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I FUNCTIONS AND EXPRESSIONS

1.. P-programs:. The set of all admissible programs
in the language P.

2 : For each program p € P-programs'r-

P-input(p) : The set of possible runtime inputs
to p (this may be empty)

P-output(p): A set including. all the· possible
runtime outputs resulting from..
running' program p

P-eval(p): P-input(p) ~ P-output(p)~
the input-output function computed
by p~ This may be a partial function
(1. e ... undefine.d on some inputs) due
to nonterminating computations by p

The first three chapters of these notes provide a semiformal

introduction to several fundamental concepts found in modern

programming- languages:' evaluation of expressions,- the binding

of names to values, recursively defined: functions and flow of

control., After developing some necessary notation, these con~'

cepts are· explored by giVing "operational semantics" (= rules

for program execution) of three minilanguages·: the lambda. cal­

culus ,.. systems of recursion. equations and a flowchart language._

The same principles for program execution are found in more

sophisticated. languages (Pascal, LISP r etc.) and should aid in

understanding the runtime:. structures. and translation. methods

found later in DAT 2 •.

The; treatment is "semiformal" in. that on the one. hand,

the various- terms and algorithms, used are precisely definedr

for example programs in the mini languages may be unambiguous­

ly executed by hand, a feature unfortunately not present in

the usual. programming language manuals h On the other hand for­

malized mathematical. reasoning or machine-executable programs

will not be used~

What is a- programming language? From a user's viewpoint

a language' P is a "black box!' which- can run programs.,- and, so

can be- thought to. consist: of:
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Examples Let A = {red,.green} and B = {red ,blue} .. Then

A x B { (red,red),(red,blue), {green., red) , (green,blue) }

A + B {{red,l) ,.(green"l)., (red,2) , (blue,2)}

single-valued since f(5) may return different values on dif­

ferent calls due to changes in global variables!

In case f is a function from A to B we write f: A-+B,

and say that f has~ A -+ B. For example, N I· N -+ N where

N = {O, 1,2" ••• } is the set of natural numbers. More generally

we can form type expressions, each of which denotes a set, by

the following' rules:

Letting #A denote the number of elements in set A, we see

that #.(A x B) = (#A) x (#B) while # (A + B) = (#A) + (#B). The

. (presumably- welL-known) set A x B is called the cartesian product

of A and B, while the less familiar A + B is called the disjoint

sum of A and B. Note that although A + B resembles the ordinary

set union A UB,. it is not the same since elements of the inter­

section lIappear twice ll
, e.g. red in' the example above~

Consider the follOWing nine partial functions fl,f2,~··,f9

from A to B

3J

1. The names. of various standard sets are atomic type

expressions,., including

N, denoting {O, 1 ,2, ... }

Z denoting { ... , -2, -1 , 0 , 1 , 2, ..• }

Bool.denoting {true" false}

2. If SandT are type expressions denoting sets A and

B (respectively) then

S x T denotes {(a,b)'1 a E A and bE B}

S -+ T denotes the set, of total functions. from A to B

SET denotes the set of partial. functions from

A toB

S + T denotes {(a,l) I a E A}U {(b, 2) I b E B}

i v..:.:.

2. VaE.A 3-b E B (a,b) E f

This description is not all-encompassing, as it lacks

some advanced.. programming language features (e.g~. cornrnunica-.

tion with other programs or user terminal.s, parallelism, etc.),

but, it wilL suffice' for this part of DAT 2~

A precise description of these advanced features would

r~quiremethods beyond the scope of the course~

2

i . NOTATIONS· FOR FUNCTIONS PoND'- TYPES \

Property· ·t says f. is single-valued, i .ell each a in A is

mapped to at most one b E B (this b is usually written f(a» .

Property 2 says. that f is total, L e ~ that f (a) exists for

every' a in A. In computer science, we·' will also have use for

partial func.tions, that is" subsets f of Ax B which satisfy

but not 2. One example is the input-output function computed

by a program, which may not be defined on some inputs due to

infin.i.te loops during program' execution.

It is important not to confuse the concept of a function,

Le. a single-valuedinput!output relation with the concept

of an algorithm,. which specifies a way to compute a function.

For example the facturial function n! is abstractly just the

set {(O,l, (1,1), (2,2), (3,6), -(~,24) ... } while there exist

many algorithms for computing' n! , e.g. Pascal programs using

iteration or recursion,.. LISP programs , etc.

The Pascal function declaration is thus an algorithm

rather than a mathematical function. Further it is r,;)t even

The concept "function" and. the notations. used to denote and.

mani'pulate, functions· are central. to both mathematics and com­

puter science, and form the inner core of nearly all program­

ming languages., Informally, a function is a correspondence

between elements of two sets, that is a· mapping from each ele­

ment of the-. first. set to exactly one element of the second.

More formally, a function f from A to B is a set of pairs

(a ,b) from A x B with' the properties:

1. VaE A Vb,blE B

(a,b) Ef'and (a,b l
) Ef implies b=b '
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N-+N

N-+N

NxN-+NxN

N x N-+·N

N x (N-N) ~N

(N~N) x N~N

N x N.!; N (partial)

N-+-(N-N)

N-+· (N-N)

twice

P-eval (p): P-input (p) ~P-output (p)

divide

add

power

f: A-B

f: A-B-,C

Type

and8

49

provided

provided

(7)

(7)

f(f(n) )

alb

=- (m+n., m-n) k

f (0) + f (1) + . •• +f (n ) sum

= if n = 0 then 1

else n * g (n - 1) g

= m+n h

add(1)

power(2)

means f (a) .

means (f(a» (b)'

f(x)

g(n)

h(m,n)

k(m,n)

sum(n,f)

twice (f,n)

divide (a,b)

P-eval(p)
where pEP-programs:

add(n) = if where lex) =x+n

power(n) =pJ where. p (x) = xn

Function Definition

5

· partial functions divide and P-eval(p)

· a recursively defined function g (note: g(n) =n!)

· higher-order functions: sum and twice,

which have func.tions,· as. asguments

· higher-order functions add and power, which yield

functions' as values_ For instance,. the value of

add(1) is the functio~ which, given any argument

value x,. returns, x + 1, and power (2) is- the function

which,. given argument x,. returns x 2 • Thus

1.2 Examples of Type Expressions for Functions

In. general we write t.:T.to.indicate that expression.t is in

the' set denoted by T, for example (5,6) :. N x N . Following are

several. examples of function definitions and their correspond­

ing types ..

The list above contains

fa

fab

Notational Conventions

A ... B -C means A - (B ...... C). if f:A - B ....... C then f (a): B - C for all

a EA, so f is. a function-producing function

end

....

end i

1 •. en

record

~. i.: tag of

1: (al: Al)

2: (a2: A2 )

. record a1 :A l

. a2 : A2

{f l ,f2 ,fa ,fd
{f 1 ,f 2 ,· ••• ,f s } .

tag.

sum

A -4B.

A!B

Function

f· f
i

(red) f
i

(blue)
i

f1 f 1 (red) red f 1 (blue) red

f 2 f2 (red). red f2(blue) blue

fa f a (red) blue f a (blue) red

f~ f ... (red) blue f~ (blue) blue

f 5 fs (red) undefined f 5 (blue). undefined

f 6 f 6 (red) undefined f 6 (blue) red

f T f 7 (red). undefined f 7 (blue) blue

fs fa (red) red fs (blue) undefined

f-s f9 (red) blue f s (blue) undefined

Type Constructors in Pascal

The. sets of total and.partial. functions are:

~ product

1.1

and.c. the product and surntypes could be declared as. records

and. variant records (respectively).:

The product and sUm type notations can be extended in an ob­

vious way to more than. two. arguments: At x ••• x An and

Al + ••• + An . In a Pascal context the atomic types are

Boolean, . integer, real, char



2. e: B

has type (!l-t.x B~)\-+ C while

AX • x.+n

AX •. xn
add..(n)

power(n)·

>"x:A,.y:B . e:C

>..x:A. >..y:B. e:C has type A-+ (B-+C) .

Lambda. Notation

which has type Al x ••• x An-+B, provided e has~ type B;.. If clear

from context the types Ai may be dropped .. Note that according

to these rules;

Lambda notation was developed by Alonzo Church [Chu36] as a way

to write .expressions denoting functions .. Since then. it. has been.

developed into. a formalism for studying computability theory

(the "lambda __ calculus". See [Chu51]) and was, the basis for the

design of.. the·prograrnming language LISP [McC62].

Arithme.tic expressions alone are not suitable for defining

functions. due. to. various ambiguities." For. one example, it is

not clear whether. the expression n! denotes. the. factorial func-·

tion. as. a whole (of type n! :. N -+ N) or its. value. given the cur­

rent value of n (type nL: N). Another problem: if y'- + x is re­

garded.as· a function., of two variables,. should. (y2. + x) (3,4) have

value 13. =3'- + 4·. or 19 = 42. + 3 ?

These; problems...are resolved by using notation AX. e to

denote a function f of one variable. The value of f(5), for

example,. is. the. value of the expr.ession got by substituting 5

for the occurrences of:.x in e which are bound. by the AX. Thus

functions.· add· and. power can be defined by:

7

These are no~the same (e.g. h and add. have different types).

Thus some of the examples can be written:

so add.( 5) = AX • x + 5, 1. e. the function which adds 5 to its

argument. Consequently add(S) (7) = (AX.X+S) (7) =7 + 5 = 12.

The notation.may be extended. by giving the type' of x, in.

the form AX : T • e .. If e has type- B then >..x : A • e will have

,type A-+B ... A function. of several arguments: may be denoted as

follows:
x A -+ Bn

N x'N N

N N N
r----T' ~.

N N N N N-toN N-toN N
.--,' ,---,

(m + n, m.- n) . ( f f (n)

function.F. (al: Al ; •.• ; an: An): B;

••.•. F := •••

end

4 • if e 1: Nand e 2.: N then e 1 + e 2.: N

e 1: C -to D and e 2' : C, then. e 1 (e 2.): D

3. if e conta.ins subexpressioIL el (e2) where

We.have just seen severaL examples defining functions

f: Al x At x •••. x An -to B. by means. of. equations. of the form.

While Pascal allows arguments aI, ..• , an of any definable

type (including.functions), the result type Bis severely re­

stricted (to. pointer, subrange or scalar.types). Consequently

functions k, add and power cannot be directly expressed in

Pascal, although they can in LISP.

L 3 Notations Used to Define. Functions

RelatioIL.to Pascal

Following. are the types of the right sides.of the equa­

tions for. k. and .twice:,

In PAscal. an al·gorithm:. to. compute a function f: Al x.

would~atural1y.be represented by

f(xl, ••• , x n ) = e

where e is.. an. expression. built from..constants·.and the vari­

ables Xl' •••.,. xn by use of arithmetic operators: and the appli­

cation.of functions to arguments. The types· of e and its sub­

expressions' are straightforwardly determined., for example

6
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<list> :.:= <atom> I (<list>. <list»

.. an":: . 'NIL

associates from:the .right)

(CONS (PLUS x y) (CONS,(DIFFERENCEx y) NIL»

(LIST (PLUS x y) (DIFFERENCE x y) )

[aI, ... , an]

a :: [aI' • ~ ., am]

consequently (note that

or

Relation to LISP

<atom>· :: = a string of letters, digLts and other symbols

Any sequence as· defined above (for example [3,1,,4]) can

be represented by a LISP li.st: (for example (3._ (1'.• (4 • NIL»)) ).

Clearly ::. is just·. an infix notation for the CONS operator.

A constant sequence s~chas [3~1,4] can be represented in LISP's

"listnotation" as (3 1 4)" ·W'hereas an. expression such:,as ..

[x + y,x-y] requires explicit. operators in LISP, for example

themselves~ For this we may introduce a new type constructor

as follows:.

Definition Let A be a type expression. Then A~ is also a type

expression, which denotes the set of all finite sequences of

elements of the. set denoted by A. Following is some notation

for, operators. on, A* •

1. NIL. denotes the empty list, namely a ~'sequence cont,aining

no' elements.

2. [al,aZ,~.~,an] denotes.the sequence containing al,.~.,an

in that order,. for n~O. Consequently NIL = [].
3. If [al/ ... /a

m
] is a sequence and a an element then

,LISP's data structures are binary lists generable by the pro­

ductions

f AX.. XZ type N-.N

k Am,n. (m+n, m -n) type NxN-.NxN

h Am,n . m +n type. NxN-.N

add. = An '. AX . x + n type N-. (N~N)

In' other words, g[ al 1-+ b l , __ ., an': b n 1 is the result of

updating or ovexwxi ting g with the fini.te function [all-+ b l , _.. ,

an I-+bn ]-.

h{an ) = bri

h (a) = g(a) for any a E A ...... {al ,a2, ••. ,an}

If g: A -. B is a function,.. the notation g[a.ll-+b , . -_,

an 1-+: b~] is used. to denote. the.. function h.: A -. B such that

h{an) = bl

Notation., for Updating Functions

The notation (all-+b ll az ': b 2 ,· ... , an': bnl is used. to denote

the finite function. f: A....., B such that

1.4 A Type Constructor for Sequences

One often. needs sequences of values" of undetermined or varying

length, on order to describe programming languages. Examples

include program input or Ol~tput files, and the texts of programs

Note that· AX ,~xz is not a function in itself; rather,

. it. is an. expression which. denotes a functl(m~ More generally,

a clear-understanding of the relation between a textual ob­

ject (such~as a program) and its meaning {such as. the input-­

output function it denotes} is essential in the study of pro­

gramming languages. This relation is usually called the ~­

tics. of the programming language ([Gor79],[Sto77]). Analogous­

ly, the subject mathematical logic concerns the relation be­

tween mathematical notations such as formulas and the objects

they denote.
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N-eval : Numeric expressions.~N

Note that N-eval maps a textuaL object which might appear in

a PaScal program, e.g. "17-5*2" into a mathematical object,

e.g. the natural number 7. In'order to keep this distinction

clear, we have.: extended. the functional. notation:. by' writing'

textu?lL arguments in speciaL brackets" for- example

N-eval[[r't - 5 * 2]~ = 7 •

2.1 Expr~ssions without Variables

Expressions. denote values,- for example 3 + 4 , 5 + 2, and 1 i - 5 * 2.

alll denote the number 7. The rules according to which expres­

sions denote values are called the semantics of the (very

simple). programming language of expressions. Some example se­

mantic rules follow, where.the semantic function N-eval has

functionality

Operations on Sequences or Binary Lists

where

N-eval[IeIT * N-eval[[e]

2 * N-eval ITen

Eval :: Expression.-+ (Environment-+ Nl

env : Environment =- Variables -+ N

N-eval[[e 2]]

N-eval [[double. e].

lity

2 •. 2 E}{pressibns with Variables

The value of expression x +·2 *y clearly depends:. on the current

values of x. and y. More generally an expression e can only be·

evaluated.if the values. of all variables occurring in e are

known .. The "current. values" of all variables can. be. represented

by a socalled.. "environment", namely a function

env: Variables.-+Values., If, for example, env(x.l:=5 and env(y) ='7­

the. value: of. x ...+ 2 * y' in' environ men t env is 5 + 2·* 7 = 19 .

A..'1 appropriate' semantic function is Eval,,, with functiona-

There are two equivalent ways _to· evaluata. expressions:­

subst-itution, in which N-eval of Section 2 •.1 is. applied. to

tl1e result of substituting values for variables, and di'Iei::t:

evaluation, in which Eval is recursively defined using argu~'

ment env ..

The last two rules are not. as trivial as they look, since

they explain. the connection between the syntacticaL symbols

+, * to the left in terms.of the mathematical operations of

addition and multiplication. In this. way new syntactical con­

structions may.' be given- meanings,. for example

Binary Lists

(CONS x y)

(HEl\D (ll . lz» = II

(TAIL (ll .Iz» = II

{

NIL... if' x = (ll" l2)

(ATOM x) = _T_ if: x .• is an. atom>.

