
Flow AnalysisofTyped Higher-Order Programs(Revised Version)Christian MossinDIKU, Department of Computer ScienceUniversity of CopenhagenUniversitetsparken 1DK-2100 Copenhagen �, Denmark
Technical Report DIKU-TR-97/1

A thesis submitted in partial ful�llment of the requirements for thedegree of Ph.D. of University of Copenhagen

ii

AbstractThis thesis concerns
ow analysis of typed higher order programs. Flowanalysis attempts at compile time to predict the creation,
ow and use ofvalues. We will present a suite of analyses based on type systems: they workby adding extra information to the standard types of the analysed program.The analyses are proven to be sound under any evaluation order.The �rst two analyses, simple and sub-type based
ow analysis, areknown from the literature. We present a new modular formulation, allowingsubexpressions to be analysed independently from their context without lossof precision.Modularity makes it possible to extend the analyses with polymorphismwhich allows named functions to be used di�erently in di�erent contexts.This leads to improved precision. We show that ML- and �x -polymorphic
ow analysis is computable in polynomial time.Finally, we present a
ow analysis based on intersection types. Weshow a completeness result for this analysis: the analysis is precise up tonot knowing which branch of a conditional is taken and not discarding anycomputation.The sub-type based analysis can be given a very natural presentationusing graphs. The graph formulation leads to an improvement over existingalgorithms: single
ow queries can be answered in linear time and full
owanalysis can be performed in quadratic time (under assumption that the sizeof standard types is bounded).We argue that the presented analyses are not restricted to a speci�cstandard type system, but are applicable to any functional programminglanguage; even dynamically typed languages.

iii

iv

PrefaceThis thesis is submitted for the degree of Ph.D. at DIKU, the departmentof computer science at the University of Copenhagen. It reports work donebetween September 1993 and December 1996 at DIKU and at University ofGlasgow (where I was a guest from September 1994 to February 1995).The contents of the thesis and the results presented are previouslyunpublished, though chapter 5 relies on work done in binding-time ana-lysis with Fritz Henglein [HM94] and with Dirk Dussart and Fritz Hen-glein [DHM95a].AcknowledgementsFirst of all, I would like to thank my supervisors Nils Andersen and FritzHenglein for their invaluable help, support and inspiration.My six month visit to Glasgow was very important to my personal aswell as scholarly development. Phil Wadler and David N. Turner deservethanks for making my stay very rewarding and pleasant. The atmosphereat the department was very amiable and I felt quickly at home.During my studies, I have paid short visits to a number of institutions.These have all proven to be inspirational and rewarding. Thanks go to DirkDussart and Karel de Vlaminck (Leuven), Alex Aiken (Berkeley), KathleenFisher (Stanford), Patrick Lincoln (CRI) and Hanne and Flemming Nielson(DAIMI).At times when I have been stuck, I sought help via e-mail. The followingpersons answered my (sometimes naive) questions and engaged in discussionsthat gave me the understanding and intuition I sought: Mariangiola Dezani,Thomas Jensen, Ian Mackie and Pawel Urzyczyn.DIKU is a great and inspirational place to do your thesis: people arealways willing to discuss your problems and often leave you with a betterunderstanding. With the risk of unjust omissions, I would like to mentionJesper J�rgensen, Jakob Rehof and Morten Heine S�rensen for many goodand rewarding discussions. How could you manage the solitary thesis workwithout inspiring o�ce mates: Jesper J�rgensen, Kristo�er Rose (his XY-pic was used for the drawings [HR95]), Andrew Partridge and Peter Holstv

Andersen.Finally, I would like to thank my understanding girlfriend Tina for hersupport and encouragement.The work was made possible by a grant from the Danish Technical Re-search Council (phd-stipendium) and by employment at DIKU (forsknings-assistent).RevisionThe present report is a revised version of the thesis successfully defendedJanuary 31st 1997. This version incorporates the improvements suggested bythe thesis committee | I heartily thank Alex Aiken, Nils Andersen and PeterSestoft for their thorough work on commenting this work. Furthermore,the revision contains some improvements and corrections discovered whilepursuing the ideas of the thesis further ([Mos97b, Mos97a]). In particular,conjecture 6.8 of the original version has been proven (theorem 6.22) andthe suggestion for handling recursive types in
ow graphs (section 9.3.1 inboth versions) which turned out to be unsound has been corrected.Copenhagen, August 1997

vi

Contents
1 Introduction 11.1 Program Analysis . 11.2 What is Flow Analysis? . 21.3 Analysing Typed Programs 31.3.1 Type Based Analysis 41.3.2 Graph Based Analysis 51.4 This Thesis . 61.5 Outline . 71.6 Language . 101.7 Flow Analysis . 121.7.1 Flow Properties . 131.7.2 Flow Functions . 14I Monovariant Analysis 172 Simple Types 192.1 The Type System . 192.1.1 Simple Flow Functions 212.2 Principality and Minimality 212.2.1 Principality . 222.2.2 Minimality . 282.3 Soundness . 292.4 Constraint Based Analysis . 322.4.1 Equivalence between Simple Flow Analysis and CFAvia Equality . 342.5 Algorithm . 353 Subtyping 373.1 Subtyping . 373.1.1 Subtyping Flow Functions 393.2 Principality and Minimality 393.2.1 A Syntax Directed System 42vii

3.2.2 Algorithm . 423.2.3 Minimality . 503.3 Sestoft's Closure Analysis . 523.4 Constraint Based Analysis . 533.5 Equivalences . 543.5.1 Equivalence between Constraint Based Analysis andClosure Analysis . 543.5.2 Equivalence between Subtype and Constraint BasedAnalysis . 573.5.3 Complexity . 583.6 Soundness . 584 Flow Graphs 614.1 Untyped graphs . 624.1.1 Pre-
ow-graphs . 634.1.2 Closing Pre-
ow-graphs 664.1.3 Equivalence to Constraint Based Analysis 684.2 Typed graphs . 684.3 Typed and Untyped Graphs 724.3.1 Paths in untyped graphs are in typed graphs 734.3.2 Paths in typed graphs are in untyped graphs 744.4 Modularity and Algorithms 764.5 Paths by Asperti and Laneve 774.6 Summary of Monovariant Analyses 81II Polyvariant Analysis 835 Polymorphism 855.1 Polymorphic Formulae and Logical Rules 855.2 ML polymorphism . 875.2.1 Syntax Directed Type System 875.2.2 What is the Result of Polymorphic Flow Analysis . . 895.2.3 Halbstark Instance Relation 925.2.4 Algorithm and Principality 975.2.5 Accelerated Algorithm and Minimality 1015.2.6 Complexity . 1045.2.7 Soundness . 1055.2.8 Invariance under Transformation 1075.3 Polymorphic recursion . 1105.3.1 Syntax Directed System 1115.3.2 Polymorphic Recursion Revisited: Kleene-Mycroft It-eration . 1125.3.3 Algorithm I: Principality 114viii

5.3.4 Algorithm II: Bounding Kleene-Mycroft Sequences . . 1225.3.5 Algorithm III: Avoiding Recomputation 1245.3.6 Complexity . 1255.3.7 Soundness . 1275.3.8 Invariance under Transformation 1286 Intersection Types 1336.1 Interpreting Intersection Type Derivations 1356.2 Decidability . 1386.3 Minimality . 1456.4 Non-Standard Semantics . 1476.4.1 Values . 1516.5 Subject Reduction . 1526.6 Subject Expansion . 1546.7 Handling `�x' . 1596.8 Flow in Normal Forms . 1626.9 Summarising the Results . 1657 Shivers' CFA 1677.1 0CFA . 1677.1.1 Pairs . 1717.2 nCFA . 1727.3 CPS vs. direct style . 173III Extensions and Applications 1778 Extensions 1798.1 Reachability . 1798.1.1 Reachability and Intersection Flow Analysis 1808.1.2 Reachability in Graphs 1828.2 Union Types . 1828.3 Usedness . 1858.3.1 Lazy Evaluation . 1858.3.2 Eager Evaluation . 1868.4 Simple Polymorphism . 1868.5 Other Inference-Based Analyses 1878.6 Labelled Graphs . 1878.7 Shivers' CFA and Linearity 1909 Other Standard Type Systems 1939.1 ML Polymorphism . 1939.1.1 ML Polymorphism in Typed Graphs 1949.2 Sum Types . 197ix

9.2.1 Sum Types in Typed Graphs 1979.3 Recursive Types . 2009.3.1 Recursive Types in Typed Graphs 2019.4 Dynamic Types . 2029.4.1 Dynamic Types in Typed Graphs 20510 Applications 20910.1 Constant Propagation . 20910.1.1 Simple and Subtype Constant Propagation 21010.1.2 Polymorphic Constant Propagation 21010.1.3 Intersection Constant Propagation 21210.1.4 Graph Based Constant Propagation 21210.2 Firsti�cation . 21210.3 Binding-Time Analysis . 21410.3.1 Type-Based BTA . 21410.3.2 Graph-based BTA . 21811 Related Work 22111.1 Abstract Interpretation . 22111.2 Constraint Based Analysis . 22311.3 Set-Based Analysis . 22411.4 Type Based Analysis . 22511.5 Safety, Type Recovery and Soft Typing 22612 Conclusion 22912.1 Summary . 22912.2 Future Work . 23012.2.1 Robustness . 23012.2.2 Making the Analyses more Generally Applicable . . . 23012.2.3 Improvements of the Analyses 230Dansk sammenfatning 231Bibliography 232Index 240

x

List of Figures1.1 Type system . 111.2 Logic of Properties . 142.1 Simple
ow analysis | formulae 192.2 Simple
ow analysis | non logical rules 202.3 Algorithm W for simple types 232.4 Constraint generation a la Heintze 333.1 Subtyping
ow analysis | formulae and subtype relation . . 383.2 Subtyping
ow analysis | non-logical rules 403.3 Syntax-directed subtyping
ow analysis 413.4 Algorithm W . 443.5 Constraint generation a la Palsberg 544.1 Pre-
ow-graphs (1) . 634.2 Pre-
ow-graphs (2) . 644.3 Closing rules . 674.4 Typed
ow graphs (1) . 704.5 Typed
ow graphs (2) . 715.1 Polymorphic
ow analysis | formulae and subtype relation . 865.2 ML-polymorphic
ow analysis | non-logical rules 885.3 Syntax directed ML-polymorphic
ow analysis 895.4 ML-polymorphic
ow function 915.5 Algorithm W for polymorphic recursion 1266.1 Intersection
ow analysis | formulae 1346.2 Intersection
ow analysis | logical rules 1356.3 Intersection
ow analysis | type-speci�c rules 1366.4 Intersection
ow analysis | non-logical rules 1376.5 Intersection
ow analysis | semi logical rules 1376.6 Syntax Directed Intersection Flow Analysis 1406.7 Non-standard reduction . 1496.8 Non-standard reduction | context rules 150xi

7.1 0CFA . 1687.2 0CFA for a tail-recursive language 1749.1 ML-polymorphism . 1949.2 Flow analysis of ML-polymorphic programs 1959.3 Sum Types . 1979.4 Flow analysis with sums . 1989.5 Typed
ow graphs for sum types 1999.6 Fold and unfold . 2039.7 Dynamic Typing . 2049.8 Flow analysis and dynamic typing 2069.9 The [Fun!]l m-node . 207

xii

Chapter 1IntroductionIn the childhood of automatic computing, programs were small and writtenin the machine code of the machine on which the program was intendedto run. Programming languages facilitated portability between di�erentmachines. Even more important, they allowed the programmer to abstractfrom details and leave these to the compiler.With the growth of computers (in size and speed) abstract programminglanguages were no longer a convenience but a prerequisite for program-development. A more recent bene�t was the ability to restrict the directaccess from a program to storage and external devices; this allows safe exe-cution of (possibly unknown) programs.One programming language paradigm that seems to be reaching maturitythese years is functional programming. This allows high-level abstract spec-i�cation of programs based on sound mathematical principles. In stronglytyped variants of functional programming a high level of safety is implied.1.1 Program AnalysisThe more abstract programming languages get, the more they distancethemselves from the underlying machine, the more will be required fromcompilers in order to produce e�cient code. The point of abstract program-ming languages was exactly to allow the programmer to leave out detailsthat were not important for the speci�cation of the solution. Those detailsmight, however, be crucial to the execution of the program.Program analyses allow the compiler to infer some of the informationthat was left out by the programmer. A program analysis usually goeshand in hand with a program transformation that will optimise the programbased on the information inferred by the analysis. There are some commonprerequisites for most program analyses:� They require information about the
ow of data within the program.1

2 CHAPTER 1. INTRODUCTION� They require information about the possible control paths through theprogram.The study of data-
ow analysis and control-
ow analysis allows a generalperspective on program analyses and allows the study of generally applicablealgorithms. Furthermore the result of data- and control-
ow analysis canbe used directly as the basis for other analyses.1.2 What is Flow Analysis?In imperative languages we have:Data
ow analysis: \. . . traces the possible de�nitions and uses of datain the program"Control
ow analysis: \. . . traces the patterns of possible executionpaths in a program"(Quotations from [RP86]). For higher order languages we cannot separatethe two: consider the following expression:let f = �g:g@Truein f@�x:if x then False else TrueData
ow analysis could infer that the value `�x:if x then False else True'can
ow (through g) to the underlined application. But the fact that controlat this application passes to the body of the let-bound �, can be consideredcontrol-
ow. Only due to inferring this pass of control are we able to inferthat the value True can
ow (through x) to the conditional of the `if' (againdata-
ow).As we see, there is an interdependency between data-
ow and control-
ow analysis. This naturally leads to the conclusion that the two should becombined into one analysis. The combined analysis has previously beenreferred to as control-
ow analysis (Shivers),
ow analysis (Jaganathan,Weeks, Wright and Ashley) and closure analysis (where only
ow of func-tions (and sometimes data-structures) is taken into consideration; Sestoft,Bondorf). The general term \
ow analysis" seems appropriate for the ana-lyses presented later in this thesis as they will contain elements from bothdata- and control-
ow analysis.There is, however, an aspect of control-
ow analysis that is not capturedby the analyses above: the order of evaluation. For imperative languagesthis is part of the result of a control-
ow analysis. The reason is that eval-uation order is usually an integral part of the de�nition of an imperativelanguage. For a given functional language this is of course also the case,but there has been a tradition in the functional programming community

1.3. ANALYSING TYPED PROGRAMS 3to do theoretical work on the lambda calculus with beta-reduction as se-mantics without specifying the order of evaluation. This makes analysesapplicable to any functional language. Furthermore, it allows compile-timeoptimisations based on beta-reduction and it allows parallel execution of theprogram. On the other hand, it can restrict the precision of analyses. Basedon this discussion, we might �nd it more appropriate to coin the previouslydesigned analyses as data- or value-
ow analyses.Reduction-order independent
ow analysis allows validity under any re-duction order but prevents the analysis from being the basis for analysisthat does rely on
ow-dependencies. We will see how restricting ourselvesto reduction-order independent analyses implies that certain versions ofbinding-time analysis cannot be based directly on
ow analysis.The analyses presented will follow this general tradition of not specifyingevaluation order. We will, however, propose a few possible optimisationsbased on knowledge of evaluation order.1.3 Analysing Typed ProgramsThe tradition of program analysis (with certain exceptions) has been toanalyse the program itself, independent of whether the analysis is applied totyped or untyped programs. This, of course, allows a common speci�cationof analyses for typed and untyped languages. On the other hand, if typeinference is performed, the result of the type inference contains a lot ofadditional information about the program.This intuition was explored from a di�erent angle by Palsberg andO'Keefe, who investigated exactly which type information could be imme-diately inferred from
ow information [PO95], and Heintze, who also in-vestigated the other direction: which
ow information is present in typederivations [Hei95].The approach taken in this thesis is to assume that a well-typed pro-gram is given along with the type information. In other words, we assumethat we are given an explicitly typed term. As noted above this gives us abetter starting point for doing program analysis, but it also gives a naturalseparation of the problem: it is easily shown that the size of an explicitlytyped term can potentially be exponential in the size of the term itself. Thisimplies that all analyses presented in this thesis will have exponential worstcase behaviour in the untyped term. On the other hand, this is an expo-nential factor which we know and love: in practice we can assume that thetyped program is either given by the programmer (as in Pascal, C etc.) oris not much bigger than an underlying program for which type inference isperformed (ML, Haskell etc.).The idea is that part of the complexity of some analyses is really due toan attempt to reconstruct the standard type information during analysis.

4 CHAPTER 1. INTRODUCTIONSince type inference will be performed anyway for typed languages, andsince this is known to be well-behaved in practice (despite its seeminglyprohibitive theoretical worst-case behaviour), we can hope that, if we factorout the type-inference part of the analysis, the \remaining" complexity ismuch lower.An example of this is closure analysis which is shown to have cubiccomplexity. This was believed to be a tight bound, but we will give analgorithm which is quadratic under assumption that all types are of boundedsize | hence the complexity of our analysis is exponential in the size ofthe untyped program, but better behaved than closure analysis on \real"programs. Furthermore, our analysis allows single queries in linear time, incontrast to traditional closure analysis, which also required cubic time forthis.This approach implies that we need to �x not only the language, but alsothe type system: we will call such types standard types. We will choose thesimplest type system possible: simple types. We will later show that we canextend the type system orthogonally to the choices made when specifyinga given analysis. If a type system gives less than exact information aboutthe type of a given subexpression, the result of the analysis will also beless precise: eg. recursive types allow in�nite types to be given a �nitedescription provided that the in�nite structure in a sense \repeats" itself.This regularity will be conveyed to the
ow analysis where repetition of
owresults will be enforced as well.By choosing a su�ciently liberal standard type system such as dynamictypes, we can even analyse untyped programs. Thus, our methods do not re-strict the choice of programming language; they only require that some type-discipline is enforced previously to analysis. The choice of type-discipline isimportant to the precision of the analysis.1.3.1 Type Based AnalysisType based analysis works by annotating or re�ning standard types byadding extra information to each type constructor in (standard) type in-ference trees. Such annotated types will be called properties or
ow types.The annotations are more precise information about the term possessing thetype which is being annotated. When doing
ow analysis, annotations willconsist of information about which value the expression can evaluate to. Ina judgement e : Bool, the type describes the sort of value that e can evaluateto while an annotated type BoolL will state that e can evaluate to one ofthe values described by L (which all will be of type Bool).Type based analysis allows a natural separation of speci�cation and im-plementation of an analysis. There is no method of computation implied bythe formalism. The formalism speci�es analysis in a local, relational mannerthat allows for easy reasoning about properties of the program.

1.3. ANALYSING TYPED PROGRAMS 5Compared to abstract interpretation (in the style of the Cousots [CC77]),one might say that abstract interpretation combines the issues of speci�ca-tion, implementation and correctness, while type based analysis separatesthese issues. Soundness is usually built into the construction of an abstractinterpretation based analysis, but it can be di�cult to prove other proper-ties about the analysis. Finally, if an analysis is obtained from a (possiblyinstrumented) denotational semantics, this semantics have already made achoice concerning evaluation order. In this case it can be di�cult to specifyreduction-order independent analyses.Abstract interpretation and type-based analysis are not mutually ex-clusive methods, a standard type can, after all, be seen as an abstractionof a big-step operational semantics. We do, however, believe that certainanalyses are more easily de�ned in one framework than in the other. Onebig advantage of the type-based approach is that concepts and results fromstandard type theory often can be adopted to program analysis with littlechange.Type based analysis usually adds annotations directly to the standardtypes without changing the structure. It is, however, possible to re�ne thestructure as well:1. By adding polymorphism over annotations. This polymorphism iscompletely separate from the standard type system (which might con-tain standard polymorphism over types). An example of this is Dus-sart, Henglein and the present author's work on polymorphic binding-time analysis [HM94, DHM95a].2. Adding new connectives such as intersection and union. This requiresthat the underlying type of each component of the intersection orunion is identical (but naturally allows the annotations to di�er). Anexample of this can be found in Jensen's work on strictness analysis[Jen92].Type based program analysis can take advantage of the \implicit"
owinformation contained in the type derivation. It does, however, also inheritthe potential problem of exponential behaviour. This, as discussed above,should not cause any grief.1.3.2 Graph Based AnalysisThe result of data-
ow analysis for imperative programs is usually repre-sented by a
ow graph which can be inferred directly from the programtext. Using a graphical representation of constraint based analysis, we ar-rive at a very natural form of higher-order
ow graph: the basic
ow ofsimple constraints forms a pre-
ow graph (which resemble the syntax tree

6 CHAPTER 1. INTRODUCTIONfor the term) and the induced
ow of conditional constraints becomes closingrules on the graph.The
ow of a value is represented by paths from the value in the graph.We are thus able to trace the
ow values through variables to the uses ofthe value.Such graphs inherit the problems of constraint based
ow analysis: theanalysis is global and the implementation becomes cubic. We thereforeintroduce the concept of a typed graph.There is a path between two nodes in a typed graph if and only if thereis a path between the corresponding nodes in the graphs described above(untyped) and hence the precision of an analysis based on typed graphs isthe same.The advantage of typed graphs is that they can be generated by a sin-gle pass over the standard type derivation | the need for closing rules isavoided. This allows graphs to be constructed for individual modules and byattaching dummy values to input edges a modular analysis can be achieved.The typed graphs will have a size equivalent to the size of the basic ex-pression with explicit types on all subexpressions. If we assume all typesto have bounded size, the complexity of
ow analysis is improved overpreviously known analyses: it can be computed by simple reachability inquadratic time. Furthermore, the formalism allows single queries (such as\which values are consumed at this program point?" or \where is this valueconsumed?") to be computed in linear time.1.4 This ThesisThe goal of this thesis is to investigate
ow analysis of typed higher-orderfunctional programs. In the development of analyses we will emphasize thefollowing:� Intensional behaviour: The result of
ow analysis is not just a de-scription of the behaviour of the whole program, but also a descriptionof the internal behaviour. In particular, an analysis is sound if the
owdescription of every subexpression is preserved by reduction (exceptthe redex itself) | it is insu�cient to consider the description of thewhole program. Many analyses described in the literature are pre-sented in an extensional manner, such that the result of the analysesis a global description of the behaviour of the whole program.� Modularity: It is inconvenient or even prohibitive for program devel-opment if the whole program has to be recompiled every time a changehas been made. We therefore �nd it important that modules can beanalysed separately. Separate analysis of modules should not result inloss of precision of the analysis: the result should be the same as if the

1.5. OUTLINE 7whole program was analysed at once. Until recently, the value-
owanalysis for higher-order programs described in the literature wereglobal. One exception is the work by Tang and Jouvelot, who usea type-based interface between di�erent modules [TJ94]. Their ap-proach, however, gives less precise results when analysing modulesindividually than if the whole program was analysed.Principality as known from standard type inference and other kinds ofprogram analyses yields separate analysis without loss of precision. Wewill prove this property for our type based analyses. Independentlyof this work, Flanagan and Felleisen recently used a similar idea toachieve separate set-based analysis [FF96].� Practicality: We will strive for practical analysis. In particular, thecomplexity of analyses presented should not be forbidding for practicaluse. We give a novel formalism for closure analysis [Ses88] whichimproves the best known complexity of the analysis (independently ofthis work, the same result was discovered using a di�erent approachby Heintze and McAllester [HM97]). We present two new polymorphicanalyses, which improve the precision of closure analysis, and provethe analysis to have polynomial complexity.� Evaluation-order independence: The developed analyses shouldbe sound under any reduction order. This makes the analyses widelyapplicable, and perhaps even more important, does not prohibit com-piler optimisations which do not adhere to the evaluation order of thelanguage (eg. constant propagation is based on \deep" beta-reductionand might invalidate the result of an analysis mimicking outermostreduction).An additional contribution of the thesis is intersection based
ow ana-lysis. Though this analysis is not practically applicable, its formulation andproperties are theoretically appealing and we believe that it can serve as agood starting point in the search for more precise yet practical analyses. Wegive an exact characterisation of the precision of the analysis which showsthat the analysis only errs by assuming that no reductions are ever discarded.This result implies that the analysis must be non-elementary recursive.1.5 OutlineThe rest of this chapter de�nes the basic simply typed language we will beusing and gives a number of basic de�nitions concerning the nature of
owanalysis.Part I concerns monovariant analyses. By monovariance we mean thatevery de�nition is given one description which has to su�ce for all contextsin which the de�ned expression is used.

8 CHAPTER 1. INTRODUCTIONChapter 2 presents a very simple type based
ow analysis. The analysisis very crude but can be implemented very e�ciently. It will also serveas a �rst introduction to type based program analysis introducing centralconcepts in a simple framework. The analysis allows the same precision asanalyses described by Bondorf and J�rgensen [BJ93] and Heintze [Hei95].In contrast to these analyses, our formulation� allows an intensional soundness proof: we show that the inferred
owinformation is preserved for every subexpression in the program.� is modular: we prove that the analysis has principal typings. That is,for every expression, we can �nd a single
ow description that withoutloss of precision can be used in any context. Furthermore, we identifya minimal, principal typing where all
ow, that can be completelyresolved without knowledge of the context, is resolved. The proof ofexistence of principal and minimal, principal typings is constructive.Chapter 3 introduces subtypes in the analysis of chapter 2. This re-sults in an analysis of the same strength as closure analysis [Ses88] andconstraint based analysis [Pal94] both of which are presented. In contrastto these analyses, our analysis enjoys the same properties as simple typebased
ow analysis: intensional soundness and (constructive) existence ofminimal, principal types.Chapter 4 introduces
ow graphs of equivalent accuracy as the analysispresented in chapter 3: untyped graphs are applicable to untyped languagesand can be seen as a graphical representation of constraint based analysis,whereas typed graphs make constructive use of the available type informationto achieve an improvement of the previously best known complexity of theseanalyses. We relate the paths in
ow graphs to well-balanced paths knownfrom optimal reduction. The de�nition of optimal reduction is that no redexis ever copied: this de�nition presupposes that the redexes that can occurduring reduction of a term can be inferred from the term | essentially a
ow analysis.Part II concerns polyvariant analyses. Polyvariance allows several de-scriptions for every de�nition. This can be achieved by reanalysing thede�nition for every context in which it is used. This will however be pro-hibitively complex (or even undecidable in the case of recursive de�nitions)so the goal is to �nd a formalism that allows a uniform representation ofthese descriptions. We also wish the formalism to allow modularity suchthat the de�nition can be analysed independently of the contexts in whichit will be used.Chapter 5 combines the subtypes of chapter 3 with polymorphism. Theintroduction of polymorphism is made possible by the existence of prin-cipal types in the subtype based
ow analysis. We present let- and �x-polymorphic analyses which allow de�nitions to be polymorphic: the addi-

1.5. OUTLINE 9tional precision achieved is characterised by showing that the analysis cannotbe improved by let-unfolding resp. �x-unrolling. We show that the analyseshave minimal, principal typings and present polynomial time algorithms.Chapter 6 extends the subtype based analysis with intersection types.These give a strictly more precise analysis than polymorphism. We give asemantic characterisation of the strength of the analysis: we introduce anon-standard reduction system that chooses both branches of conditionalsand never throw away redexes. With this system, the analysis is shown tobe invariant under reduction and expansion.Chapter 7 reviews Shivers' nCFA
ow analysis [Shi91c]. OCFA has of-ten been confused with the analyses presented in chapters 3 and 4 but weshow it to be fundamentally di�erent (0CFA is strictly stronger than closureanalysis).The last part (part III) discusses extensions of the analysis, both w.r.t.achieving better results and making them applicable to languages with othertype systems. We go on to present applications of the analyses. This partis less verbose than the previous | the aim is to convince the reader thatthe analyses are useful and not restricted to the simply typed language usedthrough the �rst sections. Finally, we discuss related work and conclude.Chapter 8 discusses improvements of the analyses. We examine how tolift the assumption that both branches of conditionals always can be taken,and discuss how this relates to adding union
ow types to our analyses.It is discussed how to take advantage of knowledge about the evaluationorder: certain redexes will never be reduced under a �xed evaluation strategy(e.g. call-by-need). We also discuss various restrictions and extensions ofpolymorphic and intersection based
ow analysis.We present an idea for an improvement of graph based analysis inspiredby work for
ow analysis for imperative languages by Horowitz, Reps andSagiv [RHS95, RSH94, SRH95]. Finally, we present an improvement ofShivers' nCFA based on usage information.Chapter 9 shows how the ideas and algorithms presented in this thesisgeneralise to more complex languages than the simple one used for presen-tation. In particular, we discuss extensions of the type system with MLpolymorphism, sum types, recursive types and dynamic types. The latterallows our analyses to be applied to untyped programs. The extensions aredescribed for both type based and graph based analyses.Chapter 10 discusses applications of
ow analysis. We will focus on con-stant propagation, �rsti�cation and binding-time analysis. This illustratesthe strength and applicability of our analyses, but also exposes the weak-nesses inherent from deciding to make our analyses evaluation-order inde-pendent: certain versions of binding-time analysis cannot be based directlyon
ow analysis.Chapter 11 discusses related work and compares. Chapter 12 concludesand discusses future work. The thesis ends with a summary in Danish.

10 CHAPTER 1. INTRODUCTIONThe analyses presented in chapters 2, 3 and 4 are well known, though thepresentation di�ers somewhat from earlier presentations of the same analy-ses (the graph representation is new). Some results are new, in particularprincipality and the connection to well-balanced paths of optimal reductionare to our knowledge new.The analyses of chapters 5 and 6 as well as the more speculative chap-ter 8 present analyses which are all previously unknown. The polymorphicanalysis of chapter 5 builds on foundations laid in binding-time analysisby Dussart, Henglein and the present author, while the intersection-basedanalysis is previously unpublished.1.6 LanguageThis section de�nes the language which we will be analysing in the rest of thethesis (except chapter 9 where we will discuss extensions of the language).Let V be an enumerable set of variables and let x; y; z; : : : range over V .The set Exppseudo of pseudo-terms is given by the abstract syntax (wheree; e0; e00; e1; e2; : : : range over Exppseudo)e ::= x j �x:e j e@e0 j �xx:e j (e; e0) j let (x; y) be e in e0 j let x = e in e0 jif e then e0 else e00 j True j FalseThe set T of types1 is de�ned by:t ::= Bool j t� t j t! twhere t; t0; t00; t1; t2; : : : range over T .An occurrence of a type constructor Bool, ! or � can be positive ornegative in a type t:1. Bool is a positive occurrence in Bool, ! is a positive occurrence int! t0 and � is a positive occurrence in t� t0.2. If a type constructor c is a positive occurrence in t then it is a negativeoccurrence in t ! t0 and a positive occurrence in t0 ! t, t � t0 andt0 � t.3. If a type constructor c is a negative occurrence in t then it is a positiveoccurrence in t ! t0 and a negative occurrence in t0 ! t, t � t0 andt0 � t.If A : V ! T is a partial map from variables to types, derivable typejudgements A ` e : t de�ne a relation over (V ! T)�Exppseudo�T . We read1We will refer to these types as standard types to distinguish them from annotated typesas introduced in following chapters

1.6. LANGUAGE 11A ` e : t as \e has type t under assumptions A". The set Exp � Exppseudoof expressions or terms denotes the set of pseudo expressions e for whichthere exists A; t such that A ` e : t is provable in �gure 1.1.2We write A; x : t for the function A0 such thatA0(y) = (t , if y = xA(y) , otherwiseId A; x : t ` x : t!-intro A; x : t ` e : t0A ` �x:e : t! t0 !-elim A ` e : t0 ! t A ` e0 : t0A ` e@e0 : tBool-intro A ` True : Bool A ` False : BoolBool-elim A ` e : Bool A ` e0 : t A ` e00 : tA ` if e then e0 else e00 : t�-intro A ` e : t A ` e0 : t0A ` (e; e0) : t� t0 �-elim A ` e : t� t0 A; x : t; y : t0 ` e0 : t00A ` let (x; y) be e in e0 : t00�x A; x : t ` e : tA ` �xx:e : t let A ` e : t A; x : t ` e0 : t0A ` let x = e in e0 : t0Figure 1.1: Type systemLet e be an expression. Then FV (e) and BV (e) are the sets of free resp.bound variables of e de�ned as usual. We call e well-named if all free andbound variables of e are distinct. For every expression e there exists an �-equivalent expression e0 such that e0 is well-named. Unless stated otherwise,whenever we refer to an expression or term it will be assumed to be well-named.A context is a term with one hole:C ::= [] j �x:C j C@e j e@C j �xx:C j let x = C in e j let x = e in C jif C then e0 else e00 j if e then C else e00 j if e then e0 else C j(C; e0) j (e; C) j let (x; y) be C in e0 j let (x; y) be e in CWe write C[e] for the term obtained by replacing [] in C with e. We assumethat the resulting term is well-named.2As we consider types an integral part of the de�nition of expressions (Church-style),we will always assume that the type of an expression is available.

