
Terminator II:
Stopping Partial Evaluation
of Fully Recursive Programs

Master’s Thesis

Arne John Glenstrup

June 13, 1999

Technical Report DIKU-TR-99/8
Department of Computer Science
University of Copenhagen
Universitetsparken 1
DK-2100 Copenhagen Ø
DENMARK��������� �	��
�
�
�
 ��� ����
 ��������������� ���������! "� �	���$#	�$%&% �

This report has been typeset by the author using the LATEX system with the following packages:��' ' ���
,
��)(*($+, .-

,
�, /($�$�10��

,
�,��+�(�� 23�

,
�,������� �$�

, 4 #	��� 4 � , 5 #����$����� , � ���,�60 , � �,�����$����� , ' ���$�60	($+, ,
' � (*�7� ��8	(

, /�����	' � 8	(
,
(1��#��9��:,�!-

,
�����3#��&��

,
:����;� #��&� 5 and

0�+
.

The main text is set in 10 point Palatino. Sans serif and typewriter fonts are the standard
Computer Modern typefaces of the TEX system. Small text is set at 9 points, and footnotes are
set at 8 points. Special math symbols, Greek and calligraphic letters are from the standard TEX
math typefaces.

Abstract

This paper presents a novel way of detecting termination for a large class of
programs written in a functional language. The method includes, but is not
restricted to, detection of decreasing values under lexicographic ordering,
and can thus prove the termination of Ackermann’s function.

Assuming the existence of a well-founded ordering of a value domain we
present an algorithm, utilising efficient graph operations, that first detects
variables of bounded variation, and then uses information about successively
decreasing values assigned to some of these variables to establish termina-
tion.

We show how an extension of this technique to partial evaluation can
be used to ensure that specialisation terminates when all variables are of
bounded static variation and appropriate specialisation points are inserted.
This can pose a tricky problem when the result of nested calls cannot be clas-
sified as static due to specialisation points. We solve this in an elegant way
by recording sufficient information necessary to undo previous boundedness
classifications without recomputing costly graph operations. In contrast to
previous methods, our insertion of specialisation points is not based on a
general heuristic (like e.g. “insert specialisation points at all dynamic condi-
tionals”), but rather on a safe approximation and an “insert-by-need” strat-
egy. Experiments have shown that the method works well on interpreters,
which are of prime interest for partial evaluation.

The algorithm for detecting termination has a worst-case complexity of
O < p3 = , where p is the program size, but for typical programs it is expected to
be at most O < p2 = . The insertion of a small set of specialisation points during
the binding-time analysis has exponential worst-case complexity, due to the
need for considering all combinations of recursive call sites. This indicates
that future research should address this problem in more depth.

2

Preface

This thesis is submitted in partial fulfillment of the requirements for a Dan-
ish Master’s Degree. The supervisor for the project has been Professor Neil
D. Jones at the Institute of Computer Science of the University of Copen-
hagen (DIKU). Part of the work was done while visitng the Hitachi Ad-
vanced Research Laboratory (HARL) in Japan in 1997, although the main
body of the text was produced in the period July 1998–March 1999. All
work except the prototype implementation has been made by the author, al-
though many ideas and formulations have constantly flowed back and forth
between Neil D. Jones, Jesper Jørgensen and the author.

Acknowledgements

I would like to thank Professor Neil Jones for devoting a lot of time to super-
vising this project. His sense of direction in partial evaluation is invaluable,
and his indefatigable insistence on expositional clarity is the main reason you
may find the following text comprehensible.

Peter Sestoft was the external censor of the project, and I am grateful for
his detailed comments which pinpointed several small mistakes and at least
one major blunder on my part.

Thanks also go to Professor Masami Hagiya at the University of Tokyo and
Akihiko Takano at Hitachi, Japan, for their hospitality and great help, both in
professional and practical matters, during my stay in Japan 1996–1997.

Special thanks to Jesper Jørgensen for undertaking the arduous task of im-
plementing the ideas in a prototype, for swift responses on bug reports, and
for deep and insightful technical and theoretical discussions.

Thanks to Peter Holst Andersen for pointing out when matters that I
thought were trivial were not so trivial, and for commenting on drafts of
the paper. Also Manuvir Das has been kind in answering a lot of technical
questions concerning his PhD work.

I greatly appreciate that Tommy Højfeld Olesen took time out to cut his
finger (!) and rigorously read the introduction. It is to him, Martin Koch and
Finn Schiermer Andersen you should send your kind thoughts if you find the
introduction particularly clear and readable.

3

Although all these people helped me remove errors and obscurities, those
that remain are solely my responsibility.

June 1999
Arne John Glenstrup

Contents

1 Introduction 8
1.1 Informal introduction to the algorithm 8
1.2 Termination of off-line partial evaluation 17
1.3 What is new? . 22

2 Background 26
2.1 Focus . 28
2.2 Static-infinite computations . 29
2.3 Static errors due to over-strictness 31
2.4 Conditional C specialisation termination 32
2.5 Termination of term rewriting systems 34
2.6 Termination analysis using term orderings 35
2.7 Termination of logic programs 36
2.8 Termination of on-line partial evaluation 38

3 Language 40
3.1 Syntax and notation . 40
3.2 Semantics . 41
3.3 Big-step semantics . 48

4 Call Paths 50
4.1 Call path grammar . 51
4.2 Subpaths . 52
4.3 State transformers . 52

4

CONTENTS 5

5 Capturing Parameter Dependency 58
5.1 Material dependency . 59
5.2 Capturing size dependency . 61
5.3 Safety of size approximations 63
5.4 Concrete size approximations 68
5.5 Composing dependencies . 74

6 Determining Boundedness of Parameters 76
6.1 Bounded variation . 76
6.2 Detecting BV by domination . 78
6.3 Detecting BV by anchoring . 81
6.4 Program termination . 97

7 Extension to Partial Evaluation 100
7.1 Bounded static variation . 101
7.2 Capturing dynamic dependency 101
7.3 Detecting bounded static variation 104
7.4 Inserting specialisation points 105
7.5 Cascading specialisation point consequences 107

8 The Entire Algorithm 112
8.1 Soundness . 114

9 Implementation 116
9.1 Data structures . 116
9.2 Complexity . 117

9.2.1 Complexity of the analyses 118
9.2.2 Improving semi-ring computation speed for >@? nodes . 127

9.3 Results . 131

10 Conclusion 138
10.1 Current work . 138
10.2 Related work . 138

10.2.1 Pessimistic vs. optimistic BTA 141
10.2.2 Partial evaluation of interpreters 141
10.2.3 Proving termination by lexicographic ordering 141

6 CONTENTS

10.3 Future work . 144
10.3.1 Extensible loop anchoring 144
10.3.2 More precise size dependencies 146
10.3.3 Other extensions . 147

10.4 Conclusion . 147

References 149

A Partial Evaluation Semantics 163
A.1 Two-level syntax . 163
A.2 Partial evaluation semantics . 164

B Examples 172
B.1 Basic data manipulation . 172
B.2 Simple functions . 187
B.3 Sorting . 189
B.4 Larger algorithms . 191
B.5 Interpreters . 203

C Detailed Results 212
C.1 Termination analysis . 212
C.2 Binding-time analysis . 232

Chapter 1

Introduction

In this paper we present an algorithm to detect termination of deterministic
programs written in a functional language. The algorithm is itself terminat-
ing and sound, and must therefore be conservative, yet it is able to detect a
fair class of terminating programs, including, but not restricted to, programs
that terminate by virtue of a simple lexicographic ordering of function argu-
ments.

We will assume the reader has a basic knowledge of computer science,
and in parts concerning partial evaluation a basic knowledge of this sub-
ject (similar to that presented by Jones, Gomard, & Sestoft, 1993) is also as-
sumed.

1.1 Informal introduction to the algorithm

Later, we will formally develop the termination detection analyses, but as an
example of how the algorithm works, we will first consider the following

Example 1.1 (Termination of a A�BCBED program interpreter)
Given a small functional language, A�BCBED , with constants, variables, let-
expressions, conditionals and function calls, where a program consists of a
list of functions taking exactly one argument, including a start function FHG@I&J ,

8

1.1. Informal introduction to the algorithm 9

we construct an interpreter for this language as shown in Figure 1.1 on the
following page, where KML�NPO and Q1R are list constructors, KMS�T and K�>MT return
the head and tail of a list, KMSM>US@TWV is short for K�S�TYX	K�>MTYX	KMS@TZV�[\[etc. The
recursive calls to]�^_SM` have be split into three classes according to how the
arguments increase or decrease:

In]�^_S\` a calls, parameter ` decreases
In]�^_S\` b calls, parameter ` is unchanged; parameters NPO and ^�O increase
In]�^_S\` c calls, parameters ` , NaO and ^�O are unchanged

The interpreter, written in a dialect of LISP, is started by calling the function
T�b\N with the program to be interpreted (?), a list whose length limits the
call depth (`)1 and the interpreted program’s input data (>). For example, to
reverse the list c dMeUf!g�h_f;g�hUf d_f9eUf d�eji one can invoke the interpreter by

T�b\NkX,FHG@I&Jmljnporq�GMs9sut!v�wxv�t!nyvEljn
t!v�wxv�t!nyvEljnHozI {|J�}Ms9s�ljn�~	��v@J�c_i

v�s n�v�q,GMs9s\GM����v@Jx���6q��_JxnE��q�GMs9sut!v�wxv�t!nyv���q��_t�lxn��y�Ec9q,G@taljn3i*�
GM�M��v�Jj��lxn|�xnHozI {|J�}Ms9s�ljn�~	�xv�J��xn

v@s nyv�q��uJ�nE��q�G�t�lxn��H��q,GMs9s\GM����v@Jx����q,�utPljn����xn��E[
Q	�P���P���P���a���P���xR�c d�eUf!g�h_f;g�hUf d_f9eUf d�e�i

As the call depth is limited by the length (here 6) of ` , the interpreted
programs compute primitive recursive functions. Furthermore, as the inter-
preted programs terminate, so does the interpreter, and we can detect this
automatically by examining the data flow of the interpreter.

First we can compute a “safe approximation” of the size (i.e. the number
of cons nodes) of the return values of functions in ���_�����_��� , compared to
those of their parameters. Nontermination stems from parameters that take
on unbounded values during evaluation, and termination is guaranteed by
decreasing parameters, so if we view an expression as a “value transformer”
operating on the values of its free variables, we are interested in two kinds
of effects it can have on them:

1Having a call depth limit is not natural for an interpreter, but for the sake of this example it
ensures termination.

10 Chapter 1. Introduction

T�b\N�?z`�>���]�^_SM`�X�`@�M��LM>� ¡FHG@I&J¢?�[X�`u£\Oj¤�X�`��M?�S�T�¥¦FHG@I&J§?�[\[¦X�`_£\Oj¤Z>�[¨`©?
]�^_S\`�]¨NPO¨^�OW`¨?ª�

case] ofK «¬KV «�`@�\^_S�T�V�NaO¨^�O��SuO@]�­@N¡] 1] 2 «�S�?M?�`� ©��SuO@]�­@N®X�]�^_SM` c] 1 NaO¯^�OW`¨?�[X�]�^_SM` c] 2 NaO¯^�OW`¨?�[
s v,~°Vªo±] 1 I&JW] 2 «�]�^US\` b] 2 X	KML�NaO²V�NPO\[X	KML�NPO¦X�]�^_S\` c] 1 NPO¢^�O©`©?P[¯^�O\[¨`¨?
I {³] 1 ~	�xv�J¨] 2 v�s nyv¢] 3 «�]�^US\` c X if X�]�^_S\` c] 1 NPO¯^�O¨`W?�[then] 2

else] 3 [NPO¨^�OW`¨?
q�GMs9s�­´] 1 « if N\b�`\`�` then Q1R

else]@^_S\` a X�`@����LM>M �­©?�[X�`u£MOj¤YX�`@�M?�S@T�¥¡­©?�[\[X�`u£MOj¤YX�]�^_S\` c] 1 NaO¨^�O©`¨?�[\[X	K�>�T¡`u[²?
`@�M?�S�Tj¥´­W? � if KMS\S�T©?´��­ then K�SM>US�T©?

else `��M?�S�T�¥´­®X	K�>MT¨?P[
`@�M��LM>� �­W? � if KMS\S�T©?´��­ then K@>\>US�T©?

else `��M��LM>M �­®X	K�>MT¨?P[
`@�U^_S�T�VWNPO¢^�O¨� if KMS�T©NPO¨�ZV then K�S�T�^�O

else `��U^_S�T�V®X	K�>MT©NPOU[¦X	K@>MT�^�OU[

Figure 1.1: µ�¶j· ���_��� , an interpreter for a small call-depth bounded func-
tional language, ¸�¹�¹»º . ¼ is the expression, ½M¾ the list of variable
names, ¿@¾ the list of corresponding values, À the call depth limit andÁ the program. The À�Â Á@Ã�Ä�Å and À�ÂxÆ@Ç�ÈxÉ functions look up function
parameters and function bodies, and À�Â�¿ Ã�Ä looks up the value of a
variable

1.1. Informal introduction to the algorithm 11

A non-bounding effect: As constants are lifted directly out of the inter-
preted expression] , the return value of]�^_S\` might be greater than (i.e.
contain more cons nodes than) the value of] , ^�O or ? . Further, the re-
turn value of `@�M?�S�Tj¥ / `@�M��L�>M (or `@�U^_S�T) might be unboundedly large
if the value of ? (or ^�O) is unboundedly large.

A decreasing effect: The return value of]�^_SM` cannot be guaranteed always
to be less than any of its input variables. However, for `@�M?�S@T�¥ / `@����LM>M
(or `@�U^_S@T), the return value is always less than ? (or ^�O).

These safe approximations can be computed automatically and we can rep-
resent them in compact form thus (‘ Ê ’ reads “always less than,” ‘ Ë ’ “possibly
greater than,” and ‘ ËÌ ’ “related to the size of”):

f Non-bounding Decreasing
]�^_S\` ÍjËu<1] = , Ëu<�^�O = , Ëu<*? =�Î Í Î
`@�M?�S�Tj¥ ÍjËÌ <*? =�Î ÍxÊu<*? =�Î
`@�M��LM>� ÍjËÌ <*? =�Î ÍxÊu<*? =�Î
`@�U^_S�T ÍjËÌ <�^�O =�Î ÍxÊu<�^�O =�Î

Note that Ë�< x = overrides ËÌ < x = , i.e. ËÌ < x = is not included in a set containing Ëu< x = .
Using these descriptions for estimating the values of nested calls we

build two graphs describing the increasing and decreasing data flow be-
tween function variables, shown in Figures 1.2 and 1.3. Each node repre-
sents a function variable, and the edges indicate that the value of one vari-
able can depend on that of another. For instance, there is an edge from Ï�Ð_ÑMÒuÓ
to Ò@Ô�Õ�Ñ�Ö�×uØ because the value of ­ in `��M?�S�T�¥ depends on the value of] in
]�^_S\` . In the SDG Ù , an edge label Ë indicates that the value of a variable
might sometimes become greater from one function call to the next, in SDG Ú ,
an edge label Ê indicates that the value must always become smaller. For
readability, we have merged all]@^_S\` calls of class c (i.e. calls of the form
]�^_S\`�] x NaO¨^�O¨`¨?) into one loop, the lower right one on]@^_S\` nodes. Un-
labeled edges correspond roughly speaking to “no change in size.”

Bounded variation We now attempt to detect automatically which func-
tion variables only take finitely many different values during any run of

12 Chapter 1. Introduction

Ò@ÔMÕuÑ�Ö�× Ø Ò@ÔMÛuÜMÝMÞ Ø Ò�ÔUÐ_Ñ�Ö\ß Ö�à\�Uá
Ù

Ï@Ð_Ñ\ÒMâ Ï�ÐUÑ\Ò Ó Ù

Ù

Ï�ÐUÑ\Ò@ã�ä
Ù

Ù Ò@ÔUÐ_Ñ@ÖMã�ä

Ö�à\� â Ö�à\�\å
Ù

Ò@ÔMÕ�Ñ@Ö�× å Ï�ÐUÑ\Ò å
Ù

ÙÒ@ÔUÐ_Ñ@Ö�æ ä Ï@Ð_Ñ\Ò�æ ä
Ù

Ò@ÔMÛ�Ü�ÝMÞ å

Figure 1.2: Increasing size dependency graph (SDG Ù) for µ�¶j· ���_���

���_� �y�u��� —these variables are of bounded variation (BV). Clearly, as function
T�b\N is not called from within the interpreter, its variables are all of BV.

Bounded domination For a variable to take unboundedly many different
values requires either that it is involved in a loop where its value increases,
or it receives values produced in such a loop. We therefore only concern
ourselves with the loops (i.e. strongly connected components, SCC) in the
SDG Ù graph: for each SCC, if the values that can flow into the SCC are of BV
and there are no increasing edges in the SCC, its nodes will be of BV. Using
this observation, called bounded domination, we can see that Ï�ÐUÑ\Ò â , Ï�Ð_Ñ\Ò å ,
Ï�Ð_Ñ\Ò�Ó , Ò@ÔMÕ�Ñ@Ö�× å , Ò@Ô�Û�ÜMÝMÞ å , Ò@ÔMÕ�Ñ�Öj× Ø , Ò@ÔMÛuÜMÝMÞ Ø and Ò�ÔUÐ_Ñ�Ö ß are all BV.

Bounded anchoring The two nodes involved in increasing loops, Ï�Ð_Ñ\Ò\æ ä
and Ï�Ð_Ñ\Ò ã�ä , are in fact also BV. To see this, we draw up a loop dependency
graph (LDG). In Figures 1.2 and 1.3 there are three kinds of loops (from three
sets of call sites) for the]@^_S\` nodes. We call them a,b,c (for SDG Ù loops) and

1.1. Informal introduction to the algorithm 13

Ò@Ô�Õ�Ñ�Ö�× Ø Ò@ÔMÛuÜMÝMÞ Ø Ò@ÔUÐ_Ñ�ÖMß Ö�à\�Uá

Ï@Ð_Ñ\ÒMâ
Ú

Ï�ÐUÑ\Ò Ó
Ú

Ú

ÚÚ
Ú Ï�ÐUÑ\Ò@ã�ä Ò@ÔUÐ_Ñ@ÖMã�ä

Ú

Ö�à\� â Ö�à\�Må
Ú

Ò@ÔMÕ�Ñ@Ö�× åÚ Ï@Ð_Ñ\Ò å

Ò@ÔUÐ_Ñ@Ö�æ ä
Ú

Ï@Ð_Ñ\Ò�æ ä Ò@ÔMÛ�Ü�ÝMÞ å Ú

Figure 1.3: Decreasing size dependency graph (SDG Ú) for µ�¶j· ���_���

their respective sibling loops, loops with an identical list of call sites, in SDG Ú
are called ç , è , é :

SDG Ù : Ï�ÐUÑ\Ò æ ä
b

Ù
c

Ï@Ð_Ñ\Ò@ã�ä
b

Ù

a
Ù

c

SDG Ú : Ï�ÐUÑ\ÒMÓê
Ú

ë
Ú

Ï@Ð_Ñ\Ò âê
ì Ú
ë

We now consider the possible ways of making loops, using each SDG Ù edge
0, 1 or more times in a loop. For example, an increasing loop only consist-
ing of b and c edges will always run “in parallel” with a decreasing loop
consisting of è and é edges—we say these bc-loops are anchored in the cor-
responding è.é -loops. This is captured in the LDG for ���_�a���_��� , shown in
Figure 1.4. Nodes represent SDG-loops, and edges show the relationship be-

14 Chapter 1. Introduction

tween increasing loops in the SDG Ù and decreasing loops in the SDG Ú . Note

Ï@Ð_Ñ\Ò�æ ä Ù
b í b î c ï$ð

Ï�Ð_Ñ\Ò ã�ä Ù
b í b î c ï$ð

Ï@Ð_Ñ\Ò ã�ä Ù
a í a î b î c ï$ð

Ï�ÐUÑ\Ò Ó Ú Ï�Ð_Ñ\Ò Ó Ú Ï@Ð_Ñ\ÒMâ�Ú

Figure 1.4: Loop dependency graph (LDG) for µ�¶j· ���_��� . The regular ex-
pressions indicate what kind of loop the nodes represent, i.e. which
SDG Ù edges they are composed of (the order of the edges is irrele-
vant).

that since neither NaO nor ^�O increase along c loops, loop nodes representing
only c calls are uninteresting and are not included in the LDG.

The rightmost LDG connection represents loops consisting of at least one
a edge; the increasing variable Ï�Ð_ÑMÒ ã�ä is anchored in the corresponding de-
creasing variable Ï�Ð_ÑMÒ â along the sibling loops (that consist of at least one ç
edge). The other two connections represent loops consisting of at least one b
edge and no a edges, anchored in corresponding loops consisting of at least
one è edge and no ç edges. The reason for splitting up the Ï�Ð_Ñ\Ò ã�ä loops ac-
cording to whether they contain an a edge is that they are anchored in loops
of two different variables, Ï�Ð_Ñ\Ò Ó and Ï�Ð_Ñ\ÒMâ .

Note that, given e.g. the loop abb, where every SDG Ù edge on Ï@Ð_Ñ\Ò@ã�ä is
marked Ë , it is sufficient that the sibling loop ç"è"è has at least one decreasing
edge (in this case ç). On the other hand, this must hold for all SDG Ù loops
(e.g abb, bb, bbb, bbbb, . . .).

Now there remain only two points to check; all the values that can flow
into the Ï@Ð_Ñ\Ò�æ ä and Ï�ÐUÑ\Ò ã�ä nodes come from BV nodes, and the anchors
(Ï�ÐUÑ\ÒMÓ and Ï�Ð_ÑMÒ â) have already been detected to be BV—then Ï�ÐUÑ\Ò ã�ä and
Ï�Ð_Ñ\Òjæ ä are BV by what we will call bounded anchoring. Summing up, we see
that all variables have been detected to be BV.

1.1. Informal introduction to the algorithm 15

Result of the analyses. To determine whether the interpreter terminates we
now conceptually add an extra parameter, >@? , to every function definition,
changing

Ä�ñ ½ Á À³È òó¼�¿ Ã À´ôxôxô
¼�¿ Ã Àó¼õ½M¾�¿@¾óÀ Á ò´ôxôxô�À�Â�¿ Ã�Ä ôxôxô

ôxôxô7¼�¿ Ã Àaô�ôxô
À�Â Á�Ã�Ä�Å¨öõÁ ò´ôxôxô�À�Â Á@Ã�Ä	Å ôxôxô
À�ÂxÆ@Ç�ÈxÉ öõÁ ò´ôxôxô�À�ÂxÆ�Ç�È�É�ôxôxô
À�Â�¿ Ã�Ä÷ö³Á ò´ôxôxô�À�Â�¿ Ã�Ä ôxôxô

into

Ä,ñ ½²È Á³Á ÀõÈ ò÷¼�¿ Ã À³øPôxôxô
¼�¿ Ã À³È Á ¼¬½M¾õ¿�¾³À Á òªôxôxô6À	Â�¿ Ã�Ä øPô�ôxô

ôxôxô�¼�¿ Ã À�ù6È Á¢ú¨û�ü ô�ôxô
À	Â Á@Ã�Ä�Å È Á²ö³Á òªôxôxô6À	Â Á@Ã�Ä�Å ù�È Á¢ú¯û�ü ôxôxô
À	ÂxÆ�Ç�ÈxÉóÈ Á²ö³Á òªôxôxô6À	ÂxÆ�Ç�ÈxÉªù�È Á¢ú¯û�ü ôxôxô
À	Â�¿ Ã�Ä È Á²öõÁ òªôxôxô6À	Â�¿ Ã�Ä ù6È Á¢ú¯û�ü ôxôxô

This extra parameter records the call depth, and in all (mutually) recursive
calls, >�? is incremented. This is related to termination: as we have no itera-
tion constructs, the only source of nontermination is recursive calls, but if all
the >@? parameters can be detected to be BV, the call depth is bounded, and
thus the program will terminate.

The subgraph of the SDG Ù containing the >@? nodes is disjoint from the
rest and is shown in Figure 1.5. As it contains nothing but increasing edges
we cannot use bounded domination, but bounded anchoring can still be ap-
plied. The loop dependency graph for these loops is shown in Figure 1.6. As
all the anchor nodes have already been shown to be of BV, all the >@? loops
are well anchored and we have thus detected that ���_�����_��� terminates on any
input.

Example 1.2 (Termination of a ý©þ|ÿ;A�� program interpreter)
Now consider making a new interpreter, ���_������� ��� , from ���_�u���_��� by replac-
ing the if-expression in the last case-branch by its else branch and removing
all ` parameters:

16 Chapter 1. Introduction

Ö�à\�_á å

Ï�Ð_ÑMÒ�á å ÙÙ Ù
Ò@ÔMÕ�Ñ�Öj×�á åÙ Ò�ÔUÐ_Ñ�Ö\á å Ù Ò@ÔMÛ�Ü�ÝMÞ\á å Ù

Figure 1.5: Subgraph of SDG Ù for µ�¶x· ���_��� containing 	�

case] of���
q,GMs9s»­´] 1 «°]�^_SM` a X�`@����LM>M W­W?�[X�`u£MOj¤�X�`@�M?uS�T�¥´­©?�[\[X�`u£MOj¤�X�]�^_SM` c] 1 NaO¨^�O§?�[M[?

Then the interpreted programs can compute all partial recursive functions,
and ���_�
���
� ��� may thus fail to terminate for some input.

We are able to detect this automatically: The SDG graphs are as before
except for nodes Ö�à\��â and Ï�Ð_Ñ\ÒMâ being removed. As the ç edge no longer
exists, Ï@Ð_Ñ\Ò@ã�ä -loops in the LDG containing a edges are no longer anchored
in any decreasing BV loop, so Ï�Ð_Ñ\Ò�ã�ä , and consequently Ò@Ô\Ð_Ñ�Ö\ã�ä , are not BV.
This can easily be understood, as Ï�Ð_ÑMÒMã�ä is the variable that would contain
the value of a diverging parameter in an interpreted function.

When it comes to anchoring the >@? variables of ���_�����
� ��� , the SDG Ù ,
shown in Figure 1.7, now contains a loop for Ï�Ð_ÑMÒUá å that is not anchored
in any decreasing BV loop. This loop represents loops consisting of at least
one a edge, and as they are not anchored, we cannot guarantee termination
of ���U� ����� ��� .

1.2. Termination of off-line partial evaluation 17

Ï�ÐUÑ\Ò�á å
í b î c ï7í b î c ï$ð

Ï�Ð_Ñ\Ò�á å
a í a î b î c ï$ð

Ò@ÔMÕ�Ñ@Ö�×�á å

Ï�Ð_ÑMÒMÓ�Ú Ï�ÐUÑ\Ò â Ú Ò@ÔMÕ�Ñ�Öj×_å	Ú

Ò@Ô�Û�ÜMÝMÞ á å Ò@ÔUÐUÑ�Ö á å

Ò@ÔMÛ�Ü�ÝMÞ�å�Ú Ò@ÔUÐ_Ñ@Ö�æ ä Ú Ò@Ô\Ð_Ñ�Ö ã�ä Ú
Figure 1.6: Loop dependency graph for 	�
 variables added to µ�¶x· ���_���

1.2 Termination of off-line partial evaluation

In partial evaluation we are given a program p and some of its input
data s, called the static data, and we produce a specialised program (resid-
ual program) ps such that running ps on the remaining data d, called the
dynamic data, yields the same output (hopefully faster) as running p on
both s and d. A well-known example is specialising the power function
?�L���N´V�� if Nª��� then � else V��²?�L��®X3N��¡��[¯V . Specialising with ��� 3
proceeds as follows:

?�L�� 3 V � if 3 � 0 then � else V��¢?uL���< 3 � 1 = V� V�� if 2 � 0 then � else V��¢?�L���< 2 � 1 = V� V��¨V�� if 1 � 0 then � else V��¢?uL���< 1 � 1 = V� V��¨V��©V�� if 0 � 0 then � else V��¯?uL���< 0 � 1 = V� V��¨V��©V��¡�
In each step it must be decided what to reduce—these are called the static
expressions—and what to leave, i.e. generate residual code for, called the dy-
namic expressions. Off-line partial evaluation stages the process in two stages:

18 Chapter 1. Introduction

Ï�Ð_Ñ\Ò�á å
í b î c ï7í b î c ï$ð

Ï�Ð_Ñ\Ò�á å
a í a î b î c ï$ð

Ò@ÔMÕ�Ñ�Öj×�á å Ò@ÔMÛ�ÜMÝ�Þ\á å Ò�ÔUÐ_Ñ�Ö\á å

Ï�ÐUÑ\ÒMÓ�Ú Ò�ÔMÕ�Ñ�Ö�× å Ú Ò@Ô�Û�ÜMÝMÞ å Ú Ò@Ô\Ð_Ñ�Ö�æ ä Ú

Figure 1.7: Loop dependency graph for 	�
 variables added to µ�¶j· ����� ���
first a binding time analysis (BTA) analyses the program and decides which ex-
pressions are to be considered static and which dynamic, and also which calls
are to be unfolded. Following this, a specialisation phase reduces the program
according to the output of the BTA. In ?�L�� , expressions N´��� and X3N��¡��[
are static.

It can also be the case that partial evaluation encounters a function call
with the same static arguments several times during specialisation—think e.g.
of an interpreter, interpreting while-loops with a dynamic condition. This
does not lead to infinite recursion, however, if the function call is anno-
tated as a specialisation point. The specialisation point annotation instructs
the specialiser to remember the values of the static arguments and create a
specialised, residual version of the function (Jones et al., 1993). Thus, in-
stead of unfolding at specialisation time, code for calling a new specialised,
residual function is generated in the residual program. Later calls with the
same static arguments will then just generate code for calling this residual
function. If a specialisation point was added to the recursive call in ?�L�� , the
specialisation above would yield four residual functions:

?�L�� 3 V���V��²?�L�� 2 V! ?�L�� 2 V���V��²?�L�� 1 V!
?�L�� 1 V���V��²?�L�� 0 V! ?�L�� 0 V��z�

Note that the return value of a function call annotated as a specialisation
point is not computed in the specialisation phase, so adding specialisation
points can change expressions from static to dynamic.

1.2. Termination of off-line partial evaluation 19

There is a so-called congruence restriction (Jones et al., 1993) on how to
choose the binding times (also called the binding-time division), namely that
static expressions must not require the values of dynamic expressions to be
computed, but apart from this restriction there is some freedom of choice.
Often one would like as many static expressions as possible, so that only
few computations remain in the residual program, but if too many expres-
sions are considered static, the specialisation phase (and thus the entire par-
tial evaluation) might not terminate, due to progressively larger and larger
static expressions. This can not be avoided by inserting specialisation points,
which only shifts the problem to the generation of infinitely many residual
functions.

However, if we can guarantee that each static function parameter in the
program will only be supplied with finitely many different argument values
during specialisation, that phase can be brought to terminate by inserting
specialisation points: If each potentially infinite loop contains a specialisa-
tion point, specialisation will stop eventually, because residualising will pre-
vent the unfolding of two function calls with identical arguments. A function
parameter with the “finitely many different values” property is said to be of
bounded static variation (BSV).

Example 1.3 (Termination of partial evaluation of ���U� ���_���)
Consider the A�BpBED interpreter, with ? and ` static and > dynamic. Using
the same SDG Ù as before we can ensure the congruence condition is satisfied
by starting at Ö�àM�uá (the dynamic input to ���_�����_���) and marking all nodes
reachable from this node as dynamic. Thus, Ï�ÐUÑ\Ò ã�ä and Ò@Ô\Ð_Ñ�Ö ã�ä must be
dynamic.

Using exactly the same technique as before, i.e. bounded domination and
anchoring, we determine the remaining variables to be BSV. The SDG Ù for >@?
is like Figure 1.6, except that now it does not contain the rightmost connec-
tion to Ò@Ô\Ð_Ñ�Ö ã�ä as this variable is not BSV (it is dynamic), but all the loops are
still anchored, indicating that partial evaluation will terminate.

A variation: inserting specialisation points. Intuitively, it is obvious that
partial evaluation of ���U�����_��� will terminate for static ? and ` input: con-
stant propagation and unfolding of a primitive recursive function are lim-
ited (among other things) by the length of ` . Now consider what happens

20 Chapter 1. Introduction

if we want to specialise with ? static and ` and > dynamic; in this case we
find that the same nodes, except Ï�Ð_Ñ\Ò â , are BSV by bounded anchoring and
domination.

Now the SDG Ù for >@? will resemble that of ���_� ����� ��� (cf. Figure 1.7), where
the Ï�Ð_Ñ\Ò á å loops containing an a edge are not anchored.

The >@? loop anchoring observation for guaranteeing termination can be
extended to partial evaluation in this way: If all >�? loops that do not contain a
specialisation point are anchored in a decreasing BSV loop in the SDG Ú , then
specialisation will terminate. For a loop to “contain a specialisation point”
means that one of its edges was generated from a call site which is a special-
isation point. Conversely, to make specialisation terminate, we must insert
specialisation points for all non-BSV-anchored loops in the SDG Ù for >�? . In
our example we observe that the non-anchored loops all contain the edge a,
which corresponds to the recursive call to]�^_S\` in the last branch of the case-
expression; adding a specialisation point here will cause partial evaluation
of ���U�u���_��� (with ? static and ` and > dynamic) to terminate.

The entire story for partial evaluation termination is slightly more involved,
including a dynamic dependency graph, cf. Section 7.2, but the basic prin-
ciple is as described in the present example. A sketch of how the various
graphs are related is shown in Figure 1.8 on the next page; note that we have
left out the less interesting parts of the graphs and the program. At the top
one can see how the SDG Ù and SDG Ú graphs conceptually are constructed
from the program and then merged into an SDG: The edges of the SDG come
from the SDG Ù and the second component of the edge labels come from the

SDG Ú . For instance, the SDG edge b í Ù" , # ã%$& ä(' ï�)�*���)���
+´T representing the similar edge

in SDG Ù for call site b is labeled with ÍxÐ Ú�,+�- Î because Ð Ú�.+�- is the only
edge in SDG Ú from call site b.

Note that the call sites are only included in the labels of edges between >@?
nodes. The reason for this is that only >�? nodes are used when determining
at which call sites to insert specialisation points.

The total loop costs, i.e. the various kinds of loops, are then computed
conceptually by iterating over the SDG, composing the edge labels along all
loops. By examining all the total loop costs with ‘ Ë ’ in their first component

1.2. Termination of off-line partial evaluation 21

ö0/ É01 ò 2�2(243 a ù65�Ç�½M¾ û7/Mü É0182�2�23 ñ ¿:9 ò 2�2(2<; b ù=5,È Ä³ñUü ù=5�È Ä ¿ ü ù=5�Ç�½M¾ û 9 ü 2(2�2; Ä ¾?> ò 2�2(2 ö c Ä ¾�ù65,È Ä > ü 2�2�2
Program p

/
aÙ

@ á å
aÙ

ñ b Ä
c A á å b

Ù
B á åc Ù

SDG Ù
É

a

1
a

¿ b

Ú ¾
c 9 >c Ú

SDG Ú

/
í Ù , #=C & ã , D &FE ' ï @ á å

í Ù , #=C & ã , D &FE ' , # a ' ïñ
í ÙG , # ãIH& ä=' ï Ä

í ÙG , # ä & C , J H& D ' ï A á åí Ù , # ãIH& ä=' , # b ' ïB á å
í Ù , # ä & C , J H& D ' , # c ' ï

SDG

/#�í Ù , #=C H& C ' ï , í ÙG , # x & x î x K Var' ï ' @ á å#�í Ù , #=C H& C ' , # a,b,c ' ï , í ÙG , # x & x î x K Var' , # ' ï '
ñ

#�í Ù , # ã H& ãL' ï ,í ÙG , # x & x î x K Var ' ï '
Ä

#�í Ù , # ä H& ä=' ï ,í ÙG , # x & x î x K Var ' ï '
A á å

#�í Ù , # ã H& ã�' , # a,b,c ' ï ,
í ÙG , # x & x î x K Var ' , # ' ï '

B á å
#�í Ù , # ä H& ä=' , # a,b,c ' ï ,
í ÙG , # x & x î x K Var ' , # ' ï '

Total loop costs

/NM ñNM ÄNM @ á å M# a,b,c ' A á å M# a,b,c ' B á å M# a,b,c '
ÉNO ¿�O ¾�O ÉPO ¿PO ¾QO

LDG

Figure 1.8: Sketch of how the graphs used are related. Letters a, b and c
represent call sites, and Var R:SLT , U , · , V , W , X , Y , Z , [�\

22 Chapter 1. Introduction

we construct the LDG which is used to detect anchoring and specialisation
points.

1.3 What is new?

In this paper we present a fully automatic way of detecting termination. It
can detect termination of e.g. Ackermann’s function and other functions gov-
erned by lexicographically ordered decreasing value tuples, but is even more
general than this.

We show that similar techniques are applicable both to termination of
ordinary evaluation and of partial evaluation, and show the importance of
considering bounded static variation, bounded domination and bounded anchoring
in partial evaluation.

For termination in partial evaluation we solve the complex problem
caused by the combination of nested recursive calls and specialisation point
insertion, where the latter can force function parameters to become dynamic.
This is solved in the novel way sketched in the previous section by first
collecting information about parameter size dependencies, and then collect-
ing information about how these dependencies behave and depend on each
other along loops in the parameter size dependency graphs.

Using this aggregate information we are able to insert sufficiently many
specialisation points for specialisation to be guaranteed to terminate, whilst
keeping track of which BSV parameters are affected by the dynamic expres-
sions that are thereby introduced. As an added benefit, we also get a sepa-
ration of concerns by representing size, dynamic and loop dependencies in
separate data structures, thus obtaining, we hope, a more clear understand-
ing of the problem.

The algorithm for detecting termination has a worst-case complexity of
O < p3 = , where p is the program size, but for typical programs it is expected
to be at most O < p2 = and often linear. Inserting specialisation points dur-
ing the binding-time analysis has exponential worst-case complexity, due to
the number of different sets of call sites that constitute one type of >�? -loop.
In the preceding example, Ï�Ð_Ñ\ÒMá å -loops were anchored in 2 kinds of loops
(cf. Figure 1.6), but when also the call sites are used to distinguish different
loops, this example contains 7 kinds of loops, with call sites Í�� Î , Í�K Î , Í�� , K Î

1.3. What is new? 23

(for Ï@Ð_Ñ\ÒMÓ -anchors) and Í�S Î , Í@S , � Î , Í@S , K Î , Í�S , � , K Î (for Ï�Ð_Ñ\Ò â -anchors). How-
ever, we present an optimisation which will make specialisation point inser-
tion polynomial for typical programs.

The overall structure of the paper is as follows:] First we give a brief background in Chapter 2 on termination analysis,
and outline the focus of this paper.] For the technical part, we introduce the basics in Chapter 3: the syntax
and semantics of the language we use. We use a small-step semantics,
which lends itself better to correctness proofs of the conditions that
guarantee bounded variation.] Next, in Chapter 4, we define the notion of a call path that is a potential
“evaluation trace,” as a link between the graph algorithms that per-
form a kind of symbolic comparison and the evaluation operator that
operates on concrete values.] Then, in Chapter 5, we introduce size dependency based on a size de-
pendency function. By factoring out this part of the analysis we also
obtain a more clear understanding of what constitutes a “correct” or
“safe” size function. Specifically, a problem present in the work of An-
dersen and Holst (1996) where if-expressions and functions that can
return constants are approximated conservatively finds a clear and sat-
isfactory solution.] Following that, we define the concept of bounded variation in Chapter 6
and define the central data structures of the algorithm: the size and loop
dependency graphs. The latter are generated by extracting information
collected by an algorithm for computing closed semi-ring values, ap-
plied to the size dependency graphs.] These graphs are then used to detect which parameters can be guaran-
teed to be of BV: we state the bounded domination and bounded anchoring
conditions that supply these guarantees.] Next, potentially diverging loops are detected, conceptually by observ-
ing the boundedness of an extra parameter >@? in every function.

24 Chapter 1. Introduction

] The extension to partial evaluation then follows in Chapter 7, mainly
extending the call loop anchoring by showing how to choose places to
add specialisation points, and we tackle the problems arising from the
dynamic effects they introduce. This is elegantly solved by combining
dynamic dependency with the loop dependency graph and performing
simple dynamic cascading.] An overall view of the algorithm for both problems is given in Chap-
ter 8, where we also discuss its correctness and some general properties
it enjoys.] This is followed by a brief presentation in Chapter 9 of the prototype
implementation of the analyses, where we show examples of programs
that are handled well and some that are treated pessimistically by our
analyses. We also discuss the complexity of the analyses, and suggest
a small optimisation for specialisation-point insertion.] Finally, in Section 10.4, we give a short discussion on the current state
of the research in this area and round off with a conclusion.

Readers mainly interested in the algorithms, will want to concentrate on
Sections 5.2, 5.4, 5.5 and Chapters 6 (up to Condition 6.8), 7 and 9. Readers
mainly interested in the correctness, will want to concentrate on Chapters 3,
4, 5, 6, 7 and Section 8.1.

1.3. What is new? 25

Chapter 2

Background

This section presents a brief review of the main directions of termination
analysis and outline the focus of the present paper. A more technical com-
parison of related work and our work appears in Chapter 10 on page 138.

This paper follows a line of work on constructing the BTA to ensure ter-
mination of partial evaluation, starting with Jones’ discussion of static dom-
ination and of building up static data under dynamic control (Jones, 1988).
His concept of static domination is identical to the present bounded domina-
tion, but values built by increasing operators in loops were always consid-
ered dangerous and generalised if they tested on dynamic data. There was,
in other words, no concept of anchoring one variable in another.

Holst (1991) introduced the notion of quasitermination, where the program
does not necessarily terminate, but only runs through a finite number of dif-
ferent states; this corresponds to all variables being of BV. In fact, it can readily
be seen that we have for any program p in our language that

p terminates �_^ p quasiterminates` `
All >@? variables are BV All ordinary variables are BV

Further, instead of looking explicitly at dynamic control, he considered in-
situ parameter growth and decrease in endotransitions which are function

26

27

calls that result in further calls to the same function. The term “in-situ” sim-
ply means that the value of a parameter is constructed from previous values
of the same parameter.

The concept of bounded static variation was first introduced by Jones et al.
(1993), and captures precisely the requirements for termination of specialisa-
tion.

Holst’s quasitermination approach was extended to the higher-order case
in joint work with Andersen (1996), where they represent size approxima-
tions of higher order values as possibly infinite trees that in turn are ap-
proximated by tree grammars. They found that to achieve good results in
the higher order case they had to also employ closure and single-threaded
analyses. Using these techniques they performed experiments automatically
proving that partial evaluation of various higher-order versions of a lambda
calculus interpreter terminates.

At the same time, we concentrated on giving an efficient and clearly un-
derstandable graph algorithm for the first-order tail recursive case (Glen-
strup & Jones, 1996), utilising bounded static variation, bounded domination and
bounded anchoring, the latter corresponding to the in-situ condition for termi-
nation originally stated by Holst. With this approach we were able to prove
termination of partial evaluation of a simple interpreter written in tail recur-
sive style. For the tail recursive case just one size dependency graph was
necessary, because the “is constructed from” edge label (ËÌ) always coincided
with either an “is never greater than” (ÊÌ) or “is always less than” (Ê) edge
label. This is not the case for a non-tail expression like in

­�V� ���­YX(aZV� �[aWb´^�� if ����� then b else ^
Furthermore, obviously no size approximations of function return values
were necessary.

At the basis of all this work—the in-situ condition and the bounded an-
choring conditions—lies König’s Lemma (König, 1936; Diestel, 1997), which
states that a finitely branching graph with no nontrivial infinite paths is fi-
nite.

Nielson and Nielson (1996) present a termination analysis for a higher-
order functional programming language with algebraic data types, but with-
out mutual recursion. It is based on a type and effect inference system where

28 Chapter 2. Background

the effects on the arrows are the termination properties of the functions.
Like us, they use the subexpression ordering as the well-founded domain for
guaranteeing termination, but they only look for loops with decreasing prop-
erties, considering the remaining ones unsafe. The effect of our operational
approach of looking for potentially increasing loops and anchoring them, is
to some extent achieved by explicitly requesting a lexicographic ordering on
the parameters of the functions, but this ordering is not automatically de-
tected in their work.

They do not employ a size dependency analysis, so their termination
analysis relies on being able to recognize the recursive decrease syntactically.
This implies that if functions are to be detected as terminating, the recursion
argument in recursive calls cannot be a nested call. It is conceivable, though,
that their analysis could be extended by e.g. a size dependency analysis to
overcome the syntactic restriction.

Although their approach is not as operational as ours, and an implemen-
tation would not be immediately obvious, the type and effect framework
seems well suited for a higher order analysis and makes correctness proofs
simpler and more convincing.

Another type inference based approach given by Hughes, Pareto, and
Sabry (1996) can also prove the termination of some non-primitve recursive
functions, e.g. the O�b\bu­\­U`M] function

O�b\bu­\­U`M]¨V�O©� if V�O©� Q1R thenQ1R
elseKML�NPO X	KMS@TZV�OU[¦X,O�b\bu­M­U`\] X�TU]�^_]�T�O�] X	K�>MT�V�O\[\[\[

Of course, this requires an inference of the fact that the size of the result of
T_]�^_]@T�O@] is identical to that of its input. This termination analysis relies on a
constraint solver for Presburger formulas.

2.1 Focus

The present paper is the extension of this work to the fully recursive first
order case. Our focus is that

2.2. Static-infinite computations 29

] it is important to give a solid semantic foundation for the techniques, so
that the termination guarantees can be trusted, which also implies that] correctness of the techniques should be proved, or at least convincingly
argued for. Further,] the techniques should be automatic and general, i.e. be able to handle a
large class of programs, as this is a key property of partial evaluation.
However,] the prime examples that should be handled well are interpreters, be-
cause they are particularly well suited for partial evaluation. Further-
more,] the algorithms that implement the techniques must be reasonably ef-
ficient with acceptable complexity so they can be built into automatic
partial evaluation tools. Finally,] we will restrict ourselves to treating a first-order purely functional lan-
guage with call-by-value evaluation, considering only totally static and
totally dynamic data (i.e not partially static data). We will only con-
sider off-line partial evaluation and monovariant binding-time analy-
sis. While extensions of the termination analyses along these dimen-
sions are interesting and important to partial evaluation, we find that
they are not vital for an initial understanding and examination of the
problem in question.

Note also that we are only considering termination in theory: in practise the
computer may run out of memory, or the user may run out of patience, before
termination.

2.2 Static-infinite computations

A static-infinite computation is a nonterminating loop that never tests on
dynamic data. The simplest examples are loops like ­rO¨�Z­®X,Odcz�M[and
while eLf*gPh do O¨�ªOic¦� that are attempting to compute a static value, but
also ­ªO©>Z�¡KML�NPO¯>YX�­®X�Oicz�M[¯>�[is a static-infinite computation; it will

30 Chapter 2. Background

(attempt to) produce an infinite residual program. It has been argued that
static-infinite computations are unlikely to occur in practise as they repre-
sent poor programming style (Das, 1998; Jones, 1988). From this viewpoint
only a conditional termination guarantee, stating that partial evaluation will
terminate if there are no static-infinite computations, is necessary. In cur-
rent partial evaluators like Similix (Bondorf, 1990), Schism (Consel, 1993),
PGG (Thiemann, 1998), SML-mix (Birkedal & Welinder, 1993), C-Mix (An-
dersen, 1994) and TEMPO (Consel, Hornof, Noel, & Noye, 1996), it is custom
to accept nontermination in the case of static-infinite computations.

