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Abstract

Language models are playing an increasingly central role in communication,
information access, and decision-making worldwide. While their success indicates
the potential for immense positive impact, it also creates an urgent need to
ensure these systems are both inclusive—providing equitable access, treatment,
and performance across a diverse range of users and linguistic contexts—and
trustworthy, demonstrating consistent, fair, secure, and interpretable behavior in
both operation and impact. However, the prevailing NLP paradigm, centered
on text and heavily reliant on tokenization, often conflicts with these goals.
It tends to exclude or poorly represent the majority of the world’s linguistic
diversity, struggles with non-digitized inputs such as historical documents, and can
perpetuate bias or fail unpredictably, limiting equitable access and undermining
trust. This thesis aims to address such challenges by investigating two directions:
visual language representation learning, whereby models process language in
various forms directly as pixel data to bypass limitations of tokenization, and
multilingual language models, which aim to broaden coverage and performance
across languages. We first show that these visual language models overcome
tokenization bottlenecks when processing digital text, handling diverse scripts,
orthographic variation, and linguistic noise more effectively. This approach
also supports the direct analysis of non-digital texts, such as scanned historical
documents, without relying on fragile OCR pipelines. Additionally, it extends
naturally to under-served non-written forms of language: we present state-of-
the-art, privacy-aware methods for sign language translation, addressing critical
challenges of data scarcity and signer privacy. Complementary to this visual
paradigm that naturally lends itself to multilingualism, the thesis offers an analysis
of massively multilingual language models, highlighting trade-offs between core
trustworthiness goals such as privacy, fairness across languages, and the ability
to identify influential training data. Together, this thesis shows that visual and
multilingual language representations can help in building language processing
systems that are more inclusive and trustworthy, aligning with the broader goal
of serving a diverse global population more effectively.



Resumé

Sprogmodeller spiller en stadig mere central rolle i kommunikation, informations-
adgang og beslutningstagning pa verdensplan. Selvom deres succes indikerer
potentialet for enorm positiv indvirkning, skaber det ogsé et presserende be-
hov for at sikre, at disse systemer er bade inkluderende—hvilket sikrer lige
adgang, behandling og ydeevne pé tvers af en bred vifte af brugere og sproglige
kontekster—og palidelige, idet de udviser konsekvent, fair, sikker og transparent
adfeerd i bade drift og effekt. Imidlertid er det dominerende NLP-paradigme, som
er centreret omkring tekst og steerkt afheengigt af tokenisering, ofte i modstrid
med disse méal. Det har en tendens til at udelukke eller darligt repreesentere
storstedelen af verdens sproglige mangfoldighed, har svert ved at handtere
ikke-digitaliserede input sdsom historiske dokumenter, og kan viderefgre bias
eller fejle uforudsigeligt, hvilket begreenser lige adgang og underminerer tilliden.
Denne afhandling sigter mod at adressere sddanne udfordringer ved at undersgge
to retninger: visuel sprogrepresentationsleering, hvorved modeller behandler
sprog i forskellige former direkte som pixeldata for at omgé begransningerne ved
tokenisering, og flersprogede sprogmodeller, som sigter mod at udvide deekning
og ydeevne pé tvers af sprog. Vi viser, at disse visuelle sprogmodeller overvinder
barrierer ved tokenisering, nar de behandler digital tekst, og hndterer diverse
skriftsystemer, ortografisk variation og sproglig stgj mere effektivt. Denne til-
gang understotter ogsd direkte analyse af ikke-digitale tekster, sdsom scannede
historiske dokumenter, uden at vere afhengig af skrgbelige OCR-pipelines.
Derudover udvides den naturligt til underbetjente ikke-skriftlige sprogformer: vi
praesenterer state-of-the-art, privatlivsbevidste metoder til tegnsprogsoversettelse,
der adresserer kritiske udfordringer som dataknaphed og tegnsprogsbrugere
privatliv. Som et supplement til dette visuelle paradigme, der naturligt egner sig
til flersprogethed, tilbyder afhandlingen en analyse af massivt flersprogede sprog-
modeller, der fremhaver afvejninger mellem centrale mél for palidelighed sésom
privatliv, retfeerdighed pa tveers af sprog og evnen til at identificere indflydelsesrige
treeningsdata. Samlet set viser denne afhandling, at visuelle og flersprogede
sprogreprasentationer kan bidrage til at udvikle sprogbehandlingssystemer, der er
mere inkluderende og pélidelige, i trdd med det overordnede mél om at betjene
en mangfoldig global befolkning mere effektivt.
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Chapter 1

Introduction

Not long ago, artificial intelligence (AI) was still largely confined to science fiction
books and a small academic field. The term first originated in the 1950s, but
for most of its history, progress in Al and its subfield natural language processing
(NLP) was slow, and systems relied heavily on rules and handcrafted feature
vectors defined by human experts.

The landscape began to change with the introduction of hardware accelerators
for machine learning, as exemplified by Krizhevsky et al. (2012)’s AlexNet model
for image recognition. Combined with architectural advances and access to large
labeled datasets like ImageNet (Deng et al., 2009), training deeper and wider
neural networks suddenly became feasible. This kicked off a new wave of research
in deep learning, first in computer vision and soon after spilling into NLP.

In NLP, this shift enabled researchers to move away from designing feature
templates and linguistic pipelines. Instead, models began to learn representations—
vector-based encodings of words, sentences, or entire documents that capture
semantic and syntactic properties—directly from raw text. Early examples include
distributed word embeddings like Word2Vec (Mikolov et al., 2013a,b) and GloVe
(Pennington et al., 2014), which encoded words in a way that reflected their
usage in context. This was the beginning of a broader move toward representation
learning: the idea that instead of telling a model what to look for, we should
give it the tools to figure that out on its own, guided by data. Sequence models
like LSTMs and GRUs pushed this further (Hochreiter and Schmidhuber, 1997;
Sutskever et al., 2014; Cho et al., 2014), allowing models to process and generate
natural language in more coherent and context-sensitive ways.

This trend continued for a couple of years until, with the advent of transformer
models (Vaswani et al., 2017) and large-scale pretraining (Radford et al., 2018;
Devlin et al., 2019) around 2017/2018, the paradigm had entirely shifted from
crafting task-specific features by hand to relying on the magic of linear algebra
and calculus deployed at scale. Enabled by massive parallelization, models
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could now learn deeply contextualized representations from web-scale text data
through simple language modeling pretext tasks like cloze-style reconstruction
and next-token prediction. What once required a team of linguists and feature
engineers could now be done end-to-end with enough data and compute. This
transformation is also succinctly captured by Turing Award laureate Rich Sutton’s
essay The Bitter Lesson,' which argues that the most effective methods in Al have
consistently been those that leverage computation to learn general solutions,
rather than relying on human knowledge and intuition.

Fast forward to today, this scaling trend has not slowed down, and NLP
has entered an era of large language models (LLMs). Most notably, since the
late-2022 LLM release of ChatGPT (OpenAl, 2022), these technologies are no
longer confined to academic research laboratories; they are deployed across
an unprecedented range of societal domains. LLMs now actively shape human
interaction with technology (Phang et al., 2025), influence financial transactions
(Li et al., 2023e), assist in healthcare diagnostics and delivery (Meng et al., 2024),
automate decision-making in areas like loan approval and hiring (Fan, 2024),
and help protect critical infrastructure (Yigit et al., 2025). They mediate our
access to information, generate content, and facilitate communication for billions
of users (Bommasani et al., 2021). This proliferation brings great potential for
positive transformation, promising to, for instance, augment human capabilities
and creativity (De Silva and Halloluwa, 2025), drive economic progress (Agrawal
et al., 2019; Aghion et al., 2018), improve overall well-being (Stade et al., 2024),
and accelerate scientific discovery (Wang et al., 2023a).

However, as Uncle Ben wisely reminds us in Spider-Man, with great power
comes great responsibility. This sentiment is particularly relevant as we consider
the increasing capabilities of Al systems and the societal responsibilities they entail.
As these technologies are rolled out into the real world, we must continually ask
ourselves: Who is empowered by these systems—and who is excluded? What are
the risks for users and those whose data trained the models? Do we fundamentally
understand how these models work? Can we rely on them to be accurate, no
matter what inputs we feed them?

These questions, centered around the inclusivity and trustworthiness of lan-
guage models, are open research problems. This thesis makes contributions to
address some of the associated challenges, with a particular focus on studying
visual and multilingual language representations as facilitators.

1http://www.incompleteideas.net/IncIdeas/BitterLesson.html
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1.1. Structure of the Thesis

1.1 Structure of the Thesis

The thesis is organized as follows. In the remainder of this chapter, we first
provide relevant technical background on representation learning (§ 1.2.1), then
discuss current challenges related to inclusivity (§ 1.2.2) and trustworthiness
(8 1.2.3) in NLP and AI more broadly. We conclude the chapter by summarizing
our scientific contributions (§ 1.3).

The subsequent chapters present the individual publications:

* § 2 Language Modelling with Pixels (Rust et al., 2023)
* § 3 Text Rendering Strategies for Pixel Language Models (Lotz et al., 2023)

* § 4 Pixel-Based Language Modeling of Historical Documents (Borenstein
et al., 2023b)

* § 5 Differential Privacy, Linguistic Fairness, and Training Data Influence in
Multilingual Language Models (Rust and Sggaard, 2023)

* § 6 Towards Privacy-Aware Sign Language Translation at Scale (Rust et al.,
2024)

We conclude (in § 7) by discussing the thesis’ contributions and limitations in the
context of the current state of the field and highlighting avenues for future work.

1.2 Background and Challenges

This section provides relevant background to situate the work and contributions
presented in the subsequent chapters. It begins with a brief overview of represen-
tation learning, followed by a discussion of challenges related to inclusivity and
trustworthiness in NLP and AL

1.2.1 Representation Learning

As mentioned in the opening section, representation learning refers to the idea
that models can automatically extract useful features from raw data, rather
than relying on handcrafted features. Formally, it involves learning a functional
mapping f : X — Z from a data space X to an abstract representation space
Z (Torralba et al., 2024). Illustrated in Figure 1.1, this mapping is typically
implemented as a neural network referred to as an encoder.
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Data space Representatior} space

Encoder

Figure 1.1: Schematic overview of representation learning. Figure reproduced
from Torralba et al. (2024), licensed under CC-BY-NC-ND.

For example, suppose X is the set of all cat images. A sample x € X could
then be a high-dimensional vector containing the pixel values of a photograph of
a sleeping tabby. Its corresponding feature embedding z € Z would typically be a
lower-dimensional (i.e., compressed) vector representation that captures salient
aspects of the input, enabling downstream tasks such as predicting the cat breed
(image classification) or locating the cat within the image (object detection).

When this encoder is a deep neural network, the mapping f is realized through
a sequence of transformations, typically organized into layers

Z=fiofi_10...0fi(X),

where each consecutive layer f; maps its input representation to a more abstract
one. In our example, early layers may extract edges and textures, while deeper
layers form higher-level concepts such as animals or objects (Zeiler and Fergus,
2014; Zhou et al., 2015). These abstract features allow simple models, such as a
linear classifier h : Z — Y, to perform downstream tasks by operating directly
on the learned representations. In the image classification setup, the final output
y = h(f(x)) could predict the cat breed, perhaps leveraging the fact that certain
breeds are easily distinguished by features such as fur color, texture, or ear shape.

Self-supervised representation learning The representation learning process
can be guided in different ways. Traditional supervised approaches train the
encoder f and the downstream classifier h together using a labeled dataset where
each input x has a corresponding ground-truth label y (e.g., cat images labeled
with “tabby” or “siamese”). Though effective (Krizhevsky et al., 2012; He et al.,
2016; Dosovitskiy et al., 2021), this approach requires large amounts of often
expensive labeled data, which makes scaling difficult.

4



1.2. Background and Challenges

Data space Representation space Data space

,,,,, Reconstruction
error

Encoder Decoder

Figure 1.2: Schematic overview of an autoencoder. Figure reproduced from
Torralba et al. (2024), licensed under CC-BY-NC-ND.

Instead, most state-of-the-art methods nowadays leverage self-supervised learn-
ing (SSL), where the encoder is, at least initially,? trained without explicitly
human-provided labels. One classic SSL approach is the autoencoder (AE; Rumel-
hart et al., 1986; Ballard, 1987), illustrated in Figure 1.2. An autoencoder
combines the encoder f with a decoder g that aims to reconstruct the original
input x from the compressed representation z, i.e., X = g(f(x)) ~ X. The objective
is typically to minimize a reconstruction loss, e.g. the squared error ||X — X] |§.
For the purpose of downstream tasks such as classification, the decoder g can
be discarded after training, leaving the encoder f as the desired representation
learner.

A highly effective recent SSL method that combines the autoencoder framework
with the idea of an imputation pretext task—learning to predict missing data
with the aim of learning better representations as a by-product—is the masked
autoencoder (MAE) (Devlin et al., 2019; He et al., 2022; Feichtenhofer et al.,
2022). MAEs randomly mask a portion of the input (e.g., image patches, spatio-
temporal video patches, or text tokens) and train the encoder-decoder network
to reconstruct the original, unmasked input x. This forces the encoder f to learn
a rich semantic understanding of the visible parts to infer the missing content.
Another classic variant of AEs is the denoising autoencoder (DAE), which applies
corruptions rather than masks to its inputs (Vincent et al., 2008, 2010; Lewis
et al., 2020). Variants of DAEs are found in state-of-the-art generative modeling
approaches such as diffusion models (Ho et al., 2020), and are starting to make a
comeback in representation learning (Chen et al., 2025).

In addition to reconstruction-based methods, contrastive learning offers another
major SSL paradigm, learning representations that are invariant to certain data

2The encoder parameters are sometimes overwritten during a subsequent supervised finetuning
stage (transfer learning), as described in the following paragraphs.
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Data space Representation space

Pull together
<> Push apart

Encoder

Figure 1.3: Schematic overview of contrastive learning. Figure reproduced from
Torralba et al. (2024), licensed under CC-BY-NC-ND.

augmentations or transformations by pulling representations of related views
(positive pairs) together while pushing unrelated views (negative pairs) apart
(Hadsell et al., 2006; Chen et al., 2020; He et al., 2020). This idea is illustrated in
Figure 1.3. Although contrastive learning is often used in SSL, it is not limited to
this setting; state-of-the-art multimodal approaches such as CLIP (Radford et al.,
2021a), VideoCLIP (Xu et al., 2021), CoCa (Yu et al., 2022b), and SigLIP (Zhai
et al., 2023) leverage contrastive objectives with supervision from highly scalable,
weakly paired data, such as image-caption pairs commonly found on the web.

This thesis extensively features SSL techniques: we train image- and video-
based MAEs (§ 2, 3, 4, 6) and video—text contrastive learners (§ 6).

Transfer learning The pretrained representations resulting from SSL often
form the basis for transfer learning: the encoder f, hopefully having learned
generalizable features from a large (usually general-purpose) dataset, is reused
and adapted (finetuned) to solve new downstream tasks with significantly less
task-specific labeled data. This framework has largely been popularized in the
context of NLP (Peters et al., 2018; Radford et al., 2018; Devlin et al., 2019).

It may often be preferable (e.g., for efficiency or modularity reasons) not to
finetune the full encoder, as this entails computing gradients for, and overwriting,
all of its parameters (Pfeiffer et al., 2023). Popular alternatives in such cases are
parameter-efficient finetuning (PEFT) techniques such as low-rank adaptation
(LoRA; Hu et al., 2022), SSL approaches that are explicitly optimized not to
require further finetuning (frozen features) such as DINOv2 (Oquab et al., 2024),
and in-context learning (prompting) approaches for LLMs, as introduced with
GPT-3 (Brown et al., 2020).

We employ transfer learning throughout all chapters of this thesis, primarily
relying on full finetuning (§ 2, 3, 4, 5, 6) and frozen features (§ 6).

6
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A note on terminology

We briefly clarify some ambiguous terms before moving on:

* The process of representation vs. a vector representation: representa-
tion can refer to the overarching method or process for encoding
data into a numerical format suitable for neural networks (e.g.,
tokenization, rendering text as pixels); or it can refer to the ran-
domly initialized or learned vector representation(s) (also used
interchangeably with embedding and feature). The representation
learning process naturally subsumes these two terms.

* Text vs. language: text refers to written language; language is not
necessarily written (e.g., speech and sign language). Language
models often have text-based inputs/outputs, but learn to represent
language in the abstract sense.

* Visual vs. pixel-based: pixel-based denotes the specific input format
(images, video frames), while visual refers to the broader sensory
modality; as the visual methods discussed herein rely exclusively
on pixel data, we often use visual language representation(s) as the
main term and may use visual and pixel-based interchangeably in
this specific context.

Text representation Digital text, in its raw symbolic form, must first be con-
verted into numerical sequences suitable for neural network processing. The
conventional way to do this is through tokenization, which refers to the process of
segmenting a piece of text into a sequence of discrete vocabulary units, called
tokens. Each token in the vocabulary maps to a designated embedding vector in a
lookup table. Table 1.1 illustrates segmentations produced by different tokeniza-
tion strategies, which we discuss below. Taking the subword-level segmentation,
for example, would give an initial embedding sequence x € R'#*¢ where d is the
model’s embedding dimension (e.g., d = 768).

Early approaches typically used word-level tokenization, learning distinct
embeddings for each unique word in the vocabulary (Mikolov et al., 2013a,b;
Pennington et al., 2014). The first sequence-to-sequence models similarly relied
on word-level embeddings, often limited to the top-k most frequent words in
the corpus due to computational constraints (Sutskever et al., 2014; Cho et al.,

7



Chapter 1. Introduction

Unit Tokenized or rendered sentence Length

Words The café’s sleepy cat ignored the 5€ tip. 9

Characters The café’s sleepy cat ignored the 5€ tip. 41
54686520636166C3A9277320736C6565707920636174

Bytes (UTF-8 HeX) 5 6067 6E 6F 7265642074 686520356282AC207469702E

Subwords The café’s sleepy cat ignored the 5€ tip. 14

Pixels The café's sleepy cat ignored the 5%€ tip. 16*

Table 1.1: Example of segmentations from different tokenization strategies (top)
and image rendered using the visual text representation strategy from § 2 (Rust
et al., 2023). *: Number of square image patches from grid slicing.

2014). Generally, word-level tokenization has two primary limitations. First, the
vocabulary either becomes excessively large or lacks coverage. Large vocabu-
laries make the standard softmax computation over all possible output tokens
computationally intractable during prediction, which has led to approximations
like hierarchical softmax or negative sampling (Mikolov et al., 2013a). Second,
the Zipfian nature of word distributions in language (Zipf, 1935, 1949) leads
to data sparsity: most words are rare, making it difficult to learn meaningful
representations for them through limited exposure during training.

Other early language models operated at the character-level (Ling et al.,
2015b,a; Costa-jussa and Fonollosa, 2016), reducing vocabulary size and sparsity
while improving coverage, but with drawbacks such as long sequences (see
Table 1.1) and reduced performance. Similarly, mapping text directly to its under-
lying UTF-8 byte representation offers a method with a fixed, small vocabulary
(256 units). This inherently avoids out-of-vocabulary items (open vocabulary)
and mitigates sparsity. However, such byte-level representation also results in long
sequences (see Table 1.1), often requiring specialized architectural strategies
for length reduction (Yu et al., 2023; Pagnoni et al., 2024), and has tradition-
ally yielded lower performance than subword methods, which we discuss next,
although recent work shows competitive results (Pagnoni et al., 2024).

To mitigate the drawbacks of these rule-based approaches, data-driven subword
tokenization strategies were proposed. These algorithms learn to segment words
into parts (subwords)—in the extreme case, all the way back down to characters or
bytes—effectively balancing sparsity, coverage, sequence lengths, and vocabulary
size. In particular, byte-pair encoding (BPE; Sennrich et al., 2016; Kudo and
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Richardson, 2018), originally proposed in the context of data compression (Gage,
1994), has become the de facto standard tokenization algorithm. Virtually all
language models nowadays, from BERT (Devlin et al., 2019) over GPT variants
(Radford et al., 2019; Brown et al., 2020; OpenAl et al., 2024), to Llama models
(Touvron et al., 2023a,b; Grattafiori et al., 2024), and DeepSeek (DeepSeek-Al
et al., 2025) build on BPE or variants thereof. BPE builds a token vocabulary
through iterative merge operations. It starts from individual characters or bytes
and, at every step, combines the most frequent pair of units in the training corpus
into a new subword unit, effectively capturing common character sequences,
until a desired vocabulary size is reached. Common vocabulary sizes in models’
subword tokenizers range from around 30K in monolingual models (Devlin et al.,
2019) up to around 256K in multilingual models (Conneau et al., 2020a; Xue
et al., 2021; Gemma Team et al., 2025).

Once a tokenizer is trained, it enables the learning of contextualized text
representations through pretraining objectives. Common strategies include
masked language modeling (MLM) and next-token prediction, also referred to as
(causal) language modeling (LM). MLM was introduced with BERT, which can be
considered a variant of an MAE: the model learns to reconstruct randomly masked
tokens within a sequence. In fact, He et al. (2022)’s popular MAE approach
in computer vision was inspired by the success of MLM in BERT. Next-token
prediction was introduced by Bengio et al. (2003) and popularized for pretraining
with OpenATI’s GPT series. As the name suggests, the learning objective is to
causally predict the next token from the past, one token at a time.?

Despite the effectiveness of subword tokenization combined with these pre-
training methods, the token-based paradigm has crucial limitations (discussed
furtherin § 1.2.2; § 1.2.3; § 2; § 3; § 4). Issues related to vocabulary coverage for
morphologically rich or low-resource languages, handling of visual aspects like
layout or font, brittleness to noise, and the fundamental mismatch for non-written
language have motivated exploring alternative paradigms.

Visual language representation Addressing such limitations inherent in token-
based methods, this thesis explores visual language representation. The key idea
of this alternative paradigm is to rely on pixel-based views of language data,
which are then processed with image and video encoders.

3In transformers, this process is efficiently parallelized during training using a causal masking
strategy and teacher-forcing (Williams and Zipser, 1989).
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Cat intelligence refers to a cat's ability to solve

2 problems, adapt to its environment, learn ne
w behaviors, and communicate its needs. Stru
cturally, a cat's brain shares similarities with tt
1e human brain, containing around 250 millior
1 neurons in the cerebral cortex, which is respc
nsible for complex processing. Cats display ne
:uroplasticity allowing their brains to reorgani:
ze based on experiences. They have well-devel
oped memory retaining information for a dec:
ade or longer. These memories are often inter'
twined with emotions, allowing cats to recall b
oth positive and negative experiences associat
:ed with specific places. While they excel in obs
servational learning and problem-solving, stud
ies concludes that they struggle with understa
inding cause-and-effect relationships in the sa
me way that humans do. [li|

(a) Digital text (§ 2,3) 4

POUR NANTES.

Le joli Brick frangais L'EMI-
LIE, Capitaine Bignonneau,
partira pour le dit port dans le

courani de ce mois. Pour fret et passage
#'addresser au Capitaine i son bord au auz

Soussignis,
RIO & DEVILLE.
FOR BUSTON.
. The substantial fast sailing Brig
% SAINT TIIOJ{MS. Capt. 61
deon Lane, will sail ‘on the 20k

instant.  For freight or passage apply to
the Captain on board or to

CABOT, BAILEY & Co.
Feb. 6.

(b) Printed text (§ 4) °

BT
Frighlined tiak ske ran o

(¢) Handwritten text ©

(f) Braille °

(d) Sign language (§ 6) *7 (e) Spectrogram 8

Figure 1.4: Examples of language in the visual modality. *: video.

As shown in Figure 1.4, this approach naturally unifies the representation of
language across different visual forms: it subsumes pixel-based representations of
written language—digitally rendered as images (§ 2, 3) or scanned from physical
documents (§ 4)—and extends seamlessly to inherently visual languages such as
sign language, learned directly from video recordings (§ 6). By operating on raw
visual data (pixels), visual language representation bypasses many issues related
to tokenization granularity, vocabulary coverage, and the handling of multilingual
or visually complex scripts, offering a more universal approach to learning from
language data. Earlier approaches for visual text representation learning include
Broscheit (2018)’s and Salesky et al. (2021)’s works on machine translation. Con-
veniently, the computer vision and NLP communities are increasingly converging
on the same architectures and methods for representation learning. In particular,

4From Wikipedia, CC BY-SA 4.0, https://en.wikipedia.org/wiki/Cat, rendered as image (§ 2).

5From the “Caribbean Newspapers, 1718-1876” database (https://www.readex.com/products/
caribbean-newspapers-series-1-1718-1876-american-antiquarian-society) used in § 4.

6From Public Domain (Carroll, 1865b).

7From DailyMoth-70h, CC BY-NC 4.0 (§ 6; Rust et al., 2024).

8From Public Domain, https://en.m.wikipedia.org/wiki/File:Spectrogram-19thC.png.

9From Geogast, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=28931878.
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variants of the transformer architecture (Vaswani et al., 2017) and SSL methods
such as MAE and contrastive learning are widely used for both language and
image processing.'? Our proposed methods for visual language representation
learning build on these joint advances.

Summary Representation learning is a powerful tool at the core of many recent
breakthroughs in Al. SSL frameworks such as MAE, contrastive learning, and
next-token prediction are conceptually simple. Yet, when applied at massive scale
(e.g., state-of-the-art large language models consume over 10 trillion tokens),
they have paved the way for the immense success of today’s models.'!

Building on the concept of visual language representation introduced above,
central contributions of this thesis lie in applying this paradigm to address
challenges in inclusivity and trustworthiness within NLP and Al. We demonstrate
how processing language visually—via rendered images for digital text (§ 2, 3),
scans for non-digitized text (§ 4), and video for sign language (§ 6)—avoids many
limitations of traditional token-based methods. We now turn to our discussion of
such inclusivity and trustworthiness challenges.

1.2.2 Inclusivity Challenges in NLP

Cambridge dictionary defines inclusivity as “the fact of including all types of people,
things or ideas and treating them dll fairly and equally.”'? As discussed in the
opening statement, NLP technology’s influence on society has been growing
rapidly and will continue to shape our lives in the years to come. Ensuring they
serve everyone equitably, regardless of linguistic, cultural, or sociodemographic
background, therefore becomes an ethical and practical necessity. Failure to do so
risks perpetuating and even amplifying existing societal inequalities such as the
growing digital divide (Lythreatis et al., 2022).

Historically, NLP as a field has been heavily skewed towards English. Factors
contributing to this Anglocentrism include the early availability of large digital
English-language datasets (like the Penn Treebank (Marcus et al., 1993) or Brown
Corpus (Francis and Kucera, 1979)), the concentration of research funding and

1O0Notably, this convergence on the same tools has also facilitated multimodal (e.g., vision-and-
language) processing (Bordes et al., 2024).

11Beyond such self-supervised pretraining, current LLMs also employ post-training, including
strategies such as instruction finetuning (Wei et al., 2022) and reinforcement learning from human
feedback (RLHF; Ouyang et al., 2022). However, it is widely understood that a capable pretrained
base model is a prerequisite for these techniques to be effective (DeepSeek-Al et al., 2025).

12https://dictionary.cambridge.org/dictionary/english/inclusivity
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institutions in English-speaking regions, and the initial focus on computational
challenges solvable with existing English resources (Bender, 2011; Bird, 2020).

However, this focus on the English language has led to a significant disparity,
leaving the vast majority of the world’s 7000+ spoken languages under-served by
modern NLP technologies (Joshi et al., 2020b; Ritchie et al., 2024). Towards
closing this gap, there has been a collective push in recent years to include
languages beyond English (Ruder, 2020; Costa-jussa et al., 2022), even proposing
drastic measures such as to place a temporary ban on English NLP research
(Sggaard, 2022).

Akey ingredient in this effort to scale beyond English has been the development
of massively multilingual (large) language models (MLLMs), such as multilingual
BERT (mBERT; Devlin et al., 2019), XLM-R (Conneau et al., 2020a), mT5 (Xue
et al., 2021), and BLOOM (Scao et al., 2022), which are jointly trained on large
datasets comprising text in the order of 100 languages. By facilitating cross-lingual
transfer (Wu and Dredze, 2019; Pires et al., 2019), the ability to perform tasks in
one language (often a low-resource one) after being trained primarily on others
(often high-resource ones), these models have leapfrogged the state of the art for
non-English languages. Recent advances in this direction have largely been driven
by model and compute scaling and the introduction of larger, higher-quality
multilingual datasets. Examples include Aya (Singh et al., 2024; Ustiin et al.,
2024), which focuses on instruction tuning data, and Glot500 (Imani et al.,
2023), which targets 500 languages. Despite these advances, we are still far from
adequately covering 1000+ languages, and several crucial challenges persist.

Data scarcity Firstly, data scarcity remains the greatest barrier for the vast
majority of languages (the “long tail”) (Ritchie et al., 2024). These low-resource
languages are often limited by their small digital footprint and lack of stakeholders,
despite having (hundreds of) millions of users (Joshi et al., 2020b). This includes,
but is not limited to, many African (Nekoto et al., 2020; Adebara and Abdul-
Mageed, 2022), Southeast Asian (Aji et al., 2022, 2023), and Indian (Khanuja
et al., 2023) languages. In particular, training data in such languages lack not only
in volume, but also in quality (Kreutzer et al., 2022; Tatariya et al., 2024b), and
it is evident that relying on positive transfer within MLLMs to fill these data gaps
is not an adequate long-term strategy (Rajaee and Monz, 2024). As such, claims
of “training an MLLM for [X] languages” may also be misleading; in reality, these
[X] languages are not represented nearly equitably. Community and research
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initiatives such as Masakhane,'® IndoNLP,'# Al4Bharat, '°> and AmericasNLP
(Mager et al., 2024) are actively fighting this issue, but its scale is immense.
Joshi et al. (2020b) state that for especially low-resource languages “it will be a
monumentous, probably impossible effort to lift them up in the digital space.”

Data scarcity also affects the crucial model evaluation process. Standardized
benchmarks exist for far fewer languages than those included in MLLMs, resulting
in overconfident claims about language diversity (Ploeger et al., 2024), and often
forcing reliance on indirect evaluation through zero-shot cross-lingual transfer
from English or on machine translation-based metrics, which may not accurately
reflect real-world utility (Artetxe et al., 2020b; Choenni et al., 2024a).

We address data scarcity in sign language translation (§ 6) by designing
a visual language representation learning framework that enables training on
unannotated videos, rather than being limited to videos with paired translations,
and by releasing a new American Sign Language (ASL) benchmark dataset.

Representational bottlenecks A commonly known limitation of MLLMs is the
curse of multilinguality (Conneau et al., 2020a): as model capacity is shared
across an increasing number of languages, performance on individual languages,
especially low-resource ones, can degrade compared to bilingual or monolingual
models. While this phenomenon has been investigated (Rust et al., 2021; Chang
et al., 2024) and mitigated (Pfeiffer et al., 2020, 2022; Choenni et al., 2024b)
in recent MLLMs, it will likely continue to present a hurdle in scaling to 1000+
languages (presuming adequate data coverage).

Fundamental representational limitations of tokenization also pose a major
challenge for language inclusion. As explained in § 1.2.1, conventional (large) lan-
guage models represent text using a finite vocabulary of tokens, typically learned
through BPE (Sennrich et al., 2016; Kudo and Richardson, 2018). Although effec-
tive for handling unknown words, reducing sparsity, and controlling vocabulary
size (Sennrich et al., 2016; Huck et al., 2017; Kudo, 2018), these algorithms
become prohibitive when attempting to scale to thousands of languages. The core
issue is a trade-off we refer to as the vocabulary bottleneck (§ 2; Rust et al., 2023):
a fixed vocabulary forces languages to compete for limited space (akin to the curse
of multilinguality), while expanding the vocabulary to accommodate all languages
makes the softmax computation during prediction intractable. While alternatives

13https://www.masakhan(-:‘. io/
14https://indonlp.github.io/
15https://ai4bharat. iitm.ac.in/
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Chapter 1. Introduction

like byte-level (Xue et al., 2022) and certain character-level approaches (Clark
et al., 2022) address vocabulary explosion and sparsity, they significantly increase
sequence lengths, leading to scaling issues for training and inference. It is also
important to note that—precisely since these data-driven tokenizers are guided by
information-theoretic compression principles (Gage, 1994; Sennrich et al., 2016)
and are trained over imbalanced data—they learn to represent high-resource
languages far more efficiently than low-resource ones. This inherent bias further
disadvantages users of underrepresented languages, as exemplified by findings
for ChatGPT (Petrov et al., 2023): users in some languages encounter sequence
lengths over an order of magnitude longer, leading to more than double the
latency, over 2.5x the cost, and reduced service quality from hitting context limits.

We propose visual language representation methods (in § 2, 3) to overcome the
vocabulary bottleneck and facilitate more efficient and equitable representation
of many non-Latin writing systems.

Multimodality True inclusivity in NLP also requires embracing the multimodal
nature of human language. Current practice in NLP largely assumes that language
is primarily text-based and digitally available. However, out of the world’s 293
writing systems,'® only 168 are currently supported by Unicode and readily avail-
able for text-based processing;'” the remainder, many of which are living minority
scripts,'® are effectively invisible to tokenization-based models. Consequently,
speakers of these languages are excluded from the benefits of modern NLP.

Beyond unsupported writing systems, many languages and cultures experience
a broader digitization lag, where substantial portions of linguistic and cultural
knowledge exist primarily in non-digital formats, such as scanned manuscripts,
handwritten records, or printed documents (Mager et al., 2018; Ignat et al., 2022).
Making this information accessible requires robust optical character recognition
(OCR) systems capable of handling a wide variety of scripts, layouts, and degraded
image conditions (Agarwal and Anastasopoulos, 2024). Crucially, OCR must
be tightly integrated with NLP pipelines in order to not only extract but also
understand the recovered text—a problem this thesis tackles (§ 4).

Inclusivity also demands attention to languages that are predominantly spoken
rather than written. Many languages either lack an established orthography or
exhibit significant dialectal variation not captured by standardized text (Mager

16https://www.worldswritingsystems.org/
7https://www.unicode.org/versions/Unicode16.0.0/
18https://linguistics.berkeley.edu/sei/scripts—not—encoded.html
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et al., 2018; Aji et al., 2022). Developing NLP technologies for these languages
relies on automatic speech recognition (ASR) and text-to-speech (TTS) systems,
which in turn require large amounts of transcribed audio data and models robust
to acoustic variability (Seamless Communication et al., 2023). Yet, such resources
are often scarce, reinforcing the digital marginalization of these communities.

Another severely under-served modality is sign language. Over 300 distinct
sign languages are used by millions of people in d/Deaf communities worldwide.'?
Sign languages are visual-manual; meaning is conveyed via co-articulated features,
including hands (e.g., spatial orientation, position, shape, and movement), body
posture, gaze, mouth, and facial expressions (Stokoe, 1980). As such, fully
supporting them in NLP requires models capable of processing and generating
spatio-temporally structured visual information. On top of these modeling chal-
lenges, sign languages suffer from data scarcity, requiring further investment from
the research community to collect dataset resources for training, benchmarking,
and linguistic analysis (Yin et al., 2021).

It is worth mentioning that vector quantization techniques (van den Oord
et al., 2017; Yan et al., 2021) offer ways to discretize images, speech, and
videos into token representations, technically making these modalities compatible
with token-based language models. These approaches are successfully used
in early-fusion multimodal LLMs such as Gemini (Gemini Team et al., 2024)
or Chameleon (Chameleon Team, 2025). However, they are also lossy (and
linguistically uninformed) transformations that tend to degrade performance on
perception and understanding tasks, compared to learning from the raw signal
(Du et al., 2024; Qu et al., 2024). In sign language processing, many approaches
also rely on gloss annotations (Camgoz et al., 2018; Zhang et al., 2023), a form
of transliteration into written labels. However, glosses are incomplete, inaccurate,
and costly to annotate (Miiller et al., 2023b). Overall, today’s tokenization-based
language models, by their very design, struggle to adequately capture the full
multimodal nature of language.?°

We propose to unify language representation learning across modalities
through visual representation (illustrated previously in Figure 1.4), avoiding lossy
conversions into tokens while addressing representational bottlenecks. This thesis
covers methods for OCR-free processing of non-digital text (in § 4), showing
promise to also address the broader digitization lag in the future, and methods
for sign language processing (in § 6).

https://www.un.org/en/observances/sign-languages-day
20We briefly further discuss opportunities for multimodal LLMs in § 7.2.
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Culture and sociodemographics Lastly, inclusivity in NLP goes far beyond
language coverage and must take into account cultural and sociodemographic
dimensions. This includes, for example, teaching models to navigate diverse
cultural norms and communication styles (Hershcovich et al., 2022a), and identi-
fying and mitigating inequalities related to gender, race, ethnicity, religion, age,
disability, and socioeconomic status (Blodgett et al., 2020; Bender et al., 2021;
Karamolegkou et al., 2024; Kirk et al., 2024). While these topics are not the direct
focus of this thesis, they remain critical concerns in the broader development of
inclusive NLP technologies, and they have become highly active areas of research
in recent years (Dev et al., 2023; Soni et al., 2024; Falenska et al., 2024). These
concerns also closely relate to topics of bias and fairness in NLP, which we discuss
further in the next section.

Summary Although much progress has been made, achieving genuine inclusivity
in NLP will continue to require efforts across data curation, evaluation method-
ologies, model architecture, representation learning, multimodal integration, and
cultural and sociodemographic dimensions.

This thesis makes several contributions towards mitigating these challenges.
In § 2 and § 3, we develop methods for visual language representation learning
of digital text data to facilitate scaling across languages and writing systems
(model architecture, representation learning, multimodal integration). In § 4, we
extend this methodology to non-digitized historical text data, making progress
towards OCR-free historical document understanding and addressing the broader
digitization lag affecting many languages and populations. In § 5, we study
MLLMs with a focus on understanding potential synergies and tensions between
multilinguality (which directly affects inclusivity) and specific dimensions of
trustworthiness. In § 6, we learn visual language representations for American
Sign Language, overcoming data scarcity issues to achieve state-of-the-art sign
language translation performance. We also curate a new benchmark dataset for
sign language translation.

1.2.3 Trustworthiness Challenges in NLP

In recent years, regulatory bodies and organizations, including the EU Com-
mission, OECD, and NIST, have increasingly advocated for the development of
trustworthy Al. However, defining trustworthiness in the context of Al systems
remains challenging (Sggaard, 2025), with no clear consensus on its precise
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meaning or requirements. We focus on several key desiderata that consistently
appear across the various taxonomies proposed (Smuha, 2019; Brundage et al.,
2020; Li et al., 2023a; NIST, 2023; Newman, 2023; Makridis et al., 2024; OECD,
2024) and discuss challenges associated with each of them, particularly in the
context of NLP and representation learning.

Fairness Fairness demands that systems treat individuals and groups equitably,
avoiding the reinforcement or amplification of existing societal inequalities
(Mehrabi et al., 2021). This implies that NLP models should perform consistently
and provide similar quality of service across different socio-demographic groups
(e.g., defined by race, gender identity, age, disability, sexual orientation, religion,
nationality, socioeconomic status, or cultural identity) and, particularly relevant
in the context of this thesis, across different languages and dialects (Blodgett
et al., 2020).

Challenges in fairness largely stem from biases deeply embedded within the
data used for training and the design of the models themselves. Large-scale
datasets scraped from the web often reflect historical and societal biases, which
models readily learn and perpetuate (Bender et al., 2021). These biases manifest
in various ways, from stereotypical associations in word embeddings (Bolukbasi
et al., 2016) and language models (Nadeem et al., 2021) to disparate performance
in downstream applications like hate speech detection or machine translation,
where models may perform significantly worse for certain demographic groups or
language varieties (Sap et al., 2019). Furthermore, as discussed in § 1.2.2, even
fundamental components like tokenizers can introduce inequities, creating less
efficient representations for lower-resource languages and disadvantaging their
speakers (Petrov et al., 2023).