{

T if x =y

(EQUAL x y) = NIL if not

d for digits d::: 0,1 , ... ,9

10 * N-eval [[nn: + d where d is a digit and
n a numeral

N-evalITel]] + N-eval[Ie2.TI

N-eval[[el]] * N-evalITelTI

Sequences

N-eval[Id]

N-eval ITn d])

N-eval([el + ezTI

N-eval[[el *e2JJ

2.. EVALUATION OF EXPRESSIONS.

x :: y

head ( Lal ,al p .•• ,an]) al

tail ([al ,al, ... ,a
n

]) (al,' ... ,a
n

]

{

faLse if x is a seqrience-
atom (x) =

_ true if not

{

true if x =y
equal (x,y)

false if not
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Evaluation by- Substitution

:Eval [[~TI env - N-eval[[e' TI where. e ~ is the result of
replacing every variable x in e by its·
value env[x]

If for example envITx.Jr"=S and env[Iyll =7 then

Eval.[Ix + 2 * Yn env = EvallIxIT env + Eval ([2 * YTI eny

envITxTI + (Eval [[2]] env) * (Eval ITy]] env)

5 + 2 * envCIyll = 5 + 2 * 7 = 19

Semantic rules of this sort thus define the meanings of

expressions and programs in one language by mapping them into

expressions of.another "semantic" language. We shall see, for

example., that it is easy to use LISP asa semantic language

for the purpose of implementing other languages or even to

extend.LISPsown facilities.

II PROGRAMMING LANGUAGES

3.1 Applicative and Imperative

programming languages can roughly be clas8ified into two groups:

A large part of DAT2 concerns practical. aspects of the seman­

tics of programming languages, including

- Understanding the finer points of fundamental. concepts

such as dynamic data structures, recursive procedures,

name binding and parameter transmission.

- Methods for implementing these concepts on traditional

hardware.
- Construction of in.terpretersand compilers_

- Construction of programs from specifications.

In order to describe the essentials of several alternative

semantic concepts and.implementation techniques, we now de­

scribe· three very simple languages •. The first, the lambda cal.­

cul us f is bot~ the simplest. and the oldest, dating back to

1936. A program.is simply an expression; computation. proceeds

stepWise.. by rewriting. this expression, eventually transforming

it into the final. answer. In spite of its simplicity, this

archetypical "applicative language" can· compute all computable

function.s and.clearly illustrates several fun~,amehtal concepts

including call-by-value, call~by~name, and the possibility of

paralleL computation ~

The~econd langq.age: is. that:o:f recursive systems of equa­

t;i6n.~.;-also.;~n: applicaa.i;yecc;._ expression-oriented language .. Un-:

like the A-cal'cuJ:.us" the ~onceHts of "program" and "computed
- • • ~' ...

value" are separated ... The programming, languc:i:<:;Ie LISP originated

from lambda calculus, and. in use resembles. a comb:l.n:ation of i-t::

wi.th recursion equations.
The third is a more traditional "imperative" languageQf

flowcharts, with assignment statements and goto's. It is in­

troduced for comparison with the first two,. and to illustrate

methods for translating applicative. programs into imperative

form and vice versa.

3 . THREE MINILANGUAGES

for.d =0,1, .•. ,9= d

= (10 * EvalITnTI ~nv) + d for d = 0,1' ... 1:'9
and number.n·

= env ITx] for variable' 'X

= (EvalITedJ env) + (Eval(IezTI env)

= (Eval ITeITI env) * (Eval ITezTI env)env

env.

Eval ITxJ] env

EvalITel + e2]]

Eval ITe 1 ." e 2.]]

;Pj,rectEv?tluation.

'Eval ttdn: enV"

Evall1ndIT env
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The applicative (or functional) and th' .
. . . e ~mperat~ ve (or state-

-transition). langua Th d'
. ges. e ~agram. below. shows the placement

of severaL famili . .
. ar programm~ng languages in this dichotomy.

3.2 The Lambda. Calculus

The lambda calculus. is an extremely simple programming language,

but. is powerful. enough. so that any computable function can be

computed. by a lambda. expression [Chu36]. Further, the lambda.

calculus illustrates in'a simple context the fundamental con­

cepts of

· Binding.. of variables to va·lues_

· Call..,.by-value and call-by-name ..

· ParalleL or nondeterministic evaluation.

3.2.1 Syntax.:

The '~otation.is simply a formaLization of the lambda and func­

tion notation.. des'cribed earlier, and is given by the follOWing

Backus-Naur Form productions. For the sake. of generality, the

set of possible.. constant values <Const> and operations on them

<op> have. not. been specified, since. various. dialects. of the

lambda calculus will have their. own. data domains. In our examp­

les <Const> will be the natural numbers,. and <op> can be any

of the usual. operations on them,. for example +, -, *, or- /

(written in infix, prefix, or suffix in the customary way) ..

By contrast, in.LISP constants are binary trees with numbers

or atoms as leaves, and operations are included which build

and decompose trees.

.Typical Characteristics. of Imperative Languages.

1. Storage.- or state-oriented (where a "state" maps vari­

ables to. their current values.) .. Computation is done by up­

dating.the. sta.te, changing variables I values one at a time.

2. Linear tima- at each moment there is one point of control.

3. Much use-.ofiteration (which repeatedly updates the state).

4. Complex. data structures are built stepwise, by sequences

of operations. which modify individual components, i.e. by

selective updating.

5. Programs reflect current. machine architectures, and are

consequently efficient On sequential machines, but are not

well suited to parallel execution.

ApplicativeImperative

WeLL-suited to program transformation.

Typical. Characteris·tics of. Applicative. Languages

1. Expression-oriented.•..
program exeClltion. is done. by expres-

sion evaluation_

2. Weak or no time ~on~~
. . _cpt - ng single "point· of .control" .

. Sequent~ality' -
. ...;omes. onLy from dependency on data.. values.3 •. Much usp

.' .>. of: recursion. Functions can be used as data ob-
Ject~ ..

~omplex data Objects ffx •. trees and strings) may be both

operands to. and. results. of. operations.•

Suited. to·' parallel. execution.

WelL-suited to. formaL verification that a program satis­

fies its specification, 1.e_ does what it i~intended to
do.

5.

6.

7.
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{;\y • (Ax. x / y) 6 ) 2

~f X,= Y then: x + y else (Ay. Y * y * y) (3 + 4)

Scopes of Names

An abstraction AX. M is. by itself a legal "program" in the

lambda calculus· language_ In,tuitively AX • M corresponds to an

unnamed 'PASCAL..function declaration with parameter X

As in the earlier discussion we will allow. parentheses

to be dropped when. the meaning is clear, and write for example

IX for f (x) and f x y for (f (x) ) (y) . In expression ---AX'. --­

the AX is understood to apply to the longest complete expres­

sion to the right of the "." so for example

scope of the outer x
/. ~~

.' ~. scope of
~ inner. x

,.---... ' .
AX • X + (AX. x * y) * X + Z

X is bound

y and both. x occurrences are
bound_

all X I S are bound" but y and
z are. fre.e ...

the x in' (AX. x.* y):. is. bound.!
while y,.. z, and the other
XiS are free.

scope of x

scope
of y....---..

AX • x + (AY • Y * x) 7

x. + (AX •.' X * y) * X + Z

AoX • x+-( AX 0' x" * y) * x + z

scope
of x---AX • x + 5

Examples

Clearly the scope rules. of ,the lambda calculus are es­

sentially the same as those of PASCAL, and free variables would

be called. "undeclared" in PASCAL. Finally, a closed lambda ex-·

pression is one which contains no free. variabl'es (corresponding

to a PASCAL program in which every variable is declared). The

first two of the examples' are. closed,. while the' last two are

not.

ALL subexpressions of M

Except: for. any subexpression of M which. is. contained in

an. expression AX • N

Consequently a function application such as

(AX. X * 2 + 1) 5 is computed by first. binding x to 5 and then

computing 5 * 2 + 1 = 11. (Eval.uation rules will.. be formally

def ined below) •

The scope of x in AX • M consists

Examples'

AX ."x +5

AX • x + (Ay. Y * x) 7

An,occurrence of a variable X in an expression M is. said

to be bOflnd if. it. is contained in an expression. of the form

AX • N otherwise. the occurrence is said to be-- free. Note that

x'may have both. free and bound occurrences in M.

Constants

Variables

Function application

Abstraction

ConditionaL

Operation on
constant values

{

function' noname (x) : valuetype;

begin noname := expression

end

is equivalent to AX.•. (x +y)

is AX ( O.y • (x + y» + 5)

(note that. + by itself is a lambda expression)

(or 5 +·6 in ordinary notation)

AX • expression'

X, 5, +

+{5,6l

AX • x + 1

AX • x +-y

AX. (AY_ X+ y) + 5

" Lambda Calculus Syntax

<Lam> ::= <Const>

<var>-

<Lamo->.{ <Lam-i.~T,·~·~f<L.amn»

A<varl> •. _~«iVarn>. <Lam>

if. <Lam>· then:, <Lam>.

else' <Lam>-

<op>

Examples
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3.2.2 Computation in the Lambda Calculus

In traditional programming languages computation is done by a

series of local changes to a runtime state, directed by the

current controlpoint in the program being executed. Modelling

computation thus requires three components:

LAMBDA. CALCULUS REDUCTION RULES

ex reduction ,.. or renaming

AX • M ~ Ay [y/x]M

19

(Ax • M) (N) '*' [N/x]M

provided M =:> N••• M•.•.• ~ ••• N•••.

if true. then. M else.N *~~ M

if false,then:M else N -"N

where.b is the. result of
applying op to constants
al, •.• ,arr (note: al, ••• ,an
must be constants)

Repeated. Reduction.

Suppose Ml ~ Mi,· M2 =:> Ma,···, and Mn - 1 =:>. M~ I

where n > 1. Then

Reduction in Context

ConditionaL. Reduction

S reduction, .. or parameter binding

. 0 r.eduction.". or constant calculation

by conditional and
o reductions

by reduction in
context

by conditional.
reduction

by' 0 reduc1Jion::.

by two 0 reductions:

by CL reduction

by S reduction

by repeated
reductions

[N/xJM = the. result of substituting N for all free
occurrences of x in M .

by repeated
reductions.

In contrast r computation with lambda expressions is much

simpler: the "program" is a lambda expression, which is itself

transformed into the "final answer" by a series of reductions.

~onsequentlycomponents and 2 are merged. Surprisingly, we

will see that component 3 is not needed at all.

The reduction rules are given in the table below. The

first two rules use a special notation for substitution:

1. The program being executed.

2. The current runtime state (current values of variables) .

3. The current point of control in the program.
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3.2.3 Order of Evaluation

.. 14+ 59

call-by-value: evaluate arguments first

('Ax.x+5}((Ay.y*y)3) =>

('Ax. x + 5) (3 * 3) =>

(Ax . x + 5) 9 =>

9+5 => 14

call-by-name: evaluate arguments last

('Ax. x + 5) ( ('Ay . Y * y) 3) =>

(Ay.y*y)3+5 =>

3*3 +5 =>

M N

(Ax .'2 + ( y :'x +y)5)'~)

Restriction:

The substitution [N/x]M may only be computed if no free vari­

ables in N become bound as a result of the substitution.

A Technical Restriction on Substitution

semantics ([Gor79], [Sto77]) is concerned with the development

of mathematically well-defined metalanguages and their applica­

tions to programming language definition.

We will see later that a simple language called LISPO can

serve as its own metalanguage.

(Ax.M)N => ('Ax.2+('Az.x+z)5(y+1)

=> 2 + (Az .y+ 1 +z)5

The restriction on [N/x]M prevents free variables of N be­

ing "captured" by lambdas inside M. For example consider

Fortunately this slightly complicated restriction can be

safely ignored in practice provided a reduction sequence starts

with a closed lambda expression and uses call-by-value or call­

byrname evaluation.

Clearly the y's in M and N are distinct, so it would be illog­

ical to apply 13 reduction blindly and get 2 + ('Ay . Y + 1 + y) 5 •

However ('Ax. M)N can be reduced with the aid of an a reduction

as follows:

Clearly reductions may be done in many different orders I for

example

A Remark: On Metalanguages

A computation may consist of ·a .sequence of reductions ap­

plied to an initial A-expression .. If the expression is a con­

stant then no further' reductions may be performed •.

We have used a set of reduction rules expressed in. one language,

English,. to define the. computations by programs in another lan­

guage, the' lambda calculus'. In other words we are using English

as a metalanguage to define computation rules for lambda cal­

culus.

We have tried to be precise and unambiguous in our use of

English, but it is of course not itself a formally defined meta­

language. A program. execution algorithm for language L which

is written in another programming language M is called an inter­

preter for L, symbolized by ~ . The subject of denotational

Explanation of the Reduction Rules.

1. ex (alpha) redo.ction:.allows' bhe, current.-programF_e. A-ex­

pression) to be modi£ied by renaming a h:.ound variable. For

example Aa . a + 5 can be transformed to Ab •. b + 5 .

2 ~ All. computation with atomic values is done bye (delta) re­

duction •. For-example +(5,6) can be transformed to 11 by

one <5 reduction.

3 .... A A-expression of form (Ax. M) N specifies the application

of a function f (denoted by AX .M) to a single argument de­

noted by N. This is done by S (beta) reduction:: the value

. f (N). is obtained by substituting N for each free occurrence

of the formal parameter x in M, and evaluating the result.

For example, (Ax. x + x * x).5 is transformed to 5 + 5 * 5

by a 13 reduction, and then further to 30 by two- 15 reductions.

4. A conditional if B then MeIse N may be evaluated as fol­

lows:

a) evaluate B to an atomic value b

b} if b = true then evaluate M, else if b false then

evaluate N, else stop.

5~ An expression occurring.inside another A-expression may be

reduced without changing the rest of the expression in which

it appears.

20
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N-Eval: Numeric expressions ~ N

10 * N - eval (n) + d

d

N-eval (e 1) * N-eval (e2)

d

nd

end

patternn : expressionn
end

case form of M of

patternl: expressionl

N-eval (e l) + N-eval (e2)

case form of e of

N-Eval(e) =

This has the following effect: first, MIs value is matched

against the various patterns. If the first that matches is pat­

tern
i

, then any variables appearing in pattern i _ are bound to

the corresponding part of M's value, and expressioni is then

evaluated. As a simpler example of the notation, the simple ex­

pression evaluation algorithm of Section 2.1 can be expressed

as

by-value the argument N will be evaluated before it is sub­

stituted into M, whereas with call-by-name N is substituted

without first evaluating it. More precise definitions can be

given by specifying two evaluatio~ functions~

CBV, CBN: Lambda-expressions g Lambda-expressions

Recursive evaluation algorithms for CBV and CBN are found be­

low. We have described them using an informal metalanguage con­

taining a structure-oriented case statement like that in [Hoa75].

The statement1s form is

3.2.4 Call-by-Name, Call-by-Va1ue, Call-by-Need

These well-known evaluation strategies differ in the time that

a-reduction is applied. Given expression (Ax'. M)N, with call

has been used by C. Paulsen to implement a LISP-like language

on a 9-processor parallel machine in Arhus [PauS3], and is

the subject of much current research in several countries.

Traditional imperative languages such as Pascal, on the

other hand, do not easily admit parallel implementation, be­

cause the time concept is so strongly built into their seman­

tics.

22

Consequently if M can be reduced to constants c and d by

two reduction sequences, the theorem implies c ~ d and d ~ c,

so c and d must be ~qual.

This well-known "Church-Rosser Property" is very interest­

ing because it opens the possibility for parallel evaluation,

since evaluation of a large A-expression M = ...Ml ... M2 ••• Mn ···

can be done by reducing components M1 , M2 , ••• , Mn simultaneous­

ly. By the theorem, the result ...,ill be the same regardless of;'

the order of processing or the number of processors. This idea

An obvious question is: can the result of two different

reduction sequences produce different constant values? The an­

swer is "no1e as a consequence of the well-knovln.

