

U N I V E R S I T Y O F C O P E N H A G E N

D E P A R T M E N T O F C O M P U T E R S C I E N C E

Ph.D. Thesis
Vlad Paul Cosma

Declarative process models as explain-
able and verifiable Artificial Intelligence

This thesis has been submitted to the Ph.D. School of The Faculty of Science,
University of Copenhagen in April 2024.

Advisors: Prof. Thomas T. Hildebrandt (Principal) and Assoc. Prof. Tijs Slaats
(Co-advisor)

i

Abstract
As Artificial Intelligence-based decision support systems become an ever in-
creasing part of our society, regulators have found it necessary to devise laws
and guidelines on the ethical use of AI. In this light explainable AI has re-
gained attention in the minds of researchers and businesses. Explainable
AI has been with us for decades in the form of rule-based systems where
high-level declarative rules are often implemented into more imperative or
procedural behaviour-based code. Process mining has emerged as prominent
AI field where the goal is to use process models to describe real-world busi-
ness processes. The “white-box” qualities that make process models ideal at
describing business processes also makes them prime candidates for use in
decision support systems.

With the goal of enhancing model explainability and expressiveness, this
thesis addresses selected aspects of the process mining pipeline, from data
extraction to model verification, with a focus on enhanced trustworthiness,
understandability, and verifiability of declarative process models. The ob-
jective is to advance the process mining field towards providing explainable
Artificial Intelligence-based decision support systems.

To improve trustworthiness we propose a participatory design-based method
for event log extraction that improves collaboration among stakeholders by
extracting event logs that accurately and transparently capture business
rules. To improve understandability we propose new algorithms to discover
simpler, more understandable, declarative process models that take into ac-
count the users cognitive load. To enhance verifiability we propose two ap-
proaches tailored for the Dynamic Condition Response graphs declarative
process notation. The first approach is based on a bisimilar mapping from
Dynamic Condition Response graphs to Petri nets which preserves the declar-
ative behaviour. This allows us to take advantage of mature model checking
tools available for Petri nets. The second approach allows for the verification
of select trace behaviour via test driven modelling. Specifically we check that
we do not violate past modelling decisions when declarative models evolve
over time.

Finally, to enhance expressiveness of mined declarative models we propose
a timed extension for the declarative DisCoveR miner and show that verifi-
ability is preserved by extending the bisimlar mapping from timed Dynamic
Condition Response graphs to a timed variant of Petri nets.

ii

Resumé
Kunstig intelligens (AI) og administrative beslutningsstøttesystemer baseret
på AI bliver en stadig større del af vores samfund. På denne baggrund
har det været nødvendigt at udarbejde love og retningslinjer for etisk og
ansvarlig brug af AI. I dette lys har forklarbar AI (Explainable AI) fået ny
opmærksomhed hos forskere og virksomheder. Forklarbar AI har været hos
os i årtier i form af såkaldte symbolske AI systemer, baseret på deklarative
regler og logik. I praksis er beslutningsstøttesystemer dog ofte en blanding
af regler, kode og andre AI-modeller som til sammen udgør et uforklarligt
system.

Process mining er opstået som et fremtrædende AI-område, hvor målet
er at bruge AI til automatisk at generere (”process mine”) procesmodeller
fra hændelses-logs (”event logs”) fra forretnings- og beslutningsprocesser.
De kvaliteter, der gør procesmodeller ideelle til at beskrive forretningspro-
cesser, gør dem også til de gode kandidater til brug i forklarbare beslut-
ningsstøttesystemer.

Med det formål at forbedre forståeligheden og udtryksfuldheden af pro-
cesmodeller, behandler denne afhandling udvalgte aspekter af process mining
pipelinen, fra dataudtrækning til modelverifikation, med fokus på forbedret
pålidelighed, forståelighed og verificering af deklarative procesmodeller. Målet
er at fremme procesminedriftsområdet mod at tilbyde forståelig kunstig in-
telligensbaseret beslutningsstøttesystemer.

For at forbedre pålideligheden foreslår vi en metode baseret på bruger-
deltagende design (participatory design) til udtrækning af hændelseslogfiler,
der forbedrer samarbejdet mellem interessenter i forbindelse med at udtrække
hændelseslogfiler, der nøjagtigt og transparent beskriver hændelser i organ-
isationen. For at forbedre forståeligheden foreslår vi nye process mining
algoritmer til at opdage simplere, mere forståelige, deklarative procesmod-
eller, der tager hensyn til brugernes kognitive belastning. For at forbedre
verificeringen foreslår vi to tilgange tilpasset den deklarative procesnotation
af Dynamic Condition Response (DCR) Grafer. Den første tilgang er baseret
på en formel oversættelse fra Dynamic Condition Response Grafer til Petri
net, som bevarer semantikken af processen. Dette tillader os at drage fordel
af modne verifikationsværktøjer, der er tilgængelige for Petri-net. Den anden
tilgang tillader verificering eksempler på beslutningsforløb af via testdrevet
modellering. Specifikt kontrollerer vi, at vi ikke overtræder beslutningsforløb,

iii

når deklarative modeller udvikler sig over tid.
Endelig, for at forbedre udtryksfuldheden af deklarative modeller der

genereres ved hjælp af process mining foreslår vi en tidsmæssig udvidelse
for den deklarative DisCoveR-miner og viser, at verificeringen bevares ved
at udvide den semantik-bevarende oversættelse fra Dynamic Condition Re-
sponse Grafer med tid til en variant af Petri-net med tid.

iv

Acknowledgements
It has been an honour to be surrounded by so many bright minds and sup-
portive people throughout my PhD, but also many years before it. This work
would not have been possible without them.

My thanks go out to

My supervisors Thomas Hildebrandt and Tijs Slaats who guided me
throughout the PhD, whose ideas, knowledge and insights made sure I
was on the right path, whose friendship and support I came to value
deeply, words cannot express my gratitude.

The PhD Committee members: Dmitriy Traytel, Barbara Weber and
Claudio De Ciccio for their timely and valuable feedback.

Colleagues present & past at the University of Copenhagen: Hugo López,
Axel Christfort, Asbjørn Flügge, Naja Møller, Boris Düdder, Christoffer
Bach and all other researchers and collaborators I’ve met when I started
my PhD within the section and within the EcoKnow project.

New faces & new ideas; colleagues I’ve met while being a visiting re-
searcher at Utrecht University: Hajo Reijers, Xixi Lu, Suhwan Lee, An-
drei Buliga, Vinicius Dani, Wouter van der Waal.

Inspiring people at KMD especially Peter Damm, who made my PhD
possible, the KMDMomentum team, and my former employer Lars Chris-
tensen at Sensus, who back in 2016 gave my first insights into what it
means to publish academic work and showed me how Computer Science
research can truly have a beneficial impact on society.

My parents Gabriela and Marin, who listened to my frustrations when
things got tough and were always there when I needed support, and my
friends who provided me with much needed respite and laughter to keep
going.

This work was partially funded by Innovation Fund Denmark EcoKnow.org
Project, Independent Research Fund Denmark PAPRICAS.org Project, KMD
and Copenhagen University.

v

Table of Contents

Abstract . ii
Resumé . iii
Acknowledgements . v

I Overview 1

1 Introduction 2
1.1 Research problems . 8
1.2 Related work . 9
1.3 Preliminaries . 13
1.4 List of Publications and code 23

2 Trustworthy event log creation BERMUDA 26
2.1 BERMUDA: Participatory Mapping of Domain Activities to

Event Data via System Interfaces 26

3 Understandable declarative process models 31
3.1 Improving Simplicity by Discovering Nested Groups in Declar-

ative Models . 31

4 Verifiable declarative process models 34
4.1 Transforming Dynamic Condition Response Graphs to Safe

Petri Nets . 34
4.2 Static and Dynamic Techniques for Iterative Test-Driven Mod-

elling of Dynamic Condition Response Graphs 44

5 Handling time 46

vi

5.1 DD-DisCoveR: Mining timed DCR graphs using the pm4py
DisCoveR DCR extension . 46

5.2 Transforming Timed Dynamic Condition Response Graphs to
safe Timed-arc Petri Nets . 49

6 Conclusion 53
6.1 Future work . 54

Bibliography 55

II Papers 72

7 Trustworthy event log extraction 73
7.1 BERMUDA: Participatory Mapping of Domain Activities to

Event Data via System Interfaces 73

8 Understandable declarative process models 86
8.1 Improving Simplicity by Discovering Nested Groups in Declar-

ative Models . 86

9 Verifiable declarative process models 103
9.1 Transforming Dynamic Condition Response Graphs to safe

Petri Nets . 103
9.2 Static and Dynamic Techniques for Iterative Test-Driven Mod-

elling of Dynamic Condition Response Graphs 128

10 Handling time 166
10.1 DD-DisCoveR: Mining timed DCR Graphs using the pm4py

DisCoveR DCR extension . 166
10.2 Transforming Timed Dynamic Condition Response Graphs to

safe Timed-arc Petri Nets . 172

vii

Part I

Overview

1

Chapter 1

Introduction

Quote The book “Principles of Model Checking” by Baier and Katoen
states on page 8 the given fact that “Any verification using model-based
techniques is only as good as the model of the system” [18]. To contextualize
the work of this thesis, we wish to extend this fact with a follow-up intuition
that

“Any decision using AI-model-based techniques is only as good
as the learned model (and data) of the system.”

The vision of Artificial Intelligence The term AI, short for Artificial
Intelligence, has been coined as a term in 1956 [111] and its definition is
constantly evolving, but in essence always existed at the boundary between
human decision making and computational theory. The machine learning
field, which is an example of sub-symbolic AI field, is the most prominent
field where data is used to learn models. Given an untrained model f , a
training set X and a target y the goal is to learn the model f̂ which given X
predicts ŷ and the choice of coefficients of f̂ is made such that it optimizes
a metric. In supervised learning an example metric is the error between the
target y and the predicted ŷ. In essence the model learning task is f̂(X) = ŷ.
In machine learning popular model choices for f can be variants of decision
trees, neural networks or linear models. Optimizing on a well defined metric is
a comparatively easy task when put in relation to understanding the structure
or properties of the learned model f̂ . That is because it does not necessarily
capture human understandable concepts or symbols, it captures sub-symbolic
properties of the training data which are dependent on the model type and

2

Chapter 1 | Introduction

its training hyperparameters.
Predictive performance increased as training data became abundant and

as fast hardware made it feasible to work with ever increasing and more com-
plex datasets. These larger datasets and better computing power allowed for
training larger and more complex models (random forests, deep learning,
deep reinforcement learning). The rapid advancement in sub-symbolic AI
techniques came at the price of explainability. Explainable Artificial Intelli-
gence (xAI) [62] has emerged as a necessary step forward and is known for
taking well studied techniques and theory from statistics (LIME [109]), game
theory (SHAP [83]) and other fields, to provide explanations for the learned
models’ decisions and data. However xAI is seen as a post-hoc technique,
as explainability in not considered, in general, when optimizing a model for
predictive performance. With the enforcement of GDPRs “Right to expla-
nation” [61] and the upcoming EU “AI Act” [37] explainability becomes a
key factor in the successful adoption of learned models in decision support
systems.

Knowledge-based systems If we instead shift our focus on knowledge-
based or rule-based systems as an example of symbolic AI, which have been
with us since 1969 [111], we see a different story. Rule-based decision sup-
port systems are explainable by design as they rely on high-level symbolic
representations of data, a logic (defined by symbols, syntax, semantics) and
employ search algorithms in the model state-space to make decisions or verify
properties of the model. The declarative approach to building a knowledge-
based system is to tell the system the rules of the data. In contrast the
procedural approach encodes the knowledge from the data directly as system
behaviour. When designing such an AI system the key to success is to em-
bed “both declarative and procedural elements in its design, (based on the
idea) that declarative knowledge can often be compiled into more efficient
procedural” [111] systems. In rule-based systems, explanations can then be
limited to a proof that a certain property always holds or an explanation
of a fault (the sequence of steps leading to a property being violated). By
symbols we refer here to high-level concepts that are understandable for a
human domain expert.

Models As the model sits at the core of both learning and verification we
now take a look at what a model is. Models are mathematical abstractions of

3

Chapter 1 | Introduction

the real world. Models can be represented as simple mathematical equations
(a+ b = c), trained deep neural networks (f̂) or as a set of rules.

In rule-based systems the role of the model is to abstract away specific
implementation details related to the programming language syntax or data
structures, while still describing its behaviour accurately (either as proce-
dural flows of the state space or declarative constraints). In practice it
should be straightforward for a domain expert to create the model-based
on a given specification (documentation, requirements, laws, measurements,
tolerances). At the same time model checking allows us to verify that the
model satisfies the specification. Because model checking assumes the cre-
ation of models and specifications by domain experts, it also implies that
efforts should be made towards having human understandable models and
specifications. In model checking, models of the state-space are commonly
represented as transition systems, automata or Petri nets. Rules, or specifi-
cations, are commonly represented as a formal logic (Linear Temporal Logic,
Computational Tree Logic) or as desirable model properties (liveness, safety,
fairness).

Process Mining and Business Process Management We are particu-
larly interested in models describing the behaviour of business processes and
testing specifications related to their performance. A business process is de-
fined in the book “Business Process Management” by Weske [135] as a set of
activities that are performed in coordination to realize a business goal. The
field of “Business Process Management (BPM) includes concepts, methods,
and techniques to support the design, administration, configuration, enact-
ment, and analysis of business processes” [135]. A new definition of process
science [129] has been coined where before only data science existed, and
even before it there was data mining (which is now a less used term). At
the intersection of process science and data science we find process mining.
The discipline of process mining was started by van der Aalst and defined
as: “Process mining brings together traditional model-based process anal-
ysis and data-centric analysis techniques” [129]. “Process mining aims to
improve operational processes through the systematic use of event data” [4].
In relation to this thesis process mining sits at the intersection of learning
explainable process models from data and making decisions based on those
models.

The set of process mining techniques [4] is constantly expanding, here

4

Chapter 1 | Introduction

we enumerate just a few. We have process discovery techniques, determin-
istic [17], fuzzy [63], probabilistic [24], hierarchical [82]. We have event ab-
straction techniques [138]. We have formal methods for model checking [72],
conformance [30], alignments [31]. We have patterns to solve data quality
issues [123]. We have scoring techniques based on conformance checking de-
rived metrics [129], or based on empirically validated complexity metrics [5]
or entropy metrics based on information theory [16]. The underlying assump-
tion is that a process model should capture the decision space of the data
while at the same time remain explainable and verifiable.

Process models The process model mined from data is a beast unlike any
other, which in a single structure at the right abstraction level aims to capture
all the data it is trained on (mined from), be concise and understandable
enough for domain experts to make decisions based on it, while at the same
time being verifiable for certain well-behavedness properties and accurately
capture real-world behaviour.

A process model is an abstraction of a real-world process. It comes in two
main flavours: imperative (describes the flow of activities) and declarative
(describes how the process behaves). Popular imperative model notations
are Directly Follows Graphs (DFGs) and the Business Process Modelling
Notation [54] (BPMN). DECLARE [102, 103] is a popular declarative nota-
tion with rules based on Linear Temporal Logic [55] (LTL) on finite traces
(LTLf) [47], a model being defined as a conjunction of rules. Petri nets [104]
can be modelled in a declarative manner, but are more often seen as impera-
tive models. Petri nets are the most popular models used in process mining
because they are at a high enough level of abstraction to describe real-world
behaviour, all modelling notations accept some form of mapping, synthesis
or transformation to and from Petri nets, and mature tools exist to verify
Petri nets or transform them to Automata and Transition Systems that can
be used for verification [72, 113, 136].

Dynamic Condition Response (DCR) Graphs [67] are a relatively new
process modelling notation. Recent works on process discovery [17], align-
ment [34] and transformation [44] are making them theoretically and practi-
cally interesting. Improved tool support via pm4py-dcr [42], dcr-js [81] and
the dcrgraphs.net portal [98] are making it easier to get started with DCR
graphs. DCR graphs are part of the same family of declarative notations as
DECLARE. Similar to DECLARE, DCR graphs describe system behaviour

5

Chapter 1 | Introduction

a set of rules/constraints. Similar to Petri nets, DCR graphs describe states
as a marking on events.

Manufacturing or supply chain processes naturally lend themselves to-
wards a more imperative view because they are highly structured. By con-
trast knowledge intensive processes such as healthcare or case work, where
citizens/people are the case object, lend themselves better towards a more
declarative view [50]. These are unstructured highly flexible processes, where
ideal paths through the process are highly dependent on the case type or on
certain case attributes, and are regulated to some extent (by laws, policies,
guidelines).

Process discovery Process discovery is the task of mining a process model
from data. Given a specific process modelling syntax p and a training dataset
X the goal is to discover a model p̂. In essence the process discovery task
is p̂(X) = ŷ, which in machine learning is defined as one class classifica-
tion [95]. Notice that unlike our initial example we are not given a target
y. That is because we consider our training dataset as only one class of de-
sired behavior or positive examples. ŷ will only tell us if the instances of our
training dataset X fit the desired behavior or not. A key difference between
the process discovery and machine learning approaches to one class classi-
fication is the goal of discovering a model. In process discovery the model
p̂ is the goal, whereas in machine learning the model output ŷ is the goal.
This results in process models that are explainable by design, they provide
both predictive power and explainability. The predictive power comes from
the analyses and simulations done on top of the process model. Furthermore
their formal definitions makes certain properties, such as livelock or deadlock
freedom, verifiable. Still, as a one-class classification task process discovery
suffers from the same challenges. In machine learning one attempts to en-
code the dataset such that a well defined metric can optimize the model using
minimization (or maximization). Such a general encoding into an numeri-
cal optimization problem is not necessarily achievable for process models.
However process models have other properties which can be exploited when
evaluating process discovery.

The general task of evaluating process discovery algorithms needs to take
into account the expertise level of the user, the familiarity of the user with
the specific process model notation, and the goal of the process model in
relation to the decision support it needs to offer [4]. We limit our scope to

6

Chapter 1 | Introduction

only consider the evaluation of process models in the context of a specific
dataset. As process models have formal definitions and semantics one can
define metrics in terms of the traces or language they accept (conformance
or alignment-based metrics). Because process models are also meant for
human inspection one can define metrics based on the number of elements
and their connectiveness. Metrics such as precision and fitness need to be
counterbalanced by generalization and simplicity [4, 129].

The core type of dataset X used in process mining is an event log. An
event log is a specific type of data structure well suited for the storage of
business process instances. It contains a notion of a case and a set of activi-
ties, together with other optional case and activity related attribute. A very
common activity related attribute is the time when the activity happened.
Most information systems have relational databases as their data structures
and techniques exist to project these databases to event logs.

One concrete instance of a process discovery algorithm is DisCoveR [17],
a miner for DCR graphs. It first creates a log abstraction and then uses a
subset of DECLARE patterns to find rules. The rules are deterministic and
based on set operations on the event log. The discovery algorithm returns
perfectly fitting models for a given event log. However the mining notions
from extended definitions of DCR graphs, such as activity groups (also known
as nestings) [66] have not been considered. Therefore the mined models
contain a large number of relations. With activity groups the model fitness
stays the same, but visually the size of the model is reduced. Work done in [5]
empirically evaluates understandability in terms of four complexity metrics.
We use these metrics in our work as a proxy for understandability.

Structure The remaining of this thesis is structured as follows. In Part
I Section 1.1 we continue with a presentation of the overall research problems
being tackled and the objective of the thesis. We briefly mention related work
in Section 1.2 and provide the definitions of the concepts used throughout
this thesis in Section 1.3. A list of publications and code references are given
in Section 1.4. In Chapters 2 to 5 we then give the motivation and summary
of each contributing paper, we expand with a discussion section where rele-
vant. We round off part I with a conclusion and possible avenues for future
work in Chapter 6. In Part II we start with trustworthy event log creation
from information systems in Section 7.1, then present understandable declar-
ative process models through the discovery of activity groups in Section 8.1.

7

Chapter 1 | Introduction

Next we look at verifiable DCR graphs by a transformation to Petri nets
in Section 9.1, and through static and dynamic techniques for test driven
modelling Section 9.2. We conclude Part II with a section introducing time
mining for declarative process models in Section 10.1 and present a transfor-
mation from timed DCR graphs to timed arc Petri nets in Section 10.2.

1.1 Research problems
From data to insights and verification The work of this thesis handles
the entire pipeline from trustworthy event log extraction to mining under-
standable declarative process models from event logs, enhancing those pro-
cess models and finally using the process models to verify properties of the
data.

We treat explainability in a narrow sense and in relation to process min-
ing. Concretely explainability means increased trustworthiness, understand-
ability and verifiablility. To increase trustworthiness in the process models
used by domain experts, one approach is increased transparency and reduced
uncertainty in the event log creation stage. When it comes to creating trust-
worthy event logs we ask: How can we ensure that our event logs capture
the relevant information? Out of many tables from a relational database
we rely only on a few. Given the potential data quality issues we require
domain knowledge to fix them. We also require domain knowledge to define
the goal of our process model. We require knowledge of information system
usage patterns to correctly connect our process mining goals with the right
data that can provide answers. In an attempt to mitigate these challenges
in Section 7.1 we present the BERMUDA method and show how it can be
applied to data from knowledge intensive processes such as healthcare and
case work.

One view of understandability of declarative process models is in relation
to their number of elements and the type of relations. Previous research [5]
has empirically validated such insights and produced a set of process model
quality metrics as a proxy to user understandability. We create three exten-
sions of the DisCoveR miner with the aim of reducing the number of relations
at the cost of introducing activity groups. In Section 8.1 we show that overall
the extensions have a positive impact on the quality metrics.

Trust can be built through evidence of correct behaviour. To this end we
aim to increase the verifiability of declarative process models. We provide

8

Chapter 1 | Introduction

two avenues towards a DCR graph model checker. One approach presented
in Section 9.1 relies on a transformation to Petri nets which is a bisimlarity
preserving mapping. This enables us to use mature model checkers that
have an established track record of good performance. Another detailed
in Section 9.2 relies on the concept of open tests and alignments to directly
check positive and negative traces against a DCR graph given a specific
context.

Finally we are able to increase the expressiveness of our process models
by adding time dimensions. To be able to verify time properties of our real-
world process we mine timing constraints and show how the enhanced timed
DCR graph is transformed to a timed arc Petri net. This work is detailed
in Section 10.1 and Section 10.2.

Objective Overall the objective of the thesis is to push towards explain-
ability the various declarative process mining concepts, from trustworthy
event log extraction, through to the discovery of understandable declarative
models and verification of DCR graphs.

1.2 Related work

1.2.1 Extracting event logs
To improve the trustworthiness of our event logs we have to get an overview
of the data quality issues [13, 22, 23, 56, 59, 75, 79, 80, 112, 123] and event
abstraction [29, 125, 138] challenges faced when extracting data for secondary
use from primary sources. The most complete description can be found in
the chapter “Foundations of Process Event Data” [3] in the Process Mining
Handbook [4]. The same work [4] provides insights into the unique challenges
of knowledge intensive processes, such as the healthcare domain [7, 91, 120]
where domain experts are an invaluable resource [64]. This can be found
in the chapter on “Using Process Mining in Healthcare” [90] as well as
in [99, 110]. Finally in the chapter on “Responsible process mining” [87]
of the same book [4] we want to highlight how accuracy, traceability and
transparency are presented as major challenges for the interpretability of
process mining results, although process models are in general regarded as
“white-box” approaches.

9

Chapter 1 | Introduction

1.2.2 Process discovery and hierarchical models
To improve understandability of the discovered models requires us to under-
stand the patterns of rules or flow found by the discovery algorithms. After-
wards we can consider improving their understandability while balancing the
trade-offs between simplicity and accuracy. We see discovering groupings in
DCR graphs as one approach to reduce visual model complexity.

1.2.2.1 Declarative

Several notations for declarative process modelling have been developed.
The most complete works introducing Dynamic Condition Response (DCR)
graphs are the PhD Theses by Slaats [118] and Mukkamala [96]. Out of
the existing DCR miners [17, 49, 100] we use the DisCoveR miner [17] as
it outputs the most accurate models. Evidence for its accuracy is given by
winning the Process Discovery Challenges in 2021 and 2023. The DisCoveR
miner is the foundation for the group and choice algorithms presented in Sec-
tion 8.1 as well as for mining delays and deadlines in Section 10.1. Examples
in Sections 4.1, 5.1 and 5.2 also use DCR graphs mined with DisCoveR as
the starting point for the transformation to Petri nets.

In addition to DCR graphs, the DECLARE [103] and Guard-Stage-Milestone [71]
(GSM) notations have also seen broad use in the business process manage-
ment research community. DECLARE provides a set of templates for mod-
elling business constraints that are formalised as Linear Temporal Logic for-
mulae (parameterized by activities). A DECLARE model is the conjunction
of a set of instantiated formulae. The GSM notation [71] takes a declarative
data-centric approach to modelling processes, where stages of activities in
the process are connected through guards that need to be satisfied for their
activation and milestones that represent their acceptance criteria.

DECLARE Miner [84] and MINERful [36] are the most known miners for
DECLARE. We provide a DECLARE model mined with MINERful in Sec-
tion 4.1 where we compare its synthesized Petri net with our transformation
from DCR graphs. Other declarative notations such as, Process Intermediate
Language (DPIL) and its derivation Case Management Model And Notation
(CMMN) have little to no support when considering the process discovery
task, we can only mention [115] for DPIL and [106] for GSM.

Haisjackl et al. [65] investigate hierarchy in declarative process models in
an exploratory study, but they do not measure the effect it has on cognitive

10

Chapter 1 | Introduction

load.

1.2.2.2 Imperative

Several metrics both for complexity (such as simplicity and control flow
complexity - CFC) and performance (fitness, precision and generalization),
have been used to evaluate imperative miners: Inductive Miner [24, 77], HM
Miner [46, 132, 133], ILP Miner [51], ETL Miner [25], Prime miner [20], eST
miner [86], DiSCover [131](not to be confused with the earlier mentioned Dis-
CoveR miner for DCR graphs) and Split Miner [14]. Augusto et al. [15] find
a correlation between complexity metrics and the quality of process models
mined with imperative miners.

Discovering hierarchies or subprocesses is well studied for imperative pro-
cess model notations [38, 39, 73, 76, 89, 124]. FlexHMiner [82] is a miner
for hierarchical process models that discovers subprocesses based on three
different methods, using domain knowledge, random clustering, and a flat
tree, with the domain knowledge approach being on average the highest-
scoring one. In the context of multi-level event logs, mining hierarchical pro-
cess models [78] means discovering hierarchies in logs where each part can
be mined with its own miner resulting in a combination of several process
model notations, including DECLARE. Smirnov et al. [116] systematically
catalog business process model abstraction techniques and show their value
through use cases. Turetken et al. [127] do not investigate cognitive load,
but the related concept of understandability. In particular they find that
“Fully-flattened models are perceived easier to understand than models that
are vertically modularized (using groups or sub-processes)” [127].

1.2.3 Transforming between formalisms
When transforming between different modelling formalisms we gain access to
a whole new set of tools and techniques to analyze our processes with. Trans-
forming from a declarative rule-based formalism to an imperative procedural
one has the added benefit of allowing us to model a system by essentially
“telling it what it needs to know” [111], often at the expense of an exponential
state space increase in the imperative model. We rely on proofs that certain
properties hold, such as the level of concurrency, and that the systems are
to some extent behaviourally equivalent.

11

Chapter 1 | Introduction

DECLARE DECLARE has been formalized in other languages such as
coloured automata [85] and SCIFF [92, 93]. Mappings from DECLARE to
Petri nets and R/I-nets were provided respectively in [107] and [48], however
proofs of correctness are missing from each of these.

GSM A mapping has been proposed from Petri nets to GSM [105], in
particular with a focus on representing the output of process discovery al-
gorithms (which usually produce Petri nets) as GSM models. We are not
aware of any direct mappings in the opposite direction. Similarly [57] pro-
vides a mapping from DCR graphs to GSM models, an opposite mapping is
mentioned as future work but has not yet materialised.

DCR In [68] a subset of the DCR relations and their equivalent Petri net
mapping is presented, without inhibitor arcs and without proof of correctness.
[97] provides an encoding of DCR graphs as Büchi automata.

Petri nets Petri nets are widely used, therefore there are many translations
to notations outside the declarative process modelling sphere, for example
Ladder Logic Diagrams [126], Timed Automata [27] and mCRL2 [108].

Much work has gone into mapping other modelling notations into Petri
nets, such as UML activity diagrams [122], UML sequence diagrams [137],
UML state charts [70], and BPMN [52, 108]. Different classes of ω-language
Petri nets have been introduced in [128] and their complexity has been stud-
ied in [58]. The definition of acceptance criteria for infinite words in [128]
is based on markings being visited infinitely often, similar to the acceptance
criteria of Büchi-automata.

1.2.4 Test-driven modelling
Within process mining the most common verified behaviour is that of com-
paring control-flow models against the observed behaviour through confor-
mance checking [4]. The term trace alignment [74] was introduced as a pre-
processing step to other process mining techniques. These days trace align-
ment primarily refers to the alignment of traces against model behaviour and
is seen as a cornerstone of conformance checking.

Test-driven modelling (TDM) was introduced by Zugal et al. in [140, 141]
as an application of test-driven development to declarative business processes.

12

Chapter 1 | Introduction

Their studies [140] indicate in particular that simple sequential traces are
helpful to domain experts in understanding the underlying declarative mod-
els. Connections between refinement, testing-equivalence and model-check-
ing was observed in [26]. Test-driven modelling for declarative models has
also been identified as a form of hybrid business process representations [8],
falling into the category of representations that combine a declarative model
with (more imperative) tool support to aid their understandability [9, 11]. In
particular the effect of hybrid approaches towards improving the understand-
ability of DCR graphs, which are closely related to the test-driven modelling
approach presented here, was investigated by Andaloussi et al. in [10, 12].

1.2.5 Handling time
Mining timing information has been done on all major process modelling for-
malisms to increase their expressiveness by capturing temporal constraints:
DECLARE [134], time BPMN [32, 33, 60], timed Petri nets [1, 139] and
Timed Automata [40]. In [60] lead and lag time are equivalent to the mini-
mum delay and maximum deadline. In [32] the authors mine extraneous de-
lays. [1] mines probabilistic delays on Stochastic Petri nets. Work in the [2]
shows how durations are overlayed on Petri nets on a per case basis. [40]
exemplifies how one can use the UPPAAL statistical model checker [45] on
Timed Automata.

1.3 Preliminaries
We now give the standard definitions that will be used throughout this thesis.
The aim is to give a formal overview and help in better understanding the
remaining chapters in Part I. Note that each paper in Part II will have in its
preliminaries the necessary definitions for the contribution.

1.3.1 Event logs and traces
“An event log is a collection of events” [4]. Event logs are the core data
structure of process mining. They can be seen as a projection of any data
source, typically relational databases, into this standardized event log format.
They are stored in the eXtensible Event Streams (.xes) standard format, but
also in tabular form as comma separated values (.csv). When considering the

13

Chapter 1 | Introduction

tabular form an event is in essence a row in the table. Event logs have a notion
of a case (or process instance), “a case consists of events such that each event
relates to precisely one case” [129]. Event logs also have a notion of activities.
The sequence of activities is what gives us the case. Often activities are also
associated with a timestamp. When a timestamp is present it is normally
what defines the sequence of activities. We now give the formal definition of
an event log.

Definition 1.1. An event log over a given set of activities A and time domain
TD being ISO8601 time stamps is defined as L = (E,C, α, γ, β,�) where:

(i) E is a finite set of events,

(ii) C is a finite set of cases (process instances),

(iii) α : E → A maps each event to an activity,

(iv) γ : E → TD maps each event to a timestamp,

(v) β : E → C maps each event to a case and is surjective,

(vi) �⊆ E × E is the succession relation, which for every case c ∈ C is a
total ordering on the set β−1(c)

Given an event log L we define the trace function TrL : C → P(E) by
TrL(c) = {e | β(e) = c}, i.e. returning all events belonging to the same
case. We require that for events belonging to the same case the succession
relation respect the time ordering, i.e. ∀c ∈ C, ∀e1, e2 ∈ TrL(c) if e1 � e2
then γ(e1) ≤ γ(e2). We assume a function ∆ : TD × TD → ω returning an
absolute number of time steps between two timestamps.

An event log we commonly refer to in the summaries is the Road Traffic
Fine Data Management Process (RTFMP) [88] event log. The event log was
extracted from an information system used for the handling of road traffic
fines by the Italian police.

1.3.2 Process models
We are particularly concerned with the definition of two types of process
models: DCR graphs and Petri nets.

14

Chapter 1 | Introduction

1.3.2.1 DCR graphs

In this section we summarize the various DCR graphs definitions from [96,
118]. Formally, we define DCR graphs as attributed directed graphs. We
deviate slightly from the original presentation in [69] to be consistent with
later articles and define slightly more general graph structures. The majority
of papers on DCR graphs use the term events for activities but here we use the
term activities instead of events1. This is to be consistent with the definition
of activities in event logs.

Core DCR

Remark 1.1. Notation: For a set E we write P(E) for the set of all subsets
of E, i.e. the powerset of E and Pne(E) for the set of all non-empty subsets
of E.

Definition 1.2. A core DCR graph G is given by a tuple (E,M,R,@, L, l)
where

(i) E is a finite set of activities

(ii) M = (Ex,Re, In) ∈ P(E)× P(E)× P(E) is the marking

(iii) R ⊆ E × E is the set of relations between activities

(iv) @ : R→ Pne({→•, •→,→+,→%}) is the relation type assignment

(v) L is the set of action labels

(vi) l : E → L is the labelling function assigning an action label to each
activity

The marking M = (Ex,Re, In) describes the state of an activity e in the
following way. If e has been executed at least once then e ∈ Ex. If e is
pending (i.e. it must eventually be executed) then e ∈ Re. If e is included
(i.e. it is currently relevant) then e ∈ In.

The relation type assignment assigns one or more relation types to each
edge. If →•∈ @(e, e′) we say that there is a condition from e to e′. If
•→∈ @(e, e′) we say that there is a response from e to e′.

1Note that in part II there are definitions which still use the term events, therefore we
make explicit the naming convention used in each paper.

15

Chapter 1 | Introduction

If →+∈ @(e, e′) we say that there is an inclusion from e to e′. If →%∈
@(e, e′) we say that there is an exclusion from e to e′.

We will often write eRe′ or eRe′ ∈ R for R ∈ @(e, e′).

Note that when we have eRe a relation between the same activity we call
R a self relation. A common self relation is the self exclude relation e→% e.

Core DCR semantics The semantics below are adapted from Section 9.2
by removing the milestone relation and the roles.

The enabledness of an activity can be determined by looking at the mark-
ing of events immediately related to the activity by an incoming condition
relation the graph. To define enabledness formally we will use the following
notation. WhenG is a DCR graph, we write, e.g., E(G) for the set of activities
of G, Ex(G) for the executed activities in the marking of G, etc. In partic-
ular, we write M(e) for the triple of boolean values (e ∈ Ex, e ∈ Re, e ∈ In).
We write (→•e) for the set {e′ ∈ E | e′ →• e}, write (e•→) for the set
{e′ ∈ E | e •→ e′} and similarly for (e→+) and (e→%).

Definition 1.3 (Enabled activities). Let G = (E,M, R,@, L, l) be a DCR
graph, with marking M = (Ex,Re, In). An activity e ∈ E is enabled, written
e ∈ enabled(G), iff (a) e ∈ In and (b) In ∩ (→•e) ⊆ Ex.

That is, enabled activities (a) are included and (b) their included condi-
tions have already been executed.

The effect of executing an activity only changes the marking of the exe-
cuted activity and activities related to it by outgoing response, inclusion or
exclusion edge from the executed activity.

Definition 1.4 (Effect). Let G be a DCR graph with marking M = (Ex,Re, In).
The effect of executing an enabled activity e is the marking effectG(M, e) =
(Ex′, Re′, In′) where

Ex′ =Ex ∪ {e}
Re′ =(Re \ {e}) ∪ (e•→)

In′ =(In \ (e→%)) ∪ (e→+)

We write execute(G, e) for the DCR graph obtained by replacing the marking
of G with effectG(M, e). We write G→e G

′ for G′ = execute(G, e).

Definition 1.5 (Accepting). Let G be a DCR graph, with marking M =
(Ex,Re, In). We say that G is accepting, written accepting(G), iff In∩Re = ∅.

16

Chapter 1 | Introduction

Definition 1.6 (Runs). A sequence of events φ is a run of a DCR Graph
iff G→∗

φ G′. It is an accepting run iff accepting(G′). The language of G0 is
then the set of all such accepting runs.

We omit the execution semantics for all but the core DCR graphs Defi-
nition 1.2 as they are introduced for the extended definitions in each paper
from Part II where relevant.

Extended DCR The extended version of the core DCR graph definition
contains two extra relations in the set of relation types, the milestone (→�)
and the no-response (•→×).

Definition 1.7. An extended DCR graph G is given by a tuple (E,M,R,@, L, l)
where

(i) (E,M,R,@, L, l) is a core DCR graph

(ii) @ : R → Pne({→•, •→,→+,→%} ∪ {→�, •→×)} is the extended rela-
tion type assignment

For the relation type assignment we add two extra relations. If →�∈ @(e, e′)
we say that there is a milestone from e to e′. If •→×∈ @(e, e′) we say that
there is a no-response from e to e′.

Role DCR

Definition 1.8. A role DCR graph is a tuple (E,M,R,@, L, l, by,Rl)

• (E,M,R,@, L, l) is an extended DCR graph

• L is the set of action labels

• ` : E → L is the labelling function, assigning action labels to activities

• Rl is a set of roles

• by : L→ P(Rl) is the role assignment function, assigning zero or more
roles to activities.

17

Chapter 1 | Introduction

Group DCR Here we define a DCR graph with only activities A. We omit
the set of action labels and the labelling function, because l is the identity
function, i.e. the finite set of activities E is equal to the finite set of action
labels L. Defining a DCR graph with activities also has the advantage of
creating a one to one correspondence with the activities defined for event
logs. It is a more intuitive definition when discovering DCR graphs from
event logs.

Definition 1.9. A DCR graph G with nested groups of activities is given
by a tuple (A,M,R,@, AG,B) where

(i) AG = A] AG is a finite set of activities A and activity groups AG,

(ii) M = (Ex,Re, In) ∈ P(A)× P(A)× P(A) is the marking,

(iii) R ⊆ AG× AG is the set of relations between activities

(iv) @ : R→ Pne({→•, •→,→+,→%}) is the relation type assignment

(v) B: AG ⇁ AG is a partial grouping function.

We write > for B+ (the transitive closure of B) and require that it is ir-
reflexive. We write ≥ for reflexive closure of > and ≤ for the inverse of
≥.

A nested group defines a disjoint set of activities (an activity or activity
group can be part of exactly one activity group). Another type of grouping
in DCR graphs is a subprocess [101]. The key difference between nested
groups and subprocesses is that groups do not have execution semantics as
they are syntactic shorthand for the process model, i.e. any relation that
applies to the group applies onto each activity or activity group that is part
of the group and this definition is applied recursively.

Timed DCR

Remark 1.2. Notation: Let N refer to the set of natural numbers (including
zero) and Nω = N ∪{ω} refer to the set of natural numbers (including zero)
and infinity (with infinity written as ω).

Definition 1.10. A Timed DCR graph G is given by a tuple (E,M,R,@, L, l)
where

18

Chapter 1 | Introduction

(i) E is a finite set of activities,

(ii) M = (Ex,Re, In) ∈
(
(E ⇁ N) × (E ⇁ Nω)× E

)
is the timed mark-

ing,

(iii) R ⊆ E × E is the set of relations between activities

(iv) @ : R → Pne({
k→•,→�, d•→, •→×,→+,→%}) is the relation type assign-

ment and k ∈ N is the delay and d ∈ Nω is the deadline.

(v) L is the set of action labels,

(vi) l : E → L is the labelling function between activities and labels.

Time is represented as discrete ticks, that is natural numbers. Infinity
(ω) is used to represent responses with infinite deadlines, i.e. a response that
must eventually happen but not within a given time, these are visually shown
as response arrows (•→) without a deadline (d).

The timed marking M = (Ex,Re, In) describes the state of the DCR
graph process by assigning execution times, deadlines and inclusion status to
each activity in the following way. If an activity e has been executed at least
once then Ex(e) = k, where k ∈ N is the number of time steps since the
last execution of e. If e has not been executed then Ex(e) is undefined. If
Re(e) = d then we say that e is pending with deadline d ∈ Nω, which means
that it must be executed within d time-steps or stay forever excluded. The
deadline ω represents ”eventually”, which corresponds to the semantics of
untimed DCR graphs. If e ∈ In we say that it is included and otherwise it is
excluded.

Constraining and effect relations A relation r = (e, e′) ∈ R from
activity e to e′ is a r is a constraining relation if { k→•,→�} ∈ @r. If
{ d•→, •→×,→+,→%} ∈ @r we say that r is an effect relation. Note that there
can be multiple relations between e and e′ and r can be both a constraining
and an effect relation at the same time.

We write e
k→• e′ if k→•∈ @r and say there is a condition from e′ to e

with delay k. The meaning is that at least k time steps must happen after
the last execution of e before e′ can be executed. If k = 0 the condition
relation simply states that the activity e′ must have been executed at least

19

Chapter 1 | Introduction

once before e can be executed, which corresponds to the condition relation
of untimed DCR graphs.

We write e d•→ e′ if d•→∈ @r and say there is a response from e to e′ with
deadline d. The meaning is that e′ must happen within d time steps after
the last execution of e or before that stay excluded.

1.3.2.2 Petri nets

There are numerous variants of Petri nets with different expressive power.
We use safe Petri nets with inhibitor and read arcs and a notion of both
finite and infinite acceptance criteria (PNirp). We also extend the definition
to cover time by using a variant of safe Timed-arc Petri nets with read arcs
and a notion of both finite and infinite acceptance criteria (TAPNrp). We say
that a Petri net is safe if the execution of transitions preserves the safeness of
markings, also known as the property of all the net places being 1-bounded.

PNirp We define safe Petri nets with inhibitor arcs, read arcs and pending
places as follows.

Definition 1.11. A Petri net with inhibitor and read arcs and pending places
(PNirp) is a tuple N = (P, T,A, Inhib, Read,Act, λ, Pe),where

(i) P is a finite set of places,

(ii) T is a finite set of transitions s.t. P ∩ T = ∅,

(iii) A = IA tOA is a finite set of input and output arcs, where:

(1) IA ⊆ P × T is a finite set of input arcs,
(2) OA ⊆ T × P is a finite set of output arcs,

(iv) Inhib: IA −→ {true, false} is a function defining inhibitor arcs,

(v) Read: IA −→ {true, false} is a function defining read arcs,

(vi) Act is a set of labels (actions),

(vii) λ : T → Act is a labelling function,

(viii) Pe ⊆ P is the set of pending places,

20

Chapter 1 | Introduction

and the constraint that if Inhib((p, t)) then ¬Read((p, t)) and if Read((p, t))
then ¬Inhib((p, t))∧ (t, p) 6∈ OA. That is, an input arc cannot be both a read
arc and an inhibitor arc. And if there is a read arc from place p to transition
t, then there cannot be an output arc from transition t to p.

Inhibitor arcs (also called negative contextual arcs) are special arcs be-
tween places and transitions specifying the constraint that the transition is
only enabled if all places related to it by inhibitor arcs are empty. In general,
the addition of inhibitor arcs makes the model of Petri nets Turing com-
plete [6]. However, with the additional requirement of safeness that inhibitor
arcs can be transformed using a complement place and a read arc.

Read arcs (also called test, activator or positive contextual arcs) [19]
specify the constraint that a transition is only enabled if all places related
to it by read arcs have a token. A key difference between having a read arc
and a pair of input and output arcs between a transition and a place, is that
read arcs are not consuming the token. This means that two transitions with
read arcs to the same place can occur concurrently [94]. However, if two
transitions are connected to the same place by a read arc and a standard
input arc respectively, the two transitions will still be in conflict. With the
use of timed tokens, read arcs also have the property of preserving the token
age, whereas a pair of input and output arcs will reset the age.

The PNirp marking is defined as the subset of places containing a token.

Definition 1.12. (safe Marking). Let N = (P, T,A, Inhib, Read,Act, λ, Pe)
be a PNirp. A safe marking M on N is a subset M ⊆ P of places. We say
there is a token x at a place p ∈ P , written x ∈ M(p), if p ∈ M . The set of
all markings over N is denoted by M(N).

TAPNrp We define safe Timed-arc Petri nets with read arcs and pending
places as follows. The definition is adapted from Def.1 [72]. We restrict time
to discrete natural number time steps as in timed DCR graphs and the set
of timed intervals. Let Int≥δ represent the set of time intervals [δ,∞) where
δ ∈ N . Let Int≤∆ represent the set of time intervals [0,∆] where ∆ ∈ N .
We restrict the intervals Int≥δ to be used on transport arcs, which is used
to represent delays and we restrict the intervals Int≤∆ to be used on places,
which represent deadlines.

Definition 1.13 ([72, Def. 1]). A TAPNrp is a tuple

N = (P, T,A, Inhib, Read, Transport, InvT , InvP , Act, λ, Pe),

21

Chapter 1 | Introduction

where

(i) P is a finite set of places,

(ii) T is a finite set of transitions s.t. P ∩ T = ∅,

(iii) A = IA tOA is a finite set of input and output arcs, where:

(1) IA ⊆ P × T is a finite set of input arcs,
(2) OA ⊆ T × P is a finite set of output arcs,

(iv) Inhib: IA→ {true, false} define inhibitor arcs,

(v) Read: IA→ {true, false} define read arcs,

(vi) Transport : IA×OA→ {true, false} where ∀(p, t) ∈ IA∧(t′, p′) ∈ OA
such that Transport((p, t), (t′, p′)) we require that t = t′,

(vii) InvT : IA ⇀ Int≥δ where we require InvT (a) = [δ,∞) =⇒ ∃a′.T ransport(a, a′)

(viii) InvP : P → Int≤∆

(ix) Act is a set of labels (actions),

(x) λ : T → Act is a labelling function,

(xi) Pe ⊆ P is the set of pending places,

and the following constraints:

1. if Inhib((p, t)) then

{¬Read((p, t))} ∧ {¬Transport((p, t), (t, p′))|∀p′ ∈ P}

2. if Read((p, t)) then

{(t, p) 6∈ OA} ∧ {¬Inhib((p, t))} ∧ {¬Transport((p, t), (t, p′))|∀p′ ∈ P}

3. if Transport((p, t), (t, p′)) then {¬Read((p, t))} ∧ {¬Inhib((p, t))};

22

Chapter 1 | Introduction

Constraints (1),(2) and (3) specify that the domain of input arcs defined
by Inhib, Read and Transport must be disjoint. In addition for (2) if there
is a read arc from place p to transition t, then there cannot be an output arc
from transition t to p ({(t, p) 6∈ OA}).

As we have a safe Petri net we again define the marking as a subset of
places containing a token.

Definition 1.14. (Marking) Let N be a TAPNrp. A safe marking M on
N is a subset M ⊆ P of places. We say there is a token x at a place p ∈ P ,
written x ∈ M(p), if p ∈ M . The set of all markings over N is denoted by
M(N). We define the token age as a function on places Mt : P → N . We
say a token has age n written Mt(p) = n where n ∈ N .

Remark 1.3. The transformation of extended and timed DCR graphs is
guaranteed by construction to only create safe PNirp and safe TAPNrp re-
spectively.

We omit the execution semantics as they are introduced for the specific
definition in each relevant paper from Part II.

1.4 List of Publications and code
The following Table 1.1 lists the contributions summarized in the remaining
chapters of Part I.

Year Title First author Paper type Venue Publication status

1 2021 BERMUDA: towards maintainable traceability
of events for trustworthy analysis of non-PAISs Yes Extended abstract EMISA Forum Published

2 2022 BERMUDA: Participatory Mapping of Domain
Activities to Event Data via System Interfaces Yes Workshop Full RPM ICPM Published

3 2024 Improving Simplicity by Discovering
Nested Groups in Declarative Models Yes Conference Full CAISE Accepted (Pending publication)

4 2023 Transforming DCR graphs to Safe Petri nets Yes Conference Full PETRINETS Published

5 2024 Static and Dynamic Techniques for
Iterative Test-Driven Modelling for DCR graphs No Journal DKE Under review

6 2024 DD-DisCoveR: Mining timed DCR graphs
using the pm4py DisCoveR DCR extension Yes Demo Short ICPM Demo Draft

7 2024 Mapping Timed Declarative DCR Graph
Specifications to safe Timed-arc Petri Nets Yes To Be Determined To Be Determined Draft

Table 1.1: List of publications

The code related to Sections 8.1, 9.1, 10.1 and 10.2 has been implemented
as an extension to the pm4py framework [21] called pm4py-dcr, which con-
tains the algorithms presented in the papers and code implementations for

23

Chapter 1 | Introduction

DCR graphs and Timed-arc Petri nets along with execution semantics, im-
port and export capabilities for both modelling formalisms. The code also
contains a python implementation for the original DisCoveR algorithm. The
code can be found at https://github.com/paul-cvp/pm4py-dcr and is
structured in a similar manner to the rest of the pm4py framework. The code
for Section 9.2 can be found at https://github.com/Axel0087/BitDCRAlign.
The code for the prototype tool presented in Section 7.1 is available at
https://github.com/paul-cvp/bermuda-method.

24

https://github.com/paul-cvp/pm4py-dcr
https://github.com/Axel0087/BitDCRAlign
https://github.com/paul-cvp/bermuda-method

Summaries

25

Chapter 2

Trustworthy event log creation
BERMUDA

2.1 BERMUDA: Participatory Mapping of Do-
main Activities to Event Data via System
Interfaces

Remark 2.1. This section summarizes the work published in the proceedings
of ICPM Workshops 2022. It was also presented as a full paper at the ICPM
2022 Workshop on Responsible Process Mining, where it won a best follow-up
paper award in the workshop.

