Operational Reduction Models
for
Functional Programming Languages

Kristoffer Hggsbro Rose*
Ph.D. Thesis

DIKU, University of Copenhagen
Universitetsparken 1
2100 Kgbenhavn @, Denmark

Accepted February 9, 1996

Author’s E-mail: (kris@diku.dk). W3: (URrL: http://www.diku.dk/~kris/).

Operational Reduction Models for Functional Programming Languages.
Ph.D. dissertation, revised version 2.12 of May 20, 1997.

Copyright (©) 1992-1996, Kristoffer Hggsbro Rose, all rights reserved.

Typeset with the TEX typesetting system (Knuth 1984), using the WTEX format (Lamport 1994),
with several essential packages, notably AA(S-BTEX (American Mathematical Society 1995) and
Xy-pic (Rose and Moore 1995).

Preface

Gentle Reader, the present report is submitted as part of the requirements
for obtaining “Ph.D.-graden ved Kgbenhavns Universitets Naturvidenskabelige
Fakultet” to be presented to the public and defended 14.15 on Friday, Febru-
ary 9, 1996, in Lille Auditorium, Datalogisk Institut, Kgbenhavns Universitet
(DIKU), Universitetsparken 1, 2100 Kgbenhavn @, Danmark.

The THESIS, section 1.1, summarises the claimed scientific contributions
concisely; the remainder of chapter 1 explains the themes and why we find
the study undertaken in the subsequent chapters interesting and significant.
This report is intended to be self-contained for someone with a background in
computer science and a certain amount of mathematical maturity. To make this
as wide as possible, chapter 2 is devoted to brief presentations of the preliminaries
of the subject areas combined in this thesis whereas the main chapters include
few definitions and explanations of such background.

Acknowledgements. First and foremost, I wish to thank Jan Willem Klop not
only for the effort of reading this work but also for being a major force in estab-
lishing and clarifying the essential concepts of first- as well as higher-order rewrit-
ing (both to me personally and to the community at large), a feat without which
this thesis could not have been.

Warm thanks also go to Peter Sestoft for evaluating and valuably commenting
this work as well as contributing essentially to a sound terminology for lazy
evaluation and abstract machines that has made the task of writing this thesis
much easier.

And of course I could not have gotten as far as this without the continued
calm perspective of my supervisor, Neil Jones, who kept insisting on the explicit
formulation of relevance and purpose of the thesis even in times where such high
goals seemed inconsistent with the author’s state of mind.

The quality of the thesis would surely have suffered severely had it not been

3

for the healthy scepticism of Roel Bloo that not only resulted in the rewarding
collaboration on preservation of strong normalisation for named calculi pre-
sented in the first sections of chapter 3, but prompted me to clarify numerous
imprecise concepts throughout the thesis.

A special thanks goes to John Hughes, who hosted me for a very pleasant and
rewarding year at Department of Computer Science at Chalmers. Here I learned
how pure functional programming can be used seriously, and I thank John and
Thomas Johnsson for sharing their graph reduction insight with me — without
it I would surely not appreciate the complexity of evaluation of pure functional
programs as the subject deserves. Sincere thanks go to the individuals Zena
Ariola, Henk Barendregt, Pierre Lescanne, Luc Maranget, Torben Mogensen,
Rob Nederpelt, Simon Peyton Jones, Rinus Plasmeijer, John Reynolds, Mary
Sheeran, Vincent van Oostrom, Femke van Raamsdonk, and several anonymous
referees, for providing and provoking key insights at crucial moments; I hope
you will find that I have exploited them as they deserve!

I am grateful to the following organisations and programmes for providing
funding for travel: Awustralian Research Council, Det Danske Forskningsrad,
Datalogi ved Chalmers Tekniska Hogskola/Goteborgs Universitet, Department
of Computing Science of Nordisk Forskerakademi, Statens Naturvidenskabelige
Forskningsrdd’s DART (Design And Reasoning about Tools) programme, and
Torkil Holms Fond, and to the following for supporting my visiting: Carnegie
Mellon University, Centrum der Wiskunde en Informatica, Katholieke Univer-
siteit Nijmegen, Macquarie University, Oregon Graduate Institute, Technische
Universiteit Eindhoven, and University of Oregon (Eugene).

A special huge thank goes to Ross Moore for the continued collaboration
on the diagram macro package Xy~pic, an enterprise that has been even more
rewarding than time consuming, and without which there would only be primi-
tive pictures in this thesis!

And I have not forgotten uncountable pleasant discussions in Olivier Danvy’s
usually tiny office usually in the late afternoon where many intuitions about the
themes present in this thesis were helped out of their original usually uninformed
state.

Finally, I am grateful to my wife, Eva Rose, for pleasant collaboration on
complexity of abstract machines with cyclic data structures, her ability to always
extract the essential, and for sharp comments and even for being nice to me when
least reasonable these last months.

Kristoffer Hpgsbro Rose
Kpbenhavn, February 1996

Contents

Preface 3
Contents 5
List of Figures 7
1 Introduction 9
1.1 Thesis v v v i e e e e e e e e e 9
1.2 Themes o i i i i e e 13
1.3 Motivations and History 16
1.4 OVErview o i it e e e e 27
2 Preliminaries 29
2.1 Reductions 30
2.2 Inductive Notations 36
23 ACalculus. 41
2.4 Strategies for A-Calculus L. 44
2.5 Namefree A-Calculus 50
2.6 Combinatory Reduction Systems (CRS) 51
2.7 Summary. o e e e 60
3 Explicit Conservative Extensions of A-calculus 61
3.1 Explicit Substitution (Ax) L. 63
3.2 Preservation of Strong Normalisation (PSN) 75
3.3 Explicit Substitution & Naming. 83
3.4 A-graphs and Explicit Sharing 96
3.5 Explicit Substitution & Sharing L. 107
3.6 Summary Lo 112

Contents

Machines for A-calculus 113
4.1 Abstract Machines oo, 114
4.2 A Call-by-Name Abstract Machine 117
4.3 Towards a Call-by-Value Abstract Machine 124
4.4 Abstract Machines with Sharing 129
45 SumMmary i e e e e e e e e e e e e 132
Operational Combinatory Reduction Models 133
5.1 Explicit Substitutes 0. 134
5.2 Explicit Addresses o e 142
5.3 CRS and Functional Programs 146
5.4 Summary L oo e e e e e e e e 152
Implementation of Combinatory Reduction Systems 155
6.1 Idioms e e 156
6.2 Datatypes e 159
6.3 Imput e 165
6.4 Reduction e 174
6.5 Strategies L L 182
6.6 Analysis 186
6.7 Explicification. Lo 192
6.8 Inferences 197
6.9 Main Program & Bootstrap o Lo 199
6.10 SUMMATY e e e e e e e e e e e e e e e e e e 204
Conclusions 205
Appendix 207
A.1 Running the CRS interpreter 207
A2 A-calculus e 212
A3 PCF . . . e e e e 217
A4 Pretty-printing Metaterms with Redexes 225
Bibliography 233

Index

List of Figures

1.1
1.2
1.3

2.1
2.2

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11

4.1
4.2
4.3
4.4
4.5
4.6

5.1
5.2
5.3

Tree for 6th Fibonacci number. 23
Graph for 6th Fibonacci number. 23
Cyclic data structure representations. 24
Common A-calculus strategies. 45
Symbolic differentiation CRS., 59
Explicitness dimensions and selected calculi.. 62
Axgc-reduction graph for (Ay.(Az.z)y)x. 68
Simplified version of Melliés’s counterexample to PSN. 76
Garbage-free Axlgc-reduction graph for (Ay.(Az.z)y)x. 79
A reduction in Av (left) and Ax (right).. 84
AU, o e e e e e e e e e e e 85
AS. o e e e e e e e 92
AX o e 94
AC. o e e e e e e e e e e e e e e e 95
Example Wadsworth A-graph. 104
The Call-by-Need calculus, At - - - - & o o o o o o oo oo oL L 110
Call-by-Name explicit substitution calculus: Axy. 118
Abstract Axp-machine: Ax M.o o000l 122
Call-by-Value explicit substitution calculus: Axy. 126
Abstract Axy-machine: AxyM. 00 128
Sharing Call-by-Name explicit substitution calculus: Axay. . . . 130
Abstract Axy-machine with sharing: xayM. 131
Explicification of CRS Rinto ESCRSRx. 138
Plotkin’s PCF+pairsas CRS. 148
PCF+pairs with cyclic sharing as CRSar. 150

7

List of Figures

5.4 PCF+pairs as CRSar after explicification of substitutions. 151

A.1 Help message from CRS interpreter. 209

Introduction

We commence by presenting our THESIS as section 1.1. Following, we explain the
words of the title in general computer science terms in section 1.2, and give some
general history of related work and motivating remarks in section 1.3. Finally,
in section 1.4, we give a brief roadmap to the dissertation.

1.1 Thesis

WE OBSERVE that functional programming languages are very high-level lan-
guages in that they facilitate mathematical reasoning about the meaning of
programs at a high abstraction level.

WE OBSERVE that usual studies of operational aspects of functional programs
are very low-level in the sense that reasoning in an operationally faithful way,
e.g., including space or time resources requirements, requires knowledge about
the used implementation technology, including knowledge of the applied memory
model and evaluation strategy (including optimisations made before evaluat-

ing).

WE cLAIM that the gap between these two observations is an artifact of the gap
between the two main models of computation: Church’s (1936) ‘A-calculus’ and
Turing’s (1936) ‘machines’ because of the difference in the size of the compu-
tation step when compared to real computers: in general, elementary steps of

10 Introduction Chapter 1

real-world computers are smaller than A-steps and larger than Turing-steps.

WE ADVOCATE that a solution to this problem is found through studies of the
following three paradigms:

A. Ezplicitness: Syntactically conservative extensions that, essentially, refine
the view of Church just sufficiently for the notion of computation step to
be faithful to what a computer can do with respect to a particular aspect
of the complexity of mechanical evaluation, e.g., sharing of computation.

B. Strategies: Restrictions on the ‘normal’ arbitrary reductions that make
implementation more efficient, e.g., Call-by-Name reduction.

C. Definable extensions: Extra constructions that make it possible to realise
powerful language constructions for data, operations, etc., that cannot be
effectively implemented in the other paradigms, e.g., explicit recursion.

WE OBSERVE that all three paradigms seem to begin with the A-calculus and
can be combined orthogonally, e.g., sharing, call-by-name, and explicit recursion
combine to form lazy evaluation. We develop these paradigms in turn, treating
for each its combination with the previous ones.

1.1.1 Contributions. Chapter 3. Explicit Conservative Extensions of A-calculus.

A. WE PRESENT a naive ezxplicit substitution calculus, Ax, incorporating
only the minimal substitution definition of Curry and Feys (1958) and
the variable convention of Barendregt (1984), and we prove that Ax is a
conservative extension of the A-calculus [section 3.1].

B. WE PROVE that Ax preserves strong normalisation (PSN) of A-calculus.
Hence using Ax gives finite shortest and longest reduction sequences exact-
ly as A-calculus (we give a direct proof in contrast to previously published
proofs). Conversely we show how even the most modest extension towards
composition of substitution break PSN, essentially providing much simpli-
fied versions of Melliés’s (1995) counterexample to PSN for Ao [section 3.2,
joint research with Roel Bloo].

c. WE SYNTHESISE from Ax and de Bruijn’s (1972) namefree notation for A-
terms several published calculi, essentially factoring them into the explicit
substitution component Ax and an explicit naming component. Specifically
we describe Av of Lescanne (1994a), As of Kamareddine and Rios (1995),

Section 1.1 Thesis 11

and Ax of Lescanne and Rouyer-Degli (1995) this way; we can show directly
that this factoring happens in such a way that PSN is maintained. This
gives new direct proofs for preservation of strong normalisation for these
calculi (existing proofs are highly indirect); the modularity of the proofs
demonstrate that ezplicit naming and substitution are orthogonal con-
cerns. Similarly we demonstrate how Ao of Abadi, Cardelli, Curien and
Lévy (1991) factors into an extension of Ax which does not possess PSN
[section 3.3].

D. WE ANALYSE ezplicit sharing as present in Wadsworth’s (1971) A-graph
reduction, and present an abstract form of sharing based on addressing
which we use to redefine A-graph rewriting to use addresses, Aa, with which
we can expose the main difficulties of Wadsworth’s approach [section 3.4].

E. WE SYNTHESISE explicit substitution and explicit sharing: the resulting
Axa-calculus makes reasoning about sharing possible. In particular its com-
plexity is fasthful to A-calculus reduction algorithms in that the length
of reduction mimics the best that current A-calculus implementations can
do [section 3.5].

1.1.2 Contributions. Chapter 4. Machines for A-calculus.

WE OBSERVE that mechanical evaluation of A-terms in the tradition of Landin
(1964) is most often expressed in terms of a reduction strategy that dictates the
sequence of contractions.

WE OBSERVE that program transformation of A-terms usually correspond to
reductions in A-calculus but rarely to reductions using the chosen strategy of
evaluation.

WE cLAIM that this is remedied by studying the behaviour of reduction strategies
more abstractly:

A. WE sHOW how the generalisation of Plotkin’s (1975) Call-by-Name reduc-
tion strategy for A-calculus to Ax (on closed terms) gives a system that can
be systematically reduced, 1n a way preserving complezity, to a gener-
ic A-calculus machine (the machine is similar to published ‘normal order’
machines) [section 4.2].

12 Introduction Chapter 1

B. WE sHOwW how a localised representation of sharing is possible within
this strategy and gives rise in the same way to a generic A-graph reduc-
tion machine (again the machine is similar to published (acyclic) ‘lazy’
machines) [section 4.4].

c. WE OUTLINE the similar derivation of a machine for Call-by-Value reduc-
tion.

1.1.3 Contributions. Chapter 5. Operational Combinatory Reduction Models.

WE OBSERVE that Klop’s (1980) combinatory reduction systems (CRS) con-
stitute a generalisation of the essential properties of functional programmang,
however, the computation steps of CRS correspond in complexity to the compu-
tation steps of A-calculus.

WE cLAIM that functional programs (in the form of recursive equations) can be
studied with the same amount of operational detail as for A-calculus, by applying
the previous techniques:

A. WE IDENTIFY what problems exist with CRS reduction before the number
of steps in a reduction can be said to be a complexity measure.

B. WE SYNTHESISE ezplicit substitution CRS, generalising the A-calculus
notion to make it possible to obtain an explicit substitution version of any
functional program.

c. WE SYNTHESISE a notion of explicit sharing CRS that also captures cyclic
structures.

D. WE SYNTHESISE ezxplicit substitution and sharing CRS from the above
to provide a computation model that allows observation of operational
behaviour of functional programs.

1.1.4 Contributions. Chapter 6. Implementation of Combinatory Reduction Sys-
tem.

WE DEMONSTRATE that the claims of operational faithfulness made in the previ-
ous section is valid by programming CRS reduction and analysing the behaviour
for the subclass which is claimed operationally faithful to computers. We give
several larger examples of reduction in the appendix.

Section 1.2 Themes 13
1.2 Themes

In this section we place the dissertation in perspective as a study within com-
puter science by giving, backwards, an explanation of each of the themes of
the dissertation as manifested by the words in the title, “Operational Reduction
Models of Functional Programming Languages” (the dictionary entries are taken
from Collins 1979).

“Languages”

language ('leggwidsz) n. 1. a system for the expression of thoughts, feelings, etc., by
the use of spoken sounds or conventional symbols. 2. the faculty of the use of such
systems, which is a distinguishing characteristic of man as compared with other
animals. 3. the language of a particular nation or people: the French language.
4. any other systematic or nonsystematic means of communication, such as gesture
or animal sounds: the language of love. 5. the specialised vocabulary used by a
particular group: medical language. 6. a particular manner of style of verbal
expression: your language is disgusting. 1. Computer technol. See programming
language. 8. Linguistics. another word for langue.

In general terms a language is a means of communication between individ-
uals. Languages are highly specialised to be useful for this purpose, and have
gained structure that means that we learn them quickly and efficiently as children
through a purely oral and social process as the necessary first step towards gain-
ing sentience. However, otherwise this process is still poorly understood except
that it is helpful when learning new languages as an adult to use a description
of the language grammar split into syntaz, describing how to form utterances,
and semantics, describing what meaning is conveyed.

In computer science the word ‘language’ is used in a much more mundane
way, since we only deal with languages that have been designed — at least this
dissertation is concerned with artificial languages® only, except, of course, that
it is itself written in English.2 The only relic of natural languages is that we still
separate the (for us mathematical) descriptions of syntax and semantics.

We summarise the notations used for syntax in section 2.2; for semantics we
will use rewriting as discussed below.

1When a distinction is needed, real languages are often referred to as natural languages.
2We hope that the author’s Danish mother tongue is not too apparent.

14 Introduction Chapter 1

“Programming”

programming language n. a language system by which instructions to a computer
are put into a coded form, using a well-defined set of characters that is mutually
comprehensible to user and computer. See also FORTRAN, ALGOL, COBOL, PL/I,
machine language.

In order to solve some problem with a computer, two things must be done.
First the problem should be so precisely understood that it is possible to give
an algorithm that solves the problem as a sequence of small steps that are so
obvious that a computer can perform them. Programmaing is the activity of
formulating the algorithm in such terms that a computer can understand it;
usually this entails implementing the algorithm in a particular programmaing
language designed for the dual purpose of being on the one hand sufficiently
expressive and readable for the human programmer’s use, and on the other hand
sufficiently concise and primitive that the computer will, in fact, execute the
intended algorithm. Programming languages are normally categorised as high-
level or low-level depending on whether the first or second part of this dual
purpose is given priority, however, all programming languages satisfy both.

Since the seminal ArgoL (Naur et al. 1960), programming languages are
invariably specified through a grammar® consisting of an inductive definition
of the syntax of legal ‘utterances’ (programs) combined with a semantics that
assigns to each such program its ‘meaning’ (what it computes).

For an introduction to programming languages in general we refer the reader
to any of the immense number of introductory texts on the subject (those we
recommend will be mentioned below).

“Functional”

functional ('fagkfsn®l) adj. 1. of, involving, or containing a function or functions.
2. practical rather than decorative; utilitarian: functional architecture. 3. capable
of functioning; working. 4. Psychol. a. relating to the purpose or context of a
behaviour. b. denoting a disorder without structural change. ~ n. 5. Maths. a
function whose domain is a set of functions and whose range is another set of
functions that can be a set of numbers.

In computer science, functional programming languages are high-level pro-
gramming languages where the function definition notion is the chief means of
structuring programs. The idea behind this is the thesis of Church (1936): that

3Hence the “ grammar = syntax + semantics ” paradigm of linguistics is maintained.

Section 1.2 Themes 15

any mechanically computable function can be realised as a term in a particular
formalism, the A-calculus, combined with the insight of Kleene and Godel in the
1930s that any A-term can be expressed as a collection of recursive equations
defining (mutually) recursive functions. For a general introduction to modern
pure functional programming we recommend the introductory texts of Bird and
Wadler (1988) and Hudak and Fasel (1992).

“Models”

model ('mod®]l) n. 1. a. a representation, usually on a smaller scale, of a device,
structure, etc. b. (as modifier): a model train. 2. a. a standard to be imitated:
she was my model for good scholarship. b. (as modifier): a model wife. 3. a
representative form, style, or pattern. 4. a person who poses for a sculptor, painter,
or photographer. 5. a person who wears clothes to display them to prospective
buyers; mannequin. 6. a preparatory sculpture in clay, wax, etc., from which the
finished work is copied. 7. a design or style, esp. one of a series of designs of
a particular product: last year’s model. 8. Brit. a. an original unique article
of clothing. b. (as modifier): a model coat. 9. a simplified representation or
description of a system or complex entity, esp. one designed to facilitate calculations
and predictions.

A model is a mathematical structure that captures essential aspects which we
wish to observe in a concrete system. A model of a programming language is
correct (or sound) if it captures the value of computations without error: if two
programs can compute different values then they should correspond to different
objects in the model. Dually, models can be complete: this is the case when
an observable difference in the model means that the corresponding programs
are ‘really different’. Models that are both sound and complete are called fully
abstract. We shall not be concerned with completeness in this dissertation,
since our chief concern is to enrich models to make particular aspects of the
computation process observable.

“Reduction”

reduction (ri'dakfen) n. 1. the act or process of an instance of reducing. 2. the
state or condition of being reduced. 3. the amount by which something is reduced.
4. a form of an original resulting from a reducing process, such as a copy on a
smaller scale. 5. a simplified form, such as an orchestral score arranged for piano.
6. Maths. a. the process of converting a fraction into decimal form. b. the process of
dividing out the common factors in the numerator and denominator of a fraction;
cancellation.

16 Introduction Chapter 1

As the example above hinted, we will model program evaluation by rewriting.
Systems defining such rewriting are usually called reduction systems. A formal
description of the reduction system we used to describe the implementation of
fib above would be a reduction model for the fib program. In general, we can
make a reduction model for a functional programming language by associating
to each actual program a reduction system that evaluates the program. This is
what we will do in this dissertation. We summarise reduction systems in section
2.1.

“Operational”

operation (aps'reifon) n. 1. the act, process, or manner of operating. 2. the state
of being in effect, in action, operative (esp. in the phrases in or into operation).
3. a process, method, or series of acts, esp. of a practical or mechanical nature.
4. Surgery. any manipulation or one of its organs or parts to repair damage, arrest
the progress of disease, remove foreign matter, etc. 5. a. a military or naval action,
such as a campaign, manoevre, etc. b. (cap. and prenominal when part of a
name): Operation Crossbow. 6. Maths. any procedure, such as addition, multi-
plication, involution, or differentiation, in which one or more numbers or quantities
are operated upon according to specific rules. 7. a commercial or financial transac-
tion.

operational (apa'reifon®l) adj. 1. of or relating to an operation or operations. 2. in
working order and ready for use. 3. Mzilitary. capable of, needed in, or actually
involved in operations.

Something is operational when it can be run on a computer. This means that
in this dissertation we concentrate on the algorithms, using Plotkin’s (1981)
definition of operational: “intuitively corresponding to computation steps ...
? . This is narrower than some other definitions of operational semantics in that
we insist that the computation steps observable in the model should be mappable
onto a real computer. We will, of course, want to compare the models we obtain,
therefore we will keep strictly to reduction systems over inductively defined sets.

1.3 Motivations and History

We restate our thesis motivations and then qualify it by discussing several his-
toric issues.

Section 1.3 Motivations and History 17

Motivations

Pure functional programming is spreading ... mostly indirectly through a grow-
ing understanding of the advantages of its principal feature, referential trans-
parency; this is useful for example for ensuring modularity of large programming
systems (we give an example below).. Indeed even purely functional program-
ming languages are becoming more widely used.

Computationally these languages are commonly understood through a map-
ping to Church’s (1936) A-calculus model of the computable functions (we return
to this below). This is a very abstract formalism, and the association has intro-
duced a major obstacle for functional languages, namely the lack of intuition of
operational properties, such as time and space complexity, of the execution of
functional programs. For this reason research in functional programming lan-
guages has tended to focus on either very ‘high-level’ issues such as potent pro-
gram transformation (because it is possible!) or on correspondingly ‘low-level’
problems such as compilation into efficient machine code (because it is diffi-
cult!). And consequenctly it is very difficult to reason abstractly about the time
and space complexity of algorithms when they are expressed using a functional
programming paradigm.

In order to attack this problem we will briefly outline why we consider func-
tional programming nice, and touch on some aspects of what a computer is, how
its behaviour is analysed through complexity considerations, why this is difficult
for in particular sharing considerations, and finally mention some means used
to describe these issues in the past.

Why functional programming?

It is usually claimed that the origins of functional programming is the A-calculus
but Church’s interest was in the notion of computable functions (on numbers)
induced by A-definability (to be explained below). However, the related notion
of recursive equations was always a popular specification notation so when
McCarthy (1960) showed that recursive equations could be directly implemented
using a A-calculus evaluator, the resulting new style of programming quickly
became popular in the computer science community.

In recent years, pure functional programming languages have shifted from
being mere scientific toys to become a serious basis for implementations of large
systems. Or rather: they have had a (quiet) impact on standards and extensions
of (non-functional) languages, protocols, etc, because of the in our opinion main

18 Introduction Chapter 1

feature of pure functional programming languages: referential transparency.
An example of this is the requests of the HTTP protocol (Berners-Lee, Fielding
and Frystyk 1995) for the world wide web (Cailliau 1995) which is stateless
in the sense that each request contains full context information. This has been
quoted as an essential property for making HTTP realisable on a large scale
because servers do not need to keep track of active connections.

However, while the advantages of statelessness seem obvious, the disadvan-
tages are equally obvious. Using the example of HTTP, one disadvantage is that
the size of requests is sometimes larger than the answer (this is not noticeable at
present because the unit of network communication is quite large, typically 2'4
bits — but the communication unit is destined to become much smaller — 2° bits
— in the near future). The lack of state can be ‘solved’: it is possible to encode
state into a stateless context. For the HTTP protocol this is demonstrated by
the fact that servers can allow encoding of ‘state identifiers’ into the requests.
For example, a popular device is to let some server keep a count of network
accesses to a particular data item: this is achieved by inventing an identifier
and passing this identifier along with each request to the counter server, e.g., a
document by the author includes the URL* http://www.forsmark.uu.se/cgi-bin/
ccounter?xypic&width=4 where zypic is a state name. The important insight
provided by this is, of course, that you cannot get rid of state in specifications
because one cannot predict what a connection will be used for in the future — if
the HTTP specification had included a proviso for state then every server would
have to suffer from the overhead of keeping track of all connections because at
some point in the future they just might make use of it.

This example illustrates very concretely the problem facing large program-
ming systems: programs are made by people who tend to build components
that are interdependent to the extent that the programmer can understand it.
This means that small modifications involving only the domain of a few pro-
grammers are easy to realise whereas large modifications that involve changes
to code produced by a large number of programmers are difficult to realise.’
Expressing algorithms in a functional programming language requires that all
interdependecies between components is ezplicit so in a way one can say that
functional programming plays the same rdle as standards such as HTTP but on a
smaller scale, even within the work of a single programmer. This means that the
individual components of a single programmer can more easily be exchanged.

4URL means Uniform Resource Locator, the user configurable part of an HTTP request.
5By ‘difficult’ we mean that large modifications involve more work per programmer, of course.

Section 1.3 Motivations and History 19

What is a computer?

Computers were originally developed following the principles of von Neumann
and these are the principles still used in virtually all computers today because
they are so simple and hence reliable. Basically, a computer is always in a
configuration consisting of a large number of ‘bits’ (up to 2%°), each with a
unique address. The computer then repeatedly cycles through an instruction
cycle where a designated small number of bits (typically 2'°) are investigated by
the central processing unit to affect a change of the configuration according to
specific rules that can change most of these designated bits and a small number
of the remaining configuration bits. After the cycle the designated bits are ready
for the next instruction (current computers perform up to 107 instructions per
second).

The fact that only a small portion of the configuration can have direct influ-
ence on the following configuration was dubbed the “von Neuman bottleneck”
by Backus (1978): the fact that computation models do not distinguish between
‘close’ and ‘distant’ data is not in accord with the fact that the instruction cycle
is realised by a single electronic circuit which is subject to the natural limita-
tion that electronic signals cannot travel faster than the speed of light. This is
fortified by the fact that the configuration is structured further into a hierarchy:
Typically a small number of 2?° designated ‘secondary’ bits (the ‘cache’) can
be accessed within a few instruction cycles. Accessing any of the 23° ‘tertiary’
bits (the ‘internal memory’) can only be done indirectly by associating them to
specific secondary bits which takes at least 10 times longer, and accessing any of
the general 24° configuration bits (the ‘external memory’ or ‘disk pool’ connected
together in local area networks) takes at least 1000 times longer than that since
they need to be accessed by being addressed via tertiary memory (and depend
on the speed of mechanical devices). If the entire ‘world net’ is included in the
configuration then accessing a small number of the world’s 2%° bits is 1000 times
slower again (the numbers should only be seen as indicative of the magnitudes).
These magnitudes may seem staggering, however, it is a fact that today’s state
of the art, in fact, makes access to any bit properly connected to the world net
possible in under a second!

This structure means that locality of access to data and program components
is important, and is something that should be included in considerations of
how to construct programs — in fact the technology of contemporary computers
support functional programming paradigm in that forcing the programmer to
make interdependencies between program components explicit means that there

20 Introduction Chapter 1

will be fewer interdepencies which again means that each component is more
likely to be able to run without to many references to ‘far’ contexts! This is
not easy to get right, however, and is a major reason for the considerable body
of work on functional language implementation on parallel computers. In this
thesis we will include locality as an essential consideration.

Computability and complexity

In the thirties computable functions (on numbers) were studied abstractly, and
Godel (1931) found that not all functions were computable. Concurrently three
refined views were found: Church (1936) developed the A-calculus and claimed
computability to be “A-definability”; Turing (1936) developed the notion of a
“machine”, and the notion of recursive functions was defined by Kleene (1981).
These were quickly shown to define the same class of functions (Turing 1937).
this supports Church’s Thesis which is the claim that this class in fact contains
the “mechanically computable” functions.

However, that a function is computable is no guarantee that it is feasible
to actually compute it! In particular the A-calculus as an operational model
of computation is not very successful: its ‘reduction unit’, 3-reduction, is not
even local! Turing’s machines are better in this respect: the notion of a ‘tape’
captures the idea of locality very well, however, Turing’s notion of memory is
one-dimensional, which is not reasonable in the light of the above, and in addition
the translation of functional programs into Turing machines is higly nonintuitive.
In short, Turing machines do not constitute any real help in understanding in an
intuitive way the complexity of execution of functional programs. In particular
the complexity of sharing, described next, is hard to capture.

Sharing

In fact, most modern programming languages have a notion of sharing either
explicitly or implicitly. An example is the data sharing explicit in PASCAL point-
ers (Wirth 1971) (present in most contemporary imperative programming lan-
guages), Lisp location equality (the EQ predicate of McCarthy 1960), and sML
references (Milner, Tofte and Harper 1990). A more interesting example is the
data and code sharing implicit in the Call-by-Name parameters of ALcoL (Naur
et al. 1960).° Code sharing is also explicit in object-oriented programming.

61t is interesting to notice that, by mistake, what is specified in the ALGOL report is what is
now denoted Call-by-Text yet the intention, and what all the ALGOL compilers used, was, in

Section 1.3 Motivations and History 21

In pure functional programming languages, sharing of both data and compu-
tation is present implicitly via lazy evaluation, and sharing of data is available
through explicit data declarations. For functional programming this is the aspect
most often swept under the carpet, usually in one of the following ways:

Ignored: “Sharing does not add to the expressive power so we ignore it, relying
on ‘standard implementation techniques’ for substitution and recursion.”

Hidden: “We rely on the underlying logic/specification formalism to hide sharing
and thus do not need to take it into account.”

Low-level: “Sharing is handled by modeling the computer memory in the form of
a global ‘store’ component updated by each reduction.”

The first approach means that the resulting model is not operationally faithful
to the described language in the sense that single reductions may need to do an
unbounded amount of copying when performed by the computer. An important
example of this is the Categorical Abstract Machine, CAM, that is beatifully
derived by Cousineau, Curien and Mauny (1987) except for the recursion instruc-
tion wind which is basically motivated by its similarity to the ad hoc primitive
RPLAC of Lisp. For a proper treatment of this aspect see Rose (1996).

Hiding the issue means that even the model is only operationally faithful
to the language insofar as the formalism it is based on is. An example of such
a model is given in Kahn (1987) where the fact that the underlying reduction
machine is PROLOG (namely that PROLOG omits the so-called “occurs check” and
allows unification of a structure with a substructure of itself).

The gain of the first two approaches is, however, that the semantic descrip-
tions can be reductions based on a term representation and thus are much
easier to work with because of the nice and simple induction principles that
term structure permits.

The low-level approach does give operationally faithful models but they can-
not be based purely on terms because a strict distinction is necessary between
“global” properties such as ‘for every node everywhere in the store ... ’ and
“structural” term properties. Thus the resulting models are too “low-level” in
the sense that they do not provide much help to the semanticist for proving oper-
ational properties of program transformations with respect to sharing. For the

fact, Call-by-Name as we still define it.

22 Introduction Chapter 1

purposes of this dissertation this is the problem with most approaches (includ-
ing Plotkin 1981, Barendregt, van Eekelen, Glauert, Kennaway, Plasmeijer and
Sleep 1987, Launchbury 1993, Jeffrey 1993).

What is needed is descriptions of sharing that make it possible to reason
with the sharing for aspects that benefit from it, such as complexity, and reason
without it easily whenever that is convenient. As a simple example consider the
following;:

1.3.1 Definition (Fibonacci number). The nth Fibonacci number, F,, is defined for
any n € Ny by the cases

0 ifn=0
Fhaa+Fin ifn>2

The F,, sequence was invented by Pisano (1209) as a solution to the exercise “How
many pairs of rabbits can be reproduced from a single pair in a year’s time?” with
certain assumptions (see Knuth (1973, section 1.2.8) for some details including
the fact that Pisano was called ‘Fibonacci’ because he was ‘son of Bonaccio’).
The definition can be seen as an algorithm but not a very efficient one, in fact
Fibonacci himself wrote on mechanically following it that “It is possible to do
in this order for an infinite number of months.” This is because the algorithm
essentially constructs a tree, for example, computing Fs amounts to building
the tree in Figure 1.1 (this is small compared to the computation of F;, that
Fibonacci originally required).
It is apparent that this tree repeats a lot of computation. A simple analysis shows
that to compute the nth Fibonacci number this way an exponential number of
reductions are needed (approximately 1.6™)! Thus for Fg, 1.6° ~ 10 computation
steps are done which is rather a lot, considering that altogether only seven dif-
ferent values are computed, namely Fy, Fq, F», F3, F4, F5, and Fg. The problem
is, of course, that the definition as algorithm does not express the sharing of
computation that the sensible programmer can quickly see. Graphically, we
would like the algorithm to express the data flow in Figure 1.2.
The sharing becomes even more interesting when “self-sharing” is involved, z.e.,
cyclic data and function dependencies. An example is the data structure in
Figure 1.3.
The left picture represents the data structure abstractly as a graph; in the right
picture we have chosen to order the components of the graph in a linear way

Section 1.3 Motivations and History 23

5+3=28
[~
3+2=5
[~
2+1=3 24+1=3
T
1+1=2 1 1+1=2 1+1=2 1
][\T]/\7 1[\T
1+0=1 1+0=1 1+0=1
N N N
1 0 1 0 1 0

Figure 1.2: Graph for 6th Fibonacci number.

in order to show the similarity with a computer memory representation of the
structure. But this is really entering into the next subject ...

Functional Programming

How would the above be implemented in functional programming languages?

The following example implements the Fibonacci computation of Definition
1.3.1 as a simple program with one declaration containing three cases that are
mutually exclusive.”

"The example also illustrates how we will show programs with little numbers in front of each
line because they are, in fact, executable fragments in what is known as literate Haskell, the

24 Introduction Chapter 1

700t __

/®3]
or
.7

1

Figure 1.3: Cyclic data structure representations.

1.3.2 Code (Fibonacci number). fib n computes the nth Fibonacci number.

1+ fib O =0

2 fib 1 =1

s fib (n+2) = fib(n+1l) + fib n
? £fib 6

To evaluate this program we require that the specified application, fib 6, match-
es exactly one of the cases: the last. Progress towards the final result, simplifica-
tion, is obtained through rewriting the expression according to the appropriate
case (oriented from left to right). For fib 6 this means realising that the last
equation is the only one that matches, since the binding n = 4 is possible. This
results in the rewriting

fib 6 — fib(4+1) + fib 4

Say we wish to rewrite the first of the addends. Before we can match it against
one of the equations we need to know whether the argument is 0, 1, or something
else, hence the next simplification is

£ib(4+1) + fib 4 — fib 5+ fib 4

where we have underlined the subterm that has been reduced. Now we can use
the last equation again obtaining

fib 5 + fib 4 — (fib(3+1) + fib 3) + fib 4

and so on, until we finally reach

style we also use for real programs, see Notation 6.1.1.

Section 1.3 Motivations and History 25

fib1+... —1+...

where the second equation is applicable for the shown component; similarly for
the remaining ones. If the simplification of + is delayed as much as possible then
the last rewrites will be

(CCC(1+0)+1) +(1+0))+((1+0) +1))+ (((1+0) +1) +(1+0))) —» 8

where each 0 is the result of fib 0 and each 1 the result of £ib 1 (corresponding
to the tree of Figure 1.1) altogether this yields the correct value of the sixth
Fibonacci number.

This highlights an essential property of pure functional programs is that the
exact sequence we evaluate in should not matter for the result. This means
that we can evaluate any way we like as long as the evaluation is guaranteed to
find the result if there is one (so we cannot use CBV evaluation, for example).
While one may be told that a particular pure functional language evaluates uses a
particular evaluation strategy, say the lazy strategy that we discuss in this thesis,
this is usually not true since any serious pure functional programming language
implementation will do many so-called program transformations which are
nothing but reductions that do not obey the standard evaluation principle.

Finally, as discussed in the introduction, algorithms that improve the sharing
are often searched for. For example, we can realise a sharing version of Fibonacci
by the following alternative algorithm that computes pairs of values:

1.3.3 Code (Fibonacci number, fast). From (Bird and Wadler 1988, section 5.4.5).

1 fastfib n = fst(twofib n)
2 where fst(n,_) =n
3 twofib O

a twofib (n+1)

(0,1)
(b,a+b) where (a,b) = twofib n

The trick used is that the last two computed numbers in the sequence are “mem-
orised” (as a and b by the local definition) such that they can be used to compute
the next in the sequence before the oldest is discarded and the process repeated.
The overall complexity of this is linear (corresponding to the size of the graph
in Figure 1.2).

Finally we mention how infinite data structures are coded directly using
TECUTSION.

1.3.4 Code (infinite lists).

1 ns n = ns’ where ns’ = n : ns’

26 Introduction Chapter 1

This declaration defines a function ns that builds an infinite list of copies of its
argument. For example, the expression ns 1 will build a cyclic data structure
like the one in Figure 1.3.

Graph Reduction

It is interesting to see how graph representations like those above have quietly
become part of the “folklore” of implementation technique for functional pro-
gramming languages during the last three decades. It all started with the Lisp
programming system: McCarthy (1960) writes “it is permitted for a substructure
to occur in more than one place in a list structure, [...], but it is not permit-
ted for a structure to have cycles”. Thus, “pure Lisp” essentially allows only
acyclic sharing in the execution model. the effect of cycles must be constructed
by rewriting through use of the LABEL form that defines a recursive function.
However, all realistic uses of “real Lisp” (McCarthy, Abrahams, Edwards, Hart
and Levin 1965) use the RPLAC primitive to build proper cyclic data structures
(in fact they usually implement LABEL this way). Since then all implementations
of functional languages have used “graph tricks” to get better sharing and avoid
unnecessary symbol lookup; while at the same time their models have avoided
the issue.

Acyclic sharing techniques were formalised early for the A-calculus (as we
shall discuss in section 3.4) by Wadsworth (1971) but the technique of using
cyclic pointer structures for recursion has only been formalised in retrospect
since implementations of functional languages using graph reduction like the
G-machine (Johnsson 1984, Peyton Jones 1987) has become common, creating a
need for optimisations. The most succesful such formalisation was term graph
rewriting (TGR) of Barendregt et al. (1987) because of the simple idea that
the computer memory can be seen as a (rooted, labelled, ordered, and directed)
graph by interpreting each memory address as a graph node id, the type of data
in the word as a label and any pointers to other addresses as edges (or arrows
since the graph is directed). Term Graph Rewriting has been used to model
sharing in several types of languages (Glauert, Kennaway and Sleep 1989) as well
as other aspects of functional programming language implementations (Ariola
and Arvind 1992, Koopman 1990, Jeffrey 1993). These models are useful because
the TGR formalism has sharing and recursion (cycles) built in, but the way
they have been constructed from existing languages, in particular the way they
depend in nontrivial ways on the evaluation strategy used by existing functional

Section 1.4 Overview 27

programming languages, limits how much we can learn about the limitations of
these languages. Furthermore, term graph rewriting does not contain a notion of
‘locality’ in the way discussed above: all accesses ‘point the same distance’. This
gives severe problems with implementation that use ‘parallel graph rewriting’
(Plasmeijer and van Eekelen 1993). And finally, term graph rewriting is a very
“low-level” description in that the operations on graphs are understood in terms
of very primitive “simple” operations: the original authors used small pieces of
imperative programs; the use of category theory as done by Raoult (1984) and
the school of Ehrig (1978) does not really help with this aspect.

A recent generalisation of Wadsworth’s that also handles cyclic sharing is the
A-graph rewriting of Ariola and Klop (1994), however, the introduced formalism
is even stronger than term graph rewriting (we compare to this closely related
work in the thesis text).

1.4 Overview

This dissertation is structured in chapters, each with a separate introduction
and brief summary. The order of the chapters is significant, in particular each
chapter refers freely to material in earlier chapters. No detailed table of contents
exist as the index should be of help when searching for concepts and named
results.

As proclaimed in the THESIS, the main chapters are chapters 3, 4, and 5;
Chapter 2 contains introcutory material on the established theoretical fields
underlying this work, and chapter 6 contains the complete source of the CRS
reduction program we have used to verify that most of the syntactic transfor-
mations of reduction systems that we do throughout are right (the output and
a few periferal components are in the appendix).

We conclude and present a personal perspective and some future directions
in chapter 7.

28

Preliminaries

This dissertation covers several computer science research areas: rewriting (even
of higher order), semantics (of programming languages), pure function-
al programming, and implementation issues (in particular time and space
complezity). The intention with this chapter is to make the dissertation self-
contained by ensuring that the reader is sufficiently familiar with these areas to
read the remaining chapters.

We first explain the reduction concept of (abstract) rewriting in section 2.1
because the notions involved are useful in explaining the remaining concepts, in
particular the idea of diagrammatic propositions. We next explain in section 2.2
the inductive notations of semantics that we will use, including inductive dia-
grammatic propositions.

The following sections are devoted to aspects of the A-calculus common to
semantics and functional programming. We start with a brief summary of tradi-
tional A-calculus in section 2.3, proceed with a short survey of evaluation strate-
gies for A-calculus in section 2.4, and conclude with a summary of de Bruijn’s
(1972) ‘namefree’ calculus in section 2.5.

Finally, in section 2.6 we give an introduction to combinatory reduction
systems (CRS) of Klop (1980), a very general rewriting formalism which includes
concepts from all of the above while retaining nice theoretical properties.

29

30 Preliminaries Chapter 2

2.1 Reductions

Informally, ‘reduction’ means stepwise simplification of some problem, usually
with the intent of eventually reaching a ‘solution’. This is also the formal idea
which we will explain here, since it makes reasoning about stepwise evaluation
as well as many auxiliary things such as orderings, etc., much easier.

Our treatment is based on definitions from the standard literature (Huet
1980, Klop 1992, van Oostrom 1994). A particularly useful technique is the
‘stencil diagram’ notation of Rosen (1973) to express reduction propositions.

We start by fixing the notation and terminology for relations (we assume the
reader is familiar with basic set notations). Then we explain using diagrams for
reasoning about relations, and state several useful properties of relations, notably
translation and projection. Finally we define several standard properties such
as confluence and normalisation.

2.1.1 Notations (relations).

A. An n-ary relation (n > 2) is a subset R C Ay x ... x A,, where we write
R(ay,...,ay) for (aj,...,a,) € R.

B. For binary relations we use ‘directed’ infix symbols such as —, write
a — b for (a,b) € —, and say it is a relation from A; to A;; A; is called
the domain and A, the range.

C. A binary relation from A to A is called a reduction on A.

We use ordinary set constructions for relations: N, U, C, etc.; in particular if
— is a reduction on A, then the restriction of — to B, written —|;, is defined
as — N B x B, and the complement of —, written 4, is defined as A x A\—
(sometimes written o, —). Finally, we denote the natural numbers from 1 by
N; when 0 is included we write Ny, and we write the empty set as @.

2.1.2 History. We have borrowed the word reduction from Huet (1980); the con-
cept is called a general replacement system (GRS) by Rosen (1973), an abstract
reduction system (ARS) by Klop (1992), and an abstract rewrite system by
van Oostrom (1994).

Most relations in this dissertation will be reductions. In particular we will use
the common equality sign = to mean equality in the strictest syntactic sense
available in each case.! If the base set is unclear we write =|, (one can think

!Thus “=" is not used to denote B-convertibility.

Section 2.1 Reductions 31

of this as ‘the universal = relation restricted to A’). We also use = on entire
relations, e.g., — = « is a way to express that — is symmetric.

Next we give a mathematical definition of diagram propositions, formalis-
ing the description of Rosen (1973), however, it is not diffcult to understand
by considering the following example definitions of some well-known standard
properties of abstract relations.

2.1.3 Definitions (examples of properties as diagrams).

|
A. — is a function, or determainistic, if = . A function defined over

an enumerable range is a map. S

B. — is total if w----» 0o | otherwise it is partial (but we will rarely say so).

c. Given —. The converse of — is the relation — defined by = “m ;it

is simply denoted «.

The formal definition below translates these as follows: A becomes Va,b,c :
(a 5 bAa—c¢c)=— (a=Db), B becomes Vadb:a — b, and ¢ becomes Va,b :
(a — b) = (b —xa). The definition of converse means that we must take care
to use asymmetric symbols for asymmetric relations in diagrams.

2.1.4 Notation (diagrammatic propositions). A diagram is a picture with ‘solid’ and
‘dotted’ relation ‘arrows’ placed between ‘plain’ and ‘framed’ nodes. Such a
picture denotes a relational proposition of the form

VV™: P" implies V" : P"

where V" denotes the (unbound) node variables occuring only framed, P" is a
conjunction of all relations where the relation symbol is dotted (e.g., -+ and --+
are dotted versions of —), and P™ denotes the conjunction of all the remaining
(solid) relations.

Diagram entries can be given as » (or o) when they are just meant to be
anonymous plain (or framed) variables implicitly distinct from all other variables
in the proposition; sometimes we omit framing if it is obvious.

Finally, we allow diagrammatic reasoning: suppose we are given a dia-
grammatic assertion which we wish to prove, i.e., the dotted/framed parts
are ‘unknown’. We can then use another diagram that ‘fits’ as a lemma such
that some of these unknowns can be ‘painted’ to become solid /plain; if this pro-
cess terminates with a completely solid/plain diagram then we have proven the
original assertion.

32

Preliminaries Chapter 2

2.1.5 Definitions. Let — be a reduction on A.

A.

. It is symmetric iff

It is reflezive if ="

It is transitive if m~ “m~ 3w .

/N.

. It is antisymmetric if m: ..
N__~

It is an equivalence if it is reflexive, transitive, and symmetric (such a
reduction is sometimes called a conversion).

It is a partial order if it is reflexive, transitive, and antisymmetric.

2.1.6 Definition (composition). Let —7— be a binary relation from A to B, &
be from B to C. The composition —5~ - —5¢c— 18 —x— defined as the least binary

relation satisfying wAp'wBcn -

AC

In particular + - — = (=[z) if — is a total function from A to B. We will use
several shorthands for reduction compositions.

2.1.7 Notations (compositions). Let — be a reduction on A.

A.

B.

-y, for n € Ny, is the n-fold composition defined inductively by

= if =0
n .\ —
H_{H-“qaﬂn>0

—nm, where n, m € Ny, is the union —-» U -5 . ..U -™ (the empty
relation if n > m). If we omit n and/or m then 0 and/or oo, respectively,
are understood.?

Usually one establishes a property by either extending or restricting the relation
as little as possible to ensure it.

200 just means there is no upper limit (not infinitary reduction or such).

Section 2.1 Reductions 33

2.1.8 Notations (closures). Let — be a reduction on A. For some concept X, the
X closure of — means the (unique) smallest reduction ~» on A which satisfies
X and such that ~» O —. In particular,

A. The reflexive and/or transitive closures of — are defined by composition:
=y == —+5 = 1 and —» = . (The first and last are denoted -
and - by Huet (1980).)

B. We will use «— for —’s equivalence closure.?

2.1.9 Notation (restrictions). Let — be a reduction on A. For some concept X, the
X restriction of — means the largest reduction ~» on A which satisfies X and
the requirement that ~~» C —.

The following will be our chief tool for comparing reduction relations.

2.1.10 Definitions (translation). Given —— and —5— on A and B, respectively, and
a relation >— from A to B.

_ . I arad BN RSl
A. >— is a translation of —— to —— if ~and .
O 0 o
A

—m

]
B. >— is a projection of —— into —— if furthermore T
m o

B
2.1.11 Remark. A translation is a many-to-many relation, hence the converse of
a translation is again a translation. The additional requirement of a projection
means that it is a many-to-one relation: a projection may identify a large
number of ——-reductions in A with a single ——-reduction in B.

Our notion of projection is closely related to, but weaker, than the notion of
a Galois connection: if

e > is a projection function of —— into ——, and

e a function — from B to A is given such that < C »—,

3This is not always obtainable by constructing the reflexive, transitive and then symmetric
closures in some sequence, of course, even if the notation «» might be interpreted to indicate
just that.

34 Preliminaries Chapter 2

then the pair of > and — is a Galois connection between —— and ——. The
essential difference is thus that a Galois connection makes some elements of A
special: all elements a € A are related to one of these a’ € A throgh a — - — a’.

The special case of this when A D B (such that the translation »— is itself a
reduction on A) is particularly simple and has a standard name for transitive
closures.

2.1.12 Definition (conservative extension). Given reductions —— and —— on A and
B, respectively, and a projection >— from —— to —». If A D B then —— isa
conservative extension of ——, and —— is a subreduction of ——. The notions
generalise in the obvious way to arbitrary relations.

Notice that translation and projection are properties of the actual reduction step,
hence require a one-to-one correspondence between the length of the reductions
whereas the notions of conservative extension ‘only’ require this of the transitive,
reflexive closures.

Finally, we introduce the concepts that will be the main object of study for
relations in this dissertation: confluence and normalisation.

2.1.13 Definition (confluence).

./ v..v.._yD ./ —
\ j \y JJDLL

RS
[m]

—< —LC —CR
diamond local Church-
property confluence Rosser

We say that — is confluent when —<. In Klop (1992), LC is denoted WCR
(for ‘weak CR’).

A classical result is the following.
2.1.14 Proposition. — is confluent if and only if —CR.

Proof. The ‘if’ direction is trivial. The ‘only if’ direction is proved by assuming
—<> and consider a conversion a «— b: this must have the shape

a—»aq) ¢ ap —»aq ¢ Az 0y —» Qm) ¢ b

Section 2.1 Reductions 35

for some n. By —<> we then have
a— agny —» a((1),01,2) ¢ a2 — 4(1,2),23) ¢ 4e3) € b

and by induction there is a common reduct and hence —CR. This kind of proof
can also be done using ‘diagram induction’ which we will return to in the next
section (first proof by Church and Rosser 1935).]

2.1.15 Definitions (normalisation properties). Let — be a relation from A to B.
A. The normal forms —-nf are those x € A for which #y : x — v.
B. The final restriction — is defined by w — x iff w — x and x is an —-nf.
c. — has unique normal forms, written —UN, if — is a function.
D. The set of —-weakly normalising objects is the subset WN_, C A defined
by WN_ ={xe€ A|3Jy:x »y} Wesay ‘— is weakly normalising’,
and write = WN, when WN_, = A.

E. ~> is said to preserve weak normalisation (PWN) of — if WN._, D WN_,.

F. The set of —-strongly normalising objects is the subset SN, C A defined

such that x € SN, implies that all reductions x — x; — --- from x
are finite. We say ‘— 1s strongly normalising’, and write —SN, when
SN, =A.

G. ~ is said to preserve strong normalisation (PSN) of — if SN., D SN_;.

H. — is complete if it is CR and SN.

2.1.16 History. Huet (1980) uses noetherian (after Emmy Noether) for SN; some-
times terminating is used. Some use —' for what we write as —. Klop (1992)
uses UN" for what we call UN.

The reasons why PSN and PWN are interesting in their own right, and the
reason there is no ‘preservation of ¢}’, is the following.

36 Preliminaries Chapter 2

2.1.17 Propositions. Given reductions — and = with a translation — from — to
=.

A = Iff =0
B. If — is a projection then =WN implies - WN

c. If — is a projection then —SN implies =SN

Proofs. A is proved by an instance of what is called the ‘interpretation method’
by Hardin; we show the ‘only if’ case (the ‘if’ is symmetric).

/I(] = T
/ “u

| IS s a

\ A o
WG DO) O

B follows from the fact that we remove reduction elements when taking a sub-
reduction so no infinite ones can be added. ¢ by the converse argument: since a
conservative extension preserves reductions then it also preserves the normalising
ones. L

R

2.2 Inductive Notations

This section defines the basic inductive notations and terminology used in this
dissertation. Such a fundamental common lingo for inductive reasoning makes
many arguments in the sequel shorter and their presentation more uniform.

The presentation follows computer science tradition.

First we define sequences that are suitable for length induction; in case
of finite sequences this is even well-founded; we include some properties of
sequences including how to interpret them as maps. Then we define inductively
defined sets suitable for structural induction, including the associated notions
of contextuality for induction over terms and the weaker compositionality for
induction over derivations. Finally, we generalise the diagram reasoning to also
include induction.

2.2.1 Notations (sequences).

A. A finite sequence over @, ¢ = (bq,...,P,), with elements ¢; € @, has
length #¢d =n € Ny. The empty sequence is e = () (with #e = 0), and
the following derived sequences are defined

(d)1)"')d)n)) (11)1)"')1])TTL) = (d)l)"')d)n)d)l)"')ll)m) (Concatenate)

Section 2.2 Inductive Notations 37

fo (d)])---albn) = (f(wﬂa)f(wn)) (map)
€ for m=0

(d)h---ad)n)\m: (1)---ad)m) fOI'O<mST'L (take)
(b1,...,dn) forn<m

—_

b1,y) for m=0
Gmity...,dn) for 0<m<n (drop)
forn<m

($1,...,¢n)/m =

—_

m

where f in (map) must be a function whose domain includes the elements
of P, and m € Ny (so we can take or drop O elements from a sequence).
The set of finite sequences over @ is denoted ®*.

B. An infinite sequence is written ¢ = (1, d2,...) and has #¢ = oo and
®(i) = ¢; for 1 < i. The derived sequences are as in the finite case except
that

(b1,...) - (W1, oy bm) = (d1,...) (concatenate-co)

The identity sequence is the infinite sequence 1 = (1,2, 3,...) enumerating
all elements of N.

C. A sequence over @ can be used as a function (or map) from N to @
through the convention that ¢ (i) = ¢; for 1 <1 < n. e corresponds to the
everywhere undefined empty map; the identity sequence « = (1,2,3,...)
similarly corresponds to the identity map on N. With this interpretation,
f in the (map) rule can also be a sequence.

We write x € ¢ when 3i: ¢(1) = x, and a sequence ¢ is natural if it is over N.

The sequence operations satisfy several simple algebraic properties that we will

use freely; they also suggest which parentheses we can leave out without risk

of ambiguity. We will also confuse x and the singleton sequence (x) when it is

apparent what is intended, we will occasionally use a different element separator
. . —-

than ¢’ (comma), and we will sometimes denote sequences as vectors ¢ .

2.2.2 Propositions (sequence algebra).
A d-(Pry)=(d-)-y.
B.e-b=¢ -€=0.

38 Preliminaries Chapter 2

c. w- 1P = w for w infinite.

D. cop=¢oe=c.

E. ¢ oL = d¢; if ¢ is natural then Lo d = ¢.

F. ¢po (P vy)=(po)-(doy).

G. f m+n < #¢ then ¢/m\n = d\(m +n)/m.

H. (t/n)(m)=n+m for n,m > 0.

d\m if m < #d
¢ - (P\(m —#¢)) otherwise

¢/m - ifm<#o
P/(m—#d¢) otherwise

K. p\m=¢o(1,...,m).
L. d/m=dpo(m+1,...).

xw¢wmm={

a(vamz{

Next we establish a concise way of defining sets of terms where we can use
structural induction. In practice we will usually distinguish between a purely
inductive (context-free) definition of preterms followed by a grouping of these
into terms by some equivalence; a preterm is said to be representative of the
corresponding term.

2.2.3 Notation (inductive structures). When a set is ‘inductively defined by ... ’ we
use the following metanotation: X ::=... is a production that reads ‘X may be
constructed as ...’. Several alternative productions can be given for the same X,
allowing X to be constructed in more than one way; for convenience X :=Y | Z
is a shorthand for the two productions X :=Y and X ::= Z.

The size of a term t, written |t|, is the number of symbols in t.

As a special convenience we allow the use of Kleene’s star in productions:
X* denotes arbitrary sequences (in the above sense) of terms of the form X, and
we use € instead of nothing to denote ‘empty’.

2.2.4 History. The inductive notation, including the symbols ‘:=' and ‘|’, origi-
nates in Backus-Naur form (BNF), the ‘metalinguistic formulae’ used to specify
the ALGOL programming language (Naur et al. 1960). However, since we are only
concerned with abstract syntaz, we do not use the original ‘(- - -)’ markers for

Section 2.2 Inductive Notations 39

variables over terms but rely on mathematical conventions. Such a definition is
also known as a contezt-free grammar. Kleene’s star was originally a notation
for regular expressions; in so-called extended BNF' this is usually denoted by
braces as {X}.

For each notion of terms it is natural to consider arbitrary subterms and contexts.

2.2.5 Definitions (contextuality). Given a notion of T-term defined inductively by
some t ;= ... productions.

A. A T-contezt is defined by reusing the same definition but augmenting the
production to t :=--- | [0, where (] is a special, unique symbol called hole,
and considering only terms with exactly one occurrence of (1. Clt] is the
T-term obtained by inserting t in place of the hole.

B. If for some T-terms t,t’ there is a T-context C[] such that t = C[t’] then
t’ is a subterm of t, and conversely, t is a superterm of t’. The induced
subterm ordering is written t’ > t; it is a partial order.*

c. The strict subterm ordering is written t’ > t and defined by t’ > tAt’ # t.

D. A predicate p(t) is contezrtual if p(t) implies p(C[t]) for any context C[].

This generalises to any finite number of distinctly labeled holes: using [0J, . . .kl
we let C[t] denote insertion of the terms of the n-ary vector of terms f in place
of the corresponding holes.

An example of this notion is contezrtual reduction (compatible relation in Huet
1980): — on an inductively defined set T is contextual if t — t’ implies C[t] —
C[t'] for any T-context C[].

When dealing with non-contextual properties we can not in general use induc-
tion over the term structure. However, most properties we will define will still
be ‘semi-contextual’ in the sense that they are defined inductively by cases over
the term constructors in a ‘logical’ style by inference rules. This is captured by
the following:

2.2.6 Definitions (compositionality). Suppose a notion of T-term is defined induc-
tively by the production

t z= Dy[f] |---| Dnltal (*)

where D;[] are T-contexts. Consider a predicate p over n-tuples of T-terms.

4The intuition is that it ‘points to the root’ with the ‘subterm at the bottom’.

40 Preliminaries Chapter 2

A. p is flat if it is defined by a collection of azioms of the form
p(CIX])
for T-contexts C[].

B. P is compositional if it is the disjunction (union) of a flat predicate py and
a set of inference rules of the form

Pi(CGiXL,) A oo A pal(CrlX]LG)
p(DsilX],4)

where the G;[X] > D;[X],1 € {1,...,n}; X and § are the inference metavari-
ables where those in X must be pairwise distinct, and C[] is any T-context.

C. pis semicompositional if the same holds except we relax the strict subterm
relation [> to I, allowing the entire term of the conclusion to appear in the
premise.

These generalise the natural way to any finite number of mutually recursive
productions.

In this dissertation virtually all ‘predicates’ we study will be binary relations
where we write ‘x — x' instead of p(x, x’); the corresponding notions of compo-
sitzonal reduction and flat reduction are common as is the notion of derivor
that means a compositional function.

2.2.7 Remark. Compositionality as defined here is very restrictive, and rules out
many inference systems that are normally accepted. In particular, implicit fixed
point iterations as used, e.g., we rule out the recursion rules of the ‘natural
semantics’ of Kahn (1987), and non-local operations such as the © ‘renaming
transformation’ of Launchbury (1993).

Note, however, that any contextual property p is also compositional because
rules such as

P(Xj)
P(Dilx1, ..., xn])

can be derived from the contextuality.

Finally, we present an induction principle for diagrams.

Section 2.3 A-Calculus 41

2.2.8 Notation (diagrammatic induction). An inductive sequence of diagrams can be
compacted into a single picture by adding dots from a solid relation indicating
that the step leading to it should be repeated by duplicating the ‘step cell’ in
the indicated direction (one step per diagram in the compacted sequence).

This is of course only meaningful when the diagram ‘cell repetition’ is guaranteed
to be well defined. The most used confluence result uses SN to ensure that double
induction is possible:

2.2.9 Lemma (Newman’s lemma). If —SN and —LC then —CR (Newman 1942).

. B

. . B]
Proof. Double induction: / o D O

u LC a

2.3 A-Calculus

The A-calculus is the simplest and most concise model of the computable func-
tions. It was also the main inspiration for functional programming languages,
and can thus be seen as a (very) minimal functional language — at least many
of the interesting problems of functional programming languages can be studied
within the A-calculus.

The A-calculus was invented by Church (1941); this section summarises the
syntax of the AB-calculus following Barendregt (1984) except we use the induc-
tive notations summarised in section 2.2.

2.3.1 Definition (A-preterms). The set of A-preterms is ranged over by the letters
MNPQ and R, and defined inductively by

M = x | &x.M | MN

where the letters xyzv and w range over an infinite set of variables. A preterm of
form Ax.M is called an abstraction and a preterm of form MN is called an appli-
cation. We use parentheses to indicate subpreterm structure and write Axy.M
for Ax.(Ay.M) and MNP for (MN)P with the latter having higher precedence,
i.e., Axy.MNP abbreviates Ax.(Ay.((MN)P)).

42 Preliminaries Chapter 2

Several auxiliary concepts are needed to change the view from the context-free
preterms to the usual notion of A-terms which includes variable binding.