Church-Rosser Theorem [HLSL2]. Let M, N, P be laro~da expres­

sions such that ~:l ~ Nand M ~ P. Then there exists an- expression

Q such that N ~ Q and P ~ Q.
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CBN., CBV: Lambda-expressions R Lambda-expressions

CBN(M} =
case forro_of M of

constant
variable

AX • N
op (N:!.r' •• ,.Nn )

M
M
M
value of op(CBN(Nl) ,_ .. ,CBN(Nn »

Some Example Evaluations:

CBV(S)
CBV (AX. x + 1 )
CBV(5 + 1)
CBV ( (Ax ... x + 1 ) 5 )

5
AX • X + 1
6
CBV([CBV(5) Ix]x+ 1)
CBV ( [ 51 x ] x + 1
CBV(5 + 1)
6

"if N then. P else Q": if CBN.(N) then CBN(P) else CBN(Q)

U+".

CBV( [CBV(Ay . yy) /y]yy)

CBV( (Ay . yy) (Ay . yy»

undefined

pN

CBV ( (A Y • yy) (A Y . yy) )

Completeness Property if M can be reduced to a con­

stant c, then CBN(M) = c.

Clearly M ~ 1 + 2 =f> 3 (since no Xl s appear in 1 + 2) 1 and

CBN(M) = 3 is easily seen. However, CBV(M) requires evaluation

of CBV(P), which is undefined since the only possible reduc­

tion sequence is P ~ P ~ P ~ ...

In practice, however (for example in ,LISP) call-by-value

is used because it avoids the need for repeated argument eval­

uation which occurs with call bY,name {for an example con­

sider evaluation of (Ax. x + x * x) (3 + 4 * 5) ).

A third alternative is call-by-need, which resembles

call-by-name except that after the first evaluation of the

argument, the argument's value is physically substituted for

the argument, thus avoiding re-evaluation. (In practice execu­

t,ion is done using expressions represented as directed graphs,

and substitution is done by changing the information present

at a graph node). In summary we have

In other words if there is any way to reduce M to a con­

stant, then call-by-name will do it. The same does not hold

for call-by-value as shown by the example:

In principle, call-by-name is to be preferred due to the

following

if CBV (operator) has the form AX . N

then CBV ( LCBV (-Qperal"l.d) / x] N)

operator (operand) : if CBN(operator) has the form AX . N

then CBN (EoPe=rand/xlN)

else error

operator (operandl

end

CBV(M) =
case form of M of
---.-•• same pattern as for CBN, except:

1. The following all denote A-expressions: M, N, P, Q, N;,

operator, operand.

2. "op" denotes a A-calculus constant operator, for example

3. The pattern "if N then P else Q" describes a A-expression

in the interpreted language. We have used quotes to avoid

confusion with the use.of if. in. the interpreting or meta­

language.

Remarks

I
I
Ilend

1----------------------------1
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Y = Ah . p.x • h (xx) ) (A x . h (xx) )

fac = Y(Af . An . if n = 0 then 1 else n * f (n - 1 ) )

so for example the factorial function can be defined by

else x*exp1(x,y-1)

<equation> ... <equation> I
<leftside>, = <expression> I
<identifier>«identifier>, ... ,<identifier»,

<constant> I <variable> I
<op> «expression:>, ...,,<expression»
<functionname> «expression> ; .... , <expression»

if <expression> then <expression> I
else <expression> I

if y =0 then

if Y =0 then 1

else if even (y)

exp1 (x,y)

exp2(x,y)

<expres.sion>' : : ='

<program> : :=,

<equation> ::=

<leftside> ::=

~ exp2(x,y/2)2

else x * exp2 (x, (y - 1) /2) 2

For a simple example of a system of two equations, the

following computes fl (x). '= true if x I s binary representation

contains an even number of 1's, else f 1 (x) = false.

fac (nl = if n = 0 then 1 else n * fac (n - 1 )

Followin.g are a simple way and a more efficient way 'to compute

the exponential function exp(x,y) = xY

As in the lambda calculus we leave unspecified the exact

constants and operators <op> to be used, and allow expressions

to be written using customary precedence and associativity

rules, infix notation, etc. A very simple example is the famil­

iar factorial function

3.3.1 Syntax

which compute and operate on atomic values. HOPE and LISP al­

low functions and data structures as both arguments to and

results of functions.

Like the lambda calculus, systems of recursion equations

form an applicative language \"ith the attendant properties de­

scribed earlier.any number n > 0

a or 1

Number of Argument EvaluationsMethod.

call-by-value

call-by-name

call-by-need

· tree and data structure manipulation

· formula manipulation and symbolic computation

· artificial intelligence

· computation with very large numbers

· algorithms on directed and undirected graphs

• compilers and interpreters

Recursively defined flli~ctions and procedures are used in a wide

variety of computer science applications including

3.3 Recurs.ive Systems of Equations

Further" the widely used paradigm for program design and

construction called "divide-and-conquer" leads naturally to re­

cursive progra~s.

Recursive algorithms can (surprisingly) be expressed in

the lambda calculus with the aid of the so-called Y combinator

but the resulting programs are long and not easily understood.

Thus in order to explain simply how recursive progra~s are

executed, and how they can be implemented on traditional com­

puters~we introduce a second minilanguage whose programs con­

sist of sets of recursion equations.

LISP [McC60] is essentially a language of this type, as

is the language called HOPE recently developed at Edinburgh

(HOPE also uses Hoarels recursive data structures [HOPE],

[Hoa7S].) For the sake of simplicity we consider only programs
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In an equation

29

r~spectively. This suggests use of an evaluation algorithm like

the environment based function Eval of Section 2.2. Following

is an operational semantics for equation systems based on. this

idea. Note' that an extra variable, prog I is used.~ The reason

is that if a function call f j ( ... ) occurs in some eXPi' then

the definition of f. must be found in order to evaluate
J

fj("') . Note that we use the notation for updating described

in Section 1.3, for example f [x 1-+ 1 , Y 1-+ 2 J •

expl

expi-

f 1 (x 1 , ••• , x
m

)

f 2 ( )

true if x has an even number of 1's, else false

false·if x has an even number of 1 ' 5, else true

q;ll.(X)

tp2,(x)

prog

C.learly in order to compute, for example, f 5 (5,3,8) we

must evaluate exps with its variables bound to 5,3, and 8,

£1 (X) = if x= 0 then true

else if even.(x) then f 1 (x/2)

else f 2 «x - 1)"/2)

f 2 (x) = if x =0 then false

else if even(x) then f 2 (x/2)

else f 1 {(x-1}/2)

Conceptually each function name fi (1~i~n) denotes a mathe­

matical function tOi.:' Al x ••• x Ap -+ B where Aj is the type of 'l;he

j-th argument of f i and B .is the tyPe of.- eXPi . The whole program

d-efinesthe function <Pl. In the-previous example

3.3.2 Semantics: Computation with Equation Systems

Scopes of Names

Suppose we are given a program

f(Xl, ... ,Xn } = <expression>

the scope of Xl,.",Xn is the <expression>, whose variables

must all lie in {Xl1 ••• ,xn l. Consequently no "cross-referencesll

between. equations are allowed. For. obvious reasons it is fur­

ther required that Xl, ••• ,Xn all be different identifiers.
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1. Eyal clearly follows the pattern of Section 2.2, although

we have used a syntax more like that of Hoare.

2. The semantics is more complex than that of the lambda cal­

culus due to the use of environments and the need for

"prog" as a·parameter. Note that this is a fixed-program

semantics (i.e. prog remains unchanged) in contrast to

the reduction semantics of the lambda calculus which re­

peatedly rewrites prog.

3. The environments env and env' are functions defined by up~

date notation. Note that accor..1ing to the. definition of

Variables ~ Values

Numbers + closures

Expression. x Environment-

Environment

Values

Closures

3.4 The Third Minilanguage: Flow Charts

Flow charts form a simple imperative language, much closer to

traditional machine architectures than the applicative lan­

guages just discussed. Their essential characteristic is that

computation proceeds sequentially, by execution'of a (usually

long) sequence of commands each of which updates some compo­

nent of an implicit progr,am state. The exact form of the state

varies widely from computer to computer, so for the sake of

generality we will devise a scheme for flowchart semantics

which can be parametrized by different choices of commands and

states. The state usually consists of the values of certain re­

gisters (accumulators, index registers, ... ) together with a

store or memory which maps storage locations to their'current,

contents.

5. We have not allm'1ed functions as arguments to or results of

functions j but this is easily incorporated using the mechan­

ism of closures.

6. The semantics just given could be directly programmed in

LISP, and in fact resembles the LISP definition of a LISP

evaluator which is found in [McC62].

env l
, the arguments of a function call f(exPl" .. ,exPn)

are evaluated before the function is applied. Hence this

is a call-by-value semantics.

4. Call-by-name semantics can also be defined, by letting

the environment bind variables to unevaluated expressions,

and evaluating these expressions only when the variables

must be evaluated.

Technicality: Actually, it is not enough to bind vari-

eXPl and abIes to expressions alone, since the values of the

variables appearing in the expressions must also be

recorded. The standard solution is to bind vari~bles

to closures of the form (expression, call-time-environ­

ment). With this modification we obtain

and

whe:z::e

f (Yl , ... ,Yp) = exp I ••• II = prog

env· [Yll-+Eval (expl,env ,prog) , ... ,

Yp ...... Eval(expp,env,prog) ]

Eval(exp',eBv' ,prog)

if Eval(eXP1,env,prog)
then Eval(exp2,env,prog) else Eval(exp3,env,prog)

exp

env(x)

op(Eval(expl,env,prog) , ... ,Eval(exPn,env,prog»

env: Environment = Variables ~ Value
. P

Interpret: Program x Input ~ Value

Eval: Expression x Envirorllnent x Program ~ Value

variable (x)

"if expl
then exp2
else exp3"

Remarks

Eval(exp,env,prog)

case form of exp of

constant

·Interpret(prog,al'.'~'~) = Eval(expl,env,prog)

where the first equation in prog is f1(Xl,""Xn )

anv = [Xl -aI, -" 'Xn 14 an]

An operational Semantics for Equation Systems

end
I-

i
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read X,Yi

ExaTIlple A program, to compute the greatest common divisor of'

natural numbers x and y .

::=<I~I=I*I~I<

::= return <expression>

<relation>

<halt>

<command> :-: = <command>; <command>

[<command>*]

if <test> then <command>

if <test> then <command> else <command>

while <test> do <command>

repeat <command> until <·test>

<other command> .. = <variable> := <expression>

<expression> .. = <number> <variable>

<expression> + <expression>

<expression> - <expression>

(other numeric operators)
<test> .. = <expression><relation><expression>

33

read x,y;

while x :I: y do

[if x >y then x . = x - y else y . = y - x] ;

return x

EXTENDED COMMON SYNTAX

Example The program above, rewritten:

constructions we allow some Pascal-like control flow structures.

It should be clear that a program using these construc­

tions can be rewritten without them. Note: "[n and "J" play

the role of begin and end in Pascal.

SPECIALIZATION 1: NUMERIC COMPUTATION

::=" 1 1 2 I ... In

::= goto <label>

if <test> goto <label> else <label>

<halt>

<other command>

1 : if x=y goto 7 else 2

2: if x<y gato 5 else 3

3: x := x-y

4: goto 1

5: y := y-x

6 :' goto 1

7: return x

This syntax is cumbersome for practical use due to the

numerous labels. For the sake of readability in examplgs and

<program> ::= read <variable 1 > , .- .. , <variablem>;

<coi1LTIlands>

<commands> ::= 1: <command l > 2: <corn...."Uai"1d z >... n: <cornmandn >

3.4.1 Syntax

BASIC COMMON SYNTAX

We will first give a syntax and semantics'which is common

to all flow.charts, and then specify the detailed states and

command sets for two natural flowchart languages~

Since flow chart programs may be executed with various

forms of data (lists, numbers, etc.) we have specified only

a minimal syntax which is common to all flow charts, and so

have left <test>, <halt>, and <other command> unspecified.

If they' were chosen to describe numeric computation the fol­

lowing could be a flow chart program:

/<command>

I

I<label>



34 35

SYNTAX FOR SPECI~IZATION 2: .LIST'COMPUTATION

3.4.2 Semantics

Example A program to find the first element of a list.

... " = program ,in

(Instruction Counter)

- varies with the machine type ­

(sequences of values)

- varies with the machine type -

Program x Input g Value

State x Ie x Program g Output

: Run(s' ,i+1,program) where

s' = Do-command (command,s)

: Run (s,l,program) where

l = if Eval-test(test,s) then j else k

: Final-answer (halt,s)"halt"

"other
command"

po-command (c,s) = - varies with the machine type-

Init-state (x I' ... ,xn ,aI' ... ,an) = " fl fl II "
tEval-test(t,x) = II " " II II

Final-answer (h,x) = " " " " "

Command x State P StateDo-command : -l-

Eval-test : 'l'es·t x State -+ Bool

Init-state : Variables x Input -l- State

Final-answer : State -> Output
. -

Interpret(program,al1 ... ,an ) = Run(s,1,program)

where "read.x i 1 ••• , Xn ; " = program

and s = Init-state{xIT ,xn,alT ... ,an )

Interpret

Run

i,j,k : IC = N

s : State

Input = Value*

Output.

Run (s,i,program) = let " ... i: command

~ form of cowmand of

"goto j II : Run (s, j ,program)

"if test
goto j
else k"

(test on empty list)

<expression»

<expression»

<expression»

<expression> <expression»

<expression> <expression»

the final output (if any) which
results from executing "program",
beginning at f~ i-th command with
state s

<atom> I «list> . <list»

(HEl\..D

{TAIL

(ATOM

(CONS

(EQUAL

::=return <expression>

::= <expression>

::= (QUOTE <list>}

<variable>

Run· (s, i , program)

read Xi

while true do

if (ATOM x) then return (x)

else x := (HEAD x)

<expression>

<halt>

<other command> ::= <variable> := <expression>

<list>

"-(test>

The following interpretive semantics is parametrized in the

same way as the syntax. In order to be complete, one needs

definitions of· how to perform tests, how to terminate execu­

tion, and how to execute commands.with syntax <other command>.

The kernel of the interpreter is the function Run, such that
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Languages with Assignment

As with the applicative languages, imperative languages oper­

ate by binding variables- to computed values. Applicative pro­

grams bind· values implicitly during function calls, while im­

perative programs bind variables to values-by means of the

assignmen t: sta t:ement:

variable := expression

which causes the expression to be evaluated. with the current

bindings, and then causes the left side variable to be bound to

the expression's value, overwriting any previous value to which

the variable may have been bound.

The essentiaL difference is that in an applicative program

the binding is done once, at function call, remains in effect

during evaluation of the functions body, and is then lost once

the functions value has been computed. In contrast an impera­

tive program can (and usually must) bind the same variable to

many different values during execution (for example I : = I - 1

has no natural applicative counterpart). Computation is typi­

cally done by means of loops, whil~ applicative programs typi­

c'ally use recursion. Note: suppose, for example, a call to

fac(3) binds n to 3 and then calls fac(2) which binds n to 2,

etc. It is not the case that n is being rebound as n : = n - 1

would do, since this would mean that the value n =3 would be

lost (and it will be needed later to compute fac (3) = 3 * fac (2)) .

Rather, new bindings are created at function calls and aba~-­

doned after function values have been computed.