12 CHAPTER 1. INTRODUCTIONIf e is an expression with n occurrences of a variable x, we use x(i) todenote the i'th occurrence of x in e.A substitution on terms is a map from V to Exp. A substitution from xto e is written [e=x] and is applied to an expression e0 using post-�x notation.If there are n occurrences of x in e we de�ne e[e0=x] to be the result replacingeach occurrence x(i) by e0i where1. e0i =� e0 and e0i is well-named,2. BV (e0i) \BV (e0j) = ; for i 6= j, and3. BV (e0i) \ (FV (e) [BV (e)) = ;If BV (e0)\ (FV (e)[BV (e)) = ; we can safely assume that e01 = e0 without�-conversion.The semantics of the language is de�ned by the following reductions:(�) (�x:e)@e0 �! e[e0=x](�-if) if True then e else e0 �! eif False then e else e0 �! e0(�-let) let x = e in e0 �! e0[e=x](�-let-pair) let (x; y) be (e; e0) in e00 �! e00[e=x][e0=y](�-�x) �xx:e �! e[�xx:e=x](Context) C[e] �! C[e0] if e �! e0As usual we write �!� for the re
exive and transitive closure of �!Note that reduction preserves well-namedness: if e is well-named ande �! e0 then e0 is well-named.1.7 Flow AnalysisLet L be an enumerable set of labels. We let l; l1; l2 : : : range over labels.Given a program e a labelling is a function LabelOfe : Exp ! L mappingoccurrences of expressions to labels3. We use ExpOfe : L ! P(Exp) for thefunction �nding the set of sub-expressions of e with a given label. ThusExpOfe(LabelOfe(e0)) � fe0gand 8e0 2 ExpOfe(l) : LabelOfe(e0) = lLet Le denote the range of LabelOfe.3We could have required labelings to be injective (such that for each e0; e00 subexpres-sions of e, e0 6= e00 implies LabelOfe(e0) 6= LabelOfe(e00)) since this is the intended meaningat program analysis time. This, however, would lead to problems when considering sound-ness: injectiveness is not preserved by arbitrary �-reduction.

1.7. FLOW ANALYSIS 13If LabelOfe(e0) = l we often write l as an annotation on e0. In otherwords, we will often use the following syntax4e ::= x j �lx:e j e@le0 j �xlx:e j letl x = e in e0 jifl e then e0 else e00 j Truel j Falsel j(e; e0)l j letl (x; y) be e in e0We will assume variable names to be distinct, so there is no need for labelson variables5. We consider two labelled expressions syntactically equivalentonly if their labels are also equivalent.1.7.1 Flow PropertiesWe use L to denote �nite subsets of L and �; �; � � � to be variables rangingover sets of labels. We use ` to denote sets of labels or label variables:FP 3 ` ::= L j � j ` t `We call ` a
ow property . Flow properties are an abstraction of a set ofvalues:
ow property L is an abstract description of the set of expressionswith a label l in L, while � describes an unknown set of abstractions (typ-ically, under some given constraints). We include the least upper boundoperator t in our language of properties. It should become clear below,why this is convenient (we note that that is does not make our type basedanalyses stronger (intuitively because any annotation ` t `0 can be replacedby a fresh variable � and constraints ` � � and ` � �0), it does, however,allow a smooth de�nition of soundness and, later, t also helps the de�nitionof minimality | this will be crucial in chapter 5.In chapters 2, 3, 5 and 6,
ow properties will be used to annotate typeconstructors and will therefore often be referred to as annotations.A constraint is a pair of annotations written ` � `0. A constraint set Cis a set of constraints of the form ` � �.The logical rules of �gure 1.2 de�ne judgements C ` ` � `0.6 This logicwill be common to all the type systems presented in later chapters exceptchapter 6A label substitution is a map from label variables to
ow properties. Weuse [`=�] to denote the substitution mapping � to ` while being the identityon all other variables. We use Id to denote the identity substitution. Weuse the shorthand S(�), S(C) and S(A) when mapping the substitution S4Since expressions that introduce or eliminate values are our prime concern, we oftenleave out labels from let x = e in e0 and �xx:e.5We will later need to distinguish di�erent occurrences of variables, but since labelsdoes not give a unique index they are not suitable for this purpose, and we will introduceappropriate terminology for this situation.6There is an overlap between the (Id) and (Ax) rules, but we �nd this presentationmore readable.

14 CHAPTER 1. INTRODUCTIONAx C ` L1 � L2 if L1 � L2 Ax C; ` � � ` ` � �Id C ` ` � ` Trans C ` `1 � `2 C ` `2 � `3C ` `1 � `3t-I C ` `1 � `1 t `2 t C ` `1 � ` C ` `2 � `C ` `1 t `2 � `Assoc C ` (`1 t `2) t `3 � `1 t (`2 t `3)Comm C ` `1 t `2 � `2 t `1Figure 1.2: Logic of Propertiesover �, C and A resp. (note that even if C is a constraint set S(C) need notbe)7. The shorthand C ` C 0 means C ` ` � `0 for all ` � `0 in C 0.We say that S solves C if ` S(C) (i.e. for all ` � ` in S(C), we havefg ` ` � `). Note, that by de�nition, all constraint sets have solutions.1.7.2 Flow FunctionsLet Destructors(e) befl 2 Le j 9e1; e2; e3: ExpOfe(l) � fif e1 then e2 else e3g _ExpOfe(l) � flet (x; y) be e1 in e2g _ExpOfe(l) � fe1@e2g gand Constructors(e) befl 2 Le j 9x; e1; e2: ExpOfe(l) � fTrueg _ExpOfe(l) � fFalseg _ExpOfe(l) � f(e1; e2)g _ExpOfe(l) � f�x:e1g gNow, a
ow function of e is a function F : Destructors(e) ! FP . Theintuition is that F(l) is the set of values that can be used at the destructorslabelled l.7We will use post�x notation when applying substitutions [`=�] and pre�x when apply-ing named substitutions S | this should not be the cause of confusion as the two formsof notation are not used together.

1.7. FLOW ANALYSIS 15For each of the reductions(�l0x:e1)@le2 �! e1[e2=x] , orifl Truel0 then e1 else e2 �! e1 , orifl Falsel0 then e1 else e2 �! e2 , orletl (x; y) be (e1; e2)l0 in e3 �! e3[e1=x][e2=y]we say that destructor l consumes constructor l0.We say that F is a sound
ow of e 2 Exp i� whenever a reduction onsome reduction path from e �! � � � �! e0 �! � � � lets l consume l0 then` fl0g � F(l). If F is sound for e we write F j= e.If C is a set of constraints over
ow variables, we generalise the notionof soundness such that C;F j= e i� S �F j= e for all closing substitutions Ssatisfying C.Note that a
ow function needs to predict all redexes under any reductionstrategy. E.g. the
ow F for (�l1x:Truel2)@l3((�l4y:y)@l5Falsel6) needs tomap l5 to fl4g though this would not be reduced under call-by-name.Our de�nition of soundness only concerns potential redexes in the ana-lysed term; it does not state anything about redexes arising when applyingthe term or instantiating free variables. In particular, it allows free variablesto be labelled with any set of
ow labels, e.g. the empty set. A specialconsequence of this is that the
ow mapping all destructive labels to theempty set is a sound
ow for expressions in normal form.Thus soundness of the
ow function is not su�cient to ensure that a
owanalysis is reasonable. An important additional constraint will be principal-ity that allows the result of
ow analysis to be sound in any context. Thisentails that the analysis can be performed modularly.

16 CHAPTER 1. INTRODUCTION

Part IMonovariant Analysis

17

Chapter 2Simple TypesThis chapter will introduce the reader to type based
ow analysis by de�ningthe simplest imaginable nontrivial
ow analysis. The chapter will thus famil-iarise the reader with the concepts of annotated type system (section 2.1),principality and minimality (section 2.2) and soundness (section 2.3). Sec-tion 2.4 presents \CFA via Equality" [Hei95] which is a constraint basedanalysis of similar precision to our analysis. Section 2.5 discusses implemen-tation and complexity of the presented analyses.2.1 The Type SystemFormulae: Bool Bool` 2 Ks(Bool)! � 2 Ks(t) �0 2 Ks(t0)�!` �0 2 Ks(t! t0) � � 2 Ks(t) �0 2 Ks(t0)��` �0 2 Ks(t� t0)Figure 2.1: Simple
ow analysis | formulaeFigure 2.1 de�nes the formulae of our
ow logic; we will also refer to theseas
ow types or annotated types. A set Ks(t) contains the formulae over astandard type t. We let � range over members of Ks(t). The superscript son sets of formulae is for simple and is used to distinguish these formulaefrom formulae for later analyses.The erasure j� j of an annotated type � is the standard type obtainedby erasing all annotations, formally � 2 K(t) implies j � j = t. Erasure19

20 CHAPTER 2. SIMPLE TYPESextends its de�nition to environments A. We de�ne the function ann to mapannotated types to their \top" annotation: ann(Bool`) = `, ann(�!` �0) =` and ann(��` �0) = `. An annotation occurs positively resp. negatively in� i� it annotates a positive resp. negative occurrence of a type constructorin j� j .An environment A maps program variables to formulae. A judgementtakes the form C;A `s e : � which should be read \under assumption thatthe inequalities in C and the assumptions in A are true, it holds that e hasproperty �".We will require that if C;A `s e : � then j A j ` e : j � j . In otherwords,
ow judgements are annotations of standard type judgements withan additional premise C containing inequalities on annotations only.Non-logical rules Id C;A; x : � `s x : �!-I C;A; x : � `s e : �0 C ` flg � `C;A `s �lx:e : �!` �0!-E C;A `s e : �0 !` � C;A `s e0 : �0C;A `s e@le0 : �Bool-I C ` flg � `C;A `s Truel : Bool` C ` flg � `C;A `s Falsel : Bool`Bool-E C;A `s e : Bool` C;A `s e0 : � C;A `s e00 : �C;A `s ifl e then e0 else e00 : ��-I C;A `s e : � C;A `s e0 : �0 C ` flg � `C;A `s (e; e0)l : ��` �0�-E C;A `s e : ��` �0 C;A; x : �; y : �0 `s e0 : �00C;A `s letl (x; y) be e in e0 : �00�x C;A; x : � `s e : �C;A `s �xx:e : � let C;A `s e : � C;A; x : � `s e0 : �0C;A `s let x = e in e0 : �0Figure 2.2: Simple
ow analysis | non logical rulesFigure 2.2 presents the non-logical rules for simple
ow analysis. The

2.2. PRINCIPALITY AND MINIMALITY 21rules should be straightforward: the only di�erence to standard simple typerules is that we in all introduction rules make sure that the set of labels onthe type of the constructed value contains the annotation of the constructor.2.1.1 Simple Flow FunctionsWe have not made the
ow information computed by the inference explicit.We can regard the inference tree itself as the result of the analysis: the setof values that an expression e can evaluate to is described by the set oflabels on the top constructor of its type. Each judgement C;A `s e : � inthe inference tree approximates the set of values that e can evaluate to byann(�).We can compute a
ow function from a derivation as follows. If T isderivation, then for every l we let FT (l) be the least annotation such thatwhenever one of the rules!-E C;A `s e : �0 !` � C;A `s e0 : �0C;A `s e@le0 : ��-E C;A `s e : ��` �0 C;A; x : �; y : �0 `s e0 : �00C;A `s letl (x; y) be e in e0 : �00Bool-E C;A `s e : Bool` C;A `s e0 : � C;A `s e00 : �C;A `s ifl e then e0 else e00 : �is an inference in T then C ` ` � FT (l).The inference tree will contain more information than the
ow function,mapping subexpressions to sets of labels (in particular it allows reasoningabout principality) so reasoning with inference trees instead of
ow functionswill often prove rewarding.2.2 Principality and MinimalityThe analysis presented here di�ers from many constraint and type basedanalyses by including variables in the language of annotations. Other ana-lyses often aim at �nding the minimal annotation, but this seems highlyproblematic, as this will lead to analysing programs under minimal assump-tions on free variables and arguments.For
ow analysis this can lead to non-sensical results such as \underassumption that x is annotated with the empty set of labels, the program(�y:y)@x will result in the empty set of labels" which is of course true,but since we will never be able to run the program on any value with theempty set of labels (no such value exists) the result is of little value. Inchapter 10 we will see how constant propagation based on
ow analysis

22 CHAPTER 2. SIMPLE TYPEScan lead to unsound results using a minimal annotation. The problem isthat a minimal solution does not capture the
ow of input values into theprogram, and we might be lead to conclude erroneously that variable canonly be bound to one constant value, even though it might also bind inputvalues.1What is needed is a principal annotation which gives the most generaldescription of the analysed program. In the example above, we could �nd\under assumption that x is annotated with �, the program (�y:y)@x willresult in �".Amongst the principal typings, we are interested in �nding the minimalone | intuitively this corresponds to resolving all
ow information that doesnot depend on input or free variables.2.2.1 PrincipalityWe �rst note that the inference rules of �gure 2.2 are syntax directed. Thisallows us to directly specify a version of algorithm W computing a typ-ing [DM82]. We then prove that the typing computed by the algorithm isprincipal. Algorithm W maps an environment A and an expression e toa triple of a substitution S, a constraint set C and a
ow type �. Thealgorithm is de�ned in �gure 2.3.Uni�cation is de�ned by the (overloaded) partial function unify :unify(�; �) = [�=�]unify(�;L) = [L=�]unify(L;�) = [L=�]unify(L1; L2) = Id , if L1 = L2= Fail , otherwiseunify(Bool`1 ;Bool`2) = unify(`1; `2)unify(�1 !`1 �01; �2 !`2 �02) = let S1 = unify(�1; �2)S2 = unify(S1�01; S1�02)S3 = unify(S2(S1`1); S2(S1`2))in S3 � S2 � S1unify(�1 �`1 �01; �2 �`2 �02) = let S1 = unify(�1; �2)S2 = unify(S1�01; S1�02)S3 = unify(S2(S1`1); S2(S1`2))in S3 � S2 � S1Proposition 2.1 The de�nition of unify implements most general uni�ca-tion:1Previous
ow analyses have been global and focused on tracing the
ow of higher-order values: under the assumption that all input is �rst-order, minimal solutions doesmake sense.

2.2. PRINCIPALITY AND MINIMALITY 23
W(A; e) = case e ofx : (Id; f g; A(x))�lx : t:e0 : let � 2 Ks(t) be a
ow typewith fresh variable annotationslet � be a fresh variablelet (S;C; �0) =W((A; x : �); e0)in (S;C [fflg � �g; S(�) !� �0)e1@le2 : let (S;C; �00 !` �) =W(A; e1)let (S0; C 0; �0) =W(SA; e2)let S00 = unify(�0; S0�00)in (S00 � S0 � S; S00(S0C [C 0); S00(S0�))Truel(Falsel) : let � be a fresh variablein (Id; fflg � �g;Bool�)ifl e1 then e2 else e3 : let (S1; C1;Bool`) =W(A; e1)let (S2; C2; �2) =W(S1A; e2)let (S3; C3; �3) =W(S2(S1A); e3)let S4 = unify(S3�2; �3)in (S4 � S3 � S2 � S1; S4(S3(S2C1 [C2) [C3); S4�3)(e1; e2)l : let � be a fresh variablelet (S1; C1; �1) =W(A; e1)let (S2; C2; �2) =W(S1A; e2)in (S2 � S1; S2C1 [C2 [fflg � �g; (S2�1)�� �2)letl (x; y) be e1 in e2 : let (S1; C1; �x �` �y) =W(A; e1)let (S2; C2; �) =W((S1A; x : �x; y : �y); e2)in (S2 � S1; S2C1 [C2; �)�xx : t:e0 : let � 2 Ks(t) be a
ow typewith fresh variable annotationslet (S;C; �0) =W((A; x : �); e0)let S0 = unify(S�; �0)in (S0 � S; S0C;S0�0)let x = e1 in e2 : let (S1; C1; �) =W(A; e1)let (S2; C2; �0) =W(S1(A; x : �); e2)in (S2 � S1; S2C1 [C2; �0)Figure 2.3: Algorithm W for simple types

24 CHAPTER 2. SIMPLE TYPES1. If there exists S such that S� = S�0 then unify(�; �0) does not fail.2. If S = unify(�; �0) then S� = S�0 and for any S0 such that S0� = S0�0there exists S00 such that S0 = S00 � S.We observe that W(A; e) can fail for some A (since uni�cation can fail).This will of course happen if no t exists such that jA j ` e : t (that is e isnot well typed under the standard type component of A). But even if A isa decoration of a valid standard environment, the algorithm can fail. E.g.W(f : Boolfl3g !fl4g Boolfl5g; f@l1Truel2) will fail since fl2g and fl3g arenot uni�able. We introduce a su�cient criterion on environments to avoidthat W fails:De�nition 2.2 We call A proper if for all x 2 Dom(A), all annotations inA(x) are label variables.We could have chosen a less restrictive de�nition of proper environments| when we introduce subtyping in the next chapter, we will show thatrequiring the negative occurrences in �i to be label variables su�ces. Thecall W(x : Boolfl1g; y : Boolfl2g; if Truel3 then x else y)shows this to be insu�cient for simple
ow analysis since fl1g and fl2g arenot uni�able.Lemma 2.3 If A is proper then W(A; e) terminates without failure.Proof We prove by easy induction that if A is proper thenW(A; e) returns(S;C; �) where � is annotated with
ow variables only and the range of Sis only
ow variables. 2We are now able to de�ne the instance relation between typings:De�nition 2.4 A
ow judgement C 0;A0 `s e0 : �0 is an (weak) instance ofC;A `s e : � if e = e0 and there exists a substitution S such that1. C 0 `s S(C),2. A0(x) = S(A(x)) for all x 2 Dom(A) and3. S(�) = �0If C;A `s e : � is also an instance of C 0;A0 `s e0 : �0 then the twojudgements are equivalent.Proposition 2.5 Derivable judgements are closed under the instance rela-tion. That is, if C;A `s e : � is derivable then so is any instance of it.

2.2. PRINCIPALITY AND MINIMALITY 25Proof By induction over the derivation of C;A `s e : �. 2Lemma 2.6 If C;A `s e : � then also C;C 0;A `s e : � for any constraintset C 0.Proof Follows from proposition 2.5. 2Theorem 2.7 If W(A; e) = (S;C; �) then C;S(A) `s e : � and for anyC 0; �0; S0 where C 0;S0(A) `s e : �0 we have that C 0;S0(A) `s e : �0 is aninstance of C;S(A) `s e : �.Proof The theorem follows by induction over the structure of e. We showa few cases, the rest are similar:\e = x": We �nd W(A; e) = (Id; fg; A(x)). If we assume A = A0; x : �, wehave ;A0; x : � `s x : �Furthermore, let C 0; �0; S0 be given such that C 0;S0(A) `s x : �0. ThenS0(A) = S0(A0); x : S0(�) and �0 = S0(�). We have:1. C 0 `s S0fg,2. S0(A(x)) = S0(A(x)) for all x 2 Dom(A), and3. S0(�) = �0and thus C 0;S0(A) `s x : �0 is an instance of ;A `s x : �.\e = �lx : t:e0": Let � 2 Ks(t) be a
ow type with fresh variable annota-tions, � be a fresh variable and let (S;C; �0) = W((A; x : �); e0). Byinduction, C;S(A; x : �) `s e0 : �0 and by lemma 2.6 alsoC; flg � �;S(A; x : �) `s e0 : �0By the (!-I) rule we �ndC; flg � �;S(A) `s �lx : t:e0 : S(�)!� �0 (2.1)Let C 0; �1; �2; `; S0 be given such thatC 0;S0(A) `s �lx : t:e0 : �1 !` �2 (2.2)The last rule applied must be the (!-I) rule from assumptionsC 0;S0(A); x : �1 `s e0 : �2 and C 0 `s flg � `

26 CHAPTER 2. SIMPLE TYPESWithout loss of generality2, we can assume that S0 is the identityon �1, which allows us to use the induction hypothesis to show thatC 0;S0(A; x : �1) `s e0 : �2 is an instance of C; flg � �;S(A; x : �) `se0 : �0 that is there exists S00 such that:1. C 0 `s S00(C)2. S0((A; x : �1)(y)) = S00(S(A; x : �)(y)) for all y 2 Dom(A; x : �),and3. S00(�0) = �2To show that (2.2) is an instance of (2.1) we let S000 = S00 � [`=�] andhave:1. C 0 `s S000(C)2. S0(A(y)) = S000(S(A(y))) for all y 2 Dom(A), and3. S000(S(�)!� �0) = �1 !` �2\e = e1@le2": Let (S;C; �00 !` �) = W(A; e1) and (S0; C 0; �0) =W(SA; e2). By induction, we �ndC;S(A) `s e1 : �00 !` � (2.3)(note that e1 must have a function type due to standard well-typedness) and C 0;S0(S(A)) `s e2 : �0 (2.4)Let S00 = unify(�0; S0�00). Since(S00 � S0)C; (S00 � S0 � S)(A) `s e1 : (S00 � S0)(�00 !` �) (2.5)is an instance of (2.3) we have by proposition 2.5 that it is also deriv-able and then by lemma 2.6S00(S0C [C 0); (S00 � S0 � S)(A) `s e1 : (S00 � S0)(�00 !` �) (2.6)is also derivable.SimilarlyS00(S0C [C 0); (S00 � S0 � S)(C [C 0)(A) `s e2 : S00(�0) (2.7)2Formally, we show that there exists a renaming Sr s.t.C0;S0(A) `s �lx : t:e0 : �1 !` �2and SrC0;S0(A) `s �lx : t:e0 : Sr(�1 !` �2)are equivalent. The proof then proceeds with the second judgement.

2.2. PRINCIPALITY AND MINIMALITY 27By proposition 2.1 we �nd that S00�0 = S00(S0�00) and hence by the(!-E) rule:S00(S0C [C 0); (S00 � S0 � S)(A) `s e1@le2 : S00(S0�) (2.8)Let C1; �1; S1 be given such thatC1;S1(A) `s e1@le2 : �1The last rule applied must be (!-E) and hence there exist �2 and `0such that C1;S1(A) `s e1 : �2 !`0 �1and C1;S1(A) `s e2 : �2By induction hypothesis we �nd S3 s.t.1. C1 `s S3(C),2. S1(A(x)) = S3(S(A(x))) for all x 2 Dom(A), and3. S3(�00 !` �) = �2 !`0 �1and similarly by induction hypothesis S4 s.t.1. C1 `s S4(C 0),2. S1(A(x)) = S4(S0(S(A(x)))) for all x 2 Dom(A), and3. S4(�0) = �2Let f�1; � � � ; �ng be the variables in S(A). From the two point 2.'s wesee that for all �i we have (S4 � S0)(�i) = S3(�i). Let the variables in�00 !` � be f�1; � � � ; �mg and the variables of �0 be f
1; � � � ;
kg. Wecan assume that1. f�1; � � � ; �mg \ f
1; � � � ;
kg � f�1; � � � ; �ng,2. (f�1; � � � ; �mg n f�1; � � � ; �ng) \Dom(S4 � S0) = ;,3. (f
1; � � � ;
kg n f�1; � � � ; �ng) \Dom(S3) = ;, and4. Ran(S4) \Dom(S3) � f�1; � � � ; �ngWe now �nd (S3 � S4)(S0�00) = S3((S4 � S0)�00)= (S4 � S0)(S3�00) (y)= (S4 � S0)�2= (S4 � S0)(S4�0)= S3(S4�0) (z)= (S3 � S4)�0

28 CHAPTER 2. SIMPLE TYPESwhere (y) follows from point 2. and (z) follows from point 4. and thefact mentioned above that (S4 � S0)(�i) = S3(�i).It follows from proposition 2.1 that there exists S5 such that:S3 � S4 = S5 � S00It now follows that1. C1 `s S5(S00(S0C [C 0)),2. S1(A(x)) = S5((S00 � S0 � S)(A(x))) for all x 2 Dom(A), and3. S5(S00(S0�)) = �1where the �rst two points follow by simple calculations and point 3.follows from S5(S00(S0�)) = (S5 � S00)(S0�)= (S3 � S4)(S0�)= S3((S4 � S0)�)= �1The last step is true because of point 2. and (S4 � S0)(�i) = S3(�i).2This theorem along with lemma 2.3 shows that every expression hasprincipal types under proper assumptions.2.2.2 MinimalityPrincipal typings are not unique: W([]; if l4 Truel1 then Falsel2 else Truel3)will return (Id; ffl1g � �; fl2g � �; fl3g � �g;Bool�) corresponding to thetypingfl1g � �; fl2g � �; fl3g � �;` ifl4 Truel1 then Falsel2 else Truel3 : Bool�The �rst constraint signi�es that any set of labels can be used by the `if' aslong as l1 is amongst them. We would prefer a principal typingfl2g � �; fl3g � �;` ifl4 Truel1 then Falsel2 else Truel3 : Bool�where we have instantiated � to fl1g, since this is the best (minimal) in-formation we can obtain without violating principality. If we compute the
ow function for the two derivations, the �rst corresponds to [l4 7! �] andthe second to [l4 7! fl1g] where the �rst is more general, but more generalin an \unnecessary" way: no evaluation of the expression can result in the`if' using any other value than Truel1 .It is easy to see that if (S;C; �) = W(A; e) and A is proper then allconstraints in C have the form flg � �. Let � be a label variable occurringin C. Let fl1g � �; � � � ; flng � � be all constraints in C containing �. If �

2.3. SOUNDNESS 29occurs neither in A nor �, let C 0 be the result of removing these constraintsfrom C. If � occurs in A or �, let C 0 be the result of replacing the constraintswith Siflig � �. In either case C 0;A ` e : � and C;A ` e : � are equivalent(instances of each other).By repeating this procedure, we obtain:Theorem 2.8 For every
ow judgement C;A ` e : � there exists an equiv-alent judgement C 0;A ` e : � where C 0 contains only
ow variables � occur-ring free in A or � and for each � the constraint set C 0 contains only oneconstraint L � �.If we keep track of labels being used in the program (e.g. at the `if'statement note which labels annotate the boolean being consumed) duringcomputation of W(A; e) then applying substitutions S = [Siflig=�] (in thediscussion above) to the inference tree (alternatively, the
ow function) willyield minimal, principal
ow information.The
ow function computed this way will be polymorphic, but it has thespecial property that it will map all destructors to either a constant or to avariable occurring in the environment or in the type of the whole expression.Thus instantiating type and environment will allow
ow information to beread directly from the polymorphic
ow function.By searching for a minimal type only amongst the principal types, wedi�er signi�cantly from constraint based
ow analyses by Palsberg [Pal94]and Heintze [Hei95]. Since their analyses do not contain variables, theydo not have the principal type property. This prevents their analyses frombeing modular. They then set out to �nd the minimal typing which isindeed small but also quite un-informative since it will be the typing thatgiven the smallest assumptions on free variables and input computes thesmallest result. Our approach requires the typing to be applicable in allcontexts and only then chooses the minimal typing amongst these modulardescriptions.2.3 SoundnessThis section will prove soundness of the analysis. We will prove the moregeneral result that
ow information is preserved under reduction.First we prove a variant of the substitution lemma: not only is the �naljudgement preserved by substitution, but also the
ow computed by thederivations.Lemma 2.9 (Substitution lemma) If T1 = T 01C;A; x : �0 `s e : � andT2 = T 02C;A `s e0 : �0 then there exists T3 such that

30 CHAPTER 2. SIMPLE TYPES1. T3 = T 03C;A `s e[e0=x] : � and2. For all l 2 Destructors(e[e0=x]) we haveC ` FT3(l) = FT1(l) t FT 02(l)Proof The lemma follows by simple induction on the structure of T1. Wegive two illustrative cases:(Id): Assume T1 = C;A; x : �0 `s x : �0and T2 = T 02C;A `s e0 : �01. Let T3 = T22. Let l 2 Destructors(x[e0=x]) be given. Since expression x hasno constructors, it follows that FT1(l) = ; and clearly FT2(l) =FT3(l).(!-E): AssumeT1 = T 01C;A; x : �0 `s e : �00 !` � T 001C;A; x : �0 `s e00 : �00C;A; x : �0 `s e@l@e00 : �00and T2 = T 02C;A `s e0 : �0then by induction there existsT 03 = T 003C;A `s e[e0=x] : �00 !` � and T 04 = T 004C;A `s e00[e0=x] : �00Now1. Let T3 = T 003C;A `s e[e0=x] : �00 !` � T 004C;A `s e00[e0=x] : �00C;A `s (e@l@e00)[e0=x] : �

2.3. SOUNDNESS 312. Let l 2 Destructors((e1@l@e2)[e0=x]) be given. If l 6= l@ we aredone by straightforward induction. OtherwiseC ` FT3(l@) = FT 003 (l@) t FT 004 (l@) t `C ` FT 003 (l@) t FT 004 (l@) t `= FT 01 (l@) t FT2(l@) t FT 001 (l@) t FT2(l@) t `C ` FT 01 (l@) t FT2(l@) t FT 001 (l@) t FT2(l@) t `= FT1(l@) t FT2(l@)where the �rst step is the de�nition, the second step is the induc-tion hypothesis and the last step follows fromC ` FT1(l@) = FT 01 (l@) t FT 001 (l@) t ` 2We then prove the main subject reduction theorem which is also extendedwith preservation of types of subexpressions. We call this property strongsubject reduction.Theorem 2.10 (Subject Reduction) If T1 = T 01C;A `s e1 : � and e1 �!e2 then there exists T2 such that1. T2 = T 02C;A `s e2 : � and2. For all l 2 Destructors(e2) we haveC ` FT2(l) � FT1(l)and if l 2 Destructors(e1) consumes l0 2 Constructors(e1) thenC ` fl0g � FT1(l)Proof We show a few cases for illustration:(�) (�lx:e)@l0e0 �! e[e0=x]. We haveT1 = T 01C;A `s (�lx:e)@l0e0 : �There must exist T 001 ;T 0001 ; �0; � such that the derivation looks as follows:T1 = T 001C;A; x : �0 `s e : � C ` flg � �C;A `s �lx:e : �0 !� � T 0001C;A `s e0 : �0C;A `s (�lx:e)@l0e0 : �

32 CHAPTER 2. SIMPLE TYPESBy lemma 2.9 there exists T2 such thatT2 = T 02C;A `s e[e0=x] : �and for all l00 2 Destructors(e[e0=x])C ` FT2(l00) = FT 001 (l00) t FT 0001 (l00)Since C ` FT1(l00) = FT 001 (l00) t FT 001 (l00) t � if l00 = l0= FT 001 (l00) t FT 001 (l00) otherwiseand C ` flg � �, point 2. follows.(�-if) ifl True then e else e0 �! e. We haveT1 = T 01C;A `s if l True then e else e0 : �which must be by the (Bool-I) rule, thus:T1 = C ` flg � `C;A `s Truel : Bool` T 001C;A `s e : � T 0001C;A `s e0 : �C;A `s ifl True then e else e0 : �Hence T 001 is the derivation proving 1. Point 2. follows directly.(Context) C[e] �! C[e0] where e �! e0. Follows by induction on thecontext C. 2The following corollary follows as an immediate consequence of theo-rem 2.10:Corollary 2.11 (Soundness for Simple Flow Analysis) Let T be anyderivation for e and let C;A `s e : � be its conclusion. Then C;FT j= e.2.4 Constraint Based AnalysisHeintze de�nes a constraint based
ow analysis for untyped lambda calculuswhich he calls \CFA via Equality" [Hei95]3. We will brie
y review his ana-lysis here. Our presentation is adapted to our richer language and we willuse a notation based on a mixture of Palsberg and O'Keefe [Pal94, PO95].3Heintze de�nes four di�erent systems and shows equivalences between those and fourtype based analyses. We will return to the analysis he calls \standard CFA" in the nextchapter.

