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Chapter 1

Introduction

It has been suggested by Jagersand [13], Oomes and Snoeren [17], and Sporring [27] that the entropy
measure can be used in image processing as a tool to analyse images in the Scale-Space of Iijima [31],
Witkin [33], and Koenderink [15].

The entropy measure was initially proposed independently by Shannon [25] and Wiener [32] as a
measure of the information content per symbol emitting from a stochastic information source. Later
Rényi [21] extended this to include all generalized means to yield the generalized entropy.

There are several reasons why the generalized entropy function is of interest to image processing.
Firstly, Weickert [30] has shown that Lyaponov functionals have monotonically decreasing behavior in
Scale-Space and as such may serve as causality measures. In this paper we show that the generalized
entropies are such functionals. It should be noted that this behavior is not seen for the number of critical
points: Although critical points most often disappear when scale is increased, creation of critical points
with increasing scale is a generic event [16, 14, 7]. Secondly, generalized entropy is the basis for the
theory of Multi-Fractal [11, 18] and it is known that there are very strong algebraic similarities to the
fundamental equations of Statistical Mechanics. These are thus well known functions, and while images
are not physical systems in classical thermodynamic sense, Linear Scale-Space is governed by the Linear
Heat Diffusion Equation, and one could thus without great difficulty extend the view of images to be
a classical thermodynamical system for which the Linear Heat Diffusion is valid. Such a system is an
ideal gas. These interpretations of images will be discussed in detail in this chapter. Finally, as will
be demonstrated the generalized entropies offer practical, mathematical well founded functions to study
scaling behaviors of images for scale-selection and texture analysis.

Related to this work is Vehel et al. [29], where images are studied in the multi-fractal setting, focusing
on certain dimensions, and Brink & Pendock [6], and Brink [5] have used the entropy and the closely
related Kullback measure to do local thresholding of images.

This article is organized as follows. First, in Section 2 will be given a brief introduction to Linear Scale-
Space and linear entropy. Then, in Section 3 will we discuss the generalized entropies, what the difference
is to linear entropy, and what their properties are in Scale-Space. Following this, in Section 4 we will
discuss a physical interpretation of images both from the view of Multi-Fractals and Thermodynamics.
Finally, in Section 5 we will give demonstrations of the applicability of this theory to image processing.



Chapter 2

Information Theory and Scale-Space

The information theoretic entropy of a discrete distribution is defined by Shannon [25] as,

N

S(p) = —>_ p(i)log p(i).

i=1

We will in this paper use the natural logarithm, but it is not of great importance which unit of information
is used as long as one is consistent. One interpretation of images is to view them as spatial distributions,

. I(7)
i) = =—F=
ZzEQ I(X) ’

where Q € IRY is the domain of the image and N is the dimensionality. This distribution describes the
probability of a photon hitting a certain spatial point. Although there is a relation, this distribution
should not be confused with the distribution of intensities, sometimes called the histogram.

Extending this view with the Linear Scale-Space paradigm [33, 15, 8, 31] enables one to explicitly
study the effect of discretization. The image is extended with the scale or time parameter ¢ by imposing
a diffusion process according to

O = 05,04,

where Einstein’s summation convention is implied, i.e. the right side is a sum over all dimension variables
z;. The Green’s function for this process is the Gaussian Kernel, and the process can thus be modeled
by convolution

P =Grxp= /Gt(m —a)p(a) da,

where

]. Ty
Gt(X) = W@ to,
again implying the summation convention. |z| is the number of dimensions. Note that the standard
deviation is given as, 0 = y/t/2. Even if the distribution prior to the Scale-Space extension was discrete
due to the discreteness of the image, it is now continuous. The entropy can also be defined for continuously
defined distributions, but as the following simple calculation demonstrates, the continuously defined
entropy can yield negative values and is thus difficult to interpret in terms of information content. To
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see this, write the continuous Entropy of an 1D Gauss function as,

S(Gy) — /_oo Gi(z)log Gy(z) dz

oo 2 1
—/ Gt(w)% dm+§log7rt

x
12

_/Oo (@) (Ha(——) + 1) d:v+%10g7rt

_ e 82Gt($) 1

— 00

1
= -1+ 3 log t,

where Hj is the second order Hermitian polynomial [28, p. 28], and using the fact that the integral of a
Gaussian is one and the integral of any derivative of a Gaussian is zero. Negative entropy is found for
t<efm.

