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Preface

This work represents the culmination of three years and ten months of con-
tinuous research work within the BioML group, vinculated to the Machine
Learning Section at the Department of Computer Science (DIKU) at the
University of Copenhagen. One year and three months of that period was
spent on a collaborative project that was carried out between the BioML
group and the Enzyme Research Division of Novonesis A/S, located in Kon-
gens Lyngby, Denmark.

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Marie Sklodowska-Curie grant
agreement No 801199, the Novo Nordisk Foundation through the MLSS Cen-
ter (Basic Machine Learning Research in Life Science, NNF200C0062606),
and the Pioneer Centre for AI (DNRF grant number P1).

The following thesis is organized into five chapters: Chapter 1 provides the
necessary background and context to understand the motivations behind the
problems addressed in this work. Chapter 2 prepares the reader to under-
stand the scientific contributions I intend to make in this thesis, which are
presented in Chapters 3 and 4. Finally, Chapter 5 offers conclusions and
outlines future research perspectives.

1



Abstract

In the field of protein modelling, protein engineering and bioinformatics in
general, two main approaches to protein representation have emerged as the
spearheads for a wide range of applications, particularly in machine learn-
ing tasks: representations based on Multiple Sequence Alignment (MSA)
features and the representation based on embedding spaces. MSA-based
representations have long been the gold standard in the field and continue to
play an important role, even contributing to the development of algorithms
such as AlphaFold2 [1], underlining their continued relevance. However, the
rise of embedding spaces has gained tremendous momentum with the advent
of Protein Language Models (pLMs) [2], which have become central to many
state-of-the-art protein representation algorithms without the need for align-
ments, such as ESM2 [3] and ProtBERT [4]. Nevertheless, there is no clear
guideline or path on when to favour one approach over the other, as both are
highly relevant and offer distinct advantages depending on the task, leaving
room for further exploration and research in this area.

This thesis aims to offer two contributions to the scientific community con-
cerning these two types of representations. The first contribution is algo-
rithmic, where we propose, as a proof-of-concept, a novel strategy for MSA
based on deep generative models and spatial transformations. In this initial
contribution, we frame MSA as a spatial transformation problem, providing
robust and generalizable alignments for new sequences through the creation of
a probabilistic graphical model based on ensembles of variational encoders.
The second contribution addresses the prediction of a widely used proxy
for protein thermostability: melting temperatures through embedding-based
representations. While many state-of-the-art methods in this area depend
on global metrics to evaluate model performance, these can often obscure
important issues, such as the significant inter-species imbalance within the
datasets. This work addresses this challenge and proposes strategies for ef-
fectively inducing regression models in which the imbalance between species
is prominent.
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Resumé

Inden for proteinmodellering, proteindesign og generel bioinformatik har to
repraesentationsmetoder vist sig som spydspidser inden for en lang raekke an-
vendelser, iseer inden for maskinleering: repraesentationer baseret pa MSA
(Multiple Sequence Alignment) egenskaber og repraesentationer baseret pa
afbildningsrum. MSA-baserede repraesentationer har i lang tid veeret den
gyldne standard og spiller fortsat en vigtig rolle, hvor deres inklusion i ud-
viklingen af algoritmer sasom AlphaFold2 [1] understreger deres forsatte rel-
evans. Vigtigheden af afbildningsrum har ligeledes faet enormt momentum
med fremkomsten af proteinsprogmodeller (pLM’er) [2], der er blevet centrale
i mange sakaldte state-of-the-art proteinrepraesentationsmodeller uden behov
for alignments, sasom ESM2 [3] og ProtBERT [4]. Tkke desto mindre er der
ingen klare retningslinjer for, hvornar man bgr bruge den ene tilgang frem
for den anden, da begge er yderst relevante og tilbyder forskellige fordele, alt
atheengigt af opgaven, hvilket efterlader plads til yderligere undersggelser og
forskning.