Researchers have explored various mitigation strategies, often categorized
by their intervention stage: pre-processing, in-training, intra-processing, or
post-processing (Gallegos et al., 2024). These include curating more balanced
datasets or augmenting data (e.g., via counterfactual examples), developing
debiasing algorithms that adjust representations or model outputs (e.g., via
projection methods, adversarial learning, or contrastive learning), modifying
training objectives or using reinforcement learning from human feedback (RLHF)
(Ouyang et al., 2022; Bai et al., 2022), applying parameter-efficient fine-tuning
or modular approaches like adapters (Fatemi et al., 2023; Kumar et al., 2023),
modifying decoding strategies (Chung et al., 2023; Kim et al., 2023), and post-hoc
rewriting (Dhingra et al., 2023).
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While these techniques show promise, they often involve trade-offs with model
accuracy or other desiderata (Gonen and Goldberg, 2019). Furthermore, defining
and measuring fairness is itself difficult, context-dependent, and subject to
ongoing debate, with no single universally applicable definition (Verma and Rubin,
2018). Fully understanding the sources and propagation of bias, especially within
LLMs, and developing effective, robust, and universally applicable mitigation
strategies that address fairness across diverse linguistic and cultural contexts
remain critical open challenges (Blodgett et al., 2020; Gallegos et al., 2024). We
focus our efforts related to fairness on performance disparities across languages
and writing systems (§ 2, 5).

Privacy Privacy requires the protection of sensitive information related to indi-
viduals whose data is used to train or interact with AI/NLP systems (Smuha, 2019).
This includes preventing unauthorized disclosure, inference, or re-identification
of personal data, aligning with regulatory frameworks like GDPR (European
Parliament and Council of the European Union, 2016).

The pretraining paradigm for language models has exacerbated privacy
challenges in NLP, as web-scale training data may inadvertently contain personally
identifiable information (PII) or other sensitive details (Barrett et al., 2023).
Furthermore, LLMs have been shown to memorize portions of their training
data, sometimes verbatim (Karamolegkou et al., 2023; Biderman et al., 2023).
These memorized data can be unintentionally leaked or deliberately extracted
through carefully crafted prompts, posing significant risks, especially when models
are finetuned on private or proprietary datasets (Carlini et al., 2021). Beyond
direct leakage, models are also vulnerable to various inference attacks, including
membership inference (determining if specific data was used in training) and
attribute inference (inferring sensitive user attributes) (Shokri et al., 2017; Yeom
et al., 2018; Mattern et al., 2023). These risks extend to multimodal settings, such
as processing sign language videos, which inherently contain sensitive biometric
information, as we explore in § 6.

To mitigate privacy risks, data minimization and anonymization techniques
aim to remove or obfuscate sensitive information before training (Senavirathne
and Torra, 2020; Lee et al., 2021; Yang et al., 2022c). Differential privacy (DP)
offers formal guarantees by adding calibrated noise during training or inference,
limiting what can be learned about any single data point (Dwork, 2006; Abadi
et al., 2016). Federated learning allows models to be trained collaboratively on
decentralized data without sharing raw user data (Kairouz et al., 2021; Fan et al.,
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2023). Other techniques include secure multi-party computation, homomorphic
encryption, and newer methods like machine unlearning to retroactively remove
data influence (Knott et al., 2021; Lee et al., 2022; Xu et al., 2023).

Despite these mitigations, significant challenges remain. A fundamental
trade-off often exists between the strength of privacy guarantees and model utility
(performance) (Li and Li, 2009), due to which privacy techniques are often still
avoided in practice. Moreover, robustly preventing all forms of memorization and
leakage in large models is an ongoing struggle (and may not be fully avoidable
(Brown et al., 2021)), and effectively auditing privacy remains difficult (Carlini
et al., 2021; Panda et al., 2025). Developing privacy-preserving techniques
that are scalable, maintain high utility, and address the nuances of language
data, therefore, continues to be an active area of research. We study these
challenges in the context of differentially-private multilingual text encoders (§ 5)
and privacy-aware sign language translation (§ 6).

Robustness and generalization Robustness and generalization require that
models maintain reliable and accurate performance even when faced with diverse,
unforeseen, or challenging conditions (Hendrycks et al., 2022). This includes
generalizing to data drawn from distributions different from the training data
(out-of-distribution, OOD generalization) (Yang et al., 2023), handling natural
variations and noise in inputs—such as the orthographic variation common in
real-world text or historical documents (Al Sharou et al., 2021)—and resisting
deliberate attempts to cause failure (adversarial robustness) (Carlini et al., 2019;
Goyal et al., 2023).

Models often struggle with OOD generalization (Yang et al., 2023); and
while large-scale pretraining of language models provides a foundation and has
shown to improve OOD robustness (Hendrycks et al., 2020; Tanzer et al., 2022),
generalization to truly novel distributions depends heavily on the breadth of
pretraining data and the effectiveness of RLHF post-training (Chu et al., 2025).
Models can also be brittle to natural noise and specific perturbations; for instance,
standard subword tokenization can make models vulnerable to orthographic noise
(Sun et al., 2020). Furthermore, models are susceptible to adversarial examples
(Goodfellow et al., 2015)—even subtle typos can degrade performance (Eger et al.,
2019; Gan et al., 2024)—and often rely on spurious correlations rather than robust
understanding (Geirhos et al., 2020). Robustness challenges are also amplified in
multimodal settings, for example, when processing scanned documents where
OCR errors can propagate and degrade downstream understanding, or when
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translating speech content transcribed through ASR (Zhao and Calapodescu,
2022). We tackle these robustness challenges related to OCR-induced noise in § 4.

Towards improving robustness, adversarial training (Madry et al., 2018; Morris
et al., 2020; Ziegler et al., 2022) and data augmentation (Rebuffi et al., 2021;
Wei and Zou, 2019) are commonly used. For LLMs, instruction finetuning and
RLHF have been critical for improving robustness against certain harmful or
adversarial inputs (Kumar et al., 2025), although models are still easily fooled
or jailbroken (Zou et al., 2023). Other techniques include robust optimization
(Sagawa et al., 2020; Foret et al., 2021) and methods that specifically target OOD
such as domain adaptation (Ramponi and Plank, 2020) or OOD detection (Liu
et al., 2024). The development of benchmarks to evaluate robustness (Eger and
Benz, 2020; Yuan et al., 2023; Calderon et al., 2024) and auditing through red
teaming efforts (Dinan et al., 2019; Perez et al., 2022; Ganguli et al., 2022) also
indirectly help build more robust models. Robustness to orthographic variation
and noise has also been shown to be better in character- or byte-level models
than in subword-based ones (Tay et al., 2021; Xue et al., 2022), albeit at the cost
of long sequences and degraded performance. We show (in § 2 and 4) that visual
language representations can be a compelling alternative to these methods, as first
suggested by Salesky et al. (2021). To improve robustness in multimodal systems,
recent work increasingly aims to replace cascaded systems (e.g., using OCR or
ASR as the first step) by end-to-end approaches (Kim et al., 2022; Seamless
Communication et al., 2023; Gemini Team et al., 2024). Our research on OCR-free
historical document processing via visual language representations (in § 4) also
fits in this line of work. Overall, it is evident that robustness is an active research
area with many open questions (Hendrycks et al., 2022).

Explainability and transparency Another crucial aspect of trustworthiness is
explainability (or interpretability) and transparency, which refers to the ability to
understand how and why an Al model arrives at its outputs (Danilevsky et al.,
2020; Sggaard, 2021; Zhao et al., 2024). This ability is vital for debugging,
identifying and mitigating biases, ensuring accountability in high-stakes decisions
(e.g., in healthcare or finance), building user trust, and gaining insights into the
model’s learned representations and potential failure modes.

However, due to their large number of parameters, neural networks (especially
LLMs) are effectively opaque “black boxes” (Vaassen, 2022; Goetze, 2022; Sggaard,
2023). As such, tracing their outputs, through many layers of computation, back
to specific inputs or internal states in a human-understandable way is highly
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challenging. In particular, there is often a tension between generating explanations
that are plausible (convincing to humans) and those that are faithful (accurately
reflecting the model’s actual reasoning); often, optimizing for plausibility can
mask the true, potentially flawed, reasoning (Lipton, 2018; Jacovi and Goldberg,
2020; Lyu et al., 2024). Evaluating the quality and faithfulness of explanations
itself remains an open problem.

Numerous techniques have been developed to help explain or interpret model
behavior. Post-hoc explanation methods analyze trained models. Common ap-
proaches include feature attribution, which assigns importance scores to input
features (e.g., words or tokens) using methods like LIME, SHAP, LRP, or gradient-
based techniques (Ribeiro et al., 2016; Lundberg and Lee, 2017; Bach et al.,
2015; Sundararajan et al., 2017), and visualization of internal states like atten-
tion maps in transformers (Vig, 2019), although the reliability of attention as
explanation is debated (Jain and Wallace, 2019; Wiegreffe and Pinter, 2019). As
we demonstrate in § 2, such feature attribution methods can offer insights even
for models operating on non-standard inputs like pixels (in the context of text
understanding). Another category of post-hoc methods focuses on instance-based
explanations, aiming to understand the impact of specific training data points
on model predictions or behavior. Techniques like influence functions (Koh and
Liang, 2017) estimate the effect of up- or down-weighting individual training
examples, helping to identify influential points, potentially problematic data, or
sources of specific predictions—an aspect we explore extensively in § 5 in the
context of instance-interpretability of multilingual LMs. Most recently, the field
of mechanistic interpretability seeks to reverse-engineer the specific algorithms
and circuits learned within models (Olah et al., 2020; Sharkey et al., 2025),
and disentangle concepts stored within the model using methods such as sparse
autoencoders (SAEs; Bricken et al., 2023; Huben et al., 2024). Other approaches
include building inherently interpretable models (often simpler, like linear models
or rule lists) or generating natural language explanations (Nori et al., 2019; Zhao
et al., 2024).

Overall, however, post-hoc methods can lack faithfulness or stability (Jacovi
and Goldberg, 2020), influence functions can be computationally expensive to
apply at scale (Grosse et al., 2023), and mechanistic interpretability is still nascent
and extremely challenging for LLMs (Sharkey et al., 2025). Bridging these gaps
and developing methods that produce scalable, faithful, and useful explanations
for the largest models remains an open problem.
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Accountability and auditability Accountability deals with mechanisms for
assigning responsibility for Al system outcomes and providing redress, while au-
ditability refers to the ability to examine system processes, data, and performance
against benchmarks or requirements (Novelli et al., 2024; Li and Goel, 2025).
The desideratum is to ensure that Al systems operate within defined ethical and
legal boundaries, and that responsibility can be traced when issues arise.

Key challenges include the lack of transparency in current models, as discussed
in the previous paragraph, which obscures the models’ decision-making pathways
(Li and Goel, 2025). The distributed nature of how Al is developed, deployed,
and used (via developers, data providers, deployers, users, etc.) can also diffuse
responsibility (Novelli et al., 2024). Furthermore, a lack of standardized auditing
procedures and documentation formats hinders consistent oversight (Ojewale
et al., 2025).

Mechanisms to improve accountability and auditability include rigorous
documentation practices like model cards (Mitchell et al., 2019) and datasheets
(Gebru et al., 2021), comprehensive logging of model predictions and data
provenance (Longpre et al., 2024), version control for models and datasets
(Mokander et al., 2024), and the establishment of clear internal governance
structures and external audit frameworks (Bommasani et al., 2024; Longpre et al.,
2025). While accountability and auditability are not among the dimensions we
study in this thesis, they do represent important dimensions of trustworthy Al,
and comprehensively addressing the highlighted challenges remains an ongoing
effort in the rapidly evolving landscape around language models.

Safety and security Model safety requires preventing unintended harm result-
ing from the model, and security aims to maintain integrity against deliberate
attacks (Hendrycks et al., 2022; Shah et al., 2025). Challenges with respect to
these criteria arise because models can, for example, make harmful mistakes
due to incomplete knowledge or flawed reasoning (hallucinations) (Huang et al.,
2025). They can also be deliberately instructed by users for misuse, including for
example generating disinformation and aiding cyberattacks (Pan et al., 2023).
Models might also become misaligned, pursuing goals contrary to developer
intent, potentially through deceptive behavior (Greenblatt et al., 2024). Security
vulnerabilities, such as insecure access controls or successful jailbreaking attempts,
can exacerbate misuse and misalignment risks (Zou et al., 2023). Mitigating
these diverse risks requires a layered defense strategy.

Techniques improving model robustness (discussed previously) contribute to
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security by hardening models against certain adversarial inputs (Ziegler et al.,
2022). This is something we demonstrate in the case of orthographic text attacks
(in § 2), where, as a consequence of improved robustness, the model may avoid
making harmful misclassifications. Alignment techniques, including safety-focused
training and RLHF, aim to prevent models from generating harmful content
and refuse unsafe requests (Ouyang et al., 2022; Bai et al., 2022). Proactive
identification of dangerous capabilities and testing via red teaming help uncover
vulnerabilities (Ganguli et al., 2022). System-level security measures like strict
access controls, monitoring for irregular behavior, and guardrails for input and
output filtering provide further layers of protection against both misuse and
potential harm from misaligned models (Inan et al., 2023; Rebedea et al., 2023).
Furthermore, (mechanistic) interpretability methods, as also discussed earlier,
can aid in understanding and potentially detecting unsafe or misaligned model
internals (Bereska and Gavves, 2024). Overall, as model capabilities continue to
rapidly advance, safety and security practice also needs to continue to improve
accordingly (Shah et al., 2025).

The space in between A major challenge beyond these individual criteria lies
in the inter-dependencies and trade-offs between them (Ovalle et al., 2024). In
particular, enhancing one dimension often negatively impacts another; however,
we need to uphold all of the above principles to achieve trustworthy Al. For
example, strong privacy guarantees or robustness tend to reduce model accuracy
(Li and Li, 2009; Raghunathan et al., 2020). And while security occasionally
benefits from robustness (not necessarily vice-versa) (Ziegler et al., 2022), privacy
and group fairness can in many cases be at odds (Cummings et al., 2019; Hansen
et al., 2024) (although there is also counter-evidence (Matzken et al., 2023;
de Oliveira et al., 2024)), and empirical fairness and explainability are orthogonal
in certain NLP tasks (Brandl et al., 2024). Likewise, maximizing fairness according
to one definition might conflict with another (Binns, 2020). These examples
of the not yet fully understood relationships between trustworthiness criteria
are pairwise interactions; further, Ruder et al. (2022); Cresswell (2025) find
that interactions between more than two dimensions are even less frequently
studied, leaving the joint space largely unexplored. Further understanding these
interactions, quantifying the trade-offs, and developing methods that co-optimize
multiple objectives is a critical but still nascent area of research, which we explore
in § 5 of this thesis in the context of multilingual (token-based) language models.
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Summary In sum, trustworthiness encompasses a wide spectrum of desiderata,
each presenting unique technical and ethical challenges. As highlighted in this
section, broad research efforts are underway to address these dimensions individu-
ally, and the (often conflicting) interactions between these goals are just beginning
to be explored more deeply. Bridging the gap between these high-level principles
and practical implementations remains an ongoing challenge. This thesis makes
contributions towards addressing specific facets of these challenges: exploring
alternative visual language representations to directly mitigate robustness is-
sues related to orthographic noise and linguistic variation (§ 2) and indirectly
improve robustness by avoiding OCR-induced noise in document processing
(8 4); investigating the interplay between instantiations of privacy, linguistic
fairness, transparency, and performance in multilingual language models (§ 5),
and developing a privacy-aware methodology sign language processing at scale
(8 6). While these represent targeted steps within a vast research area, they
contribute to the development of more trustworthy NLP technologies.

1.3 Scientific Contributions

The overarching scientific goal of this thesis is to advance the development of
more inclusive and trustworthy language processing systems. Our contributions
lie in addressing specific challenges towards this goal, many of which trace back to
limitations of how current NLP models represent text (§ 1.2.2; 1.2.3). We explore
visual language representations as an alternative to token-based representations,
aiming to overcome these limitations, and we also study the implications of visual
and multilingual language representations more broadly for Al trustworthiness
desiderata. We now detail the contributions of the individual publications included
in this thesis, first through the lens of inclusivity, and then through the lens of
trustworthiness.

1.3.1 Addressing Inclusivity Challenges Through Visual
Language Representations

* Chapter 2 (Rust et al., 2023) proposes and investigates the learning of
visual language representations for processing of written language in the
form of digital text. We introduce the pixel-based encoder of language
(p1xEL), a vision transformer (ViT; Dosovitskiy et al., 2021) operating
directly on images of text obtained through a controlled rendering process,
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and pretrain PI1XEL on the English Wikipedia and BookCorpus via masked
autoencoding (He et al., 2022). We then finetune and evaluate PIXEL on a
wide range of syntactic and semantic natural language processing tasks over
a typologically diverse set of languages and writing systems, demonstrating
how the visual representations learned by P1xEL can handle a wider range
of linguistic diversity, including previously unseen writing systems, low-
resource languages, and mixed-language text (code-switching), without
having to predefine a finite vocabulary of discrete input units (tokens)—
effectively overcoming the vocabulary bottleneck of token-based models.
More broadly, this paper lays the foundation for visual text processing as an
alternative paradigm to models relying on subword tokenization.

Chapter 3 (Lotz et al., 2023) further explores these visual text representa-
tions, comparing the continuous text rendering strategy from Rust et al.
(2023) with slightly less flexible but more structured rendering strategies.
We find that rendering text as bigrams, i.e. pairs of consecutive characters,
dramatically reduces the complexity of the model’s image patch space,
resulting in more efficient P1xEL models that consistently perform better
at sentence-level tasks, making them an even more viable alternative to
token-based encoders for both high- and low-resource languages. Struc-
tured rendering also enables scaling down the model from 86M to 22M
parameters (the latter can be pretrained with % the compute cost) without
losing performance over the original (continuous-rendering) p1xEL model
on benchmarks like GLUE (Wang et al., 2018) and Universal Dependencies
(Zeman et al., 2022; Nivre et al., 2020). These leaner models are much
more accessible to people with limited computational resources—another
crucial consideration for inclusivity (Khanuja et al., 2023).

Chapter 4 (Borenstein et al., 2023b) studies the effectiveness of visual
language representations for non-digitized text, in particular in the context
of historical documents. To this end, we pretrain a P1XEL model on scans
of real historical documents and synthetic scans where text is rendered as
images in a way that closely resembles the layout and style of historical
documents. Through finetuning and evaluation on natural language under-
standing and question answering tasks, we find that this fully pixel-based
approach is a viable alternative to cascaded approaches relying on optical
character recognition (OCR), followed by token-based text processing. Our
results show that visual language encoders can effectively deal with the
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high levels of noise typically present in historical documents, showing
promise for an OCR-free future in (historical) document processing. These
results are also encouraging beyond the domain of historical documents:
visual language representations could analogously enable processing for
those written languages that are not yet supported by Unicode or for which
digitization efforts are still lagging behind.

Chapter 6 (Rust et al., 2024) shows how visual language representations
naturally extend to sign languages, which are a natively visual form of
communication and historically under-served by the NLP community (Yin
et al., 2021). We propose a privacy-aware two-stage framework for sign
language translation at scale and develop a state-of-the-art method for
sign language translation from American Sign Language (ASL) to English,
outperforming the prior state-of-the-art by over 3 BLEU points (Papineni
et al., 2002) in the zero-shot and finetuned settings—while addressing
privacy risks. Our method, termed ssvPp-sLT, leverages self-supervised
pretraining on unannotated videos (i.e., learning of visual representations
of sign language) to overcome the critical scarcity of labeled sign language
data. We also ablate various components of our method, helping the
research community better understand how to effectively use self-supervised
pretraining for sign language video (given that our work is the first to
perform larger-scale pretraining in this domain). We also release a hand-
curated ASL benchmark dataset, Dailymoth-70h, comprising ~75 hours of
video with time-aligned English translations, to facilitate the controlled
evaluation of ASL models. Overall, this work presents a step towards closing
the large performance gap between neural machine translation (NMT)
systems for spoken and sign languages, contributing to more inclusive
multimodal NLP and translation technology.

1.3.2 Addressing Trustworthiness Challenges Through Visual
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and Multilingual Language Representations

¢ Chapter 2 (Rust et al., 2023) goes beyond standard downstream performance

when comparing visual and token-based text encoders, studying their
robustness to orthographic noise. We perform a series of adversarial attacks
in which texts are orthographically perturbed across different levels of
degradation during finetuning, finding that p1xEL models offer superior
robustness to these types of noise than their token-based counterparts. Given
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that orthographic noise can vary strongly across data domains, these results
yield insights into how reliable the tested models may be when deployed in
the real world. We also employ a feature attribution explainability method
(Chefer et al., 2021) to learn what parts of the image are relevant to PIXEL
when classifying samples, qualitatively confirming the plausability of the
model’s predictions, even in the presence of strong noise.

Chapter 4 (Borenstein et al., 2023b) investigates the feasibility of visual
language representations in eliminating OCR-induced noise as a way to
strengthen the robustness of historical document processing systems. To
this end, we introduce two visual versions of the popular GLUE benchmark
(Wang et al., 2018)—one rendered with random font augmentation and
degradations commonly found in historical documents and one without
such interventions—and compare our historical P1xEL model against
both OCR-free and OCR-based (cascaded) baselines on these datasets.
We find that, while the cascaded approaches are still preferable in terms
of overall performance, the OCR-free approaches, including our model,
are substantially more robust to the introduced noise and degradations,
supporting the idea that visual language representations can help build
more robust models that can be relied upon in real-world settings.

Chapter 5 (Rust and Sggaard, 2023) aims to address the research gap
resulting from the fact that most research in trustworthy NLP/AI focuses on
individual trustworthiness objectives in isolation, rather than considering
the inter-dependencies between them. We, therefore, directly study the
interactions between common instantiations of three trustworthiness criteria
(differential privacy, linguistic fairness, instance-interpretability) in the con-
text of multilingual language models. In particular, we aim to learn in which
ways multilinguality can facilitate or hinder trustworthiness along these
criteria. This question is complementary to our work on visual language
representations, which naturally lend themselves to multilingual settings by
overcoming the vocabulary bottleneck. We first show, theoretically, that
differential privacy and instance-interpretability (the ability to post-hoc
identify influential training examples) are fundamentally at odds, so we can
at best Pareto-optimize for them. We also show that multilinguality can help
jointly satisfy differential privacy and linguistic fairness, although difficult
to achieve in practice. We then extensively finetune, evaluate, and analyze
the representations of XLM-R (Conneau et al., 2020a) and mBERT (Devlin
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et al., 2019), two popular massively multilingual encoder LMs at the time,
across two common NLP tasks and a typologically diverse set of languages to
further explore these trade-offs empirically. We also introduce the influence
uniformity (InfU) measure, which quantifies instance-interpretability in
a multilingual setting. Our results elucidate the three-way and four-way
interactions between the different objectives, showing that we can optimize
for certain combinations of objectives but cannot simultaneously achieve
strong performance, privacy, multilinguality, and instance-interpretability.
Our improved understanding of these interactions can help inform the
development of alternative methods that achieve practical trade-offs and
push the Pareto frontier towards more overall trustworthy language models.

Chapter 6 (Rust et al., 2024) explores the privacy-utility trade-off in sign
language translation more practically. In particular, a central goal of this
work is to make sign language processing more scalable through self-
supervised video pretraining. However, we argue that increased scale also
bears privacy risks due to biometric information present in sign language
data, necessitating a framework that considers both scalability and privacy
preservation. Given the lack of advanced anonymization tools for sign
language data, we adopt facial blurring as a practical privacy-preserving
method, despite its known limitations in obfuscating linguistic cues conveyed
through facial expressions. To mitigate the resulting loss in utility, our
framework learns visual sign language representations from anonymized
videos during pretraining and allows for optional de-anonymization during
finetuning (with signer consent). We show that this approach achieves
state-of-the-art translation performance by a substantial margin, even
when anonymity is preserved throughout the large-scale pretraining phase.
Through careful ablation, we then isolate the effects of anonymization
and demonstrate that while best performance is achieved with full visual
access, the performance degradation due to anonymization can largely be
recovered during finetuning. To facilitate future research on privacy-aware
sign language processing, we also release two versions of our previously
mentioned DailyMoth-70h dataset—one with anonymized and one with
deanonymized videos—allowing for controlled comparisons. Overall, this
chapter contributes to the development of privacy-aware sign language
processing systems and demonstrates that it is possible to design systems
that are both high-performing and aligned with privacy considerations
around biometric data.



Chapter 2

Language Modelling with Pixels

The work presented in this chapter is based on a paper that has been published
as: Phillip Rust, Jonas F. Lotz, Emanuele Bugliarello, Elizabeth Salesky, Miryam
de Lhoneux, and Desmond Elliott. 2023. Language modelling with pixels. In The
Eleventh International Conference on Learning Representations, Kigali, Rwanda.

Abstract

Language models are defined over a finite set of inputs, which creates a vocabulary
bottleneck when we attempt to scale the number of supported languages. Tackling
this bottleneck results in a trade-off between what can be represented in the
embedding matrix and computational issues in the output layer. This paper
introduces P1XEL, the Pixel-based Encoder of Language, which suffers from
neither of these issues. PIXEL is a pretrained language model that renders text as
images, making it possible to transfer representations across languages based
on orthographic similarity or the co-activation of pixels. PIXEL is trained to
reconstruct the pixels of masked patches instead of predicting a distribution over
tokens. We pretrain the 86M parameter PI1xEL model on the same English data
as BERT and evaluate on syntactic and semantic tasks in typologically diverse
languages, including various non-Latin scripts. We find that P1XEL substantially
outperforms BERT on syntactic and semantic processing tasks on scripts that are
not found in the pretraining data, but pIxEL is slightly weaker than BERT when
working with Latin scripts. Furthermore, we find that P1XEL is more robust than
BERT to orthographic attacks and linguistic code-switching, further confirming
the benefits of modelling language with pixels.

O xplip/pixel (%) Team-PIXEL
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Chapter 2. Language Modelling with Pixels

2.1 Introduction

Natural language processing has rapidly progressed in recent years due to a
combination of self-supervised representation learning, i.e. pretrained language
models (PLMs) like BERT (Devlin et al., 2019), GPT-3 (Brown et al., 2020), and
XLM-R (Conneau et al., 2020a); large unlabelled datasets; such as C4 (Raffel et al.,
2020), The Pile (Gao et al., 2020); and large-scale computing power (Hirschberg
and Manning, 2015). Despite this progress, these models only cover a fraction
of the world’s languages, with large inequalities in performance (Pires et al.,
2019; Lauscher et al., 2020), and the majority of languages are falling behind
English (Joshi et al., 2020b; Bugliarello et al., 2022). Even within English, these
models struggle when tasked with processing noisy inputs (Sun et al., 2020; Eger
and Bengz, 2020). In this paper, we show how to effectively support thousands of
written languages in a single model while being robust to variations caused by
character-level noise.

Language models typically support a finite vocabulary of categorical inputs,
e.g. characters, subwords or even words, and much effort has been devoted to
vocabulary construction (Wan, 2022). On one end of the spectrum, a vocabulary
over words has three problems: (i) it is not possible to encode out-of-vocabulary
words because they lack an entry in a closed vocabulary, e.g. “doxing”, (ii)
there are too many parameters in the word embedding layer, and relatedly, (iii)
the normalising constant for the softmax activation in the output layer is too
expensive to compute. On the other end of the spectrum, vocabularies over bytes
or characters are much smaller, which leads to increased sequence lengths (Keren
et al., 2022). In practice, most current models operate over inputs smaller than
words but larger than characters: subword units (Sennrich et al., 2016; Kudo,
2018). Subwords prevent the problem of extremely large embedding and output
layers, and support open vocabulary processing. While this is a practical solution
in a monolingual context and for some languages like English, dealing with many
languages with a variety of scripts will either result in a very large vocabulary
or a trade-off over what is represented within a fixed number of subwords (see
§ 2.5). Taken together, given a language model with a finite vocabulary, there is
a bottleneck in two locations: at the level of the encoding of the inputs and at
the level of estimating the probability distribution over the vocabulary. We call
this the vocabulary bottleneck. A language model that can handle thousands of
languages needs to deal with this problem.

We propose to rethink language modelling as a visual recognition task, remov-
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ing the need for a finite vocabulary. Our proposal is inspired by Salesky et al.
(2021), who showed how to train a machine translation model with “visual text
representations” in the encoder instead of subwords. Our Pixel-based Encoder
of Language (pIxXEL) is built on the Masked Autoencoding Visual Transformer
(ViT-MAE; He et al., 2022). ViT-MAE is a Transformer-based encoder-decoder
trained to reconstruct the pixels in masked image patches. PIXEL does not
have a vocabulary embedding layer; instead, text is rendered as a sequence of
fixed-sized patches, which are processed using a Vision Transformer encoder
(Dosovitskiy et al., 2021). p1XEL also does not have an expensive output layer
when it reconstructs the pixels of the masked patches. In effect, PIXEL provides
a solution to the vocabulary bottleneck without needing the prohibitively long
sequences of character-based models.

PIXEL is pretrained on the same data as BERT, given our computational
resources. This means that it has encountered only ~0.05% non-English text
(Blevins and Zettlemoyer, 2022).! We evaluate PIXEL on a range of syntactic and
semantic tasks in 32 typologically diverse languages across 14 scripts, showing
that it can rapidly adapt to new languages and unseen scripts. PIXEL is also
evaluated on its ability to handle noisy text caused by orthographic attacks, where
pixel-based encoding is a clear improvement over subword-based vocabularies.
In lexical code-switching experiments, PIXEL performs on-par with BERT and
sometimes outperforms the multilingually pretrained MBERT.

PIXEL is a new type of language model that can theoretically support any
language that can be typeset by a modern computer. We make the implementa-
tion, the pretrained model including intermediate training checkpoints, and the
finetuned models freely available for the community.

2.2 Approach

The Pixel-based Encoder of Language, PIXEL, consists of three major components:
a text renderer, which draws text as an image; an encoder, which encodes the
unmasked regions of the image; and a decoder, which reconstructs the masked
regions at the pixel level. Figure 2.1 provides an illustration.

IWe do not claim that a language model designed to support thousands of languages should be
pretrained only on English text. We expect that pretraining on an appropriate choice of another
language or multilingually may provide more remarkable results. PIXEL represents an initial effort at
smaller scale.
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Figure 2.1: Overview of PIXEL’s architecture. Following He et al. (2022), we
use a masked autoencoder with a ViT architecture and a lightweight decoder
for pretraining (left). At finetuning time (right), the decoder is replaced by a
task-specific classification head that sits on top of the encoder.

2.2.1 Text Renderer

The key component of PIXEL is a text renderer that takes one or more pieces of
text and renders them onto a blank RGB image x € RF*W*C_ We set height H = 16
and width W = 8464 and choose C = 3 RGB input channels, which is equivalent to
a square colour image with a 368 x 368 resolution and corresponds to a sequence
of 529 image patches of size 16 x 16 pixels.? Figure 2.2 shows examples of text
inputs rendered by the text renderer. The renderer supports (a) colour emoji
and hieroglyphs scripts, (b) left-to-right and right-to-left writing systems, and (c)
text that requires ligatures. Analogous to BERT, a sequence can either contain a
single paragraph of text or a text pair; we use black 16 x 16 patches to serve as
separators and end-of-sequence (EOS) markers. Blank (white) patches after the
end-of-sequence marker are treated as padding by P1xXEL, where no attention
scores or losses are computed. Sequences longer than the maximum length are
either truncated or split into multiple sequences. Further technical details about
the renderer are provided in Appendix 2.7.4.

2We chose a sequence length of 529 so that the memory requirements at maximum length are
approx. equal to those of BERT. Forward and backward passes of the transformer layers at equal
length are also equally fast.
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(a) Single sentence: My cat ¢/ loves pancakes (. and my duck & loves grapes . [}
(English with emoji)
(b) Sentence pair: WP IR R E S Dlaig M £35J1 8 aladll kndus
(Mandarin, Arabic) + .d‘ res = v .
(©) X‘:ﬁ:&‘gli 20y M B hUBAT NAA DAL Nt NIAAYEP AT A+ ¢ = i)}

Figure 2.2: Illustrative examples of our rendered text. PIXEL natively supports
most writing systems, colour emoji (a), and complex text layouts such as right-
to-left writing and ligatures (b). Black patches serve as separators and end-of-
sequence markers. Blank patches to the right of the end-of-sequence marker are
treated as sequence padding. For word-level tasks, horizontal spacing can be
added between words (c) so that every patch can be assigned to exactly one word
(dotted lines indicate patch boundaries for demonstration).

2.2.2 Architecture

PIXEL-base is a 112M parameter ViT-MAE architecture (He et al., 2022) with
a 12-layer ViT encoder (Dosovitskiy et al., 2021) and an 8-layer Transformer
decoder (Vaswani et al., 2017). The encoder has 86M parameters and the
decoder has 26M parameters, respectively. The 8-layer decoder is not used for
downstream tasks. We give an overview of the architecture below, with more
details in Appendix 2.7.5. We did not train larger P1XEL variants for lack of
computational resources.

Patch Embeddings The images produced by the text renderer (§ 2.2.1) are
patch-wise linearly projected to obtain a sequence of patch embeddings with a 16
x 16 pixel resolution, to which fixed sinusoidal position embeddings are added.’

Patch Span Masking Instead of the random masking procedure used in ViT-MAE
or block-wise masking in BEiT (Bao et al., 2022), PIXEL uses span masking with
a 25% masking ratio as outlined in Algorithm 1, which masks spans of up to
S = 6 consecutive image patches with a dynamic number of unmasked patches
left between them. The idea behind the span masking approach, inspired by
T5 (Raffel et al., 2020) and SpanBERT (Joshi et al., 2020a), is that it masks
more meaningful units of text (full words or phrases) than random masking
where the model more often has to fill in (parts of) individual characters, thereby

3This is a fast operation that does not require the large text embedding layer found in subword-
based models, saving parameters which could in theory be re-allocated to the self-attention stack.
We refer to Xue et al. (2022) for a discussion regarding benefits and drawbacks of re-allocation of
embedding layer weights.
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Algorithm 1 rIxEL Span Masking

1: Input: #Image patches N, masking ratio R, maximum masked span length S, span

length cumulative weights W = {wq, ..., ws}

2: Output: Masked patches M

3 M0

4: repeat

5: s « randchoice({1,...,S},W) >S=6,E(s)=3.1
6: [ « randint(0, max(0, N —s))

7: rel+s

8: fMn{l-s,...,1-1}=0and MnN{r+1,...,r+s} =0 then

9: Me—MuU{l,...,r}
10: end if
11: until /M| >R-N >R =0.25
12: return M

encouraging PIXEL to model a higher level of abstraction. In practice, span
masking was slightly more effective than random masking in early prototypes
of pixEL. This effect may be less noticeable at higher masking ratios (such
as the 75% used in VIT-MAE), when random masking would more often mask
consecutive patches. We found a 25% masking ratio to work well for P1xEL-base,
which is in line with recent findings for BERT-type models of similar size (Wettig
et al., 2023). We mask spans of s € {1, 2, 3,4} patches in length, each with
20% probability, and spans of s € {5, 6} patches with 10% probability each, so
E(s) = 3.1.

Encoder Following ViT-MAE (He et al., 2022), the P1XxEL encoder only processes
unmasked patches (i.e., ~ 396 “visible” patches at 25% masking) rather than on a
sequence including mask tokens, which not only reduces memory requirements
and increases training speed, but also has the advantage of not creating a mismatch
between pretraining and finetuning. This mismatch would occur when training
the encoder with inserted mask tokens because they are not inserted during
finetuning (He et al., 2022). We also prepend the special CLS embedding to the
unmasked patches.* The resulting CLS and unmasked patches are processed
by a 12-layer Transformer encoder to produce a sequence of encoder output
representations.

Decoder The pixEL decoder first projects the encoder outputs into the same
space as the decoder model’s hidden size. It then inserts learnable mask embed-

4In pretraining, no loss is computed for the CLS embedding, but it can be used for finetuning.
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dings at the masked positions; these are what PIXEL tries to reconstruct at the
pixel level. Fixed sinusoidal position embeddings (Vaswani et al., 2017) are added
to inject order information. After processing this sequence via 8 Transformer
layers, a linear projection yields patch logits. Note that the decoder does not have
to compute an expensive softmax over a subword vocabulary and circumvents the
question of whether to tie the subword embedding weights. PIXEL is trained
with a normalised mean squared error (MSE) pixel reconstruction loss, measuring
the discrepancy between normalised target image patches and reconstructed
patches. This loss is only computed for masked, non-blank (text) patches.

2.2.3 Pretraining

PIXEL-base is pretrained on a rendered version of the English Wikipedia and
the Bookcorpus (Zhu et al., 2015), which is roughly equivalent to the BERT
pretraining data.® For better compute efficiency, we concatenate paragraphs until
the maximum sequence length is reached, albeit not across document and book
boundaries. Wikipedia has 2B words rendered into 11.4M examples and the
Bookcorpus has 1.1B words rendered into 5.4M examples; in total ~3.1B words
(BERT used 3.3B) rendered into 16.8M examples.® PIXEL is pretrained for 1M
steps with batch size 256 (i.e. ~16 epochs) using the AdamW optimizer (Kingma
and Ba, 2015; Loshchilov and Hutter, 2019) with a linear warmup over the first
50k steps to a peak learning rate of 1.5e—4 and a cosine decay to a minimum
learning rate of le—5. Pretraining took 8 days on 8x40GB Nvidia A100 GPUs. We
show the loss curve and additional pretraining details in Appendix 2.7.5. We
stored P1xEL checkpoints every 10k steps and make them available alongside
the fully trained model on the HuggingFace Hub (Wolf et al., 2020), which we
hope will be useful to analyze training dynamics of PI1XxEL models (Sellam et al.,
2022). Figure 2.5 in Appendix 2.7.2 shows, for three unseen examples, how
PIXEL learns to model language over the course of pretraining.

2.2.4 Finetuning

PIXEL can be finetuned for downstream NLP tasks in a similar fashion to BERT-
like encoders by simply replacing the p1xEL decoder with a suitable classification
head. By truncating or interpolating the sinusoidal position embeddings, we can

5We use a similar Wikipedia dump Devlin et al. (2019) used for BERT (February 1, 2018) and a

slightly newer version of the Bookcorpus available at (! datasets/bookcorpusopen.
6This rendering is quite compact; see Appendix 2.7.4.
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finetune with sequences shorter or longer than 529 patches, respectively. The
latter, in particular, is common in computer vision applications to finetune on
higher resolution images (Touvron et al., 2019; Kolesnikov et al., 2020; Dosovitskiy
et al., 2021; He et al., 2022). For most common NLP tasks, we can typically
finetune with sequences shorter than 529 to accelerate training while retaining
performance. To demonstrate that PIXEL supports a variety of downstream tasks,
we conduct finetuning experiments in four settings as follows:

Word Classification For word-level tasks like part-of-speech (POS) tagging and
named entity recognition (NER), we render each word at the start of a new image
patch so that we can create a bijective mapping between words and patches
(see Figure 2.2 for an example).” To finetune PIXEL on these images, we add
a linear classifier with dropout. We assign the label of a word only to its first
corresponding image patch and compute a cross-entropy loss with softmax.

Dependency Parsing For dependency parsing, we render text as above but
obtain word-level representations by mean pooling over all corresponding image
patches of a word and employ a biaffine parsing head (Dozat and Manning, 2017),
following the implementation from Glavas and Vuli¢ (2021).

Sequence Classification For sequence-level tasks, e.g. in GLUE (Wang et al.,
2018), we render text as in pretraining. For sentence-pair tasks like natural
language inference (NLI) we separate the sentences with a black patch. We
finetune with different strategies, including training a classifier on top of (1)
the CLS embedding, (2) the mean-pooled or max-pooled representations of all
patches, (3) a multi-head attention block. Although we did not notice significant
performance differences between them in our experiments, we mainly used option
(1), which is exactly the same as in BERT, and (2), which has been shown to
work well for image classification (Liang et al., 2022).

Extractive Question Answering (QA) For extractive QA datasets like SQUAD
(Rajpurkar et al., 2016), we render the question and context like in sequence-pair
tasks above and, same as Devlin et al. (2019), use a sliding window approach to
extract answers for examples exceeding the maximum sequence length. We use a

7This particular formulation assumes that word boundaries are available. We note that subword-
based and character-based models also make this assumption. For further discussion on the implications,
see Appendix 2.7.6.
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linear classifier to predict the start and end patches of the span containing the
answer. Appendix 2.7.4 explains how we obtain the mapping between characters
and rendered text.

