
U N I V E R S I T Y O F C O P E N H A G E N
F A C U L T Y O F S C I E N C E

PhD thesis

Scalable and Transactional
Actor-Oriented Databases
Yijian Liu

Advisor: Yongluan Zhou

Submitted: October 22, 2024

This thesis has been submitted to the PhD School of The Faculty of Science, University of Copenhagen

Acknowledgements

My PhD work was supported by Independent Research Fund Denmark under
Grant 9041-00368B. This PhD journey has been a profound learning experi-
ence, and I am grateful to all the people who made it possible. I am deeply
thankful for their support, encouragement, and guidance throughout this chal-
lenging yet rewarding path.

First and foremost, I express my sincere gratitude to Yongluan, my su-
pervisor. Your expertise and continuous support have guided me through the
complexities of this work. You also gave me a lot of freedom to work at my
own pace, never imposing undue pressure. This allowed me to independently
explore and develop my ideas, knowing I had your guidance whenever needed.
I am also especially grateful to the co-authors of my first research work, Li,
Yongluan, Vivek, and Marcos. You patiently provided me with a wealth of
solid knowledge, from the fundamentals of research methodology to the intri-
cacies of developing and evaluating systems. Your willingness to share your
insights and offer constant advice has been a cornerstone of this project, and
I am truly grateful for your mentorship.

I would also like to thank my fellow PhD colleagues, Rodrigo, Tilman, and
Li, for your accompany and support. Our discussions, whether academic or
otherwise, have been a source of motivation and inspiration. You have made
the research process less isolating and much more enjoyable.

I would like to give my heartfelt thanks to my partner and my friends,
whose delicious meals and cozy gatherings never failed to lift my spirits. The
time spent with you brought much-needed balance to my life, making work
more enjoyable and the long winter months easier to endure. Your warmth and
care truly brightened this journey, and I am deeply grateful for your generous
hospitality and mental support.

To my parents and my little sister, words cannot express my gratitude for
your unconditional love and encouragement. You have always believed in my
ability to accomplish anything, given me the freedom to pursue my passions,
and offered your support and understanding. Despite the thousands of miles
between us, whenever I return home, I feel like a carefree child once again.
You are my greatest source of strength.

3

Abstract

In modern system design, the ”separation of concerns” principle has led to two
significant architectural trends: a shift from stateless to stateful middle tiers in
the three-tier client-server architecture and the growing adoption of modular,
loosely coupled architectures for complex applications. These trends enhance
system responsiveness, scalability, and flexibility but also present challenges.
The rising popularity of stateful middle-tier architectures, which maintain
application states close to application logic in the middle-tier servers, offers
numerous benefits but transfers the complexity of state management from
backend databases to the application layer. In addition, it is particularly
challenging to manage distributed states across loosely coupled components.

The actor model [4] has experienced a resurgence as a tool for building
stateful middle tiers and modular systems. By breaking down application
logic into independent actors that communicate asynchronously, the actor
model simplifies concurrency, scalability, and system resource management.
However, its adoption has been limited due to the absence of critical database
features such as transaction management, data replication, and data con-
straint enforcement. In response, the Actor-Oriented Database (AODB) [30]
concept has emerged, proposing integrating these database capabilities into
actor-based systems.

This dissertation emphasizes the need for further research and develop-
ment in AODB. Specifically, we propose a scalable and transactional AODB
to address the state management challenges for actor-based stateful middle
tiers of modern applications. This dissertation achieves the goal through three
steps: developing a transaction library for multi-actor transactions, designing
a distributed system architecture, and introducing a data model to enable
finer-grained state management. The outcome of this dissertation is a fully
developed AODB featuring a clear and expressive programming model, a scal-
able actor-oriented architecture, efficient transaction processing techniques, a
prototype implementation built on the Orleans framework, and comprehensive
cloud-based evaluation.

5

Resumé

I moderne systemdesign har ”separation of concerns”-princippet ført til to
væsentlige arkitekturtendenser: et skift fra stateless til stateful mellemlag
i den trelagede klient-server-arkitektur og den voksende anvendelse af mod-
ulære, løst koblede arkitekturer til komplekse applikationer . Disse tendenser
forbedrer systemets reaktionsevne, skalerbarhed og fleksibilitet, men giver ogs̊a
udfordringer. Den stigende popularitet af stateful middle-tier-arkitekturer,
som opretholder applikationstilstande tæt p̊a applikationslogikken i middle-
tier-serverne, byder p̊a adskillige fordele, men overfører kompleksiteten af
state management fra backend-databaser til applikationslaget. Derudover er
det særligt udfordrende at styre distribuerede states p̊a tværs af løst koblede
komponenter.

Actor-modellen [4] har oplevet en genopblussen som et værktøj til at
bygge stateful mellemlag og modulære systemer. Ved at nedbryde applika-
tionslogikken i uafhængige aktører, der kommunikerer asynkront, forenkler
aktørmodellen samtidighed, skalerbarhed og systemressourcestyring. Dets
vedtagelse har dog været begrænset p̊a grund af fraværet af kritiske database-
funktioner s̊asom transaktionsstyring, datareplikering og h̊andhævelse af data-
begrænsninger. Som reaktion herp̊a er konceptet Actor-Oriented Database
(AODB) [30] dukket op, der foresl̊ar at integrere disse databasefunktioner i
aktørbaserede systemer.

Denne afhandling understreger behovet for yderligere forskning og ud-
vikling i AODB. Specifikt foresl̊ar vi en skalerbar og transaktionsbaseret AODB
for at imødekomme de udfordringer ved h̊andtering af state for aktørbaserede
stateful middle tiers i moderne applikationer. Denne afhandling opn̊ar m̊alet
gennem tre trin: udvikling af et transaktionsbibliotek til multi-aktør transak-
tioner, design af en distribueret systemarkitektur og introduktion af en data-
model for at muliggøre en mere finkornet state-styring. Resultatet af denne
afhandling er en fuldt udviklet AODB med en klar og udtryksfuld program-
meringsmodel, en skalerbar aktørorienteret arkitektur, effektive transaktions-
behandlingsteknikker, en prototypeimplementering bygget p̊a Orleans ram-
meværket og omfattende cloud-baseret evaluering.

7

Contents

1 Introduction 11

1.1 Snapper: A Transaction Library On Actor Systems 13

1.2 SnapperD: A Scalable Transactional Actor System 14

1.3 SnapperX: Fine-Grained Actor State Management 14

1.4 Publications . 15

1.5 Structure of Dissertation . 15

2 Background and State-of-the-Art 17

2.1 Three-Tier Architecture . 17

2.1.1 Stateless Middle Tier . 17

2.1.2 Stateless Middle Tier with Caching 18

2.1.3 Stateful Middle Tier . 19

2.2 Loosely-Coupled Architecture 20

2.2.1 Cross-Component State Management 21

2.2.2 Application-Layer State Management 21

2.3 Actor Model and Actor Systems 22

2.3.1 Actor Model . 23

2.3.2 Actor-Based Stateful Middle Tier 24

2.3.3 Actor Runtime and Framework 25

2.3.4 Orleans: Virtual Actor Framework 25

2.4 Actor-Oriented Databases . 28

2.4.1 Multi-Actor Transactions 28

2.4.2 Indexing and Querying Actors 30

2.4.3 Actor Replication . 30

2.4.4 Actor Migration . 31

2.4.5 Conclusion . 31

2.5 Transactional Database Management Systems 32

2.5.1 Transaction Management 32

2.5.2 Deterministic Databases 33

3 Snapper: A Transaction Library On Actor Systems 37

3.1 Introduction . 37

3.2 Snapper Programming Model 41

8

CONTENTS 9

3.2.1 Conceptual Overview 41

3.2.2 Transactional API of Snapper 42

3.3 Single-Node Architecture . 44

3.3.1 Overview . 44

3.3.2 PACT Processing . 46

3.3.3 ACT Processing . 51

3.3.4 Hybrid Processing . 52

3.4 Single Node Evaluation . 57

3.4.1 Experimental Settings 57

3.4.2 PACT vs. ACT Execution 59

3.4.3 Performance of Hybrid Execution 63

3.4.4 Scalability . 65

3.5 Related Work . 67

3.5.1 Actor-Oriented Databases (AODBs) 67

3.5.2 Deterministic Database Management Systems 68

3.5.3 Transaction Dependency Analysis 68

3.6 Conclusion . 69

4 SnapperD: A Scalable Transactional Actor System 71

4.1 Introduction . 71

4.2 Multi-node Architecture . 74

4.2.1 Overview . 74

4.2.2 Extended Architecture 75

4.2.3 PACT Processing . 77

4.2.4 Hybrid Processing . 82

4.3 Live Actor Migration . 83

4.3.1 Overview . 83

4.3.2 Integrating with PACT Processing 85

4.3.3 Integrating with Hybrid Processing 86

4.4 Multi-Node Evaluation . 87

4.4.1 Experimental Settings 87

4.4.2 Effect of optimizations 89

4.4.3 PACT vs. ACT Execution 90

4.4.4 Performance of Hybrid Execution 92

4.4.5 Scalability . 93

4.4.6 Actor Migration . 94

4.5 Related Work . 95

4.5.1 Global and Local Scheduling 95

4.5.2 Assumptions about Determinism 96

4.5.3 Distributed and Non-Distributed Transactions 96

4.5.4 Actor State Persistence 96

4.6 Conclusion . 97

5 SnapperX: Fine-Grained Actor State Management 99

10 CONTENTS

5.1 Introduction . 100
5.2 Actor State Management for Data Integrity 102

5.2.1 Conceptual Overview of SmSa 102
5.2.2 Dependency Management 104

5.3 Transactional Actor State Management 108
5.3.1 The Dangers of Unordered Operations 108
5.3.2 An Actor Transaction Library – Snapper 109
5.3.3 SnapperX: Integration of SmSa and Snapper 110

5.4 Evaluation . 115
5.4.1 Implementation Variants 115
5.4.2 Experimental Setting . 116
5.4.3 Characteristics of SnapperX 118
5.4.4 Skewed workload . 121
5.4.5 Scalability . 124
5.4.6 Online Marketplace . 125

5.5 Related Work . 128
5.6 Conclusion . 129

6 Conclusion 131
6.1 Ongoing and Future Work . 131

Bibliography 135

A Proof for Hybrid Execution Correctness 151

Chapter 1

Introduction

Modern applications adhere to the principle of ”separation of concerns” as a
key guideline for designing system architecture. Over the past few decades,
two major trends have shaped architectural design. Horizontally, the widely
adopted layered architecture, particularly in web applications, has evolved
from a traditional stateless middle tier to a stateful middle tier [30, 26, 155].
Vertically, complex applications that once followed a monolithic design now
increasingly adopt a modular architecture, where components are loosely cou-
pled [89, 86]. These two trends, while offering benefits, also introduce new
challenges.

The three-tier architecture is a stalwart in client-server architectures. Its
framework divides functionality into presentation, logic, and data storage lay-
ers. Traditionally, the middle tier has hosted application logic, bridging the
communication between user interfaces and backend data storage. However, a
significant shift is underway. An increasing number of applications are adopt-
ing a stateful middle-tier architecture, where the application state is man-
aged within the middle tier and asynchronously saved to backend storage.
This approach offers many advantages: it improves responsiveness, supports
compute-intensive tasks, gives developers greater flexibility in implementing
application logic, reduces reliance on backend storage, and provides a cost-
effective way to scale by adding CPUs and memory to the middle-tier servers.
However, keeping the application state in the middle tier also means deviat-
ing from the inherent state management capabilities of the backend database
system. These capabilities are now the responsibility of developers.

Simultaneously, there has also been a shift from monolithic systems to
modular, loosely coupled architectures, such as microservices. A loosely cou-
pled system architecture breaks down functionalities into separate components
that interact with minimal dependencies, enabling them to operate indepen-
dently and be easily modified or replaced without affecting the entire system.
This architecture brings systems with easier maintenance, independent deploy-
ment, scalability, reliability, and flexibility in technology choices. However, it

11

12 CHAPTER 1. INTRODUCTION

exacerbates the challenge of managing the state across components, exposing
the complexities of distributed systems that developers must navigate.

The actor model [78] proposed more than 50 years ago has now gained
increasing popularity for building stateful middle-tiers and developing loosely
coupled systems. An actor-based application decomposes application states
and functionalities into a large number of actors that communicate with each
other via asynchronous messages. The actor model serves as a programming
paradigm that speeds up the development of interactive, distributed, and
large-scale applications. Key features of the actor model, such as the encap-
sulated un-shared state, the single-thread abstraction, and the asynchronous
communication, simplify concurrency management, facilitate distributed sys-
tem deployment, optimize resource usage, and enhance system scalability.
Moreover, the rapid development of commercial actor frameworks, e.g., Akka,
Orleans, brings the actor model to a broader range of applications.

While the actor model offers numerous advantages, its limitations have
hindered it from achieving wider adoption. One major drawback is its lack
of built-in support for features commonly offered by database systems. In re-
cent years, a novel concept, Actor-Oriented Database (AODB) [30], has been
proposed, which promotes the idea of integrating database features into actor
systems, such as transaction management, indexing and queries, persistence,
data replication, etc. This dissertation highlights the urgent need to advance
AODB, an emerging research topic that warrants further exploration and dis-
cussion.

Inspired by the few recent research works that contribute to this area,
the main objective of this dissertation is to build a scalable and transactional
AODB. To achieve this goal, we first propose an efficient transaction man-
agement solution for multi-actor transactions, which serves as a fundamental
technique for building up other critical features. In the first work, a pro-
gramming model is provided for developers to write multi-actor transactions
and plug-in system-level support for transaction processing. Afterward, an
extended system architecture is deployed based on the previous single-node
design, which enhances the system with horizontal scalability. Moreover, to
deal with various requirements needed in a distributed system, such as elastic
scaling, load balancing, and server failures, we also develop an actor migration
mechanism that works efficiently under the context of transaction processing.
In the last work, we further exploit the capability of the actor model by in-
troducing a more expressive data model for the actor state, which enables
the declaration and management of data constraints across actors, facilitates
fine-grained transactional actor state management, and enhances the overall
system performance.

In summary, this dissertation establishes a state management layer on top
of the actor system, which integrates a transaction programming abstraction,
an expressive data model for fine-grained actor state management, novel trans-
action processing techniques, a data dependency management mechanism, and

1.1. SNAPPER: A TRANSACTION LIBRARY ON ACTOR SYSTEMS 13

an efficient actor migration method. Achieving strong transactional guar-
antees, efficiency, and scalability while enabling these features on the actor
system is the main contribution of this dissertation.

Figure 1.1: Scalable and transactional AODB architecture

1.1 Snapper: A Transaction Library On Actor
Systems

The actor model emerges as a promising programming abstraction for building
stateful middle tiers for interactive, highly concurrent, and large-scale applica-
tions. Though it provides a simplified concurrency model for individual actors,
it does not address the concurrency issue for requests that span multiple ac-
tors. In this case, cross-actor coordination is needed to guarantee application
consistency and correctness. Several research efforts have aimed to ensure
ACID properties for multi-actor transactions. However, their performance
has been suboptimal, and they fail to fully leverage the unique characteristics
of actor-based applications.

In this part of the thesis, we create Snapper, a transaction library built
on actor systems. In this work, we adopt deterministic transaction execution
techniques for multi-actor transactions, which largely reduce the overhead of
2PC, increase the system concurrency level, and improve transaction through-
put. In addition, we preserve the traditional transaction processing pattern,
2PL + 2PC, to support transactions that can not adopt deterministic con-
currency control. Moreover, Snapper can accommodate these two distinct
transaction processing modes simultaneously on one system, namely hybrid
concurrency control. This is a novel feature that benefits from both the good

14 CHAPTER 1. INTRODUCTION

performance of deterministic execution and the flexibility of nondeterministic
execution. We also design the architecture for Snapper, which uses differ-
ent types of actors to facilitate system functionalities. This architecture is
evaluated in a single-node setup and achieves vertical scalability.

1.2 SnapperD: A Scalable Transactional Actor
System

The previous work Snapper investigates transaction processing techniques
that work efficiently on a single-node setup. However, for modern applica-
tions, it is insufficient to only achieve vertical scalability, which has limited
capability and faces the risk of a single point of failure. Therefore, we find it
essential to explore a multi-node architecture for Snapper. However, it is non-
trivial to support a workload mixing with both distributed and non-distributed
transactions while achieving good performance and scalability.

In this part of the thesis, we develop SnapperD, a distributed and scal-
able transactional actor system. In this work, we extend the original de-
sign of Snapper into a distributed environment. More specifically, we adopt
a hierarchical architecture and discover two necessary optimizations (tuned
batching and optimized commit protocol) that should be applied to achieve
high throughput. Additionally, an actor migration method is developed to
enhance the functionality of a distributed actor system. This method seam-
lessly integrates with the actor transaction processing and significantly reduces
transaction aborts caused by data and message loss.

1.3 SnapperX: Fine-Grained Actor State
Management

In the actor model, the actor state is typically treated as an opaque object,
offering no insight into its structure or access patterns. This limitation leaves
complex scenarios, such as referential integrity, data replication, and func-
tional dependencies, as full responsibilities of developers. To alleviate the
burden on developers, a dedicated data model for actors is needed, which
reveals more information about the actor state and helps the system moni-
tor and control operations on the actor state, therefore enabling system-level
support for finer-grained state management tasks.

In this part of the thesis, we propose SnapperX, a transactional actor
system that enables fine-grained actor state management. In SnapperX, each
actor’s state is modeled as a collection of key-value pairs, and the relations cut
across keys on different actors are modeled as update or delete dependencies.
With this data model, SnapperX provides a more expressive programming ab-
straction for developers to specify data constraints on top of the actor model.

1.4. PUBLICATIONS 15

This data model is integrated with Snapper to enable transactional and auto-
matic data constraint enforcement across actors. Furthermore, with the extra
information revealed by the data model, SnapperX advances the transaction
processing techniques by enabling incremental logging and finer-grained key-
level concurrency control.

1.4 Publications

This thesis is based on the following three manuscripts:

• Chapter 2 contains the background information from the below-listed
three manuscripts.

• Chapter 3 is reproduced from a published conference paper: Liu,
Y., Su, L., Shah, V., Zhou, Y., Salles, M. A. V. Hybrid Determinis-
tic and Nondeterministic Execution of Transactions in Actor Systems.
In SIGMOD ’22: Proceedings of the 2022 International Conference on
Management of Data (June 2022), https://doi.org/10.1145/3514
221.3526172. The source code of this work is available on GitHub:
https://github.com/diku-dk/Snapper-Orleans.

• Chapter 4 and Appendix A are based on a manuscript: Liu, Y., Su,
L., Shah, V., Zhou, Y., Salles, M. A. V. Distributed Snapper: Scalable
and Efficient Transaction Execution in Actor Systems. Manuscript in
submission (September 2024).

• Chapter 5 is modified from a published conference paper: Liu, Y.,
Laigner, R., Zhou, Y. Rethinking State Management in Actor Systems
for Cloud-Native Applications. In SoCC ’24: Proceedings of the 2024
ACM Symposium on Cloud Computing (November 2024), https://do
i.org/10.1145/3698038.3698540. The source code of this work is
available on GitHub: https://github.com/diku-dk/SnapperX-Orlea
ns.

1.5 Structure of Dissertation

The remainder of this dissertation is organized as follows. Chapter 2 provides
an in-depth discussion of the background and the current state-of-the-art.
Chapter 3, 4, and 5 present the three main research studies summarized above,
respectively. Each of them covers motivation, system architecture design, key
techniques, and performance evaluation. Finally, Chapter 6 offers a summary
of the dissertation and outlines ongoing and future work.

Chapter 2

Background and
State-of-the-Art

2.1 Three-Tier Architecture

The three-tier architecture [143] has long been a cornerstone in software de-
velopment, particularly since its prominence in the 1990s [68, 37]. This ar-
chitecture organizes applications into three distinct layers: the presentation
tier (user interface), the middle tier (application logic), and the database tier
(data storage). Its separation of concerns and modularity quickly made it the
architecture of choice for a variety of applications, from enterprise resource
planning (ERP) systems [18] to web applications [97].

In a three-tier architecture, a user’s request first goes to the presentation
tier, which passes it to the middle tier. The middle tier, or application server,
processes the request using business logic and may interact with the database
to retrieve or update data. After processing, the response is sent back to the
presentation tier for display. This middle tier is especially crucial as it manages
application logic and coordinates interactions between the user interface and
the database.

In recent decades, more and more applications have tended to adopt a
stateful middle tier rather than a traditional stateless design. This evolution
is driven by the changing characteristics and requirements of modern applica-
tions. In the following part of this section, three different implementations of
the middle tier are discussed.

2.1.1 Stateless Middle Tier

The classic implementation of the three-tier architecture is with a stateless
middle tier. The stateless middle tier does not maintain any application state
or session information between requests. Each client request is treated inde-
pendently by the middle tier, and any required state is stored externally, such

17

18 CHAPTER 2. BACKGROUND AND STATE-OF-THE-ART

as in a database or client-side storage. The interactions between the middle-
tier server and the database usually require a layer of abstraction to map be-
tween the middle-tier programming paradigm and the database scheme. For
example, ORM (Object-Relational Mapping) [173] is a technique that con-
verts data between an object-oriented programming language and a relational
database. ORM also automatically generates basic SQL queries for CRUD
(Create, Read, Update, Delete) database operations [104].

One of the most significant advantages of a stateless middle tier is its inher-
ent scalability. Given that each request is independent, multiple application
servers can be deployed in a load-balanced configuration, where any server can
handle any request without needing access to prior session data. This makes
it easier to scale horizontally by simply adding more servers to accommodate
increased demand. Besides, individual server failures have a minimal impact
on the overall system. Since no session information or application data is
stored on the middle-tier server, requests can easily be rerouted to another
server in case of a failure, enhancing the system’s resilience.

However, while this design makes the system easier to manage and scale,
it also introduces significant latency when interacting with the database, espe-
cially when handling large datasets or when the database is located remotely.
The stateless middle tier either relies on the database to perform all the com-
plex queries directly or retrieves data from the database, processes them in
the middle-tier server, and then pushes the updates back to the storage layer.
This process depends heavily on the computational power of the database
and can be time-consuming due to the network round trips [154]. Besides,
the database can become a bottleneck when there are a large number of con-
current requests during peak times. In addition, the stateless middle tier can
lead to inefficient data transfer, as the same data may be repeatedly sent from
the database to the middle tier for different requests. This data shipping
paradigm [183] can consume excessive bandwidth, particularly in applications
with high data retrieval demands.

2.1.2 Stateless Middle Tier with Caching

Caching is often introduced to mitigate the drawbacks of the stateless middle
tier [103, 125, 142, 108]. The caching layer temporarily stores frequently ac-
cessed data, reducing the need to fetch it from the database for every request.
It can also cache the results of expensive computations, avoiding duplicated
calculations for the same task. This setup significantly reduces request latency
and database load.

However, caching works as a supplementary layer on top of the primary
database or persistent storage if data durability is required; therefore, it does
not eliminate the dependency on the storage and the need to scale the stor-
age layer. In addition, the effectiveness of the cache depends heavily on the
predictability of data access patterns and data consistency. When requests

2.1. THREE-TIER ARCHITECTURE 19

require diverse or frequently updated data, cache hit ratios can drop, leading
to increased reliance on the database. Moreover, maintaining cache consis-
tency can be challenging in the case of highly concurrent and write-intensive
requests. It potentially results in outdated or incorrect data being served and
compromising application safety and correctness. Meanwhile, managing cache
expiration, invalidation, and synchronization adds complexity to the system.

2.1.3 Stateful Middle Tier

Alternatively, adopting a stateful middle tier becomes a more popular ap-
proach. In this model, the middle tier not only processes application logic but
also stores and manages the application state directly within its computing
nodes. Instead of a data shipping paradigm, where data is constantly moved
between the database and the middle tier, the stateful middle tier adopts
a function shipping paradigm [183]. Here, client requests are sent to the
nodes holding the relevant data, allowing the business logic to execute lo-
cally. To enhance durability, the updated state can be flushed periodically
and asynchronously to the persistent storage.

Holding state in the middle tier differs from caching data. For caching,
(1) data are primarily stored in the backend database, which may receive
update requests from different sites; (2) various mechanisms are explored to
ensure that the cache remains up-to-date and consistent with the database,
meaning the database serves as the source of truth in case of conflicts; and
(3) the cached data is mainly used for serving read requests. Differently, for
the stateful middle tier, (1) the most recent state is kept in the middle tier,
accepting requests over the network; (2) the data in storage is mainly for
persistence and might be outdated if the updates are not flushed immediately,
and (3) the middle tier state serves both read and write-intensive requests
within real-time.

The stateful middle tier offers numerous advantages. First, it facilitates in-
teractive and latency-sensitive requests that require real-time response, given
that the application state is served directly from the middle tier. Second, it
is more cost-effective to scale the middle-tier servers by adding more CPUs
and memory space than to scale a database server [15, 16]. Third, instead
of encoding transactions as stored procedures to adapt to the interfaces and
abstractions limited by the database systems, developers are offered the flexi-
bility to program transactions in any programming language and abstraction
in the middle tier. Technologies like ORM allow developers to program busi-
ness logic on an abstract database using the languages and frameworks they
are familiar with. However, these technologies still require the definition or co-
design of schemes, structures, or models in both the application layer and the
database layer, and they have many limitations, such as the expensive over-
head and the limited ability to generate and optimize complex queries [173].

20 CHAPTER 2. BACKGROUND AND STATE-OF-THE-ART

The stateful middle tier encounters various challenges, too. The primary
challenge is to conduct state management tasks in the middle tier, such as
transaction management, backup and recovery, data integrity enforcement,
replication management, index management, etc. Unlike the previous two
models, where such tasks are shipped to the database, a stateful middle tier
is supposed to conduct these tasks in the application layer.

A straightforward solution is to deploy an in-memory database, which ex-
poses complex data structures such as relational tables (H2 [74], VoltDB [165],
SQLite [161]) and key-value collections (Redis [130], Aerospike [163]), provides
rich database features, and allows fast access to data from the application
codes. However, we still need to face the limitations of a database system,
including: (1) Transactions are written as stored procedures. (2) Databases
typically lack built-in abstractions for asynchrony [155, 66, 141]. In most
databases, such as MySQL, PostgreSQL, and Redis, the transaction model is
synchronous, meaning that once a transaction starts, each statement within
the transaction is executed one after the other in a blocking fashion. In a
database system, asynchronous behavior is usually achieved through special
techniques like application-level asynchronous programming [110], background
jobs [107, 144], and message queues [137]. (3) A transaction processing middle-
ware [24, 152, 26] is often needed to manage distributed transactions across
database servers. And (4) the mapping between objects in the application
layer and the data records in the database can be complex and slow (e.g.,
object-relational impedance mismatch [80, 153]).

The idea of migrating database functionalities to the middle tier by imple-
menting similar algorithms, protocols, or strategies is intuitive and has been
explored by plenty of research works [30, 117, 166]. However, a commonly
encountered challenge is to integrate the database-oriented features with the
application’s programming model, data model, architecture, and performance
requirements. This dissertation investigates state management challenges and
explores solutions for applications that are built with the actor-based (Section
2.3.1) stateful middle tier.

2.2 Loosely-Coupled Architecture

The tiered architecture separates a system horizontally by organizing it into
layers. Under the principle of separation of concerns, another trend of architec-
tural design is to separate a system vertically by dividing it into independent,
self-contained components or services, each responsible for a specific business
capability from the user interface to data management. Within each compo-
nent, the layered architecture can be adopted. This loosely coupled architec-
ture has become popular for building applications that need to deliver multiple
functionalities and accommodate diverse workloads (e.g., e-commerce [76]).

This architecture is often discussed in contrast to the monolithic sys-

2.2. LOOSELY-COUPLED ARCHITECTURE 21

tem [86, 71], where all components are tightly integrated and deployed as a
single, unified application. Nowadays, plenty of system design principles and
techniques have emerged for developing loosely-coupled systems, including mi-
croservices [86, 176], event-driven architecture (EDA) [48], publish-subscribe
architecture, actor systems [122, 5], and serverless architecture.

2.2.1 Cross-Component State Management

The loosely coupled architecture provides many promising features, includ-
ing independent scalability, failure isolation, flexibility to adopt various tech-
nologies, fast development and deployment, optimized resource utilization,
and easy maintenance. To maximize these advantages, a best practice when
building such a system is to reduce inter-dependencies between different com-
ponents or modules [178, 86]. However, this is non-trivial for many real-life
applications. It requires developers to have a high level of expertise and care-
ful planning to design clear, well-defined interfaces and communication proto-
cols. In addition, for scenarios where cross-component coordination and data
sharing are inevitable [89], it is significantly challenging to maintain state
consistency across multiple components.

Supporting efficient and scalable state management for a distributed sys-
tem has been a mainstream topic discussed in a variety of research works [77,
185]. Most of them rely on the fundamental trade-offs among consistency,
availability, and partition tolerance (CAP theorem [67]). A series of database
management systems have emerged to fit different scenarios. For example,
strong consistency [22], causal consistency [20], and eventual consistency [19].
Additionally, there are also database management systems that achieve all
CAP guarantees by making certain assumptions or imposing specific con-
straints. For example, deterministic databases (Section 2.5.2.2) utilize de-
terministic execution of pre-ordered transactions.

Moreover, a loosely coupled system usually relies on indirect communi-
cations between components, such as messages, events, and asynchronous
network protocols. Ensuring the correctness of the application state in the
presence of communication delays, redundancy, and failures, as well as un-
der various delivery guarantees and persistence models, becomes even more
complex.

2.2.2 Application-Layer State Management

In a loosely coupled system, an interesting observation is that developers often
need to manage states in the application layer [89]. In addition to the benefits
of adopting the stateful middle tier, there are many cases where developers
find it necessary to manage the state in the application layer because it is in-
sufficient to barely rely on the backend database. For example, there are two
popular design patterns applied in loosely coupled systems, particularly mi-

22 CHAPTER 2. BACKGROUND AND STATE-OF-THE-ART

croservices, which also require extra control or maintenance in the application
code to ensure application correctness.

One is the Saga pattern [69, 164], which breaks down a complex and long-
running distributed transaction into a series of smaller local transactions, each
handled by a different service. When a service successfully completes a local
transaction, the next service is notified via an event to start another local
transaction. If any local transaction fails, the corresponding service invokes
a compensation transaction, which will undo changes made by the previous
steps, therefore aborting the transaction atomically. The Saga pattern is an
alternative method of processing distributed transactions under an eventual
consistency guarantee. Though it provides a distributed transaction process-
ing mechanism that naturally matches the loosely coupled system architecture,
it imposes a lot of burden on developers to implement correct compensation
transactions. In the end, it is the developers’ responsibility to maintain the
state consistency.

The other one is the CQRS pattern (Command and Query Responsibility
Segregation [33]), where the write operations (commands) and read operations
(queries) are handled by different services. In this pattern, the write service
focuses on maintaining data integrity and consistency under frequent state
changes, while the read service is optimized for efficient querying by organiz-
ing data specifically for fast retrieval. The read service stays up-to-date by
subscribing to the update events from the write services. This pattern is com-
monly used to manage materialized views that aggregate data from multiple
sources. However, a well-known challenge for this pattern is to maintain a
consistent view of the read state with asynchronous events sent from different
sites. Again, it heavily relies on developers to maintain consistency.

To wrap up, these architectural design trends push developers to imple-
ment state management functionalities in the application code due to the lack
of system-level support. Their solutions are often tailored to specific cases
and can be error-prone. To alleviate the burden on developers, this disserta-
tion identifies an urgent need for a middle-tier solution that effectively and
efficiently manages the application state across components in loosely coupled
systems.

2.3 Actor Model and Actor Systems

This section discusses the actor model, a programming abstraction that is
particularly suitable for building stateful middle tiers of interactive, highly
concurrent, and large-scale applications. The actor model also aligns closely
with the principles of loosely coupled systems that the system functionalities
and application states of an actor-based application are decomposed into hun-
dreds and thousands of actors. In recent years, with the growing popularity of
the actor model, the need arose to develop a new type of database — the Actor-

2.3. ACTOR MODEL AND ACTOR SYSTEMS 23

Oriented Database (AODB, Section 2.4) — specifically designed to enhance
system-level state management for actor-based applications. This dissertation
focuses on providing efficient and scalable transactional state management so-
lutions for AODB.

2.3.1 Actor Model

The actor model was invented by Carl Hewitt, Peter Bishop, and Richard
Steiger in 1973 [78] as an efficient and highly parallel architecture for artificial
intelligence languages. Later, in 1986, Gul Agha [4] formalized the foundations
of the actor model, defined the basic constructs of an actor system, and partic-
ularly highlighted actors’ potential to achieve extremely high concurrency. In
the actor model, actors are the fundamental units of computation, embodying
state, behavior, and communication through message passing. The features
of the actor model can be summarized as follows:

• Identification: Each actor has a unique identifier (e.g., a name, an
address/path, or a process ID [59, 5, 122]), allowing it to be explicitly
accessed, located, and messaged within the system.

• Encapsulation: Similar to objects in OOP (Object-Oriented Program-
ming), each actor encapsulates its own state and behaviors.

• Asynchronous Communication: Actors communicate with each other
by passing asynchronous messages – an actor delivers a message to an-
other without waiting for the message to be processed and the result to
be returned by the receiver actor. In other words, actors are allowed
to perform other tasks while waiting for responses. This non-blocking
communication between actors reduces idle time, improves the concur-
rency level, and enhances system scalability. Moreover, it can isolate the
failure of one actor from others, embracing the system’s resilience.

• Isolation: Different from OOP, each actor’s state is private, preventing
direct access from an actor to another actor’s state. An actor requests
data from another by passing a message, and an actor only accesses its
own state when processing messages. Therefore, a group of actors in one
server logically forms a distributed environment.

• Single-Thread Abstraction: Each actor processes incoming messages
one after the other. While one message is processed, the other received
messages are buffered in the actor’s ”mailbox”. The sequential pro-
cessing of messages builds a single-thread abstraction within each actor
such that no state is ever shared between multiple threads. Therefore,
no locking or other synchronization mechanisms are needed for an actor.

24 CHAPTER 2. BACKGROUND AND STATE-OF-THE-ART

In an actor system, computations are driven by message passing and pro-
cessing. Upon receiving a message, an actor processes it according to its
defined behavior, which may involve updating its state, sending messages to
other actors (or itself), creating new actors, or changing its behavior. An
actor system is supposed to dynamically allocate resources for pending com-
putation tasks and release them once tasks are completed. In contrast to a
sequential program, which is limited to running on a single core and execut-
ing one instruction at a time, the actor model allows for concurrent execution
across multiple cores. The creation of new actors naturally increases the dis-
tribution or the parallelism level of the computation and effectively drives
higher usage of resources. Meanwhile, idle actors, those with no messages to
process, consume no computing power and do not hinder the system’s effi-
ciency and scalability. Under the rapid development of multi-threaded and
many-core systems [182, 179, 22], the actor model becomes more appealing as
a programming abstraction that can efficiently leverage computing resources.

2.3.2 Actor-Based Stateful Middle Tier

This section summarizes the advantages of the actor model that make it an
ideal choice for constructing stateful middle tiers [26, 30, 155] for modern
applications.

From the perspective of developers, the actor model resembles the OOP
programming paradigm in terms of encapsulation and modularity, offering an
intuitive way to structure applications by modeling them as actors. Besides,
the actor model naturally partitions the application state across many actors,
eliminating the need for developers to explicitly design the application for a
distributed architecture. In addition, each actor’s state can be flexibly orga-
nized by using different data types and structures without the constraints of
conforming to database schemes. Meanwhile, transactions can be coded as
workflows that pass through one or multiple actors, enabling the implemen-
tation of complex transaction logic without the need for stored procedures.
Moreover, the actor model simplifies concurrency management, alleviating the
burden on developers.

From the perspective of system performance, actors are able to serve in-
teractive requests by operating directly on the private states residing in the
middle tier. Besides, the actor model can efficiently utilize the computing
resources of the middle-tier servers, therefore achieving high concurrency and
throughput. In addition, the system is easy to scale by adding more actors
and distributing them across multiple servers. Furthermore, the failure of
one actor does not directly affect others, benefiting from the loosely coupled
messaging mechanism.