2.4. CONSTRAINT BASED ANALYSIS 33To every subexpression e0 occurrence of the analysed program e, weassociate a variable which we name [[e0]]. Let Ye denote this set of variablesand let Xe denote the set of program variables occurring in e (which we bywell-namedness assume are distinct).The constraint generation is shown in �gure 2.4. It generates constraintsover Xe [Ye. (In this analysis, there is no need for the distinction betweenx and [[x]]. In other words, we could generate constraints over Ye only butwe use this notation for consistency with the later constraint based analysisof section 3.4). If V1; V2; V3; V4 2 Xe [Ye then the constraints have one ofthe forms V1 � V2, V1 = V2 or V1 � V2 =) V3 = V4 (in the next chapter wegeneralise this form to V1 � V2 =) V3 � V4). The last form of constraintis called conditional and are a kind of closing rules on the generated set ofconstraints: if V1 � V2 is provable then V3 = V4 should be added to theconstraint set.Generating constraints for e.For every occurrence in e of: generate:x x = [[x]]�lx:e1 flg � [[�lx:e1]]e1@e2 for every �lx:e3 in e:flg � [[e1]] =) [[e2]] = xflg � [[e1]] =) [[e3]] = [[e1@e2]]Truel flg � [[Truel]]Falsel flg � [[Falsel]]if e1 then e2 else e3 [[e2]] = [[if e1 then e2 else e3]][[e3]] = [[if e1 then e2 else e3]](e1; e2)l flg � [[(e1; e2)l]]let (x; y) be e1 in e2 [[e2]] = [[let (x; y) be e1 in e2]]for every (e3; e4)l in e:flg � [[e1]] =) [[e3]] = xflg � [[e1]] =) [[e4]] = y�xx:e1 [[e1]] = x[[e1]] = [[�xx:e1]]let x = e1 in e2 [[e1]] = x[[e2]] = [[let x = e1 in e2]]Figure 2.4: Constraint generation a la HeintzeHeintze notes that this analysis is equivalent to the
ow analysis of Bon-dorf and J�rgensen [BJ93]. This requires some insight as the right-handsides \for every. . . " in Bondorf and J�rgensen's analysis are represented asexplicit constraints (called ��n and ��C) which are then solved at once in-

34 CHAPTER 2. SIMPLE TYPESstead of looking up all lambda- resp. pair-expressions in the program everytime. Thus Bondorf and J�rgensen's representation is harder to read butmore directly implementable.A solution to the constraint set is a substitution mapping the abovevariables in Xe [Ye to sets of labels such that the constraints are true.There is a major di�erence between our analysis and the analyses ofBondorf and J�rgensen and Heintze: we are dealing with a typed language,whereas they were doing analysis of untyped languages: Scheme resp. un-typed lambda-calculus. Another di�erence between our analysis and theanalysis presented by Heintze is our introduction of
ow variables rangingover sets of labels.Since our language is typed, the equivalence between simple
ow analysisand CFA via Equality only follows indirectly from Heintze's results. This isthe subject of the following subsection.2.4.1 Equivalence between Simple Flow Analysis and CFAvia EqualityIn addition to the system presented above, Heintze presents a system hecalls \CFA via Equality without recursion". This system produces the sameconstraints as CFA via Equality. A substitution S is a solution to theconstraint set only if � forms a non-re
exive ordering:If �lx:e0 occurs in e and x occurs free in e0 then 8l0 2 S[[x]] : l � l0E.g. consider (�y:y@y)@(�lx:x@x) where S[[x]] = Sx = flg and hence l � land thus � is re
exive.Heintze proves that \CFA via Equality without recursion" is at least aspowerful as a system corresponding directly to our simple type based
owanalysis. His theorem can be reformulated as:If C;A `s e0 : � is a ground judgement in the inference tree fore then there exists a solution S to the constraint set such thatann(�) � S[[e0]].It follows as an immediate consequence that the same theorem is true for\CFA via Equality".Heintze also proves that the other direction holds for \CFA via Equalitywithout recursion". This can be reformulated as:If S is a solution to the constraint set then there exists a groundinference tree T such that S[[e]] = ann(�) for every e for whichthe judgement C;A `s e : � is in T .Now add type variables k and recursive types �k:� to the language ofannotated types. De�ne an equality on types by:�k:� = �[�k:�=k]

2.5. ALGORITHM 35and extend this in the obvious way to become a congruence on types. An-notated types in the same equivalence class are identi�ed and free variablesare disallowed.For \CFA via Equality" and the system obtained by adding recursivetypes to our simple typed
ow analysis (call this `�) the same result asabove holds:If S is a solution to the constraint set then there exists a groundinference tree T such that S[[e]] = ann(�) for every e for whichthe judgement C;A `� e : � is in T .At this point we realise that no (well typed) term exists such that C;A `�e : � but not C;A `s e : �. Thus C;A `� e : � implies C;A `s e : � andwe have established the equivalence between the analysis de�ned by theconstraint generation system of �gure 2.4 (without the �-constraint) andour simple
ow analysis.Thus for typed terms, constraint based analysis �nds a solution equiva-lent to the minimal ground derivation in our system.2.5 AlgorithmBondorf and J�rgensen [BJ93] show that their simple closure analysis iscomputable by an algorithm running in time O(n�(n; n)) where �(n; n) < 5for any value of n smaller than the number of atoms in the universe. (To beexact, their complexity contains a few more �gures like the maximal arityof functions and constructors, which we can ignore).The complexity argument is based on an algorithm developed for bindingtime analysis by Henglein [Hen91]. The factor �(n; n) stems from uni�cationimplemented using union/�nd (� is an inverse of Ackermann's function).

36 CHAPTER 2. SIMPLE TYPES

Chapter 3SubtypingIn this chapter we add subtyping to the system of chapter 2. This allowsgreater precision of the analysis. The resulting analysis is equivalent instrength to the closure analysis of Sestoft [Ses88, Ses91] (section 3.3) andthe constraint based analysis of Palsberg [Pal94] (section 3.4). Palsbergproved the constraint based analysis equal to Sestoft's, and Palsberg andO'Keefe [PO95] and Heintze [Hei95] independently proved the equivalencebetween constraint based and sub type based analysis. These proofs aresketched in section 3.5.In contrast to the analyses of Sestoft and Palsberg, our
ow analysis cananalyse parts of a program independently without loss of precision since itenjoys the principal typing property.3.1 SubtypingConsider the following expressionlet x = Truel1in let y = Falsel2in let f = �z:zin if xthen f@xelse f@yVariable f can be applied to both x and y and thus using the simple analysisof chapter 2, the
ow information associated with these two variables hasto be identical. Hence the analysis tells us that the condition of the `if' canevaluate to either Truel1 or Falsel2 .Subtyping will allow us to associate exact information to x and y andthen only subtype this to fl1; l2g when x and y appear as arguments to f .Figure 3.1 presents the formulae of subtyping
ow analysis | these areidentical to the formulae of simple
ow analysis. We introduce subtype37

38 CHAPTER 3. SUBTYPING

Formulae: Bool Bool` 2 K�(Bool)! � 2 K�(t) �0 2 K�(t0)�!` �0 2 K�(t! t0) � � 2 K�(t) �0 2 K�(t0)��` �0 2 K�(t� t0)Subtype relation: Bool C ` `1 � `2C `� Bool`1 � Bool`2Arrow C `� �1 � �01 C `� �2 � �02 C ` `1 � `2C `� �01 !`1 �2 � �1 !`2 �02Product C `� �1 � �01 C `� �2 � �02 C ` `1 � `2C `� �1 �`1 �2 � �01 �`2 �02Figure 3.1: Subtyping
ow analysis | formulae and subtype relation

3.2. PRINCIPALITY AND MINIMALITY 39judgements: C `� � � �0 is read \under assumption C, � is a subtype of�0".Subtype judgements can be seen as the natural generalisation of the logicof properties to a logic of annotated types. A boolean
ow formula Bool`1is a subtype of another boolean
ow formula Bool`2 if we can prove `1 � `2under assumptions C. The relation is lifted to structured types in the usualmanner (contravariant in the argument position for function types) wherethe annotations on the! and � type constructors are allowed to be subsetsjust as for booleans.The subtype relation � is transitive as a straightforward consequence ofthe transitivity of the � relation.Figure 3.2 presents the non-logical and semi-logical rules for subtyping
ow analysis. The non-logical rules resemble the rules of the simple system;the main di�erence is that we do not need the subtype step in constructorrules (such as a premise C ` flg � � and conclusion C;A `� Truel : Bool�in the Bool-I rule). The rules of the simple system are all derivable. Weadd a new semi-logical rule called subsumption which allows an expressionof type � to have type �0 if � is a subtype of �0.3.1.1 Subtyping Flow FunctionsWe de�ne
ow function as in chapter 2. Let T be a derivation. For every lwe let FT (l) be the least property such that whenever on of the rules!-E C;A `� e : �0 !` � C;A `� e0 : �0C;A `� e@le0 : ��-E C;A `� e : ��` �0 C;A; x : �; y : �0 `� e0 : �00C;A `� letl (x; y) be e in e0 : �00Bool-E C;A `� e : Bool` C;A `� e0 : � C;A `� e00 : �C;A `� ifl e then e0 else e00 : �is an inference in T then C ` ` � FT (l).3.2 Principality and MinimalityIn this section we prove that the subtype system has principal types. We dothis in a couple of steps. We give a syntax-directed version of our subtyping
ow analysis and then give an algorithm for computing principal types (andwe prove that they are indeed principal). We go on to �nd a minimal,principal typing.

40 CHAPTER 3. SUBTYPING
Non-logical rules: Id C;A; x : � `� x : �!-I C;A; x : � `� e : �0C;A `� �lx:e : �!flg �0!-E C;A `� e : �0 !` � C;A `� e0 : �0C;A `� e@le0 : �Bool-I C;A `� Truel : Boolflg C;A `� Falsel : BoolflgBool-E C;A `� e : Bool` C;A `� e0 : � C;A `� e00 : �C;A `� if l e then e0 else e00 : ��-I C;A `� e : � C;A `� e0 : �0C;A `� (e; e0)l : ��flg �0�-E C;A `� e : ��` �0 C;A; x : �; y : �0 `� e0 : �00C;A `� letl (x; y) be e in e0 : �00�x C;A; x : � `� e : �C;A `� �xx:e : � let C;A `� e : � C;A; x : � `� e0 : �0C;A `� let x = e in e0 : �0Semi-logical rules: Sub C;A `� e : � C `� � � �0C;A `� e : �0Figure 3.2: Subtyping
ow analysis | non-logical rules

3.2. PRINCIPALITY AND MINIMALITY 41
Non-logical rules: Id C;A; x : � `�n x : �!-I C;A; x : � `�n e : �0C;A `�n �lx:e : �!flg �0!-E C;A `�n e : �0 !` � C;A `�n e0 : �00 C `� �00 � �0C;A `�n e@le0 : �Bool-I C;A `�n Truel : Boolflg C;A `�n Falsel : BoolflgBool-E C;A `�n e : Bool` C;A `�n e0 : �0 C `� �0 � �C;A `�n e00 : �00 C `� �00 � �C;A `�n ifl e then e0 else e00 : ��-I C;A `�n e : � C;A `�n e0 : �0C;A `�n (e; e0)l : ��flg �0�-E C;A `�n e : ��` �0 C;A; x : �; y : �0 `�n e0 : �00C;A `�n letl (x; y) be e in e0 : �00�x C;A; x : � `�n e : �0 C `� �0 � �C;A `�n �xx:e : �0let C;A `�n e : � C;A; x : � `�n e0 : �0C;A `�n let x = e in e0 : �0Figure 3.3: Syntax-directed subtyping
ow analysis

42 CHAPTER 3. SUBTYPING3.2.1 A Syntax Directed SystemBy transitivity the subsumption rule need never be applied twice to the sameterm. We can thus integrate this rule into the other rules when necessary,in order to achieve an equivalent but syntax-directed type system.In �gure 3.3 we present this version of our subtyping
ow analysis. Thesubscript n on `�n is for normalised. The system is obtained by allowing onesubtype step where necessary. The following theorem states soundness andcompleteness of the syntax directed system w.r.t. the non syntax-directedsystem of �gure 3.2.Theorem 3.1 Type system `�n is sound and complete w.r.t. `�:Soundness If C;A `�n e : � then C;A `� e : �Completeness If C;A `� e : � then there exists �0 such that C;A `�n e : �0and C `� �0 � �.Proof The proof of soundness proceeds by induction over the derivationof C;A `�n e : � and the proof of completeness proceeds by induction overthe derivation of C;A `� e : � 23.2.2 AlgorithmWe de�ne a partial function called constraints mapping a subtype constraint� � �0 to the least sets of inclusion constraints C such that C `� � � �0. Weoverload function constraints to also work on annotation constraints: eitherby mapping ` � `0 to the set containing the constraint itself or by failing:constraints(� � �0) = f� � �0gconstraints(L � �) = fL � �gconstraints(L � L0) = fg if L � L0= Fail otherwiseconstraints(� � L) = Failconstraints(Bool` � Bool`0) = constraints(` � `0)constraints(�1 !` �2 � �01 !`0 �02)= constraints(�01 � �1) [constraints (�2 � �02) [constraints(` � `0)constraints(�1 �` �2 � �01 �`0 �02)= constraints(�1 � �01) [constraints (�2 � �02) [constraints(` � `0)where we extend the union operator such that Fail [C = Fail .Lemma 3.2 Let � and �0 be given. If there exists C 0 s.t. C 0 `� � � �0 thenconstraints(� � �0) returns C such that

3.2. PRINCIPALITY AND MINIMALITY 431. C `� � � �0, and2. C 0 `� C.Proof Induction over the structure of the � (and �0). 2We go on to de�ne the instance relation used in this chapter. We writeC 0;A0 `� A forFor all assumptions x : � in A, judgement C 0;A0 `� x : � isprovable.De�nition 3.3 A
ow judgement C 0;A0 `� e0 : �0 is an instance1 ofC;A `� e : � if e = e0 and there exists a substitution S such that:1. C 0 ` S(C),2. C 0;A0 `� S(A) and3. C 0 `� S(�) � �0If C;A `� e : � is also an instance of C 0;A0 `� e0 : �0 then the twojudgements are equivalent.This instance relation is stronger (that is, more judgements are related)than the instance relation of the previous chapter, since it allows subtypingsteps on bindings in the environment and on the result type.Proposition 3.4 Derivable judgements are closed under the instance re-lation. That is, if C;A `� e : � is derivable then so is any instance ofit.Proof By induction over the derivation of C;A `� e : �. 2Figure 3.4 de�nes a version of algorithm W implementing the subtypebased
ow analysis. Like simple types, W(A; e) can terminate with failure(if the function constraints return Fail). We therefore de�ne the notion ofproper environment, which does not need to be as restrictive as in the simpletyped case:De�nition 3.5 We call A proper if for all x 2 Dom(A) we have that allannotations occurring negatively in A(x) are label variables.Lemma 3.6 If A is proper then W(A; e) terminates without failure.1In the literature, this relation is often called lazy instance or strong instance.

44 CHAPTER 3. SUBTYPING
W(A; e) = case e ofx : (fg; A(x))�lx : t:e0 : let � 2 K�(t) be a
ow typewith fresh variable annotationslet (C; �0) =W((A; x : �); e0)in (C; �!flg �0)e1@le2 : let (C; �00 !` �) =W(A; e1)let (C 0; �0) =W(A; e2)in (C [C 0 [constraints(�0 � �00); �)Truel(Falsel) : (fg;Boolflg)ifl e1 then (e2 : t) else (e3 : t) : let � 2 K�(t) be a
ow typewith fresh variable annotationslet (C1;Bool`) =W(A; e1)let (C2; �2) =W(A; e2)let (C3; �3) =W(A; e3)let C4 = constraints (�2 � �)[constraints (�3 � �)in (C1 [C2 [C3 [C4; �)(e1; e2)l : let (C1; �1) =W(A; e1)let (C2; �2) =W(A; e2)in (C1 [C2; �1 �flg �2)letl (x; y) be e1 in e2 : let (C1; �x �` �y) =W(A; e1)let (C2; �) =W((A; x : �x; y : �y); e2)in (C1 [C2; �)�xx : t:e0 : let � 2 K�(t) be a
ow typewith fresh variable annotationslet (C; �0) =W((A; x : �); e0)in (C [constraints(�0 � �); �)let x = e1 in e2 : let (C1; �) =W(A; e1)let (C2; �0) =W((A; x : �); e2)in (C1 [C2; �0)Figure 3.4: Algorithm W

3.2. PRINCIPALITY AND MINIMALITY 45Proof We show by induction over the structure of e that if A is properthen1. W(A; e) terminates without failure, and2. W(A; e) returns (C; �) where all annotations occurring negatively in� are label variables. 2We now go on to prove the main principality theorem. We need a lemmastating that assumptions can be strengthened.Lemma 3.7 For all C;C 0; A; x; e; �; �0; �001. If C;A `� e : � then also C [C 0;A `� e : �, and2. If C;A; x : �0 `� e : � and C `� �00 � �0 then also C;C 0;A; x : �00 `�e : �Proof Simple proof by induction over the derivations of C;A `� e : � andC;A; x : �0 `� e : � respectively. 2We now go on to prove that W returns principal typings.Theorem 3.8 If W(A; e) = (C; �) then C;A `� e : � and for any C 0; �0where C 0;A `� e : �0 we have that C 0;A `� e : �0 is an instance of C;A `�e : �.Proof We prove the more general property:If W(A; e) = (C; �) then C;A `� e : � and for any S;C 0; �0where C 0;S(A) `� e : �0 we have that C 0;S(A) `� e : �0 is aninstance of C;A `� e : �.Furthermore, for any � occurring in A1. If � has a negative occurrence in � then it has a negativeoccurrence in A.2. If � has a positive occurrence in � then it has a positiveoccurrence in A.3. If � occurs on the left-hand side of a constraint in C then� has a positive occurrence in A.4. If � occurs on the right-hand side of a constraint in C then� has a negative occurrence in A.The proof goes by induction over the structure of e:

46 CHAPTER 3. SUBTYPING\e = x" Assume A = A0; x : �. Then, clearly, fg;A0; x : � `� x : �.Furthermore, if � has a positive (negative) occurrence in � then it hasa positive (negative) occurrence in A. Since C is empty, point 3. and4. are trivial.Let S;C; �0 be given such that C;S(A0; x : �) `� x : �0. By theorem 3.1there exists �00 such that C `� �00 � �0 and C;S(A0; x : �) `�n x : �00which in turn implies that �00 = S(�). Now1. C ` S(fg)2. C;S(A0; x : �) `� S(A0; x : �)3. C `� S(�) � �0\e = �lx:e0" Let � 2 Ks(t) be a
ow type with fresh variable annotations.Let (C; �0) =W((A; x : �); e0). By inductionC;A; x : � `� e0 : �0and then C;A `� �lx:e0 : �!flg �0by the (!-I) rule.Let � be a variable occurring in A and �!flg �0. Since � was chosento contain only fresh variables, � must occur in �0 but then points 1.and 2. follow by induction. Since C is unchanged, points 3. and 4.follow trivially by induction.Let C 0; �1; S1 be given such thatC 0;S1(A) `� �lx:e0 : �1Then by theorem 3.1 there exists �2 such that C `� �2 � �1C 0;S1(A) `�n �lx:e0 : �2Hence �2 = �02 !flg �002 for some �02; �002 and we conclude �1 = �01 !` �001for some �01; �001 ; ` where C `� �01 � �02, C `� �002 � �001 and C ` flg � `.Furthermore, C 0;S1(A); x : �02 `�n e0 : �002and by theorem 3.1 alsoC 0;S1(A); x : �02 `� e0 : �002and �nally, using lemma 3.7C 0;S1(A); x : �01 `� e0 : �002

3.2. PRINCIPALITY AND MINIMALITY 47We chose � to have fresh variable annotations, and therefore S0 existssuch that S0� = �01 and S0(A(y)) = S1(A(y)) for all y 2 Dom(A).Applying the induction hypothesis we �nd that C 0;S0(A; x : �) `� e0 :�002 is an instance of C;A; x : � `� e0 : �0 and thus there exists S suchthat1. C 0 ` S(C),2. C 0;S0(A; x : �) `� S(A; x : �), and3. C 0 `� S(�0) � �002It is not hard to see that also1. C 0 ` S(C),2. C 0;S1(A) `� S(A), and3. C 0 `� S(�!flg �0) � �01 !` �001\e1@le2" Let (C; �00 !` �) =W(A; e1) and (C 0; �0) =W(A; e2). By induc-tion, we �nd C;A `� e1 : �00 !` �and C 0;A `� e2 : �0By lemma 3.7 we �ndC [C 0 [constraints(�0 � �00);A `� e1 : �00 !` �and C [C 0 [constraints(�0 � �00);A `� e2 : �0and by lemma 3.2C [C 0 [constraints(�0 � �00) `� �0 � �00Thus by the (!-E) ruleC [C 0 [constraints(�0 � �00);A `� e1@le2 : �Points 1. and 2. follow by induction. Points 3. and 4. follow by in-duction for C and C 0 and by inspection of constraints(�0 � �00) usingpoints 1. and 2. of the induction hypothesis concerning �0 and �00.Let C1; �1; S1 be given such thatC1;S1(A) `� e1@le2 : �1By theorem 3.1 �2 exists s.t. �2 � �1 andC1;S1(A) `�n e1@le2 : �2

48 CHAPTER 3. SUBTYPINGand since the (!-E) rule must be the last rule applied, we �nd that�02 exists s.t. C1;S1(A) `�n e1 : �02 !` �2and C1;S1(A) `�n e2 : �02which by theorem 3.1 impliesC1;S1(A) `� e1 : �02 !` �2 (3.1)and C1;S1(A) `� e2 : �02 (3.2)By the induction hypothesis we �nd that (3.1) is an instance of C;A `�e1 : �00 !` � that is there exists S s.t.1. C1 ` S(C),2. C1;S1(A) `� S(A), and3. C1 `� S(�00 !` �) � �02 !` �2and similarly that (3.2) is an instance of C 0;A `� e2 : �0 that is thereexists S0 s.t.1. C1 ` S0(C 0),2. C1;S1(A) `� S0(A), and3. C1 `� S0(�0) � �02Without loss of generality, we can assume that Dom(S) \ Dom(S0) �FlowVar(A). Let � be a variable occurring negatively in A, then wecan conclude from the two point 2.'s thatC1 ` S� � S1� and C1 ` S0� � S1� (3.3)Similarly, if � occurs positively in A thenC1 ` S1� � S� and C1 ` S1� � S0� (3.4)Thus, if � occurs both negatively and positively then S� = S0�.Now de�ne S00 as follows:S00(�) = 8><>: S1(�) , if � 2 Dom(S) \Dom(S0)S(�) , if � 2 Dom(S) n Dom(S0)S0(�) , if � 2 Dom(S0) nDom(S)Let � � � be a constraint in C. We know C1 ` S(� � �) and want toprove that C1 ` S00(� � �). Four cases:

3.2. PRINCIPALITY AND MINIMALITY 491. If �; � 2 Dom(S) nDom(S0) then S00(� � �) = S(� � �) and theresult follows immediately.2. If �; � 2 Dom(S) \ Dom(S0) then S00(� � �) = S1(� � �).By the induction hypothesis, � occurs positively and � occursnegatively in A. Thus by (3.3) and (3.4) we have C1 ` S1� � S�and C1 ` S� � S1�. The result follows by transitivity.3. If � 2 Dom(S) \ Dom(S0) and � 2 Dom(S) n Dom(S0) then theresult follows by the same reasoning as in points 1. and 2.4. If � 2 Dom(S) \ Dom(S0) and � 2 Dom(S) n Dom(S0) then theresult follows by the same reasoning as in points 1. and 2.By a similar method, we can prove that if L � � is a constraint inC then C1 ` S00(L � �). We can therefore conclude C1 ` S00C. Weprove C1 ` S00C 0 in the same way.We prove C1 `� S00(�0 � �00) from which C1 `S00(constraints (�0 � �00)) follows by lemma 3.2. We know thatC1 `� S0�0 � �02 and C1 `� �02 � S�00. Thus the result follows bytransitivity if we can prove1. C1 `� S00�0 � S0�0, and2. C1 `� S�00 � S00�00The proofs go as follows:1. If � 2= Dom(S0) \ Dom(S) we are trivially done, so assume � 2Dom(S0)\Dom(S). If � occurs positively in �0 then it also occurspositively in A and by (3.4) we have C1 `� S1� � S0�. Similarlyif � occurs negatively in �0 we �nd by (3.3) that C1 `� S0� � S1�.2. Similarly assume that � 2 Dom(S0) \Dom(S). If � occurs posi-tively in �00 then it occurs negatively �00 !` � and therefore neg-atively in A. Thus by (3.3) that C1 `� S� � S1�. Similarly, ifit occurs negatively in �00 we �nd by (3.4) that C1 `� S1� � S�.We have thus proven C1 ` S00(C [C 0 [constraints(�0 � �00)).The second property we need to prove is C1;S1(A) `� S00(A) whichfollows easily using (3.3) and (3.4).Finally, we need to prove C1 `� S00� � �2. We know that C1 `� S� ��2 so we just need to show C1 `� S00� � S� which follows in the sameway as the proof of C1 `� S00�0 � S0�0 above.We can summarize1. C1 `� S00(C [C 0 [constraints (�0 � �00)),2. C1;S1(A) `� S00(A), and

50 CHAPTER 3. SUBTYPING3. C1 `� S00(�) � �2which is exactly what we need to prove that C1;S1(A) `� e1@le2 : �1is an instance of C [C 0 [constraints(�0 � �00);A `� e1@le2 : �.The remaining cases are similar. 2The above lemma and theorem show that every term has a principaltype under proper environments.3.2.3 MinimalityThe approach to minimality taken in chapter 2 works here as well thoughit takes a little more e�ort to remove variables not occurring in the typeor environment. We are, however, able to do a bit better: the lazy part(allowing a subtype step on the type in principal typings) makes it possibleto remove variables occurring in A or �.De�nition 3.9 Assume A = fx1 : �1; � � � ; xn : �ng. A
ow variable occur-ring free in A or � occurs positively (negatively) in C;A ` e : � if it occurspositively (negatively) in �1 ! � � � ! �n ! �. Variables not occurring freein A or � are said to be neutral.All variables occurring in C will occur positively, negatively, positivelyand negatively, or be neutral in C;A ` e : �. We would like to remove allneutral variables from C as they do no contribute to the
ow information ofthe judgement. Alternatively, we can think of neutral variables as describing
ow in a subexpression of e which has played its part; hence their
owvalue can be resolved without jeopardising principality. Neutral variablesdo play a role in the �nal judgement by, via transitivity, being responsiblefor inequalities between non-neutral variables. E.g. assume that �i is non-neutral for all i and � is neutral inC = f�1 � �; �2 � �; � � �3; � � �4gClearly, we cannot simply remove � (and all constraints involving it). Wehave to represent the inequalities in C without using �. This can be doneas: C 0 = f�1 � �3; �1 � �4; �2 � �3; �2 � �4gIf we assume that C;A `� e : � is principal, we wish the resulting judgementC 0;A `� e : � to be principal as well. This is ensured by proving the twojudgements equivalent (lazy instances of each other). This is, however, notpossible for the above judgements: there exists no substitution S such thatC 0 ` S(C). Here, the introduction of t into the language of annotationsprove important: we can simply map � to �1 t �2.

