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Abstract

The renal vasculature, functioning as a resource distribution network, plays an
essential role in the kidney’s physiology and pathophysiology. The diagnosis of
vascular diseases such as renal artery stenosis can usually be achieved through
medical scanning of the large renal arteries. However, the renal filtration and
autoregulation mechanisms take place in the smallest terminal arteries in the
renal arterial tree, also known as afferent arterioles, which are beyond the reso-
lution of most existing medical imaging modalities. This limitation of medical
imaging and the fundamental function of afferent arterioles makes data-driven
generative models an important tool for studies of the regulation of renal blood
flow. To better understand the regulatory mechanisms of renal blood flow, this
PhD thesis presents a novel hybrid approach to reconstruct a full-scale renal
arterial network. The hybrid approach reconstructs small arteries in the full-
scale arterial tree using a physiologically based optimization method, while
also integrating vascular geometries extracted from medical images. Then,
models of nephrons, where the renal filtration and the control renal hemody-
namics takes place, are attached to each afferent arteriole of the reconstructed
full-scale arterial tree. With the full-scale nephron-vascular model, autoregu-
latory mechanisms are simulated to define how topological and hemodynamic
profiles of microcirculatory networks are optimized and adapted to pathologi-
cal changes. Finally, although most of the blood vessels in the full-scale model
are reconstructed physiologically, segmenting visible large blood vessels from
medical scans is still a crucial step for guiding the physiological reconstruc-
tion of the remaining small vessels. Therefore, the PhD thesis also includes
medical image segmentation, and the related deep learning approaches, which
have become state-of-the-art methods for automatic segmentation tasks.
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Dansk Resumé

Nyrekarrene, der fungerer som et ressourcefordelingsnetværk, spiller en afgørende
rolle i nyrens fysiologi og patofysiologi. Diagnosen af vaskulære sygdomme
s̊asom nyrearteriestenose kan som regel opn̊as ved scanning af de store nyreart-
erier. Men de renale filtrerings- og autoreguleringsmekanismer sker i de mind-
ste terminalarterier i nyrearterietræet, de afferente arterioler, der ikke kan
visualiseres af de eksisterende medicinske billedmodaliteter. Denne begræn-
sning sammen med de afferente arteriolers fundamentale betydning for nyre-
funktionen, gør datadrevne generative modeller til et vigtigt værktøj for un-
dersøgelser af reguleringen af nyrens blodgennemstrømning. I denne sammen-
hæng præsenterer denne ph.d.-afhandling en ny hybrid tilgang til at rekon-
struere en komplet model af nyrens arterielle kartræ.Denne hybrid tilgang
rekonstruerer de sm̊a arterier i det arterielle netværk ved hjælp af en fysiolo-
gisk baseret optimeringsmetode, samtidig med at den integrerer kargeometrier
hentet fra medicinske scanninger af nyren. Herefter tilknyttes der modeller
af nefroner, hvor den renale filtrering sker og kontrollerer renal til hver affer-
ent arteriole i det rekonstruerede arterielle kar træ. Det er nefronerne der er
ansvarlige for dels filtrationen, og dels for reguleringen af nyrens blodgennem-
strømning. Ved hjælp af det arterielle netvær og modellerne af nefronerne
simuleres den renal autoregulering af gennemblødningen for at undersøge,
hvordan topologiske og hæmodynamiske profiler i mikrocirkulatoriske netværk
optimeres og tilpasses til patologiske ændringer. Selvom de fleste blodkar i
karmodellen er rekonstrueret fysiologisk, er segmentering af de større, syn-
lige blodkar fra medicinske scanninger stadig et afgørende skridt, som funda-
ment for den fysiologiske rekonstruktion af de resterende kar. Denne ph.d.-
afhandling omhandler derfor ogs̊a segmentering af medicinske scanninger af
nyrekar, og de relaterede maskinlæringsmetoder, der er blevet state-of-the-art
metoder til automatiske segmenteringsopgaver.
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Chapter 1

Introduction

Chronic kidney disease (CKD) has become a major cause of mortality and
morbidity in the 21st century, affecting more than 10% of the general popula-
tion worldwide [1]. This is due in part to the increase in risk factors such as
diabetes, obesity, and hypertension [1]. Although CKD may be caused by sev-
eral mechanisms, dysfunction of and damage to the renal vasculature appears
to play a prominent role in CKD associated with diabetes and hypertension
[2, 3]. Current evidence suggests that especially an impaired autoregulation of
renal blood flow is a culprit in the development of diabetic and hypertensive
nephropathy [2, 4, 5]. Autoregulation minimizes the transmission of changes
in the arterial pressure along the renal vascular network, thereby preventing
pressure-induced damage to the renal microcirculation [2, 6]. In the face of
rising CKD cases globally, understanding the intricacies of renal function is
more crucial than ever.

Among all the components in the kidney, the vasculature, especially the
arterial network, plays a unique role in the autoregulation mechanism. Not
only is it the main effector of autoregulation, but it also functions as a resource
distribution network, supplying the individual nephrons with blood and nutri-
ents, and constitutes a communication network, allowing contiguous nephrons
to interact through electric signaling along the vessels [7].

To better understand the regulatory mechanisms of renal blood flow, in-
cluding autoregulation, this PhD thesis presents an innovative computational
model that reconstructs and simulates the full-scale renal nephron-vascular
network, offering detailed insights into the renal vascular topology and kidney
autoregulation mechanisms under various physiological conditions.

1.1 Anatomy of the kidney

The kidney is a vital organ essential for maintaining fluid and electrolyte bal-
ance, filtration of plasma, and the elimination of waste products[8]. It exhibits
a complex structure comprising distinct regions, each contributing to its over-
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1.1. Anatomy of the kidney Chapter 1

all function (Fig. 1.1A). The outermost layer is the renal cortex, which houses
the major parts of the nephrons (Fig. 1.1A&B) – the functional units re-
sponsible for filtration, tubular reabsorption/secretion, urine production, and
autoregulation of the blood flow. The human kidney contains 1 - 1.2 million
nephrons, whereas the rat kidney, which is the target of the present work, con-
tains approximately 30,000 nephrons. Deep within the kidney lies the renal
medulla. The renal medulla contains the structures that are necessary for the
creation of concentrated urine, including the loops of Henle and the medullary
collecting ducts (Fig. 1.1A&C). Lastly, the renal pelvis serves as a collecting
chamber where urine from the nephrons converges before reaching the urinary
bladder via the ureter (Fig. 1.1A).

The vasculature of the kidney is integral to its function, ensuring proper
perfusion of and filtration in the individual nephrons. The arterial supply
of blood to the kidney originates from the renal artery that arises from the
abdominal aorta. Inside the kidney it divides into segmental arteries, then
into interlobar arteries traveling within the renal columns (Fig. 1.1A). From
there, blood flows into arcuate arteries at the corticomedullary junction, which
through the interlobular arteries supplies the cortex with blood. Afferent arte-
rioles represent the smallest arteries in the network, and one afferent arteriole
supplies a single glomerulus (Fig. 1.1A&B). Efferent arterioles emerge from
glomeruli, forming peritubular capillaries in the cortex and vasa recta in the
medulla. Venous drainage occurs through interlobular veins, arcuate veins,
and ultimately, the renal vein, which exits the kidney to drain into the infe-
rior vena cava [9] (Fig. 1.1B).

At the core of the renal vasculature is the afferent arterioles, which are
the terminal blood vessels in the renal arterial tree that supply blood to each
nephron. Because of their small diameter, they represent the major part of the
hemodynamic resistance of the renal vascular network. The nephron, as the
functional unit of the kidney, together with the afferent arteriole, is responsible
for the autoregulation of blood flow.

A nephron consists of a renal corpuscle, including Bowman’s capsule that
surrounds the glomerulus, and renal tubules, such as the proximal convoluted
tubule, loop of Henle, distal convoluted tubule, and collecting duct (Fig. 1.1C).
Blood flows from the afferent arteriole into the glomerular capillaries, and
leaves the glomerulus through the efferent arteriole (Fig. 1.1B). As blood flows
through the capillaries, fluid is filtered through the capillary walls and enters
the renal tubule from Bowman’s capsule. The capillary walls are permeable to
water and small solutes (predominantly NaCl), but impermeable to the plasma
proteins. Consequently, the filtrate contains all the small solutes dissolved in
the plasma, whereas the plasma proteins are retained within the capillaries.
The rate at which blood is filtered in the glomeruli and enters the renal tubule,
also known as the glomerular filtration rate (GFR), is an important measure
of overall kidney function and is a function of the renal blood flow and arterial
pressure. If too low the kidney will fail to eliminate waste products, and if too
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Chapter 1 1.2. Mechanisms of renal autoregulation

high there will be a loss of essential compounds, like NaCl and water, through
the kidneys.

In the tubule (Fig. 1.1C), the filtrate first traverses the proximal convo-
luted tubule (PCT), where cuboidal epithelial cells, rich in microvilli, actively
reabsorb essential nutrients, ions, and water back into the bloodstream. As
the filtrate progresses, it passes through the loop of Henle, a crucial segment
featuring a descending limb permeable to water and an ascending limb imper-
meable to water but conducive to ion transport, establishing a concentration
gradient essential for subsequent reabsorption of water in the collecting duct.
Subsequently, the distal convoluted tubule (DCT) fine-tunes urine composi-
tion through selective ion reabsorption and acid-base balance regulation. Fi-
nally, the collecting duct adjusts urine concentration based on the hydration
status, either reabsorbing water under the influence of antidiuretic hormone
(ADH) or allowing for its excretion to produce dilute urine.

1.2 Mechanisms of renal autoregulation

The circulatory system, including the renal blood flow, is controlled by home-
ostatic mechanisms of autoregulation. The hemodynamic response continu-
ously monitors and adapts to conditions in the body and its environment. In
the kidney, autoregulation of renal blood flow and glomerular filtration rate
(GFR) play a critical role in maintaining renal function despite fluctuations in
systemic blood pressure [10]. This process involves the intrinsic ability of the
afferent arterioles to adjust their diameter in response to changes in blood pres-
sure, ensuring stable renal perfusion. Specifically, the myogenic mechanism
and tubuloglomerular feedback mechanism contribute to autoregulation. The
myogenic mechanism is intrinsic to the vessels, and induces vasoconstriction of
afferent arterioles in response to increased blood pressure, limiting renal blood
flow. Conversely, vasodilation occurs in response to decreased blood pressure,
maintaining adequate renal perfusion. The tubuloglomerular feedback mech-
anism involves the release of vasoactive substances by the macula densa in
the distal convoluted tubule in response to changes in sodium chloride (NaCl)
concentration, regulating GFR by altering arteriolar resistance.

Despite intense research, the mechanisms that underlie the pathways to
chronic kidney disease (CKD) remain poorly understood. However, it is known
that impaired autoregulation may lead to vascular damage in the renal micro-
circulation, and thereby contribute to the development of CKD [2, 4, 5]. A
major obstacle to the study of the role of autoregulation in CKD is the fact
that the autoregulatory mechanisms act at the nephron level, and the com-
plex interplays among the nephrons are poorly understood because modern
experimental technologies cannot asses hemodynamics in the deeper regions
of the kidney.

In the literature, there exists a strong foundation of mathematical mod-
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Figure 1.1: (A) Kidney anatomy: cortex and medulla exhibit distinct mor-
phological and functional features (created with BioRender.com); (B) Renal
microcirculation with afferent/efferent arterioles, glomerular capillaries, and
vace recta; (C) Nephron – the functional unit of the kidney; (D) Three popula-
tions of nephrons are distinguished: superficial, midcortical, or juxtamedullary
based on the location of their glomerulus within the cortex. (D) is also in
manuscript B.

eling and simulation of the autoregulation mechanisms of blood flows in a
single nephron [11, 12, 13, 14, 15]. As the number of nephrons is known[16,
17], the single model can be scaled up to represent the whole kidney, assuming
that the nephrons work independently. However, the afferent arterioles, as the
feeding blood vessel to the nephron, are all connected in the renal arterial tree,
meaning that the nephrons function together rather than independently.

As a result, a detailed description and modeling of renal vasculature topol-
ogy that reaches and connects all the afferent arterioles and nephrons together
is necessary for a complete simulation of the blood flow and autoregulation
mechanisms in the kidney. This modeling and simulation will be crucial for
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Chapter 1 1.3. Topology of renal arterial network

understanding both the physiology and pathophysiology of the kidney, such as
early identification of progressive kidney disease and drug designs. Unfortu-
nately, most medical scanning devices have limited spatial resolution, and can
only resolve the first few large branches of the renal vasculature. Although the
first few large branches can provide diagnostic information on renal conditions
such as renal artery stenosis [18, 19, 20, 21, 19, 22], more detailed information
on the renal microvasculature is necessary for the study of the mechanisms of
renal autoregulation, which takes place at the level of the afferent arterioles
and nephrons.

1.3 Topology of renal arterial network

Despite the lack of dynamical observations of the far-surface tissues of the
kidney and a holistic observation of the renal arterial tree, there exists a
large amount of statistical data retrieved from high-resolution scans of the
far-surface patches [16, 7, 23, 24]. Nordsletten et al. [16] provided the hitherto
most detailed and quantitative description of the rat renal vasculature. They
combined high (4 µm) and low (20 µm) resolution micro-CT images obtained
from a vascular cast of a rat kidney. They used the skeletonization method to
trace the path of contiguous vessels and then applied the Strahler approach
[25] to sort and interpret the data. Although they do not have a full-scale
renal arterial tree structure, their main contribution is their results of detailed
morphometric property, such as radius and length distribution and branching
patterns, especially on the afferent arterioles.

Marsh et al. [23] used micro-CT scans with 2.5 µm resolution to examine
the three-dimensional microvascular structure of the rat renal arterial tree.
The cast revealed an arterial tree stemming from arcuate arteries, with as
few as twice or as many as six branchings before reaching a terminal artery.
These terminal arteries terminate in pairs, triplets, or quadruplets of affer-
ent arterioles [23]. They also observed various patterns in the origins of af-
ferent arterioles, either arising from nonterminal arteries at different branch
orders or directly from terminal arteries that formed the apexes of the arterial
tree. Other research groups have documented similar branching configura-
tions through the analysis of microdissected arterial trees from four distinct
mammalian species [26, 27, 28]. Postnov et al. [24] have demonstrated that
the pressure drop in a simple bifurcating tree with the vessel dimensions re-
ported by Norsletten et al. [16] surpasses the experimentally observed value.
This is expected since, in a simple bifurcating tree, afferent arterioles ap-
pear only at the terminal branch points of the tree, which is an assumption
that maximizes the hemodynamic resistance between the renal artery and the
glomerulus. Postnov et al. [24] and Marsh et al. [23] have also reported
an exponential distribution of the distances between branch points for affer-
ent arterioles throughout the vascular tree. This distribution, coupled with
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1.4. Coventional computational fluid dynamics Chapter 1

the possibility of branching from any arterial segment, forms the foundation
for the pressure within the glomerular capillaries to be significantly elevated,
falling within a range conducive to normal nephron function, unlike in a simple
bifurcating tree.

In summary, the lack of a full-scale observation of the renal arterial tree
but with a large amount of statistical data retrieved from high-resolution scans
of the far-surface patches [16, 7, 23, 24] motivates data-driven modeling and
biosimulation methods that can reconstruct a full-scale renal vasculature by
combining the extraction of tissue geometry from medical data with generative
models that can extrapolate modeling to unseen parts of the kidney.

1.4 Coventional computational fluid dynamics

Computational Fluid Dynamics (CFDs) is the conventional method to simu-
late blood flows and dysfunctions over vasculatures, which have been widely
used in Cardiovascular studies such as coronary artery disease (CAD) and
aortic aneurysm [29, 30, 31, 32, 33]. As a branch of fluid mechanics, CFDs
employ numerical methods and algorithms to analyze and solve complex fluid
flow problems based on the fundamental principles of fluid dynamics such as
the Navier-Stokes equation. The Navier-Stokes equation is a set of non-linear,
partial differential equations that describe the motion of fluid substances, such
as liquids and gases, and, in our case, blood flows. However, when dealing
with complex three-dimensional geometries, these non-linear, partial differen-
tial equations cannot be solved analytically. Therefore, numerical methods
such as the finite volume or finite element method are commonly employed to
address the discretized version of these equations. In these numerical meth-
ods, the Navier-Stokes equations defined above serve as “governing equations”,
which are integrated across all domain elements and subsequently transformed
into a system of non-linear algebraic equations. This system of non-linear al-
gebraic equations, often in the order of millions, is typically solved through
iterative methods using computer workstations or high-performance comput-
ing clusters [34].

In the context of blood vessels, CFD simulations offer valuable insights
into hemodynamics studies. In the renal vascular studies, CFDs have been
mostly only focusing on the renal artery (the single root vessel in the renal
arterial tree) to study renal arteries stenosis (RAS) [18, 19, 20, 21, 19, 22],
which is the narrowing of renal arteries, most often caused by atherosclerosis
or fibromuscular dysplasia. By employing CFD, it becomes possible to assess
the impact of different physiological and pathological conditions on blood
flow and help researchers and clinicians investigate various aspects of blood
flow, including the formation of potential flow disturbances like thrombosis or
atherosclerosis.

In this section, we briefly present the Navier-Stokes equations and detail
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Chapter 1 1.4. Coventional computational fluid dynamics

the steps in standard CFD studies of blood flow. We then explain in de-
tail why the standard pipeline of CFDs cannot be adopted in our studies to
simulate blood flow in the renal arterial network or the renal autoregulation
mechanisms.

1.4.1 Navier-Stokes equation

CFD-based blood flow simulations are focused on using numerical methods
to solve the Navier-Stokes equation, which describes the motion of fluid sub-
stances and consists of two components, namely the conservation of mass
(continuity equation) and the conservation of momentum.

The first component of the Navier-Stokes equation is the conservation of
mass equation, also known as the continuity equation. It states that the rate
of change of mass within a fluid element is equal to the rate of mass flow (flux)
into the volume.

∂ρ

∂t
+∇ · (ρu) = 0 (1.1)

where ρ is the fluid density, u is the fluid velocity vector.
The conservation of momentum equation in the Navier-Stokes equation

describes the relationship between acceleration, pressure, viscous forces, and
body forces acting on a fluid element. It states that the rate of change of
momentum within a fluid element equals the rate of momentum flow (flux)
into the volume plus the momentum rate due to other forces.

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇p+ µ∇2u+ ρg (1.2)

where p is the pressure, µ is the dynamic viscosity and ∇2u is the Laplacian
of the velocity vector u and g is the acceleration due to gravity.

1.4.2 Idealized general pipeline of CFDs

Ideally, a CFD-based simulation of blood flow should, in principle, involve the
following steps [35]. A toy illustration of applying CFD on our renal arterial
vasculatures is shown in Fig. 1.2.

Medical imaging The initial input to perform CFDs is the medical imaging
data of blood vessels, such as computed tomography (CT) scans, magnetic
resonance imaging (MRI), ultrasound, and X-ray angiography. Most of them
are non-invasive and are only used to extract geometries of blood vessels but
do not measure any hemodynamic properties.

Geometry reconstruction (Vessel segmentation) The three-dimensional
(3D) geometries of blood vessels need to be reconstructed from medical im-
ages. This usually involves a semantic segmentation of the blood vessels.
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1.4. Coventional computational fluid dynamics Chapter 1

Medical Imaging Geometry Reconstruction (Vessel Segmentation)

Mesh GenerationGoverning EquationsBoundary conditionsSolver and Simulation

inlet velocity
outlet 

pressure

Figure 1.2: An toy illustration of the idealized CFD pipeline applied over the
renal arterial network. It starts by segmenting blood vessels from a micro-
CT scan of a rat kidney. While only arteries (colored red) are preserved
and reconstructed for further blood flow simulations, veins (colored blue) are
also shown in the segmentation for completeness. For boundary conditions, a
common practice is to define a single inlet velocity profile and all the outlet
pressure fields, of which only some are circled for illustration purposes. In
the final result, the idealized pipeline should output the rendered pressure
or flow field. Here, each node is simply colored by its coordinates for a toy
illustration.

Sophisticated segmentation approaches such as level-set segmentation [36, 37]
have been applied to reconstruct 2D and 3D patient-specific coronary mod-
els [38, 39]. The advance of deep learning also makes auto-segmentations of
blood vessels possible, which most often requires adequate training data with
pre-segmented label maps [40, 41, 42]. Nonetheless, it still remains challeng-
ing to integrate deep learning models into a complete pipeline of CFDs since
their performance heavily depends on the available training data and image
qualities.

Mesh generation A computational grid, or mesh, is generated over the
reconstructed geometry to divide the domain into discrete elements. Ideally,
surface meshes can be generated by applying marching cubes [43] over seg-
mentation results, while tetrahedralization methods such as fTetWild [44] is
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Chapter 1 1.4. Coventional computational fluid dynamics

usually applied over the surface meshes to produce volume meshes. Certain
surface corrections and mesh repairs are also necessary to capture the signifi-
cant hemodynamic behavior of the modeled section [35].

Governing equations The Navier-Stokes equations introduced previously
in Section 1.4.1 are used as the governing equations in blood flow simulations,
which need to be solved numerically over the generated mesh from the previous
step. These equations need to be modified to account for the non-Newtonian
properties of blood, such as varying viscosity and elasticity, e.g., Carreau
model [18, 20].

Boundary conditions To enable CFD analysis, the physiological condi-
tions at the wall and inlet/outlet boundaries need to be delimited and speci-
fied. Appropriate boundary conditions are crucial to mimic the physiological
conditions of the blood vessels being studied. They may be retrieved from
patient-specific data, population data, physical models, or assumptions. In
hemodynamics, CFD usually requires an inflow velocity and outlet pressure
information as the boundary condition, which are often adopted as constant
values from the population data and thus do not require patient-specific in-
formation [31, 32, 33, 29, 30].

Solver and simulation Numerical algorithms, such as finite element or fi-
nite volume methods, are employed to discretize the governing equations and
numerically solve the Navier-Stokes and continuity equations. The numer-
ical algorithms reach convergence by gradually approaching a final solution
through incremental steps.

Post-processing and analysis Once the simulation is complete, the CFD
solver produces hemodynamic features such as the pressure distribution and
velocity field over all elements at each time step, which can then be used to
study blood flow characteristics and detect abnormal blood flows [35].

1.4.3 Limitation and challenges to our task

In our problem, we are given ex-vivo micro-CT scans of rat kidneys with an
isotropic voxel size of 22.6 µm. Ideally, our task can be solved by following
the steps defined previously in Section 1.4.2. Specifically, as a toy example
shown in Fig. 1.2, we start by segmenting blood vessels (renal arterial trees)
from the ex-vivo micro-CT scans, followed by mesh reconstruction from the
segmentation results using methods such as marching cubes [43] and fTetWild
[44]. We then run numerical solvers over the constructed mesh with predefined
boundary conditions to solve the Navier-Stokes equation, which should output
hemodynamic properties such as velocity and pressure field (currently colored
by its coordinates for a toy illustration in Fig. 1.2).
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1.5. Deep-learning based image segmentation Chapter 1

However, the following problems challenge the direct adoption of CFDs to
our problem.

• Coarse segmentation: Although the kidney cast is filled with contract
agents, it is challenging to separate arteries, veins, and capillaries, which
share almost the same intensity values (Fig 1.3b). Therefore, although it
is relatively easy to differentiate vessels from the background, extracting
a clean arterial tree from other vessel components is extremely difficult,
especially near the cortex region where it is hard to tell the origin of
specific branches (Fig 1.3b). It thus remains challenging and requires
extremely intense manual corrections to acquire a clean segmentation of
the blood vessels.

• Inconsistent radius appearance: The radius of blood vessels is a large
variable between living and dead bodies. Thus, the ex-vivo micro-CT
scan does not reflect the actual thickness of the renal blood vessels in
a living rat. A standard radius computation from Euclidean distance
transformation of the vessel centerline to its surface (Fig 1.3d) is thus
not trustworthy.

• Low scan resolution: Although the micro-CT scan (Fig 1.3a-c) has a
much higher resolution than traditional CTs (22.6 µm vs 1 mm), the
resolution is still too low to capture the afferent arterioles, which have
a mean radius of 10 µm [16].

• Computational resources: In CFDs, the number of equations that need
to be solved numerically depends on the number of elements of the con-
structed mesh. Notably, a typical 3D cardiovascular simulation involves
only 16 vessel branches from the aorta, while its simulation encompasses
over 1 million discrete elements, executed across several cardiac cycles
[30, 35]. Typically, achieving the solution of these millions of non-linear
partial differential equations demands several days of computational ef-
fort [30, 35]. Such computational complexity clearly does not general-
ize to a full-scale renal arterial model that involves approximately 50K
branches [16].

1.5 Deep-learning based image segmentation

In Section 1.4.2, we have demonstrated that the first essential step of general
CFD-based blood flow simulation is to segment blood vessels from medical
imaging. On the other hand, we have emphasized in 1.4.3 that a direct seg-
mentation from the micro-CT scans cannot be used to build computational
meshes of the full-scale arterial tree. Nonetheless, the segmentation of blood
vessels from medical scans can still be crucial, both for visualization purposes
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a) b) c) d)

Figure 1.3: Example of our micro-CT scan of a rat kidney and related chal-
lenges. a) shows a particular slice where the large veins and arteries are mostly
separable. But in most cases, as an example in b), the arteries and veins are
extremely difficult to separate, especially near the cortex (red circle), and
the segmentation of veins and arteries is further challenged by the existence
of capillaries in renal medullar (yellow circle). c) is the maximum intensity
projection (MIP) of the micro-CT scan, as the standard method to visual-
ize blood vessels, which shows that although the micro-CT scan has a much
higher resolution than traditional CTs, it is extremely noisy and insufficient
to capture afferent arterioles. d) shows the standard radius estimation of the
vessel from the scan, which is a large variable between living and dead bodies.

and for analyzing the general geometry of vascular trees and branching pat-
terns, etc [16, 7, 45]. Moreover, as will be introduced in Chapter 2 and paper
A, our proposed hybrid approach to reconstructing the renal arterial network
integrates image priors by prebuilding an arterial tree, which requires the
segmentation of the large visible vessels from the scan.

In general, deep learning has been widely used for automatic medical im-
age segmentation, both on 3D blood vessels and many other organs, e.g., hip
joints, teeth, and mandibles [42, 46, 47]. Therefore, part of the Ph.D. project
is focused on automatic medical image segmentation with deep learning mod-
els. This section will briefly introduce medical image segmentation tasks and
give a high-level overview of deep-learning approaches used to address such
problems. Technical details about deep learning models such as the defini-
tion of convolution operation, loss function, and backpropagation will not be
touched upon. Chapter 4 (paper C) will then present our approach of utilizing
our reconstructed renal vascular trees from Chapter 2 (paper A) as training
data to train a deep-learning renal vessel segmentation network. The follow-
ing Chapter 5 (paper D and E) will then present our two related works on
the deep-learning-based segmentation of human hip joints and human jaws,
which involve an essential simulation-inspired component that is crucial for
its downstream simulation tasks [48, 49].
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1.5.1 Image segmentation and deep learning approach

Within the realm of medical imaging, image segmentation is a pivotal process
offering a fundamental means of extracting precise information from complex
visual data. At its core, segmentation involves the meticulous partitioning of
a medical image into discrete regions or structures of interest, such as organs,
lesions, or blood vessels. Accurate segmentation is paramount in medical diag-
nosis, treatment planning, and research, as it allows clinicians and researchers
to precisely identify and analyze anatomical structures and pathological con-
ditions. Traditional manual segmentation methods, though reliable, are often
time-consuming and labor-intensive. In recent years, advancements in deep
neural networks, especially convolutional neural networks, have facilitated the
automation of this critical task, significantly enhancing efficiency and accu-
racy.

Convolutional Neural Networks (CNN) is the state-of-the-art deep learn-
ing model for visual imagery tasks. In standard CNN models, semantic in-
formation is gradually increased with hierarchies of features, while location
information is gradually squeezed with smaller spatial dimensions, also known
as downsampling [50, 51]. CNNs are powerful visual models and have been
shown to be on par with human experts on whole-image classification [50]
where the output is a single value. In the medical imaging field, this can be
used to classify scans with tumor vs without tumor, fracture vs not fracture,
or any kind of anomaly classification [52, 53].

Image segmentation is a particular task in that the model makes a pixel-
wise prediction, which means that standard CNNs that operate downsampling
need to be combined with its reverse process to increase feature map size. This
upsampling process can be achieved by particular forms of convolution, such
as transpose convolution. A fully convolutional network (FCN) [51] is such
a network structure with downsampling and upsampling phases, which is an
intuitive semantic segmentation model to make pixels-to-pixels output.

UNet [41] is a particular kind of FCN [51] used for pixel-wise prediction
tasks, with the “U” name representing a symmetric architecture with two
paths: encoding and decoding path. The encoding path is a traditional stack
of convolutional and max pooling layers where the spatial information is re-
duced while feature information is increased, thus encoding deep features at
each location. On the contrary, the decoding path is the symmetric expand-
ing path, which is used to expand the feature map while merging the deep
features generated from the encoding path. A distinctive feature of U-Net is
the incorporation of skip connections that link layers in the encoding path
with corresponding layers in the decoding path, which facilitates the transfer
of spatial and contextual information.

UNet was initially proposed for 2D biomedical images where problems
such as very few training images and touching borders of the instances need
to be addressed [41]. Although proposed in 2015 [41], its simple yet effective
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structure with skip connections still remains state-of-the-art architecture in
the medical image segmentation field [54]. In [54], the authors showed that a
correct and automated configuration for UNet can surpass most task-specific
models on 23 public datasets used in international biomedical segmentation
competitions.

1.5.2 Large language and vision models

Very recently, Large language models (LLMs) have revolutionized the Natu-
ral Language Processing community [55, 56, 57]. These models are primarily
based on Transformers [58], which is a more recent neural network structure.
These models are primarily designed for sequential data such as natural lan-
guages, which comprise a sequence of words. Conversely, the images are not
sequential data by nature but can be regarded as sequences of smaller image
patches. Based on this observation, researchers have designed Vision Trans-
formers (ViTs) [59] which use the same principle on image patches to consider
different parts of an image when encoding specific patterns.

Notably, besides the architecture, a more crucial factor that makes LLMs
a huge success is that they are pre-trained on large online datasets. LLMs
trained on large datasets have the generalization ability on tasks beyond those
seen during training with zero or only a few new training data, also known
as zero-shot or few-shot learning. This function often involves prompt engi-
neering, where carefully designed text prompts are used to guide the language
model to produce an appropriate textual response for the given task [60].

Inspired by LLMs, the Segmentation Anything Model (SAM) [61], based
on vision transformers, has gained massive attention as a powerful and gen-
eral vision segmentation model capable of generating various and fine-grained
segmentation masks conditioned by the user prompt. With 1B masks and
11M images used to pretrain the model, it has shown impressive capabilities
in all-around segmentation tasks in natural images [61]. However, applying
the model to the medical domain is more complex since there exists a domain
shift from natural to medical images. Many researchers have thus been trying
to adapt SAM to the medical domain [62, 63, 64]. For example, MedSAM
[64], which adopts pretrained SAM and applies few tricks in fine-tuning, has
obtained state-of-the-art performance on 19 medical image segmentation tasks
across five different image modalities.

In general, adopting a larger but more general model appears to be the
trend in the deep learning field. Therefore, although deep-learning-based med-
ical image segmentation models are an essential part of the current PhD re-
search, our focus is on its applicability to downstream tasks rather than the
model designs.
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1.6 Our approach

Taking all the problems listed previously in Chapter 1.4.3 together, such as
coarse segmentation, limited scan resolution, and computational resources, a
skeleton-based tree structure is more appropriate modeling of the renal blood
vessels, which has been largely adopted in the research of blood vessels[45, 16,
24, 65, 66]. Only this way can we get a full-scale representation of the renal
vasculatures and get more control over the computational complexities. The
skeleton-based tree structure will be explained in detail in Chapter 2 (paper
A). Briefly, instead of a segmentation of the blood vessel or its correspond-
ing computational meshes, blood vessel is more efficiently represented by its
centerlines that connect every branch together.

Fig. 1.4 presents the overview of our full-scale nephron-vascular network
modeling and renal autoregulation simulation. In general, the first and major
part of the PhD thesis will be focused on incorporating statistical topological
data, anatomical features of kidneys, and a real micro-CT scan of the kidney
into reconstructing a full-scale 3D vascular tree model, which starts from the
renal artery and ends in afferent arterioles, as will be introduced in Chapter 2
and in paper A.

The second part of the thesis will present potential applications of the vas-
cular model. The most crucial application of the full-scale 3D vascular model
is to simulate realistic blood flows and renal functions, as will be introduced
in Chapter 3 and manuscript B. To implement such simulations, we need to
integrate nephron models into the reconstructed 3D vascular model because
this is where autoregulation occurs. We will then simulate the autoregula-
tion mechanism with two feedbacks and measure the resulting renal blood
flow from different levels of arterial blood pressure and different afferent ar-
teriolar resistances induced by the two feedbacks. In addition, our simulated
full-kidney-size 3D vascular model can be used to generate training data for
deep-learning-based blood vessel segmentation models, as will be covered in
Chapter 4 and in paper C.

The following Chapter 5 (paper D and E) presents two related medical im-
age segmentation tasks that use deep learning approaches. Although not re-
lated to the renal vascular network directly, these studies further demonstrate
the potential of deep learning in segmenting medical scans for biosimulation
studies, even in a data-scarcity setting.

In the remaining part of the introduction chapter, we will briefly summa-
rize and highlight our main pipeline.