In our formalization the runtime state may thus be re­

presented by a store, a function

Store = Variables ~ Value

This is mathematically equivalent to an enviro~ment as used in

the previous section" but is used differently.
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INTERPRETER HELP FUNCTIONS FOR SPECIALIZATION 1: NUMERIC COM­

PUTATION

Value :: N

State :: Variables .... Value
p

Eval : Expression x state .... Value

I Init-state (Xl"'. ,xn,al,' .. ,an) :: [Xl ~ a , ... 'Xn f-Oo an]

Do-command(x ::: exp,s) :: S[X f-OoEval (exp;s) ]

Eval-test(exPl <expz,s) = if Eval(exPlrs) <Eval(expz,s)
then true else false

Final-answer(return exp,s) = Eval(exp,s)

Eval(exp,s) ::

case form of exp of

"variable (x) : sIx)

"constant" : constant

"op (exPl, ..• ,exPn )" : Do-op.(eval (exPl IS) , ••• I Eval (exPn' s) )

'end

Explanation

1. Init-state yields the initial state, in which variables

Xl"."Xn are bound to al, ... ,an , respectively.

2. Eval(exp,s) returns the value of expression exp, given

store s.

3. Do-command(x':: exp,s) returns a new state which is identi­

cal to s except that x is bound to the value of expo

4. DO-OP(Vl,VZ) returns VI op Vz as value, where op is an

operator, e.g. +, - *, etc. For the sake of. definiteness

we let

o - n = 0

for any n in N .
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SPECIALIZATION 2: LIST COMPUTATION
3.5 Pascal and the Three Minilanguages

State Variables ~Value

Eval : Expression x State --). Value

Value List
Pascal is a relatively complex language with features from

all three minilanguages which is welL suited to efficient

execution on contemporary machines. Following are some es­

sential characteristics.

With "program" as in the first example from Section 3.4.1 we

have an example computation

Note that return x causes program termination (since Run

is not called again) in contrast to the other commands. State

So above could be represented more explicitly by

So = Av . if v = x then 5 else if v:: y then 10

else error: unbound variable v

as for the numeric specialization

5. An essential characteristic of Pasca.l's operational seman­

tics is that each frame may be given a linear structure in

storage. Further, every declared variable may be allocated

a fixed relative storage loca.tion in the frame correspond­

ing to the procedure in which the variable was declared or

a parameter .. Consequently runtime variable addressing may

be done by a "base+ciffset" method (see Dat2 kursusbog,

S¢ren Olsen's Section) ,so that variable names need not be

present during execution. This results in significantly

less storage and time for variable access than in LISP,

whose semantics requires that variables' names appear in

storage as well as their values.

3. As in the lambda calculus, Pascal allows functions to be

arguments to other functions .. FlL.'1.ctions may not, however 1

be assigned or be the results. returned by functions.

4. Pascal's runtime state consists of file values and a stack

of frames (also called. act~vatiort records) ,one for each

environment as seen in § 3.3.2 .. At each procedure or func­

tion call a new frame is pushed onto the stack, and is

popped upon exit.

1. Pascal is imperative and includes aLL the facilities of

the flowchart language.. The Pascal runtime state1s struc­

ture is determined by the declarations and parame·ters

appearing in the progra~ (for example ~_ x: integer).

2. pascal also includes declarations of functions andprbce­

dures which may call one another recursively as in the

second minilanguage. Note,_ however, that a "function" may

not be functional! since the same arguments to a call may

yield different results due to changes in global variables.

A Pascal procedure callis effect. is to change the state

without returning a value.

[the empty list]

x=y

So .:;:: [xH-.SIy~·10]

Eval (x == y ,so) false and
Eval{ 2 ,so) == 2

x<y

sl(x).==S, Sl(Y) =5

if Eval(exp,s} == ()
then false else true

Run(so,5,program) since

Run(sl,6,program) where

Run.(sl,1,program)

Run(sl,7,program) sL,ce

Eval (X,SI)

5

Interpret (program,S ,10)

Run(so.,1,program) where

Run{so,2,program) since

Init-stateJ
Do-command
Eval-test
Eval

A..1\1 EXAMPLE =- GCD COMPUTATION

EvaL-test (exp, s)

I .
i
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III COMPILATION AND INTERPRETATION

4. TRANSLATIONS BETWEEN THE MINILfu~GUAGES

In view of our, discussion of applicative versus imperative

languages it is natural to ask: which is more powerful? In

this section we will show that in fact each can simulate the

other, so there is no difference in principle. In practice

it seems easier to simulate imperative programs applicatively

than vice versa, and applicative programs do seem to have a

certain semantic elegance not shared by imperative programs~

A beneficial side effect of the comparison is that the

method introduced in Section 4.3 is essentially the tradition­

al way to implement block structured languages, including the

Pascal storage scheme to be discussed later in the course. We

begin with a general description of compilers and interpreters.

4.1 Compilers and- Interpreters

There are two essentially different ways to execute programs

written in a language L which is not directly machine-execut­

able: compilation and interpretation.

Interpretation is conceptually the simplest, and the

various operational semantics we have given have all been

interpreters. An interpreter accepts two inputs: a program ,f.­

in language L, and the data that program is to be applied to.

w; use the symbol [[l to denote the set of all programs

written in language M, which are correct interpreters for

language L. Using the definition of a programming language

from the start of these notes, we have:

m E: (]J if and only if

M-eval (m) (l,Xl" .• ,xn ) = L-eval (t) (Xl, .•. ,xn )

for all L-programs l and all (Xl, .•. ,Xn ) E L-input(l)
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4.1.1 Combinations of Compilers and Interpreters

target
program

f\ GIL1L -+ TITi
~

comPileJ program

source
program

h E

Such a component is not very useful by itself - one also

needs a lower-level LETLISP processor. One way to get this

would have been to write a LETLISP interpreter in LISP. With

the aid of this a much more efficient compiler could have been
- ILISPI d

obtained by the following (note: we have dropped. I UM I an

rmn for the sake of simplicity.) ---
~

4.1.2 An Example of Bootstrapping

The LETLISP sys~em used in Dl-.T2 is in fact a translator, since

the "deflet" command converts LETLISP programs into ordinary

LISP. The translator, here called "h", was .itself written in

LETLISP and so has T diagram:

Similarly, if we have a compiler m' from L to T written

in My we can perform translations .(again assQrning M programs

can be executed). This situation can be described by

which clearly specified the translation of any program in~
into an equivalent T program.

The diagram notation can be applied in case the L pro­

grams are themselves compilers or interpreters. For example,

the local LISP is processed interpretively by a program writ­

ten in UNIVAC machine code (call this UM). The machine code

is itself interpreted by the UNIVAC central processor (call

this Cp), so two levels of interpretation are involved, as

described by

T-programs

L-programs

if and only ifmE~

1. M-input(m)

2. M-output (m)

~~input L output
1M

Xl"" 'Xn

. 1
~nterpreter

program .t

L-eval (.t) (Xl' •.• ,Xn ) T-eval (M-eval (m) (i» (Xl, ••. ,xn )

for all .t in L-programs and all (Xl, ••• ,Xn ) E L-input(i)

An interpreter typically simulates the behavior of an

L program step by step by running an M program, and contains

representations of both the L program .t and its program state.

Consequently interpretation involves a fairly high overhead

in space and time, which can often be substantially reduced

by first translating .t into a target language and then run­

ning that target program separately. (Of course to be worth

while in practice the total cost of translating and running

the target program has to be less than that of running the

interpreter) .

The symbo 1 IL-+T ! .11 b d t d~ W~ e use 0 enote the set of all

program written in language M, which are correct translators

from source language Lto target language T. More precisely,

Suppose we are given a collection of L programs, nature un­

specified. This set can be denoted by a symbol ~ . If we

are given. an interpreter m E ~ and if we have a processor

for language M at our disposal (e.g. M could be a machine

language) then we can execute any .t E ~L with the aid of m.
lJ=J

This situation can be described. by the diagram
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~ lm.'ler-Ievel
translator

interpreter

Future improvements to LETLISP may now be carried out in

LETLISP, and to and t l may be....discarded. In this way the lan­

guage's power may be improved stepwise. The usual term for this

is bootstrapping, coming fro~ the phrase "to lift onels self by

one's own bootstraps".

1,2, ... ,nfor 1

read XI'."'Xm;

1: cmd 1 2: cmd I ••• n: cmdn

Run
i

: Xl x ••• x Xo -+ Output I

prog

\ Run: State x IC x Program -? Output I

bi a collec~ion of n sr~cial-pu~pose f~nctions

wl;l.Ose state. is. a store of form

State = Xl x X2 x ••• x Xp

Here we l etxl,X2,'."X
p

be a list of al~.variables appearing

in "prog lf with input variables occurring first (so p ~ m). Set

Xi represents the set of possible values for variable xi'

We obtain a recursive "target program" by specializing

the operational semantics of Section 4 .. 2 to the fixed, known

source program lf prog".
The basic idea is to replace the general-purpose function

4.2 Implementing Flow Charts by Recursion Equations

We now see that for every flow chart there is an equation

system which computes the same input-output function. In other

words, we will show that goto, iteration and assignment may be

simulated by recursive function calls and binding of formal

parameters to actual parameters.

Note: The operational semantics of Section 3.4.2 defines

a flowchart interpreter in an informal extension. of the mini­

language of recursion equations, so we have in fact already

seen that recursion can simulate iteration. The following de­

scribes a compiler which provides more efficient and compact

simulation,. in which the pr.ogram itself is not present.

The compiling algorithm below may be applied to any flow

chart program

2. To test :the compiler I s ce>rrectness,:i!wo runs

1~ To produce the compiler

It's clear that t 1 and t z should be behaviorally identical

since they are translations of the same source program h, and

so their outputs tz and t3 should be textually identical. Note

that tl may differ textually from t z , though, since t 1 is out­

put from a handwritten program while t'2 is machine-produced.

&~ alternative (and the way it was done) is to write a

LETLISP to LISP translator in LISP. This was a straightforward

hand translation of the previously written translator in LET­

LISP. Call this translator to • The following runs were then

done:
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Note that both "IC" and "Program" have vanished from Run,

and "State!' i~ represented by Xl 'l( ••• x Xp . The following scheme

describes translation of "Specialization 1~ of Section 3.4.1.
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This can obviously be simplified drastically, for example to:

Runl (x,y) if x =y then x else Runz (x,y)

Runz {x,y} if x <y then Run 1 (x, y - x)

else Run 1 (x .,.. y,x)

Translation Scheme: Flow Charts to Equation Syst2ffis
4.3 Implementing Recursion Equations by Flow Charts

Exec ute: X: x x X7l1•

We now describe an implementation technique which is the basis

for nearly all methods for compiling block-structured languages

(Pascal, SIMULA, ADA. etc.) into machine language. Our starting

point is a system of recursion equations.

these call f 1 with
-the input data.

write value of f 1 ­

jj!low chart code
for the equations.

f 1 (x 1 I ••• f x m) expl

f z ( - - ) expz

f n { - - \ eXPnI

read Xl"",Xn j

1: firstframe (Xl' ••• ,Xn ) J
2: pushreturn (4)
3: goto 5
4: returntop
5: ~ inst;~c~ions f~rt

). L I J.. Z , ••• , J..nJ

Recursive calls to f-;(exp} will be handled by the use
.J

of push-down stacks. For this purpose we use flow charts which

manipulate lists as values. The runtime actions "firstframe"

etc. will be explained shortly, after we describe the target

programs' runtime state.

This will be translated into an equivalent flow chart pro­

gram (list variant)Ef-s described in. Secti.on 3.4.2:, of form.

else Runz (x,y)

else Run3 (x,y)

?.'.tn i .. _{x -_ , ... /;-c j - l' eXV·'.X j + 1 / .•• , x p ~

if x -= y -then Run 7 (x, y)

if x < y then Runi (x,y)

x

Runl+ {:{ - y ,y}

Runl{X,Y)

Run:; (x, y - x)

Runi (x, y)

Execute (x,y)

Run ... {x,y}

Run2. {x,yi

Run 3 (x,y)

Runl+ (x,y)

Runs (x,y)

RunG (x/y)

Run7 (x, y)

If cmdi is ":::et'.l=-:1. -~Xl:?" then

If cmd
i

is ''If e:q Joto j else k" then

;::'uni (Xl f ••• ,X;;) if ex;? t~8n ?unj (Xl" ., ,Xp )

el~ Runk{Xl,""Xp)

Run i (X.L f ••• / ;{9)

For example, if the scheme Ls 3.?9li3d to the CeD algorithm of

Section 3.4.1 we obtain t~e system 0~ equations:

'-----------------------------------------'-
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Value-stack := (CONS 3 Valuestack)

4.3.1 The Runtime State

push (3); push {4} i push (5); do - *; do - + "

2:. Temp I ::= (HEl'-D Valuestack) ;

Valuestack ~:= (TAIL Valuestack)i

if Temp := NIL then goto 4

This target code is easily seen to have the net effect

property if "falsejump(4)" is realized by

2: falsejump (5)

3: - code to evaluate e2

4~ goto 6

5: - code to evaluate 83

1: - code to evaluate el and leave the result on the top

of V.aluestack

Bindings = [VI ,V2' ... ,vn ] : ~ NIL

A recursive call to, for example, f 3 "(8,9+10,11) is done

by first evaluating the argumeJ;1ts and then pushing a neTIl frame,

yielding

Bindings = [8 , 19,11] :: [v 1 ,v 2 J ••• , v n] :: NIL

The right side of the equation defining f~ is then evaluated.

(Assuming of course. that the code for e2 and e3 already have

the net effect property) .

Variable Binding

During expression evaluation the stack Bindings will always con­

tain as its topmost entry a lIframe" containing the values of the

arguments to the function whose right side is currently being

evaluated. Thus during evaluation of the right side of equation

In other words the net effect of expression evaluation is

to push the. ,expr.essi"on I s value onto valuestack.

For another example, if el then e2 else e3

may be coded as

fj(Zl,' .• 'Zp) = eXPi
.'

the value of zi may be found as the i-th component of the topmost

frame in Bindings. The initial call to f is handled the same way

- if the input values of Xl ""'Xn are VI '."'Vn ' then "first­

frame" initializes

variable values for one equation

stack of "return addresses"
ysed for function calls

Value*

Label*

Valuestack ~ Bindings x Returnstack

value* used in expression evaluation

Frame* holds values of all variables

State

Valuestack

Bindings

Frame

Returnstack

Net" Effect Property Suppose the target instructions

corresponding to an expression "expO are executed.

If execution terminates, then

a) Valuestack = v :: oldvs where v is the value

of "expo and oldvs is the value that valuestack

had before expression evaluation began.

o} The runtime state components "bindings" and

nreturnstack" are unchanged.

Value-stack := (CONS (TIMES (HEAD Valuestack)
(HEAD (TAIL Valuestackl»

{TAIL (TAIL Valuestack)}}

Each of these is an operation on Value-stack, for example

push(3) can be done by:

which pops the top two elements off valuestack, and pushes

their product on.

Generation of target code is based on the follOWing simple

property:

and do - ;" "can be done" by

Valuestack

This is a computation stack used to evaluate the expressions

on the equations' right sides. For example the target flow

chart code for 3 + 4- * 5 would be

i

I
!
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fetch n
push 1
test: n < 1 ?

Before execution
starts

fetch n
compute n-l

Bind n to 3

test: n < 1 ?

Initial call: fac(3)

fetch n

False so compute
n * fac (n-1)
fetch n
fetch n
push n
compute n-l

Prepare to call fac(n-1)
push new frame
push return address

Third call: fac(1)

Push new frame cEld
return for call

Second call: fac(2)
Test: n < 1 ?