2.3.2 Definitions (A-terms).

A. The free variable set of a A-term M is denoted fv(M) and defined induc-
tively over M by fv(x) = {x}, fv(Ax.M) = fv(M)\{x}, and fv(MN) =
fv(M) U fv(N). A A-preterm M is closed iff fv(M) = 2.5

B. The result of renaming all free occurrences of y in M to z is written
Mly := z|] and defined inductively over M by x[y := z] = z if x = vy,
xly =z] =xif x # vy, (MxM)ly := z] = &' Mx = x'ly := z] with
x' & fv(Ax.M) U{y, z}, and (MN)[y :=z] = (M[y :=z]) (N[y := z]).

c. Two preterms are x-equivalent, written M = N, when they are identical
except for renaming of bound variables, defined inductively by x = x,
Ax.M = Ay.N if M[x :=z] = N[y := 2] for z ¢ fv(MN), and MN = PQ if

M=PAN=Q.

D. The set of A-terms, A, is the set of A-preterms modulo =. The set of
closed A-terms, /\’, is the subset of A where the representatives are closed
preterms.

The definition of A’ only makes sense because of the following easily proved
property:

2.3.3 Proposition. For preterms M and N, M = N implies fv(M) = fv(N).

This means that we can safely generalise the notion of free variables and renaming
to A-terms — in fact it means that we can generally confuse preterms and terms
which is fortunate because we wish to observe the behaviour of A-terms but can
only write down (concrete) preterms. To ease the presentation we will follow the
usual convention of Barendregt (1984, 2.1.13) which resolves naming conflicts by
always picking an appropriate representative preterm for a term.

2.3.4 Convention (bound variable naming). When a group of preterms occurs in a
mathematical context (like a definition, proof, etc), then all variables bound in
these terms are chosen to be distinct and different from all free variables in them.

5We even allow fv(C[]) for any context C[] by the convention that fv((1) = @.

Section 2.3 A-Calculus 43

2.3.5 Remark. The convention we use is slightly stronger than Barendregt’s in
that explicitly distinct bound variables are required to be truly distinct. This is
a convenience to avoid not only capture but also variable clash as we shall see
below.

Now we are ready to define A3-reduction (we will make free use of the standard
reduction relation notation summarised in 2.1).

2.3.6 Definition (3-reduction). The reduction relation —5— 1s the contextual clo-
sure of the relation generated by the rule

(Ax.M)N — M[x := N] (B)

where M[x := N] is the term obtained by substituting N for all free occurrences
of x in M, defined inductively by

N — N ifx=vy
X[y'_N]_{x if x Ay
(Ax.M)[y := N] = M.M[y := N] (%)

(MiM)ly := N] = My[y :=N] Maly :=N]
The variable convention is crucial to avoid two problems in (*) above:

Variable clash. The requirement that bound variables are distinct means that
x # y will always be true when building (Ax.M)[y := N], e.g., to pre-
vent breaking the distinction (Ax.x)[x := z] #Z Ax.x[x := z].

Variable capture. The requirement that bound and free variables are distinct means
that x ¢ fv(N) and thus prevents capturing free variables, e.g., to prevent
breaking the distinction (Ax.y)[y := x| Z Ax.yly := x].

2.3.7 Example. To give the reader an idea of the reduction relation, the full AB3-
B
reduction graph of the term (Ay.(Az.z)y)x is (?\y.(?\z.z)y)x?mz.z)x — X

Notice how the two reductions from the first would result in different namings
that denote the same term (the naming shown is the one obtained from the top
reduction).

44 Preliminaries Chapter 2

2.3.8 Notation (standard combinators). A closed A-term is called a combinator,
and a growing number of such have been given ‘standard’ names:

I=Mx ; K=Axyx ; K'=Axy.y ; S=Axyz.xz(yz)
OQ=ww ; w=Axxx (w also called ‘self’)
Y = AMf.(Ax.f(xx)) (Ax.f(xx)) (Y is the ‘Curry fixed point combinator’)
0 =AA; A=My.y(xxy) (O isthe ‘Turing fixed point combinator’)

2.3.9 Remark (extensionality). The origin of A-calculus is as a vehicle for expressing
the recursive functions, and this is the interest we have in the A-calculus in
this dissertation. However, when studying the relation to logic the following
additional rewrite rule is important:

Mx.Mx - M if x € fv(M) m)
We will not discuss () much in this dissertation.

Finally we reproduce some standard theorems about Af-calculus:

2.3.10 Proposition (substitution lemma).

Proof. See Barendregt (1984, 2.1.16). O

2.3.11 Theorem (Church-Rosser). —— CR.

Proof. See Church and Rosser (1935, Theorem 1). O

2.4 Strategies for A-Calculus

When we wish to actually perform A-reduction, we are interested in a mechanical
strategy that gives the normal form (or whichever form we want). The origin of
strategies is in ‘A-theories’ where they correspond to derivation rules.

This section describes the ewvaluation strategies most commonly used in
connection with A-calculus. We will only describe ‘reasonable’ strategies in the

Section 2.4 Strategies for A-Calculus 45

AR
/head N

/weak N

Figure 2.1: Common A-calculus strategies.

sense that they are all compositional restrictions of the full A-calculus (this rules
out perpetual strategies, for example).

Thus in general strategies are restrictions of the —;— reduction introduced
in section 2.3. Specifically we will explain the ‘weak’ class of strategies, in
particular, the Call-by-Value (CBV) strategy used by the functional subsets
of the Lisp (McCarthy, Abrahams, Edwards, Hart and Levin 1965) and sML
(Milner, Tofte and Harper 1990) programming languages, and Call-by-Name
(CBN) as used by pure functional languages, and finally briefly discuss their
‘CPS’ (continuation-passing style) intersection.

The possible reduction steps with the various strategies we describe have
been illustrated in Figure 2.1; the mentioned strategies are summarised in turn
below. They are all constructed from a combination of the following inference
rules (and a restriction on the terms in the case of CPS reduction).

2.4.1 Definition (A-inferences). Contextual A-calculus can be expressed as a com-
positional relation by including the following inference rules (rule names from

46 Preliminaries Chapter 2

Curry and Feys 1958):

N;NI (W)
MN — M N’ H
M-M ™)
MN — M’N
M- M
Ax.M — Ax. M/ (&)

Using these rules we can express AB-reduction as the ‘Buvé-calculus’ because it
combines the (B) aziom with the (u), (v), and (&) inference rules (also called
structural or reduction in context rules).

One can say that this is the ‘trivial’ strategy in that reduction is allowed in
any context. On the other end of the scale the fiat -reduction which includes
no inference rules, is maximally restricted and hence not particularly interesting
(but definitely useful).

The various reduction strategies that we will express below will basically be
a compromise between these: a subset of the inference rules, sometimes with
additional restrictions (that respect the compositionality requirement).

2.4.2 History (“p-theories”). Traditionally inferences are used to define all the
desired properties of reduction. Such a ‘total’ description is called a theory,
and the ‘B-conversion theory’ is the () axiom, the (v), (i), and (&) rules, and
the following additional closure rules that realise the reflexive, symmetric, and
transitive properties of 3-conversion (rule names from Curry and Feys 1958):

M— M (p)
N—-M
M — N (0)

M—N N-—-P
M — P ()

We will not use these rules in this dissertation since it is much more convenient
to work with ‘stepwise’ reductions (sometimes known as small-step semantics
in contrast to big-step semantics). There is a similar ‘Bn-conversion theory’
including (n) which we will not discuss either.

Section 2.4 Strategies for A-Calculus 47

It turns out that all the strategies that have been invented for evaluation of
A-terms are weak reduction strategies: they are restricted to not include (£).
This has the property that any abstraction is a normal form. Together with the
notion of ‘head reduction’ this gives a coarse classification of reductions.

2.4.3 Definitions (whnf).
A. Weak AB-reduction, —5,;-, is the relation obtained by omitting (&).

B. Head AB-reduction, ——, is the relation obtained by omitting (p).

“Bh

The normal forms of the intersection, omitting (1) and (§), are said to be in
weak head normal form, abbreviated whnf, and are easily seen to be of the
form

whnf == Ax.M | xM;...M,,

for any A-terms M, My,...,M,,, n € Ny (notice that the second form associates
to the left, z.e., is really (... ((x M1) Mz)...) M,).

In general we will be sloppy and call any subreduction of —5- for ‘a weak
reduction’ and ay subreduction of —z;— for ‘a head reduction’. Unfortunately
the unrestricted weak reduction is not confluent since redexes can be ‘captured’
underneath a A:

2.4.4 Observation. B 1s not CR.

(Axy.x)((Ax.x)z)

7N

Proof. Ay.(Ax. x) (Axy.x)z . O

o

Ay.z

Hence some further restrictions are necessary to get a manageable system with
weak reduction. In practice deterministic reduction is used, and the two strate-
gies we discuss here are both deterministic, weak strategies. They are both
defined in the seminal paper of Plotkin (1975); our presentation uses our nota-
tion and omits constants.

48 Preliminaries Chapter 2

2.4.5 Definitions (Call-by-? strategies).

A. Call-by-Value (CBV) reduction, —~, is defined as the restriction of the
AB-calculus to the modified axiom

(Ax.M)N — M[x:=N] if N is a value (Bv)

where “a value” simply means a variable x or an abstraction Ax.M, and
the inferences
N — N’
m j.f M iS a Va.].ue (H.\/)
and (v).

B. Call-by-Name (CBN) reduction, —, is defined as the restriction of the
AB-calculus to the (original) axiom (f) and the inferences

N — N’ (1)
xN — xN’ KN
and (v).

These are clearly compositional and deterministic (the side condition of (py)
is not a problem because only two kinds of A-terms are values, so a simple
duplication could eliminate the side condition). They are also weak reductions
as neither include (&) in any form. It turns out that CBN implements A3 fully
whereas CBV is not even normalising:

2.4.6 Propositions. A. —» not PWN of ——~. B. —» PWN of ——.

Proofs. A is easy by considering KIQ «» I but KIQ —~ KIQ —~ --.. B is
the standardisation theorem for closed terms (Plotkin 1975, Theorem 5.1). [

2.4.7 History. Plotkin defines not only the above cited strategies (which are there
called ‘left reductions’ because of the inclusion of (v) but also two calculi:

A. “Ay” is AP except (B) is replaced by (Bv).
B. “AN” is a synonym for A(3.

These calculi are not weak and serve to show that the corresponding strategies
are ‘standard reduction strategies’ for something.

Finally, CPS reduction: Plotkin’s observation was that terms of the following
shape reduce the same with —~ and —~ (Steele 1978, the CPS name and
present formulation origins with).

Section 2.4 Strategies for A-Calculus 49

2.4.8 Definition (continuation-passing style). Let continuation-passing style (CPS)
terms be defined by

M = x | Ax.M | Mx | M(Ax.M)

This subset of A is denoted Acps.

A more precise view of CPS terms is given by Danvy and Pfenning (1995).

2.4.9 Propositions. For all M € Acps,
A. M —~ N implies M —~ N, and N € Acps, and
B. M —~ N implies M —~ V, and N € Acps.

Proof. Easy case analysis; a side effect is to establish that the area marked with
“+” in Figure 2.1 ((CBN N head)\CBYV) is empty. O

2.4.10 History. Abramsky’s (1990) lazy® calculus, AL, is sometimes claimed as the
basis of implementations. Al-reduction is the relation |}, inductively defined on
closed A-terms by

MU Ax.P Px:=NJ] | Q
MN {. Q

This is easily seen to be just a ‘big-step’ version of Plotkin’s calculus of Definition
2.4.5.B, restricted to closed terms, i.e.,

Ax.M ¢ Ax.M

N

o =

(The proof is by isomorphism between —#-reduction sequences and |},-derivation
trees.) We will not discuss it further, since the definition does not readily show
the reduction strategy: it only defines reduction to normal form so the reduction
strategy is present only implicitly as a ‘proof construction strategy’ which is fine
except it is not so easy to reason about the relation to other strategies.

6The tag ‘lazy’ is rather misleading: Al is more precisely described as a calculus with weak
leftmost outermost reduction: weak because no redex inside an abstraction is ever reduced,
and leftmost outermost because the leftmost redex is always reduced when there are several. In
some traditions this is stated as reduction of programs (the same as closed terms) to weak head
normal form (whnf) where whnf is defined as “an abstraction or an application where the head
is a variable” which is just the same notion as above. Clearly the only closed terms in whnf are
abstractions, hence the definition is the same! We will see in section 3.5, however, that these
definitions are equivalent to usual lazy evaluation when sharing is included.

50 Preliminaries Chapter 2

2.5 Namefree A-Calculus

This section summarises the A3-version of de Bruijn’s (1972) namefree notation
for A-calculus. This is useful for observing things such as the number of variables
in use, and many implementations use concepts from namefree A-calculus to
avoid the complications of name conflicts.

The namefree calculus was invented by de Bruijn as a variation of A-calculus
which was “efficient for automatic formula manipulation” in the system AuTo-
MATH (Nederpelt, Geuvers and de Vrijer 1994).

We exactly reproduce the ‘pure’ subset of de Bruijn’s calculus, i.e., without
constants and &-rules. However, we have used a notation which is consistent
with the rest of this dissertation.

2.5.1 Definition (ANF). The ANF-terms are defined inductively by
ax=mn| Aa | ab
where the letters abc range over ANF-terms and n over natural numbers. Pyg-
reduction, —5—— is defined by the relation:
(Aa)b — alb - (Br)
where the substitution derivor _[_] is defined by
n[¢] = d(n
(Aa)ld] = A (all - ((v/1) o)I)
(ab)[¢] = (ald]) (bld])

using the sequence notations of Notation 2.2.1 to define substitution; ¢ is always
an infinite sequence.

~—

The ANF-calculus is a very elegant way to get rid of the troublesome variable
clash and capture problems. Its only weakness is the treatment of free variables:
any index that is larger than the number of As outside it is ‘free’, however, its
identity is still determined by the ‘ghost A’ to which it belongs. This is reflected
by the definition of free variables which is fv(n) = {n}, fv(Aa) ={n |n+1 €
fv(a)}, and fv(ab) = fv(a) U fv(b).

2.5.2 Example. The I, K, and S combinators are written A1, AA2, and AAA31(21)

p
in ANF. The reduction of Example 2.3.7 becomes (A(A1)1)1 B:NF;(M)] mﬂ .
NF

Notice how the outermost 1 is free.

Section 2.6 Combinatory Reduction Systems (CRS) 51

2.5.3 History. De Bruijn uses S(¢, a) to denote the substitution metanotion (our
a[¢] with reversed ¢), and Ty, for i/h.

It is possible to relate A and ANF, of course: the following inference system
does this, assuming the list of free variables is p (corresponding to the sequence
of ‘ghost As’):

2.5.4 Definition (translation, ANF/A). The closed ANF-term a projects onto the A-
term M, notation a >— M, if we can prove € - a >— M in the following system:

pEn>—x p(n) =x
x-pFar—M

o x€p
pAa>— Ax.M

pFar—M pFb>—N
pF ab>— MN

This generalises to open terms by quantifying over the list of free variable names.

2.6 Combinatory Reduction Systems

Combinatory reduction systems (CRSs) form an expressive class of reduction
systems over inductively defined terms extended with the variable binding notion
of A-calculus, by formalizing precisely the intuitive notion of substitution without
extra constraints such as typing, algebraic conventions, etc. We study CRSs
in this dissertation because they constitute a generalisation of the rewriting
done by functional programming ‘evaluation steps.” An implementation of CRS
reduction is provided by chapter 6.

The CRS formalism was invented by Klop (1980) to provide a systematic
treatment of combinations of term rewrite systems (TRS) with the A-calculus,
inspired by the ‘definable extensions of the A-calculus’ of Aczel (1978). However,
CRSs can also be understood as a form of ‘higher order rewriting’ (Nipkow 1991,
van Oostrom and van Raamsdonk 1995).

This section gives a complete introduction to CRSs. The presentation is based
on the (highly recommended) survey of Klop, van Oostrom and van Raamsdonk
(1993), with some extensions and a slight change of notation to facilitate imple-
mentation and induction over syntax. Last we give two large example CRSs
including sample reductions in full detail (created with the implementation of
chapter 6).

52

Preliminaries Chapter 2

2.6.1 Definitions (combinatory reduction systems).

A. An alphabet is a set of function symbols A,B,C,F G,... (and some-

times Greek letters and exotic symbols);each annotated with a fized arity
(notation F™).

. The corresponding preterms, denoted t,s, ..., have the inductive form

too= x| Xt | F'(ty,...,ta) | Z™(ty,...,t0)

where x,vy,z,... are used to denote variables and X, Y, Z to denote meta-
variables, each with an explicit arity superscript as indicated.” The four
different preterm forms are called variable, metaabstraction, construc-
tion, and metaapplication of a metavariable, respectively.

. We denote the set of metavariables occuring in a preterm t as mv(t).

. A preterm is closed if fv(t) = @ where fv(x) = {x}, fv([x]t) = fv(t)\{x},

and fv(F*(ty,...,tn)) =& (Z (4, ..., tn)) = (t)) U--- U fv(ty,).

. Metaterms are closed preterms considered modulo renaming of (bound)

variables: we take as implicit the usual «-equivalence denoted = and
defined inductively by x = x, [x]t = [y]s if t[x := z] = s[y := z] for z ¢
fv(s)Ufv(t), and F*(sy,...,s.) = F*(ty,...,tn) as well as Z™(s1,...,8,) =
Z™(ty,...,t,) if s; = t; for each i; the renaming t[y := z] is defined the
usual way by x[y ==zl = zif x =y, x[y :==z] = xif x £y, (xlt)ly :=
z] = [X'Itlx = xlly := z] with x" ¢ fv([x]t) U {y,z}, F'(t1,...,tu)ly =
z| = Fr(tily :=z],...,thly := z]), and Z™(ty,...,ta)ly = z] = Z™(t1[y :=
zl, ..., taly i=2]).

. A terms is a metaterm without metavariables (but possibly including

metaabstraction which is then called abstraction).

G. Rewrite rules, written p — r, have the following restrictions:

e the LHS (left hand side) p must be a pattern: it should be a construc-
tion, 7.e., the root of p is a function symbol, furthermore p should
be closed and arguments of metaapplications in p should be distinct
variables.

"Thus for each particular alphabet the definition of preterms is finite and inductive.

Section 2.6 Combinatory Reduction Systems (CRS) 53

e the RHS (right hand side) r must be a contractor of the LHS by which
we mean that mv(p) D mv(r).

H. A CRS is an alphabet together with a set of rewrite rules.

2.6.2 Notation (syntactic restrictions). We will sometimes define the preterms of a
CRS by an inductive definition such as

a == x | L(a) | A(B(a1),[x]a)

From such a definition it is easily seen that the alphabet of the defined CRS
is {L',A?,B'}. However, more importantly, the declaration restricts the free
term formation such that we only need to use the specified forms in inductive
arguments, e.g., it can be seen that B will only occur as the first component of
an A-construction. We will use such restricted (pre/meta)-terms freely when
it is clear that the defined restricted CRS subsystem is closed with respect to
reduction.

2.6.3 Remark (term rewriting systems). A CRS restricted to not allow metaabstrac-
tion at all is a term rewrite system (TRS, also known as first order rewriting
systems). TRS rules consequently have only 0-ary metavariables (in TRS liter-
ature these are just called “variables” since there are no bound variables in the
CRS sense).

2.6.4 Example (A-calculus). The ordinary untyped AB-calculus is described by the
CRS with alphabet {A!, @?} restricted by
t o= x [AMIx]t) | @(ty,12)
(to get rid of terms like [x]x and [x](Ax)), and the single rule
@*(A\'(KIZ'(x)), Y°()) — Z'(Y°()) (B)

One can verify easily that () will reduce a restricted term to another restricted
term.

The term Z'(Y°()) on the righthand side of () corresponds to the usual
definition by substitution in that the bound variable to be substituted, x, is
represented implicitly on the right side through the use of the metavariable Z'

54 Preliminaries Chapter 2

— informally we could have written Z'(Y°()) with ordinary substitution as some-
thing like (Z'(x))[x := Y°()].

So the A-term (Ax.yx)y corresponds to the CRS term @(A([x]@(y,x)),y) and
reduces by (B) to @(y,y) if Z'(x) is matched with @(y, x).

2.6.5 Notation (CRS abbreviations). We will use the usual CRS abbreviations:

e the arity superscript of function symbols and metavariables is omitted when
obvious, and we omit the () after zero-ary symbols,

e [x,y,z]t abbreviates the nested metaabstraction [x|[y][zlt,
e Fxyz.t abbreviates ‘curried F-abstraction’ F([x](F([y](F([z]t))))),

e st abbreviates ‘application’ @(s,t) (when it has no other interpretation)
where @? is then included as a function symbol, and

® Xn), Z(n), and ;c('n), abbreviate the sequences xi,...,%xn, Z1,...,Z,, and
t1,...,tn, respectively (we omit the -() subscript when redundant).

We use () to disambiguate where needed, and let application associate to the left
and bind closer than abstraction — this allows ordinary conventions of rewriting
and A-calculus to be followed, e.g., Axyz.xz(yz) denotes the rather unwieldy
A (A (Yl (AT ([z1@% (@ (x, 2), @%(y, 2)))))))-

2.6.6 Example (A-calculus, readable CRS). Using the above abbreviations we can
express the AP-calculus in a more usual notation: the following CRS is exactly
the same as the one in Example 2.6.4 above:

(Ax.Z(x))Y — Z(Y) (B)

2.6.7 Example (Combinatory Logic). The class of applicative TRS, that is TRS
where the only function symbol with non-zero arity is @2, is naturally expressed
using the above abbreviation. An example is combinatory logic:

SXYZ — (XZ)(YZ) (S)
KXY — X (K)

(but we should not write the RHS of (S) as XZ(YZ) because that can be inter-
preted as @(X°, Z?(@(Y®, Z°))) instead of the intended @(@(X°, Z°), @(Y®, Z°)).)

Section 2.6 Combinatory Reduction Systems (CRS) 55

The substitution concept of CRS is reminiscent of a two-level A-calculus in
that a metavariable is always applied to the list of terms that should be sub-
stituted into its body. Metavariables are therefore instantiated to ‘substitute-
abstractions’ denoted AX.t and the resulting ‘substitute-redexes’ play the role of
substitution.

2.6.8 Definition (substitution). A wvaluation o is a map that maps each metavari-
able Z™ to a substitute A(X(n)).t where the x; are distinct and t is a preterm.
Valuations are homomorphically extended to metaterms: o(t) denotes the result
of first inserting o(Z) for each metavariable Z in t and then replacing all the
resulting substitution (A()‘i(n]).t)(f(n)) by tlx; ;= ty,...,%x, := t,] defined induc-
tively by

= [yl(thxy ==y, ..., X0 = t4]) y € {X}
i (thxr c=t1, ..o X =t X1 = tiga, o, X i=)

Fm(S][X] =1t,...,Xq = tn],...,Sm[X] =1,...,Xn :tn])
ZM(S)x1 =11, ..., xn 1= ta] =
Z™(s1lx1 =11, ..., xn = tal, . SmXt =t X =)

(the last case exists because one metavariable may be mapped to another when
we allow reduction of metaterms). We say that s matches t when there exists a
valuation o such that o(s) = t.

A lot of complexity is hidden in the requirement that valuations be ‘homomor-
phically extended’ to metaterms because of the risk of name clashes. This is
solved by the following definition which turns out to be a sufficient restriction
for avoiding name conflicts.

2.6.9 Definitions (safeness).

A. The bound variables of a preterm, bv(t), are defined inductively as bv(x) =
&, bv([x]t) = [Ubv (), br(F*(f))) = bV(Z" () = bv(t))U- - -Ubv (ty).

56 Preliminaries Chapter 2

B. The rewrite rule p — tis safe for the valuation o if for p and t considered
as preterms

VZ e mv(p) Vx € fv(o(Z)) : x ¢ (bv(p) Ubv(t))

c. The valuation o is safe with respect to itself if

VZ,Z': fv(0(Z)) Nbv(a(Z") = @

Thus a CRS inherits the implicit complexity of the A-calculus renaming, and
resolves it in the same way by a generalised form of variable convention:

2.6.10 Convention (variable convention). Any valuation used is assumed safe with
respect to itself, and any rule it will be used with is assumed safe with respect
to it.

Clearly a safe variant can be obtained for any valuation in any context by
renaming of some bound variables. This renaming is harmless since we con-
sider metaterms modulo renaming.

2.6.11 Remark. It may seem contradictory that we discuss free variables at all
considering that all metaterms are closed. This is because we may ‘reduce under
binding’: a redex occurrence can easily be rooted inside an abstraction and thus
have locally free variables. This suggests two interesting subcases:

e TRSSs, defined above, do not include metaabstraction, and hence have no
variables, so valuations of even contextual TRSs are automatically safe,
and

e weak reduction (where all redexes are closed terms) only produces safe
valuations.

This explains why abstract machines (TRS) and environment calculi (weak)
avoid problems with valuation safety (for a treatment of these issues see Rose
1996).

2.6.12 Definitions (match). Given a rule p — r, some valuation o (assumed safe
in all contexts below, of course) defined such that o(p) is a term, and some
context C[]. Then

A. Clo(p)] is reducible, o(p) is the redex, and C[] is its occurrence.

Section 2.6 Combinatory Reduction Systems (CRS) 57

B. Clo(r)] is the contractum of the rule, and
c. the pair Clo(p)] — Clo(r)] is a rewrite of the rule.

(in all cases we add “with match valuation o” if appropriate). If o(p) is allowed to
be a metaterm then we correspondingly define metareder, metacontractum,
and metarewrite, in fact we will use metaX to designate the property X of
metarewriting.

2.6.13 Definition (reduction). Given a CRS R. R-reduction is the relation w gen-
erated by all rewrites possible with rewrites using rules from R. R-metareduction
is the relation containing all metarewrites of the rules in R.

In this dissertation we are mostly concerned with confluent reduction systems.
Confluence is, of course, in general undecidable, however, the orthogonality
property defined by Klop (1980), identifies a decidable class of confluent CRSs.
Here is a compact definition adapted from Klop et al. (1993):

2.6.14 Definitions (orthogonality). Let R be a CRS which consist of rules p; —
A. R is left-linear if there are no repeated metavariables in any of the p;.

B. All p; must have the form C[Z]" (¥1(q,)), - - -, 25" (¥n(an))] Where all metavari-
ables are mentioned explicitly (hence the context C[] is known to contain
no metavariables in addition to being a construction). R is nonoverlapping
if for any redex o(p) each other redex contained within it is also contained
within some G(Z;l I (%(a;))), t.e., no constructor can be matched by more
than one redex.

C. R is orthogonal if it is left-linear and nonoverlapping (some authors call
this regular).

2.6.15 Theorem (Klop 80). All orthogonal CRSs are metaconfluent.

Proof. Confluence is proved in Klop et al. (1993, Corollary 13.6) using the notion
of parallel reduction, -+, which contracts all (nonoverlapping) redexes simul-
taneously; metaconfluence is an easy consequence of the observation that the
metavariables of a metaterm can be treated as otherwise not occurring function
symbols.]

58 Preliminaries Chapter 2

This result can, in fact, be strengthened to weakly orthogonal® CRSs which
means that overlaps are allowed when reduction of the two redexes always give
the same result (proved by van Oostrom and van Raamsdonk 1995), however,
we will not make use of this in this dissertation.

Finally, we an examples of a larger CRS. It is a generalisation of a system of
Knuth (1973, p.337) exploiting higher-order rewriting.

2.6.16 Example (symbolic differentiation). Let the arithmetic functions (unary),
ranged over by F, and the arithmetic expressions, ranged over by A and B, be
defined inductively by

Fui=AxA | In | exp | ---
A::=X|FA|A+B|A—B|AXB|%|i

where x denotes any variable and i any integer constants. The differential dF
of an arithmetic function F is derived by the CRS rules in Figure 2.2 (based on
the list in Spiegel (1968, section 13)). One can use this to differentiate simple
functions such as In(x + 1):

d(Ax.(In)(x + 1)) | — Ax.|D([x](In)(x + 1), %)

(function) (chain)

—s A | |d(n) || (x+ 1) x| (D([x]x +1,x%))
(n) (plus)

-+ AX. (?\X.J—c)(x-i-]) X | (D([x]x,x)) |+ | (D([xI1,x))

(identity) (constant)
(B)
1 1
-+ AX. x| (140)|— Ax. x 1| — Ax.
x+1 x4+ 1 x+1

(x+0) =)
(notice the need for parentheses around In in applications because the CRS world
is ‘untyped’ so we cannot know whether In(E) is a construction of In' on E or
an application of In° to E).

8While orthogonal is the same as regular, weakly regular as defined by Barendregt, van
Eekelen, Glauert, Kennaway, Plasmeijer and Sleep (1987) is a weaker notion where the reductions
are merely required to commute.

Section 2.6 Combinatory Reduction Systems (CRS) 59

First d(f) that designates the differential of the function f.
d(Ax.X(x)) — Ax.D([x]X(x),x) (function)
Next the differentials of some standard functions.
d(ln) —)\x.)]—((In) ; d(exp) — exp (exp)

Differentiating an expression e with respect to a variable x to be substituted by s is designated
D([x]e,s) (Knuth used Dy(e) corresponding to D([x]e, x) because the first-order system only
permits trivial substitution).

D(x]Y,Z) — 0 (constant)
D([x]x,Z) — 1 (identity)
D([xI(U(x) +V(x)),Z) — D(IxIU(x), Z) + D([xIV(x), Z) (plus)
D([x](U(x) = V(x)),Z) — D([x]U(x),Z) — D([x]V(x), Z) (minus)

D([x](U(x) x V(x)), Z) — (D([x]U(x),Z) x V(Z)) + (U(Z) x D([x]V(x), Z)) (times)

(K % 7, (P(HUK),2) x \(/((zz);; i/LE(ZZ)) XDIVELZ) (giviae)
The interaction between functions is described as follows.
D(X(W(V(x)),Z) — (d(W)(V(Z)) x D(X]V(x), Z) (chain)
Finally applications need to be contracted.
(Ax.X(x))Y — X(Y) (B)

A few algebraic simplifications ... (many more can be added, of course).
0+X—X (0+x) ; X+0—=X (x+0) ; X—0—oX (x-0)
IxX—X (1x) ; Xx1—=X (x1) ; 0OxX—0 (0x) ; Xx0—0 (x0)

?HX (x/1) ; %HO (0/x) ;

1

X HXXY (1/%)

x| =
<=

Figure 2.2: Symbolic differentiation CRS.

60 Preliminaries

Chapter 2

Here is a more complex reduction where we use the ‘chain rule’ nontrivially,
exploiting the power of higher order rewriting.

\ d(Az.(Ax.(In)(x + 1)) ((Ax.1Inx)z)) \

(function)

—)AX‘D 1(Ab.(In)(b + 1))((Ac.Inc)x), x)

(chain)

x](Ae.Ine)x, x))‘

(function)

O Ax. (\ d(Aa.(In)(a + 1))

o)

(chain)

TN Ax.\ (Ax.D([x](In)(x + 1),

] ((

‘d?\a lna

) x | (D([x]x,x)))
(identity)

(B)

(function)

T Ax.\ (D([b](In)(b + 1), lnx)

(Mx.D(Ix]lnx,x))x x 1) ‘

(x1)

(chain)
—+H— AX. (d(In)

) (Inx + 1) x \ (D([x]x +1,Inx)) \) x \ (Aa.D([b]lnb, a))x\

(In) (plus)

(B)

—+H— AX.

(Ax.l) (Inx + 1)
X

(Ixx,Inx)) |+ (D

x| (D(ld]nd,x))|

(identity)

X (‘ (D
(B)

(X1, Inx)) |
(constant)

(chain)

—+H— AX.

1
Inx + 1 (]+0)> ((‘
(x+0)

(In)

d(In) ‘
x 1

—+— AX.

)

! x1)|x }\x.l
Inx + 1 X
(x

1) 1)

1x1
1 1 (1x)
A Inx +1 * X —)}\X'(Inx—l—l) X X
(1/x)
2.7 Summary.

x x | (D([x]x, %)) \)

(identity)

—+— AX.] X Aa.l X
Inx +1 a

M T 1) x x

We have presented a host of notations and standard results: everything in this
chapter has been published in the literature. The presentation is original, how-
ever, in particular the exposition of translation and projection in Definition
2.1.10, of compositionality in Definition 2.2.6, and of reduction strategies in

section 2.4.

Explicit Conservative
Extensions of A-calculus

This chapter is devoted to conservative extensions of the ApB-calculus: this is
the chapter devoted to the study of making explicit those aspects of mechanical
evaluation that neither increase nor reduce the expressive power. In particular
all the discussed calculi will be confluent and contextual.

We will study syntactic extensions in that each extension makes some oper-
ational aspect of reduction explicit. Specifically, we show how extensions giving
explicit sharing, explicit naming, and explicit substitution can be defined in such
a way that the highest degree of orthogonality between the concepts is obtained.
We show this by demonstrating how the large number of published extensions of
A-calculi can be understood as ‘points in A-space’. The purpose of the separation
is to reason about classes of extensions by using projections that preserve the
property, i.e., ignore as many ‘irrelevant’ dimensions as possible.

The situation is illustrated in Figure 3.1: the origin is the (untyped) AB-
calculus, and we give samples of a ‘unit’ of each dimension (where the dimension
is first fully explicit): ANF is de Bruijn’s (1972) ‘namefree’ calculus described
in section 2.5; we will say that this has explicit naming. Ax is our calculus
with explicit substitution in the most abstract way. Finally, Aa is a variation of
Wadsworth’s (1971) A-graph calculus using (abstract) addresses which we will
say has ezxplicit sharing.

61

62 Explicit Conservative Extensions of A-calculus Chapter 3

explicit
naming I
I
}‘NFao ~—-0Ava : Ao
ANFe L 8 \ explicit ‘ L]
| Av | sharing |
\ \ |
Aa. ‘ |
_-#Ma PSN | —PSN L
P | exp 1C11f
A B AX | substitution
Figure 3.1: Explicitness dimensions and selected calculi.

We proceed as follows: First, in section 3.1, we present Axgc, a calculus of
explicit substitution which retains ‘implicit’ variable names which is the Ax
discussed above with a technical extension, namely a rule for ezplicit garbage
collection which will turn out to play an important role in many proofs even
though it adds nothing to the expressiveness of the calculus. In particular we
use it essentially in the following section 3.2 to give a direct proof that Axgc
preserves strong normalisation of Af3-reduction.

Second, we investigate, in section 3.3, the interaction between ezplicit nam-
ing and explicit substitution: first we compare the Ax-calculus with Av of Les-
canne (1994a), and obtain a projection from Av into Ax which we show to main-
tain the presevation of A3 strong normalisation, thus obtaining a constructive
proof for PSN of A for Av. We then generalise the properties of this projec-
tion to a notion of strict projection which we use to generalise the proof to
all the calculi for which PSN of A3 is already known. This teaches us that the
explicit substitution dimension is the critical one for PSN of A3, and we discuss
the ‘boundary’ shown as a dashed line on Figure 3.1 in this direction, where Ao
is known to be on the ‘wrong side’, confirming the result reported by Mellies
(1995).

Third, we study the ezplicit sharing dimension in section 3.4: we introduce
sharing in general and for A-calculus in particular, a major part of the latter is
a comparison to Wadsworth’s (1971) A-graph reduction.

In section 3.5 we synthesise explict sharing and substitution into Axa with
which we can model the complezity of sharing independently of the reduction
strategy: This gives the first calculus in this dissertation where the reduction

Section 3.1 Explicit Substitution (Ax) 63

count 1s a realistic complexity measure and the term size truly measures the
space consumption.

Parts of the chapter have been published/presented (Rose 1995, Bloo and
Rose 1995, Rose and Bloo 1995).

3.1 Explicit Substitution

This section presents the Axgc-calculus: an explicit substitution calculus in
the tradition of Ao of Abadi, Cardelli, Curien and Lévy (1991) but retaining
variable names instead of using indices a la de Bruijn (1972). This makes the
calculus simpler by making it possible to use only ‘naive direct substitution’
following Rose (1992). Furthermore, Axgc shares with As of Kamareddine and
Rios (1995) and Av of Lescanne (1994a) that there is no syntax for explicit
composition of substitutions (we elaborate on this in section 3.2). Finally, the
calculus has ezplicit garbage collection (of Rose 1992) since it is useful and
fairly easy to specify using names but mostly because it makes the proof of
preservation of strong normalisation simpler and direct. We show, however, that
garbage collection is not observable in any way.

We first present the Ax-terminology which we will use throughout the chapter,
and generalise some standard related concepts from the A-calculus of section 2.3
to them. Then we present Axgc-reduction. Finally we analyse properties of
the substitution and garbage collection subrelations and explain the relation to
standard substitution and (3-reduction, showing that the reduction relation of
Axgc is a conservative extension of ——, from which confluence of Axgc follows.

3.1.1 Definition (Ax-preterms). The Ax-preterms is the extension of the A-preterms
(ranged over by MNPQR) defined inductively by

M == x | &x.M | MN | M(x:=N)

where xyzvw range over an infinite set of variables. As usual we use parentheses
to indicate subterm structure and write Axy.M for Ax.(Ay.M) and MNP for
(MN)P; explicit substitution is given highest precedence so Ax.MNP(y := Q)
is Ax.((MN)(P(y := Q))) (thus xs in all of the subterms M, N, P, and Q, are
bound by the A).

The Ax-terms include as a subset the ordinary A-terms, A; we will say that
a Ax-term is ‘pure’ if it is also a A-term, z.e., if it has no subterms of the form

64 Explicit Conservative Extensions of A-calculus Chapter 3

M(x :=N). The usual B-reduction is denoted —;— (as defined on the pure terms
only, of course, cf. Definition 2.3.6). All the usual standard concepts generalise
naturally.

3.1.2 Definitions (Ax-terms).

A. The free variable set of a Ax-preterm M is denoted fv(M) and defined
inductively over M by (the usual) fv(x) = {x}, fv(Ax.M) = fv(M)\{x},
fv(MN) = fv(M) U fv(N), and (the new)

fv(M(x:=N)) = (fv(M)\{x}) Ufv(N) .
A Ax-preterm M is closed iff fv(M) = @.

B. The result of renaming all free occurrences of y in M to z is written
Mly := z] and defined inductively over M and defined inductively over M
by (the usual) x[y =zl =zif x =y, x[y =zl =x if x #y, (AxM)[y =
z] = &' MIx = x'lly := z|] with x’ € fv(Ax.M) U {y,z}, (MN)[y := z] =
(M[y :=z]) (N[y := z]), and (the new)

(M{x:=N))[y :=z] = M[x =]y :=z] (x' := N[y :=z])
with x' ¢ fv(Ax.M) U{y, z}.

c. That two terms are «-equivalent is written M = N. This means that they
are identical except for renaming of bound variables, defined inductively by
(the usual) x = x, Ax.M = Ay.N if M[x :=z] = N[y := 2] for z ¢ fv(MN),
MN =PQ if M =P and N = Q, and (the new)

M(x :=N) =P(y:= Q) if N = Q and M[x :=z] = Ply :=z] for z ¢ fv(MP).

D. The set of Ax-terms, Ax, is the set of Ax-preterms modulo =. The set
of closed Ax-terms, Ax°, is the subset of A where the representatives are
closed preterms.

3.1.3 Remark. One might argue that

fv(M) if x ¢ fv(M),

Fr(Mx=N) = { (B(M©\) UEv(N) - if x € fv(M) N

is a better definition since when x ¢ fv(M) it is impossible for a substitution
(y :=P) in M(x := N)(y := P) to substitute P for any variable in N. We will not

Section 3.1 Explicit Substitution (Ax) 65

do this, however, since it would interfere with garbage collection in an unnatural
way, for example it would allow the reduction x(y = z){z := v)(z == w) —
x(y := z)(z := w) which seems to change the binding of the inner z.

Also note that M(x := N) has the same free variables as (Ax.M)N; in these
terms free occurrences of x in M are bound by _(x := N) respectively Ax._.
Using (x) would mean that contraction of a redex could remove free variables
from a term which seems undesirable.

As usual we will use the variable Convention 2.3.4.
3.1.4 Definitions (Axgc-reduction). Define the following reductions on Ax.
A. o, substitution generation, is the contextual closure (modulo =) of

(Ax.M)N — M(x :=N) (b)

B. -, explicit substitution, is defined as the contextual closure (modulo =)

x'?

of the union of

x(x :=N) — N (xv)
x(y:=N) -x ifx#uy (xvgc)
(Ax.M)(y :=N) = Ax.M(y := N) (xab)
(MiM3){y :=N) = My{y :=N) My(y :=N) (xap)

C. — garbage collection, is the contextual closure (modulo =) of
M{x:=N) =M ifx ¢ fv(M) (gc)
The subterm N in M(x := N) is called garbage if x ¢ fv(M).

D. Axgc-reduction is —— = v U 2 U ——, Ax-reduction is > = v U 5,

bxgc gc !
aIld x—gc) - ? U ?)

The following is immediate from the definition.
3.1.5 Propositions. A. If M, N € A, M(x := N) = M[x:=N]. B. P - Q implies
Qe A

This in combination with the fact that substitution normal forms are unique
(more elaborate proofs will be given below) motivates the following.

66 Explicit Conservative Extensions of A-calculus Chapter 3

3.1.6 Notation (normal forms). Since —UN we will use the notation |,(M) for the
—-nf of M and where we say M is pure if M = [,(M) € A (or equivalently
M —# M). Similarly |,.(M) is the T-nf of M and we say M is garbage-free if
M = [(M).

Properties of Axgc-reduction and ——— will imply the same for Ax-reduction and

— since omitting (gc) rarely makes a difference (we explain why it is important
below). We only discuss the more general Axgc-reduction in this section.

3.1.7 Remark (implicit renaming). The above reduction definition is based directly
on the usual definition of (3-reduction with substitution, except that it is made
explicit by reducing the implicit definition of ‘meta-substitution’ to an explicit
syntactic substitution without changing anything else. In particular implicit
renaming of variables is silently assumed following Convention 2.3.4. In addition
we have just added the definition of garbage collection directly (introducing
additional overlap between the rules). The usual definition of substitution (cf.
Barendregt 1984, 2.1.15) is very carefully worded in order to avoid problems
with variable capture and clash, and this is reflected in our definition as well:
in rule (xab) the variable convention avoids variable clash (by requiring that
x # y) and it avoids capture by requiring that x ¢ fv(N). Alternatively, this
could be achieved by ezplicit renaming, 1.e., by using the following equivalent
but more cumbersome formulation of the rule:

Ax.M)(y :=N) = Ax' M[x:=xI{y :=N) x' ¢ fv(N)Ufv(Ax.M) U{y}

where the required renaming is made explicit, which creates the need for the
shown constraints as follows:

o If there are free x in N then just moving the explicit substitution inside
Ax ... would capture them. This is prevented by renaming x in M to x/,
requiring that x’ ¢ fv(N).

e However, we must also ensure that the renaming itself does not clash with
an existing free variable in M as this would then be captured by the created
Ax'.... This is ensured by the constraint x’ & fv(Ax.M).

e Finally, the new variable should not clash with y, hence the requirement

x" ¢ {y}.

Notice that if x ¢ fv(N) and x # y, there is no need to rename: x = x' is
acceptable.

Section 3.1 Explicit Substitution (Ax) 67

One could attempt to make renaming explicit by changing the rule to
Ax.M)(y :=N) = A M{x:=x"Y(y:=N) x' ¢ fv(N)Ufvr(Ax.M) U{y}

but this is not much better as the problem of allocating ‘fresh’ variables remains.

3.1.8 Example. To give the reader an idea of this new reduction relation we
present the full Axgc-reduction graph of the term (Ay.(Az.z)y)x in Figure 3.2
(the pure terms are boxed). For comparison the full 3-reduction graph of this
term is

The length of each path in the reduction graph is a measure for the complexity
of the corresponding evaluation. Notice that some paths do not pass by the
intermediate term (Az.z)x.

3.1.9 Comparison (earlier naming calculi). Two earlier expositions of explicit sub-
stitution using variable names are known to the author. The first was in the
“axioms for the theory of A-conversion” of Revesz (1985):

(Ax.x)Q — Q (B1)
(Axx)y — x ifx#y (B2)
(Ax.Ax.P)Q — Ax.P (B3)
(AxAy.P)Q — Ay.(Ax.P)Q ifx#y and x ¢ fv(P) and x ¢ fv(Q) (B4)
(Ax.P1P2)Q — (Ax.P1)Q ((Ax.P2)Q) (B5)

This relation, call it —>, is related to Ax by the equation = - — - 4 (the
last arrow is b-expansion to normal form). The problem with Revesz’s calculus
for our purposes is that it does not make sense to talk about the ‘substitution
normal form’: one cannot observe which substitutions are ‘in progress’. This is
essential in the treatment below.

Another calculus using names is the variant of Ao discussed briefly in section

3.3 of Abadi et al. (1991). It has the following rules:

(Ax.a)b — a[(b/x) - id] (Beta)

68

Explicit Conservative Extensions of A-calculus Chapter 3

Figure 3.2: Axgc-reduction graph for (Ay.(Az.z)y)x.

Section 3.1 Explicit Substitution (Ax) 69
x[(a/x)-s] — a (Varl)

x[(a/y) - s] — x[s] (Var2)

x[id] — x (Var3)

(ba)ls] — (bls])(als]) (App)

(Ax.a)[s] — Ay.(al(y/x)-s]) if y does not occur in a (Abs)

The rules correpond closely to those of Ax except for the crucial difference that
(Abs) introduces ezplicit renaming as discussed in Remark 3.1.7 — the ‘names’
are not variable names in the A-calculus sense but ‘strings’ with all the associated
problems of allocation, etc, and hence difficult to describe — a conclusion also
reached by Abadi et al.

Next we establish some properties of the subrelations that are essential when
relating this calculus to the pure A-calculus, in particular when explaining the
relationship between explicit and traditional (implicit) substitution, and garbage
collection.

3.1.10 Propositions. A. SN, B. ¢, ¢.——SN, D. ——CR,and B. ——UN.

xgc Xgc Xgc

Proof. < is easy since » is orthogonal and linear, >SN by observing that
each p-reduction decreases the number of b-redexes in a term.

—g< >N is shown by finding a map h: Ax — N such that for all M —— N:
h(M) > h(N). This is easily verified for the map defined inductively by h(x) =1,
h(MN) = h(M) + h(N) + 1, h(Ax.M) = h(M) + 1, and h(M(x := N)) =
h(M) x (h(N) 4+ 1).

——LC follows from the observation that the three critical pairs are resolved

xgc

like this:

where y # x,

70 Explicit Conservative Extensions of A-calculus Chapter 3

where y ¢ fv(Ax.M), and

M1(y = N> Mz(g = N)

ap gc

(MiM;){y :=N) (MyM,;)

gc

where y ¢ fv(M;M;). SN and LC imply CR and UN by Lemma 2.2.9. O

Now we will establish the relation between explicit and pure substitution: we
show that the behaviour of the substitutions P(x := Q) relates well to the usual
meta-substitution P[x := Q].

3.1.11 Lemma (representation). For all terms M, N and variable x,
lx(M<X = N)) = lx(M) [X = lx(N)]

where P[x := Q] denotes the term obtained by (usual) substitution of the (pure)
term Q for all free occurrences of x in (the pure term) P. In particular |, (M(x :=
N)) = M[x := N] for pure M and N.

Proof. We show by induction on the number of symbols in M, N;,..., N, that
Lx(M{x1:= N1} -+ (xn := Np)) = [(M)[x1 1= [(N1)] -+ - [xn := [x(Ny)]

Using this as the IH we distinguish cases according to the structure of M:

Case M =x, n=0: [.(x) = |<(x).

Case M =x, n > 1: If x # x; then

lx(X'(Xl = N]> T <Xn = Nn)) = lx(X<X2 = NZ) v <xr1 = Nn>)

if x = x; then

La(x(x1 :=Nyp) o+ (xn :=Np)) = Lx(Ny(x2 :=Nz) -+ {x, := Np))

2 LND b = LN -+ b = LNy
X[X = lx(Nl)] tee [X'n = lx(Nn)]
= lx(x)[xl = lx(N1)] te [Xn = lx(Nn)]

Il

Il

Section 3.1 Explicit Substitution (Ax) 71

Cases M = PQ and M = Ax.P: Easy.

Case M = P(y:= Q): The number of symbols in P{y := Q), Ny,..., N, is bigger
than the number of symbols in P, Q, Ny,..., N, and (for the second use
of TH) bigger than the number of symbols in P, Q. Hence

Lx(P(y:= Q)(x1:= Ny} -+ (xn := Nn))

= J,x(P)[y = lx(Q)][X] = J,x(N”] t [Xn = lx(Nn)]

= L(P(y = Q)1 = Le(Na)] -+ B = Le(Noy)
O
An interesting consequence of representation is the following:
3.1.12 Corollary (substitution lemma).
M(x := N)(y := P) 45z M{y := P){(x ;== N(y :=P))
Proof. Follows from Lemma 3.1.11 by the A-calculus substitution lemma.]

For the pure calculus this conversion degenerates to an identity which is the
usual pure A-calculus substitution lemma.

Next several useful results, including the relationship of — to garbage collec-
tion.

3.1.13 Propositions. For any M,
A. If M —— N then fv(M) D fv(N) and |[(M) = [(N).
B. If M — N then fv(M) D fv(N).
c. If M 5 N then fv(M) = fv(N).
D. If M is garbage-free then fv(M) = fv(|(M)).

Proofs. The two free variable inclusions and ¢ follow by an easy induction on M.
The preservation of |, is shown by induction on the structure of M; the crucial
case is P(x := Q) — P where x ¢ fv(P): then by Lemma 3.1.11 Lx(P{x ==
Q)) = Lx(P)lx:= [x(Q)] = «(P) since x ¢ fv(P) 2 fv([«(P)).

Concerning D, we first note that there is a reduction path

MEM(,?TVH?»M{?Mz?»Mé?"'?»MLElx(M)

72 Explicit Conservative Extensions of A-calculus Chapter 3
where Miy1 = My, if M{ - My is not an (xab) step, and My —> M{,
if M{ — My is a (xab) step, and all M; are garbage-free. For instance if
M/ = (PQ)(x := R), Mi;1 = (P(x :=R))(Q(x :=R)), x € fv(P), x ¢ fv(Q), then
M1 —> M{; = (P(x:=R))Q and M/, is garbage-free iff M/ is garbage-free.
Now it is easy to show by induction on the structure of M/, that M; garbage-free
implies M{; garbage-free and fv(M]) = fv(M[,). O

1

That the two D cannot be strenghtened to = can see by considering the reduction
x(y = z) — x valid for both - and —.

A consequence of Proposition 3.1.13.A is that we do not need to introduce a
special notation for x—gc»normal forms since any pure term is also garbage-free,

1.€., Tgc»{ = 7»1

3.1.14 Remark (on garbage collection). Considering the above, one might ask why
—<~ 1s needed at all when its effect seems obtainable by -»? The answer is
that its effect is not obtainable by —: intuitively —— does a single global
garbage collection whereas — moves a substitution into a term, working a bit
of the way towards garbage collection. Formally, not only is — ¢ —<» but also
— € —+ the second inclusion fails because a single —— can remove a single
substitution which can’t be removed by —» when it is not the innermost, e.g.,
x(x = y)(v = w) — x(x :=y) which can’t be done by —» (also see Remark
3.1.3). This is witnessed in Figure 3.2 where most but not all —~-arrows are
adjacent to an —syg—-arrow.

Furthermore, —— permits more efficient reduction through the use of clever
strategies. One of the problems with explicit substitution is that there is a
tendency to create substitutions that do not bind a variable, as is the case in
(x(fyyy))(x :=I) = x(x = 1) (fyyy)(x := I) Without —» the reduction to
normal form of the latter term will involve distributing (x := I) three times over
fyyy and then deleting it four times using —vge—. Using —+ make it possible
to throw away the useless substitution (x :=I) in (fyyy)(x := I) right after its
creation, and hence fyyy can be reached more efficiently with respect to the
length of the reduction path, as well as with respect to the size of the terms
along the reduction path.

Finally, garbage collection makes a modular proof of preservation of strong
normalisation possible in the next section, something it is not clear whether one
could do without.

Now that we have established the properties of the substitution subrelation,
we can compare to the ordinary (pure) B-reduction. We show that “Brge” isa

Section 3.1 Explicit Substitution (Ax) 73

conservative extension of ——, and thus confluent. We first relate single reduc-
tion steps and finally full reduction.

. MT). . MT)
3.1.15 Proposition. For pure M, A. x_, and B.
By

Moy

oW

b‘}D'

Proof. Both follow from the observation that we can choose to contract the
same f-redex with —— and +», and that the result of the -reduction will have
exactly one substitution in it: we then use UN and Lemma 3.1.11. [

Next Proposition 3.1.15.A is generalised to non-pure terms because we will need
this in the confluence proof below. In fact we also strenghten it slightly in the
special case where the contracted term is garbage-free since this will be needed
for the proof of preservation of strong normalisation in the following section.

M—5—N
3.1.16 Lemmas (projection). A. For all Ax-terms M, x x
MTYN lx(M) [3>>~Lx(N)

B. For garbage-free M, i" ’i
lx(M) ?3— >~Lx(N)

Proof. We first prove B by induction on the structure of M:

Case M = (Ax.P)Q, N =P(x:=Q):

Lemma 3.1.11

Lx(M) = (A [x(P)) 1x(Q) 5= Lx(P)be = Lx(Q)] ™= Lu(P(x:= Q)
IH
Case M =PQ, N=P'Q: [(M) = L«(P) 1x(Q) —~ L«(P) L«(Q).

Case M =PQ, N =PQ’" Analogous.
Case M = Ax.P, N = Ax.P": Analogous.

Case M = P(x:= Q), N = P'{x := Q): By IH we know that |.(P) —5— [x(P"),
hence also x(P)[x := Lx(Q)] —4+ Lx(P)lx := Lx(Q)]. Thus [5(M) """
Le(Px == Le(Q)] = Le(P)[x = L(Q)] ™" L(N).

74 Explicit Conservative Extensions of A-calculus Chapter 3

Case M = P(x:=Q), N = P(x:= Q'): By IH we know that |.(Q) —5~ [x(Q"),
hence also [4(P)[x = [x(Q)] % 1x(P)[x := [+(Q')] since by the fact

that M is garbage-free and Proposition 3.1.13.D, x € fv(|4(P)). Thus
Lemma 3.1.11 Lemma 3.1.11

lx() lx()[X:: lx(Q)] %)lx(P)[X: lx(Ql)] = N
A is analogous except that we do not know in the last case that x € fv(|,(P))
and hence have to use —;—, allowing identity (=). O

The above suffices to show that Axgc is indeed a conservative extension of the
AB-calculus, with —» as translation.

3.1.17 Theorem. For pure terms M,N: M N M —=» N

bxgc

Proof. Case <: Assume M —— N; the case then follows by induction on the
length of the ——-reduction, using Proposition 3.1.15.B in each step.

Case —>: Assume M —»
length of the ——

—mge? N and M, N pure. We will do induction on the

—pxge -Teduction and prove

bxgc bxgc e bxgc T‘—_] bxgc

b >>~Lx(1) | . »lx(Mnf] 5N

Each step in the top of each ‘cell’ is one of — 0 T and +, thus each ‘cell’
is an instance of either Proposition 3.1.13.A, confluence of ~+, or Lemma
3.1.16.A. L]

An easy consequence of this is the following.

3.1.18 Corollary. ———CR.

bxgc

Proof. By Proposition 2.1.17.A with —» as projection.]

3.1.19 Discussion (locality). We argued in the introduction that explicit substitu-
tion would establish a complezrity faithful method of reducing A-terms. This
is manifested in the definition in the fact that contraction creates a bounded
fragment of the contractum Ax-term. This will turn out to be crucial later.
What we have not made local is the search for redexes and the duplication of
subterms — the latter will be addressed in the sharing sections of this chapter;
redex searching is made local in the form of explicit strategies in the next chapter,
and this is generalised to CRS systems in chapter 5.

Section 3.2 Preservation of Strong Normalisation (PSN) 75

3.2 Preservation of Strong Normalisation

In this section we prove preservation of strong normalisation of untyped A-terms
(PSN) for Axgc. We first recall Mellies’s (1995) counterexample to PSN of f3-
reduction for Ao of Abadi et al. (1991)' which we generalise slightly and from
which we synthesise the usefulness of explicit (i.e., syntactic) garbage collec-
tion. We then proceed with the proof of 3-PSN in two stages: first we introduce
our main technical tool to achieve the goal, ‘garbage-free’ reduction. We define
it naively as a restriction of Axgc-reduction, and show that it is a confluent
refinement of the A-calculus, with 3-PSN. Afterwards we show that the ‘garbage
collection overhead’ does not provide for infinite reductions from which we con-
clude that unrestricted Axgc-calculus has PSN. Our proof is direct. Furthermore,
by reasoning more carefully and avoiding infinite reduction sequences, the proof
can be made constructive.

3.2.1 Remark (composition of substitution breaks PSN). Why not consider a stronger
calculus with some kind of reduction rule for composition of substitutions as Ao
has? It seems poor that for Axgc the substitution lemma is only an extensional
property of reduction whereas for Ao it is intensional: there is a rewrite rule
which performs substitution composition in a single step.

The problem is that PSN is usually not preserved in the stronger calculi as
was shown by Mellies (1995). In the most general case this is obvious: adding
the rewrite rule

M(x ;= N)(y :=P) ~' M(y :=P){x:=N(y :=P))

breaks PSN since this rule immediately yields infinite rewrite possibilities when-
ever it is applicable. Ao essentially adds parallel substitution which in our
notation could be written (X := N} which intuitively means substitute N; for
x1, N2 for %, ..., Ny, for x,, simultaneously; the Ao rules Clos and Map are
equivalent to the parallel substitution rule

M(X == N)(§ :=P) ~" M(X,§:=N1(§:=P),... ,Nn(G:=P),Py,...,Pp)
(this was shown by Kamareddine and Nederpelt 1993). In fact, even the simpler
rule

M(x := N){(y := P) ~» M(x := N(y := P)) ify ¢ ftv(M)
suffices for an exposition of Melliés’s counterexample as shown in Figure 3.3 (the
original term was the typable Ax.(Ay.I(Iy))(Ix)).

1We present Ac in Definition 3.3.21.

76 Explicit Conservative Extensions of A-calculus Chapter 3

Let a,b,y,y’ be distinct variables. Define substitutions

So = (y:=(Ay.a)b) , Sni1 = (y:=bSy,)

and consider the following derivations (for simplicity we offend the variable
convention but this is easily repaired):

(Ay.(Ay'.a)((Ay.a)b)) ((Ay.a)b)

— a(y’:= (Ay.a)b) (y := (Ay.a)b)
= ((A\y.a)b) (y := (Ay.a)b))
=) (b(y := (Ay.a)b)))

~ aly’
— aly’ Ay.aly := (Ay.a)b)
= a(U = (Ay.aSe) (bSo))

— a{y’ := aSe(y := bSy))

= a{y’ :=aSeS1) ,

aSoSmi1 = a(y = (Ay.a)b) (y :==bS) = a(y’ := (A\y.a)b) (y :==bS,))
~ a(y’ == ((Ay.a)b) (y := bSw))
— a(y’ = (Ay.a(y := bSm)) (b(y := bSm)))
= a(UI = (Ay.aSm41) (bSmi1))
— a{y':= aSmi1 (Y :=bSmi1))

=a(y = aSm-H Smi2)

and aSy+1Sn1 = a(y’ = =bSy) (y :=1bS,)
~ aly’ :=bS(y :=1bS,)) = a(y’ := bSSnt1)

which combine into an infinite derivation in the following schematic way:

(Ay.(Ay’.a)((Ay.a)b)) ((Ay.a)b) — ...SeS1... = ...5S;...
..SoSz...%? ...3253...% ...5153...
SoS3H> S3S4ﬂ>

Figure 3.3: Simplified version of Mellies’s counterexample to PSN.

Section 3.2 Preservation of Strong Normalisation (PSN) T

Considering these negative results on calculi with composition of substitu-
tions, it seems important first to study a calculus of explicit substitutions without
composition. Furthermore, note that all the reductions (but the first three) take
place inside garbage and that it is essential that substitutions can be ‘shifted’
into garbage. Below we will show how this is impossible for Axgc, thus providing
a sufficient condition for PSN.

The crucial insight provided by the counterexample is that infinite reductions
consist mainly of reductions inside garbage. The need to avoid such has
already been discerned by Kennaway and Sleep (1988) who chose not to cre-
ate them at all, at the cost of restricting the evaluation order of nested (-
redexes. Another way to avoid these is to perform garbage collection whenever
any garbage exists. This is the main technical reason for having the reduction
= it allows us to attack the question whether —Brge has the PSN-property
in a modular way.

Below we first study reductions where all garbage is removed as soon as

possible. This has the advantage that no reductions take place inside garbage
which will allow us to prove PSN by non-reflective projection. Using the inter-
mediate result we can then prove PSN for the unrestricted reduction by care-
fully analyzing what can happen inside garbage, essentially showing that the
‘garbage collection overhead’ does not provide for infinite reductions. Our proof
is direct. Furthermore, by reasoning more carefully and avoiding infinite reduc-
tion sequences, the proof can be made constructive.
3.2.2 Definition (garbage-free reduction). g’ 8 (2 M U (5 -), te., the
union of the composition of each of — and > with complete gc-reduction. We
denote the garbage-free reduction calculus Ax.lgc (the symbol ‘I’ should be read
“composed with complete reduction to normal form by” so for example —— =
—55~ by Proposition 3.1.15).

We start by proving confluence. All the results here will depend heavily on
the knowledge that each garbage-free reduction step is a single —- or +»-step
followed by —#-reduction to gc-nf.