Denne athandling kommer med to bidrag til det videnskabelige samfund ve-
drgrende disse repraesentationsmetoder. Det forste bidrag er algoritmisk,
hvor vi som proof-of-concept foreslar en ny strategi til MSA-generering baseret
pa dybe generative modeller og rumlige transformationer. 1 dette forste
bidrag formulerer vi MSA-generering som et rumlig transformations-problem,
der giver robuste og generaliserbare alignments for nye sekvenser gennem
skabelsen af en probabilistisk grafisk model baseret pa samlinger af vari-
ationelle autoenkodere. Det andet bidrag omhandler forudsigelsen af en
ofte brugt proxy for proteiners termostabilitet: deres smeltetemperaturer
gennem repraesentationer fra afbildingsrum. Hvor mange state-of-the-art
metoder atheenger af globale metrikker til at evaluere modelydeevne kan
disse ofte tilslgre vigtige problemer sasom den betydelige ubalance mellem
arter i datasaet. Dette bidrag adresserer denne udfordring og foreslar strate-
gier til effektivt at skabe regressesionsmodeller hvori ubalancen mellem arter
er fremtraedende.
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Chapter 1

Introduction

In recent years, representation learning has revolutionized the field of arti-
ficial intelligence, transforming many areas of scientific discovery. The life
sciences, and in particular protein modelling, are no exception to this revo-
lution. In the latter, the way we represent proteins provide key insights into
the relationships between sequence, structure and function which can be used
for a wide range of tasks including protein property prediction, protein and
small molecule design [5], [6], [7].

The classical approach to protein representation has long been based on mul-
tiple sequence alignments (MSA), which have been considered the gold stan-
dard for describing the relationships between protein sequences and struc-
tures and for studying protein evolution [7], [6]. Today, MSA remain highly
relevant, especially with the advancements in deep learning. These advance-
ments have contributed to the development of algorithms that have trans-
formed the field of biology and enabled groundbreaking progress of protein
structure prediction by models like AlphaFold2. [1].

Beyond the traditional MSA approach, other players in the field of protein
modelling have emerged and become very relevant in the past few years. The
development of attention mechanisms alongside advances in natural language
processing has led to the rise of Protein Language Models (pLLMs) as a new
paradigm for representing proteins [2]. Based on embedding spaces gener-
ated for transformer-based networks, pLM promises to be an alignment-free
approach that can be used as a representation for many tasks related to
prediction or even protein engineering applications [2], [3], [8]. Likewise, al-
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ternative approaches have also been developed with the aim of exploiting the
ability of deep learning to generate expressive representations in embedding-
based spaces beyond just protein language models (pLMs). These methods
include algorithms that capture the representation of protein structures, such
as inverse folding, which aims to predict the sequence of proteins from their
atomic coordinates, among many other algorithms that follows the same
principle [9], [10]. An additional advantage is that embedding-based rep-
resentations can be combined to create more expressive features for use in
high-end applications. This approach has seen significant growth recently.

There is however no general consensus on which type of representation is
superior, as this depends largely on the specific use case being addressed.
This remains an open research question. The aim of this thesis is to explore
the importance of representation spaces from the perspective of machine
learning models applied to protein modelling. Specifically, the thesis focuses
on algorithm design from two angles: the generalisation and inference of
sequence alignments as a basis for representing molecules through deep gen-
erative models, and the induction of embedding-based representations for
thermostability prediction. The purpose of this introduction is to provide
the reader with the context as well as basic concepts necessary to under-
stand the main contributions of this thesis, which are presented in chapters
3 and 4.
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1.1 Representations through
Multiple Sequence Alignment

Multiple sequence alignment (MSA) has long been a fundamental tool in
computational biology, used to identify patterns of similarity between homol-
ogous biological sequences. Through the analysis of variation at the residue
level, MSA has helped reveal evolutionary couplings between these residues,
providing crucial insights into the underlying structure of proteins [6]. MSA
has received considerable attention for their integration with deep learning
models. This has led to advances in a wide range of biological tasks. In this
section, I will give an overview of why MSA remains relevant today and how
it has benefited from deep learning in several biological applications, and I
will also discuss some introductory concepts in order to provide context to
one of the contributions that led to this thesis, which will be explained in
detail in Chapter 3.