3.2. PRINCIPALITY AND MINIMALITY 51Due to the identity rule (Id) we can assume that constraint sets containno constraints of the form � � �. To be more precise, if C 0 is the result ofremoving all constraints of the form � � � from a constraint set C, thenC;A `� e : � and C 0;A `� e : � are equivalent.Lemma 3.10 Let � be a
ow variable with no negative occurrences inC;A `� e : �.Let `1 � �; � � � ; `n � � be all inequalities in C with � on the right-hand side. We delete these from C and replace every inequality � � �in C by `1 � �; � � � ; `n � � and call the resulting constraint set C 0. LetS = fFi `i=�g.Then C;A `� e : � and C 0;S(A) `� e : S(�) are equivalent (lazyinstances of each other).Proof We remark that C ` Fi `i � �. First, C;A `� e : � is an instanceof C 0;S(A) `� e : S(�) since1. C ` C 0,2. C;A `� S(A), and3. C `� S(�) � �where 1. is proven by transitivity and 2. and 3. are proven using that �occurs negatively in A and positively in � (if it occurs at all).To see that C 0;S(A) `� e : S(�) is an instance of C;A `� e : �, we see1. C 0 ` S(C),2. C 0;S(A) `� S(A), and3. C 0 `� S(�) � S(�)where 1. follows from C 0 `� `j � Fi `i for all j and C 0 `� Fi `i � �. Points2. and 3. are trivial. 2Constraints L � � and L0 � � can be replaced by L [L0 � �. Thefollowing lemma shows this to lead to an equivalent judgement:Lemma 3.11 Let � be any
ow variable. Then C;L � �;L0 � �;A `� e : �and C;L [L0 � �;A `� e : � are equivalent.By applying lemma 3.10 to all neutral variables � in a judgement andapplying lemma 3.11 exhaustively, we arrive at the same theorem as inchapter 2:

52 CHAPTER 3. SUBTYPINGTheorem 3.12 For every
ow judgement C;A ` e : � there exists an equiv-alent judgement C 0;A ` e : � where C 0 contains only
ow variables � occur-ring free in A or � and for each � there is only one constraint of the formL � � in C 0.Note, that according to lemma 3.10, we can remove more variables thanthis (namely those occurring negatively), but by applying the lemma to neu-tral variables, we arrive at a judgement without t (because the substitutionS has no e�ect on A and �).Let T be a subtyping
ow derivation. If we apply the substitution Scomputed by lemmas 3.10 and 3.11 to FT we get a new
ow function S(FT)with the special property that all destructors are mapped to expressionsL t Fi �i over
ow variables free in A or � | thus anything that can beground (without loosing modularity) will be ground in FT .
3.3 Sestoft's Closure AnalysisIn this section we present the closure analysis developed by Sestoft in [Ses88,Ses91]. The analysis is based on abstract interpretation. We will try to befaithful to Sestoft's presentation of the analysis, but we have to adapt it toour language and to extend it to handle
ow of other data than functions(closures).For the analysis we will use two functions � and � mapping labels to setsof labels. Their intended meaning is as follows:�l = 8<:the set of labels that the body e of �lx:e can evaluate to, ora pair of sets of labels that the subexpression e1; e2 of(e1; e2)l can evaluate to�x = the set of labels that x can evaluate to.The two analysis functions Pe (the closure analysis function) and Pv(the closure propagation function) have the following meanings:Pe[[e]]�� = the set of labels that expression e can evaluate to.Pv[[e]]��x = the set of labels that x can evaluate to in e.(remember, that we are assuming that all variable names are distinct.)The functions are de�ned as follows (where we assume that x 6= y 6= z 6=x):

3.4. CONSTRAINT BASED ANALYSIS 53Pe[[x]]�� = �(x)Pe[[�lx:e]]�� = flgPe[[e1@le2]]�� = Sf�l0 j l0 2 Pe[[e1]]��gPe[[Truel]]�� = flgPe[[Falsel]]�� = flgPe[[ifl e1 then e2 else e3]]�� = Pe[[e2]]�� [Pe[[e3]]��Pe[[(e1; e2)l]]�� = flgPe[[letl (x; y) be e1 in e2]]�� = Pe[[e2]]��Pe[[�xlx:e]]�� = Pe[[e]]��Pe[[letl x = e1 in e2]]�� = Pe[[e2]]��Pv[[x]]��y = fgPv[[y]]��y = fgPv[[�lx:e]]��y = Pv[[e]]��yPv[[�ly:e]]��y = Pv[[e]]��yPv[[e1@le2]]��y = Pv[[e1]]��y [Pv[[e2]]��y[SfPe[[e2]]�� j y is bound by �ly:e0where l 2 Pe[[e1]]��gPv[[Truel]]��y = fgPv [[Falsel]]��y = fgPv[[ifl e1 then e2 else e3]]��y = Pv[[e1]]��y [Pv[[e2]]��y [Pv[[e3]]��yPv[[(e1; e2)l]]��y = Pv[[e1]]��y [Pv[[e2]]��yPv[[letl (x; z) be e1 in e2]]��y = Pv[[e1]]��y [Pv[[e2]]��yPv[[letl (y; x) be e1 in e2]]��y = fst(�(Pe[[e1]]��)) [Pv[[e1]]��y [Pv[[e2]]��yPv[[letl (x; y) be e1 in e2]]��y = snd(�(Pe[[e1]]��)) [Pv[[e1]]��y [Pv[[e2]]��yPv[[�xx:e]]��y = Pv[[e]]��yPv[[�x y:e]]��y = Pv[[e]]��y [Pe[[e]]��Pv[[let y = e1 in e2]]��y = Pe[[e1]]�� [Pv[[e1]]��y [Pv[[e2]]��yPv[[let x = e1 in e2]]��y = Pv[[e1]]��y [Pv[[e2]]��yWe seek descriptions �; � which constitute the least simultaneous solutionto the equations:�l = Pe[[e1]]�� , for all �lx:e1 in e�l = (Pe[[e1]]��;Pe[[e2]]��) , for all (e1; e2)l in e�x = Pv[[e]]��x3.4 Constraint Based AnalysisPalsberg de�nes
ow analysis by �rst generating a number of constraintsfrom the syntax tree of the analysed term and then solving these [Pal94].The presentation in this section borrows some notation from [PO95] (and isthe same as in section 2.4) and extends the analysis to our richer language.

54 CHAPTER 3. SUBTYPINGLet Xe and Ye be as in section 2.4. The constraint generation is shownin �gure 3.5. It generates constraints over Xe [Ye.Generating constraints for e.For every occurrence in e of: generate:x x � [[x]]�lx:e1 flg � [[�lx:e1]]e1@e2 for every �lx:e3 in e:flg � [[e1]] =) [[e2]] � xflg � [[e1]] =) [[e3]] � [[e1@e2]]Truel flg � [[Truel]]Falsel flg � [[Falsel]]if e1 then e2 else e3 [[e2]] � [[if e1 then e2 else e3]][[e3]] � [[if e1 then e2 else e3]](e1; e2)l flg � [[(e1; e2)l]]let (x; y) be e1 in e2 [[e2]] � [[let (x; y) be e1 in e2]]for every (e3; e4)l in e:flg � [[e1]] =) [[e3]] � xflg � [[e1]] =) [[e4]] � y�xx:e1 [[e1]] � x[[e1]] � [[�xx:e1]]let x = e1 in e2 [[e1]] � x[[e2]] � [[let x = e1 in e2]]Figure 3.5: Constraint generation a la Palsberg3.5 EquivalencesThis section proves the equivalence between the three
ow analyses de�nedin this chapter (since the equivalences are known, this amounts to recapitu-lating other people's proofs). This is done only to relate my work to previouswork in
ow analysis, and we will not be very verbose in the proofs. Theequivalence does give us preservation of
ow information under arbitrary�-reduction for free, as this was proven by Palsberg for constraint based
ow analysis [Pal94].3.5.1 Equivalence between Constraint Based Analysis andClosure AnalysisThe equivalence between closure analysis and constraint based analysis wasproven by Palsberg in [Pal94]. Though his proof was for Bondorf's variant

3.5. EQUIVALENCES 55of closure analysis [Bon91] and we have changed the language slightly, wesee no reason to repeat Palsberg's proof in detail.We will brie
y sketch the equivalence to help the reader's intuition.What we will do is transform closure analysis to constraint form and re-alise that the constraints generated are the same as Palsberg's. Given �; �we introduce new notation for closure analysis[[e]] = Pe[[e]]��hjx ji = Pv[[p]]��xwhere p is the whole program. Now, �; � are solutions to the equations ofsection 3.3 if and only if the equations generated as follows are true:Case e ofx : [[e]] = hjx ji�lx:e1 : [[e]] = flge1@le2 : [[e]] = Sf�l0 j l0 2 [[e1]]gTruel : [[e]] = flgFalsel : [[e]] = flgif e1 then e2 else e3 : [[e]] = [[e2]] [[[e3]](e1; e2)l : [[e]] = flglet (x; y) be e1 in e2 : [[e]] = [[e2]]�xx:e1 : [[e]] = [[e1]]let x = e1 in e2 : [[e]] = [[e2]]Case e ofx : fg�lx:e1 : fge1@le2 : f[[e2]] � hjx ji j x is bound by �lx:e0 where l 2 [[e1]]gTruel : fgFalsel : fgif e1 then e2 else e3 : fg(e1; e2)l : fglet (x; y) be e1 in e2 : fst(�([[e1]])) � hjx ji and snd(�([[e1]])) � hjy ji�xx:e1 : hjx ji � [[e1]]let x = e1 in e2 : hjx ji � [[e1]]The �rst case corresponds to the de�nition of Pe and the second to thede�nition of Pv. It is easy to see the �rst case arises simply from the changeof syntax above: eg. [[e]] = [[e2]] [[[e3]] is simply shorthand notation for theequation Pe[[ifl e1 then e2 else e3]]�� = Pe[[e2]]�� [Pe[[e3]]��.The second case is a bit more tricky: the de�nition of Pv computes theunion of possible bindings of one variable at a time. We want to generateequations for all variables at once.

56 CHAPTER 3. SUBTYPINGLet us examine in detail the application case wherePv[[e1@le2]]��y = Pv[[e1]]��y [Pv[[e2]]��y[SfPe[[e2]]�� j y is bound by �ly:e0where l 2 Pe[[e1]]��gFirst, note that we are generating equations resulting from the applicationitself, so the �rst components Pv[[e1]]��y [Pv [[e2]]��y can be dropped. Weare left with[fPe[[e2]]�� j y is bound by �ly:e0 where l 2 Pe[[e1]]��gwhich by our shorthand notation is[f[[e2]] j y is bound by �ly:e0 where l 2 [[e1]]gThis is the total contribution for y, so we generate the constraintsf[[e2]] � hjy ji j y is bound by �ly:e0 where l 2 [[e1]]gWe still have � occurring in a few places:1. In the �rst de�nition, the application case generates:[[e]] =[f�l0 j l0 2 [[e1]]gWe can obviously replace this with:[f[[e0]] j �ly:e0 is in p and l 2 [[e1]]g = [[e]]2. In the pair-destructing case of the second de�nition:fst(�([[e1]])) � hjx ji and snd(�([[e1]])) � hjy jiThis can be replaced byfor every (e3; e4)l in e:flg � [[e1]] =) [[e3]] � hjx jiflg � [[e1]] =) [[e4]] � hjy jiInstead of viewing [[e]] and hj x ji as shorthand notation, we can viewthem as variable names. The equations can then be seen as constraints overvariables to be solved.

3.5. EQUIVALENCES 57Clearly the two de�nitions generating constraints can be merged:Case e ofx : [[e]] = hjx ji�lx:e1 : [[e]] = flge1@e2 : Sf[[e0]] j �ly:e0 is in p and l 2 [[e1]]g = [[e]] andSf[[e2]] j x is bound by �ly:e0 where l 2 [[e1]]g � hjx jiTruel : [[e]] = flgFalsel : [[e]] = flgif e1 then e2 else e3 : [[e]] = [[e2]] [[[e3]](e1; e2)l : [[e]] = flglet (x; y) be e1 in e2 : [[e]] = [[e2]] andfor every (e3; e4)l in e:flg � [[e1]] =) [[e3]] � hjx jiflg � [[e1]] =) [[e4]] � hjy ji�xx:e1 : [[e]] = [[e1]] and hjx ji � [[e1]]let x = e1 in e2 : [[e]] = [[e2]] and hjx ji � [[e1]]Comparing this with the constraint generation of Palsberg (section 3.4) wesee a strong resemblance (up to the syntactical di�erence between hj x jiand x). It is easy to see that any solution to a constraint set generatedas above will be a solution to a constraint set generated using Palsberg'ssystem. The other direction is not true, but it holds that for any solutionto a constraint set generated by Palsberg's method, there exists a solutionto the constraint set generated as above which is smaller: if S is a solutionto Palsberg's constraints, there exists a solution S0 to the above constraintssuch that for all variables V , S0(V) � S(V). In particular the minimalsolution to Palsberg's system will be the minimal solution to the above(remember that when we introduced � constraints instead of unions in thede�nition of Pv only the minimal solution to the equations corresponded toSestoft's analysis).3.5.2 Equivalence between Subtype and Constraint BasedAnalysisPalsberg and O'Keefe [PO95] and Heintze [Hei95] proved the equivalence be-tween the constraint based analysis and a type based analysis like the above.All this, however, was done in an untyped setting so as in the equivalencesketched in section 2.4 recursive types are added. Furthermore, the systemincludes a top type and a bottom type (Heintze de�nes ? = ��:� whichis not allowed in Amadio and Cardelli's type system [AC91] and hence notin Palsberg and O'Keefe's). Using an argument similar to the argument insection 2.4 we realize that our subtype based analysis has the same precisionas the constraint based analysis for well-typed terms (i.e. for typed terms,

58 CHAPTER 3. SUBTYPINGconstraint based analysis �nds a solution equivalent to the minimal groundderivation in our system).3.5.3 ComplexitySestoft's closure analysis as well as Palsberg and O'Keefe's constraint basedanalysis have been proven to be computable in cubic time O(n3) where n isthe size of the untyped program.Implementing subtype
ow analysis using algorithm W as describedabove will not lead to any improvement of this complexity. The algorithmwill produce a pair (C; �) where the size of C is proportional to the sizeof the typed program. Thus the complexity of this analysis is inherentlyexponential in the size of the untyped program | assuming that types arebounded, we do arrive at a complexity which is consistent with Sestoft's andPalsberg and O'Keefe's:Let n be the size of the typed program; then n is proportional to thesize of C and to the number of variables in C. Since lemma 3.10 removesa variable at each application, it can be applied at most n times. Eachapplication traverses the whole constraint set: unfortunately we cannot stillassume this to be proportional in size to the size of the typed programsince the lemma adds new constraints, but it is bounded by n2. Applyinglemma 3.10 overshadows application of lemma 3.11 and hence the complexityof theorem 3.12 is O(n3). Careful engineering might be able to keep the sizeof C linear in the size of the typed program thus reducing the complexityto O(n2) | since the next chapter presents a simple and elegant method ofachieving this complexity, we will not pursue this further here.Note that in practical implementations it can be desirable to apply thereduction procedure of lemma 3.10 not only to the �nal result, but alsoduring analysis in order to keep constraint sets of manageable size.3.6 SoundnessPreservation under call-by-name and call-by-need reduction has been provenby Sestoft. Invariance under arbitrary �-reduction has been proven by Pals-berg.A direct proof of soundness follows the proof of soundness of simple
owanalysis directly | the substitution lemma and subject reduction theoremonly di�er from the equivalent statements in chapter 2 by allowing for sub-typing: the judgements in redex and reduct for expressions with the samelabel are not required to assign the same type, but there should exist acommon subtype to all types.

3.6. SOUNDNESS 59Lemma 3.13 (Substitution lemma) If T1 = T 01C;A; x : �0 `� e : � andT2 = T 02C;A `� e0 : �0 then there exists T3 such that1. T3 = T3C;A `� e[e0=x] : � and2. For all l 2 Destructors(e[e0=x]) we haveC ` FT3(l) = FT1(l) t FT2(l)Proof The lemma follows by induction on the structure of T1. All casesare similar to the proof of lemma 2.9 except:(Sub): AssumeT1 = T 01 C `� �00 � �C;A; x : �0 `� e : � where T 01 = T 001C;A; x : �0 `� e : �00and T2 = T 02C;A `� e0 : �0By induction there exists T4 such thatT4 = T 04C;A `s e[e0=x] : �00and for all l 2 Destructors(e[e0=x]) we haveC ` FT4(l) = FT 001 (l) t FT2(l)Now1. T3 = T 04C;A `s e[e0=x] : �00 C `� �00 � �C;A `� e[e0=x] : �2. Follows by noting that FT4(l) = FT3(l) for all l. 2We then prove the main subject reduction theorem which is also extendedwith preservation of types of subexpressions.Theorem 3.14 (Subject Reduction) If T1 = T 01C;A `� e1 : � and e1 �!e2 then there exists T2 such that

60 CHAPTER 3. SUBTYPING1. T2 = T 02C;A `� e2 : � and2. For all l 2 Destructors(e0) we haveC ` FT2(l) � FT1(l)and if l 2 Destructors(e) consumes l0 2 Contructors(e) thenC ` fl0g � FT1(l)Proof The proof is like the proof of theorem 2.10: the non-trivial casesfollow from lemma 3.13. 2Soundness as de�ned in section 1.7 follows as a trivial corollary (induc-tion on the length of the reduction):Corollary 3.15 (Soundness for Simple Flow Analysis) Let T be anyderivation for e and let C;A `� e : � be its conclusion. Then C;FT j= e.

Chapter 4Flow GraphsIn the previous chapter, we saw basic
ow analysis expressed using con-straints, abstract interpretation and an annotated type system. In thischapter we will present value
ow graphs. The graphs presented in thischapter will have the same accuracy as the analyses of the previous chap-ter, but will carry even more intensional information: it will be possible totrace the exact path a value follows through the program from creation todestruction.Untyped graphs can be viewed as a graphical representation of Palsberg'sconstraint based de�nition of basic
ow analysis. A simple pre-
ow graphcorresponding to simple constraints (closely resembling the syntax tree forthe analysed term) is closed according to a set of rules corresponding tothe conditional constraints in Palsberg's analysis. Solving constraints inPalsberg's formulation corresponds to reachability in graphs.Section 4.2 presents a di�erent form of graph where standard type in-formation is represented explicitly in the graph. A typed
ow graph willgenerally be bigger than an untyped one, but avoids the need for the closingrules: a graph containing the full
ow information is generated directly fromthe standard type inference tree. Section 4.3 proves that typed and untypedgraphs compute the same
ow information. (A direct proof of soundnesscan be found in [Mos97b]).The graph formulation does not lead to any algorithmic improvementover previous formulations. It does, however, serve to identify the com-plexity: in particular, if the size of all types in the program is bounded bya constant, full
ow analysis can be done in quadratic time. Furthermore,this formulation allows demand driven analysis: a speci�c questions (such as\which functions can be applied at @l") can be answered without computingthe full result of the analysis. Under assumption that types are bounded,such queries can be answered in linear time. Modularity and algorithms areconsidered in section 4.4.In section 4.5 we will see that the paths de�ned in this chapter are equiv-61

62 CHAPTER 4. FLOW GRAPHSalent to the notion of well-balanced path by Asperti and Laneve [AL93]. As-perti and Laneve re�ne the concept of well-balanced path to legal path whichcaptures exact set of virtual redexes in a term | in section 8.6 we discusswhether this can be useful as a basis for de�ning more precise analyses.Finally, section 4.6 summarises the results obtained in part I.4.1 Untyped graphsA
ow graph is a structure capturing the possible
ow of an expression. Apath in a
ow graph will represent the
ow of a value.An untyped
ow graph is a directed graph (V;E) where V is a set ofvertices (or nodes) and E is a set of directed edges (or arrows) which is asubset of V � V . We use e to denote edges and n to denote nodes. The setof nodes V contains1. Variable nodes. Exactly one node for each variable (free or bound) inthe analysed expression.2. Constructor nodes !+, �+ and Bool+ which construct function-,pair- and boolean values. They correspond to abstractions, pairs andbooleans.3. Destructor nodes !�, �� and Bool� that use function-,pair- and boolean values. They correspond to applications,let (x; y) be : : : in : : : and conditionals.4. Anonymous box-nodes that represent the result of a subexpression.In addition, we will have nodes `let' and `�x': these will not be connectedto the rest of the graph, and are only included to aid readability.In a
ow graph for expression e each variable occurring in e will berepresented by one node whereas each occurrence of a variable will be rep-resented by a box-node. Constructor and destructor subexpressions of e arerepresented by a constructor or destructor node and a box-node. Let- and�x-expressions are represented by a box node, but we add let- and �x-nodesfor readability. Thus for every subexpression e0 of e there is one box nodewhich represents the result of e0. The box-node is referred to as the root ofthe graph for e0.A path is de�ned in the standard fashion. We use p to denote paths.1. Any arrow is a path2. If p is a path from n1 to n2 and p0 is a path from n2 to n3 then thecomposition of p and p0 is a path from n1 to n3. The composition iswritten as p � p0.

4.1. UNTYPED GRAPHS 63Graphically we use doubly pointed arrows to denote paths:// //In a
ow graph, value
ow is represented by paths: a path from a con-structor node to a destructor node represents a potential use of the valueconstructed by the constructor. The path will traverse variable nodes thatcan potentially be bound to the value.4.1.1 Pre-
ow-graphsA pre-
ow-graph for an expression e is a graph (V;E) which we will use asthe basis for constructing the
ow graph for e.G(x) = x //G(�x:e) = !+ //x G(e)G(e@e0) = G(e) // !�G(e0)G((e; e0)) = �+ //G(e) G(e0)G(let (x; y) be e in e0) = G(e) // ��x y G(e0) //Figure 4.1: Pre-
ow-graphs (1)Figures 4.1 and 4.2 de�ne a function G mapping (untyped) expressionsto pre-
ow-graphs. G(e) is de�ned inductively over the structure of e. Apre-
ow-graph contains only the most rudimentary
ow, namely

64 CHAPTER 4. FLOW GRAPHS

G(True) = Bool+ //G(False) = Bool+ //G(if e then e0 else e00) = G(e) // Bool�G(e0) 99G(e00) //G(�xx:e) = �xG(e) // xOO
G(let x = e in e0) = G(e)�� letx G(e0) //Figure 4.2: Pre-
ow-graphs (2)

4.1. UNTYPED GRAPHS 651. the
ow from a constructor to its root,2. the
ow from the root of subgraphs to destructors,3. the
ow from variable to variable occurrence,4. the
ow from the branches of a conditional to the root of the condi-tional and5. the
ow from let- and �x-bound expressions to the let- resp. �x-boundvariables.The edges in pre-
ow-graphs correspond directly to the unconditional con-straints generated in the constraint based
ow analysis of Palsberg [Pal94].In the de�nition we use dotted lines to make the syntax tree for e explicit.These lines are not part of the
ow graph, but represent the syntax tree.They are convenient during the construction of the
ow graph (in particularthe closing rules of the following subsection). The direction and orderingof these dotted lines is important, e.g. the left sibling of a !� node is theargument to the application and the right sibling is the result.Formally we can use functions varof and bodyof to give us the variableresp. body node of!+ and argof and resultof to give us the argument resp.result node of !�. For pairs we use fstof and sndof for the components of�+ and fstvarof and sndvarof for the variables bound by ��.Each case of the de�nition de�nes a graph with a root node . Whenevera right hand-side refers to G(e), the root node of G(e) is connected at thisplace. The root node represents the result of the graph.For each variable x in expression e (free or bound) there is exactly onenode x. Thus the case for variable occurrences in the de�nition of G connectsthis one node to a new box node.The graph for lambda creates a new node for the constructor called!+and the node for the bound variable. The result of a lambda expressionis the lambda, thus the constructor is connected to the root node. In theapplication case the root of the applied function is connected to the destruc-tor node !� indicating that this is the value that is consumed. The rootis unconnected (but will be connected according to what is applied | seesubsection 4.1.2).Pairs are treated like abstractions creating a new �+ constructor node.Pair destruction is similar to application except that it is a binding constructfor two variables and that the body of the let is connected to the root.In the graphs we abstract from whether a boolean constructor is True orFalse; both are mapped to Bool+. Similarly, in the graph for `if', we connectboth branches to the root node. (It would be more in the spirit of the otherrules if we did not connect the branches to the root, and had a closing rulethat did this if there was a path from a boolean constructor to the boolean

66 CHAPTER 4. FLOW GRAPHSdestructor. This would, however, not correspond to the analyses presentedin the previous chapter.1)In the �x-case the body is connected to the bound variable re
ectingthat unfolding will bind the variable to the body. We connect the variableto the root2. Note that �x-expressions can make graphs cyclic: e will usuallycontain x as a free variable. E.g. G(�xx:x):�x // xOOaaExample 4.1 Applying G to let (f; x) be (�y:y;True) in f@x results in thefollowing pre-
ow-graph:�+ // // �� // !�!+ // Bool+ // f ::tttttttttttt x // //y //where the rightmost box is the root of the graph. 24.1.2 Closing Pre-
ow-graphsNote how a pre-
ow-graph contains very limited
ow information. Thegraph G((�l1x:e)@l2e0) will contain a path from the node associated with �l1to the node associated with @l2 but there are no paths leading from e0 to x(and further into e)3. This is the purpose of the closing rules presented in�gure 4.3.The �rst rule in �gure 4.3 re
ects the fact that whenever a functioncan be applied at some application, the argument can
ow into the bound1One could even take this a step further and consider connecting the body of `let' andpair-destructors to the root as well as connecting the body of `�x' to the �x-bound variableas closing rules.2We could have connected the body to the root instead. In typed graphs, to be pre-sented later, this would violate an invariant that only variable nodes have more than oneexiting arrow.3From this point we will be sloppy and identify constructor/destructor occurrences inexpressions with the constructor/destructor nodes associated with them. Similarly, wewill talk about the labels of nodes when referring to the label of the associated expression.

4.1. UNTYPED GRAPHS 67!+ // // !�x 88N P S U X Z] _ a d f i k n pff pnkifda_]ZXUSPN �+ // // ��88N P S U X Z] _ a d f i k n p <<H P W _ g n vx yFigure 4.3: Closing rulesvariable and the result of the function body can
ow to the result of the ap-plication. The dashed arrows represent the added edges (and are no di�erentthan other edges).The second rule re
ects that if a pair can
ow to a pair destructor thenthe components of the pair can
ow to the variables bound by the destructor.The two closing rules correspond directly to the conditional constraints ofPalsberg's constraint based analysis [Pal94] (�gure 3.5).Function `close' mapping
ow graphs to
ow graphs is de�ned to be thetransitive closure of the closing operations de�ned in �gure 4.3.De�nition 4.2 If G is a
ow graph (V;E) then close(G) is the least
owgraph (V;E0) such that1. If there is a path from a node n1 =!+ to n2 =!� then there is anarrow from argof (n2) to varof (n1) and an arrow from bodyof (n1) toresultof (n2).2. If there is a path from a node n1 = �+ to n2 = �� then there is anarrow from fstof (n1) to fstvarof (n2) and an arrow from sndof (n1) tosndvarof (n2).Example 4.3 We show how the pre-
ow-graph of example 4.1 is closed.First we notice that there is a path (consisting of two edges) from �+ to��, so we can apply the closing rule as follows (the new edges are dashed):�+ // // �� // !�!+ // 66QSUWY[]_acegikBool+ // $$t m f _ X Q Jf ::tttttttttttt x // //y //

68 CHAPTER 4. FLOW GRAPHSIn this graph, we have created a path from !+ to !� going through f sowe can apply the closing rule again to obtain:�+ // // �� // !�!+ // 66Bool+ // $$f ::tttttttttttt x //rre //y // 22eeeeeeeeeeeeeeeeeeeeeeWe now see a path from Bool+ to the root, re
ecting that True will indeedbe the result of evaluating the expression. 24.1.3 Equivalence to Constraint Based AnalysisWe will sketch how the graph based analysis corresponds to Palsberg con-straint based analysis [Pal94]. Let an expression e be given. Let � be a mapfrom nodes in a
ow graph G(e) to Palsberg's Xe [Ye de�ned by:1. If n is the root of G(e0) then �(n) = [[e0]].2. If n is variable x then �(n) = x.3. If n is a constructor with label l then �(n) = flg.4. If n is a destructor destructing e0 then �(n) = [[e0]].Eg. � identi�es the root of the argument with the node for the applicationitself.It is easy to see that if there is an edge from n to n0 in close(G(e)) then�(n) � �(n0) is in the constraint set for e. By transitivity of � we extendthis to paths: if there is a path from n to n0 in close(G(e)) then �(n) � �(n0).For the other direction we see that if V and V 0 are in Xe[Ye and V � V 0then for all n; n0 such that �(n) = V and �(n0) = V 0 there exists a path inclose(G(e)) from n to n0.4.2 Typed graphsThe idea of typed graphs is the same as with untyped graphs: computea graph for expression e such that the data
ow when e is evaluated isrepresented in the graph as paths. We will, however, in the de�nition oftyped graphs take advantage of the fact that a standard typing of e is given.A typed
ow graph for e is a graph (V;E) as above. The principal dif-ference is that a subexpression e0 : t is represented by a set of nodes: one

4.2. TYPED GRAPHS 69node for each constructor (Bool, �, !) in t. The node associated with thetop type constructor of t is named according to e while the rest are anony-mous (but still conceptually associated to this named node). Collections ofnodes associated with di�erent subexpressions are connected by collectionsof edges which intuitively carry values of the appropriate type.Using the above de�nition would be cumbersome, so we introduce short-hand graphical notation for typed graphs. We hope that it will be clear thatthis is indeed nothing but convenient notation.We represent the set of nodes associated with a subexpression by one(multi-) node | it can be convenient to think of such a multinode as aparallel \plug". The set of edges between two nodes form a cable. To beprecise, we de�ne a t-cable as follows:1. A Bool-cable is a single edge (wire): //2. A (t ! t0)-cable is //+32ks 1 where +31 is a t-cable, ks 1 is its
ipped version and +32 is a t0-cable.3. A (t� t0)-cable is +31 //+32 where +31 is a t-cable and +32 is at0-cable.By \
ipped" we mean inverting the direction of all wires in the cable butnot changing the top to bottom order of wires.The composition of cables is called a cable-path and is written +3 +3 .If c is one of the following cables//e //e +3ks +3//e +3the edge e is called the carrier of c.If e is an edge in a cable c, we say that it is a forward edge if it has thesame direction as the carrier of c, and a backward edge if it is in the oppositedirection.Figures 4.4 and 4.5 de�ne a function T G from expressions to typed
owgraphs. As in the de�nition of G each right-hand side of the de�nition has aroot (multi-)node which is the node to be connected at recursive calls. Notethat each constructor node generates a new carrier starting at the node andconnects the sub-cables, while a destructor node terminates a carrier (andconnects sub-cables). Note that whenever two cables are connected, theyhave the same type.The graphs resulting from T G is drawn to resemble untyped graphs asmuch as possible to make comparison easier.

70 CHAPTER 4. FLOW GRAPHS
T G(x : t) = x +3 where +3 is a t-cableT G(�x:e : t! t0) = t

�� ��������������
��������������������
���� ks!+:# //t0 +3x T G(e)_g GGGGGGGGGGGGGGGGGG
?> =<89 :;

T G(e@e0) = ksT G(e) // !�+3 �$AAAAAAAAA AAAAAAAAAT G(e0)
AI

76 5401 23

T G((e; e0) : t� t0) = t +3�+ : � //t0 +3T G(e)
AI

 T G(e0)`h IIIIIIIIIIIIIIIIIIII

?> =<89 :;
T G(let (x; y) be e in e0) = +3

�	 ���������������
������������������
���T G(e) // ��+3 ��x y T G(e0) +3
76 5401 23

Figure 4.4: Typed
ow graphs (1)

4.2. TYPED GRAPHS 71

T G(True) = Bool+ //T G(False) = Bool+ //T G(if e then e0 else e00) = T G(e) // Bool�T G(e0) 4<T G(e00) +3T G(�xx:e) = �xT G(e) +3 xKS
T G(let x = e in e0) = T G(e)�� letx T G(e0) +3Figure 4.5: Typed
ow graphs (2)

72 CHAPTER 4. FLOW GRAPHSIn T G(�x:e), the three cables associated with the !+ (multi-)node arecalled the binding-cable (of x), the body-cable and the result-cable. Thedownward arrow in the !+ node is intended to represent the arrow con-structor of the type (which intuitively is carried by the middle edge).The cables associated with !� (multi-)node are called the function-cable, the argument-cable and the result-cable. The single cable enteringa variable node is called the binding-cable of the variable. For all other(multi-)nodes, we will only need to refer to the cable from the node to theroot, which we will call the result-cable.We show the typed graph obtained for the expression of example 4.1:Example 4.4 Applying T G to let (f; x) be (�y:y;True) in f@x results inthe following typed
ow graph:

��������������

��������� oo oo// //
���������������

����������// //
���������������

�������������+ // // ��// //
��uulllllllllll oo

		��������������
�� oo Bool+ //ddJJJJJJJ

KK���������������������� // !�!+ //
JJ������������������������ f 77nnnnnnnnnnnn // !!CCCCCC//
JJ�������������������������� 66mmmmmmmmmmmm x //

II���������������� //y //bbEEEEEE

?>=<
89:;

?>=<
89:;?>=<89:;

?>=<89:;/.-,()*+The reader is encouraged to follow the path from the Bool+ node (True) tothe root of the graph. 24.3 Typed and Untyped GraphsWe will consider typed and untyped graphs equivalent if they representthe same
ow information. In other words, there should be a path from aconstructor to a destructor in the typed graph if and only if there is one inthe untyped graph. We use ?+-?� path to denote such paths where ? is atype constructor.For each expression e, there is a one-to-one correspondence betweennodes in G(e) and multi-nodes in T G(e). When there is no risk of confusion,we will identify these nodes.

