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I FUNCTIONS AND EXPRESSIONS

VI UNSOLVABILITY OF THE HALTING PROBLEM . . . . . . . - . . . . . « . 57
5. Overview: Computability and Unsolvability . . . . . . . . . . 57 :
6. A Simple Applicative Languager LISPO . . » « + o " « o v . . 60 ,%‘ The first three chapters of these notes provide a semiformal
6.1 Syntax. dnd Tnformal Semantles : - « » « o o o o - v . . . 60 1% introduction to several fundamental concepts found: in modern
6.2 1A More Precise Semantics for LISPO . . . - = o o . - . . &3 %] programming languages: evaluation of expressions, the binding
6.4 Computaniiivy of Punctions and Decidsbivics o sees | | | 6 of nanes to values, recursively defined functions and flow of
7. A Self-interpreter for LISPO T : control.. After developing some: necessary notation, these con=
8. Unsolvability of thé Halting PLoblem .. . - « o v o o o o . . 70 cepts- are- explored by giving. "operational semantics" (= rules
for program execution) of three minilanguages: the lambda cal-
V  SUPPORT FOR THE. CHURCH~TURING THESIS . . . . . . . . +. . . . . . . 173 culus, systems of recursion equations and a. flowchart language..
9. - List Machines.Can Simulate LISPO Programs . . . . . . . . . . 74 ' The same principles for program execution are found in more
10. Register'Machines . . . . . . . . « o . o o o o o .. TT sophisticated languages (Pascal, LISP, etc.) and should aid in
10.; Pairing and Selection Functions . . . . . . . . . . . .. ;7 understanding the runtime structures. and. translation methods
103 Register Machines can Similate List Fachints . . L . .. 0 found later in DAT 2.
10.4 A simpler Version of the Register Machipe . . . . . . . . 81 The: treatment is. "semiformal” in that on the one hand,.
11. Turing Machines . . . . . . . . . . . . .. . .. ... .. 83 the various. terms and algorithms. used are precisely definedjy
12. Completing the Loop . . . . . . . . . « ¢ o« o o o o & . . . B6 for example programs in the minilanguages may be unambiguous-
VI REDUCTIONS. BETWEEN. COMPUTABLE PROBLEMS . . « . » » » o -« - « . . B9 ly executed by hand, a feature unfortunately not present in
13. Using Reduction to Prove Unsolvability ... . . . . . . . . . . 89 N the usual programming language manuals..On the other hand for-
14. Unsolvable Problems Concerning Context-free Grammars. . . . ... 92 malized mathematical reasoning or machine-executable programs
will not be used..
REFERENCES - - - -+« + o v s v mccmc oo e mie e e e 9B What is a programming language? From a user's viewpoint
INDEX & v 4 o v & 4 o o o 0 & e e e e e e e e e e e e i ee e e . - 99 a language P is a "black box" which- can run programs, and so
ORDLISTE « « « o voe e e e e e e e e e e e e s e e 103 can. be thought: to COHSiStZOf?’.

1. P-programs: The set of all admissible programs
4 in the language P.

20 f‘of each ptoéram p € P-programs.,

P-input(p): The set of possible runtime inputs
to p (this may be empty)

P-output(p):- A set including.all the possible
runtime outputs. resulting from.
running program p :

P-eval(p): P~input(p) 3 P-output(p) .,
i the input-output function computed
by p. This may be a partial function
(i.e.. undefined on some inputs) due
to nonterminating computations by p

0l 5. %




single-valued since f£(5) may return different values on dif-
ferent calls due to changes in global variables!

This description is not all-encompassing, as it lacks In case f is a function from A to B we write f: A->B,
and say that f has type A-B. For example, N!: N-N whére

N = {0,1,2, ...} is the set of natural numbers. More generally

some advanced.programming language features (e.g. communica-—
tion with othex programs or user terminals, parallelism, etc.),

but it will suffice for this part of DAT 2. we can form type expressions, each of which denotes a set, by

the following rules:

A precise description of these advanced. features would
- require methods beyond the scope of the course.

i. NOTATIONS FOR FUNCTIONS AND.TYPES | 1. The names. of various standard sets are atomic type
’ . expressions.,. including

The concept "function" and. the notations: used to denote and N denoting {0,1,2, ...}

manipulate. functions: are central to both mathematics and com- . %2 denoting {..., ~2,-1,0,1,2, }

puter science,. and . form the inner core of nearly all program- Bool .denoting {true, false}

ming languages. Informally, a function is a correspondence 2. TIf S and T are type expressions denoting sets A and

between elements of two sets, that. is a mapping from each ele-~ . B. (respectively) then

S xT denotes {(a,b) |a€a and b€ B}
8->T denotes the set.of total functions. from A tc B
Sgﬂ? denotes the set of partial functions from
A to B
- 5+T. denotes {(a,1) | a€A} U {(b,2) | b€ B}

ment of the first set to exactly one element of the second.
More formally, a function f from A to B is a set of pairs
(a,b) from A x B with the properties:
1... Ya€A VYb,b'€EB
(a,b) €f-and (a,b') € f implies b =Db'

2. Va€A 3b€B (a,b) €f

Property 1 says f.is single-valued, i.el each a in A is
mapped. to- at most one b € B (this b is usually written £{a)). Examples. Let A = {red,green} and B = {red,blue}. Then
Property 2 saYs that £ is total, i.e. that f(a) exists for. AxB = {(red,red),{red,blue), {green,red), (green,blue)}
every a in A. In computer science we will alsc have use for A+B = {(red,1),(green,1),(red,2), (blue,2)}

i i . is, ; £ AxB satisf )
partial functions, that is, subsets £ o * B which v , Letting #A denote the number of elements in set A, we see

that #{(A xB) = (#A) x (#B) while #(A +B) = (#a). + (#B). The
_(presumably well-known) set A xB is called the cartesian product
of A and B, while the less familiar A +B is called the disjoint
sum of A and B. Note that although A +B resembles the ordinary
set union A UB, it is not the same since elements of the inter-

but not 2. One example is the input—-output function computed
by a program, which may not be defined on some inputs due to
infinite loops during program execution.

It is impo;tant not to confuse the concept of a functiom,
i.e. a single~valued: input/output relation with the concept
of an algorithm, which specifies a'way to compute a function. section "appear twice", e.g. red in the example above.
For example the facturial function n! is abstractly just the
set { (0,1, (1,1), (2,2), (3,6), (4,24) ...} while there exist
many algorithms for computing n! , e.g. Pascal programs using

Consider the following nine partial functions £1,80,.-+59
from A to B -

iteration or recursion, LISE programs, etc.
The Pascal function declaration is thus an algorithm
rather than a mathematical function. Further it is rot even




Function
£ fi(red) fi(blue)
£ fi(red) = red £, (blue) red
£2 £, (red) = red £, (blue) = blue
£5 f3(red) = blue £3 (blue) = red
£y £y (red) = blue. fy (blue) = blue
fs fs{red) = undefined f5 (blue): = undefined
fs fs (red) = undefined fs (blue) red
£ - £7(red). = undefined £7 (blue) blue
fe fs(red) = red fg (blue) undefined
g fg{red) = blue £ (blue) undefined

The sets of total and.partial functions are:

A-B = (f_l,'fz,fs,fu}
aBB = (£,8,, 80

1.1 Type Constructors in. Pascal

The product and sum type notations can be extended in an ob—

vious way to more than:two. arguments: Ap x ... xAn and
Ay + ... +An ... In a Pascal context. the. atomic types are

Boolean,fintegery real, char

“and. the product and sum types could be declared as. records

and variant records (respectively):

type product record ai :A; ;

‘ag Ay g
an:An
] end ;
tag. = 1 ..an
sum = recoxd

case i.: tag of
1: (a1 1 Ay)
2: (az : Ay)

n: (an :An)

end

’

1.2 Examples of Type Expressions for Functions

In. general we write t : T to indicate that expression.t is. in
the set denoted by T, for example (5,6) : N xN . Following are
several. examples of function definitions and their correspond—

ing types..
Function Definition. Type
£{x) = x? £ : NN
g(n) = if n=0 then 1
' else n*g(n-1) g 2 NN
h(m,n) =m+n h : Nx N->N
k(m,n) = (m+n, m-n) k- : NxN—»ﬁxN
sum(n,f) = £(0) +£(1) +... +£(n) sum : Nx (N=-N) =N
twice(£,n) = f(f(n)‘) twice : (N-N) X NoN
divide(a,b) = a/b divide : NxN3N (partial)

P-eval (p) _ L os 2.

where p €P-programs P-eval(p): P-input (p) = P-output (p)
add{n) = £, where £(x) =x+n add. : N~ (N-N)
power (n) = p, where. p(x) =x" power : N (N-N)

The list above contains

. partial functions divide and P-eval(p)

. a recursively defined function g (note: g(n) =n!)

. higher-order functions sum and twice,
which have functions. as. asguments

. higher-oxder functions add and power, which yield
functions as values. For instance, the value of

s add (1) is the function: which, given any argument

value x, returns x+ 1, and power(2) is the function
which, given argument x, returns x?. Thus '

add(1) (7)
power (2) (7):

8 ’and
49

Notational Conventions

A-+>B-~C means A- (B-+C). if f: A->B-C then f(a): B-C for all
a €A, so £ is a function-producing function '

fa - means £f{a) provided f: A-B
.fab  means (f(a))(b)- provided f: A-+B-C



1.3 Notations Used to Define.Functions

We have just seen several examples defining functions
f: A3 xAxx ... x An-va by means. of equations. of the form.

£F(X1, ever xn) = e

where e is.an. expression built from.constants.and the vari-
ables X1, ..or X by use of arithmetic operators. and the appli-
cation .of functions to arguments. The types of e and its sub-
expressions are straightforwardly determined, for example

Te - xl:'All ceeypy X _2 An

n

2. e : B

3. if e contains subexpression e;(e;) where
e1: C»D and ez: C, then.e;(ez): D

4, . if e N and e: N then e; +ez: N

Following. are the types of the right sides.of the equa-

tions for k. and twicer

N x'N N
f 1 f 2}
N N N .
e [ — e
N N N N N-N N-N N
N ———
(m +n, m- n) (£ (£ (n))

Relation.to Pascal

mJMmlnam&RMtaw@ueaﬁmumf:hxq“i%»B
would naturally be represented by ' '

function.FP. (ay: Ay ;7 .- jag: An): B;

P T e

end

While Pascal allows arguments ai:, ..., a, of any definable

type (including. functions), the result type,B is severely re-—
stricted (to.pointer, subrange or scalar . types). Consequently

~ functions k, add and power cannot be directly expressed in
Pascal, although they can.in LISP.

Lambda. Notation

Lambda notation was developed by Alonzo Church [Chu36] as a way

to write expressions denoting functions. Since then it. has been
developed into.a formalism for studying computability theory
(the: "lambda.calculus”. See [Chu51]) and was. the basis for the
design of. the: programming language LISP [McC62].

Arithmetic expressions: alone are not suitable for defining
functions.due-to.various ambiguities.. For one. example, it is
not clear whether. the expression n! denotes. the .factorial func-
tion as.a whole (of type ni: N-éN) or..its.value. given the cur-
rent value of n (type n!l: N). Another problem: if y? +x is re-
garded. as a function. of two variables, should. {y?® +x)(3,4) have
value 13.=.3% +4.0r 19 = 42 +3 2 ;

These: problems..are resolved.by using notation Ax.e to
denote a function f of one variable.. The value of f(5), for
example,. is. the. value of the expression got by substituting 5
for the occurrences of.x in.e which are bound by the ix. Thus
functions.-add and. power can be defined by:

add(n) = Ax .x +n
power(n) = Ax x0T
so add(5) = Ax .x +5, i.e. the function which adds 5 to its
argument.. Consequently add(5). (7} = (Ax.x+5)(7) =7 +5 = 12.

The notation.may be extended.by giving the type of x, in
the form A x : T.e . If e has type B then A :A.e will have

stype A-B..A function of several argquments. may be denoted as

follows:

Axl:Ai,xz:Az,,.»,xn:An . e

which has type A, x...,xAn-+B, provided e has type B. If clear
from context the types Ai may be dropped.. Note that according
to these rules;

Ax:A,y:B.e:C has type (Ex BY-C while
AX:A . Ay:B.e:C has type A~ (B-C) .

These are not.the same (e.g. h and add have different types).
Thus some of the examples can be written:
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f = Ax.x type N-N

k= mm. (m+n, m~-n) type N xN->NxN

h = Am,n.m+n type: Nx:N-;N
add = Asn.Ax.x+n - type N-f (N'-—}N)'

Note that- Ax .x? 1is not a function in itself; rather,
.it. is an.expression which denotes a function. More generally,
‘a clear understanding of the relation between a textual ob—
ject (such:.as a program) and its meaning (such as. the input--—
output function it denotes) is essential in.the study of pro-
gramming languages. This relation is usually called the seman-
Ei§§_of the programming language (fGor79],[Sto77]). Analogous~
-1y, the subject mathematical logic concerns the. relation be—

tween mathematical notations such as formulas. and the objects
they denocte.

Notation. for Updating Functions

The notation [alrfbl, azrba, ..., anrfbn] is used to denote
the finite function f: A - B such that

f(a-l)r = Dby, £(az) = b2, ...y f'(an) = b,

If g+ A-»B is a function,.the. notation g[airfb~, ceor
a Q:b;] is used. to denote.the function. h: A - B such that

h(aﬁ)‘=»b1
Rlay) = by v
h(a) = gla) for any a€A~{ai,az,...,a }

In other words, g[alhfbl, cews anrfbn] is the result of
updating or overwriting g with the finite function {alhfbl, ey

a, s-_rbn}.

1.4 A TYpe Constructor for Sequences

Cne often needs. sequences of values, of undetermined or varying
length, on order to describe programming languages. Examples
include program input or output files, and the texts of programs

themselves. For this we may introduce-a new type constructor

as follows::

Definition Let A be a type expression. Then A% is also a type

expression,. which denotes the set of all fipnite sequences of

elements of the set denoted by A. Following is some notation
for.operators,on,A*,
1. NIL.denotes the empty list, namely a:sequence containing-
no elements..

2. [al,az,,.,,ajl denctes .the seqguence containing a1gee-rdy
i

in. that order,. for n> 0. Consequently NIL = (1.
3. If [al,...,am] is a sequence and a an element then

a :: [@i/eeer am] = [a,a1,...,am1
consequently (note that ::. associates from the .right)

[al,...,anl = a; :: @z 3% ... .1 ap-::c-NIL

Relation to LISP

LISP's data structures are binary lists generable by the pro-—

ductions
<list> ::= <atom> | (<list> .. <list>)
<atom> ::= a string of letters,.digits:and,other.symbols

Any sequence as.defined above {(for example: [3,1,4]) can

be iepresented by a LISP list (for example {(3.. {1.. (4 .NIL))) }.

Clearly :: is just an infix notation for the CONS. operator.

A constant sequence such.as [3,1,4] can be represented in LISP's

"{igt notation” as (3 1 4), whHereas an.expression such.as.
‘[x+y,x-y] requires explicit operators in LISP, for example

(CONS (PLUS x y) (CONS(DIFFERENCE x y) NIL))

or (LIST(PLUS x y) (DIFFERENCE X y))



Operations on Sequences or Binary Lists

- Sequences Binary Lists

‘X :: ¥y (CONS x ¥)
head([ay,az,.. ..,an]) = a; ' (HEAD (&1 .4£;)) = £,
tail(lai,az,...,a ) = laz,....a ] (TRIL (£; .£3)) = &
: false if x is a sequsnce NIL.if x = (i~ £2):
atom {(x) = (ATOM x) = .
’ true if not ’ T. if:x is an-atom..
true if x=y T if x=y
equal(x,y) = (EQUAL x y). = :
false if not NIL if not

2. EVALUATION OF EXPRESSIONS.

2.1 Expressions without Variables

Expressions. denote values, for example 3+4, 5+2, and 17 -5 *2.

all denote the number 7. The rules according to>,which expres—
sions denote values are called the semantics of the (very
simple). programming language of expressions. Some example se—
mantic rules follow, where.the semantic function N-eval has
functionality

N-eval : Numeric. expressions-~»N

Note. that N-eval maps a textual,.obje’ct which might appear in
a Pascal program, e.g. "17 —~5.%2" into a mathematical object,
e.g. the natural number 7. In-order to keep this distinction
clgar., -we have:extended. the functionél, notation. by writing
textual.arguments in: special brackets, for example
N-evall17-5*20 = 7 .

