Compact cactus representations of all non-trivial min-cuts

Research output: Contribution to journalJournal articlepeer-review

Documents

Recently, Kawarabayashi and Thorup presented the first deterministic edge-connectivity recognition algorithm in near-linear time. A crucial step in their algorithm uses the existence of vertex subsets of a simple graph G on n vertices whose contractions leave a multigraph with Õ(n∕δ) vertices and Õ(n) edges that preserves all non-trivial min-cuts of G, where δ is the minimum degree of G and Õ hides logarithmic factors. We present a simple argument that improves this contraction-based sparsifier by eliminating the poly-logarithmic factors, that is, we show a contraction-based sparsification that leaves O(n∕δ) vertices and O(n) edges, preserves all non-trivial min-cuts and can be computed in near-linear time Õ(m), where m is the number of edges of G. We also obtain that every simple graph has O((n∕δ)2) non-trivial min-cuts. Our approach allows to represent all non-trivial min-cuts of a graph by a cactus representation, whose cactus graph has O(n∕δ) vertices. Moreover, this cactus representation can be derived directly from the standard cactus representation of all min-cuts in linear time. We apply this compact structure to show that all min-cuts can be explicitly listed in Õ(m)+O(n2∕δ) time for every simple graph, which improves the previous best time bound O(nm) given by Gusfield and Naor.

Original languageEnglish
JournalDiscrete Applied Mathematics
Volume303
Pages (from-to)296-304
ISSN0166-218X
DOIs
Publication statusPublished - 2021

    Research areas

  • Cactus representation, Contraction-based sparsification, DAG representation, Min-cuts enumeration, Non-trivial min-cuts

Number of downloads are based on statistics from Google Scholar and www.ku.dk


No data available

ID: 239808851