This present work will therefore investigate the following discretization procedure, also known as a
histogram,

ih+&
p(i) = / pi(z) de,

o h
h—3

where 4 is an integer and h is the width of the bins in the histogram. A purely statistical discussion
on the choice of bin size and the effects of smoothing can be found in [26]. To simplify we will further
approximate the integral as,

N hp(ih)
O S )

In Scale-Space the size of the bins h should be related to the amount of smoothing performed. A linear
function of the standard deviation, seems appropriate, based on the calculation of the standard deviation
of a uniform distribution (a bin) of width n to be n/v/12. Avoiding details we will in the following just
assume

(2.1)

h=cVt (2.2)

Further, averaging the entropy over all grid offsets we find [27],

(Si(p)) ~ —c — %logt— / 2 () log ps (x)d.

xEeN

This is thus the entropy as a function of scale. The reader should note (at least) two points. Firstly,
the introduction of the integral is due to the fact that the averaging operates on continuous distributions
but avoids the problems of negative entropies by including the discretization explicitly. Secondly, this
defines a transformation of the scale parameter ¢ such that the information loss in terms of the entropy
is constant, and it should thus be noted that this refines the natural scale parameter logt¢ of Koenderink
and Florack [15, 8] with an data dependent term.

For the rest of this paper we will study the scale behavior as a function of log¢. There is thus little
information in the first two terms of the above equation, and we will restrict ourselves to examining the
last term: (S¢(p)) + ¢+ % logt. An example of this function is given in Figure 2.1. As will be discussed
later, this has been proven by two independent approaches [27, 30] to be a monotonically growing function
of scale ¢, and thus may well serve as a measurement of Koenderink’s causality [15].
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Figure 2.1: An examples of an entropy function: Left is a 512x 512 grey-valued image on which Scale-Space
has been applied resulting in the Entropy function shown to the right. Actually only (S(p)) +c+ £ logt
is shown.



Chapter 3

Generalized Entropies

It has been argued [2] that the continuum of Generalized Entropies is the only sensible measure of
information. As will be shown below, the Shannon entropy is part of this continuum, and further the
difference between the normal entropy and the other generalized entropies are intimately linked through
the norm operator.

In the following will the axioms of information theory be reviewed, and the concept of Scale-Space in
this respect will be discussed in detail.

3.1 The Axioms of Information Theory

To review the axiomatically derivation of the Generalized Entropies we will briefly review the historically
developments of the axioms leading first to Shannon’s entropy [32, 25] and finally to Rényi’s generalized
entropies [21, 20].

The theory of information was born by Hartley’s establishment of the additivity axiom [10]:

Axiom 1 (Additivity). The information contents of two independent events is the sum of the infor-
mation of the individual events.

It be argued that information is a logarithmic notion. Shannon’s contribution was to define the entropy
as the linear mean of information:

Axiom 2 (Linear mean). The entropy of independent events is the mean of the information of the
individual events.

Finally Rényi [21, 20] relaxed the constraint of the linear mean to generalized mean in the sense of Aczél
[1] and others.

Axiom 3 (Generalized mean). The generalized entropy of independent events is the generalized mean
of the information of the individual events.

The general entropy of order @ € IR is thus defined as minus the logarithm of the expected (o — 1)-norm,

l1—«o

Salp) = 1 log ()" (3.1)

for a # 1*.

*Note that for large |a|’s this formulation is computationally unsuited. It is much better to calculate Su(p) =
ﬁ(log E_b (p(%)/ max; p(%))* + alog max; p(3))
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3.2 Some Selected Information Orders

To briefly review, let us investigate some particular information orders. It is easily seen by the Max-norm
that

lim S.(p) = — logmax p(3).

a—oo

In general, the generalized entropy of order a is the logarithm of the a — 1 regular moment of the
distribution p under the same distribution divided by 1 — a. The regular moments m, = ), p(i)*
compare to the central moments as,

ca = Y () -D)°

i

a\ _ a\_o a\_,
ma+ pma—1+ pma—2+"'+ P,
1 2 a

where p = my /N. For a = 2, the relation between moments and centralized moments (the variance) take
a particular simple form: ¢, = ms — p2. The information measure is thus,

7
Sa(p) ~ —loges + O (g) .

In the limit for o going to 1 the Generalized Entropy converges (by I’Hospital’s rule) to Shannon’s
Entropy,

11mS (p) = Zp log p(4)

Using the convention of lim,_,g 0* = 0 the convergence towards a — 0 is given by,
lim Sq(p) = log Card({i|p(i) > 0}),

which for non-fractal domains is the dimensionality of the domain. Finally, for negative a’s the generalized
entropies are undefined for zero valued probabilities and in general unstable for small probability values,
but a pragmatic approach is to define the negative information orders on p = {p(i)|p(¢) > 0}, and thus

lim S,(p) = — log min j(3).
a——0o0 T

The reader should note that there are interesting analogies in terms of Thermodynamics, an that the

generalized entropy is the basis of the theory of Multi-Fractals. Both these topics will be discussed later.