N-eval{Iall
N-eval{Indl]

v

d - for digits 4d=0,1,...,9

10 * N~eval{InIl +d where d is a digit and
: n a numeral

N-eval[le; +e:]]
N-eval(le; * e, )

N~eval{IeiJ] + N-eval({le.T]
N-eval(le,T] * N~eval(le.Tl

n

11

ThHe last two rules are not.as trivial as they look, since
they explain.the connection between the syntactical s}ym.bols
+, * to the left in terms.,of the mathematical operations of

addition and multiplication. In this way new syntactical con-
structions may. be given meanings, for example

N-eval[Te?T] N-eval[lell * N-eval[e]l
N~-eval{ldouble eIl = 2 * N~eval[lell

2.2 Expressions with Variables

The value of expression x +2 *y. clearly depends. on the current
values. of x:and y. More generally an expressiom e can only be
evaluated.if the values. of all variables occurring in e are
known. The "current. values" of all variables can.be.represented
by a socalled. "environment", namely a function
env : Variables.»Values. If, for example, env(x):=5 and envi(y} =7
the value of.x.+2 *y in environment env. is 5+2*7 =19

An appropriate semantic function is Eval,. with functiona-~

- lity

Eval : Expression~ (Environment N} where.

env : Environment =Variables » N

There are two equivalent ways to evaluate expressions:
substitution, in which N-eval of Section 2.1 is. applied to
tKe result of substituting values for variables, and diceet
evaluation; in which Eval is recursively defined using argu-:

ment env..
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Evaluation. by Substitution

‘Eval{lell env = N-eval[[e']] . where.e'! is the result of
replacing every varlable X in e by its
value. env[[xT

13

ITI PROGRAMMING LANGUAGES

3. THREE MINILANGUAGES

Direct Evaluation
i 'EValEIdIlf env =4 for '§=0'1""'9

- E‘Calffnd]I env {10 * EvalnIll env) +d for d=0,1,...,9 ~
- and aumber n-

i

'Evalﬁxﬂ énv

= env[x] for variable:x
Evalife, +e,]] env.= (Eval(Je:ll env) + (Evallle,I] env)
|Evallle; ¥ ;01 env = (Evalle.l env) * (Evallle.I env)

If for example envIxT=5 and env{yH=7 then

Evalllx + 2 *y]l env = Eval(lxI] env +Evalll2 * yI] env
env[IxTl + (Evall[2W env) * (Evallyll env)
=S5+2*env(lyl] = 5+2*7 = 19

H

Semantic rules of this sort thus define the meanings of
- expressions and programs in one language by mapping them into
expressions of another "semantic" languége. We shall see, for
example, that it is easy to use LISP as.a semantic language
for the purpose of implementing other languages or even to
extend .LISPs own facilities.

A large part of DAT2 concerns practical aspects of the seman-
tics of programming languages, including
- Understanding the finer points of fundamental concepts
such as dynamic data structures, recursive procedures,
name binding and parameter transmission.
-~ Methods for implementing these concepts on traditional
hardware.
- Construction of interpreters: and compilers.

- Construction of programs from specifications.

In order to.describe the essentials of several alternative

. semantic concepts and implementation techniques, we now de-

scribe three very simple languages. The first, the lambda cal-
culus, is both the simplest and the oldest, dating back to
1936. A program.is simply an expression; computation proceeds
stepwise. by rewriting. this expression, eventually transforming
it into the final answer. In spite of its simplicity, this
afchetypical "appliéative language" can compute all computable
functions and.clearly illustrates several fun@gmeﬁtal concepts
including call-by-value, call-by-name, and the possibility of
parallel computation.

The second language is. that of recursive systems of equa-
tlons,‘also ‘A appllcatlvep‘expreSSLOn—orlented language. Un-—
like the A-calculus, the. concepts of “program! and “"computed.
value" are separated.. The programmlng:language LISP originated
from lémbda calculus, and. in use resembles a.combimatjon of it
with recursion equations. e

The third is a more traditional "imperative" languagé of
flowchart54 with assignment statements. and goto's. It is in-
troduced for comparison with the first two, and to illustrate
methods for translating applicative. programs into imperative
foim and vice versa.

3.1 Applicative and Imperative

Programming languages can roughly be classified into two groups:



Typical Characteristics of Applicat.
1. '

4. Weak or no time éonr'

The applicative (or.functional).and.t

] he imperative
~transition). languages. (or state

The diagramwbelow,shOWS»the placement

Imperative

Applicative

Pascal

Pure LISP

-FORTRAN, SNOBOL, LISP 1.5 SCHEME, SASL

; r
SIMULA APL Backus' FP
COBOL HOPE, ML

A-calculus

ive Languages.

Expression~oriented;

: Program execution is done by expres—
“Sion evaluation. )

ES

Sequentiality - <pt - no single "point. of control".
Muck uge . - comes only from dependency on. data.values.
. ~-0f.recursion.. Functions can be.used as data ob—

Jecn.»: .
complex data Objects (fx.. trees and strings) may be both
operands to.and. results.of. operations.

Suited. to parallel execution.
Well-suitedﬂto.formal.verification that a program satis-
fies its specification, i.e. does what it is intended to
do..

Wellrsuiteé.to program transformation.

15

.Typical Characteristics cf Imperative Languages

1. Storage.- or state-oriented (where a "state" maps vari-
ables. to.their current values). Computation is done by up-
dating.the. state, changing variables' values one at a time.

2. Linear timgﬂ—,at.each moment there is one point of control.
Much use. of iteration (which repeatedly updates the state).

4. Complex data structures are built stepwise, by sequences
of operations. which modify individual components, i.e. by
selective updating..

5. Programs.reflect current machine architectures, and are
consequently efficient on sequential machines, but are not

well suited. to parallel execution.

3.2. The Lambda.Calculus

The lambda calculus. is. an extremely simple programming language,
but. is powerful enough so that any computable function can be
computed, by a lambda. expression. [Chu36].. Purther, the lambda
calculus illustrates.in a simple context the fundamental con—
cepts of

Binding. of variables to values.
. Call-by-value and. call~by-name.
. Parallel or nondeterministic. evaluation.

3.2.1 Syntax
The‘hotation.is simply a formalization of the lambda and func-
tion notation. described earlier, and. is given by the following
Backus~-Naur. Form productions. For the sake.of generality, the
set of possible.constant values <Const> and operations on them
<op> have.not.been specified, since. various.dialects of the
lambda calculus.will have their.own. data domains. In our exémp—
les <Const> will be the natural numbers, and <op> can be any

of the usual operations on.them, for example +, -, *, or /
(written in infix, prefix, or suffix in the customary way) .

By contrast, in.LISP constants.are binary trees with numbers

or atoms .as leaves, and operations are included which build

and decompose trees.
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<Lam> ::= <Const> . Constants
|. <var> Variables
| <Lamo>(<Lam1§L;-afspamh>) Function application
| A<Var; >...,.,__<Varn> '« <Lam> Abstraction
I if <Lam> then: Lam> Conditional.
- - ‘else <Lam> .
|  <op> . Operation on
constant values
. Lambda Calculus Syntax
Examples
X, 5, + (note that + by itself is a lambda expression)
+{5,6) ~{or 5 +6 in ordinary notation)
AX . X + 1

Ay . {(ax . x/vy)6)2
if x=y then.x+y else (A\yv .y *y *y) (3 +4)

As in the earlier discussion we will allow. parentheses
to be dropped when,_ the meaning is clear, and write for example
fx for f(x) and £xy for (f(x)){y) . In expression =——Ax . —=—-—

the ix is.understood to apply to the longest complete expres—

sion to the right. of the "." so for example -
AX . X +y - is equivalentl to Ax . (2 +Y)
AX . {Ay - x +y) +5 is " "oax . ({ay . (x+y)) +5)

Scopes of Names

An abstraction Ax .M is by itself a legal "program" in the
lambda calculus. lanquage. Intuitively Ax . M corresponds to an
unnamed -PASCAL. function declaration.with parameter x

function noname(x) : valuetype;
Ax . expression = begin noname := expression

end
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Consequently a function application such. as
{(Ax .x*2+1)5 is computed by first. binding x to 5 and then
computing 5 *2+1 = 11. (Evaluation rules will be formally
defined below) .

The scope of X in . Ax . M consists

. All subexpressions of M
. Except for. any subexpression of M which is. contained in

an. expression Ax . N -

Examples:
scope of x scope of/the'outer b4
scope g scope -7 7~ scopeof )
of x of ¥ ~—""™ _ inner: x :
P —— —T T
AX .X +5 AX .x+ (Ay Ly *x)T AX .Xx+ (Ax . x*y) *x+2

An. occurrence of a variable X in an expression M is said

to be bound if .it is. contained in an expression of the form

‘Ax . N.; otherwise. the occurrence is said to be- free. Note that

X may have both free and bound occurrences in M.

Examples
AX .X +5 ¥ is bound
AX X+ {(Ay .y *x)7 y and both. x occurrences are
bound..
¥ .x+{(Ax .x*y) *x+2 all x's are bound,. but y and
z are free..
x+ (AXK wX*Y) *X + 3 . the x in’ (Ax.. x.*y) . is bound,

while y,” 2, and the other
x's are free.

Clearly the scope rules. of the lambda calculus are es—
sentially the same as. those of PASCAL, and free variables would
be called: "undeclared" in PASCAL. Finally, a closed lambda ex-
pression is one which contains no free variables (corresponding
to a PASCAL program in which every variable. is declared). The
first two of the examples. are.closed, while the last two are

not.



18

3.2.2 Computation in the Lambda Calculus

In traditional programming languages computation is done by a -
series of local changes to a runtime state, directed by the
current controlpoint in the program being executed. Modelling
computation thus requires three components:

1. The program being executed.
2. The current runtime state (current values of variables).

3. The current point of control in the program.

In contrast, computation with lambda expressions is much
simpler: the "program" is a lambda expreséion, which is itself
transformed into the "final answer" by a series of reductions.
Consequently components 1 and 2 are merged. Surprisingly, we
will see that component 3 is not needed at all.

The reduction rules are given in the table below. The
first two rules use a special notation for substitution:

[N/x]M = the result of substituting N for all free
occurrences of x in M .

Example Reductions

+(5,6) = 11 bys§ reduction. :.
5+6 = 11 = true by two: § reductions
“laca+5 = ob.b+5 by @:reduction
(Aa.a+*5)6 = 6+5 by B reduction
(Aa.a+5)6 = 11 by repeated
) reductions
(Ax . (Ay - x+y)6)7 = {(Ax x+6)7 . by reduction in
‘ . context
if true then 13 else 14 == 13’ by conditional ..
reduction
if 5+6 = 11 2713 by conditional and
then 13 else 14 § reductions
(Ax . ((Ax . x+x)5) +x+ (Ax . x *x)3)4 = 23 by repeated:

reductions.

LAMBDA. CALCULUS REDUCTION RULES

197

o _reduction,.or renaming

AX oM = Ay . [y/xIM

8 reduction,,or"parameter’bindinq

(xx . M) (N) = [N/xIM

-§ reduction, . or constant calculation

op{ais-..sanl = Db where.b is the.result of
’ ) applying op to constants
a1s+--ray (nOtez ay,...,ap
must be constants)

Conditional..Reduction

if true. then M else N =M
if false:then: M else N =r"N.

Reduction in Context

 provided M = N

ce Mao. » L. NLL

Repeated. Reduction .

Suppose M; é Mg, Mp = Mg, -0y and.Mn_1 é”ME-’
where n > 1. Then s

M]_#M-n
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Explanation of the Reduction Rules.

1. o (alpha) redaction .aliows the. current.program {i.e. A-ex-
pression) to be modified by renaming a kound variable. For
example Aa .a+5 can be transformed to ib .b+5 .

2. All computation with atomic values is done by § (delta) re-—
duction. For example +(5,6) can be transformed to 11 by
one § reduction.

3.. A A-expression of form (Ax .MJN specifies the application.
of a function f (denoted by Ax .M) to a single argument de-—
noted by N. This is done by 8 (befa) reduction:s the value

-£(N) is obtained by substituting N for each free occurrence
of the formal parameter x in M, and evaluating the result.
For example, (Ax .x+XxX*x)5 1is transformed to 5+5 %5
by a B8 reduction, and then further to 30 by two.§ reductions.

4. A conditional if B then M else N may be evaluated as fol-
lows:

a) evaluate B to an atomic value b
b} if b = true then evaluate M, else if b = false then
evaluate N; else stop.

5. An expression occurring.inside another A-expression may be
redﬁced without changing the rest of the expression in which

it appears.

A computatioh.may consisf.ofva.sequence of reductions ap—
plied to an initial A-expression. If the expression is a con-

stant then no further reductions may be performed..

A Remark: On Métalanguages

We ha&e used a set of reduction rules exﬁressed in one language,
English, to define the computations by programs in another lan-
guage, the lambda caiculus; In other words wé are using English
as a metalanguage to .define computationvrules,for'lambda,cal—
culus. '

Wé have tried to be precise and unambiguous in our use of
English, but it is of course not itself a formally defined meta-
language. A program execution algorithm for language L which
is written in another programming language M is called an iater-

preter for L, symbolized by Bﬂ . The subject of denotational
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semantics ([Gor79], [Sto77]) is concerned with the development
of mathematically well~-defined metalanguages and their applica-
tions to programming language definition.

We will see later that a simple language called LISPO can
serve as its own metalanguage.

A Technical Restriction on Substitution

Restriction:
The substitution [N/x]M may only be computed if no free vari-~

ables in N become bound as a result of the substitution.

The restriction on [N/x]M prevents free variables of N be-
ing "captured" by lambdas inside M. For example consider
M N
Ax.Z+(y.x+y)5) (y+1}

Clearly the y's in M and N are distinct, so it would be illog-
ical to apply B reduction blindly and get 2+ (Ay .y +1+¥y)5 .
However (AxX .M)N can be reduced with the aid of an o reduction

as follows:
(Ax .M)N = (Ax .2+ (Az .x+2)5({(y+1)
= 2+ (dz.y+1+2)5

Fortunately this slightly complicated restriction can be
safely ignored in practice provided a reduction sequence starts
with a closed lambda expression and uses call-by-value or call-

by~name evaluation.

3.2.3 Order of Evaluation

Clearly reductions may be done in many different orders, for

example

call~-by-value: evaluate arguments first
(Ax.x+5)((Ay .y *y)3) =

(Ax . x+5)(3*3) =
(Ax . x+5)9 =
9+5 = 14

call-by-name: evaluate arguments last
(Ax . x+5){((Ay .y *y)3) =
(Aoy .y *y)3+5 =
3*3 +5 =
9 +5 =» 14
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An obvious guestion is: can the result of two different
reduction sequences produce different constant values? The an-

swar is "no" as a consequence of the well-known,

Church~Rosser Theorem [HLS72]. Let M, N, P be lambda expres=—
sions such that M = N and M = P. Then there exists amexpression
Q such that N = Q and P = Q.

Consequently if M can be reduced to constants c and & by
two reduction segquences, the theorem implies ¢ = d and & = ¢,
so ¢ and d must be equal.

This well-known "Church~Rosser Property” is very interest-
ing because it opens the possibility for parallel evaluation,
since evaluation of a large A-expression M = ‘..Ml...Mz...Mn...
can be done by reducing components M;, My, ..., Mn simultaneous-
ly. By the theorem, the result will be the same regardless of™

the order of processing or the number of processors. This idea

has been used by C. Paulsen to implement a LISP-like languags
on a 9-processor parallel machine in Arhus [Pau83j, and is
the subject of much current research in several countries.
Traditicnal imperative languages such as Pascal, on the
other hand, do not easily admit parallel implementation, be-
cause the time concept is so strongly built into their seman-

tics.

