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Abstract

This thesis concerns flow analysis of typed higher order programs. Flow
analysis attempts at compile time to predict the creation, flow and use of
values. We will present a suite of analyses based on type systems: they work
by adding extra information to the standard types of the analysed program.
The analyses are proven to be sound under any evaluation order.

The first two analyses, simple and sub-type based flow analysis, are
known from the literature. We present a new modular formulation, allowing
subexpressions to be analysed independently from their context without loss
of precision.

Modularity makes it possible to extend the analyses with polymorphism
which allows named functions to be used differently in different contexts.
This leads to improved precision. We show that ML- and fiz-polymorphic
flow analysis is computable in polynomial time.

Finally, we present a flow analysis based on intersection types. We
show a completeness result for this analysis: the analysis is precise up to
not knowing which branch of a conditional is taken and not discarding any
computation.

The sub-type based analysis can be given a very natural presentation
using graphs. The graph formulation leads to an improvement over existing
algorithms: single flow queries can be answered in linear time and full flow
analysis can be performed in quadratic time (under assumption that the size
of standard types is bounded).

We argue that the presented analyses are not restricted to a specific
standard type system, but are applicable to any functional programming
language; even dynamically typed languages.
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Chapter 1

Introduction

In the childhood of automatic computing, programs were small and written
in the machine code of the machine on which the program was intended
to run. Programming languages facilitated portability between different
machines. Even more important, they allowed the programmer to abstract
from details and leave these to the compiler.

With the growth of computers (in size and speed) abstract programming
languages were no longer a convenience but a prerequisite for program-
development. A more recent benefit was the ability to restrict the direct
access from a program to storage and external devices; this allows safe exe-
cution of (possibly unknown) programs.

One programming language paradigm that seems to be reaching maturity
these years is functional programming. This allows high-level abstract spec-
ification of programs based on sound mathematical principles. In strongly
typed variants of functional programming a high level of safety is implied.

1.1 Program Analysis

The more abstract programming languages get, the more they distance
themselves from the underlying machine, the more will be required from
compilers in order to produce efficient code. The point of abstract program-
ming languages was exactly to allow the programmer to leave out details
that were not important for the specification of the solution. Those details
might, however, be crucial to the execution of the program.

Program analyses allow the compiler to infer some of the information
that was left out by the programmer. A program analysis usually goes
hand in hand with a program transformation that will optimise the program
based on the information inferred by the analysis. There are some common
prerequisites for most program analyses:

e They require information about the flow of data within the program.
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e They require information about the possible control paths through the
program.

The study of data-flow analysis and control-flow analysis allows a general
perspective on program analyses and allows the study of generally applicable
algorithms. Furthermore the result of data- and control-flow analysis can
be used directly as the basis for other analyses.

1.2 What is Flow Analysis?

In imperative languages we have:

“

Data flow analysis: “...traces the possible definitions and uses of data

in the program”

4

Control flow analysis: “...traces the patterns of possible execution

paths in a program”

(Quotations from [RP86]). For higher order languages we cannot separate
the two: consider the following expression:

let f = A\g.g@True
in f@Az.if x then False else True

Data flow analysis could infer that the value ‘Az.if x then False else True’
can flow (through g) to the underlined application. But the fact that control
at this application passes to the body of the let-bound A, can be considered
control-flow. Only due to inferring this pass of control are we able to infer
that the value True can flow (through z) to the conditional of the ‘if’ (again
data-flow).

As we see, there is an interdependency between data-flow and control-
flow analysis. This naturally leads to the conclusion that the two should be
combined into one analysis. The combined analysis has previously been
referred to as control-flow analysis (Shivers), flow analysis (Jaganathan,
Weeks, Wright and Ashley) and closure analysis (where only flow of func-
tions (and sometimes data-structures) is taken into consideration; Sestoft,
Bondorf). The general term “flow analysis” seems appropriate for the ana-
lyses presented later in this thesis as they will contain elements from both
data- and control-flow analysis.

There is, however, an aspect of control-flow analysis that is not captured
by the analyses above: the order of evaluation. For imperative languages
this is part of the result of a control-flow analysis. The reason is that eval-
uation order is usually an integral part of the definition of an imperative
language. For a given functional language this is of course also the case,
but there has been a tradition in the functional programming community
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to do theoretical work on the lambda calculus with beta-reduction as se-
mantics without specifying the order of evaluation. This makes analyses
applicable to any functional language. Furthermore, it allows compile-time
optimisations based on beta-reduction and it allows parallel execution of the
program. On the other hand, it can restrict the precision of analyses. Based
on this discussion, we might find it more appropriate to coin the previously
designed analyses as data- or value-flow analyses.

Reduction-order independent flow analysis allows validity under any re-
duction order but prevents the analysis from being the basis for analysis
that does rely on flow-dependencies. We will see how restricting ourselves
to reduction-order independent analyses implies that certain versions of
binding-time analysis cannot be based directly on flow analysis.

The analyses presented will follow this general tradition of not specifying
evaluation order. We will, however, propose a few possible optimisations
based on knowledge of evaluation order.

1.3 Analysing Typed Programs

The tradition of program analysis (with certain exceptions) has been to
analyse the program itself, independent of whether the analysis is applied to
typed or untyped programs. This, of course, allows a common specification
of analyses for typed and untyped languages. On the other hand, if type
inference is performed, the result of the type inference contains a lot of
additional information about the program.

This intuition was explored from a different angle by Palsberg and
O’Keefe, who investigated exactly which type information could be imme-
diately inferred from flow information [PO95], and Heintze, who also in-
vestigated the other direction: which flow information is present in type
derivations [Hei95].

The approach taken in this thesis is to assume that a well-typed pro-
gram is given along with the type information. In other words, we assume
that we are given an explicitly typed term. As noted above this gives us a
better starting point for doing program analysis, but it also gives a natural
separation of the problem: it is easily shown that the size of an explicitly
typed term can potentially be exponential in the size of the term itself. This
implies that all analyses presented in this thesis will have exponential worst
case behaviour in the untyped term. On the other hand, this is an expo-
nential factor which we know and love: in practice we can assume that the
typed program is either given by the programmer (as in Pascal, C etc.) or
is not much bigger than an underlying program for which type inference is
performed (ML, Haskell etc.).

The idea is that part of the complexity of some analyses is really due to
an attempt to reconstruct the standard type information during analysis.
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Since type inference will be performed anyway for typed languages, and
since this is known to be well-behaved in practice (despite its seemingly
prohibitive theoretical worst-case behaviour), we can hope that, if we factor
out the type-inference part of the analysis, the “remaining” complexity is
much lower.

An example of this is closure analysis which is shown to have cubic
complexity. This was believed to be a tight bound, but we will give an
algorithm which is quadratic under assumption that all types are of bounded
size — hence the complexity of our analysis is exponential in the size of
the untyped program, but better behaved than closure analysis on “real”
programs. Furthermore, our analysis allows single queries in linear time, in
contrast to traditional closure analysis, which also required cubic time for
this.

This approach implies that we need to fix not only the language, but also
the type system: we will call such types standard types. We will choose the
simplest type system possible: simple types. We will later show that we can
extend the type system orthogonally to the choices made when specifying
a given analysis. If a type system gives less than exact information about
the type of a given subexpression, the result of the analysis will also be
less precise: eg. recursive types allow infinite types to be given a finite
description provided that the infinite structure in a sense “repeats” itself.
This regularity will be conveyed to the flow analysis where repetition of flow
results will be enforced as well.

By choosing a sufficiently liberal standard type system such as dynamic
types, we can even analyse untyped programs. Thus, our methods do not re-
strict the choice of programming language; they only require that some type-
discipline is enforced previously to analysis. The choice of type-discipline is
important to the precision of the analysis.

1.3.1 Type Based Analysis

Type based analysis works by annotating or refining standard types by
adding extra information to each type constructor in (standard) type in-
ference trees. Such annotated types will be called properties or flow types.
The annotations are more precise information about the term possessing the
type which is being annotated. When doing flow analysis, annotations will
consist of information about which value the expression can evaluate to. In
a judgement e : Bool, the type describes the sort of value that e can evaluate
to while an annotated type Bool” will state that e can evaluate to one of
the values described by L (which all will be of type Bool).

Type based analysis allows a natural separation of specification and im-
plementation of an analysis. There is no method of computation implied by
the formalism. The formalism specifies analysis in a local, relational manner
that allows for easy reasoning about properties of the program.
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Compared to abstract interpretation (in the style of the Cousots [CC77]),
one might say that abstract interpretation combines the issues of specifica-
tion, implementation and correctness, while type based analysis separates
these issues. Soundness is usually built into the construction of an abstract
interpretation based analysis, but it can be difficult to prove other proper-
ties about the analysis. Finally, if an analysis is obtained from a (possibly
instrumented) denotational semantics, this semantics have already made a
choice concerning evaluation order. In this case it can be difficult to specify
reduction-order independent analyses.

Abstract interpretation and type-based analysis are not mutually ex-
clusive methods, a standard type can, after all, be seen as an abstraction
of a big-step operational semantics. We do, however, believe that certain
analyses are more easily defined in one framework than in the other. One
big advantage of the type-based approach is that concepts and results from
standard type theory often can be adopted to program analysis with little
change.

Type based analysis usually adds annotations directly to the standard
types without changing the structure. It is, however, possible to refine the
structure as well:

1. By adding polymorphism over annotations. This polymorphism is
completely separate from the standard type system (which might con-
tain standard polymorphism over types). An example of this is Dus-
sart, Henglein and the present author’s work on polymorphic binding-
time analysis [HM94, DHM95a].

2. Adding new connectives such as intersection and union. This requires
that the underlying type of each component of the intersection or
union is identical (but naturally allows the annotations to differ). An
example of this can be found in Jensen’s work on strictness analysis
[Jen92].

Type based program analysis can take advantage of the “implicit” flow
information contained in the type derivation. It does, however, also inherit
the potential problem of exponential behaviour. This, as discussed above,
should not cause any grief.

1.3.2 Graph Based Analysis

The result of data-flow analysis for imperative programs is usually repre-
sented by a flow graph which can be inferred directly from the program
text. Using a graphical representation of constraint based analysis, we ar-
rive at a very natural form of higher-order flow graph: the basic flow of
simple constraints forms a pre-flow graph (which resemble the syntax tree
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for the term) and the induced flow of conditional constraints becomes closing
rules on the graph.

The flow of a value is represented by paths from the value in the graph.
We are thus able to trace the flow values through variables to the uses of
the value.

Such graphs inherit the problems of constraint based flow analysis: the
analysis is global and the implementation becomes cubic. We therefore
introduce the concept of a typed graph.

There is a path between two nodes in a typed graph if and only if there
is a path between the corresponding nodes in the graphs described above
(untyped) and hence the precision of an analysis based on typed graphs is
the same.

The advantage of typed graphs is that they can be generated by a sin-
gle pass over the standard type derivation — the need for closing rules is
avoided. This allows graphs to be constructed for individual modules and by
attaching dummy values to input edges a modular analysis can be achieved.

The typed graphs will have a size equivalent to the size of the basic ex-
pression with explicit types on all subexpressions. If we assume all types
to have bounded size, the complexity of flow analysis is improved over
previously known analyses: it can be computed by simple reachability in
quadratic time. Furthermore, the formalism allows single queries (such as
“which values are consumed at this program point?” or “where is this value
consumed?”) to be computed in linear time.

1.4 This Thesis

The goal of this thesis is to investigate flow analysis of typed higher-order
functional programs. In the development of analyses we will emphasize the
following:

e Intensional behaviour: The result of flow analysis is not just a de-
scription of the behaviour of the whole program, but also a description
of the internal behaviour. In particular, an analysis is sound if the flow
description of every subexpression is preserved by reduction (except
the redex itself) — it is insufficient to consider the description of the
whole program. Many analyses described in the literature are pre-
sented in an eztensional manner, such that the result of the analyses
is a global description of the behaviour of the whole program.

e Modularity: It is inconvenient or even prohibitive for program devel-
opment if the whole program has to be recompiled every time a change
has been made. We therefore find it important that modules can be
analysed separately. Separate analysis of modules should not result in
loss of precision of the analysis: the result should be the same as if the
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whole program was analysed at once. Until recently, the value-flow
analysis for higher-order programs described in the literature were
global. One exception is the work by Tang and Jouvelot, who use
a type-based interface between different modules [TJ94]. Their ap-
proach, however, gives less precise results when analysing modules
individually than if the whole program was analysed.

Principality as known from standard type inference and other kinds of
program analyses yields separate analysis without loss of precision. We
will prove this property for our type based analyses. Independently
of this work, Flanagan and Felleisen recently used a similar idea to
achieve separate set-based analysis [FF96].

e Practicality: We will strive for practical analysis. In particular, the
complexity of analyses presented should not be forbidding for practical
use. We give a novel formalism for closure analysis [Ses88] which
improves the best known complexity of the analysis (independently of
this work, the same result was discovered using a different approach
by Heintze and McAllester [HM97]). We present two new polymorphic
analyses, which improve the precision of closure analysis, and prove
the analysis to have polynomial complexity.

e Evaluation-order independence: The developed analyses should
be sound under any reduction order. This makes the analyses widely
applicable, and perhaps even more important, does not prohibit com-
piler optimisations which do not adhere to the evaluation order of the
language (eg. constant propagation is based on “deep” beta-reduction
and might invalidate the result of an analysis mimicking outermost
reduction).

An additional contribution of the thesis is intersection based flow ana-
lysis. Though this analysis is not practically applicable, its formulation and
properties are theoretically appealing and we believe that it can serve as a
good starting point in the search for more precise yet practical analyses. We
give an exact characterisation of the precision of the analysis which shows
that the analysis only errs by assuming that no reductions are ever discarded.
This result implies that the analysis must be non-elementary recursive.

1.5 Outline

The rest of this chapter defines the basic simply typed language we will be
using and gives a number of basic definitions concerning the nature of flow
analysis.

Part T concerns monovariant analyses. By monovariance we mean that
every definition is given one description which has to suffice for all contexts
in which the defined expression is used.
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Chapter 2 presents a very simple type based flow analysis. The analysis
is very crude but can be implemented very efficiently. It will also serve
as a first introduction to type based program analysis introducing central
concepts in a simple framework. The analysis allows the same precision as
analyses described by Bondorf and Jgrgensen [BJ93] and Heintze [Hei95].
In contrast to these analyses, our formulation

e allows an intensional soundness proof: we show that the inferred flow
information is preserved for every subexpression in the program.

e is modular: we prove that the analysis has principal typings. That is,
for every expression, we can find a single flow description that without
loss of precision can be used in any context. Furthermore, we identify
a minimal, principal typing where all flow, that can be completely
resolved without knowledge of the context, is resolved. The proof of
existence of principal and minimal, principal typings is constructive.

Chapter 3 introduces subtypes in the analysis of chapter 2. This re-
sults in an analysis of the same strength as closure analysis [Ses88] and
constraint based analysis [Pal94] both of which are presented. In contrast
to these analyses, our analysis enjoys the same properties as simple type
based flow analysis: intensional soundness and (constructive) existence of
minimal, principal types.

Chapter 4 introduces flow graphs of equivalent accuracy as the analysis
presented in chapter 3: untyped graphs are applicable to untyped languages
and can be seen as a graphical representation of constraint based analysis,
whereas typed graphs make constructive use of the available type information
to achieve an improvement of the previously best known complexity of these
analyses. We relate the paths in flow graphs to well-balanced paths known
from optimal reduction. The definition of optimal reduction is that no redex
is ever copied: this definition presupposes that the redexes that can occur
during reduction of a term can be inferred from the term — essentially a
flow analysis.

Part IT concerns polyvariant analyses. Polyvariance allows several de-
scriptions for every definition. This can be achieved by reanalysing the
definition for every context in which it is used. This will however be pro-
hibitively complex (or even undecidable in the case of recursive definitions)
so the goal is to find a formalism that allows a uniform representation of
these descriptions. We also wish the formalism to allow modularity such
that the definition can be analysed independently of the contexts in which
it will be used.

Chapter 5 combines the subtypes of chapter 3 with polymorphism. The
introduction of polymorphism is made possible by the existence of prin-
cipal types in the subtype based flow analysis. We present let- and fix-
polymorphic analyses which allow definitions to be polymorphic: the addi-
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tional precision achieved is characterised by showing that the analysis cannot
be improved by let-unfolding resp. fix-unrolling. We show that the analyses
have minimal, principal typings and present polynomial time algorithms.

Chapter 6 extends the subtype based analysis with intersection types.
These give a strictly more precise analysis than polymorphism. We give a
semantic characterisation of the strength of the analysis: we introduce a
non-standard reduction system that chooses both branches of conditionals
and never throw away redexes. With this system, the analysis is shown to
be invariant under reduction and expansion.

Chapter 7 reviews Shivers’ nCFA flow analysis [Shi91lc]. OCFA has of-
ten been confused with the analyses presented in chapters 3 and 4 but we
show it to be fundamentally different (0CFA is strictly stronger than closure
analysis).

The last part (part IIT) discusses extensions of the analysis, both w.r.t.
achieving better results and making them applicable to languages with other
type systems. We go on to present applications of the analyses. This part
is less verbose than the previous — the aim is to convince the reader that
the analyses are useful and not restricted to the simply typed language used
through the first sections. Finally, we discuss related work and conclude.

Chapter 8 discusses improvements of the analyses. We examine how to
lift the assumption that both branches of conditionals always can be taken,
and discuss how this relates to adding wunion flow types to our analyses.
It is discussed how to take advantage of knowledge about the evaluation
order: certain redexes will never be reduced under a fixed evaluation strategy
(e.g. call-by-need). We also discuss various restrictions and extensions of
polymorphic and intersection based flow analysis.

We present an idea for an improvement of graph based analysis inspired
by work for flow analysis for imperative languages by Horowitz, Reps and
Sagiv [RHS95, RSH94, SRH95]. Finally, we present an improvement of
Shivers’ nCFA based on usage information.

Chapter 9 shows how the ideas and algorithms presented in this thesis
generalise to more complex languages than the simple one used for presen-
tation. In particular, we discuss extensions of the type system with ML
polymorphism, sum types, recursive types and dynamic types. The latter
allows our analyses to be applied to untyped programs. The extensions are
described for both type based and graph based analyses.

Chapter 10 discusses applications of flow analysis. We will focus on con-
stant propagation, firstification and binding-time analysis. This illustrates
the strength and applicability of our analyses, but also exposes the weak-
nesses inherent from deciding to make our analyses evaluation-order inde-
pendent: certain versions of binding-time analysis cannot be based directly
on flow analysis.

Chapter 11 discusses related work and compares. Chapter 12 concludes
and discusses future work. The thesis ends with a summary in Danish.
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The analyses presented in chapters 2, 3 and 4 are well known, though the
presentation differs somewhat from earlier presentations of the same analy-
ses (the graph representation is new). Some results are new, in particular
principality and the connection to well-balanced paths of optimal reduction
are to our knowledge new.

The analyses of chapters 5 and 6 as well as the more speculative chap-
ter 8 present analyses which are all previously unknown. The polymorphic
analysis of chapter 5 builds on foundations laid in binding-time analysis
by Dussart, Henglein and the present author, while the intersection-based
analysis is previously unpublished.

1.6 Language

This section defines the language which we will be analysing in the rest of the
thesis (except chapter 9 where we will discuss extensions of the language).

Let V be an enumerable set of variables and let z,y, z,... range over V.
The set Exppgeyqo Of pseudo-terms is given by the abstract syntax (where
e,el e’ e1,eg,. .. range over EXp,ceyd,)

e == z|Ar.e|eQd |fixz.e|(e,e)]|let (z,y)beeine |let z =eine |

if e then €’ else ¢” | True | False
The set T of types' is defined by:
t == Bool|txt|t—t

where t,#',t",t1,ts,... range over T.
An occurrence of a type constructor Bool, — or X can be positive or
negative in a type t:

1. Bool is a positive occurrence in Bool, — is a positive occurrence in
t — t' and X is a positive occurrence in t x t'.

2. If a type constructor c is a positive occurrence in ¢ then it is a negative
occurrence in t — t' and a positive occurrence in t' — ¢, t x t' and
' x t.

3. If a type constructor ¢ is a negative occurrence in ¢ then it is a positive
occurrence in t — t' and a negative occurrence in t' — t, t x t' and
t' x t.

If A:V — T is a partial map from variables to types, derivable type
judgements A - e : ¢ define a relation over (V' — T) X Expjseyqo X T We read

1We will refer to these types as standard types to distinguish them from annotated types
as introduced in following chapters
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AFe:tas “e has type t under assumptions A”. The set Exp C Exppgeydo
of expressions or terms denotes the set of pseudo expressions e for which
there exists A,¢ such that A e : ¢ is provable in figure 1.1.2

We write A,z : t for the function A’ such that

oyt ,ify ==z
Aly) = { A(y) , otherwise

IdA,ac:tl—x:t

AFe:tl 5t AFE Y

Az:the:t
AF e@e :t

AF dxe:t =t

—-elim

—-intro

Bool-intro e Bgol A I False : Bool

AFe:Bool Albe:t AbFeE':t
AFif ethen e else e’ : t

Bool-elim

K Abe:t AFe:t s Abertxt Awxity:t' et
X-mtro AF (e,e) it x t' x-elim AFlet (z,y) beeine : ¢
Ax:the:t AbFe:t Ax:tke:t

ﬁxz—‘[l—ﬁxx.egt let Abletz=cine : ¢

Figure 1.1: Type system

Let e be an expression. Then F'V (e) and BV (e) are the sets of free resp.
bound variables of e defined as usual. We call e well-named if all free and
bound variables of e are distinct. For every expression e there exists an a-
equivalent expression €’ such that €’ is well-named. Unless stated otherwise,
whenever we refer to an expression or term it will be assumed to be well-
named.

A contezt is a term with one hole:

C == []| .C|CQe|e@C |fixz.C|letz=Cinel|letx=einC |
if C then ¢’ else €” | if e then C else €” | if e then €’ else C' |
(C,e') | (e,C) |let (z,y) be C'ine | let (z,y) be e in C

We write Ce] for the term obtained by replacing [ ] in C' with e. We assume
that the resulting term is well-named.

2As we consider types an integral part of the definition of expressions (Church-style),
we will always assume that the type of an expression is available.
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If e is an expression with n occurrences of a variable z, we use (%) to
denote the i’th occurrence of z in e.

A substitution on terms is a map from V to Exp. A substitution from z
to e is written [e/x] and is applied to an expression €’ using post-fix notation.
If there are n occurrences of x in e we define e[e’/z] to be the result replacing
each occurrence z(*) by ei where

1. e} =, ¢ and € is well-named,
2. BV(ej) N BV (€}) = 0 for i # j, and
3. BV(e})) N (FV(e)UBV(e)) =0

If BV(e')N(FV(e)UBV(e)) = 0 we can safely assume that €] = ¢’ without
a-conversion.
The semantics of the language is defined by the following reductions:

(B) (Az.e)@Qe’ — ele'/z]
(0-if) if True then eelsee’ — e
if False then e else e’ — ¢
(0-let) letx =eine — €'[e/x]
(0-let-pair) let (x,y) be (e,e') ine” — €"[e/z][e'/y]
(0-fix) fixx.e — elfixz.e/x]
(Context) Cle] — Cle] ife — ¢

As usual we write —* for the reflexive and transitive closure of —
Note that reduction preserves well-namedness: if e is well-named and
e —> €’ then €' is well-named.

1.7 Flow Analysis

Let £ be an enumerable set of labels. We let I,11,l5... range over labels.
Given a program e a labelling is a function LabelOf, : Exp — £ mapping
occurrences of expressions to labels®. We use ExpOf, : £ — P(Exp) for the
function finding the set of sub-expressions of e with a given label. Thus

ExpOf,(LabelOf,(e')) D {e'}

and
Ve' € ExpOf, (1) : LabelOf,(e') =1

Let L, denote the range of LabelOf,.

3We could have required labelings to be injective (such that for each e, e’ subexpres-
sions of e, e’ # €'’ implies LabelOf. (e’) # LabelOf.(e")) since this is the intended meaning
at program analysis time. This, however, would lead to problems when considering sound-
ness: injectiveness is not preserved by arbitrary (-reduction.
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If LabelOf.(e') = | we often write [ as an annotation on €. In other
words, we will often use the following syntax*

e u= x| MNazel|e@le |fixlz.e|letlz=cine |
if’ e then €’ else e’ | True' | False! |

(e,e)! | let! (x,y) be e in ¢’

We will assume variable names to be distinct, so there is no need for labels
on variables®. We consider two labelled expressions syntactically equivalent
only if their labels are also equivalent.

1.7.1 Flow Properties

We use L to denote finite subsets of £ and «, (3, - to be variables ranging
over sets of labels. We use £ to denote sets of labels or label variables:

FP > (4 == L|a|lUl

We call ¢ a flow property. Flow properties are an abstraction of a set of
values: flow property L is an abstract description of the set of expressions
with a label [ in L, while a describes an unknown set of abstractions (typ-
ically, under some given constraints). We include the least upper bound
operator LI in our language of properties. It should become clear below,
why this is convenient (we note that that is does not make our type based
analyses stronger (intuitively because any annotation ¢ ¢’ can be replaced
by a fresh variable o and constraints £ < «a and ¢ < o), it does, however,
allow a smooth definition of soundness and, later, LI also helps the definition
of minimality — this will be crucial in chapter 5.

In chapters 2, 3, 5 and 6, flow properties will be used to annotate type
constructors and will therefore often be referred to as annotations.

A constraint is a pair of annotations written £ C ¢'. A constraint set C
is a set of constraints of the form ¢ C .

The logical rules of figure 1.2 define judgements C I ¢ C ¢'.5 This logic
will be common to all the type systems presented in later chapters except
chapter 6

A label substitution is a map from label variables to flow properties. We
use [(/a] to denote the substitution mapping « to ¢ while being the identity
on all other variables. We use Id to denote the identity substitution. We
use the shorthand S(k), S(C) and S(A) when mapping the substitution S

*Since expressions that introduce or eliminate values are our prime concern, we often
leave out labels from let 2 = e in ¢’ and fixz.e.

"We will later need to distinguish different occurrences of variables, but since labels
does not give a unique index they are not suitable for this purpose, and we will introduce
appropriate terminology for this situation.

6There is an overlap between the (Id) and (Ax) rules, but we find this presentation
more readable.
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Ax if L1 g L2 Ax

C'_ngLQ C,Zgal—ﬁga
7 CHV{Cly CFEUyCly

dorrey  Trans OFnCh

o LCrGCl Cri
CHV; Cliuly CHI Ul CY

ASSOC T TR U € 4 U (G L1 G3)

Comm 07

Figure 1.2: Logic of Properties

over x, C' and A resp. (note that even if C' is a constraint set S(C) need not
be)”. The shorthand C' F ¢’ means C - ¢ C ¢’ for all £ C ¢' in C'.

We say that S solves C if = S(C) (i.e. for all £ C ¢ in S(C), we have
{} F € C ¢). Note, that by definition, all constraint sets have solutions.

1.7.2 Flow Functions

Let Destructors(e) be
{l € L¢ | ey, ea,e3. ExpOf, (1) D {if e; then ey else ez} V
ExpOf,(I) 2 {let (z,y) be e; in ez} V
ExpOf,(I) D {e1Qey} }

and Constructors(e) be

{l € L¢ | 3z, e1,e2. ExpOf,(I) D {True} Vv
ExpOf,(I) D {False} v
EXpOfe(l) 2 {(61762)} \
ExpOf,(I) D {A\z.e1} }

Now, a flow function of e is a function F : Destructors(e) — FP. The
intuition is that F (/) is the set of values that can be used at the destructors
labelled [.

"We will use postfix notation when applying substitutions [¢/a] and prefix when apply-
ing named substitutions S — this should not be the cause of confusion as the two forms
of notation are not used together.
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For each of the reductions

()\l'a:.el)@leg —  e1lea/x] , Or
if! True!" then erelsees — €1 , Or
if! False! then ep elseea — €9 , Or

let! (z,y) be (e1,e2)" ines —  esler/x][ea/y]

we say that destructor [ consumes constructor [’.

We say that F is a sound flow of e € Exp iff whenever a reduction on
some reduction path from ¢ — .-+ — ¢/ — .- lets [ consume [’ then
HA{I'} C F(1). If F is sound for e we write F = e.

If C is a set of constraints over flow variables, we generalise the notion
of soundness such that C; F |= e iff SoF = e for all closing substitutions S
satisfying C'.

Note that a flow function needs to predict all redexes under any reduction
strategy. E.g. the flow F for (\'z.True2)@'s ((\+y.y)@False’®) needs to
map I5 to {l4} though this would not be reduced under call-by-name.

Our definition of soundness only concerns potential redexes in the ana-
lysed term; it does not state anything about redexes arising when applying
the term or instantiating free variables. In particular, it allows free variables
to be labelled with any set of flow labels, e.g. the empty set. A special
consequence of this is that the flow mapping all destructive labels to the
empty set is a sound flow for expressions in normal form.

Thus soundness of the flow function is not sufficient to ensure that a flow
analysis is reasonable. An important additional constraint will be principal-
ity that allows the result of flow analysis to be sound in any context. This
entails that the analysis can be performed modularly.
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Part 1

Monovariant Analysis
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Chapter 2
Simple Types

This chapter will introduce the reader to type based flow analysis by defining
the simplest imaginable nontrivial flow analysis. The chapter will thus famil-
iarise the reader with the concepts of annotated type system (section 2.1),
principality and minimality (section 2.2) and soundness (section 2.3). Sec-
tion 2.4 presents “CFA via Equality” [Hei95] which is a constraint based
analysis of similar precision to our analysis. Section 2.5 discusses implemen-
tation and complexity of the presented analyses.

2.1 The Type System

Formulae:

Bool
°” Bool’ € L° (Bool)

k€K*(t) K e Kt L K€ K5(t) K e K°(t)
k=K e K5t = t) rxt R e Kt x t)

Figure 2.1: Simple flow analysis — formulae

Figure 2.1 defines the formulae of our flow logic; we will also refer to these
as flow types or annotated types. A set K*(t) contains the formulae over a
standard type t. We let x range over members of K?(¢). The superscript s
on sets of formulae is for simple and is used to distinguish these formulae
from formulae for later analyses.

The erasure |k| of an annotated type k is the standard type obtained
by erasing all annotations, formally x € K(¢t) implies |k | = ¢t. Erasure

19
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extends its definition to environments A. We define the function ann to map
annotated types to their “top” annotation: ann(Bool®) = ¢, ann(k = k') =
¢ and ann(k x* k') = £. An annotation occurs positively resp. negatively in
k iff it annotates a positive resp. negative occurrence of a type constructor
in |k|.

An environment A maps program variables to formulae. A judgement
takes the form C'; A F° e : k which should be read “under assumption that
the inequalities in C' and the assumptions in A are true, it holds that e has
property k7.

We will require that if C;AF* e : Kk then |A|F e:|x]|. In other
words, flow judgements are annotations of standard type judgements with

an additional premise C' containing inequalities on annotations only.

Non-logical rules

Id

CiAx:kF 2k

CA:L‘ ke CH{I} CY/
CAI—S)\l:L‘e K =t K

_)

CiAF e: v 'k C AR €

—-E
C;AHS e@le : g

CH{l}Cv¢ CH{l}C¢
C; A+ True' : Bool C; A F° False' : Bool

Bool-I

CiAF e:Bool! CiAF e :k C;AFS €

Bool-E
00 C;AF*if' e then € else € : &

. CAI—Se k C;ARS k! CH{I}CY
C; AF® (e,e) ke xP K/

C’Al— e:kwx's CiAx:ky: nl—s
CAl—Sletl(xy)beelne K"

C;Az:kF ek let C;AF° e:x CiAx:kF°e
C;AF° fixz.e: Kk CAl—Sletx—eme:n'

fix

Figure 2.2: Simple flow analysis — non logical rules

Figure 2.2 presents the non-logical rules for simple flow analysis. The
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rules should be straightforward: the only difference to standard simple type
rules is that we in all introduction rules make sure that the set of labels on
the type of the constructed value contains the annotation of the constructor.

2.1.1 Simple Flow Functions

We have not made the flow information computed by the inference explicit.
We can regard the inference tree itself as the result of the analysis: the set
of values that an expression e can evaluate to is described by the set of
labels on the top constructor of its type. Each judgement C; A F¥ e : k in
the inference tree approximates the set of values that e can evaluate to by
ann(k).

We can compute a flow function from a derivation as follows. If 7 is
derivation, then for every [ we let Fr(I) be the least annotation such that
whenever one of the rules

CiAF ek o'k C;AF € 1k
C; A e@le : g

—-E

<-F CiAF ek x'k CiAx:ky:6 ek
C; A let! (z,y) beeine : K"

CiAF°e:Bool' C;AF ek CiAF € ik

Bool-E
°0 C;AF®if' e then € else € : K

is an inference in 7 then C ¢ < Fr(I).

The inference tree will contain more information than the flow function,
mapping subexpressions to sets of labels (in particular it allows reasoning
about principality) so reasoning with inference trees instead of flow functions
will often prove rewarding.

2.2 Principality and Minimality

The analysis presented here differs from many constraint and type based
analyses by including variables in the language of annotations. Other ana-
lyses often aim at finding the minimal annotation, but this seems highly
problematic, as this will lead to analysing programs under minimal assump-
tions on free variables and arguments.

For flow analysis this can lead to non-sensical results such as “under
assumption that z is annotated with the empty set of labels, the program
(Ay.y)@Qx will result in the empty set of labels” which is of course true,
but since we will never be able to run the program on any value with the
empty set of labels (no such value exists) the result is of little value. In
chapter 10 we will see how constant propagation based on flow analysis
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can lead to unsound results using a minimal annotation. The problem is
that a minimal solution does not capture the flow of input values into the
program, and we might be lead to conclude erroneously that variable can
only be bound to one constant value, even though it might also bind input
values.!

What is needed is a principal annotation which gives the most general
description of the analysed program. In the example above, we could find
“under assumption that z is annotated with «, the program (Ay.y)Qz will
result in o”.

Amongst the principal typings, we are interested in finding the minimal
one — intuitively this corresponds to resolving all flow information that does
not depend on input or free variables.

2.2.1 Principality

We first note that the inference rules of figure 2.2 are syntax directed. This
allows us to directly specify a version of algorithm YW computing a typ-
ing [DM82]. We then prove that the typing computed by the algorithm is
principal. Algorithm YW maps an environment A and an expression e to
a triple of a substitution S, a constraint set C' and a flow type k. The
algorithm is defined in figure 2.3.

Unification is defined by the (overloaded) partial function unify:

wnify(0, ) = [B/o]
unify(a, L) = [L/a]
unify(L,a) = [L/a]
umfy(Ll, Lg) = Id , if L1 = L2
= Fuoil , otherwise
unify(Bool®, Bool®®) = unify(¢y, /)
unify(ky =4 K|, ke =2 Kh) = let Sy = unify(ki, k)
S = unify(S1k4, S1K5)
53 = unify(SQ(Slfl), 52(5162))
in 53 ] SQ o Sl
unify(ky x k), ke x2 Kh) = let Sy = unify(ki, k)

Sz = unify(S1k}, S1k5)
53 = unify(SQ(Slfl), 52(5162))
in 53 ] SQ o Sl

Proposition 2.1 The definition of unify implements most general unifica-
tion:

!Previous flow analyses have been global and focused on tracing the flow of higher-
order values: under the assumption that all input is first-order, minimal solutions does
make sense.
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W(A,e) = case e of

€T

Mz :te:

e1@ley :

True! (False') :

if! e1 then eg else e3 :

(81,82)l :

let! (z,y) be ey iney :

fixz: t.e :

let z =€e;iney:

(Id,{ }, A(z))
let k € K*(t) be a flow type

with fresh variable annotations
let o be a fresh variable
let (S,C, k") =W((A,z: k), ¢€)
in (S,CU{{l} Ca},S(k) =*K)

let (S,C, k" =' k) = W(A,e;)

let (S, C", k") =W(SA,es)

let 8" = unify(x', S'k")

in (8”058 08,58"S'"CUC"),S"(S'k))

let @ be a fresh variable
in (Id,{{l} C a},Bool®)

let (S, C1,Bool’) = W(A4,e;)

let (SQ, Cs, I<62) = W(SlA, 62)

let (83, Cs, I<é3) = W(SQ(SlA), 83)

let Sy = unify(Sszka, k3)

n (54 o 83 o 52 o Sl, 54(83(5201 U 02) U 03), S4I<é3)

let a be a fresh variable

let (51, 01, Iﬁl) = W(A, 61)

let (SQ, Cs, I<62) = W(SlA, 62)

in (SQ 057,85 CUCyU {{l} C 04}, (Sglﬂ) X% I<&2)

let (S1,Ch, ke < ky) = W(A,e1)
let (S2,Co, k) = W((S14,% 1 Kz, Y & Ky), €2)
in (SQ 0 57,5,C1 Uy, I<L)

let k € K*(t) be a flow type
with fresh variable annotations
let (S,C,k") =W((A,z: k), €)
let S" = unify(Sk, x')
in (8'08,5'C,S'x)
let (51, 01, Iﬁ) = W(A, 61)
let (S, Ca, k") = W(S1(A,x: k), e2)
in (SQ 0 57,5,C1 Uy, Ii’)

Figure 2.3: Algorithm W for simple types
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1. If there exists S such that Sk = Sk’ then unify(k, ") does not fail.

2. If S = unify(k, ') then Sk = Sk’ and for any S' such that S'x = S'x’
there exists S” such that S’ = S" o S.

We observe that W(A, e) can fail for some A (since unification can fail).
This will of course happen if no ¢ exists such that |A|F e : ¢ (that is e is
not well typed under the standard type component of A). But even if A is
a decoration of a valid standard environment, the algorithm can fail. E.g.
W(f : Booltls} —{la} Boolllst, f@h True'?) will fail since {I} and {I3} are
not unifiable. We introduce a sufficient criterion on environments to avoid

that W fails:

Definition 2.2 We call A proper if for all x € Dom(A), all annotations in
A(z) are label variables.

We could have chosen a less restrictive definition of proper environments
— when we introduce subtyping in the next chapter, we will show that
requiring the negative occurrences in x; to be label variables suffices. The
call
Wi(z : Boolt} y : Bool2} | if True’ then z else y)

shows this to be insufficient for simple flow analysis since {/;} and {l>} are
not unifiable.

Lemma 2.3 If A is proper then W(A,e) terminates without failure.

Proof We prove by easy induction that if A is proper then W(A, e) returns
(S, C, k) where k is annotated with flow variables only and the range of S
is only flow variables.

O

We are now able to define the instance relation between typings:

Definition 2.4 A flow judgement C'; A" % €' : k' is an (weak) instance of
Ci;AFSe:k if e=¢ and there exists a substitution S such that

1. '+ 8(0),
2. A'(z) = S(A(z)) for all x € Dom(A) and
3. S(k) =k

If C;A F* e : Kk is also an instance of C'; A" % €' : k' then the two
judgements are equivalent.

Proposition 2.5 Derivable judgements are closed under the instance rela-
tion. That is, if C; AF°® e: k is derivable then so is any instance of it.
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Proof By induction over the derivation of C; A F5 e : k. O

Lemma 2.6 If C; AF° e : k then also C,C'; A F* e : k for any constraint
set C'.

Proof Follows from proposition 2.5. O

Theorem 2.7 If W(A,e) = (S,C,k) then C;S(A) F° e : k and for any
C' k', 8" where C';S'(A) ° e : k" we have that C';S'(A) F° e : k' is an
instance of C'; S(A) F e : k.

Proof The theorem follows by induction over the structure of e. We show
a few cases, the rest are similar:

“e = 2”: We find W(A,e) = (Id,{}, A(x)). If we assume A = A’z : k, we
have

!
Ak xR

Furthermore, let C', k', S” be given such that C'; S'(A) F* x : k. Then
S'"(A) = S'(A"),z: S'(k) and k' = S'(k). We have:

1. C'+* S},
2. §'"(A(z)) = S'(A(z)) for all z € Dom(A), and
3. §'(k) =+

and thus C'; S'(A) ¥ 2 : k' is an instance of ; A F° x : k.

“e = Mz :t.e”: Let k € K°(t) be a flow type with fresh variable annota-
tions, a be a fresh variable and let (S,C, k') = W((A,z : k),¢’). By
induction, C; S(A,z : k) ¥ €' : k" and by lemma 2.6 also

CAl} Ca;S(A,x: k) o€ i K
By the (—-I) rule we find
C I} Ca; S(A) F* N t.e' : S(k) = & (2.1)
Let C', k1, k2,¢,S" be given such that
O 8" (A) F N s te k1 = ko (2.2)
The last rule applied must be the (—-I) rule from assumptions

C" 8" (A),z ki F e kg and C'F° {1} C/
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Without loss of generality?, we can assume that S’ is the identity
on k1, which allows us to use the induction hypothesis to show that
C';S"(A,x : k1) F* € @ ko is an instance of C,{l} C «; S(A,z : k) F*
€' : k' that is there exists S” such that:
1. C'"H5 8"(C)
2. 8'"((A,z : k1) (y)) = S"(S(A,z : k)(y)) for all y € Dom(A,z : k),
and

3. S"(Kk') = ko

To show that (2.2) is an instance of (2.1) we let S = 5" o [{/a] and
have:

1. C'F S"(C)
2. S'"(A(y)) = S"(S(A(y))) for all y € Dom(A), and

3. §8"(S(k) = k) = k1 = Ky

“e = e1@ley”: Let (S,C," =% k) = W(A,e;) and (8',C",K') =
W(SA,es). By induction, we find

C;S(A) Foep k" >tk (2.3)

(note that e; must have a function type due to standard well-

typedness) and
C';S'(S(A) F ey : K (2.4)

Let S” = unify(x’, S’"). Since
(8" 0 8")C; (5" 08 0 8)(A) Fer: (8" 08" (K" = k) (2.5)

is an instance of (2.3) we have by proposition 2.5 that it is also deriv-
able and then by lemma 2.6

S"(S'CUC; (808 08)(A)Foer: (8" 08 (K" =tK)  (2.6)

is also derivable.