We must, however, remember that partial evaluation is over-strict, which
can cause evaluation of static configurations that do not occur under normal
evaluation, particularly in machine-generated programs. Even in reasonably
well-crafted programs this situation might occur; consider the following C
program where direction is the only dynamic variable:

if (direction == UP) start = 1; else start = 10;
if (direction == UP) stop = 10; else stop = 1;
if (direction == UP) step = 1; else step = � 1;
for (i = start ; i != stop ; i = i + step) { . . . };

The for loop will then be specialised for all combinations of start, stop and
step, including (among others) a static infinite loop:

for (i = 10; i != 1; i = i + 1) { . . . };
Another example is specialising a self-interpreter to a program containing
loops without tests: if we do not detect this potential loop in the evaluation
of the interpreter and break it with a specialisation point, we in effect have a
compiler that does not terminate on all input!

For these reasons, we argue that the BTA should provide an uncondi-
tional termination guarantee. It also turns out that it is fairly straightforward
to pinpoint the loops that the analysis considers nonterminating and inform
the user why some variables have been generalised. If the user wants more
computations performed at specialisation time, a manual guarantee could
subsequently be supplied to prevent generalisation.

The drawback of guaranteeing that even static-infinite loops will not oc-
cur is that one might conservatively generalise too much in cases where static
computations could have been specialised away. Das writes that this can par-
ticularly be a problem in real imperative programming languages, because

2.3. Static errors due to over-strictness 31

they use complex features like signed integers, pointers and arbitrary control
flow that are hard to reason about and can cause aliasing, but does not give
any examples of it.

2.3 Static errors due to over-strictness

Due to the over-strictness of partial evaluation—it evaluates both branches
of a dynamic if-expression—errors may occur during specialisation that will
never occur under normal evaluation. Consider the program

­rOMO©>�O¨� if `\]jN�a\¤jbrO\Olk�`\]�N�a\¤�b�>�O then ­YX	K�>MTªO\OU[¢>�O else O\O
if >�O is dynamic and O\O = Q	�a�nm�R , the condition is dynamic and ­ will repeat-
edly be specialised for O\O = Q	�P�?mMR , QomMR and Q1R . At this point a call to K�>MT Q1R
is made, resulting in a static error. Das and Reps (1996) have suggested that
one should look into the conditional expressions to determine which static
variables control the loop. In the case above the BTA would then conclude
that as the condition is dynamic, no variable controls the loop, and changes
to variables (like K�>MTªO\O) cause them to be generalised.

However, the condition can contain irrelevant variables and if there are
several conditions in the loop, it may not be easy to find the one containing
the controlling variable. One example of the former is the lookup function
for finding a known function in a program:

`\L\L��Mb\?�­©?_T�a�� if ­��´KMS�TYX	KMS@TW?UT�aa[then K@>MTYX	KMS�T©?_T�a�[
else `ML\L@�Mb\?�­YX	K�>�TW?UT�aa[

We therefore propose a different approach: whenever a static error raises
an exception during specialisation, it is intercepted at the appropriate place
and lifted into the residual program. Thus, when specialising the call
­ X	K�>�TkQ1R�[¯>�O above, the residual program will not contain a call to a resid-
ual function, but rather the expression K�>MT Q1R :

32 Chapter 2. Background

­�mW>�O¨� if mpk�`\]�N�a\¤jb�>�O then ­��¯>�O else Q	�a�nm�R
­a�²>�O¨� if �ik�`\]�N�a\¤jb�>�O then ­
��>�O else Q6m�R
­���>�O¨� if �qk�`\]�N�a\¤jb�>�O then K@>MT Q1R else Q1R

This is the strategy used in the Similix system (Bondorf, 1993).

2.4 Conditional C specialisation termination

Das (1998) has attacked the hard problem of ensuring termination of partial
evaluation for the C programming language. His aim is to supply a con-
ditional termination guarantee: the BTA will guarantee that the specialisation
phase will terminate if there are no static-infinite computations.

He uses three variants of program representation graphs (Ramalingam &
Reps, 1989), that reperesent the data and control flow through the program.
Each statement is represented by a node, edges represent def-use chains,
and control dependence edges are added from the nodes representing con-
ditional expressions of while and if statements to those of the statements in
their bodies.

One advantage of his approach is that he defines the semantics directly on
the graphs, which makes a safety proof for the BTA (which operates on these
graphs) particularly clear. Thus, for a given program stream, the meaning
of each node is, roughly speaking, a stream of the values producible during
evaluation, and as the control dependence edges are included, the meaning
of a node is compositional in meanings of its predecessors.

For a specific node and all possible streams of dynamic program input,
Das considers the set of lists obtainable at this node:] if the lists are all r -terminated prefixes of some (possibly infinite) list,

the values produced at the node are independent of the dynamic pro-
gram input. Consequently, the node is either of BSV or a part of a
static-infinite computation, and this is termed a strongly static node.] if the lists are all repetitions of a fixed list (e.g. Í�s 1,2,3 t , s 1,2,3,1,2,3 t ,uLuLu Î) or a r -terminated prefix of an infinite list, the values produced are

2.4. Conditional C specialisation termination 33

either BSV or part of a static-infinite computation, and this is termed a
weakly static node. This accounts for the case where the dynamic input
only determines how many times a static loop is executed.] if the lists are all built from a finite number of different elements, or
are a r -terminated prefix of an infinite list, the values produced are
either BSV or part of a static-infinite computation, and this is termed
a statically varying node. Except for static-infinite computations, this
corresponds to BSV as defined in this paper.

A strongly static node is weakly static and a weakly static node is statically
varying.

Das defines three BTAs that detect these progressively larger classes of
static nodes by abstract interpretation of the graph (recall that the semantics
is defined by the graph). For strongly static BTA all statements inside a dy-
namic conditional, even constant assignments, will be considered dynamic.
However, in the case of weakly static BTA this influence on constant assign-
ments is ignored.

Furthermore, a node which uses values defined in the branches of an
if construction will also be influenced by the binding time of the condition
expression. In the case of statically varying BTA this influence at the end of
if statements (but not while statements, as they represent loops) is ignored.
Thus, in dynamic while statements, e.g.

while (d != s[i]) {
if (i > 0) i = i � 1; else error ("item not found!");

}
BSV (for £) in the while body cannot be exploited.

All these BTAs are described intra-procedurally (so the only source of
nontermination is from while loops), and are then extended to interproce-
dural BTAs by combining the program representation graphs of the proce-
dures via various parameter enter and exit nodes. It is not quite clear how
dynamically controlled increasing recursive calls, e.g.

f (s , d) {
if (s < d)

s = s + 1;
else

34 Chapter 2. Background

return s ;
call f (s , d);

}

(with O static and > dynamic) are handled in the statically varying BTA to
ensure termination.

Das goes on to define a different dependency graph, a loop dependence
graph, and a BTA on it. The advantage of this graph is that it can handle C
programs with pointers and arbitrary control flow, at the cost of losing the
ability to define the program semantics directly by the graph.

The loop dependence graph consists of the same nodes as the other de-
penence graphs, but now loops in the data flow are detected, and control
dependences to nodes in loops are considered to be loop dependences. The
BTA is then performed by marking dynamic input and propagating these
marks along data flow and loop dependence edges.

2.5 Termination of term rewriting systems

Most work on termination analysis has been done in the area of term rewrit-
ing systems, probably due to the fact that one easily creates (often using
automated methods) rewriting systems of which termination is not imme-
diately obvious. Term rewriting systems are distinguished from functional
programs in effect by being a list of small-step transitions on terms where all
function symbols represent constructors. Functional programs, on the other
hand, consist basically of a list of big-step transitions where function symbols
represent functions.

This last fact means that one cannot see directly from the syntax of a func-
tional program what the resulting size, under some appropriate norm1, of an
application is. Conversely, due to matching and the fact that each small-step
rule of a rewriting system can accomplish nontrivial rewriting, it is hard to
reason about the control flow of term rewriting systems.

1A norm in this context is a total function v)w�v : Term x D where D is some well-founded
domain. Common norms are the term-size norm which loosely speaking measures the size of
its argument viewed as a term tree, and the list-size norm, which measures the length of its
argument viewed as a list, ignoring the sizes of the elements.

2.6. Termination analysis using term orderings 35

However, the small-step property of these systems implies that proving
their termination is—in principle—simple: find an appropriate well-founded
ordering on terms and prove that each rule of the system decreases the
term size under this ordering. Consequently, much research has concen-
trated on developing useful orderings for various types of term rewriting
systems (Steinbach, 1995; Dershowitz, 1987), and methods for automatic syn-
thesis of such orderings (Arts & Giesl, 1997).

2.6 Termination analysis using term orderings

Giesl (1995) has carried over the term ordering approach to the functional
world by looking at all the recursive calls of a function and synthesising an
ordering. This is done by first creating some constraints from the arguments
of recursive calls, and then transforming them to an equivalent set of con-
straints. This equivalent set of constraints does not refer to functions, only
constructors, and can thus be solved using the automatic methods developed
for term rewriting systems. If these methods produce a well-founded term
ordering, it is proof that the recursive calls of the functional program cannot
go on forever, and the program terminates.

This work is an example of the generate-and-test paradigm (Winston, 1984)
where constraints are recognized, and possibly further constraints are syn-
thesized, so that a theorem prover finally can be applied. Walther (1988) gave
an algorithm for this kind of automatic inference of program termination and
was able to prove the termination of all the algorithms listed by Boyer and
Moore (1979).

As this method is based on the advanced techniques of the term rewriting
world, it is possible automatically to prove termination of a large range of
programs, including the minimum sort function shown in Figure 2.1 on the
next page which is not entirely trivial (Walther, 1988; Giesl, 1995).

On the other hand, this method requires sophisticated constraint solvers
to synthesise the right ordering, and is not immediately applicable to ter-
mination analysis for partial evaluation, because if no ordering can be syn-
thesised, it does not pinpoint the problematic variables that could be gener-
alised.

36 Chapter 2. Background

¥�£�NPO@L�TM¤WV�O©�
if V�O©� Q1R thenQ6R
elseK�L�NPO X6¥�£�NaO²V�OU[¦X6¥�£�NaO@L�T\¤ XyT�¥ X�¥�£�NPO²V�O\[¯V�O\[\[

Tj¥rVZV�O¨�
if V�O©� Q1R thenQ6R
else if V¡�¡KMS�TZV�O thenTj¥ªV X	K�>MTWV�OU[
elseK�L�NPO X	KMS�TWV�OU[XyT�¥´V X	K@>MT�V�OU[\[

¥�£�NPO¢V�O¨�
if K@>MT�V�O©� Q1R then K�S�T�V�O else ¥�£�NkX	KMS�TWV�O\[X6¥�£�NPO¦X	K�>�TZV�OU[\[

¥�£�N´VZ �� if Vzy© then V else
Figure 2.1: Minimum sort function

2.7 Termination of logic programs

The major difference from functional program termination analysis when
analysing logic programs is that one must deal with unification and backtrack-
ing. A logic program is, at least conceptually, computed by searching for a
success path in its SLD-tree using some strategy, e.g. Prolog’s leftmost-atom
rule. Due to backtracking, existential termination, i.e. that the program will
produce at least one answer, differs from universal termination, i.e. that re-
peated backtracking will terminate. Most termination analyses of logic pro-
grams consider universal termination (Speirs, 1997), and one sufficient cri-
teria for universal termination of a program p is that all possible SLD-trees
for p are finite. An extra twist for logic programs is that parameters can act
as “input” or “output” variables according to whether they are instantiated
or not, and the termination properties depend on the instantiation pattern of
the initial goal.

2.7. Termination of logic programs 37

Given a program, a goal instantiation pattern and some user-chosen
norm, Lindenstrauss and Sagiv (1996, 1997) handle the unification problem
by first performing an instantiation analysis, identifying which parameters in
the program will be instantiated enough that their norms cannot change by
further unification.

The sufficiently instantiated parameters are then considered in an analy-
sis starting with approximations of the “single-steps” of the program, assum-
ing all answers are sought, i.e. that all possible backtracking is attempted.
The single steps are represented by small graphs with both directed edges
representing a decrease in norm size and undirected edges that represent
equal norm sizes. These single steps can be composed, the closure of this
composition operation is computed, and any nondecreasing cycles detected
are reported as possible nontermination.

They analysed about 90 programs, handling successfully 80% of the ex-
amples, including quicksort, minimum sort and a variant of mergesort (3 large
programs lead to memory problems). It took typically less than 10 seconds
to perform the analysis, but some of the larger programs took 10 minutes to
analyse.

Codish and Taboch (1997) also take as starting point a user-chosen norm,
but instead of analysing the program directly, they first transform it into a set
of binary unfoldings. Each rule in the binary unfoldings consists of one goal
and only one subgoal in the body. The binary unfoldings are equivalent to
the program with respect to termination properties, and as they have only
one subgoal, they represent all the “single-steps” of the program. However,
the set of binary unfoldings of a program is in general infinite, so by com-
puting an approximation of them, and performing instantiation analysis and
cycle detection similar to Lindenstrauss and Sagiv, termination is detected.
The key point of Codish and Taboch’s work is that the binary unfoldings
can be used as a semantic basis because not only do they exhibit the termi-
nation properties of the original program, they can also be used to find the
evaluation calls and answers of the original program.

In termination analysis for the Mercury language, the instantiation prob-
lem is sidestepped, because all rules are explicitly annotated with so-called
mode information. In fact, although Mercury syntax is based on Prolog syn-
tax, the semantics is more like functional languages: every parameter is ei-

38 Chapter 2. Background

ther an input or output parameter, so no partially instantiated variables can
occur (Somogyi, Henderson, & Conway, 1995).

Speirs, Somogyi, and Søndergaard (1997) perform termination analysis
on Mercury programs in two stages: First, a size dependency analysis is
computed by extracting linear constraints on the parameters in the program
and solving them with a standard LP-solver. The constraints take the form{

i | xinput
i |_} é�~ { j | xoutput

j | , so functions returning values greater than lin-
ear combinations of their input (e.g. a multiplication of the input parame-
ters) and higher-order functions are treated conservatively by setting é���� .
However, experiments with real-world Mercury programs indicated that this
was not a serious problem.

The second stage operates on a labelled call graph of the program, detect-
ing recursive calls where no parameter decreases. The result of the first stage
is used when arguments to recursive calls contain nested calls.

The termination analysis was run on a large number of examples—
including the Mercury compiler itself—obtaining results comparable to
those of Lindenstrauss and Sagiv (1997), and on large programs it was sig-
nificantly faster. This speedup is possibly due to the clear mode information
in Mercury, reducing the number of instantiation combinations that must be
considered.

The methods for termination analysis of logic programs described above
are not directly applicable to partial evaluation because folding means that
infinite SLD trees do not lead to infinite specialisation if their leaves only
contain finitely many nodes with different static parts, but they could proba-
bly be adapted, including also information about which parameters are static
and which dynamic.

2.8 Termination of on-line partial evaluation

In on-line partial evaluation the binding times of variables are decided during
the specialisation, not before. The main advantage of this with respect to
termination is greater precision because the actual specialisation-time values
are known; one does not have to resort to approximations of expression sizes.
The greater precision can lead to better specialisation while still retaining

2.8. Termination of on-line partial evaluation 39

termination.
Recently, homeomorphic embedding has gained much popularity for en-

suring termination in on-line partial evaluation (Sørensen & Glück, 1995;
Leuschel, 1998; Lafave & Gallagher, 1997). Roughly speaking, one expres-
sion is homeomorphically embedded in another if the first can be obtained
by striking out parts of the latter. Before unfolding during specialisation,
one checks that the parameters do not homeomorphically embed any of the
previous parameters.

The main drawback is that all these homeomorphic comparisons are
costly and require storing all previous parameters, also in cases where off-
line partial evaluation would not insert a specialisation point. Another
point is that the homeomorphic embedding may generalise variables in cases
where off-line analyses would not, producing conservative results. For in-
stance in interpreters, when interpreting a function call, the new expression
argument (Ï�Ð_Ñ\ÒMÓ) may not be embedded in any of the previous ones.

Note that it is vital to compare with all previous arguments (or a repre-
sentative subset), because p <�s6t , s a t = and p <Ls a t , s6t = do not homeomorphically
embed each other. In an alternating sequence like p <Ls6t , s a t = + p <�s a t , sot = +
p <Lsot , s a t = + p <Ls a t , s6t = +��=�(� , comparing with only the immediately preceding
argument will not reveal the danger. For this reason, the homeomorphic em-
bedding is not immediately usable in off-line termination analysis (Leuschel,
1998).

It would be interesting to combine the on-line and off-line analyses: first
doing an off-line termination analysis to discover which variables definitely
are safe, then doing on-line termination analysis using homeomorphic em-
bedding only on the remaining parameters. This would give the best of
both worlds: non-conservative results for BSV parameters that sometimes in-
crease, non-conservative results for non-BSV-detectable parameters that do
not increase during specialisation, and finally faster on-line specialisation
due to fewer homeomorphic embedding comparisons.

Chapter 3

Language

3.1 Syntax and notation

We consider a first-order functional language L with fully recursive expres-
sions, i.e. not limited to tail recursive functions.

Program � p :: � f1 x1 uLuLu xm � e1; uLuLu ; fn x1 uLuLu xk � en

Expression � e :: � x � c � b e1 uLuLu en � f e1 uLuLu en� if e1 then e2 else e3

b � Basefuncname c � Constant x � Varname f � Funname

In the following text we will use the symbol � to denote mathematical equal-
ity and the symbol � to denote syntactical equality. We assume a strict left-
to-right evaluation order, thus both L and the metalanguage of the text are
intended to be read as strict languages.

We presume the reader is familiar with standard functions like dom f , the
domain of function f , rg f �WÍ f x � x � dom f Î , the range of function f , fv e,
the set of free variables in expression e, freshname < = , a function returning an
unused function name, etc.

To simplify the presentation, we will assume given a program p and
use the following notation in the ensuing text: Generally, if p is defined by

40

3.2. Semantics 41

p � uLuLu ; fi x1 uLuLu xn � ei; uLuLu and we have a function name f � fi, then e f de-
notes ei and f1, uLuLu , fn denote x1, uLuLu , xn. Furthermore, given simple specific
function definitions p � uLuLu ; f x y � e f ; g x y � eg; uLuLu , fx and fy will denote f ’s
parameters, and similarly for g. Finally, for values or parameters x1, uLuLu , xn
we let �x denote x1 uLuLu xn or < x1, uLuLu , xn

= or s x1, uLuLu , xn t ; the choice in each case
will be clear from the context.

Note that unless otherwise stated, all (in)equalities only hold when both the left
hand side and the right hand side are defined.

3.2 Semantics

We now define the semantics of our small language, i.e. how programs are
to be interpreted to yield meanings. In our case we take the meaning of a
program to be a value that is determined by evaluating the program in a
recursive manner.

Values v � Value are first order, and we assume some well-founded order�
on this domain, e.g. the subexpression-ordering if Value is the set of LISP

S-expressions. Sometimes, for the sake of readability, we will use integers,
‘ } ’ and ‘ � ’ in the examples as if it was a well-founded domain. A value is
either some program input, (the value of) a constant c or the result of ap-
plying a base function. We assume base functions to be deterministic and
terminating, possibly with a special h�f�f4��f value, on all input values.

An environment E � Environment � Varname + Value is a function on a
finite domain, and the notation Í x1 �+ v1, uLuLu , xn �+ vn

Î is used as usual to
denote environments. We will express environment extension using the op-
erator } : Environment � Environment + Environment defined by < E1 } E2

= x �
if x � dom E2 then E2 x else E1 x

Our evaluation model will be defined by a small-step semantics using an
evaluation operator � , apply operator � and call operator � . As it is a small-
step semantics, we will need some notation for indicating partially evaluated
expressions, called evaluation contexts, and we will also need a stack for keep-

42 Chapter 3. Language

ing track of pending function calls:

Environment � Varname + Value

Stack � < Context � Environment = List

Context � ve :: � b v1 uLuLu vm
] e1 uLuLu en � f v1 uLuLu vm

] e1 uLuLu en� if] then e2 else e3

The operators � , � , � are defined in Figure 3.1; the meaning of a program is
the value of the first function f1. Later, it will be convenient wlog. to assume
that the program contains no calls to this function.� : Program � Value List � Value�

: Stack � Value � Value�
: Funname � Value List � Stack � Value�
: Expression � Environment � Stack � Value�l� � f1 x1 2�2(2 xn R e1; 2(2�2 � � � v1, 2�2�2 , vn ��� � � � f1 � � � v1, 2�2(2 , vn � � ��
1 � � � � c � ��� s � � s

�
value c ��

2 � � � � x � ��� s � � s
� � x ��

3 � � � � if e1 then e2 else e3 � ��� s � � � � e1 � ��� �o� if � then e2
else e3, �N� : s ��

4 � � � � b e1 e2 2(2�2 en � ��� s � � � � e1 � ��� �o� b � e2 2(2�2 en, �N� : s ��
5 � � � � f e1 e2 2�2(2 en � ��� s � � � � e1 � ��� �o� f � e2 2�2(2 en, ��� : s ��
0 4� � s ¡Q¢£¢¥¤P¢ �d¡Q¢£¢¥¤�¢�
1 � � � � v � v�
3 � � �o� if � then e2 else e3, �N� : s � v � if v ¦�§=¢*¨©¡ then

� � � e2 � ��� s
else

� � � e3 � ��� s�
4 � � �o� b v1 2�2(2 vm � e2 2(2�2 en, �N� : s � v � � � � e2 � ��� �o� b v1 2(2�2 vm v � e3 2(2�2 en, �N� : s ��
4 � � �o� b v1 2�2(2 vm � , �N� : s � v � � s

�
apply b � v1, 2(2�2 , vm, v �4��

5 4� � �o� f v1 2(2�2 vm � e2 2�2(2 en, ��� : s � v � � � � e2 � �L� �o� f v1 2�2(2 vm v � e3 2�2(2 en, ��� : s ��
5 ª� � �o� f v1 2(2�2 vm � , �N� : s � v � � � � f � � � v1, 2�2�2 , vm, v � s�
5 ª� � � � f � � � v1, 2�2�2 , vn � s � � � � e f � �
S f1 «� v1, 2�2(2 , fn «� vn \ s

Figure 3.1: Rewrite rules defining the small-step semantics of language L

3.2. Semantics 43

The symbol] is a special symbol distinct from all other objects, and the
function apply : Basefuncname + Value List + Value applies the base function
b to values v1, uLuLu ,vn. We assume that p is well-formed, i.e. that calls in p call
functions defined in p with the correct number of arguments and that pa-
rameter references are in the lexical scope of their definitions. It is straight-
forward to check that under these conditions, if f1 takes n arguments then ¬ ,� , � and � are well-defined when ¬ p is applied to a list of n values.

In these definitions we have captured all the recursive nature of program
evaluation in the stack s: in the equations each left hand side can call at most
one of the operators � , � or � . Thus evaluation of an expression e is a linear
sequence of steps: �0s s e t t_­ s +®�(�=��+¯� s v +°�(�=�+ � s s e t t±­ s +®�(�=��+ � s s f t t±s v1, uLuLu ,vn t s +®�=�(� ,
As every expression, evaluation context and value is matched by one of the
left hand sides of Figure 3.1 on the facing page, it can be seen that evaluation
cannot “get stuck”:

Lemma 3.1
For e � Expression and ­�� Environment with fv e ² dom Environment, if rewrit-
ing of �³s s e t t´­µs6t according to Figure 3.1 on the preceding page terminates, it
terminates with a value v � Value.

We define the length of the sequence to be the number of operators oc-
curring in it, and say it is X-operator-free if operator X does not occur in
it.

The notion of sequence length naturally leads to

Definition 3.2 (Program evaluation termination)
Given program p and input �v, we say that ¬�s s p t tI�v terminates iff the length of
the sequence ¬ s s p t t¶�v +®�(�=� is finite.

Definition 3.3 (Program termination)
Given program p, we say p terminates iff ¬�s s p t t·�v terminates for all input�v � Valuen.

44 Chapter 3. Language

So if p does not terminate, the sequence can in general be infinite, but
the following lemma shows that this requires the call operator � to occur
infinitely often in the sequence:

Lemma 3.4 (Bounded call-free evaluation depth)
For any expression e and environment ­ with fv e ² dom ­ , the length of
the longest � -operator-free prefix of steps �¸s s e t t¶­?s6t¹+��(�=� is bounded by a
function of e, b < e = .
Proof: Define �] � : < Context } Stack = +»º as

� e �Q�
¼½½½½½½½¾ ½½½½½½½¿

3, if e � x or e � c
1 } n } � e1 � } �=�(� } � en � , if e � b e1 uLuLu en or e � f e1 uLuLu en

n } � e1 � } �=�=� } � en � , if e � b v1 uLuLu vm
] e1 uLuLu en

n } � e1 � } �=�=� } � en � , if e � f v1 uLuLu vm
] e1 uLuLu en

2 } � e1 � } � e2 � } � e3 � , if e � if e1 then e2 else e3� e2 � } � e3 � , if e � if] then e2 else e3

� s �Q�zÀ 0, if s ��sot
1 } � e � } � s � , if s �¸Á e, ­
Â : s

In every step, replace �Ãs s e t tÄ­ s with � s � } � e � and � s v with � s � . By checking
for rules 1–5 and 3 –5 this can be seen to be a strictly decreasing sequence onº , so we can take b < e = ��� e � Å

For fixed program p, the number of different expressions that occur in
the sequence is bounded (they are always subexpressions of p), and thus
there exists a K such that � e ��Æ K for all e occurring in the sequence, so we
immediately get the following

Corollary 3.5 (Linear compression)
Define the state transition sequence for p on input �v to be¬�s s p t t%�v + � s s f1 t tÇ�v1 s1 + � s s f2 t tÇ�v2 s2 +®�(�=� (È)

when¬�s s p t tÉ�v + � s s f1 t tÇ�v1 s1 + � s s e1 t t_­ 1 s1 +dÊ � s2 v + � s s f2 t tÇ�v2 s2 +®�=�(� (Ë)

3.2. Semantics 45

where ‘ + Ê ’ in (Ë) are � -operator-free sequences. Now there exists a K �µº
such that for any �v the length of any prefix of (Ë) will be bounded by K times
the length of the corresponding prefix of (È).

This allows us to handle the semantics by reasoning on state transition
sequences: their lengths are in some sense proportional to the lengths of the
evaluations, and they are finite exactly when the evaluations terminate. As
we will not be concerned with the details of the stack, we abbreviate state
transition sequences � s s f1 t t��v1 s1 + � s s f2 t tµ�v2 s2 +Ì�=�(� simply to < f1, �v1

= +
< f2, �v2

= +®�(�=� in the following text.
We can now express Holst’s (1991) definition of quasitermination simply:

Definition 3.6 (Program evaluation quasitermination)
Given p and input �v of length arity f1, we say that ¬ s s p t t%�v quasiterminates iff
Í_< f , �u = � ¬ s s p t t¶�v + < f1, �v1

= + Ê < f , �u =�Î is finite

Definition 3.7 (Program quasitermination)
Given program p, we say p quasiterminates iff ¬Ís s p t tÎ�v quasiterminates for
all input �v � Valuen, where n � arity f1.

The key property used throughout this paper to detect termination and
quasitermination is

Definition 3.8 (Bounded variation)

fi is BV iff ÏÐ�u � Valuea : Í vi �@< f1, �u = + Ê < f , �v =�Î is finite,

where a � arity f1.

It is obvious from the preceding definitions that we have

Corollary 3.9
Given program p, p quasiterminates if all function parameters in p are BV.

If we substitute expressions �e for the free variables �f of an expression e ,
evaluation should produce the same result v as if we had evaluated e using
an environment mapping the free variables to the expression values �v. This
is captured by

46 Chapter 3. Language

Lemma 3.10 (Substitution lemma)
Given e1, uLuLu , em and ­ , assume v1, uLuLu ,vm exist such that Ï s Ï i �³Í 1, uLuLu ,m Î :�Ñs s ei t t±­ s + Ê � s vi. Then we have for all e , �f that a v exists such thatÏ s : �0s s e t t�Í f 1 �+ v1, uLuLu , f m �+ vm

Î s + Ê � s v if and only ifÏ s : �0s s4s f 1 �+ e1, uLuLu , f m �+ em t e t t_­ s + Ê � s v
Proof: by induction on the length of the computation of e .
Case length = 2:

Subcase e � c: OK.

Subcase e � f i : We have � s s e t t�Í f 1 �+ v1, uLuLu , f m �+ vm
Î s + � s vi and�Ñs sªs f 1 �+ e1, uLuLu , f m �+ em t e t t±­ s �Ò�Ñs s ei t t±­ s + Ê � s vi

Case length Ó 2: Let S �zs f 1 �+ e1, uLuLu , f m �+ em t and ­ �ZÍ f 1 �+ v1, uLuLu , f m �+
vm
Î .

Subcase e � if e1 then e2 else e3: Wlog we assume e1 evaluates toeLf�g�h , and then for some v1,v2 each step of�0s s e t t±­ s � �0s s if e1 then e2 else e3 t t_­ s � �0s s e1 t t_­ <�Á if] then e2 else e3, ­ Â : s =+ Ê �z<�Á if] then e2 else e3, ­ Â : s = eLf�g�h+ �0s s e2 t t_­ s + Ê � s v2

holds iff the corresponding step of the following holds:� s s S e t t_­ s � � s s if S e1 then S e2 else S e3 t t_­ s � �Ñs s S e1 t t±­ <�Á if] then S e2 else S e3, ­�Â : s =
(hyp.) + Ê �¦<�Á if] then S e2 else S e3, ­
Â : s = eLf�g�h+ �Ñs s S e2 t t±­ s
(hyp.) + Ê � s v2

3.2. Semantics 47

Subcase e � b e 1 uLuLu e k: By letting v � apply b v 1 uLuLu v k we find for some�v that each step of�0s s e t t_­ s � �0s s b e 1 uLuLu e k t t_­ s + �0s s e1 t t�­ <�Á b] e2 uLuLu ek, ­ Â : s =+ Ê � <�Á b] e2 uLuLu ek, ­ Â : s = v 1
... (k times)+ � s s ek t tP­ <�Á b v 1 uLuLu v k Ô 1

] , ­ Â : s =+ Ê � <�Á b v 1 uLuLu v k Ô 1
] , ­ Â : s = v k+ � s v

holds iff the corresponding step of the following holds:�Ñs s S e t t_­ s � �Ñs s b < S e 1 = uLuLu < S e k = t t_­ s + � s s Se1 t tN­�<�Á b] < Se2
= uLuLu < Sek

= , ­
Â : s =
(hyp.) + Ê � <�Á b] < S e2

= uLuLu < S ek
= , ­
Â : s = v 1

... (k times)+ �Ñs s S ek t t_­ <�Á b v 1 uLuLu v k Ô 1
] , ­
Â : s =

(hyp.) + Ê �¦<�Á b v 1 uLuLu v k Ô 1
] , ­
Â : s = v k+ � s v

Subcase e � f e1 uLuLu ek: By letting v be the value of f e1 uLuLu ek we find for
some �v that each step of�Õs s e t t±­ s � �Õs s f e 1 uLuLu e k t t_­ s + �Ñs s e1 t t_­ <�Á f] e2 uLuLu ek, ­ Â : s =+ Ê �¦<�Á f] e2 uLuLu ek, ­ Â : s = v 1

... (k times)+ � s s ek t tP­ <�Á f v 1 uLuLu v k Ô 1
] , ­ Â : s =+ Ê � <�Á f v 1 uLuLu v k Ô 1

] , ­ Â : s = v k+ � s s f t t8s v 1, uLuLu ,v k t s + � s s e f t t�Í f1 �+ v 1, uLuLu , fn �+ v k Î s + Ê � s v

48 Chapter 3. Language

holds iff the corresponding step of the following holds:�³s s S e t t_­ s � �³s s f < S e 1 = uLuLu < S e k = t t_­ s + �³s s S e1 t tN­ <�Á f] < S e2
= uLuLu < S ek

= , ­
Â : s =
(hyp.) + Ê �²<�Á f] < S e2

= uLuLu < S ek
= , ­
Â : s = v 1

... (k times)+ � s s S ek t t�­ <�Á f v 1 uLuLu v k Ô 1
] , ­
Â : s =

(hyp.) + Ê � <�Á f v 1 uLuLu v k Ô 1
] , ­
Â : s = v k+ � s s f t t±s v 1, uLuLu ,v k t s + �0s s e f t t�Í f1 �+ v 1, uLuLu , fn �+ v k Î s + Ê � s v Å

3.3 Big-step semantics

The small-step semantics just defined is well-suited for reasoning about ter-
mination properties, as it flattens the recursive call tree into a linear structure.
However, for some proofs performed by induction it is more convenient to
use the following recursive definition of expression evaluation, based only
on one operator � : Expression + Environment + Value Ö Íjr Î :�Ñs s c t t×­ � value c� s s x t t×­ �q­ x� s s if e1 then e2 else e3 t t�­Ø� if � s s e1 t t_­ then � s s e1 t t_­ else � s s e3 t t_­� s s b e1 uLuLu en t t_­ � apply b s � s s e1 t t_­ , uLuLu , � s s en t t_­�t� s s f e1 uLuLu en t t_­ � � s s e f t t�Í f1 �+ � s s e1 t t±­ , uLuLu , fn �+ � s s en t t�­ Î
The two definitions of � are equivalent, i.e. � small-step s s e t t¹­Øs6t��Ñ� big-step s s e t t¹­ for
all e, ­ with fv e ² dom ­ , and the small-step evaluation terminates exactly
when the big-step semantics terminates. Proofs of equivalence of big-step
and small-step semantics can be found in the literature (Henglein & Tofte,
1993).

3.3. Big-step semantics 49

Chapter 4

Call Paths

As we are trying to determine termination properties and this in general is
undecidable, we must introduce some approximation into the program anal-
ysis. To capture the approximate behaviour of the program we introduce the
call path which represents a potential call tree of the program in a linear fash-
ion. An example of a program and call tree fragment is

­ZVZ � if Vqk¸� then akX�V¹�\�M[else a®X6b X� ¹�U��[\[a�b � if b�k�Ù then ­ X3b_�Nm�[zX3b_��Ùu[else bb O � if OlyÛÚ�m then b X�O�c�m�[else O b Xy ¹�U�M[bkX,O�c�mu[
­ZVZ a®X�V¹�U�M[­®X1b_��m�[¦X3b_�NÙ�[a X6b X� ¹�U��[\[

where the call from ­ to b is a nested call because the value returned from b is
passed as argument to another call (to a). The corresponding call path iss ­�VZ Üs a®X�V¹�U��[¸s ­®X1b_��m�[¦X3b_�NÙ�[¸s bkX� ¹�U�M[�s bkX,O�c�m�[Lt4t8s a®X6b Xy ¹�U�M[\[Lt4t¥t4t .
Nested calls are distinguished from tail calls in call paths by the fact that their
immediately enclosing brackets are followed by an opening bracket—in this
case s bkX� ¹�\�M[uLuLu t is followed by s a X6bkX� ¹�\�M[\[©t .

50

4.1. Call path grammar 51

Intuitively, ‘ s ’ represents a call and ‘ t ’ a return from a call. Note that call
paths represent partially completed computations: a call path can be extended,
even infinitely if the program contains recursive calls. Furthermore, when
extending, a tail call can turn into a nested call. For instance, the above call
path can be obtained by extending

s ­�V� �s a®X�V¹�U��[ps ­®X3b×��m�[zX3b_�NÙ�[�s b Xy ¹�U�M[¸s bkX,O�c�m�[Qt¥t4t4t4t
changing bkX� ¹�U��[from tail to nested call.

4.1 Call path grammar

Formally, call paths are the words of a language L < G = over a grammar G �
Í S :: �ds f1 x1 uLuLu xn Ce f1 t Î Ö G , where G is generated by traversing the program
and producing rules according to the scheme in Figure 4.1. Note that the Ý in

Expression e Grammar rules produced by e
c Ce :: ��Ý < g1

=
x Ce :: ��Ý < g2

=
if e1 then e2 else e3 Ce :: � Ce1Ce2 � Ce1Ce3 < g3

=
b e1 uLuLu en Ce :: � Ce1

uLuLu Cen < g4
=

f e1 uLuLu en Ce :: � Ce1
uLuLu Cen C e < g5

=
C e :: �¸s f e1 uLuLu en Ce f t×�QÝ < g 5 =

Figure 4.1: Scheme for producing grammar rules from the subject program

< g 5 = enables the production of call paths representing partial computations,
and rule < g3

= enables call paths for potential computations: the actual value
of e1 is not considered when choosing between e2 and e3.

52 Chapter 4. Call Paths

4.2 Subpaths

We define a prefix of a call path Þz�ßs f �e Þ 1 �=�(�àÞ n t to be either Þ ors f �e Þ 1 �=�(�àÞ i Ô 1 Þ i t , with 0
�

i
�

n, where Þ i is a prefix of Þ i. A subpath of Þ
is either a prefix of Þ or a subpath of some Þ i, and the final call of Þ is f �e if
n � 0, otherwise it is the final call of Þ n. Thus, forÞ��¸s ­�V� ¶s a XyV¹�U�M[8s ­YX3b_��mu[X1b_��Ù�[8s bkX� ¹�U��[´s b X,ONc�m�[©t4t±s a®X6bkX� ¹�U�M[M[Qt4t¥t4t
some subpaths ares ­�VZ ás a®X�V¹�\�M[¸s ­YX3b_��m�[¦X3b×��Ù�[¸s bkX� ¹�U��[ps b X,ONc�m�[©t4t4t4t4t
(with final call bkX,O�c�m�[) ands a®X�V¹�\�M[¸s ­YX3b_��m�[¦X3b×��Ù�[¸s bkX� ¹�U��[ps b X,ONc�m�[©t4t±s a®X6bkX� ¹�U�M[M[Qt4t¥t ,
(with final call a X6b X� .�U�M[\[). In general, the notation s uLuLu s f �e t t t indicates that
f �e is the final call.

We define a flattening function that operates on call paths �4â : CallPath +
< Funname � Expressionn = List. Informally speaking, it erases all but the outer-
most square brackets, s f �e tãâä� s f �e ts f �e Þ 1 uLuLu Þ n tãâä� < f �e = : ÞÄâ1 }ª} �=�(� }ª} ÞÄân,

corresponding to taking a prefix of an inorder traversal of the call tree for the
potential computations.

4.3 State transformers

We now extend the notion of a state transformer st å : CallPath + Expression
defined by Glenstrup and Jones (1996) to fully recursive programs by the
definition

st æ f çe è � �e
st æ f çe é 1 ê ê ê é n è � s f1 �+ e1, uLuLu , fm �+ em t3< st é n = ,

4.3. State transformers 53

where s uLuLu �+ uLuLu t denotes parallel substitution. Thus nested calls Þ 1 �=�(��Þ n Ô 1
do not contribute to the state transformer—they appear directly as call ex-
pressions in Þ n. Intuitively st é expresses the expressions �e k of the final call as
a function of the free variables (function parameters) of the expressions �e 1 of
the first call.

Example 4.1
Consider the program pauK�>�V� �� if V´�� then V else

if a\¤ZV� then auK�>�X,O�bM�¡VZ a[¢ else a_K�>WV X,O�b\�� �Va[a\¤�VZ � VqkW
O�b\�¡V� �� if ´�¸� then V else O�b\�kX�V��´�M[¦X� ����M[
After some trivial simplifications, the grammar G for p is

S :: � s a_K�>WV¡ Cif1 t
Cif1 :: � ÝÎ� Cif2

Cif2 :: � C ë J C ä�ì6í�ß C C ë(î6á ä*ì6í�ß C=C � C ë J C ä�ì6í C ß C ë(î6á ß�ä*ì6í C ß
C ë J :: � ÝÎ��s a\¤ZV� �t
C ä*ì6í�ß C :: � ÝÎ��s&O�b\��VZ Cif3 t
Cif3 :: � ÝÎ� C ä*ì6í�ß Ô_ï�CLÔ_ï
C ä*ì6í�ß Ô×ï�C©Ô×ï :: � ÝÎ��s&O�b\� X�V��¡��[X� ����M[Cif3 t
C ë(î6á ä*ì6í�ß C=C :: � ÝÎ��s auK�>�X,O�bM�¡VZ a[¢ Cif2 t
C ä*ì6í C ß :: � ÝÎ��s&O�b\�� ZV Cif3 t
C ë(î6á ß�ä*ì6í C ß :: � ÝÎ��s auK�>WV®X,O�b\�� ¡V�[Cif2 t

and some examples of call paths Þ:� L < G = ares a_K�>ZVZ �s a\¤ZV� �t=s&O�b\��V� ás&O�b\� X�V¹�U�M[zXy ¹�U�M[©t4ts auK�>�X,O�bM�¡VZ a[¢ ás a\¤�VZ jt6s&O�b\��V¡ �t4t4t
with st é �WO�b\�kX,O�bM�ZV¡ a[² ands a_K�>WV� �s a\¤ZV� jt=s&O�b\��VZ jts auK�>�X,O�b\��V� a[¢ �s a\¤ZV�
t6s&O�b\�� ZVjt=s a_K�>®X�O�b\�Z ¡V�[¢ jt4t4t
with st é �ÍauK�>YX,O�bM�Z kX,O�bM�ZV¡ a[² a[.

54 Chapter 4. Call Paths

Given the argument values of the ith function f i, call paths can be used
to calculate what argument values f i passes in a call to the kth function f k, as
shown in the following

Lemma 4.2
Assume ð s Ï s : � s s e f i t t�Í f i

1 �+ vi
1, uLuLu , f i

m �+ vi
m
Î s +®�=�(�N+ñ ò©ó ô

k Ô i Ô 1 õ ops

� s s f k t tÇ�v k < s }ª} s = .
GivenÞ � s f1 �e 1 Þ 1 uLuLu Þ n Ô 1 Þ n t , where Þ n �¸s uLuLu s f i �e i t t tÞ � s f1 �e 1 Þ 1 uLuLu Þ n Ô 1 Þ n t , where Þ n �¸s uLuLu s f i �e i ˆÞ 1 uLuLu ˆÞ l s f k �e k t t t� s s st é t t�Í f0

1 �+ v0
1, uLuLu , f0

p �+ v0
p
Î ���v i

then �0s s st é�ö t t�Í f0
1 �+ v0

1, uLuLu , f0
p �+ v0

p
Î �á�v k.

Proof: by total induction on the length of Þ%â .
Case length Þ â � 1: then Þ÷��s f1 �e 1 t , Þ ��s f1 �e 1 ˆÞ 1 uLuLu ˆÞ l s f k �e k t4t , and st é ���e 1,

st é ö ��s f1
1 �+ e1

1, uLuLu , f1
m �+ e1

m t��e k. By assumption we have for some s
�Ñs s e f1 t t�Í f1

1 �+ v1
1, uLuLu , f1

m �+ v1
m
Î s + Ê� s s f k �e k t t�Í f1

1 �+ v1
1, uLuLu , f1

m �+ v1
m
Î < s }ª} s = +�ø� s s ek

1 t t�Í f1
1 �+ v1

1, uLuLu , f1
m �+ v1

m
Î s1 + Ê � s1 vk

1 +
... (q times)�Ñs s ek

q t t�Í f1
1 �+ v1

1, uLuLu , f1
m �+ v1

m
Î sq + Ê � sq vk

q +ù�=�=�
where s1 ��<�Á f] e2 uLuLu eq, ­
Â : s }ª} s = , . . . , sq �W<�Á f v1 uLuLu vq Ô 1

] , ­
Â : s }ª} s = ,
and it is straightforward to show that the q evaluations of ek

1, uLuLu , ek
q us-

ing these stacks produce the same values for any stack s , in other
words, �ús sã�e k t t�Í f1

1 �+ v1
1, uLuLu , f1

m �+ v1
m
Î �û�v k, so by the Substitution

Lemma (cf. page 46) we find that � s s st é�ö t tmÍ f0
1 �+ v0

1, uLuLu , f0
p �+ v0

p
Î ��0s s¥s f1

1 �+ e1
1, uLuLu , f1

m �+ e1
m t��e k t t�Í f0

1 �+ v0
1, uLuLu , f0

p �+ v0
p
Î �Ü�v k.

Case length Þ!â_Ó 1: For some �v, � s sã�e 1 t tPÍ f0
1 �+ v0

1, uLuLu , f0
p �+ v0

p
Î �Ü�v 1, so by the

4.3. State transformers 55

Substitution Lemma we know that� s s st é n t t�Í f1
1 �+ v1

1, uLuLu , f1
m �+ v1

m
Î� � s s¥s f1

1 �+ e1
1, uLuLu , f1

m �+ e1
m t st é n t t�Í f0

1 �+ v0
1, uLuLu , f0

p �+ v0
p
Î� �0s s st é t t�Í f0

1 �+ v0
1, uLuLu , f0

p �+ v0
p
Î �Ü�v i.

By using the same lemma again, and the induction hypothesis, we fi-
nally obtain�0s s st é�ö t t�Í f0

1 �+ v0
1, uLuLu , f0

p �+ v0
p
Î� � s s¥s f1

1 �+ e1
1, uLuLu , f1

m �+ e1
m t st é�ön t t�Í f0

1 �+ v0
1, uLuLu , f0

p �+ v0
p
Î� �0s s st é�ön t t�Í f1

1 �+ v1
1, uLuLu , f1

m �+ v1
m
Î �Ü�v k Å

We now prove for any fully recursive program p the following theo-
rem that shows the connection between call paths and state transition se-
quences (cf. the tail recursive case in Glenstrup & Jones, 1996, Lemma 3). It
is useful for analysing program computations: if we can prove some prop-
erty for all call paths, this will be true for all actual computations.

Theorem 4.3 (Connecting call paths and computations via st é)
For any state transition sequence < f1, �v 1 = +��(�=��+ < f k, �v k = there exists a call
path Þ0� L < G = with Þ!â.�qs f1 �x 1, uLuLu , f k �e k t such that ��s s st é�ö t t�Í f s

1 �+ vs
1, uLuLu , f s

n �+
vs

n
Î �ü�v t for all subpaths Þ �qs f s �e s s uLuLu s f t �e t t t t of Þ . Call path Þ is termed the

corresponding call path of the transition sequence.

Proof: Using induction on the length of the transition sequence. The base
case is clear, as s f1 �x t×� L < G = and the required equations are easily checked.
For the induction step, let the sequence be given by ýn� < f1, �v 1 = +þ�=�=�.+
< f k Ô 1, �v k Ô 1 = + < f k, �v k = and the call path supplied by the hypothesis by Þ k Ô 1 �s f1 �x 1 s uLuLu s f k Ô 1 �e k Ô 1 t t t .

Let r ~ 0 denote the number of function returns encountered after calling
f k Ô 1 before f k is called. Now Þ k is constructed from Þ k Ô 1 by starting at the
final call and moving past r right brackets before inserting f k �e k:

Þ k � é k ÿ 1ó ôLñ òs uLuLu s f i �e i s f i ø 1 �e i ø 1 uLuLu sñ òLó ô
r unbalanced brackets

f k Ô 1 �e k Ô 1 t uLuLu tñ ò©ó ô
r brackets

s f k �e k t t t

56 Chapter 4. Call Paths

We can see that Þ k � L < G = :
1. f i �e i must be present in Þ k Ô 1, because to make r returns, there must

have been r nested calls.

2. f i must be able to call f k (obvious), so e f i
must contain a call to f k.