The work summarized in this chapter is based on a paper that has been
published as [41]: Cosma VP, Hildebrandt TT, Gyldenkærne CH, Slaats T.
BERMUDA: Participatory Mapping of Domain Activities to Event Data via
System Interfaces. International Conference on Process Mining 2022 Oct 23
(pp. 127-139). Springer Nature Switzerland.

2.1.1 Motivation and Summary
This section summarizes the BERMUDA method for extracting trustwor-
thy event logs. The method is based on two case studies analyzing the
process of extracting data from information systems. An initial evaluation
of the method has shown positive feedback through increased transparency,
accountability and traceability in relation to the data provenance.

26

Chapter 2 | Trustworthy event log creation BERMUDA

The increased use of predictive AI models and process mining models
have created huge expectations on how data and process science can improve
society. However creating actionable insights from data does not guarantee
improvements if the insights are not aligned with the end users expecta-
tions. One major source of misalignment is the fact that data analysis was
never a primary use of the information systems from which the data was
extracted. We explicitly differentiate between this primary (storage) and
secondary (analysis) use of data. A lot of work has gone into extracting
event logs from information systems that addresses the technical challenges
of data quality issues and event abstraction, but comparatively little has
been done to ensure transparent, traceable matching of event data to busi-
ness activities [87].

A process model comes from one of two sources. Either it is created
manually by a person with domain knowledge and modelling experience, or
it is mined from event logs using automatic process discovery algorithms.
When it is manually created we are presented with an idealized view of
the process, one which is closely related to how domain experts consider
the process to be. Their expertise stems from past experience, education,
training, or by understanding the guidelines and laws governing the domain
in which they are employed. We refer to activities in the handmade model as
domain activities. When process models are mined using process discovery,
the data needs to be in the form of event logs. Therefore the first task
for a data scientist is to extract an event log from the information systems
database. This task is also a moment when data quality issues and event
abstraction have to be addressed. Once a process model is mined we also have
to quantify the degree of agreement between the model and event log and it is
at this stage where we have strong techniques to quantify this using alignment
or conformance-based measures. In an attempt to improve the event log
extraction stage, we propose a method to increase collaboration between
data scientists, domain experts and systems engineers to create trustworthy
event logs.

The projection of data into an event log should preserve the inherent
proprieties of the data source. Domain knowledge is necessary to understand
if the event log will capture the behaviour of the real-world process we intend
to analyze. Finally the enactment of the real-world process in the data is
filtered and limited by the user interface or software solution through which
the data is entered. This leads us to question just how trustworthy event
logs can be. Now we step into BERMUDA: Business Event Relation Map via

27

Chapter 2 | Trustworthy event log creation BERMUDA

Role Has domain knowledge? Has data access? Has information system expertise?
Domain
expert Yes Limited

to the assigned cases/patients
Yes,

as a system user
Data
analyst

Limited,
as necessary for achieving the task

Yes, data can
be anonymized or synthesized

Limited,
for data extraction

System
engineer

Limited,
as necessary for developing the system

Limited
to anonymized or synthesized

Yes,
as a system engineer

Table 2.1: BERMUDA: Role-based access control and competences

User-interface to Data for Analysis. In other words, BERMUDA, the place
where information gets lost. We employ Participatory Design (Definition 2.1)
theory to propose a method and prototype tool for the responsible creation
of trustworthy event logs through stakeholder collaboration.

Definition 2.1. “Participatory Design can be defined as a process of investi-
gating, understanding, reflecting upon, establishing, developing, and support-
ing mutual learning between multiple participants in collective ’reflection-in-
action’ [114]. The participants typically undertake the two principal roles
of users and designers where the designer strive to learn the realities of the
users situation while the users strive to articulate their desired aims and learn
appropriate technological means to obtain them.” [117]

We define three roles within BERMUDA: the data scientist, domain ex-
pert and system engineer. Their key competences and data access require-
ments are highlighted in Table 2.1. The method takes advantage of each roles
key competences while taking into account citizens data privacy concerns and
the software vendors protection of intellectual property rights. BERMUDA
is applied in three steps. First, a domain expert maps domain activities to
user interface areas of the information system. Then system engineers link
the user interface to the data source and provide the relevant data extraction
scripts. Finally the data scientist can associate the domain activities with
the extraction scripts to generate the event log.

The need for a method to facilitate knowledge sharing in the event log
extraction stage arose from two concrete cases, one related to a municipal job
center and another to a hospital. In the job center case we intended to auto-
mate the internal audit schema the job center used for checking their com-
pliance with the law. In the hospital case we intended to build an AI model
to predict future no-shows for patient appointments. Both cases intended
to use their data for AI-based decision support and both studies revealed
a discrepancy between the intended system use and its actual use. When

28

Chapter 2 | Trustworthy event log creation BERMUDA

adding information to a case, users preferred selecting the “other” category
from a drop-down menu, which severely limited the secondary usefulness of
the data. Writing a textual description was a favored workaround instead
of scrolling through the proposed categories. Knowledge of both the system
and the domain was important for handling the missing data.

Based on the two cases a common pattern emerged. Data scientists
elicited knowledge in iterations from domain experts and system engineers.
They kept track of how domain activities were recorded and how data was
extracted. After an initial evaluation with a domain expert and a data scien-
tist we found that extracting data for secondary use through the BERMUDA
method exhibited several positive properties. Both interviewees saw an ad-
vantage in having a link between domain activities and database events as a
way remove ambiguities and improve transparency, accountability and trace-
ability. Additionally they saw it beneficial to store the triple (domain activi-
ties, user interface areas and database extraction scripts) to prevent the event
log from being out of date when any of the elements changed. Finally they
suggested that the triple can be used when on-boarding new team members.

2.1.2 Discussion
Fitting within process mining life cycle models If we look at the L*
lifecycle model [129] our method fits within stage 0 ”Plan and justify” and
stage 1 ”Extract”. If we look at the PM2 Process Mining Methodology [130]
our method fits within the task ”Transferring process knowledge” in Stage 2
”Extraction”.

The triples created in the method belong to stages 0 and 1 in the L*
process mining life cycle model as depicted in Fig. 2.1, where Data and
Business understanding are the main artifacts used in the extraction stage.
Applying BERMUDA within the life cycle model allows for a more agile
and iterative extraction step. After the initial extraction it is necessary to
reiterate stages 0 and 1 to increase the quality of the output of stage 1, w.r.t.
traceability, transparency and accuracy. It also improves maintainability
when some of the resulting artifacts change as a result of refinements within
the L* life cycle.

29

Chapter 2 | Trustworthy event log creation BERMUDA

Figure 2.1: Fitting BERMUDA within the L* life cycle model

30

Chapter 3

Understandable declarative
process models

3.1 Improving Simplicity by Discovering Nested
Groups in Declarative Models

Remark 3.1. This section summarizes an accepted conference paper for
the International Conference on Advanced Information Systems Engineering
(CAISE) 2024.

The work summarized in this chapter is based on a preprint paper that
will be published as: Improving Simplicity by Discovering Nested Groups
in Declarative Models Cosma VP, Christfort AKF, Hildebrandt TT, Lu X,
Reijers HA, Slaats T. International Conference on Advanced Information
Systems Engineering 2024.

3.1.1 Motivation and Summary
This section summarizes the development and evaluation of 3 novel pro-
cess discovery algorithms for mining declarative process models with activity
groups. The contribution is also the first to evaluate 4 new empirically vali-
dated complexity metrics on an exhaustive set of 21 publicly available event
logs. The novel algorithms discover more understandable process models. We
use the complexity metrics as evidence for the increased understandability.

Process discovery allows us to automatically reconstruct the real-world
process from stored event data. Discovered models come in two flavours

31

Chapter 3 | Understandable declarative process models

depending on the choice of miners (discovery algorithms): imperative or
declarative. Imperative models are more akin to a factory or warehouse set-
ting where the process is structured. In this setting imperative miners find
structured and simple processes. Imperative mined models become quickly
overly complicated as the process allows for more flexibility, in this case im-
perative miners discover spaghetti models [129]. As we look at more flexible
processes, such as case work or healthcare processes, declarative models tend
to capture flexibility more succinctly.

DCR graphs are an example of a declarative process model and Dis-
CoveR is an award winning process miner that has consistently been shown
to produce highly accurate models from event logs. DisCoveR mines mod-
els according to Definition 1.2 of core DCR graphs. However many of the
discovered relations apply to groups of activities and specific behavioural
patterns, such as mutual exclusive choices. This gives us models that have
multiple relations between the same subsets of activities. One solution to
reducing the visual number of relations while still maintaining the perfect
fitness of the discovered models is to use the group Definition 1.9 of DCR
graphs. Groups, also known as nestings in previous papers [66] are syntactic
short-hand signifying that a relation to/from a group applies to the entire
set of activities under that group. This definition also applies recursively,
allowing us to have groups within groups.

We have developed three algorithms that map from the definition of core
DCR graphs to the definition of group DCR graphs. The first algorithm,
called Choice, finds mutual exclusion groups, that is groups of self-excluding
activities with a pair of exclusion relations →% between each activity in the
group. Each group of activities is then mapped under an activity group with
a self exclusion relation. The second algorithm, called Group, is an efficient
greedy algorithm which finds all groups that reduce the number of relations
w.r.t the graph size. The third algorithm, called Choice+Group, first applies
the Choice pattern before greedily reducing the graph size using the Group
algorithm.

Motivated by the results of Andaloussi et. al. [5] which found a corre-
lation between a set of complexity metrics (size, density, separability and
constraint variability) and users cognitive load, we evaluated our three al-
gorithms against a set of 16 real life event logs and 5 synthetic ones. We
benchmarked our algorithms against DisCoveR which produces core DCR

32

Chapter 3 | Understandable declarative process models

graphs1 and found an improvement of 42% in size, 65% in density, 5% in sep-
arability and a deterioration of 22% in constraint variability for the greedy
Group algorithm. Choice+Group came in a close second with Choice coming
third.

On the evaluated event logs we saw that an improvement on size, density
and separability implies a worsening on constraint variability. A possible
explanation is that DisCoveR tends to find a high number of exclusion and
condition relations. As we reduce these disproportionately preferred relations
the overall ratio of each relation type tends to even out, therefore leading to
a higher overall constraint variability.

As the complexity metrics are a proxy for the users understandability of
declarative process models [5] we have therefore shown how to discover more
understandable DCR graphs by reducing the number of relations while still
maintaining perfect fitness w.r.t. the event log.

1Our algorithms also work on the extended definition of DCR graphs.

33

Chapter 4

Verifiable declarative process
models

4.1 Transforming Dynamic Condition Response
Graphs to Safe Petri Nets

Remark 4.1. This section summarizes the conference paper published in
the proceedings of Application and Theory of Petri Nets and Concurrency.
Part of the book series: Lecture Notes in Computer Science (LNCS, volume
13929). It was presented at the PETRI NETS 2023 conference main track.

The work summarized in this section is published as [44]: Cosma VP,
Hildebrandt TT, Slaats T. Transforming Dynamic Condition Response Graphs
to Safe Petri Nets. International Conference on Applications and Theory of
Petri Nets and Concurrency 2023 May 28 (pp. 417-439). Cham: Springer
Nature Switzerland.

4.1.1 Motivation and Summary
This section summarizes the transformation of the DCR graphs constraint-
based process specification language to safe Petri nets with inhibitor arcs,
read arcs and pending places (PNirp). We proved that the resulting PNirp is
bisimalar with the DCR graph and that the bisimulation respects the accep-
tance criteria. We showed how to construct the PNirp from any DCR graph
and that the construction follows closely the bisimilarity proof. Finally we

34

Chapter 4 | Verifiable declarative process models

showed how pre and post optimization techniques allow us to create PNirps
that are feasible for further analysis either through visual inspection, token
replay, or through verification via Petri net model checkers.

“Declarative knowledge can often be compiled into more efficient pro-
cedural code” [111] is a quote from the chapter on Logical Agents from the
text book “Artificial Intelligence, A modern approach” by Russell and Norvig.
This statement applies to software engineering too, where requirements spec-
ifications are typically translated to imperative code when the system is im-
plemented. Petri nets are a well established process notation when it comes
to modelling system behaviour. Widely used both in the model checking
community as well as in the process mining one, Petri nets benefit from a
wide range of tool support and enjoy a central place when synthesizing or
mapping to and from other process notations.

DCR graphs is a relatively new process notation that does not yet have
a powerful model checker. DisCoveR [17], a DCR graphs miner, has al-
ready demonstrated with an early unsound translation to Petri nets to cap-
ture process behaviour more accurately than imperative miners using block-
structured approaches. Motivated by the dual benefits of model checking
DCR graphs and providing a declarative Petri net miner we defined a bisim-
ilarity preserving mapping from core DCR graphs to PNirp. The mapping
produces safe Petri nets by construction that are fully compatible with the
TAPAAL model checker [28]. We presented a theorem stating the bisim-
ulation relation between any DCR graph and its mapped PNirp which we
proved by induction in the number of elements of the DCR graph. The bisim-
ulation proof closely follows the construction stages of the PNirp. At each
stage of the construction/proof we take a different element of the DCR graph
and create its equivalent representation in the PNirp and at the end of each
stage the two models are bisimilar up to the number of DCR graph elements
already taken. We now give the acceptance criteria definitions and a short
remark on arc pattern tables before briefly sketching the construction of the
PNirp and its proof of bisimilarity.

Definition 4.1. (Definition 5 in [44]) Let G = (E,M0, R,@, L, l) be a DCR
graph. A finite or infinite sequence of transitions M0

e0→G M1
e1→G . . . in [[G]]

with Mi = (Exi, Rei, Ini), is accepting if e ∈ Rei ∩ Ini implies ∃j ≥ i.(ej =
e ∨ e 6∈ Rej ∩ Inj).

Definition 4.2. (Definition 11 in [44]) Let N = (P,M, T,A, Inhib, Read,Act, λ, Pe)
be a PNirp with safe marking M . A finite or infinite sequence of transi-

35

Chapter 4 | Verifiable declarative process models

tions M0
t0→N M1

t1→N . . . in [[N]] is accepting if p ∈ Mi ∩ Pe implies
∃j ≥ i.(p, tj) ∈ IA.

Remark 4.2. We briefly explain what an arc pattern table is for the base
case on a single event e (induction step 0), and when mapping a relation
(induction step > 0) between two events e and e′. Base case (e): Each row
in the table represents one transition labelled by l(e). Each column represents
a place related to e. Each item in the table represents an arc type between
the transition and the place. Relations (eRe′): Each row represents a
copy of the entire set of transitions labelled by l(e) (one or more). Each
column represents a place related to e′. Each item is an arc type between
each transition in the set of transitions labelled by l(e′) and the single place
of e′.

Events - induction step 0 Given a DCR event e we created four places,
each place representing the four key states a DCR event can be in: an in-
cluded place, an executed place, a pending included place and a pending
excluded place. We made a distinction between the pending state of a DCR
event to respect the acceptance criteria. We added a token to the included
place if e was included in the DCR Marking. We added a token in the ex-
ecuted place if e was executed. We either added a token in the pending
included or pending excluded place according to both the pending and in-
cluded marking of e in the DCR Marking. Next we created four transitions
with the same label as the DCR event label. We mapped the internal be-
haviour of the DCR event using arcs between the already created places and
transitions according to the arc pattern table for the base case.

This single event PNirp now captured the change an event has on its
own marking, and at the same time, by construction, at most one transi-
tion labelled by the event can be enabled at any given instance. Also by
construction, at most one token can exist in any place and this defines the
PNirp initial marking. We repeated this step for each event in the DCR
graph. This consists of the base case in our bisimulation proof.

Relations - induction step k For each relation between two DCR events
e and e′ we first created n copies of all existing transitions at stage k − 1
labelled by l(e) (where n is the number of possible behaviours induced by e
to the marking of e′ according to the specific relation type). For each of the n
transition copies labelled by l(e) we mapped all the existing arcs to the same

36

Chapter 4 | Verifiable declarative process models

places from stage k − 1 and we added new arcs to the places of e′ according
to the arc pattern table for the specific relation type. Finally we removed all
existing transitions at stage k − 1 labelled by l(e) and their associated arcs.

If stage k−1 = 0 (i.e. the base case) we would originally have 4 transitions
labelled by l(e) at stage 0. We created n × 4 new transitions, each of the n
copies having the same arcs w.r.t. the places of e. For each n, each of the 4
transitions would get the same new arc mapped to the places of e′ according
to the arc pattern table of that relation type. Finally we remove the original
4 transitions labelled by l(e) at stage 0. In the end we are left with n × 4
transitions labelled by l(e) out of which at most one can be enabled at any
given instance. This is because out of the 4 original transition at most one can
be enabled (as it was shown for the base case) and for each of the n groups of
transitions at most one group can be enabled due to the construction defined
by the arc pattern table for the specific relation type. In other words when
we do the Kronecker product of the arc pattern table at stage k− 1 with the
arc pattern table at stage k. By construction, at most one transition labelled
by l(e) is enabled at any given instance in the PNirp execution.

If stage k − 1 6= 0 we repeat the same procedure only instead of the
4 transitions labelled by l(e) we would have potentially more if there have
already been other relations mapped from e to any other e′. This consists of
the induction step in our bisimulation proof.

In the paper we show the mapping in more details, specifically we differ-
entiate based on the following:

1. When mapping effect relations (responses, inclusions and exclusions)
the event creating the effect has its transitions copied;

2. When mapping constraining relations (conditions) the event being con-
strained has its transitions copied1;

3. When mapping a self-relation (the case when e = e′) instead of creating
copies we change the arc pattern table from the base case;

4. When mapping relations with more than one relation type between e
and e′ we either define an arc pattern table or the mapping is equivalent
to an arc pattern table of a subset of relations types.

1in the full paper the condition relation →• is intentionally inverted •← to maintain
consistency in the proof and arc pattern table, that event e is always the one for which we
create transition copies

37

Chapter 4 | Verifiable declarative process models

To produce usable models we provide two solutions to limit the expo-
nential size blow up of the resulting PNirp. One approach was by statically
examining the DCR graph structure to know which event markings are rel-
evant. This allowed us to only create subsets of places and transitions at
the events mapping stage. As the PNirp is safe, we also did a reachability
analysis on the transition system of the mapped PNirp model and removed
any dead regions.

4.1.2 Discussion
Process discovery In an initial evaluation of the mapping we looked at
how the DECLARE notation was mapped to a Petri net model. The authors
in [107] used MINERful [36] on the BPIC13 [53] event log and used a synthesis
approach via Finite State Automata to create the final safe Petri net. We
give the figures shown in the original paper [107] (Figure 4.1) to compare with
our results using DisCoveR (Figure 4.2). Both conversions produce safe Petri
nets. The conversion from MINERful has 14 places and 31 transitions. The
conversion from DisCoveR has 6 places and 8 transitions. The only caveat is
that we use inhibitor arcs, but we replace read arcs with pairs of input and
output arcs as a way to keep our PNirps compatible with TAPAAL [28].

We investigated how the mapping to Petri nets compares with native Petri
net miners (the Inductive [77] and ILP [51] miners), by first using DisCoveR
on the event logs. We report our results in Table 4.1. Note that our runtime
takes into account both the process discovery step and the transformation
therefore it will always be slower and we also report from the total number
of arcs (#Arcs) how many out of those are inhibitor arcs (#Inhibitor). We
configured all miners to produce perfectly fitting models and we used the
Petri net token-replay conformance checker when computing the precision
and generalization metrics (we replaced the standard execution semantics
with the inhibitor net semantics).

The most striking result in favor of our approach is on the Road Traf-
fic Fine Management Process (RTFMP) event log. We show the resulting
models from this log in Figure 4.3.

Model checking finite runs. In our transformed PNirp we defined the
acceptance criteria for infinite runs in order to match with the DCR graphs
acceptance criteria. However in order to allow for LTL model checking in

38

Chapter 4 | Verifiable declarative process models

(a) Pipeline for DECLARE

(b) DECLARE model (c) FSA

(d) Petri net

Figure 4.1: MINERful to DECLARE to Regex to FSA to Petri net for
BPIC13 [107]

39

Chapter 4 | Verifiable declarative process models

(a) DCR graph

(b) Petri net

Figure 4.2: DCR to PNirp for BPIC13

40

Chapter 4 | Verifiable declarative process models

(a) dcrtotapn

(b) inductive

(c) ilp

Figure 4.3: dcrtopn vs inductive vs ilp on RTFMP
41

Chapter 4 | Verifiable declarative process models

Log name Algorithm Precision Generalization Size #Transitions #Places #Arcs #Inhibitor Runtime(s)
dcrtopn 0.321 0.291 255 211 44 2988 791 493.623

inductive 0.220 0.949 156 90 66 198 0 12.577BPIC12
ilp 0.132 0.975 57 26 31 242 0 37.978

dcrtopn 0.888 0.826 14 8 6 30 8 1.361
inductive 0.684 0.892 50 28 22 60 0 0.110BPIC13_i

ilp 0.684 0.918 13 6 7 26 0 1.692
dcrtopn 0.884 0.726 13 10 3 24 7 0.125

inductive 0.884 0.904 53 28 25 62 0 0.018BPIC13_cp
ilp 0.883 0.926 14 6 8 30 0 0.164

dcrtopn 0.613 0.981 33 17 16 109 43 6.325
inductive 0.613 0.984 99 55 44 120 0 1.094BPIC14_f

ilp 0.523 0.993 30 11 19 84 0 17.248
dcrtopn 0.542 0.806 55 28 27 268 51 17.814

inductive 0.498 0.907 125 68 57 152 0 0.352SEPSIS
ilp 0.386 0.919 65 18 47 238 0 2.390

dcrtopn 0.849 0.986 27 11 16 36 15 12.745
inductive 0.624 0.978 73 39 34 92 0 0.596RTFMP

ilp 0.631 0.987 31 13 18 82 0 11.536
dcrtopn 0.622 0.634 92 50 42 434 123 23.156

inductive 0.730 0.972 91 51 40 104 0 1.263BPIC17_f
ilp 0.201 0.993 40 20 20 134 0 37.345

dcrtopn 0.274 0.448 184 124 60 1414 484 2209.933
inductive 0.210 0.937 178 105 73 220 0 64.776BPIC17

ilp 0.172 0.983 92 28 64 544 0 416.869
dcrtopn 1.000 0.991 22 8 14 39 14 5.591

inductive 0.877 0.983 17 11 6 22 0 0.224BPIC17-Offer
ilp 0.683 0.992 29 10 19 84 0 4.708

Table 4.1: Petri net conversion and imperative miners

the TAPAAL tool we must limit our acceptance criteria only for finite traces
both in the DCR graph Definition 4.3 and in the PNirp Definition 4.4.

Definition 4.3. (Adapted from definition 5 of [44]) Let G = (E,M0, R,@, L, l)

be a DCR graph. A finite or sequence of transitions M0
e0→G M1

e1→G . . .
en→G

Mn in [[G]] with Mn = (Exn, Ren, Inn), is accepting if Ren ∩ Inn = ∅.

Definition 4.4. (Adapted from definition 11 of [44])
Let N = (P,M, T,A, Inhib, Read,Act, λ, Pe) be a PNirp with safe mark-

ing M . A finite sequence of transitions M0
t0→N M1

t1→N . . .
tn→N Mf in [[N]]

is accepting if Mf ∩ Pe = ∅.

To verify that there exists an accepting run in the DCR graph is equivalent
to checking that there exists an accepting path in the PNirp. In LTL we
express this as eventually all pending included places have no tokens:

♦
∧
e∈E

pending_e = 0

Figure 4.4 shows two examples of DCR graph, PNirp pairs satisfying
(a),(b) and failing (c),(d) the LTL query 4.1.

42

Chapter 4 | Verifiable declarative process models

(a) Satisfying DCR (b) Satisfying PNirp

(c) Failing DCR (d) Failing PNirp

Figure 4.4: Examples of Passing (a,b) and Failing (c,d) models

♦(pending_A = 0 ∧ pending_B = 0 ∧ pending_C = 0) (4.1)

43

Chapter 4 | Verifiable declarative process models

4.2 Static and Dynamic Techniques for Iter-
ative Test-Driven Modelling of Dynamic
Condition Response Graphs

Remark 4.3. This section is a summarises an invited journal paper, cur-
rently under review, for Data and Knowledge Engineering journal special
issue on Augmented Business Process Management.

4.2.1 Motivation and Summary
Declarative process notations map behaviour explicitly as a set of rules
whereas imperative ones implicitly capture the behaviour through possible
execution sequences. Imperative models tend to become spaghetti models
when capturing flexible behaviour because every possible execution sequence
needs to be modelled. Declarative models capture flexible behaviour more
concisely, but lack the clearer more intuitive sequential view of behaviour.
One approach to capture the benefits of both is to use the theory of test-
driven modelling (TDM) and open tests.

In test-driven modelling one can express behaviour as sequences of activ-
ities. These sequences can represent desired behaviour as positive open tests
and undesired behaviour as negative open tests. Finally the sequences must
be executed under a context, i.e. a set of activities under which the sequence
is tested. For positive open tests we require that there exists a model trace
which projected onto the context is exactly the positive open test sequence.
For negative open tests we require that for all model traces projected onto
the context there is no trace that exactly matches the negative open test
sequence.

Through iterative test-driven modelling one can define positive and neg-
ative open tests for the initial version of a process model and rerun the tests
every time a new version of the model is created, similar to how regression
testing in software engineering works. Running open tests requires us to
explore the model state space and this can be time consuming (especially
for negative open tests) if we want timely feedback in our modelling envi-
ronment or we have large models and many tests. To improve the run time
requirements of running open tests on DCR graphs we provided a set of static
techniques which under certain types of model extensions are guaranteed to

44

Chapter 4 | Verifiable declarative process models

preserve open tests and a translation of open tests to an alignment problem
when static techniques are not satisfied.

For static checks we defined when a DCR graph extension preserves posi-
tive tests as a transparent process extension. We defined when a DCR graph
extension preserves negative tests as an exclusion-safe extension. For the
alignment problem on test cases we defined a specific cost function which
assigns cost 0 when we do a synchronous move within the context or when
we do a model move outside the context, and cost infinity otherwise. Under
this cost function a DCR graph extension passes a positive open test if and
only if any optimal alignment has cost 0, and passes a negative open test if
and only if any optimal alignment has cost infinity.

When running alignments for open tests we noticed that we can further
define a static check of non-reachability for when an activity is inaccessible
under a context. This extra static check allows us to prune the model search-
space during alignments by assigning cost infinity to any partial alignment
for which the next event is inaccessible under the context. We have shown
that this holds over any model-step outside the context. Finally we bench-
marked our alignment technique for open tests with and without the static
check pruning. We noticed that the static check of non-reachability slightly
increased the runtime of positive open tests and significantly reduced the
runtime of negative open tests. As expected the pruning is most effective
when the entire search space must be exhausted, as it is for negative open
tests. Overall on a test suite of 7 positive and 11 negative open tests we
achieved a significant speedup.

45

Chapter 5

Handling time

5.1 DD-DisCoveR: Mining timed DCR graphs
using the pm4py DisCoveR DCR exten-
sion

Remark 5.1. This section sumarizes a preprint paper for the International
Conference on Process Mining 2024 demo track.

5.1.1 Motivation and Summary
This section summarizes the work done on the Delay Deadline DisCoveR
(DD-DisCoveR) algorithm and is presented as an independent extension of
the DisCoveR miner. The algorithm takes as input an event log with an
associated Condition Response Graph and returns the minimum delay for
conditions and maximum deadline for responses formatted in the ISO8601
date time standard. Condition Response Graphs are core DCR graphs with-
out the dynamic inclusion and exclusion relations.

Timing constraints provide us with more information about the underly-
ing real-world process and leads to more expressive process models.

We mined timing differences between activity pairs A1 →• A2 connected
by a condition relation by finding the minimum time difference between A1

and A2 with no occurrence of either A1 or A2 in between. The mined mini-
mum delay k therefore respects the execution semantics of a timed condition
relation, namely that after an execution of A1 an execution of A2 may be

46

Chapter 5 | Handling time

observed after at least k time steps. Mining timing information according
to the condition execution semantics allows us to safely ignore consecutive
instances of A2 or instances of A1 without a subsequent A2 in the same trace.

We mined timing differences between activity pairs A1 •→ A2 connected
by a response relation by finding the maximum deadline d from both ev-
ery consecutive pair of A1 and A2 (similar to the condition), and also from
every consecutive pair of A1 and A1. The explanation for considering the
additional pair (A1, A1) comes from the timed response execution semantics.
The semantics state that after we have observed A1 in our trace we must
eventually observe A2, after at most d time steps. Otherwise, if we have
observed another A1 after less than d time steps, then we have postponed
the execution of A2 by the exact time difference between the two consecutive
repetitions of A1.

With timing information we can extend any DCR graph definition to a
timed DCR graph. We show how we applied this on the graph mined from
the RTFMP event log in Figure 5.1. Note that for self-excluding activities
with a delay condition we are required to wrap our activity into a subprocess
to enforce our delay after the activity has been self-excluded.

47

Chapter 5 | Handling time

Figure 5.1: Timed DCR graph for the Road Traffic Fine dataset

48

Chapter 5 | Handling time

5.2 Transforming Timed Dynamic Condition
Response Graphs to safe Timed-arc Petri
Nets

Remark 5.2. This section summarizes a draft paper. It is a extends and
contains material from the previously accepted PETRI NETS 2023 conference
paper [44]: Cosma VP, Hildebrandt TT, Slaats T. Transforming Dynamic
Condition Response Graphs to Safe Petri Nets. International Conference on
Applications and Theory of Petri Nets and Concurrency 2023 May 28 (pp.
417-439). Cham: Springer Nature Switzerland.

5.2.1 Motivation and Summary
This section summarizes the transformation of Timed DCR graphs to Timed
Arc Petri Nets with read arcs and pending places (TAPNrp). It is an ex-
tension with time for the work summarized in Section 4.1. We therefore
followed the same construction and the same proof structure as for the un-
timed version. We still had the base case stage where we mapped all the
DCR activities and the relation stage where we mapped the DCR relations
by creating copies of existing transitions and new arcs for each subset. What
we highlighted were the changes induced by the addition of time. We also
remarked that we now have a link from event logs via process discovery to
timed automata, through previous work on mapping Timed-arc Petri Nets
to Networks of Timed Automata [121].

Time in DCR graphs is represented by delays for the constraining con-
dition relations and deadlines for the response effect relations. Between two
activities e k→• e′, a delay k is represented in the TAPNrp as the semi-closed
interval [k,∞) and is used as a guard for all the transport arcs mapped be-
tween the executed place of e and the set of transitions labelled by l(e′).
Between two activities e d•→ e′, a deadline d is represented in the TAPNrp as
the closed interval [0, d] and is used as an invariant for the pending included
place of e′ when it is made pending by e.

Each timed response to e′ can have a different deadline as well as possibly
an initially pending deadline from the initial DCR marking. To keep track
of the source of the deadline in our TAPNrp we were required to have a
pending included and pending excluded pair of places for each individual

49

Chapter 5 | Handling time

deadline. We also had to create extra transitions for the pending included
places. Therefore the number of transitions required for each activity in the
base case is now 2+2×n where n is the number of individual deadlines. The
extra requirement to maintain a bisimilar mapping is that at most one of the
set of all pending places (included and excluded) can hold a token at any
instance in the TAPNrp execution. We handle and prove this requirement
holds by construction.

Any activity e that makes e′ pending through a response (e d•→ e′) now
also needs to keep track of any other activities making the same e′ pending.
We did this by creating extra transitions labelled by l(e) and arcs for each of
the pending places of e′ in the relation stage of the mapping. Any activity
e′′ that either includes or excludes e′ (e′′ →+ e′ or e′′ →% e′) also needs
extra transitions labelled by l(e′′) and pairs of transport arcs to move tokens
between pairs of pending included and pending excluded places of e′. We
still use arc pattern tables to add arcs between copied subsets of transitions
and places, but with an extra detail. The pairwise tracking of pending place
means that we need to distinguish between adding the same arcs to all copies,
and adding pairwise the same arcs. By construction the mapping is safe.

Finally we remark that pre optimizing the mapping through static analy-
sis of the timed DCR graph is the same as for the untimed mapping and that
any TAPNrp has at most the same reachability graph as the untimed PNirp
(if we account for the expansion in pending places). Therefore we can apply
the same pre and post optimization techniques as for the untimed case.

5.2.2 Discussion
To highlight that we can now get from an event log to a network of timed au-
tomata we have run the process discovery and mapping pipeline and reported
the resulting models for both BPIC13 (Fig. 5.2b) and RTFMP (Fig. 5.3b)
event logs.

50

Chapter 5 | Handling time

(a) Timed DCR model (b) Timed arc Petri net

(c) Timed automata - Token (d) Timed automata - Control

Figure 5.2: BPIC13 DCR to TAPN to NTA

51

Chapter 5 | Handling time

(a) Timed DCR model

(b) Timed arc Petri net

(c) Timed automata - Token (d) Timed automata - Control
Figure 5.3: RTFMP DCR to TAPN to NTA

52

Chapter 6

Conclusion

We showed how explainability can be improved throughout the process min-
ing stages by increasing the trustworthiness level of event logs and by increas-
ing the understandability and verifiability of our declarative process models.
Finally we showed how time enhances the expresiveness of DCR graphs while
still maintaining the same level of verifiability.

First we showed the BERMUDA method extracts trustworthy event logs
through increased transparency, accountability and traceability in the event
log creation stages. It maintains a high accuracy to the real-world pro-
cess by validating the control-flow with help from domain experts. Through
BERMUDA we can react in time and adjust our event log to prevent concept
drift in our discovered process models. We achieved this by keeping track of
changes in regulation and in the information system using the BERMUDA
triple.

Secondly we showed how understandability is enhanced in discovered
declarative process models. We use activity groups both as a semantic choice
pattern and a greedy grouping of activities to reduce the number of relations
needed to visually represent the declarative process constraints. We showed
how the grouped models overall score better on a set of declarative com-
plexity metrics, that were empirically validated, as a proxy for end user
understandability.

Thirdly we showed how verifiability is improved, on the one hand, by
increased tool support through a mapping of declarative DCR graphs to
the well established formalism of Petri nets; and on the other, through the
development of verification techniques native to DCR graphs based on test
driven modelling and alignments.

53

Chapter 6 | Conclusion

Finally we increased the expressiveness of our declarative models by
adding time thus being able to capture temporal constraints related to our
real-world process. We showed that this increased expressiveness preserves
verifiability by mapping timed DCR graphs to a timed version of Petri nets.

6.1 Future work
For the immediate prospects we envision a follow-up empirical evaluation
of our BERMUDA method to report qualitative results. We see potential
avenues of automation for the BERMUDA tool which will subsequently al-
low us to investigate the (mis)match between the real-world process, the UI
dictated process behaviour and the recorded database behaviour.

Next we acknowledge that our activity groups might introduce cognitive
load that is unaccounted for in the initial study [5] and therefore we envision a
repeat of the study using also activity groups and subprocesses to investigate
if extensions of the complexity metrics are needed. The complexity metrics
should then take into account hierarchical process models in their calculation.
We envision a future theoretical contribution to the DCR graphs notation
that relaxes the definition of activity groups thus allowing activities to be
part of multiple non disjoint groups. Thus reaching the theoretical lower
bound in the number of relations for our greedy group algorithm, while still
maintaining perfect fitness.

The mapping of DCR graphs to Petri nets is currently limited by the
space requirements of our algorithm. We wish to investigate divide and
conquer algorithms for the construction of our net as well as running the
reachability analysis in between the relation construction steps, not just as
a post optimization task.

Finally we aim to pave the way towards a native model checking tool
for both timed and untimed DCR graphs. By formalizing requirements as
open tests and modelling our system as a DCR graph we can use static
graph analysis and alignments to verify system properties. But before we
can pursue this avenue further we must also establish formally which subsets
of temporal logic open tests can support.

For the long term impact of our work, we believe that process mining has
the potential to increase the explainability of sub-symbolic machine learning
and deep learning-based AI techniques. Process mining can be at the fore-
front of creating AI-based decision support systems, explainable by design.

54

Bibliography

[1] In: Lohmann, N., Song, M., Wohed, P. (eds.) Business Process Manage-
ment Workshops : BPM 2013 International Workshops, China, 2013,
Revised Papers. pp. 15–27. Lecture Notes in Business Information Pro-
cessing, Springer, Germany (2014). doi: 10.1007/978-3-319-06257-0-2

[2] van der Aalst, W.: Mining Additional Perspectives, pp. 275–300.
Springer Berlin Heidelberg, Berlin, Heidelberg (2016). doi: 10.1007/
978-3-662-49851-49

[3] van der Aalst, W.M.: Foundations of process discovery. In: Process
Mining Handbook, pp. 37–75. Springer (2022)

[4] van der Aalst, W.M., Carmona, J.: Process mining handbook. Springer
Nature (2022)

[5] Abbad-Andaloussi, A., Burattin, A., Slaats, T., Kindler, E., Weber, B.:
Complexity in declarative process models: Metrics and multi-modal
assessment of cognitive load. Expert Systems with Applications 233,
120924 (2023)

[6] Agerwala, T.: A complete model for representing the coordination of
asynchronous processes (1974), hopkins Computer Research Report 32

[7] Ancker, J.S., Shih, S., Singh, M.P., Snyder, A., Edwards, A., Kaushal,
R., Investigators, H., et al.: Root causes underlying challenges to
secondary use of data. In: AMIA Annual Symposium Proceedings.
vol. 2011, p. 57. American Medical Informatics Association (2011)

[8] Andaloussi, A.A., Burattin, A., Slaats, T., Kindler, E., Weber, B.: On
the declarative paradigm in hybrid business process representations: A
conceptual framework and a systematic literature study. Inf. Syst. 91,

55

Chapter 6 | Bibliography

101505 (2020). doi: 10.1016/J.IS.2020.101505, https://doi.org/10.
1016/j.is.2020.101505

[9] Andaloussi, A.A., Burattin, A., Slaats, T., Kindler, E., Weber, B.:
Complexity in declarative process models: Metrics and multi-modal
assessment of cognitive load. Expert Syst. Appl. 233, 120924 (2023).
doi: 10.1016/J.ESWA.2023.120924, https://doi.org/10.1016/j.
eswa.2023.120924

[10] Andaloussi, A.A., Burattin, A., Slaats, T., Petersen, A.C.M., Hilde-
brandt, T.T., Weber, B.: Exploring the understandability of a hybrid
process design artifact based on DCR graphs. In: Reinhartz-Berger,
I., Zdravkovic, J., Gulden, J., Schmidt, R. (eds.) Enterprise, Business-
Process and Information Systems Modeling - 20th International Con-
ference, BPMDS 2019, 24th International Conference, EMMSAD 2019,
Held at CAiSE 2019, Rome, Italy, June 3-4, 2019, Proceedings. Lec-
ture Notes in Business Information Processing, vol. 352, pp. 69–84.
Springer (2019). doi: 10.1007/978-3-030-20618-5_5, https://doi.
org/10.1007/978-3-030-20618-5_5

[11] Andaloussi, A.A., Davis, C.J., Burattin, A., López, H.A., Slaats, T.,
Weber, B.: Understanding quality in declarative process modeling
through the mental models of experts. In: Fahland, D., Ghidini, C.,
Becker, J., Dumas, M. (eds.) Business Process Management - 18th In-
ternational Conference, BPM 2020, Seville, Spain, September 13-18,
2020, Proceedings. Lecture Notes in Computer Science, vol. 12168,
pp. 417–434. Springer (2020). doi: 10.1007/978-3-030-58666-9_24,
https://doi.org/10.1007/978-3-030-58666-9_24

[12] Andaloussi, A.A., Zerbato, F., Burattin, A., Slaats, T., Hildebrandt,
T.T., Weber, B.: Exploring how users engage with hybrid process
artifacts based on declarative process models: a behavioral analysis
based on eye-tracking and think-aloud. Softw. Syst. Model. 20(5),
1437–1464 (2021). doi: 10.1007/S10270-020-00811-8, https://doi.
org/10.1007/s10270-020-00811-8

[13] Andrews, R., Emamjome, F., ter Hofstede, A.H.M., Reijers, H.A.: An
expert lens on data quality in process mining. In: ICPM. pp. 49–56.
IEEE (2020)

56

https://doi.org/10.1016/j.is.2020.101505
https://doi.org/10.1016/j.is.2020.101505
https://doi.org/10.1016/j.eswa.2023.120924
https://doi.org/10.1016/j.eswa.2023.120924
https://doi.org/10.1007/978-3-030-20618-5_5
https://doi.org/10.1007/978-3-030-20618-5_5
https://doi.org/10.1007/978-3-030-58666-9_24
https://doi.org/10.1007/s10270-020-00811-8
https://doi.org/10.1007/s10270-020-00811-8

Chapter 6 | Bibliography

[14] Augusto, A., Conforti, R., Dumas, M., La Rosa, M.: Split miner: Dis-
covering accurate and simple business process models from event logs.
In: 2017 IEEE International Conference on Data Mining (ICDM). pp.
1–10. IEEE (2017)

[15] Augusto, A., Mendling, J., Vidgof, M., Wurm, B.: The connection
between process complexity of event sequences and models discovered
by process mining. Information Sciences 598, 196–215 (2022)

[16] Back, C.: Hybrid Process Mining: Inference Evaluation Across Imper-
ative Declarative Approaches. Ph.D. thesis (2021)

[17] Back, C.O., Slaats, T., Hildebrandt, T.T., Marquard, M.: Discover:
accurate and efficient discovery of declarative process models. In: In-
ternational Journal on Software Tools for Technology Transfer (2021).
doi: 10.1007/s10009-021-00616-0

[18] Baier, C., Katoen, J.P.: Principles of model checking. MIT press (2008)

[19] Baldan, P., Busi, N., Corradini, A., Michele Pinna, G.: Functional
concurrent semantics for petri nets with read and inhibitor arcs. In:
CONCUR 2000—Concurrency Theory: 11th International Conference
University Park, PA, USA, August 22–25, 2000 Proceedings 11. pp.
442–457. Springer (2000)

[20] Bergenthum, R.: Prime miner-process discovery using prime event
structures. In: 2019 International Conference on Process Mining
(ICPM). pp. 41–48. IEEE

[21] Berti, A., Van Zelst, S.J., van der Aalst, W.: Process mining for python
(pm4py): bridging the gap between process-and data science. arXiv
preprint arXiv:1905.06169 (2019)

[22] Bose, J.C.J.C., Mans, R.S., van der Aalst, W.M.P.: Wanna improve
process mining results? In: CIDM. pp. 127–134. IEEE (2013)

[23] Bose, R.P.J.C., van der Aalst, W.M.P., Zliobaite, I., Pechenizkiy, M.:
Handling concept drift in process mining. In: CAiSE. Lecture Notes in
Computer Science, vol. 6741, pp. 391–405. Springer (2011)

57

Chapter 6 | Bibliography

[24] Brons, D., Scheepens, R., Fahland, D.: Striking a new balance in ac-
curacy and simplicity with the probabilistic inductive miner. In: 2021
3rd International Conference on Process Mining (ICPM). pp. 32–39.
IEEE (2021)

[25] Buijs, J.C., Van Dongen, B.F., van Der Aalst, W.M.: On the role of fit-
ness, precision, generalization and simplicity in process discovery. In:
On the Move to Meaningful Internet Systems: OTM 2012: Confed-
erated International Conferences: CoopIS, DOA-SVI, and ODBASE
2012, Rome, Italy, September 10-14, 2012. Proceedings, Part I. pp.
305–322. Springer (2012)

[26] Bushnell, D.M.: Research Conducted at the Institute for Computer
Applications in Science and Engineering for the Period October 1, 1999
through March 31, 2000. Technical Report NASA/CR-2000-210105,
NAS 1.26:210105, NASA (2000)

[27] Byg, J., Jørgensen, K.Y., Srba, J.: An efficient translation of timed-arc
petri nets to networks of timed automata. In: Breitman, K., Cavalcanti,
A. (eds.) Formal Methods and Software Engineering. pp. 698–716.
Springer Berlin Heidelberg, Berlin, Heidelberg (2009)

[28] Byg, J., Jørgensen, K.Y., Srba, J.: Tapaal: Editor, simulator and
verifier of timed-arc petri nets. In: Automated Technology for Verifica-
tion and Analysis: 7th International Symposium, ATVA 2009, Macao,
China, October 14-16, 2009. Proceedings 7. pp. 84–89. Springer (2009)

[29] Calvanese, D., Giacomo, G.D., Lembo, D., Lenzerini, M., Rosati, R.:
Ontology-Based Data Access and Integration, pp. 2590–2596. Springer
New York, New York, NY (2018)

[30] Carmona, J., van Dongen, B., Solti, A., Weidlich, M.: Conformance
checking. Switzerland: Springer.[Google Scholar] 56, 12 (2018)

[31] Carmona, J., van Dongen, B., Weidlich, M.: Conformance checking:
foundations, milestones and challenges. In: Process Mining Handbook,
pp. 155–190. Springer (2022)

[32] Chapela-Campa, D., Dumas, M.: Modeling extraneous activity delays
in business process simulation. In: 2022 4th International Conference
on Process Mining (ICPM). pp. 72–79. IEEE (2022)

58

Chapter 6 | Bibliography

[33] Cheikhrouhou, S., Kallel, S., Guermouche, N., Jmaiel, M.: Toward
a time-centric modeling of business processes in bpmn 2.0. In: Pro-
ceedings of International Conference on Information Integration and
Web-Based Applications &; Services. p. 154–163. IIWAS ’13, Asso-
ciation for Computing Machinery, New York, NY, USA (2013). doi:
10.1145/2539150.2539182

[34] Christfort, A.K.F., Slaats, T.: Efficient optimal alignment between
dynamic condition response graphs and traces. In: International Con-
ference on Business Process Management. pp. 3–19. Springer (2023)

[35] Christfort, A.K.F., Slaats, T.: Efficient optimal alignment between dy-
namic condition response graphs and traces. In: Di Francescomarino,
C., Burattin, A., Janiesch, C., Sadiq, S. (eds.) Business Process Man-
agement. pp. 3–19. Springer Nature Switzerland, Cham (2023)

[36] Ciccio, C.D., Mecella, M.: On the discovery of declarative control flows
for artful processes. ACM Transactions on Management Information
Systems (TMIS) 5(4), 1–37 (2015)

[37] Commission, E.: The ai act, https://digital-strategy.ec.
europa.eu/en/policies/regulatory-framework-ai

[38] Conforti, R., Dumas, M., García-Bañuelos, L., La Rosa, M.: Be-
yond tasks and gateways: Discovering bpmn models with subprocesses,
boundary events and activity markers. In: Business Process Manage-
ment: 12th International Conference, BPM 2014, Haifa, Israel, Septem-
ber 7-11, 2014. Proceedings 12. pp. 101–117. Springer (2014)

[39] Conforti, R., Dumas, M., García-Bañuelos, L., La Rosa, M.: Bpmn
miner: Automated discovery of bpmn process models with hierarchical
structure. Information Systems 56, 284–303 (2016)

[40] Cornanguer, L., Largouët, C., Rozé, L., Termier, A.: TAG: Learning
Timed Automata from Logs. In: AAAI 2022 - 36th AAAI Conference
on Artificial Intelligence. pp. 1–9. Virtual, Canada (Feb 2022), https:
//hal.inria.fr/hal-03564455

[41] Cosma, V.P., Hildebrandt, T.T., Gyldenkærne, C.H., Slaats, T.:
Bermuda: Participatory mapping of domain activities to event data

59

https://digital-strategy.ec.europa.eu/en/policies/regulatory-framework-ai
https://digital-strategy.ec.europa.eu/en/policies/regulatory-framework-ai
https://hal.inria.fr/hal-03564455
https://hal.inria.fr/hal-03564455

Chapter 6 | Bibliography

via system interfaces. In: International Conference on Process Mining.
pp. 127–139. Springer (2022)

[42] Cosma, V.P.: Dcr extension to pm4py, https://github.com/
paul-cvp/pm4py-dcr

[43] Cosma, V.P., Hildebrandt, T.T., Slaats, T.: BERMUDA: towards
maintainable traceability of events for trustworthy analysis of non-
process-aware information systems. EMISA Forum 41(1), 33–34 (2021)

[44] Cosma, V.P., Hildebrandt, T.T., Slaats, T.: Transforming dynamic
condition response graphs to safe petri nets. In: International Confer-
ence on Applications and Theory of Petri Nets and Concurrency. pp.
417–439. Springer (2023)

[45] David, A., Larsen, K.G., Legay, A., Mikučionis, M., Poulsen, D.B.:
Uppaal smc tutorial. International journal on software tools for tech-
nology transfer 17, 397–415 (2015)

[46] De Cnudde, S., Claes, J., Poels, G.: Improving the quality of the
heuristics miner in prom 6.2. Expert Systems with Applications 41(17),
7678–7690 (2014)

[47] De Giacomo, G., Vardi, M.Y., et al.: Linear temporal logic and linear
dynamic logic on finite traces. In: Ijcai. vol. 13, pp. 854–860 (2013)

[48] De Smedt, J., Vanden Broucke, S., De Weerdt, J., Vanthienen, J.: A
full r/i-net construct lexicon for declare constraints. Available at SSRN
2572869 (2015)

[49] Debois, S., Hildebrandt, T.T., Laursen, P.H., Ulrik, K.R.: Declarative
process mining for dcr graphs. In: Proceedings of SAC. pp. 759–764
(2017)

[50] van Der Aalst, W.M., Pesic, M., Schonenberg, H.: Declarative work-
flows: Balancing between flexibility and support. Computer Science-
Research and Development 23, 99–113 (2009)

[51] van derWerf, J.M.E., van Dongen, B.F., Hurkens, C.A., Serebrenik,
A.: Process discovery using integer linear programming. Fundamenta
Informaticae 94(3-4), 387–412 (2009)