Similarly

S"(S'CUC"); (8" oS 0 8)(CUC)(A)F es: S"(K) (2.7)

2Formally, we show that there exists a renaming S, s.t.
C; S (A F Nz te i k1 = ko

and
5,0 8" (A F N :te : S (ky =" k)

are equivalent. The proof then proceeds with the second judgement.
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By proposition 2.1 we find that S”x' = S§”(S’k") and hence by the
(—-E) rule:

S"(S'CUC); (8" 05" 0 8)(A) ¥ e @ley : §"(S"k) (2.8)

Let C1, k1,51 be given such that
Cl; Sl(A) [ 61@l€2 LK1

The last rule applied must be (—-E) and hence there exist x5 and ¢
such that
C1;51(A) F¥ ey : ko b Ky
and
C1;51(A) F¥ eg : ko
By induction hypothesis we find S5 s.t.

1. Gy F° S3(0),
2. S1(A(z)) = S3(S(A(x))) for all x € Dom(A), and
14

3. S3(k" =L K) = ke = Ky

and similarly by induction hypothesis Sy s.t.

1. Cy 5 S4(C"),

2. S1(A(z)) = S4(S'(S(A(z)))) for all x € Dom(A), and

3. Sy(Kk') = ko
Let {a1,---,an} be the variables in S(A). From the two point 2.’s we
see that for all o;; we have (S40S5")(a;) = S3(c;). Let the variables in

k" =%k be {B1, -, Bm} and the variables of ' be {y1,- -,y }. We
can assume that

. {ﬁl’...,ﬂm}ﬂ{vl,...’»yk}g{al’...,an},

- ({Brs-+, Bt \{ar, -+, an}) NDom(Sy 0 ') = 0,
- ({5 \ e, -+, an}) N Dom(83) = 0, and
. Ran(Sy) N Dom(S3) C {a,-- -, an}

B~ W N

We now find

(S3084)(5's") = S53((S405)K")
(840 5")(S36") (1)
= (84 ] SI)KQ

(54 o SI)(S4I€I)
S3(Sar) (1)
= (S308)K
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where (t) follows from point 2. and () follows from point 4. and the
fact mentioned above that (S; 0 S")(a;) = S3(a).

It follows from proposition 2.1 that there exists S5 such that:
5305425505”
It now follows that

1. Oy F* S5(S"(S'C U C"Y),
2. S1(A(z)) = S5((S" 0 8" 0 S)(A(z))) for all x € Dom(A), and
3. S5(5"(S'k)) = k1

where the first two points follow by simple calculations and point 3.
follows from

S5(S"(S'k)) (S505") (k)
= (S3084)(5k)
53((54 o} SI)R)

= K/l

The last step is true because of point 2. and (S0 S")(a;) = S3().

O
This theorem along with lemma 2.3 shows that every expression has
principal types under proper assumptions.

2.2.2 Minimality

Principal typings are not unique: W([ ], if"t Truet then False’ else True’?)
will return (Id, {{l;} C o, {lz} C B,{I3} C B}, Bool?) corresponding to the
typing

{li} Ca,{ls} C B,{l3} C B;F if's True!' then False’ else True’ : Bool?

The first constraint signifies that any set of labels can be used by the ‘if” as
long as [ is amongst them. We would prefer a principal typing

{I5} C B,{lIs} C B;F if" True" then False’ else True'® : Bool®

where we have instantiated « to {l;}, since this is the best (minimal) in-
formation we can obtain without violating principality. If we compute the
flow function for the two derivations, the first corresponds to [I4 — «] and
the second to [l4 — {l1}] where the first is more general, but more general
in an “unnecessary” way: no evaluation of the expression can result in the
‘if” using any other value than True’.

It is easy to see that if (S,C,k) = W(A,e) and A is proper then all
constraints in C' have the form {/} C a. Let a be a label variable occurring
in C. Let {l;} C a,---,{ln} C a be all constraints in C' containing a. If «
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occurs neither in A nor &, let C' be the result of removing these constraints
from C. If o occurs in A or k, let C' be the result of replacing the constraints
with J;{l;} C . In either case C'; A e: k and C; AF e: k are equivalent
(instances of each other).

By repeating this procedure, we obtain:

Theorem 2.8 For every flow judgement C'; A& e : k there exists an equiv-
alent judgement C'; A+ e : k where C' contains only flow variables o occur-
ring free in A or k and for each « the constraint set C' contains only one
constraint L C o.

If we keep track of labels being used in the program (e.g. at the ‘if’
statement note which labels annotate the boolean being consumed) during
computation of W(A,e) then applying substitutions S = [J;{l;}/¢] (in the
discussion above) to the inference tree (alternatively, the flow function) will
yield minimal, principal flow information.

The flow function computed this way will be polymorphic, but it has the
special property that it will map all destructors to either a constant or to a
variable occurring in the environment or in the type of the whole expression.
Thus instantiating type and environment will allow flow information to be
read directly from the polymorphic flow function.

By searching for a minimal type only amongst the principal types, we
differ significantly from constraint based flow analyses by Palsberg [Pal94]
and Heintze [Hei95]. Since their analyses do not contain variables, they
do not have the principal type property. This prevents their analyses from
being modular. They then set out to find the minimal typing which is
indeed small but also quite un-informative since it will be the typing that
given the smallest assumptions on free variables and input computes the
smallest result. Our approach requires the typing to be applicable in all
contexts and only then chooses the minimal typing amongst these modular
descriptions.

2.3 Soundness

This section will prove soundness of the analysis. We will prove the more
general result that flow information is preserved under reduction.

First we prove a variant of the substitution lemma: not only is the final
judgement preserved by substitution, but also the flow computed by the
derivations.

7-1/
C:A,x: kK Fe:k

Lemma 2.9 (Substitution lemma) If 7; and

!
T, e then there exists T5 such that

T2 = C;AF° €
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7—3/
C; AR ele /2] :

1. T =

and
K

2. For all | € Destructors(e[e’/x]) we have

CrFr(l) = Fr ()W Fpr, (1)

Proof The lemma follows by simple induction on the structure of 7;. We
give two illustrative cases:

(Id): Assume

Ti= C;Ax: k' ok
and
7~21
T2 = C:AF € K
1. Let T3 ="T>

2. Let | € Destructors(z[e’/x]) be given. Since expression z has
no constructors, it follows that Fr, (1) = () and clearly Fr,(I) =

Frs (D).
(—-E): Assume
7-11 7-111
Ti=C;Az: & HFe:w" o'k C:Ax:k e K

Ci A,z : 6 5 e@lee! ;g

and
7-2/
T2= C; AR e k'
then by induction there exists
7-// 7"/
C; AR el /2] 6" ="k C; AR €"le ]« k"
Now
1. Let
75// 7:1//

Ta=C; A el Ja]: k" =t K C; A €"le Jx] : k"
C; AF* (e@lee")[e/[x] : k
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2. Let [ € Destructors((e;@'@ey)[e’/z]) be given. If | # lq we are
done by straightforward induction. Otherwise

Cr Fr(la) = .7:7-3” (la) U .7:71” (la) Ul
CF Frp(la) U Frr(la) Ul
= Fr(la) U Fp(la) U Fry(la) U Fr(la) UL
CFk .7:7-11 (la) U Fr (la) U f’l'l” (la) U Frs (la) Ul
= Fr(le) UFr(la)
where the first step is the definition, the second step is the induc-
tion hypothesis and the last step follows from

CF Fr(la) = fﬂl(l@) U fﬂ//(l@) Le

O

We then prove the main subject reduction theorem which is also extended

with preservation of types of subexpressions. We call this property strong
subject reduction.

!
Theorem 2.10 (Subject Reduction) If 73 = C"A%Slel'ﬁ and e; —»

eo then there exists To such that

_ T
L= orarte s o

2. For all | € Destructors(es) we have
CkFr(l) € Fr(l)

and if | € Destructors(ey) consumes I € Constructors(ey) then

CH{I'} S Fr(l)

Proof We show a few cases for illustration:
(3) (Mz.e)@'e’ —s e[e’/z]. We have
7-11
C; A Nze)@'e : k

,7-1:

There must exist 77", 7", k', a such that the derivation looks as follows:

7—111
- CiAz: kK Fe:xn CH{l}Ca 7"
1:
C; AR Nre: k' =%k C;AF e : K

C; AR (Mz.e)@''e :
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By lemma 2.9 there exists 7, such that

7-21

2= C;ArFSele /2] K

and for all [ € Destructors(ele’/z])
Ct+ Fr, (l”) = ‘7‘-71//(1”) U .7'-7-1111(1”)

Since

C I— _7:'7-1 (l”) = _7:7—1// (l”) L ff/’lll(l”) U lf l” = ll
= _7:7-1// (l”) L leH (l”) otherwise

and C + {I} C «, point 2. follows.
(8-if) if’ True then e else ¢/ — e. We have

7—11
C; A+ if! True theneelse €' : &

ﬂ:

which must be by the (Bool-T) rule, thus:
Criyce 7 7"
Ti = C; A F° True' : Bool’ C;AF ek CiAF €k
C; A F* if! True then e else ¢’ : &

Hence 7{" is the derivation proving 1. Point 2. follows directly.

(Context) Cle] — C[e'] where e — ¢€’. Follows by induction on the
context C.

|

The following corollary follows as an immediate consequence of theo-
rem 2.10:

Corollary 2.11 (Soundness for Simple Flow Analysis) Let T be any
derivation for e and let C; AF® e : k be its conclusion. Then C; Fr = e.

2.4 Constraint Based Analysis

Heintze defines a constraint based flow analysis for untyped lambda calculus
which he calls “CFA via Equality” [Hei95]3. We will briefly review his ana-
lysis here. Our presentation is adapted to our richer language and we will
use a notation based on a mixture of Palsberg and O’Keefe [Pal94, PO95].

3Heintze defines four different systems and shows equivalences between those and four
type based analyses. We will return to the analysis he calls “standard CFA” in the next
chapter.
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To every subexpression €' occurrence of the analysed program e, we
associate a variable which we name [e]. Let Y, denote this set of variables
and let X, denote the set of program variables occurring in e (which we by
well-namedness assume are distinct).

The constraint generation is shown in figure 2.4. It generates constraints
over X, UY,. (In this analysis, there is no need for the distinction between
z and [z]. In other words, we could generate constraints over Y, only but
we use this notation for consistency with the later constraint based analysis
of section 3.4). If V1,V5,V3,V, € X, UY, then the constraints have one of
the forms V; C V5, Vi =V, or Vi C Vo = V3 =V} (in the next chapter we
generalise this form to V3 C Vo = V3 C V). The last form of constraint
is called conditional and are a kind of closing rules on the generated set of
constraints: if V3 C V5 is provable then V3 = Vj should be added to the
constraint set.

Generating constraints for e.

For every occurrence in e of: | generate:

x x = [z]
MNz.e {1} C [Naz.e]
e1Qeq for every Az.es in e:

{}Clea]l=le] =2
{1} C [e1] = [es] = [e1@es]

True! {1} C [True']
False! {I} C [False']
if e; then ey else e3 [e2] = [if e1 then eq else es]

[es] = [if e1 then ey else es]
(e1, e2)! {1} C [(er,e2)']
let (x,y) be e in e9 [e2] = [let (z,y) be eq in es]
for every (e3, e4)! in e:
{1} C er] = [es] ==
{I} Cle] = lea] =

fix x.eq [ei] ==
[e1] = [fixx.eq]
let z =e; in ey [ei] ==

[e2] = [let x = €1 in e5]

Figure 2.4: Constraint generation a la Heintze

Heintze notes that this analysis is equivalent to the flow analysis of Bon-
dorf and Jgrgensen [BJ93]. This requires some insight as the right-hand
sides “for every...” in Bondorf and Jgrgensen’s analysis are represented as
explicit constraints (called <} and <) which are then solved at once in-
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stead of looking up all lambda- resp. pair-expressions in the program every
time. Thus Bondorf and Jgrgensen’s representation is harder to read but
more directly implementable.

A solution to the constraint set is a substitution mapping the above
variables in X, UY, to sets of labels such that the constraints are true.

There is a major difference between our analysis and the analyses of
Bondorf and Jgrgensen and Heintze: we are dealing with a typed language,
whereas they were doing analysis of untyped languages: Scheme resp. un-
typed lambda-calculus. Another difference between our analysis and the
analysis presented by Heintze is our introduction of flow variables ranging
over sets of labels.

Since our language is typed, the equivalence between simple flow analysis
and CFA via Equality only follows indirectly from Heintze’s results. This is
the subject of the following subsection.

2.4.1 Equivalence between Simple Flow Analysis and CFA
via Equality

In addition to the system presented above, Heintze presents a system he
calls “CFA via Equality without recursion”. This system produces the same
constraints as CFA via Equality. A substitution S is a solution to the
constraint set only if > forms a non-reflexive ordering;:

If Mz.e’ occurs in e and x occurs free in e’ then VI’ € S[z] : 1 = I'

E.g. consider (\y.y@Qy)@(\z.2@Qx) where S[z] = Sz = {I} and hence [ > I
and thus > is reflexive.

Heintze proves that “CFA via Equality without recursion” is at least as
powerful as a system corresponding directly to our simple type based flow
analysis. His theorem can be reformulated as:

If C;AF® ¢ : Kk is a ground judgement in the inference tree for
e then there exists a solution S to the constraint set such that
ann(k) C S[e'].
It follows as an immediate consequence that the same theorem is true for
“CFA via Equality”.
Heintze also proves that the other direction holds for “CFA via Equality
without recursion”. This can be reformulated as:

If S is a solution to the constraint set then there exists a ground
inference tree 7 such that S[e] = ann(k) for every e for which
the judgement C; AF*e:kisin 7.

Now add type variables k and recursive types pk.x to the language of
annotated types. Define an equality on types by:

pk.k = kluk.k/k]
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and extend this in the obvious way to become a congruence on types. An-
notated types in the same equivalence class are identified and free variables
are disallowed.

For “CFA via Equality” and the system obtained by adding recursive
types to our simple typed flow analysis (call this F#) the same result as
above holds:

If S is a solution to the constraint set then there exists a ground
inference tree 7 such that S[e] = ann(k) for every e for which
the judgement C; AV e: Kk isin 7.

At this point we realise that no (well typed) term exists such that C; A H#
e:kbutnot C;AF e: k. Thus C; A F* e : k implies C; A F° e : k and
we have established the equivalence between the analysis defined by the
constraint generation system of figure 2.4 (without the >-constraint) and
our simple flow analysis.

Thus for typed terms, constraint based analysis finds a solution equiva-
lent to the minimal ground derivation in our system.

2.5 Algorithm

Bondorf and Jorgensen [BJ93] show that their simple closure analysis is
computable by an algorithm running in time O(na(n,n)) where a(n,n) < 5
for any value of n smaller than the number of atoms in the universe. (To be
exact, their complexity contains a few more figures like the maximal arity
of functions and constructors, which we can ignore).

The complexity argument is based on an algorithm developed for binding
time analysis by Henglein [Hen91]. The factor a(n,n) stems from unification
implemented using union/find (« is an inverse of Ackermann’s function).
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Chapter 3
Subtyping

In this chapter we add subtyping to the system of chapter 2. This allows
greater precision of the analysis. The resulting analysis is equivalent in
strength to the closure analysis of Sestoft [Ses88, Ses91] (section 3.3) and
the constraint based analysis of Palsberg [Pal94] (section 3.4). Palsberg
proved the constraint based analysis equal to Sestoft’s, and Palsberg and
O’Keefe [PO95] and Heintze [Hei95] independently proved the equivalence
between constraint based and sub type based analysis. These proofs are
sketched in section 3.5.

In contrast to the analyses of Sestoft and Palsberg, our flow analysis can
analyse parts of a program independently without loss of precision since it
enjoys the principal typing property.

3.1 Subtyping
Consider the following expression

let 2 = True'!
in let y = False®
in let f=MAz.z
in ifz
then fQz
else fQy

Variable f can be applied to both x and y and thus using the simple analysis
of chapter 2, the flow information associated with these two variables has
to be identical. Hence the analysis tells us that the condition of the ‘if’ can
evaluate to either Truel! or False'2.

Subtyping will allow us to associate exact information to z and y and
then only subtype this to {l1,l2} when x and y appear as arguments to f.

Figure 3.1 presents the formulae of subtyping flow analysis — these are
identical to the formulae of simple flow analysis. We introduce subtype

37
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Formulae:

Bool

Bool® € £=(Bool)

keKS(t) & eKS({) keKS(t) & eKS(t)
AN < / X A < /
k="K €KL=t —=t) kxX"K € K=(txt)

—

Subtype relation:

CrLeCl
Bool ] C b
% CF< Bool”” < Bool®

CHS k1 <K] CFSky<kh CHU Cly
C = /-c'l b Ko < K1 b /@'2

Arrow

CHS k1 <K] CFSko<kh CHU Cly

Product
CFS Ky x b ko < K} x b2 K

Figure 3.1: Subtyping flow analysis — formulae and subtype relation
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judgements: C = k < &' is read “under assumption C, & is a subtype of
K.

Subtype judgements can be seen as the natural generalisation of the logic
of properties to a logic of annotated types. A boolean flow formula Bool“
is a subtype of another boolean flow formula Bool®? if we can prove ¢1 C {y
under assumptions C'. The relation is lifted to structured types in the usual
manner (contravariant in the argument position for function types) where
the annotations on the — and X type constructors are allowed to be subsets
just as for booleans.

The subtype relation < is transitive as a straightforward consequence of
the transitivity of the C relation.

Figure 3.2 presents the non-logical and semi-logical rules for subtyping
flow analysis. The non-logical rules resemble the rules of the simple system;
the main difference is that we do not need the subtype step in constructor
rules (such as a premise C - {I} C a and conclusion C; A =< True' : Bool®
in the Bool-I rule). The rules of the simple system are all derivable. We
add a new semi-logical rule called subsumption which allows an expression
of type k to have type x’ if k is a subtype of x'.

3.1.1 Subtyping Flow Functions

We define flow function as in chapter 2. Let T be a derivation. For every [
we let F7(I) be the least property such that whenever on of the rules

CiAFSe: k' 3l CiAFS € 1
C;AFS e@le : i

—-E

«-E CiAFSe:nx'k CiAz:ky: k' FSe k"
C;AFS let! (z,y) beeine : k"

C;AFSe:Bool® CiAFSe:k CAFSE &

Bool-E
00 C;AFSif' e thene else e’ : &

is an inference in 7 then C' ¢ < Fr(l).

3.2 Principality and Minimality

In this section we prove that the subtype system has principal types. We do
this in a couple of steps. We give a syntax-directed version of our subtyping
flow analysis and then give an algorithm for computing principal types (and
we prove that they are indeed principal). We go on to find a minimal,
principal typing.
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Non-logical rules:

Id
CiA,x: kFSz:k

CiAx:kFSe: ¥

—-1
C;AFS Mae:rn =1 g

EC;Al—Se:/@'—ﬁﬁ CiAFS e ¥

—-
CiAFS e@le : i

Bool-I

C; AFS True : Booll!} C; A F= False! : Boolt!

C;AFSe:Bool’ C;AFSe:k C;AFS € ik

Bool-E
o0 C; AFSif' e then ¢ else " : &

CAF e:k CiAFSE :k
CA|—<(ee)l ke x A g

X-

CA|—<e kx'k CiAx:ky: ,%l— e K"
CA|—<letl(xy)beelne K"

CiAz:kbSe:k lot C;AFSe:x C;Ax: I<&|—<I:,

fix
CAI— fixz.e:k CA|—<letx—elne sk

Semi-logical rules:

CiAFSe:n CFSk<W
CiAFSe: k'

Sub

Figure 3.2: Subtyping flow analysis — non-logical rules
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Non-logical rules:

Id

C;A,x:nl—gx:ka

C;A,x:nl—ge:n'

—-1
C;AFS Na.e:n =1 g

C;A"%G:H,—)EH C;Al—%e':/@" CHS K" <K

—-E
C; AFS e@le - i

Bool-I

C; AR5 True' : Bool{!} C; A -5 False! : Bool{!}

CiAbFS e v CHS K <k

<
ARG e:Bool' (U R o G <
Y n * —

Bool-E

C; AFS if’ e then ¢’ else e : K

C;AFS ek CiAFS v
C; AFS (e,e)l s x g

x-1

< E C; A l—%e:ﬁxf,ﬂi' CiAz:ky:k FSe k"
C; AFS let! (z,y) beeine : k"

CiA,z:kFSe: k! CHSK <k
C;AbFs fixz.e: '

fix

C;Al—ge:n C;A,x:ﬁl—%e':n'

let
CiAbsletz=eine : x

Figure 3.3: Syntax-directed subtyping flow analysis
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3.2.1 A Syntax Directed System

By transitivity the subsumption rule need never be applied twice to the same
term. We can thus integrate this rule into the other rules when necessary,
in order to achieve an equivalent but syntax-directed type system.

In figure 3.3 we present this version of our subtyping flow analysis. The
subscript ,, on - is for normalised. The system is obtained by allowing one
subtype step where necessary. The following theorem states soundness and
completeness of the syntax directed system w.r.t. the non syntax-directed
system of figure 3.2.

Theorem 3.1 Type system = is sound and complete w.r.t. F<:
Soundness If C;AFS ek then C;AFS ek

Completeness If C; A F< e : k then there exists k' such that C; A5 e K/
and C F= k' < k.

Proof The proof of soundness proceeds by induction over the derivation
of C; A Fs e: k and the proof of completeness proceeds by induction over
the derivation of C;AF<e: kK

O

3.2.2 Algorithm

We define a partial function called constraints mapping a subtype constraint
k < k' to the least sets of inclusion constraints C such that C' F= k < k'. We
overload function constraints to also work on annotation constraints: either
by mapping ¢ C ¢’ to the set containing the constraint itself or by failing:

constraints (o C o) = {aCd}

constraints (L C «) = {LCa}

constraints (L C L") = {} ifLC L’
= Fuail otherwise

constraints (o C L) = Fail

constraints (Bool’ < Bool’) = constraints({ C (')

constraints (k1 —* kg < K} —t Kbh)

= constraints (k| < k1) U constraints (ke < kb)) U constraints(¢ C (')
constraints (k1 x* ky < K} x? Kbh)

= constraints(k1 < k}) U constraints (ke < k) U constraints(¢ C (')

where we extend the union operator such that Fail U C = Fuail.

Lemma 3.2 Let k and &' be given. If there exists C' s.t. C' = k < k' then
constraints (k < k') returns C' such that
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1. CFS k<K, and

2. C'F= C.

Proof Induction over the structure of the s (and &'). O

We go on to define the instance relation used in this chapter. We write
C'; A" < A for

For all assumptions z : x in A, judgement C'; A’ F< z : k is
provable.

Definition 3.3 A flow judgement C'; A’ = € : k' is an instance' of
C;AFSe:kife=e and there exists a substitution S such that:

1. C'"F8(0),
2. C'; A" == S(A) and
3. C'F= S(k) < K

If C; A F< e : k is also an instance of C'; A" F= €' : k' then the two
Jjudgements are equivalent.

This instance relation is stronger (that is, more judgements are related)
than the instance relation of the previous chapter, since it allows subtyping
steps on bindings in the environment and on the result type.

Proposition 3.4 Derivable judgements are closed under the instance re-
lation. That is, if C; A F< e : k is derivable then so is any instance of
it.

Proof By induction over the derivation of C; A F=< e : k. O

Figure 3.4 defines a version of algorithm WV implementing the subtype
based flow analysis. Like simple types, W(A,e) can terminate with failure
(if the function constraints return Fail). We therefore define the notion of
proper environment, which does not need to be as restrictive as in the simple
typed case:

Definition 3.5 We call A proper if for all x € Dom(A) we have that all
annotations occurring negatively in A(z) are label variables.

Lemma 3.6 If A is proper then W(A,e) terminates without failure.

'In the literature, this relation is often called lazy instance or strong instance.
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WI(A,e) = case e of

xX

Mz :te:

e1@ley :

True! (False!) :

if’ e; then (es : t) else (e3 : t) :

(61, eg)l :

let! (z,) be ey in ey :

fixx : t.e:

let z =€ iney:

({}, A(z))

let x € K<(t) be a flow type
with fresh variable annotations

let (C,k") =W((A,z: K),€e)

in (C,k =1 K"

let (C,k" = Kk) =W(A4,e1)
let (C', k") =W(A,e2)
in (C'UC"U constraints (k' < k"), k)

({},Bool{'})

let x € K<(t) be a flow type
with fresh variable annotations
let (Cy,Bool’) = W(A, e1)
let (CQ, 52) = W(A, 62)
let (03, I<é3) = W(A, 63)
let Cy = constraints (ke < K)U
constraints (k3 < k)

in (01U02U03UC4, )

let (Cl,lﬁl) (A 61)
let (02,1%2) ( 2)
in (01 U Cy, K1 X{l} 52)

let (C1, Kz X' ky) = W(A, e1)
let (027’%) = W((A,[L‘ Ry, Yt Hy)an)
in (01 U Cs, Iﬁ)

let k € K<(t) be a flow type
with fresh variable annotations

let (C,k") =W((A,z:K),€)

in (C'U constraints(k' < k), k)

let (C1,k) =W(A,e1)

let (Co, k") = W((A,z : K),e2)

in (01 U Cs, Iﬁl)

Figure 3.4: Algorithm W
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Proof We show by induction over the structure of e that if A is proper
then

1. W(A,e) terminates without failure, and

2. W(A,e) returns (C, k) where all annotations occurring negatively in
k are label variables.

O
We now go on to prove the main principality theorem. We need a lemma
stating that assumptions can be strengthened.

Lemma 3.7 For all C,C', A, z,e,k, K", K"

1. IfC;AFS e: k then also CUC'; AFS e : k, and

2. If C; A,z - k' FS e k and C F=< K" < k' then also C,C"; A,z : k" F=

[ Y

Proof Simple proof by induction over the derivations of C; A =< e : k and
C;A,x: k' F= e: K respectively.
O
We now go on to prove that YW returns principal typings.

Theorem 3.8 If W(A,e) = (C,k) then C; A F< e : k and for any C', k'
where C'; A=< e : k' we have that C'; AFS< e : k' is an instance of C; A F=<
e: k.

Proof We prove the more general property:

If W(A,e) = (C,k) then C;A < e : k and for any S,C’, '
where C'; S(A) F= e : k" we have that C'; S(A) = e : k' is an
instance of C; A< e : k.

Furthermore, for any « occurring in A
1. If o has a negative occurrence in k then it has a negative
occurrence in A.

2. If « has a positive occurrence in x then it has a positive
occurrence in A.

3. If o occurs on the left-hand side of a constraint in C' then
« has a positive occurrence in A.

4. If o occurs on the right-hand side of a constraint in C then
« has a negative occurrence in A.

The proof goes by induction over the structure of e:
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“c = 2" Assume A = A,z : k. Then, clearly, {};A', 2z : Kk F< x : K.
Furthermore, if o has a positive (negative) occurrence in x then it has
a positive (negative) occurrence in A. Since C' is empty, point 3. and
4. are trivial.

Let S, C, k' be given such that C; S(A',z : k) F= 2z : k’. By theorem 3.1
there exists k" such that C' < k" < k' and C;S(A", 2 : k) b5 @ K"
which in turn implies that " = S(x). Now

1. CFS{})
2. C;S(A,x: k) S S(A 71 k)
3. CF=S(k) <+

“e = Nx.e"” Let k € K*(t) be a flow type with fresh variable annotations.
Let (C, k") = W((A,z : k),¢'). By induction

CiA,x:kFSe

and then
C;AFS Nze ik U
by the (—-I) rule.

Let o be a variable occurring in A and x —{} &/, Since x was chosen
to contain only fresh variables, a must occur in x’ but then points 1.
and 2. follow by induction. Since C' is unchanged, points 3. and 4.
follow trivially by induction.

Let C', k1,51 be given such that
" S (A) FS Nae - ky

Then by theorem 3.1 there exists ks such that C' F< ko < Ky
C" 81 (A) F= Mae : ky

Hence kg = rh —1 kY for some ), k4 and we conclude k1 = &} —¢ k!
for some k!, k7,0 where C' += k) < kb, C < Kl < k! and C' F {I} C L.

Furthermore,
C" S1(A),z: Ky Fo e i kY

and by theorem 3.1 also
C" S1(A),x: kh FS € 2 kY
and finally, using lemma 3.7

C;S1(A),z:kh FS e 2 Kl
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We chose k to have fresh variable annotations, and therefore S’ exists
such that S’k = k) and S"(A(y)) = S1(A(y)) for all y € Dom(A).
Applying the induction hypothesis we find that C; S"(A,z : k) F< € :
kY is an instance of C; A,z : k = €/ : k' and thus there exists S such
that

1. C'"+S8(0),
2. ;8" (A, : k) FS S(A, 7 : k), and
3. C'F= S(K') < KY

It is not hard to see that also

1. C'F S(O),
2. C';S1(A) F= S(A), and
3. C"FS Sk = &) < k) SR

“e1@ley” Let (C, k" = k) = W(A,e1) and (C', k') = W(A, e3). By induc-
tion, we find
CiAFS e k" =tk

and
C:AFS ey K

By lemma 3.7 we find
C UC" U constraints (k' < K"); AFS e : k" =tk

and
C UC" U constraints (k' < K"); AFS ey : K

and by lemma 3.2
C UC"U constraints (k' < k") F= k' < K"
Thus by the (—-E) rule
C U C"U constraints (k' < k"); A < e @ley : i

Points 1. and 2. follow by induction. Points 3. and 4. follow by in-
duction for C' and C” and by inspection of constraints (k' < k") using
points 1. and 2. of the induction hypothesis concerning ' and ”.

Let C1, k1,51 be given such that
01; Sl(A) }_S el@leg LRl
By theorem 3.1 ko exists s.t. ko < k1 and

01; Sl(A) }_g el@leg L R2
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and since the (—-E) rule must be the last rule applied, we find that
Kb exists s.t.
C1:S1(A) FS ep @ kb —F kg

and
C1;S1(A) b= eyt k)

which by theorem 3.1 implies
01; Sl(A) |_§ el : RIQ —>é K9 (3.1)
and
01; Sl(A) }_S €9 K’Z (3.2)
By the induction hypothesis we find that (3.1) is an instance of C; A =
e1 : k" =% K that is there exists S s.t.
1. C1 +S(0),
2. Cl;Sl(A) I—S S(A), and
3. O F= S(k" =t k) < kY —F ko
and similarly that (3.2) is an instance of C'; A = e5 : ' that is there
exists S’ s.t.
1. C1 ES'(C),
2. Cl; Sl(A) }_S SI(A), and
3. C1 = S'(K') < K
Without loss of generality, we can assume that Dom(S) N Dom(S") C

FlowVar(A). Let « be a variable occurring negatively in A, then we
can conclude from the two point 2.’s that

CiFSaC Siaand C; F S'a C S« (3.3)
Similarly, if o occurs positively in A then
CyF SiaCSaand C; + Sja C S'a (3.4)

Thus, if @ occurs both negatively and positively then Sa = S'a.
Now define S” as follows:
Si(a) , ifa € Dom(S) N Dom(S")

S"(a) =< S(a) ,ifa € Dom(S)\ Dom(S")
S'"(a) , ifa € Dom(S") \ Dom(S)

Let o« C [ be a constraint in C. We know C; F S(a C ) and want to
prove that Cy = S”(a C 3). Four cases:
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1. If o, 8 € Dom(S) \ Dom(S’) then S"(« C ) = S(a C ) and the
result follows immediately.

2. If a, 8 € Dom(S) N Dom(S’") then S"(a C B) = Si(a C B).
By the induction hypothesis, o occurs positively and 8 occurs
negatively in A. Thus by (3.3) and (3.4) we have C; F S1a C Sav
and Cy F S8 C 518. The result follows by transitivity.

3. If & € Dom(S) N Dom(S’) and B € Dom(S) \ Dom(S’) then the
result follows by the same reasoning as in points 1. and 2.

4. If 8 € Dom(S) NDom(S’) and o € Dom(S) \ Dom(S”) then the
result follows by the same reasoning as in points 1. and 2.

By a similar method, we can prove that if L. C « is a constraint in
C then Cy F S"(L C «). We can therefore conclude Cy - S”"C. We
prove Cy = S”C" in the same way.

We prove C; FS  S"(k' < k") from which O F
S"(constraints (k' < k")) follows by lemma 3.2. We know that
Cy F= S’k < Ky and Cy = k) < Sk”. Thus the result follows by
transitivity if we can prove

1. Oy = S8"k! < S'%!, and
2. C1 F= Sk < §"g"

The proofs go as follows:

1. If @ € Dom(S’) N Dom(S) we are trivially done, so assume « €
Dom(S")NDom(S). If a occurs positively in " then it also occurs
positively in A and by (3.4) we have C; < Sja C S’a.. Similarly
if o occurs negatively in ' we find by (3.3) that C; F< S’a C Sia.

2. Similarly assume that o € Dom(S’) N Dom(S). If @ occurs posi-
tively in " then it occurs negatively " —¢ k and therefore neg-
atively in A. Thus by (3.3) that C; F< Sa C Sja. Similarly, if
it occurs negatively in " we find by (3.4) that C; F< Sia C Sa.

We have thus proven C = S”(C'U C" U constraints (k' < k")).

The second property we need to prove is Cp;5;(A) F< S”(A) which
follows easily using (3.3) and (3.4).

Finally, we need to prove C; F= S§"k < k9. We know that C; F= Sk <
Ko so we just need to show C = §"k < Sk which follows in the same
way as the proof of C; F< S”k! < S'k' above.

We can summarize

1. Gy = 8"(C'UC'"U constraints (k' < k")),
2. C’l;Sl(A) |_§ S”(A), and
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3. C1 F= 8"(k) < ko

which is exactly what we need to prove that Cy; Si(A) F= e;@ley : Ky
is an instance of C'U C' U constraints (k' < k"); A F= e;@le, : k.

The remaining cases are similar.
O
The above lemma and theorem show that every term has a principal
type under proper environments.

3.2.3 Minimality

The approach to minimality taken in chapter 2 works here as well though
it takes a little more effort to remove variables not occurring in the type
or environment. We are, however, able to do a bit better: the lazy part
(allowing a subtype step on the type in principal typings) makes it possible
to remove variables occurring in A or k.

Definition 3.9 Assume A = {1 : k1, -+ ,Zn : kn}. A flow variable occur-
ring free in A or k occurs positively (negatively) in C; A & e : k if it occurs
positively (negatively) in k1 — -+ — kp — k. Variables not occurring free

in A or Kk are said to be neutral.

All variables occurring in C' will occur positively, negatively, positively
and negatively, or be neutral in C; A F e : k. We would like to remove all
neutral variables from C' as they do no contribute to the flow information of
the judgement. Alternatively, we can think of neutral variables as describing
flow in a subexpression of e which has played its part; hence their flow
value can be resolved without jeopardising principality. Neutral variables
do play a role in the final judgement by, via transitivity, being responsible
for inequalities between non-neutral variables. E.g. assume that «; is non-
neutral for all 2 and 3 is neutral in

02{041 gﬂaa2 gﬁaﬁga&ﬁgaél}

Clearly, we cannot simply remove (3 (and all constraints involving it). We
have to represent the inequalities in C' without using 3. This can be done
as:

C'={a1 Caz,on Cay,a0 Cag,as Cag}

If we assume that C; A F= e : & is principal, we wish the resulting judgement
C'; A F= e : k to be principal as well. This is ensured by proving the two
judgements equivalent (lazy instances of each other). This is, however, not
possible for the above judgements: there exists no substitution S such that
C' + S(C). Here, the introduction of L into the language of annotations
prove important: we can simply map 3 to oy Ll as.
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Due to the identity rule (Id) we can assume that constraint sets contain
no constraints of the form o < a.. To be more precise, if C’ is the result of
removing all constraints of the form o < « from a constraint set C, then
C;AFSe:rand C';AFS e: k are equivalent.

Lemma 3.10 Let a be a flow variable with no negative occurrences in
C;AFSe: k.

Let {1 C «,---,0, C « be all inequalities in C' with « on the right-
hand side. We delete these from C and replace every inequality o C 3
in C by ly C B,--,ln C B and call the resulting constraint set C'. Let
S ={lU: i/}

Then C;A < e : K and C';S(A) = e : S(k) are equivalent (lazy

instances of each other).

Proof We remark that C' |, ¢; C a. First, C; A F< e : k is an instance
of C"; S(A) F= e : S(k) since

1. CHC',
2. C;AFS S(A), and
3. OF=S(k) <k

where 1. is proven by transitivity and 2. and 3. are proven using that «
occurs negatively in A and positively in « (if it occurs at all).
To see that C"; S(A) F= e: S(k) is an instance of C; A = e : K, we see

1. ¢'+ S(0),
2. C";S(A) F= S(A), and
3. C'"F= 8(k) < S(k)

where 1. follows from C' += ¢; < | |;¢; for all j and C' = | |;¢; < 3. Points
2. and 3. are trivial.
O
Constraints L C « and L' C « can be replaced by L U L' C a. The
following lemma shows this to lead to an equivalent judgement:

Lemma 3.11 Let o be any flow variable. Then C,L C o, L' Co;AFSe: kK
and C,LUL' C a;AF= e: k are equivalent.

By applying lemma 3.10 to all neutral variables « in a judgement and
applying lemma 3.11 exhaustively, we arrive at the same theorem as in
chapter 2:
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Theorem 3.12 For every flow judgement C; A & e : k there exists an equiv-
alent judgement C'; A+ e : k where C' contains only flow variables o occur-
ring free in A or k and for each « there is only one constraint of the form
LCainC.

Note, that according to lemma 3.10, we can remove more variables than
this (namely those occurring negatively), but by applying the lemma to neu-
tral variables, we arrive at a judgement without LI (because the substitution
S has no effect on A and k).

Let 7 be a subtyping flow derivation. If we apply the substitution S
computed by lemmas 3.10 and 3.11 to F7 we get a new flow function S(F7)
with the special property that all destructors are mapped to expressions
L U]]; o; over flow variables free in A or x — thus anything that can be
ground (without loosing modularity) will be ground in Fr.

3.3 Sestoft’s Closure Analysis

In this section we present the closure analysis developed by Sestoft in [Ses88,
Ses91]. The analysis is based on abstract interpretation. We will try to be
faithful to Sestoft’s presentation of the analysis, but we have to adapt it to
our language and to extend it to handle flow of other data than functions
(closures).

For the analysis we will use two functions ¢ and p mapping labels to sets
of labels. Their intended meaning is as follows:

the set of labels that the body e of Alz.e can evaluate to, or
ol = {a pair of sets of labels that the subexpression ej, ey of
(e1,e2)" can evaluate to
px = the set of labels that x can evaluate to.

The two analysis functions P, (the closure analysis function) and P,
(the closure propagation function) have the following meanings:

Pele]léop = the set of labels that expression e can evaluate to.
Pyle]opr = the set of labels that x can evaluate to in e.

(remember, that we are assuming that all variable names are distinct.)

The functions are defined as follows (where we assume that © # y # z #
x):
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Pelzldp = plz)
Pe[Na.elgp = {l}
Pler@leslgp = ULel | I € Pulerlép)
PTruclgp = {1}
P.[False]pp = {I}
P.[if' e; then es else e3]dp = Pofea]dp U Peles]dp
Pel(er,e2)op = {1}
P.Jlet! (z,7) be e; inex]pp = Pofea]dp
Plfid'z.elpp = Peleldp
Pellet’ = = e ines]pp = Pelea]dp

Polzlopy = {}
Polyleoy = {}
Pu[Xa.e]ppy Pulelbpy
PolMy.elopy Puleldpy
Poler@es]ppy = Pylei]dpy U Pylex]opy
U U{Pe[e2]op | y is bound by Ny.e!
where [ € P.[e1]op}

Po[Truelppy = {}
Po[False'lppy = {}
Py [if" ey then e else es]ppy Pulerlépy U Pylea]dpy U Pyleslppy
Puller,e2) 1opy Pulei]opy U Pylez]dpy
Pyllet! (x,2) be ey in eagpy = Pulerlppy U Pulealdpy
Pollet’ (y,z) be e ineg]ppy = fst(¢(Peler]dp)) U Pyler]ppy U Pylea]dpy
Pyllet’ (z,y) be er inex]ppy = snd(¢(Peler]dp)) U Poler]ppy U Pylealdpy
Pylfix z.e]dpy Pole]dpy
Pylfixy.e]opy Pule]dpy U Pe[elop
Pyllet y = e in ez ppy Peler]dp U Puler]ppy U Pyle2] dpy
Pullet x = ey inex]dpy = Pyler]dpy U Pylex]dpy

We seek descriptions ¢, p which constitute the least simultaneous solution
to the equations:

ol = Pelei]op , for all Mz.e; in e
¢l = (Peleildp, Peledp) , for all (er,e2)" in e
pr = Pulelopr

3.4 Constraint Based Analysis

Palsberg defines flow analysis by first generating a number of constraints
from the syntax tree of the analysed term and then solving these [Pal94].
The presentation in this section borrows some notation from [PO95] (and is
the same as in section 2.4) and extends the analysis to our richer language.
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Let X, and Y, be as in section 2.4. The constraint generation is shown
in figure 3.5. It generates constraints over X, U Y.

Generating constraints for e.