3.2.3 Lemmas.

M—gge— N
A. For all Ax-terms M, & e
lgc (M) begc >~Lgc (N)

78 Explicit Conservative Extensions of A-calculus Chapter 3

Mg N g
B. For garbage-free M, ’

4 .
bxlge lgc (N)

Proof. A by easy induction on the structure of M. B then follows by

M, Ms———My N

bxlgc gc gc (*) gc gc (*) gc‘

d = > > X

lgc(Ml) Elgc(MZ) begc>~Lgc(M3) Elgc(M4) begc>' ' ElgcTN)

bxgc bxgc e gc

using A several times. 0

3.2.4 Theorem. WCR.

the confluence of

Proof. We show —-»¢: it follows from — -

bxlgc bxgc "1
—prge 1 and (two applications of) Lemma 3.2.3.B by
bxlgc
bxlgc . bxgc .
/‘ o 5
| . sl
gc A
be,gc\ﬁ.-"' bxgc
bxlgc D

3.2.5 Example. Garbage-free reduction prohibits reduction inside garbage since
any garbage has to be removed before other reductions can take place. Of course,
there can be garbage collection steps inside garbage, like v(w = x(y = z))
—* V{w :=x) — v. Usually, garbage-free reduction graphs are smaller than
raw reduction graphs. Consider for instance the term (Ay.(Az.z)y)x of exam-
ple Example 3.1.8, it has the garbage-free reduction graph depicted in Figure
3.4 (compare to Figure 3.2). Note that the only place in this graph where a single
garbage-free step consists of more than one raw step is where ((Az.z)y)(y := x)

—ap ((Azz)(y :=x))(Y{y :=x)) = (Az.2)(y(y :==x)).

3.2.6 Theorem (PSN for Axlgc). Pure terms that are T-st'rongly normalising

are also strongly normalising for “oxlgc -

Section 3.2 Preservation of Strong Normalisation (PSN) 79

(Ay.(Az.z)y)x
blgc blgc

y

y(y :=x))

xvigfg lxvigc

blgc

Figure 3.4: Garbage-free Axlgc-reduction graph for (Ay.(Az.z)y)x.

Proof. We will show that each ——-#-reduction corresponds to a —z—+-reduction

of comparable length, hence there are no infinite —--»-reductions for terms that

are strongly normalising for ——; the proof is similar to that of Theorem 3.1.17.
Assume M is pure and strongly normalising for ——. Since M is pure it has

DO e " -redexes and every —g-»-reduction starting with M, whether finite or

not, is of the form M = M, - M; a M, - M; = where the “x—gc»"
segments are really — - (5 ?m) (?-?m) sequences. From such a sequence
we can construct a —z—-sequence as follows, from left to right:

M=——=M, b My ———M; B M;

Xge

(5 = =) o (5 = ()

< X

Mo) - § o Le(Ma) o [(M) 0 1e(M3)

where (*) is Lemma 3.1.16.B and (**) is Proposition 3.1.13.A. Since the lower
reduction is finite and ——SN, the upper one must also be finite.]

xgc

Now we are ready to make garbage collection explicit again. In order to distin-
guish between the degrees of ‘garbage reductions’ such that we can identify the

80 Explicit Conservative Extensions of A-calculus Chapter 3

garbage collection overhead, we define two mutually disjoint classes of reduc-
tions: garbage-reductions and reductions outside garbage.

3.2.7 Definitions. We subdivide the reduction relation —— into two mutually
disjoint parts.

A. Garbage-reduction is the contextual closure of the reduction generated
by:

o If N —— N’and x ¢ fv(|4(M)) then M(x :=N) ——— M(x :=N’)

bxgc bxgc
is garbage-reduction.

o if x ¢ fv(|;c(MN)) then (MN)(x := P) ~orge (M(x :=P))(N({x:=P))
is garbage-reduction,

o if x ¢ fv([lg(Ay.M)) then (Ay.M)(x := N) ~Brge” Ay.M(x := N) is
garbage-reduction,

o if x ¢ fv(M) then M(x := N) —— M is garbage-reduction,

Note the use of fv(]4(-)) to ensure that for instance (x(y := z)x)(z := M)
- (x(y := z)(z:= M))(x(z := M)) is garbage-reduction.

B. Reduction outside garbage is any reduction that is not garbage-reduction;
this is equivalent to saying that the contracted redex has no descendant in
the ?-normalform.

With this we can prove the following by induction on the structure of terms.

3.2.8 Propositions.

A. If M ——— N is garbage-reduction then |,.(M) = [4(N).

bxgc

B. If M —;~ N is outside garbage then Lgc(M) “Bxige’ Lec(N).

3.2.9 Definition. We say N is body of a substitution in M if for some P, x, P(x :=
N) is a subterm of M. The predicate subSN(M) should be read to be all bodies

of substitutions in M are strongly normalising for Tgc)—reduction.

The following lemma expresses our intuition about garbage-reduction.

Section 3.2 Preservation of Strong Normalisation (PSN) 81

3.2.10 Lemmas.

A. If subSN(M) and M ——-— N is garbage-reduction, then subSN(N).

bxgc

B. If subSN(M) then M is strongly normalising for garbage-reduction.

Proof. A Induction on the structure of M. We treat the case M(x := N) ——
M(x := N') where x ¢ fv(]|4(M)). Then bodies of substitutions in N’ are strong-
ly normalising for ——— since N’ is a reduct of N which is strongly normalising
for —z by subSN(M(x := N)).

B Deﬁne two interpretations for subSN-terms M. For terms M such that
subSN(M), let hy(M) be the maximum length of —_— inside garbage reduc-
tion paths of M. Since there are only finitely many substitutions in M and
all bodies of these substitutions are strongly normalising by subSN(M), h;(M)

exists. Define h, by the following:

hy(x) =1
hy(MN) =hy(M) + ha(N) + 1
ha(Ax.M) = hy(M) + 1
hy(M({x : N)) =h,;(M) x 2 if x ¢ fv([g(M))
h(M(x:=N)) =hy(M) x (ha(N)+1) if x € f7([g(M))

By straightforward induction on the structure of terms we can show that if
M —5e N is garbage reduction then h;(M) > h;(N) and ho(M) = hy(N).
Hence garbage reduction is strongly normalising for subSN-terms. L

3.2.11 Definition. Define for all terms M, #gf(M) to be the maximum length
of garbage-free reduction paths starting in |,.(M). Note that #gf(M) can be
infinite as it is for (Ax.xx)(Ax.xx).

3.2.12 Theorem. If #gf(M) < oo and subSN(M) then M is strongly normal-

i1sing for —g—-reduction.

Proof. We use induction on #gf(M).
Base case #gf(M) = 0. Then by Proposition 3.2.8.B reduction paths of M cannot

contain reductions outside garbage and hence by Lemma 3.2.10.B they are
finite.

82

Explicit Conservative Extensions of A-calculus Chapter 3

Induction hypothesis Suppose #gf(M) > 0 and we already know that if #gf(M’') <

Case

Case

Case

Case

#gf(M) and subSN(M') then M’ is strongly normalising for ~oge (IH1).
Suppose there exists an infinite reduction path

M = My M,

M3

bxgc bxgc MZ bxgc bxgc

By Lemma 3.2.10.B there is m such that M —— My, is garbage-reduction

and My, —5zc@ My 1s reduction outside garbage. Then by Proposition
3.2.8, #gf(Mmi1) < #gf(M,) and by Lemma 3.2.10.A, subSN(M,,,). Now
we prove by induction on the structure of M,, that also subSN(M,.+1);
then by IH1 we are done. Call the new induction hypothesis IH2. We treat

some typical cases:

M = (NyN2)(x := P) T (N1(x := P))(N2(x := P)) = My41, where
x € fv(lg(N1N3)). Now bodies of substitutions in (N;(x := P))(Ny(x :=
P)) are strongly normalising since they are also bodies of substitutions in
(N1N;)(x := P) and subSN((N;N;)(x := P)).

M. = (Ax.N)P ~Trge N(x := P) = M,,;1. Bodies of substitutions in N
and P are strongly normalising since they are also bodies of substitutions in
(Ax.N)P. Furthermore #gf(P) < #gf((Ax.N)P), hence by IH1 P is strongly
normalising, thus subSN(N(x := P)).

M = N(x := P) —— N(x := P’) = M;;;1 where P —_— P". Then P is
strongly normalising for —__— since subSN(M,,), hence also P’ is strongly
normalising.

Mm = NP — = N'P = M1 where N ——— N’. Then subSN(N’) by

IH2, hence also subSN(N'P). O

3.2.13 Corollary (PSN for Axgc). —g.-+ PSN of —5—.

Proof. Case =. If M is pure then subSN(M) and if M is strongly normalising for

—s—-reduction then by Theorem 3.2.6, #gf (M) < oco. Now use Theorem
3.2.12.

Case <=. By Proposition 3.1.15.8, infinite ——-reductions induce infinite ———-

bxgc
reductions. O

Section 3.3 Explicit Substitution & Naming 83

3.2.14 Remark. Strictly speaking, the above proof is not direct, however, it is
easily modified into a direct one since the contradiction is not used in an essential
way. An example of the (more roundabout) direct formulation can be found in
the proof of Theorem 3.3.9.

The following corollary characterises which arbitrary terms of Ax are SN for

—pxge -Teduction.

3.2.15 Corollary. A Axgc-term M is SN for ———-reduction if and only if for
all subterms N of M: [x(N) is SN for ——.

Proof. The only if part is easy. We prove the if part by induction on the maximal
depth of nestings of substitutions in M. If the maximal depth of nestings is O
then use Corollary 3.2.13.

Suppose that the maximal depth of nestings of substitutions is n + 1. By
the induction hypothesis, for all bodies N of substitutions in M: N is SN for
—pxge -reduction; therefore, subSN(M). After one garbage-free reduction step

M g’ M', every garbage-free reduction path of M’ will correspond to a

—g—-reduction path of |(M) similar to the proof of Theorem 3.2.6. Therefore,
#gf(M) < co. Now by Theorem 3.2.12, M is SN for W)—reduction. L]

3.2.16 Remark. Finally we mention a positive result: adding the rewrite rule
M(x := N)(y:=P) ~" M(x:=N(y:=P)) ifx € fv(|,(M)) and y ¢ fv(M)

does not break PSN; see Bloo and Geuvers (1996) for details. Intuitively the
reason for this is that if x € fv(|,(M)) then in some —pxge -reduct of M(x :=
N)(y := P), indeed a subterm N(y := P) will occur, and accelerating the occur-
rence of this subterm can do no harm. In the rewrite rules discussed in Remark
3.2.1 substitutions are being introduced that cannot occur in a —5—— reduction
path of M(x := N)(y := P) and this is what breaks PSN, since then an infi-
nite loop can be generated by composing substitutions with a redex inside and

distributing over that redex.

3.3 Explicit Substitution & Naming

In this section we combine the notion of explicit naming as presented in sec-
tion 2.5 with explicit substitution and show how this assigns to traditional calculi

84 Explicit Conservative Extensions of A-calculus Chapter 3

A(AA123) 1> -~ Az.(Ayx.xyz
B| Ip
AAT23) [T /] Az.(Ax.xyz)(y
o] |
MA23) (1) Azx. (xyz) {y
v AN(213)12/) x

BNF

AT (/1201 /)31 (1/)] Uf Azx.x(y := z)y(y ==
vl A
AT AA2(2/11(2/13[2/]

Figure 3.5: A reduction in Av (left) and Ax (right).

of explicit substitution a set of ‘coordinates’ in the explicit naming and explicit
substitution dimensions.

We commence with a preliminary study of the naming dimension by investi-
gating in detail the relation between Ax and the simplest de Bruijn-index based
calculus of explicit substitution that we know, namely Av of Lescanne (1994a).
We will give a translation from Ax to Av which is sufficiently strong that we
can provide an independent and direct proof of PSN for Av. We then abstract
a sufficient condition on such translations, called strict explicit naming which
guarantees PSN, and we finally use this to give new and direct proofs of several
known PSN results: for As of Kamareddine and Rios (1995) and Ax of Lescanne
and Rouyer-Degli (1995).

3.3.1 Discussion (comparison between Av and Ax). The A-term Az.(Ayx.xyz)z corre-
sponds to the de Bruijn term A(AA123)1. This term reduces with Av and Ax
as shown in Figure 3.5 (—5_— is de Bruijn reduction of Definition 2.5.1). The
used translation is suggested by >-; notice how some terms have more reduction
possibilities in Av than in Axgc — in fact each Ax-term corresponds to a class of
Av-terms with a common v-reduct, as we shall see.

Section 3.3 Explicit Substitution & Naming 85

Terms. The Av-terms Av are defined inductively by

ax=mn/|Aa| ab | afs] (terms)
ss=a/ | N(s) | T (substitutions)

where the letters abc range over terms, st over substitutions, and nm
over natural numbers.

Substitution generation. —— is the contextual closure of

(Aa)b — afb/] (B)

Substitution elimination. —> is the contextual closure of the union of

(ab)[s] — als] bls] (App)
(Aa)ls] — Aalf(s)]) (Lambda)
1a/l = a (FVar)
n+lla/l—n (RVar)
1M(s)] — 1 (FVarLift)
n+ T (s)] — ns][T] (RVarLift)
nl —n+1 (VarShift)

Reduction. Av-reduction, —5;—, is the union of —— and .

Figure 3.6: Av.

86 Explicit Conservative Extensions of A-calculus Chapter 3

3.3.2 Definition (Av). See Figure 3.6.

Notice how this is just one way of making the substitution of Definition 2.5.1
explicit: Av’s _/ corresponds to _ -, f(_) to 1-(1/To_), and T to /1.

3.3.3 Proposition. —»SN.

Proof. In Benaissa, Briaud, Lescanne and Rouyer-Degli (1995, Figure 3).]

3.3.4 Remark. We will not discuss garbage collection and thus only use the Ax
subrelation of Axgc as presented in section 3.1. Including garbage collection
reductions would complicate things further in that it is not so easy to express
the notion of ‘garbage’ when there are no implicit binding relation and hence no
observable notion of free variables!

As the diagram illustrates, it is fairly straightforward to translate Av-terms to
Ax-terms by generalising the generic de Bruijn translation of Definition 2.5.4 to
get rid of the T and 1 constructions, essentially emulating their effect.

3.3.5 Definition (translation, Av/Ax). For an Av-term a and a Ax-term M we write
av; M iff e F av; M, where

pEM > x p(n) =x
xpFavr; M
X¢p
pFAa vy Ax.M

pFa>>M pEb>; N

pFabv>- MN
p\n-x-p/nkFavr-M p/nEDb>- N
o x¢&p,m>0
p Falft™(b/)] b5 M{x := N)
p\n-p/m+1)Far-M
n>0

pEalft™ (Ml 5 M

(p is a sequence of variables in the sense of Notation 2.2.1).

Section 3.3 Explicit Substitution & Naming 87

3.3.6 Remark. A different choice of the variable of each abstraction/substitution
gives an x-equivalent term as a result. Also note how 1} with a shift substitution
removes a variable from the scope wheras similarly 1) with a real substitution
inserts one.

This is a translation as one should expect; however, we can easily show the
stronger result that the substitution introduction and elimination subreductions
of Av correspond closely to those of Ax — in fact, since our goal is to prove PSN we
are particularly careful to get a strict correspondence between the substitution
introduction relations —g— and - in the sense that it is not only a property of
the transitive closures:

3.3.7 Propositions. A. >~ is a projection function of —5; into —5—.

B. > is a projection function of —— into ¢
C. > is a projection function of - into —».

Proof. First of all, it is easy to see from the definition that »— is a function in
all three cases (cf. Remark 3.3.6). For this reason we will in th1s proof use the
notation ap for the unique Ax-term M satisfying p - a > M.

A is clearly a direct consequence of B and ¢ which we will prove by induction
over the structure of Av-terms, using the definition to investigate each Av-rewrite
rule which must appear at a subterm with some free variable assignments. Essen-
tially we have to prove that for any (non-repeating) variable list p that ap — bp.
B has the base case

(Aa)b p = (Ax.a((x) - p)) bp ——— a((x) - p) (x:==bp) = alb/] p

bxgc

since x € p.

For ¢ we include all the base cases as it is instructive to see what happens,
in particular this is very similar to the reasoning in Benaissa, Briaud, Lescanne
and Rouyer-Degli (1995, section 3):

Case (App) with real substitution.
(ab)[™(b/)] p = (ab) ((p\n) - (x) - (p/M)) (x:=D (p/n))
(a ((P\n) - (x) - (p/m)) b ((P\n) - (x) - (p/n))) (x:=D (p/1))
a ((p\n) - (x) - (p/n)){x:=b (p/n))
b ((p\n) - (x) - (p/m)){x :=b (p/m})
alf™(b/)] p bIN™ (/)] p

*i

88 Explicit Conservative Extensions of A-calculus Chapter 3

Case (App) with shift-substitution.

(ab)[t"] p = (ab) ((p\n) - (p/m+1))
a ((p\n)- (p/n+1)) b ((p\n) - (p/n+ 1))
alt™ p alft"] p

Case (Lambda) with real substitution.

(Aa)

=
3
(ep
>
go)

Aa) ((p\n) - (x) - (p/m))(x:==b (p/n))

a ((y) - (p\n) - () - (p/n)))(x := b(p/n))

((y) - (p\n) - (x) - (p/m)){x :=b(p/n)))

y.a ((y) - (p\n)- (X)) - (((Y) - p)/m+ T){(x :=b((y) - p)/m + 1))
y.(alt™ (6/)]) ((v) - p)

(alt™"(b/)]) p

—_] —

e &
el e

>

>

1T | Y | T 1
>

>a

Case (Lambda) with shift-substitution.

AN M] p= (Ad) ((p/M) - (p/n+ 1))

= Ax.a ((x) - (p/n) - (p/n+1))
=M.a (((x) - (p/m)) - ((x) - p)/m + 2)
= M.alft™ (D] ((x) - p)

= AMalt™ (M e

Case (FVar). 1[a/] p = I((x) - p) (x := ap) = x(x := ap) - ap.

Case (RVar). n+1[a/Ip=n+1((x) p) (x:=ap) = pn) (x:=ap) — p(n) =
np.
Case (FVarLift) with real substitution.

T @/ p=T((p\n+1)- (x)- (p/n+ 1))(x := ap)
p(1)(x = ap) — p(1)=Tp

Case (FVarLift) with shift-substitution.

M MTe=T((p\n+1)-(p/m+2))=p(1)=Tp

Section 3.3 Explicit Substitution & Naming 89

Case (RVarLift) with real substitution.

m+1M (e p=m+1((p\n+1)- (x) - (p/n+1)){(x:=ap/n+1T)
m ((p/1\n) - (x) - (p/n+1)){x :=a(p/n+1))

= m[1"(a/)] (p/1)
m

(" (a/)IT P

Case (RVarLift) with shift-substitution.

m+ 1 (T)] p
=m+1((p\n+1):(p/n+2))

_[p(m+1) ifm<n

:{p(m-l—Z) fm>n

m ((p/1\n) - (p/n +2))
=mIN™(T)] (p/1)
m

Case (VarShift). n[fl p=np/IT=pn+1)=n+1p.

Note that the Av-reductions that correspond to nothing on Ax-terms after trans-
lations are: (Lambda) and (App) with s = T, (FVarLift) and (RVarLift), and
(VarShift).]

The above suffices to show the desired properties of Av, namely that it is a
conservative extension of the AP-calculus that preserves strong normalisation:

3.3.8 Theorem (conservative extension, Av of AB). Given Av-terms a,b and pure
A-terms M, N such that av> - -» M and b > - 3 N. Then a —;» b if and
only if M — N.

Proof. Follows directly from Proposition 3.3.7.a (original proof by Benaissa et al.
1995, sections 3 and 4). O

3.3.9 Theorem (PSN Av). Av PSN of AB.

90 Explicit Conservative Extensions of A-calculus Chapter 3

Proof. We give a direct proof. Consider any Av-reduction sequence. It must
correspond to a Ax-sequence as follows by Proposition 3.3.7.B and Proposition
3.3.7.c:

x b x x b x

This is thus finite exactly when the original sequence was finite because —>SN.
Since Ax has PSN by Corollary 3.2.13 we are done. (Original indirect proof by
Benaissa et al. 1995, section 5). O

3.3.10 Comparison (on minimal derivations). Comparing this proof with the origi-
nal proof of Benaissa et al. is interesting. The translation to Ax has elim-
inated the need for considering ‘minimal derivations’ and positions that are
‘internal /external’ to substitutions. In the PSN proof for Ax this is replaced
by the notion of ‘inside garbage’ which is clearly a stronger requirement in that
some ‘internal’ positions will not be inside garbage.

Notice that except for the translation itself no particular concrete properties of Av
were used in the above proof, only abstract reduction properties. This suggests
that we can generalise the proof to any explicit substitution calculus with a ‘well-
behaved’ notion of ‘explicit naming’. In the remainder of this section we first
define such a notion in general, then refine it to include the constraints above
in abstract form, and finally give proofs of PSN for the other calculi mentioned
above.

3.3.11 Definition (explicit naming). An ezxplicit naming principle is a projection
from a TRS into a reduction on a A-calculus with names.

So Definition 2.5.4 and Definition 3.3.5 are naming principles. The crucial prop-
erty for PSN is that there is a distinguished ‘(3-like’ subreduction that is repeat-
ed as frequently as 3-reduction. This we use to define a ‘strict explicit naming
extension of Ax’ which is what we need to obtain the desired PSN results.

3.3.12 Definition (strict explicit naming). The TRS ~ is a strict explicit naming
ertension of Ax if ~» = o U~ such that the following conditions are satisfied:

A. >— is a projection from ~ into ——.

Section 3.3 Explicit Substitution & Naming 91

B. ~»SN and > is a projection from ~» into —».

c. >— is a projection from ~- into —%—.

3.3.13 Theorem (PSN for strict explicit naming). If ~» is a strict explicit naming
extension of Ax, then ~~»PSN.

First, it is clear that Av is a strict explicit naming extension of Ax. Now all
we have to do is apply this theorem to some other calculi. We proceed by
giving translations for some calculi. First As of Kamareddine and Rios (1995)
where it is proven PSN by translation into Av and with a minimal derivation
proof mimicking the Av one. Our translation below gives an independent, direct
proof.

3.3.14 Definition (As). The As-terms and As-reduction is defined in Figure 3.7.

This is another way of making the substitution notion of Definition 2.5.1 explic-
it: except for the ‘item’ infix style of explicit substitution (Kamareddine and
Nederpelt 1993) it is very close to the notation of Av; this immediately suggests
the projection to use: it is clearly the same for the pure ANF-terms and slightly
modified for the remaining.

3.3.15 Definition (translation, As/Ax). For an As-term a and a Ax-term M we write
ars Miff e - ars M, where

pEM s x p(n) =x

x-pFars M

SF Ao M FEP

pFars M pkEDbrs N
pF abrs- MN

p\(i—1)-x-p/i—1)FarsM p/iFbrs N
pFaoctb s M{x:=N)

xX€p

p\k-p/(k+i—1)Fa>sM
pFdlas=M

(p is a sequence of variables).

92

Explicit Conservative Extensions of A-calculus

Chapter 3

Terms. The As-terms are given defined inductively by

axz=mn|ab|Aa| ac'hb | @La

where the letters abc range over terms, and ijk over natural numbers.

Substitution generation. — . is the contextual closure of

Substitution elimination. — is the contextual closure of the union of

(Aa)b — ac'b

(Aa)otb — Alact™b)
(a1az)o*b — (a; 6*b)(az o' b)
n—1 ifn>1i
no'b— ¢ eyb ifn=i
n ifn<i
ex(Aa) =A@y, a)
ey(araz) = (@} a1)(e} az)

i n+i—1 ifn>k
Px n ifn<k

Reduction. As-reduction, —;~, is the union of ;> and —

Figure 3.7: As.

(o-gen)

(o-A-trans)

(o-app-trans)
(o-destr)

(@-A-trans)
(¢p-app-trans)

(¢-destr)

Section 3.3 Explicit Substitution & Naming 93
3.3.16 Theorem. As s a strict explicit naming extension of Ax.

Proof. Similar to the proof for Av.]

3.3.17 Corollary (PSN As). As PSN of AB.

Proof. Immediate from being a strict explicit naming extension (original indirect
proof by Kamareddine and Rios 1995).]

Next Ax of Lescanne and Rouyer-Degli (1995) which uses de Bruijn-levels.

3.3.18 Definition (Ax). The Ax-calculus and Ax-reduction is defined in Figure
3.8.

This is not directly related to de Bruijn’s calculus, however, it s very close to
Ax, so the theorem is actually simpler to prove.

3.3.19 Theorem. Ax is a strict explicit naming extension of Ax.

Proof. Easy: the projection is just the rename-normal form since we can just
reuse the variable names as Ax-variables! O

3.3.20 Corollary (PSN Ax). Ax PSN of AB.

(First, indirect, proof by Lescanne and Rouyer-Degli 1995)
Finally we discuss why the above is not applicable to Ao which is fortunate
since Ao not PSN of Af3.

3.3.21 Definition (Ac). The Ao-calculus is defined in Figure 3.9.

Comparing this to de Bruijn’s Definition 2.5.1, it is easy to see it simply makes
everything explicit: the syntactic _ - _ and _ o _ realise the similarly named
sequence operators, id is our (, and Tis t/1. The reason Ao does not preserve PSN,
observed by Mellies (1995), is simple interference between the two subrelations
< and —g;—: the substitution subrelation can accidentally create a Beta-redex

(cf. Figure 3.3).

94 Explicit Conservative Extensions of A-calculus Chapter 3

Terms. The Ax-terms Ay are defined inductively by
a == x | Ax-a | ab | a[b/xi;

where the letters abc range over Ax-terms and ijk range over natural
numbers (note that ‘x’ is syntaz in this calculus, the level number is
the suffix). Only terms that satisfy a : Term; given by the following
system are allowed:

a:Term; b:Term;

Xi o Termiyq ab : Term;
a: Termiq xi: Termiyy1 b Term;
Ax; - a: Term; alb/xil; : Termiy;

Substitution generation. —— is the contextual closure of
(Axi - a)b — alb/xilo (B)

Substitution elimination. < is the contextual closure of the union of

(a b)[c/xil; — alc/xil; ble/xil; (App)

(AXigj41 - a)[b/xil; — Axiyy - (alb/xilj11) (Lambda)
Xitk+1[a/xil; = Xk (Var-)
xila/Xipx1ly — xi (Var.)

xila/xil; — rename(a, i,j) (Var.)
rename(ab,,j) — rename(a,i,j) rename(b,1,j) (RenApp)
rename(Axiyx - @,1,j) — AXijx4j - rename(a, i, j) (RenLambda)
rename(Xitx, 1,7) — Xitj+x (RenVars)
rename(x;, i+ k+1,j) — (RenVar.)

Reduction. —-, is the union of —— and —.

Figure 3.8: Ax

Section 3.3 Explicit Substitution & Naming 95

Terms. The Ao-terms Ao are defined inductively by

ax=1] Aa | ab | als] (terms)

sx=1id | T | a-s | sot (substitutions)

where the letters abc range over terms and st over substitutions (note:
here the -, o, and id are syntax).

Substitution generation. —5—— is the contextual closure of

(Aa)b — a[b -id] (Beta)

Substitution elimination. — is the contextual closure of the union of

1lid] — 1 (Varld)

Ma-s] —a (VarCons)
(ab)[s] — a[s] bls] (App)
(Aa)[s] — Ala[l-(soT)]) (Abs)
(als])[t] — alsot] (Clos)
id-s —s (1dL)

Toid — T (ShiftId)
To(a-s) —s (ShiftCons)
(a-s)ot —alt]-(sot) (Map)
(s1082)083 — 870 (8083) (Assoc)

Figure 3.9: Ac.

96 Explicit Conservative Extensions of A-calculus Chapter 3

3.3.22 Discussion. This section was mostly about how one can express existing
de Bruijn calculi with explicit substitution by two components: Ax and a renam-
ing principle. However, why not start with de Bruijn’s calculus as it is and make
the substitution notion of Definition 2.5.1 explicit? In fact de Bruijn (1972, sec.
7) essentially suggests this in the observation that “In automatic formula manip-
ulation it may be a good strategy to refrain from evaluating such T,((X))’s, but
just store them as pairs £, (X), and go into (full or partial) evaluation only if
necessary.” (recall that 7,((X)) is de Bruijn’s notation for (1/£) o ¢).

The above calculi suggest why this is not so obvious: de Bruijn’s Definition
2.5.1 of substitution involves (in our notation) three metanotations in the defi-
nition of []:, namely, - , /1, and o . The only one including them all is
Ao where it gives problems because they do not constitute a complete system;
the others restrict it in non-intuitive ways.

We believe our presentation has clarified this. Further work is needed along
these lines, understanding the naming dimension sufficiently to parametrise dif-
ferent namings more clearly — possibly the work of Gordon (1993) is appropriate
to this end.

3.4 A-graphs and Explicit Sharing

A central theme to this dissertation is the notion of sharing. We present Axa,
a A-calculus with explicit sharing, however, we attempt to express all properties
in as general a form as possible.

Our syntaz for sharing is based on address labels. The main idea behind
this is that sharing is ‘extra information’ in the sense that two subterms are
shared when they occupy the same memory; we indicate this by marking the
two subterms, which should of course be identical, with the same address label.
It is then realistic to imagine simultaneous reduction of all ‘instances’ of the
shared subterm, and this is what we will do, thus this is a synthesis of the notion
of parallel reduction? and that of term graph rewriting (TGR) of Barendregt,
van Eekelen, Glauert, Kennaway, Plasmeijer and Sleep (1987). TGR was based
on the A-graph reduction of Wadsworth (1971), and indeed the A-calculus we
introduce is closely related to Wadsworth’s reduction as we shall see. This section
is restricted to ‘acyclic’ sharing as this is the only kind where a universally
accepted formalism can be said to exist.

2The notion of ‘parallel reduction’ has suffered the dubious fate of being regarded as ‘computer
science folklore’, i.e., its origin is unclear. We have it from Lévy (1978).

Section 3.4 A-graphs and Explicit Sharing 97

3.4.1 Definitions (addressed terms). Assume a set of terms T inductively defined
by a single production t = - - -

A. The set of adressed T-terms is defined inductively by
t o= ... | t¢
where abc range over an infinite set of ‘addresses’.
B. The addresses occuring in an addressed term is written addr(t).

c. Unraveling is written A (t) and denotes the T-term obtained by removing
all the addresses in t.

These notions generalise in the obvious way to sets defined by several produc-
tions.

As the intention with addressed terms is that they should contain sharing infor-
mation we need a way to express that the addresses of a term describe proper
sharing, and a way to change an addressed term without destroying this.

3.4.2 Definitions (sharing terms). Assume a set of adressed T-terms as above.

A. We write ‘t wfa’ if t is an addressed term where all subterms with the same
addresses are identical, z.e.,

Vi’ Dtrar=a=t=1t

For t wfa we will write the subterm of t at address a as t@a by convention
tQa = ¢ if a ¢ addr(t), where € is a new symbol.

B. The updating of t wfa with s wfa at address a ¢ addr(s) is written t[s?] and
is obtained by replacing all subterms u® > t (if any) by s. By convention
tle] =t (to ensure t[t@a] =t for all a).

C. The set of sharing T-terms, notation T wifa, is the subset of the addressed
T-terms with wfa.

When a term is wfa we will say for each address in it that “the” subterm t¢ “is”
shared with address a.

98 Explicit Conservative Extensions of A-calculus Chapter 3

3.4.3 Remark (graph reduction intuition). The wfa notion is intended to be intu-
itively similar to graph reduction, of course. Notice that a subterm can have
many addresses, e.g., (t%)°. Abstractly this just means that it is ‘involved’ in
several sharing relationships. The restriction above means that these must be
nested properly: the preterm ((t%)°)(t?) is not wfa.

In fact, the address b in the term ((t%)°) corresponds very closely to an
indirection node in a of graph reduction system: when an indirection node at
address b points to the node in address a then all pointers to the indirection
effectively point to the node at a but not vice versa.

Similarly, removal of an address corresponds to one of two things in the graph
reduction terminology: Either indirection elimination when removing a in a
subterm of an addressing (’ca)b since the a address is eliminated in all the places
where it is used as a synonym for b (a can occur elsewhere but all bs must
addresses t before and t after). It corresponds to plain copying in all other
contexts because the removed address then implicitly requires that an implicitly
unique instance be used.

3.4.4 Proposition (sharing stable under updating). Given s, t wfa such that for all com-
mon addresses a € addr(s) N addr(t), s@a = t@a, and an address ¢ ¢ addr(t),
then s[t¢] wfa.

Proof. If ¢ ¢ addr(s) then s[t°] = swfa by definition. If ¢ € addr(s)\ addr(t)
then each subterm u® > s is changed to t© but because of the condition s@a =
t@a for each a common to s and t no possible breach of the wfa condition can
result.]

Because of this it is clear that it is reasonable to use updating as the basis for our
extension to a ‘sharing version’ of any reduction over some inductively defined
notion of terms. Notice that the thus defined sharing reduction is never contex-
tual on the addressed terms, of course, even when it is based on a contextual
reduction, because any reduction is essentially global in that all subterms with a
particular address throughout the entire term must be reduced simultaneously.
This is parallel reduction as found in rewriting. We will need this notion suffi-
ciently often that it warrants employing a new notion of ‘closure’ that mimicks
the contextual closure in a context with sharing.

3.4.5 Definition (sharing reduction). Assume a set of inductively defined T-terms
and a reduction — on sharing T-terms. The sharing extension of —, notation

Section 3.4 A-graphs and Explicit Sharing 99

~+—, is the reduction on T wfa defined as follows: Given t € T wfa which can be
written as t = C[r] such that r — p. Now consider C[r]:

Case r is unshared in C[r]: then C[r] +— Cl[p] .

Case risshared in C[r]: then it is possible to express C[r] on the form Cq[(C;[r])¢]
for some address a, where v is unshared in C;[r] (z.e., Cz[] contains no
addresses) . Then

t = (C1[(Calp))¥) [(Calp))?]

where the update operation ensures that all the shared instances of r are
contracted to p simultaneously.

By sharing closure we mean the sharing extension of the contextual closure.

We have used the notation +— to suggest that this is parallel reduction in that
all subterms labelled with some particular label are reduced ‘simultaneously’. A
simple consequence of this is the following:

H+— 1

|
3.4.6 Proposition. For all reductions —, T
|

T ,where >— is the relation
defined by t — A(t). ym

B
Proof. Assume t +— s. Then from Definition 3.4.5 we have t = C[r] in both
cases: in the unshared case the result is trivial; in the shared case it is clear from
the wfa condition that t@a = C,[r]* and hence s@a = C;,[p]® by the updating
operation. Since wfa guarantees that there is no overlap between the subterms
with address a, A(t) —— A(s). O

This guarantees the correctness of sharing reduction. However, it does not estab-
lish the soundness, and in fact this is nontrivial and must be established for each
kind of rewrite system separately. The following example explains the problem
for the TRS case; we will return to the situation for A-graphs below.

3.4.7 Comparison (term graph rewriting). In Barendregt et al. (1987) the notion of
graph reducible is introduced which captures that a term graph rewriting system
(TGRS) is sound and correct with respect to a term rewrite system (TRS) which
is ‘the same without sharing’. In fact, the main result of Barendregt et al.
(1987, Theorem 5.12) is that every orthogonal TRS can be interpreted as a
TGR system which implements the same reduction. Orthogonality is a rather

100 Explicit Conservative Extensions of A-calculus Chapter 3

severe restriction on the rules: Barendregt et al. (1987) quote the following
counterexample to why it is necessary: the TRS

A(1,2) =0 1—-2 2—1 D(x) — A(x,x)
includes the reduction
D(1) — A(1,1) — A(1,2) = 0

which is not possible with sharing: here the only reduction is

This exists equivalently for our sharing extension +— of — where it is expressed
as

D(1) 4= A(19,1%) 4 A(2%,2°) 4 A(1%,19) 4 - -

The above problem can be solved by allowing arbitrary copying, of course: if
the relation (in the TGR formulation) has the rule

A A
= /N
X X X
added then the problem does not arise. The morale is this:

“ Graph rewriting faithfully models sharing but not the necessary
copying which happens behind the scenes. ”

With this insight we turn to A-graph rewriting.
3.4.8 Definitions (Aa-terms).
A. The set of Aa-preterms is the set of sharing A-preterms.

B. The notion of free variables for Aa-preterms is the one for A-preterms
(Definition 2.3.2.A) generalised to any Aa-preterm M by the equation

fv(M®) =fv(M)

Section 3.4 A-graphs and Explicit Sharing 101

Cc. Renaming for Aa-preterms is as for A-preterms (Definition 2.3.2.B) gener-
alised to any Aa-preterm M by

My :==z] = Mly :=2]*

D. a-equivalence for Aa-preterms is as for A-preterms (Definition 2.3.2.c) gen-
eralised to any Aa-preterm M by the equation

M® = N* ifM=N
(so = does not allow renaming of addresses).

E. The set of Aa-terms, is Aa = A wfa, is the Aa-preterms modulo =.

We will confuse preterms and terms as usual, employing the variable convention
and assuming that all explicitly mentioned addresses are distinct; sometimes we
will introduce fresh addresses by which we mean globally unique ones.

Here the problem that may occur when applying (3-reduction naively to A-
graphs is that (parts of) the abstraction of the redex might be ‘too shared’ from
a context that is different from the one of the redex. This creates a need for
‘spontaneous copying’. Consider, for example, reduction of the Aa-term above.
If we reduce a shared redex it seems obvious that somehow the reduction must
happen in all instances simultaneously. Here is one such B-reduction (the redex
is underlined):

(Ax.wx(Az.zv)?)¢ ((Axwx(Az.zv)®)¢ (Az.zv)P)

|2

(Axwx(Az.zv)®)¢ ((Az.zv)Px(Az.zv)P)®

which is no longer wfa: the a address no longer shares a unique subterm! The
‘fix’ of just forcing the other shared term to be the same,

(Ax.wx(Az.zv)?)¢ ((Ax.wx(Az.zv)®)® (Az.zv)P)

|

((Az.zv)°x(Az.zv)®)® ((Az.zv)Px(Az.zv)P)®

is plain wrong, of course.
The crucial insight of Wadsworth is that substitution should only happen in
the instance of the abstraction that participates in the redex. In this case we

102 Explicit Conservative Extensions of A-calculus Chapter 3

should make sure that the abstraction (Ax.wx(Az.zv)?)¢ is ‘unshared’ sufficiently
for the substitution of x in it to be safe. So we need to allow partial unraveling
to get correct reduction. Here is one way of doing it by simply removing the a
address completely (this correponds to copying the subterm at a into as many
copies as there are instances):

(Ax.wx(Az.zv)®)® ((Ax.wx(Az.zv)?)® (Az.zv)?)

Jcp

(Ax.wx(Az.zv)®) ((Ax.wx(Az.zv)®) (Az.zv)P)

|

Ww((Axwx(Az.zv)?) (Az.zv)?) (Az.zv)®

where we have used —- to denote copying, t.e., removing addresses). In fact
this turns out to be the least change we can do in this case: Wadsworth defined
what is needed for a redex R as R-admissible, and proved that reducing a redex
which is R-admissible will always yield an admissible graph. The definition of
Wadsworth (which we return to below) is extremely simple: in our notation it
just requires the abstraction subterm itself to not have an address. However,
removing this address means that other adjustments may be needed to satisfy
the general wfa property — it just happens that in the example above this was
trivial. This is formalised as follows: first the restriction.

3.4.9 Definitions (admissibility). Given a Aa-term M = C[R] where we intend to
reduce the redex R = (Ax.P)Q. M is R-admissible if M wfa and it is possible to
find a Aa-context C’[] and subterms Py,...,P, > P (for some n > 0) such that
Let R = (Ax.P)Q be a redex. M = C[R] is R-addmissible if

A. P=C'[Py,...,P],
B. For all the P, x & fv(Py).
c. There is no sharing between C’[] and the rest of M, i.e.,
addr(C[])Nnaddr(C'[]) = @
(M wfa ensures (addr(P;) U---U addr(P,,)) N addr(C'[]) = 2).

Furthermore, if M is R-admissible for all R = (Ax.P)Q > M then we say that M

is T—admissible or merely admaissible.

Next the copy operation.

Section 3.4 A-graphs and Explicit Sharing 103

3.4.10 Definitions (copying). Define the following additional reductions.

A. Copying is the sharing closure of

M* - M (cp)

B. C[R] R-copies to N, notation & iff C[R] 5 C[R'] = N and C[R’] is
R’-admissible.

This notion of reduction is clearly well-defined thanks to Proposition 3.4.4 and
Theorem 3.4.11. It is intentionally not deterministic: the variation can be used
to choose the alternatives from full laziness to copying by doing the minimal and
maximal number of —5-steps.

This gives a result very similar to Wadsworth (1971, Theorem 4.3.15) but much
easier to prove.

3.4.11 Theorem. Given the Aa-term M = C[R] with R = (Ax.P)Q and let M
be R-admissible. Then C[R'] with R’ = P[x:= Q] s a Aa-term.

Proof. We know that R = (Ax.P)Q with P = C’[P4,..., P,] from Definition 3.4.9.
The reduction must establish R’ = P[x := Q] = C'[Py,...,P[x = Q] = C'[x :=
Ql[P4,...,P,] since x € fv(P;). Since there are no addresses shared between C’[]
and the rest of M this substitution cannot ruin the wfa property. However, we
still need to consider what happens inside C'[x := Q][]: here we may have a
subterm N¢ occurring in several places but substituting N°[x := Q] clearly also
preserves the wfa property. 0

Before we proceed with the definition of reduction, we relate to the original
definitions of Wadsworth.

3.4.12 History (Wadsworth’s lambda-graphs). The intuition of the above is to use
‘wfa’ to express that a preterm corresponds to a A-term with properly defined
sharing information. This follows the style of the A-graph calculus of Wadsworth
(1971, Chapter 4), where it is called admissible (more on this in History 3.4.13
below).

Wadsworth’s formulation uses a different notation, namely pictures of the
rooted directed graph obtained by drawing each abstraction as a rator node @
(for the appropriate x), each application as a rand node @, each variable as a
terminal node @ (again for the appropriate x), and include a unique number

104 Explicit Conservative Extensions of A-calculus Chapter 3

Figure 3.10: Example Wadsworth A-graph.

for each node. Node identity is then used for sharing, i.e., shared subterms are
the same subgraph. For example, the Aa-term

(Axwx(Az.zv)®)® ((Ax.wx(Az.zv)?)? (Az.zv)?)

is depicted in this style in Figure 3.10 (mimicking Wadsworth 1971, Figure 5a)
where ¢ and ° identify the nodes 2 and s, respectively.

Furthermore notice how variables are syntactic in Wadsworth’s graphs: instead
of the variable convention Wadsworth explicitly requires all variables occuring
in the graph to be unique, and Wadsworth allows ‘constants’ which we will not
discuss here (but see the treatment of CRS in chapter 5). Except for this it can
be seen that our A-graph notion is very close to Wadsworth'’s.

3.4.13 History (Wadsworth’s admissibility and full laziness). To be exact, Wadsworth
(1971, pp.150-152) defines the following: A graph G is admzissible if

(A1) G is acyclic and unravels to a proper A-preterm.

(A2) Each terminal node has a unique binder.

(these demands correspond directly to wfa except for variables being considered
syntactically). The graph is R-admissible if furthermore

Section 3.4 A-graphs and Explicit Sharing 105

(A3) The rator-node of R is accessible only via the rator-pointer of R.

The last demand is the same as our three demands because (A2) means that
all occurrences of the particular variable x bound by the rator-node in question
must be reachable through that rator-node; this means that the demand that
the rator-node is not shared implies that none of the nodes corresponding to our
C’[] can be shared from the ‘outside’.

In fact Wadsworth goes further and defines the notion directly abstractable
that guarantees R-admissibility. This is especially interesting because in essence
it subsumes the later notion of mazimal free subexpressions to obtain full
laziness (Hughes 1982, Johnsson 1984, Peyton Jones 1987)! In this respect
Wadsworth’s definition is akin to the author’s graph matching ordering (Rose
1993) which is again the same as the graph bisimilarity of Ariola and Klop
(1995a) in that it permits the full range from fully lazy reduction, when C'[] is
as small as possible, to simple A-body copying, when C’[] is as large as possible
(i.e., is P).

Finally we can define the shared (3-reduction step using the techniques intro-
duced above.

3.4.14 Definitions (Aa-reduction). Define the following reductions on Aa (modulo

=).
A. R-contraction is the sharing closure of the (3) rule.

B. Shared (3-reduction of C[R], notation +32, 18 defined as R-copying fol-
lowed by R-contraction.

This notion of reduction is clearly well-defined thanks to Proposition 3.4.4 and
Theorem 3.4.11. It is intentionally not deterministic: the variation can be used
to choose the alternatives from full laziness to copying by doing the minimal and
maximal number of —--steps.

3.4.15 History. Wadsworth (1971, p.160) actually defines a Copy(R, G) operation
concretely as doing complete A-body copying, and uses the ‘directly abstractable’
notion to obtain full laziness.

The essential issue thus remains that addresses are global so the entire context
must be considered continuously. The complexity of this makes reasoning about
shared (3-reduction somewhat difficult — in fact the history of sharing as we have

106 Explicit Conservative Extensions of A-calculus Chapter 3

referred to it throughout is a long path of how this is best described (or swept
under the rug). This is usually safe because of the following result which is
usually implicitly included.

3.4.16 Definition (sharing stable). A reduction — is sharing stable if —t— C -,
i.e., if the sharing extension is sound (the opposite of Proposition 3.4.6).

Several obvious examples exist of sharing stable reductions. We mention two.

3.4.17 Propositions (sharing stable). Given a confluent and contextual reduction,
—.

A. The sharing extension of — - +— is sharing stable.

B. The sharing extension of the relation —- - - restricted to contexts given
by

M—-+C[RlT AN R—P

i .
M~ CIP] if R unshared in C[R]

is sharing stable.

Proofs. A is trivially true since the complete unraveling constructed by — is
onbviously admissible for any reduction. B is equally trivial since ‘unshared’
implies admissibility in any context. L

Last we summarise some of the attempts at addressing this difficult problem in
the literature — our attempt in the following section is based on the combina-
tion with explicit substitution for which it is easier and furthermore have nicer
complexity properties.

3.4.18 Comparisons.

A. Felleisen and Friedman (1989, Section 4) use a syntax very close to what
is presented above. However, the resulting calculus is rather more compli-
cated. In particular the rules are all expressed over arbitrary contexts. It
is interesting to note that our +z— is explicitly not used by Felleisen and
Friedman because their calculus would then perform a wrong subtitution
of a bound variable. The problem is described as “establishing the sharing
relation too early” — the same thing happens with +#5— if one insist on a
strategy that breaks admissibility but we have the choice of not doing this.

Section 3.5 Explicit Substitution & Sharing 107

B. Launchbury (1993) uses a compositional description maintaining a store
component mapping all addresses to their contents. This means that the
sharing technology is intimately tied with the chosen reduction strategy
which is coded into the system (in this case lazy reduction). However, the
well-formed addressing problem is not really solved compositionally in this
approach either because there is a special = operator used to enforce the
uniqueness of addresses in substitution bodies.

c. The acyclic component of A-graph rewriting of Ariola and Klop (1994) is
very close to what we have presented above. However their definition is
not in any obvious way an extension of the AB3-calculus but rather based
on the sharing inherent in mutually recursive equations. The problem is
manifest in what the authors call the scope cut-off: the idea that sharing
‘breaks’ the scope of A-abstraction. We have more to say for both cases
when we treat cyclic data in section 5.2.

3.5 Explicit Substitution & Sharing

In this section we demonstrate how explicit sharing can be added to the Axgc-
calculus in such a way that we avoid the problems encountered when trying to
add sharing ‘first’, as discussed in the previous section.

The advantage of doing this is that a calculus is obtained where all the copying
performed implicitly in the A-graph case is done explicitly. In particular, the
optional garbage collection facility will give a quantification of full laziness.

We will first introduce the synthesis of Aa and Axgc, including the notion of
reduction.

3.5.1 Definition (Axa-terms). The set of Axa-preterms is ranged over by the letters
MN ... (etc, as usual), and defined inductively by

M 2= x | &x.M | MN | M(x:=N) | M*®

where abc range over an infinite set of addresses. The new form M is called
an addressing where a addresses M (as for Aa-terms). The wfa and unraveling
definitions are lifted from Definition 3.4.1; the notions of free variables, renaming,
and o-equivalence, are defined using the combination of the rules for Aa- and Ax-
terms in the obvious way. As usual the Axa-terms Axa, are the wfa preterms
modulo =.

108 Explicit Conservative Extensions of A-calculus Chapter 3

So what should a sharing reduction step look like with explicit substitution?
The obvious generalisation of Axgc-reduction is to ensure that any duplication
in the rules is remembered in the form of a sharing introduction — this ensures
that a realistic implementation can avoid the copying overhead. Now all we
have to show is that the resulting reduction has sharing stable reduction.

Fortunately, a quick glance over the Axgc-rules reveals that the only thing
that is ever duplicated is a substitution (namely by (xap)). Thus we only have
to share substitutions. Furthermore, we need to ensure that addresses do not
‘block’ redexes by being squeezed in the middle of a 3- or x-redex. Collecting
this insight we get the following system, our starting point.

3.5.2 Definition (Axgca-reduction step). ———— is the contextual closure of

bxgcacp
(Ax.M)N — M(x :=N)* a fresh (ba)
x(x:=N) = N (xv)
y(x:=N) =y x#y (xvgc)
(Ay.M){x := N) = Ay.M(x :=N) (xab)
(MiM,){(x :=N) — Mq{(x:=N) My(x :=N) (xap)
M{x:=N) = M x ¢ fv(M) (xge)
M*N — MN (cpap)
M%x :=N) — M(x:=N) (cpx)
We write “rgea’ for the relation without (cpap,cpx); p e is the sharing closure
of m’.

The interesting thing about this system is that all copying happens explicitly:
before any reduction we need at most unravel ‘one level’ of sharing before we
can reduce the redex safely.

Formally, this is because ‘admissibility’ of Definition 3.4.9 is really a notion
of the redez involved in a rewrite rather than of the term. Since our reductions
above do not perform substitution, wfa is maintained everywhere outside the
small affected area of the term. Inspired by this we define a restricted form of
admissibility applicable for Axgca.

3.5.3 Definitions (local admissibility). Given an Axa-term M = C[CR[ﬁ]] where we

=

intend to reduce the redex Cgr[P] with a rule Cg[¥] — Cil...]. M is locally

Section 3.5 Explicit Substitution & Sharing 109

R-admassible if there is no sharing between Cg[] and the rest of M, 1.e.,
addr(C[]) Naddr(C'[]) = @

(M wfa ensures (addr(P;)U---Uaddr(P,)) Naddr(C'[]) = @). Furthermore, if
M is R-admissible for all N = Cy[P] > M for each rule R then we say that M is
locally admassible with respect to the reduction, and a reduction that preserves

local admissibility everywhere is called locally sharing stable.

This notion of local admissibility is sufficient for safely reducing even with
sharing when all changes are local as for the Axgca-calculus; notice that this, like
Proposition 3.4.17, is the opposite of the (also here inherent) Proposition 3.4.6.

3.5.4 Lemma. If + is locally sharing stable for Axgca-reduction then it satisfies

+
O - y d

for any Ax-term M, cp cp .

B3 x
[|

M——

bxgc

Proof. This is easy by observing that no matter how evil an addressing we
introduce by the ‘cp-expansion’ allowed (going ‘up’ from M in the diagram), this
will not introduce any sharing that prevents us from reaching some term that
unravels back to the Axgc-reduct because any Axgc-redex will be reestablishable
as a corresponding Axgca-redex. 0

. . . + +
3.5.5 Theorem. — is a projection from —— to —g

Proof. One way is Proposition 3.4.6, the other Lemma 3.5.4. O
Notice how this has as a consequence that reduction with sharing is at least

as efficient as without (for any reduction strategy) if we disregard the copy-
operations. The following are obvious consequences.

3.5.6 Corollary. “Trgea” 18 a conservative extension that preserves strong nor-
malisation of —5—.

Proof. Combination of Theorem 3.5.5 and Theorem 3.1.17. L

We have now got rid of the problem of the size of the abstraction body and
how much to copy, a gain we would expect given that all redcutions are local
to the part of terms which is matched. The system stull covers the full range of

110 Explicit Conservative Extensions of A-calculus Chapter 3

Syntactic Domains. The A.-terms are define by

V,W = A&x.M (Values)
A==V |letx=MinA (Answers)
LLM,N == x | MN | letx=Min N (Terms)

where xyz range over variables.

Axioms. Reduction, — -, is the contextual closure of

(Ax.M)N — let x =N in M (let-I)

let x =Ay.Vin C(x) — let x =Ay.V in C(Ay.V) (let-V)
(letx=LinM)N —letx=Lin MN (let-C)
lety=(letx=LinM)inN —letx=Linlety=MinN (let-A)

Figure 3.11: The Call-by-Need calculus, Aj.

possible reduction strategies and from fully lazy to complete copying. The choice
is in (gc) because we eliminate addresses when distributing substitutions: if
we apply (gc) at some point because it is possible then we avoid distributing
subsitutions — copying — underneath that point. This is what took so much
effort with directly abstractable subterms/maximal free subexpressions in the
general substitution case.

3.5.7 Comparison (Call-by-Need). An interesting comparison is with the ‘standard
reduction’ of A,-calculus of Ariola, Felleisen, Maraist, Odersky and Wadler
(1995, Figure 2), reproduced in Figure 3.11. This implements the Call-by-Need
reduction strategy which is weak reduction with sharing of unevaluated terms.

This is close to Axgca with a Call-by-Value restriction on copying similarly
to what we would get by restricting (cpx) to

M%(x :==N) — M(x:=N) if M is a value (cpxy)

This means that sharing interferes with scoping as also discussed by the
authors using an elaborate system of nested boxes. The main problem with
this, compared to our approach, is that copying changes scoping — in fact shar-
ing variables are indistinguishable from A-bound variables in A, (this can be

Section 3.5 Explicit Substitution & Sharing 111

seen as an advantage, of course). This is not a problem in our calculus. The
price we pay is that sharing remains a global concern. This can be remedied
through use of appropriate strategies, as we shall see in chapter 5. And in fact
the problem is also present implicitly in Ai; through the fact that the rule (let-V)
allows ‘instant substitution’ into any context.

Another interesting aspect of A, is that it has substitution of composition
in the (let-A) rule and hence is not likely to PSN of AB-reduction as discussed
in section 3.2.

3.5.8 Discussion (complexity). We have argued throughout that combination of
explicit substitution and sharing gives a representation of the A-calculus which
is faithful to the semantics on one side and the complexity of mechanical evalua-
tion on the other — this was, in fact, the chief motivation for environment-based
evaluation and Call-by-Need (Henderson 1980). The crucial argument is, in fact,
the notion of locality used above: computers are good at shuffling data around
within a bounded fragment of the world, cf. the discussion in the introduction.
While it may not be a universal fact that data must be accessed through address-
es it is certain that some notion of space and consequenctly distance will exist
in computers, hence locality will always be important. And this is the main
issue that we have obtained above: both the issues of substitution and copying
have been made local in the rewriting system. Hence they can be realised by
‘shuffing’ on a computer which means they can be implemented efficiently. It is
also worth noting that using ezxplicit naming does not change the complexity
measures in any asymptotic way as argued in section 3.3.

3.5.9 Discussion (sharing vs de Bruijn indices). As discussed in section 2.5, the orig-
inal definition of de Bruijn (1972) used three concepts for the implementation
of substitution (shown in Definition 2.5.1), and the various naming principles
can seen as combinations of these. This of course raises the issue as to how the
different naming principles interfere with, in particular, explicit sharing. This is
connected to the way de Bruijn indices are usually seen as a description of an
abstract ‘stack’. While this is a nice idea it s sensitive to the reduction history
because different reduction sequences yield different configurations of the chosen
shift /lift / etc operators as witnessed by the comparison in Figure 3.5 where the
two Av-terms AA(123)[(1/)] and AA(213)[2/] are identical but have no common
reduct short of the substitution normal form. Furthermore the fact that no com-
plexity information is improved as argued above means that we will not study

112 Explicit Conservative Extensions of A-calculus Chapter 3

the combination of sharing and explicit naming such as de Bruijn indices.

3.6 Summary

This chapter has studied many of the directions one can obtain by combining
the new ezxplicitness dimensions classification.

The introduced explicit substitution calculus, Ax, is new. The PSN of A3
result specific to Axgc, proven in section 3.2, is new (joint work with Roel Bloo),
in particular no direct proof was known before (we attribute this to the use of
garbage collection, also a new technique).

The categorisation through translations of section 3.3 is new, as is the notion
of ‘strict projection’ to generalise the PSN result of Ax to the other calculi; this
gives a family of direct proofs of PSN results where only indirect ones were
known before.

The approach to general sharing introduced first in section 3.4 is a simplifi-
cation of the ‘folklore’ of parallel reduction, and contributes by making clearer
the notion of sharing for terms. This is exemplified by the much simplified pre-
sentation of sharing A-graph redution derived from it and Wadsworth’s (1971)
calculus.

The combination of explicit substitution and sharing into a calculus modeling
the complexity of sharing independent of the reduction strategy is new in an
abstract calculus: all published systems known to us either restrict reduction
(Ariola et al. 1995, Crégut 1990, Felleisen and Friedman 1989, Grue 1987, Hughes
1982, Staples 1978, Sestoft 1994, Turner 1979, Toyama, Smetsers, van Eekelen
and Plasmeijer 1991), or use ‘global’ graph (or ‘store’) structure (Ariola and Klop
1994, Barendregt et al. 1987, Burn, Peyton Jones and Robson 1988, Benaissa
and Lescanne 1995, Glauert, Kennaway and Sleep 1989, Jeffrey 1993, Koopman,
Smetsers, van Eekelen and Plasmeijer 1991, Launchbury 1993, Plotkin 1981,
Rose 1996, Staples 1980), if it is not hidden as was the case in the earliest
descriptions; our solution is essentially to use an address oracle which cannot
be observed except for the sharing relation it represents. This means that we
1solate the complezity 1ssue for A-calculus implementations — an important first
step towards solving the problem for functional languages. As a side contribution
we observe that Axa is (3-PSN which guarantees that our quest for ‘realistic’
computation times has not introduced the possibility of infinite reductions.

Machines for A-calculus

The goal of this chapter is to extend the operational insights of the previous
chapter ‘all the way’ to abstract machines that behave like concrete machines
(aka ‘real computers’) with respect to some observable aspects, typically com-
putation time, whereas they (still) abstract away other aspects, typically the
encoding of programs and data as strings of bits.

It is well known since Landin (1964) how one can obtain from a determinstic
and compositional strategy (for A-calculus) a ‘machine’ that performs mechan-
ical evaluation (of A-terms) according to this strategy. Such a machine is a nice
vehicle for experimenting with implementations because it is then sufficiently
rigidly defined to serve as the basis for directions that can be executed by a
computer. The problem with this, of course, is that abstract machines are vir-
tually useless for discussing ‘clever’ program manipulations because these most
often correspond to ‘rewriting’ the program to an equivalent one in the opera-
tional semantics, but in the abstract machine structure the new program seems
to have no relation to the original.

The new thing that we add is to show how the complezity issues of the
explicit calculi of the previous chapter are maintained in abstract machines.
This extends the usefulness of abstract machines because it makes it possible to
understand how much a program transformation ‘can’ change the complexity of
a program with respect to the issues of evaluation time and space needed on the
abstract machine which is close to what the computer can do. Furthermore the

113

114 Machines for A-calculus Chapter 4

proximity of the notions means that it is possible to include the cost of program
transformation in the overall cost of the evaluation. The way we do this is by
presenting abstract machine derivations that are sufficiently systematic that it
is apparent how the complexity is preserved when we start from ezplicit calculs
from the previous chapter where the complexity is already realistic.

In order to make the machines ‘mechanic’, 7.e., deterministic, we still couple
with the reduction strategies of section 2.4. However, compared to traditional
approaches we have thus swapped the decision of the strategy with the other
implementation decisions. This gives way for two things: first it makes it possible
to discuss the ‘overhead’ of explicit aspects; this is practical when arguing the
case that a particular aspect should be ignored. Second it makes it possible
to see which strategy/explicitness combinations are particularly simple in the
sense that the complicated considerations required when considering some of
the explicitness dimensions disappear, or rather, collapse into simple ones. This
gives a qualitative understanding of why most published abstract machines are
much simpler than one should expect given the calculi they claim to implement
by exhibiting the aspects that ‘collapse’ due to the restriction to weak closed
terms.

We commence by demonstrating how the Ax-calculus can be used as the
basis for deriving abstract machines for two common reduction strategies: CBN
in section 4.2 and CBYV in section 4.3. Section 4.4 shows how they generalise to
a graph-reduction-like machines when ezplicit sharing is added. Throughout
these developments we insist on using names just as the Ax-calculus they are
based on.

4.1 Abstract Machines

By abstract machine we generally denote reduction systems where each reduc-
tion step can be implemented as a ‘simple’ operation on a concrete machine
(by ‘simple’ we mean that it can be executed in constant time on a computer).
This section defines this for our purpose and explains our method for systematic
derivation of such machines. We will pay special attention to how one ensures
that the reduction step count of such machines is a faithful complezity measure
for A-reduction.

We have attempted to stay within the tradition of Landin’s (1964) SECD
machine and Plotkin’s (1981) transition systems but have also been inspired
by Hannan and Miller (1990) and the classical book of Henderson (1980).

Section 4.1 Abstract Machines 115

We first define what an abstract machine is, then we outline the deriva-
tion principle, and finally we will discuss complexity issues related to abstract
machines.

Our definition of an abstract machine is based on the insights of the previous
chapter when considering what is efficiently implementable on a computer. This
involves the locality issue that we have already discussed in the previous chapter:
we need to couple the already described explicit substitution and explicit sharing
with the new notion of ezplicit strategy, as usual we attempt to define it as
generally as possible. The only other abstract definition we know of is that of
Lescanne (1994b) which is contained in this one.

4.1.1 Definitions (abstract machine).

A. — is local if there is a bound k € N such that for every possible rewrite
step t; — t, there exists terms and bounded contexts such that

o t; = C[Cy[Sm)ll.
o t, = C[Cz[f(m)]], where Vj € {1,...,m}3ie{l,...,n}:s; =t;, and
e k> |Cy[]| and k > |C,[]| (2.e., the contexts are bounded).

B. ~ is primative if it is a function and there exists some local and strongly
normalising reduction — such that ~» C —».