4.3. TYPED AND UNTYPED GRAPHS 734.3.1 Paths in untyped graphs are in typed graphsProposition 4.5 Let e be a well-typed expression. If p is a path from n1 ton2 in close(G(e)) then there exists a path p0 from n1 to n2 in T G(e).Proof By induction on the computation of close(G(e))Base: By examination of the de�nition of G and T G we see that all pathsin G(e) are carrier paths in T G(e).Step: Easy by examining the following pairs of graphs: The new edges of!+ // // !�x 88N P S U X Z] _ a d f i k n pff pnkifda_]ZXUSPNmust correspond to paths int
�	 ������������������������������

ksks!+:# // // !�t0 +3 +3 "*MMMMMMM MMMMMMMx ck NNNNNNNNNNNN
BJ��������������� ���������������

?> =<89 :; 76 5401 23and the new edges in�+ // // ��88N P S U X Z] _ a d f i k n p <<H P W _ g n vx ycorrespond to paths in t +3 +3
�
 ��������������

���������������
��+ : � // // ��t0 +3 +3 ��

AI

 ck OOOOOOOOOOOO x y
?> =<89 :; 76 5401 23 2

74 CHAPTER 4. FLOW GRAPHS4.3.2 Paths in typed graphs are in untyped graphsDe�ne the nesting depth of a carrier edge in a cable c to be 0 and the depthof any other edge e to be 1+ the nesting depth of e in the immediate subcables of c. A path p is n-nested i� the maximal nesting depth of any edgeon p is n. We de�ne the concept of n-level paths, which we will show is aconstructive characterisation of n-nested paths.De�nition 4.6 A path in a typed graph is called an n-level path i� it is thecomposition of n-level sub-paths. We say that p is an n-level sub-path i� oneof the following holds1. p is the carrier of a cable.2. p is the carrier on the cable-path c1 :: c2 :: c3 in a subgraph:t
�	 c3������������������������������

ksks c2!+:# // //p0 !�t0 +3 +3 "*MMMMMMM MMMMMMMx ck NNNNNNNNNNNN
BJc1 ���������������
���������������

?> =<89 :; 76 5401 23where p0 is a m-level path with m < n.3. p is the carrier on the cable-path c1 :: c2 :: c3 in a subgraph:t
�	 ��������������

����������������
ksks!+:# // //p0 !�t0 +3 +3c2 "*c3MMMMMMM MMMMMMMx ck c1NNNNNNNNNNNN

BJ���������������
���������������

?> =<89 :; 76 5401 23where p0 is a m-level path with m < n.4. p is the carrier on the cable-path c1 :: c2 :: c3 in a subgraph:t +3 +3c2
�
 c3��������������

���������������
��+ : � // //p0 ��t0 +3 +3 ��

AIc1

 ck OOOOOOOOOOOOOO x y
?> =<89 :; 76 5401 23where p0 is a m-level path with m < n.

4.3. TYPED AND UNTYPED GRAPHS 755. p is the carrier on the cable-path c1 :: c2 :: c3 in a subgraph:t +3 +3
�
 ��������������

�
��������������

��+ : � // //p0 ��t0 +3 +3c2 �� c3
AI

 ck c1OOOOOOOOOOOOOO x y

?> =<89 :; 76 5401 23where p0 is a m-level path with m < n.Note that all n-level paths are also m-level paths for m > n.Lemma 4.7 Any n-nested path is an n-level path.Proof Let p be an n-nested path. We prove by induction over n that pmust be a n-level path:Base: n = 0 We see that p must be a carrier.Step: n+ 1 We can divide p into p1 � p01 � p2 � � � pm � p0m � pm+1 where all pisub-paths are carriers and p0i are not. For every i, the node betweenpi and p0i must be a constructor node ?+i and the node between p0i andpi+1 must be a destructor node ?�i : in other words it must be one ofthe four combinations of de�nition 4.6. The carrier path between ?+iand ?�i must have maximal nesting depth � n but then by inductionp0i is a n-level sub-path. 2Since any path must have a maximal nesting depth we have the followingcorollary:Corollary 4.8 Given any expression e. For all ?+-?� paths p in T G(e)there exists n such that p is a n-level path.Now we are ready to prove the proposition stating that all interestingpaths in typed graphs are also in untyped graphs.Proposition 4.9 Let e be any well-typed expression. If p is a ?+-?� pathin T G(e) then there is also a ?+-?� path in close(G(e)).

76 CHAPTER 4. FLOW GRAPHSProof By corollary 4.8 we have that p must be an n-level path for somen. The proof proceeds by induction on n:n = 0: 0-level paths consist only of carrier sub-paths which are all in G(e).n > 0: p can be divided into n-level sub-paths p1 :: � � � :: pk. Now, pi iseither a 0-level sub-path in which case we are done trivially or it hasone of the forms of de�nition 4.6:� t
�	 c3������������������������������

ksks c2!+:# // //p0 !�t0 +3 +3 "*MMMMMMM MMMMMMMx ck NNNNNNNNNNNN
BJc1 ��������������� ���������������

?> =<89 :; 76 5401 23where p0 is a m-level path with m < n. By induction thereis a !+-!� path in close(G(e)). Thus close(G(e)) contains asubgraph !+ // // !�xbut since close(G(e)) is closed it must look like:!+ // // !�x 88N P S U X Z] _ a d f i k n pff pnkifda_]ZXUSPN� The three remaining cases are similar. 2We have thus proved that all ?+-?� paths in T G(e) are in close(G(e)) andvice versa. The result extends, such that a ?+-?� path traverses a variablenode x in close(G(e)) if and only if it traverses the corresponding node inT G(e) by the carrier.4.4 Modularity and AlgorithmsA
ow graph (untyped as well as typed) is a representation of the
ow of aprogram. To extract a
ow function from a graph, we compute the transitive

4.5. PATHS BY ASPERTI AND LANEVE 77closure of the graph. Transitive closure is computable in quadratic time interms of the number of edges in the graph. Single sink transitive closurecan be computed in linear time (again in the number of edges) allowing usto pose queries such as \given l, what is F(l)?", i.e. \which values are usedat l?". Similarly, single source transitive closure can be computed in lineartime allowing queries \where can value l
ow to?".Dynamic transitive closure is at the heart of the constraint based algo-rithm of Palsberg [Pal94] | since the best known algorithm for dynamictransitive closure is O(n3), this was believed to be also the best obtainablecomplexity for closure analysis.The size of a typed graph is proportional to the size of the underlyingexpression e with explicit types on all subexpressions. This is in generalexponential in the size of the untyped expression. Hence, we must expectexponential worst-case behaviour.In practice, programmers do not write programs with huge types. If weassume that all types are bounded, the size of an expression with explicittypes on all subexpressions is proportional to the underlying untyped term.Therefore the number of edges in T G(e) is proportional to the size of e.We can conclude that under the assumption that types are bounded, wecan compute the
ow function in quadratic time and answer
ow queries inlinear time.Computing
ow information using untyped
ow graphs cannot be donemodularly. The context of an expression e can easily trigger closing rules |the added edges can even trigger closing rules within G(e).Building a typed
ow graph proceeds in an entirely modular manner sowe can compute the
ow graph separately for di�erent modules.The
ow function computed by transitive closure over a graph is notimmediately modular, but can easily be made so: consider the multi-nodefor a free variable x : t as a constructor node with special unique labels�i on every type constructor in t occurring in positive position (e.g. if x :Bool! Bool is free in e a fresh label �! can enter T G(e) along the carrierto every occurrence of x and a fresh label �Bool can enter along the resultedge). Similar labels are added to negative edges in the result cable. Usingtransitive closure now computes a polymorphic
ow function that can beinstantiated by the context.4.5 Paths by Asperti and LanevePaths play a crucial role in the �eld of optimal reduction. Levy de�ned anotion of two redexes being created in the \same" way during reduction inwhich case they were said to belong to the same \family" [L�ev78, L�ev80].Reduction was said to be optimal if a family of redexes was only reducedonce.

78 CHAPTER 4. FLOW GRAPHSLater Asperti and Laneve [ADLR94] identi�ed families of redexes withlegal paths | a legal path identi�es a virtual redex (family of redexes) thatin order to do optimal reduction may not be copied. In the �eld of optimalreduction it was realised for legal paths that:\Intuitively, this \path" describes the \control
ow" between theapplication and the associated �. . . " [AG96] page 107To my knowledge this message has not gotten through to the programanalysis community even though in a certain sense an exact analysis is given.In this section, we will not give the de�nition of legal paths (this will begiven in section 8.6), only give the de�nition of well-balanced path which isa superset of legal paths and which we will see is equivalent to paths in ouruntyped (and thus also typed) graphs.Well-balanced paths are de�ned over syntax trees (seen as undirectedgraphs) with the following extra properties:� Variable occurrences are connected back to the unique lambda-boundvariable.� The (undirected) edges are given a unique name (for reference).Example 4.10 The term (�f:f@(f@M))@(�x:x) is represented by:@b������� c @@@@@@@@a�d������� e >>>>>>>> �f gf @ i ????????h x@ k AAAAAAAAj M 2We follow [AG96] closely but not exactly | in particular we make vari-ables an explicit part of the graph, while Asperti and Guerrini identifyvariables and their binders (i.e. have nodes �x and occurrences of x repre-sented by an edge to this node). The di�erence is immaterial. If � is a path,reversing � is denoted by (�)r. Well-balanced paths are de�ned as follows:

4.5. PATHS BY ASPERTI AND LANEVE 79De�nition 4.11 A well-balanced path (wbp) of type @-? (where ? is oneof var (variable), � or @) is de�ned inductively as follows1. A function edge v from an application to a node ? is a well-balancedpath of type @�?. @v������� <<<<<<<<?2. Let be a wbp of type @-var, u be the edge from the variable to itsbinding lambda, � a wbp of type @-� ending at this lambda and v bethe argument edge of the initial node of �.�u�������� @oo �o/ o/ o/ o/ o/ o/ o/ o/ v >>>>>>>x @oo o/ o/ o/ o/ o/ o/ o/ o/ ?Then u(�)rv is a wbp of type @-? where ? is the node connected tov.3. Let be a wbp of type @-@ ending in some node n, � be a wbp of type@-� starting at n and let u be the body-edge of the lambda.��������� u ======= @oo �o/ o/ o/ o/ o/ o/ o/ o/ @oo o/ o/ o/ o/ o/ o/ o/x ?Then �u is a wbp of type @-? where ? is the node connected to u.In example 4.10 above b, h and j form simple wbp's and hdbc and jdbcforms wbp's.We will show that the paths in the untyped and typed graphs (restrictedto the lambda-calculus) are exactly Asperti's well-balanced paths: there is awbp of type @-? in Asperti's syntax-trees if and only if there is a path leavingthe root node corresponding to ? leading to the node corresponding to the@-node in the untyped/typed graph for the same expression. Remember,that when ? is an application there is no path from the application node(!�) itself to the root node.We will see that case 1. corresponds to the construction of pre-
ow-graphs and cases 2. and 3. correspond to the !+-!� closing rule. We

80 CHAPTER 4. FLOW GRAPHS�rst show that any wbp in the syntax tree for e corresponds to a path inclose(G(e)).Let e be any lambda-expression. Consider 1. in the inductive de�nitionof wbp's: a path from @ to ? is a wbp according to this base case if andonly if there is a path from the root of ? to @ in the pre-
ow-graph G(e).Consider the inductive case 2.: we can assume that there is a path inclose(G(e)) corresponding to (�)r and a path corresponding to ()r. By theclosing rules there must be a path corresponding to (u(�)rv)r from the rootof ? to x and thus by composing this with the path corresponding to ()rwe �nd that there is a path corresponding to (u(�)rv)r()r in close(G(e)).The following graph is useful for illustration:!+u // //�r !�vx // // r !� ?cc \(u(�)rv)r"Similarly for 3.: we have a path (corresponding to ()r) in close(G(e)) fromthe root of an application to another application and a path (correspondingto (�)r) from a lambda to the �rst application. By the closing rules, thelatter path triggers an edge from root of the body of the lambda to the rootof the application, which composed with the path corresponding to ()rproves that there is a path corresponding to (�u)r:!+ u // //�r !�x ? ;;\(�u)r" // // r !�For the other direction, any path ending in an application node !�must be either in the pre-
ow-graph or have the structure of one of theabove graphs. This proves the following theorem:Theorem 4.12 For any any lambda-expression e the following are equiva-lent:1. There is a well-balanced path of type @l�? in the syntax tree for e.2. There is a path in close(G(e)) from the root of ? to @l.

4.6. SUMMARY OF MONOVARIANT ANALYSES 81While it was easiest to prove the correspondence using untyped graphs,the actual wbp's resemble paths in typed graphs more closely: there is a one-to-one correspondence between edges in the syntax tree for e and cables inT G(e). Then wbp's and paths ending with a carrier edge entering a!� nodein T G(e) will be exactly the reverse of each other under this correspondence.4.6 Summary of Monovariant AnalysesIn part I we have presented a number of monovariant analyses. Simple
owanalysis was equivalent to an analysis by Bondorf and J�rgensen[BJ93] andHeintze [Hei95] but allowed modular analysis due to the principal typingproperty. Analyses based on subtypes, untyped graphs and typed graphswere equivalent to analyses by Sestoft [Ses88, Ses91] and Palsberg [Pal94].We improved over their analyses by:� Giving a modular analysis.� Reducing the complexity to quadratic under assumption the types arebounded.� Allowing single queries in linear time | posing queries one by one isnot asymptotically worse than computing the
ow function.

82 CHAPTER 4. FLOW GRAPHS

Part IIPolyvariant Analysis

83

Chapter 5PolymorphismThis chapter extends the subtype
ow analysis of chapter 3 with polymor-phism. We will present two versions of polymorphic
ow analysis: ML-polymorphic
ow analysis (also known as let-polymorphism, described insection 5.2) and
ow analysis with polymorphic recursion (also known as�x-polymorphism, described in section 5.3). We will give algorithms forcomputing principal typings in the two polymorphic systems, both of whichare of polynomial complexity.The analyses presented in this chapter are to our knowledge new. Manyof the ideas have been used in the context of polymorphic binding-time ana-lysis in papers by Henglein and the present author [HM94] and by Dussart,Henglein and the present author [DHM95a].Polymorphism allows de�nitions to be reused in di�erent contexts with-out the di�erent uses interfering with each other. Let- and �x-polymorphismallow this for let-bound resp. �x-bound expressions. Thus, if a (possibly re-cursively) de�ned variable is used in multiple contexts a fresh instance of thetype is allowed in each use. This is strong enough to prove subject expansionfor let- and �x-reduction.5.1 Polymorphic Formulae and Logical RulesThe formulae and subtype relation are common to the ML-polymorphic and�x-polymorphic systems and are presented in �gure 5.1.We have two kinds of formulae in polymorphic
ow analysis. First-order
ow formulae K8(t) are exactly the same as the
ow formulae we have seenfor simple and subtype
ow analysis. In addition to this we also de�ne forevery t the set of predicative second order
ow formulae or
ow schemesS8(t). We let � range over
ow schemes. A
ow scheme has the form8~�:C) � where � is a �rst-order
ow formula and C is a constraint setf`1 � �1; � � � ; `n � �ng and ~� is a list of
ow variables h�1; � � � ; �mi. Theconstraints in C are called the quali�ers of � and the variables in ~� are85

86 CHAPTER 5. POLYMORPHISM

Formulae: Bool Bool` 2 K8(Bool)! � 2 K8(t) �0 2 K8(t0)�!` �0 2 K8(t! t0) � � 2 K8(t) �0 2 K8(t0)��` �0 2 K8(t� t0)8 � 2 K8(t)8~�:C) � 2 S8(t)Subtype relation: Bool C ` `1 � `2C `8 Bool`1 � Bool`2Arrow C `8 �1 � �01 C `8 �2 � �02 C ` `1 � `2C `8 �01 !`1 �2 � �1 !`2 �02Product C `8 �1 � �01 C `8 �2 � �02 C ` `1 � `2C `8 �1 �`1 �2 � �01 �`2 �02Figure 5.1: Polymorphic
ow analysis | formulae and subtype relation

5.2. ML POLYMORPHISM 87called the quanti�ers.The intended reading of e : 8~�:C) � is that e has type �[~̀=~�] for allinstantiations of ~� such that C[~̀=~�] is provable.The subtype relation of �gure 5.1 is identical to the similar relation ofsubtyping
ow analysis (�gure 3.1).5.2 ML polymorphismML-polymorphic
ow analysis1 allows
ow schemes in let-bound expressionsonly.The non-logical rules of �gure 5.2 only di�er from the subtype
ow ana-lysis in one rule: the let-bound expression in the rule for let is allowed tohave a
ow scheme as property. This allows di�erent instantiations of the
ow scheme for each occurrence of the let-bound variable. The quali�ca-tions of the
ow scheme are constraints that must be true for each of theinstantiations.Furthermore, two new semi-logical rules are added: the (8-I) rule allowsus to qualify over any subset of the constraint assumptions and to quantifyover any vector of
ow variables provided none of the variables are free in the(non-quali�ed) constraint set nor in the environment. The (8-E) rule allowsus to instantiate quanti�ed
ow variables provided the qualifying constraintsare provable.We �rst present a syntax directed version of the polymorphic type sys-tem. This allows us to give an algorithm for computing principal types asin the previous chapters, but for polymorphic analyses it will also be thestarting point for our de�nition of
ow functions.In contrast with the subtype system of chapter 3, existence of principaltypes is not the only aim of giving an algorithm | the algorithm itself is ofinterest. Since ML-polymorphic
ow analysis is new, naturally no algorithmsexists and we are obliged to substantiate its raison d'être by a complexityargument.5.2.1 Syntax Directed Type SystemWe note that the constraint weakening rule:weak C;A `ML e : � C 0 ` CC 0;A `ML e : �is admissible as in chapters 2 and 32. For the rest of the chapter, it will beconvenient to allow this rule in our system.1ML-polymorphism refers to the restriction to polymorphism in let-expressions. ML-polymorphism in standard types is the subject of section 9.1.2Formally, we need a side-condition \no variable bound in � is free in C0". Since it iseasy to prove that if C;A `ML e : � (without the weakening rule) then no variable bound

88 CHAPTER 5. POLYMORPHISM
Non-logical rules: Id C;A; x : � `ML x : �!-I C;A; x : � `ML e : �0C;A `ML �lx:e : �!flg �0!-E C;A `ML e : �0 !` � C;A `ML e0 : �0C;A `ML e@le0 : �Bool-I C;A `ML Truel : Boolflg C;A `ML Falsel : BoolflgBool-E C;A `ML e : Bool` C;A `ML e0 : � C;A `ML e00 : �C;A `ML if l e then e0 else e00 : ��-I C;A `ML e : � C;A `ML e0 : �0C;A `ML (e; e0)l : ��flg �0�-E C;A `ML e : ��` �0 C;A; x : �; y : �0 `ML e0 : �00C;A `ML letl (x; y) be e in e0 : �00�x C;A; x : � `ML e : �C;A `ML �xx:e : � let C;A `ML e : � C;A; x : � `ML e0 : �0C;A `ML let x = e in e0 : �0Semi-logical rules:Sub C;A `ML e : � C `8 � � �0C;A `ML e : �08-I C;C 0;A `ML e : �C;A `ML e : 8~�:C 0) � ~� not free in C;A8-E C;A `ML e : 8~�:C 0) � C ` C 0[~̀=~�]C;A `ML e : �[~̀=~�]Figure 5.2: ML-polymorphic
ow analysis | non-logical rules

5.2. ML POLYMORPHISM 89It is easy to see that except for trivial uses, instantiation is only appli-cable immediately after the variable rule and generalisation only as the lastrule in the derivation for let-bound expression. Furthermore, using the wholeconstraint set as quali�cation can only lead to more general types. Theseobservations along with building in subtype steps leads us to the syntaxdirected version of the ML-polymorphic system presented in �gure 5.3.The system contains the same rules as the syntax directed system in �g-ure 3.3 with the following di�erences:Id C ` C 0[~̀=~�]C;A; x : 8~�:C 0) � `MLn x : �[~̀=~�]let C;A `MLn e : � C 0;A; x : 8~�:C) � `MLn e0 : �0C 0;A `MLn let x = e in e0 : �0 (�)Where (�) means (~� \ (FV(A) [FV(C 0))) = ;.Figure 5.3: Syntax directed ML-polymorphic
ow analysisTheorem 5.1 Type system `MLn is sound and complete w.r.t. `ML:Soundness If C;A `MLn e : � then C;A `ML e : �Completeness If C;A `ML e : � then there exists �0 such that C;A `MLne : �0 and C `8 �0 � �.Proof The proof of soundness proceeds by induction over the derivationof C;A `MLn e : �The proof of completeness proceeds by induction over the derivation ofC;A `ML e : � (note that we need the constraint weakening rule). 25.2.2 What is the Result of Polymorphic Flow AnalysisAs in the previously de�ned analyses, we can regard derivations as the resultof the analysis | we will sketch how a ground
ow function can be extractedfrom the derivation if needed. The discussion of this subsection applies alsowhen we extend the system with polymorphic recursion in section 5.3.Extracting a ground
ow function is not as simple as in the monovariantcases since merely extracting the annotation of the top constructor of theby � is free in C;A, we can always choose a constraint-set C00 alpha-equivalent to C0 suchthat C00 ` C0 and C0 ` C00

90 CHAPTER 5. POLYMORPHISMtype of an expression will lead us to conclude that the
ow of an expression ecan be � where � is locally bound. In this case there must exist an expressionlet x = e1 in e2 where e is a subexpression of e1 and x has type 8~�:C) �where � is amongst ~�. For each occurrence x(i) of x in e2, there will be anassociated use of the instantiation rule which will substitute some `i for �.The
ow of e is then Fi `i. This will also instantiate quali�cations, retainingprovability. Note that this process might have to be repeated since `j mightbe another bound variable for some j.Example 5.2 Consider:let id = �l1x:ifl5 x then x else xin (id@Truel2 ; id@Falsel3)l4The type of �l1x:if l5 x then x else x could be 8�:Bool� !fl1g Bool� andthus the
ow of x is �. To �nd the ground
ow of F(l5) we �nd all usesof id (since this was the `let' corresponding to the binding of �) and realisethat the two applications of the instantiation rule instantiate � to fl2g resp.fl3g. We can conclude that the
ow is F(l5) = fl2; l3g.Note that instantiating � in the let-bound expression does not a�ectthe results of applying id. The description of the resulting pair will remainBoolfl2g � Boolfl3g. 2This can be viewed as exploiting polymorphism during analysis and thenreducing the abstractions and instantiations over labels. That is, in eachuse of a polymorphic expression, the
ow information of other uses doesnot degrade the result, but within the polymorphic expression, all uses
owtogether. In the example, the result of the expression is the pair of fl2g andfl3g despite the fact that the
ow of x is fl2; l3g.Note, that there is no derivation that corresponds to this result: if we in-sist that the type of x in the example is Boolfl2;l3g polymorphic
ow analysiscannot infer the precise description of the resulting pair.We will call this way of interpreting the result sticky since the annota-tions of all values that can pass through a variable \stick" to the variable.We will now give a formal de�nition of a (sticky) ML-polymorphic
ow func-tion. Let a
ow environment � map pairs of program variables and labels to
ow properties. In �gure 5.4 we de�ne a function �L which maps a deriva-tion, a label and a
ow environment to a property. If T = T 0C;A `MLn e : � ,we de�ne the
ow function for polymorphic
ow analysis byFT (l) = �L(T ; l; �0)where �0(x; l) = fg for all x 2 FV (e) and l 2 L andL = Le

5.2. ML POLYMORPHISM 91�L(T ; l; �) = case T ofIdC;A;x:8~�:C)�`MLn x:�[~̀=~�] : [~̀=~�](�(x; l))!-I T 0C;A`MLn �l0x:e:�!fl0g�0 : �L(T 0; l; �0)where �0 = �[(x; l00) 7! fg] for all l00 2 L!-E T 0C;A`MLn e:�0!`� T 00C;A`MLn e@l0e0:� : �L(T 0C;A`MLn e:�0!`� ; l; �)t�L(T 00; l; �) t ` if l = l0: �L(T 0C;A`MLn e:�0!`� ; l; �)t�L(T 00; l; �) otherwiseBool-IC;A`MLn Truel:Boolflg : fgBool-IC;A`MLn Falsel:Boolflg : fgBool-E T1C;A`MLn e:Bool` T2 T3C;A`MLn ifl0 e then e0 else e00:� : �L(T1C;A`MLn e:Bool` ; l; �)t�L(T2; l; �) t �L(T3; l; �) t ` if l = l0: �L(T1C;A`MLn e:Bool` ; l; �)t�L(T2; l; �) t �L(T3; l; �) otherwise�-I T 0 T 00C;A`MLn (e;e0)l:��flg�0 : �L(T 0; l; �) t �L(T 00; l; �)�-E T 0C;A`MLn e:��`�0 T 00C;A`MLn letl (x;y) be e in e0:�00 : �L(T 0C;A`MLn e:��`�0 ; l; �)t�L(T 00; l; �0) t ` if l = l0: �L(T 0C;A`MLn e:��`�0 ; l; �)t�L(T 00; l; �0) otherwisewhere �0 = �[(x; l00) 7! fg] for all l00 2 L�x T 0C;A`MLn �x x:e:� : �L(T 0; l; �0)where �0 = �[(x; l00) 7! fg] for all l00 2 Llet T1 T2C0;A`MLn let x=e in e0:�0 : �L(T2; l; �0)where T1 = T 01C;A`MLn e:�T2 = T 02C0;A;x:8~�:C)�`MLn e0:�0�0 = �[(x; l0) 7! �L(T1; l0; �)] for all l00 2 LFigure 5.4: ML-polymorphic
ow function

92 CHAPTER 5. POLYMORPHISMThe lemmas, propositions and theorems of this chapter which concerns
owfunctions, will be expressed in terms of �L rather that F as this allowsinduction arguments. Whenever we state \for all �" we always assume thatthe domain of � includes the free variables of the expression that it will beused in conjunction with.We de�ne FT for a non-syntax directed T to be FT 0 , where T 0 is thesyntax-directed derivation constructed by the proof of completeness in the-orem 5.1.Some program analyses are inherently non-sticky and if a
ow analysis isto be used as a basis for such analyses, it will not be desirable to do the \post-unfolding" of polymorphism. This is the case for polymorphic binding-timeanalysis [HM94] where the specialiser using the binding-time information cantreat explicit quanti�cation and instantiation exactly as lambda abstractionand application. In this case the sticky presentation of the analysis will evenmake binding-time analysis unsound (see section 10.3.1).We can conclude that a
ow function can be computed from a polymor-phic derivation, but that the derivation itself contains additional informationthat is important or even crucial to some applications.5.2.3 Halbstark Instance RelationIn the next subsection, we will prove existence of principal types for theML-polymorphic
ow analysis. We will do this by the same method thatwe employed in previous chapters: give an algorithm W which computessuch principal types. The lazy (or strong) instance relation employed inchapter 3 turns out to be inconvenient to work with (this was to some extentalready the case in chapter 3): it is too liberal to be used in the inductionhypothesis. On the other hand, we cannot prove principal typings underthe (weak) instance relation of chapter 2, so we are looking for somethingin between.The instance relation we will use is called halbstark and is strictly smallerthan the lazy (strong) instance relation (de�nition 3.3): if a typing is ahalbstark instance of another typing then it is also a lazy instance, but notvice versa. Similarly, the weak instance relation (de�nition 2.4) is strictlysmaller than the halbstark instance relation. This extends to principality,where principality under weak instance implies principality under halbstarkinstance, which in turn implies principality under lazy (strong) instance.The main di�erence between the lazy and halbstark instance relations isthat halbstark instance does not allow the environment to change as muchas in the lazy instance relation | this matches algorithm W well as thiscomputes typings given an environment and we use the instance relationonly for comparing typings with the same environment.The halbstark instance relation was introduced by Henglein [Hen96]:

5.2. ML POLYMORPHISM 93De�nition 5.3 A
ow judgement C 0;A0 `ML e0 : �0 is a halbstark instanceof C;A `ML e : � (by S) if e = e0 and1. C 0 ` S(C),2. A0 = S(A) and3. C 0 `8 S(�) � �0If C;A `ML e : � is also an instance of C 0;A0 `ML e0 : �0 then the twojudgements are equivalent.As in previous chapters, we have that derivable judgements are closedunder the instance relation. We extend this proposition to also state whathappens to the
ow computed.Proposition 5.4 Assume T1 = T 01C;A `MLn e : �and that C 0;A0 `MLn e : �0 is a halbstark instance of C;A `MLn e : � by S.Then there exists T2 such that1. T2 = T 02C 0;A0 `MLn e : �0 and2. Let L be given. Let �; �0 be two environments mapping free variablesof e to properties. Then for all l 2 L we have that C 0 `8 S�(x; l) ��0(x; l) for all x 2 FV (e) impliesC 0 ` S(�L(T1; l; �)) � �L(T2; l; �0)Proof Induction over T1. 2Now we de�ne the notion of generic instance of type schemes. For theML-polymorphic system it will be a convenient concept while for polymor-phic recursion as de�ned in the following section, it will be crucial in thedevelopment.Since we have included the (admissible) constraint weakening rule, wecan give a nice and simple de�nition, which would otherwise be rather clut-tered (though it can be done as shown by Henglein [Hen96]).De�nition 5.5 A type scheme �0 is a generic instance of � written � v �0i� ;x : � `ML x : �0. Type schemes � and �0 are equivalent written � �= �0i� � v �0 v �.