60

https://github.com/paul-cvp/pm4py-dcr
https://github.com/paul-cvp/pm4py-dcr

Chapter 6 | Bibliography

[52] Dijkman, R.M., Dumas, M., Ouyang, C.: Formal semantics and anal-
ysis of bpmn process models using petri nets. Queensland University
of Technology, Tech. Rep pp. 1–30 (2007)

[53] van Dongen, B.F., Weber, B., Ferreira, D.R., De Weerdt, J.: Re-
port: business process intelligence challenge 2013. In: Business Process
Management Workshops: BPM 2013 International Workshops, Beijing,
China, August 26, 2013, Revised Papers 11. pp. 79–87. Springer (2014)

[54] Dumas, M., Rosa, L.M., Mendling, J., Reijers, A.H.: Fundamentals of
business process management. Springer (2018)

[55] Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Patterns in property spec-
ifications for finite-state verification. In: Proceedings of the 21st inter-
national conference on Software engineering. pp. 411–420 (1999)

[56] Emamjome, F., Andrews, R., ter Hofstede, A.H.M., Reijers, H.A.: Alo-
homora: Unlocking data quality causes through event log context. In:
ECIS (2020)

[57] Eshuis, R., Debois, S., Slaats, T., Hildebrandt, T.: Deriving consistent
gsm schemas from dcr graphs. In: Sheng, Q.Z., Stroulia, E., Tata,
S., Bhiri, S. (eds.) Service-Oriented Computing. pp. 467–482. Springer
International Publishing, Cham (2016)

[58] Finkel, O.: On the high complexity of petri nets ω-languages. In: In-
ternational Conference on Applications and Theory of Petri Nets and
Concurrency. pp. 69–88. Springer (2020)

[59] Fischer, D.A., Goel, K., Andrews, R., van Dun, C.G.J., Wynn, M.T.,
Röglinger, M.: Enhancing event log quality: Detecting and quantifying
timestamp imperfections. In: Fahland, D., Ghidini, C., Becker, J., Du-
mas, M. (eds.) Business Process Management. pp. 309–326. Springer
International Publishing, Cham (2020)

[60] Gagne, D., Trudel, A.: Time-bpmn. In: 2009 IEEE Conference on
Commerce and Enterprise Computing. pp. 361–367 (2009). doi: 10.
1109/CEC.2009.71

61

Chapter 6 | Bibliography

[61] Goodman, B., Flaxman, S.: European union regulations on algorith-
mic decision-making and a “right to explanation”. AI magazine 38(3),
50–57 (2017)

[62] Gunning, D., Aha, D.: Darpa’s explainable artificial intelligence (xai)
program. AI magazine 40(2), 44–58 (2019)

[63] Günther, C.W., Van Der Aalst, W.M.: Fuzzy mining–adaptive pro-
cess simplification based on multi-perspective metrics. In: International
conference on business process management. pp. 328–343. Springer
(2007)

[64] H. Gyldenkaerne, C., From, G., Mønsted, T., Simonsen, J.: Pd and
the challenge of ai in health-care. In: Proceedings of the 16th Partici-
patory Design Conference 2020-Participation (s) Otherwise-Volume 2.
pp. 26–29 (2020)

[65] Haisjackl, C., Barba, I., Zugal, S., Soffer, P., Hadar, I., Reichert, M.,
Pinggera, J., Weber, B.: Understanding declare models: strategies,
pitfalls, empirical results. Software & Systems Modeling 15(2), 325–352
(2016)

[66] Hildebrandt, T., Mukkamala, R.R., Slaats, T.: Nested dynamic condi-
tion response graphs. In: International conference on fundamentals of
software engineering. pp. 343–350. Springer (2011)

[67] Hildebrandt, T., Mukkamala, R.R., Slaats, T., Zanitti, F.: Contracts
for cross-organizational workflows as timed dynamic condition response
graphs. The Journal of Logic and Algebraic Programming 82(5-7),
164–185 (2013)

[68] Hildebrandt, T., Mukkamala, R.R., Slaats, T., Zanitti, F.: Con-
tracts for cross-organizational workflows as timed dynamic condi-
tion response graphs. The Journal of Logic and Algebraic Pro-
gramming 82(5), 164–185 (2013). doi: https://doi.org/10.1016/j.jlap.
2013.05.005, https://www.sciencedirect.com/science/article/
pii/S1567832613000283, formal Languages and Analysis of Contract-
Oriented Software (FLACOS’11)

62

https://www.sciencedirect.com/science/article/pii/S1567832613000283
https://www.sciencedirect.com/science/article/pii/S1567832613000283

Chapter 6 | Bibliography

[69] Hildebrandt, T.T., Mukkamala, R.R.: Declarative event-based work-
flow as distributed dynamic condition response graphs. In: Places
(2011), https://api.semanticscholar.org/CorpusID:14353309

[70] Hu, Z., Shatz, S.M.: Mapping uml diagrams to a petri net notation for
system simulation. In: SEKE. pp. 213–219. Citeseer (2004)

[71] Hull, R., Damaggio, E., Fournier, F., Gupta, M., Heath, III, F.T., Hob-
son, S., Linehan, M., Maradugu, S., Nigam, A., Sukaviriya, P., Vac-
ulin, R.: Introducing the guard-stage-milestone approach for specifying
business entity lifecycles. In: Proc. of WS-FM’10. pp. 1–24. Springer-
Verlag, Berlin, Heidelberg (2011)

[72] Jacobsen, L., Jacobsen, M., Møller, M.H., Srba, J.: Verification of
timed-arc petri nets. In: SOFSEM 2011: Theory and Practice of Com-
puter Science: 37th Conference on Current Trends in Theory and Prac-
tice of Computer Science, Novỳ Smokovec, Slovakia, January 22-28,
2011. Proceedings 37. pp. 46–72. Springer (2011)

[73] Jagadeesh Chandra Bose, R., Van der Aalst, W.M.: Abstractions in
process mining: A taxonomy of patterns. In: Business Process Man-
agement: 7th International Conference, BPM 2009, Ulm, Germany,
2009. Proceedings 7. pp. 159–175

[74] Jagadeesh Chandra Bose, R., van der Aalst, W.M.: Process diagnostics
using trace alignment: Opportunities, issues, and challenges. Informa-
tion Systems 37(2), 117–141 (2012), management and Engineering of
Process-Aware Information Systems

[75] Jans, M., Soffer, P.: From relational database to event log: Deci-
sions with quality impact. In: Business Process Management Work-
shops. Lecture Notes in Business Information Processing, vol. 308, pp.
588–599. Springer (2017)

[76] Leemans, M., Van Der Aalst, W.M., Van Den Brand, M.G.: Recursion
aware modeling and discovery for hierarchical software event log anal-
ysis. In: 2018 IEEE 25th international conference on software analysis,
evolution and reengineering (SANER). pp. 185–196. IEEE (2018)

63

https://api.semanticscholar.org/CorpusID:14353309

Chapter 6 | Bibliography

[77] Leemans, S.J., Fahland, D., Van Der Aalst, W.M.: Discovering block-
structured process models from event logs containing infrequent be-
haviour. In: Business Process Management Workshops: BPM 2013
International Workshops, Beijing, China, August 26, 2013, Revised
Papers 11. pp. 66–78. Springer (2014)

[78] Leemans, S.J., Goel, K., van Zelst, S.J.: Using multi-level informa-
tion in hierarchical process mining: Balancing behavioural quality and
model complexity. In: 2020 2nd International Conference on Process
Mining (ICPM). pp. 137–144

[79] Leopold, H., van der Aa, H., Pittke, F., Raffel, M., Mendling, J.,
Reijers, H.A.: Searching textual and model-based process descriptions
based on a unified data format. Softw. Syst. Model. 18(2), 1179–1194
(2019)

[80] Li, G., de Murillas, E.G.L., de Carvalho, R.M., van der Aalst, W.M.P.:
Extracting object-centric event logs to support process mining on
databases. In: CAiSE Forum. Lecture Notes in Business Information
Processing, vol. 317, pp. 182–199. Springer (2018)

[81] Lopez, H.A.: Javascript dcr editor, https://dcr-js.github.io/
DCRjs/

[82] Lu, X., Gal, A., Reijers, H.A.: Discovering hierarchical processes using
flexible activity trees for event abstraction. In: 2020 2nd International
Conference on Process Mining (ICPM). pp. 145–152. IEEE (2020)

[83] Lundberg, S.M., Lee, S.I.: A unified approach to interpreting model
predictions. In: Proceedings of the 31st International Conference on
Neural Information Processing Systems. p. 4768–4777. NIPS’17, Cur-
ran Associates Inc., Red Hook, NY, USA (2017)

[84] Maggi, F.M., Bose, R.J.C., van der Aalst, W.M.: Efficient discovery
of understandable declarative process models from event logs. In: Ad-
vanced Information Systems Engineering: 24th International Confer-
ence, CAiSE 2012, Gdansk, Poland, June 25-29, 2012. Proceedings 24.
pp. 270–285. Springer (2012)

64

https://dcr-js.github.io/DCRjs/
https://dcr-js.github.io/DCRjs/

Chapter 6 | Bibliography

[85] Maggi, F.M., Montali, M., Westergaard, M., van der Aalst, W.M.P.:
Monitoring business constraints with linear temporal logic: An ap-
proach based on colored automata. In: Rinderle-Ma, S., Toumani, F.,
Wolf, K. (eds.) Business Process Management. pp. 132–147. Springer
Berlin Heidelberg, Berlin, Heidelberg (2011)

[86] Mannel, L.L., van der Aalst, W.M.: Finding uniwired petri nets us-
ing est-miner. In: Business Process Management Workshops: BPM
2019 International Workshops, Vienna, Austria, September 1–6, 2019,
Revised Selected Papers 17. pp. 224–237. Springer (2019)

[87] Mannhardt, F.: Responsible process mining. In: Process Mining Hand-
book, pp. 373–401. Springer International Publishing Cham (2022)

[88] Mannhardt, F., De Leoni, M., Reijers, H.A., Van Der Aalst, W.M.:
Balanced multi-perspective checking of process conformance. Comput-
ing 98, 407–437 (2016)

[89] Mannhardt, F., De Leoni, M., Reijers, H.A., Van Der Aalst, W.M.,
Toussaint, P.J.: From low-level events to activities-a pattern-based ap-
proach. In: Business Process Management: 14th International Con-
ference, BPM 2016, Rio de Janeiro, Brazil, 2016. Proceedings 14. pp.
125–141. Springer

[90] Martin, N., Wittig, N., Munoz-Gama, J.: Using process mining in
healthcare. In: Process mining handbook, pp. 416–444. Springer Inter-
national Publishing Cham (2022)

[91] Meystre, S.M., Lovis, C., Bürkle, T., Tognola, G., Budrionis, A.,
Lehmann, C.U.: Clinical data reuse or secondary use: current status
and potential future progress. Yearbook of medical informatics 26(01),
38–52 (2017)

[92] Montali, M.: Specification and verification of declarative open inter-
action models: a logic-based approach, vol. 56. Springer Science &
Business Media (2010)

[93] Montali, M., Pesic, M., Aalst, W.M.P.v.d., Chesani, F., Mello, P.,
Storari, S.: Declarative specification and verification of service chore-
ographiess. ACM Trans. Web 4(1) (jan 2010). doi: 10.1145/1658373.
1658376, https://doi.org/10.1145/1658373.1658376

65

https://doi.org/10.1145/1658373.1658376

Chapter 6 | Bibliography

[94] Montanari, U., Rossi, F.: Contextual nets. Acta Informatica 32,
545–596 (1995)

[95] Moya, M.M., Hush, D.R.: Network constraints and multi-objective
optimization for one-class classification. Neural networks 9(3), 463–474
(1996)

[96] Mukkamala, R.R.: A Formal Model For Declarative Workflows: Dy-
namic Condition Response Graphs. Ph.D. thesis, IT University of
Copenhagen (2012)

[97] Mukkamala, R.R., Hildebrandt, T.T.: From dynamic condition re-
sponse structures to büchi automata. In: 2010 4th IEEE Interna-
tional Symposium on Theoretical Aspects of Software Engineering. pp.
187–190 (2010). doi: 10.1109/TASE.2010.22

[98] multiple: Dcr graphs portal, https://dcrgraphs.net/

[99] Munoz-Gama, J., Martin, N., Fernandez-Llatas, C., Johnson, O.A.,
Sepúlveda, M., Helm, E., Galvez-Yanjari, V., Rojas, E., Martinez-
Millana, A., Aloini, D., et al.: Process mining for healthcare: Charac-
teristics and challenges. Journal of Biomedical Informatics 127, 103994
(2022)

[100] Nekrasaite, V., Parli, A.T., Back, C.O., Slaats, T.: Discovering respon-
sibilities with dynamic condition response graphs. In: Advanced Infor-
mation Systems Engineering: 31st International Conference, CAiSE
2019. pp. 595–610. Springer

[101] Normann, H., Debois, S., Slaats, T., Hildebrandt, T.T.: Zoom and
enhance: Action refinement via subprocesses in timed declarative pro-
cesses. In: Polyvyanyy, A., Wynn, M.T., Van Looy, A., Reichert, M.
(eds.) Business Process Management. pp. 161–178. Springer Interna-
tional Publishing, Cham (2021)

[102] Pesic, M.: Constraint-based workflow management systems: shifting
control to users (2008)

[103] Pesic, M., Schonenberg, H., Van der Aalst, W.M.: Declare: Full sup-
port for loosely-structured processes. In: 11th IEEE international en-
terprise distributed object computing conference (EDOC 2007). pp.
287–287. IEEE

66

https://dcrgraphs.net/

Chapter 6 | Bibliography

[104] Petri, C.A.: Kommunikation mit Automaten. Dissertation, Schriften
des IIM 2, Rheinisch-Westfälisches Institut für Instrumentelle Mathe-
matik an der Universität Bonn, Bonn (1962)

[105] Popova, V., Dumas, M.: From petri nets to guard-stage-milestone mod-
els. In: La Rosa, M., Soffer, P. (eds.) Business Process Management
Workshops. pp. 340–351. Springer Berlin Heidelberg, Berlin, Heidel-
berg (2013)

[106] Popova, V., Fahland, D., Dumas, M.: Artifact lifecycle discovery. Inter-
national Journal of Cooperative Information Systems 24(01), 1550001
(2015)

[107] Prescher, J., Di Ciccio, C., Mendling, J., et al.: From declarative pro-
cesses to imperative models. SIMPDA 1293, 162–173 (2014)

[108] Raedts, I., Petkovic, M., Usenko, Y.S., van der Werf, J.M.E., Groote,
J.F., Somers, L.J.: Transformation of bpmn models for behaviour anal-
ysis. MSVVEIS 2007, 126–137 (2007)

[109] Ribeiro, M.T., Singh, S., Guestrin, C.: ” why should i trust you?”
explaining the predictions of any classifier. In: Proceedings of the 22nd
ACM SIGKDD international conference on knowledge discovery and
data mining. pp. 1135–1144 (2016)

[110] Rojas, E., Munoz-Gama, J., Sepúlveda, M., Capurro, D.: Process min-
ing in healthcare: A literature review. Journal of biomedical informat-
ics 61, 224–236 (2016)

[111] Russell, S.J., Norvig, P.: Artificial intelligence: a modern approach.
Pearson (2016)

[112] Sànchez-Ferreres, J., van der Aa, H., Carmona, J., Padró, L.: Aligning
textual and model-based process descriptions. Data Knowl. Eng. 118,
25–40 (2018)

[113] Schmidt, K.: Lola a low level analyser. In: Application and Theory of
Petri Nets 2000: 21st International Conference, ICATPN 2000 Aarhus,
Denmark, June 26–30, 2000 Proceedings 21. pp. 465–474. Springer
(2000)

67

Chapter 6 | Bibliography

[114] Schön, D.A.: The reflective practitioner: How professionals think in
action. Routledge (2017)

[115] Schönig, S., Cabanillas, C., Jablonski, S., Mendling, J.: A framework
for efficiently mining the organisational perspective of business pro-
cesses. Decision Support Systems 89, 87–97 (2016)

[116] Sergey Smirnov, Hajo A. Reijers, M.W.T.N.: Business process model
abstraction: a definition, catalog, and survey. Distributed and Parallel
Databases 30, 63 – 99 (2012)

[117] Simonsen, J., Robertson, T.: Routledge international handbook of par-
ticipatory design, vol. 711. Routledge New York (2013)

[118] Slaats, T.: Flexible Process Notations for Cross-organizational Case
Management Systems. Ph.D. thesis, IT University of Copenhagen
(2015)

[119] Slaats, T., Debois, S., Hildebrandt, T.: Open to change: A theory for
iterative test-driven modelling. In: Weske, M., Montali, M., Weber,
I., vom Brocke, J. (eds.) Business Process Management. pp. 31–47.
Springer International Publishing, Cham (2018)

[120] Smylie, J., Firestone, M.: Back to the basics: Identifying and address-
ing underlying challenges in achieving high quality and relevant health
statistics for indigenous populations in canada. Statistical Journal of
the IAOS 31(1), 67–87 (2015)

[121] Srba, J.: Timed-arc Petri nets vs. networks of timed automata. In:
Proceedings of the 26th International Conference on Application and
Theory of Petri Nets (ICATPN’05). LNCS, vol. 3536, pp. 385–402.
Springer-Verlag (2005)

[122] Staines, T.S.: Intuitive mapping of uml 2 activity diagrams into funda-
mental modeling concept petri net diagrams and colored petri nets. In:
15th Annual IEEE International Conference and Workshop on the En-
gineering of Computer Based Systems (ecbs 2008). pp. 191–200 (2008).
doi: 10.1109/ECBS.2008.12

68

Chapter 6 | Bibliography

[123] Suriadi, S., Andrews, R., ter Hofstede, A.H.M., Wynn, M.T.: Event
log imperfection patterns for process mining: Towards a systematic
approach to cleaning event logs. Inf. Syst. 64, 132–150 (2017)

[124] Tax, N., Dalmas, B., Sidorova, N., van der Aalst, W.M., Norre, S.:
Interest-driven discovery of local process models. Information Systems
77 (2018)

[125] Tax, N., Sidorova, N., Haakma, R., van der Aalst, W.M.: Event ab-
straction for process mining using supervised learning techniques. In:
Proceedings of SAI Intelligent Systems Conference (IntelliSys) 2016:
Volume 1. pp. 251–269. Springer (2018)

[126] Thapa, D., Dangol, S., Wang, G.N.: Transformation from petri
nets model to programmable logic controller using one-to-one map-
ping technique. In: International Conference on Computational In-
telligence for Modelling, Control and Automation and International
Conference on Intelligent Agents, Web Technologies and Internet
Commerce (CIMCA-IAWTIC’06). vol. 2, pp. 228–233 (2005). doi:
10.1109/CIMCA.2005.1631473

[127] Turetken, O., Dikici, A., Vanderfeesten, I., Rompen, T., Demirors,
O.: The influence of using collapsed sub-processes and groups on the
understandability of business process models. Business & Information
Systems Engineering 62, 121–141 (2020)

[128] Valk, R.: Infinite behaviour of petri nets. Theoretical computer science
25(3), 311–341 (1983)

[129] Van Der Aalst, W., van der Aalst, W.: Data science in action. Springer
(2016)

[130] Van Eck, M.L., Lu, X., Leemans, S.J., Van Der Aalst, W.M.: Pm:
a process mining project methodology. In: International conference
on advanced information systems engineering. pp. 297–313. Springer
(2015)

[131] Verbeek, E.: Discovering an s-coverable wf-net using discover. In: 2022
4th International Conference on Process Mining (ICPM). pp. 64–71.
IEEE (2022)

69

Chapter 6 | Bibliography

[132] Weijters, A., Ribeiro, J.T.S.: Flexible heuristics miner (fhm). In:
2011 IEEE symposium on computational intelligence and data min-
ing (CIDM). pp. 310–317. IEEE (2011)

[133] Weijters, A.J., van Der Aalst, W.M., De Medeiros, A.A.: Process min-
ing with the heuristicsminer algorithm (2006)

[134] van der Werf, J.M.E.M., Mans, R., van der Aalst, W.M.P.: Mining
declarative models using time intervals. In: Moldt, D. (ed.) Joint Pro-
ceedings of the International Workshop on Petri Nets and Software En-
gineering (PNSE’13) and the International Workshop on Modeling and
Business Environments (ModBE’13), Milano, Italy, June 24 - 25, 2013.
CEUR Workshop Proceedings, vol. 989, pp. 313–331. CEUR-WS.org
(2013), http://ceur-ws.org/Vol-989/paper04b.pdf

[135] Weske, M., et al.: Concepts, languages, architectures. Business Process
Management (2007)

[136] Wolf, K.: How petri net theory serves petri net model checking: a
survey. Transactions on Petri Nets and Other Models of Concurrency
XIV pp. 36–63 (2019)

[137] Yang, N., Yu, H., Sun, H., Qian, Z.: Modeling uml sequence di-
agrams using extended petri nets. In: 2010 International Confer-
ence on Information Science and Applications. pp. 1–8 (2010). doi:
10.1109/ICISA.2010.5480384

[138] van Zelst, S., Mannhardt, F., de Leoni, M.: Event abstraction
in process mining: literature review and taxonomy, vol. 6, pp.
719–736. Springer New York, New York, NY (2021). doi: 10.1007/
s41066-020-00226-2

[139] Zhang, Z., Guo, C., Ren, S.: Mining timing constraints from event
logs for process model. In: 2020 IEEE 44th Annual Computers, Soft-
ware, and Applications Conference (COMPSAC). pp. 1011–1016. IEEE
(2020)

[140] Zugal, S., Pinggera, J., Weber, B.: The impact of testcases on the main-
tainability of declarative process models. Enterprise, Business-Process
and Information Systems Modeling pp. 163–177 (2011)

70

http://ceur-ws.org/Vol-989/paper04b.pdf

Chapter 6 | Bibliography

[141] Zugal, S., Pinggera, J., Weber, B.: Creating declarative process models
using test driven modeling suite. In: CAiSE Forum 2011. pp. 16–32
(2012). doi: 10.1007/978-3-642-29749-6_2

71

Part II

Papers

72

Chapter 7

Trustworthy event log
extraction

7.1 BERMUDA: Participatory Mapping of Do-
main Activities to Event Data via System
Interfaces

Remark 7.1. The work in this chapter has been published as [41]: Cosma
VP, Hildebrandt TT, Gyldenkærne CH, Slaats T. BERMUDA: Participatory
Mapping of Domain Activities to Event Data via System Interfaces. Interna-
tional Conference on Process Mining 2022 Oct 23 (pp. 127-139). Springer
Nature Switzerland.

Part of the material also appears in a two page extended abstract (not part
of this thesis) which has been published as [43]: Cosma VP, Hildebrandt TT,
Slaats T. BERMUDA: towards maintainable traceability of events for trust-
worthy analysis of non-process-aware information systems. Emisa Forum
Volume 41, Number 1, Pages 33–34, Year 2021.

73

BERMUDA: Participatory Mapping of Domain
Activities to Event Data via System Interfaces⋆

Vlad P. Cosma1,2[0000−0001−8022−6402], Thomas T.
Hildebrandt1[0000−0002−7435−5563], Christopher H.

Gyldenkærne3[0000−0003−2858−7328], and Tijs Slaats1[0000−0001−6244−6970]

1 Copenhagen University, Copenhagen 2200, Denmark
{vco,hilde,slaats}@di.ku.dk

2 KMD ApS, Ballerup 2750, Denmark
vco@kmd.dk

3 Roskilde University, Denmark
chrgyl@ruc.dk

Abstract. We present a method and prototype tool supporting partic-
ipatory mapping of domain activities to event data recorded in informa-
tion systems via the system interfaces. The aim is to facilitate respon-
sible secondary use of event data recorded in information systems, such
as process mining and the construction of predictive AI models. Another
identified possible benefit is the support for increasing the quality of data
by using the mapping to support educating new users in how to regis-
ter data, thereby increasing the consistency in how domain activities are
recorded. We illustrate the method on two cases, one from a job center
in a danish municipality and another from a danish hospital using the
healthcare platform from Epic.

Keywords: Data quality · Secondary use · Event extraction · Event
matching · Participatory Design

1 Introduction

The abundance of data recorded in information systems and easily accessible
technologies for data processing, such as predictive AI models and process mining
[1,2], have created huge expectations of how data science can improve the society.

However, there has also been an increasing voicing of concerns [3, 11,18,39],
pointing out that merely having access to data and technologies is not sufficient
to guarantee improvements. In the present paper we focus on data quality and
responsible event extraction in the context of secondary use of event data [34]
recorded in information systems. That is, data representing events in the domain
of use, such as the start and completion of work tasks which has as primary use
to support case workers and document the progress of a case, but is intended
to be used for secondary purposes, such as building predictive AI models or the
discovery of processes using process mining tools.

⋆ A 2-page extended abstract presenting early ideas of the paper was published in [13].

2 V. Cosma et al.

The challenges of event data quality are manifold [9], including handling event
granularity, incorrect or missing data and incorrect timestamps of events [17].
A more fundamental problem in the context of secondary use of event-data is
that of ensuring a consistent and correct matching of event data to business
activities [7].

The lack of research in the area of event log creation has been pointed out in
several papers [2,7,9,16,21,26,29,30,36,38]. This task is in general associated with
words and expressions like: costly, time consuming, tedious, unstructured, com-
plex, garbage-in garbage-out. Historically, research for data-driven innovation
and improving productivity has shown to pay little to no attention to how data
is created and by who. Data is often created within a system and its user interface
where a given context for capturing and using data has been established through
continuous sense-making between people that have local and often individual un-
derstanding of why data is generated and for what. Studies claim [22, 41]that
data science initiatives are often initiated at high-level and allocated from do-
main of data creation while the data science product is re-introduced as a model
that needs to be adapted by the practice where data is created. While data
driven systems can be evaluated with good results on artificial data from the
data domain, it is often a struggle to create value for the domain users. This is
due to trust of data origin, what it represents and how new intents for its pur-
pose comes through what could be considered a back-door top-down method.
A Participatory Design(PD)-study [18] investigated a mismatch between data
extraction findings at an administration level of cross-hospital management and
how doctors and clinical secretaries represented their ways of submitting data,
highlighting a need for re-negotiating data creation and its purpose in a way so
data scientists can contribute to better data capture infrastructures as well as
giving health-care workers a saying in how such data capture infrastructures are
prioritized in their given domains of non-digital work. In PD [8,23,32] as a field
such presented tensions are not new. Here PD as a design method and practice
has sought to create alignment between workers existing understanding of own
work and emerging systems through design as a practice for visualising such
tensions across actors of an innovation or IT project. PD is from here seeking,
in a democratic manner, to find solutions and interests that can match partners
across hierarchies.

As a means to facilitate responsible secondary use of event data, we propose
in this paper the BERMUDA (Business Event Relation Map via User-interface
to Data for Analysis) method to capture and maintain the link between do-
main knowledge and the data in the information system. The method supports
involvement of domain experts in the mapping of activities or events in the busi-
ness domain to user-interface elements, and of system engineers in the mapping
of user-interface elements to database records used by data scientists. In other
words, the method helps documenting the inter-relationship in the “BERMUDA
triangle” between the domain concepts, the user interface and the database,
which often disappears. We see that by breaking down the barrier between data-
creators and data scientists and building tools for involvement and iterative

Mapping domain events to data 3

feedback of data infrastructures and their user front-end, new discussions for
data cooperation can occur. The mapping is independent of any specific data
analysis, but should of course include the activities and events of relevance for
the analysis at hand. In particular, the method contributes to the responsible
application of process mining [27] by supporting a collaborative creation of event
logs.

The motivation for the method came from research into the responsible en-
gineering of AI-based decision support tools in Danish municipalities within the
EcoKnow [19] research project and later the use of the method was also found
relevant in a study of a Danish hospital wanting to create an AI-based predictive
model for clinical no-shows. The method and prototype were initially evaluated
by a consultant employed in a process mining company and a municipal case
worker collaborating with the authors in the EcoKnow research project.

The paper is structured as follows. Prior and related work is discussed in
Sec. 2. Sec. 3 explains our proposed BERMUDA method, where we also show
a prototype tool. Sec. 4 introduces two specific case studies in a job center and
a danish hospital. A brief evaluation of the use of the method in the first case
along with a discussion on the results is made in Sec. 5. Lastly, in Sec. 6 we
conclude and discuss future work.

2 Prior and Related work

Within health-care informatics, problems arising from having a primary use of
data (original intend of health-care delivery and services) and different, sec-
ondary use of data (emergence of new possibilities through statistics and data
science) has been highlighted in several studies [5, 28, 37]. The authors of [5]
found that underlying issues for data quality and reuse was attributed to differ-
ential incentives for the accuracy of the data; flexibility in system software that
allowed multiple routes to documenting the same tasks; variability in documenta-
tion practices among different personnel documenting the same task; variability
in use of standardized vocabulary, specifically, the internally developed stan-
dardized vocabulary of practice names; and changes in project procedures and
electronic system configuration over time, as when a paper questionnaire was
replaced with an electronic version.

Such underlying socio-technical issues to data capturing can attribute to an
overall lower degree of data integrity resulting in little to no secondary usefulness
of data representing health-care events. A similar [18] study conducted by this
papers co-authors highlighted the need for iteratively aligning data creation and
use with domain experts and data creators (i.e. doctors, nurses, secretaries, etc)
when conducting data science on operational data from hospitals.

We see event abstraction [40] as a related topic to our paper, however we
approach the problem in a top-down manner i.e. from domain knowledge down
to the data source. A similar top-down approach exists in database systems [12]
where an ontology of domain concepts is used to query the databases. We do not
aim to propose techniques for process discovery as there are a plethora of tools

4 V. Cosma et al.

already in use for this task, some of which [35] also allow for domain expert
interventions. We propose BERMUDA both for pre-processing of data before
moving to process discovery or building predictive models, and for training of
new users in how to consistently record data suitable for the secondary uses.

The paper [21] provides a procedure for extracting event logs from databases
that makes explicit the decisions taken during event log building and demon-
strates it through a running example instead of providing tool support. The
paper [7] present a semi-automatic approach that maps events to activities by
transforming the mapping problem into the a constraint satisfaction problem,
but it does not directly handle the event log extraction.

In [29] the authors describe a meta model that separates the extraction and
analysis phases and makes it easy to connect event logs with SQL queries. In [30]
they associate events from different databases into a single trace and propose an
automated event log building algorithm. They point towards the lack of domain
knowledge as a driving force for an automated and efficient approach. They
discuss that their definition of event log “interestingness” as an objective score
ignores aspects of domain level relevance. Both papers bind database scripts and
event log concepts in order to build ontologies/meta-models, but do not link to
domain knowledge in order to provide traceability to domain experts, such that
the limitations of the “interestingness” score may be overcome.

To summarize, most work [6, 9, 10, 16, 17, 24, 25, 33, 38] on event data quality
so far has focused on technical means to repair and maintain the quality of
event logs [15]. Our approach complements these approaches by focusing on the
socio-technical problem of aligning what is done in practice by the users of the
information systems, i.e. how is a domain activity registered within the system,
and at the other hand, where is this event stored in the database.

3 BERMUDA: Mapping domain events to data

Our method relies on so-called BERMUDA triples (e,i,d) as illustrated in Fig.1,
recording the relation between respectively a domain event e, a user interface
element i of the information system in which the domain event is registered and
the location of the resulting data element d in the database. A concrete example
from one of our case studies can be seen in Fig.2. Here a domain event ”Register
... during the first interview” is described in a textual audit schema. This is
linked by a screen shot to the drop down menu in the user interface, where the
case worker performs this concrete registration. And finally, the location of the
resulting data element is recorded by an SQL statement that extracts the event.

There are typically three roles involved in the recording such BERMUDA
triples: Data scientist (or analyst), domain expert and system engineer. As guid-
ance towards applying our method we recommend following these steps:

1. Domain to user interface. For each domain event e, the domain experts
record an association (e,i) between the domain event e and an (user or
system) interface element i.

Mapping domain events to data 5

Fig. 1. BERMUDA method

2. User interface to data. Through code inspection or simulation, system
engineers develop the correct database query d to extract the data recording
the event e created via the interface element i resulting in a triple (e,i,d).

3. Triples to event log. The data scientist merges and refines the database
queries and creates the initial version of the event log. The event log entries
are enriched with extra attributes that hold a reference to the domain event,
the interface element and the data source from where the entry originated.

Prototype tool. To facilitate the adoption of the BERMUDA method we present
a prototype tool to illustrate how the triples can be created and an event log
extracted. A screenshot from the prototype is shown in Fig. 2. Briefly, the UI
consists of 3 input areas in the top for documenting the individual parts of
triples (description of domain event, system interface, script for extracting the
event from the system), an input area at the bottom for adding and selecting a

Fig. 2. BERMUDA method Prototype

6 V. Cosma et al.

triple to document, and a display area (not shown in the figure) for the resulting
event log. 4

The prototype has a simple role base access control supporting the use of the
method in practice. All roles have access to the description of domain events, in
order to build trust through a common domain understanding. Domain experts
have access to domain events and the user interface input areas. System engineers
need access to all areas, but not the production data in the information system.
Data scientists are allowed access to all areas except they can not see the data
extraction scripts, if they are covered by intellectual propriety rights. They can
however run the scripts on the production system, to extract the event data.

4 Cases: Secondary use of Municipal and Health data

We discuss the method in relation to two concrete cases from Denmark where
data in respectively a municipality and a hospital were intended to be used
for AI-based decision support. Case 1 is elicited at a municipal job center in
Denmark and case 2 covers our work with a regional research hospital where a
project aiming for producing and using an AI model for no-shows. Both cases
unveiled a gap between how data is produced in a local context for its primary
purpose of case management and what it represents when extracted and used
for decision support. We made an evaluation of our BERMUDA prototype for
case one and speculate how it could be used in case two.

Case 1: As part of the EcoKnow research project [19], we had by the software
vendor KMD (kmd.dk), been given access to interact with the system engineers
that developed the case management system used in danish job centers. Collab-
orating with colleagues in the EcoKnow research project performing field studies
at the job center [4,20,31], we also had the opportunity to gather domain knowl-
edge through workshops, semi-structured interviews and informal methods from
job center employees. Finally, we had access to historical data from about 16000
citizens with the purpose of researching the possibilities for improving compli-
ance and the experienced quality of case management in municipalities.

In addition to our case we interviewed a consultant at a process mining
company Infoventure (infoventure.dk), doing conformance checking, using the
same case management system but a different data source. Their current practice
relies on first co-creating a document with employees at the job center, which
contained the necessary domain knowledge and screenshots of user interface
elements with relevant explanations. Next it was the task of the consultant to
build extraction scripts for the identified domain events. During this phase there
was ongoing communication with the software vendor and job center employees
through meetings, calls or emails, in order to build up the necessary domain and
system knowledge. Often he would observe specific data (an exact timestamp or
citizen registration number) in the user interface and proceed to search for that
exact information in the database. This process was done either offline, with the

4 The prototype is available at: https://github.com/paul-cvp/bermuda-method.

Mapping domain events to data 7

aid of screenshots, or on site by sitting next to a case worker. The links between
domain events and the data extracted from the database was recorded in an
ad-hoc way and only available to the consultant.

Domain Activities/events: We used a management audit schema comprised of 21
questions. From these questions we define the domain activities/events relevant
for the case compliance analysis. For example: From the audit question “Is the
first job interview held within one week of the first request? Legal basis: LAB §
31(3)” we can identify several domain event data of interest: first request, first
job interview, first week passed.

Graphical User Interface (GUI) Areas for recording domain events A caseworker
employed at the job center associated the domain events identified in the audit
questions with areas of the user interface where caseworkers record the event.
From the 21 questions, 11 domain events could be identified that could be given
a user interface association. For 3 of the domain events, the caseworker was
unsure where to record it. A data scientist was able to associate 12 of the 21
domain events to a field in the user interface. This relatively low number of asso-
ciations can be explained by the fact that the audit schema was created by the
municipality and not the vendor of the it-system, and thus, some of the domain
events relevant for the audit did not have a direct representation in the user in-
terface. Therefore certain events were completely missing or documented in free
text fields, while others require access to other systems used by the municipality.
In particular, as also observed in [4], the free text field was sometimes used to
describe the categorisation of the unemployed citizen (as activity or job ready)
or the reason for the choice of categorisation, by selecting the reason “other”,
instead of using one of the specific predefined values available in the system
interface.

Data and database organization. The database contains 133 tables with 1472
columns in total. By having access to source code and the system engineers, we
mapped the identified GUI elements to the database. Furthermore this limited
our inspection to 8 main tables from which the data was extracted and 4 tables
used for mapping table relations, thus ensuring data minimisation as specified
in the General Data Protection Regulation (GDPR) [14].

Case 2: In the wake of a grand scale implementation of an EPIC5 Regional
Electronic Health Record-system (EHR-system) purchase and implementation,
we have since 2017 been engaged in a longitudinal case-study of facilitating and
developing an AI-model for predicting patient no-shows based on clinical event
and demographic data. The project was pioneering as the first test of the models
developed from local data and appointed a small endoscopy unit at Bispebjerg
hospital (a research hospital in the capital region of Denmark). The project
have a foundation in participatory design and end-user involvement in pursuit

5 epic.com

8 V. Cosma et al.

of creating visions for use of data and AI, as well as creating synergy effects for
data creation among clinicians, nurses and clinical secretaries as domain experts
creating clinical event data used to predict future no-shows.

We extracted 8 different data sets together with the regional data team to
learn about implications for applying such data for machine-learning purposes.
We here learned, that missing data values and incomplete submissions were
largely representing the first data sets and that due to missing guidelines and
coordinated workflows each individual health care person had different under-
standing of the categories used to report clinical appointment statuses.

Domain Events: Interpretations of the events. We conducted 2 follow-up inter-
views with clinical secretaries to understand the local flow of data submission
into the EHR-system. The clinical secretaries demonstrated their data submis-
sion practices and their understanding of how to document clinical appointment
statuses into the EHR-system. We further conducted four 2-hour workshops in-
volving the clinical secretaries in putting context to their workflow and use of
categories to assign meaning to no-show categories. In the same period, we in-
vited Regional data management and extraction teams to learn from practices
and iteratively extract data sets with no-show data.

Data and database organization. 8 data sets were extracted in total over a period
of 3 months before a machine learning algorithm could be fed with a data set
with sufficient domain contexts to remove categories that didn’t have meaning for
secondary use. The best example of this was again the free text category “other”
as a category for assigning reason for no-shows or cancellations of appointments.
This category was heavily used by all clinical staff due to its ability to avoid
reading through 16 other categories of reason for mentioned outcome. The first
data set had 81.000 rows and observations with 2/3 of those past appointments
being assigned “other” with text-field inputs sometimes representing the same
categories as suggested in the drop-down menu and sometimes left empty or with
“other” written in the text-field. A further 11.000 appointments were deemed
incomplete or “in process” several months after appointment date. When sorting
out unassigned events for appointment status the department only had 2880
observations left for the machine learning algorithm.

5 Initial Evaluation

As an initial qualitative evaluation of the usefulness of the method, we conducted
two semi-structured interviews, one with a municipal case worker acting as a
domain expert and another with a data scientist working as consultant in the
process analysis company Infoventure. Both interview respondents collaborated
with the authors in the Ecoknow research project. The municipal case worker was
given the task of mapping business activities to user-interface elements of a case
and document management system. The consultant was asked about the current
practice of documenting event log extraction for process mining, illustrated by

Mapping domain events to data 9

a concrete case, and how the Bermuda prototype could support or improve this
practice.

Overall, the evaluation indicated, that the BERMUDA method exhibits the
following positive proprieties:

– Transparency, Accountability, and Traceablity. The BERMUDA triples
make it possible to trace the relation between events extracted from a data
base, e.g. for the creation of an event log, and domain events. Both in-
terviewees saw the advantage in unambiguously referencing domain events
across different roles of a data science project (domain expert, software en-
gineer, data scientist), thereby providing accountability for the data prove-
nance/lineage, while also building trust across different roles.

– Accuracy. Through the participatory co-creation of the event log it is pos-
sible to observe that the event log correctly captures the relevant domain
knowledge. As each of the roles interact with each other, they can observe
that the correct steps were taken in the extraction of event data for sec-
ondary use. This was already to some extend part of the current practices,
but BERMUDA supported the consistent documentation.

– Maintainability and Training. The interview participants indicated that
the Bermuda method is useful for maintaining event logs over time when
changes happen in the domain or system, because the information is docu-
mented consistently in one place. They also pointed out, that the method
and tool for the same reason could be valuable both in training new data
scientists and new case workers.

– Protection of Intellectual Property. Since each link in the BERMUDA
triangle can be defined independently, the system engineers can provide map-
pings that can be used to extract events without revealing the code of the
system. We observed this in the interaction between the data science con-
sultant and the system engineers developing the job center solution.

Limitations. Firstly, the tool is not mature enough to replace a general SQL
scripting environment. Secondly, it does not yet account for data that are not
stored in an SQL database, nor for data that is not recorded via user interface,
as for instance data recorded automatically by system events.

6 Conclusion and future work

In this paper we presented BERMUDA, a method for facilitating the respon-
sible secondary use of event data in data science projects by supporting the
collaboration between domain experts, system engineers and data scientists on
associating domain events, via user interfaces to data in the database. This facil-
itates transparent extraction of event logs for analysis and thereby accountable
data lineage. We discussed its use through cases of data science projects at a job
center in a Danish municipality and a Danish hospital. In particular, both cases
highlight the frequent use of the category “other” in the registration of reasons
for domain events, instead of using pre-defined values in drop down menus. We

10 V. Cosma et al.

showed through a prototype tool how BERMUDA can facilitate the interactions
between domain experts, system engineers and data scientists. Furthermore we
conducted interviews in order to lightly evaluate its usefulness and limitations.

In the future we expect to conduct more field trials of the method and inter-
view more practitioners in order to do a thematic analysis for better qualitative
feedback. We aim to investigate how the results of applying BERMUDA can
be used when training domain experts to use the appropriate categories instead
of ”other”. We also aim to extend the tool with an automatic signaling system
to monitor for changes in the user interface and in the database structure to
notify the data scientist of possible misalignment in existing processes. We hope
to increase the robustness of the tool and its compatibility with existing process
mining tools. We also aim to provide the prototype as an online tool in order to
facilitate remote cooperative work. Finally we aim to support a broader range of
input and output formats by applying the method on diverse data sources from
information systems in relevant domains.

Acknowledgements

Thanks to Infoventure, KMD Momentum, Bispebjerg Hospital, The Capital Re-
gion of Denmark, Gladsaxe and Syddjurs municipalities, and the reviewers.

References

1. van der Aalst, W.M.P.: Process Mining - Data Science in Action, Second Edition.
Springer (2016)

2. van der Aalst, W.M.P., et. al.: Process mining manifesto. In: Daniel, F., Barkaoui,
K., Dustdar, S. (eds.) Business Process Management Workshops - BPM 2011 Inter-
national Workshops, Clermont-Ferrand, France, August 29, 2011, Revised Selected
Papers, Part I. Lecture Notes in Business Information Processing, vol. 99, pp. 169–
194. Springer (2011)

3. on AI, H.L.E.G.: Ethics guidelines for trustworthy ai, https://digital-strategy.
ec.europa.eu/en/library/ethics-guidelines-trustworthy-ai

4. Ammitzbøll Flügge, A., Hildebrandt, T., Møller, N.H.: Street-level algorithms
and ai in bureaucratic decision-making: A caseworker perspective. Proc. ACM
Hum.-Comput. Interact. 5(CSCW1) (apr 2021). https://doi.org/10.1145/3449114,
https://doi.org/10.1145/3449114

5. Ancker, J.S., Shih, S., Singh, M.P., Snyder, A., Edwards, A., Kaushal, R., Inves-
tigators, H., et al.: Root causes underlying challenges to secondary use of data.
In: AMIA Annual Symposium Proceedings. vol. 2011, p. 57. American Medical
Informatics Association (2011)

6. Andrews, R., Emamjome, F., ter Hofstede, A.H.M., Reijers, H.A.: An expert lens
on data quality in process mining. In: ICPM. pp. 49–56. IEEE (2020)

7. Baier, T., Rogge-Solti, A., Weske, M., Mendling, J.: Matching of events and activi-
ties - an approach based on constraint satisfaction. In: Frank, U., Loucopoulos, P.,
Pastor, Ó., Petrounias, I. (eds.) The Practice of Enterprise Modeling. pp. 58–72.
Springer Berlin Heidelberg, Berlin, Heidelberg (2014)

Mapping domain events to data 11

8. Björgvinsson, E., Ehn, P., Hillgren, P.A.: Participatory design and” democratizing
innovation”. In: Proceedings of the 11th Biennial participatory design conference.
pp. 41–50 (2010)

9. Bose, J.C.J.C., Mans, R.S., van der Aalst, W.M.P.: Wanna improve process mining
results? In: CIDM. pp. 127–134. IEEE (2013)

10. Bose, R.P.J.C., van der Aalst, W.M.P., Zliobaite, I., Pechenizkiy, M.: Handling
concept drift in process mining. In: CAiSE. Lecture Notes in Computer Science,
vol. 6741, pp. 391–405. Springer (2011)

11. Cabitza, F., Campagner, A., Balsano, C.: Bridging the “last mile” gap between ai
implementation and operation:“data awareness” that matters. Annals of transla-
tional medicine 8(7) (2020)

12. Calvanese, D., Giacomo, G.D., Lembo, D., Lenzerini, M., Rosati, R.: Ontology-
Based Data Access and Integration, pp. 2590–2596. Springer New York, New York,
NY (2018)

13. Cosma, V.P., Hildebrandt, T.T., Slaats, T.: Bermuda: Towards maintainable trace-
ability of events for trustworthy analysis of non-process-aware information systems.
In: EMISA Forum: Vol. 41, No. 1. De Gruyter (2021)

14. Council of European Union: Regulation (eu) 2016/679 of the european parliament
and of the council of 27 april 2016 on the protection of natural persons with
regard to the processing of personal data and on the free movement of such data.
https://publications.europa.eu/s/llVw (May 2016)

15. De Weerdt, J., Wynn, M.T.: Foundations of process event data. Process Mining
Handbook. LNBIP 448, 193–211 (2022)

16. Emamjome, F., Andrews, R., ter Hofstede, A.H.M., Reijers, H.A.: Alohomora:
Unlocking data quality causes through event log context. In: ECIS (2020)

17. Fischer, D.A., Goel, K., Andrews, R., van Dun, C.G.J., Wynn, M.T., Röglinger,
M.: Enhancing event log quality: Detecting and quantifying timestamp imperfec-
tions. In: Fahland, D., Ghidini, C., Becker, J., Dumas, M. (eds.) Business Process
Management. pp. 309–326. Springer International Publishing, Cham (2020)

18. H. Gyldenkaerne, C., From, G., Mønsted, T., Simonsen, J.: Pd and the challenge
of ai in health-care. In: Proceedings of the 16th Participatory Design Conference
2020-Participation (s) Otherwise-Volume 2. pp. 26–29 (2020)

19. Hildebrandt, T.T., et. al.: EcoKnow: Engineering Effective, Co-Created and Com-
pliant Adaptive Case Management Systems for Knowledge Workers, p. 155–164.
Association for Computing Machinery, New York, NY, USA (2020), https://doi.
org/10.1145/3379177.3388908

20. Holten Møller, N., Shklovski, I., Hildebrandt, T.T.: Shifting concepts of value: De-
signing algorithmic decision-support systems for public services. In: Proceedings
of the 11th Nordic Conference on Human-Computer Interaction: Shaping Experi-
ences, Shaping Society. NordiCHI ’20, Association for Computing Machinery, New
York, NY, USA (2020), https://doi.org/10.1145/3419249.3420149

21. Jans, M., Soffer, P.: From relational database to event log: Decisions with quality
impact. In: Business Process Management Workshops. Lecture Notes in Business
Information Processing, vol. 308, pp. 588–599. Springer (2017)

22. Jung, J.Y., Steinberger, T., So, C.: Domain experts as owners of data: towards
sustainable data science (2022)

23. Kensing, F., Simonsen, J., Bodker, K.: Must: A method for participatory design.
Human-computer interaction 13(2), 167–198 (1998)

24. Leopold, H., van der Aa, H., Pittke, F., Raffel, M., Mendling, J., Reijers, H.A.:
Searching textual and model-based process descriptions based on a unified data
format. Softw. Syst. Model. 18(2), 1179–1194 (2019)

12 V. Cosma et al.

25. Li, G., de Murillas, E.G.L., de Carvalho, R.M., van der Aalst, W.M.P.: Extracting
object-centric event logs to support process mining on databases. In: CAiSE Forum.
Lecture Notes in Business Information Processing, vol. 317, pp. 182–199. Springer
(2018)

26. Lux, M., Rinderle-Ma, S.: Problems and challenges when implementing a best
practice approach for process mining in a tourist information system. In: BPM (In-
dustry Track). CEUR Workshop Proceedings, vol. 1985, pp. 1–12. CEUR-WS.org
(2017)

27. Mannhardt, F.: Responsible process mining. Process Mining Handbook. LNBIP
448, 373–401 (2022)

28. Meystre, S.M., Lovis, C., Bürkle, T., Tognola, G., Budrionis, A., Lehmann, C.U.:
Clinical data reuse or secondary use: current status and potential future progress.
Yearbook of medical informatics 26(01), 38–52 (2017)

29. de Murillas, E.G.L., Reijers, H.A., van der Aalst, W.M.P.: Connecting databases
with process mining: a meta model and toolset. Softw. Syst. Model. 18(2), 1209–
1247 (2019)

30. de Murillas, E.G.L., Reijers, H.A., van der Aalst, W.M.P.: Case notion discovery
and recommendation: automated event log building on databases. Knowl. Inf. Syst.
62(7), 2539–2575 (2020)

31. Petersen, A.C.M., Christensen, L.R., Harper, R., Hildebrandt, T.: ”we would never
write that down”: Classifications of unemployed and data challenges for ai. Proc.
ACM Hum.-Comput. Interact. 5(CSCW1) (apr 2021), https://doi.org/10.1145/
3449176

32. Robertson, T., Simonsen, J.: Participatory design: an introduction. In: Routledge
international handbook of participatory design, pp. 1–17. Routledge (2012)

33. Sànchez-Ferreres, J., van der Aa, H., Carmona, J., Padró, L.: Aligning textual and
model-based process descriptions. Data Knowl. Eng. 118, 25–40 (2018)

34. Schrodt, P.A.: The statistical characteristics of event data. International Interac-
tions 20(1-2), 35–53 (1994)

35. Schuster, D., van Zelst, S.J., van der Aalst, W.M.P.: Cortado—an interactive tool
for data-driven process discovery and modeling. In: Buchs, D., Carmona, J. (eds.)
Application and Theory of Petri Nets and Concurrency. pp. 465–475. Springer
International Publishing, Cham (2021)

36. Slaats, T.: Declarative and hybrid process discovery: Recent advances and open
challenges. J. Data Semant. 9(1), 3–20 (2020). https://doi.org/10.1007/s13740-
020-00112-9

37. Smylie, J., Firestone, M.: Back to the basics: Identifying and addressing underlying
challenges in achieving high quality and relevant health statistics for indigenous
populations in canada. Statistical Journal of the IAOS 31(1), 67–87 (2015)

38. Suriadi, S., Andrews, R., ter Hofstede, A.H.M., Wynn, M.T.: Event log imperfec-
tion patterns for process mining: Towards a systematic approach to cleaning event
logs. Inf. Syst. 64, 132–150 (2017)

39. Team, R.: Responsible data science, https://redasci.org/
40. van Zelst, S., Mannhardt, F., de Leoni, M.: Event abstraction in process mining:

literature review and taxonomy, vol. 6, pp. 719–736. Springer New York, New York,
NY (2021). https://doi.org/10.1007/s41066-020-00226-2

41. Zhang, A.X., Muller, M., Wang, D.: How do data science workers collaborate? roles,
workflows, and tools. Proceedings of the ACM on Human-Computer Interaction
4(CSCW1), 1–23 (2020)

Chapter 8

Understandable declarative
process models

8.1 Improving Simplicity by Discovering Nested
Groups in Declarative Models

Remark 8.1. The work will be published as: Improving Simplicity by Dis-
covering Nested Groups in Declarative Models Cosma VP, Christfort AKF,
Hildebrandt TT, Lu X, Reijers HA, Slaats T. International Conference on
Advanced Information Systems Engineering (CAISE) 20241.