3. Thus, to generate Þ k Ô 1, rule < g5
= must have been used, with < g 5 = gener-

ating Ý . If we instead let < g 5 = generate s f k �e k ÝNt , we get Þ k.

To show the required equations, let Þ k ��s f s �e s s uLuLu s f i �e i ˆÞ 1 uLuLu ˆÞ l s f t �e t t t t be
a subpath of Þ k. Wlog. we can assume t � k; otherwise the equations are
satisfied by virtue of the properties of Þ k Ô 1.

As Þ i ��s f s �e s s uLuLu s f i �e i t t t is a subpath of Þ k Ô 1, we know that � s s st é�öi t t�Í f s
1 �+

vs
1, uLuLu , f s

n �+ vs
n
Î �ù�v i, and then by Lemma 4.2 we obtain � s s st é ök t t Í f s

1 �+
vs

1, uLuLu , f s
n �+ vs

n
Î �á�v t. Å

4.3. State transformers 57

Chapter 5

Capturing Parameter
Dependency

The termination detection presented in this paper works by considering how
parameters behave in recursive calls, and to this end we need an approxima-
tion of how the actual parameter values are computed.

These parameter dependencies express whether the parameters decrease or
increase at each function call, and for simple argument expressions like in

­ZV� �� ����� a XyVpcz�M[X� ����M[�����
this is straightforward, but when we consider nested calls we must consider
how their return values depend on their arguments. For instance, in

­ZV� �� ����� b X=a X�V�cz�M[Xy ��¡�M[\[����� ,
apart from recording that a ’s parameters depend on ­ ’s, we must also con-
sider how b ’s parameters depend on ­ ’s via the nested call to a .

In the present chapter we develop machinery to perform an analysis of
how the value size of an expression e depends on the values of the parame-
ters of the function it occurs in.

One of our goals is not to handle constants too conservatively. In a func-
tion like

58

5.1. Material dependency 59

­�V¡� if `\]jN�a\¤jbZVqy¸m thenQ�Ú.�:m/�²�a���MR
elseK@>MT X�­YX�K�>\>MT�Va[\[

we do not want the analysis to tell us that the result of ­ZV is greater than
V (cf. the analysis in Andersen & Holst, 1996), even though this is true when
list V is shorter than 3.

The reason is this: when detecting nontermination, we are looking for
parameters that can risk increasing beyond any bound. Given a variable x in
program p, if for some program input we find that x is bound to infinitely
many different values during evaluation, we say that x is unbounded. Simi-
larly, if an expression e for some input is encountered infinitely many times
during evaluation and there is no bound on the values it evaluates to, e is
said to be unbounded.

When function ­ defined above is used in a nested call likeaZV¡� ����� akX�­�V�[���
�
V should not be deemed unbounded just because of ­ ’s increasing effect on
small V values. Thus it would be unnecessarily conservative to state that ­�V
can cause a “dangerous increase” of V .

On the other hand, the dependency analyses must be safe. We present
two analyses with different modalities, a must-always-decrease and a might-
possibly-increase analysis. Whenever the must-always-decrease analysis pro-
duces a decreasing dependency, all actual computations must exert a de-
creasing behaviour. Further, if there is a risk of unbounded increase, the
might-possibly-increase analysis must state this.

5.1 Material dependency

Several extensionally equal functions (i.e. seen as “black boxes” they always
yield equal results) can be intensionally different. An example is the add
function for natural numbers:

SM>\> 1 V� ���V�cZ

60 Chapter 5. Capturing Parameter Dependency

S�>\> 2 V� �� if V���� then else SM>\> 2 X�V����M[X� �c¦�M[
S�>\> 3 V� �� if V���� then else ��c¡SM>M> 3 X�V��¡�M[¢
S�>\> 4 V� �� if V���� then

if ´�¸� then � else �Ãc¡SM>\> 4 V®X� ��¡�M[
else
��c¡SM>M> 4 X�V��´�M[²

One of the (intensional) differences between these functions is how the return
value is constructed: in SM>\> 1, both V and are used in a basic operation: we
say that SM>M> 1 VZ is materially dependent on V and . In S�>\> 2 and S�>\> 3 the
value of V is tested, but is not used in a basic operation to construct the return
value; SM>\> 2 V� and SM>M> 3 VZ are only materially dependent on . Similarly,
SM>\> 4 VZ is materially dependent on neither V nor .

Formally, an expression e is materially dependent on one of its free vari-
ables x iff the value of e potentially (i.e. assuming either branch of an if-
expression can be taken) can be constructed by basic operations applied to
the value of x. These variables can easily be determined syntactically by
descending the expression recursively, collecting all variables not occurring
in the conditional part of an if-expression. If the size of an expression e is
related to some of its free variables �x when these are given infinitely many
different values (i.e. ð×­NÏ K ð v : �³s s e t t�<�­ } Í x �+ v Î�= Ó K) without being materi-
ally dependent on �x, we say the expression is immaterially dependent on �x.

Let ý�� � s s e t t ­ s +ù�(�=��+ � s v be the transition sequence for evaluating
an expression e in the environment ­ (note that this is a subsequence of the
evaluation of a program). If there exists some program input such that for
any bound K, there exists an evaluation of e encountered during program
evaluation (using the program input) in which the number of � -operators iný is greater than K, we say e requires an unbounded number of function calls
to be computed.

We can now make the following

Observation 5.1 (Sources of unboundedness)
An expression can only be unbounded if it is materially dependent on an
unbounded variable or the expression requires an unbounded number of
function calls to be computed

5.2. Capturing size dependency 61

5.2 Capturing size dependency

As we are trying to capture the behaviour of parameter values as computed
by function calls we will need some mechanism to describe how the value of
an expression relates to those of its free variables.

Our starting point is the underlying domain, Value, with some well-
founded partial order

�
. We are interested in two conceptually separate

properties of an expression:

Decreasing property: its ability whenever evaluation terminates to yield a
value (equal to or) less than the value of some of its free variables, and

Non-bounding property: its risk of possibly being able to yield a value
greater than (or just related to) the value of some of its free variables.

For example, the conditional expression if � then Þ else �@ÝMÖ¬Þ will always
yield a value less than or equal to Þ ’s value, while the conditional expression
if � then Þ else �MÜ��¹-��² is potentially “dangerous”: it can possibly yield a
value greater than the value of Þ .

To this end, we introduce a set, D, of dependency operators Ê , ÊÌ , ËÌ , Ë , and
we call them decreasing, non-increasing, non-bounding and diverging operators,
respectively. We also impose a partial order � on operators such that ÊÌ �§Ê ,
ËÌ �óË and ����� for any �Ð� D.

An operator is combined with a variable name and is intended to be a de-
scription relative to this variable. Thus e.g. the dependency “ Êu< fx

= ” should
be read as “always strictly less than fx.” As the expression value can depend
on several of the free variables we gather the dependencies for an expression
in two dependency sets: � Ú for the decreasing and ��Ù for the increasing op-
erators. Some examples of possible dependency sets are shown in Figure 5.1
on the following page.

62 Chapter 5. Capturing Parameter Dependency

Expression e � for e Intuitive reading

if Y then 	�
�TÕZ
else 	Q	PTÕZ S©O � Z��6\S MÌ � É��6\ always less than É

possibly unbounded for unbounded É
if Y then 	�
�TÕZ

else Z S©OÌ � Z��6\S MÌ � É��6\ always less than or equal to É
possibly unbounded for unbounded É

	Q	PTõù Å
� ½ / É ü S©O � Y�� , O � ZN�6\S MÌ � / � , MÌ � É��6\ always less than Y and less than Z
possibly unbounded for unbounded / or É

	��,¶jUÐYÉZ S�\S M � Y�� , M � ZN�6\ no decreasing guarantees
possibly greater than Y or greater than Z

if Y then Z
else 	��,¶jU û 1 S�\S MÌ � Z�� , M � [N�6\ no decreasing guarantees

possibly unbounded for unbounded Z or
greater than [

Figure 5.1: Some examples of dependency sets

Formally, we introduce the following domains:��� S©O , M \ decreasing and non-bounding
modality� � D Ú R:S©O , OÌ \ , � � D Ù R:S M , MÌ \ dependency operator� �

fx � � Dep �ÇR D ��� Varname dependencyMÌ � K � � BoundDep R0S MÌ \�� Value bound dependency� � DepSet Ú R � � Dep Ú � decreasing dependency set� � DepSet Ù R � � Dep Ù�� BoundDep � increasing dependency set��� DepEnv � R Varname � DepSet � dependency environment,� � DepFunEnv �R Funname � �
DepSet � � n� DepSet �

function return value depen-
dency environment

Note that the bound dependency ËÌ < K = is only used to state the safety of � Ù ; it
is never computed in an actual implementation. We extend the partial order

5.3. Safety of size approximations 63

� to dependencies, dependency sets and dependency environments by

� 1 < fx
= ��� 2 < gy

=�� fx � gy � � 1 ��� 2� 1 ��� 2
� Ï)< � 1 < fx

=�= ��� 1 ðP< � 2 < gy
=�= ��� 2 : � 1 < fx

= ��� 2 < gy
=!

1 � !
2

� Ï fx : ! 1 fx � !
2 fx (when dom !

1 � dom !
2)

The dependency set domains have the following top and bottom elements:

r DepSet $ � Í Îr DepSet " � Í Î
#

DepSet $ � ÍxÊ�< x = � x � Varname Î#
DepSet " � ÍxË�< x = � x � Varname Î

and the partial orders on the dependency set transformer domains are given
by Ï f Ú1 , f Ú2 ��< DepSet Ú = n + DepSet Ú : < f Ú1 � f Ú2 � Ï �� : f Ú1 ��%$ f Ú2 �� =Ï f Ù1 , f Ù2 ��< DepSet Ù = n + DepSet Ù : < f Ù1 � f Ù2 � Ï �� : f Ù1 ��&� f Ù2 �� =
Note the reversed relation in the first of these two definitions.

5.3 Safety of size approximations

If we are to use dependency sets for expressions as approximations of their
actual values during computation we must formally define what we mean
by requirements like “always less than. . . ” and “possibly unbounded. . . ”, in
other words how the approximations must relate to the actual values.

Given a value environment ­ , we can describe how a concrete value v
relates to the values of the variables in dom ­ by the function ç|Ú ' : Value +
DepSet Ú given by

ç Ú ' v �¨ÍxÊ�< fx
= � v ÆÛ­ fx

Î Ö�ÍxÊÌ < fx
= � v � ­ fx

Î ,
and we can extend it to ç Ú ' : Environment + DepEnv Ú by letting ç Ú '�­ fx �
ç"Ú 'H<�­ fx

= .
Given e.g. the environment ­Õ�ZÍ(� �+ Q��xR , Þ �+ Q1R Î we get ç Ú ' ­Õ�*)+� �+

ÍjÊÌ <,� =�Î , Þ �+ ÍxÊÌ <�Þ = , Ê_<,� = , ÊÌ <-� =�Î
. .

64 Chapter 5. Capturing Parameter Dependency

In a somewhat similar way we define ç Ù ' ,K : Value + DepSet Ù by

ç Ù ' ,K v �¯ÍjËu< fx
= �N­ fx Æ v Î Ö ÍxËÌ < K = � K � v Î ,

where K � Value is a bound that v is compared to, and extend it exactly like
ç.Ú ' to environments. Later, we will consider ç Ù ' ,K v for varying bounds K, the
idea being that if some expression value can exceed all bounds by varying
some parameter fx, it must be classified at least as ËÌ < fx

= .

Size approximation functions � Ú and � Ù
We now assume given two size approximation functions: a decreasing

size function � Ú : Expression + DepEnv Ú + DepSet Ú and an increasing size
function � Ù : Expression + DepEnv Ù + DepSet Ù . When these functions are
given an expression and an estimate of the values of the free variables (rep-
resented by the dependency environment), they must return a safe estimate
of the expression value:� Ú must be safe in the sense that if � Ú claims that the value of an expres-
sion e is less than some parameter fx, then no matter under which environ-
ment ­ the expression is evaluated, the actual value of e—if it exists—must
be less than the actual value of fx. Thus � Ú must satisfy

Definition 5.2 (Safety of � Ú)� Ú is called safe iffÏ e Ï ­ : fv e ² dom ­�^»� Ú s s e t t�<1ç Ú '�­ = �§ç Ú 'H<��0s s e t t±­ =
This implies that removing Ê , ÊÌ -dependencies from a safe estimate is safe
(corresponding to conservatively ignoring some decreasing transitions in the
program).

Towards formulating safety of ��Ù One might think that for ��Ù to be
safe one must under similar quantification require the reverse relationship
ç Ù ' ,K < � s s e t tÎ­ = � � ÙÍs s e t t <1ç Ù ' ,K ­ = , but this turns out to be too strong: for
e � if ����� then � else KML�NaO¡�² this would require that Ëu<,� = � � Ù�s s e t tu<1ç Ù ' ,K ­ = ,

5.3. Safety of size approximations 65

as ç Ù ' ,K <��ns s e t t×­ = �¯ÍxËu<,� = , Ë_<7Þ =�Î for ­��¢Í(� �+ Q6R , Þ �+ Q1R Î , K � Q��P���xR , and yet it
cannot yield unboundedly many values greater than V for fixed .

The problem is that we want to attribute increasing dependencies to ex-
pressions according to their asymptotic behavior, i.e. what the relation be-
tween function input and output is when the size of the input goes towards
infinity. Intuitively, if we vary the value of a parameter fx while holding the
remaining parameters fixed, we want to attribute Ë�< fx

= to e if the value of e
asymptotically is greater than the value of fx, and ËÌ < fx

= if e asymptotically
can yield unbounded values (though not necessarily greater than the value
of fx). Figure 5.2 shows some examples of the behaviour of expressions for
varying V and fixed �� 4, together with the kind of increasing dependencies,
relative to V , we want to attribute to them. The dependency ËÌ < K = expresses
that the expression value is greater than a bound K; in the example K is
greater than 4 so e3 need not be attributed ËÌ < K = .

/

0

. .

1 1 1 1 1 1 1 132

1 1 1 /
1 1 1 1 1 1 1 132

� � � e � �jS�É «� 4, / «� v \
S M � / �6\ S MÌ � / �6\

S�\
K

e3 ¦ Å4� ½rù /§ú65@ü87

e2 ¦ if É�9 /;:<5 then
É ú¯û

else/;:<5
e1 ¦ if />= É then ø else /óú�5

v

Figure 5.2: Expression value behavior when varying one parameter value

66 Chapter 5. Capturing Parameter Dependency

Expressions with several variables In general, however, looking at the ex-
pression value while varying just one variable is not sufficient: consider the
program

­ZV� �� ����� if ���
� ­YX(aZV� �[X(aZVZ a[����� else �����a�b´^��z�Ãc¯¥�£�NZb´^
For any one value of b it is correct to conclude that a is bounded by (the value
of) ��c©b (and similarly for ^), yet a is not bounded when both b and ^ vary,
causing nontermination in the present example.

The solution is for an expression e to consider all subsets of the free
variables when varying: for every subset X that leads to unbounded vari-
ation in e there must be at least one x � X for which �u< x = �÷��Ù s s e t t ! Ù

id with! Ù
id �¡ÍxËÌ < x = � x � fv e Î , where �Õ�WË or ËÌ , depending on whether or not the

value of e is strictly greater than that of x infinitely often.
Formally, for a set of variables X, we define a partial order � X ²

DepSet Ù � DepSet Ù that only compares dependencies using some of the vari-
ables, namely those found in X:� 1 � X � 2

� <�<ãÏ fx � X Ï?� 1 < fx
= ��� 1 ð gy � X ð@� 2 < gy

= ��� 2 : � 1 ��� 2
=� <ªÏ?� 1 < K = ��� 1 ð gy � X ð@� 2 < gy

= ��� 2 : � 1 ��� 2
=�=

Note that X and � X are only used to state the safety of � Ù ; it is never com-
puted in an actual implementation. Here are some examples of its use:

ÍjËu<,� = , ËÌ <�Þ = , Ë_<,A =�Î � # ß , C ' ÍxË�<-� = , Ëu<�Þ =�Î because B�C� ÍxV , Î , Ë��³Ë , ËÌ �óË
ÍjËu<,� = , ËÌ <�Þ = , Ë_<,A =�Î � # ß , D ' ÍxË�<-� = , Ëu<�Þ =�Î because Ëu<�V = ��� 2

ÍjËu<,� = , ËÌ <�Þ = , Ë_<,A =�ÎED� #=D ' ÍxË�<-� = , Ëu<�Þ =�Î because Ëu<FB = C��� 2

ÍjËÌ <,� = , ËÌ < K =�Î � # ß , C ' ÍxË�<-� =�Î because Ëu<�V = ��� 2

ÍjËÌ <,� = , ËÌ < K =�ÎGD� #=C ' ÍxË�<-� =�Î because ËÌ < K = �H� 1, but ��<7 = C��� 2

Note specifically that ÍxËu<*b =�Î � # ì , ã�' ÍjËu<�^ =�Î , which is what enables us to let� Ù s s;�Ãc¯¥�£�NZb¡^jt t ! Ù
id �ªÍxËu<�^ =�Î , that is, we need not include both Ëu<*b = and

Ë�<7^ = . Informally, the dependency set states that “if ^ is fixed, �Ãc¨¥�£�N�b´^
cannot be made to return unboundedly large values by varying other free
variables (i.e. b).”

For � Ù to be safe we then require the slightly weaker condition that

5.3. Safety of size approximations 67

Definition 5.3 (Safety of ��Ù)� Ù is called safe iffÏ e Ï ­ : fv e ² dom ­�^Ï X ² dom ­ : X D�¨Í Î ^
<1ç Ù ' ö ,K <��0s s e t t_­ = � X ��ÙØs s e t t�<1ç Ù ' ö ,K ­ =�= where ­ �l­ } Í xi �+ vi

Î
xi K X

for almost all <j�v, K = �°< Valuen � Value =
where in general if P < v = is a predicate parameterised on v then the phrase
“P < v = for almost all v” means “ Í v �4I P < v =�Î is finite.” Similarly, “a R

a.a.v
b”

means “ Í v �
I�< a R b =�Î is finite.” The definition implies that adding Ë , ËÌ -
dependencies to a safe estimate is safe (corresponding to pessimistically pre-
tending there are some extra increasing transitions in the program).

Thus, in a diagram, we require:

DepEnv Ú
�J $ æ æ e è è

Environment � X
a.a. KMLv,K N

ì $O
J æ æ e è è

ì "O ,K
DepEnv ÙJ " æ æ e è è

DepSet Ú Valueì $O ì "O ,K

DepSet Ù

so ��Ú and ��Ù can be seen as lower and upper approximations to � .
State transformers (cf. page 52) in conjunction with size dependency func-

tions are very useful as they can reveal what parts of the first expression in a
call path the last expression depends upon. Formally this is defined by

Definition 5.4 (Dependency along a call path)
Given a call path Þ �ls f 1 �e 1 s uLuLu s f k �e k t t t we say f k

i depends on x � fv �e 1 along Þ
with effect � iff

��< f1
j
= � � � s s ei t t ! �id for some �Ð� D � ,where �e � st é and

P ! Ù
id x ��ÍxËÌ < x =�Î! Ú
id x ��ÍxÊÌ < x =�Î .

68 Chapter 5. Capturing Parameter Dependency

For �Î� D Ú , D Ù we say f k
i depends decreasingly respectively increasingly on

x along Þ .

Based on Observation 5.1 on page 60, we are now able to introduce some
concrete size approximation functions and argue for their safety.

5.4 Concrete size approximations

An example of safe size approximation functions is given in Figure 5.3. The
operator QSR : Expression + Boolean, defined in Figure 5.4 on page 70, detects
whether there is a risk of a “recursive increase,” i.e. that the value produced
by the expression is produced using an increasing constructor (KML�NaO) in (pos-
sibly mutually) recursive calls. Note that a function ­�V¡�ÛÚ�m returning a
constant value need not be classified by Ë�<�V = , even though ��s s ­�V
t t,­�Ón�÷s s Vjt t,­
for ­CV³��Í 0, uLuLu ,41 Î . This matches our intuition that such a function does not
in itself cause divergence.

Proposition 5.5 (Size function well-definedness)
The size functions � Ú and � Ù in Figure 5.3 are well-defined.

Proof: By checking that � Úe and � Ùe are monotonic in T , using structural induc-
tion on e, we verify that the fixpoint exists. For � Ùe this is straightforward; for� Úe , note that in the definition of the partial order on < DepSet Ú = n + DepSet Ú
the ordering is reversed, cf. Section 5.2 on page 61. Å

We would like to prove that the � � operators are safe approximations,
and to this end we first define a notion of correct environment description:

Definition 5.6 (Correct environment description)
Given an initial environment ­ 0, we say that ! � DepEnv Ú ­ 0-describes ­ if
and only if dom ! � dom ­ andÏ x1 � dom ­ÇÏ x2 � dom ­ 0 : <�Êu< x2

= � ! x1 ^û­ x1 Æ�­ 0 x2
= �<�ÊÌ < x2

= � ! x1 ^ ­ x1
� ­ 0 x2

=
From the definition of ç.Ú ' (cf. page 63) we can see that this is equivalent toÏ x � dom ­ : ! x �¬ç.Ú '

0
<�­ x = , or equivalently ! �¬ç.Ú '

0
­ . The initial environment

5.4. Concrete size approximations 69

� � R � �e � fix
�,U �

.S f1 «� U �
1 2�2(2 � m.

� �e � � � e1 � �
S x1 «� �
1, 2�2(2 , xm «� �

m \ , 2�2(2 ,
fn «� U �

1 2�2(2 � k.
� �e � � � en � �
S x1 «� �

1, 2�2(2 , xk «� �
k \�\Q�o�� �e :

�
Funname � �

DepSet �
� n � DepSet ���� Expression � DepEnv � � DepSet �� Úe � � � c � � � R S�\� Úe � � � x � � � R � x� Úe � � � if e1 then e2 else e3 � � � R � Úe � � � e2 � � �WV Ú � Úe � � � e3 � � �� Úe � � � b e1 2�2(2 en � � � R � Úb b
� � Úe � � � e1 � � � �j2�2(2 � � Úe � � � en � � � �� Úe � � � f e1 2�2�2 en � � � R �

f
� � Úe � � � e1 � � � �j2(2�2 � � Úe � � � en � � � �

where
�

1
V Ú � 2 R:S©OÌ � fx �YX(OÌ � fx � � �

1 Z O � fx � � �
2 \ �S©OÌ � fx �YX(OÌ � fx � � �

2 Z O � fx � � �
1 \ � � � 1 [�

2 �
and

� Ú
b 	\�,¶jU �

1
�

2 R S�\� Úb 	\
�T �
1 R � Úb 	Q	PT �

1 R S©O � fx �YX � � fx � � �
1 \� Ùe � � � c � � � R S�\� Ùe � � � x � � � R � x� Ùe � � � if e1 then e2 else e3 � � � R � Ùe � � � e2 � � �W] Ù � Ùe � � � e3 � � �^] ÙS M � x �?X x � fv e1 Z �`_^a � � e2 � �cb _^a � � e3 � �4�6\� Ùe � � � b e1 2�2(2 en � � � R � Ùb b

� � Ùe � � � e1 � � � �j2�2(2 � � Ùe � � � en � � � �� Ùe � � � f e1 2�2�2 en � � � R �
f
� � Ùe � � � e1 � � � �j2(2�2 � � Ùe � � � en � � � �

where
�

1
] Ù � 2 R:S M � fx �YX M � fx � � �

1 � �
2 \ �S MÌ � fx �YX MÌ � fx � � �

1 � �
2 Z M � fx ��d� �

1 � �
2 \

and
� Ùb 	\�,¶jU �

1
�

2 R S M � fx �YX � � fx � � �
1
] Ù � 2 \� Ùb 	\
�T �

1 R � Ùb 	Q	PT �
1 R �

1

Figure 5.3: Examples of safe size approximation functions

70 Chapter 5. Capturing Parameter Dependency

^a � � e � �NR�e f : M � f � � �`^a
e Ce

MÌ � � e � �¥�
where Ce is the set of functions that are mutually recursive with the
function in which e occurs_^a

e C
� � � c � � R S�_^a

e C
� � � x � � R S�_^a

e C
� � � if e1 then e2 else e3 � ��R _^a

e C
� � � e2 � � � _^a

e C
� � � e3 � �_^a

e C
� � � b e1 2(2�2 en � � R _^a

b C
� � � b e1 2�2�2 en � �_^a

e C
� � � f e1 2�2(2 en � � R S � � f �fX f � C \ �� Ù � � e f � �
S x1 «� �

1, 2�2(2 , xn «� �
n \ ,

where
�

i R _^a
e C MÌ � � ei � �_^a

b C
� � � 5�Ç�½M¾ e1 e2 � � R _^a

e C M � � e1 � � � _^a
e C M � � e2 � �_^a

b C
� � � 5 Ã�Ä e1 � � R _^a

b C
� � � 5,È Ä e1 � �¶R _^a

e C
� � � e1 � �

Figure 5.4: Operator for detecting values constructed by recursive increase

­ 0 is used as a “reference point”: all values are compared to the values of the
variables bound in ­ 0.

One might think that the safety proof requires fixpoint induction because� � are defined by fixpoint iteration, but it turns out that the property we
want to prove in general does not hold before the fixpoint is reached (recall
from Section 5.2 on page 61 that r DepSet $ claims the expression in question is
less than all of its free variables). Thus, the property is not stable and cannot
be shown by fixpoint induction.

Clearly, simply applying total induction on e will not work either because
of the fixpoint iteration. The problem is related to the fact that for totally
nonterminating programs like ­�V´�Z­®XyVpcz�M[we find, perhaps rather sur-
prisingly, that � Ú s s ­ZVjt t ! Úid �WÍjÊu<�V =�Î . The key point is that what we want to
show is in fact that if evaluation of e terminates, then � � produces a correct
description. What we need is some clear connection between the evaluation
and approximation, and this is given by the inference system presented in
Figure 5.5 on the facing page. Informally, judgement ­ , !Hg e h + v : � states

5.4. Concrete size approximations 71

­ , !�g c h + c : Í Î ­ , !Sg x h + ­ x : ! x

­ , !�g e1 h + eLf�g�h : � ­ , !�g e2 h + v2 : � 2­ , !�g if e1 then e2 else e3 h + v2 : � 2

­ , !Sg e1 h +jilk+m n=h : � ­ , !Sg e3 h + v3 : � 3­ , !�g if e1 then e2 else e3 h + v3 : � 3

­ , !�g e1 h + v1 : � 1 ­ , !Sg e2 h + v2 : � 2­ , !Sg KML�NPO e1 e2 h + < v1.v2
= : Í Î

­ , !Sg e1 h + < v1.v2
= : � Ê4���¯ÍjÊu< x = �o��< x = �p� Î­ , !�g KMS�T e1 h + v1 : Ê4�

­ , !Sg e1 h + < v1.v2
= : � Ê4���¯ÍjÊu< x = �o��< x = �p� Î­ , !�g K�>MT e1 h + v2 : Ê4�­ , !Sg ei h + vi : � i, i � 1, uLuLu ,n

Í fi �+ vi � i � 1, uLuLu ,n Î , Í fi �+q� i � i � 1, uLuLu ,n Î g e f h + v f : � f­ , !�g f e1 uLuLu en h + v f : � f

Figure 5.5: Inference system connecting evaluation and decreasing size ap-
proximation

72 Chapter 5. Capturing Parameter Dependency

that if evaluating e under environment ­ terminates, it yields v, and also that
under dependency environment ! , � decribes what e is decreasingly depen-
dent on.

The following lemmas state this formally, and to prove them we use the
big-step definition of evaluation from Section 3.3 on page 48. As the inference
system and the big-step semantics have the same structure, the following
lemma is easily checked:

Lemma 5.7
For all e, ­ , ! , if �qs s e t t�­ terminates without errors, then ­ , !�g e h + v : � is
well-defined and �0s s e t t_­�� v

Now that we have made the connection to normal evaluation, we find
the required safety relation in the following

Lemma 5.8
Let ­ 0 be given. Now for all e, ­ , ! , if �Ñs s e t t±­ terminates without errors and !­ 0-describes ­ , then­ , !�g e h + v : � is well-defined and Ï ! � ! : � Ú s s e t t ! ���r�÷ç Ú '

0
v

Proof: As the evaluation terminates, the inference tree is finite and we prove
the lemma by induction on the height of the inference tree.

Case c: OK.

Case x: We find � ÚÕs s x t t ! � ! x � ! x �s� , and because ! ­ 0-describes ­ we
also have ��� ! x �÷ç Ú '

0
<�­ x = .

Case if e1 then e2 else e3: As � 1 t Ú3� 2 �s� i for i �°Í 1,2 Î we find by using
the induction hypothesis that ��Ú�s s if e1 then e2 else e3 t t ! �:��Ú�s s e2 t t ! t Ú��ÚÎs s e3 t t ! �:��ÚÎs s ei t t ! �u� i �§ç"Ú '

0
vi for i � 2,3

Case KML�NaO : OK.

Case KMS�T & K�>MT : As v1 ~ v2 ^ ç"Ú '
0

v1 �¨ç"Ú '
0

v2 we see by the induction hy-
pothesis that Êu< x = ��Ê+�p^v�u< x = �w� i ^j�u< x = ��ç"Ú '

0
< v1.v2

= ^v�u< x = ��ç"Ú '
0

vi
for i � 1,2.

5.4. Concrete size approximations 73

Case f e1 uLuLu en: Let ! f �ZÍ fi �+®� Ú s s ei t t ! � i � 1, uLuLu ,n Î . By using the induc-
tion hypothesis � ÚÄs s ei t t ! �s� i for i � 1, uLuLu ,n we find that ! f �WÍ fi �+� i � i � 1, uLuLu ,n Î , and using it once again we obtain � Ú·s s f e1 uLuLu en t t ! �� ÚÎs s e f t t ! f �6� f �§ç"Ú '

0
v f . Note that the use of the hypothesis hinges on

the fact that ­ 0 is fixed before the induction. Å
Finally, we are able to prove

Proposition 5.9 (Size function safety)
The size functions ��Ú and ��Ù in Figure 5.3 are safe approximations to � .

Proof: The proof of safety for ��Ú is given by letting ! �¨ç Ú ' ­ and using Lem-
mas 5.7 and 5.8 on the facing page.

The proof of safety for ��Ù is somewhat more complicated, so will content
ourselves with arguing informally. Basically, we must make sure that

1. If � s s e t t_­ is greater than ­ x for infinitely many ­ then Ë�< x = � � Ù´s s e t t ! id.

2. If �Òs s e t t_­ can be forced to be arbitrarily large by binding some variable
x to arbitrarily large values in ­ , then �u< x = ��� Ù s s e t t ! id for some � .

Consider first the material dependencies for the various syntactic construc-
tions:

Case c: As c cannot be greater than arbitrarily large values, no dependency
is needed.

Case x: Obvious.

Case if e1 then e2 else e3: Material dependency concerns only e2 and e3, and
they are handled recursively.

Case b e1 uLuLu en: Obvious.

Case f e1 uLuLu en: Obvious by the fixpoint construction.

For the immaterial dependencies, recall from Observation 5.1 on page 60
that the construction of unbounded values requires an unbounded number
of function calls. Assume given some function call f e1 uLuLu en. For every input,

74 Chapter 5. Capturing Parameter Dependency

either the call loops infinitely, in which case there is nothing to show, or the
recursive calls are finally terminated by some stop condition.

This stop condition must be present in e1 of some conditional. Further-
more, e2 or e3 must contain a recursive call, and if arbitrarily large values are
to be returned, they must be constructed using increasing basic operations
(i.e. KML�NPO) in these recursive calls. But this is exactly the case that is catered
for by the QSR -construction: if there is a risk of recursive increase in any con-
ditional branch, all variables in the stop condition are conservatively added
to the dependency set. Å
5.5 Composing dependencies

It is intuitively clear that we will need to calculate approximations of the
effect of composing size dependencies from the individual function calls.

We therefore also need an associative dependency combinator Å � : D � �
D � + D � with unit element, x � . This combinator is used to calculate the de-
pendency effect of composing two expressions, so intuitively � 1 Å � � 2 should
yield a dependency operator that gives a safe description of how hz relates to
fx if gy is � 1 < fx

= and hz is � 2 < gy
= . Given Å � and the dependencies along sim-

ple call paths in the program, the algorithms can compute the total effect of
dependencies along all loops in the program. � Ú and Å�Ú must be compatible
in the sense that for all e1, e2, ­ 1, ­ 2 they must satisfy the condition:

if � 1 < fx
= � ��ÚÎs s e1 t t�<1ç"Ú ' 1

­ 1
= and � 2 < gy

= �·��ÚØs s e2 t t�<1ç"Ú ' 2
­ 2
=

then ð@��< fx
= � ��ÚÎs s e2 t t�<1ç Ú ' ö2 ­ 2 = : � 1 Å Úy� 2 �u� ,

where ­ 2 �Û­ 2 } Í gy �+ú�0s s e1 t t_­ 1
Î

Similarly, for all e1, e2, ­ 1, ­ 2, ��Ù and Å�Ù must satisfy

if � 1 < fx
= � � ÙÎs s e1 t t�<1ç"Ù ' 1

­ 1
= and � 2 < gy

= � � ÙØs s e2 t t�<1ç"Ù ' 2
­ 2
=

then ð@��< fx
= � ��ÙÎs s e2 t t�<1ç Ù ' ö2 ­ 2 = : ����� 1 Å�Ùz� 2,

where ­ 2 �Û­ 2 } Í gy �+ � s s e1 t t_­ 1
Î

Composing dependencies should also satisfy the following

5.5. Composing dependencies 75

Requirement 5.10 (Substitution for ��Ù and ��Ú)
Given expression e and Í y1, uLuLu , ym

Î|{ fv e, then��< y = � ��ÙÄs s4s y1 �+ e1, uLuLu , yn �+ en t e t t ! Ùid ^ð i : � < y = � � Ù´s s ei t t ! Ùid � � < yi
= � � Ù s s e t t ! Ùid,

where �}��� Å�Ùz� , and��< y = � ��ÚÄs s4s y1 �+ e1, uLuLu , yn �+ en t e t t ! Úid ~ð i : � < y = � ��Ú´s s ei t t ! Úid � � < yi
= � ��Ú s s e t t ! Úid

where �^$;� Å�Úz� .
For our size dependencies we can let composition be given by the follow-

ing

Definition 5.11 (Dependency composition)
Let ÊÌ Å�Úz���;�ØÅ�Ú ÊÌ �;� , ÊØÅ�Ú Ê��²Ê , ËÌ Å Ù������ÎÅ Ù ËÌ �;� , ËØÅ Ù�Ë��§Ë , x3ÚÉ�§ÊÌ andx1ÙÉ�²ËÌ
It is straightforward to see that Å � is compatible with � � of Figure 5.3, and
the following lemma can be proved by fixpoint induction:

Lemma 5.12
The size functions ��Ù and ��Ú in Figure 5.3 satisfy Requirement 5.10

It is quite possible to imagine other, more elaborate size dependency func-
tions which can give better approximations for the return values of user-
defined functions. Even type-system based size dependency functions simi-
lar to those suggested by Hughes et al. (1996) could be employed, as long as
they satisfy the safety conditions. More specific dependency operators could
also be used; the choice of how detailed they are and the choice of Å � affects
the complexity and computability properties of the semi-ring algorithm used
in Section 6.5 on page 85.

Chapter 6

Determining Boundedness of
Parameters

6.1 Bounded variation

Recall the Definition 3.8 on page 45 of bounded variation: a function parameter
is said to be of BV when the set of possible values it can take during any
program evaluation is finite:

fi is BV iff ÏØ�u � Valuea : Í vi �@< f1, �u = + Ê < f , �v =�Î is finite,

where a � arity f1.
The BV property is in general undecidable, so the object of this section

is to show how two conditions called domination and anchoring conditions
can detect a “large subset” of p’s BV parameters. The domination condition
detects parameters whose values will always be dominated by one of p’s
input parameters, one of p’s program constants, or a bounded combination
of BV parameters. The anchoring condition is more general, detecting also
parameters whose value growth is limited by the value of some other BV
parameter.

The conditions operate on graph representations of the parameter depen-
dencies in the program. We start by constructing two size dependency graphs

76

6.1. Bounded variation 77

from the program: SDG Ù and SDG Ú . The nodes represent the function pa-
rameters in p, while the edges represent the dependencies arising from the
arguments used at the various call sites. The SDG Ù records increasing and
non-bounding properties and is used to detect domination, while the SDG Ú
records decreasing and non-increasing properties. When a potentially di-
verging loop is detected in the SDG Ù , the SDG Ú is searched for a correspond-
ing, decreasing bounded loop that can act as an “anchor.” This is in fact done
by extracting information about loops from the SDG Ù and SDG Ú graphs and
then building a loop dependency graph, LDG. It is by examining this LDG
that the relationship between diverging loops and their anchors is detected.

Example 6.1
For the program shown in Figure 6.1, to ease readability we assume we are
working with the natural numbers as our well-founded Value domain. The
program does not compute anything sensible, but it illustrates some non-
trivial program constructs. We have labeled each function call site with a
letter a–g for later reference.

The size dependencies in this program are:

e � ÙÄs s e t t ! Ùid � Ú s s e t t ! Úid­�V� �B�> ÍjËu<�V =�Î Í ÎaWb´^¸� ÍjËu<*b =�Î Í Îb¡TzO ÍjËÌ <�T =�Î Í Î
>U]UK¢N ÍjËÌ <*N =�Î ÍjÊu<*N =�Î
X if b e ^q�l�´�¸� then ^ else >U]UK©^a[ÍjËÌ <�^ =�Î ÍjÊÌ <�^ =�Î

where ! �id x �¯Í�x � < x =�Î
The conditions to be presented work by assigning property marks to the

nodes of these graphs. These marks range over a simple domain with two
values: r*� B, and the algorithms are constructed in such a way that the
property mark of a node never decreases. Initially all nodes are marked r
(the node has not been reached yet). Subsequently, they can change to B (of
Bounded variation).

It is important to note the difference between the property BV and the mark
‘B’: the marks are approximations to bounded variation: a BV variable might

78 Chapter 6. Determining Boundedness of Parameters

KML�N_¤MT�£j^_]M>l�
­��¨S¨� �Z­ a SYX�Slcpm�[¨S¨�%
­ZV� �BZ>�� if BpkÛ� � >pkÛ� then

­ b XyVpcz�M[�B X�Bz���M[X�>����M[
else

if zkl� then a c V®X� ��¡�M[¢> else V! a�b´^Û� � if �zkÛ� then
­ d X3bqc¦��[X if b e ^p�Z�¸� then ^ else >\]UK¨^a[X�^��¡��[X=�����M[

elsebb´TzO � if TqkÛ� thenb f X�T����M[ÃÚ�m
else

if OÛkl� then b g TkX�O����M[else T
>\]UK¨N �©Ná�¡�

Figure 6.1: An example program with call site labels a–g

not be marked B. However, the marks will be seen to be safe in the sense that
any variable marked B is in fact BV.

In the following we will assume that all functions of p have been ex-
tended with a call depth parameter >@? as described in the introduction on
page 15.

6.2 Detecting BV by domination

The SDG Ù is a graph < V, E � = , where V ² Varname is the set of variable names
in p, E � is a set of labeled edges defined by

E � � ��� e s s e f1 t t ! Ùid Ö �=�(�(Ö���� e s s e fn t t ! Ùid! �id x � Í�x � < x =�Î ,

6.2. Detecting BV by domination 79

and operator ��� e is given in Figure 6.2. The superscript s in rule < � 5 = is�l� 1 ����� e
� � c � � � RÑS�\�l� 2 ����� e
� � x � � � RÑS�\�l� 3 ����� e
� � if e1 then e2 else e3 � � � R<�3� e

� � e1 � � � � ��� e
� � e2 � � � � �3� e

� � e3 � � ��l� 4 ����� e
� � b e1 2�2�2 en � � � R<�3� e

� � e1 � � � ��� � �F� ��� e
� � en � � ��l� 5 ����� e

� � f s e1 2�2�2 en � � � R<�3� e
� � e1 � � � ��� � �F� ��� e

� � en � � � �S gy �� � f1 X � � gy � � � Ù � � e1 � � � \ ��� � �,�S gy �� � fn X � � gy � � � Ù � � en � � � \
Figure 6.2: Size dependency graph (SDG Ù) edge generating operator ��� e

the call site number. The SDG Ù of Example 6.1 is shown in Figure 6.3; for
readability we have omitted labels on edges labeled ËÌ . The dashed boxes
enclose strongly connected components.

We then try to detect some parameters that in any computation will al-
ways be less than (i.e. dominated by) one of p’s input parameters, a program
constant given in p, or a bounded combination of BV parameters.

First, we mark program input as ‘B’ (recall that we assume wlog. that
the goal function f1 is not called from within the program, so the nodes
representing program input will be trivial singleton SCCs with no loops).
To detect further BV parameters, we first break up the SDG Ù into a DAG
of strongly connected components (SCCs) and sort them topologically. As
nodes in the same SCC are all mutually reachable, they must always carry
the same mark, so we will use the term “the mark of C” synonymously with
“marks of all the nodes in SCC C.” We now apply the following condition in
topological order to each SCC which is not already marked as B:

Condition 6.2 (Bounded domination)
If all predecessors of SCC � are marked B, and � contains no Ë -labeled edges,
then mark � as B.

In the example of Figure 6.3, SCC’s containing more than one node are indi-
cated by dashed boxes; nodes S , � , > , � , �f�xá å , ÝUÏ4�@á å , , B , ^ , T , and O can be

80 Chapter 6. Determining Boundedness of Parameters

�f� á å Ñ
a a a

Û
a

��á åb Ù
c

Ù
� Ùb

c

Þ
c

Ab
b Ý

b

c

� á å d
Ù

à
d
Ù

Ð
dd

e �
d

� á å
g
Ù

f Ù Ö
g

f -
g

ÝUÏ4�@á å
Figure 6.3: Increasing size dependency graph (SDG Ù) of Example 6.1

marked as B by the domination condition.
The nodes in the SDG Ù thus marked B do not participate in any “dan-

gerous” loops where values can increase, and they obtain their values along
edges from other B-marked parameters, so they are of BV.

We can now show

Theorem 6.3 (Soundness of bounded domination)
If all variables of p whose corresponding nodes are marked as B are BV, then
all variables of p whose corresponding nodes get marked as B by the domi-
nation condition are in fact of BV.

Proof: The soundness of this condition’s markings is shown in the following
section. Informally its correctness relies on the fact that unbounded variables
must either receive values from other unbounded variables or participate in

6.3. Detecting BV by anchoring 81

an increasing loop. Å
6.3 Detecting BV by anchoring

The domination condition can detect many BV parameters, but fails to de-
tect parameters that are BV by virtue of being restricted to grow only by the
number of times some other BV parameter can be decreased. This is what the
bounded anchoring condition is intended to detect.

Before we start detecting these restricted BV parameters, conceptually
we first construct the graph representing the restricting properties in p, the
decreasing size dependency graph, SDG Ú . Its construction is similar to that
of the SDG Ù , except that all occurrences of � Ù are replaced by � Ú :

E � $ � ��� e s s e f1 t t ! Úid Ö �(�=�(Ö���� e s s e fn t t ! Úid
and ��� e is given in Figure 6.4. The SDG Ú for Example 6.1 can be seen in

�3� e
� � c � � � R S�\�3� e
� � x � � � R S�\�3� e
� � if e1 then e2 else e3 � � � R ��� e

� � e1 � � � � �3� e
� � e2 � � � � ��� e

� � e3 � � ��3� e
� � b e1 2�2(2 en � � � R ��� e

� � e1 � � � ��� � �,� ��� e
� � en � � ��3� e

� � f e1 2�2�2 en � � � R ��� e
� � e1 � � � ��� � �,� ��� e

� � en � � � �S gy �� � f1 X � � gy � � � Ú � � e1 � � � \ ��� � �,�S gy �� � fn X � � gy � � � Ú � � en � � � \
Figure 6.4: Size dependency graph (SDG Ú) edge generating operator

Figure 6.5; for readability, all ÊÌ -marks and >@? nodes have been omitted.
Each SCC of the SDG Ù will be internally connected by a number of loops,

where a loop ��� fx �.+��(�=���.+ fx is a cyclic path, possibly containing the same

edge several times. If we write gy � ,s���
+ fx to indicate that the edge represents
a parameter dependency at call site s, we define a sibling loop of a loop ���

82 Chapter 6. Determining Boundedness of Parameters

Ñ
a a

Û
a

�
c

Þ
c

Ú

Ab Ú
b Ý

b Ú
c

à Ð
d

Ú
d

e �
d
Ú

Ö
g

f Ú -
g
Ú

Figure 6.5: Decreasing size dependency graph (SDG Ú) of Example 6.1

fx � 1,s1�)�
+á�=�=� � n,sn���
+ fx to be another loop in the SDG Ú , � � fy � ö1,s1���
+á�=�=� � ön,sn���
+ fy with
an identical list of call sites s1, uLuLu , sn. As a couple of examples,

Þ Ú ,c���
+ Ð Ú" ,d����+ Þ from Figure 6.5 is a sibling loop of�Má å Ù ,c���
+ � á å Ù ,d����+*�Má å in Figure 6.3 and

Þ Ú ,c�)�
+´Ð Ú ,d���
+%A Ú" ,b�)�
+´Þ is a sibling loop of� Ù" ,c�)�
+�à Ù ,d���
+�� Ù ,b�)�
+�� .

Note that all parameters of an SDG Ù loop have the same mark as they are all
in the same SCC.

We now extract some information about loops in SDG Ù and their sibling
loops in the SDG Ú ; this is done by extending the SDG Ù edge generating func-
tion ��� e of Figure 6.2 to generate edges representing a combination of SDG Ù
and SDG Ú edges. This new graph is simply called SDG, and consists of the

6.3. Detecting BV by anchoring 83

same nodes as the SDG Ù and SDG Ú graphs. Instead of consisting of only sim-

ple edges gy ��.+ fx like the SDG Ù , the SDG contains sibling annotated edges

(SA-edges) gy ��.+
S

fx � E � , where S ��Í gv � ö�,+ fu, uLuLu Î is a set of sibling edges

in SDG Ú . In other words, each edge is labelled with its increasing effect from
the SDG Ù and the set of sibling edges in the SDG Ú along with their decreasing

effects; we will sometimes write an SA-edge as a pair < gy ��.+ fx, S = .
The SA-edges are generated by similar ��� e rules < � 1

= – < � 4
= using two

dependency environments (! Ù and ! Ú) and replacing rule < � 5 = with

<F� 5
= ��� e s s f s e1 uLuLu en t t ! Ù ! Ú� ��� e s s e1 t t ! Ù ! Ú�Ö �(�=�(Ö���� e s s en t t ! Ù ! ÚµÖÀ gy ��.+

S
f1 ���� �u< gy

= � ��ÙÎs s e1 t t ! Ù��ÎÖ �=�(�(ÖÀ gy ��.+
S

fn ���� �u< gy
= �³��ÙÎs s en t t ! Ù@�

where S �¨Í gz � ö�.+ f j �o� < gz
= �·� Ú s s e j t t ! Ú Î

The SDG is a faithful representation of the call paths of p—this is captured
by the following

Proposition 6.4 (Call path and SDG path correspondence)
Assume there exists a call path Þ ��s f 1 �e 1 s uLuLu s f m �e m t t t in L < G = .

1. If f m
ik

depends on x � fv �e 1 along Þ with effect � then there exists a

path x � 1�)�
+
S1

f1
i1

� 2���
+
S2

�(�=� � k����+
Sk

f k
ik

in the SDG where ���>� 1 Å Ù��(�=�
Å Ù�� k and

f k � f m.