94 CHAPTER 5. POLYMORPHISMWithout the weakening rule, this de�nition would not allow us to applythe (8-E) rule except when the instantiation of bound variables makes thequali�cations ground or trivial (since ` C 0[~̀=~�] in the rule can only beprovable if C 0[~̀=~�] is ground).Lemma 5.6 Let C and C 0 be constraint sets (that is, they contain onlyconstraints of the form � � � and L � �). We have8~�:C 0) �0 v 8~�:C) �i� there exists a substitution S working on3 ~� such that1. C ` S(C 0),2. C `8 S(�0) � �, and3. No �i is free in 8~�:C 0) �0.Proof\if" Since S works on ~�, the following inference is valid:;x : 8~�:C 0) �0 `ML x : 8~�:C 0) �0C;x : 8~�:C 0) �0 `ML x : 8~�:C 0) �0 C ` S(C 0)C;x : 8~�:C 0) �0 `ML x : S(�0) C `8 S(�0) � �C;x : 8~�:C 0) �0 `ML x : � (�);x : 8~�:C 0) �0 `ML x : 8~�:C) �where (�) means (~� not free in 8~�:C 0) �0). The rules applied arefrom top to bottom: (weak), (8-E), (Sub) and (8-I).\only if" It is not hard to see that any derivation of ;x : 8~�:C 0) �0 `MLx : 8~�:C) � must look like the above (up to using several subtypesteps (which can be achieved by one using transitivity) and repetitionof the above sequence (which can be squeezed into one)). 2The following simple property of the generic instance relation will bevery useful:Lemma 5.7 If T1 = T 01C;A; x : � `ML e : �00 and �0 v � then there exists T2such that T2 = T 02C;A; x : �0 `ML e : �003That is, S is the identity on all variables not in ~�

5.2. ML POLYMORPHISM 95Proof By simple induction on T1. 2While the above lemma is simple and elegant, we need a more compli-cated version that also deals with preservation of
ow.Lemma 5.8 If1. C1;A `MLn e0 : �01 is a halbstark instance of C2;A `MLn e0 : �02 by S2. �1 = 8~�:C1) �01 for some ~� where ~� \ FV (A) = ; and �2 =closeA(C2) �02)3. T1 = T 01C;A; x : �1 `MLn e : �1then there exists T2 such that1. T2 = T 02C;A; x : �2 `ML e : �22. C `8 �2 � �13. Let L be given and let � be any environment mapping the domain ofA to properties. If C1 ` S`2 � `1 then for all l 2 L we haveC ` �L(T2; l; �2) � �L(T1; l; �1)where �2 = �[(x; l0) 7! `2] and �1 = �[(x; l0) 7! `1] for all l0 2 L.4. Let L be given and let � be any environment mapping the domain ofA to properties. If ~� is the empty vector and C ` S`2 � `1 then forall l 2 L we have C ` �L(T2; l; �2) � �L(T1; l; �1)where �2 = �[(x; l0) 7! `2] and �1 = �[(x; l0) 7! `1] for all l0 2 L.Proof By induction over T1. The only interesting case is (Id).(Id) Assume1. C1;A `MLn e0 : �01 is a halbstark instance of C2;A `MLn e0 : �02 byS2. �1 = 8~�:C1) �01 for some ~� where ~� \ FV (A) = ; and �2 =closeA(C2) �02)3. T1 = C ` C1[~̀=~�]C;A; x : �1 `MLn x : �01[~̀=~�]From 1. we �nd that

96 CHAPTER 5. POLYMORPHISM1. C1 ` SC22. A = SA3. C1 `8 S�02 � �01From this we concluded that S is the identity on the free variablesof A and hence that it is a substitution on the variables bound bycloseA(C2) �02). Furthermore S0 = [~̀=~�] � S is a substitution on thevariables bound by closeA(C2) �02). We then have1. Since C ` C1[~̀=~�] and [~̀=~�](C1) ` [~̀=~�](S(C2)) we getT2 = C ` S0C2C;A; x : �2 `MLn x : S0�022. Since C ` C1[~̀=~�] and [~̀=~�](C1) `8 [~̀=~�](S(�02)) � [~̀=~�](�01) weconclude C `8 S0�02 � �01[~̀=~�]3. Let � be any environment mapping the domain of A to properties.Assume C1 ` S`2 � `1. By de�nition:�L(T1; l; �[(x; l) 7! `1]) = [~̀=~�](`1)and �L(T2; l; �[(x; l) 7! `2]) = S0(`2)Since C ` C1[~̀=~�] and [~̀=~�](C1) ` S0(`2) � [~̀=~�](`1) we concludethat for all l we haveC ` �L(T2; l; �[(x; l) 7! `2]) � �L(T1; l; �[(x; l) 7! `1])4. Assume that ~� is the empty vector. Then [~̀=~�] is the identity.Let � be any environment mapping the domain of A to properties.Assume C ` S`2 � `1. By de�nition:�L(T1; l; �[(x; l) 7! `1]) = `1and �L(T2; l; �[(x; l) 7! `2]) = S0(`2) = S(`2)We �ndC ` �L(T2; l; �[(x; l) 7! `2]) � �L(T1; l; �[(x; l) 7! `1]) 2

5.2. ML POLYMORPHISM 975.2.4 Algorithm and PrincipalityAs only two rules in the syntax directed type system have changed comparedto the subtype system, extending the algorithm of �gure 3.4 just consists ofchanging the same two cases:x : if A(x) = 8~�:C) �then (C[~�0=~�]; �[~�0=~�]) where ~�0 is freshlet x = e1 in e2 : let (C1; �) =W(A; e1)let � = closeA(C1) �)let (C2; �0) =W((A; x : �); e2)in (C2; �0)where the closing function is de�ned bycloseA(C) �) = 8~�:C) � where � is a sequence of all
ow variablesfree in C) � but not in A.Using closeA(C) �) we can relate the generic instance relation to thehalbstark instance relation as follows:Lemma 5.9 If C and C 0 are constraint sets (that is, contain only con-straints of the form � � � and L � �) then:1. If C 0;A `ML e : �0 is a halbstark instance of C;A `ML e : �then closeA(C) �) v closeA(C 0) �0)2. If closeA(C) �) v closeA(C 0) �0)then C 0;A `ML e : �0 is a halbstark instance of C;A `ML e : �Proof1. From the de�nition of halbstark instance, we �nd a substitution Ssuch that(a) C 0 ` SC(b) A = S(A)(c) C 0 `8 S(�) � �0

98 CHAPTER 5. POLYMORPHISMWe want to derive that;x : 8~�:C) � `MLn x : 8~�:C 0) �0where ~� = FV (C) �)nFV (A) and ~� = FV (C 0) �0)nFV (A). Thisis done by Id;x : 8~�:C) � `MLn x : 8~�:C) � weakC 0;x : 8~�:C) � `MLn x : 8~�:C) � C 0 ` SC 8�EC 0;x : 8~�:C) � `MLn x : S� C 0 `8 S(�) � �0 SubC 0;x : 8~�:C) � `MLn x : �0 8�I;x : 8~�:C) � `MLn x : 8~�:C 0) �0where the last step is allowable since FV (8~�:C) � FV (A) and no�i 2 ~� is free in A.2. By lemma 5.6, S0 exists such that C 0 `8 S0(�) � �0 and C 0 ` S0(C)but since S0 works only on the variables bound by closeA(C) �) itmust be the identity on all variables bound by A and thus A = S0(A)follows. 2Since close clearly is terminating, algorithm W for ML polymorphic
ow analysis must be terminating for the same pairs A; e as algorithm Wfor subtype
ow analysis. Thus we can use the same de�nition of properenvironments (de�nition 3.5) and have termination:Lemma 5.10 If A is proper then W(A; e) terminates without failure.We now turn to the main theorem concerning principality:Theorem 5.11 If W(A; e) = (C; �) then there exists T1 such that1. T1 = T 01C;A `MLn e : � and2. for any T2 such that T2 = T 02C 0;A `MLn e : �0we have that there exists S such that(a) C 0;A `MLn e : �0 is a halbstark instance of C;A `MLn e : � by Sand(b) Let L be given and let �; �0 be two environments mapping freevariables of e to properties. Then for all l 2 L we have thatC 0 ` S�(x; l) � �0(x; l) for all x 2 FV (e) impliesC 0 ` S(�L(T1; l; �)) � �L(T2; l; �0)

5.2. ML POLYMORPHISM 99Proof By induction over the structure of e. We give the important cases:(Id) and (let)(Id) We have W(A; x) = let 8~�:C) � = A(x)in (C[~�0=~�]; �[~�0=~�])where ~�0 is fresh. Clearly,C[~�0=~�] ` C[~�0=~�]C[~�0=~�]; A `ML x : �[~�0=~�]Let C 0; �0 be given such that C 0;A `MLn x : �0. I.e.C 0 ` C[~̀=~�]C 0;A `MLn x : �0where �0 = �[~̀=~�]. Let S = [~̀=~�0], then1. C 0 ` S(C[~�0=~�])2. A = SA3. C 0 `8 S(�[~�0=~�]) � �since �0i 2= FV (A) for all �0i in �0 (it is fresh).Let � and �0 be given such that C 0 ` S�(x; l) � �0(x; l). But sinceS(�L(C[~�0=~�] ` C[~�0=~�]C[~�0=~�]; A `ML x : �[~�0=~�] ; l; �)) = S([~�0=~�](�(x; l)))= [~̀=~�](�(x; l))and �L(C 0 ` C[~̀=~�]C 0;A `MLn x : �0 ; l; �0) = [~̀=~�](�0(x; l))we are done(let) Recall the de�nition of W on `let':let x = e1 in e2 : let (C1; �1) =W(A; e1)let � = closeA(C1) �1)let (C2; �2) =W((A; x : �); e2)in (C2; �0)We assume that T3 is given such thatT3 = T4 T5C3;A `MLn let x = e1 in e2 : �3

100 CHAPTER 5. POLYMORPHISMWithout loss of generality we can assumeT4 = T 04C4;A `MLn e1 : �4 and T5 = T 05C3;A; x : 8~�:C4) �4 `MLn e2 : �3where ~� \ (FV (A) [FV (C3)) = ;.Let �; �0 be two environments mapping free variables of let x = e1 in e2to properties.By induction we �nd that there exists T1 such that:1. T1 = T 01C1;A `MLn e : �1 and2. there exists S1 such that(a) C4;A `MLn e1 : �4 is a halbstark instance of C1;A `MLn e : �1by S1 and(b) Let �1 = � jFV (e1) and �01 = �0 jFV (e1). Then for all l 2Destructors(e1) we have that C4 ` S1�1(y; l) � �01(y; l) forall y 2 FV (e1) impliesC4 ` S1(�L(T1; l; �1)) � �L(T4; l; �01)We can apply lemma 5.8 to �ndT6 = T 06C3;A; x : closeA(C1) �1) `MLn e2 : �4where1. C3 `8 �4 � �32. Let � be any environment mapping the domain of A to properties.If C4 ` S1`2 � `1 then for all l 2 Destructors(e2) we haveC3 ` �L(T6; l; �[(x; l) 7! `2]) � �L(T5; l; �[(x; l) 7! `1])By the induction hypothesis we �nd that there exists T2 such that1. T2 = T 02C2;A; x : closeA(C1) �1) `MLn e2 : �2 and2. there exists S2 such that(a) C3;A; x : closeA(C1) �1) `MLn e2 : �4 is a halbstark in-stance of C2;A; x : closeA(C1) �1) `MLn e2 : �2 by S2 and(b) Let �2 = �[(x; l) 7! �L(T1; l; �)] �02 = �0[(x; l) 7!�L(T1; l; �0)]. Assume C3 ` S2�2(y; l) � �02(y; l) for ally 2 FV (e2). Then for all l 2 Destructors(e2) we haveC3 ` S2(�L(T2; l; �2)) � �L(T6; l; �02)

5.2. ML POLYMORPHISM 101We can now construct T such that1. T = T1 T2C2;A `MLn let x = e1 in e2 : �2 and2. (a) C3;A `MLn let x = e1 in e2 : �4 is a halbstark instance ofC2;A `MLn let x = e1 in e2 : �2 by S2 and(b) Assume C3 ` S2�(y; l) � �0(y; l) for ally 2 FV (let x = e1 in e2). Then for all l 2Destructors(let x = e1 in e2) we haveC3 ` S2(�L(T ; l; �)) � �L(T3; l; �0)1. is OK. 2(a) is OK. For 2(b) we assume C3 ` S2�(y; l) � �0(y; l) for ally 2 FV (let x = e1 in e2). This implies that C3 ` S2�2(y; l) � �0(y; l)2for all variables y 2 FV (e2). Then for all l 2 Destructors(e2) we haveC3 ` S2(�L(T2; l; �2)) � �L(T6; l; �02)By de�nition �L(T ; l; �) = �L(T2; l; �2). We missC3 ` �L(T6; l; �02) � �L(T3; l; �0)We have by de�nition that�L(T3; l; �0) = �L(T5; l; �0[(x; l) 7! �L(T4; l; �0)])which leaves us withC3 ` �L(T6; l; �0[(x; l) 7! �L(T1; l; �0)])� �L(T5; l; �0[(x; l) 7! �L(T4; l; �0)])which we showed above 2From the above lemma and theorem as well as theorem 5.1, we concludethat every term has a principal type (under halbstark instance).Note that we could have proven the existence of principal types for thesub-type based
ow analysis of chapter 3 under the halbstark instance re-lation. This would have been a stronger result (as it would imply principaltypes under lazy instance) and would have been slightly simpler to prove.5.2.5 Accelerated Algorithm and MinimalityConsider the following expression:let x0 = ein let x1 = if y then x0 else x0in let � � �in let xn = if y then xn�1 else xn�1in if y then xn else xn

102 CHAPTER 5. POLYMORPHISMAssume that analysing e yields constraints set C0. Since x0 will be polymor-phic, we will make two instances of C0. This will be performed a numberof times proportional to the size of the program, and thus the resultingconstraint set will have a size exponential in the size of the program.This shows that a naive implementation of the above algorithm willlead to exponential worst-case behaviour. It is not impossible that smartrepresentations of constraint set might improve the situation, but insteadof trying to mend a basically
awed (from an algorithmic point of view)algorithm, we will attack the heart of the problem: the exploding size ofconstraint sets. The idea is to reduce the size of constraint sets inferred sothey will be proportional to the size of the standard type instead of the sizeof the expression.We will proceed as we have done in previous chapters to �nd minimaltypings. In contrast to these chapters, however, we are not only interested inminimal types but also in an e�cient way of computing them. The method ofreducing constraint sets will thus not only be applied after a result has beenfound but at every let-bound expression. This will reduce the constraintsets making the duplication by di�erent instantiations less costly.Due to the identity rule (Id) we can assume that constraint sets containno constraints of the form � � �. To be more precise, if C 0 is the result ofremoving all constraints of the form � � � from a constraint set C, thenC;A `ML e : � and C 0;A `ML e : � are equivalent.De�nition 5.12 Assume A = fx1 : 8 ~�1:C1) �1; � � � ; xn : 8 ~�n:Cn) �ng.A
ow variable occurring free in A or � occurs positively (negatively) inC;A ` e : � if it occurs positively (negatively) in �1 ! � � � ! �n ! �.Variables not occurring free in A or � are said to be neutral.All variables occurring in C will occur positively, negatively, positivelyand negatively or be neutral. In chapter 3 we proved that we could removeall non-negative variables from a judgement C;A `� e : � and arrive at anequivalent judgement (lemma 3.10). Recall, however, that equivalence wasusing the lazy instance relation | we can indeed prove a similar lemma forpolymorphic
ow analysis using lazy instance, but it is not true for halbstarkinstance.Fortunately, we will only need the lemma for neutral variables (as inchapters 2 and 3:Lemma 5.13 Let � be a
ow variable with only neutral occurrences inC;A `ML e : �.Let `1 � �; � � � ; `n � � be all inequalities in C with � on the right-handside. We delete these from C and replace every inequality � � � in C by`1 � �; � � � ; `n � � and call the resulting constraint set C 0.Then C;A `ML e : � and C 0;A `ML e : � are equivalent (halbstarkinstances of each other).

5.2. ML POLYMORPHISM 103Proof Remark that C ` Fi `i � �.First, C;A `ML e : � is an instance of C 0;A `ML e : � since1. C ` C 0,2. A = A, and3. C `8 � � �where 1. is proven by transitivity and 2. and 3. are trivial.To see that C 0;A `ML e : � is an instance of C;A `ML e : �, letS = f� 7! Fi `ig. Now1. C 0 ` S(C),2. A = S(A), and3. C 0 `8 S(�) � �where 1. follows from C 0 ` `j � Fi `i for all j and C 0 ` Fi `i � �. Points 2.and 3. are trivial since � does not occur in A or �. 2Lemma 3.11 generalises to the polymorphic system:Lemma 5.14 Let � be any
ow variable then C;L � �;L0 � �;A `ML e : �and C;L [L0 � �;A `ML e : � are equivalent.By applying Lemma 5.13 to all neutral variables in a judgement andapplying lemma 5.14 exhaustively, we arrive at the following theorem:Theorem 5.15 For every
ow judgement C;A `ML e : � there exists anequivalent judgement C 0;A `ML e : � where C 0 contains only
ow variables� occurring free in A or � and for each � there is only one constraint of theform L � � in C 0.By applying lemma 5.13 to neutral variables only, the resulting judge-ment does not include any t's. In particular, no types in the environment norin the resulting type will contain t and hence the algorithm for constraintsneed not be changed.Note, that applying theorem 5.15 does not a�ect the
ow computed bythe derivations.If we change the algorithm slightly to account for the above, we get:x : if A(x) = (8~�:C) �)then (C[~�0=~�]; �[~�0=~�]) where ~�0 is freshlet x = e1 in e2 : let (C1; �) =W(A; e1)let C 01 = elim(FV(A) [FV(�); C1)let � = closeA(C 01) �)let (C2; �0) =W((A; x : �); e2)in (C2; �0)

104 CHAPTER 5. POLYMORPHISMwhere elim(V;C) is de�ned to be a constraint set C 0 obtained by eliminatingall variables not in V (according to lemma 5.13) and merging all Li � �constraints with identical right-hand sides according to lemma 5.14.5.2.6 ComplexityLet n be the size of the analysed program with explicit standard types on allsubexpressions (eg. (�x:(if True : Bool then x : Bool else y : Bool) : Bool) :Bool ! Bool). First we establish the maximum size of a constraint set Cresulting from a call to W.Lemma 5.16 If (C; �0) = W(A; e) then the number of constraints in C isbounded by O(n3) and the number of variables and constants in C is boundedby O(n2).Proof Consider the size of C 01 = elim(FV(A) [FV(�); C). By theo-rem 5.15 C 01 contains only
ow variables occurring free in A or �. Thenumber of these variables must be bounded by n and therefore the numberof constraints of the form � � � is bounded by n2 and the number of con-straints L � � is bounded by n. Thus the number of constraints in C 01 mustbe bounded by n2 and the number of \nodes" (variables and constants) isbounded by n.As there can be at most n occurrences of let-bound variables in e, weconclude that the upper bound on the number of constraints in C is cubic(since all other constructs generate a constant number of constraint plusthe constraints of subexpressions). Similarly the number of nodes must bebounded by n2. 2Next we show a polynomial upper bound on the maximal running timeof the elim() function.Lemma 5.17 All calls to elim(F;C) are bounded by O(n6) for every set Fof
ow variables.Proof Lemma 5.13 passes over all constraints in C and removes and addsconstraints. If the constraint set is viewed as a graph, the number of nodesdecreases by one in each application since a variable is deleted. The maximalnumber of constraints added by one application of the lemma is thus O(n4)since the number of nodes is O(n2). Lemma 5.13 can be applied at mostO(n2) times, thus we �nd the complexity of this part of elim(F;C) to beO(n6).The second part (lemma 5.14) is bounded by the number of constraintsand is thus O(n4). 2

5.2. ML POLYMORPHISM 105It would be tempting to use the upper bound O(n3) on the number ofconstraints in C but this might not be maintained by successive applicationsof lemma 5.13.Finally the main complexity result of the accelerated algorithm.Theorem 5.18 Accelerated algorithm W computes a principal type of e intime O(n7).Proof There can be at most n let-expressions in e, thus at most n callsto elim(). Making the �nal result minimal does not add anything (just oneextra application of elim()). 2This complexity seems prohibitive for implementations | we are, how-ever, not sure that the bound is tight. Furthermore, we believe that the algo-rithm will be well-behaved in practice. E.g. consider the proof of lemma 5.16:we found a bound of n on the number of variables in the constraint set Cresulting from calls to elim and concluded that the number of constraints inC was bounded by n2. This, however, is only the case when the constraintset is dense; we conjecture that it will often be sparse in practice. Similarconsiderations might well lead to better practical behaviour. Finally, it isvery likely that more e�cient algorithms exist [DHM95b].5.2.7 SoundnessWe can prove strong subject reduction for the ML-polymorphic system. We�rst prove the usual substitution lemma:Lemma 5.19 (Substitution lemma) IfT1 = T 01C;A; x : � `MLn e : �0and T2 = T 02C;A `MLn e0 : �then there exists T3 such that1. T3 = T 03C;A `MLn e[e0=x] : �0 and2. For any � and L and all l 2 L we haveC ` �L(T3; l; �) = �L(T1; l; �0) t�(T2; l; �)where �0 = �[(x; l0) 7! fg] for all l0 2 L

106 CHAPTER 5. POLYMORPHISMProof The lemma follows by induction on the structure of T1. Since we as-sume that x is monomorphic, the proof is identical to the proof of lemma 3.132 Lemma 5.19 does the hard work for most cases of our strong subjectreduction theorem. In this polymorphic case, however, it does not su�cefor the let-case, so we prove the following variant of the substitution lemma:Lemma 5.20 If T1 = T 01C 0;A; x : 8~�:C) � `MLn e : �0and T2 = T 02C;A `MLn e0 : �then there exists T3 such that1. T3 = T 03C;A `MLn e[e0=x] : �0 and2. For any � and L and all l 2 L we haveC ` �L(T3; l; �) = �L(T1; l; �0)where �0 = �[(x; l0) 7! �L(T2; l0; �)] for all l0Proof The proof is by induction over T1. The only interesting case is (Id):Assume T1 = C 0 ` C[~̀=~�]C 0;A; x : 8~�:C) � `MLn x : �[~̀=~�]and �0 = �[~̀=~�].Since C 0 ` C[~̀=~�] it is a trivial induction on T2 to show the existence ofT3 = T 03C 0;A `MLn e0 : �[~̀=~�]and that �L(T3; l; �) = [~̀=~�](�L(T2; l; �)) but since the latter equals�L(T1; l; �0) by de�nition, we are done. 2Theorem 5.21 (Subject Reduction) If T1 = T 01C;A `MLn e1 : � ande1 �! e2 then there exists T2 such that1. T2 = T 02C;A `MLn e2 : � and

5.2. ML POLYMORPHISM 1072. For any � and L and all l 2 L we haveC ` �L(T2; l; �) � �L(T1; l; �)and if l 2 Destructors(e1) consumes l0 2 Contructors(e1) then for any� and L (where l; l0 2 L) thenC ` fl0g � �L(T1; l; �)Proof The main cases follows from lemmas 5.19 and 5.20. Note, that theformulation with � instead of F is necessary for the inductive (context) case.2 Soundness of
ow functions computed from inference trees follows asusual (the result remains true by de�nition, if the derivation T is not syntaxdirected):Corollary 5.22 Let T be any derivation for e and let C;A `MLn e : � be itsconclusion. Then C;FT j= e.5.2.8 Invariance under TransformationWe will prove the subject expansion property for `let'. This implies thatunfolding let-expressions cannot improve the result of this
ow analysis |explicit or implicit unfolding of de�nitions (known as polyvariance) has beenused in program analysis for improving results. This result shows that wecan obtain equally good results without unfolding de�nitions. When weadd �x-polymorphism in the next section, a similar result will be proved forunfolding recursive de�nitions.Just as the statement of soundness implied preservation of
ow, this(partial) subject expansion property states that
ow is preserved.Recall that x(i) denotes the i'th occurrence of x in e.Lemma 5.23 Let e be an expression with n occurrences of a variable x,and let e1; � � � ; en be n expressions where no free variable of ei is bound bye. If Te[ei=x(i)] = T 0e[ei=x(i)]C;A `MLn e[ei=x(i)] : �then there exists �1 � � � �n and Te;T1; � � � ;Tn such that1. Ti = T 0iC;A `MLn ei : �i2. Te = T 0eC;A; x1 : �1; � � � ; xn : �n `MLn e[xi=x(i)] : � and

108 CHAPTER 5. POLYMORPHISM3. For any � and L and all l 2 L we haveC ` �L(Te[ei=x(i)]; l; �) = �L(Te; l; �) tGi �L(Ti; l; �)Proof By induction on the inference tree Te[ei=x(i)]. 2Theorem 5.24 (Invariance under let-conversion) IfTe0[e=x] = T 0e[e=x]C;A `MLn e0[e=x] : �then there exists Tlet such that1. Tlet = T 0letC;A `MLn let x = e in e0 : �let2. C `8 �let � �3. For any � and L and all l 2 L we haveC ` �L(Tlet; l; �) � �L(Te0[e=x]; l; �)Proof Let � and L be given. Assume �(x) = ; (since x not free in e0[e=x]or let x = e in e0, this assumption is valid). Assume e0 contains n occurrencesof x. By lemma 5.23 there exist �1; � � � ; �n and Te0 ;T1; � � � ;Tn such that1. Ti = T 0iC;A `MLn e : �i2. Te0 = T 0e0C;A; x1 : �1; � � � ; xn : �n `MLn e0[xi=x(i)] : � and3. For all l 2 L we haveC ` �L(Te0[e=x]; l; �) = �L(Te0 ; l; �) tGi �L(Ti; l; �)By theorem 5.11 we know that we can derive a principal typingT = T 0C 0;A `MLn e : �0for e under A such that for every i there exists Si where1. C;A `MLn e : �i is a halbstark instance of C 0;A `MLn e : �0 under Siand

5.2. ML POLYMORPHISM 1092. Let �0i = Si�. Since by de�nition C ` Si�(y; l) � �0(y; l) for all y andl 2 L we have C ` Si(�L(T ; l; �)) � �L(Ti; l; �0i)Every derivation �-equivalent to T is also principal with the same properties| thus, without loss of generality, we can assume that Ran(�)\ (FV (C 0)[FV (�0)) = ;. This implies that �0i = �.By repeated application of lemma 5.8 (special case where C1 and � ofthis lemma are both empty) we �nd the existence of T2 such that1. T2 = T 02C;A; x1 : closeA(C 0) �0); � � � ; xn : closeA(C 0) �0) `MLn e0[xi=x(i)] : �let2. C `8 �let � �3. We have C ` �L(T2; l; �2) � �L(Te0 ; l; �1)where �1 = �[(xi; l0) 7! �L(Ti; l; �0i)] and �2 = �[(xi; l0) 7! �L(T ; l; �)]for all l0 2 L. We used the fact that C ` Si�L(T ; l; �) � �L(Ti; l; �0i).Let Tlet = T 0C;A `MLn e : �0 T 002C;A; x : closeA(C 0) �0) `MLn e0 : �letC;A `MLn let x = e in e0 : �letwhere T 002 is identical to T 02 except the assumptions on x1; � � � ; xn has beenreplaced by x. Now �L(Tlet; l; �) = �L(T2; l; �2)and C ` �L(T2; l; �2) � �L(Te0 ; l; �1)It is not hard to see thatC ` �L(Te0 ; l; �1) = �L(Te0 ; l; �) tFi�L(Ti; l; �0i)= �L(Te0 ; l; �) tFi�L(Ti; l; �)We have proved C ` �L(Tlet; l; �) � �L(Te0[e=x]; l; �) 2

110 CHAPTER 5. POLYMORPHISMCorollary 5.25 If T1 = T 01C;A `MLn C[e0[e=x]] : �1then there exists T2 such that1. T2 = T 02C;A `MLn C[let x = e in e0] : �22. C `8 �2 � �13. For all l 2 Destructors(C[e0[e=x]]) we haveC ` FT1(l) = FT2(l)Proof We prove the property where we replace 3. byFor any � and L and all l 2 L we haveC ` �L(T1; l; �) = �L(T2; l; �)The proof is by induction over the structure of C. The base case is theo-rem 5.24 and the induction cases are straightforward. 25.3 Polymorphic recursionThe idea of polymorphic recursion is to allow type schemes not only inlet-bound expressions but also in �x-bound expressions.Example 5.26 Consider the following (admittedly strange) de�nition ofthe identity function:�x f:((�l1y:�l2x:x)@l3(f@l4Truel5 ; f@l6Truel7)l8)Here ML-polymorphism doesn't help us to give this term a better type than:8�:fl5; l7g � �) Bool� !fl2g Bool�The point is that all recursive occurrences have to have the same type andthis also has to be the same as the resulting type. If we lift this restrictionand allow type schemes in recursive de�nitions, we can get the followingmore general type: 8�:Bool� !fl2g Bool� 2

5.3. POLYMORPHIC RECURSION 111For standard type inference, this extension has been studied by Mycroft[Myc84] but was later shown to be undecidable. In program analysis, addingpolymorphic recursion over annotations has proven to be both decidable anddesirable:� In region inference (Tofte and Talpin [TT94])� Dimension inference (Rittri [Rit95])� In binding-time analysis (Henglein and the present author [HM94] andDussart, Henglein and the present author [DHM95a])(in the �rst case it is yet unknown whether principal types are computable).We will show that the extension leads to a decidable and even polynomialtime algorithm for
ow analysis.We only have to change one rule of the ML-polymorphic system to ac-commodate polymorphic recursion:�x C;A; x : � `�x e : �C;A `�x �xx:e : �We will now follow the same road that we have followed for subtypesand ML-polymorphic types: (1) Make the system syntax directed, (2) De-�ne an algorithm computing principal types, (3) Compute the minimal type(as with ML-polymorphism, use this to speed up the algorithm). There isan important di�erence: it will not be clear that a straightforward algo-rithm will always terminate. Thus (3) is necessary not only to speed up thealgorithm of (2) but also to make sure it terminates (when the algorithmbased on (3) has been shown to be terminating it will follow that so wasthe algorithm based on (2)). Furthermore, the algorithm using constraintreduction has in the �x-polymorphic case room for further improvement.In the next subsection we will make the system syntax directed and wewill then step back and consider polymorphic recursion in general and inparticular sketch Mycroft's original argument for principal types. His argu-ment suggests a (semi-)algorithm which will be the basis for our algorithm.5.3.1 Syntax Directed SystemWe only need one change compared to the syntax directed ML-polymorphicsystem (�gures 3.3 and 5.3):�x C;A; x : 8~�:C) � `�xn e : �0 C `8 �0 � � C 0 ` C[~̀=~�]C 0;A `�xn �xx:e : �[~̀=~�] (�)where (�) means (~� \ (FV(A) [FV(C 0))) = ;.

112 CHAPTER 5. POLYMORPHISMTheorem 5.27 Type system `�xn is sound and complete w.r.t. `�x:Soundness If C;A `�xn e : � then C;A `�x e : �Completeness If C;A `�x e : � then there exists �0 such that C;A `�xn e :�0 and C ` �0 � �.Proof The proof of soundness proceeds by induction over the derivationof C;A `�xn e : �The proof of completeness proceeds by induction over the derivation ofC;A `�x e : � 2We extend the de�nition of
ow functions by adding the following caseto the de�nition of �:�L(�x TC 0;A `�xn �xx:e : �[~̀=~�] ; l; �) = [~̀=~�](�L(T ; l; �0))where �0 is the least solution to the equation�0 = �[(x; l0) 7! �L(T1; l; �0)]for all l0 2 L.The domain and range of �0 is �nite and if �1 and �2 and solutionsto �0 = �[(x; l0) 7! �L(T1; l; �0)] then so is �1 t �2, hence the de�nition iswell-de�ned.As in the ML-polymorphic
ow analysis of the previous section, a deriva-tion contains more information than is expressed by the sticky interpreta-tion. This information can in certain settings (such as binding-time analysis[HM94]) be useful.5.3.2 Polymorphic Recursion Revisited: Kleene-Mycroft It-erationThis subsection will brie
y recapitulate Mycroft's original method for com-puting principal types for �x-expressions under polymorphic recursion. Thedescription stems from the work on polymorphic binding-time analysis byDussart, Henglein and the present author [DHM95a].Consider an ML-polymorphic type system [Mil78, DM82, Dam84], ex-tended with a rule for polymorphic recursion [Myc84]:A; f : � ` e : �A ` �x f:e : �where � can be a type scheme (polymorphic type); that is, a type of the form8~�:� , where � is a simple type.44This typing calculus has also been termed Milner-Mycroft Calculus [Hen88].

5.3. POLYMORPHIC RECURSION 113Mycroft has shown that this strengthened type system has the principaltyping property: every expression e typable under assumptions A has aprincipal type � = 8~�:� such that if A ` e : 8~�:� 0 then �0 = 8~�:� 0 is a genericinstance of �; that is, ~� \ FV (�) = ; and � 0 = S(�) for some substitutionS with domain contained in ~�. His proof also yields a \natural" algorithmfor computing the principal type.The algorithm and its correctness are corollaries of an elegant generalargument couched in terms of notions of domain theory. Let us recapitulateMycroft's argument since it is very general and since it is at the heart ofour adaptation to polymorphic
ow analysis, which in addition to Mycroft'spolymorphic recursion has quali�ed types.Mycroft shows that the set of �-equivalence classes of type schemes 8~�:� ,together with an arti�cial top element> forms a cpo (complete partial order)under the generic instance ordering v, where, with the exception of >, allelements of the cpo are compact5.Let �x f:e be a �x-expression. For now, let us assume that it is closedand contains no other �x-expressions. Mycroft de�nes a function FA;e on�-equivalence classes of type schemes, byFA;e(�) = �0 , A; f : � ` e : �0where �0 is the principal type of e under A; f : �. If � = > or if e has notype under A; f : �, then FA;e(�) = >. He shows that FA;e is well-de�nedand continuous6.From these general properties, all desired results follow: the principaltyping property as well as a natural algorithm for computing principal typesof �x-expressions. By standard �xed-point theory for cpo's we know thatFA;e has a least �xed point �p. If �p = > then �x f:e is not typable. If�p 6= >, then:1. �p is a type of �x f:e since A; f : �p ` e : �p; this follows from the factthat �p is a �xed point;2. �p is a principal type of �x f:e; this follows from the fact that anyother type of �x f:e is a �xed-point of FA;e, and �p is the least �xedpoint with respect to the generic instance ordering v;3. �p can be computed by constructing a Kleene sequence; that is, thereexists k < ! such that �p = F kA;e(?); this follows from the fact that�p is compact.In summary, if �x f:e has a type under assumptions A, then it has aprincipal type that can be computed by iterating FA;e on ? = 8�:� until5Let D be a cpo. An element x 2 D is compact if, for every directed collection M suchthat x v FM , there is some y 2M such that x v y [Gun92].6It is actually enough to know that FA;e is monotonic.

