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Abstract

Corner detection plays a central role in many image analysis applications ranging from character recogni-
tion to landmark identification. We study the isophote curvature times the gradient magnitude to some
power as measures of cornerness and we focus on tracking of extremal points of these measures across
scales. We conclude that annihilations and creations generically occurs, implying that corners in general
cannot be tracked to arbitrarily fine (or coarse) scale. The analysis indicates that isophote curvature
times the gradient magnitude is best suited for binary images.

Keywords: Corners, Catastrophe Theory, Singularity Theory, Isophote Curvature, Gradient Magnitude,
Linear Scale-Space, and Character Analysis.
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1 Introduction

Corner detection plays a central role in many image analysis applications ranging from character recog-
nition to landmark identification. The literature on corner detection roughly divides into two classes.
Some use explicit models, see e.g. [11] for an overview. Others use derivative expressions like the Gaus-
sian curvature, the structure tensor (interest operator, second moment matrix), expressions involving the
isophote curvature, and the curvature of Canny edges, see e.g. [12] for an overview.
One subclass of the latter is corners defined as the isophote curvature times the absolute gradient
length to some power a:
C = |VL|"k = L% ' Ly, (1)

where w is the gradient direction and v is the (perpendicular) tangent direction of the isophote in a right
hand coordinate system (w,v). Kitchen and Rosenfeld [5] suggested to use a = 1, Zuniga and Haralick
[15] proposed a = 0, and Blom [1] and Lindeberg [6] investigated a = 3.

The advantage of using a corner measure with a > 0 is that the product will focus on high isophote
curvatures close to high contrast edges. There are two special values of a that deserve a note: a = 0 is
invariant under monotonic transformation of the image intensities (morphological invariance), and a = 3
is invariant under affine transformations (the angle of the corner).

We will investigate the above subclass of corner measures in an embedded Gaussian Scale-Space (see
[14] and the references therein):

L(z,t) = G(z,t) * L(z)

where the original image L(z) is convolved with a Gaussian G of variance 2t.

The advantage of such an embedding is that it reduces the grid and noise effects and allows for a
uniform analysis of corners of all sizes or resolutions. The disadvantage is that the corners are dislocated
at high scale and should be traced back to low scale in order to improve their location. We will show that
this process — although common in the literature — is problematic due to the complicated catastrophe
structure across scale.

We will sketch the catastrophe structure in two different settings. Firstly, by examining the spatial
singularity structure of the corner measures. However, Rieger [9] noted that such corner points usually
do not correspond to corners of Canny edges. Therefore in a second approach we will extend Rieger’s
analysis of corners on Canny edges to edges defined as single isophotes.

Related to this work in terms of Catastrophe Theory is Damon [2], Rieger [9, 10], Griffin & Colchester
[3], Olsen [7], and Johansen [4].

2 Image structure

Assume a multi-scale 2D image L(z, y,t) : R? x IR — IR, where z,y are the spatial coordinates and ¢ a
scale parameter. We are interested in spatial point features defined as the intersection of zero loci of two
differential expressions: A(z,y,t) = 0 and B(z,y,t) = 0. In our case of corners, this may be A = 9,C
and B = 0,C, where C = |VL|%k, a € [0;3], or in the case of corners constrained to a single isophote:
A=L-1Iyand B = 0,C, where I is a given isophote value. We analyse the scale-space curves satisfying
A = B = 0. In the scale-space points where the tangent of the curve is not pointing directly in the scale
direction, we may introduce a local parametrisation of the curve

A(z,y(2), t(z)) = 0, B(z,y(z),t(x)) =0

such that it is identified by the two scalar functions y(x) and #(x). By differentiation with respect to x
and solving a linear system of equations, we obtain:

. A,B, — B A,
AB, — A,B;

The denominator is only zero when the tangent of the curve points in the scale direction, and we find that

the curve is horizontal only when the numerator is zero. These horizontal points corresponds generically

to two curves that meet at one scale yielding an annihilation or creation of a pair of feature points.
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Whether it is an annihilation or creation for increasing scale can be accessed through the sign of ¢.,:
negative for annihilation and positive for creation. If the second order structure t,, vanishes, we get an
event of even higher order.

The Gaussian scale space image satisfies the heat equation (0; = ), 0z,z;), changing the general
program of catastrophe theory slightly [2]. To describe the local jet in space and scale we develop the
image in heat polynomials, i.e. polynomials satisfying the heat equation. In 1D they can be generated by
the following recursion formula

Un = TVp—1 +2(n — Dtvp—2, wvo=1, v ==zx.

A local polynomial model of the 2D image may then be constructed from the jet (the local derivative
structure) as

L = agovo + a10v1(z) + anvi (y) + agov2(x) + anivi(z)vi (y) + ..,

where the a’s are constants proportional to the spatial derivatives in (x,y,t) = (0,0, 0) by factorial factors.

Given L, we compute A, B. We count the linear constraints on the jet (the a’s) to be satisfied for a
given event to happen. In general we have 3 translational degrees of freedom of the coordinate system so
that in a generic image we can satisfy linear constraints on three different coeflicients. Furthermore we
can choose the spatial rotation of our coordinate system freely to simplify expressions.