2.3. ACTOR MODEL AND ACTOR SYSTEMS 25

2.3.3 Actor Runtime and Framework

The adoption of the actor model in Erlang [59] marked a significant mile-
stone in the actor model’s history. Erlang was developed in the 1980s by
Ericsson [12] to build highly reliable, concurrent, and distributed systems,
particularly for telecommunications. In such applications, signals like voice,
data, and video generated by thousands or even millions of concurrent users
must be transmitted swiftly and reliably over long distances across networks.
The actor model provided a solid conceptual foundation for building applica-
tions alike to easily handle high concurrency, fault tolerance, and large-scale
distributed computing. Since Erlang successfully demonstrated the power
of the actor model, plenty of actor-based programming languages, libraries,
runtimes, and frameworks have emerged (listed below) in the past decades,
making the actor model available for a broader range of use cases [160, 132,
60, 169, 40, 126, 2, 70].

• programming languages: Erlang [59], Pony [41], Elixir [58]

• libraries: Kilim [162], Pykka [135], Pyactor [134], Thespian [170]

• runtimes and frameworks: Erlang/OTP [62], Akka [5], Orleans [122],
CAF [39], Pulsar [133], Orbit [118], Actor4J [23], Proto.Actor [131],
Ray [112], Actix [2], Riker [147], Dapr [46]

An actor runtime manages the low-level infrastructure and focuses on
system-level tasks such as executing actor code while ensuring isolation be-
tween actors, scheduling tasks according to the actor’s concurrency model, and
delivering messages that are immutable and asynchronous. An actor frame-
work offers tools and patterns (e.g., libraries) to help developers structure and
build actor-based applications. Actor frameworks often rely on the underlying
runtimes to achieve all the critical features of the actor model. Existing actor
runtimes and frameworks make it easier for developers to focus on developing
the application logic rather than low-level system management.

2.3.4 Orleans: Virtual Actor Framework

Conventionally, actor frameworks, such as Erlang/OTP [62] and Akka [5], pro-
vide developers with constructs to explicitly manage the actor lifecycle, actor
placement, and actors’ failure recovery. While these abstractions offer greater
flexibility for customizing the management of actors, they also introduce ad-
ditional complexity into the development process. To free developers from
these complexities, Microsoft Research introduced a new actor framework,
Orleans [38, 29, 28], that invented virtual actors, namely grains, to automate
many actor management tasks and offers a simpler and more programmable
abstraction for developers. The novel features of grains are summarized as
follows:

26 CHAPTER 2. BACKGROUND AND STATE-OF-THE-ART

• Automatic Instantiation: In Orleans, a grain is automatically instan-
tiated by the runtime when it first time receives a message. Besides,
failed or garbage-collected grains are also automatically re-activated
upon receiving messages. Orleans implements this functionality by re-
trieving the physical location of a given grain reference from the internal
grain placement directory. If no instance of this grain is found, a new in-
stance is created on an available server; then, the message is forwarded
to the grain’s real location. By doing so, grains perpetually exist in
the system, and developers do not need to explicitly create, recover, or
restart grains in the application code.

• Automatic Garbage Collection: Orleans supports automatic garbage
collection of grains that have been idle for a long time by periodically
scanning all the grain instances in the whole system. If a grain does
not receive messages within a configurable time period, its memory is
reclaimed, and its entry is removed from the grain placement directory.
This process helps Orleans optimize memory usage and reduces the over-
head associated with maintaining and retrieving the grain placement
directory. In addition, it also indicates that developers do not need to
explicitly destroy or terminate grains.

• Location Transparency: In Orleans, each grain instance is identi-
fied with a globally unique grain ID, which usually consists of the grain
type and an associated ID. This identifier is determined by developers
and contains no information about the grain’s physical location. When
sending a message, a grain reference should be obtained from the run-
time using the grain ID. The grain reference acts as a proxy object that
assists the runtime in routing the message to the actual location. Or-
leans exposes a simple API for developers to acquire the grain reference.
By hiding the grain locations and the details of looking up grain loca-
tions from developers, Orleans is able to manage grain distribution, load
balancing, and cluster scaling in the background. In addition, Orleans
supports both built-in and customized grain placement strategies, and
once these strategies are configured, they work transparently from the
developer’s perspective.

• Parallelizing Worker Grains: Another notable feature of Orleans is
its ability to automatically create multiple instances of one grain, en-
abling parallel execution to enhance throughput. These grains function
as stateless or immutable workers, each capable of independently pro-
cessing incoming messages without requiring coordination.

This dissertation developed a prototype system using Orleans, leveraging
its high-level, easy-to-use actor-oriented programming model and the rich fea-
ture set provided by its virtual actors. The following section discusses more

2.3. ACTOR MODEL AND ACTOR SYSTEMS 27

details about message passing, task scheduling, and exception handling in Or-
leans, which are essential components for designing and implementing state
management solutions proposed in the dissertation 1.

• Asynchronous Communication: In Orleans, grains communicate ex-
clusively through strongly-typed asynchronous messaging, presented to
developers as asynchronous RPCs [38]. These asynchronous RPCs en-
able grains to interact without blocking by overlapping method invoca-
tions, a key factor in achieving the high concurrency characteristic of
actor systems. Orleans also allows users to explicitly wait for the result
of an asynchronous call by using the keyword await, in a style remi-
niscent of promises [96]. Specifically, sending a message to a grain is
programmed as a method invocation on the grain reference. Whenever
a grain method is invoked, a promise object is created and returned to
the caller grain immediately, allowing the execution of subsequent in-
structions to continue without blocking. If the method call is explicitly
awaited, the caller grain’s execution pauses until the result of this call is
assigned to the promise, after which the caller grain resumes execution.

• Message Delivery: In Orleans, message delivery timing and order
are non-deterministic, i.e., messages can arrive at a destination grain at
any time and in a different order than the sending order. In addition,
the default message delivery guarantee is at-most-once, meaning each
message being delivered once or not at all. Other than that, Orleans
allows configuration of retry policies to achieve at-most-once delivery.

• Grain Task Scheduling: Orleans implements turn-based schedul-
ing [38] on each grain, which processes a request as discrete units of work
called turns. Turns are sequentially executed. By default, turns from dif-
ferent requests are not allowed to interleave on the same grain activation.
However, Orleans provides a mechanism called reentrancy [123], where a
grain can switch to process the turn of another request while one request
is blocked by an asynchronous operation. Note that reentrancy does not
compromise the grain’s single-threaded execution model, as only one
request can actively execute at a time even with reentrancy enabled.
Reentrancy allows multiple requests to be interleaved on the same grain,
which brings even higher concurrency with asynchronous RPCs. Reen-
tracy also helps reduce deadlocks when multiple grains forward messages
to each other while awaiting responses. However, reentrancy introduces
additional complexity and requires careful management.

• Exception Handling: In Orleans, grain failures are reported as excep-
tions thrown from grain codes or the runtime. Orleans propagates an

1The discussion extracts some content of a previously published paper [99].

28 CHAPTER 2. BACKGROUND AND STATE-OF-THE-ART

exception along the call chain to the caller grain. The caller grain can
handle the exception using the standard try-catch block around the
await statement.

2.4 Actor-Oriented Databases

The concept, Actor-Oriented Database (AODB) was first introduced by Bern-
stein et al. in 2017 [30], advocating the integration of database features into
actor systems. It is motivated by the characteristics of actor-based applica-
tions, including: (1) Each actor maintains its own in-memory state, which can
be queried and updated, functioning similarly to a small, isolated database.
(2) Many actor frameworks offer the ability to persist actor state to exter-
nal storage, creating the effect of seamless state persistence across failures.
(3) The simplified concurrency model of actors mirrors the concurrency con-
trol mechanisms adopted in database systems. (4) Actors can be distributed
across multiple servers, effectively partitioning both computation and state,
much like data partitioning in distributed database systems.

Although actor systems provide developers with the illusion of interacting
with database systems, they lack many essential features typically supported
by traditional databases. To enhance the capability of actor systems and
liberate developers from doing state management with middle-tier ad-hoc so-
lutions, the introduction of AODB is crucial. Stet-of-the-art research works
have put efforts into introducing ACID transactions (Section 2.5.1), query-
ing functionalities, built-in indexing, actor replication, and migration to actor
systems.

2.4.1 Multi-Actor Transactions

The actor model simplifies concurrency by relieving developers from manu-
ally handling it within individual actors. However, when processing concur-
rent requests, each spanning multiple actors, coordination among these actors
becomes necessary, similar to handling distributed transactions. Moreover,
the complexity increases with the introduction of reentrant actors (Section
2.3.4), where different transactions enter one actor concurrently. In these
cases, supporting ACID transactional properties at the system level for multi-
actor transactions is essential [149].

Though transaction processing is one of the fundamental features that has
been widely adopted in many commercial database systems and investigated in
plenty of research works, migrating it to an actor system remains a topic that
needs further discussion and exploration. Among existing actor frameworks,
only few of them have limited support for multi-actor transactions. Here we
look into the three most representative ones, Erlang/OTP, Akka, and Orleans.

In Erlang, there is no native concept of ensuring that a request spanning
multiple processes (or actors) is consistently committed across all participants.

2.4. ACTOR-ORIENTED DATABASES 29

Instead, Erlang performs multi-node operations using a backend database sys-
tem, Mnesia [106]. Mnesia synchronously propagates an update made by a
process on one node to all other replica nodes and ensures that changes are
committed across these nodes atomically. However, this approach does not
comply with the idea of maintaining the actor state in the middle tier and
it does not address the scenarios of multi-actor transactions, where different
data modifications could happen on different actors.

Akka initially adopted transactors [7], a type of actor that relies on STM
(Software Transactional Memory [166]) to atomically perform a series of op-
erations within one actor. However, this mechanism does not support op-
erations distributing across different actors. In addition, this feature was
deprecated around 2017 [6] because it introduced high performance overhead
and it was counter-intuitive to share the memory space in an actor system. In
recent years, researchers gradually move their attention back to the support
of multi-actor transactions on Akka. For example, [153] introduced Functors
to Akka, which acts as a coordinator to orchestrate operations on multiple
actors. Although, in principle, distributed transaction protocols can be im-
plemented using Functors, no concrete implementation was done in this work.
Another work [158] adopted 2PC across Akka actors with an optimization to
release lock earlier by checking some application-level information (domain
knowledge).

Orleans introduced OrleansTransaction in 2016 [55], and launched a new
version later in 2024 [56], which includes an improved programming model
and a new transaction execution technique to enhance performance. In Or-
leansTransaction, each actor specifies the state object that could be involved
in transactions and perform transactional operations. Each actor should also
mark the methods that initiate a new transaction or join an existing one
when invoked. With this programming abstraction, developers are allowed to
selectively enable transactional capabilities as needed.

Besides, from the technical aspect, OrleansTransaction adopts the tradi-
tional 2PL + 2PC pattern, where 2PL guarantees the serializable isolation
level and 2PC ensures atomic commit. In addition, deadlocks are detected
by a timeout mechanism. To increase concurrency and alleviate the increased
contention caused by the slow 2PC process, OrleansTransaction applies an
optimization, ELR (Early Lock Release [13]), where each actor releases write
locks right after processing the Prepare message, instead of waiting for the
final Commit message. With ELR, uncommitted actor states become visible to
other transactions once locks are released; therefore, a transaction can only be
committed after all its dependent transactions, those that expose their dirty
data to the current one, have been committed. This method requires Orleans
to track a chain of transaction dependencies and is vulnerable to cascading
abort.

Since the original version of OrleansTransaction has been reported with
poor performance, especially under high contention [99, 34, 36], the new ver-

30 CHAPTER 2. BACKGROUND AND STATE-OF-THE-ART

sion introduces reconnaissance queries [172]. This approach first runs a trans-
action under the read-only mode to pre-activate the involved actors; afterward,
the transaction is run again by applying ordered locking based on the conjec-
tured read/write set to reduce the occurrence of deadlocks. This approach is
highly inspired by OLLP (Optimistic Lock Location Prediction), a technique
introduced in [171] for addressing non-determinism for deterministic database
transactions.

2.4.2 Indexing and Querying Actors

Indexing is another fundamental feature of database systems, enabling efficient
querying based on specific predicates and ensuring global uniqueness when
necessary. Due to the un-shared states, the original actor model presents
its unsuitability for performing ”bulk operations on large sets of entities” or
querying ”a different combination of entities” [28]. Nonetheless, it might be a
potential need to query actors when taking the actor system as an AODB.

Orleans is a pioneer in exploring the possibility of building index for ac-
tors [30]. In this work, each actor is supposed to specify indexable attributes
in its private state, and an index handler is responsible for propagating the
updates on these attributes to the actual index structure. The particular
challenges it encounters include: (1) designing a comprehensible program-
ming model that can easily define indexable attributes and write queries, (2)
providing a stronger guarantee than eventual consistency when updating in-
dex, e.g. leveraging transactions, (3) efficiently maintaining index in the dis-
tributed environment, and (4) gracefully combining the index functionality
with the virtual actor model, e.g. avoid triggering the activation of actors
while retrieving them.

Another work [177], inspired by Orleans, built R-tree index for spatially
distributed and IoT-oriented actors. Similarly, an important trade-off in this
work is to select between freshness (fast but inconsistent) or snapshot (con-
sistent but slow) semantics for index updating.

In contrast to these two approaches, ReactDB [155] proposed a novel con-
cept, reactor, an actor that encapsulates one or multiple partitions of relational
tables as its state. Under this model, each reactor supports declarative queries
on its own state. Although ReactDB introduces relational database schemes
and queries into the actor model, its query ability is limited on a single actor.

2.4.3 Actor Replication

Data replication [101, 45, 102, 91] in database systems is often adopted for
improving performance and enhancing availability. Data replicated across
sites are able to serve highly concurrent read requests with lower latency, and
the replica can be used as a backup in the presence of failures. Similarly,
replicating actors can be adopted for the same purposes. However, a com-

2.4. ACTOR-ORIENTED DATABASES 31

mon challenge for doing replication is to serve write requests while ensuring
consistency of replicas.

Orleans proposed GEO [27], a geo-distributed actor system that supports
replicating actors across regions where round-trips between regions are signif-
icantly slow. GEO exposes APIs for developers to define different types of
actors, volatile or persistent, and interact with versioned actor state. Specifi-
cally, read and write operations are performed under linearizable consistency
model. GEO particularly focuses on the protocols for performing write oper-
ations on the local copy and propagating updates to replicas. The outcome
of this research work has been deployed in a recent release of Orleans, where
JournaledGrain is introduced. JournaledGrain is a special type of grain whose
state is formed via event sourcing [121]. Additionally, a JournaledGrain can
have multiple instances, and Orleans provides built-in consensus protocol to
ensure replicas agree on the same sequence of events.

Similarly, Akka also adopts event sourcing to persist actor state. In Akka,
an actor can be replicated by replicating events under the eventual consistency
guarantee. Different from Orleans, Akka resolves conflicts between events
raised from different replicas by performing commutative operations on a spe-
cial data structure [9], Conflict-free Replicated Data Type (CRDT [156]).

2.4.4 Actor Migration

Migrating actors between servers is a critical feature for handling load bal-
ancing, data locality, elastic scaling, and sever failures. Relevant techniques
mostly explore actor partitioning strategies, i.e. determining when and where
to migrate actors.

For example, ActOp [115] extends Orleans by introducing a distributed
graph partitioning algorithm that dynamically moves actors between servers
in order to minimize cross-server communications. AEON [150] adopts a sim-
ple approach to monitor resource utilization of each server and migrate actors
from an overloaded server to under-loaded ones. In addition, existing actor
frameworks have built-in algorithms to determine actor locations. Akka par-
tition actors into several shards, each allocated to a node by a re-balance
algorithm [8]. Orleans supports several actor placement strategies such as
activation-count-based placement and resource-optimized placement [120].

2.4.5 Conclusion

This section summarizes common challenges of integrating database features
into actor systems. (1) A carefully designed programming abstraction is nec-
essary to expose more information of the application to the actor system,
which is critical for enabling system-level support for transactions, indices,
replications, etc. (2) A well defined data model is required for each actor to
enable controlled operations on its private state, such as simple read/write op-

32 CHAPTER 2. BACKGROUND AND STATE-OF-THE-ART

erations and SQL-like queries. (3) It is non-trivial to combine these database
features with the actor model without compromising its encapsulation, ef-
ficiency, scalability, and fault tolerance. (4) The initial proposal of AODB
on Orleans [30, 25] emphasizes the independent support of different features
which can be plugged in and out dynamically. However, this overlooks the po-
tential benefits of combining different features to achieve better performance
or stronger guarantees. A simple example is to enable actor replication with
transactional properties which enhances consistency. This dissertation par-
ticularly investigate these aspects, and presents a comprehensive solution for
scalable and transactional state management within AODB.

2.5 Transactional Database Management Systems

This section reviews some key techniques in transactional database systems
that inspire us while building scalable and transactional AODB.

2.5.1 Transaction Management

In a database system, a transaction is a group of read/write operations that
are executed as a single logical unit of work. In a well-managed transactional
database, the ACID (Atomicity, Consistency, Isolation, Durability) proper-
ties [31] are upheld. Concurrency control [75] is a method to execute transac-
tions concurrently and guarantee a certain level of isolation. A strict isolation
level, conflict serializability [31], is fulfilled if the transaction execution sched-
ule is equivalent to some serial schedule with the same precedence relations of
respective conflict operations. A pair of operations conflict if they belong to
different transactions, access the same data item, and one of them performs
write.

2.5.1.1 Concurrency Control

2PL (Two-Phase Locking) is one of the widely adopted locking-based con-
currency control protocols. By definition, 2PL consists of a growing phase
where a transaction can acquire locks and a shrinking phase where a trans-
action starts to release locks, and no more locks should be acquired during
this phase. There are four variants of 2PL [31], including whether the growing
phase is conservative and whether the shrinking phase is strict. The conserva-
tive 2PL acquires all needed locks as an atomic operation at the beginning of
the transaction, which eliminates deadlocks. The strict 2PL releases all locks
at the end of the transaction, which prevents cascading rollbacks. Among
these four variants, the non-conservative and strict 2PL, or, in short, S2PL,
is the most commonly adopted one. A promising property of S2PL is that it
guarantees a conflict serializability [31]. To deal with the deadlock issue of
S2PL, deadlock prevention [148] or detection [116] mechanisms can be applied.

2.5. TRANSACTIONAL DATABASE MANAGEMENT SYSTEMS 33

2.5.1.2 Tow-Phase Commit

2PC (Tow-Phase Commit) is a distributed algorithm for atomically and durably
committing a distributed transaction. It ensures that a transaction involving
multiple distributed components either commits (makes all changes perma-
nent) or aborts (rolls back changes) consistently across all participants. 2PC
consists of a prepare phase and a commit/abort phase. The prepare phase
conducts three tasks: (1) It notifies each participant about the completion of
the transaction. (2) It collects votes from all participants about whether they
tend to commit or abort the transaction. (3) It ensures the participant who
votes ”commit” persists the changes made by the transaction; therefore, this
vote stays valid even after node failure. The commit phase does three things:
(1) It gathers all the votes to make the final decision. (2) It logs the final
decision. (3) It informs all the participants. The two phases of communica-
tions guarantee the correctness of the commit protocol even in the presence
of network or node failures.

However, 2PC is expensive because it takes a long time to conduct the two
round-trips and two blocking IOs. It has been identified as one of the primary
bottlenecks for scaling a distributed system [72, 77, 93, 102]. Many research
works have explored various optimizations for 2PC. For example, [102, 51]
commit transactions in epochs or batches to amortize overhead, [13, 73, 57, 85]
shorten the lock holding time to allow higher concurrency, [184, 22] take ad-
vantage of Remote Direct Memory Access (RDMA) to reduce network latency.
In addition to optimizing 2PC, there are also plenty of works putting effort
into reducing the number of distributed transactions by data replication [82],
data re-partitioning [93, 47, 95], or eliminating the need to do 2PC by per-
forming deterministic transaction execution (Section 2.5.2) or compromising
to weaker semantics [21, 20].

2.5.2 Deterministic Databases

A deterministic database [171] is a specialized type of database that leverages
determinism in transactions to achieve several desirable properties. Here, we
list three key techniques in a deterministic database and their corresponding
assumptions:

• Deterministic concurrency control: This method guarantees that
the concurrent execution of a group of transactions is equivalent to a
pre-determined serial execution of these transactions. Therefore, no
transaction will be aborted because of nondeterministic conflicts. To
fulfill the pre-determined order, instead of processing these transactions
one after the other, which allows no concurrency, the system adds an
assumption to maximize concurrency.

A1: The read/write set of each transaction is known in advance.

34 CHAPTER 2. BACKGROUND AND STATE-OF-THE-ART

With this detailed data access information of each transaction, the sys-
tem can apply ordered locking where locks are granted to transactions
in a pre-determined order or form a dependency graph that guides the
progress of each transaction. These methods are referred to as deter-
ministic concurrency control.

• Simplified commit protocol: The assumption A1 avoids deadlocks
and transaction aborts caused by conflicts. The deterministic database
also introduces another assumption to eliminate the consequence of node
failures.

A2: The transaction logic is deterministic.

This assumption describes a type of transaction that can be replayed
to generate the same results given the same input. In this sense, the
database state can always be recovered by replaying the same ordered
sequence of transactions. In other words, a failed node can always restore
to the state that is right before the failure happens. This is equivalent
to the situation in which no node failure exists. Therefore, 2PC can be
simplified as one phase because it only needs to be determined if each
participant decides to commit or abort the transaction according to the
transaction logic.

• State machine replication: Combining A1 and A2, a deterministic
database can be efficiently replicated by forming each replica as a state
machine that performs deterministic concurrency control for pre-ordered
transactions. This method requires replication of the input sequence of
transactions rather than the data stored in the database. This method
can largely reduce the amount of data transferred across networks, easily
maintain the consistency of each replica, and quickly build up a replica
to replace a failed node immediately.

In summary, a deterministic database adopts deterministic concurrency
control, simplifies distributed commit protocol, and enables state machine
replication. With these techniques, a deterministic database can achieve se-
rializability for concurrent transactions, high throughput and scalability for
distributed transactions, and high availability in case of failures.

2.5.2.1 Calvin

Calvin [172] is a classic deterministic database that provides a concrete design
of the system architecture and implementation. In Calvin, the system has
multiple replicas. A replica consists of multiple nodes, each hosting a partition
of data. Within each node, there is a sequencer responsible for receiving
and ordering transaction requests from the network, a scheduler that collects
schedules from all sequencers within the replica and conducts deterministic
concurrency control for all transactions, and a storage layer for persistence.

2.5. TRANSACTIONAL DATABASE MANAGEMENT SYSTEMS 35

Every scheduler in Calvin can consistently rebuild the global order of all
transactions received by the whole system by running a consensus algorithm
among all nodes or by applying a deterministic ordering strategy such as
round-robin. During the execution phase, each node first fetches necessary
data from other partitions within the replica and then executes the same
sequence of transactions locally and deterministically. With the data pre-
fetching phase enabled by the assumption A1, all transactions in Calvin are
executed on a single node. With the assumption A2, each node can converge
to a consistent state without cross-node coordination. In Calvin, each node
performs like a state machine, except that only data hosted in that partition
are persisted.

In addition, to deal with transactions that can not provide their read/write
sets, Calvin adopts the OLLP [171] scheme, where a transaction is first run as
a read-only reconnaissance query for the system to discover its read/write set.
Afterward, the transaction is run again as a regular read-write transaction.
However, if the conjectured read/write set does not match the actual one, the
transaction will be aborted and re-tried.

SLOG [145] is a geo-replicated deterministic database that extends from
Calvin. In SLOG, each replica is located in a different region, and each data
item selects one region as its home region. Therefore, transactions in SLOG
can access data mastered in one or multiple regions, namely single-home and
multi-home transactions, respectively. SLOG adopts the hierarchical ordering
strategy to order multi-home transactions using a global ordering service and
single-home transactions within the corresponding region. SLOG mainly fo-
cuses on addressing the challenges of replicating transaction schedules across
regions and ensuring each region converges to a consistent order for all trans-
actions. After the order is determined, each node proceeds the same way as
in Calvin.

Detock [116] is a geo-replicated deterministic database that shares a similar
architectural approach as SLOG, where each data item is mastered at a home
region. The primary difference between Detock and SLOG is that Detock
provides a novel approach to ordering multi-home transactions. In Detock,
each region independently generates an order for all multi-home transactions,
and this order is replicated to other regions. To resolve the inconsistency of
the different orders, Detock adopts a graph analysis method to ensure each
region deterministically resolves the inconsistency and results in the same final
transaction dependency graph.

2.5.2.2 Other Deterministic Databases

Existing deterministic databases have adopted different implementations of
deterministic transaction processing. First of all, they make different assump-
tions about the determinism of transactions. Most assume a transaction’s
read/write set is known before its execution, and its transaction logic is de-

36 CHAPTER 2. BACKGROUND AND STATE-OF-THE-ART

terministic so that the transaction can be replayed to obtain the same ef-
fect [172, 181, 137, 43]. Some only require the write set [139, 63], and others
require a more detailed transaction workflow [64]. Second, based on different
assumptions, they vary in concurrency control methods [146], Calvin [172] ap-
plies ordered locking, Bohm [63] and Caracal [139] employs multi-versioning,
Granola [43] adopts a timestamp-based method, Aria [100], DOCC [52] and
Sparkle [91] use optimistic concurrency control, PWV [64] and T-Part [181]
rely on analyzing transaction dependency graphs. Third, they vary in thread
models. Calvin and T-Part use a single thread to execute a transaction,
while Granola, VoltDB [165], QueCC [138] and Q-Store [137] decompose each
transaction into transaction pieces, one per partition of data, and then use one
thread to execute ordered transaction pieces on each partition. Fourth, they
also vary in data-sharing methods, Bohm, Caracal and VoltDB assume threads
on different partitions have shared memory, which requires extra efforts to en-
able a distributed deployment. Calvin sends data from one node to another
through a data-sharing phase before executing the transaction. Q-Store trig-
gers data being sent to another node when finishing the read operation on a
node [136]. T-Part voluntarily delivers data across nodes from one transaction
to another based on the pre-generated transaction dependency graph.

Chapter 3

Snapper: A Transaction
Library On Actor Systems

T
he actor model has been widely adopted in building stateful middle-tiers
for large-scale interactive applications, where ACID transactions are use-

ful to ensure application correctness. In this paper, we present Snapper, a
new transaction library on top of Orleans, a popular actor system. Snapper

exploits the characteristics of actor-oriented programming to improve the per-
formance of multi-actor transactions by employing deterministic transaction
execution, where pre-declared actor access information is used to generate de-
terministic execution schedules. The deterministic execution can potentially
improve transaction throughput significantly, especially with a high contention
level. Besides, Snapper can also execute actor transactions using conventional
nondeterministic strategies, including S2PL, to account for scenarios where ac-
tor access information cannot be pre-declared. A salient feature of Snapper is
the ability to execute concurrent hybrid workloads, where some transactions
are executed deterministically while others are executed non-deterministically.
This novel hybrid execution is able to take advantage of deterministic execu-
tion while being able to account for nondeterministic workloads.

Our experimental results on two benchmarks show that deterministic ex-
ecution can achieve up to 2x higher throughput than nondeterministic exe-
cution under a skewed workload. Additionally, the hybrid execution strategy
can achieve a throughput that is close to deterministic execution when there
is only a small percentage of nondeterministic transactions running in the
system.

3.1 Introduction

The actor model [4] is emerging as a promising concurrent and parallel pro-
gramming abstraction for building stateful middle-tiers [29, 26] in large-scale
interactive applications, including multi-player games such as Halo 4 [160] and

37

38
CHAPTER 3. SNAPPER: A TRANSACTION LIBRARY ON ACTOR

SYSTEMS

League of Legends [132], telecommunication such as Ericsson [61], E-commerce
such as Paypal [169] and Walmart [40], and Internet of Things [126]. There
are plenty of programming languages [59, 58] as well as libraries and frame-
works [5, 122, 118] that enable actor-based programming. With the actor
model, applications are decomposed into concurrent actors, each encapsulat-
ing a private state and communicating with other actors via asynchronous
message passing.

In the actor model, each actor processes its incoming messages sequen-
tially. Such sequential behaviour frees developers from handling concurrency
issues within each actor. However, there are situations where concurrent cross-
actor operations require transactional properties. For example, in an online
multiplayer game, player actors may exchange game equipment or purchase
equipment with digital currencies. As another example, in an e-commerce
application, actors maintaining product stocks and those responsible for order
checkouts have to interact to complete a purchase transaction. Transactional
properties are often needed to ensure application correctness in these scenar-
ios.

Transaction management in actor-based applications is complicated by
their design as stateful middle tiers, which react to changes of states in real-
time and asynchronously flush accumulated states to database tiers [26]. In
particular, with this architecture, transactions are executed within the middle-
tier servers rather than as stored procedures in databases. Motivations of this
trend include, among others, the flexibility of encoding transaction logic using
programming abstractions different from database systems and being able to
use the large memory and computing power of cheap middle-tier servers to
manipulate data and execute transactions instead of using more expensive [15,
16] database servers [26].

To meet these new requirements and to alleviate the burden on developers,
there exist efforts in various actor systems providing high-level programming
abstractions for efficient multi-actor transactions while hiding their implemen-
tation complexities from developers. Akka introduced the concept of trans-
actors [7], which employs two-phase commit (2PC) and software transaction
memory (STM) to support atomic cross-actor transactions.1 Orleans [122]
has recently made efforts to support distributed transactions [55] across mul-
tiple actors. It adopts two-phase locking (2PL) and 2PC with early lock
release [14, 159], allowing for higher concurrency at the price of cascading
aborts.

One way to enable actor transactions is to implement transactions on top
of the actor abstraction itself without any modification to the actor runtime.
For example, Orleans Transactions [55] adopt such an approach. This non-
intrusive approach requires less system development and maintenance effort

1When this feature was deprecated in 2014 [6], developers have significantly complained
about its absence [175, 49].

3.1. INTRODUCTION 39

in comparison to alternatives with deep integration with the actor runtime.
Therefore, we focus on this approach due to its low development cost. How-
ever, under this approach, multi-actor transactions are challenging. This is
because the state of an actor-based application is partitioned into many fine-
grained actor private states. Every multi-actor transaction, no matter if the
actors are collocated on the same machine or not, is a cross-partition trans-
action and has to employ distributed transaction mechanisms, which are ex-
pensive.

In this paper, we argue that the existing actor transaction mechanisms
have not sufficiently exploited the characteristics of actor-oriented applications
to improve transaction performance, particularly transaction throughput. An
interesting characteristic is that actors are accessed explicitly in an actor pro-
gramming abstraction, e.g., by the names or process IDs in Erlang [59], by
the paths of the actor hierarchy in Akka [5], and by the user-defined actor
identities in Orleans [122]. It is often the case that the set of actors involved
and the number of times that they would be accessed in a transaction are
known before the transaction starts. For example, in an e-commerce system,
a CheckoutOrder transaction explicitly specifies a list of product IDs, which
targets a list of stock actors, each being accessed once. Another example is,
in a social network application, when a user issues a JoinGroup transaction,
which updates the membership data in a determined user actor and group
actor, each being accessed once, respectively.

This characteristic of actor programming enables the exploration of a novel
actor-based transaction abstraction, where the identities of the participating
actors and the number of times that they are accessed in a transaction are
pre-declared. With such apriori information, an actor system would be able
to pre-schedule the transactions and execute them in a deterministic order. In
comparison to nondeterministic concurrency control methods adopted by ex-
isting approaches, such as 2PL, a deterministic ordering strategy would avoid
transaction aborts due to conflicts [172, 146]. The latter holds the potential
to significantly improve system throughput, especially when the contention
level is high. Furthermore, 2PC can be optimized to enhance transaction
concurrency [172, 146].

Despite that we envision most actor transactions in an actor-based appli-
cation can be implemented with the aforementioned transaction abstraction,
there could exist transactions that do not fall into this category. For exam-
ple, in a social network application, a user could issue a CleanUpFriendList

request, which removes friends who are in the user’s friend list but with no
recent interactions and would then trigger the removed friends to also update
their friend lists. Such a transaction may need to look up a user’s friend
list and the recent interaction histories to determine the set of actors that
would be involved. In other words, the list of participating actors of the
transaction may not be known before the transaction starts. Therefore, one
may have to resort to conventional actor transaction abstractions based on

40
CHAPTER 3. SNAPPER: A TRANSACTION LIBRARY ON ACTOR

SYSTEMS

non-deterministic concurrency control and 2PC, such as Akka transactor or
Orleans Transactions, to execute this type of transaction. Supporting both
types of abstractions in the same system is a challenge. Deterministic and
nondeterministic concurrency control methods achieve serializability based on
different principles, and how to reconcile these two methods in a single system
is still an open problem.

In this paper, we propose Snapper, an actor transaction library on top of
Orleans that enables multi-actor transactions. Our goal with Snapper is to
improve the performance of cross-actor transactions based on the fact that
existing solutions such as Orleans Transaction do not perform so well, es-
pecially under high contention, and on a significant observation that deter-
ministic transaction execution is well-suited to the actor model. Specifically,
Snapper supports two types of actor transaction abstractions, namely Pre-
declared ACtor Transaction (PACT) and ACtor Transaction (ACT), which
employ deterministic and nondeterministic concurrency control mechanisms,
respectively. A salient feature of Snapper is that it supports a novel hybrid
execution strategy that enables concurrent execution of transactions specified
using different actor transaction abstractions. As the first cut at the problem,
this paper focuses on optimizing and evaluating the performance of single-
server transactions, i.e., transactions that only involve actors located on the
same server. We focus on this problem because we envision that, in order
to maximize transaction performance, the allocation of actors should be op-
timized so that the majority of transactions are single-server transactions as
in high-performance OLTP database systems [45, 124]. Besides, optimizing
single-server transactions can be of great value to many applications that are
able to scale vertically and are suited to exploiting locality. In summary, the
main contributions of this paper include:

• We propose a novel programming abstraction for multi-actor transac-
tions, namely PACT, which enables deterministic execution of multi-actor
transactions in an actor system.

• We propose a hybrid transaction execution method that enables concur-
rent execution of PACTs and ACTs. To the best of our knowledge, we are the
first to study how to accommodate both deterministic and nondeterministic
transaction execution strategies in a single system.

• To verify practicability, we implement the proposed actor transaction
abstractions and execution strategies as a library on top of Orleans, a widely
adopted actor system.

• We conduct a series of experiments to evaluate the effectiveness of our
transaction execution methods using SmallBank and TPC-C benchmarks. The
results show that compared to ACTs and Orleans Transactions, PACTs can
achieve up to 2x higher throughput. Additionally, the hybrid execution can
achieve a throughput that is close to PACTs when the percentage of ACTs is
small.

3.2. SNAPPER PROGRAMMING MODEL 41

3.2 Snapper Programming Model

3.2.1 Conceptual Overview

Snapper is a library that supports executing transactions involving method
calls over one or more actors. It provides transactional APIs to access the
state of the current actor and to invoke method calls on other actors. These
APIs are implemented in TransactionalActor, which is a base class of actor
and has system functionality such as persisting logs and committing/aborting
transactions built on top of it. To get transactional guarantees provided by
Snapper, user-defined actors must extend TransactionalActor and use its
APIs when accessing actor state and invoking method calls.

In Snapper, each transaction is a series of method invocations performed
on multiple actors. A transaction is initiated by one actor where the first
method is invoked. This actor will start executing the transaction and in-
voke methods on other actors via asynchronous RPCs. A transaction can
invoke methods on the same actor multiple times. The actor that initiates the
transaction will also end the transaction when the first invoked method has
finished. This actor is responsible for committing/aborting the transaction,
thus there is no need to explicitly issue such requests in application codes.
Snapper guarantees conflict serializability for all concurrent transactions and
provides built-in durability for TransactionalActor. A transaction can run
under one of the following two modes:

• Pre-declared ACtor Transaction (PACT): Transactions in this
mode must pre-declare the following information: (1) the actor that will ini-
tiate the transaction, (2) the first method that will be invoked and the corre-
sponding input data for this method, and (3) actorAccessInfo – the set of
actors the transaction will access and the number of times each of such actors
will be accessed. Based on the pre-declared actorAccessInfo, Snapper per-
forms deterministic scheduling for PACTs, and each accessed actor will execute
PACTs in the pre-determined order. Besides, each TransactionalActor has
reentrancy enabled to schedule transactional method invocations since they
may not arrive in order. Under the pre-scheduling strategy, Snapper guaran-
tees no PACTs abort due to concurrency conflicts. However, users are allowed
to explicitly abort a PACT by throwing an exception to Snapper.