2.3 Experiments

We finetune pIxEL on common NLP tasks and evaluate its syntactic and semantic
processing capabilities in English, as well as its adaptability to unseen languages.
Table 2.8 (Appendix 2.7.6) describes the languages used in these experiments,
and our language and data selection is also motivated below.

2.3.1 Tasks and Languages

Syntactic Tasks We evaluate PIXEL on part-of-speech (POS) tagging and
dependency parsing using data from Universal Dependencies v2.10 treebanks
(Nivre et al., 2020; Zeman et al., 2022) for a set of typologically diverse languages
that captures a large variety of unseen scripts®: Arabic (ArRA), Coptic (coP),
English (ENG), Hindi (HIN), Japanese (JPN), Korean (koR), Tamil (TAM),
Vietnamese (VIE), Chinese (zH0).” We compare how well PIXEL transfers to
these languages compared to BERT. Note that BERT does not support all of
these writing systems. However, both models have been trained on the same data.
This comparison allows us to gauge the extent to which PIXEL can overcome the
script barrier and vocabulary bottleneck of subword-based models.

Semantic Tasks We evaluate both monolingual (ENG) and cross-lingual word-
level understanding on MasakhaNER (Adelani et al., 2021), a named entity
recognition (NER) benchmark for 10 African languages (AMH, HAU, IBO, KIN,
LUG, LUO, PCM, SWA, WOL, YOR), which also includes a copy of the ConLL-
2003 dataset (ENG; Tjong Kim Sang and De Meulder, 2003). For monolingual
ENG sentence-level understanding, we rely on GLUE (Wang et al., 2018) and
SQUuAD (Rajpurkar et al., 2016). Finally, we evaluate cross-lingual sentence-level
understanding on TyDiQA-GoldP (Clark et al., 2020) in the in-language multitask
setting where we train on the combined gold data in all 9 target languages (ARa,
BEN, ENG, FIN, IND, KOR, RUS, SWA, TEL) at once, and on two additional
larger monolingual extractive question answering (QA) corpora: KorQuAD 1.0

8By unseen, we mean not present in the pretraining data.
9Table 2.10 in Appendix 2.7.6 gives an overview of the treebanks we use.
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(kor; Lim et al., 2019) and JaQuAD (JpN; So et al., 2022).

2.3.2 Baselines and Finetuning protocols

We compare results to BERT-base, which is trained on the same data.'® We
do not compare to newer monolingual English models like RoBERTa (Liu et al.,
2019), T5 (Raffel et al., 2020), or DeBERTa (He et al., 2021b,a) because these
models have been pretrained longer on much larger corpora.'! Likewise, we do
not compare against models trained on massively multilingual corpora. However,
to contextualise the performance of PIXEL in cross-lingual settings, we report
results for MBERT and, if results are available, for cANINE (Clark et al., 2022).
For BERT, we use the standard finetuning protocols used by Devlin et al. (2019)
and the same biaffine classifier for parsing as for pixeL. We list finetuning details
for all tasks in Appendix 2.7.6.

2.3.3 Results

Syntactic Tasks We present results for POS tagging and dependency parsing in
Table 2.1. While BERT is slightly better than P1xEL in the monolingual setting
(ENG), PIXEL clearly outperforms BERT in the remaining languages. On the
lower end, the accuracy gap in favor of PIXEL in ARA and VIE, both languages
covered by BERT’s vocabulary, is relatively small (~1%). On the higher end, in
copr, where BERT has an out-of-vocabulary ([UNK]) token ratio of 93%, the gap
is ~70% for both tasks. There is a strong correlation'? between the proportion of
[UNK]s (shown in Table 2.1 on the right) and the performance gap, which shows
that PIXEL overcomes BERT’s vocabulary bottleneck. These results are further
analysed in Appendix 2.7.9.

Semantic Tasks We present results for NER in Table 2.2, for GLUE in Table 2.3,
for QA in Table 2.4. We also conduct experiments on XNLI in the translate-train-all
setting, which we present in Table 2.16 in Appendix 2.7.9, for brevity. We find that
BERT consistently achieves higher performance than PIXEL in its pretraining
language ENG. Likewise, it often outperforms on languages using the Latin

10We use BERT weights from (¥} bert-base-cased.

11e do not intend to claim state-of-the-art performance, but to demonstrate that PIXEL can
overcome the vocabulary bottleneck and to provide a starting point for further research on pixel-based
encoding of language.

2pearson correlation r = 0.9, p < 0.001 for POS tagging, r = 0.95, p < 0.0001 for dependency
parsing.
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[UNK]% Fertility

- ENG 0 1.2
POS Tagging (Accuracy) ARA 1.8 3.7
BERT 110M 97.2 954 26.5 86.4 87.9 60.0 454 845 586 cop 936 1.0

PIXEL 86M 96.7 95.7 96.0 96.3 97.2 94.2 81.0 857 92.8 HIN 326 27
- JPN 455 1.5
Dependency Parsing (LAS) KOrR 847 1.0

BERT 110M 90.6 77.7 13.0 75.9 73.8 30.2 15.2 49.4 288 Tam 823 1.3

PIXEL 86M 88.7 77.3 83.5 89.2 90.7 78.5 52.6 50.5 73.7 VIE 45 25
ZHO 73.2 1.5

|0] ENG ARA COP HIN JPN KOR TAM VIE ZHO

Table 2.1: Results for p1xEL and BERT finetuned for POS tagging and dependency
parsing on various Universal Dependencies treebanks. We report test set results
averaged over 5 runs each. |6| denotes the number of model parameters. The
table on the right shows BERT’s proportion of [UNK]s as a measure of (inverse)
vocabulary coverage and fertility (i.e., number of subwords per tokenized word;
Acs, 2019; Rust et al., 2021) as a measure of over-segmentation in respective UD
treebanks.

#L |0] ENG AMH HAU IBO KIN LUG LUO PCM SWA WOL YOR

BERT 1 110M 929 0 86.6 83.5 72.0 78.4 73.2 87.0 83.3 62.2 73.8
PIXEL 1 86M 89.5 47.7 82.4 79.9 64.2 76.5 66.6 78.7 79.8 59.7 70.7

Table 2.2: Results for p1xEL and BERT finetuned for NER on MasakhaNER. We
report test set F, scores averaged over 5 runs each. BERT outperforms PIXEL in
all of the languages that use Latin script, whereas PIXEL does better on AMH,
whose script is not covered by BERT’s vocabulary. The performance gap is smaller
for languages heavier in diacritics, e.g. YOR. It is larger for languages closer to
English such as Naija Pidgin (pcM), an English-based creole. #L denotes the
number of pretraining languages, +ng denotes CANINE’s n-gram extension, and
* indicates results taken from Clark et al. (2022) for additional context.

writing system; for instance, in NER where all languages besides AMH use
Latin script, in QA for FIN, IND, and swa. Although BERT has more trainable
parameters, this finding indicates that a P1XEL model pretrained for the same
number of steps as BERT is slightly worse at semantic tasks, and it may require
longer pretraining or an additional inductive bias to close the performance gap.
Similarly, character-based models also tend to underperform subword-based
models on NER (Keren et al., 2022), here seen by the CANINE-c results. Since
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the addition of n-gram embeddings improves the performance of CANINE-C,
likely due to boosting entity memorisation capabilities (Clark et al., 2022), we
hypothesize that p1xEL may benefit from equivalent enhancements.

For languages where BERT only partially covers the script, such as KoR,
JPN and TEL in QA, PIXEL consistently outperforms BERT, sometimes by
large amounts (e.g. , +63 F; points better on KorQuAD). In the extreme case
where BERT has no coverage of the script whatsoever, seen in NER for AMH,
BERT fails completely (0 F1) while P1XEL outperforms the larger, multilingually
trained caANINE and performs competitively with its n-gram variant. In other
words, PIXEL also overcomes the vocabulary bottleneck of subword-based PLMs
in semantics-driven tasks. Note that although BERT was trained on English,
its vocabulary has a high coverage of the Arabic script, explaining its good
performance in ARA and URD.!?

While the same may apply to languages like BEN and RUS in QA, where
one may otherwise expect PIXEL to outperform BERT, there is an external
factor at play; in the standard QA task formulation used by BERT, answer spans
are extracted by predicting start and end tokens. We adopt this procedure in
pixEL for simplicity. However, an image patch will often overlap two words at
variable positions, so the answer may actually start or end mid-patch. By only
predicting on a full-patch level, and extracting the entire content of the patch,
pixEL will sometimes extract leading and trailing characters that should not be
part of the answer, which degrades the F; score—even though the model may
have correctly identified the span. Languages not using whitespace to delimit
words are particularly affected, which also explains why P1xEL is only slightly
better than BERT in JPN.

Generally, and in particular when transferring to unseen scripts, we find
that p1xEL performs best when finetuning on larger corpora. An example of
this behaviour can be seen in QA, where PIXEL performs significantly better
on KorQuAD (60k examples) than the kor subset of TyDi (1.6k examples).
While large corpora may often not be available when dealing with unseen scripts,
we hypothesize that multilingual pretraining will alleviate the need for long
finetuning, while potentially being even more conducive to positive transfer
(Conneau et al., 2020a; Chau et al., 2020; Pfeiffer et al., 2021) by not being
vocabulary-bottlenecked.

I3Arabic is lexically sparse (Antoun et al., 2020; Al-Sallab et al., 2017), so the characters can be
covered in the vocabulary. However, it is morphologically complex, which leads to over-segmentation,
as the fertility of 3.7 in Table 2.1 shows. This over-segmentation is not necessarily problematic in our
selection of tasks (Keren et al., 2022), e.g. due to the sliding window in QA, but can be a disadvantage
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MNLI-m/mm QQP QNLI SST-2 CoLA STS-B MRPC RTE WNLI
393k 364k 105k 67k 86k 58k 3.7k 2.5k 635

BERT 110M 84.0/84.2 87.6 91.0 92.6 60.3 888 90.2 69.5 518 80.0
PIXEL 86M 78.1/789 845 878 896 384 811 882 605 53.8 741

61 Avg

Table 2.3: Results for p1xEL and BERT finetuned on GLUE. We report validation
set performance averaged over 5 runs. The metrics are F; score for QQP and
MRPC, Matthew’s correlation for CoLLA, Spearman’s p for STS-B, and accuracy
for the remaining datasets. P1XEL achieves non-trivial performance scores on
GLUE, indicating pixel-based encoders can learn higher-level semantic tasks, but
performs worse overall than BERT, so it may require (a) more pretraining steps
than subword-tokenized PLMs or (b) additional inductive bias to acquire the
same level of monolingual abstraction.

TyDiQA-GoldP SQuAD KorQuAD JaQuAD

#L 6]
ENG ARA BEN FIN IND KOR RUS SWA TEL AVg ENG KOR JPN

BERT 1 110M 68.5 58.0 43.2 58.3 67.1 12.4 53.2 71.3 48.2 51.5 88.2 14.9 28.8
PIXEL 1 86M 59.6 57.3 36.3 57.1 63.6 26.1 50.5 65.9 61.7 52.3 81.4 78.0 34.1

Table 2.4: Results for P1XEL and BERT finetuned on extractive QA datasets. We
report validation set F; scores averaged over 5 runs each. Average (Avg) scores
for TyDiQA-GoldP exclude ENG as customary (Clark et al., 2020). While BERT
clearly outperforms PIXEL in ENG, PIXEL is much better in KOR, TEL, and
JPN—a consequence of the vocabulary bottleneck in BERT—thereby gaining an
edge on average. In some languages, answer span extraction adversely affects
results (see § 2.3.3).

2.4 Robustness to Orthographic Attacks and
Code-Switching

Informal text, commonly found on social media, often contains orthographic
noise such as typos and other variations (Baldwin et al., 2015; van Esch et al.,
2019; Caswell et al., 2020). Previous work has demonstrated the vulnerability of
pretrained language models to character-level adversarial attacks and noise (Sun
et al., 2020; Eger and Benz, 2020), with text normalization typically required
to maintain performance (Pruthi et al., 2019; Keller et al., 2021). To evaluate
PIXEL’s robustness to textual noise and variation, and inspired by the robustness
tests of Salesky et al. (2021), we experiment with the Zeroé benchmark (Eger and

in others (Rust et al., 2021).
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POS Tagging Named Entity Recognition
SPA-ENG HIN-ENG SPA-ENG HIN-ENG MSA-EA

BERT 96.9 87.0 61.1 74.5 59.4
PIXEL 96.8 88.2 61.0 73.0 63.7

Table 2.5: Code-switching results on LinCE.

Benz, 2020; Keller et al., 2021), which covers a variety of low-level orthographic
attacks as illustrated in Table 2.13. We replace their version of visual attacks with
the Unicode Technical Standard #39 set of visually-confusable characters.'* We
apply Zeroé attacks during finetuning and evaluation of two English downstream
tasks, POS tagging and NLI (Bowman et al., 2015), where we expect models to
rely on different levels of abstraction.

Figure 2.8 and 2.9 in Appendix 2.7.7 compare PIXEL and BERT across three
levels of token-level noise for POS tagging and NLI. There is little impact on
POS tagging performance with either model from most low-level attacks, with
the exception of visually-confusable character substitutions (CONFUSABLE);
here pixEL expectedly maintains performance above 92% as it generalizes
across orthographic similarities, but BERT drops to 38%. For NLI, both models
are negatively affected, but P1XEL exhibits less degradation than BERT with
higher proportions of noise, with the impact varying across the types of attacks,
which each affect subword tokenization differently. Figure 2.3 shows relevancy
heatmaps (Chefer et al., 2021) for SNLI predictions made with and without
CONFUSABLE substitutions. The heatmaps are similarly clear with and without
noise, providing qualitative evidence that P1XEL is indeed robust to the noise. The
illustrated robustness may be dependent upon finetuning, however; we find that
PIXEL can struggle in zero-shot applications when text is rendered differently
from observed during pretraining (see Appendix 2.7.4 on using different fonts).
Future work could explore the impact of data augmentation during pretraining on
PIXEL’s robustness and ability to transfer across scripts. Furthermore, it would
be interesting to investigate how the choice of font influences the search space
during reconstruction of masked patches (Bland et al., 2022).

In addition to robustness to orthographic noise, dealing with character-
level substitutions is important for effectively modelling different morphological
forms. There are also many types of higher-level token, phrase or sequence-level

14https://u‘cil‘unicode.org/Unicoderps/confusables.jsp
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(a) 0%, contradiction (b) 80%, contradiction (c) 80%, entailment

Figure 2.3: Visual explanations of correct p1xEL predictions (for classes con-
tradiction and entailment) for NLI examples with 0% and 80% CONFUSABLE
substitutions using method by Chefer et al. (2021), providing qualitative evidence
for P1XEL’s robustness to character-level noise and the interpretability of its
predictions. Red heatmap regions represent high relevancy.

variations such as code-switching—when a speaker alternates between two or
more languages in the same utterance, while being grammatically consistent in
each language (Joshi, 1982)—or the lexical substitutions in social media text. We
evaluate PIXEL on the LinCE benchmark (Aguilar et al., 2020), which includes
core tasks and downstream applications for linguistic code-switching. PIXEL
is finetuned on POS Tagging and NER in Spanish-English, Hindi-English and
Modern Standard Arabic-Egyptian Arabic. Table 2.5 shows that PIXEL and BERT
perform similarly on spa-ENG tasks, with BERT outperforming p1xEL on NER
for (romanised) HIN-ENG. On the other tasks, P1XEL performs better than BERT
and even outperforms MBERT on HIN-ENG POS tagging. The gap between
MBERT and PIXEL is larger on Arabic scripts, which were extensively seen by
MBERT during pretraining.

2.5 Related Work

The question of vocabulary construction is an open problem in NLP, especially
in a multilingual context.'®> The most widely used language models, e.g. BERT,
RoBERTa, T5, GPT-2 inter alia, rely on different tokenizers, such as WordPiece
(Devlin et al., 2019), Byte-Pair Encoding (BPE, Sennrich et al., 2016) and Unigram
LM (Kudo, 2018). There is an established ecosystem around subword tokenizers,
such as the SentencePiece (Kudo and Richardson, 2018) and HuggingFace
Tokenizers.

In a monolingual context and for some languages like English, vocabularies of
subwords are a good tradeoff between vocabularies of characters and vocabularies

15See Mielke et al. (2021) for a recent, comprehensive survey on open-vocabulary modeling and
tokenization.
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of words. When representing a large number of languages in multilingual PLMs
like mBERT and XLM-R, adequately representing the vocabulary of each individual
language would be computationally prohibitive. The tokenization then becomes a
bottleneck when trying to scale up to a large number of languages (Conneau
et al., 2020a; Rust et al., 2021), which manifests itself in degraded cross-lingual
performance to languages and language families that are underrepresented in
the data used for training multilingual PLMs. There are large inequalities in
the performance of these models across typologically diverse languages (Wu
and Dredze, 2020; Lauscher et al., 2020). This issue is further exacerbated by
tokenizations out-of-the-box not being compatible across languages (Maroniko-
lakis et al., 2021). Language imbalance and poor character coverage in the
vocabulary can also decrease downstream performance (Zhang et al., 2022).
To some extent, these problems can be attenuated through techniques such as
subword mapping (Vernikos and Popescu-Belis, 2021), transliteration (Moosa
et al., 2023), leveraging lexical overlap (Patil et al., 2022), vocabulary clustering
and reallocation (Chung et al., 2020), continued or language-adaptive pretraining
(Ebrahimi and Kann, 2021), adaptation via bilingual lexica (Wang et al., 2022),
and embedding matrix adaptation (Artetxe et al., 2020a). However, these are
post-hoc workarounds to expand model vocabularies after training. They do not
provide a direct solution to the vocabulary bottleneck problem.

Some subword-based algorithms can also produce undesirable segmentations
for morphologically rich languages (Klein and Tsarfaty, 2020; Amrhein and
Sennrich, 2021), so dedicated morphologically-aware tokenizers have been
developed (e.g. Smit et al. (2014)), but this process often requires expert-level
knowledge and may only work for individual languages.

Due to the limitations of subword vocabularies in multilingual language
modelling, some works have used vocabularies over characters (Lee et al., 2017;
Ma et al., 2020, inter alia) or bytes (Wang et al., 2020a; Wei et al., 2021). These
provide benefits over purely subword-based models in terms of robustness and
most of them are readily applicable in a multilingual context,'® but they typically
come at the cost of increased sequence lengths or latency. Also, such models
cannot exploit orthographic similarities between characters across and within
scripts and do not account for the fact that meaning of language may be carried
visually, such as in writing systems that are (partially) logographic, like Chinese,
in ancient hieroglyphs, or when using emoji.

16Character-aware models are not directly applicable to languages that do not use whitespace to
delimit sentences (Tay et al., 2021), for example.
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Finally, some works have developed pixel-based approaches. Broscheit (2018)
embedded images of Chinese glyphs but still relied on a fixed vocabulary. Wu
et al. (2019) combined character-level images and embeddings for a variety of
Chinese tasks. Radford et al. (2021a) trained a linear probe for CLIP, which also
incorporates a tokenizer, on a rendered version of SST-2 (Socher et al., 2013).
Other works have trained pixel-based models that removed the need for a fixed
vocabulary: Sun et al. (2019) trained a convolutional sentiment classifier on
pixels. Mansimov et al. (2020) used images of text for in-image MT. Salesky
et al. (2021) employed a convolutional embedder for a Transformer-based MT
system with a subword-based decoder. Our method differs from these in that it
provides a general-purpose language encoder that completely removes the need
for a vocabulary.

2.6 Conclusion

This paper introduced PIXEL, a pretrained language model that renders text as
images, which allows it to represent any written language that can be typeset
using its text renderer. PIXEL was pretrained on the predominantly English
Wikipedia and Bookcorpus datasets, and evaluated on part-of-speech tagging,
dependency parsing, question answering, and language understanding tasks. The
results demonstrate that PIxEL readily transfers to unseen scripts, as shown by
its performance on 14 scripts across 32 languages. PIXEL currently lags behind
BERT when processing languages with a Latin script, including English; however,
PIXEL is more robust than BERT against low-level orthographic attacks and
performs competitively to BERT and MBERT on linguistic code-switching tasks.
Overall, these results show that pixel-based representations are a strong backbone
for cross-lingual and cross-script transfer learning. The limitations of this work
are discussed in Appendix 2.7.10.

In future work, we will investigate inductive biases and additional objectives
that can better capture long-range dependencies in PIXEL models. We hope
that this will help overcome the limits of PIXEL in semantic processing. We also
plan to pretrain P1xEL on multilingual text with a view to further improving
its cross-script and cross-lingual abilities. This will also allow us to more fairly
compare pixel-based models against larger subword-based and tokenization-free
multilingual models. Finally, we will also develop new rendering and finetuning
formulations that are better tailored to pixel-based models, e.g. for improving
downstream question answering.
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(b) 500k steps
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Figure 2.5: PIXEL image reconstructions after 100k, 500k, and 1M steps of
pretraining. We overlay the masked original image with the model’s predictions.
Images are wrapped into squares and resized for visualization purposes only. The
texts were not part of the training data. We see that the fully trained pIxeL (1M)
predicts masked spans more clearly and accurately. For longer spans with a larger
possible prediction space, multiple predictions may appear together creating

blurred text.
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Reconstructions of three sources of text!” '8 19 after 100K, 500K and 1M pre-
training steps. The figure also shows how PIXEL (visually) expresses uncertainty,
e.g. for reconstructions of long spans where the space of possible outputs is much
larger than for short spans, and how it captures long-range dependencies. In the
third row, we can for instance see that PIXEL uses context from the beginning of
a sequence (Barack Obama) to correctly fill in a gap later in the sequence, and
vice-versa (Brienomyrus).

2.7.3 Code

PIXEL is implemented in PyTorch (Paszke et al., 2019) and built on HuggingFace
transformers (Wolf et al., 2020). We make our code available at O xplip/pixel.
Our pretrained P1xEL model, including a large number of intermediate check-
points, is available at (¥, Team-PIXEL/pixel-base and our finetuned models,
including multiple seeds each, are available through the model hub.

2.7.4 Text Renderer Details

Rendering backend We experimented with different text rendering backends.
Following Salesky et al. (2021), our first implementation was based on PyGame,?°
which pixEL was also pretrained with. Later on, we switched to a backend
based on Pango (Taylor, 2004) and Cairographics,?! which has native support for
complex text layouts, making it possible to specify fallback fonts, and has faster
rendering speed. Without fallback fonts, we would be limited to a maximum
number of 2'® — 1 glyphs that can fit into a single OpenType or TrueType font file
due to a technical limitation.?? By leveraging fallback fonts, we can theoretically

cover all Unicode codepoints, including emojis.

Fonts We rely on the Google Noto Sans fonts collection,?® which covers the
majority of Unicode codepoints and is actively growing.?*. Note, however, that
PIXEL is compatible with any font and can therefore encode anything that can be

17https://www.nationalpeanutboardAorg/peanut—ini'”o/our—message.htm

18https://www.penguinsinter‘national.org/2019/@7/1@/do—penguins—have—knees—and—other
-frequently-asked-questions/

19https://www.theatlantic.com/science/archive/2021/Q)S/electric—fish—pause/618993/

20https: //www.pygame.org/

21https://www.cairographics.org/

228ee https://en.wikipedia.org/wiki/Unicode_font for an explanation.

2https://fonts.google.com/noto

24See https://notofonts.github.io/overview/ for an overview of Noto’s Unicode coverage.
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typeset on a computer screen. We used a font size of 8 at 120 DPI for pretraining
with PyGame, which was selected manually to fit most scripts into a rendered
height of 16px. It can, however, also be adjusted at finetuning time. For finetuning
with PangoCairo, we use a font size of 8 - (120/72) ~ 13.33 which yields roughly
the same outputs as the PyGame renderer. Due to how glyphs are shaped by the
two backends, the outputs of the two renderers do not exactly match. Because
we did not employ data augmentation to make PI1xEL robust to such changes
in font size, we recommend using the PyGame renderer it was pretrained with
for zero-shot applications with P1xE1L. When finetuning, this minor mismatch
in rendering outputs is easily overcome by PIXEL, so we generally recommend
using the PangoCairo renderer.

Characters versus glyphs For extractive QA, it is necessary to obtain a mapping
between the characters in the context paragraph and where they appear on the
rendered image. Obtaining this mapping is not straightforward due to how text is
rendered. The shaping step in the rendering pipeline converts characters into
glyphs.?” In ligatures, as common for instance in Arabic, a glyph is composed of
multiple characters. Likewise, an emoji often consists of a base codepoint and a
modifier codepoint (e.g. to change the emoji skin colour) which are represented by
a single glyph. For accents, on the other hand, one character might yield multiple
glyphs.?® In practice, the renderer therefore uses grapheme clusters, whose
logical boundaries in the rendered image we can map to the input characters.?”
For simplicity, we assign each codepoint of a grapheme cluster to the logical
horizontal offset at which the cluster starts on the rendered image. Future work
may investigate alternative mapping strategies.

RGB rendering PixEL supports RGB rendering which may be useful to ac-
curately represent colour emoji and for multimodal applications in the future.
However, 24-bit RGB rendering is slightly slower than 8-bit grayscale rendering
(see Table 2.6 below) for text written in Latin script, which is why we made RGB
rendering an optional setting. In our pretraining and finetuning experiments
we rendered text in grayscale, and we generally recommend doing so when not
working with coloured inputs.

25See https://docs.gtk.org/Pango/pango_rendering.html for an overview of the rendering
pipeline.

26https://docs‘gtk.org/Pango/pango_fonts.html;!;tglyphs

27https://unicode.org/reports/tr29/#Grapheme_(ilus‘cer_Boundaries

50


https://docs.gtk.org/Pango/pango_rendering.html
https://docs.gtk.org/Pango/pango_fonts.html#glyphs
https://unicode.org/reports/tr29/#Grapheme_Cluster_Boundaries

2.7. Appendix

Arabic Chinese English
003 0.04 0.04
g
g 0.02
S 0.02 0.02
& 0.01 L
0.00 0.00 0.00 4
Finnish Indonesian Japanese
0.08 0.04 0.08
=
.2 \
£ 0.05 FAY 0.05
2 0021 [; \
2 )} N
~ 0.03 1 |14 I \ 0.03
v N I \\
N Re !' ~o
0.00 = 0.00 — 0.00
Korean Russian Turkish
0.06 0.04 0.10 Reference
g —— BERT
!é 0.04 ~\ === mBERT
5 0027 |1}y 0.057 | PIXEL
~0.02 'l \ TA\
; ; NS /\\
0.00 0.00 = 0.00 — -
0 50 100 150 0 50 100 150 0 50 100 150
Length [Tokens/Patches] Length [Tokens/Patches] Length [Tokens/Patches]

Figure 2.6: Distributions of sentence lengths from monolingual UD corpora after
tokenizing by BERT and MBERT and rendering by PIXEL, compared to the
reference by UD treebank annotators.

Right-to-left scripts PIXEL’s renderer natively supports right-to-left (RTL)
writing. In the default setting, the base text direction (which for instance de-
termines on which side of a sentence punctuation marks are placed) is inferred
automatically by the rendering backend based on the first “strong directional”
character in a given paragraph.?® The mirroring of RTL characters is also handled
automatically according to their Unicode bidi attributes. Optionally, the base text
direction can be set manually, which is useful when working on monolingual
data, e.g. in Arabic or Hebrew, as the renderer does not have to go through the
direction check. In § 2.7.10, we describe limitations of how we currently handle
RTL writing.

28See https://unicode.org/reports/tr9/ for an overview of the Unicode bidi algorithm.
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Processor Batched 10roughput [ex/s]

ENG ZHO

3944.1 6309.0
3615.1 6849.5

19128.9 18550.5
4782.9 5684.4

1286.6 2637.1
1286.8 2580.9

Renderer (Grayscale)
Renderer (RGB)

X
X
. v
Tokenizer (Rust) X
. v
Tokenizer (Python) X

Table 2.6: Throughput comparison between P1XEL’s PangoCairo renderer and
the fast and slow BERT tokenizers, implemented in Rust and Python respectively,
from the HuggingFace tokenizers library. We estimate throughput, measured in
examples per second, by how long it takes to process 1M lines of English (ENG)
and Chinese (zH0) Wikipedia text on the same desktop workstation (AMD Ryzen
9 3900X 12-core CPU). We distinguish between tokenizing all lines individually
(Batched = X) and as one single batch (v).

Efficiency analysis We briefly analyze the text processing (rendering versus
tokenizing) efficiency in terms of a) length of the processed sequence, which has
a direct effect on GPU memory consumption and the time it takes to compute
forward and backward passes, and b) processing throughput.

For a), we follow Rust et al. (2021) and process the training and validation
splits of all available UD v2.10 treebanks in various languages with the PIXEL
renderer and the tokenizers of BERT and MBERT. We plot the resulting sentence
length distributions in Figure 2.6, including a comparison with the reference
segmentations from the UD annotators. For English text, the P1XEL renderer is
slightly less efficient, i.e., it produces slightly longer sequences on average than
the tokenizers. For other languages with Latin script, e.g. Finnish and Turkish,
the renderer is more efficient than the BERT tokenizer, albeit slightly less efficient
than the MBERT tokenizer. For non-Latin scripts such as Arabic and Japanese, we
see that the renderer can be a lot more efficient than both tokenizers. The English
BERT tokenizer is technically fairly space-efficient for non-Latin scripts but this is
misleading because it largely produces [UNK]s (recall right side of Table 2.1) and
each [UNK] is a single token; the functionality of the BERT model on a sequence
of [UNK] is strongly compromised.

For b), we compare the processing throughput of HuggingFace’s BERT tok-
enizers and our PIXEL renderer in Table 2.6. We find that the Rust-based BERT
tokenizer with batch processing achieves the highest throughput by leveraging

52



2.7. Appendix

parallelization. When not using batch processing, it is comparable in throughput
with PIXEL’s renderer, i.e. depending on the language or script, rendering can
be slightly slower (ENG) or faster (zH0) than tokenizing. Since the rendering
backend (PangoCairo) is implemented in C, we expect to achieve similar gains
in rendering throughput by also leveraging parallelization for batch processing
(in contrast to the Python-based tokenizer which is limited by Python’s global
interpreter lock (GIL)). We plan to implement batch rendering functionality in
the future.

2.7.5 Architecture & Pretraining Details

Parameter Value

Image size (16, 8464, 3)

Patch size P 16

Encoder hidden size Depc 768

Encoder intermediate size 3072

Encoder num attention heads 12

Encoder num layers L 12

Decoder hidden size D, 512

Decoder intermediate size 2048

Decoder num attention heads 16

Decoder num layers K 8

Layer norm ¢ (Ba et al., 2016) le-12

Span masking ratio R 0.25

Span masking max length S 6

Span masking cumulative weights W {0.2,0.4,0.6,0.8,0.9,1}

Span masking spacing Dynamic

Dropout probability 0.1

Hidden activation GeLU (Hendrycks and Gimpel, 2016)
Optimizer AdamW (Loshchilov and Hutter, 2019; Kingma and Ba, 2015)
Adam B (0.9, 0.999)

Adam ¢ le-8

Weight decay 0.05

Peak learning rate 1.5¢-4

Learning rate schedule Cosine Decay (Loshchilov and Hutter, 2017)
Minimum learning rate le-5

Learning rate warmup ratio 0.05

Training steps 1M

Batch size 256

Table 2.7: PIXEL pretraining settings
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Figure 2.7: PIXEL pretraining loss curve

Patch Embeddings PixEL reshapes each image x into a sequence of N = W/P
non-overlapping flattened 2D patches x; € RV*(P *C), where P = 16 is the patch
size, and linearly projects them via E € R( *C)xDenc to obtain patch embeddings
x, = (x7E) € RV*Penc with encoder hidden size Depe = P2C = 768.%° Afterwards,
fixed sinusoidal position embeddings Epos € R(N+*1)xPenc are added, leaving out
the position vector in position O for a classification (CLS) embedding later: X, =
Xp + [Eposs - - - Ef,ﬁ:l)].

Span Masking pPixEL then masks out R = 25% of the N = 529 embedded
patches via span masking with max span length S = 6 and cumulative span
weights W = {0.2,0.4,0.6,0.8,0.9, 1}, i.e. E(s) = 3.1, as outlined in Algorithm 1.
Applying the mask M, we obtain the unmasked patches X;s = {)”(i, - M}f\i 0

Encoder Following ViT-MAE (He et al., 2022), the PIXEL encoder only operates
on unmasked patches (i.e., » 396 patches at 25% masking) and a special CLS
embedding with its positional encoding ¢ = X[ + Ep,s € R1*Pere is prepended to
the sequence: hg = [¢, Kyis] € RUFLENDXDene 30 Let {h;}! | be the encoder hidden
states after each of the L = 12 encoder transformer layers, and hy denotes the
input sequence. The outputs of each transformer layer are computed as detailed
in (Vaswani et al., 2017), *! and the last layer’s output h; € RU+R-NDXDenc jg

passed to the decoder.

29This is equivalent to projecting each rendered image x € RF*W*C via a 2D-convolutional layer
with C input channels and Depc output channels and kernel size and stride both equal to the patch
size P, which we do in practice.

301n pretraining, no loss is computed for the CLS embedding but it can optionally be used when
finetuning P1XEL for sequence-level downstream tasks.

3INote that encoder and decoder do not attend to the blank (padding) patches that appear after
the EOS patch.
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Decoder The pixEL decoder first projects the encoder outputs via Ege. €
RPenexDaee to obtain decoder embeddings x4 = h;Egee € RUFLRNDXDaec where
Dgec = 512. Next, mask embeddings X|mask] € R™Paec are inserted at the masked-
out positions and fixed sinusoidal position embeddings are added to obtain
do = [(Xq U {X[mask] : 1 € M}N ) + Epos] € RNVFD>Daec, {d;}K are the decoder
hidden states after each of the K = 8 decoder transformer layers, computed in the
same way as the encoder hidden states, and dg denotes the input sequence. There
is no encoder-decoder cross-attention. The decoder output dg € R™+D*Paec jg
projected via O € RPaec*(P“C) to obtain patch-wise logits 0 = (dxg0) € R(NV+D*(P*C)
Finally, the CLS logits are removed and a normalized mean squared error (MSE)
pixel reconstruction loss is computed: Lyormpix = ﬁ YicQ |normalize(x}) - 0l|?
with i denoting the indices in the set of masked, non-blank (text) patches Q =
{itieMnT )}i o and normalize(-) dividing the difference between the target
patch and its mean by its standard deviation.

2.7.6 Finetuning Details

Table 2.8 gives an overview of all languages used in our finetuning experiments,
Table 2.9 links to our finetuning datasets, and Table 2.10 lists the UD treebanks
we used.

We list our finetuning recipes in Table 2.11 for POS tagging, dependency
parsing, NER, QA, and XNLI and in Table 2.12 for the GLUE tasks. Due to compute
limitations we did not run comprehensive hyperparameter sweeps. Instead, we
relied on sensible priors from finetuning BERT and made slight modifications as
needed. In most cases, hyperparameters that work well for BERT also work well
for p1xEL. For some of the semantic tasks, in particular NLI and SST-2, we found
that some random initializations did not converge. In those cases, minor tweaks
to the learning rate or increasing the batch size usually helped. For GLUE, we
found that pixEL performed slightly better on some tasks with the PangoCairo
renderer, whereas for others, using the PyGame renderer (which P1XEL was
pretrained with) was more stable. We plan to further optimize the training recipes
and study P1XEL’s convergence behaviour in the future.

For word-level tasks, we add padding in order to render each word at the
start of a new image patch and so create a bijective mapping between words and
patches. Doing so assumes that word boundaries are available. We note that
subword-based and character-based models also make this assumption. In BERT,
for instance, word-level tasks are formulated such that a word’s label is assigned to
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Language ISO 639-3 Language Family Script

Ambaric AMH Afro-Asiatic Ge'ez
Arabic ARA Afro-Asiatic Arabic
Bengali BEN Indo-European Bengali
Bulgarian BUL Indo-European Cyrillic
Chinese ZHO Sino-Tibetan Chinese
Coptic cop Afro-Asiatic Coptic
English ENG Indo-European Latin
Finnish FIN Uralic Latin
French FRA Indo-European Latin
German DEU Indo-European Latin
Greek ELL Indo-European Greek
Hausa HAU Afro-Asiatic Latin
Hindi HIN Indo-European Devanagari
Igbo IBO Niger-Congo Latin
Indonesian IND Austronesian Latin
Japanese JPN Japonic Japanese
Kinyarwanda  KIN Niger-Congo Latin
Korean KOR Koreanic Korean
Luganda LUG Niger-Congo Latin
Luo LUO Nilo-Saharan Latin
Naija Pidgin PCM English Creole Latin
Russian RUS Indo-European Cyrillic
Spanish SPA Indo-European Latin
Swahili SWA Niger-Congo Latin
Tamil TAM Dravidian Tamil
Telugu TEL Dravidian Telugu
Thai THA Kra-Dai Thai
Turkish TUR Turkic Latin
Urdu URD Indo-European Perso-Arabic
Vietnamese VIE Austro-Asiatic Latin
Wolof woL Niger-Congo Latin
Yorubd YOR Niger-Congo Latin

Table 2.8: Overview of languages used in our experiments.

its first subword token, requiring word boundaries. During training, continuation
tokens are then masked out when computing the loss. Consequently, predictions
for continuation tokens also need to be masked out at inference time, which again
requires word boundaries or aggregation strategies that may introduce errors.
The same applies to character-based models. For P1xEL, should this assumption
be violated, it is still possible to render the text without adding spacing, although
the mapping is then no longer bijective as multiple words can overlap on one
image patch. In such cases, assigning the prediction for a patch to either word can
cause loss of information. Although in practice this approach does not necessarily
affect performance negatively, future work will investigate alternative approaches.
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Dataset

Download Link & Reference

Universal
Dependencies 2.10

MasakhaNER

GLUE

TyDiQA-GoldP

SQuADv1.1

KorQuAD 1.0

JaQuAD

XNLI

un@® repository/xmlui/handle/11234/1-4758
Zeman et al. (2022); Nivre et al. (2020)

O masakhane-io/masakhane-ner/tree/main/data
Adelani et al. (2021)

¥, datasets/glue
Wang et al. (2018)

¥ datasets/tydiqa
Clark et al. (2020)

¥} datasets/squad
Rajpurkar et al. (2016)

¥ datasets/squad_kor_v1
Lim et al. (2019)

¥, datasets/SkelterLabsInc/JaQuAD
So et al. (2022)

¥ datasets/xnli
Conneau et al. (2018)

Table 2.9: Links and references to the datasets we used in our finetuning experi-
ments.

Language Treebank

#Sentences Reference

ENG
ARA
cop
HIN
JPN
KOR
TAM
VIE
ZHO

English-EWT

16621 Silveira et al. (2014)

Arabic-PADT 7664  Hajic et al. (2009)
Coptic-Scriptorium 2011 Zeldes and Abrams (2018)
Hindi-HDTB 16647  Palmer et al. (2009)
Japanese-GSD 8100 Asahara et al. (2018)

Korean-GSD 6339 Chun et al. (2018)

Tamil-TTB 600 Ramasamy and Zabokrtsk}'r (2012)
Vietnamese-VTB 3000 Nguyen et al. (2009)

Chinese-GSD

4997  Shen et al. (2016)

Table 2.10: Overview of the Universal Dependencies v2.10 (Zeman et al., 2022;
Nivre et al., 2020) treebanks used in our POS tagging and dependency parsing
experiments with the number of sentences in their respective training splits. As
mentioned in § 2.3.1, these treebanks were chosen with typological and script
diversity in mind.
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Parameter POS DP NER QA XNLI
Rendering backend PangoCairo

CLS head pooling — — — — CLS
Optimizer AdamW

Adam B (0.9, 0.999)

Adam ¢ le-8

Weight decay 0

Learning rate (LR) 5¢e-5 {5e-5,8¢-5} 5e-5 {3e-5,5e-5,7¢-5} 2e-5
LR warmup steps 100 100 100 100 1000
LR schedule Linear decay

Max sequence length 256 256 196 400 196
Stride — — — 160 —
Batch size 64 64 64 32 256
Max steps 15000 15000 15000 20000 50000
Early stopping v

Eval steps 500 500 500 500 1000
Dropout probability 0.1

Table 2.11: Finetuning settings for POS tagging, dependency parsing (DP), NER,
QA, and XNLI. We did not run a comprehensive hyperparameter search due to
compute limitations; these settings were manually selected based on a small
number of preliminary runs. Maximum performance was often reached well
before the specified number of max steps.