For every occurrence in e of: | generate:

x x C [z]
MNz.e {1} C [Maz.e]
e1Qeq for every Mz.esin e:

{I} Clei] = [e2] C
{1} C [e1] = [e3] C [e1@e2]

True! {I} C [True']
False! {I} C [False']
if 1 then e else e3 [e2] C [if e then eg else es]

[es] C [if e1 then ey else es]
(e1, e2)! {1} Sller,e2)]
let (x,y) be e1 in ey [e2] C [let (z,y) be ey in es]
for every (e3,eq)’ in e:
{l} Clea]l = [es] C =
{} Cle] = lead Sy

fixz.eq [[61]] Cx
[e1] C [fixx.eq]
let z = e in ey [ei] C z

[e2] C [let z = e; in es]

Figure 3.5: Constraint generation a la Palsberg

3.5 Equivalences

This section proves the equivalence between the three flow analyses defined
in this chapter (since the equivalences are known, this amounts to recapitu-
lating other people’s proofs). This is done only to relate my work to previous
work in flow analysis, and we will not be very verbose in the proofs. The
equivalence does give us preservation of flow information under arbitrary
B-reduction for free, as this was proven by Palsberg for constraint based
flow analysis [Pal94].

3.5.1 Equivalence between Constraint Based Analysis and
Closure Analysis

The equivalence between closure analysis and constraint based analysis was
proven by Palsberg in [Pal94]. Though his proof was for Bondorf’s variant
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of closure analysis [Bon91] and we have changed the language slightly, we
see no reason to repeat Palsberg’s proof in detail.

We will briefly sketch the equivalence to help the reader’s intuition.
What we will do is transform closure analysis to constraint form and re-
alise that the constraints generated are the same as Palsberg’s. Given ¢, p
we introduce new notation for closure analysis

[e] = Pelelop
(z) = Pylplopz

where p is the whole program. Now, ¢, p are solutions to the equations of
section 3.3 if and only if the equations generated as follows are true:

Case e of
x el = (=)
Mg.e : [e] = {1}
e1@ey el =U{l" [T € [ea]}
True! o [e] = {1}
False' : [e] = {1}
if e; then ey elsees  : [e] = [ea] U [es]

(e1, e2)’ 2 el = {1}
let (z,y) be eyiney : [e] = [e2]

fixz.ep o [e] = [e1]
let x = €7 in eq o [e] = [ez2]
Case e of
2 !
Mz.e : {}
e1@ley : {[e2] € {z) | = is bound by Mx.e' where [ € [e;]}
True! : {}
False' : {}
if e; theneyelsees  : {}

(e1, e2) )

let (z,y) beeyines : fst(d([er])) C (=) and snd(d([e1])) C (y)
fixx.eq : {z) Ded]

let z =e; in ey : {z) D ed]

The first case corresponds to the definition of P, and the second to the
definition of P,. It is easy to see the first case arises simply from the change
of syntax above: eg. [e] = [e2] U [es] is simply shorthand notation for the
equation P,[if! e; then ey else e3]pp = Pe.lea]dp U Pees]op.

The second case is a bit more tricky: the definition of P, computes the
union of possible bindings of one variable at a time. We want to generate
equations for all variables at once.
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Let us examine in detail the application case where

Poler@es]gpy = Pulerlppy UPulealdpy
U U{Pe[e2]op | y is bound by Ny.e'
where [ € Pei]¢pp}

First, note that we are generating equations resulting from the application
itself, so the first components P,[e1]dpy U Py[e2]dpy can be dropped. We
are left with

(J{Pelezldp | y is bound by Xy.e' where I € P.[ei]op}
which by our shorthand notation is
U{[[BQ]] | y is bound by My.e/ where I € [e;]}
This is the total contribution for y, so we generate the constraints
{[e2] € {y) | y is bound by My.e' where [ € [e;]}

We still have ¢ occurring in a few places:

1. In the first definition, the application case generates:

[el = U{el" | 1" € [ea]}

We can obviously replace this with:
{[e'] | My.e' is inp and I € [e1]} = [e]

2. In the pair-destructing case of the second definition:

fst(@([ea])) € {x) and snd(¢([er])) < {yD

This can be replaced by
for every (es,eq)’ in e:
{i} S ler] = [es] € (=)
{I} Clei] = [ea] € (y)
Instead of viewing [e] and ( z ) as shorthand notation, we can view
them as variable names. The equations can then be seen as constraints over
variables to be solved.
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Clearly the two definitions generating constraints can be merged:

Case e of
" : [l = (=)
MNaz.e o [e] = {1}

e1@Qey : U{[e'T | My.¢' isin p and I € [e1]} = [e] and
U{[ez2] | z is bound by My.e’ where I € [e1]} C {z)

True! o [e] = {1}

False' o [e] = {1}

if e; then ey else es  : [e] = [ea] U [es]

(e1, 2) - [ = {1}
let (z,y) be ejiney : [e] = [e2] and
for every (es,eq)! in e:
{1} Cler] = [es] € (=)
1} C [ex] = [eal € ()
fix x.eq . [e] = [e1] and {x)) D [e1]
let z = e ineg . [e] = [e2] and {z) D [eq]

Comparing this with the constraint generation of Palsberg (section 3.4) we
see a strong resemblance (up to the syntactical difference between ( z |
and x). It is easy to see that any solution to a constraint set generated
as above will be a solution to a constraint set generated using Palsberg’s
system. The other direction is not true, but it holds that for any solution
to a constraint set generated by Palsberg’s method, there exists a solution
to the constraint set generated as above which is smaller: if S is a solution
to Palsberg’s constraints, there exists a solution S’ to the above constraints
such that for all variables V, S(V) C S(V). In particular the minimal
solution to Palsberg’s system will be the minimal solution to the above
(remember that when we introduced C constraints instead of unions in the
definition of P, only the minimal solution to the equations corresponded to
Sestoft’s analysis).

3.5.2 Equivalence between Subtype and Constraint Based
Analysis

Palsberg and O’Keefe [PO95] and Heintze [Hei95] proved the equivalence be-
tween the constraint based analysis and a type based analysis like the above.
All this, however, was done in an untyped setting so as in the equivalence
sketched in section 2.4 recursive types are added. Furthermore, the system
includes a top type and a bottom type (Heintze defines | = po.a which
is not allowed in Amadio and Cardelli’s type system [AC91] and hence not
in Palsberg and O’Keefe’s). Using an argument similar to the argument in
section 2.4 we realize that our subtype based analysis has the same precision
as the constraint based analysis for well-typed terms (i.e. for typed terms,
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constraint based analysis finds a solution equivalent to the minimal ground
derivation in our system).

3.5.3 Complexity

Sestoft’s closure analysis as well as Palsberg and O’Keefe’s constraint based
analysis have been proven to be computable in cubic time O(n?) where n is
the size of the untyped program.

Implementing subtype flow analysis using algorithm W as described
above will not lead to any improvement of this complexity. The algorithm
will produce a pair (C,k) where the size of C' is proportional to the size
of the typed program. Thus the complexity of this analysis is inherently
exponential in the size of the untyped program — assuming that types are
bounded, we do arrive at a complexity which is consistent with Sestoft’s and
Palsberg and O’Keefe’s:

Let n be the size of the typed program; then n is proportional to the
size of C' and to the number of variables in C. Since lemma 3.10 removes
a variable at each application, it can be applied at most n times. Each
application traverses the whole constraint set: unfortunately we cannot still
assume this to be proportional in size to the size of the typed program
since the lemma adds new constraints, but it is bounded by n?. Applying
lemma 3.10 overshadows application of lemma 3.11 and hence the complexity
of theorem 3.12 is O(n?). Careful engineering might be able to keep the size
of C' linear in the size of the typed program thus reducing the complexity
to O(n?) — since the next chapter presents a simple and elegant method of
achieving this complexity, we will not pursue this further here.

Note that in practical implementations it can be desirable to apply the
reduction procedure of lemma 3.10 not only to the final result, but also
during analysis in order to keep constraint sets of manageable size.

3.6 Soundness

Preservation under call-by-name and call-by-need reduction has been proven
by Sestoft. Invariance under arbitrary G-reduction has been proven by Pals-
berg.

A direct proof of soundness follows the proof of soundness of simple flow
analysis directly — the substitution lemma and subject reduction theorem
only differ from the equivalent statements in chapter 2 by allowing for sub-
typing: the judgements in redex and reduct for expressions with the same
label are not required to assign the same type, but there should exist a
common subtype to all types.
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7-1/
CiAz: K FSe:k

Lemma 3.13 (Substitution lemma) If 7 = and

A
Ty = ﬁ then there exists T3 such that
T3
1. T3 = d
T3 CiAFS el /] : k o

2. For all | € Destructors(ele’/x]) we have

C+Fr(l)=Frn() UFr)

Proof The lemma follows by induction on the structure of 77. All cases
are similar to the proof of lemma 2.9 except:

(Sub): Assume

7—/ C l_S I'i” < K TH
T = —! - where T, = !
CiAz:k FSe:k CiAz: K FSe: k"
and -
To= ——2
? CiAFS e K
By induction there exists 74 such that
TI
Ta= i

C;AF*ele!/x] : K"
and for all [ € Destructors(e[e’/z]) we have

cr Fra (l) = .7‘-7—111(1) UFr (l)

Now

i
Ts=C;AF e[ /z] & CFSK'<k
C;AFS eld /x]: k
2. Follows by noting that Fr,(l) = Fr;(I) for all [.

O
We then prove the main subject reduction theorem which is also extended
with preservation of types of subexpressions.

7-11

Th 3.14 (Subject Reducti fhi=-—'1r
eorem (Subject Reduction) If T, CAr o iR

and e —

e then there exists To such that
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7-21

1. = —2
T2 C;AFS ey k

and

2. For all | € Destructors(e’') we have
CrFrl)cFr)
and if | € Destructors(e) consumes I' € Contructors(e) then

CH{I'Y C Fr(D)

Proof The proof is like the proof of theorem 2.10: the non-trivial cases
follow from lemma 3.13. O

Soundness as defined in section 1.7 follows as a trivial corollary (induc-
tion on the length of the reduction):

Corollary 3.15 (Soundness for Simple Flow Analysis) Let T be any
derivation for e and let C; A= e : k be its conclusion. Then C;Fr = e.



Chapter 4

Flow Graphs

In the previous chapter, we saw basic flow analysis expressed using con-
straints, abstract interpretation and an annotated type system. In this
chapter we will present wvalue flow graphs. The graphs presented in this
chapter will have the same accuracy as the analyses of the previous chap-
ter, but will carry even more intensional information: it will be possible to
trace the exact path a value follows through the program from creation to
destruction.

Untyped graphs can be viewed as a graphical representation of Palsberg’s
constraint based definition of basic flow analysis. A simple pre-flow graph
corresponding to simple constraints (closely resembling the syntax tree for
the analysed term) is closed according to a set of rules corresponding to
the conditional constraints in Palsberg’s analysis. Solving constraints in
Palsberg’s formulation corresponds to reachability in graphs.

Section 4.2 presents a different form of graph where standard type in-
formation is represented explicitly in the graph. A typed flow graph will
generally be bigger than an untyped one, but avoids the need for the closing
rules: a graph containing the full flow information is generated directly from
the standard type inference tree. Section 4.3 proves that typed and untyped
graphs compute the same flow information. (A direct proof of soundness
can be found in [Mos97b]).

The graph formulation does not lead to any algorithmic improvement
over previous formulations. It does, however, serve to identify the com-
plexity: in particular, if the size of all types in the program is bounded by
a constant, full low analysis can be done in quadratic time. Furthermore,
this formulation allows demand driven analysis: a specific questions (such as
“which functions can be applied at @) can be answered without computing
the full result of the analysis. Under assumption that types are bounded,
such queries can be answered in linear time. Modularity and algorithms are
considered in section 4.4.

In section 4.5 we will see that the paths defined in this chapter are equiv-
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alent to the notion of well-balanced path by Asperti and Laneve [AL93]. As-

perti and Laneve refine the concept of well-balanced path to legal path which

captures exact set of virtual redexes in a term — in section 8.6 we discuss

whether this can be useful as a basis for defining more precise analyses.
Finally, section 4.6 summarises the results obtained in part I.

4.1 Untyped graphs

A flow graph is a structure capturing the possible flow of an expression. A
path in a flow graph will represent the flow of a value.

An untyped flow graph is a directed graph (V, E) where V is a set of
vertices (or nodes) and FE is a set of directed edges (or arrows) which is a
subset of V' x V. We use e to denote edges and n to denote nodes. The set
of nodes V' contains

1. Variable nodes. Exactly one node for each variable (free or bound) in
the analysed expression.

2. Constructor nodes —F, x* and Bool™ which construct function-,
pair- and boolean values. They correspond to abstractions, pairs and

booleans.

3. Destructor nodes —~, X~ and Bool™ that wuse function-,
pair- and boolean values. They correspond to applications,
let (z,y) be ...in... and conditionals.

4. Anonymous box-nodes that represent the result of a subexpression.

In addition, we will have nodes ‘let’ and ‘fix’: these will not be connected
to the rest of the graph, and are only included to aid readability.

In a flow graph for expression e each variable occurring in e will be
represented by one node whereas each occurrence of a variable will be rep-
resented by a box-node. Constructor and destructor subexpressions of e are
represented by a constructor or destructor node and a box-node. Let- and
fix-expressions are represented by a box node, but we add let- and fix-nodes
for readability. Thus for every subexpression €’ of e there is one box node
which represents the result of ¢/. The box-node is referred to as the root of
the graph for ¢’

A path is defined in the standard fashion. We use p to denote paths.

1. Any arrow is a path

2. If p is a path from ny to ny and p’ is a path from ns to n3 then the
composition of p and p’ is a path from n; to n3. The composition is
written as p - p’.
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Graphically we use doubly pointed arrows to denote paths:

In a flow graph, value flow is represented by paths: a path from a con-
structor node to a destructor node represents a potential use of the value
constructed by the constructor. The path will traverse variable nodes that
can potentially be bound to the value.

4.1.1 Pre-flow-graphs

A pre-flow-graph for an expression e is a graph (V, E) which we will use as
the basis for constructing the flow graph for e.

G(e@e) = g(e)—i__f_..

G(let (z,y) beeine') = G(e) — X

Figure 4.1: Pre-flow-graphs (1)

Figures 4.1 and 4.2 define a function § mapping (untyped) expressions
to pre-flow-graphs. G(e) is defined inductively over the structure of e. A
pre-flow-graph contains only the most rudimentary flow, namely
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G(True) = Bool™ —{ ]
G(False) = Boolt —{ ]

G(if e then ¢’ else ") = G(e) — Bool~

G(fixz.e) = ﬁx ?

Glletx =cine) = G(e) let,

Figure 4.2: Pre-flow-graphs (2)
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1. the flow from a constructor to its root,
2. the flow from the root of subgraphs to destructors,
3. the flow from variable to variable occurrence,

4. the flow from the branches of a conditional to the root of the condi-
tional and

5. the flow from let- and fix-bound expressions to the let- resp. fix-bound
variables.

The edges in pre-flow-graphs correspond directly to the unconditional con-
straints generated in the constraint based flow analysis of Palsberg [Pal94].

In the definition we use dotted lines to make the syntax tree for e explicit.
These lines are not part of the flow graph, but represent the syntax tree.
They are convenient during the construction of the flow graph (in particular
the closing rules of the following subsection). The direction and ordering
of these dotted lines is important, e.g. the left sibling of a —~ node is the
argument to the application and the right sibling is the result.

Formally we can use functions warof and bodyof to give us the variable
resp. body node of =7 and argof and resultof to give us the argument resp.
result node of —~. For pairs we use fstof and sndof for the components of
x T and fstvarof and sndvarof for the variables bound by x .

Each case of the definition defines a graph with a root node|[ | Whenever
a right hand-side refers to G(e), the root node of G(e) is connected at this
place. The root node represents the result of the graph.

For each variable x in expression e (free or bound) there is exactly one
node z. Thus the case for variable occurrences in the definition of G connects
this one node to a new box node.

The graph for lambda creates a new node for the constructor called —*
and the node for the bound variable. The result of a lambda expression
is the lambda, thus the constructor is connected to the root node. In the
application case the root of the applied function is connected to the destruc-
tor node —~ indicating that this is the value that is consumed. The root
is unconnected (but will be connected according to what is applied — see
subsection 4.1.2).

Pairs are treated like abstractions creating a new x T constructor node.
Pair destruction is similar to application except that it is a binding construct
for two variables and that the body of the let is connected to the root.

In the graphs we abstract from whether a boolean constructor is True or
False; both are mapped to Bool™. Similarly, in the graph for ‘if’, we connect
both branches to the root node. (It would be more in the spirit of the other
rules if we did not connect the branches to the root, and had a closing rule
that did this if there was a path from a boolean constructor to the boolean
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destructor. This would, however, not correspond to the analyses presented
in the previous chapter.!)

In the fix-case the body is connected to the bound variable reflecting
that unfolding will bind the variable to the body. We connect the variable
to the root?. Note that fix-expressions can make graphs cyclic: e will usually
contain z as a free variable. E.g. §(fixz.x):

fix.

Example 4.1 Applying G to let (f,x) be (A\y.y, True) in f@x results in the
following pre-flow-graph:

where the rightmost box is the root of the graph.

4.1.2 Closing Pre-flow-graphs

Note how a pre-flow-graph contains very limited flow information. The
graph G((\12.€)@"2¢’) will contain a path from the node associated with At
to the node associated with @ but there are no paths leading from €’ to x
(and further into e€)3. This is the purpose of the closing rules presented in
figure 4.3.

The first rule in figure 4.3 reflects the fact that whenever a function
can be applied at some application, the argument can flow into the bound

!One could even take this a step further and consider connecting the body of ‘let’ and
pair-destructors to the root as well as connecting the body of ‘fix’ to the fix-bound variable
as closing rules.

2We could have connected the body to the root instead. In typed graphs, to be pre-
sented later, this would violate an invariant that only variable nodes have more than one
exiting arrow.

3From this point we will be sloppy and identify constructor/destructor occurrences in
expressions with the constructor/destructor nodes associated with them. Similarly, we
will talk about the labels of nodes when referring to the label of the associated expression.
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— — —

Figure 4.3: Closing rules

variable and the result of the function body can flow to the result of the ap-
plication. The dashed arrows represent the added edges (and are no different
than other edges).

The second rule reflects that if a pair can flow to a pair destructor then
the components of the pair can flow to the variables bound by the destructor.
The two closing rules correspond directly to the conditional constraints of
Palsberg’s constraint based analysis [Pal94] (figure 3.5).

Function ‘close’ mapping flow graphs to flow graphs is defined to be the
transitive closure of the closing operations defined in figure 4.3.

Definition 4.2 If G is a flow graph (V, E) then close(G) is the least flow
graph (V, E') such that

1. If there is a path from a node ny =—1 to ny =—— then there is an
arrow from argof (ng) to varof (n1) and an arrow from bodyof (ny) to
resultof (ng).

2. If there is a path from a node ny = X+ to no = X~ then there is an
arrow from fstof (n1) to fstvarof (ny) and an arrow from sndof (ny) to
sndvarof (na).

Example 4.3 We show how the pre-flow-graph of example 4.1 is closed.
First we notice that there is a path (consisting of two edges) from x* to
X, so we can apply the closing rule as follows (the new edges are dashed):

xt—f F—>x"

S—— —_—

—* —>|:L\ Boolt —>D:7 f
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In this graph, we have created a path from —* to —~ going through f so
we can apply the closing rule again to obtain:

xt— F—>x"

We now see a path from Bool™ to the root, reflecting that True will indeed
be the result of evaluating the expression.
O

4.1.3 Equivalence to Constraint Based Analysis

We will sketch how the graph based analysis corresponds to Palsberg con-
straint based analysis [Pal94]. Let an expression e be given. Let ¢ be a map
from nodes in a flow graph G(e) to Palsberg’s X, U Y, defined by:

1. If n is the root of G(€') then ¢(n) = [€'].
2. If n is variable x then ¢(n) = =.
3. If n is a constructor with label [ then ¢(n) = {l}.

4. If n is a destructor destructing e’ then ¢(n) = [¢'].

Eg. ¢ identifies the root of the argument with the node for the application
itself.

It is easy to see that if there is an edge from n to n’ in close(G(e)) then
¢(n) C ¢(n') is in the constraint set for e. By transitivity of C we extend
this to paths: if there is a path from n to n’ in close(G(e)) then ¢(n) C ¢(n').

For the other direction we see that if V and V' are in X,UY, and V C V'
then for all n,n' such that ¢(n) =V and ¢(n') = V' there exists a path in
close(G(e)) from n to n'.

4.2 Typed graphs

The idea of typed graphs is the same as with untyped graphs: compute
a graph for expression e such that the data flow when e is evaluated is
represented in the graph as paths. We will, however, in the definition of
typed graphs take advantage of the fact that a standard typing of e is given.

A typed flow graph for e is a graph (V| E) as above. The principal dif-
ference is that a subexpression €’ : ¢ is represented by a set of nodes: one
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node for each constructor (Bool, x, —) in ¢. The node associated with the
top type constructor of ¢ is named according to e while the rest are anony-
mous (but still conceptually associated to this named node). Collections of
nodes associated with different subexpressions are connected by collections
of edges which intuitively carry values of the appropriate type.

Using the above definition would be cumbersome, so we introduce short-
hand graphical notation for typed graphs. We hope that it will be clear that
this is indeed nothing but convenient notation.

We represent the set of nodes associated with a subexpression by one
(multi-) node — it can be convenient to think of such a multinode as a
parallel “plug”. The set of edges between two nodes form a cable. To be
precise, we define a t-cable as follows:

1. A Bool-cable is a single edge (wire): ——

1
<

2. A (t — t')-cable is —— where —L> isa t-cable, <= is its
2

flipped version and == is a #'-cable.

1

LT 1 . 2 .
3. A (t x t')-cable is —— where ——> is a t-cable and ——= isa

2

t'-cable.

By “flipped” we mean inverting the direction of all wires in the cable but
not changing the top to bottom order of wires.

The composition of cables is called a cable-path and is written =—» .
If ¢ is one of the following cables

e e e

=

the edge e is called the carrier of c.

If e is an edge in a cable ¢, we say that it is a forward edge if it has the
same direction as the carrier of ¢, and a backward edge if it is in the opposite
direction.

Figures 4.4 and 4.5 define a function TG from expressions to typed flow
graphs. As in the definition of G each right-hand side of the definition has a
root (multi-)node which is the node to be connected at recursive calls. Note
that each constructor node generates a new carrier starting at the node and
connects the sub-cables, while a destructor node terminates a carrier (and
connects sub-cables). Note that whenever two cables are connected, they
have the same type.

The graphs resulting from 7G is drawn to resemble untyped graphs as
much as possible to make comparison easier.
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TG(x:t) = [r==] | where == isa t-cable
TGAve:t—t) = t
+:¢
t |
z TG(e)
TG(e@e) = ——
7G(e
TG(e)
TG((e,e):txt) = t
T

TG(let (z,y) beeine') =

7:Q(e’) —{ |

Figure 4.4: Typed flow graphs (1)




4.2. TYPED GRAPHS 71

TG(True) = Boolt —{ |
TG(False) = Boolt —>{ |

TG(if e then €' else ) = TG(e) — Bool ™~

TOE)  ToE

TG(fixz.e) = ﬁx T

TG(e) ——x

TG(letx=eine’) = TG(e) et
Jl

TG(¢') =—{ ]

Figure 4.5: Typed flow graphs (2)
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In 7G(Ax.e), the three cables associated with the —* (multi-)node are
called the binding-cable (of z), the body-cable and the result-cable. The
downward arrow in the —* node is intended to represent the arrow con-
structor of the type (which intuitively is carried by the middle edge).

The cables associated with —~ (multi-)node are called the function-
cable, the argument-cable and the result-cable. The single cable entering
a variable node is called the binding-cable of the variable. For all other
(multi-)nodes, we will only need to refer to the cable from the node to the
root, which we will call the result-cable.

We show the typed graph obtained for the expression of example 4.1:

Example 4.4 Applying 7G to let (f,z) be (Ay.y, True) in f@Qzx results in
the following typed flow graph:

~ -

< B::)‘IJF\‘)D

H —

)

The reader is encouraged to follow the path from the Bool™ node (True) to
the root of the graph.
a

4.3 Typed and Untyped Graphs

We will consider typed and untyped graphs equivalent if they represent
the same flow information. In other words, there should be a path from a
constructor to a destructor in the typed graph if and only if there is one in
the untyped graph. We use ?*-?" path to denote such paths where ? is a
type constructor.

For each expression e, there is a one-to-one correspondence between
nodes in G(e) and multi-nodes in 7G(e). When there is no risk of confusion,
we will identify these nodes.
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4.3.1 Paths in untyped graphs are in typed graphs
Proposition 4.5 Let e be a well-typed expression. If p is a path from ny to
ny in close(G(e)) then there exists a path p' from ny to ng in TG(e).

Proof By induction on the computation of close(G(e))

Base: By examination of the definition of G and TG we see that all paths
in G(e) are carrier paths in 7G(e).

Step: Easy by examining the following pairs of graphs: The new edges of

-t -~

0.0 B

~ —
-~

—
—_

must correspond to paths in

and the new edges in

correspond to paths in

tl
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4.3.2 Paths in typed graphs are in untyped graphs

Define the nesting depth of a carrier edge in a cable ¢ to be 0 and the depth
of any other edge e to be 1+ the nesting depth of e in the immediate sub
cables of ¢. A path p is n-nested iff the maximal nesting depth of any edge
on p is n. We define the concept of n-level paths, which we will show is a
constructive characterisation of n-nested paths.

Definition 4.6 A path in a typed graph is called an n-level path iff it is the
composition of n-level sub-paths. We say that p is an n-level sub-path iff one
of the following holds

1. p is the carrier of a cable.

2. p is the carrier on the cable-path c1 :: co :: c3 in a subgraph:

n i
pl
—+:
Cc3 \l/ C/
t >

where p' is a m-level path with m < n.

3. p is the carrier on the cable-path c; : : cg in a subgraph:

: t’\g %&

where p' is a m-level path with m < n.

4. p s the carrier on the cable-path cq :: co it c3 in a subgraph:

C2

t

X

C1

where p' is a m-level path with m < n.
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5. p is the carrier on the cable-path ci :: co :: c3 in a subgraph:

P
X

~ o

where p' is a m-level path with m < n.

tl

Note that all n-level paths are also m-level paths for m > n.

Lemma 4.7 Any n-nested path is an n-level path.

Proof Let p be an n-nested path. We prove by induction over n that p
must be a n-level path:

Base: n =0 We see that p must be a carrier.

Step: n + 1 We can divide p into p1 - p} - p2 - pm - Pl - Pm+1 where all p;
sub-paths are carriers and p} are not. For every i, the node between
p; and p} must be a constructor node ?; and the node between p} and
pi+1 must be a destructor node ?;: in other words it must be one of
the four combinations of definition 4.6. The carrier path between ?;“
and 7;” must have maximal nesting depth < n but then by induction
P is a n-level sub-path.

a

Since any path must have a maximal nesting depth we have the following
corollary:

Corollary 4.8 Given any expression e. For all 2t-?" paths p in TG(e)
there exists n such that p is a n-level path.

Now we are ready to prove the proposition stating that all interesting
paths in typed graphs are also in untyped graphs.

Proposition 4.9 Let e be any well-typed expression. If p is a ?77-7" path
in TG(e) then there is also a 7T-77 path in close(G(e)).
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Proof By corollary 4.8 we have that p must be an n-level path for some
n. The proof proceeds by induction on n:

n = 0: 0-level paths consist only of carrier sub-paths which are all in G(e).

n > 0: p can be divided into n-level sub-paths py :: --- :: pr. Now, p; is
either a 0-level sub-path in which case we are done trivially or it has
one of the forms of definition 4.6:

Cc2

t

—>+:\L /
Cc3 C1

t/

T

where p’ is a m-level path with m < n. By induction there
is a —T-—" path in close(G(e)). Thus close(G(e)) contains a
subgraph

. —

but since close(G(e)) is closed it must look like:

-t -

Ny o._.o A

~ —
- —

e The three remaining cases are similar.

O
We have thus proved that all 77-7~ paths in 7G(e) are in close(G(e)) and
vice versa. The result extends, such that a ?7-?~ path traverses a variable

node z in close(G(e)) if and only if it traverses the corresponding node in
TG(e) by the carrier.

4.4 Modularity and Algorithms

A flow graph (untyped as well as typed) is a representation of the flow of a
program. To extract a flow function from a graph, we compute the transitive
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closure of the graph. Transitive closure is computable in quadratic time in
terms of the number of edges in the graph. Single sink transitive closure
can be computed in linear time (again in the number of edges) allowing us
to pose queries such as “given [, what is F(I)?”, i.e. “which values are used
at [?7”. Similarly, single source transitive closure can be computed in linear
time allowing queries “where can value [ flow to?”.

Dynamic transitive closure is at the heart of the constraint based algo-
rithm of Palsberg [Pal94] — since the best known algorithm for dynamic
transitive closure is O(n?), this was believed to be also the best obtainable
complexity for closure analysis.

The size of a typed graph is proportional to the size of the underlying
expression e with explicit types on all subexpressions. This is in general
exponential in the size of the untyped expression. Hence, we must expect
exponential worst-case behaviour.

In practice, programmers do not write programs with huge types. If we
assume that all types are bounded, the size of an expression with explicit
types on all subexpressions is proportional to the underlying untyped term.
Therefore the number of edges in 7 G(e) is proportional to the size of e.

We can conclude that under the assumption that types are bounded, we
can compute the flow function in quadratic time and answer flow queries in
linear time.

Computing flow information using untyped flow graphs cannot be done
modularly. The context of an expression e can easily trigger closing rules —
the added edges can even trigger closing rules within G(e).

Building a typed flow graph proceeds in an entirely modular manner so
we can compute the flow graph separately for different modules.

The flow function computed by transitive closure over a graph is not
immediately modular, but can easily be made so: consider the multi-node
for a free variable z : t as a constructor node with special unique labels
«j on every type constructor in ¢ occurring in positive position (e.g. if x :
Bool — Bool is free in e a fresh label «_, can enter 7G(e) along the carrier
to every occurrence of z and a fresh label apyo can enter along the result
edge). Similar labels are added to negative edges in the result cable. Using
transitive closure now computes a polymorphic flow function that can be
instantiated by the context.

4.5 Paths by Asperti and Laneve

Paths play a crucial role in the field of optimal reduction. Levy defined a
notion of two redexes being created in the “same” way during reduction in
which case they were said to belong to the same “family” [Lév78, Lév80].
Reduction was said to be optimal if a family of redexes was only reduced
once.
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Later Asperti and Laneve [ADLR94] identified families of redexes with
legal paths — a legal path identifies a virtual redex (family of redexes) that
in order to do optimal reduction may not be copied. In the field of optimal
reduction it was realised for legal paths that:

“Intuitively, this “path” describes the “control flow” between the
application and the associated A...”

[AGY96] page 107

To my knowledge this message has not gotten through to the program
analysis community even though in a certain sense an exact analysis is given.

In this section, we will not give the definition of legal paths (this will be
given in section 8.6), only give the definition of well-balanced path which is
a superset of legal paths and which we will see is equivalent to paths in our
untyped (and thus also typed) graphs.

Well-balanced paths are defined over syntax trees (seen as undirected
graphs) with the following extra properties:

e Variable occurrences are connected back to the unique lambda-bound
variable.

e The (undirected) edges are given a unique name (for reference).

Example 4.10 The term (Af.fQ(fQM))@Q(Azx.z) is represented by:

/\
/\ <>

|

We follow [AG96] closely but not exactly — in particular we make vari-
ables an explicit part of the graph, while Asperti and Guerrini identify
variables and their binders (i.e. have nodes Az and occurrences of z repre-
sented by an edge to this node). The difference is immaterial. If ¢ is a path,
reversing ¢ is denoted by (¢)". Well-balanced paths are defined as follows:
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Definition 4.11 A well-balanced path (wbp) of type Q-7 (where ? is one
of var (variable), X or Q) is defined inductively as follows

1. A function edge v from an application to a node 7 is a well-balanced
path of type @Q—7.

AN

2. Let v be a wbp of type Q-var, u be the edge from the variable to its
binding lambda, ¢ a wbp of type @Q-\ ending at this lambda and v be
the argument edge of the initial node of ¢.

Then Yu(d) v is a whp of type Q-7 where 7 is the node connected to
.

3. Let 1) be a wbp of type @-Q ending in some node n, ¢ be a wbp of type
@-\ starting at n and let u be the body-edge of the lambda.

AW\?M
m/\?

Then You is a wbp of type Q-7 where ? is the node connected to u.

(4

Q <~~~ @

In example 4.10 above b, h and j form simple wbp’s and hdbc and jdbc
forms wbp’s.

We will show that the paths in the untyped and typed graphs (restricted
to the lambda-calculus) are exactly Asperti’s well-balanced paths: there is a
wbp of type @-?7 in Asperti’s syntax-trees if and only if there is a path leaving
the root node corresponding to 7 leading to the node corresponding to the
@-node in the untyped/typed graph for the same expression. Remember,
that when 7 is an application there is no path from the application node
(—") itself to the root node.

We will see that case 1. corresponds to the construction of pre-flow-
graphs and cases 2. and 3. correspond to the —T-—~ closing rule. We
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first show that any wbp in the syntax tree for e corresponds to a path in
close(G(e)).

Let e be any lambda-expression. Consider 1. in the inductive definition
of wbp’s: a path from @ to ? is a wbp according to this base case if and
only if there is a path from the root of ? to @ in the pre-flow-graph G(e).

Consider the inductive case 2.: we can assume that there is a path in
close(G(e)) corresponding to (¢)" and a path corresponding to (¢/)". By the
closing rules there must be a path corresponding to (u(¢)"v)" from the root
of 7 to z and thus by composing this with the path corresponding to ()"
we find that there is a path corresponding to (u(¢)"v)" ()" in close(G(e)).
The following graph is useful for illustration:

r

o

Similarly for 3.: we have a path (corresponding to (¢)") in close(G(e)) from
the root of an application to another application and a path (corresponding
to (¢)") from a lambda to the first application. By the closing rules, the
latter path triggers an edge from root of the body of the lambda to the root
of the application, which composed with the path corresponding to ()"
proves that there is a path corresponding to (1¢u)":

A —

LL(¢U)T‘77

For the other direction, any path ending in an application node —~
must be either in the pre-flow-graph or have the structure of one of the
above graphs. This proves the following theorem:

Theorem 4.12 For any any lambda-expression e the following are equiva-
lent:

1. There is a well-balanced path of type @Q'—? in the syntax tree for e.

2. There is a path in close(G(e)) from the root of ? to @',
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While it was easiest to prove the correspondence using untyped graphs,
the actual wbp’s resemble paths in typed graphs more closely: there is a one-
to-one correspondence between edges in the syntax tree for e and cables in
TG(e). Then wbp’s and paths ending with a carrier edge entering a —~ node
in 7G(e) will be exactly the reverse of each other under this correspondence.

4.6 Summary of Monovariant Analyses

In part I we have presented a number of monovariant analyses. Simple flow
analysis was equivalent to an analysis by Bondorf and Jgrgensen[BJ93] and
Heintze [Hei95] but allowed modular analysis due to the principal typing
property. Analyses based on subtypes, untyped graphs and typed graphs
were equivalent to analyses by Sestoft [Ses88, Ses91] and Palsberg [Pal94].
We improved over their analyses by:

¢ Giving a modular analysis.

e Reducing the complexity to quadratic under assumption the types are
bounded.

e Allowing single queries in linear time — posing queries one by one is
not asymptotically worse than computing the flow function.
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Chapter 5

Polymorphism

This chapter extends the subtype flow analysis of chapter 3 with polymor-
phism. We will present two versions of polymorphic flow analysis: ML-
polymorphic flow analysis (also known as let-polymorphism, described in
section 5.2) and flow analysis with polymorphic recursion (also known as
fix-polymorphism, described in section 5.3). We will give algorithms for
computing principal typings in the two polymorphic systems, both of which
are of polynomial complexity.

The analyses presented in this chapter are to our knowledge new. Many
of the ideas have been used in the context of polymorphic binding-time ana-
lysis in papers by Henglein and the present author [HM94] and by Dussart,
Henglein and the present author [DHM95a).

Polymorphism allows definitions to be reused in different contexts with-
out the different uses interfering with each other. Let- and fix-polymorphism
allow this for let-bound resp. fix-bound expressions. Thus, if a (possibly re-
cursively) defined variable is used in multiple contexts a fresh instance of the
type is allowed in each use. This is strong enough to prove subject expansion
for let- and fix-reduction.

5.1 Polymorphic Formulae and Logical Rules

The formulae and subtype relation are common to the ML-polymorphic and
fix-polymorphic systems and are presented in figure 5.1.

We have two kinds of formulae in polymorphic flow analysis. First-order
flow formulae K¥(t) are exactly the same as the flow formulae we have seen
for simple and subtype flow analysis. In addition to this we also define for
every t the set of predicative second order flow formulae or flow schemes
SY(t). We let o range over flow schemes. A flow scheme has the form
Va.C' = k where k is a first-order flow formula and C' is a constraint set
{1 C B1,-+-,€, C Bn} and @ is a list of flow variables (aq,---,ay,). The
constraints in C are called the qualifiers of o and the variables in @ are

85
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Formulae:

Bool
°” Bool’ € K (Bool)

keK'(t) K eK'({) keK(t) K eK'({)
- [ v / X L 1 v /
k="K e (t—1t) kXK e K7 (txt)

ke K(t)
Va.C'= k€ 87(t)

Subtype relation:

CH{ C

Bool
o0 C Y Bool® < Bool®

CH ki <K] CHF ry<k) CHI Cly
CHY "41 —h Ko < K1 b /@'2

Arrow

CH k1 <k, CH ky<kh CHIL Cly

Product
C+H Ky x b Ko < K’l x b2 /-c'2

Figure 5.1: Polymorphic flow analysis — formulae and subtype relation
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called the quantifiers.

The intended reading of e : V&.C' = & is that e has type x[(/@] for all
instantiations of @ such that C[¢/@] is provable.

The subtype relation of figure 5.1 is identical to the similar relation of
subtyping flow analysis (figure 3.1).

5.2 ML polymorphism

ML-polymorphic flow analysis! allows flow schemes in let-bound expressions
only.

The non-logical rules of figure 5.2 only differ from the subtype flow ana-
lysis in one rule: the let-bound expression in the rule for let is allowed to
have a flow scheme as property. This allows different instantiations of the
flow scheme for each occurrence of the let-bound variable. The qualifica-
tions of the flow scheme are constraints that must be true for each of the
instantiations.

Furthermore, two new semi-logical rules are added: the (V-I) rule allows
us to qualify over any subset of the constraint assumptions and to quantify
over any vector of flow variables provided none of the variables are free in the
(non-qualified) constraint set nor in the environment. The (V-E) rule allows
us to instantiate quantified flow variables provided the qualifying constraints
are provable.

We first present a syntax directed version of the polymorphic type sys-
tem. This allows us to give an algorithm for computing principal types as
in the previous chapters, but for polymorphic analyses it will also be the
starting point for our definition of flow functions.

In contrast with the subtype system of chapter 3, existence of principal
types is not the only aim of giving an algorithm — the algorithm itself is of
interest. Since ML-polymorphic flow analysis is new, naturally no algorithms
exists and we are obliged to substantiate its raison d’étre by a complexity
argument.

5.2.1 Syntax Directed Type System

We note that the constraint weakening rule:

C;AtME .6 C'FC
C';Al—MLe:U

weak

is admissible as in chapters 2 and 32. For the rest of the chapter, it will be
convenient to allow this rule in our system.

! ML-polymorphism refers to the restriction to polymorphism in let-expressions. ML-
polymorphism in standard types is the subject of section 9.1.

2Formally, we need a side-condition “no variable bound in o is free in C'”. Since it is
easy to prove that if C; A FM" ¢ : o (without the weakening rule) then no variable bound
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Non-logical rules:

CiAz: kMl e !
CAFME Ng ek 510 &

—-1

EC;AI—MLe:/@'—)é/@ C,AFME o g

—-
C;AFME e@le! : i

Bool-T
©° C; AFME Truel Booll!} C; AFME False Boolt#

C;AFML ¢ . Bool! CiAFME . CiAFME "

Bool-E
o0 C; A MLt ¢ then ¢ else " : &

g GAF ek G ARME ¢ :n
C; A ML (e, e)l ke x g

<-F CiAFME 0 xb g CiAz:ky:k FM e K"
C; AFME Jet! (z,y) beeine : k"
C;AFMl e CiAz:aFME e 1 K
CAI—MLletx—elne K

C;A x: K EML ek

fix
CAI—MLﬁxxe K

let

Semi-logical rules:

CiAFM e CH k <W

Sub
" CyARME ¢!

C.CAFML ¢ i
C;ARML ¢ va3.C" = K

V-1 @ not free in C, A

g CGAM! e:¥a.C' =k O+ C'0/d]

V- _
C; AFME ¢ k[0/d]

Figure 5.2: ML-polymorphic flow analysis — non-logical rules
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It is easy to see that except for trivial uses, instantiation is only appli-
cable immediately after the variable rule and generalisation only as the last
rule in the derivation for let-bound expression. Furthermore, using the whole
constraint set as qualification can only lead to more general types. These
observations along with building in subtype steps leads us to the syntax
directed version of the ML-polymorphic system presented in figure 5.3.

The system contains the same rules as the syntax directed system in fig-
ure 3.3 with the following differences:

C+ C'[i)d]

Id =
C; A,z :Ya.C' = k FML g - k[0)a]

¢ C;Al—ﬁ/me:n C';A,x:Vo‘Z.Cénl—f\L/[L e K

le
CiAFME Jet o =eine : &/

()

Where (*) means (& N (FV(A4) UFV(C"))) = 0.

Figure 5.3: Syntax directed ML-polymorphic flow analysis

Theorem 5.1 Type system FME is sound and complete w.r.t. FME:

Soundness If C; AFME ¢ g then C; AFML ¢ i

Completeness If C; A FME ¢ : i then there exists k' such that C; A FME
e: k' and CF k' < k.