3.2.4 cCall-by-Name, Call-bv~Value, Call-by-Need

These well-known evaluation strategies differ in the time that

8-reduction is applied. Given expressiocn (ix .MJ)N, with call

"
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by-value the argument N will be evaluated before it is sub-
stituted into M, whereas with call-by-name N is substituted
without first evaluating it. More precise definitions can be

given by specifying two evaluation functions:
CBV, CBN: Lambda-expressions 1 Lambda-expressions

Recursive evaluation algorithms for CBV and CBN are found be-—
low. We have described them using an informal metalanguage con-—
taining a structure-oriented case statement like that in [Hoa75].

The statement's form is

case form of M of
pattern,: expression,

pattern expression,

r)‘.:
end

This has the following effect: first, M's value is matched
against the various patterns. If the first that matches is pat-
tern, s then any variables appearing in pattern; are bound to
the corresponding part of M's value, and expressionj is then
avaluated. As a simpler example of the notation, the simple ex-
pression evaluation'algorithm of Section 2.1 can be expressed
as

N-Eval: Numeric expressions = N

, N-Eval(e) =
case form of e of

e, +a;, : N-eval(e;) +N-eval(e:)

e, *e, : N-eval(e;) * N-eval(e;)

nd : 10 *N ~eval(n) +d
d : d
end
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CBN, CBV: Lambda-expressions 3 Lambda-expressions

CBN(M) =
case form of M of
constant : M
variable : M
AX .N : M

op Ny ... ,Ny) value of op(CBN(Nl),...,CBN(Nn})

"if N then P else Q": if CBN.{(N) then CBN(P) else CBN(Q)

operator {(operand) : if CBN{operator) has the form Ax . N
then CBN([operand/x]N)
else error
end

CBV (M} =
case form of M of
... same pattern as. for CBN, except:
operator (operand) : if CBV (operator) has the form x . N

then CBV{[CBV (eperand) /xIN)
end

Remarks

1. The following all denote A-expressions: M, N, P, Q, N;,
operator, operand. ) )

2. "op" denotes a A-calculus constant operator, for example
aan

3. The pattern "if N then P else Q" describes a A-expression
in the interpreted language. We have used guotes to avoid
confusion with the use. of if in the interpreting or meta-

language.
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Some Example Evaluations:

CBV(5) 5
CBV(rx . x + 1) Ax . x +1
CBV(S + 1) 6 '

CBV{[CBVI(5)/x]x+ 1)
CBV{[5/x]x +1

CBV(5 + 1) i
p ‘

CBV({Ax..x +1)5)

[ L T | N A T [ 1}

CBV((Ay - vy) (Ay . CBV([CBV(AY . yy)/ylyy) i
CBV((Ay . yy) Ay - y¥))

= ... undefined

<
=
it

n

In principle, call-by-name is to be preferred due to the
following

Completeness Property 1f M can be reduced to a con-

stant c, then CBN(M) = c.

In other words if there is any way to reduce M to a con-
stant, then call-by-name will do it. The same does not hold
for call-by-value as shown by the example:

N P

M=K 1 +2 0y .9y Oy - yy))

Clearly M = 1+2 = 3 (since no x's appear in 1 +2), and
CBN(M) = 3 is easily seen. However, CBV(M) requires evaluation
of &BV(P), which is undefined since the only possible reduc-
tion sequence is P = P =P = ... .

In practice, however (for example in LISP) call~by-value
is used because it avoids the need for repeated argument eval-
uation which occurs with call by name (for an example con-
sider evaluation of (Ax .x+x*x){3+4%5) ).

A third alternative is call-by-need, which resembles
call-by~name except that after the first evaluation of the
argument, the argument's value is physically substituted for
the argument, thus avoiding re-evaluation. (In practice execu-
tion is done using expressions represented as directed graphs,
and substitution is done by changing the information present

at a graph node). In summary we have
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which compute and operate on atomic values. HOPE and LISP al-

low functions and data structures as both arguments to and

results of functions.

Method . Number of Argument Evaluations Like the lambda calculus, systems of recursion equations
call-by-value 1 1 form an applicative language with the attendant properties de—
call-by-name any number n >0 f scribed earlier.
call-by—-need 0 or 1 :

3.3.1 Sznfax

3.3 Recursive Systems of Equations

<{program> ::=: <equation>...<equation>

Recursively defined functions and procedures are used in a wide ! <equation> ::= <leftside> = <expression>
variety of computer science applications including ? <leftside> ::=' <identifier>(<identifier>,...,<identifier>)
. tree and data structure manipulation ? <expression> ::=- <constant> | <variable>
.. formula manipulation and symbolic computation | <op>{Xexpression>,...,<expression>)
. artificial intelligencs | <functionname> (<expression>,...,<expression>)

. computation with very large numbers | 1f <expression> then <expression>

. algorithms on directed and undirected graphs else <expression>

. compilers and interpreters

Further, the widely used paradigm for program design and

s i I 1 1 T ified the exact
construction called "divide-—and-conquer” leads naturally to re— As in the lambda calculus we leave unspec

i rators <op> to be used, and allow expressions
cursive programs. constants and operatc o] f §o]

i i i ; i i X n and assocliativit
Recursive algorithms can (surprisingly) be expressed in to be written using customary precedence ¥

the lambda calculus with the aid of the so-called Y combinator rules, infix notation, etc. A very simple example is the famil-

iar factorial function
Y = Ah . (Ax . h{xx)) (’x . h{xx))
) fac(n) = if n=0 then 1 else n * fac{n~1)
so for example the factorial function can be defined by

: Following are a simple way and a more efficient way to compute
= i = * -
fac Y{Af .Aan . if n=0 then 1 else n*£f(n-1)) the exponential function exp(x,y) = o

but the resulting programs are long and not easily understood. ‘ expl(x,y) = if y=0 then 1 else x * expl (x,7 = 1)
Thus in order to explain simply how recursive programs are !

executed, and how they can be implemented on traditional com— 4 exp2(x,y) = if y=0 then I

: B i then exp2(x,y/2}?
puters, we introduce a second minilanguage whose programs con- i o glse if even (y) then P v/

sist of sets of recursion equations. t } else x *exp2(x,ly -1/2)*

LISP [McC60] is essentially a language of this type, as ?’ For a simple example of a system of two equations, the
is the language.called HOPE recently developed at Edinburgh : following computes fi(x)’'=true if x's binary representation
{HOPE also uses Hoare's recursive data structures [HOPE], & contains an even number of 1's, else f;(x) =false.

‘[Hoa75]1.) For the sake of simplicity we consider only programs ‘
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f1({x) = if x=0 then true
else if even(x) then £, (x/2}

“else-f,((x-1)/2)

f2(x}) = if x=0 then false
else if even(x) then f,(x/2)

else £, ((x-1)/2)

Scopes of Names

In an equation
f(xl,...,xn) = <expression>

the scope of KireeosX, is the <expression>», whose variables
must all lie in {X11-~-:Xn}- Conseguently no "cross-references"
between equations are allowed. For. obvious reasons it is fur-—

ther required that;xl,...,xp all be different identifiers.

3.3.2 Semantics: Computation with Equation Systems

Suppose we are given a program

prog fl(Xif-o~:Xm) = expy
£ <. ) = exp:
fn( e ) =expn

Conceptually each. function name £5 (1<i<n) denotes a mathe-
matical function,wilAl | xAp - B where Aj is the type of %he
j~th argument of £; and B is the type of.expj . The whole program

defines the function ;. In the previous example

@ (%)
92 (%)

true if x has an even number of 1's, else false

false.if x has an even number of 1's, else true

Clearly in order to compute, for example, £5(5,3,8) we

must evaluate exps with its variables bound to 5,3, and 8,
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respectively. This suggests use of an evaluation algorithm like
the environment based function Eval of Section 2.2. Following
is an operational semantics for equation systems based on this
idea. Note that an extra variable, prog, is used. The reason

is that if a function call fj(.,.) occurs in some expj, then
the definition of fj must be found in order to evaluate

fj(...) . Note that we use the notation for updating described
in Section 1.3, for example flxm 1,ym2].
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An operational Semantics for Equation Systems

env: Environment = Variables - Value
- P
Interpret: Program X Input — Value

- X . p
Eval: Expression x Environment X Program - Value

Interpret(prog,al,..,,an) = Eval (expi,env,prog)
where the first equation in prog is fl(xl,...,xn) = exp;, and

env = {x;» R -
en {x1ma1, X an]

Bval (exp,env,prog) =

case form of exp of

constant : exp
variable (x) : env(x)
oplexpi,...,exp ) : op(Evallexpi,env,prog), ... Eval(exp ,env,prog))
"if exp;
then exps; : if Eval{exp;,env,procg)
else exps” then Eval (exp;,env,prog) else Eval (expj3,env,prog)
E(expl,..-,sxpp) : Eval(exp',env’,prog) where
Yol f(yl,..‘,yp) = gxp'..." = prog and
envi = [Ylf'"}EVal (exp1 ,enV:Prog) faeer
ka»Eval(expp,env,prOQ)]
end B
Remarks

1. Eval clearly follows the pattern of Section 2.2, although
we have used a syntax more like that of Hoare.

2. The semantics is more complex than that of the lambda cal-
culus due to the use of environments and the need for
"prog" as a parameter. Note that this is a fixed-program

‘ semantics {(i.e. prog remains unchanged) in contrast to
the reduction semantics of the lambda calculus which re-
peatedly rewrites prog.

3. The environments env and env' are functions defined by up-—

date notation. Note that according to the.definition of
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env', the arguments of a function call f(exp,,...,exp,)
are evaluated before the function is applied. Hence this
is a call-by-value semantics.

4. Call-by-name semantics can also be defined, by letting
the environment bind variables to unevaluated expressions,
and evaluating these expressions only when the variables
must be evaluated.

Technicality: Actually, it is not enough to bind vari-
ables to expressions alone, since the values of the
variables appearing in the expressions must also be
recorded. The standard solution is to bind variables
to closures of the form (expression, call-time-environ-
ment). With this modification we obtain

Environment = Variables - Values

Values = Numbers + closures

Closures = Expression. x Environment .-

5. We have not allowed functions as arguments to or results of
functions, but this is easily incorporated using the mechan-
ism- of closures.

6. The semantics Jjust given could be directly programmed in
LISP, and in fact resembles the LISP definition of a LISP
evaluator which is found in [McC62].

3.4 The Third Minilanguage: Flow Charts

Flow charts form a simple imperative language, much closer to
traditional machine architectures than the applicative lan-
guages just discussed. Their essential characteristic is that
computation proceeds sequentially, by execution of a (usually
long) sequence of commands each of which updates some compo-
nent of an implicit program state. The exact form of the state
varies widely from computér to computer, so for the sake of
generality we will devise a scheme for flowchart semantics
which can be parametrized by different choices of commands and
states. The state usually consists of the values of certain re-
gisters (accumulators, index registers, ...) together with a
store or memory which maps storage locations to their current. .

contents.
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We will first give,a syntax and semantics which is common

to all flow charts, and then specify the detailed.states and
command sets for two natural flow chart languages.

3.4.1 3yntax
BASIC COMMON SYNTAX

<program> ::= read <variable1>,h..,<variablem>;

<commands>
<commands> ::= 1: <command;> 2: <command,>... n: <commandn>
<command> ::= goto <labeld>

I if <test> goto <label> else <label>

| <halt>
| <other command>
<label> 3= 1 12f.,..10n

Since flow chart programs may be executed with various
forms of data (lists, numbers, etc.) we have specified only
a minimal syntax which is common to all flow charts, and so
have. left <test>, <halt>, and <other command> unspecified.
If they were chosen to describe numeric computation the fol-
lowing could be a flow chart prograrn:

Example A program to compute the greatest common divisor of*

natural numbers x and y..

read x,¥; :
1 if x=y goto 7 else 2
2: if x <y goto 5 else 3
3: ¥ 1= xX~Y

4: goto 1
5: y :=y~-X
6: goto 1

7: return x

This syntax is cumbersome for practical use due to the

numerous. labels. For the sake of readability in examplas and
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constructions we allow some Pascal-like control flow structures

EXTENDED COMMON SYNTAX

<command> ::= <command>; <command>
] [ <command>*]
| if <test> then <command>
| if <test> then <command> else <command>
| while <test> do <command>

| repeat <command> until <test>

It should be clear that a program using these construc-~
tions can be rewritten without them. Note: "[" and "]" play

the role of begin and end in Pascal.

SPECIALIZATION 1: NUMERIC COMPUTATION

<other command> ::= <variable> := <expression>
<expression> ::= <number> <variable>
|  <expression> + <expression>
| <expression> - <expression>

| ... (other numeric operators)

<test> 1= <expression><relation><expression>
J <relation> p= L= E >0
<halt> ::= return <expression>

Example The program‘above, rewritten:

read x,y:
while x +y do
[if x>y then x := x -y else y := y-xl];

return x



34

SYNTAX FOR SPECIALIZATION 2: LIST: COMPUTATION

<other command> ::= <variable> := <expression>
“<test> 1:=  <expression> (test on empty list)
<halt> ::= return <expression>
<expressicn> ::= (QUOTE <list>}

| <variable>

[ (HEAD <expression>)

I (TAIL <expression>)

| (ATOM . <expression>)

| (CONS <expression> <expression>)

| . {EQUAL <expression> <expression>)
<list> ::=  <atom> | [<1list> . <list>)

Example A program to find the first element of a list.
read x;
while true do
if (ATOM x) then return (x)
else x := (HEAD x)

3.4.2 Semantics

The following interpretive semantics is parametrized in the
same way as the syntax. In order to be complete, one needs
definitions of how to perform tests, how to terminate execu-
tionn and how to execute commands.with syntax <other command>.
The kernel of the interpreter is the function Run, such that
the final output (if any)} which
results from executing "program”,

beginning at fts i-th command with
state s

Run-(é,i,program) =
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i,j,k ¢+ IC = N

(Instruction Counter)

case form of command of

s : State - varies with the machine type -
Input = Value* (sequences of values)
Output. - varies with the machine type -
P
Interpret :  Program x Input = Value
Run State x IC x Program E Output
L P o
Do-command Command x State -~ State
Eval-~test Test x State -+ Bool
Init-state Variables x Input -+ State
Final—-answer : State - Output
Interpret(proqram,al,...,an) = Run(s,1,program)
Wwhere "read xXi, ... X7 ..." = program
and 5 = Init—state(xl,...,xn,al,...,an)
Run{s,i,program) = let "... i: command ..." = program in

Eval-test{t,x)

Final-answer (h,x)

"goto j" Run (s, j,program)

"if test

goto J : Run(s,f,program) where

else k* £ = if Eval-test(test,s) then j else k

"halt" : Final-answer (halt,s)

"other : v, i ram) where

command” : Run(s',i+1,prog )
s' = Do-command (command,s)

end
Do-command (c,s) = - varies with the machine type -
Init-state (X'l, “n e ,Xn,al PN 'an)v = " " n " "
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Languages with Assignment

As. with the applicative languages, imperative languages oper-
ate by binding variables. to computed values. Applicative pro-
grams bind. values implicitly dering function calls, while im-
perative programs bind variables to values. by means of the

assignment statement
variable := expression

which causes the expression to be evaluated with the current
bindings, and then. causes the left side variable to be bound to
the expression’s value, overwriting any previous value to which
the variable may have been bound.

The essential difference is that in an applicative program
the binding is done once, at function call, remains in effect
during evaluation .of the functions body, and is then lost once
the functions value has been computed. In contrast an impera-
tive program can (and usually must) bind the same variable to
many different values during execution (for example I := I ~1
has no natural applicative counterpart). Computation is typi-
cally done by means of loops, while applicative programs typi-
cally use recursion. Note: suppose, for example, a call to
fac{3) binds n to 3 and then calls fac{2) which binds n to 2,
etc. It is not the case that n is being rebound as n := n -1
would do,. since this would mean that the value n =3 would be
losf (and it will be needed.later to compute fac(3) =3 * fac(2)).
Rather, new bindings are created at function calls and abag~
doned after function values. have been computed.