Parameter MNLI QQP QNLI SST-2 ColA STS-B MRPC RTE WNLI
Rendering backend PangoCairo PyGame PangoCairo PyGame PyGame PyGame PyGame PyGame PyGame
CLS head pooling Mean

Optimizer AdamW

Adam (0.9, 0.999)

Adam ¢ le-8

Weight decay 0

Learning rate (LR) 3e-5 3e-5 3e-5 3e-5 2e-5 2e-5 3e-5 3e-5 le-5
LR warmup steps 100 100 100 100 200 100 100 200 100
LR schedule Linear decay

Max sequence length 256

Batch size 64 256 64 256 256 64 64 64 256
Max steps 15000 15000 15000 15000 15000 15000 15000 15000 400
Early stopping v

Eval interval 500 steps 500 steps 500 steps 500 steps 100 steps 100 steps 100 steps 250 steps 1 epoch
Dropout probability 0.1

Table 2.12: Finetuning settings for GLUE tasks. We did not run a comprehensive
hyperparameter search due to compute limitations; these settings were manually
selected based on a small number of preliminary runs. Increasing the batch size
to 256 and switching to the PyGame renderer helped achieve more consistent
convergence behaviour for some tasks. For the smaller datasets (to the right of
QQP), maximum performance was reached well before the specified number of
max steps.

58



2.7. Appendix

2.7.7 Examples of Zeroé orthographic attacks

Attack Sentence

CONFUSABLE Pemguns are desigrned to be streamlizzed
SHUFFLE (INNER) Pegnuins are dnesiged to be sieatrnmled
SHUFFLE (FULL) ngePnius rae dsgednei to be etimaslernd
DISEMVOWEL Pngns r dsgnd to be strmlnd

INTRUDE Pe‘nguins a{re d)esigned t;o b*e stre<amlined
KEYBOARD TYPO Penguinz xre dwsigned ro ne streamllned
NATURAL NOISE Penguijs ard design4d ti bd streamlinfd
TRUNCATE Penguin are designe to be streamline
SEGMENTATION Penguinsaredesignedtobestreamlined
PHONETIC Pengwains’s ar dhiseind te be storimlignd

Table 2.13: Examples of low-level orthographic attacks based on the Zeroé
benchmark.

100 Confusable Disemvowel Shuffle (full) Shuffle (inner) Intrude
071 g ol g g ol
= 5 s S ‘\‘\*\“ | ey
S o u} o o a
g 0 8
3
2 60 o
50
b o
40
100 Keyboard typo Natural noise Phonetic Segmentation Truncate
01 g Jul g o o
_ - B s
E 80 ’\‘\&\, ”\g\a—n ”\B\"\x ”_i\——'
> | 5]
§ 70 . g
E 60 Model
5 BERTgase
30 —#— PIXEL
40
0 20 50 80 0 20 50 80 0 20 50 80 0 20 50 80 0 20 50 80

Figure 2.8: Test set accuracy for a single run of PIXEL and BERT across different
levels of noise introduced through various orthographic attacks in SNLI. The
results show that PIXEL is more robust than BERT to most of these attacks.
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100 Confusable Disemvowel Shuffle (full)
S—n—un B—8—s—n
S
5 75 m
g
8
2 50 o
(5]
100 Shuffle (inner) Intrude Keyboard typo
S
> 75
Q
g
8
< 50
100 Natural noise Phonetic Truncate
R\HH H\ﬁ—ﬁ B—B———8
9
) s Model
5 B— BERTgase
2 50
< —%8— PIXEL
0 20 50 80 0 20 50 80 0 20 50 80

Figure 2.9: Test set accuracy for a single run of PIXEL and BERT across
different levels of noise introduced through various orthographic attacks in POS
tagging. The results show that P1XEL is more robust than BERT to most of these
attacks, especially when dealing with visually-confusable character substitutions.
SEGMENTATION is not applied to the task of POS tagging, since the joined words
would not have a proper tag.

2.7.8 Font Transfer Analysis

In this section, we analyse the adaptation capabilities of PIXEL to new fonts at
finetuning time. Specifically, we finetune P1xEL models for POS tagging and
dependency parsing on the UD_English-EWT treebank and sentiment analysis
on SST-2, once with a font similar to our GoNotoCurrent / NotoSans-Regular
pretraining font, NotoSerif-Regular, and once with a font strikingly different
from it, JournalDingbats1. We compare the three fonts in Table 2.14 below:
The font transfer results are shown in Table 2.15. We find that PIXEL
exhibits fairly high font transfer ability out-of-the-box, i.e. without any font or
image augmentation strategies employed during pretraining.>? In line with our

32We believe such augmentation strategies would further improve robustness to font variations
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Font Rendered Example Sentence

GoNotoCurrent My cat loves oatmeal and pancakes. JJj
NotoSerif-Regular My catloves oatmeal and pancakes. [ |

JournalDingbats1 Tl F T OTITLAOTE TwOlT= o TaOT ]

Table 2.14: An example sentence rendered in three different fonts.

GoNotoCurrent NotoSerif-Regular JournalDingbats1

POS 96.7 95.9 93.9
Dp 90.6 88.1 81.3
SST-2 89.6 84.2 72.9

Table 2.15: Results for fine-tuning p1XEL for POS tagging, dependency parsing
(DP), and sentiment analysis on SST-2 with three different fonts: the font used in
pretraining (GoNotoCurrent), a visually similar font (NotoSerif-Regular), and a
highly dissimilar font (JournalDingbats1). We report test accuracy for POS, test
LAS for DP, and validation accuracy for SST-2, each averaged over 5 runs.

expectations, transfer to a visually similar font (NotoSerif-Regular) is easier
than to a dissimilar font (JournalDingbats1). Nevertheless, PIXEL is able to
transfer surprisingly well to the JournalDingbats1 font, in which every letter is
simply mapped to the icon of an object or animal.

2.7.9 Further analysis

To investigate where PI1XEL currently lags behind BERT, we analyse the impact
that dependency length has on both models in dependency parsing in ENG. We
can see in Figure 2.10 that the LAS gap between BERT and PIXEL increases
with longer dependencies, indicating that P1XEL struggles slightly more with
long syntactic dependencies.

2.7.10 Limitations

This paper introduces a new approach to processing written language as images,
which removes the need for a finite vocabulary, providing a solution to the
vocabulary bottleneck. While our results show that PIXEL is a promising approach

and leave this experiment to future work. Considering that we have full control over the font when
working with NLP text datasets, robustness to font variations was not a primary goal in this work.
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Figure 2.10: LAS scores (ENG) across different dependency lengths averaged
over 5 random intitializations of BERT and PIXEL. In ENG, long syntactic
dependencies are more challenging for PIXEL.

#L |6] ENG ARA BUL DEU ELL FRA HIN RUS SPA SWA THA TUR URD VIE ZHO

BERT 1 110M 83.7 64.8 69.1 70.4 67.7 72.4 59.2 66.4 72.4 62.2 35.7 66.3 54.5 67.6 46.2
PIXEL 1 86M 77.2 589 66.5 68.0 64.9 69.4 57.8 63.4 70.3 60.8 50.2 64.0 54.1 64.8 52.0

Table 2.16: Results for P1XEL and BERT finetuned on XNLI in the translate-
train-all setting where we train on the joint training data in all 15 languages,
originally translated from ENG by Conneau et al. (2018). We report test set
accuracy averaged over 5 runs each. Despite the relatively large performance gap
in favor of BERT in ENG (which is in line with the GLUE results in Table 2.3),
the gap is much smaller for other languages, particularly those not using the Latin
writing system. PIXEL is overall more consistent across scripts, outperforming
BERT in THA and zHoO.

in this direction, this is only the first step. Here, we highlight current limitations
and avenues for future work for pixel-based models:

* PIXEL is pretrained on predominantly English text written in the Latin
script. The choice of English is driven by the scientific goal of comparing
against a widely used model (English BERT) but English may not be the best
source language for cross-lingual transfer (Turc et al., 2021; Blevins et al.,
2022). We expect that P1XEL trained on typologically diverse languages in
multiple scripts would considerably surpass the cross-script and cross-lingual
transferability of English-only p1xEL but this remains to be verified, and
training a model on large amounts of data will require large computational
resources.
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* PIXEL currently seems to be less sample-efficient than subword-based PLMs.
PIXEL excels at syntactic tasks after being pretrained for the same number
of steps/datapoints as BERT (a challenging setup within an academic
budget), but still lags behind in semantic processing. As a consequence, it
also requires more training steps than BERT to converge during finetuning.
Closing this gap might involve longer pretraining with additional (long-
dependency) objectives.

* There are challenges to be addressed when working with languages written
right-to-left. PIXEL currently processes sentences in such languages from
the end to the beginning, which may lead to learning inadequate features
for sentence separation and position embeddings.

* PIXEL cannot be used for language generation tasks because it is not
possible to produce discrete words from the pretrained decoder.

* Rendering text as images requires more disk space than reading text from a
file. This can be alleviated by caching the dataset in a compressed format
or rendering the images on-the-fly. Rendering images on-the-fly will create
additional overhead when training for multiple epochs.
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Chapter 3

Text Rendering Strategies for Pixel
Language Models

The work presented in this chapter is based on a paper that has been published
as: Jonas Lotz, Elizabeth Salesky, Phillip Rust, and Desmond Elliott. 2023.
Text rendering strategies for pixel language models. In Proceedings of the 2023
Conference on Empirical Methods in Natural Language Processing, pages 10155-
10172, Singapore. Association for Computational Linguistics.

Abstract

Pixel-based language models process text rendered as images, which allows them
to handle any script, making them a promising approach to open vocabulary
language modelling. However, recent approaches use text renderers that produce
a large set of almost-equivalent input patches, which may prove sub-optimal
for downstream tasks, due to redundancy in the input representations. In this
paper, we investigate four approaches to rendering text in the p1xeL model (Rust
et al., 2023), and find that simple character bigram rendering brings improved
performance on sentence-level tasks without compromising performance on token-
level or multilingual tasks. This new rendering strategy also makes it possible to
train a more compact model with only 22M parameters that performs on par with
the original 86M parameter model. Our analyses show that character bigram
rendering leads to a consistently better model but with an anisotropic patch
embedding space, driven by a patch frequency bias, highlighting the connections
between image patch- and tokenization-based language models.

O xplip/pixel/tree/TextRenderingStrategies (¥} Team-PIXEL
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1 rjust] be] grwilng fsmjail figain. [l

(a) Continuous rendering (CONTINUOUS)

I Jmyst Jbefor fowlin Jg Jsmial fi Jagei |n. /I

(b) Structured rendering (BIGRAMS)

L Jmufst] bJe Jorfowlin]g Jsmlal[L Jag]ai]n. I

(c) Structured rendering (MONO)

I |myst Joe Jordwifhg fsmiait jagin. [l

(d) Structured rendering (WORDS)

Figure 3.1: Examples of rendering strategies for the sentence “I must be growing
small again.” from Carroll (1865a). Black patches mark the end of a sequence,
following Rust et al. (2023).

3.1 Introduction

There is a growing movement in NLP towards tokenization-free methods (Clark
etal., 2022; Xue et al., 2022; Yu et al., 2023) including pixel-based representations
of text (Salesky et al., 2021, 2023a; Rust et al., 2023; Tschannen et al., 2023). It
has been shown that these tokenization-free methods can readily handle unseen
languages and that they are more robust to noise attacks than tokenization-
based models. In addition, pixel-based approaches can effectively exploit visual
similarities between characters and scripts because they allow for complete
parameter sharing across all inputs, making them a promising direction for
multilingual NLP.

Previous work on pixel-based models segments the rendered text into either
consecutive patches (Rust et al., 2023; Tschannen et al., 2023) or with a sliding
window (Salesky et al., 2021, 2023a) as in speech processing. Although the
proposed approaches have the appealing properties of yielding compact and
transferable representations, they also result in a very large input space because
there is no unique way to represent lexical units. As a consequence, pixel-based
models could observe a new set of image representations with every new sentence,
which adds redundancy in the input space and is sub-optimal for developing
contextual language representations. We refer to these unstructured rendering
strategies as coNTINUOUS and illustrate the point qualitatively in Figure 3.1
and Figure 3.2, and quantitatively in Figure 3.3. In this work, we ask whether
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(@) Most frequent patches with conTiINUOUS rendering

e] k] in] @] 5] Bn] pf] pn] fe] | ]

(b) Most frequent patches with BIGRAMS rendering

Figure 3.2: A continuous rendering strategy results in many uniquely-valued
image patches for similar inputs, while structured rendering (here, BIGRAMS)
regularises and compresses the potential input space.

structuring the input, which leads to more frequent parameter updates through
now-unique word representations, would enable pixel-based models to develop
a deeper understanding of context and semantics. We then propose rendering
strategies structured around providing the model with a compressed input space.

We demonstrate how enforcing a BIGRAM s-structured rendering strategy
leads to both a more capable and data-efficient model: when evaluated on
semantic sentence-level tasks, we find that a 22M parameters model performs
competitively with the unstructured original at 86M parameters, and that scaling
back up to 86M parameters narrows the performance gap to BERT (Devlin
et al., 2019) trained on the same data. In subsequent analyses, we find that
the added input structure provokes a clear visual token frequency bias in the
learned embedding space. While also found in BERT, frequency biases have been
shown to degrade the quality of embedding spaces when word representations
are not only determined by semantic relations but also by the number of model
updates (Gong et al., 2018; Gao et al., 2019b; Fuster Baggetto and Fresno, 2022).
We show that frequent words have more context-specific representations than
infrequent words, especially in the upper layers. Finally, we show that PIXEL
models acquire a non-trivial semantic understanding during pretraining, but that
their sentence representations are easily influenced by this frequency bias. We
release all models and code for pretraining and finetuning.

3.2 Background: Modelling text as images

We build upon the general-purpose language encoder framework presented in
Rust et al. (2023): PIXEL is a text autoencoder which builds on the Masked
Autoencoding Vision Transformer (ViT-MAE; He et al., 2022) and is similarly
pretrained with a masked reconstruction objective. However, instead of patches
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—— continuous ---- bigrams mono ----- words
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Figure 3.3: Number of unique image patches observed as a function of training
data sequences. Structured rendering results in greater representational efficiency.

from natural images of objects (Deng et al., 2009), the patches now contain
images of text. To go from text to images of text, PIXEL relies on a rendering
library (PangoCairo)! to produce a sequence-level image which is sliced into
image patches of size 16 x 16 pixels. The sequence-length maximum of 529
patches approximately equals the memory requirements of BERT, the closest
benchmark for p1xEL. By using the Google Noto font family which supports the
majority of Unicode codepoints,” the renderer supports all languages that can
currently be typeset.

Before the first layer of the p1XEL model, image patches are linearly pro-
jected to obtain a sequence of patch ‘embeddings’. During pretraining, 25% of
embeddings are masked in spans of up to 6 patches and only the unmasked
patches with a prepended CLS embedding are passed through the encoder. After
replacing the masked embeddings amidst the encoder outputs, relying on fixed
sinusoidal position embeddings for ordering information, the decoder predicts
the pixel values of solely the masked patches. To later finetune the encoder on a
classification task, the decoder can be replaced with a task-specific head and the
masking ratio set to 0%.

Ihttps://docs.gtk.org/PangoCairo
2https ://fonts.google.com/noto
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3.3. Structured rendering

3.3 Structured rendering

Previously proposed approaches to rendering text as images render full sequences
of text and segment into either consecutive patches (Rust et al., 2023; Tschannen
et al., 2023) or with a sliding window (Salesky et al., 2021, 2023a). These
CONTINUOUS strategies result in a significant number of uniquely-valued
patches, many of which may be observed only once during training. We depict
this redundancy in Figure 3.2 and quantify it in Figure 3.3, showing how similar
text inputs result in unique visual representations.

We compare four rendering strategies: the original unstructured (CONTINU-
ous), and three structured (WORDS, MONO, BIGRAMS), as depicted in Fig-
ure 3.1. To render WORDS we separate segments with additional whitespace®
such that new segments begin at the beginning of the next image patch, regulating
possible spatial variation. BIGRAMS, rendering two characters per image patch,
is chosen to be widely applicable, without knowledge of word or morphemic
segmentation (Mielke et al., 2021; Keren et al., 2022). More specifically—consider
the word pairs (“grow”, “growing”) and (“growing”, “walking”)—the BIGRAMS
renderer will produce an overlap of image patches (underlined) for both pairs
while the same extent is not guaranteed with woRrDs-level rendering as it is
regulated by character width. The choice of character (n = 2)-grams is motivated
by what generally fits within a 16 x 16 pixels image patch in the setup from Rust
et al. (2023). moNo instead applies monospaced fonts where each character
is a fixed width; depending on font size, this may result in character bigram
patches without breaks within characters, but this is not guaranteed. The main
difference between BIGRAMS and MoNoO is that MoNoO simply slides across
the sentence, two characters at the time, yielding two ways to represent a word
whereas BIGRAMS renders the words and then pads with whitespace, ensuring
unique inputs.*

As seen in Figure 3.3, the structured rendering strategies result in a greatly
compressed input space as measured by the number of unique image patches
processed by the model, but Figure 3.1 reveals that it comes at the cost of longer
sequence lengths. While the rendering strategies we propose were not specifically
designed for English, they may not equally generalise to other languages or scripts.
We further discuss the representational efficiencies of these strategies in § 3.9.1

3We render whitespace at minimum 3 pixels wide, sometimes resulting in a blank patch between
tokens in structured inputs.

4As an example, “be” in Figure 3.1 is split into 2 image patches with moNo rendering. Depending
on the context, it could also be represented in a single image patch.
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Model Enc;-Dec; Hid MLP Att 0]

BASE 12-8 768 3072 12 86M
SMALL 12-4 384 1536 6 22M
TINY 12-2 192 768 3 55M

Table 3.1: Details of p1xEL model scale variants.
and limitations to generalisability under § 3.8.

3.4 Model scale variants

Recall from Figure 3.3 that coNTINUOUSs rendering produces a significantly
larger set of unique image patches compared to other approaches. A consequence
of this is that models must learn to encode many almost-identical visual represen-
tations, which may be wasteful, both in terms of parameters and training efficiency.
Therefore, we hypothesise that PIxEL models that operate over fewer unique
image patches can be scaled down without sacrificing performance. While “Base”
models and larger ones are widely used for their strong performance, proven scal-
ing laws (Touvron et al., 2021; Zhai et al., 2022) enable greater experimentation
and model development at smaller scale (Ivgi et al., 2022), which is both more
environmentally friendly (Strubell et al., 2019; Bender et al., 2021; Hershcovich
et al., 2022b) and facilitates contributions with limited computational resources.

With this in mind, we propose two smaller architectures which we will compare
across downstream tasks in § 3.5. Our BASE model architecture is directly adopted
from ViT (Dosovitskiy et al., 2021) and p1xEL, and we add two more compact
sMALL and TINY model variants, as described in Table 3.1. The configurations of
the smaller models are based on the ViT variants presented in Zhai et al. (2022).
Following the scaling experiments in He et al. (2022), indicating that shallow
decoders of as small as 2 layers can be sufficient for ViT-MAEs, we apply a scheme
of halving the number of decoder layers at every scale reduction.

3.5 Experiments

We pretrain sMALL models with the proposed rendering strategies. The models
are then evaluated on dependency parsing (UDP) with data from Universal
Dependencies v2.10 treebanks (Zeman et al., 2022; Nivre et al., 2020) and GLUE
(Wang et al., 2018), exploring the models’ capabilities at syntactic processing on
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Structure Scale
UDP GLUE UDP GLUE TyDiQA-GoldP
Renderer Avg.  Avg. Variant 10| Avg. Aup Avg. Ap  Avg Ap
CONTINUOUS 76.2 71.0 TINY 55M 72.0 -0.3 66.5 +12.7 41.6 +4.9
BIGRAMS 76.1 75.4 sMALL 22M 76.1 -0.1 754 +4.4 508 +2.0
MONO 75.9 744 BASE 86M 75.5 -0.6 78.0 +3.9 52.8 +0.5
WORDS 76.6  74.7

Table 3.2: Structure (left): averaged results for smaLL-models comparing down-

stream performance on UDP and GLUE following the different rendering strategies.

Scale (right): averaged results across model scales using the BIGRAMS rendering

structure. Ay is the difference in average performance between BIGRAMS and

CONTINUOUS rendering for a given model scale. results are marked in
to visually distinguish from pixel-based models.

the word level and semantic processing on the sentence level.

3.5.1 Pretraining

We pretrain all models on the English Wikipedia and Bookcorpus (Zhu et al.,
2015) data used by Rust et al. (2023) for direct comparison with PIxEL and
BERT, which results in ~16.8M training examples. We follow the suggested
hyperparameters used for p1XEL with the exception of batch size. The smaller
architectures of sMALL and TiNY allow for larger batch sizes, which we double
from 256 examples to 512 and 1024, respectively. We then halve the number of
pretraining steps accordingly from 1M to 500k and 250k in order to train for
the same number of epochs as PIXEL (~16 epochs, but varying slightly due to
differing sequence lengths per rendering strategy).

Pretraining BASE takes 8 days on 8 x 40GB Nvidia A100 GPUs, while in
comparison, pretraining sMALL takes less than 48 hours on 8 x 40GB Nvidia
A100 GPUs, and TiNY less than 24 hours. Loss trajectories for the different
rendering strategies are in line with their representational efficiency (Figure 3.3),
indicating that structured rendering may make the masked reconstruction task
more data-efficient, achieving a low loss in fewer steps (see § 3.9.2: Figure 3.10).

3.5.2 Finetuning

To finetune our models for classification tasks we replace the decoder used for
pretraining with a task-specific classification head. We do not search for more
optimal hyperparameters than those used for p1xEL with the exception of the
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learning rate; we find that the more compact architectures often benefit from a
slightly higher learning rate.”

We follow the same protocol during finetuning as done for P1xeL: for word-
level tasks we obtain the rendered image patch indices for every word and as
a consequence, the CONTINUOUS strategy becomes identical to the worRDSs
structure when finetuning on UDP. § 3.6.1 further investigates the consequence of
a mismatch between how the data is structured during pretraining and finetuning.
When finetuning on GLUE the structure follows what was seen during pretraining
for all rendering strategies. Reported performances for BERT and PIXEL are
taken from Rust et al. (2023).

3.5.3 Rendering strategies

We present averaged results comparing the rendering strategies in the left part of
Table 3.2. Detailed results for each downstream task are presented in Table 3.4
and Table 3.5 in the appendix. For UDP we find that the woRrDs structure slightly
outperforms BIGRAMS and MoNoO on this word-level task. When comparing the
WORDS and CONTINUOUS strategies, we get a first hint as to the importance of
including structure during pretraining as well, keeping in mind that the rendering
structure is the same for both strategies when finetuning on UDP. For GLUE we see
a large increase in performance when rendering with any structure and especially
BIGRAMS. We attribute the difference in performance between B1GrRAMS and
MoONO to the unique word representations with BIGRAMS, as discussed in § 3.3.

We find that BIGRAMS is the best performing structure on average, even
slightly outperforming the 86M parameters PIXEL (average UDP: 76.1; average
GLUE: 74.1) with only % its model parameters. We provide an investigation
into the mechanisms that enable this improved performance on GLUE in § 3.6.4.
Next we pretrain TINY and BASE model variants with BIGRAMS rendering to
evaluate performance at different model scales.

3.5.4 Model scaling

The right part of Table 3.2 compares the different model scales all following
a BIGRAMS rendering strategy. Detailed results are likewise presented in
Table 3.4, Table 3.5, and Table 3.6 in the appendix. We find that the TiNY
configuration performs competitively on the word-level tasks considering its
only 5.5M parameters, but has a larger gap up to sMALL and BASE on the

5We search the space {le—5, 3e—5, 5e—5, 7e—5, 9e—5} and report the average over 3 seeds.

72



3.6. Ablations and supplementary analyses

sentence-level GLUE tasks. SMALL proves to be a good trade-off between scale
and performance where it is not far behind Bast on GLUE and even slightly
outperforms on UDP.® BASE comes a step closer to closing the gap in performance
up to BERT on GLUE. Comparing to the performance following a CONTINUOUS
rendering strategy, summarised as the difference in average performance (Ap),
it is clear that the more compact the model size, the greater the benefit from
structured rendering.

To verify that BiGRAMS rendering does not degrade the performance on
multilingual sentence-level tasks across different scripts and morphologies, we
also include results on TyDiQA-GoldP (Clark et al., 2020).” Again, we find that
sMALL performs competitively considering its size.

3.6 Ablations and supplementary analyses

In this section, we investigate how BiGrRAMS rendering changes the model
compared to CONTINUOUS. For clarity in what follows, we refer to the BASE
model with B1IGRAMS rendering from § 3.5.4 as BASE-BIGRAMS and keep
referring to the original model from Rust et al. (2023) as PIXEL.

3.6.1 When does rendering structure matter?

Having established that a structured rendering strategy leads to improved down-
stream performance, we further investigate when it is needed: is it sufficient
to finetune with structure, or does the model develop strategy-specific features
during pretraining? We analyze this by comparing rendering strategies between
pretraining and finetuning.

The results in Table 3.3 for GLUE show that a mismatch leads to lower
downstream performance for both strategies, with BIGRAMS — CONTINUOUS
being the most harmful, perhaps unsurprisingly. This result does not align with
the finding for UDP in § 3.5.3 where coNTINUOUS overcomes the change to
woRDs-structured rendering. It may indicate that the lower-level UDP tasks are
easier for PIXEL-based models than the high-level GLUE tasks (Lauscher et al.,

5We expect that BASE could prevail and would benefit from a wider search for optimal hyperpa-
rameters during finetuning.

7With the coNTINUOUSs rendering strategy, answer spans are extracted such that the answer may
include leading or trailing characters when there is no exact mapping from a word to an image patch
index. Therefore, we did not include TyDiQA-GoldP in the comparison in § 3.5.3. More details can
be found in Rust et al. (2023). We discuss limitations to answer span extraction with BIGRAMS
rendering in § 3.9.4.
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Renderer GLUE
Pretraining Finetuning Avg
BIGRAMS BIGRAMS 75.4
CONTINUOUS CONTINUOUS 71.0
CONTINUOUS BIGRAMS 61.1
BIGRAMS CONTINUOUS 53.0

Table 3.3: Rendering strategy combinations between pretraining and finetuning
with smaLL models. For GLUE, matching pretraining structure is most effective.

2020). This is in line with the relatively good performance for TINY-BIGRAMS
on UDP.

To emphasize the increase in performance on semantic tasks with BIGRAMS
rendering, we demonstrate that BASE-BIGRAMS outperforms PIXEL by 3.6 points
on average on MasakhaNER (Adelani et al., 2021), a named entity recognition
benchmark for 10 African languages. This further illustrates the potential of
pixEL-based models for modelling low-resource languages. Detailed results
are presented in Table 3.7 in the appendix. We next turn our attention to how
BIGRAMS rendering enables better performance on semantic tasks.

3.6.2 Contextual representations

The extent to which language models capture semantic information is partly
determined by their ability to contextualise text (Peters et al., 2018). We therefore
analyse how capable BASE-BIGRAMS is at producing contextualised word
representations. We use the Words in Context dataset (WiC; Pilehvar and
Camacho-Collados, 2019) of sentences that contain target words (noun or verb)
in either a similar (True) or different (False) context across sentence pairs.®

We compute the mean hidden state output over all tokens associated with the
target word to obtain a representation. We infer that there is contextualisation if
the model generates representations of a target word from different contexts
with a low cosine similarity compared to target words in similar contexts. We
report this indication of contextuality for each layer of the model, including the
input layer, to better understand the properties of the different layers. Similarities
between randomly chosen words from random examples (Random) are included

8Target words are not necessarily identical across sentence pairs and can vary e.g. in conjugation
or number.

74



3.6. Ablations and supplementary analyses

=}
©
N

e
=)
1

TR g

of

Cosine similarity
I
~
L

Similar context b
I True

I False

-+~ Random

e
o
N

e
o
L

T
0 1 2 3 4 5 6 7 8 9 10 11 12
Layer depth Layer depth

(a) BASE-BIGRAMS (b) BERT

Figure 3.4: Distributions of cosine similarities for verbs and nouns from the WiC
dataset across model layers 0-12, layer O being the input layer. Every example
presents a target word in either a similar or different context across a sentence
pair. The representation of the target word is computed as the mean hidden state
output over the corresponding tokens. We generally see that BASE-BIGRAMS
encodes target words in a similar context as more similar. The median cosine
similarity between random words from random sentences are shown as a baseline.

as a baseline.”

Figure 3.4a plots the resulting distributions of similarities. We see that
representations of target words from similar contexts have a higher cosine
similarity than from different contexts, though with a considerable overlap, and
higher for different contexts than for random. When comparing to BERT in
Figure 3.4b, there is a clear difference in the similarity compared to random
words. The difference in similarity between similar and random words gradually
increases throughout the BASE-BIGRAMS model, until the final layers, whereas
the difference steadily decreases throughout the model for BERT. Given the
shared image patch embedding layer in P1xEL-based models, random words
are more similar to each other at the input layer when modelled as images than
entries in a vocabulary.

Taken together, these plots suggest that a p1xEL-based language model is
capable of forming contextualised word representations and that these are more
context-specific in upper layers, though not as fine-grained as seen for BERT.

°It is not possible to obtain an exact mapping from words to neat image patch indices following
the coNnTiNUOUS rendering strategy, so we do not present this analysis for PIXEL.
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Figure 3.5: Distributions of cosine similarities within samples of high-frequency
words (High), low-frequency words (Low), or between the two samples. Rendering
with BIGRAMS structure leads to less directionally aligned vector representations
of frequent words that have seen more updates during pretraining compared to
infrequent words.

3.6.3 Token frequency and similarity

The degree of cosine similarity between random words observed in Figure 3.4a
encourages us to assess the isotropic nature of the model (Ethayarajh, 2019;
Rajaee and Pilehvar, 2021). The high cosine similarities suggest that the word rep-
resentations are not evenly distributed with respect to direction in the embedding
space, but instead appear to be anisotropic. When learned vector representations
populate a narrow cone in the embedding space, this geometric alignment leads to
an overestimation of their similarity (Gao et al., 2019b), which is not an expected
property of an expressive word embedding space (Arora et al., 2016; Mu and
Viswanath, 2018).10

Recent work has shown that Transformer-based language models can develop
a representation bias driven by token frequency, where low-frequency tokens are
clustered together in the embedding space, leading to anisotropy in the model
(Gao et al., 2019b; Fuster Baggetto and Fresno, 2022; Jiang et al., 2022). This
bias leads to poor word contextualisation because the learned vector positions
of low frequency words have not moved far from their random initialisation.
Thus, their embeddings are not sufficiently distinct from unrelated words with
similarly low token frequency (Gong et al., 2018; Cai et al., 2021). Tokens

10Following Cai et al. (2021) this global estimate of ansiotropy does not rule out the possibility of
distinct and locally isotropic clusters in the embedding space. Ding et al. (2022) show that isotropy
calibration methods (Gao et al., 2019b; Wang et al., 2020b; Li et al., 2020) do not lead to consistent
improvements on downstream tasks when models already benefit from local isotropy. We leave this
direction for PIXEL to future research.
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with a higher frequency, and thus more parameter updates, can move further
in the embedding space from their initialisation and become more semantically
meaningful. Consequently, we hypothesise that compressing the input space in
the form of structured rendering allows the model to build more contextualised
word representations through more frequent parameter updates.

We investigate this by sampling inputs that were seen during pretraining with
high and low frequency. Specifically, we take the 100 most frequently occurring
words from the Wikipedia corpus that was seen during pretraining and 100 words
that occur around 1000 times (rank ~ 50k).!! We first render each word from
the two frequency samples in isolation. We then include a comparison to words
in context across 100 unique sentences per word with BASE-BIGRAMS.!?

We plot the distributions of cosine similarities between representations from
the last encoder layer, where we expect embeddings from both models to be con-
textualised. Comparing the plots from the two rendering strategies, summarised
in Figure 3.5, the effect of pretraining with a smaller set of unique tokens becomes
clear: for p1xEL the distribution appears as mixtures with a larger distribution
mass at higher values of cosine similarity from comparing high-frequency words
to other high-frequency (excluding self-similarity for now) than when comparing
low-frequency to other low-frequency. For BASE-BIGRAMS the frequent words
both in isolation and in-context are less directionally aligned with each other
compared to the infrequent, which is in line with the representation degeneration
problem from Gao et al. (2019b) and more frequent updates leading to better
contextualisation. Figure 3.6 visualises the in-context representations in 2 dimen-
sions using t-SNE (van der Maaten and Hinton, 2008) and provides an additional
indication of more frequent words having less locally compact representations.'?

We expect that in-context representations from PIxEL also qualitatively
resemble Figure 3.5a but cannot easily demonstrate this due to the aforementioned
challenges in aligning patch embeddings with coNTiINUOUS rendering.

3.6.4 Frequency bias and semantic modelling

While there is less evidence of representation degeneration with CONTINUOUS
rendering, it is likely that the poorer performance on GLUE in § 3.5.4 is caused

1 Excluding punctuation and numbers.

12Recall from § 3.6.2 that the cONTINUOUS rendering strategy by design makes an exact mapping
from words in a sentence to neat image patch indices unattainable.

I3Pplotting the first 2 singular values from a singular value decomposition gives the same qualitative
indications.
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Figure 3.8: Evaluation
performance on STS-B.
Uncased sentences yield
better performance than
the original with BASE-
BIGRAMS; the effect is
less clear for PIXEL (not

shown).

by PIXEL seeing too many different patches too few times. This is a direct
consequence of the multitude of ways that similar inputs can be rendered by the
CONTINUOUS approach. However, the drop in performance when mismatching
the rendering strategies in § 3.6.1 for cONTINUOUS — BIGRAMS demonstrates
that the model has developed a set of strategy-specific expectations and features
that are not easily updated. In fact, the new rendering strategy for finetuning
introduces a set of patches that likely never escape the low-frequency domain and
therefore remain poorly contextualised.

Signs of a token frequency bias has also been found in BERT (Fuster Baggetto
and Fresno, 2022).

We lastly assess the connection between visual token frequency and down-
stream semantic performance. With BERT, high-frequency words have the most
context-specific representations (Ethayarajh, 2019), and upper-layer representa-
tions of low-frequency words are influenced more by their context than frequent
words (Voita et al., 2019). Following Ethayarajh (2019), we see that this applies
to BASE-BIGRAMS as well (illustrated in Figure 3.7 and discussed in greater
detail in § 3.9.5). We expect that sentences that only vary in being cased or
uncased would result in different representations when lowercase appears more
frequently (for most words). This demonstrates the impact of observed token
frequency on semantic modelling and is in line with observed biases in BERT’s
embedding space (Jiang et al., 2022).

We rely on the Semantic Textual Similarity Benchmark (STS-B; Cer et al.,
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2017) also found in GLUE for this assessment. We measure the cosine similarity
between sentence representations'# and plot its correlation with the gold standard
similarity scores as the measure of performance. Figure 3.8 proves that both
coNTINUOUS and BIGRAMS rendering during pretraining lead to non-trivial
semantic modelling capabilities. At peak performance, around the middle layers,
the increase from simply ensuring that all words are uncased is roughly the same
as the increase from PIXEL to BASE-BIGRAMS. This resembles how frequent
and infrequent tokens have unequal influence on their context in BERT (Voita
et al., 2019).

Seeing that BASE-BIGRAMS exhibits similar representational traits to that of
BERT, future work could aim for more semantically capable P1xEL-based models
by generalising advances found for tokenizer-based models (Gao et al., 2021).

3.7 Related work

Recent work on pixel-based language modelling has demonstrated how visual
language understanding can be achieved through pixels only (Lee et al., 2023),
observed that the visual similarity of languages plays an important role in cross-
lingual transfer (Rahman et al., 2023), and shown how unifying the modalities for
text and images allows a single encoder to perform multimodal tasks (Tschannen
et al., 2023). By relying on bytes directly, the unification of modalities can be
taken even further (Jaegle et al., 2021; Horton et al., 2023; Yu et al., 2023).
The work most closely related to ours, after Rust et al. (2023), is the work on
machine translation with pixel representations (Salesky et al., 2021, 2023a). A
detailed discussion of previous pixel-based approaches can be found in Rust et al.
(2023, § 5). Where pixEL laid the foundation for general-purpose language
encoding with pixel-based representations, this work takes the first step towards
hypothesis-driven improvements without adding additional data (Yang et al.,
2019) or scaling up the model (Conneau and Lample, 2019). Though it is possible
that competitive performance could be achieved by a model with coNTINUOUS
rendering by pretraining on more data for more steps (Liu et al., 2019).

Our addition of BIGRAMS structure resembles the addition of optional
but hugely beneficial (n = 4)-grams in the character-based caANINE model
(Clark et al., 2022). While character-level n-gram models (Wieting et al., 2016;
Bojanowski et al., 2017) have been succeeded by Transformer-based language

14Mean hidden state output across all tokens in a sentence, excluding the c1s token and black
end-of-sequence token.
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models, character-level features remain valuable as they are less sparse and
more robust to misspellings than word n-grams, and remain useful for especially
morphologically rich languages (Garrette and Baldridge, 2013; Kulmizev et al.,
2017). Previous works have hypothesised that character-level models would be
more suitable than subword-based for modelling morphologically-rich languages
(Tsarfaty et al., 2020; Keren et al., 2022), but a semantically capable design
has proven non-obvious (Ma et al., 2020; Keren et al., 2022; Nzeyimana and
Niyongabo Rubungo, 2022; Sun et al., 2023). We see potential for future work
with pixel-based language models, exploring appropriate strategies for learning
morphological patterns (Klein and Tsarfaty, 2020; Seker and Tsarfaty, 2020;
Soulos et al., 2021).

3.8 Conclusion

We evaluate four text rendering strategies to address the problem of redundancy
in the input space of PixEL-based language models. Consequently, more frequent
parameter updates lead to better contextualised language representations. We
find that rendering two characters per image patch (BIGrRAMS) is a good trade-off
between efficiency and generalisability, resulting in substantial improvements on
downstream semantic and sentence-level tasks; contributing to open-vocabulary
NLP with limited computational resources.

Further analyses reveal how the added rendering structure provokes clear
representational similarities to what has been found in BERT. We see potential in
future work generalising improvements found for tokenization-based masked
language models to p1xEL-based masked language models. Furthermore, con-
sidering that the Vision Transformer has also been applied to speech modelling
(Huang et al., 2022), and that patch representation has been suggested to be a
critical component for the success of ViTs (Trockman and Kolter, 2023), we see
potential for image patches as the basis for unifying modalities.

Limitations

While the rendering strategies we propose here are well-suited to English, not all
equally generalise to other languages or scripts. WorRDS rendering relies on word
boundaries which may not be readily available or well-defined for many languages
which do not mark word or sentence boundaries with whitespace such as Thai or
polysynthetic languages such as Inuktitut. MONO and BIGRAMS are more general
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approaches, but may affect the rendering of positional characters such as diacritics
or correct contextual forms based on where boundaries are created. For both
approaches, it may be necessary to modulate font size across languages to ensure
character pairs fit into a single patch, especially when rendering with diacritics.
MoNo provides further representational efficiency compared to BIGRAMS by
fixing character width, but comes at the cost of more limited language coverage;
many scripts cannot be made fixed-width and fewer than 10 have mono fonts
available. coNTINUOUS rendering provides a more general approach which
must be balanced with learning efficiency.
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3.9 Appendix

3.9.1 Representational efficiency
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Figure 3.9: Distributions of sequence lengths (in patches) resulting from different
rendering strategies.
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As seen in Figure 3.1, structured rendering compresses the input space by reducing
the positions characters may be observed in. This dramatically affects the number
of unique inputs observed in a fixed number of sequences, as quantified in
Figure 3.3. Concretely, the 10 most frequently observed image patches after
processing 100,000 sequences from English Wikipedia are shown in Figure 3.2;
with continuous rendering all are positional variants of the same subword, while
with structured rendering each represents different words or morphemes. However,
instituting word- or subword-level structure with whitespace padding increases
sequence lengths compared to unstructured rendering as quantified in Figure 3.9.