1https://cyprusconferences.org/caise2024/

86

https://cyprusconferences.org/caise2024/

Improving Simplicity by Discovering Nested
Groups in Declarative Models

Vlad Paul Cosma1 , Axel Kjeld Fjelrad Christfort1 , Thomas T.
Hildebrandt2 , Xixi Lu2 , Hajo A. Reijers2 , and Tijs Slaats1

1 Department of Computer Science, University of Copenhagen, Copenhagen,
Denmark {vco, axel, hilde, slaats}@di.ku.dk

2 Information and Computing Sciences, Utrecht University, Utrecht, Netherlands
{x.lu, h.a.reijers}@uu.nl

Abstract. Discovering simple, understandable and yet accurate process
models is a well-known issue for models mined from real-life event logs.
In this paper, we consider algorithms for automatically computing nested
groups of activities in declarative process languages, concretely Dynamic
Condition Response (DCR) Graphs, to reduce complexity while preserv-
ing accuracy. The DCR Graphs notation is, on the one hand, supported
by the very accurate DisCoveR process mining algorithm, and on the
other hand, by mature design and execution tools used in industrial pro-
cesses and enterprise information management systems. We evaluate our
approach by applying the DisCoveR miner to a large benchmark of real-
life and synthetic event logs, measuring the size, density, separability,
and constraint variability of mined models with and without grouping
of activities. In earlier work, these measures have been shown to have
a significant effect on the intrinsic cognitive load for users of declara-
tive models, in particular DCR Graphs. We also evaluate the effect of
prioritizing in particular the grouping of activities that model mutual
exclusive choices. Our evaluation confirms that grouping of activities in
general lowers the complexity on 3 of the 4 measures, while prioritizing
choices in some cases makes the improvement slightly smaller.

Keywords: Process Discovery · Declarative · Simplicity · Choices · Nested
Groups · DCR Graphs

1 Introduction

Process Discovery has been one of the most prominent tasks in Process Mining,
allowing to automatically reconstruct the process from event data. Process dis-
covery has been applied in many domains such as healthcare and financing and
is the foundation for enhanced process analysis. Most existing discovery tech-
niques focus on the imperative approach, tailoring towards structured, simple
processes. When the process is more flexible and complex, these techniques tend
to discover spaghetti models. By explicitly modelling the constraints between

2 V. Cosma et al.

activities, declarative process languages such as Declare [1] and Dynamic Condi-
tion Response (DCR) Graphs [2–4] have been shown to represent processes with
a high degree of flexibility more succinctly than imperative process languages.
The DisCoveR [5] process mining algorithm produces DCR Graphs, and through
experiments on public logs and in particular, winning the 2021 and 2023 Process
Discovery Contest (PDC), has been shown to produce highly accurate models.
However, some more restrictive constructs, such as mutual exclusive choices,
require many constraints to be modelled, which may lead to models that are
difficult for users to comprehend.

In the present paper, we address this shortcoming by utilizing the extension
of DCR Graphs with nested groups of activities [6] to automatically reduce the
number of visual elements in the model. A constraint for a group of activities
is in essence just a short-hand for having the constraint for all activities in the
group. In particular, the short-hand maintains the semantics of the model and,
as a result, its accuracy. By being just a syntactic short-hand, nested groups
of activities are different from hierarchies of sub-processes, which typically in-
troduce a new notion of state for a sub-process. As an example, consider the
commonly encountered choice pattern, i.e. a group of activities of which only
one can be executed. This is modelled in a DCR graph by a so-called exclusion
constraint between any pair of activities in the group in each direction, also
including a constraint from any activity to itself. That is, a choice between a
group of N activities requires N2 constraints. In Fig. 1 we see the quadratic
relation reduction on the DCR Graph mined from the Business Process Intelli-
gence Challenge 2017 Offers (BPIC17o) event log [7]. The use of a group allows
to replace N2 exclusions constraints between the mutually exclusive activities
O Refused, O Cancelled and O Accepted by a single self-exclusion on the choice
group Choice1.

Andaloussi et al. [8] have shown that such a large reduction in the number
of relations has a significant impact on the comprehensibility of DCR Graphs in
terms of perceived difficulty, answer correctness, and answer time. In particular
they proposed 4 simplicity measures for DCR Graphs capturing size, density,
separability, and constraint variability and showed that these were accurate pre-
dictors for the intrinsic cognitive load and therefore understandability of models.
We evaluate our approach on these measures by mining models for a large set
of public event logs and show that we achieve on average a 42% reduction in
size, a 65% reduction in density, a 5% increase in separability, in exchange for a
22% increase in constraint variability. While the first three of these results are
linked to an increase in simplicity, the latter may be interpreted as a decrease in
simplicity. However, as we will discuss in more detail in Section 5, the increase
in constraint variability is a direct consequence of the reduction in size and we
posit that together these results indicate a significant increase in the expected
understandability of the mined models.

Our algorithm and experiments are available as an open source python im-
plementation3 extending the pm4py library [9], where we provide the original

3 https://github.com/paul-cvp/pm4py-dcr

Improving Simplicity by Discovering Nested Groups in Declarative Models 3

DisCoveR miner together with DCR execution semantics and model import and
export capabilities which are compatible with the DCRSolutions design tool4.

As such, our contributions include (1) two novel algorithms for discovering
nested groups of activities in DCR graphs in Sec. 3, (2) a thorough evaluation
of these algorithms on an exhaustive set of public event logs in Sec. 4, and (3)
the first application of the simplicity measures proposed in [8] to real models
leading to important insights regarding the interplay between these measures
discussed in Sec. 5, and in particular (4) an improved DisCoveR miner that
provides simpler models without sacrificing accuracy. Finally, it is worth noting,
that the use of nested groups to reduce the number of edges in a graph can be
applied to any graph model, such as e.g. Declare and Petri Net models.

2 Preliminaries

2.1 Dynamic Condition Response Graphs with Nested Groups

Below we give the definition of Dynamic Condition Response (DCR) graphs with
nested groups of activities as introduced in [3, 4, 6] but simplified to the graphs
discovered by the DisCoveR process miner, that is, graphs where each activity
is represented by a unique node in the graph and we only have the original four
relations between nodes as introduced in [2].

Definition 1. A DCR Graph G with nested groups of activities is given by a
tuple (A,M,R,AG,▷) where

(i) AG = A ⊎AG is a finite set of activities A and activity groups AG,
(ii) M = (Ex,Re, In) ∈ P(A)× P(A)× P(A) is the marking,
(iii) R = {→•, •→,→+,→%} are the four basic relations, i.e.
(iv) →•⊆ AG×AG, is the condition relation,
(v) •→⊆ AG×AG, is the response relation,
(vi) →+,→%⊆ AG×AG are include and exclude relations respectively,
(vii) ▷: AG ⇁ AG is a grouping function,

We write > for ▷+ (the transitive closure of ▷) and require that it is irreflexive.
We write ≥ for reflexive closure of > and ≤ for the inverse of ≥.

Compared to the original DCR Graphs [2], DCR Graphs with nested groups
allow also groups as nodes of the graph, and the grouping function ▷ defines a
partial order ≥ on groups and activities, determining which group an activity or
group belongs to (if any). As already explained in the introduction, the idea of
DCR Graphs with nested groups is, that a relation from/to a group is a concise
way of expressing a relation from/to all members of the group. As shown in [6]
and formalized in Def. 2 below, a DCR Graph G with nested groups of activities
can be mapped to a semantically equivalent standard, flat DCR Graph G♭, by
replacing a relation from/to a group by a relation from/to all the members of
the group and removing the group.

4 Freely available for academic use at https://dcrsolutions.net

4 V. Cosma et al.

(a) Flat

(b) Choice

(c) Choice+Group (same as Group)

Fig. 1: DCR Graphs of the BPIC17 Offer log.

Improving Simplicity by Discovering Nested Groups in Declarative Models 5

Definition 2. Let G = (A,M,R,AG,▷) be a DCR graph with nested groups of
activities. We define the equivalent standard DCR Graph as G♭ = (A,M,R≤≥),
where R≤≥ = {ϕ♭ | ϕ ∈ R and ϕ♭ =≤ ϕ ≥ ∩(A×A)}.

The execution semantics for a DCR Graph G with nested activity groups is
then defined in terms of the standard flat DCR Graph G♭ as it is done in [6]. That
is, an activity is enabled inG if it is enabled inG♭, and the marking resulting from
executing the activity in G is the marking resulting from executing the activity in
G♭. Since the semantics of DCR Graphs is not the key point of the present paper,
we refer the interested reader to e.g. [3,4]. Intuitively, an activity a is enabled if
every condition a′ →•♭ a that is included in the present marking is also previously
executed, i.e. a′ ∈ In∩Ex . The effect of executing an enabled activity is to add
the activity to the set of executed activities in the marking, remove it from the
set Re of pending activities, and include/exclude/make pending the activities
that the activity has include/exclude/response relations to.

2.2 Declarative complexity metrics

The work in [8] introduces 4 complexity metrics for declarative process models:
size, density, separability and constraint variability. The authors also provide a
qualitative study of the metrics which correlates the change in metrics with a
change in the users’ cognitive load.

Definition 3. Let G = (A,M,R,AG,▷) be a nested DCR Graph with AG =
A ⊎AG. We define the following metrics:

Size (S): Defined as the sum of activities, groups and relations:

S(G) = |AG|+ |R| (1)

Density (D): Defined as the maximum number of relations over the num-
ber of activities in weakly connected components of the graph. Let Comp(G) =
{c1, . . . , cn} be the set of weakly connected components of graph G, then for a
given c ∈ Comp(G) we denote the number of activities/groups in the component
c as AGc and the number of relations as Rc.

D(G) = max
c∈Comp(G)

∣∣∣∣ Rc

AGc

∣∣∣∣ (2)

Separability (Sep): Measures the number of weakly connected components
over the number of activities, groups and relations in the model:

Sep(G) =
|Comp(G)|
|AG|+ |R|

(3)

Constraint Variability (CV): Related to Shannon entropy, it is defined
as the maximum entropy over different relation types in the components of the
model. Let Rc be the set of different types of relations within a component c and
Rr

c be the relation of type r ∈ R in component c. Then the relative frequency is:

6 V. Cosma et al.

p(c, r) =

{
|Rc

r|
|Rc| if |Rc| > 0

0 otherwise
(4)

Now we can define constraint (or relation) variability as:

CV (G) = max
c∈{c′|c′∈Comp(G)∧|Rc′ |>0}

{
−

∑
r∈Rc

p(c, r) · log|R| p(c, r)

}
(5)

.

An increase in size, density and constraint variability relates to an increase
in the users’ cognitive load. Separability is inversely correlated, a decrease in
separability relates to an increase in cognitive load.

Example: Based on the BPIC17 Offer log [7] we consider the mined flat DCR
Graph and the semantically equivalent DCR Graphs with choices and nested
groups in Fig. 1. The nested graphs have a significant reduction in the number
of relations while remaining behaviourally equivalent. Observe that the Choice

graph in Fig. 1b can still be improved by reducing the two condition relations
to O Refused and O Cancelled. In Fig. 1c the greatest relation reduction comes
at the expense of adding 3 activity groups Choice1, Choice2 and Group1 to the
graph. The declarative complexity metrics on the flat and fully grouped process
model show this reduction. The flat model 1a has a size of 33, density of 3.13,
separability of 0.03 and a constraint variability of 0.70. The grouped model 1c has
improvements on size 22 (33%), density 1.67 (46%), and separability 0.27 (25%),
and a worsening for constraint variability 0.85 (-21%). Observe that between
Fig. 1b and 1c size stays the same as the number of removed relations is the
same as the added nested groups, but density will change because it is a ratio
of the two.

3 Discovering Nested Groups in DCR Graphs

Starting from a flat DCR Graph we provide a Choice algorithm to group maxi-
mal subsets of activities that are all connected by exclusion relations and replac-
ing the exclusion relations by a single self-exclusion for the group, and a greedy
algorithm Group for groups of activities that all share a relation and replace the
individual relations by a single relation for the group. Both algorithms are easily
seen from the definition to preserve the trace semantics.

3.1 Choice

Choices in a DCR Graph are represented as a set of activities that, when exe-
cuted, mutually exclude each other and themselves. We now define the mutual
exclusion sub-graph G# as we are only interested in self excluding activities and
the exclusion relations between them.

Improving Simplicity by Discovering Nested Groups in Declarative Models 7

Algorithm 1 choice(G#)

1: cliques = enumerate all cliques(G#)
2: cliques = sort(cliques, key = length, reverse = True) ▷ Largest clique first
3: used = set.empty()
4: ▷= map.empty()
5: AG = set.empty()
6: for clique ∈ cliques do
7: if clique ∪ used = ∅ and length(clique) > 1 then ▷ Check that the activities inside the

clique have not been already used
8: ag = id()
9: AG = AG ∪ {ag}
10: ▷ (ag) = clique ▷ Update the nesting map
11: used = used ∪ clique ▷ Update the used activities set
12: end if
13: end for
14: return (AG,▷) ▷ Return the set of choice group activities, and the nesting map

Definition 4. Let G = (A,M,R) be a DCR Graph. Let G# = (A#,#) be the
mutual exclusion sub-graph of G where: A# = {a|(a, a) ∈→%}, and

#= {(a, a′)|a ∈ A#, a
′ ∈ A#, (a, a

′) ∈→%, (a′, a) ∈→%}.

Note that the mutual exclusion relation # is an undirected edge. Now we
define Algorithm 1 that takes the mutual exclusion sub-graph G# and finds the
optimal grouping of connected activities. The equivalent problem from graph
theory is that of finding all cliques with a size greater than 1. In the worst case,
time complexity is known to be exponential in the number of nodes.

To update the flat DCR Graph we first add the resulting cliques as choice ac-
tivity groups. Then we remove all exclusions →% between the grouped activities
together with their self excludes, add a self-exclude relation to the activity group
and move any shared relations by all individual activities to point in/out of the
choice group. For each choice group with activities clique added we thus reduce
the number of visual exclusions by |clique|2 − 1. For each further relation the
grouped activities share one get further reduction of |clique| − 1 relations. An
example can be seen in Fig. 1b, where the two activities grouped inside Choice2
leads to the removal of 22−1 = 3 exclusion relations and two condition relations.

3.2 Group

We here explore another approach, finding all groups that reduce the relations
of the graph with regard to a metric. The metric scores candidate groups higher
when the relation reduction is also higher.

In order to do this we propose the efficient greedy algorithm as seen in Al-
gorithm 4. The algorithm works on an encoded DCR graph, which can be ob-
tained from a flat DCR graph with Algorithm 2. This encoding simply represents
a graph as the sets of all incoming and outgoing relations for each activity, allow-
ing for easy computation of shared relations by intersection. It does, however,
split each relation into each of its start and end points, and as such it requires

8 V. Cosma et al.

Algorithm 2 encode(G)

1: (A,M,R) = G
2: enc = map.empty()
3: for a ∈ A do
4: enc(a) = {b, out, r.type)| →∈ R, (a, b) = r ∈→}
5: enc(a) = enc(a) ∪ {(b, in, r.type)| →∈ R, (b, a) = r ∈→}
6: end for
7: return enc

Algorithm 3 decode(enc)

1: AG = enc.keys
2: →• = { (b, ag)|ag ∈ AG.((b, in, condition) ∈ enc(ag) }
3: •→ = { (ag, b)|ag ∈ AG.((b, out, response) ∈ enc(ag) }
4: →% = { (ag, b)|ag ∈ AG.((b, out, exclude) ∈ enc(ag) }
5: →+ = { (ag, b)|ag ∈ AG.((b, out, include) ∈ enc(ag) }
6: return (AG, (AG, ∅, ∅), (→•, •→,→+,→%))

slight bookkeeping to keep consistent under alteration as can be seen in lines
26-29 of the algorithm.

Algorithm 4 works by computing the intersection of the encoded relations for
each pair of activities as the candidate groups. We then choose the best group
with regards to the size metric, e.g. number of relations removed, and add it to
the encoding by moving all the shared relations onto the group from the indi-
vidual activities and updating ▷. For each found group, we apply this method
recursively to find further nested groups. The method is then repeated on the
remaining un-grouped activities until no further groups can be found that im-
prove the metric.

Finally, we decode the resulting encoding with Algorithm 3, which when joined
with the found groups AG and the group function ▷, yield exactly a DCR Graph
with nested groups as per Definition 1.

4 Evaluation

Data Sets: To evaluate the Choice and Group algorithms, we used the same
real-world event logs from [10] on which imperative miners have been evaluated.
In addition, we used BPIC 2017 [11] and the Offer subset (BPIC17o) [7], BPIC
2019 [12] and Dreyers [13] logs. An overview of the results for these logs is
provided in Table 2. To show that the reduction works also on noisy logs, we
extended our evaluation to synthetically generated logs from the 2019-2023 PDC
5. From the PDC data sets, we only use the training logs. In total we use 21
publicly available data sets, 16 real world logs and 5 synthetic ones. Note that the
5 PDC data sets are collections of logs, we therefore average the metrics across
each collection such that they are equally weighted in the overall aggregated
results.
5 https://www.tf-pm.org/competitions-awards/discovery-contest

Improving Simplicity by Discovering Nested Groups in Declarative Models 9

Algorithm 4 group(enc, A = enc.keys)

1: ▷= map.empty()
2: AG = ∅
3: while True do
4: cands = map.empty()
5: for a, t ∈ A do ▷ Find all candidate groupings by intersection
6: →s= enc(a) ∩ enc(t)
7: cands(→s) = cands(→s) ∪ {a, t}
8: end for
9: ▷ Choose the best one by the given score
10: →b, best score = max(cands.keys, metric(→s))
11: if best score = 0 then ▷ Return if no improvement can be made
12: break
13: end if
14:
15: ag = id()
16: AG = AG ∪ {ag}
17:
18: if nested then ▷ if this grouping is nested
19: Update(▷) ▷ then ▷ needs to point to the parent grouping
20: end if ▷ this is left as an implementation detail
21:
22: enc(ag) =→b ▷ add shared relations to the grouping
23: for a ∈ cands(→b) do
24: ▷ (a) = ag

25: enc(a) = enc(a)\ →b ▷ remove shared relations from each grouped activity
26: for (b, direction, type) ∈→b do ▷ redirect other ends of shared relations
27: enc(b) = enc(b) \ {(a,flip(direction), type)}
28: enc(b) = enc(b) ∪ {(ag,flip(direction), type)}
29: end for
30: end for
31:
32: (enc′, A′

G,▷′) = nest(enc, cands(→b)) ▷ Recursively find nested groupings
33: AG = AG ∪ A′

G
34: enc = enc’
35: ▷=▷ ◦ ▷′

36: A = A \ cands(→b) ▷ Remove already grouped events from further consideration
37: end while
38: return (enc, AG, ▷)

Setup: Starting from the event log we use DisCoveR to mine a perfectly fitting
flat DCR Graph. We then derive three models from the flat one: (1) a Choice

based grouping as defined in Section 3.1, (2) Group, the greedy algorithm from
Section 3.2, and (3) a Choice+Group approach where we first find Choices and
then further Group the model by the greedy relation reduction. By Definition 2
the derived models are also perfectly fitting DCR Graphs.

Metrics: We calculate the Size, Density, Separability and Constraint Variability
to evaluate the process models derived from the mined flat DCR Graph. All 3
algorithms achieve the relation reduction at the cost of adding activity groups.

Results: The results for the real-life logs are also shown in Table 2 and our
full evaluation results are available online6. In Fig. 2 we show the percentage
changes compared to the flat DCR Graph as box plots for each metric and al-
gorithm combination. The flat DCR Graph is shown as a dashed red line at 0%.

6 https://github.com/paul-cvp/all-complexity-results

10 V. Cosma et al.

Fig. 2: Boxplot of metrics as percentage improvements (negative percentages
indicate deterioration)

Overall the Group algorithm performs best, achieving a 42% median improve-
ment on Size, 65% improvement on Density, 5% improvement on Separability,
and a −22% worsening of Constraint Variability. Note that the scale on the con-
straint variability box plot is between 0% and −100%. The improvement trend
in size, density and separability correlates with a decrease in the users’ cognitive
load [8]. Constraint variability is the only metric where our approaches perform
worse. This is an expected outcome as the ratio between the total number of
relations and the individual relations tends to even out.

5 Discussion

5.1 Interpretation

Comparison of algorithms. The intuition behind the relation reduction can be
seen in Table 1. We observe visually that the models have less overlapping rela-
tions, or relations that have to cross over other activities. By understanding the
concept of groups, users looking at the discovered models will spend less time
following relations back and forth between the connected activity pairs.

As can be seen in our results, the general Group algorithm has a considerably
higher impact on all simplicity metrics than the Choice algorithm. Group also
runs on process models that have been manually created, which extends its
applicability beyond refining mined models. Combining the two algorithms as
Choice+Group has a similar effect on the metrics, albeit slightly lower on average.
A detailed inspection of the results in Table 1 shows that the difference is not

Improving Simplicity by Discovering Nested Groups in Declarative Models 11

Datasets Flat Choice Group Choice+Group

BPIC12
S: 156(0%)
Sep: 0.01(0%)

D: 5.50(0%)
CV: 0.59(0%)

S: 134(14%)
Sep: 0.01(0%)

D: 4.15(24%)
CV: 0.66(-10%)

S: 91(41%)
Sep: 0.05(4%)

D: 1.96(64%)
CV: 0.78(-31%)

S: 101(35%)
Sep: 0.04(3%)

D: 1.91(65%)
CV: 0.77(-29%)

RTFMP
S: 33(0%)
Sep: 0.03(0%)

D: 2.00(0%)
CV: 0.77(0%)

S: 33(0%)
Sep: 0.03(0%)

D: 2.00(0%)
CV: 0.77(0%)

S: 30(9%)
Sep: 0.27(24%)

D: 1.40(30%)
CV: 1.00(-29%)

S: 30(9%)
Sep: 0.27(24%)

D: 1.40(30%)
CV: 1.00(-29%)

BPIC17o
S: 33(0%)
Sep: 0.03(0%)

D: 3.13(0%)
CV: 0.70(0%)

S: 22(33%)
Sep: 0.18(15%)

D: 1.57(49%)
CV: 0.83(-17%)

S: 22(33%)
Sep: 0.27(25%)

D: 1.67(46%)
CV: 0.85(-21%)

S: 22(33%)
Sep: 0.27(25%)

D: 1.67(46%)
CV: 0.85(-21%)

SEPSIS
S: 107(0%)
Sep: 0.02(0%)

D: 6.00(0%)
CV: 0.90(0%)

S: 76(28%)
Sep: 0.03(1%)

D: 3.63(39%)
CV: 1.00(-10%)

S: 54(49%)
Sep: 0.15(13%)

D: 2.07(46%)
CV: 0.96(-6%)

S: 51(65%)
Sep: 0.18(16%)

D: 1.47(75%)
CV: 0.97(-7%)

Table 1: Results for a subset of the logs (best results highlighted in bold)

uniform. Group performs best on logs such as BPIC12 because it is not restricted
by a prior choice grouping. It also performs best on logs, such as RTFMP, where
there are no discovered choices. For others, such as BPIC17-Offer, all derived
models from Choice, Group and Choice+Group perform equally well. Finally
for SEPSIS Choice+Group is best. An important difference between these two
algorithms, which is not expressed by the metrics, is the fact that choice groups
have a clear semantics and are easy to recognize for modellers with a basic
understanding of DCR Graphs. Therefore, we conjecture that prioritizing the
finding of choice groups has a positive impact on the understandability.

Constraint Variability and multi-perspective measures: On all evaluated event
logs we see that an improvement on the first three measures implies a worsening
in constraint variability. A possible explanation for this is that DisCoveR tends
to find an unbalanced set of relations where conditions and exclusions are more
common. This reduces the constraint variability of the flat model. Since the
Choice algorithm reduces exclusions, and the Group algorithm prioritizes reduc-
ing the most relations, exclusions and conditions are more likely to be grouped
than the other relations. As a result, the constraint variability of the grouped
model increases. We can see this in Fig. 1: consider the response relation •→

12 V. Cosma et al.

Log name Algorithm |AG| |R| S D Sep CV

Flat 24 132 156 5.50 0.01 0.59
Choice 26 108 134 4.15 0.01 0.66
Group 32 59 91 1.96 0.05 0.78

BPIC12

Choice+Group 36 65 101 1.91 0.04 0.77

Flat 4 4 8 1.00 0.13 0.81
Choice 4 4 8 1.00 0.13 0.81
Group 5 3 8 0.50 0.38 0.00

BPIC13 cp

Choice+Group 5 3 8 0.50 0.38 0.00

Flat 4 6 10 1.50 0.10 1.00
Choice 4 6 10 1.50 0.10 1.00
Group 6 3 9 1.00 0.44 1.00

BPIC13 i

Choice+Group 6 3 9 1.00 0.44 1.00

Flat 9 27 36 3.00 0.03 1.00
Choice 9 27 36 3.00 0.03 1.00
Group 11 8 19 1.60 0.37 1.00

BPIC14 f

Choice+Group 11 8 19 1.60 0.37 1.00

Flat 70 475 545 6.79 0.00 0.82
Choice 81 437 518 5.88 0.02 0.86
Group 112 237 349 2.24 0.03 1.00

BPIC15 1f

Choice+Group 107 309 416 3.20 0.04 1.00

Flat 82 902 984 11.00 0.00 0.64
Choice 90 875 965 10.24 0.01 0.65
Group 133 379 512 2.95 0.02 0.72

BPIC15 2f

Choice+Group 148 429 577 3.19 0.03 1.00

Flat 62 699 761 11.27 0.00 0.50
Choice 71 659 730 9.65 0.01 0.51
Group 97 202 299 2.27 0.05 0.92

BPIC15 3f

Choice+Group 108 390 498 4.18 0.03 0.52

Flat 65 522 587 8.03 0.00 0.82
Choice 70 500 570 7.32 0.01 0.83
Group 103 202 305 2.12 0.05 1.00

BPIC15 4f

Choice+Group 110 245 355 2.52 0.05 1.00

Log name Algorithm |AG| |R| S D Sep CV

Flat 74 573 647 7.74 0.00 0.79
Choice 82 546 628 7.11 0.01 0.82
Group 114 240 354 2.19 0.03 0.98

BPIC15 5f

Choice+Group 117 347 464 3.19 0.03 0.95

Flat 26 119 145 4.58 0.01 0.74
Choice 27 108 135 4.00 0.01 0.76
Group 40 67 107 1.78 0.03 0.83

BPIC17

Choice+Group 40 70 110 1.79 0.02 0.83

Flat 8 25 33 3.13 0.03 0.71
Choice 10 12 22 1.57 0.18 0.83
Group 11 11 22 1.67 0.27 0.86

BPIC17-Offer

Choice+Group 11 11 22 1.67 0.27 0.86

Flat 18 64 82 3.56 0.01 0.86
Choice 19 61 80 3.33 0.03 0.86
Group 25 49 74 2.00 0.03 0.88

BPIC17 f

Choice+Group 25 48 73 1.96 0.03 0.86

Flat 42 599 641 14.26 0.00 0.32
Choice 45 504 549 11.20 0.00 0.36
Group 69 218 287 3.25 0.01 0.48

BPIC19

Choice+Group 76 215 291 2.95 0.01 0.49

Flat 33 268 301 8.12 0.00 0.53
Choice 33 268 301 8.12 0.00 0.53
Group 52 109 161 2.38 0.04 0.67

Dreyers

Choice+Group 65 112 177 1.95 0.05 0.66

Flat 11 22 33 2.00 0.03 0.77
Choice 11 22 33 2.00 0.03 0.77
Group 14 16 30 1.40 0.27 1.00

RTFMP

Choice+Group 14 16 30 1.40 0.27 1.00

Flat 16 91 107 6.00 0.02 0.91
Choice 17 59 76 3.63 0.03 1.00
Group 22 32 54 2.07 0.15 0.96

SEPSIS

Choice+Group 24 27 51 1.47 0.18 0.98

Table 2: Algorithm and metrics from real world event logs

between O CreateOffer and O Created, relative frequency p(G, •→) is 1/25 in
the flat graph and 1/11 in the grouped one.

This insight into the correlated increase in constraint variability strengthens
the claim from the original study that a combination of measures is necessary
“to provide a multi-perspective view of users’ cognitive load when engaging with
declarative process models.” [8]. It remains an open question whether or not it
is possible to improve on all 4 metrics simultaneously via algorithmic means.

5.2 Metric validity

Our experimental results show an improvement in 3 out of the 4 metrics that
were selected. This is a reassuring result, which provides positive support for the
effectiveness of our proposal.

The question remains on whether the metrics themselves provide a valid
and decisive assessment for our particular proposal. The original metrics are
specifically tuned to DCR Graphs, but do not take groups as a visual element into
account. It cannot be entirely ruled out, therefore, that the groups themselves
introduce additional cognitive load, which is not covered by the metrics.

What is reassuring is that previous studies have found that hierarchy does
not introduce additional cognitive load in declarative processes [14, 15]; neither
do groupings for BPMN models [16]. Therefore, one possible use of our findings
is to use groups to create hierarchies in DCR Graphs and hide relations within

Improving Simplicity by Discovering Nested Groups in Declarative Models 13

the groups, only making them visible on-demand. It seems very plausible that
this will reduce any cognitive load, which is worthwhile to investigate further.

6 Related work

The main work done within declarative process discovery has been on Declare
models, DCR graphs, and Log Skeletons [17]. Declare Miner [18] and MINER-
ful [19] discover Declare models. All existing DCR miners [5,20,21] discover flat
DCR Graphs. Our work is built on the DisCoveR miner as it outputs the most
accurate DCR Graphs [5]. Zugal et al. [14] and Haisjackl et al. [15] found that
introducing hierarchical sub-processes in declarative process models does not
lead to any significant change in cognitive load. Turetken et al. [16] showed that
groupings have no measurable effect on cognitive load for BPMN models. How-
ever, unlike our approach, the use of BPMN groupings in [16] does not decrease
the number of visual elements in a model. Smirnov et al. [22] systematically cat-
alog business process model abstraction techniques and show their value through
use cases.

Discovering hierarchies or sub-processes is well studied for imperative process
model notations [23–27]. Here the use of the word “hierarchy” denotes different
levels of event abstraction, which in contrast to our use of groups changes the
semantics (and accuracy) of the model. In the context of fuzzy mining, a hi-
erarchy is based on metrics from the event log and relates to how a directly
follows graph can be simplified by removing less frequent nodes and edges [28].
In the context of multi-level event logs, mining hierarchical process models [29]
means discovering hierarchies in logs where each part can be mined with its
own miner resulting in a combination of several process model notations, in-
cluding Declare. FlexHMiner [30] is a miner for hierarchical process models that
discovers subprocesses based on three different methods, using domain knowl-
edge, random clustering, and a flat tree, with the domain knowledge approach
being on average the highest-scoring one. Prime Miner [31] was the only other
work that explicitly mines choices. Several complexity metrics have been used
for imperative models as a proxy for simplicity [10, 32, 33]. Augusto et al. [33]
review complexity metrics on a similarly large set of event logs, and indeed find
a correlation between the metrics and the quality of process models mined with
imperative miners. They investigate how pre-processing event logs before mining
can improve the results. A similar approach is taken for Declare in [34].

7 Conclusion

We provided the first evaluation of automatic grouping of activities in order
to reduce the complexity of mined declarative models and used the complexity
metrics proposed in [8] on a set of 16 real-life and 5 synthetic logs. The result
is a likely significant reduction in cognitive load for model users. For future
work, a user-centered evaluation study seems desirable to corroborate and ex-
pand our current, metric-based evaluation. As mentioned in our discussion, the

14 V. Cosma et al.

inclusion of groupings may introduce cognitive load not taken into account by
the used metrics. By involving users it can be tested whether this effect materi-
alizes or not. Additionally, it would be worth investigating how the reduction of
cognitive load through groupings ties to the expertise level of users, i.e., begin-
ners/intermediate/experts, which may have important ramifications for tailoring
tool support and instruction materials. Finally, it seems worthwhile to evaluate
the use of activity groups for Declare models.

References

1. M. Pesic, H. Schonenberg, and W. M. Van der Aalst, “Declare: Full support for
loosely-structured processes,” in 11th IEEE international enterprise distributed
object computing conference (EDOC 2007). IEEE, pp. 287–287.

2. T. T. Hildebrandt and R. R. Mukkamala, “Declarative event-based workflow as
distributed dynamic condition response graphs,” in PLACES, 2010, pp. 59–73.

3. R. R. Mukkamala, “A formal model for declarative workflows: Dynamic condition
response graphs,” Ph.D. dissertation, IT University of Copenhagen, 2012.

4. T. Slaats, “Flexible process notations for cross-organizational case management
systems,” Ph.D. dissertation, IT University of Copenhagen, 2015.

5. C. O. Back, T. Slaats, T. T. Hildebrandt, and M. Marquard, “Discover: accurate
and efficient discovery of declarative process models,” in International Journal on
Software Tools for Technology Transfer, 2021.

6. T. Hildebrandt, R. R. Mukkamala, and T. Slaats, “Nested dynamic condition re-
sponse graphs,” in International conference on fundamentals of software engineer-
ing. Springer, 2011, pp. 343–350.

7. B. F. van Dongen. Bpi challenge 2017 - offer log. [Online]. Available:
https://doi.org/10.4121/12705737.v2

8. A. Abbad-Andaloussi, A. Burattin, T. Slaats, E. Kindler, and B. Weber, “Complex-
ity in declarative process models: Metrics and multi-modal assessment of cognitive
load,” Expert Systems with Applications, vol. 233, p. 120924, 2023.

9. A. Berti, S. J. Van Zelst, and W. van der Aalst, “Process mining for python
(pm4py): bridging the gap between process-and data science,” arXiv preprint
arXiv:1905.06169, 2019.

10. A. Augusto, R. Conforti, M. Dumas, M. L. Rosa, F. M. Maggi, A. Marrella, M. Me-
cella, and A. Soo, “Automated discovery of process models from event logs: Review
and benchmark,” IEEE Transactions on Knowledge and Data Engineering, vol. 31,
no. 4, pp. 686–705, 2019.

11. B. F. van Dongen, “Bpi challenge 2017,” 2017. [Online]. Available: https:
//data.4tu.nl/articles/ /12696884/1

12. ——. Bpi challenge 2019. [Online]. Available: https://doi.org/10.4121/UUID:
D06AFF4B-79F0-45E6-8EC8-E19730C248F1

13. S. Debois and T. Slaats, “The analysis of a real life declarative process,” in IEEE
Symposium Series on Computational Intelligence, SSCI 2015, Cape Town, South
Africa, December 7-10, 2015. IEEE, 2015, pp. 1374–1382.

14. S. Zugal, P. Soffer, C. Haisjackl, J. Pinggera, M. Reichert, and B. Weber, “Inves-
tigating expressiveness and understandability of hierarchy in declarative business
process models,” Software & Systems Modeling, vol. 14, pp. 1081–1103, 2015.

Improving Simplicity by Discovering Nested Groups in Declarative Models 15

15. C. Haisjackl, I. Barba, S. Zugal, P. Soffer, I. Hadar, M. Reichert, J. Pinggera, and
B. Weber, “Understanding declare models: strategies, pitfalls, empirical results,”
Software & Systems Modeling, vol. 15, no. 2, pp. 325–352, 2016.

16. O. Turetken, A. Dikici, I. Vanderfeesten, T. Rompen, and O. Demirors, “The
influence of using collapsed sub-processes and groups on the understandability of
business process models,” Business & Information Systems Engineering, vol. 62,
pp. 121–141, 2020.

17. H. Verbeek, “The log skeleton visualizer in prom 6.9: The winning contribution to
the process discovery contest 2019,” International Journal on Software Tools for
Technology Transfer, vol. 24, no. 4, pp. 549–561, 2022.

18. F. M. Maggi, C. Di Ciccio, C. Di Francescomarino, and T. Kala, “Parallel algo-
rithms for the automated discovery of declarative process models,” Information
Systems, vol. 74, pp. 136–152, 2018.

19. C. D. Ciccio and M. Mecella, “On the discovery of declarative control flows for art-
ful processes,” ACM Transactions on Management Information Systems (TMIS),
vol. 5, no. 4, pp. 1–37, 2015.

20. V. Nekrasaite, A. T. Parli, C. O. Back, and T. Slaats, “Discovering responsibili-
ties with dynamic condition response graphs,” in Advanced Information Systems
Engineering: 31st International Conference, CAiSE 2019. Springer, pp. 595–610.

21. S. Debois, T. T. Hildebrandt, P. H. Laursen, and K. R. Ulrik, “Declarative process
mining for dcr graphs,” in Proceedings of SAC, 2017, pp. 759–764.

22. M. W. T. N. Sergey Smirnov, Hajo A. Reijers, “Business process model abstraction:
a definition, catalog, and survey,” Distributed and Parallel Databases, vol. 30, pp.
63 – 99, 2012.

23. R. Jagadeesh Chandra Bose and W. M. Van der Aalst, “Abstractions in process
mining: A taxonomy of patterns,” in Business Process Management: 7th Interna-
tional Conference, BPM 2009, Ulm, Germany, 2009. Proceedings 7, pp. 159–175.

24. N. Tax, B. Dalmas, N. Sidorova, W. M. van der Aalst, and S. Norre, “Interest-
driven discovery of local process models,” Information Systems, vol. 77, 2018.

25. F. Mannhardt, M. De Leoni, H. A. Reijers, W. M. Van Der Aalst, and P. J. Tous-
saint, “From low-level events to activities-a pattern-based approach,” in Business
Process Management: 14th International Conference, BPM 2016, Rio de Janeiro,
Brazil, 2016. Proceedings 14. Springer, pp. 125–141.

26. M. Leemans, W. M. Van Der Aalst, and M. G. Van Den Brand, “Recursion aware
modeling and discovery for hierarchical software event log analysis,” in 2018 IEEE
25th international conference on software analysis, evolution and reengineering
(SANER). IEEE, 2018, pp. 185–196.

27. R. Conforti, M. Dumas, L. Garćıa-Bañuelos, and M. La Rosa, “Bpmn miner: Auto-
mated discovery of bpmn process models with hierarchical structure,” Information
Systems, vol. 56, pp. 284–303, 2016.

28. R. J. C. Bose, E. H. Verbeek, and W. M. van der Aalst, “Discovering hierarchical
process models using prom,” in IS Olympics: Information Systems in a Diverse
World: CAiSE Forum 2011, London, UK, June 20-24, 2011, Selected Extended
Papers 23. Springer, 2012, pp. 33–48.

29. S. J. Leemans, K. Goel, and S. J. van Zelst, “Using multi-level information in
hierarchical process mining: Balancing behavioural quality and model complexity,”
in 2020 2nd International Conference on Process Mining (ICPM), pp. 137–144.

30. X. Lu, A. Gal, and H. A. Reijers, “Discovering hierarchical processes using flexi-
ble activity trees for event abstraction,” in 2020 2nd International Conference on
Process Mining (ICPM). IEEE, 2020, pp. 145–152.

16 V. Cosma et al.

31. R. Bergenthum, “Prime miner-process discovery using prime event structures,” in
2019 International Conference on Process Mining (ICPM). IEEE, pp. 41–48.

32. J. Mendling,Metrics for process models: empirical foundations of verification, error
prediction, and guidelines for correctness. Springer, 2008, vol. 6.

33. A. Augusto, J. Mendling, M. Vidgof, and B. Wurm, “The connection between
process complexity of event sequences and models discovered by process mining,”
Information Sciences, vol. 598, pp. 196–215, 2022.

34. P. H. P. Richetti, F. A. Baião, and F. M. Santoro, “Declarative process mining:
Reducing discovered models complexity by pre-processing event logs,” in Business
Process Management. Springer, 2014, pp. 400–407.

Chapter 9

Verifiable declarative process
models

9.1 Transforming Dynamic Condition Response
Graphs to safe Petri Nets

Remark 9.1. The work has been published as [44]: Cosma VP, Hildebrandt
TT, Slaats T. Transforming Dynamic Condition Response Graphs to Safe
Petri Nets. International Conference on Applications and Theory of Petri
Nets and Concurrency 2023 May 28 (pp. 417-439). Cham: Springer Nature
Switzerland.

103

Transforming Dynamic Condition Response
Graphs to safe Petri Nets

Vlad Paul Cosma1,2, Thomas T. Hildebrandt2, and Tijs Slaats2

1 KMD, Ballerup, Denmark
vco@kmd.dk

2 Computer Science Department, Copenhagen University, Denmark
{vco,hilde,slaats}@di.ku.dk

Abstract. We present a transformation of the Dynamic Condition Re-
sponse (DCR) graph constraint based process specification language to
safe Petri Nets with inhibitor and read arcs, generalized with an ac-
ceptance criteria enabling the specification of the union of regular and
ω-regular languages. We prove that the DCR graph and the resulting
Petri Net are bisimilar and that the bisimulation respects the accep-
tance criterium. The transformation enables the capturing of regular
and omega-regular process requirements from texts and event logs us-
ing existing tools for DCR requirements mapping and process mining. A
representation of DCR Graphs as Petri Nets advances the understand-
ing of the relationship between the two models and enables improved
analysis and model checking capabilities for DCR graph specifications
through mature Petri net tools. We provide a python script implement-
ing the transformation from the DCR XML export format to the PNML
exchange format extended with arc types. In the implementation, all
read arcs are replaced by a pair of standard input and output arcs. This
directly enables the simulation and analysis of the resulting Petri Nets
in tools such as TAPAAL, but means that the acceptance criterium for
infinite runs is not preserved.

Keywords: Petri Nets · DCR graphs · Bisimilarity

1 Introduction

Whereas process control-flow is traditionally captured using imperative nota-
tions such as Business Process Modelling Notation (BPMN), process require-
ments for information systems are typically presented as declarative rules, de-
scribing the constraints (i.e. provisions and obligations) for the execution of
individual tasks in a process. For instance, a requirement for an e-shop applica-
tion may specify that payment information must be provided before a payment
can be made, and that a payment can be made and is required to eventually
happen, if an order has been made. The requirements are typically translated to
imperative code when the system is implemented.

In this paper we consider the transformation from process requirements pre-
sented in the declarative Dynamic Condition Response (DCR) graphs notation

2 Vlad Paul Cosma, Thomas T. Hildebrandt, and Tijs Slaats

to processes expressed in a variant of the well-known process notation of Petri
Nets [40]. The DCR graphs notation was introduced in [26, 13] as a formal spec-
ification language for distributed workflows and further developed in a range of
papers, e.g. adding time, sub processes and data (see e.g. [14, 28, 15, 33]).

In its core form, DCR graphs is a graph-based notation with a single kind of
node and a few basic relations. Nodes of the graph denote actions (or events) of
the process and four kinds of directed edges between nodes denoting constraints
and effects between actions, as will be explained below in our e-shop running
example. The core DCR graph notation can express all regular and ω-regular
languages [8] and in particular liveness properties, e.g. that some action must
eventually happen (not to be confused with the standard notion of live Petri
Nets). The fact that DCR graphs can express all ω-regular languages makes
the notation more expressive than the classical declarative process language
of Linear-time Temporal Logic (LTL) [29] that can only express the star-free
omega-regular languages. The DCR graph notation is also different from LTL in
that it has an operational execution semantics, similarly to Petri Nets expressed
as a marking on the nodes of the graph.

The declarative nature and operational semantics makes DCR graphs similar
to the model of Petri Nets, yet there are still notable differences. Firstly, DCR
graphs abstracts from the notion of places, which is prominent for Petri Nets.
Secondly, DCR graphs can directly express infinitary languages and liveness
properties. This makes DCR graphs closer to traditional declarative notations
such as LTL and textual representations of rules. Indeed, the highlighter tool [21]
supports the mapping back and forth between textual requirement specifications
and DCR graphs. On the other hand, Petri Nets with their notion of tokens,
branching and loops are closer to imperative notations such as BPMN processes.
Moreover, while DCR graphs are supported by design and specification tools and
process engines used by industry3, there are still no powerful model checking
tools as it is the case for Petri Nets, such as the TAPAAL tool [6].

Thus, the motivation for providing the transformation of DCR graphs to
safe Petri Nets with inhibitor and read arcs is threefold, as illustrated in Fig. 1:
Firstly, we provide a path for transforming declarative requirements supported
by industrial design tools to Petri Nets, which are closer to imperative process
models such as BPMN. Secondly, the transformation enables the use of Petri
Nets verification and analysis tools, notably the TAPAAL tool [6], for DCR
graph specifications. Finally, the transformation allows us to use the DisCoveR
miner [3] to mine Petri nets via an intermediate DCR graph representation.
Hereby we get the high accuracy of DisCoveR in an imperative model and main-
tain a higher degree of concurrency in the model than is usually the case for
block-structured approaches. This was already demonstrated with an early (un-
sound) translation of DCR graphs to Petri Nets, which managed to win the prize
for best imperative miner in the 2021 Process Discovery Contest4.

3 Available freely for academic use at DCRSolutions.net
4 https://icpmconference.org/2021/process-discovery-contest/

Transforming Dynamic Condition Response graphs to safe Petri Nets 3

Fig. 1: Motivation for contributions of the paper

The paper is structured as follows. After the related work in Sec. 2, we give
the definitions of core DCR graphs and Petri Nets with inhibitor arcs, read
arcs and pending places in Sec. 3. We then proceed in Sec. 4 to provide the
transformation of DCR graphs to Petri Nets, which is done by induction in the
number of relations of the DCR graph. We also provide a sketch proof of the
bisimilarity between the safe Petri Net and the DCR graph. Next we show how
we reduce the size of the mapping in Sec. 5. We exemplify the mapping with a
simple e-shop process. As usual we conclude and discuss future work in Sec. 6.

2 Related work

Several notations for declarative process modelling have been developed. In ad-
dition to DCR graphs, the Declare [1] and Guard-Stage-Milestone (GSM) no-
tations have also seen broad use in the business process management research
community.

Declare provides a set of templates for modelling business constraints that
are formalised as LTL formulae (parameterized by activities). A Declare model
is the conjunction of a set of instantiated formulae. Given the limited expressive-
ness of the templates, a mapping from DCR graphs to Declare is not possible.
Declare has been formalized in other languages such as coloured automata [22]
and SCIFF [23, 24]. Mappings from Declare to Petri Nets and R/I-nets were
provided respectively in [31] and [7], however proofs of correctness are missing
from each of these.

The GSM notation [20] takes a declarative data-centric approach to mod-
elling processes, where stages of activities in the process are connected through
guards that need to be satisfied for their activation and milestones that repre-
sent their acceptance criteria. A mapping has been proposed from Petri Nets
to GSM [30], in particular with a focus on representing the output of process
discovery algorithms (which usually produce Petri Nets) as GSM models. We

4 Vlad Paul Cosma, Thomas T. Hildebrandt, and Tijs Slaats

are not aware of any direct mappings in the opposite direction. Similarly [10]
provides a mapping from DCR graphs to GSM models, an opposite mapping is
mentioned as future work but has not yet materialised.

In [12] a subset of the DCR relations and their equivalent Petri Net mapping
is presented, without inhibitor arcs without proof of correctness. [27] provides
an encoding of DCR graphs as Büchi automata.

Petri Nets are widely used, and therefore there are also many translations to
notations outside the declarative process modelling sphere, for example Ladder
Logic Diagrams [36], Timed Automata [5] and mCRL2[32].

Similarly much work has gone into mapping other modelling notations into
Petri Nets, such as UML activity diagrams [35], UML sequence diagrams [39],
UML state charts [19], and BPMN [9, 32].