114 CHAPTER 5. POLYMORPHISMwe obtain a �xed point; that is until F kA;e(?) = F k+1A;e (?). Recall thatequality here means �-equivalence. We call the computation of F kA;e(?)Kleene-Mycroft Iteration (KMI).For expressions containing nested �x-expressions | that is, �x-expressions inside of �x-expressions | Algorithm W [Mil78] is used tocompute principal types in conjunction with Kleene-Mycroft Iteration for�x-expressions.5.3.3 Algorithm I: PrincipalityDussart, Henglein and the present author have shown that polymorphic re-cursion for binding-time analysis was not only decidable but also polynomialtime computable [DHM95a]. We will follow the general approach of that pa-per. There is a fundamental di�erence between binding-time analysis and
ow analysis: in binding-time analysis we have a two-point domain fS;Dg,whereas in
ow analysis the domain is only bounded by the size of the pro-gram and even exponential in size of the program (since we have sets oflabels). This makes it more di�cult to bound our version of Kleene-Mycroftsequences.This subsection presents the �rst attempt at an algorithm. The algo-rithm will allow us to state principality and minimality results, but its com-plexity will be forbidding (it will not even be obvious that it is terminating).The following subsections will mend this problem.The domain theory employed can be found in any text book on thesubject, eg. [Gun92].De�nition 5.28 For any type t, let � 2 K8(t) be a
ow type where allannotations are distinct free type variables ~�. De�ne ?t = 8~�:�Lemma 5.29 Let L be a �nite set 7. For any type t we have the followingproperties:1. v is a pre-order on S8(t)2. v is a partial order on S8(t)= �=3. S8(t)= �= is �nite4. (S8(t)= �=;v) is a cpo5. ?t is (a representative of) the bottom element of S8(t)= �=. Hence(S8(t)= �=;v) is pointed.7Namely the set of labels occurring in the analysed �x-bound expression.

5.3. POLYMORPHIC RECURSION 115Proof1. v is clearly transitive� v �0 and ;x : �0 `�x x : �00 implies ;x : � `�x x : �00by lemma 5.7, and re
exive;x : � `�x x : �2. v is obviously well-de�ned and anti-symmetric on S8(t)= �=.3. Let 8~�:C) � be any type scheme in S8(t). Without loss of generalitywe can assume that all variables in ~� occur in C) �.Let A be any environment with the same free
ow variables as 8~�:C)�. The judgement C;A `�x �xx:x : � is derivable:C;A; x : 8~�:C) � `�x x : 8~�:C) �C;A `�x �xx:x : 8~�:C) � C ` C[~�=~�]C;A `�x �xx:x : �By the de�nition of A we have that 8~�:C) � = closeA(C) �).From theorem 5.15 (which is clearly also applicable to this system)we �nd that there exists a judgement C 0;A `�x �xx:x : �0 such thatC 0;A `�x �xx:x : �0 and C;A `�x �xx:x : � are equivalent and C 0contains only
ow variables � occurring free in A or �0 and for each �there is only one constraint of the form L � � in C 0. By lemma 5.9we then have that closeA(C 0) �0) �= closeA(C) �) = 8~�:C) �.It should be clear that for each t, there exist only �nitely many typeschemes closeA(C 0) �0) 2 S8(t) where C 0 contains only
ow variables� occurring free in A or � and for each � there is only one constraintof the form L � � in C 0 (since there are only �nitely many subsets Lof L).But since every � is equivalent to such a type scheme we have shownthat S8(t)= �= is �nite.4. Any partially ordered �nite set is a cpo.5. Obvious. 2From this point we formally begin an induction proof of the existenceof principal typings over the nesting depth of �x: in the base case we have�x-free expressions and can thus assume the existence of principal types

116 CHAPTER 5. POLYMORPHISMfor all expressions. This is then used for proving that a �x-expression hasa principal type. The induction step (maximal nesting depth n) does notdi�er from this since we by induction can assume that all expressions withnesting depth < n have principal types.We then de�ne our version of the function FA;e;x de�ned by Mycroft.De�nition 5.30 De�ne FA;e;x(�) = �0 i�1. TC;A; x : � `�xn e : � is a derivation such that C;A; x : � `�xne : � is a principal typing under A (i.e. for every C 0, �0 s.t.T 0C 0;A; x : � `�xn e : �0 we have that C 0;A; x : � `�xn e : �0 is a (halb-stark) instance of C;A; x : � `�xn e : �)2. �0 = closeA;x:�(C) �).If t is the type of e and x then, clearly, FA;e;x is a function from S8(t)= �=to S8(t)= �=. It is, however, not a function from S8(t) to S8(t) as it allowsa choice of principal typing in 1. | we will use this freedom later to choosea principal type with \nice" properties.Lemma 5.31 If 8~�:C) � v 8~�:C 0) �0 then every variable �0 free in8~�:C) � is also free in 8~�:C 0) �0.Proof By contradiction. Assume that �0 is free in 8~�:C) � but not in8~�:C 0) �0. If ~� = h�1 � � � �ni and ~� = h�1 � � ��mi we have that �0 is free inC or � and �0 6= �i for all i (1 � i � n) and either1. �0 not free in C 0) �0 or2. �0 = �j for some j (1 � j � m).By lemma 5.6 we �nd that there exists S working on ~� such that1. C 0 ` S(C),2. C 0 `8 S(�) � �0 and3. No �i is free in 8~�:C) �Assume �0 not free in C 0) �0. Then if �0 free in C, 1. can only hold if�0 2 Dom(S) contradicting the assumption that S works on ~� and �0 6= �ifor all i. If �0 free in � then 2. can only hold if either �0 2 Dom(S) or �0free in �0, both leading to contradictions.Assume �0 = �j for some j. This clearly contradicts 3. 2Proposition 5.32 FA;e;x is monotonic.

5.3. POLYMORPHIC RECURSION 117Proof Let �; �0 be any type schemes in S8(t) such that �0 v �. LetC;A; x : � `�xn e : � be a principal typing of e under A; x : �. By lemma 5.7we �nd C;A; x : �0 `�xn e : �.Further, let C 0;A; x : �0 `�xn e : �0 be a principal typing of e underA; x : �0. Thus C;A; x : �0 `�xn e : � must be a halbstark instance ofC 0;A; x : �0 `�xn e : �0. By lemma 5.9 this implies closeA;x:�0(C 0) �0) vcloseA;x:�0(C) �).By lemma 5.31, �0 v � implies that all free variables of �0 are free in �.Hence FV (A; x : �0) � FV (A; x : �) and then FV (C) �) nFV (A; x : �) �FV (C) �) n FV (A; x : �0). ThuscloseA;x:�0(C) �) v closeA;x:�(C) �)We can sum up FA;e;x(�0) = closeA;x:�0(C 0) �0)v closeA;x:�0(C) �)v closeA;x:�(C) �)= FA;e;x(�) 2Proposition 5.33 FA;e;x is continuous.Proof Any monotonic function over a �nite domain is also continuous. 2By the standard �xed point theorem, this implies that FA;e;x has a least�xed point since (S8(t)= �=;v) is a pointed cpo.We extend the algorithm for ML-polymorphic
ow analysis to �x-polymorphic
ow analysis by replacing the case for �x by:�xx : t:e0 : let �0 = ?tlet A0 = A; x : �0repeat for i � 0let (Ci+1; �i+1) =W(Ai; e0)let �i+1 = closeA(Ci+1) �i+1)let Ai+1 = A; x : �i+1until �i+1 v �iin (Ci+1; �i+1)The body of the loop is nothing but an algorithmic presentation of FA;e0 andthe loop just repeats until a �xed point is found.Lemma 5.34 If A is proper then W(A; e) terminates without failure.

118 CHAPTER 5. POLYMORPHISMProof The loop in the `�x' case terminates since S8(t) is �nite. 2We go on to prove the existence of principal typings and that these arecomputed by algorithm W.Theorem 5.35 If W(A; e) = (C; �) then there exists T1 such that1. T1 = T 01C;A `�xn e : � and2. for any T2 such that T2 = T 02C 0;A `�xn e : �0we have that there exists S such that(a) C 0;A `�xn e : �0 is a halbstark instance of C;A `�xn e : � by S and(b) Let L be given and let �; �0 be two environments mapping freevariables of e to properties. Then for all l 2 L we have thatC 0 ` S�(y; l) � �0(y; l) for all y 2 FV (e) impliesC 0 ` S(�L(T1; l; �)) � �L(T2; l; �0)Proof We just do the �x-case as the remaining cases are identical to theproof of theorem 5.11. Let L, � and �0 be given.From the algorithm we �nd that1. (Ci+1; �i+1) =W(A; x : closeA(Ci) �i); e),2. �i = closeA(Ci) �i)3. �i+1 = closeA(Ci+1) �i+1)4. �i+1 v �iBy induction we �nd a derivationT 01 = T 001Ci+1;A; x : closeA(Ci) �i) `�xn e : �i+1By de�nition we have that �i+1 = FA;e;x(�i) and clearly �i+1 is a �x-point, i.e. �i+1 �= �i. By lemma 5.8 this implies the existence ofT 03 = T 003Ci+1;A; x : closeA(Ci+1) �i+1) `�xn e : �i+1such that Ci+1 ` �L(T 03 ; l; �1) = �L(T 01 ; l; �1).

5.3. POLYMORPHIC RECURSION 119We realise that T1 =T 003Ci+1;A; x : closeA(Ci+1) �i+1) `�xn e : �i+1 Ci+1 `8 �i+1 � �i+1 Ci+1 ` Ci+1Ci+1;A `�xn �xx:e : �i+1exists.Let T2 be a given typing of �xx:e under A. By the syntax directed rulefor �x we see thatT2 = T 02 C 02 `8 �002 � �02 C 0 ` C 02[~̀0=~�]C 0;A `�xn �xx:e : �02[~̀0=~�]where T 02 = T 002C 02;A; x : 8~�:C 02) �02 `�xn e : �002and �0 = �02[~̀0=~�] and ~� \ FV (A) = ;.From ~� \ FV (A) = ; we �ndcloseA(C 02) �02) v 8~�:C 02) �2And then by lemma 5.8 (special case where the judgements of the �rstassumption are equal) we �nd that there exists T5 such that1. T5 = T 05C 02;A; x : closeA(C 02) �02) `�xn e : �052. C 02 `8 �05 � �0023. For all l 2 L we haveC 02 ` �L(T5; l; �00) � �L(T 02 ; l; �00)where �00 = �0[(x; l0) 7! fg] for all l0 2 L.By transitivity C 02 `8 �3 � �02 and hence closeA(C 02) �3) vcloseA(C 02) �02). This implies that closeA(C 02) �02) must be a �xed pointof FA;e;x.By lemma 5.8 there exists T6 such that1. T6 = T 06C 02;A; x : closeA(Ci+1) �i+1) `�xn e : �062. C 02 `8 �06 � �053. For all l 2 L we haveC 02 ` �L(T6; l; �01) � �L(T5; l; �01)

120 CHAPTER 5. POLYMORPHISMfor any �01 (we will de�ne it below).Let C7 be a constraint set such that1. C7 ` C 022. C 0 ` C7[~̀0=~�] and3. C7[~̀0=~�] ` C 0It should be clear that a constraint set ful�lling these points exists (one canthink of taking C 02 which ful�ls 1. and 2. and strengthening it to live up to3.). We �nd1. T7 = T 07C7;A; x : closeA(Ci+1) �i+1) `�xn e : �062. C7 `8 �06 � �053. For all l 2 L we haveC7 ` �L(T6; l; �01) � �L(T5; l; �01)By the induction hypothesis, we have S0 such that1. C7;A; x : closeA(Ci+1) �i+1) `�xn e : �06 is a halbstark instance ofCi+1;A; x : �i `�xn e : �i+1 by S0 and2. De�ne �1; �01 as the least solutions to�1 = �[(x; l0) 7! �L(T 01 ; l; �1]�01 = �0[(x; l0) 7! �L(T6; l; �01)]for all l0. Then C7 ` S0�1(y; l) � �01(y; l) for all y impliesC7 ` S0(�L(T 01 ; l; �1)) � �L(T6; l; �01)We �nd that1. C7 ` S0Ci+12. A = S0A3. C7 `8 S�i+1 � �06From above we have C 02 `8 �06 � �05, C 02 `8 �05 � �002 and C 02 `8 �002 � �02, sowe can conclude1. C7 ` S0Ci+12. A = S0A

5.3. POLYMORPHIC RECURSION 1213. C7 `8 S�i+1 � �02Furthermore, it is easy to see that1. C 0 ` [~̀0=~�]C72. A = [~̀0=~�]A3. C 0 `8 [~̀0=~�]�02 � �0 (actually [~̀0=~�]�02 = �0)We can conclude that C 0;A `�xn �xx:e : �0 is a halbstark instance ofCi+1;A `�xn �xx:e : � by S = [~̀0=~�] � S0. This proves (a) of the theorem.We need to prove that C 0 ` S�(y; l) � �0(y; l) implies C7 ` S0�1(y; l) ��01(y; l). Let y; l be given.Without loss of generality, we can assume that no � 2 ~� is free in�0(y; l) and hence that �0(y; l) = [~̀0=~�]�0(y; l). Now C 0 ` S�(y; l) � �0(y; l)implies C7[~̀0=~�] ` [~̀0=~�](S0�(y; l)) � [~̀0=~�]�0(y; l), which in turn impliesC7 ` S0�(y; l) � �0(y; l). For y 6= x this implies C7 ` S0�1(y; l) � �01(y; l),otherwise the result follows by an inductive argument on the �xed pointcomputation of �1 and �01.We summarise the
ow related properties:Ci+1 ` �L(T 03 ; l; �1) = �L(T 01 ; l; �1)C7 ` S0(�L(T 01 ; l; �1)) � �L(T6; l; �01)C 02 ` �L(T6; l; �01) � �L(T5; l; �01)C 02 ` �L(T5; l; �01) � �L(T 02 ; l; �01)By the de�nition of �:�L(T1; l; �) = �L(T 03 ; l; �1)�L(T2; l; �0) = [~̀0=~�](�L(T 02 ; l; �01))Furthermore, C 0 ` C 02[~̀0=~�], C 0 ` C7[~̀0=~�] and C 02 ` S0(Ci+1). By using thatin the above properties we �nd:S(�L(T1; l; �)) = ([~̀0=~�] � S0)(�L(T 03 ; l; �1))C 0 ` ([~̀0=~�] � S0)(�L(T 03 ; l; �1)) = ([~̀0=~�] � S0)(�L(T 01 ; l; �1))C 0 ` ([~̀0=~�] � S0)(�L(T 01 ; l; �1)) � [~̀0=~�](�L(T6; l; �01))C 0 ` [~̀0=~�](�L(T6; l; �01)) � [~̀0=~�](�L(T5; l; �01))C 0 ` [~̀0=~�](�L(T5; l; �01)) � [~̀0=~�](�L(T 02 ; l; �01))[~̀0=~�](�L(T 02 ; l; �01)) = �L(T2; l; �0)So we conclude C 0 ` S�L(T1; l; �) � �L(T2; l; �0)proving (b) of the theorem. 2

122 CHAPTER 5. POLYMORPHISM5.3.4 Algorithm II: Bounding Kleene-Mycroft SequencesIf we hope for a practical algorithm, there are two essential problems withthe above approach:1. The constraint sets can potentially explode as in ML-polymorphic
owanalysis.2. It is not obvious how to check � v �0 so we cannot immediately tellwhen we have reached a �xed point.Consider the sequence �i = F iA;e;x(?t) of which we wish to �nd thelimit. Let us call such a sequence a Kleene-Mycroft sequence. For each�i = 8~�:C) �, all we know is that C;A `�x e : � is a principal type.We have with the elim function a way of transforming a principal type to aprincipal type with properties that we can use for bounding the size of each�i. Let us optimize the algorithm using this insight:�xx : t:e0 : let �0 = ?tlet A0 = A; x : �0repeat for i � 0let (C 0i+1; �i+1) =W(Ai; e0)let Ci+1 = elim(FV(A) [FV(�i+1); C 0i+1)let �i+1 = closeA(Ci+1) �i+1)let Ai+1 = A; x : �i+1until �i+1 v �iin (Ci+1; �i+1)The sequence of �i's computed by this algorithm naturally has the sameproperties proven in the previous subsection as any other Kleene-Mycroftsequence. Without loss of generality we assume that our sequence looks like?t = 8~�:C0) �0v 8~�:C1) �0v 8~�:C2) �0v � � �v 8~�:Ci) �0v � � �where C0 is the empty set.To see that this is so, consider the construction of �i+1. Let e0 be the�x-bound expression with m occurrences of the �x-bound variable x. Theconstraint set Ci+1 contains only variables free in �i+1 or A. On the otherhand, neitherW(Ai; e0) nor elim(FV(A) [FV(�i+1); C 0i+1) will ever instan-tiate any variables in �i+1 (where we by instantiation mean replacing it witha constant or a variable free in A), so �i+1 is no more than a renaming of�i. Thus by alpha-conversion of �i+1 we �nd the above property.

5.3. POLYMORPHIC RECURSION 123Remember that elim(V;C) was de�ned to be a constraint set C 0 obtainedby eliminating all variables not in V according to lemma 5.13 and mergingall super
uous L � � constraints according to lemma 5.14. We will changethis de�nition slightly: let elim(V;C) = C3 whereC1 is obtained from C by eliminating all variables not in Vaccording to lemma 5.13,C2 is the transitive closure of C1,C3 results from C2 by merging all super
uous L � � constraintsaccording to lemma 5.14.Note that lemma 5.14 retains the invariant that the constraint set is tran-sitively closed. Taking the transitive closure naturally does not change theexpressive power of a constraint set.We are now able to prove that the constraint set must be growing:Lemma 5.36 For every i:1. If L � �j is in Ci and L0 � �j is in Ci+1 then L � L02. If � � �0 is in Ci then � � �0 is in Ci+1.Proof Initially, assume that e0 is �x-free. We see that C1 contains onlyconstraints generated from the syntax of e0: the occurrences of x cannotcontribute as C0 is empty. We can assume that in the j'th occurrence we ineach iteration of the repeat loop instantiate ~� with the same \fresh" ~�j inthe x-case of W. Then C 0i+1 = Sj Ci[~�j=~�] [C1.We now prove the lemma by induction over i:\i = 0": Obvious, since C0 is the empty set.\i � 1": We haveCi = elim(FV(A) [FV(�i);[j Ci�1[~�j=~�] [C1)and Ci+1 = elim(FV(A) [FV(�i+1);[j Ci[~�j=~�] [C1)By the induction hypothesis, we �nd[j Ci�1[~�j=~�] [C1 �[j Ci[~�j=~�] [C1and since �i = �i+1 = �0, the result follows.

124 CHAPTER 5. POLYMORPHISMIf e0 is not �x-free, the contribution form e is not constantly C1 so we doan induction over the nesting depth of �x. Using the lemma as an inductionhypothesis, we realise that the contribution from e must be growing. 2If we let ~� be ~� [FV (A) then each Ci can be divided as fLi1 ��1; � � � ; Lin � �ng [C 0i where C 0i contains only constraints of the form�j � �k. Thus jC 0i j is O(n2).Lemma 5.36 implies that if not �i+1 v �i then either some Lij � L(i+1)j(and not Lij = L(i+1)j) or C 0i � C 0i+1 (and not C 0i = C 0i+1). Each L?j canonly grow j Lp j times (where p is the analysed program) and the growthof C 0? is bounded by n2 since this is the maximal number of constraintsover ~�. Thus the length of each Kleene-Mycroft sequence is bounded byO(n j Lp j +n2). Since j Lp j is roughly the size of the program and n isbounded by the size of the type of the let-bound expression and thus in turnonly by the size of the program, we have an upper quadratic bound on thelength of each sequence.5.3.5 Algorithm III: Avoiding RecomputationIf we carefully examine the complexity it does not bode well for implemen-tations. For each �x-expression in the program we do O(n2) iteration | thebody of the �x-expression is analysed O(n2) times. In principle the numberof nested �x-expressions is bounded only by the size of the program so theresulting algorithm is exponential.Consider two nested �x-expressions �xx : tx:e and �x y : ty:e0 where�x y:e0 is a subexpression of e. When we meet the outer �x, we continueanalysing e under the assumption that x has type ?tx . When we meet theinner �x-expression we �nd the limit of the associated Kleene-Mycroft se-quence starting at ?ty resulting in some type �y. Using this we �nd a �rstapproximation to the type of the outer �x, say �x1. Using this assumptionfor x we redo the whole thing for e | in particular, we start analysing theinner �x-expression using assumption ?ty . We have to reiterate the inner�x-expression, as the more precise type for x might force a more precise typefor e0.The key idea of the accelerated algorithm is that the type computed\last time around" will always be less (in the generic instance relation) thanthe type under more precise assumptions. In the example above, when weencounter �x y : ty:e0 the second time we do not have to start a new iterationat ?ty , type �y will do just as well.This gives us a bound on the sum of all iterations of a given expression.While we before could give an upper bound on the number of iterations dueto a speci�c �x-expression, we can now give a total upper bound. This willlead to a polynomial algorithm.

5.3. POLYMORPHIC RECURSION 125Write fx(y) for the unary function that results from �xing the �rst argu-ment of the binary function f . We have the following property for continuousfunctions.Lemma 5.37 Let f : D �E ! E be a continuous function on the productcpo D � E. Let d v d0 2 D. Let g(d) = Fi2! f id(?). Then g(d0) =Fi2! f id0(?) = Fi2! f id0(g(d)).This lemma lets us recompute a �xed point incrementally by starting theiteration at the previous �xed point | in the lemma above this is g(d) |instead of starting the Kleene sequence all the way from the bottom element.We then re�ne the case for `�x': the full algorithm is given in �gure 5.5.The algorithm requires that we store the
ow type computed for �xx : t:e0with the expression �xx : t:e0 itself. At the beginning this value is set to ?t.5.3.6 ComplexityAgain let n be the size of the analysed program with explicit standard typeson all subexpressions.The trick presented in the previous subsection speeds up the algorithmfrom an exponential worst-case behaviour to a polynomial worst-case (inthe size of the typed program). In order to show this, we �rst consider thecomplexity of performing the test �i+1 v �iLemma 5.38 If �; �0 2 S8(t) for some t then testing � v �0 can be donein polynomial time O(n4) if � and �0 are the results of calls to elim() andclose () as in the algorithm of �gure 5.5.Proof According to lemma 5.36 all we have to do is check set inclusionL � L0 n times (where the size of L and L0 is bounded by n) and set inclusionof C 0i � C 0i+1 where the size of C 0i and C 0i+1 is bounded by n2. Naive setinclusion can be done in quadratic time thus the total complexity is O(n4).2Recall lemma 5.17 stating a O(n6) upper bound in j C j on the compu-tation of elim(F;C).Theorem 5.39 \Accelerated" algorithm W computes a principal type of ein time O(n8) in the size of e.Proof Let us say that, every time the linelet �i+1 = closeA(C 0i+1) �i+1)in the accelerated algorithm W is executed there is a tick. Recall that thelength of a Kleene-Mycroft sequence is at most O(m2) where m was the size

126 CHAPTER 5. POLYMORPHISMW(A; e) = case e ofx : if A(x) = 8~�:C) �then (C[~�0=~�]; �[~�0=~�]) where ~�0 is fresh�lx : t:e0 : let � 2 K8(t) be a
ow typewith fresh variable annotationslet (C; �0) =W((A; x : �); e0)in (C; �!flg �0)e1@le2 : let (C; �00 !` �) =W(A; e1)let (C 0; �0) =W(A; e2)in (C [C 0 [constraints(�0 � �00); �)Truel(Falsel) : (fg;Boolflg)ifl e1 then (e2 : t) else (e3 : t) : let � 2 K8(t) be a
ow typewith fresh variable annotationslet (C1;Bool`) =W(A; e1)let (C2; �2) =W(A; e2)let (C3; �3) =W(A; e3)let Cnew = constraints(�2 � �)[constraints(�3 � �)in (C1 [C2 [C3 [Cnew; �)(e1; e2)l : let (C1; �1) =W(A; e1)let (C2; �2) =W(A; e2)in (C1 [C2; �1 �flg �2)letl (x; y) be e1 in e2 : let (C1; �x �` �y) =W(A; e1)let (C2; �) =W((A; x : �x; y : �y); e2)in (C1 [C2; �)�xx : t:e0 : let �0 = most recent binding-time typecomputed for e = �xx : t:e0let A0 = A; x : �0repeat for i � 0let (Ci+1; �i+1) =W(Ai; e0)let C 0i+1 = elim(FV(A) [FV(�i+1); Ci+1)let �i+1 = closeA(C 0i+1) �i+1)let Ai+1 = A; x : �i+1until �i+1 v �iin (Ci+1; �i+1)let x = e1 in e2 : let (C1; �) =W(A; e1)let C 01 = elim(FV(A) [FV(�); C1)let � = closeA(C 01) �)let (C2; �0) =W((A; x : �); e2)in (C2; �0)Figure 5.5: Algorithm W for polymorphic recursion

5.3. POLYMORPHIC RECURSION 127of the standard type of the �x-expression. Then the total number of ticksfor a given �x-expression is bounded by O(m2).The total number of ticks for all �x-expression is then bounded by O(n2).If we let n0 be the complexity of testing �i+1 v �i and n00 the complexityof elim(FV(A) [FV(�i+1); Ci+1) we have the total complexity as O(n2(n0+n00)). Since n0 is O(n6) and n00 is O(n4) we get O(n8). 2While the above complexity result does not bode well for implementa-tions, we believe that it is overly conservative and will probably be betterbehaved in practice. Furthermore, we believe that the algorithm given canbe improved [DHM95b].5.3.7 SoundnessWe can prove strong subject reduction for the �x-polymorphic system. Wewill not state the substitution lemma, as it is identical to lemma 5.19.The lemma for �x-unfolding (equivalent to lemma 5.20) looks as followsLemma 5.40 LetT1 = T 01C;A; x : 8~�:C) � `�xn e : �0 C `8 �0 � � C 0 ` C[~̀=~�]C 0;A `�xn �xx:e : �[~̀=~�]and (~� \ (FV(A) [FV(C 0))) = ;. Then there exists T2 such that1. T2 = T 02C 0;A `�xn e[�xx:e=x] : �22. C 0 ` �2 � �[~̀=~�] and3. For any � and L and all l 2 L we haveC 0 ` �L(T2; l; �) = �L(T1; l; �)Proof We �rst realise (by a similar induction) that lemma 5.20 also holdsfor the system with polymorphic recursion. This implies the existence ofT3 = T 03C;A `�xn e[�xx:e=x] : �0such that for any � and L and all l 2 L we haveC ` �L(T3; l; �) = �L(T 01C;A; x : 8~�:C) � `�xn e : �0 ; l; �0)where �0 = �[(x; l0) 7! �L(T1; l; �0)].

128 CHAPTER 5. POLYMORPHISMIt is a trivial induction to show that this implies the existence of aderivation T2 = T 02C;A `�xn e[�xx:e=x] : �0[~̀=~�]such that for any � and L and all l 2 L we haveC 0 ` �L(T2; l; �) = �L(T1; l; �)Clearly, C 0 ` �0[~̀=~�] � �[~̀=~�]. 2We then prove the main subject reduction theorem which is also extendedwith preservation of types of subexpressions.Theorem 5.41 (Subject Reduction) If T1 = T 01C;A `�xn e1 : �1 ande1 �! e2 then there exists T2 such that1. T2 = T 02C;A `�xn e2 : �22. C `8 �1 � �23. For any � and L and all l 2 L we haveC ` �L(T2; l; �) � �L(T1; l; �)and if l 2 Destructors(e1) consumes l0 2 Contructors(e1) then for any� and L (where l; l0 2 L) thenC ` fl0g � �L(T1; l; �)Proof The non-trivial cases follow from lemmas 5.19 and 5.40. 2Again we have soundness of
ow functions computed from syntax di-rected inference trees (soundness of
ow functions computed from non-syntax directed inference trees follows by de�nition):Corollary 5.42 Let T be any derivation for e and let C;A `�xn e : � be itsconclusion. Then C;FT j= e.5.3.8 Invariance under TransformationWe will now show that with polymorphic recursion, no improvement is ob-tained by unfolding recursive de�nitions. The similar theorem for unfoldinglet-de�nitions still holds for the extended system.We note that lemma 5.23 remains true after the addition of polymorphicrecursion.