We have analysed the corner definitions outlined above. In all cases, the curves have generically points
at which the curve’s tangent has no scale component and second order curve structure such that both
creation and annihilation will generically happen. On top of this, the case a = 3 has higher order events
happening in critical points of the image, but they are of no interest when considering maxima of |C|
since C' = 0 here. The events for critical points in C' are the approach of a saddle to a minimum or
maximum. The events for the isophote constrained measure is that a minimum on the curve meets a
maximum. In both cases, there is no constraint on whether minima must be positive or maxima negative
or vice versa. Hence we can conclude that both annihilation and creation happens generically involving
maxima of the absolute value of C. The implication of this is that tracking a corner over scale can only
be performed over an open interval of scales. At scales outside this interval, the corner does not exist. In
Figure 1-3, we have shown the critical points of C' on the letter ‘c’ over scale for the four different corner
measures.

3 Experiments on Characters

The experiments we have performed are on binary images of characters. The quantisation implies that
the images are non-generic at lowest scale but will behave as a generic image, when the scale is increased.
This further implies that edges (L, = 0) initially will be close to the mid-isophote (midway between
light and dark), and we may hence approximate their behaviour as the behaviour of the mid-isophote.
This also suggests that the image will evolve initially according to Eucledian Shortening Flow, since the
isophotes evolve according to 0:S = (/<a + LL‘”—ww)]\_f in Linear Scale-Space, where S is an isophote, « is its

curvature, and N is its normal [8]. We will thus expect creations to be high scale phenomena.

In Figure 1-4 some experiments on the letter ‘c’ are shown. From these experiments we observe that
both the spatial extremal and the single isophote approaches display similar behaviour w.r.t. the following
points: Creation events occur, localisation is poor at high scale, and finally, the number and localisation
of critical points at low scale is similar for all a, but the evolution is very different.

Conversely, the spatial extremal approach is very sensitive to noise with respect to the topology (notice
the shear explosion in critical points in bottom box of Figure 1 in comparison with the top box). The
single isophote approach is so stable that we have chosen not to display the noisy version of Figure 2;
there was no visual difference.

Finally, we conclude by Figure 4 that when the corners of a single isophote are ordered according
to their absolute strength, varying a changes this ordering. Notice especially that the peak at approx.
arc-length 40 is practically removed when @ is increased while its neighbour at approx. arc-length 20
becomes the dominating corner point for a = 2.



4 Sporring, Nielsen, Weickert, and Olsen: A Note on Differential Corner Measures

Figure 1: Two experiments evaluating the critical points of the image of ‘C’ for a = 0, ...,3 reading from left to right
and top down. Top box is for a noiseless images while the image in the bottom box has artificially been corrupted by the
addition of normal distributed noise of mean 0 and standard deviation 5.
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Figure 2: The critical points of the mid-isophote of ‘C’ for a = 0, .. .,3 reading from left to right and top down. A zoom
is given in Figure 3.

4 Summary

We have studied the family of corner measures k|VL|* for a € {0,...,3} embedded in Gaussian Scale-
Space. Two approaches have been used: The catastrophe structure of both the spatial extrema, of the
corner measure and the extrema along an isophote.

For both approaches we have concluded that the value a = 1 seems to be the simplest with respect
to the number of catastrophes. Especially for a = 0 many catastrophes appear.

Finally, the isophote approach has been shown to shift the focus away from high isophote curvature
points for a > 1. The resulting corners do not correspond well with intuition.
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Figure 3: Stereo pairs showing a zoom of the lower part of the ‘C’ from Figure 2 for a = 0,...,3 reading from top to
bottom. Note the significant difference in the catastrophes
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Figure 4: L2 Ly, for the letter ¢ at ¢ = 61.8 and for @ = 0,...,3 reading from left to right and top down. For the
isophote curvature (e = 0) the arc-length functions begins on the outer side of ‘c’, reaches the sharpest corner corresponding
to the maximal peak, travels along the inner side of ‘c’ yielding negative curvature and reaches the onset of the outer part
again at approximately arc-length 90. The same arc-length function is used for the other corner measures as well.

[4]
[5]

[6]

[10]

[11]

[12]

[13]

[14]

[15]

Peter Johansen. Local analysis of image scale space. In Sporring et al. [13], pages 139-148.

Les Kitchen and Azriel Rosenfeld. Gray-level corner detection. Pattern Recognition Letters, 1:95-102,
1982.

T. Lindeberg. Scale-Space Theory in Computer Vision. The Kluwer International Series in Engi-
neering and Computer Science. Kluwer Academic Publishers, Boston, USA, 1994.

Ole Fogh Olsen. Multi-scale watershed segmentation. In Sporring et al. [13], pages 191-200.

S. Osher and S. Sethian. Fronts propagating with curvature dependent speed: algorithms based on
the Hamilton-Jacobi formalism. J. Computational Physics, 79:12-49, 1988.

J. Rieger. Generic properties of edges and “corners” on smooth greyvalue surfaces. Biological
Cybernetics, 66:497-502, 1992.

J. Rieger. Generic evolution of edges on diffused greyvalue surfaces. Journal of Mathematical Imaging
and Vision, 5:207-217, 1995.

Karl Rohr. Modelling and identification of characteristic intensity variations. Image and Vision
Computing, 10(2):66-76, 1992.

Karl Rohr. Localization properties of direct corner detectors. Journal of Mathematical Imaging and
Vision, 4:139-150, 1994.

Jon Sporring, Mads Nielsen, Luc Florack, and Peter Johansen, editors. Gaussian Scale-Space Theory.
Kluwer Academic Publishers, Dordrecht, The Netherlands, 1997.

J. Weickert, S. Ishikawa, and A. Imiya. On the history of Gaussian scale-space axiomatics. In
Sporring et al. [13], pages 45-59.

O. A. Zuniga and R. Haralick. Corner detection using the facet model. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, pages 30-37, Arlington, VA, USA, June
1983.