Proof The proof of soundness proceeds by induction over the derivation
of C;AFML ¢ i
The proof of completeness proceeds by induction over the derivation of
C; AFML ¢ i (note that we need the constraint weakening rule).
O

5.2.2 What is the Result of Polymorphic Flow Analysis

As in the previously defined analyses, we can regard derivations as the result
of the analysis — we will sketch how a ground flow function can be extracted
from the derivation if needed. The discussion of this subsection applies also
when we extend the system with polymorphic recursion in section 5.3.
Extracting a ground flow function is not as simple as in the monovariant
cases since merely extracting the annotation of the top constructor of the

by o is free in C, A, we can always choose a constraint-set C'" alpha-equivalent to C’ such
that C"" - C’ and C' - C”
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type of an expression will lead us to conclude that the flow of an expression e
can be a where « is locally bound. In this case there must exist an expression
let x = e; in ex where e is a subexpression of e; and x has type V&.C = &
where « is amongst @. For each occurrence () of z in ey, there will be an
associated use of the instantiation rule which will substitute some ¢; for c.
The flow of e is then | |; ¢;. This will also instantiate qualifications, retaining
provability. Note that this process might have to be repeated since ¢; might
be another bound variable for some j.

Example 5.2 Consider:

let id = A\ 2.if" z then z else x
in (idQTrue’, id@False’)'s

The type of A12.if% 2 then z else z could be Va.Bool® —{1} Bool® and
thus the flow of z is @. To find the ground flow of F(l5) we find all uses
of id (since this was the ‘let’ corresponding to the binding of «) and realise
that the two applications of the instantiation rule instantiate « to {l2} resp.
{lI3}. We can conclude that the flow is F(I5) = {l3,l3}.

Note that instantiating « in the let-bound expression does not affect
the results of applying id. The description of the resulting pair will remain
Boolt2} x Boolls}, O

This can be viewed as exploiting polymorphism during analysis and then
reducing the abstractions and instantiations over labels. That is, in each
use of a polymorphic expression, the flow information of other uses does
not degrade the result, but within the polymorphic expression, all uses flow
together. In the example, the result of the expression is the pair of {I3} and
{l3} despite the fact that the flow of x is {l2,l3}.

Note, that there is no derivation that corresponds to this result: if we in-
sist that the type of « in the example is Boolt/2//s} polymorphic flow analysis
cannot infer the precise description of the resulting pair.

We will call this way of interpreting the result sticky since the annota-
tions of all values that can pass through a variable “stick” to the variable.
We will now give a formal definition of a (sticky) ML-polymorphic flow func-
tion. Let a flow environment ¢ map pairs of program variables and labels to
flow properties. In figure 5.4 we define a function ®, which maps a deriva-

T
C;AFME ¢ g
we define the flow function for polymorphic flow analysis by

Fr(l) = @c(T,1, do)

tion, a label and a flow environment to a property. If 7 =

where

¢o(x,l) ={} forallze FV(e) and ! € L and
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O, (T,l,¢) = case T of

Id —
C;A,xVa.C=rEMLg:k[l/d]

’

—I CiAFMIN g e:— {1} 5!

7!

"
N EO;A}_TJ,I\’JLE:N,‘)ZN T
C;AFMLe@l el 1
Bool-I

C;AFMLTrue! :Bool 1}

Bool-I

C; AFM LFalse! :Bool 1}
T ;

C;AFML ¢ Booll 2 T

C;AFMTif ¢ then e else ek

Bool-E

X_I T/ T//
C;AFML (e el x 1T g!

T’ T
«-E C;A"nMLE:NXlN,

T C;AFMLlet! (z,y) be e in ek

Tl

ﬁXC;AI—{yLﬁX T.eik

1 T T

et C';AFMLlet z=¢ in €':x/

—

[£/al(p(x,1))
O, (T, 1,9")
where ¢' = ¢[(z,1") — {}] for alll”" € L

’
@E(ma )

LB (T" 1, ) il i1 =1
@L(ma )
U, (T", 1, ¢) otherwise

{
{

-
@ﬁ(C;A}—nMLIe:Boole )

uq)ﬁ(ﬁala¢) U (1)5(73717¢) ue ifr=10

-
@ﬁ(C;A}—nMLIe:Boole )

U, (T2, 1, ¢) URL(T3,1,9) otherwise
@E(TIJ l? ¢) I—l @E(T”: l7 ¢)
@ﬁ(ma l7 d))

L (T",1,¢") UL if =1
(e ham b 9)

LUde(T",1,9") otherwise

where ¢' = ¢[(z,1") — {}] for alll”" € L

@E(T,Ja (b,)
where ¢/ = ¢[(z,1") — {}] for alll" € L

r(T2,1,9")
where 77 = 70;14'_7;\1“8%
T 73

= ;A Va.C=rEMLel !

¢ = P[(x,1") = &p(T1, 1", ¢)] for allI" € L

Figure 5.4: ML-polymorphic flow function
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The lemmas, propositions and theorems of this chapter which concerns flow
functions, will be expressed in terms of ®, rather that F as this allows
induction arguments. Whenever we state “for all ¢” we always assume that
the domain of ¢ includes the free variables of the expression that it will be
used in conjunction with.

We define Fr for a non-syntax directed 7 to be Fz, where 7' is the
syntax-directed derivation constructed by the proof of completeness in the-
orem 5.1.

Some program analyses are inherently non-sticky and if a flow analysis is
to be used as a basis for such analyses, it will not be desirable to do the “post-
unfolding” of polymorphism. This is the case for polymorphic binding-time
analysis [HM94] where the specialiser using the binding-time information can
treat explicit quantification and instantiation exactly as lambda abstraction
and application. In this case the sticky presentation of the analysis will even
make binding-time analysis unsound (see section 10.3.1).

We can conclude that a flow function can be computed from a polymor-
phic derivation, but that the derivation itself contains additional information
that is important or even crucial to some applications.

5.2.3 Halbstark Instance Relation

In the next subsection, we will prove existence of principal types for the
ML-polymorphic flow analysis. We will do this by the same method that
we employed in previous chapters: give an algorithm W which computes
such principal types. The lazy (or strong) instance relation employed in
chapter 3 turns out to be inconvenient to work with (this was to some extent
already the case in chapter 3): it is too liberal to be used in the induction
hypothesis. On the other hand, we cannot prove principal typings under
the (weak) instance relation of chapter 2, so we are looking for something
in between.

The instance relation we will use is called halbstark and is strictly smaller
than the lazy (strong) instance relation (definition 3.3): if a typing is a
halbstark instance of another typing then it is also a lazy instance, but not
vice versa. Similarly, the weak instance relation (definition 2.4) is strictly
smaller than the halbstark instance relation. This extends to principality,
where principality under weak instance implies principality under halbstark
instance, which in turn implies principality under lazy (strong) instance.

The main difference between the lazy and halbstark instance relations is
that halbstark instance does not allow the environment to change as much
as in the lazy instance relation — this matches algorithm W well as this
computes typings given an environment and we use the instance relation
only for comparing typings with the same environment.

The halbstark instance relation was introduced by Henglein [Hen96]:
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Definition 5.3 A flow judgement C'; A' FMT ¢ : k! is a halbstark instance
of C;AFML ¢k (by S) if e =€ and

1. '+ S(0),

2. A" =S5(A) and

3. C'"+Y S(k) < K

If C; AFML ¢ : i is also an instance of C'; A ML ¢+ k! then the two

judgements are equivalent.

As in previous chapters, we have that derivable judgements are closed
under the instance relation. We extend this proposition to also state what
happens to the flow computed.

Proposition 5.4 Assume

7-11
T = ——7—
! C;AFME ¢ i

and that C'; A' =ML ¢ . ' is a halbstark instance of C; A FME ¢ . k by S.
Then there exists Ty such that

!

1. = 2
T2 Cli A FML ¢

and

2. Let L be given. Let ¢, ¢’ be two environments mapping free variables
of e to properties. Then for all | € L we have that C' F¥ S¢(x,1) <
¢ (x,1) for all x € FV (e) implies

C'+8(®p(Th 1, ¢) < Br(Ta,l, @)

Proof Induction over 77. O

Now we define the notion of generic instance of type schemes. For the
ML-polymorphic system it will be a convenient concept while for polymor-
phic recursion as defined in the following section, it will be crucial in the
development.

Since we have included the (admissible) constraint weakening rule, we
can give a nice and simple definition, which would otherwise be rather clut-
tered (though it can be done as shown by Henglein [Hen96]).

Definition 5.5 A type scheme o' is a generic instance of o written o C o’
iff ;20 Ml g o' Type schemes o and o' are equivalent written o = o
iffco Co' Co.
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Without the weakening rule, this definition would not allow us to apply
the (V-E) rule except when the instantiation of bound variables makes the
qualifications ground or trivial (since - C'[(/@] in the rule can only be
provable if C'[(/d] is ground).

Lemma 5.6 Let C' and C' be constraint sets (that is, they contain only
constraints of the form o C 3 and L C «). We have

VA.C' = Kk CVYA.C = K
iff there exists a substitution S working on® ﬁ such that
1. CES(C),
2. CF" S(k') <k, and
3. No «; is free in V3.C' = K'.

Proof

“if” Since S works on ﬁ, the following inference is valid:

1T Vﬁ.C' = k' FML g . VB.C' =K
Ciz:V3.C" = v FML 2 VE.C' = & CFS(C)
C;z:VE.C" = k' FMT 21 S(K) CH S(K') <k
C;z: Vﬁ.C' =k FME gk

;x:Vﬁ_‘.C'iﬁ' FML 3. Va.C = &

*

where () means (& not free in V3.C' = r’). The rules applied are
from top to bottom: (weak), (V-E), (Sub) and (V-I).

“only if” Tt is not hard to see that any derivation of ; x : V3.C' = ' FML
x : Va.C' = k must look like the above (up to using several subtype
steps (which can be achieved by one using transitivity) and repetition
of the above sequence (which can be squeezed into one)).

O
The following simple property of the generic instance relation will be
very useful:

71/
CiAz:ctFM e o
7-21

CiA,x:0 FME e o

Lemma 5.7 If T; = - and o' C o then there exists To

such that
7"2 =

3That is, S is the identity on all variables not in ﬁ
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Proof By simple induction on 77. O
While the above lemma is simple and elegant, we need a more compli-
cated version that also deals with preservation of flow.

Lemma 5.8 If
1. C1; AFME ¢ gl is a halbstark instance of Co; A FML €' 2 il by S

2. 0y = Va.Cy = k) for some & where & N FV(A) = 0 and o9 =
close 4(Co = K)

7~1/
C: A,z o l—f\L/‘[L e: Ky
then there exists Ty such that

T3
Ci A,z : 09 FMl e gy

3. T =

1. To =

2. CI—VFJQSI{1

3. Let L be given and let ¢ be any environment mapping the domain of
A to properties. If Cy & Sly C ¢y then for all | € L we have

C+ @ﬁ(,]-?a [ ¢2) C @ﬁ(,]-h L ¢1)
where ¢o = ¢[(x,1") = ls] and ¢y = ¢[(x,I') = £4] for all " € L.

4. Let L be given and let ¢ be any environment mapping the domain of
A to properties. If & is the empty vector and C' &= Sl C {1 then for
alll € L we have

C+ @ﬁ(,]-?a [ ¢2) C @ﬁ(,]-h L ¢1)
where ¢ = ¢[(x,1") = lo] and ¢y = ¢[(x,I') — £4] for all ' € L.

Proof By induction over 7;. The only interesting case is (Id).
(Id) Assume

1. O AFME ¢ 2 il is a halbstark instance of Co; A FME ¢’ : gl by
S

2. 01 = Va.Cy = k) for some @ where @ N FV(A) = 0 and oy =
close 4(Co = K)
3. T = CrCie/a]

C; A,z oy FME o2 6 [0)d]

From 1. we find that
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1. C1 F SCy

2. A=SA

3. Oy FY Skh < k)
From this we concluded that S is the identity on the free variables
of A and hence that it is a substitution on the variables bound by

close 4(Cy = k). Furthermore S’ = [(/@] o S is a substitution on the
variables bound by close 4 (Cy = k}). We then have

— —

1. Since C'+ C1[f/@&) and [(/&)(Cy) F [£/&](S(Cy)) we get

Ct+ S'Cy
CiAyx o FML 2 ')

,7-2:

— —

2. Since C' = C1[0/d] and [¢/a)(Cy) 7 [0/a)(S(k5)) < [(/a)(k}) we
conclude C' " S'kl, < K} [0/d]

3. Let ¢ be any environment mapping the domain of A to properties.
Assume C4 F S¢y C ¢1. By definition:

and

O (To, 1, Bl(w,1) = bo]) = S'(62)

—

Since C' + C4[(/a] and [(/&)(C1) F S'(63) C [€/&](¢1) we conclude
that for all [ we have

CF@r(To, 1, 0l(x,1) = £2]) C @(T1,1, 9[(2,1) = £1])

4. Assume that @ is the empty vector. Then [¢/@] is the identity.
Let ¢ be any environment mapping the domain of A to properties.
Assume C' + S¢y C ¢;. By definition:

(I)ﬁ(ﬂala ¢[($, l) = 61]) = 61

and
(T2, 1, dl(2,1) = £o]) = S'(€2) = S(La)

We find

CF@r(To, 1, 0l(x,1) = £2]) C @(T1,1, 9[(2,1) = £1])
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5.2.4 Algorithm and Principality

As only two rules in the syntax directed type system have changed compared
to the subtype system, extending the algorithm of figure 3.4 just consists of
changing the same two cases:

x: if A(z) =Va.C' =k

then (C[a’/d], k[o/ /&]) where of is fresh
let x =ejiney: let (C1,6) =W(A, e1)

let 0 = closes(C1 = k)

let (Co, k") =W((A,z:0),e2)

in (Cs, k')

where the closing function is defined by

close4(C = k) = Va.C' = k where « is a sequence of all flow variables
free in C' = k but not in A.

Using close 4(C' = k) we can relate the generic instance relation to the
halbstark instance relation as follows:

Lemma 5.9 If C' and C' are constraint sets (that is, contain only con-
straints of the form o C 3 and L C «) then:

1. If
C'; AFML ¢ ! is a halbstark instance of C; AFME e i
then
close A(C' = k) C closes(C' = k')
2. If
close A(C' = k) C closes(C' = k')
then
C'; AFML ¢ k! is a halbstark instance of C; AFME e i
Proof
1. From the definition of halbstark instance, we find a substitution S
such that
(a) C'"+SC
(b) A=S(4)

(c) C"FY S(k) <K'
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We want to derive that
s Va.C =k l—f\L/[L x: VB.C' = '

where @ = FV(C = )\ FV(A) and § = FV(C' = &')\ FV(A). This
is done by

Id

FML 4 VA.C = k

;2 :Va.C =k
weak
C;x:V¥a.0 = kML 2. Ya.0 = & C'FSC
V-E
C';z:¥a.C =k FML g - Sk C'F" S(k) < &'
Cix:Va.C =k FME g o k!
cxVa.C = kMY 2 vE.C = K

where the last step is allowable since FV (Va.C') C FV(A) and no
B; € [ is free in A.

Sub

V-1

2. By lemma 5.6, S" exists such that ¢’ ¥ §’(k) < &’ and C' F S'(C)
but since S” works only on the variables bound by close(C = k) it
must be the identity on all variables bound by A and thus A = S’(A)
follows.

O

Since close clearly is terminating, algorithm W for ML polymorphic

flow analysis must be terminating for the same pairs A, e as algorithm W

for subtype flow analysis. Thus we can use the same definition of proper
environments (definition 3.5) and have termination:

Lemma 5.10 If A is proper then W(A,e) terminates without failure.
We now turn to the main theorem concerning principality:
Theorem 5.11 If W(A,e) = (C,k) then there exists Ty such that

7-11
C; AFML ¢
2. for any Ta such that

1. T =

and

7~21
C' A l—f\L/‘[L ek

we have that there exists S such that

75:

(a) C"; A ML ¢ . k! is a halbstark instance of C;AFME ek by S
and

(b) Let L be given and let ¢,¢' be two environments mapping free
variables of e to properties. Then for all | € L we have that
C'F S¢(x,1) C ¢'(x,1) for all x € FV (e) implies

C'F S(®r(T1,1,¢)) C Pr(T2,1,¢)
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Proof By induction over the structure of e. We give the important cases:
(Id) and (let)

(Id) We have
W(A,z) = let V&.(z =K :_)A(,’L‘)
in (Cld! /], k[a!/d))

where o is fresh. Clearly,

Cla!/d] F Cla’ /&]ﬁ

Cla’ /&), AFME 2« k[l /]

Let C’, k" be given such that C'; A FME g2 &/, Le.

C'+ Cll)d]
ClyAFML g

—

where k' = k[(/@]. Let S = [(/a], then

1. C'+ S(Clad /&)
2. A=SA
3. C'HY S(k[a!/d)) < &

since o, ¢ FV(A) for all o} in o/ (it is fresh).
Let ¢ and ¢’ be given such that C' - S¢(z,1) C ¢'(z,1). But since

Cla’/d) + Cld /@]

Ol AP 4 wagay @) = Sle/alio@.n)

-

= [t/al(o(x,1))

S(@c(

and

L L P

@ b
( C; A l—,]l/[L K

we are done

(let) Recall the definition of W on ‘let’:

let x =ejiney: let (C1,k1) = W(A, e1)
let 0 = closes(C1 = K1)
let (CQ,K/Q) = W((A,ac H O’),eg)
in (CQ,K/,)

We assume that 73 is given such that

Ta Ts

Cs; A l—ﬁ/[L let x =ejiney : K3

73:
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Without loss of generality we can assume
7 !
]\74:1L and 5 = - % ML
C4;A l_n €1 : kg C3;A,LE : Va.C4 = K4 }_n €9 : K3
where @ N (FV(A) UFV(Cs)) = 0.
Let ¢, ¢' be two environments mapping free variables of let x = e in es
to properties.
By induction we find that there exists 7; such that:
7-11
Ci; A I—,J;/IL e: Ky
2. there exists S7 such that
(a) Cy; AFML ¢ : k4 is a halbstark instance of Op; A FME ¢ @ gy
by S; and

(b) Let ¢1 = & |py(e,) and ¢y = ¢’ |py(e,)- Then for all | €
Destructors(e;) we have that Cy + S1é1(y,1) C ¢! (y,l) for
all y € FV (ey) implies

Ci b S1(Pc(Th, 1, 1)) C Op(Tasl, 8)

ﬁ:

1. T =

and

We can apply lemma 5.8 to find

7—61
Cs; A,z : close A(C = K1) I—Q/IL €9t K4

,7-6:

where

1. 03 |—v K4 S K3

2. Let ¢ be any environment mapping the domain of A to properties.
If Cy F S1¢5 C 4y then for all [ € Destructors(ez) we have

CY3 + ¢£(7-6717 (b[(xa l) = 62]) - ¢C(7E)7 l7 ¢[($7l) = gl])
By the induction hypothesis we find that there exists 75 such that
7-21
Co; A,z : close o(C = K1) l—,];/[L €9t K9
2. there exists S5 such that

(a) C3; A2 : closea(Cy = k1) FML ey : k4 is a halbstark in-
stance of Co; A,z : close 4 (C1 = k1) I—,];/[L e : kg by Sy and

(b) Let ¢o = ¢[(z,) = Pc(Th,l,0)] ¢4 = (1) —
Qr(Ti,l,¢")]. Assume C3 F Sopo(y,l) C ¢h(y,l) for all
y € FV (ey). Then for all [ € Destructors(es) we have

Cs F So(®r(T2, 1, $2)) C @r(Ts, 1, )

1. Ta=

and
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We can now construct 7 such that
T T2
L7T= Cy A l—,];/[L le‘ém :261 ney: Ko
2. (a) C35A4 FML let x = ey in ey : Ky is a halbstark instance of
Cy; A I—%L let x = e1 in ey : ko by So and
(b) Assume Cj oo Sed(y,l) c ¢y, l) for all
y € FV(let z=e in eg). Then for all | €
Destructors(let x = e in e3) we have

C13 F 52(@£(T7l7¢)) g (1)5(737l7¢,)

and

1.1is OK. 2(a) is OK. For 2(b) we assume C5 = Sy¢(y, 1) C ¢'(y,1) for all
y € FV(let z = e in ey). This implies that C5 - Saga(y,1) C ¢'(y,1)2
for all variables y € F'V(e2). Then for all [ € Destructors(ey) we have

C3 1= S5(P2(Ta, 1, ¢2)) € @2(Ts, 1, ¢5)
By definition ®,(7,1,¢) = ®,(T2,1, p2). We miss
C3 = @2(T6, 1, ¢5) € @2(Ts,1,¢')
We have by definition that

@£(7§n la (b,) = ¢£(7E)7 la (b,[(xa l) = ¢£(7:la l7 d)l)])
which leaves us with

O3+ q)ﬁ(%ala(j)l[(xal) = @g(ﬂ,l,d)l)])
C (75,0, ¢'[(,1) = @£(Ta, 1, ¢)])

which we showed above

O

From the above lemma and theorem as well as theorem 5.1, we conclude
that every term has a principal type (under halbstark instance).

Note that we could have proven the existence of principal types for the
sub-type based flow analysis of chapter 3 under the halbstark instance re-
lation. This would have been a stronger result (as it would imply principal
types under lazy instance) and would have been slightly simpler to prove.

5.2.5 Accelerated Algorithm and Minimality
Consider the following expression:

let zg = ¢
in let x1 = if y then x( else xg
in let---
in let x, =if y then x, 1 else x,, 1
in if y then z,, else z,
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Assume that analysing e yields constraints set Cy. Since ¢ will be polymor-
phic, we will make two instances of Cjy. This will be performed a number
of times proportional to the size of the program, and thus the resulting
constraint set will have a size exponential in the size of the program.

This shows that a naive implementation of the above algorithm will
lead to exponential worst-case behaviour. It is not impossible that smart
representations of constraint set might improve the situation, but instead
of trying to mend a basically flawed (from an algorithmic point of view)
algorithm, we will attack the heart of the problem: the exploding size of
constraint sets. The idea is to reduce the size of constraint sets inferred so
they will be proportional to the size of the standard type instead of the size
of the expression.

We will proceed as we have done in previous chapters to find minimal
typings. In contrast to these chapters, however, we are not only interested in
minimal types but also in an efficient way of computing them. The method of
reducing constraint sets will thus not only be applied after a result has been
found but at every let-bound expression. This will reduce the constraint
sets making the duplication by different instantiations less costly.

Due to the identity rule (Id) we can assume that constraint sets contain
no constraints of the form o C a. To be more precise, if C’ is the result of
removing all constraints of the form o C « from a constraint set C, then
C; AFML ¢ i and C'; A FML ¢ : g are equivalent.

Definition 5.12 Assume A = {z1 : Va1.C1 = K1, , 2y : Va,.Cp, = kp}.
A flow variable occurring free in A or k occurs positively (negatively) in
C; A F e : Kk if it occurs positively (negatively) in k1 — -+ — Kkp — K.

Variables not occurring free in A or k are said to be neutral.

All variables occurring in C' will occur positively, negatively, positively
and negatively or be neutral. In chapter 3 we proved that we could remove
all non-negative variables from a judgement C; A < e : x and arrive at an
equivalent judgement (lemma 3.10). Recall, however, that equivalence was
using the lazy instance relation — we can indeed prove a similar lemma for
polymorphic flow analysis using lazy instance, but it is not true for halbstark
instance.

Fortunately, we will only need the lemma for neutral variables (as in
chapters 2 and 3:

Lemma 5.13 Let o be a flow variable with only neutral occurrences in
C; AFML ¢ k.

Let t1 C a,---, 4, C « be all inequalities in C with « on the right-hand
side. We delete these from C and replace every inequality o C 3 in C by
0y C B, by C B and call the resulting constraint set C'.

Then C; A FML ¢ - k and C'; A FML ¢ - k are equivalent (halbstark

instances of each other).
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Proof Remark that CF[];¢; C a.
First, C; A ML ¢ : k is an instance of C'; A FML ¢ : k since

1. C+C',
2. A=A, and
3. CH k <k

where 1. is proven by transitivity and 2. and 3. are trivial.
To see that C'; A FML ¢ . k is an instance of C; A FML ¢ : gk, let
S={aw—L];4}. Now

1. C'F S(0),
2. A=5(A), and
3. C'FY S(k) <k

where 1. follows from C' = ¢; < |]; ¢; for all j and C' F | ;¢; < 3. Points 2.
and 3. are trivial since o does not occur in A or k.
|

Lemma 3.11 generalises to the polymorphic system:

Lemma 5.14 Let a be any flow variable then C,L C o, L' C oy AFMl e i
and C,LUL' Ca; AFML ¢ k are equivalent.

By applying Lemma 5.13 to all neutral variables in a judgement and
applying lemma 5.14 exhaustively, we arrive at the following theorem:

Theorem 5.15 For every flow judgement C; A M e : k there exists an
equivalent judgement C'; AFMT ¢ 1k where C' contains only flow variables
«a occurring free in A or k and for each « there is only one constraint of the
form L C « in C'.

By applying lemma 5.13 to neutral variables only, the resulting judge-
ment does not include any LI’s. In particular, no types in the environment nor
in the resulting type will contain LI and hence the algorithm for constraints
need not be changed.

Note, that applying theorem 5.15 does not affect the flow computed by
the derivations.

If we change the algorithm slightly to account for the above, we get:

x: if A(z) = (Va.C = k)

then (C[a’/d], k[o/ /&]) where o is fresh
let x =ejiney: let (C1,6) =W(A, e1)

let Cf = elim(FV(A) UFV(k), C1)

let o = closes(C] = k)

let (Co, k") =W((A,z:0),e2)

in (02, Ii’)
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where elim (V, C) is defined to be a constraint set C' obtained by eliminating
all variables not in V' (according to lemma 5.13) and merging all L; C «
constraints with identical right-hand sides according to lemma 5.14.

5.2.6 Complexity

Let n be the size of the analysed program with explicit standard types on all
subexpressions (eg. (Az.(if True : Bool then z : Bool else y : Bool) : Bool) :
Bool — Bool). First we establish the maximum size of a constraint set C'
resulting from a call to W.

Lemma 5.16 If (C,k') = W(A,e) then the number of constraints in C is
bounded by O(n?) and the number of variables and constants in C' is bounded

by O(n?).

Proof Consider the size of C] = elim(FV(A)UFV(k),C). By theo-
rem 5.15 C] contains only flow variables occurring free in A or k. The
number of these variables must be bounded by n and therefore the number
of constraints of the form o C /3 is bounded by n? and the number of con-
straints L C « is bounded by n. Thus the number of constraints in C] must
be bounded by n? and the number of “nodes” (variables and constants) is
bounded by n.

As there can be at most n occurrences of let-bound variables in e, we
conclude that the upper bound on the number of constraints in C' is cubic
(since all other constructs generate a constant number of constraint plus
the constraints of subexpressions). Similarly the number of nodes must be
bounded by n?. O

Next we show a polynomial upper bound on the maximal running time
of the elim() function.

Lemma 5.17 All calls to elim(F,C) are bounded by O(n®) for every set F
of flow variables.

Proof Lemma 5.13 passes over all constraints in C' and removes and adds
constraints. If the constraint set is viewed as a graph, the number of nodes
decreases by one in each application since a variable is deleted. The maximal
number of constraints added by one application of the lemma, is thus O(n?)
since the number of nodes is O(n?). Lemma 5.13 can be applied at most
O(n?) times, thus we find the complexity of this part of elim(F,C) to be
O(n").
The second part (lemma 5.14) is bounded by the number of constraints
and is thus O(n*).
O
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It would be tempting to use the upper bound @(n?) on the number of
constraints in C' but this might not be maintained by successive applications
of lemma 5.13.

Finally the main complexity result of the accelerated algorithm.

Theorem 5.18 Accelerated algorithm W computes a principal type of e in
time O(n').

Proof There can be at most n let-expressions in e, thus at most n calls
to elim(). Making the final result minimal does not add anything (just one
extra application of elim()). O

This complexity seems prohibitive for implementations — we are, how-
ever, not sure that the bound is tight. Furthermore, we believe that the algo-
rithm will be well-behaved in practice. E.g. consider the proof of lemma 5.16:
we found a bound of n on the number of variables in the constraint set C'
resulting from calls to elim and concluded that the number of constraints in
C was bounded by n?. This, however, is only the case when the constraint
set is dense; we conjecture that it will often be sparse in practice. Similar
considerations might well lead to better practical behaviour. Finally, it is
very likely that more efficient algorithms exist [DHM95b].

5.2.7 Soundness

We can prove strong subject reduction for the ML-polymorphic system. We
first prove the usual substitution lemma:

Lemma 5.19 (Substitution lemma) If

7—11

C;A,x:nl—,]l“e:n'

ﬂ:

and
T3
C;A l—ﬁ/[L ek

Ty =
then there exists T3 such that

T3

1. =
7s C; AFME ¢le! /x] -

d
7 on
2. For any ¢ and L and alll € L we have
Cr q)ﬁ(%ala¢) = (1)5(7’17[7¢I) U Q)(Bala¢)

where ¢' = ¢[(x,1") — {}] for alll' € L
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Proof The lemma follows by induction on the structure of 7;. Since we as-
sume that z is monomorphic, the proof is identical to the proof of lemma 3.13
O

Lemma 5.19 does the hard work for most cases of our strong subject
reduction theorem. In this polymorphic case, however, it does not suffice
for the let-case, so we prove the following variant of the substitution lemma:

Lemma 5.20 If

7—/
7’1: ! = : ML [
ChiAz:VaC =k, "e: kK
and 7
Ty = 2
2 C’;Al—ﬁ/me':/@

then there exists T3 such that

7_2';/

d
C; AFML ¢le! Ja] : K o

1. T3 =

2. For any ¢ and L and all | € L we have
Cr @E(Eahd)) = ¢£(7-17l7¢l)

where ¢' = ¢[(z,1') — @ (T2, ', 9)] for all I’

Proof The proof is by induction over 7;. The only interesting case is (Id):

Assume .
C'+ Cle/d)
hi== ML 7
ChAz:Va.C=kt,)"x:k[l/d]

and £ = k[(/dl).
Since C' F C[¢/d] it is a trivial induction on 7 to show the existence of
75/

Ts = .
T LA ¢ GT1a]

and that ®(Ts3,0,¢) = [(/@](D,(T3,1,¢)) but since the latter equals

®,(T1,1,¢") by definition, we are done.
O

7‘11

C; AFME ¢ 1 i and

Theorem 5.21 (Subject Reduction) If 71 =

e1 — ey then there exists To such that

7-21
C; AFME ¢ 2 i

and

1. Ta =
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2. For any ¢ and L and alll € L we have
Cr ¢£(7-27l7¢) - @E(,]-hla(b)

and if | € Destructors(ey) consumes I' € Contructors(ey) then for any
¢ and L (where [,1' € L) then

CHA{I'Y S (T, 1, 9)

Proof The main cases follows from lemmas 5.19 and 5.20. Note, that the
formulation with ® instead of F is necessary for the inductive (context) case.
O

Soundness of flow functions computed from inference trees follows as
usual (the result remains true by definition, if the derivation 7 is not syntax
directed):

Corollary 5.22 Let T be any derivation for e and let C; A MU ¢ k be its
conclusion. Then C; Fr = e.

5.2.8 Invariance under Transformation

We will prove the subject expansion property for ‘let’. This implies that
unfolding let-expressions cannot improve the result of this flow analysis —
explicit or implicit unfolding of definitions (known as polyvariance) has been
used in program analysis for improving results. This result shows that we
can obtain equally good results without unfolding definitions. When we
add fix-polymorphism in the next section, a similar result will be proved for
unfolding recursive definitions.

Just as the statement of soundness implied preservation of flow, this
(partial) subject expansion property states that flow is preserved.

Recall that (" denotes the ¢’th occurrence of z in e.

Lemma 5.23 Let e be an expression with n occurrences of a variable x,
and let e1,---,e, be n expressions where no free variable of e; is bound by

e. If

Tefes /o)
C; ARME ¢le; /2] :
then there exists k1 ---kpn and To, T, -+, Tn such that
7-',

/A
C;Al—,]l/“: € Ki

7-6;[6,;/1(1.)] =

1. T =

7;/

CiA,x1: K1, ,Tn : kn l—ﬁ/[L e[mi/x(i)] 'K

2. T. =

and
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3. For any ¢ and L and all | € L we have

C+ (1)5(7:3[61'/:5(1')]7 la ¢) = (1)5(7:37 la ¢) U |_| (1)5(7;7 la ¢)
3
Proof By induction on the inference tree 7;[81_/1(1')].

Theorem 5.24 (Invariance under let-conversion) If

el[e/x]
C; AFML le/x] - K

Tetle/z] =

then there exists Tjo; such that

!
7Eet

C;A l—,];/IL let x =eine : K

1. 7Zetz

2. CF ki < K

3. For any ¢ and L and all | € L we have

C+ @E(ﬁetala¢) < @E(n’[e/z}alaé)

Proof Let ¢ and £ be given. Assume ¢(z) = 0 (since = not free in €'[e/z]
orlet z = e in €', this assumption is valid). Assume e’ contains n occurrences
of z. By lemma 5.23 there exist k1,---, Ky, and Ty, 71, -+, T, such that

TI

1. 7, = L
Ti C;Al—%Le:m

T

_ and
C;A,Jfl CR1y, 3T - Kp '_iLML el[xi/w(l)] ‘K

2. To =

3. For all [ € £ we have

C+ ¢£(7;’[e/x]al7¢) = @g(ﬁ/,l,(b) L |_|¢£(7;7l7¢)

By theorem 5.11 we know that we can derive a principal typing

7—/
CiAFME ¢

T:

for e under A such that for every i there exists S; where

1. C;A FML ¢ k; is a halbstark instance of C'; A FME ¢ . k' under S,
and
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2. Let ¢, = S;¢. Since by definition C' F S;¢(y,1) < ¢'(y,1) for all y and
[ € L we have

CHSi(D(T, 1, ) < Br(Tisl, dh)

Every derivation a-equivalent to T is also principal with the same properties
— thus, without loss of generality, we can assume that Ran(¢) N (FV (C')U
FV (")) = 0. This implies that ¢} = ¢.

By repeated application of lemma 5.8 (special case where C and « of
this lemma are both empty) we find the existence of 75 such that

1. Ta=

7-2/
C; A,z : closeA(C' = k'), -+, 2y, @ close A (C" = k) l—,]l“ e'[wi/x(i)] ! Kot

2. CF Ker < K

3. We have
Cr @E(Baladb) < éﬁ(n’ala(bl)

where ¢ = ¢[(z4,1") = @, (Ti, 1, ¢L)] and ¢ = P[(xi, ') = @£(T, 1, ¢)]
for all I’ € £. We used the fact that C' = S;®z(T,1,¢) < ®(T;, 1, Pf).

Let ﬁet =
T/ 7-'II
2
CiAFME ¢ i/ C; A, x: closes(C" = k') FME ¢ gy
C; A l—,]l“ let x =eine : K
where 7' is identical to 73 except the assumptions on z1,- -, 2, has been

replaced by z. Now

@E(ﬁeta [ d)) = (I>E(7-27 L ¢2)

and
Cr @E(Bala(bQ) < ¢£(7:3’7la¢1)

It is not hard to see that

Cr éﬁ(n’ahd)l) - @E(n'a 7¢) I—ll_l'i ¢£(7;7l7¢;,)
= q)L',( eyl )|_||_|Z(I)£(7;,l,¢)

We have proved

C+ @E(ﬁetala¢) < q)ﬁ(n’[e/z}alagb)
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Corollary 5.25 If

7-1/
C; AFMECle'le/x]] : k1

,7’1:

then there exists To such that

7

1. =
T2 C; AFME Ollet £ = e in €] : Ky

2. C}_vlﬁgglﬂ

3. For all | € Destructors(C[e[e/x]]) we have

CrFr(l)=Fr()

Proof We prove the property where we replace 3. by

For any ¢ and £ and all [ € £ we have

Crop(T,1,0) = ®,(T2,1,0)

The proof is by induction over the structure of C'. The base case is theo-
rem 5.24 and the induction cases are straightforward.
a

5.3 Polymorphic recursion

The idea of polymorphic recursion is to allow type schemes not only in
let-bound expressions but also in fix-bound expressions.

Example 5.26 Consider the following (admittedly strange) definition of
the identity function:

fix £.(N1yN2z.z)@l3 (@l Truels, f@leTruel7)s)
Here ML-polymorphism doesn’t help us to give this term a better type than:
Vo {ls, 17} C o = Bool® —{2} Bool®

The point is that all recursive occurrences have to have the same type and
this also has to be the same as the resulting type. If we lift this restriction
and allow type schemes in recursive definitions, we can get the following
more general type:

Va.Bool® -2} Bool®
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For standard type inference, this extension has been studied by Mycroft
[Myc84] but was later shown to be undecidable. In program analysis, adding
polymorphic recursion over annotations has proven to be both decidable and
desirable:

e In region inference (Tofte and Talpin [TT94])
e Dimension inference (Rittri [Rit95])

¢ In binding-time analysis (Henglein and the present author [HM94] and
Dussart, Henglein and the present author [DHM95a])

(in the first case it is yet unknown whether principal types are computable).
We will show that the extension leads to a decidable and even polynomial
time algorithm for flow analysis.

We only have to change one rule of the ML-polymorphic system to ac-
commodate polymorphic recursion:

CiA,z:0H%e: 0

fix
CiAH® fixze: o

We will now follow the same road that we have followed for subtypes
and ML-polymorphic types: (1) Make the system syntax directed, (2) De-
fine an algorithm computing principal types, (3) Compute the minimal type
(as with ML-polymorphism, use this to speed up the algorithm). There is
an important difference: it will not be clear that a straightforward algo-
rithm will always terminate. Thus (3) is necessary not only to speed up the
algorithm of (2) but also to make sure it terminates (when the algorithm
based on (3) has been shown to be terminating it will follow that so was
the algorithm based on (2)). Furthermore, the algorithm using constraint
reduction has in the fix-polymorphic case room for further improvement.

In the next subsection we will make the system syntax directed and we
will then step back and consider polymorphic recursion in general and in
particular sketch Mycroft’s original argument for principal types. His argu-
ment suggests a (semi-)algorithm which will be the basis for our algorithm.

5.3.1 Syntax Directed System

We only need one change compared to the syntax directed ML-polymorphic
system (figures 3.3 and 5.3):

—

. C; A,z :Va.C=rtHTe: k' CH K <k C'FC[l/d]

fi =
O AR fix e : k[0/d]

()

where (x) means (@ N (FV(A) UFV(C"))) = 0.
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Theorem 5.27 Type system F is sound and complete w.r.t. Hi®:
Soundness If C; AFH® ¢ : i then C; AH" ¢ 1 i

Completeness If C; A Fi% ¢ . k then there exists k' such that C; A l—{f‘” e:
k' and CF k' <k.

Proof The proof of soundness proceeds by induction over the derivation
of C;AH® e ks
The proof of completeness proceeds by induction over the derivation of
C;AHT e g
O
We extend the definition of flow functions by adding the following case
to the definition of ®:

T 7]~ !
XC'; A l—ﬁz fixx.e: H[F/&] ho) = /82T, 16)

CI)g(ﬁ

where ¢' is the least solution to the equation

le = ¢[(:L‘,l,) = (1)5(7’17 L ¢I)]

foralll’ € L.

The domain and range of ¢ is finite and if ¢; and ¢, and solutions
to ¢ = P[(z,l') — ®,(T1,1,¢")] then so is ¢y U ¢, hence the definition is
well-defined.

As in the ML-polymorphic flow analysis of the previous section, a deriva-
tion contains more information than is expressed by the sticky interpreta-
tion. This information can in certain settings (such as binding-time analysis

[HM94]) be useful.

5.3.2 Polymorphic Recursion Revisited: Kleene-Mycroft It-
eration

This subsection will briefly recapitulate Mycroft’s original method for com-
puting principal types for fix-expressions under polymorphic recursion. The
description stems from the work on polymorphic binding-time analysis by
Dussart, Henglein and the present author [DHM95a].

Consider an ML-polymorphic type system [Mil78, DM82, Dam84], ex-
tended with a rule for polymorphic recursion [Myc84]:

Af:oke:o
AFfixfe:o

where o can be a type scheme (polymorphic type); that is, a type of the form
Véa.r, where 7 is a simple type.*

“This typing calculus has also been termed Milner-Mycroft Calculus [Hen88].
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Mycroft has shown that this strengthened type system has the principal
typing property: every expression e typable under assumptions A has a
principal type o = V&.7 such that if A - e : V3.7/ then o’ = VA.7/ is a generic
instance of o that is, 5N FV(c) = 0 and 7' = S(r) for some substitution
S with domain contained in &. His proof also yields a “natural” algorithm
for computing the principal type.

The algorithm and its correctness are corollaries of an elegant general
argument couched in terms of notions of domain theory. Let us recapitulate
Mycroft’s argument since it is very general and since it is at the heart of
our adaptation to polymorphic flow analysis, which in addition to Mycroft’s
polymorphic recursion has qualified types.

Mycroft shows that the set of a-equivalence classes of type schemes Va.r,
together with an artificial top element T forms a cpo (complete partial order)
under the generic instance ordering C, where, with the exception of T, all
elements of the cpo are compact®.

Let fix f.e be a fix-expression. For now, let us assume that it is closed
and contains no other fix-expressions. Mycroft defines a function F4 . on
a-equivalence classes of type schemes, by

Faelo)=c' & A fiote:d

where o' is the principal type of e under A, f : 0. If o = T or if e has no
type under A, f : o, then Fy (o) = T. He shows that F . is well-defined
and continuous®.

From these general properties, all desired results follow: the principal
typing property as well as a natural algorithm for computing principal types
of fix-expressions. By standard fixed-point theory for cpo’s we know that
F4. has a least fixed point 0,. If 0, = T then fix f.e is not typable. If

op # T, then:

1. o, is a type of fix f.e since A, f : 0, |- e : 0p; this follows from the fact
that o, is a fixed point;

2. oy is a principal type of fix f.e; this follows from the fact that any
other type of fix f.e is a fixed-point of F4 ., and o), is the least fixed
point with respect to the generic instance ordering C;

3. o0p can be computed by constructing a Kleene sequence; that is, there
exists £ < w such that o, = F,IX,B(J—)§ this follows from the fact that
op is compact.