In cur formalization the runtime state may thus be re-
presented by a store, a function

Store = Variables - Value

This is mathematically equivalent to an environment as used in
the previous section, but is used differently.
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INTERPRETER HELP FUNCTIONS FOR SPECIALIZATION 1: NUMERIC COM-
PUTATION

]

Value = N

State = Variables - Value

Eval : Expression x State —Value

Init-state{xi,...,%,,a1,...,8n) = [x19a ,...,xq+Pay]

Do-command (x := exp,s) = sz~ Evallexp,s)]

Eval-test (exp, < exps,s) = if Eval(exp;,s) < Eval(exp:,s)

then true else false :

Final-answer (return exp,s) = Eval(exp,s)

Eval (exp,s) =

case form of exp of
"variable (x) : s(x)
"constant” : constant
"op(expi;s ... eXppy)" ok Do~op(eval(exp1,s),..,,Eval(exph,s))

rend

Explanation

1. Init-state yields the initial state, in which variables

Xi,...,X, are bound to ai,...,ap, respectively.
2. Eval(exp,s) returns the value of expression exp, given
store s.
3. Do-command(x := exp,s) returns a new state which is identi-

cal to s except that x is bound to the value of exp.

4. Do-op{vi,vy) returns vy Op V2 as value, where op is an
operator, e;g..+, -, *, etc. For the sake of definiteness

we let
0~-n =20

for any n in N



38

SPECIALIZATION 2: LIST COMPUTATION

Value = List
State .= Variables »Value

Eval : Expression x State -»Value

Init-state
Do—command
Eval-test
Eval

as for the numeric specialization

Eval-test(exp,s) = if Eval(exp,s) = ()

[the empty list]
then false else true

AN EXAMPLE: GCD COMPUTATION

With “"program" as in the first exawmple from Section 3.4.1 we

have an example computation

Interpret (program,5,10)
= Run(s,,!,program) where sg .= [x»5,y~10].

false and
2

= Run(sg,2,program) since Eval({x=y,s¢)
Eval( 2 +Sa)

= Run{s,,5,program) since X<y

= Run(s;,6,program} where s;{x) =5, s1{y) =5

= Run{s,,1,program) h
= Run{s;,7,program) since x=y

= Eval(x,si)

=5

Note that return x causes program termination (since Run
is not called again) in contrast to the other commands. State
s; above could be represented more explicitly by

s¢ = Av . if v=x then 5 else if v=y then 10

else error: unbound variable v

3.
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Pascal and the Three Minilanguages

Pascal is a relatively complex language with features from

all three minilanguages which is well suited to efficient

execution on contemporary machines. Following are some es-—

sential characteristics.

1.

pascal. is imperative and includes all the facilities of
the flowchart language. The Pascal runtime state's struc-
ture is determined by the declarations and parameters

appearing in the program (for example var x: integer).

Pascal also includes declarations. of functions and proce-

dures which may call one another recursively as in the
second minilanguage. Note, however, that a "functién" mnay
not be functionall since the same arguments to a call may
yield different results due to changes in global variables.
A Pascal procedure call's effect. is to change the state

without returning a value.

As in the lambda calculus, Pascal allows functions to be
arguments to other functions. Functions may not, however,

be assigned or be the results. returned by functions,.

pascal's runtime state consists of file values and a stack

of frames (also called. activation records), one for each

environment as seen in § 3.3.2. At each procedure or func-—
tion call a new frame  is pushed onto the stack, and is

popped upon exit.

An essential characteristic of Pascal’s operational seman-—
tics is that each frame may be given a linear structure in
storage. Further, every declared variable may be allocated
a fixed relative storage location in. the frame correspond-
ing to the procedure in which the variable was declared or
a parameter. Consequently runtime variable addressing may
be done by a "base +offset” method (see Dat2 kursusbog,
S¢gren Olsen's Section) ,.so that variable names need not be
present during execution. This results in significantly
less storage and time for variable access than in LISP,
whose semantics requires that wvariables' names appear in

storage as well as their values.
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ITI COMPILATION AND INTERPRETATION

4. TRANSLATIONS BETWEEN THE MINILANGUAGES

In view of our discussion of applicative versus imperative
languages it is natural to ask: which is more powerful? In
this section we will show that in fact each can simulate the
other, so there is no difference in principle. In practice
it seems easier to simulate imperative programs applicatively
than vice versa, and applicative programs do seem to have a
certain semantic elegance not shared by imperative programs.
A beneficial side effect of the comparison is that the
method introduced in Section 4.3 is essentially the tradition-~
al way to implement block structured languages, including the
Pascal storage scheme to be discussed later in the course. We

begin with a general description of compilers and interpreters.

4.1 Compilers and Interxpreters

There are two essentially different ways to execute programs
written in a language I which is not directly machine-execut-—
able: compilation and interpretation.

Interpretation is conceptually the simplest, and the
various operational semantics we have given have all been
interpreters. An interpreter accepts two inputs: a program £

in language L, and the data that program is to be applied to.
L
M
written in language M, which are correct interpreters for

We use the symbol to denote the set of all programs

language L. Using the definition of a programming language

from the start of these notes, we have:

m E if and only 1if

M~eval(m)(£,x1,...,xn) = L—eval(ﬂ)(xl,...,xn)

for all L~-programs { and all (xi,...,%X,) € L-input({)
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An interpreter typically simulates the behavior of an
L program step by step by running an M program, and contains
representations of both the L program Z and its program state.
Consequently interpretation involves a fairly high overhead
in space and time, which can often be substantially reduced
by first translating £ into a target language and then run-
ning that target program separately. (Of course to be worth
while in practice the total cost of translating and running

the target program has to be less than that of running the

interpreter).
L :
The symbol —éﬁL will be used to denote- the set of all
program written in language M, which are correct translators

from source language L.to target language T. More precisely,

LT . ;
m € L[MH if and only if

1. M-input{m)

L-programs

2. M-output(m) T-programs

L-eval(Z) (x1,...,xq) = T-eval(M—eval(m)(K))(x1,-~-,¥ )

n
for all £ in L-programs and all (x;,...,xﬁ) € L-input(£)

4.1.1 Combinations of Compilers and Interpreters

Suppose we are given a collection of L programs, nature un-
specif@ed. This set can be denoted by a symbol . If we
are given an interpreter m € Eﬂ and if we have a processor
for language M at our disposal (e.g. M could be a machine
language) then we can execute any JANS <—> with the aid of m.

L)
This situation can be described by the diagram

L
input L output
IM
X]_,-..,Xn
interpreter

program £

43

Similarly, if we have a compiler m' from L to T written
in M, we can perform translations {again assuming M programs
can be executed). This situation can be described by

7N
WL L ~» T (;q
source M target
program program

compiler program

which clearly specified the translation of any program in i;]
into an equivalent T program.

The diagram notation can be applied in case the L pro-
grams are themselves compilers or interpreters. For example,
the local LISP is processed interpretively by a program writ-
ten in UNIVAC machine code (call this UMj. The machine code
is itself interpreted by the UNIVAC central processor {call

this CP), so two levels of interpretation are involved, as

ISP
UM
UM

cP

described by

4.1.2 An Example of Bootstrapping

The LETLISP system used in pAT2 is in fact a translator, since
the "deflet" command converts LETLISP programs into oxdinary
L,ISP. The translator, here called "h", was itself written in

LETLISP and so has T diagram:

LETLISP - LISP
LETLISP

h €
Such a component is not very useful by itself - one also
needs a lower~-level LETLISP processor. One way to get this
would have been to write a LETLISP interpreter in LISP. With
the aid of this a much more efficient compiler could have been

, - ILISP!
obtained by the following (note: we have dropped ' oM | and
UM
cPp

et

for the sake of simplicity.)
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[LETLISP - __TISP) {LETLISP - LISP]
LETLISP | LETLISP - LISP | LISF{ ’
LETLISP \\’lower-level
LETLISP translator
high—-level LISP )
translator h . T—-LETLISP interpreter

} An alternative {and the way it was done} is to write a
LETLISP to LISP transiater in LISP. This was a‘straightforward
hand tramslation cf the previously written transliator in LET-
LISP. Call this translator t, . The following runs were then
done:

1. To produce the compiler

!LETLISP - LISP| iLETLISP-»LISP]
7 LETLISP|LETLISP - LISP|LISP|
h ////,a ‘LISP}

handwritten t,

machine-produced t;

2. To test tHe compiler's correctness: two rﬁns

[LETLISP - LISP] F1ETLi5P > LIsSP]
__T|LETLISP|LETLISP - LISP| LISPE\
h ] //z[Llsg
£ . machine-produced t,

LETLISP - _LISP| [LETLISP > LISP
LETLISP|LETLISP - LISP|LISP

h
: //a machine-produced tj;
ta {should be identical
to tz)

It's ciear that t; and t, should be behaviorally identical
since they are translations of the same source program h, and
so their outputs t, and ti; should ke textually identical. Note
that t; may differ textually from t,, though, since t; is out-
put from‘a handwritten program while t, is machine-produced.
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Future improvements to LETLISP may now be carried out in
LETLISP, and t, and t, may bewdiscarded‘ In this way the lan—
guage's power may be improved stepwise. The usual term for this
is bootstrapping, coming frofm the phrase "to lift one's self by
one's own bootstraps“. :

4.2 Implementing Flow Charts by Recursion Equations

We now see that for every flow chart there is an equation
system which computes the same input-output function. In other
words, we will show that goto, iteration and assignment may be
simulated by recursive function calls and binding of formal
parameters to actual parameters.

Note: The operational semantics of Section 3.4.2. defines
a flowchart interpreter in an informal extension of the mini-
language of recursion equations, so we have in fact already
seen that recursion can simulate iteration. The following de—
scribes a compiler which provides more efficient and compact
simulation, in which the program itself is not present.

The compiling algorithm below may be applied to any flow

chart program

el

rog = read KipeoseXp,
T 7
| 1: cmdy. 2: cmd; ... n: cmdy

whose state is. a store of form
]

State = X x X3 x ... xXP

Here we let. Xi,X2,...,%_be a list of all. variables appearing
in "prog" with input variables occurring first (so p>m). Set
Xi‘represents the set of possible values for variable X, .

We obtain a recursive "target program" by specializing
the operational semantics of Section 4.2 to.the fixed, known
source program "prog".

The basic idea is to replace the general-purpose function

Run: State x IC x Program - Outpuﬁj

by a collection of n special-purpose functions

Runi: Xy % ... xXO - Output for 1 = 1,2,...y0




Note that both "IC" and "Program” have vanished from Run,

and "State" is represented by Xp % ... * Xy . Ths following scheme

. . P “aw s
describes translation of "Spezializatlion i of Section 3.4.1.

Translation Scheme:

Flow Charts ko Equation Sysiems

Execute: ¥, x ... x &, - Cutgukb

Runj: X3 x ... xxp - Cutput for i = 1,2,...,0
Execute (Xy, .-+ ,Xm) = Runi(xi,...,xm,O,G,...,D)

If cmd is "xj := 2xp* and i<dn then
Runi(xa,...,x?) = 3“51;1{21/--~rxj—1' exp;xj+l,...,xp%

T£ cmd; is "goto 3" khen
Runi(xl,;..,xp) = RPun;iz:, ..,xp)

If cad; is “if exp joto J =2ls2 k" then
Runi(x;,...,xp) = if exp then Runj(xz,...,xo)

alse Rnnk(xl,...,xp)

[f comd; 1is

Runi(xl,...,xp}

For exampls, Lf the

Section 3.4.1 we obt

i

Execute(x,y)

Run: (x,v)
Run, (x,y} =
Run; (x,y) =
Runy (x,y) =
Runs (x,y) =
Runs (x,y) =

Runs (x,y} =

schame i3 apoliad to the GCD algorithm of

ain the system of aquations:

Run; (x,v)

if x =y then Runs{x,y) 21se Run, (x,y)
if x <y then Runs{x,y) zls2 Run; {x,vy)
Rung (2 - 7,v)

Runi (x,y)

Runs {x,7 — %)

Rung {x,y)

X
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This can obviously be simplified drastically, for example to:

Run; (x,y) = if x
Run, (x,y) = if x

=y then X else Run,ix,y)

A

v then Run;{x,y - x)

else Run,{x -y,x)

4.3 Implementing Recursion Eguations by Flow Charts

We now describe an implementation technique which is the basis

for nearly all methods for compiling block-structured languages

{Pascal, SIMULA, ADA, etc.) into machine language. Oux starting

point is a system of recursion egquations.

£l = "=

f1(&1,....%p) = exp:

- ) = exp:

This will be translated into an equivalent flow chart

gram (list variant) =ms described in Section 3.4.2; of form

read Xi,...,%, ]

2: pushreturn {4)

¥ 3: goto 5

4: returntop

e =
17 k27 -

the input data.

1: firstframe(xl,,g.,xn)“} +these ¢all £; with

write value of £,.

: = instructions for—x Flow chart code

"'fn for the equations.
—

Recursive calls to £, (exp) will be handled by the use
J

pro-

of push-down stacks. For this purpose we use flow charts which

manipulate lists as values. The runtime actions “firstframe”

etc. will be explained shortly, after we describe the target

programs' runtime state.
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4.3.1 The Runtime State

State = Valuestack x Bindings x Returnstack

Valuestack = Value* -~ used in expression evaluation
Bindings = Frame* - holds values of all variables
Frame = Value* - variable values for one eguation
Returnstack = Label* - stack of "return ad&ressés“

- uysed foxr function calls

Valuestack

This is a computation stack used to evaluate the expressions
on the egquations’ right sides. For example the target flow
chart code for 3 +4 *5 would be

pushi3): push(4); pushi{5); do-*; do —+.

Each of these is an operation on Value-stack, for example

push({3} can be dcne by:
Value-stack := (CONS 3 Valuestack}
and do ~* can be done by

Value-stack := (CONS (TIMES {(HEAD Valuestack}
(aran (TAIL Valuestack}))
(TAIL (TAIL Valuestack}})
which pops the top two elements off valuestack, and pushes
their product on.
Generation of target code is based on the following simple

property:

Net Effect Property Suppose the target instructions

corresponding to an expression "exp” are executed.

If execution terminates, then

a) Valuestack = v :: oldvs. where v is the value
of "exp" and oldvs is the value that valuestack
had before exptession evaluation began.

b) The runtime state components "bindings™ and

"returnstack" are unchanged.
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In other words the net effect of expression evaluation is
to push the.expression’s value onto valuestack.

For another example, if e: then e; else e;
-may be coded as

1: - code to evaluate e; and leave the result on the top

of Valuestack

2: falsejump{5)

3: - code to evaluate e,

4: goto 6 ;
5: - code to evaluate &y

This target code is easily seen tc have the net effect
property if "falsejump(4)" is realized by
2: Temp::= (HEAD Valuestack);
Valuestack := {TAIL Valuestack);
if Temp = NIL then goto 4

{Assuming of course that the code for e, and e3; already have

the net effect property).

Variable Binding

During expression evaluation the stack Bindings will always zon-
tain as its topmost entry a "frame' containing the values of the
arguménts to the function whose right side is currently being
evaluated. Thus during evaluation of the right side of equation

fj(zl,...,zp) = exp; ,
thejvalue of z; may be found as the i~th component of the topmost
frame in Bindings. The initial call te £ is handled the same way
, then "first- ’

~ if the input values of Klyaee Xy BYE Vi ,...,V)

frame” initializes

Bindings = [viy,va,.0esv ] 13 NIL

A recursive call to, for example, £; (8,9+10,11) is done
by first evaluating the arguments and then pushing a new frame,
yvielding

Bindings = [8,19,11] :: [vl,vz,...,vn] :: NIL

The right side 6f the equation defining f£-. is then evaluated.