2. If further there exist sibling edges y � ö1�.+ f1
j1
� S1, f1

j1
� ö2�,+ f2

j2
� S2, . . . ,

f k Ô 1
jk ÿ 1

� ök�,+ f k
jk
� Sk, then f k

jk
depends on y along Þ with effect � , where� 1 Å Ú �=�(�jÅ Ú � k Ô 1 ��� .

84 Chapter 6. Determining Boundedness of Parameters

Note that the length of Þ â might not equal the length of the SDG path: Þ
includes nested calls, whereas the effect of these is represented as edge labels
in the SDG path.
Proof: by structural induction on Þ .

Case Þ ��s f e1 uLuLu en t : k � 1, so assume f1
i1

depends on x along Þ with effect � ,

i.e. �u< x = � � Ù s s < st é = i1 t t ! Ùid � � ÙÄs s ei1 t t ! Ùid.

1. This means that rule < � 5
= generates an edge x ����
+

S1
f1
i1

.

2. Furter, by construction of S1, if y � ö���
+ f1
j1
� S1 it must be because� < y = � � ÚÄs s e j1 t t ! Úid � � Ú´s s;< st é = j1 t t ! Úid, i.e. f1

j1
depends on y along Þ

with effect � .
Case Þ ��s f e1 uLuLu en Þ 1 uLuLu Þ l t : Assume f k

ik
depends on x along Þ with effect � ,

i.e. �u< x = � � Ù s s;< st é = ik t t ! Ùid �Ò� Ù s s¥s f1
1 �+ e1, uLuLu , f1

n �+ en t3< st é l = ik t t ! Ùid.

1. By the Substitution Requirement 5.10 there exists an i1 such that� 1 < x = � � Ù´s s ei1 t t ! Ùid and �+�@< f1
i1
= � � ÙÄs s;< st é l = ik t t ! Ùid with �E��� 1 Å Ù|��� .

First, this implies that applying < � 5
= to the expression f e1 uLuLu en

produces the edge x � 1����+
S1

f1
i1

. Second, it implies that f k
ik

depends on

f1
i1

along Þ l with effect �+� , so by the induction hypothesis there ex-

ists a path f1
i1

� 2����+
S2

�(�=� � k�,�
+
Sk

f k
ik

with �+����� 2 Å�Ù¶�=�=�jÅ Ù�� k. This proves

the existence of the required path.

2. Now assume y � ö1�,�
+ f1
j1
� S1, f1

j1
� ö2�)�
+ f2

j2
� S2, . . . , f k Ô 1

jk ÿ 1
� ök�.+ f k

jk
� Sk.

By the induction hypothesis f k
jk

depends on f1
j1

along Þ l with ef-

fect ��� where � 2 Å�Ú·�=�=�_Å�Úw� k ����� , i.e. �+�M< f1
j1
= � � Ú´s s!< st é l = jk t t ! Ú

id.

We know that y � ö1����+ f1
j1
� S1, so by construction of S1 we have� 1 < y = � ��Ú s s e j1 t t ! Úid. The Substitution Requirement now yields� < y = � � Ú s s4s f1

1 �+ e1, uLuLu , f1
n �+ en t3< st é l = jk t t ! Úid � � Ú s s!< st é = jk t t ! Úid,

6.3. Detecting BV by anchoring 85

where � 1 Å Ú �=�(�
Å Ú � k �s� 1 Å Ú � � �>� . In other words, f k
jk

depends
on y along Þ with effect � . Å

Our aim is now to obtain summary information describing all loops. This
can be done by using an algorithm for computing the “sum of products” for
“costs” along all paths (Aho, Hopcroft, & Ullman, 1975) of each SCC. To
be able to use the algorithm, we must supply a “cost” for each edge, and
product and sum operators that together make up a semi-ring structure. We
let Cost � D Ù¶�Ø¬�< V � D Ú¶� V = be the set of SA-edge labels and introduce the
following

Definition 6.5 (Semi-ring loop cost structure)
Define the cost labelling function l : E � + Cost by l gy ��,+

S
fx ¡ �¡< � , S = and

multiplication ¢ : < Cost � Cost = + Cost by

é 1 ¢�é 2 � £í � 1,S1 ï*K ë 1

£í � 2,S2 ïãK ë 2

ÍU< � 1 Å Ùz� 2, S1 ¤ S2
=�Î ,

where S1 ¤ S2 ��¥ hw � ö1 ¦ $ � ö2�����,�
+ fu ��� ð gv : hw � ö1�)�
+ gv � S1 � gv � ö2���
+ fu � S2 § ,

and finally 1 ��¥W¨�ËÌ ,) fx Ú"�.+ fx � fx � p .�© § .

Lemma 6.6
The components in Definition 6.5 define a closed semi-ring structure ª7�
< Cost, Ö , ¢ , « ,1 = .
Proof:] <Fª , Ö , « = is a monoid: It is closed under Ö (there are no restrictions on

the elements of Cost), Ö is associative and has identity element « .] <Fª , ¢ ,1 = is a monoid: It is closed under ¢ , and due to the associativity
of Å Ú we have

86 Chapter 6. Determining Boundedness of Parameters

�
S1 ¬ S2 � ¬ S3

R�­ kr � 12 ¦ H � 3� � fu ®®® e gv : kr � 12� � gv
� � S1 ¬ S2 � Z gv � 3� � fu

� S3 ¯
R±°²²³ ²²´

kr � 12 ¦ H � 3� � fu

®®®®®®®®
e gv : kr � 12� � gv

� °³ ´ kr � 1 ¦ H � 2� � gv
®®®®®®
e hw : kr � 1� � hw

� S1 Z
hw � 2� � gv

� S2 µ ¶·Z gv � 3� � fu
� S3

µ ²²¶²²·
R °³ ´ kr � 1 ¦ H � 2 ¦ H � 3�+� � fu

®®®®®®
e gv e hw : kr � 1� � hw

� S1 Z
hw � 2� � gv

� S2 Z gv � 3� � fu
� S3 µ ¶·

R °²²³ ²²´
kr � 1 ¦ H � 23� � fu

®®®®®®®®
e hw : kr � 1� � hw

� S1 Z
hw � 23� � fu

� °³ ´ hw � 2 ¦ H � 3� � fu
®®®®®®
e gv : hw � 2� � gv

� S2 Z
gv � 3� � fu

� S3 µ ¶· µ ²²¶²²·
R�­ kr � 1 ¦ H � 23� � fu ®®® e hw : kr � 1� � hw

� S1 Z hw � 23� � fu
� � S2 ¬ S3 � ¯

R S1 ¬ � S2 ¬ S3 � .
This, together with the associativity of Å�Ù shows that ¢ is associative,
and as ËÌ and ÊÌ are identity elements for Å|Ù and Å�Ú , 1 is an identity
element for ¢ .

] « is an annihilator for ¢ , i.e. é�¢<«Ç�;«¸¢�é·�;« .

] Ö obviously commutes and is idempotent.

6.3. Detecting BV by anchoring 87

] ¢ distributes over Ö :

é 1 ¢²<6é 2 Ö é 3
= �¹£ í � 1,S1 ï*K ë 1

£ í � 23,S23 ï*KUí ë 2 º ë 3 ï Í_< � 1 Å�Ùz� 23, S1 ¤ S23
=�Î

�»¨(£ í � 1,S1 ï*K ë 1
£ í � 2,S2 ïãK ë 2 ï Í_< � 1 Å�Ùz� 2, S1 ¤ S2

=�Î © Ö
¨(£ í � 1,S1 ï*K ë 1

£ í � 3,S3 ïãK ë 3 ï Í_< � 1 Å�Ùz� 3, S1 ¤ S3
=�Î ©�´<6é 1 ¢�é 2

= Ö�<6é 1 ¢¬é 3
=

and similarly <6é 1 Ö é 2
= ¢¬é 3 ��<6é 1 ¢¬é 2

= Ö <6é 1 ¢�é 3
= .] We are only using properties of set unions and products, so this prop-

erty also holds for infinite sequences: <oÖ i é i
= ¢§<oÖ j é j = �ÃÖ i, j <6é i ¢�é j =] Ö is associative over infinite sequences. Å

Using (an adapted version of) the semi-ring algorithm we compute for
each node fx in each SCC a “total cost” C < fx

= describing size changing effects
along all loops from fx to fx and their sibling loop effects. Some of the total
costs for Example 6.1 can be seen in Figure 6.6.

From this information we build a loop dependency graph, LDG, by com-
puting all the total costs £ fx K p C < fx

= . For each cost <�Ë , S = � C < fx
= we create

a balloon node vballoon representing the increasing loop fx Ù�.+ Ê fx and for each

decreasing loop fy Ú�,+ Ê fy � S an anchor node vanchor representing fy Ú�.+ Ê fy,
and a chain edge between vballoon and vanchor. Each balloon and anchor node
always carries the same mark (r or B) as the parameter it represents.

Now we can detect some BV parameters by applying the following con-
dition in topological order to each SCC C of the SDG Ù which is not already
marked as B:

Condition 6.7 (Bounded anchoring)
If all predecessors of C are marked B and all balloon nodes in the LDG con-
taining a node from C are anchored in (have a chain edge from) an anchor
node marked B, then mark C as B.

88 Chapter 6. Determining Boundedness of Parameters

C <,� = �) <�Ë , Í¼A Ú+*A , AÄ+¡Þ , Ý Ú+rÝ Î@= , <7Ë , ÍjÞ Ú+¡Þ , Þ Ú+�A , Ý Ú+´Ý Î@= ,
<�Ë , Í¼A Ú+´Þ , A Ú+�A , Ý Ú+rÝ Î@= , <7ËÌ , Í¼�Ä+�� , Þ!+´Þ , AÄ+�A , Ý +rÝ Î�= .

C <*à = �)�<�Ë , ÍxÐ Ú+´Ð ,

�
Ú+

�
Î@= , <�ËÌ , Í�à%+�à , ÐÄ+´Ð ,

�
+

�
Î@=�.

C <F� á å = �) <�Ë , Í¼A Ú+*A , AÄ+¡Þ , Ý Ú+rÝ Î@= , <7Ë , ÍjÞ Ú+¡Þ , Þ Ú+�A , Ý Ú+´Ý Î@= ,
<�Ë , Í¼A Ú+´Þ , A Ú+�A , Ý Ú+rÝ Î@= , <7ËÌ , Í¼�Ä+�� , Þ!+´Þ , AÄ+�A , Ý +rÝ Î�= .

C < � á å = �) <�Ë , ÍxÐ Ú+´Ð ,

�
Ú+

�
Î@= , <�ËÌ , Í�à%+�à , ÐÄ+´Ð ,

�
+

�
Î@= .

C < � á å = �) <�Ë , ÍxÖ Ú+´Ö Î�= , <�Ë , ÍxÖ!+´Ö , - Ú+�- Î@= , <�ËÌ , ÍxÖ!+´Ö , -_+�- Î�= .
Figure 6.6: Semi-ring total costs for some nodes of the SDG for Example 6.1.

The LDG for Example 6.1 is shown in Figure 6.7 on the facing page; small
regular expressions have been added by hand, indicating the call site se-
quences that constitute the loops represented by the balloon.

We can immediately see that every balloon has an anchor, and as the an-
chors have already been marked as B, the balloons are well-anchored. Using
bounded anchoring, we can mark nodes V , b , �Uá å , � á å and � á å as B.

Recall that a balloon node represents an increasing loop for some vari-
able fx, and an anchor node represents a decreasing loop for some sibling
variable fy. Condition 6.7 on the page before thus expresses that “for each
increasing loop on fx there exists a BV variable f y such that fy decreases along
the corresponding sibling loop.”

Note the order of the quantifications: If we swap them, we get a weaker
form of bounded anchoring: “there exists a BV variable f y such that for each
increasing loop on fx, fy decreases along the corresponding sibling loop.” In
terms of balloon and anchor nodes, it can be stated as

6.3. Detecting BV by anchoring 89

VMË
bb ð

V\Ë
bcd í b ð cd ð ï ð

V\Ë
cd í b ð cd ð ï ð

B�Ê >@Ê BMÊ >�Ê \Ê >MÊ

� á å,Ëcd í b ð cd ð�ï$ð � á å�Ëb í b î cd ï7í b ð cd ð�ï$ð � á å	Ëbb ð

 \Ê >MÊ B�Ê >MÊ B�Ê >MÊ

à_Ë
d í b ð cd ð�ï$ð c � á å,Ëd í b ð cd ð ï ð c � á å,Ëf í f î g ï$ð � á å,Ëgg ð

Ð\Ê
�
Ê Ð\Ê

�
Ê Ö\Ê -xÊ

Figure 6.7: Loop dependency graph for Example 6.1

90 Chapter 6. Determining Boundedness of Parameters

Condition 6.8 (Weak bounded anchoring)
If all predecessors of C are marked B and there exists a B-marked node f y
such that all balloon nodes in the LDG containing a node from C are an-
chored in (have a chain edge from) an f y anchor node, then mark C as B.

Usually, we will only be using Condition 6.7; if we want to emphasize this,
we call it strong bounded ancoring.

In fact, the domination condition is a special case of the anchoring condi-
tion: if C contains no Ë -labeled edges, there will be no balloon nodes in the
LDG containing a node from C, so the second part of the bounded anchoring
condition will be vacuously true. Consequently, the proof of soundness for
bounded domination will follow from that of bounded anchoring.

In the following we will initialy assume that ��Ù is safe (cf. Definition 5.3
on page 67) for all <j�v, K = .

To ease the presentation of size relationships we introduce the following
shorthand

Notation 6.9
We write e ½ x only when Êu< x = �7��ÚÄs s e t t ! Úid, and we write e1 ¾ e2 when ð ! :��ÙÄs s e1 t t !w¿ ��Ù s s e2 t t ! .

Recall the two different modalities, cf. Definitions 5.2 and 5.3:] if we have e ½ x then the value of e must always be smaller than that of
x, and conversely,] only if we have e ¾ x can e possibly be dependent on x.

The call paths can be seen as paths in a graph, justifying calling a set Psc of
parameters that satisfies the conditions

1. if fi � Psc and Þ 1 �zs f �e 1 s uLuLu s g �e k t t t , Þ 2 �qs g �e 1 s uLuLu s f �e m t t t are valid call
paths and g j depends increasingly on f i along Þ 1 and fi depends in-
creasingly on g j along Þ 2, then g j � Psc

2. Psc is not a proper subset of any other set of strongly connected param-
eters.

a strongly connected component.

6.3. Detecting BV by anchoring 91

Definition 6.10
Given parameters fi and f j and a call path Þ ��s f 1 �e 1 s uLuLu s f k �e k t t t with f1 � f k,
we say that fi is anchored in f j along Þ iff f k

i depends increasingly only on
f1
i (itself) or f1’s BV parameters along Þ , and < st é = j ½ f1

j and BV < f j
= .

Theorem 6.11 (Soundness of Bounded Anchoring)
Given a strongly connected component Psc, if both the following conditions
are satisfied:

1. For every call path, ÞÒ�ás g �e 1 s f �e 2 t4t , of length 2, where f i � Psc for
some 0 Æ i

�
arity < f = , if f i depends increasingly on g j for some 0 Æ

j
�

arity < g = , then g j is BV or g j � Psc

2. For every fi � Psc and every call path Þµ�ls f 1 �e 1 s uLuLu s f k �e k t t t with f � f1 �
f k where < st é = i ¾ e1

i and k Ó 1 there is a j <àÞ =�D� i such that f i is anchored
in f j í éxï along Þ

then fi is BV and we say that f i is anchored in Í f j í éxï � j <àÞ = is given by condi-
tion 2 Î for all f i � Psc.

To prove this key theorem we first introduce some lemmas. In the following,
we assume fixed Psc, fi � Psc and program input �À given.

Given an fi in a Psc satisfying the conditions of Theorem 6.11, consider a
transition sequence loop < f , �v = + Ê < f , �v = where v i Ó vi. By Theorem 4.3 on
page 55, the corresponding call path Þ satisfies ��s s st é t t»Í f1 �+ v1, uLuLu , fn �+
vn
Î � �v , and as � Ù is safe we have Ë�< e1

i
= � � Ù s s;< st é = i t t ! Ùid, i.e. < st é = i ¾ e1

i . So
whenever such an increasing transition sequence occurs, the second condi-
tion in conjunction with the safety of ��Ú ensures the existence of a j such that
f j is BV and v j Æ v j—this is what guarantees termination. However, j is not
necessarily the same for all loops:

f �v 1 &SÁ
f j1

f j2

f j3

f �v 2 &�Áf j4

f j5

f �v 3 &�Á
f j6

f �v 4 & uLuLu

92 Chapter 6. Determining Boundedness of Parameters

The aim is to show that the number of recurring + ø transitions where f i
increases in any such sequence is bounded because the value of some BV
sibling j? always decreases.

This first requires a proof that such a single j? exists. Intuitively, this is
done by subsequently thinning out sequences where the value of one f j is
known to decrease from the first state to all subsequent ones (but not neces-
sarily between subsequent states).

The arity A of f is finite, so whenever some property P < j = holds for M
cases (possibly with different j), there must be a j such that P < j = holds for
at least M

A cases. This is used in

Lemma 6.12
Given an N �0º , assume that for arbitrary M �Ñº a transition sequence
< f1, �À = +�ø°< f1, �v 1 = +�ø�< f2, �v 2 = +Íø�< f M, �v M = occurs with a corresponding call
path Þ M � s f1 �e 1 s uLuLu s f2 �e 2 s uLuLu s f M �e M t t t where f � f1 � f2 �Ü�=�=�±� f M.
If for every subpath Þ M < s, t = �ás f s �e s s uLuLu s f t �e t t t t there is a j <àÞ M < s, t =�= such
that fi is anchored in f j í é M í s,t ï!ï along Þ M < s, t = , then a transition sequence
< f1, �À = +�ø�< f1, �v 1 = +�ø�< f M0 , �v M0 = occurs for some M0 ~ N, and there exists a
j and a sequence m1 Æ m2 Æ¸�(�=��Æ mN such that < st é M0

í mp,mp Á 1 ï =
j ½ f mp

j for all
p � Í 1, uLuLu , N � 1 Î
Proof: Let A � arity < f = . Given a call path Þ M there must exist a sequence
s1

1 Æ s1
2 Æl�(�=��Æ s1

a1
where a1 ~ M

A and a j1 such that

< st é�í 1,s1
1 ï = j1 ½ f1

j1 , < st é@í 1,s1
2 ï = j1 ½ f1

j1 , uLuLu , < st é�í 1,s1
a1
ï =

j1 ½ f1
j1

Further, there must exist a subsequence of s1
1, s1

2, uLuLu , s1
a1

, call it s2
1, s2

2, uLuLu , s2
a2

,
where a2 ~ a1

A and a j2 such that

< st é�í 2,s2
1 ï = j2 ½ f2

j2 , < st é@í 2,s2
2 ï = j2 ½ f2

j2 , uLuLu < st é�í 2,s2
a2
ï =

j2 ½ f2
j2

Continuing this way so that sq ø 1
1 , sq ø 1

2 , uLuLu is a subsequence of sq
1, sq

2, uLuLu for all
q ��Í 1, uLuLu , A � N Î , we get a sequence j1, j2, uLuLu , jA å N, and there must be a j and
a sequence m1 Æ m2 Æ¸�=�(�
Æ mN such that j � jm1 � jm2 �l�=�=��� jmN . If we de-
mand that M0 ~ N � AA å N then aA å N ~ M0

AA Â N ~ N, and thus < st é�í mp,mp Á 1 ï = j ½ f mp
j

6.3. Detecting BV by anchoring 93

for all p ��Í 1, uLuLu , N � 1 Î . Now the transition sequence < f1, �À = + ø < f1, �v 1 = + ø
< f2, �v 2 = +Íø�< f M0 , �v M0 = has the desired properties. Å

We now show that when a value “enters via” a transition from a BV pa-
rameter g j to a parameter fi � Psc, it can only increase a bounded number of
times.

Again the argument of dividing the total number of cases where P < f j
=

holds (for possibly different f j) by the finite number of possible function pa-
rameters is used.

Lemma 6.13
Assume Psc satisfies the conditions of Theorem 6.11. Then there exists an
M �?º such that for any transition sequence < f1, �À = +dø²< f , �v m = +Íø²< f , �v k =
with corresponding call path s f1 �e 1 s uLuLu s f m �e m s uLuLu s f k �e k t t t , where f k

jk
de-

pends increasingly on f m
jm along Þ|< m,k = via expressions em ø 1

jm Á 1
, uLuLu , ek

jk
for some

f k
jk

, f m
jm � Psc, the number of s ~ m for which es ø 1

js Á 1 ¾ f s
js is less than M.

Proof: Let F be the number of functions in p and A the maximum function
arity in p and assume that no such m exists. For arbitrary M we can then find
a transition sequence where the number of s for which es ø 1

js Á 1 ¾ es
js is at least

A � F � M . Then there must exist a function f where the number of s for which
f s � f and es ø 1

js Á 1 ¾ es
js is at least M . From Lemma 6.12 it now follows that for

any N ��º a transition sequence < f1, �À = +Ãø¬< f , �v m1 = +�ø¬< f , �v m2 = +�ø�< f , �v mN =
occurs with corresponding call path Þ such that < st é@í mp,mp Á 1 ï = j ½ f mp

j � f j,
where f j is BV.

This latter property—BV(f j)—enables us to find an N0 �µº such that the
length of any descending chain

v1 Ó v2 Ól�(�=��Ó vm, where v1, uLuLu ,vm � Í v j �j< f1, �À = + Ê < f , �v =�Î (Ã)

is less than N0.
It is clear that �v mq �qs s st é�í mp,mq ï t tP�v mp , and by the former property and the

definition of ½ , we find that s s;< st é�í mp,mp Á 1 ï = j t tP�v mp Æ�s s f mp
j t t��v mp , so

vmp
j ��s s f mp

j t tP�v mp Óps s;< st é�í mp,mp Á 1 ï = j t t��v mp �Z<Ls s st é@í mp,mp Á 1 ï t tP�v mp =
j � v

mp Á 1
j

94 Chapter 6. Determining Boundedness of Parameters

for all p ��Í 1, uLuLu , N � 1 Î . Choosing N Ó N0 we get a chain

vm1
j Ó vm2

j Ól�(�=��Ó vmN
j ,

which contradicts (Ã) and thus forces us to conclude that M does in fact exist.Å
For some call path Þ that “ends” in the Psc, i.e. where one of the param-

eters of the final call is in Psc, we now want to separate the BV properties of
the parameters at the various “entering points” of the Psc from the length of
the transition sequence inside the Psc. To do this we define a

Definition 6.14 (BV based State Transformer, bst é)
Given a Psc satisfying condition 1 of Theorem 6.11, we define a BV-based state
transformer for a call path Þ���s;< f 1, �e 1 = , uLuLu , < f k, �e k = t to be bst é � bstk, where

bst1 � �e 1

bstm ø 1 � <6é 1 ¤ �=�=� ¤ é n
= �e m ø 1,where é 1, uLuLu , é n are substitutions given by

é j � P s e j C f m
j t , if f m

j � Pscs¥Á m, f m
j ÂcC f m

j t , if f m
j C� Psc

n � arity < bstm
= , �e � bstm.

Consider the following SDG Ù snippet:Þ
­a� 1

uLuLu � V � Psc

­a� 2
uLuLu � � ­ 2

In this case, < st é�= 2 expresses ­ 2 in terms of ­a� 1 and ­�� 2, whereas < bst é@= 2 ex-
presses ­ 2 in terms of V and .

6.3. Detecting BV by anchoring 95

The key to prove Theorem 6.11 is König’s Lemma for graphs (König, 1936;
Diestel, 1997): we will define a graph containing exactly those nodes that
correspond to the set of values we want to prove finite. Each edge between
two (parameters � values)-pairs represents an actual computation with that
“value dependency.”

In the following definition, Þ is intended to be the corresponding call path
to the existentially quantified transition sequence.

Definition 6.15 (Transition Graph of Values, TGV)
Given a set of strongly connected parameters, Psc, the transition graph of
values for Psc is TGV ��<,Ä , � = , where

Ä �¨Í\< fi,vi
= � fi � Psc, < f1, �À = +�ø�< f , �v =�Î� �¨Í\< g j,w j
= + < fi,vi

= ��< f1, �À = + ø < g, �w = + < f , �v = � g j, fi � Psc �ð�Þ÷�¸s g �x s f �e t4t : �v ��s s st é t t¹�w � fi depends increasingly on g j along Þ Î
Example 6.16
Consider the program

­a�PX3���a�3�,m�[§�Z­"X3���P�3�,m�[­"X3���,O\[²� if ��yª�¼� then a.X1����¥�£�N�X3� �,OU[\[else ­"X3�_�U�a�³O�ca�M[a.X3���,O\[²� if ����� then ­"X��¼�)��¥�£�N X3���,OU[M[else Ú�m
Since calls to ­a� for �À � <*Û?� , ÛÆÅ = � <��¼Ç , �¼È = is ­a�PX��(�)���¼É�[�+ ­"X��(�)���¼É�[�+
­"X��¼Ê)���¼Ê�[�+þa.X��¼Ê)���¼Ê�[+ ­"X��¼�)���¼Ê�[+ ­"X��¼Ê/���¼��[+äa.X��¼Ê/���¼Ê�[+ �=�=� , (part
of) the TGV for Psc �¨Í¼� ä , � ä Î of this small program is

<F� ä ,16 =
<F�\ä ,15 = <F�Uä ,17 =

< � ä ,16 =
For call path ÞÒ��s ­a�¦X3���P�3�)m�[�s ­®X3� �,OU[?s ­YX3�_�\�P�,O�ca��[�s a®X3�_�\�P�6¥�£�N X3���,OU[M[s ­ X��(�)�6¥�£�N X3���,OU[=t4t4t4t¥t the BV based state transformer is given by bst é �
X��¼�)��¥�£�N X�Á 4, � í Â�� ¥�£�N�XQÁ 3, � í Â@��Á 1, �f� í�Ë Â=c��M[\[��ÒÁ 4, � áLÂ�[

96 Chapter 6. Determining Boundedness of Parameters

König’s Lemma says that A � B ^ C, where A � “TGV is infinite,” B �
“TGV is locally finite,” C � “TGV has a non-trivial infinite path.” We want
to show I A, by using B � I C ^ÌI A, which is equivalent to König’s Lemma.

First we need to prove B by looking at how the dependent successor
nodes of a node < g j,w j

= is computed.

Lemma 6.17
Given a transition graph of values, TGV, for a set of strongly connected pa-
rameters, Psc, that satisfies the conditions of Theorem 6.11, TGV will be lo-
cally finite, i.e. each node in TGV will have finitely many outedges.

Proof: Consider a node < g j,w j
= �uÄ . Then, for any given transition se-

quence < f1, �À = + ø < f k Ô 1, �v k Ô 1 = + < f k, �v k = with corresponding call path Þ:�s f1 �e 1 s uLuLu s f k Ô 1 �e k Ô 1 s uLuLu s f k �e k t t t where f k Ô 1 � g and vk Ô 1
j � w j, let I �ªÍ i �

f k
i depends increasingly on g j along Þ�< k � 1,k =�Î . For each i � I we can com-

pute vk
i by vk

i �¡<Ls s bst é t to­ = i, where ­µÁ m, f m
j Â8� vm

j . By definition of bst é , pairsÁ m, f m
j Â occurring in bst é lie in the domain of ­ .

Let Vmax < 0 = � max é Í vm
j �
Á m, f m

j Â occurs in bst é�Î ; this number is finite be-
cause all f m

j ’s lie outside the Psc and are therefore by assumption BV. Ac-
cording to Lemma 6.13 there exists an M such that for every pair Á m, f m

j Â
occurring in bst é , if f k

i depends increasingly on f m
j along Þ�< m,k = via expres-

sions em
jm , em ø 1

jm Á 1
, uLuLu , ek

i , the number of s, m Æ s Æ k, for which there exists an
increasing operation from f s

js to es ø 1
js Á 1

is less than M.
Consider s � 1; then the value of f k

i is bounded by the result of 1 in-
creasing operation, the arguments of which are all bounded by Vmax < 0 = .
Call this new bound Vmax < 1 = . Continuing in this fashion, we get bounds
Vmax < 0 = , uLuLu , Vmax < M = for s � 0, uLuLu , M. This in turn implies that for the consid-
ered node < g j,w j

= ,
ÍU< f k,vk

i
= �j< f1, �À = + Ê < g, �w = + < f k, �v k = occurs � w j � w j� ð�Þ��¸s;< g, �e 1 = , < f , �e 2 = t : �v ��s s st é t t,�w �

fi depends increasingly on g j along Þ Î
is finite because vk

i
�

Vmax < M = , i.e. that the TGV is locally finite. Å

6.4. Program termination 97

Proof (of the soundness of bounded anchoring, Theorem 6.11): For given Psc we
can construct the transition graph of values, TGV, for Psc. By Lemma 6.17
we establish that TGV is locally finite. Next we observe that because there
are only finitely many functions in the program, Lemma 6.13 implies that
there are no non-trivial (i.e. not with a bounded set of different path nodes)
infinite paths in TGV, because an infinite path would have to pass through
nodes < f ,v = for arbitrary large v, thus entailing infinitely many increasing
operations.

Using these two properties and the contraposition of König’s Lemma we
conclude that TGV is finite, and it follows that Í vi �u< f1, �À = + Ê < f , �v =�Î is a
finite set for all f i � Psc. Å
Weakening the safety of ��Ù . The above lemmas and theorems hold also
when ��Ù only satisfies the safety in Defintion 5.3 on page 67 for almost
all <��v, K = . The intuition is this: Choose K0 such that the safety is satis-
fied for all <j�v, K = where K Ó K0. Admittedly, there might now be tran-
sitions < f , �v = Ê�,+�< f , �v = where v i Ó v without � Ù warning about this, i.e.
Ë�< e1

i
= C�?��Ù´s s;< st é = i t t ! Ù

id, but this is only possible if �v Æ K0. But this means
that there can still only be finitely many transitions with different v i before
we find Ë�< e1

i
= � ��ÙÄs s;< st é = i t t ! Ùid.

When computing Vmax < 0 = , uLuLu , Vmax < M = we make sure they are at least K0:

Vmax < 0 = � max <3Í K0
Î Ö Í vm

j ��Á m, f m
j Â occurs in bst éMÎ@=

Vmax < i = � max <3Í K0
Î Ö Í op v1 uLuLu vn � op is an increasing operation� v j

�
Vmax < i � 1 = ,1 � j

�
n Î�=

However, Vmax < M = is still a finite value, so the soundness theorem still holds.

6.4 Program termination

The bounded anchoring condition is applied repeatedly to the SCCs in topo-
logical order until no new SCCs change marking from r to B. This will
naturally stop in the end, as there are a finite number of SCCs and we only
ever change marks from r to B. Note that the SDG and LDG graphs need
not be recomputed in these iterations.

98 Chapter 6. Determining Boundedness of Parameters

After applying these two conditions exhaustively, any remaining r -
marked nodes must be considered unsafe, i,e. possibly unbounded. The B-
marked nodes are described by the following

Theorem 6.18 (Soundness of program termination algorithm)
After applying the bounded anchoring and domination conditions some
number of times to an SDG in which only program input nodes initially are
marked B, if all >@? nodes are marked B then evaluation of p terminates.

Proof: As the goal function is only ever called once, it is obvious that its
parameters are BV. As the SDG is a faithful representation of L < G = (cf. Propo-
sition 6.4 on page 83), Theorem 6.11 on page 91 shows that each time the
bounded anchoring condition is applied, only BV parameters are marked B.
Thus, variables of p whose nodes end up being marked B are in fact of bounded
variation, i.e. they can take on only finitely many different values during eval-
uation.

As the >@? nodes record the call depth, we observe that if they all are
BV, the call tree for any computation will have no infinite paths. Further,
as we have no iteration constructs, each function can only make a bounded
number of direct function calls before returning, i.e. each node of the call
tree has a finite number of children. König’s Lemma now gives us that the
call tree is finite, and as all non-call operations terminate (we have no itera-
tion constructs), the program will terminate. It is straightforward to express
this argument in terms of call paths and transition sequences, involving the
connection between call paths and actual computations (Theorem 4.3) along
with Linear Compression (Corollary 3.5). Å

If there is a node f á å that is not BV, there is a risk that p will loop infinitely
in function f : if furthermore all ordinary variables are BV, p is quasitermi-
nating, otherwise it may not terminate.

For Example 6.1 we see that all >@? nodes are detected to be BV, so the
program terminates. Now suppose we modified the definition of b slightly
by changing an T to a �(� :b´TrOW� if Tqk¸� then b f X�T��¡�M[ÍÚ�m

else if OÛkÛ� then b g �¼� X,O����M[else T

6.4. Program termination 99

Now we find that the edge T g�.+ªT disappears from the SDG Ú , and in the total
costs for � á å are now� á å :) <�Ë , ÍjÖ Ú�¹+´Ö Î@= , <�Ë , Í�- Ú�,+á- Î@= , <�Ë , Í Î@= , <�ËÌ , ÍxÖÉ�,+´Ö , - �,+á- Î�= . ,

giving rise to an unanchored balloon

� á å Ëf í f î g ï�ð g í f î g ï�ð

so now the analyses cannot guarantee termination, which is correct: for S¶� 0,
�Î� 0, the modified KML�NU¤\T�£j^_]�> program loops endlessly exactly in function b
as predicted.

Chapter 7

Extension to Partial
Evaluation

In off-line partial evaluation we make use of a two-level language: every con-
struct is annotated either as static or dynamic, according to when the data
for computing it is present. The goal of this paper is to compute such
a binding-time division which ensures that specialisation according to these
binding times will terminate. The syntax and semantics of the two-level lan-
guage is spelled out in Appendix A. It includes specialisation points which
are marked call sites of the form f Í e1 uLuLu en, indicating that partial evaluation
should residualising f , i.e. generate a residual version specialised to its static
arguments.

The extension of these algorithms to partial evaluation is fairly straight-
forward; the notion of bounded variation is now even more useful, as we
can utilise memoisation by inserting specialisation points. Not only can we
detect when specialisation could diverge, we can make it terminate: First we
can make all ordinary variables not detected to be of bounded variation dy-
namic (as dynamic variables cannot cause the specialiser to diverge), and
then for every unanchored >@? -balloon we can insert specialisation points. At
the specialisation points, the values of the static variables are memoised, and
as they are all of bounded variation, specialisation will terminate.

100

7.1. Bounded static variation 101

In the following, we will be referring again to the modified KML�NU¤\T�£j^_]�>
program of Example 6.1 on page 77, where the expression b g T®X,O��¡��[has
been changed to b g �¼��X,O��¡�M[as described on page 98.

7.1 Bounded static variation

For partial evaluation we replace the notion of bounded variation with
bounded static variation, BSV:

fi is BSV iff ÏØ�u � Values : Í vi �Qð³�w � Valued : < f1, �u �w = + Ê < f , �v =�Î is finite,

where s is the number of static and d the number of dynamic parameters of
f1.

As we are now also dealing with dynamic variables, we ÎÎ 1 1rD B
extend our set of property marks from Section 6.1 on page 77
to a domain of three values r , D, B, signifying that a variable
is unreached (r), dynamic (D), or of bounded static variation (B). The bind-
ing time values are ordered by r�� D and r�� B, and again, all nodes will
initially be marked r .

7.2 Capturing dynamic dependency

As we now also need to make sure the binding time assignments of the vari-
ables is congruent (i.e. static expressions must not require the value of dy-
namic expressions to be computed), we need to know when an expression
will be dynamic, or equivalently, which parameters and function return val-
ues must be available (not dynamic) for the value of an expression to be avail-
able. This is somewhat simpler than size dependency, as we can represent
the “dynamicness” of the return value of each function explicitly, instead of
computing some approximation.

For each function f in p the special symbol fR represents the return value
of f . We now define a dynamic dependency function � e in Figure 7.1 which
given an expression returns a set of symbols (parameter names or return

102 Chapter 7. Extension to Partial Evaluation

Symbol � Varname Ö�Í fR � f � Funname Î� e : Expression + ¬ < Symbol =� e s s c t t � Í Î� e s s x t t � Í x Î� e s s if e1 then e2 else e3 t t � � e s s e1 t t�Ö � e s s e2 t t�Ö � e s s e3 t t� e s s b e1 uLuLu en t t � � e s s e1 t t�Ö �(�=�(Ö � e s s en t t� e s s f e1 uLuLu en t t � Í fR
Î

Figure 7.1: Dynamic dependency function

value symbols) such that if one of these symbols is dynamic, the expression
must be classified as dynamic.

We now capture the dependencies in the entire program in a dynamic de-
pendency graph, DDG. One might think that the DDG and the SDG Ù convey
the same information, but it is in fact slightly different, which can be seen
from the example

­�V� � akX if then V���� else V��imu[aZV � �=�(�
where the DDG should contain an edge from Þ to � , (� must be dynamic if Þ
is), but the SDG Ù should not (the size of the value of the if-expression is only
related to V). Furthermore, two variables connected via return nodes in the
DDG may be represented directly by an edge in the SDG Ù (or may be absent
if the edge effect computed by � Ù is empty).

­ZV¡�¸a®X6b¡Va[a�bª�þ�=�=�b´T¡�ZT�cz�
DDG : � Ö �

R à
SDG Ù : � ÙÖ à

It must, however, always be the case that if there exists a path from fx to gy
in the SDG Ù , there exists a (possibly different) path from fx to gy in the DDG.

7.2. Capturing dynamic dependency 103

The reason why it was not desirable to treat size dependencies in a similar
way, connecting T to b R, is that if there are two or more calls to a function this
can create graph loops that do not correspond to any program evaluation
path—and it would be pointless to try to anchor them. It would also coerce
the return value sizes of all the applications of f in the entire program, thus
losing too much information about the sizes of the arguments at each call
site. This coercion is acceptable in the case of dynamic dependency because
we only need to distinguish between available/not available and we assume
a monovariant binding time for each function: if its return value is classified
as dynamic, it is dynamic at all call sites.

Our basic set of nodes, V, consists of all the function parameters fx, gy, uLuLu
of the program, along with all the function return value symbols fR, gR, uLuLu
The DDG for p is then defined to be the pair < V, E Ï = , where E Ï is a set of
unlabeled edges

E Ï � �S� e s s e f1 t tPÖ �=�(�(Ö��S� e s s e fn t t�Ö
Í fx + f1R � fx � � e s s e f1 t t Î Ö �(�=�=Ö Í fx + fnR � fx � � e s s e fn t t Î ,

and �S� e is defined in Figure 7.2. Each node carries the same mark from
the binding time domain Íjr , D, B Î as the corresponding node in the SDG
graphs, and is initially marked as r . The DDG for Example 6.1 is shown in
Figure 7.3 (Compare with Figure 6.5).

�w� e s s c t t � Í Î�w� e s s x t t � Í Î�w� e s s if e1 then e2 else e3 t t ! � �S� e s s e1 t t�Ö��S� e s s e2 t t�Ö��S� e s s e3 t t�w� e s s b e1 uLuLu en t t � �S� e s s e1 t t�Ö �=�(�(Ö��S� e s s en t t�w� e s s f e1 uLuLu en t t � �S� e s s e1 t t�Ö �=�(�(Ö��S� e s s en t t�Ö
Í gy �.+ f1 � gy � � e s s e1 t t ! Î Ö �(�=�6Ö
Í gy �.+ fn � gy � � e s s en t t ! Î

Figure 7.2: Dynamic dependency graph (DDG) edge generating operator

104 Chapter 7. Extension to Partial Evaluation

� ­a� R S

> ­ R V B
� a R b ^

b R T O

>U]UK R N

Figure 7.3: Dynamic dependency graph (DDG) for Example 6.1

We determine which parameters must be classified as dynamic by mark-
ing f1’s dynamic parameter nodes as D and then simply propagating this
mark depth-first along the edges of the DDG. Using the DDG of Figure 7.3
we see that if � is dynamic then also > and � must be classified as dynamic;
if furthermore S is dynamic then all parameters except O must be dynamic.

7.3 Detecting bounded static variation

BSV is detected in exactly the same way as BV, so as before we find for Ex-
ample 6.1 that all nodes except � á å are BSV.

When no more node marks are changed from r to B, we re-mark the

7.4. Inserting specialisation points 105

remaining r nodes D. In the example, as node � á å and �
R are not BSV, we

change their marks to D. This is sound due to the following

Lemma 7.1
If after applying the bounded domination or anchoring conditions a number
of times a node mark is changed from r to D, the nodes marked B will still
be BSV.

Proof: The only way a node can be marked B, save for the initial static input
nodes, is by the bounded domination and anchoring conditions, but they
rely only on B marks of other nodes, not r marks. Å
7.4 Inserting specialisation points

Now that all nodes are either marked D or B, we are ready to apply call loop
anchoring. For partial evaluation, not only do we look for non-anchored >�?
loops, we in fact “break” each such loop by adding a specialisation point to
one of its edges (i.e. a call site).

The reasoning is this: if all static parameters are BSV, and all >@? loops are
broken by inserting a specialisation point, then the memoisation at this point
will at some point have memoised all the different values for the static pa-
rameters, and no further specialisation will occur in this loop. The >@? nodes
in the non-broken loops are BSV, i.e. the call depth is bounded, and cannot
cause nontermination.

To do the call loop anchoring we include call site information when build-
ing the LDG; all we need to do to the ��� e function shown in Figure 6.2 on

page 79, extended on page 83, is change gy ��.+
Si

fi to gy � , # s '�.+
Si

fi.

We now let Cost � D ÙI� ¬ < V � D Ú8� V = � ¬ < CallSite = and use the following
modified

Definition 7.2 (Cost structure with call site information)
Define the cost labelling function l : E õ + Cost by l gy � , Ð�.+

S
fx ¡ �©< � , S, À = and

106 Chapter 7. Extension to Partial Evaluation

multiplication operator ¢ : < Cost � Cost = + Cost by

é 1 ¢�é 2 � £í � 1,S1, Ð 1 ïãK ë 1

£í � 2,S2, Ð 2 ï*K ë 2

Í_< � 1 Å�Ùz� 2, S2 ¤ S1, À 1 Ö À
2
=�Î ,

where S2 ¤ S1 ��¥ hw � 2 ¦ $ � 1���
+ fu ��� ð gv : hw � 1���
+ gv � S1 � gv � 2�)�
+ fu � S2 § ,

and finally 1 ��¥W¨¼x3Ù ,) fx Ñ $�,+ fx � fx � p . , « © § .

As the call site sets are added and multiplied by simple set union, this struc-
ture is a simple extension of that of Lemma 6.6 on page 85, and we conclude
the following

Corollary 7.3
The components defined in Definition 7.2 form a semi-ring structure ª �
< Cost, Ö , ¢ , « ,1 = .

The “total cost” computed by the semi-ring algorithm will now be a set
of triples, < � , À , S = , where each triple describes loops with call site set À and
sibling loop effects S. Some of the total costs for >@? loops of the modified
Example 6.1 can be seen in Figure 7.4.

When we build the LDG, we have now automatically computed the sets
of call sites À that we previously added by hand as regular expressions,
cf. Figure 6.7 on page 89.

When the bounded anchoring has finished, any f á å nodes that could not
be detected to be bounded are marked D, and we can then insert the nec-
essary specialisation points by applying the following condition to each f á å
balloon node:

Condition 7.4 (Call loop anchoring)
For balloon node < f á å , À = , where f á å is marked D, if there is no call site s � À
which is a specialisation point, then select a specialisation point s � À .

The decision as to which s one should choose as the specialisation point
is not trivial and there seems to be no simple criteria. One possibility is to
give the call sites priority according to what kind of balloon nodes they are
in, and always choosing the one which is in the fewest anchored and the

7.5. Cascading specialisation point consequences 107

C <F� á å = �) <�Ë , Í¼A Ú+*A , A +´Þ , Ý Ú+rÝ Î , Í b Î@= ,
<�Ë , ÍxÞ Ú+´Þ , Þ Ú+�A , Ý Ú+rÝ Î , Í c,d Î@= , <�Ë , ÍxÞ Ú+´Þ , Þ Ú+*A , Ý Ú+ªÝ Î , Í b,c,d Î@= ,
<�Ë , Í¼A Ú+´Þ , A Ú+�A , Ý Ú+rÝ Î , Í b Î@= , <�Ë , Í¼A Ú+¡Þ , A Ú+*A , Ý Ú+ªÝ Î , Í b,c,d Î@= ,
<�ËÌ , Í(�!+�� , ÞÄ+´Þ , AÄ+*A , ÝÄ+´Ý Î , Í Î�= .

C < � á å = ��)�<�Ë , ÍxÐ Ú+´Ð ,

�
Ú+

�
Î , Í c,d Î@= , <�Ë , ÍjÐ Ú+¡Ð ,

�
Ú+

�
Î , Í b,c,d Î�= ,

<�ËÌ , Í�à%+�à , ÐÄ+´Ð ,

�
+

�
Î , Í Î@= .

C < � á å = �) <�Ë , ÍxÖ Ú+´Ö Î , Í f Î�= , <�Ë , Í
- Ú+�- Î , Í g Î@= , <�Ë , Í Î , Í f , g Î@= ,
<�ËÌ , ÍxÖ!+´Ö , -_+�- Î , Í Î@= .

Figure 7.4: Semi-ring total costs for some call loops in the call graph of Ex-
ample 6.1

most unanchored balloons. The choice also has an impact on the degree of
residual code sharing—it may be desirable to insert more specialisation points
than necessary for termination, simply to reduce the size of the residual (spe-
cialised) program.

The LDG for the modified Example 6.1 is shown in Figure 7.5 on the fol-
lowing page. It can readily be seen that a balloon for � á å is not anchored, and
a specialisation point is needed for call site f or g, which is exactly what we
expected.

7.5 Cascading specialisation point consequences

Inserting these specialisation points is essential for making partial evaluation
terminate, but it has a nasty consequence: it interferes with the conditions
used to guarantee the BSV properties. In the program of the modified Exam-

108 Chapter 7. Extension to Partial Evaluation

�Má å Ë# c,d ' �Má å Ë# b,c,d '

 MÊ >@Ê \Ê >�Ê

�Má å Ë# b ' �Má å Ë# b,c,d ' �Má å Ë# b '

B@Ê >�Ê B@Ê >MÊ B�Ê >MÊ

� á å Ë# c,d ' � á å Ë# b,c,d ' � á å Ë# f ' � á å Ë# g ' � á å Ë# f ,g '

Ð\Ê
�
Ê Ð\Ê

�
Ê Ö\Ê -xÊ

Figure 7.5: Part of the loop dependency graph for the modified Example 6.1

7.5. Cascading specialisation point consequences 109

ple 6.1, the specialisation point at the recursive call to b is needed, but this
causes , which has been used as an anchor for guaranteeing V to be of BSV,
to become a dynamic parameter and thus useless as an anchor!

Fortunately, this problem can be remedied, based on the simple obser-
vation that generalising, i.e. changing marks to D, does not change any � -
annotations on the edges of the size dependency graphs—only the annota-
tions of nodes. Thus the same dependencies, and the same anchors persist.
And this is where all our hard work setting up elaborate data structures is
finally rewarded: First we note that when inserting a specialisation pointuLuLu X f Í e1 uLuLu en [uLuLu we can use the DDG to propagate the newly introduced
dynamic property (of the return value of f) by marking fR as D and propa-
gating this information in the DDG.

This solves the problem of parameters marked as B by domination: as
no new Ë -edges are introduced, the only problem is if any predecessors of
a B-marked SCC C has its mark changed to D, but this will immediately be
propagated to the nodes of C, via the DDG.