3.3 The Scale-Space Extension

Returning to the definition of a Scale-Space extended and discretized distribution, we will now examine
the behavior of the generalized entropies in Scale-Space. It will be assumed in the following that the
discrete distribution is normalized.

Combining Equation 2.1 and 3.1 yields,

Saslp) = ialogz_mpt(m))a

1
log Zpt (th)=

with the choice of h (Equation 2.2) kept in mind. It is easy to see that for @ — 1 the Scale-Space ex-
tended Generalized Entropy converges to the Scale-Space extended Entropy, thus retaining the properties

= 1 10gh+
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discussed previously. Again we wish to take the mean generalized entropy over all grid offsets. This time
though, it is more complicated. By Jensen’s inequality it can be seen that,

(Sap(@)1—a) = alogh+ /Oh %logZpt(ih+ a)® da

IN

h
alogh+log/ %Zpt(ih+a)a da
0 i

= (a—1)logh+ log/ pe(z)* dz.
z€EQ

Thus for a > 1 we have,

1
(Sa,t(p)) > —loge — §logt + log/ pe(x)® dz,
zEQ

1
(1-a)

and for o < 1 we have

1 1
o < -1 — =1 —1 * dx.
(Sosp)) < —loge— logt + = log [ pua)” da

The reader should note that the logarithm of the scale again plays a dominating role. But in a study of
(Sa,t(p)) as a function of log ¢ this term will be less interesting, and we are thus again motivated to study
the behavior of 1/(1 —a)log [, ., p+(2)* dz.

In Figure 3.1 is given an example of the Generalized Entropy surfaces as function of scale. The
Scale-Space is a spatial implementation with homogeneous Neumann boundary conditions.

3.4 Some properties of Generalized Entropies in Scale-Space

In this section further details of the mathematical structure of the Generalized entropies will be estab-
lished.

Proposition 3.4.1. The Generalized Entropy is a decreasing function of order.

Proof. The proof of the monotonically decreasing behavior of the Generalized Entropies is basically a
restatement of the proof given in [21, 12]. A generalized Holder inequality states that for non-negative a

and values of a distribution ¢; the ‘expected norm’ m,(a) = (3_; qiazr)l/ " satisfies
mr(a) > My (a)7

for » > r'. The generalized entropies are defined as minus the logarithm of the expected norm, and since
the logarithm is a monotonic function,

So = —logma-_1(g) < —logmar_1(q) = Sa,
for a > o'. O

Proposition 3.4.2. Let p;(t) > 0 for all i and for all t > 0. Then the generalized entropies

1 N
L(P®) = 12— g
i=1

are increasing in t for a > 0, constant for o = 0, and decreasing for a < 0. For t — oo, they converge
to the zeroth order entropy Iy.
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Figure 3.1: An example of a generalized entropy functions. Top left shows the image. Top right shows the
generalized entropy as a function of order and logarithmic scale. As described in the text, the generalized
entropy function is monotonic in both variable. Hence does the middle row show the derivatives with
respect to logarithmic scale. The figure is split into positive and negative information orders. Finally, to
emphasize this view, the bottom row shows constant information order slices of these surfaces. The lines
of '+’s are order 0, the lines of ’0’s are 5, the ’.’s are order £10, the ’- —’s are order £15, and the full
lines are order +20 respectively.
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Proof. The proof is based on results from [30] implying that for an image P(t), which is obtained from
a diffusion scale-space, the following holds: The expression

N

V()= r(pi(t))

i=1
is decreasing in t for every smooth convex function r. Moreover, tlim pi(t) = 1/N for all i. See Theorem
— 00

5 in [30, p. 68] for full details.
First we prove the monotony of I, with respect to .

(a) Let @ > 1 and s > 0. Since r(s) = s* satisfies
r'(s) = a(a —1)s*72 > 0,

it follows that r is convex. Thus,

is decreasing in ¢t and

is increasing in t.

(b) Let o = 1. By 'Hospital’s rule it follows that

L(P(t) = =) pi(t) Inpi(t).
This is just the classical entropy. Since r(s) = slns is convex, we conclude that the entropy is
increasing in ¢t. This result has already been shown in [30, p. 71].