’



50 : 31
(Note that f£3's variables are identifi ir positi Instruction . Return-
. 3 able © identified by their positions Counter Valuestack Bindings stack Comments
in the topmost frame, and not by their names.) By the "net
effect property” the value is to be left on top of Valuestack 1 [ ] [ [ Before execution
and the new frame must be popped in order to restore Bindings s starts
to its previous form. 2 [1] [[211 [] Bind n to 3
Function Calls ' ' 5 1. [[31] l4] Initial call: fac(3)
"Returnstack” is used to handle control flow during evaluation 6 [3] " " fetch n
- L L. . 3 7 ) " £l - 1
of a function call f{expi,...,expy) . Such a call is realized 8 [giliij " w i;:i n<i?
as follows: ) - '
i {1 " " False so compute |
1 - ©XPis...,exp, are evaluated, so their values vi,... iy n * fac (n-1)
i . = 1- s 12 [3] " N fetch n
appear on top of Valuestack {in reverse order). 13 [3,3] e " : fatch n
2. These are popped and combined into a new frame [vl,...,vnl i 14 ‘ {1,3,31 " » pushh n
. . . . . 15 [2,31 v " compute n-1
which is pushed onto Bindings. ! 7 Prepaie to call fac(n-1)
3. A return address {a label)} is pushed onto Returnstack. : 16 [31] [[22 [3}% [[4] push new frame
: 17 [2 3 18,4 33 turn add:
4. Control is transferred to the start of the code for 3] (f2l 311 18,4l push return acdress
equation . 5 [3] " " Second call: fac(2)
' 6,7,8 [false,3] " " Test: n<l?
f(X1,...4%x) = exp
n {1 o1,12 [2,3] n " fetch n
5. Once f's value has been computed and lies on top of Value~- f j-113,14,15 [1,2,3] " " compute n-1
stack, Bindings and Returnstack are popped and control is g r16,.17 [2,3] [[11,121,0311}[18,18,4] | Push new frame and
transferred to the label just popped from Returnstack. - return for call
It is easy to see that this sequence has the "net effect" 3 5 [2,3] " # Third call: fac(1)
mentioned before.’ . - 6 [1,2,3] " " fetch n
7 [1,1,2,3] " "
- 8 [true,2,3] ” " test: n<17? }
4.3.2 An Example Computation , 9 [[2,3]] " " push 1 - 11
. i 10 1,2,3 " " pugh .1 = 11
Consider a one-equation system for the factorial function: Li9 {1,2,3] [{1],{2],0311[1i8,i8,4] | Prepare to return
20,18 [1,2,3] [{2]1.03]] [18,4] Return to 18
facin) = if n <1 then 1 else n * fac(n-1) | i9 [2,3] [[21,1311 [18,4] Push 2 * 1 =21
20,18 [2,3] [[31] [ a7 ] Return to 18
Following is a series of "snapshots" showing the runtime ‘ L 19 [61 [131] [4] Push 3 %2 =31
state at varicus points during the computation of 3! . This 0.4 [6] [] [ Return to 4
; 3 1 B © ~
computation is in fact the one which will be performed by the ] !
target program produced by the compiling algorithm of Section ' - Return 6 = 3!
- 4.3.5. Note that the neteffect prbperty holds for each expres-
sion evaluation, including calls. ' ’
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4.3.3 New Commands

As mentioned earlier the flow chart language will be extended
by adding several special-purpose commards which aid the iter~
ative execution of the recursive equation system. Their ef-
fects will only be described informally in terms of their ef-
fects on the runtime state and point of control IC. The run-

time state's form will alwavs be

s = {v*,£*, 8%}

where v* is the value stack, f* is the frame stack "Bindings",

and . £* is the return stack. Control always passes from one

command to the following one, unless the contrary is explicitly

stated. Recall that a:: list denoctes the result of attaching a
to the front of list.

Commands for Expression Evaluation

push (v} takes (v*,£* L%} to (v::v¥x, £*, £%*)
fetch (i) takes (v*,£*,£L*} to (Vi::v*, £%, £*%)
where the top frame in f* is [vl,vz,...,vn]
do-+ takes {(vi::va::v®, £%, 2%} to ({(vi +va)::v*, £* (%)
do-* takes " , E*, £*%) to ((v: *v,)::v*x, £*,6 £%)

and similarly for all other operations "do-op" on atomic values.

Commands for Binding and Unbinding

firstframe(x;,X2,..-,Xp) yields the initial state
(NTL, [xy,--. ,xn] : :NIL, NIL)

makeframe(n) takes (v :: ... ::vai:vi:z:v®, £%, L*)
‘tO (V*I [vlf"-lvn}::f*l ‘6*)

popbindings takes (v*, f£::f%, £*} to (v*, £*, £%)

Commands for Function Call and Return

pushreturn (£) takes {v*, £%, £*) to (v*, £*, L::£%)

returnjump takes (v*, £%*, £::2%) ta (v*, £*,  [%)

and transfers control to the instruction labeied £

—

=1
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Miscellaneous

returntop takes (v::v*, £*, £*) and terminates computation
producing v as the program's final answer

falsejump(£) takes (v:i:v*, £*, £*) to (v*, £%*, %), and trans-
fers control to the instruction labeled £ if

v = false, else control goes to the next command.

4.3.4 Construction of Target Code

Target programs are flow charts and so have form

program = read Kiyova Xpi 1: emd; ... n: cmdD

In order to describe the compiling algerithm concisely we
use the notation ¢ @ ¢! to denote concatenation of labeled
command sequences. We assume that in forming ¢ @ c¢' all labels
and label references in c¢' are appropriately renumbered, and
that any references in ¢ to labels mot in c are replaced by
the label of the first imstruction in c¢'. For example

1: if x>0 goto 27 {?: % = x+1
{1: x :=x+1] @ else T = 2: if x>0 goto 3
5 g1 else 2
Ty =y
3: 1=y~
[>2 ¥y ]
E)
r - F.Ex=0 goto 3
1: 1f x =0 goto 1432 ‘ else 2
ST = else 2 g [1: v ;:yﬂ] = |2: v :=0
21 :=0 3: v o=yl
Y v Yy |
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4.3.5 The Compilation Algorithm

Compile: Recursive Program -~ Flow Chart Program

Code: Eguation + Expression - Commands

Compile{egn: eqn: ...eqz'n}
"read %i,...,X ; startcode & egncode”
where

"FilXir...0x,) = exp” = egny

startccde = {13 firstframe(xl,...,xn} . 2: pushreturn (4}
3: gotec 3 4: returntopl]

egncode = Code{egn:} € ... @Code{egn }

Code("f(xl,.-.,xn) = exp”} =
Codef{exp) € [1: popbindings 2: returnjump]

Code {"constant™) "push {constant}”®

Ccde(variable,xi) 5 = *fastch(i)"™

Code(“op(expl,q..,expn}é)-f
Code{expi} € ... Code(expn) @ do—-op -

Code{"if exp, then exp, else exp;”)}) =
Code(exp;:} € Branchcode where @

Branchcode = [ 1: falsejump{4) 2: Codeexp,} 3: goto5 4: Code{exp

Code(“f(expl,..-,expn)“) =

Code{exp;} € ... @ Codeiexpn) € callcode where

Callccde = [1: makeframe(n)
‘ 2: pushreturn{4{) ]
3: goto first label of code for equation
"E(X1,.-.05 ) = exp”l

3) 1]

Example

Code for the factorial function

1
! fac(n} = if n<1 then 1 else n * fac(n - 1) ]

The target program is

read n;

1: firstframe (n) Bindings := [n]::NIL = [[n]]

2: pushreturn(4) perform initial call
3: goto 5 goto start of fac code
4: feturntop final result = Valuestack to p

_ start of cocde for fac
push n on Valuestack

5: fetch(1)

6: push{1) push ccnstant one
7: do-% evaluate n <1
8: falsejump(11) do "if" test

- 9: pushi(1) return 1 if true

exit to caller

10: goto 19
11: fetch({1) push n (from n * fac(n ~ 1))
12: fetchii)
13: push (1) compute n - i
14: do--

15: makeframe(T)

recursive call to fac
{result on Valuestack top)

16: pushreturn(18)

17: goto 5
18: do-*

compute n * fac({n - 1)

19: popbindings
return from fac
20: returnjump

55



56

4.3.6 Single-stack Implementation

Notice that the binding and return stacks are pushed and pop-
ped synchronously at call +ime and return time. They both re-
main constant during a call, and according to the "net effect
property” the valuestack at exit eguals its entry value, plus
the function value as a new top. The three stacks are thus
pushed and popped so consistently that they could be combined
into a single stack.
This is in fact the traditional stack implementation of

block-structured languages, and naturally yields

state = {Value +Frame)*
‘#Frame = Label x Value®

The new commands of 4.2.3 can easily be implemented on this

R A o s e found
new data structure. Practical impiementation details may be

in the notes on "Lageradministration” in the DAT2 kursusbog I.
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IV UNSOLVABILITY OF THE HALTING PROBLEM

5. OVERVIEW: COMPUTABILITY AND UNSOLVABILITY

Following three sections explain three of the most important
resiults from the theory of computability. Their importance
lies in the fact that they together argue strongly that the
class of "all problems solvable by computer® is in fact well-
defined class with sharp boundaries. Thus a computational
problem may be classified without ambiguity as "computer solv-
able" or "unsolvable by computer”. Further, we will display
several concrete and simple problems which can be precisely
defined, but which cannot be solved by any computer whatever,
no matter how much time cr memory is available, and no matter
how rich the computer's instruction set is.

) First, some comments on fundamental assumptions: first, we
will not concern ourselves at all with computational efficiency

in time or space: we are concerned only with the existence of

programs which solve a given problem correctly, given suffi-

cient resources. (In fact some of the constructions to be shown
are enormously inefficient, but this is guite irrelevant to our
goals.) Second, we are interested mainly in problems which have
an iAfinite number of instances (for example: givenvarbitrary
integers x and vy, find the least prime number larger than

%y +y.) The reason is that if a problem has only finitely many
combinations of input data, a "solution procedure" could take
the form of a finite table. This table would contain the pxrob-
lem’'s answer for each combination of input data, so that any
problem instance could be solved by a table lookup. Consequent-
ly all finite problems are, at least in principle, algorithmic-
ally solvable.

The first result is that for a particularly simple program-
ming language, called LISPO, there is a problem which is not
solvable by any LISPO procram: the halting problem.“

The second result is not a theorem (as was the first) but

)
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a collection of arguments supporting the socalled

Church-Turing Thesis

Any process which cculd.naturally be called an
effective procedure or algorithm can be real-
ised by a Puring machine.

‘This thesis asserts that one particular computing device,

the Turing machine, is at least as powerful as'ang other device

{past, present or imaginable) whose computations are "effective”,

that is algorithmic. Such a thesis cannot be formally proved
since it contains an informal phrase: "effective procedure";
its real significance lies in that it asserts that a formal
concept - the Turing machine - is an adequate and complete for-
mulation of an informal concept, that of algorithm or effective
procedure.

Evidence for. the Church-Turing thesis is of two sorts: that
a wide variety of computing devices have turned out to be exact-
ly equivalent to the Turing machine in computational power; and
that no convincing counterargument has been put forth since the
topic first was studied in the early 1930's. Its comsequences
are wide, as Sseen in the following simple application.

An application
We have asserted that the LISP0 halting problem ({(cail it
"HALT") cannot be solved by any LISP0 program. We will see later
that any Turing machine can be simulated by a LISP{ program.
Consequently HALT would be LISPO solvable if it were solv-

"~ able by a Turing machine, leading to the conclusion that HALT

is Turing unsolvablie as well as LISPO unsolvable.
By the Church-Turing thesis, HALT cannot be solved by any

effective procedure whatever, since this would imply its Turing

solvability and hence its LISPO solvability
The third topic we introduce is the. idea of reduction of

one problem to another. By definition problem A can be reduced

to problem B (written A <B) if an algorithm to solve problem A
' can be constructed, provided one assumes the éxistence of an

algorithm to solve B {that is, there exists a "B subroutine"

which may be called as an aid during the solution of A}. Using

this concept we. show that the halting problem’s algorithmic
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unsolvability is not an isolated phenomenon, and that in fact
many problems coancerning program behavior are algorithmically
unsolvable.

Reduction is also a fundamental concept for studying the
complexity of algorithmically solvable problems.

These notes are organized as follows. In Section 6 the lan-
guage LISPO is introduced {essentially an applicative subset
of LISP) and its semantics is described informally. Section 7
contains a LISPO interpretation algorithm Eval written in
LISP0. Section 3 shows that the halting problem for LISPO pro-
grams cannot be solved by any LISP0 program.

Chanter V contains arguments that several computing devices
ars exactly equivalent to LISPO in computing power. The method
is to show that for 2very program a in programming language A,
a program b in language B may be constructed which faithfully
simulates a. Reoresenting this relation by an arrow A<« B, the

simulations sketched in Chapter V can be diagrammed as follows:

9
LISPO ¢ List
Machine
12 10
|
s Tiring » Register
Machine 1 Machine
Figure 1. Simulations

Chapter VI deals with reducibility between problems, and shows
a variety of problems unsolvable by reducing the halting problem
to them. In particular, it is shown that it is impossible by

computer to decide whether a context-free grammar is ambiguous.
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6. A SIMPLE APPLICATIVE LANGUAGE: LISPO

5.1 Syntax and Informal Semantics

LISP0 is essentially a subset of applicative LISP, restricted
for technical convenience to functions of one argument. A
LISPC program manipulates data in the form of a "list", an
ofdered:binary tree with atoms as leaves, where an atom is
a nonempty sequence of letters or: digits. Lists are written
in linear form according to the following syntax

<list> ::= <atom> | (<list> - <list>)

<atom> ::= {<letter> | <digit>1~

For brevity in writing we adopt the LISP convention of
wrifing the short form

(d]_ dz <. dn)
to represent the following right linear tree ending in the
atom "NIL" :

(dy - (42 . (dg = (--+{d, .NIL) --. ))}))

Lists are constructed with the binary operator CONS, so
that CONS applied to lists d; and d. yields list (dp - d2).
Using the short form just mentioned, nocte that the

CONS of d and (d; d, --- dn) equals {d d: d; ::- dn)

If list d equals (d; . d,), then the HEAD operator applied to~
d yields d; and the TAIL of 4 is d, , while both are unde-~
fined (erroneous) is d is an atom. The operator ATOM applied
to a list yields the atom "T" if the list.is atomic, and "NIL®
otherwisev A LISPO program, p, consists of a collection of
recursively defined functions of form

( (DEFINE £, (x;) expression,)
(DEFINE £, (x;) expression,)

(DEFINE.fn(xn) expressionn))
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The result of applying program P to data g i
of expression, .

) + after replacement of all occurrences of vari
able %, in the éxpression by the value g
An expression of the form (QUoTE dj
Pression, with
(for e

s the value

: is a constant ex-

Value d. An expression may also be g variable
cample x, above), or it may be const i
expressions by the Cperators HEAD, TAIL,
tioned above,

ructed from other

ATOM or CONS men-

A conditional expression has the form

{IF exp; = exXpy THEN exp; ELSE expy )

the valu 2
es of exp, and €XpP2 are compared (these may be arbi

If equal, the conditional e
is the value of exps,

trary lists)
Xpression's value

else the value of eXpPy .

pression may take the form

to function-fi

Finally, an ex-
(fi expression), specifying a call
. The argument is evaluated and +
fi is applied to the resulting list,
by wvalue”,

hen function
S0 evaluation is "call

Figure 8.1 contains a context free syntax for LISPO pro-

grams and data. Notice that evefy LiSPO é#ogram
——— TP PrOgranm,

. expressio
etc. is also a list. i )
==Y 8 L1st

This makes it possible to regard LISP0
Programs as data objects which can be bProcessed by other

LISPO programs, a capability which will be important in fur-
ther developments. _
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. +,
<program> ::=  {<definitiom> }
<definition> ::= (DEFINE <fname> {<vname>) = <expression>)
<expression> ::= {QUOTE <list>} coastant
<vname> variable reference

1
{ (HEAD <expression>)
| {TAIL <ezxpression>)
I (ATOM <expression>}
| {CONS <expression> <expression>)
| (IF <expression> = <expression>
THEN <expression> ELSE <expression>)
i {<fname> <expression>} function application

<fname> r:= <atom> function name
<vname> t:= <atom> variable name
<list> 1= <atom> b (<list> - <list>)

<atom> = {<letter> | <digit>}*

FPigure 6.1 Contex-Free Syntax cf LISPO

Context-Sensitive Syntax In a program

p = ({DEFINE £,({x1} = expi} ... (DEFINE £ (x ) = exp ))
it is further required that

1. Punction names are distinct {i % 3} implies fi.*fj) and

not contained in the set

{QUOYE ,BEAD, TAIL ATOM,CONS,IF}
2. The only variable name which may appear in expression

exp, is x, .

S

Examgle

The following program may be applied to a pair
gt = {(goal.table), where

table = ((key; . value:} (key, .valuez)‘.,(keyn .valuen))
Its purpose is to compare goal to key;, keyp, ... in
succession, searching for a match. If the first match is
goal =k.eyi ;, the corresponding valuei is returned, while

if no match is found, the value NIL is returned.
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p = ((DEFINE Search (gt) =
{IF (TAIL gt) = (QUOTE NIL)
THEN (QUOTE NIL)
ELSE
(IF (HEAD gt) = (HEAD (HEAD (TAIL gt)))

THEN (TAIL (HEAD (TAIL gt)))
ELSE (Search (CONS: (HEAD gt).