• ACtor Transaction (ACT): Transactions in this mode only need to
declare information (1) and (2) mentioned above. The actors accessed by an
ACT are discovered when methods are invoked during the ACT’s execution.
Snapper applies a conventional nondeterministic concurrency control, e.g.,
S2PL, for ACTs. Unlike PACTs, ACTs can be aborted due to deadlocks or
read/write conflicts.

42
CHAPTER 3. SNAPPER: A TRANSACTION LIBRARY ON ACTOR

SYSTEMS

3.2.2 Transactional API of Snapper

Snapper exposes three APIs, StartTxn, CallActor and GetState. Fig.3.1
gives the definition of each API; Fig.3.2 and 3.3 give an example of how to
use those APIs.

Figure 3.1: Snapper’s transactional API

3.2.2.1 Submitting Transactions to Snapper

Fig.3.2 shows how clients submit transactions to Snapper. A client submits
a transaction by calling StartTxn on the first actor that the transaction will
access (lines 12, 22). The client can choose to submit a transaction as a PACT
or an ACT by passing different data to StartTxn. As for the ACT mode,
the name of the first method that will be invoked and the corresponding
input data should be given by the client. As opposed to ACT, the PACT
mode additionally requires actorAccessInfo as input. Snapper distinguishes
transaction modes according to the input data. At last, StartTxn will return
the transaction result (e.g., the balance after doing Transfer) as an object to
the client. If the transaction is aborted in Snapper, the transaction is rolled
back by Snapper, and an exception will be thrown to the client.

3.2.2.2 User-Defined Transactional Actors

Fig.3.3 shows how developers program user-defined actors using
Snapper’s API. AccountActor is a user-defined actor class with inter-
face IAccountActor, same as ordinary actor definitions in Orleans. To
inherit Snapper’s transactional actor features, the user-defined actor in-
terface and actor class should derive from ITransactionalActor and
TransactionalActor, respectively (lines 1, 7). In addition, the type of the
actor state should be explicitly declared, which can consist of primitive or
user-defined types. In the example, float is the type of the AccountActor’s
state, which represents the balance of the account (line 7). The interface
of the user-defined actor should always contain two input parameters:
TxnContext and the input data for the method involved in the transaction
(e.g., Deposit or Transfer). An instance of TxnContext is an internal
read-only data structure of Snapper. It contains the transaction’s context
information such as tid, txnMode, etc. It is generated by Snapper after
receiving the transaction request from the client and before executing the
transaction. It is passed as a parameter in all three APIs so that Snapper

3.2. SNAPPER PROGRAMMING MODEL 43

Figure 3.2: Submission of PACT and ACT to Snapper

can schedule and execute method calls transactionally based on the context
information.

As for the implementation of the user-defined actor class, the method
GetState should be used to access the actor state (lines 16, 25). Snapper

supports two access modes: Read, which is read-only, and ReadWrite, which
reads and writes the state. CallActor should be used to invoke method calls
on other actors (line 36). Instead of directly calling another actor’s method in
user-defined code, Snapper wraps this operation in CallActor. It is designed
this way because Snapper has to gather and propagate transaction execution
information along with actor method calls, and CallActor abstracts these
actions away from developers.

3.2.2.3 Aborting a Transaction

In Snapper, PACTs do not abort due to concurrency conflicts but can abort
due to runtime exceptions or user-defined transaction logic, e.g., a Transfer

transaction might abort because of insufficient balance. By contrast, ACTs
can be aborted for all three reasons. Users can abort a PACT or an ACT
by throwing an exception to Snapper (line 27 in Fig.3.3). Snapper catches
both internal exceptions caused by runtime issues or concurrency conflicts
and external exceptions thrown by user codes. Any exceptions that are not
handled by user codes will be caught by Snapper and treated by aborting and

44
CHAPTER 3. SNAPPER: A TRANSACTION LIBRARY ON ACTOR

SYSTEMS

Figure 3.3: User-defined actor programs with Snapper’s API

rolling back the relevant transactions. Note that submission of a PACT with
user-defined aborts should not be the norm because it will lead to performance
degradation (Section 4.2.3). A transaction with user-defined aborts is better
submitted as an ACT. Snapper supports the aborting of PACTs mainly for
cases where unexpected runtime exceptions arise.

3.3 Single-Node Architecture

3.3.1 Overview

3.3.1.1 Components

Snapper consists of three components, including two types of actors – coordi-
nators and transactional actors – and a group of loggers, which are in-memory
C# objects shared by all actors on the machine and responsible for writing
logs.

3.3. SINGLE-NODE ARCHITECTURE 45

Coordinator actors are responsible for assigning a unique transaction
identifier (tid) to each transaction. For PACTs, the tids should be assigned
according to a global serial sequence order that determines their execution
order. The sequence of PACTs is divided into batches in order to amortize
the overhead of messaging and logging. Coordinator actors interact amongst
themselves to reach consensus on such a global sequential order for PACTs
and they also coordinate transactional actors to execute and commit batches
in the pre-determined order.

Transactional actors are the base actor class provided by Snap- per

to program user-defined actors where applications’ transactional states are
stored. Each transactional actor schedules PACTs according to the deter-
ministic sequential order generated by the coordinator actors and performs
nondeterministic execution of ACTs. With hybrid workloads of PACTs and
ACTs, transactional actors employ a novel hybrid concurrency control for
them.

Loggers implement Snapper’s persistence functionality. They handle all
logging requests sent from coordinators and transactional actors. Each logger
keeps access to a log file in the storage. An actor can invoke the method call
on one of the loggers, which is chosen by a simple hash function on the actor
ID. A logger may be shared by multiple actors. Each task on the logger is
scheduled by the actor who issues the request [122]. In comparing to each
actor persisting their own logs, delegating the tasks to loggers, whose number
is much smaller than the number of actors, can constrain the number of log
files, reduce random IO access to storage, and amortize the IO cost by batch-
ing. Another option is to implement loggers as actors, but this would require
copying data from coordinators and transactional actors to the logger actors,
which is inefficient.

For simplicity, in the remainder of the paper, ”coordinator actors” are
always referred to as ”coordinators”, and ”transactional actors” and ”actors”
are used interchangeably.

Figure 3.4: Transaction workflow

46
CHAPTER 3. SNAPPER: A TRANSACTION LIBRARY ON ACTOR

SYSTEMS

3.3.1.2 Transaction Workflow

Fig.3.4 illustrates the workflows of PACTs and ACTs. A client submits a
transaction by calling the StartTxn API on the first actor that should be
accessed by the transaction (Edge (1)). This actor then issues the NewTxn

request to one of the coordinators, selected by a simple hash function on its
own actor ID (Edge (2)). In return, the actor gets a TxnContext instance,
which includes the tid assigned by the coordinator (Edge (3)). An actor may
invoke method calls on other actors via the CallActor API to execute oper-
ations in a multi-actor transaction (Edge (5) in Fig.3.4a and (4) in Fig.3.4b).
Fig.3.5 shows the data passed along with such actor method calls. After the
callee actor finishes executing the operation, it returns to the caller with an
instance of ResultObj containing data that should be returned to the caller
along with transaction execution information (TxnExeInfo). The first actor
is both the start and the endpoint of the whole workflow. The client receives
the result of the transaction (Edge (8) in Fig.3.4a and (7) in Fig.3.4b) after it
is either committed or aborted. Each ACT requires two round-trip messages
per transaction (Edge (5) and (6) in Fig.3.4b) in order to perform 2PC, while
each PACT requires three one-way messages per batch (Edge (4), (6), and (7)
in Fig.3.4a) in order to control deterministic batch processing.

Figure 3.5: Content of TxnData

3.3.2 PACT Processing

3.3.2.1 Ordering

To assign deterministic execution order to PACTs, one can use a single coor-
dinator to sequentially assign a monotonically increasing tid to each PACT
and use the tid to determine the order. However, using a single-threaded co-
ordinator may not be able to scale. Instead, Snapper exploits parallelism by
employing multiple coordinators and each independently receiving transaction
requests. To guarantee the monotonicity of tid while using multiple coordi-
nators, we essentially need mutual exclusive access to the latest tid that has
been assigned. To achieve this, Snapper adopts the classical token ring algo-
rithm [168] for its simplicity and its natural match with the message-passing
abstraction of actors. More specifically, coordinators are logically placed in
a ring, where each coordinator has fixed left and right neighbours. A to-
ken is circulated in a particular direction in this ring. The token carries all
the information that needs to be shared among coordinators, e.g., the latest
assigned transaction ID (last tid). A coordinator accumulates the PACTs
that it has received while waiting for the token. When it receives the token,

3.3. SINGLE-NODE ARCHITECTURE 47

it allocates tids for those PACTs based on the last tid value stored in the
token, updates the last tid in the token, and then passes the token onward
to its neighbour. By doing so, we guarantee that the tid assignment is mono-
tonically increasing across multiple coordinators. Note that the token can be
forwarded to the next coordinator immediately when the new batch is formed
without waiting for the batch to be emitted, executed, or committed. Thus,
the token ring mechanism does not substantially increase transaction latency.
Conversely, while a coordinator is waiting for the token, it can perform other
tasks, such as communicating with transactional actors, coordinating batch
commitment, logging, etc.

3.3.2.2 Batching

With tid and actorAccessInfo of a PACT, the coordinator can send mes-
sages to inform each accessed actor of the existence of the PACT. However,
delivering one tid per message is inefficient. Therefore, Snapper chooses to
deliver information about a batch of transactions per message ((4) in Fig.3.4a).

Similar to epoch-based batching [50, 44, 101], the token ring mechanism
naturally generates epoch boundaries. Every time a coordinator receives the
token, it puts all locally accumulated PACTs into a new batch. The size of
the batch depends on the transaction rate and the time that the token takes
to be passed around a cycle. Besides, each batch uses the tid of the first
PACT in the batch as its batch ID (bid). As long as all actors execute the
batches in the order of bid and execute the PACTs within each batch in the
order of tid, the global sequential order can be guaranteed.

Figure 3.6: Batching

Since not every PACT will access all the actors, each actor may only need
to execute a subset of PACTs submitted to the system. Given a batch, a coor-
dinator should generate a sub-batch for each accessed actor. For example, in
Fig.3.6a, three actors will be accessed by batch 2, and hence three sub-batches

48
CHAPTER 3. SNAPPER: A TRANSACTION LIBRARY ON ACTOR

SYSTEMS

are generated based on actorAccessInfo. A sub-batch can be delivered as
one message to an actor. Besides, each sub-batch should also carry a prev bid

indicating its previous batch on this particular actor (Fig.3.6b). This is nec-
essary because batches that need to be executed on an actor may not have
consecutive bids. Even if they do, the batch messages may arrive out of order
due to nondeterministic message delays. With the prev bid, an actor can
know the order between batches, thus it can start executing a batch when
its previous batch has completed. In Snapper, the prev bid for each actor is
stored in the token, updated by the coordinator when a new batch is created
and removed if the corresponding batch has committed. After the updates
of last tid and prev bids, the coordinator can pass on the token and emit
BatchMsgs to related actors.

With batching, the overhead of sending messages is amortized over mul-
tiple PACTs in a sub-batch. The efficiency of batching can increase with the
skew in the workload because more PACTs will be included in one sub-batch.
To reduce overhead and improve transaction throughput, Snapper schedules,
executes and commits PACTs at the batch granularity. This accrues benefits
on both the messaging ((4), (6), (7) in Fig.3.4a) and logging.

3.3.2.3 Deterministic Scheduling

Each actor maintains a local schedule to control the transaction execution
order. Such a schedule is needed for two reasons. First, we cannot rely
on the message arriving order to order the transactions. Second, each actor
should have its own schedule because the sets of transactions to be executed
on actors are different from each other. In the schedule of an actor, batches
are placed in a chain according to the prev bid relation. An actor gradually
extends the schedule upon receiving batch messages and removes the batch
when it is committed/aborted. If a batch arrives at an actor earlier than its
previous batch, this batch creates a vacancy in the chain, which is filled when
the previous one arrives. For example, in Fig.3.6b, on A2, B8 is currently
maintained separately because its previous batch B2 has not arrived yet. A
batch message contains bid, prev bid and a list of PACTs, including their
tids and the number of accesses on the actor.

When any method invocation of a PACT (called through the CallActor

API) arrives on an actor, the actor will execute it according to the local
schedule. More specifically, the actor first checks the carried TxnContext of
the received call. If the call comes from a PACT whose turn is yet to come
according to the local schedule, the actor will suspend the execution of this
method invocation by awaiting an asynchronous task, which is later resolved
when the scheduled previous PACT has completed. A PACT is considered
completed when an actor has been accessed the declared number of times.
Then, the actor can resume the execution of the suspended method invoca-
tion. Notice that when an execution is blocked by an asynchronous operation,

3.3. SINGLE-NODE ARCHITECTURE 49

the actor is free to process another request because Snapper has enabled reen-
trancy (Section 2) for all TransactionalActors. In Orleans, a reentrant actor
is allowed to interleave the execution of multiple requests. As for the caller
actor, the invoked call is essentially an asynchronous RPC. Once the callee
actor enqueues the call into its message box, a future is returned, and the
corresponding promise can be fulfilled later.

Since PACTs are executed under a deterministic schedule and are guar-
anteed not to abort due to conflicts, a sub-batch on an actor can be spec-
ulatively executed as long as its previous sub-batches have completed their
operations on this actor without waiting for them to commit. This allows for
pipelined execution of batches while respecting the schedules on individual
actors without waiting for coordination of batch commitment across differ-
ent actors. This also brings higher concurrency compared to conventional
nondeterministic concurrency control such as S2PL, where locks are only re-
leased when a transaction is committed. Besides, S2PL usually introduces
non-deterministic blocking due to conflicts, while PACTs can avoid this effect
because pre-scheduling is applied.

However, if a PACT is aborted, the whole batch would be rolled back
along with all batches that have been speculatively executed. So, submitting
a PACT that will eventually abort can cause performance degradation. Thus,
a transaction with user-defined aborts is better submitted as an ACT.

3.3.2.4 Commit and Logging Protocol

Snapper applies a specialized two-phase commit protocol for PACTs, which
logically includes three-round one-way messages, the BatchMsg, BatchComp-
lete and BatchCommit messages ((4), (6) and (7) in Fig.3.4a). BatchMsgs
are the sub-batches sent from a coordinator to participating actors, which
can be analogized to the prepare message in 2PC. When an actor finishes
executing the sub-batch, it acknowledges BatchComplete to the coordinator
who emitted the corresponding batch, which is similar to ”voting” in 2PC.
When the coordinator receives BatchComplete from all participating actors
and if all vote to commit, the coordinator can commit the batch and send
the confirmation message BatchCommit back to the actors, which will return
the final transaction results to clients for the PACTs within the batch ((8) in
Fig.3.4a). The commitment of a batch must be done by coordinators because
they are the only ones who know the list of participating actors in a batch.
Besides, the commit protocol should guarantee that a batch B commits after
all the batches it depends on – batches that have been scheduled before B on
the actors that B accessed – have committed. To eliminate the overhead of
maintaining the complex dependency graph between batches, Snapper instead
tracks the logical dependency in which a batch Bi always logically depends on
Bj if i > j. Further, Snapper forces all batches to commit in the order of bid.
This strategy works well, especially under a highly contended workload where

50
CHAPTER 3. SNAPPER: A TRANSACTION LIBRARY ON ACTOR

SYSTEMS

logical dependencies reflect actual dependencies. The overhead of tracking
logical dependencies between batches is negligible. Each coordinator only
needs to keep track of the last assigned batch ID for the batches it generates.
This batch ID is then passed along in the token.

Now, we explain the process of aborting a batch. An aborted batch is
detected by the actor, who catches the exception thrown by a PACT. Re-
call that an aborted batch may cause cascading aborts of speculatively ex-
ecuted batches. To avoid unbounded numbers of batches being aborted in
this process, Snapper stops emitting new batches whenever an aborted batch
is detected and resumes when the cascading abort has been completed. The
classic cascading abort will abort transactions that depend on the aborted
ones [32]. Again, instead of maintaining the accurate dependencies between
batches, Snapper simply aborts all uncommitted batches in the system.

To ensure the durability of committed PACTs and ensure the commit pro-
cess survives failures, Snapper utilizes a Write Ahead Log (WAL) to store re-
lated data prior to sending out any messages such as BatchMsg, BatchComple-
te, and BatchCommit. Fig.3.7 shows the logs written for a batch that accessed
two actors. Three types of log records should be written for a batch. (1) Be-
fore emitting a batch, the coordinator persists the participating actors of the
batch. (2) Before sending BatchComplete, an actor logs the updated actor
state. If the batch has only read the actor, there is no need to persist the actor
state. (3) Before sending BatchCommit, the coordinator logs the committed
bid.

Figure 3.7: PACT Logging

Based on the logged information, Snapper is tolerant to failures that hap-
pen to both coordinators and actors at any time while executing, committing,
or aborting a batch. In the batch commit protocol, the coordinator cannot
decide to commit a batch until all participating actors have voted. If an actor
fails before sending the BatchComplete message, the coordinator must wait
until the failed actor is recovered and the message is sent. The recovered actor
will retrieve its log records. If the BatchComplete record is not found, it will
tell the coordinator to abort the batch. If a coordinator fails before sending the
BatchCommit message, all related actors must wait to return results to clients
until the coordinator is recovered and the message is sent. Those actors can
autonomously ask the coordinator about the decision to commit or abort the

3.3. SINGLE-NODE ARCHITECTURE 51

batch. Snapper follows the principle that the batch that has BatchComplete
log records written in all participating actors can commit.

3.3.2.5 Recovery

Assume that the system can fail (crash) at any time, and some or all actors will
lose their in-memory data. Snapper relies on the failure recovery mechanism
provided by Orleans that a failed actor is automatically re-instantiated when
it is called again. In Snapper, failed actors are re-instantiated by loading
the state of the last committed batch. A failed coordinator is re-instantiated
by loading the information of emitted but uncommitted batches, which needs
to be used to continue the batch commit/abort process. Besides, the token
may also be lost with the failed coordinator. To make sure the system has
exactly one token, a recovered coordinator must trigger a consensus protocol
among all other coordinators to check if the token is lost or not and elect
a coordinator to re-initiate a new token if needed. If a new token needs to
be used, the system must wait to emit new batches until all existing batches
have committed/aborted because the prev bids stored in the old token are
lost. When all emitted batches have committed/aborted, all actors also have
their local schedules empty; thus, the old prev bid is not needed.

3.3.3 ACT Processing

3.3.3.1 Transaction ID Assignment

Unlike PACTs, ACTs need to be assigned unique transaction IDs (tids), but
not a deterministic execution order. To achieve this in Snapper, every time the
token is received by a coordinator, it will pre-allocate a range of contiguous
tids for ACTs that may arrive in the future. Those ACTs will get tids
assigned immediately without having to wait for the token.

3.3.3.2 Nondeterministic Concurrency Control

When a method invocation of an ACT arrives on an actor, the invocation
is controlled by a traditional nondeterministic concurrency control protocol.
Currently, we have implemented S2PL in Snapper. Multiple ACTs can invoke
method calls on an actor concurrently. The S2PL protocol is executed when
an actor accesses the state using the GetState API, which grants logical read-
/write locks to ACTs and releases them after the second phase of 2PC. Besides,
wait-die [148] is used to proactively avoid deadlocks by aborting transactions
if they are suspected to be involved in a deadlock.

3.3.3.3 Commit and Logging Protocol

ACTs are committed via 2PC [90], and presumed abort [111] is used to save
messages and logging. When an ACT completes its operations, all the actors

52
CHAPTER 3. SNAPPER: A TRANSACTION LIBRARY ON ACTOR

SYSTEMS

that have been accessed within the transaction context are known. The list of
participating actors of an ACT is propagated as part of TxnExeInfo (Fig.3.4c)
along the method call chain back to the first actor who initiates the ACT. This
information is utilized to perform the 2PC protocol with all the participating
actors. The actor where the ACT is initiated is designated as the coordinator
of the 2PC protocol. While doing 2PC, logs are persisted before sending any
messages. Fig.3.8 shows logs written for an ACT that spans two actors. Again,
if an actor involved in the ACT did not perform any writes, there is no need
to persist the state of that actor.

Figure 3.8: ACT Logging

3.3.3.4 Recovery

Upon failure, every actor finds the latest CoordCommit record and reloads the
state of the latest committed ACT on all participating actors. And every actor
reads the CoordPrepare and Prepare records to resume the 2PC process.
Incomplete transactions will be aborted by the 2PC protocol.

3.3.4 Hybrid Processing

3.3.4.1 Hybrid Scheduling

With hybrid workloads of PACTs and ACTs, each actor’s local schedule con-
tains PACT batches in sorted order by bid and tid, and ACTs that are
dynamically inserted between two adjacent batches. When receiving an ACT
method invocation, the actor always appends the ACT to the tail of the cur-
rent schedule. Fig.3.9 gives an example. ACT T0 is appended after B6 on A1

and after B2 on A3. The existence of ACTs does not affect the batch order,
e.g., on A3, B6 is still placed after its previous batch B2 even though ACT T0

and T5 are scheduled in-between them.

With a hybrid schedule, actors need to carefully switch the execution be-
tween PACTs and ACTs. Snapper abides by the following rules: (1) an ACT
can start executing when the previous batch has completed its operations but
is not necessarily committed; (2) a batch can start executing when all previ-
ous ACTs have committed or aborted. By doing so, ACTs will not see the
results of a half-done PACT, and a PACT will not operate on data that will be

3.3. SINGLE-NODE ARCHITECTURE 53

aborted by an ACT. Thus, PACTs will still not abort due to concurrency con-
trol. Besides, multiple ACTs can be concurrently executed if they are placed
between the same two batches on an actor. For example, in Fig.3.9, on A3,
T0 and T5 are unblocked at the same time when B2 completes.

Figure 3.9: Actor local schedule

Despite the fact that these two rules nicely isolate the executions of PACTs
and ACTs on each individual actor, they are unfortunately insufficient to guar-
antee deadlock-freedom or serializability of hybrid workloads across multiple
actors, which we address next.

3.3.4.2 Deadlock

Under hybrid execution, deadlock can happen between PACTs and ACTs due
to the non-deterministic scheduling of ACTs and blocking method invocations.
The following two cases illustrate how such deadlocks occur: (a) an ACT Ti

is scheduled before a batch Bj on one actor A1, but scheduled after Bj on
another actor A2, and at the same time, a PACT of Bj on A2 has to wait for
A1 to invoke the expected – by number of accesses information – method call
(Fig.3.10a). (b) An ACT Ti is waiting for Tj to release the lock on an actor
A3, and Ti is scheduled before a batch Bg on A2, Tj is scheduled after a batch
Bk on A4, and at the same time, a PACT of Bk on A4 has to wait for A1 to
invoke the method call (Fig.3.10b). In both cases, the global waits-for graph
is cyclic. In addition to the patterns shown, a deadlock can easily involve
more actors and transactions. To solve such deadlocks, we need to abort one
of the transactions in the cycle. Since PACTs require more information from
clients and are deterministically scheduled, Snapper always prioritises PACTs
and aborts ACTs in the case of deadlocks. In our current implementation, a
simple timeout mechanism is applied to detect deadlock [32].

3.3.4.3 Serializability Check

To enforce serializability, Snapper employs deterministic transaction execution
for PACTs and nondeterministic concurrency control for ACTs. However, un-

54
CHAPTER 3. SNAPPER: A TRANSACTION LIBRARY ON ACTOR

SYSTEMS

Figure 3.10: Deadlock under hybrid execution

der hybrid execution, the nondeterministic interleaving between batches and
ACTs makes it challenging to achieve global serializability. Fig.3.11 illustrates
two scenarios where the global serialization graph is cyclic: (a) An ACT is
scheduled before and after the same batch on two different actors, respec-
tively. (b) Each single ACT does not manifest cyclic dependencies between
any other batches, but the dependencies between ACTs make the global se-
rialization graph cyclic. Our deadlock mechanism already aborts some ACTs
that break global serializability. However, there exist cases that do not form
deadlocks but still break serializability. Such cases can happen when the de-
pendency between two actors – any cross-actor edge, e.g., in Fig.3.10 – is in
the opposite direction.

Figure 3.11: Cyclic serialization graph

Similar to the handling of deadlocks, Snapper enforces global serializability
by choosing to abort ACTs that cause the problem. Snapper applies a seri-
alizability check for the ACTs that have finished execution. ACTs that fail
to pass the check should thus be aborted. We rely on scheduling information
defined as follows.

3.3. SINGLE-NODE ARCHITECTURE 55

Definition 1 Given a history H generated by Snapper’s hybrid processing
and the corresponding serialization graph SG(H), ∀ ACT Ti ∈ SG(H), its
BeforeSet (BSTi) and AfterSet (ASTi) are defined as:

1. BSTi = {B.bid| there exists a path B → ... → Ti}

2. ASTi = {B.bid|Ti → B}

In addition, max(BSTi) and min(ASTi) are the maximum and minimum num-
bers (bids) in BSTi and ASTi, respectively.

Above, we borrow the concepts of history and serialization graph from [31].
B denotes a PACT batch that can be considered as one large transaction, while
→ denotes a precedence relation between two conflicting transactions.

Furthermore, we propose the following theorem as the theoretical basis of
the serializability check. The detailed formalization and proof of the theorem
can be found in the appendix A

Theorem 1 A history H generated by Snapper’s hybrid processing is conflict
serializable if:

(1) ∀Bi → Bj, i < j (i, j are batch IDs);

(2) the execution of all ACTs is conflict serializable;

(3) ∀ACT Ti ∈ SG(H), max(BSTi) < min(ASTi).

Conditions (1) and (2) of the theorem are enforced by Snapper’s PACT and
ACT concurrency control protocols, respectively, which provide serializability
for either purely deterministic or purely nondeterministic processing. Condi-
tion (3) of Theorem 1 is the key point for enabling serializability of hybrid
schedules. For each ACT Ti, Snapper must check if max(BSTi) < min(ASTi)
holds. If not, Ti should abort. To calculate max(BSTi), we have to consider
batches that have a path to Ti in the serialization graph. On each actor that
is accessed by Ti, we consider the bid of the batch that is before Ti and clos-
est to Ti in the actor’s local schedule. This batch is guaranteed to have the
maximum bid among all the batches that are in the local schedule and belong
to BSTi .

However, considering only the actors accessed by Ti is not enough. There
may exist batches that belong to BSTi but do not access any actor accessed
by Ti. For example, if Bk → Tj on actor A1 and Tj → Ti on A2, then
Bk should also be included in BSTi . To take such batches into account, on
an actor accessed by Ti, we also consider max(BSTj) in the calculation of
max(BSTi) if Tj → Ti is true in the actor’s local schedule. Since the serial-
izability check focuses on max(BSTi), not a complete BSTi , it is sufficient to
only take max(BSTj), instead of querying all possible Bk. Besides, as for the
cases that a transaction Tp transitively precedes Ti, e.g., Tp → Tj → Ti, we

56
CHAPTER 3. SNAPPER: A TRANSACTION LIBRARY ON ACTOR

SYSTEMS

do not need to consider max(BSTp) directly in the calculation of max(BSTi),
because max(BSTp) ≤ max(BSTj).

The intermediate results of max(BSTi) and min(ASTi) collected on each
participating actor after executing Ti are propagated as part of TxnExeInfo
(see Fig.3.4c) all the way to Ti’s local coordinator, which calculates the final
values of max(BSTi) and min(ASTi) and performs the serializability check.
If Ti passes the check, max(BSTi) should be propagated together with the
Commit message to all of Ti’s participating actors when Ti commits. This
value may be useful for the serializability check for the subsequent ACTs.

Note that this implementation does not guarantee that we can obtain the
complete ASTi . When Ti finishes execution on an actor, there may not be any
batch B such that Ti → B. Due to asynchrony in actor systems, a batch can
take an arbitrarily long time to reach an actor. It is also possible that there
is no batch scheduled after Ti for the actor. An incomplete ASTi could result
in an incorrect min(ASTi) and a wrong decision in the serializability check.

A possible solution is that Ti’s local coordinator obtains the complete ASTi

from the PACT coordinators. To achieve this, it has to contact all the PACT
coordinators and obtain the schedules of all the actors involved in Ti. This is
costly and would increase the commit latency of Ti significantly.

For efficiency and simplicity, Snapper only performs the serializability
check based on the information available in the local coordinator. It fails
an ACT Ti’s serializability check if ASTi is incomplete. ASTi is said to be in-
complete if there exists an actor A involved in Ti such that no Ti → B can be
found, where B is a PACT batch. However, this approach may cause unneces-
sary aborts. To mitigate the problem to a certain degree, Snapper adopts an
optimization in the cases where ASTi is incomplete: if BSTi is empty or all the
PACT batches in BSTi have already committed, Ti can pass the serializability
check. This optimization is based on the fact that all the batches in ASTi

have not yet started their execution because they must wait for Ti to commit
or abort. Since PACT batches are executed in bid order, there will not exist
bid ∈ ASTi such that bid ≤ max(BSTi).

3.3.4.4 Commit Protocol

Under hybrid execution, PACTs and ACTs can interleave and depend on each
other. The commit protocol guarantees that a transaction commits before the
transactions that depend on it. For PACTs, a batch starts executing after
previous ACTs have been committed or aborted, so PACTs can commit the
same way as described in the PACT commit protocol (Section 4.2.5). By
contrast, ACTs may start executing before the previous batch has committed,
so an ACT must wait for its dependent batches – batches in its BS – to
commit. Upon the completion of the operations of an ACT T , Snapper first
carries out the serializability check on T and then commits it using 2PC when

3.4. SINGLE NODE EVALUATION 57

the batch with bid = max(BS) has committed, which indicates that all the
batches that T depends on have been committed.

3.3.4.5 Recovery

Upon failure, with the log records written for PACTs (Fig.3.7) and ACTs
(Fig.3.8), each actor is able to rollback to the state where the last ACT or
last batch committed.

3.4 Single Node Evaluation

In this section, we evaluate the performance of PACT, ACT and hybrid execu-
tion of Snapper. Specifically, we investigate the characteristics of PACT and
ACT under different transaction sizes (Section 3.4.2.1) and workload skew-
ness (Section 3.4.2.2). In Section 3.4.3, we present the performance of hybrid
execution under different workload skewness and distribution of hybrid work-
load, and study the trade-offs of hybrid execution with regards to transaction
throughput, latency, and abort rate. In Section 3.4.4, we study how well each
concurrency control method in Snapper can scale.

3.4.1 Experimental Settings

3.4.1.1 Benchmarks

We use two benchmarks throughout the experiments: SmallBank [11] and
TPC-C [174]. SmallBank is an OLTP benchmark simulating basic operations
on bank accounts [11]. Each user account is implemented as an actor in the
SmallBank benchmark. We employ SmallBank as it is a synthetic workload
that approximates well a realistic actor-oriented workload, which is usually
reactive, write-intensive, and latency-sensitive. To simulate multi-actor work-
loads, we implement a MultiTransfer transaction that withdraws money from
one account and deposits money to multiple other accounts in parallel [155].
SmallBank is used in most of our experiments because it is easy to configure
and has predictable behavior. A similar choice for a synthetic workload that
can be run under different access distributions was also used to evaluate other
actor-based transactional implementations [155, 55]. TPC-C is an industrial-
standard OLTP benchmark. Similar to previous work [172], we only use the
NewOrder transaction of TPC-C in our evaluation, as the NewOrder trans-
action accesses products stored in different warehouses and thus is naturally
distributed. In our experiments, we can flexibly control the distribution and
the size of NewOrder transaction by modeling a warehouse as an actor and
partitioning the stock table into multiple actors [172].

58
CHAPTER 3. SNAPPER: A TRANSACTION LIBRARY ON ACTOR

SYSTEMS

3.4.1.2 Deployment

We run Snapper on Orleans 3.4.3. We deploy Orleans clients and server
(the latter called silo in Orleans [122]) on two AWS EC2 instances (c5n),
respectively. Each instance has a 4-core 3.0GHz processor, 10.5GB memory
and the silo instance is attached with a 16GB io2 SSD volume with 8K IOPS.
All the instances are located in the same region and availability zone. In the
scalability experiment, as is shown in Fig.3.12a, all the computing resources
scale proportionally with the 4-core setting as a base unit.

On the client side, we implement a push-pull queue, where a producer
thread keeps generating transactions and pushing transaction requests to the
queue, and multiple client threads pull from the queue concurrently. Each
client thread simulates an Orleans client. Instead of spawning a large number
of threads per silo with each sending one request at a time, a single client
thread is used to asynchronously emit a pipeline of transactions. Whenever a
transaction result returns, the client pulls a new transaction from the queue
and issues it to replenish the pipeline. The number of client threads and
their pipeline size decide the maximum number of concurrent transactions
running in the system. Fig.3.12b presents the pipeline size we set for different
workloads and concurrency control methods. The pipeline size is tuned such
that PACT/ACT can reach a good performance while the system is not over-
saturated.

Figure 3.12: Experimental setting

3.4.1.3 Methodology

All our experiments are run in 6 epochs with the first 2 epochs used for
warming up the system. Each epoch lasts for 10 seconds. Three metrics are
measured in our experiments: throughput, latency, and abort rate. Through-
put and latency only include statistics of successfully committed transactions.

3.4. SINGLE NODE EVALUATION 59

Transaction latency is recorded as the interval from the time that a transac-
tion is emitted by the client thread to the time that the client receives the
transaction result. Note that we only report the processing latency, but not
the queuing latency, i.e., the time that a transaction is buffered in the push-
pull queue. The latter heavily depends on the input rate, and it increases
exponentially when the input rate is getting closer to the system throughput.

Besides comparing the different execution strategies provided by Snapper,
we also compare Snapper with non-transactional execution (NT) on Orleans
and Orleans Transaction (OrleansTxn) shipped with Orleans 3.4.3.

3.4.2 PACT vs. ACT Execution

To examine the performance of PACT and ACT with different degrees of
contention, we compare PACT and ACT under various transaction sizes and
workload skewness. This group of experiments are run with MultiTransfer

transactions on a 4-core silo with 10K transactional actors.

3.4.2.1 Effect of Transaction Size

We define transaction size (txnsize) as the number of actors accessed by a
transaction, which reflects the transaction complexity. In this experiment, we
vary txnsize to measure the overhead of the transactional support provided
by Snapper. Transaction overhead is measured as the relative throughput
of PACT and ACT with regards to the throughput of a non-transactional
(NT) implementation. As NT only processes actor calls without any logic of
concurrency control, its throughput comprises an upper bound for executing
transactions on Orleans. In this section, we set the workload skewness to be
uniform and fix the pipeline size to 64.

Figure 3.13: Transaction overhead

Figure 3.14: Percentile latency

Fig.3.13 shows that, compared to NT, when txnsize = 2, 4, 8, concurrency
control (CC) brings more throughput degradation for PACT than ACT. It

60
CHAPTER 3. SNAPPER: A TRANSACTION LIBRARY ON ACTOR

SYSTEMS

is because PACT costs more messages per transaction under low contention.
In this case, each BatchMsg can only deliver one transaction to an actor.
For example, when txnsize = 2, each PACT costs 6 one-way messages (2
BatchMsg + 2 BatchComplete + 2 BatchCommit) while each ACT only costs
2 double-way messages (Prepare + Commit) to commit a transaction (Fig.3.4).
When txnsize increases, the throughput of ACT decreases much faster than
PACT because ACT suffers a lot from workload contention. When txnsize
grows, more conflicts arise, and thus more transactions will be blocked during
execution and possibly aborted to avoid deadlock. As is shown in Fig.3.13,
the abort rate of ACT reaches 90% when txnsize = 64. By contrast, PACT
guarantees no transaction abort due to conflicts by pre-scheduling and PACT
benefits more and more from batching because it can amortize the messaging
overhead (Section 4.2.2).