(c) Let 0 < o< 1 and s > 0. Then r(s) = s* satisfies 7"'(s) < 0. Thus, —r is convex and

V) == i) = - Yook

is decreasing in ¢. Thus, > p¢ and I,(P(t)) are increasing.
(d) Let @« =0. Then

N
Io(P(t)) =In > pl(t) =In N = const.
=1

for all t.

(e) Let @ < 0 and s > 0. Since r(s) = s* satisfies ' (s) > 0 it follows that r is convex. Thus, >, p$(t)
and I,(P(t)) are decreasing in t.

To verify the asymptotic behavior of the generalized entropies we utilize tli}rn pi(t) =1/N. For a # 1

this gives
1 Al
tllglola(t) = ]_—aln;_Na :lnN:I(),

and a =1 yields
11
lim Il(t)z—ZNInN=InN=IO.

This completes the proof. O
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Proposition 3.4.3. Let p;(t) > 0 for all i and for allt > 0. Then the generalized entropies I,(P(t)) are
C*= in t and (at least) C in a.

Proof. C* in t follows directly from the fact that G¢(z) is in C*° with respect to t.

In order to prove smoothness with respect to a, we first consider the case a # 1. Then I, is the

product of the two C* functions {1 and In 3"

;-1 P, and thus also C* in a.

The smoothness in o = 1 is verified by applymgdHospitay’s palpn Fhigegives
g—ﬁi - i1—>ml (1—-a)?2>,p¢
s 1o (L= @) 3 pE(Inp)? + 35, p Inpi In(3, pf)
oot 2(1—a) ¥, pe Inps + (1 —a)? 3o, p2 Inp;
— > pi(lnp:)? + (3, piInpi)?® .
-2

Thus, 2L exists and I, is in C'. O



Chapter 4

Information Theory, Heat Diffusion,
Thermodynamics, and MultiFractals

Scale-Space is a model on the imaging device, which coincidently can be described as Heat Diffusion.
On the other hand, information theory and thermodynamics share common ground through the field of
statistical mechanics. Finally, a relative new field of multi-fractals has been developed which provides a
fractal interpretation of the generalized entropies. These issues will be discussed in detail in the following.

4.1 The Phase-Space Model

Consider an image to be an ideal gas, such that each spatial position in the image denotes the number
of atoms within the aperture. In the ideal case, the gas is so diffuse that no atoms collides, and the
interaction can then be neglected. That leaves us 2n degrees of freedom per atom, where n is the
dimension of the space: The position vector and the impulse moment vector. This is also known as
the phase space in classical mechanics [22]. In quantum mechanics every measurement of a system is
limited by the Heissenberg’s Uncertainty Principle, and in the case of images, a pragmatic extension of this
principle is to assume large (infinite) uncertainty of the impulse vectors, and an uncertainty corresponding
to the aperture of the position vectors. Conversely, one could also assume that each atom has identical
energy. In both cases is it fairly easy to show that the statistical mechanic entropy of the physical system
corresponds to the information theoretic entropy of the above mentioned spatial distribution [27]. To
resume, given the multiplicity function,

N!

WzHi”iV

(4.1)

where n; is the number of molecules in the phase-space state i, and ) .n; = N. Using the Stirling
approximation

log N! ~ Nlog N — N,
the Boltzmann entropy can be found as,

S =klogW = —kNZ%log% = —kNY pilogpi.

Furthermore, since the Heat-Equation is valid for such a system, it is by the Second Law of Thermody-
namics given that the entropy is a monotonically growing function of time [27, 30], and finally, since the
Scale-Space by Koenderink and Witkin [33, 15, 31] is such a system, the increase in the entropy of the
spatial distribution will be a monotonically growing function of scale.

13
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4.2 A short course on Statistical Thermodynamics

To extend our view to generalized entropies, let us first review the basic machinery of Statistical Me-
chanics. Assume an assembly of N identical systems, e.g. N gas molecules. Each system can be in one
of a given number of states, e.g. somewhere in phase-space. Given a certain population of the states, the
multiplicity function W (Equation 4.1) is the the number of realizations of the N systems with such a
population. To end the counting, be reminded that for each such realization the number of systems is
constant,

> ni=N, (4.2)
i
where n; is the number of occupants in the i’th state, and likewise is the total energy,

where ¢; is the energy of the i’th state.

For large systems, i.e. large N’s, the realizations which maximize W will be totally dominating in
the ensemble of all configurations complying with Equations 4.2 and 4.3. This is the method of Most
Probable Configuration [22]. This point in log W is found as the maximum of,

IOgW — )\Zn, — ﬁZemi,
yielding
n; = e P4,
The A term is usually ignored since all thermodynamic functions can be written as functions of N, i.e.