Return to 18

push ,I = 11
Prepare to return

[ ]

[4]

Return-
stack Comments

[4]
[18,4J

I [18,4]

[ ]

Bindings

[[2] [3]]
[[2J [3]]

[[1],[2L[3]] [18,18,4]

[[1],[2],[3]] 1[18 / 18,4]

I I
I I

I I
I I

[1,2,3]

[2,3]
[1,2,3]

[3]
[1,3]

[false]

[ ]

[ ]

[ ]

[3]
[3,3]

[1,3,3]
[2,3]

[2,3]
[1,2,3]
[1,2,3]

[3]
[3]

[3]
[:f;alse ,3]

[1,2,3]
[1,1,2,3]
[true,2,3]

Valuestack

6
7
8

5

9
10
19

20,18

Instruction
Counter

r 2

I
5

6
I 7
I
I 8

I 11

12
13
14
15

16
17

5
6,7,8

11,12
13,14,15

16,17

i 19 I [2,3] [[2],]3]] 1[18,4] Push 2 * 1 =21

l 20,18 [2,3] [ [3]] I [ [4] ] Return to 18

19 [6] [[3]] [ 4] Push 3;: 2 = 3!
!

20,4 [6] [ ] [ 1 Return to 4

-
I

IReturn 6 = 31

I

else n * fac(n-l)if Ii < 1 thenfac(n)

5. Once fls value has been computed and lies on top of Value­

stack, Bindings and Returnstack are popped and control is

transferred to the label just popped from Returnstack.

equation

(Note that f 3 's variables are identified by their positions

in the topmost frame, and not by their names.) By the "net

effect propertyR the value is to be left on top of Valuestack

and the new frame must be popped L~ order to restore Bindings

to its previous form.

1. eXPlI ••. ,eXPn are evaluated, so their values Vl, ..• ,Vn
appear on top of Valuestack (in reverse order).

2. These are popped and combined into a new frame [VlI ••• ,vn ]

which is pushed onto Bindings.

3. A return address {a label} is pushed onto Returnstack.

4. Control is transferred to the start of the code for

Function Calls

~Returnstackn is used to handle control flow during evaluation

of a function call f (expl., ••• ,eXPn). Such a call is realized

as follows:

It is easy to see that this sequence has the "net effect"

mentioned before.

Consider a one-equation system for the factorial function:

4.3.2 An Example Computation

Following is a series of "snapshots" showing the runtime

state at various points during the computation of 3! • This

computation is in fact the one which will be performed by the

target program produced by the compiling algorithm of Section

4.3.5. Note that the neteffect property holds for each e~pres­

sion evaluation, including calls.
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4.3.3 New Commands Miscellaneous

returntop takes (v::v*, f*, l*) and terminates computation

As mentioned earlier the flow chart lfu~guage will be extended

by adding several special-purpose comma~ds which aid the iter­

ative execution of the recursive equation system. Their ef­

fects will only be described informally in terms of their ef­

fects on the r~~time state and point of control IC. The run­

time staters form will always be

producing v as the program's final answer

falsejump(J!.) takes (v::v*r f*, i*) to (v*, f*, i*) I and trans­

fers control to the instruction labeled l if

v::; false, else control goes to the next conunand.

4.3.4 Construction of Target Code

s (v* If* ,i*) Target programs are flow charts and so have form

In order to describe the compiling algorithm concisely we

use the notation c @ c 1 to denote concatenation of labeled

command sequences. We assume that in forming c @ c 1 all labels

and label references in c 1 are appropriately renumbered, and

where v* is the value stack. f* is the frame stack "Bindings",

and .t* is the return stack. Control always passes from one

command to the following one, unless the contrary is explicitly,

stated. Recall that a::: list de...TJ.otes the resul.t of attaching' a

to the front of list.

Co~~ands for Expression Evaluation

program read xl, ... ,Xmi 1: cmd 1 '" n: cmd
n

and similarly for all other operations "do-opu on atomic values.

firstirame(xl,x2,""Xn ) yields the initial state

Commands for Binding and Unbinding

that any references in c to labels not in c are replaced by

the label of thE. first instruction in c l For example

G: if x > 0 gato 21 11: x :::; x+l

ll: x :::; x+1 ]

~,
else

1J [2, if x > 0 goto 3@
else 2

y:= y-1
2: y := y-1

J

r· if x: ;: 0 goto

~1r
i

492l else
1 : if x: ::; 0 goto

else @ [1 : y := y+1]

~' Y :::; 0

2,; Y : == 0 J 3 : y : =y+1 J

takes <v*,f*,l*) to (v::v*, f*, t*)

takes (v*,f*,i*) to (vi::v*, t*, l*)

where the top frame in f* is (Vl,V2,""Vn ]

takes (Vl::VZ::v*, f*, t*) to «Vl+V2)::V*, i*, ,t*)

takes £*, l*) to «VI *V2.)::V*, f*, l*)

push(v)

fetch(i)

do-+

do-x

makeframe(n) takes (v~:: .•• ::V2::Vl::V*, f*, l*)

to (v*, [Vl., ••• ,vn]::f*, t*)

popbind.Ligs takes (v*, f: :f*, l*) to (v*, f*, t*)

(NIL, [x 1 , ••• , Xu] : : NIL, NIL)

Commands for Function Call and Return

pushretum (1) takes {v* , f*, 1*) to (v* , f*, I: :1*)

returnjump takes (v* , f*, t: :1*) to (v* , r* 1*)- ,

and transfers control to the instruction labeLed l
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4.3.5 The Compilation Alqorithm Example Code for the factorial function

Compile: Recursive Program. ~ Flow Chart Program

Code: Equation + Expression 4 Commands

Code {variable. xi) 3fetch(i)e

code{"op{eXP1,o •• ,eXPn l *)·
Code (ex!? 1l @ • •• Code (expn) @ do-op "

Code{"f{eXP11 ••• ,eXPn)H}

. Code (expIJ @ ... @ Code{eXPn} @ callcode where

'I Callccde [ 1: makeframe (n)
2: pushreturn{4}
3: goto first labeL of code for equation

.. f{Xl •••• 'Xn ) = exp"]

ICode("if exp, then exp2 else exp,")

r
Code (exp1) @ Branchcode where

Branchcode::;; [1: falsejump(4) 2: Coaeexpz) 3: gotoS 4: Code(exp3)]

else n * fac (11 - 1 )

start of code for fac
pushn on Valuestack

push constant one

Bindings := [n] ::NIL

goto start of fac code

final result = Valuestack to p

perform initial call

evaluate n < 1

do "if" test

return 1 if true

exit to caller

push n (from n * fac (n - 1) )

compute n - 1

recursive call to fac
(result on Valuestack top)

compute n *" fac (n - 1)

return from fac

if n < 1 thenfac(n}

The target program is

read ni

1 : firstframe(nl

2: pushreturn(4)

3: goto 5

4 : returntop

5: fetch {1}

6 : push(1 )

7: do-<

8: falsejump(11l

9: push (1)

10: goto 19

11 : fetch(1)

12 : fetch( 1)

)13: push (1)

14: do--
I

15: makeframe{t)

1
16 : pushreturn (T8)

17: goto 5

18 : do-*

19 : popbindings 120: returnjump

2: returnjump]

Dpush(constant}DCode (nconstantD)

where

I
, -_ Compile {eqnl eqnz ••• eqnm}

"read Xll ••• ,X
n

, startcode i! eqncode"

I
I

Dfl{Xl, •.• ,Xn) = expfi = eqn~

startcode = [1": firstframe{xll.'.'X ) _2: pushret.urn (4)

1
1~ e_qn_C_O_d_e_=_~_~_d_:_~_:_:__:_)_@_._'_._€!_C_Od_,-,,_-;e_{~n_4_}:__re_t_UL_nt_o_p_J 1

Code(fI£(xl, .. "X
n

) = exp"}

Code (exp) @ [1: popbindings
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The new commands of 4.3.3 can easi1y be implamented on this

new data structure. Practical implementation details may be found

in the notes on RLageradministrationR in the DAT2 kursusbog I.

4.3.6 SL~gle-stack Implementation

Notice that the binding and return stacks are pushed and pop­

ped s~~chronously at call time and return time. They both re­

main constant during a call~ and according to the 9 net effect

property" the Valuestack at exit equals its entry value, plUS

theflli'"1ction value as a new top. The three stacks are thus

pushed and popped so consistently L~at they could be combined

into a single stack.
This is in fact the traditional stack implementation of

block-structured languages, and naturally yields

State

"Frame

{Value + Frame} *
Label x Value*

IV UNSOLVABILITY OF THE HALTING PROBLEM

5. OVERVIEW: COMPUTABILITY AND UNSOLVABILITY

Following three sections explain three of the most important

results from the t~eory of computability. Their importance

lies in the fact that they together argue strongly that the

class of "all problems solvable by computer" is in fact well­

defined class with sharp bOlli1daries. Thus a computational

problem may be classified without ambiguity as "computer solv­

able" o~ "unsolvable by computer ll
• Further f we will display

several concrete and simple problems which can be precisely

defined, but which cannot be solved by any computer whatever,

no matter how much time or memory is available, and no matter

how rich the computer's instruction set is.

First, some comments on fundamental asslli~ptions: first, we

will not concern ourselves at all with computational efficiency

in time or space~ we are concerned only with the existence of

programs which solve a given problem correctly, given suffi­

cient resources. (In fact some of the constructions to be shown

are enormously inefficient, but this is quite irrelevant to our

goals.) Second, we are interested mainly in problems which have

an iAfinite number of instances (for example~ given arbitrary

integers x and y, find the least prime number larger than

xy + y.) The reason is that if a problem has only finitely many

combinations of input data, a "solution procedure" could take

the form of a finite table. This table would contain the prob­

lem's answer for each combination of input data, so that any

problem instance could be solved by a table lookup. Consequent­

ly all finite problems are, at least in principle, algorithmic­

ally solvable.

The first result is that for a particularly simple program­

ming language, called LISPO, there is a problem which is not

solvable by any LISPO proaram: the halting problem.

The second result is not a theorem (as was the first) but
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Hachine

1
1012

Figure 1. Simulations

T".l::-ing
~L'lchine

unsolvability is not an isolated hp ,enomenon, and that in fact
many problems conc~rning b '"~ . ?rogram enavior are algorithmically
unsolvable.

Reduction i- al- ~, 1~ ~o a ~unaamenta concept for studying the

complexity of algorithmically solvable problems.

These notes are organized as _fol_lo~s. Iw n Section 6 the lan-

guage LISPO is introduced (essentially an applicative subset

of LISP) and its semantics is described informally. Section 7

contains a LISPO interpretation algorithm Eval written in

LISPO. Section 8 shows that the halting problp.m F .- ~or LISPO pro-
gra.1\s cannot be so 1'led by any LIBPO program.

Chapter V c0ntains ~rNuments rh t 1~ ':J • -, a severa computing devices

are exactly equivalent to LISPO in computing power. The method

is to show that for everv_. program '" a In programming language A,

a program b in language B ~ay be constructed which faithfully

simula tes -3.. Re?resenting thi.s relation by an arrow A .... B, the

simulations sketched in Cha9ter V can be diagrammed as fo1101;vs:

Chapter VI deals with reducibility between problems, and shows

a variety of p~oblems unsolvable by reducing the halting problem

to them. In particular, it is shown that it is impossible by

computer to decide whether a context-free grammar is ambiguous.

a collection of arguments supporting the socalled

Church-Turing Thesis

Any process which could. naturally be called an

effective procedure or algorithm can be real­

ised.by a Turing machine.

'This thesis asserts that one particular computing device,

the Turing machine, is at least as powerful as any other device

(past., present or imaginable) whose computations are' "effective" ,

that is algorithmic. Such a thesis cannot be formally proved

since it contains an informal phrase: "effective procedure";

its real significance lies in that it asserts that a formal

concept - the Turing machine - is an adequate and complete for­

mulation of an informal concept, that of algorithm or effective

procedure.

Evidence for. the Church-Turing thesis is of two sorts: that

a wide variety of computing devices have turned out to be exact­

ly equivalent to the Turing machine in computational power; and

that no convincing counterargument has been put forth since the

topic first was studied in the early 1930's. Its consequences

are wide, as seen in the following simple application.

An application

We have asserted that the LISPO halting problem (call it

"HALT") cannot be solved by any LISPO program. We will see later

that any Turing machine can be simulated by a LISPO program.

Consequently HALT would be LISPO solvable if it were solv­

able by a Turing machine, leading to the conclusion that a~T

is ~uring unsolvable as well as LISPO unsolvable.

By the Church-Turing thesis 1 lLlU.T cannot be solved by any

effective procedure whatever, since this would imply its Turing

solvability and hence its LISPO solvability.

The third topic we introduce is the idea of reduction of

one problem to another. By definition problem A can be reduced

to problem B (written A~ B) if an algorithm to solve problem A

can be constructed, provided one assumes the existence of an

algorithm to solve B (that is, there exists a liB subroutine"

which may be called as an aid during the solution of A). Using

this concept we show that the halting problem's algorithmic
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6. A SIMPLE. APPLICATIVE LANGUAGE: LISPO

(d 1 d2. " ~ dn )

The result of l'app y~ng program p to data d ;~ th
of expressio ~ e value

- nl I aIter replacement of all ,_
ab~o ~ - OccuIrences of vari-

L~ Xl ~n the expression by the value d.

An expression of the form (IIGOTE
. ~ oj is a constant ex-

press~on, with value dan,
- . expresSlon may also be a variable

(for example Xl above) .
I or It may be construct d fromexpre' b . e other

- ss~ons y the Operators HEAD, TAIL A~OM ~
tioned above ' . f - or CON~ men-

. A cond~t~onal expresSion has... the form

the values of ex d
Pl an exp2 are compared (these

t 1 may be arbi-rary ists). If equal th ~ "
" -, -e ,-ondlt~onal expression's value
lS tne value of exp 1 ~h -

. - 3, e se L.e value of exp4. Final~
press~on may take the form (-C, _, y. an ex-
to f t

· . ,.1. i expresslon). specifying a ca'l
unc ~on f> Th ~

i' .e argument is evaluated and ~t· f '
f i l' '- len unct~on

i ~s app led to the resulting I; st ' . •
b - , so evalua~~on is "call

y value ll
•

Figure ~.1 contain~ t
-~ a con ext free syntax for LISPO

grams and data. Notice that every LISPO r pro-
et . I . P ogram l expression,

c. 1S a so a I1st. This makes it
Possible to regard LISPO

programs as data objects which can'
De processed by other

LISPO programs, a capabilitv which
• will be important in fur-

ther developments.

«list> . <list»

<digit>J+<atom> ::= {<letter>

<list> ::= <atom>

(d 1 • ( d 2. • ( d 3 ;, ( ••• (dn . NIL) .... »)

6.1 Syntax and Informal Semantics

Lists are constructed with the binary operator CONS, so

that CONS applied to lists d 1 and d2. yields list (d 1 • d2.).

Using the short form just mentioned, note that the

LISPO is essentially a subset of applicative LISP, restricted

for technicaL convenience to functions of one argument. A

LISPO program manipulates data in the form of a "list", an

ordered: binary tree with atoms as leaves, where an atom is

anonempty sequence o£letters or: digits. Lists are written

in linear form according to the following syntax

to represent the following right linear. tree ending in the

atom "NIL" :

For brevity in writing we adopt the LISP convention of

writing the short form

CONS of d and (d 1 d2. ,., d.ul equals (d d, d2. dn )

If list d equals (d 1 • d 2 ) f then the HEAD operator applied to

d yields d 1 and the TAIL of d is d2. I while both are unde­

fined (erroneous.) is d is an atom. The operator ATOM applied

to a list yields the atom "T" if the list is atomic i and "NIL"

otherwise., A LISPO program, PI consists of a collection of

recursively defined functions of form

p f
«DEFINE f 1 (X.l) expression 1)

(DEFINE f 2 (X2) expression 2.)

1(DEFINE fn(xn ) expressiOnn }}
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{QUOTE <list>}
<vname>
(HEAD <expression»
(TAIL <expression>)
(ATOM <expression>)
(CONS <expression> <expression>)

I<program>

I

I
<definition>

<expression>

I
i
I

: ::=

::=

{<definition>+j

(DEFINE <fname> {<vname» <expression»

constant
variable reference

p ((DEFINE Search (gt) =

(IF (TAIL gt) = (QUOTE NIL)

THEN (QUOTE NIL)

ELSE

(IF (HEAD gt) = (HEAD(HEAD(TAIL

THEN (TAIL (HEAD (TAIL gt)))

ELSE {Search (CONS (HEAD gt).