As for the overhead of logging, the throughput of PACT (CC + Logging)
and ACT (CC + Logging) are 70% and 50% compared with the case without
logging, respectively. PACT always has lower logging overhead than ACT
because PACT writes less to the log than ACT. PACT can amortize the
logging overhead by batching even under low contention because the coor-
dinator always writes BatchInfo and BatchCommit log records for a batch
of PACTs no matter which actors they access. When the contention level
grows, the BatchComplete log record benefits more and more from batching
(Fig.3.7). Instead, an ACT always writes two times to logs on the ACT co-
ordinator (CoordPrepare and CoordCommit) and two times to logs (Prepare
and Commit) per accessed actor (Fig.3.8). With the combined effects of CC

and logging, PACT outperforms ACT under all contention levels.

Fig.3.14 shows the difference between PACT and ACT in terms of trans-
action latency when both CC and logging are enabled. When txnsize < 64,
PACT has almost the same median latency as ACT. When txnsize = 64, how-
ever, PACT exhibits higher median latency than ACT, namely 189 vs. 125
milliseconds. The latter occurs because all PACTs are delayed to be executed
and committed in batches. When txnsize < 64, this impact is not very evi-
dent because PACT does logging in a more efficient way. When txnsize = 64,
the enforced batching dominates the influence on latency. By contrast, ACT
always has much higher 90th- and 99th-percentile latencies than PACT. When
txnsize = 64, ACT gets almost 2x higher 99th-percentile latency than PACT.
This effect emerges as ACTs that experience high contention would be blocked
for a significantly long time. PACT has its tail latency lying in a moderate
range (around 1.3x of 90th-percentile latency), because every actor follows a
deterministic schedule without non-deterministic blocking.

In conclusion, ACT introduces more overhead than PACT because ACT
suffers from high contention and its logging protocol is less efficient. In con-
trast, PACT reaches good throughput and predictable transaction latency
under different txnsize.

3.4. SINGLE NODE EVALUATION 61

3.4.2.2 Effect of Workload Skewness

Workload skewness defines the asymmetry in the chance that each actor is
accessed by a transaction. In a highly skewed workload, transactions access
only a small set of actors, which causes high contention on them. We use
a zipfian function implemented in the MathNet.Numerics.Distributions

package [105] to generate different skewed workloads by varying the zipfian
constant. Fig.3.12b gives the zipfian value of five skew levels we used in the
experiments.

In this section, we compare the throughput of PACT and ACT under
different workload skewness. We fix txnsize to 4 and enable both CC and
logging. We also run the same experiment using OrleansTxn. Both ACT and
OrleansTxn have S2PL as concurrency control method and 2PC as commit
protocol [26]. The main protocol differences between them are that ACT does
not perform Early Lock Release [55, 159, 14] and ACT uses wait-die to avoid
deadlocks, while OrleansTxn uses a timeout mechanism. We set the pipeline
size for OrleansTxn the same as for ACT and implement its transactional
storage provider [119] by forwarding logging requests to the same number of
loggers as ACT does.

Fig.3.15 shows that the throughput of both ACT and OrleansTxn de-
creases with increasing skewness. Both ACT and OrleansTxn suffer from
high contention. We also ran OrleansTxn with a deadlock-free workload,
which is generated by accessing actors in the order of actor ID. Without dead-
locks, OrleansTxn gets 0% abort rate and relatively higher throughput com-
pared to the one with possible deadlocks. Either with or without deadlocks,
OrleansTxn gets lower throughput than ACT.

By contrast, the throughput of PACT increases under higher skewness.
PACT benefits from high skewness because batching becomes more efficient.
As discussed in Section 3.3.2.2, one message can deliver more transactions for
processing under a skewed workload, and one log record can cover committed
data of more transactions.

In conclusion, ACT is more sensitive to contention, while PACT can benefit
from it by batching. Changing from ACT to PACT can thus bring about
performance improvements in this scenario.

3.4.2.3 Microbenchmarking ACT and Orleans Transaction

In Fig.3.15, we observe a surprisingly significant performance gap between
ACT and OrleansTxn even on the cases without deadlocks. This effect is
unexpected because both of them adopt very similar mechanisms in concur-
rency control (2PL) and transaction commit (2PC). In this section, we mi-
crobenchmark both systems to investigate the causes of this performance gap.
As OrleansTxn adopts early lock release, which may suffer from high abort

62
CHAPTER 3. SNAPPER: A TRANSACTION LIBRARY ON ACTOR

SYSTEMS

Figure 3.15: Throughput

Figure 3.16: Breakdown latency

rate when the workload has high contention, we run the experiment with a
conflict-free workload as described below to eliminate this effect.

We use a variant of the MultiTransfer transaction that allows for a vary-
ing number of actors to perform no-op grain calls in each transaction instead
of calls with ReadWrite (RW) operations. Actors that perform a no-op will
not be involved in the commit protocol. We use xW + yN to represent a
transaction that accesses x+y actors with the first x actors each performing a
RW operation and the subsequent y actors executing a no-op. The experiments
are run on a 4-core silo with 4 transactional actors. Logging is enabled, and
the pipeline size is set as 1 so that the workload has no conflicts.

As is shown in Fig.3.16, the transaction life cycle is divided into 9 time in-
tervals (I1, ..., I9). For example, I2 is the time that the coordinator in Snapper

or the TransactionAgent (TA, an in-memory singleton object) in OrleansTxn

assigns a tid for the transaction. I6 is the time that the first accessed actor
serially invokes calls to other actors. I8 is the time to commit the transaction.

In Fig.3.16, for 0W + 1N , ACT and OrleansTxn have almost the same
total latency. For 0W + 4N , I6 is the time for serially performing 3 actor
calls. OrleansTxn takes 1.6x more time on I6 than ACT (0.32ms vs. 0.2ms).
This difference indicates that actor calls under a transaction context are more
expensive for OrleansTxn.

For 1W + 3N , one RW operation is performed on the first accessed actor
and the actor needs to carry out one-phase commit. OrleansTxn takes sub-
stantially more time on I8 than ACT (0.2ms vs. 0.01ms). This effect occurs
because OrleansTxn incurs on one Prepare message from the TA to the first
accessed actor to start the commit process, while in this case ACT requires no
messages for 2PC since the first accessed actor is designated as the coordina-
tor of the 2PC protocol. Furthermore, OrleansTxn spends significantly more
time on performing 2PC than ACT does. The gap increases as more actors
are involved in the commit.

3.4. SINGLE NODE EVALUATION 63

ACT and OrleansTxn have distinct codebases and they adopt disparate
software stacks. So despite similar algorithms being used in both systems, we
observe that dissimilarities in performance are spread over many operations
and components. Thus, we ascribe their performance gap to their differences in
implementations. A more detailed analysis and comparison of implementation
details, e.g., data structure overheads, between OrleansTxn and ACT exceed
the scope of our work.

3.4.3 Performance of Hybrid Execution

In this section, we investigate the performance of hybrid execution under
different transaction distributions, namely the percentage of PACTs among
all transactions (PACT%) and different workload skewness. We use the
SmallBank benchmark for this group of experiments. We fix txnsize as 4 and
enable both CC and logging. On the client side, we spawn two client threads
to handle PACT and ACT requests, respectively. The settings of pipeline size
are shown in Fig.3.12b. To vary the PACT%, we let the producer randomly
generate PACT% PACTs among all transactions.

3.4.3.1 Throughput

Fig.3.17 shows the throughput of hybrid execution. Under each level of skew-
ness, we vary PACT%. In each bar, different colors represent the part of
the throughput contributed by PACT or ACT. We observe that the total
throughput decreases with decreasing PACT%. Ideally, total tp = PACT%×
PACT tp+ACT%×ACT tp, but the actual throughput is lower. This effect
arises because: (1) the scheduling of PACTs and ACTs influences each other,
i.e., PACTs force ACTs to wait for batch processing, and PACTs are blocked
until the previous ACTs are committed or aborted; (2) ACTs will also be
aborted due to conflicts with PACTs, in addition to conflicts between ACTs
themselves.

This mutually and transitively blocking behavior between PACTs and
ACTs is even more severe under high skew levels, where most transactions
access the same one or two actors. That is why there is a notable throughput
degradation in this case from 100% to 99% PACT and from 0% to 25% PACT
under high and very high skew levels. So with an extremely skewed work-
load, we can benefit from hybrid execution only if we have a small percentage
of ACTs.

In conclusion, hybrid execution can bridge the performance gap between
pure PACT and pure ACT in most scenarios. Under higher skew levels, hybrid
execution performs better than pure ACT if the PACT% is high.

64
CHAPTER 3. SNAPPER: A TRANSACTION LIBRARY ON ACTOR

SYSTEMS

Figure 3.17: Hybrid execution (throughput)

3.4.3.2 Latency

Fig.3.18 shows the latency of PACT and ACT under hybrid execution. Simi-
larly to Fig.3.14, PACT has higher 50th-percentile latency than ACT because
of batching. Under hybrid execution, PACT’s 90th-percentile latency is influ-
enced by ACT.

When the workload skewness is fixed, for both PACT and ACT, both
the 50th- and 90th-percentile latencies increase first and then decrease when
PACT% decreases.

As for PACT, when adding some ACTs to a pure PACT workload, PACTs
scheduled after ACTs are blocked until the ACTs finish 2PC. When more
ACTs are added, PACT latencies start to decrease. The latter is because
there are less and smaller batches, which indicates a lower possibility that a
batch be influenced by transitive blocking. Besides, PACT latency starts to
decrease at higher PACT% under higher skewness. This effect arises because
more ACTs are quickly aborted due to high contention.

As for ACT, when adding a few PACTs to a pure ACT workload, ACTs
have their latency increased due to the blocking caused by PACTs. Then, ACT
latency decreases when adding more PACTs. The latter occurs because many
long-latency ACTs were actually aborted due to deadlocks between PACTs
and ACTs as well as ACTs failing the serializability checks. Recall that the
aborted ACTs are not counted in latency statistics.

3.4.3.3 Abort Rate

In hybrid execution, an ACT can be aborted in multiple scenarios: (1) aborted
due to read/write conflicts between ACTs; (2) aborted due to deadlocks be-
tween PACTs and ACTs; (3) aborted to guarantee global serializability even
though we are not sure whether the ACT breaks global serializability because

3.4. SINGLE NODE EVALUATION 65

Figure 3.18: Hybrid execution (latency)

the ACT has an incomplete AfterSet; (4) aborted because the ACT surely
breaks the global serializability. Fig.3.19 shows the breakdown of the trans-
action abort rate. Most of the aborts are from (1) and (3). Under higher
skewness, more ACTs are aborted due to (2). When adding a few PACTs to
a pure ACT workload, (3) emerges and causes the total abort rate to become
higher than for a pure ACT workload.

Figure 3.19: Hybrid execution (abort rate)

3.4.4 Scalability

Here, we evaluate the scalability of Snapper with both SmallBank and TPC-C

benchmarks by increasing the number of cores in the silo from 4 to 32.

66
CHAPTER 3. SNAPPER: A TRANSACTION LIBRARY ON ACTOR

SYSTEMS

3.4.4.1 SmallBank

We set up the silo as shown in Fig.3.12a. We fix txnsize as 4 and enable both
CC and logging. We present results under uniform and skewed workloads. By
following the experiments in [172], the skewed workload is generated by a
hotspot method that has 1% of the actors in the hot set and each transaction
accesses three such actors in the hot set. For the skewed workload, we set
pipeline size as 64 for PACT and 4 for ACT. As shown in Fig.3.20, PACT,
ACT, and hybrid execution all scale nearly linearly with the uniform workload.
With the skewed workload, however, PACT outperforms ACT.

Figure 3.20: Scalability (SmallBank)

3.4.4.2 TPC-C

In this experiment, we model each warehouse as an actor. Within one ware-
house, different actors are used to store different tables and the tables are
partitioned as shown in Fig.3.21. In our implementation, every NewOrder

transaction accesses on average 15 actors, three of which are read-only, al-
lowing us to control the footprint of state updates and to spread transaction
processing across multiple actors. We deploy two warehouses for a 4-core silo
and the number of warehouses scales with the number of CPUs. We run the
experiment with workloads under two skew levels by varying the number of
partitions of the Order table.

Fig.3.22 shows that both PACT and ACT can scale nearly linearly un-
der low skew. Similarly to the result of SmallBank, PACT performs better
than ACT under high skew. Compared to NT, both PACT and ACT intro-
duce around 90% throughput degradation, which is comparable with the 85%
degradation observed for MultiTransfer with txnsize = 16 (Fig.3.13). The
degradation is mainly due to inefficient logging. In our implementation, all the
actors always log the whole actor state instead of doing incremental logging.
The latter is due to the fact that we have not implemented a data model for
actor states in Snapper, which then treats each actor’s state as a value blob.
It is inefficient to log a whole table when it is insertion-only such as the Order,

3.5. RELATED WORK 67

Figure 3.21: TPC-C Setup

NewOrder and Orderline tables. In an avenue for future work, data models
can be implemented in Snapper to enhance logging performance.

Figure 3.22: Scalability (TPCC)

3.5 Related Work

3.5.1 Actor-Oriented Databases (AODBs)

The concept of AODBs is to enrich actor systems with database abstrac-
tions in a pluggable fashion [30]. In recent years, several studies have con-
tributed to enriching the features of AODBs, including indexing [30] and geo-
distribution [27] of actor states, and distributed transactions across actors [55].
Snapper also contributes to this direction by introducing novel transaction ex-
ecution techniques to actor systems.

68
CHAPTER 3. SNAPPER: A TRANSACTION LIBRARY ON ACTOR

SYSTEMS

3.5.2 Deterministic Database Management Systems

Deterministic database management systems (DDBMS) like Calvin [172] also
apply deterministic pre-scheduling to execute transactions in a pre-determined
order. Deterministic database systems primarily focus on ordered state ma-
chine replication, such that given the same sequence of transactions, replicas
would end up in a consistent state [146]. Therefore, DDBMS assumes trans-
actions being deterministic, i.e., generating the same results when executed
multiple times. To process non-deterministic transactions, the system has to
employ a pre-processing layer to analyse the procedure calls and substitute any
non-deterministic codes with deterministic ones. By contrast, Snapper does
not require the computation logic of PACTs to be deterministic, but only re-
quires the actors that are accessed by PACTs and the number of times they
are accessed to be declared upon invocation. Snapper leverages determinis-
tic execution in order to gain performance. Besides, DDBMS usually handle
failures by replaying transactions. Snapper does not follow this design. With
hybrid execution, recovering by replaying may not be more efficient than load-
ing the logged states because a PACT batch may depend on ACTs. Moreover,
Snapper supports transactions implemented using the actor model, which is
significantly different from the programming model of stored procedures in
deterministic database systems.

In addition to the above, Snapper proposes the hybrid execution strategy
to concurrently execute transactions with and without pre-declared informa-
tion, thus providing developers with the flexibility to execute transactions
in two different modes instead of forcing the deterministic paradigm. Some
DDBMS support transactions whose read/write set is unknown by inferring
the read/write set through a read-only reconnaissance query [171] or an offline
symbolic execution [81]. Other recent work [53, 100] applied deterministic op-
timistic concurrency control (DOCC), which does not require a known set
of data items in the execution phase and performs a validation phase in a
deterministic order. All of these existing methods only consider executing
transactions deterministically.

3.5.3 Transaction Dependency Analysis

Transaction dependency analysis has been exploited in many studies with an
aim to achieve higher throughput [157, 113, 65, 179, 182, 128] and lower la-
tency [186]. Existing approaches usually decompose a transaction into pieces
according to different rules, such as SC-cycle [157], and analyze dependencies
between transaction pieces. With the dependency graph, a schedule can be
generated, where independent pieces of transactions are executed in parallel
and conflicting operations across transactions are serialized. By contrast, a
transaction in Snapper is already naturally decomposed by developers into
pieces, one per actor. Snapper analyzes transaction dependencies at actor

3.6. CONCLUSION 69

granularity and ensures that every actor executes transactions by following
the same global order. Some approaches make assumptions about the execu-
tion order of transaction pieces [157, 186]; Snapper; however, does not con-
strain how and how many times each actor is accessed by a transaction. Some
approaches may still have transactions abort [157, 186], while Snapper guar-
antees PACTs do not abort due to concurrency conflicts. Some approaches
combine transaction decomposition with batching and resolve dependencies
between a batch of transactions [182, 128] to facilitate dynamic data parti-
tioning at the batch level. Differently, Snapper applies batching to amortize
the overhead of messaging and logging.

3.6 Conclusion

This paper presents Snapper, which is a transaction library for actor sys-
tems providing two actor transaction abstractions, namely PACT and ACT.
Transactions using ACT are executed using conventional non-deterministic
strategies, while those using PACT can be executed deterministically and can
achieve a significantly higher transaction throughput than ACTs, especially
under a highly contended workload. The hybrid execution strategy of Snapper
is able to execute both types of transactions concurrently to improve system
performance under a hybrid workload. It is especially beneficial when most
of the transactions in the system are PACTs. Furthermore, all the execu-
tion strategies in Snapper scale well with the number of CPUs under both
benchmarks used in our experiments.

As future work, we intend to extend the optimization and evaluation of
Snapper in a multi-server environment, investigating the trade-offs in al-
gorithms and mechanisms to partition and coordinate transactions across
multiple servers. Deploying Snapper in a distributed environment is non-
trivial. First of all, consider that in a system with both distributed and
non-distributed transactions, it is obvious that non-distributed transactions
do not need to be globally ordered. In this case, a hierarchical ordering service
may be needed to differentiate these two types of transactions. In addition,
different deployments can affect system performance differently. For example,
the placement of coordinators may significantly influence the token circula-
tion latency, which will also have an impact on transaction latency. In future
work, we plan to thoroughly explore different alternatives based on the current
single-server design.

Chapter 4

SnapperD: A Scalable
Transactional Actor System

The actor model is becoming increasingly popular for developing interactive,
large-scale, and highly concurrent applications. Supporting transactions span-
ning multiple actors and nodes emerges as a critical feature to ensure data con-
sistency. This paper proposes SnapperD, a distributed, efficient, and scalable
transaction execution library designed for actor systems. SnapperD introduces
several novel features for distributed actor transaction execution. SnapperD

employs a hybrid concurrency control approach that can execute transactions
in deterministic and non-deterministic modes simultaneously. This is the first
of its kind in a distributed environment, allowing for optimizing transactions
with deterministic actor access patterns while still accommodating those with
non-deterministic actor access patterns.

To minimize the impact of coordination of distributed transactions on non-
distributed ones, SnapperD adopts a novel hierarchical architecture and opti-
mization techniques for transaction batching and commit protocol. Moreover,
to ensure data consistency when actors are migrated between nodes caused by
actor life-cycle management, dynamic system scaling, or locality optimization,
SnapperD supports transactional actor migration with a minimized transac-
tion abort rate. We have implemented SnapperD on top of Orleans [122], a
popular actor programming framework.

According to our benchmark experiments, SnapperD achieves up to 2x and
6x higher throughput compared to Snapper [99], the state-of-the-art actor
transaction method, and Orleans Transactions [55], Orleans’ official transac-
tion execution implementation, respectively.

4.1 Introduction

In the past decades, the actor model [4] has been adopted in a wide range
of applications, such as multi-player games [160, 132], social networks [60],

71

72
CHAPTER 4. SNAPPERD: A SCALABLE TRANSACTIONAL ACTOR

SYSTEM

telecommunication [60], E-commerce [169, 40], IoT [126], web applications [2]
and blockchain [70]. An application can be modelled as a set of actors by
decomposing its functionalities and states into many lightweight and indepen-
dent units. Each such unit is named an actor, where its business logic is carried
out in the computing layer, and its state can be persisted into the backend
storage asynchronously. In this way, actors can well serve latency-sensitive
and highly concurrent requests. In addition, an actor-based system is easy to
scale because its architecture naturally fits in a distributed setup. In the actor
model, an actor does not have direct access to the state of another; instead,
they interact with each other via asynchronous messages. Thus, to deploy an
actor system in a distributed environment, no extra efforts from the develop-
ers are needed to enable cross-node communications. Despite the promising
features, ensuring application safety and data consistency while achieving high
performance is challenging, especially for workloads across multiple actors and
nodes.

First of all, nodes often coordinate with each other to guarantee appli-
cation safety and consistency for cross-node requests or distributed transac-
tions. For example, distributed concurrency control and commit protocols
are employed to synchronize different nodes to safeguard transaction ACID
properties. There are plenty of research works optimizing the performance
of distributed transactions [43, 137, 85, 102] in database systems, while rela-
tively little effort has been devoted to migrating those methods to actor sys-
tems [30]. Orleans [122], one of the representative actor frameworks, proposed
OrleansTxn [55]. It optimizes distributed multi-actor transactions by apply-
ing Early Lock Release (ELR) [13] to 2PC [90], but its throughput degrades
significantly under high contention. Snapper [99], an actor-based transaction
library built on Orleans, takes advantage of deterministic concurrency control
and achieves high transaction throughput in a single node. However, Snapper
has obvious drawbacks when scaling out. Snapper generates deterministic
schedules by putting all transactions into one sequential order, which is unnec-
essary for transactions that can be partitioned into different nodes. Besides,
in Snapper, all transactions are forwarded to one centralized component for
scheduling, which is a potential bottleneck in a distributed setting.

In addition, when the system scales in/out to deal with varying work-
loads [151] or optimizes data locality, it is required to re-partition or migrate
actors between nodes. 1 It is a critical issue how to migrate an actor from
one node to another while guaranteeing application safety and data consis-
tency. It is insufficient to follow a simple deactivate-then-reactivate pattern,
as is supported in some of the existing actor frameworks [35]. This is because
deactivating an actor with concurrent workloads can face the risk of data loss

1Looking for an optimal data/actor partitioning strategy to reduce cross-node communi-
cations is beyond the scope of this paper because this problem has been thoroughly discussed
in a variety of works [115, 95].

4.1. INTRODUCTION 73

and message loss. The former makes it difficult to keep actor states consis-
tent before and after the migration, and the latter could cause transaction
aborts. The challenge is to migrate actors in the context of transaction pro-
cessing while minimizing transaction aborts and, hence, the impact on system
performance.

In this paper, we address the aforementioned challenges and develop a
distributed, efficient, and scalable transaction actor system, called SnapperD.
SnapperD is built as a library on top of Orleans. In summary, we have made
the following contributions:

• SnapperD is the first system of its kind that can execute distributed
actor transactions in a hybrid deterministic and non-deterministic mode. This
allows transactions with pre-declared actor access patterns to take advantage
of the high efficiency of deterministic transaction execution, while transactions
with non-deterministic access patterns can be executed non-deterministically.

• A naive approach to produce a deterministic execution order for all
transactions is to collect all (both distributed and non-distributed) transac-
tions on a central node, which produces a global order. However, this may
create a bottleneck, harming the system’s scalability.

To address this problem, we propose a novel hierarchical method, where a
coordinating master node collects and produces a global order for distributed
transactions while each worker node independently produces a local order of
their own non-distributed transactions. Then, each worker node merges the
global order and its local order to form its local deterministic execution order.
Both steps are carried out in parallel to prevent any bottleneck when ordering
the transactions.

• While SnapperD executes transactions in a deterministic order, it differs
significantly from deterministic databases. Deterministic databases assume
transactions have deterministic logics; hence, in systems like [172], every node,
after a data sharing phase, will execute every distributed transaction in par-
allel independently. Therefore, distributed transactions will have a limited
impact on the performance of non-distributed transactions. However, since
we cannot assume deterministic transaction logic, distributed transactions in
SnapperD require coordination between multiple nodes, both during transac-
tion execution and at commit time. As transactions must be committed in a
pre-determined order in SnapperD, the cross-node coordination of distributed
transactions can slow down non-distributed transactions.

To address this particular problem, we propose two optimizations. First, we
optimize how transactions are batched, reducing the time that a node is idle
while waiting for the execution of a distributed transaction. This will allow
the node to process non-distributed transactions while it is waiting. Second,
we optimize the commit protocol to reduce the number of messages blocking
the critical path of some distributed transactions. This will further enhance
the system’s throughput.

74
CHAPTER 4. SNAPPERD: A SCALABLE TRANSACTIONAL ACTOR

SYSTEM

• As previously stated, utilizing the traditional deactivate-then-reactivate
method for runtime actor migration can result in both message and data loss.
This can lead to a significant number of transaction aborts. Additionally, given
the intricate dependency relationships between actor transactions, migrating
an actor A would not only block transactions that access A but also those
transactions that do not access A but have a dependency relationship with
transactions that do. This would cause many transactions to be aborted due
to timeout.
To solve this issue, SnapperD employs a novel actor migration method in-
tegrated with actor transaction processing. Moreover, SnapperD coordinates
with the transaction ordering service to prevent unnecessary blocking of trans-
actions not accessing the migrating actors.

• We conducted extensive experiments using the SmallBank [11] bench-
mark, which is suitable for the actor model. Our experiments demonstrated
that SnapperD provides a scalable solution for actor transaction execution,
outperforming Orleans Transactions [55] by a factor of 6, and a simple dis-
tributed extension of Snapper [99] by a factor of 2 in terms of transaction
throughput. Additionally, our proposed method for actor migration has a
minimal impact on system performance, resulting in only ∼ 0.01% transac-
tion aborts.

4.2 Multi-node Architecture

In this section, we divert our attention to a more complex scenario where ac-
tors are distributed across multiple nodes, and transactions may access one
or more nodes. In this case, it is non-trivial to implement deterministic con-
currency control for PACTs with different access patterns and to safeguard
the serializability between PACTs and ACTs across multiple nodes while pre-
serving high throughput and scalability. This section discusses challenges and
solutions for extending the single-node architecture to a multi-node architec-
ture.

4.2.1 Overview

In the single-node design, all PACTs are put into one sequential order, de-
termining their execution and commit order. However, PACTs accessing one
node (local PACTs) do not need to be ordered together with PACTs ac-
cessing other nodes. Otherwise, as shown in Fig. 4.1a, both the ordering
and commit phases of PACTs are slowed down. Apparently, it is optimal
to have each node progress independently when the workload can be 100%
partitioned. In this scenario, each node should maintain its own transac-
tion schedule (Fig.4.1b). However, in practice, there may exist PACTs cross-
ing multiple nodes (global PACTs); thus, a common cross-node ordering is
needed. With such a workload, we can adopt a hierarchical ordering strategy

4.2. MULTI-NODE ARCHITECTURE 75

(Fig.4.1c) where a global order is determined for global PACTs and a local
order is generated on each node for local PACTs.

Figure 4.1: Ordering Strategies

With hierarchical ordering, new
challenges emerge, including how to
preserve the order of global PACTs
in different nodes, how to efficiently
coordinate these nodes to commit
global PACTs, and how to reduce
the impact of global PACTs on the
performance of local PACTs while
they are executed concurrently. Fur-
thermore, in distributed actor sys-
tems, actors sometimes need to be
migrated from one node to another

for various reasons, such as optimization for enhancing locality and actor
life-cycle management. Supporting transactional workload in the presence of
actor migration is challenging, too. The design of the multi-node architecture
focuses on addressing these challenges.

4.2.2 Extended Architecture

• Master and Worker Nodes: In the distributed environment, a X

cluster consists of one master node and an arbitrary number of worker nodes
(Fig.4.2). The master node is a centralized component responsible for or-
chestrating worker nodes to process distributed transactions. Each worker
node accommodates a group of local coordinators, a partition of transactional
actors and a configurable number of loggers. In addition, each worker node
keeps a local cache of the actor placement directory, which maps the actor
IDs to corresponding worker node IDs. In a X cluster, a worker node can be
dynamically added or removed from the cluster without interrupting other
nodes.

• Global and Local Coordinators: On the master node, a group of
global coordinators (GC) is organized as the same coordinator-ring structure
(§ 3.3.2.1) to provide a global ordering service. They generate globally unique
transaction identifiers and do ordering and batching for global PACTs. On
each worker node, a group of local coordinators (LC) function in a similar way
as in the single-node architecture.

• Global and Local Transactions: The global and local transaction
intuitively refer to a transaction that accesses actors located in multiple and
one worker nodes, respectively. Each transaction is identified by a TxnContext
(Fig.4.2d)in including a local transaction ID (ltid), a local batch ID (lbid),
a global transaction ID (gtid) and a global batch ID (gbid). These values
also imply the type of transaction.

76
CHAPTER 4. SNAPPERD: A SCALABLE TRANSACTIONAL ACTOR

SYSTEM

Figure 4.2: Multi-node architecture

Figure 4.3: Transaction workflow (multi-node)

4.2.2.1 Transaction Workflow

Fig.4.3 illustrates the workflows of all three types of transactions – ACT, local
PACT and global PACT. In the beginning, a client submits a transaction by
calling the StartTxn API on the first actor (Edge 1, (1), 1○). This actor
then identifies the type of transaction. It is an ACT if actorAccessInfo is
not given. To further distinguish between local and global PACTs, the locally
cached actor placement directory is retrieved to extract the list of worker nodes
where the actors specified in actorAccessInfo are located. In the case of a

4.2. MULTI-NODE ARCHITECTURE 77

local PACT, the actor issues a NewTxn request to one of the local coordinators
(Edge (2)) to get the TxnContext (Edge (3)). Differently, for an ACT or a
global PACT, a NewTxn request is forwarded to one of the global coordinators
(Edge 2, 2○) to get the TxnContext (Edge 3, 3○). While executing the trans-
action, the same as in the workflow of the single-node architecture (§ 3.3.1.2),
every cross-actor transactional call carries along the TxnContext. To fulfil
the deterministic schedule, each actor executes PACTs in the pre-determined
order, and the ordering information is sent from coordinators (Edge (4), 4○,
5○). In the transaction commit phase, an ACT performs 2PC across all partic-
ipant actors (Edge 5, 6). For a local PACT, the commit protocol is carried out
within one worker node (Edge (4), (6), (7)). In contrast, for a global PACT,
the batch commit process needs coordination between the master node and
multiple worker nodes (Edge 4○, 5○, 7○-10○).

4.2.3 PACT Processing

4.2.3.1 Hierarchical Ordering

The master node collects and produces a global order for global PACTs by
assigning them gtids, while each worker node independently produces a local
order of their own local PACTs by assigning them ltids. Then, each worker
node merges the global order and its local order to form a local deterministic
execution order. More specifically, each worker node assigns ltids for received
global PACTs as well to order them together with the local PACTs. To
consistently maintain the order of global PACTs across all worker nodes, on
each worker node, ltids must comply with gtids, i.e. for Tgtid=i,ltid=j and
Tgtid=i′,ltid=j′ , if i > i′, then j > j′. It is nontrivial to fulfil this condition.

Figure 4.4: Hierarchical Ordering and Batching

Fig.4.4 shows the gtid and ltid assignment we aim to achieve. A sequence
of global PACTs is divided into batches, each of which is later decomposed into
several GlobalSubBatches and delivered to corresponding worker nodes (Edge
4○ in Fig.4.3c). The decomposition is done based on the list of worker nodes
accessed by the batch of global PACTs. Note that different GlobalSubBatches
may access different sets of worker nodes, and GlobalSubBatch messages may
arrive at a worker node in a nondeterministic order. To identify the order
between two of such messages, we again resort to the prev gbid relation –
each GlobalSubBatch message carries a prev gbid, specifying the previous

78
CHAPTER 4. SNAPPERD: A SCALABLE TRANSACTIONAL ACTOR

SYSTEM

gbid sent to the target worker node. It is the same mechanism that an actor
orders different LocalSubBatches (§ 3.3.2.2). Recall that the token-passing
method is able to generate monotonically increasing IDs. Thus, we just need to
guarantee that the ltid assignment for PACTs in a GlobalSubBatch happens
after the specified previous one has been assigned.

To keep track of the last GlobalSubBatch that has been assigned with
lbid and ltids across multiple local coordinators, the last processed gbid

information should be included in the token. Every time a local coordina-
tor receives the token, it assigns ltids for accumulated local PACTs, as well
as checks received GlobalSubBatches and assigns ltids for the ones with
prev gbid equals last processed gbid. In this way, global batches are in-
serted into the sequence of local batches while preserving the pre-determined
order.

4.2.3.2 Transaction Context Remapping

In the transaction execution phase, as long as every actor executes PACTs in
the order of lbids and ltids, the pre-determined serial order for all PACTs
is guaranteed. As explained in § 3.3.2.3, an actor identifies a PACT using the
TxnContext carried along the actor call. However, in the multi-node setup,
when a call is forwarded from a different worker node, the ltid and lbid

in the TxnContext are not valid in the new worker node. For example, in
Fig.4.4, Tgtid=0,ltid=4 in worker node 0, should be mapped to Tgtid=0,ltid=0 in
worker node 1. Recall that every LocalSubBatch message carries a sorted
list of ltids (§ 3.3.2.3), which informs the execution order of PACTs in the
batch. Additionally, we can include a dictionary that maps gbid and gtid of
each global PACT to lbid and ltid. By retrieving this map, an actor is able
to convert a remotely forwarded TxnContext to the local context.

4.2.3.3 Tuned Batching

Figure 4.5: Effect of batch tuning

Although local batches are processed in
parallel in different worker nodes, the
existence of global batches may lead to
performance degradation because they
force coordination across multiple worker
nodes. As is shown in Fig.4.5a, Bi is
blocked by Bj through a global batch Bk.
Such blocking brings some vacancies to
the progress of a worker node. To fill
these gaps, we adopt a simple strategy –
increase the global batch size to reduce
the interleaving between local and global

batches. As is shown in Fig.4.5b, if we merge all three global batches into one,

4.2. MULTI-NODE ARCHITECTURE 79

the vacancies are reduced. Note that the batch size should not grow without
limit because it sacrifices global PACTs’ latency and brings uneven waiting
time for local PACTs. Recall that in the single-node architecture (§ 3.3.2.1),
every time a coordinator receives the token, it generates a new batch with
all cached PACTs. To support a tuneable global batch size, we make a little
adjustment. When a GC receives the token, it first checks if the pre-configured
time interval (e.g. 20ms) has passed since the last time it created a global
batch. If not, the GC will pass on the token without forming a new batch and
wait until it receives the token again. Our experiment results show that a
tuned batch size improves throughput significantly (§ 4.4.2).

4.2.3.4 Hierarchical Commit Protocol

In § 3.3.2.4, a 2PC-like batch commit protocol is introduced for local PACTs
(Fig.3.7). The general idea is to commit a batch B when (1) B has completed
execution on all related actors and the execution results have been persisted,
and (2) all the batches that B logically dependent on have been committed.
Here, we adopt the same principle. The first condition can be fulfilled by
letting each participant actor log the actor state and then acknowledge the
completion of B to a local or global coordinator. To meet the second condition,
local and global coordinators must commit batches in the order of lbids
and gbids, respectively. However, it is non-trivial to enforce this constraint
because the commit of a global batch B is restricted by not only its gbid

but also its lbids assigned in different worker nodes. In other words, before
committing B, we must ensure the commit of all batches with smaller gbids
and smaller lbids in corresponding worker nodes.

Here, we resort to a hierarchical commit process to enforce the commit
order of local and global batches. As is shown in Fig.4.6, we still do the
three-round communications (batch information, batch complete and batch
commit) between actors and global coordinators, but the difference is each
message has an extra hop at local coordinators. Now, we explain the process
to commit a global batch, whereas the commit of a local batch remains the
same as in the single-node architecture (§ 3.3.2.4). The batch information
is first delivered from a global coordinator to a local coordinator (Edge 4○),
then sent to related actors (Edge 5○). When an actor completes the batch,
it informs the local coordinator (Edge 7○). When this local coordinator has
collected acknowledgements from all relevant actors in the current worker
node, it can inform the global coordinator (Edge 8○). Afterwards, when the
global coordinator decides to commit the batch, the batch commit message
goes to the local coordinator first (Edge 9○), then actors (Edge 10○). The
global and local coordinators involved in this whole process are the ones who
generate and assign IDs to the global batch.