3.9.2 Pretraining loss curves

Renderer
0.9 —— continuous
—— bigrams
0.8 mono
—— words

T T T T T
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Training steps

Figure 3.10: Pretraining loss for smALL models with different rendering strategies,
indicating that structured rendering may make the masked reconstruction task
more data efficient, reaching a low loss in fewer steps.

3.9.3 Detailed experimental results

3.9.4 TyDiQa-GoldP

The conTiNUOUS rendering strategy used for PIXEL, in which words often
overlap in an image patch, leads to extracted answer spans that potentially include
leading or trailing characters that should not be part of the answer. BIGRAMS
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ENG ARA COP HIN JPN KOR TAM VIE ZHO AVg

PIXEL 88.7 77.3 83.5 89.2 90.7 785 52.6 50.5 73.7 76.1
TINY-CONTINUOUS 78.9 74.6 80.0 87.9 89.9 75.1 48.3 46.2 69.5 72.3
Structure
SMALL-CONTINUOUsS 87.2 77.2 83.4 88.9 91.0 78.8 53.8 51.9 73.5 76.2
SMALL-BIGRAMS 87.9 75.4 84.1 88.9 90.8 79.4 53.9 50.9 73.9 76.1
SMALL-MONO 88.3 76.8 83.4 88.9 91.0 79.0 50.5 51.3 73.8 75.9
SMALL-WORDS 88.0 77.2 83.9 89.3 91.2 78.7 53.7 53.3 74.2 76.6
Scale
TINY-BIGRAMS 82.9 70.6 79.1 86.2 90.0 76.2 44.9 47.6 69.8 72.0
SMALL-BIGRAMS 87.9 75.4 84.1 88.9 90.8 79.4 53.9 50.9 73.9 76.1
BASE-BIGRAMS 89.6 77.7 814 88.6 90.8 78.1 49.8 49.4 73.9 755

Table 3.4: Test set LAS results for dependency parsing on a selection of Universal
Dependencies treebanks (UDP).

rendering adressess this issue by yielding clear word boundaries in the input
representations.

However, the BIGRAMS rendering strategy poses new challenges to extracting
answer spans for TyDiQA-GoldP. While the task is simplified compared to the
primary task by removing language tracks that lack whitespace,'> we find that a
surprisingly high number of “words” are a string of comma-separated words or
concatenations of characters and letters that should be delimited by whitespace.
By design we consider and render these as one unit when we only split by
whitespace. An example of a single “unit” from the training split highlights this
issue more clearly: “oikeudet[1]L&4ni[1] 1Vilna523,0501387Vilnan”'® where the
expected answer is “Vilna” and highlighted in bold. In such an instance, a PIXEL
BIGRAMS model will predict the whole unit, resulting in a lower performance.
Furthermore, some of these “words” in the training data are more than a thousand
characters long and therefore do not fit within the maximum sequence length of
529 patches.

5o google-research-datasets/tydiga/blob/master/gold_passage_baseline/README.md
16id = finnish-1438027099681899178-6
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MNLI-m/mm QQP QNLI SST-2 CoLA STS-B MRPC RTE WNLI Avg

PIXEL 78.1/78.9 84.5 87.8 89.6 384 8l.1 88.2 60.5 53.8 74.1
TINY-CONTINUOUS 36.7/37.0 76.6 729 87.2 2.1 251 824 58.5 59.2 53.8
Structure
SMALL-CONTINUOUS 72.2/73.6 84.8 86.2 883 19.1 81.7 84.6 61.4 57.7 71.0
SMALL-BIGRAMS 77.3/78.1 85.7 87.8 90.4 423 843 87.8 63.5 56.3 75.4
SMALL-MONO 77.4/77.6 84.7 86.8 89.4 423 824 86.9 57.5 58.9 74.4
SMALL-WORDS 76.7/77.3 84.5 86.6 89.9 44.6 80.5 87.4 62.8 56.3 74.7
Scale
TINY-BIGRAMS 60.8/61.9 79.6 81.7 87.2 15.6 779 83.0 59.4 57.7 66.5
SMALL-BIGRAMS 77.3/78.1 85.7 87.8 90.4 423 84.3 87.8 63.5 56.3 75.4
BASE-BIGRAMS 81.1/81.4 87.6 89.7 90.4 53.3 86.6 90.2 63.5 56.3 78.0

Table 3.5: Validation set performance on GLUE. The reported metrics are F; score
for QQP and MRPC, Matthew’s correlation for CoLA, Spearman’s p for STS-B, and
accuracy for the rest.

3.9.5 Measuring self-similarity and intra-sentence similarity

We follow Ethayarajh (2019) and measure the degree of self-similarity and
intra-sentence similarity for the words in the two frequency samples from § 3.6.3.
Self-similarity is computed as the cosine similarity between the same word in
different sentences and a high degree therefore indicates that representations
vary little across contexts. For intra-sentence similarity we compute the cosine
similarity between a word representation and the sentence representation (mean
hidden state output across all tokens excluding the cis token and black end-of-
sequence token).!” This captures how aligned the representation of a word is with
the sentence as a whole. If a word has both a low degree of self-similarity and intra-
sentence similarity, we infer that the word has a context-specific representation
that is still distinct from the other words in that sentence. If self-similarity
is low but intra-sentence similarity is high, this alludes to the word simply
being contextualised by aligning its representation with the other words in that
sentence. We summarise these two measures in Figure 3.7 and find that, just like
in Figure 3.4a, the upper layers produce more context-specific representations as
seen by the lower self-similarity, and that high-frequency words are the most
context-specific. This is in line with Ethayarajh (2019) who finds that stopwords,
being some of the most frequently observed words in the pretraining data, have

17Ethayarajh (2019) average over every word-sentence combination for a given sentence, not just a
single word.
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ENG ARA BEN FIN IND KOR RUS SWA TEL AVg

PIXEL 59.6 57.3 36.3 57.1 63.6 26.1 50.5 65.9 61.7 52.3

TINY-CONTINUOUS 42.6 45.0 12.4 45.3 48.1 13.2 36.7 46.8 45.7 36.6
SMALL-CONTINUOUS 57.1 53.3 20.3 57.5 62.9 22.3 51.1 65.3 58.1 48.8

Scale
TINY-BIGRAMS 43.3 455 19.0 50.3 48.2 149 454 52.7 56.4 41.6
SMALL-BIGRAMS 50.8 53.2 37.1 59.1 57.5 20.1 52.8 62.4 64.2 50.8
BASE-BIGRAMS 53.8 53.1 46.5 59.6 60.3 18.8 54.1 64.1 65.7 52.8

Table 3.6: Validation set F; scores for TyDiQA-GoldP. Average (Avg) scores exclude
ENG (Clark et al., 2020). With some rendering structures, answer span extraction
adversely affects results (see discussion at § 3.9.4).

AMH HAU IBO KIN LUG LUO PCM SWA WOL YOR AVg

PIXEL 47.7 82.4 79.9 64.2 76.5 66.6 78.7 79.8 59.7 70.7 70.6
BASE-BIGRAMS 50.1 85.6 82.2 68.4 78.4 72.5 82.8 824 64.4 74.8 74.2

Table 3.7: Test set F; scores on MasakhaNER (Adelani et al., 2021). We follow
the implementation of Rust et al. (2023) and render each word at the start of a
new image patch.

some of the most context-specific representations. The measure of intra-sentence
similarity reveals that the contextualised representation of low-frequency words
is more similar to that of its context, with high-frequency words having more
nuance where words do not necessarily mean the same just because they appear
in the same sentence.
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Chapter 4

Pixel-Based Language Modeling of
Historical Documents

The work presented in this chapter is based on a paper that has been published as:
Nadav Borenstein, Phillip Rust, Desmond Elliott, and Isabelle Augenstein. 2023b.
PHD: Pixel-based language modeling of historical documents. In Proceedings of
the 2023 Conference on Empirical Methods in Natural Language Processing, pages
87-107, Singapore. Association for Computational Linguistics.

Abstract

The digitisation of historical documents has provided historians with unprece-
dented research opportunities. Yet, the conventional approach to analysing
historical documents involves converting them from images to text using OCR,
a process that overlooks the potential benefits of treating them as images and
introduces high levels of noise. To bridge this gap, we take advantage of recent
advancements in pixel-based language models trained to reconstruct masked
patches of pixels instead of predicting token distributions. Due to the scarcity
of real historical scans, we propose a novel method for generating synthetic
scans to resemble real historical documents. We then pre-train our model, PHD,
on a combination of synthetic scans and real historical newspapers from the
1700-1900 period. Through our experiments, we demonstrate that pHD exhibits
high proficiency in reconstructing masked image patches and provide evidence
of our model’s noteworthy language understanding capabilities. Notably, we
successfully apply our model to a historical QA task, highlighting its utility in this
domain.

O nadavborenstein/pixel-bw
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(a) Input example. (b) Masking the input.

Figure 4.1: Our proposed model, pHD. The model is trained to reconstruct
the original image (a) from the masked image (b), resulting in (c). The grid
represents the 16 x 16 pixels patches that the inputs are broken into.

4.1 Introduction

Recent years have seen a boom in efforts to digitise historical documents in
numerous languages and sources (Chadwyck, 1998; Groesen, 2015; Moss, 2009),
leading to a transformation in the way historians work. Researchers are now able
to expedite the analysis process of vast historical corpora using NLP tools, thereby
enabling them to focus on interpretation instead of the arduous task of evidence
collection (Laite, 2020; Gerritsen, 2012).

The primary step in most NLP tools tailored for historical analysis involves
Optical Character Recognition (OCR). However, this approach poses several
challenges and drawbacks. First, OCR strips away any valuable contextual
meaning embedded within non-textual elements, such as page layout, fonts,
and figures.! Moreover, historical documents present numerous challenges
to OCR systems. This can range from deteriorated pages, archaic fonts and
language, the presence of non-textual elements, and occasional deficiencies in
scan quality (e.g., blurriness), all of which contribute to the introduction of
additional noise. Consequently, the extracted text is often riddled with errors at
the character level (Robertson and Goldwater, 2018; Bollmann, 2019), which
most large language models (LLMs) are not tuned to process. Token-based LLMs
are especially sensitive to this, as the discrete structure of their input space cannot
handle well the abundance of out-of-vocabulary words that characterise OCRed
historical documents (Rust et al., 2023). Therefore, while LLMs have proven

LConsider, for example, the visual data that is lost by processing the newspaper page in Figure 4.18
in § 4.7.3 as text.
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remarkably successful in modern domains, their performance is considerably
weaker when applied to historical texts (Manjavacas and Fonteyn, 2022; Baptiste
et al., 2021, inter alia). Finally, for many languages, OCR systems either do not
exist or perform particularly poorly. As training new OCR models is laborious and
expensive (Li et al., 2023c), the application of NLP tools to historical documents
in these languages is limited.

This work addresses these limitations by taking advantage of recent ad-
vancements in pixel-based language modelling, with the goal of constructing
a general-purpose, image-based and OCR-free language encoder of historical
documents. Specifically, we adapt P1xEL (Rust et al., 2023), a language model
that renders text as images and is trained to reconstruct masked patches instead
of predicting a distribution over tokens. PIXEL’s training methodology is highly
suitable for the historical domain, as (unlike other pixel-based language models)
it does not rely on a pretraining dataset composed of instances where the image
and text are aligned. Figure 4.1 visualises our proposed training approach.

Given the paucity of large, high-quality datasets comprising historical scans,
we pretrain our model using a combination of 1) synthetic scans designed to
resemble historical documents faithfully, produced using a novel method we
propose for synthetic scan generation; and 2) real historical English newspapers
published in the Caribbeans in the 18th and 19th centuries. The resulting pixel-
based language encoder, PHD (Pixel-based model for Historical Documents), is
subsequently evaluated based on its comprehension of natural language and its
effectiveness in performing Question Answering from historical documents.

We discover that pHD displays impressive reconstruction capabilities, being
able to correctly predict both the form and content of masked patches of historical
newspapers (§ 4.4.4). We also note the challenges concerning quantitatively
evaluating these predictions. We provide evidence of our model’s noteworthy
language understanding capabilities while exhibiting an impressive resilience to
noise. Finally, we demonstrate the usefulness of the model when applied to the
historical QA task (§ 4.5.4).

To facilitate future research, we provide the dataset, models, and code at
O nadavborenstein/pixel-bw.
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4.2 Background

4.2.1 NLP for Historical Texts

Considerable efforts have been invested in improving both OCR accuracy (Li
et al., 2023c; Smith, 2023) and text normalisation techniques for historical
documents (Drobac et al., 2017; Robertson and Goldwater, 2018; Bollmann
et al., 2018; Bollmann, 2019; Lyu et al., 2021). This has been done with the
aim of aligning historical texts with their modern counterparts. However, these
methods are not without flaws (Robertson and Goldwater, 2018; Bollmann,
2019), and any errors introduced during these preprocessing stages can propagate
to downstream tasks (Robertson and Goldwater, 2018; Hill and Hengchen, 2019).
As a result, historical texts remain a persistently challenging domain for NLP
research (Lai et al., 2021; De Toni et al., 2022; Borenstein et al., 2023c). Here,
we propose a novel approach to overcome the challenges associated with OCR
in historical material, by employing an image-based language model capable of
directly processing historical document scans and effectively bypassing the OCR
stage.

4.2.2 Pixel-based Models for NLU

Extensive research has been conducted on models for processing text embedded
in images. Most existing approaches incorporate OCR systems as an integral
part of their inference pipeline (Appalaraju et al., 2021; Li et al., 2021; Delteil
et al., 2022). These approaches employ multimodal architectures where the input
consists of both the image and the output generated by an OCR system.

Recent years have also witnessed the emergence of OCR-free approaches for
pixel-based language understanding. Kim et al. (2022) introduce poNUT, an
image-encoder-text-decoder model for document comprehension. DONUT is
pretrained with the objective of extracting text from scans, a task they refer to
as “pseudo-OCR”. Subsequently, it is finetuned on various text generation tasks,
reminiscent of T5 (Roberts et al., 2020). While architecturally similar to boNUT,
Dessurt (Davis et al., 2023) and Pix2Struct (Lee et al., 2023) were pretrained by
masking image regions and predicting the text in both masked and unmasked
image regions. Unlike our method, all above-mentioned models predict in the
text space rather than the pixel space. This presupposes access to a pretraining
dataset comprised of instances where the image and text are aligned. However,
this assumption cannot hold for historical NLP since OCR-independent ground
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truth text for historical scans is, in many times, unprocurable and cannot be used
for training purposes.

Text-free models that operate at the pixel level for language understanding are
relatively uncommon. One notable exception is Li et al. (2022a), which utilises
Masked Image Modeling for pretraining on document patches. Nevertheless, their
focus lies primarily on tasks that do not necessitate robust language understanding,
such as table detection, document classification, and layout analysis. P1XxEL (Rust
et al., 2023), conversely, is a text-free pixel-based language model that exhibits
strong language understanding capabilities, making it the ideal choice for our
research. The subsequent section will delve into a more detailed discussion of
P1XEL and how we adapt it to our task.

4.3 Model

PIXEL We base PHD on PIXEL, a pretrained pixel-based encoder of language.
PIXEL has three main components: A text renderer that draws texts as images,
a pixel-based encoder, and a pixel-based decoder. The training of PIXEL is
analogous to BERT (Devlin et al., 2019). During pretraining, input strings are
rendered as images, and the encoder and the decoder are trained jointly to
reconstruct randomly masked image regions from the unmasked context. During
finetuning, the decoder is replaced with a suitable classification head, and no
masking is performed. The encoder and decoder are based on the ViT-MAE
architecture (He et al., 2022) and work at the patch level. That is, the encoder
breaks the input image into patches of 16 x 16 pixels and outputs an embedding
for each patch. The decoder then decodes these patch embeddings back into
pixels. Therefore, random masking is performed at the patch level as well.

pHD We follow the same approach as PIXEL’s pretraining and finetuning
schemes. However, PIXEL’s intended use is to process texts, not natural images.
That is, the expected input to PIXEL is a string, not an image file. In contrast,
we aim to use the model to encode real document scans. Therefore, we make
several adaptations to PIXEL’s training and data processing procedures to make
it compatible with our use case (§ 4.4 and § 4.5).

Most crucially, we alter the dimensions of the model’s input: The text renderer
of PIXEL renders strings as a long and narrow image with a resolution of 16 x
8464 pixels (corresponding to 1 x 529 patches), such that the resulting image
resembles a ribbon with text. Each input character is set to be not taller than 16
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#Train #Test

Source #Issues
Scans Scans
Caribbean Project 7487 1675172 87721
Danish Royal Library 5661 300780 15159
Total 13148 1975952 102880

Table 4.1: Statistics of the newspapers dataset.

pixels and occupies roughly one patch. However, real document scans cannot
be represented this way, as they have a natural two-dimensional structure and
irregular fonts, as Figure 4.1a demonstrates (and compare to Figure 4.17a in
§ 4.7.3). Therefore, we set the input size of PHD to be 368 x 368 pixels (or 23 x
23 patches).

4.4 Training a Pixel-Based Historical LM

We design PHD to serve as a general-purpose, pixel-based language encoder
of historical documents. Ideally, PHD should be pretrained on a large dataset
of scanned documents from various historical periods and different locations.
However, large, high-quality datasets of historical scans are not easily obtainable.
Therefore, we propose a novel method for generating historical-looking artificial
data from modern corpora (see § 4.4.1). We adapt our model to the historical
domain by continuously pretraining it on a medium-sized corpus of real historical
documents. Below, we describe the datasets and the pretraining process of the
model.

4.4.1 Artificially Generated Pretraining Data

Our pretraining dataset consists of artificially generated scans of texts from the
same sources that BERT used, namely the BookCorpus (Zhu et al., 2015) and
the English Wikipedia.> We generate the scans as follows.

We generate dataset samples on-the-fly, adopting a similar approach as Davis
et al. (2023). First, we split the text corpora into paragraphs, using the new-line
character as a delimiter. From a paragraph chosen at random, we pick a random
spot and keep the text spanning from that spot to the paragraph’s end. We
also sample a random font and font size from a pre-defined list of fonts (from

2We use the version “20220301.en” hosted on (¥ datasets/wikipedia.
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School in Plon, SchleswigHolstein in 1912. He
then traveled for six months in Great Britain and
Switzerland. After his wanderjahr he settled in
to study law at the University of Heidelberg. He
also joined a student corps there.
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Figure 4.2: Process of generating a single artificial scan. Refer to § 4.4.1 for
detailed explanations.

Davis et al. (2023)). The text span and the font are then embedded within an
HTML template using the Python package Jinja,® set to generate a Web page with
dimensions that match the input dimension of the model. Finally, we use the
Python package WeasyPrint* to render the HTML file as a PNG image. Figure 4.2a
visualises this process’ outcome.

In some cases, if the text span is short or the selected font is small, the resulting
image contains a large empty space (as in Figure 4.2a). When the empty space
within an image exceeds 10%, a new image is generated to replace the vacant
area. We create the new image by randomly choosing one of two options. In
80% of the cases, we retain the font of the original image and select the next
paragraph. In 20% of the cases, a new paragraph and font are sampled. This
pertains to the common case where a historical scan depicts a transition of context
or font (e.g., Figure 4.1a). This process can repeat multiple times, resulting in
images akin to Figure 4.2b.

Finally, to simulate the effects of scanning ageing historical documents, we
degrade the image by adding various types of noise, such as blurring, rotations,
salt-and-pepper noise and bleed-through effect (see Figure 4.2c and Figure 4.9 in
§ 4.7.3 for examples). § 4.7.1.2 enumerates the full list of the degradations and
augmentations we use.
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Figure 4.3: Examples of some image completions made by pHD. Masked regions
marked by dark outlines.

4.4.2 Real Historical Scans

We adapt pHD to the historical domain by continuously pretraining it on a
medium-sized corpus of scans of real historical newspapers. Specifically, we collect
newspapers written in English from the “Caribbean Newspapers, 1718-1876”
database,” the largest collection of Caribbean newspapers from the 18th-19th
century available online. We extend this dataset with English-Danish newspapers
published between 1770-1850 in the Danish Caribbean colony of Santa Cruz
(now Saint Croix) downloaded from the Danish Royal Library’s website.® See
Table 4.1 for details of dataset sizes. While confined in its geographical and
temporal context, this dataset offers a rich diversity in terms of content and
format, rendering it an effective test bed for evaluating PHD.

Newspaper pages are converted into a 368 x 368 pixels crops using a sliding
window approach over the page’s columns. This process is described in more
detail in § 4.7.1.2. We reserve 5% of newspaper issues for validation, using the
rest for training. See Figure 4.10 in § 4.7.3 for dataset examples.

4.4.3 Pretraining Procedure

Like p1xEL, the pretraining objective of PHD is to reconstruct the pixels in
masked image patches. We randomly occlude 28% of the input patches with 2D
rectangular masks. We uniformly sample their width and height from [2, 6] and

Shttps://jinja.palletsprojects.com/en/3.1.x/

4https://weasyprint.ong/

Shttps://www.readex.com/products/caribbean-newspapers-series-1-1718-1876-america
n-antiquarian-society/

6https ://www2.statsbiblioteket.dk/mediestream/
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Figure 4.4: Single word completions made by our model. Figure captions depict
the missing word. Fig (a) depicts a successful reconstruction, whereas Fig (b) and
(c) represent fail-cases.

[2, 4] patches, respectively, and then place them in random image locations (See
Figure 4.1b for an example). Training hyperparameters can be found in § 4.7.1.1.

4.4.4 Pretraining Results

Qualitative Evaluation We begin by conducting a qualitative examination of
the predictions made by our model. Figure 4.3 presents a visual representation
of the model’s predictions on three randomly selected scans from the test set
of the Caribbean newspapers dataset (for additional results on other datasets,
refer to Figure 4.12, § 4.7.3). From a visual inspection, it becomes evident that
the model accurately reconstructs the fonts and structure of the masked regions.
However, the situation is less clear when it comes to predicting textual content.
Similar to Rust et al. (2023), unsurprisingly, prediction quality is high and the
results are sharp for smaller masks and when words are only partially obscured.
However, as the completions become longer, the text quality deteriorates, resulting
in blurry text. It is important to note that evaluating these blurry completions
presents a significant challenge. Unlike token-based models, where the presence of
multiple words with high, similar likelihood can easily be detected by examining
the discrete distribution, this becomes impossible with pixel-based models. In
pixel-based completions, high-likelihood words may overlay and produce a blurry
completion. Clear completions are only observed when a single word has a
significantly higher probability compared to others. This limitation is an area that
we leave for future work.

We now move to analyse PHD’s ability to fill in single masked words. We
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Figure 4.5: Semantic search using our model. (a) is the target of the search, and
(b) are scans retrieved from the newspaper corpus.

randomly sample test scans and OCRed them using Tesseract.” Next, we randomly
select a single word from the OCRed text and use Tesseract’s word-to-image
location functionality to (heuristically) mask the word from the image. Results
are presented in Figure 4.4. Similar to our earlier findings, the reconstruction
quality of single-word completion varies. Some completions are sharp and precise,
while others appear blurry. In some few cases, the model produces a sharp
reconstruction of an incorrect word (Figure 4.4c). Unfortunately, due to the blurry
nature of many of the results (regardless of their correctness), a quantitative
analysis of these results (e.g., by OCRing the reconstructed patch and comparing
it to the OCR output of the original patch) is unattainable.

Semantic Search A possible useful application of PHD is semantic search. That
is, searching in a corpus for historical documents that are semantically similar to a
concept of interest. We now analyse pHD’s ability to assign similar historical scans
with similar embeddings. We start by taking a random sample of 1000 images
from our test set and embed them by averaging the patch embeddings of the final
layer of the model. We then reduce the dimensionality of the embeddings with
t-SNE (van der Maaten and Hinton, 2008). Upon visual inspection (Figure 4.13

7 O tesseract-ocr/tesseract
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Sentence I: How does one get out of a submarine
in depth, without the inflow of water inside it?

Sentence 2@ Why does a submarine implode at a
certain depth, but some marine life can live on the

ocean floor in the deepest oceans without being

crushed?

Figure 4.6: Samples from the clean and noisy visual GLUE datasets.

in § 4.7.3), we see that scans are clustered based on visual similarity and page
structure.

Figure 4.13, however, does not provide insights regarding the semantic
properties of the clusters. Therefore, we also directly use the model in semantic
search settings. Specifically, we search our newspapers corpus for scans that are
semantically similar to instances of the Runaways Slaves in Britain dataset, as well
as scans containing shipping ads (See Figure 4.16 in § 4.7.3 for examples). To do
so, we embed 1M random scans from the corpus. We then calculate the cosine
similarity between these embeddings and the embedding of samples from the
Runaways Slaves in Britain and embeddings of shipping ads. Finally, we manually
examine the ten most similar scans to each sample.

Our results (Figure 4.5 and Figure 4.14 in § 4.7.3) are encouraging, indicating
that the embeddings capture not only structural and visual information, but also
the semantic content of the scans. However, the results are still far from perfect,
and many retrieved scans are not semantically similar to the search’s target. It
is highly plausible that additional specialised finetuning (e.g., SentenceBERT’s
(Reimers and Gurevych, 2019) training scheme) is necessary to produce more
semantically meaningful embeddings.

4.5 Training for Downstream NLU Tasks

After obtaining a pretrained pixel-based language model adapted to the historical
domain (§ 4.4), we now move to evaluate its understanding of natural language
and its usefulness in addressing historically-oriented NLP tasks. Below, we describe
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How much reward is offered?
7 ]THE REAS a Malatta Doy (his' MName
b ¥ Dench) heionging to a yeung Ma baely ags
rived from Gic Enfl-Indiss, a%ented himfel? en Mon-
day the zeth it &e ha ! onwihen Be went away
a Thickeer Froek and Wealtecat, Taeather Breecher,
and a blue Surtuic {leat, with x ied Coliar
Ary Perfor that will spprehend the sbovementicned
Boy, or wive any Jneiligence where hemay be iaken,
fhall receive o Reward of Three 'Guineas,! He is
about five Feer high, with fhort black Hdir, not of
the woolly Kind, =
N. B. If taken, to be brought to the Sign of the
Georpe, Queen-Ann-Street, Cavendith-Square.

Figure 4.7: Example from the Runaways Slaves in Britain dataset, rendered as
visual question answering task. The gray overlay marks the patches containing
the answer.

the datasets we use for this and the experimental settings.

4.5.1 Language Understanding

We adapt the commonly used GLUE benchmark (Wang et al., 2018) to gauge
our model’s understanding of language. We convert GLUE instances into images
similar to the process described in § 4.4.1. Given a GLUE instance with sentences
51,52 (s2 can be empty), we embed s; and sy into an HTML template, introducing
a line break between the sentences. We then render the HTML files as images.

We generate two versions of this visual GLUE dataset — clean and noisy. The
former is rendered using a single pre-defined font without applying degradations
or augmentations, whereas the latter is generated with random fonts and degra-
dations. Figure 4.6 presents a sample of each of the two dataset versions. While
the first version allows us to measure PHD’s understanding of language in “sterile”
settings, we can use the second version to estimate the robustness of the model to
noise common to historical scans.

4.5.2 Historical Question Answering

QA applied to historical datasets can be immensely valuable and useful for
historians (Borenstein et al., 2023a). Therefore, we assess PHD’s potential for
assisting historians with this important NLP task. We finetune the model on
two novel datasets. The first is an adaptation of the classical SQuUAD-v2 dataset
(Rajpurkar et al., 2016), while the second is a genuine historical QA dataset.
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MNLI QQP QNLI SST-2 COLA STS-B MRPC RTE WNLI

Noise Images Model 393k 364k 105k 67k 8.6k 58k 3.7k 25k 635 AVO
) BERT 84.1 87.6 91.0 92.6 60.3 888 90.2 69.5 51.8 80.0
PIXEL 78.5 845 87.8 89.6 38.4 81.1 882 605 53.8 741

X cLIPy, 502 647 67.4 79.8 42 564 741 515 256 52.7
v DONUT 640 77.8 69.7 821 13.9 144 817 540 57.7 57.2

Ours 70.1 82.7 823 825 159 802 834 59.9 541 67.9

OCR+BERT 71.7 77.5 82.7 855 39.7 684 86.9 588 513 69.2

OCR+pIXEL 70.6 785 81.5 83.6 303 688 847 59.7 586 68.5

o CLIPg, 453 674 644 792 35 579 788 473 32.7 529
ponuUT 616 741 751 755 102 20.6 81.9 567 60.0 57.3

Ours 68.0 80.4 818 839 15. 80.4 83.6 585 57.8 67.2

Table 4.2: Results for pHD finetuned on GLUE. The metrics are F; score for
QQP and MRPC, Matthew’s correlation for COLA, Spearman’s p for STS-B, and
accuracy for the remaining datasets. Bold values indicate the best model in
category (noisy/clean), while underscored values indicate the best pixel-based
model.

SQuAD Dataset We formulate SQUAD-v2 as a patch classification task, as
illustrated in Figure 4.11 in § 4.7.3. Given a SQuAD instance with question g,
context ¢ and answer a that is a span in ¢, we render ¢ as an image, I (Figure 4.11a).
Then, each patch of I is labelled with 1 if it contains a part of a or 0 otherwise.
This generates a binary label mask M for I, which our model tries to predict
(Figure 4.11b). If any degradations or augmentations are later applied to I, we
ensure that M is affected accordingly. Finally, similarly to Lee et al. (2023), we
concatenate to I a rendering of g and crop the resulting image to the appropriate
input size (Figure 4.11c).

Generating the binary mask M is not straightforward, as we do not know where
a is located inside the generated image I. For this purpose, we first use Tesseract
to OCR I and generate ¢. Next, we use fuzzy string matching to search for a
within ¢. If a match a € ¢ is found, we use Tesseract to find the pixel coordinates
of a within I. We then map the pixel coordinates to patch coordinates and label
all the patches containing a with 1. In about 15% of the cases, Tesseract fails to
OCR I properly, and a cannot be found in ¢, resulting in a higher proportion of
SQuAD samples without an answer compared to the text-based version.

As with GLUE, we generate two versions of visual SQuUAD, which we use to
evaluate PHD’s performance in both sterile and historical settings.
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Historical QA Dataset Finally, we finetune pHD for a real historical QA task.
For this, we use the English dataset scraped from the website of the Runaways
Slaves in Britain project, a searchable database of over 800 newspaper adverts
printed between 1700 and 1780 placed by enslavers who wanted to capture
enslaved people who had self-liberated (Newman et al., 2019). Each ad was
manually transcribed and annotated with more than 50 different attributes, such
as the described gender and age, what clothes the enslaved person wore, and
their physical description.

Following Borenstein et al. (2023a), we convert this dataset to match the
SQuAD format: given an ad and an annotated attribute, we define the transcribed
ad as the context ¢, the attribute as the answer a, and manually compose an
appropriate question q. We process the resulting dataset similarly to how SQuUAD
is processed, with one key difference: instead of rendering the transcribed ad c as
an image, we use the original ad scan. Therefore, we also do not introduce any
noise to the images. See Figure 4.7 for an example instance. We reserve 20% of
the dataset for testing.

4.5.3 Training Procedure

Similar to BERT, PHD is finetuned for downstream tasks by replacing the decoder
with a suitable head. Table 4.4 in § 4.7.1.1 details the hyperparameters used to
train PHD on the different GLUE tasks. We use the standard GLUE metrics to
evaluate our model. Since GLUE is designed for models of modern English, we
use this benchmark to evaluate a checkpoint of our model obtained after training
on the artificial modern scans, but before training on the real historical scans.
The same checkpoint is also used to evaluate PHD on SQuUAD. Conversely, we
use the final model checkpoint (after introducing the historical data) to finetune
on the historical QA dataset: First, we train the model on the noisy SQuUAD and
subsequently finetune it on the Runaways dataset (see § 4.7.1.1 for training
details).

To evaluate our model’s performance on the QA datasets, we employ various
metrics. The primary metrics include binary accuracy, which indicates whether
the model agrees with the ground truth regarding the presence of an answer in
the context. Additionally, we utilise patch-based accuracy, which measures the
ratio of overlapping answer patches between the ground truth mask M and the
predicted mask M, averaged over all the dataset instances for which an answer
exists. Finally, we measure the number of times a predicted answer and the
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Task Model Noise / Image Binary  Patch One

acc acc  Overlap
BERT X/ X 72.3 47.3 53.9
S ours X/ 603 164 422
Ours /I 61.7 14.4 41.2
R BERT -/ X 78.3 52.0 55.8
Ours -/ 74.7 20.0 48.8

Table 4.3: Results for pHD finetuned on our visual SQuAD (S) and the Runaways
Slaves (R) datasets.

ground truth overlap by at least a single patch. We balance the test sets to contain
an equal number of examples with and without an answer.

4.5.4 Results

Baselines We compare PHD’s performance on GLUE to a variety of strong
baselines, covering both OCR-free and OCR-based methods. First, we use cLIP
with a ViT-L/14 image encoder in the linear probe setting, which was shown to be
effective in a range of settings that require a joint understanding of image and
text—including rendered SST-2 (Radford et al., 2021b). While we only train a
linear model on the extracted crLip features, compared to full finetuning in PHD,
cLIP is about 5x the size with ~427M parameters and has been trained longer on
more data. Second, we finetune poNuUT (§ 4.2.2), which has ~200M parameters
and is the closest and strongest OCR-free alternative to PHD. Moreover, we
finetune BERT and P1xEL on the OCR output of Tesseract. Both BERT and
PIXEL are comparable in size and compute budget to puD. Although BERT has
been shown to be overall more effective on standard GLUE than PIXEL, PIXEL
is more robust to orthographic noise (Rust et al., 2023). Finally, to obtain an
empirical upper limit to our model, we finetune BERT and PIXEL on a standard,
not-OCRed version of GLUE. Likewise, for the QA tasks, we compare PHD to
BERT trained on a non-OCRed version of the datasets (the Runaways dataset was
manually transcribed). We describe all baseline setups in § 4.7.2.

GLUE Table 4.2 summarises the performance of PHD on GLUE. Our model
demonstrates noteworthy results, achieving scores of above 80 for five out of
the nine GLUE tasks. These results serve as evidence of our model’s language
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understanding capabilities. Although our model falls short when compared to
text-based BERT by 13 absolute points on average, it achieves competitive results
compared to the OCR-then-finetune baselines. Moreover, PHD outperforms other
pixel-based models by more than 10 absolute points on average, highlighting the
efficacy of our methodology.

Question Answering According to Table 4.3, our model achieves above guess-
level accuracies on these highly challenging tasks, further strengthening the
indications that PHD was able to obtain impressive language comprehension
skills. Although the binary accuracy on SQuUAD is low, hovering around 60%
compared to the 72% of BERT, the relatively high “At least one overlap” score of
above 40 indicates that pHD has gained the ability to locate the answer within
the scan correctly. Furthermore, PHD displays impressive robustness to noise,
with only a marginal decline in performance observed between the clean and
noisy versions of the SQUAD dataset, indicating its potential in handling the
highly noisy historical domain. The model’s performance on the Runaways Slaves
dataset is particularly noteworthy, reaching a binary accuracy score of nearly
75% compared to BERT’s 78%, demonstrating the usefulness of the model in
application to historically-oriented NLP tasks. We believe that the higher metrics
reported for this dataset compared to the standard SQUAD might stem from the
fact that Runaways Slaves in Britain contains repeated questions (with different
contexts), which might render the task more trackable for our model.

Saliency Maps Our patch-based QA approach can also produce visual saliency
maps, allowing for a more fine-grained interpretation of model predictions and
capabilities (Das et al., 2017). Figure 4.8 presents two such saliency maps
produced by applying the model to test samples from the Runaways Slaves in
Britain dataset, including a failure case (Figure 4.8a) and a successful prediction
(Figure 4.8b). More examples can be found in Figure 4.15 in § 4.7.3.

4.6 Conclusion

In this study, we introduce pHD, an OCR-free language encoder specifically
designed for analysing historical documents at the pixel level. We present a
novel pretraining method involving a combination of synthetic scans that closely
resemble historical documents, as well as real historical newspapers published in
the Caribbeans during the 18th and 19th centuries. Through our experiments,
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(b)

Figure 4.8: Saliency maps of PHD finetuned on the Runaways Slaves in Britain
dataset. Ground truth label in a grey box. The figures were cropped in post-
processing.

we observe that pHD exhibits high proficiency in reconstructing masked image
patches, and provide evidence of our model’s noteworthy language understanding
capabilities. Notably, we successfully apply our model to a historical QA task,
achieving a binary accuracy score of nearly 75%, highlighting its usefulness in this
domain. Finally, we note that better evaluation methods are needed to further
drive progress in this domain.
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Limitations

We see several limitations regarding our work. First, we focus on the English
language only, a high-resource language with strong OCR systems developed
for it. By doing so, we neglect low-resource languages for which our model can
potentially be more impactful.

On the same note, we opted to pretrain our model on a single (albeit diverse)
historical corpus of newspapers, and its robustness in handling other historical
sources is yet to be proven. To address this limitation, we plan to extend our
historical corpora in future research endeavours. Expanding the range of the
historical training data would not only alleviate this concern but also tackle another
limitation; while our model was designed for historical document analysis, most of
its pretraining corpora consist of modern texts due to the insufficient availability
of large historical datasets.

We also see limitations in the evaluation of pHD. As mentioned in § 4.4.4, it
is unclear how to empirically quantify the quality of the model’s reconstruction
of masked image regions, thus necessitating reliance on qualitative evaluation.
This qualitative approach may result in a suboptimal model for downstream
tasks. Furthermore, the evaluation tasks used to assess our model’s language
understanding capabilities are limited in their scope. Considering our emphasis
on historical language modelling, it is worth noting that the evaluation datasets
predominantly cater to models trained on modern language. We rely on a single
historical dataset to evaluate our model’s performance.

Lastly, due to limited computational resources, we were constrained to training
a relatively small-scale model for a limited amount of steps, potentially impeding
its ability to develop the capabilities needed to address this challenging task.
Insufficient computational capacity also hindered us from conducting comprehen-
sive hyperparameter searches for the downstream tasks, restricting our ability
to optimize the model’s performance to its full potential. This, perhaps, could
enhance our performance metrics and allow PHD to achieve more competitive
results on GLUE and higher absolute numbers on SQuAD.
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Parameter MNLI QQP QNLI SST-2 COLA STS-B MRPC RTE WNLI
Classification-head-pooling Mean

Optimizer AdamW

Adam p (0.9, 0.999)

Adam € le-8

Weight decay le-5

Learning rate 5e—-2

Learning rate warmup steps 100

Learning rate schedule Cosine annealing

Batch size 172 172 128 128 128 128 172 172 172
Max steps 10000

Early stopping v

Eval interval (steps/epoch) 500 500 500 500 100 100 100 250 100
Dropout probability 0.0

Table 4.4: The hyperparameters used to train PHD on GLUE tasks.

4.7 Appendix

4.7.1 Reproducibility

4.7.1.1 Training

Pretraining We pretrain PHD for 1M steps on with the artificial dataset using a
batch size of 176 (the maximal batch size that fits our system) using AdamW
optimizer (Kingma and Ba, 2015; Loshchilov and Hutter, 2019) with a linear
warm-up over the first 50k steps to a peak learning rate of 1.5e—4 and a cosine
decay to a minimum learning rate of 1le—5. We then train pHD for additional
100k steps with the real historical scans using the same hyperparameters but
without warm-up. Pretraining took 10 days on 2 x 80GB Nvidia A100 GPUs.

GLUE Table 4.4 contains the hyperparameters used to finetune PHD on the
GLUE benchmark. We did not run a comprehensive hyperparameter search due
to compute limitations; these settings were manually selected based on a small
number of preliminary runs.

SQuAD To finetune PHD on SQUAD, we used a learning rate of 6.75e—6, batch
size of 128, dropout probability of 0.0 and weight decay of 1e—5. We train the
model for 50 000 steps.
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Runaways Slaves in Britain To finetune PHD on the Runaways Slaves in Britain
dataset, first trained the model on SQUAD using the hyperparameters mentioned
above. Then, we finetuned the resulting model for an additional 1000 steps on
the Runaways Slaves in Britain. The only hyperparameter we changed between
the two runs is the dropout probability, which we increased to 0.2.