• 3D reconstruction of full-scale renal arterial network (Chap-
ter 2 and paper A). In our innovative work, the full-scale arterial
tree model is reconstructed by a physiologically based constructive op-
timization method while incorporating the anatomical structure from
the micro-CT scan of a rat kidney. Notably, since the vessels at far-
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Figure 1.4: An overview of the full-scale modeling of nephron-vascular network
and simulation of renal autoregulation. Figure from manuscript B.

surface regions in the kidney are beyond the experimental resolution,
it is impossible to detect and reconstruct the small vessels solely from
medical scans. In summary, the ex-vivo micro-CT scan only extracts
the topology of large arteries consisting of the first few large branches
and estimates the renal cortex. The small arteries, including arteri-
oles, are physiologically reconstructed instead of being detected from
the micro-CT scans. The topological tree structure of large arteries ex-
tracted from the micro-CT scan only involves the Cartesian coordinate
associated with each node and the connectivity information (edges). On
the other hand, the thickness (radius) of each vessel will not be inferred
directly from the scan but will be modeled physiologically. For more
details, please refer to Chapter 2 and paper A. The output tree model
from this method is a skeletal representation of the vascular network,
which consists of a set of nodes, where each node is associated with
its three-dimensional Cartesian coordinate vector, and a set of directed
edges, with a radius reflecting the cross-sectional extent associated with
each edge. Such graph-based skeletal representation of a vascular tree
has been proposed fundamentally for morphometric analysis of blood
vessels and simulation of the renal blood flows [16, 67, 68, 24]. As a cru-
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cial property of the reconstructed full-scale renal arterial network, the
blood flow can be simulated in a much simpler form, because the Navier-
Stokes equation can be solved analytically, giving the Hagen–Poiseuille
Equation as discussed in Section 2.2.

• Simulation of blood flow and autoregulatory mechanisms (Chap-
ter 3 and manuscript B). We develop a full-scale model of renal au-
toregulation that integrates the realistic vascular network topology gen-
erated from the previous step with a single nephron model that includes
glomerular filtration, tubular reabsorption together with autoregulation
of the afferent arteriolar resistances (Fig. 1.4). This allows for the sim-
ulation of full-scale blood flow along the renal arterial network and the
autoregulation mechanisms as a complex interplay between the autoreg-
ulatory mechanisms (the myogenic response and the tubuloglomerular
feedback). Validation of the model is achieved by comparing the simu-
lation results of autoregulation to experimental measurements available
in the literature. We further investigate how anatomical features of mi-
crocirculatory networks (i.e. different populations of nephrons as shown
in Fig. 1.1 D) contribute to the optimization and adaptation of reg-
ulating blood flow. Our further pathological simulation of the effect
of renal artery stenosis on blood flow shows good agreement with the
experimental observations.

• Synthesizing training data for deep-learning-based blood ves-
sel segmentation models (Chapter 4 and paper C). Although
segmenting renal blood vessels is not the focus when building the full-
kidney-size 3D vascular model because most of the small vessels are
invisible from the scan and are reconstructed physiologically, segment-
ing visible blood vessels is still a crucial step, both for guiding the re-
construction of the remaining vessels and for estimating the remaining
renal functions. While deep learning methods have demonstrated state-
of-the-art performance in automatic blood vessel segmentations, they
necessitate a substantial amount of labeled training data. Our physio-
logically constructed renal vascular trees from the previous step (Chap-
ter 2 and paper A) can naturally provide synthesized training data that
can be used to train deep segmentation networks. Although this appli-
cation has less physiological impact, the ability to train neural networks
demonstrates a crucial potential of the physiologically based construc-
tive methods in the deep learning field by reducing intensive manual
annotations.
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Chapter 2

Modeling and reconstruction of
renal arterial network

2.1 Skeleton-tree-based model of vasculature

There generally exist two main methods for modeling blood vessels. Model-
free methods start from segmenting blood vessels from a medical scan followed
by mesh reconstruction to build 3-D geometric models that capture the high-
level structure of an individual’s blood vessels from clinical images [40, 29, 30,
31, 32, 33], as mentioned in Section 1.4.2. It makes no assumption or approxi-
mation over the vascular structure. Therefore, it is more accurate and suitable
for the diagnosis and surgery of vascular diseases. However, the result depends
heavily on vessel segmentations and is usually less smooth. Therefore, for fur-
ther simulations of blood flows, the output requires intensive post-processing
to generate computational models that are suitable for numerical solvers to
solve the Navier-Stokes equations. More importantly, as outlined earlier in
Chapter 1.4.3, the small vessels in the kidney remain undetectable in the scan
due to their size falling below the resolution of the image. However, these tiny
vessels play a vital role in supplying individual nephrons and must therefore
be accurately represented in the final model.

Instead, numerous researchers have found that cylindrical pipes can very
well approximate and model blood vessels, especially the arteries [45, 16, 69,
65, 66]. Thus, a vascular network can be considered as a collection of con-
nected cylindrical vessels, which is usually represented by a skeleton-tree-based
model, as shown in Fig. 2.1. Specifically, the skeleton-tree-based vasculature
is modeled by a directed acyclic graph G ≡ (V, E). Here, V represents the
set of nodes situated at the endpoint of each vessel centerline, associated with
its coordinates in Euclidean space as the node feature. E is a set of directed
edges that form a connected tree structure. Each edge corresponds to a single
vessel segment, conceptualized as a cylinder with its radius and flow as the
edge feature.
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Figure 2.1: A typical vessel branching model. The branching vessels are
uniquely defined by the locations of the three end nodes (p0, p1, p2), the lo-
cation of the bifurcation node (pb), and the radii of the three incident edges
(r0, r1, r2). Length is not explicitly associated with each edge but can be easily
retrieved from the Euclidean distance between two nodes, e.g., l0 = ||p0−pb||2.
Figure and caption from paper A, reprinted with permission.

The tree-based model has implicitly resolved the computational size limi-
tation issue because storing a graph structure of a vascular network is signifi-
cantly more efficient than its corresponding mesh or volume. As an essential
part of skeleton-tree-based models, the Navier-Stokes equation (Eq. (1.1) and
Eq. (1.2)) can be solved analytically and simplified into a much simpler form,
giving the Hagen–Poiseuille equation. This simplification allows for an easier
modeling of blood flow throughout the vascular tree.

2.2 Hagen–Poiseuille equation of a simplified flow

With the assumption of simplified one-dimensional flows, such as in cylindri-
cal pipes where the velocity varies only in the direction perpendicular to the
flow, the Navier-Stokes equation can be solved analytically, giving the Ha-
gen–Poiseuille equation. Specifically, the Hagen–Poiseuille equation requires
the following assumptions in cylindrical pipes, which are not necessarily as-
sumed in the Navier-Stokes equation:

• Steady flow: Poiseuille’s equation assumes that the flow is steady, mean-
ing that the velocity does not change with time.

• Incompressible flow: Poiseuille’s equation assumes that the fluid den-
sity remains constant. Although the Navier-Stokes equation allows for
compressible flow, the incompressible property is also usually assumed
in CFDs on blood flows.
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• Fully developed flow: Fully developed means that the velocity profile
has reached a steady state and does not change along the length of the
pipe.

• Laminar flow: Laminar flow has the behavior that the fluid layers move
smoothly in parallel with no significant mixing between them. The
Navier-Stokes equation, on the other hand, can account for both laminar
and turbulent flow conditions, which involve chaotic mixing and eddies.

• Newtonian fluid behavior: Newtonian means viscosity remains constant
regardless of the shear rate.

• Axisymmetric flow: Poiseuille’s equation assumes that the flow is ax-
isymmetric, meaning that it remains consistent around a central axis.

• No body force: As in most hemodynamic studies, gravity is neglected
as it has a minimal influence compared to other forces.

• No slip boundary condition: the velocity of fluid is assumed to be zero
at the point where fluid touches the pipe.

Given these assumptions, the Navier-Stokes equation can be solved an-
alytically, which provides the relation between the pressure drop ∆p and
flow Q along each vessel segment (a single tube), commonly known as Ha-
gen–Poiseuille’s Equation.

∆p =
8µlQ

πr4
(2.1)

where µ is viscosity, l and r denotes the length and radius of corresponding
pipe respectively.

With the analytical solution to the Navier-Stokes equation, there is no
need for computational meshes or complex finite volume solvers as required
in the CFD-based simulations introduced in Section 1.4.2. Instead, the main
focus would be to build a skeleton-tree-based model of the renal arteries, which
contains the branching patterns and the length and radius information of each
blood vessel because these are the variables involved in the Hagen–Poiseuille’s
equation (Eq. (2.1)).

2.3 Constructive optimization algorithms

With the fractal tree-based modeling of blood vessels, there exist some genera-
tive models to simulate the growth of vasculatures by considering the biological
and physiological factors involved in the process [70, 71, 72]. For example, the
Constrained Constructive Optimization (CCO) method proposed by Schreiner
and Buxbaum [70], and its variant Global Constructive Optimization (GCO)
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proposed by Georg and Hahn et al. [71, 72] model the vascular tree growing as
an optimization problem following the assumption that the vasculature tries
to achieve optimal topological and geometrical structure over the vascularized
tissues from hemodynamic principles [70, 71, 72].

The Poiseuille’s law in Section 2.2 is an essential part of our fractal tree-
based modeling of renal arterial networks to define the cost function for the
optimization problems. Specifically, numerous researches have found that the
vascular tree is built to minimize the intravascular volume while ensuring effi-
cient flow [73, 74, 65, 66]. Therefore, with the cylindrical tube assumption and
fluid dynamics assumptions defined in Section 2.2, the cost at each branching
point v is defined as a weighted combination of the volume, which is defined
by

Mloss(v) =
∑

e∈Bv

πr2e le (2.2)

where Bv denotes the set of all the incident edges of node v.
and the power dissipated during blood circulation, which, in analog to

electric power, is defined as

Ploss(v) =
∑

e∈Bv

Qe∆pe =
∑

e∈Bv

8µleQ
2
e

πr4e
(2.3)

where the second equation follows by Poiseuille’s law
Thus, the total cost at each branching v can be defined as

Clocal(v) ≡ wcMloss(v) + wp Ploss(v)

= wc

( ∑

e∈Bvx

πr2e le

)
+ wp

(∑

e∈Bv

Q2
e

8µle
πr4e

)

=
∑

e∈Bv

(
wcπr

2
e le + wpQ

2
e

8µle
πr4e

)
.

(2.4)

Here, our work (paper A) is a GCO-based approach. Specifically, the GCO
algorithm begins by selecting a single root node s and sampling n leaf nodes li
in the perfusion territory of the organ. Given the position of a single root node
s, and n leaf nodes li, the algorithm tries to simulate the growth of vasculature
physiologically, with the goal to find a tree G ≡ (V, E) that contains s and
li ∈ V with minimum cost defined in Eq. (2.4) by adding new intermediate
nodes to V and connections (edges) to E .

One of the main modifications we make here in paper A is that the medical
scan can be used to extract the first few branches of the renal arterial tree, so
that the GCO process does not start with only a single root node s, but with
a prebuilt tree G0 ≡ (V0, E0) where s ∈ V0.

Fig. 2.2 shows the whole pipeline of the reconstruction of the renal arterial
network. In summary, a pre-built arterial tree G0 ≡ (V0, E0) consisting of the
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main arteries is extracted from the main artery segmentation from the micro-
CT scan (Fig. 2.2 e - g), while the scan is also used to estimate renal cortex to
determine where the afferent arterioles should be sampled (Fig. 2.2 a - d). In
the GCO initialization step, these sampled terminal nodes (Fig. 2.2d) are then
connected to the pre-built vascular tree G0 ≡ (V0, E0) (Fig. 2.2 h). Therefore,
the algorithm can initiate vasculature growth from an already partially con-
structed vascular tree, rather than beginning from a single root position. This
approach ensures that the final full-scale vascular tree incorporates subject-
specific details, maintaining the uniqueness and higher accuracy of individual
vascular structures.

Preprocessed centerlineExtracted centerlineLarge artery segmentation GCO initialization GCO progress GCO result

Whole structure segmentation Cortex approximation via erosion and ball removal (3 projections) Extimated cortex segmentation Sampled leaf nodes

(a) (b1) (b2) (b3) (c) (d)

(e) (f) (g) (h) (i) (j)(j)

Figure 2.2: GCO Pipeline. The initial micro-CT scan is used to extract
whole structure segmentation (a) and large artery segmentation (e). Top
row: renal cortex (c) is approximated by a subtraction of erosion followed by
a ball removal (b), where the leaf nodes (d) are sampled using Poisson disk
sampling. Bottom row: extracted centerline (f) is pre-processed to pre-build
a renal arterial tree consisting of only the first few large arteries (g). In GCO
initialization (h), all the sampled leaf nodes (d) are connected to the nearest
node in the pre-built tree (g), with color indicating the group of leaf nodes
that are connected to the same node. Colors in the GCO progress and result
(i and j) indicate the radius of each vessel: from 300 µm in renal artery to
10 µm in afferent arterioles (AA). Figure and caption from paper A, reprinted
with permission.

For other details such as how GCO simulates the vascular tree, how our
hybrid approach integrates image-priors to guide the GCO approach, as well
as the validation of the simulated vascular tree with real anatomical data,
please refer to the appended paper A.
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Chapter 3

Full-scale model and simulation
of renal autoregulation

In the previous chapter and in paper A, a full-scale renal arterial tree structure
that starts from the renal artery and ends in the afferent arterioles has been
reconstructed and shown to be in good agreement with existing anatomical
data [16]. However, this reconstructed renal arterial tree is only a topology
of the renal arterial structure and is built under optimal assumptions in a
normal, healthy, and steady-state scenario.

The major function of a kidney is to regulate blood flow and the glomerular
filtration rate (GFR) to meet the needs of the organism. Although in paper A,
we have tried to simulate the hemodynamics in the constructed arterial tree
and showed that it matches reality, such simulation is under the assumption
that all afferent arterioles share identical blood flows, which is oversimplified
and cannot be used to model realistic renal functions.

To model renal functions such as autoregulation, it is necessary to add
functional units - nephrons - to the renal arterial tree, which are connected
to the arterial tree from afferent arterioles as shown in Fig. 1.1 B. Nephrons
are essential to properly define boundary conditions when simulating full-scale
blood flows and to send signals back to the afferent arterioles, which causes
them to contract or dilate. This contraction or dilation of the afferent ar-
terioles will then change their resistances and allow the kidney to adjust its
renal blood flow and GFR. Therefore, in manuscript B, nephron models are
attached to the afferent arterioles in the full-scale arterial tree generated in
paper A, which together form the full-scale nephron-vascular network. This
full-scale nephron-vascular network model allows the evaluation of the oper-
ating conditions of around 30,000 nephrons in rat kidneys, and the efficiency
of autoregulation in pathological conditions.

This chapter gives an overview of the computational modeling of the full-
scale nephron-vascular network and autoregulatory mechanisms and the most
crucial simulation results. For more details about the model formulation,
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simulation experiments, and simulation results, please refer to manuscript B.

3.1 Model formulation and validation

As shown in Fig. 1.4, the full-scale model of the nephron-vascular network
includes four compartments: a glomerular model, a tubular model, a model
of the afferent arteriole, and the full-scale model of the renal arterial tree.
The general objective is to integrate the vascular network topology (full-scale
model of the renal arterial tree) and a single nephron model (glomerular model,
a tubular model, afferent arteriolar model) that account for glomerular filtra-
tion, tubular reabsorption together with autoregulation of afferent arteriolar
resistances. This autoregulation is determined by the tubuloglomerular feed-
back (TGF) and the myogenic response.

Fig 3.1 illustrates the flowchart of our simulation process that integrates
the four models and solves them consequently. The renal arterial blood pres-
sure Part serves as the boundary condition to the model of the renal vascular
tree, and drives the single nephron blood flow SNGBF and glomerular pres-
sure PGC at afferent arterioles (AA). These two parameters are the input to
the Glomerular model, which will then give as output the glomerular filtration
rate QT (0) and the tubular pressure PT (0). These two variables serve as the
initial flow and pressure values to the Tubular model. The Tubular model
will give as output the NaCl concentration at the macula densa (CS(md)),
which is the stimulus for TGF feedback. The myogenic response is induced
by the pressure at the beginning (PA) and end (PGC) of the afferent arteriole.
TGF and the myogenic response, as the two inputs to the Afferent Arteriole
(AA) model, will work together to adjust the afferent arteriolar resistance.
With a new set of afferent arteriolar resistances, the full-scale arterial tree
will provide a new set of single nephron blood flows SNGBF and glomerular
pressures PGC . This process will be iterated until convergence. For details of
how these variables are computed, please refer to manuscript B.

In summary, the total renal blood flow (colored blue in Fig 3.1), which
is the sum of the blood flows in the individual nephrons, is stabilized by the
regulated afferent arteriolar resistances. The total renal blood flow does not
directly participate in the autoregulation model itself but is the indicator of the
autoregulation outcome and determines if the iteration reaches convergence.

To simulate autoregulation in the full-scale vascular model, we vary the
inlet (arterial) pressure from 80 mm Hg to 200 mm Hg and calculate the
resulting renal blood flow. The renal autoregulatory mechanisms will try to
minimize the change in renal blood flow by adjusting the afferent arteriolar
resistances by means of the two mechanisms.

Fig. 3.2 (Left) shows the resulting renal blood flow with and without au-
toregulation. Without autoregulation (orange curve), the renal blood flow
increases linearly with increasing renal arterial pressure. In contrast, the au-
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Figure 3.1: Flowchart for the full-scale model of renal autoregulation. Figure
from manuscript B.

toregulation provided by the TGF and the myogenic response is effective in
minimizing the increase of renal blood flow when the inlet pressure increases
from 80 mm Hg to 200 mm Hg (blue and red curve). The autoregulation
degrades when the inlet pressure becomes too large, as can be seen from the
larger slope at inlet pressures from 180 mm Hg to 200 mm Hg. To assess the
efficiency of autoregulation quantitatively, Fig. 3.2 (Right) shows the Autoreg-
ulation index (AI), which is given as the ratio between the relative change of
renal blood flow change and the relative change of renal arterial pressure [75].
Experimental studies in normal rats have found an AI between 0.2 and 0.5
[9]. As can be seen from Fig. 3.2 (Right), the model predicts similar values
in the inlet pressure range from 100 mm Hg to 160 mm Hg.

In Fig. 3.2, the curve labeled “one population” denotes the simulation
under the assumption that all nephrons are cortical nephrons, as was origi-
nally proposed in [11] for the simulation of autoregulation of a single nephron
model. As shown in Fig. 1.1 D in Chapter 1, nephrons are better distinguished
as superficial, midcortical, or juxtamedullary based upon the location of their
glomerulus within the renal cortex [76]. They are also associated with differ-
ent lengths of loops of Henle and thus cause slightly different autoregulation
results, as labeled “three populations” in Fig. 3.2. For a detailed comparison
of the modeling and results from three nephrons, please refer to manuscript
B.

The green curve labeled “only myogenic response” in Fig. 3.2 (Left) de-
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notes the simulation of blocking TGF (which can be achieved by giving a loop
diuretic) so that only the myogenic response is active. The result shows that
both TGF and myogenic response are important mechanisms of autoregula-
tion: the contribution of only myogenic response is not enough for the blood
flow stabilization.
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Figure 3.2: Left: Renal blood flow as a function of inlet (arterial) blood pres-
sure. Right: Autoregulation Index at various inlet (arterial) blood pressure.
Figure and caption from manuscript B.

3.2 Simulation of pathologies

In addition to simulating the role of autoregulation mechanisms in maintain-
ing stable blood flow at varying inlet pressure levels, another perspective in
the full-scale modeling of the nephron-vascular network is to simulate certain
pathological conditions. One prevalent pathology in the renal arteries is re-
nal artery stenosis (RAS), which involves the narrowing of the renal artery’s
lumen, typically due to atherosclerosis or fibromuscular dysplasia [21]. Com-
puter simulation of RAS enables the exploration of the impacts of various
stenosis severities and the kidney’s capacity to adjust to these changes. By
investigating different stenosis levels and analyzing the resultant effects on
renal hemodynamics, more effective preventative and surgical interventions
can be developed [21, 20, 22]. For example, the American Heart Association
defined a RAS over 60% as the critical level requiring treatment [77].

We simulate RAS in the full-scale model of the nephron-vascular network
in both a control case (Fig. 3.3 Left) with inlet pressure of Part = 100 mmHg
and a hypertensive case (Fig. 3.3 Right) using an inlet pressure of Part =
140 mm Hg, while gradually decreasing the diameter of renal artery (the root
vessel in the full-scale tree model).

As shown in Fig. 3.3 Left, the renal blood flow stays relatively constant
at the lower degrees of RAS but drops dramatically when stenosis exceeds
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Figure 3.3: Renal blood flow at various stenosis levels in the control case
(Left panel with inlet pressure Part = 100 mmHg) and in the hypertensive
case (Right panel with inlet pressure Part = 140 mmHg). The control case
shows a drastic decrease of renal blood flow with around 50% stenosis, while
the hypertensive cases show that the autoregulation can postpone the drastic
decrease of blood flow from around 50% stenosis to around 70% stenosis.
Figure and caption from manuscript B.

50%, regardless of whether or not autoregulation is active. This behavior is
in good agreement with the American Heart Association which defines a RAS
of more than 60% as a critical stenosis [77] that needs treatment according
to the arterial disease management guidelines [78]. Fig. 3.3 Right shows that
in hypertension, the autoregulatory mechanism is effective in stabilizing the
renal blood flow when the stenosis is up to 70%, while without autoregulation,
the renal blood flow decreases earlier at a stenosis level of around 50%. But
in general, the impact of autoregulation in preventing a drop in blood flow is
minimal. This simulation result suggests that the flat curve in Fig. 3.3 when
the stenosis < 50% is not primarily due to autoregulation, but rather stems
from the fact that the hemodynamic resistance of the renal artery has little
impact on renal blood flow until the stenosis is severe.

In addition, it is intriguing to compare our results to the CFD-based RAS
simulations as mentioned in Chapter 1.4.2 [18, 19, 20, 21, 19, 22]. The crucial
difference between our objective and these CFD-based studies is that they
only reach the single renal artery while our research aims to simulate the
blood flow along a full-scale renal vasculature with impact from the autoreg-
ulation mechanism. On the other hand, our simulation method is based on
a tree structure without computational meshes or finite element or volume
solvers. Nonetheless, our simulation results show close agreement with CFD-
based methods, which also show a dramatic decrease of renal blood flow with
stenosis of more than 50% and needs adequate treatment according to the
arterial disease management guidelines [78]. This could indicate that complex
computational meshes or finite element or volume solvers are not necessary
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when simulating these pathologies in hemodynamics, as a tree-based model
can generate very similar results and is much more efficient.
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Segmentation of renal blood
vessels

The segmentation of blood vessels from the ex-vivo CT scans is still an es-
sential task even though the segmentation results cannot be used to build
computational meshes for simulations directly due to its limited resolution
and computational complexity, as mentioned in Chapter 1.4.3. Instead of
building computational meshes, blood vessel segmentation is usually post-
processed and converted to a graph-based structure by a centerline extraction,
also known as skeletonization, which can be used to analyze 3D morphologies
of blood vessels such as radius and length distribution and branching patterns
[16, 45]. In our hybrid approach to reconstructing a full-scale renal arterial
tree (Chapter 2 and paper A), the ex-vivo micro-CT scan is integrated into
the reconstruction process by extracting the centerline from the segmenta-
tion of large arteries with certain post-processings. Extracting 3D skeleton
from vessel segmentations is a complicated task and remains a specific field
of research [79, 80, 81], which is beyond the scope of this PhD project. We
have focused on the method [79] in our framework because it directly turns a
segmentation into a graph-based structure rather than a binary mask with a
local width one, as discussed in paper A. This chapter (paper C) only focuses
on the segmentation of blood vessels.

Manual segmentation of visible renal blood vessels from the ex-vivo CT
scans of rat kidneys is highly time-consuming, given the vast volume size. It
is estimated that the segmentation of visible blood vessels of a single ex-vivo
CT scan would take half a year of a trained specialist (paper C). Therefore,
there is a need for automatic segmentation of the blood vessels using deep
learning approaches, as introduced in Chapter 1.5.1. On the other hand,
deep-learning-based segmentation networks require manually labeled blood
vessel segmentation maps as the ground truth training data. However, due to
the challenging nature of manually annotating micro-CT scans, we encounter
the issue where not even one definitive, accurately labeled map is available to
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train a deep learning segmentation model.

4.1 Reconstructed vascular tree as training data

Motivated by the difficulty of manual labeling of blood vessels and lack of
training data in ex-vivo micro-CT scans, this study focuses on the segmen-
tation of blood vessels without any manually labeled segmentation maps. To
accomplish this task, note that in the previous task (Chapter 2 and paper A),
we have reconstructed full-scale vascular trees physiologically. These full-scale
trees can, in turn, be used to synthesize training data for a deep-learning-
based segmentation network. Moreover, since the reconstruction process in-
volves several randomities, the result can vary for each run visually, resulting
in some variety in the synthesized training data, which is essential to neural
network training.

In order to train a neural network to segment blood vessels in micro-CT
scans of rat kidneys, we need to have 1) blood vessel segmentation label maps
(binary masks) and 2) their corresponding micro-CT scans. For 1), we need
a voxelization method to convert the reconstructed vascular trees (a graph
structure) into binary label maps of the blood vessels, which has been briefly
mentioned in the supplementary material in paper A. For 2), the task of
generating corresponding micro-CT scans of these simulated blood vessels is
solved by training a deep generative model [82] over unlabeled micro-CT scans.
The following two sections present more details on the two tasks, especially
on the technical details in 1) that have not been given in paper A or C. For
the details of segmentation results, please refer to paper C.

4.1.1 Building segmentation maps via implicit surface

The simulated fractal-tree-based modeling of the full-scale renal arterial net-
work can be visualized by simply stacking the cylinder of each blood vessel
together, colored-coded by properties like radius and flow of each vessel, as
shown in paper A and in Fig. 4.1. Although such visualization is effective
enough in visually inspecting the generated vascular structure, it does not
generate smooth transitions in vessel junctions (Fig. 4.1 Right).

Producing smooth transitions at branchings is essential to generate organic-
looking blood vessel segmentation maps. This is vital for the quality of the
constructed artificial kidney dataset used to train deep-learning segmentation
models [41, 82, 83]. To create such an image dataset, an inverse process is
required to convert the reconstructed vascular tree G = (V, E) back to binary
label maps.

The key aspect of this process is ensuring that the resultant maps appear as
natural as possible. This includes, for instance, achieving smooth transitions
at points where branches diverge, thereby mirroring the organic characteristics
of vascular structures.
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Figure 4.1: Visualization of the reconstructed vascular tree with a zoom-in
view (and rotated for better illustration). Left image from paper A, reprinted
with permission.

Implicit surface

In medical imaging, iso-contouring is the preferred technique for visualizing
organic-looking blood vessels. These approaches seek an implicit function that
generates tubular structures of skeletons [84, 85, 86]. The explicit surface can
then be obtained by sampling the implicit function on a voxel grid and apply-
ing a contouring method such as marching cubes for visualization purposes [43,
87]. Similarly, binary segmentation masks can be easily generated by thresh-
olding the implicit functions. Therefore, the focus is on properly generating
implicit functions of the vessel structure [84, 85, 86].

A reconstructed vascular tree G = (V, E) from our result in paper A hosts
the centerline location of each node in Euclidean space as well as the radius
information of each edge. A standard implicit tube function T : R3 → R in
Eq. (4.1) is a scalar field function that maps every voxel point x ∈ R3 to the
tube surface along the centerline [86], defined by

TG(x) ≡ min
i

{d(x, i)− r(x, i)} (4.1)

where i ∈ E denotes the line segment i of the centerline graph, d(x, i) denotes
the distance of the voxel point x to the line segment i and r(x, i) denotes the
corresponding radius of the line segment i at point x.

The resulting scalar value of TG(x) facilitates point classification by simply
checking the sign of it.

TG(x)− Iso = 0 (4.2)
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where Iso denotes the isovalue, which is used for creating an isosurface such
that the implicit equation is zero. The specific tube function T defined in
Eq.(4.1) that subtracts radius from distance has a natural property that points
inside the tube have negative values. In contrast, points outside the vessel have
positive values, with smooth transitions, indicating Iso = 0 in this case.

Note that d(x, i) is the distance of a point to a line segment rather than
to a line. Thus, it should be defined by either the perpendicular distance to
the line segment or the distance to one of the two endpoints based on whether
the projection is within the line segment.

In order to compute Eq. (4.1), we start with the definition of vector projec-
tion in Euclidean geometry. Suppose i0 ∈ R3 and i1 ∈ R3 denote the starting
and ending node of the line segment i respectively. For each node x in the
space, a = x− i0 defines the vector starting from node i0 and ending at x. We
can then compute the projection of a at i by

τ ≡ projia =
a · i
∥i∥ =

(x− i0) · (i1 − i0)

∥i1 − i0∥
(4.3)

The distance d(x, i) in Eq. (4.1) can then be computed by a simple Pythagorean
theorem. However, note that the projection can lie outside the line segment
i. Therefore, d(x, i) is properly defined as

d(x, i) =





∥x− i0∥ if τ ≤ 0
√
∥x− i0∥2 − τ2 if 0 < τ < ∥i1 − i0∥

∥x− i1∥ if τ ≥ ∥i1 − i0∥
(4.4)

Then, the corresponding radius r(x, i) in Eq. (4.1) is defined as a function
of both the line segment i and the location x. This is because in the stan-
dard pipelines of vascular modeling, the vascular tree structure G = (V, E)
is achieved by applying skeletonization of vessel segmentations from medical
scans. The radius at each single point of the skeleton can then be computed
by finding the maximum inscribed sphere to the original segmentation [45].
Therefore, radius information is associated with each node rather than each
edge. In order to properly define r(x, i), radii are usually assumed to be
linearly interpolated from i0 to i1 [86]. Therefore, r(x, i) is defined as

r(x, i) =





R(i0) if τ ≤ 0

R(i1)
(

τ
∥i1−i0∥

)
+R(i0)

(
1− τ

∥i1−i0∥

)
if 0 < τ < ∥i1 − i0∥

R(i1) if τ ≥ ∥i1 − i0∥
(4.5)

where R(i0) and R(i1) denote that radius at i0 and i1 respectively.
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Implementation details and results

In implementation, the tube function is defined in a regular 3D grid T , with
large positive numbers as its original values. The program then iterates all the
vessel segments (edge) in G = (V, E), and updates the grid values by Eq. (4.1).
After the process, surface meshes can be obtained by applying a contouring
method such as marching cubes [43, 87] with a contour value 0, while the
binary segmentation masks can be easily generated by thresholding of 0.

The process of computing the tube function over a large grid is extremely
time-consuming because the tube function has to be evaluated over the grid
on each line segment (vessel) i = [i0, i1] such that the tube function is min-
imized. A crucial acceleration we make here is that for each line segment
i = [i0, i1], we only compute the tube function inside a bounding cube around
it. Specifically, only voxel points within the bounding cube of [min(i0, i1) −
max(R(i0), R(i1)),max(i0, i1) + max(R(i0), R(i1)] is evaluated for each line
segment, where min(i0, i1) and max(i0, i1) are both in R3 representing the
minimum and maximum coordinates of the two endpoints i0 and i1 in the
three dimensions separately. This simple modification reduces the computa-
tional time from weeks to only minutes over a generated vascular tree with
around 50K vessel segments.

An example reconstructed blood vessel segmentation mask of renal arterial
structure is shown in Fig. 4.2. Although with some zig-zag artifacts, it illus-
trates much smoother joints than just stacking cylinders together (Fig. 4.1)
and is thus more suitable to be used as ground segmentation masks for training
deep-learning-based blood vessel segmentation models.

Figure 4.2: Visualization of the reconstructed vascular tree from implicit tube
function (Left) with a zoom-in view (Middle), and the maximum intensity
projection of the synthesized binary vessel mask by thresholding the implicit
tube function (Right)
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4.1.2 Building scans via domain adaptation

Deep-learning-based blood vessel segmentation networks require paired scans
and vessel segmentation masks as training data. The previous step has synthe-
sized blood vessel segmentation masks, while the next challenge is to generate
their corresponding scans.

Medical scans are acquired from specific medical devices such as CT, MRI,
or Optical coherence tomography angiography (OCTA), each involving differ-
ent noises and artifacts in the image acquisition process. Menten et al. recently
showed that it is possible to create corresponding 2D OCTA images from phys-
iologically synthesized retinal blood vessels by applying physics-based image
transformation functions that emulate the image acquisition process, such as
flow projection and shear artifacts [88]. However, such functions are tailored
only to OCTA and do not generalize to our micro-CT scans.

Without any expert knowledge of medical devices, deep generative models,
e.g., Generative Adversarial Networks (GANs) [89], are one of the advances
of neural networks that can automatically generate synthetic images closely
resembling real distributions. Consisting of two neural networks: the gener-
ator G and the discriminator D, the generator learns to produce synthetic
data samples from random noise inputs, while the discriminator learns to dis-
tinguish between real and synthetic samples. Through adversarial training,
the generator can generate samples that are indistinguishable from real data,
while the discriminator improves its ability to differentiate between real and
fake samples [90]. This dynamic training approach incrementally improves the
performance of both the generator and discriminator, leading to increasingly
realistic generated data.

CycleGAN [82], an extension of the generative adversarial network frame-
work, introduces a novel approach to unpaired image-to-image translation
tasks by combining two generators and two discriminators. As shown in
Fig. 4.3, given images from two domains (A and B), the generators (GA→B

and GB→A) aim to transform images from one domain to another and then
back to the original domain, while the discriminators (DA and DB) differen-
tiate between translated and real images in both domains. Especially in the
medical domain, CycleGAN [82] has been used to perform domain adaptation
from CT to MRIs and vice versa [91, 92], i.e., domain adaptation.