C. A reduction is an abstract machine implementing — if it is a local and
flat reduction system ~~ with a primitive projection from ~» to —».

D. — is space local if it is local as above and furthermore
e the t; are pairwise distinct.
If an abstract machine is space local then we say it is space faithful.

The intuition behind these restrictions is as follows: the rules should be local
because they should only affect a bounded amount of the machine memory.
They should be flat because then a redex can be found immediately since it
must at the root of the term. And there should be a primitive translation
from the relation it implements in order to avoid tricks being played with using
excessively expressive translations to do all the work. A space local system
should furthermore not duplicate any subterms of unknown size.

116 Machines for A-calculus Chapter 4

Plotkin (1981) calls an abstract machine like this for a transition system and
the rules! for transitions. Traditionally terms of such systems are called for [the
machine’s| configurations or sometimes even states. We will use all these words
interchangeably below. Abstract machines also traditionally have instructions
which means that terms must be ‘compiled’ into a linear form before the machine
can execute them — this constraint is no longer common and we will not talk
further about it (except when comparing with related work).

The above definition is carefully formulated to ensure that our considera-
tions about complexity are well founded. It would be no good to have two
realistically implementable reduction systems related by a projection which is
not computable — at least it would not teach us much about the relative com-
plexities of the two! This is why we introduce the notion of primitive above: to
ensure that the transition from one system to another is not too complicated:
a primitive relation is always strongly normalising even when using local steps.
We will make use of this.

4.1.2 Proposition (substitution is primitive). —# is primitive on Ax.

Proof. —» is a total function on Ax (with range A), - C —», —SN, and finally
it is not difficult to see from Definition 3.1.4.B that - is local.]

We already know how to obtain a local system through explicit substitution
of section 3.1, and even a space local one by augmenting with explicit sharing
of section 3.5. However, we still need a methodology for finsing a flat system.
This is what we will do below, essentially encoding strategies in the rewriting,
inspired by the techniques of Hannan and Miller (1990, we return to these in
Comparison 4.2.16.C).

4.1.3 Principle (abstract machine derivation). Start with a compositional and local
reduction system; we will only consider deterministic ones. Then go through
successive transformations of the rewrite system, where each transformation
consists of the following phases:

Search for Theorem: prove a structural property of the system that might be use-
ful in an implementation. Typically one of the inferences or a redundancy.

Represent: find a term structure representation that makes it possible to exploit
the proved property explicit :nside the system, encoding it (and hence
flattening the terms).

L1Often the rules and the set of rewrites is confused.

Section 4.2 A Call-by-Name Abstract Machine 117

Fold: transform the system to ezploit the property by distinguishing between
forms of the term such that the property is represented in a stable manner.

Minimalise: simplify the system to remove redundant rules, deterministic chains
of rewrites, etc.

The process is finished when the result is an abstract machine.

This is of course most useful if each transformation is so mechanic that correct-
ness is immediate; ultimately the goal is to mechanise the procedure completely.

4.2 A Call-by-Name Abstract Machine

In this section we demonstrate how the Ax-calculus of section 3.1 can be used as
the basis for deriving an abstract machines for one particular strategy: Plotkin’s
(1975) Call-by-Name (CBN) strategy of Definition 2.4.5.8. The derivation looks
similar to other such derivations, however, we attempt to do it rigorously, fol-
lowing Principle 4.1.3, such that it is easy to extend the derivation to include
further explicitness dimensions as we shall do in section 4.4.

Thus our starting point is the calculus obtained by restricting the Ax-reduction
relation —~ of Definition 3.1.4 to the strategy of —g~. This involves our first
design decision: how should the strategy be generalised to explicit substitution
terms of the form M(x := N)? The most obvious way is to just replace () with
a rule like

M(x:=N) 3 Q
(Ax.M)N — Q

and impose a suitable reduction strategy separately on —». This is not very
efficient, however, since it means that the resulting implementation will perform
all substitutions regardless of whether they are needed — if used it will lead to
what is known as a substitution-based evaluation (Mosses 1979) which is the
traditional alternative to environment-based evaluation which is what we will
use here and what all abstract machines use (Henderson 1980).

A more efficient method is to delay substitution as much as possible, and
then the challenge is to delay reduction as much as possible whilst retaining in
the new reduction exactly the normal forms of —~ (the whnf). This is not so
difficult to ensure: we take the reduction rules of Ax, add the strategy rules of
CBN, and complete the system by considering all possible reducts of terms that

118 Machines for A-calculus Chapter 4

Axioms:

(Ax.M)N — M(x := N) (b)
x(x :=N) = N (xv)
x(y :=N) — x ifx#y (xvgc)
(Ax.M){y :=N) = Ax.M(y := N) (xab)
(MP){y:=N) — M({y:=N) P(y:=N) (xap)

Inferences:
M=P v)
MN — PN Y
M{y:=N) = Q 0

M(y :=N)(z:=P) — Q(z:=P)
Figure 4.1: Call-by-Name explicit substitution calculus: Axy.

can be produced during a CBN reduction with —~. We then add rules such
that all non-normal forms reduce correctly. Since we will adopt the usual
restriction to closed terms, |y is not applicable so the only context where this
is problematic is for terms of shape M({y := N)(z := P). We choose that they
reduce by performing the substitutions, inventing the new context rule (). We
will resolve needed substitutions from the left, in accordance with our chosen
delay principle.

4.2.1 Definition (Axy-reduction). —5x, is the restriction of Ax to the CBN strate-
gy, shown in Figure 4.1.

4.2.2 Lemma (Axy, correctness). ——» is local and deterministic, and - is a

primitive projection from it to —.

Proof. Locality is obvious from the rules: All the axioms are local and the
inferences do not construct anything. The system is deterministic in a very
obvious sense: for every term which is closed there is at most one applicable
rule. In fact, for any Ax-term not in whnf there is exzactly one applicable rule,
as is easily verified. This also establishes the soundness of the projection; its

Section 4.2 A Call-by-Name Abstract Machine 119

correctness is automatic from the way we constructed the Axy system in that
with complete substitution (provided by —#) any normal form of —~ can be
reached. !

Notice that a consequence of this is that

S Ty TR T TN

4.2.3 Remark (on garbage collection). Adding Axgc’s (gc) rule would create over-
laps with all the x-rules so we will not do that, just remark that this would
corresponds to the reality of functional programming that garbage collection can
occur at any moment — except that we would not include garbage collection in
the complexity measure. In fact, (gc) not only makes reduction nodeterministic,
it makes it non-confluent as illustrated by the following counterexample:

(Ax.x)(y = Ax.x) T}\X'X - AXX(Y 1= AX.X)

_/

X

However, as the reader may wish to verify, (gc) can be carried through the
entire development but since the machine is then nondeterministic the arguments
become much more involved.

In the rest of this section we derive an abstract machine using the outlined
methodology.

We will first look at properties of the ‘redex search principle’ used by the CBN
strategy. The intuition that it is ‘leftmost outermost’ is captured by restating (v)
restricted to closed terms.

4.2.4 Proposition. For all M € Ax°,
M-———P
XN
if and only if, for all N € Ax°,
MN ——— PN
N

The constructive content of this is that reduction of applications can be ‘flat-
tened’ if we transform the representation of a term MN; ... Ny into the pair?

2We will use tuples (_,...) for ‘machine configurations’; furthermore we allow two kinds of
sequences: simple concatenation (with highest precedence) and lists constructed with infix -.
The empty sequence is denoted € (both kinds).

120 Machines for A-calculus Chapter 4

(M, Nj-...-Ny) and only reduce on M: then we get the same possible reductions
until M becomes an abstraction. We use it by adding the representation as an
axiom and fold the system. The resulting first machine approximation is the
following system which we call AxyS.

4.2.5 Definition (first intermediate Axy-machine: Ax\S). x5~ 18 given by the axioms

(MN, S) = (M, N-S) ()

(.M, N-S) = (M(x:=N), S) (bS)

(x(x:=N), §) = (N, S) (xvS)

(x(y=N), S) = (x,S) ifx#y (xvgcS)
(MM){y:=N), S) = (AxM(y:=N), S) (xabS)
(MiMy){(y:=N), S) = (My(y:=N), Ma(y:=N)-S) (xapS)

and the inference
(M{y=N),S)—(Q1, Q2++-Qn-S) ()
(M{y:=N)(z:=P), S) = ((Q1Q2...Qun){z:=P) , S)

As might be expected, folding of the rules with the representation has removed
(v) completely since it would become an identity rewrite. However, this system
is surprising with respect to one thing: if the reduct Q of ({) is an application
Q1Q2...Q, then most of it will have been folded onto the stack (as we call it)
as shown.

The correctness is immediate.

4.2.6 Lemma. For closed M,
M ——» Ax.N
N
if and only if
(M, €) TNS»{ (}\X..N, €)

The system is still not flat because of (¢S). This is easily obtained, however, by
using the following similarly simple observation based on ((S), where we for the
first time cannot assume the terms are closed because substitutions are clearly
reduced in a substitution context.

Section 4.2 A Call-by-Name Abstract Machine 121

4.2.7 Proposition. For all M, N € Ax and S € Ax™,
(M(x:=N),S) 55 (Q1, Q2:--Qn-S)
if and only if, for all P € Ax,
(M{x:=N)(y:=P),S) 5—s* ((Q1Qz...Qu){y:=P),S)
The result is as follows, again correctness is immediate.

4.2.8 Definition (second intermediate Axy-machine: Ax\SE). - — is given by the
axioms

(M{x:=N){y:=P), E, S) = (M{(x:=N), (y=P)E, S) (E)
MN, e, S)— (M, e, N:S) (SE)

(AX.M, €, N-S)H(M, (x :==N), S) (bSE)
(x(x:=N), E, S)—= (N, E,S) (xvSE)
(x(y:==N), E, S)—=(x, E,S) if x #y (xvgcSE)
(AM){y:=N), E, S) = (MM{y:=N)E, ¢, S) (xabSE)
(MiMy)(y:=N), E, S) = (My, (y:=N), Ma(y:=N)-S) (xapSE)

4.2.9 Lemma. For closed M,
(M, €) s (Ax.N, €)
if and only if
(M, €, €) “HegsE (Ax.N, €, €)

Again we transform the system by adding an axiom corresponding to the rep-
resentation change (M(x := N),S) to (M, (x := N),S) and fold, noting that
the non-substitution rules cannot be invoked in a substitution-context (because
Proposition 4.2.7 only holds in a context with at least one substitution). This
finishes the last derivation step.

4.2.10 Definition (Axy-machine: AxyM). The Ax\-machine, defining T M is shown
in Figure 4.2.

122 Machines for A-calculus Chapter 4

(M{x:=N), E, S) = (M, (x:=N)E, S) (EM)

MN, E, S) > (M, E, NE-S) (SM)
(MM, e, N-S) = (M, (x:=N), S) (bM)
(x, (x:=N

,S) ifx#y (xvgcM)

(

(

(

(N , B, S) (xvM)
(

(N)E, €, S) (xabM)
(

Figure 4.2: Abstract Axy-machine: Axy M.

4.2.11 Lemma. For closed M and Ax.N,

(M, €, €) “HegsE (Ax.N, €, €)
if and only if

(M, €, €) mm" (Ax.N, €, €)
This completes the formal bricks that we need.
4.2.12 Lemma. For closed A-terms M,

M —#t Ax.P
if and only if
(M, €, €) T (Ax.N,€,e) and [,(N)=P

Proof. Follows from Lemma 4.2.6, Lemma 4.2.9, and Lemma 4.2.11. L

4.2.13 Theorem (AxyM, correctness). x4 is an abstract machine for —g».

Proof. We already have locality and the primitive projection from Lemma 4.2.2
and Lemma 4.2.12. Flatness is obvious.]

However, we cannot really be sure that the machine does the same number of
reductions as the Axy-system since we have allowed duplication of subterms — the
machine is not space faithful. This is the motivation for incorporating sharing
in section 4.4.

Section 4.2 A Call-by-Name Abstract Machine 123

4.2.14 Remark (variable convention). Note there are still side conditions on vari-
ables, namely two implicit side conditions to (xabM). We can eliminate these:
the first, x #Z y (to avoid ‘variable clash’), is easy to check explicitly, and we can
replace (xabM) with

(MM, (x:=N)E, S) = (Ax.M, E, S) (xabM1)
(MM, (y:=N)E, S) = (M.M({y:=N), E, S) (xabM2)

since x ¢ fv(Ax.M). The second condition, x ¢ fv(N) (to avoid ‘variable cap-
ture’), is trivially true because of the following:

4.2.15 Proposition. Assume M pure and closed and (M, €, €) ST (N, {x1 :=
Ni) - - (xn:=Npu),Py-...-Pn). Then all of N{x; := Ny)---(x, := Ny), Ni, and
P;, are closed.

Proof. Easy case analysis of the rules that all preserve the property.]

4.2.16 Comparisons (Call-by-Name machines). Many published accounts of abstract
machines and their close relatives, (non-flat) deterministic operational semantic
inference systems, exist. Here we compare to a few that we have found significant,
in chronological order.

A. Henderson (1980) defines a lazy SECD machine which is realised by extend-
ing the CBV SECD machine (c¢f. Comparison 4.3.5.a) with delay and force
primitive instructions that build suspensions (aka thunks) that corre-
spond to closure of no arguments and serve as containers for inactive envi-
ronments.

B. Crégut (1990) presents two variations of an earlier (unpublished) astract
machine of Krivine which is known as the Krivine machine. This develop-
ment is interesting because it includes correctness proofs of the exhibited
machines based on the Ao-calculus of Definition 3.3.21, and because the
machines are so simple: the first is

124 Machines for A-calculus Chapter 4

(where (_ : _) and _ :: _ are binary constructions). Otherwise Crégut is
mostly interested in evaluation to full normal form which is established by
adding inference rules to the machine (the reverse of what we did above!)
and then give a rather complex argument that this is correct.

C. In the same volume one can find the exposition of Hannan and Miller (1990)
where the normal order Krivine machine is derived using techniques very
close to what we have presented. The difference is that Hannan and Miller
(like Crégut) use de Bruijn indices for the derivation, which ‘freezes’ the
stack discipline.

D. Finally we mention Yoshida (1993) who presents a calculus of explicit sub-
stitution with names, much like Ax, which comes equipped with a (some-
what complicated) strategy that allows all sorts of reductions as long as
they do not duplicate a redex. Yoshida is able to show that the chosen strat-
egy gives the minimal number of what we would call ‘weak Ax-reduction
steps’ which is a very nice result that was not believe true, however, the
strategy is somewhat complicated and remains of mainly academic interest.

4.3 Towards a Call-by-Value Abstract Machine

In this section we show how an abstract machine can be derived from the Ax-
calculus equipped with Plotkin’s (1975) Call-by-Value (CBV) strategy of Defi-
nition 2.4.5.A. The development parallels the one of the previous section hence
we restrict ourselves to the highlights where the development is substantially
different, in particular we do not formulate all the intermediate Lemmas.

Here our starting point is the calculus obtained by restricting the Ax-reduction
relation — - of Definition 3.1.4 to the strategy of —~. Again we decide to delay
substitution as much as possible, obtaining the following initial system which is
a combination of the Ax-reduction step and the restrictions of the CBV strategy
on closed terms.

Section 4.3 Towards a Call-by-Value Abstract Machine 125

Consider the restriction of Ax of Definition 3.1.4,

(Ax.M)N — M(x := N) if N value (by)
x(x :=N) = N (xv)
x(y:=N) -x ifx#y (xvgc)

x.M){y :=N) = Ax.M(y :=N) (xab)
P)(y:==N) = M{y:=N) P(y:=N) (xap)
to the strategy (inferences)
M — P
MN = PN)
ﬁ if M value (pv)
M{y:=N) - Q ©
M(y :=N){(z:=P) — Q(z:=P)

We can exploit that only closed terms are reduced to ‘fill in’ all posibilities
for values and non-values to get rid of the side conditions: the three inference
rules are mutually exclusive in an indirect way. Consider a term MN: since
it is impossible for a value to reduce, (v) can never be applied when M is a
value. Similarly for N and (uy), hence the seeming overlap between (by,v,uy) is
naught. Furthermore, neither of the rules can ever be applied when the subterm
in question is a variable because that would require that reduction of applications
was permitted under a binder which is not the case. These considerations have
been exploited in the following,

4.3.1 Definition (Ax,-reduction). 5, 18 the restriction of Ax to the CBV strategy,
shown in Figure 4.3.

These rules are slightly more complicated structurally, hence we get a sligthly
longer derivation. The first ‘theorem’ we will exploit is (v'):

4.3.2 Proposition. For all M, M,, P € Ax°,
MM, “oxy P
if and only if, for all N € Ax°,
MiMoN —— PN

This results in introduction of a stack just as in the previous section, resulting
in the following intermediate machine.

126 Machines for A-calculus Chapter 4
Axioms:
(Ax.M)(Ay.N) — M(x :=Ay.N) (by)
x(x:=N) = N (xv)
x(y:=N) —x ifx#y (xvgce)
(Ax.M){y := N) = Ax.M(y := N) (xab)
(MP){y:=N) — M{y:=N) P(y:=N) (xap)
Strategy inferences:
M] Mz — P (’V’)
M] MzN — PN
N]Nz — P (,)
(A.M)(N1N3) — (Ax.M)P Hv
M{y:=N) —-Q
=" ©

M(y :=N)(z:=P) — Q(z:=P)

Figure 4.3: Call-by-Value explicit substitution calculus: Ax,,.

Section 4.3 Towards a Call-by-Value Abstract Machine 127

4.3.3 Definition (first intermediate Ax,-machine: Ax,,S). 5=y 5 18 given by the axioms

(MN,) = (M, N-8) ()

(MM, (Ay.N)-S) — (M(x:=Ay.N), S) (by,9)
(x(x:==N), S) = (N, S) (xvS)
(x(y==N),)= (x,S) ifx#y (xvgcS)
(AM){y:=N), S) = (AxM{y:=N), S) (xabS)
(MiMa){(y:=N), S) = (My(y:=N), Ma(y:=N)-S) (xapS)

and the inferences

(N1, N2:S) = (Q1, Q2---Qn-S)
(MM, (NyN) - S) = (MM, (Q1Q2...Qx)+S)

(hyS)

(M<y ::N>) S) - (Q1) QZQTLS)
(M{y:=N)(z:=P), S) = ((Q1Q2...Qu){z:=P) , S)
So far this is as in the CBN case. However, now we observe that the new (uyS)
rule reduces something which is on the stack — this was not the case in CBN
and the basis for Proposition 4.2.7. This is not automatically resolved by the
next step we have to take based on (u{S) as a property, again exploiting that
this is never needed in a context under a binder. However, in order to avoid a
very complicated representation we want to constrain the size of of the
The representation of this is slightly complicated by the fact that a group of
terms is involved.

(¢S)

4.3.4 Proposition. For all Ax.M, N;, N, € Ax® and S € Ax™,

(N7, N;-S) “Bys” (Qr, Q2---Qn-S)
if and only if, for all Ax.M € Ax°,
(AXM R (N]Nz) S) Tvs’ (}\XM , (Q]Qz. Qn) . S)

The problem is to get in a compositional way the number n of Qs. This is
routinely obtained, however, by pushing a marker onto the stack where the ‘.’
is, and a machine is obtained in onre more step that the previous.

From this point on the development is completely similar to development of
Hannan and Miller (1990); we will not delve into it but have shown it in Figure
4.4. The thing to notice is that we, as in the CBN case, get closures for free:
since (-reduction only happens for closed terms, all binders are automatically
pushed ‘inside’ the abstraction they belong to.

128 Machines for A-calculus Chapter 4
(M(x := , $) = (M, (x:=N)E, S) (EvM)
(MN E S) (M E NE . S) (SvM)
(Ax.M (Ay.N)-S) = (M, {(x:=Ay.N), S) (byabM)
(}\x M, (N1N3y) S) — (N1N2 , {IAX.M}, S) (byapM)
()\y.N {}\x M} -) — (M , {(x :=2Ay.N) , S) (by’M)
(x, x:=N)E, S) = (N, E,S) (xvyM)
(x, (y==N)E, S) = (x, E, S) ifx#vy (xvgecyM)
(MM, (y==N)E, S) — ()\xM =N>E, e, S) (xabyM)
(MiMz, (u:=N)E, S) = (My, (u:=N)E, My(y:=N)E-S) (xapvM)

Figure 4.4: Abstract Ax,-machine: Ax, M.

4.3.5 Comparisons (Call-by-Value machines). Almost as many published accounts
exist of abstract machines for CBV with their own family of (non-flat) deter-
ministic operational semantic inference systems; again we compare to a few sig-

nificant ones.

A. Landin’s (1964) seminal paper includes a sketch of a small (tail) recursive

ALcoL procedure for evaluating A-expressions mechanically. The presen-
tation most often used today is as a table due to Henderson (1980, section
6.2), where each of Landin’s four parameters S (stack), E (environment),
C (control), and D (dump), is a component of the machine state which
is transformed by instructions, or more precisely: at any point in the
evaluation, the instruction at the top of the C component is discarded and
a suitable transformation takes place whch ensures that a fresh instruction
is available at the top of the C component again.. The latter is, perhaps,
where the machine differs most strongly from our machines in that we
interpret a A-term directly as the ‘instructions’.

Hannan and Miller (1990) also apply their method to a CBV strategy and
obtain, not surprisingly, a version of the SECD machine where the term
is the ‘instruction’ which is very similar to ours except it uses de Bruijn
indices instead of variables as do we (and the original SECD machine).

Section 4.4 Abstract Machines with Sharing 129

4.4 Abstract Machines with Sharing

In this section we demonstrate how explicit sharing and substitution as described
in section 3.5 ripples through a generic abstract machine derivation for a CBN
machine as presented in section 4.2, and shows up as essentially graph reduction.
The essence in the exercise is to encode the updating function in the strategy
because this will make it possible to describe locally what is updated when.
Since parallel reduction may involve reduction in any part of a term, the
initial system is the following where the essential insight is that we record any
sharing points and carefully use them to update whenever we have reduced.

4.4.1 Definition (Axay-reduction step). %, the ‘CBN Ax-reduction with updat-
ing of addresss a’ is inductively defined in Figure 4.5. The a annotation on the
arrow is called the ‘update address’; € is a unique dummy address. Notice that
substitutions never set an update address.

As should be apparent, the strategy always operates on an up-to-date term
since all parts of the context are updated by (v). This is called an update frame
by Peyton Jones (1992).

With this we discuss the derivation. The first folding is the combination of
(v) and (Share) since those are the context-free rules. The folding proceeds very
much like the use of Proposition 4.2.4 in section 4.2 but with the context needed
for all three rules, thus the stack can contain both addresses and arguments.

We will not show this intermediate machine but instead go straight to the
result of also folding (() into the system similarly to the use of Proposition
4.2.7. We only have to ascertain that the address inside each substitution is
never removed by our strategy, then it is easy to see that all the rules fold
without loss of sharing. This gives the machine in Figure 4.6 for which we have
the following:

4.4.2 Lemma. For closed A-terms M,
M — Ax.P
if and only if
(M, €,€) 5wt (AX.N, €,€) and [«(N) =P

Proof. Follows by a transformation correctness chain similar to that of sec-
tion 4.2.]

130 Machines for A-calculus

Chapter 4

(Ax.M)N &— M(x := N%) a fresh
x(x :=N) S%— N
=N

() S X ifx#vy
(A.M)(y :=N) S— .My :=N)
(y:=N)

Xa

o M(y:=N) P(y:=N)

and the (new)

M%y :=N) &— M(y:=N)
(Ax.M)® &— Ax.M

and the (strategy) inferences
M 44— Q
MN % Q N[Q@d]
My :=N) S p— Q
M(y ;== N){z:=P) & Q(z:=P)
M &—— Q

bxa

Mb b , QY

bxa

M 4% —— Q

bxa

Mb a >Qb

bxa

(b)
(xv)
(xvge)
(xab)

(xap)

(xa)

(aba)

(v)

()

(Update)

(Share)

Figure 4.5: Sharing Call-by-Name explicit substitution calculus: Axay.

Section 4.4 Abstract Machines with Sharing 131

(M{x:=N), E, S) = (M, (x:=N)E, S) (E)
(MN, E,S)— (M, E, NE-S) (M)
(M*,e,S)—> (M, e, a-S) (SaE)

(MM, e, a-S)—= (M, e, S[(Ax.M)%) (aM)

(MM, e, N-S) = (M, (x:=N% | S) a fresh (baM)

(x, (x:=N)E, S) = (N, E,S) (xvM)

(x, (y==N)E, S) — (x, E, S) ifx#uy (xvgcM)

(MM, (y:=N)E, S) = (Mm.M(y:=N)E, €, S) (xabM)

(MiMz, (u:=N)E | S) = (M, (y:=N)E, Mya(y:=N)E-S) (xapM)

(M®, (y:=N)E, S) = (M, (y==N)E, S) (xaM)
Figure 4.6: Abstract Axy-machine with sharing: xayM.

Notice how the machine actually does the updating of the shared instances explic-
itly in (aM). This corresponds to the update that a ‘real’ machine would already
have done at the time where the reduction happened, however, (aM) highlights
that it is safe to delay resynchronisation of the sharing until a normal form is
reached. Similarly, (xaM) highlights the fact that substituting into a term copies
it (the a is removed). In short, insights about acyclic A-graph reduction can be
obtained from this system even though it was developed by theoretical means.

4.4.3 Comparisons (lazy machines). Only a few proper operational accounts exist
of lazy reduction woth sharing (we postpone discussion of cycles and recursion
to the next chapter).

A. The two classical abstract machines for lazy evaluation with sharing are,
of course, the G-machine of Johnsson (1984) and its main derivative,
the STG-machine (Peyton Jones and Salkild 1989, Peyton Jones 1992),
and the derivatives of Fairbairn and Wray’s (1987) Three Instruction
Machine, TIM (see also Peyton Jones 1987, Peyton Jones and Lester
1992, Plasmeijer and van Eekelen 1993). These all have in common that
they are based on a low-level model of the computer memory, called store
or heap, as a graph. The machine instructions then manipulate this graph
by maintaining a stack of pointers into it (and the two schools basical-

132

Machines for A-calculus Chapter 4

ly differ in the way this is done: the G-machine keeps one stack whereas
the TIM has the stack distributed in environment frames throughout the
heap).

Benaissa and Lescanne (1995) present an abstract machine framework, tr:-
ad machines that handles lazy evaluation as well as other paradigms. The
price of the generality in the machine, however, is that part of the speci-
fication is external to the formalism, notably the strategy, thus the triad
approach cannot really be used for mechanical reasoning as we envision it.
The triad machine is interesting with respect to one more issue: it includes
garbage collection; it will be interesting to follow its development in the
future.

. Three further works deserve special mention: Purushothaman and Seaman

(1992), and Launchbury (1993), give operational semantic specifications
for sharing very much like the one above except they, in fact, include
also recursion in a way very similar to what we will get at in the next
chapter, however, the systems are not derived in our sense. In contrast,
Sestoft (1994) derives a lazy abstract machine much as we have done, and
discusses in some depth the exact correspondence among these and the
other machines mentioned above.

4.5 Summary

We have demonstrated how explicit substitution with names is a useful frame-
work for reproducing known abstract machine technology in a systematic and
reliable way.

The uniform treatment of the various concrete aspects of mechanical evalua-

tion is new. The correctness of the derivations automatically prove results that
relate the various explicit dimensions, in particular our presentation highlights
why the correctness proofs etc of previously published abstract machines are
so relatively simple. We also consider the generalisation of the classification
system of the previous chapter to a ‘strategy dimension’ a contribution.

Operational Combinatory
Reduction Models

In this chapter we demonstrate how the techniques of the previous chapters can
be applied to Klop’s (1980) combinatory reduction systems (CRS, explained
in section 2.6) to define a class of reduction systems that can be used to model
a large class of aspects of evaluation of functional programming languages in a
way that gives operationally faithful measures of time and space consumption
by the paradigm

reduction length = time

term size = space

The main part of the chapter constrains and extends CRSs to a class that can
be executed efficiently on real computers: first, in section 5.1, we generalise
explicit substitution to CRSs and augment with constraints that ensure CRS
reduction to be not just local but also efficient, and we describe how such a
system can be obtained automatically from any CRS. Second, in section 5.2, we
generalise sharing to CRSs and it turns out this combination will also permit
special treatment of ezplicit recursion. Finally, we discuss in section 5.3 how the
class realises operational aspects of an actual functional programming language,
namely Plotkin’s (1977) PCF with sharing.

133

134 Operational Combinatory Reduction Models Chapter 5

5.1 Explicit Substitutes

In this section we show how the explicit substitution idea developed for the A-
calculus in section 3.1 can be generalised to CRS systems, and in particular we
show that there is a translation from any CRS to an explicit substitution one.
This brings us part of the way towards being able to use the CRS reduction
count as a complexity measure in that we eliminate ‘deep substitution’. The
technique used is the same as for the A-calculus: to perform substitution in
a stepwise manner, or, put differently, to change metaredexes to use ‘explicit
substitutes’, such that only local term knowledge is used in the rewriting.
First we demonstrate the idea as it was developed for a particular CRS,
namely the AB-calculus (essentially recalling section 3.1 in the CRS notation).
Then we identify a subclass of CRSs that has ‘explicit substitution’ and show
that every confluent CRS can be transformed into a confluent CRS in this class.

5.1.1 Example (Axgc-reduction as CRS). Axgc is the CRS over terms
t o= x | Ax.t | tht, | Z(t],tz)

with Axgc-CRS rules

(Ax.Z(x))Y — Z([x]Z(x),Y) (b)

Z([x]X Y)—Y (xv)

X([X1Z,Y) — (xgc)

Z([xIAy.Z(x, y) Y)— 7\9 Z([xI1Z(x,y),Y) (xab)
Z([x] (Z1(x))(Z2(x)), Y) — (Z([x]Z1 (x), Y))(E([x]Z2(x), Y)) (xap)

(as ususal we use x to refer to just the rules with names starting with x). It is
instructive to compare this system to the definition of Axgc in Definition 3.1.4:
they are identical except for syntax conventions (for instance the Axgc-term
x(x := Ay.y) corresponds to X([x]x,Ay.y)).

Furthermore, the requirement that all metaterms are closed prohibits free
variables in CRS rules, which means that all free variables must be ‘hidden’
inside metavariables (to which they are not given as parameters). This means
that we cannot distinguish between substituting a free variable (Axgc rule (xvgc))
and the more general garbage collection (Axgc rule (gc)): both are special cases
of the rule (xgc) above.

This is not an orthogonal CRS because it has the following overlap patterns:

Section 5.1 Explicit Substitutes 135

| X (Aa.Z(a,x))(Za(x)) | Y I([xJAa.X(a),Y) (x| Z125,Y)
(b) (xab) (xap)
(xap) (xgc) (xgc)

Yet it is confluent as proven in Bloo and Rose (1995) and as a consequence of
the following.

The key observation in the development for the A-calculus from section 3.1is that
no knowledge of the ‘depth’ of terms is needed in order to reduce the rules. In
the example rules above this is manifest in the fact that all metaapplications on
both LHS and RHS have the same variables on both sides which means that
substitution can be realised purely locally. This is formalised as follows.

5.1.2 Definition (explicit substitution CRS). A CRS R is an ezplicit substitution
CRS or simply ESCRS, if all metaapplications in the RHS of a rule occur
in the form Z(X) such that Z(X) also occurs in the LHS of that same rule.! The
individual metaapplications in RHSs obeying this will be called ezplicit metaap-
plications.

Since all metavariables of a CRS rule must occur in the LHS in the form Z(X)
this definition means that each metaapplication of Z in that rule is metaapplied
to the same list of variables as in the LHS. Recall that the intention is to avoid
having to perform substitution. Here are some small sample CRSs that are and
are not explicit.

5.1.3 Examples (explicit and nonexplicit CRSs). Consider CRSs over the alphabet
Al B?, CO.

A. A(lx,ylB(X(x),Y)) — X(Y) 1s not explicit because we have to substitute
Y for any occurrence of x in whatever matched X(x).

B. A([x,y]lB(x,y)) — A(lx,y]|B(C,x)) is explicit because it contains no meta-
aplications!

c. A(lx,ylA(X(x,y))) — A(xIX(x,x)) is not explicit because we need to
change one of the variables inside what matched X(x,y).

D. A([x,ylA(X(x,y))) — A(lx,yl]A(X(y,x))) is explicit because we can just
rearrange the variables so we do not have to change anything inside what

1This implies that the variables in X are distinct.

136 Operational Combinatory Reduction Models Chapter 5

macthed X(x,y) (this is perhaps more obvious if the rule is reformulated
as Alx,ylA(X(x,y)) — Aly,xJA(X(x,y)) but names of bound variables do
not matter in CRS systems).

E. A([x,ylA(X(x,y)))—)A(lx,ylB(X(x,y), X(y,x))) 2s not explicit because in
the second we need to change one of the variables inside what matched

X(x,y).

F. A(lx,ylB(X(x,y),Y(x,y))) — Allx, yIB(X(x,y), Y(y,x))) ¢s not explicit for
the same reason.

c. A(lx,ylB(X(x,y), X(y,x))) = A(lx, yIB(X(x,y))) is explicit.

H. C([x]X(x), [ylX(y)) — A([x]X(x)) is explicit because we can just choose to
use the bound variable that we know to be in the X-metaapplication we
matched.

. A([x]X(x)) — B([x,ylX(x), [ylX(y)) 2s not explicit because in one of the
X-constructions in the contractum we will have to substitute in a new
variable.

5.1.4 Theorem. An ezplicit CRS 1is local.

Proof. Each rule in such a CRS can clearly be described as a rearrangement of
local symbols and all subterms can be moved as units.]

However, in order to achieve a notion of reduction with a realistic complezity
then we wish the work involved in each reduction to be bound by some constant
that does not depend on the term being reduced. The main problem of the com-
plexity of CRS reduction is the same as for the A-calculus, namely substitution
as discussed in section 3.1 — this is what we have already handled. However, the
time of pattern matching also plays a rdle:

e If a pattern is non-linear then pattern matching requires time proportional
to the size of the subterms that need to be identical in the redex. This
observation is well-known.

e If a pattern contains metaapplications applied to variables lists that do
not contain all the bound variables then it is necessary to check in the
redex whether only the permitted bound variables occur in the redex —
again this takes time proportional to the size of the redex. This calls for a
new concept.

Section 5.1 Explicit Substitutes 137

5.1.5 Definition (saturated). A metaterm is saturated if for every metaapplication
Z(%) the set of free variables fv(Z(t)) includes all variables bound at the occur-
rence of the metaapplication.

5.1.6 Examples. () is saturated, (n) of Remark 2.3.9 is not, neither is the Axgc-
CRS shown in Example 5.1.1 because of (xgc).

5.1.7 Remark (free variable matching). In order to be able to handle Axgc in its
original form we introduce the following notion: a free variable pattern is a
special metaapplication form Z¥ that only matches variables not otherwise bound
by the match. This allows us to write the (xvgc) rule as

(2%, Y) = Z

exploiting that Z¥ cannot contain x (because then we should have written Z"(x))
and at the same time it must be a variable, hence it can only match variables
x # Y. We have implemented this in the program in chapter 6. Using this rule
instead of (xgc) of course removes the two last overlaps.

5.1.8 Discussion (fair complexity measure?). We have achieved what we set out to
do: the reduction count is a fair complexity measure provided we only count
matching and contraction complezrity: we have not considered the cost of
matching. We will return to the redex search complexity in the next section.

Another interesting observation which we can carry over from the study of explic-
it substitution for the A-calculus is that substitution does not depend on the
context in which it is created. This insight can be used to create an ESCRS
automatically from a CRS in a manner that ensures that confluence is pre-
served by simply ‘unfolding’ the definition of substitutes (Definition 2.6.8) into
the new rules.

5.1.9 Definition (CRS explicification). Given a CRS R with alphabet FI'. The ESCRS
Rx is obtained by the steps listed in Figure 5.1. If R defined the relation — then
we will denote the relation defined by Rx as ——; the subrelation consisting of
only the introduction rules (with name (r-x)) is denoted +, and the subrelation
containing only the substitution distribution and elimination rules (with names
of form (x-_)) is denoted —-; we write —_— for the union of all (xgc-n-i) rules.
Note that there are no rules for interaction between two substitutions.

138 Operational Combinatory Reduction Models Chapter 5

Restricted terms. The restricted terms of the CRS Rx are defined by extend-
ing the syntax for R with the clause Z™“*'([X]t,T) where the symbols
32 ... are added to the alphabet as needed in the substitution intro-
duction rules below. Terms that do not contain subterms of the form
I ([X]s, t) will be called pure.

Substitution introduction. For each rule (r) of R construct a new rule (r-x) of
Rx by replacing in the RHS all non-explicit Z"(t) by

Zn+] ([%]Zn(%(n))) ;c(,n])

Hence the arities of non-explicit metaapplications decide which new
function symbols we need.

Stepwise substitution distribution. For each ™! symbol add a rule
IMRIMZR, Y), X) — WIZ(RIZ(Z,v), X) (xma-n)

and for each possible I F™ pair add a rule

IHRIF™NZ4 (%), -, Zm (X)), X) (x-F™n)
— FMEV(RIZ (), X), .. ZVH([R]Z (%), X))
Substitution elimination. For each I™*' add for each i € {1,...,n} two rules
I (R, X) — X (xv-n-i)

Z ifn=1

SV RIZ(E), X)) ifn>1 (xge-n-i)

IMHRIZRY), X) — {

X' = (Xh' c ey X1y Xit 1,y . ax'n)

>_< = (Xla- --inflaXiJr]»-- -aXn)

(thus the LHS of (xgc-n-i) includes the abstraction for x; in the variable
list and the corresponding element X; of the substitution body but not

in the parameter list Z(X'); the RHS excludes x; in the metaabstraction
and X; in the right hand side).

Figure 5.1: Explicification of CRS R into ESCRS Rx.

Section 5.1 Explicit Substitutes 139

5.1.10 Example. The system A3x generated this way for the A3-calculus with the
rule

(Ax.Z(x))Y — Z(Y) (B)
is the following:2
(Ax.Z(x))Y — Z([x]Z(x),Y) (B-x)
Z(D(Z1 () (Z2(x)), Y) = (Z([x1 Z1 (), Y (Z([X] Z2(x), Y)) (x-@)
L(XIA(Z(x)), Y) — A(Z([xIZ(x),Y)) (x-7)
Y([x]x,Y)—=Y (xv)
I(KZ,Y)— Z (xge)
(b, yl1Z(x,v),Y) = WIZ(XIZ(x,v),Y) (xma)

It is the same as the Axgc CRS shown above except that the abstraction distribu-
tion rule (xab) has been split into two steps: (x-A) and (xma). As a consequence,
a restricted term need not reduce to a restricted term (but another reduction step
can fix this). To prevent this, one can define the explicification more cautiously
for CRSs with restricted terms (this means that some —— steps are forced to
be followed by other —— steps). We will not do this in this dissertation since it
is rather straightforward.

5.1.11 Proposition. For any CRS R, Rx is explicit.

5.1.12 Remark. The procedure is tdempotent: when applied to an ESCRS noth-
ing is added since no non-explicit metaabstractions exist. Also notice that the
elimination and distribution rules only depend on the alphabet.

The remainder of this section is devoted to showing that the derived ESCRS is
a conservative extension of the original CRS.

5.1.13 Proposition. For a confluent CRS —, —— is confluent and strongly nor-
malising.

Proof sketch. Completeness of —— is shown by first establishing ——SN by
defining a map dominating the longest reduction length similarly as for Axgc
in Bloo and Rose (1995); ——LC follows from a simple investigation of the
critical pairs between the (xgc-n) rules and the other rules (this amounts to
understanding that ‘garbage collection’ can be postponed without risk). 0

2Generated automatically from (B) by the program of chapter 6.

140 Operational Combinatory Reduction Models Chapter 5

It is not difficult to extend this result to reduction on metaterms.

Next we relate single reductions and then build the components of the proof
of multiple reduction equivalence (in this paper |.(t) denotes the unique ——-nf
of t, and — the restriction of — to reductions to normal forms).

5.1.14 Lemma (representation). For terms t, t;,
le(z([i]t) €)) = le(t)b_é = le(%)]
(where we mean parallel substitution).

Proof. Note that t and t; do not contain metavariables. This lemma is the ‘sub-
stitution lemma’ of the A-calculus in disguise; we prove by induction on the num-
ber of symbols in the sequence t,ty,...,t, that | (X([x1,...,xalt, t1,...,t0)) =
Le(t)[x1 := le(t1)] - - - [xn := le(tn)]. We distinguish some cases according to the
structure of t.

Case t = x;. Then Z([X]t, 1) —» Z([xi1, ..., Xalty, tigr, ..., tn), hence

Le(Z(Et, 1))

Le(Z(Dxisr, ooy xalti i, .o ta))
le(Z(xIt, 1))
(

Ele Z([XH—] ..)X’n]ti)ti-H)"‘)tﬂ-))
g l (tl) [XH_1 (ti—H)] ter [xn = le (tn)]
= l (t)[X] = le()] [Xn = le(tn)]

Case t = F™(8). Then Z([X]t,T) — F™(Z([X]s1,%), ..., Z([X]sm, t)), hence

L(Z(%1t, 1) = Fr(Le(Z(K]s1, D)), - .., Le(Z(K]spm, T)))
Z ™ (La(s1) = L)), -+, Le(Sm) X1 o= La(t0)])
= (F (le(s1)» e ale(sm)))[xi = le(ti)j

= [(F™(8))[x; == le(tiﬂ

Case t = XZ([x]t’,t"). Now use IH on X([x,x1,...,xJt", t" t1,...,t0). O

5.1.15 Lemmas (projection & injection).
s———t

A. For terms s, t, ie le . B. For pure terms s, t, ol
1 e

le(s) ’ »le(t) g’

Section 5.1 Explicit Substitutes 141

Proof. Lemma 5.1.15.A by induction over the structure of Rx-metaterms, using
Lemma 5.1.14; Lemma 5.1.15.B is a simple consequence of the fact that the
R-rules and Rx-introduction rules have the same redexes and the ——-rules con-
struct no new redexes. The details are as follows:

A. Induction over the structure of s. If the redex contracted in s— is at the
root of s, then use Lemma 5.1.14. If s = F™(s) or s = [x]s; and the redex
is in s; then use the induction hypothesis on s;. Otherwise, s = X([X]s’,s)
and the redex is in either s or one of the s;. Then by Lemma 5.1.14,
le(s) = le(s")[X := |e(8)] and by the induction hypothesis |(s;)— |e(t;) if
t = X([X]t', ©).

B. If s—t contracts the redex at the root of s then by the corresponding
introduction-rule we can contract the redex at the root of s in s—s’. Now
by Lemma 5.1.14 and the definition of substitution in Definition 2.6.8 it is
clear that |.(s’) = t, hence s'—»t. O

5.1.16 Theorem. For R-terms s,t, s —»t ¢ff s - t.

Proof. First observe that the R-terms s, t are in e-normal form when considered
as Rx-terms. Then use Lemma 5.1.15:

Case &: Assume s —» t; the case then follows by induction on the length of the
—»-reduction, using Lemma 5.1.15.B in each step.

Case =: Assume s —» t and s,t € R. We will do induction on the length of
the —_»-reduction and prove

S ie 51 ie e ie Sn1 ie t
1 ! |
S »Le(81) poo »Le(Sn-1) rt

Each ——-step is either — or —— for which we need Lemma 5.1.15.A and
confluence of —, respectively (in the latter case — is void). O

An easy consequence of all this is the main result of this section.

5.1.17 Corollary. If R is confluent then Rx s confluent.

Proof. If t —» s; and t —» s, then by Lemma 5.1.15.A we have both [.(t) —
le(s1) and [e(t) — le(s2), now use confluence of —» and Theorem 5.1.16. O

142 Operational Combinatory Reduction Models Chapter 5

Finally, we mention a new result of Roel Bloo: it turns out that the construction
above preserves strong normalisation for an interesting subclass of CRSs. We
quote from Bloo and Rose (1996):

5.1.18 Definition. A CRS is called structure preserving if any argument of a
metaapplication in the RHS of a rule is a subterm of the LHS of that rule.

5.1.19 Theorem. Rz PSN of R.

Proof. See Bloo and Rose (1996).]

5.2 Explicit Addresses

In this section we show how the explicit sharing idea developed for the Ax-
calculus in section 3.5 can be generalised to explicit CRSs with the restrictions
discussed in the previous section.

In the previous sections, we have obtained a description of CRS systems that
have efficient pattern matching through restrictions on the form of patterns, and
efficient term traversal through the use of explicit substitution. What is missing
is to have a proper operational description of space usage just as we obtained
for A-calculus.

In this section we generalise the address notion of section 3.4 to CRSs. The
generalisation will be separated into two cases. The first case is acyclic sharing,
which is a smooth and systematic generalisation of Wadsworth’s A-graph sharing
that is stable with respect to a large class of reduction strategies. The second
case is what we will call semi-cyclic sharing which is a synthesis of explicit
substitution and Turner’s (1979) graph combinators.

5.2.1 Definition (simple sharing CRS). The set of simply addressed CRS-preterms
over some alphabet is the set of preterms (as in Definition 2.6.1.B) extended with
addressing forms (as in Definition 3.4.1.4), t.e.,

t o= x| Xt | F*ty,...,t) | Z™M(tq,...,ta) | t©

where abc range over an infinite set of addresses and we permit free addresses in
rule RHSs: each occurrence of a free address denotess “a fresh address globally
guaranteed unique”; the rest is as in Definition 2.6.1. Matching and rewriting
also proceeds quite as in Definition 2.6.12 with addresses seen as new function

Section 5.2 Explicit Addresses 143

symbols, except that the relatiosn we define will allways implicitly be the sharing
closure of what is asked for. We call such a system a ‘CRSa’ where the ‘a’ stands
for ‘addressed’.

The fact that the ‘extension’ can also be seen as a restriction on the terms makes
the definition particularly simple — in fact all the definitions of section 3.4 up to
Proposition 3.4.6 carry over immediately to the above class, and we will use them
freely. The only thing that is not internalisable is allocation of fresh addresses
for which we will assume and refer to an address oracle. However, remark that
such a device can, in fact, be efficiently implemented on a computer. Further,
the relation enjoys the pleasant properties of a sharing as discussed in section 3.4.

5.2.2 Example (acyclic A-graph reduction). The CRSa

(MY (x))X — Y((X)Fresh) (Ba)
(Ax.Y (%)% = (Ax.Y (%)) (copy)

defines A-calculus with sharing. To illustrate its use, here is the reduction of the
A-term (Ak.Skk)(IIK) with leftmost and sharing reduction.

\ (Ak.(Aabc.ac(be))kk)(((Aa.a)(Aa.a))(Aab.a)) \

(rsf)
((Aabe.ac(be))((((Aa.a)(Aa.a))Aab.a)') [(((Aa.a)(Aa.a))(Aab.a))")
(Ba)
|
(Aab.(((((Aa.a)(Aa.a))(Aab.a))")2)b(ab))((((Aa.a)(Aa.a))(Aab.a)]")
(Ba)
L
Aa.(((| (Ab.b)(Ab.D)) [(Abe.b))) a(((((Aa.a)(Aa.a))(Aab.a))')3)a)
(Ba)
L
Aa.((((| (Ab.b)* N(Abe.b))!)2)al(((((Ab.b)*)(Abe.b))!)3)a)
(copy)
L
Aa.(((| (Ab.b)(Abe.b))1)2)a((((Ab.b)(Abe.b))')3)a)
(Ba)
L
Aa.(((| (Abe.b)® NT)2)al((((Abe.b)®))3)a)
(copy)
L

Aa.((| (Abe.b)! N2)al((((Abe.b)!)3)a)
(copy)

144 Operational Combinatory Reduction Models Chapter 5

l
Aa.(| (Abe.b)? Da((((Abe.b)!)3)a)
(copy)
l
Aa) (Abe.b)a|((((Abe.b)!)3)a)
(Ba)
L
Aal (Ab.(a)")((((Abe.b)!)3)a)
(Ba)
l
Aa.(a)'?

As for the A-calculus systems with sharing do not work properly without a
copying rule, and care has to be exercised when reducing. Fortunately most
such problems disappear when combining with explicit substitution.

5.2.3 Definition (explicit substitution and sharing CRS). Given a CRSa, R. The result
of explicifying this, Rx, will be called an ESCRSa.

For such a system everything works out nicely, just as for the A-calculus in
section 3.5: since all rewrites are local no undesired ‘side effects’ happen in the
term. We will demonstrate this, but first we will strenthen the notion of sharing.

5.2.4 Discussion (explicit recursion). The classical observation that
“ explicit recursion = cyclic references ”

has been used since the LABEL primitive of Lisp which was implemented by
constructing a cyclic data structure. However, the construction gives theoretical
headaches because of the following observation, freely after (Kennaway, Klop,
Sleep and de Vries 1995)

“ true cycles correspond to infinitary reductions ”

Essentially this observation means that if true cycles are included in rewriting
then locality breaks down in an essential way. For several examples of this as
well as an elegant but non-compositional solution see Ariola and Klop (1994)
(more on cyclic A-graphs below).

We will instead use a ‘representation trick’ also used by Felleisen and Fried-
man (1989) for implementing selective updating: we will introduce an explicit
back-pointer node which is allowed to have an address that occurs on the path
to it from the root. This means we have to weaken the wfa property to allow it,
of course — it looks like this.

Section 5.2 Explicit Addresses 145

5.2.5 Definition (cyclic sharing CRS). The set of cyclic addressed CRS-preterms
over some alphabet is the set of simple sharing preterms (as in Definition 5.2.1)
extended with cyclic addressing forms, i.e.,

t o= x| Xt | Fr(ty,...,t0) | Z™(tq,...,tn) | t¢ | ¢

Rewriting happens as for CRSa except we add another metanotation that is
allowed in rule RHSs, namely t; [| t§ which means t;[t$] in the notation of Defi-
nition 3.4.2.B which must be used whenever an address is removed that may
occur 1n a subterm.

We will call such a system a ‘CRSar’ where the ‘r’ stands for ‘recursive’.

The importance of the update operation is highlighted by the following.

5.2.6 Definitions (cyclic sharing terms). Assume a set of adressed T-terms as above.

A. We write ‘t wfar’ if t is an addressed term where all subterms with the
same address are identical or a nested e-node: for all subterms t{,t$ of t
either

1. t; =t (thus both either e or not), or
2. ty = e and t = C[(C'[e“])?] such that (C'[e%])* = t, (or similarly with
t1,t, swapped).

B. The updating of t wfar with s wfar at address a ¢ addr(s) is written t[s]
and is obtained by replacing all outermost subterms u® &> t (if any) by s°.
By convention t[e] =t (to ensure t[t@a] =t for all a).

c. The set of cyclic sharing T-terms, notation T wfar, is the subset of the
addressed T-terms with wfar.

When a term is wfar we will say for each address in it that “the” subterm t® # ¢
is shared with address a; if furthermore e“ [> t then it is cyclic.

5.2.7 Example (cyclic A-graph reduction). The CRSa

(AX.Y (x))X — Y((X)Te=h) (Ba)
(Ax.Y (%)% = (Ax.Y (%)) (copy)

defines A-calculus with sharing and explicit recursion. It is easy to verify that
wfar is preserved

146 Operational Combinatory Reduction Models Chapter 5

So when is it we wish to use a cyclic definition? The just shown example reveals
the kind of rule that is susceptible to recursion: the p-rule ux.Z(x) — Z(ux.Z(x))
contains the LHS as an argument to a construction of the RHS — it is a kind
of self-application.

We will give several examples in section 5.3.

5.2.8 Comparison (cyclic A-graph reduction). The A-graph notion of Ariola and Klop
(1994) is the main related work on cyclic sharing with reduction which is similar
to explicit substitution and independent of reduction strategies; that work and
this dissertation subsume the earlier Graph rewrite systems (GRS) of Ariola
and Arvind (1992) and cyclic substitutions of Rose (1992)); all these origin with
Wadsworth (1971) where cycles are discussed but ruled out.

The main difference between our work and Ariola and Klop’s (1994) A-graphs
is that cycles remain observable: it is possible to write rules that manipulate
o3, for example, and the CRSar have to decide when to unfold what Ariola and
Klop (1994) call ‘vertical sharing’ manually. The gain is that our system is
confluent: the wfar property forces a certain synchronisation between subterms
that is sufficient to ensure that the recursion variable besting depth by Ariola
and Klop (1995Db) is always finite.

5.3 CRS and Functional Programs

In this section we discuss the connection between CRS and functional program-
ming.
Our starting point is the idea that

“ functional programming = term rewriting ”

based on the simple established connection from first order functional pro-
gramming to recursive equations since these can be directed (according to the
Church-Rosser Theorem 2.3.11 theorem, in fact) and thus interpretable as term
rewrite systems (TRS). It is known that when this idea is extended with a notion
of sharing then it is sufficiently refined to serve as a basis even for implemen-
tations of functional languages as has indeed been done by Turner (1979) and
studied by Barendregt, van Eekelen, Glauert, Kennaway, Plasmeijer and Sleep
(1987). For first order programs this correspondence is so close that one can
relate the computation steps — put simply,

“ 1 functional program evaluation step = 1 term rewrite step ”

Section 5.3 CRS and Functional Programs 147

However, the model fails to address one major complication of functional pro-
gram evaluation, namely the behaviour of higher order functions: even though
it is possible to transform higher order functions into rewrite rules, it is in gen-
eral not clear whether this preserves operational properties. For example, it is
not obvious how A-calculus reduction can be expressed in this way.

This is where the considerations of the previous sections contribute to inves-
tigate the generalisation

“ higher order functional programming = higher order rewriting ”

We would like to demonstrates how CRS can serve admirably as the generalisa-
tion of rewriting as a model of the operational behaviour of pure functional pro-
grams including higher order functions — the converse we have already addressed:
how CRS can be resolved into elementary reductions. The goal is to establish
a complexity-faithful link as for the first-order case. This is difficult which is
surprising considering that CRS have many of the properties of pure functional
programming languages, notably pattern matching, referential transparency
(which we call confluence), inherited from TRS, and abstraction over bound
variables (inherited from the A-calculus).

In a nutshell: what is ‘wrong’ with, say the differential rewrite system of
Figure 2.2, if we want to implement it? Three things pop up as ‘expensive’,
namely

non-linear patterns: when a pattern repeats a metavariable then matching involves
testing for equality the appropriate subterms, this clearly takes time depen-
dent of the size of the terms in question;

non-saturated variable lists: when a pattern metaapplication does not include the
full list of available variables then we have to search the actual term to
ensure that the ‘forbidden’ variables do not occur, e.g., when applying rule
(constant) above; and

deep substitution: the act of substitution usually takes time proportional to the
size of the substitute (just as we have argued for the A-calculus in chapter 3.

The first aspect was already defined in section 2.6, and it is already present in
functional programming where patterns must also be linear. The second is also
present in functional programming in that pattern variables (corresponding to
the CRS metavariables) have zero arity, however, here the CRS formalism can
actually do a bit more while keeping pattern matching in constant time (because

148 Operational Combinatory Reduction Models Chapter 5

Syntax. of program expressions:

ex=0]e+1]e—1] (e:e) | HD(e) | TL(e)
| T|F|e=01] 1F(ee’ e"

| x| Ax.e | ee’ | ux.e

Reduction.
(Ax.Z(x))X — Z(X) (B)
ux.Z(x) — Z(ux.Z(x)) (W)
R(T,X,Y) — X (£T)
IF(FX,Y)—Y (if-F)
0=0-T (=0-T)
(X+1)=0—F (=0-F)
(X+1)—1) — X (-1)
HD(X:Y) — X (hd)
TL(X:Y) =Y (t1)

Figure 5.2: Plotkin’s PCF+pairs as CRS.

no unification or higher-order matching is allowed). The third aspect is avoided
by insisting on explicit systems.

In the remainder of this section we discuss a typefree variant of Plotkin’s
(1977) PCF programming language, extended with a pairing operator : and the
associated HD and TL selectors, and show how sharing and explicification works.

The PCF+pairs programs and evaluation reduction system as a CRS are
given in Figure 5.2. The following small program computes the parity of a
number, or rather: the pair of booleans (is-even : is-odd).

uf AnIFr(n =0, T, Tn(f(n—1))) : 1IfF(n =0, F, HD(f(n — 1)))

Here is the start and finish of a reduction sequence computing® the even and

3Computed by the program of chapter 6 acting on Figure 5.2.

Section 5.3

CRS and Functional Programs

149

odd parities of 3 = ((04+ 1)+ 1) + 1 reducing as many redexes as possible in each
reduction step (this is of no consequence as the system is orthogonal and hence

confluent).

\ (uf An.(F(n = 0, T, TL(f(n —

(w)

!

1)) :e(n =0, Fup(f(n — 1)) [((0+1)+1)+1)

(Aa.(1F(a =0, T, TL((1
:1F(b =0, F, HD(a(b
1F(a =0, F, HD((pna.Ab.
IF(b=0,FHuD(a(b —1

aAb.(1f(b =0, T, TL(a(b —
—1))la—1)))):

(Fr(b=0,T,TL(a(b—1)))):

IMNla=1)NO+1)+1)+1)

m))

I
)

(®)
!

(e (0+ 1)+ 1) +1) =
(=0-F)

) T) TL(

\ (LaAb.(1F(b = 0, T, TL(a(b —

1)) :17(b =0,FHD(a(b —

)|

(w)

@+ 1+ 1)+ 1) =)) 21w

(((O+D+1)+1) =

&) (=0F)

, F,HD(

\ (LaAb.(1F(b = 0, T, TL(a(b —

1)) :1F

(b=0,Fun(alb— 1)) [(0+ 1) +1)+1)—1)])

(w)
+

$

-1

(1% ([0 = 0], F,up(((naAb.(1#(b =0, T, 1(a(b —

1)) :1F

(b=0,F,up(a(b—1)))) [0—1))):

(=0T)

(1)

([0 =0, T, Te(((waAb.(1¥(b =0, T, Ti(a(b —

1)) : 17

(b=0,Fup(a(b—1))) [0 - 1))

(=0-T)

(w)

=

(1r(T, F, HD((Aa

(
:1F(b =0,F, HD(a(b —
1F(a =0, F, HD((pna.Ab.(1
1IF(b=0,FHD(a(b—1))

1F(a =0, T, TL((na.Ab.(1F(b = 0, T, TL(a(b —

D)(a—=1))):
F(b=0,T,TL(a(b—1)))):
))(a—1))))(0—-1))))

D))

(if-T)

IF(T, T, TL((Aa

1F(b =0,FHD
1F(a = 0,F, HD
1IF(b =0,FHD

IF(a =0, T, TL((na.Ab.(1F(b = 0, T, TL(a(b —

D)) :

(
(a(b—=1))))(a—=1)))):
((paAb.(1F(b=0,T, TL(a(b —1)))) :
(a(b—=1))))(a—1))))(0—1)))
(i£T)
+

F:T

150 Operational Combinatory Reduction Models

Chapter 5

Syntax. PCF with pairs is a CRS simplifying ‘programs’ restricted to (closed)

expressions e inductively defined by

ex=0]e+1]e—1] (e:e') | up(e) | TL(e)

| T|F | e=0] 1r(ecee")
| x| Ax.e | ee’ | ux.e

a

| e
where a ranges over addresses.

Reduction.

(Ax.Z(x))X — Z((X)%)
(Z)VX = (Z] (2)V)X
wx.Z(x) — (Z((w)*))®
IF(FX,Y)—>Y
IF(T,X,Y) = X
r((Z2)V,X,Y)—=1r(Z] (2)V,X,Y)
0=0—-T
(X+1)=0—F
(2)V=0—(Z](2))=0
HD(X:Y)— X
p((2)¥) — #p(Z[(2))
(
(

s

TL(X:Y)—>Y
L((2)¥) — TL(Z [(2))
(X+1)—-1)—=X

(2)Y =1 —=(Z](2)¥) -1

H

Figure 5.3: PCF+pairs with cyclic sharing as CRSar.

(B)
(B-copy)
(1)

(if-F)
(if-T)
(if-copy)
(=0-T)
(=0-F)
(=0-copy)
(hd)
(hd-copy)
(t1)
(tl-copy)
(-1)
(-1-copy)

Section 5.3 CRS and Functional Programs 151

(Ax.Z(x))X — Z([x]Z(x), (X)¢) (B-x)

ux.Z(x) — (Z([xIZ(x), (w)*))® (n-x)

(2)* = (Z[(2)) (copy)

F(EX,Y)—=Y (if-F)

IF(T,X,Y) — X (if-T)

0=0—>T (=0-T)

X4+1)=0—TF (=0-F)
HD((X:Y))— X (hd)
TL((X:Y))—= Y (t1)
X+1)—1—X (-1)

Z([xI(Z1 (x))(Z2(x)), X) — Z([x]Z1 (x), X)Z([x]Z2(x), X) (x-@-1)
Z([xylZ(x,y),X) — WIZ(XKIZ(x,y),X) (xma-1)
L([XIMZ(x)), X) — A(Z([x]Z(x), X)) (x-A-1)
L(IxIn(Z(x)), X) — n(Z([xIZ(x), X)) (x-p-1)
L([xIF(Z1 (x), Z2(x), Z3(x)), X) — 1F(Z([x]Z1 (x), X), Z([x]Z2 (%), X), Z([x]Z3(x), X)) |
(x-17-1

Y([x]JF,X) — F (x-F-1)

(X, X)—T (x-T-1)

L([xI(Z1(x)) = (Z2(x)), X) — (Z([x]Z1(x), X)) = (£([x]Z2(x), X)) (x-=-1)
I ([x]0,X) — 0 (x-0-1)

Z([xI(Z1(x)) + (Z2(x)), X) — (Z([x]Z1(x), X)) + (E([x]Z2(x), X)) (x-+-1)
I([x]1,X) — 1 (x-1-1)
I([xJup((Z(x))), X) — HD((Z([x]Z(x), X))) (x-HD-1)
L([xI(Z1(x)) : Z2(x), X) — (E([x]Z1(x), X)) : Z([x]Z2(x), X) (x-:-1)
Z(Ix]TL((Z(x))), X) — TL((Z([x]Z(x), X)) (x-TL-1)
L([x1(Z1(x)) — (Z2(x)), X) — (Z([x]Z1(x), X)) — (E([x]Z2(x), X)) (x-—1)
I ([x]x,X) — X (xv-1-1)

I([x]Z,X) — Z (xge-1-1)

Figure 5.4: PCF+pairs as CRSar after explicification of substitutions.