4.7.1.2 Dataset Generation

List of dataset augmentations To generate the synthetic dataset described in
§ 4.4.1, we applied the following transformations to the rendered images: text
bleed-through effect; addition of random horizontal and lines; salt and pepper
noise; Gaussian blurring; water stains effect; “holes-in-image" effect; colour jitters
on image background; and random rotations.

Converting the Caribbean Newspapers dataset into 368 x 368 scans We
convert full newspaper pages into a collection of 368 x 368 pixels using the
following process. First, we extract the layout of the page using the Python
package Eynollah.® This package provides the location of every paragraph on the
page, as well as their reading order. As newspapers tend to be multi-columned, we
“linearise” the page into a single-column document. We crop each paragraph and
resize it such that its width equals 368 pixels. We then concatenate all the resized
paragraphs with respect to their reading order to generate a long, single-column
document with a width of 368 pixels. Finally, we use a sliding window approach
to split the linear page into 368 x 368 crops, applying a stride of 128 pixels. We
reserve 5% of newspaper issues for validation, using the rest for training. See
Figure 4.10 in § 4.7.3 for dataset examples.

4.7.2 Historical GLUE Baselines

For all baselines below, we compute and average scores over 5 random initializa-
tions.

OCR + BERT/PIXEL For each GLUE task, we first generate 5 epochs of noisy
training data and run Tesseract on it to obtain noisy text datasets. Similarly,
however without oversampling, we obtain noisy versions of our fixed validation
sets. We then finetune BERT-base and PIxEL-base in the same way as Rust
et al. (2023), with one main difference: the noisy OCR output prevents us from

8 ) qurator-spk/eynollah
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separating the first and second sentence in sentence-level tasks. Therefore we
treat each sentence pair as a single sequence and leave it for the models to
identify sentence boundaries itself, similar to how PHD has to identify sentence
boundaries in the images. We use the codebase and training setup from Rust et al.
(2023).°

crLip We run linear probing on cL1P using an adaptation of OpenATr’s official
codebase.'” We first extract image features from the ViT-L/14 cL1p model and
then train a logistic regression model with L-BFGS solver for all classification
tasks and an ordinary least squares linear regression model for the regression
tasks (only STS-B).

poNUT We finetune boNUT-base using an adaptation of ClovaAl’s official
codebase.!! We frame each of the GLUE tasks as image-to-text tasks: the model
receives the (noisy) input image and is trained to produce an output text sequence
such as <s_glue><s_class><positive/></s_class></s>. In this example, taken
from SST-2, the < X > tags are new vocabulary items added to poNUT and the
label is an added vocabulary item for the positive sentiment class. All classification
tasks in GLUE can be represented in this way. For STS-B, where the label is a
floating point value denoting the similarity score between two sentences, we
follow Raffel et al. (2020) to round and convert the floats into strings.'?> We
finetune with batch size 32 and learning rate between 1le—5 and 3e-5 for a
maximum of 30 epochs or 15 000 steps on images resized to a resolution of 320 x
320 pixels.

OCR-free BERT/PIXEL For GLUE, we take results reported in (Rust et al.,
2021). For SQuAD, we take a BERT model finetuned on SQuAD-v2,'® and
evaluate it on the validation set of SQUAD-v2, after being balanced for the
existence of an answer. For the Runaways Slaves in Britain dataset, we finetune a
BERT-base-cased model'* on a manually transcribed version of the dataset. We
use the default SQuAD-v2 hyperparameters reported in the official Huggingface

9 O xplip/pixel

10 © openai/CLIP#linear-probe-evaluation

11 @ clovaai/donut

12Code example in: € google-research/text-to-text-transfer-transformer/blob/main/t5/
data/preprocessors.py#L816-L855

13

14

¥, deepset/bert-base-cased-squad2

¥ bert-base-cased
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repository for training on SQUAD-v2.'> We then evaluate the model on a balanced
test set, containing 20% of the ads.

4.7.3 Additional Material

Figure 4.9 additional examples from our artificially generated dataset.

Figure 4.10 Sample scans from the real historical dataset, as described in § 4.4.2.
Figure 4.11 The process of generating the Visual SQuAD dataset. We first render
the context as an image (a), generate a patch-level label mask highlighting the
answer (b), add noise and concatenate the question (c).

Figure 4.12 Additional examples of PHD’s completions over test set samples.
Figure 4.13 Dimensionality reduction of embedding calculated by our model on
historical scans. We see that scans are clustered based on visual similarity and
page structure. However, further investigation is required to determine whether
scans are also clustered based on semantic similarity.

Figure 4.14 Using pHD for semantic search. Figure 4.14a and is the target of the
search (the concept we are looking for), while Figure 4.14b and are the retrieved
scans.

Figure 4.15 Additional examples of PHD’s saliency maps for samples from the
test set of the Runaways Slaves in Britain dataset.

Figure 4.16 Examples of shipping ads Newspapers. Newspapers in the Caribbean
region routinely reported on passenger and cargo ships porting and departing the
islands. These ads are usually well-structured and contain information such as
relevant dates, the ship’s captain, route, and cargo.

Figure 4.17 Input samples for p1xEL. The images are rolled, i.e., the actual
input resolution is 16 x 8464 pixels. The grid represents the 16 x 16 patches that
the inputs are broken into.

Figure 4.18 An example of a full newspaper page downloaded from the “Caribbean
project.”

Shttps://colab.research.google.com/github/huggingface/notebooks/blob/master/example
s/question_answering.ipynb
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Figure 4.10: Sample scans from the real historical dataset.
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Figure 4.11: Process of generating the Visual SQuAD dataset. We first render
the context as an image (a), generate a patch-level label mask highlighting the
answer (b), add noise and concatenate the question (c).
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Figure 4.12: Additional examples of PHD’s completions.
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Figure 4.13: Dimensionality reduction of embedding calculated by our model on
historical scans.

(a) Semantic search target. (b) Retrieved scans.

Figure 4.14: Semantic search using our model. (a) is the target of the search, and
(b) are scans retrieved from the newspaper corpus.
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Figure 4.15: Additional examples of PHD’s saliency maps for samples from the
test set of the Runaways Slaves in Britain dataset.
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Figure 4.16: Shipping ads samples. Newspapers in the Caribbean region routinely
reported on passenger and cargo ships porting and departing the islands. These
ads are usually well-structured and contain information such as relevant dates,
the ship’s captain, route, and cargo.

114



4.7. Appendix

Develcped in the 188(s, the ukulele is based on sev
eral small, quitar-like instruments of Porftuguese ori
ain, the machete, cavaquinho, timple, and rajdo, intr
oduced to the Hawaiian Islands by Portuquese immii
aranks from Madeira, the Azores end Cape Verde. Tl
wee immigrants in particular, Madeiran cabinet mak
ers Manuel Nunes, José do Espirito 5anto, and Augt
isto Dias, are generally credited as the first ukulel= r
nakers. Two weeks after they disembarked frorn the
» 55 Ravenscrag in late August 1879, the Hawaiian G
azette reported that "Madeira Islanders recently arr
ived here, have be-en delighting the people with nig
htly street concerls.” One of the rnost |rnDorlar|tIa(
ttors inestablishing the ukulele in Hawaiian music ar
id culture was the ardent support and promiotion of
the instrument by King Kaldkaua. A patron of the arl
s, he incorporated it into performances at roval gatt
1erings. In the Hawaiian language the word ukulele r
oughly translates as "jumping flez”, perhaps becaus
e of the mevement of the player's fingers. Legend &
ttributes it to the nickname cf Englishman Edward \
Nillizm Purvis, ane of King Kalakaua's officers, becal
1se of his srnall size, fidaety manner, and plaving exi

(@) PIXEL’s input.
Develcped in the 1880s, Il HHE s b AHEE
eral small, quilll-- NN s of Puquese ori
i mple, and rajdo, inkr
by Portill-sHHE

I and Cape Verde. Tl

| .. T... - isembarked frorn the
+ S5 Ravenscraq in late Auqust Tl the Hawaiian G
azette rellbrtec that "Madeira Islanders recently dll

been deliall he people with nig

| important Fac

‘tors in establishing awaiian music ar
id culture was the ar

as|"jumping flez", perhaps becalll
|t of the plaver's fingers. LIl
kname cf E n.:lll_:h

15€ 0 hanner, and plaving exi

(b) p1xEL’s masking.

Figure 4.17: Input samples for p1xEL. The images are rolled, i.e., the actual
input resolution is 16 x 8464 pixels. The grid represents the 16 x 16 patches that
the inputs are broken into.
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Figure 4.18: An example of a full newspaper page downloaded from the “Caribbean
project”. § 4.4.2 details the way of processing full newspaper pages so that they
can be inputted to our model.
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Chapter 5

Differential Privacy, Linguistic Fair-
ness, and Training Data Influence in
Multilingual Language Models

The work presented in this chapter is based on a paper that has been published
as: Phillip Rust and Anders Sggaard. 2023. Differential privacy, linguistic
fairness, and training data influence: Impossibility and possibility theorems for
multilingual language models. In Proceedings of the 40th International Conference
on Machine Learning, volume 202 of Proceedings of Machine Learning Research,
pages 29354-29387. PMLR.

Abstract

Language models such as mBERT, XLM-R, and BLOOM aim to achieve multi-
lingual generalization or compression to facilitate transfer to a large number
of (potentially unseen) languages. However, these models should ideally also
be private, linguistically fair, and transparent by relating their predictions to
training data. Can these requirements be simultaneously satisfied? We show that
multilingual compression and linguistic fairness are compatible with differential
privacy, but that differential privacy is at odds with training data influence sparsity,
an objective for transparency. We further present a series of experiments on two
common NLP tasks and evaluate multilingual compression and training data
influence sparsity under different privacy guarantees, exploring these trade-offs in
more detail. Our results suggest that we need to develop ways to jointly optimize
for these objectives in order to find practical trade-offs.

O xplip/multilingual-1m-objectives
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Chapter 5. Differential Privacy, Linguistic Fairness, and Training Data Influence in Multilingual LMs

5.1 Introduction

One of the open challenges in Al is bridging the widening digital language divide
by providing technologies that work well for all languages. Multilingual language
models such as mBERT (Devlin et al., 2019), XLM-R (Conneau et al., 2020a), and
BLOOM (Scao et al., 2022), facilitate transfer between closely related languages,
enabling roll-out of technologies for low-resource languages, and are used for
a wide range of real-world applications in many languages—e.g., from named
entity recognition (Khalifa et al., 2021) to legal document classification (Wang
and Banko, 2021). Generalization across languages is challenged by typological
divides, language families, or scripts (Singh et al., 2019; Dufter and Schiitze,
2020) and finding architectures that best facilitate such transfer, achieving optimal
multilingual compression (Ravishankar and Sggaard, 2021) through parameter
sharing (rather than compartmentalization), remains an open research problem.

With the widespread adaptation of multilingual language models also comes
responsibility and requirements that models are trustworthy (Pruksachatkun
et al., 2021). What does trustworthiness amount to for multilingual language
models? A crucial requirement is that multilingual NLP models perform equally
well across languages, not favoring any languages over others. Choudhury and
Deshpande (2021) refer to this property as linguistic fairness. Linguistic fairness
is defined as zero variance across language-specific losses, typically estimated on
held-out data.’

Another crucial requirement is transparency, i.e., the ability to say why models
make particular predictions. Methods to achieve transparency come in two
flavors; Some methods—commonly referred to as feature attribution methods—
present rationales behind predictions in terms of input token attributions, but
such rationales are limited in that they cannot explain predictions motivated by
the absence of input tokens or the presence of particular token combinations.
Feature attribution methods have also been shown to be unreliable (Kindermans
et al., 2019; Arun et al., 2020). Other methods highlight training data influence,
i.e., provide influential data points as rationales for decisions. Often referred to as
instance-based interpretability methods, they are argued to be more useful across
different NLP tasks (Han et al., 2020; Han and Tsvetkov, 2021; Zhou et al., 2021b).

IThis definition of linguistic fairness is an instantiation of equal risk fairness or overall performance
parity, i.e., equal model performance across groups (Berk et al., 2018; Verma and Rubin, 2018;
Williamson and Menon, 2019), which balances precision-based and recall-based metrics and is
considered more relevant than calibration-based metrics for standard NLP applications. Since the
three are mutually exclusive (Miconi, 2017), we ignore calibration and balance precision and recall.
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We refer to the objective of achieving sparse training data influence, i.e., strong
instance-interpretability, as training data influence sparsity. Finally, for many
NLP applications, we further need our models to be private, for which differential
privacy (DP; Dwork, 2006) provides a theoretically rigorous framework.

The trustworthiness objectives as defined above have primarily been considered
in a monolingual context, and are often (falsely) assumed to be independent
(Ruder et al., 2022).? Our paper investigates the extent to which these objectives
align or are at odds. We do so in a multilingual setting and show how multilinguality
presents options and challenges.® Our theoretical contributions show that while
privacy and linguistic fairness are compatible through multilingual compression,
privacy and training data influence sparsity are not, and our empirical results
indicate that these objectives interact in non-linear ways.

Contributions We begin (in § 5.2) with a theoretical exploration of differential
privacy, training data influence, and linguistic fairness in the context of multi-
lingual language models. We show that differential privacy and training data
influence sparsity are fundamentally at odds, a result which is not limited to the
multilingual setting. While differential privacy and fairness are often said to be at
odds, we also show that differential privacy and linguistic fairness over languages
are compatible in the multilingual setting, as a result of compression.
Subsequently (in § 5.3-§ 5.5), we present empirical results on the impact
of differentially private fine-tuning on multilingual compression and training
data influence: We analyze the effect of such fine-tuning on the multilingual
compression of large LMs and find that it is possible to achieve (i) high compression
with strong privacy at the cost of performance; (ii) high compression with high
performance at the cost of privacy; or (iii) privacy and accuracy at the cost of
compression. Since we show in § 5.2 that performance, privacy and compression
are theoretically compatible, this leaves us with an open problem: How do we
practically optimize for both performance, privacy and compression?
Furthermore, we compare four (proxy) metrics for quantifying multilingual
compression—sentence retrieval, centered kernel alignment (CKA; Kornblith

20ne exception is a growing body of work showing fairness and differential privacy are at odds
(Bagdasaryan et al., 2019; Cummings et al., 2019; Chang and Shokri, 2021; Hansen et al., 2024).
While Naidu et al. (2021) show that differential privacy and GradCAM (Selvaraju et al., 2019), a
feature attribution method, are compatible, the interaction between differential privacy and training
data influence remains unexplored.

3We are, to the best of our knowledge, first to consider differential privacy in a multilingual setting
specifically, with the exception of work on differentially private neural machine translation (Kim et al.,
2021).
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et al., 2019), IsoScore (Rudman et al., 2022), representational similarity analysis
(RSA; Kriegeskorte et al., 2008; Edelman, 1998)—and discuss their usefulness
for balancing these trade-offs.

Finally, we show that LMs exhibiting high multilingual compression are less
instance-interpretable in that they make highlighting training data influence
more difficult.

In sum, our work shows that linguistically fair and private high-performance
multilingual models are possible, even if learning them is challenging. However,
training data influence methods will fail for such models.

5.2 Theoretical Exploration

We consider language model learning and fine-tuning in a multilingual setting, in
which our training data D = D1 U ... U Dy is the union of disjoint training data
from |L| different languages. We consider the interaction of differential privacy,
training data influence and linguistic fairness with performance and compression
in this setting.

Preliminaries We briefly introduce our formal definitions here: A randomized
algorithm, here model, M : D — Y is ¢,-differentially private (Dwork, 2006) iff
for all adjacent datasets D,D’ € D and allY c Y,

P(M(D) €Y) < exp(ep) - P(M(D’) € Y).

Adjacent means that the datasets differ by exactly one example x.

A model M is said to be ¢;-instance-interpretable, i.e., having sparse training
data influence, iff for any D, D’, D” € D with D" = D \ {xq}, D" = D \ {x’}, and
xgiff # X', where xq; is the most influential training data point under leave-one-out
influence,” it holds that

P(M(D) €Y) —P(M(D') €Y) > exp(e) - (P(M(D) €Y) — P(M(D"”) €Y)).

In other words, x4 had more influence on M than any other data point x” by
some margin exp(g;) (Koh and Liang, 2017).

4Note how standard empirical risk minimization is not private, since it is a linear combination of
training samples near the decision boundary, and if D and D’ differ in one of those, the classifier
changes significantly.

5Leave-one-out here means D’ = D \ {xqifr } and is the gold standard for instance-based methods,
which explains the close connection to DP where we also deal with adjacent datasets.

120



5.2. Theoretical Exploration

A model M is said to be fair (Williamson and Menon, 2019) if for a group
partitioning g(D) — Dy, ..., Dy, into smaller samples and for some loss function
¢, e.g., 0-1 loss,

E(M(Dg,)) = £(M(Dg))).

A model that is fair for a group partitioning by languages is said to be linguistically
fair (Choudhury and Deshpande, 2021).

Finally, a model M exhibits perfect multilingual compression when it outputs
identical representations for semantically equivalent inputs irrespective of the
input language. Formally, for a pair of translation equivalent sentences, (i, i),
the representations of i; and i, are identical at any layer I of the model, i.e.

M) = MU(iy).

In the following paragraphs, we discuss under what conditions DP, training
data influence, linguistic fairness, and multilingual compression are at odds
or are compatible, and how these conditions align with common scenarios in
multilingual NLP.°

Differential Privacy and Training Data Influence Sparsity We first show that
differential privacy and training data influence sparsity are fundamentally at
odds:

Theorem 1. A model M becomes less ¢;-instance-interpretable as it becomes more
gp-differentially private, and vice-versa.

Proof. Let P(M(D) €Y) be abbreviated as p, P(M(D’) € Y) = P(M(D \ {xqi} €
Y) be abbreviated as py4, and let P(M(D”) € Y) = P(M(D \ {x’} € Y) be abbre-
viated as pa. Assume that M is g-instance-interpretable and e,-differentially
private.

If M is e,-differentially private, it holds that

p <exp(ep) - Pd

5.1
= exp(ep) >L -1
ba

ODifferential privacy meaningfully protects any individual training example. However, sensitive
information may be repeated across many training examples, so £-DP does not necessarily prevent
leakage of such information at the granularity of individual people, real-world events, etc. For example,
in our multilingual setting, an attacker may still gain access to a social security number learned by the
model, but they will be unable to identify whether the number was leaked in a particular language.
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If M is also ¢;-instance-interpretable, it also holds that

(1) p—pa> exp(&)(p — pz2)
(i) = p> exp(&)(p—p2)+pd
(ii)) = P exp(e)(p—p2) + pa (5.2)
Pd Pd
(iv) = exp(ep) > —exp(si)(p —p2) +1

bd
Step (iv) follows from Equation 5.1. We can now see from Equation 5.2 step
(iv) that €, increases with increasing ¢;, i.e. the model becomes less differentially
private as it becomes more instance-interpretable, and vice-versa. O

This result is not limited to the multilingual setting.

Differential Privacy and Linguistic Fairness Fairness and differential privacy
are occasionally at odds, as shown by Bagdasaryan et al. (2019); Cummings et al.
(2019); Chang and Shokri (2021); Hansen et al. (2024),” but in the multilingual
setting, fairness and privacy can be compatible (for the common definitions above).
We first note that there is a trivial solution to obtaining differential privacy and
linguistic fairness (a joint optimum), namely randomness. This simply shows
that the two objectives can be simultaneously satisfied. Next, imagine a perfectly
compressed multilingual language model trained on a multi-parallel dataset.

Theorem 2. If a model Mp trained on parallel data from |L| > 2 languages,
D={...,i1,...,1Q,...}, with ij and iy being translation equivalents, is perfectly
multilingually compressed, then it is e,-differentially private.

Proof. Since M), is perfectly compressed, the representation of i; is identical to
iy at any layer [, i.e., ML(i;) = ML (i,). This gives us strong k-anonymity (Li
et al., 2012) in the representation space of Mp, with k = |L| and all dimensions
as quasi-identifiers. Since k-anonymity is not obtained through a deterministic
(reversible) procedure, but a randomly initialized learning procedure with random
sampling, and since our attributes are randomly initialized, k-anonymization
entails differential privacy in our setting.® Mp, given perfect compression and
convergence, is O-differentially private, i.e., the probability distribution of Mp is
unaffected by the removal of any single row. O

7Several authors have considered practical trade-offs between privacy and fairness, including
Jagielski et al. (2019), Lyu et al. (2020), Pannekoek and Spigler (2021), and Liu et al. (2021b).

8The procedure also is not dependent on any individual input, because all individual data properties
are either random (from initialization) or k-anonymous, by construction.
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It follows directly from perfect compression that Mp is also linguistically fair
because identical representations imply identical performance across languages.
It is therefore an immediate corollary of the above result that a linguistically fair
model can be differentially private.

While the assumptions of a perfectly compressed model and clean multi-parallel
dataset rarely hold up in practice and there is no obvious way to satisfy them
while maintaining utility, the practical significance of this result is a reminder
that multilingual training converges toward k-anonymization, and that safe
k-anonymization of the representation space, if obtained, would provide us
differential privacy. In the absence of strong guarantees, increasing the number of
training languages (larger k) would strengthen privacy (Li et al., 2012). Our
empirical results below (§ 5.4) suggest that we can often obtain strong privacy
and strong compression, but at the cost of performance.

5.3 Experimental Setup

In our experiments, we investigate the relation between the performance and
multilingual compression of finetuned multilingual language models, and their
privacy and training data influence. We rely on a commonly used multilingual
pretrained language model, which we finetune with different levels of (e, §)-
differential privacy on two common NLP tasks and evaluate using metrics of
compression and training data influence.’ This section presents the pretrained
language model, the tasks, the training protocol, the metrics of compression and
training data influence, and the evaluation procedure.

Model We use a pretrained XLM-R Base (Conneau et al., 2020a), which is a
12-layer encoder-only transformer with ~277M parameters and 250k vocabulary
size trained on CC-100 (100 languages) via masked language modeling.

Tasks and Data We finetune in a zero-shot cross-lingual transfer setting for part-
of-speech (POS) tagging and natural language inference (NLI). Why these tasks?
First, while POS tagging is driven by lower-level syntactic features, NLI requires
a higher-level understanding (Lauscher et al., 2020). Second, we can leverage
multi-parallel corpora for multilingual fine-tuning and zero-shot cross-lingual

9For completeness, we explain the difference between ¢-DP and (e, 8)-DP in Appendix 5.8.2.
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transfer in both tasks, which helps eliminate confounders.'°

For POS tagging, we use the Parallel Universal Dependencies (PUD) treebank
from Universal Dependencies (UD) v2.8 (Nivre et al., 2020; Zeman et al., 2021),
which contains 1000 sentences parallel across 15 languages. We train in 7 of
these languages (FR, IT, JA, PT, TH, TR, zH),'! exclude English,'? and use the
remaining 7 languages (AR, DE, ES, HI, ID, KO, RU) for validation. This split
ensures that (1) we both train and evaluate on typologically diverse language
samples, (2) there exist additional UD v2.8 treebanks in our validation set lan-
guages that we can harness for testing, and (3) there exist parallel sentences in
our training set languages that we can harness to evaluate multilingual compres-
sion. We use the test splits of the following treebanks for testing: Arabic-PADT,
German-GSD, Spanish-GSD, Hindi-HDTB, Indonesian-GSD, Korean-Kaist, and
Russian-SynTagRus. Appendix Table 5.3 lists the treebanks’ sizes.'®

For NLI, we rely on the XNLI dataset (Conneau et al., 2018), which contains
(premise, hypothesis, label)-triplets multi-parallel across 15 languages. We, again,
train in 7 of these languages (BG, ES, FR, HI, TR, VI, ZH), exclude the original
English data, and validate in the remaining 7 languages (AR, DE, EL, RU, SW,
TH, UR). We train and validate our models on the original XNLI validation data
(7500 examples per language), and we test the models on the original test data
(15000 examples per language) in the validation set languages.

The idea to train and validate on the same sentences (in different languages)
while testing on sentences from different treebanks (as we do for POS) or a
different dataset split (as for XNLI) is to induce a slight distributional shift between
validation and test data for the same language sample. This shift lets us evaluate
the regularization strength of the gradient noise added by the DP-optimizer.

Training We employ the standard fine-tuning procedures for token classification
(POS) and sequence classification (XNLI) proposed by Devlin et al. (2019).
Similar to Li et al. (2022b), we use DP-AdamW (i.e., the DP-SGD algorithm (Abadi
et al., 2016) applied to the AdamW optimizer with default hyperparameters
(Loshchilov and Hutter, 2019; Kingma and Ba, 2015)) to train with (e, §)-DP.

100ne limitation of this selection is that we only consider classification but no generative tasks,
which could be worth exploring in the future.

11gee Table 5.1 for language details.

12We exclude English to keep the number of languages balanced and because the combined corpus
is already biased towards Indo-European with Latin scripts (see Table 5.1).

13Regardless of test split size, each language contributes equally to the mean accuracy reported in
Figure 5.1.
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We evaluate 6 different privacy budgets with ¢ € {1, 3, 8,15, 30, }.!4 We set
5= Ill)i;:l for POS, where |Dyqiz| = 7000 is the length of the training dataset,
and 8 = 1e—6 for XNLL'®> The noise multiplier o corresponding to a particular
(&, 6)-budget is determined numerically before training through binary search.
Our implementation builds upon the optimized Opacus (Yousefpour et al., 2021)
privacy engine by Li et al. (2022b).'%7 We use the Rényi differential privacy
(RDP; Mironov, 2017; Mironov et al., 2019) accountant with conversion to (e,
8)-DP (Canonne et al., 2020). Hyper-parameter tuning on private data—which
the POS and XNLI data in our study simulate—has been shown to incur additional
privacy leakage (Liu and Talwar, 2019; Papernot and Steinke, 2022). Therefore,
we try to keep hyper-parameter tuning to a minimum and rely on sensible priors
to select a suitable range of hyper-parameters. For POS, we find that the range of

good hyper-parameters for non-private settings transfers well to private settings if
we just use slightly higher learning rates. For XNLI, we select hyper-parameters
such that the sampling rate matches that used by Li et al. (2022b) for NLI tasks
in the GLUE benchmark (Wang et al., 2018).'® Accordingly, we train with a
maximum sequence length of 128 for 10 epochs with a total batch size of 96 for
POS and 30 epochs with batch size 512 for XNLI.'? At each privacy budget, we
train models (3 random initializations each) with 6 learning rates for POS (1le—4,
3e—4, 5e—4, 7e—4, 1le-5, 5e-5, 7e—5, 1e—6) and 3 learning rates for XNLI (3e—4,
4e—4, 5¢—4 for private models and 9e—5, 1e—4, 2e—4 for non-private models).
Based on the validation accuracy, we then select the 5 best settings for each
privacy level and task, listed in Appendix 5.8.3. The learning rate is linearly
decayed after 50 warm-up steps for POS and without warm-up for XNLI. We
perform gradient clipping (per-sample in private settings) with a threshold of 0.1.
Weight decay is set to 0.01.

14¢ = o refers to the standard, non-private setting.

I5We deliberately use a larger & for XNLI because it turned out to be much harder to achieve
convergence than for POS. Even with the looser DP bounds from § = 1le — 6, we were unable to find a
hyper-parameter setting for ¢ = 1 where the finetuned model was substantially better than random
guessing.

160 1xuechen/private-transformers

17We do not use ghost clipping, their proposed technique to fit larger batches on the GPU at the
cost of training time, as we can still fit sufficiently large batches on our GPUs without.

18The sampling rate g = |g§§im| , B denoting the batch size.

9Note that using fixed-size batches technically breaks the privacy guarantees of RDP based on the
Sampled Gaussian Mechanism (Mironov et al., 2019). We follow the convention of using fixed-size
batches, avoiding potential out-of-memory GPU issues, as a proxy for the true privacy spending and
performance (see (Li et al., 2022b) and Appendix D.4 in (Trameér and Boneh, 2021)).
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Quantifying Multilingual Compression We present four metrics of multilingual
compression: A common proxy task to measure the quality of cross-lingual
representations is sentence retrieval (Artetxe and Schwenk, 2019; Dufter and
Schiitze, 2020; Libovicky et al., 2020; Ravishankar and Sggaard, 2021; Liu et al.,
2021c; Maronikolakis et al., 2021). Dufter and Schiitze (2020) quantify the
degree of multilingual compression using bidirectional sentence retrieval precision
as follows:?°
1 m
P = ﬂ Zl 1argmaxk Ry=i T ]largmaxk Ryi=i+ (5-3)

Here, R € R™™ denotes the matrix of cosine similarities R;; = cos(e?,e;
between the m sub-word representations e and e from a LM at indices i and j
for a set of parallel sentences in the languages q and r.%!

Kornblith et al. (2019) propose to use linear centered kernel alignment (CKA)

as a similarity index for neural network representations. It is defined as

Y x||2

CKA(X,Y) = ——————.
e IXTX|FIIYTY[IF

5.4
For LMs, the matrices X and Y are obtained by mean-pooling n sub-word rep-
resentations at model layer | (Conneau et al., 2020b; Glavas and Vuli¢, 2021).
Typically, X and Y correspond to the representations from two different models
for identical examples (Kornblith et al., 2019; Phang et al., 2021). We instead use
the representations from a single model for a parallel sentence pair (sq, s;) in lan-
guages g and r as X and Y, respectively, to study the similarity of representations
across languages, similar to Muller et al. (2021) and Conneau et al. (2020b).
Yang et al. (2022b) also use CKA as a metric of compression.

IsoScore (Rudman et al., 2022) is an isotropy metric, computed as outlined
in Appendix 5.8.4, that quantifies the degree to which a point cloud uniformly
utilizes the vector space. In our context, this point cloud corresponds to the n
sub-word representations of all examples in a corpus at layer [. Prior work has
shown that anisotropic representation spaces, such as the embedding spaces of
large LMs (Ethayarajh, 2019), suffer from so-called representation degeneration
(Gao et al., 2019a), and that the isotropy of a model’s representation space
correlates with its task performance (Zhou et al., 2019; Wang et al., 2020c; Zhou

20Note that Dufter and Schiitze (2020) also consider word alignment in their multilinguality score.
We omit this task as it is not trivial to obtain ground truth alignments in our setup.

21The sub-word representations are taken from the LM’s layer [ and mean-pooled over the sequence
length (excluding special tokens).
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et al., 2021a; Rajaee and Pilehvar, 2021, inter alia). High isotropy also means
languages are not compartmentalized and should therefore correlate with high
compression.

Representational similarity analysis (RSA; Kriegeskorte et al., 2008; Edelman,
1998) was originally introduced in the field of cognitive neuroscience to analyze
the similarity of fMRI activity patterns, but it is also applicable to neural network
representations (Bouchacourt and Baroni, 2018; Chrupata, 2019; Chrupata and
Alishahi, 2019; Lepori and McCoy, 2020; He et al., 2021c, inter alia), e.g., to
analyze their similarity across languages. RSA measures the similarity between
the representational geometries (i.e., the arrangement in the vector space) of two
sets of representations. The representational geometry is determined through
pairwise (dis)similarity metrics, and similarity is typically measured using a
rank-based correlation metric such as Spearman’s p (Diedrichsen and Kriegeskorte,
2017).

Quantifying Training Data Influence Training data influence metrics can help
us gain an understanding of the inner workings of a model (Koh and Liang, 2017;
Yeh et al., 2018; Charpiat et al., 2019; Koh et al., 2019; Pruthi et al., 2020; Basu
et al., 2020; K and Sggaard, 2021; Zhang et al., 2021; Kong and Chaudhuri, 2021,
inter alia). Such metrics are approximations of leave-one-out-influence. Pruthi
et al. (2020) proposed a both effective and practical method, called TracInCP,??
to compute the influence of a training example z on the model’s prediction
for another example z’, which could be a test example or z itself (called the
self-influence). The influence is computed as follows:

k
TracInCP(z,2) = > niVe(0;, 2) - V(6;, %), (5.5)
i=1
where n; is the learning rate and V£(0;, z) is the gradient of the loss w.r.t. the
model parameters 6; and inputs z for the i-th model checkpoint. We will use
TracInCP as an approximation of training data influence in our experiments.

Evaluation We evaluate our models both during and after fine-tuning. For POS,
we evaluate every 100 steps, and for XNLI, every 200 steps. We measure zero-shot
cross-lingual transfer performance on the validation and test data by accuracy
(token-level for POS and sequence-level for XNLI). To account for randomness,

224CP” stands for checkpoint; the method approximates TracInldeal, which is impractical to compute,
through model checkpoints taken during training (Pruthi et al., 2020).
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we take the mean of the best 5 seeds for each privacy budget.

The measures of multilingual compression (sentence retrieval precision, CKA,
IsoScore, RSA) are computed using distinct evaluation corpora comprising parallel
sentences for all language pairs in the respective training set language sample.
For models trained on XNLI, we use 3000 sentence pairs per language pair from
the TED 2020 corpus (Reimers and Gurevych, 2020) and 3500 pairs from the
WikiMatrix dataset (Schwenk et al., 2021). For models trained for POS, we use
3500 pairs from TED 2020, 3500 pairs from WikiMatrix, and 900 pairs from
Tatoeba,??-?42> numbers chosen based on availability and memory usage.

Following Dufter and Schiitze (2020), we evaluate the models at layers O
and 8, which complement each other well with regard to the properties they
capture, e.g., multilinguality and task-specificity (Choenni and Shutova, 2020;
de Vries et al., 2020; Muller et al., 2021). We compute the sentence retrieval
precision between language pairs and take the mean.?® The IsoScore is computed
for the contextualized representations of all examples in the respective corpus
at once. In contrast, CKA and RSA scores are also computed per language pair,
and then averaged across those.?” For RSA, we use D = 1 — Spearman’s p and
S = Spearman’s p as the dissimilarity and similarity metrics, respectively.?® Finally,
we average results for all four metrics across TED 2020, WikiMatrix, and Tatoeba,
the two layers, and the 5 best seeds for each privacy budget. For comparison, we
also compute all metrics for the original pretrained and a randomly initialized
XLM-R model.

5.4 Results

Privacy, Compression, Performance We now empirically investigate the rela-
tionship between differential privacy, multilingual compression, and cross-lingual
transfer performance. We present aggregated results in Figure 5.1 and non-
aggregated results in Appendix 5.8.7. We observe that the zero-shot accuracy

23https://tatoeba.org

24We extract sentence pairs from Tatoeba using the tatoebatools library €) LBeaudoux/tatoebatools.

25We exclude TH from the WikiMatrix and Tatoeba evaluation sets for POS as there are insufficiently
many sentence pairs available between TH and the remaining languages.

26Sentence retrieval is bidirectional (see Equation 5.3). Given |L| languages, we therefore average
over the full RI*¥IX Janguage pair matrix, only excluding the main diagonal.

27CKA and RSA are symmetrical. Given |L| languages, we thus only use the upper triangle of the
RIZIXIL Janguage pair matrix, still excluding the main diagonal.

28This is consistent with the results of Zhelezniak et al. (2019) and Lepori and McCoy (2020)
showing that Spearman’s p is more suitable for RSA with embeddings than conventional similarity
metrics such as cosine similarity.
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5.4. Results
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Figure 5.1: Task performance, sentence retrieval, CKA, IsoScore, and RSA results
when fine-tuning with different privacy guarantees (co=non-private). We add
the original pretrained XLM-R and XLM-R with randomly initialized weights for
comparison. The results show how non-private fine-tuning balances multilin-
gual compression and task performance. Strongly private fine-tuning (¢ = 1) is
compatible with high compression (retrieval, CKA, IsoScore), but not with task
performance. For medium levels of privacy (e.g., € = 8), we see the result of bal-
ancing privacy and task performance at the expense of multilingual compression.

decreases as we finetune with stronger privacy guarantees (Figure 5.1a and 5.1f),
which is expected due to the privacy-utility tradeoff (Geng et al., 2020). In
particular, the relatively small sizes of our training datasets make private LM
fine-tuning more challenging (Kerrigan et al., 2020; Habernal, 2021; Senge et al.,
2022; Yu et al., 2022a) because, for a fixed number of update steps, the gradient
noise added per update step grows as the size of the training dataset decreases
(Tramer and Boneh, 2021; McMahan et al., 2018). Note that although the private
models tend to underperform the non-private models by a large margin on the
validation set (>30% for XNLI, as shown in Appendix Table 5.6), the performance
gap on the test set is noticeably smaller, showing that training with differential
privacy, like other noise injection schemes (Bishop, 1995), is also a form of
regularization.
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Figure 5.1b and 5.1g display sentence retrieval precision when fine-tuning with
different privacy budgets. The highest compression is achieved by the non-private
models. The second-highest compression is achieved for £ = 1, our most private
models. Both suggest non-linear privacy—compression interactions, with POS
showing lowest compression for ¢ = 30 (or higher) and XNLI showing lowest
compression for ¢ = 8. The results are very similar for IsoScore (Figure 5.1d, 5.1i)
and also similar, albeit less pronounced for CKA (Figure 5.1c, 5.1h).2? RSA, in
contrast, exhibits very low scores for highly private models; see Appendix 5.8.5.

These results show that we can achieve strong compression and strong per-
formance at the cost of privacy (¢ = ), strong compression and strong privacy
at the cost of performance (¢ = 1), or trade-off performance and privacy at the
cost of compression (e.g., € = 8). It may seem counter-intuitive that multilingual
compression and cross-lingual transfer performance are not strictly correlated.
However, in the fine-tuning setting, we can sacrifice task-specific knowledge in
favor of multilingual compression, which leads to poor performance. Vice-versa, a
model may exploit spurious correlations in the data to make correct predictions
without actually relying on cross-lingual signal. An example for the former case is
the pretrained (but not finetuned) XLM-R, which scores highly in multilingual
compression (as displayed in Figure 5.1) but has poor cross-lingual transfer
performance in the downstream tasks.

We also find that in some fine-tuning settings, e.g., € = co, the multilingual
compression surpasses that of the pretrained XLM-R. While Liu et al. (2021c)
have previously shown that sentence retrieval performance typically drops (i.e.,
compression worsens) over the course of fine-tuning (which we confirm in
Appendix Figure 5.5), this finding clearly shows that there are exceptions. Future
work may investigate this further.

Lastly, retrieval and CKA scores are always highest between typologically
similar languages and languages over-represented in pretraining (see Table 5.1
for a comparison across languages) across all levels of privacy, as shown by the
non-aggregated results in the Appendix Figure 5.6-5.13. This finding thus extends
conclusions from prior work (Pires et al., 2019; Wu and Dredze, 2019; K et al.,
2020; Lauscher et al., 2020) to private models.

29The randomly initialized XLM-R model shows high CKA scores. This is explained by the high
dimensionality (d = 768) of the contextualized representations, considering that CKA saturates
with increasing network width (Kornblith et al., 2019), and the high centroid similarity of random
activations.
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5.5 More multilingual, less interpretable?

Metric To answer this question, we introduce InfU (Influence Uniformity),
a measure of uniformity based on TracInCP influence scores for each training
example in the multiparallel dataset D = {...,i1,...,i,...}, with i; and i
translation equivalents. We compute InfU for M and the translation equivalents i
= {i1,..., i} as follows:

L]
InfU(i) = % Z H(o(TracInCP(iy, i))), (5.6)
k=1
where H is the entropy with log;;) and o is a softmax used to obtain a probability
distribution over influence scores. InfU is maximized (InfU = 1) for uniform
influence scores, fulfilling TracInCP(i}, ix) = TracInCP(ig, i;), Vj, k,q,r € L. This
means a perfectly multilingual model that yields equivalent representations for
translation equivalent examples obtains InfU = 1. In this scenario of maximum
uniformity our model is also the least instance-interpretable because training data
influence is minimally sparse, so we cannot easily identify influential examples
for a prediction. We use InfU to study to what extent influence sparsity aligns
with the metrics privacy and cross-lingual performance.