(TAIL (TAIL
))) )

gt)) )

gt) )

not contained in the set

Figure 6.1 Contex-Free Syntax of LISPO

{QUOTE,HEAD,TAIL , ATOM,CONS,IF}

2. The only variable name which may appear in expression

.exPi is xi .

Context-Sensitive Syntax Lq a program

p = «DEFINE f 1 {Xll = exp~) (DEFINE fn(xn )

it is further required that

1. Function names are distinct (i::= j implies f i :1= f j ) and

<list>
P
~

x <list> .~ <list><program>

<expression> x <list>

Run

Eval

For instance

1. Search of (B ((A.l)(B.2) (C.3)))

Search of (B ( (B. 2 J. (C. 3.) J ) 2
2. Search of (D ((A.1) (B.2) (C.3)))

Search of (D '(B.2) (C.3»))

Search of (D ((C. 3)))

Search of (D (l') = Search of (D.NIL) NIL

6.2 A More Precise Semantics for LISPO

The evaluation of LIS PO expressions and the running of programs

can be more completely and precisely defined by specifying pro­

gram execution and expression evaluation functions:

in a program

[ ( (DEFINE f l (Xl) eXP1)
p

(DEFINE fn(xn ) = eXPn) )

The intention is that Eval (exp,d) equal the value of "exp",

given that d is the value of the variable possibly occurring

in expo Eval will always be applied to subexpressions occur~ing

so eXPi can contain atmost one variable xi . The result of

running program p on input d will be Run(p,d) = Eval(expl,d).

function name
variable name

<atom> I {<list>· <list>}
{<letter> i <digit>}*

(IF <expression> <expression>
THEN <expression> ELSE <expression>)

{<mame> <expression>} function application

::= <atom>
::= <atom>

: :=

<list>
<atom>

<fname>
<vname>

Example

The following program may be applied to a pair

gt = (goal.table), where

table = ({keYl • valuel) {keY2 • val.uez} ~., (keYn . valuen })

Its purpose is to compare goal to keYl, keyzf ••• in

succession, searching for a match. If the first match is

d " lu is returned, whilegoal =keyi 1 the correspon l.ng va· e i

if no match is found, the value NIL is returned.
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Figure 6.2 Semantics of LISPO

7. Suppose. Eval. (exp, d) v, and that program.. p contains

(DEFINE f i (Xi) = eXPi)' Then

Eval. «fi exp), d) = Eval (eXPi' v)

Eguivalences

a = (HEAD x) , b =: (TAIL x)

a (HEAD (HEl\..D xl) ,
b (TAIL (HEAD x) )
c ('HEAD (TAIL x) )
d (TAIL (TAIL x)

a (HEAD x)
b (HEAD (TAIL x»)
c (HEAD (TAIL (TAIL x) )

a (HEAD x)
b - (HEAD (HEAD (TAIL x)) )
c (TAIL (HEAD (TAIL x)) )

x IN ..• )

x IN ... )

(CONS (TAIL x) (HEAD x))

(LET (a.b) = x in (CONS b a))

contain:i,ng these notations may be easily (in fact, mechanical7'

ly) transformed into pure LTSPO syntax, so the language has
not really been changed._

1. f<list> may be written in~tead of (QUOTE <list»

2. [exPl,exPZ, ... ,exPnJ may be written for (CONS eXP1 (CONS

expz· ... (CONS eXPn 'NIL) ... )) . This expression is used

to construct lists (like the "LI.ST" function in ordinary

LISP). If eXP1, ... ,exPn have values dlldz,~ .• ,dn then

[exPl,expz, •. ,exPnJ will have the list (d l d z ••• dn)' as
value.

3~ Long HEAD-TAIL sequences (as seen on a small scale in

"Search~) are hard to read and write and thus protte to

cause errors. To alleY-iate this problem we introduce a way

to define local abbreviations. for HEAD-TAIL sequences, name­

ly the construction (LET pattern =: variable IN expression).

The pattern may contain names for various SUbstructures of the

value of "variable", and these names may be used within the
"expression". Thus, for example

is precisely eqUivalent to

~attern expressions ma.y also be ne·sted,_ and the shorthand list

notation (d l dz. ... dn ) may also be used as indicated in these
examples.

LET Example

(LET (a . b) =: x IN ... )

(LET ((a.b) . (c .d)) =: x IN H •• )

(LET (a b c)'

(LET (a (b.c) )

vl..

[NILT if Eval. (exp ,d) is atomic

\.. if Eval. (exp, d)' is of form ('11 . vz)

then

{ Eval (exp3, d) IF Vi = Vz.
EvaL <IF, d) =

Eval. (exp'l-' d) IF vl. =I: Vz.

If Eval. (exp1,d)

~uppose Eva~( ~,

'lbe.TJ.

Eval «HEAD exp)" d). =. VI 'and
Eval {(TI'..IL exp)·,. d) -=: Vz .

Eval «ATOM exp), d)

Eval. «CONS· exp1 exp2}, d) ,= '('11 • vz)

6. Let IF E (IF exp1 = expz THEN expa ELSE expli-) T

and suppose Eval (expl, d) = '11 and Eval (expz, d)

1

3

•

I

O. Run ( ( (DEFINE fl(X1) = eXP1) ... ) , d) = Eval(exp1, d)

1- Eval (variable name, d') = d

2. Eva1 ( (QUOTE v) , d) = v

~ , exo d = a nonatomic list ('11 . '12).

Eval is defined in Figure 1.2. Note that according to

rule 7, the argument to a function call is evaluated before

the function is applied (call by value). By rule 6, either the

THEN or ELSE branch of a conditional is evaluated', but not
both_

6.3 Some Syntactic Sugar

In order to make LISPO programs more. readable, we introduce

three forms of "syntactic sugar". These are alternate nota-

. tions \<'hich make Frograms- easier. to read and write •. Programs
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"Search" example is more readable:With this notation, the

«DEFINE Search(gt)

(LET (goal. table) = gt IN

} . rest) = table IN(LET «key'.value

(IF table 'NIL- THEN 'NIL

ELSE

is x E {2, 3 , 5 , 7 , 11 , 13 , 17 , •.• } ?

Many questions concerning solvable and unsolvable problems

are most naturally expressed in terms of deciding membership in

a given set.-For example, primality corresponds to the test:

We say such a question is LISPO-decidable if it can be an­

swered by a LISPO-program which always terminates. More formally,
we have the following

key THEN_ value

ELSE. (Search (CONS goal rest»

(IF goal

) ) ) ) ) )

6.4 Computability of 'd b'l'ty of SetsFunctions and Dec 1 a ~ ~

Definition A set A C List is LISPO-decidable if there exists

a LISPO-program p such that p terminates for every x E List,
and

if x E A

if x Et A

LISPO

L1SPO

Run(p,x)

S1 E

7. A SELF-INTERPRETER FOR LISPO

Recall that every LISPO program is also a LISPO data object~
The rules of Figure 6.2 may be expressed in LISPO, yielding

a L1SPO interpreter written in LI8PO. The fOllowing may be

stated more briefly as: Run (as defined in 6.2) is LI8PO-com­
putable, or. symb0licalIy- as:.

») )[rest,y]) )

x IN

also to show that the restriction to
, '1eis not significant in pr~nc~p_ ,

function maybe expressed in LISPO

into a single list. The example is

takes as argument a list

returns the concatenatedbnl) and

b 2 ••• b n }·

{(DEFINE append(xy)

{LET (x y) = xy IN

(LET (first. rest)

{IF x = 'NIL THEN Y

ELSE {CONS first (append

A last example serves

single argument functions

since a multiple-argument

by CONS'ing the arguments

the "append" func~ion; it

«al az ••. am) (b l b 2

list (al a2 .•. an b l

o

Theorem. There is a L18PO program 81 such that for any LISPO
program p and list d

1. If Run (p,d) = y, then application of 8I to the list
(p d} also produces y.

2. If Run (p,d) is undefined, then the result of applying

81 to (p d) is also undefined. 0

In case 2, 51 may either go into an infinite computation,

or attempt to apply HEAD or TAIL to an atomic value. We will

no-t prove the theorem, but. just present 51 and hope its simi­

larity with Figure 6.2 is eVident. If Eval(exp,d) = Y accord­

ing to Figure 6.2, then function "Eval ll from Figure ;.1 will

also yield y if applied to the list (exp d pl. The ex~ra argu­

ment p is needed in order to find the definition of f in a

function call (f expression), as performed by function lookup.

. d A rtial multiple-f(x) and.Run(p,x) are undef~ne. pa" _

Listng List is (by defin~t~on) LISP

rgument LISPO-computable func­one-a

xl., ••. ,xn EList

g.,< (Xl,.'.'Xn ) ) = f(Xl, •• "Xn )

must be both defined and equal" or(where again the two sides

both undefined)

or both

argument function f:

computable if there is a

tion g. such that for any

List g List is LISPO-comput­Definition A partial function f:

such that for everyable if there exists a L1SpO-program p

f( ) is defined andx E List 1 ei.ther x

f(x) = Run(p,x)
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7.1 A Digression: Metacircular Interpreters

(LET (if el = e2 then e3 else e4) = exp IN

ELSE (Eval [(Lookup [OP/P]) I (Eval [el/d,p]) IP])

(IF (Eval [el,d,p]) (Eval [e2,d,p])
THEN (Eval [e3 /d,p]) ELSE (Eval. [e4,d,p]»)

ELSE
(IF . (Lookup [op,p]) =="N:tr;=.-

THEN (, BAD,. 'SYNTAX: I exp]

A natural question is~ why not regard Figure 7.1.as th~ d~fi-­

nition of LISPO and not bother with Figure 6.2 at all? This

method for language definLtion. is called "Metacircular Inter­

pretation", and can be used to clarify many fine points about

program behaVior •. The original LISP report contained two such

interpreters, one for basic LISP and one for an extension which

was closer to machine implementation.

The problem is that such a definition may actually define

nothing at all! For an extreme example, note that SI is built

up by use of CONS, QUOTE, -IF, etc .. These operators are only

defined. in terms of each other in Figure 7.1 and. no definition~

independent of LISPO are given. Thus if we assumed all these

primitive functions returned the value 17 regardless of input,

p would also return 17 regardless of input!

Even if we insist that CONS, HEAD, and TAIL behave as ex­

pected there are still problems in the use of Figure 7.1 as a

language definition. In the discussion before Figure 6.2 it

was stated that "IF" c0uld be used to compare arbitrary lists.

This is not true in conventional LISP - only atoms may be com­

pared directly and recursion must be used to compare lists.

What happens if, for the sake of argument, we assume only atomic

values can be compared by the interpretation. algorithm SI?

The result is. that only atomic values may be compared in the

interpr-eted language 1 and SI is still a correct interpreter,.

but for a different version of LISPO than that defined by Fig­

ure 6 .2.

A more subtle proble~ is that if S1 itself is executed

using call-by-name (or with a "lazy CONS"), the same will hold

for the language it interprets.{Find definition of function
named f in program p}

{p = entire program
(used in function call)}

{As in Figure I.2}

{Run program p on data d}

pd IN

P INexpU)

'T THEN· d

x IN
exp IN

(IF op 'QUOTE THEN el
ELSE

(IF op I HEll.D THEN (HEAD (Eval [el ,d,p]»
ELSE

(IF op 'TAIL TEEN (TAIL (Eval [el/d,p]) )
ELSE

(IF op 'ATOM THEN· (ATOM (Eval [el,d/p]»
ELSE

(IF op 'CONS THEN- (CONS (Eval [el/d,p])
(Eval [e2,d,p]) )

(IF (ATOM exp)
. ELSE

ELSE
(IF op : 'IF THEN

»»»»»)

(LET (exp d p)
(LET (op el e2)

(DEFINE LOokup (fp) =

(LET (p d)
(LET «define f1 (xl)

«DEFINE 5I (pd)

(Ev-al [expl, d, p])
.» )

. (DEFINE Eval (x)

(LET (f p).= fp IN
(LET· (Cdef.tile fi (xi) = expi) • prest} = p IN

(IF P = 'NIL THEN 'NIL
ELSE
(IF f = fi THEN expi
ELSE
(Lookup [f ,prest])

)}»»

Figure 7.1 LISPO Self-Interpreter SI
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8. UNSOLVABILITY OF THE HALTING PROBLEM

Consider the following two functions, where p is a LISPO pro­

gram and d its data.

71

This is enough,. since SH(p) ::. HALT(p,p), so SH would be

LISPO computable if HALT were. Assume for the sake of argu­

ment that there does exist a program

PHALT(p,d}

HALT(p,d)

{T . if program p halts on data d

undefined if p does not halt on d

{:IL
if program p halts on data d

::.

if p does not halt on d

«DEFINE SH (p) ::. ... ) '" )

which correctly computes sa. We will show that the assumption

leads to an impossible situation, and so must be false (this

type of argument is known as reductio ad absurdum).

Construct. the following LISPO program.

In spite of their obvious similarity, PHALT is LISPO com­

putable while there exists no LISPO program whatever which

correctly computes HALT.

Lemma PHALTis LISPO computable

r ::. «DEFINE R(p) ::.

(IF (Sa p) ::. 'T THEN (R p) ELSE 'T)

(DEFINE SH (p) ::. ... ) '" )

Program r clearly computes a partial.function R: LISPO

programs ~ List, where

[From Figure 7.1],
Question. What is the value of R(r)? There are only two pos­

E!ibilities:

1. R(r) is defined. Then the call (SH r) returns Tby defi­

nition of SH. This causes a recursive call to R(r) and

so an infinite computation .. Thus R (r) is undefined.

2. R(r) is undefined. Then (SH r) returns NIL, so R(r). =T

~nd so is defined.

Thus R(r) can neither be-defined nor undefined~ Conse­

quently the unjustified assumption in the argument must be

false - so SH is not LISPO computable. 0

if program p halts on input p

if P does not halt on itself as input

Proof: Consider the program

«DEFINE PHALT(pd)

{HEAD (CONS 'T (SI pd»»

(DEFINE SI(pd) )
(DEFINE Eval(x) )
(DEFINE Lookup (fp) ) J

If P halts on d then SI will halt on pd.::. (p d) and pro­

duce some answer y. PHALT then returns (HEAD (CONS 'T y») ::. T.

If P does not halt on d then (SI pd) doesn't halt either, so

PHALT(pd) is undefined., a

Remark We have used "pF..ALT" both to designate a certain func-·

tion from lists to lists, and as a name in the LISPO program

just constructed. Strictly speaking this is an abuse of nota­

tion since the two meanings are entirely distinct.

Theorem There is noLISPO program which correctly computes

HALT

Proof We will show that no LISPO program can solve the s~lf-·

haltinq'problem

SH(p) = { T
NIL

R(p)
rundefined

LT

if SH(p}

if SH(p)

T, i.e. if p halts on
itself as input data

NIL
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V. SUPPORT FOR THE CHURCH-TURING THESIS

It could be argued that the uncomputability of 'HALT by LISPO

programs simply indicates that LISPO is too,weak.- perhaps

HALT coul d be computed in a more powerful programming language o.

However-.the Church-Turing thesis~argues,. that the Turing ma­

chine (and LISPO) are "maximally,powerfulo - that a Turing

machine can compute as much as any other computing device.

consequently the halting problem,for LISPO 1s in a sense ab­

solutely uncomputable, since it cannot be computed by any

computing device at all.