—Bei —PBe;

e €

=N =N
diePe q

n; = sz;
where ¢ is called the partition function and p; is the Boltzmann distribution. Also it is in thermodynamic
experiments recognized that

6:k_T7

where k is the Boltzmann constant.
Remarkably, everything there is to know about the thermodynamic state variables of a system from
its mechanical description can be found through the analysis of kloggq, e.g. the entropy can be written
as,
U(T)-U(0) N Oklogg
T T 00

where U is the internal energy. For further reading, see e.g. [3, 4, 22].

+ Nklogq = + Nklogg,

4.3 The Helmholtz Energy

It has been noted by several authors (e.g. [23, p. 206] and [24, p. 130]) that the generalized entropies in
the limit of very large ‘images’ are very similar to the expression of the Helmholtz energy,

A(T) = U(T) = TS(T) = —kTlogq = —log (Z (e‘“)ﬂ> K

i

where U is the internal energy. But, as the reader may well have noted, this is not the generalized entropy
of the Boltzmann distribution in general, but the generalized entropy of exp(—e;)/ > ", exp(—¢;), i.e. the
energy distribution at the specific temperature T' = 1K (Kelvin) (for > 1).
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To be a little more specific, the generalized entropy of the Boltzmann distribution is given as,

Sa = p—logY et

1

Given a remapping of the energy levels as (; = f¢;, the information order may now play the role of
inverse temperature (for large a’s). But note, this is not a thermodynamic temperature as such, since
for the view to be consistent, the information theoretical entropy as the limit of the generalized entropy
order going to one will be independent on this new temperature, while the thermodynamic entropy is
very dependent on the thermodynamic temperature. When «a > 1 the relation is approximately given
by,

1

11—«

Sy R

1
log Z e~ 4 const., = mA(T/a) + const.,

where the constant term is constant with respect to time or scale.

To relate all this to images, we must first consider the concept of temperature. In thermodynamics
there is a distinct difference between heat and temperature. Heat is in the absence of mechanical work
equivalent to internal energy (U), while temperature is something that is usually measured with a ther-
mometer. The difference can be found through the heat capacity: Some physical objects such as metal
require much energy to be raised to a certain temperature, i.e. they feel cold when touched, while others
require little. This property is called the heat capacity and relates heat and temperature as, dQ) = CdT at
constant volume. We are now ready to imagine a system placed in a heat bath such that the temperature
can be regulated. We can then imagine an image to be a system where the energy levels corresponds to a
physical system at temperature 1K. This then enables us to view the generalized entropies as Helmholtz
energy where the information order is regulated through a hypothetical heat capacity and the heat of the
surrounding bath.

4.4 A Multi-Fractal Description

The generalized entropies are also the basis of what is known as the theory of Multi-Fractals, and this
thus offers a second view on the generalized entropies. The theory of multi-fractals will be reviewed
below.

A fractal is a self similar object, i.e. in a zooming sequence the greater ‘image’ can be found replicated
at a smaller scale. A behavior that can be found in e.g. the Mandelbrot set. It is thus natural to
investigate the rate of replication with scale, the so-called Lyaponov exponent. In the theory of multi
fractals there is not assumed to be one global scaling exponent but an entire spectrum of exponents each
associated with an area in the ‘image’.

In the following will be given a summary of multi fractal theory [11, 23, 24]. Given an density function
p, a discretization can be performed as,

biqy = / p(z) dz,
€y

where Q;(;) is the i’th box in the grid of boxes of width i covering the domain of z.* The point i(l) then
has a fractal behavior with scaling exponent « € R if it converges like

piqy = 1%,

*p is also called the invariant density since if you reverse the discretization process, this density function is the convergence
point invariant to further zooming.
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when [ — 0. Remember that p is an unobservable quantity. Only p is known in some interval of scales.
We are for the moment interested in the sum of the ¢ powers of p;,

M, = Zpg(ly

and thus we for each g associate an a. Reformulating this in terms of « using that the density of scaling
exponents o' can be written as [11],
dz = p(a)l~ ) da,

where f : IR — IR is a continuous function to be determined shortly, and measures the Hausdorff
dimension of the set of points with exponent o. We can now write

M, = /p(a)p(a)l_f(o‘) da ~ /lo‘qp(a)l_f(a) da.
Because of the smallness of [ this integral is dominated by the minimum o' of 7(a) = ag — f(e) in a, i.e.
M, ~ 17,
From the fact that 7 is minimal in o' we know that d,7 = 0 and 0,27 > 0, and this leads to
f'(a') =g,

and
f'(a') <.