Setup We use 1000 training examples and compute TracInCP scores from the
last 3 model checkpoints, taken every 100 steps, with their corresponding learning
rates.>°

Results and Analysis We plot the mean Inf U against the mean sentence retrieval
precision for our finetuned models and compute Pearson’s R in Figure 5.2a and
5.2c. For both tasks, there is a significant (p < 0.05) strong positive correlation
between the InfU score and multilingual compression as determined through
sentence retrieval. This supports the idea that multilingual compression is at odds
with training data influence. See also how highly private and low-performing
models score highly in InfU (Figure 5.2b, 5.2d); and non-private and high-
performing models do the same. For medium levels of privacy we, however, see a
trade-off characterized by lower InfU, i.e., better instance-interpretability, and
medium performance. Strong privacy guarantees, sparse training data influence
estimates, and performance are incompatible, because the high-performing models

30Since the learning rate changes every training step, we use the learning rate from the end of each
checkpointing interval.
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Figure 5.2: Linear fit and Pearson correlation between the influence uniformity
InfU and sentence retrieval precision (5.2a, 5.2¢) and InfU versus downstream
performance for different levels of privacy (5.2b, 5.2d). We see significant
positive correlations between retrieval precision and Inf U, suggesting a negative
correlation between multilingual compression and training data influence sparsity.
For task performance, we see the trade-off between training data influence sparsity
(InfU) and privacy, which aligns with our theoretical expectations (§ 5.2).

are strictly low in privacy and training data influence sparsity, and the models
high in privacy are strictly low in performance and training data influence sparsity.

5.6 Related Work

While privacy, fairness, and interpretability individually have enjoyed ample
attention from the research community in recent years (Liu et al., 2021a; Mehrabi
et al., 2021; Sggaard, 2021), the interactions between these objectives have
not been explored much (Ruder et al., 2022). Some prior work has focused on
the interactions between group fairness and differential privacy, suggesting that
the two objectives are at odds, although this relationship also depends on the
selected notion of fairness (Bagdasaryan et al., 2019; Cummings et al., 2019;
Chang and Shokri, 2021; Hansen et al., 2024). Somewhat in contrast to this work,
we show that linguistic fairness (group fairness over linguistic communities) and
differential privacy may align for multilingual language models. Furthermore,
Naidu et al. (2021) and Shokri et al. (2021) have studied the interaction between
privacy and feature attribution methods for model explainability. While the former
show that privacy and feature attribution methods can align, the latter find that
model explanations are at risk of membership inference attacks. Closest to our
work is contemporaneous work by Strobel and Shokri (2022) who discuss the
interactions of data privacy with fairness, explainability, and robustness. Our
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work differs from theirs in that we are particularly concerned with multilingual
language models and we consider instance-based interpretability methods while
they consider feature attribution methods. Strobel and Shokri (2022) also call for
more research at the intersection of different objectives rather than working on
one at a time.

5.7 Conclusion

We presented a preliminary investigation of how multilingual compression, differ-
ential privacy, training data influence, and linguistic fairness interact in multilin-
gual models. We found that privacy and influence are incompatible, while privacy
and linguistic fairness, often said to be at odds, are theoretically compatible
through multilingual compression. We also explored these interactions empirically.
Our results support the idea that high multilingual compression can be achieved
either while optimizing for performance or while optimizing for privacy, but that
by trading off privacy and performance, we compromise compression. Finding
practical trade-offs between all these dimensions remains an open challenge.
Finally, we introduced a new diagnostic metric, influence uniformity, which we
used to validate that privacy and training data influence sparsity are incompatible,
and that the interactions between privacy, training data influence sparsity, and
multilingual compression are, therefore, also non-linear.

Ethical Aspects and Broader Impact

It is crucial that NLP goes beyond performance and studies the interaction of
objectives such as privacy, interpretability, and fairness, also in multilingual NLP
(Ruder et al., 2022). Our work aims to provide a starting point for further research
in this area. Our empirical investigation, including the models we train, fully
relies on publicly available models and data. Moreover, we do not create any new
datasets. Therefore, we foresee no misuse of the results of our work.
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Language ISO Family Script Tokens (M) Size (GiB)

Arabic AR  Afro-Asiatic Arabic 2869 28.0
Bulgarian BG Indo-European Cyrillic 5487 57.5
Chinese zH  Sino-Tibetan Chinese 435 63.5
French FR Indo-European Latin 9780 56.8
German DE Indo-European Latin 10297 66.6
Greek EL Indo-European Greek 4285 46.9
Hindi HI Indo-European Devanagari* 1803 20.7
Indonesian ID  Austronesian Latin 22704 148.3
Italian 1T Indo-European Latin 4983 30.2
Japanese JA  Japonic Japanese 530 69.3
Kiswahili sw  Niger-Congo Latin 275 1.6
Korean ko  Koreanic Korean 5644 54.2
Portuguese  pT Indo-European Latin 8405 49.1
Russian RU Indo-European Cyrillic 23408 278.0
Thai TH Kra-Dai Thai 1834 71.7
Turkish TR  Turkic Latin 2736 20.9
Urdu UR Indo-European Arabic* 815 6.2
Vietnamese  vI  Austro-Asiatic ~ Latin 24757 137.3

Table 5.1: Overview of languages used in our experiments. Tokens (in millions)
and size (in Gibibytes) refer to the respective monolingual corpora in XLM-R’s
pretraining corpus. Numbers taken from Conneau et al. (2020a). *: includes
romanized variants also used in pretraining.

5.8 Appendix

5.8.1 Reproducibility

We make our code available at O xplip/multilingual-1m-objectives.

Implementation Our implementation is written in PyTorch v1.10.0 (Paszke
et al., 2019) for Python 3.9.5 and builds on code from the following repositories:

J O huggingface/transformers v4.9.2 (Wolf et al., 2020) for model train-
ing and evaluation
. O 1xuechen/private-transformersv0.1.0 (Liet al., 2022b) for DP-training

e () pdufter/minimult (Dufter and Schiitze, 2020) for computing sentence
retrieval precision

. O jayroxis/CKA-similarity for computing CKA scores
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Dataset Download Link & Reference

un@® repository/xmlui/handle/11234/1-3683

UD v2.8 (POS) Nivre et al. (2020); Zeman et al. (2021)

XNLI ¥, datasets/xnli
Conneau et al. (2018); Lhoest et al. (2021)
TED 2020 O UKPLab/sentence-transformers/blob/master/docs/datasets/TED2020.md
Reimers and Gurevych (2020)
_— - O facebookresearch/LASER/tree/main/tasks/WikiMatrix
WikiMatrix Schwenk et al. (2021)
Tatoeba O LBeaudoux/tatoebatools

Table 5.2: Links and references to the datasets we used in our experiments.
License information is also available via these links. We ensure that we comply
with respective license conditions and only use the data within their intended use
policy where applicable.

. Q mleporil/Picking_BERTs_Brain (Lepori and McCoy, 2020) for com-
puting RSA scores

s () bebi-edu/p_eickhoff_isoscore (Rudman et al., 2022) for computing
IsoScores

. O FengNiMa/VAE-TracIn-pytorch (Kong and Chaudhuri, 2021) for com-
puting TracInCP scores.

Models We primarily use the pretrained XLM-RoBERTa (XLM-R; Conneau et al.,
2020a) base model and tokenizer from (¥, xlm-roberta-base. XLM-R (base) is
a 12-layer encoder-only transformer with a vocabulary size of 250k and ~277M
total parameters pretrained via masked language modeling on the 100-language
CC-100 dataset.

In Appendix 5.8.6, we further conduct experiments with multilingual BERT
(mBERT; Devlin et al., 2019), using the base model and tokenizer from (¥ bert
-base-multilingual-cased. mBERT is a 12-layer encoder-only transformer with
a vocabulary size of 120k and ~177M total parameters pretrained via masked
language modeling on Wikipedia data in 104 languages.

Data We provide download links and references for the various datasets we
used in Table 5.2.
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Language Treebank # Sentences
AR Arabic-PADT 680
DE German-GSD 977
ES Spanish-GSD 426
HI Hindi-HDTB 1684
ID Indonesian-GSD 557
KO Korean-Kaist 2287
RU Russian-SynTagRus 6491

Table 5.3: Overview of the UD v2.8 (Nivre et al., 2020; Zeman et al., 2021)
treebanks (test splits only) that we use as test sets in our POS tagging experiments
(8§ 5.3,5.4) including their respective sizes (number of sentences).

Hardware We train on single Nvidia Titan RTX, A100 (both with CUDA version
11.0), and RTX 3090 (with CUDA version 11.5) GPUs. All machines have at least
64GB of RAM, which is required to compute the IsoScore for our larger evaluation
sets (e.g., TED 2020 for POS).

Runtime Fine-tuning with evaluation during training on the Titan RTX, which
is the slowest of the GPUs used, takes 2-3 hours for POS and 5-6 hours for XNLIL
Computing TracInCP influence scores for one finetuned model takes about 30-45
minutes.

Carbon Footprint Our fine-tuning runs accumulated ~36 compute days on
the hardware mentioned above (most experiments were conducted on the less
powerful Titan RTX GPUs) according to Weights & Biases®!, where we logged our
experiments. Although we do not have precise numbers, a highly conservative
estimate of the total compute spent including prototyping, hyper-parameter
search, and all our evaluations is ~75 compute days.

5.8.2 (e, 8)-Differential Privacy

In § 5.2, we provide the definition of e-differential privacy (DP), also called pure
DP, as the basis for our theoretical exploration. In our experiments, we rely on (e,
8)-DP (Dwork and Roth, 2014), also called approximate-DP, which is typically
used in practice and relaxes the privacy guarantees by a (small) § as follows:

Slhttps://wandb.ai/

136


https://wandb.ai/

5.8. Appendix

A randomized algorithm M : D — Y is (¢, §)-differentially private (Dwork, 2006)
iff for all adjacent datasets D,D’ € D and allY c Y,

P(M(D) €Y) < exp(e) - P(M(D") €Y) + 6.

5.8.3 Best Fine-Tuning Settings

As mentioned in § 5.3, we pre-selected a set of suitable learning rates (LRs)
for each task and ran 3 random initializations each. Based on the validation
performance, we then selected the following 5 best settings for each privacy
budget and task:

¢ POS LR (# Seeds) XNLI LR (# Seeds)
1 5e-4(2); 7e-4 (3) 3e—4 (1); 4e—4 (2); 5e—4 (2)
3 5e—4 (2); 7e—4 (3) 3e—4 (1); 4e—4 (2); 5e-4 (2)
8  5e-4(3); 7e-4(2) 4e—4 (2); 5e—4 (3)

15 3e—4 (1); 5e—4 (2); 7e—4 (2)  3e—4 (1); 4e—4 (2); 5e—4 (2)
30 3e-4(1); 5e—4 (2); 7e—4 (2)  3e—4 (1); 4e—4 (2); 5e—4 (2)
00 5e=5(2); 7e=5(2); le=4 (1)  9e-5 (2); 1e—4 (3)

Table 5.4: Best 5 settings for each task and privacy budget. Includes LR and the
corresponding number of random initializations (# seeds).

5.8.4 IsoScore Algorithm

Algorithm 2 describes the IsoScore algorithm (Rudman et al., 2022).

Algorithm 2 IsoScore (Rudman et al., 2022)

1: begin Let X c R" be a finite collection of points.

2 Let XPCA denote the points in X transformed by the first n principal components.
3:  Define Zp € R" as the diagonal of the covariance matrix of xFCA,

4 Normalize diagonal to 3p := v - £p/||Ep||, where ||-|| is the standard Euclidean

norm.

5:  The isotropy defect is §(X) := ||£p — 1||/v2(n — V), where 1 = (1,...,1)T e R"
6: X uniformly occupies ¢(X) := (n — 8(X)%(n — vn))%/n? percent of ambient dimen-

sions.

7 Transform ¢(X) so it can take values in [0, 1], via (X) := (n- ¢(X) —1)/(n - 1).
8: return: ((X)

9: end
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5.8.5 Further Analysis of RSA Results

As we see in § 5.4, RSA aligns with sentence retrieval precision, CKA, and IsoScore
in producing higher scores for non-private models. However, there is a mismatch
between RSA and the other metrics in highly private regimes, where our most
private models (¢ = 1) do not exhibit high RSA scores. Instead, the aggregated
RSA scores peak at medium levels of privacy (e € {8, 15}) and for the non-private
(¢ = ) models. Unlike for the other metrics, there is also no clear trend among
our two tasks in terms of whether the pretrained or a randomly initialized XLM-R
model scores higher in RSA.

A closer look at the non-aggregated results (Appendix Figure 5.10, 5.11, and
5.14) shows how the similarity patterns obtained from RSA are often unexpected.
For instance, the similarities between the typologically distant languages Fr and
zH are consistently high for the TED 2020 corpus whereas scores for typologically
closer languages are lower (Figure 5.10). Based on prior work by, for example,
Pires et al. (2019), Wu and Dredze (2019), and Lauscher et al. (2020), we
would expect the model to first compress similar languages before achieving
compression for distant ones. Sometimes, we also observe extreme jumps in
similarity between layers 0 and 8, for instance, between 1T and TR in the Tatoeba
corpus (Figure 5.11). We do not find these jumps in CKA and sentence retrieval.

One reason why RSA scores may be more sensitive to stricter privacy guarantees
(e.g., € = 1) is that the correlation between sentence vector distances is very
sensitive to outliers. Differential privacy reduces the number of such outliers,
effectively regularizing the correlation coefficients.

5.8.6 Multilingual BERT Results

In Figure 5.3 and 5.4, we present results from re-running the experiments from
§ 5.4 and § 5.5 with mBERT. We make two changes to the experimental setup
outlined above: We use representations extracted at layer 8, which showed to
be more meaningful than layer O in the XLM-R experiments, to compute the
multilinguality metrics. We also include two additional privacy settings, £ = 0.5
and ¢ = 0.7, as we found mBERT to be easier to finetune with strong privacy
guarantees than XLM-R.

We see the same trends as for XLM-R: performance strictly increases with
decreasing privacy while the multilinguality metrics tend to follow a U-shape,>?
i.e., they are high for strong privacy settings (small £) and low privacy settings

32We again refer to Appendix 5.8.5 for a discussion of the RSA results.
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(large ¢) and decrease towards medium privacy. Likewise, we find a positive
correlation between InfU and cross-lingual sentence retrieval precision. The
correlation is strong for part-of-speech tagging (POS) but it is mild for XNLI. We
believe this may be due to mBERT being less sensitive to the privacy parameter
(Figure 5.3g is not symmetrical; considering even stronger privacy settings would
likely even out the U-shape). Overall, these results further support our finding
that there is a negative correlation between multilingual compression and training
data influence sparsity.
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Figure 5.3: Aggregated mBERT results, analogous to Figure 5.1.
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Figure 5.4: Aggregated mBERT results, analogous to Figure 5.2.
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5.8.7 Detailed Results for Experiments in § 5.4

Figure 5.5 shows the development of the mean sentence retrieval precision at
layer 8 for POS and XNLI over the course of fine-tuning with different privacy
budgets.

We further present non-aggregated results for

* POS performance in Table 5.5

* XNLI performance in Table 5.6

* Sentence retrieval for POS in Figure 5.6 and 5.7
* Sentence retrieval for XNLI in Figure 5.12

* CKA for POS in Figure 5.8 and 5.9

* CKA for XNLI in Figure 5.13

* IsoScore for POS in Table 5.7

* IsoScore for XNLI in Table 5.8

* RSA for POS in Figure 5.10 and 5.11

* RSA for XNLI in Figure 5.14.
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Figure 5.5: Mean sentence retrieval precision for our TED 2020 splits (different
languages/data for POS and XNLI) at layer 8 over the course of fine-tuning with
different privacy budgets (¢). € = co denotes non-private models. Error bands
show variation around the mean over 5 random seeds. At Steps = 0, all models
are equivalent to the pretrained XLM-R Base. We see that the non-private models
can retain (and for XNLI even improve) their multilingual compression much
better than the private models and have less variation.
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AR DE ES HI ID KO RU AVG

68.3/64.6 755/751 79.8/79.0 650/633 73.8/719 66.1/542 748/740 71.9/68.9
79.1/76.6 86.6/868 90.3/89.3 744/709 826/794 711/594 86.1/863 81.4/78.4
81.0/77.6 884/883 91.6/90.2 782/756 842/81.2 70.8/609 87.1/87.4 83.0/80.2
81.3/784 888/89.0 924,909 77.0/73.2 839,/80.7 71.9/61.8 87.7/87.8 83.3/80.3
81.8/78.7 89.4,/89.6 929/915 77.6/740 843/81.1 723/622 882/884 83.8/80.8
83.8/79.7 91.5/91.2 95.0/93.2 82.8/80.2 86.2/81.3 742/629 89.9/90.2 86.2/82.7

8 BHowr|m

Table 5.5: POS Performance (validation / test accuracy) when fine-tuning XLM-R
Base with different privacy budgets (¢). We show results averaged over 5 random
seeds each. ¢ = o denotes non-private models. AvG is the average over the
7 languages. See § 5.3 for our experimental setup. We see that performance
increases with decreased privacy across all languages.

AR DE EL RU sw TH UR AVG

373/374 36.8/37.0 36.6/36.5 363/36.2 343/345 356/357 356/356 36.1/36.1
49.6/50.3 49.3/51.0 50.8/51.5 49.7/50.2 459/47.2 48.8/49.5 47.6/48.2 48.8/49.7
55.9/56.4 56.8/585 582/581 56.3/571 520/53.2 556/557 53.3/53.7 555/56.1
59.1/583 60.4/608 61.5/60.9 59.7/59.5 544/548 589/582 56.4/56.1 58.6/584
61.6/60.8 63.6/63.1 648/620 62.0/61.1 56.5/573 61.2/60.2 586/57.8 61.2/60.3
90.9/67.8 96.2/70.5 955/70.1 93.4/69.7 79.0/62.5 91.6/68.5 86.8/654 90.5/67.8

g LG owr|n

Table 5.6: XNLI Performance (validation / test accuracy) when fine-tuning XLM-R
Base with different privacy budgets (¢). We show results averaged over 5 random
seeds each. ¢ = o denotes non-private models. AvG is the average over the
7 languages. See § 5.3 for our experimental setup. We see that performance
increases with decreased privacy across all languages. Here, we also particularly
observe that the gap between validation and test performance is substantially
lower for private models, which shows the strong regularization effect of training
with differential privacy.
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Figure 5.6: POS Sentence retrieval results for the TED 2020 (TED) and WikiMatrix
(WM) datasets and different combinations of privacy budgets (¢) and layers (1).
Each heatmap cell corresponds to the average over 5 random seeds. We observe
that the overall patterns are highly similar across all levels of privacy, particularly
at [=0.
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Figure 5.8: POS CKA results for the TED 2020 (TED) and WikiMatrix (WM)
datasets and different combinations of privacy budgets (¢) and layers (1). Each
heatmap cell corresponds to the average over 5 random seeds. We observe that
the overall patterns are highly similar across all levels of privacy, particularly at
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Figure 5.12: XNLI Sentence retrieval results for the TED 2020 (TED) and Wiki-
Matrix (WM) datasets and different combinations of privacy budgets (¢) and
layers (1). Each heatmap cell corresponds to the average over 5 random seeds.
We observe that the overall patterns are highly similar across all levels of privacy,
particularly at [=0.
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TED 2020 WikiMatrix Tatoeba
=0 [=8 [=0 1=8 1=0 [=8

RND 0.141 0.132 0.114 0.111 0.054 0.061
pRE 0.187 0.130 0.198 0.112 0.134 0.075

1 0.188 0.054 0.199 0.046 0.135 0.033
3 0.188 0.044 0.199 0.038 0.135 0.027
8 0.187 0.045 0.197 0.038 0.133 0.027
15 0.187 0.047 0.199 0.040 0.135 0.028
30 0.187 0.047 0.199 0.040 0.135 0.028
0 0.188 0.087 0.199 0.070 0.135 0.051

Table 5.7: POS IsoScores for different combinations of privacy budgets (¢) and
layers (I). We show results averaged over 5 random seeds, except for RND and
PRE. RND and PRE (added for comparison) denote XLM-R with randomly
initialized weights and the original pretrained XLM-R, respectively. We see that
the isotropy is fairly uniform across privacy budgets at layer 0 and generally
higher at layer O than at layer 8. At layer 8, it peaks for non-private (¢ = c0) and
our most private (¢ = 1) models.

TED 2020  WikiMatrix
[=0 [=8 1=0 1[=8

RND 0.144 0.134 0.130 0.124
PRE 0.195 0.138 0.210 0.129

1 0.195 0.121 0.211 0.120
3 0.196 0.101 0.211 0.104
8 0.196 0.074 0.212 0.079
15 0.196 0.071 0.212 0.077
30 0.194 0.087 0.210 0.089
00 0.195 0.182 0.211 0.166

Table 5.8: XNLI IsoScores for different combinations of privacy budgets (¢) and
layers (1). We show results averaged over 5 random seeds, except for RND and
PRE. RND and PRE (added for comparison) denote XLM-R with randomly
initialized weights and the original pretrained XLM-R, respectively. We see that
the isotropy is fairly uniform across privacy budgets at layer 0 and generally
higher at layer O than at layer 8. At layer 8, it peaks for non-private (¢ = c0) and
our most private (¢ = 1) models.
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Chapter 6

Towards Privacy-Aware Sign Language
Translation at Scale

The work presented in this chapter is based on a paper that has been published as:
Phillip Rust, Bowen Shi, Skyler Wang, Necati Cihan Camgoz, and Jean Maillard.
2024. Towards privacy-aware sign language translation at scale. In Proceedings of
the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers), pages 8624-8641, Bangkok, Thailand. Association for Computational
Linguistics.

Abstract

A major impediment to the advancement of sign language translation (SLT)
is data scarcity. Much of the sign language data currently available on the
web cannot be used for training supervised models due to the lack of aligned
captions. Furthermore, scaling SLT using large-scale web-scraped datasets bears
privacy risks due to the presence of biometric information, which the responsible
development of SLT technologies should account for. In this work, we propose
a two-stage framework for privacy-aware SLT at scale that addresses both of
these issues. We introduce ssvp-sLT, which leverages self-supervised video
pretraining on anonymized and unannotated videos, followed by supervised
SLT finetuning on a curated parallel dataset. ssvp-sLT achieves state-of-the-art
finetuned and zero-shot gloss-free SLT performance on the How2Sign dataset,
outperforming the strongest respective baselines by over 3 BLEU-4. Based on
controlled experiments, we further discuss the advantages and limitations of
self-supervised pretraining and anonymization via facial obfuscation for SLT.

O facebookresearch/ssvp_slt
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Chapter 6. Towards Privacy-Aware Sign Language Translation at Scale

6.1 Introduction

Used by millions worldwide, sign languages play a crucial role in facilitating
communication for many d/Deaf and hard-of-hearing individuals. Visual in
nature, these languages make use of the co-articulated features of hands (i.e.,
finger positioning, shape, movement, palm orientation, etc.), body postures, gaze,
mouth gestures, mouthings and facial expressions to convey meaning (Stokoe,
1980). Globally, there are more than 300 sign languages, each with their own
grammar and vocabulary.! American Sign Language (ASL) alone is estimated to
have more than half a million native users, ranking it among the most commonly
used languages in the United States (Mitchell and Young, 2022).

Despite the prevalence of sign languages, they are still under-served by
translation technology. Besides under-investment (Yin et al., 2021) and the
inherent difficulty of SLT,? another key explanation for this imbalance is the lack
of sufficiently large, clean, and labeled parallel corpora. Current state-of-the-art
SLT systems require detailed and time aligned annotations (Zhou et al., 2023;
Uthus et al., 2023), which is not scalable, as annotating sign language data is a
labour intensive task and can only be done by proficient signers.

We argue that a promising solution to SLT’s data scarcity is to utilize publicly
available unannotated sign language data.® In other domains of computer vision
and NLP, a common practice is to pretrain on large-scale unannotated web
datasets and later finetune on curated, task-specific datasets (Devlin et al.,
2019; Radford et al., 2018, 2019; Raffel et al., 2020; He et al., 2022). This
practice is largely unexplored in the SLT domain and comes with additional
challenges. In particular, moving to large-scale sign language processing makes it
increasingly difficult to control the composition of the training data. Because
sign language videos typically feature faces and upper bodies and thus are
biometrically identifying, such research may exacerbate privacy risks. Hence,
developing sign language technologies responsibly requires us to account for
these risks and explore techniques to protect privacy.

In this work, we study the effectiveness of self-supervised video pretraining
for SLT, under consideration of the aforementioned privacy risks. We first propose
a generic, scalable, and privacy-aware two-stage framework for SLT, summarized

1https ://www.un.org/en/observances/sign-1languages-day

2Results of the WMT 2023 SLT task evince this difficulty; the best system only achieved ~1 BLEU
(Miiller et al., 2023a).

3For example, Uthus et al. (2023) filtered their Youtube-ASL dataset from ~88K to 11K videos
based largely on the availability and quality of English captions.

154


https://www.un.org/en/observances/sign-languages-day

6.2. Background and Related Work

Stage I IL.
Data
Scale Large Smaller
Source Web-mined Hand-curated
Annotated X v
Anonymized v S/ X (with explicit consent)
Training Self-supervised Supervised
Output Pretrained model Translations

Table 6.1: Our proposed generic, scalable and privacy-aware SLT framework. We
make no assumptions about model architecture and anonymization method.

in Table 6.1. We introduce SSVP-SLT (Self-Supervised Video Pretraining for
Sign Language Translation), an implementation of this framework consisting of
two or optionally three stages: pretraining a continuous sign language encoder
via masked autoencoding (MAE; He et al., 2022) on anonymized video, then
optionally bridging the modality gap via CLIP-style video-text pretraining (Radford
et al., 2021a), and finally training an SLT system via supervised finetuning using
extracted features from the pretrained model. Our best performing models achieve
15.5 BLEU finetuned and 7.1 BLEU zero-shot on the How2Sign dataset (Duarte
et al., 2021), surpassing SOTA in both settings by over 3 BLEU while using data
anonymized via facial obfuscation. We also introduce a new ASL-to-English SLT
benchmark dataset, DailyMoth-70h, consisting of ~70h of continuous signing in
native ASL. We then evaluate the downstream performance impact and discuss
the benefits and limitations of facial blurring to achieve anonymization. Through
controlled ablation studies of ssvp-sLT, we identify what factors contribute to a
strong pretraining and finetuning recipe. We conclude by discussing opportunities
and challenges of self-supervised pretraining for sign language processing.

6.2 Background and Related Work

Gloss-free SLT Glosses are a way of representing individual signs into a written
form. Being monotonically aligned to signs, they can be a useful medium between
sign and spoken languages. Most SLT approaches to date rely on them (Chen
et al., 2022a,b; Zhang et al., 2023). The task of predicting glosses from continuous
signing is typically performed via gloss supervision either jointly or in a cascaded
approach with supervised SLT finetuning (Camgo6z et al., 2018; Cihan Camgoz
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et al., 2020).

However, glosses are also considered an incomplete and inaccurate repre-
sentation of sign language (Cihan Camgoz et al., 2020; Miiller et al., 2023b).
Furthermore, gloss annotation is a labour intensive task. Due to these constraints,
there is a growing body of research on gloss-free SLT. Most such approaches
incorporate techniques aimed at reducing the modality gap, such as training the
visual encoder via sign spotting (Tarrés et al., 2023; Shi et al., 2022),% adding
inductive bias in the attention mechanism (Yin et al., 2023), using conceptual
anchor words (Lin et al., 2023), or performing visual-language pretraining (Zhou
et al., 2023). Uthus et al. (2023) also benefit from a pretrained text model (T5;
Raffel et al., 2020). Similar to Zhou et al. (2023), we also leverage language
supervision to reduce the modality gap, albeit in conjunction with self-supervised
video pretraining.

Sign Language Video Anonymization Sign language videos typically feature
signers’ faces, which convey essential linguistic information. However, in virtual
domains, particularly in spaces involving the discussion of sensitive topics, expos-
ing one’s face (and identity) may lead to various forms of personal risks. Such
exposures could even lead to harm associated with professional or insurance
discrimination. For these reasons, the d/Deaf and hard-of-hearing community has
long expressed interest in anonymization and privacy protection techniques for
sign language content (Lee et al., 2021), and sign language video anonymization
has, in recent years, become an active area of research (Isard, 2020; Xia et al.,
2024).

For general-domain images and videos, simple anonymization techniques such
as facial obfuscation via overlaying or blurring are widely used and accepted
(Frome et al., 2009; Yang et al., 2022a). In the sign language domain, such
techniques may be inadequate due to the loss of information in the facial region
(Lee et al., 2021). More specifically, in signed language, non-manual features
such as mouthing, eyebrow and head movements are used extensively to enrich
grammar. Certain signs with similar manual features are only disambiguated
through mouth morphemes. Moreover, facial expressions are often used to indicate
emphasis, negation, a question, etc. (Baker-Shenk, 1985; Valli and Lucas, 2000;
Neidle et al., 2000).

4While Tarrés et al. (2023) do not explicitly mention the use of sign spotting, they rely on features
extracted from an I3D model (Carreira and Zisserman, 2017) by Duarte et al. (2022), who used an
iterative sign spotting technique.
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Recent work has focused on anonymizing sign language content via avatars
(Tze et al., 2022; Lee et al., 2021) and transferred or synthetic human appearances
(Saunders et al., 2021; Xia et al., 2022, 2024). While promising, these approaches
are nascent and we are unaware of studies that determine to what extent models
can learn to recover or disambiguate obfuscated linguistic information from con-
text. That being said, human studies suggest that signers struggle to comprehend
content anonymized in such a way (Lee et al., 2021).

Lacking an obvious alternative, in this work we return to the relatively straight-
forward technique of facial blurring. Despite its limitations, we demonstrate that
blurring can raise privacy protection with little performance degradation.” This,
we argue, can facilitate large-scale video anonymization when applied to publicly
available sign language data.

Masked Autoencoding for Video and Beyond Following its success as a self-
supervised learning paradigm in the image domain (He et al., 2022), MAE has
been widely applied in other areas, including audio (Huang et al., 2022), language
(Rust et al., 2023), and video (Feichtenhofer et al., 2022; Tong et al., 2022; Wang
et al., 2023b). Considering that MAEs have been shown to be capable of acquiring
both language and basic video understanding from pixels alone, it is conceivable
that high-quality sign language representations can be learned directly from
RGB video data via MAE, given enough data. Recently, Sandoval-Castaneda
et al. (2023) explored MAE among other self-supervised learning techniques
in the context of isolated sign language recognition (ISLR) and found it to be
highly useful. MAE has, however, not yet been successfully applied to SLT. In
SLT, videos are much longer, and learning high-quality representations requires
models to capture long-range spatiotemporal dependencies. Our usage of MAE,
or self-supervised pretraining in general, therefore stands in contrast to recent
SLT methods, gloss-based and gloss-free methods alike, which instead fully rely
on supervised training that requires annotated captions (Zhou et al., 2023; Tarrés
et al., 2023; Lin et al., 2023; Uthus et al., 2023).

6.3 Generic Framework

We first outline a generic, scalable and privacy-aware two-stage transfer learning
framework for SLT (see Table 6.1).

5In Appendix 6.8.1 we discuss issues with pose landmarks, often promoted as a privacy-preserving
alternative to video.
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L. Self-supervised Video Pretraining (MAE) I1. Supervised Sign Language Translation

Masked Input Target
Feature Projection Target Translation

SignHiera Pretrained “A two-year old cat
Encoder TS named Willow™

T

SignHiera ViT
F T Encoder Decoder

Transfer parameters

Figure 6.1: Overview of our two-stage ssvP-sLT method. The first stage consists
of training a SignHiera encoder via masked autoencoding (MAE) on blurred video
frames. In the second stage, a pretrained T5 model is finetuned for SLT while the
pretrained SignHiera is kept frozen (). The input video in the second stage can
be unblurred.

In Stage I, we train a model with the goal to learn high-quality continuous
sign language representations via self-supervised learning. The data used at
this stage is always anonymized. We make no assumptions on how the data may
be anonymized, i.e., face blurring as discussed in § 6.2, or more sophisticated
methods such as using synthetic appearances.

In Stage II, we finetune the model from the first stage in a supervised manner
using a smaller and hand-curated parallel dataset. Ideally, the finetuning dataset,
being manageable in size, can be unanonymized after gaining explicit consent
from signers in the data to minimize information loss.

6.4 Method

The base implementation of our framework is designed as a two-step approach,
termed ssvp-sLT. We provide a high-level overview in Figure 6.1.

Self-Supervised Video Pretraining (MAE) We first aimed to pretrain a capable
sign language encoder on video data alone—no gloss, pseudo-gloss, or spoken-
language text annotations—allowing us to leverage large amounts of unannotated
sign language video in the future, alleviating the data scarcity issue in SLT
training.

Our sign video encoder, SignHiera, builds on Hiera (Ryali et al., 2023), a vision
transformer that combines a hierarchical architecture, shown to be crucial for
learning phonetically meaningful sign representations (Sandoval-Castaneda et al.,
2023) with masked autoencoding (MAE), a widely used self-supervised learning
paradigm (He et al., 2022). Its hierarchical architecture also makes Hiera more
efficient to train than other MAE-based video transformers such as VideoMAE
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(Tong et al., 2022; Wang et al., 2023b) or MAE-ST (Feichtenhofer et al., 2022).

Hiera embeds a video into a sequence of spatio-temporal tokens. A large
percentage of tokens is randomly masked, while the rest is passed through a
hierarchical transformer stack with several pooling operations. The decoder
receives fused multi-scale features extracted before each pooling operation and
processes them via a lightweight transformer stack. A final linear projection yields
pixel logits. The loss is computed as the normalized mean squared error between
the original and predicted pixel values of the masked tokens.

SignHiera is initialized from the original Hiera-Base-16x224 checkpoint
pretrained on Kinetics-400 (Kay et al., 2017). In order to capture longer-range
spatio-temporal dependencies in signed utterances, we increased the clip length
from 16 to 128 video frames, leading to an 8x sequence length, and accordingly
resized and reinitialized the position embeddings. We further added attention
masking to accommodate shorter videos with temporal padding and added a
third Q-pooling operation after the last encoder stage to save GPU memory. We
trained with a masking ratio of 0.9.

Supervised SLT Finetuning The translation network is an encoder-decoder
transformer model (Vaswani et al., 2017). Our default configuration uses a
pretrained T5-v1.1 (Raffel et al., 2020; Shazeer, 2020), following Uthus et al.
(2023). We also experimented with BART (Lewis et al., 2020) and Tarrés et al.
(2023)’s setup, training a ~10M parameter transformer from scratch.

The only difference from a text transformer is that our translation network takes
in video features extracted from the pretrained SignHiera. We used SignHiera’s
final intermediate representations, which are of size RBX2*32X32*P_ where B is the
batch size, T=128, H=W =224 is the input video size, and D=768 is the feature
size. We mean-pooled over the spatial dimensions to obtain feature vectors of
size RBX2*P_ Videos shorter than 128 frames were padded for encoding, and the
padding was then removed from the extracted features. For longer videos, we
used a sliding window with stride £ and concatenated the resulting features. A
linear projection Wpyoj € R? *D" mapped the extracted features to a sequence of
size RE*$*D" with S being the sequence length of the extracted features and D’
the transformer’s hidden size. This sequence was processed by the transformer as
usual (Vaswani et al., 2017).

Adding Language-supervised Pretraining We also experimented with extend-
ing ssvp-sLT with a language-supervised pretraining (1.sP) step to bridge the
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“The cat is named
after Jill's hometown
of Willow Grove,
Pennsylvania.”
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Figure 6.2: Overview of our LsP extension.

Contrastive Loss

modality gap between the input videos and text translations. Bridging this gap
may improve gloss-free SLT performance, as discussed in § 6.2. In what follows,
we refer to ssvp-sLT with an additional Lsp stage as ssvP-SLT-LSP. The LsP
stage fits in between the self-supervised MAE pretraining and the supervised SLT
finetuning stage. Since language supervision requires annotations, the Lsp stage
should be considered a part of stage II in our generic framework.

Our Lsp approach is illustrated in Figure 6.2. We first initialized a CLIP
model (Radford et al., 2021a) with our MAE-pretrained SignHiera encoder as
the vision tower and a pretrained T5-v1.1 encoder as the text tower. We then
jointly trained the CLIP model via contrastive video-text pretraining and the
SignHiera model via MAE. The goal is to help the SignHiera encoder, which is
involved in both tasks, learn strong continuous sign representations grounded
in the target modality (text). The videos were masked with a 90% ratio even
for computing the contrastive loss, which is similar to FLIP (Li et al., 2023d),
and enabled end-to-end training by drastically reducing the memory footprint.
The two losses (MAE and contrastive) were balanced via GradNorm (Chen et al.,
2018), which helped stabilize training, compared to using fixed loss weights.°

6In contrast to Zhou et al. (2023), we did not jointly train the text decoder as doing so did not
improve performance in preliminary experiments and led to training instabilities.
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6.5 Experimental Setup

6.5.1 Datasets

Youtube-ASL (YT) We used Youtube-ASL (Uthus et al., 2023), the largest
available ASL training dataset with ~1000h of in-the-wild video and over 2500
signers, both during pretraining and supervised finetuning.” We used a version in
which all signers’ faces are blurred for privacy.

How2Sign (H2S) We also used How2Sign (Duarte et al., 2021), an ASL dataset
with ~80h of video and nine different signers in a green screen studio setting, for
pretraining, finetuning, and downstream evaluation of our SLT models. Again,
we used a version with blurred faces only.

DailyMoth-70h To isolate the impact of face blurring during pretraining and
finetuning on SLT performance, we relied on a new dataset, which we name
DailyMoth-70h. This dataset contains over 70h of video of a single signer from
the ASL news page TheDailyMoth and was obtained through a license agreement
with TheDailyMoth’s host.® We used both unblurred and blurred dataset versions
and report dataset statistics in Appendix 6.8.2.

6.5.2 Training and Evaluation Protocols

We briefly describe our training and evaluation protocols. The full configurations
for pretraining and SLT training are listed in Appendix 6.8.3.1.

Face blurring We used an internal face blurring software and ensured its
reliability on the YT and H2S datasets via a combination of automatic and manual
verification techniques. Example frames sampled from two blurred videos from
the DailyMoth-70h data are shown in Appendix Figure 6.5.

MAE pretraining We largely follow the Hiera pretraining recipe from Ryali
et al. (2023). In our default configuration, we trained for 800 effective epochs
(accounting for repeated sampling as in Feichtenhofer et al. (2022)) with the
AdamW optimizer (Kingma and Ba, 2015; Loshchilov and Hutter, 2019). The

7For the lack of a readily available larger, unannotated dataset, Youtube-ASL fits both dimensions
of our framework: the large, publicly-available, unannotated dataset and the curated, parallel dataset.
8https ://www.dailymoth.com/
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Method Blur FT Data BLEU-1 BLEU-2 BLEU-3 BLEU ROUGE-L BLEURT
Baselines
Lin et al. (2023) X H2S 14.9 7.3 3.9 2.2 12.6 31.7
Tarrés et al. (2023) X H2S 340 193 122 8.0 — —
************** H2S 150 51 23 12  — 300
YT 209 10.4 6.1 4.0 — 35.0
Uthus et al. (2023) X YyT+H2s 363 230 161 119 — 44.8
YT - H2S 37.8 241 169 124 — 46.6
Ours
ssvP-sLT 25 v H2S 302 167 105 7.0 25.7 39.3
************** H2S 381 237 163 117 338 442
ssvpsir YT , YT 292 166 107 7.1 28.3 41.8
800 YT+H2S 416 272 193 143 36.8 48.6
YT > H2S 419 27.7 198 147 37.8 49.3
H2S 389 241 164 116 34.0 44.5
YT 291 170 111 7.5 28.6 41.6
_ YT+H2S
SSVP-SLT gog Y YT+H2S 418 274 195 143 36.9 48.9
YT - H2S 41.8 274 196 14.6 37.7 49.0
SSVP-SLT-LSP 233522%0 v/ YT+H2S 432 28.8 208 15.5 38.4 49.6

Table 6.2: How2Sign test performance of ssvp-siT in different pretraining
configurations compared to baselines. The Blur column denotes whether faces in
the train and eval data are blurred. FT Data indicates the finetuning configuration;
respectively, YT+H2S and YT—H2S refer to training on the two datasets jointly
or consecutively.

learning rate was set to 8e—4 with linear warmup over 120 epochs and cosine
decay to le—5. The batch size was 2 x 128, with 2 being the repeated sampling
factor. Similar to Zhou et al. (2023), we employed video data augmentation via
random cropping, horizontal flipping, and RandAug (Cubuk et al., 2020). We
used a 128 x 2 temporal sampling strategy, i.e., sampling 128 frames with a stride
of 2, which fully accommodates ~85-95% of videos in the data.