1.1.1 Importance of Multiple Sequence Alignment

Many biological challenges and applications, such as the design of protein
variants for industrial and pharmaceutical purposes, the development of vac-
cines and the prediction of protein folding, shares a common requirement:
to understand biological sequences and their relationship between structure
and function from an evolutionary perspective [7], [6]. A key motivation for
using MSA is to allow the study of biological sequences by aligning them
to identify similar patterns in homologous proteins or families [5], [6], [7].
This approach captures co-evolutionary signals between residues, leading to
the identification of conserved regions that provide insights from three main
perspectives:

Co-evolution

When we talk about co-evolution in proteins, we refers to the preservation
of certain regions that remain relatively unchanged over time, maintaining
essential functional interactions [6]. It specifically involves identifying corre-
lated changes between pairs of residues within a sequence alignment. These
correlations suggest that residues are structurally or functionally related, of-
ten through direct contact sites, and often provide important information
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about activities such as protein stability, function, or even structural in-
sights [11], [12], [13], [6]. The rationale behind co-evolution is that regions
that have been preserved over time often correspond to structurally critical
areas within proteins, so evolutionary pressures tend to preserve these re-
gions because changes could affect protein function. As a result, conserved
residues often indicate essential roles in maintaining structural integrity and
facilitating functional activity [14], [15], [6]. co-evolution detected by MSA
in pairs of residues without observable changes may suggest a functional re-
lationship, which may aid in the identification of protein-protein interactions
or binding sites [16].

Function Prediction

Another application of MSA is that by characterizing the conserved regions
between sequences belonging to the same protein family, it is possible to
predict the type of function that certain proteins have. If a reference protein
has a known function, then compared to another protein that has the same
conserved region but whose function is unknown, there is a high chance
that this protein has a function very similar to that of the reference [17],
[18]. At the functional level, MSA highlights conserved regions, known as
motifs, which are often associated with key structural or functional roles
in proteins. These regions frequently correspond to active sites, binding
domains, or interactions with other peptides and protein domains, among
other important functions [18], [6].

Structural Knowledge

MSA enables the inference of structural features in biological sequences, such
as proteins and nucleic acids (DNA/RNA), by leveraging co-evolutionary in-
formation between aligned sequences. This method allows the identification
of conserved residues and correlations between mutations, which can be used
to generate contact maps essential for accurate prediction of protein struc-
ture [6]. Specifically, it has been shown that extracting information about
variants found between aligned sequences provides enough information to de-
termine proximity between residues to infer three-dimensional spacing and
determine/predict how proteins fold [6],[5], [19], [20], [21], [22], [23], [24],
25], [26], [27]. There are well-established precedents that highlight the im-
portance of using MSA information for protein structure inference. Before
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AlphaFold2 became the state-of-the-art (SOTA), which also uses evolution-
ary data from MSA to infer protein structures (see Section 1.1.2), other tech-
niques based on Direct Coupling Analysis (DCA) [19], such as EVFold (now
integrated into EVcoupling) [6], [28], make use of the contact maps derived
from protein families captured by DCA to predict protein structures [19], [6].
The general scheme of EVFold is presented in Figure 1.1, as illustrated below.
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Figure 1.1: General workflow of EVfold: The figure, taken directly from [6],
illustrates the process by which evolutionary information is used to derive contact
maps, which are then used to predict the 3D structure of a protein sequence.
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1.1.2 From Markov Models to Deep Learning:
Transitioning strategies to MSA

In conventional biological sequence alignment algorithms, the theoretical ba-
sis typically follows the Markov assumption [29], [7] , a key concept in prob-
abilistic modeling, which states that the probability of an event or state is
determined only by its previous state, i.e:

P(xn | x1,29,...,0p-1) = P (xn | Tn—1)

With this in mind, MSA uses this principle to identify conserved regions
and similarities between sequences, providing valuable information on the
relationships between them and their biological function [30], [31], [7]. His-
torically, multiple sequence alignment strategies have relied on probabilistic
methods such as Hidden Markov Models (HMMs). These models evaluate the
likelihood of each state, whether it is an insertion, match, or gap, given the
symbols constituting their corresponding alphabet. This comprises amino
acid residues for proteins, nucleotides for RNA and DNA, along with tokens
representing gaps. To optimize these methods, it is usually necessary to use
dynamic programming to tune the parameters[7], [30].