Finally define the multi-fractal dimension [12],

D, = —lim—%
? lgrtl)logl
- —lim 1 log M,
1-01—gq logl
N 1
~ l_q’r

This measure has been shown to unify a great variety of fractal measures used in the past [9], e.g. the
Hausdorff dimension can be shown to be Dy, D; as the information dimension and D> the correlation
dimension.

Thus given D, one can calculate o as,

1—-q)D
aI:_d( q) e

dgq
and hence the multi-fractal spectrum as
f@)=(1-g)Dy +qa.

An example is given in Figure 4.1
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Figure 4.1: In this figure are the generalized entropy (middle) and the spectrum (right) of the left image
shown. To calculate the spectrum we used I = 1/12/512 As the image simplifies with scale, the generalized
entropy converges to a constant function, and the spectrum converges to a point function. Note also that
the derivative of the spectrum is equal to the order, and further that at the point of derivative the
spectrum is equal to the Dy.



Chapter 5

Application of the Generalized
Entropy in Image Analysis

It has been demonstrated in a previous article [27] that there is a simple relationship between the point of
maximum global (Shannon) entropy and the absolute size of simple textures. The generalized entropies
gives us a second view on the global scaling behavior of images in Scale-Space. This is best discussed in
the terminology of fractal spectra. The isophote of an image is proportional to [*, as such f(a) is the
fractal (Hausdorff) dimension of the log(I) = ag manifold. This is a monotonic transformation of the
isophotes, and in Scale-Space, the isophotes evolve with different speeds and (fractal) complexities. In
general the spectrum will be a smooth, concave and positive function for all a’s between log max, I and
log min, I, and the width of this span will fall monotonically in Scale-Space, such that the spectrum will
converge to a point or a Dirac delta function around the exponent of the mean intensity value. In other
words, viewing the generalized entropy as the logarithm to the norm, the information order determines
which isophotes are to be emphasized. The scaling behavior of the maximum (and minimum) intensities
can thus be seen for (+) infinite order. Likewise, the scaling behavior of the zeroth order is constant as
is the case for the scaling behavior of the spectrum at zero derivative.

To demonstrate this, we have given a few examples from the VisTex package [19]. The two top rows
showing pieces of fur. We will now interpret the information change for positive orders in terms of image
contents. In both graphs the first node is located at almost same scale for both images and all orders,
but the the absolute information change of these nodes differ somewhat, i.e. Fabric.0005 shows a more
skewed distribution of intensities than Fabric.0004 at low scale. At high scale, the presence of an extra
node in Fabric.0004 indicates medio level structure which is not present in the other.

The bottom two rows showing pieces of baskets should also be compared with Figure 3.1. It should
be noted that Fabric.0000 has fewer very light and very dark pixels than Fabric.0002 and Fabric.0003,
and this in general causes the range of scales to become greater in the latter cases. Also, all graphs show
nodes at approximately —1, which is due to the very small scale structure of the threads, while the the
node at approximately 1 is due to the prominent junctions between each ‘square’. Only Fabric.0002 and
Fabric.0003 show very large scale structure which can be accredited the illuminance differences.

Finally, in Figure 5.2 and 5.3 we include some more examples of entropy changes for the reader to
enjoy and digest.

18
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Figure 5.1: A demonstration of the variety of scaling behaviors of generalized entropy function. The left
column are the images, the middle and the right are entropy change per log scale of positive and negative
orders. The same lines corresponds to the same orders as in Figure 3.1
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Figure 5.2: More texture images and their entropy changes. See Figure 5.1 for an explanaition of the
graphs.



DIKU-96/37, University of Copenhagen 21

Tile_0000
0.14]
sl ]
0012 2
s
3 3
o o
Em E,m, 4
H H
g s
“ g
2 3008 B ]
2 ° o
2 3 &
2 2
8 &
5006 5
H &2 —
| T
E £
£004 5
= £
o5l ]
0.02
. . . . .
50 100 150 200 250 300 350 400 450 500 -2 -1 1 3 4 -2 -1 1 2 3 4
pixels Logarithmic Scale Logarithmic Scale
Tile_0001 Tile_0001 Tile_0001
0.1 T T T T T T T T + "

o
2

o
5
8

=
R

Information change by logarithmic scale
o
S
3

Information change by logarithmic scale

-1 -0.5 0 05 1 15 2 25 3

200 250 -5 -1 <05 05 1 2 25 3 Logarithmic Scale
pixels Logarithmic Scale

Tile_0004 Tile_0004

Tile_0004
014 . — . r

o
i)
| !
S S
= ~

5
!
o
>

=
!

o

=

)

Information change by logarithmic scale
.
L

Information change by logarithmic scale

0 4 ‘ " " " N " L " 14 L L L L L L L L L

2 25 3 35

.5 1 15
pixels Logarithmic Scale
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graphs.