In our specific task, physiologically synthesized data from our pipeline
(paper A) serve as the source domain (B as in Fig. 4.3), while unlabeled real
micro-CT scans serve as the target domain (A as in Fig. 4.3). As shown in
Fig. 4.3, although we only need the generator GB→A to adapt the synthesized
data (domain B) to real micro-CT scans (domain A), another generator GA→B

applied over the output of GB→A is necessary to make sure that the critical
semantics, i.e., blood vessels are retained during the process. This is explained
more in detail in CycleGAN’s original paper as cycle consistency loss [82].

From Fig. 4.3, the adapted output from GB→A (fake A) then provides
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the corresponding scans of the synthesized blood vessel segmentation maps
(Seglabel in Fig. 4.3) from the previous step, which together can be used to
train a standard segmentation model, e.g., UNet [41, 83] (S in Fig. 4.3) to
segment blood vessels in real micro-CT scans.

For more details about the pipeline and the segmentation results, please
refer to our paper C. For more details about how CycleGAN is constructed
and trained, please also refer to its original paper [82].
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Figure 4.3: Left: An illustration of CycleGAN with an additional segmen-
tation branch working on adapted (fake) domain A images by GB→A. All
3D patches are shown with Maximum Intensity Projection. Loss functions in
CycleGAN are not shown for simplicity. Middle: An example result in 3D.
Right: A sample slice overlaid with segmentation. Image and caption from
paper C, reprinted with permission.
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Segmentation of human hip joints
and jaw bones

Although segmentation from medical scans is an essential task, the segmenta-
tion output is only the first step for more complicated downstream tasks, e.g.,
simulations-based studies [48, 49]. Depending on the downstream task, the
output from medical image segmentation needs to focus on certain anatomical
correctness of specific structures. Although in our case, the scans of blood ves-
sels cannot be used in a CFD-based pipeline as emphasized in Chapter 1.4.2,
in many cases, the segmentation results from medical images are used for gen-
erating finite element models by building computational meshes, which can be
further used for simulating patient-specific implants [93, 49]. For example, in
the case of hip joint segmentation (paper D), the focus should not only be on
generally partitioning the raw scan into regions of femur and hip bones, but
also on detailing the bone boundaries and inter-bone cavities between them.
This is because the soft tissues located in the cavities are essential to gen-
erate biomechanics models for stress analysis in human hips [48]. Similarly,
when segmenting human jaws (paper E), our focus is not only on separating
teeth and alveolar bones, but also on preserving the gaps between tooth-bone
interfaces where the periodontal ligament (PDL) resides [49]. PDL layer is
essential in orthodontic treatments due to its pivotal role in transferring load
from the teeth to the bone [49]. This process, when activated by sufficient
orthodontic forces, results in bone remodeling.

In the remainder of this section, we include a summary of the core parts
of our two related deep-learning approaches to address the automatic segmen-
tation of human hip joints and human jaws, which are the essential first step
to building patient-specific finite element models for simulation studies [49,
48]. For more details on the two medical image segmentation tasks, please
refer to our paper D and E. The segmentation results from paper D and E
are successfully used to generate finite element models for simulation stud-
ies on human hip joints [48] and teeth [49]. For more details about the two
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simulation studies, please refer to [49] and [48].

Pixel-wise Cross-entropy

Spatial Average R
eduction

Input images Prediction

GT Mask

Backpropagation

L

Euclidean Distance Transform

Figure 5.1: Model training pipeline of segmenting teeth (up) and hip joints
(bottom), which both shows the weighted distance map calculated from
Eq. (5.1). ⊗ denotes the element-wise product, which suppresses the gen-
eral boundary uncertainties while amplifying loss near the gaps. Note that
the pixel-wise cross-entropy is visualized after averaging over all the classes.
L is the final loss as a scalar after reduction. Image and caption from paper
D and E, reprinted with permission.

Backbone model Since we have very limited training data, and our fo-
cus is on the simulation of certain anatomical structures rather than outper-
forming state-of-the-art AI models, we adopt MultiPlanar UNet, an Efficient,
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lightweight, and free of parameter-tuning UNet model as the backbone model
[94]. The model segments the 3D medical scans using 2D UNet while pre-
serving as much 3D information as possible by generating views from different
perspectives [94].

Design choice 1: Transfer learning from inaccurate labelmaps One
of the design choices we have found crucial is to pre-train the model using
datasets with poor labeling. As mentioned above, our focus is on detailing
the bone boundaries and inter-bone cavities in hip joints and on preserving the
gaps between tooth-bone interfaces for PDL simulation in human jaws. How-
ever, acquiring such detailed ground truth labels is extremely time-consuming.
As a common trick in deep learning, we pre-train the model using datasets
with poor labeling, which ignores the cavities and PDLs. This enables the
model to learn the general geometries for hip joints (paper D) and jaws (pa-
per E) and requires less additional training data to detail the gaps afterward.

Design choice 2: Simulation-inspired weight-map in fine-tuning On
the other hand, when subsequently fine-tuning the model with a small set
of accurate data to detail the gaps, we would like the model to be focused
on the gap regions, as shown in Fig. 5.1. We achieve this by enforcing a
simulation-inspired voxel-wise weight-map w(x) to the loss function based on
the distances to the border of the foreground classes.

w(x) = wc(x) + w0 · e−
(d1(x)+d2(x))

2

2σ2 (5.1)

where d1 and d2 denote the distance to the border of the nearest foreground
class and the second nearest foreground class, respectively. This strategy was
originally adopted in the UNet paper [41] to separate 2D touching cells. In
our 3D cases, the incorporation of the distance-based weights (Eq. (5.1)) into
the training of the neural network is inspired by the expectation that in sub-
sequent Finite Element (FE) simulations, a similar distance-based metric will
be employed to delineate the space in the two areas: between the segmented
teeth and bone geometries to locate the PDL, and between femur and hip
bones to locate soft tissues in the cavities, as outlined in [49, 48].
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Final remarks

6.1 Conclusion and potential impact

This thesis introduces a novel, full-scale model of the renal nephron-vascular
network, bridging gaps in current understanding and offering a tool for future
renal pathology research. Specifically, we proposed a hybrid framework for re-
constructing the arterial vascular network of a rat kidney in Chapter 2 (paper
A). The framework generates a full-scale renal arterial tree using a physiolog-
ically constructive optimization method while taking image-based priors from
the medical scan. We have shown that the reconstructed vascular tree has a
good morphometric agreement with anatomical data from a real rat kidney
[16].

With the reconstructed renal arterial tree, we have also integrated nephron
models into the tree by attaching them to the afferent arterioles and simulated
the active autoregulation of pressure and flow with two feedback mechanisms
from nephrons in Chapter 3 (manuscript B). Our simulation results reveal a
strong autoregulation of renal blood flow, especially in counteracting the in-
crease of inlet renal arterial pressure by contracting afferent arterioles and thus
increasing resistance, which is in good agreement with experimental studies
[9]. Our further simulation of the effect of renal artery stenosis on the blood
flow also shows close agreement with both the experimental observations [77]
and existing CFD-based simulation studies [19, 20, 21].

Note that the pipeline of our research cannot be used for the diagnosis of
vascular diseases because a significant portion of the vascular tree is recon-
structed physiologically rather than detected from the medical scan. Instead,
it is aimed at analyzing the mechanisms of renal functions and is crucial for
therapy planning, drug design, and medical research. On the other hand,
in Chapter 4 (paper C), we have also demonstrated that the physiologically
reconstructed vascular trees from our pipeline can create a synthetic renal ves-
sel dataset, which can be used to train a deep learning model for segmenting
blood vessels from real medical scans. This can potentially reduce the intense
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manual work involved in annotating the vessel structures from the medical
scans and help the automatic diagnosis of vascular diseases.

Once the model of autoregulation is formulated and implemented, the
model can be further extended to other mechanisms and signaling pathways
to solve specific problems with urine concentration mechanisms or oxygen
transport in the kidney. This mathematical modeling of the renal microcir-
culation is crucial because alterations in the renal microcirculation may cause
local hypoxia leading to glomerular, tubular, and vascular damage or to renal
dysfunction through interference with glomerular filtration and/or tubular se-
cretion and reabsorption. Microvascular dysfunction may, therefore, serve as
an early hallmark of kidney injury, implicating that non-invasive assessment
of renal microvascular structure and function could be an improvement in
the early identification of patients with progressive kidney disease [95]. This
early non-invasive assessment can be used to predict better preventive strate-
gies and therapeutic treatments, such as mechanism-driven drug development
aimed at reducing renal damage.

6.2 Discussion: Limitations and future
perspectives

6.2.1 Reconstruction vs experimental data

Of course, our full-scale renal arterial tree is reconstructed physiologically
rather than extracted from real scans. Although our proposed hybrid approach
integrates the real scan of a rat kidney into the process and has shown good
morphometric agreement with anatomical data [16], it is still possible that the
physiologically reconstructed vascular tree does not fully represent real renal
arteries.

On the one hand, we can generate more realistic vascular trees by incorpo-
rating more vessels from the segmentation of the scans, or by having a more
accurate estimate of the renal cortex. Currently in paper A, we have excluded
a large portion of the visible arteries to preserve only the first few main ar-
teries. This decision is based on the fact that the other parts are extremely
susceptible to noise and present considerable challenges in segmentation from
the scan. If we have scans with better qualities and better segmentations, a
larger part of the full-scale arterial tree can be extracted and prebuilt from
the actual scan, while fewer invisible small vessels need to be constructed
physiologically.

On the other hand, a new imaging modality, Hierarchical Phase-Contrast
Tomography (HiP-CT), was recently introduced in 2020 at the European Syn-
chrotron Radiation Facility [96]. This new imaging modality can image the
whole human organs at an unprecedented resolution by first scanning whole
organs with 20µm/voxel, then followed by high resolution (down to around
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2µm/voxel) regions of interest within the sample without sectioning [96, 97].
However, high-resolution imaging technique only means it is theoretically pos-
sible to extract a full-scale vascular tree from medical scans, while technical
problems such as imaging noises, artifacts, computational bottleneck, and in-
tense manual works still pose great challenges to extracting vascular trees
down to afferent arterioles from the scans [97, 98].

Nonetheless, if, in the future, a full-scale renal arterial tree structure can
be extracted from HiP-CT scans, the renal blood flows and autoregulation
could also be simulated over the extracted tree. These results can also be
used to further validate the morphologies of our physiologically reconstructed
renal arterial tree. From another perspective, in Chapter 3 (manuscript B),
we have built the whole pipeline to simulate blood flow and autoregulation
mechanisms from a full-scale renal arterial tree, regardless of how the full-
scale renal arterial tree is built. Therefore, a full-scale renal arterial tree
potentially extracted from HiP-CT scans can be easily integrated into our
pipeline to simulate autoregulation mechanisms.

6.2.2 Segmentation of renal blood vessels

In paper C, we showed that the full-scale renal vasculature generated from
paper A can be used to create a synthetic renal vessel dataset for training a
deep-learning-based vessel segmentation network. However, we had to switch
the task from segmenting arteries to veins because most of the micro-CT scans
only have veins visible, while the arteries only consist of a tiny part, which we
have thus considered as noise in the vessel segmentation task. Unfortunately,
segmenting veins is physiologically uninteresting because the hemodynamics
of renal blood vessels and autoregulation mechanisms are mostly related to the
renal arterial structures. It is, however, non-trivial to modify our approach
in paper A to generate both arteries and veins while modeling their pair-
wise coupling. Right now, it is only possible to generate arteries and veins
independently, which does not model their pair-wise coupling and thus cannot
generate realistic segmentation masks for training an Artery/Vein multi-class
segmentation model.

Moreover, segmenting veins from the micro-CT scans with contrast agency
is a relatively easy task because the vessels usually have higher intensities
than the background. Synthesizing training data from simulation-based ves-
sel graphs is beneficial in the beginning when there is not a single labeled
scan, as discussed in Chapter 4 (paper C). After the segmentation model has
been trained on the synthesized data and applied over real micro-CT scans,
the segmentation results can be manually corrected, providing real micro-
CT scans with corresponding vessel segmentation masks. These labeled real
data can then be used to fine-tune the segmentation model, which was pre-
viously trained only on synthesized data. This process can be iterated as an
interactive learning pipeline to gradually output more accurate segmentation
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predictions from the model. This interactive learning pipeline is also what we
implemented to gradually get accurate segmentations for human hip-joins in
paper D and [48].

In the deep generative model field, Diffusion models [99, 100] have been
gradually replacing GANs due to their stable training process. Nonetheless,
after and parallel to our work, there have been some more works on generating
training image data from physiologically simulated vessel graphs, mainly by
training a GAN model over OCTA images [101, 102, 103]. When doing domain
adaptation to generate realistic scans, CycleGAN still seems to be the standard
model due to its ability to achieve both image-to-image translation and image-
to-label alignment. However, it can be elaborated for specific tasks. For
example, in [102] on generating 2D OCTA images, the authors found that
it is possible to directly use the segmentation network (S in Fig. 4.3) as the
regularizer for image-to-label alignment and thus obviate the generator and
discriminator over real images (GA→B and DA in Fig. 4.3). This simplification
can be potentially more beneficial in our 3D setting as the training has been
largely limited by the patch and batch size due to memory bottlenecks.

One main limitation of our work (paper C) is the limited number of val-
idation data and the correctness of these data, which also hinders us from
trying and evaluating different generative models. On the one hand, more
renal blood vessel segmentations should be annotated to thoroughly validate
model predictions, possibly using the interactive learning pipeline mentioned
above. On the other hand, in paper C, we have qualitatively shown that the
segmentation prediction from our model surpasses the level of detail in the
manual annotations, which would falsely penalize the model during quantita-
tive evaluation and result in an inaccurate assessment. This challenge has also
been encountered in [102], where they decided to filter synthetic segmentation
labels by vessel radius to match the human annotation details. However, they
also note that manual annotations do not always correlate with vessel diame-
ter, thus the challenge remains unless we have accurate and detailed manual
labelings [102].

Finally, the vascular structures from constructive optimization methods
are built under healthy and optimally functioning organs [70, 71]. Therefore,
the synthesized training data only contain segmentation masks for healthy
kidneys. To train a segmentation model that can also segment blood vessels
of kidneys under pathological conditions, e.g., diabetes, we also need to syn-
thesize training data with these pathologies. These data with pathologies can
potentially be provided by first synthesizing vasculatures under healthy condi-
tions and then simulating pathologies over the vasculatures before generating
segmentation masks and scans. Specifically, a vascular tree model enables
more non-standard augmentations, e.g., by analytically modifying the radii or
lengths of some vessels or removing some vessels and their children to simulate
pathological changes. For example, Brown et al. [103] simulated retinal vein
occlusion (RVO) by randomly choosing a location of veins and decreasing the
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vein’s diameter. The blood flow is then recalculated to further simulate the
change of flow in all the downstream vessels. This process will create more
varieties of the synthesized training data, which can potentially train a better
and more generalizable segmentation model.

6.2.3 Dynamics of the model and interactions between
neprhons

In our simulation of blood flow and autoregulation mechanisms (manuscript
B), we are currently only focused on steady-state solutions. Specifically, we
are only interested in the final afferent arteriolar resistances and the resulting
renal blood flows in a given pressure state. However, the adaptation of affer-
ent arteriole to different pressure and flow patterns is dynamic. For example,
the governing equations of the tubular model, as one-dimensional approxima-
tions of the Navier-Stokes equations describe the flow in the tubular model as
coupled partial differential equations [11]

∂PT

∂z
= − ρ

πr2
∂QT

∂t
− 8η

πr4
QT ,

∂QT

∂z
= −2πr

∂r

∂PT

∂PT

∂t
− JV .

(6.1)

In our steady-state solution, we assume there are no time derivatives, so the
above partial differential equations can be simplified to ordinary differential
equations, which is much easier to solve numerically.

dPT

dz
= − 8η

πr4
QT ,

dQT

dz
= −JV .

(6.2)

However, without time variables, the transfer function [104, 11] for the renal
blood flow cannot be calculated. The characteristic features of the trans-
fer function can provide insights into how the system responds to different
frequencies of input signals and ensure further validation of the model [11].
Unfortunately, solving partial differential equations in a full-scale vasculature
model is extremely computationally expensive and requires more advances in
numerical methods and parallel computing to be solved in a reasonable time,
which is beyond the scope of the Ph.D. project.

Moreover, although our model connects all afferent arterioles and nephrons
in a full-scale tree structure, we have not covered interactions between nephrons
that communicate via electrical signals propagating along the vessel walls. In
our model, the adjusted afferent arterioles work together to autoregulate the
blood flow, but each nephron adjusts its afferent arteriole independently. It has
been found experimentally that neighboring nephrons interact with each other
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to reach synchronization. For example, Holstein-Rathlou found synchroniza-
tion of tubular pressure oscillations at the TGF frequency in the neighboring
pairs of nephrons on the renal surface [105]. The interaction occurs due to
electrical signals propagating along the vascular walls of the vessels. This
concept was developed later in the experiments with laser speckle flowmetry
[106, 107]. Several theoretical studies have addressed the effects of nephron-
nephron interaction [108, 109, 110]. Unfortunately, we did not cover such
interactions between nephrons because the electrical signal propagating along
the full-scale vasculature requires a lot of computer powers and optimization
of the current models and algorithms.

6.2.4 Construction of computational meshes for CFD studies

In Chapter 4.1.1, we presented the implicit functions to remap the recon-
structed vascular tree G = (V, E) to binary label maps with smooth transi-
tions at branchings. Besides producing an artificial kidney dataset for training
deep-learning-based segmentation models, organic-looking blood vessels with
smooth transitions at branching can also be utilized for contouring methods
to produce smooth surface meshes. These surface meshes can then be used as
the input to many volume mesh generation algorithms like TetGen [111], to
produce computational meshes. As introduced in Chapter 1.4.2, these compu-
tational meshes are essential for CFD-based studies to solve the Navier-Stokes
equation numerically.

CFDs are not covered in this Ph.D. project due to the problems outlined
in Chapter 1.4.3 such as limited resolution, inconsistent radius appearance,
and computational bottleneck. The proposed fractal tree-based model is cur-
rently the only feasible way to simulate hemodynamics in a full-scale renal
arterial vasculature because a graph structure is a significantly more efficient
representation of vascular networks than its corresponding mesh or volume,
and the Navier-Stokes equation can be solved analytically and simplified into
a much simpler form, giving Poiseuilles’s equation as discussed in Chapter 2.2.

However, as outlined at the beginning of Chapter 2.2, Poiseuilles’s equation
requires several further assumptions than the standard Navier-Stokes equa-
tion. Although most of the assumptions are feasible and also assumed in
many studies of renal blood flows [24, 11, 15], some of them could be over-
simplified. For example, it cannot model turbulence since it requires laminar
flow, and similarly, it cannot model changes in the velocity field as it assumes
steady flow.

Therefore, another potential approach to applying CFD-based blood flow
simulation over the full-scale renal arterial structure is to assume a simplified
skeleton-tree model of the vasculature only during the vascular reconstruction
process (Chapter 2 and paper A). Then, instead of applying on the blood
vessel segmentation from medical scans, the computational mesh can also be
built out of the reconstructed skeletal tree model. The reconstructed meshes
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can then be integrated into standard CFD studies, which does not require the
assumptions for Poiseuille’s equation. Unfortunately, the task of constructing
computational mesh from skeletal trees is non-trivial. Although the result
from the implicit surface in Fig. 4.2 visually shows smoother branches than
simply stacking cylinders, it is not guaranteed to be watertight to generate
computational meshes suitable for CFD simulations [111]. Remapping the effi-
cient tree modeling of vasculature back to its computational meshes would also
significantly increase computational complexities, posing further challenges to
the memory bottleneck.
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Archiv 408 (1987), pp. 438–443.

[106] Alexey R Brazhe et al. “Synchronized renal blood flow dynamics mapped
with wavelet analysis of laser speckle flowmetry data”. In: PloS one 9.9
(2014), e105879.

69



Bibliography Chapter 6

[107] Dmitry Postnov et al. “Synchronization in renal microcirculation un-
veiled with high-resolution blood flow imaging”. In: Elife 11 (2022),
e75284.

[108] HE Layton, E Bruce Pitman, and Leon C Moore. “Bifurcation analysis
of TGF-mediated oscillations in SNGFR”. In: American Journal of
Physiology-Renal Physiology 261.5 (1991), F904–F919.

[109] Donald J Marsh et al. “Nonlinear interactions in renal blood flow reg-
ulation”. In: American Journal of Physiology-Regulatory, Integrative
and Comparative Physiology 288.5 (2005), R1143–R1159.

[110] Donald J Marsh et al. “Multinephron dynamics on the renal vascular
network”. In: American Journal of Physiology-Renal Physiology 304.1
(2013), F88–F102.

[111] Si Hang. “TetGen, a Delaunay-based quality tetrahedral mesh genera-
tor”. In: ACM Trans. Math. Softw 41.2 (2015), p. 11.

70



List of publications

Appendix A Peidi Xu, Niels-Henrik Holstein-Rathlou, Stinne Byrholdt
Søgaard, Carsten Gundlach, Charlotte Mehlin Sørensen, Kenny
Erleben, Olga Sosnovtseva, and Sune Darkner. “A hybrid ap-
proach to full-scale reconstruction of renal arterial network.”
Scientific Reports 13(1), p.7569, 2023. https://doi.org/

10.1038/s41598-023-34739-y

Appendix B Peidi Xu, Sune Darkner, Olga Sosnovtseva, and Niels-Henrik
Holstein-Rathlou. “Full-scale model and simulation of renal
autoregulation.” Manuscript to be submitted to Function,
2024.

Appendix C Peidi Xu, Blaire Lee, Olga Sosnovtseva, Charlotte Mehlin
Sørensen, Kenny Erleben, and Sune Darkner. “Extremely
weakly-supervised blood vessel segmentation with physiolog-
ically based synthesis and domain adaptation.” In Workshop
on Medical Image Learning with Limited and Noisy Data
(MICCAI Workshop), pp. 191-201. Cham: Springer Na-
ture Switzerland, 2023. https://doi.org/10.1007/978-3

-031-44917-8_18

Appendix D Peidi Xu, Faezeh Moshfeghifar, Torkan Gholamalizadeh,
Michael Bachmann Nielsen, Kenny Erleben, and Sune Dark-
ner. “Auto-segmentation of Hip Joints Using MultiPlanar
UNet with Transfer Learning” In Workshop on Medical Im-
age Learning with Limited and Noisy Data (MICCAI Work-
shop), pp. 153-162. Cham: Springer Nature Switzerland,
2022. https://doi.org/10.1007/978-3-031-16760-7_15

Appendix E Peidi Xu, Torkan Gholamalizadeh, Faezeh Moshfeghifar,
Sune Darkner, and Kenny Erleben. “Deep-learning-based
segmentation of individual tooth and bone with periodontal
ligament interface details for simulation purposes.” IEEE
Access 11, pp. 102460-102470, 2023. https://doi.org/10

.1109/ACCESS.2023.3317512

71

https://doi.org/10.1038/s41598-023-34739-y
https://doi.org/10.1038/s41598-023-34739-y
https://doi.org/10.1007/978-3-031-44917-8_18
https://doi.org/10.1007/978-3-031-44917-8_18
https://doi.org/10.1007/978-3-031-16760-7_15
https://doi.org/10.1109/ACCESS.2023.3317512
https://doi.org/10.1109/ACCESS.2023.3317512




Appendix A

Paper A

73



1

Vol.:(0123456789)

Scientific Reports |         (2023) 13:7569  | https://doi.org/10.1038/s41598-023-34739-y

www.nature.com/scientificreports

A hybrid approach to full‑scale 
reconstruction of renal arterial 
network
Peidi Xu 1*, Niels‑Henrik Holstein‑Rathlou 2, Stinne Byrholdt Søgaard 2, Carsten Gundlach 3, 
Charlotte Mehlin Sørensen 2, Kenny Erleben 1, Olga Sosnovtseva 2,4 & Sune Darkner 1,4

The renal vasculature, acting as a resource distribution network, plays an important role in both the 
physiology and pathophysiology of the kidney. However, no imaging techniques allow an assessment 
of the structure and function of the renal vasculature due to limited spatial and temporal resolution. To 
develop realistic computer simulations of renal function, and to develop new image‑based diagnostic 
methods based on artificial intelligence, it is necessary to have a realistic full‑scale model of the renal 
vasculature. We propose a hybrid framework to build subject‑specific models of the renal vascular 
network by using semi‑automated segmentation of large arteries and estimation of cortex area from 
a micro‑CT scan as a starting point, and by adopting the Global Constructive Optimization algorithm 
for generating smaller vessels. Our results show a close agreement between the reconstructed 
vasculature and existing anatomical data obtained from a rat kidney with respect to morphometric 
and hemodynamic parameters.

Computational models of vital organs play an increasing role in the understanding of both normal and diseased 
organ function. Realistic models of organs require not only a detailed description of the various biochemical and 
physiological processes but also an accurate representation of the essential anatomy of the organ. In the kidney, 
the vasculature plays a special role. Not only does it function as a resource distribution network, supplying the 
individual nephrons with blood and nutrients, but it also constitutes a communication network, allowing con-
tiguous nephrons to interact through electric signaling along the  vessels1. However, no imaging techniques allow 
a full reconstruction of the structure of the renal vasculature due to limited spatial resolution.

The primary aim of the present work is the development of a hybrid framework that allows the reconstruc-
tion of a realistic model of the full-scale renal vasculature, which matches real anatomical data and can be used 
in advanced mathematical models of renal function. In addition, real-looking networks that respect the true 
geometric properties of the organs could allow the simulation of CT scans on the generated vascular  trees2,3. 
Such simulated CT scans could help train AI-based models for vascular segmentation on real CT scans, which 
is one of the long-range aims of the present work. Our approach utilizes existing scans to extract 3D geometrical 
priors and adopts physiologically based criteria in the construction of the vascular  tree4–6.

Biological background. In each organ, the vasculature has a characteristic structure adapted to meet the 
specific needs of the organ, and a detailed description of the specific vasculature of an organ is necessary for a 
full understanding of both its physiology and pathophysiology. Nordsletten et al.7 provided the hitherto most 
detailed and quantitative description of the rat renal vasculature. They combined high ( 4µ m) and low ( 20µ m) 
resolution micro-CT images obtained from a vascular cast of a rat kidney. They used the skeletonization method 
to trace the path of contiguous vessels and then applied the Strahler  approach8 to sort and interpret the data. 
Strahler ordering sorts treelike networks by the diameter of the branches according to a bifurcating scheme (see 
“Strahler ordering”). The principal assumption required for its use is the existence of a diameter-based hierarchy 
of vessels, ending in the narrowest vessels, i.e., the afferent arterioles supplying the individual nephrons.

Marsh et al.9 used micro-CT with 2.5µ m resolution to assess the three-dimensional microvascular structure 
of the rat renal arterial tree. The cast revealed an arterial tree network originating in arcuate arteries, branching 
as few as twice or as many as six times before reaching a terminal artery that terminated in pairs, triplets, or 
quadruplets of afferent arterioles. Marsh et al. identified different motives for how afferent arterioles originated 
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from all branch orders of nonterminal arteries or from terminal arteries forming the tops of the arterial trees. 
Similar branching patterns have been reported by other groups using microdissected trees from four different 
mammalian  species10–12.

Postnov et al.13 have shown that the pressure drop in a simple bifurcating tree with the vessel dimensions 
reported by Norsletten et al.7 exceeds the value found experimentally. This is expected since in a simple bifurcat-
ing tree, afferent arterioles appear only at the terminal branch points of the tree—an assumption that maximizes 
the hemodynamic resistance between the renal artery and the glomerulus. Postnov et al.13 and Marsh et al.9 
have reported an exponential distribution of the distances between branch points for afferent arterioles across 
the vascular tree. This distribution, and the possibility to branch from any arterial segment, is the basis for the 
pressure in the glomerular capillaries being significantly higher, and in a range compatible with normal nephron 
function, than in a simple bifurcating tree.

The number of nephrons in a kidney in a given species is variable and is thought to play an important role 
in renal health. Baldelomar et al. estimated nephron numbers from in vivo images and from high-resolution 
ex vivo  images14, while Letts et al.15 assessed the location of glomeruli in the outer 30% of the cortex, midcortical 
nephrons (30–60%), and juxtamedullary nephrons of the inner 40% of the cortex. Both studies show high vari-
ability in the number and characteristics of nephrons. Taken together, the high variability, both in the structure 
of the renal vasculature and in the number of nephrons in a given kidney, suggests that a probabilistic-based 
approach to model nephron-vascular architecture and blood flow dynamics is the right choice.

Modeling outlook. Three major methods have been described in the literature to construct models of 
vascular networks. Pure rule-based  models1,13,16 generate vascular trees analytically from a given root while 
completely ignoring the spatial structure of the network. The length of each vessel, the radius distribution to 
its children in a bifurcation, as well as the stopping criteria are all derived from given probability distributions 
obtained from experimental data. Although the hemodynamics can be simulated without information on the 
spatial structure, these methods cannot generate real-looking networks and ignore the subject-specific informa-
tion, and thus cannot be utilized for individual analysis.

The image-based reconstruction methods build 3-D geometric models that capture the high-level structure 
of an individual’s blood vessels from clinical  images17–19. These methods involve either a segmentation followed 
by a centerline extraction or a direct tracking of the blood vessels. Despite advances in deep learning models, 
learning from very thin structures is still challenging and will suffer from errors due to both vessel merging and 
discontinuity, resulting in extremely intense manual work afterward. More importantly, in the kidney the vessels 
at far-surface regions are beyond the experimental resolution, making it impossible to detect the small vessels 
from an image alone. These small vessels, however, are the ones supplying the individual nephrons and thus have 
to be resolved in the final model. Therefore, image-based reconstruction alone is unable to provide complete and 
detailed 3-D vasculatures in the kidney, making biosimulation the only tool available with generative models 
that can extrapolate modeling to unresolved parts of the kidney.

The angiogenesis-based methods simulate the growth of vasculatures by considering the biological and physi-
ological factors involved in the process such as the size of branching vessels (Murray’s  law5,20(cf. Eq. (9))) and the 
hemodynamics in the  tree21 (cf. Eq. (5)). These algorithms model the vascular tree growing as an optimization 
problem following the assumption that the network achieves a topological and geometrical structure over the 
vascularized tissues from hemodynamic  principles22, e.g., by minimizing the intravascular volume of the tree 
while ensuring efficient flow. The details of the optimization function are presented in “Physiologically based 
cost functions”.

There are two main methods to generate the vasculature based on the growing algorithm, namely, Con-
strained Constructive Optimization (CCO) method proposed by Schreiner and  Buxbaum4, and its variant Global 
Constructive Optimization (GCO) proposed by Georg et al.6. Both the CCO and GCO algorithms grow the 
tree inside a pre-defined perfusion territory. In both algorithms, a single tree root location of the blood inlet is 
chosen manually. In addition, boundary conditions such as terminal radius and flow distributions are imposed 
to represent physiologic conditions.

These methods are able to generate real-looking vascular structures with both spatial location and connectiv-
ity information and have been applied in the liver, heart (left ventricle), and  eye4,6,23. Recently, Shen et al.24 and 
Ii et al.25 incorporated GCO and CCO, respectively, to reconstruct vasculatures in the human brain. Although 
Cury et al.22 has recently applied an adaptive CCO on a prototypical human kidney model, no similar research 
exists on real renal vasculatures due to the complex non-convex geometry. Moreover, most of the studies pro-
duce homogeneous vascular networks that do not account for individual differences, so they cannot be used for 
individual analysis.

Both CCO and GCO require a convex structure since the connections between any two nodes should not 
leave the structure. This is one of the reasons why it is challenging to adopt these methods to an organ like the 
kidney with a complex internal structure (i.e., not convex). Some parts, like the renal pelvis and the pyramids, 
also pose intrinsic spatial restrictions on vessel construction, which are difficult to model when the tree grows 
from only a single root node.

Our work follows a similar idea  of24 by proposing a hybrid way to incorporate subject-specific image-based 
priors via a semi-automated segmentation of the main (large) arteries and an automatic cortex approximation 
from the ex-vivo micro-CT scan of a real rat kidney, which both are utilized in the GCO initialization step. In 
summary, a pre-built arterial tree consisting of the main arteries is extracted from the main artery segmentation, 
while we also propose a novel approach to sample terminal nodes (glomerulus) from the estimated renal cortex 
while maximizing the distance between any two neighboring nodes using Poisson disk  sampling26.
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These sampled terminal nodes are then connected to the pre-built vascular tree. Instead of growing from 
a single root position, the algorithm can now start growing from a pre-built vascular tree and thus will retain 
subject-specific information in the final generated full-scale vascular tree. At the same time, this procedure avoids 
violating the intrinsic spatial constraints, because these connections naturally avoid penetrating the middle part 
of the kidney where the renal medulla resides and do not cross the kidney’s outer boundary, thus making the 
complex structure piece-wise convex. In contrast  to24 which proposes forest growth, our algorithm consists of a 
single tree but with pre-built large branches because of the single inlet of the renal artery. Currently, the image 
prior starts with a semi-automated segmentation of the vessels, which is time-consuming work. However, recent 
advances in deep learning are likely in the future to make it possible to automatically segment large vessels given 
a decent amount of labeled training data, especially in the case of micro-CT with relatively low variation among 
the images. Apart from the segmentation retrieval and a single user-defined root position, our work is fully auto-
matic, meaning that no software interface is involved in the process. In particular, the leaf nodes sampling and 
centerline extraction are both implemented in pure Python,  unlike24 which used BrainSuite for cortex extraction, 
 and25 which used Amira for brain hemispheres extraction and skeletonization. All the 3-D software packages, e.g. 
3D  Slicer27 and  ParaView28 are only used for visualization. This has the advantage that it allows automatization 
of the process, does not require expert knowledge of the software packages, and provides for better flexibility, 
e.g., adjustment of parameters to adapt to other organs or image modalities.