The work in [23] presents logic-based approaches which formalize regulatory
models by relying on the deontic notions of obligations and permissions.

Different classes of ω-language Petri Nets have been introduced in [37] and
their complexity has been studied in [11]. The definition of acceptance criteria for
infinite words in [37] is based on markings being visited infinitely often, similar
to the acceptance criteria of Büchi-automata. This differs from the acceptance
criteria introduced in the present paper, which is based on pending places, for
which tokens cannot rest infinitely without being consumed by a transition being
fired.

3 Preliminaries

In this section we provide the running example and the formal definitions of
Dynamic Condition Response graphs and safe Petri Nets with inhibitor and
read arcs and pending places.

3.1 Running Example

We consider as running example a simple e-shop application that has the follow-
ing specification:

(i) If an order is added, a payment for the order must eventually be made.
(ii) Payment information (eg. credit card number) must be provided before a

payment can be executed.
(iii) The payment information can be edited any number of times.
(iv) A new order cannot be added before a subsequent payment has been made

and payment can only be made if an order has been added and is not yet
paid.

We can identify three actions in the system: Edit (or initially provide) Payment
Information, Add Order and Make Payment. Below we will see how to model
processes that fulfil these requirements as respectively DCR graphs and safe
Petri Nets with inhibitor and read arcs and pending places.

Transforming Dynamic Condition Response graphs to safe Petri Nets 5

3.2 Dynamic Condition Response graphs

We give a formal definition of core Dynamic Condition Response (DCR) graphs
as attributed directed graphs.5 For a set A we write P(A) for the set of all
subsets of A, i.e. the powerset of A and Pne(A) for the set of all non-empty
subsets of A.

Definition 1. A DCR graph G is given by a tuple (E,M,R,@, L, l) where

(i) E is a finite set of events
(ii) M = (Ex,Re, In) ∈ P(E)× P(E)× P(E) is the marking
(iii) R ⊆ E × E is the set of relations between events
(iv) @ : R→ Pne({•←, •→,→+,→%}) is the relation type assignment
(v) L is the set of action labels
(vi) l : E → L is the labelling function assigning an action label to each event

The marking M = (Ex,Re, In) describes the state of an event e in the fol-
lowing way. If e has been executed at least once then e ∈ Ex. If e is pending (i.e.
it must eventually be executed) then e ∈ Re. If e is included (i.e. it is currently
relevant) then e ∈ In.

Assume a relation r = (e, e′) ∈ R from event e to e′. If •←∈ @r we say r
is a constraining relation. If @r ∩ {•→,→+,→%} ̸= ∅ we say that r is an effect
relation. Note that r can be both a constraining and an effect relation at the
same time. We write e •← e′ (or e′ →• e) if •←∈ @r and say there is a condition
from e′ to e. We write e •→ e′ if •→∈ @r and say there is a response from e to
e′. We write e→+ e′ if→+∈ @r and say there is an include from e to e′. Finally,
we write e→% e′ if →%∈ @r and say there is an exclude from e to e′.

The behaviour of a DCR graph is given by a labelled transition system,
where the states are markings and the transitions are the execution of a labelled
event. Hereto comes a definition of when a finite or infinite execution sequence is
accepting or not. We first define when events are enabled, i.e. can be executed.

Definition 2 (Event enabling). Let (E,M,R,@, L, l) be a DCR graph. An
event e ∈ E is enabled for the marking M = (Ex,Re, In), writing enabled(M, e)
if and only if:

(i) e ∈ In
(ii) ∀e′ ∈ In. e′→•e =⇒ e′ ∈ Ex

The conditions for event enabling state that for an event e to be enabled, (i)
it must be included. (ii) Whenever e has a condition relation from an included
event e′, then this e′ was executed at least once.

We now define the effect of executing an event e for a given marking M .

5 The presentation deviates slightly from the original definition given in [13] to fa-
cilitate the definition of the mapping to Petri Nets, but defines the same graph
structures.

6 Vlad Paul Cosma, Thomas T. Hildebrandt, and Tijs Slaats

Definition 3. Let G be a DCR graph with marking M = (Ex,Re, In). The ef-
fect of executing an enabled event e is the marking effectG(M, e) = (Ex′, Re′, In′)
where

Ex′ =Ex ∪ {e}
Re′ =(Re \ {e}) ∪ {e′ | e •→ e′}
In′ =(In \ {e′ | e→% e′})

∪ {e′ | e→+ e′}

We are now ready to define the labelled transition semantics for DCR graphs.

Definition 4. Let G = (E,M,R,@, L, l) be a DCR graph. Define a labelled

transition relation between markings by M
e→G effectG(M, e) if enabled(M, e),

where e ∈ E. Write M ⇒ M ′ for ∃e ∈ E.M
e→G M ′ and write ⇒∗ for the

reflexive and transitive closure of⇒. Define MG = {M ′ |M ⇒∗ M ′}, i.e. the set
of all reachable markings from the initial marking M of G. The labelled transition
system for G is then defined as [[G]] = (MG,M,→G⊂ (MG × E ×MG), L, l).

Finally, we define when a finite or infinite execution sequence of a DCR graph
is accepting. Intuitively, it is required that any included and pending event e in
some intermediate state must eventually be executed or no longer included or
pending in a later state. If one limits attention to finite execution sequences, the
acceptance criteria is that no pending event is included in the final state.

Definition 5. Let G = (E,M0, R,@, L, l) be a DCR graph. A finite or infinite

sequence of transitions M0
e0→G M1

e1→G . . . in [[G]] with Mi = (Exi, Rei, Ini),
is accepting if e ∈ Rei ∩ Ini implies ∃j ≥ i.(ej = e ∨ e ̸∈ Rej ∩ Inj).

A DCR graph modelling our running example is shown in Fig 2. Events
are depicted as boxes containing the action label of the event and relations as
arrows. A relation with multiple types is depicted as multiple arrows between
the same two events, one arrow for each type. Events that are included in the
initial marking are drawn as boxes with a solid border, events that are excluded
in the initial marking are drawn as boxes with a dashed border. Consequently,
the events labelled EditPaymentInfo and AddOrder are initially included and the
event labelled MakePayment is excluded in the initial marking of the graph.

The first requirement, ”If an order is made, a payment for the order must
eventually be made” is modelled by a response relation (•→ in blue) and an
include relation (→+ in green) from the event labelled AddOrder to the event
labelled MakePayment. (The include relation is needed because of the interplay
with the fourth requirement described below).

The second requirement, ”Payment information (eg. credit card number)
must be provided before a payment can be executed” is modelled by a condition
relation (→• or •← in orange) from the event labelled EditPaymentInfo to the
event labelled MakePayment.

The third requirement, ”The payment information may be provided at any
time and any number of times.” is modelled by having no condition relations

Transforming Dynamic Condition Response graphs to safe Petri Nets 7

Fig. 2: DCR graph specification for the e-shop process

pointing to the event labelled EditPaymentInfo and making sure that it is included
in the initial marking and never excluded.

The forth requirement is in two parts. The first part, ”a new order cannot be
made before a subsequent payment has been made” is modelled by an exclude
relation (→% in red) from AddOrder to itself and an include relation from Make-
Payment to AddOrder. The effect is that when AddOrder is executed, it excludes
itself and is thus no longer available, except if MakePayment is executed, which
will include AddOrder again. The second part, ”payment can only be made if an
order has been made and is not yet paid” is similarly modelled by an exclusion
relation from MakePayment to itself and an inclusion relation from MakePayment
to AddOrder.

3.3 Petri Nets with inhibitor arcs, read arcs and pending places

There are numerous variants of Petri Nets with different expressive power. As
described in the introduction, we use safe Petri Nets with inhibitor and read arcs
and a notion of both finite and infinite acceptance criteria. Inhibitor arcs (also
called negative contextual arcs) are special arcs between places and transitions
specifying the constraint that the transition is only enabled if all places related
to it by inhibitor arcs are empty. In general, the addition of inhibitor arcs makes
the model of Petri Nets Turing complete [2]. However, with the additional re-
quirement of safeness, which means that places can hold at most one token (also
known as the property of all the net places being 1-bounded), the notation is
restricted to finite state models.

8 Vlad Paul Cosma, Thomas T. Hildebrandt, and Tijs Slaats

Read arcs (also called test, activator or positive contextual arcs) [4] specify
the constraint that a transition is only enabled if all places related to it by read
arcs have a token. A key difference between having a read arc and a pair of
input and output arcs between a transition and a place, is that read arcs are
not consuming the token. This means that two transitions with read arcs to the
same place can occur concurrently [25]. However, if two transitions are connected
to the same place by a read arc and a standard input arc respectively, the two
transitions will still be in conflict.

The acceptance criteria we introduce is inspired by DCR graphs and allows
us to conveniently express the union of regular and ω-regular languages, with-
out needing to refer to explicit markings. The acceptance criteria is defined by
indicating a subset of the states to be so-called pending places, and then define
a finite or infinite execution sequence to be accepting if any token on a pending
place is eventually subsequently consumed (but possibly placed back) by the
execution of a transition. If one limits attention to finite execution sequences,
the acceptance criteria is that all pending places are empty at the end of the
execution. Note that the use of read arcs allows us to test, if there is a token on
a pending place without consuming it.

We define Petri Nets with inhibitor arcs, read arcs and pending places as
follows.

Definition 6. A Petri Net with inhibitor and read arcs and pending places
(PNirp) is a tuple N = (P, T,A, Inhib,Read,Act, λ, Pe),where

(i) P is a finite set of places,
(ii) T is a finite set of transitions s.t. P ∩ T = ∅,
(iii) A = IA ⊔OA is a finite set of input and output arcs, where:

(1) IA ⊆ P × T is a finite set of input arcs,
(2) OA ⊆ T × P is a finite set of output arcs,

(iv) Inhib: IA −→ {true, false} is a function defining inhibitor arcs,
(v) Read: IA −→ {true, false} is a function defining read arcs,
(vi) Act is a set of labels (actions),
(vii) λ : T → Act is a labelling function,
(viii) Pe ⊆ P is the set of pending places,

and the constraint that if Inhib((p, t)) then ¬Read((p, t)) and if Read((p, t))
then ¬Inhib((p, t)) ∧ (t, p) ̸∈ OA. That is, an input arc cannot be both a read
arc and an inhibitor arc. And if there is a read arc from place p to transition t,
then there cannot be an output arc from transition t to p.

We only consider 1-bounded places in the present paper, which means that
markings can be defined as simply a subset of places (the places containing a
token).

Definition 7. (safe Marking). Let N = (P, T,A, Inhib,Read,Act, λ, Pe) be
a PNirp. A safe marking M on N is a subset M ⊆ P of places. We say there is
a token x at a place p ∈ P , written x ∈M(p), if p ∈M . The set of all markings
over N is denoted by M(N).

Transforming Dynamic Condition Response graphs to safe Petri Nets 9

We say that a Petri Net is safe if the execution of transitions preserves the
safeness of markings. In this paper we will work only with safe Petri Nets, in
particular we prove that the mapping from DCR graphs to Petri Nets provided
in the next section always yields a safe Petri Net.

Assuming the Petri Net to be safe simplifies the definition of enabledness of
transitions defined as follows.

Definition 8. (Enabledness). Let N = (P, T,A, Inhib,Read,Act, λ, Pe) be a
PNirp. We say that a transition t ∈ T is enabled in a marking M , if

(i) for t ∈ T we have {p ∈ P | (p, t) ∈ IA ∧ ¬Inhib((p, t)} ⊆ M , i.e. for all
input arcs except the inhibitor arcs there is a token in the input place,

(ii) for t ∈ T we have {p ∈ P | (p, t) ∈ IA ∧ Inhib((p, t)} ∩M = ∅, i.e. for all
inhibitor arcs there is not a token in the input place,

We abuse notation and, just as for DCR graphs, let enabled(M, t) denote that
the transition t is enabled in marking M .

Next we formalise the effect of executing (or firing) a transition. Again it is
simplified by the assumption of safeness and we use the same notation as for
DCR graphs to denote the result of firing a transition.

Definition 9. (Firing rule). Let N = (P, T,A, Inhib,Read,Act, λ, Pe) be a
PNirp, M a marking on N and t ∈ T a transition. If enabled(M, t) with
Input(t) = {p ∈ P | (p, t) ∈ IA∧¬Inhib((p, t))∧¬Read((p, t))} and Output(t) =
{p ∈ P | (t, p) ∈ OA} then t can fire, i.e. be executed, and produce a marking
effectG(M, t) = (M \ Input) ∪Output.

For convenience in the construction, we include the marking M in the PNirp
tuple and we use N = (P,M, T,A, Inhib,Read,Act, λ, Pe) to refer to a safe
marked PNirp with marking M ⊆ P .

Similarly to how DCR graphs define labelled transition systems, the firing
rule defines a labelled transition system for a PNirp with markings as states
and the labelled Petri Net transitions as labels.

Definition 10. Let N = (P,M, T,A, Inhib,Read,Act, λ, Pe) be a PNirp with

safe marking M . Define a labelled transition relation between markings by M
e→N

effectG(M, t) if enabled(M, t), where t ∈ T . Write M ⇒ M ′ for ∃t ∈ T.M
t→N

M ′ and write ⇒∗ for the reflexive and transitive closure of ⇒. Define MN =
{M ′ | M ⇒∗ M ′}, i.e. the set of all reachable markings from the initial mark-
ing M of N . The labelled transition system for N is then defined as [[N]] =
(MN ,M,→N⊂ (MN × T ×MN), Act, λ).

Finally, we define when a finite or infinite execution sequence of a PNirp is
accepting.

Definition 11. Let N = (P,M, T,A, Inhib,Read,Act, λ, Pe) be a PNirp with

safe marking M . A finite or infinite sequence of transitions M0
t0→N M1

t1→N . . .
in [[N]] is accepting if p ∈Mi ∩ Pe implies ∃j ≥ i.(p, tj) ∈ IA.

10 Vlad Paul Cosma, Thomas T. Hildebrandt, and Tijs Slaats

Figure 3 shows the safe Petri Net resulting from the implemented opti-
mized transformation of the running example DCR graph. The place pend-
ing included MakePayment is the only pending place. The arcs between the tran-
sition pend MakePayment and the place executed EditPaymentInfo are in fact a
read arc in the transformation, but represented as a pair of standard input and
output arcs in the implementation so we can simulate it in the TAPAAL tool.

Fig. 3: E-shop Petri Net resulting from the transformation implementation.

It is worth noting that in the Petri Net we need two transitions labelled with
the action EditPaymentInfo, namely a transition init EditPaymentInfo mapping
the initial execution (or the initial entry of the payment information) and a
transition event EditPaymentInfo mapping subsequent executions.

4 Mapping DCR graphs to Petri Nets

In this section we provide the mapping from DCR graphs to marked safe Petri
Nets with inhibitor and read arcs and pending places and prove that the DCR
graph and the Petri Net have bisimilar transition semantics. The mapping has
been implemented as a python script, which can be found at: https://github.
com/paul-cvp/dcr-to-tapn.git, where we also provide some results of our
mapping. We support the standard PNML[17] exchange format extended with
arc types [16]. A key difference in the code mapping is that read arcs are auto-
matically translated to a pair of input and output arcs. This was a design choice
in order to maintain compatibility with a greater number of Petri Net verifica-
tion tools and the difference only has consequences for the degree of concurrency

Transforming Dynamic Condition Response graphs to safe Petri Nets 11

and the acceptance criteria for infinite runs. In what follows we use the notation
— (a straight line) to refer to read arcs and use the notation <—> to refer to
a pair of input and output arcs.

The core part of the mapping is given as a function DP : DCR → PNirp,
defined inductively in the number of relations of the DCR graph. The Petri Net
DP (G) will have the events of G as labels (actions), since there will in general
be more than one transition representing each event of G. To get the same
observable behaviour as the DCR graph G, we then subsequently just need to
compose the labelling function of of DP (G) with the event labelling function
of G. Due to the rich structure of DCR graph markings, the basic inductive
mapping in general produces a number of unused places and transitions. These
can subsequently be removed by searching for unreachable transitions and places
and merging places with the same arcs.

As part of the mapping DP : DCR → PNirp, we also define for every
G ∈ DCR a mapping DPMG : MG → MDP (G), i.e. from markings of G to the
markings of DP (G). For a DCR graph G = (E,M,R,@, L, l) and DP (G) =
(PDP (G),MDP (G), TDP (G), ADP (G), InhibDP (G), ReadDP (G), ActDP (G), λDP (G),
P eDP (G)) we then have MDP (G) = DPMG(M) and ActDP (G) = E.

The two mappings are defined so we get the following precise semantic cor-
respondence between the two process models. (Note we write ∃! to mean ”there
exists a unique”).

Theorem 1. (Bisimilarity) For G ∈ DCR we have that the relation SimG =
{(M,DPMG(M)) | M ∈ MG} is a bisimulation relation between [[G]] and
[[DP (G)]], in the sense that (M0, DPMG(M0)) ∈ SimG, where M0 is the initial
marking of G and for all (M,DPMG(M)) ∈ Sim, we have

(i) M
e−→M ′ implies ∃!t ∈ TDP (G).DPMG(M)

t−→ DPMG(M
′) and λ(t) = e,

(ii) DPMG(M)
t−→M ′ and λ(t) = e implies M

e−→M ′′ and DPMG(M
′′) = M ′.

That is, for every enabled event in a marking M of the DCR graph we have
a unique enabled transition in the corresponding marking DPMG(M) of the
Petri Net which is labelled by the event e and firing the transition changes the
marking of the Petri Net to the marking corresponding to the DCR marking
resulting from executing e - and vice versa. We will see below, that in addition
the bisimulation also pairs accepting runs.

We now proceed to define the mapping function and outline the proof of
Theorem 1 along the way. For each event e ∈ E of the DCR graph G, there will
be four places in DP (G), which we will write as PEx

e , P In
e , PRe

e , and PRex
e . The

first two places represent respectively if the event e has been executed and if it
has been included. The last two places record the pending response state of the
event e by a token in PRe

e if and only if the event e is pending and included, and
a token in PRex

e if and only if the event e is pending and excluded. The places
PRe
e will constitute the set PeDP (G) of pending places.

Definition 12. (Places mapping) Let G = (E,M,R,@, L, l) ∈ DCR. De-
fine the corresponding Petri Net places of DP (G) as PDP (G) = {P γ

e |e ∈ E, γ ∈

12 Vlad Paul Cosma, Thomas T. Hildebrandt, and Tijs Slaats

{Ex, In,Re,Rex}}. Define the corresponding pending places of DP (G) as PeDP (G)

= {PRe
e |e ∈ E}.

Definition 13. (Markings mapping) Let G = (E,M0, R,@, L, l) ∈ DCR
and MG be the reachable markings of G and MDP (G) = P(PDP (G)), i.e. all safe
markings of the places PDP (G) defined above. Define DPMG : MG → MDP (G)

as follows. For M = (Ex,Re, In) ∈ MG define DPMG(M) such that for any
event e ∈ E,

(i) PEx
e ∈ DPMG(M) ⇐⇒ e ∈ Ex

(ii) P In
e ∈ DPMG(M) ⇐⇒ e ∈ In

(iii) PRe
e ∈ DPMG(M) ⇐⇒ e ∈ Re ∧ e ∈ In

(iv) PRex
e ∈ DPMG(M) ⇐⇒ e ∈ Re ∧ e /∈ In

The events and relations of a DCR graph are represented by respectively
transitions and arcs in the Petri Net. Each event of the DCR graph will be rep-
resented by several transitions in the Petri Net. Indeed, the number of transitions
representing each event depends on the number of relations in the DCR graph.

We define the corresponding Petri Net transitions TPD(G), arcs APD(G) and
labelling function λPD(G) by induction in the number k = |R| of relations. We
will at the same time argue for the proof of Theorem 1, since it also follows from
the inductive construction.

In the base case, k = 0 i.e. a DCR graph G = G0 = (E,M, ∅,@, L, l) without
any relations, each event will be represented by a (sub) Petri Net as shown in
Fig. 4 (assuming a marking M , where the event is included, not executed and
not pending, i.e. e ∈ In, e ̸∈ Ex ∪ Re) which is completely independent of the
similar sub Petri Nets representing the other events. We have four transitions
for each event e ∈ E of the DCR graph and arcs as shown in Fig. 4. We use the
labelling function of the Petri Net to label all the transitions with the event e
and thereby record that the transitions represent this event in the DCR graph.
That is, we define the mapping formally as follows.

Fig. 4: Base case: Petri Net for a single included DCR event, which is not yet
executed nor pending.

Transforming Dynamic Condition Response graphs to safe Petri Nets 13

Definition 14. (Base case: Mapping a DCR graph with no relation)
Let G = (E,M, ∅,@, L, l) be a DCR Graph with no relations. Then PDP (G) ={
pδe|e ∈ E, δ ∈ {In,Ex,Re,Rex}

}
, TDP (G) =

{
tδe|e ∈ E, δ ∈ {event, init, pend,

initpend}
}
and λDP (G)(t

δ
e) = e. The set of arcs ADP (G) = IADP (G) ∪OADP (G)

and InhibDP (G) : IADP (G) → {true, false} are defined by Table 1. Each row
in the table corresponds to one of the four transitions, and each column to one
of the four places. Each entry is an arc in which the left arrow is an input arc
and the right arrow is an output arc. That is, the input and output arc pair
<—> in the entry of column pEx

e and row tevente in the table means that we have
(pEx

e , tevente) ∈ IADP (G) and (tevente , pEx
e) ∈ OADP (G). A table entry of o— in the

entry of column pRe
e and row tevente means we add an arc (pRe

e , tevente) ∈ IADP (G),
which is an inhibitor arc, i.e. Inhib((pRe

e , tevente)) = true, and we add no arc in
OADP (G). The read arc — between column pIne and row tevente is mapped as
(pIne , tevente) ∈ IADP (G) and Read((pIne , tevente)) = true.

pIne pEx
e pRe

e pRex
e

tevente — <—> o—

tinite — o—> o—

tinitpende — o—> <—

tpende — <—> <—

Table 1: Arc patterns for an event in the base case

Note that we have no arcs in any directions connected to the place pRex
e . This

means that this place is redundant, unless more relations are added to the DCR
graph, which will give rise to more transitions in the Petri Net. We will reuse
the same table notation style for arc pattern mappings throughout the paper.
Fig. 4 is a visual representation of Table 1.

Proof sketch of Thm.1: base case (1). It follows by a trivial inspection of the event
execution cases and the different initial markings that we have the bisimulation
property in Thm. 1 for the base case. If an event e is initially included and
not executed nor pending, then we have the marking in Fig.4. Observe that
only the transition labelled init e can fire, which will read the token at the
place included e and put a token at the place executed e. This corresponds
to the execution semantics of DCR graphs. Subsequently, only the transition
labelled event e can fire and firing the transition will read the tokens at the
places included e and executed e. If the event e is initially pending, included
and not executed, it will fire first the transition initpend e after which only
the transition event e can fire. If the event e is initially pending, included and
executed, it will fire first the transition pend e after which only the transition
event e that can fire. Finally, if the event is not included in the initial DCR
marking, there will be no token in the inlcuded e place and consequently no
transition can fire. □

Now consider the induction step. Let G = (E,M,R,@, L, l) be a DCR Graph
with R = {r1, . . . , rk, rk+1} and assume we have defined the mapping and proven
Thm. 1 for Gk = (E,M, {r1, . . . , rk},@, L, l).

14 Vlad Paul Cosma, Thomas T. Hildebrandt, and Tijs Slaats

We proceed by cases of the type @rk+1 of the relation rk+1 = (e, e′). Effect
relations change the marking of e′ when e fires, and thus refines the transitions
for e and adds arcs connected to the places recording the marking for e′. Dually,
constraining relations requires a refinement of the transitions for e′, adding arcs
connected to the places recording the marking for e.

We first consider the cases where the relation rk+1 = (e, e′) is a single effect,
i.e. @rk+1 ∈ {{→+}, {→%}, {•→}} and e ̸= e′.

For @rk+1 = {→+} we replace each transition tδe representing the event e with
three new transitions t0,δe , t1,δe and t2,δe , which in addition to the arcs connected
to tδe also get the new arcs shown in Table 2a. More formally we say that we
apply the Def.15 below for relation @rk+1 = {→+} and the arc pattern table
Table 2a.

Definition 15. (Inductive step: Mapping a DCR relation)
Let G = (E,M,R,@, L, l) be a DCR Graph, APT (@r) be the arc pattern

table for any given relation r ∈ @R and |APT (@r)r| be the number of rows
(transition copies) in the arc pattern table. Then TDP (Gk+1) = TDP (Gk)\{tδe |
tδe ∈ TDP (Gk) and λDP (Gk)(t

δ
e) = e} ∪ {ti,δe | i ∈ {0, 1, .., |APT (@r)r| − 1}}

and let (p, ti,δe) ∈ IADP (Gk+1) for i ∈ {0, 1.., |APT (@r)r| − 1} if and only if

(p, tδe) ∈ IADP (Gk) and let (ti,δe , p) ∈ OADP (Gk+1) for i ∈ {0, 1.., |APT (@r)r|−1}
if and only if (tδe, p) ∈ OADP (Gk) or (ti,δe , p) is one of the arcs in APT (@r).
Finally, for t ∈ ADP (Gk) such that λDP (Gk) ̸= e, let (p, t) ∈ IADP (Gk+1) and
(t, p) ∈ OADP (Gk+1) if and only if (p, t) ∈ IADP (Gk) or (t, p) ∈ OADP (Gk).

→+ pIne′ pRe
e′ pRex

e′

t0,δe —

t1,δe o—> —> <—

t2,δe o—> o—

(a) Arc patterns for →+

→% pIne′ pRe
e′ pRex

e′

t0,δe o—

t1,δe <— o—

t2,δe <— <— —>

(b) Arc patterns for →%

•→ pIne′ pRe
e′ pRex

e′

t0,δe — o—>

t1,δe — —

t2,δe o— o—>

t3,δe o— —

(c) Arc patterns for •→

Table 2: Arc patterns for rk+1 = (e, e′) effect relations

The cases for @rk+1 = {→%} and @rk+1 = {•→} follow the same approach,
by applying Def.15. Observe that we need four copies for each existing transition
for e in the case of the response relation. The case for response is also illustrated
graphically in Fig. 5.

Example 1. (Mapping the response relation) Figure 5 shows how the response
relation e •→ e′ is mapped by replacing each existing transition tδe (t delta e) rep-
resenting e by four new copies, connected to the places representing the marking
of the event e′.

Transforming Dynamic Condition Response graphs to safe Petri Nets 15

(a) DCR

(b) Petri Net

Fig. 5: Mapping (a) DCR response relation to a Petri Net notation (b)

Proof sketch of Thm.1: single effect mapping(2). First note that adding an effect
relation from e to e′ to the DCR graph only changes the output transitions
representing e in DP (Gk). Here we need three transitions, covering the different
possibilities of the marking of e′. For the e →+ e′ , transition t0,δe handles the
case, where e′ is already included, transition t1,δe handles the case, where e′ is
not included, but pending and t2,δe handles the case, where e′ is not included and
not pending. We follow a similar reasoning for e→+ e′,e→% e′ and e •→ e′. □

We now consider the constraining relation consisting of a single condition,
i.e. @rk+1 = {•←} and e′rk+1e and e ̸= e′. For the condition relation we replace
all existing transitions of e′ with 3 new copies, again keeping the old arcs and
adding new arcs to the places of e according to Table 3. This is also illustrated
graphically in Fig. 6. Again we apply Def 15.

Proof sketch of Thm.1: single constraint mapping(3). The transition copy t0,δe

handles the case where e is included and already executed. The transition t1,δe

handles the case where e is excluded and not already executed. Finally, the
transition t2,δe handles the case where e is excluded and already executed. □

Example 2. (Mapping a condition relation.) Figure 6 shows how a condition
relation is mapped between the transitions representing the DCR event e′ and
the places representing the execution and inclusion marking for the DCR event
e.

Now we proceed to describe the cases of relations where the events e and
e′ are identical, and thereafter the cases of multiple relations between the same
two events.

16 Vlad Paul Cosma, Thomas T. Hildebrandt, and Tijs Slaats

•← pIne′ pEx
e′

t0,δe — —

t1,δe o— o—

t2,δe o— —

(a) Arc patterns for •←

Table 3: Arc patterns for rk+1 = (e, e′) constraint relation

(a) DCR
(b) Petri Net

Fig. 6: Mapping (a) DCR condition relation to a Petri Net notation (b)

Case e = e′ and a single relation: For single relations where the source and
target is the same, we do not get the same multiplication of transitions:

(i) @r = {→+}: Do nothing, since it can only take effect if e is already included.
(ii) @r = {→%}: Remove all output arcs from transitions tδe (i.e. transitions with

label e) to the place pIne , because the event can only be executed if there is
a token at pIne , and that token should not be put back.

(iii) @r = {•→}: Add output arcs from all transitions tδe to pRe
e and replace all

read arcs from pRe
e to transitions tδe with standard input arcs.

(iv) @r = {•←}: Remove the transitions {tinite , tinitpende } and all their associated
arcs.

We now consider the cases with multiple relations between the same two
events, i.e. |@rk+1| > 1. When we have both an include and exclude relation,
i.e. {→+,→%} ⊆ @rk+1 we only apply the include relation, as the DCR graph
semantics stipulate that first the exclusion takes place and then the inclusion.

Case e = e′ and @rk+1 = {•→,→%}: For all transitions t such that λDP (Gk)(t) =
e, add output arcs from t to pRex

e and remove all output arcs from t to pIne . Define
λDP (Gk+1) = λDP (Gk).

The remaining cases look at multiple relations |@rk+1| > 1 between different
events e ̸= e′. We again follow the same reasoning as in part 2 and 3 of the
proof, i.e. for a given e rk+1 e

′ use its arc pattern table to make copies of existing

Transforming Dynamic Condition Response graphs to safe Petri Nets 17

•← ∧ →+ pIne′ pEx
e′ pRe

e′ pRex
e′

t0,δe — —

t1,δe o—> o— —> <—

t2,δe o—> o— o—

t3,δe o—> — —> <—

t4,δe o—> — o—

(a) Arc patterns for e′ •← e ∧ e→+ e′

•← ∧ →% pIne′ pEx
e′ pRe

e′ pRex
e′

t0,δe <— — o—

t1,δe <— — <— —>

t2,δe o— o—

t3,δe o— —

(b) Arc patterns for e′ •← e ∧ e→% e′

•← ∧ •→ pIne′ pEx
e′ pRe

e′ pRex
e′

t0,δe — — o—>

t1,δe — — —

t2,δe o— o— o—>

t3,δe o— o— —

t4,δe o— — o—>

t5,δe o— — —

(c) Arc patterns for e′ •← e ∧ e •→ e′

Table 4: Effect and constraint pair arc patterns

transitions and their arcs and create new arc mappings to the existing places.
Formally we apply Def. 15 for each relation and arc pattern table mentioned.

Case e ̸= e′ and rk+1 is both constraining and effect: When an effect constraint
pair exists, i.e. •←∈ @rk+1 and @rk+1 ∩ {•→,→%,→+} ≠ ∅, their mapping pro-
duces arcs that both check the necessary places and also change their marking.
Given e rk+1 e

′, we consider the different cases as follows:

(i) @rk+1 = {•←,→+}: The arc pattern is shown in Table 4a.
(ii) @rk+1 = {•←,→%} : The arc pattern is shown in Table 4b.
(iii) @rk+1 = {•←, •→}: The arc pattern is shown in Table 4c.

Note that brown arcs show the changes done to the arc patterns for the
condition relation from Table 3.

•→ ∧ →+ pIne′ pRe
e′ pRex

e′

t0,δe — o—>

t1,δe — —

t2,δe o—> o—> o—

t3,δe o—> —> <—

(a) Arc pattern for e •→ e′ ∧ e→+ e′

•→ ∧ →% pIne′ pRe
e′ pRex

e′

t0,δe <— o— —>

t1,δe <— <— —>

t2,δe o— o—>

t3,δe o— —

(b) Arc pattern for e •→ e′ ∧ e→% e′

Table 5: Two effect relations arc patterns

18 Vlad Paul Cosma, Thomas T. Hildebrandt, and Tijs Slaats

Case e ̸= e′, e rk+1 e
′ and rk+1 is composed of 2 effect relations:

(i) @rk+1 = {→%,→+}: Is equivalent to only mapping the include relation.
(ii) @rk+1 = {•→,→+}: The arc pattern is shown in Table 5a.
(iii) @rk+1 = {•→,→%}: The arc pattern is shown in Table 5b.
(iv) @rk+1 = {•→,→+,→%}: Equivalent to the case @rk+1 = {•→,→+}.

Note that brown arcs show the changes done to the arc patterns for the response
relation from Table 2c.

•← ∧ •→ ∧ →+ pIne pEx
e′ pRe

e′ pRex
e′

t0,δe — — o—>

t1,δe — — —

t2,δe o—> o— —> <—

t3,δe o—> o— o—> o—

t4,δe o—> — —> <—

t5,δe o—> — o—> o—

(a) Arc pattern for e′ •← e ∧ e •→ e′ ∧
e→+ e′

•← ∧ →% ∧ •→ pIne′ pEx
e′ pRe

e′ pRex
e′

t0,δe <— — o— —>

t1,δe <— — <— —>

t2,δe o— o— o—>

t3,δe o— o— —

t4,δe o— — o—>

t5,δe o— — —

(b) Arc pattern for e′ •← e ∧ e •→ e′ ∧
e→% e′

Table 6: Two effect relations and a condition relation arc patterns

Case e ̸= e′, e rk+1 e
′ and rk+1 is a composed of 2 effect relations and a condition

relation:

(i) @rk+1 = {•←,→+,→%}: Equivalent to the case @rk+1 = {•←,→+}.
(ii) @rk+1 = {•←,→+, •→}: The arc pattern is shown in Table 6a.
(iii) @rk+1 = {•←, •→,→%}: The arc pattern is shown in Table 6b.

Note that brown arcs show the changes done to the arc patterns for the
condition response relation mapping from Table 4c.

This completes the inductive definition of the mapping from DCR graphs to
safe Petri Nets with inhibitor arcs, read arcs and pending places as there are no
other exceptional cases.

Proof sketch of Thm. 1: exhaustive mapping of exceptional cases(4). We follow
the same reasoning as part 2 and 3 of the proof i.e. we take each case sub-point
and detail all the possible changes in marking of the DCR Graph in order to
show that there is a transition and arc pattern that handles this in the mapped
PNirp. □

Parts 1 to 4 of the proof of Thm.1 show how the strong bisimilarity property
is preserved by each induction step in the definition. We believe the reader should
be convinced of how the entire Petri Net is constructed by following the inductive
transformation.

What remains to show is that the accepting runs in the two models are the
same. This follows easily from the correspondence of markings in Def. 13, which
is maintained by the bisimulation relation.

Transforming Dynamic Condition Response graphs to safe Petri Nets 19

Proposition 1. For a DCR Graph DCR graph G = G0 = (E,M,R,@, L, l) it
holds that an execution sequence M → M1 → M2 → .. is accepting if and only
if DPMG(M)→ DPMG(M1)→ DPMG(M2)→ .. is accepting.

5 Pruning and reachability analysis

We report the steps needed to reduce the size of the mapped PNirp. This is
achieved in two ways: pruning away transitions and places based on the DCR
Graph relations and marking; and based on a reachability analysis of the PNirp.

5.1 Pruning based on the DCR graph

Creating places. Given a DCR Graph we follow these intuitions when creating
places. Only create an:

(i) Included Place for events that are included and may become excluded (have
an exclusion relation towards them) and events that are not included and
may become included (have an inclusion relation towards them);

(ii) Executed Place for events that have a condition from them;
(iii) Pending Place for events that have a response relation to them and events

that are initially pending;
(iv) Pending Excluded Place for events that need both an Included Place and a

Pending Place.

Creating event transitions. Given a DCR Graph and a PNirp we follow these
intuitions when creating transitions. Only create:

(i) init labelled transitions for events that need an Executed Place;
(ii) pend labelled transitions for events that need a Pending Place.

The pruning is done during the inductive construction of the Petri Net. 6

5.2 Petri Net reachability analysis

Pruning based on the reachability graph. Our mapping creates dead transitions
because it preemptively creates arc patterns for both the marked and unmarked
state of a place. Then at each induction step we expand the set of dead tran-
sitions, either because we need to copy the dead transition or if we create new
transitions and map arcs from a place the dead transition should have an effect
on.

Reachability analysis is done on the Petri Net reachability graph which is a
labelled transition system where the states are the set of places and the tran-
sitions represent the set of transitions fired to move from one state to another.
The optimization on the PNirp is done by removing all places and transitions
that are not part of the reachability graph.

6 We direct the reader to the Appendix in our repository https://github.com/

paul-cvp/dcr-to-tapn/blob/master/appendix/Appendix.pdf to see the simplified
arc pattern tables.

20 Vlad Paul Cosma, Thomas T. Hildebrandt, and Tijs Slaats

Merging places. Finally it is possible to merge places that label the same state in
the reachability graph of the Petri Net. The merging also requires us to update
the set of pending places accordingly. Notice that in the e-shop example AddOrder
and MakePayment have the relation the r@ = {•→,→+} and the initial marking
of AddOrder is not included and not pending. Therefore we merged the pending
and included places of MakePayment. Notice that this would not have been
possible if the event AddOrder was initially included.

Definition 16. (Equivalent places) Let p, p′ ∈ P . We say that p ≡ p′ if the set
of input and output arcs is equal and also the arc type. We define a new place
p′′ with the merged ids of p and p′ and copy their input and output arcs and also
the arc type. (Updating Pe) If (p ∈ Pe ∨ p′ ∈ Pe) ∧ p ≡ p′ ⇐⇒ p′′ ∈ Pe.

5.3 Space analysis on the running example

The unoptimized Petri Net of our e-shop has 12 places, 56 transitions and 488
arcs. The DCR analysis pruned one has 5 places, 10 transitions and 49 arcs.
Doing just the Petri Net reachability analysis yields 7 places, 6 transitions and
42 arcs. The full optimization, as show in Fig.3 has 3 places, 4 transitions and
12 arcs.

6 Conclusion and future work

We presented a transformation from the Dynamic Condition Response (DCR)
graph constraint based process specification language to safe Petri Nets with
inhibitor arcs and read arcs, generalized with an acceptance crietria for the mod-
elling of ω-regular liveness properties. We outlined the proof for strong bisimilar-
ity between the transition system for the DCR graph and the transition system
for the resulting Petri Net, also preserving the acceptance criteria of finite and
infinite executions.

We believe the work in the present paper provides a plethora of research
avenues, which we aim to explore in future work. Concretely, we plan to extend
the transformation from the core DCR relations to include features of later
versions, in particular to cover Timed DCR graphs [12], thereby providing a
complete mapping from Timed DCR graphs to safe Timed Arc Petri Nets and
also extend the strong bisimulation correspondence to support this case. We
plan to evaluate the space complexity of the mapping and the complexity of
the resulting models by using the DisCoveR [3] miner to mine DCR Graphs
from well-known, real-life, public event logs and map these to their Petri Net
counter parts. We also aim to improve the optimization step by using DCR
Event-Reachability[18] and by detecting handmade rules such as in [38].

As seen by our running example, the mapping nicely captures concurrency
between independent events. This could potentially also be combined with a
mapping from Petri Nets to BPMN [9], to provide an output following an ISO
standard process notation. Finally we aim to integrate the existing mapping
from safe Timed Arc Petri Nets to Timed Automata [34] to provide a link from
DCR Graphs to Timed Automata.

Transforming Dynamic Condition Response graphs to safe Petri Nets 21

References

[1] Wil M.P van der Aalst and Maja Pesic. “DecSerFlow: Towards a Truly
Declarative Service Flow Language”. In: Proceedings of Web Services and
Formal Methods (WS-FM 2006). Ed. by M. Bravetti, M. Nunez, and Gi-
anluigi Zavattaro. Vol. 4184. 2006, pp. 1–23.

[2] T Agerwala. “A complete model for representing the coordination of asyn-
chronous processes”. In: (1974). Hopkins Computer Research Report 32.

[3] C.O. Back et al. “DisCoveR: accurate and efficient discovery of declarative
process models”. In: Int Journal of Software Tools Technology Transfer 24
(2022), pp. 563–587.

[4] Paolo Baldan et al. “Functional concurrent semantics for petri nets with
read and inhibitor arcs”. In: CONCUR 2000—Concurrency Theory: 11th
International Conference University Park, PA, USA, August 22–25, 2000
Proceedings 11. Springer. 2000, pp. 442–457.

[5] Joakim Byg, Kenneth Yrke Jørgensen, and Jǐŕı Srba. “An Efficient Transla-
tion of Timed-Arc Petri Nets to Networks of Timed Automata”. In: Formal
Methods and Software Engineering. Ed. by Karin Breitman and Ana Cav-
alcanti. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, pp. 698–716.
isbn: 978-3-642-10373-5.

[6] Joakim Byg, Kenneth Yrke Jørgensen, and Jǐŕı Srba. “TAPAAL: Editor,
Simulator and Verifier of Timed-Arc Petri Nets”. In: Automated Technol-
ogy for Verification and Analysis. Ed. by Zhiming Liu and Anders P. Ravn.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, pp. 84–89. isbn: 978-
3-642-04761-9.

[7] Johannes De Smedt et al. “A full R/I-net construct lexicon for declare
constraints”. In: Available at SSRN 2572869 (2015).

[8] Søren Debois, Thomas T Hildebrandt, and Tijs Slaats. “Replication, refine-
ment & reachability: complexity in dynamic condition-response graphs”.
In: Acta Informatica 55.6 (2018), pp. 489–520.

[9] Remco M Dijkman, Marlon Dumas, and Chun Ouyang. “Formal semantics
and analysis of BPMN process models using Petri nets”. In: Queensland
University of Technology, Tech. Rep (2007), pp. 1–30.

[10] Rik Eshuis et al. “Deriving Consistent GSM Schemas from DCR Graphs”.
In: Service-Oriented Computing. Ed. by Quan Z. Sheng et al. Cham: Springer
International Publishing, 2016, pp. 467–482. isbn: 978-3-319-46295-0.

[11] Olivier Finkel. “On the High Complexity of Petri Nets ω-Languages”. In:
International Conference on Applications and Theory of Petri Nets and
Concurrency. Springer. 2020, pp. 69–88.

[12] Thomas Hildebrandt et al. “Contracts for cross-organizational workflows
as timed Dynamic Condition Response Graphs”. In: The Journal of Logic
and Algebraic Programming 82.5 (2013). Formal Languages and Analysis of
Contract-Oriented Software (FLACOS’11), pp. 164–185. issn: 1567-8326.
doi: https://doi.org/10.1016/j.jlap.2013.05.005. url: https://
www.sciencedirect.com/science/article/pii/S1567832613000283.

22 Vlad Paul Cosma, Thomas T. Hildebrandt, and Tijs Slaats

[13] Thomas T. Hildebrandt and Raghava Rao Mukkamala. “Declarative Event-
Based Workflow as Distributed Dynamic Condition Response Graphs”. In:
PLACES. 2010, pp. 59–73.

[14] Thomas T. Hildebrandt et al. “Contracts for cross-organizational work-
flows as timed Dynamic Condition Response Graphs”. In: Journal of Logic
and Algebraic Programming 82.5-7 (2013), pp. 164–185.

[15] Thomas T. Hildebrandt et al. “Decision Modelling in Timed Dynamic Con-
dition Response Graphs with Data”. In: Business Process Management
Workshops - BPM 2021 International Workshops, Rome, Italy, September
6-10, 2021, Revised Selected Papers. Ed. by Andrea Marrella and Bar-
bara Weber. Vol. 436. Lecture Notes in Business Information Processing.
Springer, 2021, pp. 362–374. doi: 10.1007/978-3-030-94343-1_28.
url: https://doi.org/10.1007/978-3-030-94343-1%5C_28.

[16] Lom-Messan Hillah et al. “Extending PNML scope: A framework to com-
bine Petri nets types”. In: Transactions on Petri Nets and Other Models
of Concurrency VI. Springer, 2012, pp. 46–70.

[17] Lom-Messan Hillah et al. “PNML Framework: an extendable reference im-
plementation of the Petri Net Markup Language”. In: International Con-
ference on Applications and Theory of Petri Nets. Springer. 2010, pp. 318–
327.

[18] Tróndur Høgnason and Søren Debois. “DCR Event-Reachability via Ge-
netic Algorithms”. In: Business Process Management Workshops. Ed. by
Florian Daniel, Quan Z. Sheng, and Hamid Motahari. Cham: Springer
International Publishing, 2019, pp. 301–312. isbn: 978-3-030-11641-5.

[19] Zhaoxia Hu and Sol M Shatz. “Mapping UML Diagrams to a Petri Net
Notation for System Simulation.” In: SEKE. Citeseer. 2004, pp. 213–219.

[20] Richard Hull et al. “Introducing the guard-stage-milestone approach for
specifying business entity lifecycles”. In: Proc. of WS-FM’10. Berlin, Hei-
delberg: Springer-Verlag, 2011, pp. 1–24. isbn: 978-3-642-19588-4.

[21] Hugo A. López et al. “The Process Highlighter: From Texts to Declara-
tive Processes and Back”. In: Proceedings of the Dissertation Award and
Demonstration, Industrial Track at BPM 2018. Vol. 2196. 2018. url: CEUR-
WS.org/VOL-2196/.

[22] Fabrizio Maria Maggi et al. “Monitoring Business Constraints with Linear
Temporal Logic: An Approach Based on Colored Automata”. In: Busi-
ness Process Management. Ed. by Stefanie Rinderle-Ma, Farouk Toumani,
and Karsten Wolf. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011,
pp. 132–147. isbn: 978-3-642-23059-2.

[23] Marco Montali. Specification and verification of declarative open interac-
tion models: a logic-based approach. Vol. 56. Springer Science & Business
Media, 2010.

[24] Marco Montali et al. “Declarative Specification and Verification of Service
Choreographiess”. In: ACM Trans. Web 4.1 (Jan. 2010). issn: 1559-1131.
doi: 10.1145/1658373.1658376. url: https://doi.org/10.1145/
1658373.1658376.

Transforming Dynamic Condition Response graphs to safe Petri Nets 23

[25] Ugo Montanari and Francesca Rossi. “Contextual nets”. In: Acta Infor-
matica 32 (1995), pp. 545–596.

[26] Raghava Rao Mukkamala. “A Formal Model For Declarative Workflows:
Dynamic Condition Response Graphs”. PhD thesis. IT University of Copen-
hagen, June 2012.

[27] Raghava Rao Mukkamala and Thomas T. Hildebrandt. “From Dynamic
Condition Response Structures to Büchi Automata”. In: 2010 4th IEEE
International Symposium on Theoretical Aspects of Software Engineering.
2010, pp. 187–190. doi: 10.1109/TASE.2010.22.

[28] H̊akon Norman et al. “Zoom and Enhance: Action Refinement via Subpro-
cesses in Timed Declarative Processes”. In: Business Process Management
- 19th International Conference, BPM 2021, Rome, Italy, September 06-
10, 2021, Proceedings. Ed. by Artem Polyvyanyy et al. Vol. 12875. Lecture
Notes in Computer Science. Springer, 2021, pp. 161–178. doi: 10.1007/
978-3-030-85469-0_12. url: https://doi.org/10.1007/978-3-030-
85469-0%5C_12.

[29] Amir Pnueli. “The temporal logic of programs”. In: 18th Annual Sympo-
sium on Foundations of Computer Science (sfcs 1977). 1977, pp. 46–57.
doi: 10.1109/SFCS.1977.32.

[30] Viara Popova and Marlon Dumas. “From Petri Nets to Guard-Stage-
Milestone Models”. In: Business Process Management Workshops. Ed. by
Marcello La Rosa and Pnina Soffer. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2013, pp. 340–351. isbn: 978-3-642-36285-9.

[31] Johannes Prescher, Claudio Di Ciccio, and Jan Mendling. “From Declara-
tive Processes to Imperative Models.” In: SIMPDA 1293 (2014), pp. 162–
173.

[32] Ivo Raedts et al. “Transformation of BPMN Models for Behaviour Analy-
sis.” In: MSVVEIS 2007 (2007), pp. 126–137.

[33] Tijs Slaats. “Flexible Process Notations for Cross-organizational Case Man-
agement Systems”. PhD thesis. IT University of Copenhagen, Jan. 2015.

[34] Jǐŕı Srba. “Timed-Arc Petri Nets vs. Networks of Timed Automata”. In:
Applications and Theory of Petri Nets 2005. Ed. by Gianfranco Ciardo
and Philippe Darondeau. Berlin, Heidelberg: Springer Berlin Heidelberg,
2005, pp. 385–402. isbn: 978-3-540-31559-9.

[35] Tony Spiteri Staines. “Intuitive Mapping of UML 2 Activity Diagrams into
Fundamental Modeling Concept Petri Net Diagrams and Colored Petri
Nets”. In: 15th Annual IEEE International Conference and Workshop on
the Engineering of Computer Based Systems (ecbs 2008). 2008, pp. 191–
200. doi: 10.1109/ECBS.2008.12.

[36] D. Thapa, S. Dangol, and Gi-Nam Wang. “Transformation from Petri
Nets Model to Programmable Logic Controller using One-to-One Mapping
Technique”. In: International Conference on Computational Intelligence
for Modelling, Control and Automation and International Conference on
Intelligent Agents, Web Technologies and Internet Commerce (CIMCA-

24 Vlad Paul Cosma, Thomas T. Hildebrandt, and Tijs Slaats

IAWTIC’06). Vol. 2. 2005, pp. 228–233. doi: 10. 1109/CIMCA. 2005.
1631473.

[37] Rüdiger Valk. “Infinite behaviour of Petri nets”. In: Theoretical computer
science 25.3 (1983), pp. 311–341.

[38] HMWVerbeek et al. “Reduction rules for reset/inhibitor nets”. In: Journal
of Computer and System Sciences 76.2 (2010), pp. 125–143.