In summary, if fix f.e has a type under assumptions A, then it has a
principal type that can be computed by iterating F'4 . on L = Va.a until

®Let D be a cpo. An element = € D is compact if, for every directed collection M such
that z C | | M, there is some y € M such that z C y [Gun92].
b1t is actually enough to know that Fa,. is monotonic.
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we obtain a fixed point; that is until fo,e(J—) = fl":l(J_). Recall that
equality here means a-equivalence. We call the computation of F% (1)
Kleene-Mycroft Iteration (KMI). ’

For expressions containing nested fix-expressions — that is, fix-
expressions inside of fix-expressions — Algorithm W [Mil78] is used to
compute principal types in conjunction with Kleene-Mycroft Iteration for
fix-expressions.

5.3.3 Algorithm I: Principality

Dussart, Henglein and the present author have shown that polymorphic re-
cursion for binding-time analysis was not only decidable but also polynomial
time computable [DHM95a]. We will follow the general approach of that pa-
per. There is a fundamental difference between binding-time analysis and
flow analysis: in binding-time analysis we have a two-point domain {S,D},
whereas in flow analysis the domain is only bounded by the size of the pro-
gram and even exponential in size of the program (since we have sets of
labels). This makes it more difficult to bound our version of Kleene-Mycroft
sequences.

This subsection presents the first attempt at an algorithm. The algo-
rithm will allow us to state principality and minimality results, but its com-
plexity will be forbidding (it will not even be obvious that it is terminating).
The following subsections will mend this problem.

The domain theory employed can be found in any text book on the
subject, eg. [Gun92].

Definition 5.28 For any type t, let K € K"(t) be a flow type where all
annotations are distinct free type variables &. Define 1, =Va.k

Lemma 5.29 Let £ be a finite set 7. For any type t we have the following
properties:

1. C is a pre-order on S"(t)

2. C is a partial order on Sv(t)/ o~
3. SV(t)] = is finite

4 (8Y(1)) 2,0) is a cpo

5. 1y is (a representative of) the bottom element of S¥(t)/ =. Hence
(S¥(t)/ =2,C) is pointed.

"Namely the set of labels occurring in the analysed fix-bound expression.
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Proof

1. C is clearly transitive
oCo and ;z: 0 H® 2 : ¢" implies ;2 : 0 H® 2 : 6"
by lemma 5.7, and reflexive
z:oH® g o
2. C is obviously well-defined and anti-symmetric on S(t)/ =.

3. Let Va.C = & be any type scheme in S (). Without loss of generality
we can assume that all variables in & occur in C' = k.

Let A be any environment with the same free flow variables as V&.C' =
k. The judgement C; A i fixx.z : & is derivable:

CiA,z:Va.C =k H" 2. Va.C = &
C; AH® fix p.x - Va.C = & C F Cla/d]
C;AH" fixe.z: K

By the definition of A we have that V&@.C' = k = closes(C = k).
From theorem 5.15 (which is clearly also applicable to this system)
we find that there exists a judgement C’; A F@ fix z.z : &’ such that
C" A H@ fixpx : k" and C; A H® fixz.z : k are equivalent and C'
contains only flow variables o occurring free in A or £’ and for each a
there is only one constraint of the form L C « in C’. By lemma 5.9
we then have that closes(C' = k') = closes(C = k) =Va.C = k.

It should be clear that for each ¢, there exist only finitely many type
schemes close A(C' = k') € S§"(t) where C' contains only flow variables
a occurring free in A or x and for each « there is only one constraint

of the form L C « in C’ (since there are only finitely many subsets L
of L).

But since every o is equivalent to such a type scheme we have shown
that S¥(t)/ = is finite.

4. Any partially ordered finite set is a cpo.

5. Obvious.

O

From this point we formally begin an induction proof of the existence

of principal typings over the nesting depth of fix: in the base case we have
fix-free expressions and can thus assume the existence of principal types
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for all expressions. This is then used for proving that a fix-expression has
a principal type. The induction step (maximal nesting depth n) does not
differ from this since we by induction can assume that all expressions with
nesting depth < n have principal types.

We then define our version of the function Fy ., defined by Mycroft.

Definition 5.30 Define Fy . ,(0) = o' iff

1. T is a derivation such that C;A,x : o H&
C;A,x:al—ﬁze:ﬁ "
e : K s a principal typing under A (i.e. for every C', k' s.t.
7
T we have that C'; A,z : o H® e : k' is a (halb-

C'iAx:o l—];fze K
stark) instance of C; A,x 1o H® e : k)

2. o' = close s 4.0(C = k).

If ¢ is the type of e and x then, clearly, Fiy ¢, is a function from S (t)/ =
to SY(t)/ =. Tt is, however, not a function from S¥(t) to SY(t) as it allows
a choice of principal typing in 1. — we will use this freedom later to choose
a principal type with “nice” properties.

Lemma 5.31 If Va.C = r C V3.C' = &' then every variable o free in
Va.C = k is also free in V3.C' = k'.

Proof By contradiction. Assume that o/ is free in Va.C' = k but not in
VB.C' = k'. I 8= (B B,) and @ = (a1 - - - ) We have that o is free in
Cork and o # «; for all i (1 <7< n) and either

1.  not free in C' = &' or
2. o = (3 for some j (1 <j<m).
By lemma 5.6 we find that there exists S working on & such that
1. '+ 8(0),
2. C'"+Y S(k) < k" and
3. No ; is free in Va.C' = k

Assume o not free in C' = k'. Then if o free in C, 1. can only hold if
o/ € Dom(S) contradicting the assumption that S works on & and o/ # «;
for all 7. If o free in k then 2. can only hold if either ¢/ € Dom(S) or o/
free in ', both leading to contradictions.

Assume o/ = (3; for some j. This clearly contradicts 3.

Proposition 5.32 Fy ., is monotonic.
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Proof Let 0,0’ be any type schemes in SY(¢) such that ¢’ C o. Let
C;A,x:0 l—{f‘” e : kK be a principal typing of e under A,z : 0. By lemma 5.7
we find C; A,z : o' H ¢ : k.

Further, let C'; A,z : o' FHi* ¢ : &' be a principal typing of e under
A,z @ o', Thus C;A,z : o' H® e : k must be a halbstark instance of
C' A,z : o' Hiw e k. By lemma 5.9 this implies close g 2.0 (C' = k') C
close p 4.0 (C = K).

By lemma 5.31, ¢’ C o implies that all free variables of ¢’ are free in o.
Hence FV(A,z:0') C FV(A,z : o) and then FV(C = k) \FV(A,z:0) C
FV(C = k) \ FV(A,z:0"). Thus

close A 3.0/ (C = k) C close g 4:0(C = K)
We can sum up

Fyeqz(0') close 4 3.5/ (C' = K')
close g 4:0'(C = K)
close g z:0(C = K)

FA,e,x(U)

i

Proposition 5.33 Fjy ., is continuous.

Proof Any monotonic function over a finite domain is also continuous. O
By the standard fixed point theorem, this implies that F4 . , has a least
fixed point since (S7(t)/ =, C) is a pointed cpo.
We extend the algorithm for ML-polymorphic flow analysis to fix-
polymorphic flow analysis by replacing the case for fix by:

fixx:te: let og =L,

let Ag = A,z : 0y

repeat for i > 0
let (Ci-i-la Ki+1) = W(Al, 6,)
let 01 = closeA(Ciy1 = Kit1)
let Ajp1 =A,x:0i41

until 0,11 C oy

in (Cit1, Ki1)

The body of the loop is nothing but an algorithmic presentation of Fy .- and
the loop just repeats until a fixed point is found.

Lemma 5.34 If A is proper then W(A,e) terminates without failure.
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Proof The loop in the ‘fix’ case terminates since S¥(t) is finite.
a

We go on to prove the existence of principal typings and that these are
computed by algorithm W.

Theorem 5.35 If W(A,e) = (C,k) then there exists Ty such that

7~1/
C; A" e i

2. for any Ta such that

and

1. T =

7—2/

To= ——F—
2 ChiAHE ¢ f

we have that there exists S such that

(a) C'; AF® ¢ k! is a halbstark instance of C; AF® e k by S and

(b) Let L be given and let ¢,¢' be two environments mapping free
variables of e to properties. Then for all | € L we have that

C'F So(y,l) C ¢'(y,l) for all y € FV (e) implies
C'+ S(@E(ﬂa la ¢)) - @E(B7 la (b,)
Proof We just do the fix-case as the remaining cases are identical to the

proof of theorem 5.11. Let £, ¢ and ¢’ be given.
From the algorithm we find that

1. (Ciy1,kiv1) = W(A,x : closes(C; = K;),e),
2. 0; = close A(C; = K;)

3. 0iy1 = close4(Cit1 = Kit1)

4. oiy1 Eoj

By induction we find a derivation

T/ _ 7-111
! Cit1; A,z : close A(C; = K;) I—JZ’; €Kit

By definition we have that o;11 = Fa,,(0;) and clearly o;4; is a fix-
point, i.e. 041 = ;. By lemma 5.8 this implies the existence of
7—//
3

7?’: = fiz
Ci-i—l; A,x : ClOSBA(Ci_H = "ﬁi-i-l) l_n €Kiyl

such that Ciy1 b ®p (T3, 1, 1) = Pr(T{, 1, P1).
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We realise that 7; =
7;[/

Ci_H;A,ZL” : ClOSGA(Ci_H = Iﬁ?i+1) I_j;il‘ € KRit+1 Ci+1 l—v Ki4+1 S Ki+1 Ci+1 [ Ci+1

Cii1; A ,_ng fixz.e: kiyy
exists.
Let 73 be a given typing of fix x.e under A. By the syntax directed rule
for fix we see that

-

T Oy Ry <why C'HCHIE/F)
' A "ﬁz fixz.e: ,.;’2[67//6_"]

7'2 =

where .
7-2, = ! 3 /2 / "
Chi A,z :VB.Ch = kh HT e s k)

and k' = k5[0 /3] and FN FV(4) = 0.
From 3N FV(A) = § we find

close 4(Cly = Kh) T VB.Ch = kg

And then by lemma 5.8 (special case where the judgements of the first
assumption are equal) we find that there exists 75 such that
T

1. T5 =
5 Chy A,z : close A (Ch = Kb) |_]7‘Liz e rL

2. ChF" KL < KY
3. For all Il € £ we have
Cy = @.(75,1,¢") C @£(T3,1,9")
where ¢ = ¢'[(z,1") — {}] for all I' € L.

By transitivity C3 Y k3 < kb and hence closes(Ch = r3) C
close 4(C} = k)). This implies that close 4(C% = kb)) must be a fixed point
of Faepg.

By lemma 5.8 there exists Tg such that

Ts

1. Tg =
6 Cé;A,x : CloseA(CiJrl = Hi+1) |_]7'Liz' e Iilﬁ

2. Ch Y Kl < KL
3. For all ] € £ we have

Cé + q)ﬁ(7’67l7¢,1) c (1)5(737Z7¢,1)
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for any ¢} (we will define it below).
Let C7 be a constraint set such that

1. Cr - Ch
2. C'+ C4[0/3] and
3. G703

It should be clear that a constraint set fulfilling these points exists (one can
think of taking C% which fulfils 1. and 2. and strengthening it to live up to
3.). We find

T
fiz /

1. T; =
! Cr; A,z 2 closea(Cip1 = Kip1) FRY e kg

2. Cr F7 Kl < KL
3. For all [ € £ we have

C? + @ﬁ(%ala(ﬂl) C q)ﬂ(ﬁalad)ll)

By the induction hypothesis, we have S’ such that

1. Cr; A,z @ closea(Cipq = Kip1) H® e @ kf is a halbstark instance of
Civ1; A,z 0y H® et ki by S and

2. Define ¢1, @) as the least solutions to

¢1 = ¢[(,’L‘,l,) = (I)C( 1,7l7¢1]
¢y = ¢'[(z, ') = @£(Te, 1, ¢})]

for all I'. Then C7 F S"¢1(y, 1) C ¢ (y,1) for all y implies

07 H SI(¢£(7-1,,Z,¢1)) C @ﬁ(%ala(bll)

We find that
1. C7 - S'Cigq
2. A=S5"A
3. C7FY Skip < K

From above we have Ch ¥ kf < k&, Ch FY kL < kY and Ch ¥ kY < Kb, so
we can conclude

1. Cr F S'Ciis
2. A=5'A
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3. Cr FY Skip1 < Kb
Furthermore, it is easy to see that
1. C'+[0/B)Cy
A=[(/GA
3. C'HY [0 Bk < k' (actually [¢/5]kh = K')

We can conclude that C'; A Hi# fixz.e : &' is a halbstark instance of
Cit1; A fixze: k by S =[0/3] o S. This proves (a) of the theorem.

We need to prove that C' F S¢(y,l) C ¢'(y,1) implies C7 + S'¢(y,1) C
& (y,1). Let y,l be given.

Without loss of generality, we can assume that no § € 5 is free in
¢/(y,1) and hence that ¢/(y, 1) = [//F¢/(y,1). Now C' - S¢(y,1) € ¢'(y,1)
implies C7[¢/3] F [€/5)(S'd(y,1)) C [¢'/3)¢' (y,1), which in turn implies
C7r + S'¢(y,l) C ¢'(y,1). For y # x this implies C7 = S"¢y(y,1) C ¢! (y,1),
otherwise the result follows by an inductive argument on the fixed point
computation of ¢; and ¢].

We summarise the flow related properties:

Cit1 F (75,1, ¢1) = @c(T{,1,¢1)
Cr = 8'(®c(T!\1,01)) S ®@c(Ts,l, )
Cy = 0,(Te,1,81) € @r(Ts,1,91)

Cé = @ﬁ(%ala¢,1) c q)ﬁ( 2,717 Il)

By the definition of ®:

Oe(Tiil0) = @o(T3 1)
Bo(To,li¢') = [0/B)(®L(T3,0, 1))

Furthermore, C' - C4[¢7/3], C' + C4[¢/3] and Ch + §'(Ciy1). By using that
in the above properties we find:

S@uTLe) = (/80 S)(@c(T 1)
(780 S)@c(T L) = ([F/5) 0 8)(@c(T] 1 1))
0718 S)@c(TE o) € [F/A(0e(To 1)
O F/A@e(Tol 1) C [B/F (T, 6))
CHEIA@T L 6) € [F/A@ AT L)
PIF@L(T160) = ®(To,1,8)

So we conclude

'+ Séﬁ(ﬂa la d)) C ¢£(7-27 la d)l)
proving (b) of the theorem.
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5.3.4 Algorithm II: Bounding Kleene-Mycroft Sequences

If we hope for a practical algorithm, there are two essential problems with
the above approach:

1. The constraint sets can potentially explode as in ML-polymorphic flow
analysis.

2. It is not obvious how to check o C ¢’ so we cannot immediately tell
when we have reached a fixed point.

Consider the sequence o; = Fﬁl,e,:{:(J‘t) of which we wish to find the
limit. Let us call such a sequence a Kleene-Mycroft sequence. For each
o; = Ya.C' = k, all we know is that C; A F% ¢ : k is a principal type.
We have with the elim function a way of transforming a principal type to a
principal type with properties that we can use for bounding the size of each
0. Let us optimize the algorithm using this insight:

fixx:te: let og = 1,

let Ag = A,z : 0g

repeat for ¢ > 0
let (CZ(Jrl, Iii+1) = W(AZ, 8’)
let Ci1q1 = elzm(FV(A) U FV(F&Z'_|_1), Cl(-i-l)
let 011 = close A(Ciy1 = Kit1)
let Ajy1 =A,2:0i41

until 0,41 C oy

in (Cit1,0i41)

The sequence of o;’s computed by this algorithm naturally has the same
properties proven in the previous subsection as any other Kleene-Mycroft
sequence. Without loss of generality we assume that our sequence looks like

1y Va.Cy = Ko
Va.Ci = ko

VO_ZCQ = Ky

V&CZ = Ko

e e

where Cj is the empty set.

To see that this is so, consider the construction of o;11. Let ¢’ be the
fix-bound expression with m occurrences of the fix-bound variable z. The
constraint set C;;1 contains only variables free in x;11 or A. On the other
hand, neither W(A;, €’) nor elim(FV(A) UFV(k;11),Cj,,) will ever instan-
tiate any variables in k;;1 (where we by instantiation mean replacing it with
a constant or a variable free in A), so k;41 is no more than a renaming of

k;. Thus by alpha-conversion of ¢;1; we find the above property.
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Remember that elim(V, C') was defined to be a constraint set C' obtained
by eliminating all variables not in V' according to lemma 5.13 and merging
all superfluous L C « constraints according to lemma 5.14. We will change
this definition slightly: let elim(V,C) = C3 where

(1 is obtained from C by eliminating all variables not in V'
according to lemma 5.13,

(Y is the transitive closure of C7,

Cj5 results from C by merging all superfluous L C « constraints
according to lemma 5.14.

Note that lemma 5.14 retains the invariant that the constraint set is tran-
sitively closed. Taking the transitive closure naturally does not change the
expressive power of a constraint set.

We are now able to prove that the constraint set must be growing:

Lemma 5.36 For every i:

1. If L C o is in C; and L' C o is in Cjqq then L C L'

2. If a C ' isin C; then a C o' is in Cyyy.

Proof Initially, assume that e’ is fix-free. We see that €' contains only
constraints generated from the syntax of €’: the occurrences of z cannot
contribute as Cj is empty. We can assume that in the j’th occurrence we in
each iteration of the repeat loop instantiate & with the same “fresh” ,67; in
the z-case of W. Then C7,, = U, Ci[/é;-/&] U Ch.

We now prove the lemma by induction over i:

“, = 0": Obvious, since () is the empty set.
“2>17: We have

C; = elim(FV(A) UFV (k;), U Cia[B;/@ U Ch)

J

and
Ciy1 = elim(FV(A) UFV (kiy1), | J Ci[5;/a] U C)

J

By the induction hypothesis, we find

UCiaBi/aucr c|Jailg/aluc
i i

and since k; = K;11 = Kg, the result follows.
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If €’ is not fix-free, the contribution form e is not constantly Cy so we do
an induction over the nesting depth of fix. Using the lemma as an induction
hypothesis, we realise that the contribution from e must be growing.

O

If we let 3 be @ U FV(A) then each C; can be divided as {L;; C
B,y Lin € Bn} UC] where C] contains only constraints of the form
ﬁj - Bk:- Thus |CZI| is (’)(n2)

Lemma 5.36 implies that if not 041 C o5 then either some L;; C L(i+1)j
(and not Li; = L(;41);) or Cj C Cj,; (and not C] = Cj,,). Each Ly; can
only grow |L£,| times (where p is the analysed program) and the growth
of C% is bounded by n? since this is the maximal number of constraints
over &. Thus the length of each Kleene-Mycroft sequence is bounded by
O(n | L, | +n?). Since |L,| is roughly the size of the program and n is
bounded by the size of the type of the let-bound expression and thus in turn
only by the size of the program, we have an upper quadratic bound on the
length of each sequence.

5.3.5 Algorithm III: Avoiding Recomputation

If we carefully examine the complexity it does not bode well for implemen-
tations. For each fix-expression in the program we do O (n?) iteration — the
body of the fix-expression is analysed O(n?) times. In principle the number
of nested fix-expressions is bounded only by the size of the program so the
resulting algorithm is exponential.

Consider two nested fix-expressions fixz : t,.e and fixy:¢,.e’ where
fixy.e’ is a subexpression of e. When we meet the outer fix, we continue
analysing e under the assumption that = has type L; . When we meet the
inner fix-expression we find the limit of the associated Kleene-Mycroft se-
quence starting at 1; resulting in some type o,. Using this we find a first
approximation to the type of the outer fix, say ;1. Using this assumption
for x we redo the whole thing for e — in particular, we start analysing the
inner fix-expression using assumption 1; . We have to reiterate the inner
fix-expression, as the more precise type for x might force a more precise type
for €.

The key idea of the accelerated algorithm is that the type computed
“last time around” will always be less (in the generic instance relation) than
the type under more precise assumptions. In the example above, when we
encounter fixy : ¢,.¢’ the second time we do not have to start a new iteration
at Ly, type oy will do just as well.

This gives us a bound on the sum of all iterations of a given expression.
While we before could give an upper bound on the number of iterations due
to a specific fix-expression, we can now give a total upper bound. This will
lead to a polynomial algorithm.
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Write f,(y) for the unary function that results from fixing the first argu-
ment of the binary function f. We have the following property for continuous
functions.

Lemma 5.37 Let f: D x E — FE be a continuous function on the product
cpo D x E. Letd T d € D. Let g(d) = Uicw f3(L). Then g(d') =
|_|z'€w f:i’(J—) = |_|z'€w f:i’ (g(d))

This lemma lets us recompute a fixed point incrementally by starting the
iteration at the previous fized point — in the lemma above this is g(d) —
instead of starting the Kleene sequence all the way from the bottom element.

We then refine the case for ‘fix’: the full algorithm is given in figure 5.5.
The algorithm requires that we store the flow type computed for fixx : t.e’
with the expression fix z : t.¢’ itself. At the beginning this value is set to L.

5.3.6 Complexity

Again let n be the size of the analysed program with explicit standard types
on all subexpressions.

The trick presented in the previous subsection speeds up the algorithm
from an exponential worst-case behaviour to a polynomial worst-case (in
the size of the typed program). In order to show this, we first consider the
complexity of performing the test ¢;11 C o;

Lemma 5.38 If 0,0’ € S"(t) for some t then testing 0 C o' can be done
in polynomial time O(n*) if ¢ and o' are the results of calls to elim() and
close() as in the algorithm of figure 5.5.

Proof According to lemma 5.36 all we have to do is check set inclusion

L C L' n times (where the size of L and L' is bounded by n) and set inclusion

of C] C C},, where the size of C} and C/,; is bounded by n?. Naive set

inclusion can be done in quadratic time thus the total complexity is O(n?).

a

Recall lemma 5.17 stating a O(n®) upper bound in | C' | on the compu-
tation of elim(F,C).

Theorem 5.39 “Accelerated” algorithm W computes a principal type of e
in time O(n®) in the size of e.

Proof Let us say that, every time the line
let 0541 = closea(Ci Ly = Kit1)

in the accelerated algorithm W is executed there is a tick. Recall that the
length of a Kleene-Mycroft sequence is at most O(m?) where m was the size
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W(A,e) = case e of

x: if A(z) =Va.C =k
then (C[a' /@], k[a! /d]) where o is fresh
Mg = te let x € KY(t) be a flow type

with fresh variable annotations
let (C,s") =W((A,z:K),¢€)
in (C,r =1 &)
e1@ley : let (C,k" =t K) = W(A,e)
let (C' k") =W(A,e2)
in (C'UC"U constraints (k' < k"), k)
True (False!) : ({}, BooltH)
if! e; then (eg : t) else (e3: ) : let k € KY(t) be a flow type
with fresh variable annotations
let (Cy,Bool) = W(A,e;)
let (02, Iig) = W(A, 82)
let (03, I<&3) = W(A, 63)
let Cpew = constraints(ke < k)U
constraints (k3 < k)
n (Cl U 02 U 03 U Cnew, Ii)
(61, 62)l : let (01, Iﬂ) = W(A, 61)
let (02, Iig) = W(A, 82)
in (Cl U Cy, k1 x A1} I<&2)
let! (x,y) be e; in ey : let (C1,ky x¥ Ky) = W(A, e1)
let (Co, k) = W((A, 2 : Kz, Y & Ky), €2)
in (Cl U Cs, I<L)
fixz:t.e: let o9 = most recent binding-time type
computed for e = fixz : t.¢/
let Ay = A,z : 0y
repeat for i > 0
let (Cit1,ki1) = W(Ai,€)
let Cl(-i-l = elzm(FV(A) U FV(Ri+1), Cz'—l—l)
let oj41 = closea(Cl, | = Kit1)
let Ajy1=A,z:0541
until 0,41 C o3
in (Oi+1,0i+1)
let x =€ iney: let (C1,k) =W(A,e1)
let C1 = elim(FV(A) UFV(k),C1)
let o = closeA(C] = k)
let (Co, k") =W((A,z : 0),e2)
in (CQ, Iﬁl)

Figure 5.5: Algorithm W for polymorphic recursion
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of the standard type of the fix-expression. Then the total number of ticks
for a given fix-expression is bounded by O(m?).

The total number of ticks for all fix-expression is then bounded by O(n?).

If we let n’ be the complexity of testing o; 41 C o; and n” the complexity
of elim(FV(A) UFV (k;41), Ciy1) we have the total complexity as O(n?(n/ +
n"")). Since n' is O(n®) and n'" is O(n*) we get O(n?).

O

While the above complexity result does not bode well for implementa-
tions, we believe that it is overly conservative and will probably be better
behaved in practice. Furthermore, we believe that the algorithm given can
be improved [DHM95b].

5.3.7 Soundness

We can prove strong subject reduction for the fix-polymorphic system. We
will not state the substitution lemma, as it is identical to lemma 5.19.
The lemma for fix-unfolding (equivalent to lemma 5.20) looks as follows

Lemma 5.40 Let

7~1/
Ti=CiAz:Va.C=rH"c: ' CF K <k C'FC[0/d]
C'; AHE fixz.e : K]0/

and (@ N (FV(A)UFV(C"))) = 0. Then there exists To such that

Tz

1. =
T2 ' AH® effix z.e/x] : ky

2. C'+ ky < K[0/d)] and
3. For any ¢ and L and alll € L we have

C, ~ ¢£(7-2717¢) = @E(,]-lahd))

Proof We first realise (by a similar induction) that lemma 5.20 also holds
for the system with polymorphic recursion. This implies the existence of

T3
C; A effixx.e/x] : K

,7-3:

such that for any ¢ and £ and all [ € £ we have

7'1/
C; A,z :Va.C =k Hiz e s g
where ¢’ = ¢[(z,I') = ®,(T1,1,¢")].

CH®s(Ts,1,¢) = Bp( 1,9
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It is a trivial induction to show that this implies the existence of a
derivation

7-2/
C; AH® elfix z.e/z] : K'[0/d]
such that for any ¢ and £ and all I € £ we have

T2

C'F @, (T2,1,0) = ®r(T1,1,0)

— —

Clearly, C' - k'[¢/d] < k[¢/d].
O
We then prove the main subject reduction theorem which is also extended
with preservation of types of subexpressions.

7-1/
C;A Fﬁz €1 I K1

Theorem 5.41 (Subject Reduction) If T; and

e1 — ey then there exists To such that

Tz

1. =
E C;Al—{fz €9t K9

2. C I—V K1 S K2
3. For any ¢ and L and all | € L we have
Cr (1)5(7'2,[,¢) - (1)5(717Z7¢)

and if | € Destructors(e;) consumes I' € Contructors(ey) then for any
¢ and L (where 1,1' € L) then

CH{I'} S ®r(Th,1,9)

Proof The non-trivial cases follow from lemmas 5.19 and 5.40. O

Again we have soundness of flow functions computed from syntax di-
rected inference trees (soundness of flow functions computed from non-
syntax directed inference trees follows by definition):

Corollary 5.42 Let T be any derivation for e and let C; A HfiT ¢ : k be its
conclusion. Then C; Fr = e.

5.3.8 Invariance under Transformation

We will now show that with polymorphic recursion, no improvement is ob-
tained by unfolding recursive definitions. The similar theorem for unfolding
let-definitions still holds for the extended system.

We note that lemma 5.23 remains true after the addition of polymorphic
recursion.
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Theorem 5.43 (Invariance under fix-unrolling) If

T
C; AH effixx.e/a] : K

7::[ﬁxz.e/z} =

then there exists Tgx such that

Thx
C;AH" fixae: v

1. Tix =
2. CH k' <k
3. For any ¢ and L and oll ] € L we have
CF 0, (Tax, 1, ) € Pr(Tefixa.e/als b P)
Proof By lemma 5.23, we find that

_ T
C; AH® fixre: Ky

17

7~el

. d
CiA,x1: K1, ,Tn : kn I—JZ“‘ e[mi/x(l)] 'K an

2. T, =

3. For any ¢ and £ and all [ € £ we have

Cr <I)£(7;[ﬁxx.e/x]7la¢) = @E(’Tealad)) L |_| @E(ﬂala(b)

By theorem 5.35 we know that we can derive a principal typing T =
7—/
ChAH" fixze: w'

for fix z.e under A. I.e. for every i there exists .5; such that

1. C; A H® fixz.e : k; is a halbstark instance of C'; A H® fixz.e : »'
under S; and

2. Let ¢, = S;¢. Since by definition C' F S;¢(y,1) C ¢'(y,1) for all y and
[ € L we have

As in the proof of theorem 5.24, we can without loss of generality assume
that S; is the identity on ¢ and hence that ¢, = ¢ and further that

CF Si(®s(T,1,4)) C d(T;,1,0)
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By the construction of Kleene-Myecroft sequences, this implies that 7' =
7-//
C' A,z : closeA(C" = k') i e o ¢!
has a conclusion which is a principal typing for e under A,z

close A(C" = k'). By definition ®,(7",1,¢) = ®.(T,1, ®)
By repeated application of lemma 5.8 we find

1. To =

7
Cy A,z : close s (C' = K'), -+, 2y : closes(C' = k') H® elw; /D] : k

n

2. CH k" <k

3. We have
Cr ¢£(7-27la¢) C @E(,]-ealﬂj))
From 1. we find 73 =
T3
C; A,z : closes(C' = k') HT e : k"

where

1. C; A,z : close(C' = k') Hi® ¢ : k" is a halbstark instance of C; A, z :
close 4(C" = &') H® ¢ : k' under some S and

2. For all y and [ € L we have
C+ S(@E(Talad))) C éﬁ(%ala(p)
By point 1. C' - SC" and C Y Sk' < &
We build T4 =
7—//
Ci A x: closes(C' = k) H e ! C'FY K <K' CFSC'
C; AH fixx.e: Sk

Now
(I)C(Exalaﬁb) = S@E(Tlala¢)
= SO.(T,1,9)
CkE S((I)E(Talagb)) - <I>g(7§,,l,¢)
Or(Ts,1,0) = @£(Tasl,9)
C+ @£(7-2717¢) c ¢£(7:37la¢)
- ‘1)5(72%425) - (1)5(7:37Z7¢) I—ll_lz' Q)ﬁ('ﬁ,l,gﬁ)
Crop(Te,l,9) U L Or(Til,0) = ¢'£(7:3[ﬁxz.e/z}7la b)

Similar to corollary 5.25 we find



5.3. POLYMORPHIC RECURSION 131

Corollary 5.44 If

7-11

T =
! C; AH= Cleffix z.e/x]] : k1

then there exists To such that

T3
C; AP Clfixx.e] : ko

1. To =

2. CI—VFJQSI{1

3. For all I € Destructors(Cle[fix z.e/x]]) we have

CrFr() cFr()
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Chapter 6

Intersection Types

Intersection types allow us to state more than one property of an expression
and use any of the properties at will. Intersection types are more powerful
than F2 polymorphism: any polymorphic type can be regarded as an infinite
intersection where each component has a certain fixed structure. In any
given program only a finite number of instantiations of the polymorphic
type can be used, and thus we can write the polymorphic type as a finite
intersection. This relation is true for the same reason for annotated types'.

Example 6.1 Consider the following expression:

let app = N1 f. A2z f@by
in - - - app@lt (Asy.y) @M1 Truele - . - app@!7 (A5 2. False!®) @2 Trueho . ..

The point is that function app is applied both to an identity function and to
a constant function. With intersection types we can give function app the
following annotated type:

A ((Booltho} —is} Boolllel) —{li} Bool{lo} {2} Boelftel)

Thus the result of the two applications in the body of the let can be given
exact descriptions. This example can be handled with let-polymorphism,
but it should be clear that intersection type based flow analysis is strictly
more precise than let- and fix-polymorphism?.

O

!In a sense even more true: if we assume a finite set of labels and flow variables, any
polymorphic type is a representation of a finite intersection.

2For standard types, more expressions can be typed using intersection than System F
polymorphism. This is shown by exhibiting a strongly normalising lambda term which is
not typable in System F [GRDRR&8]: let I be Az.z, K be Az.\y.z and A be Az.zQz then
(Az.\y.yQ(zQI)(zQK))QA is not typable in System F. This expression does not show
that intersection based flow analysis is more precise than System F based flow analysis
(see section 8.5), and it is an open question whether this is true.

133
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The goal of this chapter is not immediately practical: the analysis will
be so precise that we cannot expect the analysis to have efficient imple-
mentations (due to Statman’s lemma the problem solved is non-elementary
recursive). The purpose is rather to obtain a better understanding of the
problem by identifying an analysis that is “exact” (in a sense that we will
make precise). We hope that this understanding will prove useful for the
design of future analyses, and we believe that the characterisation given is
interesting in its own right.

Since the aim of this chapter is different from the aim of previous chap-
ters, we will not discuss algorithms and principality. Consequently, we have
no use for label variables and constraint sets, so we will leave these out to
avoid unnecessary clutter. Hence, properties in this chapter are simply label
sets L.

We will use a version of intersection types that includes a subtype
ordering. This originates from work by Barendregt, Coppo and Dezani-
Ciancaglini [BCDC83].

The analysis presented here resembles the strictness analysis given by
Jensen [Jen92] who, using intersection types, defined a strictness analysis
equivalent to Burn, Hankin and Abramsky’s abstract interpretation formu-
lation [BHAS6].

Formulae:

Bool

Booll € £ (Bool)

LK€ KMNt) K e KMNH) L K€ KMNt) & € KMNH)
k=t K e KNt —t') kxP K e KNt x t)

k€ KMNt) K € KNP

A kAK€ KM(t)

Figure 6.1: Intersection flow analysis — formulae

The set of formulae presented in figure 6.1 is the same as the formulae
for subtyping extended with the new intersection operator A. Note that due
to our requirement that the language is well-typed under simple (standard)
typing, the individual components of an intersection will have exactly the
same underlying type structure.

Figure 6.2 presents the logical rules for the system. It contains four new
rules on annotated types. The first two say that anything that has type
k A k' can be given type k or k’. The third states that if x is smaller than
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Logical rules:

A-E
FYNeAK <k FANeAK <K
/\I—Angm FN k< ko Transl—/\mgffg FA ko < Ka
FY k < K1 A Ko F* k1 < K3

Figure 6.2: Intersection flow analysis — logical rules

k1 and smaller than ko then it is also smaller than x1 A k9. The last rule
states transitivity for subtyping.

Figure 6.3 contains the usual three rules lifting the C relation to a rela-
tion on annotated types. Furthermore, it contains distribution rules for —
and X over intersections. Note, that these three rules introduce equivalences
since the opposite subtypings are derivable. E.g.

FN k1 < Ky '—/\Iig/\lﬁ‘églig FN k1 < Ky I—A@/\RIQSMQ

I—A/@1—>Lng/\/<a'2§m—>L/<a2 I—A/@1—>Lng/\/<a'2§m—>Ln'2

FN k=L ko A Ky < (K1 L ko) A (K1 L KY)

The non-logical rules of figure 6.4 are the same as the subtyping system
(except constraint sets are left out).

Figure 6.5 presents the semi logical rules for intersection types. Apart
from the subtype rule, we have a rule stating that if e has got type x and
type ' then it has got type x A K'.

6.1 Interpreting Intersection Type Derivations

There is an important difference between derivations with intersection types
and the derivations we have seen previously: there can be more than one
judgement for a given expression in an intersection derivation. So when we
wish to find the set of values an expression e can evaluate to, we have to find
all judgements for e (using labels, we know exactly which they are, and do
not have to rely on syntactical equivalence) and take the union of the flow
computed by each judgement. Our definitions of flow functions, however,
are already capable of handling this situation:

If T is derivation, then for every [ we let Fr(I) be the least annotation
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Type-specific rules:

Ly C Ly

Bool
O A Bool™ < Bool”?

I—/\mgn'l l_/\HQSHé ngLQ
A K’l Sl gy < gy 12 /-c'2

Arrow

I—/\ nglill |—/\ KJQS/“CIQ ngLQ

l_/\ K1 XLI Lo 1

Product ;
Ko < K1 X% Ky

A-arrow
A (k1 =T ko) A (k1 =T Kh) < Ky =" ko AR

A-pair-L
P FAN (k1 <P ko) A (Y <D k) < (k1 AKY) X kg

A-pair-R

FAN (k1 P ko) A (k1 xE kD) < Ky xT (ko A KD)

Figure 6.3: Intersection flow analysis — type-specific rules
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Non-logical rules:

Id

Ax:ktFz:k

Az :kH e r
AN Npe =1 g

—-1

AF e v =2l AN e K
—-E
AR e@le : g

Bool-1I
AN Truel : Booltt A F" False! : Booll"}

Bool-E 4 FNe:Bool” A+ e ik AN ik
A" if! e then € else ¢’ : K

X_IAI—Ae:/-c AN e K
AN (e,e) s x g

AFNe:wxlw Az :iwky: k' F e k"
AN let! (z,y) beeine : K"

x-E

Az:kFHe:k letAl—/\e:ﬁ Azx:kF" e K

ﬁXAI— fixz.e:k AR etz =ecine : k'

Figure 6.4: Intersection flow analysis — non-logical rules

Semi-logical rules:

AF ek F k<K
Sub AFN e K

/\_IAI—/\e:F; AF ek
AF ek AK

Figure 6.5: Intersection flow analysis — semi logical rules
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such that whenever on of the rules

AF ek =l k AR e K
—-E
AN e@le : g

AF' ek xl'K Az ky:kHFe k"

x-E
AN let! (z,y) beeine : K"

AF e:Booll AFMNe ik AFNE ik
Bool-E
00 ARV if! e then ¢ else € : k

is an inference in 7 then L C Fr(I).

6.2 Decidability

We will give a syntax directed version of our inference system. Coppo,
Dezani-Ciancaglini and Veneri [CDCV81] and van Bakel [vB95] have used a
similar technique of integrating the the non-structural rules in the elimina-
tion rules.

The first step is to combine the two non-syntax-directed rules into one.
Define the relation A ' e : k by replacing the (Sub) and (A-I) rules by the
following rule:

Viel: AN e:w; Fr <kl
Al—/\,e:/\/@;

el

Sub

Lemma 6.2 1. If we can deduce AbFe:k from Abe:k1---Abe:ky
using only rules (Sub) and (A-I) then we can deduce the same from
the same assumptions using only rule (Sub’).

: . AN . !
Viel: jl—l_/\'e.;\z ,l_ﬁzgﬁz then A e : \; K can be
e: )\ K
1€l

inferred using rules (Sub) and (A-I) from the same assumptions.

2. If Sub’

Proof Point 1. is trivial since (Sub) and (A-I) are special cases of (Sub’).
If I ={1,...,n} then n applications of (Sub) and n — 1 applications of
(A-I) suffices for point 2..

O
The resulting system is sound and complete w.r.t. the original system:
Proposition 6.3 Soundness: If Al—+ is a wvalid derivation then
ek

!/
there exists a walid derivation F% such that F o (1) =

ArNe:r
F_1__(I) for alll € Destructors(e).
AFN ek
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T

Completeness: If 17 e % is a valid derivation then there exists a valid

!
derivation —L— such that F ~ (1) C F l nie
erivation T suc a AJ’M() C mTq( ) for a
Destructors(e).

It is trivial to see that we never need two consecutive applications of rule
(Sub’).

Define function normalise : K(t) — K(t) for all ¢ as follows: normalise(k)
is the result of exhaustively applying the following rewrite rules to x:

k1 =T (ko AKLY) — (k1 =% K2) A (k1 =T KL)

(k1 AKY) xPky  — (k1 xT ko) A (K} xE ko)
ki XU (ko AKY) — (k1 xT ko) A (k1 xT kD)
K[k] — KIK'] if K — K

where type contexts K are defined by
K:=[]|ex!K|Kxtk|s -t K

Note that F k = normalise(r) for all k and that the only conjunction in
“Rank 1 position” in normalise(k) is at top level.

A syntax directed version of the inference system is given in figure 6.6.
We need a version of the property of strengthened assumptions:

T

18 a valid derivation and - ko < k1 then
1 ek

Lemma 6.4 If '

!
there exists T' k' such that 1o ,%Tl— - is a valid derivation and
bl . 2 n .

F o ()CF__ 1+ () for alll € Destructors(e).

T AT - Fleir
Azirgbles! Azirg ek

Proof By induction over the structure of e.
O
The syntax directed system is sound and complete w.r.t. the original
system in the following sense:

Theorem 6.5 Soundness: If W’Zﬁ is a wvalid normalised deriva-
n€:

!
tion then there exists a wvalid derivation WZﬁ such that

F o ()=F_1 () for all | € Destructors(e).

AT New! Abj ek

Completeness: If W% is a valid derivation then there exists a valid

. o T
normalised derivation Trh e such that ]:A,F:'M, (1) ]:AFTM (1)

for all | € Destructors(e).
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. Ay
Az:kF ek

IdAaﬂU:/f'_nwif‘i s Al—,/;)\l:r.e:f@—){l}n'

AFhe:w =k VieTl: AN e Kl FA/\H;SH,

13
—-FE el

AFNe@le : K

IAI—Qe:/i AFNe K

X =
A (e,e) s x g

Viel: AR e:wk; xb il A,$:/\ﬁi,y:/\ngl—ﬁe':/@"
<« E il icl
AFMlet! (x,y) beeine : k"

Bool-I

A" True' : Booll!t A False' : Booll"

AFNe:Booll AFNe k! AFNE K" 'K <k F'K'<k

Bool-E
o0 AFNif' e then ¢ else €’ : k

Vi: AR e:k; A,x:/\nil—;\e':ka'

let .iEI
¢ Al letz =eine : &'

Vi:Ayz:kFDe: K I—A/\nign

o '
fix Al—/\ﬁxlme-n'le for any j € T
n )

Figure 6.6: Syntax Directed Intersection Flow Analysis
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Proof We prove the theorem for F" instead of F". By proposition 6.3 the
theorem follows.