Our results show that the structural and functional properties of the reconstructed vascular network 
are in good agreement with existing anatomical data, e.g., with respect to the radius, length, and pressure 
 distributions7,29. We expect the reconstructed full-scale model of the renal vasculature can be utilized to develop 
realistic computer simulations of renal function or model pathological changes in the kidney, and to develop 
new image-based diagnostic methods based on artificial intelligence.

Results
The output from the hybrid framework is a reconstructed renal arterial tree, which begins at the renal artery 
and ends in the afferent arterioles. In this section, we first present visualizations of the reconstructed tree. In 
order to quantitatively characterize the tree, we compute the statistics of various variables, e.g., vessel radius and 
frequency, with respect to the Strahler order (see “Strahler ordering”) of the vessels.

Model implementation and rendering. Our hybrid modeling approach to reconstruct a renal vascular 
network combines semi-automated segmentation of large arteries from micro-CT images and the Global Con-
structive Optimization algorithm for the generation of smaller microvessels (Fig. 1 and is described in detail in 
“Methods”). The raw scan has an isotropic voxel size of 22.6µm3 . From Table 2 in Nordsletten’s  paper7, renal 

Figure 1.  GCO Pipeline, visualized by 3D  Slicer27 and  ParaView28. The initial micro-CT scan is used to extract 
whole structure segmentation (a) and large artery segmentation (e). Top row: renal cortex (c) is approximated 
by a subtraction of erosion followed by a ball removal (b), where the leaf nodes (d) are sampled using Poisson 
disk sampling. Bottom row: extracted centerline (f) is pre-processed to pre-build a renal arterial tree consisting 
of only the first few large arteries (g). In GCO initialization (h), all the sampled leaf nodes (d) are connected to 
the nearest node in the pre-built tree (g) with color indicating the group of leaf nodes that are connected to the 
same node. Colors in the GCO progress and result (i,j) indicate the radius of each vessel: from 300µ m in renal 
artery to 10µ m in afferent arterioles (AA).
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arteries with Strahler order from 0 to 2 have a mean radius of 10.08, 13.90, 20.06µ m respectively, making it 
impossible to detect those small arteries from the 22.6µm3 scans. Using our hybrid approach, the small arter-
ies are successfully resolved and connect to the large branches in an anatomically correct manner, producing a 
full-scale renal arterial tree.

Figure 1j presents a visualization of the generated vascular tree. Each vessel is visualized as a separate cylinder 
with a thickness corresponding to its radius and color coded by the radius. Although more advanced visualization 
methods  exist30,31, this provides a sufficient rendering of the topology of the generated vascular tree. Clearly, if 
the tree is to be used for more advanced purposes, such as Navier–Stokes-based flow calculations, visualization 
methods that produce smooth surfaces at junctions and allow the construction of volume meshes will be needed. 
3D gif animations with rotation are available at: https:// github. com/ Kidne yAnon ymous/ Renal Arter ialTr ee.

Morphometric validation. Numerical validation is done by comparing the morphometric properties as 
shown in Fig. 2, such as the distribution of vessel radius, branch length, and Strahler order in the reconstructed 
network with data from a real renal arterial tree collected in a rat kidney by Nordsletten et al.7. The radius and 
length of the vessels in a kidney are variable and depend on many factors, including the strain, age, and size of 
the rat. Although Nordsletten et al.7 provided the most detailed and quantitative description of the rat renal vas-
culature, their collected data are from one kidney in one rat and, therefore, cannot be regarded as a “gold stand-
ard”. Instead, it represents one sample from the total population of rats. The purpose of the comparison between 
the simulated vascular tree and the experimental data is, therefore, not to demonstrate an absolute closeness or 
identity between the lengths and radii but rather to compare the topology and the distribution of vessel lengths, 
radii and Strahler orders between them.

In the rat kidney, the radius was found to increase exponentially with the Strahler order of the vessel. The 
same feature is present in the simulated tree as shown in Fig. 2a . This is contrary  to24 which shows that the result 
from GCO and from anatomical data on the brain vasculature both follow a linear increase of radius with Strahler 
order. This indicates that although the cost function and general process are similar among organs, GCO is able 
to adjust based on the distinct geometrical features of each organ. The exact values for the radii of the recon-
structed vascular tree deviate somewhat from the values reported  in7, as can be seen in Fig. 2a . This is especially 
evident for the vessel of the largest Strahler order (the root), which corresponds to the renal artery. In the recon-
structed tree, all radii are calculated from the radii of the afferent arterioles using Murray’s  law5,20 (cf. Eq. (9)). 
In our initialization process, we assume that the 30K afferent arterioles are derived from the distribution 
r0 ∼ N (10.08, 0.14) Ref.7 (first row of Table 2). Given strict compliance with Murray’s law, the root radius (radius 
at Strahler order 10) can be computed analytically by r10 = 3

√∑n=30,000
i=1 r30,i  regardless of the branching patterns, 

Figure 2.  Morphometric features of the generated renal vascular arterial network (simulation) and the 
experimental data reported in the literature (measurements). In each subfigure, r indicates the Pearson 
correlation coefficient of the mean values with respect to Strahler order. (a) Vessel radius vs Strahler order. (b) 
Vessel length vs Strahler order. (c) Number of vessels (in log scale) of a particular Strahler order. (d) Total cross-
sectional area vs Strahler order.
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which will give a mean value around µ(r10) ≈ 313.21 µ m. This number matches our result but deviates from 
Ref.7 (last row of Table 2) where r10 ∼ N (216.10, 4.74) . Similarly, we plot the vessel length for each Strahler order, 
both from the  literature7 and from our result, as shown in Fig. 2b . Both the data in the literature and our work 
show that vessel length has a poor correlation with Strahler order. However, they both show a maximum at order 
8, indicating that the large arteries usually are longer, but also that they branch fast when being close to the root, 
meaning that starting from the renal artery (order 10), vessels only grow to a small length before they branch. 
This results in a decrease of length with increasing Strahler order from 8 to 10.

Moreover, we plot the number of vessels vs the Strahler order, both from the  literature7 and from our result, 
as shown in Fig. 2c . The data from both the literature and our work show an exponential decrease in the vessel 
numbers vs the Strahler order. As a result, both the vessel numbers from the literature and from our generated 
tree fit very well to a straight line in log scale.

We further plot the total cross-sectional area vs the Strahler order from our GCO output and the experimental 
 data7 in Fig. 2d. Note that the experimental data were extracted from a figure in Ref.7 (Fig. 12) and replotted here 
in Fig. 2d. In agreement with experimental observations, the total cross-sectional area in the generated vascular 
tree decreases, although the mean radius increases exponentially with Strahler order. Specifically, in both experi-
mental data and our simulated vasculature, the cross-sectional area decreases from a value around 10 mm2 , halves 
after order 2, and keeps decreasing to a value below 0.5 mm2 at the renal artery (order 10). This indicates that 
the decrease in the number of vessels exceeds the exponential growth of the mean radius with Strahler order. 
A final interesting property is the Strahler order of the parent vessel of each afferent arteriole, shown in Fig. 4a. 
Specifically, a parent Strahler order 1 means that afferent arterioles (order 0) branch from terminal arteries (order 
1). This case indeed consists of most of the scenarios, but it also demonstrates other possibilities, where afferent 
arterioles can branch from larger vessels. The parent vessels of the afferent arterioles have Strahler orders from 1 
to 8, meaning that in our model, afferent arterioles can branch from any of the larger vessels, except the largest 
vessels with Strahler order 9 and 10. This characteristic has been shown to be crucial for the ability of the renal 
vascular tree to supply the glomeruli with blood at a sufficient  pressure1,13.

Figure 2 also shows the Pearson correlation coefficient of the mean values of the morphometric features 
between the simulated and experimental data. All the correlations are highly statistically significant and confirm 
a good agreement between the morphometric features of the two vascular trees.

The above results show that the distribution of e.g., radius and vessel frequency with respect to Strahler order 
in our generated arterial tree agrees with the  literature7. Some further properties of the generated vascular tree are 
noteworthy. The number of Strahler orders in the generated tree was not specified in the optimization process, 
but notably, the process resulted in a tree with 11 Strahler orders, which match  with7. Furthermore, given the 
assumption of around 30 K leaves, our generated tree produces around 51 K vessel segments (edges) in total, 
with 23 levels (depth) and 11 Strahler orders. On the contrary, if the algorithm simply builds a complete binary 
tree with perfect symmetries, the total number of vessel segments in the generated tree can be computed by 
2× 30 K = 60 K analytically, given the assumption of 30 K leaves. Then, the total number of levels and Strahler 
orders are identical, and can be computed analytically by log2 60K ≈ 16 , which significantly deviates  from7. This 
means that asymmetries are correctly inherited in our constructive optimization process, which agrees with the 
literature that vascular trees are not symmetrically  balanced32–34.

Physiological features. To examine the physiological properties of the generated tree, we plot the blood 
flow and pressure distribution in Fig. 3. The flow associated with each vessel is derived from the zero-addition 
rule (cf. Eq. (8)) and the assumption of equal flow distribution among the afferent arterioles. As shown in Fig. 3a, 
the blood flow over our generated renal arterial network ranges from 1.2× 1011 µm3 /s (7 ml/min) in the renal 
artery to around 4× 106 µm3 /s (240 nl/min) in afferent arterioles (AA).

We further plot the flow in each vessel vs the Strahler order in Fig. 3b (in log scale), which shows a clear 
exponential increase in flow with Strahler order. Although we have found no literature on such statistics in the 
rat kidney, this exponential increase is in close agreement  with35 which measures the coronary blood flow vs 
Strahler order.

The pressure drop �pi along each vessel i in the generated vascular tree can be computed by Hagen-Poiseuille’s 
law, cf. Eq. (5). Therefore, given the boundary condition of the inlet pressure p0 , the pressure value at every node 
along the generated tree can be computed by a simple breadth-first-search with pi+1 = pi −�pi , where pi+1 and 
pi denote the pressure at the outlet and inlet of vessel i respectively. From the  literature29, pressure in the renal 
artery is around 90–110 mmHg, we hereby assumed an inlet pressure p0 = 100 mmHg.

The pressure at each node in Fig. 3c shows a smooth decrease from 100 mmHg to a minimum of around 30 
mmHg along the network without abrupt changes, indicating that the reconstructed vascular network produces 
physiologically feasible hemodynamic behaviors.

We plot node pressure (in mmHg) at the outlet of each vessel vs Strahler order of the generated renal arte-
rial network in Fig. 3d, which shows a smooth and linear increase from around 55 mmHg at the end of afferent 
arterioles (Strahler order 0) to near 100 mmHg at the end of vessels with Strahler order 9, which then becomes 
flatter at the last order. This is expected because the root vessel has a short length l and a large radius r, resulting 
in a small pressure drop.

We further plot the histogram of the pressures at the end of the afferent arterioles in Fig. 4b. Experimental 
 data29 shows that the pressure at the end of the afferent arteriole is around 50–55 mmHg, which is in close 
agreement with the mean value from our result. However, since we only have a reasonable topological structure 
of the vascular tree but have not modeled the active regulation of pressure in the vascular tree , the histogram 
shows a wider distribution than found experimentally. In the future, such regulation and interaction among 
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contiguous afferent  arterioles13,16 need to be modeled to include the fine-tuning of the pressures and radii of the 
afferent arterioles.

Discussion
We propose a hybrid framework for the reconstruction of the arterial vascular network of a rat kidney. The 
framework generates a full-scale 3-D vascular tree model based on a modified Global Constructive Optimization 
algorithm while taking image-based priors from a subject-specific scan. The hybrid method preserves subject-
specific information by taking both the kidney’s shape and the main artery segmentation from micro-CT images 
of a real rat into the initialization step.

Figure 3.  Physiological features of the generated renal vascular network of the rat kidney. (a) Visualization 
of blood flow distributed across the network and (b) its distribution vs Strahler order (in log scale) : from 
1.2× 1011 µm3 /s (7 ml/min) in renal artery to 4× 106 µm3 /s (4 nl/s) in afferent arterioles (AA). (c) 
Visualization of pressure distributed across the network and (d) its distribution (at the outlet of each vessel) 
vs Strahler order, ensuring smooth pressure drop from 100 mmHg at the inlet to a minimum of 30 mmHg at 
the end of afferent arterioles (AA). In the left panels (a,c), each vessel is visualized by a separate cylinder with a 
thickness corresponding to its radius, and color coded by the flow (a) or pressure (c), visualized by  ParaView28.

Figure 4.  Morphometric and physiological features of afferent arterioles (AA) in the generated renal vascular 
network. (a) Number of afferent arterioles (in log scale) branching from the parent vessel of a given Strahler 
order in the generated tree. (b) Histogram of the pressure distribution among afferent arterioles.
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The reconstructed vascular tree shows good morphometric agreement with anatomical data from a real rat 
 kidney7. Furthermore, the calculated pressure distribution throughout the vascular tree is in good agreement 
with values found  experimentally29. Whereas the overall topology is in good agreement with the experimental 
observations, there are some deviations between the values, especially the vessel radii. In contrast to the topology 
of the vascular tree, vessel radius is a dynamic variable that is determined by the local conditions in the tissue. 
Thus, vessel radius may vary considerably from time to time in a given vessel, and the measurement process 
itself, e.g., the injection of casting material, may in itself cause changes in the radius. Nonetheless, the largest 
deviation was in the root vessel, which does not play a significant role in renal hemodynamics. Its resistance is 
negligible compared to the smaller vessels in the tree and, therefore, of little significance for total renal blood flow.

It could be argued that vessel radius should be part of the cost function, and thus be optimized in the con-
struction of the tree. However, we found that incorporating the radius in the cost function defined in Eq. (7), 
in fact, deteriorated the outcome of the optimization process, see “Physiologically based cost functions”. One 
reason could be that the cost function is local, whereas the flow is determined not only by local factors but also by 
the global physiological demands on the organ. This suggests that an optimal procedure could be to construct a 
realistic vascular tree using an algorithm like the one proposed in the present paper, followed by an optimization 
of the vessel radii based on a global physiological target. In the kidney, this could be the resulting glomerular 
filtration rate or a similar global measure of renal function.

Importantly, the reconstructed structure is not a simple bifurcating tree, a structure which previously has 
been shown to be insufficient for supplying blood to the glomeruli at a sufficient  pressure13. Instead, in agreement 
with previous work on the structure of the renal vascular  tree1, afferent arterioles arise not only from terminal 
arteries (Strahler order 1), but also from all arteries of higher order, except for the largest arteries (Stahler order 
9 and 10) (cf. Fig. 4a). Therefore, the proposed method can generate both morphometrically correct and physi-
ologically feasible vascular trees while respecting the prior information from the subject scan.

Modifications of subprocesses can easily be integrated into our framework. For example, although the current 
image prior requires a semi-automated segmentation of the main arteries, one can replace it with state-of-the-
art deep learning models, e.g.,  UNet36 to do the auto segmentation if one has accurate training data. Similarly, if 
renal cortex segmentation is feasible in a different scanning setting, one could skip the cortex extraction (Eq. 10) 
step and directly do the sampling of terminal nodes over the segmented cortex.

Future work will be to apply the reconstructed network in the areas described in the previous section, e.g., 
to model the active regulation of pressure and flow in our generated arterial  tree13,16. We have focused on the 
rat kidney since it is the only one for which detailed data on the vascular tree are available for  validations7,29. 
Nonetheless, we expect that our model can generalize to the human kidney as well, given similar micro-CT 
scans with similar resolution. The renal medulla imposes intrinsic constraints on artery growth, which must 
be addressed in the CCO or GCO process. However, since our network starts with a pre-built tree, the vessels 
will never pass these regions as long as the vessel segmentation is accurate to a certain extent, giving piece-wise 
convex regions in the initialization process.

With a full-scale tree structure, it is the ultimate goal to model pathological changes in the kidney. For 
example, at the structural level, it could be reducing the number of terminal vessels to mimic loss of nephrons, 
or modifying the radii of certain vessels while simulating the resulting changes of pressures and flow to mimic 
renal artery stenosis and atherosclerotic changes in the kidney. However, the pathological changes may be func-
tional, e.g., a reduced glomerular filtration or tubular reabsorption rate. To include these types of pathology, 
it is necessary to expand the model with models of the nephrons. This will be part of the next step because, in 
addition to the structure of the vascular network, it will require an additional model of functioning nephrons 
attached to each afferent arteriole together with the relevant regulatory systems, e.g., the myogenic mechanism 
and tubuloglomerular  feedback37.

Another future direction is to create a synthetic renal vessel dataset by generating the ground truth seg-
mentation labels corresponding to the generated tree. To create such an image dataset, we need to remap the 
reconstructed vascular tree back to a smooth surface mesh or binary label map. The details of such a process 
and an example of an image-label pair (Fig. S2) are given in the Supplementary material. We will test whether 
these artificially generated vessel images can be used to pre-train a deep-learning-based segmentation network 
for transfer learning or to train a Generative Adversarial Network (GAN) for domain transfer. As an example, 
Menten et al.2 recently applied CCO to synthesize retinal vascular plexuses and generated corresponding Opti-
cal Coherence Tomography Angiography (OCTA) images by emulating the OCTA acquisition process. They 
showed that these simulated data can successfully pre-train a retinal vessel segmentation network to segment 
real OCTA retinal images.

Upon finishing our work, we also notice that each subtree inside each piece-wise convex region after the ini-
tialization step of our GCO method (cf. each colored subtree in Fig. 1h) is independent of each other. Specifically, 
the leaf nodes that are connected to a certain node of the pre-built tree in the initialization step will always belong 
to the successors of that node. Figure 5 shows an example of the initialization and the result of one subtree. Here, 
the resulting subtree will stay inside the region defined in the initialization step with the same group of leaves and 
is independent of other subtrees. Although they all belong to a larger tree with a single root vessel, each subtree 
can be optimized independently in parallel before being merged together in the end. This parallelization has 
not been implemented explicitly, which should also be a future direction to speed up the whole computation.

The subtrees created by the initialization process are reminiscent of the vascular dominant regions found 
in the  kidney38,39. When planning surgical removal of part of the kidney, surgeons identify the first few arterial 
branches from the renal artery to estimate the subregion supplied by each of the  branches38,39. Each subregion 
is assumed to only get blood supply from the closest branch. These independently supplied regions resemble 
the piece-wise convex regions in our initialization step for the growth of the subtrees (Fig. 1h). Similar to our 
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pre-processed arterial tree (Fig. 1g), these procedures only identify the first few (around 3) branches from the 
renal  artery38,39. Otherwise, the vascular dominant regions become less well-defined.

The pair-wise coupling of the arterial and venous systems is not trivial to integrate, when in the future extend-
ing the framework to cover both arteries and veins. Currently, it is only possible to independently generate two 
individual trees. This does not capture the pair-wise coupling of arteries and veins, nor does it avoid the early 
intersection of the two trees. Kretowski et al. applied a CCO-based approach to create complementary hepatic 
arterial and venous  trees40. They detect and avoid intersections between the two trees explicitly during the grow-
ing process by adjusting the radius of each vessel at the expense of violating Murray’s law (Eq. (9)). This process 
is time-consuming and needs modification over the GCO process, where vessels are optimized on a larger scale.

Finally, we can generate more realistic trees by utilizing more vessels from the segmentation of the scans, 
or by having a better estimate of the renal cortex region in the initialization step. Currently, we are deliberately 
removing a large portion of the extracted centerline to only preserve the main arteries, since the other parts are 
prone to noise and difficult to detect by later auto-segmentation methods. If we have better segmentations, these 
small segments could also be used to guide the reconstruction of subject-specific vascular networks. On the other 
hand, one could also experiment with how small a portion of a pre-built tree we need in the initialization step 
of GCO before it will violate anatomical constraints, e.g., pass through the renal pyramid or outside the kidney 
structure without the piece-wise convex premise. Another potential future direction involves integrating large 
vessels in a totally different manner. Instead of a pre-built tree, the segmentation could also be incorporated in 
the cost function as gravitation to guide the whole process by “pulling” the intermediate nodes close to their 
positions. However, it is non-trivial to add such pull-force to Eq. (7) while balancing the other constraints. It 
will probably involve lots of testing of the parameters to find such a balance.

Methods
The original CCO algorithm works by iteratively adding a new edge (vascular segment). After each addition, the 
newly created bifurcation is locally remodeled and all tree radii are adjusted geometrically. Such remodeling is 
clearly inefficient when the vessel structure becomes large like in the kidney. In contrast, we adopt the alternative 
GCO algorithm as our backbone model. This method overcomes the problems of the CCO by starting with a 
fully connected tree, where the leaves are usually either defined on a regular grid or randomly positioned within 
the organ  hull6. In our case, the leaves are sampled using Poisson disk  sampling26 from the estimated renal cortex 
(Fig. 1c) as detailed in “The leaf node sampling”. It performs a multi-scale optimization to find an optimal tree 
for all leaf nodes simultaneously and introduces a global pruning operation after each iteration to produce a new 
tree with better global branching structures.

In this section, we start by stating the assumptions and objectives of the constructive algorithm (GCO). We 
then explain the underlying cost function to be optimized by GCO and the general process of GCO, including 
the modifications we have made. We then present in detail how the image priors are integrated into our hybrid 
framework and end by introducing the utilized scan information and implementation details.

We do acknowledge that there are several approximations involved in the whole process, e.g., all the assump-
tions defined in “Assumptions and objectives”, the approximation algorithm involved in the splitting process in 
“Global Constructive Optimization algorithm”, as well as the cortex approximation in “The image priors”. We will 
explain the underlying rationale or why they are inevitable when introducing these approximations.

Assumptions and objectives. Several assumptions have to be made for the whole process of reconstruct-
ing vascular trees. The first assumption forms the basis of the mathematical modeling of any vascular tree and 
has been adopted in most of the angiogenesis-based methods, e.g., on liver, heart, and  brain4,6,23,24. The second 
assumption comes from structural and functional properties of the kidney that glomeruli and afferent arterioles 
of all nephrons are located in the cortex  region41,42. It is the rationale for a Poisson disk sampling of terminal 
nodes (glomerulus), which will be discussed in “The leaf node sampling”. The other assumptions relate to the 

Figure 5.  Illustration of the initialization and result of a subtree, visualized by  ParaView28. (a) The initialization 
of the whole tree from Fig. 1h. (b) The initialization of one subtree from (a), zoomed in and rotated. (c) The 
result of the subtree, which can only grow inside the outlined region defined in (b), thus it will satisfy the convex 
constraint, and will not penetrate the renal medulla or grow outside the kidney structure.
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hemodynamics and are necessary to satisfy Poiseuille’s equation in Eq. (5), which is an integral part of the cost 
function Eq. (7).

• A vascular tree is modeled as a collection of connected, straight cylindrical tubes, indicating constant radius 
and no curvature between branch points.

• All the renal arteries end in the renal cortex with a certain perfusion territory.
• Blood is incompressible and Newtonian, and blood flow is laminar.
• Pressure drop due to branching is negligible.
• Flows are equally distributed among each terminal vessel.

Given such assumptions, a vascular tree is modeled by a directed acyclic graph G ≡ (V , E) where V is a set of 
nodes at the endpoints of each vessel centerline with node features being its coordinates in Euclidean space, and 
E is a set of directed edges which form a connected tree structure. Each edge represents a single vessel segment 
as a cylinder with its radius and flow as the edge feature. Note that length is not modeled as an edge feature but 
rather derived from the Euclidean distance between the two end nodes of each edge. The goal is to find a tree 
that minimizes the system’s overall cost function while fulfilling the constraints. Specifically, given the position 
of a single root node s, and n leaf nodes li , the goal is to find a tree G ≡ (V , E) that contains s and li ∈ V with 
minimum cost defined in the next subsection and fulfills constraints by introducing new intermediate nodes 
vi /∈ {s, l1, · · · , ln} and connections (edges) E.

In our work, we propose a novel way to integrate image priors into the initialization of GCO, so that the 
input is no longer a single root with n leaves, but a pre-built tree G0 ≡ (V0, E0) with s ∈ V0 that already covers 
the main arteries.

Physiologically based cost functions. Our reconstruction method generates subject-specific arterial 
vascular networks G ≡ (V , E) under the optimality assumption that the network structures will maintain ade-
quate blood perfusion with minimal total expense along all its edges, which can be approximated by the total 
sum of the local cost at each branching node v:

where Bv denotes the set of all the incident edges of node v.
A typical branching model is shown in Fig. 6. Note that the GCO model does not enforce bifurcation explic-

itly and can indeed model any number of branches > 2 . Still, branches other than bifurcations or trifurcations 
are rarely seen in the final result, because they usually incur a higher cost. In each branching model, an optimal 
branching point is positioned with respect to fixed neighboring edge radii and neighboring node positions to 
minimize the cost function. Following the work of Tekin and Shen et al.24,32, we incorporate both the material 
cost ( Mloss ) and power cost ( Ploss ), resembling the biological infrastructure cost to build the vessel and the power 
dissipated during blood circulation, respectively. Therefore, C local (v) is a weighted combination of the two costs:

where wc and wp are the weight factors to balance the two costs. Mloss(v) , which expresses the amount of materi-
als that constitute the blood in the vessels, is only dependent on the intravascular volume of the arterial tree. It 
is given by

(1)C(G) ≡
∑

v

Clocal(v) ≡
∑

v

∑

e∈Bv

C(e)

(2)C local (v) ≡ wc Mloss(v)+ wp Ploss(v)

Figure 6.  A typical vessel branching model. The branching vessels are uniquely defined by the locations of the 
three end nodes ( p0, p1, p2 ), the location of the bifurcation node ( pb ), and the radii of the three incident edges 
( r0, r1, r2 ). Length ( ls ) and branching angles ( θs ) are not modeled explicitly but can be trivially derived.
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Analogous to electric power, the power dissipated during blood circulation ( Ploss(v) ) is defined by the product 
of flow Qe (analog to electric current) and pressure drop �pe (analog to potential difference),

where Hagen-Poiseuille’s law gives the pressure drop �pe necessary to overcome the resistance to flow due to the 
viscosityµ , of the blood in an individual blood vessel,

Combining Eqs. (4) and (5) gives

The total cost at each branching v is a weighted combination of material cost Eq. (3) and power cost Eq. (6),

Blood flow follows the simple zero-addition rule from Kirchhoff ’s first law, from which we derive the relation,

where p denotes the parent edge in Bv of node v. Note that radii are not optimized but assumed to follow Mur-
ray’s law at the branch  points5,20,

Although we recognize that Murray’s law is only an approximation, we found that optimizing radii, e.g., by 
integrating an equality constraint into the optimization process as proposed  by24 deteriorates the result by pro-
ducing abrupt changes in the radii at branch points, and resulting in a final tree with fewer than the 11 Strahler 
orders found  experimentally7.

In our experiment, we set the weight factors wc = 5× 104 J s−1 m−3 = 5× 10−8 N µm−2 s −1 , and 
wp = 1 , as we have found that they result in the same scale of the two cost terms. We also adopt constant 
viscosity µ = 3.6× 10−3 Pa s = 3.6× 10−15 N sµm−2 , and inlet flow Q0 = 7ml/min = 1.167× 1011 µ
m3    s −1 with values from the  literature43,44. Assuming equal flow distribution over terminal vessels, flow 
at afferent arterioles can be calculated as Qt =

Q0
N  where N is the number of afferent arterioles. In our case, 

Qt =
1.167×1011 µm3 s−1

3×104
= 3.89× 106 µm3   s −1 = 3.89 nl   s −1 , complying with the literature where Qt ≈ 4 nl 

s −145. Note that the physics units and voxel size need to be consistent with each other to ensure that Mloss and 
Ploss are on the same scale. The above units give both Mloss and Ploss in the scale of N µ m   s −1 ( µW).

The combination of the two losses is in correspondence with the derivation of Murray’s  law5,20, and is based 
on a compromise between the power required to drive flow through the vessel ( Ploss ) and the rate of expenditure 
of metabolic energy required to maintain the volume of blood filling the vessel ( Mloss ). Although the original 
CCO and GCO methods only consider Mloss , Ploss is vital for a vascular system that requires efficient  flow32 
such as in the kidney. Experimentally we have also found it necessary to integrate Ploss into the loss function, 
since using Mloss alone (or a too large weight for Mloss ) does not generate anatomically correct tree topologies, 
e.g., giving only 9 Strahler orders instead of 11 as reported  in7. Note that the blood supply cost, defined  in46 to 
produce evenly dispersed terminal nodes, is not needed in our model, since the terminal nodes have already 
been sampled by Poisson disk  sampling26, which maintains a minimum distance among them, as discussed in 
“The leaf node sampling”.

Strahler ordering. The Strahler ordering method is a common method for labeling trees with a hierarchical 
structure, e.g., a vascular  tree7,8,47. It begins at the top of the tree by labeling all the leaves (the afferent arterioles 
in this case) as having Strahler order 0. A 0 order vessel has no vessels branching from it. Following the tree 
upstream, the order of the parent vessel (edge) increases by one order to j + 1 , if two or more of the daughter 
vessels are of order j, where j is the highest order among the daughter vessels. Otherwise, the parent vessel takes 
the highest order (j) among its daughter vessels. The process is continued until it reaches the root of the tree. 

(3)Mloss(v) ≡
∑

e∈Bv

M(e) ≡
∑

e∈Bv

πr2e le .

(4)Ploss(v) ≡
∑

e∈Bv

Qe�pe

(5)�pe =
8µleQe

πr4e
.

(6)Ploss(v) ≡
∑

e∈Bv

Q2
e

8µle

πr4e
.

(7)

C local (v) ≡ wc Mloss(v)+ wp Ploss(v)
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Note that this ordering method is not used in the reconstruction algorithm itself, but is used for the quantitative 
comparison of the reconstructed tree with the measurements of a renal vascular tree reported  in7.

Global Constructive Optimization algorithm. The Global Constructive Optimization (GCO) algo-
rithm includes the following steps, which are iterated multiple times before convergence except for the first 
initialization step. Please refer  to6 for a more detailed explanation of the process. 

1. Initialization. In the original GCO initialization, each sampled terminal node is connected to a single user-
defined root node, thus completely ignoring subject-specific information. In our hybrid framework, the 
sampled terminal nodes are connected to the main arteries derived from the patient’s scan. Details of the 
sampling process and main arteries retrieval are explained in “The image priors”.

2. Relaxation. The relaxation process finds the best location for each branching node through optimization by 
minimizing the overall cost function defined in “Physiologically based cost functions”.

3. Merging. Merging involves contracting the edge between two neighboring nodes. It is applied when the ratio 
between the shortest incident edge of a node and the second incident edge is within a threshold, which usu-
ally happens when relaxation places a node at the same location as one of its neighboring nodes.

4. Splitting. Splitting is done whenever creating a new intermediate node and reconnecting a subset of the 
original child neighbors S ∈ Bv/p introduces a lower cost. Usually, this condition is fulfilled at a node with 
too many edges, indicating that bifurcation is implicitly imposed on the modeling. However, finding the 
optimal subset is in O(n!) thus NP-hard. Instead, an approximation algorithm is applied by first finding a 
subset S1 ∈ S with two edges that introduce the lowest cost. A new edge is then iteratively added to Sn from 
S − Sn−1 if it introduces a lower cost. This approximation has a complexity of O(n2) thus much more efficient. 
It is worth mentioning that this operation is still more computationally heavy than the actual optimization 
step in relaxation.

5. Pruning. A pruned tree Gl ≡ (Vl , El) is created from G by removing all edges deeper than some threshold. 
This process will only keep the large branches generated from each iteration and produce a new tree with 
a better global branching structure in the next iteration. Here we start by keeping the first two branches of 
each subtree while keeping one more branch after every two iterations. All the leaf nodes that are removed 
in this operation are reconnected to the nearest node in the pruned tree. The modification we make here is 
that each leaf node can only be reconnected to the subtree that it belongs to in the initialization step.

The image priors. In general, our proposed hybrid way of utilizing image-based priors involves two seg-
mentation maps from the kidney scans, to begin with, as shown in Fig.  1: segmentation of large arteries Ya 
(Fig. 1e), and segmentation of the whole kidney structure Yw (Fig. 1a). The segmentation of large arteries is 
obtained using a semi-automated  approach48. Whole kidney structure segmentation, however, is obtained by 
simple thresholding, since the ex-vivo micro-CT scan makes it easy to separate the kidney from the background. 
These two segmentation maps are used in the following two tasks for the initialization of the whole GCO process. 
Figure S1 in Supplementary shows the flowchart of the process.

The leaf node sampling. The segmentation of the whole kidney structure Yw is used to sample terminal nodes 
where the arteries end (Fig. 1d). Since the arteries end in the cortex region rather than only on the surface, to 
mimic the anatomical rules, several more steps are necessary.

Cortex approximation via erosion . The renal arteries end in the renal cortex, which requires a cortex segmen-
tation to sample from. Since the cortex is not visible from our micro-CT scan, it is approximated by a certain 
distance ( R1 ≈ 2mm ) away from the surface by assuming equal thickness across the kidney. The thickness of 
the rat kidney cortex depends on the age, sex, and size of the rat. A value of 2 mm is typical for a 12–18 week-old 
 rat49,50. This is the age group typically used experimentally. This process can be easily obtained by the subtraction 
of a mathematical erosion ( · ) applied to Yw , as shown in the yellow regions in Fig. 1b.

Inner region removal.  To avoid sampling terminal artery nodes around the renal artery, all the regions 
near a certain distance to the root node vr are removed. This is accomplished by imposing a ball centered at vr 
( R2 ≈ 5.65mm ), as shown in the green regions in Fig. 1b. The size of the region is based on our scans of the 
kidney and provides an automatic means to avoid sampling afferent arterioles near the hilus. Specifically, R2 has 
to be large enough to cover the hilar region that belongs to the segmentation Yw but is not part of the cortex. 
We note that it also removes parts of the kidney cortex near the hilus. Despite this, we find it an appropriate 
approximation for the cortex geometry, especially as the results are not critically dependent on this parameter. 
In summary, cortex segmentation is a set of points

of which the surface mesh is visualized in Fig. 1c.