152 Operational Combinatory Reduction Models Chapter 5

This is the desired result, of course, since 3 is odd, not even. The full sequence
of 16 steps is shown in Example A.3.1 on page 217; reducing only the leftmost
redex the same reduction takes 48 steps.

Finally we show the language as a CRSar before and after explicit substitution
in Figure 5.3 and Figure 5.4, respectively; executions using these systems are
shown in Example A.3.2 and (outlined) in Code A.3.3, respectively.

The first, the CRSa version, just does the same kind of updating as we did
for the A-calculus above, using the new syntactic trick to tie the cyclic loop. The
automatically explicified version essentially does ‘stepwise’ allocation of memory
similar to the sharing in the operational semantic description of Purushothaman
and Seaman (1992).

5.4 Summary

This section has contributed two developments for higher order rewriting: first
we have contributed to the operational understanding of CRS in general, com-
bining the CRS notion with explicit substitution. Second, we have shown how
combinatory reduction systems can be used in the description of functional pro-
gramming languages.

In summary we have argued for the following table of CRS restrictions and
extensions (left) in order to put a bound on the corresponding observational
operational property (right).

variant bounds section
explicit substitution rewrite time 5.1
saturation & free variables | matching time 5.1
sharing & recursion copying space 5.2

Recall that a ‘space cost’ always incurs at least an equal ‘time cost’ because
allocation takes time.

In conclusion we claim that CRS-based formalisms are suitable for reasoning
about functional program evaluation in general, <.e., including higher order func-
tions, with the full convenience and expressive power of reduction systems. This
is particularly useful for functional programming languages because these are
often implemented in a way that depends critically on the following technology:

A. Read the program and perform program analysis to obtain information
about it.

Section 5.4 Summary 153

B. Use this information to perform program transformations that are ‘safe’
in the sense that they are correct and guaranteed to terminate.

c. Discard the analysis information!
D. Perform ordinary evaluation of the transformed program.

The net effect of this is that we first perform some non-standard reductions,
the program transformations, followed by standard reductions, the evaluation.
Most of the literature on optimising functional programs uses ad hoc reasoning
when deciding whether a particular program transformation reduction should be
done by the compiler, and the time required for the compiler to do the reduction
is rarely included in the argument. With a confluent calculus the two aspects —
program transformation and reduction — can be investigated in detail in the same
framework! The only caveat is that the calculus must have useable operational
properties with respect to both aspects in the sense discussed above.

On the other hand, we might also wish to generalise the notion of reduction of
functional programming to add any advanced aspect that we can include without
extra cost! This opens up further work with this motto.

“ Obtain a notion of ‘functional rewriting’ that at the same time
captures as much of functional programming and CRS reduction as
possible, and where it is ensured that a computer can perform every
rewrite step in unitary time. ”

The bits and pieces of this chapter will hopefully contribute to this.
We are grateful to Roel Bloo for collaboration on ESCRS, including con-
tributing the recent Theorem 5.1.19.

154

Implementation of
Combinatory Reduction
Systems

In this chapter we present the complete Haskell (Hudak, Peyton Jones, Wadler
et al. 1992) implementation of a program that does CRS reduction as defined in
section 2.6 extended with some of the transformations described in chapter 5.

CRS reduction is a very powerful paradigm, and little emphasis has been
put on implementation of such systems — the only implementation we know
of is the compiler of Kahrs (1993) which only treats a subset of CRS reduc-
tion corresponding to what functional programs can do, and compiles it into an
abstract machine (!) with powerful instructions specifically designed for CRS
matching. Our implementation of matching is naive in comparison, however,
we include more ‘frills’ in the sense of allowing analysis of and experimenta-
tion with strategies etc, and the implementation of our extensions is new; in
particular transformations of rules require a ‘direct’ representation such as we
use.

We first present in section 6.1 the notation of literate programming and
some generic functions we will make frequent use of. We then proceed in sec-
tion 6.2 with the declaration of the CRS datatype and several associated meth-

155

156 Implementation of Combinatory Reduction Systems Chapter 6

ods, notably the output functions, in section 6.3 the input parser follows. Sec-
tion 6.4 is the central CRS section with the implementation of reduction; it is
followed by section 6.5 where we have specified some useful reduction strategies
and section 6.6 where we have coded the tests on CRSs that we use. Section 6.7
implements ezplicification as handled in section 5.1, and section 6.8 adds an
inference rule interpretation (not described elsewhere as it merely pushes tokens
around to emulate a stragegy). Finally, section 6.9 contains the code needed to
bind the rest together.

6.1 Idioms

In this section we present a few idiomatic definitions that make the remainder
of the system smoother.!

6.1.1 Notation (literate Haskell). Lines indented with a small number: - ... in this
dissertation are literate Haskell source lines (the traditional character used for
such indentation is the obtrusive >, and in fact this character s used in the
files but we typeset it with line numbers for reference). Furthermore we use
the special symbols =+, «, =, v, A, #, 2, <, and A, as readable alternatives to the
standard Haskell symbols ->, <-, ==, ||, &&, /=, >=, <=, and \, and we use , for
spaces inside Haskell strings.

6.1.2 Code (tracing). We only use the trace primitive in a non-obtrusive way,
printing ‘comment-marked’ things out that cannot show up in the result. Two
versions are included: one for a string message and one that invokes ‘show’ on
the argument (the check of the length is only there to make the definition strict
regardless of whether the primitve is loaded).

1 trc:String-*a-a

2 trc s x | length s 20 = trace s x

s tr::String+a-a

¢« tr s x | length s 20 = trace ("%k"+s+H"\n") x

5 tm::Text a=>String-+a-a
s tms x = tr (s + show x) x

1The section is the result of typesetting the literate Haskell script “idioms.lhs”.

Section 6.1 Idioms 157

6.1.3 Code (checking). Most predicates are implemented as what we will call a
“check” meaning that it returns a string with the failure message (so success
is indicated by "").

1+ type Check = String
Disjunction of checks is handled by the either (conjunction is just +).
2 either :: Check =+ Check -+ Check

s either cl c2 = case (cl,c2) of ("","")

4 (_,ll") _’ll"
5 (llll’_) _'llll
6 +cl+Hc2

The check function turns a check into a boolean predicate (the opposite is easiest
accomplished with an if statement since an explanation for the failure is needed).

7 check :: Check -+ Bool

¢ check ""
9 check _

True
False

The assert function aborts with an error if a check failed.
10 assert ::Check+a—*a

11 assert """ v=v
12 assert es _ = error es

6.1.4 Code (sets). We will implement ‘sets’ as lists, in fact set generating predi-
cates over terms will produce lists with elements ordered as the occurrences from
left to right (by using plain list concatenation + to implement U) — essentially
these are ‘occurrence-ordered multisets’. The only operation that is not obvious
is set difference.

+ but ::Eq a=>[a] = [a] = [a]

2 but xs [] = xs
s but xs (y:ys) = but (filter (#y) xs) ys

This implementation has the advantage that one can check for ‘duplicates’.

« duplicates [] =[]
5 duplicates (x:xs) | x ‘elem‘ xs = x : rest
6 | otherwise = rest

7 where rest = duplicates (xs ‘but‘ [x])

158 Implementation of Combinatory Reduction Systems Chapter 6

6.1.5 Code (translation maps). These are (usually small) ‘finite maps’ encoded
using lookup such that there is quick access to the range and domain.

1 data Trans a = Trans [a] [al]
2 trans::Eq a=>Trans a—“*a-a

We allow the ‘range list’ to be longer such that it can be generated lazily.

s trans (Trans] _) x = x

s« trans (Trans(x1l:x1s)(x2:x2s)) x | x1=x = x2

5 | otherwise = trans (Trans xl1s x2s) x
¢ transl (Trans xl1s _) = xls

7 trans?2 (Trans _ x2s) = x2s

The domain and range can be queried with these predicates.

s hastrans tr x x ‘elem‘ (transl tr)
9 istrans tr x = x ‘elem‘ (trans2 tr)

And the inverse can be constructed.

10 inversetrans (Trans x1s x2s) = Trans x2s xl1s
Finally some constructor functions.?

11 notrans = Trans [] []

12 mktrans xl1s x2s = Trans x1s x2s

13 xtrans x1 x2 (Trans x1s x2s) = (Trans (x1l:x1s) (x2:x2s))

And we permit printing of translations.

12 instance (Text a) => Text (Trans a) where
15 showsPrec d (Trams [] _) rest = "\\{\\}"

16 showsPrec d (Trans x1s x2s) rest = "\\{"

17 +foldrl (Asl s2-4si+"; "+s2)

18 (zipWith (Ax1l x2 -+ uq(show x1) +"\"->\""+uq(show x2)) xls x2s)
19 +"\\}" +Hrest

20 where { ug (’"’:s) = init s ; uqg s =s }

6.1.6 Code (sorting). We include a generic quicksort function (that also removes
duplicates).

1 sort ::0rd a=>[a] = [a]

» sort [] =[]
3 sort (x:xs) sort [u | u+=xs, u<x]

2Trans should probably be a class.

Section 6.2 Datatypes 159

4 'H'[X]
5 Hsgort [u | u+xs, uwx]

6.1.7 Code (i/o errors). Are handled too silent by the standard exit command
... this is more noisy.

1+ complain::FailCont

error ("ReadError on, ‘"+Hs+"’")
error ("WriteError_on, ‘"+s+"’")
error ("SearchError on, ‘"+Hs+"’")
error ("FormatError_on ‘"+Hs+"’")
error ("OtherError on,‘"+s+"’")

complain (ReadError s)
complain (WriteError s)
complain (SearchError s)
complain (FormatError s)
complain (OtherError s)

o o B oW N

6.2 Datatypes

In this section we present the CRS datatype,® i.e., the syntactic issues of sec-
tion 2.6: we follow closely the conventions from Definition 2.6.1 through Notation
2.6.5) as as possible, followed by the printing functions (the input functions are
presented separately in section 6.3).

6.2.1 Code (function symbols). Name and arity of Definition 2.6.1.A plus a flag
used for the following purposes:

e For function symbols it means that the symbol should be printed using
infiz notation.

e For zero-ary metavariables it means that the metavariable is subject to the
free variable matching constraint.

e For other metavariables it means it is used to indicate that the variable is
saturated (this makes matching faster).

+ type Sym = (String,Int,Bool)

6.2.2 Code (variables). Variables are merely strings.

1 type Var = String

3The section is the result of typesetting the literate Haskell script “crstype.lhs”.

160 Implementation of Combinatory Reduction Systems Chapter 6

We often need ‘fresh’ variables which are realised by an inifinite list of variables
that are ‘fresh’ in some context. Only single letters are used and we prefer
them without a suffix (and written in TEX notation, all as accepted by the CRS
parser).
2 fresh:: [Var] = [Var]
fresh vs = filter (‘notElem‘ vs)

([vl | veDa?..22°] 1]

+H+[[vl+#"_"+shownumb n | v+« [’a’..’z’], n+« [1..9]]

3
6 +[[vl+#"_"+shownumb n | n+ [10..], v« [?a’..’z’] 1)
The following is extracted because it will be used later.

7 shownumb n = if n<10 then show n else "{"+show n+"}"

6.2.3 Code (preterms). The Mterm datatype is used to represent metaterms; it has
a constructor for each form of preterm from Definition 2.6.1.B; metavariables are
treated as function symbols because they have an arity.

1 type Mv = Sym

data Mterm = Mvar Var

| Mabs Var Mterm

| Mcon Sym [Mterm]
|

Mapp Mv [Mterm]

o ®ow N

6.2.4 Code (metavariables). The set of metavariables mv(t) of Definition 2.6.1.C.

+ mv ::Mterm -+ [Sym]

1

mv t

concat [mv t | t«ts]

m: concat [mv t | t+ts]

mv (Mvar v)

mv (Mabs v t)
mv (Mcon f ts)
mv (Mapp m ts)

o s W N
nn

6.2.5 Code (free variables). The set of free variables fv(t) of Definition 2.6.1.D.

1 fv::Mterm= [Var]

2 fv (Mvar v) = [v]

s fv (Mabs v t) = filter (#v) (fv t)

« fv (Mcon f ts) = concat [fv t | t+ts]
s fv (Mapp m ts) = concat [fv t | t+ts]

The checkMterm predicate verifies that a meta(pre)term is closed.

Section 6.2 Datatypes 161

s checkMterm ::Mterm -+ Check

7 checkMterm t = case fv t of

8 [] 5 nn
9 vs + " Metaterm Error: unbound, vars"
10 +Hconcat[")"+HvVv | vevs]H""

6.2.6 Code (metaterm equality). Equality of metaterms in Definition 2.6.1.E is
modulo renaming — t[x := y] is realised by rename (mktrans[x][y]) (t) but in
general several renamings can happen simultaneously (renaming uses translation
maps).

1 rename :: Trans Var @+ Mterm -+ Mterm

Mvar (trans tr v)

Mabs v (rename (xtrans v v tr) t)
Mcon f (map (rename tr) ts)

Mapp m (map (rename tr) ts)

2 rename tr (Mvar v)

3 rename tr (Mabs v t)
« rename tr (Mcon f ts)
5 rename tr (Mapp m ts)

The actual equality is defined as follows using translation maps directly (for
efficiency) and such that = on (meta)terms means =, ¢.e., x-equivalence;

s instance Eq Mterm where (=) = teq notrans where

7 teq vts (Mvar v) (Mvar v’) = trans vts v=v’

s teq vts (Mabs v t) (Mabs v’ t’) teq (xtrans v v’ vts) t t’
s teq vts (Mcon f ts) (Mcon f’ ts’) = £f=£f’ Atseq vts ts ts’

10 teq vts (Mapp m ts) (Mapp m’ ts’) = m=m’ Atseq vts ts ts’

u teq _ _ _ = False

12 tseq vts [] 1 = True

13 tseq vts (t:ts) (t’:ts’) = tseq vts ts ts’ A teq vts t t’
14 tseq _ - _ = False

6.2.7 Code (rewrite rules). Rules are the LHS and RHS metaterms as defined in
Definition 2.6.1.G and a name for printing.

1 type Rule = (Mterm,Mterm,String)

We check the LHS and RHS separately.
2 checkRule :: Rule = Check

s checkRule r@(_,_,nm) =
a either ("\n_Rule " +nm+" _LHS errors:. ") (checkLHS r)
5 + either ("\n Rule " +nm+" RHS errors:") (checkRHS r)

The LHS checks are as follows.

162 Implementation of Combinatory Reduction Systems Chapter 6

¢ checkLHS ::Rule - Check

7 checkLHS (1hs@(Mcon _ _),_,_) =
8 checkMterm lhs+ checkpattern lhs where

9 checkpattern :: Mterm = Check
10 checkpattern (Mvar v) =
11 checkpattern (Mabs v t) = checkpattern t

12 checkpattern (Mcon f ts) = concat [checkpattern t | t+ts]
13 checkpattern (Mapp m ts) = checkdistinctvars [] ts

14 checkdistinctvars :: [Var] <+ [Mterm] -+ Check

15 checkdistinctvars _ [] = "o

16 checkdistinctvars vs (Mvar v:ts) =

17 (if v ‘elem‘ vs then "\n_ Repeated var: "+Hv+H"." else "")
18 +checkdistinctvars vs ts

19 checkdistinctvars vs (t :ts) =

20 "\n_Non-var argument," +showMterm t+" in pattern."

21 +checkdistinctvars vs ts

22 checkLHS (lhs,_,_) =
23 "\n_ Pattern " +showMterm lhs+" is not_a_construction."

The RHS checks are easier.
2a checkRHS :: Rule -+ Check

2s checkRHS (lhs,rhs,_) =
2 checkMterm rhs

27 +

28 (case (mv rhs) ‘but‘(mv 1lhs) of

29 [] 5

30 ms + "\n,, Metavar(s) "+ concat [showSym’ m+" " m+ ms]
31 +" only_in RHS.")

6.2.8 Code (CRS). Finally, entire CRS systems are encoded directly as lists of
rules as prescribed by Definition 2.6.1.

+ type CRS = [Rulel

This means that checking a CRS is merely checking that the (obligatory) rules
are correct.

2 checkCRS :: CRS - Check

s checkCRS crs = either "Errors in CRS:_" messages where

« messages = concat [checkRule r | r+crs]

Section 6.2 Datatypes 163

5 +concat (nub ["\n_Duplicated rule name ,''+nm+"."
6 | nm¢ rulenames, nm ‘elem‘ (rulenames\\ [nm])])
7 rulenames = [(A(_,_,nm) #nm) r | r+ crs]

The remainder of this section is concerned with printing CRS symbols, metaterms
and rules. These are generally quite complicated since an effort has been put
into producing output that looks pleasing when processed by the TEX typeset-
ter (Knuth 1984) using the BTEX format (Lamport 1994) and the special math
abbreviation package qsymbols (Rose 1994).

6.2.9 Code (printing function symbols). Printable representation of symbols (in two
versions: short and verbose; in both cases in TEX form).

1+ showSym, showSym’ ::Sym -+ String

2 showSym = showSymP True
s showSym’ = showSymP False

+ showSymP p (s,a,_) =

5 (if s=""" then """ else s8)

6 +Hif pVa<0

7 then if head s=’\\’ Aall isletter(tail s) then "_" else ""
8 else """+if a<10 then show a

° else "{"+show a+"}"

10 isletter ¢ = ¢ ‘elem‘ ([’a’..’z’]+[’A’..°Z°])

6.2.10 Code (printing metaterms). This rather long-winded definition prints a meta-
term, using all sorts of shorthands understood by the parser as introduced in
Notation 2.6.5.

1 showMterm::Mterm - String
2 showMterm = showMtermP True
3 showMtermP p t = showMterm’ t where

4 showMterm’ (Mvar v) =v

5 showMterm’ (Mabs v t) showMabs v t

6 showMterm’ (Mcon fs ts) = showMcon fs ts p

7 showMterm’ (Mapp mv ts) = showSymP p mv+showMtermlist ts

8 showMabs vs (Mabs v t) = showMabs (vs+v) t
9 showMabs vs t = "["+Hys+H"]"+showMterm’ t

10 showMcon fs@(s,1,False) [Mabs v t] True = showMcon’ fs v t
11 showMcon fs@(s@(’‘’:_),2,True) [t1,t2] True =

164 Implementation of Combinatory Reduction Systems Chapter 6

o " {{ " +showSimple’ ti1+" " +s+" "+showSimple’ t2+" }} "
13 showMcon fs@(":",2,True) [t1,t2] True = showSimple t1+":"+showMterm’ t2

1« showMcon fs@("@",2,_) [s,t] True = showApp s t

15 showMcon fs@("~",2,True) [s,t] _ = "("+showMterm’ s+")""+gshowSimple t

16 showMcon fs@(s,2,True) [t1,t2] True = showSimple t1-+s+showSimple t2
17 showMcon fs@(s@(’\\’:’X’:_),_,False)ts True = s+"_ {{_"+showMtermlist’ ts+"_}}."

18 showMcon fs@("{,}",0,False)] True = "(O"
1» showMcon fs@("{,}",n+2,False) ts True = showMtermlist ts

20 showMcon fs@("‘<>",0,False) (] True = "‘<>"

21 showMcon fs@("‘<>",n+1,False) ts True = "<"+showMtermlist’ ts+">"

22 showMcon fs ts = showSymP p fs+showMtermlist ts
23 showMcon’ fs@(s,1,False) vs t’@(Mcon (s’,1,False) [Mabs v t])

2 | s = s’ = showMcon’ fs (vs+v) t

25 | otherwise = showSymP p fs+vs+"."+showMterm’ t’

26 showlMcon’ fs vs t’ = showSymP p fs+Hvs+"."+HshowMterm’ t’

27 showMcon’’ fs@("@",2,_) ts
22 showMcon’’ fs@(s,1,False) [Mabs v t]

"("+showMcon fs ts p+")"
"("+showMcon’ fs v t+")"

20 showMcon’’ fs@(_,a,False) ts | a=0 = "("+showMcon fs ts p+")"
30 | otherwise = showlMcon fs ts p

s showMcon’’ fs ts = "("+showMcon fs ts p+")"

2 showSimple’ (Mcon (s@(’¢’:_),2,True) [t1,t2]) =

33 " {{,"++showSimple t1+s+showSimple t2+" }} "

s« showSimple’ t = showSimple t

s showSimple (Mvar v) =v

"("+showMabs v t+")"
showSymP p fs

s showSimple (Mabs v t)
7 showSimple (Mcon fs [])

33 showSimple (Mcon ("@",2,_) [s,t]) = showApp s t
s showSimple (Mcon (""",2,True) [s,t]) =
40 "("+showMterm’ s+")""+showSimple t

s+ showSimple (Mcon ("{,}",0,False) 1) ="O"
2 showSimple (Mcon ("{,}",n+2,False) ts) = showMtermlist ts

.3 showSimple (Mcon ("‘<>",0,False) []) = "

« showSimple (Mcon ("‘<>",n,False) ts) = "<"+HshowMtermlist’ ts+'">"
s showSimple (Mcon fs ts) = "("+showMcon fs ts p+")"
s showSimple (Mapp mv []) = showSymP p mv

«v showSimple (Mapp mv ts) "("+showSymP p mv+showMtermlist ts+")"

showB4var s+v
showSimple s+ showSymP p fs

s showApp s (Mvar v)

9 showApp s (Mcon fs [1)
s0o showApp s t@(Mcon fs ts) showB4par s+ showMcon’’ fs ts

st showApp s (Mapp mv []) = showSimple s+ showSymP p mv

52 showApp s t = showB4par s+"("+showMterm’ t+")"

53 showB4par (Mvar v) =v

Section 6.3 Input 165

s« showB4par (Mcon ("@",2,_) [s,Mvar v])
55 showB4par t@(Mcon fs@(_,a,False) ts)

showB4var s+v
showMcon’’ fs ts

ss showB4par t = "("+showMterm’ t+")"
57 showB4var (Mvar v) =v

ss showB4var (Mapp mv []) = showSymP p mv

s showB4var (Mcon fs []) = showSymP p fs

0o showBd4var (Mcon ("@",2,_) [s,Mvar v]) = showB4var s+v

ss showB4var t = "("+showMterm’ t+")"

62 showMtermlist [] = ""
ss showMtermlist ts = "("+showMtermlist’ ts-+")"

showMterm’ t
showMterm’ t+","+showMtermlist’ ts

e« showMtermlist’® [t]
s showMtermlist’ (t:ts)

6.2.11 Code (printing CRS rule). We exploit the metaterm printing functions to
print a rule in a form readable by humans as well as processable by I¥TgX and
rereadable by the parser.

1+ showRule :: Rule # String
2 showRule = showRuleP True

s showRuleP p (1,r,i) =
a ","+showMtermP p 1
s H",&\"->\" " +showMtermP p r
s +H"U\\tag{"+Hi+"3}"

6.2.12 Code (printing CRS). Printing a CRS is merely printing the rules.
1+ showCRS :: CRS # String
> showCRS = showCRSP True

"%CRS: ; LEND\n"
"%CRS:\n" +showRules rs+"%END\n" where

s showCRSP p []
2« showCRSP p rs

5 showRules [r] = showRuleP p r+"\n"
6 showRules (r:rs) = showRuleP p r+"\\\\\n"+showRules rs

0.3 Input

In this section we present the program module* that handles input of CRS rules
and metaterms according to the notational conventions of section 2.6 as adapted

4The section is the result of typesetting the literate Haskell script “crsinput.lhs”.

166 Implementation of Combinatory Reduction Systems Chapter 6

for the system in the previous section. The module is constructed using the
RATATOSK system of Mogensen (1993).° The reader will benefit from knowledge
of parser generation technology (Aho, Sethi and Ullman 1986) to appreciate this
section. We first present the parser specification which is the essential piece of
code, including some bureacratic auxiliaries that serve to parse the somewhat
esoteric TEX-notation used; most of this is, however, handled by the following
scanner specification.

6.3.1 Code (CRS parser). The CRS parser converts a list of tokens into the cor-
responding CRS data object. The actual parser is in the file crs_parse.hs (not
reproduced here) is generated from the RATATOSK parser specification in the file
crs.gram, included here:

--$Id: crs.gram,v 2.8 1996/02/07 19:48:49 kris Exp kris $-*-hugs—*-

-- CRS interpreter: Ratatosk parser specification.
-- Copyright (© 1995-1996 Kristoffer Hggsbro Rose, all rights reserved.

—— LITTERATE PROGRAMMING WRAPPER.
Goal -+ Junk Precious endmarker Goal $ case (x2,x4) of {

(Crs a,Crs b) #Crs(a+b);
(Crs _,Junk) -=x2;

_ +Junk } $
| Junk Precious $ x2 ¢
| Junk $ Junk $
Junk =+ $$ | Junk Anything $$

Anything -+ endmarker $$ | ident $$ | arrow $$
| 1lpar $$ | rpar $$ | 1lbra $$ | rbra $$ | lang $$ | rang $$
| comma $$ | semi $$ | hat $$ | dot $$
| numb $$ | sym $$ | binop $$ | var $$ | vect $$ | metavar $$
| anythingelse $$

Precious -+ startcrs CRS $ Crs x2 $
| startmetaterm MetaTerm $ MetaTerm (satmv x2) $

-- CRS REWRITE SYSTEMS.

CRS <+ Rules $x1$

SWith a few trivial modifications to make the system adhere to Haskell syntax.

Section 6.3

Rules

Rule

-

Input

startcrs Rules
Rule

semi
semi
semi
semi

Rule
Rule Rules

Rules

MetaTerm arrow MetaTerm ident
MetaTerm arrow ident MetaTerm
MetaTerm arrow MetaTerm

-- CRS METATERMS.

MetaTerm -+ 1lbra Vars rbra MetaTerm

Seq

App

App’

APP))

Simple

Seq

App binop Seq
App dot MetaTerm
App

Simple App’
var App’

M App’’

S App’’

Simple App’
App) 2

var App’
M App’’
S App’’

Symbol MetaTermList
MetaVar MetaTermList
MetaTermList

lang rang

lang MetaTermList’ rang

MetaVar
Symbol

MetaTermList - Ilpar rpar

| 1lpar MetaTermList’ rpar
| 1lpar MetaTermList’ rpar hat

P S P P P P

h &PH

&L &P

=3 P A H P

~

P S P PH P P P S P

¥ P

167

x2 $

[x1] $
0s

[x1] $

x1 : x3 $
x2 $

satmv3(satmv x1,satmv x3,unbrace x4) $
satmv3(satmv x1,satmv x4,unbrace x3) $
satmv3(satmv x1,satmv x3,rootname x1) $

foldr Mabs x4 x2 $
x1 $

Mcon(preop(x2,2,True)) [mkApp x1,x3] $
mkAbs x1 x3 $
mkApp x1 $

x1 : x2 $
Mvar x1 :
x1 : x2 §$
x1 : x2 §$

x2 $

x1 : x2 $

x1 $
Mvar x1 : x2 $
x1 : x2 $

x1 : x2 §

1s

Mcon (presym x1 x2) x2 $

Mapp x1 x2 §

mkTuple x1 $

Mcon ("‘<>",0,False) []1 $

Mcon ("‘<>",length x2,False) x2 $

Mapp x1 [1 $
Mcon (presym x1 [1) [1 $

168 Implementation of Combinatory Reduction Systems Chapter 6

$ [Mcon (""",2,True) [mkTuple x2,Mcon(x5,0,False) [1]1] $
| 1lpar MetaTermList’ rpar hat metavar

$ [Mcon (""",2,True) [mkTuple x2,Mapp(premv(x5,0,False)) [11] $
| 1lpar MetaTermList’ rpar hat MetaTermList

$ [Mcon (""",2,True) [mkTuple x2,mkTuple x5]] $

MetaTermList’ -+ MetaTerm $ [x1]1 $
| MetaTerm comma MetaTermList’ $ x1 : x3 $

Vars + var $ [x1] $
| var Vars $x1:x28%
| var comma Vars $x1:x38%
| vect var numb $ mkVect x2 x3 $

MetaVar - metavar hat numb $ premv(xl,atoi(unbrace x3),False) $
| metavar $ premv(xl,-1,False) $

Symbol -+ Sym hat numb $ (x1,atoi(unbrace x3),False) $
| Sym $ (x1,-1,False) $

Sym -+ sym $ x1 8
| numb $ x1$

$-- End of Ratatosk grammar.
-- Parse error function (generic one from Ratatosk package):

parse_error state input
= error ("Parse_error, (state " +show state+")_ in\n"
+case input of {[] = "END"; _ -+ echo_input input})

echo_input ((_,_,(line,s)):input)
= "line " +show line+" _at\n"
+#s+case (lines (concat (map getstring input))) of
{0O=""; (h:t)-+h}

where getstring (_,_,(_,s)) = s
-—- I/0 declarations
data ParseTree = Crs CRS | MetaTerm Mterm | Junk

instance Text ParseTree where
readsPrec d s =[(readParseTree s, "")]
showsPrec d pt s = r+s
where r = case pt of
Crs ¢ -+ "CRS:\n"+showCRS ¢

Section 6.3 Input 169

MetaTerm t -+ "METATERM: " +showMterm t
Junk =+ " Junk"

readParseTree :: String -+ ParseTree
readParseTree s = case crs_parse s of

Crs ¢ -+ assert (checkCRS c) (Crs c)
MetaTerm t -+ assert (checkMterm t) (MetaTerm t)
Junk -+ Junk

instance Text Mterm where
readsPrec d s = [(readMterm s, "")]
showsPrec d t s = showMterm t + s

readMterm :: String -+ Mterm

readMterm s = case crs_parse("METATERM: "+s) of
MetaTerm t + assert (checkMterm t) t

<+ error "Not_a MetaTerm?"

$-- End of included Haskell.

As can be seen, the syntax is almost written as inductive definitions; the tokens
(in lower case) are inherited from the scanner presented below. Quite a few forms
of ‘syntactic sugar’ are allowed, notably all the abbreviations of Notation 2.6.5.
For each production the ‘semantic action’ is given in $... $; they make use
of several auxiliary functions presented below. The last declarations configure
the parser’s error handling and declare standard Haskell input/output functions
using the parser in combination with the printing routines of the previous section.

6.3.2 Code (CRS parser auxiliaries). The following functions are used as auxiliaries
by the parser above.

Converting a string to an integer as usual.
1 atoi = foldl (Ax y—+10*x + ord y - ord ’0’) O

Building a tuple.

> mkTuple []
s mkTuple [t]
a« mkTuple ts

Mcon ("{,}",0,False) []
t
Mcon ("{,}",length ts,False) ts

Building a curried application.

5 mkApp []
¢ mkApp ts

error "PANIC---empty Application"
foldll (At1 t2 -+ Mcon ("@",2,False) [t1,t2]) ts

170 Implementation of Combinatory Reduction Systems Chapter 6

Building an ‘F-abstraction’.
7 mkAbs [] _ = error "PANIC---empty_Abstraction"

s mkAbs (Mcon (s,0,False) [] : [1) _ =
9 error "PANIC---no variables in Abstraction"

10 mkAbs (Mcon (s,0,False) [] : ts) t0 = mkAbs’ (s,1,False) ts where
11 mkAbs’ sym [t0

12 mkAbs’ sym (Mvar v : ts) = Mcon sym [Mabs v (mkAbs’ sym ts)]

13 mkAbs’ sym _ =

12 error "PANIC---nonvariable Abstraction, variable"

15 MKAbs _ = error "PANIC---bad_Abstraction"

Building a vector of similar symbols.

16 mkVect s n
7w = [s#"_"+(if i<10 then show i else "{"+show i+"}")
18 | 1+ [1..atoi(unbrace n)] 1]

Extracting a name useable as tag from a symbol.

19 rootname (Mcon sym _) = [chr 36]+showSym sym+ [chr 36]
20 rootname _ "anonymous"

Checking that the explicit arity of a function symbol fits the actual arity.

21 presym (s,a,i) ts
22 | a=(-1) = (s,length ts,i)
23 | a20 = (s,a,i) -- consistency-checked later.

Special syntax for recognising saturated metavariables and invisible infix application.

2 preop ("{}",_,.) ("@",2,False)
25 preop f =f

%6 premv (s@(°\’:’m’:’S’:_),a,_) = (s,-1,True)
o7 premv (s@(’\’:’m’:°V’:_),a,_) = (s,0,True)
28 premv m =m

Saturation is really an optimisation but it is needed for correct operation so we include
it here.

20 satmv t = sm [] t where

t

Mabs v (sm (v:vs) t)

Mcon f [smvs t | t+ts]

Mapp (s,0,True) []

Mapp (s,length vs,True)(map Mvar(sort vs))

30 sm vs t@(Mvar _)

s smvs (Mabs v t)

22 smvs (Mcon f ts)

3 smvs (Mapp (s,0,True) [1)
2 smvs (Mapp (s,_,True) [])

s smvs (Mapp m@(s,a,_) ts)

Section 6.3 Input 171

36 | a>0 A length vs =aAall isvar ts = Mapp (s,a,True) ts

37 | otherwise = Mapp (s,length ts,False) [smvs t | t+ts]
38 where isvar (Mvar _) = True

39 isvar _ = False

When we are handlign the saturated metavariables in the RHS, however, we should reuse
those pf the LHS or fail!

20 satmv3(lhs,rhs,nm) = (lhs,sm’ rhs,nm) where

4 sm’ t@(Mvar _) =t

2 sm’ (Mabs v t) Mabs v (sm’ t)

3 sm’ (Mcon f ts) Mcon f [sm’> t | t+ts]
s sm’ t@(Mapp m@(_,0,True) []) =t

s sm’ t@(Mapp m@(s,_,True) ts) = findit ms where

46 findit [1 =t
a7 findit (¢t’@(Mapp (s’,_,_) _) :ms’) | s=g’ = t’
a8 | otherwise = findit ms’

® sm’ (Mapp m ts) Mapp m [sm’ t | t+ts]
The list of metavariables in the lhs is extracted like this.

50 ms = ms’ lhs where

51 ms’ (Mvar _) =[]

52 ms’ (Mabs v t) =ms’ t

53 ms’ (Mcon f ts) = concat [ms’ t | t+ts]
54 ms’ t@(Mapp (s,_,True) ts) = [t]

55 ms’ (Mapp _ ts) = concat [ms’ t | t+ts]

Finally, discard the TEX/KTEX markup used for tags.

ss unbrace (?\\’:’t’:’h’:’e’:’t’:’a’:’g’:’{’:rest) = init rest
s7 unbrace (?\\’:’t’:’a’:’g’:’{’:rest) = init rest

ss unbrace (’T’:’A’:°G’:’{’:rest) = init rest

so unbrace (’{’:’_?:’{’:rest) = init (init rest)

6o unbrace (’{’:’_’:rest) = init rest

es unbrace (’{’:rest) = init rest

62 unbrace simple = simple

6.3.3 Code (CRS tokens). The CRS ‘scanner’ (that converts a string into a list of
tokens to be parsed below) in the file crs_scan.hs (not reproduced here) is gen-
erated from the following RATATOSK scanner specification in the file crs . tokens.

--$Id: crs.tokens,v 2.7 1996/01/31 07:24:00 kris Exp kris $-*-hugs—*-

-- CRS interpreter: Ratatosk scanner specification.
-- Copyright (©) 1995-1996 Kristoffer Hggsbro Rose, all rights reserved.

172 Implementation of Combinatory Reduction Systems Chapter 6

—-— TERMINALS. Note: update ‘Anything’ in crs.gram when the set changes.

startcrs = "CRS:" ;
startmetaterm = '"METATERM:" ;
endmarker = "END" ;

ident = tag braced | "{_" braced ’}’

arrow = "->" | "\\to" | "‘=" ;

Ipar = 2 | "\\(" | "\\<" | "\\[" | "{{" ;

rpar = C)7 | "\\)" | "\\>" | "\\1" | "}}") (@| ’_’ index);
lbra = [’ ;

rbra =]’ ;
lang = ’<’ ;
rang = >

comma = ’,’ ;
semi = ?;” | "\\\\" (@] ’[’ nobrack* ’]’) ;

hat = ’°7

dot =27

numb = digit | bracednumber ;

var = lowerletter (@| ’_’ index) ’\’7* ;
vect = "\\$" ;

metavar = upperxyz (@| ’_’ index) ’\’’* ;

binop = op (@] ’_’ index) ’\7’% ;

sym = other (@] ’_’ index) ’\’7x* ;

anythingelse = [’\1°-°\8°] | ’\11’ | [’\14°-°\31°] | >!? | *#> | °§’
| [°\?7-2}21 | [’\128’-’\255°] ;

-- COMMENTS.

Comment "%%" ([’\1°-°\9°1 | [’\14°-°\255"])* ’\n’

Comment "--" ([’\1°-°\9’] | [’\14°-°\255’])* ’\n’

Comment "\\noindent " ([’\1°-°\9°] | [’\14’-°\255’])* ’\n’
Comment "\\item" ([’\1°-°\9°] | [>\14°-°\255’])* ’\n’
Comment "\\relax" ([’\1°-°\9°] | [’\14’-°\255°])* ’\n’
Comment "\\text{" nobracex "}"

Comment "\\quad"

Comment "\\gquad"

Comment "\\intertext{" (braced | nobrace | ’\n’)* "}"

Section 6.3 Input 173

Comment "\\paragraph*{" (braced | nobrace | ’\n’)* "}"
Comment ’&’

Comment "\\,"

Comment "\\begin{" nobracex "}"

Comment "\\end{" nobracex "}"

Comment ’%’

Comment ’7’

Comment ’\"’

where

lower = [’a’-’z’]

upper = [’A’-°Z’]
letter = lower | upper ;
digit = [’0’-’9°] ;

—— INTERNALS.

upperxyz = [’U’-’Z’] | "\\m{" nobrace* ’}’ | "\\m" upper ’{’ nobracex ’}’ ;

lowerletter = lower | "\\v{" nobracex ’}’
Op = I x? | r42 |) |)l; | LR |)= |)/1 | qop | n{}n ;
gop =) (7U)|7V)|;oal)*;l7+)|).7|)~7|)|;|::)|;=;|)/1|7;)|7~))
| ncen qord qord*
| 2 ¢ braced | nt[n nobrack* 7]7 | n((n nopar*)))
qord = g2 | I | 7(7 | 7)) | :[; |)]) |)/) |)=> ;

other = gsym | boldgsym | braced | escaped | word
| [)AJ_)T)] | 110 | 17?0 | @’ | "\\C{" nobracex ;}; ;

gsym = ’‘? (letter | digit | >_> | *!’> | ’?> | ’<’ noangle* ’>’) ;
boldgsym = "‘@" (letter | digit | gsym) ;

tag = "\\tag" | "\\thetag" | "TAG" ;
braced = ’{’ nobrace nobracex ’}’
bracednumber = ’{’ digit digit* ’}’
escaped = ’\\’ letter letter* ;

word = ’\\’ (°\’’ | ¢’) braced ;

index = letter | digit | braced | escaped ;

174 Implementation of Combinatory Reduction Systems Chapter 6

nobrace = [-#°] | [’&’-’z’] | ’|?> | [>~?-°\255"] | ’$’ nodollarx* °’$’ ;

nodollar = [’ ’-’#’] | [’&’-°\255’] ;

nobrack = [’1’-’2°] | "\\’ | [’_’-’\255°] ;
noangle = [’!’-7;7] | »=> | [?77-’\2657] ;
nopar = [J!J_}\))] | [)*J_)\255)] ;

-- END of Ratatosk scanner.

Notice how the tokens are expected to be written using TEX mathematics con-
ventions (Knuth 1984): this is such that the examples of this dissertation can
be run through the system literally.

0.4 Reduction

In this section we present the program module® with the functions for performing
reduction in CRSs, following section 2.6’s Definition 2.6.8 through Definition
2.6.12 (and hence Klop, van Oostrom and van Raamsdonk 1993) as rigourously
as possible, however, we have included some of the extensions described in this
dissertation, notably

e the special free variable matching constraint on zero-ary metavariables
of Remark 5.1.7,

e addressing written as (t)® with natural numbers as addresses,

e an address oracle which means that the special construction t#*® in RHSs
is given a fresh address unique for the reduction step in question during
substitution, and

e sharing which means that if addressed subterms are changed by a rewrite
then all other subterms with the same address are also changed. This does
not ensure the wfa property, of course: for that to hold a strategy that is
‘sharing safe’ for the rewrite system must be employed.

e updating through the special construction s[|t® which is replaced with s[t®]
by the substitution operation, thus it has effect when it occurs in RHSs of
rules.

(insofar as these things have affected the input and output form they are of
course already present in earlier sections).

6The section is the result of typesetting the literate Haskell script “crsred.lhs”.

Section 6.4 Reduction 175

6.4.1 Code (matching). Determining whether the LHS (‘pattern’) of a particular
rule matches a particular subterm (‘occurrence’) amounts to building a valuation
as in Definition 2.6.8 but allowing for failure.

1 data Valuation = Valuation [(Sym,[Var],Mterm)]
| MatchFail

2

Printing a valuation merely prints the components in an orderly way.

3 instance Text Valuation where

a showsPrec d MatchFail rest "{Failurel}" +rest
5 showsPrec d (Valuation []) rest "\\{\\}"+rest

6 showsPrec d (Valuation vl1) rest = "\\{"

7 +foldrl (Asl s2-+sil+"; " +s2)

8 (map (A (s,vs,t) -+ showSym s+"\"->\""+show (foldr Mabs t vs))
9 vl)

10 +"\\}" +rest

Constructing the valuation (or discovering that the match isn’t possible) for
a particular rule is defined using a match utility function (which we will have
other uses for later). Since the valuation is to be used for rewriting, we insist on
safeness (cf. Definition 2.6.9) of it. Matching is a generic inductive definition
with an ‘accumulator’ for the component substitutes.

11 match :: Mterm + Mterm + Valuation

12 match lhs t = match’ (fresh []) lhs (Valuation []) t

In order to facilitate unification (to be defined later) we allow an initial valuation
to be passed into the match primitive valuation construction.

13 match’ :: [Var] @ Mterm = Valuation =+ Mterm =+ Valuation

12 match’ contextvs lhs vl t =
15 mat lhs t notrans (Avl vs #vl) vl safevs where

First we establish the safevs which are just those variables that are neither
bound in the context (cf. Code 6.4.2 below) nor in the pattern.

16 safevs = filter (‘notElem‘ (bv lhs)) contextvs

We ‘accumulate’ using the following (locally defined) mat which is in continuation-
passing style to allow quick exit on failure.

17 mat ::Mterm - Mterm = Trans Var = (Valuation = [Var] = Valuation)
18 <+ Valuation = [Var] -+ Valuation

A variable in the pattern should correspond to the right variable in the occur-
rence.

176 Implementation of Combinatory Reduction Systems Chapter 6

19 mat (Mvar v) (Mvar v’) vts c vl safevs
20 | trans vts v=v’ = ¢ vl safevs
21 | otherwise = MatchFail

Conversely, an abstraction matches if the body matches modulo the implicit
renaming (this is the only place the variable translation is extended).

2 mat (Mabs v t) (Mabs v’ t’) vts c vl safevs
23 =mat t t’ (xtrans v v’ vts) ¢ vl safevs

And a construction is a straightforward ripple.

22« mat (Mcon f ts) (Mcon f’ ts’) vts ¢ vl safevs

25 | £=1£? = mats’ ts ts’ c¢ vl safevs

26 | otherwise = MatchFail

27 where mats’ []] c=c

28 mats’ (t:ts) (t’:ts’) c = mat t t’ vts (mats’ ts ts’ c)
29 mats’ _ _ ¢ = (Avl vs = MatchFail)

The special free variable matching constraint on metavariables is treated before
the general case.

s mat (Mapp m@(_,0,True) [1) t’ vts c (Valuation vl) safevs

31 | isfv ¢’ = ¢ (Valuation ((m,[],t’) : vl)) safevs
32 | otherwise = MatchFail

33 where isfv (Mvar v’) | istrans vts v’ = False

34 | otherwise = True

35 isfv _ = False

Only the following last case is interesting since it is when the pattern contains
a metaaplication that we add a substitute to the valuation. Notice that this is
the only place where we actually manipulate the internals of the valuation and
consume variables from the list of safe variables (the safe variables are those
neither in the context, as passed to match initially, nor in the rule). There are
two ways a match can succeed:

A. For a repeated metavariable we must ensure that the substitute is also valid
for the this subterm (modulo renaming to the possibly different variables).

B. For a new metavariable we must ensure that the suboccurrence that is
to become the body of the valuation only contains the explicitly allowed
(free) variables — this is particularly easy for saturated metaapplications,
of course.

Here are the success cases and the failure case.

Section 6.4 Reduction 177

s mat (Mapp m@(_,_,issaturated) ts) t’ vts ¢ (Valuation vl) safevs

87 | repeatedm = ¢ (Valuation vl) safevs

38 | onlygood = ¢ (Valuation ((m,safevsl,body) : vl)) safevs3
39 | otherwise = MatchFail

40 where

Thus we are attempting to match the pattern m(ts) to the actual term t’, we
have the translation vts from variables in the pattern to variables in the term,
the continuation is ¢, we have the partial valuation v1, and finally the list of
(still) fresh variables is safevs.

The local definitions spell A out first: if it is a repeated metavariable then we
must check that the valuation is still useable, <.e., the body of the substitution is
exactly the same except for the possibly different naming of the metaaplication
variables.

a1 (repeatedm,o0ldm) = rep’ vl

a2 rep’ [] = (False,True)

a3 rep’ ((m’,vs’,body’):v1’)

P | m=m’ Abody’ = rename (mktrans goodvars vs’) t’
45 = (True,False)

a6 | m#m’ = rep’ vl’

a7 | otherwise = (False,False)

Similarly, we spell out B. First we succeed immediately if the metaapplication
is saturated. If it is a new match we have to verify that all free variables in
the suboccurrence t’ that are bound in the entire occurrence are also mentioned
explicitly in the metaapplication, except if all variables that could possibly occur
are included in the list ... that is the first condition.

a8 onlygood = oldm A (issaturated V all isgood (fv t’))

a9 isgood v (v ‘elem‘ goodvars V not (istrans vts v))
50 goodvars map (trans vts) [v | Mvar v+ ts]

The only complicated thing is to construct the substitute body such that all its
bound variables have fresh names.

51 (safevsl,safevs2) = splitAt (length goodvars) safevs
52 (body,safevs3) = rebind (mktrans goodvars safevsl) t’ safevs2
At last the catch-all abort on failure case.

53 mat = MatchFail

The renaming of bound variables is useful in general so we make it available to
the public.

178 Implementation of Combinatory Reduction Systems Chapter 6

s« rebind :: Trans Var + Mterm -+ [Var] + (Mterm, [Var])
ss rebind tr (Mvar v) vs = (Mvar (trans tr v), vs)

ss rebind tr (Mabs v t) [] = error "PANIC--empty_ infinite fresh, variable list"
57 rebind tr (Mabs v t) (v’:vs’) = (Mabs v’ t’’, vs’?)
52 where (t’’,vs’’) = rebind (xtrans v v’ tr) t vs’

so rebind tr (Mcon f ts) vs = (Mcon f ts’, vs’)
0o where (ts’,vs’) = rebind’ tr ts vs

st rebind tr (Mapp m ts) vs = (Mapp m ts’, vs’)
2 where (ts’,vs’) = rebind’ tr ts vs

es rebind’ _ [] vs = ([,vs)

e« Tebind’ tr (t:ts) vs (t’:ts’’,vs’?)

s where (t’,vs’) rebind tr t vs

66 (ts??,vs??) rebind’ tr ts vs’

Finally the generic definition of bound variables is the following.
&7 bv ::Mterm = [Var]

e bv (Mvar v) =[]

6o bv (Mabs v t) v :bvt

70 bv (Mcon f ts) concat [bv t | t+ts]
7 bv (Mapp m ts) = concat [bv t | t+ts]

6.4.2 Code (redex). We provide a means to search a term for all redexes as defined
in Definition 2.6.12.A. For efficiency the corresponding valuation and rule are
incorporated into the Redex datatype such that it is later easier to rewrite it.

1 data Redex = Rx Path Valuation Rule

Redexes are ordered as their paths, i.e., from left to right (this is useful for some
reduction strategies).

> instance Eq Redex where

3 (Rxp_ (L,_,r))=@®x p’ _ (_L,_,r’)) =p=Ep’Ar=r’

2+ instance Ord Redex where

5 BRxp_)DS@Bxp’__)=psp’

¢ instance Text Redex where
7 showsPrec d (Rx p vl (lhs,_,nm)) s =
8 "{"+concat (map shownumb p)+":"+Hnm+"}"+s

A path describes the occurrence of the hole in the context C[] of Definition
2.6.12.A as a list of !!-indices.”

"Note that Haskell indexes lists starting from 0.

Section 6.4 Reduction 179

s type Path = [Int]

All redexes can be collected at once; this is also where we build the initial list of
free variables such that the valuations will all use different variables.

10 redexes :: CRS + Mterm + [Redex]

1 redexes ¢rs t = red [] t where

12 red::Path -+ Mterm -+ [Redex]

13 red _ (Mvar _) =[]

red (p+[0]) t

1« red p (Mabs v t)

15 red p t@Mcon f ts)

16 [Rx pvlr | r+crs, vl+matches r]

17 +concat [red (p+[nl) t | (t,n) +zip ts [0..]]

18 where matches (lhs,rhs,nm) =

19 case match’ (fresh usedvs) lhs (Valuation[]) t of
20 MatchFail =+ []

21 vl -+ [Vl]

2 red p t@(Mapp _ ts) =
23 concat [red (p+[nl) t | (t,n) +zip ts [0..]]

22 usedvs = nub (bv t+Hfv t)

Extraction of subterms useful in general and thus made global.

25 subterm ::Path <+ Mterm =+ Mterm

2 subterm [] t =t

27 subterm _ (Mvar v) = error "PANIC---illegal, Path"

2z subterm (i:p) (Mabs v t) | i=0 = subterm p t

29 | otherwise = error "PANIC---illegal_Path"

s subterm (i:p) (Mcon s ts) | 0<iAi<length ts = subterm p (ts!!'i)
31 | otherwise = error "PANIC---illegal_Path"

32 subterm (i:p) (Mapp m ts) | 0<iAi<length ts = subterm p (ts!li)
33 | otherwise = error "PANIC---illegal_Path"

6.4.3 Code (substitution). Substitution is the simple art of applying the homo-
morphic extension of a valuation to a metaterm; this is easy because of the
safeness.

1 type Subst = Mterm - Mterm

The implementation is straightforward since we know the applied valuation to
be safe provided we rebind variables to the supplied fresh ones.

180 Implementation of Combinatory Reduction Systems Chapter 6

We carefully maintain the addresses of section 5.2 during substitution by replac-

ing the special address ™" with the reduction number (a convenient oracle).
2 subst ::Int =+ [Var] + Valuation -+ Subst
s subst _ _ MatchFail = error "PANIC---illegal substitution"

s subst n fvs (Valuation vl) = sub fvs [] where

5 sub :: [Var] = [(Var,Mterm)] - Subst

6 sub fvs vts (Mvar v) = (transt vts v) where

7 transt [] v = Mvar v

8 transt ((v’,t’):vts) v | v=v’ =t

° | otherwise = transt vts v

1o sub (v’:fvs’) vts (Mabs v t) = Mabs v’ (sub fvs’ ((v,Mvar v’):vts) t)

11 sub fvs vts (Mcon f ts) = t’ where

12 t’ | f=freshfs = Mcon (shownumb n,0,False) []

13 | f=updatefs = update (sub fvs vts (head ts))

1 (map (sub fvs vts) (tail ts))
15 | otherwise = Mcon f [sub fvs vts t | t+ts]

1 sub fvs vts (Mapp m ts) =

17 sub fvs (zip vts’ [sub fvs vts t | t+ts]) t’ where

18 (vts’,t’) = mfind vl

19 mfind ((m’,vts’,t’):ms) | m=m’ = (vts’,unmeta t’)

20 | otherwise = mfind ms

21 mfind [] = error("PANIC---metavariable ' +showSym m+" not_ found")

N

2 freshfs = ("\\fresh",0,False)
updatefs (" “{updatel}",2,True)

N
[

6.4.4 Code (rewrite step). A rewrite is a contraction of a designated set of redexes
(rather than of a single redex as in Definition 2.6.12.c).

1 rewrite ::Int -+ [Redex] -+ Mterm -+ Mterm
The redexes are contracted innermost-first (backwards) — hence rewrite fails if

there are overlapping redexes; also the oracle argument to subst remains the
same throughout the rewrite.

2 rewrite n rxs t = tr (show n+"/"+show(length rxs)
3 +concat[" " +show rx|rx+rxs]) t’ where

4 t’ = remeta (rew rxs)

5 rew [] = unmeta t

Section 6.4 Reduction 181

6 rew (rx:rxs) = rew’ rx (rew rxs)

7 rew’ (Rx p vl (lhs,rhs,nm)) t = update t’ us’ where

8 (t’,us’) =rew’’ [Ipt

0 rew’’ vs [] t = (subst n (fresh vs) vl rhs,[])

10 rew’’ vs (_:_) (Mvar _) = nopath

11 rew’’ vs (i:p) (Mabs v t) | 1i=0 = (Mabs v t’,us’)

12 | otherwise = nopath

13 where (t’,us’) = rew’’(v:vs) p t

14 rew’’ vs (i:p) t@(Mcon f ts)

15 | £f=(""",2,True) = (t’,t’:us’)

16 | otherwise = (t’,us’)

17 where t’ = Mcon f ts’

18 (ts’,us’) = rew’’’ vs p i ts

19 rew’’ vs (i:p) (Mapp m ts) = (Mapp m ts’,us’)

20 where (ts’,us’) = rew’’’ vs p i ts

21 rew’’’ vs _ _ [] = nopath

22 rew’’’ vs p O (t:ts) = (t’:ts,us’) where (t’,us’) = rew’’ vs p t
23 rew’’’ vs p i (t:ts) = (t:ts’,us’) where (ts’,us’)= rew’’’ vs p (i-1) ts

24 nopath = error "PANIC---impossible Path"

Metarewriting is supported by simply lifting metavariables to (otherwise unique)
constructors before substitution (and in subtituted bodies) using a simple encod-
ing of metavariables as function symbols and an associated decoding.®

t
Mabs v (unmeta t)

25 unmeta t@(Mvar _)
26 unmeta (Mabs v t)
27 unmeta (Mcon f ts)
28 | iscodedmetavar f = Mcon (metaencode f) [unmeta t | t + ts]
20 | otherwise Mcon £f [unmeta t | t + ts]

30 unmeta (Mapp m ts) = Mcon (metaencode m) [unmeta t | t + ts]

Hh
|

st remeta t@(Mvar _) =t

2 remeta (Mabs v t) = Mabs v (remeta t)

33 remeta (Mcon f ts)

u | iscodedmetavar f = Mapp (metadecode f) [remeta t | t « ts]
s | otherwise =Mcon f [remetat | t « ts]

w

s remeta (Mapp m ts) = Mapp m [remeta t | t + ts]
The coding is an obscure misuse of the notation: a M is added in front.

37 iscodedmetavar (’{’:’~’:’M’:rest,a,i) = True

8We are thankful to Vincent van Oostrom for suggesting this trick.

182 Implementation of Combinatory Reduction Systems Chapter 6

38 iscodedmetavar _ = False

3 metaencode (’{’:s,a,i) ("{"M."+Hs,a,i)
w0 metaencode (s,a,i) = ("{"M"+Hs+H"}" a,i)

a1 metadecode (°{’:°"’:’M’:’.%:s,a,i) = (°{’:s,a,i)

2 metadecode (°{’:’°"’:’M’:s,a,i) (init s,a,i)

43 metadecode f =

aa error("PANIC———decodingunonmetavariableu"++showSym f)

Here the addressing has effect in that rewriting is shared: for each rewrite we
keep track of the innermost address affected and update the associated term.
s update ::Mterm -+ [Mterm] + Mterm

s update t [] =t
o7 update t us = (upd t (concat (map flatten us))) where

e flatten (Mvar v) = []
9 flatten (Mabs _ t) flatten t

so flatten u@(Mcon f ts)
51 | £=("",2,True) = [u]
52 | otherwise concat [flatten t | t« ts]

53 flatten (Mapp _ ts) = concat [flatten t | t+ts]

s« upd t [] =t
55 upd t (u:us) = upd (updl t u) us

ss updl t@(Mvar v) u =t
7 updl (Mabs v t) u = Mabs v (updl t uw)

ss. updl (Mcon f@(""",2,True) [t,a]) u@(Mcon _ [_,a’])
59 | a=sa’ =1
60 | otherwise = Mcon f [updl t u,al

st updl (Mcon f ts) u =Mcon f [updl t u | t+ts]
62 updl (Mapp m ts) u = Mappm [updl t u | t+ts]
Finally we remark that unrestricted reduction relation as such is not readily

programmable — that is why we devote the following section to reduction using
a strategy.

6.5 Strategies

In this section we present the program module® with the functions for strategies
for CRSs.

9The section is the result of typesetting the literate Haskell script “crsstrat.lhs”.

Section 6.5 Strategies 183

6.5.1 Code (reduction strategies). A reduction strategy selects for any term some
of the redexes to be reduced, and maybe changes the term

1 type Strategy = Mterm - [Redex] - [Redex]

Strategies are sometimes a combination (intersection) of partial strategies.
2 comb :: Strategy =+ Strategy =+ Strategy
s comb s1 s2 = At rxs+s2 t (sl t rxs)

A metaterm is irreducible if the reduction strategy returns the empty list; deter-
ministic ones return lists of length at most 1.

6.5.2 Code (standard reduction strategies). Here we give some constant strategies
that are often useful.

First the ‘leftmost’ and ‘rightmost’ strategy components which can exploit that
redexes are ordered lexicographically as their paths.

1+ leftmost,rightmost :: Strategy

2 leftmost _ [1 = []

s leftmost _ rxs = [head rxs]
1

[last rxs]

« rightmost _ []
s rightmost _ rxs

Next the ‘outermost’ and ‘innermost’ strategies that remove all redexes that are
inside the previous and outside the following redex, respectively.

6 outermost,innermost ::Strategy

(]

rx : om’ rx rxs where

7 outermost _ []
¢ outermost _ (rx:rxs)

9 om’ :: Redex - [Redex] = [Redex]

10 om’ _ [] = [

1 om’ rx’ (rx:rxs) | redexprefix rx’ rx = om’ rx’ rxs

12 | otherwise = rx : om’ rx rxs
13 innermost _ [] =[]

1a innermost _ (rx:rxs) = im’ rx rxs where

15 im’ rx’ [] = [rx’]
16 im’ rx’ (rx:rxs) | redexprefix rx’ rx = im’ rx rxs
[

17 otherwise = rx’ : im’ rx rxs

Both rely on the redexprefix predicate on paths.

18 redexprefix :: Redex # Redex =+ Bool

184 Implementation of Combinatory Reduction Systems Chapter 6

19 redexprefix (Rx p’ _ _) (Rx p _ _) = isprefix p’ p
20 isprefix [1 _ = True

21 isprefix _ [] = False

2 isprefix (n’:ns’) (n:ns) | n=n’ = isprefix ns’ ns
23 | otherwise = False

The ‘weak’ strategy filters out the redexes inside an abstraction; the ‘strong’
strategy removes nothing.

2 weak,strong ::Strategy
2% weak t rxs = filter isweak rxs where
2% isweak (Rx p _ _) = isweak’ t p

27 isweak’ [= True

s isweak’ (Mabs v t) _ = False

2% isweak’ (Mcon f ts) (n:p) = isweak’ (ts!ln) p
o isweak’ (Mapp m ts) (n:p) = isweak’ (ts!!n) p

31 strong _ rxs = rxs
Finally, the ‘flat’ strategy.
s2 flat :: Strategy

s flat _ rxs = filter (A(Rx p _ _) #*p=1[]) rxs

Next the support for ‘repeated’ reduction. This always involves a primary and
secondary CRS wher the idea is that for each step of the primary CRS the
secondary CRS is applied completely (using nf with the outermost strategy
above so the secondary CRS better be confluent and normalising). In most cases
the secondary CRS will be empty, of course.

6.5.3 Code (standard reduction). Reducing with some strategy a single step or
until normal form means just that. Only good for deterministic nonoverlapping
strategies.

1+ onestep,nf ::CRS # CRS @ Strategy < Mterm + Mterm

> onestep crs crs2 strat t = rewrite O (strat t (redexes crs t)) t

Reduction to normal form simply repeats a single rewrite step (of the primary
CRS) until there are no more redexes.

s nf [] [1 t=t

« nf crs crs2 strat t nf’ 0 t where

Section 6.5 Strategies 185

All the work is done by the internal nf’ that and does a rewrite, tracing the
reduction count.

5 nf’ nt | rxs=[] =g’

6 | otherwise = nf’ nl (rewrite nl rxs t’)
7 where rxs = strat t’ (redexes crs t’)

8 nl = n+1

9 t’ = nf crs2 [] outermost t

The nf function verifies the WN property for a term.

6.5.4 Code (exhaustive reduction). This is the opposite: here we search the entire
space of possible reductions allowed by the strategy, returning the lzst of normal
forms. This is always safe.

1+ nfs::CRS -+ CRS + Strategy -+ Mterm + [Mterm]

> nfs [1 [1 _ t = [t]

s nfs crs crs2 strat t = nfs’ 0 [1 [t] where
4 nfs’ :: Int + [Mterm] + [Mterm] + [Mterm]
When no more terms need reducing we are done.
s nfs’ n _ [1 =[]

Otherwise we ‘output’ the list of normal forms lazily by returning any of the
current terms already in normal form and proceeding with reducing the rest.

s nfs’ n old current = tr (show n+"."+show (length new))

7 (newnfs+nfs’ nl (old+Hnewnfs) new)
8 where
9 nl = n+1

All new normal forms are extracted into newnfs, and the remaining terms with
all their redexes reduced are collected in new.