Note that before sending the GlobalBatch- Complete message to the
global coordinator (Edge 8○), the local coordinator needs to wait for the com-

80
CHAPTER 4. SNAPPERD: A SCALABLE TRANSACTIONAL ACTOR

SYSTEM

Figure 4.6: PACT commit and logging protocol (multi-node)

mit of all batches with smaller lbids. More specifically, for each batch, only its
last lbid is checked since it forms the complete chain of logical dependencies
on the current worker node. This synchronization is necessary here because
global coordinators lack information about the dependencies between global
and local batches in each worker node. Similarly, before a global coordinator
decides to commit a global batch, its last gbid is checked in order to enforce
the commit order of gbids.

Recall that the gbids of global batches comply with their lbids (§ 4.2.3.1).
It indicates possible redundant synchronizations. More specifically, suppose
two global batches Bi and Bj are placed consecutively on a worker node –
no local batches are inserted between them. When committing Bj , the local
coordinator first waits for the commit of Bi on the worker node before sending
the GlobalBatchComplete message; then, the global coordinator waits for the
commit of Bi again on the master node. In this case, the synchronization on
the worker node is unnecessary. Fig.4.4 presents a more concrete example. On
worker node 0, the global batch Bgbid=3’s last one is Bgbid=0, thus, Blbid=7 does
not need to wait for the commit of Blbid=4 because the global coordinators will
ensure Bgbid=0 commits after Bgbid=3. We apply optimization for such cases
to shorten the critical path of the commit process and improve the system
performance. This optimization is especially effective for workloads with a
high proportion of global PACTs.

4.2.3.5 Abort a batch

In the multi-node setup, due to the speculative execution of PACTs, the abort
of a batch, whether local or global batches, may cause cascading abort in mul-
tiple worker nodes. This is because the existence of global batches introduces
transitive dependencies between two local batches in different worker nodes.
In addition, the abort of a batch B will cause the abort of all batches with
logical dependencies on B. For example, in Fig.4.4, the abort of a local batch

4.2. MULTI-NODE ARCHITECTURE 81

Blbid=2 on worker node 0 may lead to the abort of global batches Bgbid=0 and
Bgbid=3, as well as local batches Blbid=3 and Blbid=7 on worker node 1. In X,
the moment a PACT abort is detected, we first stop the current worker node
emitting more batches or assigning IDs to global batches. This is to avoid
scheduling more batches that have logical dependencies on the aborted ones.
Then, we check if any uncommitted global batch is influenced to decide if
the master node or any other worker nodes need to be stopped. During this
process, the min gbid is found, which is the earliest global batch that needs
to be aborted. Then, the min lbid is found on each affected worker node.
When a worker node stops the batch generation process, it continues exe-
cuting and committing unaffected batches – those ordered before the earliest
aborted one, while rolling back the state of affected actors – those accessed by
aborted batches. When a worker node completes the cascading abort, its local
coordinators resume the batch generation. When the abort of global batches
has been completed on all relevant worker nodes, the master node resumes.

4.2.3.6 Logging

During the three-round communications to commit a global batch, X per-
sists certain information to guarantee the durability of committed batches
and survive failures that may happen at any time on any node. As dis-
cussed in § 3.3.2.4, the three logs (LocalBatchInfo, LocalBatchComplete
and LocalBatchCommit in Fig. 4.6) are sufficient for a local batch to continue
its commit process upon failures or recover its state after failures. Here in
the multi-node architecture, we add two extra logs, GlobalBatchInfo and
GlobalBatchCommit. The first tells how the global batch is distributed across
worker nodes, and the second keeps a record of the committed gbid. In our
design, the commit process will be blocked if any message is lost. With the
logged information, all missing messages can be retrieved again. For exam-
ple, the master node can collect information about the progress of a global
batch from certain worker nodes based on the GlobalBatchInfo. Besides,
each worker node can get the commit status of a global batch from the master
node by retrieving the GlobalBatchCommit log.

4.2.3.7 Recovery

§ 3.3.3.4 explains how to recover failed actors or local coordinators on a worker
node. On the master node, global coordinators can apply the same recovery
algorithm as local coordinators. It includes three tasks. First, each global
coordinator retrieves the log file and loads the information of batches that have
not been finished. Second, all global coordinators collaboratively generate a
new token if needed. Third, global coordinators start to generate new batches
after unfinished ones have all been committed or aborted.

82
CHAPTER 4. SNAPPERD: A SCALABLE TRANSACTIONAL ACTOR

SYSTEM

Figure 4.7: Hybrid Schedule

4.2.4 Hybrid Processing

In the multi-node architecture, on each transactional actor, we apply the same
hybrid scheduling for ACTs (§ 3.3.4.1), where the ACT is dynamically inserted
between ordered batches. In § 3.3.4.3, a serializability check algorithm is used
for checking cyclic dependencies between an ACT and PACT batches. More
specifically, for an ACT Ti, we check if max(BSTi) < min(ASTi). Note that
an ACT now may have dependencies on both local and global batches because
it may invoke calls on multiple worker nodes.

As is shown in the example (Fig.4.7), an ACT T1 only accesses worker
node 1, and is scheduled before Blbid=5 on actor A1 and after Blbid=7 on A2.
So T1 violates serializability. the ACT T6, accessing both worker nodes, is
scheduled after Bgbid=2 on A0, and before Bgbid=0 on A1. So T6 also violates
serializability. The two cases represent two possible cyclic dependencies that
could happen to an ACT. First is the intra-node cycle, which is formed with
lbids in one worker node. To detect such cycles, we can simply run the
serializability check over the before and after lbids collected on this node.
Second is the inter-node cycle, which is formed with more than one gbids.
Similarly, to detect an inter-node cycle, the serializability check is run over
the before and after gbids collected across multiple worker nodes. In summary,
the collected information should include both the closest lbids and the closest
gbids scheduled before and after the ACT. For example, for T6 in Fig.4.7, both
lbid = 6 and gbid = 2 should be included.

The same as in § 3.3.3.3, the scheduling information is collected while ex-
ecuting an ACT, and the serializability check is carried out on the first actor
that the ACT accesses before starting 2PC. While performing the serializabil-
ity check, the algorithm proposed in § 3.3.4.3 should be run for 1 + n times
– one for detecting the inter-node cycle and one for detecting the intra-node
cycle for each involved worker node, in a total of n worker nodes. Only if all
checks are passed can the ACT continue to commit. Again, in the existence
of an incomplete AfterSet, as is discussed in § 3.3.4.3, we allow possible false
abort of ACTs to avoid the overhead of collecting accurate and complete batch

4.3. LIVE ACTOR MIGRATION 83

schedule information.
In addition, the ACT must commit after the dependent batches have

committed. Thus, n + 1 WaitBatchCommit messages are sent to the mas-
ter node and related worker nodes. To avoid spamming the system with a
lot of such messages, each worker node should cache the max committed gbid
and the max committed lbid on each worker node. The latest batch com-
mit information is carried in all types of cross-node messages. By doing so,
the WaitBatchCommit message is needed only when the batch has not been
marked as committed in the local cache.

4.3 Live Actor Migration

In the distributed environment, Xmay need to scale in or out to deal with vary-
ing workloads [151] or optimize data locality. It usually requires re-partitioning
or migrating actors between nodes. Looking for an optimal partitioning strat-
egy to reduce cross-node communications has been thoroughly discussed in
various works [115, 95]. This section focuses on another critical challenge:
migrating an actor while guaranteeing application safety and data consis-
tency. Following a simple deactivate-then-reactivate pattern is insufficient,
as is supported in some of the existing actor frameworks [122]. This is be-
cause deactivating an actor with concurrent workloads can face the risk of
data loss and message delivery failures [35]. The former makes it difficult
to keep actor states consistent before and after the migration, and the latter
could cause transaction aborts. This section addresses the challenge of mi-
grating actors under the context of transaction processing while minimizing
transaction aborts and, hence, the impact on system performance.

4.3.1 Overview

Unlike live data migration discussed in database systems where the migration
task can be easily carried out in between transactions [94] or as a step inside a
transaction [95], actor migration requires careful treatment due to the special
features of actors and actor runtime. To migrate an actor in Orleans, the
basic steps include (1) updating the actor placement directory if necessary,
(2) deactivating the actor in the old node, and (3) reactivating the actor
in the new node. As for step (1), Orleans provides several built-in actor
placement strategies and supports customized ones. This is where an actor
partitioning algorithm can be plugged in. The strategy is a method invoked by
the Orleans runtime to resolve the location of a newly activated actor. In step
(2), Orleans allows the completion of the current request [35] on the actor,
then deactivates it by clearing all the in-memory data stored on the actor and
forwarding the pending requests to the new location. As for step (3), recall
that with virtual actors [29], each request sent to the deactivated actor will
automatically trigger a reactivation attempt, and multiple such requests may

84
CHAPTER 4. SNAPPERD: A SCALABLE TRANSACTIONAL ACTOR

SYSTEM

lead to race conditions on the actor reactivation process, then eventually end
up with message delivery failures. The following discusses how to deal with
data and message loss when migrating actors in X.

4.3.1.1 Data Loss

An intuitive solution for data loss is to take a snapshot of the actor state
before the deactivation and use this snapshot to restore the actor state when
reactivating it. However, it is non-trivial to ensure data consistency – re-
quests executed before the deactivation are all reflected in the snapshot, and
requests sent after the deactivation should be executed after the actor state
is restored. This requires extra control to coordinate the snapshot taking
and requests processing and forwarding. Furthermore, the snapshot is sup-
posed to contain all the in-memory data stored on the actor, including the
user-defined transactional state, the actor’s local schedule, the metadata of
unfinished transactions or batches, etc. In this case, the snapshot size grows
with the concurrent workload on the actor, which takes more time to copy and
transfer between actors and nodes and further slows down the whole system.
To limit the snapshot size, we tend to time the migration task – start the
migration when there are no unfinished transactions on the actor; therefore,
only the actor’s transactional state needs to be copied.

4.3.1.2 Message Loss

In addition, message loss should be reduced as much as possible. When a
transactional request fails to be delivered and processed, the corresponding
transaction should be aborted. The abort of an ACT can be handled with 2PC;
however, the abort of a PACT may cause severe cascading abort, especially
in the multi-node architecture (§ 4.2.3.5). To reduce message loss, an ideal
practice is to send the pending or future requests to the migrated actor after
the actor is reactivated. By doing so, multiple requests racing to re-create
the actor can be avoided. Furthermore, there is the possibility to eliminate
the abort of PACT by using the deterministic PACT transaction processing
schedule.

4.3.1.3 Implementation

To implement the aforementioned strategies, we introduce two new types of
actors. The migration helper actor carries out actor migration tasks. Mul-
tiple migration helpers are distributed across worker nodes, each responsible
for migrating a certain set of actors. More specifically, we assign the migration
task of each actor to a fixed migration helper by a simple hash function. The
transaction relay actor relays messages between transactional actors and
local/global coordinators (Fig.4.8b, Edge (2), (3), 2○, 3○ in Fig.4.3). In each
worker node, a group of relay actors gather the NewTxn requests from local

4.3. LIVE ACTOR MIGRATION 85

Figure 4.8: Actor Migration

transactional actors. A relay actor controls when to acquire a TxnContext for
a request from the corresponding coordinator. As for requests relevant to an
actor that is under migration, they are delayed until the migration is done.
The number of both types of actors is configurable. Instead of integrating
these functionalities into coordinators, we create different types of actors for
handling different tasks, given that each actor can only do one thing at a time.

Fig.4.8a shows how a migration helper migrates an actor step by step. The
MigrateActor API requires an actor ID (Ai) and a target node ID as input.
First, the migration helper validates the request (lines 3 - 6). Ai can only be
migrated if the target node differs from the current one and Ai is not involved
in a previous unfinished MigrateActor request. Afterwards, the migration
helper freezes Ai to stop sending more PACTs to Ai (lines 8 - 14). When Ai

finishes all scheduled transactions (line 16), it is deactivated and reactivated
(lines 18 - 20). More details are discussed as follows.

4.3.2 Integrating with PACT Processing

To integrate actor migration with PACT processing, the idea is to set a bound-
ary on Ai such that batches located before the boundary can execute and
commit before migrating Ai and batches after the boundary should wait. For
example, in Fig.4.8c, the boundary is put between B1 and B2 on Ai. In this
way, batches with bid > 2 (e.g. B3, B4) are also blocked by B2 even if they
do not access Ai. It is because B3 must commit after B2, and B4 can only be

86
CHAPTER 4. SNAPPERD: A SCALABLE TRANSACTIONAL ACTOR

SYSTEM

executed on Ak after B2. Due to the restriction brought by PACT ordering, to
avoid such unnecessary blocking, we need to re-order batches (e.g. B2) that
will access Ai and arrive after the boundary. Specifically, the tid and bid

assignment of transactions or batches relevant to Ai should be delayed until
Ai finishes migration, which can be done with the help of the relay actors. As
is shown in Fig.4.8d, PACTs that are initially put in B2 now are not assigned
with bid and tid until Ai is migrated. In the meantime, PACTs that initially
belonged to B3 and B4 are put into B2 and B3, respectively. By doing so,
these two batches can proceed without being blocked by the migration of Ai.

As is shown in Fig.4.8a, the boundary is set with two actions. First (line
8), we freeze Ai by changing its status from active to unavailable, thus
stopping Ai from admitting more StartTxn requests. Any StartTxn request
sent to Ai before this action will successfully get its TxnContext, be executed,
and committed. The ones sent after will get an ActorUnavailable exception
indicating that Ai will be migrated soon, and the request should try again
later. Second (line 10 - 13), all relay actors in the whole X cluster are informed
to freeze Ai by postponing NewTxn requests that will access Ai. At the same
time, max lbid and max gbid are collected from the relay actors, representing
the last local and global batches that will be or have been sent to Ai before
starting the migration.

Afterwards, the migration helper waits for Ai to commit the batch with
lbid = max lbid and the batch with gbid = max gbid. So far, Ai has com-
pleted all the PACTs that are scheduled on it, and it is guaranteed no more
PACTs will access Ai before the migration. Next, Ai’s latest committed state
is returned (line 15). Then, the actor placement directory is updated (line 16),
and Ai is deactivated (line 17). Ai cannot accept any transactional method
invocations until its state is restored and its status is set as active (line 19).
Besides, all relay actors should also unfreeze Ai (lines 20 - 21) to resume the
process of postponed NewTxn requests.

4.3.3 Integrating with Hybrid Processing

Similarly, a boundary is set for ACTs as well, such that ACTs that have been
added into Ai’s local schedule before the boundary can be completed before
the deactivation. More specifically, once Ai is set as unavailable (line 8), it
stops accepting more ACTs by throwing ActorUnavailable exceptions to all
StartTxn requests or transactional invocations of ACTs; thus, no more ACTs
will be added to Ai’s local schedule. Besides, before Ai is deactivated (line
17), Ai should wait for all ACTs in the current local schedule to be completed.
Those ACTs are once executed on Ai, and their 2PC-related messages are
expected to be delivered to Ai in the near future; thus, we allow these ACTs
to complete their 2PC process.

4.4. MULTI-NODE EVALUATION 87

4.4 Multi-Node Evaluation

In this section, we evaluate X on the multi-node architecture. We first eval-
uate the effect of two optimizations applied for the hierarchical architecture
(§ 4.4.2). Then, we investigate the performance of PACT, ACT, and hy-
brid execution with workloads mixing both distributed and non-distributed
transactions. In § 4.4.3, we compare PACT and ACT execution by varying
the percentage of distributed transactions (§ 4.4.3.1), the number of worker
nodes accessed by each transaction (§ 4.4.3.2), and the workload skew levels
(§ 4.4.3.3). § 4.4.4 focuses on hybrid execution, presenting its throughput, la-
tency, and transaction abort rate under multiple workload settings. In § 4.4.5,
we validate X’s horizontal scalability. Lastly, an actor migration experiment
is conducted (§ 4.4.6) to evaluate the effectiveness of the proposed actor mi-
gration method.

4.4.1 Experimental Settings

4.4.1.1 Deployment

Figure 4.9: Experimental setting

In this section, X is run on Orleans 3.6.5. In each experiment, four types of
processes are spawned: Controller, Client, Worker and Master. Each pro-
cess is deployed on an AWS EC2 instance (c5n) and affiliated with a different
number of vCPUs. All of the instances are located in the same region and
availability zone. The Controller initiates X’s environment and orchestrates
all Clients to start and end experiments. On each Client instance, the same

88
CHAPTER 4. SNAPPERD: A SCALABLE TRANSACTIONAL ACTOR

SYSTEM

as described in § 3.4.1.2, multiple threads pull transaction requests from a
push-pull queue, forward to Workers, and collect metrics data. The Worker

and Master refer to the worker and master nodes (§ 4.2.2), respectively.

As for the scalability experiment (§ 4.4.5), while varying the number of
Workers, the number of Clients, and the configurations of the Master in-
stance change accordingly. As is shown in Fig.4.9a, the number of vCPUs and
the number of global coordinators (#GC) vary with the scale factor N . In
addition, the minimum size of each global batch is controlled by a parameter
b, which can be tuned to improve system throughput (§ 4.2.3.3). On each
Client, the pipeline size for each type of client thread is shown in Fig.4.9b.

4.4.1.2 Workload Generation

In this section, in addition to txnSize and PACT%, we configure a workload
with three extra variables: txnDistLevel, dist%, and hot%. txnDistLevel is
the number of Workers a distributed transaction accesses. For a transaction
with txnSize = 8 and txnDistLevel = 4, two actors are selected from each of
the Workers. dist% indicates the percentage of distributed transactions in the
whole workload, while hot% represents the size of the hot set among actors on
each worker. When hot% = 2%, on each Worker, 2% of the actors form the hot
set. Thus, a smaller hot% indicates a smaller hot set and higher workload skew
level. Besides, every transaction has half of the actors selected from the hot
set. For instance, for a transaction with txnSize = 4 and txnDistLevel = 2,
suppose two actors are selected from Worker 0 (W0) and two from Worker 1
(W1). Among the two actors in W0, one is from the hot set of W0, and the other
is not. The same goes for the two actors in W1. Differently from § 3.4.2.2
where the workload skew level is configured using the zipfian function, here,
the hotspot mechanism is applied for better controlling the contention level
in the scalability experiment.

Figure 4.10: Workload generation

In all experiments, actors are uniformly distributed on multiple Workers.
To balance the workload on each Worker, each Client only generates trans-
actions that access a specific set of Workers – the Client i is mapped to
Worker i and (i + 1)%N (N is the total number of Worker). Fig.4.10 shows
how to generate a workload with different txnDistLevel when txnSize = 4.

4.4. MULTI-NODE EVALUATION 89

The arrow indicates an actor is selected from the corresponding set of actors
on the Worker.

4.4.2 Effect of optimizations

In this section, we evaluate how the system performance is improved by the two
optimizations proposed for the PACT execution in the hierarchical architec-
ture. One is applied to speed up the commit of global batches (§ 4.2.3.4). The
other is to tune the size of global batches (§ 4.2.3.3). To thoroughly investigate
the effects of these two optimizations, we run experiments under two different
setups. In Fig.4.11a, we set txnSize = 4, txnDistLevel = 2, #Worker = 2.
In Fig.4.11b, we set txnSize = 16, txnDistLevel = 8, #Worker = 8. In both
figures, we fix PACT% = 100%, hot% = 100% and vary dist%. Note that
when dist% = 0%, txnDistLevel = 1.

Figure 4.11: Effect of optimizations

The throughput of 1○ drops significantly fast from dist% = 0% to 10%
in both figures, showing the influence of global PACTs that they enforce syn-
chronization between different Workers and slow down the progress of local
PACTs. In addition, 1○ decreases much faster in Fig.4.11b than 4.11a because
each global PACT in 4.11b involves more number of Workers and exacerbates
the synchronization latency. When dist% grows to 100%, 1○ drops 78% in
Fig.4.11a and 90% in 4.11b compared to the values of dist% = 0%, respec-
tively.

The throughput of 2○ presents the effect of the optimization where the
commit of a global batch can be sped up in a Worker if its previous one
is also a global batch (§ 4.2.3.4). In both figures, 2○ outperforms 1○ when
dist% > 10%, and 2○ even starts to increase when dist% > 50%. This is
because the possibility of taking the shortcut increases when there are more
global PACTs. In addition, this optimization performs more effectively for
a larger txnDistLevel. When dist% = 100%, 2○ increases 2x from 1○ in
Fig.4.11a, and 4x in 4.11b. This is because a larger txnDistLevel indicates
more Workers are involved in a global batch, and more GlobalBatchCommit

90
CHAPTER 4. SNAPPERD: A SCALABLE TRANSACTIONAL ACTOR

SYSTEM

messages are needed when committing the batch. Applying this optimization
helps to remove these messages from the critical path of committing the batch.

The throughput of 3○ shows the effect of tuned batching where the min-
imum size of each global batch is bounded – 20ms for Fig.4.11a and 160ms
for 4.11b. These numbers are tuned so as to benefit the total throughput
the most. In both figures, 3○ decreases smoothly and much slower than 1○
and 2○ with increasing dist%. It indicates that a proper batch size can better
amortize the overhead of logging and messaging, as well as reduce the blocking
between different Workers due to the synchronization of global batches.

The throughput of 4○ shows the case of the combined effect of both op-
timizations. 4○ remains the same as 3○ in Fig.4.11a, while outperforming
3○ in 4.11b. Again, it indicates that the optimized commit process is more
advantageous for a workload with larger txnDistLevel. In the rest of the
experiments, both optimizations are adopted.

4.4.3 PACT vs. ACT Execution

In this section, we investigate the characteristics of PACT and ACT executions
in the existence of distributed transactions.

Figure 4.12: Vary dist% Figure 4.13: Vary txnDistLevel

4.4.3.1 Vary dist%

This experiment is run with two Workers and we set txnSize = 4, txnDist−
Level = 2, hot% = 100%, with varying dist%. Fig.4.12 shows that ACT
throughput decreases and abort rate increases with growing dist%. ACTs
crossing multiple Workers have longer latency and hold locks for a longer
time, thus leading to more contention and more aborts.

Besides, ACT throughput is always lower than PACT. Recall that the
overhead of processing ACT is higher than PACT according to the experi-
ment on the single-node architecture (§ 3.4.2.1) because every ACT requires

4.4. MULTI-NODE EVALUATION 91

two round-trip messages and two blocking IOs to perform 2PC, while PACTs
are committed and logged in batches, which is more efficient. Here, when
transactions access two Workers, although both PACT and ACT are affected
by more costly inter-node messages compared to intra-node communication,
we conjecture that the batching mechanism, combined with the two optimiza-
tions, helps PACTs outperform ACTs.

4.4.3.2 Vary txnDistLevel

In this experiment, we deploy 16 Workers, set txnSize = 16, dist% = 50%,
hot% = 100%, and vary txnDistLevel. Note that when txnDistLevel = 1,
dist% = 0%. Fig.4.13 shows that the throughput of both PACT and ACT
decreases significantly when txnDistLevel changes from 1 to 2, and decreases
at a slower pace when txnDistLevel goes higher. From txnDistLevel = 1
to 2, the advent of inter-node communications leads to significant throughput
degradation for both PACT and ACT. When txnDistLevel becomes larger,
for ACT, the more Workers a transaction accesses, the more number of cross-
node calls are invoked in both transaction execution and commit phases.
Thus, the longer transaction latency becomes, and again, the longer time
locks are held. Due to the higher contention, ACT gets a higher abort rate
and lower throughput. For PACT, when a transaction accesses more Wokers,
its corresponding global batch is divided into a larger number of sub-batches,
which also means more messages (GlobalSubBatch, GlobalBatchComplete
and GlobalBatchCommit), and accordingly more logging, are needed. How-
ever, despite both PACT and ACT throughput decreasing with increasing
txnDistLelve, PACT outperforms ACT throughout the time.

4.4.3.3 Vary hot%

In this experiment, two Workers are deployed, txnSize = 4, txnDistLevel =
2. Under this setting, we compare the throughput of PACT, ACT and Orlean-

sTxn with varying workload hot% when dist% = 0, 50%, and 100% respec-
tively. Fig.4.14 presents the results. All three groups have a decreasing trend
when dist% increases, which shows the overhead of distributed transactions.
Within each group, when hot% decreases, the workload skew level increases.
For PACT, its throughput rarely changes with varying hot% because PACT is
not sensitive to contention, given that all PACTs are pre-ordered and executed
in a deterministic way. Besides, PACT may even benefit from high contention
because batching becomes more efficient. For instance, when dist% = 100%,
PACT throughput slightly increases when hot% decreases. By contrast, the
throughput of ACT and OrleansTxn drops because they suffer from high con-
tention, while an increasing abort rate is observed. In addition, the throughput
of OrleansTxn is always lower than ACT, even with a deadlock-free work-

92
CHAPTER 4. SNAPPERD: A SCALABLE TRANSACTIONAL ACTOR

SYSTEM

load. This is a similar result to the experiment in § 3.4.2.2 and § 3.4.2.3 where
OrleansTxn has higher overhead on different operations.

Figure 4.14: Effect of workload skewness

4.4.4 Performance of Hybrid Execution

In this section, we deploy two Workers, set txnSize = 4, txnDistLevel =
2, and vary dist%, hot%, and PACT%. As is shown in Fig.4.15, within
a group with fixed dist% and hot%, the total throughput mostly smoothly
decreases from 100% to 0% PACT, which validates that the hybrid execution
can bridge the gap between pure PACT and pure ACT, even with distributed
transactions.

Figure 4.15: Hybrid execution

In addition, similarly to Fig.3.17 (§ 3.4.3.1), the total throughput may ex-
perience a significant decrease from 100% to 99% PACT when the workload
skew level is very high (hot% = 0.2%). Again, this shows how the blocking
between PACT and ACT scheduling is exacerbated under a highly content
workload, given that an ACT has to wait for the previous batch to complete
while a PACT has to wait for the previous ACT to commit or abort. An-
other interesting finding is that this throughput degradation is alleviated when
dist% becomes higher. More specifically, when hot% = 0.2%, dist% = 0%,
50%, and 100%, the total throughput drops 30%, 22% and 10% respectively.

4.4. MULTI-NODE EVALUATION 93

This is because, with larger dist%, more PACTs need to be processed as global
PACTs, which results in more time being spent on the batching and commit
phases and, thus, less sensitivity to the time these PACTs are blocked by ACT
processing.

4.4.5 Scalability

In this section, we evaluate the horizontal scalability of X using both SmallBank
and TPC-C benchmarks with varying PACT%, dist%, and hot%.

Figure 4.16: Scale out

Fig.4.16a-d shows the results with the SmallBank benchmark. All lines
scale up linearly from 2 to 16 Workers (64 CPUs in total), and the through-
put increases ∼ 1.8-2x when #Worker doubles. In each figure, a higher dist%
results in lower throughput due to the overhead introduced by distributed
transactions. Among the first three figures (Fig.4.16a-c), PACT% decreases
and the total throughput decreases as well. In addition, the gap between
hot% = 100% (dotted lines) and hot% = 1% (solid lines) is widening for
each fixed dist%. This effect indicates that the impact of contention becomes
more severe when there are more ACTs in the system. If we further look into

94
CHAPTER 4. SNAPPERD: A SCALABLE TRANSACTIONAL ACTOR

SYSTEM

Fig.4.16d, the gap is much larger for OrleansTxn. When hot% = 100%, ACT
has a slightly higher throughput than OrleansTxn, while under higher con-
tention where hot% = 1%, ACT performs significantly better. The relatively
inferior ability of OrleansTxn to deal with contention has also been observed
and discussed on several occasions [34, 98, 36].

Fig.4.16e shows the results with the TPCC benchmark. We implement the
NewOrder transactions as in § 3.4.4.2 such that each of such transactions ac-
cesses 15 actors on average. The mapping between different tables to actors
is illustrated in Fig.3.21. In this experiment, each Worker contains two ware-
houses. Furthermore, 10% of transactions will access warehouses located on
another Worker, thus dist% = 10% and txnDistLevel = 2 for transactions
accessing remote warehouses. In Fig.4.16e, all lines scale near linearly up to
16 Workers, and the higher the PACT%, the higher the throughput that is
observed, as expected.

4.4.6 Actor Migration

Figure 4.17: Actor Migration

In this experiment, we simulate a scenario in which an overloaded sys-
tem achieves better performance by adding more nodes and migrating actors
for load balancing. To set up this case, we first initiate two Workers, each
containing 10k actors, 8 migration helper actors and 8 relay actors. We de-
ploy four Clients to fill the system with excessive workloads. Each Client

spawns two client threads to submit PACT and ACT transactional requests
(pipeline size is 256 and 64, respectively). After running for 30 seconds, two
more Workers are added to the cluster, and each Client spawns a new thread
to emit actor migration tasks (pipeline size is 8). In the end, each Worker will
contain 5k actors. When all the migration tasks are done, the system keeps
running for another 30 seconds to reach a stable final throughput. As for the
transaction workload, we set hot% = 100%, txnSize = 4, txnDistLevel = 2,
and dist% = 100% both before and after the actor migration. Therefore, if

4.5. RELATED WORK 95

we double the number of Workers; ideally, the total throughput should also
be doubled.

Fig.4.17a presents the system throughput measured per second during the
whole process. For all three cases (PACT% = 100%, 50%, 0%), the through-
put grows gradually, with fluctuations but no significant drop, and ends ∼
1.7x higher than before. Besides, according to the statistics we collect, only
∼ 0.01% transactions are aborted due to the migration. Fig.4.17b shows the
average breakdown latency for migrating an actor. In X, since an actor can
only be migrated when a certain PACT batch or a certain ACT is completed,
the time spent on actor migration is expected to be largely influenced by
transaction latency. Besides, the actor migration tasks are carried out on
the migration helper actors and scheduled by the actor runtime with other
transaction-related actor calls. Thus, the more CPUs consumed by trans-
action processing, the more time the actor migration task will wait to be
scheduled. In Fig.4.17b, the workload with 0% PACT has the lowest actor
migration latency, and the workload with 50% PACT has the highest latency
in all three steps. The latency also matches the total time to finish the mi-
gration in Fig.4.17a.

4.5 Related Work

4.5.1 Global and Local Scheduling

In SnapperD, we use a group of global coordinators and a group of local coor-
dinators within each node to schedule distributed and non-distributed trans-
actions, respectively. Several deterministic database systems also adopt this
idea of global and local scheduling. VoltDB [165] uses a node controller to pro-
cess transactions within a partition and a global controller to process multi-
partition transactions in serial. Different from VoltDB, SnapperD supports
distributed transactions to be executed concurrently and parallelly. As an-
other example, Granola [43] uses timestamps to determine the order between
transactions. A non-distributed transaction gets a local timestamp directly
from the local node, while a distributed transaction gets a global timestamp
via coordination among all involved nodes. In contrast, SnapperD generates
gtids in the global node, and the global order is later delivered to local nodes in
batches. In addition, SLOG [145] is a partitioned and geo-replicated determinis-
tic database system. SLOG applies global ordering for multi-home transactions,
the ones whose master copies of accessed items are located in multiple regions,
and SLOG applies local ordering for single-home transactions. However, unlike
SnapperD, SLOG does not further distinguish between transactions that span
single and multiple nodes, either within or across regions.

96
CHAPTER 4. SNAPPERD: A SCALABLE TRANSACTIONAL ACTOR

SYSTEM

4.5.2 Assumptions about Determinism

In SnapperD, we assume that the list of actors a transaction will access is
given in advance. Similarly, DDBS usually assume a known read/write set for
each transaction. With such information, we are able to apply deterministic
transaction processing techniques, which avoid deadlocks, eliminate conflict
aborts and give chances to simplify the commit protocol. Differently, most
DDBS, such as Calvin [172], TPart [181], QStore [137], and Granola [43],
further assume deterministic transaction logic where the re-execution of the
same transaction will generate the same results. With this feature, these
DDBS commit transactions by simply logging the ordered sequence of trans-
action inputs because failed transactions can always be recovered by a replay.
SnapperD does not rely on this assumption and SnapperD commits a batch
of transactions by coordinating all of the involved actors. In addition, some
DDBS also make assumptions about user aborts. For example, PWV [64] as-
sumes that a transaction does not abort after the pre-declared commit point
in the transaction workflow. Caracal [139] assumes that user aborts only hap-
pen before performing any write. In contrast, SnapperD puts no constraints
on user aborts. Apparently, different assumptions make it possible to apply
different optimizations. SnapperD has the potential to further improve its
performance by adding more assumptions and we will leave it as future work.

4.5.3 Distributed and Non-Distributed Transactions

Optimizing distributed transactions is a topic that continuously draws atten-
tion from industry and academia. While most of them focus on improving dis-
tributed transactions, achieving good performance for non-distributed trans-
actions in the distributed environment is rather important. Many of the ex-
isting methods, such as deterministic techniques, variants of 2PC [102, 55, 54]
and some other commit protocols [167, 187], improve the performance of dis-
tributed transactions and benefit non-distributed transactions as well. This
is because non-distributed transactions scheduled after distributed transac-
tions are blocked for less time if distributed transactions are executed more
efficiently. However, some methods are beneficial for distributed transactions
but less conducive for non-distributed transactions. For example, Primo [85]
simplifies 2PC by acquiring exclusive locks for all read items which can reduce
the performance of non-distributed transactions. In SnapperD, the optimisa-
tions applied for batching and commit protocol both aim to reduce the impact
of distributed transactions on non-distributed transactions.

4.5.4 Actor State Persistence

Actor systems usually follow the deactivate-then-reactivate pattern to migrate
actors. In the reactivation phase, the state of the actor is restored in different
ways depending on how it is persisted. In general, there are three types of

4.6. CONCLUSION 97

persistence. First, in Akka [5] and Riker [147], the actor state persists as a se-
quence of historical events and is restored via event sourcing, which is efficient
for writes but time-consuming for reads. Second, in Dapr [46], Orbit [118] and
Pykka [135], the actor state persists as an object and only the latest version
is stored. This disallows us from retrieving a certain old version that consti-
tutes a globally consistent snapshot. There are also actor systems, such as
Orleans [122] and Proto.Actor [131], supporting both mechanisms. Third,
under the context of multi-actor transaction processing, both OrleansTxn [55]
and Snapper [99] write transactional logs to guarantee a recoverable state. In
their cases, the actor is restored by walking through a failure-recovery algo-
rithm, assuming that the actor can be de-activated and migrated at any time.
Different from all of them, SnapperD keeps each actor’s latest committed state
in memory and delivers it to the newly activated actor instance as a message.
SnapperD resorts to this simple and efficient solution because it starts the
migration at a proper time such that no more transactions will be executed
on this actor.

4.6 Conclusion

This paper presents SnapperD, a high-performance and scalable system for ex-
ecuting distributed actor transactions. SnapperD enables hybrid deterministic
and nondeterministic distributed transaction processing. Its hierarchical ar-
chitecture provides a scalable deterministic transaction ordering and commit-
ting service, which not only avoids the potential bottleneck but also minimizes
the idling time of non-distribution transactions while waiting for distributed
transactions to commit. SnapperD also supports transactional actor migra-
tion with minimized impact on the system throughput, facilitating efficient
runtime system reconfiguration.

Chapter 5

SnapperX: Fine-Grained
Actor State Management

T
he actor model has emerged as an effective solution for building stateful
middle tiers. By promoting the partitioning of application functionali-

ties and associated states into actors, developers benefit from their inherent
concurrency model to achieve scalability and isolation. Despite its increas-
ing popularity, the actor model lacks support for complex state management
tasks, such as enforcing foreign key constraints and ensuring data replication
consistency across actors. These are crucial properties in partitioned applica-
tion designs, such as microservices, which inhibit the further adoption of the
actor model.

To fill this gap, we start by analyzing the key impediments in state-of-the-
art actor systems. We find it difficult for developers to express complex data
relationships across actors and reason about the impact of state updates on
performance due to opaque state management abstractions. To solve this co-
nundrum, we develop SnapperX, a novel data management layer for actor sys-
tems, allowing developers to declare data dependencies that cut across actors,
including foreign keys, data replications, and other dependencies. SnapperX

can transparently enforce the declared dependencies, reducing the burden on
developers. Furthermore, SnapperX employs novel logging and concurrency
control algorithms to support transactional maintenance of data dependencies.