(TAIL(TAIL gt))
1)) ) )

Por instance

1. Search of (B (A1) (B.2) (C.3)))

Search of (B . ((B.2](C.3}}) = 2
2. Search of (D. ((A.1)(B.2)(C.3))) =
Search of (D . {(B.2)(C.3))) =
Search of (D . ((C.3))) =
Search of (D . ()) = Search of (D.NIL) = NIL

6.2 A More Precise Semantics for LISPO

The evaluation of LISPO expressions and the running of programs
can be more completely and precisely defined by specifying pro-
gram execution and expression évaluation functions:

Run : <program> x <list> -E " <list>
Eval : <expression> x <list> & <list>
The intention is that Eval({exp,d) equal the value of "exp",
given that d is the value of .the variable possibly occurring
in exp. Eval will always be applied to subexpressions occurring
in a program
( (DEFINE fl (Xl) = .exp,)

p = ...
(DEFINE £ (x)

exp))

S0 exp; can contain atmost one variable X; - The result of

running program p on input d will be Run(p,d) = Eval(exp:,d).
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Eval is defined in Figure I.2. Note that according to

rule 7, the argument to a function call is evaluated before

the function is applied {call by value). By rule 6, either the

THEN or .ELSE branch of a conditional is evaluated, but not

both.

| 0. Run(((DEFINE fy(x1) = exp1) ...), d) = Eval{expi, d)

1. Eval (variable name, d) = 4
2. Eval ((QUOTE v) , 4y =v
3. Suppose Eval(exp,d) = & ncnatomic list (vi .v2).

Then
Eval ((HEAD exp), @) =vwvi and
Eval ((TAIL exp),.d) = vy -

{j T if Bval (exp,d) is atomic

. ATCOM exp), 4) =
4 mval U . ® NIL if Eval (exp,d) is of form (vy . vy)

5. If Eval (exp1,d) = vi and Eval (exp:,d) = vz, then
Eval ((CONS. exp; expz}, d) = {vy . vy)

6. Let IF = (IF exp; = exp; THEN exp: ELSE expy),
and suppose Eval (expi, d) = v1 and Bval (expz2, &) = vz.
then
Eval (exps, 4) IF vi = va

gval (IF, 4) =
Eval (exp,, d) IF v, * v,

7. Suppose Eval (exp, d) = v, and that program p contains
(DEFINE fi(xi) = expi). Then
Eval ((fi exp), d) = Eval (expi, v)

Figure 6.2 Semantics of LISPO

6.3 Some Syntactic Sugar

In order to make LISP0 programs more readable, we introduce
three forms of "syntactic sugar". These are alternate nota-

" tions which make programs. easier. to read and.write. Programs
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containing these notations may be easily (in fact, mechanical-
ly) transformed into pure LISPO syntax, so the language has
not really been changed..

1. "<list> may be written instead of (QUOTE <list>)

2. [expl,expz,...,expn] may be written.fqr {CONS expi (CONS
exXps..... (CONS expn 'NIL) ... }) . This expression is used
to econstruct lists (like the "LIST" function in ordinary
LISP). If expl,...,expn have values dl,dz,,..,dﬁ then
[expl,expz,..,expn] will have the list (dy 4, ... dn)_as
value.

3. Long HEAD-TATL seguences (as seen on a small scale in
"Search") are hard to read and write and thus prone to
cause errors. To alleviate this problem we introduce a way
to define local abbreviations. for HEAD-TATIL sequences, name-—
ly the construction (LET pattern = variable TN expression)

The pattern may contain names for various substructures of the
value of "variable”, and these names may be used within the
"expression". Thus, for example

(LET (a-.b) = x in (CONS b a})
is precisely equivalent to
(CONS (TAIL x) (HEAD x))

Pattern expressions may also be nested, and the shorthand list

notation (d, d, ... dn) may also be used as indicated in these
examples. '
LET Example » Equivalences
(LET (a.b) =x IN ... ) a = (HEAD x), b = (TAIL x)
(LET ((a.b) . (c.d)) =x IN ... ) a = (HEAD(HEAD x)),

b = (TAIL(HEAD x))

¢ = (HEAD (TAIL x))

d = (TAIL{TAIL %))
(LET (abe) = x IN ... ) a = (HEAD x)

b = (HEAD(TAIL x))

¢ = (HEAD (TAIL(TAIL x)}))
(LET (a(b.c)) = x IN ... ) a = (HEAD x)

b. = (HEAD (HEAD (TAIL x)))

¢ = (TAIL (HEAD (TAIL x)))
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i ble:
With this notation, the "Search" example is more reada

( (DEFINE Seérch(gt)
(LET {goal . table) = gt IN
(LET ((key.value) .rest) = table IN
{IF table = 'NIL THEN 'NIL
ELSE:
(IF goal = key THEN value ‘
ELSE. (Search (CONS goal rest})

5)))))

6.4 . Computability of Functions and Decidability of Sets

A last example serves also to show that the réstri?ti?n1to
single. argument functions is not significant in prlnélp~i;PO
since - -a multiple-argument function may be expressed in ? i
by CONS'ing the arguments into a single list. T#e example
the "append” function; it takes as argument a list o
{({ax az ... am)(b1 b, - bn)) and returns the concatena

list (al Qg s am bl bz PR bn).

{ (DEFINE append(xy) =
{LET (x y) = xy IN

{LET (first . rest) = x IN
{IF x = 'NIL THEN y
ELSE (CONS first (append [rgsfz,y])) IRDD)

i E r i —-comput-
Definition A partial function £: List - List is LISPO-comp

s ever
able if there exists a LISPO-program p such that for v

% € List, either f({x} is defined and
£(x) = Run(p,x)
both f{x) and Run(p,x) are undefined. A partial multiple-
o ist® B List is (by definition) LISP -
argument function f£: List > List is Ve :
7 - unc-
computable if there is a one—argument LISPO-computable

ist
tion g such that for any x,,...,x €Lis

gn( (Xll"”xn) ) = f(X1r--~yxn)

i or
{(where again the two sides must be both defined and equal,,

. both undefined)

deciding membership in
Primality corresponds to the test:

is x € {2,3,5,7,11,13,17,...} ?

We say such a Question is LIsPO-decidable if it can be an-
swered by & LISPO-program which always terminates.

More formally,
we have the following

Definition A set a List is LISPO0-~decidable
~—=—==ition = ————_=ectidable
2 LISPO-program P such that p

and

if there exists
terminates for eévery x ¢ List,

[T if xe€n
Run(p,x) =
NIL 4if xg¢na

7. A SELF~INTERPRETER FOR LISPO
S e B FOR LISPO

Recall that every LISPO program is als

O-a LISPO data Object.
The rules of Figure 6.2 may be ex

pressed in LISPQ, yielding
a LISPO interpreter written in LISPO.

The following may be
stated more briefly as:

Run (as defined in 6.2) is LISPO-com-
putable, O symbolically as:-

ST €
Theorem: There ig a LISPOlproqram ST such that for any LISPQ

program p and list g

1. If Run (p,d) = Y, then application of SI to the list

{p 4} also produces Y.
2. If Run (p,d) is undefined, then the result of applying

ST to (p d) is also undefined. a

In case 2, s1 may either go into an infinite computation,
or attempt to apply HEAD or TATL to. an atomic value. We will
not prove the theorem, but just present SI and hope i
larity with Figure 6.2 is evident., If Eval(exp,d)

ts simi-

= y accord-
ing to Figure 6.2, then function "Eval" from Figure 7.1 will
also yield y if applied to the list (exp d p). The exlra argu-
ment p is needed in order to find the definition of £ in a '

function call (f expression), as performed by function lookup.
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((DEFINE SI(pd) =

(LET (p ) = pd
P

(LET ((define £1(x1) = expl}) =

(Eval [expl, 4, p]
N

' (DEFINE Eval(x) =

(LET (exp d p) = X IN
(LET (op el e2) = exp IN
(IF (ATOM exp) = 'T THEN d
- ELSE
{IF op = 'QUOTE THEN el
ELSE

{Run program p on data 4}

IN
IN

{As in Figure I.2}

{p = entire program
(used in function call)}

(IF op = 'HEAD THEN (HEAD(Eval [el,d,pl))

ELSE

(IF op = 'TATL THEN (TAIL(Eval [e1,d,p]))

d,pD

ELSE

(IF op = 'ATOM THEN (ATOM(Eval [el,d,p]))

ELSE

(IF op = 'CONS THEN (CONS (Eval [el,
(Eval [e2,

ELSE
(IF op = 'IF  THEN

(LET (if el = o2 then e3 else ed)

4d,p1)

= exp IN

(IF  (Eval [el,d,pl) = (Eval [e2,d,p])
THEN (Eval [e3,d,p]) ELSE (Eval. [e4,d,p])))

ELSE
(IF (Lookup [op,pl) ="NILI:

THEN ['BAD, *SYNTAX: , expl

ELSE (Eval [(Lookup .[OPIP]) , (Eval [el rdrP]) rP])

NN
(DEFINE Lookup (fp) =

(LET (£ p)..= fp IN .
(LET ((define fi(xi) = expi) . prest)

(IF p. = 'NIL THEN 'NIL

ELSE

(IF £ = £fi  THEN expi
ELSE

(Lookup [£,prest])
1))

{Find definition of function
named £ in program p}

=p IN

Figure 7.1 LISPO Self-Interpreter SI
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7.1 A Digression: Metacircular Interpreters

A natural question is: why not regard Figure 7.1.as the défi--
nition of LISPO and not bother with Figure 6.2 at all? This
method. for language definition. is called "“Metacircular Inter-
pretation”, and can be used to clarify many fine points about
program behavior. The original LISP report contained two such
interpreters, one for basic LISP and one for an extension which
was closer to machine implementation.

The problem is that such a definition may actually define
nothing at all! For an extreme example, note that SI is bullt
up by use of CONS, QUOTE, .IF, etc.. These operators are only
defined. in terms of each other in Figure 7.1 and no definitions
independent of LISPO are given. Thus if we assumed all these
primitive functions returned the value 17 regardless of input,
p - would also return 17 regardless of input!

Even 1f we insist that CONS, HEAD, and TAIL behave as ex-
pected there are still problems in the use of Figure 7.1 as a
language definition. In the discussion.before Figure 6.2 it
was stated that "IF" could be used to compare arbiktrary lists.
This is not true in conventional LISP - only atoms may be com-
pared directly and recursion must be used to compare lists.
What happens if, for the sake of argument, we assume only atomic
values can be compared by the interpretation. algorithm SI ?

The result is. that only atomic values may be compared in the
interpreted language, and SI i1s still a correct interpreter, -
but for a different version of LISPO0 than that defined by Fig-
ure 6.2.

A more subtle problem is that if SI itself is executed
using call-by-name (or with a "lazy CONS"), the same will hold

for the language it interprets.
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8. UNSOLVABILITY OF THE HALTING PROBLEM

Consider the following two functions, where p is a LISPO pro-
gram and d its data.

T . if program p halts on data d
PHALT(p,d) =

undefined if p does not halt on d

T if program p halts on data d
HALT(p:d) =

NIL if p does not halt on d

In spite of their obvious similarity, PHALT is LISPO com-—
putable while there exists no LISPO program whatever which
correctly computes HALT.

Lemma PHALT is LISPO computable

Proof’ Consider the program

{ (DEFINE PHALT{pd) =
(HEAD (CONS 'T (SI pd})))

(DEFINE SI(pd) = ... )
{DEFINE Eval (x) vee ) . [From Figure 7.11.
{DEFINE Lookup (fp) s )

(L]

If p halts on 4 then SI will halt on p& = (p d) and pro-

duce some answer y. PHALT then returms (HEAD (CONS 'T y)) = T.
If p does not halt on d then (SI pd) doesn't halt either, so
PHALT {pd) is undefined. a

£

Remark We have used "PHALT" both. to designate a certain func—
tion from lists to lists, and as a name in the LISP0 program
just constructed. Strictly speaking. this is an abuse of nota-
tion since the two meanings are entirely distinct.

Theorem There is no.LISP0 program which correctly computes
HALT o

Proof We will show that no LISPO program can solve the self-
halting problem

T if program p halts on input p
SH(p) =
NIL if p does not halt on itself as input
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This is enough, since SH(p) = HALT (p,p), so SH would be
LISPO computable if HALT were. Assume for the sake of argu-
ment that there does exist a program

((DEFINE SH(p) = ... ) ... )

which correctly computes SH. We will show that the assumption

leads to an impossible situation, and so must be false {this

type of argument is. known as reductio ad absurdum) .
Construct. the following LISPO program.

r = ((DEFINE R(p) =
(IF (SH p) = 'T THEN (R p) ELSE 'T))
(DEFINE SH{p) = ... ) ... )

Program r clearly computes a partial . function R: LISPO

programs 2 List, where

if SH{p) T, i.e. if p halts on
itself as input data

NIL

Iﬂundefined
R{p) =

| T if SH(p)

Question What is the value of R{r)? There are only two pos~
sibilities:

1. R(x) is defined. Then the call (SH.r) returns T by defi-
nition of SH. This causes a recursive call to R{r) and
so an infinite computation. Thus R(r) is undefined.

2. R(r) is undefined. Then (SH r) returns NIL, so Rir) =T
and. so is defined. ’

Thus R{r) can neither be.defined nor undefined. Conse-
quently. the unjustified assumption in the argument must be
false - so SH is not LISPO computable. a
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V. SUPPORT FOR THE CHURCH-TURING THESIS

It could be argued that the uncomputability of HALT by LISPO
programs simply indicates that LISPO is too. weak.~- perhaps
HALT could be computed in a more. powerful programming language.
However.the Church~Turing thesis.argues. that the Turing ma-
chine {and LISPO) are “maximally‘powerful" - that a Turing
machine can compdte as much as any other computing device.
Consequently the halting problem. for LISPO is in a sense ab-
solutely. uncomputable, since .it cannot be computed by any
computing device at all.

The Church-Turing thesis asserts. the equivalence between
the intuitive concept "effectively computable” and the formal
concept "Turing machine computable". The purpose of the next
several sections is to give evidence for this. thesis, by show-
ing that Turing machines, in spite of their simplicity, can
both simulate and be simulated by LISP0 prcgrams. Further,
the ideas behind the constructions we give are gquite clearly
generalizable, and can be used to show the equivalence of
other computing devices with the Turing machine.

As mentioned in. the introduction.we will show eguivalence
among programs. of LISPO, a "List Machine", a "Register Machine",
and the Turing machine. The latter three are variants of the
imperative flowchart programs of Section 3.4. List machine
programs contain assignment statements, and their variables

range over LISPO lists. Register machines are similar ex-

‘cept that variables may only take natural numbers as values.

Turing machines are even simpler, with a tape for memory and
no variables at all.

The three machines have the common program syntax in-
troduced in Section 3.4.1. The reader is advised to review
those notations, since the following sections are closely
based on them. ‘
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9. LIST MACHINES CAN SIMULATE LISPQ PROGRAMS

We now argue that given any LISP0 program

gram may be found whose data values are lists and whose in-

,- a flow chart pro-
structions manipulate lists, and which computes the same in-
put-output function.

Definition A list machine program is a flow chart program as
‘described in Section 3.4.1, Specialization 2: List Computation.
Semantics: As described in Section 3.4.2, a list machine

state is a function State:r Variables - Lists. The function
EQUAL returns atom T if its two arguments are equal, else NIL.
In .a <test>, NIL is consideres to be false and all other values

true. o

List Machines Can Simulate LISP0 Programs

Apart from inessential syntactic differences, LISPC is clearly
just a special case of the recursive equation systems discussed
in Section 3.3, limited to functions of one variable, data

ranging over binary lists, and operators in the set
{HEAD, TAIL, ATOM, CONS, EQUAL}

Consequently the compilation algorithm of Section 4.3
can be used tc translate any LISPO program into an equivalent
flow chart program containing "special-purpose commands"
whose effects were to update a runtime state (v*, £*, £%).