Now, in the current deep learning era, neural network-based approaches have
shown extensive capabilities to derive meaningful representations for use in
downstream tasks, as well as in many other applications related to protein
engineering, among which protein sequence models have achieved outstand-
ing results. In the latter (protein sequence models), deep learning has made
it possible to capture with high expressiveness the evolutionary information
encapsulated in the conserved regions of the MSA [32]. One of the most pop-
ular methods, DeepSequence, involves the use of deep latent variable models,
specifically Variational Autoencoders (VAE), trained on MSA of protein fam-
ilies, using these alignments as pre-processed data for model induction. In
contrast to the traditional Potts model, this approach captures more com-
plex residue interactions indirectly and learns a more flexible representation
of the sequence space, allowing the generative model to predict mutation
effects and generate novel sequences [32].

Given the central role of MSA in protein sequence models, recent advances
have introduced alternative sequence alignment approaches that leverage



Chapter 1 | Introduction

deep learning to generate more informative representations, thereby improv-
ing the quality of alignments for use in downstream applications. For in-
stance, [33] proposes the use of differentiable dynamic programming to adapt
the Smith-Waterman algorithm into a differentiable framework for end-to-
end learning of MSA using Random Markov fields for unsupervised contact
prediction applications. However, several drawbacks appear in this regard:
One of the disadvantages of this type of model, which is an end-to-end so-
lution, is that the alignment process is already completely decoupled from
the model, losing the ability to measure uncertainties in the alignments. In
addition, as shown in [34], although MSA is a tool that can be easily inte-
grated into generative models, its use as a preprocessing step can introduce
statistical pathologies into such models. Likewise, as an end-to-end solution,
it loses the ability to generate or sample biological sequences, which is highly
desirable in fields such as protein engineering.

Other recent approaches include the use of attention mechanisms and trans-
formers to learn MSA across protein families (MSAtransformers) [35], tech-
niques that have gained prominence in recent years due to their influence
on the development of protein structure prediction algorithms such as Al-
phaFold2 [1]. However, one of the main challenges of these methods is their
high computational cost, and although they achieve high prediction accuracy,
studies such as [36] have shown that small perturbations in input sequences
can cause drastic changes in downstream tasks such as protein structure
prediction. This phenomenon has been reported for both protein language
models and MSAtransformers [36]. Approaches based on latent variable mod-
els have also emerged, such as the one proposed in [34], which uses latent
alignment through a Hidden Markov Model (HMM). This model assumes
block-structured emission and transition matrices that allow the alignment
of sequences in latent space. Unlike conventional HMMs, this model is es-
timated by stochastic variational inference, estimating the ELBO gradients
by automatic differentiation [34].

1.1.2.1 MSA as Spatial Transformation Problem

Building on the approaches discussed in the introductory section 1.1.2 regard-
ing MSA and its significance in protein science, we formulated the following
research questions:
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o If it is possible to infer the MSA using generative models, what type
of transformation would be appropriate to define such an alignment?

o Is it possible to generalize the alignment inferred by the generative
model to new sequences not included in the density estimation?

« (Can we reuse existing sequence alignments as a prior distribution to
guide and generalize to new sequences, using this prior as a reference?

In this thesis, we aim to demonstrate, as a proof of concept, that the sequence
alignment problem can be approached as a spatial transformation task, where
the optimal alignment corresponds to the most suitable spatial transforma-
tion based on a defined set of parameters. To enhance the interpretability of
this transformation from a probabilistic point of view, specifically, inferring
the optimal transformation using probabilistic graphical models (PGM), it is
ideal for the transformation to be diffeomorphic, i.e., to ensure the existence
of a differentiable inverse transformation that approximates the original input
space. This property is particularly important when employing probabilistic
modeling through variational inference, the approach chosen for this frame-
work. The core idea is illustrated in Figure 1.2. As this proof-of-concept
treats MSA as a spatial transformation problem, it is essential to first in-
troduce the notion of spatial transformation. The contribution of this thesis
related to the MSA approach as a spatial transformation is explained in detail
in Chapter 3, including its mathematical derivation via variational inference.
However, the remaining sub-components related to Section 1.1 will intro-
duce the necessary concepts to provide the reader with a basic knowledge to
understand the work presented in Chapter 3.