10 newnfs = [t | (t,_) +nfpart, t ‘notElem‘ old]
1 new = [rewrite n [rx] t | (t,rxs) + nonnfpart, rx+ rxs]

These are all based on a partitioning of current into the normal forms and the
redexes.

12 (nfpart,nonnfpart) =
13 partition (A(_,rx) #rx=1[])
1 [(t, strat t (redexes crs t)) | t+ current’]

15 current’ = map (nf crs2 [] outermost) (nub current)

186 Implementation of Combinatory Reduction Systems Chapter 6

The nfs function can be said to verify the SN property for a term.

6.6 Analysis

In this section we present the program module'® with the functions for per-
forming analysis of CRSs, following section 2.6’s Definition 2.6.14 and several
definitions of chapter 5.

6.6.1 Code (left-linearity). We encode Definition 2.6.14.A.
1+ leftlinear :: CRS = Check

2 leftlinear crs = either "CRS mnot leftlinear:" (11’ crs) where

s 11° [] = un
« 11’ ((lhs,_,nm):rs) =
5 either ("\n_in_rule " +nm+": ") (linear 1lhs) +11’ rs

The encoding of the linearity property for terms exploits that our ‘sets’ are really
lists of occurrences.

¢ linear ::Mterm -+ Check

7 linear t = case [showSym m | m+ duplicates (mv t)] of

8 [] 5 un
9 ms = "duplicated metavariables: "
10 +concat[")"+m | mms]+H"."

6.6.2 Code (nonoverlapping). We encode Definition 2.6.14.B. An overlap is repre-
sented as a metaterm with two redexes.

1+ type Overlap = (Mterm,Redex,Redex)
The check merely announces all the critical pairs in a readable way.
2 nonoverlapping,weaklynonoverlapping ::CRS = Check

s nonoverlapping crs =
a either "CRS_has overlaps:" (showOverlaps (overlaps crs))

s showQOverlaps [] = nn
¢ showOverlaps ((t,rxl,rx2):0s)
7 "\nterm " +show t+ "\nmatches "+ show rxl+"\n, ., and "+ show rx2

Weakly overlapping means critical pairs trivial.

10The section is the result of typesetting the literate Haskell script “crsanal.lhs”.

Section 6.6 Analysis 187

s weaklynonoverlapping crs =
9 either "CRS_has overlaps:"

10 (showOverlaps (filter dropequalpairs (overlaps crs))) where
11 dropequalpairs (t,rxl,rx2) =
12 rewrite 0 [rx1] t #rewrite 0 [rx2] t

The overlaps of a CRS are all smallest terms with two overlapping redexes.

13 overlaps :: CRS =+ [Overlap]

14 overlaps crs = cp’ crs where

(]

overlaps’ r r+cpl r rs+cp’ rs

(]

overlaps’ r r’+cpl r rs’

15 cp’]
1 cp’ (r:rs)

17 Cp1 r []
18 cpl r (r’:rs?)

Actually constructing the rule overlaps involves first searching for candidates
(where the root symbol of one rule occurs in the other) followed by a check
whether the combined superposition of the terms is, in fact, an overlap.

19 overlaps’ ::Rule + Rule + [Overlap]
If the two rule arguments are the same then self-overlaps and mirror overlaps
are omitted.

20 overlaps’ r1@(t1@(Mcon s1 tis),_,_) r2@(Mcon s2 t2s,_,_) =
22 (if r1 =r2 then [] else concat [try rl r2 p | p+pw s2 t1])
22 +concat [try r2 r1 (i:p) | (i,t2) +zip [0..] t2s, p+pw sl t2]

23 where

The following function generates a list of potential overlap occurrences in the
form of subterms with a particular symbol at the root.

2 pw :: Sym -+ Mterm -+ [Path]

2 pw s (Mvar _) = []

2 pw s (Mabs _ t) = map (0:) (pw s t)

27 pvw s (Mcon s’ ts) | s=g’ =[] : rest

28 | otherwise = rest

20 where rest = [(i:p)|(i,t) + zip[0..]ts, p+pw s t]

%0 pw s (Mapp _ _) = []

Testing whether a particular occurrence is an overlap is merely attempting to
construct the two valuations from the overlayed term.

31 try r@(t,_,_) r,Q(t,9_s—) p=

188 Implementation of Combinatory Reduction Systems Chapter 6

32 case match t st of

33 MatchFail =+ []

3 vl -+ case match t’ (subterm p st) of

35 MatchFail =+ []

36 vl’ + [(st,Rx[]vl r,Rx p v1’ r’)]
a7 where st = overlay t p t’

6.6.3 Code (unification). We will implement a simple kind of unification: an ‘over-
lay’ is a copy of t except the subterm at an occurrence p has been overlayed with
t’ with any metavariables in the latter renamed to be distinct from those of t.
This is a generalisation of matching in that the two patterns are checked to be
identical until a metavariable is encountered.

1 overlay ::Mterm— Path #+ Mterm + Mterm

2 overlay t p t’
3 | check(linear t+linear t’) = ov t p []

4 | otherwise = error"LIMITATION---overlay only works, for linear patterns"

5 where

The easy part is the part of t which is unchanged, except we have to keep track
of the variables defined.

6 ov :: Mterm -+ Path + [Var] + Mterm

7 ov (Mvar v) (i:p) vs = failureterm [v]

8 ov (Mabs v t) (i:p) vs = Mabs v (ov t p (v:vs))

0 ov (Mcon s ts) (i:p) vs =

10 Mcon s (take i ts+[ov (ts!i) p vs]+drop (i+l1l) ts)
11 ov (Mapp m ts) (i:p) vs =

12 Mapp m (take i ts+[ov (ts!!i) p vs]+drop (i+l) ts)
13 ov t] vs = ov’ vs (mktrans vs vs) t t’

Once we have reached the point where real insertion happens things get more
interesting. While no metavariables are involved we merely check that the terms
are identical and overlay subterms.

1a ov’ :: [Var] =+ Trans Var -+ Mterm - Mterm - Mterm

15 ov’ vs vt tl@(Mvar v1) (Mvar v2)

16 | vl =+trans vt v2 = t1

17 | otherwise = failureterm [vi1]

18 ov’ vs vt (Mabs vl t1) (Mabs v2 t2)

Section 6.6 Analysis 189

19 Mabs vl (ov’ vs (xtrans v2 vl vt) tl1 t2)
20 ov’ vs vt (Mcon s1 ti1s) (Mcon s2 t2s)
21 | s1=82 = Mcon sl ol2s

22 | otherwise failureterm []
23 where 012s = zipWith (ov’ vs vt) tls t2s

Next we treat the special cases where either of the sides is one of the special
variable-only matching metavariables.

2 ov’ vs vt t1 (Mapp m2@(_,0,True) [1) =

2 case t1 of Mvar vl | istrans vt vi-—+t1

26 | otherwise -+ failureterm []

27 _ -+ failureterm []

28 ov’ vs vt (Mapp mi@(_,0,True) []) t2 =

20 case t2 of Mvar v2 | hastrans vt v2 - Mvar (trans vt v2)
30 | otherwise -+ failureterm []

31 _ -+ failureterm []

The last two cases are the only non-trivial ones: when one or both sides are
metaapplications. The easy direction is when the metaapplication is in the
inserted term (so no renaming metavariables is needed). We still have to ‘shave
off’ the variables that are not permitted.

32 ov’ vs vt t1 (Mapp m2 t2s) = shave vs vt t2s tl

we check the consistency of the created term while creating it (such that matching
will fail quickly; this could be optimised in the same way as we did for matching
in Code 6.4.1, of course, but we will not use this for computation so the efficiency
is not critical here).

The hard direction has the metaaplication in the original term: we now have to
insert the entire remainder of the inserted term where we also have to rename
variables and even metavariables that occur in the original term.

33 ov’ vs vt (Mapp ml tl1s) t2 = shave [] notrans tls (renx freshvs vt t2)
34 where

3 renx fvs vt (Mvar v) = Mvar (trans vt v)

36 renx (v’:fvs) vt (Mabs v t) =

a7 Mabs v’ (renx fvs (xtrans v v’ vt) t)

38 renx fvs vt (Mcon f ts) = Mcon f (map (renx fvs vt) ts)

39 renx fvs vt (Mapp (s,a,f) ts) =

40 Mapp (trans trmv s,at+length newvars,f)

a (map (Mvar) (oldvars+ (vs‘but‘oldvars)))

190 Implementation of Combinatory Reduction Systems Chapter 6

a2 where oldvars = [trans vt v| (Mvar v) + ts]

a3 newvars = (nub vs) ‘but‘ oldvars

4 freshvs = fresh (nub(vs+fv t+Hfv t’>+Hbv t+Hbv t°))

a5 trmv = mktrans s_both_t_and_t’ s_neither_t_nor_t’ where

a6 s_t,s_t’,s_both_t_and_t’,s_neither_t_nor_t’:: [String]

a7 s_.t =map (A(s,_,_) *s) (nub (mv t))

a8 s_t’ = map (A(s,_,_) *s) (nub (mv t’))

a9 s_both_t_and_t’ = filter (‘elem‘ s_t) s_t’

50 s_neither_t_nor_t’ =

51 filter (‘notElem‘ (s_t+s_t’))

52 ([[v] | ve"zZYX"]

53 +H+ [[v]+H"_"+Hshownumb n | v+« "ZYX", n+ [1..9]]
54 +H+ [[v]+H"_"+Hshownumb n | n+ [10..], v+ "ZYX"])
55 ov’ t1 t2 = failureterm (nub (fv t1))

Shaving means remove from metaapplications in the overlayed terms those vari-
ables that do not appear in ‘the other component’ which

56 shave vs vt ts t = shave’ allowedvs t where
57 allowedvs = vs+vs_in_ts ts
58 vs_in_ts [] =[]
59 vs_in_ts (Mvar v : ts) = trans vt v : vs_in_ts ts
60 vs_in_ts _ = error"PANIC---non-variable in pattern metaapplication"
61 shave’ vs (Mvar v) | v ‘elem‘ vs = Mvar v
62 | otherwise = failureterm [v]
63 shave’ vs (Mabs v t) = Mabs v (shave’ (v:vs) t)
64 shave’ vs (Mcon f ts) = Mcon f [shave’ vs t | t+ts]
65 shave’ vs (Mapp (s,a,i) ts) = Mapp (s,length ts’,i) ts’ where
66 ts’ = extractvs ts
o7 extractvs [] []
v ‘elem‘ vs = Mvar v : extractvs ts

68 extractvs (Mvar v : ts) |
[

69 otherwise extractvs ts

70 extractvs _ = error"PANIC---non-variable in pattern metaapplication"

Finally the unmatchable term we use above, which takes a variable list to have
the ‘right’ free variables to prevent matching against it from succeeding!

7 failureterm vs = Mcon ("fail/overlay",length vs,False)
72 [Mvar v | v+ vs]

Section 6.6 Analysis 191

6.6.4 Code (orthogonality). Just Definition 2.6.14.c.
1 orthogonal ,weaklyorthogonal :: CRS -+ Check

2 orthogonal crs =
s either (leftlinear crs
4 + either "\n" (nonoverlapping crs)) "\nCRS_ not_orthogonal."

s weaklyorthogonal crs =

s either (leftlinear crs

7 + either "\n" (weaklynonoverlapping crs))
8 "\nCRS_not weakly orthogonal."

6.6.5 Code (critical pairs). The critical pairs are merely the result of reducing
each of the two redexes of an overlap. We build the critical pairs as a CRS such
that it can later be used as such (presumably after reversing some of the pairs to
choose the opposite direction, and cleaning out in the old rules to avoid creating
overlaps).

1 criticalpairs ::CRS =+ CRS
2 criticalpairs crs = map stepboth (overlaps crs) where

3 stepboth (t,rx1@(Rx pl _ (_,_,nml1)),rx2@(Rx p2 _ (_,_,nm2))) =
4 (rewrite 0 [rx1] t, rewrite O [rx2] t, nml+"-—-"+nm2)

6.6.6 Code (minimalise CRS). To ‘minimalise’ a CRS is to remove all rules that
are subsumed by other rules.

1 minimalise :: CRS =+ CRS

2 minimalise crs = min’ [] crs where

s min’ _ [] = [
« min’ pre (r:post) | (pre+post) ‘subsumes‘ [r] = min’ pre post
5 | otherwise = r : min’ (r:pre) post

A CRS with the rules {r; : p; — ti} subsumes the CRS with the rules {rj : pj — t{}
(such that the relation defined by the first has the relation of the second as
a subrelation) if for all rj there is some r; such that p metamatches p’ and
furthermore rewriting p with v’ yields t.

¢ subsumes :: CRS # CRS -+ Bool
7 subsumes crs crs’ = all subsumedbycrs crs’ where

8 subsumedbycrs r’ = any (‘subl‘r’) crs

192 Implementation of Combinatory Reduction Systems Chapter 6

9 subl :: Rule + Rule -+ Bool
10 subl r@(p,t,nm) r’Q(p’,t’,nm’) =

11 case match p p’ of

12 MatchFail -+ False

13 vl | t’ =rewrite O [Rx [] vl r] t = True
18 | otherwise -+ False

6.6.7 Code (reversible CRS). A reversible CRS is a CRS where the system obtained
by reverting all the arrows — the converse — is also a CRS.

1 reversible :: CRS + Check

2 reversible crs = either "CRS_not, reversible, (converse _mnot CRS):"
3 (checkCRS (converse crs))

a converse :: CRS @+ CRS
5 converse crs = assert (checkCRS crs’) crs’ where

6 crs’ = conv’ crs

(]

(rhs,lhs,nm) :conv’ rs

7 conv’ []
8 conv’ ((lhs,rhs,nm):rs)

6.6.8 Code (local confluence). This procedure searches tests the normal forms of
all critical pairs, hence will only terminate if this search terminates.

1+ locallyconfluent :: CRS -+ Check

2 locallyconfluent crs =
3 either "CRS_not locally confluent:\n"

a (unlines

5 [show t+" reduces to_both, "+ show t1+"_and "+ show t2
6 | (t,rx1,rx2) + overlaps crs,

7 tl +nfs crs [] strong (rewrite 0 [rx1] t),

8 t2 + nfs crs [] strong (rewrite 0 [rx2] t),

9 t1#t2 1)

6.7 Explicification

This section contains the implementation of the CRS ezplicification procedure
defined in section 5.1.11

For ease of reference we reperat the relevant portions of Figure 5.1 for each
code section.

1 The section is the result of typesetting the literate Haskell script “crsx.lhs”.

Section 6.7 Explicification 193

6.7.1 Code (explicification). The main explicification procedure takes a CRS into
another CRS containing substitution introduction, distribution, and elimination
rules, as described in Definition 5.1.9.

1+ explicify:: CRS # CRS

2 explicify rules = explicify’ "‘S" rules

The variant actually used allows customisation of the symbol used for explicit
substitution constructions.

s explicify’ :: String = CRS + CRS

+ explicify’ z rules =

5 nub (introductionrules

6 +concat [xdistribute f s | f + symbols, s+ sigmas z]

7 +concat [xeliminate s | s+ sigmas z])

8 where

9 symbols = symbolsin rules

10 introductionrules = [xintroduction z r symbols | r ¢ rules]

1 sigmas s = symbolsin introductionrules\\ symbols

12 symbolsin [] =[]

13 symbolsin ((rhs,lhs,_):rs) = nub(syms lhs+syms rhs-+symbolsin rs)
14 where

15 syms (Mvar _) =[]

16 syms (Mabs v t) = syms t

17 syms (Mcon fs ts)

18 | fs‘elem‘dummies = nub (concat [syms t | t+ts 1)
19 | otherwise = nub (fs : concat [syms t | t+ts 1)
2 syms (Mapp _ ts) = nub (concat [syms t | t+ts 1)

21 dummies = [(""",2,True), (" ‘{update}",2,True),

22 ("\\fresh",0,False),("“!",0,False)]

6.7.2 Code (substitution introduction). Construct the rules (r-x) by substituting

for each non-explicit metaapplication Z“(f(n]) the explicit construction X' ([X]Z"(X), T).
The trickiest thing is to keep track of the variables, in fact there is a bug in that
incompatibilities between the sides is not handled: Example 5.1.3.F is not trans-
formed.

+ xintroduction ::String - Rule -+ [Sym] -+ Rule

2 xintroduction z (lhs,rhs,nm) symbols =
3 (1hs, rhs’, nm+ (if rhs =rhs’ then "" else "-x")) where

194 Implementation of Combinatory Reduction Systems Chapter 6

4 rhs’ = fst (xi [1 [1 [] rhs)

The work is done by the function that collects the metaapplications and leaves
those alone that are applied to the same variable lists, replacing the rest with
an explicit substitution variant. Each variable is identified by its metabstraction
path to ensure uniqueness.

5 xi vps zs p t@(Mvar v) = (t,zs)

6 xi vps zs p (Mabs v t) =

7 (Mabs v t’,zs’) where (t’,zs’) = xi ((v,p+[0]):vps) zs (p+I[0]) ¢t
8 xi vps zs p (Mcon f ts) =

9 (Mcon f ts’,zs’) where (ts’,zs’) = xi’ vps zs p O ts

1o xi vps zs p t@(Mapp m@(s,a,i) ts)

11 | mexplicit = (t,zst)

12 | otherwise = (Mcon (sigma a "")

13 (foldr Mabs (Mapp m [Mvar v | v+ vs]) vs : ts?’),
14 zs?)

15 where (mexplicit,zst) | distvars ts [] = mx zs

16 | otherwise = (False,zs)

17 distvars :: [Mterm] -+ [Var] -+ Bool

18 distvars [] _ = True

19 distvars (Mvar v : ts) vs = v ‘notElem‘ vs Adistvars ts (v:vs)
20 distvars _ _ = False

21 z = [lookup vps v | Mvar v+ ts]

2 mx :: [(Mv, [Path])] = (Bool, [(Mv, [Path])])

23 mx [] = (True, (m,z) :zs)

2 mx ((m’,z’):zs’) | m=m’ Az=2z’ = (True,zs)

25 | m=m’ = (False,zs)

26 | otherwise = mx zs’

27 lookup [] _ = error"PANIC---can’t_ find, bound variable"
28 lookup ((v’,p’):vps’) v’’ | v’ =v’’ =p’

20 | otherwise = lookup vps’ v’’
30 (ts’,zs?) = xi’” vps zs p O ts

31 vs = take a (fresh [])

2 xi’ vps zs p i [] = ([1,zs)

3 xi’ vps zs p i (t:ts) = (t7:ts?’,z8’?)

3 where (t’,zs’) = xi vps zs (p+I[il) t

35 (ts??,z8’?) = xi’ vps zs’ p (i+1) ts

s sigman s | fs ‘elem‘ symbols = sigma n (s+"’")

Section 6.7 Explicification 195

a7 | otherwise = fs
38 where fs = (z+s,n+1,False)

6.7.3 Code (substitution distribution). For each ¥™*' symbol add a rule
IV RIIZ(R, v), X) — WIZ(RIZ(%,y), X) (xma-n)
and for each possible L' F™ pair add a rule

S RIF™(Z1 (%), . Zin (%)), X) (x-F™-n)
= FMIM(RIZ1(%),X), ., ZV(R1Z (%), X))
+ xdistribute ::Sym~+ Sym~+ [Rule]
> xdistribute f@(sf,af,_) s@(_,a,_) =

3 [(Mcon s (foldr Mabs (Mcon f [xapp n | n+ [1..af] 1) vs : mvapps),

4 Mcon f [Mcon s (foldr Mabs (xapp n) vs : mvapps)
s | n«[1..af] 1,

6 "x-$" +Hsf+"$-$" +show (a-1)+"$")]

7 +

8 [(Mcon s (foldr Mabs (Mapp ("Z",a,False) vsyapps) vsy : mvapps),

9 Mabs "y" (Mcon s (foldr Mabs (Mapp ("Z",a,False) vsyapps) vs : mvapps)),
10 "xma-$" +show (a-1)+"$")]
11 where vs = vectorx (a-1)
12 mvs = vectorX (a-1)
13 mvapps = [Mapp (mv,0,False) [] | mv ¢ mvs]
14 xapp n = if af =1 then Mapp ("Z",a,False) [Mvar v | v+ vs]
15 else Mapp ("Z_"-+shownumb n,a,False) [Mvar v | v+ vs]
16 vsy = vs+ ["y"]
17 vsyapps = [Mvar v | v+ vsy]
6.7.4 Code (substitution elimination). For each X™*! add for each i € {1,...,n}two
rules
I (R]x, X) = X (xv-n-i)

Z ifn=1

SV RIZ(R), X)) ifn>1 (xge-n-i)

IMH(RIZ(R), X) a{

where

=1/
X = (X],...,Xifl,XhL],...,Xn)
!

X' = (X1, oo, X1y Xitty v oy Xn)

196 Implementation of Combinatory Reduction Systems Chapter 6

(thus the LHS of (xgc-n-i) includes the abstraction for x; in the variable list and
the corresponding element X; of the substitution body but not in the parameter
list Z(X'); the RHS excludes x; in the metaabstraction and X; in the right hand
side).

1+ xeliminate ::Sym -+ [Rulel

2> xeliminate s@(_,a,_) =

3 [(Mcon s (foldr Mabs (Mvar (vs! (j-1))) vs : mvapps),

4 Mapp (mvs! (j-1),0,False) [1,

5 "XV_$"‘H'ShOW i'H'"$_$"‘H'ShOW J'_H_ll$n)
s | j+[t..a-1]]

7 +

8 [(Mcon s (foldr Mabs (Mapp ("Z",i-1,False)

9 [Mvar x | x+vs’ j]) vs

10 : mvapps),

11 if i =1 then (Mapp ("Z",0,False) [1)

12 else Mcon s (foldr Mabs (Mapp ("Z",i-2,False)

13 [Mvar x | x+ vs’ j 1) (vs’ j)
14 : [Mapp (mv,0,False) [] | mvemvs? j 1),

5 "xgc-$" +shownumb i+"$-$"+shownumb j+"$")

16 | j"[l--a_i]]

17 where i = a-1

18 vs = vectorx i

1 vs’ j = vectorx’ i j

20 mvs = vectorX i

21 mvs’ j = vectorX’ i j

22 mvapps = [Mapp (mv,0,False) [] | mv+ mvs]

23

6.7.5 Code (auxiliaries).

1 vectorx n if n=1 then ["x"] else ["x_"+shownumb i | i+ [1..n]]
2 vectorx’ nn’ = ["x_"+shownumb i | i« [1..n], i#¥n’]

3 vectorX n if n=1 then ["X"] else ["X_"+shownumb i | i+ [1..n]]
.« vectorX’ nn’ = ["X_"+shownumb i | i+« [1..n], i#n’]

6.7.6 Code (saturation). Recall that a CRS is ‘saturated’ if all metaapplications
in the rule patterns contain all the possible variables. This is coded directly as
follows:

Section 6.8 Inferences 197

1 saturated :: CRS + Check

2 saturated crs = either "CRS_not saturated:" (sat’ crs) where

3 sat’ [] =

a sat’ ((lhs,rhs,nm):rs) = satl [] lhs+sat’ rs where

5 satl vs (Mvar v) =

6 satl vs (Mabs v t) = satl (v:vs) t

7 satl vs (Mcon _ ts) = concat [satl vs t | t+ts]

8 satl vs t@(Mapp m ts)

° | missingvars=1[] = ""

10 | otherwise = "\n ‘" +show t+"’ should be ‘"
1 +show(Mapp m (map Mvar vs))

12 +"? in rule "++nm

13 where missingvars = vs\\varsof ts

1 varsof [] =[]

15 varsof (Mvar v:rest) = v : varsof rest

16 varsof _ = error"PANIC---variables required, in, pattern"

6.8 Inferences

This section contains the implementation of a CRS inference rule procedure.!?

Our solution is inspired by Petr: nets (Danthine 1980) in that we insert in an
otherwise contextual system special ‘tokens’ into terms that represent the ‘active
point’ of evaluation; a similar idea is used in the generalised graph rewriting
language DACTL language of Glauert, Kennaway and Sleep (1989) where ‘active
markers’ are required for evaluation to proceed. We accept rules in the simple
form of LHS — RHS where the premises are inserted at the location of their
LHS wn the LHS of the entire rule — then the scoping fits.

6.8.1 Code (inference rules). This procedure transforms a pseudo-CRS which includes
‘inference rules’ of the above form.

1+ inferencify :: CRS # CRS

The main function merely generates the generic ‘unload’ rule and iterates over
all CRS’s rules.

» inferencify crs = assert (checkCRS crs’) crs’ where

3 crs’ = cleanup (inf O crs)+ [(root (overline mZ), clean mZ, "done")]

12The section is the result of typesetting the literate Haskell script “crsi.lhs”.

198 Implementation of Combinatory Reduction Systems Chapter 6

a where mZ= Mapp ("Z",2,False) []
5 inf _ [] =[]
6 inf n (r:rs) = infl nl r+inf nl rs where nl=n+1

For each rule we distinguish between axioms and inferences: axioms are distin-
guished by having no occurrences of the nested — symbol.

7 inf1l n (1lhs,rhs,nm)

8 | premises =[] = [startrule,

9 (underline lhs, overline rhs, nm)]

10 | otherwise = [startrule,

11 (underline (dist head 1lhs),

12 dist (underline.head) lhs, nmadd nm"1"),
13 (dist (overline.last) lhs,

14 overline rhs, mnmadd nm"2")]

15 where

Every rule adds its LHS to the patterns that denote reducible terms.

16 startrule =
17 (clean (dist head 1lhs), root (underline (dist head 1lhs)),nmadd nm"0")

The premises nested in a LHS are the submetaterms using a —-construction
except we have to reduce the variable arguments to only those actually part of
the premise.

18 premises = enum’ 1 (prem [] lhs) where

19 prem vs (Mabs v t) = prem (v:vs) t

20 prem vs (Mcon ("‘{to}",2,True) [pat,cont]) =

21 [(prem’ vs pat, prem’ vs cont, nmadd nm "\\dn")]

22 prem vs (Mcon _ ts) = concat [prem vs t | t+ts]

2 prem vs _ = []

24 prem’ vs (Mvar v) = Mvar v

2 prem’ vs (Mabs v t) = Mabs v (prem’ (vs‘but‘[v]) t)

26 prem’ vs (Mcon f ts) = Mcon f [prem’ vs t | t+ts]

27 prem’ vs (Mapp (s,a,i) ts) =

28 Mapp (s,length ts’,i) ts’ where

29 ts’ = removevs ts

20 removevs [] = []

31 removevs (Mvar v : xs) | v‘elem‘vs = removevs xs

32 | otherwise = Mvar v : removevs Xs
33 removevs _ = error''nmon-variable pattern metaapplication_argument"

In order to obtain unique names we have to add sequence numbers to the premis-
€s.

Section 6.9 Main Program & Bootstrap 199

34 enum’ n [] = []
35 enum’ n ((lhs’,rhs’,nm’):rs’) =
36 (l1hs’,rhs’ ,nmadd nm’ (show n)) : enum’ (n+l1) rs’

Last the elimination rule for the inference rule is just the inference where the
premises have been replaced with their overlined results.

37 dist mk (Mvar v) = Mvar v

38 dist mk (Mabs v t) = Mabs v (dist mk t)

39 dist mk (Mcon ("‘{to}",2,True) premise) = mk premise
a0 dist mk (Mcon f ts) = Mcon f [dist mk t | t+ts]

at dist mk (Mapp m ts) = Mapp m ts

Here are the auxiliaries.

22 clean t = Mcon markerfs [root t]

i3 root t = Mcon markerfs [Mcon markerfs [t]]

s underline t = Mcon underlinefs [Mcon markerfs [t]]
Mcon overlinefs [Mcon markerfs [t]]

45 overline ¢t

6 underlinefs = ("\\u",1,False)
e overlinefs ("\\h",1,False)
s markerfs ("‘<>",1,False)

29 nmadd nm s | last nm=’$’ init nm+gs+H"§"
50 | otherwise = nm+H"§" Hs+H"$"

Cleaning up is merely removing trivial things.

st cleanup [] =[]

s2 cleanup (r@(lhs,rhs,nm):rs)

53 | 1hs =rhs = cleanup rs

54 | otherwise = r : filter (A(lhs’,rhs’,_) #1lhs # 1hs’ V rhs # rhs’)

55 (cleanup rs)

6.9 Main Program & Bootstrap

In this section we present the main program module!?® with the functions making
it possible to actually run the CRS implementation presented in this chapter on
a computer using the HuGs Haskell system of Jones (1995).

Most of the definitions in this section are concerned with interactive CRS
reduction. Last in the section we present the fragments that bind the CRS
reducer together.

13The section is the result of typesetting the literate Haskell script “crsmain.lhs”.

200 Implementation of Combinatory Reduction Systems Chapter 6

6.9.1 Code (documentation). Message for the user of the test system (see Figure
A.1, page 209, for the resulting output).

1 welcome = unlines

2 [Illl’

3 "Welcome to the CRS_ interpreter (version "'+version+")!",

a "Copyright,(c),1995-1996 Kristoffer H. Rose <kris@diku.dk>."]

5 rcs = words "$Id: crsmain.lhs,v2.13,1996/02/07,19:48:49 kris Exp kris_ $"
¢ version = rcs!!2+" of "+Hrcs!!3
7 +1if length rcs>7 then " locked by "+ (rcs!!7) else ""

s help = welcome+unlines
9 [Illl’

1o "ACTIVATION:",

11 "? load <crs>_ uumake, <crs> the, current, crsl",

12 "? see <crs> uuuuushow <crs> on screen",

13 "?yusave<crs>, uuuuusavecurrent crsl as <crs>_(must be single file,:-)",
nn

14 s

15 "<crs>_yshould be a string with names of_files_ that contain CRSs",

16 "LUuuuuuuseparated, by blanks, <num> for the current crs<num>, a",

17 "ouuwoutransformation, or \"CRS:,...\"_where,... is an_entire CRS.",

18 nn

i "RUNNING:",

20 "? reds_<term>_ , _show_redexes in <term>",

21 "? stepuuu<term>_0one step parallel outermost reduction of <term>",
22 "? tryuuuu<term>parallel outermost reduction of <term>_ to nf",
23 "? tryi L u<term>_parallel innermost reduction of <term>_ to nf",
2 "?_search <term>_, , exhaustive single reductions of <term> to nf",
25 nn ’

6 "<term> should, be a CRS metaterm; the current crsl CRS. is_used.",

27 AL

28 "These exist,in variants where <strategy> and/or <crs> can be",

29 "explicitly specified,(variants, with, ,CS requiring, both exist):",

30 "?ustepCuuu<crs> <term> ,,uuu?ustepSuuu<strategy> <term>",

31 "?utryCuuuu<crs> <term>y,uuu?utrySuuuu<strategy> <term>",

2 "7 searchC_<crs> <term> ,,,,uu?usearchS <strategy> <term>",

33 nn ’

s "<strategy>ushould_be one_of,‘innermost’, ‘outermost’, ‘weak’,",

s "Luuuoooooou strong’,‘leftmost’, or, ‘rightmost’.",

36 nn ’

37 "In these commands C can, be replaced by, C2_ and_ then two <crs> args",
38 "are needed: the second is applied completely between reductions.",

39 nn

b
a0 "CHECKS:",
a1 "? lapsyu<crs>uuuushow overlaps between <crs> rule patterns”,

Section 6.9 Main Program & Bootstrap 201

a2 "? critsy<crs>yuuuuushow critical, jpairsgof <crs> rules”,

s "?p0orth<crs> uuuucheck that <crs>_is orthogonal”,

aa "? worth, <crs>_uuuucheck that <crs>_is weakly orthogonal",

a5 "? lcuuu<ers> uuuuuapproximate search for proof of <crs> LC",
a6 "? satu<crs> uuucheck <crs>_ saturated",

a7 nn

¢ "TRANSFORMATIONS, (yield new <crs>s):",

a9 "? explu<crs>yuuuuu<crs> after explicification",

50 "?uinfer <crs> uuuu<crs> after internalising inference rules”,
51 "7 convy<crs> uuuu<crs> after reversing all rules",

52 "? mini , <crs> uuuu<crs>pafter removing redundant, rules"]

6.9.2 Code (interactive operation). The implementation of the documented func-
tions can be used directly from the HUGS command line. This keeps a current
working CRS in a file which is loaded and viewed using these operations.

1 load ¢ = loadCRS2 (crs c) []
2 load2 ¢ c2 = loadCRS2 (crs c) (crs c2)

s loadCRS crs = writeFile "crsl.crs" (showCRS crs) complain done
+ loadCRS2 crs crs2 = writeFile ("crsl.crs") (showCRS crs) complain $
5 writeFile ("crs2.crs") (showCRS crs2) complain done

¢ see ¢ = showCRS (crs c)

6.9.3 Code (CRS input). The actual reading of a CRS from the commad line or
a file is handled by these functions. The central one is crs which understands
the <crs> format described in the help text: either the current working CRS,

1+ crsname s | s="" = "crsl.crs"

2 | all (‘elem‘[’0°..°9°]) s "crs"+Hs+H".crs"
3 | otherwise = s+".crs"

The read function has one more possibility, namely a CRS directly on the com-
mand line.

4 CI'S nn = CrSf nn
5 crs sQ(’C?:’R?:°S8’:%:7:_) = crs’ s
¢ crs sQ(’%?:°C?:’R?:°8?:%:7:_) = crs’ s

or the CRS obtained by concatenating the CRSs of several files.

7 crs fs = case map crsf (words fs) of
8 [c]=c
9 cs -+ assert(checkCRS c) c¢ where ¢ = concat cs

202 Implementation of Combinatory Reduction Systems Chapter 6

The simple input is handled by these functions.

10 crss s = crs’ ("CRS:,"+s)
1 crsf fn = crs’ (openfile (crsname fn))

12 crs’ s = case readParseTree s of
13 Crs c2*c
14 _ =+ error "INPUT_MISTAKE---not a_<crs>"

6.9.4 Code (metaterm input). Similarly, metaterms can be typed on the command
line or in a file, however, there is no automatic handling of this.

1 term s = term’ ("METATERM:."+s)
2> termf fn = term’ (openfile (fn+".term"))

3 term’ s = case readParseTree s of
a MetaTerm t =2t
<+ error "INPUT_MISTAKE---not_a_<term>"

6.9.5 Code (CRS output). We can also write CRSs.

1 save "" = done
> save fn writeFile (crsname fn) (see"") complain done

6.9.6 Code (reduction). These experiment with reduction of terms using the cur-
rent working CRS

Next the execution commands; the versions without show

Reducing with some strategy a single step or until normal form means just that.
Only good for deterministic nonoverlapping strategies.

1+ reds s = show (redexes (crsf "crsl") (term s))

> step s = show (onestep (crsf "crsl") (crsf "crs2") outermost (term s))

s try s = show (nf (crsf "crsi") (crsf "crs2") outermost (term s))

+ tryi s = show (nf (crsf "crsl") (crsf "crs2") innermost (term s))

5 search s =

s unlinesbeep (map show (nfs (crsf "crsl") (crsf "crs2") strong (term s)))

7 stepS strat s = show (onestep (crsf "crsl") (crsf "crs2") strat (term s))
s tryS strat s = show (nf (crsf "crsil") (crsf "crs2") strat (term s))

s searchS strat s =

10 unlinesbeep (map show (nfs (crsf "crsl") (crsf "crs2") strat (term s)))

show (redexes (crsf c) (term s))
show (onestep (crs c) [] outermost (term s))

11 redsC ¢ s
12 stepC ¢ s

Section 6.9 Main Program & Bootstrap 203

13 tryC ¢ s = show (nf (crs c) [] outermost (term s))

1 tryiC ¢ s = show (nf (crsf c¢) [] innermost (term s))

15 searchC ¢ s =

16 unlinesbeep (map show (nfs (crs c) (crsf "crs2") strong (term s)))

17 redsC2 ¢ c2 s = show (redexes (crsf c) (term s))

18 StepC2 ¢ c2 s show (onestep (crs c) (crs c2) outermost (term s))
19 tryC2 ¢ ¢2 s = show (nf (crs c) (crs c2) outermost (term s))

20 tryiC2 ¢ c2 s = show (nf (crsf c) (crs c2) innermost (term s))

21 searchC2 ¢ ¢c2 s =

22 unlinesbeep (map show (nfs (crs c) (crs c2) strong (term s)))

23 stepC2S ¢ c2 strat s = show (onestep (crs c) (crs c2) strat (term s))
22 tryC2S ¢ c2 strat s = show (nf (crs c) (crs c2) strat (term s))

25 searchC2S c c2 strat s =

26 unlinesbeep (map show (nfs (crs c) (crs c2) strat (term s)))

27 unlinesbeep = concat . map (+"\a\n")

6.9.7 Code (analysis). These read CRSs and terms from strings and files.
1+ laps ¢ = showOverlaps (overlaps (crs c))
2 crits ¢ = unlines (map showcrits (criticalpairs (crs c))) where

3 showcrits (1,r,i) = "\nrules/"+1i
a +"\ngenerate " H+show 1+ "\n<->"+show r

s orth ¢ = assert (orthogonal (crs c)) "CRS_is orthogonal."
s worth ¢ = assert (weaklyorthogonal (crs c)) "CRS_is_weakly, orthogonal."

7 sat ¢ = assert (saturated (crs c)) "CRS_is_saturated."
s lc ¢ = assert (locallyconfluent (crs c)) "CRS,is_ locally confluent."

6.9.8 Code (transformations).

1+ expl c¢ = showCRS (explicify (crs c))

2 infer ¢ = showCRS (inferencify (crs c))
s conv ¢ = showCRS (converse (crs c))

« mini ¢ = showCRS (minimalise (crs c))

6.9.9 Code (bootstrap). In order to run the system with HuGs the file crs.prj
contains a list of all the program files:

204 Implementation of Combinatory Reduction Systems Chapter 6

-— $Id: crs.prj,v 2.4 1996/01/29 19:51:45 kris Exp kris $-*-hugs—*-

-- CRS interpreter.
-- Copyright (© 1995-1996 Kristoffer Hggsbro Rose, all rights reserved.

hugs.hs
idioms.lhs
crstype.lhs
crsinput.lhs
crs_scan.hs
crs_parse.hs
crsred.lhs
crsstrat.lhs
crsanal.lhs
crsx.lhs
crsi.lhs
crsmain.lhs

crspretty.lhs

HUGS-specific primitives

idioms

datatypes

input

-- scanner generated from crs.gram by Ratatosk
-- parser generated from crs.tokens by Ratatosk
reduction

strategies

analysis

explicification

inference rules

main program & bootstrap

prettyprinting of term with redexes (for thesis)

Two of these have not been shown above. The first, hugs.hs, contains declara-
tions of a few missing primitives as follows.

-- hugs.hs: HUGS-specific primitives!

primitive primFopen "primFopen" ::String +a -~ (String—a) 2 a
openfile :: String - String
openfile f = primFopen f (error ("can’t open file, "+f)) id

primitive trace "primTrace" ::String-+a-a

The second, crspretty.lhs contains a variant of the showMterm function of
Code 6.2.10 that prints terms with redexes such as shown in Example 2.6.16; it
is reproduced in the appendix A.4.

6.10 Summary

The program that we have presented works as has been demonstrated, but the
CRS system has not been subject to extensive testing. Yet we have found that
working in a high-level language such as Haskell has significantly eased the task
of programming based on the formula of this dissertation, in particular the rapid
prototyping that is possible in Haskell, first of all in the literate Haskell pro-
gramming style, has been a good advantage.

Conclusions

We have achieved a number of milestones with this thesis. In general, we have
described a consistent and comprehensive set of theoretical tools for reasoning
operationaly about reduction that can even be combined in different ways such
as to obtain different levels of abstraction on operational aspects of reduction of
functional programs.

Specifically, a major milestone is the invention and analysis of the Ax(gc)
family of calculi: with this we have achieved a pleasant coherence in descrip-
tions of a range of issues, both reproducing known results such as the abstract
machines, new results, such as the direct proof of Ax PSN A(3, and of course the
classification which in hindsight is what made it possible.

Furthermore, an issue which we believe deserve impact on the theoretical
computer science community at large, is the current rediscovery of higher-order
rewriting by several groups; in this work we have contributed to this by relating
the CRS formalism to operational semantics.

The detailed enumeration of our contributions is located in section 1.1.

Personal Perspective. This work has grown significantly beyond the original scope,
which was “merely” to investigate the operational theory of sharing. We have,
instead, partly succeeded in a much more thorough study of the fundamen-
tal interaction between operational aspects of functional programming lan-
guages. The major reason for the large scope of the present dissertation is that

205

206 Conclusions Chapter 7

the author (re)discovered the CRS formalism and found that a very large num-
ber of systems, derivors, translators, etc., could be expressed as CRS and then
— executed!

This sidetrack led to the main insight of this thesis (in the author’s opinion)
that the operational aspects of reduction and evaluation are largely orthogonal
and can be combined at leisure — so it is not a question of “whether de Bruijn
indices are better/more fundamental/cleaner/etc. for property X” but rather a
question of “which dimension is the critical one for X”. This is new territory,
and the search for interesting points in explicitness space has been sometimes
frustrating, sometimes rewarding!

Future directions. The problem when “opening a space”, as this work has attempt-
ed, is that a space has many points, even when some of the dimensions are
discrete! And this is indeed the case for this work. There are several major
directions for future work that the author would like to continue studying.

A. The classification of naming paradigms opens up a large number of pos-
sibilities for relating different storage architectures, of which the simplest
are stacks and heaps, of course, however, much more could be done.

B. It seems feasible to generalise the notion of reduction strategy to CRSs in
an internal way (in fact our preliminary studies in this direction are implic-
itly included in section 6.8). It may even be possible to derive machines
and other flat reduction systems automatically by automating the machine
derivation principle we have outlined.

Cc. The issue of complexity definitively deserves further study beyond the
mere hints that sharing

D. Finally, it seems that a higher-level description of pattern matching than
is usual can facilitate a much smoother methodology for program transfor-
mations by exploiting referential transparency of pure functional languages
to a larger extent.

Also we have not at all studied type systems or other static aspects of functional

programming languages.

One thing is certain, though: rewriting is interesting, rewarding, and much
more versatile than the author had imagined.

Appendix

In this appendix we have compiled the output of several large runs of the system
of chapter 6. The final section A.4 contains the (rather intricate) special function
used to output terms annotated with their redexes.

A.1 Running the CRS interpreter

This demonstrates with a few examples the way of running the CRS system of
chapter 6 on a particular CRS and term.

A.1.1 Example (dialogue).

Here is an annotated sample dialogue in the style of the appendix; we start just
after the HUGS interpreter has been started (a heap size of 2%° cells is recom-
mended). Lines starting with ‘.’ show the output from the HUGS system; lines
starting with ? is what is typed to the system.

2 VARV A A A R A A / /o ___ / Version 1.01
3 / /___/ /1 /[___

s/ ____ /1 A A / Copyright (c)
s [/ / /1 1/ 1 /-1 1/ 1 [___] [_______ / / Mark P Jones
s /__/ /__/ [o——_____ /) ___ /e __ / 1994

7 The Haskell User’s Gofer System. Derived from Gofer 2.30b.

207

208 Appendix Appendix A

¢ Reading script file "/usr/local/lib/hugs/hugs.prelude":

s Hugs session for:
10 /usr/local/lib/hugs/hugs.prelude
u Type :7 for help

Now HuGS is started it prompts us with a ? and we can load the CRS ‘project
file’ shown in Code 6.9.9.

7 :project crs.prj

12 Reading script file "hugs.hs":

13 Reading script file "idioms.lhs":

1« Reading script file '"crstype.lhs":
15 Reading script file "crsinput.lhs":
16 Reading script file '"crs_scan.hs":
17 Reading script file '"crs_parse.hs":
18 Reading script file '"crsred.lhs":

19 Reading script file '"crsstrat.lhs":
20 Reading script file '"crsanal.lhs":
2 Reading script file "crsx.lhs":

22 Reading script file "crsi.lhs":

23 Reading script file "crsmain.lhs":
24 Reading script file "crspretty.lhs":

2s Type :7 for help

At this point we can ask the interpreter for assistance; the result is shown in
Figure A.1.

Of all these commands we will first make the A-calculus of Example 2.6.6 the
default CRS, extended with the A-terms corresponding to the standard combi-
nators of Notation 2.3.8. They reside in the files lambda.crs and ski.crs (that
were in fact used to typeset the mentioned definitions), so we should concatenate
the two files into the ‘current’ CRS.

? load"lambda ski"
HUGS prints the cost of every operation in this form.

6a (24405 reductions, 74076 cells)

We can check that we have, indeed, loaded the right CRS as follows, exploiting
that the ‘current’ CRS is denoted "":

? Seell n

es CRS:
o6 (‘1x.Z(x))Y &"->" Z(Y) \tag{$‘D$I\\

Section A.1 Running the CRS interpreter 209
? help
26 Welcome to the CRS interpreter (version 3.0 of 1996/02/09)!
27 Copyright (©) 1995-1996 Kristoffer H. Rose <kris@diku.dk>.
28 ACTIVATION:
20 7 load <crs> make <crs> the current #1
0 7 see <crs> show <crs> on screen
s 7 save <crs> save current #1 as <crs> (must be single file :-)
s2 <crs> should be a string with names of files that contain CRSs
33 separated by blanks, <num> for the current #<num>, a
34 transformation or "CRS: ..." where ... is an entire CRS.
35 RUNNING:
s 7 reds <term> show redexes in <term>
7 7 step <term> one step parallel outermost reduction of <term>
8 7 try <term> parallel outermost reduction of <term> to nf
s 7 tryli <term> parallel innermost reduction of <term> to nf
20 7 search <term> exhaustive single reductions of <term> to nf

41

42

43

44

45

46

a7

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

<term> should be a CRS metaterm; the current #1 CRS is used.

These exist in variants where <strategy> and/or <crs> can be
explicitly specified (variants with CS requiring both exist):

7?7 stepC <crs> <term> 7?7 stepS <strategy> <term>
? tryC <crs> <term> 7 tryS <strategy> <term>
? searchC <crs> <term> ? searchS <strategy> <term>

<strategy> should be one of ‘innermost’, ‘outermost’, ‘weak’,
‘strong’, ‘leftmost’, or ‘rightmost’.

In these commands C can be replaced by C2 and then two <crs> args
are needed: the second is applied completely between reductioms.

CHECKS:

? laps <crs> show overlaps between <crs> rule patterns
? crits <crs> show critical pairs of <crs> rules

? orth <crs> check that <crs> is orthogonal

? worth <crs> check that <crs> is weakly orthogonal

? 1lc <crs> approximate search for proof of <crs> LC
? sat <crs> check <crs> saturated

TRANSFORMATIONS (yield new <crs>s):

? expl <crs> <crs> after explicification

? infer <crs> <crs> after internalising inference rules
? conv <crs> <crs> after reversing all rules

? mini <crs> <crs> after removing redundant rules

(5287 reductions, 16628 cells)

Figure A.1: Help message from CRS interpreter.

210 Appendix Appendix A

or I &"->" ‘1x.x \tag{II\\

e K &"->" ‘lxy.x \tag{K}\\

so {K"*x} &"->" ‘Ixy.y \tag{${K"*}$}\\

70 S &"->" ‘1xyz.xz(yz) \tag{S}I\\

7 W &E"->" ‘wiw \tag{$ WS\

2 ‘w &"->" ‘lx.xx \tag{$‘wsI\\

s {Y} &"->" ‘1f. (“‘1x.f(xx)) (‘1x.f(xx)) \tag{${Y}$X\\
7a ‘Q &"->" AA \tag{$‘Q$I\\

s A &"->" ‘Ixy.y(xxy) \tag{A}

76 (17719 reductions, 51066 cells)

It should be apparent to the BTEX (Lamport 1994) user that A\(S-BTEX (American
Mathematical Society 1995) equation system format is used for this in that \\
separates rules and \tag is used to name them.! More importantly, however, it

reveals that the intepreter uses the syntax ‘1 for A and "->" for the reduction
arrow, conventions of the gsymbols KTEX package (Rose 1994).

Now we can check that the system is weakly orthogonal so that it is safe to use
the standard reduction strategy, namely parallel outermost.

? worth""

77 CRS is weakly orthogonal.
7s (17694 reductions, 48832 cells)

Now let us ‘try’ a simple reduction, using the default strategy
? try"SKK"

This first produces a trace output (which may be disabled) describing each reduc-
tion step with the step number and number of redexes, and then all the redexes
on the form {path :rule}.

79 hh 1/3 {00:S} {01:3K$} {1:$K$}
g0 hh 2/1 {0:$‘bS}

st hth 3/1 {:D}

s2 hth 4/2 {000:$‘b$} {001:$‘bS}

8 hh 5/1 {00:$‘bS}

Finally the ‘real’ output: the normal form.
s ‘la.a

ss (27809 reductions, 77987 cells)

1This is how we have been able to claim throughout this dissertation that systems showed
are really those used for reduction.

Section A.1 Running the CRS interpreter 211

In order to find out what this looks like as a combinator we can try to find
SKI combinator combinations that create this — this is done with the following
command (see the help text above for an explanation).

? tryC (conv "ski") "‘la.a"
As expected the result is I after one reduction (which is an ‘expansion’ in the
"ski" system).

s hh 1/1 {:1}
g7 1

ss (34648 reductions, 100470 cells)

That’s all for this example.
? :quit

s [Leaving Hugs]

A.1.2 Example (prettyprinting). The pretty-printing reduction of A.4 is used as
follows to reproduce the (3-reduction of Example 3.1.8. Those commands that
exist in a ‘pretty-printing’ version have a pp prefix. What we want to do is a
complete search of all single rewrites of the A-term (Ax.(Ay.y)x)x. This, however,
has a free variable so we need to mark the last x as a constructor by surrounding
it with {}s. Here is how:

? load"lambda"
1 (27381 reductions, 82160 cells)

-~

pptryS strong "(‘lx.(‘ly.y)x){x}"
\Metaterm{

s \markredex{\(‘1lx. \markredex{\(‘ly.y\)x}{$‘b$} \){x}}{$‘b$}
s }h

s \Reduction{"->!P"}%%% 1/2 {:$‘b$} {000:$‘b$}

¢ \Metaterm{

7 \markredex{\(‘la.a\){x}}{$‘b$}

e th

\Reduction{"->!"}%%% 2/1 {:$‘p$}
10 \Metaterm{

11 {X}

w2 Y%

13 (9550 reductions, 22047 cells)

As should be clear, ‘pretty-printing’ here means that it does not become readable
until run through BTEX in a suitable environment; the result is shown below.

212 Appendix Appendix A

(Ax.)x “+—= | (Aa.a)x | — x

(B) (B)
(B)

A.1.3 Code (Fibonacci number). The following session establishes the system of
Definition 1.3.1 as a CRS on Peano numbers. First we enter (on a single line)
the hugs command

? load "CRS:

? {fib}(0) = 0 TAG{FO0} ; {fib}(S(0)) +S(0) TAG{F1} ;
? {£fib}(S(S(X))) » {fib}(S(X))+{fib}(X) TAG{Fn} ;

? X+0 =+ X TAG{+0} ; X+S(Y) #S(X)+Y TAG{+1}"

1 (9513 reductions, 27318 cells)
We save this system for later use.
> save"fib+"
? (11088 reductions, 32126 cells)
In the CRS file 1t030.crs we have the system
1— S(0);2— S(1);3 — S(2);4 — S(3);5 — S(4);
6 — S(5);7 — S(6);8 — S(7);9 — S(8);10 — S(9);
11 — S(10);12 — S(11);13 — S(12);14 — S(13);15 — S(14);
16 — S(15);17 — S(16);18 — S(17);19 — S(18);20 — S(19);
21 — S(20);22 — S(21);23 — S(22);24 — S(23);25 — S(24);
26 — S(25);27 — S(26);28 — S(27);29 — S(28);30 — S(29)
With these we can now find numbers in the fibonacci sequence and even see

them in a readable notation. Here is the computation of the sixth number.
? tryC(conv"1to30") (tryC"fib+,1t030" "{fib}(6)")

3 8
+ (401064 reductions, 1221596 cells, 1 garbage collection)

A.2 A-calculus

This demonstrates the result of running the CRS system of chapter 6 on the
Axgc-calculus of chapter 3. The system is shown in Definition 3.1.4, however, we
show the CRS as it is used here below.

Section A.2 A-calculus 213

A.2.1 Example.

The Axgc-reduction CRS is split in a file for each subrelation.
? load "b x gc"
+ (27381 reductions, 82160 cells)

The system looks like this to the CRS interpreter:

? see""

CRS:
(“Lx \AmS{M}F(x))\m{N} &"->" \XS ([x]\mS{M}(x),(\m{N})~\fresh) \tag{ba}\\
\XS ([x]lx,\m{N}) &"->" \m{N} \tag{xv}\\
\XS ([x]\mV{y},\m{N}) &"->" \mV{y} \tag{xvgcI\\
\XS ([x]‘ly.\mS{M}(x,y),\m{N}) &"->" ‘1y.\XS ([x]\mS{M}(x,y),\m{N}) \tag{xab}\\
\XS ([x] (\mS{M}_1(x)) (\mS{M}_2(x)),\m{N})
&"->" \XS ([x]\mS{M}_1(x),\m{N})\XS ([x]\mS{M}_2(x),\m{N}) \tag{zap}\\
Am{M}) "\m{aF\m{N} &"->" \m{MF\m{N} \tag{cpap}\\
o \XS ([x](\mS{M}(x))~\m{a},\m{N}) &"->" \XS ([x]\mS{M}(x),\m{N}) \tag{cpx}

11 (81886 reductions, 164620 cells)

As can be seen, the substitution (M)(x := N) is written \XS {{[x]M,N}}, thus
in almost genuine CRS notation which is then converted by TgX to the usual
notation. Here is the reductions of Figure 3.2 for this system.

B © 0N O W N

? ppsearch"(‘1x.(‘ly.y)x){x}"
. rewrite output typeset below ...

12 [{x}]
13 (340781 reductions, 622543 cells)

(Ax.(Ay.y)x)x | — ((Ab.b)a){a :=x) (Ax.)x — (M. (a){a:=x))x

(b) (b)
‘ ((Ab.b)a){a:=x) ‘ — (Ab.b){a = x)(a){a:=x)

(I;)<a =x) — ((b)b:=a))a:=x) [(x(a)a:=x))x] — ((b)(b:=a))(a:=x)
(Ax. (EJC)IKQ =x) Jx — (Ax.x)x (Ab.b)(a:=x) |(a){a (i) x) — (Aa.(a)(b:=x))(a){a:=x)
(?\b.b)(c(lx:i x) (@){a:=x) — ()\a.a)(a)((xcib:): X)

(Ab.b)(é:):: O (a)(a:=x)] — (Abb)a:=x))x ((b)(b:=a)(ai=x) — (a)(a:=x)

(xv) (xv)
(Axx)x | — (a){a:=x) ‘ (Aa.(a){b:=x))(a){a :=x) ‘ — ((a){b:=x)){a = (a){a:=x))
(b) (b)
(Aa] (a){b:=x)|)(a){a :=x) — (Aa.a)(a){a :=x)

214 Appendix Appendix A

(xv)

(Aa. (a)?‘::: x)[x — Aa.ax [(a){a:=(a)a :x);x\vi (a){a = x)
(a){a :(?Co)t)(a =x)) — (a){a:=x) — (a){a:=x)
[(a){a:= (a)(tv:): %) | — (a){a=x) (a)éz) =|(a){a:=x)) — (a){a:=x)
(| (a)(b =(::)) Ja:=x) — (a){a:=x) ((a){b:=x))(Zl) =x) — (a){a:=x)
(Aa.(:;iC)—) (@)a:=x) [(a)a:=x) Hf) (a)(a:=x) | — x

(b) (xv) (xv)
A.2.2 Example.

We can also run the example of Figure 3.4 using the modulo feature of the CRS
system:

? load2 "b x" "gc"
1 (74445 reductions, 160661 cells)
? ppsearch"(‘1x.(‘ly.y)x){x}"

. rewrite output typeset below ...

2 [{x}]
s (126321 reductions, 248958 cells)

Here are the reductions.

Section A.2 A-calculus 215

(Ax.(Ayyh)x | — (Abbla)a:=x) (] Ayyhxx — (Ax.(a){a=x))x
‘((Ab.é?:)(a:::x)‘~>(Ab.b)(a:::x)(a)(a:::x)(b)
(p))<a =x) — (b= a))a:=x) |(Mla)(a:=x)x]— ((b)(b:=a))a:=x)
(Mﬁ%m:mﬂw—MMxh \mmm@m:@\(i@m:uma:@)
(Aa.a) (((1)()(1 =x)| — (Aa.ax ([(b)(b (b:) a)[)(a:=x) — (a){a:=x)
(Ax.x)x S)(a)m =X) \(a)(a:—(a)(z;)t—’c))‘% (a){a:=x)

(b) V)

(a){a:=]|(a){a:=x)) — (a){a:=x) (Aa.a)x| — (a){a:=x) (a){a:=x)| — x

(xv) (b) (xv)

=] x

(xv)

A.2.3 Example.

Another interesting example is Mellies’s (1995) counterexample discussed in
Remark 3.2.1. We first resolve the I combinators (notice the ()s around I to
ensure it is not seen as a constructor with an argument).

? tryC "ski" "‘lx.(‘ly.(I) (Iy)) (Ix)"

1 ‘1x.(‘ly.(‘la.a)(‘la.a)y) (‘la.a)x
2 (21156 reductions, 66066 cells)

Next we search through all reductions of this term.

load"b x gc"
search "‘lx.(‘ly.(‘la.a)(‘la.a)y)(‘la.a)x"

%0 .2

%% 0/1 {000:b}

%% 0/1 {0000000:b}
Yh1.4

%% 1/1 {000:xap}

%% 1/1 {000000:b}
%% 1/1 {000:b}

w0 %% 1/1 {0000000:xv}
1 hh2.8

N N

© o N o o W

w» %% 7/1 {00000:gc}
s %% 7/1 {000:b}

216 Appendix Appendix A

w %h 7/1 {00:xv}

15 hh8.28

1 ‘1x.X

w7 %h 8/1 {000:b}

1 %% 8/1 {000000:xvgc}
19 %% 8/1 {000000:gc}

20 %% 12/1 {00:xv}
2 %A13.1
2 %% 13/1 {00:xv}
23 h%14.0

» (495600 reductions, 1130576 cells, 1 garbage collection)

(output abbreviated). We observe that the shortest path to the normal form is
7 reductions and the longest path is 14 reductions.

A.2.4 Example.

Finally, we derive the critical pairs investigated by the proof of Proposition
3.1.10.c.

? crits""
1 %CRS? crits""

2 rules xap---b

s generate %% 0/1 {:xap}

« \XS ([a]‘1b.\mS{M}(b,2a),\m{N})\XS ([a]l\mS{M}_2(a),\m{N})
s <> %% 0/1 {00:b}

s \XS ([x]\XS ([a]l\mS{M}(a,x),\mS{M}_2(x)),\m{N})

7 rules xab---gc

s generate %% 0/1 {:xab}

o ‘la.\XS ([bl\mS{M}(a),\m{N})
10 <=> %% 0/1 {:gc}

1 ‘la.\mS{M}(a)

12 rules xap---gc¢

13 generate %% 0/1 {:xap}

\XS ([a]\mS{M}_1,\m{N})\XS ([a]l\mS{M}_2,\m{N})
15 <=> %% 0/1 {:gc}

16 \mS{M}_1\mS{M}_2

17 (64512 reductions, 135561 cells)

o
'S

The pretty-printed version is shown below.

Section A.3 PCF 217

(| Aa.M(a,x))(Ma(x))) (x =Ny — | *2P (Ab.M(b){a := a),N)(Mz(a)){a:=N)

(b)

(xap) 3 ((M(a){a:=x),Mz(x))){x := N)
[¥ab s Aa.(M(a))(b:=N)

(Ay.M(y)){(x:=N)
(ge)
(xab) gc }\(lM((l)

[*2P 5 (M1){a :== N)(M3)(a:=N)

(M]M2)<X = N)
(g¢)
(xap) e MM,

A3 PCF

This demonstrates the result of running the CRS system of chapter 6 using
variants of PCF+pairs of Plotkin’s (1977) PCF language shown in Figure 5.2.