The Poisson disk sampling.  Vessels inside an organ follow an anatomical structure that the leaf nodes should 
cover the entire perfusion territory while avoiding being too close to each other to prevent competition or over-
lap between  branches46. This is important as one of the main purposes of the vascular tree is to supply blood to 
all the tissues of an  organ46. With a fixed perfusion territory, i.e., the extracted cortex Yc from the previous step 
and a fixed number of terminal nodes, evenly spreading the terminal nodes inside the cortex volume is the most 

(10)Yc ≡ { x | x ∈ Yw − (Yw · R1) ∧ �x − vr�2 > R2}
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straightforward way to mimic this anatomical property. Poisson disk  sampling26 maintains a minimum distance 
between sampled points by sampling from the spherical annulus of existing points and rejecting points that are 
too close to each other, which resembles such an anatomical rule very much. In the present model, the minimum 
distance value can be approximated from the cortex volume and the number of points we would like to sample 
from. We follow the work of  Nordesletten7 by sampling 30K terminal vessels (number of arteries with Strahler 
order 0), which results in a minimum distance of around 270 µ m. Note that this is the distance between the distal 
end of afferent arterioles, and not the gap between the glomeruli that originates from the terminal nodes. Monte 
Carlo sampling is also adopted to do Poisson disk sampling over the whole cubic volume before filtering out the 
points from non-cortex regions.

Large artery extraction. To integrate the large artery segmentation Ya into the GCO process, vessels need to be 
modeled by a graph with nodes along the centerline and edges with connectivity information. Therefore, we start 
by extracting the centerline from Ya using the Skeletonization method proposed by Bærentzen et al.51. Instead 
of a binary image with width 1 at each local foreground voxel, the algorithm outputs a graph data structure 
C(Ya) = G(V , E) suitable for our needs. However, extracting a tree structure via skeletonization of segmenta-
tions is difficult. Intense manual work must be involved afterward, even with accurate segmentation label maps. 
Therefore, when we have very coarse segmentation Ya without clean resolution, only the first few branches from 
the root are trustworthy, while veins can be falsely segmented as arteries in the deeper branches. Moreover, the 
extracted centerline (Fig. 1f) is an undirected graph and may contain loops, which cannot be directly used. Sev-
eral preprocessing operations are necessary before initialization.

Minimum spanning tree.  This first operation removes potential loops by creating a subset of the edges with 
the minimum total edge weight from G(V , E) that connects all the vertices without any cycles. Here the weight 
of each edge is the negative of its radius derived from a Euclidean distance transform over the derived centerline 
to the segmentation. This operation will remove the thinnest edge to break any loop. After this step, the acyclic 
graph can be converted to a tree (directed acyclic graph) with a simple depth-first-search.

Intermediate nodes removal.  As stated in the assumption from “Assumptions and objectives” that each ves-
sel is modeled by a straight cylindrical tube, any intermediate nodes along each single vessel will have to be 
removed. This will, of course, introduce artifacts to the length computation, but is assumed to be negligible 
within a reasonable curvature.

Degree pruning.  For each node with more than 4 branches, we only keep a maximum of 4 longest paths, since 
branching into more than 4 children is not realistic. Specifically, Marsh et al.9 found at most 4 branchings, while 
Nordsletten et al.7 modeled up to trifurcations.

Depth pruning.  For each node, we compute its cumulative distance to the root along the tree and only keep 
nodes up to a certain distance, which we set around 10 K µ m (450 voxels with a 22.6µ m voxel size). Such thresh-
old is experimentally determined to keep only the first few branches which are noise-free. The rationale is that 
even though some thin vessels far away from the root are visible from the current segmentation, only large ves-
sel segmentation is trustworthy. Especially if we would like to further adapt deep learning for automatic vessel 
segmentation, we cannot assume the model to be able to detail the thin vessels.

Connected component decomposition.  The two pruning operations may introduce smaller disconnected 
trees, we thus only keep the largest tree.

Final GCO initialization. For the initialization of GCO (Fig.  1h), all the sampled terminal nodes (Fig.  1d) 
are connected to the nearest ending node along the extracted and pre-processed large artery centerline graph 
G′(V , E) (Fig.  1g). The radii associated with the terminal vessels are sampled from a Gaussian distribution 
r0 ∼ N (10.08, 0.14) derived from  literature7, while radii of other vessels are derived from the radii of terminal 
vessels by Murray’s law (Eq. (9)).

Besides retaining subject-specific information from image priors, the connection to the pre-built tree also 
makes the complex structure piece-wise convex, making the later constructive algorithms applicable here. Specifi-
cally, the connection between any terminal node to the pre-built tree should not enter or cross the renal pyramid, 
which is hard to satisfy when the pre-built tree is only a single root node.

The pruning operations in the previous subsection remove a large portion of the deep branches, only pre-
serving the main arteries. This is necessary due to the noisy input. Nonetheless, the remaining large branches 
are enough to satisfy the piece-wise convex constraint in the initialization step. Specifically, the connections 
between the sampled terminal nodes to the nearest node in the large artery centerline graph G′(V , E) naturally 
avoid passing through the renal pyramid or going outside the kidney structure, as shown in Fig. 5. The GCO 
process afterward will remain in each convex shape created in the initialization step because moving outside will 
always enforce a larger cost as defined in “Physiologically based cost functions”.

Ex vivo micro‑CT imaging dataset. The kidney cast was prepared as described  in48 in agreement with 
approved protocols (approval granted from the Danish Animal Experiments Inspectorate under the Ministry of 
Environment and Food, Denmark). The rat kidney was ex vivo scanned in a ZEISS XRadia 410 Versa µ CT scan-
ner (Carl Zeiss Microscopy GmbH, Jena, Germany) at the following settings: isotropic voxel size 22.6 µ m, 50 
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kV tube voltage, 0.2 mA current, appertaining LE3 filter, 360◦ scan around the vertical axis with 3201 different 
projections (0.112◦ rotation steps)48. The raw scan has a dimension of 1000× 1024× 1014 voxels. To ease the 
computational overhead, the scan is auto-cropped to 955× 508× 626 by an intersected bounding cube of the 
largest component from simple Otsu’s thresholding over maximum intensity projections to three dimensions.

Implementation details. Shen et al.24 and Keelan et al.46 proposed to optimize the cost function using 
Simulated Annealing, which is a metaheuristic to approximate the global optimum of a given function. Because 
of its non-gradient-based nature, this method is usually preferable for problems where gradients are hard to 
compute. However, we note that the cost function defined in Eq. (7) is quite differentiable, meaning its gradient 
can be easily computed analytically, giving

where nv,e denotes the position in R3 of the neighboring node of v along edge e. Therefore, we apply the stand-
ard Broyden–Fletcher–Goldfarb–Shanno (BFGS) method which proves to perform as well and is much faster. 
Figure S3 in Supplementary shows the convergence plot of the GCO process.

All the backbones are pure NumPy and SciPy-based computation, with graph representation using 
 NetworkX52. The computations were conducted in Ubuntu 22.04 with an Intel Core i7-8700 processor at 3.20 
GHz and 24 GB RAM. Currently, there is no GPU acceleration. In fact, the optimization process in relaxation is 
not the bottleneck. As discussed in “Global Constructive Optimization algorithm”, splitting is usually the com-
putational bottleneck and dominates the time complexity, especially in the first few iterations where there are a 
small number of intermediate nodes each with a large number of neighbors. Moreover, since each branching has 
to be optimized individually and consecutively, switching to PyTorch with GPU acceleration will not help. The 
process of integrating image priors, such as centerline extraction and Poisson disk sampling, takes approximately 
1 h, while the GCO process after initialization takes approximately 10 h to reach convergence.

Ethics approval
The experiments were conducted in agreement with approved protocols (approval granted from the Danish 
Animal Experiments Inspectorate under the Ministry of Environment and Food, Denmark). All procedures 
agreed with the ethical standard of the university, which meets that of the EU Directive 2010/63/EU for animal 
experiments.

Data availibility
Raw data and image processing algorithms can be exchanged through a collaboration agreement to Carsten 
Gundlach (cagu@fysik.dtu.dk). Processed data and analysis algorithms can be made available upon request to 
Peidi Xu (peidi@di.ku.dk).

Code availibility
The source code for the paper is available at https:// github. com/ diku- dk/ Renal Arter ialRe con under Apache 
License 2.0 open-source license.
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Abstract

The kidney’s vascular network stands out because (i) the microcirculation not only supplies the tissues with oxygen
and nutrients, but also supports glomerular filtration in each nephron, (ii) tubuloglomerular feedback responsible for
blood flow autoregulation, and (iii) the topology of the renal arterial network influences signaling along the vascular
wall mediating nephron-nephron interactions. We developed a full-scale nephron-vascular model that integrates a realistic
vascular network topology with a single nephron model that includes glomerular filtration, tubular reabsorption together
with autoregulation of the afferent arteriolar resistances. The regulated afferent arteriolar resistances stabilize blood flow
in the full-scale renal vascular network. Our model evaluates the operating conditions of 30,000 nephrons in rat kidneys
and the efficiency of autoregulation in pathological conditions. This is a significant step towards creating a virtual kidney.

Key words: kidney, autoregulation, computational simulation, renal vasculature, nephron model

Introduction

Blood vessels in the kidney form a demand-driven, balanced,

and globally connected resource-distribution network. The

kidney, like other organs, faces two concurrent challenges

with regard to its blood flow. The first is that arterial blood

pressure fluctuates due predominantly to the daily variation

in physical activity. The blood pressure variations cause

changes in the blood perfusion unrelated to the metabolic

demands of the organ, and can, if large, cause damage to

the organ microcirculation. Autoregulation is the term used

for the intrinsic mechanisms in every organ that minimizes

the impact of pressure variations. The second challenge is to

adjust organ perfusion to match the metabolic demands. This

requires feedback from the cells of the organ to the upstream

vascular segments to adjust their hemodynamic resistances. By

adjusting the hemodynamic resistances, the organ can achieve

a balance between blood flow and the metabolic demands of

the tissues.

In the kidney, the arterial network originates from the renal

artery, branches, and forms a rooted tree that reaches all

regions of the renal cortex. Terminal arteries at the top of the

tree end in pairs or triples of afferent arterioles, where each

afferent arteriole supplies a single glomerulus [1, 2].

The renal microcirculation has been the subject of many

mathematical models during the last decades [3, 4, 5, 6].

The models have investigated the interplay between vascular

factors, such as blood pressure and flow, and nephron function,

such as glomerular filtration rate and tubular function. The

kidney consists of a large number of functional units, nephrons,

where the human kidney has around 1 to 1.2 million nephrons,

and the rat kidney has around 30,000 nephrons. Despite

this, most models have focused only on the function of a

single nephron, assuming that overall kidney function can be

estimated by scaling the results from a model of a single

nephron [6, 7, 8, 9, 10, 11]. However, results in the later

years have made it clear that the individual nephrons do not

function as independent units [12]. Rather, there is a significant

interaction between neighboring nephrons. This is due to both

the exchange of information along the vessels and the effects

caused by local changes in the pressure and flow in the vascular

network [12].

This has led to an increased interest in developing

mathematical models of renal function that include several

nephrons, which interact through a vascular network [13, 14,

15, 16]. The results of these studies point to a clear functional

significance of the interactions between nephrons. However,

the models have only included a relatively small number of

interacting nephrons (less than 32) [13, 14, 15, 16].

One reason for the small number of nephrons in the existing

models has been the lack of computational resources. But

also lack of detailed information on the topology of the renal

vascular network has been a limiting factor. Methods for

imaging the renal vasculature cannot resolve the smallest

vessels in the arterial network, and therefore cannot provide

the information necessary to construct a realistic model of the

renal vascular tree.

Motivated by the lack of a full-scale model of the renal

vascular tree, Xu et al. [17] have developed a novel hybrid

approach to reconstruct a full-scale renal arterial network

through a physiologically based constructive optimization

method that incorporates anatomical data extracted from a

© The Author 2024. Published by Oxford University Press. All rights reserved. For permissions, please e-mail:
journals.permissions@oup.com
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scan of a rat kidney. The output is a full-scale renal arterial

tree that starts from the renal artery and ends in the afferent

arterioles, and it has been shown to be in good agreement with

existing anatomical data [18].

In the present paper, we construct a computational model of

renal autoregulation of blood flow based on the reconstructed

full-scale model of the renal vascular tree from [17]. To

the leaves of the tree (the afferent arterioles) are added

mathematical models of nephrons, which include the main

mechanisms of renal autoregulation, i.e., the tubuloglomerular

feedback mechanism and the myogenic response. With around

30,000 nephrons, the model is the first full-scale model of blood

flow regulation in a rat kidney, and it represents a first step

towards the creation of a virtual kidney. By integrating a

realistic vascular network topology with individual models of

nephron autoregulatory mechanisms, the model allows for an

exploration of adaptation and optimization within the nephron-

vascular network and enables thorough simulation, a study of

both normal and pathological conditions within the vascular

network.

Materials and methods

The mathematical model includes four compartments: a

glomerular model, a tubular model, a model of the afferent

arteriole and the full-scale model of the renal arterial tree,

as shown in Fig. 1. The nephron model (glomerular, tubular,

and afferent arteriolar models) is largely based on a previously

published model [6]. This section provides an overview of the

essential components of the model, with detailed explanations

available in the Appendix.
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Fig. 1. An overview of the full-scale model of the nephron-vascular

network and the simulation of renal autoregulation. The full model

consists of four submodels: a glomerular model, a tubular model, an

afferent arteriolar (AA) model, and a vascular tree model. The arterial

blood pressure serves as the boundary condition in the model. The model

integrates the mechanisms responsible for autoregulation renal blood flow:

the myogenic response and the tubuloglomerular feedback (TGF).

Anatomical and physiological basis
The nephron consists of a glomerulus together with a tubule.

The glomerulus is a network of capillaries encased by a

cellular membrane, Bowman’s capsule. Blood flows from the

afferent arteriole into the glomerular capillaries and leaves

the glomerulus through the efferent arteriole. As blood flows

through the capillaries, fluid and small solutes are filtered

through the capillary walls. Consequently, the filtrate contains

all the small solutes dissolved in the plasma, whereas the

plasma proteins are retained within the capillaries. The rate

at which blood is filtered is known as the glomerular filtration

rate (GFR) — an important measure of overall kidney function.

GFR is the input to the tubule, which consists of several

segments: the proximal tubule, the loop of Henle, the distal

tubule, and the collecting duct. Most of the filtered water

and NaCl are reabsorbed in the tubule, leaving waste products

behind to be excreted with the urine. The GFR and, thereby

the flow in the tubular system, is a function of the renal blood

flow and the arterial pressure. If too low the kidney fails to

eliminate waste products, and if too high there will be a loss

of essential compounds like water and NaCl. Such effects are

minimalized through the operation of the tubuloglomerular

feedback mechanism (TGF), which, together with the myogenic

mechanism, accounts for renal autoregulation.

The anatomical foundation of tubuloglomerular feedback

(TGF) lies in the return of the ascending limb of the loop of

Henle to its own afferent arteriole [19]. At the point of contact,

the macula densa, consisting of specialized epithelial cells along

the wall of the ascending limb of the loop of Henle, serves as

the sensing mechanism for TGF. Due to the dependence of

NaCl reabsorption on tubular flow rate in the ascending limb

of Henle’s loop, alterations in tubular flow rate, such as those

induced by changes in arterial pressure, lead to variations in

NaCl concentration at the macula densa. The macula densa

detects this change and, through mechanisms that are still not

fully understood, prompts adjustments in the radius of the

afferent arteriole.

The myogenic mechanism operates within blood vessels and

is thought to be an inherent characteristic of the smooth muscle

cells comprising the vascular wall of the afferent arterioles [6].

The widely accepted explanation for the myogenic response is

that it acts to minimize changes in the tension, T , in the vessel

wall by adjusting vessel radius in response to changes in the

transmural pressure [6]. The tension in the vessel wall is given

by Laplace’s law:

Parv = T (1)

where Pa is the transmural pressure, and rv is the vessel radius.

The mathematical model

Glomerular model

As blood flows from afferent arterioles to the glomerular

through glomerular capillaries, fluid is filtered through

membranes that are not permeable to proteins in the

plasma. Protein is conserved within the capillaries, and the

glomerular filtration rate in a single nephron (SNGFR) can be

calculated from the product of the fractional change in protein

concentration in the glomerular capillaries, CA

CE
, and the plasma

flow entering the capillaries, QA [6]:

SNGFR =

(
1 − CA

CE

)
QA (2)

where CA is the plasma protein concentration at the start, and

CE is the concentration at the end of the glomerular capillaries.

The filtration process that causes the change in the protein

concentration, C, along the capillary is proportional to the local
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pressure difference:

dC

dx
=

Kf

LQACA

(
C

2
)
[PGC − PT (0) − π(C)] (3)

where x is fractional position along the glomerular capillary,

Kf is the filtration coefficient, and L is the length of the

capillary. PGC , PT (0), and π(C) are the capillary hydrostatic

pressure, the tubular pressure, and the osmotic pressure due to

plasma proteins, respectively. π(C) is a nonlinear function that

can be approximated by fitting a second-order polynomial to

experimental data

π(C) = aC + bC
2

(4)

where a and b are emperical constants.

The plasma flow entering the capillaries, QA, and the

capillary hydrostatic pressure, PGC , are retrieved from our full-

scale renal arterial tree model, which will be discussed in the

next section.

The boundary condition necessary to solve Eq. (3) is C(0) =

CA at x = 0. From this, the concentration CE = C(L) at the

end of the capillary (x = L) can be computed.

Tubular model

In the tubular model, the differential equations of the flow and

pressure are based on the local conservation of mass. The NaCl

concentration in the tubular fluid (CS) changes because the

tubule reabsorbs NaCl (JS) and water (JV ). Since the flow of

tubular fluid has a very low Reynold’s number, it is assumed

that the pressure drop within the tubule is given by Poisseuille’s

law. Thus, the total behavior is expressed by a system of three

coupled differential equations consisting of pressure, PT , flow,

QT , and NaCl concentration, CS :





dPT

dz
= − 8µ

πr4
QT , 0 < z < Z, t > 0

dQT

dz
= −JV , 0 < z < Z, t > 0

dQTCS

dz
= QT

dCS

dz
+ CS

dQT

dz
= −JS, 0 < z < Z, t > 0

(5)

The tubule consists of two parts: the proximal tubule and

the loop of Henle, where the latter can be divided into a

descending and an ascending limb. The expression for JV and

JS are defined differently based on the relevant tubular segment

(see Appendix). The objective in solving the tubular model is to

compute the NaCl concentration at the macula densa, CS(md),

which is located in the ascending limb of the loop of Henle. The

filtration rate from the glomerular model is equal to the tubular

fluid flow at the start of the tubule, thus SNGFR = QT (0),

where QT (0) serves as a boundary condition to Eq. (5), as

shown in Fig. 1. Details of solving the system of three coupled

differential equations are given in the appendix.

Afferent arteriole model

The tension in the wall of the afferent arteriole is given by

Laplace’s equation:

Pvrv = T (6)

where Pv is the transmural pressure, which is calculated as the

average of the pressures at each end of the vessel segment, and

rv is the inner radius of the afferent arteriole.

The tension, T, is assumed to be a sum of two components:

an elastic term, Te, stemming from the passive stretch of the

elastic elements in the vessel wall, and an active tension, Tm,

generated by the contraction of the vascular smooth muscle

thus:

T = Te + Tm (7)

where

Te = σeh (rv) [exp (ke [rv − re]) − 1] (8)

and

Tm = σmh (rv) f (xmyo)
[
exp

(
−km [rv − rm]

2
)]

(9)

where the term f(xmyo) (Eq. (11)) expresses the degree of

activation of the vascular smooth muscle cells of the afferent

arteriole as a function of the error signal from the myogenic

mechanism, xmyo (Eq. (12)). The wall thickness, h(rv),

varies with the radius, so that the cross-sectional area of the

vessel wall remains constant. Details of the definition and

computation of h(rv) are given in the Appendix. The remaining

terms are empirical constants, whose values are given in Table 1

in the Appendix.

Given an intravascular pressure Pv. The afferent arteriole

will adjust its radius so that

Pvrv = Te + Tm (10)

f(xmyo) in Tm (Eq. (9)) is a softmax-like function defined

as

f (xmyo) =
3 exp (xmyo)

exp (xmyo) + 2 exp (−0.5 xmyo)
(11)

Myogenic response.

The degree of activation of the vascular smooth muscle cells

arising through the myogenic mechanism, xmyo, is given by

xmyo = G (T − T0 (1 − xtgf )) (12)

where G is the gain of the myogenic mechanism, and T0 is

the set point. The set point is modified by the signal from the

tubuloglomerular feedback mechanism, xtgf (Eq. (13).

Tubuloglomerular feedback.

The action of tubuloglomerular feedback was assumed to be

mediated solely through the afferent arteriole [6] and to be

described by a logistic equation that relates the feedback signal,

xtgf , to the NaCl concentration at the macula densa, CS(md):

xtgf =

(
ξmax − ψ

1 + exp
[
k
(
CS(md) − C1/2

)]
)

(13)

Full-scale renal arterial tree model

The reconstructed full-scale renal arterial structure from [17]

is a skeleton-tree-based structure, given as a directed acyclic

graph G ≡ (V, E) where V is a set of nodes at the endpoints of

each vessel centerline with node features being its coordinates

in Euclidean space, and E is a set of directed edges which form

a connected tree structure. Each edge represents a single vessel

segment as a cylinder with its radius as the edge feature.

With a full-scale vascular tree model that starts from a

single renal artery and ends in the afferent arterioles [17],

the hemodynamic resistance in each vessel segment connecting

nodes i and j is computed by Poiseuille’s law (assuming laminar

flow):

Ri,j =
8µli,j

πr4i,j
(14)

where li,j is the length of the segment, and ri,j is the inner

radius of the vessel.
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For any intermediate node n in the tree, Kirchhoff’s current

law (1st Law) states that inflow equals the sum of outflows:

Qp,n =
∑

i∈Bv/p

Qn,i (15)

where Bn and p denotes the set of neighboring nodes of n and

the single parent node of n, respectively.

Combined with Poiseuille’s law

Qi,j =
Pi − Pj

Ri,j

(16)

Kirchhoff’s current law can then be rewritten as

Pp − Pn

Rp,n

=
∑

i∈Bv/p

Pn − Pi

Rn,i

(17)

The above equation can be rearranged to separate Pn with

other terms, which formulates the governing equation


 1

Rp,n

+
∑

i∈Bv/p

1

Rn,i


Pn −


 Pp

Rp,n

+
∑

i∈Bv/p

Pi

Rn,i


 = 0

(18)

Note that boundary conditions need to be defined to solve

the above equation. A single inlet pressure Pin = Part (the

arterial pressure in the aorta) is provided to represent different

input pressure levels. However, the outlet boundary condition

needs more care since the pressure at the end of the afferent

arteriole remains unknown before we solve the system. To

properly define the outlet boundary condition, the afferent

arteriole is extended with two parts in series: the efferent

arteriole and the post-glomerular capillary bed, as shown in

Fig. 2. The pressure at the end of the post-glomerular capillary

bed is assumed to be 0 mm Hg, which naturally defines

the outlet boundary condition: Pout = PPC = 0 mm Hg

(corresponding to the venous pressure). See the Appendix for

details.

Afferent arteriole Efferent arteriole Postglomerular capillary

Nephron model

QA QA - QT(0) QA

RA
RE

RPC

Qt RA + RE + RPC

PPC = 0

Fig. 2. Extended vascular model showing the afferent and efferent

arterioles, and the post glomerular capillary bed, and their associated

resistances, together with the nephron model.

After solving the equations associated with Kirchhoff’s

current law (Eq. (18)), the blood flows along the full-scale renal

vascular tree, including the afferent arterioles, are updated.

Subpopulations of nephrons
The nephrons of the renal cortex are not identical. In general,

the closer to the border between the cortex and the medulla,

the longer their loop of Henle (see Fig. 3). Conventionally,

three kinds of nephrons can be identified and are labeled as

superficial, midcortical, or juxtamedullary based upon the

location of their glomerulus within the renal cortex [20], as

shown in Fig. 3. In general, superficial nephrons have glomeruli

located near the surface of the kidney with short loops of Henle.

Juxtamedullary nephrons have a glomerulus near the border

between the cortex and medulla and have long loops of Henle

that extend deep into the medulla. Midcortical nephrons have

loops of Henle with intermediate lengths. [20, 21, 22]. In the

present model, the renal cortex is supposed to have a depth of

2 mm [17]. Nephrons located in the outer 1 mm of the cortex

are supposed to be cortical nephrons, constituting 50 % of all

nephrons. Midcortical nephrons have their glomeruli in a band

of 1 mm to 1.4 mm from the surface of the kidney and constitute

20 % of all the nephrons. Finally, the juxtamedullary nephrons

have their glomeruli located from 1.4 mm from the surface and

down to the start of the medulla (2 mm from the surface). They

constitute 30 % of the total nephron population.

Cortex

Outer
Medulla

Inner
Medulla

Fig. 3. Anatomical features of the three nephron populations. The

glomerulus is indicated by the filled red circles. The dotted line indicates

the border between the outer and inner stripe of the outer medulla.

It has been shown that the TGF is stronger in the

juxtamedullary compared to the superficial nephrons [22].

Hence, we have adjusted the parameters of the TGF accordingly

(see Table 5). The details on the morphology and parameters

of the three nephron populations are given in Table 6 in the

Appendix.

Simulation pipeline
Fig. 4 illustrates the flowchart of our simulation process that

integrates the four models and solves them consequently.

With a prebuilt full-scale arterial tree model G = (V, E)
and given the boundary condition of the arterial pressure Part,

we use the Kirchhoff’s current law to calculate the pressure

at every node and blood flow at every vessel as discussed in

Section 2.2.4. The blood flow at each afferent arteriole defines

its glomerular filtration rate SNGBF , which is then used to

compute the plasma flow QA by

QA = (1 −HtA)SNGBF (19)

where HtA is a constant representing the hematocrit.

With the plasma flow QA and the capillary hydrostatic

pressure PGC (equivalent to the pressure at the end of afferent

arterioles), the only unknown in the Glomerular model in

Section 2.2.1 is the tubular pressure PT (0) (pressure at the

beginning of the tubule). Given an initial guess of PT (0), the

filtration rate SNGFR = QT (0) is calculated as discussed in

the Glomerular model in Section 2.2.1.

As shown in Fig. 4, PT (0) and QT (0) from the Glomerular

model then serve as the boundary condition to the Tubular

model, which will give the NaCl concentration at the macula

densa CS(md) in the ascending limb, as well as a new tubular
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Renal arterial pressure

AA 
blood flow

AA/Glomrular 
pressure

Renal blood flow AA resistance

Proximal tubular 
pressure

Glomerular 
filtration rate

NaCl concentration
at macula densa

Full-scale renal arterial tree

Myogenic 
feedback

Glomerular model

Tubular model

AA model

TGF 
feedback

Stable

End

Yes

Fig. 4. Flowchart for full-scale model. The renal arterial blood pressure

Part serves as the boundary condition to the model of the renal vascular

tree, which will provide the single nephron blood flow SNGBF and

glomerular pressure PGC at afferent arterioles (AA) as the input to the

Glomerular model. The Glomerular model will then give as output the

glomerular filtration rate SNGBF = QT (0) and the tubular pressure

PT (0), which serve as the initial flow and pressure value to the Tubular

Model. The Tubular Model will give as output the NaCl concentration

at the macula densa (CS(md)), which is the stimulus for TGF. The

myogenic response is induced by the pressure at the beginning (PA) and

end (PGC) of the afferent arteriole. TGF and the myogenic response, as

the two inputs to the Afferent Arteriole (AA) model, will work together

to adjust the afferent arteriolar resistance. With a new set of afferent

arteriolar resistances, the full-scale arterial tree will provide a new set of

single nephron blood flows SNGBF and glomerular pressures PGC . This

process will be iterated until convergence. The total renal blood flow,

which is the sum of the SNGBF in the individual nephrons, does not

directly participate in the autoregulation model itself but is the indicator

of the autoregulation outcome and determines if the iteration reaches

convergence.

pressure PT (0). This whole process is iterated until PT (0)

converges.

The NaCl concentration at the macula densa CS(md)

at convergence is then used in Eq. (13) to calculate the

tubuloglomerular feedback, as shown in Fig. 4, which is then

input to the Afferent arteriole model to calculate the active

Tm and the elastic tension Te. The calculated tension is then

used in Eq. (10) to solve for the adjustment of afferent arteriole

radius rv.

As shown in Fig. 4, the adjusted afferent arteriole radii

will induce a new set of resistances to the afferent arterioles,

by Poiseuille’s law, as defined in Eq. (14). We then re-apply

Kirchhoff’s law (Eq. (44)) on the full-scale vascular tree with

these new resistances for the afferent arterioles, which results in

a new set of flow SNGBF and PGC for the afferent arterioles.

The whole process is then re-iterated until the flow and pressure

converge.

Results

Single nephron
To illustrate the effects of the two regulatory mechanisms in

the model, Fig. 5 shows the radius of the afferent arteriole for

different afferent arteriolar pressures and NaCl concentrations

at the macula densa, CS(md), in a single cortical nephron.

The left panel shows the TGF response when the pressure in

the afferent arteriole is held constant at a value of 57 mm

Hg. As the CS(md) is increased, there is a decrease in the

radius of the afferent arteriole (the TGF response). Likewise,

when the pressure in the afferent arteriole is increased, while

the CS(md) is held constant at 45 mM (middle panel), there

is also a decrease in the radius of the afferent arteriole (the

myogenic response). The right panel shows that when both the

pressure and the CS(md) are changed simultaneously the two

regulatory mechanisms act additively in regulating the radius

of the afferent arteriole.
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Fig. 5. The single cortical nephron model reproduces the well-known

dependency of the radius with increasing NaCl concentration at macula

densa, when the pressure in the afferent arteriole is held constant at

57 mm Hg (left panel) and with increasing arterial pressure, when the

CS(md) is held constant at 45 mM (middle panel). The right panel shows

the resulting radius (color bar) as a function of both the CS(md) and the

pressure. Notice that the two regulatory mechanisms act additively.

Vascular tree: Control case
This section outlines the behavior of the full-scale vascular

tree model with and without autoregulation in the case where

all nephrons are of the cortical type. In the case without

autoregulation, the radius of all the vessels in the tree is as

generated by [17]. When the input pressure is Part = 100

mm Hg as the control case, the full-scale arterial tree model

will exhibit different radii, pressures, and flows in the afferent

arterioles depending on their position in the arterial tree. Fig. 6

shows that without autoregulation (left panel), the pressure

and flow in the afferent arterioles follow a normal distribution.

Although their means (58 mm Hg and 3.9 nl/s) lie in the

normal ranges for afferent arteriolar pressures and flows [23],

the distributions are quite broad with too large or too small

values associated with some afferent arterioles. On the other

hand without autoregulation, the radius distribution is quite

narrow with a mean of 10 µm.

When autoregulation is active, it is clear that the

pressure and flow distributions become narrower, whereas the

distribution for radii is broadened (Fig. 6). Thus, the nephron-

vascular network adjusts the flow and pressure associated with

each afferent arteriole by adjusting the radius of the afferent

arteriole, through the action of the two feedback mechanisms,

the TGF and the myogenic response.

Fig. 6 also shows that with active autoregulation (right

panel), the radii of afferent arterioles will be adjusted, so that

some afferent arterioles will constrict while others dilate, with

only a minimal effect on the mean values of the flow, the

pressure, and the radius. In other words, by adjusting the

radii of the afferent arterioles, the autoregulatory mechanisms

make the distribution in the network more uniform with

respect to the variables that are essential for filtration in

the individual nephrons, the blood flow and pressure in the

individual glomeruli.

Fig. 7 shows scatter plots of various parameters with active

autoregulation. The pressure-radius relationship (a) shows

that in nephrons with a low filtration pressure, the afferent

arterioles are dilated while the ones with a high pressure are

contracted. The second panel (b) shows the TGF feedback
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Fig. 6. The effect of autoregulation on the afferent arteriolar pressure

(top), radius (middle), and flow (bottom) distributions in the control

case (all nephrons are of cortical type). Left panel represents a situation

without autoregulation; Right panel – with autoregulation. Renal blood

flow is equal to the sum of the flows at afferent arterioles (bottom);

without autoregulation, it is 6.92 ml/min, and with autoregulation, it

is 6.87 ml/min.

signal (xTGF ) vs NaCl concentration at the macula densa

CS(md). The relationship is sigmoidal, as would be expected

from the TGF function in the individual nephrons (cf. Eq. 13).

Some nephrons have reached the maximum value for the TGF

mechanism. The tension-pressure relationship (c) shows that

for low pressures, there is a direct positive relation between

pressure and wall tension (T ); at these low pressures, the

vessels are maximally dilated and the wall tension will therefore

be positively correlated with the pressure according to the

Laplacian equation (Eq. (1)). At higher pressures, the vessel

contracts, and the reduction in radius is relatively larger than

the increase in pressure, so the net result is a decrease in

wall tension with increasing pressure. The last panel (d) shows

that the two mechanisms of autoregulation (TGF and myogenic

response) are positively correlated, so that they act additively

to provide effective autoregulation. The colored crosses in the

four panels indicate five different nephrons operating under

different combinations of flow and pressure in the vascular tree.

Vascular tree: Autoregulation

Mechanisms of autoregulation.

