Carbon Footprint of Selecting and Training Deep Learning Models for Medical Image Analysis

Research output: Working paperPreprintResearch

Documents

The increasing energy consumption and carbon footprint of deep learning (DL) due to growing compute requirements has become a cause of concern. In this work, we focus on the carbon footprint of developing DL models for medical image analysis (MIA), where volumetric images of high spatial resolution are handled. In this study, we present and compare the features of four tools from literature to quantify the carbon footprint of DL. Using one of these tools we estimate the carbon footprint of medical image segmentation pipelines. We choose nnU-net as the proxy for a medical image segmentation pipeline and experiment on three common datasets. With our work we hope to inform on the increasing energy costs incurred by MIA. We discuss simple strategies to cut-down the environmental impact that can make model selection and training processes more efficient.
Original languageUndefined/Unknown
Publication statusAccepted/In press - 4 Mar 2022

Bibliographical note

Accepted to be presented at 25th International Conference on Medical Image
Computing and Computer Assisted Intervention, Singapore, 2022.

ID: 315708631