A.3.1 Example (PCF+npairs). The full reduction sequence of the example first in
section 5.3 using Plotkin’s PCF with pairs shown in Figure 5.2 on the term

(LfANIF(= 0, T, TL(f(n — 1)) : 18(n = O, F, mp(f(n — 1)) (0 1) + 1) + 1)

is as follows:

| (pfAn.(F(n =0, T,TL(f(n—1)))) : 1F(n =0, F,HD(f(n —1)))) |[(((O+ 1)+ 1)+ 1)

(1)

(Aa.(1F(a =0, T,TL((pa.Ab.(1F(b =0, T,TL(a(b — 1))))
:1F(b=0,F,HD(a(b—1))))(a—1)))):

1F(a =0, F,HD((pa.Ab.(1F(b =0, T,TL(a(b —1)))) :
1IF(b =0,F,up(a(b—1))))(a—1))))(((0+1)+1)+1)

(B)

|

(m(| 0+ +1)+1)=0 |,T,TL(| (ha.Ab.(1r(b = 0, T,tL(a(b — 1)))) : 17(b — 0, F,#p(a(b — 1)))) |
(=om))
((O+D++1)—1) |))) :m(| ((O+1)+1)+1) :o|,F,Hn(
&) (=oF)
[(haAb. (b = 0, Tiru(a(b — 1)) sw(b =0, Fan(a(b— 1)) [(L0 + D+ D+ D =D)
) D

f

218

Appendix Appendix A
(1fr(F, T,T.((Aa.(1F(a = 0, T,TL((pa.Ab.(1F(b = 0, T,TL(a(b — 1))))
11F(b=0,F, HD(a(be)))(an)))
F(a =0, F,HD((pa.Ab.(1F(b =0, T,TL(a(b —1)))) :
F(b=0,F,uD(a(b—1))))(a—1))))((0+ 1)+ 1))))
GEF)
1F(F, F,HD((Aa. (m(af 0, T,TL((pa.Ab.(1F(b =0, T,TL(a(b — 1)))) :
IF(b—O F,HD(a(b 71])]](q71)])] F(a =0, F,HD((pa.Ab.(1r(b = 0, T,TL(a(b—1)))) :
(b =0,Fup(a(b—1))))(a—1)))((0+1)+1)))
(if-F)
(Aa.(1F(a =0, T,TL((pnb.Ac.(1F(c = 0, T,TL(b(c — 1)))) :
(re(| r(c = O, F,HD(b(c — 1))))(a—1)))) :1F(a = 0, F,HD((pnb.Ac.(1F(c = O, T,TL(b(c — 1)))) :) : uD(
IF(c =0,F,HD(b(c—1))))(a—1))))((0+1)+1)

(B)

c =0,T,TL(b(c—1)))):
IF(C—O F, HD(b(c—1))))(a—1)])) F(a =0, F,HD((pnb.Ac.(1F(c = 0, T,TL(b(c — 1)))
F(c =0, F,HD(b(c — 1))))(N0+ 1)+1)

)i

(B)

f

(Te((F(((0+ 1)+ 1) =0, T,TL((pra.Ab.(1F(b = 0, T,TL(a(b — 1))))
:IF(b=0,FED(a(b—1))N)(((0+1)+1)—1)))):
IF(((0+1)+1)=0,F#p((pa.Ab.(tr(b=0,T,TL(a(b—1)))):
IF(b=0,F,#p(a(b—1)))(((0+1)+1)—1)))))

&)

HD((IF(((0+ 1)+ 1) =0, T,TL((pa.Ab.(1F(b =0, T,TL(a(b —1)))) :
1IF(b=0,F,HD(a(b—1))))(((0+1)+1)—=1)))):

F(((0+ 1)+ 1) =0, F,up((pa.Ab.(1F(b =0, T,T(a(b —1)))) :
1IF(b =0,F,up(a(b—1)))N(((0+1)+1)—1))))

@D

f

(m(|(o+1)+1)7o| FHD|(LLq.?\b (1F(b = 0, T,TL(a(b—1)))) : 1F(b — O, F, 5p(a(b — 1

M)
(=0-F) ()
0+ +1—1 |))) :m(| (0+1)+1) =0 |,T,m| (La.Ab.(#(b = 0, T,ru(a(b — 1)))) s 1#(b = 0, F, #p(a(b — 1))))
1) (=0-F) (1)
((o+1)+1) =1)
(-1)
((F, F,up((Aa.(1F(a = 0, T,TL((ra.Ab.(1r(b = 0, T,TL(a(b — 1))))
F(b = FHD(a(b—U)))(u—U)))
(=0,F,Hp((pa.Ab.(1F(b =0, T,TL(a(b—1)))) :
r(b =0,F,up(a(b—1))))(a—1))))(0+1))))
(if-F)
1 (F, T,TL((Aa. (m(a_ 0, T,T((ra.Ab.(1F(b = 0, T,TL(a(b —1)))) :
1¥(b =0, F,up(a(b—1))))(a—1)))):1r(a =0, F,up((pa.Ab.(1F(b = 0, T,ru(a(b—1)))) :
(b =0, F,up(a(b—1))))(a—1))))(0+1)))
(if-F)
(Aa.(1fF(a = 0, T,TL((pnb.Ac.(1fF(c = O, T,TL(b(c — 1)))) :
(up(| 17(c = 0, F,up(b(c —1))))(a—1)))) : 1F(a = 0, F,up((pub.Ac.(1F(c = 0, T,n(b(c — 1)))) : |)) : Ti(
1IF(c = 0, F,ED(b(c—1))))(a—1))))(0+ 1)
(B)
(Aa.(F(a =0, T,TL((pub.Ac.(1F(c = 0, T,TL(b(c — 1)))) :
F(c = 0, F,up(b(c — 1))))(a—1)))) : 17(afo F,HD((mb.Ac.(1F(c = 0, T,TL(b(c —1)))) : |)
F(c =0,F,up(b(c—1))))(a—1))))(0+1)

(B)

f

Section A.3

PCF
(ep((1F((0+ 1) =0, T,TL((pa.Ab.(1F(b = 0, T,TL(a(b — 1))))
F(b=0,F,BD(a(b—1))))((0+1)—1)))):
IF((0+1) :0 F,HD((pra.Ab.(1F(b =0, T,TL(a(b — 1)))) :
F(b = HD(a(b —1))))((0+ 1) —1)))))

(hd)

TL((1F((0+ 1) =0, T, ((na.Ab.(1F(b = 0, T,TL(a(b — 1)))) :
(b =0,FHD(a(b—1))))((0+1)—1)))):

F((0+ 1) =0, F,ep((pa.Ab.(1r(b =0, T,TL(a(b—1)))) :
(b =0,FHD(a(b—1))))((0+ 1) —1))))

&)

f

e (0+1) = 0], Tume(| (waAb.(r(b = 0, Tiru(alb = 1)) :

#(b — 0, F, ap(a(b—1))))|

(=0-F)

219

0+ 1) =1]y

(-1)

(1)
| 0+1) 7o| F,HD | (ha.Ab.(F(b = 0, T,TL(a(b — 1)))) : 17(b = 0, F,up(a(b — 1)))) | (0+1) =1
(=0-F) (1) (-1)
(1r(F, T,mL((Aa.(1F(a = 0, T,TL((pa.Ab.(1r(b = 0, T,1L(a(b — 1))))
:1F(b =0,F,HD(a(b—1))))(a—1)))):
IF(a=0,FHD((pa.Ab.(IF(b=0,T,TL(a(b—1)))) :
IF(b =0, F,Hup(a(b*U)))(a*U)))O)))
Gf-F)
17(F, F,up((Aa. (IF(q =0, T,m.((pa.Ab.(1r(b = 0, T,TL(a(b — 1)))) :
(b =0, F,ap(a(b—1))))(a—1)))) : 1F(a = 0, F, 5p({pa.Ab.(1#7(b = 0, T,1(a(b—1)))) :
1F(b =0, F,HD(a(b—1))))(a—1))))0))
(if-F)
(Aa.(iF(a = 0, TTL((LL Ac.(iF(c = 0, T,TL(b(c — 1)))) :
(tu(|1F(c = 0, F,up(b(c —1))))(a—1)))) :1r(a = 0, F,up((nb.Ac.(1F(c = 0, T,u(b(c—1)))) : [)) : uD(
F(c = 0,F,#p(b(c—1))))(a—1))))0
(B)
(Aa.(iF(a = 0, T,Tu((pub.Ac.(1F(c = O, T,TL(b(c — 1)))) :
F(c =0,F up(b(c—1))))(a—1)))) :1F(a =0,F,up((pnb.Ac.(1F(c = 0, T,TL(b(c —1)))) : |)
IF[CZO,F,HD(b(C*1))))(‘l 1))))0
(B)
(tL((1F(0 = O, T,TL((pa.Ab.(1F(b = 0, T,TL(a(b — 1))))
:1F(b=0,F,HD(a(b—1))))(0—1)))): ;
F(0 =0, F,up((pa.Ab.(1F(b =0, T,TL(a(b—1)))) : 1F(b = 0, F,up(a(b —1)))) (0 —1)))))
D)
HD((1F(0 = 0, T,TL((pna.Ab.(1F(b 70,T,TL(CL(b7U)J)3
(b =0,FHp(a(b—1))))(0—1)))):
17(0 =0, F, up((pa.Ab.(1r(b = O,T,TL(a(bfn))):IF(b:O,F,HD(a(be))J(O*U)))
(hd)
(w0 = 0] F, o (waAb.(w(b = 0, T,m(alb 1)) :w(b =0, F.an(alb 1)) [0~ 1)) : IF*(- T,
=om () =0-T)
| (La.Ab.(ir(b = 0, T,T(a(b — 1)))) :1r(b = 0, F,mp(a(b — 1)))) |(071)
(1)

f

(1r(T,F,HD((Aa.(rF(a = O, T,TL((pa.Ab.(1F(b = 0, T,TL(a(b — 1))))
:F(b=0,F, HD(a(be)))(an))):

F(a =0, F,HD((pa.Ab.(1F(b =0, T,TL(a(b—1)))) :
F(b=0,F,uD(a(b—1))))(a—1))))(0—1))))

(GE-T)

(T, T,TL((Aa. [m(q— 0, T,TL((pa.Ab.(1F(b =0, T,Tu(a(b —1)))) :
1r(b = 0, F,up(a(b *U))](CL*U)))
(b =0, F,up(a(b—1))))(a—1))))(0—1)))

1F(a =0,F #HD((pa.Ab.(1F(b = 0, T,TL(a(b—1)))) :

GET)

f

F:T

220 Appendix Appendix A

A.3.2 Example (PCF with explicit sharing). Next we show the reduction of the even-
odd problem of above but with the sharing PCF CRSar shown in Figure 5.3.
The dialogue with the HuGS interpreter was as follows (after a header similar to
that of Example A.1.1).

? load"pcfa"
1 (44949 reductions, 134715 cells, 1 garbage collection)
The input is (entered all on one line).
? pptryS leftmost
"(Cipf. ‘1n.\\c{if} (n=0) \\c{then} (T)\\c{else} (\\c{t1} (f(n-1)))

:\\c{if} (n=0)\\c{then} (F)\\c{else} (\\c{hd}(f(n-1))))
(CCO+1)+1)+1)"

output typeset below ...
2 (1730807 reductions, 3342279 cells, 4 garbage collections)

The output occupies from here to page 224.

|(uf.?\n.(u?(n:O,T,TL(f(nfﬂ])):IF(n:O,F,HD(f(nfU))) |(((0+1)+1)+
(1)
1N — (‘ (Aa.(ir(a =0, T, (((®)")(a—1)))) z1r(a =0, F,mo(((®)')(a—1))))" b(((om) 1)+
(copy)

(Aa.(ifF(a =0, T,rL(((Aa.(1F(a = O,T,TL(((-)1 J(a—1))))

1) | rFla =0, Fan(((d)a—10))")(a—=1))): \ (1 (

0o+ 1)+1)+1)3
w(a — 0, Fup(((Aa.(r(a — 0, T,ru(((®)')(a—1)))): (((0+1) +1) +1)

w(a=0,Fuo((()')(a—1)N") a— 1O+ 1) +1)+1) (copy)

(B)
=0, T,ru(((Aa.(Fla =0, T, (((®)(a—1)))) :1r(a=0,Fap(((0') (a— 1NN O+ +1)+1)3 —1)))):
F((((0+1)+1)+1)3 =0,Fap(((Aa.(F(a =0, T,ru(((w ')(a=1)))):
w(a=0,Fan(((W")(a= 1NN IO+ +1)+1)3 —=1)) — (r(| ((0+1)+T1)+1) =0
(=0-F)
,Trn(((Aa.(F(a =0, T,rL(((®) ')(a—1)))) :1r(a =0, Fmp(((9))(a— 1NN O+ 1) +1)+1)3 —1)))):

F((((0+1)+1)+1)3 =0,F,up(((Aa.(F(a = 0, T,re(((w) ')(a—1)))) :1r(a = O, F,ep(((=) Y (a— 1NN)0+ 1)+ 1) +
(1F(F, T,TL(((Aa.(rF(a = O, T, (((=) ')(a — 1))))
cr(a=0,Fun((()') (a—1NN(0+ 1)+ 1)+ 13 —1))))

(if-F)
w((((0+1)+1)+1)3 =0,Fup(((Aa.(r(a =0, T,re(((0')(a=1)))) s1r(a=0,Fan(((0) (a— 1N)((((0+1)+1) +
13 — 1)) — (re((| (Aa.(r(a =0, T,7(((®)")(a—1)))) s 1r(a =0, F,u(((8)')(a—1))))" b(mo+n+1)+1)5 —-1))):

(copy)

F((((04+1)+1)+1)3 =0, F,up(((Aa.(F(a = 0, T, (((m) ')(a—1)))) :1F(a =0, F,mp(((m ')(a— TN IO+ 1)+ 1)+
(Aa.(rF(a =0, T,TL(((Aa.(F(a = 0, T,7u(((®) ')(a —1))))

1 1
N3 1 :r(a=0,Fun(((0')(a=1))") (a=1)))): .
)) (r=(r(a=0,F up(((Aa.(F(a = 0, T,ru(((®)')(a—1)))): D)
(a=0,Fuo(((® Ja—1)N") a—1NO+1)+1)+1)3 —1)

(B)
F((((0+1)+1)+1)3 =0,F,up(((Aa.(F(a = 0, T,u(((w) ')(a—1)))) :1r(a = 0, F,up(((=) ' J(a— 1NN)0+ 1)+ 1) +
(TL(Gr((((O+ 1)+ 1)+ 1) =18 =0, T,m(((Aa.(r(a = 0, T,7(((9))(a—1))))
cr(a=0,Frn((()') (a—1NNO+D) +1)+ 1) =18 —1)))):
IF(((((0+1)+1)+1)3 71)8 :O,F,HD((()\q.(IF(a:O,T,TL(((-)] J(a—1)))):
w(a=0,Fuo(((8')(a— NN IO+ 1)+ 1)+ D3 -1 — 1))

(t1)

13 —1)) —

13 —1))) —

Section A.3 PCF 221

F((((04+ 1)+ 1)+ 1)3 =0,Fup(((Aa.(F(a = 0, T,7.(((w) ')(a—1)))):
r(a=0,Fap(((0")(a—1N")(O0+1)+1)+1)3 —1))) — (¥

O+ +1)+1)3 —1)8 ‘

(copy)
=0,Fup(((Aa.(r(a =0, T, (((®')(a—1))) :1r(a=0,Fan(((®')(a— 1N+ +1)+13 =118 —1)))):
w((((0+1)+1)+1)3 =0,Fup(((Aa.(F(a =0, T,r((() ')(a=1)))):

F(a=0,Fap(((®") (a— 1NN+ T)+ 1) +1)3 —1)) — (m((‘ o+ +n+13 ‘

(copy)
—1)=0,Fu(((Aa.(Fla =0, T, (((®) ')(a—1)))) :1r(a =0, Fup(((8)')(a—1NN((((O+ D+ 1)+ 13 —1)8 —1)))):
1F((([0+1)+1)+1]3 :O,F,HD([(ACL.(IF(CL:O,T,TL(([-)] Y(a—1)))):

w(a =0, Fan(((s))(a— 1IN O+ 1)+ 1) +1)3 =1))) — (e (0+ D+ D+ 1) =1)]
(-1)
=0,Fup(((Aa.(Fla =0, T,7e(((®) ')(a—1)))) :1r(a =0, Fan(((=m ')(a—INNH((O+)+ 1+ 13 =118 —1)))):
w((((0+ 1)+ 1)+ 1)3 =0,Fup(((Aa.(F(a =0, T,me((() (a—1)))):

w(a=0,Fap(((m") (a— 1NN O+ T)+1)+1)3 —1))) — (r(| (0+1)+1) =0

(=0-F)
,Fap(((Aa.(F(a =0, T, (((5) ')(a—1)))) :1r(a = 0, F,ap (0)(a — 1NN O+)+1)+1)3 =118 —1)))):
F((((0+1)+1)+1)3 =0,Fmp(((Aa.r(a =0, Tt (9)(a=1)))) s1r(a=0,Fap(((®) (a— 1NN O+ 1)+1) +

1
"3 1) (¥ (F, F,p(((Aa.(r(a = 0, T,ru(((®) ')(a—1))))
sr(a=0,Fup((()') (a— 1NN+ D) + 1)+ 1)3 =18 1))
(if-F)
F((((04+ 1)+ 1)+ 1)3 =0,Fup(((Aa.(F(a = 0, T,7(((w) ')(a—1)))):
r(a =0, FEn((() ")(a— 1IN0+ + D +1)3 —
1)) — (| (Aa.(r(a =0, T,7u(((8)')(a—1)))) sw(a =0, Fao((()')(a— 1))’ ‘)(([((0+1)+11+1)3 —DE =1
(copy)
w((((0+1)+1)+1)3 =0,Fup(((Aa.(r(a =0, T,re(((9')(a=1)))) srr(a=0,Fan(((0) (a = 1N ((0O+ 1)+ 1) +

(Aa.(F(a =0, T,mL(((Aa.(F(a = 0, T, (((®) ')(a —1))))
1 1
113 —1))) — (uo(| P Fla=0.Fm(((0 7)(a—1)))))(a—1)))):

w(a—0,Fuo(((Aa.(m(a = 0, T, (((0)' Y(a—1)))):)
w(a=0,Fu(((m)')(a—1))" N a—INNIO+1)+1)+1)° —1)® —1)
®

F((((0+1)+1)+1)3 =0,F,up(((Aa.(F(a =0, T,u(((m) ')(a—1)))) :1r(a =0, F,up(((m) ' Y(a— 1NN I(((0+ 1)+ 1) +

E(R((((((0+D)+D+1)3—1E -8 — 0, T,1u(((Aa.(F(a = 0, T,7(((w ')(a—1))))
1 1 3 8 16
N3 cr(a=0,F,un(((0") (a— TN+ +1)+1)3 =18 —1)1¢ _1)))):
) 2 E(((((0+ D+ +1)3 =18 —1)'6 =0, Fun(((Aa.(r(a=0,T,7(((8))(a—1)))
sr(a=0,Fap(((0))a—INo+D) +1)+1)3 —1® —1n)'e —1))))
(hd)
S((((0+ 1)+ 1)+ 1)3 =0,Fup(((Aa.(Fla = 0, T,r(((m) !)(a— 1)) :

#(a=0,FEn((()') (a— 1O+ +1)+1)3 —1)) — (m(\ (o+ N +1)+1* =1 —1)'¢ \

(copy)
=0, T,1e(((Aa.(F(a = O, T,te(((=) ' Y(a —1)))) :
w(a=0,Fun((()')(a— 1NN)((O+1)+1)+1)3 =18 —1)16 _1)))):
w((((0+1)+1)+1)3 =0,Fup(((Aa.(Fr(a =0, T,m(((x))(a=1)))):

w(a=0,Fu(((®") (a—1NNO+D)+ 1) +1)3 —1)) — (m((‘ (((o+NH+1+13 -1 ‘

(copy)
71):O,T,TL([(?\CL.(IF(CL:O,T,TL(((I)] Ya—1)))):
w(a=0,Fuo((()")(a— 1NN+ +1)+1)3 =18 —1)'e —1))):
w((((0+1)+1)+1)3 =0,Fup(((Aa.(Fr(a =0, T,m(((x)')(a=1)))):

w(a=0,Fup(((m)')(a—1))N")0+ 1)+ 1)+1)3 —1))) — (!F(((‘ ((O+1)+1)+1)3 ‘

(copy)
—1)—=1)=0,T,m(((Aa.(F(a =0, T,r(((w)")(a —1)))):
w(a=0,Fuo(((")(a—1NN" O+ +1)+1)3 —1)8 —1)T¢ —1)))):
1F((((0+1)+1)+1)3 :O,F,HD([(ACL.(IF(CL:O,T,TL(((-)] Y(a—1)))):

w(a =0, Fan(((8))(a= 1IN O+ 1)+ 1) +1)3 = 1)) — Gr(([(0+ D)+ D+ 1) =1)]

(-1)

—1)=0,T,7(((Aa.(iF(a =0, T,(((w) ")(a—1)))):
w(a=0,Fu(((0)") a— 1IN0+ +1)+1)3 —1)8 —1)16 _1)))):
1?((((0+1)+1)+1]3 :O,F,HD([(?\Q.(IF(QZO,T,TL(((I)] J(a—1)))):
w(a=0,Fu(((®')(a—1)")((O0+1)+1)+1)3 —1))) — (F(| (((0+T1)+1)—1)

(-1)
:O,T,TL(((Au.(IF(u:O,T,TL(((-)' J(a—1)))):
r(a=0,Fup((()") (a—1DN")((O+T)+1)+1)3 =18 —1)16 —1)))):

222 Appendix Appendix A

F((((0+ 1)+ 1)+ 1)3 =0,Fup(((Aa.(F(a = 0, T,T(((w) ")(a—1)))):
w(a = 0, Fap(((0))(a=11)" IO+ 1)+ 1)+1)3 =1))) — (i (0+ 1) = 0] Tur((Aa.(w(a = 0, Tore(((9)') (a=1))):
(=0-F)
w(a=0,Fun(((m")a— 1NN+ +T)+1)3 -1 —1)'6 —1)))):
F((((0+1)+1)+1)3 =0, F,ud(((Aa.(r(a = 0, T,Tu(((m ')(a—1)))) :1r(a = 0, F,up(((m J(a— INN")((((0+ 1)+ 1) +
1
13 1)) — | (F(RTm(((Aa.(r(a = 0, Ty (W) (a = 1))))
srr(a=0,Fun(((0") (a— N0+ +1)+1)3 —1E —1)'6 _ 1))
(if-F)
SE((((0+1)+1)+1)3 =0, Fap(((Aa.(r(a =0, T,re (W))(a=1)))) :1r(a =0, Fan(((0')(a—1)NT)((0+1) + 1)+
NG - — mu\ (Aa.(7(a=0,Tru((())")(a—1)))) :r(a =0, Frn((()')(a=1)))" PO+ 1)+1)+1)3 —
(copy)
NE -1 —) rrr((((0+1)+1)+1)3 =0, Fup(((Aa.(tFla = 0, T,TL((())(a—1)))):
wr(a=0,Fun((()"N)(a— 1IN0+ +D)+1)3 —
(Aq.(IF(a:0,T,TL((()\q.(IF(a:O,T,TL(([-)] J(a—1))))
1 1
. srr(a=0,F (0") (a—1)N") a—1))):
& (e Fla = 0, F, up(((Aa.(Fla = 0, T,7(((w ')(a —1)))) :
(a=0,Fr((()')(a—1))") a—INNU(O+T)+1)+1)3 —18 —1)T¢ 1)
(B)
N :r((((04+1)+1)+1)3 =0, Fup(((Aa.(fF(a =0, T,7(((0)')(a—1)))):®(a=0,Fun(((m)')(a—INN")(((0+1)+

(e (EF((((O+ D+ 1)+ 13 =1 =)' — 1126 0, T, 7n(((Aa. (17(

0, T,re(((m)' J(@—1))):] , . e v

1 13 _1 1F(a=0,FuD(((m) J(a—1)))) H((((((O+1)+1)+1)7 =1)° —1) -1) —1))))

)+ 1)) CE((((((O+ D+ 1) +1)3 —1)8 — 1)1 —1)26 — 0 F up(((Aa.(1F(a =

0, Tr(((m')(a—1)))):

(a=0,Fup((()') (a— 1IN0+ +1)+1)3 —1E —1)T6 _1)26 _1y))))
(1)

:IF((((O+1)+1)+1)3 :O,F,HD(((?\a.(IF(a:O,T,TL(((-)' J(a—1)))):

w(a=0,Fun(((8")(a— 1NN IO+ +1)+1)3 —1))) — (m(‘ ((o+n+1)+1)3 —1)8 —1)Te _q)2¢ ‘

(copy)
=0,F,up(((Aa.(r(a =0, T,mL(((w))(a—1)))):
w(a=0,Fu((())(a—T1DN")(((O0+T1)+1)+1)3 —1)8 —1)16 —1)26 _13)))
CR((((04+1)+1)+1)3 =0, F,up(((Aa.(F(a =0, T,ru(((m)')(a—1)))):

w(a=0,Fu(((0)')(a—1NN")((0+1)+1)+ 13 —1))) — (= ((

(o+n+1n+n? -1 —n'e ‘

(copy)

71]:O,F,HD(([?\CL.(IF(G,:O,T,TL(((I]1 Y(a—1)))):
w(a=0,Fu((())(a—T1DNT)(((O0+1)+1)+1)3 —1)& —1)16 _1)26 _13)))
cr((((04+1)+1)+1)3 =0, F,up(((Aa.(F(a =0, T,u(((0)")(a—1)))):

w(a=0,Fun(((m")a—1NN(O+N+1)+1)3 —1)) — (mm\ o+ +1+13 —18 \

(copy)
—1)—1)=0,Fsp(((Aa.(F(a = O, T,u(((m) ')(a—1)))) :
w(a=0,Fu(((m") a—INNO+T)+1)+1)3 —1)8 —1)16 _1)26 _1))))
:IF(([(0+1)+1)+1)3 :O,F,HD(((?\q.(IF(a:O,T,TL([(-)' J(a—1)))):

F(a=0,Fup((()) (a— 1IN0+ +1)+1)3 —1))) — (m(m‘ ((O+1+1)+13 ‘

(copy)
—1)—1]—1):0,F,I-n)(((}\a.[m(a:O,T,TL(((-)1 Ja—=1)))):
w(a=0,Fup(((n')(a—TDNO0+T+1)+1)3 —1)8 —1)16 —1)26 _1))))
SE((((0+ 1)+ 1)+ 13 =0, Fup(((Aa.(w(a =0, T, (81)(a—1)))):

w(a =0, Fun((()) (a= 1N+ + 1)+ 13 = 1)) — e+ D+ +1) =1

(-1)

71)71):O,F,HD[((?\CL.(IF(q:O,T,TL(((I)])(CL*])))):
w(a=0,Fun((()')(a—1NN"((O+D)+1)+1)3 —1)8 —1)16 _1)26 _1y))))
dE((((0+ 1)+ 1) +1)3 =0, Fap(((Aa.(la =0, T,ru(((0))(a=1)))):

F(a=0,Fup(((m!) a— 1IN0+ +1)+1)3 —1))) — (r((| ((O+T)+1)—1)
&)
—1)=0,F,up(((Aa.(F(a =0, T,r(((w) ')(a—1)))):
r(a—0,Fup(((m')(a—INN" IO+ T)+1)+1)3 —1)8 —1)16 _1)26 _1))))
SF((((0+ 1)+ 1) +1)3 =0, Fun(((Aa.(rrla = 0, T,ru(((m) ')(a —1)))) :
r(a=0,Fap(((®)' J(a—1DN")((O0+1)+1)+1)3 —1))) — (r(| ((0+1)— 1) |=0,F,up(((Ma.(r(a =
(-1)
0, T,rL(((w')(a—1)))) :1r(a =0, Fup(((m)')(a—TDNI((O+ D) +1)+1)3 —1)8 —1)T6 _1)26 _1y)))
Cr((((04+1)+1)+1)3 =0, Fup(((Aa.(F(a =0, T,mu(((m) ')(a—1)))):

Section A.3 PCF 223

N0+ 1)+ 1) +1)3 —1))) — (#([0 = 0], F,up(((Aa.(r(a = 0, T,re(((8)') (a—1)))):

r(a =0,Fup(((w)')(a—
(=0-T)
el =0, Fup(((5)')(a—1)))") 0+1J+1J+U3 NE —nle —1)2¢ —1))))
SF((((0+ 1)+ 1) +1)3 :o,F,HD(((Aq.(IF(a:o,T,m()‘ Ja—1)) :1r(a =0, Fup(((m') (a—1DNIO+1)+ 1)+
13— 1)) (1#(T,F, 1p(((Aa.(r(a — O, T,7o(((w) ')(a —1)))):
|1e(a = 0, Fan(((0' (@ — N0+ 1)+ 1)+ 113 — 118 — 116 _1)26 _1)y))
(if-T)

IF((((0+1)+1)+1)3 :O,F,HD(((?\q.(IF(q:O,T,TL(((-)' J(a—1)))):
(a=0,Fuo(((m')(a—1NN"(O+1D)+1)+1)3 —1))) — Fre(| (0+ D+ 1)+ 13 ‘

(copy)

=0,Fup(((Aa.(rla =0, T, (((®))(a—1)))):
(@ =0, Fun(((s))(a— 1)))O+ 1)+ 1) +1)3 =1))) — Farr(((((0+ 1)+ 1) +1) =0]

(=0-F)
-1 — F:

Fup(((Aa.(Fla =0, T,rL(((®)')(a—1)))) :Fr(a =0, Fun(((0')(a—1NNO+ D +1)+1)

1F(F, F,HD(((Aa. (IF(CL—O T,7u(((] Y(a—1)))):
— F:
w(a=0,Fun(((®")(a—1NN")0+ 1) +1)+1)3 —1)))
GEF)

#o((| (Aa.(F(a =0, T,ru(((m')(a—1)))) :r(a=0,Fuo(((®) " Ja—1NN" PO+ 1) +1)+1)3 —1)) — F:

(copy)
(Aa.(F(a = 0, T,m.(((Aa.(1F(a = 0, T,Te(((®) ')(a —1)))) :
wla=0,Fu((()')(a—1)N")a=1)))): -
el Fla = 0, F,up(((Aa.(1F(a = 0, T,T(((w) " Y(a —1)))):)
w(a=0,Fuo(((8)')(a=1N") a=1DNU0+ 1) +1)+1)3 —1)
(B)
m((E((((0+ 1)+ 1)+ 13 —D* =0, T,r(((Aa.(r(a =0, T,r(((8)' J(a—1))))
sr(a =0, F (01)@= 1O+ 1)+ D+ 1) =1 —1)))): ke
FOO+ D +1)+ 13 —1*" —0,Fup(((Aa.(F(a =0, T,ru(((x) ')(a —1)))):
#(a=0,Fap(((m ")(a—TINHUO++ 1 +1)3 —D)*T —1)))
(hd)

r (((O+D)+1)+1)3 —1)* =0, T,re(((Aa.(F(a =0, T,mu(((9) !)(a—1)))) :

(copy)

(((o+1)+1)+1)3‘
(copy)

- —1))) — Frw((

F(a=0,Fap(((®')(a—1NN" IO+ +1)+1)3

—1) :O,T,TL(((Aq.(IF(q:O,T,TL(((-)] Ya—1)))):
9)@= NDO+ 1D + D+ 13 =14 = 1)) — Frr| (((0+ D+ D+ 1) = 1)]
(-1)

=0, T,re(((Aa.(F(a = O, T,e(((=) ' Y(a —1)))) :

INIIUUO+D +T)+ 13 =14 — 1)) —3 Frrr(| ((0+1) +1) =0 |, T,7e(((Aa.(1F(a =
(=0-F)
0, T,ru(((®')(a—1)))): () a—DMHUO+D+1D+1)3 =14 — 1)) —3 F:
IF(F,T,TL(((}\a.(IF(a:O,T,TL(((-) J(a=1)))):
— F:

w(a=0,Fun((()') (a—1NNO+D)+1)+1)3 —1)* —1)))
(if-F)

F(a =0, F,HD(((

r(a=0,Fap(((=')(a—

F(a = 0, F,HD(

-4 —1) — F:

w(a=0,Fuo(((w')(a—1))" PO+ +T)+1)3

(| (Aa.(F(a = 0, T,TL(((8)")(a —1)))):
(copy)
(Aa.(1F(a =0, TTL((()\q (IF(Q—O TTL(((-)' Ja—1)))):
r(a=0,Fap(((w')(a—1))"a—1)))): S F:
e r(a =0, F,up(((Aa.(F(a = 0, T,TL(((®) ')(a—1)))): ' ’
w(a=0,Fu(((®) Ja—1))")a—1DNO+)+ +1)3 —1)* —1)
®)

TL((IF((((((O+1)+1)+1)371)41 —1* =0, T,m(((Aa.(Fla = 0, T,mL(((0)')(a—1))))

w(a =0, Fun((()") (a— 1NN+ 1)+ 1)+ 1) =1t =1 —1y))): .
m((((o+1)+1)+1)3 N4 —1*? —o,Fup(((Aa.(Fla = 0, T,mu(((W)')(a—1))))

¥(-1 -)

0, Fup(((w") (a— 1)))((((((0+1)+1)+1)3
(t1)
N4 —1)*? | =0, F,up(((Aa.(F(a = 0, T,TL(((

a =

M) a=1)))):

w(((((0+1)+1)+1)3 —
(copy)

224 Appendix Appendix A

F(a =0,Fuap(((m)!) (a— 1IN0+ +1)+1)3 =14 — 14 1)) —3 F:r((

(((O+ 1)+ 1)+ 1) — ! ‘
(copy)

—1)=0,Fmp(((Aa.(r(a =0, T, (((#)')(a—1)))):
(@ =0,Fup((()')(a—1N")((O+1) +1)+1)3 —n* —1)*7 —1))) — F:m(((\ ((o+n+1+n? \

(copy)

—1)—=1)=0,F,up(((Aa.(r(a = 0, T,Tu(((m) ')(a—1)))):
®(a =0, Fan(((8)(a= N0+ + 1)+ D =1 =14 1)) — Fror((((((0+ D+ D+ 1) =1)]
&)

—1)=0,F,vp(((Aa.(1F(a = O,T,TL(((-)1 Ya—1)))):

(a=0,Fup((()") (a— 1NN+ +1)+1)3 =14 -1 1)) — 3 Frr(| ((0+1)+1) —1)

(-1)
=0,F,up(((Aa.(F(a = 0, T,L(((®)")(a—1)))):
w(a = 0, Fap((())(a— 1IN0+ 1)+ 1)+ 13 = 1) = 1)*? —1))) —5 Frw((0+1) = 0] Fuo(((Aa.(w(a =
(=0-F)
0, Tre(((m')(a—1))):r(a =0, Fap(((H) a— N0+ + D+ 13 —D*T — 14 1)) —5 F:
1F(F, F,HD(((Aa.(1F(a ZO,T,TL(((I)] J(a—1)))):
#(a=0,Fup((()')(a— 1NN O+ +1)+1)3 -1 —1)*? 1))
(if-F)

— F:

1((| (Aa.(r(a=0,T,ru((()')(a=1)))) :r(a=0,Fm(((0")a—1NN" PUO+T)+ D) +1)3 -4 —1)4? _
(copy)

(Aa.(1fF(a =0, T,TL(((Aa.(1F(a = O,T,TL(([I)] J(a—1)))):
1)) —— Fap(Fla=0.FEn((())a=10")(a—1))):

S T
IF(a:O,F,HD(((Aa.(IF(a:O,T,TL([(-)] J(a—1)))):)
w(a=0,Fum((()')a—1NN") (a— 1NN+ +1)+1)3 =14 —1)47 —1)
(B)
Ha((F((((((0+1)+ 1)+ 1) =14 —1)*? —1)3? — 0, T,1(((Aa.(F(a =
0, T,u(((=) Ja—1))): 1 , " o o
F(a =0,FHD(((®))(a—1)))))(((((((09+1]+1]+1] -7 =177 =1)°7 —=1)))) yF:

SE((((((0+ 1)+ 1) +1)3 =14t — 1yt

0, T,r(((m")(a—1)))):

w(a=0,Fu(((®)") (a—1)N") (((((O+1)+1)+1)3 =141 147 _1)59 _1))))
(hd)

— 1% — 0, F up(((Aa.(Fla =

F((((0+D) + 1)+ 13 — 14T — 142 _1)5? ‘ZO,T,TL(((ACL.(IF(CL:0,T,TL(((I)] Ya—1)))):

(copy)
r(a=0,Fup(((®") (a—INIO+ 1) +1)+1)3 = 1* — 14 — 137 1)) —5 F:
r((((((0+T1)+1)+1)3 =14 —1)#? ‘—1):O,T,TL([()\Q.(IF(q:O,T,TL(((I)] Ya—1)))):
(copy)

w(a =0, Fan((()')(a=1)))") (((((O+N+1)+1)3 =14 —1)*7 —1)%7 _1})) — F:m(((‘ ((o+n+n+n* - ‘

(copy)
—1)—=1)=0,T,m(((Aa.(F(a =0, T,r(((w)")(a—1)))):

w(a=0,Fm(((®')(a—1NNU(O+1)+1)+1)3 =14 —1)47 —1)57 —1))) — F:m((((‘ ((0+1)+1)+1)3 ‘

(copy)

—1)—=1)—=1) =0, T,mu(((Aa.(F(a = 0, T,rL(((m) ')(a —1)))) :
r(a=0,Fup((()') (a—=INN) O+ +1)+1)3 =14 =147 —1)%7 —1))) — F:m((| u((o+n+n+n—n|
(-1)

—1)—=1) :O,T,TL((()\u.(!F(a:O,T,TL(((-)] J(a=—1)))):
w(a=0,Fm(((®')(a—1NN" O+ +1D)+13 =14 —1)4? —1)5% — 1)) —5 Fo((| (((0+1)+T1)=1)

(-1)
—1) =0, T,m(((Aa.(F(a = 0, T,m(((m) ')(a—1)))):

w(a=0,Fu(((®")(a— 1NN+ +1D)+1)3 =D — 14 — 157 1)) — Frw(| ((0+1)—1) |=

(-1)

O, ,re(((Aa.(1F(a = O,T,Tz,(((-)‘ J(a=—1)))):

wla =0, Fuo(((0)) (a— 1NN IO+ + 1 +1)3 —1*T -1 15 1)) —3 Frw0 = 0] Tmu((Aa.(w(a =
(=0-T)
0, T,rn(((W')(a=1))):r(a=0,Fan(((0)a=1DNHUUO+ DN+ +1)3 =14 147 —1)57 —1))) — F:
F(T, T,7L(((Aa.(1F(a ZO,T,TL(((I)] J(a—1)))):
#(a=0,F ()")(a— 1IN0+ D+1)+D3 —1*T —1)*7 —1)%7 1))
(if-T)

— 3 F:T

Section A.4 Pretty-printing Metaterms with Redexes 225

A.3.3 Code (PCF with explicit sharing and substitution). The ‘real complexity’ of the
reduction of Example A.3.2 above is shown by the result of running the same
reduction in the explicified system which is shown in figure Figure 5.4.

7 load(expl"pcfa)
3 (325175 reductions, 722552 cells, 1 garbage collection)

The reduction shows what happens: some ‘shared’ redexes are reduced that
cannot be reduced.

? tryS leftmost
"(“mf. “1n.\\c{if}(n=0)\\c{then}(T)\\c{else} (\\c{t1}(f(n-1)))
\\c{if}(n=0)\\c{then} (F)\\c{else} (\\c{hd}(f(n-1))))
(Co+D+1)+1)"

The output is as follows — for brevity only an excerpt of the list of redexes is
shown, not the actual terms.

%% 1/1 {0:$‘m$-x}

%% 2/1 {0:copy}

%% 3/1 {0:x-$°1$-1}
%% 4/1 {00:xma-$1$3}
%% 5/1 {:$‘b$-x}

%% 6/1 {00:x-$:$-1}
10%h 7/1 {:x-$:$-313}

11 %% 8/1 {000:x-$@$-1}
12 %4 9/1 {0:x-$@$-1}

© ® N o oo

13 %% 332/1 {10000:-1%}

14 %% 333/1 {10001:xgc-1-1}

15 %% 334/1 {10001:x-0-1}

16 %% 335/1 {1000:=0-T}

17 %% 336/1 {101:xgc-1-1}

18 %% 337/1 {101:x-$Ac{then}$-1}
19 %% 338/1 {1010:x-T-1}

20 %% 339/1 {1100:x-$Ac{else}$-1}
21 %% 340/1 {11:x-$Ac{else}$-1}
22 %% 341/1 {1:if-T}

23F:T

224 (4199996 reductions, 9141399 cells, 11 garbage collections)

A.4 Pretty-printing Metaterms with Redexes

This section presents a complex pretty-printer that prints a metaterm and a set
of redexes.? It is a generalisation of showMterm from Code 6.2.10.

2The section is the result of typesetting the literate Haskell script “crspretty.lhs”.

226 Appendix Appendix A

A.4.1 Code.

+ rxMterm,rxMterm’ :: [Redex] + Mterm -+ String

First we shave off all the irrelevant stuff of the redexes, leaving just a list of pairs
of paths and rule names.

2 rxMterm = rxMterm’’ False
3 rxMterm’ = rxMterm’’ True

s rxMterm’’ b rxs t = (case str of
nn - nn

] ws + "\\Metaterm{\n" +ws+"\n}/\n") where
7 str = brk (words (showMterm’ t [(A(Rx p _ (_,_,nm)) # (p,nm))rx | rx+rxs 1))

8 brk [] = hn
o brk (w:ws) = wHbrk’ (balance w) (length w) ws

10 brk’ i _ []

1w brk’ i n (w:ws) | n_lw<brklength = " "+Hw+brk’ i’ n_lw ws

12 | b = "\\break{}\n" +indent i+w+brk’ i’ 1lw ws
13 | otherwise = "\\allowbreak\n"+w+brk’ i’ 1w ws

14 where lw = strlength w ; n_lw = n+lw+l

15 i’ = it+balance w

16 brklength = 80
17 strlength w = length (filter (‘notElem‘ "\\{}.") w)

12 balance w = length (filter (’(’ =) w) - length (filter (’)’ =) w)

19 indent O = "
20 indent (i+1) ’“J:indent i

Two auxiliaries are essential. The first prints out appropriate marks for any
redexes at just the current point.

21 p:: [(Path,String)] = String -+ String
2 prss=p2rs s (pl rs)
3 plrs=[nom | (ns,nm)«rs, ns=[]]

24 p2 rs s here = foldr markredex s here where
25 markredex nm s | length s < 200 = " \\markredex{"+s+"}{" +nm+"} "
26 | otherwise = " \\markredexlong{"+s+"}{"+nm+"} "

The second filters out just those redexes that are local to the nth subterm.
2z q::Int + [(Path,String)] + [(Path,String)]
22 QN rs = below

29 where

Section A.4 Pretty-printing Metaterms with Redexes 227

30 below = [(tail ns,nm) | (ns,nm) +rs, current(ns,nm)]
31 current ((n’:ns’),nm) | n’=n = True
32 | otherwise = False
33 current (_,_) = False

Some shorthands:

3¢ qO =q 0

s qgql =q1

The rest is just the showMterm local definitions except that all the functions have
an extra redexes argument r. The rule for p is: “When ever term structure is
stripped off, make sure to mark that redex.” The rule for q is to apply it such that
“Whenever a term is passed, r is local to it. Whenever a list of terms is passed,
r is local to the parent.” The only remaining issue is that the functions marked
INNER do not print redexes because they are called at points where printing of
redexes has already happened.

This function is reduced in size because it is not reduced in complexity.

36 showMterm’ (Mvar v) r=prv

37 showMterm’ (Mabs v t) r = p r (showMabs v t(q0 r))

38 showMterm’ (Mcon fs ts) r = p r (showMcon fs ts r)

39 showMterm’ (Mapp mv ts) r = p r (showSym mv+showMtermlist ts r)

40 showMabs vs (Mabs v t) r | pl r =[] = showMabs (vs+v) t(q0 r) --INNER

a1 | otherwise= "["+vs+"]"+showuMterm’ (Mabs v t) r

42 showMabs vs t r = "["+Hvys+H"]"+HshowMterm’ t r

43 showMcon fs@(s,1,False) [Mabs v t] r = showMcon’ fs v t(q0 r) --INNER

4¢ showMcon fs@(s@(’‘’:_),2,True) [t1,t2] r =

45 "ou{{u" +showSimple’ t1(q0 r)+","+s+" "+ showSimple’ t2(ql r)+" }},"

46 showMcon fs@(":",2,True) [t1,t2] r showSimple t1(q0 r)+",: "+ showMterm’ t2(ql r)

47 showMcon fs@("@",2,_) [s,t] r = showApp s t r

48 showMcon fs@(""",2,True) [s,t] r = "("+showMterm’ s(q0 r)+") "+showSimple t(ql r)+"\\,"
49 showMcon fs@(s,2,True) [t1,t2] r = showSimple t1(q0 r)+s+showSimple t2(ql r)
50 showMcon fs@("{,}",0,False) (W] r="Q"

51 showMcon fs@("{,}",n+2,False) ts r = showMtermlist ts r

52 showMcon fs@("‘<>",0,False) [] r = "o

53 showMcon fs@("‘<>",n+1,False) ts r = "<"+showMtermlist’ ts r O+">"

54 showMcon fs@(s@(’\\’:’X’:_),_,False) ts r =

55 showSym fs+ ", {{ "+ showMtermlist’ ts r O+" }},"

56 showMcon fs ts r = showSym fs+showMtermlist ts r

57 showMcon’ fs@(s,1,False) vs t’@(Mcon (s’,1,False) [Mabs v t]) r --INNER
58 | s=s’Apl r=[]1 = showMcon’ fs (vs+v) t(q0 r)

59 | otherwise = showSym fs+vs+"."+showMterm’ t’(q0 r)

60 showMcon’ fs vs t’ r = showSym fs+vs+"."+showMterm’ t’(q0 r)

61 showMcon’’ fs@("@",2,_) ts r
62 showMcon’’ fs@(s,1,False) [Mabs v t] r
63 showMcon’’ fs@(_,a,False) ts r | a=0

"\\ ("+showMcon fs ts r+"\\)" --INNER
"\\("+ showMcon’ fs v t(q0 r)+"\\)"
"\\("-H-ShoWMCO!I fs ts r-|+"\\)“

64 | otherwise showMcon fs ts r

65 showMcon’’ fs ts r "\\("+showMcon fs ts r+"\\)"

66 showSimple’ (Mcon (s@(’¢’:_),2,True) [t1,t2]) r =

67 p r ("ou{{,"+showSimple t1(q0 r)+", "+ s+" "+ showSimple t2(ql r)+"_}}.")
68 showSimple’ t r = showSimple t r

69 showSimple (Mvar v) r=prv

228 Appendix Appendix A

70 showSimple (Mabs v t) r = pr ("\\("+showMabs v t(q0 r)+"\\)")

71 showSimple (Mcon fs []) r = p r (showSym fs)

72 showSimple (Mcon (s@(’°‘’:’{’:_),2,True) [t1,t2]) r =

73 p r ("\\<"#showMterm’ t1(q0 r)+", "+ s+ " "+ showMterm’ t2(ql r)+"\\>")
74 showSimple (Mcon ("@",2,_) [t1,t2]) r = p r (showApp t1 t2 r)

75 showSimple (Mcon ("~",2,True) [s,t]) ("("+ showMterm’ s(q0 r)+") "+showSimple t(ql r)+"\\,")

76 showSimple (Mcon ("{,}",0,False) (WD) "o
77 showSimple (Mcon ("{,}",n+2,False) ts) (showMtermlist ts r)
78 showSimple (Mcon ("‘<>",0,False) []) negn

79 showSimple (Mcon ("‘<>",n,False) ts) ("<"+showMtermlist’ ts r O+">")
80 showSimple (Mcon fs ts) ("\\("+ showMcon fs ts r+"\\)")
81 showSimple (Mapp mv []) r (showSym mv)

82 showSimple (Mapp mv ts) r = p r ("\\("+showSym mv+showMtermlist ts r+"\\)")

HHHHRHHK
| T I [| A [O | I [}
‘os'voo'uo g

HHHHHARHHHK

83 showApp s (Mvar v) r = showB4var s(q0 r)+p(ql r)v --INNER
8¢ showApp s (Mcon fs []) r = showSimple s(q0 r)+p(ql r)(showSym fs)

85 showApp s t@(Mcon fs ts) r = showB4par s(q0 r)+p(ql r)(showMcon’’ fs ts (ql r))

86 showApp s (Mapp mv []) r = showSimple s(q0 r)+p(ql r)(showSym mv)

87 showApp s t r = showB4par s(q0 r)+"\\("+showMterm’ t(ql r)+"\\)"

88 showB4par (Mvar v) r=prv

89 showB4par (Mcon ("@",2,_) [s,Mvar v]) r = p r (showB4var s(q0 r)+p(ql r)v)

90 showB4par t@(Mcon fs@(s,a,False) ts) r = p r (showMcon’’ fs ts r)

91 showB4par t r = "\\("+showMterm’ t r+"\\)"

92 showB4var (Mvar v) r=prv

93 showB4var (Mapp mv []) r = p r (showSym mv)

94 showB4var (Mcon fs []) r = p r (showSym fs)

95 showB4var (Mcon ("@",2,_) [s,Mvar v]) r = p r (showB4var s(q0 r)+p(ql r)v)

96 showB4var t r = "\\("+showMterm’ t r+"\\)"

97 showMtermlist [] r = "" --INNER
98 showMtermlist ts r = "\\("+showMtermlist’ ts r O+ "\\)"

99 showMtermlist’ [t] rn showMterm’ t(q n r) --INNER+INDUCTIVE

100 showMtermlist’ (t:ts) r n showMterm’ t(q n r)+","+showMtermlist’ ts r (n+1)

A.4.2 Code (print reduction). Following are versions of the nf and nfs functions
of section 6.5 that do extensive printing using the above print function. First
the pretty version of nf.

1 ppnf,ppnf’ :: CRS # CRS =+ Strategy +* Mterm - String

2 ppnf = ppnf’’ False
s ppnf’ = ppnf’’ True

« ppnf’’? b [1 0O _ t = rxMterm’’ b [] ¢t

s ppnf’’ b crs crs2 strat t = nf’ 0 t where

6 nf’ nt | rxs=[] = rxMterm’’ b [] t’

7 | otherwise = rxMterm’’ b rxs t’

8 +"\\Reduction{\"->!{""+shownumb n+"}\"}%\n"
9 +nf’ nl (rewrite nl rxs t’)

10 where rxs = strat t’ (redexes crs t’)

11 nl = n+1

12 t’ = nf crs2 [] outermost t

And the pretty nfs.

Section A.4 Pretty-printing Metaterms with Redexes

13 ppnfs,ppnfs’ :: CRS # CRS @ Strategy @+ Mterm » String

1 ppnfs = ppnfs’’ False
15 ppnfs’ = ppnfs’’ True

s ppnfs’? b [1 [] _ t = rxMterm [] t

i ppnfs’’ b crs crs2 strat t = snd(nfs’ 0 [1 [t]) where

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

nfs’ :: Int + [Mterm] + [Mterm] =+ ([Mterm] ,String)
nfs’ n _ [1 = ([1,"M

nfs’ n old current = (newnfs
+tr (show nl+"/"+show (length current))
terms’,
reds’
+Hunlines newreds
+unlines [rxMterm’’ b [] t | t+ newnfs])
where

(terms’,reds’) = nfs’ nl (old+newnfs) new
nl = n+1
newnfs = [t | (t,_) + nfpart, t ‘notElem‘ o0ld]

(new,newreds) = unzip [tt rx t (rewrite nl [rx] t)
| (t,rxs) + nonnfpart, rx+ rxs]
tt rx t t’ = (t’, rxMterm’’ b [rx] t+"\\Reduction{\"->!\"}%\n"
+HrxMterm [] t7)

(nfpart ,nonnfpart) =
partition (A(_,rx) 2 rx=1[])
[(t, strat t (redexes crs t)) | t+ current’]

current’ = map (nf crs2 [] outermost) (nub current)

229

A.4.3 Code (pretty interaction). Noisy version of the interactive functions in sec-
tion 6.9.

38 ppstep s = rxMterm[] (onestep (crsf "crsi") (crsf "crs2") outermost (term s))
39 pptry s = ppnf (crsf "crsil") (crsf "crs2") outermost (term s)
20 pptryi s = ppnf (crsf "crsi") (crsf "crs2") innermost (term s)
41 ppsearch s = ppnfs (crsf "crsi") (crsf "crs2") strong (term s)

42 ppstepS strat s = rxMterm[] (onestep (crsf "crsi") (crsf "crs2") strat (term s))
43 pptryS strat s = ppnf (crsf "crsl") (crsf "crs2") strat (term s)
42 ppsearchS strat s = ppnfs (crsf "crsi") (crsf "crs2") strat (term s)

Alternate versions of some for longer reductions.

45 pptry’ s = ppnf (crsf "crsi") (crsf "crs2") outermost (term s)
46 pptryi’ s = ppnf’ (crsf "crs1") (crsf "crs2") innermost (term s)
a7 ppsearch’ s = ppnfs’ (crsf "crsi") (crsf "crs2") strong (term s)

230 Appendix Appendix A

48 ppstepS’ strat s = rxMterm’[] (onestep (crsf "crsi1") (crsf "crs2") strat (term s))
49 pptryS’ strat s = ppnf’ (crsf "crsi") (crsf "crs2") strat (term s)
50 ppsearchS’ strat s = ppnfs’ (crsf "crs1") (crsf "crs2") strat (term s)

And the ‘driver’ function that delays the actual normal forms to last.

51 delay ts = delay’ ts ts where
52 delay’ [] ts’ = show ts’
53 delay’ (t:ts) ts’ = checkMterm t+delay’ ts ts’

A.4.4 Code (overlaps). Printing overlaps and critical pairs.

54 pplaps :: String = String
55 pplaps ¢ = "\n"+foldrl (Ax y—+x+"\\\\\n"+y)
56 [rxMterm [rx1,rx2] t | (t,rxl,rx2) +overlaps (crs c)]

57 ppcrits :: String = String

58 ppcrits ¢ = "\n"

59 +case [ppcritwithreducts t rxl rx2 (rewrite O[rx1]t) (rewrite O[rx2]t)
60 | (t,rxl,rx2) + overlaps (crs c)]

61 of [] = "\\text{Noy,critical, pairs!}"

62 cps # foldrl (Ax y = x+"\\\\\n"+y) cps

63 +|_||\nll

We show a critical pair and two reducts using Xy-pic.

64 ppcritwithreducts t rxi@(Rx _ _ (_,_,nm1)) rx2@(Rx (_,_,nm2)) t1 t2 =
65 "\t{\\vcenter{\\xy_O*{\\displaystyle "+ rxMterm [rxl,rx2] t+"\t}=\"s\""
66 +"\\ar_ +R+<2pc,+1.5pc>*+!L{\\displaystyle "

67 HrxMterm[Jt1+ "\t} " -{\\text{" +nml+"}}"

68 +"\\ar_ +R+<2pc,-1.5pc>*+!L{\\displaystyle, "

69 +HrxMterm[]t2+ "\t}_-{\\text{" + nm2+"}}"

70 +"\\endxy}}"

A.4.5 Code (local confluence). Testing that the normal forms of locally divergent
reductions converge.

1+ pplc::String = Check

2 pplc ¢ =

3 either "\\text{CRS mnot locally ,confluent!}\\\\\n"

a (foldrl (Ax y =+ x+H"\\\\\n"+y)

5 [ppcritwithreducts t rxl rx2 t1 t2

6 | (t,rxl,rx2) +overlaps c’,

7 tl1+nfs ¢’ [] strong (rewrite O [rx1] t),
8 t2+nfs c’ [] strong (rewrite 0 [rx2] t),
0 t1#t2 1)

10 where ¢’ = crs ¢

A.4.6 Code (sample output). These prefix commands provide quick&dirty output
to test files.

11use ¢ = writeFile "sample.done" "Updating, CRSs\n" complain (load c)
12use2 ¢ c2 = writeFile "sample.done" "Updating ,CRSs\n" complain (load2 c c2)

Section A.4 Pretty-printing Metaterms with Redexes

13run f

sr (pptry (show (termf f)))

14 runS strat f = sr (pptryS strat (show (termf £)))
15 runsearch f = sr (ppsearch (show (termf £f)))

16 runt f

= sr (pptry (show (term f£)))

17 runtS strat f = sr (pptryS strat (show (term £)))
18 runsearcht f = sr (ppsearch (show (term £f)))

19 test f

20 sr s =
21 sC s =

22sSX X s
23
24

= sc (£ ")

sx "tex" ("\\begin{center}\\CRScenter" + s+ "\\end{center}\n")
sx "tex" ("{\\CRScrits\\begin{gather*}"+ s+ "\\end{gather*x}}\n")

= writeFile ("sample."+x) s complain $
writeFile "sample.done" ("Updating, ,CRSs,("+zx+ " component)\n") complain $
done

231

232

Bibliography

Abadi, M., Cardelli, L., Curien, P.-L. and Lévy, J.-J. (1991). Explicit substitu-
tions. Journal of Functional Programming 1(4): 375-416.

Abramsky, S. (1990). The lazy lambda calculus. In Turner, D. A. (ed.), Research
Topics in Functional Programming. Addison-Wesley. Chapter 4: pp. 65—
116.

Aczel, P. (1978). A general Church-Rosser theorem. Technical report. Univ. of
Manchester.

Aho, A. V., Sethi, R. and Ullman, J. D. (1986). Compilers: Principles, Tech-
niques and Tools. Addison-Wesley.

American Mathematical Society (1995). AAS-BTEX Version 1.2 User’s Guide.
(urL: ftp://ftp.tex.ac.uk/ctan/tex-archive/macros/ams/amslatex/)

Ariola, Z. M. and Arvind (1992). Graph rewriting systems. Computation Struc-
tures Group Memo 323-1. MIT.

Ariola, Z. M., Felleisen, M., Maraist, J., Odersky, M. and Wadler, P. (1995).
A call-by-need lambda calculus. POPL ’95—22nd Annual ACM Sympo-
sium on Principles of Programmaing Languages. San Francisco, Califor-
nia. pp. 233-246.

Ariola, Z. M. and Klop, J. W. (1994). Cyclic lambda graph rewriting. LICS ’94—
Ninth Annual IEEE Symposium on Logic in Computer Science. Paris,
France. pp. 416-425. full version forthcoming (Ariola and Klop 1995b).

Ariola, Z. M. and Klop, J. W. (1995a). Equational term graph rewriting. Tech-
nical report. CWI. To appear in Acta Informatica.

233

234 Bibliography

Ariola, Z. M. and Klop, J. W. (1995b). Lambda calculus with explicit recursion.
Personal Communication.

Backus, J. (1978). Can programming be liberated from the von Neumann style?
a functional style and its algebra of programs. Communications of the
ACM 21. Based on 1977 Turing lecture.

Barendregt, H. P. (1984). The Lambda Calculus: Its Syntar and Semantics.
Revised edn. North-Holland.

Barendregt, H. P., van Eekelen, M. C. D. J., Glauert, J. R. W., Kennaway,
J. R., Plasmeijer, M. J. and Sleep, M. R. (1987). Term graph rewriting. In
de Bakker, J. W., Nijman, A. J. and Treleaven, P. C. (eds), PARLE ’87—
Parallel Architectures and Languages Europe vol. II. Number 256 in
LNCS. Springer-Verlag. Eindhoven, The Netherlands. pp. 141-158.

Benaissa, Z.-E.-A., Briaud, D., Lescanne, P. and Rouyer-Degli, J. (1995).
Av, a calculus of explicit substitutions which preserves strong nor-
malisation. Rapport de Recherche 2477. INRIA, Lorraine. Techndpole
de Nancy-Brabois, Campus Scientifique, 615 rue de Jardin Botanique,
BP 101, F-54600 Villers lés Nancy. (URL: http://www.loria.fr/~lescanne/
PUBLICATIONS/RR-2477.PS)

Benaissa, Z.-E.-A. and Lescanne, P. (1995). Triad machine: A general computa-
tion model for the description of abstract machines. Technical Report 95-
R-410. CRIN (Centre de Recherche en Information de Nancy), Batiment
Loria. B.P.239, F-54506 Vandoevre lés Nancy Cedex.

Berners-Lee, T, Fielding, R. and Frystyk, H. (1995). Hypertext transfer protocol
- HTTP/1.0. IETF Internet Draft. (URL: http://www.ics.uci.edu/pub/ietf/
http/draft-ietf-http-v10-spec-03.html)

Bird, R. and Wadler, P. (1988). Introduction to Functional Programming.
Prentice-Hall.

Bloo, R. and Geuvers, J. H. (1996). Explicit substitution: on the edge of strong
normalisation. Computing Science Reports 96—10. Eindhoven University
of Technology. P.O.box 513, 5600 MB Eindhoven, The Netherlands.

Bloo, R. and Rose, K. H. (1995). Preservation of strong normalisation in named
lambda calculi with explicit substitution and garbage collection. CSN 95 —

Bibliography 235

Computer Science in the Netherlands. pp. 62-72. (URL: ftp://ftp.diku.dk/
diku/semantics/papers/D-246.ps)

Bloo, R. and Rose, K. H. (1996). Combinatory reduction systems with explicit
substitution that preserve strong normalisation. In Ganzinger, H. (ed.),
RTA ’96—Rewriting Techniques and Applications. Number 1103 in
LNCS. Rutgers University. Springer-Verlag. New Brunswick, New Jersey.
pp. 169-183. (urL: http://www.brics.dk/~krisrose/PAPERS /bloo+rose-
rta96.ps.gz)

de Bruijn, N. G. (1972). Lambda calculus notation with nameless dummies, a
tool for automatic formula manipulation with application to the Church-
Rosser theorem. Koninkligke Nederlandse Akademie van Wetenschap-
pen, Series A, Mathematical Sciences 75: 381-392. Also chapter C.2 of
(Nederpelt, Geuvers and de Vrijer 1994).

Burn, G. L., Peyton Jones, S. L. and Robson, J. D. (1988). The spineless G-
machine. LFP '88—ACM Conference on LISP and Functional Pro-
grammang. Snowbird, Utah. pp. 244-258.

Cailliau, R. (1995). A little history. World Wide Web. (URL: http: //www.w3.org/
pub/WWW /History.html)

Church, A. (1936). A note on the entscheidungsproblem. J. Symbolic logic
58: 354-363.

Church, A. (1941). The Calculi of Lambda-Conversion. Princeton University
Press. Princeton, N. J.

Church, A. and Rosser, J. B. (1935). Some properties of conversion. Transac-
tions on the AMS 39: 472-482.

Claus, V., Ehrig, H. and Rozenberg, G. (eds) (1978). 1978 International Work-
shop in Graph Grammars and their Application to Computer Science
and Biology. Number 73 in LNCS. Springer-Verlag. Bad Honnef, F. R.
Germany.

Collins (1979). English Dictionary. William Collins Sons & Co. Ltd.

Cousineau, G., Curien, P.-L. and Mauny, M. (1987). The categorical abstract
machine. Science of Computer Programming 8: 173-202.

236 Bibliography

Crégut, P. (1990). An abstract machine for the normalisation of A-terms. In
LFP 90 (1990). pp. 333-340.

Curry, H. B. and Feys, R. (1958). Combinatory Logic. Vol. I. North-Holland.

Danthine, A. A. S. (1980). Protocal representation with finite-state models.
IEEE Trans. on Commun. COM-28: 632-643.

Danvy, O. and Pfenning, F. (1995). The occurrence of continuation parameters
in cps terms. Technical Report CMU-CS-95-121. School of Computer Sci-
ence, Carnegie Mellon University. Pittsburgh, PA 15213.

Ehrig, H. (1978). Introduction to the algebraic theory of graph grammars. In
Claus, Ehrig and Rozenberg (1978). pp. 1-69.

