrospective
analysis.” In: The Lancet. Digital health 4.7 (July 2022), e507–
e519. doi: 10.1016/S2589-7500(22)00070-X.

[210] Dana Li, Lea Marie Pehrson, Carsten Ammitzbøl Laurid-
sen, Lea Tøttrup, Marco Fraccaro, Desmond Elliott, Hubert
D. Zajac, Sune Darkner, Jonathan Frederik Carlsen, and
Michael Bachmann Nielsen. “The Added Effect of Artifi-
cial Intelligence on Physicians’ Performance in Detecting
Thoracic Pathologies on CT and Chest X-ray: A Systematic
Review.” In: Diagnostics 11.12 (Nov. 2021), p. 2206. doi:
10.3390/diagnostics11122206.

[211] Dana Li et al. “Inter- and Intra-Observer Agreement When
Using a Diagnostic Labeling Scheme for Annotating Findings
on Chest X-rays—An Early Step in the Development of a
Deep Learning-Based Decision Support System.” In: Diagnos-
tics 2022, Vol. 12, Page 3112 12.12 (Dec. 2022), p. 3112. doi:
10.3390/DIAGNOSTICS12123112.

[212] Henry Lieberman, Fabio Paternò, Markus Klann, and Volker
Wulf. “End-User Development: An Emerging Paradigm.” In:
End User Development. Springer Netherlands, Oct. 2006, pp. 1–
8. doi: 10.1007/1-4020-5386-X{\_}1.

[213] Brian Y. Lim, Anind K. Dey, and Daniel Avrahami. “Why and
why not explanations improve the intelligibility of context-
aware intelligent systems.” In: Proceedings of the SIGCHI Confer-
ence on Human Factors in Computing Systems. ACM, Apr. 2009,
pp. 2119–2128. doi: 10.1145/1518701.1519023.

[214] D. A. B. Lindberg, B. L. Humphreys, and A. T. McCray. “The
Unified Medical Language System.” In: Yearbook of Medical In-
formatics 02.01 (Aug. 1993), pp. 41–51. doi: 10.1055/s-0038-
1637976.

https://doi.org/10.1007/s00247-021-05114-8
https://doi.org/10.1007/s00330-021-07892-z
https://doi.org/10.1001/jamainternmed.2015.5231
https://doi.org/10.1016/S2589-7500(22)00070-X
https://doi.org/10.3390/diagnostics11122206
https://doi.org/10.3390/DIAGNOSTICS12123112
https://doi.org/10.1007/1-4020-5386-X{\_}1
https://doi.org/10.1145/1518701.1519023
https://doi.org/10.1055/s-0038-1637976
https://doi.org/10.1055/s-0038-1637976


bibliography 199

[215] Christopher J. Lindsell, William W. Stead, and Kevin B.
Johnson. “Action-Informed Artificial Intelligence—Matching
the Algorithm to the Problem.” In: JAMA 323.21 (June 2020),
p. 2141. doi: 10.1001/jama.2020.5035.

[216] Xiaoxuan Liu et al. “Reporting guidelines for clinical trials
evaluating artificial intelligence interventions are needed.” In:
Nature Medicine 25.10 (Oct. 2019), pp. 1467–1468. doi: 10.1038/
s41591-019-0603-3.

[217] Daria Loi, Christine T. Wolf, Jeanette L. Blomberg, Raphael
Arar, and Margot Brereton. “Co-designing AI Futures: Inte-
grating AI Ethics, Social Computing, and Design.” In: Com-
panion Publication of the 2019 on Designing Interactive Systems
Conference 2019 Companion. ACM, June 2019, pp. 381–384. doi:
10.1145/3301019.3320000.

[218] P Luff, J Hindmarsh, and C Heath. Workplace Studies: Recov-
ering Work Practice and Informing Systems Design. Cambridge
University Press, Aug. 2000, p. 287. url: https://kclpure.
kcl.ac.uk/portal/en/publications/workplace-studies-

recovering-work-practice-and-informing-systems-.