In this state and for LISPO

v* = computation stack
= a stack of list values
f* = frame stack . .
. = a stack of actual. parameter values (= lists)
of called functions
£* = label stack, for "return addresses”

The stack v* can clearly be.represented by the list-valued
variable v* = (vy vy ... vn), where v, is the top (so v* = NIL
corresponds to an empty stack). Pushing and popping of v* cam
Ee.done by-v; = (Coﬁs ﬁéwtép, v*) énd‘v* = (TAILAV*); respect—
ively, and vy = (HEAD v*). In the same way £* and £* may be re—

-garded as variables in a list machine program.
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The "special-purpose commands" of Section 4.3 are speci-
fied by their effects on the runtime state, for example

push(con)  takes (v*, f*,6 g%) to (con::v®, £x, p*)
fetch (1) takes (v*, f£::f%, 2%) to (f::v¥, f::f*; L%}
do-EQUAL. takes (a::b::v¥, £*, 2%) to

(T 22 v*, £%, %) 4if a=b
(NIL::v*, £%, £¥) if a=xb

It is easy to verify that all the commands from Section
4.3 can be implemented by. short sequences of list machine code

(the only tricky case is "returnjump”) .: For the exapples: above:
push{con) : v* := (CONS con v#)
fetch({1) : v* := (CONS(HEAD f*) v¥)
do~EQUAL : tem := (EQUAL(HEAD wv*) (HEAD(TAIL vF)))
v* := (CONS tem (TAIL(TAIL v*)))

Consequently we have the following:

Theorem . For every LISPO program, a list machine program may‘
be constructed which computes the same input-output function.

In the next section we will show that list machines can
be simulated by the apparently much simpler register machine.
As an aid to this development we show that the form of list
machine commands may be limited without loss of computing
abilities.

Lemma . For any list machine program, there is an equivalent

‘one whose commands are restricted to the following forms

(where X, Y and 7 are variables and L, M labels):
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X := (QUOTE <list>) : 10. REGISTER MACHINES

X:=Y : : Definition A register machine program is a program as describ-

X := (HEAD Y), (TAIL Y), (CONS Y Z), ed in Section 3.4.1, Specialization 1: Numeric Computation.
{ATOM Y) or (BQUAL Y Z) Semantics: This is as in Section 3.4.1. In short, a register

525355 X machine- state is a function .State: Variables - N where

goto L N =1{0, 1, 2, ., .}. Variables thus range over the natural num-

if X goto L else M o '

v bers. Expressions are evaluated. as usual and with. the usual in-
This can obviously be done by adding some extra assign- : terpretations of +, *, #%

’ (exponentiation) and ~ {except that
ment statements to break complex list machine commands. into 0-n is taken to be 0, for any n € N). MOD and DIV dénote integer
sequences of the forms above.

modulo (remainder) and truncated division, so for any x, v €N,
"y +0, one has

0<(x MOD y) <y and x =y * {x DIV y) + (x MOD y). o

Register machine commands. resemble ordinary machine codes,
except that variables may contain arbitrarily large natural
numbers as values. In the following we show that register ma-
chines can also simulate list machines (and thus any LISPO pro-
gram); and that this remains true even if limited to the com-
mand forms X := X X1, if X = 0 goto L else M and return X.

10.1 Pairing and Selection Functions

" The functions first: N-N, second: N-=N and pair: NxN-N¥ will
be used to simulate the LISPO.operations on lists.

% : pairix,y) = (2x+1) * oY
second(z) = the largest y such that 2Y divides z
‘ i = l ..._..._._E__.._... -
: first(z) 5 (zsecond(zy 1)

it is easily verified that pair(x,y), first(z), and
second (z) are well-defined natural numbers for any x,y,z in .
N, and that .

1. first(pair(x,y))

X

2. second(pair(x,y)) v

3. pair(x,y) = pair(x',y") only if x=x" and y=y'
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A pairing function provides a way of representing a pair
of data objects (numbers in this case) uniquely by a single
data object, and the selector functions allow a pair to be

decomposed. Integers 1,2,...° represent the following pairs:

Ax,¥X-T 0,00 (0,1) (1,00 (0,2) (2,0) (1,1) (3.0) (0,3) ...
pair(x,y) | 1 2 3 4 5 6 7 8

These functions can be computed by register machines, as

follows.
2 := pair(X,Y) = Z := (2*X+ 1} * (2 **Y)
Y := second(Z) = Y :=0; U := %Z;

while U MOD 2 = 0
do [U := U DIV 2; ¥ := Y+1].
X := [(Z DIV second(Z}) - 1] DIV 2

X := first(Z)

10.2 Coding List Structures As Numbers

The input to a list program, and the data manipulated by list
programs, are binary lists, whereas in contrast a register
machine manipulates only non-negative integers. Consequently
a direct simulation of list by register machines is impossible,
so we devise a way faithfully to represent lists by numbers,
and to simulate operations on lists by operations on numbers.

. Recall that lists have the syntax:

<list> ::= <atom> | (<list> . <list>)
<atom> ::= <symbol | <atom> <symbol>
<symbol> ::= 0 [1]{..19|AIB}{..1%

[}

Our encoding uses the pairing functions just described.
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List Representation

Let a = {1,2,...,9,0,3,5,.,.Z} = {81,...,536} be all the
symbols which can. appear in LISPO atoms. We will code
ticular atom

a par—

a=Si "'Si Si (1515336)

By the number

a = 2k+1 where k = i, +361; +36%1, + ...f+36nin

For example 3 = 2%3+1 = 7 and AT-= 2%(11%36+1) +1 = 795

.

Note th;t every atom 1s represented by an odd number.

A compound list £ = (£; .2,) will be encoded (recursively)
by the number

é = pair(21/ ZZ)
This will always be even (since pair(x,y) = (2x+1)2Y and

L, >0}, so a parity test is sufficient to distinguish atoms
from compound lists.

Examples
1. Atomi¢. list 7 has code 2 %7 +1 = 15

2. Compound list (2.1} has code
TZTT = (257+1) * 2% = (2#5+1) % 2° =88
3. Compound list ((2.1)-2) has code
TTIVTEY = (2 *TZ0T7+1) * 27 = (2%88+1) *2° = 5664

Remarks on. the encoding. scheme:

"1. The scheme, while simple, is ciearly inefficient: small

list structures are encoded as very large numbers, and

many numbers are not encodings of any list structures at
all. These objections are.immaterial, however, since our
only interest in the present development is to investigate
the outer limits of computability. If we were, for example,
comparing efficiency of various machine types or a;gorithms,

more efficient codings would be needed.
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2. In fact any encoding will do, provided different lists have
different codes. and that one can program algorithms to sim-
ulate the list machine's operations. For this are needéd:
comparison of two list values; decomposition of a list into
its head and tail; and cecnstruction of a list from two
other lists.

10.3 Register Machines Can Simulate List Machines

Theorem For any list machine program p, there exists. a register
machine program r such that

if p, when applied to input 1lists ai, ..., a, s halts with
list a as output
then r, when applied to input numbers B1r eeey 5n , halts

with number a as output

Further, r halts on input A1y ey En if and only if p halts

Ol A1y saeey an [n}
Proof We will construct program r so that it simulates p step
by step. By the lemma at the end of Section 9, p may be assumed
to contain at most one operator per command. For each command
in p there will be a command sequence in r, constructed as
follows:

command in p commands in r

X := (QUOTE ) X =2 .
X := Y X := Y
X := (HEAD Y) X := first(Y)
X := {TAIL Y) X := second(Y)
X := {GONS Y 2) X := pair(Y,2)
"X := (ATOM Y) if Y MOD 2 # O
' then X := T else X := NIL
X := (EQUAL Y %) if Y = 2
: then X := T else X := NIL
return X return X
goto L goto L
if X goto 1.1 else L2 if X = NIL
then goto L2 else goto L1
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Corollary any LISPO program may be simulated by a register
machine.

10.4 A Simpler Version of the Register Machine

We now show that the register machine's command.setﬂmay be
drastically simplified without loss.of computational. power.

This simpler machine will then be shown simulable by a Turing
machine in the next section.

Lemma. For any register machine, there is an equivalent simple
register machine whose commands are. restricted to the following

.forms (where.X is a variable and L, M are labels):

X := X+1, X := X-1

goto L, if X = 0 goto L else M

Proof We show that the more complex commands can be simulated
by sequences of commands of the form above. First, X := 0 may
be accomplished by

while X # 0 do X := X - 1
or equivalently:
1: if X = 0 goto 4 else 2

2: X 1= x -1

3: goto 1

4:

Similarly X := 1, X := 2, etc. may be acceomplished by the
sequence above followed by "X := X+ 1" an appropriate number
of times.

The following sequence has the same effect as "X := ¥;

Y :=0": <
X := 0;

while Y#0 do [X := X+1; ¥ := ¥ ~1]
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In order to accomplish X := Y without the side effect of

setting Y to 0 we use a new auxiliary variable Z. Further, we
see that X := Y +2 may be done using the same idea:

e

1= Y = 2% := 0; while y#0 do [Y:=Y-1; Z := Z+1];
X := 0; while 240 do [¥:=¥+1; 2 := Z-1;
- X = X+1]
:= X+Y = - the same, but.without X := 0
t= Y+Z = [Xi:=.Y¥Y; X.:='X+2] .

. The following show how Y*Z, ¥ MOD 2 and Y DIV Z can
be computed; Y- 7 and 'Y**Z may be computed similarly:

=Y *zZ =W :=2; X := 03

while W+ 0 do [X.:= X +Y¥; W := W=1]
:= Y MOD Z X := ¥; while X>7Z do X := X -2
:= Y DIV Z W :=Y; X := 0;

while W> 7% do [W .:= W~2Z; X := X+1]

Now suppose one is given an unrestricted register machine
program. This can be converted to the desired form as follows:

1.

Replace tests involving <, <, >, > by tests of equality

‘with 0. For example, X<Y if and only if X ~Y = 0 (since

0-Y = 0 for all ¥, by our version of - ).

Add extra assignment statements if necessary so that as-
signment commands contain at most one operator, and all

expressions outside assignments are constants or vari-
ables.

- The resulting program can now be converted to the de-

sired form by substituting the sequences above for

X*Y, X DIV ¥, etc. a

Corollary Any LISPO program may be simulated by a simple re-

gister machine.

11.

TURING MACHINES

Szntax

A Turing machine program is a flow chart program as in 3.4.7,
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gpecialized to commands of the following simple forms:

Right - move read head right one sguare
Left - move read head left one square
Print a - print a on the scanned square
| goto L
if a goto L else M - if the scanned square contains a
then go to L, else go to M.
halt

A Turing machine's state consists of its control point (the

current "instruction counter”) and a tape

Ll * il *1j2T1j2(*]=]...

A

Consisting of a two-way infinite string of symbols, together

with a designated scanned symbol (marked by A in the diagram).

The tape's symbols lie in Avu {*}, where A is the Turing ma-

chine'’s input alphabet

and *¢A 1is called the blank symbol.

In practice every tape will contain * in all but a finite
number of symbols.

The commands given

above should be self~explanatory (a

more detailed description with examples may be found in

{Jon731).

consecutive ones.

Definition

In the following, 1% represents a sequence of x

Turing machine % computes a partial function

£: NO E N (on the natural numbers) if for any Kireoor¥y €N

(1)

if f(Xl,..,Xn)
configuration:

y and Z is started in the initial
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Lo.ow R Ee X2

A

Then it will eventually execute a halt instruction in

a configuration of the form

- anything * 1Y« anything -
A

(ii) if f(xl,...,xq) is undefined then Z will not halt if
‘'started in the initial configuration. o

Theorem If £: N° wis computable by a simple register ma-

chine, then it is also computable by a Turing machine.

Proof Let f be computed by a register machine program of
form

r = [read x1,...,% 1: Ci ... m: le

n’
By definition of simple register machines; each command
is of the form X := X+1, X:= X-1, return X, goto L or if

X = 0 goto L else M . Following the pattern of previous proofs,

we show how to construct from r a Turing machine Z which sim-
ulates r's actions step by step.

Let the variables of r be X;,...,X, (where n <p since

P
Xl""'xn contain the values of the input). A computational
state with X = ai,..., XP = ap will be represented in

standard form by the tape

T L I L O e

Ry

A

For the initial configuration, ai,...,2, come from input data
and Xp+l = ... = Xn =0 .

As in the previous section, we introduce some “macros"”
to abbreviate frequently-occurring command seguences, and

freely make use of PASCAL-like control structures. The tests
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in until and while are of course tests on the Turing machine's

" scanned symbol.

I. Right (*) move the scanner & to the first * to the
Left (*) right (left) of the current scanning
position
'Right(*) = until * do Right

Left (*) = until * do Left

II.. Shift changes configuiation
from ... anything;.a 1% % anything, ... {a = any symbol
5 - in AU {*})
to -+ anything 1% ¥ * anything,; ---
X po

Shift = Print 1 ; Right(?*);
Left ; Print * ; Right|

The Turing machine. is constructed frOM'ru%y replacing each
command by a segquence of Turing commands accbfdinq to the fol-
lowing plan: Recall that p is the number og r's. variables.

Command in r Command Sequence in Z .

Xi := Xi+1 shiftt (i.e., shift repeated i times);
Left ; Print1; -
Left(*)L -

X, i= X1 Right (*)1~'; Right;

if * then Left(x)*
else [shiftP 11 rese(+)P*1)

return X, Right (%) =
|goto L goto L
if X, = 0 Right (%)~ '; Right;
goto L .| if * then [Left; Left(*)%—1; goto L]

else M else [Left; Left(*)™™7; goto.M].

Correctness of the simulation is easily verified (analyze

. the z commands' effects on. a standard configuration), so the
. desired result has been shown. o

Corollary Every LISPO program may be simulated by a Turing

machine.
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12. COMPLETING THE LOOP

We have shown that, in spite of its extreme: simplicity, the
Turing machine can compute any function computable by LISPO
programs (provided the inputs are encoded in numeric form).
In this section we show that LISPO programs can .alsa simulate
ATuring machines, so that (modulo data representations),
LISPO, stack machines, register machines and Turing machines
all have the same computational power.

The technique we use resembles that in Section 4.2. During
the Turing machine's computation its tape will always be "al-
most everywhere blank", and so will have the form:

SR N D O I e N R

where each ay, bj EALU{*} and all symbols to right of a, og
to the left of bn are * . This will be represented by a LISPO
list

({(bo by ... bn) . {as a1 ... am))

Theorem Any Turing machine'proéram.can be simulated by a
LISPO program.

Proof Let;the'Turing méchine.program,be

t = read“xl}...xn; 1:Cy ; 2:C2 ... ; k:Ck

For the sake of simplicity we assume n =1 , so the initial
tape is of form.(p 1s.the. initial value of xi)r. i

=T = @ [« [+]...

© whose LISP0 representation.is thus the list
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The. simulating program will have form:

’Ff}(DEFINE Execute (x1).= {Run1 (CONS 'NIL x1)))
(DEFINE Runt (x) L=
(LET (b .a) x IN
(LET" (a0 . arest) = a IN .
(LET (b0 . brest) = b IN Bodyi))))
(DEFINE Runn (x) = RS
(LET (b .a) = x IN
(LET (a0 . arest) = a IN
(LET (b0 . brest) = b IN Body,)))))
(DEFINE Result(x) =
(LET (a0 . arest) = x IN
(IF a0 = '1 THEN (CONS '1 (Result arest))
ELSE 'NIL)))

:,where each.Tuning‘command.Ci corresponds to a LISP0 expression

_Bodyi"r.Simulation"of the: Turing commands is. straightforward:
1. goto L becomes (RunL x)

2. if sym goto L else M becomes

(IF b0 = 'sym THEN (RunL x). ELSE (RunM x))

.. halt becomes (Result a), which returns the. longest sequence
. of.1%s. which. starts a (recall the definition of computa-

tion at the. start of this section.)

“Right" in essence simply converts {b . (a0 . arest)) to
((a0 . b) . arest). The code is complicated by the possibility
" that a = NIL, resulting in the following. "Left" is analogous.