Fairbairn, J. and Wray, S. C. (1987). TIM: A simple, lazy abstract machine
to execute supercombinators. In Kahn, G. (ed.), FPCA ’87—Functional
Programming Languages and Computer Architecture. Number 274 in
LNCS. Springer-Verlag. Portland, Oregon. pp. 34-45.

Felleisen, M. and Friedman, D. P. (1989). A syntactic theory of sequential state.
Theoretical Computer Science 69: 243—287.

Glauert, J. R. W., Kennaway, J. R. and Sleep, M. R. (1989). Final specification
of Dactl. Report SYS—C88-11. University of East Anglia. Norwich, U.K.

Godel, K. (1931). liber formal unentscheidbare Satze der Principia Mathemathica
und verwandter Systeme I. Monatsh fiir Math. u Phys. 12(XXXVIII): 173
198.

Gordon, A. D. (1993). A mechanisation of name-carrying syntax up to
alpha-conversion. HUG’93—Proc. of International Higher-Order Log-
ic theorem Proving Workshop. LNCS. Univ. of British Columbia. (URL:
ftp://ftp.cl.cam.ac.uk /papers/adg/hug93.dvi.gz)

Grue, K. (1987). Call-by-mix: A reduction strategy for pure A-calculus. Unpub-
lished note from DIKU (University of Copenhagen).

Hannan, J. and Miller, D. (1990). From operational semantics to abstract
machines: Preliminary results. /n LFP ’90 (1990). pp. 323-332.

Bibliography 237

Henderson, P. (1980). Functional Programming—Application and Implemen-
tation. Prentice-Hall.

Hudak, P. and Fasel, H. (1992). A gentle introduction to Haskell. SIG-
PLAN Notices 27(5). (UrL: ftp://ftp.dcs.gla.ac.uk/pub/haskell/tutorial/
tutorial.ps.Z)

Hudak, P., Peyton Jones, S. L., Wadler, P. and others (1992). Report on the pro-
gramming language Haskell. SIGPLAN Notices 27(5). Version 1.2. (URL:
ftp://ftp.dcs.gla.ac.uk/pub/haskell /report /report-1.2.ps.Z)

Huet, G. (1980). Confluent reductions: Abstract properties and applications to
term rewriting systems. Journal of the ACM 27(4): 797-821.

Hughes, J. M. (1982). Super-combinators: A new implementation method for
applicative languages. LFP ’‘82—ACM Symposium on LISP and Func-
tional Programmang. Pittsburgh, Pensylvania. pp. 1-10.

Jeffrey, A. (1993). A fully abstract semantics for concurrent graph reduction.
Computer Science Report 12/983. School of Cognitive and Computing Sci-
ences, University of Sussex. Falmer, Brighton BN1 9QH, UK.

Johnsson, T. (1984). Efficient compilation of lazy evaluation. SIGPLAN Notices
19(6): 58-69.

Jones, M. P. (1995). HUGS — Haskell user’s gofer system (v1.01). Internet dis-
tributed. (URL: ftp://ftp.cs.nott.ac.uk/pub/haskell /hugs)

Kahn, G. (1987). Natural semantics. Rapport 601. INRIA. Sophia-Antipolis,
France.

Kahrs, S. (1993). Compilation of combinatory reduction systems. Extend-
ed version of HOA’93 paper. (URL: ftp://ftp.dcs.ed.ac.uk/pub/smk/CRS/
compile.dvi)

Kamareddine, F. and Nederpelt, R. P. (1993). On stepwise explicit substitution.
International Journal of Foundations of Computer Science 4(3): 197-
240.

Kamareddine, F. and Rios, A. (1995). A A-calculus a la de Bruijn with explic-
it substitutions. /n Hermenegildo, M. and Swierstra, S. D. (eds), PLILP
'95—Seventh International Symposium on Programming Languages:

238 Bibliography

Implementation, Logics and Programs. Number 982 in LNCS. Springer-
Verlag. Utrecht, The Netherlands. pp. 45-62.

Kennaway, J. R., Klop, J. W., Sleep, M. R. and de Vries, F. J. (1995). Trans-
finite reductions in orthogonal term rewriting systems. Information and
Computation 119(1): 18-38.

Kennaway, J. R. and Sleep, M. R. (1988). Director strings as combinators. ACM
Transactions on Programming Languages and Systems 10: 602-626.

Kleene, S. C. (1981). Origins of recursive function theory. Annals of the History
of Computing 3: 52—67.

Klop, J. W. (1980). Combinatory Reduction Systems. PhD thesis. University
of Utrecht. Also available as Mathematical Centre Tracts 127.

Klop, J. W. (1992). Term rewriting systems. In Abramsky, S., Gabbay, D. M.
and Maibaum, T. S. E. (eds), Handbook of Logic in Computer Science.
Vol. 2. Oxford University Press. Chapter 1: pp. 1-116.

Klop, J. W., van Oostrom, V. and van Raamsdonk, F. (1993). Combinatory
reduction systems: Introduction and survey. Theoretical Computer Sci-
ence 121: 279-308.

Knuth, D. E. (1973). Fundamental Algorithms. Vol. 1 of The Art of Computer
Programming. second edn. Addison-Wesley.

Knuth, D. E. (1984). The TgXbook. Addison-Wesley.

Koopman, P. W. M. (1990). Functional Programs as Ezecutable Specifica-
tions. PhD thesis. University of Nijmegen.

Koopman, P. W. M., Smetsers, S., van Eekelen, M. C. D. J. and Plasmeijer, M. J.
(1991). Efficient graph rewriting using the annotated functional strategy.
In Plasmeijer and Sleep (1991). pp. 225-250. (available as Nijmegen Tech.
Report 91-25).

Lamport, L. (1994). BTgX—A Document Preparation System. 2nd edn.
Addison-Wesley.

Landin, P. J. (1964). The mechanical evaluation of expressions. Computer Jour-
nal 6: 308-320.

Bibliography 239

Launchbury, J. (1993). A natural semantics for lazy evaluation. POPL 93—
Twentieth Annual ACM Symposium on Principles of Programmaing
Languages. Charleston, South Carolina. pp. 144-154.

Lescanne, P. (1994a). From Ao to Av: a journey through calculi of explicit sub-
stitutions. POPL ’94—21st Annual ACM Symposium on Principles of
Programming Languages. Portland, Oregon. pp. 60-69.

Lescanne, P. (1994b). On termination of one rule rewrite system. Theoretical
Computer Science 132: 395—401.

Lescanne, P. and Rouyer-Degli, J. (1995). Explicit substitutions with de Bruijn’s
levels. In Hsiang, J. (ed.), RTA ’95—Rewriting Techniques and Appli-
cations. Number 914 in LNCS. Springer-Verlag. Kaiserslautern, Germany.
pp- 294-308.

Lévy, J.-J. (1978). Réductions Correctes et Optimales dans le Lambda-Calcul.
Theése d’état. Université Paris 7.

LFP ’90 (1990). LFP ’90—ACM Conference on LISP and Functional Pro-
gramming. Nice, France.

McCarthy, J. (1960). Recursive functions of symbolic expressions. Communica-
tions of the ACM 3(4): 184-195.

McCarthy, J., Abrahams, P. W., Edwards, D. J., Hart, T. P. and Levin, M.
(1965). Lisp 1.5 Programmer’s Manual. MIT Press. Cambridge, Mass.

Mellies, P.-A. (1995). Typed A-calculi with explicit substitution may not termi-
nate. In Dezani, M. (ed.), TLCA ’95—Int. Conf. on Typed Lambda Cal-
culus and Applications. Vol. 902 of LNCS. Springer-Verlag. Edinburgh,
Scotland. pp. 328-334.

Milner, R., Tofte, M. and Harper, R. (1990). The Definition of Standard ML.
MIT Press.

Mogensen, T. (1993). Ratatosk — A Parser Generator and Scanner Generator
for Gofer. (urL: ftp://ftp.diku.dk/diku/users/torbenm/Ratatosk.tar.Z)

Mosses, P. (1979). Sis — semantics implementation system, reference manual and
user’s guide. Technical Report MD-30. DAIMI, Aarhus University.

240 Bibliography

Naur, P. and others (1960). Report on the algorithmic language ALGOL 60.
Communacations of the ACM 3: 299-314.

Nederpelt, R. P., Geuvers, J. H. and de Vrijer, R. C. (eds) (1994). Selected
Papers on Automath. Vol. 133 of Studies in Logic. North-Holland.

Newman, M. H. A. (1942). On theories with a combinatorial definition of “equiv-
alence”. Annals of Mathematics 43(2).

Nipkow, T. (1991). Higher-order critical pairs. LICS ’91—Sizth Annual IEEE
Symposium on Logic in Computer Science. Amsterdam, The Nether-
lands. pp. 342-349.

van Oostrom, V. (1994). Confluence for Abstract and Higher-Order Rewrit-
ing. PhD thesis. Vrije Universiteit, Amsterdam.

van Oostrom, V. and van Raamsdonk, F. (1995). Weak orthogonality implies
confluence: the higher-order case. Technical Report CS-R9501. CWI.

Peyton Jones, S. L. (1987). The Implementation of Functional Programming
Languages. Prentice-Hall.

Peyton Jones, S. L. (1992). Implementing lazy functional languages on stock
hardware: the spineless tagless G-machine. Journal of Functional Pro-
gramming 2(2): 127-202.

Peyton Jones, S. L. and Lester, D. (1992). Implementing Functional Lan-
guages. Prentice-Hall.

Peyton Jones, S. L. and Salkild, J. (1989). The spineless tagless G-machine.
FPCA ’89—Functional Programmang Languages and Computer Archi-
tecture. Addison-Wesley. Imperial College, London. pp. 184-201.

Pisano, L. (1209). Liber Abbac:.

Plasmeijer, M. J. and van Eekelen, M. C. D. J. (1993). Functional Programming
and Parallel Graph Rewriting. International Computer Science Series.
Addison-Wesley.

Plasmeijer, M. J. and Sleep, M. R. (eds) (1991). SemaGraph ’91—Symposium
on the Semantics and Pragmatics of Generalized Graph Rewrit-
ing. Katholieke Universiteit Nijmegen. Nijmegen, Holland. (available as
Nijmegen Tech. Report 91-25).

Bibliography 241

Plotkin, G. D. (1975). Call-by-name, call-by-value, and the A-calculus. Theoret-
ical Computer Science 1: 125-159.

Plotkin, G. D. (1977). LCF considered as a programming language. Theoretical
Computer Science 5: 223-255.

Plotkin, G. D. (1981). A structural approach to operational semantics. Technical
Report FN-19. DAIMI, Aarhus University. Aarhus, Denmark.

Purushothaman, S. and Seaman, J. (1992). An adequate operational semantics
of sharing in lazy evaluation. In Krieg-Briickner, B. (ed.), ESOP ’'92—/th
European Symposium on Programmang. Number 582 in LNCS. Springer-
Verlag. Rennes, France. pp. 435-450.

Raoult, J. C. (1984). On graph rewritings. Theoretical Computer Science 32: 1-
24.

Revesz, G. (1985). Axioms for the theory of lambda-conversion. SIAM Journal
on Computing 14(2): 373-382.

Rose, E. (1996). Linear time hierarchies for a functional language machine model.
In Nielson, H. R. (ed.), ESOP ’96—6th European Symposium on Pro-
grammang. Number 1058 in LNCS. Springer-Verlag. Linkoping, Sweden.
pp. 311-325. (URL: ftp://ftp.diku.dk/diku/semantics/papers/D-270.ps)

Rose, K. H. (1992). Explicit cyclic substitutions. In Rusinowitch, M. and Rémy,
J.-L. (eds), CTRS ’92—3rd International Workshop on Conditional
Term Rewnriting Systems. Number 656 in LNCS. Springer-Verlag. Pont-
a-Mousson, France. pp. 36-50. (URL: ftp://ftp.diku.dk/diku/semantics/
papers/D-143.ps)

Rose, K. H. (1993). Graph-based operational semantics of a lazy functional lan-
guage. In Sleep, M. R., Plasmeijer, M. J. and van Eekelen, M. C. D. J.
(eds), Term Graph Rewriting: Theory and Practice. John Wiley & Sons.
Chapter 22: pp. 303-316. (URL: ftp://ftp.diku.dk/diku/semantics/papers/
D-146.ps)

Rose, K. H. (1994). Summary of gsymbols. Common TgX archive Network.
(URL: ftp: //ftp.tex.ac.uk/tex-archive /macros/latex/contrib /supported/
gsymbols)

242 Bibliography

Rose, K. H. (1995). Combinatory reduction systems with explicit substitution.
HOA ’95 — Second International Workshop on Higher-Order Algebra,
Logic and Term Rewriting. Paderborn, Germany. (URL: ftp://ftp.diku.dk/
diku/semantics/papers/D-247.ps)

Rose, K. H. (1996). Operational Reduction Models for Functional Program-
ming Languages. PhD thesis. DIKU (University of Copenhagen). Univer-
sitetsparken 1, DK-2100 Kgbenhavn . DIKU report 96/1.

Rose, K. H. and Bloo, R. (1995). Deriving requirements for preservation of strong
normalisation in lambda calculi with explicit substitution. Presented at the
EC Lambda-Calculus Meeting, Edinburg, Scotland.

Rose, K. H. and Moore, R. R. (1995). Xy-pic, version 3. Computer software kit.
Includes User’s Guide and Reference Manual. (URL: ftp://ftp.tex.ac.uk/tex-
archive/macros/generic/diagrams/xypic)

Rosen, B. K. (1973). Tree-manipulating systems and Church-Rosser theorems.
Journal of the ACM 20(1): 160-187.

Sestoft, P. (1994). Deriving a lazy abstract machine. Technical Report
ID-TR 1994-146. Dept. of Computer Science, Technical University
of Denmark. (UrL: ftp://ftp.dina.kvl.dk/pub/Staff/Peter.Sestoft /papers/
amlazy4.dvi.gz)

Spiegel, M. R. (1968). Mathematical Handbook of Formulas and Tables.
Schaum’s Outline Series. McGraw-Hill.

Staples, J. (1978). A graph-like lambda calculus for which leftmost outermost
reduction is optimal. In Claus et al. (1978). pp. 440—454.

Staples, J. (1980). Computation on graph-like expressions. Theoretical Com-
puter Science 10: 171-185.

Steele, Jr., G. L. (1978). Rabbit: A compiler for scheme. Technical Report 474.
MIT, AI Labaratory.

Toyama, Y., Smetsers, S., van Eekelen, M. C. D. J. and Plasmeijer, M. J. (1991).
The functional strategy and transitive term rewriting systems. /n Plasmeijer
and Sleep (1991). pp. 99-114. (available as Nijmegen Tech. Report 91-25).

Bibliography 243

Turing, A. M. (1936). On computable numbers, with an application to the
entscheidungsproblem. Proc. London Math. Soc. Vol. 42 of 2. pp. 230-
265.

Turing, A. M. (1937). Computability and A-definability. J. Symbolic Logic
2: 153-163.

Turner, D. A. (1979). A new implementation technique for applicative languages.
Software Practice and Ezperience 9: 31-49.

Wadsworth, C. P. (1971). Semantics and Pragmatics of the Lambda Calculus.
PhD thesis. Programming Research Group, Oxford University.

Wirth, N. (1971). The programming language PASCAL. Acta Informatica 1: 35—
63.

Yoshida, N. (1993). Optimal reduction in weak A-calculus with shared environ-
ments. FPCA ’93—Functional Programming Languages and Computer
Archatecture. Addison-Wesley. Copenhagen, Denmark.

244

Index

This index collects definitions, concepts, people, and symbols discussed in the
dissertation. The ordering is strictly alphabetical with symbols ordered accord-
ing to their English spelling, e.g., § and —;— are ordered as ‘beta’. Typewriter
font is used for entries to program fragments.

A
Abadi, M., 11 (Contribution 1.1.1), 63, 233
Abrahams, P. W., 26, 45, 239
Abramsky, S., 30, 49 (History 2.4.10), 233,
238
|_|, see size
abstract machine, 115 (Definition 4.1.1)
derivation, 116 (Principle 4.1.3)
abstract reduction system, see reduction
abstract rewrite system, see reduction
abstract syntax, 38 (History 2.2.4)
abstraction, 41 (Definition 2.3.1)
CRS, 52 (Definition 2.6.1)
U=, 129 (Definition 4.4.1)
acknowledgements, 3
acyclic A-graph reduction, 143 (Example 5.2.2)
Aczel, P., 51, 233
addr(t), 97 (Definition 3.4.1)
address, 97 (Definition 3.4.1), 111 (Discus-
sion 3.5.8), 174, 180 (Code 6.4.3)
CRS, 142 (Definition 5.2.1)
fresh, 142 (Definition 5.2.1)
oracle, 143, 174, 180 (Code 6.4.3)
addresses (addr(_)), 97 (Definition 3.4.1)
admissible, 102 (Definition 3.4.9), 104 (His-
tory 3.4.13)
local, 109 (Definition 3.5.3)
Aho, A. V., 166, 233
Arcor, 14, 20, 38 (History 2.2.4)
algorithm, 14

245

a-equivalence (=)
A-terms, 42 (Definition 2.3.2)
Aa-terms, 101 (Definition 3.4.8)
Ax-terms, 64 (Definition 3.1.2)
alphabet, 52 (Definition 2.6.1)
AMS-IHTEX, 2, 210 (Example A.1.1)
analysis, 203 (Code 6.9.7)
antisymmetric, 32 (Definition 2.1.5)
Anything, 166 (Code 6.3.1)
App, 167 (Code 6.3.1)
application, 41 (Definition 2.3.1), 54 (Nota-
tion 2.6.5)
applicative TRS, 54 (Example 2.6.7)
applying sequences, 37 (Notation 2.2.1)
Ariola, Z. M., 4, 26, 27, 105 (History 3.4.13),
107 (Comparison 3.4.18), 110 (Com-
parison 3.5.7), 144 (Discussion 5.2.4),
146 (Comparison 5.2.8), 233, 234
arity, 54 (Notation 2.6.5)
arrows, 31 (Notation 2.1.4)
ARS, see reduction
artificial languages, 13
Arvind, 26, 146 (Comparison 5.2.8), 233
assert, 157 (Code 6.1.3)
atoi, 169 (Code 6.3.2)
Australian Research Council, 4
AUTOMATH, 50
axiom, 40 (Definition 2.2.6), 46

246

B

—5—, 86 (Definition 3.3.2)

+» 65 (Definition 3.1.4)

back-pointer, 144

Backus, J., 19, 234

Backus-Naur form, see BNF

Barendregt, H. P., 4, 10 (Contribution 1.1.1),
22, 41, 58, 66 (Remark 3.1.7), 96,
146, 234

Benaissa, Z.-E.-A., 86, 87, 112, 132 (Com-
parison 4.4.3), 234

Berners-Lee, T., 18, 234

—5 43 (Definition 2.3.6)

—p—-admissible, 102 (Definition 3.4.9)

B-reduction, 43 (Definition 2.3.6)

~#+5a—» 105 (Definition 3.4.14)

—nh 47 (Definition 2.4.3)

—pw— » 48 (Definition 2.4.5)

———, 50 (Definition 2.5.1)

BnF

—psv— » 48 (Definition 2.4.5)
\'

—w 47 (Definition 2.4.3)

big-step semantics, 46 (History 2.4.2)

binary relation, 30 (Notation 2.1.1)

Bird, R., 15, 234

Bloo, R., 4, 10 (Contribution 1.1.1), 63, 83
(Remark 3.2.16), 112, 135 (Exam-
ple 5.1.1), 142, 153, 234, 235, 242

BNF, 38 (History 2.2.4)

bootstrap, 203 (Code 6.9.9)

bound variable naming, 42 (Convention 2.3.4)

bound variables (bv), 55 (Definition 2.6.9)

Briaud, D., 86, 87, 234

bug, 193 (Code 6.7.2)

—go—» 86 (Definition 3.3.2)

Burn, G. L., 112, 235

but, 157 (Code 6.1.4)

bv, 178 (Code 6.4.1)

—55—» 65 (Definition 3.1.4)

———, 65 (Definition 3.1.4)

bxgc
——— , 118 (Definition 4.2.1)

bxy

—— » 125 (Definition 4.3.1)
Xy

C
Cailliau, R., 18, 235
Call-by-Name, see CBN

Index

Call-by-Name machines, 123 (Comparison 4.2.16)

Call-by-Need, 110 (Comparison 3.5.7)
Call-by-Text, 20
Call-by-Value, see CBV

Call-by-Value machines, 128 (Comparison 4.3.5)

CAM, 21
Cardelli, L., 11 (Contribution 1.1.1), 63, 233
Carnegie Mellon University, 4
Categorical Abstract Machine, 21
CBN, 20, 21, 45, 48 (Definition 2.4.5), 117
for Ax, 118 (Definition 4.2.1)
CBV, 45, 48 (Definition 2.4.5), 124
for Ax, 125 (Definition 4.3.1)
central processing unit, 19
Centrum der Wiskunde en Informatica, 4
Chalmers Tekniska Hogskola/Géteborgs Uni-
versitet, 4
Check, 157 (Code 6.1.3)
check, 157 (Code 6.1.3)
check, 157 (Code 6.1.3)
checkCRS, 162 (Code 6.2.8)
checking, 157 (Code 6.1.3)
checkLHS, 162 (Code 6.2.7)
checkMterm, 161 (Code 6.2.5)
checkRHS, 162 (Code 6.2.7)
checkRule, 161 (Code 6.2.7)
Church, A., 9, 35, 41, 235
thesis, 20
Church-Rosser, see CR
Claus, V., 235, 236
closed, 52 (Definition 2.6.1), 64 (Definition
3.1.2), 160 (Code 6.2.5)
A-terms (A°), 42 (Definition 2.3.2)
Ax-terms (Ax), 64 (Definition 3.1.2)
closed terms, 118
closure, 33 (Notation 2.1.8)
closure rules, 46 (History 2.4.2)
Collins, 13, 235
comb, 183 (Code 6.5.1)
combinator, 44 (Notation 2.3.8)
Combinatory Logic
as CRS, 54 (Example 2.6.7)
combinatory reduction system, see CRS
comparison between Av and Ax, 84 (Discus-
sion 3.3.1)
compatible relation, 39

Index

compile, 116
complain, 159 (Code 6.1.7)
complement, 30 (Notation 2.1.1)
complete, 15, 35 (Definition 2.1.15)
complexity, 20, 111 (Discussion 3.5.8), 136
composition, 32 (Definition 2.1.6), 32 (Nota-
tion 2.1.7)
composition of substitution
breaks PSN, 75 (Remark 3.2.1)
compositional, 40 (Definition 2.2.6)
function, see derivor
computability, 20
computation steps, 16
computer, 19
concatenate sequences (-), 37 (Notation 2.2.1)
configuration, 19, 116
confluence, see CR
conservative extension, 34 (Definition 2.1.12)
Av of AP, 89 (Theorem 3.3.8)
Axgc of A, 74 (Theorem 3.1.17)
Axgca of AP, 109 (Corollary 3.5.6)
Axgca of Axge, 109 (Theorem 3.5.5)
construction, 52 (Definition 2.6.1)
construction (::=), 38 (Notation 2.2.3)
context, 39 (Definition 2.2.5)
context-free, 39 (History 2.2.4)
contextual, 39 (Definition 2.2.5)
reduction, 39
contextual closure, 98
continuation-passing style, see CPS
contractor, 53 (Definition 2.6.1)
contractum, 57 (Definition 2.6.12)
converse, 31 (Definition 2.1.3)
converse, 192 (Code 6.6.7)
conversion, 32 (Definition 2.1.5)
copying, 103 (Definition 3.4.10), 111 (Dis-
cussion 3.5.8), 144
overhead, 108
correct, 15
Cousineau, G., 21, 235
CPS, 49 (Definition 2.4.8)
CR, 34 (Definition 2.1.13), 44 (Theorem 2.3.11)
Axlgc, 78 (Theorem 3.2.4)
Axgc, 74 (Corollary 3.1.18)
xgc, 69 (Proposition 3.1.10)

247

Crégut, P., 112, 123 (Comparison 4.2.16),
236
critical pairs, 191 (Code 6.6.5)
criticalpairs, 191 (Code 6.6.5)
CRS, 51, 53 (Definition 2.6.1), 162 (Code
6.2.8)
abbreviations, 54 (Notation 2.6.5)
datatype, 159
explicification, 137 (Definition 5.1.9), 192
inference rule, 197
input, 201 (Code 6.9.3)
output, 202 (Code 6.9.5)
parser, 166 (Code 6.3.1)
restricted, 53 (Notation 2.6.2)
rewrite rules, 52 (Definition 2.6.1)
terms, 52 (Definition 2.6.1)
tokens, 171 (Code 6.3.3)
CRS, 162 (Code 6.2.8), 166 (Code 6.3.1)
Crs, 168 (Code 6.3.1)
CRSa, 143 (Definition 5.2.1)
CRSar, 145 (Definition 5.2.5)
Curien, P.-L., 11 (Contribution 1.1.1), 21,
63, 233, 235
current working CRS, 201 (Code 6.9.2)
Curry, H. B., 10 (Contribution 1.1.1), 46
(Definition 2.4.1), 236
fixed point combinator (Y), 44 (Nota-
tion 2.3.8)
cyclic, 145 (Definition 5.2.6)
cyclic A-graph reduction, 145 (Example 5.2.7),
146 (Comparison 5.2.8)
cyclic addressing
CRS, 145 (Definition 5.2.5)
cyclic sharing
terms (_ wfar), 145 (Definition 5.2.6)
cyclic sharing CRS, 145 (Definition 5.2.5)
cyclic substitutions, 146 (Comparison 5.2.8)

D

Dactr, 197

Danthine, A. A. S., 197, 236

Danvy, O., 4, 49, 236

DART, 4

de Bakker, J. W., 22, 58, 96, 146, 234

de Bruijn, N. G., 10 (Contribution 1.1.1),
29, 61, 96 (Discussion 3.3.22), 235

248

index, 84

level, 93
de Vries, F. J., 144 (Discussion 5.2.4), 238
de Vrijer, R. C., 50, 235, 240
definable extensions, 51
delay, 123 (Comparison 4.2.16)
A(_), see unravel
derivor, 40
Det Danske Forskningsrad, 4
deterministic, 31 (Definition 2.1.3)
Dezani, M., 7, 10 (Contribution 1.1.1), 62,

215 (Example A.2.3), 239, 253

diagrammatic assertion, 31 (Notation 2.1.4)
diagrammatic induction, 41 (Notation 2.2.8)
diagrammatic propositions, 31 (Notation 2.1.4)
diagrammatic reasoning, 31 (Notation 2.1.4)
dialogue, 207 (Example A.1.1)
diamond property (<), 34 (Definition 2.1.13)
DIKU, 1, 3
directly abstractable, 105 (History 3.4.13)
documentation, 200 (Code 6.9.1)
domain, 30 (Notation 2.1.1)
drop from sequence (/), 37 (Notation 2.2.1)
dummy address (€), 129 (Definition 4.4.1)
duplication, 108

E
Edwards, D. J., 26, 45, 239
Ehrig, H., 27, 235, 236
either, 157 (Code 6.1.3)
empty map, 37 (Notation 2.2.1)
empty sequence (€), 36 (Notation 2.2.1)
environment frames, 132 (Comparison 4.4.3)
environment-based evaluation, 117
€
address, 129 (Definition 4.4.1)
sequence, 36 (Notation 2.2.1)
Eq, 161 (Code 6.2.6)
EQ, 20
equality (=), 30
=, see x-equivalence
=, 161 (Code 6.2.6), 178 (Code 6.4.2)
equivalence, 32 (Definition 2.1.5)
equivalence closure, 33 (Notation 2.1.8)
ESCRS, 135 (Definition 5.1.2)
ESCRSa, 144 (Definition 5.2.3)

Index

n-reduction, 44 (Remark 2.3.9)

evaluation strategies, 44

examples of properties as diagrams, 31 (Def-
inition 2.1.3)

exhaustive reduction, 185 (Code 6.5.4)

explicification, 193 (Code 6.7.1)

explicify, 193 (Code 6.7.1)

explicit garbage collection, 63

explicit metaapplications., 135 (Definition 5.1.2)

explicit naming, 90 (Definition 3.3.11)

explicit recursion, 144 (Discussion 5.2.4)

explicit substitution, 65 (Definition 3.1.4)

explicit substitution and sharing CRS, 144
(Definition 5.2.3)

explicit substitution CRS, see ESCRS

extended BNF, 39 (History 2.2.4)

extensionality, 44 (Remark 2.3.9)

external position, 90 (Comparison 3.3.10)

F

fair complexity measure, 137 (Discussion 5.1.8)

Fairbairn, J., 131 (Comparison 4.4.3), 236

Fasel, H., 15, 237

fastfib, 25 (Code 1.3.3)

Felleisen, M., 106 (Comparison 3.4.18), 110
(Comparison 3.5.7), 144, 233, 236

Feys, R., 10 (Contribution 1.1.1), 46 (Defi-
nition 2.4.1), 236

fib, 24 (Code 1.3.2)

Fibonacci number, 22 (Definition 1.3.1), 24
(Code 1.3.2), 212 (Code A.1.3)

fast, 25 (Code 1.3.3)

Fielding, R., 18, 234

final restriction (—), 35 (Definition 2.1.15)

finite sequence, 36 (Notation 2.2.1)

first order functional programming, 146

first order rewriting systems, 53 (Remark
2.6.3)

fixed point combinator, 44 (Notation 2.3.8)

flat, 40 (Definition 2.2.6)

force, 123 (Comparison 4.2.16)

free addresses, 142 (Definition 5.2.1)

free variable, see fv

free variable matching, 137 (Remark 5.1.7)

free variable matching constraint, 159 (Code
6.2.1), 174, 176 (Code 6.4.1)

Index

free variable pattern, 137 (Remark 5.1.7)

fresh, 101, 174

fresh, 160 (Code 6.2.2)

fresh address, 142 (Definition 5.2.1)

Friedman, D. P., 106 (Comparison 3.4.18),

144, 236

Frystyk, H., 18, 234

full laziness, 105 (History 3.4.13)

fully abstract, 15

function, 31 (Definition 2.1.3)
from sequence, 37 (Notation 2.2.1)

function definition, 14

function symbols, 52 (Definition 2.6.1)
CRS, 159 (Code 6.2.1)

functional, 14

functional programming, 17, 23

functional programming languages, 14

fv
contexts, 42 (Definition 2.3.2)
CRS, 52 (Definition 2.6.1)
A-terms, 42 (Definition 2.3.2)
Aa-terms, 100 (Definition 3.4.8)
Ax-terms, 64 (Definition 3.1.2)

£v, 160 (Code 6.2.5)

G

G-machine, 26, 131 (Comparison 4.4.3)

Gabbay, D. M., 30, 238

Galois connection, 33 (Remark 2.1.11)

v-node, 103 (History 3.4.12)

Ganzinger, H., 142, 235

garbage, 65 (Definition 3.1.4)

garbage collection, 65 (Definition 3.1.4), 72
(Remark 3.1.14), 119 (Remark 4.2.3)

garbage-free, 66 (Notation 3.1.6)

—» 65 (Definition 3.1.4)

general replacement system, see reduction

Geuvers, J. H., 50, 83 (Remark 3.2.16), 234,
235, 240

Glauert, J. R. W., 22, 26, 58, 96, 112, 146,
197, 234, 236

Goal, 166 (Code 6.3.1)

Godel, K., 20, 236

Gordon, A. D., 96 (Discussion 3.3.22), 236

grammar, 13, 39 (History 2.2.4)

graph bisimilarity, 105 (History 3.4.13)

249

graph matching ordering, 105 (History 3.4.13)
graph reducible, 99 (Comparison 3.4.7)

graph reduction, 26

Graph rewrite systems, 146 (Comparison 5.2.8)
GRS, 146 (Comparison 5.2.8)

Grue, K., 112, 236

H

Hannan, J., 114, 124 (Comparison 4.2.16),
128 (Comparison 4.3.5), 236

Hardin, T\, 36

Harper, R., 20, 45, 239

Hart, T. P., 26, 45, 239

hastrans, 158 (Code 6.1.5)

head reduction, 47 (Definition 2.4.3)

headaches, 144 (Discussion 5.2.4)

heap, 131 (Comparison 4.4.3)

Henderson, P., 111 (Discussion 3.5.8), 114,
123 (Comparison 4.2.16), 128 (Com-
parison 4.3.5), 237

Hermenegildo, M., 10 (Contribution 1.1.1),
63, 91, 237

high-level, 14

higher order rewriting, 51

hole (O), 39 (Definition 2.2.5)

Hsiang, J., 11 (Contribution 1.1.1), 84, 93,
239

HTTP, 18

Hudak, P., 15, 155, 237

Huet, G., 30, 237

Hughes, J. M., 4, 105 (History 3.4.13), 237

HUGS, 199, 203 (Code 6.9.9), 207 (Example
A.1.1), 220 (Example A.3.2)

I
I, 44 (Notation 2.3.8)
i/o errors, 159 (Code 6.1.7)
identity

sequence (1), 37 (Notation 2.2.1)
identity map (1), 37 (Notation 2.2.1)
implementing, 14
implicit renaming, 66 (Remark 3.1.7)
indirection node, 98 (Remark 3.4.3)
inductive structures, 38 (Notation 2.2.3)

inference metavariables, 40 (Definition 2.2.6)

250

inference rules, 40 (Definition 2.2.6), 46, 197
(Code 6.8.1)

infinite lists, 25 (Code 1.3.4)

infinite sequence, 37 (Notation 2.2.1)

innermost, 183 (Code 6.5.2)

input, 165

inside garbage, 90 (Comparison 3.3.10)

instruction, 116

instruction cycle, 19

interactive, 199

interactive operation, 201 (Code 6.9.2)

internal position, 90 (Comparison 3.3.10)

inversetrans, 158 (Code 6.1.5)

t, 37 (Notation 2.2.1)

istrans, 158 (Code 6.1.5)

item, 91

J

Jeffrey, A., 22, 112, 237

Johnsson, T, 4, 26, 105 (History 3.4.13), 131
(Comparison 4.4.3), 237

Jones, M. P., 199, 237

Jones, N, 3

Junk, 166 (Code 6.3.1), 168 (Code 6.3.1)

K

K, 44 (Notation 2.3.8)

Kahn, G,, 21, 40 (Remark 2.2.7), 131 (Com-
parison 4.4.3), 236, 237

Kahrs, S., 155, 237

Kamareddine, F., 10 (Contribution 1.1.1),
63, 75 (Remark 3.2.1), 91, 237

Katholieke Universiteit Nijmegen, 4

Kennaway, J. R., 22, 26, 58, 77, 96, 112, 144
(Discussion 5.2.4), 146, 197, 234,
236, 238

Kleene, S. C., 20, 238

Kleene’s star (*), 38 (Notation 2.2.3)

Klop, J. W., 3, 12 (Contribution 1.1.3), 27,
29, 30, 51, 57 (Theorem 2.6.15),
105 (History 3.4.13), 107 (Compar-
ison 3.4.18), 133, 144 (Discussion
5.2.4), 146 (Comparison 5.2.8), 174,
233, 234, 238

Knuth, D. E., 2, 22, 58, 163, 238

Kgbenhavns Universitet, 3

Index

Koopman, P. W. M., 26, 112, 238
Krieg-Briickner, B., 132 (Comparison 4.4.3),
152, 241
Krivine, J.-J.
machine, 123 (Comparison 4.2.16)
K*, 44 (Notation 2.3.8)

L
LABEL, 26, 144 (Discussion 5.2.4)
A, 42 (Definition 2.3.2)
A-calculus, 15
as CRS, 53 (Example 2.6.4)
readable CRS, 54 (Example 2.6.6)
A-definability, 20
A-graph, 103 (History 3.4.12)
A-inferences, 45 (Definition 2.4.1)
A-preterms, 41 (Definition 2.3.1)
A-space, 61
A-terms (A), 42 (Definition 2.3.2)
Aa-preterms, 100 (Definition 3.4.8)
Aa-reduction, 105 (Definition 3.4.14)
Aa-terms (Aa), 101 (Definition 3.4.8)
AX, 93 (Definition 3.3.18)
Ax-terms (Ax), 93 (Definition 3.3.18)
M, 49 (History 2.4.10)
Mlet, 110 (Comparison 3.5.7)
AN, 48 (History 2.4.7)
ANF, 50 (Definition 2.5.1)
A°, 42 (Definition 2.3.2)
As, 91 (Definition 3.3.14)
As-reduction, 91 (Definition 3.3.14)
As-terms (As), 91 (Definition 3.3.14)
Ao, 93 (Definition 3.3.21)
Ao-terms (Ao), 93 (Definition 3.3.21)
Av, 86 (Definition 3.3.2)
Av, 48 (History 2.4.7)
Ax, 64 (Definition 3.1.2)
Ax, 66
Ax-preterms, 63 (Definition 3.1.1)
Ax-terms, 64 (Definition 3.1.2)
Ax-terms (Ax), 64 (Definition 3.1.2)
Axa-terms, 107 (Definition 3.5.1)
Axay
reduction step, 129 (Definition 4.4.1)
Axgc-reduction, 65 (Definition 3.1.4)
as CRS, 134 (Example 5.1.1)

Index

Axgca
reduction step, 108 (Definition 3.5.2)
Axn M, 122
correctness, 122 (Theorem 4.2.13)
AxyM, 128
Axy-machine, 121 (Definition 4.2.10)
Axy, 118 (Definition 4.2.1)
correctness, 118 (Lemma 4.2.2)
Ax°, 64 (Definition 3.1.2)
Axy, 125 (Definition 4.3.1)
Lamport, L., 2, 163, 210 (Example A.1.1),
238
Landin, P. J., 11 (Contribution 1.1.2), 113,
238
language, 13
KTEX, 2, 210 (Example A.1.1)
Launchbury, J., 22, 40 (Remark 2.2.7), 107
(Comparison 3.4.18), 132 (Compar-
ison 4.4.3), 239
lazy, 49 (History 2.4.10)
lazy machines, 131 (Comparison 4.4.3)
LC, 34 (Definition 2.1.13)
left hand side, see LHS
left-linear, 57 (Definition 2.6.14), 186 (Code
6.6.1)
leftlinear, 186 (Code 6.6.1)
leftmost, 183 (Code 6.5.2)
length induction, 36
length of sequence (#), 36 (Notation 2.2.1)
Lescanne, P., 4, 10, 11 (Contribution 1.1.1),
62, 84, 86, 87, 93, 112, 115, 132
(Comparison 4.4.3), 234, 239
<, 178 (Code 6.4.2)
Lester, D., 131 (Comparison 4.4.3), 240
Levin, M., 26, 45, 239
Lévy, J.-J., 11 (Contribution 1.1.1), 63, 96,
233, 239
LHS, 52 (Definition 2.6.1)
linear, 186 (Code 6.6.1)
Lisp, 20, 21, 45, 144 (Discussion 5.2.4)
literate Haskell, 156 (Notation 6.1.1)
local, 115 (Definition 4.1.1)
local confluence, see LC, 192 (Code 6.6.8),
230 (Code A.4.5)
locality, 74 (Discussion 3.1.19), 111 (Discus-
sion 3.5.8)

251

locally admissible, 109 (Definition 3.5.3)
locally R-admissible, 109 (Definition 3.5.3)
locallyconfluent, 192 (Code 6.6.8)
location equality, 20

logic, 44 (Remark 2.3.9)

low-level, 14

M
Mabs, 160 (Code 6.2.3)
machine

abstract, 115 (Definition 4.1.1)
machine state, 128 (Comparison 4.3.5)
Macquarie University, 4
Maibaum, T. S. E., 30, 238
many-to-many relation, 33 (Remark 2.1.11)
many-to-one relation, 33 (Remark 2.1.11)
map, 31 (Definition 2.1.3)

from sequence, 37 (Notation 2.2.1)
Mapp, 160 (Code 6.2.3)
Maraist, J., 110 (Comparison 3.5.7), 233
Maranget, L., 4
match

for CRS, 56 (Definition 2.6.12)
match, 175 (Code 6.4.1)
matches, 55 (Definition 2.6.8)
MatchFail, 175 (Code 6.4.1)
matching, 175 (Code 6.4.1)
Mauny, M., 21, 235
maximal free subexpressions, 105 (History

3.4.13)
McCarthy, J., 17, 26, 45, 239
Mcon, 160 (Code 6.2.3)
mechanical evaluation, 113
mechanically computable, 15
Melligs, P.-A., 7, 10 (Contribution 1.1.1), 62,
215 (Example A.2.3), 239, 253

metavariables (mv), 52 (Definition 2.6.1)
meta ..., 57 (Definition 2.6.12)

metaabstraction, 52 (Definition 2.6.1), 54 (Nota-

tion 2.6.5)
metaapplication, 52 (Definition 2.6.1)
metacontractum, 57 (Definition 2.6.12)
metaredex, 57 (Definition 2.6.12)
metareduction, 57 (Definition 2.6.13)
metarewrite, 57 (Definition 2.6.12)
MetaTerm, 167, 168 (Code 6.3.1)

252

metaterm, 57 (Definition 2.6.12)
metaterm equality, 161 (Code 6.2.6)
metaterm input, 202 (Code 6.9.4)
MetaTermList, 167 (Code 6.3.1)
MetaVar, 168 (Code 6.3.1)
metavariables

CRS, 160 (Code 6.2.4)
Miller, D., 114, 124 (Comparison 4.2.16),

128 (Comparison 4.3.5), 236

Milner, R., 20, 45, 239
minimal derivations, 90 (Comparison 3.3.10)
minimalise, 191 (Code 6.6.6)
minimalise CRS, 191 (Code 6.6.6)
mkAbs, 170 (Code 6.3.2)
mkApp, 169 (Code 6.3.2)
mktrans, 158 (Code 6.1.5)
mkTuple, 169 (Code 6.3.2)
mkVect, 170 (Code 6.3.2)
model, 15
Mogensen, T., 4, 166, 239
Moore, R. R, 2, 4, 242
Mosses, P., 117, 239
motivations, 17
Mterm, 160 (Code 6.2.3)
(1), 46 (Definition 2.4.1)
(un), 48 (Definition 2.4.5)
(nv), 48 (Definition 2.4.5)
Mv, 160 (Code 6.2.3)
mv, 52 (Definition 2.6.1), 160 (Code 6.2.4)
mv, 160 (Code 6.2.4)
Mvar, 160 (Code 6.2.3)

N
—x» 48 (Definition 2.4.5)
n-ary relation, 30 (Notation 2.1.1)
namefree, 50
natural

sequence, 37 (Notation 2.2.1)
natural languages, 13
natural semantics, 40 (Remark 2.2.7)
Naur, P., 14, 38 (History 2.2.4), 240
Nederpelt, R. P., 4, 50, 75 (Remark 3.2.1),

235, 237, 240

—nseg» 110
Newman, M. H. A., 41 (Lemma 2.2.9), 240
nf, 35 (Definition 2.1.15)

Index

nf, 184 (Code 6.5.3)
n-fold composition (——), 32 (Notation 2.1.7)
nfs, 185 (Code 6.5.4)
Nielson, H. R., 21, 112, 241
Nijman, A. J., 22, 58, 96, 146, 234
Nipkow, T., 51, 240
noetherian, see SN
non-standard reductions, 153
nonoverlapping, 57 (Definition 2.6.14), 186
(Code 6.6.2)
nonoverlapping, 186 (Code 6.6.2)
Nordisk Forskerakademi, 4
normal forms, see nf
Axgc, 66 (Notation 3.1.6)
normalisation, 35 (Definition 2.1.15)
notrans, 158 (Code 6.1.5)
(v), 46 (Definition 2.4.1)
number of symbols, 38 (Notation 2.2.3)

0

observe, 15

occurrence, 56 (Definition 2.6.12)

Odersky, M., 110 (Comparison 3.5.7), 233

Q, 44 (Notation 2.3.8)

w, 44 (Notation 2.3.8)

onestep, 184 (Code 6.5.3)

openfile, 204 (Code 6.9.9)

operation, 16

operational, 16

oracle, 180 (Code 6.4.4)

Oregon Graduate Institute, 4

orthogonal, 57 (Definition 2.6.14), 191 (Code
6.6.4)

orthogonal, 191 (Code 6.6.4)

others, 14, 38 (History 2.2.4), 155, 237, 240

outermost, 183 (Code 6.5.2)

Overlap, 186 (Code 6.6.2)

overlaps, 230 (Code A.4.4)

overlaps, 187 (Code 6.6.2)

overlay, 188 (Code 6.6.3)

P

parallel reduction, 57, 96, see sharing exten-
sion, 99

parallel substitution, 75 (Remark 3.2.1)

ParseTree, 168 (Code 6.3.1)

Index

partial, 31 (Definition 2.1.3)
partial order, 32 (Definition 2.1.5)
Pascar, 20

Path, 179 (Code 6.4.2)

pattern, 52 (Definition 2.6.1)
PCF, 217

with explicit sharing, 220 (Example A.3.2)

with explicit sharing and substitution,
225 (Code A.3.3)
PCF+pairs, 217 (Example A.3.1)
Petri nets, 197

Peyton Jones, S. L., 4, 26, 105 (History 3.4.13),

112, 129, 131 (Comparison 4.4.3),
155, 235, 237, 240
Pfenning, F., 49, 236
Pisano, L., 22, 240
Plasmeijer, M. J., 4, 22, 27, 58, 96, 105 (His-
tory 3.4.13), 112, 131 (Comparison
4.4.3), 146, 234, 238, 240-242
Plotkin, G. D., 11 (Contribution 1.1.2), 186,
47,112, 114, 117, 133, 217, 241
PCF, 217 (Example A.3.1)
pointers, 20
Precious, 166 (Code 6.3.1)
premv, 170 (Code 6.3.2)
preop, 170 (Code 6.3.2)
preserve strong normalisation, see PSN
preserve weak normalisation, see PWN
presym, 170 (Code 6.3.2)
preterms, 38, 52 (Definition 2.6.1)
CRS, 160 (Code 6.2.3)
A, 41 (Definition 2.3.1)
Aa, 100 (Definition 3.4.8)
Ax & Axgce, 63 (Definition 3.1.1)
pretty interaction, 229 (Code A.4.3)
prettyprinting, 211 (Example A.1.2)
primitive, 115 (Definition 4.1.1)
print reduction, 228 (Code A.4.2)
printing
CRS, 163, 165 (Code 6.2.12)
CRS rule, 165 (Code 6.2.11)
function symbols, 163 (Code 6.2.9)
metaterms, 163 (Code 6.2.10)
production, 38 (Notation 2.2.3)
program analysis, 152
program transformations, 25, 153

253

programming, 14
programming language, 14
functional, 14
projection, 33 (Definition 2.1.10)
Axge, 73 (Lemma 3.1.16)
PROLOG, 21
PSN, 35 (Definition 2.1.15)
Rx of R, 142 (Theorem 5.1.19)
lambdaxgca
Axgca, 109 (Corollary 3.5.6)
counterexample of Melliés, 76 (Remark
3.2.1)
for Axgc, 82 (Corollary 3.2.13)
garbage-free (Axlgc), 78 (Theorem 3.2.6)
AX, 93 (Corollary 3.3.20)
As, 93 (Corollary 3.3.17)
Av, 89 (Theorem 3.3.9)
strict explicit naming, 91 (Theorem 3.3.13)
pure Axgc-term, 66 (Notation 3.1.6)
pure functional programming languages, 17
Purushothaman, S., 132 (Comparison 4.4.3),
152, 241
PWN, 35 (Definition 2.1.15)

Q

gsymbols, 210 (Example A.1.1)

R

R-admissible, 102 (Definition 3.4.9), 104 (His-
tory 3.4.13)

R-contraction, 105 (Definition 3.4.14)

R-copies, 103 (Definition 3.4.10)

rand node, 103 (History 3.4.12)

range, 30 (Notation 2.1.1)

Raoult, J. C., 27, 241

RATATOSK, 166

rator node, 103 (History 3.4.12)

readMterm, 169 (Code 6.3.1)

readParseTree, 169 (Code 6.3.1)

rebind, 178 (Code 6.4.1)

recursive equations, 15, 17, 146

recursive functions, 15, 20

Redex, 178 (Code 6.4.2)

redex, 56 (Definition 2.6.12), 178 (Code 6.4.2)

redexes, 179 (Code 6.4.2)

redexprefix, 183 (Code 6.5.2)

254

reducible, 56 (Definition 2.6.12)
reduction, 15, 30 (Notation 2.1.1), 202 (Code
6.9.6)

f3, 43 (Definition 2.3.6)

Bxr, 50 (Definition 2.5.1)

compositional, 40

CRS, 57 (Definition 2.6.13)

flat, 40

for CRS, 57 (Definition 2.6.13)

garbage-free (Axlgc), 77 (Definition 3.2.2)

As, 93 (Definition 3.3.18)

Alet, 110 (Comparison 3.5.7)

As, 91 (Definition 3.3.14)

Ao, 93 (Definition 3.3.21)

Av, 86 (Definition 3.3.2)

Axge & Ax, 65 (Definition 3.1.4)
reduction graph, 43 (Example 2.3.7)
reduction in context, 46
reduction strategies

standard, 183 (Code 6.5.2)
reduction strategy, 183 (Code 6.5.1)
reduction systems, 16
references, 20
reflexive, 32 (Definition 2.1.5)
regular, 57 (Definition 2.6.14)
relations, 30 (Notation 2.1.1)

Rémy, J.-L., 63, 146 (Comparison 5.2.8), 241
rename, 161 (Code 6.2.6)
renaming (_[x := y]), 42 (Definition 2.3.2)

Aa-terms, 101 (Definition 3.4.8)

Ax-terms, 64 (Definition 3.1.2)
representation, 140 (Lemma 5.1.14)

Axge, 70 (Lemma 3.1.11)
representative, 38
restricted CRS, 53 (Notation 2.6.2)
restriction, 33 (Notation 2.1.9)
restriction (|), 30 (Notation 2.1.1)
reversible, 192 (Code 6.6.7)
reversible CRS, 192 (Code 6.6.7)
Revesz, G., 67 (Comparison 3.1.9), 241
rewrite, 57 (Definition 2.6.12)
rewrite, 180 (Code 6.4.4)
rewrite rules, 52 (Definition 2.6.1)

CRS, 161 (Code 6.2.7)
rewrite step, 180 (Code 6.4.4)
rewriting, 24

Index

Reynolds, J., 4

RHS, 53 (Definition 2.6.1)

right hand side, see RHS

rightmost, 183 (Code 6.5.2)

Rios, A., 10 (Contribution 1.1.1), 63, 91, 237

Robson, J. D., 112, 235

rootname, 170 (Code 6.3.2)

Rose, E., 4, 21, 112, 241

Rose, K. H,, 1, 2, 4, 56 (Remark 2.6.11), 63,
105 (History 3.4.13), 135 (Exam-
ple 5.1.1), 142, 146 (Comparison
5.2.8), 163, 210 (Example A.1.1),
234, 235, 241, 242

Rosen, B. K., 30, 242

Rosser, J. B., 35, 235

Rouyer-Degli, J., 11 (Contribution 1.1.1), 84,
86, 87, 93, 234, 239

Rozenberg, G., 235, 236

RPLAC, 21, 26

Rule, 161 (Code 6.2.7), 167 (Code 6.3.1)

Rules, 167 (Code 6.3.1)

Rusinowitch, M., 63, 146 (Comparison 5.2.8),
241

rxMterm, 226 (Code A.4.1)

S
S, 44 (Notation 2.3.8)
de Bruijn’s, 51 (History 2.5.3)

=, 91 (Definition 3.3.14)

safe for the valuation, 56 (Definition 2.6.9)

safe with respect to itself, 56 (Definition 2.6.9)

safeness of CRS, 55 (Definition 2.6.9)

Salkild, J., 131 (Comparison 4.4.3), 240

sample output, 230 (Code A.4.6)

satmv, 170 (Code 6.3.2)

satmv3, 171 (Code 6.3.2)

saturated, 137 (Definition 5.1.5), 159 (Code
6.2.1), 176 (Code 6.4.1)

saturated, 197 (Code 6.7.6)

scientific contributions, 3

Seaman, J., 132 (Comparison 4.4.3), 152,
241

SECD, 114

self-application combinator, 44 (Notation 2.3.8)

semantics, 13

semicompositional, 40 (Definition 2.2.6)

Index

Seq, 167 (Code 6.3.1)
sequence, 36 (Notation 2.2.1)
sequence algebra, 37 (Proposition 2.2.2)
Sestoft, P., 3, 112, 132 (Comparison 4.4.3),
242
Sethi, R., 166, 233
sets, 157 (Code 6.1.4)
shared, 97 (Definition 3.4.2), 145 (Definition
5.2.6)
shared B-reduction, 105 (Definition 3.4.14)
sharing, 20, 25, 96, 174
and de Bruijn indices, 111 (Discussion
3.5.9)
closure, 99 (Definition 3.4.5)
cyclic, 145
extension (+), 98 (Definition 3.4.5)
graph reduction intuition, 98 (Remark
3.4.3)
reduction, 98 (Definition 3.4.5)

stable, 106 (Definition 3.4.16), 106 (Propo-

sition 3.4.17)
stable under updating, 98 (Proposition
3.4.4)
syntax, see address
terms (_ wfa), 97 (Definition 3.4.2)
sharing introduction, 108
Sheeran, M., 4
showCRS, 165 (Code 6.2.12)
showMterm, 163 (Code 6.2.10)
showRule, 165 (Code 6.2.11)
showSym, 163 (Code 6.2.9)
Simple, 167 (Code 6.3.1)
simple sharing CRS, 142 (Definition 5.2.1)
simplification, 24
size (]_|), 38 (Notation 2.2.3)
Sleep, M. R., 22, 26, 58, 77, 96, 105 (History
3.4.13), 112, 144 (Discussion 5.2.4),
146, 197, 234, 236, 238, 240, 241
small-step semantics, 46 (History 2.4.2)
Smetsers, S., 112, 238, 242
sMmL, 20, 45
SN, 35 (Definition 2.1.15), 186 (Code 6.5.4)
—— for ESCRS, 139
xgc, 69 (Proposition 3.1.10)
sort, 158 (Code 6.1.6)

255

sorting, 158 (Code 6.1.6)
sound, 15
space faithful, 115 (Definition 4.1.1)
space local, 115 (Definition 4.1.1)
Spiegel, M. R., 58 (Example 2.6.16), 242
standard combinators, 44 (Notation 2.3.8)
standard reductions, 153
standardisation, 48
Staples, J., 112, 242
*, 37 (Notation 2.2.1), 38 (Notation 2.2.3)
state, 116
stateless, 18
Statens Naturvidenskabelige Forskningsrad,
4
Steele, Jr., G. L., 48, 242
stencil diagram, 30
STG-machine, 131 (Comparison 4.4.3)
store, 21, 131 (Comparison 4.4.3)
Strategy, 183 (Code 6.5.1)
strict explicit naming, 90 (Definition 3.3.12)
strict subterm ordering (>), 39 (Definition
2.2.5)
strong, 184 (Code 6.5.2)
strongly normalising, see SN
structural, 46
structural induction, 36, 38
structure preserving, 142 (Definition 5.1.18)
subreduction, 34 (Definition 2.1.12)
Subst, 179 (Code 6.4.3)
subst, 180 (Code 6.4.3)
substitute, 55 (Definition 2.6.8)
substitution, 43 (Definition 2.3.6), 55 (Defi-
nition 2.6.8), 111 (Discussion 3.5.8),
179 (Code 6.4.3)
CRS, 55 (Definition 2.6.8)
primitive, 116 (Proposition 4.1.2)
substitution distribution, 195 (Code 6.7.3)
substitution elimination, 195 (Code 6.7.4)
substitution generation, 65 (Definition 3.1.4)
substitution introduction, 193 (Code 6.7.2)
substitution lemma, 44 (Proposition 2.3.10),
71
Axge, 71 (Corollary 3.1.12)
substitution-based evaluation, 117
subsumes, 191 (Code 6.6.6)
subsumes, 191 (Code 6.6.6)

256

subterm, 39 (Definition 2.2.5)

at address (_@_), 97 (Definition 3.4.2)
subterm, 179 (Code 6.4.2)
subterm ordering (I>), 39 (Definition 2.2.5)
superterm, 39 (Definition 2.2.5)
suspensions, 123 (Comparison 4.2.16)
Swierstra, S. D., 10 (Contribution 1.1.1), 63,

91, 237

Sym, 159 (Code 6.2.1), 168 (Code 6.3.1)
Symbol, 168 (Code 6.3.1)
symbolic differentiation, 58 (Example 2.6.16)
symmetric, 32 (Definition 2.1.5)
syntactic extensions, 61
syntactic restrictions, 53 (Notation 2.6.2)
syntax, 13

T
take from sequence (\), 37 (Notation 2.2.1)
Th, 51 (History 2.5.3)
Technische Universiteit Eindhoven, 4
term graph rewriting, 26, 96, 99 (Compari-
son 3.4.7)

term rewriting systems, 53 (Remark 2.6.3)
terminal node, 103 (History 3.4.12)
terminating, see SN
terms, 38

CRS, 52 (Definition 2.6.1)

CRSa, 142 (Definition 5.2.1)

CRSar, 145 (Definition 5.2.5)

A, 42 (Definition 2.3.2)

Aa, 101 (Definition 3.4.8)

AxX, 93 (Definition 3.3.18)

Alet, 110 (Comparison 3.5.7)

As, 91 (Definition 3.3.14)

Ao, 93 (Definition 3.3.21)

Av (Av), 86 (Definition 3.3.2)

Ax, 64 (Definition 3.1.2)

Axa, 107 (Definition 3.5.1)

size, 38 (Notation 2.2.3)
TEX, 2
Text, 158 (Code 6.1.5), 168, 169 (Code 6.3.1),

175 (Code 6.4.1), 178 (Code 6.4.2)

TGR, see term graph rewriting
theory, 46 (History 2.4.2)
THESIS, 9
O, 44 (Notation 2.3.8)

Index

Three Instruction Machine, 131 (Compari-
son 4.4.3)
thunks, 123 (Comparison 4.2.16)
TIM, see Three Instruction Machine
tm, 156 (Code 6.1.2)
Tofte, M., 20, 45, 239
Torkil Holms Fond, 4
total, 31 (Definition 2.1.3)
Toyama, Y., 112, 242
tr, 156 (Code 6.1.2)
tracing, 156 (Code 6.1.2)
Trans, 158 (Code 6.1.5)
trans, 158 (Code 6.1.5)
transi, 158 (Code 6.1.5)
trans2, 158 (Code 6.1.5)
transformations, 116 (Principle 4.1.3), 203
(Code 6.9.8)
transformed, 128 (Comparison 4.3.5)
transition, 116
transition system, 116
transitive, 32 (Definition 2.1.5)
translation, 33 (Definition 2.1.10)
ANF/A, 51 (Definition 2.5.4)
As/Ax, 91 (Definition 3.3.15)
Av/Ax, 86 (Definition 3.3.5)
translation maps, 158 (Code 6.1.5)
trc, 156 (Code 6.1.2)
Treleaven, P. C., 22, 58, 96, 146, 234
triad machines, 132 (Comparison 4.4.3)
>, see subterm ordering
TRS, 51, 53 (Remark 2.6.3), 54 (Example
2.6.7), 56 (Remark 2.6.11)
truncate, see take
Turing, A. M., 9, 20, 243
fixed point combinator (©), 44 (Nota-
tion 2.3.8)
Turner, D. A., 49 (History 2.4.10), 112, 142,
233, 243

U
Ullman, J. D., 166, 233
UN, 35 (Definition 2.1.15)

xgc, 69 (Proposition 3.1.10)
unbrace, 171 (Code 6.3.2)
unification, 188 (Code 6.6.3)
unique normal forms, see UN

Index

University of Oregon, 4

unravel (A(_)), 97 (Definition 3.4.1)

updating, 97 (Definition 3.4.2), 145 (Defini-
tion 5.2.6), 174

—» 86 (Definition 3.3.2)

URL, 18

Vv
—y—» 48 (Definition 2.4.5)
Valuation, 175 (Code 6.4.1)
valuation, 55 (Definition 2.6.8)
value, 48 (Definition 2.4.5)
van Eekelen, M. C. D. J., 22, 27, 58, 96, 105
(History 3.4.13), 112, 131 (Com-
parison 4.4.3), 146, 234, 238, 240-
242
van Oostrom, V., 4, 30, 51, 174, 181 (Code
6.4.4), 238, 240
van Raamsdonk, F., 4, 51, 174, 238, 240
Var, 159 (Code 6.2.2)
variable, 52 (Definition 2.6.1)
capture, 43, 66 (Remark 3.1.7)
clash, 43, 66 (Remark 3.1.7)
variable convention, 42 (Convention 2.3.4),
56, 123 (Remark 4.2.14)
for CRS, 56 (Convention 2.6.10)
Vars, 168 (Code 6.3.1)

W

Wadler, P., 15, 110 (Comparison 3.5.7), 155,
233, 234, 237

Wadsworth, C. P., 11 (Contribution 1.1.1),
61, 146 (Comparison 5.2.8), 243

WCR, see LC

weak, 56 (Remark 2.6.11)

weak, 184 (Code 6.5.2)

weak CR, see LC

weak head normal form, see whnf

weak reduction, 47 (Definition 2.4.3)

weakly normalising, see WN

weakly orthogonal, 58

weakly regular, 58

weaklynonoverlapping, 186 (Code 6.6.2)

weaklyorthogonal, 191 (Code 6.6.4)

well-formed addresses, see sharing

wfa, 97 (Definition 3.4.2)

257

wfar, 145 (Definition 5.2.6)

whnf, 47 (Definition 2.4.3)

wind, 21

Wirth, N., 20, 243

WN, 35 (Definition 2.1.15), 185 (Code 6.5.3)
world wide web, 18

Wray, S. C., 131 (Comparison 4.4.3), 236

X

~7» 65 (Definition 3.1.4)
xdistribute, 195 (Code 6.7.3)
xeliminate, 196 (Code 6.7.4)
—sgc» 65 (Definition 3.1.4)

(&), 46 (Definition 2.4.1)
xintroduction, 193 (Code 6.7.2)
xtrans, 158 (Code 6.1.5)

Xy-pic, 2

Y
Y, 44 (Notation 2.3.8)
Yoshida, N., 124 (Comparison 4.2.16), 243

VA
(¢), 118