The Church-Turing thesis asserts the equivalence between

the intuitive concept "effectively computable" and the formal

concept "Turing machine computable". The purpose of the next

several sec'cions is to give evidence for this thesis I by show­

ing that Turing machines, in spite of their simplicity, can

both simulate and be simulated by LISPO programs. Further,

the ideas behind the constructions we give are quite clearly

generalizable, and can be used to show the equivalence of

other computing devices with the Turing machine.

As mentioned in the introduction. we will show equivalence

among programs. of. LISPO I a "List Machinel', a IIRegister MachineI' ,

and the Turing machine. The latter three are variants of the

imperative flowchart programs of Section 3.4. List machine

programs contain assignment statements, and their variables

range over LISPO lists. Register machines are similar ex-

cept that variables may only take natural numbers as values.

Turing machines are even simpler, with a tape for memory and

no variables at all.

The three machines have the common program syntax in­

troduced in Section 3.4.1. The reader is advised to review

those notations, since the following sections are closely

based on them.
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9. LIST MACHINES CAN SIMULATE LISPO PROGRAMS

We no.W" argue that given any LISPO program.,. a i·Low .char.t pro­

gram may be found whose data values are lists and whose in­

structions manipulate lists, and which computes the same in­

put-output function.

Definition A list machine program is a flow chart program as

"described in Section 3.4.1, Specialization, 2: List Computation.

Semantics: As described in Section 3.4.2, a list machine

state is a function State: Variables -. Lists. The function

EQUAL returns atom T if its two arguments are equal, else NIL.

In.a <test>, NIL is consideres to be false and all other values

The "special-purpose commands" of Sec·tion 4.3 are speci­

fied by their effects on the runtime state, for example

v* := (CONS con v*)

push(con) takes (v* , £*, -Z.*) to (con::v*, f*, .t*)

fetch (1) takes (v*, f: :f*, t*) to (f: :v*, f: : f*, i*)

do-EQUAL takes (a::b: :v*, f* t*) to- ,
(T .. v*, f*, t*) if a=b

(NIL: :v*, f*, .e.*') if a*b

push(con)

It is easy to verify that all the cOlnmands from Section

4.3 can be implemented by short sequences of list machine code

(the only tricky case is "returnjump") .: For the exa;mples above:
otrue.

List Machines Can Simulate LISPO Programs fetch (1 ) v* .= (CONS (HEAD f*) v*)

Consequently we have the following:

Apart from inessential syntactic differences, LISPO is clearly

just a special case of the recursive equation systems discussed

L~ Section 3.3, limited to functions of one variable, data

ranging over binary lists, and operators in the set

do-EQUAL tern := (EQUAL(HEAD v*) (HEAD(TAIL v*)))

v* := (CONS tern (TAIL (TAIL v*)))

{HEAD, TAJ:L, ATOM, CONS, EQUAL}

Consequently the compilation algorithm of Section 4.3

can be used to translate. any LISPO program into an equivalent

flow chart program containing "special-purpose commands"

whose effects were to update a ~~ntime state (v*, f*, .e.*).

In this state and for LISPO

v* computation stack
a stack of list values

Theorem For every LISPO program, a list machine program may

be constructed which computes the same input-output function.

In the next section we will show that list machines can

be simulated by the apparently much simpler register machine.

As an aid to this development we show that the form of list

machin~ commands may be limited without loss of computing

abilities.

t* = label stack, for "return. addresses"

The stack v* can clearly be. represented by the list-valued

variable v* = (v~ Vz ••• v ri), where Vl is the top (so v* = NIL

corresponds to ~·empty stack). Pushing and popping ofv* ca~.

be done by. v* := (CONS ~~wt~p, v*) ~d v* := (TAIL.v*), respect­

ively, and Vl = (HEAD v*). In the same way f* and.e.* may be re-

.garded as variables in a list machine program.

f* frame stack.
a stack of actual. parameter values (= lists)

of called functions

Lemma For any list machine program, there is an equivalent

one whose commands are restricted to the follovling forms

(where X, Y and Z are variables and L, M labels) :



This can obviously be done by' adding some extra assign­

ment statements to break complex list machine commands into

sequences of the forms above.
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X := (QUOTE <list»

X := Y

X := (BEAD Y), (TAIL Y), (CONS Y Z),

(ATOM Y) or (EQUAL Y, Z)

return X
goto'L

if X goto L else M c
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10. REGISTER MACHINES

Definition A register machine program is a program as de~crib­

ed in Section 3.4.1, Specialization 1: Numeric Computation.

Semantics: This is as in Section 3.4.1. In shortJ ~ register

machine, state is a func.tion State: Variables· ~ N where

N = {Or 1, 2, .}. Variables thus range over the natural num­

bers. Expressions are evaluated, as usual and with, the usual in­

terpretations of +, *, ** (exponentiation) and - (except that

O-n is taken to be D, for any n € N). MOD and DIV denote integer

modulo (remainder) and truncated division, so for any x, yEN,

Y :f:: 0, one has

o~ (x MOD y) < Y and x = y * (x DIV y) + (x MOD y) . 0

Register machine cornmands, resemble ordinary machine codes 1

except that variables may contain arbitrarily large natural

numbers as values. In the following we show that register ma­

chines can also simulate list machines (and thus any LISPO pro­

gram); and that this remains true even if limited to the com­

mand forms X := X ':1, if X = 0 goto L else M and retuI'n X.

10.1 Pairing and Selection Functions

The functions first: N --- N, second: N ~ N and pair: N x N~· N will

be used to simulate the LISPO, operations on lists ..

pGl-ir(x,y)

second(z)

first(z)

(2x+1) * 2Y

the largest y such that 2Y divides z

.1. ( ~', - 1)
2 2second(z)"

it is easily verified that pair(x,y)r first(z) ,and

second(z) are well-defined natural. numbers for any x,y,z in

N, and that

1. first (pair (x, y) ) x

2. second(pair(x,y)) y

3. pair{x.y) ::::i pair().' ,y') only if x =x' and y =y'
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A pairing function provides a way of representing a pair

of data objects (numbers in this case) uniquely by a single

data object, and the selector functions allow a pair to be

decomposed_ Integers 1 ,2,~_~:, represent the following pairs:

List Representation

Let a = {l,2, .•. ,9,O,A~~,••. Z} = {SI, ••• ,S36} be all the

symbols which can appear in LIS PO atoms. We will code a par­

ticular atom

These functions can be computed by register machines, as

follows.

(x,yr.·-- (0,0) (0,1) (l,O) (0,2) (2,0) (1,1) (3.0) (0,3)

pai:.l::(x,y) 2 3 4 5 6 7 8

(1 < i. < 36)
- J-

By the number

a = 2k + 1 where k = in +36i 1 +36 2 i 2 + .•.. + 36 n i
n •

For example:3 2*3+1 = 7 and AT. = 2*(11*36+1}+1 795.

Note that every atom is represented by an odd number.

A compound list .t = ee. l • .t 2 ) will be encoded (recursively)
by the number

This will always be even (since pair(x,y) = (2x+1)2Y and

Zz >0), so a parity test is sufficient to distinguish atoms

from compound lists.

Z .= (2*X+1) * (2**Y)

y • = 0; U : = Z;

while U MOD 2 = 0

do [U : = U DIV 2; Y : = Y + 1]

X := [(Z DIV second(Z» - 1] DIV 2x .= first(Z)

Z .- pair(X,y)

y .= second(Z)

10.2 Coding List Structures As Numbers
Examples

1.. Atomic list T has code 2 * 7 + 1 15

The input to a list program, and the data manipulated by list

programs, are binary lists, whereas in contrast a register

machine manipulates only non-negative integers. Consequently

a direct simulation of list by register machines is impossible,

so we devise a way faithfully to represent lists by numbers,

and to. simulate operations on lists by operations on numbers.

Recall that lists have the syntax:

2.

3.

Compound list (2.1) has code

.~ = (2*2+1) * 2 1 = (2*5+1) * 23 =88

Compound list «2.1) ·2) has code

(2*88+1) * 2 5

Remarks on the encoding scheme:

5664

<list> : : = <atom> I «list> . <list»

<atom> : : = <symbol I <atom> <symbol>

<symbol> : := o I 1 I .. I 9 IAIBI . . I Z

Our encoding uses the pairing functions just described.

'1. The scheme, while simple, is clearly inefficient: small

list structures are encoded as very large numbers, and

many numbers are not encodings of any list structures at

alL These objections are.immaterial, however/ since our

only interest in the present development is to investigate

the outer limits of computability. If we were, for example,

comparing efficiency of various machine types or algorithms,

mure efficieut codings would be needed.
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2. In fact any encoding will do, provided different lists have

different codes, and that one can program algorithms to sim­

ulate the list machine's operations. For' this are needed:

comparison of two list valuesi decomposition of a list into

its head and taili and construction of a list from two

other lists.

10.3 Register Machines Can Simulate List Machines

Corollary any LISPO program may be simulated by a register
machine.

10.4 A Simpler Version of the Register Machine

We now show that the register machine's command. set may be

drastically simplified without loss.ofcomputational. power.

This simpler machine willthen.be shown simulable by a Turing

machine in the next section.

Further, r halts on input al, ... , an if and only if p halts

Theorem For any list machine program. p, there exists a register

machine program r such that

o gato LeIse M

o goto 4 else 2

goto L, if X

1: if X

4 :

3: goto

2: X := X -

or equivalently:

Proof We show that the more complex commands can be simulated

by sequences of commands of the form above. First, X -= 0 may

be accomplished by

while X :1= 0 do X := X - 1

X := 0;

""hile Y * 0 do [X : = X + 1; Y : = Y - 1 ]

Similarly X := 1, X := 2, etc. may be accomplished by the

sequence. above followed by "X : = X + 1 1t an appropriate nurt1ber

of times.

The following sequence has the same effect as "X := Y;

Y : = 0":

~. For any register machine, there is an equivalent simple

register machine whose commands are. restricted to the following

forms (where.X is a variable and L,_ M are labels):

X:= X+1, X:= X-1

return X

l'J

commands in r

a n

command in p

X := (QUOTE !) X := I
~~

X := Y X := Y

X := (HEAD Y) X := first(Yl

X := (TAIL Y) X .= second(Y)

X .= (CONS Y Z) X := pair(Y,Zl
...

X . = (ATOM y) if y MOD 2 :1= 0

then X := if else X := NIL

X :.= (EQUAL y Z) if Y = Z

then X . = if else X := NIL--
return X return X

goto L goto L

it X goto Ll else L2 if X = NIL

then goto L2 else goto Ll

if p, when applied to input lists al, an ' halts with

list a as output

then r, when applied to input numbers al, an ' halts

with number a as output

on a 1, ••• I

Proof We will construct program r so that it simulates p step

by step. By the lemma at the end of Section 9, p may be aSSD~ed

to contain at most one operator per command. For each command

in p there will be a command sequence in r, constructed as

follows:
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In order to accomplish X := Y without the side effect of

setting Y to 0 we use a new auxiliary variable Z. Further, we

see that X : = Y + Z may be done using the same idea:

83

11. TURING MACHINES

A Turing machine program is a flow chart program as in 3.4.1,

specialized to commands of the following simple forms:
X := Y - Z .= 0; while y*O do [Y:=Y-1 : Z := Z+1] ;

X := 0; while Z * 0 do [Y:=Y+1; Z := Z-1 ;
X := X+1J

X := x+y - - the same, but .without X := 0

X := Y +Z =: ex:·: = Y:. X :=:X + zl

The following show how Y * Z, Y MODZ and Y DIV Z can

be computed; Y - z· and 'y**Z may be computed similarly:

Right

Left

Print a

<Jato L

if a <Joto LeIse M

halt

- move read head right one square

- move read head left one square

- print a on the scanned square

if the scanned square contaihs a
then go to L, else go to M.

X := y*z

x . = Y MOD Z

X := Y DIV Z

= W := Z; X := OJ

while w* 0 do [X-.::;:. X+Y;. -VI.:= w-1]

X • = Y: while X > Z do X : = X - Z

W : = Y: X : = 0:

while W> Z do [n.: = W. - Zi X . = X + 1]

Semantics

A Turing machine's state consists of its control point (the

current "instruction counter") and a tape

Definition Turing machine Z computes a partial function

f: Nn ~ N (on the natural numbers) if for any XI/,."Xn EN

(i) if f(Xll •. ,Xn ) = y and Z is started in the initial

configuration:

Consisting of a two-way infinite string of symbols, together

with a designated scanned symbol (marked by ~ in the diagram) .

The tape I s symbols lie in A U [*} 1 '",here A is the Turing ma­

chin'e's input alphabet and * ~ A is called the blank symbol.

In practice every tape will contain * in all but a finite

number of symbols.

The com.rnands given above should be self--explanatory (a

more detailed description with examples may be found in

[Jon73]). In the following l 1x represents a sequence of x

consecutive ones.

Now suppose one is given an unrestricted register machine

program. This can be converted to the desired form as follows:

1. Replace tests involving <, ~'. >, ~ by tests- of equality

with O. For example, X~Y if and only if X-Y = 0 (since

-0 - y = 0 for all Y, by our version of - ).

2. Add extra assignment statements if necessary so that as­

signment commands contain at most one operator, and alL

expressions outside assignments are constants or vari­

ables.

3. The resulting program can now be converted to the de­

sired form by substituting the sequences above for

. X * Y, X DIV Y, etc. CI

Corollary Any LISPO program may be simulated by a simple re­

gister machine.

1* I * 2 * 1 2 I 2 I * *
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i~until and while are of course tests on the Turing machine's

scanned symbol.

Then it will eventually execute a halt instruction in

a configuration of the form

- anything * 1Y * anything -

Right (*)
Left(*)

. Right.(*)

Left (*)

II. Shift

move the scanner' ~ to the first * to the
right (left) of the current scanning
position

- until * do Right

;;; until * do .Left

changes configuration

(ii) if f(Xl, ... ,Xn ) is undefined then Z will not halt if

started in the initial configuration. 0

from anythingl a 1
x * anythingz (a any symbo],.

in A U {*} )

Right(*) ;

Print *. Righl::-

Shift
i

(i. e. 1 ·shift repeated i times);
Left·· Print 1 •
Left(~)i '

Shift ;;; Print

Left

to

Command in r

Xi := Xi +1

X. := X.-1
~ ~

1

Right(*)~-l; Right;

if * then Left(*)i

else [ShiftP- i + 1 , Left(*)p+1]
I--r-e-t-u-r-n--x-..----1--R-i-g-h-t-(-*-) i:"1

~

The Turing machine is constructed from r by replacing each

command by a sequence of. Turing commands accOrding to the fol­

lowing plan: Recall that p is the number og ~IS variables.

Command Sequence in Z

r :::: [read Xl, .•• 'X
n

i 1: Cl .•. m: Cm]

By definition of simple register machines, each command

is of the form X := X+1, X:= X-1, return X, goto L or if

X :::: 0 goto L else M . Following the pattern of previous proofs,

we show how to construct from r a Turing machine Z which sim­

ulates rls actions step by step.

Let the variables of r be Xl" .. ,Xp (where n ~ p since

Xl' ••. 'X
n

contain the values of the input). A computational

state with X :::: al, .•• , Xp a p will be represented in

standard form by the tape

Proof Let f be computed by a register machine program of

form

Theorem If f: ~ ~ N is computable by a simple register ma­

chine, then it is also computable by a Turing machine.