We demonstrate SnapperX is able to support core data management tasks
where dependencies across components appear frequently without jeopardiz-
ing application logic expressiveness and performance. Our experiments show
SnapperX significantly reduces the logging overhead and leads to increased
concurrency level, improving by up to 2X the performance of state-of-the-art
deterministic scheduling approaches. As a result, SnapperX will make it easier
to design and implement highly partitioned and distributed applications.

99

100
CHAPTER 5. SNAPPERX: FINE-GRAINED ACTOR STATE

MANAGEMENT

5.1 Introduction

In the modern application programming landscape, developers design their
applications in tiered architectures with a stateless middle tier encoding the
application logic and a database tier storing the application state [29]. For
each client request, the middle tier executes the business logic by retriev-
ing the necessary data from the database tier. This architecture simplifies
the development of applications by pushing complex data management tasks
to the database tier. However, this data shipping paradigm has limitations.
The long end-to-end latency and excessive data transfer from the database to
the middle tier during peak periods may not meet the applications’ require-
ments [30, 154]. In-memory data caching in the middle tier can reduce the
latency and data transfer. However, it can suffer from low cache hit ratios,
e.g., when different client requests need to access diverse data or data are
updated frequently, and cache data inconsistency that can lead to application
safety problems [127].

To address these problems, an alternative architecture employs a stateful
middle tier, where data are stored in the computing nodes, and the function
shipping paradigm is adopted. Client requests are shipped to the comput-
ing nodes, which store the corresponding data for processing. This does not
involve data transfer from the data storage, minimizing the bandwidth over-
head and latency. Data from the middle tier are asynchronously shipped to
the database layer for analytics and disaster recovery. Furthermore, to achieve
system scalability, software agility, and fault isolation, we are witnessing the
emergence of microservice architectures [89]. In such architectures, the ap-
plication is decomposed into independent and fine-grained components that
interact via synchronous or asynchronous communications, each encapsulating
its own state.

Meanwhile, the actor model [4] has emerged as a promising concurrent
programming model for middle-tier development [10]. The encapsulated states
of actors allow developers to build loosely coupled applications with a design
that remounts a cache with data locality, characterizing the function shipping
paradigm. Client requests are processed by one or more actors interacting
via asynchronous messages, triggering the updates of their encapsulated actor
states. Such design principle makes it very attractive to model microservices
as actors [87]. In addition, the advent of virtual actor [29], originally developed
in the context of Microsoft Orleans, further alleviates developers’ burden by
providing actor state management functionalities, including state persistence,
transactional state manipulation, and fault tolerance via state persistence,
which lays a solid foundation for addressing the data management challenges
in microservice systems [89]. The state of a virtual actor is modeled as an
opaque transactional object, no matter how many entities are encapsulated
in an actor. Such an opaque state model puts almost no limitation on how
developers implement the operations on actor states other than using the

5.1. INTRODUCTION 101

Figure 5.1: Cross-actor relations in Online MarketPlace

required APIs to interact with an underlying data store for persistence. Thus,
an update in a single entity is treated as an update in the object as a whole.

Despite the recent advancement of actor state management, modern data-
intensive applications exhibit complex relationships among entities cutting
across distributed components [176], which typically are not natively sup-
ported by actor runtimes. These cross-component relationships include foreign-
key constraints, replication of data items, and functional dependencies [89].
Taking an e-commerce application case, Online Marketplace [88], as an ex-
ample (Fig.5.1), product data managed by the product component can be
replicated to the cart component, which manages products added to customer
carts. The replication favors performance since it avoids successive round trips
between the cart and product components for ensuring the correctness of prod-
uct information (e.g., product price) on checkout time [176, 140]. However, the
opaque state model of virtual actors exposes little semantic information, such
as how and which part of the state is modified, thereby limiting the ability
of developers to express important safety properties of data-intensive applica-
tions. Due to the lack of support from the actor frameworks, developers must
map relationships across actors explicitly (e.g., which carts contain a certain
product) and ensure their correctness in application code. Besides being com-
plex and error-prone, this practice is oblivious to transaction management,
leading to isolation anomalies.

Taken together, enhancing the state management features of actor frame-
works for ensuring application safety across actors is a missing key to fully real-
izing the envisioned benefits of the actor model in developing scalable stateful
middle tiers. To bridge the gap, we develop a data management library for vir-
tual actors, which provides an API for developers to register cross-actor depen-
dency constraints dynamically and supports high-throughput transactional en-
forcement of these constraints. It accounts for emerging cross-component state
management requirements that arise in partitioned and distributed applica-

102
CHAPTER 5. SNAPPERX: FINE-GRAINED ACTOR STATE

MANAGEMENT

tions, such as microservices [89, 83, 176]. Our contributions are summarized
as follows:

• To strike a balance between simplicity, state translucency, and expres-
siveness, we propose an extended key-value model for actor states with
an associated set of state access and dependency APIs. This design
enables the shift of cross-actor dependency management from the appli-
cation codes to the actor framework and hence unloads the burden of
developers from complex and error-prone state management codes.

• We develop SnapperX, a data management layer in a virtual actor frame-
work. SnapperX is implemented by integrating our data model and APIs
with the state-of-the-art transaction library for virtual actors – Snapper

to support transactional data dependency enforcement. To maximize
the transaction throughput, we extend Snapper’s concurrency control
to take advantage of the new data model of actor states, providing fine-
grained concurrency control outperforming vanilla Snapper.

• We map the Online Marketplace [88] benchmark to the actor abstrac-
tion and implement it on SnapperX. Online Marketplace models key
safety properties related to relationships across components that arise
in real-world partitioned and distributed applications. Our implemen-
tation validates the expressiveness and ease of use of our data model, as
well as addresses the challenges of cache coherence, referential integrity,
and strong isolation transactional guarantee.

• We conduct extensive experiments on two benchmarks, Online Market-

place and SmallBank. Our experiment demonstrates the efficiency
of fine-grained concurrency control over state-of-the-art deterministic
methods. As a result, SnapperX will facilitate the design and implemen-
tation of actor-based stateful middle-tiers.

5.2 Actor State Management for Data Integrity

In this section, we present SmSa, a data model we introduce for the actors,
which includes novel concepts of the actor state and data dependencies cut
across actors.

5.2.1 Conceptual Overview of SmSa

In SmSa, each actor’s state is modeled as a key-value collection. SmSa relies
on developers to determine how keys are partitioned across actors. Each key
is unique among those in an actor, while the same key may exist in different
actors. Keys located in different actors are related through a dependency
constraint (§ 5.2.2). As shown in Fig.5.2a, actors and dependencies form a

5.2. ACTOR STATE MANAGEMENT FOR DATA INTEGRITY 103

Figure 5.2: State management of stateful actors (SmSa)

directed graph. The arrow ki → kj represents that kj depends on ki, and a
change made on ki may cause a change to kj . SmSa supports basic operations
to get, put, and delete keys; meanwhile, it allows dynamic registration and
de-registration of dependencies between two specific pairs of key-value items
in two different actors. Thus, the dependency graph may change with time,
well reflecting the dynamic nature of actor topologies [1]. Besides, we opt
for a key-value abstraction because developers are familiar with this model to
manage data in stateful middle-tiers [127, 109].

The dependencies in SmSa are used to model different application con-
straints, such as data integrity constraints, foreign key constraints, data repli-
cation, and other functional dependencies. For example, Fig.5.1 illustrates
the replicated key (D1), the foreign key with cascading delete (D2), and the
materialized view (D3), respectively. A prominent feature of SmSa is the
system-level support to enforce these constraints instead of relying on devel-
opers to encode them case by case in the application logic. More specifically,
SmSa keeps track of the operations performed on the keys during the execu-
tion of the actor methods. When the execution is done, SmSa scans the list
of operation logs and figures out the operations that need to be forwarded
to the other keys on the other actors for preserving the relevant dependency
constraints. For example, in Fig.5.1, the dependency D1 represents a scenario

104
CHAPTER 5. SNAPPERX: FINE-GRAINED ACTOR STATE

MANAGEMENT

when the price of a product is changed, the update operation is forwarded
to all cart actors that contain this product, thus guaranteeing that all the
cart actors consistently see the latest price. With SmSa, the forwarded update
operations are calculated and carried out transparently at the system level.
§ 5.2.2 discusses the algorithm applied to derive such information and how
operations are forwarded and applied to another actor.

Fig.5.2b illustrates that each actor maintains not only a key-value collec-
tion but also a list of dependencies and a list of operation logs. SmSa wraps
them together into a DictionaryState object. This object exposes two sets
of APIs; one is external for the user request to access application data, and
the other is internal for the system to enforce the dependency constraints. By
enforcing certain operations being invoked via these APIs, SmSa captures all
the changes made to the key-value collection of an actor and further automates
the dependency constraint enforcement.

5.2.2 Dependency Management

5.2.2.1 Definition

SmSa defines a dependency record with six data fields (Fig.5.2e): the type of
the dependency, the leader actor, the leader key, the follower actor, the follower
key, and a customized function. SmSa generalizes two types of dependencies
– delete dependency and update dependency. The delete dependency de-
scribes the relation between two keys (kl, kf) on two different actors (Al, Af)
that the deletion of kl on Al will cause the deletion of kf on Af . The update
dependency refers to the relation in which the update that happened to kl
on Al will trigger a specified update function being applied to the key kf on
Af . In an update dependency, the deletion of kl will not cause the deletion of
kf . A key where the delete or update operation originates is named leader
key, the affected key is called follower key, and the actors where the keys
are located are referred to as leader actor and follower actor respectively.
The leader key and the follower key do not have to be the same, depending
on how users define the dependency. To be able to retrieve the follower keys
of a leader key, SmSa stores the dependency information on the leader actor.
SmSa does not maintain a shared global dependency graph; instead, it dis-
tributes the information across actors. By doing so, SmSa avoids a centralized
component becoming a bottleneck when it needs to serve frequent queries,
meanwhile guaranteeing that each actor has sufficient information stored in
the local private state to enforce the dependencies.

In addition, an update function needs to be specified for every update
dependency. SmSa defines an interface IFunc and an abstract method Apply−
Update (Fig.5.2e) that each update function should implement. This method
requires input: the leader key, the values of the leader key before and after
applying the user-invoked update operation, the follower key, and the existing

5.2. ACTOR STATE MANAGEMENT FOR DATA INTEGRITY 105

value of the follower key. Then, the method returns the calculated new value
for the follower key. As is shown in Fig.5.3 (lines 79-84), data replication can
be facilitated by using an update function that directly returns the value of
the leader key. Thus, the follower key remains the same as the leader. This
function can be used for defining dependency D1 where the new price of a
product is replicated from the product actor to all relevant cart actors (lines
3-17). Similarly, customized functions can contain more complex calculations
and be applied to build materialized views. As the example in Fig.5.3 (lines
62-77), a function is defined for a seller actor to maintain a view of all created
orders cumulatively.

5.2.2.2 Deletion Rules of Keys

SmSa allows user code to delete both leader and follower keys. When a leader
key is deleted, the deletion operation is forwarded to the corresponding follow-
ers. When a follower key is deleted, it indicates its dependency on the leader
key expires; thus, this dependency record should be deleted to avoid further
operations being sent to the follower actor (e.g., lines 35-40 in Fig.5.3). In
summary, the deletion of a key indicates the deletion of follower keys, as well
as the de-registration of all dependencies pointing to and from this key. To
retrieve the dependency in the backward direction, i.e., from the follower key
to the leader key, SmSa keeps a copy of the dependency record on the follower
actor as well.

5.2.2.3 Leader and Follower Keys

In SmSa, a leader key may have multiple follower keys. It resembles the scenario
in an RDBMS where multiple foreign keys refer to one primary key. SmSa

allows a leader key to impose different effects on different follower keys. For
example, in Fig.5.1, a product ID p1 on the product actor may relate to
multiple cart actors through update dependencies (D1). Meanwhile, p1 is also
related to the same key on the stock actor through a delete dependency (D3).

SmSa allows a follower key to have multiple leader keys, while a foreign
key can only reference a single primary key in RDBMS. SmSa identifies three
scenarios. First, a follower key may have update dependencies on multiple
leader keys. For example, as is shown in Fig.5.1, a follower key s1 on the seller
actor may need to aggregate the information of newly created orders from
the leader keys on multiple shipment actors. By doing so, the seller actor
can maintain an up-to-date materialized view. Second, a follower key may
have delete dependencies on multiple leader keys, which models the case that
the existence of an entity is dependent upon the existence of other entities.
Third, a follower key may be affected by both update and delete operations
on different leader keys. Note that SmSa does not control the priority or the
order of executing operations related to different dependencies. When a delete

106
CHAPTER 5. SNAPPERX: FINE-GRAINED ACTOR STATE

MANAGEMENT

Figure 5.3: Example codes of developing Online Marketplace on SnapperX

5.2. ACTOR STATE MANAGEMENT FOR DATA INTEGRITY 107

operation and an update operation are both forwarded to the same follower
key, the final result is the same – the follower key is deleted. However, when
two different update operations are forwarded to the same follower key, the
result may vary depending on which update operation arrives at the follower
actor first or which update function is applied by the follower actor first. Users
can resolve this issue by defining commutative update functions. Another
solution is to rely on transaction management (§ 5.3) to restrict the order of
different operations performed on each actor.

In SmSa, when a key acts both as a leader and a follower, the deletion of
such a key becomes more complicated. For example, in Fig.5.2d, when the key
k2 is deleted, the actor A2 first enquiries forwards to send the delete operation
to the follower actor A3, then backwards to de-register the dependency on A1.

5.2.2.4 Cyclic Dependencies

If dependency registration is not restricted, SmSa may create a cyclic chain of
dependencies across multiple keys, which will further result in an infinite loop
of operation forwarding process. As is shown in Fig.5.2c, the cycle may be
formed in three cases. The first case involves only delete dependencies, the
second case is a mix of both types of dependencies, and the third one only has
update dependencies.

The first two can be processed to completion within limited steps. In
the first case, the deletion of the key k1 will cause the deletion of k2, then
k3. When the deletion operation is forwarded back to the actor where k1 is
located, the actor will find out that k1 does not exist in the key-value collection
because it has already been deleted. Thus, the deletion will not be performed
again, and no more delete operations will be forwarded along the dependency
chain. As for the second case, the update of k3 will be forwarded to k1 and
k2, and it does not form a cycle. When k1 (k3) is deleted, the two connected
dependencies d1 and d2 (d3 and d1) are removed, and no further operations
are needed. When k2 is deleted, k3, d2, d3 and d1 will be deleted.

In the third case, deleting any of the keys will cause the deletion of two
dependencies. However, updating any of the keys will cause the update oper-
ation to circulate endlessly in the cycle. The third type of cyclic dependencies
can be prohibited by adopting the following three strategies: S1, SmSa does
additional checks whenever an update dependency is registered, which may be
time-consuming when there exists a very long chain of dependency, or when
each key points to many other keys. S2, SmSa can restrict that each actor
should not forward operations for a request more than once. For example,
if an update is already forwarded from k1 to k2, then when k1 receives the
update from k3, no more updates will be generated. However, this strategy
requires actors to store information about different requests, introduces extra
semantics, and makes it more complicated to reason about the application

108
CHAPTER 5. SNAPPERX: FINE-GRAINED ACTOR STATE

MANAGEMENT

logic. S3, SmSa can disallow a key to becoming both leader and follower, thus
eliminating any type of cycle.

5.2.2.5 Dependency Registration and De-registration

In SmSa, a dependency registration request should be initiated by the user
on the follower actor Af . Af first checks if the specified kf is allowed to be
attached with a dependency. For example, SmSa may check if it will cause a
cyclic chain of update dependency when the strategy S1 is adopted, or check
if kf is already identified as a leader when S3 is adopted. If the check is
passed, the leader actor Al is called to continue the registration. Al will check
if the key kl can be declared as a leader, i.e. if kl already exists and there
is no dependency that has kl as a follower key. If yes, the dependency is
registered on Al, and the latest value vl of the leader key kl is retrieved and
returned to Af . On Af , if the follower key kf does not exist yet, vl is used
as the initial value of kf , and a new key-value pair < kf , vl > is inserted.
If kf already exists, the custom function specified in the newly registered
dependency is applied by using old vl = vl and new vl = vl. The above
explains how SmSa deals with a dependency registration request. Next, we
explain how developers should send such a request to SmSa. Fig.5.3 shows
the example codes of registering dependencies D1 (lines 3-17) and D3 (lines
45-59). In both cases, a dependency is defined by specifying the six required
data fields. Afterward, the API RegisterDependency is called to forward the
necessary information to internal SmSa. SmSa exposes this API for developers
to explicitly declare dependencies.

The de-registration of a dependency can be carried out in two ways. First,
it can be done in a similar process as dependency registration, where a de-
registration request is sent explicitly to the follower actor and then forwarded
to the leader actor. Second, the user can also simply delete the follower
key (Fig.5.3 lines 35-40). According to the deletion rule of SmSa introduced
in § 5.2.2.2, when a follower key is deleted, the corresponding dependency
records are removed as well.

5.3 Transactional Actor State Management

Having laid out a rich state management abstraction for the actor model,
we turn our attention to how to leverage such advancements to optimize key
aspects of data systems, logging and concurrency control.

5.3.1 The Dangers of Unordered Operations

Although equipping actors with a data model enables the declaration of com-
plex relationships across actors, developers must still account for the dan-
gers of arbitrary function execution order and their possible impact on ac-

5.3. TRANSACTIONAL ACTOR STATE MANAGEMENT 109

tor states [17]. For instance, a request in SmSa may perform operations
on multiple actors, especially in the existence of cross-actor dependencies.

Figure 5.4

The concurrent execution of such requests may drive
the system to an inconsistent state. For example,
in Fig.5.4, suppose an actor A2 intends to create a
replica of key k, whose master copy is stored on A1.
The example illustrates a possible interleaving of two
requests; one is a dependency registration request
initiated by A2, and the other performs an update
operation on k on A1. Ideally, the updated value
of key k should be reflected to the replica on A2.
However, if the forwarded update operation arrives
earlier than the confirmation message, A2 will not
perform the update and results in a replica that is
inconsistent with the master copy on A1.

SmSa can benefit from a transaction management solution to provide a
stronger application correctness guarantee. Existing works have proposed a
myriad of methods to enforce the order of concurrent tasks [99, 55] and to
converge to a consistent state in the presence of disorder [180, 129, 156, 92].
Snapper [99], one of these solutions, supports ACID transactional proper-
ties for multi-actor operations through performant deterministic concurrency
control, making it a good fit to integrate SmSa with.

5.3.2 An Actor Transaction Library – Snapper

5.3.2.1 Transaction Management

Snapper [99] is an actor transaction library designed to enhance the perfor-
mance of multi-actor transactions meanwhile preserving the ACID transac-
tional properties. Snapper leverages deterministic scheduling for PACT, a
type of transaction that declares the actor access information when it is sub-
mitted to the system. Based on this pre-declared information, Snapper em-
ploys a group of coordinator actors to generate deterministic transaction exe-
cution schedules for every batch of PACTs. Each such schedule consists of a se-
quence of PACTs that are relevant to a particular actor. Afterwards, Snapper
delivers such batch schedules to corresponding actors via asynchronous mes-
sages. Each actor is supposed to execute transactional invocations of PACTs
one by one in the pre-determined order. Under the PACT execution, transac-
tions are scheduled, executed, committed, and logged all at the batch level.

In addition to deterministic execution, Snapper also supports conventional
non-deterministic strategies, such as Strict Two-Phase Locking (S2PL) and
Two-Phase Commit (2PC), for transactions whose actor access information
cannot be pre-declared. This type of transaction is called ACT. Another
standout feature of Snapper is its ability to execute concurrent hybrid work-

110
CHAPTER 5. SNAPPERX: FINE-GRAINED ACTOR STATE

MANAGEMENT

loads, wherein some transactions are executed deterministically while others
follow non-deterministic methods. This hybrid execution model maximizes
the advantages of deterministic execution, which can achieve high transaction
throughput while maintaining flexibility for non-deterministic workloads.

5.3.2.2 Programming Model

Snapper provides a base actor class, TransactionalActor, that provides key
system-level functionalities, such as transaction processing and logging. As
listed in Fig.5.5a, the TransactionalActor exposes APIs for transaction re-
quests submission (StartTxn), for transactional actor state access (GetState),
and for invoking transactional methods on other actors (CallActors).

In Snapper, when the GetState API is called by a transaction T , the
TransactionalActor transparently controls when T can get access to the
actor state. More specifically, Snapper first identifies if T is a PACT or an
ACT by using the TxnContext information. Then, based on the different
concurrency control strategies applied for PACT and ACT, Snapper inserts T
into the actor’s local schedule and waits for the turn to execute T , i.e. grant T
access to the actor state. In addition, the CallActor API must be used when
invoking a transactional call from one actor to another. This API acquires
the TxnContext as one of the input parameters as well, so as to ensure the
actor method invocations are executed under the same transaction context.

5.3.3 SnapperX: Integration of SmSa and Snapper

In this section, we explain how we advance Snapper’s transactional layer to
account for SmSa and achieve transactional guarantees on dependencies that
cut across actors. We start by removing from Snapper the opaque state man-
agement inherited by Orleans. As actor states are stored as a single object
of the generic type, TState, we switch to a SmSa-managed map-based data
structure, referred to Dictionary- State along this text. This prevents de-
velopers from creating arbitrary types to represent their application states for
each actor, jeopardizing application design [114, 79]. In this mode, SmSa allows
developers to manage entities through keys and associated actor references via
the DictionaryState and its corresponding APIs (Get, Put, and Delete).

The management of data dependencies in SmSa comprises two parts: (1)
the registration and de-registration of dependencies and (2) the enforcement
of dependencies. To manage dependency constraints transactionally, SmSa

needs to rely on Snapper’s transactional APIs on certain occasions. First,
when registering or a dependency, as is discussed in § 5.2.2.5, the follower
actor invokes the RegisterDependency API, which in turn invokes a call to
the leader actor via the CallActor API. Since the dependency list is stored
in the DictionaryState object, adding or removing the dependencies to or
from the list must occur by accessing the DictionaryState object via the

5.3. TRANSACTIONAL ACTOR STATE MANAGEMENT 111

Figure 5.5: SnapperX: integration of SmSa and Snapper

GetState API. Second, SmSa enforces dependencies by resolving and forward-
ing operation logs to relevant actors; each will apply the forwarded logs and
perform corresponding updates to the keys stored locally. Again, keys can
only be accessed on the condition of getting access to the DictionaryState

object by calling the GetState API.

5.3.3.1 Workflow

Fig.5.5b presents the workflow of a transaction in SnapperX – the Snapper

integrated with the advancements of SmSa. The figure marks the differences as
red text compared to Snapper and uses the red arrows to represent steps that
are relevant to dependency management. Step 8 creates a DictionaryState

object for the transaction. SnapperX does not allow transactions to access
the original version of the actor state directly. Instead, a new Dictionary-

State object is created for every transaction so as to isolate their read/write
sets. In step 10, the transaction accesses the DictionaryState via its external
APIs. When the actor finishes executing the user method, the operation logs
are scanned to resolve the list of logs to forward (step 12) in order to enforce

112
CHAPTER 5. SNAPPERX: FINE-GRAINED ACTOR STATE

MANAGEMENT

user-declared dependencies. Then, an ApplyLogs method is invoked on each
dependent actor via the CallActor API.

The actor who receives this method invocation will identify it as an internal
method (step 13), which means it is implemented in the system code. Even
if it is an internal method, it still needs to be executed under the transaction
context; thus, a reference to the DictionaryState object should be acquired
via the GetState API (step 15). While executing the internal method, the
system code has access to the internal APIs of the DictionaryState object
(step 16), such as ApplyLogs, which will read through the forwarded logs and
apply updates to keys according to the registered dependencies. When the
actor finishes executing the internal method, again, the operation logs need to
be analyzed (step 18) because there might be updates performed on keys that
trigger more operations to forward to other actors. Afterwards, a transaction
log is persisted (step 19), and the logged changes made by the transaction are
applied to the actor state (step 20). Note that, the same as in Snapper, the log
writing happens once for every ACT or every batch of PACTs. As for step 20,
given that each transaction has only operated on its own DictionaryState,
SnapperX needs to apply the changes again to the actual actor state when an
ACT is committed or a batch of PACT has completed. By doing so, the results
of one transaction are made visible to subsequent transactions. In Snapper,
this step is carried out by overwriting the whole actor state, incurring a higher
overhead than SnapperX.

Dependency registration and de-registration are implemented as internal
methods. Changes made to the dependencies, including adding and removing
dependencies, also need to be recorded first, persisted in the log record, and
reflected in the actual actor state afterward. Note that adding or removing
dependencies does not have a further effect, like an update on a leader key.

5.3.3.2 Incremental Logging

In Snapper, the actor state is always logged as a single object due to the lack
of information about how the state is changed. We call this logging method
as snapshot. It can be inefficient when only a small part of the actor state is
modified. Differently, SnapperX keeps a record of each change made to keys
or dependencies (see the OperationLog format in Fig.5.2); thus, SnapperX
only needs to write an incremental log for each transaction, which can largely
reduce the logging overhead.

5.3.3.3 Key-level Concurrency Control for PACT

Snapper supports deterministic scheduling of transactions that provides the
actor access information – the set of actors to access and the number of times
each actor will be accessed. As is listed in Fig.5.5a, the StartTxn API for
PACT acquires an extra input parameter. Snapper uses this information to

5.3. TRANSACTIONAL ACTOR STATE MANAGEMENT 113

generate a deterministic transaction execution order for every related actor.
As long as each actor executes PACTs in the ascending order of their trans-
action ID (tid), Snapper can guarantee global serializability. By integrating
SmSa’s state management layer into Snapper, we devise a finer-grained trans-
action scheduling strategy. Given that SmSa acquires developers to specify
which key to read or write in the application code, we can further assume
that the set of keys accessed on each actor by the transaction is declared
even before the transaction is started. Based on this key access information,
a transaction execution schedule can be created for every single key. As is
shown in Fig.5.6, following a key-level schedule, a PACT on an actor only
needs to wait for another PACT when the set of keys they access overlaps.

Figure 5.6: Granularity of concurrency control

Apparently, adopting key-level scheduling can achieve higher concurrency
on each actor. However, it is not straightforward to implement it. First, a
new interface should be created to receive transaction requests that tend to
adopt key-level concurrency control. As is shown in Fig.5.5a, we introduce
another StartTxn API that accepts the key access information as its input
when a client submits the transaction request. Besides, the algorithm applied
to generate the transaction execution schedule needs to be modified such that
metadata is maintained for every single key.

Furthermore, on each actor, it becomes insufficient to only check a PACT’s
TxnContext when the GetState API is called. A set of keys that the PACT
tends to access must be given (Fig.5.5a). It is because the key-level schedule
only specifies when it is safe for a PACT to access a specific key; therefore, the
time when the GetState API returns the result varies depending on which key
or a set of keys the PACT is acquiring. Besides, the PACT should only get
access to the keys that it has acquired; otherwise, the transaction execution
schedule may be violated. For example, suppose two PACTs T1 and T2 are
scheduled on one actor. T1 will only access the key k1 and T2 will access both
k1 and k2. If T2 acquires k2 first, it can get the DictionaryState immediately.
However, T2 is not yet allowed to access k1 because the status of T1 is unknown.
To safely access k1, T2 must call the GetState API with k1 included in the key

114
CHAPTER 5. SNAPPERX: FINE-GRAINED ACTOR STATE

MANAGEMENT

set. In SnapperX, to accurately restrict the keys that a PACT can access, each
DictionaryState object will only include the information of keys that the
PACT has acquired. As illustrated in Fig.5.5b, in step 8, SnapperX makes a
copy of the key’s information, including the key-value pair itself and its related
dependencies. It also implies that to access the dependency information of a
key, the transaction also needs to get access to the key first.

In addition, SnapperX allows a transaction to call GetState API multi-
ple times, each time may acquire the access right to different sets of keys.
SnapperX does not restrict the order to acquire different keys and the number
of times each key is acquired. SnapperX only maintains one DictionaryState
instance for each transaction. When the GetState API is called for the first
time, a new DictionaryState object is created for the transaction. Then, ev-
ery time a new key is acquired via the GetState API, this key is added to the
existing DictionaryState object. If the transaction asks for access to a key
that already exists in the DictionaryState, no extra waiting is needed (e.g.,
steps 6, 7, 8 in Fig.5.5b). Note that the GetState API always returns the
reference to the DictionaryState object that belongs to the current trans-
action, and developers can get access to this object or use this reference via
any of the GetState calls. By doing so, a transaction can always access the
latest actor state via the same reference, and the GetState API can be used
for gradually extending the access right to different keys.

An example is shown in Fig.5.3 (lines 19-41). In this example, a Delete-

ItemsInCart transaction first gets access to its DictionaryState object by
calling the GetState API without specifying any keys (line 21). Within this
call, SnapperX will create a new DictionaryState object for this transaction,
which contains no keys. Afterward, the transaction can acquire access rights
to a set of items (or keys) in two ways (lines 25-33, options 1 and 2). In both
ways, the state object eventually gains the RW access to all acquired keys. In
other words, keys are gradually added into the DictionaryState object and,
therefore, can be accessed by the transaction. At last, the transaction deletes
these items from the cart (lines 35-40).

As prescribed by Snapper, SnapperX also requires for PACT the decla-
ration of actors and keys accessed as part of a transaction, including the
ones accessed during the dependency management process. As the example in
Fig.5.3, each item in the cart actor is a replica of the corresponding product on
the product actor (lines 3-17), which contains the latest product price. The
replication here is expressed as an update dependency in SnapperX. When
items are deleted on the cart actor, it indicates the deletion of their depen-
dencies stored on both the cart actor and the product actor (lines 35-40).
Therefore, the transaction DeleteItemsInCart actually involves two actors
and will access the same set of keys on each actor. The correct and complete
key access information must be given to allow SnapperX to schedule PACTs
at the key level correctly.

5.4. EVALUATION 115

5.3.3.4 Key-level Concurrency Control for ACT

Snapper also supports ACT, the type of transaction that does not declare
the actor access information and applies non-deterministic execution. More
specifically, each ACT gets access to an actor state by acquiring the RW lock
maintained on the actor via the S2PL+wait-die protocol. To extend the actor-
level concurrency control to the key-level concurrency control, SnapperX can
simply maintain a lock for every single key. Given that keys may be dynam-
ically added and deleted on an actor, locks need to be added and removed
accordingly. In SnapperX, an ACT can add or delete a key k on the condition
that it gets the write lock of k and a new lock for k is created if it does not
exist yet. Note that a key can only be deleted when there are no ACTs holding
or waiting for the lock to avoid anomalies.

SnapperX provides interfaces for transactions to access keys individually
while still preserving the ability to support actor-level concurrency control.
The actor-level concurrency control is useful for cases where a transaction
needs to scan the whole key-value collection on an actor or to query keys with
certain predicates. SnapperX allows developers to configure an actor to apply
either actor-level or key-level concurrency control when it is created.

5.4 Evaluation

In this section, we conduct an extensive range of experiments to investigate
the features of SnapperX under various workloads. The first part of the ex-
periments (§ 5.4.3, 5.4.4, 5.4.5) explores the characteristics of the basic build-
ing blocks of the data model. More specifically, we focus on the trade-offs
of maintaining fine-grained key-value actor states and transaction processing
performance. In the second part (§ 5.4.6), we turn our attention to popular
cross-microservice correctness criteria sought by developers in practice [89].
In particular, we adopt the Online Marketplace benchmark and target ex-
ploiting the overhead of enforcing constraints cutting actors across, including
foreign keys, data replication, and functional dependencies.

5.4.1 Implementation Variants

Five competing systems (Fig.5.7) are compared to show the implications of our
proposed advancements to performance. NonTxn applies a non-transactional
execution on Orleans. Actors execute operations in arbitrary order; thus,
accesses to the state are performed without isolation guarantees. It gives an
upper bound of the system’s performance, indicating the best throughput the
actor system can achieve under a certain workload. Snapper [99] is adopted
in our experiments as a baseline solution for enforcing application correctness
with strong consistency guarantees. To allow further insights, we integrate
different data model functionalities in Snapper and devise two other variants.

116
CHAPTER 5. SNAPPERX: FINE-GRAINED ACTOR STATE

MANAGEMENT

Snapper+ combines the concept of keys and dependencies with Snapper, which
facilitates transaction processing with incremental logging. SnapperX further
adds key-level concurrency control on top of Snapper+. Therefore, SnapperX is
the version that applies all the optimizations. The purpose of having Snapper+
is to benchmark the effects of the different optimizations. In addition, we
also include Orleans Transactions [55](OrleansTxn) in our experiments. It
is the default transaction management API in Orleans and applies 2PL and
2PC to fulfill ACID multi-actor transactions. That enriches the experiment
by confronting competing concurrency control scheduling techniques, namely,
locking-based in Orleans and deterministic in Snapper variants.

Figure 5.7: Implementation variants

5.4.2 Experimental Setting

5.4.2.1 Deployment

All experiments are run on Orleans 8.1.0 and .NET SDK 8.0.300. Each ex-
periment is conducted on a Orleans cluster consisting of a master node (MN)
and several worker nodes (WN), each hosting a Orleans server and located in
the same region. The MN is responsible for coordinating PACT execution on
different WNs for Snapper, Snapper+ and SnapperX. In addition, a group of
experiment nodes (EN) are spawned in the same region to generate workloads,
host Orleans clients, and submit transaction requests to Orleans servers. The
same number of ENs and WNs are deployed to ensure a sufficient amount of
requests are generated and dispatched to WNs. Each node, regardless of the
type, is an AWS EC2 instance (c5n) with a 2-core processor (4 vCPUs). In
the scalability experiment (§ 5.4.5 and 5.4.6), we proportionally increase the
number of WNs and ENs, as well as the number of vCPUs of the MN.

On the client side, each EN initiates one Orleans client thread for PACT
and ACT executions, respectively. The client thread submits a pipeline of
transaction requests to WNs. The pipeline size determines the concurrency
level of the workload. More specifically, it limits the maximum number of
concurrent requests in the system. Whenever the result of one request is
returned, a new request is replenished. In our experiments, the pipeline sizes
are tuned for different implementation variants so that they all achieve a

5.4. EVALUATION 117

good performance while the system’s computing resources are near saturation.
Fig.5.8 shows how the pipeline size is configured.

Figure 5.8: Pipeline size

5.4.2.2 SmallBank Benchmark

We adopt the SmallBank ben- chmark [11] in the first part of the experiments
to gain insights about the features of SnapperX. In this benchmark, users’
bank accounts are partitioned across many account actors, and operations
such as Deposit and Transfer are applied to one or multiple account actors.
SmallBank approximates an OLTP actor-oriented workload. Note that this
benchmark shows no cross-actor dependencies, and we use it for investigating
the performance of fundamental building blocks of SnapperX, including incre-
mental logging and the key-level concurrency control. In our experiments, we
only employ the MultiTransfer transaction [155], which withdraws money
from accounts on one actor and deposits money to several accounts on other
actors. This transaction gives us the flexibility to control the transaction size
and the access pattern to different actors and accounts. More specifically, we
adopt five parameters to configure a SmallBank workload. numActor is the
total number of account actors located in each WN. actorSize determines the
number of bank accounts, i.e., the number of keys, stored in each account
actor. txnSize specifies the number of keys a transaction will access on each
selected actor. In the experiments, we fix the number of accessed actors for
each transaction as 4. Thus, txnSize = 4 means the transaction will access a
total of 16 keys across four actors. actorSkew determines the number of hot
actors on each WN. Each transaction selects a set of actors to access based on
the following rule: there is a 75% chance that an actor is selected from the set
of hot actors. For example, when numActor = 1000 and actorSkew = 1%,
the hot set contains ten actors. And when actorSkew = 100%, every actor has
an equal chance to be chosen. The smaller actorSkew, the higher contention
at the actor level. Similarly, keySkew decides the number of hot keys on each
actor and controls the contention at the key level.