When the arterial pressure changes from the control value,

the renal autoregulatory mechanisms will try to minimize the

change in renal blood flow by adjusting the afferent arteriolar

resistances by means of the two mechanisms described in

Section 2.1. Here, we simulate autoregulation in the full-scale

vascular model by varying the inlet (arterial) pressure from

80 mm Hg to 200 mm Hg and calculating the resulting renal

blood flow, both with and without autoregulation. In these

simulations, all nephrons are of the cortical type.

radius (μm)

pr
es

su
re

 (m
m

H
g)

pressure (mmHg)

TG
F 

si
gn

al

NaCl concentration (mM)

te
ns

io
n 

dy
n/

cm

TG
F 

si
gn

al

Myogenic signal

a) b)

c) d)

Fig. 7. Scatter plots in the control case (all nephrons are of cortical type)

with activated autoregulation: pressure vs radius, TGF response vs NaCl

concentration at macula densa (CS(md)), tension vs pressure, and TGF

response vs myogenic response.
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Fig. 8. Renal blood flow as a function of inlet (arterial) blood pressure

increases linearly with pressure when there is no autoregulation (orange).

When autoregulation is active, the blood flow reaches a plateau and stays

relatively constant over a wide range of inlet pressures. (blue). If only

the myogenic mechanism is active, the renal blood flow is intermediate

between the two previous cases (green).

Fig. 8 shows the resulting renal blood flow with and without

autoregulation. Without autoregulation (orange curve), the

renal blood flow increases linearly with increasing renal arterial

pressure. In contrast, the autoregulation provided by the

TGF and the myogenic response is effective in minimizing the

increase of renal blood flow when the inlet pressure increases

from 80 mm Hg to 200 mm Hg (blue curve). The autoregulation

degrades when the inlet pressure becomes too large, as can be

seen from the larger slope at inlet pressures from 180 mm Hg

to 200 mm Hg.

We simulate the effect of blocking TGF (which can be

achieved by giving a loop diuretic) so that only the myogenic

response is active. Note that TGF is integrated into the model

by modifying the set point of the myogenic response (cf.

Eq. (12)), so it is not possible to simulate the TGF response

alone without the myogenic response. If TGF is inactivated,

only the myogenic response contributes to autoregulation and
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cannot fully compensate for the increasing blood flow (green

curve). It is evident that both mechanisms are necessary for an

efficient autoregulation of renal blood flow.

Fig. 9 shows the blood flow and radius distribution of

the afferent arterioles without and with autoregulation at

a renal arterial pressure of Part = 140 mm Hg. Without

autoregulation, there is a significant increase in renal blood

flow (from 6.9 ml/min to 9.7 ml/min) due to a large inlet

renal arterial pressure. After activation of autoregulation, the

afferent arterioles contract, and the increase of their resistances

counteracts the increase in inlet renal arterial pressure. As a

result, the renal blood flow is reduced to 7.55 ml/min, which is

closer to the control case with Part = 100 mm Hg, giving RBF

= 6.9 ml/min as shown in Fig. 6.
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Fig. 9. The effect of autoregulation on afferent arteriolar flow (top)

and radius (bottom) distributions when the inlet renal arterial pressure

Part = 140 mm Hg. Left panel without autoregulation; Right panel –

with autoregulation. Renal blood flow is equal to the sum of the flows

in afferent arterioles (top); without autoregulation, it is 9.7 ml/min, and

with autoregulation, it is 7.55 ml/min.

To assess the efficiency of autoregulation quantitatively, we

compute the autoregulation index (AI) at different levels of

inlet arterial pressure [24]. The AI is given as the ratio between

the relative change of renal blood flow (RBF) change and the

relative change of renal arterial pressure (Part):

AI =
(RBF2 − RBF1) /RBF1

(Part2 − Part1) /Part1

(20)

Fig. 10 shows the Autoregulation index (AI) in the full-

scale nephron-vascular network at increasing levels of the inlet

pressure. Experimental studies in normal rats have found an

AI between 0.2 and 0.5 [25]. As can be seen from Fig. 10, the

model predicts similar values in the inlet pressure range from

100 mm Hg to 160 mm Hg.

Nephron populations.

Fig. 10 and Fig. 11 show renal blood flow autoregulation

after integrating three populations of nephrons, cortical,

midcortical and juxtamedullary. It is clear, that using a more

realistic scenario for the nephrons yields a slight improvement

of autoregulatory efficiency, especially at the highest inlet

pressures.
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Fig. 10. Autoregulation Index at various inlet pressure levels shows a

wider plateau when three populations of nephrons (orange) are involved

in comparison with only one population of superficial nephrons (blue).

inlet pressure (mmHg)

re
na

l b
lo

od
 fl

ow
 (m

l/m
in

)

Fig. 11. Autoregulation of blood flow at various pressure levels including

three populations of nephrons.

To take a closer look at the effect of having three nephron

populations, Fig. 12 shows the behavior of the three types of

nephrons at an arterial pressure of Part = 140 mm Hg. From

Fig. 12 top panel, it is clear that the NaCl concentrations at the

macula densa (CS(md)) are similar in the three types when the

flows are around the control case (around 4 nl/min). However,

when the flow becomes large, juxtamedullary nephrons with

long loops of Henle will have larger NaCl concentrations at

the macula densa (CS(md)). Fig. 12 bottom panel shows the

TGF response vs the NaCl concentration levels at the macula

densa CS(md) in the three types of nephons. As the sigmoid-

like functions indicate, they all saturate when CS(md) becomes

too large, but the juxtamedullary nephrons with long loops

of Henle, saturate at a larger value for the TGF response.

So, it can be concluded that the slight improvement in renal

autoregulation seen when having three populations of nephrons,

is due to the slightly stronger TGF response in the midcortical

and the juxtamedullary nephrons compared to the cortical ones.

However, as Fig. 11 shows, the nephrons having longer loops of
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Henle will only have a moderate effect on the overall efficiency

of renal blood flow autoregulation.
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Fig. 12. Scatter plot shows distinct behavior of three populations of

nephrons: NaCl concentration at macula densa (CS(md)) vs flow (top),

and TGF response vs Cs md (bottom) at, Part = 140 mmHg.

Renal artery stenosis.

In addition to simulating autoregulation’s function in

stabilizing blood flow under different input pressure levels,

another perspective in the full-scale modeling of the nephron-

vascular network is to simulate some pathological conditions. In

the renal arteries, a common pathology is renal artery stenosis

(RAS), which is a narrowing of the lumen of the renal artery,

most often caused by atherosclerosis or fibromuscular dysplasia

[26]. RAS is a serious condition that may cause hypertension

and renal damage due to ischemia. For example, the American

Heart Association defined a RAS of more than 60% to be the

critical degree of stenosis demanding treatment [27].

One of the main purposes of simulating RAS is to examine

the consequences of different degrees of RAS and the kidney’s

ability to compensate for the stenosis. By simulating different

levels of stenosis and studying the corresponding outcome

on renal hemodynamics, better preventative and surgical

strategies can be made [26, 28, 29].

Initially, RAS is simulated in the full-scale model of the

nephron-vascular network using the control case inlet pressure

(Part = 100 mmHg) while gradually decreasing the diameter of

renal artery (the root vessel in the full-scale tree model).

As shown in Fig. 13 top panel, the renal blood flow

stays relatively constant at the lower degrees of RAS but

drops dramatically when stenosis exceeds 50%, regardless of

whether or not autoregulation is active. This behavior is in
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Fig. 13. Renal blood flow at various stenosis levels in the control case

(Top panel with inlet pressure Part = 100 mmHg) and in the hypertensive

case (Bottom panel with inlet pressure Part = 140 mmHg). The control

case shows a drastic decrease of renal blood flow with around 50% stenosis,

while the hypertensive cases show that the autoregulation can postpone

the drastic decrease of blood flow from around 50% stenosis to around

70% stenosis.

good agreement with the American Heart Association, which

defines a RAS of more than 60% as critical stenosis [27] that

needs treatment according to the arterial disease management

guidelines [30].

It is clear that the impact of autoregulation in preventing

a drop in blood flow is minimal (cf. Fig. 13 top). This is to

be expected because in the control case (Part = 100 mmHg),

autoregulation has limited power to compensate for a further

decrease in the renal perfusion pressure, cf. Fig. 10 and Fig. 11.

Consequently, as the stenosis becomes severe, the renal blood

flow will be dramatically reduced.

The result suggests that the flat curve in Fig. 13 when the

stenosis < 50% is not mainly attributable to autoregulation,

but rather stems from the fact that the hemodynamic resistance

of the renal artery has little impact on renal blood flow until

the stenosis is severe.

The consequences of RAS were also simulated in

hypertension using an inlet pressure of Part = 140 mm Hg,

since RAS often occurs together with hypertension. Fig. 13

bottom panel shows that in hypertension, the autoregulatory

mechanism is effective in stabilizing the renal blood flow when

the stenosis is less than 70%. Without autoregulation, the renal

blood flow already decreases at a stenosis level of around 50%.

But it can also be seen that with a high level of stenosis, even

at a pressure level where the autoregulatory mechanisms are

highly effective, the impact on the overall renal blood flow

remains limited.
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Discussion

In this work, about 30000 nephron models were coupled to a

full-scale renal arterial tree that was reconstructed by Xu et al.

by a physiologically based constructive optimization method

that incorporates anatomical data extracted from a scan of a

rat kidney [17]. Such a nephron-vascular network enables the

simulation of renal autoregulation at a full scale, while previous

works were mostly based on one or a few nephrons [6, 7, 8, 9, 10,

11]. This is important because the nephrons and their afferent

arterioles are inter-connected in a renal arterial tree and their

resistances will jointly adjust the renal blood flow.

Our simulation results in Fig. 8, Fig. 10, and Fig. 11 show

a strong autoregulation due to the joint feedback from the

TGF and the myogenic response. In general, autoregulation

is most effective in counteracting an increase in arterial blood

pressure (from 100 mm Hg to 160 mm Hg), while there is little

autoregulation when the pressure is reduced (< 100 mm Hg).

The range of autoregulation is limited due to the saturation of

especially TGF, and autoregulation degrades when the pressure

becomes too high (> 160 mm Hg) or too low (< 100 mm Hg).

On the other hand, most textbooks assume perfect

autoregulation [31, 32], i.e., the blood flow would stay constant

within certain pressure ranges in Fig. 11. In most experiments

and computer simulations, a well-functioning autoregulation

usually has an AI between 0.2 and 0.5, while AI< 0.2 shows

excellent autoregulation [25, 24], which matches our simulation

results where the AI is very close to 0.2 with inlet pressure

ranging from 110 to 160 mm Hg.

The relative roles of TGF and the myogenic response in

renal autoregulation have been the subject of many studies

over the last decades [33]. Today the consensus is that

they both contribute in equal amounts to the response.

This is in good agreement with the present model. When

simulating autoregulation without the TGF response (Fig. 11),

autoregulation is significantly impaired. This demonstrates that

both mechanisms are necessary for an efficient autoregulation

of renal blood flow.

Computer simulation of the full-scale nephron-vascular

network can also be used to assess the impact of different

physiological and pathological conditions in the kidney and

help researchers and clinicians investigate various aspects of

blood flow disruptions, e.g., the consequences of thrombosis

or atherosclerosis in the renal vasculature. As an example, we

have simulated renal artery stenosis to examine its effect on

renal blood flow.

There have been several efforts in simulating renal artery

stenosis (RAS) using Computational Fluid Dynamics (CFDs)

[34, 35, 28, 26, 35, 29], which is the conventional method

used to simulate blood flow and blood flow dysfunction in the

vasculature. These methods involve constructing computational

meshes by segmenting the medical images. This is then used to

numerically solve the Navier-Stokes equations for the system

under investigation. This approach has been used widely used

in studies of coronary artery disease and aortic aneurysm

[36, 37, 38, 39, 40]. The difference between the approach in

this paper, and the previous work is that whereas the latter

has only focused on the effect of the stenosis in the renal artery

[35, 28, 26], the present approach simulate the blood flow in

a full-scale model of the renal vasculature together with the

impact of renal autoregulation. Since RAS usually only affects

the diameter of the renal artery, it is possible to use CFD-

based methods to simulate renal artery stenosis with only one

segment of the renal arterial network. Nonetheless, our full-

scale nephron-vascular network also accounts for the effects of

autoregulation. Note that although RAS involves the decrease

in diameter of only the renal artery, we need a full-scale

structure to properly define the outlet boundary conditions.

Our simulation results show a significant decrease of renal

blood flow with stenosis of more than 50%, which is in

good agreement with both existing CFD-based simulations

[34, 35, 28, 26, 35, 29] and the American Heart Association

which defines RAS of more than 60% as a critical stenosis

[27] that needs adequate treatment. This could indicate that

complex computational meshes or finite element or volume

solvers are not necessary, as a tree-based model can generate

very similar results and is significantly more efficient.

The current model is a steady-state model. It is well known

that, at the microcirculatory level, renal hemodynamics show

significant dynamics, such as oscillations in single nephron

blood flow and glomerular filtration rate [41]. However,

incorporating dynamic elements will require solving partial

differential equations within the full-scale vascular model, a

task that is computationally intensive.

Although our model encompasses all afferent arterioles and

nephrons within a complete tree structure, we have yet to

address the interactions between nephrons that communicate

via electrical signals along vessel walls [12, 13]. While our model

includes afferent arterioles to collaborate in autoregulating

blood flow throughout the arterial tree, each nephron

independently regulates its afferent arteriole. The goal of future

work is to include nephron-nephron interactions in the current

full-scale model of the renal vascular network.
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Tubular model details

Proximal part
In the proximal part, CS stays constant due to the isomotic

transport such that the reabsorption rate of water and NaCl is

identical, thus CS = CS(0). JV is defined as an exponentially

decreasing function along the tubule.

JV = κe
−θz

(21)

Thus,
dQT

dz
= −κe−θz

(22)

The flow QT can thus be computed analytically by solving

the integral

QT =

∫

z

dQT

dz
dz =

∫

z

−κe−θz
dz =

κ

θ
e
−θz

+ C (23)

Given the boundary condition QT |z=0 = QT (0), we can

solve C, giving

κ

θ
+ C = QT (0) =⇒ C = QT (0) − κ

θ
(24)

Substitute into Eq. (23) gives the exact definition of flow,

QT =
κ

θ
e
−θz

+QT (0) − κ

θ
(25)

Substitute into Eq. (5) gives the pressure definition:

dPT

dz
= − 8µ

πr4
(
κ

θ
e
−θz

+QT (0) − κ

θ
) (26)

Thus, the pressure PT can also be solved analytically by

PT =

∫

z

dPT

dz
dz =

8µκ

πr4θ2
e
−θz − 8µ

πr4
(QT (0) − κ

θ
)z + C (27)

Here, however, the boundary condition is defined at the

proximal end where z = Z = 1cm with the value PT (Z). Thus,

PT (Z) =
8µκ

πr4θ2
e
−θZ − 8µ

πr4
(QT (0) − κ

θ
)Z + C (28)

giving

C = PT (Z) − 8µκ

πr4θ2
e
−θZ

+
8µ

πr4
(QT (0) − κ

θ
)Z (29)

Substitute into Eq. (27) gives the exact solution of pressure

at the proximal part:

PT (z) =
8µκ

πr4θ2
(e

−θz−e−θZ
)+

8µ

πr4
(QT (0)− κ

θ
)(Z−z)+PT (Z)

(30)

Descending limb
In the Descending limb of the loop of Henle, water is

reabsorbed, meaning that flow rate Q decreases while the NaCl

concentration CS increases

JV = Lvns(CI − CS) (31)

and

JS = LS(CS − CI) (32)

Substitute into Eq. (5) gives a system of two coupled ordinary

differential equations for flow and NaCl concentration





dQT

dz
= −Lvns(CI − CS)

QT

dCs

dz
+ Cs

dQT

dz
= −LS(CS − CI)

(33)

where the second equation needs to be rearranged, giving the

final system





dQT

dz
= −Lvns(CI − CS)

dCs

dz
= −LS(CS − CI) + Cs

dQT

dz

QT

(34)

which is solved numerically using the standard Runga-Kutta

method.

The pressure is solved numerically after QT has been solved

using finite difference.

Ascending limb
In the ascending limb, only NaCl is reabsorbed, meaning

that NaCl concentration Cs decreases while the flow QT stays

constant, which is equal to the flow value at the end of

descending limb QT (Desc end). Here

JS = LS(CS − CI) +
VmaxCS

Km + CS

(35)

substitute into Eq. (5) gives the definition of CS with the

differential equation

QT

dCs

dz
+ Cs

dQT

dz
= −LS(CS − CI) −

VmaxCS

Km + CS

(36)

Since QT = QT (Desc end) stays constant, dQT

dz = 0, the above

differential equation can then be simplified to

dCs

dz
=

−LS(CS − CI) − VmaxCS

Km+CS

QT (Desc end)
(37)

which is solved numerically using the standard Runga-Kutta

method.

Similarly, the pressure can be simplified to:

dPT

dz
= − 8µ

πr4
QT (Desc end) (38)

which can be solved analytically by

PT =

∫

z

dPT

dz
dz = − 8µ

πr4
QT (Desc end)z + C (39)

The boundary condition to solve the above equation is the

tubular pressure at the end of the loop of Henle at z = Z =

0.65cm from the empirical relationship

PT (Z) =
QT (Z)

(αPT (Z) + β)4
(40)

where QT (Z) = QT (Desc end) since flow stays constant in the

ascending limb.

Thus,

C = PT (Z) +
8µ

πr4
QT (Desc end)Z (41)

Susbustitue gives the exact analytical solution for pressure at

the ascending limb:

PT (z) =
8µ

πr4
QT (Desc end)(Z − z) + PT (Z) (42)

where z ∈ [0, 0.65cm] and Z = 0.65cm
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NaCl Concentration at macula densa
One of the main purposes of modeling NaCl concentration

Cs is that, the tubuloglomerular feedback, which is a logistic

equation of the vascular smooth muscle, is activated at the

macula densa by different levels of NaCl concentration at the

macula densa CS(md), as discussed later in Eq. (13). In our

model, macula densa is located at z = 0.5 at the ascending

limb.

Full-scale tree model boundary condition and
simulation details

When solving the blood flow in the full-scale tree model given

a new set of afferent arteriole radii, boundary conditions need

to be defined to solve the above equation to solve Eq. (18). A

single inlet pressure Pint = Part (the arterial pressure from the

aorta) is manually given to represent different input pressure

levels. However, the outlet boundary condition needs more care

since the pressure at the end of the afferent arteriole remains

unknown before we solve the system. To properly define the

outlet boundary condition, the afferent arteriole is extended

with two parts in a series with no branchings: the efferent

arteriole and the Post-glomerular capillary, as shown in Fig. 2.

This is because the pressure at the end of the Post-glomerular

capillary is usually assumed to be 0, which naturally defines

the outlet boundary condition: PPC = 0 (pressure at the end

of the post-glomerular capillary).

Note that for efferent arteriole and post-glomerular

capillary, their resistances (RE and RPC) are assumed to be

constant, so that their geometries (length and radius) are not

required. Since the three parts are connected in a series, for

each afferent arteriole (i, j), its equivalent total resistance is

thus.

Rt = Ri,j + RE + RPC (43)

On the other hand, note that the flow at the afferent

arteriole and efferent arteriole is different due to glomerular

filtration. The amount of flow being filtered at afferent arteriole

i, j corresponds to the filtration rate QT
i,j(0), which is one of

the outputs from our nephron model. To be solved efficiently,

the three parts are first regarded as one vessel with equivalent

flow Qt and resistance Rt as shown in Fig. 2. The real flow

at afferent arteriole (Qi,j) will be recovered by the properties

QE = Qi,j − QT
i,j(0) and QPC = Qi,j . In the first round,

QT
i,j(0) is assumed to be 1/3 of the plasma flow, where the

plasma flow is assumed to be half of the blood flow from the

afferent arteriole. Therefore, we assume QT
i,j(0) =

Qi,j

6 in the

first round. From the second round, QT
i,j(0) will be calculated

from the nephron model in Eq. (2).

Given the above boundary conditions, the system of linear

equations can be properly defined as:





Pn = Part, n = nin

Pn = 0, n ∈ Nterminal
 1

Rp,n

+
∑

i∈Bv/p

1

Rn,i


Pn

−


 Pp

Rp,n

+
∑

i∈Bv/p

Pi

Rn,i


 = 0,

otherwise

(44)

where nin denotes the single root node and Nterminal denotes

the set of terminal nodes of the vascular tree. The resistance

term in Eq. (44) is defined as

Ri,j =





8µli,j
πr4

i,j

, j /∈ Nterminal

8µli,j
πr4

i,j

+ RE + RPC , otherwise
(45)

where RE and RPC are constant.

The system of linear equations defined in Eq. (44) can be

easily expressed in the matrix form

AV = b (46)

where the values in the sparse matrix A and the vector b is

determined by Eq. (44). V can thus be solved by inverting

V = A
−1
b (47)

The above equation solves the pressure at every node, and

we can then compute the flow Qe at every vessel segment e =

(i, j) by Poiseuille’s law

Qe =
Pi − Pj

Re

(48)

For j ∈ Nterminal, the flow Qt computed by Kirchhoff’s

law represents the equivalent flow of the two parts, the real

flow Qi,j associated with the afferent arteriole (i, j) can thus

be recovered by equal pressure drop property

Qt(Ri,j + RE + RPC) =Qi,jRi,j + (Qi,j −Q
T
i,j(0))RE

+Qi,jRPC

=⇒ Qi,j = Qt+Q
T
i,j(0)

RE

Ri,j + RE + RPC

(49)

Parameters

The wall thickness, h(rv) in the elastic tension term Te, is

varied with the radius rv so that the cross-sectional area of

the vessel wall remains constant. Specifically, given the initial

value of r0 = 10 µm and h0 = 2 µm, h(rv) is be expressed by

a parabolic function

π (h(rv) + rv)
2 − πr

2
v = π (h0 + r0)

2 − πr
2
0

=⇒h(rv)
2
+ 2rvh(rv) − (h

2
0 + 2r0h0) = 0

(50)

which can be solved analytically by quadratic formula (omitting

the negative root):

h(rv) =
−2rv +

√
4r2v + 4((r0 + h0)2 − r20)

2

= −rv +
√
r2v + 2h0r0 + h2

0

(51)

Other parameter details are given in the tables below.
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Table 1. Afferent arteriole parameters.

Parameter Value Explanation

σe 25.56 dyn cm−2 elasticity coefficient

ke 17, 304 cm−1 eleasticity coefficient

re 7 µm set point for elastic response

σm 7.23 × 105 dyn cm−2 muscle contraction coefficient

km 8.75 × 106 cm−2 muscle contraction coefficient

rm 12.5 µm set point for muscle contraction

G 0.06 cm dyn−1 gain of the myogenic response

T0 84.7 dyn cm−1 set point for tension

C1/2 44 mM inflection point

Table 2. Glomerulus parameters.

Parameter Value Explanation

CA 57 g/1 Protein concentration in the beginning

HtA 0.5 hematocrit

Kf 2.5 nl min−1 mmHg−1 filtration coefficient

RE 0.209 mmHg min nl−1 resistance of the efferent arteriole

RPC 0.0702 mmHg min nl−1 resistance of postcapillary)system

a 0.1631 mmHg · l · g−1 constant in computing osmotic pressure π(c)

b 0.00294 mmHg · l2 · g−2 constant in computing osmotic pressure π(c)
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Table 3. Tubule parameters.

Parameter Value Explanation

Km 20 mM constant in Michaelis-Menten kinetics

LV 2 × 10−5 cm2 l osmol−1 sec−1 water permeability

nS 2 mol osmol−1 number of osmoles per mole of solute

LS 3.4 × 10−7 cm2 sec−1 constant in diffusive term

Vmax 0.65 and 1.0 × 10−7 mmol cm−1 sec−1 constant in Michaelis-Menten kinetics

α 1.65 × 10−2
(
nl min−1 mmHg−5

)1/4
empirical constant in boundary pressure

β 0.924
(
nl min−1 mmHg−1

)1/4
empirical constant in boundary pressure

θ 1.3 cm−1 constant in tubular fluid reabsorption

κ 33.6 nl min−1 cm−1 constant in tubular fluid reabsorption

r0 12 × 10−4 cm Tubular radius in proximal

r0 10 × 10−4 cm Tubular radius in loop of Henle

Table 4. Initial conditions: Tree structure.

Parameter Value Explanation

rv 10.08 ± 0.14 µm afferent arteriole radius

h 2 µm afferent arteriole wall thickness

T 81.13 ± 5.83 dyn cm−1 tension distribution

Part 100 mmHg inlet pressure

PGC 58.04 ± 4.46 mmHg pressure distribution at the end of afferent arteriole

QA 117.02 ± 8.97 nl min−1 afferent arteriole plasma flow distribution

QT (0) 39.01 ± 2.99 nl min−1 filtration rate distribution

Table 5. TGF response parameters for three populations of nephrons.

Paremeter Short Intermediate Long Unit Explanation

k 0.85 0.07 0.06 l/mmol emperical constant

ψ 0.182 0.2583 0.2184 N/A dynamic range of the response

LS 3.4 × 10−7 3.8 × 10−7 5.8 × 10−7 cm2/sec NaCl permeability

ξmax 0.091 0.1183 0.1456 N/A maximal TGF response

Table 6. Position of tubule segments (in cm) for three populations of nephrons. In all cases, macula densa is located between the cortical

and postmacular part of thick ascending limb.

Position Short Intermediate Long

Proximal 1 1 1

Descending 0.3 0.55 0.8

Thin Ascending 0 0.25 0.5

Thick Ascending (Medullary) 0.3 0.3 0.3

Thick Ascending (Cortical) 0.2 0.1 0.02

Thick Ascending (Postmacular) 0.1 0.1 0.1

Transition zone 0.05 0.05 0.05
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Abstract. Accurate analysis and modeling of renal functions require a
precise segmentation of the renal blood vessels. Micro-CT scans provide
image data at higher resolutions, making deeper vessels near the renal
cortex visible. Although deep-learning-based methods have shown state-
of-the-art performance in automatic blood vessel segmentations, they
require a large amount of labeled training data. However, voxel-wise la-
beling in micro-CT scans is extremely time-consuming, given the huge
volume sizes. To mitigate the problem, we simulate synthetic renal vas-
cular trees physiologically while generating corresponding scans of the
simulated trees by training a generative model on unlabeled scans. This
enables the generative model to learn the mapping implicitly without
the need for explicit functions to emulate the image acquisition process.
We further propose an additional segmentation branch over the gener-
ative model trained on the generated scans. We demonstrate that the
model can directly segment blood vessels on real scans and validate our
method on both 3D micro-CT scans of rat kidneys and a proof-of-concept
experiment on 2D retinal images. Code and 3D results are available at 3

Keywords: Blood vessel · Renal vasculature · Semantic segmentation ·
Physiological simluation · Generative model · Domain adaptation.

1 Introduction

The vasculature in each organ has a characteristic structure tailored to fulfill the
particular requirements of the organ. The renal vasculature serves as a resource
distribution network and plays a significant part in the kidney’s physiology and
pathophysiology. Not only does it distribute blood to individual nephrons and
regulates the filtration of blood in the kidney, but it also allows neighboring
nephrons to interact through electrical signals transmitted along the vessels as a
communication network [16]. Automatic segmentation of renal blood vessels from
medical scans is usually the essential first step for developing realistic computer
simulations of renal functions.
3 https://github.com/diku-dk/RenalVesselSeg
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General deep-learning based segmentation of blood vessels: Deep learn-
ing models have been widely used for automatic blood vessel segmentations
and have shown state-of-the-art performances applied on lungs, liver, and eyes
[11,5,12,27]. However, only a few efforts were made for renal blood segmentation.
Recently, He et al. proposed Dense biased networks [9] to segment renal arter-
ies from abdominal CT angiography (CTA) images by fusing multi-receptive
fields and multi-resolution features for the adaptation of scale changes. How-
ever, the limited resolution of CTA images only allows the models to reach
interlobar arteries and enables the estimation of blood-feeding regions, which is
useful for laparoscopic partial nephrectomy but not for analyzing realistic renal
functions. Therefore, there is a need for imaging with higher resolution, e.g.,
micro-computed tomography (micro-CT) scans.

Micro-computed tomography and related deep-learning works: Micro-
CT shares the same imaging principle as conventional clinical CT, but with a
much smaller field of view, such that microscale images of high spatial resolu-
tion can be obtained [20]. Micro-CT scans are commonly used to study various
microstructures, including blood vessels [1]. Few existing research on the auto-
segmentation of micro-CT scans focuses on segmenting internal organs of the
heart, spinal cord, right and left lung [15], and blood vessels on colorectal tis-
sue [19] using either nn-UNet [10] or variant 3DUNet [21,4]. There is, however,
no prior work in segmenting vasculatures in organs like kidneys from micro-CT
scans. Crucially, most of the above deep learning methods require a large number
of label maps to train the segmentation network. Manual labeling of micro-CT
scans is extremely time-consuming given the huge volume size. Therefore, in our
case, we do not have any clean label maps to train a segmentation model.

Synthetic training data for blood vessel segmentation: Transfer learning
from artificially generated data is one possible technique to train deep learning
models in a data scarcity setting. The process involves pre-training models on
synthetic data, which are then fine-tuned on a small set of labeled real data. In
medical image segmentation, this strategy has been widely applied to tumor seg-
mentations [13]. Since blood vessels do follow certain physiological and anatom-
ical properties, e.g., Murray’s law [18], this approach has also been applied to
train segmentation models for mouse brain vasculature with physiologically syn-
thesized vessels [25]. However, these works only pre-train the models on synthetic
data and still require real labeled data for fine-tuning. Recently, Menten et al.
[17] synthesize retinal vasculature and then emulate the corresponding optical
coherence tomography angiography (OCTA) images. They show that a UNet
trained on these emulated image-label pairs can directly segment real OCTA
images. However, the way they generate scans from synthesized labels is com-
pletely explicit, which includes a series of physics-based image transformation
functions that emulate the image acquisition process (e.g., OCTA). These func-
tions clearly require expert knowledge and do not translate to micro-CT settings.

Generative models for domain adaptation: In practice, a relatively large
number of unlabeled scans are usually available. Thus, a more general way to
generate scans without emulating image acquisition explicitly is to utilize these
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unlabeled scans via a generative model, i.e., domain adaptation. Medical image
segmentation with domain adaptation is an active research area, and a popular
method is Generative Adversarial Networks (GANs). In particular, CycleGAN
[29] has been used to perform domain adaptation for medical image segmentation
such as liver and tumor segmentation in CT images, where the goal is to train
a segmentation model on one domain and then apply it to another domain with
missing or scarce annotated data [2,8] . Recently, Chen et al. [3] segment cerebral
vessels in 2D Laser speckle contrast imaging (LSCI) images using public fundus
images with segmentation labels as the source domain and a CycleGAN for
domain adaptation. The ability of CycleGAN to perform translation without
paired training data makes it a powerful tool for domain adaptation.
Our contribution: We propose a framework with two main components: 1) a
physiology-based simulation that synthesizes renal vascular trees and 2) a gener-
ative model with an additional segmentation branch that adapts the synthesized
vascular trees to real scans while performing segmentation simultaneously. For
1), we extend the work [26] from physiologically synthesizing renal arterial tree
to venous tree. Since a small prebuilt tree needs to be manually provided in the
initialization step of the process, we call our method extremely weakly-supervised.
For 2), we aim to “emulate” corresponding scans using CycleGANs. Specifically,
we follow the idea in [3] to train a vessel segmentation network over the output
from CycleGAN while extending to 3D on kidney micro-CT images. Notably, al-
though 3D CycleGAN has been adopted for segmenting brain tissues and heart
chambers [2,8,28], no similar work exists on subtle structures like blood vessels
in 3D. Moreover, these works still require scans or segmentations from other
sources, modalities, or time points as the source domain. Instead, our source
domain is purely physiologically synthesized vascular trees. We show that our
combined model can directly segment blood vessels in real scans from the target
domain and demonstrate the validity of our approach to segmenting vasculatures
both on 3D micro-CT scans of rat kidneys and 2D retinal images.

2 Method

2.1 Physiologically-based simulation of renal blood vessels

Constraint Constructive Optimization (CCO) [22] and its variant Global Con-
structive Optimization (GCO) [7] are widely used fractal-based methods that
simulate the growth of vascular trees. These methods turn tree growth into an
optimization problem based on the biological, physiological, and hemodynamic
factors involved in the process. Here, the vascular tree is modeled by a directed
acyclic graph G ≡ (V, E) where V is a set of nodes in the two endpoints of each
vessel centerline with its coordinates in Euclidean space as node features, and E
is a set of directed edges representing each vessel segment as a cylindrical tube
with its radius as edge features. Boundary conditions such as terminal radius
and flow distributions are imposed to represent physiologic conditions. The algo-
rithms then find a vascular tree that minimizes the system’s overall cost function
while fulfilling several constraints.
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Image w. random noiseSampled leaf nodes Prebuilt venous tree GCO initialization GCO result Constructed labelmap

(a) (b) (c) (d) (e) (f)

Fig. 1: Physiologically based vessel synthesizing pipeline. Details are given in [26].
The last two subfigures are shown with maximum intensity projection (MIP).

Here we follow [26], which adopts GCO as the backbone model for generating
the renal vascular trees with optimal branching structures by performing multi-
scale optimizations through iterating several operations such as splitting and
relaxation [7]. However, instead of the arterial tree presented in [26], we only
focus on the venous tree because it constitutes most of the vessel foreground.
In summary, veins follow a similar pattern to arteries but are thicker, which
is accomplished by sampling more terminal nodes with large radii (Fig. 1a).
Detailed modifications over boundary conditions from arterial to venous trees
are given in supplementary material, including tuning the weighting factors of
the loss defined in [26]. Together with inherent randomnesses in the GCO process
itself, the generated tree (Fig. 1d) will look different each run. This enables a
variety of synthesized vascular trees to train the later deep-learning model.