Spatial Transformations for Modeling

Spatial transformation techniques have been essential in image processing
and computer vision, enabling modifications such as rotation, scaling, and
translation in the input space. These transformations aim to ensure invari-
ance in the representation space, while maintaining such a representation
stable despite changes in the input. This in turn improves both robustness
and generalization, critical factors for real-world applications [37], [38].

Some approaches like Spatial Transformer Networks (STN) [38], apply direct
transformations to data by parameterizing a neural network as localisation

8



Chapter 1 | Introduction

I I I I Affine Grid

Representation

Sequence 2 AL??

ol i i
A) Sequences N

Sequence 1 ADLA :

ADLA ﬁ ADLA

. . . . P R R
a1 Ipr 1 lpn a1 pr U lma

=ttt i — =]

B) iz Iy ip i

AL?2? » A2L7?

a2 U205 i

Figure 1.2: Proof of concept for sequence alignment through spatial transforma-
tions. In side A, each sequence is represented as an affine grid system, where
residues are indexed accordingly. In Side B, a transformation scheme is intro-
duced, applying a deformation to the affine grid space (indicated by blue small
arrows) based on the transformation parameter 7. < enables the shifting of in-
dices required for alignment. The big red and blue arrows highlighted in purple
illustrate the capability of performing both forward and inverse transformations
on the input data, providing benefits for probabilistic modeling.

network. The localization network processes the raw input to extract feature
maps, which serve as transformation parameters. These parameters are then
fed into a grid generator which applies an affine transformation to warp a
regular uniform grid based on the estimates provided by the localization net-
work. The output from the grid generator, along with the original input, is
used by a sampler to perform interpolation to produce the final transformed
output. The attractiveness of STN lies in their ability to apply flexible, non-
rigid deformations to signals, thereby enabling the extraction of invariant
features for representation. This makes them useful in tasks such as image
registration, among other applications [38], [39]. Although STN are very
expressive, since one of the scientific questions is to obtain a transformation
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that has the property of being invertible, smooth and differentiable in both
directions without losing information, i.e. diffeomorphic, STNs do not inher-
ently possess this property [40].

This work adopts an alternative spatial transformation method called Con-
tinuous Piecewise-Affine Based Transformations (CPAB) [39]. CPAB is a
transformation that allows the parameterisation of non-rigid, smooth and
differentiable deformations in the input space, while retaining the property
of being fully diffeomorphic. The attractiveness of CPAB lies in its ability to
provide highly expressive transformations at low computational cost, mak-
ing it well suited to probabilistic modelling techniques such as variational
inference, Markov Chain Monte Carlo, among others [39],[41]. CPAB has
also been successfully incorporated as a structural element to enhance the
expressiveness of existing STNs. For instance, Diffeomorphic Transformer
Networks [40] replace traditional affine transformations with CPAB, improv-
ing expressiveness and performance in classification and regression tasks and
the Probabilistic Spatial Transformer Networks [42] which provide a stochas-
tic extension of conventional STNs.

Despite choosing CPAB as the base transformation for inferring alignments,
two challenges need to be addressed. The first is how to infer such a trans-
formation probabilistically, i.e. determining an optimal distribution of trans-
formation parameters to statistically infer these transformations. This issue
is introduced in Section 1.1.3 and is methodologically detailed in Chapter 3.
The second challenge we face is that although CPAB is specifically designed
for applications involving continuous signals, such as imaging and physio-
logical data, it has limitations when applied to the estimation of discrete
states, such as the alphabets in biological sequences (e.g. amino acids in
proteins or nucleotides in DNA), precisely because of the way the transfor-
mation is mapped to the output space (linear interpolation). Yet, the CPAB
transformation has very attractive properties that make it worth adapting
for use in the discrete domain. The adaptation of this transformer, which
constitutes part of the contributions, is described in detail in Chapter 3. In
this approach, we treat the discrete spaces we want to model, i.e. protein
sequences, as categorical distributions.