To solve the problem of anchors rendered useless by specialisation point
insertion, we use the DDG together with the LDG by cascading the generalis-
ing consequences of inserting specialisation points. This is done by applying
the following condition to the LDG, for each newly inserted specialisation
point:

Condition 7.5 (Dynamic cascading)
For a node v just marked D,

1. Consider each successor v in the DDG: If v is not already marked D,
then mark v as D and apply dynamic cascading recursively.

2. Consider any anchor nodes containing v: follow the anchor chain to
the balloon; if there are no other anchor chains left to anchors marked
B, and the node, v , of the balloon is not already marked D, then mark
v as D and apply dynamic cascading recursively to v .

In Example 6.1, when we insert the specialisation point in the recursive call
to b , we find that �

R and consequently nodes , ^ , B , T , N , >\]UK R, ­ R, a R, and
­a� R become dynamic, chopping all anchors except > and � anchors (cf. Fig-
ure 6.7). Now there are only four B-marked loops left in the LDG, shown

110 Chapter 7. Extension to Partial Evaluation

V�Ë
bb Ê

V\Ë
bcd í b Ê cd Ê ï Ê

V\Ë
cd í b Ê cd Ê ï Ê

à_Ë
d í b Ê cd Ê ï Ê c

>@Ê >MÊ >MÊ
�
Ê

Figure 7.6: Remaining B-marked loops in the LDG after dynamic cascading

in Figure 7.6, and from the DDG it can be seen that if input � is dynamic, >
and � become dynamic, causing V and b to be unanchored and thus turned
dynamic.

In this way, each time a specialisation point causes some node to become dy-
namic all the (possibly transitively induced) effects this might have on the
bounded domination and anchoring conditions used in the preceding anal-
ysis are accounted for. We thus have the following

Theorem 7.6 (Soundness of dynamic cascading)
After dynamic cascading has been applied to an LDG and DDG where nodes
have been marked as B only by the domination and anchoring conditions,
any remaining nodes marked as B are still of BSV.

Proof: Any remaining B-marked node fx was originally marked B due to
bounded domination or bounded anchoring, which rely only on other B
marks, and only in two ways:

1. predecessors to the SCC containing fx must be marked B for each in-
creasing loop containing fx, and

2. there must be at least one B-marked anchor.

7.5. Cascading specialisation point consequences 111

If dynamic cascading invalidates condition 1 or 2, the corresponding cascad-
ing step 1 or 2 will re-mark fx D. This relies on the fact that for every path
from gy to fx in the SDG Ù there exists a path from gy to fx in the DDG. Å

When dynamic cascading is finished, some BSV >@? -loops might have
turned dynamic. Thus call anchoring and dynamic cascading must be reap-
plied to insert any needed specialisation points until no further changes to
node marks are made. This process cannot go on forever, as the number of
nodes is finite and we only change nodes from B to D. Also note that the
LDG need not be recomputed.

Finally, when call loop anchoring and dynamic cascading have stabilised,
specialisation is guaranteed to terminate by

Theorem 7.7 (Termination of specialisation in partial evaluation)
If all parameters in p classified as static are of BSV and all f á å balloon nodes
in the LDG that are not anchored contain a specialisation point, then the
evaluation ¬Ð¬ s s p t t¶�v will terminate for any �v � Vs.

Proof: As all parameters are BSV all loops with memoisation points will even-
tually terminate. Loops without specialisation points have anchored f á å -
nodes, so the call depth is bounded and specialisation of these loops will
thus also terminate. Å

Chapter 8

The Entire Algorithm

The entire algorithm for detecting program termination is summarised in

Algorithm 8.1 (Detection of evaluation termination)

Input: p � Program.

Output: An answer “terminating” if p is guaranteed to terminate no matter
which input is given, or an answer “quasiterminating” if p is guaran-
teed to only pass through finitely many different states during evalua-
tion.

Steps:

1. Build the SDG.

2. Form the SCC DAG from the SDG, sort it topologically.

3. Build the LDG.

4. Apply the bounded anchoring condition in topological order to
the SCCs, using the LDG for detecting anchors.

5. Reiterate from Step 4 until no property marks are changed.

6. If all f á å nodes are marked B, termination of p is guaranteed. If all
non- f á å nodes are marked B, p is quasiterminating.

112

113

The extension to partial evaluation adds steps 1 , 5 , 7, 8 and extends step 6
in

Algorithm 8.2 (BTA guaranteeing termination)

Input: p � Program and binding times for goal function parameters.

Output: Binding-time division for all variables in p and a set of specialisa-
tion points, under which specialisation is guaranteed to terminate.

Steps:

1. Build the SDG Ù .
1 . Build the DDG, mark p’s dynamic input as D and propagate

depth-first.

2. Form the SCC DAG from the SDG, sort it topologically.

3. Build the LDG.

4. Apply the bounded anchoring condition in topological order to
the SCCs, using the LDG for detecting anchors.

5. Reiterate from Step 4 until no property marks are changed.

5 . Re-mark any remaining r -nodes as D.

6. For each balloon f á å marked D: Apply the call loop anchoring
condition; if a specialisation point is added for a call to function f ,
then mark node fR as D and apply the dynamic cascading condi-
tion to it.

7. Reiterate from Step 6 until no binding time annotations are
changed.

8. Now partial evaluation of p, using the specialisation points and
the binding-time division indicated by the node marks, is guaran-
teed to terminate.

It is important to note that after each iteration in either of the two loops
(steps 4–5 and 6–7), the binding time annotations are still correct with respect
to BSV: in steps 5 and 7 any variables in p whose nodes are marked as B
will be of BSV with the current assignments of Ds and Bs to the remaining

114 Chapter 8. The Entire Algorithm

variable nodes. It is therefore possible to “bail out” of the first loop before the
annotations become stable, thus possibly pessimising, i.e. generalising some
parameters that could have been detected to be of BSV. However, for partial
evaluation to terminate it is essential that the second loop is iterated until no
more changes occur. Otherwise there might be some program loop causing
infinite specialisation, because there is no specialisation point in the loop.

8.1 Soundness

The overall structure of the formal soundness proof of the algorithm for de-
tecting termination is shown in Figure 8.1 on the facing page.

Informally, the algorithms work because ��Ù captures all the risks of in-
creasing transitions and ��Ú detects guaranteed decreasing transitions. Dur-
ing the anchoring (steps 4–5) the following invariant holds:

whenever a node is marked B, the corresponding parameter is BV (BSV).

This is true because for a node to become marked B, only values from
B-marked nodes can flow into it. Furthermore, if the node participates in in-
creasing loops, there must be a strict decrease in a BV (BSV) sibling loop. As
there are only a finite number of sibling parameters, each with a finite value
on a well-founded domain, there can only be a finite number of increases of
the parameter represented by the node, i.e. it is BV (BSV).

The same invariant holds after dynamic cascading (at step 7) because the
connections described above are recorded in the LDG. If any sibling param-
eters that have been used as anchors are invalidated by being re-marked D,
the effect of this on anchors is propagated in the dynamic cascading.

Thus, when the algorithms finish, any node marked B is BV (BSV).
For partial evaluation, the only risk of nontermination is now in loops of

a function f whose f á å node is marked D, but as every loop where f á å is not
anchored contains a specialisation point, specialisation will terminate.

8.1. Soundness 115

Lemma 5.7
Inference system

imitates
� Proposition 5.9� Ú and

� Ù are
safe size

approximations

Lemma 5.8� Ú is less than
inference system
approximation

Lemma 3.10
variable

substitution
= environment

substitution

Lemma 6.12
There exists a
sibling f j that

always decreases

Lemma 4.2
st é calculates

the arguments
passed to the
next function

Lemma 6.13
The number ofM -operations
along any call

path is bounded

Lemma 6.17
The TGV is
locally finite

Theorem 4.3
For any real
computation
there exists a

corresponding
call path

Theorem 6.11
The bounded

anchoring
condition
is sound

Lemma 5.12� Ù and
� Ú

respect
substitution

Corollary 3.5
Only function
calls can cause
nontermination

Theorem 6.18��� � p � ��Òv terminates
if iterating BA

on SDG produces
only B markedÈ Á nodes

Proposition 6.4
SDG faithfully

represents
call path

dependencies

Figure 8.1: Overall structure of the soundness proof for the termination al-
gorithm (note that bounded domination is not explicitly proved cor-
rect, as it is a special case of bounded anchoring)

Chapter 9

Implementation

When the binding-time and termination analysis algorithms described in this
paper are to be implemented, we must be careful that it is done as time and
space savingly as possible. In the following we will consider which data
structures to use and what complexity they result in. Finally, we will report
on results obtained using a prototype implementation of the analyses.

9.1 Data structures

Program syntax is represented by an annotated syntax tree; each func-
tion and parameter is represented uniquely, and in any expression we as-
sume constant-time access to the contained functions and parameters. For
instance, given expression ­YX�V�c¦�M[X� ��¡��[, finding (the internal repre-
sentation of) ­ , V and takes constant time. To achieve this, we must first
traverse the source program and create the necessary links.

Size dependency sets are used for dependency insertion, traversal, t Ú andÓ Ù , the latter involving Ô and Ö operations. Given function f there is an up-
per bound on the number of different elements that can be inserted, namely
arity < f = . This is usually a small number, so a bit vector representation is rea-
sonable.

116

9.2. Complexity 117

We represent an increasing dependency set � by a tuple of vectors
< ���Ù , ���Ù" = such that

bit < i, ���Ù = � 1 exactly when Ëu< fi
= ��� and

bit < i, ���Ù" = � 1 exactly when ËÌ < fi
= ���

Size dependency graphs are only explicitly built for the sibling-annotated
SDG graph. As it contains labeled edges, we represent it by a list of
nodes where each node has an adjacency list. The sibling annotations, e.g.

ÍÕB Ú�,+%B , B%�.+ª , >I�.+ª> Î are represented straightforwardly as lists of tuples
of type < Node � D ÚÉ� Node = .

For the sake of computing SCCs we include for each node a reverse adja-
cency list containing all immediate predecessors.

Loop dependency graph LDG is used to get from balloon to anchor and
from anchor to balloon, so here we again include a reverse adjacency list.

Dynamic dependency graph DDG is simply represented as an adjacency
list in each node. When computing � e (cf. Figure 7.1 on page 102), we repre-
sent the sets in the Symbol domain as bit vectors.

Including call-site information for the >@? nodes (to insert specialisation
points, cf. Section 7.4) is done by adding a set À to the cost triples, represented
by a bit vector.

Call loop anchoring requires keeping track of which call sites have been
selected as specialisation points. We store this information in a global bit
vector.

9.2 Complexity

We will give some upper bounds on the amortised time and space complex-
ity based on the following variables describing various aspects of the size of
the program:

118 Chapter 9. Implementation

p number of program expressions (“program size”)
f number of functions
n total number of parameters in function definitions
a maximum function arity
s number of call sites
q total number of arguments in function calls

9.2.1 Complexity of the analyses

Program syntax is created by traversing the program and making direct
links for all function and parameter names. The complexity of this is

traversing program O < p =
sorting function & parameter names O < f � log f } f � a � loga =
searching for parameters O < p � loga =
searching for functions O < s � log f =

Total: O <�< p } f � a = � loga } < f } s = � log f =

Size dependency operators � � are computed in fixpoint iterations, and the
result of a call to � � is a dependency set, e.g. �á�WÍxËu< x1

= , ËÌ < x3
=�Î . As depen-

dency sets are represented by bit vectors, t Ú and Ó Ù are O < a = time operations.
For each of f ’s parameters x we have either Ëu< x = �E� or ËÌ < x = �E� or ��< x = C�� , so the maximum chain length in the domain < DepSet � = a + DepSet � is 3 �

n. As the iteration only changes these descriptions monotonically, and each
change requires O < p � a = time to compute, the fixpoints are reached in time
O < p � a � 3 � n = . In the worst case, the fixpoint iteration must be performed
at each argument, i.e. O < q = times, yielding a total time of O < p � q � a � n = for
computing � � .

Size dependency graph SDG is generated by applying the edge operator��� e recursively. Looking at the < � 5
= rule on page 83 we see that a new

edge is inserted into an adjacency list O < q � a = times, because � �:� � a for all
dependency sets, specifically for ����� � s s ei t t ! � .

Letting Adj � D Ù�� Node �C< Node � D Ú�� Node = List, we now spell out the
operation insertEdge : Adj � AdjList + AdjList that inserts SA-edges into the

9.2. Complexity 119

adjacency list of a node, indicating the time used during the entire analysis
for each instruction:

insertEdge <�< � 1, fx, S = , A = � O < q � a =
for < � 2, f x, S = � A O < q � a =

if � 1 �;� 2 � fx � f x then O < q � a � 2a2 =
n Ö°� S � O < q � a � 2a2 =
for < v ��,+ y = � S O < q � a � 2a2 =

for < v � ö�.+ y = � S O < q � a � 2a2 � a2 =
if y � y � ���;� � v � v then O < q � a � 2a2 � a2 � a2 =

n Ö n � 1 O < q � a � 2a2 � a2 � a2 =
if n � 0 then return A O < q � a � 2a2 � a2 =

return A Ö�< � 1, fx, S = O < q � a =
Total: O < q � a5 � 2a2 =

In total, the complexity of building the SDG is

traversing the program with ��� e O < p =
creating sibling set S O < q � a =
creating SA-edges O < q � a5 � 2a2 =

Total: O < p } q � a5 � 2a2 =
The factor 2a2

arises from the fact that given a call site, there are O < a = possible
sources and O < a = possible destinations for a sibling edge, so there are O < 2a2 =
different possible sibling edge sets S .

The size of the SDG can be estimated to be

parameter nodes n
>@? nodes f
Number of nodes, v � n } f

edges from parameter nodes O < q � a =
edges from >@? nodes O < s =
Number of edges, e � O < q � a } s =

120 Chapter 9. Implementation

Computing SCCs can be done by an algorithm requiring (cf. Cormen, Leis-
erson, & Rivest, 1990)

computing reverse adjacency lists O < v } e =
computing depth-first search twice O < v } e =
creating SCCs O < v =

Total: O < v } e =
where v is the number of nodes and e the number of edges, so in program
size terms the SCCs can be computed in time O < n } f } q � a } s = .

Computing loop-costs involves computing the semi-ring product for an
SCC C. We use an adapted version of Algorithm 5.5 from Aho et al.
(1975), cf. Figure 9.1 on the facing page, for computing the total loop costs
c < xi, xi

= , xi � C. In this algorithm, the parameter names in C have been num-
bered x1, uLuLu , xw, and the time used during the entire analysis of all SCCs is
measured in the number of nodes, v, and number of nodes in the largest SCC,
u.

The � Ê operation is simply computed as c Ö c ¢ c until a fixpoint is
reached. As � cfix � � 2a2

, the fixpoint is reached using O < 2a2 = iterations in-
volving the semi-ring product ¢ of Definition 6.5 on page 85. That operator
is computed naïvely as shown in Figure 9.2 on page 122.

In conclusion, we find that the main time spent in computing the semi-
ring loop cost is in computing the � Ê and ¢ operations, which take time O < v �
a4 � 24a2 = } O < v � u2 � a4 � 23a2 = � O < v � a4 � 23a2 ��< u2 } 2a2 =�= . In terms of program
size, this is O < n � a4 � 23a2 �j< n2 } 2a2 =�= because this anchoring, i.e. loop costs
without call-site information, is only relevant for ordinary parameter nodes.

Loop dependency graph LDG is created by travesing O < v = nodes, and for
each node traversing O < 2a2 = loop costs. For each loop cost < � , S = , O < a2 = el-
ements in S are traversed. Computing the LDG can thus be done in time
O < v � 2a2 � a2 = � O <�< n } f = � 2a2 � a2 = .

9.2. Complexity 121

for i � Í 1, uLuLu ,w Î
c0

ii Ö 1 Ö ×
xi ØÔ &S xi K E

l xi ��¹+
S

xi ¡ O < v =

for i � Í 1, uLuLu ,w Î
for j ��Í 1, uLuLu ,w Î O < v =

if i D� j then O < v � u =
c0

i j Ö ×
xi ØÔ &S x j K E

l xi ��.+
S

x j ¡ O < v � u =
for k ��Í 1, uLuLu ,w Î

c ÖÚÙ ck Ô 1
kk Û Ê O < v =

for i � Í 1, uLuLu ,w Î O < v =
c ik Ö ck Ô 1

ik ¢ c O < v � u =
for j ��Í 1, uLuLu ,w Î O < v � u =

ck
i j Ö ck Ô 1

i j Ö c ik ¢ ck Ô 1
k j O < v � u � u =

for i � Í 1, uLuLu ,w Î
c < i, i = Ö cn

ii O < v =

Figure 9.1: Algorithm to compute total costs between vertices, adapted
from Aho et al. (1975, algorithm 5.5).

122 Chapter 9. Implementation

Ü
1 Ý Ü

2 R O
�
1 �

A ÞáS�\ O
�
1 �

for
� �

1, S1 � ��Ü
1 O

�
1 �

for
� �

2, S2 � ��Ü
2 O

�
2a2 �� Ù Þ �

1 ß Ù �
2 O

�
2a2 � 2a2 �

S Þ�S�\ O
�
2a2 � 2a2 ��-à

compute S1 ¬ S2
à �

for hw �âá1� � gv
� S1 O

�
2a2 � 2a2 �

for g v �âá2� � fu
� S2 O

�
2a2 � 2a2 � a2 �

if gv R g v then O
�
2a2 � 2a2 � a2 � a2 �� Ú Þ � 1 ß Ú � 2 O
�
2a2 � 2a2 � a2 � a2 �

found Þ�ãMä(å æà¡ O
�
2a2 � 2a2 � a2 � a2 �

for h w �âá� � f u � S O
�
2a2 � 2a2 � a2 � a2 �

if
� R � Z hw R h w Z fu R f u then O

�
2a2 � 2a2 � a2 � a2 � a2 �

found Þz§=¢*¨©¡ O
�
2a2 � 2a2 � a2 � a2 � a2 �

if not found then S Þ S � hw � H� � fu O
�
2a2 � 2a2 � a2 � a2 ��-à

add result to A if
� � Ù , S �3d� A

à �
found Þ�ãMä(å æà¡ O

�
2a2 � 2a2 �

for
� � , S � � A O

�
2a2 � 2a2 �

if
� Ù R � then O

�
2a2 � 2a2 � 2a2 �

n ÞvX S X O
�
2a2 � 2a2 � 2a2 �

for gy �âá á� � fx
� S O

�
2a2 � 2a2 � 2a2 �

for g y �âá á á� � f x � S O
�
2a2 � 2a2 � 2a2 � a2 �

if
� �R � Z gy R g y Z fx R f x then O

�
2a2 � 2a2 � 2a2 � a2 � a2 �

n Þ n � 1 O
�
2a2 � 2a2 � 2a2 � a2 � a2 �

if n R 0 then found Þ�§=¢*¨©¡ O
�
2a2 � 2a2 � 2a2 �

if not found then A Þ A � � � Ù , S � O
�
2a2 � 2a2 �

return A O
�
1 �

Total : O
�
a4 � 23a2 �

Figure 9.2: Algorithm for computing the semi-ring product

9.2. Complexity 123

Bounded anchoring, step number 4 of the algorithm, entails traversing
O < v = nodes and their O < e = predecessors. For each node, also O < 2a2 = bal-
loons and O < 2a2 � a2 = anchors may be checked. This step is iterated at most v
times (each iteration must increase the number of nodes marked B by at least
1), so all the anchoring can be computed in time O < v ��< e } v } v � 2a2 � a2 =�= �
O < v ��< e } v � 2a2 � a2 =�= , i.e. O <�< n } f = ��< q � a } s } < n } f = � 2a2 � a2 =�= � O <�< n } f = � q �
a } < n } f = � s } < n } f = 2 � 2a2 � a2 = .
Dynamic dependency graph DDG is created using the dynamic depen-
dency function � and the edge generating operator �S� e. During the com-
putation of � e, set unions are bit vector operations taking time O < a } f = , so
the complexity for creating the DDG is

traversing the program with � e O < p �,< a } f =�=
creating edges to fR nodes O < f �,< a } f =�=
creating edges to parameters (cf. Figure 7.2) O < q �,< a } f = � n =

Total: O <�< f } q � n } p = �,< a } f =�=

Including call-site information is only done for the >@? nodes, of which
there are f (one per function).

This increases the complexity for computing the semi-ring product from
O < a4 � 23a2 = to O < a4 � 23a2 � 23s � s = , as the domain of the for-loops is increased
by a factor of 2s and computing unions of call site sets is done in time O < s = .
Similarly, a conservative approximation gives that the � Ê operator now re-
quires O < 2a2 � 2s = . On the other hand, in the complexity of the algorithm for
total costs (Figure 9.1) v is replaced by f , so the complexity for computing
the call-site-augmented total costs is O < f � a4 � 24a2 � 24s � s = } O < f � u2 � a4 � 23a2 �
23s � s = � O < f � a4 � 23a2 � 23s � s ��< u2 } 2a2 � 2s =�= , i.e. in terms of program size it is
O < f � a4 � 23a2 � 23s � s �,< f2 } 2a2 � 2s =�=

Specialisation-point insertion and dynamic cascading, step number 6 of
the algorithm, is performed by traversing O < 2a2 � 2s = >@? balloon nodes and
for each such node marked D testing with bit vector operations in O < s = time

124 Chapter 9. Implementation

whether there is a specialisation point. If a specialisation point is inserted
for function f , the function cascade, shown in Figure 9.3, is called on fR; it

1 cascade < x = � O < v =
2 if mark < x =yD� D then O < v =
3 mark < x = Ö D O < v =
4 for y � succ < x = O < v =
5 if mark < y =�D� D then O < e =
6 cascade < y = O < v =
7 for z � anchors < x = O < v =
8 b Ö balloon < z = O < v � 2a2 =
9 if mark < b =yD� D then O < v � 2a2 =

10 wellanchored Öçilk+m n(h O < v � 2a2 =
11 for a � anchors < b = O < v � 2a2 =
12 if mark < a = � B then O < v � 2a2 � 2a2 =
13 wellanchored Ö eLf�gPh O < v � 2a2 � 2a2 =
14 if not wellanchored then O < v � 2a2 =
15 cascade < b = O < v =

Total: O < e } v � 22a2 =

Figure 9.3: Algorithm for cascading the consequences of inserting speciali-
sation points

changes the mark of its argument to D and cascades the effect.
Its complexity is calculated in steps:

1. Consider line 3; it changes a non-D mark (due to line 2) to a D mark;
this can be done at most v times, making lines 3, 4 and 7 O < v = .

2. As line 4 is executed at most once for each node, each edge in the graph
is drawn from succ < x = at most once, so line 5 is executed at most e times.

9.2. Complexity 125

3. Each parameter can be an anchor for O < 22a = loops, yielding the com-
plexities for lines 8–14.

4. If we assume that cascade is only ever called with arguments that are not
marked D, line 1 and 2 are executed exactly as many times as line 3,
i.e. O < v = times.

5. This assumtion holds for lines 6 and 15, so they too are executed O < v =
times.

The call loop anchoring and cascading step is iterated at most s times,
as each iteration inserts at least one specialisation point, so the complexity
of this step is O < s2 � 2a2 � 2s = } O < e } v � 22a2 = � O < s2 � 2a2 � 2s } e } v � 22a2 = . In
terms of program size, this is O < s2 � 2a2 � 2s } n } f } q � a } s } < n } 2 f = � 22a2 = �
O < s2 � 2a2 � 2s } q � a } < n } f = � 22a2 = .

The entire binding-time analysis can now be estimated by adding the
complexities of the individual steps. It is reasonable to assume that the com-
plexity variables f ,n, s,q are proportional to the program size, p. Further, it
can be argued that the maximum function arity a should be regarded as a
constant: twice as long programs do not normally have functions of twice
the arity.

Summing up, the complexity measured in terms of the individual com-
plexity variables, in terms of only p and a, and finally regarding a as constant
are shown in Table 9.1 on the next page. All these ghastly expressions are of
course a result of conservative and worst-case approximations, and we can
make several observations about them:] Terminating programs are detected in time O < p3 = , and disregarding

call-site loop costs and specialisation point cascading, the BTA is also
computed in time O < p3 = .] Care should be taken in designing good heuristics for computing � � ,
creating the SDG and DDG and for computing the loop-costs, so that
the worst-case complexity of O < p3 = can be avoided for typical pro-
grams.

126 Chapter 9. Implementation

General p and a only a const
syntax O

�o�
p è fa � loga è � f è s � log f � O

�
p2 � loga è p � log p � O

�
p2 �

computing
� � O

�
p � q � a � n � O

�
p3 � a � O

�
p3 �

creating SDG O
�
p è q � a5 � 2a2 � O

�
p � a5 � 2a2 � O

�
p �

finding SCCs O
�
n è f è q � a è s � O

�
p � a � O

�
p �

loop-costs O
�
n � a4 � 23a2 � � n2 è 2a2 �o� O

�
p323a2

a4 è p24a2
a4 � O

�
p3 �

creating LDG O
�o�

n è f � � 2a2 � a2 � O
�
p � 2a2 � a2 � O

�
p �

BA O
�o�

n è f � � qa è s è � n è f � 2a2
a2 �o� O

�
p2 � 2a2 � a2 � O

�
p2 �

creating DDG O
�o�

f è q � n è p � � � a è f �o� O
�
p3 è p2 � a � O

�
p3 �

call loop costs O
�
fa423a2

23ss
�
f2 è 2a2

2s �o� O
�
24p � p2 � 24a2 � a4 � O

�
24p p2 �

sp cascading O
�
s22a2

2s è qa è � n è f � 22a2 � O
�
2p p22a2 è p22a2 � O

�
2p p2 �

Table 9.1: Worst-case complexity for the various phases

] In fact, approximating the squared maximum SCC size u2 in the com-
plexity of computing the loop-cost (cf. Figure 9.1 on page 121) to be
proportional with p2 is rather conservative. Roughly, u corresponds to
the largest set of mutually recusive functions in the program; in typi-
cal programs most SCCs will be singleton, and few SCCs are expected
to have more than a handful of nodes. Thus it can be argued that the
complexity of computing the total loop-costs is linear in practise.] Further, the factor of f in the complexity for creating the gR + fi edges
in the DDG is a worst-case approximation which is based on function
arguments containing nested calls to all functions in the program. In
practise this can be regarded as a small constant, yielding an O < p2 =
complexity for creating the DDG.] The maximum function arity occurs exponentially in several places. If
we look at the algorithms, we see that the factors 2c å a2

arise from the
sets of sibling edges and all their possible combinations of source and
destination nodes. However, in typical real-world programs—at least
those written by humans—a function parameter does not interact with
all the other parameters, so it can be argued that a is a “very” small

9.2. Complexity 127

integer.] Even though the arity a is considered constant, the algorithms should
be designed carefully, to avoid introducing large constant factors that
could become a problem in practice.] The exponential factor 2s for computing call-site augmented total costs
and performing specialisation point cascading is due to the sets of call
sites that must be created and checked. This could be a problem in
practice and should be addressed in future research.

9.2.2 Improving semi-ring computation speed for éfê nodes

We will not attempt to address the problem of the exponential complexity in
depth, but instead leave that for future research. Rather, we will make some
observations concerning the algorithms previously described, and suggest
some ad-hoc optimisations without formally proving their correctness.

First we note that the exponential complexity is only related to specialisa-
tion-point insertion, i.e. only the computations for >�? nodes. This also implies that
all cost triples of interest have increasing first components: <7Ë , S, À = .

Second, it is clear from the preceding discussion that the problem lies in
calculating the semi-ring product (cf. Figure 9.2 on page 122), where we have
three nested for loops:

...
for < � 1, S1, À 1

= ��é 1

for < � 2, S2, À 2
= ��é 2

...
for < � , S , À = � A

...

each of which draw elements from costs of size O < 22a � 2s = . Thus, it seems
sensible to try and keep the typical size of a cost, especially the number of
different call site set components, small.

128 Chapter 9. Implementation

Third, observe how the results of the computation, the total costs, are
used: each total cost ÍU<�Ë , S1, À 1

= , uLuLu , <�Ë , Sn, À n
=�Î is searched for an i where

there is no anchor < u Ú�,+ u = � Si. In this case, an s � À
i is selected for

specialisation-point insertion. This has several implications:] Cost triplets <�Ë , Í_< u Ú�,+ u = , uLuLu Î , À = containing anchors are not interest-
ing for the final result.] During computation of the total costs we traverse products of sets of
cost triplets Í c1, uLuLu ,cm

Î ��Í c 1, uLuLu ,c n Î and compute the union of a func-
tion £ i, j f < ci,c j = . We can say ci supersedes ck if f < ci,c j = is “at least as inter-
esting” as f < ck,c j = for all j. In other words, whenever ck can cause the
insertion of a specialisation point s � X, then ci is certain also to cause
insertion of a specialisation point s � X. During the computations, we
can then discard triplets from a set that are superseded by others from
the same set. For instance,] For a total cost Í uLuLu , <�Ë , S1, À = , uLuLu , <�Ë , S2, À = , uLuLu Î , where S1 �¯Í e1, uLuLu , ei Ô 1,

gy Ú�.+ fx, ei ø 1, uLuLu , en
Î and S2 ��Í e1, uLuLu , ei Ô 1, gy Ú"�.+ fx, ei ø 1, uLuLu , en

Î , we
can remove the <�Ë , S1, À = triplet. Most important though,] For a cost with two triplets Í uLuLu , <�Ë , S, À 1

= , uLuLu , <7Ë , S, À 2
= , uLuLu Î where À

1
{À

2, we can remove <�Ë , S, À 1
= .

In general, we can define “c1 is superseded by c2,” as a partial ordering
c1 ë c2 by

< � 1, S1, À 1
= ë < � 2, S2, À 2

=ì� � 1 ��� 2 � S1 í S2 � À
1
{ À

2, where

S1 í S2
� Ï gy � 2�,+ fx � S2 ð gy � 1�.+ fx � S1 : � 2 ��� 1

and then use this to modify the semi-ring product algorithm in Figure 9.2 on
page 122. As the result of the product is always used in a union with another
set, we enter this set explicitly as a parameter, as shown in Figure 9.4 on the
next page. The trick to keep the triplet set A small is to remove any triplets
from A that are superseded by a new cost triplet that is to be added, and only
add it if it is not superseded by a triplet already in A.

9.2. Complexity 129

A Ö�<6é 1 ¢¬é 2
= �

for < � 1, S1, À 1
= ��é 1

for < � 2, S2, À 2
= ��é 2

... (compute result < � Ù , S, À = as in Figure 9.2)

<âÃ remove any < � , S , À = from A where < ��Ù , S, À =3î < � , S , À = Ã =
<âÃ add < � Ù , S, À = to A unless some < � , S , À = � A supersedes it Ã =
leqexists Ö»ilk+m n=h
for < � , S , À = � A

if < ��Ù , S, À =�î < � , S , À = then A Ö A ï)ÍU< � , S , À =�Î
if < ��Ù , S, À = ë < � , S , À = then leqexists ÖüeLf�g�h

if not leqexists then A Ö A Ö�ÍU< � Ù , S, À =�Î
return A

Figure 9.4: Optimised semi-ring product algorithm

Call site sets represented as bit vectors can simply be compared in linear
time using bitlogical operations. However, computing the sibling edge set
relations S1

î S2 and S1 ë S2 efficiently requires that we keep them sorted,

e.g. lexicographically by < u,v, � = where S �§Í u1 � 1�,+ v1, uLuLu ,un � n�¹+ vn
Î , and also

that for every node pair < u,v = there is at most one u ��.+ v in each sibling edge

set. This can be accomplished by removing u Ú"�.+ v from a set S if u Ú�.+ v � S.

When these conditions hold, the function deciding for two sibling edge
sets S1 and S2 whether S1 ½ S2, S1 � S2, S1

î S2, or S1 is unrelated to S2 can
be computed as shown in Figure 9.5 on the following page.

With this optimised algorithm we conjecture that the specialisation point
insertion is performed in polynomial time.

130 Chapter 9. Implementation

<âÃ decide S1 ½ S2, S1 � S2, S1
î S2 or S1 is unrelated to S2 Ã =

compare < S1, S2
= �

leq Ö eLf*gPh ltexists Övilk+m n=h
geq ÖüeLf�g�h gtexists Öçilk+m n(h
eq Ö eLf�g�h
List es1 Ö sorted < S1

=
List es2 Ö sorted < S2

=
while not empty < es1

= � not empty < es2
=

e1 �Z< u1 � 1�.+ v1
= Ö head < es1

=
e2 �Z< u2 � 2�.+ v2

= Ö head < es2
=

if u1 � u2 � v1 � v2 then
if � 1 ð � 2 then

eq Övilk+m n=h geq Öçilk+m n(h ltexists Ö eLf*gPh
else if � 1

¿ � 2 then
eq Övilk+m n=h leq Ö»ilk+m n(h gtexists Ö eLf*gPh

else
eq Öçilk+m n(h

if e1
�

e2 then es1 Ö tail < es1
=

if e1 ~ e2 then es2 Ö tail < es2
=

if not empty < es1
= then

eq Övilk+m n=h geq Öçilk+m n=h
if not empty < es2

= then
eq Övilk+m n=h leq Ö»ilk+m n(h

if leq � ltexists then return ½
else if eq then return �
else if geq � gtexists then return î
else return ñóò(ôQ�@õSö¼k�f`k+÷+m h

Figure 9.5: Algorithm for computing the supersede relation on sibling edge
sets

9.3. Results 131

9.3 Results

A prototype of the analyses described in this paper has been implemented
in Haskell, which is ideal for prototyping because the semantic equations
given in the text in many cases can be directly used as the Haskell pro-
gram. Thus, efficient datastructures have not been used everywhere, and
for this reason we will not report on actual running times. However, using
the speed-improved semi-ring computation (cf. Section 9.2.2 on page 127),
binding-time analysing the slowest example (int-loop) takes less than half a
minute.

We have collected a suite of example programs in Appendix B, including
several from the work of Lindenstrauss and Sagiv (1997). They are written
in Scheme syntax (Abelson et al., 1998) intended as input to the Similix spe-
cialiser (Bondorf, 1990; Bondorf & Jørgensen, 1993), but are translated into a
Haskell-like syntax before they are passed to the prototype analyser.

The example programs are all first order, so functions like ­UL\`M> and ¥aS�?
use fixed functions for folding and mapping. Wherever it is vital for ter-
mination we have written natural numbers in unary notation, i.e. as list
lengths, as the builtin integer type is not a well-founded domain. Further-
more, as we lose all size information for functions returning two values
pointed to by a cons cell, we have slightly rewritten the sorting functions. For
instance, ¥a]�T�a_] X�O�?�`u£j¤WV�OU[is changed into O�?u`u£j¤�¥a]@T�a_]¯V�O�Q1R Q1R , where
O�?�`u£j¤j¥a]�T�a_] splits V�O into two lists and calls ¥a]�T�a_] on them.

The results of the termination and binding-time analyses, given binding-
time patterns for each goal function, are shown in Tables 9.2–9.5. By looking
at each program, we have listed the optimal analysis result, i.e. the fewest
generalisations and specialisation point insertions necessary to guarantee
termination of specialisation, and whether the prototype is able to achieve
this or is more conservative.

Even though the sorting functions have been rewritten as previously de-
scribed, the analyser is not able to detect that they terminate. Looking at
the programs it becomes evident why: during the reordering of the list, our
rather crude size approximations lose track of the sizes. It is the KMLjNPO opera-
tions found in O�?�`u£x¤�¥a]�T�aU] of mergesort, ?�S�T\¤ of quicksort and T_]�¥aL�^_] of min-
sort that make the analyser think there are dangerous parameter increases in
the main loops. One could patch on this problem by passing around a mea-

132 Chapter 9. Implementation

Termination analysis Binding-time analysis
Opt. Conser- Goal Opt. Conser-

Program result result vative BT result result vative
contrived-1 T T no s d no
contrived-2 QT QT no s d SP SP no
list T T no s no

fold T T no
d s
s d SP SP

no
no

map T T no s no
naiverev T T no s no
deeprev T T no s no
append T T no s d no
mergelists T T no s d SP SP no
addlists T T no s d no
revapp T T no s d no
permute NT T yes s SP, G SP yes

add T T no
s d
d s

SP, G SP, G no
no

badd NT QT yes s d SP SP no
mul T T no s d SP SP no
disjconj T T no s no
duplicate T T no s no
nestimeql NT QT yes s SP, G SP yes
evenodd T T no s no

lte T T no
s d
d s SP SP

no
no

member T T no
d s
s d SP SP

no
no

T = terminating, QT = quasiterminating, NT = nonterminating,
s = static, d = dynamic,
SP = insert specialisation point(s),
G = generalise variable(s) to ensure termination

Table 9.2: Results of termination and binding-time analyses, part I.

9.3. Results 133

Termination analysis Binding-time analysis
Opt. Conser- Goal Opt. Conser-

Program result result vative BT result result vative
ordered T T no s no
overlap T T no s d SP SP no
select T T no s no
subsets T T no s no

anchored T T no
s d
d s SP, G SP, G

no
no

letexp NT NT no s s SP, G SP, G no

thetrick NT T yes
s d
d s

SP
SP, G

SP
SP, G

no
no

intlookup QT QT no d s SP SP no

nolexicord T T no
s s s s s s
s s s s s d SP SP

no
no

decrease T T no s no
equal QT QT no s SP SP no
increase NT NT no s SP, G SP, G no
nestdec T T no s no
nesteql QT QT no s SP SP no
nestinc NT NT no s SP, G SP, G no
sp1 QT QT no s d SP SP no
shuffle NT T yes s SP, G yes
assrewrite NT T yes s SP, G yes
game T T no s s s no
vangelder QT QT no s d SP SP no
power T T no d s SP SP no

T = terminating, QT = quasiterminating, NT = nonterminating,
s = static, d = dynamic,
SP = insert specialisation point(s),
G = generalise variable(s) to ensure termination

Table 9.3: Results of termination and binding-time analyses, part II.

134 Chapter 9. Implementation

Termination analysis Binding-time analysis
Opt. Conser- Goal Opt. Conser-

Program result result vative BT result result vative

binom T T no
s d
d s SP SP

no
no

ack T T no s d SP SP no
gcd-1 T T no s d SP SP no
gcd-2 QT T yes s d SP SP no
mergesort NT T yes s SP, G yes
quicksort NT T yes s SP, G yes
minsort NT T yes s SP, G yes

reach QT QT no
d d s
s d s

SP
SP

SP
SP

no
no

graphcolour-1 QT T yes
d s
s d

SP
SP

SP
SP

no
no

graphcolour-2 QT T yes
d s
s d

SP
SP

SP
SP

no
no

graphcolour-3 T T no
d s
s d

SP
SP

SP
SP

no
no

match T T no s d SP SP no

strmatch T T no
s d
d s

SP, G SP, G no
no

turing NT NT no s d SP SP no
lambdaint NT NT no s SP, G SP, G no

int-loop T T no
s s d
s d d SP SP

no
no

int-while NT NT no s d SP SP no

T = terminating, QT = quasiterminating, NT = nonterminating,
s = static, d = dynamic,
SP = insert specialisation point(s),
G = generalise variable(s) to ensure termination

Table 9.4: Results of termination and binding-time analyses, part III.

9.3. Results 135

Termination analysis Binding-time analysis
Opt. Conser- Goal Opt. Conser-

Program result result vative BT result result vative
int-dynscope NT NT no s d SP, G SP, G no

T = terminating, QT = quasiterminating, NT = nonterminating,
s = static, d = dynamic,
SP = insert specialisation point(s),
G = generalise variable(s) to ensure termination

Table 9.5: Results of termination and binding-time analyses, part IV.

sure of the list lengths (and decreasing them whenever the lists got shorter),
but that would not be a natural way to write the sorting functions.

The function for rewriting an expression with an associative operator, as-
srewrite, cannot be proven by the analyser to terminate. This should come
as no surprise, as it requires an advanced size measure not only keeping
track of the number of cons nodes but also the structure of the syntax tree.
Somewhat similarly, to be able to detect the badd program to be terminating
requires considering the sum of the length of the arguments V and , which
seems non-trivial.

The two versions of the greatest common divisor function, gcd–1 and gcd–
2 demonstrate the importance of not “mixing” different variables unneces-
sarily, cf. Section 10.3.1 on page 144.

The graph colouring program has first been coded up in graphcolour–1
to use The Trick in the KML\`ML�T\T_]uOx¤ function: The nested call to K�L\`\L�T�NuLM>U]
(line 44) returns a coloured node that is represented by a cons pair contain-
ing the colour and the node. If the node is dynamic, the colour of the node
will also be dynamic (recall we have no partially static data). However, by
checking the colour against the finite list of available colours in the call to
KML\`\L�TMT_]uOj¤¹��¤jb�]�¤\T�£�Kj� (line 53), we avoid making N�KUO dynamic in the next
call (line 62).

However, the analyser is unable to detect that the car of the return value
of the call KML\`\L@T�N�LM>U]§N�K_O ����� (line 44) is never greater than that of N�K_O , so
N�K_O is lost as an anchor in the mutually recursive call to KML\`ML�T\T_]uOx¤¹�x¤jb�]@¤\T�£�Kx�

136 Chapter 9. Implementation

(line 54). We can remedy this by replacing the call to KMLM`\L�T�N�L�>U] by a call to
a tail recursive function KML\`\L�T@N�LM>U]�TU]uOj¤ , that basically consists of KMLM`\L�T�N�L�>U]
followed by the lines following the call to it (lines 46–56).

Using the new program, graphcolour–2, the analyser can detect that N�KUO
is static and is decreased in the call to KML\`ML�T\T_]uOx¤¹�x¤jb�]@¤\T�£@Kj� , but it cannot
see that the value of N�K_O is passed back to KML\`\L�TMT_]uOj¤ again. This shows that
using The Trick where it is not necessary (i.e. the test is not dynamic) can
in fact be harmful to the termination analysis. Naturally, as the test is static,
we can remove KML\`\L�TMT_]uOj¤¹��¤jb�]�¤\Tu£�K�� , obtaining the program graphcolour–3,
which is correctly analysed to be terminating.

However, some forms of The Trick, e.g. moving a dynamic test further
out into the context, can aid the analysis in detecting termination as can be
seen by the different results obtained for function ­ and a in program thetrick.

The example program nestimeql shows one shortcoming of the size ap-
proximation function � Ù : it cannot detect that the size of the return value of
a call £,¥\¥aS�¤_KML�?_ ©V is the same as the size of V , resulting in conservative gen-
eralisation. Similar problems occur with the T_]�^US�?\? call in permute (line 14),
and the T_]�^U]�T�O@] call in shuffle.

The remaining examples are handled without resulting in overconserva-
tive results, notably including several interpreters.

9.3. Results 137

Chapter 10

Conclusion

10.1 Current work

The algorithm presented in this paper has been implemented as a prototype
and experiments have shown it to produce reasonably good results. Fur-
ther experiments will be made to determine how successful it is in correctly
determining bounded variation properties and specialisation points.

10.2 Related work

Andersen and Holst (1996) presented a successful analysis which includes
the higher-order case. The first-order part of their analysis is very similar
to ours: they also employ a size dependency analysis prior to an anchor-
ing algorithm, and their transitive transition closure operation corresponds
roughly to our semi-ring algorithm. The main differences are that we clearly
separate the modalities by conceptually using both SDG Ù and SDG Ú , and
we include an algorithm for inserting all necessary specialisation points, an
essential ingredient in making specialisation of quasi-terminating programs
terminate.

This in turn requires that we handle cases where a BSV variable used as
anchor becomes dynamic due to an inserted specialisation point. By stating

138

10.2. Related work 139

explicitly in a novel way the loop dependencies in the LDG, we avoid costly
reiteration of the semi-ring algorithm.

We also distinguish between ËÌ and ÊÌ , due to nested calls (cf. page 27),
enabling less conservative size estimates for nested calls like

­�V� �>�� if >pkl� then ­®X6¥�S�V�V� a[² X�>z�¡�M[else V¥aS�V©b¡^¡� if b�k©^ then b else ^
In their analysis, assuming > is dynamic, this would give rise to an increas-
ing transition and generalisation of V , whereas we just record an equality
transition, leading to no generalisation.

Further, we put more emphasis on describing explicitly our algorithms
and show how the worst-case complexity arises, as an aid to developing effi-
cient implementations. It is not clear what the worst-case complexity of their
analyses is, but we expect it also to be cubic like ours.

Das’ (1998) work concerns mainly termination analysis for partial eval-
uation of real-world C programs, and is thus not directly comparable with
our work. However, it is reasonable to assume that the techniques could be
transferred to BTA for functional programs. The main differences between
the essence of Das’ and our approach is that] Das deals directly with control dependencies, whereas we emphasize

the relationships between increasing and decreasing variables. In fact,
it turns out that to avoid too conservative binding-time divisions due to
dynamic conditionals, he adds analyses similar to call loop anchoring
to detect grounded loops and grounded flow cycles, which seems to indi-
cate that this is the key property to consider in termination analysis for
partial evaluation.] Applying The Trick, for instance transforming

s � d into
ss � 10;
while < ss ! � d = ss � ss � 1;
s � ss;

one has explicitly introduced a dynamic control dependency (from
ss ! � d) to a BSV variable (ss). This will cause Das’ control dependency

140 Chapter 10. Conclusion

approach to conservatively generalise the variable, cancelling the effect
that was intended with The Trick. His solution is to require the user to
explicitly annotate occurrences of The Trick in the code. Although this
is a viable approach, we prefer good heuristics that can handle The
Trick automatically in typical cases.] Das only supplies a conditional termination guarantee: the result-
ing binding-time division may lead to static-infinite computations,
whereas we detect variables that are truly BSV. As partial evaluation
is over-strict, we believe that a full termination guarantee should be
given, cf. Section 2.2 on page 29.] Additionally, the part of Das’ work handling functional programs only
makes use of weak bounded anchoring, and will thus handle lexico-
graphic ordering conservatively. In fact, his condition for detecting
an unsafe, i.e. possibly non-BSV, variable v is (Das, 1998, Algorithm 3,
p. 162)

If v gets a value from a non-BSV variable
or (there exists an increasing loop v +°�=�(�N+ v and

there exists no sibling variable w which decreases along all
loops w +°�(�=��+ w)

then v must be generalised to ensure termination

This also prevents it from handling the interpreter example, because
there exists an increasing loop Ï@Ð_Ñ\Ò æ ä_+ß�=�(�P+ Ï�ÐUÑ\Ò æ ä , but Ï�Ð_ÑMÒ Ó cannot
be used as an anchor in Das’ condition, because it does not decrease
along the loop for interpreting function calls (Ï�Ð_ÑMÒ Ó is reset to some
function body which is possibly larger).] However, in Das’ approach, only one SDG graph is used for both the
SDG Ù and SDG Ú because only tail-recursive programs are handled.
Thus, both edges labeled Ë and Ê exist in the same graph, and context-

free language reachability allows increasing edges Ù���
+ to “cancel out”

decreasing edges Ú�)�
+ in cases where it is safe. This enables a more
precise analysis e.g. of functions that return several values packaged

10.2. Related work 141

with a cons cell which is later taken apart. There does not seems to be
anything that in principle prevents an extension of this cancelling effect
to SDG Ù and SDG Ú .