[39] Nianhua Yang et al. “Modeling UML Sequence Diagrams Using Extended
Petri Nets”. In: 2010 International Conference on Information Science and
Applications. 2010, pp. 1–8. doi: 10.1109/ICISA.2010.5480384.

[40] Dmitry A. Zaitsev. “Toward the Minimal Universal Petri Net”. In: IEEE
Transactions on Systems, Man, and Cybernetics: Systems 44.1 (2014),
pp. 47–58. doi: 10.1109/TSMC.2012.2237549.

Chapter 9 | Verifiable declarative process models

9.2 Static and Dynamic Techniques for Iter-
ative Test-Driven Modelling of Dynamic
Condition Response Graphs

Remark 9.2. This work is an invited journal paper, currently under review,
for Data and Knowledge Engineering journal special issue on Augmented
Business Process Management1. It contains and extends material from two
previous conference papers of my co-authors:

1. Paper 1 [119]: Slaats T, Debois S, Hildebrandt T. Open to change:
A theory for iterative test-driven modelling. InBusiness Process Man-
agement: 16th International Conference, BPM 2018, Sydney, NSW,
Australia, September 9–14, 2018, Proceedings 16 2018 (pp. 31-47).
Springer International Publishing.

2. Paper 2 [35]: Christfort AK, Slaats T. Efficient Optimal Alignment
Between Dynamic Condition Response Graphs and Traces. InInterna-
tional Conference on Business Process Management 2023 Sep 1 (pp.
3-19). Cham: Springer Nature Switzerland.

1https://www.sciencedirect.com/journal/data-and-knowledge-engineering/
about/call-for-papers#augmented-business-process-management

128

https://www.sciencedirect.com/journal/data-and-knowledge-engineering/about/call-for-papers#augmented-business-process-management
https://www.sciencedirect.com/journal/data-and-knowledge-engineering/about/call-for-papers#augmented-business-process-management

Static and Dynamic Techniques for
Iterative Test-Driven Modelling of

Dynamic Condition Response Graphs

Axel K. F. Christforta, Vlad Paul Cosmaa, Søren Deboisb, Thomas T.
Hildebrandta, Tijs Slaatsa

aDepartment of Computer Science, Copenhagen University, Copenhagen
Ø, 2100, Denmark

bDCR Solutions, Copenhagen S, 2300, Denmark

Abstract

Test-driven declarative process modelling combines process models with test
traces and has been introduced as a means to achieve both the flexibility
provided by the declarative approach and the comprehensibility of the im-
perative approach. Open test-driven modelling adds a notion of context to
tests, specifying the activities of concern in the model, and has been intro-
duced as a means to support both iterative test-driven modelling, where the
model can be extended without having to change all tests, and unit testing,
where tests can define desired properties of parts of the process without need-
ing to reason about the details of the whole process. The openness however
makes checking a test more demanding, since actions outside the context are
allowed at any point in the test execution and therefore many different traces
may validate or invalidate an open test. In this paper we combine previously
developed static techniques for effective open test-driven modelling for Dy-
namic Condition Response Graphs with a novel efficient implementation of
dynamic checking of open tests based on alignment checking. We illustrate
the static techniques on an example based on a real-life cross-organisational
case management system and benchmark the dynamic checking on models
and tests of varying size.

Keywords: process modelling, declarative, test-driven, iterative, alignment
PACS: 0000, 1111
2000 MSC: 0000, 1111

Preprint submitted to Elsevier March 3, 2024

1. Introduction

Declarative process notations [1, 2, 3, 4, 5] and the more traditional im-
perative process notations [6] represent two complementary approaches to
process modelling. Declarative models explicitly define the rules for when
activities are allowed and required to be executed, but the possible execu-
tion sequences are not explicitly modelled and the reader must by oneself
represent the state of the process [7]. In contrast, imperative models do only
implicitly represent the rules satisfied by a process, but explicitly define the
possible execution sequences, making it more easy for a reader to understand
which paths are possible. For this reason, imperative notations are mostly
suitable for rigid processes that do not require many different paths and
where the underlying rules do not change too often. A declarative process
notation on the other hand offers flexibility by default, since an activity can
be executed unless it is explicitly forbidden by a rule. Moreover, it is much
easier to adapt a declarative process to accommodate changes in the rules,
since rules can simply be added or removed from the specification.

As an example, consider the trade union conflict handling process de-
scribed in [8], which is shown as a Dynamic Condition Response (DCR)
Graph [1, 9, 10, 11] in fig. 1a and a BPMN (Business Process Model and
Notation) collaboration [6] diagram in fig. 1b, representing respectively a
declarative and an imperative process notation supported by industrial de-
sign and execution tools.

(a) Declarative DCR Model (b) Imperative BPMN Model

Figure 1: DCR and BPMN models of Union and Employers Organisation conflict handling

2

The process starts by a trade union (Union) creates a case and send it to
the Union Organization (UO), the overarching organization of trade unions.
Then the UO must propose tentative meeting dates to the Employer Orga-
nization (not shown in the diagrams), after which the UO and the Employer
Organization hold a meeting to reach a settlement. At any point after the
case was created the Union and the UO can add a document to the case.

While the BPMN diagram shows the execution paths directly, the DCR
graph shows the rules: The orange arrow from Create Case to UploadDocument
with the bullet at the target denotes that Create Case is a condition for
UploadDocument, i.e. Create Case must have been executed at least once be-
fore UploadDocument can be executed. The blue arrow with the bullet at the
source from Create Case to Proposemeeting dates denotes that Proposemeeting dates
is a response to Create Case, i.e. after the case is created, the activity
Proposemeeting dates must eventually be executed. Similarly, the blue arrow
from Proposemeeting dates to Holdmeeting means that a meeting must even-
tually be hold after meeting dates have been proposed. A unique feature of
DCR graphs is that activities dynamically can be included and excluded from
the process during execution. Excluded activities cannot be executed and any
constraints related to them are ignored. The red arrow with the %-sign at
the target from Create Case to itself denotes that the activity Create Case ex-
cludes itself when executed, i.e. it can only happen once. The absence of
such red arrows for the other three activities means, that they can be re-
peated any number of times. In contrast, the BPMN process is more rigid,
since Proposemeeting dates and Holdmeeting must happen exactly once and
UploadDocument at most once for each actor. It would of course be possible
to create a BPMN model that offer exactly the same executions as the DCR
Graph, essentially by adding more loops to the diagram, but it would then
also become more difficult to read.

Inspired by the concept of test-driven development [12, 13] in software
engineering, Zugal et al. [7, 14] introduced the concept of test-driven mod-
elling (TDM) as a means to support the design and understanding of process
models. The idea of TDM is to define a set of desired execution sequences
as test cases and then use these test cases to guide the construction of the
model with the help of design tools that can automatically check if the model
satisfy the test cases. In this way, the user at the same time gets some of
the benefits of the declarative and the imperative modelling notations: Both
the rules and some of the desired execution sequences are specified explicitly,
without having to express all possible sequences.

3

Some examples of test-cases for the trade union conflict handling process
could be the following.

Example 1. In the conflict handling process above, desired execution se-
quences that can be used as test-cases are the following:

Create Case.Proposemeeting dates.Holdmeeting (1)

Create Case.Proposemeeting dates.Holdmeeting.UploadDocument (2)

The first sequence represents the simplest (happy) path, where no documents
are uploaded. The second sequence represents a path where also a document
is uploaded. An example of a test-case which is only satisfied by the DCR
Graph model is the following, where meeting dates are proposed twice:

Create Case.Proposemeeting dates.Proposemeeting dates.Holdmeeting (3)

Support for test-driven modelling has been included in the commercial
DCR design tools1 for DCR Graphs [15, 16, 17]. The DCR design tools
also allow for the specification of undesired execution sequences, referred to
as negative test cases. A negative test case for the running example would
be the sequence Create Case.Proposemeeting dates, i.e. where the meeting is
arranged without it being held. Another example would be the sequence
UploadDocument, where a document is added to a case before the case is
created.

As described in [7, 14], test-driven modelling may also be used during
iterative, incremental development of models, where tests are used as guide
for the development of the model. However, as pointed out in [18], test cases
given as execution sequences then often need to be updated, if the model
evolves. Consider for instance the addition of an activity Addmetadata to
the complaint process and the requirement that the Union must add some
meta-data information about the case (at least once) before it is created. This
would require the positive test cases to be changed to include at least one
Addmetadata activity before the Create Case activity. To support incremental
model evolution to be used with TDM more seamlessly, so-called open tests
was introduced in [18]. An open test pairs the test activity trace with a set
of activities defining the context of relevant activities for that trace, assumed

1Available freely for academic use at dcrsolutions.net

4

to include the activities in the trace. All activities outside the context can be
carried out at any point when running the test. In this way, test-cases can
remain relatively small in size and be defined in a manner that make them
robust against safe model extensions, as detailed in Sec. 5. Both positive and
negative open tests are allowed in [18]. A positive open test passes if and
only if there exists a model trace which is identical to the test case, if one
ignores the activities in the trace that are not in the context. A negative test
passes if and only if all model traces, projected to activities in the context,
are different from the test case.

For instance, we can express the first test case such that it holds both
for the original and in the refined model, if we consider the context as
{Create Case,Proposemeeting dates,Holdmeeting}. Similarly the negative test
case UploadDocument, expressing that a document can not be uploaded be-
fore a case has been created, just require the context {Create Case,UploadDocument}.

The work in [18] left open the definition of an algorithm for validating
tests. Instead, the paper introduced a notion of transparent process exten-
sions which preserve positive open tests and a notion of exclusion-safe process
extensions, which preserve negative open tests. The criteria for the two kinds
of extensions are static properties of the graph, which was shown to be veri-
fiable in polynomial time. It was also shown that the problem of validating
open tests could be reduced to a model-checking problem.

In the present paper, we show how to define the task of validating open
tests as an alignment task, exploiting the recent paper on efficient alignment
for DCR graphs [19], and introduce a number of novel search-space pruning
techniques that allow to further reduce the run-time cost of checking open
tests.

The task of alignment has most notably been used in conformance check-
ing [20] and involves doing synchronous moves, log moves and model moves
to show how well a trace, usually originating from an event log, fits to a
process model. A synchronous move refers to a move in the model which is
matched by a move in the log. A log move refers to a move in the log, without
making a move in the model, i.e. skipping over a step in the log. Conversely,
a model move refers to making a move in the model without making a move
in the log. Each kind of move has a cost as defined by a cost function.

The problem of validating open tests maps neatly to an alignment check-
ing problem, by using the cost function that assigns cost ∞ to log-moves
and model-moves inside the context, and cost 0 to synchronous-moves and
model-moves outside the context. In this way, the cost function effectively

5

implements the projection to activities in the context: If an activity is out-
side the context, it is free to perform this activity in the model without
taking a step in the log. If the activity is inside the context, the zero cost of
synchronous moves and infinite cost of log and model moves fully disallows
deviations between the log and the model.

We structure our paper as follows: In Sec. 2 we briefly discuss related
work. In Sec. 3 we first recall the notions of open tests [18] and then recall
the definition of Distributed Dynamic Condition Response (DCR) Graphs [1].
We provide an example of iterative test-driven modelling of a DCR Graph
inspired by the real case of a trade union process in Sec. 4. In Sec. 5 we then
recall the theory of iterative test driven modelling for DCR graphs based
on statically verified, safe extensions of DCR graphs [18]. In Sec. 6 we then
show how the validation of open tests is mapped to an alignment problem [19].
Sec. 3.1 contain results from experiments. Finally, we conclude and discuss
future work in Sec. 7. We provide the complete model of the trade union
process used for benchmarking the dynamic techniques in the appendix.

2. Related Work

2.1. Test-Driven Modelling
As described above, test-driven modelling (TDM) was introduced by Zu-

gal et al. in [7, 14] as an application of test-driven development to declarative
business processes. Their studies [7] indicate in particular the that simple
sequential traces are helpful to domain experts in understanding the under-
lying declarative models. The present approach generalises that of [7, 14]:
We define and study preservation of tests across model updates, alleviating
modularity concerns while preserving the core usability benefit of defining
tests via traces.

Connections between refinement, testing-equivalence and model-check-
ing was observed in [21]. But where we consider refinements guaranteeing
preservation of the projected language, the connection in [21] uses that a
refinement of a state based model (Büchi-automaton) satisfies the formula
the state based model was derived from. Our approach (and that of [22]) has
strong flavours of refinement. Indeed, the iterative development and abstract
testing of system models in the present paper is related to the substantial
body of work on abstraction and abstract interpretation, e.g., [23, 24, 25]. In
particular, an open test can be seen as a test on an abstraction of the system
under test, where only actions in the context of the test are visible. In this

6

respect, the abstraction is given by string projection on free monoids. We
leave for future work to study the ramifications of this relationship and the
possibilities of exploiting it in employing more involved manipulations than
basic extensions of the alphabet in the process of iterative development, such
as, e.g., allowing splitting of actions.

The synergy between static analysis and model checking is also being
investigated in the context of programming languages and software engineer-
ing [26]. In particular there have been proposals for using static analysis to
determine test prioritisation [27, 28] when the tests themselves are expensive
to run. Our approach takes the novel perspective of analysing the adapta-
tions to a model (or code), instead of analysing the current instance of the
model.

Test-driven modelling for declarative models has also been identified as a
form of hybrid business process representations [29], falling into the category
of representations that combine a declarative model with (more imperative)
tool support to aid their understandability [30, 31]. In particular the effect of
hybrid approaches towards improving the understandability of DCR Graphs,
which are closely related to the test-driven modelling approach presented
here, was investigated by Andaloussi et al. in [32, 33]. Other approaches to
hybrid business process representations tend to focus on the integration of
different process notations, either formal or informal, into a single [34, 35,
36, 37] or hierarchical [38, 39, 40] model.

2.2. Alignment
The term trace alignment [41] was introduced as a pre-processing step

to other process mining techniques, where traces where aligned against one
another in order to distinguish common from exceptional behaviour.

These days trace alignment primarily refers to the alignment of traces
against model behaviour and is seen as a cornerstone of conformance checking
[42]. [43] provides a thorough formal treatment of these concepts and defines
alignments between traces and models, provides methods for computing trace
alignment for petri nets, and shows general applications, namely regarding
conformance checking and process enhancement.

Much work has been done on improving the performance of alignment
algorithms. Lee et al. [44] recomposes conformance results of sub-problems
and present a divide-and-conquer based alignment framework and Reißner et
al. [45] propose a method of computing an combining the automatons corre-
sponding to both log and model. [46] proposes solving alignment problems

7

through optimized SAT-encodings. Other approaches suggest approximat-
ing alignments, i.e. using simulation [47], using subset selection and edit
distance [48], and using Trie data structures [49].

Other efforts have been made in extending alignments, namely comput-
ing online alignments of event streams [50], defining partial alignments over
partial traces [51], and computing alignments of data aware processes by
decomposition [52] and SMT-encoding respectively [53].

Beyond conformance checking, anti-alignments[54] have been introduced
to improve precision checking by unveiling model behaviour that deviates
from the observed behaviour.

Trace alignment of models has since been extended to cover many pro-
cess notations, including hybrid [55] and declarative notations, for example
through a mapping to the A∗ algorithm [56, 57] and a mapping to a planning
problem [58].

3. Preliminaries

In this section we first in Sec. 3.1 recall the general notion of open tests as
introduced in [18] and then in Sec. 3.2 recall Distributed Dynamic Condition
Response Graphs introduced in [8]2.

3.1. Open Tests
The theory of open tests is defined in terms of trace languages. First we

define open tests as an activity trace together with a set of activities.

Definition 2 (Open test cases and polarities). An open test case (c,Σ)
is a pair consisting of a finite sequence c ∈ Σ∗, and a set of activities Σ.
We write dom(c) ⊆ Σ for the set of activities appearing in c, i.e., when
c = ⟨e1.en⟩ we have dom(c) = {e1, . . . , en}. For a polarity ρ in {+,−},
we refer to t+ as a positive open test and t− as a negative test.

Example 3. Consider the set of activities Σ = {Create,Propose,Hold Document},
abbreviating respectively “Create case”, “Propose meeting dates”, “Hold meet-
ing” and “Upload Document”. We define an open test case t0:

t0 = (⟨Create.Propose.Hold.Document⟩,Σ) (4)

2We use a slightly modified presentation, that however define the same graphs.

8

A positive test case requires the presence of a trace in the model under test
that matches the test, whereas a negative test requires the absence of any
trace in the model that matches the test. A positive test t+0 being open
means that it can be validated by any traces in a model, over any set of ac-
tivities, whose projection to Σ is exactly ⟨Create.Propose.Hold.Document⟩.
For instance, an example of a model trace validating the test is the se-
quence ⟨Metadata.Create.Propose.Hold.Document⟩, for a model over the ac-
tivities Σ′ = {Metadata} ∪ Σ that in addition to Σ also contains an activity
Metadata abbreviating “Add Metadata”.

Example 4. Extending our previous example, define a negative open test as
follows:

t−1 = (⟨Hold⟩, {Create,Hold})− (5)

Intuitively, the negative open test t−1 requires that no trace in the model
under test, when projected to {Create,Hold}, is exactly Hold. That is, this
test models the requirement that one may not Hold a meeting without first
Createing a case.

To formalise the validation of open tests we define the system under test
as simply a set L ⊆ Σ∗ of finite sequences over a set of activities Σ.

Definition 5. A system S = (L,Σ) is a language L of finite sequences over
a set of activities Σ.

We can now define under what circumstances positive and negative open
tests pass. First we introduce notation.

Notation. Let ϵ denote the empty sequence of activities. Given a sequence
s, write si for the ith element of s, and s|Σ defined inductively by ϵ|Σ =
ϵ, (a.s)|Σ = a.(s|Σ) if a ∈ Σ and (a.s)|Σ = s|Σ if a ̸∈ Σ. E.g, if s =
⟨Create.Propose.Hold⟩ is the sequence of test t0 above, then s|{Propose,Hold} =
⟨Propose.Hold⟩ is the projection of that sequence. We lift projection to sets
of sequences point-wise.

Definition 6 (Passing open tests). Let S = (L,Σ′) be a system and
t = (c,Σ) an open test case. We say that:

1. S passes the open test t+ iff there exists c′ ∈ L such that c′|Σ = c.

9

2. S passes the open test t− iff for all c′ ∈ L we have c′|Σ ̸= c.

S fails an open test tρ iff it does not pass it.

Notice how activities that are not in the context of the open test are
ignored when determining if the system passes.

Example 7 (System S, Iteration 1). Consider a system S = (L,Σ) with ac-
tivities Σ = {Create,Propose,Hold,Document} and as language L the subset
of sequences of Σ∗ such that the Hold is always preceded (not necessarily im-
mediately) by Propose, and Create is always succeeded (again not necessarily
immediately) by Hold.

Positive tests require existence of a trace that projects to the test case.
This system S passes the test t+0 for t0 = (⟨Create.Propose.Hold.Document⟩,Σ)
as defined above, since the sequence c′ = ⟨Create.Propose.Hold.Document⟩ in
L has c′|Σ = ⟨Create.Propose.Hold.Document⟩.

Negative tests require the absence of any trace that projects to the test
case. S also passes the test t−1 for t1 = (Hold, {Create,Hold}) since if there
were a c′ ∈ L s.t. c′|{Create,Hold} = Hold that would contradict that Create
should always appear before any occurrence of Hold.

Finally, consider the following positive test.

t+2 = (Create, {Create,Hold})+

The System S fails this test t+2 , because every sequence in L that contains
Create will by definition also have a subsequent Hold, which would then ap-
pear in the projection.

We note that a test either passes or fails for a particular system, never
both; and that positive and negative tests are dual: t+ passes iff t− fails and
vice versa.

Lemma 8. Let S = (L,Σ) be a system and t a test case. Then either (a) S
passes t+ and fails t−; or (b) S fails t+ and S passes t−.

Example 9 (Iteration 2, Test preservation). We extend our model of Example
7 with the additional requirement that the union must add metadata before
creating a case. To this end, we refine our system (L,Σ) to a system S ′ =
(L′,Σ′ = Σ ∪ {Metadata}) where Metadata abbreviates “Add Metadata”, and
L′ is the language over Σ′∗ that satisfies the original rules of Example 7 and
in addition that Create is always preceded by Metadata.

10

The explicit context ensures that the tests t+0 , t
−
1 , t

+
2 defined in the previ-

ous iteration remain meaningful. The system S ′ no longer has a trace

⟨Create.Propose.Hold.Document⟩

because Metadata is missing. Nonetheless, S ′ still passes the test t+0 , because
S ′ does have the trace:

c′ = ⟨Metadata.Create.Propose.Hold.Document⟩ ∈ L′

and the projection c′|Σ = ⟨Create.Propose.Hold.Document⟩ shows that t+0
passes S ′.

Similarly, S ′ still passes the test t−1 since for any c′ ∈ L′, if c′|Σ = ⟨Hold⟩
then c′ = ⟨c0.Hold.c1⟩ for some c0, c1 ∈ Σ′\Σ, but that contradicts the re-
quirement that Create must appear before any occurrence of Hold.

3.2. Distributed Dynamic Condition Response Graphs
In this section we recall the declarative language of Distributed Dynamic

Condition Response (DCR) Graphs [1] originally introduced as a formal lan-
guage for event-based workflows derived as a genernalisation of event struc-
tures [59]. The DCR language is a similar to DECLARE [4, 5] in that it is
a graph based language for the declaration of temporal constraints between
activities. Different from DECLARE is that a DCR graph also represent
the run-time state of a process using a so-called marking of activities. This
makes it possible to provide an operational semantics of DCR graphs like for
Petri Nets, by defining when an activity is enabled in a marking and how the
execution of an enabled activity updates the marking.

Formally, we define DCR graphs as attributed directed graphs 3

Definition 10. A DCR graph G is given by a tuple (E,M,R,@, L, l) where

(i) E is a finite set of events

(ii) M = (Ex,Re, In) ∈ P(E)× P(E)× P(E) is the marking

(iii) R ⊆ E × E is the set of relations between events

3We deviate slightly from the original presentation in[DCR Graph [1]] to be consistent
with later articles and defines slightly more general graph structures.

11

(iv) @ : R → Pne({→•, •→,→⋄,→+,→%}) is the relation type assignment

(v) L is the set of action labels

(vi) l : E → L is the labelling function assigning an action label to each
event

The marking M = (Ex,Re, In) describes the state of an event e in the
following way. If e has been executed at least once then e ∈ Ex. If e is
pending (i.e. it must eventually be executed) then e ∈ Re. If e is included
(i.e. it is currently relevant) then e ∈ In.

The relation type assignment assigns one or more relation types to each
edge. If →•∈ @(e, e′) we say that there is a condition from e to e′. If
•→∈ @(e, e′) we say that there is a response from e to e′. If →⋄∈ @(e, e′) we
say that there is a milestone from e to e′. If →+∈ @(e, e′) we say that there
is an inclusion from e to e′. If →%∈ @(e, e′) we say that there is an exclusion
from e to e′. We will often write eRe′ or eRe′ ∈ R for R ∈ @(e, e′).

We assume for simplicity in the the development of the static techniques
for itereative test-driven modelling that the set of events and activities are
the same and the labelling function is the identity. We will therefor also often
use the words activity and activities for event and events.

We introduce the notion of Distributed DCR Graph from [8] to facilitate
the presentation of the running example, which is an example of a process in-
volving three different roles. The development of the theory extends trivially
to include observance of roles, but will for simplicity of presentation ignore
the roles in the following.

Definition 11. A Distributed DCR graph is a tuple (E,M,R,@, L, l, by,Rl)

– (E,M,R,@, L, l) is a DCR Graph

– L is the set of activities

– ℓ : E → L is the labelling function, assigning activities to events

– Rl is a set of roles

– by : L → P(Rl) is the role assignment function, assigning zero or more
roles to activities.

We can now explain the DCR graph model of the Union process formally.

12

Example 12 (DCR graph of the trade union process). The distributed DCR
graph for the Union process shown in Figure 1a uses the response, condition
and exclude relations. The condition from Create Case to UploadDocument
models the requirement that a case must be created before documents can be
added to it. The response and condition from Create Case to Proposemeeting dates
models respectively that meeting dates must eventually be proposed af-
ter a case has been created and that a case must be created before meet-
ing dates can be proposed. Similarly for the condition and response rela-
tions from Proposemeeting dates to Holdmeeting. The marking of the graph
is (∅, ∅, {Create Case,Proposemeeting dates,UploadDocument,Holdmeeting}),
i.e. no activities have been executed, no activities are yet pending responses
and all activities are included. The roles are Rl = {uo, union, eo}, i.e. union
organisation, union and employer organisation respectively. The role as-
signment is given by by(Create Case) = {union}, by(UploadDocument) = Rl,
by(Proposemeeting dates) = {uo} and by(Holdmeeting) = {uo}.

The enabledness of an event can be determined by looking at the marking
of events immediately related to the activity by an incoming condition or
milestone relation the graph. To define enabledness formally we will use the
following notation.

Notation. When G is a DCR graph, we write, e.g., E(G) for the set of activ-
ities of G, Ex(G) for the executed activities in the marking of G, etc. In par-
ticular, we write M(e) for the triple of boolean values (e ∈ Ex, e ∈ Re, e ∈ In).
We write (→•e) for the set {e′ ∈ E | e′ →• e}, write (e•→) for the set
{e′ ∈ E | e •→ e′} and similarly for (e→+), (e→%) and (→⋄e).

Definition 13 (Enabled activities [1]). Let G = (E,M, R,@, L, l) be a
DCR graph, with marking M = (Ex,Re, In). An event e ∈ E is enabled,
written e ∈ enabled(G), iff (a) e ∈ In and (b) In ∩ (→•e) ⊆ Ex and (c)
(Re ∩ In) ∩ (→⋄e) = ∅.

That is, enabled activities (a) are included, (b) their included conditions
have already been executed, and (c) have no pending included milestones.

The effect of executing an activity only changes the marking of the exe-
cuted activity and activities related to it by outgoing response, inclusion or
exclusion edge from the executed activity.

13

Definition 14. Let G be a DCR graph with marking M = (Ex,Re, In).
The effect of executing an enabled event e is the marking effectG(M, e) =
(Ex′, Re′, In′) where

Ex′ =Ex ∪ {e}
Re′ =(Re \ {e}) ∪ (e•→)

In′ =(In \ (e→%) ∪ (e→+)

We write execute(G, e) for the DCR Graph obtained by replacing the marking
of G with effectG(M, e). We write G →e G′ for G′ = execute(G, e). For a
sequence of events ϕ = ⟨e1, ..., en⟩, we write G →∗

ϕ Gn as shorthand for
G →e1 G1... →en Gn.

Definition 15 (Accepting). Let G be a DCR graph, with marking M =
(Ex,Re, In). We say that G is accepting, written accepting(G), iff In∩Re = ∅.

Definition 16 (Runs). A sequence of events ϕ is a run of a DCR Graph iff
G →∗

ϕ G′. It is an accepting run iff accepting(G′). . The language lang(G0)

of G0 is then the set of all such accepting runs. Write Ĝ for the corresponding
system Ĝ = (lang(G),E) (viz. Definition 5). When no confusion is possible,
we denote by simply G both a DCR graph and its corresponding system Ĝ.

Notation. We lift the labelling function to also work on runs, giving us the
shorthand ℓ(ϕ) = ⟨ℓ(e1)...ℓ(en)⟩ for a run ϕ = ⟨e1, ..., en⟩.

4. Example of Iterative Open Test-Driven Modelling

We will consider a series of extensions of the running example shown in
Fig. 2 to exemplify an iterative development of a distributed DCR Graph
model. Fig. 2a shows the initial model shown in Fig. 1, which we refer to
as the iteration 1 model. The process we eventually develop conforms to the
currently running process at the Union Organization. The process exists to
ensure that the Union, UO and EO handle complaints from union members
following the agreed on protocol.

Example 17 (DCR Iteration 2). Following Ex. 9, we extend the iteration
1 model of Fig. 2a to the iteration 2 model in Fig. 2b. We model the new
requirement that metadata must be provided before creating a case by adding
a new activity Metadata and a condition relation from Metadata to Create.

14

(a) I1: Iteration 1 (b) I2: Iteration 2 (c) I′3: Iteration 3’

(d) I3: Iteration 3 (e) I4: Iteration 4

Figure 2: DCR Graph models of the case handling Examples 3–20.

Example 18 (Non-preservation of non-open tests). We emphasize that if we
interpret the trace s = ⟨Create.Propose.Hold.Document⟩ underlying the test
t+0 as a test in the sense of [7, 14], that test is not preserved when we extend
the system from (L,Σ) to (L′,Σ′): The original system L has the behaviour
s, but the extension L′ does not.

Example 19 (Iteration 2, Additional tests). We add the following additional
tests for the new requirements of Iteration 2.

t−3 = (⟨Create,Propose,Hold,Document⟩,Σ′)−

Note that the trace of t3 is the same as the original test t0; the two tests
differ only in their context. This new test says that in a context where we
know about the Metadata activity, omitting it is not allowed.

15

The use of a context in open tests means that changes to a model will
as in the above cases often preserve open test outcomes, obviating the need
to re-check tests after the change. This is however not generally the case, as
illustrated by the following example.

Example 20 (Iteration 3). The meeting may be cancelled, e.g. if the union
decides to drop the case, therefore no meeting will be held. We model this
by adding an activity “Cancel meeting”, abbreviated as Cancel, to the set of
activities Σ′ and constrain the language L′ accordingly. Now the system will
pass the test t+2 = (Create, {Create,Hold})+ defined above, because it has a
trace that contains Create but no Hold: the sequence in which the Union
Organization proposes a meeting date and subsequently cancels it.

Example 21 (DCR Iteration 3). Following Example 20, we extend the itera-
tion 2 model of Figure 2b to the iteration 3 model in Figure 2d. To model the
cancellation of a proposed meeting, we add the activity Cancel and exclude-
relations between Cancel and Hold. This models the choice between those
two activities: Once one is executed, the other is excluded and no longer
present in the model. To model subsequent meeting proposals, we add an
include relation from Propose to Cancel and Hold: if the union proposes new
meeting dates, the activities Cancel and Hold become included once again,
re-enabling the decision to hold or cancel a meeting.

Example 22 (DCR Iteration 4). We now add a new activity “EO Accept” to
the model of Figure 2d in Figure 2e. Using response and include relation
pair from Propose to Accept we model that after UO proposes a meeting date
EO must Accept the meeting date; and by adding a milestone from Accept
to Hold we model that a meeting may not be held while we are waiting for
EO to Accept the meeting date. Finally, we add exclude-relations between
Accept and Cancel to model the choice EO has at this step in the process.

We proceed in the next section to recall from [18] the static techniques
for iterative open test-driven modelling of DCR Graphs.

5. Static Techniques for Iterative Open Test-Driven Modelling of
DCR Graphs

The following Proposition from [18] gives general conditions for when
outcomes of positive (resp. negative) tests for a system S are preserved
when the system is changed to a new system S ′.

16

Proposition 23 (Preservation of tests[18]). Let S = (L,Σ) and S ′ =
(L′,Σ′) be systems, and let t = (ct,Σt) be a test case. Assume that Σ′ ∩Σt ⊆
Σ′ ∩ Σ. Then:

1. If L′|Σ ⊇ L and S passes t+, then so does S ′.

2. If L′|Σ ⊆ L and S passes t−, then so does S ′.

In words, the assumption Σ′∩Σt ⊆ Σ′∩Σ states that the changed system
S ′ does not introduce activities appearing in the context of the test that
did not already appear in the original system S. Condition 1 (resp. 2)
expresses that positive (resp. negative) tests are preserved if the language
of the original system S is included in (resp. including) the language of the
changed system S ′ projected to the activities in the original system. Now, if
one can find static properties of changes to process models for a particular
notation that implies the conditions of Proposition 23 then these properties
can be checked instead of relying on model-checking to infer preservation
of tests. We identified such static properties for the Dynamic Condition
Response (DCR) graphs in [18]

We consider the situation that a graph G′ extends a graph G by adding
activities and relations. Recall the notation M(e) = (e ∈ Ex, e ∈ Re, e ∈ In).

Definition 24 (Extensions). Let

G = (E,M, R,@, L, l) and G′ = (E ′,M′, R′,@′, L′, l′)

be DCR graphs. We say that G′ statically extends G and write G ⊑ G′

iff E ⊆ E′, R ⊆ R′, @ ⊆ @′, L ⊆ L′ and ℓ ⊆ ℓ′. If also e ∈ E implies
M(e) = M′(e), we say that G′ dynamically extends G and write G ⪯ G′.

Our main analysis technique will be the application of Proposition 23. To
this end, we need ways to establish the preconditions of that Theorem, that
is:

lang(G′)|E ⊇ lang(G) (†)
lang(G′)|E ⊆ lang(G) (‡)

Example 25. Consider the graphs I1 of Figure 2a and I2 of Figure 2b. Clearly
I1 ⊑ I2 since I2 contains all the activities and relations of I1. Moreover, since
the markings of I1 and I2 agree, also I1 ⪯ I2. Similarly, I3 ⊑ I4, where I3 and
I4 are the graphs of Figures 2d and 2e. On the other hand, neither I2 ⊑ I3
nor I2 ⊑ I4, since the former graphs have relations (e.g., the exclusions and
the milestone) not in the latter.

17

We note that DCR activity execution preserves static extensions, i.e. if
G ⊑ G′ and an activity e is enabled in both G and G′ then G1 ⊑ G′

1, if G1

and G′
1 are the results of executing e in G and G′ respectively. Dynamic ex-

tension is generally not preserved by execution, because an execution might
make markings between the original and extended graph differ on the orig-
inal activities, e.g., if G′ adds an exclusion, inclusion or response constraint
between activities of E.

5.1. Positive tests
We first establish a syntactic condition for a modification of a DCR graph

to preserve positive tests. The condition will be, roughly, that the only new
relations are either (a) between new activities, or (b) conditions or milestones
from new to old activities. For the latter, we will need to be sure we can find
a way to execute enough new activities to satisfy such conditions and mile-
stones. To this end, we introduce the notion of dependency graph, inspired
by [60].

Definition 26 (Dependency graph). Let G = (E,M, R,@, L, l) be a DCR
graph, and let e, f, g ∈ E be activities of G. Write e → f whenever e →• f ∈
R or e →⋄ f ∈ R and →∗ for the transitive closure. The dependency graph
D(G, e) for e is the directed graph which has nodes {f | g →∗ e ∧ g •→∗ f}
and an edge from node f to node g iff f → g or f •→ g in G.

With the notion of dependency graph, we can define the notion of “safe”
activities, intuitively those that can be relied upon to be executed without
having undue side effects on a given (other) set of nodes X. The principle
underlying this definition is inspired by the notion of dependable activity
from [60].

Definition 27 (Safety). Let G = (E,M, R,@, L, l) be a DCR graph, let
e ∈ E be an activity of G, and let X ⊆ E be a subset of the activities of G.
We say that e is safe for X iff

1. D(G, e) is acyclic,

2. no f ∈ D(G, e) has an include, exclude, or response relation to any
x ∈ X.

3. for any f ∈ D(G, e), if f has a condition or milestone to some f ′ ∈ E,
then f ′ is reachable from f in D(G, e).

18

The notion of safe activity really captures activities that can reliably
(without side effects) be executed if they are conditions or milestones for other
activities. We use this to define a notion of transparent process extensions:
a process extension which we shall see preserves positive tests.

Definition 28 (Transparent). Let

G = (E,M, R,@, L, l) and G′ = (E ′,M′, R′,@′, L′, l′)

be DCR graphs with G ⊑ G′. We say that G′ is transparent for G iff for all
e, f ∈ E and e′, f ′ ∈ E′ we have:

1. if e′Rf ′ ∈ R′ for R ∈ {→•,→⋄} then either e′Rf ′ ∈ R or (a) e′ ̸∈ E,
(b) e′ is safe for E, and (c) E(D(G′, e′)) ⊆ E′ \ E,

2. for R ∈ {→+,→%, •→} we have eRf ∈ R′ iff eRf ∈ R.

3. for R ∈ {→+, •→} we have if eRe′ ∈ R′ or e′ ∈ Re(G′) then e′ ∈ E

We rephrase these conditions more intuitively. Call an activity e ∈ E an
old activity, and an activity e′ ∈ E′\E a new activity. The first item then says
that we can never add conditions or milestones from old activities and only
add a condition or milestone to an old activity when the new activity is safe,
that is, we can rely on being able to discharge that milestone or condition.
The second item says that we cannot add exclusions, inclusions or responses
between old activities. The third says that we also cannot add inclusions or
responses from old to new activities, or add a new activity which is initially
pending in the marking, which could cause the new graph to be less accepting
than the old. Inclusions, exclusions and responses may be added from a new
to an old activity; the interplay of condition 1 of Definition 28 and condition
2 of Definition 27 then implies that this can only happen if the new activity
is not in the dependency graph of any old activity. The reason is, that such
constraints can be vacuously satisfied since the new activity at the source of
the constraint is irrelevant with respect to passing any of the positive tests.

Example 29. It is instructive to see how violations of transparency may
lead to non-preservation of positive tests. An extension such as the one
from I2 to I ′3 consisting of the addition of the new activity “Prepare docu-
ments for meeting” along with the relations Document →• Prepare →• Hold,
Propose →⋄ Document which break the positive test t+0 . In I ′3 we now force

19

Document to happen before the first Hold and any time after Propose. These
changes violate item 1 from Definition 28.

Also consider the change from I2 to I3. Although we have a new inclusion
relation Propose →+ Hold between two old activities, it does not violate
transparency for this specific marking. Consider however a different marking
where Hold /∈ In is not included. In this case the new include relation would
break any positive tests. This violation breaks items 2 from definition 28.

Theorem 30. Let G ⪯ G′ with G′ transparent for G, and let t+ = (ct,Σt)
+

be a positive test with Σt ⊆ E. If G passes t then so does G′.

Example 31 (Preservation). Consider the change from the graph I1 of Fig-
ure 2a to the graph I2 of Figure 2b: We have added the activity Metadata
and the condition Metadata →• Create. In this case, I2 is transparent for I1:
The new activity Metadata satisfies Definition 28 part (1c): even though a
new condition dependency is added for Create, the dependency graph for the
new Create remains acyclic. By Theorem 30, it follows that any positive test
whose context is contained in {Create,Propose,Hold,Document} will pass I2
if it passes I1. In particular, we saw in Example 7 that I1 passes the test t+0 ,
so necessarily also I2 passes t+0 .

Now consider the changes as observed when extending I3 to I4. The new
activity is Accept. Because we add a milestone relations between a new and
an old activity we have to check item 1 from Definition 28. Therefore we ask
(a) is Accept a new activity? Yes; (b) is Accept safe? Yes (we construct the
dependency graph D(I4, Accept) and apply Definition 27); (c) Are the activ-
ities in the dependency graph D(I4,Accept) a subset of only new activities?
Yes (the dependency graph is the empty graph). We can therefore conclude
that the extension I4 is a transparent extension of I3.

5.2. Negative tests
For negative tests we must establish the inclusion (‡) stated after Def-

inition 24. This inclusion was investigated previously in [61, 22], with the
aim of establishing more general refinement of DCR graphs. Definition 24
is a special case of refinement by merging, investigated in the above papers.
Hence, we use the sufficient condition for such a merge to be a refinement
from [22] to establish a sufficient condition, exclusion-safety for an extension
to preserves negative tests.

20

Definition 32 (Exclusion-safe). Suppose G = (E,M, R,@, L, l) and G′ =
(E ′,M′, R′,@′, L′, l′) are DCR graphs and that G′ dynamically extends G. We
say that G′ is exclusion-safe for G iff for all e ∈ E and e′ ∈ E′ we have that:

1. if e′ →% e ∈ R′ then e′ →% e ∈ R.

2. if e′ →+ e ∈ R′ then e′ →+ e ∈ R.

Theorem 33. Suppose G ⪯ G′ are DCR graphs with G′ exclusion-safe for
G, and suppose t− = (ct,Σt)

− is a negative test with with Σt ⊆ E. If G
passes t then so does G′.

Example 34 (Application). Consider again the change from I1 to I2 in Fig-
ure 2a and 2b. Since neither contains inclusions or exclusions, clearly I2 is
exclusion-safe for I1. By Theorem 33 it follows that any negative test whose
context is contained in {Create,Propose,Hold,Document} which passes I1 will
also pass I2. In particular, the negative test t−1 = (⟨Hold⟩, {Create,Hold})−
of Example 7 passes I1, so by Theorem 33 it passes also I2.

Example 35 (Non-application). The changes from I2 to I3 (Figures 2b and
2d), where amongst other changes we have added an activity Cancel and a
relation Cancel →% Hold violate exclusion-safety.

In this case, we can find a negative test that passes I2 but not I3: t−2 =
⟨Create⟩, {Create,Hold}−. It passes both I1 and I2, because in both of these,
Create leaves Propose pending and which subsequently leaves Hold pending,
whence one needs to execute both Propose and Hold to get a trace of the
process. But in I3 (and I4), we can use Cancel to exclude the pending Hold.
So I3 has a trace ⟨Create,Propose,Cancel⟩, and the projection of this trace to
the context {Create,Hold} of our test is the string ⟨Create⟩: The test fails in
I3 (and I4).

The prerequisites of both Theorem 30 and 33 are effectively computable.

Theorem 36. Let G ⪯ G′ be DCR graphs. It is decidable in time polynomial
in the maximum size of G,G′ whether (1) G′ is exclusion-safe for G and (2)
G′ is transparent for G.

Should a model update fail to satisfy the prerequisites for Theorem36, we
proceed to “re-run” tests. We now show how one can use the theory of align-
ments for DCR Graphs [19] instead of the model-checking technique proposed
in [18]. Using alignments has the added benefit of alleviating the burden of

21

mapping the DCR Graph into a Büchi-automaton for model checking tools
and avoids the exponential space blowout of such a mapping [62]. Using
alignments also allow us to implement a way of pruning the search-space
based on the static constraints of the DCR graph, which will be introduced
in the coming section.

6. Applying Alignment to Test Driven Modeling

We first recall the definition of alignments between traces and DCR
graphs as defined in [19].

Definition 37 (Alignment and complete alignment). Let L be a set of
activity names, σ ∈ L∗ a trace, and G = (E,M, R,@, L, l) a DCR graph.

A pair (l, e) ∈ (L≫ × E≫) \ {≫,≫} is

◦ a move in log if l ∈ L and e =≫;

◦ a move in model if l =≫ and e ∈ E;

◦ a synchronous move if l ∈ L, e ∈ E and l = ℓ(e).

Let LA = (L≫ ×E≫) \ {≫,≫} be the set of legal moves. The alignment
of a trace σ and run ϕ ∈ E∗ is a sequence γ = ⟨(l1, e1)...(ln, en)⟩ ∈ L∗

A, s.t.
γσ = ⟨l1...ln⟩ and γϕ = ⟨e1...en⟩ (ignoring ≫). We say that γ is a complete
alignment of σ and G iff γσ = σ and γϕ is an accepting run of G.

Definition 38 (Optimal alignment). Let σ be a trace and G a DCR
graph. Let Γ(σ,G) be the set of all complete alignments of σ and G. Given
a cost function K, we now define an alignment γ ∈ Γ(σ,G) to be optimal, iff
∀γ′ ∈ Γ(σ,G).K(γ) ≤ K(γ′).

We now make the novel observation that the model checking task of
Test Driven Modelling maps neatly to an alignment checking problem when
using the cost function that assigns cost ∞ to log-moves and model-moves
inside the context, and cost 0 to synchronous-moves and model-moves outside
the context. We define the cost function here specifically for DCR Graphs
but note that it straightforwardly generalizes to any modelling notation by
removing the labelling function.

22

Definition 39. For a DCR graph G = (E,M, R,@, L, l) and the context of
a test case Σ, we define cost function KΣ

G as follows:

KΣ
G(l, e) =


0 when ℓ(e) ∈ Σ ∧ l = ℓ(e)

0 when ℓ(e) ̸∈ Σ ∧ l = ≫
∞ otherwise

We can now go about proving this property with an auxilliary lemma,
tying together alignment cost and the underlying runs projection onto a
context.

Lemma 40. Let G be a DCR graph and t = (c,Σ) a test case. For any
alignment γ of c and G under KΣ

G, we have that KΣ
G(γ) = 0 iff γϕ|Σ = c.

Proof (sketch). By induction on c. It is sufficient to consider a single step
l, e of the alignment.

(=⇒) Assume that KΣ
G(γ) = 0. By definition of KΣ

G, every move (l, e) ∈ γ
has either l = ℓ(e) ∈ Σ or l = ≫∧ ℓ(e) ̸∈ Σ. If ℓ(e) ∈ Σ then by definition of
KΣ

G we have l = ℓ(e) ∈ Σ and so ℓ(e)|Σ = ℓ(e) = l. If instead ℓ(e) ̸∈ Σ then
l = ≫ and ℓ(e)|Σ = ·.

(⇐=) Assume instead that γϕ|Σ = c. Consider some step l, e of γ. If
ℓ(e) ∈ Σ then ℓ(e)|Σ = ℓ(e). By definition also l ∈ Σ but then by assumption
l = ℓ(e) = ℓ(e)|Σ and the step has cost zero. If instead ℓ(e) ̸∈ Σ then ℓ(e)|Σ =
·. But then clearly l = ≫, and again the step has cost zero.

With this lemma, we can now state and prove that for a test case t =
(c,Σ), the cost of alignment between c and a graph G using KΣ

G matches
exactly with whether or not G passes the test t.

Theorem 41. Let G = (E,M, R,@, L, l) be a system modelled as a DCR
Graph and t = (c,Σ) a test case. Under the cost function KΣ

G we have that:

1. G passes the open test t+ iff any optimal alignment of c,G has cost 0.

2. G passes the open test t− iff any optimal alignment of c,G has cost ∞.

Proof. (1). G passes the open test t+ iff there exists a trace p s.t. p|Σ = c
iff (Lemma 40) there exists an alignment of c,G with cost 0 iff the optimal
alignment of c,G has cost 0. (2). G passes the open test t− iff forall traces x
x|Σ ̸= c iff (Lemma 40) forall traces x the alignment γ of G, c where γl = x
has cost ∞ iff any optimal alignment of G, c has cost ∞.

23

Having successfully mapped the problem of checking open tests, we can
now start to define a static check that prunes the search-space during align-
ment. In order to do this, we define the following check for when an event is
not reachable under a context.

Definition 42 (Non-reachability under context). Let e be an event in
a graph G with marking M = (Ex,Re, In), and let X be a set of events G.
We say that the event e is inaccessible under X in G iff e ∈ X or one of the
following holds:

(a) e ̸∈ In and forall e′ ∈ (→+e) we have e′ inaccessible in G under X∪{e}.

(b) There exists e′ ∈ (→•e) with e′ ̸∈ Ex, e′ ∈ In, e′ inaccessible in G
under X ∪ e; and forall e′′ ∈ (→%e′) also e′′ is inaccessible in G under
X ∪ {e, e′}.

(c) There exists e′ ∈ (→⋄e) with e′ ∈ Re, e′ ∈ In, e′ not accessible in G
under X ∪ {e}, and forall e′′ ∈ (→%e′) we have e′′ inaccessible in G
under X ∪ {e, e′}.

We now need to correlate this definition to the execution semantics of
DCR graphs, to which we start with enabledness.

Lemma 43. If an event e with e ̸∈ X is inaccessible in G under some X,
then e ̸∈ enabled(G).

Proof. Because e ̸∈ X, either (a), (b), or (c) of Definition 42 is true. It is
straightforward to verify that in either case, e is not enabled.

We can now show that this definition of non-reachability under a context
holds over any model-step outside the context.

Lemma 44 (Preservation of inaccessibility). let e, j be events such that
e is inaccessible in G under X, and j ̸∈ X. If G →j G

′, then e is inaccessible
in G′ under X.

Proof. By induction on the |E(G)| − |X|, that is, the number of events of G
not in X. For the base case, if 0 events of X are not in G, then X = E(G),
and every event is inaccessible in G, clearly also after executing some event.
For the inductive step, suppose the statement holds for any |E(G)|− |X| < k
for some k > 0.

24

If e ̸∈ X we are done. Because e is inaccessible in G under X, (a), (b), or
(c) of Definition 42 holds for G and X. We consider each in turn. Note first
that clearly j is not inaccessible in G because otherwise it was not enabled.
(a). It is enough to show that e ̸∈ In and inaccessible under X ∪ e also in
G′. For the former, suppose not. Then j →% e. But then j ̸∈ enabled(G);
contradiction. For the latter, we have e′ inaccessible in G under X ∪ {e}; by
IH e′ then inaccessible also in G′ under X ∪ {e}.
(b). We have some e′ ∈ (→•e) with e′ ̸∈ Ex, e′ ∈ In, e′ inaccessible in G under
X ∪ e; and forall e′′ ∈ (→%e′) also e′′ is inaccessible in G under X ∪ {e, e′}.
Clearly j ̸= e′ because e′ was not enabled in G, so e′ ̸∈ Ex′. Similarly, j did
not exclude e′, because then j would not have inaccessible in G and so not
enabled, so e ∈ In′. By IH, e′ is inaccessible in G under X ∪ {e} and also by
IH, so is any e′′ excluding e′′.
(c). We have some e′ ∈ (→⋄e) with e′ ∈ Re, e′ ∈ In, e′ not accessible in G
under X ∪ {e}, and forall e′′ ∈ (→%e′) we have e′′ inaccessible in G under
X ∪ {e, e′}. Again, e′ ∈ In′ because otherwise j would have been inaccessible
and thus not enabled in G; and for that reason also j ̸= e′ and so e′ ∈ Re′.
By IH, e′ is inaccessible in G under X ∪ {e} and also by IH, so is any e′′

excluding e′′.

Using this lemma, we can now show that non-reachability under a context
also holds for any run outside the context.