10
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1.1.3 Generative Modelling through Deep Latent Vari-
able Models

To address the primary problem of inferring transformation parameters for
optimal alignment, we need A) a model capable of abstracting the distribu-
tion of the initial sequence set to infer these parameters, and B) a model that
can scale and generalize the learned distribution across alignments to new
sequences within the same family. This requires a flexible and interpretable
inference model. Variational inference (VI) provides an efficient solution by
treating the transformation parameters as latent variables that can be esti-
mated by approximation. This method allows us to effectively model complex
data in a probabilistic framework.

To provide some context for VI, it is a widely used technique in probabilistic
machine learning that attempts to approximate complex probability densities
through optimization. The approach involves assuming a family of densities
to model the target distribution by estimating its reconstruction subject to
regularization measures via Kullback-Leibler divergences to prevent the vari-
ance from being too small [43].

There are two conditions must be satisfied to perform VI: First, the fam-
ily of approximate densities must be defined. In this project, we adopt the
mean-field approximation, a commonly used approach in which the joint dis-
tribution is factorized into individual marginal distributions for each latent
variable. Second, an appropriate prior distribution must be specified to im-
pose structure on the latent variables. For this work, we assume that the
latent variables follow normal distributions. Likewise, as an additional cri-
terion, we must determine how we want to parameterize the distributions
associated with each latent variable in the density. For this work, we chose
Variational Autoencoders (VAE) precisely because, in addition to using VI
for their construction, they offer versatility in modeling complex densities.
Each VAE can be connected in a Direct Acyclic Graph (DAG) to create our
final density for the task at hand. More details are provided in subsections
1.1.3.1, 1.1.3.2 and a more deep explanation for constructing the graphical
model in Chapter 3.

11
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1.1.3.1 Variational Autoencoder Framework

A common approach to parameterizing complex distributions involves the use
of deep latent variable models, of which the variational autoencoder (VAE)
is a well-known example. VAEs build on traditional Autoencoders (AE)
that use deterministic mappings defined by neural networks to derive com-
pact data representations [44]. Unlike standard autoencoders, VAEs learn
probabilistic representations that capture the underlying structure of the
data. They achieve this by mapping the input data to a distribution over
latent variables, rather than compressing it to a single point. This prob-
abilistic framework facilitates the generation of new data by sampling the
latent space, thus increasing the flexibility of the model in handling complex
high-dimensional datasets [45], [46].

Alternatively, VAE can be viewed from a probabilistic perspective as a natu-
ral extension of probabilistic PCA (pPCA) [46]. Whereas pPCA assumes that
latent variables follow normal distributions linked by linear transformations,
VAESs incorporate nonlinear transformations, allowing for more sophisticated
modeling of complex data [45], [46]. Mathematically, the goal of a VAE is to
maximize the likelihood of the observed data x. The marginal likelihood of
an input x is given by:

o) = [ iz da = [ pix | 2p(a) da

Since this integral is intractable, a variational approximation is required by
introducing a latent variable, denoted as ¢(z | x). By incorporating this
approximation, the marginal likelihood can be reformulated as follows.

o2 () = 1o [ o) s = og. [ p(x | o) 5L

q(z | x)
~ log <Eq(z|x) [p(x | z) p(z) D

q(z | x)

Applying Jensen’s inequality, we get a lower bound on the log likelihood, also
known as the Evidence Lower Bound (ELBO):

12
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log p(X) > Eq(ap) {log (p(x ) g )}

Now, if we break the terms, we obtain:

log p(x) > Eq(zx) [log (p (x| Z)%)]

NV
KL divergence

Now, the corresponding approximation to p(x) is given by:

log p(x) = Ey(a log p(x | 2)] = Diw (¢(2 | x) || p(2))

vV TV
Reconstruction Loss KL regularization

Where the first component represents the reconstruction of the input data,
while the second term corresponds to the Kullback-Leibler divergence be-
tween the variational distribution ¢(z | x) used for the approximation and
the prior, represented by the latent variable z. The Evidence Lower Bound
(ELBO) can thus be expressed as:

ELBO = Eyx) [logp(x | z)] — Dk, (¢(z | x) || p(z))

Maximizing this ELBO is equivalent to maximizing a lower bound on the log-
likelihood log p(x). It is important to note that the Evidence Lower Bound
(ELBO) serves as the objective function for training the densities modeled
within this framework.