10.2.1 Pessimistic vs. optimistic BTA

One aspect that makes our approach stand out is that we start by assuming
all variables to be “unsafe,” i.e. marked ‘ r ’, and we only promote to ‘B’ when
we have a guarantee (an anchor or dominator) that the variable is in fact BSV.
This can be termed a ‘safe’ or ‘pessimistic’ approach. Other approaches (An-
dersen & Holst, 1996; Das & Reps, 1996; Das, 1998) are ‘optimistic’ in the
sense that they start by assuming all variables to be BSV, and then re-classify
as dynamic variables which seem to be non-BSV. We do not expect there to
be any difference in power, i.e. that the safe approach generalises variables
too conservatively1, but this has not been formally shown. One advantage
of our safe approach is that one can “bail out” of the promotion process half
way and still obtain a correct, albeit more conservative, result.

10.2.2 Partial evaluation of interpreters

Partial evaluation is especially well-suited for specialising away the inter-
pretive overhead in interpreters (Thibault & Consel, 1997; Thibault, Marlet,
& Consel, 1997; Jones, 1996), and in this context it is vital to be able to identify
as BSV the case where a variable (Ï�Ð_Ñ\Ò Ó) is reset to a value computed from
another BSV variable (Ï�ÐUÑ\Ò�å).

10.2.3 Proving termination by lexicographic ordering

Proving termination of programs has also been done by finding a tuple of
parameters that can be shown always to decrease in some lexicographic or-
dering (Nielson & Nielson, 1996), which must somehow be supplied by hand
or by other analyses (Giesl, 1995; Brauburger, 1997). The method presented
in this paper includes detection of termination by lexicographic ordering,

1Das (1998, Example 12) claims to have found an example which is treated differently by the
two approaches, but our analysis does in fact give the same result as his.

142 Chapter 10. Conclusion

and this relies on the use of strong bounded anchoring (cf. Condition 6.7):
weak bounded anchoring does not allow lesser significant parameters in the
lexicographic order to be reset to a greater value.

We can show that bounded anchoring is in fact strictly stronger than the
lexicographic ordering approach. Consider the following

Example 10.1 (No lexicographic ordering)

­�>�? X�S 1 �°� 1 [X�S 2 �°� 2 [X�S 3 ��� 3 [¨� �����
if ����� then ­ a X�>@?)ca�M[¦X3� 1 �U�a�õS 1 �U�M[¦X�S 2 �U�P� � 2 �U�M[¦X3� 3 �U�P�õS 3 �U�M[

else ­ b X�>@?)ca�M[¦X3� 1 �U�a�õS 1 �U�M[¦X3� 2 �U�P�¬S 2 �U�M[¦X�S 3 �U�P��� 3 �U�M[
Note that the parameters have been tupled merely to ease the understanding;
they could have all been curried.

It can be shown by bounded anchoring that ­ terminates (i.e. that >@? is
BV):

1. All S ’s and � ’s are bounded (there are no increasing operations).

2. The LDG is shown in Figure 10.1. From this we conclude that all >@?
loops are well-anchored, and that ­ terminates.

On the other hand, there exists no tuple of parameters from Í�S 1, S 2, S 3, � 1,
� 2, � 3

Î such that they decrease for all loops ­!�.+r­ in some lexicographic
ordering: no single parameter is guaranteed never to increase, and thus no
“most significant” parameter exists for a lexicographic ordering.

Although this example shows that bounded anchoring is in some theo-
retical sense stronger than techniques based on lexicographic ordering, it is
doubtful whether this makes a difference for natural programs. What can be
said is that the present approach is very operational and automatic: there is no
need for a human to say under what ordering termination should be proved.

When using bounded anchoring for detecting lexicographic ordering, it is
vital to use the strong form of bounded anchoring (cf. Conditions 6.7 and 6.8
on page 90), as there may not be a variable satisfying the weak form of
bounded anchoring.

10.2. Related work 143

>@?_Ë
aa ð

>@?UË
bb ð

S 2 Ê � 2 Ê S 3 Ê � 3 Ê

>@?\Ë

even # of a
even # of b

S 1 Ê S 2 Ê S 3 Ê � 1 Ê � 2 Ê � 3 Ê

>@?UË

odd # of a
odd # of b

>@?UË

odd # of a
even # of b

>�?UË

even # of a
odd # of b

S 1 Ê � 1 Ê S 2 Ê � 2 Ê S 3 Ê � 3 Ê
Figure 10.1: LDG for example 10.1

144 Chapter 10. Conclusion

10.3 Future work

We have presented an algorithm for generalising variables for termination
reasons, but this is not new: previously, heuristics have been used, e.g. poor
man’s generalisation, for approaching termination. It would be interesting to
investigate their results on typical programs to see whether the added safety
of our approach does not produce too conservative results, compared to poor
man’s generalisation.

Similarly, a common way of selecting specialisation point is to choose
all dynamic conditionals, unfolding all the original functions. This does not
prevent static-infinite computations, but again it would be interesting to per-
form some comparisons of the strengths of the two strategies on real-world
programs.

As previously mentioned, the algorithm for finding a small set of speciali-
sation points necessary for guaranteeing termination has exponential worst-
case complexity, and this problem should be addressed in depth in future
research.

There are also other directions in which investigations should go:

10.3.1 Extensible loop anchoring

Assuming the domain of the variables to be the nonnegative integers, the al-
gorithm in this paper can detect that the usual definition of greatest common
divisor function terminates. Now consider the following definition, where
the parameters are swapped at each recursive call:auK�>Z>@?�V� ¡� if V��Z then V else

if VqyW then auK@> a X�>@?zcz�M[¦X� ��¯V�[¯V elseauK�> b X�>@?zcz�M[®X�V��¯ a[
It is clear that this auK@> function will terminate on all input. Yet, when we
compute the loop approximation and sibling information for >@? we get:

) 1 : <�Ë , ÍjVI�.+ª , Ú�,+rV Î@= , a < ba = Ê
2 : <�Ë , Íj I�.+ªV , V Ú�,+r Î@= , b < ab = Ê
3 : <�Ë , ÍjVI�.+ªV , Ú�,+r Î@= , ab < ab = Ê

10.3. Future work 145

4 : <7Ë , ÍjV Ú�,+´V , %�¹+´ Î@= , ba < ba = Ê
5 : <7Ë , ÍjV Ú�,+´V , Ú�.+´ Î@= , <�< a � b = < a � b =�= Ê < aa � bb = <�< a � b = < a � b =�= Ê
6 : <7Ë , ÍjV Ú�,+´ , Ú�.+´V Î@= . <�< a � b = < a � b =�= Ê < a � b = < aa � bb = <�< a � b = < a � b =�= Ê

Here

Loop 1 represents an odd number of calls at site a,b,a,b,a, uLuLu
Loop 2 represents an odd number of calls at site b,a,b,a,b, uLuLu
Loop 3 represents an even number of calls at site a,b,a,b,a,b, uLuLu
Loop 4 represents an even number of calls at site b,a,b,a,b,a, uLuLu
Loop 5 represents an even number of calls greater than two, with two iden-

tical consecutive calls

Loop 6 represents an odd number of calls greater than two, with two iden-
tical consecutive calls.

Looking at this approximation set, we see that neither loop 1 nor loop 2 nor
loop 6 is anchored in any sibling loop, so we would normally conclude that
we cannot guarantee termination.

But let’s look at how the individual loop approximations are computed;
they are computed by extending existing loops with a 1 or 2 path according
to this graph which is easily obtained as a by-product of computing the loop
approximation:

1
1

2

5

1

2
2

1

3

1

2
6

12

4
1

2

This graph is interpretated thus: when trying to extend path 4 with path 1 or
path 2, you either obtain 6 or 2, etc.

Now consider >@? loops 3, 4 and 5: they are immediately anchored. For
loops 1, 2 and 6, no matter which call you extend them with (1 or 2), you
obtain a loop which already is anchored! Thus we could extend the present

146 Chapter 10. Conclusion

work by concluding that all >@? loops are “extensibly” anchored, and so the
program is guaranteed to terminate!

Note that this is a strict extension of Carsten Kehler’s work (Holst, 1991),
as that would not classify a_K�> as quasiterminating for static >�? .

10.3.2 More precise size dependencies

The present algorithm is based on a rather crude approximation of the pro-
gram values, using only Ë and Ê arrows, and is overly conservative in many
cases, e.g. K�>MT®X	KML�NPO²VZ a[which could be considered as ÍxËÌ <�V =�Î , but is ap-
proximated to ÍxË�<7V = , Ëu<� =�Î . Das (1998), Das and Reps (1996) have addressed
this problem, using context-free language reachability, and an extension sim-
ilar to this certainly seems necessary for treating any real-world examples. It
could perhaps also be based on Hughes et. al’s (1996) sized types.

Andersen and Holst (1996) also introduce a refinement such that the re-
sult of the dependency analysis for the two branches of if-expressions can
“flow together again.” Consider

­ZV� �¸aZV�V� a�b´^Û�¡� if � then K�>MT©b else K�>MT�^
Using a first order object to describe size dependencies, we get ÍjÊu<*b =�Î and
ÍjÊu<�^ =�Î for the if-branches. When computing a ’s return value size, the only
safe description would be Í Î , because we must take the intersection of the
branch dependencies for the result to be correct. This leads to the overly
conservative approximation Í Î for ­ —the less conservative approximation
ÍjÊu<�V =�Î is in fact also correct. Andersen and Holst resolve this problem
by introducing disjunctive size descriptions which allows describing a byÙ7Ê�<*b =
ø Ê_<�^ = Û , and subsequently Êu<�V = for ­ .

In our presentation, we describe size dependency approximations by sec-
ond order objects: given an expression e, � � s s e t t returns a function that takes an
environment and finally returns the size dependency set, cf. Section 5.3. This
feature allows us to obtain the same good results as Andersen and Holst ob-
tain, because the intersection operation is postponed until the actual variable
names (in the above case V and) are known.

10.4. Conclusion 147

10.3.3 Other extensions

It is unclear whether the graph-based method presented in this paper is
extensible to the higher order case, and what effects imperative constructs
would have on the boundedness conditions. Also, some research has lately
had success with systematic propagation of static values across dynamic con-
texts (Hatcliff & Danvy, 1996), and it would be interesting to see what effects
those techniques would have on the present algorithm.

An obviously necessary extension for the analyses to be useful in prac-
tise would be to handle integers. This could be realised in a fairly straight-
forward manner by adding a domain analysis to find some bounds on the
values that each variable can be assigned during evaluation. Extending the
termination analysis to cope with pointers or imperative constructs that can
introduce cyclic data structures and aliasing would require some advanced
analysis (Fradet & Le Métayer, 1997; Ghiya & Hendren, 1996) to infer the
“shapes” of the data structures (e.g. a list constructed using pointers), before
they could be used as anchors.

10.4 Conclusion

In this paper we have shown how the key concept of bounded variation can
be used to develop an analysis for automatically detecting program termi-
nation in a first-order functional language simply by adding an extra depth
parameter to each function. We have developed analyses that safely detect
variables of bounded variation using the central bounded anchoring condition,
and we have proven (most parts of) them correct on a semantic basis.

We have shown that the techniques can easily be extended to ensure ter-
mination of off-line partial evaluation by looking for variables of bounded
static variation. Depth parameters are of special interest here because they
provide a safe approximation to a set of specialisation points that are neces-
sary for termination.

We have presented algorithms that implement the analyses using reason-
ably efficient graph algorithms, obtaining a worst-case complexity of O < p3 = ,
and at most O < p2 = for typical programs, where p is the program size. Exper-
iments with a prototype implementation have shown that the analyses work

148 Chapter 10. Conclusion

well on several smaller programs, and especially interpreters are handled
well. Due to a rather crude size approximation, we are unable to prove ter-
mination of some of the example programs, mainly sorting algorithms that
perform a lot of destructing and constructing operations.

This paper thus contributes towards making off-line partial evaluators
automatic and useful tools, even for users that know little about specialiser
termination problems. But this is not all—also for on-line partial evaluation
the techniques presented here can improve both the degree and speed of
specialisation. Another important contribution is, we hope, a better under-
standing of the problems occurring in the attempt to ensure termination of
partial evaluation.

References

Abelson, H., Dybvig, R. K., Haynes, C. T., Rozas, G. J., IV, N. I. A., Friedman, D. P.,
Kohlbecker, E., Steele Jr., G. L., Bartley, D. H., Halstead, R., Oxley, D., Sussman,
G. J., Brooks, G., Hanson, C., Pitman, K. M., & Wand, M. (1998). Revised report
on the algorithmic language Scheme. Higher-Order and Symbolic Computation,
11(1), 7–105.

Aho, A. V., Hopcroft, J. E., & Ullman, J. D. (1975). The design and analysis of computer
algorithms. Addison-Wesley.

Andersen, L. O. (1994). Program analysis and specialization for the C programming lan-
guage. Unpublished doctoral dissertation, DIKU, University of Copenhagen,
Denmark, Copenhagen, Denmark.

Andersen, P. H., & Holst, C. K. (1996). Termination analysis for offline partial evalua-
tion of a higher order functional language. In Proceedings of the third international
static analysis symposium (SAS).

Arts, T., & Giesl, J. (1997). Automatically proving termination where simplification
orderings fail. In Proceedings of the 7th international joint conference on the the-
ory and practice of software development (TAPSOFT’97) (Vol. 1214). Lille, France:
Springer-Verlag.

Birkedal, L., & Welinder, M. (1993). Partial evaluation of standard ML. Unpub-
lished master’s thesis, DIKU, University of Copenhagen, Denmark, Copen-
hagen, Denmark.

Bondorf, A. (1990). Self-applicable partial evaluation. Unpublished doctoral disserta-
tion, DIKU, University of Copenhagen, Denmark, Copenhagen, Denmark.

Bondorf, A. (1993, May). Similix 5.0 Manual. (Included in Similix distribution, ùûúýüÕþ ÿ\ÿùûúýü�� ������� � �	� ÿÕü ��
 ÿ ������� ÿ�
�������� ú � �
âÿ�
 � � � � � � ÿ�� � � � � � � � ú������ ���)
149

150 REFERENCES

Bondorf, A., & Jørgensen, J. (1993). Efficient analysis for realistic off-line partial evalu-
ation: Extended version (Tech. Rep. No. 93/4). Copenhagen, Denmark: DIKU,
University of Copenhagen, Denmark.

Boyer, R. S., & Moore, J. S. (1979). A computational logic. New York: Academic Press.

Brauburger, J. (1997). Automatic termination analysis for partial functions using
polynomial orderings. In Static analysis symposium (Vol. 1302, pp. 330–344).
Springer-Verlag.

Codish, M., & Taboch, C. (1997). A semantic basis for termination analysis of logic
programs and its realization using symbolic norm constraints. In Proceedings of
the sixth international conference on algebraic and logic programming.

Consel, C. (1993). A tour of Schism: a partial evaluation system for higher-order
applicative languages. In ACM (Ed.), Proceedings of the ACM SIGPLAN sym-
posium on partial evaluation and semantics-based program manipulation. PEPM’93
(pp. 145–154). New York, NY, USA: ACM Press.

Consel, C., Hornof, L., Noel, F., & Noye, J. (1996). A uniform approach for compile-
time and run-time specialization. Lecture Notes in Computer Science, 1110, 54–72.

Cormen, T. H., Leiserson, C. E., & Rivest, R. L. (1990). Introduction to algorithms.
Cambridge, Massachusetts, USA: MIT Press.

Danvy, O., Malmkjær, K., & Palsberg, J. (1995). The essence of eta-expansion in partial
evaluation. LISP and Symbolic Computation, 8(3), 209–227.

Das, M. (1998). Partial evaluation using dependence graphs. Unpublished doctoral dis-
sertation, University of Wisconsin-Madison.

Das, M., & Reps, T. (1996). BTA termination using CFL-reachability (Tech. Rep. No.
1329). Computer Science Department, University of Wisconsin-Madison.

Dershowitz, N. (1987). Termination of rewriting. In J.-P. Jouannaud (Ed.), Rewrit-
ing techniques and applications (pp. 69–115). Academic Press. (Reprinted from
Journal of Symbolic Computation)

Diestel, R. (1997). Graph theory. New York: Springer-Verlag. (Translation of Graphen-
theorie, Springer-Verlag, 1996)

Fradet, P., & Le Métayer, D. (1997). Shape types. In ACM symposium on principles of
programming languages (pp. 27–39). Paris, France.

Ghiya, R., & Hendren, L. J. (1996). Is it a tree, a DAG, or a cyclic graph? a shape
analysis for heap-directed pointers in C. In ACM symposium on principles of
programming languages (pp. 1–15). Florida.

REFERENCES 151

Giesl, J. (1995). Termination analysis for functional programs using term orderings.
In Proceedings of the second international static analysis symposium (SAS’95) (Vol.
983). Glasgow, Scotland: Springer-Verlag.

Glenstrup, A. J., & Jones, N. D. (1996). BTA algorithms to ensure termination of
off-line partial evaluation. In Perspectives of system informatics: Proceedings of the
Andrei Ershov second international memorial conference (Vol. 1181, pp. 273–284).
Springer-Verlag.

Hatcliff, J., & Danvy, O. (1996). A computational formalization for partial evaluation.
Mathematical Structures in Computer Science, special issue.

Henglein, F., & Tofte, M. (1993). An introduction to operational semantics of pro-
gramming languages. In Datalogi 2.1 kursusbog (Vol. 1, pp. 7–109). Copenhagen,
Denmark: *DIKU*tryk*. (Based on lecture notes by Robin Milner)

Holst, C. K. (1991). Finiteness analysis. In J. Hughes (Ed.), Functional programming
languages and computer architectures (pp. 473–495). Cambridge, Massachusetts,
USA: Springer-Verlag.

Hughes, J., Pareto, L., & Sabry, A. (1996). Proving the correctness of reactive systems
using sized types. In ACM symposium on principles of programming languages
(pp. 410–423). St. PetersBurg FLA USA.

Jones, N. D. (1988). Automatic program specialization: A re-examination from basic
principles. In D. Bjørner, A. P. Ershov, & N. D. Jones (Eds.), Partial evaluation
and mixed computation (pp. 225–282). Amsterdam: Elsevier.

Jones, N. D. (1996). What Not to do when writing an interpreter for specialisation. In
O. Danvy, R. Glück, & P. Thiemann (Eds.), Partial evaluation (Vol. 1110, pp. 216–
237). Springer-Verlag. (International Seminar at Dagstuhl Castle, Germany)

Jones, N. D., Gomard, C. K., & Sestoft, P. (1993). Partial evaluation and automatic
program generation. Prentice-Hall.

König, D. (1936). Theorie der endlichen und unendlichen graphen. Leipzig: Academische
Verlagsgesellschaft.

Lafave, L., & Gallagher, J. (1997). Partial evaluation of functional logic programs in
rewriting-based languages (Tech. Rep. Nos. CSTR–97–001). Bristol, UK: Depart-
ment of Computer Science, University of Bristol.

Leuschel, M. (1998). Homeomorphic embedding for online termination (Tech. Rep. Nos.
DSSE–TR–98–11). UK: Department of Electronics and Computer Science, Uni-
versity of Southampton.

Lindenstrauss, N., & Sagiv, Y. (1996, October). Checking termination of queries to logic
programs. Jerusalem, Israel. (� ú,ú�üÕþ ÿ\ÿ� ! " #� �
$��� ��%&� � � � � � � ÿ�'(����)*� � � ÿ)

152 REFERENCES

Lindenstrauss, N., & Sagiv, Y. (1997). Automatic termination analysis of logic programs
(with detailed experimental results). Jerusalem, Israel. (� ú-ú�üÕþ ÿ�ÿ+ " ! #� �
$��� ��%&� � � � � � � ÿ
',����)�� � � ÿ)

Nielsen, K. (1993). Note on context specialisation. (Unpublished, DIKU)

Nielson, F., & Nielson, H. R. (1992). Two-level functional languages. Cambridge Uni-
versity Press.

Nielson, F., & Nielson, H. R. (1996). Operational semantics of termination types.
Nordic Journal of Computing, 3, 144–187.

Ramalingam, G., & Reps, T. (1989). Semantics of program representation graphs (Tech.
Rep. Nos. TR–900). University of Wisconsin-Madison.

Somogyi, Z., Henderson, F., & Conway, T. (1995). Mercury: an efficient purely declar-
ative logic programming language. In Proceedings of the australian computer sci-
ence conference (p. 499-512). Glenelg, Australia.

Sørensen, M. H., & Glück, R. (1995). An algorithm of generalization in positive
supercompilation. In J. Lloyd (Ed.), Logic programming: Proceedings of the 1995
international symposium (pp. 465–479). MIT Press.

Speirs, C. (1997). Termination analysis for logic programs (Tech. Rep. No. 97/23). De-
partment of Computer Science, University of Melbourne.

Speirs, C., Somogyi, Z., & Søndergaard, H. (1997). Termination analysis for mercury
(Tech. Rep. No. 97/9). Melbourne, Australia: Department of Computer Science,
University of Melbourne.

Steinbach, J. (1995). Simplification orderings: History of results. Fundamental Infor-
maticae(24), 47–87.

Thibault, S., & Consel, C. (1997). A framework for application generator design. ACM
SIGSOFT Software Engineering Notes, 22(3), 131–135.

Thibault, S., Marlet, R., & Consel, C. (1997). A domain specific language for video de-
vice drivers: From design to implementation. In Proceedings of the conference on
domain-specific languages (DSL-97) (pp. 11–26). Berkeley: USENIX Association.

Thiemann, P. (1998). Aspects of the PGG system: Specialization for standard scheme.
In DIKU international summer school (Vol. 2, pp. 109–129). Copenhagen, Den-
mark: DIKU, University of Copenhagen, Denmark.

Thiemann, P. J., & Dussart, D. (1997). Combinator-based program generation. In
ACM symposium on principles of programming languages. Amsterdam, Holland.

REFERENCES 153

Walther, C. (1988). Argument-bounded algorithms as a basis for automated termina-
tion proofs. In 9th international conference on automated deduction (Vol. 310, pp.
602–621). Argonne, Illinois, USA: Springer-Verlag.

Winston, P. H. (1984). Artificial intelligence. Addison-Wesley.

154 REFERENCES

Index

� , 42� 2�2(2 � f Òe � � � , 52� 2�2(2 «� 2�2�2 � , 53ß � , 74, 75-
DepSet . , 63� , 43� Ê , 120� â , 52O , 11, 27, 61, 146OÌ , 27, 61, 139MÌ , 11, 27, 61, 79, 139MÌ � K � , 62, 64, 65, 97M , 11, 61, 146� , �0/ e 1 � v :

�
, 70Ý , 106, 1202 , 90V � , 116] � , 1183

, 61, 63, 1013
X, 664
DepSet . , 635
, 90

gy � , Ð��� �
S

fx, 21, 105

gy �� �
S

fx, 21, 83, 85¦ , 40
42, 9, 21, 42, 50, 68, 78, 95, 98, 155

1, 85, 106�
, 416 Ú ' , 63, 686 Ù ' ,K, 64

a.a., 67, 97
abstraction, 63
algorithm

(quasi)termination detecting,
112

semi-ring, 75, 85, 87, 106, 120,
127, 138

termination-guaranteeing BTA,
113

almost all, 67, 97
analysis

closure, 27
instantiation, 37
shape, 147
single-threaded, 27
size dependency, 28, 138
termination, 26

anchoring, 16, 26, 28, 87, 91
call loop, 105
extensible loop, 144

anchors, 77
invalidating, 109

apply, 43

155

156 INDEX

approximations, 50, 58, 60, 67, 101
size, 9, 27, 38

B, 77
BA, 12, 14, 15, 19, 20, 27, 76, 81–98,

115, 120, 147
bailing out of, 114
soundness of, 91, 97, 114
strong, 87, 90, 142
weak, 90, 140, 142

backtracking, 36
balloonsÈ Á , 100
BD, 12, 15, 19, 20, 26, 27, 76, 78–81, 98,

115
soundness of, 80

behaviour
asymptotic, 65

binary unfoldings, 37
binding-time analysis, see BTA
binding-time division, 19, 100, 113
BoundDep, 62
bounded anchoring, see BA
bounded domination, see BD
bounded static variation, see BSV
bounded variation, see BV
bst é , 94
BSV, 19, 20, 27, 33, 39, 101, 104, 105,

110, 114, 138, 140, 141, 147
BTA, 18, 30–32, 125, 139

monovariant, 29, 103
optimistic, 141
safe, 141
termination of, 113

BV, 12, 14, 26, 45, 76–78, 98, 100, 147�
, 41

C
�
fx � , 87, 120

C-Mix, 30

5 Ã È Ã�Ä , 9
call depths, 15

bounded, 15, 105
limiting, 9

call loops
anchoring, 106, 113, 125, 139

call paths, 50, 51, 55
anchoring along, 91
corresponding, 50, 55, 91, 95
flattening, 48
prefixes of, 52

call site information, 105, 117, 123
call sites, 12, 20, 22, 79, 81, 88, 100,

105, 127
call tree, 50
CallPath, 51
calls

final, 52
nested, 11, 28, 38, 50, 53, 58, 84,

126, 139
recursive, 15, 38, 51, 58, 68
tail, 50, 51
unbounded number of, 60, 735 Ã�Ä , 9

cascade, 1245,È Ä , 9, 146
code

sharing residual, 107
compatibility

size function, 74
complexity, 139

algorithm, 117
exponential, 22, 127
optimising, 23
polynomial, 22, 129

compression
linear, 44, 98

computations
partial, 51

INDEX 157

potential, 51
static-infinite, 29–32, 140, 144

condition
BA, 87
BD, 12
domination, 81
in-situ, 27

conditionals
dynamic, 139, 144

congruence, 19, 1015�Ç�½M¾ , 9, 68, 74, 131, 146
conservatism, 30, 39, 59, 64, 74, 114,

126, 131, 139
constants

analysing, 58, 68
large time, 127

constraint solvers, 28, 35
constraints, 35, 38
Context, 42
context-free language reachability,

146
contexts

evaluation, 41
control

dynamic, 26
Cost, 85
costs

edge, 85
total loop, 20, 85, 87

call site annotated, 105, 128

D, 61�
, 62, 117� Ú , 61� Ù , 61� , 123� e, 101, 117, 123�

, 62, 74
data

dynamic, 17, 26, 29, 30, 101, 102
partially static, 29
static, 17, 29, 101

data structures
cyclic, 147�^� e, 103, 123

DDG, 20, 102, 103, 109, 117, 123, 125
decrease, 9, 11, 35, 58
decreasing, 11, 61, 77
depend

decreasingly, 68
increasingly, 68

dependencies
bound, 62
composing, 74
control, 32, 33, 139
decreasing, 67
dynamic, 19, 101
immaterial, 60, 73
increasing, 67
material, 59, 60, 73
parameter, 58–76
size, 28
value, 11

DepEnv, 62
DepFunEnv � , 62
DepSet Ú , 62
DepSet Ù , 62
diverging, 61
dom, 40
domain

well-founded, 28, 41, 61, 77, 131È Á , 15, 78, 105, 112, 115, 117, 123, 127,
142, 147

dynamic cascading, 109, 113, 114
soundness of, 110

dynamic dependency graph, see DDG�
, 41

158 INDEX

� Ú , 64, 68, 114, 115� Ù , 64, 68, 114, 115� � , 68, 118, 125
e f , 41
E Ï , 103
edge labels

composing, 20
edges

chain, 87, 90
increasing, 12, 15
SA-, 83, 118
SDG Ù , 13
sibling annotated, 83

effects
decreasing, 11
non-bounding, 11

endotransitions, 26
Environment, 41
environment descriptions

correct, 68
environments, 41

correct descriptions of, 68
dependency, 64¡Q¢£¢¥¤P¢ , 41

errors
static, 31–32

estimate
size, 64

evaluation
call by value, 29
order of, 40
program, 43
stuck, 43

expressions
dynamic, 17, 100
static, 17, 100
unbounded, 59

extensionality, 59

f Í e1 2�2(2 en, 100
fR, 101, 109, 113, 124
fx, 41
f1, 42, 76, 104
feedback

user, 30
flow

control, 34
formulas

Presburger, 28
freshname, 40
function

Ackermann’s, 22
cost labelling, 105
dynamic dependency, 101
flattening, 52
greatest common divisor, 144
lookup, 31
minsort, 35
power, 17

functions
base, 41
decreasing size, 64
increasing size, 64
mutually recursive, 126
partial recursive, 16
primitive recursive, 9, 19
residual, 18
size dependency, 75
sorting, 35, 37, 131, 148
unfolding, 144

fv, 40

gcd, 144
generalisation, 26, 31, 39, 109, 114,

131, 139, 144
poor man’s, 144

grammars
call path, 51

INDEX 159

tree, 27
graphs

finite, 27
guarantee

conditional, 30, 32, 140

Haskell, 131
homeomorphic embedding, 39

7 � , 74, 75
implementation

prototype, 131
increase, 9, 11, 58

recursive, 68
increasing, 77
input

dynamic, 19
intensionality, 59
interpreter¸�¹ ¹Cº , 9

terminating, 9
interpreters, 148

partial evaluation of, 140, 141µ�¶j· ���_��� , 8–15
partial evaluation of, 19–20µ�¶j· ����� ��� , 15–16

invariant, 113, 114
iteration, 15, 20, 98, 112, 113, 118, 139

fixpoint, 120

L, 40
l, 105
L
�
G � , 51, 55

labels
edge, 11, 84

language
first order, 29
functional, 40
Mercury, 37

two-level, 100
LDG, 12, 13, 15, 77, 87, 97, 105, 106,

109, 112, 117, 120, 139
lemma

König’s, 27, 95–98
substitution, 46

length
sequence, 43

LISP, 9, 41¸x¹ ¹»º , 8
loop costs

computing, 120
loop dependency graph, see LDG
loops, 11, 26, 74, 81

anchoring, 13, 20
bounded, 77
breaking, 105
classes of, 9, 14, 20, 22
combining, 13
decreasing, 13, 16, 28, 87
diverging, 77
increasing, 12, 13, 81, 87
nonterminating static, 29
relationships between, 13
SDG Ù , 12
sibling, 13, 14, 81, 87, 88
transition sequence, 91

LP-solver, 38� , 62
marks

B, 77, 79, 87, 97, 105, 112, 114,
115, 141

D, 101, 104–106, 109, 113-
, 101, 141

changing, 109, 113
property, 77, 101
safety of, 78

memoisation, 18, 19, 105

160 INDEX

mergesort, 37, 131Å
� ½ (minimum function), 36, 65, 66
minsort, 35, 37, 131
modality

might-possibly, 11, 59
must-always, 11, 59

nodes
anchor, 15, 87, 109
balloon, 87, 106, 109
dynamic, 19
return, 102
statically varying, 33
strongly static, 32
unsafe, 98
weakly static, 33

non-bounding, 11, 61, 77
non-increasing, 61, 77
nontermination, 19, 30, 59, 66, 105

example of, 16
norm, 34, 37

operations
increasing, 74

operators
dependency, 61

optimisations, 127
ordering

lexicographic, 22, 140, 141
lexicographical, 28
well-founded, 35, 41

over-strict, 30, 31, 140

Psc, 90, 95� , 438 , 518 â , 84
paradigm

generate-and-test, 35

parameters
anchoring, 14
call depth, 78È Á , 15
in-situ, 27
unbounded, 59

partial evaluation, 17, 100–111
off-line, 17, 29, 39, 148
on-line, 38, 39, 148
termination of, 111

paths
infinite, 27

PGG, 30
pointers, 147
prefix

call path, 52
programs

example, 131
graph colouring, 135
residual, 17
specialised, 17
well-formed, 43

propagation
depth-first, 104, 113

properties
decreasing, 61, 77
increasing, 77
non-bounding, 61, 77
non-increasing, 77

quasitermination, 26, 45, 98, 112, 138
quicksort, 37, 131� , 68, 72� Ú , 83� Ù , 83� �id, 66� , 63, 68, 72� 0-describes, 68

INDEX 161

recursion
mutual, 15, 27, 68
tail, 27, 40

requirement
substitution, 74, 84

residualising, 19, 100
restrictions, 29

congruence, 19
goal function, 12, 42, 79

rg, 40_^a
, 68, 74

9
, 85, 106: , 106Ò: , 91

S-expressions, 41
safety

BTA, 32
size analysis, 59

SCC, 12, 79, 81, 85, 90, 97, 112, 117,
120, 126

Schism, 30
scoping, 43��� e, 79, 82, 83, 105, 118
SDG, 20, 82, 83, 97, 103, 112, 117–119,

125, 140
SDG Ú , 11, 20, 77, 81, 138
SDG Ù , 11, 20, 77, 78, 102, 138
semantics, 41–48, 100

big-step, 48, 72
small-step, 41

sequences
state transition, 44, 55

sets
dependency, 61

Similix, 30, 32
size approximations

crude, 131, 146, 148
safe, 68

safety of, 62–67
size dependencies, 116
size dependency graph, see SDG
size descriptions

disjunctive, 146
size relationship, 11, 61
SML-mix, 30
sort

topological, 79, 97
specialisation

infinite, 19, 30
program, 18
termination of, 114

specialisation points, 18, 19, 39, 100,
113

inserting, 19, 20, 105–107, 113,
117, 123, 125, 127, 131, 138,
144, 147

Stack, 42
state transformers, 52, 67
static domination, 26
st é , 52, 55, 67, 91, 115
strongly connected component, see

SCC
subpath, 52
substitution, 46, 53
superseding, 128
surprise, 70
syntax, 40–41, 100, 116, 118, 131
systems

inference, 27

TEMPO, 30
term rewriting, 34
termination, 26, 97, 112, 125, 147

existential, 36
partial evaluation, 19
program, 43

soundness of, 98

162 INDEX

universal, 36
TGV, 95–97
The Trick, 135, 139, 147
theorem prover, 35
transition graph of values, see TGV
transitions

big-step, 34
small-step, 34

trees
call, 52

triples, 106, 127
types

sized, 28, 146

unbounded, 60
unfolding, 18, 19
unification, 36

Value, 41
value growth, 76, 81
value transformer, 9
values, 41

input, 41
return, 9, 101
unbounded, 9, 65, 66

variables
complexity, 117
controlling, 31
free, 53, 60, 61, 64, 66
unbounded, 59, 80Òx, 41

X-operator-free, 43

Appendix A

Partial Evaluation Semantics

In this section we give the syntax and semantics of partial evaluation as used
in the present paper.

A.1 Two-level syntax

Off-line partial evaluation divides the transformation into two stages: first
each expression of the source program is annotated as either “reduce stat-
ically” or “defer to run-time,” and then specialisation computes the static
parts and generates code for the dynamic (run-time) parts. We represent the
annotations as is common by a two-level syntax:

AProgram � p :: � f1 x
ê

11
1 uLuLu x ê 1m

m � e
ê

1
1 ; uLuLu ; fn x

ê
n1

1 uLuLu x ê nk
k � e

ê
n

n

AExpression � e :: � x � c � b
ê

e1 uLuLu en � f
ê

e1 uLuLu en � liftD eS� if
ê

e1 then e2 else e3

è � Í S, D Î
Not all two-level program are sensible; we require as usual that two-level

programs be congruent (Jones et al., 1993), i.e. that no expression marked
as static (S) depends on the result of an expression marked as dynamic (D).

163

164 Appendix A. Partial Evaluation Semantics

In this paper we furthermore insist that if the condition of an if-expression
is dynamic, then the whole expression is. This may seem rather conser-
vative, given the present-day techniques of context-specialisation (Nielsen,
1993; Thiemann & Dussart, 1997; Danvy, Malmkjær, & Palsberg, 1995; Hat-
cliff & Danvy, 1996), but for simplicity we leave this extension to future work.

A.2 Partial evaluation semantics

We adopt the convention that variables named s and d are intended to be
static and dynamic, respectively, and wlog. we assume that all static param-
eters of a function precede the dynamic ones. As we are now producing not
only values but also code, we use underlining to indicate the generation of
syntax (Nielson & Nielson, 1992).

We can now define partial evaluation for this two-level language by the
partial evaluation operators ¬Ø¬ , ¬ � , ¬ � and ¬ � that use an extension of the
Value and Context domains:

PEValue � Value Ö Expression Ö Í lift v Î � pv

AContext � ve :: � b pv1
uLuLu pvm

] e1 uLuLu en � f pv1
uLuLu pvm

] e1 uLuLu en� if
ê] then e2 else e3 � ifD pv1 then] else e3� ifD pv1 then pv2 else] � lift]

The definition of the operators is given in Figure A.1; ¬ � is identical to �
except for the lift case, whereas ¬ � must be extended as we are generating
code for both branches of the dynamic if-expressions.

For any interesting program the unfolding defined by these operators
will not terminate because partial evaluation is over-strict: it evaluates both
branches of the dynamic conditional (cf. p3d-rules) and unfolds all function
calls. To alleviate this problem the two-level syntax is extended with function
calls that are marked with a È as specialisation points:

AExpression :: � uLuLu � f Í s1 uLuLu sm d1 uLuLu dn

We now introduce a folding scheme whereby we maintain a list of which
specialisation points (function names) with which static arguments we have

A.2. Partial evaluation semantics 165

�Ç�
: AProgram � Value List � PEValue� �
: Stack � PEValue � PEValue� �
: Funname � PEValue List � Stack � PEValue� �
: AExpression � Environment � Stack � PEValue�Ç� � � f1 s1 2�2�2 sn d1 2�2(2 dm R e1; 2(2�2 � � � v1, 2�2�2 , vn �� � � � � f1 � � � v1, 2(2�2 , vn, f1n ø 1, 2�2(2 , f1n ø m � � ��

p1 � � � � � c � ��� s � � � s
�
value c ��

p2 � � � � � x � ��� s � � � s
� � x ��

p3 � � � � � if e1 then e2 else e3 � ��� s � � � � � e1 � ��� �o� if � then e2 else e3, �N� : s ��
p4 � � � � � b e1 e2 2�2(2 en � ��� s � � � � � e1 � ��� �o� b � e2 2(2�2 en, �N� : s ��
p5 � � � � � f e1 e2 2(2�2 en � ��� s � � � � � e1 � ��� �o� f � e2 2�2(2 en, �N� : s ��
p6 � � � � � lift e � �
� s � � � � � e � �
� �o� lift � , �N� : s ��
p 1 � � � � � pv � pv�
p3s � � � �o� ifS � then e2 else e3, �N� : s � pv� if pv then

� � � � e2 � ��� s else
� � � � e3 � ��� s�

p3d � � � �o� ifD � then eD
2 else eD

3 , �N� : s � pv� � � � � eD
2 � ��� �o� ifD pv then � else eD

3 , �N� : s ��
p 3d � � � �o� ifD pv1 then � else eD

3 , �N� : s � pv� � � � � eD
3 � ��� �o� ifD pv1 then pv else � , �N� : s ��

p 3d � � � �o� ifD pv1 then pv2 else � , �N� : s � pv� � � s ifD pv1 then pv2 else pv�
p 4 � � � �o� b pv1 2�2(2 pvm � e2 e3 2(2�2 en, �N� : s � pv� � � � � e2 � ��� �o� b pv1 2�2(2 pvm pv � e3 2(2�2 en, �N� : s � for n ; 1�
p4s � � � �o� bS pv1 2�2(2 pvm � , �N� : s � pv � � � s

�
apply b � pv1, 2�2(2 ,pvm,pv �4��

p4d � � � �o� bD pv1 2(2�2 pvm � , �N� : s � pv � � � s
�
b pv1 2(2�2 pvm pv ��

p 5 � � � �o� f pv1 2(2�2 pvm � e2 e3 2�2(2 en, ��� : s � pv� � � � � e2 � ��� �o� f pv1 2�2�2 pvm pv � e3 2�2(2 en, �N� : s � for n ; 1�
p 5 � � � �o� f pv1 2(2�2 pvm � , �N� : s � pv � � � � � f � � � pv1, 2�2(2 ,pvm,pv � s�
p 5 � � � � � f � � � pv1, 2�2(2 ,pvn � s � � � � � e f � �
S f1 «� pv1, 2�2�2 , fn «� pvn \ s�
p 6 � � � �o� lift � , ��� : s � v � � � s v

Figure A.1: Rewrite rules defining the small-step semantics for partial eval-
uation

166 Appendix A. Partial Evaluation Semantics

encountered during the transformation. Whenever we reach a specialisation
point, we look up the function and its static arguments in the list; if they are
not found, we make a new function definition with a fresh name and all the dy-
namic parameters of the specialisation point. We then add the (specialisation
point, arguments, new function name)-triple to the list and continue special-
ising the body of the function. If, on the other hand, we do find the function
and its static arguments in the list, we immediately return a dynamic value:
a piece of code to call the corresponding function definition.

This can all be expressed by passing around1 a function for look-
ing up functions and static values that have already been seen < :
Funname � ValueList + Funname, which in the initial call from ¬Ø¬ is the over-
all undefined function, and adding the following two fold and memoise
rules:

< p5 f
= ¬ � s s f Í�t t=<ds s1, uLuLu , sn,d1, uLuLu ,dm t s+ P ¬ � < s g > d1 uLuLu dm, if < f , s s1, uLuLu , sn t = � dom <¬ � s s e f t t_­�<?< } Í_< f , s s1, uLuLu , sn t = �+ g Î�= s ,otherwise

where g > � <²< f , s s1, uLuLu , sn t =­ � Í f1 �+ s1, uLuLu , fn �+ sn,
fn ø 1 �+ fn ø 1, uLuLu , fn ø m �+ fn ø m

Î
s � Á g d1 uLuLu dm �] fn ø 1 uLuLu fn ø m, ­
Â : s
g � freshname < = C� rg <

< p5m
= ¬ � <¯<�Á g d1 uLuLu dm �] fn ø 1 uLuLu fn ø m, ­
Â : s = v+ ¬ � < s < g d1 uLuLu dm, where g fn ø 1 uLuLu fn ø m � v =

The where clause in rule < p6m
= is to be interpreted as “output a definition of

function g to the residual program and let ‘g d1 uLuLu dm’ be the return value of¬ � .” To ease the notation we will normally assume the < is present without
explicitly writing it.

The choice of where to put the specialisation points affects the termina-
tion and residual code size properties of the transformation, and we defer
the discussion of this topic till Section 7.4.

Although we have expanded the evaluation of if-expressions by several

1This can of course also be implemented as a global list or function

A.2. Partial evaluation semantics 167

steps, this semantics still treats all recursion using a stack with the operators
being defined in a tail recursive way. Therefore we still have

Lemma A.1
For the two-level semantics defined in Figure A.1 linear compression as de-
fined in Corollary 3.5 holds.

Proof: To show Corollary 3.5 for the partial evaluation operators we only
need to show that the call-free evaluation depth is still bounded (Lemma 3.4).
But this is easily checked using the depth function

� e ���

¼½½½½½½½½½½½½½½½½½½¾ ½½½½½½½½½½½½½½½½½½¿

3, if e � x or e � c
1 } n } � e1 � } �=�(� } � en � , if e � b e1 uLuLu en or e � f e1 uLuLu en

n } � e1 � } �(�=� } � en � , if e � b pv1
uLuLu pvm

] e1 uLuLu en

n } � e1 � } �(�=� } � en � , if e � f pv1
uLuLu pvm

] e1 uLuLu en

0, if e � g d1 uLuLu dm �] fn ø 1 uLuLu fn ø m

4 } � e1 � } � e2 � } � e3 � , if e � if e1 then e2 else e3

2 } � e2 � } � e3 � , if e � if] then e2 else e3

1 } � e3 � , if e � if pv1 then] else e3

0, if e � if pv1 then pv2 else]
0, if e � lift]
2 } � e1 � , if e � lift e1� s ���zÀ 0, if s ��sot
1 } � e � } � s � , if s �¸Á e, ­
Â : s Å

We must of course justify our claim that this semantics defines partial
evaluation: it does so because it satisfies the mix equation (Jones et al., 1993).
To show this, we must be able to identify subsequences that start with an
expression and end with the value of this expression, without using objects
from the initial stack.

For any stacks s1, s2 we therefore say that s2 is a suffix of s1 iff there exist
elements @ 1, uLuLu , @ n such that s1 �A@ 1 : �=�(� : @ n : s2. If n Ó 0 we say s2 is a real suffix
of s1. For a sequence ¬ � s s e1 t t_­ 1 s +ù�=�=��+ ¬ � s v we say it is independent of s
if s is a real suffix of all stacks occurring as operands to intermediate ¬ � and¬ � operators in the sequence. Note that such independent sequences are

168 Appendix A. Partial Evaluation Semantics

exactly the subsequences we are looking for. The stack can in fact be a non-
real suffix along the sequence, but only as an argument to operator ¬ � , and
this poses no problem, as the stack of the immediately following operator is
uniquely determined by the stack and operator preceding ¬ � .

We then define what we require of the lookup function < for it to be cor-
rect with respect to partial evaluation: We say < is faithful iffÏ)< f , s s1, uLuLu , sn t = � dom <0ð v � Value : � s s e f t t_­ f s +ù�=�=��+ � s v� � s s eg t t_­ g sD +®�=�(��+ � sD v,

where g �A<õ< f , s s1, uLuLu , sn t = , ­ f �÷Í f1 �+ s1, uLuLu fn �+ sn, fn ø 1 �+ d1, uLuLu , fn ø m �+ dm
Î

and ­ g �²Í g1 �+ d1, uLuLu , gm �+ dm
Î , and the sequences are independent of s and

sD.
Now we are able to show that partial evaluation of expressions preserves

the faithfulness of < and that evaluating the resulting partial value on the
dynamic input yields the same result as evaluating the original expression
on both the static and dynamic input:

Lemma A.2 (Mix equation for Expressions)
For any stack s and any well-formed expression e, assume that e is a well-
annotated version of e and that Í s1, uLuLu , sn

Î Ö�Í d1, uLuLu ,dm
Î � fv e are classified

as static and dynamic, respectively. For v1, uLuLu ,vn ø m � Value, let ­ ��Í s1 �+
v1, uLuLu , sn �+ vn,d1 �+ d1, uLuLu ,dm �+ dm

Î . Now if < 1 is faithful and¬ � s s e t t_­ < 1 s +®�=�(�N+ ¬ � < 2 s pv, < Ã =
is independent of s , then < 2 is faithful and for any stacks s, sD there exists a
v such that�0s s e t t_­ s +ù�=�(�N+»� s v and �0s s pv t t¹­ D sD +®�(�=��+»� sD v,

where ­ � Í s1 �+ v1, uLuLu , sn �+ vn,d1 �+ vn ø 1, uLuLu ,dm �+ vn ø m
Î

and ­ D � Í d1 �+ vn ø 1, uLuLu ,dm �+ vn ø m
Î

Proof: By induction on the length og the step sequence, checking cases < p1
= –

< p6
= . Cases < p1

= and < p2
= are obvious, and here we only show the details

of the most intricate dynamic cases: < p3
= and < p5

= —the remaining cases are
quite similar.

A.2. Partial evaluation semantics 169

Case < p3
= : e � ifD e 1 then e 2 else e 3. To show this, write e as e �

if e1 then e2 else e3 and define

s 1 � Á if] then e 2 else e 3, ­ Â : s
s 2 � Á if pv1 then] else e 3, ­ Â : s
s 3 � Á if pv1 then pv2 else] , ­ Â : s
s1 � Á if] then e2 else e3, ­
Â : s
sD

1 � Á if] then pv2 else pv3, ­ D Â : sD

pv � if pv1 then pv2 else pv3 .

Consider the sequence <âÃ = ; it can be split into three subsequences:¬ � s s e t t±­ s + ¬ � s s e 1 t t_­ s 1 +®�=�(�N+ ¬ � s 1 pv1 < À 1
=+ ¬ � s s e 2 t t_­ s 2 +®�=�(�N+ ¬ � s 2 pv2 < À 2
=+ ¬ � s s e 3 t t_­j s 3 +®�=�(�N+ ¬ � s 3 pv3 < À 3
=+ ¬ � s pv,

where s 1, s 2, s 3 are real suffixes of all the intermediate stacks in the respective
subsequences.