Chapter 6

Programming Entropies in Matlab

With the exception of the Scale-Space implementation, all the experiments make use of programs written
in the Matlab language. We have chosen to include the source code in the following for two reasons: to
document the experiments and to demonstrate the use of Matlab.

Matlab is a matrix language, and the code below is optimized for matrix calculations, still should all
functions except the last, scale.m, be understandable and fairly well documented.

All the programs below has been installed in /usr/local/image/src/matlab, and can be used at DIKU
by including

setenv MATLABPATH /usr/local/image/src/matlab

in your .tcshre file.

6.1 spectrum.m

‘Spectrum’ calculates the multifractal spectrum of an image. As you may note, it is only a wrapping of
the two functions below.

function [F,A] = spectrum(I,t,q);
%SPECTRUM Calculate multifractal spectrum as function of exponents and scale

h

% [F,A] = spectrum(I,s,q)
) F - The multifractal spectrum
% A - The corresponding scaling exponents

% I - The image

% t - The list of scales used (2*variance)

% q - The list of information order used

h

% This function evaluates the multifractal spectrum from the
h image.

L = information_scale(I,t,q);
[F,A] = inf2spect(L,sqrt(12)/size(I,1),q);

6.2 inf2spect.m

Given an generalized entropy as function of scale and order, ‘inf2spect’ calculates the spectrum and the
corresponding exponents.

function [F,A] = inf2spect(L,1l,q);
%INF2SPECT Calculate multifractal spectrum as function of exponents and scale

22
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h

% [F,A] = inf2spect(L,1,q)

% F - The multifractal spectrum

% A - The corresponding scaling exponents

% L - The generalized entropy (from e.g. information_scale)

% 1 - The list of lengths used in the measurement usually (const. 1/N)
% q - The list of information order used

h

% This function evaluates the multifractal spectrum from the

% generalized entropy

% The generalized dimensions
D = -L./log(1);

% The scaling exponents

T = ((q’-1)*ones(1,size(L,1)))’.*D;

A (T(:,3:size(q,2))-T(:,1:8ize(q,2)-2))/(q(3)-q(1));
dq = q(2:size(q,2)-1);

% The spectrum
F = (dq’*ones(1,size(L,1)))’.*A - T(:,2:size(T,2)-1);

6.3 information_scale.m

To generate the generalized entropy as function of scale and order has ‘information_scale’ been used. It
is optimized together with ‘scale’ such that the image is only Fourier Transformed once.

function L = information_scale(I,s,q);
%INFORMATION_SCALE Calculate the information as function of order and scale
%

% L = information_scale(I,s,q)

% L. = The information as function of order and scale

% I - The image

% s - The list of scales (2%*variance)

% q - The list of information order

h

% This function evaluates the generalized entropy or information for

% an image. The rows corresponds to the scales and the columns to the
% information order. Be warned: This is a slow function!

L = zeros(size(s,2),size(q,2));

FI = fft2(extend(I,2,2));

for i = 1:size(s,2)
I2 = real(ifft2(scale(FI,sqrt(s(i)/2),0,0)));
I2 = I12(1:size(I,1),1:size(I,2));
L(i,:) = information(I2/sum(sum(I2)),q);

end

6.4 information.m

‘Information’ is the procedure used to calculate the generalized entropy of a distribution. In a neighbor-
hood around order 1 has a Taylor expansion to first order for both the enumerator and denominator been
used such that the limit of order going to 1 will cause the generalized entropy to converge to Shannon’s
entropy.
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function E = information(P,q);
%INFORMATION The information theoretic generalized entropy

h

% E = information(P,q)

% E - the entropy of order q (in bits, i.e. log2 is used)

% P - a 1D or 2D distribution

% q - the order, if q is a matrix then a matrix is returned

% where each point is the corresponding generalized

% entropy.

h

% This function calculates the information of order q of a 1D or
% 2D distribution P, i.e. for every point 0 <= P(x) <= 1,

% and sum(sum(P)) = 1. The log2 unit is used. This measure is

% not defined for q = 1, but it can be shown, that the limit for
% q going to 1 is Shannon’s Entropy. Thus a first order

% approximation is used close to 1. At infinum the logarithm of
% the max- or min-norm is returned

h

% The complexity of the algorithm is O(n*m) where n and m are the
% dimensions of P.