Lemma 45. let G be a graph, e an event of G, Σ a context, and assume that
ℓ(e) ̸∈ Σ. Take X = {e | ℓ(e) ∈ Σ}, and assume further that e is inaccessible
in G under X. Then any for run G →∗

ϕ G′ with ℓ(ϕ) ∈ Σ∁∗, we have e
inaccessible under X in G′.

Proof. By induction on the length of ϕ. The base case is trivial, so consider
G →∗

ϕ Gk →ϕk
Gk+1. By IH, we have e inaccessible under X in Gk. Wlog,

pick a j with ℓ(j) = ϕk causing the final transition. By assumption ℓ(j) =
ϕk ∈ Σ∁, so j ̸∈ X. By Lemma 45, e is inaccessible in Gk+1 under X.

Finally we can state a theorem, saying that if the next event of the test-
case is inaccessible under the context, the optimal alignment must have cost
∞.

Theorem 46. Let t = (c,Σ) be a test with sequence c = ⟨ℓ(e1), ..., ℓ(en)⟩
and G a DCR graph. Write X = {e | ℓ(e) ∈ Σ} Suppose a partial alignment

25

γi contains synchronous moves for c1..i with G →∗
γi

Gi. Then any optimal
alignment of ci+1 and Gi has cost ∞ under cost function KΣ

G if either:

1. i < n and ei+1 is inaccessible under X \ {ei+1} in Gi, or

2. i = n and ∃e ∈ Rei, s.t. e ∈ Ini, e is inaccessible under X in Gi, and
∀e′ ∈ (→%e) we have e′ is inaccessible under X in Gi.

Proof. By contradiction. Assume γi+1 is an optimal alignment of ci+1 and
Gi with cost 0.

1. Assume i < n etc. Because γi+1 is an optimal alignment of ci+1 and Gi

with cost 0, we must have (ℓ(ei+1), ei+1) ∈ γi+1. But ei+1 is inaccessible
under X \{ei+1}, so by Lemma 43 not enabled in Gi. It follows that we
must have some alignment γ′ ⊂ γi+1, s.t. ℓ(γ′

ϕ) ∈ Σ∁∗ with Gi →∗
γ′
ϕ
G′

with ei+1 ∈ enabled(G′). But by Lemma 45, ei+1 is inaccessible in G′

under X \ {ei+1}, and therefore not enabled in G′; contradiction.

2. Assume n = i etc. We have ci+1 = ⟨⟩ meaning any move in the align-
ment of ci+1 and Gi must have l =≫. As e ∈ Rei and e ∈ Ini, we must
execute or exclude e for Gi to become accepting, thus γi+1 contains a
move (≫, e) or (≫, e′) with e′ ∈ (→%e), and as γi+1 has cost 0, any
move (≫, j) ∈ γi+1 must have ℓ(j) ̸∈ Σ. As both e and e′ are inaces-
sible in Gi under ‘X, and any move contains j with ℓ(j) ̸∈ Σ we have
by Lemma 45 that e and e′ are inaccessible, and therefore by Lemma
43 not enabled, at any point during the alignment. This contradicts
either of them being in γi+1.

In practice, this means that for each step in our search we can perform a
relatively simple and computationally inexpensive static check, which verifies
if the next event in the test trace is inaccessible under the context. If this is
the case then it does not matter to further branch out the search space with
additional model moves, even if these are outside the context and therefore
have cost 0, as we know from the structure of the graph that they will never
enable the event we need to synchronize on. In this way we can prune large
branches of our search space.

26

Std / Std Std / Pruning Bit / Std Bit / Pruning
t0pos 0.50 0.68 0.20 0.50
t1neg 0.33 0.02 0.18 0.02
t2pos 2.44 2.72 0.69 1.13
t3neg 0.14 0.01 0.09 0.01
t4pos 0.60 0.65 0.24 0.36
t5pos 0.82 0.91 0.30 0.54
t6neg 2.80 0.83 0.81 0.56
t7neg 20.13 0.01 5.56 0.01
t8neg 5.01 1.72 1.37 1.38
t9neg 0.26 0.20 0.14 0.17
t10neg 117.79 0.36 28.07 0.36
t11pos 2.43 2.48 0.70 0.93
t12neg 57.40 34.29 13.95 7.96
t13pos 0.26 0.29 0.14 0.35
t14neg 0.37 0.37 0.19 0.35
t15pos 2.24 2.28 0.69 0.97
t16neg 0.14 0.10 0.09 0.13
t17neg 33.08 15.26 8.22 2.35
t18neg 4.41 1.68 1.26 0.84
Avg positive 1.33 1.43 0.42 0.68
Avg negative 20.15 4.57 4.99 1.18
Avg all 13.22 3.41 3.31 1.00

Table 1: Results for running the test-suite on the full model as seen in Appendix A. All
results denoted in milliseconds. All tests pass. Results are shown for all combinations of
standard vs bit implementation and with / without pruning based on theorem 46.

6.1. Benchmarking
We benchmark the above alignment mapping by checking 18 test cases4

against the full model as seen in Appendix A. We present the results for both
the standard alignment algorithm for DCR graphs [19] implemented in Type-
script and a new Typescript implementation5 implementing set-operations as
bit-operations as described in more detail in [63]. Both implementations are
run with and without online pruning of the search-space based on the result

4https://github.com/Axel0087/BitDCRAlign/blob/main/tests.json
5https://github.com/Axel0087/BitDCRAlign

27

of theorem 46. We show the full results seen in Table 1.
We note that for both positive and negative tests, using the bit imple-

mentation provides a significant speedup from an avg of 13.22ms down to
3.31ms. When looking at the effects of the pruning, we note that utiliz-
ing this approach is slightly slower for test-cases where an alignment can
be found. This slowdown is to be expected as the pruning is intended for
cases where the entire search-space must be exhausted, which is shown in the
case of the negative tests, where the average runtime is significantly reduced
for both implementations. Finally, it should be noted that this reduction
in the runtime on negative cases severely outweighs the increased runtime
on the positive cases as the negative tests are much more computationally
expensive.

7. Conclusion and Discussion

In this paper we extended the general theory for testing abstractions of
process models based on a notion of open tests as introduced in [18] by show-
ing how the problem of dynamically checking open tests against a model can
be mapped to an alignment-checking problem. We applied this mapping to
DCR Graphs, using efficient alignment-checking techniques from [19], intro-
duced additional novel search-space pruning techniques that are particularly
well suited to finding alignments for open tests, and implemented these algo-
rithms using efficient bit-operations. Finally we showed through experimen-
tation that (1) open tests on DCR Graphs of reasonable size can be checked
in milliseconds, (2) our pruning technique significantly reduces the run-time
of alignment checking by an factor of 4 in cases where the entire state-space
of the model needs to be explored, and (3) the use of bit-operation further
reduces the run-time by an additional factor of 4.

In future work we aim to investigate other techniques from the model
checking world such as ample sets or stubborn sets to further improve the
alignment performance. In addition we currently only support the basic def-
inition of DCR graphs and in the future we plan to extend our test approach
to handle also subprocesses, time and data. We also intend to further prune
the search-space of the alignment checking algorithm by taking into consid-
eration the independence relation between events [64].

28

Appendix A. Appendix: Complete UO/EO process

Figure A.3: Complete DCR Graph model of the case handling process

29

References

[1] T. Hildebrandt, R. R. Mukkamala, Declarative Event-Based Work-
flow as Distributed Dynamic Condition Response Graphs, in: Post-
proceedings of PLACES 2010, Vol. 69 of EPTCS, 2010, pp. 59–73.
doi:10.4204/EPTCS.69.5.

[2] H. A. Reijers, T. Slaats, C. Stahl, Declarative modeling–an academic
dream or the future for bpm?, in: Business Process Management,
Springer, 2013, pp. 307–322.

[3] Object Management Group, Case Management Model and Notation,
Tech. Rep. formal/2014-05-05, Object Management Group, version 1.0
(May 2014).

[4] M. Pesic, W. M. Van der Aalst, A declarative approach for flexible busi-
ness processes management, in: Business Process Management, 2006,
pp. 169–180.

[5] M. Pesic, H. Schonenberg, W. M. P. v. d. Aalst, DECLARE: Full
Support for Loosely-Structured Processes, in: Proceedings of the 11th
IEEE International Enterprise Distributed Object Computing Confer-
ence, IEEE, 2007, pp. 287–300.

[6] Object Management Group BPMN Technical Committee, Business Pro-
cess Model and Notation, Version 2.0 (2013).

[7] S. Zugal, J. Pinggera, B. Weber, The impact of testcases on the main-
tainability of declarative process models, Enterprise, Business-Process
and Information Systems Modeling (2011) 163–177.

[8] T. Hildebrandt, R. R. Mukkamala, T. Slaats, Designing a cross-
organizational case management system using dynamic condition re-
sponse graphs, in: 2011 IEEE 15th international enterprise distributed
object computing conference, IEEE, 2011, pp. 161–170.

[9] R. R. Mukkamala, A formal model for declarative workflows - dynamic
condition response graphs, Ph.D. thesis, IT University of Copenhagen
(March 2012).

30

[10] T. Slaats, Flexible process notations for cross-organizational case man-
agement systems, Ph.D. thesis, IT University of Copenhagen (January
2015).

[11] S. Debois, T. Hildebrandt, The DCR Workbench: Declarative Chore-
ographies for Collaborative Processes, in: Behavioural Types: from The-
ory to Tools, River Publishers, 2017, pp. 99–124.

[12] K. Beck, Test-driven development: by example (2003).

[13] D. Janzen, H. Saiedian, Test-driven development concepts, taxonomy,
and future direction, Computer 38 (9) (2005) 43–50.

[14] S. Zugal, J. Pinggera, B. Weber, Creating declarative process models
using test driven modeling suite, in: CAiSE Forum 2011, 2012, pp. 16–
32. doi:10.1007/978-3-642-29749-6_2.

[15] M. Marquard, M. Shahzad, T. Slaats, Web-based modelling and collab-
orative simulation of declarative processes, in: Business Process Man-
agement, Springer, 2015, pp. 209–225.

[16] T. Hildebrandt, S. Debois, T. Slaats, M. Marquard, Managing complex-
ity in process digitalisation with dynamic condition response graphs, Vol.
1898, CEUR Workshop Proceedings, 2017, 2nd Workshop on Managed
Complexity, ManComp 2017 ; Conference date: 28-08-2017 Through 28-
08-2017.
URL https://wwwswt.informatik.uni-rostock.de/ManComp2017/

[17] S. Debois, T. T. Hildebrandt, M. Marquard, T. Slaats, The DCR graphs
process portal, in: L. Azevedo, C. Cabanillas (Eds.), Proceedings of the
BPM Demo Track 2016 Co-located with the 14th International Con-
ference on Business Process Management (BPM 2016), Rio de Janeiro,
Brazil, September 21, 2016, Vol. 1789 of CEUR Workshop Proceedings,
CEUR-WS.org, 2016, pp. 7–11.
URL https://ceur-ws.org/Vol-1789/bpm-demo-2016-paper2.pdf

[18] T. Slaats, S. Debois, T. Hildebrandt, Open to change: A theory for iter-
ative test-driven modelling, in: M. Weske, M. Montali, I. Weber, J. vom
Brocke (Eds.), Business Process Management, Springer International
Publishing, Cham, 2018, pp. 31–47.

31

[19] A. K. F. Christfort, T. Slaats, Efficient optimal alignment between dy-
namic condition response graphs and traces, in: C. Di Francescomarino,
A. Burattin, C. Janiesch, S. Sadiq (Eds.), Business Process Manage-
ment, Springer Nature Switzerland, Cham, 2023, pp. 3–19.

[20] W. Van der Aalst, A. Adriansyah, B. Van Dongen, Replaying history
on process models for conformance checking and performance analysis,
Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery
2 (2) (2012) 182–192.

[21] D. M. Bushnell, Research Conducted at the Institute for Computer Ap-
plications in Science and Engineering for the Period October 1, 1999
through March 31, 2000, Technical Report NASA/CR-2000-210105,
NAS 1.26:210105, NASA (2000).

[22] S. Debois, T. T. Hildebrandt, T. Slaats, Replication, Refinement &
Reachability: Complexity in Dynamic Condition-Response Graphs,
Acta Informatica (2017).

[23] J. C. Baeten, R. J. van Glabbeek, Another look at abstraction in process
algebra, in: International Colloquium on Automata, Languages, and
Programming, Springer, 1987, pp. 84–94.

[24] E. M. Clarke, O. Grumberg, D. E. Long, Model checking and abstrac-
tion, ACM transactions on Programming Languages and Systems 16 (5)
(1994) 1512–1542.

[25] P. Cousot, R. Cousot, Systematic design of program analysis frame-
works, in: Proceedings of the 6th ACM SIGACT-SIGPLAN symposium
on Principles of programming languages, ACM, 1979, pp. 269–282.

[26] M. D. Ernst, Static and dynamic analysis: Synergy and duality, in:
ICSE Workshop on Dynamic Analysis, 2003, pp. 24–27.

[27] L. Zhang, J. Zhou, D. Hao, L. Zhang, H. Mei, Prioritizing junit test
cases in absence of coverage information, in: Software Maintenance,
IEEE, 2009, pp. 19–28.

[28] H. Mei, D. Hao, L. Zhang, L. Zhang, J. Zhou, G. Rothermel, A static
approach to prioritizing junit test cases, IEEE Transactions on Software
Engineering 38 (6) (2012) 1258–1275.

32

[29] A. A. Andaloussi, A. Burattin, T. Slaats, E. Kindler, B. Weber, On
the declarative paradigm in hybrid business process representations: A
conceptual framework and a systematic literature study, Inf. Syst. 91
(2020) 101505. doi:10.1016/J.IS.2020.101505.
URL https://doi.org/10.1016/j.is.2020.101505

[30] A. A. Andaloussi, C. J. Davis, A. Burattin, H. A. López, T. Slaats,
B. Weber, Understanding quality in declarative process modeling
through the mental models of experts, in: D. Fahland, C. Ghidini,
J. Becker, M. Dumas (Eds.), Business Process Management - 18th Inter-
national Conference, BPM 2020, Seville, Spain, September 13-18, 2020,
Proceedings, Vol. 12168 of Lecture Notes in Computer Science, Springer,
2020, pp. 417–434. doi:10.1007/978-3-030-58666-9_24.
URL https://doi.org/10.1007/978-3-030-58666-9_24

[31] A. A. Andaloussi, A. Burattin, T. Slaats, E. Kindler, B. Weber, Com-
plexity in declarative process models: Metrics and multi-modal as-
sessment of cognitive load, Expert Syst. Appl. 233 (2023) 120924.
doi:10.1016/J.ESWA.2023.120924.
URL https://doi.org/10.1016/j.eswa.2023.120924

[32] A. A. Andaloussi, A. Burattin, T. Slaats, A. C. M. Petersen, T. T.
Hildebrandt, B. Weber, Exploring the understandability of a hybrid
process design artifact based on DCR graphs, in: I. Reinhartz-Berger,
J. Zdravkovic, J. Gulden, R. Schmidt (Eds.), Enterprise, Business-
Process and Information Systems Modeling - 20th International Con-
ference, BPMDS 2019, 24th International Conference, EMMSAD 2019,
Held at CAiSE 2019, Rome, Italy, June 3-4, 2019, Proceedings, Vol. 352
of Lecture Notes in Business Information Processing, Springer, 2019, pp.
69–84. doi:10.1007/978-3-030-20618-5_5.
URL https://doi.org/10.1007/978-3-030-20618-5_5

[33] A. A. Andaloussi, F. Zerbato, A. Burattin, T. Slaats, T. T. Hildebrandt,
B. Weber, Exploring how users engage with hybrid process artifacts
based on declarative process models: a behavioral analysis based on
eye-tracking and think-aloud, Softw. Syst. Model. 20 (5) (2021) 1437–
1464. doi:10.1007/S10270-020-00811-8.
URL https://doi.org/10.1007/s10270-020-00811-8

33

[34] M. Westergaard, T. Slaats, Mixing paradigms for more comprehensible
models, in: Business Process Management, Springer, 2013, pp. 283–290.

[35] J. De Smedt, J. De Weerdt, J. Vanthienen, G. Poels, Mixed-paradigm
process modeling with intertwined state spaces, Business and Infor-
mation Systems Engineering 58 (1) (2016) 19–29. doi:10.1007/
s12599-015-0416-y.

[36] J. De Smedt, Studies on declarative process modeling and its relation
to procedural techniques. (2016).

[37] K. Kluza, G. J. Nalepa, Formal Model of Business Processes Integrated
with Business Rules, Information Systems Frontiers (feb 2018). doi:
10.1007/s10796-018-9826-y.
URL http://link.springer.com/10.1007/s10796-018-9826-y

[38] S. Sadiq, W. Sadiq, M. Orlowska, Pockets of Flexibility in Workflow
Specification, 2001, pp. 513–526. doi:10.1007/3-540-45581-7_38.
URL http://link.springer.com/10.1007/3-540-45581-7_38

[39] W. M. P. van der Aalst, M. Adams, A. H. M. ter Hofstede, M. Pesic,
H. Schonenberg, Flexibility as a Service, 2009, pp. 319–333. doi:10.
1007/978-3-642-04205-8_27.
URL http://link.springer.com/10.1007/978-3-642-04205-8_27

[40] T. Slaats, D. M. Schunselaar, F. M. Maggi, H. A. Reijers, The semantics
of hybrid process models, in: Cooperative Information Systems, 2016,
pp. 531–551.

[41] R. Jagadeesh Chandra Bose, W. M. van der Aalst, Process diagnostics
using trace alignment: Opportunities, issues, and challenges, Informa-
tion Systems 37 (2) (2012) 117–141, management and Engineering of
Process-Aware Information Systems.

[42] J. Carmona, B. van Dongen, A. Solti, M. Weidlich, Conformance check-
ing, Springer. (2018).

[43] A. Adriansyah, Aligning observed and modeled behavior, Ph.D. thesis,
Mathematics and Computer Science (2014).

34

[44] W. L. J. Lee, H. Verbeek, J. Munoz-Gama, W. M. van der Aalst,
M. Sepúlveda, Recomposing conformance: Closing the circle on decom-
posed alignment-based conformance checking in process mining, Infor-
mation Sciences 466 (2018) 55–91.

[45] D. Reißner, R. Conforti, M. Dumas, M. La Rosa, A. Armas-Cervantes,
Scalable conformance checking of business processes, in: On the Move
to Meaningful Internet Systems. OTM 2017 Conferences, 2017, pp. 607–
627.

[46] M. Boltenhagen, T. Chatain, J. Carmona, Optimized sat encoding of
conformance checking artefacts, Computing 103 (1) (2021) 29–50.

[47] M. F. Sani, J. J. G. Gonzalez, S. J. van Zelst, W. M. van der Aalst,
Conformance checking approximation using simulation, in: 2020 2nd
International Conference on Process Mining (ICPM), 2020, pp. 105–112.

[48] M. Fani Sani, S. J. van Zelst, W. M. P. van der Aalst, Conformance
checking approximation using subset selection and edit distance, in: Ad-
vanced Information Systems Engineering, 2020, pp. 234–251.

[49] A. Awad, K. Raun, M. Weidlich, Efficient approximate conformance
checking using trie data structures, in: 2021 3rd International Confer-
ence on Process Mining (ICPM), 2021, pp. 1–8.

[50] S. J. van Zelst, A. Bolt, M. Hassani, B. F. van Dongen, W. M. P. van der
Aalst, Online conformance checking: relating event streams to process
models using prefix-alignments, International Journal of Data Science
and Analytics 8 (3) (2019) 269–284.

[51] X. Lu, D. Fahland, W. M. P. van der Aalst, Conformance checking
based on partially ordered event data, in: Business Process Management
Workshops, 2015, pp. 75–88.

[52] M. de Leoni, J. Munoz-Gama, J. Carmona, W. M. P. van der Aalst, De-
composing alignment-based conformance checking of data-aware process
models, in: On the Move to Meaningful Internet Systems: OTM 2014
Conferences, 2014, pp. 3–20.

35

[53] P. Felli, A. Gianola, M. Montali, A. Rivkin, S. Winkler, Cocomot: Con-
formance checking of multi-perspective processes via smt, in: Business
Process Management, 2021, pp. 217–234.

[54] T. Chatain, J. Carmona, Anti-alignments in conformance checking – the
dark side of process models, in: Application and Theory of Petri Nets
and Concurrency, 2016, pp. 240–258.

[55] B. F. van Dongen, J. De Smedt, C. Di Ciccio, J. Mendling, Conformance
checking of mixed-paradigm process models, Information Systems 102
(2021) 101685.

[56] M. de Leoni, F. M. Maggi, W. M. van der Aalst, An alignment-based
framework to check the conformance of declarative process models and
to preprocess event-log data, Information Systems 47 (2015) 258–277.

[57] M. de Leoni, F. M. Maggi, W. M. P. van der Aalst, Aligning event logs
and declarative process models for conformance checking, in: Business
Process Management, 2012, pp. 82–97.

[58] G. De Giacomo, F. M. Maggi, A. Marrella, S. Sardina, Computing trace
alignment against declarative process models through planning, Pro-
ceedings of the International Conference on Automated Planning and
Scheduling 26 (1) (2016) 367–375.

[59] G. Winskel, Events in computation, Ph.D. thesis, Computer Science
Deptartment, University of Edinburgh (1980).

[60] D. A. Basin, S. Debois, T. T. Hildebrandt, In the Nick of Time: Proac-
tive Prevention of Obligation Violations, in: Computer Security Foun-
dations, 2016, pp. 120–134.

[61] S. Debois, T. T. Hildebrandt, T. Slaats, Hierarchical Declarative Mod-
elling with Refinement and Sub-processes, in: Business Process Man-
agement, 2014, pp. 18–33.

[62] R. R. Mukkamala, T. T. Hildebrandt, From dynamic condition response
structures to büchi automata, in: J. Liu, D. A. Peled, B. Wang, F. Wang
(Eds.), 4th IEEE International Symposium on Theoretical Aspects of
Software Engineering, TASE 2010, Taipei, Taiwan, 25-27 August 2010,
IEEE Computer Society, 2010, pp. 187–190. doi:10.1109/TASE.2010.

36

22.
URL https://doi.org/10.1109/TASE.2010.22

[63] C. O. Back, T. Slaats, T. T. Hildebrandt, M. Marquard, Discover: accu-
rate and efficient discovery of declarative process models, International
Journal on Software Tools for Technology Transfer 24 (4) (2022) 563–
587. doi:10.1007/s10009-021-00616-0.
URL https://doi.org/10.1007/s10009-021-00616-0

[64] S. Debois, T. T. Hildebrandt, T. Slaats, Concurrency and Asynchrony
in Declarative Workflows, in: Business Process Management, 2015, pp.
72–89. doi:10.1007/978-3-319-23063-4_5.

37

Chapter 10

Handling time

10.1 DD-DisCoveR: Mining timed DCR Graphs
using the pm4py DisCoveR DCR exten-
sion

Remark 10.1. This work is a preprint draft paper for the International
Conference on Process Mining 2024 demo track1.

1https://icpmconference.org/2024/call-for-demos/

166

https://icpmconference.org/2024/call-for-demos/

DD-DisCoveR: Mining timed DCR Graphs using the
pm4py DisCoveR DCR extension
Vlad Paul Cosma1, Tijs Slaats1 and Thomas T. Hildebrandt1

1University of Copenhagen, Denmark

Abstract
We present DD-DisCoveR an extension for declarative process miners to mine delays for condition
relations and deadlines for responses.

Keywords
Time, Delay, Deadline, Dynamic Condition Response Graphs

Metadata description Value

Tool name DD-DisCoveR
Current version 1.0
Legal code license Apache 3.0
Languages, tools and services used Python, Jupyter Notebooks, Matplotlib
Supported operating environment Microsoft Windows, Mac, GNU/Linux
Download/Demo URL https://github.com/paul-cvp/delay-deadline-miner
Documentation URL https://github.com/paul-cvp/delay-deadline-miner
Source code repository https://github.com/paul-cvp/delay-deadline-miner
Screencast video https://github.com/paul-cvp/delay-deadline-miner

1. Introduction

We present DD-DisCoveR (Delay Deadline DisCoveR) the first tool and technique that given
an event log and a Dynamic Condition Response (DCR) Graph extracts delays and deadlines
between pairs of events. We extract the timing values from event timestamps by applying
the definition of a delay on a condition and a deadline on a response as given in the formal
definition of a Timed Dynamic Condition Response Graph [1]. As such the tool can be seen as
an extension with time of the award winning DisCoveR miner [2].

We show how the tool can provide an extensive description of timing distributions as his-
tograms as well as fitting parametric probability distributions on top of the histograms. Given a
family of parametric distribution it selects the one with the smallest residual sum of squares
error between the binned data and the parametric distribution. Our technique complements
simulation tools by allowing us to sample timings from the fitted parametric distributions. We
apply this technique on the Road Traffic Fine Management Process (RTFMP) event log[3].

ICPM 2024 Tool Demonstration Track, October 14-18, 2024, Kongens Lyngby, Denmark
Envelope-Open vco@di.ku.dk (V. P. Cosma); slaats@di.ku.dk (T. Slaats); hilde@di.ku.dk (T. T. Hildebrandt)
Orcid 0000-0001-8022-6402 (V. P. Cosma); 0000-0001-6244-6970 (T. Slaats); 0000-0002-7435-5563 (T. T. Hildebrandt)

© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

Related work Mining timing information has been done on all major process modelling
formalism: Declare [4], time BPMN[5, 6, 7], timed Petri Nets[8] and timed automata [9]. In
[6] lead and lag time are equivalent to the minimum delay and maximum deadline. In [7] the
authors mine extraneous delays. [8] mines probabilistic delays on Stochastic Petri Nets. Work
in the [10] shows how durations are overlayed on Petri Nets on a per case basis.

2. Preliminaries

We recall the definition of timed Dynamic Condition Response Graphs [1]. The definition
is simplified to only consider timed relations, namely conditions and responses. Moreover,
instead of nodes being events labelled by activity names we let nodes of the graphs be simply
activities, since the DisCoveR process miner in any case produces graphs where every event is
uniquely labelled. In the formal definition, time is represented as discrete ticks, that is natural
numbers, which in the algorithm is set to the smallest time step needed to represent the delays
and deadlines found in the log.

A timed Condition Response Graph 𝐺 is given by a tuple (𝐴,𝑀,→•, •→)where

(i) 𝐴 is a finite set of activities,
(ii) 𝑀 = (𝐸𝑥, 𝑅𝑒, 𝐼 𝑛) ∈ ((𝐴 ⇁ 𝜔) × (𝐴 ⇁ ∞) × 𝐴) is the timed marking,
(iii) →•⊆ 𝐴 × 𝜔 × 𝐴, is the timed condition relation,
(iv) •→⊆ 𝐴 × ∞ × 𝐴, is the timed response relation.

Compared to core DCR graphs, timed DCR Graphs add a natural number 𝑘 ∈ 𝜔 to the
condition relations, denoting the delay, and a natural number or infinity 𝑑 ∈ ∞ to the response
relations, denoting the deadline. Infinity is used to represent responses with infinite deadlines,
i.e. a response that must eventually happen but not within a given time, these are shown as
response arrows without a deadline. The timed marking represents the state of the DCR graph
and consists a triple (𝐸𝑥, 𝑅𝑒, 𝐼 𝑛), where 𝐸𝑥(𝑎) = 𝑘 if the last execution of activity 𝑎 was 𝑘 time
steps ago, and 𝑅𝑒(𝑎) = 𝑑 if 𝑎 is a pending response and must happen within 𝑑 time steps if
𝑎 ∈ 𝐼 𝑛, i.e. 𝑎 is included. We will abuse notation and also sometimes consider 𝑅𝑒 as the set
{𝑎 ∣ ∃𝑑.𝑅𝑒(𝑎) = 𝑑}, i.e. the set of activities pending with some deadline.

We now give the definition of an event log. An event log over a given set of activities 𝐴 and
time domain 𝑇𝐷 being ISO8601 time stamps is defined as 𝐿 = (𝐸, 𝐶, 𝛼, 𝛾 , 𝛽, ≻) where:

(i) 𝐸 is a finite set of events,

(ii) 𝐶 is a finite set of cases (process instances),

(iii) 𝛼 ∶ 𝐸 → 𝐴 maps each event to an activity,

(iv) 𝛾 ∶ 𝐸 → 𝑇𝐷 maps each event to a timestamp,

(v) 𝛽 ∶ 𝐸 → 𝐶 maps each event to a case and is surjective,

(vi) ≻⊆ 𝐸 × 𝐸 is the succession relation, which for every case 𝑐 ∈ 𝐶 is a total ordering on the
set 𝛽−1(𝑐)

(a) A timed trace with delays (𝑘1, 𝑘2) and deadlines (𝑑1, .., 𝑑5) between B and C

(b) Timing data as histograms and fitted functions (c) Example DCR Graph
Figure 1: Example trace, DCR Graph and extracted timing data

Given an event log 𝐿 we define the trace function 𝑇 𝑟𝐿 ∶ 𝐶 → 𝒫 (𝐸) by 𝑇 𝑟𝐿(𝑐) = {𝑒 ∣ 𝛽(𝑒) = 𝑐},
i.e. returning all events belonging to the same case. We require that for events belonging to the
same case the succession relation respect the time ordering, i.e. ∀𝑐 ∈ 𝐶, ∀𝑒1, 𝑒2 ∈ 𝑇 𝑟𝐿(𝑐) if 𝑒1 ≻ 𝑒2
then 𝛾 (𝑒1) ≤ 𝛾(𝑒2). We assume a function Δ ∶ 𝑇𝐷 × 𝑇𝐷 → 𝜔 returning an absolute number of
time steps between two timestamps.

3. Mining delays and deadlines

Given an event log we mine a timed DCR Graph by first mining an untimed DCR Graph and
then mine the minimum observed delays for condition relations and the maximum observed
deadlines for response relations.

[Delay and deadline mining] Given an event log 𝐿 and an untimed DCR graph 𝐺 mined from
the log 𝐿. We extend the condition and response relations to timed relations as follows:

(i) For 𝑎 →• 𝑏 let 𝑎
𝑘
→• 𝑏, where

𝑘 = 𝑀𝐼𝑁{Δ(𝛾(𝑒𝑗), 𝛾 (𝑒𝑖))|∃𝑐 ∈ 𝐶.𝑒𝑖 ≻ 𝑒𝑗 ∈ 𝑇 𝑟𝐿(𝑐).𝛼(𝑒𝑖) = 𝑎, 𝛼(𝑒𝑗) = 𝑏 and ∀𝑒 ∈ 𝑇 𝑟𝐿(𝑐).𝑒𝑖 ≻ 𝑒 ≻
𝑒𝑗 ⟹ 𝛼(𝑒) ∉ {𝑎, 𝑏}}

(ii) For 𝑎 •→ 𝑏 let 𝑎
𝑑
•→ 𝑏, where

𝑑 = 𝑀𝐴𝑋{Δ(𝛾(𝑒𝑗), 𝛾 (𝑒𝑖))|∃𝑐 ∈ 𝐶.𝑒𝑖 ≻ 𝑒𝑗 ∈ 𝑇 𝑟𝐿(𝑐).(𝛼(𝑒𝑖) = 𝑎, 𝛼(𝑒𝑗) = 𝑏 ∨ 𝛼(𝑒𝑖) = 𝛼(𝑒𝑗) = 𝑎)
and ∀𝑒 ∈ 𝑇 𝑟𝐿(𝑐).𝑒𝑖 ≻ 𝑒 ≻ 𝑒𝑗 ⟹ 𝛼(𝑒) ∉ {𝑎, 𝑏}}

The idea can be explained looking at the example trace in Fig. 1a. For any two activities 𝐵
and 𝐶 related by a condition we consider every pair in a trace for which there exists no other
activity 𝐵 or 𝐶 in between. The delay for the condition between 𝐵 and 𝐶 is then defined as the
minimum time difference between any such pair of events. In the example trace, we have three
such pairs with time differences 1, 2, and the minimum time difference is 1 day, represented in
the ISO8601 standard1 as P1D in the DCR Graph 1c. Mining a deadline for the response relation

1www.iso.org/iso-8601-date-and-time-format.html

(a) Create Fine →•Send Fine (b) Create Fine →•Payment

(c) Timed Condition Response Graph mined from the RTFMP log
Figure 2: Running DD-DisCoveR on the Road Traffic Fine Management Process event log

between 𝐵 and 𝐶 is similar. As before we consider the pair 𝐵 and 𝐶 with no 𝐵 or 𝐶 in between,
and also pairs of activities 𝐵 and 𝐵 with no 𝐵 or 𝐶 in between. The rationale is that if 𝐵 occurs
twice without the occurrence of an intermediate 𝐶, then the response relation allows us to not
do 𝐶 for the duration of time between the two executions of 𝐵. In the example trace, we have
5 such pairs with time differences 10, 13, 2, 1, 2, and the maximum time difference is 13 days,
represented in the ISO8601 standard as P13D. We mine different timing data for the condition
and the response between activities 𝐵 and 𝐶. We see this both in the histograms and the fitted
parametric distributions in fig. 1b (uniform for the condition and cauchy for the response).

Descriptive statistics for mining time Once we extract the timing information we are able
to bin it in histograms and fit2 the parametric distribution which best describes the behaviour
between the two activities of interest. The goodness of fit is calculated as the residual sum of
square errors.

RTFMP In fig. 2 we show the result of DD-DisCoveR on the RTFMP log [3]. The delays and
deadlines are extracted from the timing data which is also shown as histograms (two examples
are shown in figs. 2a and 2b). Note that between ”Insert Fine Notification” and ”Add Penalty”
we mine a condition delay of P59D and a response deadline of P60D. Upon closer inspection of

2using the fitter python package https://github.com/cokelaer/fitter

the timing data we believe this difference to be a rounding error induced by daylight saving
time changes of ±1 hour from the 60 day standard delay/deadline.

4. Conclusion

We presented DD-DisCoveR, a tool that extracts the minimum delay and maximum deadline
between pairs of activities that are part of conditions and responses respectively. In future work
we intend to use mixtures of distributions create better fits to the data, for example when an
exponential plus a Gaussian best describe the behaviour between two activities. We also aim at
creating an interactive filtering tool such that the mined delays and deadlines can be tweaked
according to the timing distributions.

References

[1] T. Hildebrandt, R. R. Mukkamala, T. Slaats, F. Zanitti, Contracts for cross-organizational
workflows as timed dynamic condition response graphs, The Journal of Logic and Algebraic
Programming 82 (2013).

[2] C. O. Back, T. Slaats, T. T. Hildebrandt, M. Marquard, Discover: accurate and efficient
discovery of declarative process models, in: International Journal on Software Tools for
Technology Transfer, 2021. doi:10.1007/s10009-021-00616-0.

[3] F. Mannhardt, M. De Leoni, H. A. Reijers, W. M. Van Der Aalst, Balanced multi-perspective
checking of process conformance, Computing 98 (2016).

[4] J. M. E. M. van der Werf, R. Mans, W. M. P. van der Aalst, Mining declarative models using
time intervals, in: D. Moldt (Ed.), Joint Proceedings of PNSE and ModBE, volume 989 of
CEUR Workshop Proceedings, 2013. URL: http://ceur-ws.org/Vol-989/paper04b.pdf.

[5] S. Cheikhrouhou, S. Kallel, N. Guermouche, M. Jmaiel, Toward a time-centric modeling of
business processes in bpmn 2.0, in: Proceedings of International Conference on Information
Integration andWeb-Based Applications &; Services, IIWAS ’13, Association for Computing
Machinery, USA, ???? doi:10.1145/2539150.2539182.

[6] D. Gagne, A. Trudel, Time-bpmn, in: 2009 IEEE Conference on Commerce and Enterprise
Computing, 2009, pp. 361–367. doi:10.1109/CEC.2009.71.

[7] D. Chapela-Campa, M. Dumas, Modeling extraneous activity delays in business process
simulation, in: 2022 4th International Conference on Process Mining (ICPM), IEEE, 2022,
pp. 72–79.

[8] in: N. Lohmann, M. Song, P. Wohed (Eds.), Business Process Management Workshops
: BPM 2013 International Workshops, Beijing, China, August 26, 2013, Revised Papers,
Lecture Notes in Business Information Processing, Springer, Germany, 2014, pp. 15–27.
doi:10.1007/978-3-319-06257-0-2.

[9] L. Cornanguer, C. Largouët, L. Rozé, A. Termier, TAG: Learning Timed Automata from
Logs, in: AAAI 2022 - 36th AAAI Conference on Artificial Intelligence, Canada, 2022. URL:
https://hal.inria.fr/hal-03564455.

[10] W. van der Aalst, Mining Additional Perspectives, Springer Berlin Heidelberg, Berlin,
Heidelberg, 2016, pp. 275–300. doi:10.1007/978-3-662-49851-49.

Chapter 10 | Handling time

10.2 Transforming Timed Dynamic Condition
Response Graphs to safe Timed-arc Petri
Nets

Remark 10.2. This work is a draft paper containing and extending material
from Section 9.1 previously published as [44]: Cosma VP, Hildebrandt TT,
Slaats T. Transforming Dynamic Condition Response Graphs to Safe Petri
Nets. International Conference on Applications and Theory of Petri Nets
and Concurrency 2023 May 28 (pp. 417-439). Cham: Springer Nature
Switzerland.

This Section therefore has many repetitions from Section 9.1.

172

Mapping Timed Declarative DCR Graph
Specifications to safe Timed-arc Petri Nets

Vlad Paul Cosma1, Thomas T. Hildebrandt1, and Tijs Slaats1

Computer Science Department, Copenhagen University, Denmark
{vco,hilde,slaats}@di.ku.dk

Abstract. We present a semantics preserving mapping from the timed
Dynamic Condition Response (DCR) graph constraint based process
specification language to 1-safe timed-arc Petri nets with read arcs, ex-
tending previous work on a mapping of untimed specifications. The timed
DCR graph notation is supported by mature design tools, also including
a natural language transformation based on ChatGPT, that domain ex-
perts today use to formalize requirements and validate the formalization
without being trained in formal logic. We prove that the mapping re-
spects the semantics by showing a bisimulation correspondence between
any timed DCR graph specification and its corresponding timed-arc Petri
net. The result is supported by a prototype implementation, which trans-
forms a timed DCR graph represented in the DCR XML export format
supported by the DCR design tools to the TAPN format. This enables
import of the Petri net processes in a range of other tools, in particular
the TAPAAL Petri net tool. The mapping is illustrated on a simple run-
ning example of an e-shop specification but also tested on a larger and
more realistic railroad crossing example, resulting in a Petri Net with 34
places and 99 transitions. Both examples are available online together
with the prototype implementation.

Keywords: Petri Nets · Time · DCR graphs · TAPAAL · Bisimilarity

1 Introduction

Formal model-driven engineering is based on the idea that domain requirements
and constraints for IT systems are described in a formal model suitable for
rigorous analysis, e.g. using model checking tools, and subsequently transformed
into code by a property preserving transformation. For this idea to work in
practice, it should be possible for people understanding the domain to describe
the requirements in a formal notation.

Roughly speaking, formal models come in two kinds: Declarative and im-
perative models. Intuitively, a declarative model describes which constraints a
system must satisfy, while an imperative model describes the sequencing of ac-
tions implementing the required behavior. For this reason, declarative modeling
notations are often used for the formalization of requirements, while imperative
modeling notations are used for the formalization of implementations. Classical

2 Vlad Paul Cosma, Thomas T. Hildebrandt, and Tijs Slaats

examples of declarative notations are temporal logics such as Linear-time tem-
poral logic (LTL) [30] and extensions with time, such as Monadic First-order
Temporal Logic (MFOTL) [7]. Examples of timed imperative modeling nota-
tions are finite automata extended with time, such as Timed automata [4, 10].
In between logics and automata, we find the classical Petri Nets model, which
both have a declarative flavor of places representing conditions for transitions
and an imperative flavor of tokens being moved between places. Petri nets ex-
tended with time come in two main variants: Time Petri nets [8], and Timed-arc
Petri nets [34].

In this paper, we consider the transformation from process requirements pre-
sented in the declarative formal model of Timed Dynamic Condition Response
(DCR) graphs to processes expressed as Timed-arc Petri Nets (TAPN) [42].
The DCR graphs notation was introduced in [27, 17] as a formal specification
language for distributed workflows. It was shown [27] that DCR graphs can
express all formal languages that are the union of a regular and an ω-regular
language, and thereby more expressive than LTL. In subsequent papers it has
been extended in a range of papers, e.g. adding time, sub-processes, and data (see
e.g. [18, 29, 19, 36]) and since 2018 the modelling language has been supported
by mature, commercial design tools1 and workflow tools2.

The nodes of a DCR graph denote actions (or events) of the process and the
directed edges between nodes denote constraints and effects between actions.

We consider as running example a simple e-shop application that has the
following specification:

(i) Once an order is added, a payment for the order must be made within 10
time steps.

(ii) Payment information (eg. credit card number) must be provided before a
payment can be executed.

(iii) The payment information can be edited any number of times. For security
reasons at least 5 time steps must pass between editing the payment infor-
mation and making the payment.

(iv) A new order cannot be added before a subsequent payment has been made
and payment can only be made if an order has been added and is not yet
paid.

We can identify 3-4 actions in the system: Add Order, Provide/Edit Payment In-
formation, Make Payment. Below in Fig. 1 we show a timed DCR graph of these
requirements modelled in the DCR Solutions design tool and Fig. 2 shows an
equivalent Timed Arc Petri Nets with pending places obtained from our trans-
formation as represented in the TAPAAL tool [22]. One may note that the DCR
graph represent the initial provision of payment information and subsequent
editing of payment information as the same action (EditPaymentInfo), while the
Petri net uses two separate transitions. As we will see in the following, a key

1 Freely available for academic use at DCRSolutions.net
2 See www.kmd.net/solutions-and-services/case-management-and-document-management/
kmd-workzone

Timed DCR Graphs to Timed-arc Petri Nets 3

difference between the two notations is that the state of a (timed arc) Petri Net
is represented as (timed) tokens on places, while the state of a DCR graph is rep-
resented as a marking of each action/event. Related to this, constraints in DCR
graphs are expressed directly between actions while constraints in Petri Nets
are expressed between transitions and places. This makes DCR Graphs closer
to natural language specifications, which do not talk about tokens and places.
Indeed, the version 7.0.0 of the DCR Solutions design tool3 released December
29th, 2023, includes a ChatGPT powered agent that can help identify rules from
natural language specifications. We will provide the formal definitions of the two
notations in Sec. 3.

In our previous work [11] we transformed core declarative Dynamic Condi-
tion Response (DCR) graphs [27, 17] to Petri Nets with inhibitor, read arcs and
a new kind of pending places used to express an acceptance criteria for infinitary
runs needed to express ω-regular properties. We also proved that the labelled
transition system of the resulting Petri Net is bisimilar to the lebelled transition
system defined by the DCR graph. In the present paper we extend the trans-
formation and proof with time. Concretely our contribution is that we provide
a transformation from extended Timed DCR graphs [18] to safe (or 1-bounded)
Timed-arc Petri Nets with read arcs and pending places (TAPNrp). The read-
arcs and pending places can be removed if only finitary runs are of interest, thus
giving a standard safe Timed Arc Petri Net (TAPN) which can be analysed in
the TAPAAL tool and mapped to Networks of Timed Automata (TA) [10].

2 Related work

Several notations for declarative process modeling have been developed. In ad-
dition to DCR graphs, the Declare [1] and Guard-Stage-Milestone (GSM) no-
tations have also seen broad use in the business process management research
community.

Declare provides a set of templates for modeling business constraints that
are formalized as LTL formulae (parameterized by activities). A Declare model
is the conjunction of a set of instantiated formulae. Given the limited expressive-
ness of the templates, a mapping from DCR graphs to Declare is not possible.
Declare has been formalized in other languages such as colored automata [23]
and SCIFF [24, 25]. Mappings from Declare to Petri Nets and R/I-nets were
provided respectively in [32] and [12], however, proofs of correctness are missing
from each of these.

Time constraints were added to the Declare notation in the context of multi-
perspective (MP-)Declare [9], which also includes the ability to express data
constraints. To facilitate the execution of MP-Declare models a mapping to the
specification language Alloy was defined [2].

The GSM notation [21] takes a declarative data-centric approach to mod-
elling processes, where stages of activities in the process are connected through

3 documentation.dcr.design/release_notes/release-7-0-0/.

4 Vlad Paul Cosma, Thomas T. Hildebrandt, and Tijs Slaats

guards that need to be satisfied for their activation and milestones that repre-
sent their acceptance criteria. A mapping has been proposed from Petri Nets
to GSM [31], in particular with a focus on representing the output of process
discovery algorithms (which usually produce Petri Nets) as GSM models. We
are not aware of any direct mappings in the opposite direction. Similarly [14]
provides a mapping from DCR graphs to GSM models, an opposite mapping is
mentioned as future work but has not yet materialised.

In [16] a subset of the DCR relations and their equivalent Petri Net map-
ping is presented, without inhibitor arcs and without proof of correctness. [28]
provides an encoding of DCR graphs as Büchi automata.

Petri Nets are widely used, and therefore there are also many translations to
notations outside the declarative process modeling sphere, for example, Ladder
Logic Diagrams [39], Timed Automata [10] and mCRL2[33].

Similarly much work has gone into mapping other modeling notations into
Petri Nets, such as UML activity diagrams [38], UML sequence diagrams [41],
UML state charts [20], and BPMN [13, 33].

The work in [24] presents logic-based approaches that formalize regulatory
models by relying on the deontic notions of obligations and permissions.

Different classes of ω-language Petri Nets have been introduced in [40] and
their complexity has been studied in [15]. The definition of acceptance criteria for
infinite words in [40] is based on markings being visited infinitely often, similar
to the acceptance criteria of Büchi-automata. This differs from the acceptance
criteria introduced in the present paper, which is based on pending places, for
which tokens cannot rest infinitely without being consumed by a transition be-
ing fired. Finally we built on our previous[11] work on mapping untimed DCR
Graphs to Petri Nets with inhibitor, read arcs and pending places.

3 Preliminaries

In this section we provide the formal definitions of Timed Dynamic Condition
Response graphs and safe Timed-arc Petri Nets with inhibitor and read arcs and
pending places.

3.1 Timed Dynamic Condition Response graphs

We give a formal definition of core Dynamic Condition Response (DCR) graphs
as attributed directed graphs.4 For a set A we write P(A) for the set of all
subsets of A, i.e. the powerset of A and Pne(A) for the set of all non-empty
subsets of A. Finally, let N refer to the set of natural numbers (including zero)
and Nω = N ∪ {ω} refer to the set of natural numbers (including zero) and
infinity (with infinity written as ω).

4 The presentation deviates slightly from the original definition given in [16] to fa-
cilitate the definition of the mapping to Petri Nets, but defines the same graph
structures.

Timed DCR Graphs to Timed-arc Petri Nets 5

Definition 1. A Timed DCR graph G is given by a tuple (E,M,R,@, L, l)
where

(i) E is a finite set of events,
(ii) M = (Ex,Re, In) ∈

(
(E ⇁ ω) × (E ⇁∞)× E

)
is the timed marking,

(iii) R ⊆ E × E is the set of relations between events

(iv) @ : R→ Pne({
k•←,

d•→,→+,→%}) is the relation type assignment and k ∈ N
is the delay and d ∈ Nω is the deadline.

(v) L is the set of event labels,
(vi) l : E → L is the labelling function between events and labels.

The timed marking M = (Ex,Re, In) describes the state of the DCR Graph
process by assigning execution times, deadlines and inclusion status to each
event in the following way. If an event e has been executed at least once then
Ex(e) = k, where k ∈ N is the number of time steps since the last execution of e.
If e has not been executed then Ex(e) is undefined. If Re(e) = d then we say that
e is pending with deadline d ∈ Nω, which means that it must be executed within
d time-steps or stay forever excluded. The deadline ω represents ”eventually”,
which corresponds to the semantics of untimed DCR graphs. If e ∈ In we say
that it is included and otherwise it is excluded.

Assume a relation r = (e, e′) ∈ R from event e to e′. If
k•←∈ @r we say r

is a constraining relation. If @r ∩ { d•→,→+,→%} ̸= ∅ we say that r is an effect
relation. Note that r can be both a constraining and an effect relation at the
same time.

We write e
k•← e′ (or e′

k→• e) if k•←∈ @r and say there is a condition from e′

to e with delay k. The meaning is that at least k time steps must happen after
the last execution of e before e′ can be executed. If k = 0 the condition relation
simply states that the event e′ must have been executed at least once before e
can be executed, which corresponds to the condition relation of untimed DCR
graphs. In this case we often omit the delay and simply write e •← e′.

We write e
d•→ e′ if

d•→∈ @r and say there is a response from e to e′ with
deadline d. The meaning is that e′ must happen within d time steps after the
last execution of e or before that stay excluded.

Finally, we write e→+ e′ if →+∈ @r and say there is an inclusion from e to
e′, and we write e→% e′ if →%∈ @r and say there is an exclusion from e to e′.

We can now explain the details of the timed DCR graph for our running
example shown in Fig 1. Events are depicted as boxes containing the action
label of the event and relations as arrows. A relation with multiple types is
depicted as multiple arrows between the same two events, one arrow for each
type. Events that are included in the initial marking are drawn as boxes with a
solid border, events that are excluded in the initial marking are drawn as boxes
with a dashed border. Consequently, the events labelled EditPaymentInfo and
AddOrder are initially included and the event labelled MakePayment is excluded
in the initial marking of the graph.

The first requirement, ”If an order is made, a payment for the order must

be made within 10 time steps” is modelled by a timed response relation (
10•→ in

6 Vlad Paul Cosma, Thomas T. Hildebrandt, and Tijs Slaats

Fig. 1: Timed DCR graph specification for the e-shop process

blue) and an include relation (→+ in green) from the event labelled AddOrder to
the event labelled MakePayment. The include relation is needed because of the
interplay with the fourth requirement described below.