(Rung,, (IF a='NIL

THEN (CONS (CONS. 'NIL b) 'NIL)
ELSE (CONS(CONS a0 b) arest)
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VI.. REDUCTIONS BETWEEN.COMPUTABLE PROBLEMS

. 13.... USING. REDUCTION TO PROVE UNSOLVABILITY

" 'We have: shown in Chapter IV that

1. Run is LISPO computable, where for any LISPO program p
and input d

Run(p,d) = the result of applying p to 4 (if defined)

2. The "self~halting" problem SH is not LISPO computable,
where

T if: Runi{p,p) is defined
SH(p) =

NIL if Run(p,p) is not defined

This can be expressed in a different way, using the idea of
LISPO0~decidability from Section 6.4:

Theorem. The folleowing sets are not LISPO decidable:
HALT

1]

{p | Run(p,p) is defined}
{ (p~Q)' | Run(p,d). is defined}

it

‘ (Hote: we have used the same.names for these sets as for
"' the functions they correspond to.)

In’ fact a great many decision problems about LISPO pro-
grams- are not LISPO decidable. This. implies by the Church-
7‘Tu:ing~thesis that they are not decidable .in any intuitive
hmgggseneither. In the rest of this material we will just say
ifdgé;dable" and not LISPO decidable.

The argument for the incomputability of SH.was somewhat
7féuﬁtle. In. order to avoid having to duplicate the reasoning
Vzwe.introduce a new technique: of reducing one problem to an-—
<.0ther.
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Definition Let A and B be two sets (i.e. decision problems).
We say that A is (LISPO) reducible to B, and write A<B , if
there is a.LISPO computable total function £ such that for
all arguments )

.a€A. if and only if f(a) €B [}

. The definition implies immediately that

1. If A<B and B is decidable then A .is decidable.

2. If A<B and A is undecidable.then B is undecidable

In case 1, an algorithm. to.decide. membership in A can take
the following form, where a is an arbitrary input:

compute b = f{a) ;
if b€B then return T
else return NIL

Case 2 is simply the contrapositive form of case 1. We-
now apply problem reduction to several natural questions: about

program behavior.

Theorem None of. the following sets- is. decidabler

SH = {p | Run(p,p) is defined}
HALT = {(pd) | Run{p,d). is defined}
HALTNIL = {p | Run{p,NIL). is defined}
EMPTY = {p lRun(p,xi is not defined for. any x}
ALL. = {p | Run(p,x) is defined for all x}
= {(px;L:IVx.Rnnlp,x).= Run (q,x)

EQUAL. ’
’ {i.e. both are undefined or both
are defined and equal) }

Proof bndecidability of SH and HALT have already been shown.

" We.will first show.that SH < HALTNIL, thus establishing the

undecidability of HALTNIL. By the definition of reduction, we
‘have to exhibit. a LISPO. computable function such that for any-
' .

© the: LISPO program which yields T for all input:

,SH\i EQUAL and so EQUAL. is undecidable. By 3,

: ,{p Lax,Run(p,x) is defined}, so NONEMPTY is undecidable. Now
o -2 E-EMPTY were decidable,

- T and NIL).
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LISPO program P,

PE€SH if and only if f£
vords {p) € HALTNTL.

In other

P halts on p if f(p) halts on NIT

This can be done as follows. Let P have fornm

P = ((DEFINE P(x) = vee)aal)

Now construct program q = f(p)

9 = ((DEFINE Q(y) = (HEAD (CONS. 'T (. 'p)))
(DEFINE P (x) )

ced)ll)

Clearly g ignores its input,
self. Consequently g halts on NIL
and only if p halts on p, or symbo

and tries to apply p to it-
input (with T ag output) if
lically:

PESH » f(p) € HALTNIL »

Program gq = f(p) is obviously easy to construct from
so f is LISEO computable. Thus SH < HALTNIL e
bi;ity of SH implies. that HALTNIL.ZS alsoc
Surprisingly,
other sets.

» and the undecida—
undecidable.
.the same construction can be used for the

The following are trivially true, where "ANY" is

1. p€SH » f(p) € ALL

2. PESH = (£(p) ANY) ¢ EQUAL

£: p € SH e £{p) ¢ EMPTY

,By 1 SH < ALL so ALL is undecidable.

B The function taking
P to the list (f(p) ANY)

is clearly LISPO computable, so
SH < NONEMPTY =

- the LISPO program which decided it
could be trivially modified to decide NONEMPTY (by reversing

contradicting the undecidability of NONEMPTY. g

The constructions above all have a program p as input. A

: ‘natural question is whether it is the variability of p which
g?leads to undecidability? or put in concrete terms, '

is there

;a”fixed program p, whose halting problem is undecidable? It

urns.-out that the answer is yes.
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Theorem There is a program Dpg such that the following is an
undecidable set

HALTb; = {x | Run{po,x) is defined}

Proof Let pg = SI, the "self-interpreter” of Section 7.
Then

Run{pe, (pd)) = Run(p,d)

for- any program.p and input d. Thus.HALI==HALde,for this po.
so HALTb_ is.undecidable for.at least one fixed pg. a
o .

14. UNSOLVABLE PROBLEMS CONCERNTNG CONTEXT-FREE ‘GRAMMARS

We now use the reduction method to show that a well-known prob-
lem concerning syntax analysis cannot be solved by computer.
Specifically, we will show that it is undecidable whether a
context-free grammar is ambiguous, that is, whether at least
one of its generated strings has two different parse trees.
First we describe Post's Correspondence Problem; or'PCP‘
for short. This is a very well-known problem. which. is easy .
to describe but which nevertheless cannot be solved algo—
rithmically. We will show here that the.PCP problem can be
reduced to the ambiguity problem. . Consequently,. if one could.
solve- the: ambiguity problem.algorithmically, one: could also
solve PCP algorithmically. Since this. is known to be impossible
ambiguity cannot be solved algorithmically either. *

Post's Correspondence Problem-

Given tw0'arbitr;ry sequences,(xl,xz,...,xn) and<(yl,y2,...;jn)

.. of nonempty strings. of symbols.from. some alphabet A, the
problem is

To Determine whether or not there is.a nonempty sequence of
integers i1,iz,...,ik such that

X,  X. ene X = yl ¥

iy "1z ik T yi

i, *1i, k
Such an index sequence is called a solution to the corre-
spondence problem.
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' Examples (all with A = {a,b}).

1. i 1 2 3
3 2

X b ab b
¥y b2 bab? a’p?

One solution.sequence is 1,2,% since xixpx;. = bab*. =’

Yi¥z¥:
25 i 1 2 3 4
X a b2a a’p ab
Yy ba a¥ b bla

Each paix (Xi’ yi) begins with different letters, so no solu-
tion is possible..

Theorem Post's Correspondence Problem .is undecidable.

Proof outline: We have shown that the halting problem for
LISPO programs- is undecidable. This implies that

TMHALT = {(r,n). | r is a guring machine which halts on
input 17}

ig also undecidable. To see this, recall that we showed in

Section 11 that any LISPO-program can be simulated by a Turing

“machine.. If TMHALT were decidable then the LISPO halting prob-
‘flem on empty input could be decided in two steps, by first
‘constructing an equivalent Turing machine program r and then

" deciding whether r halts on an empty input tape. )

_Given that TMHALT is undecidable, PCP is shown undecidable

" by the reduction method of the previous section; one shows.

TMHALT < PCP

Specifically, one can show that given any Turing machine

‘program.r, it is possible to construct a PCP problem which has
a‘solution if and only if r halts. on an empty input tape.

The details of the construction are somewhat involved, so

.we refer the interested reader to [Bir767. a '
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5% ‘ Theorem The following two sets are undecidable: . such that
AMB = {G |G is an ambigquous context#free grammar} x= xil "xik, = Yil "y;k * 8

INT = {(G1,G2) | G1,Ga are context-free grammars with

3 . L(G1) A L(Gy) + 9} i In other words, this PCP problem has a solution if
i

X U LAGL) NL(G,) ¥@. The converse is immediate, so
Proof We show that PCP < AMB and PCP < INT; undecidability s

- follows thereby from the undecidability of PCR. Recall that.
_ the input data to PCP is. a pair- of sequences of strings

f‘(/-(xll'O.';l“xn)l (Yl,-..,yn)) € PCP iff (Gl,Gz) € INT:

- ‘3_ Consequently PCP < INT, and so INT is. undecidable. -
C We now wish to show AMB undecidable, and do this by showing

X1seeerX and o X, . € A*
(x1, 4 n) (¥, 'Yn) ( i7Y3 ) PCP < AMB. The goal is thus to show that, given two sequences

N1 We first show how one, if given xl,...,xn,yl,...,yn', ;(X1,,-.,xn) and (yl,...,yn), one can construct a context-free

can construct two context-free grammars 'Gi1, G, such that grammar G which is ambiguous if and only if

| L(G1) A L(G;) + @ if and only if =L N T T 7
: ig iy i

311,12,...,ik (x, %X, ... x, = yilgy

i; Ti, ip i, Yik)

'~ Construction G has productions
: H';!’ Construction Let G,, G, contain the following productions,

1 . .
| t
; t where c is a symbol not in A S>ata for every a €A
( { S - F
e Gy : S - aEa for every symbol a €A BE~>q, E-»aREa for every a€a
' : F->c, F>xFy;
i E = 1
?11-_:* E-+aEa for every a €A
. f v It is clear that L(G) = L(G;) U L{Gy), and that a string
. !f, ..z’ €A* has two parse trees if and only if it lies in both
L Gp : F o»c .  LiG1) and L(G;). Consequently G € AMB if and only if
| g R B vf(Gl,Gz) € INT, which we have just seen to be true just in case
F -».x, F y. for i =1,2,...,n (Note: P )
1 kS R . the given PCP has a solution. Consequently PCP < AMB. Since
"X = x written backwards) o . , T
-~ PCE' is undecidable AMB must thus also be undecidable. a

It is quite clear that-

LG = (B cx| xea}

R R
{xik{,- X, © ¥, ¥

(U

L(G ) 1o e ¥y !

il,iz,b.-,ik is an index sequence}

Clearly if L(Gi) N L(G,) # @ then there exists a string

R _ _R R R
xXTe x =x" ... IR TS SRR

1 1

Y
X tx
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Example
PCP-problem: i 1 2 3
x5 bbb ab bb

Yy bb babb | aabb

.Corresponding Grammars:
Gy: S ~aEa | bEDb

E-c | atEa |l bED

Gy F - c

F - bbbFbb = leFY1
F - baFabb = XzRFYz
F - bbFaabb = stFyg

A Solution Sequeﬁce: 121

Y,¥,¥, = (bb ] babb [bb]

= X;X,X, = [bbb [ ab | bbb]

Two Derivations for (xlxle)Rcylyzyl:

s
!
E

[ Rt B o B o B o B o B

=
//"/
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:z‘Remarks
‘1. The arguments above prove that there are no algorithms

whatsoever which can solve the ambiguity problem. for con-
text-free grammars.

"2, But.then what about parser generator systems such as YACC
and BOBS? According to [AhU77] (example 6.8) every SLR(1)
grammar is unambiguous. Further, it is quite clear that it

. is decidable whether a grammar is SLR(1).

This apparent contradiction is not a real one,. because not
all unambiguous grammars are SLR(!). The great advantage of the
 SLR(1) class is precisely this: it is simultaneously a class

1..which is large encugh to include most of the natural gram—
mars used in programming languages

“2. which contains only unambigous grammars (and this is essen-
tial for practical use)

3.. whose membership problem "is G SLR({1)?" can be decided with

in reasonable computation time.

All Context-free Grammars

unambiguous

Undecidable

bbbbabbbcbbbabbbbbbbbabbhb c‘b bbabbbb
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..~ lambl: see updating-.
““7.a  see list representation
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i cartesian product 3
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" CBV--23, 24

" Church-Rosser-theorem 22
_# Church-Turing thesis. .58, 73

.closed lambda expression 17
closure 31
coding lists as numbers 78
compilation algorithm 46, 54
~“compiler 41, 45, 47
.. completeness property 25
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. .computable function 66
. 'conditional reduction
‘* CONS. 10, 60
context-free grammar 92
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‘decidable 57, 66, 70, 89, 90
decidable set 66

DEFINE 60

denotational semantics 20
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environment 11, 30, 36
EQUAL. 10, 90

equation .systems 13, 27
Eval 63

extended.common syntax. 33

\
| 1~ T V
; EMPTY 90 »
net effect property 48, 50
NIL 9, 60
|
| pérétional semantics 30
rder of evaluation 21

: first 77

. . fixed-program semantics 30
flow—-chart 13, 31

- frame . 39,. 47, 56

i - Frame 48

pair 77

pairing functions 77
‘“parallel evaluation 14, 22
vl partial 2

© . pascal 39

function 2

function application 16
function .calls 50 '

- ‘pattern 23
[ pattern-expressions 65

PCP 92-95

p~eval(p) 1
- PHALT. 70
U p-input (p) 1

7. ' Post correspondence problem 92-95
I p-output(p) 1

' programming language 1

"'program state 31

HALT 70, 89, 90
halting problem 57, 58, 70, 73
HALTNIL 90

HEAD 10, 60

higher-order functions 5
Y HOPE. 14
|

IF 61
imperative- 13
index 99
INT 94, 95

o QUOTE. 61

v - recursion equations:. see equation systems

" 'recursive systems of eguations: see equation systems
interpreter 20, 41, 69 2 .
interpreter help functions 37, 38 - reductio .ad absurdum- 71

. - reduction 18, 19, 20, 58, 89, 90, 92

.. ‘register machine 77, 81
" restriction on substitution 21

i Returnstack 48, 50

iteration 15

lambda calculus. 13, 15, 18, 58

lambda. notation 7 ”{run 63, 89

LET 65 § .__gggfs,4é, program) 34
LETLISP 43 - Runy.

LISP 9, 14, 43

LISPO. 57, 60, 67, 74, 82
LISPO-computable 67
LISPO-decidable 67

" ‘scanned symbol 83
.~gscopes of names 16, 17, 28
"second. 77
: ) «.selection functions 77
list machine 74° ’
list representation 79 i~ self-halting problem 70
- »'self-interpreter 67, 68
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~semantics 8, 10, 28
semantics: equation systems 28, 30
semantics: flow charts 34
semantics: lambda calculus 24
~semantics: LISPO 60, 64

semantics: Turing machine 83

memory 31 :
metacircular interpreter 69
metalanguage 20
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simple register machine 81
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simulation: simple.register machine by Turing machine 84

simulation: Turing. machine by LISPO 86
éingle—stack algorithm 56
single-valued 2

SLR(1) 97

specialization.l: numeric. computation 33

specialization 2: list .computation 34

state 18, 31, 48, 56
store 31, 36
substitution. 12, 21

syntactic sugar 64
syntax: equation systems 27
syntax: extended flow chart.common 33

- syntax: flow charts 32

syntax: lambda calculus 16
syntaxs: LISPO 62
syntax: Turing machine 83

TAIL 10, 60

" tape. 83

TMHALT 93
total 2

translation: flow charts. to equation systems
translators: see compiler

Turing- machine 58, 70, 83, 93
type 3

type expression 3
types of expressions 6.

undecidable: see decidable .

‘unsolvable: = see decidable
_unsolvability of halting problem 70

updating' 8

Valuestack 48
variable binding 49

YACC 97
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abandoned

reviation
ssible
l~encompassing
splication
plicative language

:  bootstraps

‘ééilrby—name
call-by-need

.. call-by~value
- .captured
 ‘.compatability
: concatenation
“concept

- context
-continuation

. decidable
Y denote
" dichotomy

" environment
~evaluation

i‘fiowchart

 Eaiting problem
Aj;imperative language
~implies

3"né;—effect
;éperational semantics
..property

fécope‘
"étate—transition

{ﬂunsdlvability
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brudt

forkortelse

mulige

altomfattende

anvendelse, funktionskald
funktionsbaseret programmerings-—
sprog
grundsymbol
undgd

stgvlehank

navneoverfgrsel

parametre beregnes kun hvis der
er behov for det
verdioverfgrsel

fanget

beregnelighed

sammenkadning

begreb

sammenh®ng, omgivelser
fortszttelse

afggrlig
betegne, vare symbol for
tvedeling

omgivelser
udregning

rutediagram
standsningsproblem

sprog med tildelingssatninger
medfgrer

netto effekt
operationel semantik

egenskab

virkefelt, omrade, hvor variabel-

navn er kendt
tilstandsovergang

ulgselighed
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