Soundness is a trivial induction since we have have just incorporated the
non syntax directed rules in the syntax directed ones.

For completeness, we prove in addition to the above that

If ﬁ is a valid derivation and normalise(k) = A;cr ki
then there exists a family W\Ti for ¢ € I of derivations

Z

such that F" k] < k; for all 4.

We prove completeness by induction over the inference tree for

T .
AFN ek

(Id) Trivial
(—-T) Assume a derivation

T
A,x:ﬁl—/\,e:ﬁ'
AN Mgk =1y

—-1

By induction we find a family of derivation for ¢ € I:

Ti

. NP
Az kb, etk

such that if normalise(k') = A;cr ki then F" kl < k; for all ¢ € I. We
construct
Ti
Ax:kt)e: ksl

AN Nge: i - !

Now we have normalise(r —1} ') = Nier (& —{ k;) and

A =1 Ky < K —{ g

foralli el
(—-E) Assume
T T
L Al—/\’e:n'—th AN ¢k
AFN e@le i g
Further, assume
normalise (k' =" k) = N (K =" K;)

normalise(k') = Njcs K}
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then by induction there exists families of derivations

!
Ti ond
AN ekl =i gl AN n;'"
for 2 € I and j € J such that
A n; i n;-' < K L Ki and A Ii;-” < n;
We construct
T T;
NN T VjeJ: NI A m ]
AFy ek, =7 K, Aby ek F /\njgni
JjeJ

AR e@le : gl

where F" A ; 6" < ] follows from F* &' <k FN Ay 85 = K" and
N K< KL

We have that normalise(k) = \;cr ki and that F" k! < k;.

(x-I) Assume
T T
w-I AN e:n AN €K
AN (e e s x 1 g

Further, assume

normalise(k) = N;cr(ki)
normalise(k') = /\jeJ“;'

then by induction there exists families of derivations

!
/\7; " a’nd /\731 mn
AL ek, Alby ek
for 2 € I and j € J such that
FN R < kg and A Ky < Kj

Now normalise(r x1B k') = Nier jes (ki x A} x}) and for each (i, ) €
I x J we have
Ti T;
Abpe:r]  Abpe k]
AFD (e, skl < Ky

and clearly F" K x {1 k" < gy 1 gL



6.2. DECIDABILITY 143

(x-E) Assume

T T
AI—AIG:KIXLK/y A,m:nx,y:/@yl—/\’e':/@
AN let! (z,y) beeine : k

x-E

Further, assume

normalise (riy X" ky) = Nier(Kiz X" Kiy)
normalise(k) = Njcskj

then by induction there exists families of derivations

7}/

A,x:ﬁz,y:ﬁyl—;\e':n

Ti

A R L; 1
Al_ne.:‘ﬁlixx K

and

/

Y J

for i € I and j € J such that

AN, L; 1 L AN
F™ oy X7 Kiy < Kig X Kiy and F K < Kj

It follows that " k}, < kj, and F" #j, < Kiy and hence

1

Ti i
AP L; 1 . / . / AN Tt
Ay e Kig X7 kg, A,m./\nix,y./\niyl—ne.f@j

icl i€l

AN et (z,y) beeine : k)

for j € J is the wanted family of derivations. Since F" A;c; Kl < kg
and F" Ajcr n;y < Ky, the use of strengthened assumptions in 7;-’ is
justified by lemma 6.4.

(Bool-T) Trivial.
(Bool-E) Assume

T T T
Bool-E -4 N e BoollL : AN e i AFN "k
AF" if' e then € else € : &

Further, assume

normalise(Bool”) = Bool”
normalise(k) = Nierki

then by induction there exists families of derivations

7—/// 7; and 7;/
AF) e Booll AR) € K AN e kY]

)
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for 2 € I and j € J such that
A /@; < K; and A f@;' < K;
Now construct
7—/// 7; 7;/
AFNMe:Booll  AFNe ikl AFNE k! FrRL<Kk Fr! <k

A FNif! e then € else ¢ : k;

(let) Assume
T T’
Al—/\,e:nx A,m:nxl—/\’e':n

AN let'! z =eine : k

let

Further, assume

normalise(k) = Nier Kiz
normalise(k') = Ajcy )

then by induction there exists families of derivations

Ti 7;
ALA T and A T T
AbFy ek, Ayt kg by ek
for 2 € I and j € J such that
FN KL < Kig and A I{;- < Kj
It follows that
Ti 7]
AFNe:kl, A,gg:/\ngxl—;\e':n;

i€l

Al—,/zletlaczeine':ﬁ;-

for j € J is the wanted family of derivations. Since " A;c; Kl < kg,
the use of strengthened assumptions in 7;-’ is justified by lemma 6.4.

(fix) Assume

T
Az kN ek
AN fixlze: K

Assume that normalise(k) = A;cr ki- Then by induction there exists
a family of derivations

Ti

. NP
Az kb ek
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such that " k} < r; for all i. It follows that " A,c; k; < x and hence
we have the following family of derivations:

Viel 7;, I—A/\nggn
Az kN et k] ieT
fix ;
AR ﬁxlm.e:f@j
for j € I.
(Sub’) Assume
Ti
Viel: ArNe:k; Flri<kl
Al—/\,e:/\ka;

i€l
Let A\jcy, kij = normalise(k;) for all i € I. For each i € I we have by
induction families of derivations
Tij
Arle: n;j
where " n;j < kj; for all ¢ € I and j € J;. Now, the family indexed
by I x J fulfils the property we wish to prove.

O

We can now argue decidability as follows: first note that the subtype

relation " k < k' is decidable. Now given an expression e, the height of the

normalised inference tree (leaving out the " k < k' judgements) is bounded

by the size of e. W.r.t. width, the only interesting rules are (—-E) and (fix)
since the number of assumptions in these rules is not fixed:

1. In the (—-E) rule we have assumptions A ) €' : k%, but the number
of such assumptions is bounded by the size of K(t)/ = where ¢ = | k]| .

2. Similarly, in the (fix) rule we have that the number of assumptions

A,z : k) e : k; is bounded by the size of K(t)/ = where t = | K] .

6.3 Minimality
Define a vectorising function vec on properties as follows

vec(BoolL) = (L)
vec(k XL k') = wvec(k) + (L) + vec(k')
vec(k = k') = wvec(k) + (L) + vec(r')
vee(k A K') vec(k) N vee(k')
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where N is pointwise set intersection and + is vector concatenation. Define
an ordering < on properties

k=K' iff wec(k) C vee(k)

(where C is pointwise subset inclusion). This is extended to judgements by
defining (z1 : K1, ,ZTp t kp FN et k) 2 (1 K,y KL FN e i K
iff Kk < k" and k; X K, fori € {1,---,n}. Wesay T X 7' if T and T are
derivations for the same expression e, and for all subexpressions €’ of e we
have that for the last (closest to the conclusion) judgements A " e’ : k and
A"FNe' k! (in T resp. T') it holds that (A" e : k) < (A" "€ 1 K).
Define x M k' as follows
Booll* MBool? = Booll 1"k
k1 XM K Mg xP2 Kkl = (K Mkg) X K M KS)
ki1 =P K M kg =12 K (k1 M ko) =Lz (51 1K)
(k1 A KY) Mk (k1 MK2) A (K} M K2)
K1 Tlke = KollKky

LiNLsy (

It is easy to check that M is the greatest lower bound operator on the domain
(K/=,=). Define
(T1 iK1y T kg FN et k) N (g iKY,y k) FN et k)
= (z1: k1 NEY, @y Ky ML FY e kMK
and for two derivations 7 and 7" for the same expression e let 7 17" be a
derivation such that the last judgement for any subexpression €’ is the M of

the similar judgements in 7 and 7'. The following lemma shows that such
a derivation exists:

Lemma 6.6 If
A e k A e K
are derivations then so s

TnT
ANA HF e kMK

Proof First prove that " k1 < ko implies F" k1 M k3 < kg I k3 for all
k1, ko and k3. This follows by induction on the derivation of F" ki < ko.
Now the lemma follows by induction over the sum of the heights of the two
derivations.

O
It follows as an immediate consequence that

Corollary 6.7 For each e there exists a minimal derivation under the <
ordering.

If 7 is minimal for e then F7 is the minimal flow relation derivable for e.
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6.4 Non-Standard Semantics

In this section we give a non-standard semantics which exactly characterises
the strength of intersection flow analysis. The semantics is a modification
of the standard semantics such that if the flow analysis predicts a potential
redex, this redex will be reduced by the semantics.

Intuitively, the intersection based analysis loses information whenever
computation is discarded. E.g. analysing

if’t True’ then False® else (\"z.x)@" False’s

will tell us that A" can be applied at application @'s. If we choose to reduce
the conditional, we will discard the else-branch and therefore never perform
the reduction predicted by the analysis.

We introduce new syntactic constructs to ensure that this never hap-
pens. To avoid discarding computation when ‘if’ is reduced, we introduce
a new construct ‘either’: we will reduce ‘if True then e else €’ to a special
expression ‘either e or €”’. The type rule for ‘either’ is

AFe:t AFe€:t
AF eithereore :t

An ‘either’ expression cannot be reduced. The rule for flow analysis is also
straightforward:

Either

AFNe:x AFNE 1k

A" either' eore’ : k
Reduction of conditionals will thus result in a new expression, not present
in the redex. We therefore define that the label of the conditional is taken
over by the reduct, i.e. we reduce ‘if’ True then e else ¢’ to ‘either e or €.
The analysis also loses information in a less obvious way: by always
analysing all subexpressions of any expression the analysis assumes that no
redex is ever discarded. Here redex has to be understood in a broad sense,

Either

consider:
let f = Ax.x
in let g = Ay.f@True
in fQFalse

Neither call-by-value nor call-by-name will ever meet the redex (Az.z)@QTrue.
Thus if the above is allowed to reduce to

let f = Az.x
in f@False

we cannot have subject expansion in a strong sense (that is preservation of
flow). Neither do we have standard subject expansion (on judgements, not
derivations) since we can derive

. f : Boolth} {5} Boolllt} -/ f@lFalse! : Boolt!t}
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but not
. £+ Bool!'} =15} Boolt} 17 et g = Ay. f@3True’ in f@“False’ : Boolth}

There are two ways out of this. Either we extend the type system with
a special type Q as known from intersection typing, but this would interfere
with soundness under arbitrary reduction (arbitrary reduction can reduce
(Az.x)@QTrue above) so this would restrict the applicability of the analysis
— we will return to this idea in section 8.3 where we will also consider better
ways of dealing with conditionals.

The other way is to define the reduction system such that no expression is
ever discarded. For this purpose we introduce a special syntactic construct

“discard e in €'”. The type rule for this construct is

ArFe kK Abe:k
AF discard € ine: &

Discard

and the analysis rule:

AN ik A ek

Discard T -
AF" discard’ € ine: K

This gives an exact characterisation of the place where the analysis loses
information. There are no reduction rules for ‘discard’.

As with the ‘either’ construct, we let ‘discard’ expressions take over the
label of the redex.

We want the non-standard reduction to be an even closer characterisation
of the intersection flow analysis: if the flow analysis predicts a potential
redex, we want this redex to be reduced by the semantics.

" can block redexes. Consider

Pair-destruction “let (x,y) be e ine
(let (z,y) be z in N'z.e)@e’

where our analysis will predict that the A\'' can be applied to ¢/. This will
never be reduced by standard reduction. The ‘discard’, ‘if’ and ‘either’
constructs may block in a similar way. The solution to these problems is
context propagation rules.

The reduction rules given in figure 6.7 and the context rules of figure 6.8
differ from standard reduction (as given in section 1.6) by the following
properties:

1. As usual, an ‘if’ statement reduces if the conditional is True or False,
but instead of rewriting to one branch it rewrites to both;

2. special cases for (3), (d-let) and (d-let-pair) make sure that no expres-
sion is discarded;
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Contexts:

C == []]|MNz.C|Ca@le|e@lC |
fix'z.C' |let'! = C'ine | let! z = e in C |
if' C then ¢’ else ¢” | if! e then C else e” | if! e then ¢’ else C |
(C,e) | (e,C) | let! (z,y) be Cin € | let! (z,y) be ein C |
discard’ C in ¢’ | discard! e in C' | either! C or e | either! e or C

Reduction rules:

(B) (A z.e)ale! —s, e[e/x] ,if 2 € FV(e)
—», discard’ ¢ in e , otherwise

(6-if) if' True” then e else ¢/ —» either! e or ¢’
if! False!" then e else ¢/ —s either! ¢’ or e

(0-let) let' © = e in e/ —, e'[e/x] ,ifx € FV(€)
—», discard’ e in ¢’ , otherwise

(0-let-pair)

let! (x,y) be (e,e') ine” —, e"[e/z][e’/y] ,if z,y € FV ("

— discard’ ¢’ in e"[e/x] , if z € FV (") and
y ¢ Fv(e)

— discard’ e in e"[e/ /y] , if y € FV(e") and
x ¢ FV(e")

—, discard’ e , otherwise

in discard’ ¢/ in e”
(0-fix) fix'z.e — effix'z.e/x]
Cle] —s C[e'] yife —g €

Figure 6.7: Non-standard reduction
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Context rules:

(discard) (discard’ e; in e5)@F 3

(pair)

(either)

—, discard e; in (e2@ e3)
let" (z1,11) be (discard’ e; in e3) in e3

— discard’ e; in (letl' (x1,y1) be ez in e3)
if!’ (discardl e1 in ey) then eg else ey

—, discard’ e; in (ifl, eo then e else ey)

(let! (x,y) be e; in e)@ eg

—, let! (z,9) be e in (e2@" e3)
let! (z1,71) be (let' (z2,72) be e in es) in es

—, let! (z2,12) be €1 in (let' (z1,y1) be es in e3)
if” (let! (z,y) be ey in e3) then eg else ey

—, let! (z,y) be e1 in (ifl, es then e else ey)

(if’ e; then ey else 63)@”64
—, ifl e then (e2@ey) else (e3@! ey)
let" (z,y) be (if' e5 then e else e4) in e;
—g lf{ €9
then (let” (z,y) be es in e;)
else (let” (z,y) be eq in e1)
if! (ifl, e1 then es else e3) then ey else ej
—s lfl, e1
then (ifl e then ey else e5)
else (if! e3 then ey else e5)
(either! e; or eg)@ e3
—, either! (e;@"e3) or (e2@" e3)
let" (z,y) be (either’ e5 or e3) in e
—, either! (let" (z,y) be ez in e;) or (let’ (z,y) be ez in e;)
if!’ (eitherl e1 or e9) then eg else ey
—, either! (ifl, e then eg else e4) or (ifl' e then eg else ey)

Figure 6.8: Non-standard reduction — context rules
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3. there are context propagation rules for ‘discard e in €',
s ¢

‘if e then ¢’ else e, ‘either e or €'’ and ‘let (z,y) be e in e’
This gives an exact characterisation of the place where the analysis loses
information. We include labels in the reduction rules.

Note that we used a similar characterisation of the strength of the poly-
morphic system: these were invariant under ‘let’ and ‘fix’ reduction. The
characterisation was not complete, however, as we did not show exactly how
and when information was lost.

Define the erasure |e| of a term e to be the term where all occurrences
of “discard e in €'” are replaced by €’ and all occurrences of either e or €’
are replaced by e. If e —* ¢’ by standard reduction, then there exists e”
such that e —* ¢” and |e”| = ¢/. Thus, when we prove strong subject
reduction for our non-standard reduction system, strong subject reduction
for standard reduction follows.

6.4.1 Values

We will give a characterisation of normal forms under non-standard reduc-
tion:

Proposition 6.8 Any expression v such that no e exists with v — e is
called a value. An expression v is a value if and only if it has the following
syntax:

v = let (x,y) be Tinv' |
either v or v’ | discard v in v
Az.v | (v,0") | True | False | ©

v ou= @ |z

if 7 then v else v’ |
|

Proof It is easy to see that if v has the above syntax, then no e exists
such that v —; e.

Let e be any expression. We will prove that if no ey exists such that
e —>s eg then e has the above syntax. We prove this by induction on the
structure of e. First we realise that e cannot be let z = ¢’ in ¢” or fix z.e.

True: Is clearly a value.

False: Is clearly a value.

if e then € else e’: Clearly, e, ¢ and €” have to be values for

“if e then € else €/’ to be a value. Furthermore, e cannot be ‘True’ or
‘False’ since the conditional would then reduce to ‘either e’ or ¢’’’, and
it cannot be a discard, a ‘let (z,y)...", another conditional or an either
expression since then a context propagation rule would be applicable.
Finally, it cannot be an abstraction or a pair since it would not be
well-typed. The only things left are applications or variables.
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either e or ¢’: Clearly both e and €’ have to be values.
x: Is clearly a value.
Ax.e': Is a value if €' is.

e’@e': Clearly €” has to be a value. Also €’ has to be a value. If €’ is a pair or
a truth value the expression is not well-typed. If ¢’ is an abstraction,
e cannot be a value. Similarly, if €' is a discard, a let (z,y)..., a
conditional or an either expression, one of the context propagation
rules is applicable. The only options left for ¢’ are a variable or an
application.

(e',€"): Ts a value if the components are.

let (z,y) be €’ in ¢”: Both ¢’ and €¢” have to be values. If € is a pair, e
would not be a value and similarly if it is another pair destructor or
a discard, a context rule would be applicable. Since e must be well
typed, the only options left are applications and variables.

It is not hard to show the following properties for any e:

1. For any two non-standard reduction sequences reducing e to a value
v, the same set of redexes are reduced.

2. If e —* ¢’ lets destructor [ consume constructor I’ then there exists a
reduction sequence using the standard rules plus (pair) and (if) context
propagation rules where [ consumes /’.

6.5 Subject Reduction

Proving subject reduction for the intersection type system is not much dif-
ferent from proving it for the previous systems.

To prove subject reduction under —; we need a substitution lemma as
usual:

7—11

Ay ko Fer ik

Lemma 6.9 (Substitution lemma) If Ty and

!
To = ﬁ\T?i then there exists T3 such that
AF" ey ko

Ty
AF 61[62/%] LRl

1. T3 = and
2. For all | € Destructors(e[ea/x]):

Fry(l) = Fr() U Fr (1)
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Proof The lemma follows by simple induction on the structure of the
derivation of A,z : k' F" e : k. We give the (A-T) case for illustration:
(A-T) Assume
7-1/ 7-111

Ti=A,z:KkF el : K Ajx ko FNeq 1 K

Ayx ko F ek AK)

and
7

AR es Koy

By induction there exists 74 and Ty such that

,7-2:

7!
1. Ta =
A" eqlex/x] : Ky
7-/
2. Ts >

AR eilea/x] 1 K}
3. For all [ € Destructors(e;[ea/z]):

Frny=F 7 (OUFr()

AzigFRering
4. For all [ € Destructors(e;[ea/z]):

Fr)=F o (UFRQ)

A,z:NQ)—/\el :ra’l

but then clearly we can construct
7i T3
Ts = A" eqfea/x] : Ky AN eqlea/2] s Ky
AN eqea/x] : k1 A KY

and obviously [ € Destructors(e;[ea/z]):

Fr(l) = Fn)uFr)
— F o (DUFRMUF o ()UFR(Q)
= (F 7 OUF o (D))UFgR()

AzingFNering

= Frn()UFr)

A,z:&QF/\el:mll
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7—/
Theorem 6.10 (Subject Reduction) If 7T; = m and ey — eo
1 -
then there exists To such that

A
_ 2
LT = Jpme, and

2. For all | € Destructors(es) we have

Fri(l) = Fr (1)

and if | € Destructors(ey) consumes " € Constructors(ey) then

Fr(l) = Fr)u{l}

Proof The interesting cases follow from lemma 6.9. O
Soundness of flow functions computed from inference trees follows as
usual:

Corollary 6.11 Let T be any derivation for e and let A " e : k be its
conclusion. Then Fr |= e.

6.6 Subject Expansion

We will prove the subject expansion property. This can only hold if ex-
pansion preserves standard types, so this will be our implicit assumption
throughout the section.

The subject expansion property we prove is strong, i.e. the flow computed
is preserved by expansion.

We will often use the property that if

T

Az kHFle:k

then -
Az :kANE"Fh ek
where 7* only differs from 7 in that bindings z : &’ are replaced by x : k' A"
and use of the subsumption rule at occurrences of x.
The following lemma is an adaptation of lemma 5.23 to intersection

types:

Lemma 6.12 Let e be an expression with n > 0 occurrences of a variable
x. If
T
7-3[61/1;} _ _ ele ,/I]
AFNele/z] K
then there exists k1 -+-kp, T  and Ty --+T, s.t.
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Tl

1. Ti= AF :3':,%-

7—/

2. Te = e
A,x:/\ml—/\e:ﬁ
i

and

3. For all | € Destructors(e[e’/z]):

Flpr 1) = Fr (D) U U}-Ti(l)

Proof The proof is by induction on the derivation T /,. Most cases
are trivial — the only complication is that we have to treat subexpressions
not containing x differently (we do not have to use induction on these).
Furthermore, in the syntax directed rules, we first check if the expression of
the conclusion is x[e’/z] in which case the result follows immediately.

We will do the (A-I) case as this is somewhat entertaining:

(A-T) Consider:
Tete! o] Teler ]
Teler/2) = A " ele'/x] i K ArNele [z] K
AN ele'/z]: k N K

By induction we have

T,: 7;1 7—/: 7-61
! AN e K ¢ A,x:/\nil—/\e:n
and )
TII: 7-1,2 Tll: 7;
! AN e K] ¢ A,x:/\ngl—/\e:n'
i

where for all [ € Destructors(e[e’/z]):

Fop, O=Fp) uUFr ()

AFNele Jz]ik

and
F 1
ele! /]
AFNele! Jz]in!

(1) = Fro () U Fror()

By the (A-I) rule we find
T T
Ti=AF ¢ :k; ArNe kK] (1)
AN e ki AR
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By the property of strengthened assumptions
7:33
A,x:/\ni/\/\ka; ek
i i

and .
Te

A,x:/\m/\/\f@; Fhe k!
i i

where 72 only differs from 7.! in the binding for » and similarly for
T4, We find

70 U3

TA,x:/\(ﬁiAﬁ;)FAe:n A,x:/\(niAn;)FAe:ﬁ'

2 2
A,m:/\(m/\n;) ek AK

i

which with (}) constitutes . and 2. of the lemma.

Frwml) = F T et ] Hur Tele! fa] ®)
AFRe[e! [x]:n AFRele! [z’

= Frn()UU; Fr() U Fr (1) UU; Fr (1)
= Fr.()uU; Fr()

O

For standard intersection types it holds that a term is typable if (and

only if) the term is normalising. The proof of this proceeds by proving that

all normal forms are typable and that typability is preserved under beta-

expansion. We will now prove subject expansion for — along the same

lines as the second part of this proof. The following theorem will not deal
with reduction of ‘fix” as the next section is devoted to this problem

!
Theorem 6.13 (Subject Expansion) If T, = w% and e; —>y
1t
e then there exists T1 such that
_ Ti
L= AFNel ik

2. For all | € Destructors(es) we have

Fri(l) = Fr (1)

and if | € Destructors(ey) consumes " € Constructors(ey) then

Fri(l) = Fr(1) U{l'}
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Proof Induction over the definition of —,, i.e. the S and § rules are the
base cases and the context rule is the induction step:

(8) Two cases:

1. Assume z not free in e. Then (A\'z.e)@'e/ —s, discard’ ¢’ in e.
We have Ty =
T3 75
AFNe K A ek
AN discard' ¢ ine: k

so we can clearly construct 77 =

7-2//’$ !
Az:kFle:r Ty
AN N ek = g AFNe K

AN (W ze)a@le : i

Point 2. follows immediately.
2. Assume z has n > 1 occurrences in e. Then (A'z.e)@le! —s,
ele’ /z]. By assumption T3 =
7-2/
AFNele [z K

By lemma 6.12 we have 7", k; and T s.t.

T/// 7"
T = —5— and T =
AN e K A,x:/\nil—/\e:n
i

We construct 71 =

7-, 7'1/// 7'///
A x: F e — —
- /i\m e AFNe kg AFNe Ky
A M ze: (/\ ki) = g AN /\m
[ [

AN (W ze)@le : i
Point 2. follows from lemma 6.12.

(0-if) Assume
if! True! then e else ¢’ —s either’ e or ¢’
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By assumption 75 =
T3 T
AFNe:k AFNE kK

A F" either eor e @ &

So we can construct 7; =
T U
AN True! : Boolt!'? A ek AFNe ik
A if! True! then e else € : &

The case for False is similar.
(0-let-pair) The four cases are handled as in the () case.
“Context Rule”: Trivial induction on the context C.

“Context propagation rules”: The (discard) and (pair) cases follow from a
simple rearrangement of the derivations. The (if) and (either) cases
requires the use of A but are relatively straightforward: we give the
first case of (if) for illustration:

Assume
(ifl ey then eg else 83)@lle4 —, if' e, then (62@1,84) else (83@1,84)
Without loss of generality, we can assume Ty =
T3
AF" ey : Bool! T3 T4
A" if! e; then (62@1,84) else (83@”64) ‘K

where T3 =
T 7'
AN eyt ky =52 Ky AN eyt Ky
AN (eg@l’e4) : Ko FN ko < K
AN (e2@Vey) 1 K
and 74 =
i T/
AFN eg: k) =5 Ky AN eyt k)
A" (e3@F ey) : kg F kg < K

AN (e3@ley) t K
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We can now construct 77 =
TZI 7‘311 711/
AFNe; :Bool®t T Ts AFN eyt kg AN ey k)

LoUL3 K

A" if! e then ey else es (kg A KY) = AN ey kg NK)

AR (if! e1 then e, else 63)@l’64 DK

where 75 =
T3 FN kg AR < kg FN ko <k Ly C LyUL3
AR et kg =12 ko A gy — T2 ko < (K4 A KY) —yl2Vls
AN eyt (kg A KY) —sL2Uls
and Tg =
T! Fhka ANKy <Ky,  F'ks<k L3 CLyUL
4 K4 NKy S Ky k3 <Kk L3 C LyULj
AN e3: Ky 13 ja M K —Ls k3 < (K4 A KY) —L2Uls

AR eg: (K4 A f@ﬁl) —yL2Uls (o

6.7 Handling ‘fix’

The idea of this section is to show that there exists a finite unfolding ™ of
any expression fix z.e such that the analysis is invariant under expansion of
the reduction rule fixz.e —; €™ (throughout this section, we will assume
that x occurs in e, since the problem is trivial otherwise). The strategy is
as follows:

1. Show that it is no restriction to consider expressions fix z.e with ex-
actly one occurrence of x (lemma 6.14).

2. Show subject expansion for C[fixz.e(™] —s C[e"] where e(™) is m
times unfolding of e and e” is n unfoldings of e and L inserted for x
(corollary 6.18).

3. Show subject expansion for C[fix z.¢] — C[fix z.e(™)] (lemma 6.19).

The following lemma is a trivial consequence of theorem 6.13:

Lemma 6.14 Let e be an expression with n > 0 occurrences of x and no
occurrences of y. Let

T T
AFNCle] = w AN O y.ely /)@l a] «
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be minimal derivations. Then

F_ T Hu{l't=F 1 [
A'-”O[e]m() { } AT+ C[()\yl[y/m])@m]:m()

and for all I" € Destructors(Cl[e]), " # | implies

F_r (I"=F T ("
AFAClelin ATFAC[(hy.ely/z])@z]:m
Proof Trivial consequence of theorem 6.13. O

Definition 6.15 For any expression e of type t, define

60 = J—t
et = ele /]

Lemma 6.16 Let e and C be given such that e has exactly one occurrence
of . Then there exists m and n < m such that if

T
AFNCle™ : k

is a minimal derivation then it contains the judgements A’ F" e™ : k' and

A" EN e K with A" | pyey= A" |pye) and K = k"

Proof Clearly, for every z free in e, the underlying standard types of A’(x)
and A”(z) are the same. Similarly, the underlying types of " and " are the
same. By finiteness of K(t) /= there are only finitely many pairs (A |py(c), &)
and hence there must exist some m where we meet a judgement, that has
occurred earlier in the derivation.

O

Definition 6.17 For any expression e, define

6(0) == x
ent+l)  — e[e(n)/gc]

Corollary 6.18 Let m,n be as computed by lemma 6.16 and

T
AN Cle™] 1 K
be the minimal derivation. There exists
TI
At Clfixz.e™ ™ : k
such that for all | € Destructors(C[e™]):

F T OH<CF_ o~ ()

— A 1
AI—AC[ﬁxz.e(m n)]:ra AEAC[e™ ]k
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Proof Immediate from lemma 6.16 and lemma 5.23. d

Lemma 6.19 Let T, A, k, C and e (with exactly one occurrence of x) be
given such that

T
A" Clfixz.e™)] : i
is a minimal derivation. Then there exists T' such that
Tl
AR Clfixx.€] : Kk
and for all | € Destructors(Cle™]):

F__ o (OCF__ ()
AFAClAx z.e]in AFAClfix z.e (M) ]k

Proof We have the following derivation:
To

A,z Ky FO (0 . Ko

Az Ky F em g
AR fixze™ g,

AN Clfixz.e™)] : i

Dismantle this derivation according to lemma 5.23 into

T Ti _ T

Az kpF e ko Az ko F e ky Az ket F e by

By the property of strengthened assumptions, we find
Ty T T
A,x:/\ml—/\e:no A,x:/\ml—/\e:m A,m:/\nil—/\e:nm

) 13 13

(where 7, only differs from 7, in the assumptions for ). Then by (A-I) we
have

7 T
A,x:/\ﬁil—/\e:ﬁg A,x:/\nil—/\e:nm
i i
A,x:/\m l—/\e:/\ni
i i
AN ﬁxx.e:/\ni I—A/\ni < Km

13 13

AN fixz.e: by,

AR Clfixw.e] : K
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Invariance of the computed flow relations follows by the construction.
O

We summarize corollary 6.18 and lemma 6.19 as follows (where we use
lemma 6.14 to generalise to an arbitrary number of occurrences of the fix-
bound variable).

Theorem 6.20 Let C[fixz.e] be given. Then there exists m such that if

T
AFNCle™ K
then there exists T' such that
7-/
AR Clfixmz.e] : K

and for all | € Destructors(Cle™]):

F__ o (OCSF__z ()

AN Ol o1 . g
AFACIAx 2 e]ik AFACle™]ix

6.8 Flow in Normal Forms

We will now prove the main theorem for normal forms. We will use the
notation A A A’ for the environment mapping x to A(xz) A A'(z) if z is in the
domain of both A and A, and to A(z) resp. A'(z) if z is not in the domain of
A’ resp. not in the domain of A. We extend this to use the abbreviation 7 A A
for the derivation where A is intersected with all environments in 7 (this
derivation contains appropriate subsumption steps at variable occurrences).
Clearly T A A is a valid derivation if T is.

Theorem 6.21 If v is a value, there exists A, k,T such that
T

AFM vk

and Fy (1) = {} for all | € Destructors(v).

T:

Proof Call a property x € K result-empty iff all positively occurring labels
are the empty set {}. Similarly, « is called argument-empty iff all negatively
occurring labels are the empty set {}.

We will show that that

1. For all v not being variables, applications or bottom there exists
A, k,T such that

T
(a) AFNw ik



6.8. FLOW IN NORMAL FORMS 163

(b) A(z) result-empty for all z

(¢) k argument-empty.
2. For all 7 and result-empty k there exists A,7T such that

-
@) THT=

(b) A(z) result-empty for all z

It follows from point 2(a) that any expression occurring in a “consump-
tion” context can be given a type where all positively occurring annotations
(in particular the top annotation) is the empty set.

The proof proceeds by induction over the structure of values.

True’: Any A, x will do.
False: Any A,k will do.
x: Let k be the given result empty type. Then any (A, z : k) will do.

Mz.v: By induction we have

T

Az kHF vk

where A and k are result empty. If v is not a variable or an application,
k' is argument empty. Otherwise, the above is true for any result-
empty ' in particular the one that is also argument empty. Thus
k =% k' is argument-empty for any L. So

T
Az kF vk

AR Ngw ik =P K

is the sought after derivation.

7@!y': If v’ is not a variable or an application, we have by induction
T
AN K
where A’ is result-empty and s’ argument-empty. If v’ is a variable or

an application, then the above is true for any result-empty «’ and in
particular for the argument- and result-empty '

Let any result-empty  be given. Then ' —{} £ is also result-empty.
Then by induction there is

T
ATk U g
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where A is result-empty.
We now construct
TAA T'ANA
ANA H ok 58 g ANA N K
ANA N paly' K

where A A A’ is result-empty and « is any given result-empty type.
if! 7 then o’ else v": By induction we find A4, T s.t.

-
AT : Booll

and A", A" k' K" T' T" s.t.

TI 7—//
where A, A" and A” are result-empty and «/, " are argument-empty.
Let A” = AN A’ A A”. Clearly, there exists an argument empty type
k"' such that

T ANANA" T'NANA
TAA A A" AN EN ! A ! < &AM N W ! (A < U
AN T BOOl{} AN A M AN M

A" N if T then o else v : k"

either! v or v': Similar, but simpler than the ‘if’ case.
(v,v")!: Follows by simple induction.
let! (z,7) be T in v': We have by induction

7-/

- ) Ao
A x kg, ytky Fh v iR

!

where A',z : kg, y : Ky is result-empty and x argument-empty (if v is
an application or a variable we choose the argument- and result-empty
k as above).

For the result-empty r, x U ky we have

T

AFNT Ky X{}/{y

where A is result-empty.
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We conclude
TAA T'NA
A/\All_/\ﬁ:,%_){}ﬁy (ANAN 22 by by BN 0" K
AN A N let! (z,y) be vinv : &'

where clearly A A A’ is result-empty and k result empty.
discard’ v in v: Simple induction.

14: Clearly, A" 1, : k for any A, k.

6.9 Summarising the Results

Sections 6.6, 6.7 and 6.8 prove that the analysis is exact under non-standard
reduction: let e be any expression, apply theorem 6.20 exhaustively yielding
a fix-free term e’. By theorem 6.10 and theorem 6.20, the minimal pre-
dictable flow of e and €’ is identical. By inductively applying theorem 6.13,
we have that the minimal predictable flow for ¢’ represent exactly the redexes
met when reducing e’ to a value.

If non-standard reduction reduces e to a value v such that [ consumes
I" then there ezists a reduction sequence using standard reduction ex-
tended with context propagation rules for (pair) and (if) such that [ con-
sumes ['. (Note that the context propagation rules are necessary since e.g.
(let (a,b) be z in Ay.y)@QTrue is a value under standard reduction — for
closed terms, context propagation rules are not necessary). We can summa-
rize:

Theorem 6.22 (Exactness) Let e be any expression and let T be the min-
imal derivation for e. Then for any redex | € Destructors(e) and any
I" € Fr(l) there exists a reduction sequence using standard reduction plus
the context propagation rules (pair) and (if) such that | consumes [’
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Chapter 7

Shivers’ CFA

The subtyping flow analysis of chapter 3 (which we showed corresponds
to Sestoft’s [Ses88]) is often referred to as 0CFA. The term 0CFA, however,
originates from Olin Shivers’ thesis [Shi91c| where a family of analyses nCFA
for every n is defined. As we will see in this section, Shivers’ 0CFA does not
correspond to Sestoft’s analysis, but is in fact strictly more powerful.

Section 7.1 presents Shivers’ 0CFA in detail and compares it with closure
analysis. Section 7.2 briefly describes the generalisation to nCFA. Finally,
section 7.3 describes 0CFA as originally defined by Shivers for a tail-recursive
language — the change of language gives rise to certain optimisations of
the algorithm at the cost of some precision (though applying this analysis
to the CPS-transform of an expression still potentially gives better results
than closure analysis).

7.1 O0CFA

Shivers defines his analysis for a CPS language (tail recursive); this makes
direct comparison with Sestoft’s analysis difficult (this might be one reason
for the confusion). In figure 7.1 we try to present 0CFA for our language
while being as faithful as possible to the original idea. It does make a
difference that Shivers is defining his analysis for a tail-recursive language,
we will return to this in section 7.3.

We have left out the pair construct as this does not fit smoothly into the
formulation. We will return to this below.

An environment maps variables to the set of labels, that the variable
can be bound to. We define the union of two environments by (pUp')(z) =
p(x) U p'(z). During analysis, the assumption on each variable z in the
environment p is made less precise by making p(z) bigger.

The analysis function C' takes an expression and an environment as ar-
guments and returns a pair. The first component of this pair is the set of
labels to which the expression can evaluate. The second component is an

167
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C :Exp — (Var —» P(L)) = L x (Var = P(L))

Clzlp = (p(2),p)
CNzelp = ({I},p)
ClTrue'lp = ({I},p)
ClFalselo = ({1}.p)

C[if’ e, then ey else e3]p = let (L1, p1) = Cled]p
let (L2, p2) = Cle2]p
let (L3, p3) = Cles]p
in (Lo U Lg, p1 U p2 U p3)
Clfixz.e]p = fiz(L,p").(Cle](pUp' U [z — L))
Cllet z =ejines]p = let (L1,p1) = Clei]p
let (L2, p2) = Cle2](p1 U [z — L1])
in (L, p2)
Clei@es]p = let ({li,--,la},m) = Cled]p
let (L, p2) = Cle2]p
let p3 = p1 U p2
let (Li,pi)
= Cllbodyof (1)) (ps U [varof (1)~ T))
in (Uieq1,my Lis Uiega,my 00)

Figure 7.1: 0CFA
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updated environment. Functions bodyof and wvarof picks out the body resp.
bound variable of an abstraction given its label. It should be clear that the
analysis can compute a flow function as a side effect.

The variable case looks up the variable in the environment and returns
this value together with the unaltered environment. Analysing a value re-
turns the unaltered environment and the label of the value: in particular
the body of an abstraction is not analysed and will only be so when the
abstraction is applied. Conditionals are analysed by analysing the three
subexpressions under the same assumptions. The result is the union of the
labels of the branches and the union of all updated environments. That the
subexpressions are analysed under the same assumptions reflect that updates
performed when evaluating one subexpression cannot affect the others. Fix-
expressions are analysed by computing the least fixed point for the result
of analysing the expression. If we assume that the body of a ‘fix’-bound is
always a lambda the following simpler definition suffices:

Clfixz.e]p = let (L,p") = C[e]p
in (L, p'[x — L))

In the let-case, we first analyse the let-bound expression e;. This results
in a set of labels L.; and a new environment p;. We then analyse the body
eo of the let in the environment p; U[z — L;]. It is obvious that the binding
for z needs to be updated, but less obvious that we need the environment
p1 (and not just p): the reason is that variables that were bound when
analysing e; might still be alive and could be referenced while analysing es.
This is made clear by the following example:

Example 7.1 Consider

let f = (A2 A\2y.2)@Truel?
in f@QFalse

Analysing the let-bound expressions will return ({l2}, [z — {l3}]). When
we analyse the body, we find that f can be [ and the analysis proceeds to
analyse the body of A2, It is then important that the binding of z to {I3}
is alive.

O

We now come to the most important and difficult case: application.
When analysing an application e@'e’, we first compute the set of functions
{l1,---,1,} that e can evaluate to and the set of values L that the argument
can evaluate to. Analysis of both expressions is done in the given environ-
ment p. For each of the functions Nig;.e; we analyse e; under assumption
that x; is bound to L. This is done in an environment p; U ps since analysing
e and €’ might have bound variables that are live when analysing the e;. This
is illustrated by the following example:
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Example 7.2 Consider:
(N1 2.\ f.f@z)@True)@’s (A2y. A\ 2.y)@False)

When analysing @'5 we find that the functions applied are {l5} and the
arguments are {l4}. Analysing f@x under assumption that f is {l4} will
clearly both reference x and y.

O

The result of analysing an application is the union of the labels computed by
analysing the function bodies and the union of the environments computed.

The main difference to Sestoft’s analysis is in the application case where
the analysis proceeds to analyse the bodies of all functions that potentially
are applicable. Furthermore, Sestoft computes a fixed-point for the environ-
ment: all lookups are intuitively done in the same environment. In 0CFA
lookups are performed in a decreasingly precise environment. It is not hard
to see that OCFA is at least as strong as Sestoft’s closure analysis.

A simple example shows how O0CFA can yield better results than sub-type
based flow analysis:

Example 7.3 Consider

let id = \z.x

in if id@Truel
then id@False’
else True!s

In the first application of id the environment is updated to map = to {l;}.
Since the body of the lambda is analysed at this point, we find that the con-
ditional can only evaluate to /1. In the second application, the environment
is updated to map z to {l2} so the result is also precise for this application.
The environment returned will map = to {l1,l2}. The result of the whole
expression will be {l,3}.

O

Of course the analysis is not exact as shown by the following example:

Example 7.4 Consider

let id = Ar.x
in (A3y.id@False’?)@" (;d@Truel)

When we analyse application l4 we find that the function can be {l3}.
Analysing the argument updates the binding for x to {/;} and returns that
the argument to @" can be {I;}. We proceed to analyse the body of A" in
an environment where both x and y are bound to {/;}. Thus this application
of id will update the binding for z to {l1,l2} which will also be the result of
the application and thus of the whole expression.

O
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This example suggests that we could update environments destructively
instead of taking the union with the already present binding. This would,
however, not be safe as the next example shows:

Example 7.5 Consider the following expression:

let app = Af A1z falsy
in app@(app@A'2y.y)@True

Analysing this expression, we first find that f can be bound to [y in the
application app@\2y.y. The result of this application is /; which is passed
as argument to app. At this point it would be unsound to destructively
update the binding for f to [; since there is still a live occurrence of f
bound to l5. It is easy to see that both I1 and ls will eventually be applied
to True at @'3.