The second requirement, ”Payment information (eg. credit card number)
must be provided before a payment can be executed” is modelled by a condition
relation (→• or •← in orange) from the event labelled EditPaymentInfo to the
event labelled MakePayment.

The third requirement, ”The payment information may be provided at any
time and any number of times.” is modelled by having no condition relations
pointing to the event labelled EditPaymentInfo and making sure that it is included
in the initial marking and never excluded. The security requirement that ”5
time steps must pass between editing the payment information and making the

payment” is modelled as a delay on the condition relation
5•←.

The forth requirement is in two parts. The first part, ”a new order cannot be
made before a subsequent payment has been made” is modelled by an exclude
relation (→% in red) from AddOrder to itself and an include relation from Make-
Payment to AddOrder. The effect is that when AddOrder is executed, it excludes
itself and is thus no longer available, except if MakePayment is executed, which
will include AddOrder again. The second part, ”payment can only be made if an
order has been made and is not yet paid” is similarly modelled by an exclusion
relation from MakePayment to itself and an inclusion relation from MakePayment
to AddOrder.

We now define the behaviour of timed DCR graphs. First we introduce some
notation for updating markings. When f : X → Y is a (possibly partial)
function, we write f [x 7→ y] for the function f ′ : X → Y which is identical to f ,
except f ′(x) = y. We apply this notation also to sets, taking f [x 7→ y | P (x, y)]
to be the function f ′ which is identical to f except that f ′(x) = y for all x, y
satisfying the given predicate P (x, y).

We define when events are enabled, i.e. can be executed, as follows.

Timed DCR Graphs to Timed-arc Petri Nets 7

Definition 2 (Event enabling). Let (E,M,R,@, L, l) be a timed DCR graph.
An event e ∈ E is enabled for the markingM = (Ex,Re, In), writing enabled(M, e)
if and only if:

(i) e ∈ In

(ii) ∀e′ ∈ In. e′
k→• e =⇒ Ex(e′) ≥ k

(iii) ∀e′ ̸∈ In. e→+ e′ =⇒ Re(e′) ≥ 0

The conditions for event enabling state that for an event e to be enabled, (i)
it must be included. (ii) Whenever e has a condition relation with delay k from
an included event e′, then this e′ was executed at least k time steps ago. Finally
(iii) express that an event is not allowed to include an excluded event where the
deadline has passed. This is an adaptation according to the original definition
of timed DCR graphs, where such an inclusion was allowed and simply reset the
deadline.

A time step n denotes that time advances n steps and can only happen if
there are no included pending events with deadline less than n. Formally, we
define that a time step n is enabled in marking M , written enabled(M,n), if
n ≤ min{d | ∃e.e ∈ In∧Re(e) = d}. We define the effect of executing an enabled
time step n in marking M = (Ex,Re, In) to be the marking effectG(M,n) =
(Ex′, Re′, In), where Ex′(e) = Ex(e) + n and Re′(e) = Re(e)− n.

We now define the effect of executing an event e for a given marking M .

Definition 3. Let G be a timed DCR graph with marking M = (Ex,Re, In).
The effect of executing an enabled event e is the marking effectG(M, e) = (Ex′, Re′, In′)
where

Ex′ =Ex[e 7→ 0]

Re′ =Re[e′ 7→ k | ∃k′. e k′

•→ e′ ∧ k = min{k′ | e k′

•→ e′}]
In′ =(In \ {e′ | e→% e′}) ∪ {e′ | e→+ e′}

The timed labelled transition system for timed DCR graphs can now be
defined as follows.

Definition 4. Let G = (E,M,R,@, L, l) be a timed DCR graph. Define a la-

belled transition relation between markings by M
α→G effectG(M,α) if enabled(M,α),

where α ∈ E ∪ N . Write M ⇒ M ′ for ∃α ∈ E ∪ N .M
α→G M ′ and write ⇒∗

for the reflexive and transitive closure of ⇒. Define MG = {M ′ | M ⇒∗ M ′},
i.e. the set of all reachable markings from the initial marking M of G. The
timed labelled transition system for G is then defined as [[G]] = (MG,M,→G⊂
(MG × (E ∪N)×MG), L, l).

Finally, we define when a finite or infinite execution sequence of a DCR graph
is accepting. Intuitively, it is required that any included and pending event e in
some intermediate state must eventually be executed or no longer included or
pending in a later state and infinite execution sequences must contain infinitely
many time steps. If one limits attention to finite execution sequences, the accep-
tance criteria is that no pending event is included in the final state.

8 Vlad Paul Cosma, Thomas T. Hildebrandt, and Tijs Slaats

Definition 5. Let G = (E,M0, R,@, L, l) be a timed DCR graph. A finite

or infinite sequence of transitions M0
e0→G M1

e1→G . . . in [[G]] with Mi =
(Exi, Rei, Ini), is accepting if e ∈ Ini and Rei(e) defined implies ∃j ≥ i.(ej =
e ∨ e ̸∈ Inj).

3.2 Timed arc Petri Nets with read arcs and pending places

There are numerous variants of Petri Nets with different expressive power. As
described in the introduction, we use Timed-arc Petri Nets with read arcs and
a notion of both finite and infinite acceptance criteria (TAPNrp). Inhibitor arcs
(also called negative contextual arcs) are special arcs between places and tran-
sitions specifying the constraint that the transition is only enabled if all places
related to it by inhibitor arcs are empty. In general, the addition of inhibitor arcs
makes the model of Petri Nets Turing complete [3]. However, with the additional
requirement of safeness, which means that places can hold at most one token
(also known as the property of all the net places being 1-bounded), the notation
is restricted to finite state models which also means that inhibitor arcs can be
transformed using a complement place and a read arc.

Read arcs (also called test, activator or positive contextual arcs) [6] specify
the constraint that a transition is only enabled if all places related to it by read
arcs have a token. A key difference between having a read arc and a pair of
input and output arcs between a transition and a place, is that read arcs are
not consuming the token. This means that two transitions with read arcs to the
same place can occur concurrently [26]. However, if two transitions are connected
to the same place by a read arc and a standard input arc respectively, the two
transitions will still be in conflict. With the use of timed tokens, read arcs also
have the property of preserving the token age, whereas a pair of two input and
output arcs will reset the age.

The acceptance criteria we introduce is inspired by DCR graphs and allows
us to conveniently express the union of regular and ω-regular languages, with-
out needing to refer to explicit markings. The acceptance criteria is defined by
indicating a subset of the states to be so-called pending places, and then define
a finite or infinite execution sequence to be accepting if any token on a pending
place is eventually subsequently consumed (but possibly placed back) by the
execution of a transition. If one limits attention to finite execution sequences,
the acceptance criteria is that all pending places are empty at the end of the
execution. Note that the use of read arcs allows us to test, if there is a token on a
pending place without consuming it. We define Timed-arc Petri Nets with read
arcs and pending places as follows. The definition is adapted from Def.1[22]. We
restrict time to discrete natural number time steps as in timed DCR Graphs and
the set of timed intervals. Let Int≥δ represent the set of (time) intervals [δ,∞)
for δ ∈ N . Let Int≤∆ represent the set of (time) intervals [0, ∆] where ∆ ∈ N .
We restrict the intervals Int≥δ to be used on transport arcs, which is used to
represent delays and we restrict the intervals Int≤∆ to be used on places, which
represent deadlines.

Timed DCR Graphs to Timed-arc Petri Nets 9

Definition 6 ([22, Def. 1]).
A TAPNrp is a tuple

N = (P, T,A, Inhib,Read, Transport, InvT , InvP , Act, λ, Pe),

where

(i) P is a finite set of places,
(ii) T is a finite set of transitions s.t. P ∩ T = ∅,
(iii) A = IA ⊔OA is a finite set of input and output arcs, where:

(1) IA ⊆ P × T is a finite set of input arcs,
(2) OA ⊆ T × P is a finite set of output arcs,

(iv) Inhib: IA→ {true, false} define inhibitor arcs,
(v) Read: IA→ {true, false} define read arcs,
(vi) Transport : IA × OA → {true, false} where ∀(p, t) ∈ IA ∧ (t′, p′) ∈ OA

such that Transport((p, t), (t′, p′)) we require that t = t′,
(vii) InvT : IA ⇀ Int≥δ where we require Inv

T (a) = [δ,∞) =⇒ ∃a′.T ransport(a, a′)
(viii) InvP : P → Int≤∆

(ix) Act is a set of labels (actions),
(x) λ : T → Act is a labelling function,
(xi) Pe ⊆ P is the set of pending places,

and the following constraints:

1. if Inhib((p, t)) then

{¬Read((p, t))} ∧ {¬Transport((p, t), (t, p′))|∀p′ ∈ P}

2. if Read((p, t)) then

{(t, p) ̸∈ OA} ∧ {¬Inhib((p, t))} ∧ {¬Transport((p, t), (t, p′))|∀p′ ∈ P}

3. if Transport((p, t), (t, p′)) then {¬Read((p, t))} ∧ {¬Inhib((p, t))};

We only consider 1-bounded places in the present paper, which means that
markings can be defined as simply a subset of places (the places containing a
token).

Definition 7. (Marking) Let N be a TAPNrp. A safe marking M on N is a
subset M ⊆ P of places. We say there is a token x at a place p ∈ P , written
x ∈ M(p), if p ∈ M . The set of all markings over N is denoted by M(N). We
define the token age as a function on places Mt : P → N . We say a token has
age n written Mt(p) = n where n ∈ N .

We say that a Petri Net is safe if the execution of transitions preserves the
safeness of markings. In this paper we will work only with safe Petri Nets, in
particular we prove that the mapping from timed DCR graphs to timed-arc Petri
Nets provided in the next section always yields a safe timed-arc Petri Net.

Assuming the Petri Net to be safe simplifies the definition of enabledness of
transitions defined as follows.

10 Vlad Paul Cosma, Thomas T. Hildebrandt, and Tijs Slaats

Definition 8. (Enabledness) Let N be a TAPNrp. We say that a transition
t ∈ T is enabled in a marking M , if for t ∈ T we have

(i) {p ∈ P | (p, t) ∈ IA∧¬Inhib((p, t)∧¬Transport((p, t)(t, p′))} ⊆M , i.e. for
all input arcs except the inhibitor and transport arcs there is a token in the
input place,

(ii) {p ∈ P | (p, t) ∈ IA ∧ Inhib((p, t)} ∩M = ∅, i.e. for all inhibitor arcs there
is not a token in the input place,

(iii) {p ∈ P |Mt(p) ≥ InvT ((p, t))∧Mt(p) ≤ InvP (p′)∀Transport((p, t), (t, p′))} ⊆
M , i.e. for all transport arcs the age of the token is greater or equal to the
age guard on the input arc and less or equal to the age on the output place.

We abuse notation and, just as for DCR graphs, let enabled(M, t) denote that
the transition t is enabled in marking M .

Next we formalise the effect of executing (or firing) a transition. Again it is
simplified by the assumption of safeness and we use the same notation as for
DCR graphs to denote the result of firing a transition.

Definition 9. (Firing rule) Let N be a TAPNrp, M a marking on N and
t ∈ T a transition. If enabled(M, t) with Input(t) = {p ∈ P | (p, t) ∈ IA ∧
¬Inhib((p, t))∧¬Read((p, t))} and Output(t) = {p ∈ P | (t, p) ∈ OA} then t can
fire, i.e. be executed, and produce a marking effectG(M, t) = (M\Input)∪Output.

Definition 10. (Time Delay) Let N be a TAPNrp, M a marking on N . A
time delay d ∈ N for d > 0 is allowed in M if (x + d) ∈ InvP (p)∀p ∈ P ∧ x ∈
Mt(p), i.e. the delay of d time units does not violate any place invariants. In
this case we write enabled(M,d) and refer to the delay as executing a time step
d, reaching a new marking M ′ = effectG(M,d) with the updated age on tokens
defined as M ′

t(p) = Mt(p) + d∀p ∈ P .

For convenience in the construction, we include the marking M and age on
marking function Mt in the TAPNrp tuple and we use

NM = (P, T,A, Inhib,Read, Transport, InvT , InvP , Act, λ, Pe,M,Mt)

to refer to a safe marked TAPNrp with marking M ⊆ P and age on marking
function Mt.

The firing rule and time delay define a timed labelled transition system for
a TAPNrp with markings as states and the labelled Petri Net transitions as
labels.

Definition 11. Let NM be a TAPNrp with marking M . Define a timed transi-
tion relation between markings by M

α→N effectG(M,α) if enabled(M,α) where

α ∈ T ∪ N . Write M ⇒ M ′ for ∃α ∈ T ∪ N .M
α→N M ′ and write ⇒∗ for

the reflexive and transitive closure of ⇒. Define MN = {M ′ | M ⇒∗ M ′},
i.e. the set of all reachable markings from the initial marking M of N . The
timed labelled transition system for N is then defined as [[N]] = (MN ,M,→N⊂
MN × (T ∪N)×MN), Act, λ).

Timed DCR Graphs to Timed-arc Petri Nets 11

Finally, we define when a finite or infinite execution sequence of a TAPNrp
is accepting.

Definition 12. Let N be a TAPNrp with safe marking M . A finite or infinite
sequence of transitions or time delays M0

α0→N M1
α1→N . . . in [[N]] is accepting

if p ∈ Mi ∩ Pe implies ∃j ≥ i.αj = tj ∧ (p, tj) ∈ IA. Moreover, if the sequence
is infinite then there are infinitely many time steps.

Fig. 2: E-shop Petri Net resulting from the transformation implementation.

Figure 2 shows the safe TAPNrp resulting from the implemented opti-
mized transformation of the running example DCR graph. The place pend-
ing included MakePayment by AddOrder is the only pending place and has the
place invariant of 10 time units, representing the deadline until the transi-
tion pend MakePayment by AddOrder1 must fire. The arcs between the transi-
tion pend MakePayment by AddOrder1 and the place executed EditPaymentInfo
are transport arcs where the input arc only allows the transition to fire if the
token in the place is at least 5 time units old.

As already noted in the introduction, the Petri Net need two transitions to
represent the action Provide PaymentInfo, namely a transition init EditPaymentInfo
mapping the initial execution (or the initial entry of the payment information)
and a transition event EditPaymentInfo mapping subsequent executions.

4 Mapping Timed DCR graphs to Timed Arc Petri Nets

In this section, we establish a mapping from timed DCR graphs to marked safe
Timed-arc Petri Nets with read arcs and pending places. We substantiate the

12 Vlad Paul Cosma, Thomas T. Hildebrandt, and Tijs Slaats

equivalence in transition semantics between the DCR graph and the Petri Net.
Our implementation of this mapping is available as a Python script on GitHub5

(together with examples). Furthermore, we export our net in the TAPN format,
compatible with TAPAAL.

The mapping build upon our prior work [11], where we demonstrated the
mapping for the untimed DCR Graphs case to Petri Nets with inhibitor, read
arcs, and pending places, along with a proof of bisimilarity. Emphasizing the
differences from the untimed version, we provide definitions and proofs for the
timed extension, while maintaining the reasoning and approach from the prior
work.

As part of the mapping DP : DCR → TAPNrp, we define for every G ∈
DCR a mapping DPMG : MG → MDP (G), i.e. from markings of G to the
markings of DP (G). For a timed DCR graph G = (E,M,R,@, L, l) and

DP (G) =(PDP (G),MDP (G), TDP (G), ADP (G), InhibDP (G), ReadDP (G),

T ransportDP (G), Inv
T
DP (G), Inv

P
DP (G), ActDP (G), λDP (G), P eDP (G))

we then have MDP (G) = DPMG(M) and ActDP (G) = E.

Definition 13. (Places mapping) Let G ∈ tDCR. Define the corresponding
Petri Net places of DP (G) as PDP (G) = {P γ

e |e ∈ E, γ ∈ {Ex, In} ∪ {P γ
(e,e′)|e ∈

E, e′ = {ϕ} ∪ e′ •→ e, γ ∈ {Re,Rex}}. Define the corresponding pending places
of DP (G) as PeDP (G) = {PRe

(e,e′)|e ∈ E, e′ ∈ E}.

Definition 14. (Response deadline mapping) Let G ∈ tDCR. Define the
corresponding Petri Net place invariants of DP (G) as InvPDP (G)(p) = [0, d]

where p ∈ PRe
(e,e′) and e

d•→ e′.

The following mapping defines the invariant maintained between a marking
M of a timed DCR graph and the corresponding marking DPMG(M) timed-arc
Petri Net.

Definition 15. (Markings mapping) Let G ∈ tDCR and MG be the timed
markings of G and MDP (G) = P(PDP (G)), i.e. all safe markings of the places
PDP (G) defined above. Define DPMG : MG → MDP (G) as follows. For M =
(In,Ex,Re) ∈MG define DPMG(M) such that for any event e ∈ E,

(i) PEx
e ∈ DPMG(M) ∧DPMG(M)t(P

Ex
e) = n ⇐⇒ Ex(e) = n

(ii) P In
e ∈ DPMG(M) ⇐⇒ e ∈ In

(iii) PRe
(e,e′) ∈ DPMG(M) ∧ InvP (PRe

(e,e′)) = [0, d]

⇐⇒ Re(e) = d−DPMG(M)t(P
Re
(e,e′)) ∧ e ∈ In

(iv) PRex
(e,e′) ∈ DPMG(M) ∧ InvP (PRe

(e,e′)) = [0, d]

⇐⇒ Re(e) = d−DPMG(M)t(P
Re
(e,e′)) ∧ e /∈ In

Timed DCR Graphs to Timed-arc Petri Nets 13

Fig. 3: Base case: Petri Net for a single included DCR event, which is not yet
executed nor pending.

We shall see that by construction at most one of the set of places {PRe
(e,e′)} ∪

{PRex
(e,e′)} can be marked for any given marking of TAPNrp.

We define an arc pattern table as a table with places as column headers and
transitions as row indexes. Each cell defines the arcs mapped between the row
index representing the transition and the column header representing the place.
There can be 0, 1 or 2 arcs between each transition place pair. An empty cell
represents no arcs, a single line drawn as “—” represents a read arc, a “<—”
represents an input arc (p, t), a “—>” represents an output arc (t, p), “<—>”
represents a pair of input and output arcs. Input and output transport arcs
are drawn as “⋄—” are “—⋄” respectively. Transport input arcs with invariants

are shown as “
k⋄—” and “

k⋄—⋄ ”. Inhibitor arcs are represented as “o—” and a
pair of inhibitor and output arcs is shown as “o—>”. When a pending Re or
pending excluded Rex place has arcs to and from a transition we distinguish
when the arc maps pairwise to the transition with the same label by adding
a <—(e,e′) subscript. When the subscript is not present it indicates that the
transition maps to all Re or Rex places regardless of their subscript. Finally, we
remark an important distinction between a read arc “—”, a pair of input and

output arcs “<—>” and a pair of transport arcs “
k⋄—⋄ ”. Read arcs maintain

token age, a pair of input and output arcs will reset the token age and a pair of
transport arcs will maintain the token age, but also allow for an invariant to be
set on the input transport arc.

The first arc pattern table is defined for the base structure of an event and
can be seen in Table 1. The application of the arc pattern table for a given event
e can be seen in Fig. 3. The event has an initial marking e ∈ In, e ∈ Ex, e ∈ Re

5 https://github.com/paul-cvp/pm4py-dcr/tree/feature/dcrtotapn

14 Vlad Paul Cosma, Thomas T. Hildebrandt, and Tijs Slaats

and is initially pending with a deadline of 42 time units. Additionally e is affected

by a response relation from another event e′, i.e. e′
30•→ e, which has a deadline

of 30 time units.

Definition 16. (Base case: Mapping a timed DCR graph with no rela-
tion) Let G be a tDCR Graph with no relations. Then PDP (G) =

{
pδe|e ∈ E, δ ∈

{In,Ex}
}
∪
{
pδ(e,e′)|e ∈ E, e′ = e ∨ e′ •→ e, δ ∈ {Re,Rex}

}
, TDP (G) =

{
tδe|e ∈

E, δ ∈ {event, init}
}
∪
{
tδ(e,e′)|e ∈ E, e′ = {ϕ}∪e′ •→ e, δ ∈ {pend, initpend}

}
and

λDP (G)(t
δ
e) = e. The set of arcs ADP (G) = IADP (G) ∪ OADP (G), InhibDP (G) :

IADP (G) → {true, false}, ReadDP (G) : IADP (G) → {true, false} and TransportDP (G) :
IADP (G) ×OADP (G) → {true, false} are defined by Table 1.

Definition 16 and the first row of Table 1 tell us that for each event e ∈ E
we create one transition labelled tevente that fires when there is a token in the
places pIne and pEx

e and no token in all pRe
(e,e′) places. This is equivalent to e ∈

In,Ex(e) = k and Re(e) is undefined for the marking of the timed DCR Graph
G. The only effect tevente has on the marking is to reset the age of the token on
pEx
e . This corresponds to the timed DCR Graph semantics setting the execution

time Ex(e) = 0 when e is executed. The second row shows that we create another
transition labelled tinite that can fire (and then puts one token in pEx

e) if and only
if there is a token in pIne and no token in pEx

e and all pRe
(e,e′). This corresponds to

the marking e ∈ In and both Ex(e) and Re(e) undefined in G. The third row

in Table 1 tells us that we have to create as many copies of tpend(e,e′) for as many

e′ we defined, i.e. e′ = {ϕ} ∪ e′ •→ e. {ϕ} represents the initially pending place
which can be marked if e ∈ Re in the initial marking of G, the remaining e′

represent the set of events which have a response relation to e in G. Notice that
these arcs are pairwise mapped to their equivalently labelled places. This can be
seen Fig. 3 between the transitions labelled pend e, pend e by e prime and
their respective places init pending e, pending e by e prime. The effect of
firing any tpend(e,e′) is to remove the token from their respective pending place. The

last set of transitions tinitpend(e,e′) follow the same reasoning as tpend(e,e′) only it has the

additional effect of adding a token to pEx
e .

e pIne pEx
e pRe

(e,e′) pRex
(e,e′)

tevente — <—> o—

tinite — o—> o—

tpend(e,e′) — <—> <—(e,e′)

tinitpend(e,e′) — o—> <—(e,e′)

Table 1: Arc patterns for an event

After mapping the TAPNrp for each event e ∈ E we proceed to map each rela-
tion r ∈ R. LetG = (E,M,R,@, L, l) be a DCRGraph withR = {r1, . . . , rk, rk+1}.
We first consider the cases where the relation rk+1 = (e, e′) is a single relation

between distinct events, i.e. @rk+1 ∈ {{→+}, {→%}, {
d•→}, { k•←}} and e ̸= e′.

Timed DCR Graphs to Timed-arc Petri Nets 15

Definition 17. (Mapping a DCR relation)
Let G = (E,M,R,@, L, l) be a DCR Graph, APT (@r) be the arc pattern

table for any given relation r ∈ @R and |APT (@r)r| be the number of rows
(transition copies) in the arc pattern table. Then TDP (Gk+1) = TDP (Gk)\{tδe |
tδe ∈ TDP (Gk) and λDP (Gk)(t

δ
e) = e} ∪ {ti,δe | i ∈ {0, 1, .., |APT (@r)r| − 1}}

and let (p, ti,δe) ∈ IADP (Gk+1) for i ∈ {0, 1.., |APT (@r)r| − 1} if and only if

(p, tδe) ∈ IADP (Gk) and let (ti,δe , p) ∈ OADP (Gk+1) for i ∈ {0, 1.., |APT (@r)r|−1}
if and only if (tδe, p) ∈ OADP (Gk) or (ti,δe , p) is one of the arcs in APT (@r).
Finally, for t ∈ ADP (Gk) such that λDP (Gk) ̸= e, let (p, t) ∈ IADP (Gk+1) and
(t, p) ∈ OADP (Gk+1) if and only if (p, t) ∈ IADP (Gk) or (t, p) ∈ OADP (Gk).

The set of arcs ADP (G) = IADP (G) ∪ OADP (G), InhibDP (G) : IADP (G) →
{true, false}, ReadDP (G) : IADP (G) → {true, false} and TransportDP (G) :
IADP (G) ×OADP (G) → {true, false} are defined according to APT (@r).

For each relation we define its arc pattern table APT (@r) in Table 2. Notice
that we are now referring to sets of existing transitions in the row indexes of
the tables. Intuitively, Definition 17 tells us that for any given relation e@rke

′

we take only the set of existing transitions labelled with e together with the set
of existing arcs to and from the transitions and create as many copies of these
transitions and arcs as there are rows in the arc pattern table APT (@rk) for
the given relation. Then for each set of transitions we copy, we add the new
arcs as defined in the arc pattern table APT (@rk). We then remove the original
set of transitions together with their arcs and keep only the new copies. When
we move to the next relation e@rk+1e

′ we apply the same definition again only
looking at the set of existing transitions labelled with e and their arcs.

(a) DCR

(b) Petri Net

Fig. 4: Mapping (a) DCR timed response relation to a Petri Net notation (b)

Example 1. (Mapping the timed response) Figure 4 shows how the response rela-

tion e
d•→ e′ is mapped by replacing the set of existing transition Te representing

16 Vlad Paul Cosma, Thomas T. Hildebrandt, and Tijs Slaats

→+ pIne′ pEx
e′ pRe

(e′,{e}∪e′′) p
Rex
(e′,{e}∪e′′)

t0,δe ∈ Te —

t1,δe ∈ Te o—> ⋄—(e′,e′′) —⋄(e′,e′′)
t2,δe ∈ Te o—> o—

(a) Arc patterns for →+

→% pIne′ pEx
e′ pRe

(e′,{e}∪e′′) p
Rex
(e′,{e}∪e′′)

t0,δe ∈ Te o—

t1,δe ∈ Te <— o—

t2,δe ∈ Te <— ⋄—(e′,e′′) —⋄(e′,e′′)

(b) Arc patterns for →%

d•→ pIne′ pEx
e′ pRe

(e′,e) pRex
(e′,e) pRe

(e′,e′′) pRex
(e′,e′′)

t0,δe ∈ Te — o—> o—

t1,δe ∈ Te — —>(e′,e′′) <—(e′,e′′)

t2,δe ∈ Te — <—>

t3,δe ∈ Te o— o—> o—

t4,δe ∈ Te o— —>(e′,e′′) <—(e′,e′′)

t5,δe ∈ Te o— <—>

(c) Arc patterns for
d•→

k•← pIne′ pEx
e′ pRe

(e′,{e}∪e′′) p
Rex
(e′,{e}∪e′′)

t0,δe —
k⋄—⋄

t1,δe o—

(d) Arc patterns for
k•←

Table 2: Arc patterns for rk+1 = (e, e′) single relations

Timed DCR Graphs to Timed-arc Petri Nets 17

e by six new copies, connected to the places representing the event e′. Notice

that in the arc pattern table 2c APT (
d•→) of the timed response we distinguish

specifically when mapping arcs between the pending place of e′ on which e has
an effect on and all the other pending places on which other events e′′ have an
effect on (e′′ also includes the initially pending place).

Note that we have already captured the response deadline of 42 time units in
the place invariant of pending e prime by e (pRe

(e′,e)). The Figure 4 also shows
how a second response from another event X with a deadline of 41 is handled

from the point of view of the current relation e
42•→ e′.

If the event e′ is also affected by →+ or →% relations from other events e′′,
the respective inclusion and exclusion events will transport the tokens between
the pRe

(e′,e) and pRex
(e′,e) as defined in row t1,δe of the arc pattern table 2a and row

t2,δe of the arc pattern table 2b respectively.

(a) DCR

(b) Petri Net

Fig. 5: Mapping (a) DCR timed condition relation to a Petri Net notation (b)

Example 2. (Mapping a timed condition) Figure 5 shows how a condition rela-
tion is mapped between the transitions representing the DCR event e and the
places representing the execution and inclusion marking for the DCR event e′.
The delay on the condition is mapped as the invariant on the input transport
arc between e0 and executed e prime.

Handling exceptions. Timed DCR Graphs allow for multiple relations to exist
between the same events as well as one or more relations between an event
and itself. The behaviour of the compound relations and of the self relations
is different than the execution semantics of single relations between different
events. The exceptional cases are the same as for the untimed mapping from
DCR to PNirp described in [11]. The only changes in the exceptions for the
timed mapping are observed in the new arc pattern tables from Table 3. Note
that we still apply Definition 17 on these new tables. All other exceptions not

18 Vlad Paul Cosma, Thomas T. Hildebrandt, and Tijs Slaats

defined in Table 3 either are the same as for the untimed mapping or reduce to
the ones already defined.

We are now ready to extend the bisimilarity Theorem 1 from [11] to a bisimu-
lation between the timed DCR Graph and the mapped Timed-arc Petri Net with
read arcs and pending places. The proof follows very much the same structure
as, except we also have to show that the time invariants between markings in the
DCR graph and the corresponding Petri net are also preserved. In [11] we showed
how the strong bisimilarity property is preserved by construction in the induc-
tion steps, here we simply refer to the new TAPNrp construction Definitions 13
to 17 to show that the strong timed bisimilarity property holds.

Theorem 1. (Strong timed bisimilarity) For G ∈ tDCR we have that
the relation SimG = {(M,DPMG(M)) | M ∈ MG} is a bisimulation relation
between [[G]] and [[DP (G)]], in the sense that (M0, DPMG(M0)) ∈ SimG, where
M0 is the initial marking of G and for all (M,DPMG(M)) ∈ Sim, we have

(i) M
e−→M ′ implies ∃!t ∈ TDP (G).DPMG(M)

t−→ DPMG(M
′) and λ(t) = e,

(ii) DPMG(M)
t−→M ′ and λ(t) = e implies M

e−→M ′′ and DPMG(M
′′) = M ′,

(iii) M
n−→M ′ implies DPMG(M)

n−→ DPMG(M
′)

(iv) DPMG(M)
n−→M ′ implies M

n−→M ′′ and DPMG(M
′′) = M ′.

What remains to show is that the accepting runs in the two models are the
same. This follows easily from the correspondence of markings in Def. 15, which
is maintained by the bisimulation relation.

Proposition 1. For a DCR Graph DCR graph G = G0 = (E,M,R,@, L, l) it
holds that an execution sequence M → M1 → M2 → .. is accepting if and only
if DPMG(M)→ DPMG(M1)→ DPMG(M2)→ .. is accepting.

5 Conclusion and future work

We presented a transformation from timed Dynamic Condition Response (DCR)
graph constraint based process specification language to safe timed-arc Petri
Nets with read arcs, generalized with an acceptance criteria for the modelling of
ω-regular liveness properties. The mapping extends previous work [11] provid-
ing a mapping from untimed DCR graphs to Petri Nets. The difficulties in the
extension was in setting up the mapping of the constraints. The proof for strong
bisimilarity between the transition system for the timed DCR graph and the
transition system for the resulting timed-arc Petri Net follows the same struc-
ture as the proof in [11], except that it includes a time invariance between the
marking of the timed DCR Graph and the timed-arc Petri Net. The mapping
is supported by an open source prototype implementation available in GitHub
at https://github.com/paul-cvp/pm4py-dcr/tree/feature/dcrtotapn (to-
gether with examples).

Given the existence of end-user no-code design tools for timed DCR Graphs,
the mapping provides a novel pathway for domain experts who are not familiar

Timed DCR Graphs to Timed-arc Petri Nets 19

k•← ∧ →+ pIne′ pEx
e′ pRe

(e′,{e}∪e′′) p
Rex
(e′,{e}∪e′′)

t0,δe ∈ Te —
k⋄—⋄

t1,δe ∈ Te o—> —⋄(e′,e′′) ⋄—(e′,e′′)

t2,δe ∈ Te o—> o—

(a) Arc patterns for e′
k•← e ∧ e→+ e′

k•← ∧ →% pIne′ pEx
e′ pRe

(e′,{e}∪e′′) p
Rex
(e′,{e}∪e′′)

t0,δe ∈ Te <—
k⋄—⋄ o—

t1,δe ∈ Te <—
k⋄—⋄ ⋄—(e′,e′′) —⋄(e′,e′′)

t2,δe ∈ Te o—

(b) Arc patterns for e′
k•← e ∧ e→% e′

k•← ∧ d•→ pIne′ pEx
e′ pRe

(e′,e) pRex
(e′,e) pRe

(e′,e′′) pRex
(e′,e′′)

t0,δe ∈ Te —
k⋄—⋄ o—> o—

t1,δe ∈ Te —
k⋄—⋄ <—>

t2,δe ∈ Te —
k⋄—⋄ —>(e′,e′′) <—(e′,e′′)

t3,δe ∈ Te o— —>(e′,e′′) <—(e′,e′′)

t4,δe ∈ Te o— o—> o—

t5,δe ∈ Te o— <—>

(c) Arc patterns for e′
k•← e ∧ e

d•→ e′

d•→ ∧ →+ pIne′ pEx
e′ pRe

(e′,e) pRex
(e′,e) pRe

(e′,e′′) pRex
(e′,e′′)

t0,δe ∈ Te — o—> o—

t1,δe ∈ Te — —>(e′,e′′) <—(e′,e′′)

t2,δe ∈ Te — <—>

t3,δe ∈ Te o—> o—> o— o—

t4,δe ∈ Te o—> —> <—

t4,δe ∈ Te o—> —>(e′,e′′) <—(e′,e′′)

(d) Arc pattern for e
d•→ e′ ∧ e→+ e′

d•→ ∧ →% pIne′ pEx
e′ pRe

(e′,e) pRex
(e′,e) pRe

(e′,e′′) pRex
(e′,e′′)

t0,δe ∈ Te <— o— —> o—

t1,δe ∈ Te <— <— —>

t2,δe ∈ Te <— —>(e′,e′′) <—(e′,e′′)

t3,δe ∈ Te o— o—> o—

t4,δe ∈ Te o— —>(e′,e′′) <—(e′,e′′)

t5,δe ∈ Te o— <—>

(e) Arc pattern for e
d•→ e′ ∧ e→% e′

•← ∧ d•→ ∧ →+ pIne′ pEx
e′ pRe

(e′,e) pRex
(e′,e) pRe

(e′,e′′) pRex
(e′,e′′)

t0,δe ∈ Te —
k⋄—⋄ o—> o—

t1,δe ∈ Te —
k⋄—⋄ <—>

t2,δe ∈ Te —
k⋄—⋄ —>(e′,e′′) <—(e′,e′′)

t3,δe ∈ Te o—> —>(e′,e′′) <—(e′,e′′)

t4,δe ∈ Te o—> —> o— o—

t5,δe ∈ Te o—> —> <—

(f) Arc pattern for e′ •← e ∧ e
d•→ e′ ∧ e→+ e′

•← ∧ d•→ ∧ →% pIne′ pEx
e′ pRe

(e′,e) pRex
(e′,e) pRe

(e′,e′′) pRex
(e′,e′′)

t0,δe ∈ Te <—
k⋄—⋄ o— —> o—

t1,δe ∈ Te <—
k⋄—⋄ <— —>

t2,δe ∈ Te <—
k⋄—⋄ —>(e′,e′′) <—(e′,e′′)

t3,δe ∈ Te o— —>(e′,e′′) <—(e′,e′′)

t4,δe ∈ Te o— o—> o—

t5,δe ∈ Te o— <—>

(g) Arc pattern for e′ •← e ∧ e
d•→ e′ ∧ e→% e′

Table 3: Exception relation arc patterns

20 Vlad Paul Cosma, Thomas T. Hildebrandt, and Tijs Slaats

with formal models to map timed specifications expressed in natural language
to timed-arc Petri Nets, that can be formally verified in e.g. the TAPAAL tool.
Indeed, the version of the DCR Solutions design tool released December 29,
2023 included a ChatGPT enabled interface, allowing a user to write rules in
natural language and get the corresponding timed DCR graph constraint. The
mapping algorithm was also tested on a larger example of a railroad controller
given in [35], modeling a railroad crossing with two tracks with trains arriving
independently of each other. While the timed DCR Graph consists of 16 activities
and 66 relations, the corresponding timed-arc Petri Net consists of 34 places, 99
transitions and 1200 arcs.

We believe the work in the present paper provides a plethora of research
avenues, which we aim to explore in future work. Firstly, we plan to evaluate the
time and space complexity of the mapping. We also plan evaluate the result of
mining timed DCR graphs using a prototype timed extension of the DisCoveR [5]
miner to mine timed DCR Graphs from well-known, real-life, public event logs
and map these to their timed-arc Petri Net counter parts.

As seen by our running example, the mapping nicely captures concurrency
between independent events. This could potentially also be combined with a
mapping from Petri Nets to BPMN [13], to provide an output following an ISO
standard process notation. Finally we aim to integrate the existing mapping
from safe Timed Arc Petri Nets to Timed Automata [37] to provide a link from
timed DCR Graphs to Timed Automata.

References

[1] Wil M.P van der Aalst and Maja Pesic. “DecSerFlow: Towards a Truly
Declarative Service Flow Language”. In: Proceedings of Web Services and
Formal Methods (WS-FM 2006). Ed. by M. Bravetti, M. Nunez, and Gi-
anluigi Zavattaro. Vol. 4184. 2006, pp. 1–23.

[2] Lars Ackermann et al. “Execution of Multi-perspective Declarative Process
Models”. In: On the Move to Meaningful Internet Systems. OTM 2018
Conferences. Ed. by Hervé Panetto et al. Cham: Springer International
Publishing, 2018, pp. 154–172. isbn: 978-3-030-02671-4.

[3] T Agerwala. “A complete model for representing the coordination of asyn-
chronous processes”. In: (1974). Hopkins Computer Research Report 32.

[4] Rajeev Alur and David L. Dill. “A theory of timed automata”. In: Theo-
retical Computer Science 126.2 (1994), pp. 183–235. issn: 0304-3975. doi:
https://doi.org/10.1016/0304- 3975(94)90010- 8. url: https:
//www.sciencedirect.com/science/article/pii/0304397594900108.

[5] C.O. Back et al. “DisCoveR: accurate and efficient discovery of declarative
process models”. In: Int Journal of Software Tools Technology Transfer 24
(2022), pp. 563–587.

Timed DCR Graphs to Timed-arc Petri Nets 21

[6] Paolo Baldan et al. “Functional concurrent semantics for petri nets with
read and inhibitor arcs”. In: CONCUR 2000—Concurrency Theory: 11th
International Conference University Park, PA, USA, August 22–25, 2000
Proceedings 11. Springer. 2000, pp. 442–457.

[7] David Basin et al. “Monitoring metric first-order temporal properties”. In:
Journal of the ACM (JACM) 62.2 (2015), pp. 1–45.

[8] Bernard Berthomieu and Miguel Menasche. “A state enumeration ap-
proach for analyzing time Petri nets”. In: 3rd European Workshop on Ap-
plications and Theory of Petri Nets. 1982.

[9] Andrea Burattin, Fabrizio M. Maggi, and Alessandro Sperduti. “Confor-
mance checking based on multi-perspective declarative process models”.
In: Expert Systems with Applications 65 (2016), pp. 194–211. issn: 0957-
4174. doi: https://doi.org/10.1016/j.eswa.2016.08.040.

[10] Joakim Byg, Kenneth Yrke Jørgensen, and Jǐŕı Srba. “An Efficient Transla-
tion of Timed-Arc Petri Nets to Networks of Timed Automata”. In: Formal
Methods and Software Engineering. Ed. by Karin Breitman and Ana Cav-
alcanti. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, pp. 698–716.
isbn: 978-3-642-10373-5.

[11] Vlad Paul Cosma, Thomas T. Hildebrandt, and Tijs Slaats. “Transform-
ing Dynamic Condition Response Graphs to Safe Petri Nets”. In: Ap-
plication and Theory of Petri Nets and Concurrency: 44th International
Conference, PETRI NETS 2023, Lisbon, Portugal, June 25–30, 2023, Pro-
ceedings. Lisbon, Portugal: Springer-Verlag, 2023, pp. 417–439. isbn: 978-
3-031-33619-5. doi: 10.1007/978- 3- 031- 33620- 1_22. url: https:
//doi.org/10.1007/978-3-031-33620-1_22.

[12] Johannes De Smedt et al. “A full R/I-net construct lexicon for declare
constraints”. In: Available at SSRN 2572869 (2015).

[13] Remco M Dijkman, Marlon Dumas, and Chun Ouyang. “Formal semantics
and analysis of BPMN process models using Petri nets”. In: Queensland
University of Technology, Tech. Rep (2007), pp. 1–30.

[14] Rik Eshuis et al. “Deriving Consistent GSM Schemas from DCR Graphs”.
In: Service-Oriented Computing. Ed. by Quan Z. Sheng et al. Cham: Springer
International Publishing, 2016, pp. 467–482. isbn: 978-3-319-46295-0.

[15] Olivier Finkel. “On the High Complexity of Petri Nets ω-Languages”. In:
International Conference on Applications and Theory of Petri Nets and
Concurrency. Springer. 2020, pp. 69–88.

[16] Thomas Hildebrandt et al. “Contracts for cross-organizational workflows
as timed Dynamic Condition Response Graphs”. In: The Journal of Logic
and Algebraic Programming 82.5 (2013). Formal Languages and Analysis of
Contract-Oriented Software (FLACOS’11), pp. 164–185. issn: 1567-8326.
doi: https://doi.org/10.1016/j.jlap.2013.05.005. url: https://
www.sciencedirect.com/science/article/pii/S1567832613000283.

[17] Thomas T. Hildebrandt and Raghava Rao Mukkamala. “Declarative Event-
Based Workflow as Distributed Dynamic Condition Response Graphs”. In:
PLACES. 2010, pp. 59–73.

22 Vlad Paul Cosma, Thomas T. Hildebrandt, and Tijs Slaats

[18] Thomas T. Hildebrandt et al. “Contracts for cross-organizational work-
flows as timed Dynamic Condition Response Graphs”. In: Journal of Logic
and Algebraic Programming 82.5-7 (2013), pp. 164–185.

[19] Thomas T. Hildebrandt et al. “Decision Modelling in Timed Dynamic Con-
dition Response Graphs with Data”. In: Business Process Management
Workshops - BPM 2021 International Workshops, Rome, Italy, September
6-10, 2021, Revised Selected Papers. Ed. by Andrea Marrella and Bar-
bara Weber. Vol. 436. Lecture Notes in Business Information Processing.
Springer, 2021, pp. 362–374. doi: 10.1007/978-3-030-94343-1_28.
url: https://doi.org/10.1007/978-3-030-94343-1%5C_28.

[20] Zhaoxia Hu and Sol M Shatz. “Mapping UML Diagrams to a Petri Net
Notation for System Simulation.” In: SEKE. Citeseer. 2004, pp. 213–219.

[21] Richard Hull et al. “Introducing the guard-stage-milestone approach for
specifying business entity lifecycles”. In: Proc. of WS-FM’10. Berlin, Hei-
delberg: Springer-Verlag, 2011, pp. 1–24. isbn: 978-3-642-19588-4.

[22] Lasse Jacobsen et al. “Verification of Timed-Arc Petri Nets”. In: SOFSEM
2011: Theory and Practice of Computer Science. Ed. by Ivana Černá et
al. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp. 46–72. isbn:
978-3-642-18381-2.

[23] Fabrizio Maria Maggi et al. “Monitoring Business Constraints with Linear
Temporal Logic: An Approach Based on Colored Automata”. In: Busi-
ness Process Management. Ed. by Stefanie Rinderle-Ma, Farouk Toumani,
and Karsten Wolf. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011,
pp. 132–147. isbn: 978-3-642-23059-2.

[24] Marco Montali. Specification and verification of declarative open interac-
tion models: a logic-based approach. Vol. 56. Springer Science & Business
Media, 2010.

[25] Marco Montali et al. “Declarative Specification and Verification of Service
Choreographiess”. In: ACM Trans. Web 4.1 (Jan. 2010). issn: 1559-1131.
doi: 10.1145/1658373.1658376. url: https://doi.org/10.1145/
1658373.1658376.

[26] Ugo Montanari and Francesca Rossi. “Contextual nets”. In: Acta Infor-
matica 32 (1995), pp. 545–596.

[27] Raghava Rao Mukkamala. “A Formal Model For Declarative Workflows:
Dynamic Condition Response Graphs”. PhD thesis. IT University of Copen-
hagen, June 2012.

[28] Raghava Rao Mukkamala and Thomas T. Hildebrandt. “From Dynamic
Condition Response Structures to Büchi Automata”. In: 2010 4th IEEE
International Symposium on Theoretical Aspects of Software Engineering.
2010, pp. 187–190. doi: 10.1109/TASE.2010.22.

[29] H̊akon Norman et al. “Zoom and Enhance: Action Refinement via Subpro-
cesses in Timed Declarative Processes”. In: Business Process Management
- 19th International Conference, BPM 2021, Rome, Italy, September 06-
10, 2021, Proceedings. Ed. by Artem Polyvyanyy et al. Vol. 12875. Lecture
Notes in Computer Science. Springer, 2021, pp. 161–178. doi: 10.1007/

Timed DCR Graphs to Timed-arc Petri Nets 23

978-3-030-85469-0_12. url: https://doi.org/10.1007/978-3-030-
85469-0%5C_12.

[30] Amir Pnueli. “The temporal logic of programs”. In: 18th Annual Sympo-
sium on Foundations of Computer Science (sfcs 1977). 1977, pp. 46–57.
doi: 10.1109/SFCS.1977.32.

[31] Viara Popova and Marlon Dumas. “From Petri Nets to Guard-Stage-
Milestone Models”. In: Business Process Management Workshops. Ed. by
Marcello La Rosa and Pnina Soffer. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2013, pp. 340–351. isbn: 978-3-642-36285-9.

[32] Johannes Prescher, Claudio Di Ciccio, and Jan Mendling. “From Declara-
tive Processes to Imperative Models.” In: SIMPDA 1293 (2014), pp. 162–
173.

[33] Ivo Raedts et al. “Transformation of BPMN Models for Behaviour Analy-
sis.” In: MSVVEIS 2007 (2007), pp. 126–137.

[34] V Valero Ruiz, David de Frutos Escrig, and F Cuartero Gomez. “On non-
decidability of reachability for timed-arc Petri nets”. In: Proceedings 8th
International Workshop on Petri Nets and Performance Models (Cat. No.
PR00331). IEEE. 1999, pp. 188–196.

[35] Krzysztof Sacha. “Verification and Implementation of Dependable Con-
trollers”. In: 2008 Third International Conference on Dependability of
Computer Systems DepCoS-RELCOMEX. 2008, pp. 143–151. doi: 10.
1109/DepCoS-RELCOMEX.2008.30.

[36] Tijs Slaats. “Flexible Process Notations for Cross-organizational Case Man-
agement Systems”. PhD thesis. IT University of Copenhagen, Jan. 2015.

[37] Jǐŕı Srba. “Timed-Arc Petri Nets vs. Networks of Timed Automata”. In:
Applications and Theory of Petri Nets 2005. Ed. by Gianfranco Ciardo
and Philippe Darondeau. Berlin, Heidelberg: Springer Berlin Heidelberg,
2005, pp. 385–402. isbn: 978-3-540-31559-9.

[38] Tony Spiteri Staines. “Intuitive Mapping of UML 2 Activity Diagrams into
Fundamental Modeling Concept Petri Net Diagrams and Colored Petri
Nets”. In: 15th Annual IEEE International Conference and Workshop on
the Engineering of Computer Based Systems (ecbs 2008). 2008, pp. 191–
200. doi: 10.1109/ECBS.2008.12.

[39] D. Thapa, S. Dangol, and Gi-Nam Wang. “Transformation from Petri
Nets Model to Programmable Logic Controller using One-to-One Mapping
Technique”. In: International Conference on Computational Intelligence
for Modelling, Control and Automation and International Conference on
Intelligent Agents, Web Technologies and Internet Commerce (CIMCA-
IAWTIC’06). Vol. 2. 2005, pp. 228–233. doi: 10. 1109/CIMCA. 2005.
1631473.

[40] Rüdiger Valk. “Infinite behaviour of Petri nets”. In: Theoretical computer
science 25.3 (1983), pp. 311–341.

[41] Nianhua Yang et al. “Modeling UML Sequence Diagrams Using Extended
Petri Nets”. In: 2010 International Conference on Information Science and
Applications. 2010, pp. 1–8. doi: 10.1109/ICISA.2010.5480384.

24 Vlad Paul Cosma, Thomas T. Hildebrandt, and Tijs Slaats

[42] Dmitry A. Zaitsev. “Toward the Minimal Universal Petri Net”. In: IEEE
Transactions on Systems, Man, and Cybernetics: Systems 44.1 (2014),
pp. 47–58. doi: 10.1109/TSMC.2012.2237549.

	Abstract
	Resumé
	Acknowledgements
	I Overview
	Introduction
	Research problems
	Related work
	Preliminaries
	List of Publications and code

	Trustworthy event log creation BERMUDA
	BERMUDA: Participatory Mapping of Domain Activities to Event Data via System Interfaces

	Understandable declarative process models
	Improving Simplicity by Discovering Nested Groups in Declarative Models

	Verifiable declarative process models
	Transforming Dynamic Condition Response Graphs to Safe Petri Nets
	Static and Dynamic Techniques for Iterative Test-Driven Modelling of Dynamic Condition Response Graphs

	Handling time
	DD-DisCoveR: Mining timed DCR graphs using the pm4py DisCoveR DCR extension
	Transforming Timed Dynamic Condition Response Graphs to safe Timed-arc Petri Nets

	Conclusion
	Future work

	Bibliography

	II Papers
	Trustworthy event log extraction
	BERMUDA: Participatory Mapping of Domain Activities to Event Data via System Interfaces

	Understandable declarative process models
	Improving Simplicity by Discovering Nested Groups in Declarative Models

	Verifiable declarative process models
	Transforming Dynamic Condition Response Graphs to safe Petri Nets
	Static and Dynamic Techniques for Iterative Test-Driven Modelling of Dynamic Condition Response Graphs

	Handling time
	DD-DisCoveR: Mining timed DCR Graphs using the pm4py DisCoveR DCR extension
	Transforming Timed Dynamic Condition Response Graphs to safe Timed-arc Petri Nets