SLT finetuning When finetuning only on How2Sign or DailyMoth-70h, we
closely followed the setup of Tarrés et al. (2023), training a ~10M parameters
transformer from scratch; see Appendix 6.8.3.1 for more details. For How2Sign,
we reused their lowercase unigram tokenizer (vocab size 7K). For DailyMoth-70h,
we trained a cased tokenizer (unigram, 7K vocab size), which we found to work
better due to the large proportion of named entities in the data.

When finetuning on Youtube-ASL, as we needed a model with more capacity
we relied on a pretrained T5-v1.1 with default tokenizer, following Uthus et al.
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(2023). We trained for up to 100 epochs with early stopping, batch size 512 and
AdamW with peak rate 5e—4, linear warmup over two epochs and cosine decay to
le—7. We used dropout of 0.3 and 0.2 label smoothing in the cross-entropy loss.
We did not use video data augmentation unless specified otherwise.

Language-supervised pretraining We performed 200 epochs of Lsp with a
batch size of 512 on top of 600 epochs of MAE-only pretraining. We did not use
repeated sampling, which is incompatible with the contrastive loss. We again
used AdamW, warming up to a learning rate of 1e—4 over ten epochs, followed
by cosine decay to 1e—6. The GradNorm optimizer has a one epoch warmup, a
peak learning rate of le—2, and decays to le—4. Data augmentation and temporal
sampling are the same as for MAE pretraining.

Evaluation We used beam search with 5 beams and no length penality. We
evaluated every epoch when finetuning on How2Sign or Dailymoth-70h and every
500 steps for Youtube-ASL. We kept the checkpoint with the highest validation
BLEU-4 and evaluated it on the respective test set.

Notation Below, we use superscript and subscript to indicate the pretraining
dataset and number of epochs, respectively. For instance, ssvp-sLT g%
refers to 800 epochs of MAE pretraining on Youtube-ASL and How2Sign. For
SSVP-SLT-LSP, 600—200 denotes 600 epochs of MAE pretraining followed by

200 epochs of LSP.

6.5.3 Baselines

Lin et al. (2023) propose to bridge the visual and text modalities via contrastive
anchoring of encoded visual features to embeddings of conceptual words in the
target sequence. Tarrés et al. (2023) is the SOTA on How2Sign without additional
SLT data, training a 6+3 layer transformer from scratch on features from an
I3D model (Carreira and Zisserman, 2017). The I3D model was first pretrained
on Kinetics (Carreira and Zisserman, 2017) and BOBSL (Albanie et al., 2021),
and finetuned on How2Sign for sign language recognition using annotations
generated via iterative sign spotting (Duarte et al., 2022). Uthus et al. (2023) is
the current SOTA on How2Sign, and finetunes a pretrained T5-v1.1-Base model
for SLT directly on pose landmarks extracted from YouTube-ASL and How2Sign
videos.
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6.5.4 Evaluation Measures

We report BLEU via SacreBLEU (Papineni et al., 2002; Post, 2018).° We also report
ROUGE-L (Lin, 2004) and BLEURT (Sellam et al., 2020) from the BLEURT-20
checkpoint, which has been shown to correlate well with human judgments.

6.6 Results and Discussion

Comparison against the state-of-the-art We present our main results in
Table 6.2. Our best models significantly improve over the previous 12.4 BLEU
state-of-the-art by Uthus et al. (2023). ssvp-sLT achieves 14.7 and 14.6 BLEU
when pretraining on YT and YT+H2S respectively. Our best overall model,
utilizing ssvP-sLT-1sP, achieves 15.5 BLEU, a 3.1 point improvement over
the baseline. When pretraining and finetuning on YT only, we also observe a
3.1 BLEU improvement (4.0 vs. 7.1) over the previous SOTA in the zero-shot
setting. These results demonstrate the overall effectiveness of ssvp-sLT and,
more broadly, self-supervised pretraining for SLT.

Pretraining on YT+H2S performs almost the same as training on YT only, with
the YT-only models even sometimes performing best. Given the distributional gap
between the datasets (in-the-wild YT vs. studio H2S video) and the fact that
the YT+H2S models consumed more data, this finding is somewhat surprising.
While this may be due in part to randomness in the training dynamics, it could
also mean that sufficient finetuning can compensate for not accessing the H2S
data at pretraining, presumably because the pretraining set is sufficiently large
and diverse. This encouraging result suggests that we can pretrain on large data
independently of knowing what our finetuning and inference dataset will be—a
crucial requirement for practical SLT applications.

We find that YT data is beneficial both for pretraining and finetuning, which
emphasizes the importance of training on large and diverse data and suggests
that we can expect further gains from scaling to large public unannotated video.

Finally, we find that bridging the modality gap via language-supervised
pretraining yields a 1.2 BLEU improvement over its MAE-only counterpart. Given
enough annotated data, the technique can be employed independently of self-
supervised pretraining at little extra cost.

9nrefs:1|case:mixed|eff:no|tok:13a|smooth:exp|version:2.3.1
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Blur
Pretrain SLT

BLEU ROUGE-L BLEURT

X X 28.8 50.9 51.7
X v/ 28.1 50.6 51.4
v X 28.2 50.3 51.0
v v 27.5 49.6 50.4

Table 6.3: Performance on unblurred test data for ssvp-sLT trained and evaluated
on DailyMoth-70h with or without facial blurring during pretraining and SLT.
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Figure 6.3: How2Sign test BLEU of ssvp-sLT after pretraining on YouTube-ASL
and How2Sign or How2Sign only and finetuning on the same data.

What’s the effect of blurring? We isolate the impact of facial obfuscation
via blurring on SLT performance by training ssvp-sLT models on DailyMoth-
70h with and without blurring during pretraining and SLT training. We report
the results in Table 6.3. As expected, performance is best when not blurring
(28.8 BLEU) and worst when blurring at finetuning time (28.1 and 27.5 BLEU).
Crucially, some performance can be recovered after pretraining on blurred data
when performing SLT on unblurred data (28.2 BLEU), validating our proposed
framework (see Table 6.1).'° This means we can pretrain in a privacy-aware
manner without sacrificing too much performance.

How long should you pretrain? The sign language MAE task is intricate. The
model first needs to abstract away surface-level information such as background
and signer appearance. It then needs to implicitly acquire an understanding

10We hypothesize that even more performance could be recovered if the SignHiera video encoder
was unfrozen during SLT training, allowing adaptation to the facial information.
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Clip Pretraining o o1y pOUGELL  BLEURT

size epochs
H2S
128 800 7.0 25.7 39.3
128 100 2.3 14.3 33.6
16 800 5.0 20.2 36.4
YT + H2S
128 800 14.3 36.9 48.9
128 100 12.5 34.2 46.1
16 800 10.4 31.7 44.3

Table 6.4: How2Sign test performance of ssvpP-sLT when pretraining on
(YouTube-ASL and) How2Sign with a clip size of 16 versus 128 video frames.

of ASL, capturing long-range dependencies in the video. It is therefore worth
investigating basic scaling properties. In Figure 6.3, we show downstream SLT
performance over the course of pretraining. Similar to Ryali et al. (2023) and He
et al. (2022), we observe consistent downstream improvements as pretraining
progresses, suggesting that the models are not overfitting to the training data
even after extensive pretraining. These results underscore the task’s effectiveness
and indicate that further scaling would likely yield additional gains.

Is encoding longer clips necessary? Increasing clip length is costly due to the
poor scaling of global attention, raising the question of whether encoding longer
clips is needed. Our results indicate that the answer is yes. Table 6.4 compares
the performance of the original 16-frame Hiera with our 128-frame SignHiera.
While 16-frame Hiera achieves non-trivial performance after 800 epochs, it is
substantially outperformed by 800 epoch SignHiera (7.0 vs 5.0 BLEU for H2S
and 14.3 vs 10.4 BLEU for YT+H2S). This may be partially explained by the
fact that SignHiera sees up to 8x as much data every step. However, we also
see that 800-epoch 16-frame Hiera lags far behind even a 100-epoch SignHiera
(which has seen roughly the same number of tokens) when training on a large
dataset (12.5 vs 10.4 BLEU in the YT +H2S setting). When training on less data
(H2S), 16-frame Hiera is still worse than 400-epoch SignHiera (5.39 vs 5.0 BLEU,
see Figure 6.3). Overall, this suggests that certain information cannot easily be
acquired from shorter clips.
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Model Param PT BLEU ROUGE-L BLEURT

X 140 368 483
BART — 140M 9375 365 481

X 116 350 46.1
To-vIl 248M - 143 369 48.9

Table 6.5: How2Sign test performance of ssvP-sLT L1+H25 when finetuning

BART and T5, initialized randomly (PT = X) or from the pretrained model (v).

Aug BLEU ROUGE-L BLEURT

X 143 36.9 48.9
v 147 37.2 49.0

YT+H2S

800 with and without

Table 6.6: How2Sign test performance of ssvp-sLT
finetuning augmentation.

How to choose the text model? We investigate how the architecture and
initialization of the text transformer affect performance. Table 6.5 compares
pretrained and randomly initialized BART (Lewis et al., 2020), the English
monolingual counterpart to mBART (Liu et al., 2020), which has previously been
successfully adapted for German and Chinese sign languages (De Coster et al.,
2021; Chen et al., 2022a; Zhou et al., 2023), and T5-v1.1 as used by Uthus et al.
(2023).

Overall, T5 outperforms BART, possibly due to larger capacity, but the gap is
small. While it is worse to finetune a randomly initialized T5 model compared to
the pretrained one (corroborating findings by Uthus et al. (2023)), for BART we
find the opposite result. We conclude that whether text pretraining is helpful
needs to be evaluated on a case-by-case basis. It may be worth investigating in
the future whether an additional pretraining or finetuning step may lead to better
adaptation of the text model to sign language.

Should we augment data at finetuning? Augmentation such as flipping,
cropping, and RandAug may improve generalization, but it comes at a high
storage cost at finetuning time, as the video features are extracted offline. Is it
worth the cost? We compared using 60 epochs of augmented videos (a 60-fold
increase in storage) with not using any augmentation. The results in Table 6.6
show that using augmentation yields a reasonable 0.4 BLEU gain, suggesting that
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Initialization MAE CLIP BLEU ROUGE-L BLEURT
. K400
Hiera 800 X v 2.1 14.9 35.0
X v 11.0 32.1 44.7
SSVP-SLT gggst v X 143 36.9 48.9
v v 15.5 38.4 49.6

Table 6.7: How2Sign test performance when including (v') or removing (X)
the MAE and CLIP objectives and pretraining from the original Hiera X490 or

800
SSVP-SLT E(T)gst checkpoint for 200 epochs on YT+H2S, followed by finetuning
on the same data.

augmentation can be useful when storage is not a major concern.

Are both pretraining objectives necessary? In § 6.6, we saw that language-
supervised video-text pretraining is highly effective when combined with MAE.
Are both necessary? We compared pretraining for 200 epochs with either and
both objectives, initializing from a 600-epoch ssvp-sLT checkpoint, and also
performed 200 epochs of CLIP-only pretraining from the original pretrained
Hiera. The results in Table 6.7 show that removing either objective results in
a performance drop. The drop is larger when removing MAE, indicating its
continued importance after 600 epochs of MAE-only training. Initializing from
the original Hiera results in very poor performance (2.1 BLEU), suggesting that
language-supervised pretraining alone is not useful in our setting. Considering
that language supervision has previously been shown to be effective in isolation
(Zhou et al., 2023), this may be due to the FLIP-style masking and the fact that
we do not jointly pretrain T5. We also emphasize that language-supervised
pretraining falls under stage II of our framework as it requires annotations; it
can, therefore, only serve as an addition to self-supervised pretraining, but not a
replacement.

6.7 Conclusion

Through controlled experiments, we studied the effectiveness of self-supervised
pretraining for SLT while considering privacy risks. We introduce ssvp-sLT, a
novel, scalable, and privacy-aware SLT method that leverages masked autoencod-
ing on anonymized video. It achieves state-of-the-art ASL-to-English translation
performance on the How2Sign benchmark, outperforming the best previous
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models in the finetuned and zero-shot setting by over 3 BLEU.

Our results demonstrate the promise of self-supervised learning to alleviate
the data scarcity issue and further scale up sign language processing in the
future. We found that video anonymization, even via simple techniques such as
face blurring, has relatively little negative impact on downstream performance,
further proving that we can build more proficient systems without neglecting
important privacy concerns. We hope that this work, alongside the code and data
we release, will spur future developments that benefit the d/Deaf and hard of
hearing communities.

Limitations

Compute Requirements Currently, SSVP-SLT requires access to substantial
compute to train at the scale of Youtube-ASL (600K videos). This is primarily due
to the high dimensionality of video data, exacerbated by the long clip length
and information density in sign language content, which creates a data-loading
bottleneck and increases the memory footprint, especially in combination with a
transformer architecture. Our longest pretraining run in full precision (fp32) took
approximately two weeks on 64 A100 GPUs. We believe that it will be important
to drive down this cost in the future and make large-scale video pretraining
more accessible. While many simple interventions, such as mixed precision,
gradient accumulation, and gradient checkpointing, could drastically reduce the
memory footprint, they usually come at the cost of training time or stability. In
general, we note that this limitation is not unique to our approach but often not
apparent due to training being conducted on nearly 100x smaller datasets such
as RWTH-Phoenix-Weather 2014T (7K videos; Camgoz et al., 2018).

Anonymization We rely on face blurring for video anonymization, which is
known to incur a loss of linguistic information (see § 6.2). In the future, it
will be worth investigating more sophisticated methods, such as using synthetic
appearances. Also, largely due to a lack of linguistic tools for continuous signing,
we did not investigate what effects anonymization may have on the translations
qualitatively. For instance, it would be instructive to know whether the model
successfully disambiguates certain phonemes with similar manual features through
context in the absence of facial information.
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Languages Due to the availability of sufficiently large datasets for our pretrain-
ing experiments, we only experiment with American Sign Language and English,
the two highest-resource signed and spoken languages. We aim to diversify this
language selection in the future.

Ethics Statement

Regarding performance, our models may contain demographic biases and un-
derperform for certain race, gender, and age groups. For instance, even though
the YouTube-ASL dataset (a dataset we used for pretraining and supervised
finetuning) features over 2500 signers, the authors did not provide demographic
details of these signers. Similarly, our DailyMoth-70h dataset includes only one
signer (white, male, and early middle-aged). As such, it is unclear how our models
perform for underrepresented users, who, aside from having diverse identities,
may introduce different accents or regional variations of ASL that our models do
not adequately capture. We call for future research on SLT to be more explicit
about documenting demographic biases in their datasets and models.

Lastly, we emphasize that anonymization inherently does not offer any formal
privacy guarantees in contrast to frameworks such as differential privacy (Dwork,
2006), which fundamentally comes at a (often substantial) cost in utility (Geng
et al., 2020). As such, while our work (and the use of facial obfuscation in general)
represents an important first step towards comprehensively protecting the privacy
of signers, it should not be relied on in sensitive or high-stakes applications.
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6.8 Appendix

6.8.1 Pose landmarks vs RGB Video

Pose landmarks (e.g., from MediaPipe Holistic) are cited as a privacy-preserving
alternative to RGB video for SLT (Moryossef et al., 2021; Uthus et al., 2023).
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Train Validation Test Full

Raw data
Number of signers — — — 1
Number of videos — — — 496
Video duration (hours) — — — 76.9
Time frame 01/21-04/23 02/22-04/23 02/22-04/23 01/21-04/23

Segmented data
Number of clips 41412 2789 4185 48386
Clip duration (hours) 65.8 4.0 6.0 75.8
Vocabulary (words) 18495 4803 6040 19 694
Duration in seconds per clip* 5.7/ 2.4/ 8.9 52/21/79 52/21/79 5.6/23/8.7
Characters per caption® 43.9/12.7/58.0 44.1/12.8/59.0 43.3/12.9/59.0 43.9/12.7/59.0
Words per caption® 8.6/24/12.0 8.7/24/12.0 8.5/24/12.0 8.6/24/12.0

Table 6.8: DailyMoth-70h dataset statistics. (*): mean/std/ goth percentile

While they may indeed offer benefits in terms of efficiency and generalization, we
argue that they do not offer meaningful privacy protection either. For instance,
using a sufficiently large number of facial landmarks that are estimated accurately
results in what is essentially a scan of the facial geometry, a biometric identifier
according to legislation like the Biometric Information Privacy Act (BIPA).!!
Despite abstracting away shallow information about a person’s appearance, pose
information could, therefore, be (mis)used in similar ways as de-anonymized
video. Analogous to facial obfuscation in video, one could reduce the number of
facial landmarks or add noise to them to hinder re-identification, but doing so
also results in (arguably even more) loss of information.

6.8.2 DailyMoth-70h Dataset

We introduce DailyMoth-70h, a dataset containing over 70h of video with aligned
English captions of a single native ASL signer (white, male, and early middle-aged)
from the ASL news page TheDailyMoth.!?> We obtained the data via a license
agreement with the host of TheDailyMoth.

Download and License The fully self-contained dataset is available under a CC
BY-NC license at O facebookresearch/ssvp_slt.

Statistics We provide detailed dataset statistics in Table 6.8 and Figure 6.4.

Mhttps://www.ilga.gov/legislation/ilcs/ilcs3. asp?ActID=3004&ChapterID=57
12https://www. dailymoth.com/
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Purpose The dataset is fully self-contained and can therefore serve as a new
benchmark for studying the task of single-signer translation (e.g., for building per-
sonalized systems). Furthermore, sign language translation involves overcoming
several challenges such as generalizing over signers, their appearances and their
signing styles as well as mapping spatio-temporal signed utterances to spoken
words. DailyMoth-70h can be used to disentangle some of these challenges by
eliminating the signer and style variances and allow researchers to ablate their
models more focused on the sign-to-spoken language mapping.

Preprocessing We first segmented the raw videos into clips of ~5.6 seconds on
average based on their aligned English captions. Each entry in the SubRip subtitle
(SRT) file, which maps video timestamps to captions, was chosen to be a distinct
datapoint. Accordingly, example clips are often sentence fragments rather than
full sentences.

Afterwards, the segmented video clips were automatically cropped such that
the signer is approximately in the center of the frame and resized to 224 x 224
pixels. The preprocessed clips were saved in their native framerates, which are
either 24 or 30 fps.

Next, many videos had burned-in captions which, if not removed, would reduce
the translation task to a simple OCR task. We, therefore, used an off-the-shelf
text detection model to identify burned-in captions in the videos, and blurred the
captions conservatively. Although the blurring may be imperfect due to errors
made by the text detector, this intervention should nevertheless solve the concern
of models shortcutting the SLT task for the most part.

Finally, we split the data into training, validation, and test splits. The pro-
portions (85% / 6% / 9%) were chosen to approximately match How2Sign.
The validation and test examples were randomly sampled from the subset of
videos posted after January 2022, which avoids data leakage from Youtube-ASL
or OpenASL (Shi et al., 2022), both of which have cut-off dates before/during
January 2022, into the DailyMoth-70h evaluation splits. The training examples
were randomly sampled from the full range of dates (January 2021 to April
2023).

172



6.8. Appendix

6.8.3 Reproducibility

6.8.3.1 Model and Training Configurations

We report our pretraining configurations for ssvp-sLT in Table 6.9 and ssvp-
SLT-LSP in Table 6.10. Our finetuning configurations are listed in Table 6.11 for
Youtube-ASL (+ How2Sign) and Table 6.12 for How2Sign-only and DailyMoth-
70h.

6.8.3.2 Code

Our implementation uses Python 3.10 and PyTorch 2.0.1 (Paszke et al., 2019)
compiled with CUDA 11.7. The code is available under a CC BY-NC license at
O facebookresearch/ssvp_slt.

6.8.3.3 Hardware & Runtime

We ran our experiments on NVIDIA A100 80GB and V100 32GB GPUs. On
Youtube-ASL (+ How2Sign), pretraining took ~20 minutes (ssvp-sLT) / 30
minutes (ssvP-sSLT-LSP) per effective epoch on 64 A100 or 128 V100 GPUs.
On How2sign or DailyMoth-70h, an effective epoch of ssvp-sLT pretraining
took ~3 minutes. Finetuning and evaluating T5 and BART on Youtube-ASL (+
How2Sign) took ~8 and 4 minutes, respectively, per epoch on 32 V100 GPUs.
Training T5 was slower due to training in full precision as opposed to fp16 and
using a smaller batch size with gradient accumulation. Finetuning and evaluating
with Tarrés et al. (2023)’s setup on How2Sign or DailyMoth-70h took ~1 minute
per epoch on a single V100 GPU.

6.8.4 Qualitative Examples

In Table 6.13, we provide qualitative examples of our best-performing model
(15.5 BLEU on How2Sign), compared against the best-performing models from
Tarrés et al. (2023), Uthus et al. (2023), as well as the reference translations.
The examples were picked from the How2Sign test split by Tarrés et al. (2023).
Examples (3)-(5) are, anecdotally, more challenging than the average test example.
We find that our model is mostly on-topic and matches the syntactic structure,
although it can still struggle with repetitions and the mixing-up of signs. Our
model’s failure patterns are more similar to Uthus et al. (2023)’s models—
possibly a result of finetuning the same base model (T5-v1.1) on the same
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datasets (Youtube-ASL and How2Sign). For instance, in example (3), both models
mistakenly predict the verb “feed” (and mispredict everything that comes after)
but flawlessly match the syntactic structure of the reference translation. Overall,
both baselines appear to exhibit a higher occurrence of (complete) mis-translation,

which aligns with our quantitative results.
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Parameter Value
Decoder blocks 8

Decoder heads 8

Mask ratio 0.9

Drop path rate 0.2

Video size (T, C, H, W) (128, 3, 224, 224)
Sampling Rate 2

Face Blur v

Random Crop v

Horizontal Flip v

RandAug V(4,7
Repeated sampling 2

Optimizer AdamW
Optimizer momentum B1 =0.9, By = 0.95
Weight decay 0.05

Peak learning rate 8e—4
Learning rate schedule Cosine Decay
Minimum learning rate le-5
Effective warmup epochs 120

Effective epochs 800

Effective batch size 256

Gradient clipping —

Precision fp32

Table 6.9: ssvP-sLT pretraining settings
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Parameter Value

CLIP Text tower T5-v1.1-base
CLIP Feature pooling mean

CLIP Feature projection 2-layer MLP
Decoder blocks 8

Decoder heads 8

Mask ratio 0.9

Drop path rate 0.2

Video size (T, C, H, W)
Sampling Rate

Face Blur

Random Crop
Horizontal Flip
RandAug

Repeated sampling
Optimizer

Optimizer momentum
Weight decay
GradNorm o

Peak learning rate
Learning rate schedule
Minimum learning rate
Effective warmup epochs
Effective epochs
Effective batch size
Gradient clipping
Precision

(128, 3, 224, 224)

2

v

v

v

v(4,7)

1

AdamW

B1 =0.9, B2 =0.95
0.05

1.0

M = 1le—4, GN = le-2
Cosine Decay

M = le—6, GN = le—4
M=10,GN =1

200

512

1.0

fp32

Table 6.10: ssvP-sSLT-LSP pretraining settings. “M” refers to the main optimizer
while “GN” refers to the GradNorm optimizer.
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Parameter Value

Model & Tokenizer T5-v1.1
Dropout probability 0.3

Label smoothing 0.2

Number of beams 5

Video size (T, C, H, W) (T, 3, 224, 224)
Sampling Rate 2

Face Blur v

Random Crop X

Horizontal Flip X

RandAug X

Min sequence length 0

Max sequence length 1024

Max target length 128

Optimizer AdamW
Optimizer momentum p1 =0.9, By = 0.95
Weight decay le-1

Peak learning rate
Learning rate schedule
Minimum learning rate
Warmup epochs
Epochs

Batch size

Early stopping
Gradient clipping
Precision

Se—4

Cosine Decay
le-7

2

100

256

v

1.0

fp32

Table 6.11: Finetuning settings for Youtube-ASL.
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Parameter Value
Encoder layers 6
Decoder layers 3
Attention heads 4
Embedding dim 256
FFN embedding dim 1024
Output dim 256
Layerdrop 0.0
Activation function ReLU
LayerNorm Before v
LayerNorm Embedding v
Scale embeddings v
Decoder share embeddings v
Vocab size 7000

Lowercase tokenizer
Truecase outputs
Dropout probability
Label smoothing
Number of beams
Video size (T, C, H, W)
Sampling Rate

Face Blur

Random Crop
Horizontal Flip
RandAug

Min sequence length
Max sequence length
Max target length
Optimizer

Optimizer momentum
Weight decay

Peak learning rate
Learning rate schedule
Minimum learning rate
Warmup epochs
Epochs

Batch size

Early stopping
Gradient clipping
Precision

H2S = v/,DM = X
H2S = v/,DM = X
0.3

0.2

5

(T, 3, 224, 224)

2

H2S =v/,DM =v// X
X

X

X

0

1024

128

AdamW

B1 =09, B2 =095
le-1

le-2

Cosine Decay
le—4

10

200

32

v

1.0

fpl6

Table 6.12: Finetuning settings for How2Sign (H2S) & DailyMoth-70h (DM).
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Figure 6.4: DailyMoth-70h dataset split statistics
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(a) English translation: “Hello, welcome to The Daily Moth.”

(b) English translation: “Happy New Year”

Figure 6.5: Example frames sampled from two videos in the blurred version of
the DailyMoth-70h training split.
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Reference  And that’s a great vital point technique for women’s self defense.
Tarrés et al.  It’s really a great point for women’s self defense.

M Uthus et al.  It’s really great for women’s self defense.

Ours This is a really great point for women’s self defense.

Reference  In this clip I'm going to show you how to tape your cables down.
@ Tarrés et al.  In this clip ’'m going to show you how to improve push ups.

Uthus et al.  In this clip we’re going to show you how to cut a piece of clay.

Ours In this clip I'm going to show you how to clip the cable, the cable.

Reference  In this segment we're going to talk about how to load your still for distillation of

3) lavender essential oil.

Tarrés et al. Ok, in this clip, we’re going to talk about how to fold the ink for the lid of the oil.

Uthus et al.  In this clip we're going to talk about how to feed a set of baiting lizards for a lava
field oil.

Ours In this clip we’re going to talk about how to feed the trail for draining clean for
laborer oil.

Reference  You are dancing, and now you are going to need the veil and you are going to

@ just grab the veil as far as possible.

Tarrés et al.  So, once you're belly dancing, once you've got to have the strap, you're going to
need to grab the thumb, and try to avoid it.

Uthus et al.  Their hopping and dancing is now, they’re going to need their squat and squat
and they’re going to be able to move independently.

Ours So that she’s going to get her hips up as far as she can, and now she’s going to
lift her head up as far as possible.

Reference  But if you have to setup a new campfire, there’s two ways to do it in a very low

) impact; one is with a mound fire, which we should in the campfire segment
earlier and the other way to setup a low impact campfire is to have a fire pan,
which is just a steel pan like the top of a trash can.

Tarrés et al.  And other thing I'm going to talk to you is a little bit more space, a space that’s
what it’s going to do, it’s kind of a quick, and then I don’t want to take a spray
skirt off, and then I don’t want it to take it to the top of it.

Uthus et al.  But if you have to set up a new campfire, there are two ways to do a low impact
fire, one is a cone fire, which we have to do in the tent earlier, and the other one
is to set up a campfire in a fire pan.

Ours But if you have to set up a new campfire, this is one way to do it in a low impact.
One is a monk fire. One is a campfire. The other one is to set a campfire in a
campfire. That’s just a post like the top of the post.

Reference  So, this is a very important part of the process.

®) Tarrés et al.  It’s a very important part of the process.

Uthus et al.  Alright, let’s get started.
Ours It’s an important part of the process.

Table 6.13: Qualitative translation examples from our best-performing model
compared to Tarrés et al. (2023), Uthus et al. (2023), and the reference trans-
lations. The examples were picked from the How2Sign test set by Tarrés et al.
(2023) and do not necessarily accurately reflect progress on the task. We see
that our model is mostly on-topic, but can still struggle with repetitions and the
mixing-up of signs.
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Conclusion

This thesis was motivated by the transformative impact of modern natural lan-
guage processing, particularly pretrained language models, and the concurrent
imperative to ensure that these technologies are developed and deployed in ways
that are both inclusive and trustworthy. As outlined in the introduction (§ 1), the
prevailing paradigm based on tokenization, while powerful, faces fundamental
limitations in handling the diversity and multimodality of language, and presents
challenges related to trustworthiness desiderata, such as fairness and robustness.
In response, we investigated how an alternative framework—specifically, visual
language representation—and the broader trend toward multilingualism in NLP
could help mitigate these concerns. This concluding chapter synthesizes the
findings and contributions of this thesis, discusses them in the context of the
rapidly evolving field, acknowledges limitations, and outlines promising directions
for future research.

7.1 Discussion

The landscape of Al and NLP has continued its rapid evolution, with advances in
model scale, multimodal capabilities, and alignment techniques emerging even
since the core research presented in this thesis was conducted. However, the
discussed challenges surrounding inclusivity and trustworthiness remain central
concerns (Ovalle et al., 2024; Huang et al., 2024; Li et al., 2025). For example,
issues such as the digital divide for low-resource languages (Nigatu et al., 2024),
the brittleness of models to noise and distribution shifts (Hendrycks et al., 2022),
and the difficulty of ensuring several trustworthiness desiderata simultaneously
(Cresswell, 2025) persist. In this context, the contributions of this thesis offer
relevant insights and potential solutions.

181



Chapter 7. Conclusion

Contributions A core contribution was the exploration of visual language
representation learning as an alternative to tokenization-based approaches. By
proposing PIXEL (§ 2, 3), which processes rendered text images using vision
transformers and masked autoencoding, we demonstrated a way to circumvent
the vocabulary bottleneck that presents major challenges for language scaling of
token-based multilingual models. This pixel-based approach inherently supports
any digitally representable script or language, showing strong performance in
cross-lingual and cross-script adaptation and handling code-switching without
predefined subword units. Furthermore, this visual paradigm proved to be
naturally suited for tackling the digitization lag affecting many languages and
domains. In § 4, we showed that pretraining on scanned historical documents
enables effective downstream task performance without relying on potentially
error-prone OCR, resulting in enhanced robustness to the visual noise and
degradation commonly found in such materials. This suggests a promising path
for processing languages with non-standard orthographies, scripts unsupported by
Unicode, or primarily available in non-digital, potentially degraded formats. This
robustness to orthographic noise was also confirmed in our controlled experiments
on digital text with PIXEL (§ 2). Due to its benefits, this framework for visual
language representation learning has been met with excitement by the research
community and has continued to be an active area of research. To mention only
a few of the recent advances in visual language representation learning: Lee
et al. (2023) developed a pretraining strategy for visually-situated text, learning
to parse screenshots into HTML for state-of-the-art performance across several
visual language understanding tasks; Salesky et al. (2023b) trained multilingual
pixel-to-text translation models, highlighting their benefits for positive cross-
lingual transfer and data-efficient language scaling; Tschannen et al. (2023)
trained a contrastive image-text encoder exclusively on pixels, achieving strong
out-of-the-box performance on tasks such as multilingual multimodal retrieval,
Tai et al. (2024) proposed a pixel-based autoregressive language model, making
it possible not just to understand but also generate text with P1XEL models; Gao
et al. (2024) improved performance by extending PIXEL’s pretraining objective
with an autoregressive text decoder; Alonso et al. (2024) trained a pixel-based
model achieving strong performance on table-to-text generation.

Our study examining the interactions between multilinguality, task per-
formance, and specific trustworthiness criteria—differential privacy, linguistic
fairness, and instance-interpretability—in the context of conventional text en-
coders (§ 5) complemented our visual approaches, which lend themselves well to
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multilinguality by overcoming the vocabulary bottleneck. As the first study that
explored three-way and four-way interactions between these particular criteria,
we identified specific challenges in satisfying all trustworthiness dimensions simul-
taneously. We believe that these gained insights will help guide the development
of methods that advance the Pareto frontier of trustworthiness.

We also challenged the text-centric state of NLP, highlighting that language
goes beyond its written forms, therefore necessitating support for spoken and
signed languages for true inclusivity. In this regard, we showed how the visual
language representation learning framework naturally extends to sign language
(§ 6), given its visual-manual nature. By leveraging self-supervised pretraining on
large amounts of unannotated video data, our ssvp-sLT framework achieved
state-of-the-art results for ASL-to-English translation, significantly reducing the
gap compared to spoken language NMT and demonstrating a scalable approach
to overcoming data scarcity in this historically under-served modality. Despite the
fast pace of the field, ssvp-sLT continues to be a tough baseline to beat in ASL-
to-English translation, having so far been surpassed only by approaches trained on
significantly more data (Zhang et al., 2024; Tanzer, 2025). Crucially, our work also
integrated a privacy-aware methodology, showing that effective representations
can be learned from anonymized videos during pretraining, addressing privacy
concerns surrounding biometric data in sign language resources. Lastly, our
openly released DailyMoth-70h dataset serves as a valuable evaluation benchmark
for future research on sign language processing.

Limitations Despite our promising results, it is important to acknowledge
the limitations. Pixel-based methods for written language (§ 2; § 3; § 4; the
follow-up research mentioned above), while demonstrating strong capabilities
in specific areas (like cross-script generalization and noise robustness), have
generally not yet matched the overall benchmark performance of highly optimized
state-of-the-art token-based models, especially for high-resource languages where
tokenizers are well-tuned. Understanding the reasons for this gap—whether due
to optimization challenges, architectural suitability, data scaling requirements, or
simply less cumulative research effort compared to the token paradigm—is crucial
for future progress. We hypothesize that this performance difference relates to a
potential inclusivity-scaling trade-off. In particular, methods designed for broader
coverage and robustness (like pixel-, byte-, or character-level models) often
process less optimally compressed information or longer sequences compared to
subword tokenizers that aggressively compress frequent patterns in dominant
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languages. It remains an open question how we can best balance the need for
flexible applicability and robustness with the need for computational efficiency
and state-of-the-art performance. We have also primarily explored visual language
representations in the context of natural language understanding, while much of
NLP today relies on a model’s ability to generate language. It remains an open
problem what benefits visual representations can bring for such generative tasks.
In general, low-resource NLP is far from solved, and tasks such as sign language
translation still have limited practical viability despite our advances. It will take
considerable further efforts to lift NLP for low-resource languages up to the
current state of high-resource NLP. Similarly, our explorations on trustworthiness
criteria (§ 5) have largely been limited to advancing our conceptual understanding
of synergies and trade-offs, with no practical solutions harnessing this improved
understanding to better navigate these trade-offs. This reflects the broader
implementation gap in trustworthy Al; although several more recent survey and
position papers call (Ferry et al., 2023; Li et al., 2025; Cresswell, 2025)—just like
us—for more research at the intersection of trustworthiness desiderata, rather
than treating them in isolation, practical advances in this direction have remained
scarce. Closing this implementation gap represents a key challenge towards
building trustworthy Al. In our sign language work (§ 6), although providing a
practical method for enhancing the privacy of signers, we emphasize the need
for more sophisticated anonymization strategies beyond facial blurring, and
acknowledge the fact that anonymization does not provide any formal privacy
guarantees, so it should not be relied on in high-stakes applications. These
acknowledged limitations, open questions, and recent developments in the field
naturally motivate promising directions for future research.

7.2 Future Work

We highlight several particularly promising future directions, building on the
advances of this thesis.

Scaling of pixel-based language models As discussed in the previous section,
our foundational work on PIXEL (§ 2) and text rendering strategies for PIXEL
models (§ 3) have hinted at potential scaling challenges (and resulting trade-offs
between inclusivity and scalability) with pixel-based models, compared to the
incumbent token-based ones. As Tay et al. (2023) have found, the best model
architecture or inductive bias can also vary across model and compute scales. A
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critical next step is, therefore, to systematically investigate the scaling properties
of the visual language representation framework. Do models like P1XEL exhibit
predictable scaling laws relating performance to model size, dataset size, and
compute, similar to unimodal or mixed-modal token-based LLMs (Kaplan et al.,
2020; Hoffmann et al., 2022; Aghajanyan et al., 2023)? How do these laws
compare? Establishing these relationships is essential for determining the practical
limits and potential of this approach and guiding efforts to close the performance
gap with token-based models.

Hybrid approaches and multimodal LLM integration Exploring hybrid archi-
tectures that combine the strengths of token-based and pixel-based processing is
another highly promising avenue. For example, this could involve models that dy-
namically choose the representation based on the input (e.g., using pixels for noisy
text or unfamiliar scripts), something along the lines of which has recently been
explored by Lotz et al. (2025)). One might also explore multi-input systems that
directly create complementary views of inputs—one challenge here is minimizing
the potential extra computational cost and latency of these approaches.

It also seems very promising to integrate pixel-based language modeling
objectives into the pretraining or post-training stacks of multimodal LLMs. As a
result of increased model scale combined with pretraining and instruction tuning
on vast amounts of mixed-modal training data, these multimodal LLMs have
recently demonstrated impressive zero-shot capabilities across a wide array of
tasks, some related to those discussed in this thesis (e.g., OCR and reasoning
over visually-situated text) (Li et al., 2023b; Zhu et al., 2024; Liu et al., 2023;
Gemini Team et al., 2024; Chameleon Team, 2025). However, for processing
of the textual modality itself, these models still rely on the same conventional
tokenizers whose limitations our approaches seek to overcome. Their objective is
generally broad multimodal understanding, not necessarily learning language
through its visual form to bypass tokenization issues. As such, we see potential for
synergies by integrating our visual language representation framework into these
multimodal LLMs. Overall, such integration might lead to more robust models
capable of grounding language in its visual form when beneficial, perhaps moving
closer to modality-agnostic representations (Huh et al., 2024).

Massively multilingual visual language representations Instead of relying
primarily on cross-lingual adaptation from English (§ 2; § 3; § 4) or American
Sign Language (§ 6) pretraining, future work should explore pretraining visual
language models directly on large-scale multilingual corpora. This could improve
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performance and finetuning efficiency on a wider range of languages, either
through direct exposure or positive transfer from more closely related languages.
For written language, it could also improve handling of mixed-script text and code-
switching, and further improve robustness to orthographic variation. Extending
this further—related to multimodal LLM integration—one could investigate
models pretrained jointly on diverse visual language forms, such as rendered
text, document scans, sign language videos, and speech spectrograms, fostering
unified representations and facilitating transfer across language modalities.

Targeting the low-resource long tail As pointed out before, the success of
visual representations for historical documents (§ 4) motivates a concerted effort
to apply similar techniques to extremely low-resource languages. This includes
languages with limited digital text, inconsistent orthography, unencoded scripts,
or where primary resources are handwritten manuscripts or degraded prints.
Visual models’ ability to bypass OCR and potentially handle severe noise could be
transformative for documenting, preserving, and building NLP tools for these
languages. Again, this exploration could include integrating our methods within
the broader multimodal LLM framework.

Deepening trust The unique nature of visual language representations calls for
deeper investigation into their trustworthiness properties—ideally focusing on
several dimensions at once. This includes conducting fine-grained fairness audits
(e.g., how do models handle visual variations corresponding to different dialects
or sociolects?), assessing robustness against visually-grounded adversarial attacks,
and applying nascent mechanistic interpretability techniques (Olah et al., 2020;
Bricken et al., 2023) to understand how these models learn linguistic structures
from pixels (expanding on “pixology” work (Tatariya et al., 2024a)), potentially
revealing internal mechanisms different from token-based models.

7.3 Closing Remarks

The methods developed and analyzed in this thesis represent steps towards
bridging the gap between the current state of NLP and the pressing need for
technologies that embrace the world’s diverse linguistic landscape safely and
effectively. However, this work is not the end of the story. Most importantly, I hope
that this research encourages a curiosity and willingness within the community
to continually challenge established paradigms and explore alternative pathways.
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