[219] Jocelyn Maclure. “The new AI spring: a deflationary view.” In:
AI & SOCIETY 35.3 (Sept. 2020), pp. 747–750. doi: 10.1007/
s00146-019-00912-z.

[220] Vincent J Major, Neil Jethani, and Yindalon Aphinyanaphongs.
“Estimating real-world performance of a predictive model: a
case-study in predicting mortality.” In: JAMIA Open 3.2 (July
2020), pp. 243–251. doi: 10.1093/jamiaopen/ooaa008.

[221] Stina Matthiesen, Søren Zöga Diederichsen, Mikkel Klitzing
Hartmann Hansen, Christina Villumsen, Mats Christian Højb-
jerg Lassen, Peter Karl Jacobsen, Niels Risum, Bo Gregers
Winkel, Berit T Philbert, Jesper Hastrup Svendsen, and
Tariq Osman Andersen. “Clinician Preimplementation Per-
spectives of a Decision-Support Tool for the Prediction of
Cardiac Arrhythmia Based on Machine Learning: Near-Live
Feasibility and Qualitative Study.” In: JMIR Human Factors 8.4
(Nov. 2021), e26964. doi: 10.2196/26964.

[222] Nancy McCauley and Mohammad Ala. “The use of expert sys-
tems in the healthcare industry.” In: Information & Management
22.4 (Apr. 1992), pp. 227–235. doi: 10.1016/0378- 7206(92)
90025-B.

[223] Andrea McCoy and Ritankar Das. “Reducing patient mortal-
ity, length of stay and readmissions through machine learning-
based sepsis prediction in the emergency department, inten-
sive care unit and hospital floor units.” In: BMJ Open Quality
6.2 (Oct. 2017), e000158. doi: 10.1136/bmjoq-2017-000158.

[224] Marry L. McHugh. “Interrater reliability: the kappa statistic.”
In: Biochemia Medica 22.3 (2012), pp. 276–282. doi: 10.11613/
BM.2012.031.

https://doi.org/10.1001/jama.2020.5035
https://doi.org/10.1038/s41591-019-0603-3
https://doi.org/10.1038/s41591-019-0603-3
https://doi.org/10.1145/3301019.3320000
https://kclpure.kcl.ac.uk/portal/en/publications/workplace-studies-recovering-work-practice-and-informing-systems-
https://kclpure.kcl.ac.uk/portal/en/publications/workplace-studies-recovering-work-practice-and-informing-systems-
https://kclpure.kcl.ac.uk/portal/en/publications/workplace-studies-recovering-work-practice-and-informing-systems-
https://doi.org/10.1007/s00146-019-00912-z
https://doi.org/10.1007/s00146-019-00912-z
https://doi.org/10.1093/jamiaopen/ooaa008
https://doi.org/10.2196/26964
https://doi.org/10.1016/0378-7206(92)90025-B
https://doi.org/10.1016/0378-7206(92)90025-B
https://doi.org/10.1136/bmjoq-2017-000158
https://doi.org/10.11613/BM.2012.031
https://doi.org/10.11613/BM.2012.031


200 bibliography

[225] Stuart McLennan, Amelia Fiske, Leo Anthony Celi, Ruth
Müller, Jan Harder, Konstantin Ritt, Sami Haddadin, and
Alena Buyx. “An embedded ethics approach for AI de-
velopment.” In: Nature Machine Intelligence 2.9 (July 2020),
pp. 488–490. doi: 10.1038/s42256-020-0214-1.

[226] Mohammad H Rezazade Mehrizi, Simon H Gerritsen, Wouter
M de Klerk, Chantal Houtschild, Silke M H Dinnessen,
Luna Zhao, Rik van Sommeren, and Abby Zerfu. “How
do providers of artificial intelligence (AI) solutions propose
and legitimize the values of their solutions for supporting
diagnostic radiology workflow? A technography study in
2021.” In: European radiology 33.2 (Feb. 2023), pp. 915–924. doi:
10.1007/s00330-022-09090-x.