h

% To calculate the entropy of a uniform distribution

% (as specified) use,

% E = information(ones(10,10)/100,0);

h

% Jon Sporring, June 13, 1996

E = zeros(size(q));
for i = 1:size(q,1)
for j = 1:size(q,2)
if q(i,j) == Inf
% Essentially the logarithm of the max-norm
E(i,j) = -log2(max(max(P)));
else
if q(i,j) == -Inf
% Essentially the logarithm of the min-norm
E(i,j) = -log2(min(min(P+(P<=0))));
else
Pq = P."q(i,j);
X = sum(sum(Pq));
if abs(q(i,j)-1) < 0.5
% E(P,q) -> entropy(P) for q -> 1
E(i,j) = -sum(sum(Pq.*1log2(P+(P<=0))))/X;
else
E(i,j) = log2(X)/(1-q(i,3));
end
end
end
end
end
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6.5 scale.m

Although this implementation has been abandoned in an early state of our experiments, this implemen-
tation of Scale-Space could have been used. It implements Scale-Space in the Fourier Transform, and is
optimized in the sense that the Gaussian function is transformed analytically and only calculated in one
quadrant. Be warned, this is not a simple algorithm to read, but it is about the fastest that can be done
for Fourier Transform implementations, which again is the fastest possible Scale-Space implementation
for large scales in general.

function Is = scale(I,s,dr,dc);
%SCALE Gaussian Scale-Space using the Fourier Domain

h
% Is = scale(I,s,dr,dc)
% I - the Fourier transform of a matrix or an image
% s - the standard deviation of the Gaussian (must be larger than 0)
% dr - the derivative order in the direction of the rows
% dc - the derivative order in the direction of the columns
% Is - the Fourier transform of the scale image/matrix
h
% This is an implementation of the Gaussian scale space on matrices.
% The convolution is implemented in the Fourier domain and for that
% reason the number of rows and columns of the matrix must be powers
% of 2.
% Fractional valued dr and dc are possible, but be warned the result
% will probably be complex.
% The complexity of this algorithm is 0(n) where n is the total number
% of elements of I.
h
% To calculate an image of scale (variance) 272 use,
% I2 = real (ifft2(scale(fft2(I1),2,0,0)));
% To derive an image once in the direction of rows at scale 172 do,
% I2 = real (ifft2(scale(£fft2(1),1,1,0)));
h
% Jon Sporring, January 1, 1996
if s ==
Is = I;
else
if (s < 0)
error (’s must be larger than zero’);
else
rows = size(I,1);
cols = size(I,2);

if(rem(log2(rows),1) "= 0 | rem(log2(cols),1) "= 0)
error(’The image must have side lengths of power of 27);
else
% Calculate the Fourier transform of a gaussian fct.
G = zeros(rows,cols);
if (rows > 1) & (cols > 1)
G(1l:rows/2+1, 1:cols/2+1) = exp(-(([0:rows/2]’*ones(1,cols/2+1)/(rows-1))."2 ...
+ (ones(rows/2+1,1)*[0:cols/2]/(cols-1))."2)*(s*2*pi) "2/2);
else
if rows > 1
G(1:rows/2+1, 1) = exp(-([0:rows/2]’/(rows-1)) . 2x(s*2%pi)"2/2);
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else
G(1,1:cols/2+1) = exp(-([0:cols/2]/(cols-1)) . 2% (s*2*pi)~2/2);

end
end
G(rows/2+1:rows, 1:cols/2+1) f1lipud(G(2:rows/2+1, 1l:cols/2+1));
G(1:rows/2+1, cols/2+1:cols) fliplr(G(1l:rows/2+1, 2:cols/2+1));
G(rows/2+1:rows, cols/2+1:cols) = fliplr(flipud(G(2:rows/2+1, 2:cols/2+1)));

% G = Gxrows*cols/(sum(sum(G))*2*pi*s~2);

% Calculate the Differentiation matrix
j = sqrt(-1);
if (rows > 1) & (cols > 1)
x = [0:rows/2-1,-rows/2:-1];
y = [0:cols/2-1,-cols/2:-1];
DG = ((x.7dr)’*(y."dc)*(j*2*pi) " (dr+dc)/(rows~dr*cols”dc));
else
if rows > 1
x = [0:rows/2-1,-rows/2:-1];
DG = (j*2*pi*x’/rows)."dr;
else
y = [0:cols/2-1,-cols/2:-1];
DG = (j*2*pi*y/cols)."dc;
end
end

Is = I.xG.x*DG;
end
end
end
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