Note that though a prebuilt tree G0 ≡ (V0, E0) is required to guide the GCO
process as noted in [26], G0 involves less than 20 nodes, as shown in Fig. 1b, which
can be manually selected. This node selection process should take much less time
than a voxel-wise manual annotation of the whole blood vessels. Therefore, we
call our pipeline extremely weakly-supervised with a partially annotated tree
structure but without any real segmentation label maps.

2.2 CycSeg: CycleGAN with additional segmentation branch

To create a synthetic image dataset, the reconstructed vascular tree structures
G ≡ (V, E) (Fig. 1d) are then remapped to 3D binary label maps (Fig. 1e) by
voxelization, the detail of which is given in [26]. We then generate the correspond-
ing gray-scale synthetic images (Fig. 1f) by simply assigning vessel foreground
and background with random integers in [128, 255] and [0, 127] respectively. Of
course, a segmentation model trained on these image-label pairs (Fig. 1f & e)
will not work on real scans because of this oversimplified scan construction.

In order to adapt corresponding scans that emulate the micro-CT acquisition
process out of the label maps from the previous step, unlabeled real micro-CT
scans are utilized to train a generative model. Our backbone model is CycleGAN
[29], which we extend to 3D while integrating an additional segmentation branch
with segmenter S using a standard 3D UNet[4], as shown in Fig. 2(Left). We
refer to our model as CycSeg later. The only modification we make in 3D is that
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32 filters are used in the first layer instead of 64 to ease the computational load.
Please refer to the supplementary material for detailed model architectures.

We strictly follow the original design [29] while extending to 3D for the
loss functions definition and training procedure. Briefly, the two-way GAN loss
LGAN (GA→B , DB) and LGAN (GB→A, DA) is to encourage the generator net-
work to produce samples that are indistinguishable from real samples. Besides,
cycle-consistency loss Lcyc(GA→B , GB→A) is to assure the property a ∼ pdata (a) :
GB→A(GA→B(a)) = a and b ∼ pdata (b) : GA→B(GB→A(b)) = b. In our case,
pdata (a) and pdata (b) denotes the real micro-CT scans distribution and the syn-
thetic scans distribution from the physiologically generated trees, respectively. A
final identity loss Lid (GA→B , GB→A) is to stabilize the two generators. Please
refer to [29] for the exact definition and computation of the above losses.

As shown in Fig. 2, instead of being trained on the synthesized scans (real B)
directly, the segmenter (S) is trained on the adapted output (fake A) from the
generator GB→A. Because the generator GB→A learns to adapt realistic noise to
the synthesized scans from unlabeled real scans (real A in Fig. 2), the segmenter
(S) trained on the output from GB→A will be able to segment unseen real scans.
This introduces the segmentation loss Lseg(S,GB→A). Thus, the final loss Ltot

is defined as

Ltot = L (GA→B , GB→A, DA, DB , S)

= LGAN (GA→B , DB) + LGAN (GB→A, DA)

+ λ1Lcyc(GA→B , GB→A) + λ2Lid(GA→B , GB→A) + λ3Lseg(S,GB→A)

(1)

Here Lseg(S,GB→A) is an unweighted combination of a dice loss and standard
cross-entropy loss. Specifically, the segmenter S takes the output from the gen-
erator GB→A as input. Thus, given the physiologically generated label map g
and its corresponding synthetic gray-scale image x ∼ pdata (b), the segmenter
outputs p = S(GB→A(x)), and Lseg(S,GB→A) is defined as

Lseg(S,GB→A) =
1

N

(
−
∑N

i
gi log pi + 1− 2

∑N
i pigi∑N

i pi +
∑N
i gi

)
(2)

where N is the total number of voxels in each sampled 3D patch.
We follow [29] by setting the weights λ1 = 10 and λ2 = 5 while setting

λ3 = 3 experimentally. Note that although GB→A is one of the input models
to compute Lseg(S,GB→A), all the CycleGAN components including GB→A are
frozen when training the segmenter S by blocking backpropagation. Moreover,
since the generator, discriminator, and segmenter are trained alternately, λ3 does
not strongly impact the training and only affects early stopping.

During inference, all CycleGAN components are discarded, while real scans
(domain A) are directly passed to segmenter S to output segmentation maps.

3 Experiments and Results

Dataset: The kidney cast was prepared as described in [1] in agreement with ap-
proved protocols (approval granted from the Danish Animal Experiments Inspec-
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Fig. 2: Left: An illustration of CycleGAN with an additional segmentation branch
working on adapted (fake) domain A images by GB→A. All 3D patches are shown
with MIP. Computations for LGAN, Lid, Lcyc are not shown for simplicity. Mid-
dle: An example result in 3D. Right: A sample slice overlaid with segmentation.

torate under the Ministry of Environment and Food, Denmark). The rat kidneys
were ex vivo scanned in a ZEISS XRadia 410 Versa µCT scanner with an isotropic
voxel size of 22.6 µm [1], with a fixed dimension of 1000×1024×1014. To ease the
computational load, scans are auto-cropped to (692±33)×(542±28)×(917±28)
by intersected bounding cubes from Otsu’s thresholding in each dimension [26].
Here, we use 7 unlabeled scans (domain A) for training and 4 labeled scans for
testing. The synthesized dataset (domain B) has 15 image-label pairs by tuning
parameters used in GCO and running multiple times as discussed in Section 2.1.
Pre-processing: Each generated patch is only preprocessed by simple min-max
normalization Xscale = (xi − xmin)/(xmax − xmin).
Experimental Setup and Training process: The network is implemented in
PyTorch and trained on NVIDIA A100 with a batch size of 1 and patch size of 208
for 200 epochs. All three components are optimized using the Adam optimizer
with the same learning rate of 2 × 10−4 and reduced by 1% for every epoch.
We apply early stopping if Ltot (cf. Eq.(1)) of ten consecutive epochs does not
decrease. Training takes approximately three days to reach convergence, while
segmentation during inference takes only around two minutes per scan.

3.1 Results

As shown in Fig. 2, the CycleGAN successfully adapts realistic noise during
micro-CT acquisition to the synthesized images (from real B to fake A), while a
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Table 1: Segmentation result on private renal and public retina dataset (in %).
Training data Model Acc DICE clDICE

Renal Synthetic label + Raw scan
CycSeg 99.1±0.1 74.3±1.7 64.7±5.0
CycSegP 99.1±0.1 74.9±1.9 71.3±4.4

Retinal
CHASE label + DRIVE image CycSeg 96.1±0.1 74.8±0.4 76.3±0.1
DRIVE label + DRIVE image UNet2D 96.5±0.1 79.6±0.5 78.9±0.8

UNet trained over the adapted image with the corresponding synthesized label
maps can segment real micro-CT scans. Although the ex-vivo scan separates
the organ of interest from other parts, the segmentation of venous trees is still
challenging due to various noises during the micro-CT acquisition and efficacy of
the contrast media. Despite of few false positives, the 3D results in Fig. 2 show
a smooth and clear venous tree structure, which indicates that the segmenter is
trained to recognize veins from noises in real scans by the adapted images from
GB→A. Since the result should anatomically be a connected tree, we also apply a
simple connected component post-processing to the model’s output (CycSegP),
which removes the floating points and produces visually better results.

Table 1 shows the quantitative evaluation of the segmentation performance
on the test set of four labeled scans, including accuracy, DICE score, and the
topology-aware centerline DICE (clDICE) [23]. Although the test data size is too
small to do a train-test split for training fully-supervised segmentation models,
we believe that the visual inspection in Fig. 2 and relatively high quantitative
results in Table 1 over 3D vessel segmentation task demonstrate the potential of
our method in segmenting and building 3D renal models from micro-CT scans.

As a further qualitative evaluation, Fig. 3 shows one test sample with ground
truth and our segmentation result (CycSeg) with MIP. These small vessels near
the renal cortex are not labeled by human experts since manually reaching such
details is too challenging and can take months to label a single scan. On the con-
trary, the small vessels are successfully recovered in our results since the model
is trained on physiologically generated vascular trees that can reach as deep as
possible. This is a major rationale behind creating a synthetic renal vascular
dataset. Therefore, our results have potentially significantly better performance
than those reported in Table 1 because these small vessels are currently regarded
as false positives. Similar behavior has also been noticed in [17].

3.2 Proof-of-concept on retinal blood vessel segmentation

We acknowledge that the quantitative analysis above may not be thorough with
four test data. Thus, we conduct a proof-of-concept on a 2D retinal blood vessel
segmentation task. We follow the previous experimental setups but with a patch
size of 256 and batch size of 32 due to the ease of computational load in 2D.
Dataset and domain construction: We adopt the DRIVE dataset [24] as the
target domain, which includes 40 digital fundus images captured by a Canon CR5
3CCD camera with a resolution of 584 × 565 pixels. However, the 3D vascular
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Fig. 3: An example test sample shown with MIP. Small vessels near the cortex
are not labeled but correctly detected by CycSeg.

structure will not be physiologically correct when projecting to 2D images, and
some works argue against compliance with Murray’s law in retinal blood vessels
[14]. Thus, we do not physiologically synthesize retinal blood vessels but only
focus on the validity of the segmentation power with domain adaptation. Thus,
we directly adopt label maps from another dataset (CHASE [6]) as the source
domain. Specifically, we use 20 from 40 images of the DRIVE dataset without
label maps to form the target domain (real A), together with 28 label maps
from the CHASE dataset to form the source domain (real B) in analog to Fig. 2.
These unpaired data are used to train the CycSeg jointly. Note that DRIVE
label maps and CHASE images are discarded. The remaining 20 labeled images
from DRIVE are used for testing.

An illustration of retinal domain adaptation and visual results in analog to
Fig. 2 is in the supplementary material. As an ablation study, we adopt the same
train-test split to directly train a fully-supervised UNet [21] using real image-
label pairs from the DRIVE training set. From Table 1, the fully-supervised
UNet still outperforms domain adaptation, but the difference is acceptable, as
our goal is not to outperform the state-of-the-art but to propose a pipeline that
can do segmentation without any labeled images from the target domain.

4 Conclusion

We have presented a pipeline that segments blood vessels from real scans without
any manually segmented training data. The pipeline first synthesizes label maps
of renal vasculatures using a physiologically based model and then generates
corresponding scans implicitly via a 3D CycleGAN from unlabeled scans. Simul-
taneously, an additional segmentation branch on top of CycleGAN enables the
segmentation of blood vessels on real scans. This removes any need for expert
knowledge of scanning settings compared to [17]. We believe our pipeline can
crucially reduce annotations needed to segment blood vessels and easily adapt
to other organs or modalities.

Since segmentation is the final objective, the intermediate image adaptation
task is only visually inspected. Future work could include numerical tests like
image structure clustering and Amazon Mechanical Turk perceptual studies [29].
A modification over [26] is necessary to model the pair-wise coupling of veins
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and arteries and to train an Artery/Vein multi-class segmentation model in the
future, which is far beyond the scope of this work. Nonetheless, more clean
ground truth labels should enable a more thorough validation and benchmark
test with standard segmentation models.
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24. Staal, J., Abràmoff, M.D., Niemeijer, M., Viergever, M.A., Van Ginneken, B.:
Ridge-based vessel segmentation in color images of the retina. IEEE transactions
on medical imaging 23(4), 501–509 (2004)

25. Todorov, M.I., Paetzold, J.C., Schoppe, O., Tetteh, G., Shit, S., Efremov, V.,
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Abstract. Accurate geometry representation is essential in developing
finite element models. Although generally good, deep-learning segmen-
tation approaches with only few data have difficulties in accurately seg-
menting fine features, e.g., gaps and thin structures. Subsequently, seg-
mented geometries need labor-intensive manual modifications to reach
a quality where they can be used for simulation purposes. We propose
a strategy that uses transfer learning to reuse datasets with poor seg-
mentation combined with an interactive learning step where fine-tuning
of the data results in anatomically accurate segmentations suitable for
simulations. We use a modified MultiPlanar UNet that is pre-trained
using inferior hip joint segmentation combined with a dedicated loss
function to learn the gap regions and post-processing to correct tiny in-
accuracies on symmetric classes due to rotational invariance. We demon-
strate this robust yet conceptually simple approach applied with clini-
cally validated results on publicly available computed tomography scans
of hip joints. Code and resulting 3D models are available at: https:
//github.com/MICCAI2022-155/AuToSeg

Keywords: Segmentation · Finite Element modeling · Transfer learning

1 Introduction

Precise segmentation of medical images such as computed tomography (CT)
scans, is widely used for generating finite element (FE) models of humans for
patient-specific implants [2]. A requirement in generating FE models is a proper
geometrical representation of the anatomical structures [9]. In our case, an accu-
rate segmentation of the hip joint (HJ) should essentially detail the shape and
boundaries of the femur and hip bones and identify the inter-bone cavities. The
segmented geometries should be closed, non-intersecting, and without spikes.
As manual segmentation is labor-intensive and time-consuming [9], automated
segmentation tools are usually necessary to generate accurate FE models.

Convolutional Neural Networks with encoder-decoder structures are widely
used for auto semantic segmentation, among which the most successful one is
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the UNet structure [10]. The architecture uses skip connection on high-resolution
feature maps in the encoding path to include more fine-grained information. Al-
though more recent models are proposed on segmenting natural images, e.g.,
DeepLabV3+, UNet still provides some of the best segmentation results in med-
ical images [1] . Therefore, the variation of UNet, e.g., 3D UNet, is a straight-
forward way to segment 3D medical data like CT scans and has shown its state-
of-the-art performance [3]. Applying 3D convolutions directly to large 3D im-
ages may overflow memory. Therefore, 3D models are usually trained on small
patches, which results in a limited field of view and subsequent loss of global in-
formation. As an alternative with far less memory usage, the MultiPlanar UNet
(MPUNet) model was proposed by Perslev et al. [8] which uses a 2D UNet to
learn representative semantic information.

Most studies on auto-segmentation of the HJs focus on designing more pow-
erful neural networks that separate anatomical structures with little manual
intervention [12,13]. These studies focus primarily on the bone morphology and
not on the inter-bone gaps. The consequence is that although they reach fairly
high Dice scores, the segmentation results are anatomically inaccurate and are
unsuitable for generating HJ 3D models. This limits the usability of the existing
deep learning models for FE simulations [7].

We require the deep learning models to provide anatomically correct segmen-
tation of the bones and the existing gap in the HJ as shown in Fig. 1 [12,13].
Due to the limited number of accurate training data, we propose a deep learning-
based strategy for enhancing publicly available poorly annotated scans using only
a few accurately segmented data to learn an accurate model and in our case the
gap regions in HJ. Besides using the idea of MultiPlanar, our backbone model
is a standard UNet with batch normalization. Therefore, the proposed pipeline
is both parameter and memory efficient.

Fig. 1: Illustration of gap generation: Inferior ground truth of a training image
from public dataset (A) and results by fine-tuned model (B). Results on a test
image with model trained only on public dataset (C) with erroneous prediction
detection (D) and fine-tuned (E)

To enforce the cartilage gap with few annotated data, we apply MPUNet
with a dedicated loss function penetrated more on the gap regions combined with
transfer learning and a post-processing step. Our framework uses an interactive
learning pipeline involving pre-training MPUNet on a public dataset with inferior
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HJ segmentation to learn general semantic features of the bones [5]. The model
is then fine-tuned using a few highly accurate segmentation to learn the correct
labeling of the gaps. We show that our proposed approach allows the model to
learn the gap and generate anatomically accurate segmentation, using the pre-
trained model and only four accurate segmentations for fine-tuning. Our work
is validated on a set of HJs from which we construct FE models and report the
Dice with the manually corrected segments used for biomechanical models.

2 Method

Our strategy for accurate HJ segmentation with very few accurate training im-
ages relies on the following: (i) we use the idea of MPUNet that segments 3D
medical images using 2D models while preserving as much spatial information
as possible by segmenting different views of the data. (ii) we use a relatively
simple yet powerful backbone model for performing the segmentation to avoid
overfitting and memory issues. (iii) we pre-train the model using publicly avail-
able datasets with poor labels, which are then fine-tuned with a very small set
of accurately annotated data. (iv) we use a dedicated weighted distance loss to
enforce the gap between the bones. (v) we introduce a post-processing step that
solves the internal problem of MPUNet on images with symmetric features.
Model : As a baseline model, we use the MPUNet proposed by Perslev et al. [8]
to segment the 3D HJs using 2D UNet while preserving as much 3D information
as possible by generating views from different perspectives. During training, the
model f(x; θ) takes a set 2D image slices of size w × h, from different views,
and outputs a probabilistic segmentation map P ∈ Rw×h×K for K classes for
each slice. Standard pixel-wise loss function is then applied for back-propagation.
Our experiment uses a standard categorical cross-entropy loss augmented by the
weighted distance map. We found no improvement using a class-wise weighted
cross-entropy loss or the dice loss. In the inference phase, we run 3D reconstruc-
tion in each view separately over the segmentation results on all the parallel
slices to get the volume back. This results in a volume probability map of size
m×w×h×K for each view. Unlike original MPUNet [8] which suggests training
another fusion model using validation data, we simply sum over the results (P )
from different views followed by an argmax over last dimension to get the final
label map. This strategy achieves good results on the validation data.
Transfer Learning : The accurate segmentation and fast convergence rely par-
tially on pre-training the model using publicly available datasets with poor label-
ing, which is subsequently fine-tuned with a small set of accurate data. We detail
two modifications that differ from standard transfer learning settings. First, we
also transfer the weight in the last softmax layer for a much faster convergence
because we work on exactly the same classes as before. Then, instead of freezing
encoder and only fine-tuning decoder, it is necessary to explicitly learn encoder
to detect the gap, as the gap must be encoded correctly first.
Weighted Distance Map: For the model to be fined-tuned to learn the gap
between the bones, we enforce a voxel-wise weight-map w(x) to the loss function
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based on the distances to the border of the foreground classes. This strategy was
initially suggested in the original UNet paper, which we employ in a modified
version for 3D data [10,8]. We define w(x) as follows,

w(x) = wc(x) + w0 · e−
(d1(x)+d2(x))2

2σ2 (1)

where d1 and d2 denotes the distance to the border of the nearest foreground
class and the second nearest foreground class respectively. We follow original
UNet paper and set w0 = 10 and σ = 5. wc : Ω → R is used to balance the class
frequencies, which we do not enforce, thus we set wc = 1 for every c.

During fine-tuning, the corresponding slice of the 3D weight map is sampled
together with the images and labels. We apply an element-wise multiplication of
the weight map with the cross-entropy loss of predictions and labels on each pixel
before reduction. Fig. 2 (left & middle) shows an example training slice. Note
that we do not plot the prediction since it consists of multi-class probabilities.

1

2

3

3.7

Fig. 2: (left) A sample training slice of true labels overlaid on top of raw image.
(middle) Corresponding weight map computed with Eq. (1) overlaid on top of
label boundaries. (right) Results of training with weight map calculated over
eroded labels(orange contour), which shows a smoother and more complete con-
tour near the boundaries than the results trained without erosion (blue contour).

We also notice that the model is prone to overfitting to the gap, producing
a broader gap than usual if we assign higher weights only to the gap regions in
Eq. (1). Instead, we would like to assign more weight to the boundaries around
the gap to avoid false negatives. This is accomplished by applying a mathematical
erosion to the labels over a ball with a radius of 3 voxels before calculating the
weight map, as demonstrated in Fig. 2 (middle). To compensate for the increased
value of d1 + d2 introduced by erosion, we double w0 to 20.
Sampling Strategies: Sampling and interpolation are necessary to retrieve cor-
responding 2D slices from a 3D medical image viewed from a random orientation
other than the standard RAS axes. We follow the idea in [8] by sampling pixel
with dimension d ∈ Z+ on isotropic grids within a sphere of diameter m ∈ R+

centered at the origin of the scanner coordinate system in the physical scanner
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space. We differ in that these two numbers are chosen as the 75 percentile across
all axes and images during training but as maximum value during inference. This
ensures both efficient training and complete predictions near the boundaries.
Post-Processing : Although MPUNet is both parameter and memory efficient,
the model is trained on 2D slices with a possibly limited field of view near
the boundaries. Furthermore, it is trained to segment the input viewed from
different perspectives by sampling from planes of various orientations. This in-
troduces some rotational invariance but makes it hard to distinguish between
symmetric classes with very similar semantic features. For example, it is hard to
be consistent with the left and right femurs when viewing the input from vari-
ous perspectives. Therefore, some part of the left femur near the boundaries is
mis-classified as the right femur respectively, and vice versa, as shown in Fig. 3.

Fig. 3: Segmentation (left) with post-processing (right) where falsely predicted
symmetric groups are recovered.

In order to solve this problem automatically, we propose a symmetric con-
nected component decomposition. We only keep the largest connected compo-
nent for each symmetric class pair while assigning the corresponding symmetric
class value to all the other components. By doing this instead of just removing
small components, those parts predicted as the left femur on the right femur are
mapped correctly to the right femur, and vice versa. We then apply a standard
connected component decomposition while keeping only the largest connected
component for each foreground class to remove floating points (false positives).

We acknowledge that our post-processing is highly task-specific but could
also be generalized to other segmentation tasks with symmetric classes that
share similar semantic features and are disconnected from each other.

3 Data and Experiments

We use 35 CT scans from The Cancer Imaging Archive and crop the region
of interest on the images to roughly cover the area around the HJs, including
the sacrum, both hip bones, and both proximal femurs [4]. Each scan comprises
(415±47)×(244±30)×(266±29) voxels, with a voxel size of (0.78±0.11)×(0.77±
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0.1) × (0.96 ± 0.17) mm3. For the pre-training step, we use 10 scans and their
associated inferior segmentations from a publicly available dataset of segmented
CT pelvis scans with annotated anatomical landmarks (CTPEL) [5,12]. We only
use two scans with accurate segmentation to fine-tune the model in the first
place, In the next step, two other unseen scans are used to get the segmentation
results of the model. Then, we manually correct these two results and fine-
tune the model again. The second fine-tuning process could be re-iterated, but
four images is sufficient to obtain accurate results. We evaluate the segmentation
results of our approach with minimal required fine-tuning data. A clinical expert
evaluated the segmentation results of the 21 test cases.
Interactive Learning Setup: Using prior anatomical knowledge that each
class should be disconnected by at least a certain distance, contradicting cases in
the model output indicate false positives (collisions) on at least one of the classes.
We thus apply another Euclidean transform over the output segmentation P
such that each point in a predicted foreground class is mapped to the nearest
distance to other foreground classes. We can then find those collision points set
E by applying a threshold ϵ to the distance map, as shown in Fig. 1 (D).

E = {x|P (x) ̸= 0 ∧ d(x) ≤ ϵ} (2)

Since E only roughly captures the collision points, directly setting them to back-
ground will not be accurate and may introduce false negatives. However, the size
of it (|E|) can be used as a metric for model performance without ground truth
to decide when to terminate the interactive learning process. In our experiment
where ϵ = 2, the model without fine-tuning gives |E| ≈ 24803, while fine-tuning
with two and another two accurate data reduces |E| to 1000 and 200 respectively.
Pre-processing : We pre-process the data by first filtering out all negative
values in the volume because both bones and cartilages should have positive
Hounsfield unit values. We then apply a standardization based on the equation
Xscale = (xi−xmean)/(x75−x25), where x25 and x75 are the 1st and 3rd quartiles
respectively. This removes the median and scales the intensity based on quartiles
and is more robust to outliers. No other pre-processing is applied to avoid any
manual errors that can easily propagate in a neural network.
Experimental Setup: The network is trained on NVIDIA GeForce RTX 3090
with a batch size of 10 using the Adam optimizer for 40 epochs with a learn-
ing rate of 1e-5 and reduced by 10% for every two consecutive epochs without
performance improvements. We apply early stopping if the performance of five
consecutive epochs does not improve. Pre-training takes approximately one day,
while fine-tuning takes about six hours to reach convergence.
Augmentations: We follow MPUNet by applying Random Elastic Deforma-
tions to generate images with deformed strength and smoothness [11] and assign
a weight value of 1/3 for the deformed samples during training [8].

4 Results

To have suitable geometries for FE models, the auto-segmentation framework
must separate bones and generate accurate results near the boundaries, which
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is essential for generating cartilage layers for HJ. Therefore, any standard eval-
uation metric such as the Dice score could be misleading. Hence, our results,
including the bone outlines and the existing gap in the joints, are first validated
by a senior consultant radiologist as our clinical expert.

The clinical expert initially scrolls through all the segmented slices to verify
the bone contours and the gaps between the hip and femoral bones. Then, he
verifies the anatomical shape and smoothness of the reconstructed 3D model.
This procedure justifies our method in obtaining precise HJ geometries.

Fig. 3 illustrates the results of the fined-tuned model on the test set and
demonstrates the effect of post-processing, where it shows that the misclassified
regions in symmetric classes are successfully recovered by the post-processing
step. With the distance weight applied to loss, the model can detail the gap
accurately. The final result is accurate and requires little or no human inter-
vention for subsequent simulation experiments, e.g., FE analysis. Results in 3D
are available at GitHub Repo. As an example, we have generated the cartilage
geometry on the segmented HJ with a method proposed by [6] to analyze the
stress distributions as shown in Fig. 4. The results show a smooth stress pattern
indicating that our method’s output is suitable for use in FE simulations.

Dice ↑ GapDice ↑ HD(#voxels) ↓
Ours 98.63 ± 0.56 96.47 ± 1.60 3.67 ± 1.13
NoPretrain 97.82 ± 0.59 95.13 ± 1.42 5.26 ± 2.10
NoWeight 98.12 ± 0.47 94.35 ± 2.19 4.58 ± 1.50
3DUNet 93.36 ± 1.84 87.48 ± 3.01 7.02 ± 1.09

Ours(2) 97.59 ± 0.74 95.19 ± 1.14 5.18 ± 2.08
NoPretrain(2) 90.80 ± 9.29 91.13 ± 8.53 11.20 ± 7.19
NoWeight(2) 96.28 ± 2.91 93.91 ± 1.74 6.30 ± 2.95

Table 1: Test Results with various design choices
Fig. 4: Smooth von
Mises stress pattern

4.1 Numerical Validation and Ablation Study

Although numerical results could be misleading regarding the final FE simula-
tions, we include them as a validation and ablation study of our several design
choices. Table 1 shows the numerical validations on the test set, including nine
images with manually corrected ground truth segmentations. We test the perfor-
mance by varying one of the design choices each time while keeping the others
fixed. (i) The strategy mentioned in Section 2 (ours), (ii) Training without using
ten inaccurate public data (NoPretrain), (iii) Training without enforcing dis-
tance weight map (NoWeight), (iv) Using 3D UNet as the backbone (3DUNet).
We also test and report the performance in the first stage when fine-tuned with
only two manually corrected data except for (iv) because of its poor performance.

Besides the standard Dice score, we are especially interested in the surface
and gap regions. Therefore, two more evaluation metrics are introduced. We
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use Hausdorff distance (HD) as surface measurement by computing the largest
distance between the result and the nearest point on the ground truth.

HD(P, Y ) = max(max
p∈P

min
y∈Y

∥p− y∥2, max
y∈Y

min
p∈P

∥p− y∥2) (3)

We also propose a GapDice in Eq. (4) to measure the average Dice score
between the segmentation result and the ground truth only around the gap
regions. Given the segmentation results P and ground truth segmentation Y , we
compute the Euclidean distance transformation map Yd of Y , corresponding to
the d1+d2 term from Eq. (1). The gap region G is defined as the locations where
Yd < ϵ. Dice score between P and Y is calculated in the standard way inside G.
Here we choose ϵ = 10 as we found it to be a good indicator of both the gap and
boundary regions. Fig. 2 (middle) shows the region computed by eroded labels,
which is also an indication of G. Please refer to GitHub Repo for generated G.

GapDice(P, Y ) =
2 ∗ |P ∩ Y ∩G|

|P ∩G|+ |Y ∩G| (4)

The results show that MPUNet (all the first three models) works significantly
better than 3D UNet in a data scarcity setting. Our pipeline outperforms in
all three metrics. Especially, although the difference of the Dice score is not
significant in our fine tuned model with four manually corrected data, pretraining
on inaccurate data and enforcing the weight map shows a significantly better
GapDice score and HD, which is vital for further simulation. The benefit of
pretraining is much clearer in the first round when fine-tuned with only two
accurate data, which is crucial to have minimal manual work to be fine tuned
again. We acknowledge that the ground truth for test data is manually modified
over the results from our pipeline, giving a bias when comparing multiple models,
but the general goal is to show that our pipeline suits well for further simulation.

5 Conclusion

We presented an auto-segmentation framework for accurate segmentation from
CT scans considering the bone boundaries and inter-bone cavities. Our frame-
work uses a modified MPUNet pre-trained on a public dataset with coarse seg-
mentation and fine-tunes with very few data with accurate segmentation in a
transfer and interactive learning setup. We demonstrate that our simple yet ro-
bust model can detail crucial features such as the gap where the cartilage resides.

This work is tested out on HJ CT scans and provides anatomically accurate
segmentation, which has both been verified by a clinical expert and shown supe-
rior numerical results, reaching an overall Dice score above 98% and above 96%
around gap regions. Our method can be used to enhance anatomically incorrect
and poorly annotated datasets with a few accurately annotated scans. The FE
analysis shows that the generated models produce smooth stress patterns with-
out any geometry-related artifacts. Thereby, the segmentation result of this work
can be used for generating FE models with little or no manual modifications.
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ABSTRACT The process of constructing precise geometry of human jaws from cone beam computed
tomography (CBCT) scans is crucial for building finite element models and treatment planning. Despite
the success of deep learning techniques, they struggle to accurately identify delicate features such as thin
structures and gaps between the tooth-bone interfaces where periodontal ligament resides, especially when
trained on limited data. Therefore, segmented geometries obtained through automated methods still require
extensive manual adjustment to achieve a smooth and organic 3D geometry that is suitable for simulations.
In this work, we require the model to provide anatomically correct segmentation of teeth and bones which
preserves the space for the periodontal ligament layers. To accomplish the task with few accurate labels,
we pre-train a modified MultiPlanar UNet as the backbone model using inferior segmentations, i.e., tooth-
bone segmentation with no space in the tooth-bone interfaces, and fine-tune the model with a dedicated
loss function over accurate delineations that considers the space. We demonstrate that our approach can
produce proper tooth-bone segmentations with gap interfaces that are fit for simulations when applied to
human jaw CBCT scans. Furthermore, we propose a marker-based watershed segmentation applied on the
MultiPlanar UNet probability map to separate individual tooth. This has advantages when the segmentation
task is challenged by common artifacts caused by restorative materials or similar intensities in the teeth-teeth
interfaces in occurrence of crowded teeth phenomenon. Code and segmentation results are available at
https://github.com/diku-dk/AutoJawSegment.

INDEX TERMS Cone-beam computed tomography, deep learning, finite element modeling, human jaws,
instance segmentation, learning with limited data, semantic segmentation, transfer learning.

I. INTRODUCTION
Accurate segmentation of medical images of a human
jaw, such as cone beam computed tomography (CBCT)
scans, is crucial in creating patient-specific preoperative
and predictive finite element (FE) models that improve the
design of implants and treatments [30]. A key aspect in the

The associate editor coordinating the review of this manuscript and

approving it for publication was Yi Zhang .

development of FE models is having a precise geometric
representation of anatomical structures [21].

In the case of developing FE models of the human jaw,
in addition to teeth and bone geometries, it is essential to
model the connective tissue between them, called periodontal
ligament (PDL). In general, PDL layer plays an important
role in transferring load from teeth to the bone in orthodontic
treatments, and when triggered with enough orthodontic
forces, it results in bone remodeling [12]. As a result, accurate
segmentations of human jaws must not only depict the shape
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and boundaries of the involved teeth and bone structures but
also preserve the space between them (see Fig. 1B and D) for
the further modeling of PDLs [12].

Manual segmentation of the CBCT scans with the accurate
geometrical representation of a human jaw’s anatomies is
labor-intensive and extremely time-consuming and depends
on the scans’ resolution and the annotator’s expertise. In addi-
tion, it is especially challenging to accurately delineate the
teeth and bone boundaries with relatively similar intensities
to preserve the PDL from the CBCT scans. Hence, there is
a need for automated segmentation tools that can generate
accurate geometries for developing FE models.

Automatic segmentation methods commonly utilize Con-
volutional Neural Networks with an encoder-decoder archi-
tecture, of which the most effective is the UNet structure [22]
which incorporates skip connections on high-resolution fea-
ture maps in the encoding stage to include more fine-grained
information. Despite the development of newer models for
natural image segmentation such as DeepLabV3+ [3] and
transformer-based models [1], [25], [28], UNet remains one
of the top performers in 3Dmedical image segmentation [14].
As a result, using a variation of UNet, such as 3D UNet,
for segmenting 3D medical data like computed tomography
scans is a straightforward approach that has demonstrated
state-of-the-art performance [6], [14]. However, applying
3D convolutions directly to large 3D images may result in
memory overflow. To mitigate this, 3D models are typically
trained on small patches, which limits their field of view and
causes the loss of global information. An alternative with
lower memory usage is the MultiPlanar UNet (MPUNet)
model proposed by Perslev et al. [20]. This model utilizes a
2D UNet to learn representative 3D semantic information by
sampling slices from various orientations.