[227] Teresa Mendonca, Pedro M. Ferreira, Jorge S. Marques, Andre
R. S. Marcal, and Jorge Rozeira. “PH2 - A dermoscopic im-
age database for research and benchmarking.” In: 35th Annual
International Conference of the IEEE Engineering in Medicine and
Biology Society (EMBC). IEEE, July 2013, pp. 5437–5440. doi:
10.1109/EMBC.2013.6610779.

[228] Milagros Miceli and Julian Posada. “The Data-Production Dis-
positif.” In: Proceedings of the ACM on Human-Computer Interac-
tion 6.CSCW2 (May 2022). url: http://arxiv.org/abs/2205.
11963.

[229] Milagros Miceli, Julian Posada, and Tianling Yang. “Studying
Up Machine Learning Data: Why Talk About Bias When
We Mean Power?” In: Proceedings of the ACM on Human-
Computer Interaction 6.GROUP (Jan. 2022), pp. 1–14. doi:
10.1145/3492853.

[230] Milagros Miceli, Martin Schuessler, and Tianling Yang. “Be-
tween Subjectivity and Imposition.” In: Proceedings of the ACM
on Human-Computer Interaction 4.CSCW2 (Oct. 2020), pp. 1–25.
doi: 10.1145/3415186.

[231] Milagros Miceli, Tianling Yang, Adriana Alvarado Garcia, Ju-
lian Posada, Sonja Mei Wang, Marc Pohl, and Alex Hanna.
“Documenting Data Production Processes: A Participatory Ap-
proach for Data Work.” In: Proceedings of the ACM on Human-
Computer Interaction 6.CSCW2 (Nov. 2022), pp. 1–34. doi: 10.
1145/3555623.

[232] Milagros Miceli, Tianling Yang, Laurens Naudts, Martin
Schuessler, Diana Serbanescu, and Alex Hanna. “Document-
ing Computer Vision Datasets: An Invitation to Reflexive
Data Practices.” In: Proceedings of the 2021 ACM Conference
on Fairness, Accountability, and Transparency. ACM, Mar. 2021,
pp. 161–172. doi: 10.1145/3442188.3445880.

[233] Stefania Milan and Emiliano Treré. “Big Data from the
South(s): Beyond Data Universalism.” In: Television &
New Media 20.4 (May 2019), pp. 319–335. doi: 10 . 1177 /

1527476419837739.

https://doi.org/10.1038/s42256-020-0214-1
https://doi.org/10.1007/s00330-022-09090-x
https://doi.org/10.1109/EMBC.2013.6610779
http://arxiv.org/abs/2205.11963
http://arxiv.org/abs/2205.11963
https://doi.org/10.1145/3492853
https://doi.org/10.1145/3415186
https://doi.org/10.1145/3555623
https://doi.org/10.1145/3555623
https://doi.org/10.1145/3442188.3445880
https://doi.org/10.1177/1527476419837739
https://doi.org/10.1177/1527476419837739


bibliography 201

[234] Margaret Mitchell, Simone Wu, Andrew Zaldivar, Parker
Barnes, Lucy Vasserman, Ben Hutchinson, Elena Spitzer,
Inioluwa Deborah Raji, and Timnit Gebru. “Model Cards for
Model Reporting.” In: Proceedings of the Conference on Fairness,
Accountability, and Transparency. ACM, Jan. 2019, pp. 220–229.
doi: 10.1145/3287560.3287596.

[235] Sina Mohseni, Niloofar Zarei, and Eric D. Ragan. “A Multi-
disciplinary Survey and Framework for Design and Evalua-
tion of Explainable AI Systems.” In: ACM Transactions on In-
teractive Intelligent Systems 11.3-4 (Dec. 2021), pp. 1–45. doi:
10.1145/3387166.

[236] Jesper Molin, Paweł W. Woźniak, Claes Lundström, Darren
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