Every LISPO program may be simulated by a Turing

if X. = 0 Right(*) 1-1; Right;_. ~

goto L if * then [Left; Left(*)i-1; ~oto L]
i--1

~ M else [Left; Left(*) .;goto .M] .

goto L goto L

Correctness of the. simulation is easily verified (analyze

the Z commands' effects on.a standard. configuration), so the

desired result has been shown. a

For the initial configuration, a1, ••• ,an corne from input data

and X
P

+
1

:::: ••• = Xn = 0 •

As in the previous section, we introduce some "macros"

to abbreviate frequently-occurring command sequences, and

freely make use of PASCAL-like control structures. The tests
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x IN
a IN
b IN BodYk})})}

x IN
a IN
b IN Body d ) ) )

Execute (xl), = '(Run 1 (CONS 'NIL x1)))

Runl (x)

(b • a)
(aO . arest)
(bO . brest)

} )

(Run i + l (!F a = 'NIL

THEN (CONS (CONS. 'NIL b) , NIL}

ELSE (CONS(CONS aO b) arest)

(( ) • (1 1 ••• 1))
~

P 1's

(DEFINE Result(x)

(LET (aO. arest) x IN
(IF aO = '1 THEN (CONS '1 (Result arest))

ELSE 'NIL))}

(DEFINE Runn (x)

(LET (b . a)
(LET (aO. arest)

(LET (bO . brest)

The, simulating program will have form:

( (DEFINE

(DEFINE

(LET
(LET'

(LET'

"Right" in essence simply converts (b . (aO • arest}) to

«aO . b) . arest). The code is complicated by the possibility

that a = NIL, resulting in the following. "Left" is analogous.

3.,· halt becomes (Result a), which returns the. longest sequence

.. of""Vs, which" starts.. a (recall the definition of computa­

tion at the. start of this section.)

12 _ COMPLETING- THE" LOOP

-------
IJ..

whose LISPO representation,is thus the list

We have shown that, in spite of its extreme simplicity, the

Turing machine can compute any function computable by LISPO

,programs (provided the inputs are encoded in numeric form) 0'

In, this section'we show that LISPO programs can also simulate

Turing machines, so that (modulo data representations) ,

LISPO, stack machines, register machines and Turing machines

all have the same computational power.

The technique we use resembles that in Section 4.2. During

the Turing machine's computation its tape-will always be "al­

most everTwhere blank", and so will have the form:

t = read Xl', •• 'Xn j 1 :C I ; '2:Cz •.•- j k:'Ck

For the-sake of simp1icity,we assume n=l , so,the initial.

tape is of form., (p i..s, the. initial. ~~l.~e of, Xl.) :-

Proof Let the Turing machine progr~ be

where each ai' b j E A U{ *} and all symbols to right of am og:­

to the left of bn are * . This,wi11 be represented by a LISPO

list where each, TUl:ing- command Ci corresponds to a LISPO expression

BodYi' . Simulation'of the: Turing: conunands is. straightforward:

1. goto L becomes (RunL x)

Theorem Any Turing machine progr~ can be simulated ~r a it symgoto L else M becomes

LISPO program. (lFbO = 'sym THEN (RunL x) ELSE (RunM x) )
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VI. REDUCTIONS BETWEEN COMPUTABLE PROBLEMS

{

T if: Run(p,p) is defined

NIL if Run(p,p) is not defined

{p I Run(p,p) is defined}

{ (p,'-.ci) I Run (p ,.dl- is defined}

SHIP)

SH

.HALT:

2. The "self-halting" problem SH is not LISPO computable,

where

Run (p ,d). = the result of applying p to d (-if defined)

1. Run. is LISPO computable, where for any: LISPO program p

and input d

The argument for the incomputability of SH.was somewhat

• In. ordex:. to avoid. having to duplicate the reasoning

introduce a new technique of reducing one problem to an-

13:'-- USING REDUCTION TO PROVE UNSOLVABILITY

We' have shown in Chapter IV that

This can be expressed in a different way, using the idea of

LIspO.,..decidability from Section 6.4:

Theorem.: The following sets are not LISPO decidable:

(Hote: we have used the same. names for these sets as for

the functions they correspond to.)

IIi" fact a great many decision problems about LISEO pro­

grams are not LISPO decidable. This implies by the Church­

Turingpthesis that they are not decidable in any intuitive

sense either. In the rest of. this material we will just say

88
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2. If. A < B and-.A. is undecidable-. then. B is undecidabl.e

apply p to it­

T as output) if.

... ) ... )

(HEAD (CONS. 'T . (P. I p) »

... ) -•• ~ j

p = «DEFINE P (x)

q = «DEFINE Q(y)

(DEFINE Pix)

Clearly q i~nores its input, and tries to
self. Consequently q halts on NIL' t. ~npu (with
'and on1 . f

t.· - Y,1.. P halts on p, or symbolically:

p E SH *"> f (p) E HALTNIL

LISPO program p, p E SH if and only if f (p) E HALTNIL. In other
!Nords

Now construct program q = f(p)

p halts on p ;f f(p) h..... alts on NIL

This can be done as follows. Let p have form
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Program q = f(p) is obViously easy to construct from p,
so f is LISPO computable. Thus SH < HALTNIL and the d . d

. . - , un ec~ a-
bLI~ty of SH implies that HALTNIL is also undecidable.

Surprisingly, the same construction can be used for'the

other sets~ The follOWing are triVially true, Where "ANY" is
the: LISPO program which yield's T for all input:

1. p E SH *"> f (p) E ALL

2__ p E sa *"> (f (p) ANY) E EQUJ.i,.L

£: p E SH *"> f (p) t. EMPTY'

SH ~ ALL so ALL is undecidable. The function taking
list (f(p) ANY) is clearly LISPO computable, so

SH.~ EQUAL and so EQUAL. is undecidable. By 3, SH < NONEMPTY

{p 13xRun(p,x) is defined}, so NONEMPTY is undec~dable. Now

were decidable, the LISPO program which decided ~t

triVially modified to decide NONEMPTY (by reversing

NIL). contradicting the undecidability of NONEMPTY. CI

The constructions above all have a program. p as input. A

question is whether it is the variability of p which

to undecidability? or put in concrete terms, is there

program Po whose halting problem is undecidable? It
out that the answer is yes.

c

SH {p I Run.(p,p) is defined}

HALT { (p d) I Run(p,d). is defined}

HALTNIL {p I Run (p ,NIL). is def.inedl

EMPTY {p I Run (p,..x). is not defined for any'x}

ALL. = {p I Run(p,x) is def·ined.for all x}

EQUAL. = { (p .q), I vx Run.(p,x). = Run (q,x)

(i.e.• both are undefined or both
are defined and equal) }

a €. A.. if.. and only if. f (a) E B

The definition implies immediately that

1. If. A < B and B is decidable_ then A__ is decidable •.

compute b = f (a) ;

if b E B then return T

else return NIL

Def inition Let A and B be. two sets (L e. decision problems).

We say that. A is (LISPO) reducible to B, and write A~B , if.

there is a.LISPO computable total function f such that for

all arguments

In case 1, an algorithm to decide. membership. in A can take

the following form',. where a is an arbitrary input:

Theorem None of the following sets~ ~s. decidable:'

Case 2 is simply the contrapositive form of case· 1. We"

now apply probl.e~ reduction to several natural questions about

program behavior.

Proof Undecidability of SH and HALT have already been shown.

We. will first show. that SH ~ HALTNIL, thus establishing the

undecidability of HALTNIL. By the definition of reduction, we

'have to exhibit.a LISPO.computable function such that for any
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14 •. UNSOLVABLE. PROBLEMS CONCERNING CONTEXT-FREE. 'GRAMMARS

{a,b}).

1 2 3 4

a b 2a a 2b ab

ba 3:: b j b 2 aa

1 2 3

b 3 ab b 2

b 2 bab.z a.2b 2

x.
~

i

One solution. sequence is 1,2,1 since XIX2 Xl' ·~3~b4.·=·

YIY2.Yl

i

Each pair (Xi' Yi) begins with different letters, so no solu­

tion is possible.

Examples (all with A

TMHALT ~ PCP

Specifically, one can show that given any Turing'machine

program. r / it is possible to cons.tructa PCP problem which has

a solution if and only if r halts on an empty input tape.

The details of the construction are somewhat involved, so

refer the interested reader to [Bir76]. c

2 •.

Theorem Po~tls Correspondence Problem is undecidable.

Proof outline: We have shown that the halting problem for

programs is undecidable. This implies that

TMHALT = {(r,n): I r is a Turing machine which halts on
input 1n }

undecidable. To see this, recall that we showed in

Sec4:ion 11 that any LISPO-program can be simulated by a Turing

machine. If TMHALT were decidable then the LISPO halting prob­

lem on empty input could be decided in two steps, by first

constructing an eqUivalent Turing machine program r and then

deciding whether r halts on an empty input tape.

Given that TMHALT is undecidable, PCP is shown undecidable

the reduction method of the previous section; one shows.

Yi
1

Yi
2

••• Yi
k

Run (1' ,d)

•.•• xi
k

sr, the "self-interpreter" of Section 7.

Run (Po , (p d) )

To Determine-whether or not there· isa nonempty sequence of

integers i 1 ,i z , ••• ,ik such that

Post's Correspondence Problem·

Gi.ven two' arbitrarysequences.rxl ,X2""'X ) and- (Y1 ,Y2, ••• ,i )---- . n n
ornonempty strings of symbols. from. some alphabet A, the

problem is

HALT~~ = {x I Run (Po ,x) is defined}

Such an index sequence is cal.led a solurion to the corre­

spondence problem.

We now use the reduction method to show that a well~known prob­

lem concerning syntax analysis cannot be solved.by computer~

Specifically, we will show that it is undecidable whether a

context-free grammar is ambiguous, that is, whether at least

one of its generated strings has two different parse trees.

First we describe Post.' s Correspondence Problem, or PCP

for short. This is a very well-knownprobl.em..whichis·easy.

to describe but which nevertheless cannot be solved algo-

rithmically. We will. show here that the.. PCP problem can be

reduced to' the ambiguity problem._.. Consequently 1:0 i.f one could

solve the, ambiguity problem a 19o:rith:m.ically ,. one. could also

solve PCP algorithmically. Since this. is known. to be impossible

amb'iguity cannot be solved; algorithmically .either.

for- any program. p and input.d. Thus. HALT. = H..1-\LTp0 for this Po,

so HALTp. is. undecidable for_at least one fixed p~. 0
o

Proof Let Po"

Then

Theorem There is a program Po such that the following is an

undecidable set
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~heorem The following two 'sets are undecidable: 'such that

y. )
J. k

y. . .. y. :j: &
'J.l ~

(X. ... x. = y.
J.1 J.k; J.1

·X = x. . .. x.
J.1 J.k .

3i 1, ••• ,i
k

s -+ a E a for every aEA
S .....- F

E -+ c, E a E a for every aEA
F F R

F Yi-+- c, Xi

In other words, this PCP problem has a solution if

L(G'd nL(G z ) *0. The converse is immediate, so

.f. (x1 , ••• :~Xn)' (y 1 , ••• , Yn» E PCP' iff (G1 , G2) E INT'

Consequently PCP ~ INT, and so INT: is,. undecidable.

We now wish to show AMB undecidable, and do this by showing

PCP < AMB. The goal is thus to show that, given two sequences

(Xl,· ••. ,Xn ) and (Y1,'" 'Yn)' one can construct a context-free
grammar G which is ambiguous, if and only if

Construction G has productions

It is clear that L(G) = L(Gi} U L(G 2 }, and that a string

zEA* has two parse trees if and only if it lies' in both

and L (G z ). Consequently G E AMB if and only if.

(G 1 ,G2) E INT, which we have just seen to be true just in case

given PCP has a solution. Consequently PCP ~ AMB.- Since

is undecidable AMB must thus also be undecidable. 0

y.
J.k

for every symboL a E A'

for every a E A

for i = 1 ,2, ••. , n (Note:

'x
R = x written backwards)

if and only if

F

clear: that·

I X E A+}

R
xi2 C Yi 1 Yi2 .•• Y

ik

aEa

R,x.
~

S-+aEa

F -+- c

E

-F

Clearly if L(G 1 ) n L(G2) :1= 0 then there exists a string

R R R R
xc x = x. x. Xi c Y i 1

J.
k

J..~

iI' i 2 , •.•• , i k is an index sequence}

INT = {(Gl,G 2 ) I Gl,G2 are. context-fre& grammars' with
L(GI) ft L(G2) :1= 0}

AMB = {G I G is an ambiguous context~fr:ee"graromai:}

We- first show how one, if given Xl'· •• ,X
n

,Yl, •.. 'Yn' ,

can. construct two context-free grammars GI , G2 such that

Construction Let GI , G2 contain the following productions,
where c is a symbol not in A

It is. quite

L(Gd =- {xR c x

L(G ). = {x~ •••
J.

k
-

Proof We· show.that PCP ~ AMB-'and PCP ~ INT; undec~dability

. follows, thereby from the undecidability of PCP. Recall that_

, the. input data to PCP is, a pair. of sequences of strings
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But then what about parser generator systems such as YACC

and BOBS? According to [AhU77] (example 6.8) every SLR(1)

grammar is unambiguous. Further, it is quite clear that it

is decidable whether a grammar is SLR(1).

1. The arguments above prove that there are no algorithms

whatsoever which can solve the ambiguity problem for con­

text-free grammars.

1. which is large enough ·to include mos·t of the natural gram­

mars used in programming languages

2 .. which contains only unambigous grammars (and this is essen­

tial for practical use)

3. whose membership problem "is G SLR(1)?" can be decided with

in reasonable computation time.

Remarks

This apparent contradiction is not a real one,. because not

a'II unambiguous grammars are SLR( 1). The great. advantage of the

SLR(1) class is precisely this: it is simultaneously a class

aEa I bEb

1 2 3

bbb ab bb

bb babb aabb

i

E -+ c

I bb I babb I bb I

Example

S-+aEa I bEb

PCP-problem:

Gz : F c

F bbbFbb Xl~l

F -+ baEabb xzRFyz

F -+ bbFaabb X3~Y3

A Solu+:ion Sequence: 121

Two Derivations for

. Corresponding Grammars:

96
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66, 70, 89, 90
66

21,22,31
22, 25
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'call-by-name
call-by-need
call-by-value
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abstraction 16
activation record 39

-algorithm 2
. ALL. 90

AMB 94, 95
ambiguous 92, 97
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assignment statement 36
ATOM 10

A see lambda
• • 9
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[a t-+-b] : see updating-
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block-structured languages 47
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LISPO GO, 64.
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machine 77, 81
on substitution 21
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PCP' 92-95
p-eval(p)
PHALT. 70

. p ....input (p) 1
Post correspondence problem 92-95
P-output(p) 1
programming language
program state 31

i/:.9perational semantics 30
'order of evaluation 21

»pair 77
pairing functions 77

> parallel evaluation 14, 22
. partial 2
Pascal 39
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memory 31
metacircu~ar interpreter 69
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EMPTY 90
environment 11, 30', 36
EQUAL.. 10, 90
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Eva~ 63
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HALT 70, 89, 90
halting problen 57, 58, 70, 73
HALTNIL. 90

function 2
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first· 77
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frame. 39,. 47, 56
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IF 61
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sa 70, 89, 90
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TAIL 10, 60
tape 83
TMHALT:' 93
total 2
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type. 3
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unsolvability of halting' problem 70
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Valuestack 48
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YACC 97
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'ali:"encornpassing

,::~pplication
:fil.:12J?licative language·

. atom
avoid

bootstraps

... " call~by-narne

cal1-by-need

'qall-by-value
captured
compatability
concatenation
concept

"context
continuation

language

semantics
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brudt
forkortelse
mulige
altomfattende
anvendelse, funktionskald
funktionsbaseret programmerings­
sprog
grundsyrnhol
undga

st¢vlehank

navneoverf¢rsel
parametre beregnes kun hvis der
er behov for det
vcerdioverf¢rsel
fanget
beregnelighed
samrnenkcedning
begreb
samrnenhceng, omgivelser
fortscettelse

afg¢rlig
betegne, vcere symbol for
tvedeling

omgivelser
udregning

rutediagram

standsningsproblem

sprog med tildelingsscetninger
medf¢rer

netto effekt

operationel sernantik

egenskab

virkefelt, omrade, hvor variabel­
navn er kendt
tilstandsovergang

ul¢selighed
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