Most research in the field of auto-segmentation of human
jaws aims on the neural networks designs that can accurately
separate certain anatomical structures with minimal manual
input [4], [5], [7], [9], [10], [15], [26], [27], [29], [31], [33].
Most of these works only focus on teeth segmentation [4],
[5], [8], [9], [10], [11], [15], [29], [31], especially on the
separation of individual tooth, while others only focus on the
bone segmentation [26], [32], [33]. Although individual tooth
segmentation is critical for computer-aided analysis towards
clinical decision support and treatment planning, PDL layers
cannot be retrieved from either tooth or bone segmentation
alone, thus cannot be used to model the transferring load from
teeth to the bone in orthodontic treatments [12]. Recently,
Wang et al. [27] and Cui et al. [7] work on the multiclass
segmentation of human jaws to simultaneously segment the
bones (i.e., mandible andmaxilla) and the teeth. Their models
are either trained only over axial slices of CBCT scans [27]
or trained on thousands of scans to reach a Dice score
above 90% [7]. More crucially, their segmentations ignore
the inter-bone gaps and thus are anatomically inaccurate.
These anatomically inaccurate segmentations cannot be used
to generate 3D models and limits the application in finite
element simulations [12].

FIGURE 1. Illustration of gap generation. A: Inferior ground truth labels
ignoring the space where the periodontal ligament resides. B: The
accurate labels of the same patient that considers space for the
periodontal ligament. C: Results of the proposed method on a test scan
with model trained only on inferior dataset with no gap. D: Fine-tuned
model with gap information.

Analog to Xu et al. [30], which accurately delineates the
gap in hip joint segmentation for further cartilage simulation
studies, we require the deep learning models to provide
anatomically correct segmentation of human jaws which
preserves the space for the PDL layers between teeth and
mandibles as shown in Fig 1. Our approach leverages a
standard UNet with batch normalization as the backbone
model and incorporates the concept of MultiPlanar [20]
to integrate more volumetric features into the model and
increase the model’s efficiency. In addition, due to the
difficulty of manual delineation of the PDL layers, we have
very few anatomically accurate teeth-bone label maps of
the CBCT scans that detail the gap where PDL resides.
Our framework utilizes an interactive learning process to
reinforce such gapwith limited annotated data by pre-training
the MPUNet on a dataset with subpar segmentation to gain
a general understanding of the tooth and bone structures.
Subsequently, the model is fine-tuned using just a few highly
accurate segmentations with a specific loss function that
penalizes more on the gap regions.

By combining these techniques, our proposed pipeline
is capable of achieving accurate segmentation results that
fill in the missing gaps between the tooth-bone interfaces
where the PDL is located with few accurate training data,
while being both memory and computationally efficient. Our
findings are verified using a test set of CBCT scans, where
we construct finite element models and numerically evaluate
the segmentation performance with the manually corrected
segments utilized in biomechanical models.

In addition to the gap generation process, a further task
is to separate individual tooth. The UNet output consists
of the segmentation of a single class of jaw bones, as well
as a single class of teeth that contains all the teeth.
Automatic segmentation of individual tooth is critical for
computer-aided analysis towards clinical decision support
and treatment planning, but this segmentation is further
challenged by blurring the boundaries of neighboring teeth
and metal artifacts. Therefore, a simple post-processing
with Connected Component Decomposition (CCD) over the
UNet output will not correctly separate the adjacent teeth,
especially if the subject has crowded teeth or is in a biting
position.

VOLUME 11, 2023 102461



P. Xu et al.: Deep-Learning-Based Segmentation of Individual Tooth and Bone

Deep-learning-based instance segmentation methods, e.g.,
Mask R-CNN, have shown state-of-the-art performance on
2D natural images [13]. These networks involve region
proposals to generate bounding boxes around each instance,
with one branch for box regression and object detection
and another for semantic segmentation. Cui et al. exploited
3D Mask R-CNN as a base network to realize automatic
tooth segmentation and identification fromCBCT images [9].
However, region proposals in 3D are extremely time and
memory-consuming and require a larger training set than
semantic segmentation methods that only deal with voxel
labeling. Many of the modifications by Cui et al. that make
region proposal work on 3D cases rely on the teeth having
similar structure and orientation, thus will fail with, for
instance, wisdom teeth and, more fatally, after adding jaw
bone classes. Moreover, a threshold of the confidence level
on each proposed region needs to be selectedmanually during
inference, which may completely miss an object or generate
overlapping instances and hinder biomechanical modeling
afterward.

Instead, since there is no occlusion in 3D images, a com-
mon way to accomplish instance segmentation in practice is
to apply post-processing over semantic segmentation output.
For example, Chen et al. proposed to apply watershed
on the raw probability map of the output of semantic
segmentation models [4]. Besides, they proposed to train a
multi-task 3D VNet that learns both the teeth region and the
teeth surfaces to gather more information about teeth and
better separate neighboring teeth [17]. However, the dense
skip connections in VNet and multi-task learning severely
increase computational overhead. We follow the same idea
of separating individual tooth by applying watershed over
UNet probability map that fits into our pipeline. However,
we keep a simple single-task problem with MPUNet as
the backbone model while enforcing the gap regions for
better separation of teeth through a dedicated loss function.
To our best knowledge, our work is the first on automatic
segmentation of human jaws that separates both individual
tooth and bones (maxilla and mandible) while accurately
detailing the gaps between them with very few data.

II. MATERIALS AND METHODS
In order to achieve accurate segmentation with a limited
number of annotated training images, our strategy involves
several key components: (i) We use the MPUNet approach,
which segments 3D medical images by breaking them
down into 2D views while maintaining as much spatial
information as possible. (ii) To prevent overfitting and
memory issues, we use a simple yet effective backbonemodel
for segmentation. (iii) The model is pre-trained using data
without the gap to learn general semantic features and then
fine-tuned using a small set of highly accurate annotated data
for gap generation. (iv) A dedicated weighted distance loss is
used to emphasize the gap between the teeth and bones and
between neighboring teeth. (v) We separate individual tooth

by applying marker based watershed segmentation over the
UNet output probability map.

Here we divide the pipeline into two parts; the first part
focuses on model construction and training, while the second
deals with individual tooth segmentation over the model
output, corresponding to strategy (v).

A. GENERAL PIPELINE
As a general pipeline, we are inspired by themethod proposed
by Xu et al. in regard to neural network training [30].

1) MODEL
As a baselinemodel, we use theMPUNet proposed by Perslev
et al. to segment the 3D jaws using 2DUNet while preserving
as much 3D spatial information as possible by generating
views from different perspectives [20].

2) TRANSFER LEARNING
The accurate segmentation and efficient convergence with
limited data rely partially on pre-training the model using a
dataset with inferior annotation, followed by fine-tuning with
a smaller set of precisely labeled data. Here we also follow
[30] by transferring the weight in the last softmax layer and
explicitly learning the encoder, which results in much faster
convergence and correct encoding of the gap respectively.

3) LOSS FUNCTION WITH WEIGHTED DISTANCE MAP
In the pre-training step, the model is trained using a
standard categorical cross-entropy loss, as we observed no
improvement using a class-wise weighted cross-entropy loss
or the Dice loss. During fine-tuning, to guide the model in
learning the space between the teeth and bones where the
PDL is located, a voxel-wise weight map w(x) is applied to
the loss function based on the distances from the foreground
class borders. This approach was first proposed in the original
UNet paper, which we have adapted for use with 3D data in
a modified form [22], [30]. We define w(x) as follows,

w(x) ≡ wc(x) + w0 e
−

(
(d1(x)+d2(x))

2

2 σ2

)

. (1)

where d1 and d2 represent the distance to the border of the
nearest foreground class and the second nearest foreground
class respectively. We follow the original UNet paper and
set w0 = 10 and σ = 5. wc : � → R was originally
proposed to balance the class frequencies, which we do not
enforce; thus, wc is set to 1 for every class c. During the fine-
tuning process, the corresponding slice of the 3D weight map
is sampled in conjunction with the images and labels. Then,
the weight map is multiplied element-wisely with the cross-
entropy loss between predictions and labels on each pixel
before reduction and backpropagation. The whole process is
illustrated in Fig. 2.

The incorporation of the distance-based weights (Eq. (1))
into the training of the neural network is inspired by the
anticipation that in further FE simulations, a similar distance-
based metric will be employed to generate space between the
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FIGURE 2. Model training pipeline weighted by distance map calculated
from Eq. (1). ⊗ denotes element-wise product, which suppresses the
general boundary uncertainties while amplifying loss near the gaps. Note
that the pixel-wise cross-entropy is visualized after averaging over all the
classes. L is the final loss as a scalar after reduction.

segmented teeth and bone geometries to locate the PDL. This
methodology is outlined in [12].

4) SAMPLING STRATEGIES
Careful sampling and interpolation are crucial for obtaining
corresponding 2D slices from a 3D medical image viewed
from a random orientation different from the standard RAS
axes, which our initial test runs showed evidence of being
the actual key to success. Here we follow the same idea of
Perslev et al. to sample on isotropic grids within a sphere of
diameter m centered at the origin of the scanner coordinate
system in the physical scanner space [20]. Pixel dimension
d ∈ Z+ of the grid and the actual size (diameter) m ∈ R+

(controlled by voxel size) in millimeters of the sphere need to
be settled before the model training to decide the input size to
UNet and its field of view. We differ from [20] by following
the modification made by [30] in that these two numbers are
chosen differently during training and inference. Briefly, d
and m are computed heuristically as the 75 percentile across
all axes and images during training but as the maximum
value across all axes and all training images together with the
current test image during testing. Please refer to [30] for the
justification of this modification.

B. INDIVIDUAL TOOTH SEGMENTATION
The segmentation of the CBCT scans is conducted in two
steps; first, proper teeth-bone segmentation is performed
using the strategy discussed in the previous section with
MPUNet; second, the teeth segments are decomposed into
individual tooth segments.

Based on our observation, the model is less confident in the
contacting interface of the two adjacent teeth in the output of
the MPUNet before the argmax step, meaning a lower value
in the probability map. Therefore, we apply a Marker Based
Watershed Segmentation (MBWS) algorithm over the teeth
probability map to separate the wrongly merged neighboring
teeth [4].Watershed is an unsupervised instance segmentation

FIGURE 3. Individual tooth segmentation pipeline. MPUNet output from
various views are first fused together. The probability map of teeth class
is used by MBWS to generate individual tooth segmentation, which is
then combined with the segmentation of bone class (maxilla and
mandible). Coloring is random.

model that refers metaphorically to a geological watershed
that separates adjacent drainage basins. Fig. 3 illustrates the
whole process, where foreground and background markers
are generated to guide the watershed operation based on the
output probability map of MPUNet after averaging different
views. Details of MBWS with foreground and background
generation are explained in Appendix B.

The final result is the union of segmented tooth instances
and the bone classes as shown in Fig 3, while the bone class
has a higher priority in the intersecting/overlapping regions.
Note that the upper and lower bone classes, i.e., mandible and
maxilla can be trivially separated by a simple CCD because,
unlike teeth, the upper and lower bone classes are always
disconnected by a large gap. Here the bone class is labeled
in one color for simplicity.

C. DATA AND EXPERIMENTS
We use 13 CBCT scans in this study, where 12 scans belong
to 3Shape A/S in-house CBCT dataset, and one scan (P12 in
Table 5) is obtained from 3DSlicer’s ‘‘Sample Data’’ module,
titled ‘‘CBCT-MRI Head’’. In all scans, the teeth and bone are
annotated in both the upper and lower jaw. The scans were
acquired from multiple resources from the typical age group
of adult male and female ranging between 34 to 64 years old.
Further details on sex, age, manufacturer details, and scanner
settings are presented in Table 5 in Appendix A. Most of the
patients have various dental problems such as dental implants
and missing teeth. Besides, the dataset comprised of scans
with different voxel sizes and various levels of artifacts such
as metal filling artifacts or double contouring artifacts due to
the movement of patients in the image acquisition step [16],
[18]. Details about the utilized scans and artifacts are listed
in Table 4 in Appendix A.

1) TRAIN-TEST SPLIT
Due to the difficulty of concise manual labeling to ensure
the gap between teeth and bones, we only have eight cases
with an accurate label map detailing the teeth-bone gaps
whereas the rest five labeled data are inaccurate due to the
missing gaps. These five scans are used for pre-training the
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network, while the eight scans with accurate label maps are
split equally for the train-test, meaning that only four scans
are used to train the network to detail the gaps. Specifications
about the data split are listed in Table 4 in Appendix A.

2) PRE-PROCESSING
As presented in Table 4, the original scans are with various
voxel sizes and different dimensions. Therefore, all the scans
are first upsampled to the smallest voxel size (0.15 mm) in
the dataset with a B-Spline interpolation and cropped to an
identical dimension of 5123. We then pre-process the data by
applying an intensity standardization based on the equation
Xscale ≡ (xi − xmean)/(x75 − x25), where x25 and x75 are
the 1st and 3rd quartiles respectively. This transformation
scales the intensity based on quartiles and is more robust
to outliers, which is especially crucial when working with
data involving metal artifacts, in some cases resulting as
outliers with extremely high-intensity values. We apply this
standardization in two steps: over the 3D volume and then
over each sampled slice to MPUNet. No other pre-processing
is used to avoid potential errors that can easily propagate in
the neural network.

3) EXPERIMENTAL SETUP
The network is trained on NVIDIA GeForce RTX 3090 with
a batch size of 10 using the Adam optimizer for 60 epochs
with a learning rate of 10−5 and reduced by 10% for every
two consecutive epochs without performance improvements.
We stop training if the performance of five consecutive
epochs does not improve. Pre-training takes approximately
one day, while fine-tuning takes about 10 hours to converge.

4) AUGMENTATIONS
We apply Random Elastic Deformations to generate images
with deformed strength and smoothness [24]. The augmenta-
tions are generated on the fly during the training process, and
following MPUNet we assign a weight value of 1/3 for the
deformed samples [20].

D. ETHICS STATEMENT
The requirement for the ethical committee’s approval was
waived from ‘‘Center for Regional Development, The Scien-
tific Ethics Committee’’ with a reference number 21063693,
with the following statement: ‘‘It has been assessed that this
is not a health science research project as defined in section
II of the committee act, but that it is a non-invasive study
containing 3D scan images of jaws and teeth’’. Note that,
this work only uses an available dataset that already had been
collected by 3Shape, and no new scans has been collected just
for use of this study. All scans had been acquired as part of a
patient’s treatment and had already been thoroughly studied
by patient’s dentist/orthodontist, which is a legal requirement
when performing a CBCT scan. Hence, here is no possibility
that we can discover additional diseases etc. that the patient

FIGURE 4. Generated gaps for one of the scans in the test set displayed
from different views.

FIGURE 5. Finite element analysis of a tipping scenario. A: Displacement
filed of the teeth. B: smooth von Mises stress pattern on the periodontal
ligaments.

had not already been informed about. The patients and the
dentists have given written consents for using the scans.

III. RESULTS AND DISCUSSIONS
In order to produce geometries suitable for finite element
(FE) models, the auto-segmentation framework must accu-
rately separate teeth and jaw bones and produce precise
results near the boundaries, which are crucial for creating
the PDL layers in the jaw. We evaluate the performance of
generating the general tooth-bone semantic structures and the
gaps between the teeth-bone interfaces in the first subsection.
In the second subsection, we evaluate our further task of
individual teeth segmentation.

As shown in Figure 4, the enforcement of a distance weight
to the loss allows the model to accurately capture the gap.
The final result is anatomically accurate and requires minimal
manual intervention for subsequent simulations, such as finite
element analysis. Segmentation results in 3D are available
at https://github.com/diku-dk/AutoJawSegment. As an exam-
ple, we have generated the PDL geometries on the recon-
structed geometries obtained from the segmented CBCT
scans with a method proposed in [12] to analyze the stress
distributions in a tipping scenario as shown in Fig 5. The
results demonstrate a smooth stress pattern, indicating that
the output from our method is suitable for finite element (FE)
simulations.

A. PERFORMANCE METRICS
Although the commonly adopted measurements of voxel-
wise correspondence, e.g., Dice Score, could be misleading
regarding the final FE simulations, we still include these
measurements as part of the quantitative validation and an
ablation study of our several design choices. The Dice Score
is defined as

Dice(P,Y ) ≡
2 |P ∩ Y |

|P| + |Y |
. (2)
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where P and Y denote the predicted result and ground truth
segmentation respectively.

In addition to the standard Dice score, we are particularly
interested in evaluating the performance of the model in
the surface and gap regions. To assess this, we adopt two
additional evaluation metrics. The first metric is the Haus-
dorff distance (HD), which measures the surface accuracy by
calculating the largest distance between the predicted result
P and the nearest point on the ground truth Y .

HD(P,Y ) ≡ max(max
p∈P

min
y∈Y

∥p− y∥2,

max
y∈Y

min
p∈P

∥p− y∥2) (3)

Secondly, Average Segmentation Surface Distance
(ASSD)measures the average distance between the estimated
segmentation surface SP and the ground truth surface SY . The
surface is computed by subtracting erosion from dilation.

ASSD(P,Y ) ≡ mean(mean
d∈SP

(dist(d, SY ))

× mean
g∈SY

(dist(g, SP))). (4)

where dist (d, SY ) ≡ miny∈SY ∥d − y∥2 denotes the nearest
Euclidean distance from point d to surface SY .

Although the above two surface measurements better
capture the segmentation stability and conciseness than Dice
score, they are based on the whole structure with parts
that are not that critical for later simulation studies, e.g.,
the upper surface of the maxilla and lower surface of the
mandible. Instead, we are only interested in the parts where
two instances meet, i.e., the teeth-bone interfaces. Therefore,
we also adopt GapDice proposed in [30] in Eq (6) to measure
the average Dice score only around the gap regions.

Given the segmentation results P and the ground truth
segmentation Y , the gap region G is defined by thresholding
the Euclidean distance transformation map of Y

G = {x|d1(x) + d2(x) < ϵ} (5)

where as defined in Eq (1), d1 and d2 represent the distance
to the border of the nearest foreground class and the second
nearest foreground class in Y , respectively. ϵ is the threshold
value, which we set ϵ = 5 as we found it to effectively capture
both the gap and boundary regions.

The Dice score between P and Y is then calculated in the
standard manner, but only inside G , as defined in Eq (6).
Fig 6 shows an indication of such regions.

GapDice(P,Y ) ≡
2 |P ∩ Y ∩ G|

|P ∩ G| + |Y ∩ G|
. (6)

B. QUANTITATIVE RESULTS AND ABLATION STUDY
Table 1 presents the aforementioned performance metrics
on the test set, including four images with accurate ground
truth segmentations. This experiment is implemented by
modifying one of the design choices each time while fixing
the others. (i) The strategy described in the Materials and

FIGURE 6. The estimated gap region (green) when calculating GapDice
for a patient, illustrated in an axial slice (left) and in 3D (right).

TABLE 1. Test results of our model compared with various design
choices and other models from the literature.

methods Section (ours), (ii) Training the model without
pre-training inaccurate data with no gap (NoPretrain), (iii)
Training the model without enforcing distance-based weight
map (NoWeight), (iv) Using only inaccurate data without
fine-tuning the model (NoFineTune), (v) Using a 3D UNet
[6] as the backbone model (3DUNet).

In addition, we also compare our results with 2D mixed-
scale dense CNN (MSDNet) [19] adopted by Wang et al.
[27] for the segmentation of human jaws as mentioned in
the Introduction. The model is trained only over the extracted
axial slices of CBCT scans from the training set, as proposed
in [27]. During inference, the 2D prediction results of all
the slices of each test scan are concatenated back to 3D for
validation. The MSDNet employed by Wang et al. [27] has
only a depth of 3, which we found extremely insufficient for
such task. We have thus also considered a depth of 100 and
200, as adopted in the original MSDNet paper [19].

The results indicate that the MPUNet (all the first four
models) performs significantly better than the standard
3D UNet when dealing with limited data. The 3D UNet
fails to learn the general semantic features of tooth-bones
with few data compared with MPUNet. Similarly, our
model significantly outperforms the MSDNet [19] adopted
by Wang et al. [27], even with more depth adjustment.
We speculate the poor performance of MSDNet is due to
the model’s oversimplified structure without downsampling
and upsampling phases like in UNet and its insufficiency in
learning 3D data from axial slices alone. These drawbacks
prevent it from learning appropriate features, especially on
data with high noise ratios like the scans in our dataset,
compared with the dataset in [27] where the CBCT scans are
free of metal artifacts.

Among ablation studies using MPUNet as the backbone
model (all the first four models), it is very interesting to
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notice that the model without being fine-tuned (NoFineTune)
gives a high Dice score and best surface measurements
(HD and ASSD). However, since it is anatomically incorrect
in that it fails to detail the gap between tooth-bones (cf.
Fig. 1c), it has significantly worse performance in the
proposed task-specific measurement, i.e., GapDice. This is
an indication of why the standard performance metrics that
measure voxel-wise correspondence or surface closeness can
be misleading regarding the final FE simulation and needs to
be resolved for future segmentation works.

Apart from this, our pipeline outperforms in almost all four
metrics. Especially, although the difference in the Dice score
is not significant (95.14± 1.21 vs 94.05± 1.35), pre-training
on inaccurate data and enforcing the weight map during
fine-tuning shows a significantly better GapDice score (64.28
± 4.65 vs 59.68 ± 4.65) and ASSD (0.118 ± 0.03 vs 0.139
± 0.04), which is vital for further simulation. Nonetheless,
we notice that the GapDice score is significantly lower than
the standard Dice score even in our pipeline which has the
highest GapDice. Such segmentation errors are mostly due
to various artifacts in the scan, as listed in Table 4, which
influences the segmentation results. In general, our results
in Table 1 have shown good segmentation performance and
robustness to the aforementioned artifacts by producing high
Dice scores and low surface deviations. However, the concise
modeling of details such as PDL layers in noisy scans can
be challenging even with our model adaptations to penalize
more on the gap regions. A future direction for providing
an even more robust network against the mentioned artifacts
would be including more data that capture various kinds
of artifacts or adding synthetic artifacts to the scans to
verify if the model can be trained to learn invariance to
the artifacts. Alternatively, deep learning models have been
proposed to reduce artifacts as a preprocessing step for the
auto-segmentation task [2], [34]. This means we would need
to have more data from the scan with artifacts along with the
scan of the same patient without artifacts, which is difficult
to obtain.

1) RESULTS WITH CROSS-VALIDATION
The aforementioned experiments and results in Table 1
are based on a specific train-test split of the eight scans
with accurate label maps. This choice is to preserve a
similar level of noise/artifacts in the training data (used for
fine-tuning to learn the gap) and test data, as listed in Table 4
in Appendix A. As another common practice in machine
learning, here we also conduct a 5-fold cross-validation by
randomly dividing the eight scans into training and test sets,
ensuring an equal split of four scans in each set as before to
analyze performance variations. Table 2 shows the mean and
standard deviation of the results with various design choices
in correspondence to those in Table 1. Note that the methods
with different backbone models (3DUNet and MSDNet) are
not included for cross-validation as they have shown to have
significantly poorer performance in Table 1. Table 2 generally

TABLE 2. Cross-validation with various design choices.

FIGURE 7. Illustration of failure cases. Top: The segmentation results on
two different test scans. Different failure cases are illustrated with
different colored circles, i.e., orange: inaccurate segmentation of the root
apexes; red: connected teeth problem; purple: a single tooth is wrongly
segmented with different labels. Colors are randomly assigned to
different teeth. Bottom: The scan with overlaid individual tooth labels
from the top right case, displayed from different views and showing
various artifacts that explain the failures.

shows a similar pattern with Table 1 in that our pipeline is able
to give significantly better GapDice which is vital for further
simulation studies [12].

C. PERFORMANCE OF INDIVIDUAL TEETH
SEGMENTATION
We further evaluate the performance of individual tooth
segmentation of our pipeline with the watershed method
mentioned above. Fig 3 illustrates that our pipeline can
generate visually accurate surface meshes of each tooth and
bone even in cases where the CBCT had been acquired
in the natural biting position, making the individual tooth
segmentation complex as the maxillary and mandibular teeth
are touching each other in most of the occlusal surfaces.
On the other hand, Fig 7 illustrates several failure cases in one
test scan. This test case is filled with various artifacts such as
crowded teeth, metal fillings, or dental bridges, as indicated in
Fig 7 Bottom. As mentioned in the previous subsection, such
artifacts can influence the segmentation in fine detail, e.g.,
the gap between neighboring teeth and roots, which results in
connected teeth and missing root apexes.

Numerical evaluation of the individual tooth and bone
segmentation is tricky because, unlike deep-learning-based
instance segmentation methods, no soft region proposals are
involved in the proposed method, making it impossible to
compute a mean Average Precision (mAP). Therefore, our
result of individual tooth segmentation is evaluated using the
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TABLE 3. Test results of individual teeth segmentation compared with
semantic segmentation.

same metrics in the previous section as shown in Table 3.
In this case, all the predicted teeth instances are mapped
back to a binary case and then combined with the bone
class. This is an unfair comparison since those metrics cannot
reflect its ability to distinguish individual teeth. However, it is
interesting to investigate if the further separation of individual
teeth does not harm the overall performance, even in this
unfair setting. In particular, Table 3 shows that the result after
applying individual tooth segmentation gives almost identical
results, with a surprising improvement of GapDice and HD.
This evaluation scheme could provide insight that the teeth
segments deviate negligibly from the prior segmented single
tooth class.

We acknowledge that the watershed method involves
several hyper-parameters, e.g., the threshold of the UNet
probability map and the opening and erosion sizes in Eq (7).
The values of these parameters must be tuned beforehand
to ensure that neighboring teeth do not share the same
foreground marker while avoiding creating multiple markers
for the same tooth. Furthermore, one might need to tune
these parameters when applying the same pipeline to other
problems with different scales or resolutions. Therefore,
a future work direction would be to infer those numbers
automatically from the studied dataset.

IV. CONCLUSION
Our proposed auto-segmentation framework successfully
segments both individual tooth and bones (maxilla and
mandible) from CBCT scans of human jaws, with accurate
tooth-bone boundaries and the gaps between the teeth roots
and sockets. The framework employs a modified version
of MPUNet, which is pre-trained on a dataset that does
not consider the presence of the PDL layer to learn the
general features of tooth-bone geometries. The model is then
fine-tuned using a small set of highly accurate segmentations
with a dedicated loss function that penalizes the gap regions.
This allows the model to better understand the gap where
the PDL layer resides and generate anatomically accurate
segmentations. We further separate individual teeth by
applying watershed segmentation over the MPUNet output.
The results of our experiments demonstrate the effectiveness
of our framework in detailing critical features, such as the
gap between the teeth-bone interfaces and the interproximal
regions of the teeth.

A trained segmentation professional has verified our work,
and the results show improved numerical results, reaching
an overall Dice score above 95% and a significantly higher
GapDice than other methods. Our approach can improve
anatomically incorrect and poorly annotated datasets with
a few accurate labels. One ablation study indicates that the

standard performance metrics can be misleading regarding
the final FE simulation by producing high-performance
metrics but anatomically incorrect results. On the other hand,
our results from the finite element (FE) analysis performance
test indicate that the models generated produce stress patterns
that are smooth and free of artifacts caused by missing gaps
in the geometry. As a result, the segmentation outcomes from
this study can be applied to generate FE models with minimal
adjustments.

APPENDIX A
UTILIZED SCAN DETAILS AND CBCT ARTIFACTS
Image artifacts can be broadly defined as visual effects in
reconstructed data that are absent in the real-world object
being studied. These artifacts may be the result of various
factors, such as subject movement, hardware limitations, the
simplifiedmathematical assumptions used for 3D reconstruc-
tion, or their combination. These artifacts, their severity, and
voxel sizes can play a significant role in the segmentation
task’s complexity. Therefore, to provide an overview of
observed artifacts in the dataset, we assessed the existence
of the common CBCT artifacts, i.e., metal artifacts, noise,
blurriness, motion, and aliasing artifacts [16], [18], [23].

The noise artifact can be observed as inconsistent voxel
intensities in regions where similar intensities should be
present. In addition, double contours can be observed in the
CBCT scans that are typically caused due to the patient’s
movement during the image acquisition process, making
it difficult to accurately identify boundaries and delicate
structures. Another common effect is the aliasing pattern,
which can be seen as lines diverging from the center toward
the periphery [16], [18], [23]. Moreover, metal artifacts can
be seen as regions with high intensities followed by streaks
diverging from the center of the metallic restoration/crown,
making it difficult to precisely identify the studied tooth’s
boundaries. Furthermore, such metal artifacts can cause
inaccurate grayscale values in areas not immediately adjacent
to the metallic restoration [16], which we refer to as the
ghosting effect here.

Table 4 provides details of the utilized scans in this study
and represents an overview of the train-test split in this study,
as well as the involved artifacts in each scan ranked between
zero to two, specifying the artifact’s severity level. Further
details on sex, age, manufacturer details, and scanner settings
are presented in Table 5.

APPENDIX B INDIVIDUAL TOOTH SEGMENTATION
DETAILS
Individual tooth is separated by applying the watershed
method over the MPUNet probability map of the teeth class.
The watershed method considers the intensity value of each
voxel as the height, where a high value denotes spikes/hills
and a low value denotes valleys. It fills every isolated valley
(local minima) with different colored water (labels). As the
water rises, depending on the peaks (gradients) nearby, water
from other valleys with different colors will merge. The
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TABLE 4. Specification of the utilized scans, including details on the original voxel size, number of missing teeth (including the wisdom teeth), different
artifact types, and data split for model training. The included artifacts ranked between zero, one, and two to specify the artifact’s level in each scan. This
variety of artifacts indicates a challenging task for learning an auto-segmentation network. The last column represents the data split for the pre-training
(PreT), fine-tuning (FineT), and testing (Test) steps.

TABLE 5. Details of studied cohort and utilized devices for image
acquisition including manufacturer information and device settings.

algorithm then tries to prevent the merging by building
‘‘barriers’’ locations where water merges until all the peaks
are underwater. The barriers then naturallymark the boundary
for each instance, which results in instance segmentation of
the teeth.

In practice, the primary watershed method usually pro-
duces over-segmented results due to its sensitivity to noise
or other irregularities in the image, like many local minima.
Instead, Marker-Based Watershed Segmentation (MBWS)
alleviates this problem by specifying the valley points
(foreground markers) that are to be merged and barriers
(background markers) to the model. The whole process
is shown in Fig 3, which is explained in the following
paragraphs.

1) FOREGROUND MARKERS GENERATION
Instead of working directly on the image here, the foreground
markers are determined by thresholding the UNet output
probability map since the probability map naturally repre-
sents how confident the model is in predicting the foreground
class, in this case, teeth. Eq (7) below indicates the foreground
regions where we first apply a threshold of 0.8 over the
probability map on teeth class P(x). We then remove isolated
false positives and shrink the thresholded foreground regions
by applying an opening, ◦, with a structural ball element
E5×5×5 followed by an erosion, •, with a structural ball
element E3×3×3 to provide disconnected teeth. Note that the
radii should be determined based on the general shape of the
instance, in this case, a tooth, to separate neighboring teeth

while avoiding introducing undesired disconnectivity inside
each tooth.

Mf ≡ {x | (P(x) > 0.8) ◦ E5×5×5 • E3×3×3} . (7)

2) BACKGROUND MARKERS GENERATION
The background markers are generated based on the fore-
ground markers Mf generated from the previous step by first
applying a distance transform over Mf , which corresponds
to the terms of d1 and d2 in Eq (1). The final background
region is generated by thresholding both the difference and
the sumof the two distances, which is indicated in Eq (8). This
choice of background markers corresponds to the trimmed
perpendicular bisector plane between any two neighboring
teeth, thus ensuring neighboring teeth do not get merged
by the watershed. The threshold of d1 + d2 is necessary to
ensure that the background marker does not penetrate other
foreground regions. The value of 20 is experimental and will
need to be tuned for other datasets or voxel sizes.

Mb ≡ {x||d1(x) − d2(x)| ≤ 1 ∧ |d1(x) + d2(x) |≤ 20} . (8)

3) MARKER-BASED WATERSHED SEGMENTATION
As shown in Fig 3, with the selected foreground and
background markers, the final MBWS is conducted on the
gradient of the UNet probability map due to its good response
to weak edge information [4]. The gradient is computed by
convolving Gaussian derivative kernel with σ = 2. Our
experience indicates that this preserves root structures better
than directly working on the probability map.

4) TRAINING STRATEGY WITH ADDITIONAL WEIGHT-MAP
Although this MBWS to separate individual tooth has shown
to be effective, its performance largely depends on the quality
of the UNet probability map. More specifically, if the model
gives inaccurate results (high probability of being fore-
ground) near the gap between some neighboring teeth, these
teeth will share a common foreground marker. Increasing
the utilized thresholding value for the foreground or the
erosion/opening kernel sizes in Eq (7) can provide different
foreground markers for the adjacent teeth. However, this
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FIGURE 8. The values of the weight map presented as colormap along
with the labeled teeth and bone. The proposed weight map enforces gaps
not only between the teeth and bone segments where the periodontal
ligament lies, but also between nearby teeth.

may also introduce fractions (several foreground markers)
inside the same tooth, causing the watershed algorithm to
assign several labels to the different parts of the same tooth.
Therefore, keeping the morphological and thresholding level
is crucial while providing a more accurate result near the
interproximal gaps.

As the distance weight map is very effective in learning the
gaps in the teeth-bone interfaces, we use this same strategy
to learn the interproximal gaps. After applying connected
component decomposition over ground truth to get a different
label for each tooth, we can follow the same strategy in Eq (1)
to enforce a higher weight on both the gap in the teeth-bone
interface and in the interproximal regions of the teeth to
better separate the adjacent teeth from each other. As shown
in Fig 8, the weight map calculated by Eq (1) has a higher
value not only between tooth-bone gaps but also between
neighboring teeth. Note that such Euclidean transformation
in Eq (1) is highly time-consuming because it involves the
distance computation to every class and sorting the values
afterward. Hence, the time complexity increases with at
least O(n log n) where n denotes the number of classes.
For example, the gap modeling in the teeth-bone interfaces
involved only two classes (bone and teeth), but modeling
the gaps in the interproximal regions involves approximately
30 classes (number of teeth). Therefore, it is crucial that the
weight map is computed before the model training and then
sampled together with the corresponding images and labels.
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