By induction on À
1, we have �ns s e1 t t¹­ s1 +ß�=�(��+ú� s1 v1. We now consider

the case where v1 ��eLf�gPh ; the opposite case is analogous. Then we find that
< 2 is faithful and� s s e t t_­ s � s s pv t t_­ D sD+ � s s e1 t t±­ s1 + Ê � s1 v1 (induction, À

1) + � s s pv1 t t_­ D sD
1 + Ê � sD

1 v1+ � s s e2 t t±­ s (v1 �ÑeLf�g�h) + � s s pv2 t t_­ D sD+°�=�(�N+»� s v2 (induction, À
2) +ù�=�(�N+»� sD v2

Case < p5
= : e � f Í e 1 uLuLu e n ø m. We write e as e � f e1 uLuLu en ø m and define

s 1 � Á f Í] e 2 uLuLu e n, ­ Â : s
...

s n ø m � Á f Í pv1 pv2
uLuLu e n ø m Ô 1

] , ­ Â : s
s1 � Á f] e2 uLuLu en ø m, ­
Â : s

...
sn ø m � Á f pv1

uLuLu pvn ø m Ô 1
] , ­
Â : s

170 Appendix A. Partial Evaluation Semantics

s f � Á g pvn ø 1
uLuLu pvn ø m �] fn ø 1 uLuLu fn ø m, ­ f Â : s

sD
n ø 1 � Á g] pvn ø 2

uLuLu pvn ø m, ­ D Â : sD

sD
n ø m � Á g pvn ø 1

uLuLu pvn ø m Ô 1
] , ­ D Â : sD

pv � g pvn ø 1
uLuLu pvn ø m, where g fn ø 1 uLuLu fn ø m � pv f­ f � Í f1 �+ pv1, uLuLu , fn �+ pvn,

fm ø 1 �+ fm ø 1, uLuLu , fn ø m �+ fn ø m
Î­ f � Í f1 �+ v1, uLuLu , fn ø m �+ vn ø m

Î­ g � Í fn ø 1 �+ vn ø 1, uLuLu , fn ø m �+ vn ø m
Î .

Consider the case where < f , s pv1, uLuLu ,pvn t = C� dom < . We can now split <âÃ = into
n } m } 1 subsequences:

¬ � s s e t t_­ < 1 s + ¬ � s s e 1 t t8­j B< 1 s 1 + Ê ¬ � < 2 s 1 pv1 < À 1
=

...
...+ ¬ � s s e n ø m t t_­ < n ø m s n ø m + Ê ¬ � < n ø m ø 1 s n ø m pvn ø m < À n ø m
=+ ¬ � s s f Í t t=< n ø m ø 1 s pv1, uLuLu ,pvn ø m t s + ¬ � s s e f t t±­ f < f s f + Ê ¬ � < s f pv f + ¬ � < s pv < À f
=

where again s 1, uLuLu , s n ø m and s f are real suffixes of all the intermediate
stacks in the respective subsequences. By induction < i, i � 1, uLuLu ,n } m } 1
are faithful and as g is correctly defined in the final step, < f �C< n ø m ø 1 }Í_< f , s pv1, uLuLu ,pvn t = �+ g Î and thus < is faithful.

A.2. Partial evaluation semantics 171

We now find that� � � e � �
� s� � � � e1 � ��� s1 � Ê � s1 v1
...� � � � en � ��� sn � Ê � sn vn

� � � pv � ��� D sD� � � � en ø 1 � ��� sn ø 1 � � � � pvn ø 1 � ��� D sD
n ø 1� � � � � � sn ø 1 vn ø 1 (induction, : n ø 1) � � � � � � sD

n ø 1 vn ø 1
...

...
...� � � � en ø m � ��� sn ø m � � � � pvn ø m � ��� D sD

n ø m� � � � � � sn ø m vn ø m (induction, : n ø m) � � � � � � sD
n ø m vn ø m� � � � f � � � v1, 2�2(2 , vn ø m � s � � � � g � � � vn ø 1, 2�2�2 , vn ø m � sD� � � � e f � ��� f s � Ê � s v (induction, : f) � � � � pv f � ��� g sD � Ê � sD v

The case where < f , s pv1, uLuLu ,pvn t = � dom < proceeds in a similar way, appeal-
ing to the faithfulness of < . Å

We are now able to show the

Proposition A.3 (Mix equation)
For any well-formed program p with any input s1, uLuLu , sn, d1, uLuLu ,dn, if p is a
well-annotated version of p then¬Ø¬ s s p t t8s s1, uLuLu , sn t�+ pv implies¬�s s p t t±s s1, uLuLu , sn,d1, uLuLu ,dm t�+ � s s pv t t_Í f1n ø 1 �+ d1, uLuLu , f1n ø m �+ dm

Î s6t
Proof: In the initial call, <p< x = �Ãr for all x and is thus trivially faithful, and as¬Ø¬ s s p t t8s s1, uLuLu , sn t�+ ¬ � s s f1 t t8s uLuLu t8s6t�+¬ � s s e f1 t t_­ s @�t�+ Ê ¬ � s @jt eg + ¬ � sot pv + pv,

we find by the preceding lemma that¬ s s p t t±s s1, uLuLu , sn,d1, uLuLu ,dm t)+ �ns s f1 t t8s uLuLu t8s6t�+»�0s s e f1 t t±­·sot�+ Ê �ßs6t v + v

and �Ñs s pvt t_­ D s6t�+¯�0s s g f1n ø 1
uLuLu f1n ø m t t_­ D sot+ Ê �0s s eg t t�Í g1 �+ d1, uLuLu , gm �+ dm

Î s6t�+ Ê �®sot v + v Å

Appendix B

Examples

Note: In Scheme, True is represented by #t and False by # f .

B.1 Basic data manipulation
Contrived test program (contrived-1)

1 ;; A contrived example from Arne Glenstrup’s Master’s Thesis
2 ;; Numbers represented by list length
3 (define (contrived � 1 a b) (f a (cons 1 (cons 1 a)) a b))
4 (define (f x y z d)
5 (if (and (> z ’ zero) (> d ’ zero))
6 (f (cons 1 x) z (cdr z) (cdr d))
7 (if (> y ’ zero) (g x (cdr y) d) x)))
8 (define (g u v w)
9 (if (> w ’zero)

10 (f (cons 1 u)
11 (if (equal ? (h v ’ zero) ’ zero) v (dec v))
12 (cdr v)
13 (cdr w))
14 u))
15 (define (h r s)
16 (if (> r ’ zero)

172

B.1. Basic data manipulation 173

17 (h (cdr r) 42)
18 (if (> s ’ zero) (h r (cdr s)) r)))
19 (define (dec n) (cdr n))

Contrived test program, resetting hr (contrived-2)

1 ;; A contrived example from Arne Glenstrup’s Master’s Thesis
2 ;; Numbers represented by list length
3 (define (contrived � 2 a b) (f a (cons 1 (cons 1 a)) a b))
4 (define (f x y z d)
5 (if (and (> z ’ zero) (> d ’ zero))
6 (f (cons 1 x) z (cdr z) (cdr d))
7 (if (> y ’ zero) (g x (cdr y) d) x)))
8 (define (g u v w)
9 (if (> w ’zero)

10 (f (cons 1 u)
11 (if (equal ? (h v ’ zero) ’ zero) v (dec v))
12 (cdr v)
13 (cdr w))
14 u))
15 (define (h r s)
16 (if (> r ’ zero)
17 (h (cdr r) 42)
18 (if (> s ’ zero) (h 17 (cdr s)) r)))
19 (define (dec n) (cdr n))

List predicate (list)

1 ;; The predicate for checking whether the argument is a list
2 (define (goal x) (list ? x))
3 (define (list ? xs) (if (pair ? xs) (list ? (cdr xs)) (null ? xs)))

List fold of fixed operator (fold)

1 ;; The fold operators , using a fixed operator , op
2 (define (fold a xs) (cons (foldl a xs) (cons (foldr a xs) ’())))
3 (define (foldl a xs)
4 (if (pair ? xs)

174 Appendix B. Examples

5 (foldl (op a (car xs)) (cdr xs))
6 a))
7

8 (define (foldr a xs)
9 (if (pair ? xs)

10 (op (car xs) (foldr a (cdr xs)))
11 a))
12

13 (define (op x1 x2) (+ x1 x2))

List map of fixed function (map)

1 ;; The map function with fixed function f
2 (define (goal xs) (map xs))
3 (define (map xs)
4 (if (equal ? xs ’())
5 ’()
6 (cons (f (car xs)) (map (cdr xs)))))
7

8 (define (f x) (
à

x x))

Naïve list reverse (naiverev)

1 ;; Naive reverse function
2 (define (goal xs) (naiverev xs))
3 (define (naiverev xs)
4 (if (equal ? xs ’())
5 xs
6 (app (naiverev (cdr xs)) (cons (car xs) ’()))))
7

8 (define (app xs ys)
9 (if (equal ? xs ’()) ys (cons (car xs) (app (cdr xs) ys))))

Deep list reverse (deeprev)

1 ;;; Recursively reverse all list elements in a data structure
2 ;;; Example : (deeprev ’((1 2 3) 4 5 6 (8 (9 10 11)) . 12))
3 ;;; ===>((3 2 1) 4 5 6 ((11 10 9) 8) . 12)

B.1. Basic data manipulation 175

4 (define (goal x) (deeprev x))
5 (define (deeprev x)
6 (if (pair ? x)
7 (deeprevapp x ’())
8 x))
9

10 (define (deeprevapp xs rest)
11 (if (pair ? xs)
12 (deeprevapp (cdr xs) (cons (deeprev (car xs)) rest))
13 (if (equal ? xs ’())
14 rest
15 (revconsapp rest xs))))
16

17 (define (revconsapp xs r)
18 (if (pair ? xs) (revconsapp (cdr xs) (cons (car xs) r)) r))

List append (append)

1 (define (goal x y) (append x y))
2 (define (append xs ys)
3 (if (equal ? xs ’()) ys (cons (car xs) (append (cdr xs) ys))))

List merge (mergelists)

1 ;;; Merge two lists
2 (define (goal xs ys) (merge xs ys))
3 (define (merge xs ys)
4 (if (equal ? xs ’())
5 ys
6 (if (equal ? ys ’())
7 xs
8 (if (<= (car xs) (car ys))
9 (cons (car xs) (merge (cdr xs) ys))

10 (cons (car ys) (merge xs (cdr ys)))))))

List adding (addlists)

176 Appendix B. Examples

1 ;;; Add two lists elementwise
2 (define (goal xs ys) (addlist xs ys))
3 (define (addlist xs ys)
4 (if (pair ? xs)
5 (cons (+ (car xs) (car ys)) (addlist (cdr xs) (cdr ys)))
6 ’()))

Reverse append (revapp)

1 ;;; Reverse list and append to rest
2 (define (goal x y) (revapp x y))
3 (define (revapp xs rest)
4 (if (equal ? xs ’())
5 rest
6 (revapp (cdr xs) (cons (car xs) rest))))

List permutations (permute)

1 ;; Compute all the permutations of a list
2 (define (goal xs) (permute xs))
3 (define (permute xs)
4 (if (equal ? xs ’())
5 ’(())
6 (select (car xs) ’() (cdr xs))))
7

8 ;; Select x as the first element and cons it onto
9 ;; permutations of the remaining list represented by

10 ;; the list of elements before x (reversed) and the
11 ;; list of elements after x . Finally , recurse by moving
12 ;; on to the next element in postfix
13 (define (select x revprefix postfix)
14 (mapconsapp x (permute (revapp revprefix postfix))
15 (if (equal ? postfix ’())
16 ’()
17 (select (car postfix)
18 (cons x revprefix)
19 (cdr postfix)))))
20

21 ;; Map ‘(cons x ’ onto the list of lists xss and append the rest

B.1. Basic data manipulation 177

22 (define (mapconsapp x xss rest)
23 (if (equal ? xss ’())
24 rest
25 (cons (cons x (car xss)) (mapconsapp x (cdr xss) rest))))
26

27 ;; Reverse xs and append the rest
28 (define (revapp xs rest)
29 (if (equal ? xs ’())
30 rest
31 (revapp (cdr xs) (cons (car xs) rest))))

Unary addition (add)

1 ;; Add two numbers unarily represented as ’(s s s ... s)
2 (define (goal x y) (add x y))
3 (define (add x y) (if (equal ? y ’()) x (add (cons 1 x) (cdr y))))

Bad addition function (badd)

1 (define (goal x y) (badd x y))
2 (define (badd x y)
3 (if (equal ? y ’()) x (badd ’(1) (badd x (cdr y)))))

Unary multiplication (mul)

1 ;;; Unary multiplication and addition , e .g . (mul ’(s s z) ’(s s s z))
2 (define (goal x y) (mul x y))
3 (define (mul x y) (if (equal ? x ’()) ’() (add (mul (cdr x) y) y)))
4 (define (add x y) (if (equal ? x ’()) y (add (cdr x) (cons ’ s y))))

Disjunctive and conjunctive expression predicates (disjconj)

1 ;;; Predicates for disjunctive and conjunctive terms p
2 (define (disjconj p) (disj ? p))
3 (define (disj ? p)
4 (if (pair ? p)
5 (if (equal ? ’ Or (car p))
6 (and (conj ? (cadr p)) (disj ? (cddr p)))

178 Appendix B. Examples

7 (conj ? p))
8 (conj ? p)))
9

10 (define (conj ? p)
11 (if (pair ? p)
12 (if (equal ? ’ And (car p))
13 (and (disj ? (cadr p)) (conj ? (cddr p)))
14 (bool ? p))
15 (bool ? p)))
16

17 (define (bool ? p) (or (equal ? ’ F p) (equal ? ’ T p)))

List duplication (duplicate)

1 ;;; Compute a list where each element is duplicated
2 (define (goal x) (duplicate x))
3 (define (duplicate xs)
4 (if (equal ? xs ’())
5 ’()
6 (cons (car xs) (cons (car xs) (duplicate (cdr xs))))))

Immaterial list “copy” (nestimeql)

1 ;; Using an immaterial " copy " as recursive argument
2 (define (goal x) (nestimeql x))
3 (define (nestimeql x)
4 (if (equal ? x ’()) 42 (nestimeql (immatcopy x))))
5 (define (immatcopy x)
6 (if (equal ? x ’()) ’() (cons ’0 (immatcopy (cdr x)))))

Even/odd predicate (evenodd)

1 ;;; Predicate : is x , unarily represented as ’(s s s ... s), even/odd?
2 (define (evenodd x) (even? x))
3 (define (even? x) (if (null ? x) # t (odd ? (cdr x))))
4 (define (odd? x) (if (pair ? x) (even ? (cdr x)) # f))

B.1. Basic data manipulation 179

Less than or equal predicate (lte)

1 ;; Less than or equal
2 (define (goal x y) (and (lte ? x y) (even? x)))
3 (define (lte ? x y)
4 (if (null ? x)
5 #t
6 (if (and (pair ? x) (pair ? y))
7 (lte ? (cdr x) (cdr y))
8 #f)))
9

10 (define (even? x)
11 (if (null ? x)
12 #t
13 (if (null ? (cdr x))
14 #f
15 (even ? (cdr (cdr x))))))

Member predicate (member)

1 ;; The member function
2 (define (goal x xs) (member? x xs))
3 (define (member? x xs)
4 (if (equal ? xs ’())
5 (if (equal ? x (car xs))
6 #t
7 (member? x (cdr xs)))
8 #f))

Ordered list predicate (ordered)

1 ;; Predicate that checks whether a list is ordered
2 (define (goal xs) (ordered ? xs))
3 (define (ordered ? xs)
4 (if (pair ? xs)
5 (if (pair ? (cdr xs))
6 (if (<= (car xs) (cadr xs))
7 (ordered ? (cddr xs))
8 #f)

180 Appendix B. Examples

9 #t)
10 #t))

Set overlap predicate (overlap)

1 ;; Predicate for checking whether there is an overlap of two sets
2 (define (goal xs ys) (overlap ? xs ys))
3 ;(define (has � a � or � b? xs) (overlap? xs (cons ’ a (cons ’ b ’()))))
4 (define (overlap ? xs ys)
5 (if (pair ? xs)
6 (if (member? (car xs) ys)
7 #t
8 (overlap ? (cdr xs) ys))
9 #f))

10 (define (member? x xs)
11 (if (pair ? xs)
12 (if (equal ? (car xs) x)
13 #t
14 (member? x (cdr xs)))
15 #f))

Element selection (select)

1 ;; Compute a list of lists . Each list is computed by picking out an
2 ;; element of the original list and consing it onto the rest of the list
3 (define (select xs)
4 (if (equal ? xs ’())
5 ’()
6 (selects (car xs) ’() (cdr xs))))
7

8 (define (selects x revprefix postfix)
9 (cons (cons x (revapp revprefix postfix))

10 (if (equal ? postfix ’())
11 ’()
12 (selects (car postfix) (cons x revprefix) (cdr postfix)))))
13

14 ;; Reverse xs and append to rest
15 (define (revapp xs rest)
16 (if (equal ? xs ’()) rest (revapp (cdr xs) (cons (car xs) rest))))

B.1. Basic data manipulation 181

List subsets generation (subsets)

1 ;; Compute all subsets
2 (define (goal xs) (subsets xs))
3 (define (subsets xs)
4 (if (pair ? xs)
5 (let

à
((subs (subsets (cdr xs))))

6 (mapconsapp (car xs) subs subs))
7 ’(())))
8

9 ;; map ‘(cons x ’ ont the list of lists xss , and append rest
10 (define (mapconsapp x xss rest)
11 (if (pair ? xss)
12 (cons (cons x (car xss)) (mapconsapp x (cdr xss) rest))
13 rest))

Parameter anchoring (anchored)

1 ;; Parameter y anchored in parameter x
2 (define (goal x y) (anchored x y))
3 (define (anchored x y)
4 (if (equal ? x ’()) y (anchored (cdr x) (cons 1 y))))

Let expression (letexp)

1 ;; Testing the let construction
2 (define (goal x y) (letexp x y))
3 (define (letexp x y) (let

à
((z (cons 1 x))) (letexp z y)))

The Trick (thetrick)

1 ;; The trick : pulling out the conditional into the context
2 (define (goal x y) (cons (f x y) (cons (g x y) ’())))
3 (define (f x y)
4 (if (equal ? y ’())
5 42
6 (f (if (lt x ’(1)) x (cdr x))
7 (if (lt x ’(1)) (cdr y) (cons 1 y)))))

182 Appendix B. Examples

8 (define (g x y)
9 (if (equal ? y ’())

10 42
11 (if (lt x ’(1))
12 (g x (cdr y))
13 (g (cdr x) (cons 1 y)))))
14 (define (lt x y)
15 (if (equal ? y ’())
16 #f
17 (if (equal ? x ’()) # t (lt (cdr x) (cdr y)))))

Interpreter lookup engine (intlookup)

1 ;; The function call case of an interpreter
2 ;; Function number represented as list length
3 (define (run e p) (intlookup e p))
4 (define (intlookup e p) (intlookup (lookup e p) p))
5 (define (lookup fnum p)
6 (if (equal ? fnum ’()) (car p) (lookup (cdr fnum) (cdr p))))

No simple lexicographic ordering (nolexicord)

1 ;; Example not termination � provable by simple lexicographical ordering
2 (define (goal a1 b1 a2 b2 a3 b3) (nolexicord a1 b1 a2 b2 a3 b3))
3 (define (nolexicord a1 b1 a2 b2 a3 b3)
4 (if (equal ? a1 ’())
5 42
6 (if (equal ? a1 b1)
7 (nolexicord
8 (cdr b1) (cdr a1) (cdr a2) (cdr b2) (cdr b3) (cdr a3))
9 (nolexicord

10 (cdr b1) (cdr a1) (cdr b2) (cdr a2) (cdr a3) (cdr b3)))))

Decreasing loop (decrease)

1 (define (goal x) (decrease x))
2 (define (decrease x) (if (equal ? x ’()) 42 (decrease (cdr x))))

B.1. Basic data manipulation 183

Stable loop (equal)

1 (define (goal x) (equal x))
2 (define (equal x) (if (equal ? x ’()) 42 (equal x)))

Increasing loop (increase)

1 (define (goal x) (increase x))
2 (define (increase x) (if (equal ? x ’()) 42 (increase (cons 1 x))))

Decreasing loop with nested call (nestdec)

1 ;; Parameter decrease by nested call in recursion
2 (define (goal x) (nestdec x))
3 (define (nestdec x) (if (equal ? x ’()) 17 (nestdec (dec x))))
4 (define (dec x) (if (equal ? x ’(1)) (cdr x) (dec (cdr x))))

Stable loop with nested call (nesteql)

1 ;; Parameter equality by nested call in recursion
2 (define (goal x) (nesteql x))
3 (define (nesteql x) (if (equal ? x ’()) 17 (nesteql (eql x))))
4 (define (eql x) (if (equal ? x ’()) x (eql x)))

Increasing loop with nested call (nestinc)

1 ;; Parameter increase by nested call in recursion
2 (define (goal x) (nestinc x))
3 (define (nestinc x) (if (equal ? x ’()) 17 (nestinc (inc x))))
4 (define (inc x) (if (equal ? x ’()) ’(1) (cons 1 (inc (cdr x)))))

Loops requiring specialisation point (sp1)

1 ;; Mutual recursion requiring specialisation points
2 (define (sp1 x y) (f x y))
3 (define (f x y) (if (equal ? x ’()) (g x y) (h x y)))
4 (define (g x y) (if (equal ? x ’()) (h x y) (r x y)))
5 (define (h x y) (if (equal ? x ’()) (h x y) (f x y)))
6 (define (r x y) x)

184 Appendix B. Examples

Shuffle list (shuffle)

1 ;; Shuffle List
2 (define (goal xs) (shuffle xs))
3 (define (shuffle xs)
4 (if (equal ? xs ’())
5 ’()
6 (cons (car xs) (shuffle (reverse (cdr xs))))))
7 (define (reverse xs)
8 (if (equal ? xs ’())
9 xs

10 (append (reverse (cdr xs)) (cons (car xs) ’()))))
11 (define (append xs ys)
12 (if (equal ? xs ’())
13 ys
14 (cons (car xs) (append (cdr xs) ys))))

Rewrite expression with associative operator (assrewrite)

1 ;;; Rewrite expression with associative operator ‘ op’
2

3 ;;; a � > a1 b � > b1 c � > c1
4 ;;; �W�z�W�W���W�W�W���W�W�W���W�
5 ;;; ’(op (op a b) c) � > ’(op a1 (op b1 c1))
6

7 ;;; a != ’ op a � > a1 b � > b1 a != ’(op ...)
8 ;;; �W���W�W�W�W�W�W�W�W�W�W�W�
9 ;;; ’(op a b) � > ’(op a1 b1) a � > a

10

11 (define (assrewrite exp) (rewrite exp))
12 (define (rewrite exp)
13 (if (and (pair ? exp)
14 (equal ? ’ op (car exp)))
15 (let

à
((opab (cadr exp)))

16 (if (and (pair ? opab)
17 (equal ? ’ op (car opab)))
18 (let

à
((a1 (rewrite (cadr opab)))

19 (b1 (rewrite (caddr opab)))
20 (c1 (rewrite (caddr exp))))

B.1. Basic data manipulation 185

21 (rewrite (cons
22 (car exp) ; op
23 (cons
24 a1
25 (cons
26 (cons
27 (car opab) ; op
28 (cons b1 (cons c1 (cdddr opab))))
29 (cdddr exp))))))
30 (cons (car exp) ; op
31 (cons
32 (rewrite (cadr exp)) ; a
33 (cons
34 (rewrite (caddr exp)) ; b
35 (cdddr exp))))))
36 exp))

Game (game)

1 ;; The game function from Manuvir Das’ PhD Thesis (p . 137)
2 (define (goal p1 p2 moves) (game p1 p2 moves))
3 (define (game p1 p2 moves)
4 (if (equal ? moves ’())
5 (cons p1 p2)
6 (if (equal ? (car moves) ’swap)
7 (game p2 p1 (cdr moves))
8 (if (equal ? (car moves) ’ capture)
9 (game (cons (car p2) p1) (cdr p2) (cdr moves))

10 ’ error))))

Van Gelder example (vangelder)

1 ;;; Following is an example due to Allen Van Gelder .
2 ;;; Note that in the following example there is a
3 ;;; cycle involving q , p , r , t , and q again , such that
4 ;;; nothing gets smaller along that cycle .
5

6 ;;; e(a ,b).
7 ;;; q(X,Y) : � e(X,Y).

186 Appendix B. Examples

8 ;;; q(X,f (f (X))) : � p(X,f (f (X))), q(X,f (X)).
9 ;;; q(X,f (f (Y))) : � p(X,f (Y)).

10 ;;;
11 ;;; p(X,Y) : � e(X,Y).
12 ;;; p(X,f (Y)) : � r(X,f (Y)), p(X,Y).
13 ;;;
14 ;;; r(X,Y) : � e(X,Y).
15 ;;; r(X,f (Y)) : � q(X,Y), r(X,Y).
16 ;;; r(f (X), f (X)) : � t (f (X), f (X)).
17 ;;;
18 ;;; t (X,Y) : � e(X,Y).
19 ;;; t (f (X), f (Y)) : � q(f (X), f (Y)), t (X,Y).
20

21 (define (goal x y) (q x y))
22 (define (e a b) (and (equal ? a ’ a) (equal ? b ’ b)))
23 (define (q x y)
24 (if (e x y) # t
25 (if (and (pair ? y) (equal ? (car y) ’ f)
26 (pair ? (cdr y)) (equal ? (cadr y) ’ f))
27 (if (and (p x y) (q x (cdr y))) # t
28 (p x (cdr y)))
29 #f)))
30 (define (p x y)
31 (if (e x y) # t
32 (if (equal ? ’ f (car y))
33 (and (r x y) (p x (cdr y)))
34 #f)))
35 (define (r x y)
36 (if (e x y) # t
37 (if (and (pair ? y) (equal ? (car y) ’ f))
38 (if (and (q x (cdr y)) (r x (cdr y)))
39 #t
40 (if (and (pair ? x) (equal ? (car x) ’ f))
41 (t x y)
42 #f))
43 #f)))
44 (define (t x y)
45 (if (e x y) # t
46 (if (and (pair ? x) (equal ? (car x) ’ f)

B.2. Simple functions 187

47 (pair ? y) (equal ? (car y) ’ f))
48 (and (q x y) (t (cdr x) (cdr y)))
49 #f)))

B.2 Simple functions
Power function (power)

1 ;; Power function : x to the nth power
2 ;; (numbers represented by list length)
3 (define (goal x n) (power x n))
4 (define (power x n)
5 (if (equal ? n ’()) ’(1) (mult x (power x (cdr n)))))
6 (define (mult x y)
7 (if (equal ? y ’()) ’() (add x (mult x (cdr y)))))
8 (define (add x y)
9 (if (equal ? y ’()) x (cons 1 (add x (cdr y)))))

Binomial function (binom)

1 ;;; Binomial function , numbers represented by list length
2 (define (goal n k) (binom n k))
3 (define (binom n k)
4 (if (equal ? ’() n)
5 ’(1)
6 (if (equal ? ’() k)
7 ’(1)
8 (+ (binom (cdr n) (cdr k)) (binom (cdr n) k)))))

Ackermann’s function (ack)

1 ;;; Ackermann’s function , numbers represented by list length
2 (define (goal m n) (ack m n))
3 (define (ack m n)
4 (if (equal ? ’() m)
5 (cons 1 n)
6 (if (equal ? ’() n)
7 (ack (cdr m) ’(1))
8 (ack (cdr m) (ack m (cdr n))))))

188 Appendix B. Examples

Greatest common divisor (gcd-1)

1 ;; Greatest common divisor , numbers represented by list length
2 (define (goal x y) (gcd x y))
3 (define (gcd x y)
4 (if (or (equal ? x ’()) (equal ? y ’()))
5 ’ error
6 (if (equal ? x y)
7 x
8 (if (gt x y) (gcd (monus x y) y) (gcd x (monus y x))))))
9 (define (gt x y)

10 (if (equal ? x ’())
11 #f
12 (if (equal ? y ’()) # t (gt (cdr x) (cdr y)))))
13 (define (monus x y)
14 (if (equal ? (lgth y) 1)
15 (cdr x)
16 (monus (cdr x) (cdr y))))
17 (define (lgth x) (if (equal ? x ’()) 0 (+ 1 (lgth (cdr x)))))

Greatest common divisor, swapping x and y (gcd-2)

1 ;; Greatest common divisor , numbers represented by list length
2 (define (goal x y) (gcd x y))
3 (define (gcd x y)
4 (if (or (equal ? x ’()) (equal ? y ’()))
5 ’ error
6 (if (equal ? x y)
7 x
8 (if (gt x y) (gcd y (monus x y)) (gcd (monus y x) x)))))
9 (define (gt x y)

10 (if (equal ? x ’())
11 #f
12 (if (equal ? y ’()) # t (gt (cdr x) (cdr y)))))
13 (define (monus x y)
14 (if (equal ? (lgth y) 1)
15 (cdr x)
16 (monus (cdr x) (cdr y))))
17 (define (lgth x) (if (equal ? x ’()) 0 (+ 1 (lgth (cdr x)))))

B.3. Sorting 189

B.3 Sorting
Mergesort (mergesort)

1 ;; Mergesort
2 (define (goal xs) (mergesort xs))
3 (define (mergesort xs)
4 (if (pair ? xs)
5 (if (pair ? (cdr xs))
6 (splitmerge xs ’() ’())
7 xs)
8 xs))
9

10 (define (splitmerge xs xs1 xs2)
11 (if (pair ? xs)
12 (splitmerge (cdr xs) (cons (car xs) xs2) xs1)
13 (merge (mergesort xs1) (mergesort xs2))))
14

15 (define (merge xs1 xs2)
16 (if (pair ? xs1)
17 (if (pair ? xs2)
18 (if (<= (car xs1) (car xs2))
19 (cons (car xs1) (merge (cdr xs1) xs2))
20 (cons (car xs2) (merge xs1 (cdr xs2))))
21 xs1)
22 xs2))

Quicksort (quicksort)

1 ;; Quicksort
2 (define (goal xs) (quicksort xs))
3 (define (quicksort xs)
4 (if (pair ? xs)
5 (if (pair ? (cdr xs))
6 (part (car xs) xs (cons (car xs) ’()) ’())
7 xs)
8 xs))
9

10 (define (part x xs xs1 xs2)

190 Appendix B. Examples

11 (if (pair ? xs)
12 (if (> x (car xs))
13 (part x (cdr xs) (cons (car xs) xs1) xs2)
14 (if (< x (car xs))
15 (part x (cdr xs) xs1 (cons (car xs) xs2))
16 (part x (cdr xs) xs1 xs2)))
17 (app (quicksort xs1) (quicksort xs2))))
18

19 (define (app xs ys)
20 (if (pair ? xs)
21 (cons (car xs) (app (cdr xs) ys))
22 ys))

Minimum sort (minsort)

1 ;;; Minimum sort: remove minimum and cons it onto the rest , sorted .
2 (define (goal xs) (minsort xs))
3 (define (minsort xs)
4 (if (pair ? xs)
5 (appmin (car xs) (cdr xs) xs)
6 ’()))
7

8 (define (appmin min rest xs)
9 (if (pair ? rest)

10 (if (< (car rest) min)
11 (appmin (car rest) (cdr rest) xs)
12 (appmin min (cdr rest) xs))
13 (cons min (minsort (remove min xs)))))
14

15 (define (remove x xs)
16 (if (pair ? xs)
17 (if (equal ? x (car xs))
18 (cdr xs)
19 (cons (car xs) (remove x (cdr xs))))
20 ’()))

B.4. Larger algorithms 191

B.4 Larger algorithms
Graph reachability (reach)

1 ;;; How can node v be reached from node u in a directed graph.
2 ;;; Graph example : ’((a . b) (a . d) (b . d) (c . a))
3 (define (goal u v edges) (reach u v edges))
4 (define (reach u v edges)
5 (if (member? (cons u v) edges)
6 (cons (cons u v) ’())
7 (via u v edges edges)))
8

9 (define (via u v rest edges)
10 (if (equal ? rest ’())
11 ’()
12 (if (equal ? u (caar rest))
13 (let

à
((path (reach (cdar rest) v edges)))

14 (if (equal ? path ’())
15 (via u v (cdr rest) edges)
16 (cons (car rest) path)))
17 (via u v (cdr rest) edges))))
18

19 (define (member? x xs)
20 (if (equal ? xs ’()) # f
21 (if (equal ? x (car xs)) # t (member? x (cdr xs)))))

Graph colouring (graphcolour-1)

1 ;;; Colour graph G with colours cs so that neighbors have different colours
2 ;;; The graph is represented as a list of nodes with adjacency lists
3 ;;; Example:
4 ;;; ’((a . (b c d)) (b . (a c e)) (c . (a b d e f)) (d . (a c f))
5 ;;; (e . (b c f)) (f . (c d e)))
6 (define (graphcolour G cs)
7 (let

à
((ns G)) ; to speed up : (ns (sortnodesbyarity G))

8 (reverse
9 (colorrest cs cs

10 (cons (colornode cs (car ns) ’()) ’())
11 (cdr ns)))))

192 Appendix B. Examples

12

13 ;;; Colour a node by appending a colour list to the node . The head of
14 ;;; the list is the chosen colour , the tail are the yet untried
15 ;;; colours . If impossible , return nil .
16 ;;; Example of coloured node : ’((red blue yellow) . (a . (b c d)))
17 (define (colornode cs node colorednodes)
18 (if (pair ? cs)
19 (if (possible (car cs) (cdr node) colorednodes)
20 (cons cs node)
21 (colornode (cdr cs) node colorednodes))
22 ’()))
23

24 ;;; Can we use color with these adjacent nodes and current coloured nodes?
25 (define (possible color adjs colorednodes)
26 (if (pair ? adjs)
27 (if (equal ? color (colorof (car adjs) colorednodes))
28 #f
29 (possible color (cdr adjs) colorednodes))
30 #t))
31

32 ;;; Return colour of node . If no colour yet , return nil .
33 (define (colorof node colorednodes)
34 (if (pair ? colorednodes)
35 (if (equal ? (cadar colorednodes) node)
36 (caaar colorednodes)
37 (colorof node (cdr colorednodes)))
38 ’()))
39

40 ;;; Colour the first node of rest with colours from ncs , and
41 ;;; colour remaining nodes . If impossible , return nil .
42 (define (colorrest cs ncs colorednodes rest)
43 (if (pair ? rest)
44 (let

à
((colorednode (colornode ncs (car rest) colorednodes)))

45 (if (pair ? colorednode)
46 (let

à
((colored (colorrest cs cs

47 (cons colorednode colorednodes)
48 (cdr rest))))
49 (if (pair ? colored)
50 colored

B.4. Larger algorithms 193

51 ; if remaining nodes are not colourable , and there
52 (if (pair ? (car colorednode)) ; are colours left ,
53 (colorrest � thetrick
54 cs cs (cdr (car colorednode)) ; try next colour
55 colorednodes rest)
56 ’())))
57 ’()))
58 colorednodes))
59

60 (define (colorrest � thetrick cs1 cs ncs colorednodes rest)
61 (if (equal ? cs1 ncs)
62 (colorrest cs cs1 colorednodes rest)
63 (colorrest � thetrick (cdr cs1) cs ncs colorednodes rest)))
64

65 (define (reverse xs) (revapp xs ’()))
66 (define (revapp xs rest)
67 (if (pair ? xs)
68 (revapp (cdr xs) (cons (car xs) rest))
69 rest))

Graph colouring, tail recursive (graphcolour-2)

1 ;;; Colour graph G with colours cs so that neighbors have different
2 ;;; colours (slightly tail recursive version)
3 ;;; The graph is represented as a list of nodes with adjacency lists
4 ;;; Example:
5 ;;; ’((a . (b c d)) (b . (a c e)) (c . (a b d e f)) (d . (a c f))
6 ;;; (e . (b c f)) (f . (c d e)))
7 (define (graphcolour G cs)
8 (let

à
((ns G)) ; to speed up : (ns (sortnodesbyarity G))

9 (reverse
10 (colorrest cs cs
11 (cons (colornode cs (car ns) ’()) ’())
12 (cdr ns)))))
13

14 ;;; Colour a node by appending a colour list to the node . The head of
15 ;;; the list is the chosen colour , the tail are the yet untried
16 ;;; colours . If impossible , return nil .
17 ;;; Example of coloured node : ’((red blue yellow) . (a . (b c d)))

194 Appendix B. Examples

18 (define (colornode cs node colorednodes)
19 (if (pair ? cs)
20 (if (possible (car cs) (cdr node) colorednodes)
21 (cons cs node)
22 (colornode (cdr cs) node colorednodes))
23 ’()))
24

25 ;;; Can we use color with these adjacent nodes and current coloured nodes?
26 (define (possible color adjs colorednodes)
27 (if (pair ? adjs)
28 (if (equal ? color (colorof (car adjs) colorednodes))
29 #f
30 (possible color (cdr adjs) colorednodes))
31 #t))
32

33 ;;; Return colour of node . If no colour yet , return nil .
34 (define (colorof node colorednodes)
35 (if (pair ? colorednodes)
36 (if (equal ? (cadar colorednodes) node)
37 (caaar colorednodes)
38 (colorof node (cdr colorednodes)))
39 ’()))
40

41 ;;; Colour the first node of rest with colours from ncs , and
42 ;;; colour remaining nodes . If impossible , return nil .
43 (define (colorrest cs ncs colorednodes rest)
44 (if (pair ? rest)
45 (colornoderest cs ncs (car rest) colorednodes rest)
46 colorednodes))
47

48 ;;; Like colornode , only continue with colouring the rest
49 (define (colornoderest cs ncs node colorednodes rest)
50 (if (pair ? ncs)
51 (if (possible (car ncs) (cdr node) colorednodes)
52 (let

à
((colored (colorrest cs cs

53 (cons (cons ncs node) colorednodes)
54 (cdr rest))))
55 (if (pair ? colored)
56 colored

B.4. Larger algorithms 195

57 ; if remaining nodes are not colourable , and
58 (if (pair ? ncs) ; there are colours left ,
59 (colorrest � thetrick
60 cs cs (cdr ncs) ; try next colour
61 colorednodes rest)
62 ’())))
63 (colornoderest cs (cdr ncs) node colorednodes rest))
64 ’()))
65

66 (define (colorrest � thetrick cs1 cs ncs colorednodes rest)
67 (if (equal ? cs1 ncs)
68 (colorrest cs cs1 colorednodes rest)
69 (colorrest � thetrick (cdr cs1) cs ncs colorednodes rest)))
70

71 (define (reverse xs) (revapp xs ’()))
72 (define (revapp xs rest)
73 (if (pair ? xs)
74 (revapp (cdr xs) (cons (car xs) rest))
75 rest))

Graph colouring, tail recursive without The Trick (graphcolour-3)

1 ;;; Colour graph G with colours cs so that neighbors have different
2 ;;; colours (slightly tail recursive version)
3 ;;; The graph is represented as a list of nodes with adjacency lists
4 ;;; Example:
5 ;;; ’((a . (b c d)) (b . (a c e)) (c . (a b d e f)) (d . (a c f))
6 ;;; (e . (b c f)) (f . (c d e)))
7 (define (graphcolour G cs)
8 (let

à
((ns G)) ; to speed up : (ns (sortnodesbyarity G))

9 (reverse
10 (colorrest cs cs
11 (cons (colornode cs (car ns) ’()) ’())
12 (cdr ns)))))
13

14 ;;; Colour a node by appending a colour list to the node . The head of
15 ;;; the list is the chosen colour , the tail are the yet untried
16 ;;; colours . If impossible , return nil .
17 ;;; Example of coloured node : ’((red blue yellow) . (a . (b c d)))

196 Appendix B. Examples

18 (define (colornode cs node colorednodes)
19 (if (pair ? cs)
20 (if (possible (car cs) (cdr node) colorednodes)
21 (cons cs node)
22 (colornode (cdr cs) node colorednodes))
23 ’()))
24

25 ;;; Can we use color with adjacent nodes and current coloured nodes?
26 (define (possible color adjs colorednodes)
27 (if (pair ? adjs)
28 (if (equal ? color (colorof (car adjs) colorednodes))
29 #f
30 (possible color (cdr adjs) colorednodes))
31 #t))
32

33 ;;; Return colour of node . If no colour yet , return nil .
34 (define (colorof node colorednodes)
35 (if (pair ? colorednodes)
36 (if (equal ? (cadar colorednodes) node)
37 (caaar colorednodes)
38 (colorof node (cdr colorednodes)))
39 ’()))
40

41 ;;; Colour the first node of rest with colours from ncs , and
42 ;;; colour remaining nodes . If impossible , return nil .
43 (define (colorrest cs ncs colorednodes rest)
44 (if (pair ? rest)
45 (colornoderest cs ncs (car rest) colorednodes rest)
46 colorednodes))
47

48 ;;; Like colornode , only continue with colouring the rest
49 (define (colornoderest cs ncs node colorednodes rest)
50 (if (pair ? ncs)
51 (if (possible (car ncs) (cdr node) colorednodes)
52 (let

à
((colored (colorrest cs cs

53 (cons (cons ncs node) colorednodes)
54 (cdr rest))))
55 (if (pair ? colored)
56 colored

B.4. Larger algorithms 197

57 ; if remaining nodes are not colourable , and
58 (if (pair ? ncs) ; there are some colours left ,
59 (colorrest
60 cs (cdr ncs) ; try next colour
61 colorednodes rest)
62 ’())))
63 (colornoderest cs (cdr ncs) node colorednodes rest))
64 ’()))
65

66 (define (reverse xs) (revapp xs ’()))
67 (define (revapp xs rest)
68 (if (pair ? xs)
69 (revapp (cdr xs) (cons (car xs) rest))
70 rest))

Type inference for the typed D calculus (typeinf)

1 ;;; Type inference for the Typed Lambda Calculus
2

3 ;;; e ::= (’ var . x) variable x
4 ;;; | (’ apply . (e1 . e2)) apply abstraction e1 to expression e2
5 ;;; | (’ lambda . (x . e1)) make lambda abstraction
6

7 ;;; t ::= (’ tyvar . a)
8 ;;; | (’ arrow . (t1 . t2))
9

10 ;;; �W���W�W�W���W�W���W�W�W�z�W�W�W���W�
11

12 ;;; (define inittenv 1) ; tenv simply holds the next fresh type variables
13 (define (typeinf inittenv e) ; infer the type of e
14 (let

à
((atenv (freshtvar inittenv)))

15 (car (etype ’() (cdr atenv) e (car atenv)))))
16

17 (define (freshtvar tenv) (cons (cons ’ Tvar tenv) (+ tenv 1)))
18

19 (define (vtype venv x) ; return the type of x as found in environment
20 (if (equal ? x (caar venv))
21 (cdar venv)
22 (vtype (cdr venv) x)))

198 Appendix B. Examples

23

24 (define (tsubst a t t1) ; substitute t for occ ’s of type var a in t1
25 (if (equal ? ’ Tvar (car t1))
26 (if (equal ? a (cdr t1)) t t1)
27 (if (equal ? ’ Arr (car t1))
28 (cons ’ Arr (cons (tsubst a t (cadr t1)) (tsubst a t (cddr t1))))
29 (error ’ tsubst � t1))))
30

31 (define (subst venv a t) ; substitute t for occurrences of type
32 (if (pair ? venv) ; var a in the variable environment
33 (cons (cons (caar venv) (tsubst a t (cdar venv)))
34 (subst (cdr venv) a t))
35 ’()))
36

37 (define (unify venv t1 t2) ; unify types t1 and t2 , returning
38 ; (< new venv> . < unified type>)
39 (if (equal ? ’ Tvar (car t1))
40 (cons (subst venv (cdr t1) t2) t2)
41 (if (equal ? ’ Arr (car t1))
42 (if (equal ? ’ Tvar (car t2))
43 (cons (subst venv (cdr t2) t1) t1)
44 (if (equal ? ’ Arr (car t2))
45 (let

à
((venv1tx1 (unify venv (cadr t1) (cddr t1)))

46 (venv2tx2
47 (unify (car venv1tx1) (cadr t2) (cddr t2))))
48 (cons (car venv2tx2)
49 (cons ’ Arr (cons (cdr venv1tx1) (cdr venv2tx2)))))
50 (error ’ unify � t2)))
51 (error ’ unify � t1))))
52

53 (define (etype venv tenv e t) ; infer type of e , unified with type t
54 (if (equal ? ’ Var (car e)) ; using variable environment
55 ; and tyvar generator
56 (let

à
((venv1t1 (unify venv (vtype venv (cdr e)) t)))

57 (cons (cdr venv1t1) (cons (car venv1t1) tenv)))
58 (if (equal ? ’ App (car e))
59 (let

à
((atenv1 (freshtvar tenv))

60 (t2venv2tenv2
61 (etype venv (cdr atenv1) (cadr e) (car atenv1)))

B.4. Larger algorithms 199

62 (t1venv3tenv3
63 (etype (cadr t2venv2tenv2)
64 (cddr t2venv2tenv2)
65 (cddr e)
66 (cons ’ Arr (cons (car t2venv2tenv2) t))))
67 (t1 (car t1venv3tenv3)))
68 ; t1 == (’ Arr . (? . t ’))
69 (cons (cddr t1) (cdr t1venv3tenv3)))
70 (if (equal ? ’ Lam (car e))
71 (let

à
((atenv1 (freshtvar tenv))

72 (t1venv2tenv2
73 (etype (cons (cons (cadr e) (car atenv1)) venv)
74 (cdr atenv1) (cddr e) (car atenv1)))
75 (venv3t3
76 (unify (cadr t1venv2tenv2)
77 (cons ’ Arr
78 (cons (vtype (cddr t1venv2tenv2) (cadr e))
79 (car t1venv2tenv2)))
80 t)))
81 (cons (cdr venv3t3) (cons (cdar venv3t3) (cddr t1venv2tenv2))))
82 (error ’ Error � in � lambda � expression e)))))

Simple pattern matching (match)

1 ;; Simple pattern matcher
2 (define (match p s) (loop p s p s))
3 (define (loop p s pp ss)
4 (if (equal ? p ’())
5 #t
6 (if (equal ? s ’())
7 #f
8 (if (equal ? (car p) (car s))
9 (loop (cdr p) (cdr s) pp ss)

10 (loop pp (cdr ss) pp (cdr ss))))))

Simple string matching (strmatch)

1 ;;; Naive pattern string matcher
2 (define (strmatch patstr str)

200 Appendix B. Examples

3 ; strmatch returns a list of indeces indicating the
4 ; positions in str where patstr occurs
5 (domatch (patstring � >list patstr) (string � >list str) 0))
6

7 (define (domatch patcs cs n)
8 (if (pair ? cs)
9 (if (prefix patcs cs)

10 (cons n (domatch patcs (cdr cs) (+ n 1)))
11 (domatch patcs (cdr cs) (+ n 1)))
12 (if (equal ? patcs cs) (cons n ’()) ’())))
13

14 (define (prefix precs cs)
15 (if (pair ? precs)
16 (if (pair ? cs)
17 (and (equal ? (car precs) (car cs))
18 (prefix (cdr precs) (cdr cs)))
19 #f)
20 #t))

Regular expression matching (rematch)

1 ;;; Regular expression pattern matcher
2 ;;;
3 ;;; pat ::= "." | character | "\" character
4 ;;; | pat "

à
" | (pat) | pat ... pat

5 ;;; When parsed, this is represented by:
6 ;;; pat ::= (’ dot) | (’ char c) | (’ star pat) | (’ seq pat ... pat)
7 (define (rematch patstr str)
8 ; if str matches patstr , match returns a pair consisting of
9 ; the prefix of str which matches the pattern and

10 ; the remaining part of str , else match returns # f
11 (let

à
((matchrest (domatch (parsepat patstr) (string � >list str))))

12 (if (pair ? matchrest)
13 (cons (list � >string (reverse (car matchrest)))
14 (list � >string (cdr matchrest)))
15 matchrest)))
16

17 (define (parsepat patstr) (parsep (string � >list patstr) ’() ’()))
18

B.4. Larger algorithms 201

19 (define (parsep patchars seq stack)
20 (if (pair ? patchars)
21 (if (equal ? #\. (car patchars))
22 (parsep � dot patchars seq stack)
23 (if (equal ? #\

à
(car patchars))

24 (parsep � star patchars seq stack)
25 (if (equal ? #\((car patchars))
26 (parsep � openb patchars seq stack)
27 (if (equal ? #\) (car patchars))
28 (parsep � closeb patchars seq stack)
29 (if (equal ? #\\ (car patchars))
30 (parsep � char (cdr patchars) seq stack)
31 (parsep � char patchars seq stack))))))
32 ; else (pair ? patchars)
33 (if (pair ? stack)
34 (error " unmatched ’(’ in pattern ")
35 (cons ’ seq (reverse seq)))))
36

37 (define (parsep � dot patchars seq stack)
38 (parsep (cdr patchars) (cons (cons ’ dot ’()) seq) stack))
39

40 (define (parsep � star patchars seq stack)
41 (if (pair ? seq)
42 (parsep
43 (cdr patchars)
44 (cons (cons ’ star (cons (car seq) ’()))
45 (cdr seq))
46 stack)
47 (parsep
48 (cdr patchars)
49 (cons (cons ’ char (cons #\

à
’())) ’())

50 stack)))
51

52 (define (parsep � openb patchars seq stack)
53 (parsep (cdr patchars) ’() (cons seq stack)))
54

55 (define (parsep � closeb patchars seq stack)
56 (if (pair ? stack)
57 (parsep

202 Appendix B. Examples

58 (cdr patchars)
59 (cons (cons ’ seq (reverse seq))
60 (car stack))
61 (cdr stack))
62 (error " unmatched ’)’ in pattern ")))
63

64 (define (parsep � char patchars seq stack)
65 (if (pair ? patchars)
66 (parsep (cdr patchars)
67 (cons (cons ’ char (cons (car patchars) ’()))
68 seq)
69 stack)
70 (parsep patchars
71 (cons (cons ’ char (cons #\\ ’()))
72 seq)
73 stack)))
74

75 ; domatch
à

cs must match on as much of cs as possible ,
76 ; Assume cs = cs1 ++ cs2 , where cs1 has been matched . Then
77 ; ((reverse cs1) . cs2) is returned
78

79 (define (domatch pat cs)
80 (if (pair ? pat)
81 (if (equal ? (car pat) ’ dot) (domatch � dot cs)
82 (if (equal ? (car pat) ’ char) (domatch � char cs (cadr pat))
83 (if (equal ? (car pat) ’ star) (domatch � star cs (cadr pat) ’())
84 (if (equal ? (car pat) ’ seq) (domatch � seq cs ’() (cdr pat))
85 (error " unknown pattern data " pat)))))
86 (cons ’() cs)))
87

88 (define (domatch � dot cs)
89 (if (pair ? cs) (cons (cons (car cs) ’()) (cdr cs)) ’ nomatch))
90

91 (define (domatch � char cs c)
92 (if (pair ? cs)
93 (if (equal ? (car cs) c)
94 (cons (cons (car cs) ’()) (cdr cs))
95 ’nomatch)
96 ’nomatch))

B.5. Interpreters 203

97

98 (define (domatch � star cs pat init)
99 ; init holds the chars already star � matched

100 (if (pair ? cs)
101 (let

à
((first (domatch pat cs)))

102 (if (pair ? first)
103 (domatch � star (cdr first) pat (append (car first) init))
104 (cons init cs)))
105 (cons init cs)))
106

107 (define (domatch � seq cs rest pats)
108 ; domatch � seq matches first pattern on cs = match ++ cs ’ and the
109 ; remaining patterns on cs ’ ++ rest
110 (if (pair ? pats)
111 (let

à
((first (domatch (car pats) cs)))

112 (if (pair ? first)
113 (let

à
((next

114 (domatch � seq
115 (append (cdr first) rest) ’() (cdr pats))))
116 (if (pair ? next)
117 (cons (append (car next) (car first)) (cdr next))
118 ; first match was too long , try matching fewer chars
119 (if (pair ? (car first))
120 (domatch � seq
121 (reverse (cdar first))
122 (cons (caar first) (append (cdr first) rest))
123 pats)
124 ’nomatch))) ; even shortest possible first match
125 ; (empty string) doesn’ t lead to match
126 ’nomatch)) ; first match failed
127 (cons ’() (append cs rest)))) ; no patterns left to
128 ; match : success !