O

7.1.1 Pairs

The easiest way to add pairs is to treat them like functions:

Clle,en)lp = ({hp)
Cllet! (z,y) be erines]p = let ({I1,---,1,},p") = Clei]p

let (L;, pi) = C[fstof (;)]p’

let (L, pl) = Cllsndof )]/

let o' = pU[ 2 Uicqr,my Lis
y = Uieq,my L]

let p" = Uic1,...n} (05 U p5)

let (I, p") = Cea]p"

in (L', p")

This entails that the components of pairs are re-analysed every time they
are used. Intuitively, this reflects a lazy (call-by-name) treatment of pairs.
The strategy will be safe under any evaluation but is unnecessarily time
consuming. Since pairs are not a binding construct, they can be analysed
several times under the same assumptions — if the assumptions change, this
will be due to an enclosing lambda which will force re-analysis itself.

A better strategy thus uses an extra environment that maps pair-labels
to pairs of sets of labels (describing the values that the components can
evaluate to). This is exactly the role ¢ plays for pairs in Sestoft’s analysis.
But while a “universal” environment for functions means loss of information
compared to Shivers’ analysis, this is not the case for pairs (because they
are not binding constructs).
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7.2 nCFA

Shivers’ flow analysis is an abstraction of an instrumented semantics. This
semantics is defined using contours (which correspond to frames) that keep
track of different live instances of variables. Obviously, there is no upper
bound on the number of contours during an execution of a program — on
the other hand, this is the only infiniteness during execution and thus the
target for abstraction.

The semantics allocate a new contour at every application — in the
exact instrumented semantics the new contour is picked from an infinite
set of contours. In OCFA the set of contours is a singleton set. Thus every
application uses the same contour — this allows us to dispose of the contours
altogether and arrive at the analysis presented in the previous section.

In 1CFA a less brutal abstraction is used: there is exactly one contour
for each call-site in the program. Thus, if two call-sites apply the same
lambda, the bound variable will live in different contours and we will not
have to take the union of bindings. E.g. in

let id = \x.x
in---id@1True’ . . . jd@l3sFalse® - - -

the two bindings to z will not be mixed up, since the first will exist in the
contour named [; and the second in the contour named I3.
The memory of 1CFA is short lived, however: consider

let id = \x.x
in let f = \y.id@by
in--.- f@llTruel? . f@l3Falsel4 -

The two calls to f are in separate contours, so the bindings for y will live in
the contour named /; and I3 resp. The binding for z will live in one contour,
namely, the one named /5. Thus the abstract result of the first application
of f will be {l2} but the second will be the set {l2,14}.

The generalisation nCFA makes the set of contours isomorphic to C'all™
where Clall is the set of call-sites. Thus 2CFA would be able to handle the
above example since the two instances of z would live in the contour named
[1 XI5 and I3 x [5 resp.

nCFA has some of the same flavour as polymorphic flow analysis as
presented in chapter 5. There are, however, significant differences:

1. In nCFA, the precision of the first analysed call is better than later
analysed.

2. nCFA allows a separate treatment (different contours) for all abstrac-
tion whereas polymorphic analyses only are able to do this for let- and
fix-bound functions. In this sense, nCFA resembles System F based
analysis more (discussed in section 8.5).
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3. Polymorphic analyses are not restricted by the length of the chain
of calls and is in this sense coCFA (see also the discussion on Ja-
ganathan and Wright’s concept of polymorphic splitting in section 11.1
[JWOI6b]).

7.3 CPS vs. direct style

As mentioned in the introduction to this chapter, Shivers defined his analysis
for a CPS-based language. The advantage of CPS-transforming a program
is that the resulting program is tail-recursive — this is also the crucial
prerequisite for Shivers’ definition to work: CPS is just a well-know and
often used method of transformation of programs to tail-recursive form.

Define tail-recursive terms by the following syntax:

e u= @y 0@ (v, v") |if' v then v’ else v’ |let z = vin o' | v
v = Maze| M, e).e| True' | False! | z | ix'(f, z).e | fix'(f,z,¢).e

(where we again for simplicity leave out pairs). Abstractions come in two
variants (and thus so do applications): the usual variant with one argument
and a variant that takes an argument and a continuation. Similarly, ‘fix’
comes in a variant with two arguments (the name used for recursive calls,
and the argument) and in a variant with an extra continuation argument.

This allows us to simplify the algorithm for OCFA given in figure 7.1
considerably. The result is shown in figure 7.2.

The new selector cvarof picks out the continuation variable of an ab-
straction or fix, and fizvarof picks out the recursion variable of a fix.

Note how the tail-recursiveness has spread to the definition of the analy-
sis: there is no need to return the updated environment. Thus this version of
O0CFA which takes advantage of tail-recursiveness will be considerably faster
than the general algorithm. The version given in figure 7.2 is identical except
for small differences in language to the algorithm given by Shivers.

The improvement of complexity is not for free: applying the analysis
of figure 7.1 to a term e can potentially give better results than the above
analysis to the result of CPS.

Recall the expression of example 7.3:

let id = \x.x

in if id@True"
then id@False’
else True!?
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Cyl[z]p
Cy[Nx.e]p
Cy[NA(z,c).€]p
C,[True']p
C,[False']p
Colfix! ()01
Cullfix! (f, 2, ¢).v]p

C.[if' v1 then vy else v3]p =

Cellet z = vy inwg]p =

Co[v1@]p =

Ce[v1@(v2,v3)]p =

p(z)
{1}
{1}
{1}
{1}
{1}
{1}

let L1 = Cv[[el]]p
let L2 == Cv [[62]],0
let L3 = Cv [[63]]p
in L2 U L3
let L1 = Cv[[vl]]p
let Ly = Cv[[vg]] (p U [l‘ — Ll])
in L2
let {l1,---,1l,} = Cyvi]p
let L2 == Cv [[1)2]],0
let L; = if[;is a lambda label
then C.,[bodyof (1;)]
(p U [varof (1;) — La,])
else C.[bodyof (1;)]
(p U [fizvarof (1;) — {l;},
varof (I;) — Ls])
in UiE{l,---,n} L
let {l1,---,1lp} = Cyvi]p
let L2 = Cv [[1)2]],0
let L3 = Cv [[Ug]]p
let L; = 1ifl;is a lambda label
then C¢[bodyof (1;)]
(0 U [varof (1))~ Lo,
cvarof (I;) — Ls])
else Ce[bodyof (I;)]
(0 U [fizvarof (1) — {1},
varof (I;) — L,
cvarof (I;) — Ls))
in UiE{l,---,n} L

Figure 7.2: OCFA for a tail-recursive language
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CPS-converting this expression results in

let id = Az, ¢).cQx
in id@(True't, \y.id@(False’?, \z. if y
then z
else True’?))

Analysis of this term starts by updating the binding for = to {l1} and pro-
ceeds to the body of id. Here y will be bound to {/;} and id will be applied
again. This time z is updated to {l1,/2} and hence z will be bound to {l1,l2}.
So while the analysis can tell us that the conditional (in the transformed
case the variable y) can only be [ which is better than closure analysis, the
analysis will find that the first branch (the variable z) can be either 1 or Iy
which is worse than the result for the direct style expression. The result of
the whole expression will for the CPS-version be {l1, 2,13} in contrast to just
{l2,13} in direct style. The intuition is that no analysis can be performed
in parallel since the program has been sequentialised. Note, however, that
O0CFA is still as precise or more precise than closure analysis.

For nCFA the loss is even worse, as CPS-transformation inserts many
new applications, thus making remembering the last n calls more “local”.
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Chapter 8

Extensions

In this chapter, we will describe a number of extensions of the previously
defined flow analyses. Some will be applicable to all analyses while others
are extensions of specific systems.

The extensions are not described with the same rigour as the analyses
we have presented so far. Thus the present chapter is to a certain extent
suggestions for future work rather than presentations of full-fledged analyses.

8.1 Reachability

The analyses presented are able to tell us which values can flow to which
destructors. In particular, it can tell us exactly which booleans can flow to
a particular conditional. We can exploit this fact, if it turns out that all
booleans that can flow to some conditional are True (or False). We can add
the following inference rules to any of the type based systems:

C;AFSe:Bool” C;AFS ¢ :k Ve LExpOf(l) = True

Bool-E
00 C; AF* ifl e then € else € : k

C;AF*e:Bool® C;AF*e":k VIe LExpOf(l) = False

Bool-E
©0 C;AF*if' e then € else € : K

(retaining the general Bool-E rule).

This idea was also examined by Ayers who called this additional precision
reachability [Aye92]. He reported that in practice few expressions were
deemed unreachable (that is, will never be evaluated such as e” when all
conditionals are True), but that the additional power in his particular ana-
lysis practically came for free (his analysis was equivalent to the analyses
presented in chapter 3).

With these rules, the we get invariance under reduction and expansion
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of the following rules:

(0-if) if True then e else ¢/ — e
if False then e else ¢/ —; €’

(note that makes ‘either’ redundant in the non-standard reduction system
of chapter 6, so this construct as well as its context-propagation rules can
be left out).

8.1.1 Reachability and Intersection Flow Analysis

Since the reachability rules allow invariance under reduction and expansion
under the standard reduction rules for ‘if’; it is tempting to state that com-
bining reachability with intersection flow analysis gives us an ezact analysis
— this is, however, as we will see, not true.

We first show an example illustrating that reachability interacts well
with intersection types and can give exact results:

Example 8.1 Consider the following expression

let neg = A5 z.if = then False! else True®
in (neg@Truelt, neg@False’?)

with intersection types and reachability, we can give neg the type
(Boolllt} s} Booltls}) A (Boolt’2} —{l5} Booll*}) and thus find an ex-
act description of the resulting pair.

O

Unfortunately the above (Bool-E) rules are only applicable if ExpOf(])
is well defined. Thus they will not help us if the conditional can evaluate to
a value which is not a boolean (such as a free variable or an application of
a free variable).

Example 8.2 Consider the following expression

ifb
(A'z. | then if b then z else True’? |)@"4Truels
else if b then False’® else z

In this expression the reachability rules are not applicable since b is a free
variable (which we can assume has type Bool{l6}). Even though this expres-
sion will reduce to True’® for any value of b, we are not able to give it a
better description than Boolll:ls.ls}, O
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Let e be a given expression. Let a truth-assumption 7, for e be a map
from (boolean) labels | ¢ L, to sets of truth-values. Given T, define (over-
loaded) predicates True? and False? as follows:

True?(l) iff € L. AExpOf(l) = True
or 1 ¢ L, NTe(l)=True
False?(l) iff [ e L. AExpOf(l) = False
or [ ¢ Le.NTc(l)=False
True?(L) iff Vi€ L: True?(l)
False?(L) iff VI € L : False?(l)

Now the new type rules can be based on the True? and False? predicates:

AF"e:Bool” AF‘e :k True?(L)

Bool-E
00 A FNifl e then € else € : k

AF"e:Booll AF"e":k False?(L)
ARV if ¢ then ¢ else " : k

Bool-E

Given any truth-assumption 7, we are now able to do flow inference: we
can use the notation A f—% e : k for AF" e: k under assumption 7,. Given
A and k call a set TS of truth-assumptions complete if

LIy, by by, -+, Iy are all labels in A F” e : k such that I; ¢ L,

2. For all (b1, --,bm) € {{t1}, -+, {tm}) | ti € {True,False}} there
exists 7 € TS such that (T (l1), -, T (ln)) = (b1,---,bp), and

3. T(l;) = {True,False} forall T € TS and m <i <n

Intuitively, I; where m < ¢ < n are the labels for which we make no assump-
tions and for [; where 1 < j < m we need to check that we can find the
same result for all combinations of assumptions.

We define A F"eah ¢ ic to be true if there exists 7S such that

1. 78 is a complete set of truth-assumptions w.r.t. A and «, and
2. Athe:kforall T eTS

Example 8.3 Recall example 8.2. By proving

if b
b : Boollls} I—QGH{TTUQ}] (Az. | then if b then z else True'2 |)@“True'® : Bool{’s}
else if b then False’ else z

and
ifb

b : Boollls} I—QGH{False}] (A2, | then if b then z else True’? | )@"True’® : Booll's}
else if b then False'® else z
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we conclude
ifb

b : Boollle} pATeach (3 1 then if b then z else True'? | )@4True’s : Bool{'s}
else if b then False!® else z

|

8.1.2 Reachability in Graphs

A similar idea is applicable with the graph based analyses. If all Bool™-
Bool™ paths ending at a particular (Bool )! node start at True' then we
can “cut” an edge in the graph:

G—— Blef

C;w/ G"
and similarly if they all start at False:

G—— Boolf

é, ]

Notice that applying such a transformation can trigger the applicability of
the same rule at other Bool™ nodes. Exactly the same rule is applicable in
typed graphs.?

If there are paths starting at a free variable and ending at (Bool ™)/, we
can do as in the type system: only if the condition for “cutting” is applicable
under all assignments of truth-values to free variables, can we “cut”.

8.2 Union Types

The idea employed in section 8.1.1 is a special case of union types. To obtain
a union based flow analysis we add the following rules to the intersection
based analysis of chapter 6:

Semi logical rules:

Az:kiFVe:n Ax:kaF"Ve:n AFMN € 1k Vo

V-E A el /z]: K

to be exact ExpOf(l) is True for all [ such that there is a path starting from (Bool™)'.
This would be straightforward to express without reference to labels if we used ‘True’ and
‘False’ nodes instead of Bool™.

2In untyped graphs, we have to remove edges added by closing rules triggered by a
“cut” edge. This is avoided in typed graphs.
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Logical rules: 3

FWV gk <kVE F&V k! <k VK

FNV ki <k FWV ko <k
FM k1 Vg <k

Type-specific logical rules:

AN (K1 L K2) A (K] L Kk2) < k1 VK] -1k

The strong reachability flow analysis of section 8.1.1 can be seen as
a special case of this in the following manner. Instead of having general
boolean types we introduce types True and False and replace the boolean
standard typing rules with

Bool-I 4 True - True A |- False : False

Bool.E -A e : True AFe it AFe:False Abe’:t
AFifethene elsee” : t AFifethene elsee” : t

and annotating types True and False in the obvious fashion. Notice that the
“standard” rule for ‘if” is derivable from these rules using the (V-E) rule

AN e True® Vv False” AN e ik ANV ek

AR ifl ¢ then € else ¢ : k

We are now able to do flow inference under any assumption on the truth-
type of free variables and by using the V-E rule to combine inference trees
to the more liberal True V False assumption.

We conjecture that general union types do not give any additional power
over the strong reachability analysis of section 8.1.1. We suggest that a proof
of this can be given as a proof transformation “sifting” all applications of
the V-E rule to the root of the inference tree.

Thus, it would be superfluous to add general union types, but not only
that: we would lose invariance under beta-reduction as the following example
shows:

®Barbenera et al. use an equivalent but slightly less elegant formulation [BDCA95].
Using their system as inspiration would lead to:

F*™ kVe <k FY k<kVE FYV k" <kVE

AV ’ AV ’
F' k1 <kp FV ke <Ky
! !
F*" k1 Ve <Ky VEs
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Example 8.4 Consider the term
Mg Ny Nez (\s fae@faf)@((Nitt)ay@z)
This can reduce to:
Az X2y A3z 2@ ((Att)@Qy@z)Q((At.t)Qy@z) (8.1)

(which is the term that we are really interested in — the first was only to
show how we got the same label twice). This can reduce to either

Mg X2y AB 2 20 (y@z)Q((Aet)Qy@z) (8.2)
or
Mg N2y ez g@((At.t)Qy@z)Q(yQz) (8.3)
Both expressions 8.2 and 8.3 can reduce to
Mg A2y AB2 2@ (y@z)@(y@z) (8.4)

We can give expressions 8.1 and 8.4 type (where we leave out unimportant
annotations)

(Bool{ls} — Bools} — Booltsh) A (Bool{s} — Booltle} — Boolllsh)
—1h} (Boolt't — Booll’s} v Boolllst) - {2} Boolllrh —{ls} Boolllst

but this type can be given to neither expressions 8.2 nor 8.3. This is be-
cause the intermediate forms lose syntactical equivalence between the two
instances of f. We can conclude that types are preserved neither by beta re-
duction nor expansion. This example is adopted from an example by Pierce
[Pie91].

O

It can be shown that a standard union type system is invariant under
parallel beta reduction and expansion [BDCd95] and we believe that this
result can be adopted to union based flow analysis.

Observation 8.5 The intersection and union based strictness analysis of
Jensen section [Jen92] includes the following V elimination rule
Azx:kbe:r Ax:kFe:r"
Az:kVE Fe: k"
which is the rule from the sequent calculus formulation of union types instead
of the natural deduction V-E rule given above.

Without the cut rule of sequent calculus systems, Jensen’s rule is strictly
weaker than the natural deduction rule. This implies that his system must
lack invariance under beta-reduction in a “worse” way than necessary (the
full version is, as noted above, invariant under parallel beta reduction and
expansion).

This manifests itself in e.g. reducing let © = e in €’ to €'[e/x] where the
sequent calculus rule is applicable to e in the redex but not in the reduct
where e 1s not bound to any variable.
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8.3 Usedness

In the analyses presented, we have made a virtue of being sound under
any reduction order. This has the advantage of allowing hyper-strict eval-
uation (such as partial evaluation) and compiler optimisations based on
beta-reduction.

If we are interested in a fixed evaluation strategy only, the general ap-
proach will predict redexes that will never arise during evaluation. The
information about whether a subexpression is needed or not, can be in-
ferred in a separate analysis and the flow analysis be changed to take the
information into account. Instead of using a separate analysis, it is possible
to build this form of “dead code elimination” into the flow analysis.

8.3.1 Lazy Evaluation

We might expect that expressions that never are used do not contribute to
the flow information. Consider the following expression, however:

(Az.f@True)@Q(f@False)

Our analyses will find that f can be applied to both True and False, but
under lazy evaluation (f@False) will never be evaluated, and we might be
interested in realising that f is never applied to False.

Our first option is to infer usedness by a separate analysis and let the
flow analysis use the information. The usedness analysis could give unused
expressions a special type {2. The only difference would be when computing
the flow function, no flow inferred for subexpressions given type €2 should
be included.

The second option is to build the usedness analysis into the flow analysis
by adding the following:

Formulae:

Coerm

Semi-logical rules:

Q C;AFe: Q)
and require that if C; A F e : k is the final judgement then neither A nor
k contains €. This also handles lazy pairs, since the components of a pair

that is destructed but where the components are not used, can be given type
Q x Q.
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8.3.2 Eager Evaluation
For call-by-value we might wish similar optimisations for terms such as
(Az.f@True)@(\" z. f@False)

where the fact that the body of the second lambda is not evaluated implies
that f will never be applied to False.

We have the same two options as in the lazy case. The only change to
the built-in version is to require that no argument in an application has type
Q and that we do not build pairs with components of type €2:

CiAF ek o'k CiAF e K K #£Q

—-E
CiAFS e@le : i

C;AFe:n CiAFS ek CH{I}Cl vK#Q K #Q
x-I s Y .1
AF® (e,e) 1k x" K

The first rule reflects the fact that all arguments are evaluated. The argu-
ment type can contain ) types as in the above example where \z.f@False
can be given type 2 i} Q.

The second rule reflects that if a pair is ever used then its components
are evaluated.

8.4 Simple Polymorphism

In chapter 5 we added polymorphism (ML- and fix-polymorphism) to the
subtype based flow analysis of chapter 3. There is, however, no reason why
we cannot add polymorphism to the simply typed system of chapter 2.

As this will be strictly weaker than the subtype polymorphic analyses,
the aim should be to improve the complexity. We will not go into very
much detail about this system, just note that we have principal types due
to an argument similar to the arguments in chapter 5 using the following
properties:

1. Analysing an expression e results in a constraint set which is linear
in the size of the untyped term: namely {/} C « for each constructor
annotated with [.

2. Since the set of constraints is fixed in this manner, the Kleene-
Myecroft sequences for simple polymorphism must have the property
that 0,41 = close4(S(C; = k;)) where S unifies variables bound by
0;. Thus the number of variables in a Kleene-Mycroft sequence will be
strictly decreasing until a fixed point is found. This bounds the length
of Kleene-Mycroft sequences by the size of the program and the com-
putation of S must be linear as well (checking for C will depend only
on whether S is the identity or not).
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This suggests that polymorphically recursive, simple flow analysis is com-
putable in cubic time using the accelerated algorithm of subsection 5.3.5. If
we can use the ideas for unification employed by efficient implementations
of simple flow analysis, this complexity might even be improved.

The above argument is enchanting, but more rigour is required before
the cubic (or possibly even quadratic)complexity ( can be promoted to more
than a conjecture.

8.5 Other Inference-Based Analyses

System F is a powerful generalisation of ML- and fix-polymorphism*. The
extension consists of not restricting the use of polymorphism — in other
words higher order and first order formulae are not distinguished.

It is straightforward to define a System F based flow analysis, but such
an analysis is likely to be too complex for practical use. Rank n fragments
could, however, be more promising.

Along a similar line, restrictions such as rank n of intersection based
analysis could be interesting for achieving precise but practical analyses.
Independently of this work, Banerjee investigated rank 2 intersection types
as a basis for flow analysis. He gives an algorithm for his analysis but
does not give any estimate on its complexity (for further description and
comparison with this work, see chapter 11).

8.6 Labelled Graphs

The imprecision of graph based analysis can be seen to be due to the graph
containing unrealisable paths. We can hope to improve the analysis by
introducing criteria for realisable paths. Such a criterion is known and given
by Asperti who refines his notion of well-balanced paths (see section 4.5) to
the notion of legal paths. We follow [AG96] closely in the presentation.

Recall that whp’s corresponded to our paths (in unlabeled graphs) except
that they went in the opposite direction.

Definition 8.6 Let ¢ be a wbp. An elementary Q@-cycle of ¢ is a sub-
path 1) starting from and ending by going through the argument edge of an
application node and internal to the argument e of the application (i.e. not
traversing any variables which are free in e).

*Historically, System F was introduced independently by Girard [Gir72] and
Reynolds [Rey74]
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Definition 8.7 The concepts of Q-cycle and v-cycle (cycle over a variable)
are defined by mutual induction:

Base case: Fvery elementary @Q-cycle is a @-cycle.

Induction case:

v-cycle: Every cyclic path of the form x\(¢)" QpQpAz where ¢ is a
wbp and 1 is a Q-cycle is a v-cycle.

¥

Q@-cycle: Every path 1 starting and ending at the argument edge of
an application node and composed of sub-paths internal to the
argument e with v-cycles over free variables of e is a Q-cycle.
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Proposition 8.8 (Corollary 5.1.19 of [AG96]) Let ¢ be a wbp with a
@-cycle @p@Q. Then ¢ can be uniquely decomposed as:

QrAAY@((3)" Ayls
where both (2 and (3 are wbp’s.

Call {2 and (3 the call resp. return path of the @-cycle 1. Call the last
edge of {; and the first edge of {4 the discriminants of the call resp. return
paths.

Definition 8.9 A wbp is a legal path if and only if the call and return paths
of any Q-cycle are the reverse of the other and their discriminants are equal.

Note that the condition also makes the variables x and y of proposi-
tion 8.8 equal. With the notation of proposition 8.8, we can draw a cycle
on a legal path as follows:

Asperti proved legal paths equivalent to consistent paths [Lam90] and regu-
lar paths [Gir89] (the proof can be found in [ADLR94]). The aim of these
different kinds of paths was to specify the redexes in an expression: to obtain
optimal reduction, no such redex may be copied [Lév80].

Legal paths give an exact characterisation of the possible redexes during
reduction and we anticipate that if the notion was extended to our full lan-
guage, we would find the analysis equivalent to intersection based analysis.

Statman’s lemma implies that any nontrivial predicate on simply typed
lambda terms that is preserved under beta reduction and expansion is non-
elementary recursive [Sta79, Mai92]. Any search of a useful algorithm im-
plementing the above is thus in vain (if it should be useful).

Furthermore, the notion of legal paths is not a very good starting
point for the development of practical algorithms. Inspired by the work
by Horowitz, Reps and Sagiv we could hope to label edges in the graph and
to characterise realisable (legal) paths using a language over these labels
[RHS95, RSH94, SRH95]. By Statman’s lemma, this language cannot be
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context-free as this would lead to polynomial time algorithm using context-
free reachability [Yan90] (like Horowitz, Reps and Sagiv) but we could hope
to find languages which had non-trivial, context-free abstractions.

Horowitz, Reps and Sagiv’s idea is to label every function call with an
opening parenthesis ‘(,” and every return from a function with a closing
parenthesis ‘),,’. Different call/return pairs are given different numbers n
and realisable paths are now paths that traverse call/return labels in a well-
balanced manner.

For typed graphs, the natural generalisation is to label edges in variable
occurrence cables: backwards edges are labelled with a left parenthesis (since
values flowing through such a cable is an argument) and forwards edges are
labelled with a right parenthesis. The subscript n corresponds to different
occurrences of the variable. (We note that labels would be needed in the
branch cables of conditionals and binding- and result cable of fix as well.)

Simply requiring paths to traverse labels in a well-balanced manner is,
however, much too restrictive. The following simple example can illustrate
some of the problems

let f = MAz.x
in fQ(fQTrue)

The value True enters f, traverses x, leaves f, enters f again, traverses z
and finally leaves f. With the parenthesis notation this could amount to
({ (% ){ (5 (5 )5 where we use superscript to indicate the variable occurrence
traversed (strictly not necessary).

First, this path is not well-balanced. In general with higher-order func-
tions, call/return are not simply nested as in the first-order case®. This
problem seems to be solvable by considering well-balancedness for each vari-
able in turn.

Secondly, the two traversals of (§ are essentially through two different
instances of xz. In the first-order case, this does not cause any problems,
but examples can be found where this turns out to disallow paths that
correspond to potential redexes (we have only been able to find examples of
2-level paths with this problem).

8.7 Shivers’ CFA and Linearity

Shivers’ nCFA analyses can, with good effect, make use of information about
linearity of variables. In the application case, the binding of the formal
parameter z is updated to be the union of its previous binding and the
argument the abstraction is applied to. This is necessary since there might

®As this expression is first-order, it can be handled by Horowitz, Reps and Sagiv —
this is because z would not be labelled. We could leave out labels on carrier paths as an
optimisation, but it would still be easy to generalise the above example to obtain paths
of a similar kind.
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be other instances of x that are still alive. Now, assume that z is linearly
used: this implies exactly that no other instances of z can be alive at the
point where this application takes place. It will thus be safe to destructively
update the binding for z.

As an example, consider (from example 7.4):

let id = \z.x
in (\2y.idQFalse’?)@" (;d@Truel)

We easily realise that x is linear. In the first application of id 0CFA will
find that = is bound to {l2}. In the second, standard 0CFA would have to
update the binding of = to {ls,l3}. If we make use of the fact that z is
linear, we will overwrite the binding with {/3} instead.

The optimisation is valid not only if a variable is linear (used exactly
once) but if it is affine (used at most once). A suitable analysis for find-
ing affine variables is described by Turner, Wadler and the present au-
thor [TWM95]. We leave a proof of validity of this optimisation to future
work.
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Chapter 9

Other Standard Type
Systems

The analyses based on untyped graphs are applicable to untyped languages
as well as languages with any type system. In contrast, the type based
analyses as well as the analyses based on typed graphs rely heavily on the
presence of standard types to guide the analysis.

In this chapter we will try to convince the reader that the flow analyses
presented are not restricted to the simple language described in section 1.6.
We will discuss both more powerful language constructs and more power-
ful type systems. The extensions considered are ML polymorphism (sec-
tion 9.1), sum types (section 9.2), recursive types (section 9.3) and dynamic
types (section 9.4).

For illustration, we will show the extensions to the subtype flow analysis
of chapter 3 and the typed flow graphs of chapter 4, but hope that it will
be clear that the extensions are equally applicable to the other analyses.

We will argue the correctness of the proposed extensions, but will leave
a more thorough investigation as future work.

9.1 ML Polymorphism

We have studied polymorphism at the level of annotations. For standard
type polymorphism we have the types:

t == 7|Bool|t—=t|txt
o u= t|V7i

For convenience, we add explicit syntax for quantification and instantiation
e u= Af.e|e{t}

The type rules for standard ML polymorphism are given in figure 9.1. Tt
should be no cause of confusion that o ranges over both standard type
schemes and flow schemes.

193
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Abe:t (7 not free in A)

V-l AT 7 vt

Al e V7t
V-E =
AF e{t) : t'[t/7]

AFe:oc Ax:oFe:t

let AFletz=cine : ¢

Figure 9.1: ML-polymorphism

It is possible to add annotation to quantify and instantiate expressions,
allowing us to trace which quantifications are instantiated where. Since this
kind of flow is trivial for ML-polymorphism (a quantifier can only flow to the
occurrences of the let-bound variable that was quantified) we choose not to
annotate V. If our standard language included more powerful polymorphism,
such a generalisation of flow analysis could be useful.

The inference system for flow analysis of ML polymorphic terms is pre-
sented in figure 9.2.

Note that ML-polymorphism implies a certain kind of polymorphism at
the annotation level. Consider the following expression:

let id = At B2
in (id{Booll"}}@Truel | id{Bool® {12} Bool®}axty.y)

where we obtain the exact result as a side effect of standard type poly-
morphism. This kind of polymorphism is, however, not as general as let-
polymorphic flow analysis. Consider:

let f = A2z.if 2 then z else Falsel
in...

which has a monomorphic standard type, but where polymorphism at an-
notation level can help improve precision.

9.1.1 ML Polymorphism in Typed Graphs

Intuitively, a type 7 can carry any value since it might be instantiated to any
type. For graphs, however, the opposite intuition is more fruitful: no value
is carried along a 7-cable, since, as long as the value has type 7, it cannot
be used. Thus a 7-cable is no cable at all and the appropriate connections
are made at the instantiation node. A V7.t cable is a t-cable.
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Formulae:

Bool

Bool® € £=(Bool)

L REKS() e K5(t) L BEKS() w e KS(H)

k=R e KS(t—t') wxE R e KS(tx t')
K€ K=(t)
T < (=
T € K=(7) V71.k € K=(VT.1)

Semi- and non-logical rules

C;AFS ek

V-1
C; AFS AT.e: V7K

(7 not free in A)

C;AFS e:V7.s Re KS(D)
C; AFS e{t) : K'[R/7]

V-E

tC;AI—Se:n CiAdx:kFSe
CiAFSletz=eine : x'

le

Figure 9.2: Flow analysis of ML-polymorphic programs




196 CHAPTER 9. OTHER STANDARD TYPE SYSTEMS

Since t-cables and VT.t-cables are the same, quantification nodes just
pass on its incoming cable:

TG(AT.e) = TG(e) v+ { ]

(we can choose to leave out quantification nodes entirely).

At instantiation #[t/7] all occurrences of the bound variables 7; (i’th
component of 7) are replaced by the same type t; (i’th component of #). We
model this in the instantiation node as follows: if Ti(J )is a negative and Ti(k)
a positive occurrence of 7; in ¢’ then add a cable in the instantiation node
from tz(j ) to tz(k). All edges in ' are connected to the “same” edges in #'[£/7].

This is best illustrated by an example. Consider

let id = A\z.x
in id@Q(True, False)

where we assume that id is given type V7.7 — 7. The graph for this expres-
sion looks as follows:
- _

—+ let
/A — LT A .
[

// I I //
¥ \i R
2] id—{f—
- — >

True False

This approach relies on the same intuition as “Theorems for Free”, that
a function cannot touch arguments of polymorphic type [Wad89].

The graph contains the ?*-?~ paths that we expect, but if we want to
know which values a variable can be bound to, this approach is insufficient.
The solution is to let 7-cables be single edges (the dashed edges in the graph
above) that can carry the top label of the types to which it is instantiated.
In the graph, this means that the 7-cables carry the label of the pair around
in the let-bound expression — in itself insufficient to carry True and False
to the root.

Note, that this approach to standard ML-polymorphism gives the same
degree of polymorphism at flow level as the type-based approach: in the
example above, the labels of the pair (True, False) reach the root of the
application node independently of whether there are any other calls to id.
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9.2 Sum Types

In this section we show how our analyses can be extended to handle lan-
guages with sum types. Types are as follows

t == Bool|t—t|txt|t+t]1
Sum types come with associated syntax:
e == inl(e) | inr(e) | case e of inl(z) — ¢; inr(y) — €’ |u

where u is the unit of type 1. The type rules are given in figure 9.3.

L N =TS
+1 Ale:t ArFe:t
Alinl(e) : t + ¢ AFinr(e) : t + ¢

AFe:t+t Ax:trke:t" Ay:t'Fe 1"

B AF case e of inl(z) — ¢ inr(y) — €”:t"

Figure 9.3: Sum Types

The new expressions are given a label:
e == inl'(e) | inr!(e) | casel e of inl(z) — ¢ inr(y) — €’ |u!

and annotations are added to the singleton type and the sum type construc-
tor. The rules are given in figure 9.4.

Note that we actually did have sum types in the original language, as
booleans can be considered as the sum 1+ 1. It is easy to see that with this
definition of booleans, we would arrive at rules similar to those we had in
figure 3.2. The only difference is that ‘True’ and ‘False’ are represented by
inl(u) resp. inr(u) and will thus each have two labels instead of one (but no
increased precision).

9.2.1 Sum Types in Typed Graphs

To extend typed graphs with sum types, we first have to define cables car-
rying values of sum type:

1

. E 1 . 2
A (t+1t')-cable is —— where —= isa t-cable and ==

2

is a t'-cable.
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Formulae:

Bool
°” Bool’ € K= (Bool)

K E€EKS(t) K € KS(H) K EKS(t) K € KS(H)
; V2] < ! x [ < /
k="K e K>t —t) kX" K € K>(txt)

L RE K<(t) K e KS(H) 1
K+ € KS(t+t) 1 e K5(1)

Type-specific logical rules:

. CFU Cl

Uit et 2

CHS k1 <K| CFSko<kh CHI;Cly
C kS gy +8 f@ggn'l-l—ng@g

Sum

Non-logical rules:

1-

L C;A F< ol 1B

C;AFSe:k C;AFS e K/

-1
" C;ARS inll(e) R U C;AFS inrl(e) PR U

C;AFSe:n+'% Ax:wbSe: k" Ay:k e k"

+F
C; AFS casel e of inl(z) — €5 inr(y) — €’ : K"

Figure 9.4: Flow analysis with sums
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TGu) = u—->]
TG(inl(e) : t+1t') = TGle)=——=f  t¥—=
inl: +
t —]
TG(inr(e) : t+¢') = S S
inr: +
TG(e) = U1

TG(case e of inl(z) — ¢ inr(y) — €"’) =

TG ToE

Figure 9.5: Typed flow graphs for sum types
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In figure 9.5 we extend the definition of 7G with the new syntactic con-
structs'. The constructs should be straightforward: the unit u is treated like
other constants (True and False), inl(e) and inr(e) simply connect the root
of TG(e) to the appropriate sub-cable of the sum-cable — note that nothing
flows into the other sub-cable. Finally, the case-construct decomposes the
sum (in a manner similar to x~) and connects the branches to the root
(similarly to Bool ™).

9.3 Recursive Types

Recursive types add the ability to define integers, lists etc. Standard types
are
t == 7|Bool|t—=t|txt|t+t]|prt

where we have retained the sum types from above (since they are required
to make practical use of recursive types). We use 7 for type variables.

Usually, recursive types are added to type systems by adding the equiv-
alence:

put.t = t{pr.t/7]

Since we are decorating standard type derivations, it is convenient to make
applications of this equivalence explicit in the language by adding

e u= fold(e) | unfold(e)

with the following (standard) type rules:

AFe:tlurt/T] wnfold AbFe:purt

fold
Sy fold(e) : pr.t At unfold(e) : t{ur.t/7]

Example 9.1 Lists with elements of type ¢t have the type ur.((t x 7) + 1).
The term fold(inr(u)) is the empty list:

Fu:l
Finr(u): ¢t x (urtx 7+ 1) +1

Ffold(inr(u)) : pr.t X 741
The list [True, False] : [Bool] is formally
fold(inl((True, fold(inl((False, fold(inr(u)))))))) : u7.((Bool x 7) + 1)

|

1Using +* and +~ would have been more consistent with the rest of the naming, but
would give us two +7 constructs (not mentioning the rather dubious name itself).
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By adding annotations to ‘fold’ and ‘unfold” we can trace the flow of
foldings to unfoldings — we do, however, not see any usefulness of such
information so we leave fold and unfold unannotated. Thus we add the
following rules to our formulae (see figure 9.4)

. kEKS() T€KS(r)
e KS(r) a pr.k € KS(pr.t)

The inference rules for flow analysis are straightforward since no annotations
are involved:

AL . CARS .
C; A= e: k[ur.k /7] anfold C;AFSe:urk

fold = =z
C; A= fold(e) : pr.k C; A F= unfold(e) : k[uT.k/T]

Note, how applications of the fold rule lose information by requiring that all
occurrences of k in k[u7.k/7] are annotated in the same way.

To illustrate this consider the list example above. The list [True!!, False2]
could be shorthand for

fold(inl® ((True’ , fold(inl* ((False'2, fold (inr'® (u'0)))'))) /7))
which we can give type

uT.Bool{ll’lQ} scllelr} oy {lslasls} 1{lo}

Note how information is lost: we can only give a description of the elements
of a list that fits all elements.

Lists have different representations. Alternatives to the type given for
lists in example 9.1 include:

tx (pritxr+1)+1

and
putt X (Ex 1)+t x1+1

These types are equivalent to the type given above, but if one of these is the
type used for lists in a standard typed program, it will allow greater precision
at the flow analysis level. The first type will allow us to annotate the first
element of lists differently from the remaining (which all need to have the
same annotation). The second type requires every second element of lists to
have the same annotations (that is, the first, third, fifth etc. have the same
annotation and the second, fourth, sixth etc. have the same annotation).

9.3.1 Recursive Types in Typed Graphs

The same idea for treating standard type variable employed with polymor-
phic types is applicable to recursive types. We will adapt the variant where
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T-cables are empty — this makes even more sense with recursive types as
no variable will ever have type 7 and hence the values that a variable can
evaluate to can be read from the graph even without 7-cables.

As with polymorphic types, the important connections are made inside
the nodes involving 7-cables: with ‘fold” and ‘unfold’. The connections made
are somewhat more complicated as the 7 binder appears on both “sides” of
the node.

A pr.t cable has to carry the information from all unfoldings of the type,
hence we need a ¢ cable to carry the information of ¢ as well as instantiations
with p7.t of positive occurrences of 7, and a flipped ¢ cable to carry the
information of instantiations of negative occurrences of 7. Similarly, we
need a wire in each direction carrying ‘fold’ values. Thus

2
A pur.t cable is _1~ where =L isa t-cable, <= s its

o —

flipped version and =2 is a t-cable.

The forward single edge is the carrier and carries the label of the applied fold
operation; the backward single edge carries the labels of all fold operation
that can occur in argument position.

Fold and unfold m-nodes are dual and parameterised by the recursive
type involved. An unfold m-node has an incoming p7.t cable and an out-
going t[uT.t/7] cable. Let superscripts index the occurrences of 7 in ¢ as
in the polymorphic case. We connect the edges of the positive sub cable of
the incoming cable to the nodes of the outermost £ on the outgoing side.
Furthermore, the incoming p.t cable is connected to all 7.t — directly if
() is a positive occurrence of 7 in t and “switched” if 7 is a negative oc-
currence. The fold m-node has an incoming t[u7.t/7] cable and an outgoing
put.t cable. Connections are made similarly.

Example 9.2 The ‘fold’ m-node for folding (ur.7 — 7) = (u7.7 — 7) to
put.m — 7 and the dual ‘unfold’ m-node for unfolding ur.7 — 7 to (ur.7 —
T) = (ur.7 — T) are given in figure 9.6. The type constructors are included
to remind the reader of the kind of labels carried by the individual wires.
O

9.4 Dynamic Types

This thesis has so far concerned analysis of typed programs. This section
will show that this need not be a restriction of the applicability of the ana-
lyses. Most programming languages that we usually consider untyped are
dynamically typed: they perform runtime checks of well-typedness?.

2 An obvious exception to this is machine code.
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Fold:

T3 T

Ttz  Tats

Unfold:

T=t= 1 T27s

T3 T3

Figure 9.6: Fold and unfold
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It is possible to optimize a program such that only necessary run-time
checks are performed: we can statically insert the explicit run-time checks.
Among the possible completions of a program we can then choose the com-
pletion with as few checks as possible. A program that is statically typable
will include no explicit checks and other programs will only contain them
in places where the static analysis cannot guarantee that no type errors
will occur. Expressions where the analysis cannot infer a standard type
will be given type dynamic which we write D. For more details see Hen-
glein [Hen92, Hen94], and for a description of an extension with polymor-
phism, see Rehof [Reh95].

The types are thus standard types plus the special type D:

t == D|Bool|t—=t|txt

The full type system is given in figure 9.7.

Conversion Rules:

Bool! : Bool ~» D Bool? : D ~ Bool

Fun!:D =D~ D Fun?:D~ D —D

Pair! :Dx D~ D Pair? :D~ D xD
cl:tlfwtll 02:t2’\’>t12 cl:tlf\»tll CQ:tQ«»t'Q
01X021t1><t2vt11><t,2 01—>021t,1—>t2Mt1—>t12

Non-logical rules:

AFe:t c:t~1t
Sub Abe:t

The remaining rule are as in figure 1.1

Figure 9.7: Dynamic Typing

The conversions Bool!, Fun!, Pair! correspond to tagging operations:
they take an untagged value which the type system guarantees has a given
type (eg. Bool) and throws it into the common pool of values about which
the type system knows nothing. In this pool values have tags that can
be checked at run time. Conversions Bool?, Fun?, Pair? check the tag of a
value and provide the untagged value of which the type inference now knows
the type.