118
CHAPTER 5. SNAPPERX: FINE-GRAINED ACTOR STATE

MANAGEMENT

5.4.2.3 Online Marketplace Benchmark

We also run experiments with the Online Marketplace [88] benchmark, which
mainly focuses on data management challenges in an event-driven and micro-
service-like system architecture. It simulates a multi-tenant web-scale appli-
cation where sellers manage their products and associated inventory, and cus-
tomers interact with the system by managing their carts (i.e., adding products)
and submitting them for checkout. The reason for adopting this benchmark
in our experiments is threefold. First, it covers several scenarios of cross-
component data integrity constraints, which provides a perfect use case for
our data model where the dependency between keys across actors is automat-
ically handled. Existing commonly adopted benchmarks, such as YCSB [42]
and TPCC [174], do not model these types of correctness criteria, thus un-
fitting the goals of our experiments. Second, it can be easily mapped to the
actor model by partitioning each component into multiple actors. Meanwhile,
the application state can be easily modeled as key-value collections across
different types of actors. Third, it forms a realistic and complex workload
where some transactions can be implemented as PACT and some as ACT.
Its business logic is carried out among eight different components as listed in
Fig.5.14a. § 5.4.6 discussed more details about how the experiment is set up
with this benchmark.

5.4.3 Characteristics of SnapperX

In this section, we investigate the impact of SnapperX with the SmallBank

benchmark. We measure the overhead of concurrency control and logging
by presenting the relative throughput of Snapper, Snapper+, and SnapperX

with regards to the throughput of NonTxn. The differences between these
three Snapper variants are supposed to reflect the trade-offs of a state man-
agement layer, namely, the overhead to maintain the key-value collection on
each actor and the benefits it brings to the system performance. In this
group of experiments, workloads are generated with a uniform distribution
(actorSkew = 100% and keySkew = 100%), and we vary the other three
parameters, numActor, actorSize, and txnSize.

5.4.3.1 Vary actorSize

In this experiment, we fix numActor = 10, txnSize = 1, and vary actorSize,
Fig.5.9a shows the results. For PACT, when logging is disabled, the through-
put of Snapper and Snapper+ is not affected by actorSize, because they both
apply actor-level concurrency control, in which the number of keys in an actor
does not affect the contention at the actor level. Besides, the throughput of
Snapper+ is slightly lower than Snapper. It is because Snapper allows each
PACT to access the actor state directly, while Snapper+ needs to copy the
accessed keys and operate on the cloned version. This is to fulfill the func-

5.4. EVALUATION 119

Figure 5.9: Characteristics of SnapperX

tionality of the data model that the before- and after-image of the modified
keys are both captured. In contrast, when adding more keys to each actor,
the throughput of SnapperX increases because the key-level concurrency con-
trol benefits from the reduced contention on keys. And the gain from the
finer-grained scheduling offsets the overhead of key cloning. When logging
is enabled in PACT, Snapper throughput decreases largely, especially from
100 to 1000 keys per actor, while Snapper+ and SnapperX rarely change. This
shows the advantage of incremental logging that Snapper+ and SnapperX only
need to persist the changes on specific keys, but Snapper has to persist the
whole actor state.

For ACT, Snapper and Snapper+ show a similar trend as PACT – their
throughput and abort rate remains the same regardless of actorSize. Dif-
ferently, SnapperX throughput increases and the abort rate decreases. when
actorSize = 1000, there is a significant gap between Snapper and Snapper+.
This is because, in Snapper, every ACT has to make a copy of the whole
actor state and apply read or write operations on the cloned state. Given that
Snapper guarantees PACTs do not abort due to transaction conflicts, it is safe
to have PACT modifying the actor state in place. However, every single ACT
can be aborted; thus Snapper applies the updates of an ACT to the actor
state only when the ACT commits.

5.4.3.2 Vary numActor

In this section, we vary numActor and fix txnSize = 1, actorSize = 1000.
Fig.5.9b shows the results. For PACT, Snapper and Snapper+’s throughput
significantly increases from 10 to 100, then slightly decrease from 100 to 1000.
When there are only 10 actors in each WN, the contention on each actor is

120
CHAPTER 5. SNAPPERX: FINE-GRAINED ACTOR STATE

MANAGEMENT

extremely high. In Snapper and Snapper+, each actor executes PACTs one
by one in the ascending order of transaction ID (tid) and batch ID (bid). In
addition, each actor is also responsible for tasks, including receiving batch
messages and committing batches, which further extends the critical path of
transaction processing. When more actors are added to the system, more
transactions can be processed in parallel on different actors, therefore leading
to a higher throughput. The decreased contention on actors also benefits their
ACT execution – the ACT throughout increases, and the abort rate decreases.

However, when we keep adding more actors, e.g. to 1000 actors, the par-
allelism is not improved further due to the limited number of vCPUs. Mean-
while, the throughput drops when there are too many actors because the
batching of PACTs becomes less efficient when the set of actors accessed by
each PACT is less likely to overlap. We define the overlap rate r as the number
of PACTs included in a batch divided by the number of actors accessed by the
batch. According to the collected experimental data, we get r = 1.0, 0.4, 0.2
for numActor = 10, 100, 1000 respectively. This overlap rate has a more obvi-
ous impact on SnapperX that its throughput continuously decreases. In this
experiment, even if more keys are added while adding more actors, the con-
tention on keys remains low, so the performance of SnapperX is not improved
so much. The ACT abort rate of SnapperX also keeps at a low value.

In terms of the difference between with and without logging, similar to the
results observed in § 5.4.3.1, the throughput of Snapper drops significantly
when logging is enabled, such that its PACT throughput goes below Snapper+

and SnapperX.

5.4.3.3 Effect of txnSize

In this part, we fix actorSize = 1000, numActor = 10 and vary txnSize.
Fig.5.9c shows the results. For NonTxn, its throughput obviously decreases
with larger txnSize because txnSize determines the complexity of the trans-
action logic and the transaction execution latency. For both PACT and ACT,
the absolute throughput of Snapper and Snapper+ decreases, but the relative
throughput slightly increases when txnSize grows. It indicates they are not
as sensitive to the change of txnSize as NonTxn. PACT is mainly affected by
actor-level transaction scheduling. Each PACT spends ∼ 80% time waiting for
the turn to start execution on the first actor, and only 3% time executing the
transaction logic. For ACT, the dominant factors are the concurrency control
(2PL) and the commit protocol (2PC). In addition, since both Snapper and
Snapper+ apply actor-level concurrency control, their abort rate remains the
same even if txnSize grows.

In contrast, SnapperX is a lot more sensitive to the change of txnSize com-
pared to Snapper and SnapperX. Its PACT throughput decreases due to the
increased overhead of generating and maintaining the key-level transaction ex-
ecution schedules, as well as persisting key modifications. The ACT through-

5.4. EVALUATION 121

put drops significantly, and the abort rate increases largely. In SnapperX, an
actor maintains a lock instance for every key stored on the actor, and each
ACT needs to acquire the corresponding lock for every accessed key. Com-
pared to PACT, ACT suffers more from contention. When txnSize = 8, the
ACT throughput of SnapperX drops below Snapper and Snapper+. For one
thing, the number of concurrent transactions submitted to SnapperX is much
higher than Snapper and Snapper+ (128 vs 2). As is explained in § 5.4.2.1, for
SnapperX, this number is tuned based on the total number of keys in each WN,
while for Snapper and Snapper+, it is based on the total number of actors. In
this experiment, when txnSize grows from 1 to 8, the contention at the key
level largely increases; thus, the ACT throughput of SnapperX experienced a
significant drop.

5.4.3.4 Conclusion

In conclusion, the data model is most effective when there are a small number
of large actors, and the data model benefits more for workloads that access
fewer keys. First, the data model helps the system capture changes performed
on specific keys, thus largely reducing the logging overhead for Snapper+ and
SnapperX. Second, the data model can further exploit concurrency in every
single actor; therefore, SnapperX performs significantly better than the other
two when the contention is high at the actor level and low at the key level.
Third, the overhead brought by the data model, such as the key cloning and
the key-level transaction schedule maintenance, can be completely offset by
the benefits brought by the finer-grained logging and higher concurrency level.

5.4.4 Skewed workload

This section presents how performance is affected by skewed workloads. We
fix numActor = 1000, actorSize = 1000, txnSize = 1 and vary actorSkew,
keySkew. Logging is enabled for all implementation variants from now on-
wards. In this section, we present not only the throughput of PACT and
ACT (Fig.5.10 a-c) but also the breakdown latency of PACT (Fig.5.10 d-f).
We divide the latency of each PACT into 7 time intervals. The breakpoints
are set according to the progress of a PACT on the first accessed actor. The
time intervals I1, I2, I3, I4, I6 and I7 represent the time spent on steps 2, 6,
7, 8, 21 and 23 in Fig.5.5b, respectively. Note that I5 begins when A starts
to execute the transaction logic and ends when the whole transaction com-
pletes. I5 includes the time to forward calls to other actors and execute these
transactional invocations on other actors.

5.4.4.1 Skew on actors

Here, we investigate the impact of actorSkew, while fixing keySkew = 100%.
As explained in § 5.4.2.2, a smaller actorSkew indicates higher contention at

122
CHAPTER 5. SNAPPERX: FINE-GRAINED ACTOR STATE

MANAGEMENT

Figure 5.10: Effect of skewed workload

the actor level. Fig.5.10a and 5.10d show the throughput and breakdown la-
tency, respectively. For PACT, when actorSkew decreases, SnapperX benefits
greatly from the growing contention on actors. As is discussed in § 5.4.3.2,
when the workload is concentrated on a smaller set of actors, the batching of
PACTs becomes more efficient due to a higher overlap rate. On the contrary,
the contention on actors has a negative impact on Snapper and Snapper+.
According to their breakdown latency, I3 of Snapper and Snapper+ grows ob-
viously with decreasing actorSkew, indicating that each PACT is blocked for
a longer time while waiting for previous PACTs to complete. Even if Snapper
and Snapper+ also benefit from the higher batching efficiency (I1, I2, I6 and
I7 decrease), the increased I3 dominates the transaction latency. Therefore,
their throughput shows a decreasing trend. I3 of SnapperX remains very low
because the contention on keys is low, and a PACT only needs to wait for the

5.4. EVALUATION 123

completion of a previous PACT that accesses the same key.
For ACT, the throughput of all three Snapper variants decreases. Snapper

and Snapper+ are affected by the contention at the actor level. However,
SnapperX is also affected by actorSkew because it indirectly influences the
contention at the key level. In addition, we measure the throughput of
OrleansTxn. Given that OrleansTxn is reported to be extremely vulnera-
ble to contention [99, 34, 36, 98], here we use a workload with no deadlocks
but under the same actor and key distribution (actorSkew and keySkew).
Deadlocks are removed by letting each transaction access the selected actors
always in the ascending order of actor IDs. In our result, OrleansTxn remains
a very low throughput under different actorSkew values.

5.4.4.2 Skew on keys

In this part, we present the impact of keySkew, which determines the con-
tention at the key level. We fix actorSkew as 100%. Fig.5.10b and 5.10e show
the throughput and breakdown latency, respectively. The PACT and ACT
throughput of Snapper and Snapper+ rarely change while varying keySkew,
because the contention on keys does not affect how transactions are scheduled
at the actor level. For SnapperX, its PACT throughput remains unchanged.
The growing contention on keys does not cause a growing blocking time (I3) for
SnapperX because the skewness is not high enough with actorSkew = 100%.
In contrast, its ACT throughput decreases largely. This validates that the
ACT execution of SnapperX is more sensitive to contention on keys than
PACT. Again, OrleansTxn has a much lower throughput than the ACT exe-
cution of all three variants.

5.4.4.3 Skew on both actors and keys

Here, we present the combined effects of actorSkew and keySkew by changing
their values from 100% to 0.2% simultaneously. Fig.5.10c and 5.10f show the
result. For Snapper and Snapper+, their PACT and ACT throughput show the
same pattern as in § 5.4.4.1 that they are not affected by contention on keys.
For SnapperX, its PACT throughput increases, then decreases. Compared
to Fig.5.10b, the contention on keys grows much faster in Fig.5.10c. I3 of
SnapperX also increases a lot from 1% to 0.2%. For its ACT execution, the
throughput has dropped significantly already from 100% to 2% because ACT
is more sensitive to contention.

5.4.4.4 Conclusion

In conclusion, the PACT execution of SnapperX greatly benefits from skewness
on actors because of the improved batching efficiency. When there are a
large number of actors in the system and the workload follows a uniform
distribution, SnapperX does not have an obvious advantage over Snapper and

124
CHAPTER 5. SNAPPERX: FINE-GRAINED ACTOR STATE

MANAGEMENT

Figure 5.11: Scalability of SmallBank

Snapper+. When the workload is skewed on actors, SnapperX outperforms
Snapper+ and Snapper. In addition, the PACT execution of SnapperX is less
sensitive to contention on keys than its ACT execution. Its PACT throughput
is affected only when the skewness on keys is at a very high level. the ACT
execution of SnapperX performs better than Snapper and Snapper+ in most
cases, except when the contention on keys is extremely high.

5.4.5 Scalability

In this section, we validate the scalability of SnapperX. We measure the
throughput of PACT and ACT of three variants (Snapper, Snapper+, and
SnapperX) under different actorSkew and keySkew, with numActor = 1000,
actorSize = 1000, txnSize = 1. Fig.5.11 shows that all cases scale linearly.
The same as in § 5.4.4, Snapper and Snapper+ are only affected by actorSkew,
not keySkew. When actorSkew changes from 100% to 1%, the contention
at the actor level increases. The PACT throughput of Snapper+ decreases
from 25K to 16K, and Snapper from 19K to 13K. The ACT throughput of
Snapper+ decreases from 20K to 3K, and Snapper from 9K to 2K. Their

5.4. EVALUATION 125

ACT throughput decreases more significantly than the PACT because ACT
execution is more sensitive to contention at the actor level. Differently, for
SnapperX, its PACT throughput even increases from 25K to 30K when the
contention on actors grows. And its ACT throughput only drops when the
contention on keys is extremely high (Fig.5.11d).

5.4.6 Online Marketplace

In this section, we measure the performance of different implementation vari-
ants under Online Marketplace benchmark [88]. For Snapper, we adopt
conventional actor state manipulation and encode all dependencies in the ap-
plication logic. Snapper+ benefits from the fine-grained state manipulation,
which ought to decrease logging overhead. For SnapperX, we exploit the full
contributions of this work, providing a sophisticated actor state manipula-
tion, transparent constraint enforcement, and novel logging and concurrency
control techniques.

5.4.6.1 Modeling

The Online Marketplace contains eight different components, each encapsu-
lating corresponding application logic and maintaining a set of relations. In
our implementation, as is shown in Fig.5.13a, each component is mapped to a
group of actors. Each seller maintains 1000 products, and 100 sellers make a
total of 100K products in the system. Besides, three dependency constraints
are modeled. First, each item in a cart actor is essentially a replica of the
product in the corresponding product actor; thus, an update dependency is
built between the original and the copied keys. Second, the stock of a product
in the stock actor is a foreign key of the product in the product actor, which
can be interpreted as a delete dependency. Third, each seller actor maintains
an up-to-date materialized view of the total number of orders created. We
implement it by using a functional update dependency.

Figure 5.12: Online Marketplace modeling

126
CHAPTER 5. SNAPPERX: FINE-GRAINED ACTOR STATE

MANAGEMENT

5.4.6.2 Transactions

In our experiments, four types of transactions are adopted (Fig.5.13b). The
Checkout transaction crosses seven types of actors, and the total number
of actors involved depends on the number of items that are bought. Steps
6 and 7 represent tasks that happen while resolving the dependency con-
straints. In our experiment, a workload consists of 30% AddItemToCart,
20% DeleteItemInCart, 10% Update- Price and 40% Checkout transac-
tions. Each transaction is generated by selecting a customer or a seller under
the actorSkew and selecting a product under the keySkew. For a Checkout

transaction, the number of items to checkout varies from 1 to 5. In addition,
based on the observation from previous experiments that ACT is vulnerable
to contention, we implement transactions as PACT whenever we can in this
experiment. Therefore, only UpdatePrice transaction is executed as ACT
because it is unknown which cart actors have dependencies on the product
when a UpdatePrice transaction is submitted.

Figure 5.13: Online Marketplace transactions

5.4.6.3 Scalability under Skewed Workloads

Fig.5.14a shows the result of a scalability experiment on Online Marketplace

workload. Fig.5.14b shows the throughput of each type of transaction when
#WN = 16. Here, the PACT throughput represents the deterministic execu-
tion of all transactions, except for UpdatePrice.

For PACT, under the uniform distribution, Snapper+ throughput is slightly
higher than SnapperX. When actorSkew decreases to 2%, their PACT through-
put both increases; however, SnapperX surpasses Snapper+. It is because
they both benefit from higher batching efficiency, but Snapper+ is further af-
fected by the increased blocking on each actor, while SnapperX remains at a
higher concurrency level, benefiting from key-level concurrency control. When
keySkew is decreased to 2%, the throughput of Snapepr+ and SnapperX both
decrease moderately, and the impact on UpdatePrice transaction is more se-
vere than on other transactions.

5.4. EVALUATION 127

Figure 5.14: Performance of Oneline MarketPlace

The ACT throughput of all three variants is higher than the correspond-
ing PACT throughput. As is shown in Fig.5.14b, the transaction distribution
of ACT differs from PACT – the throughput of smaller transactions such as
AddItemToCart and DeleteItemInCart accounts for a much higher propor-
tion in ACT execution. This is because ACT has the flexibility to quickly abort
large transactions, in exchange for the commit of smaller-sized transactions.
For SnapperX, its ACT throughput increases when actorSkew changes to
2%, because it gains throughput from smaller transactions by aborting larger
transactions. When further changing keySkew to 2%, its ACT throughput
decreases. It is because the contention on keys becomes very high, such that
smaller transactions also suffer from the high contention. Thus, all types of
transactions experience a higher abort rate and result in a lower throughput.

For Snapper+, its ACT throughput decreases from 21K to 11K when
actorSkew changes from 100% to 2%. It is because Snapper+ suffers from
contention on actors. However, when further varying keySkew from 100% to
2%, Snapper+ throughput drops from 11K to 6K. Note that when keySkew
decreases, it raises the possibility that the same product is added by many
carts and further causes a larger UpdatePrice transaction (Fig.5.15), therefore
bringing higher contention at the actor level. As for Snapper, its PACT and
ACT throughput remain at a low level in all three groups due to the high
logging overhead.

128
CHAPTER 5. SNAPPERX: FINE-GRAINED ACTOR STATE

MANAGEMENT

Figure 5.15: Different skewness on keys

In conclusion, under the Online Marketplace benchmark, where the de-
pendency constraints are broadly applied, SnapperX shows its advantage over
the other two variants in both PACT and ACT execution, and it reacts to
different skewed workloads in a similar way as in § 5.4.4.

5.5 Related Work

Data replication is a mechanism widely adopted in distributed systems to
leverage data locality, decrease data access latency, enhance fault tolerance,
and achieve higher system availability. Existing actor systems adopt methods
like event sourcing [5, 122] and geo-distributed caching [27] to replicate the
actor state, achieving eventual consistency and linearizability, respectively.
However, actor replication differs from replicating data items, since the tech-
nique involves actor metadata (e.g., type), a possibly large actor state and ac-
tor functionalities, thus introducing a higher overhead. In this work, an actor
state abstraction is designed to facilitate the identification and replication of
data items across actors while capturing and maintaining the primary-replica
relations.

The actor system, Akka [5], relies on the conflict-free replicated data types
(CRDTs) [156, 92] to replicate data across nodes with eventual consistency
guarantee. Although not incurring the high overhead of actor replication,
having data types as the abstraction level inherits the same impedance found
in Orleans, updates to single entities are treated as an update to the whole
actor state, preventing optimizations. As a result, such method is oblivious
to the possible data dependencies across actors.

Anna [180] is a distributed key-value store that employs the actor model
transparently to developers in order to process and possibly merge concurrent
updates. Different from our work, Anna does not expose an actor program-
ming model nor offer data dependency management and constraint enforce-
ment. Besides, Anna focus on eventual consistency scenarios, contrasting with
SnapperX support for ACID guarantees. DPA [84] is a data platform for OLAP
workloads where developers utilize an actor-based programming model to ab-
stract and advance an underlying data analytics system. DPA is designed for

5.6. CONCLUSION 129

bulk data updates, which inhibits its use in event-driven, highly-transactional
scenarios as found in microservices.

Data dependency is another crucial aspect of data management, which
specifies how data in one object depends on data in others. To enforce data
dependency constraints in the context of actor systems, recent research works
[3, 155, 178] have focused on connecting actors to relational database sys-
tems so as to regain their support for declarative querying and extensive data
management functionalities. In this approach, operations on data are for-
warded through actors to the backend storage and handled there. However,
this model conflicts with the function shipping paradigm, which decouples
the fast computation from the slow storage [30]. In contrast, dependencies
between different data items across actors are captured by SnapperX in the
application layer. Meanwhile, dependency constraints are enforced with trans-
actional guarantees.

5.6 Conclusion

The actor model emerged as a promising concurrency model for facilitating
distributed application design. However, exposing an opaque state manage-
ment abstraction limits developers’ ability to express complex relationships
that cut across actors, inhibiting further adoption of the actor model.

To fill this gap, we propose SnapperX, a state management layer that ad-
vances the actor model with rich state management abstractions and novel
logging and concurrency control algorithms. Our experimental study shows
SnapperX enhances the design of complex relationships in actor systems and
improves by 2X the performance of state-of-the-art deterministic concurrent
control methods. As a result, SnapperX will facilitate designing highly parti-
tioned and distributed data-intensive applications based on the actor model.
As for future work, we identify the potential to further increase SnapperX’s
performance when there is high contention on keys. Though there is little
space to further exploit concurrency on an individual actor, techniques like
actor re-balancing or key re-partitioning can be adopted.

Chapter 6

Conclusion

To bridge the gap between the actor model and the unique requirements
of modern applications, this dissertation builds a scalable and transactional
AODB, which provides a state management solution under a strong consis-
tency guarantee for applications with actor-based middle tiers. Our solution
advances the state-of-the-art implementation of AODB by introducing novel
techniques. This dissertation achieves the goal in three steps. Snapper pro-
poses and validates the effectiveness of an efficient transaction processing tech-
nique, which serves as a fundamental building block for the AODB. SnapperD
extends the architecture of Snapper to a distributed environment while pre-
serving its good performance. SnapperX advances the actor model with a
dedicated data model, which exploits the potential of individual actors and
further improves system performance.

6.1 Ongoing and Future Work

Here, we outline several directions for future research that build upon the
findings of this dissertation.

• Vulnerability to incorrect transaction inputs. One critical lim-
itation of deterministic transaction execution is its correctness heavily
relies on the user input. The current scheduling mechanism is vulner-
able to inaccurate actor access information. If a transaction accesses
an actor that is not declared when the transaction is submitted, or if
a transaction does not access all the actors that have been declared,
the system will fail to fulfill the deterministic schedule and be blocked
forever. In addition, when plugging in the dedicated data model, the
system requires each transaction to specify the set of keys to access,
which is more detailed information and more likely to be error-prone.
Therefore, we think two improvements should be explored for our sys-
tem: (1) the support for developers to run their transactions in a debug

131

132 CHAPTER 6. CONCLUSION

mode and check the correctness of the input data, which can help to
correctly develop applications on our system with higher productivity,
and (2) the ability to detect such blocking situations and proactively
abort suspicious transactions to allow the system to continue.

• Limited ability to abort deterministically scheduled transac-
tions. Enabling the ability to abort deterministically scheduled trans-
actions not only helps to deal with incorrect transaction inputs but also
loosens the strictness for developers to program transaction logic. To
abort these transactions in our system, the current solution relies on the
logged information and rolls back the system to the latest committed
state. This process can be time-consuming and requires extra design for
the log file to support efficient log scanning. The primary challenge to
aborting such transactions is handling cascading abort. Making extra
assumptions about transactions and performing more controlled spec-
ulative execution can help to solve this challenge. Similar mechanisms
can be found in systems that adopt deterministic scheduling. For exam-
ple, allowing the definition of partially abortable transactions can avoid
cascading abort or restrict its impact within a smaller scope. These
mechanisms can be explored in the future to improve our system.

• High abort rate under hybrid scheduling. A drawback of the novel
hybrid concurrency control proposed in this dissertation is that it leads
to a very high abort rate for non-deterministically executed transactions,
especially under high contention. In this method, we always prioritize
the progress of PACTs, optimistically schedule ACTs, and abort ACTs
for any found or potential serializability issues. This may lead to false
abort of ACTs. We conjecture there are opportunities to reduce the
abort rate by giving more control to the hybrid scheduling or retrieving
more information about the generated deterministic schedules. This is
a non-trivial goal due to the novel concept of this hybrid approach. Ex-
tensive and in-depth research works are needed to find a hybrid protocol
that guarantees serializability or weaker isolation levels while achieving
a lower abort rate.

• A proposal for TAODB (Transactional AODB). Throughout this
dissertation, the support for multi-actor transactions serves as a funda-
mental component of our system. In many existing database systems,
transactional properties are required not only for transactions but also
for features like indexing management, data replication, and data mi-
gration. These features gain transactional guarantees by incorporating
their operations within the context of a transaction. Therefore, we pro-
pose a novel concept, TAODB (Transactional Actor-Oriented Database),
which prioritizes comprehensive transactional support across the entire
system. Unlike AODB, which primarily focuses on dynamically inte-

6.1. ONGOING AND FUTURE WORK 133

grating different database features with actor systems, TAODB extends
this approach by ensuring that all system features are built directly on
top of transactional guarantees. This approach not only enhances con-
sistency and reliability but also simplifies the development of complex,
distributed actor-based applications, ensuring that system-wide opera-
tions adhere to ACID properties. In addition, Orleans has proven to be
a user-friendly and high-performance actor framework, which enables us
to develop complex functionalities on top of the actor abstraction and
simplifies the development process. We envision the potential to imple-
ment more features on virtual actors while gaining good performance.

• A novel log replication mechanism. A planned future project is
to build a read replica of the system by subscribing to the logs gen-
erated by the write transactions. This approach differs from the state
machine replication (SMR) that is commonly adopted in deterministic
databases. In SMR, an ordered sequence of transactions is replicated
into replicas, which can form an up-to-date state by replaying the trans-
actions in order. However, it is not suitable for our system because (1)
We do not assume determinism in transaction logic, i.e., replaying a
transaction may not end with an identical result. (2) It can be difficult
to replicate transaction schedules under the hybrid approach. There-
fore, we tend to adopt a novel log replication mechanism that replicates
transactional logs of both PACT batches and ACTs from the primary
to replicas. However, further research is required to develop and refine
this mechanism fully. For example, it is not straightforward to rebuild
a consistent system state using logs delivered across the network, which
can be disordered and asynchronous.

• Exploring data persisting methods: In our implementation, trans-
actional logs are always written into the local file system, where (1) the
log record can only be retrieved by scanning the whole file line by line,
(2) the log files are distributed across servers, (3) each log file is shared
by a group of actors. This method brings difficulties for the system in
doing garbage collection (clearing stale log records), failure recovery, or
log retrieval. In the future, it is worth exploring different methods to
persist data for our system that can better suit the actor model and
bring less overhead.

Bibliography

[1] Why streams in orleans? https://learn.microsoft.com/en-us/do

tnet/orleans/streaming/streams-why, October 2024.

[2] Actix. Actix documentation. https://actix.rs/docs/actix/actor,
September 2024.

[3] ActorDB. Actordb documentation. https://www.actordb.com/docs

-about.html, May 2024.

[4] Agha, G. Actors: A Model of Concurrent Computation in Distributed
Systems. MIT Press, 1986.

[5] Akka. Akka documentation. https://akka.io/, July 2021.

[6] Akka. Migration guide 2.3.x to 2.4.x. https://doc.akka.io/docs/a

kka/2.4/project/migration-guide-2.3.x-2.4.x.html, July 2021.

[7] Akka. Transactors (java). https://doc.akka.io/docs/akka/2.0.5/

java/transactors.html, July 2021.

[8] Akka. Cluster sharding. https://doc.akka.io/docs/akka/current/
typed/cluster-sharding.html#cluster-sharding, September 2024.

[9] Akka. Resolving conflicting updates. https://doc.akka.io/docs/akk
a/current/typed/replicated-eventsourcing.html#resolving-con

flicting-updates, September 2024.

[10] Akka. Why modern systems need a new programming model. https:

//doc.akka.io/docs/akka/current/typed/guide/actors-motivat

ion.html, October 2024.

[11] Alomari, M., Cahill, M., Fekete, A., and Rohm, U. The cost of serial-
izability on platforms that use snapshot isolation. In Proceedings of the
2008 IEEE 24th International Conference on Data Engineering (2008),
pp. 576–585.

[12] Armstrong, J. A history of erlang. In Proceedings of the third ACM
SIGPLAN conference on History of programming languages (2007).

135

136 BIBLIOGRAPHY

[13] Athanassoulis, M., Johnson, R., Ailamaki, A., and Stoica, R. Improving
oltp concurrency through early lock release. Tech. rep., EPFL, 2009.

[14] Athanassoulis, M., Johnson, R., Ailamaki, A., and Stoica, R. Improving
oltp concurrency through early lock release. Tech. rep., EPFL, 2009.

[15] AWS. Amazon aurora pricing. https://aws.amazon.com/rds/auror

a/pricing/, July 2021.

[16] Azure. Azure sql database pricing. https://azure.microsoft.com/

en-us/pricing/details/azure-sql-database/single/, July 2021.

[17] Bagherzadeh, M., Fireman, N., Shawesh, A., and Khatchadourian, R.
Actor concurrency bugs: a comprehensive study on symptoms, root
causes, api usages, and differences. In Proceedings of the ACM on Pro-
gramming Languages (2020), pp. 1–32.

[18] Bahssas, D. M., AlBar, A. M., and Hoque, M. R. Enterprise resource
planning (erp) systems: Design, trends and deployment. The Interna-
tional Technology Management Review (2015), 72–81.

[19] Bailis, P., and Ghodsi, A. Eventual consistency today: Limitations,
extensions, and beyond. Communications of the ACM (2013), 55–63.

[20] Bailis, P., Ghodsi, A., Hellerstein, J. M., and Stoica, I. Bolt-on causal
consistency. In Proceedings of the 2013 ACM SIGMOD International
Conference on Management of Data (2013), pp. 761–772.

[21] Baker, J., Bond, C., Corbett, J. C., Furman, J., Khorlin, A., Larson, J.,
Leon, J.-M., Li, Y., Lloyd, A., and Yushprakh, V. Megastore: Providing
scalable, highly available storage for interactive services. In Fifth Bien-
nial Conference on Innovative Data Systems Research (CIDR) (2011),
pp. 223–234.

[22] Barthels, C., Müller, I., Taranov, K., Alonso, G., and Hoefler, T. Strong
consistency is not hard to get: Two-phase locking and two-phase commit
on thousands of cores. In Proceedings of the VLDB Endowment (2019),
pp. 2325–2338.

[23] Bauer, D. A., and Mäkiö, J. Actor4j: A software framework for the
actor model focusing on the optimization of message passing. In The
Fourteenth Advanced International Conference on Telecommunications
(2018), pp. 125–134.

[24] Bernstein, P. A. Middleware: a model for distributed system services.
Communications of the ACM (1996), 86–98.

BIBLIOGRAPHY 137

[25] Bernstein, P. A. Actor-oriented database systems. In IEEE 34th Inter-
national Conference on Data Engineering (ICDE) (2018), pp. 13–14.

[26] Bernstein, P. A. Resurrecting middle-tier distributed transactions. Bul-
letin of the IEEE Computer Society Technical Committee on Data En-
gineering (2019), 3–6.

[27] Bernstein, P. A., Burckhardt, S., Bykov, S., Crooks, N., Faleiro, J. M.,
Kliot, G., Kumbhare, A., Rahman, M. R., Shah, V., Szekeres, A., and
Thelin, J. Geo-distribution of actor-based services. In Proceedings of
the ACM on Programming Languages (2017), pp. 1–26.

[28] Bernstein, P. A., and Bykov, S. Developing cloud services using the
orleans virtual actor model. IEEE Internet Computing (2016), 71–75.

[29] Bernstein, P. A., Bykov, S., Geller, A., Kliot, G., and Thelin, J. Orleans:
Distributed virtual actors for programmability and scalability. Tech.
rep., Microsoft Research, 2014.

[30] Bernstein, P. A., Dashti, M., Kiefer, T., and Maier, D. Indexing in an
actor-oriented database. In Conference on Innovative Database Research
(CIDR) (2017).

[31] Bernstein, P. A., Hadzilacos, V., and Goodman, N. Concurrency control
and recovery in database systems. Addison-Wesley Longman Publishing
Co., Inc., 1987.

[32] Bernstein, P. A., and Newcomer, E. Principles of transaction processing:
for the systems professional. Morgan Kaufmann Publishers Inc., 1996.

[33] Betts, D., Dominguez, J., Melnik, G., Simonazzi, F., and Subramanian,
M. Exploring CQRS and Event Sourcing: A journey into high scala-
bility, availability, and maintainability with Windows Azure. Microsoft
patterns practices, 2013.

[34] Bond, R. Solving a transactions performance mystery. https://dotn

et.github.io/orleans/blog/solving-a-transactions-performan

ce-mystery.html, July 2018.

[35] Bond, R. Grain migration, April 2022.

[36] Bragg, J. Orleans transaction deadlocks. https://github.com/dotne
t/orleans/issues/5297, January 2019.

[37] Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., and Stal,
M. Pattern-Oriented Software Architecture - Volume 1: A System of
Patterns. Wiley Publishing, 1996.

138 BIBLIOGRAPHY

[38] Bykov, S., Geller, A., Kliot, G., Larus, J. R., Pandya, R., and Thelin,
J. Orleans: Cloud computing for everyone. In Proceedings of the 2nd
ACM Symposium on Cloud Computing (2011), pp. 1–14.

[39] CAF. The c++ actor framework. https://www.actor-framework.o

rg/, July 2024.

[40] case study, A. Walmart boosts conversions by 20% with lightbend reac-
tive platform. https://www.lightbend.com/case-studies/walmart

-boosts-conversions-by-20-with-lightbend-reactive-platform,
July 2021.

[41] Clebsch, S. W. Pony: Co-designing a Type System and a Runtime. PhD
thesis, Imperial College London, 2017.

[42] Cooper, B. F., Silberstein, A., Tam, E., Ramakrishnan, R., and Sears,
R. Benchmarking cloud serving systems with ycsb. In Proceedings of
the 1st ACM symposium on Cloud computing (2010).

[43] Cowling, J., and Liskov, B. Granola: Low-overhead distributed trans-
action coordination. In Proceedings of the 2012 USENIX conference on
Annual Technical Conference (2012), pp. 223–235.

[44] Crooks, N., Burke, M., and Cecchetti, E. Obladi: Oblivious serializable
transactions in the cloud. In Proceedings of the 13th USENIX conference
on Operating Systems Design and Implementation (2018), pp. 727–743.

[45] Curino, C., Jones, E. P. C., Zhang, Y., and Madden, S. R. Schism: a
workload-driven approach to database replication and partitioning.

[46] Dapr. Dapr documentation. https://docs.dapr.io/developing-app
lications/building-blocks/actors/, September 2024.

[47] Das, S., Agrawal, D., and Abbadi, A. E. Elastras: An elastic, scalable,
and self-managing transactional database for the cloud. ACM Transac-
tions on Database Systems (TODS) (2013), 1–45.

[48] Dayarathna, M., and Perera, S. Recent advancements in event process-
ing. ACM Computing Surveys (CSUR) (2018), 1–36.

[49] dbyrne. Looking for alternatives of transactor. https://stackoverflo
w.com/questions/29154913/scala-replacement-for-akka-trans

actors, March 2015.

[50] Ding, B., Kot, L., and Gehrke, J. Improving optimistic concurrency
control through transaction batching and operation reordering. In Pro-
ceedings of the VLDB Endowment (2018), pp. 169–182.