B.5 Interpreters

Turing machine (turing)

1 ;;; Turing machine interpreter

204 Appendix B. Examples

2

3 ;;; instrs ::= ’(instr . instrs)
4 ;;; | ’()
5 ;;; instr ::= ’(Halt) ; Stop interpretation
6 ;;; | ’(Write . x) ; Write x onto the tape at current pos
7 ;;; | ’(Left) ; Move pos left , extend tape if needed
8 ;;; | ’(Right) ; Move pos right , extend tape if needed
9 ;;; | ’(Goto . i) ; Continue at instruction i

10 ;;; | ’(IfGoto x . i) ; If current pos contains x , goto i
11 (define (run prog tapeinput) (turing prog ’() tapeinput prog))
12 (define (turing instrs revltape rtape prog)
13 (if (pair ? instrs)
14 (if (equal ? ’ Halt (caar instrs))
15 rtape
16 (if (equal ? ’ Write (caar instrs))
17 (turing (cdr instrs)
18 revltape (cons (cdar instrs) (cdr rtape)) prog)
19 (if (equal ? ’ Left (caar instrs))
20 (if (pair ? revltape)
21 (turing (cdr instrs)
22 (cdr revltape)
23 (cons (car revltape) rtape) prog)
24 (turing (cdr instrs)
25 ’()
26 (cons ’ Blank rtape) prog))
27 (if (equal ? ’ Right (caar instrs))
28 (if (pair ? rtape)
29 (turing (cdr instrs)
30 (cons (car rtape) revltape)
31 (cdr rtape) prog)
32 (turing (cdr instrs)
33 (cons ’ Blank revltape)
34 ’() prog))
35 (if (equal ? ’ Goto (caar instrs))
36 (turing (lookup (cdar instrs) prog) revltape rtape prog)
37 (if (equal ? ’ IfGoto (caar instrs))
38 (if (equal ? (car rtape) (cadar instrs))
39 (turing
40 (lookup (cddar instrs) prog) revltape rtape prog)

B.5. Interpreters 205

41 (turing (cdr instrs) revltape rtape prog))
42 rtape
43))))))
44 rtape
45))
46

47 (define (lookup i instrs)
48 (if (= i 1) instrs (lookup (� i 1) (cdr instrs))))

Expression parser (parsexp)

1 ;;; Parse a list of atoms as an expression . Return remaining list .
2 ;;; e .g . ’("5" "

à
" "(" "3" "+" "2" "

à
" "4" ")")

3 (define (parsexp xs) (expr xs))
4 (define (expr xs)
5 (let

à
((rs1 (term xs)))

6 (if (equal ? ’() rs1)
7 ’()
8 (if (member? (car rs1) ’("+" " � "))
9 (let

à
((rs2 (expr (cdr rs1))))

10 (if (equal ? ’() rs2) rs1 rs2))
11 rs1))))
12

13 (define (term xs)
14 (let

à
((rs1 (factor xs)))

15 (if (equal ? rs1 ’())
16 ’()
17 (if (member? (car rs1) ’("

à
" "/"))

18 (let
à

((rs2 (term (cdr rs1))))
19 (if (equal ? ’() rs2) rs1 rs2))
20 rs1))))
21

22 (define (factor xs)
23 (if (equal ? "(" (car xs))
24 (let

à
((rs1 (expr xs)))

25 (if (and (not (equal ? rs1 ’()))
26 (equal ? ")" (car rs1)))
27 (cdr rs1)
28 (atom xs)))

206 Appendix B. Examples

29 (atom xs)))
30

31 (define (member? x xs)
32 (if (pair ? xs)
33 (if (equal ? x (car xs))
34 #t
35 (member? x (cdr xs)))
36 #f))
37

38 (define (atom xs) (if (pair ? xs) (cdr xs) ’()))

Lambda expression interpreter (lambdaint)

1 ;; Reducer for the lambda calculus
2 ;; Representation :
3 ;; R [[n]] = (1 0 ... 0) n zeros
4 ;; R [[\n.e]] = (2 R [[n]] R [[e]])
5 ;; R [[e e ’]] = (3 R [[e]] R [[e ’]])
6 (define (lambdaint e) (red e))
7 (define (red e) ; reduce lambda expression e
8 (if (isvar ? e)
9 e

10 (if (islam ? e)
11 e
12 (let

à
((f (red (app � >e1 e))) (a (red (app � >e2 e))))

13 (if (islam ? f)
14 (red (subst (lam � >var f) a (lam � >body f)))
15 (mkapp f a))))))
16

17 (define (subst x a e)
18 (if (isvar ? e)
19 (if (equal ? x e) a e)
20 (if (islam ? e)
21 (if (equal ? x (lam � >var e))
22 e
23 (mklam (lam � >var e) (subst x a (lam � >body e))))
24 (mkapp (subst x a (app � >e1 e)) (subst x a (app � >e2 e))))))
25

26 (define (isvar ? e) (equal ? (car e) 1))

B.5. Interpreters 207

27 (define (islam ? e) (equal ? (car e) 2))
28

29 (define (mklam n e) (cons 2 (cons n (cons e ’()))))
30 (define (lam � >var e) (cadr e))
31 (define (lam � >body e) (caddr e))
32 (define (mkapp e1 e2) (cons 3 (cons e1 (cons e2 ’()))))
33 (define (app � >e1 e) (cadr e))
34 (define (app � >e2 e) (caddr e))

A�BpBED interpreter (int-loop)

1 ;; Small 1 st order interpreter for LOOP programs
2 (define (run p l input)
3 (let

à
((f0 (car (car p)))

4 (ef (lookbody f0 p))
5 (nf (lookname f0 p)))
6 (eeval ef (cons nf ’()) (cons input ’()) l p)))
7

8 (define (eeval e ns vs l p)
9 (if (equal ? (car e) 1) ; constants

10 (cdr e)
11 (if (equal ? (car e) 2) ; variable
12 (lookvar (cdr e) ns vs)
13 (if (equal ? (car e) 3) ; basefcn
14 (let

à
((v1 (eeval (car (cdr (cdr e))) ns vs l p))

15 (v2 (eeval (car (cdr (cdr (cdr e)))) ns vs l p)))
16 (apply (car (cdr e)) v1 v2))
17 (if (equal ? (car e) 4) ; if
18 (if (equal ? (eeval (car (cdr e)) ns vs l p) ’ T)
19 (eeval (car (cdr (cdr e))) ns vs l p)
20 (eeval (car (cdr (cdr (cdr e)))) ns vs l p))
21 (if (equal ? (car e) 5) ; ==
22 (if (equal ? (eeval (car (cdr e)) ns vs l p)
23 (eeval (car (cdr (cdr e))) ns vs l p))
24 ’T
25 ’F)
26 ; call
27 (let

à
((ef (lookbody (car (cdr e)) p))

28 (nf (lookname (car (cdr e)) p))

208 Appendix B. Examples

29 (v (eeval (car (cdr (cdr e))) ns vs l p)))
30 (if (equal ? l ’()) ’()
31 (eeval ef (cons nf ’()) (cons v ’()) (cdr l) p)))))))))
32

33 (define (lookvar x ns vs)
34 (if (equal ? x (car ns)) (car vs) (lookvar x (cdr ns) (cdr vs))))
35

36 (define (lookbody f p)
37 (if (equal ? (car (car p)) f)
38 (car (cdr (cdr (car p))))
39 (lookbody f (cdr p))))
40

41 (define (lookname f p)
42 (if (equal ? (car (car p)) f)
43 (car (cdr (car p)))
44 (lookname f (cdr p))))
45

46 (define (apply op v1 v2)
47 (if (equal ? op 5) ; equal
48 (if (equal ? v1 v2) ’ T ’F)
49 ; cons
50 (cons v1 v2)))

ýWþ|ÿ A�� interpreter (int-while)

1 ;; Small 1 st order interpreter with static scoping
2 (define (run p input)
3 (let

à
((f0 (car (car p)))

4 (ef (lookbody f0 p))
5 (nf (lookname f0 p)))
6 (eeval ef (cons nf ’()) (cons input ’()) p)))
7

8 (define (eeval e ns vs p)
9 (if (equal ? (car e) 1) ; constants

10 (cdr e)
11 (if (equal ? (car e) 2) ; variable
12 (lookvar (cdr e) ns vs)
13 (if (equal ? (car e) 3) ; basefcn
14 (let

à
((v1 (eeval (car (cdr (cdr e))) ns vs p))

B.5. Interpreters 209

15 (v2 (eeval (car (cdr (cdr (cdr e)))) ns vs p)))
16 (apply (car (cdr e)) v1 v2))
17 (if (equal ? (car e) 4) ; if
18 (if (equal ? (eeval (car (cdr e)) ns vs p) ’ T)
19 (eeval (car (cdr (cdr e))) ns vs p)
20 (eeval (car (cdr (cdr (cdr e)))) ns vs p))
21 (if (equal ? (car e) 5) ; ==
22 (if (equal ? (eeval (car (cdr e)) ns vs p)
23 (eeval (car (cdr (cdr e))) ns vs p))
24 ’T
25 ’F)
26 ; call
27 (let

à
((ef (lookbody (car (cdr e)) p))

28 (nf (lookname (car (cdr e)) p))
29 (v (eeval (car (cdr (cdr e))) ns vs p)))
30 (eeval ef (cons nf ’()) (cons v ’()) p))))))))
31

32 (define (lookvar x ns vs)
33 (if (equal ? x (car ns)) (car vs) (lookvar x (cdr ns) (cdr vs))))
34

35 (define (lookbody f p)
36 (if (equal ? (car (car p)) f)
37 (car (cdr (cdr (car p))))
38 (lookbody f (cdr p))))
39

40 (define (lookname f p)
41 (if (equal ? (car (car p)) f)
42 (car (cdr (car p)))
43 (lookname f (cdr p))))
44

45 (define (apply op v1 v2)
46 (if (equal ? op 5) ; equal
47 (if (equal ? v1 v2) ’ T ’F)
48 ; cons
49 (cons v1 v2)))

ýWþ|ÿ A�� interpreter with dynamic scoping (int-dynscope)

1 ;; Small 1 st order interpreter with dynamic scoping

210 Appendix B. Examples

2 (define (run p input)
3 (let

à
((f0 (car (car p)))

4 (ef (lookbody f0 p))
5 (nf (lookname f0 p)))
6 (eeval ef (cons nf ’()) (cons input ’()) p)))
7

8 (define (eeval e ns vs p)
9 (if (equal ? (car e) 1) ; constants

10 (cdr e)
11 (if (equal ? (car e) 2) ; variable
12 (lookvar (cdr e) ns vs)
13 (if (equal ? (car e) 3) ; basefcn
14 (let

à
((v1 (eeval (car (cdr (cdr e))) ns vs p))

15 (v2 (eeval (car (cdr (cdr (cdr e)))) ns vs p)))
16 (apply (car (cdr e)) v1 v2))
17 (if (equal ? (car e) 4) ; if
18 (if (equal ? (eeval (car (cdr e)) ns vs p) ’ T)
19 (eeval (car (cdr (cdr e))) ns vs p)
20 (eeval (car (cdr (cdr (cdr e)))) ns vs p))
21 (if (equal ? (car e) 5) ; ==
22 (if (equal ? (eeval (car (cdr e)) ns vs p)
23 (eeval (car (cdr (cdr e))) ns vs p))
24 ’T
25 ’F)
26 ; call
27 (let

à
((ef (lookbody (car (cdr e)) p))

28 (nf (lookname (car (cdr e)) p))
29 (v (eeval (car (cdr (cdr e))) ns vs p)))
30 (eeval ef (cons nf ns) (cons v vs) p))))))))
31

32 (define (lookvar x ns vs)
33 (if (equal ? x (car ns)) (car vs) (lookvar x (cdr ns) (cdr vs))))
34

35 (define (lookbody f p)
36 (if (equal ? (car (car p)) f)
37 (car (cdr (cdr (car p))))
38 (lookbody f (cdr p))))
39

40 (define (lookname f p)

B.5. Interpreters 211

41 (if (equal ? (car (car p)) f)
42 (car (cdr (car p)))
43 (lookname f (cdr p))))
44

45 (define (apply op v1 v2)
46 (if (equal ? op 5) ; equal
47 (if (equal ? v1 v2) ’ T ’F)
48 ; cons
49 (cons v1 v2)))

Appendix C

Detailed Results

C.1 Termination analysis

==
Program Examples/contrived � 1.term ...

Bounded variables :
contrived_1 : a b

f : x y z d

g : u v w

h : r s

dec : n

Program terminates .
==
Program Examples/contrived � 2.term ...

Bounded variables :
contrived_2 : a b

212

C.1. Termination analysis 213

f : x y z d

g : u v w

h : r s => function may cause non � termination

dec : n

Program quasi � terminates.
==
Program Examples/list.term ...

Bounded variables :
goal : x

listQ : xs

isNull : x

isPair : x

Program terminates .
==
Program Examples/fold.term ...

Bounded variables :
fold : a xs

foldl : a xs

foldr : a xs

op : x1 x2

isPair : xs

Program terminates .
==

214 Appendix C. Detailed Results

Program Examples/map.term ...

Bounded variables :
goal : xs

map : xs

f : x

Program terminates .
==
Program Examples/naiverev.term ...

Bounded variables :
goal : xs

naiverev : xs

app : xs ys

Program terminates .
==
Program Examples/deeprev.term ...

Bounded variables :
goal : x

deeprev : x

deeprevapp : xs rest

revconsapp : xs r

isPair : x

Program terminates .
==
Program Examples/append.term ...

C.1. Termination analysis 215

Bounded variables :
goal : x y

append : xs ys

Program terminates .
==
Program Examples/mergelists.term ...

Bounded variables :
goal : xs ys

merge : xs ys

Program terminates .
==
Program Examples/addlists.term ...

Bounded variables :
goal : xs ys

addlist : xs ys

isPair : xs

Program terminates .
==
Program Examples/revapp.term ...

Bounded variables :
goal : x y

revapp : xs rest

Program terminates .
==
Program Examples/permute.term ...

Bounded variables :

216 Appendix C. Detailed Results

goal : xs

permute : => function may cause non � termination

select : => function may cause non � termination

mapconsapp : => function may cause non � termination

revapp : => function may cause non � termination

Program may not terminate!
==
Program Examples/add.term ...

Bounded variables :
goal : x y

add : x y

Program terminates .
==
Program Examples/badd.term ...

Bounded variables :
goal : x y

badd : x => function may cause non � termination

Program may not terminate!
==
Program Examples/mul.term ...

Bounded variables :
goal : x y

mul : x y

add : x y

C.1. Termination analysis 217

Program terminates .
==
Program Examples/disjconj.term ...

Bounded variables :
disjconj : p

disjQ : p

conjQ : p

boolQ : p

isPair : xs

Program terminates .
==
Program Examples/duplicate.term ...

Bounded variables :
goal : x

duplicate : xs

Program terminates .
==
Program Examples/nestimeql.term ...

Bounded variables :
goal : x

nestimeql : => function may cause non � termination

immatcopy : => function may cause non � termination

Program may not terminate!
==
Program Examples/evenodd.term ...

218 Appendix C. Detailed Results

Bounded variables :
evenodd : x

evenQ : x

oddQ : x

isPair : xs

isNull : xs

Program terminates .
==
Program Examples/lte.term ...

Bounded variables :
goal : x y

lteQ : x y

evenQ : x

isPair : xs

isNull : xs

Program terminates .
==
Program Examples/member.term ...

Bounded variables :
goal : x xs

memberQ : x xs

Program terminates .
==
Program Examples/ordered.term ...

C.1. Termination analysis 219

Bounded variables :
goal : xs

orderedQ : xs

isPair : xs

Program terminates .
==
Program Examples/overlap.term ...

Bounded variables :
goal : xs ys

overlapQ : xs ys

memberQ : x xs

isPair : xs

Program terminates .
==
Program Examples/select.term ...

Bounded variables :
select : xs

selects : x revprefix postfix

revapp : xs rest

Program terminates .
==
Program Examples/subsets.term ...

Bounded variables :
goal : xs

subsets : xs

220 Appendix C. Detailed Results

mapconsapp : x xss rest

isPair : x

Program terminates .
==
Program Examples/anchored.term ...

Bounded variables :
goal : x y

anchored : x y

Program terminates .
==
Program Examples/letexp.term ...

Bounded variables :
goal : x y

letexp : y => function may cause non � termination

Program may not terminate!
==
Program Examples/thetrick.term ...

Bounded variables :
goal : x y

f : x => function may cause non � termination

g : x y

lt : x y

Program may not terminate!
==
Program Examples/intlookup.term ...

C.1. Termination analysis 221

Bounded variables :
run : e p

intlookup : e p => function may cause non � termination

lookup : fnum p

Program quasi � terminates.
==
Program Examples/nolexicord.term ...

Bounded variables :
goal : a1 b1 a2 b2 a3 b3

nolexicord : a1 b1 a2 b2 a3 b3

Program terminates .
==
Program Examples/decrease.term ...

Bounded variables :
goal : x

decrease : x

Program terminates .
==
Program Examples/equal.term ...

Bounded variables :
goal : x

equal : x => function may cause non � termination

Program quasi � terminates.
==
Program Examples/increase.term ...

222 Appendix C. Detailed Results

Bounded variables :
goal : x

increase : => function may cause non � termination

Program may not terminate!
==
Program Examples/nestdec.term ...

Bounded variables :
goal : x

nestdec : x

dec : x

Program terminates .
==
Program Examples/nesteql.term ...

Bounded variables :
goal : x

nesteql : x => function may cause non � termination

eql : x => function may cause non � termination

Program quasi � terminates.
==
Program Examples/nestinc.term ...

Bounded variables :
goal : x

nestinc : => function may cause non � termination

inc : => function may cause non � termination

Program may not terminate!

C.1. Termination analysis 223

==
Program Examples/sp1.term ...

Bounded variables :
sp1 : x y

f : x y => function may cause non � termination

g : x y => function may cause non � termination

h : x y => function may cause non � termination

r : x y

Program quasi � terminates.
==
Program Examples/shuffle.term ...

Bounded variables :
goal : xs

shuffle : => function may cause non � termination

reverse : => function may cause non � termination

append : => function may cause non � termination

Program may not terminate!
==
Program Examples/assrewrite.term ...

Bounded variables :
assrewrite : exp

rewrite : => function may cause non � termination

isPair :

Program may not terminate!

224 Appendix C. Detailed Results

==
Program Examples/game.term ...

Bounded variables :
goal : p1 p2 moves

game : p1 p2 moves

Program terminates .
==
Program Examples/vangelder.term ...

Bounded variables :
goal : x y

e : a b

q : x y => function may cause non � termination

p : x y => function may cause non � termination

r : x y => function may cause non � termination

t : x y => function may cause non � termination

isPair : xs

Program quasi � terminates.
==
Program Examples/power.term ...

Bounded variables :
goal : x n

power : x n

mult : x y

add : x y

C.1. Termination analysis 225

Program terminates .
==
Program Examples/binom.term ...

Bounded variables :
goal : n k

binom : n k

Program terminates .
==
Program Examples/ack.term ...

Bounded variables :
goal : m n

ack : m n

Program terminates .
==
Program Examples/gcd � 1.term ...

Bounded variables :
goal : x y

gcd : x y

gt : x y

monus : x y

lgth : x

Program terminates .
==
Program Examples/gcd � 2.term ...

Bounded variables :

226 Appendix C. Detailed Results

goal : x y

gcd : x y => function may cause non � termination

gt : x y

monus : x y

lgth : x

Program quasi � terminates.
==
Program Examples/mergesort.term ...

Bounded variables :
goal : xs

mergesort : => function may cause non � termination

splitmerge : => function may cause non � termination

merge : => function may cause non � termination

isPair :

Program may not terminate!
==
Program Examples/quicksort.term ...

Bounded variables :
goal : xs

quicksort : => function may cause non � termination

part : => function may cause non � termination

app : => function may cause non � termination

isPair :

C.1. Termination analysis 227

Program may not terminate!
==
Program Examples/minsort.term ...

Bounded variables :
goal : xs

minsort : => function may cause non � termination

appmin : => function may cause non � termination

remove : => function may cause non � termination

isPair :

Program may not terminate!
==
Program Examples/reach.term ...

Bounded variables :
goal : u v edges

reach : u v edges => function may cause non � termination

via : u v rest edges => function may cause non � termination

memberQ : x xs

Program quasi � terminates.
==
Program Examples/graphcolour � 1.term ...

Bounded variables :
graphcolour : g cs

colornode : cs node colorednodes

possible : color adjs colorednodes

228 Appendix C. Detailed Results

colorof : node colorednodes

colorrest : cs ncs colorednodes rest => function may cause non � termination

colorrest_thetrick : cs1 cs ncs colorednodes rest
=> function may cause non � termination

reverse : xs

revapp : xs rest

isPair : x

Program quasi � terminates.
==
Program Examples/graphcolour � 2.term ...

Bounded variables :
graphcolour : g cs

colornode : cs node colorednodes

possible : color adjs colorednodes

colorof : node colorednodes

colorrest : cs ncs colorednodes rest => function may cause non � termination

colornoderest : cs ncs node colorednodes rest
=> function may cause non � termination

colorrest_thetrick : cs1 cs ncs colorednodes rest
=> function may cause non � termination

reverse : xs

revapp : xs rest

C.1. Termination analysis 229

isPair : x

Program quasi � terminates.
==
Program Examples/graphcolour � 3.term ...

Bounded variables :
graphcolour : g cs

colornode : cs node colorednodes

possible : color adjs colorednodes

colorof : node colorednodes

colorrest : cs ncs colorednodes rest

colornoderest : cs ncs node colorednodes rest

reverse : xs

revapp : xs rest

isPair : x

Program terminates .
==
Program Examples/match.term ...

Bounded variables :
match : p s

loop : p s pp ss

Program terminates .
==
Program Examples/strmatch.term ...

Bounded variables :

230 Appendix C. Detailed Results

strmatch : patstr str

domatch : patcs cs n

prefix : precs cs

string2list : x

patstring2list : x

isPair : xs

Program terminates .
==
Program Examples/turing.term ...

Bounded variables :
run : prog tapeinput

turing : instrs prog => function may cause non � termination

lookup : i instrs

isPair :

Program may not terminate!
==
Program Examples/lambdaint.term ...

Bounded variables :
lambdaint : e

red : => function may cause non � termination

subst : => function may cause non � termination

isvarQ :

islamQ :

C.1. Termination analysis 231

mklam :

lam2var :

lam2body :

mkapp :

app2e1 :

app2e2 :

Program may not terminate!
==
Program Examples/int � loop.term ...

Bounded variables :
run : p l input

eeval : e ns vs l p

lookvar : x ns vs

lookbody : f p

lookname : f p

apply : op v1 v2

Program terminates .
==
Program Examples/int � while.term ...

Bounded variables :
run : p input

eeval : e ns p => function may cause non � termination

232 Appendix C. Detailed Results

lookvar : x ns

lookbody : f p

lookname : f p

apply : op

Program may not terminate!
==
Program Examples/int � dynscope.term ...

Bounded variables :
run : p input

eeval : e p => function may cause non � termination

lookvar : x => function may cause non � termination

lookbody : f p

lookname : f p

apply : op

Program may not terminate!

C.2 Binding-time analysis

==
Program Examples/contrived � 1.term ...
Result of BTA:
contrived_1 : a : s b :d

f : x :s y :s z : s d :d

g : u:s v :s w:d

C.2. Binding-time analysis 233

h : r : s s : s

dec : n:s

No variables made dynamic to ensure termination
==
Program Examples/contrived � 2.term ...
Result of BTA:
contrived_2 : a : s b :d

f : x :s y :s z : s d :d

g : u:s v :s w:d

h : r : s s : s insert SP

dec : n:s

No variables made dynamic to ensure termination
==
Program Examples/list.term ...
Result of BTA:
goal : x :s

listQ : xs : s

isNull : x :s

isPair : x :s

No variables made dynamic to ensure termination
==
Program Examples/fold.term ...
Result of BTA:
fold : a :d xs : s

234 Appendix C. Detailed Results

foldl : a :d xs : s

foldr : a :d xs : s

op : x1:d x2:d

isPair : xs : s

No variables made dynamic to ensure termination
==
Program Examples/fold.term ...
Result of BTA:
fold : a : s xs :d

foldl : a :d xs :d insert SP

foldr : a : s xs :d insert SP

op : x1:d x2:d

isPair : xs :d

No variables made dynamic to ensure termination
==
Program Examples/map.term ...
Result of BTA:
goal : xs : s

map : xs : s

f : x :s

No variables made dynamic to ensure termination
==
Program Examples/naiverev.term ...
Result of BTA:

C.2. Binding-time analysis 235

goal : xs : s

naiverev : xs : s

app : xs : s ys : s

No variables made dynamic to ensure termination
==
Program Examples/deeprev.term ...
Result of BTA:
goal : x :s

deeprev : x :s

deeprevapp : xs : s rest : s

revconsapp : xs : s r : s

isPair : x :s

No variables made dynamic to ensure termination
==
Program Examples/append.term ...
Result of BTA:
goal : x :s y :d

append : xs : s ys :d

No variables made dynamic to ensure termination
==
Program Examples/mergelists.term ...
Result of BTA:
goal : xs : s ys :d

merge : xs : s ys :d insert SP

236 Appendix C. Detailed Results

No variables made dynamic to ensure termination
==
Program Examples/addlists.term ...
Result of BTA:
goal : xs : s ys :d

addlist : xs : s ys :d

isPair : xs : s

No variables made dynamic to ensure termination
==
Program Examples/revapp.term ...
Result of BTA:
goal : x :s y :d

revapp : xs : s rest :d

No variables made dynamic to ensure termination
==
Program Examples/permute.term ...
Result of BTA:
goal : xs : s

permute : xs :d insert SP

select : x :d revprefix :d postfix :d insert SP

mapconsapp : x :d xss :d rest :d insert SP

revapp : xs :d rest :d insert SP

Variables permute_1 select_1 select_2 select_3 mapconsapp_1
mapconsapp_2 mapconsapp_3 revapp_1 revapp_2

made dynamic to ensure termination

C.2. Binding-time analysis 237

==
Program Examples/add.term ...
Result of BTA:
goal : x :s y :d

add : x :d y :d insert SP

Variable add_1 made dynamic to ensure termination
==
Program Examples/add.term ...
Result of BTA:
goal : x :d y :s

add : x :d y :s

No variables made dynamic to ensure termination
==
Program Examples/badd.term ...
Result of BTA:
goal : x :s y :d

badd : x :s y :d insert SP

No variables made dynamic to ensure termination
==
Program Examples/mul.term ...
Result of BTA:
goal : x :s y :d

mul : x :s y :d

add : x :d y :d insert SP

No variables made dynamic to ensure termination
==

238 Appendix C. Detailed Results

Program Examples/disjconj.term ...
Result of BTA:
disjconj : p :s

disjQ : p :s

conjQ : p :s

boolQ : p :s

isPair : xs : s

No variables made dynamic to ensure termination
==
Program Examples/duplicate.term ...
Result of BTA:
goal : x :s

duplicate : xs : s

No variables made dynamic to ensure termination
==
Program Examples/nestimeql.term ...
Result of BTA:
goal : x :s

nestimeql : x :d insert SP

immatcopy : x :d insert SP

Variables nestimeql_1 immatcopy_1 made dynamic to ensure termination
==
Program Examples/evenodd.term ...
Result of BTA:
evenodd : x :s

C.2. Binding-time analysis 239

evenQ : x :s

oddQ : x :s

isPair : xs : s

isNull : xs : s

No variables made dynamic to ensure termination
==
Program Examples/lte.term ...
Result of BTA:
goal : x :s y :d

lteQ : x :s y :d

evenQ : x :s

isPair : xs :d

isNull : xs : s

No variables made dynamic to ensure termination
==
Program Examples/lte.term ...
Result of BTA:
goal : x :d y :s

lteQ : x :d y :s

evenQ : x :d insert SP

isPair : xs :d

isNull : xs :d

240 Appendix C. Detailed Results

No variables made dynamic to ensure termination
==
Program Examples/member.term ...
Result of BTA:
goal : x :d xs : s

memberQ : x:d xs : s

No variables made dynamic to ensure termination
==
Program Examples/member.term ...
Result of BTA:
goal : x :s xs :d

memberQ : x:s xs :d insert SP

No variables made dynamic to ensure termination
==
Program Examples/ordered.term ...
Result of BTA:
goal : xs : s

orderedQ : xs : s

isPair : xs : s

No variables made dynamic to ensure termination
==
Program Examples/overlap.term ...
Result of BTA:
goal : xs : s ys :d

overlapQ : xs : s ys :d

memberQ : x:s xs :d insert SP

C.2. Binding-time analysis 241

isPair : xs :d

No variables made dynamic to ensure termination
==
Program Examples/select.term ...
Result of BTA:
select : xs : s

selects : x :s revprefix : s postfix : s

revapp : xs : s rest : s

No variables made dynamic to ensure termination
==
Program Examples/subsets.term ...
Result of BTA:
goal : xs : s

subsets : xs : s

mapconsapp : x :s xss : s rest : s

isPair : x :s

No variables made dynamic to ensure termination
==
Program Examples/anchored.term ...
Result of BTA:
goal : x :s y :d

anchored : x :s y :d

No variables made dynamic to ensure termination
==
Program Examples/anchored.term ...

242 Appendix C. Detailed Results

Result of BTA:
goal : x :d y :s

anchored : x :d y :d insert SP

Variable anchored_2 made dynamic to ensure termination
==
Program Examples/letexp.term ...
Result of BTA:
goal : x :s y :s

letexp : x :d y :s insert SP

Variable letexp_1 made dynamic to ensure termination
==
Program Examples/thetrick.term ...
Result of BTA:
goal : x :s y :d

f : x :s y :d insert SP

g : x :s y :d insert SP

lt : x :s y :s

No variables made dynamic to ensure termination
==
Program Examples/thetrick.term ...
Result of BTA:
goal : x :d y :s

f : x :d y :d insert SP

g : x :d y :d insert SP

lt : x :d y :s

C.2. Binding-time analysis 243

Variable g_2 made dynamic to ensure termination
==
Program Examples/intlookup.term ...
Result of BTA:
run : e :d p :s

intlookup : e :d p :s insert SP

lookup : fnum:d p:s

No variables made dynamic to ensure termination
==
Program Examples/nolexicord.term ...
Result of BTA:
goal : a1 :s b1:s a2 :s b2:s a3 :s b3:s

nolexicord : a1 :s b1:s a2 :s b2:s a3 :s b3:s

No variables made dynamic to ensure termination
==
Program Examples/nolexicord.term ...
Result of BTA:
goal : a1 :s b1:s a2 :s b2:s a3 :s b3:d

nolexicord : a1 :s b1:s a2 :s b2:s a3 :d b3:d insert SP

No variables made dynamic to ensure termination
==
Program Examples/decrease.term ...
Result of BTA:
goal : x :s

decrease : x :s

244 Appendix C. Detailed Results

No variables made dynamic to ensure termination
==
Program Examples/equal.term ...
Result of BTA:
goal : x :s

equal : x :s insert SP

No variables made dynamic to ensure termination
==
Program Examples/increase.term ...
Result of BTA:
goal : x :s

increase : x :d insert SP

Variable increase_1 made dynamic to ensure termination
==
Program Examples/nestdec.term ...
Result of BTA:
goal : x :s

nestdec : x :s

dec : x :s

No variables made dynamic to ensure termination
==
Program Examples/nesteql.term ...
Result of BTA:
goal : x :s

nesteql : x :s insert SP

eql : x :s insert SP

C.2. Binding-time analysis 245

No variables made dynamic to ensure termination
==
Program Examples/nestinc.term ...
Result of BTA:
goal : x :s

nestinc : x :d insert SP

inc : x :d insert SP

Variables nestinc_1 inc_1 made dynamic to ensure termination
==
Program Examples/sp1.term ...
Result of BTA:
sp1 : x :s y :d

f : x :s y :d insert SP

g : x :s y :d insert SP

h : x :s y :d insert SP

r : x :s y :d

No variables made dynamic to ensure termination
==
Program Examples/shuffle.term ...
Result of BTA:
goal : xs : s

shuffle : xs :d insert SP

reverse : xs :d insert SP

append : xs :d ys :d insert SP

246 Appendix C. Detailed Results

Variables shuffle_1 reverse_1 append_1 append_2 made dynamic to ensure termination
==
Program Examples/assrewrite.term ...
Result of BTA:
assrewrite : exp :s

rewrite : exp :d insert SP

isPair : xs :d

Variables rewrite_1 isPair_1 made dynamic to ensure termination
==
Program Examples/game.term ...
Result of BTA:
goal : p1:s p2:s moves:s

game : p1:s p2:s moves:s

No variables made dynamic to ensure termination
==
Program Examples/vangelder.term ...
Result of BTA:
goal : x :s y :d

e : a : s b :d

q : x :s y :d insert SP

p : x :s y :d insert SP

r : x :s y :d insert SP

t : x :s y :d insert SP

isPair : xs :d

C.2. Binding-time analysis 247

No variables made dynamic to ensure termination
==
Program Examples/power.term ...
Result of BTA:
goal : x :d n:s

power : x :d n:s

mult : x :d y :d insert SP

add : x :d y :d insert SP

No variables made dynamic to ensure termination
==
Program Examples/binom.term ...
Result of BTA:
goal : n:s k :d

binom : n:s k :d

No variables made dynamic to ensure termination
==
Program Examples/binom.term ...
Result of BTA:
goal : n:d k : s

binom : n:d k : s insert SP

No variables made dynamic to ensure termination
==
Program Examples/ack.term ...
Result of BTA:
goal : m:s n:d

248 Appendix C. Detailed Results

ack : m:s n:d insert SP

No variables made dynamic to ensure termination
==
Program Examples/gcd � 1.term ...
Result of BTA:
goal : x :s y :d

gcd : x :d y :d insert SP

gt : x :d y :d insert SP

monus : x :d y :d insert SP

lgth : x :d insert SP

No variables made dynamic to ensure termination
==
Program Examples/gcd � 2.term ...
Result of BTA:
goal : x :s y :d

gcd : x :d y :d insert SP

gt : x :d y :d insert SP

monus : x :d y :d insert SP

lgth : x :d insert SP

No variables made dynamic to ensure termination
==
Program Examples/mergesort.term ...
Result of BTA:
goal : xs : s

C.2. Binding-time analysis 249

mergesort : xs :d insert SP

splitmerge : xs :d xs1 :d xs2 :d insert SP

merge : xs1 :d xs2 :d insert SP

isPair : xs :d

Variables mergesort_1 splitmerge_1 splitmerge_2 splitmerge_3
merge_1 merge_2 isPair_1 made dynamic to ensure termination

==
Program Examples/quicksort.term ...
Result of BTA:
goal : xs : s

quicksort : xs :d insert SP

part : x :d xs :d xs1 :d xs2 :d insert SP

app : xs :d ys :d insert SP

isPair : xs :d

Variables quicksort_1 part_1 part_2 part_3 part_4 app_1 app_2
isPair_1 made dynamic to ensure termination

==
Program Examples/minsort.term ...
Result of BTA:
goal : xs : s

minsort : xs :d insert SP

appmin : min:d rest :d xs :d insert SP

remove : x :d xs :d insert SP

isPair : xs :d

250 Appendix C. Detailed Results

Variables minsort_1 appmin_1 appmin_2 appmin_3 remove_1 remove_2
isPair_1 made dynamic to ensure termination

==
Program Examples/reach.term ...
Result of BTA:
goal : u:d v :d edges : s

reach : u:d v :d edges : s insert SP

via : u:d v :d rest : s edges : s insert SP

memberQ : x:d xs : s

No variables made dynamic to ensure termination
==
Program Examples/reach.term ...
Result of BTA:
goal : u:s v :d edges : s

reach : u:s v :d edges : s insert SP

via : u:s v :d rest : s edges : s insert SP

memberQ : x:d xs : s

No variables made dynamic to ensure termination
==
Program Examples/graphcolour � 1.term ...
Result of BTA:
graphcolour : g :d cs : s

colornode : cs : s node:d colorednodes :d

possible : color : s adjs :d colorednodes :d insert SP

C.2. Binding-time analysis 251

colorof : node:d colorednodes :d insert SP

colorrest : cs : s ncs : s colorednodes :d rest :d insert SP

colorrest_thetrick : cs1 : s cs : s ncs :d colorednodes :d rest :d insert SP

reverse : xs :d

revapp : xs :d rest :d insert SP

isPair : x :d

No variables made dynamic to ensure termination
==
Program Examples/graphcolour � 1.term ...
Result of BTA:
graphcolour : g :s cs :d

colornode : cs :d node:s colorednodes :d insert SP

possible : color :d adjs : s colorednodes :d

colorof : node:s colorednodes :d insert SP

colorrest : cs :d ncs :d colorednodes :d rest : s insert SP

colorrest_thetrick : cs1 :d cs :d ncs :d colorednodes :d rest : s insert SP

reverse : xs :d

revapp : xs :d rest :d insert SP

isPair : x :d

No variables made dynamic to ensure termination
==
Program Examples/graphcolour � 2.term ...

252 Appendix C. Detailed Results

Result of BTA:
graphcolour : g :d cs : s

colornode : cs : s node:d colorednodes : s

possible : color : s adjs :d colorednodes :d insert SP

colorof : node:d colorednodes :d insert SP

colorrest : cs : s ncs : s colorednodes :d rest :d insert SP

colornoderest : cs : s ncs : s node:d colorednodes :d rest :d insert SP

colorrest_thetrick : cs1 : s cs : s ncs : s colorednodes :d rest :d insert SP

reverse : xs :d

revapp : xs :d rest :d insert SP

isPair : x :d

No variables made dynamic to ensure termination
==
Program Examples/graphcolour � 2.term ...
Result of BTA:
graphcolour : g :s cs :d

colornode : cs :d node:s colorednodes : s insert SP

possible : color :d adjs : s colorednodes :d

colorof : node:s colorednodes :d insert SP

colorrest : cs :d ncs :d colorednodes :d rest : s insert SP

colornoderest : cs :d ncs :d node:s colorednodes :d rest : s insert SP

colorrest_thetrick : cs1 :d cs :d ncs :d colorednodes :d rest : s insert SP

C.2. Binding-time analysis 253

reverse : xs :d

revapp : xs :d rest :d insert SP

isPair : x :d

No variables made dynamic to ensure termination
==
Program Examples/graphcolour � 3.term ...
Result of BTA:
graphcolour : g :d cs : s

colornode : cs : s node:d colorednodes : s

possible : color : s adjs :d colorednodes :d insert SP

colorof : node:d colorednodes :d insert SP

colorrest : cs : s ncs : s colorednodes :d rest :d insert SP

colornoderest : cs : s ncs : s node:d colorednodes :d rest :d insert SP

reverse : xs :d

revapp : xs :d rest :d insert SP

isPair : x :d

No variables made dynamic to ensure termination
==
Program Examples/graphcolour � 3.term ...
Result of BTA:
graphcolour : g :s cs :d

colornode : cs :d node:s colorednodes : s insert SP

254 Appendix C. Detailed Results

possible : color :d adjs : s colorednodes :d

colorof : node:s colorednodes :d insert SP

colorrest : cs :d ncs :d colorednodes :d rest : s insert SP

colornoderest : cs :d ncs :d node:s colorednodes :d rest : s insert SP

reverse : xs :d

revapp : xs :d rest :d insert SP

isPair : x :d

No variables made dynamic to ensure termination
==
Program Examples/match.term ...
Result of BTA:
match : p :s s :d

loop : p :s s :d pp:s ss :d insert SP

No variables made dynamic to ensure termination
==
Program Examples/strmatch.term ...
Result of BTA:
strmatch : patstr : s str :d

domatch : patcs : s cs :d n:d insert SP

prefix : precs : s cs :d

string2list : x :d

patstring2list : x :s

isPair : xs :d

C.2. Binding-time analysis 255

Variable domatch_3 made dynamic to ensure termination
==
Program Examples/strmatch.term ...
Result of BTA:
strmatch : patstr :d str : s

domatch : patcs :d cs : s n:s

prefix : precs :d cs : s

string2list : x :s

patstring2list : x :d

isPair : xs :d

No variables made dynamic to ensure termination
==
Program Examples/turing.term ...
Result of BTA:
run : prog : s tapeinput :d

turing : instrs : s revltape :d rtape :d prog : s insert SP

lookup : i : s instrs : s

isPair : xs :d

No variables made dynamic to ensure termination
==
Program Examples/lambdaint.term ...
Result of BTA:
lambdaint : e : s

red : e :d insert SP

256 Appendix C. Detailed Results

subst : x :d a :d e :d insert SP

isvarQ : e :d

islamQ : e :d

mklam : n:d e :d

lam2var : e :d

lam2body : e :d

mkapp : e1 :d e2 :d

app2e1 : e :d

app2e2 : e :d

Variables red_1 subst_1 subst_2 subst_3 isvarQ_1 islamQ_1 mklam_1
mklam_2 lam2var_1 lam2body_1 mkapp_1 mkapp_2 app2e1_1
app2e2_1 made dynamic to ensure termination

==
Program Examples/int � loop.term ...
Result of BTA:
run : p :s l : s input :d

eeval : e : s ns:s vs :d l : s p :s

lookvar : x :s ns:s vs :d

lookbody : f : s p :s

lookname : f : s p :s

apply : op :s v1:d v2:d

C.2. Binding-time analysis 257

No variables made dynamic to ensure termination
==
Program Examples/int � loop.term ...
Result of BTA:
run : p :s l :d input :d

eeval : e : s ns:s vs :d l :d p :s insert SP

lookvar : x :s ns :s vs :d

lookbody : f : s p :s

lookname : f : s p :s

apply : op :s v1:d v2:d

No variables made dynamic to ensure termination
==
Program Examples/int � while.term ...
Result of BTA:
run : p :s input :d

eeval : e : s ns:s vs :d p :s insert SP

lookvar : x :s ns :s vs :d

lookbody : f : s p :s

lookname : f : s p :s

apply : op :s v1:d v2:d

No variables made dynamic to ensure termination
==
Program Examples/int � dynscope.term ...
Result of BTA:
run : p :s input :d

258 Appendix C. Detailed Results

eeval : e : s ns:d vs :d p :s insert SP

lookvar : x :s ns:d vs :d insert SP

lookbody : f : s p :s

lookname : f : s p :s

apply : op :s v1:d v2:d

Variables eeval_2 lookvar_2 made dynamic to ensure termination