Using recursive types and sum types, we already have sufficient power
to specify dynamic types. Type D is equivalent to

ut.(t = 1)+ ((7 x 7) + Bool)
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The conversions are expressible in our language. E.g. Bool! is
fold o inr o inr

and Bool? is
outr o outr o unfold

where outr is a shorthand for

Az. case x of
inl(y) — error;
inr(z) — =z

Using this encoding, we are able to derive a “canonical” annotation of con-
versions. Type D should be given five annotations according to the recursive
type it represents:

ut.(1 b 7) 414 (1 x b2 T) +0 Booll3)

If an expression e has this type, the annotation /; represents the set of
function values that e can evaluate to. Similarly, ¢ and ¢35 represent the
set of pairs respectively the set of booleans that e can evaluate to. Labels
l4 and /5 give a unique identification of the tagging operations that have
lead the the dynamic type. Thus these would allow us to trace the flow of
tagging operations to untagging operations. For this purpose, it would be
more convenient to use just a single annotation on the tagging operation.
In the analysis we present in figure 9.8 we choose to leave out the tagging
labels as it was not our original intention to trace this kind of flow.

Note that we used the coding of dynamic types using recursive and sum
types as guidance in the specification, but, naturally, we do not need to
include these in the system.

This analysis gives as good results as subtyping flow analysis for pro-
grams that can be typed using a standard type system (i.e. where type D
need not be used), but we lose information whenever a standard type cannot
be inferred.

9.4.1 Dynamic Types in Typed Graphs

By the coding of dynamic types using sums and recursive types, we find
that a D-cable consists of 6 forward and 6 backward edges (the 6 are —, +,
X, +, Bool, ).

Since the labels carried by the sum and p edges are the same, we can
replace them with one forward and one backward edge carrying tagging
labels?:

3We could, as above, chose to leave tagging labels out completely.



206 CHAPTER 9. OTHER STANDARD TYPE SYSTEMS

Formulae:

Bool

Bool® € K= (Bool)

K EKS(t) K € KS(H) K EKS(t) K € KS(H)
3 [ < / X £ 1 < /
k="K e K>t —t) kX" K € K>(txt)

Dyn

D(Zhb,fs) e }CS(D)
Conversion Rules:

Bool! : Bool! ~» DUI{}10
Bool? : DW:82:8) ., Boolls

Fun! : DWit2:l3) b plibasls)  p(lila,l3)
Fun? : DWL2:63) , Drslats) ol p(lr2,L3)

Pair! - DWi2.83) o p(lr,lasts) , Dl1,L2,83)
Pair? - DWt2:3) , DWitads) b2 py(br,la,ls)

Cltlﬁ?l’\»ﬁll CQ:KJQ’\’)K/Q Cltlﬁ?l’\»ﬁll 62:/“62’\’)/‘3712
61XCQZI<&1><K,2MI<&,1XI€IQ Cl—>CQZh‘,Il—>I<&2MK,1—>I€IQ

Type-specific logical rules:

Dyanélgé’l ChHeCl, CFil3CH
C l—S D(£1a£27g3) S D(£,1’£,23€€’~,)

Non-logical rules:

SubC;Al—Se:ka c:k~ K
CiAFSe:w'

Figure 9.8: Flow analysis and dynamic typing
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|
= - A
X <~
Bool <~
! _
— _ - |
X —_—> —
Bool —— > X
—— Bool
— —
S — |
| I < —
— _ < X
X —> <~ Bool
Bool —>
| -]
% <
X D —
Bool /

Figure 9.9: The [Fun!]' m-node

where the edges read from top to bottom carry labels of type: !, —, x, Bool,
!, =, x and Bool. Now the tagging and untagging m-nodes can be found
by combining m-nodes for sum and recursive types.

Example 9.3 The [Fun!]' m-node (equivalent to fold’ o inl') is given in
figure 9.9 (where the left-hand side is a D — D cable and the right-hand
side is a D cable).

a
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Chapter 10

Applications

This chapter will show how flow analysis can be used as the basis for program
analysis. We will also illustrate the limitations of our approach imposed by
our choice of predicting flow under any reduction strategy.

First we describe constant propagation in section 10.1. This is a classical
optimisation that allows variables that can only result in one value to be
replaced by this value. We can generalise this to replace any expression
that can only result in a single value by the value. We will give the general
construction and show how this can be used on top of the various flow
analyses that we have described in this thesis.

Section 10.2 describes a generalisation of constant propagation called
firstification. Firstification transforms a higher-order program into a first-
order program by propagating all functions (along with the bindings for free
variables).

In section 10.3 we will show how binding-time analysis can be based on
our flow analyses. We show how certain properties of flow analysis are trans-
ferred to the binding-time analysis and how this imposes extra requirements
on the specialiser employed.

10.1 Constant Propagation

Constant propagation analysis seeks to find expressions that will evaluate
to the same value during any evaluation of the program. If this is the case,
the expression can be replaced by the value. An expression can be replaced
by a value v if the flow type of the expression identifies a unique value.

e Type Bool” identifies the unique value v if {v} = (J,c;, ExpOf(l).

e Type k x' k' identifies the unique value (v, ') if k identifies the unique
value v and «’ identifies the unique value v'.

e Type ' —¢ k identifies the unique value \z.v if x identifies the unique
value v.

209
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It does not seem difficult to prove constant propagation based on flow
analysis sound under any reduction order using the subject reduction prop-
erty for the flow analysis. Some care must be taken concerning free variables
(see section 10.1.1 below).

We go on to sketch how the analyses presented in chapters 2 to 6 can be
used as a basis for constant propagation.

10.1.1 Simple and Subtype Constant Propagation

The above definition gives a complete definition of a constant propagation
analysis based on simple or subtype flow analysis. We notice that choosing
the minimal, principal flow derivation is important to obtain good results:

1. If we choose the minimal (non-principal) type derivation, the result
can be unsound. Consider the minimal type judgement

S Aylet f = Az.z in (f@True’, f@y) : Booll! — (Boolt} xBoolth)

We find that x has type Boolt} but in general it would not be sound
to replace z with True''. It can be argued that it is sound under the
assumption that the expression is never applied, but this is not a very
useful result of constant propagation: return an optimised program
that only works right if never used!

2. If the derivation is principal but not minimal, the result will naturally
be less constant propagation.

We can extend the notion of constant propagation to include propagation
of free variables. In minimal flow derivation, we have by theorem 2.8 that
the final judgement C; A F° e : k contains only flow variables occurring in
A or k. Suppose that the assumption for a free variable z is x : Bool® and
« does not occur anywhere else in A or k. Then, if an expression has type
Bool® in the derivation, we can replace this expression by x (eg. optimise
‘if  then z else 2’ to ‘x’).

10.1.2 Polymorphic Constant Propagation

Constant propagation based on polymorphic flow analysis comes in two
flavours: sticky or mon-sticky. The choice depends on how the compiler
can make use of the inferred information.

Sticky polymorphic constant propagation uses the idea of section 5.2.2
to obtain a ground flow function from a polymorphic derivation: replace any
bound label variable o with the union of the sets of labels to which it can
be instantiated.

When all polymorphism has been removed, monovariant constant prop-
agation as described in section 10.1.1 can be applied.
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Example 10.1 Consider

let id = M3z.x
in let y = id@True’
in (y, id@False'?)

With explicit flow abstraction Aa.--- and instantiation, the definition of id
is Aa.\Bz.2 : Bool® =13} Bool®. If we apply the above procedure, we find
that 7d has a ground type Booltlt2} _s{la} Boollltl2} From this type, we
see that we cannot replace any value for . The type for y, however, is not
affected by this, and remains Boolti} allowing us to replace True't for the
occurrence of y. Similarly we can replace the expression id@False? with
False!? and the expression id@True'! with True’'.

O

The non-sticky approach inserts explicit abstractions and instantiations
as above, but retains these as part of the result of the analysis. The compiler
interprets flow abstractions and instantiations as any other abstraction and
application: it should, however, choose to beta-reduce all at compile time.
This will result in a new copy of the body of a flow abstraction for any set of
labels to which it is applied (use memorisation to avoid unnecessary copies).
FEach copy will have different constant propagation properties.

Example 10.2 Recall the expression of example 10.1. With explicit ab-
straction and instantiation we get

let id = AaXBz.z : Bool® — 13} Bool®
in lety = id{{l;}}@True"
in (y,id{{ly}}@QFalse?)

By beta-reducing the instantiations we get using memorisation:

let idy = 322y : Boolllt} —{ls} Boolth}
in letidy = N3xg.29 : Boolll2} —{ls} Boolll2}
in let y = id, @True't
in (y, idy@False!?)

With this expression we can replace the occurrence of 21 with Truel! and the
occurrence of zo with False’?. In this example, the additional information
inferred is useless as the information inferred in example 10.1 replaces all
calls to the identity function with the result, but in general, better results
can be obtained at the cost of duplicating expressions.

O

Soundness of non-sticky constant propagation does not follow immedi-
ately from the subject reduction results of chapter 5. It should be straight-
forward to extend the reduction system with explicit flow abstractions and
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instantiations and prove a subject reduction result for the explicit poly-
morphic analysis. This would prove the essence of correctness of the above
constant propagation; we would furthermore have to prove the memorisa-
tion employed correct. Finally, the implementation should avoid copying
expressions when it can lead to duplication of evaluation.

10.1.3 Intersection Constant Propagation

As with polymorphic constant propagation, we have sticky and non-sticky
versions of intersection based constant propagation. In the sticky variant,
an expression with intersection flow type A; Bool% can be replaced with
ExpOf(l) if U, L; = {l}.

In the non-sticky variant, an expression of type A;c {1,--n} i should be
treated as an n-tuple of expressions and the subtype step corresponding to
A-elimination corresponds to projections of the tuple.

10.1.4 Graph Based Constant Propagation

If we base the analysis on the typed flow graphs of chapter 4 we examine any
expression to see which constants can reach it. We should also find the free
input variables that can reach the expression. The interface of the graph
can be inferred directly from the graph: it is the collection of cables from
free variables and the result cable.

By the definition of constant propagation above, the question whether
an expression can be replaced by a value depends on the flow type of the
expression. This can be derived from the result cable ¢ of the expression by
for each edge e in ¢ finding the set of constructors such that there is a path
leaving the carrier edge of the constructor and traversing e. Note that we do
not have to construct the whole flow type: we are only interested in forward,
boolean edges of rank 1 (using the standard definition of rank). To find the
dependence on the input, we search for paths starting in the interface and
traversing e.

We find the set of constants and input variables that traverse an edge by
doing a single sink transitive closure from the edge (backwards reachability).

We can take advantage of the ability of typed graphs to do query-based
flow analysis in linear time (assuming constant bounded types) to check only
whether certain expressions can be replaced by a constant.

10.2 Firstification

Firstification can be seen as a generalisation of constant propagation that
propagates all functions to applications. Since the function part of an ap-
plication will not always be a unique function, it is replaced by a dispatch
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for choosing the appropriate function. Thus firstification transforms higher-
order programs to first-order programs. For this to make sense, we must
assume that all input to the program is first-order.

Since our goal is not a description of firstification techniques, but an
illustration of the usefulness of flow analysis to improve the results of firs-
tification, we will assume that we are given a lambda-lifted program. De-
scriptions of lambda-lifting can be found in the literature, e.g. [PJ87]. We
assume that the program has the following form:

let fl = A(mlla"'a$1m1)-81
fo = A(mnla T 7mnmn)-en
ine
where we assume e, e, -+, e, to be lambda free. We have furthermore al-

lowed tupling of parameters; applications are tupled similarly thus disallow-
ing partial applications.!
Now firstification proceeds as follows:

1. Replace all occurrences of variables f; ine, e, -+, e, with the constant
I; (formally some coding of the integer i, e.g. an i-tuple of True).

2. Apply F[] to e,eq,---,e, where F[-] is defined as follows:

Fle@( F[[x)% _ f
e faFe, - Flen)

ln = fmn@Q(F[ei],---, Flem])

F[True!] = True
F[False'] False'

Fif' e then ¢ else ] if! Fe] then F[e'] else F[e"]
Fl(e,e')] (Fle], Fe'D)’

Fllet! (z,y) beeine’] = let (z,y) be F[e] in F[']
F[fix'z.€] fix'z. F[e]

Fllet! z =eine’] = let! z = F[e] in F[¢']

(where we can think of ‘case’ as syntactic sugar for a series of ‘if’).
We have thus arrived at a first-order program but have paid a heavy
penalty in the form of a large dispatch at every application. Flow analysis

'For firstification as presented here to work, flow analysis should be applied to this
program. The ideas, however, extend to less crude methods of firstification without the
lambda-lifting transformation — in this case the result of analysing the original program
will suffice.
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can reduce the cost greatly: in any case statement case e of [y ... where ¢
has type xk we can reduce the dispatch to only test for labels in ann(k). If
ann(k) is a singleton set, the dispatch can be eliminated.

By the assumption on input to the program being first-order, we can
(potentially) reduce all dispatches. This does not mean that we have to give
up modularity entirely: only if we have case e of ;... where e has type &
and ann(k) = « we will suspend the reduction until « is instantiated.

The sticky interpretation of polymorphic flow analysis seems to make
more sense than an unsticky interpretation for firstification. Basing the
optimisation on typed graphs is similar: we find the set of functions that
can be applied at a given application by doing backwards reachability from
the top node in the application multi-node.

We end this section by noting that the first uses of flow analysis were
essentially to transform programs to first-order form allowing the application
of first-order analyses. Usually the transformation was implicit, that is, the
program was not transformed, but the analysis relied on closure information
at every application point. The binding-time analysis of early versions of the
partial evaluator Similix was based on a version of the closure analysis by
Sestoft [Bon91]. The value flow information derived by the closure analysis
did not immediately give the binding-time results, but allowed a binding-
time analysis that was essentially first-order to be used.

10.3 Binding-Time Analysis

Partial evaluation aims at reducing a program as much as possible given part
of the input to the program (for a standard reference on partial evaluation,
see [GJS93]). To allow self-application, partial evaluation is often based on
binding-time analysis, which given information on the availability of input,
separates the analysed program into a static and a dynamic part. The static
part can be evaluated at specialisation time whereas the dynamic part has
to be residualized (i.e. made part of the specialised program). The input
to binding time analysis is a program and a separation of the input into a
static and a dynamic part. A subexpression of the analysed program should
be annotated as static, if it can be reduced on the basis of the static input
only.

10.3.1 Type-Based BTA

Let us assume that a principal flow derivation with final judgement C; A -
e : Kk is given where the annotations in A and the annotations occurring
negatively in x are unique label variables LV .2 Let a binding-time separation

2This is the interesting case, but it is easy to extend the ideas to any proper environ-
ment.



10.3. BINDING-TIME ANALYSIS 215

be a division of LV into a static part LV and a dynamic part LVj.
We interpret annotations as follows:

BT(¢{) = D ,ifdaeLVyst.CFaC/l
BT(¢) = S , otherwise

We find the binding-time of a constructor e : x by interpreting ann(x). The
binding-time of a destructor e is the interpretation of ann(x) where €' : k
is the destructed expression. E.g. the annotation of an application e@e’ is
BT(() if € has type & —¢ &'. Other expressions (‘let’ and ‘fix’) can always
be annotated as static?

This approach extends directly to the non-sticky polymorphic analysis:
the abstractions and bound label variables are left in the program as explicit
abstractions and applications. Note that we can prove BT of an annotation
to be dynamic even if it involves a bound label variable. E.g.

let f = A z.if dy then z else ds
in---

where dy and do are free dynamic variables. The flow type of f could be
V(a, pes)-{a C Qpes, g, C atpes} = Bool® — 1} Bool@res

but we can prove that a,.; must be D and thus the binding time type can
be Ya.{a C D, a4, C D} = Bool® —5 BoolP which in turn can be reduced

to Ya.Bool® —S BoolP. We leave the details to future work.

A kind of soundness follows from the soundness of flow analysis: if e has
type &, £ = ann(k) and Ao € LVy s.t. C'+ o C £ then e can only evaluate to
statically known values. This soundness concept of binding-time analysis is
independent of the specialiser that will make use of the result of the analysis
and therefore is no guarantee that a specialiser can actually make use of the
information.

For this reason, binding-time analysis is often proven correct w.r.t. a
given specialiser. This approach is called monolithic safety. In contrast to
this Henglein and Sands discuss model based safety criteria [HS95]. Un-
fortunately, their criterion is not strong enough to prove even the simplest
of the binding-time analyses based on flow analysis we present below (this
is due to their inability to account for context-propagating specialisers, see
below). Instead of giving any formal soundness results for our binding-time
analyses, we will discuss informally which requirements the analysis makes
on the specialiser, if a monolithic soundness proof is to be possible.

The problem with soundness can be paraphrased as “the more precise
the binding-time analysis, the harder the specialiser has to work”. This is

3This is a sound annotation, though not always desirable, as it might lead to unwanted
or even infinite duplication. We believe that such concerns should be left to a separate
termination analysis.
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very different from the constant propagation transformation, where a more
precise analysis was only an asset that gave rise to better transformations.
In binding-time analysis a more precise analysis might even be undesirable
if no specialiser taking advantage of the information can be found.

We illustrate this by an example:

let app = N1 f. A2z f@by
in if" app@s (Mo y.y)@" True’® then app@le g@loFalsel!! else - - -

where ¢ is free dynamic function (g has type Bool® —%*2 Bool®® where
a1, ag,a3 € LVy). A simple flow analysis as well as a subtype flow analysis
will infer that both applications of app will result in some o where ag C «
and {ls} C a. Hence the conditional and the branch need to be made
dynamic.

The annotated program resulting from subtype based flow analysis will
be:

let app = A £S5z faDy
in ifD app@S(ASy.y)@STrueS then app@sg@SFalseS else - -

The simple flow analysis based binding-time analysis will require True and
False as well as A% to be dynamic:

let app = )\Sf.)\sx.f@Da:
in ifD app@s()\Dy.y)@STrueD then app@sg@SFalseD else - - -

The binding-time result from simple flow analysis can be interpreted by
standard specialisers (and we believe this to be true for all programs), but
even the sub-type based result requires non-standard techniques. Consider
the variables x and f. The flow type of x is Boolt/s/11} and thus z is static.
The flow type of f is Booll!s:/11} a5 Bool®fres where ag C ar, {le} C ay,
a3z C oy, . and {lg,l11} C ay, .. This implies that the binding time type of f
is Bool> =P BoolP. The flow type of A\6y.y is Boollls:li1} _y{ls} Boo]{lsihn}
which maps to the binding-time type Bool® -5 BoolS.
The problem is that while the subtyping step

Boollls:11} _{le} Boolilslit} < Boolllslitt e Bool®fres

is legal (under the assumption given above), the corresponding binding-time
subtype step
BoolS —>S BoolS < BoolS —>D BoolD

needs to be interpreted by the specialiser. The point is that subtype steps
have an operational meaning in partial evaluation, namely converting the
internal representation of a value to the program fragment representing the
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value. While it is straightforward to convert the internal representation of
a first-order value to its program representation, it is not as easy to convert
the internal representation of a function (i.e. a closure) to its external rep-
resentation (i.e. a lambda-expression). Therefore, most specialisers disallow
higher-order subtype steps (coercions) as the step above.

Higher-order coercions can be handled by interpreting them as eta-

conversions?*

. Above, the binding-time analysis would transform )\Sy.y to
)\Dz.()\sy.y)@sz. Thus, the binding-time analysis based on subtyping flow
analysis remains sound, but puts constraints on the specialiser that can
utilise the derived binding-time information.

As an aside, we note that with higher-order coercions, all constructors
can be annotated as static. This implies that we are only concerned with
finding the annotations for destructors — thus binding-time analysis can be
based directly on a flow function F.

Binding-time analysis based on non-sticky polymorphic flow analysis re-
quires the specialiser to be able to interpret ezplicit binding-time abstraction
and instantiation. The above example is annotated as follows:

let app = Aoy, oy, ay,, ozfres))\sf.)\sm.f@afx
i if® app{S,S,S,S}@S()\Sy.y)@STrueS
then app{S, D, D, D}@S g@SFalse®
else - - -

A specialiser capable of handling explicit abstraction and instantiation is
described in [HM94] — the extension is straightforward: treat binding-time
abstraction and instantiation like static lambda-abstraction and application.
If the above expression is analysed using a sticky binding-time analysis
based on polymorphic flow analysis, we find the following annotation

let app = A f Sz f@Py
in if° app@S(ASy.y)@STrueS then app@sg@SFalseS else - -

Even though this annotation is sound in the way discussed above, it would
be a very bad starting point for a specialiser as the annotation D on the
application does not indicate that this application should always be residu-
alized.

Intersection based flow analysis naturally gives rise to the most demand-
ing binding-time analysis — since specialisers are usually required never to
discard computation, our completeness result on the flow analysis implies
that a destructor is only deemed dynamic if the argument (function, condi-
tional or pair) is part of the dynamic input.

The binding-time analysis should insert explicit A-I and A-E constructs
which would be interpreted by the specialiser as pairing and projections.

“A different approach is to keep both representations at all times during specialisation.
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Thus any expression of type A;c {1y} K would be copied in n versions
during specialisation. The complexity of such a specialiser would be as
forbidding as the complexity of the intersection based analysis.

All the above binding-time analyses have an additional requirement to
the specialiser. Consider ‘if’

if e; then eq else e3

If e; is annotated as dynamic the conditional cannot be reduced, and a
“direct-style” specialiser will then require the result of the ‘if’ to be deemed
dynamic. This is true even if the branches depend only on static input.

We can get around this problem by improving the specialiser: a context-
propagating or CPS-based specialiser can “push” the context in which the
conditional occurs to the branches and allow specialisation of static branches
under dynamic control — the context propagation rules allowing this corre-
spond to the rules of figure 6.8.

While the problems described first originated from better binding-time
analyses requiring better specialisers, this problem is inherent in all our
flow analyses — why is this so? The answer lies in our very first decision
to approximate the value flow under any reduction order. A direct style
specialiser relies on a specific reduction order (conditional before branches)
and thus requires the flow analysis to model this. Surprisingly, our choice
of sacrificing some precision to achieve general applicability has led us to
analyses that are not generally applicable!

10.3.2 Graph-based BTA

It is straightforward to base binding-time analysis on typed graphs: attach
the constant D to all edges in the interface that correspond to dynamic
input (see section 10.1.4 on the notion of interface). Binding-time analysis
proceeds by doing single-source transitive closure (or reachability) from these
constants. All destructors that terminate a path starting from D should be
annotated with D.

If we assume that all types are of bounded size, this results in a linear
time algorithm.

Henglein describes a near linear time algorithm (in the size of the (un-
typed) program) for binding-time analysis of untyped programs [Hen91].
This analysis is of strength comparable to the graph-based algorithm but
differs by not allowing higher-order coercions and by assuming a direct-style
specialisation of ‘if’. His analysis can, however, be changed to deal with this
— retaining the complexity if allowing higher-order coercions would, as in
our case, rely on an assumption that all expressions had bounded types.

We note that with this approach it is also easy to do “poor man’s gener-
alisation” [Hol88]. This is an optimisation, that annotates any constructor
that will always eventually be coerced to dynamic as dynamic. The point is
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that if an expression will always be residualized, it can be an advantage to
do so as early as possible.

The binding-time analysis has divided the destructors into static and
dynamic by initially assuming all to be static, and then deeming as few as
possible dynamic using forward reachability from the set of dynamic inputs.
We implement “poor man’s generalisation” in the same way: initially assume
all constructors to be dynamic and do a backward reachability from the set
of static destructors thus deeming only the constructor that will actually be
used statically as static. As with binding-time analysis, this can be done in
linear time assuming that types are of bounded size.
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Chapter 11

Related Work

In this chapter we will discuss the relation to other work. We will not discuss
the vast body of work on flow analysis of first-order programs. Instead, we
concentrate on previous and contemporary work on flow analysis of higher-
order functional languages. We have — somewhat artificially — divided the
work into abstract interpretation based (section 11.1), constraint based (sec-
tion 11.2), set-based (section 11.3) and type based analyses (section 11.4).
The development of flow analyses has often gone hand in hand with work on
ensuring type safety of programs. Section 11.5 briefly presents and discusses
work in this area.

11.1 Abstract Interpretation

The first (to our knowledge) flow analysis of higher-order programs was
defined by Jones [Jon81a, Jon81b]. Jones defines an abstract machine im-
plementing (outside-in) call-by-value reduction. The machine rewrites states
consisting of a context (identifying the redex within the term) and a redex.
To avoid substitution, expressions are represented by a pair of a term and an
environment mapping free variables to values. Using a finite approximation
of states, a flowchart can be achieved such that, if there is a state transition
in the evaluation of a term, then there is an arrow in the flowchart between
the abstract values of the states. This kind of flow analysis can truly be
called control flow analysis, as evaluation order under call-by-value is mod-
elled in the flow chart. Furthermore, the abstract states contain information
about the values of free variables in closures.

A later flow analysis by Jones analyses lambda lifted (no explicit lamb-
das, but partial applications allowed) lazy functional programs [Jon87]. The
analysis finds safe descriptions of input-output behaviour of each defined
function: a grammar is used to give an approximate description of the val-
ues that can be bound to variable and the value that a function can result
in.

221
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The closure analysis of Sestoft [Ses88, Ses91] was developed to facilitate
globalisation analysis [Ses89], which attempts to discover whether a function
parameter can be turned into a global variable. We have described the anal-
ysis in depth in section 3.3 and will not describe it any further here. Sestoft’s
analysis formed the basis for the closure analysis in Similix-2 [Bon91] where
the information was used as a basis for a number of analyses, most notably
binding-time analysis.

Ayers extended the Sestoft’s closure analysis with reachability as de-
scribed in section 8.1 [Aye92].

Independently of Sestoft, Shivers [Shi88, Shi91c, Shi91b] defined the flow
analysis described in chapter 7. We will not describe this further here, as it
has already been covered in depth.

Jaganathan and Weeks describe a general framework for development
of flow analyses [JW95a]. They analyse a higher-order language with con-
structors and first-class references, and give an exact operational semantics
using a set of states and a transition function. Analyses are obtained by
abstract interpretation of the semantics. An analysis equivalent to the anal-
yses of chapter 3 (mistakenly coined 0CFA) is described as one abstraction
and is proven equivalent to set-based analysis (see below). As in Shivers’
analyses, contours are used to allocate new dynamic activation frames and
they are represented by a list of call-site labels. This allows abstractions in
the style of Shivers’ nCFA, but the framework allows greater variation in
abstraction, and a non-trivial abstraction of contours is described that does
not lead to exponential complexity. Even though alternative representations
of contours are discussed, it is not clear that the framework is sufficiently
general to include analyses such as our polymorphic and intersection based
analyses.

Jaganathan and Wright describe a flow analysis which strictly improves
over Sestoft’s analysis [JW96b]. The first improvement is an extension with
reachability like Ayers’, but more importantly they describe a technique
called polymorphic splitting: they use contours like Shivers to record the
call-history, but inspired by let-polymorphism, only calls to let-bound pro-
cedures are recorded. Thus the call-history is bounded by the nesting depth
of ‘let” and no abstraction (like in nCFA) has to be made. In its full general-
ity, this idea corresponds to analysing a fully let-unfolded program and hence
to our let-polymorphic flow analysis of section 5.2. This is, however, deemed
prohibitively complex and the analysis given yields less precise information
than our let-polymorphic analysis in cases such as:

let f=Az.x
in let g = Az \y.(fQz, fQy)
in (¢@Truet @True’?, g@False’® @False!t)

(adapted from an example in [JW96b]) which will merge the results of the
first occurrence of f resulting from the two calls to g, and similarly the
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results of the second occurrence. The flow description of the full expression
will thus be (Boolt 3} x Boolt244}) x (Boolt1 3} x Boolt!2#4}) instead of the
precise result (Bool'} x Boolt2}) x (Boolls} x Boolt4}) achievable using
let-polymorphic flow analysis.

The analysis has been implemented for full Scheme and reasonable run-
times are reported for the untuned implementation. The paper describes
applications of the analysis to avoid run-time checks and inlining (which is
also reported in [JW95b] resp. [JW96a]) and shows significant speed-ups due
to the analyses.

11.2 Constraint Based Analysis

Bondorf and Jgrgensen described a very simple linear time flow analysis for
Similix [BJ93] — we have already described this analysis in chapter 2 so we
will not describe this further here.

Palsberg [Pal94] investigated the relationship between the traditional
abstract interpretation based analyses and constraint based analyses. He
proves that the constraint based closure analysis he presents is equivalent to
the closure analysis of Bondorf [Bon91] (which in turn was based on Sestoft’s
analysis [Ses88, Ses91]). This leads Palsberg to a proof of preservation of
flow information under arbitrary beta-reduction (Sestoft had only been able
to prove invariance under call-by-name and call-by-value).

Independently of our work, Heintze and McAllester recently described
an algorithm for flow analysis which allowed single queries to be answered
in linear time under the assumption that the size of types was bounded
[HM97]. Not only is the result similar to the result reported in section 4.2,
but the algorithm is essentially identical: reachability in a graph, where
each subexpression is represented by a collection of nodes (named n, dom(n),
ran(n) etc.). The graph is not constructed directly from the explicitly typed
program but using inference rules — this avoids adding argument edges to
functions that are never applied and result edges for functions whose result
is never used. Hence graph construction is slightly more complicated and the
resulting graphs slightly smaller, but the asymptotic complexity is identical.
The difference shows up in their extension to ML polymorphic languages,
where edges are created corresponding to the collection of instances of a
polymorphic function. This does not give any polymorphism at annotation
level as our approach does (though, when they extend the analysis to handle
pairs, instantiations of a type variable to pairs and functions will be kept
separate thus giving some polymorphism — this fact is not noted by the
authors). The authors sketch an extension of their analysis with ‘cons’, but
while their treatment resembles ours, it seems rather ad hoc and it is not
clear how it generalises to arbitrary recursive types.
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11.3 Set-Based Analysis

Set-based analysis and our flow analysis have very similar aims: given a pro-
gram, set-based analysis finds a set of values for each variable and subexpres-
sion that is a superset of the values that the variable resp. subexpression can
evaluate to. This differs slightly from flow analysis, since it does not infer
which constructor was responsible for the value — the extension, however,
is trivial.

Set constraints for higher-order functional programs were introduced by
Heintze [Hei90, Hei93]. His analysis works by generating set-constraints
and finding a least solution to these. Heintze gives an O(n?) algorithm for
constraint solving. Heintze’s analysis and in particular his derivation of the
analysis is rather complicated. The analysis was simplified by Flanagan and
Felleisen [FF95], who used a reduction semantics with a global heap. This
allows easier and less ad hoc extensions of the analysis to languages with
assignment and non local control constructs.

The analyses are very similar to the flow analysis of Palsberg [Pal94].
This is particularly evident in the formulation of Flanagan and Felleisen
though this is not remarked upon and Heintze remarks that his analysis
“can be roughly compared to 0CFA” (though this seems to be under the
prevalent misconception of 0CFA and closure analysis being equivalent)’.

The set-based analyses of Heintze and Flanagan and Felleisen do not
state any results concerning modular analysis and it is far from obvious how
modularity can be achieved. Both analyses seek the least solution under
set-inclusion which, as discussed in the introduction, is the relevant solution
concerning the internal flow in a program, but which is rather useless when
describing the input-output behaviour and the flow of arguments: it seems
likely that the analyses can be extended such that input to the program
(via free variables or arguments) could be treated separately, giving them
a special value which could be traced through the program (such a special
value is not essentially different from our label variables).

Heintze briefly mentions an extension of set-based analysis with poly-
variance. Essentially, this works by duplicating functions to allow separate
analysis of different calls to the function. Instead of duplicating the function
itself, the constraints generated from the function can be duplicated. In its
full generality this can achieve the same precision as our polymorphic flow
analysis, it is, however, not immediately implementable in each full general-
ity as there is no obvious way of controlling the amount of duplication done.
Heintze uses a heuristic based on a first mono-variant analysis that approxi-
mates the set of functions that can potentially benefit from duplication. This
approach is far more ad hoc than our, and can (by theorems 5.24 and 5.43)
never be better than let- and fix-polymorphic flow analysis. Furthermore,

' As mentioned above, the connection was proven by Jaganathan and Weeks [JW95a].
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no complexity is given on the polyvariant analysis — in the implementa-
tion described in [Hei90] a few empirical results are given: some show little
overhead in using the polyvariant version, but in other cases the overhead
is rather big and for one program no timings are given due to excessive
copying.

Independently of our work, recent work by Flanagan and Felleisen con-
cerns modular and polymorphic set-based analysis of untyped languages
[FF96]. The basic idea is similar to the idea of chapter 5: flow analysis
generates a set of constraints containing variables. Flanagan and Felleisen
do not consider polymorphic recursion. The constraint sets are partially
solved while retaining observational equivalence of constraint sets — similar
to finding minimal, principal solutions.

There are important differences, however: Flanagan and Felleisen find
that computing a minimal equivalent of a given constraint set is extremely
expensive (PSPACE-hard) and concentrate on finding efficient algorithms
for simplification that do not always lead to the minimal solution. The
difference is probably due to the absence of standard types in their analy-
sis, but a closer comparison between their analysis and our let-polymorphic
analysis will have to be postponed.

11.4 Type Based Analysis

Tang and Jouvelot [TJ92] describe an escape analysis that uses control-flow
effects. The analysis infers for each subexpression e an approximation of
the set of abstractions applied during evaluation of e and thus the aim of
the analysis differs slightly from ours. The paper introduces flow variables
and thus allows modular analysis; the paper does not state any principality
results, and indeed such a result cannot be proven in their system since it
contains subtyping, but judgements do not include constraint sets. Though
not stated, the analysis is only applicable to call-by-value languages. The
language analysed is the simply typed lambda calculus without recursion,
but does extend the language with side-effects. The analysis is polymorphic
over flow values, but only in the sense that (side-effect free) let-expressions
are unfolded prior to analysis.

The aim of a later paper by the same authors [TJ94] is to combine the
power of Shivers’” 1CFA with the possibility of separate analysis from type
based flow analyses. The idea is to analyse each module using 1CFA but
with type-like assumptions on free variables, and use a type based analysis
to combine the results of modules. The language is simply typed lambda
calculus. The type system corresponds to the system of chapter 3. The type
environment for individual modules is used to approximate the abstract
interpretation environment for the module — this allows separate analysis
at the cost of precision.
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Independently of Palsberg and O’Keefe (see the next section), Heintze
[Hei95] studied the relationship between standard type systems and flow
analysis. In addition to Palsberg and O’Keefe’s result, he showed that by
annotating types in a straightforward manner Amadio and Cardelli’s type
system can be used to perform data flow analysis (the same analysis as safety
analysis was based on). He went on to prove a number of equivalences:

1. Subtyping and recursive types = Sestoft’s analysis.

2. Subtyping = Sestoft’s analysis where cycles in the flow graph are for-
bidden.

3. Recursive types = an equality based analysis (with cycles).

4. Simple types = an equality based analysis without cycles as described
by Bondorf and Jgrgensen [BJ93].

Independently of the present work, Banerjee recently studied rank 2 in-
tersection based flow analysis of ML-polymorphic programs [Ban97]. Baner-
jee does not attach flow information to the standard types of the program
in the way that we do, but exploits that every ML-typable program can
be given a rank 2 intersection type. Thus, a complete type inference is
performed with annotated types. This prevents an assessment of the com-
plexity of the analysis in terms of the typed program, and it is not clear
whether the practical tractability of ML typing carries over to his analy-
sis. Modular analysis is obtained by constructively proving the existence of
principal typings; it is noted that the inferred constraints can be reduced
to “some normal form”, but no construction is given for finding minimal,
principal typings (note, that in contrast to full intersection typing, rank 2
intersection has a fairly straightforward notion of instance and hence of prin-
cipality). As noted in section 8.5 we believe that rank 2 intersection is an
interesting compromise between practicality and precision, and we believe
that combining the ideas of Banerjee with the framework of this thesis could
lead to a better understanding of problems involved.

11.5 Safety, Type Recovery and Soft Typing

The development of flow analyses has often gone hand in hand with at-
tempts to solve typing problems for untyped programs, either by providing
type safety or by eliminating unnecessary run-time type checks. One of the
main motivations and applications of Shivers’ analyses was type recovery in
Scheme [Shi90, Shi91c, Shi9la].

Palsberg and Schwartzbach [PS92a, PS92b] describes an analysis called
safety analysis. The purpose of this analysis is very similar to the type
recovery analysis of Shivers and is based on data flow analysis (in this case
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on an analysis equivalent to Sestoft’s [Ses88, Ses91]). Safety analysis checks
that if flow analysis predicts that a set of values can end up in function
position of an application, then all values are indeed functions.

Later, Palsberg and O’Keefe [PO95] showed an exact correspondence be-
tween safety analysis and Amadio and Cardelli’s type system with subtyping
and recursive types [AC91].

As mentioned above, Jaganathan and Wright used their polymorphic
splitting flow analysis to avoid run-time checks [JW95b] and Flanagan and
Felleisen uses their set-based analysis for soft typing [FF95].

Aiken, Wimmers and Lakshman defined soft typing directly [AW93,
AWL94]. They define a very precise type system (including intersection
and union) and only insert dynamic type checks when the analysis is un-
able to guarantee type correctness. Though their analysis does not infer
flow information in the style of this thesis, the type system is sufficiently
fine-grained to infer the flow of constructors. This allows conditional types
7 if 7" and seems very similar to the reachability optimisation described for
our analyses in section 8.1. It would be interesting to use their type system
as a basis for a flow analysis in the style presented here.
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Chapter 12

Conclusion

This chapter summarises, concludes and discusses future work.

12.1 Summary

We have presented a number of program analyses for approximating the
value flow during execution of a program. The key features of the analyses
were:

e Separate Compilation: The type based analyses of chapters 2, 3
and 5 all possessed the principal typing property allowing modules to
be analysed separately without loss of precision. Minimal principal
typings completely resolve all flow results that are not dependent on
the context.

Typed flow graphs (chapter 4) could be constructed in a modular
manner and by adding special values to input edges reachability results
could be combined to yield modular analysis.

e Precision: Except for the simple flow analysis of chapter 2, all anal-
yses are at least as precise as closure analysis and polymorphism gives
added precision that we expect to be useful in practice.

e Practicality: If we assume that all types have bounded size, the ana-
lysis based on typed graphs (chapter 4) results in better complexity
(quadratic) than was previously known (cubic). The extension with
polymorphism can still be handled in polynomial time.

¢ Evaluation-Order Independence: All analyses were proven to be
sound under any order of evaluation.

Furthermore, we presented an analysis based on intersection types,
which, while not being practical, gives exact results.
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12.2 Future Work

We have already discussed some directions for future work in chapters 8
and 9. We will summarise the most important issues raised in these chapters
and suggest other interesting topics.

12.2.1 Robustness

We have shown our analyses to be sound under any order of standard re-
duction and thus for a large number of compiler optimisations. It would
be interesting to investigate soundness under other transformations such as
CPS-translation, eta-conversion etc.

12.2.2 Making the Analyses more Generally Applicable

Chapter 9 discussed various extensions of the standard type system: we
showed how the analyses could be extended to accommodate languages with
polymorphism, sum types, recursive types and dynamic types. We did not,
however, provide any proofs of correctness of these extensions. A more
careful study of these extensions would also lead to a better understanding
of the relationship between type based analysis with a dynamic standard
type system and analyses for untyped languages.

We have not studied how the analyses could embrace imperative features,
eg. assignments, references and call-cc. While we do not expect any problems
with extending the analyses, a closer study is required to make the analyses
applicable to impure functional languages such as Scheme or ML.

12.2.3 Improvements of the Analyses

We suggested a number of improvements of our analyses in chapter 8. We
find the idea of labelling graphs to be particularly promising: such an exten-
sion would bridge the gap between flow analysis of imperative programs and
functional programs. We hope that practical analyses could be developed
that are exact (under the same assumptions as intersection based analysis)
for first-order programs. Furthermore, such an analysis would expose an
interesting link to the theory of optimal reduction.

While we find that the theory of polymorphic flow analysis is developed
in depth, we still find that the given algorithm has room for improvement:
the given complexity results seem overly conservative, and we believe that
better algorithms can be found.

We have discussed the pros and cons of evaluation-order dependency in
flow analysis, but mainly focused on evaluation-order independent analysis.
A better understanding of integrating evaluation-order dependency in our
analyses would expand the field of application of the analyses.



Dansk sammenfatning

Ved oversattelse af programmer er det ofte nyttigt at have information om
hvorledes vardier vil blive skabt og brugt under afvikling af programmet.
Formalet med flow analyse er at forudse og beskrive den mulige strgm af
vaerdier gennem et givet program uden kendskab til dets inddata vaerdier.

Denne afhandling praesenterer en raekke flow analyser for typede, hgjere-
ordens funktionsprogrammeringssprog. Falles for analyserne er

e Modularitet: Enkelte moduler i et program kan analyseres separat.
Dette tillader separat oversattelse af programmet.

e Praktisk anvendelighed: Med undtagelse af intersection baseret
analyse (se nedenfor) har alle analyser polynomisk kompleksitet.
Specielt prasenteres en ny metode til beregning af closure analyse,
der er kvadratisk (under antagelse at alle typer har begraenset stor-
relse) imodsatning til tidligere kendte metoder, der alle var kubiske.

e Praecision: Ved at udvide flow analyse med polymorfi og intersection
opnas analyser, der er strengt mere praecise end closure analyse (inter-
section baseret analyser er strengt mere przcis end og polymorf flow
analyse er usammenlignelig med nCFA). Pracisionen af polymorf ana-
lyse karakteriseres ved invarians under let- og fix-expansion, og prae-
cisionen af intersection baseret analyse karakteriseres ved invarians
under generel expansion (under et ikke-standard reduktions-system,
der aldrig smider beregninger vaek og evaluerer begge grene i ’if”).

e Uafhaengighed af evalueringsreekkefglge: De prasenterede ana-
lyser bevises korrekte under vilkarlig evalueringsrackkefplge.
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