From an implementation perspective, Variational Autoencoders (VAEs) can
be conceptualized as a mapping function composed of two network systems.
The first network acts as the encoder, which encodes the input space into
a latent space, where the representation is mapped to a probability distri-
bution. The second network, the decoder, takes this latent representation
and maps it back to the output space, effectively reconstructing the original
input space [45]. Since VAEs are probabilistic and inherently stochastic, to

13



Chapter 1 | Introduction

facilitate sampling from the distribution and allow for gradient propagation,
a technique known as the reparameterization trick is employed. This trick
introduces a stochastic transformation that enables sampling while preserv-
ing the differentiability of the model, thus allowing gradient flow during the
learning phase [45].

1.1.3.2 Composing Graphical Models via VAE framework

Once the construction of VAEs and their ability to represent and param-
eterize distributions is well understood, a crucial question arises: can this
framework be extended to model more complex densities?, in particular, can
we construct graphical models with multiple latent variables using VAEs as
the probabilistic basis?. Several papers have addressed this question, one of
the most notable being presented in [47]. This approach uses ensembles of
VAEs to model complex relationships between latent variables. Each latent
variable is represented by a VAE, allowing the creation of more expressive
graphical models for structured representations in probability densities via
variational inference. For the purposes of this thesis, we propose using a
graphical model to infer the optimal parameters for our spatial transforma-
tion, treating these parameters as latent variables within a VAE framework.
A more detailed discussion of this approach will be provided in Chapter 3.

1.2 Embeddings as Protein Representation

In the last few years, a new way of modelling proteins has emerged as an
alternative to traditional MSAs: embedding-based representations. In con-
trast to traditional MSA, these directly capture the representation of the
protein sequence in a continuous vector space, while using the capabilities
of deep learning to obtain a meaningful representation [2]. The popularity
of this approach is due to the rise of disciplines such as NLP, which has led
to the introduction of language models for protein representation, known as
protein language models (pLM) [4], [3].

These models have gained considerable attention for their ability to capture
complex relationships within protein sequences using methods adapted from
NLP [2]. Building on the concept of embedding spaces as a form of protein
representation, other algorithms have been developed that apply this ap-
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proach through deep learning models to extract structural information from
proteins. A prominent example is inverse folding, which aims to predict pro-
tein sequences from the atomic information provided by protein structures,
which also use these embedding-based representations [9]. This method is
an example of how deep learning can be used to improve the modelling of
proteins by using embeddings to effectively infer structural properties [9].

In the following subsections, I will give an overview of how embedding spaces
can generate highly expressive representations, along with some of the algo-
rithms used to represent proteins. In addition, I will introduce contrastive
representation learning, which will be used in combination with embedding
spaces as an experimental framework to construct one of the contributions
of this thesis, which will be explained in detail in chapter 4. Finally, I will
present the motivation behind the problem at hand, which focuses on pre-
dicting thermostability - a task framed as a regression problem. I will also
discuss the challenges and complexities involved in developing models to ad-
dress this problem.

1.2.1 Representations Capacities of
Embedding Spaces in Proteins

The revolution and adaptation of embedding spaces as a robust representa-
tion framework in proteins came with the development of attention mecha-
nisms, leading to the Transformer architecture [48]. This architecture uses
self-attention maps to focus on different segments of text sequences and their
relevance, making it highly versatile and robust for dealing long-term depen-
dencies. By doing so, it has effectively replaced recurrent neural networks,
such as Long Short-Term Memory Networks (LSTM), which were once the
dominant architectures for sequence processing tasks in NLP [49], [50]. The
basic transformer algorithm is illustrated in Figure 1.3.

After the success of Transformers and its adoption in natural language pro-
cessing tasks, several architectures were inspired by this framework, among
them BERT (Bidirectional Encoder Representations from Transformers) [51].
Unlike conventional transformers, BERT captures the full context of words
and uses a technique 