BIBLIOGRAPHY 139

[51] Dong, Z., Wang, Z., Zhang, X., Xu, X., Zhao, C., Chen, H., Panda,
A., and Li, J. Fine-grained re-execution for efficient batched commit
of distributed transactions. In Proceedings of the VLDB Endowment
(2023), pp. 1930–1943.

[52] Dong, Z.-Y., Tang, C.-Z., Wang, J.-C., Wang, Z.-G., Chen, H.-B., and
Zang, B.-Y. Optimistic transaction processing in deterministic database.
Journal of Computer Science and Technology (2020), 382–394.

[53] Dong, Z.-Y., Tang, C.-Z., Wang, J.-C., Wang, Z.-G., Chen, H.-B., and
Zang, B.-Y. Optimistic transaction processing in deterministic database.
Journal of Computer Science and Technology (2020), 382–394.

[54] Elbagir, F. A., and Khanfar, A. K. A survey of commit protocols in dis-
tributed real time database systems. International Journal of Emerging
Trends Technology in Computer Science 31 (2016), 61–66.

[55] Eldeeb, T., and Bernstein, P. A. Transactions for distributed actors in
the cloud. Tech. rep., Microsoft Research, 2016.

[56] Eldeeb, T., Burckhardt, S., Bond, R., Cidon, A., Yang, J., and Bern-
stein, P. A. Cloud actor-oriented database transactions in orleans. In
Proceedings of the VLDB Endowment (2024), pp. 3720–3730.

[57] Eldeeb, T., Xie, X., Bernstein, P. A., Cidon, A., and Yang, J. Chardon-
nay: Fast and general datacenter transactions for on-disk databases. In
17th USENIX Symposium on Operating Systems Design and Implemen-
tation (OSDI 23) (2023), pp. 343–360.

[58] Elixir. Elixir documentation. https://elixir-lang.org/, July 2021.

[59] Erlang. Erlang documentation. https://www.erlang.org/, July 2021.

[60] Erlang. Who uses erlang for product development? http://erlang.o

rg/faq/introduction.html, July 2021.

[61] Erlang. Who uses erlang for product development? http://erlang.o

rg/faq/introduction.html, July 2021.

[62] Erlang. Erlang/otp system documentation. https://www.erlang.org
/doc/system/readme.html, September 2024.

[63] Faleiro, J. M., and Abadi, D. J. Rethinking serializable multiversion
concurrency control. In Proceedings of the VLDB Endowment (2015),
pp. 1190–1201.

[64] Faleiro, J. M., Abadi, D. J., and Hellerstein, J. M. High performance
transactions via early write visibility. In Proceedings of the VLDB En-
dowment (2017), pp. 613–624.

140 BIBLIOGRAPHY

[65] Faleiro, J. M., Abadi, D. J., and Hellerstein, J. M. High performance
transactions via early write visibility. In Proceedings of the VLDB En-
dowment (2017), pp. 613–624.

[66] Floratos, S., Zhang, Y., Yuan, Y., Lee, R., and Zhang, X. Sqloop: High
performance iterative processing in data management. In IEEE 38th
International Conference on Distributed Computing Systems (2018),
pp. 1039–1051.

[67] Fox, A., and Brewer, E. A. Harvest, yield, and scalable tolerant systems.
In Proceedings of the seventh workshop on hot topics in operating systems
(1999), pp. 174–178.

[68] Gamma, E., Helm, R., Johnson, R., and Vlissides, J. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley Pro-
fessional, 1994.

[69] Garcia-Molina, H., and Salem, K. Sagas. In Proceedings of the 1987
ACM SIGMOD international conference on Management of data (1987),
pp. 249–259.

[70] Gear. Actor model. https://wiki.gear-tech.io/docs/gear/techn

ology/actor-model, September 2023.

[71] Gos, K., and Zabierowski, W. The comparison of microservice and
monolithic architecture. In IEEE XVIth International Conference on the
Perspective Technologies and Methods in MEMS Design (MEMSTECH)
(2020), pp. 150–153.

[72] Guerraoui, R., and Wang, J. How fast can a distributed transaction
commit? In Proceedings of the 36th ACM SIGMOD-SIGACT-SIGAI
Symposium on Principles of Database Systems (2017), pp. 107–122.

[73] Guo, Z., Wu, K., Yan, C., and Yu, X. Releasing locks as early as you
can: Reducing contention of hotspots by violating two-phase locking.
In Proceedings of the 2021 International Conference on Management of
Data (2021), pp. 658–670.

[74] H2. In-memory databases. https://www.h2database.com/html/feat
ures.html#in_memory_databases, September 2024.

[75] Harding, R., Aken, D. V., Pavlo, A., and Stonebraker, M. An evalu-
ation of distributed concurrency control. In Proceedings of the VLDB
Endowment (2017), pp. 553–564.

[76] Hasselbring, W., and Steinacker, G. Microservice architectures for scala-
bility, agility and reliability in e-commerce. In IEEE International Con-
ference on Software Architecture Workshops (ICSAW) (2017), pp. 243–
246.

BIBLIOGRAPHY 141

[77] Helland, P. Life beyond distributed transactions: An apostate’s opinion.
Queue (2016), 69–98.

[78] Hewitt, C., Bishop, P., and Steiger, R. A universal modular actor for-
malism for artificial intelligence. In Proceedings of the 3rd international
joint conference on Artificial intelligence (1973), pp. 235–245.

[79] Irby, B. Orleans slow with minimalistic use case. https://stackoverf
low.com/questions/58308230/orleans-akka-net-problem-with-u

nderstanding-the-actor-model, October 2024.

[80] Ireland, C., Bowers, D., Newton, M., and Waugh, K. A classification
of object-relational impedance mismatch. In 2009 First International
Conference on Advances in Databases, Knowledge, and Data Applica-
tions (2009), pp. 36–43.

[81] Issa, S., Viegas, M., Raminhas, P., Machado, N., Matos, M., and Ro-
mano, P. Exploiting symbolic execution to accelerate deterministic
databases. In 2020 IEEE 40th International Conference on Distributed
Computing Systems (ICDCS) (2020), pp. 678–688.

[82] Katsarakis, A., Ma, Y., Tan, Z., Bainbridge, A., Balkwill, M., Dragoje-
vic, A., Grot, B., Radunovic, B., and Zhang, Y. Zeus: Locality-aware
distributed transactions. In Proceedings of the Sixteenth European Con-
ference on Computer Systems (2021), pp. 145–161.

[83] Kleppmann, M., Beresford, A. R., and Svingen, B. Online event pro-
cessing. Communications of the ACM (2019), 43–49.

[84] Kraft, P., Kazhamiaka, F., Bailis, P., and Zaharia, M. Data-parallel
actors: A programming model for scalable query serving systems. In
Proceedings of the 19th USENIX Symposium on Networked Systems De-
sign and Implementation (2022), pp. 1059–1074.

[85] Lai, Z., Fan, H., Zhou, W., Ma, Z., Peng, X., Li, F., and Lo, E. Knock
out 2pc with practicality intact: a high-performance and general dis-
tributed transaction protocol. In International Conference on Data En-
gineering (ICDE) (2023), pp. 2317–2331.

[86] Laigner, R., Kalinowski, M., Diniz, P., Barros, L., Cassino, C., Lemos,
M., Arruda, D., Lifschitz, S., and Zhou, Y. From a monolithic big
data system to a microservices event-driven architecture. In 46th Eu-
romicro Conference on Software Engineering and Advanced Applications
(SEAA) (2020), pp. 213–220.

[87] Laigner, R., Zhang, Z., Liu, Y., Gomes, L. F., and Zhou, Y. A bench-
mark for data management challenges in microservices. In Arxiv (2024).

142 BIBLIOGRAPHY

[88] Laigner, R., and Zhou, Y. Benchmarking data management systems for
microservices. In IEEE 40th International Conference on Data Engi-
neering (ICDE) (2024).

[89] Laigner, R., Zhou, Y., Salles, M. A. V., Liu, Y., and Kalinowski, M.
Data management in microservices: State of the practice, challenges,
and research directions. In Proceedings of the VLDB Endowment (2021),
pp. 3348–3361.

[90] Lampson, B., and Sturgis, H. E. Crash recovery in a distributed data
storage system. Tech. rep., Microsoft Research, 1979.

[91] Li, Z., Romano, P., and Roy, P. V. Sparkle: Speculative determinis-
tic concurrency control for partially replicated transactional stores. In
2019 49th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN) (2019).

[92] Lightbend. Distributed data. https://doc.akka.io/docs/akka/curr
ent/typed/distributed-data.html#distributed-data, May 2024.

[93] Lin, Q., Chang, P., Chen, G., Ooi, B. C., Tan, K.-L., and Wang, Z. To-
wards a non-2pc transaction management in distributed database sys-
tems. In Proceedings of the 2016 International Conference on Manage-
ment of Data (2016), pp. 1659–1674.

[94] Lin, Y.-S., Pi, S.-K., Liao, M.-K., Tsai, C., Elmore, A., and Wu, S.-
H. Mgcrab: Transaction crabbing for live migration in deterministic
database systems. In Proceedings of the VLDB Endowment (2019),
pp. 597–610.

[95] Lin, Y.-S., Tsai, C., Lin, T.-Y., Chang, Y.-S., and Wu, S.-H. Don’t look
back, look into the future: Prescient data partitioning and migration for
deterministic database systems. In Proceedings of the 2021 International
Conference on Management of Data (2021).

[96] Liskov, B., and Shrira, L. Promises: Linguistic support for efficient
asynchronous procedure calls in distributed systems. In Proceedings of
the ACM SIGPLAN’88 Conference on Programming Language Design
and Implementation (PLDI) (1988), pp. 260–267.

[97] Liu, X., Heo, J., and Sha, L. Modeling 3-tiered web applications. In 13th
IEEE International Symposium on Modeling, Analysis, and Simulation
of Computer and Telecommunication Systems (2005).

[98] Liu, Y. Why i get low throughput with orleanstransaction. https:

//github.com/dotnet/orleans/issues/6912, January 2021.

BIBLIOGRAPHY 143

[99] Liu, Y., Su, L., Shah, V., Zhou, Y., and Salles, M. A. V. Hybrid deter-
ministic and nondeterministic execution of transactions in actor systems.
In Proceedings of the 2022 International Conference on Management of
Data (2022), pp. 65–78.

[100] Lu, Y., Yu, X., Cao, L., and Madden, S. Aria: a fast and practical
deterministic oltp database. In Proceedings of the VLDB Endowment
(2020), pp. 2047–2060.

[101] Lu, Y., Yu, X., Cao, L., and Madden, S. Epoch-based commit and
replication in distributed oltp databases. In Proceedings of the VLDB
Endowment (2021), pp. 743–756.

[102] Lu, Y., Yu, X., Cao, L., and Madden, S. Epoch-based commit and
replication in distributed oltp databases. In Proceedings of the VLDB
Endowment (2021), pp. 743–756.

[103] Luo, Q., Krishnamurthy, S., Mohan, C., Pirahesh, H., Woo, H., Lindsay,
B. G., and Naughton, J. F. Middle-tier database caching for e-business.
In Proceedings of the 2002 ACM SIGMOD international conference on
Management of data (2002), pp. 600–611.

[104] Martin, J. Managing the Data Base Environment. Prentice Hall PTR,
1983.

[105] mathdotnet. Zipf. https://numerics.mathdotnet.com/api/MathNe

t.Numerics.Distributions/Zipf.htm, 2021.

[106] Mattsson, H., Nilsson, H., and Wikström, C. Mnesia - a distributed
robust dbms for telecommunications applications. In Practical Aspects
of Declarative Languages (1998), pp. 152–163.

[107] Mehdi, S. A., Hwang, D., Peter, S., and Alvisi, L. Scaledb: A scalable,
asynchronous in-memory database. In USENIX Symposium on Operat-
ing Systems Design and Implementation (OSDI 23) (2023), pp. 361–376.

[108] Memcached. Memcached wiki. https://github.com/memcached/mem

cached/wiki, September 2024.

[109] Mertz, J., and Nunes, I. Understanding application-level caching in web
applications: A comprehensive introduction and survey of state-of-the-
art approaches. ACM Computing Surveys (CSUR) (2017), 1–34.

[110] Microsoft. Async query and save. https://learn.microsoft.co

m/en-us/ef/ef6/fundamentals/async?source=recommendations,
September 2024.

144 BIBLIOGRAPHY

[111] Mohan, C., and Lindsay, B. Efficient commit protocols for the tree of
processes model of distributed transactions. ACM SIGOPS Operating
Systems Review (1985), 40–52.

[112] Moritz, P., Nishihara, R., Wang, S., Tumanov, A., Liaw, R., Liang, E.,
Elibol, M., Yang, Z., Paul, W., Jordan, M. I., and Stoica, I. Ray: A
distributed framework for emerging ai applications. In Proceedings of
the 13th USENIX Symposium on Operating Systems Design and Imple-
mentation (2018), pp. 561–577.

[113] Mu, S., Cui, Y., Zhang, Y., Lloyd, W., and Li, J. Extracting more
concurrency from distributed transactions. In Proceedings of the 11th
USENIX conference on Operating Systems Design and Implementation
(2014), pp. 479–494.

[114] Murdock. Orleans slow with minimalistic use case. https://stackove
rflow.com/questions/74310628/orleans-slow-with-minimalisti

c-use-case, October 2024.

[115] Newell, A., Kliot, G., Menache, I., Gopalan, A., Akiyama, S., and Sil-
berstein, M. Optimizing distributed actor systems for dynamic inter-
active services. In Proceedings of the Eleventh European Conference on
Computer Systems (2016), pp. 1–15.

[116] Nguyen, C. D. T., Miller, J. K., and Abadi, D. J. Detock: High per-
formance multi-region transactions at scale. Proceedings of the ACM on
Management of Data (2023), 1–27.

[117] on Serverless Stateful Functions, D. T. Martijn de heus and kyriakos
psarakis and marios fragkoulis and asterios katsifodimos. In Proceedings
of the 15th ACM International Conference on Distributed and Event-
Based Systems (2021), pp. 31–42.

[118] Orbit. Orbit documentation. https://www.orbit.cloud/orbit/, July
2021.

[119] Orleans. Orleans transactions. https://dotnet.github.io/orleans

/docs/grains/transactions.html, July 2021.

[120] Orleans. Grain placement. https://learn.microsoft.com/en-us/do
tnet/orleans/grains/grain-placement, September 2024.

[121] Orleans. Replicated grains. https://learn.microsoft.com/en-us/

dotnet/orleans/grains/event-sourcing/replicated-instances,
September 2024.

[122] Orleans, M. Orleans documentation. https://learn.microsoft.com/
en-us/dotnet/orleans/overview, September 2024.

BIBLIOGRAPHY 145

[123] Orleans, M. Reentrancy. https://learn.microsoft.com/en-us/do

tnet/orleans/grains/request-scheduling#reentrancy, September
2024.

[124] Pavlo, A., Curino, C., and Zdonik, S. Skew-aware automatic database
partitioning in shared-nothing, parallel oltp systems. In Proceedings of
the 2012 ACM SIGMOD International Conference on Management of
Data (2012), pp. 61–72.

[125] Perez-Sorrosal, F., Patiño-Martinez, M., Jimenez-Peris, R., and Kemme,
B. Elastic si-cache: consistent and scalable caching in multi-tier archi-
tectures. The VLDB Journal (2011), 841–865.

[126] Persson, P., and Angelsmark, O. Calvin–merging cloud and iot. Procedia
Computer Science 52 (2015), 210–217.

[127] Ports, D. R. K. Application-Level Caching with Transactional Consis-
tency. Ph.D., MIT, Cambridge, MA, USA, 2012.

[128] Prasaad, G., Cheung, A., and Suciu, D. Handling highly contended
oltp workloads using fast dynamic partitioning. In Proceedings of the
2020 ACM SIGMOD International Conference on Management of Data
(2020), pp. 527–542.

[129] Preguiça, N., Baquero, C., and Shapiro, M. Conflict-Free Replicated
Data Types CRDTs. Springer International Publishing, 2018, pp. 1–10.

[130] Prickett, S. What is redis?: An overview. https://redis.io/learn/d
evelop/node/nodecrashcourse/whatisredis, February 2024.

[131] Proto.Actor. Proto.actor documentation. https://proto.actor/docs
/, September 2024.

[132] Ptaszek, M. Chat service architecture: Servers. https://technolo

gy.riotgames.com/news/chat-service-architecture-servers,
September 2015.

[133] Pulsar. Pulsar documentation. https://quantmind.github.io/puls

ar/design.html#actors, September 2024.

[134] Pyactor. Pyactor documentation. https://pyactor.readthedocs.io
/en/master/, September 2024.

[135] Pykka. Pykka documentation. https://pykka.readthedocs.io/sta

ble/api/actors/, September 2024.

[136] Qadah, T. Q-store: Distributed, multi-partition transactions via queue-
oriented execution and communication, March 2020.

146 BIBLIOGRAPHY

[137] Qadah, T. M., Gupta, S., and Sadoghi, M. Q-store: Distributed, multi-
partition transactions via queue-oriented execution and communication.
In EDBT (2020), pp. 73–84.

[138] Qadah, T. M., and Sadoghi, M. Quecc: A queue-oriented, control-
free concurrency architecture. In Proceedings of the 19th International
Middleware Conference (2018), pp. 13–25.

[139] Qin, D., Brown, A. D., and Goel, A. Caracal: Contention manage-
ment with deterministic concurrency control. In Proceedings of the
ACM SIGOPS 28th Symposium on Operating Systems Principles (2021),
pp. 180–194.

[140] Rafiq. How to handle multiple update event when there is more then
one replica of a pod. https://stackoverflow.com/questions/6761

2615/how-to-handle-multiple-update-event-when-there-is-mor

e-then-one-replica-of-a-pod, May 2021.

[141] Ramachandra, K., Chavan, M., Guravannavar, R., and Sudarshan, S.
Program transformations for asynchronous and batched query submis-
sion. IEEE Transactions on Knowledge and Data Engineering (2015),
531–544.

[142] Redis. Write-behind, write-through, and read-through caching. https:
//redis.io/docs/latest/operate/oss_and_stack/stack-with-ent

erprise/gears-v1/jvm/recipes/write-behind/, September 2024.

[143] Reiko, H., Rui, C., Carlos, M., Mohammad, E.-R., Georgios, K., and
Luis, A. Software Evolution. Springer Berlin Heidelberg, 2008, ch. Ar-
chitectural Transformations: From Legacy to Three-Tier and Services.

[144] Ren, K., Diamond, T., Abadi, D. J., and Thomson, A. Low-overhead
asynchronous checkpointing in main-memory database systems. In Pro-
ceedings of the 2016 International Conference on Management of Data
(2016), pp. 539–1551.

[145] Ren, K., Li, D., and J.Abadi, D. Slog: Serializable, low-latency, geo-
replicated transactions. In Proceedings of the VLDB Endowment (2019),
pp. 1747–1761.

[146] Ren, K., Thomson, A., and Abadi, D. J. An evaluation of the advantages
and disadvantages of deterministic database systems. In Proceedings of
the VLDB Endowment (2014), pp. 821–832.

[147] Riker. Riker documentation. https://riker.rs/actors/#actors,
September 2024.

BIBLIOGRAPHY 147

[148] Rosenkrantz, D. J., Stearns, R. E., and Lewis, P. M. System level con-
currency control for distributed database systems. ACM Transactions
on Database Systems (1978), 178–198.

[149] saeedakhter. Ensuring data consistency when a transaction spans state
in two grains. https://github.com/dotnet/orleans/issues/1090,
November 2015.

[150] Sang, B., Petri, G., Ardekani, M. S., Ravi, S., and Eugster, P. Pro-
gramming scalable cloud services with aeon. In Proceedings of the 17th
International Middleware Conference (2016), pp. 1–14.

[151] Sang, B., Roman, P.-L., Eugster, P., Lu, H., Ravi, S., and Petri, G.
Plasma: Programmable elasticity for stateful cloud computing applica-
tions. In Proceedings of the Fifteenth European Conference on Computer
Systems (2020), pp. 1–15.

[152] Schantz, R. E., and Schmidt, D. C. Middleware for distributed sys-
tems: Evolving the common structure for network-centric applications.
Encyclopedia of Software Engineering (2001), 1–9.

[153] Schmidl, S., Schneider, F., and Papenbrock, T. An actor database sys-
tem for akka. In Datenbanksysteme für Business, Technologie und Web
(2019).

[154] Shah, V., and Salles, M. A. V. Actor-relational database systems: A
manifesto. arXiv (2017).

[155] Shah, V., and Salles, M. A. V. Reactors: A case for predictable, virtu-
alized actor database systems. In Proceedings of the 2018 International
Conference on Management of Data (2018), pp. 259–274.

[156] Shapiro, M., Preguiça, N., Baquero, C., and Zawirski, M. Conflict-free
replicated data types. In Stabilization, Safety, and Security of Dis-
tributed Systems (2011), pp. 386–400.

[157] Shasha, D., Llirbat, F., Simon, E., and Valduriez, P. Transaction
chopping: algorithms and performance studies. ACM Transactions on
Database Systems (1995), 325–363.

[158] Soethout, T., Vinju, J. J., and van der Storm, T. Path-sensitive
atomic commit: Local coordination avoidance for distributed transac-
tions (technical report). CoRR (2019).

[159] Soisalon-Soininen, E., and Ylönen, T. Partial strictness in two-phase
locking. In Proceedings of the 5th International Conference on Database
Theory (1995), pp. 139—-147.

148 BIBLIOGRAPHY

[160] Somuah, H. Using project “orleans” in halo. https://hoopsomuah.c

om/2014/04/06/using-project-orleans-in-halo/, April 2014.

[161] SQLite. In-memory databases. https://www.sqlite.org/inmemoryd

b.html, September 2024.

[162] Srinivasan, S., and Mycroft, A. Kilim: Isolation-typed actors for java.
In ECOOP 2008 – Object-Oriented Programming (2008), pp. 104–128.

[163] Srinivasan, V., Bulkowski, B., Chu, W.-L., Sayyaparaju, S., Gooding,
A., Iyer, R., Shinde, A., and Lopatic, T. Aerospike: architecture of
a real-time operational dbms. Proceedings of the VLDB Endowment
(2016), 1389––1400.

[164] Stefanko, M., Chaloupka, O., and Rossi, B. The saga pattern in a reac-
tive microservices environment. In Proceedings of the 14th International
Conference on Software Technologies (2019), pp. 483–490.

[165] Stonebraker, M., and Weisberg, A. The voltdb main memory dbms.
IEEE Data Eng. Bull. (2013), 21–27.

[166] Swalens, J., Koster, J. D., and Meuter, W. D. Transactional actors:
Communication in transactions. In Proceedings of the 4th ACM SIG-
PLAN International Workshop on Software Engineering for Parallel
Systems (2017), pp. 31–41.

[167] Taft, R., Sharif, I., Matei, A., VanBenschoten, N., Lewis, J., Grieger,
T., Niemi, K., Woods, A., Birzin, A., Poss, R., Bardea, P., Ranade, A.,
Darnell, B., Gruneir, B., Jaffray, J., Zhang, L., and Mattis, P. Cock-
roachdb: The resilient geo-distributed sql database. In Proceedings of
the 2020 ACM SIGMOD International Conference on Management of
Data (2020), pp. 1493–1509.

[168] Tanenbaum, A. S., and van Steen, M. Distributed Systems: Principles
and Paradigms (2nd Edition). Prentice-Hall, Inc., 2006.

[169] @theotown. How reactive systems help paypal’s squbs scale to billions
of transactions daily. https://www.lightbend.com/blog/how-react

ive-systems-help-paypal-squbs-scale-to-billions-of-transac

tions-daily, June 2016.

[170] Thespian. Thespian documentation. https://thespianpy.com/doc/,
September 2024.

[171] Thomson, A., and Abadi, D. J. The case for determinism in database
systems. In Proceedings of the VLDB Endowment (2010), pp. 70–80.

BIBLIOGRAPHY 149

[172] Thomson, A., Diamond, T., Weng, S.-C., Ren, K., Shao, P., and Abadi,
D. J. Calvin: Fast distributed transactions for partitioned database
systems. In Proceedings of the 2012 ACM SIGMOD International Con-
ference on Management of Data (2012), pp. 1–12.

[173] Torres, A., Galante, R., Pimenta, M. S., and Martins, A. J. B. Twenty
years of object-relational mapping: A survey on patterns, solutions,
and their implications on application design. Information and Software
Technology (2017), 1–18.

[174] TPCC. Tpc-c is an on-line transaction processing benchmark. http:

//www.tpc.org/tpcc/, July 2021.

[175] user, A. Transactors and stm are gone. what conception to use instead?
https://groups.google.com/g/akka-user/c/XS-Pk3SOzbw?pli=1,
July 2021.

[176] Viennot, N., Lécuyer, M., Bell, J., Geambasu, R., and Nieh, J. Synapse:
A microservices architecture for heterogeneous-database web applica-
tions. In Proceedings of the Tenth European Conference on Computer
Systems (2015), pp. 1–16.

[177] Wang, Y. Scalable and Reactive Data Management for Mobile Internet-
of-Things Applications with Actor-Oriented Databases. PhD thesis, Uni-
versity of Copenhagen, 2021.

[178] Wang, Y., Reis, J. C. D., Borggren, K. M., Salles, M. A. V., Medeiros,
C. B., and Zhou, Y. Modeling and building iot data platforms with actor-
oriented databases. In Proceedings of the 22nd International Conference
on Extending Database Technology (2019), pp. 512–523.

[179] Wang, Z., Mu, S., Cui, Y., Yi, H., Chen, H., and Li, J. Scaling multicore
databases via constrained parallel execution. In Proceedings of the 2016
International Conference on Management of Data (2016), pp. 1643–
1658.

[180] Wu, C., Faleiro, J. M., Lin, Y., and Hellerstein, J. M. Anna: A kvs for
any scale. In IEEE Transactions on Knowledge and Data Engineering
(2021), pp. 344–358.

[181] Wu, S.-H., Feng, T.-Y., Liao, M.-K., Pi, S.-K., and Lin, Y.-S. T-
part: Partitioning of transactions for forward-pushing in deterministic
database systems. In Proceedings of the 2016 International Conference
on Management of Data (2016).

150 BIBLIOGRAPHY

[182] Yao, C., Agrawal, D., Chen, G., Lin, Q., Ooi, B. C., Wong, W.-F.,
and Zhang, M. Exploiting single-threaded model in multi-core in-
memory systems. IEEE Transactions on Knowledge and Data Engi-
neering (2016), 2635–2650.

[183] You, J., Wu, J., Jin, X., and Chowdhury, M. Ship compute or ship data?
why not both? In 18th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 21) (2021), pp. 633–651.

[184] Zamanian, E., Binnig, C., Harris, T., and Kraska, T. The end of a
myth: Distributed transactions can scale. In Proceedings of the VLDB
Endowment (2017), pp. 685–696.

[185] Zhang, J., Huang, K., Wang, T., and Lv, K. Skeena: Efficient and
consistent cross-engine transactions. In Proceedings of the 2022 Inter-
national Conference on Management of Data (2022), pp. 34–48.

[186] Zhang, Y., Power, R., Zhou, S., Sovran, Y., Aguilera, M. K., and Li,
J. Transaction chains: achieving serializability with low latency in geo-
distributed storage systems. In Proceedings of the Twenty-Fourth ACM
Symposium on Operating Systems Principles (2013), pp. 276–291.

[187] Zhou, X., Yu, X., Graefe, G., and Stonebraker, M. Lotus: Scalable
multi-partition transactions on single-threaded partitioned databases.
In Proceedings of the VLDB Endowment (2022), pp. 2939–2952.

Appendix A

Proof for Hybrid Execution
Correctness

In Snapper, the system state is a collection of the state of every named ac-
tor, and a transaction is a series of method invocations performed on one
or more actors. Each method invocation can perform one or more Read or
ReadWrite operations on an actor and invoke methods on some other actors
via asynchronous RPCs. A transaction can invoke methods on the same actor
multiple times.

We note that Read or ReadWrite operations on an actor always touch the
whole of its state, so in the following, we make no distinction between the
notion of an actor and the data in its state. We use ri[x] or wi[x] to denote
a Read or a ReadWrite, respectively, operation performed by transaction Ti

on actor x. We focus on the concept of conflict serializability [31], so the
ReadWrite operation can be regarded as a blind Write operation without
being distinguished from a read-modify-write. We say any two read or write
operations are conflicting if they are applied on the same actor, and one of
them is a write.

Besides, in Snapper, PACTs are committed in batches, thus a PACT batch
can be considered as one large transaction. We denote an ACT as T a

i , where i
corresponds to the ACT’s tid (a non-negative integer, tid ∈ Z∗), and a batch
as T b

j , where j corresponds to the batch’s bid (similarly bid ∈ Z∗). Snapper

guarantees that no two ACTs have the same tid and no two batches have
the same bid. When we refer to Ti without further qualification, we denote
either an ACT or a batch. We assume, without loss of generality, that the
transaction identifiers corresponding to tids or bids be taken from disjoint
subsets of Z∗.

Before we prove the correctness of Snapper’s hybrid processing, we first
define some key concepts similar to the formalism introduced by [31] for the
classic transactional model. Definitions 2, 3, and 4 reuse the definitions of
transaction, serialization graph, and history introduced in [31] with necessary

151

152APPENDIX A. PROOF FOR HYBRID EXECUTION CORRECTNESS

adaptations to Snapper’s context and introduce important notation. We state
these definitions here to make this appendix self-contained.

Definition 2 In Snapper, a transaction Ti is a partial order with ordering
relation <i where:

1. Ti ⊆ {ri[x], wi[x] | x is an actor}∪{ai, ci}, where ai and ci denote abort
or commit, respectively;

2. ai ∈ Ti iff ci /∈ Ti;

3. if t is ci or ai (whichever is in Ti), for any other operation p ∈ Ti, p <i t;

4. if ri[x], wi[x] ∈ Ti, then either ri[x] <i wi[x] or wi[x] <i ri[x].

To simplify the following discussion, we assume that a transaction Ti does
not contain multiple operations of the same type on the same actor as in [31,
page 27]. All the following results we get do not depend on this assumption.

Definition 3 (from [31]) Let T = {T1, T2, ..., Tn} be a set of transactions.
A complete history H over T is a partial order with ordering relation <H

where:

1. H = ∪n
i=1Ti;

2. ∪n
i=1 <i⊆<H ;

3. for any two conflicting operations p, q ∈ H, either p <H q or q <H p.

Definition 4 The serialization graph SG for H, denoted SG(H), is a directed
graph, including a set of nodes V and edges E:

1. V = {Ti|Ti ⊆ H is a transaction ∧ci ∈ Ti}

2. E = {Ti → Tj |Ti and Tj are different transactions, and there exist
oi ∈ Ti, oj ∈ Tj such that oi <H oj}

In the following, we slightly abuse notation by referring to Ti ∈ SG(H) as
a transaction in the set of nodes V of SG(H). When the context is clear, we
also refer to Ti → Tj without further qualification to denote an edge in the
set of edges of SG(H). Furthermore, we assume that histories generated by
Snapper’s hybrid processing always include at least one ACT transaction and
one PACT batch.

To check global serializability under hybrid transaction processing, Snapper
introduces the concepts of BeforeSet and AfterSet, which contain the schedul-
ing information of each ACT.

153

Definition 5 Given a history H generated by Snapper’s hybrid processing
and the corresponding serialization graph SG(H), ∀T a

i ∈ SG(H), its BeforeSet
(BSTa

i
) and AfterSet (ASTa

i
) are defined as:

1. BSTa
i
= {j| there exists a path T b

j → ... → T a
i }

2. ASTa
i
= {j|T a

i → T b
j }

In addition, max(BSTa
i
) and min(ASTa

i
) are the maximum and minimum

numbers (bids) in BSTa
i
and ASTa

i
, respectively. If BSTa

i
=, max(BSTa

i
) =

−1. Similarly, if ASTa
i
=, min(ASTa

i
) = −1.

Given a history H generated by Snapper’s hybrid processing and the cor-
responding serialization graph SG(H), if T a

i1
→ T a

i2
, then max(BSTa

i1
) ≤

max(BSTa
i2
).

If BSTa
i1

=, then max(BSTa
i1
) = −1 ≤ max(BSTa

i2
). Otherwise, according

to definition 5, ∀T b
j ∈ BSTa

i1
, there exists a path from T b

j to T a
i1

which can be

extended by adding one more edge T a
i1
→ T a

i2
. Thus there is also a path from

T b
j to T a

i2
. In another word BSTa

i1
⊆ BSTa

i2
, so max(BSTa

i1
) ≤ max(BSTa

i2
).

We propose Theorem 3 below to prove that Snapper’s hybrid processing
preserves conflict serializability for all concurrent transactions. Our proof
relies on the serializability theorem (Theorem 2), which has been proven in
[31].

Theorem 2 (from [31]) A history H is conflict serializable iff SG(H) is
acyclic.

Theorem 3 A history H generated by Snapper’s hybrid processing is conflict
serializable if:

(1) ∀T b
j1

→ T b
j2
, j1 < j2;

(2) the execution of all T a
i is conflict serializable;

(3) ∀T a
i ∈ SG(H), max(BSTa

i
) < min(ASTa

i
).

Here we prove that when the three conditions are met, then SG(H) can be
topologically sorted, which means that SG(H) is acyclic and thus H is conflict
serializable. More specifically, we first assign a unique rational number for each
transaction Ti by applying a function N (Ti). Then, we take all transactions
in ascending order of the assigned numbers to obtain a topological sort of
SG(H). To realize this proposed construction, we need to prove that given
the three stated conditions, ∀Ti → Tj , N (Ti) < N (Tj).

Before defining N , we introduce new transaction identifiers to all T a
i corre-

sponding to a valid serialization order. According to condition (2) above and
Theorem 2, if the execution of all T a

i is conflict serializable, then the induced

154APPENDIX A. PROOF FOR HYBRID EXECUTION CORRECTNESS

sub-graph SG(H)[{T a
i |T a

i ∈ SG(H)}] where the vertices consist of all T a
i is

acyclic. Thus, this induced sub-graph can be topologically sorted. Suppose we
have m ∈ Z+ ACT transactions T a

i , and T a
i1
, T a

i2
, ..., T a

im
is such a topological

sort. We can relabel the T a
i with the identifiers in this topological sort so that

now we know that ∀Tik1
→ Tik2

, k1 < k2, where k1, k2 ∈ [1,m].
The function N : T 7→ Q is now defined as follows:

• ∀T b
j ∈ SG(H), N (T b

j) = j

• ∀T a
ik

∈ SG(H), k ∈ [1,m], N (T a
ik
) = max(BSTa

ik
) + k

m+1

Now we prove that ∀Ti → Tj , N (Ti) < N (Tj). We divide all → edges into
four cases:

1. ∀T b
j1

→ T b
j2
,

N (T b
j1) = j1,N (T b

j2) = j2

With condition (1) above, j1 < j2, so N (T b
j1
) < N (T b

j2
).

2. ∀T a
ik1

→ T a
ik2

,

N (T a
ik1

) = max(BSTa
ik1

) +
k1

m+ 1

N (T a
ik2

) = max(BSTa
ik2

) +
k2

m+ 1

155

In the topological sort of SG(H)[{T a
i |T a

i ∈ SG(H)}] discussed above,
k1 < k2, thus

k1
m+1 < k2

m+1 , and according to Lemma A, max(BSTa
ik1

) ≤
max(BSTa

ik2

), so

N (T a
ik1

) < N (T a
ik2

)

3. ∀T b
j → T a

ik
,

N (T b
j) = j

N (T a
ik
) = max(BSTa

ik
) +

k

m+ 1

According to Definition 5, j ∈ BSTa
ik
, j ≤ max(BSTa

ik
), thus

N (T b
j) < N (T a

ik
)

4. ∀T a
ik

→ T b
j ,

N (T a
ik
) = max(BSTa

ik
) +

k

m+ 1

N (T b
j) = j

According to Definition 5, j ∈ ASTa
ik
, min(ASTa

ik
) ≤ j. And according to

condition (3) above, max(BSTa
ik
) < min(ASTa

ik
), then max(BSTa

ik
) < j.

And k
m+1 < 1, so

N (T a
ik
) < N (T b

j)