5.3. POLYMORPHIC RECURSION 129Theorem 5.43 (Invariance under �x-unrolling) IfTe[�xx:e=x] = TC;A `�xn e[�xx:e=x] : �then there exists T�x such that1. T�x = T 0�xC;A `�xn �xx:e : �02. C `8 �0 � �3. For any � and L and all l 2 L we haveC ` �L(T�x; l; �) � �L(Te[�xx:e=x]; l; �)Proof By lemma 5.23, we �nd that1. Ti = T 0iC;A `�xn �xx:e : �i2. Te = T 0eC;A; x1 : �1; � � � ; xn : �n `�xn e[xi=x(i)] : � and3. For any � and L and all l 2 L we haveC ` �L(Te[�x x:e=x]; l; �) = �L(Te; l; �) tGi �L(Ti; l; �)By theorem 5.35 we know that we can derive a principal typing T =T 0C 0;A `�xn �xx:e : �0for �xx:e under A. I.e. for every i there exists Si such that1. C;A `�xn �xx:e : �i is a halbstark instance of C 0;A `�xn �xx:e : �0under Si and2. Let �0i = Si�. Since by de�nition C ` Si�(y; l) � �0(y; l) for all y andl 2 L we have C ` Si(�L(T ; l; �)) � �(Ti; l; �0i)As in the proof of theorem 5.24, we can without loss of generality assumethat Si is the identity on � and hence that �0i = � and further thatC ` Si(�L(T ; l; �)) � �(Ti; l; �)

130 CHAPTER 5. POLYMORPHISMBy the construction of Kleene-Mycroft sequences, this implies that T 0 =T 00C 0;A; x : closeA(C 0) �0) `�xn e : �0has a conclusion which is a principal typing for e under A; x :closeA(C 0) �0). By de�nition �L(T 0; l; �) = �L(T ; l; �)By repeated application of lemma 5.8 we �nd1. T2 = T 02C;A; x1 : closeA(C 0) �0); � � � ; xn : closeA(C 0) �0) `�xn e[xi=x(i)] : �002. C `8 �00 � �3. We have C ` �L(T2; l; �) � �L(Te; l; �)From 1. we �nd T3 = T 03C;A; x : closeA(C 0) �0) `�xn e : �00where1. C;A; x : closeA(C 0) �0) `�xn e : �00 is a halbstark instance of C 0;A; x :closeA(C 0) �0) `�xn e : �0 under some S and2. For all y and l 2 L we haveC ` S(�L(T ; l; �)) � �L(T3; l; �)By point 1. C ` SC 0 and C `8 S�0 � �We build T�x = T 00C 0;A; x : closeA(C 0) �0) `�xn e : �0 C 0 `8 �0 � �0 C ` SC 0C;A `�xn �xx:e : S�0Now �L(T�x; l; �) = S�L(T 0; l; �)= S�L(T ; l; �)C ` S(�L(T ; l; �)) � �L(T3; l; �)�L(T3; l; �) = �L(T2; l; �)C ` �L(T2; l; �) � �L(Te; l; �)` �L(Te; l; �) � �L(Te; l; �) tFi �L(Ti; l; �)C ` �L(Te; l; �) tFi�L(Ti; l; �) = �L(Te[�xx:e=x]; l; �) 2Similar to corollary 5.25 we �nd

5.3. POLYMORPHIC RECURSION 131Corollary 5.44 If T1 = T 01C;A `�xn C[e[�xx:e=x]] : �1then there exists T2 such that1. T2 = T 02C;A `�xn C[�xx:e] : �22. C `8 �2 � �13. For all l 2 Destructors(C[e[�xx:e=x]]) we haveC ` FT2(l) � FT1(l)

132 CHAPTER 5. POLYMORPHISM

Chapter 6Intersection TypesIntersection types allow us to state more than one property of an expressionand use any of the properties at will. Intersection types are more powerfulthan F2 polymorphism: any polymorphic type can be regarded as an in�niteintersection where each component has a certain �xed structure. In anygiven program only a �nite number of instantiations of the polymorphictype can be used, and thus we can write the polymorphic type as a �niteintersection. This relation is true for the same reason for annotated types1.Example 6.1 Consider the following expression:let app = �l1f:�l2x:f@l3xin � � � app@l4(�l5y:y)@l11Truel6 � � � app@l7(�l8z:Falsel9)@l12Truel10 � � �The point is that function app is applied both to an identity function and toa constant function. With intersection types we can give function app thefollowing annotated type:((Boolfl6g !fl5g Boolfl6g)!fl1g Boolfl6g !fl2g Boolfl6g)^ ((Boolfl10g !fl8g Boolfl9g)!fl1g Boolfl10g !fl2g Boolfl9g)Thus the result of the two applications in the body of the let can be givenexact descriptions. This example can be handled with let-polymorphism,but it should be clear that intersection type based
ow analysis is strictlymore precise than let- and �x-polymorphism2. 21In a sense even more true: if we assume a �nite set of labels and
ow variables, anypolymorphic type is a representation of a �nite intersection.2For standard types, more expressions can be typed using intersection than System Fpolymorphism. This is shown by exhibiting a strongly normalising lambda term which isnot typable in System F [GRDR88]: let I be �x:x, K be �x:�y:x and � be �x:x@x then(�x:�y:y@(x@I)(x@K))@� is not typable in System F. This expression does not showthat intersection based
ow analysis is more precise than System F based
ow analysis(see section 8.5), and it is an open question whether this is true.133

134 CHAPTER 6. INTERSECTION TYPESThe goal of this chapter is not immediately practical: the analysis willbe so precise that we cannot expect the analysis to have e�cient imple-mentations (due to Statman's lemma the problem solved is non-elementaryrecursive). The purpose is rather to obtain a better understanding of theproblem by identifying an analysis that is \exact" (in a sense that we willmake precise). We hope that this understanding will prove useful for thedesign of future analyses, and we believe that the characterisation given isinteresting in its own right.Since the aim of this chapter is di�erent from the aim of previous chap-ters, we will not discuss algorithms and principality. Consequently, we haveno use for label variables and constraint sets, so we will leave these out toavoid unnecessary clutter. Hence, properties in this chapter are simply labelsets L.We will use a version of intersection types that includes a subtypeordering. This originates from work by Barendregt, Coppo and Dezani-Ciancaglini [BCDC83].The analysis presented here resembles the strictness analysis given byJensen [Jen92] who, using intersection types, de�ned a strictness analysisequivalent to Burn, Hankin and Abramsky's abstract interpretation formu-lation [BHA86].Formulae: Bool BoolL 2 K^(Bool)! � 2 K^(t) �0 2 K^(t0)�!L �0 2 K^(t! t0) � � 2 K^(t) �0 2 K^(t0)��L �0 2 K^(t� t0)^ � 2 K^(t) �0 2 K^(t)� ^ �0 2 K^(t)Figure 6.1: Intersection
ow analysis | formulaeThe set of formulae presented in �gure 6.1 is the same as the formulaefor subtyping extended with the new intersection operator ^. Note that dueto our requirement that the language is well-typed under simple (standard)typing, the individual components of an intersection will have exactly thesame underlying type structure.Figure 6.2 presents the logical rules for the system. It contains four newrules on annotated types. The �rst two say that anything that has type� ^ �0 can be given type � or �0. The third states that if � is smaller than

6.1. INTERPRETING INTERSECTION TYPE DERIVATIONS 135Logical rules: ^-E `^ � ^ �0 � � `^ � ^ �0 � �0^ `^ � � �1 `^ � � �2`^ � � �1 ^ �2 Trans `^ �1 � �2 `^ �2 � �3`^ �1 � �3Figure 6.2: Intersection
ow analysis | logical rules�1 and smaller than �2 then it is also smaller than �1 ^ �2. The last rulestates transitivity for subtyping.Figure 6.3 contains the usual three rules lifting the � relation to a rela-tion on annotated types. Furthermore, it contains distribution rules for !and � over intersections. Note, that these three rules introduce equivalencessince the opposite subtypings are derivable. E.g.`^ �1 � �1 `^ �2 ^ �02 � �2`^ �1 !L �2 ^ �02 � �1 !L �2 `^ �1 � �1 `^ �2 ^ �02 � �02`^ �1 !L �2 ^ �02 � �1 !L �02`^ �1 !L �2 ^ �02 � (�1 !L �2) ^ (�1 !L �02)The non-logical rules of �gure 6.4 are the same as the subtyping system(except constraint sets are left out).Figure 6.5 presents the semi logical rules for intersection types. Apartfrom the subtype rule, we have a rule stating that if e has got type � andtype �0 then it has got type � ^ �0.6.1 Interpreting Intersection Type DerivationsThere is an important di�erence between derivations with intersection typesand the derivations we have seen previously: there can be more than onejudgement for a given expression in an intersection derivation. So when wewish to �nd the set of values an expression e can evaluate to, we have to �ndall judgements for e (using labels, we know exactly which they are, and donot have to rely on syntactical equivalence) and take the union of the
owcomputed by each judgement. Our de�nitions of
ow functions, however,are already capable of handling this situation:If T is derivation, then for every l we let FT (l) be the least annotation

136 CHAPTER 6. INTERSECTION TYPES

Type-speci�c rules: Bool L1 � L2`^ BoolL1 � BoolL2Arrow `^ �1 � �01 `^ �2 � �02 L1 � L2`^ �01 !L1 �2 � �1 !L2 �02Product `^ �1 � �01 `^ �2 � �02 L1 � L2`^ �1 �L1 �2 � �01 �L2 �02^-arrow `^ (�1 !L �2) ^ (�1 !L �02) � �1 !L �2 ^ �02^-pair-L `^ (�1 �L �2) ^ (�01 �L �2) � (�1 ^ �01)�L �2^-pair-R `^ (�1 �L �2) ^ (�1 �L �02) � �1 �L (�2 ^ �02)Figure 6.3: Intersection
ow analysis | type-speci�c rules

6.1. INTERPRETING INTERSECTION TYPE DERIVATIONS 137Non-logical rules: Id A; x : � `^ x : �!-I A; x : � `^ e : �0A `^ �lx:e : �!flg �0!-E A `^ e : �0 !L � A `^ e0 : �0A `^ e@le0 : �Bool-I A `^ Truel : Boolflg A `^ Falsel : BoolflgBool-E A `^ e : BoolL A `^ e0 : � A `^ e00 : �A `^ ifl e then e0 else e00 : ��-I A `^ e : � A `^ e0 : �0A `^ (e; e0)l : ��flg �0�-E A `^ e : ��L �0 A; x : �; y : �0 `^ e0 : �00A `^ letl (x; y) be e in e0 : �00�x A; x : � `^ e : �A `^ �xx:e : � let A `^ e : � A; x : � `^ e0 : �0A `^ let x = e in e0 : �0Figure 6.4: Intersection
ow analysis | non-logical rules
Semi-logical rules: Sub A `^ e : � `^ � � �0A `^ e : �0^-I A `^ e : � A `^ e : �0A `^ e : � ^ �0Figure 6.5: Intersection
ow analysis | semi logical rules

138 CHAPTER 6. INTERSECTION TYPESsuch that whenever on of the rules!-E A `^ e : �0 !L � A `^ e0 : �0A `^ e@le0 : ��-E A `^ e : ��L �0 A; x : �; y : �0 `^ e0 : �00A `^ letl (x; y) be e in e0 : �00Bool-E A `^ e : BoolL A `^ e0 : � A `^ e00 : �A `^ ifl e then e0 else e00 : �is an inference in T then L � FT (l).6.2 DecidabilityWe will give a syntax directed version of our inference system. Coppo,Dezani-Ciancaglini and Veneri [CDCV81] and van Bakel [vB95] have used asimilar technique of integrating the the non-structural rules in the elimina-tion rules.The �rst step is to combine the two non-syntax-directed rules into one.De�ne the relation A `^0 e : � by replacing the (Sub) and (^-I) rules by thefollowing rule: Sub' 8i 2 I : A `^0 e : �i ` �i � �0iA `^0 e : î2I �0iLemma 6.2 1. If we can deduce A ` e : � from A ` e : �1 � � �A ` e : �nusing only rules (Sub) and (^-I) then we can deduce the same fromthe same assumptions using only rule (Sub').2. If Sub' 8i 2 I : A `^0 e : �i ` �i � �0iA `^0 e : î2I �0i then A ` e : Vi �0i can beinferred using rules (Sub) and (^-I) from the same assumptions.Proof Point 1. is trivial since (Sub) and (^-I) are special cases of (Sub').If I = f1; : : : ; ng then n applications of (Sub) and n� 1 applications of(^-I) su�ces for point 2.. 2The resulting system is sound and complete w.r.t. the original system:Proposition 6.3 Soundness: If TA `^0 e : � is a valid derivation thenthere exists a valid derivation T 0A `^ e : � such that F T 0A`^e:� (l) =F TA`^0e:� (l) for all l 2 Destructors(e).

6.2. DECIDABILITY 139Completeness: If TA `^ e : � is a valid derivation then there exists a validderivation T 0A `^0 e : � such that F T 0A`^0e:� (l) � F TA`^e:� (l) for all l 2Destructors(e).It is trivial to see that we never need two consecutive applications of rule(Sub').De�ne function normalise : K(t)! K(t) for all t as follows: normalise(�)is the result of exhaustively applying the following rewrite rules to �:�1 !L (�2 ^ �02) �! (�1 !L �2) ^ (�1 !L �02)(�1 ^ �01)�L �2 �! (�1 �L �2) ^ (�01 �L �2)�1 �L (�2 ^ �02) �! (�1 �L �2) ^ (�1 �L �02)K[�] �! K[�0] if � �! �0where type contexts K are de�ned byK ::= [] j ��L K j K �L � j �!L KNote that ` � = normalise(�) for all � and that the only conjunction in\Rank 1 position" in normalise(�) is at top level.A syntax directed version of the inference system is given in �gure 6.6.We need a version of the property of strengthened assumptions:Lemma 6.4 If TA; x : �1 `n̂ e : � is a valid derivation and ` �2 � �1 thenthere exists T 0; �0 such that T 0A; x : �2 `n̂ e : �0 is a valid derivation andF T 0A;x:�2`n̂ e:�0 (l) � F TA;x:�1`n̂ e:� (l) for all l 2 Destructors(e).Proof By induction over the structure of e. 2The syntax directed system is sound and complete w.r.t. the originalsystem in the following sense:Theorem 6.5 Soundness: If TA `n̂ e : � is a valid normalised deriva-tion then there exists a valid derivation T 0A0 `^ e : �0 such thatF T 0A0`^e:�0 (l) = F TA`n̂ e:� (l) for all l 2 Destructors(e).Completeness: If TA `^ e : � is a valid derivation then there exists a validnormalised derivation T 0A0 `n̂ e : �0 such that F T 0A0`n̂ e:�0 (l) � F TA`^e:� (l)for all l 2 Destructors(e).

140 CHAPTER 6. INTERSECTION TYPES

Id A; x : � `n̂ x : � !-I A; x : � `n̂ e : �0A `n̂ �lx:e : �!flg �0!-E A `n̂ e : �0 !L � 8i 2 I : A `n̂ e0 : �0i `^ î2I �0i � �0A `n̂ e@le0 : ��-I A `n̂ e : � A `n̂ e0 : �0A `n̂ (e; e0)l : ��flg �0�-E 8i 2 I : A `n̂ e : �i �L �0i A; x : î2I �i; y : î2I �0i `n̂ e0 : �00A `n̂ letl (x; y) be e in e0 : �00Bool-I A `n̂ Truel : Boolflg A `n̂ Falsel : BoolflgBool-E A `n̂ e : BoolL A `n̂ e0 : �0 A `n̂ e00 : �00 `^ �0 � � `^ �00 � �A `n̂ ifl e then e0 else e00 : �let 8i : A `n̂ e : �i A; x : î2I �i `n̂ e0 : �0A `n̂ let x = e in e0 : �0�x 8i : A; x : � `n̂ e : �i `^ î2I �i � �A `n̂ �xlx:e : �j for any j 2 IFigure 6.6: Syntax Directed Intersection Flow Analysis

6.2. DECIDABILITY 141Proof We prove the theorem for `^0 instead of `^. By proposition 6.3 thetheorem follows.Soundness is a trivial induction since we have have just incorporated thenon syntax directed rules in the syntax directed ones.For completeness, we prove in addition to the above thatIf TA `^0 e : � is a valid derivation and normalise(�) = Vi2I �ithen there exists a family TiA `n̂ e : �0i for i 2 I of derivationssuch that `^ �0i � �i for all i.We prove completeness by induction over the inference tree forTA `^0 e : � :(Id) Trivial(!-I) Assume a derivation!-I TA; x : � `^0 e : �0A `^0 �lx:e : �!flg �0By induction we �nd a family of derivation for i 2 I:TiA; x : � `n̂ e : �0isuch that if normalise(�0) = Vi2I �i then `^ �0i � �i for all i 2 I. Weconstruct !-I TiA; x : � `n̂ e : �0iA `n̂ �lx:e : �!flg �0iNow we have normalise(�!flg �0) = Vi2I(�!flg �i) and`^ �!flg �0i � �!flg �ifor all i 2 I(!-E) Assume !-E TA `^0 e : �0 !L � T 0A `^0 e0 : �0A `^0 e@le0 : �Further, assumenormalise(�0 !L �) = Vi2I(�0 !L �i)normalise(�0) = Vj2J �0j

142 CHAPTER 6. INTERSECTION TYPESthen by induction there exists families of derivationsTiA `n̂ e : �0i !Li �00i and T 0jA `n̂ e0 : �000jfor i 2 I and j 2 J such that`^ �0i !Li �00i � �0 !L �i and `^ �000j � �0jWe constructTiA `n̂ e : �0i !Li �00i 8j 2 J : T 0jA `n̂ e0 : �000j `^ ĵ2J �000j � �0iA `n̂ e@le0 : �00iwhere `^ Vj2J �000j � �0i follows from `^ �000j � �0j , `^ Vj2J �0j = �0 and`^ �0 � �0i.We have that normalise(�) = Vi2I �i and that `^ �00i � �i.(�-I) Assume �-I TA `^0 e : � T 0A `^0 e0 : �0A `^0 (e; e0)l : ��flg �0Further, assume normalise(�) = Vi2I(�i)normalise(�0) = Vj2J �0jthen by induction there exists families of derivationsTiA `n̂ e : �00i and T 0jA `n̂ e0 : �000jfor i 2 I and j 2 J such that`^ �00i � �i and `^ �000j � �0jNow normalise(� �flg �0) = Vi2I;j2J(�i �flg �0j) and for each (i; j) 2I � J we have TiA `n̂ e : �00i T 0jA `n̂ e0 : �000jA `n̂ (e; e0)l : �00i �flg �000jand clearly `^ �00i �flg �000j � �i �flg �0j .

6.2. DECIDABILITY 143(�-E) Assume�-E TA `^0 e : �x �L �y T 0A; x : �x; y : �y `^0 e0 : �A `^0 letl (x; y) be e in e0 : �Further, assumenormalise(�x �L �y) = Vi2I(�ix �L �iy)normalise(�) = Vj2J �jthen by induction there exists families of derivationsTiA `n̂ e : �0ix �Li �0iy and T 0jA; x : �x; y : �y `n̂ e0 : �0jfor i 2 I and j 2 J such that`^ �0ix �Li �0iy � �ix �L �iy and `^ �0j � �jIt follows that `^ �0ix � �ix and `^ �0iy � �iy and henceTiA `n̂ e : �0ix �Li �0iy T 0jA; x : î2I �0ix; y : î2I �0iy `n̂ e0 : �0jA `n̂ letl (x; y) be e in e0 : �0jfor j 2 J is the wanted family of derivations. Since `^ Vi2I �0ix � �xand `^ Vi2I �0iy � �y, the use of strengthened assumptions in T 0j isjusti�ed by lemma 6.4.(Bool-I) Trivial.(Bool-E) AssumeBool-E TA `^0 e : BoolL TA `^0 e0 : � TA `^0 e00 : �A `^0 ifl e then e0 else e00 : �Further, assume normalise(BoolL) = BoolLnormalise(�) = Vi2I �ithen by induction there exists families of derivationsT 000A `n̂ e : BoolL TiA `n̂ e0 : �0i and T 0iA `n̂ e00 : �00i

144 CHAPTER 6. INTERSECTION TYPESfor i 2 I and j 2 J such that`^ �0i � �i and `^ �00i � �iNow constructT 000A `n̂ e : BoolL TiA `n̂ e0 : �0i T 0iA `n̂ e00 : �00i ` �0i � �i ` �00i � �iA `n̂ ifl e then e0 else e00 : �i(let) Assume let TA `^0 e : �x T 0A; x : �x `^0 e0 : �A `^0 letl x = e in e0 : �Further, assume normalise(�) = Vi2I �ixnormalise(�0) = Vj2J �jthen by induction there exists families of derivationsTiA `n̂ e : �0ix and T 0jA; x : �x `n̂ e0 : �0jfor i 2 I and j 2 J such that`^ �0ix � �ix and `^ �0j � �jIt follows that TiA `n̂ e : �0ix T 0jA; x : î2I �0ix `n̂ e0 : �0jA `n̂ letl x = e in e0 : �0jfor j 2 J is the wanted family of derivations. Since `^ Vi2I �0ix � �x,the use of strengthened assumptions in T 0j is justi�ed by lemma 6.4.(�x) Assume �x TA; x : � `^0 e : �A `^0 �xlx:e : �Assume that normalise(�) = Vi2I �i. Then by induction there existsa family of derivations TiA; x : � `n̂ e : �0i

6.3. MINIMALITY 145such that `^ �0i � �i for all i. It follows that `^ Vi2I �0i � � and hencewe have the following family of derivations:�x 8i 2 I TiA; x : � `^0 e : �0i `^ î2I �0i � �A `^0 �xlx:e : �jfor j 2 I.(Sub') Assume 8i 2 I : TiA `^0 e : �i `^ �i � �0iA `^0 e : î2I �0iLet Vj2Ji �ij = normalise(�i) for all i 2 I. For each i 2 I we have byinduction families of derivations TijA `n̂ e : �0ijwhere `^ �0ij � �ij for all i 2 I and j 2 Ji. Now, the family indexedby I � J ful�ls the property we wish to prove. 2We can now argue decidability as follows: �rst note that the subtyperelation `^ � � �0 is decidable. Now given an expression e, the height of thenormalised inference tree (leaving out the `^ � � �0 judgements) is boundedby the size of e. W.r.t. width, the only interesting rules are (!-E) and (�x)since the number of assumptions in these rules is not �xed:1. In the (!-E) rule we have assumptions A `n̂ e0 : �0i, but the numberof such assumptions is bounded by the size of K(t)= = where t = j�0i j .2. Similarly, in the (�x) rule we have that the number of assumptionsA; x : � `n̂ e0 : �i is bounded by the size of K(t)= = where t = j�i j .6.3 MinimalityDe�ne a vectorising function vec on properties as followsvec(BoolL) = hLivec(��L �0) = vec(�) ++ hLi ++ vec(�0)vec(�!L �0) = vec(�) ++ hLi ++ vec(�0)vec(� ^ �0) = vec(�) \ vec(�0)

146 CHAPTER 6. INTERSECTION TYPESwhere \ is pointwise set intersection and ++ is vector concatenation. De�nean ordering � on properties� � �0 i� vec(�) � vec(�0)(where � is pointwise subset inclusion). This is extended to judgements byde�ning (x1 : �1; � � � ; xn : �n `^ e : �) � (x1 : �01; � � � ; xn : �0n `^ e : �0)i� � � �0 and �i � �0i for i 2 f1; � � � ; ng. We say T � T 0 if T and T 0 arederivations for the same expression e, and for all subexpressions e0 of e wehave that for the last (closest to the conclusion) judgements A `^ e0 : � andA0 `^ e0 : �0 (in T resp. T 0) it holds that (A `^ e0 : �) � (A0 `^ e0 : �0).De�ne � u �0 as followsBoolL1 uBoolL2 = BoolL1\L2�1 �L1 �01 u �2 �L2 �02 = (�1 u �2)�L1\L2 (�01 u �02)�1 !L1 �01 u �2 !L2 �02 = (�1 u �2)!L1\L2 (�01 u �02)(�1 ^ �01) u �2 = (�1 u �2) ^ (�01 u �2)�1 u �2 = �2 u �1It is easy to check that u is the greatest lower bound operator on the domain(K==;�). De�ne(x1 : �1; � � � ; xn : �n `^ e : �) u (x1 : �01; � � � ; xn : �0n `^ e : �0)= (x1 : �1 u �01; � � � ; xn : �n u �0n `^ e : � u �0)and for two derivations T and T 0 for the same expression e let T u T 0 be aderivation such that the last judgement for any subexpression e0 is the u ofthe similar judgements in T and T 0. The following lemma shows that sucha derivation exists:Lemma 6.6 If TA `^ e : � and T 0A0 `^ e : �0are derivations then so is T u T 0A uA0 `^ e : � u �0Proof First prove that `^ �1 � �2 implies `^ �1 u �3 � �2 u �3 for all�1, �2 and �3. This follows by induction on the derivation of `^ �1 � �2.Now the lemma follows by induction over the sum of the heights of the twoderivations. 2It follows as an immediate consequence thatCorollary 6.7 For each e there exists a minimal derivation under the �ordering.If T is minimal for e then FT is the minimal
ow relation derivable for e.

6.4. NON-STANDARD SEMANTICS 1476.4 Non-Standard SemanticsIn this section we give a non-standard semantics which exactly characterisesthe strength of intersection
ow analysis. The semantics is a modi�cationof the standard semantics such that if the
ow analysis predicts a potentialredex, this redex will be reduced by the semantics.Intuitively, the intersection based analysis loses information whenevercomputation is discarded. E.g. analysingifl1 Truel2 then Falsel3 else (�l4x:x)@l5Falsel6will tell us that �l4 can be applied at application @l5 . If we choose to reducethe conditional, we will discard the else-branch and therefore never performthe reduction predicted by the analysis.We introduce new syntactic constructs to ensure that this never hap-pens. To avoid discarding computation when `if' is reduced, we introducea new construct `either': we will reduce `if True then e else e0' to a specialexpression `either e or e0'. The type rule for `either' isEither A ` e : t A ` e0 : tA ` either e or e0 : tAn `either' expression cannot be reduced. The rule for
ow analysis is alsostraightforward: Either A `^ e : � A `^ e0 : �A `^ eitherl e or e0 : �Reduction of conditionals will thus result in a new expression, not presentin the redex. We therefore de�ne that the label of the conditional is takenover by the reduct, i.e. we reduce `ifl True then e else e0' to `eitherl e or e0'.The analysis also loses information in a less obvious way: by alwaysanalysing all subexpressions of any expression the analysis assumes that noredex is ever discarded. Here redex has to be understood in a broad sense,consider: let f = �x:xin let g = �y:f@Truein f@FalseNeither call-by-value nor call-by-name will ever meet the redex (�x:x)@True.Thus if the above is allowed to reduce tolet f = �x:xin f@Falsewe cannot have subject expansion in a strong sense (that is preservation of
ow). Neither do we have standard subject expansion (on judgements, notderivations) since we can derive; f : Boolfl1g !fl5g Boolfl1g `^ f@l4Falsel1 : Boolfl1g

148 CHAPTER 6. INTERSECTION TYPESbut not; f : Boolfl1g !fl5g Boolfl1g `^ let g = �y:f@l3Truel2 in f@l4Falsel1 : Boolfl1gThere are two ways out of this. Either we extend the type system witha special type
 as known from intersection typing, but this would interferewith soundness under arbitrary reduction (arbitrary reduction can reduce(�x:x)@True above) so this would restrict the applicability of the analysis| we will return to this idea in section 8.3 where we will also consider betterways of dealing with conditionals.The other way is to de�ne the reduction system such that no expression isever discarded. For this purpose we introduce a special syntactic construct\discard e in e0". The type rule for this construct isDiscard A ` e0 : �0 A ` e : �A ` discard e0 in e : �and the analysis rule:Discard A `^ e0 : �0 A `^ e : �A `^ discardl e0 in e : �This gives an exact characterisation of the place where the analysis losesinformation. There are no reduction rules for `discard'.As with the `either' construct, we let `discard' expressions take over thelabel of the redex.We want the non-standard reduction to be an even closer characterisationof the intersection
ow analysis: if the
ow analysis predicts a potentialredex, we want this redex to be reduced by the semantics.Pair-destruction \let (x; y) be e in e0" can block redexes. Consider(let (x; y) be z in �l1x:e)@e0where our analysis will predict that the �l1 can be applied to e0. This willnever be reduced by standard reduction. The `discard', `if' and `either'constructs may block in a similar way. The solution to these problems iscontext propagation rules.The reduction rules given in �gure 6.7 and the context rules of �gure 6.8di�er from standard reduction (as given in section 1.6) by the followingproperties:1. As usual, an `if' statement reduces if the conditional is True or False,but instead of rewriting to one branch it rewrites to both;2. special cases for (�), (�-let) and (�-let-pair) make sure that no expres-sion is discarded;

6.4. NON-STANDARD SEMANTICS 149
Contexts:C ::= [] j �lx:C j C@le j e@lC j�xlx:C j letl x = C in e j letl x = e in C jifl C then e0 else e00 j ifl e then C else e00 j ifl e then e0 else C j(C; e0)l j (e; C)l j letl (x; y) be C in e0 j letl (x; y) be e in C jdiscardl C in e0 j discardl e in C j eitherl C or e j eitherl e or CReduction rules:(�) (�l0x:e)@le0 �!s e[e0=x] , if x 2 FV (e)�!s discardl e0 in e , otherwise(�-if) if l Truel0 then e else e0 �!s eitherl e or e0ifl Falsel0 then e else e0 �!s eitherl e0 or e(�-let) letl x = e in e0 �!s e0[e=x] , if x 2 FV (e0)�!s discardl e in e0 , otherwise(�-let-pair)letl (x; y) be (e; e0) in e00 �!s e00[e=x][e0=y] , if x; y 2 FV (e00)�!s discardl e0 in e00[e=x] , if x 2 FV (e00) andy 2= FV (e00)�!s discardl e in e00[e0=y] , if y 2 FV (e00) andx 2= FV (e00)�!s discardl ein discardl e0 in e00 , otherwise(�-�x) �xlx:e �!s e[�xlx:e=x]C[e] �!s C[e0] , if e �!s e0Figure 6.7: Non-standard reduction

150 CHAPTER 6. INTERSECTION TYPES
Context rules:(discard) (discardl e1 in e2)@l0e3�!s discardl e1 in (e2@l0e3)letl0 (x1; y1) be (discardl e1 in e2) in e3�!s discardl e1 in (letl0 (x1; y1) be e2 in e3)ifl0 (discardl e1 in e2) then e3 else e4�!s discardl e1 in (ifl0 e2 then e3 else e4)(pair) (letl (x; y) be e1 in e2)@l0e3�!s letl (x; y) be e1 in (e2@l0e3)letl (x1; y1) be (letl0 (x2; y2) be e1 in e2) in e3�!s letl0 (x2; y2) be e1 in (letl (x1; y1) be e2 in e3)ifl0 (letl (x; y) be e1 in e2) then e3 else e4�!s letl (x; y) be e1 in (ifl0 e2 then e3 else e4)(if) (ifl e1 then e2 else e3)@l0e4�!s ifl e1 then (e2@l0e4) else (e3@l0e4)letl0 (x; y) be (ifl e2 then e3 else e4) in e1�!s ifl e2then (letl0 (x; y) be e3 in e1)else (letl0 (x; y) be e4 in e1)ifl (if l0 e1 then e2 else e3) then e4 else e5�!s ifl0 e1then (if l e2 then e4 else e5)else (if l e3 then e4 else e5)(either) (eitherl e1 or e2)@l0e3�!s eitherl (e1@l0e3) or (e2@l0e3)letl0 (x; y) be (eitherl e2 or e3) in e1�!s eitherl (letl0 (x; y) be e2 in e1) or (letl0 (x; y) be e3 in e1)ifl0 (eitherl e1 or e2) then e3 else e4�!s eitherl (if l0 e1 then e3 else e4) or (if l0 e2 then e3 else e4)Figure 6.8: Non-standard reduction | context rules

6.4. NON-STANDARD SEMANTICS 1513. there are context propagation rules for `discard e in e0',`if e then e0 else e00', `either e or e0' and `let (x; y) be e in e0'.This gives an exact characterisation of the place where the analysis losesinformation. We include labels in the reduction rules.Note that we used a similar characterisation of the strength of the poly-morphic system: these were invariant under `let' and `�x' reduction. Thecharacterisation was not complete, however, as we did not show exactly howand when information was lost.De�ne the erasure je j of a term e to be the term where all occurrencesof \discard e in e0" are replaced by e0 and all occurrences of either e or e0are replaced by e. If e �!� e0 by standard reduction, then there exists e00such that e �!�s e00 and j e00 j = e0. Thus, when we prove strong subjectreduction for our non-standard reduction system, strong subject reductionfor standard reduction follows.6.4.1 ValuesWe will give a characterisation of normal forms under non-standard reduc-tion:Proposition 6.8 Any expression v such that no e exists with v �!s e iscalled a value. An expression v is a value if and only if it has the followingsyntax: v := let (x; y) be v in v0 j if v then v else v0 jeither v or v0 j discard v in v0 j�x:v j (v; v0) j True j False j vv ::= v@v0 j xProof It is easy to see that if v has the above syntax, then no e existssuch that v �!s e.Let e be any expression. We will prove that if no e0 exists such thate �!s e0 then e has the above syntax. We prove this by induction on thestructure of e. First we realise that e cannot be let x = e0 in e00 or �xx:e.True: Is clearly a value.False: Is clearly a value.if e then e0 else e00: Clearly, e, e0 and e00 have to be values for`if e then e0 else e00' to be a value. Furthermore, e cannot be `True' or`False' since the conditional would then reduce to `either e0 or e00', andit cannot be a discard, a `let (x; y) : : :', another conditional or an eitherexpression since then a context propagation rule would be applicable.Finally, it cannot be an abstraction or a pair since it would not bewell-typed. The only things left are applications or variables.

152 CHAPTER 6. INTERSECTION TYPESeither e or e0: Clearly both e and e0 have to be values.x: Is clearly a value.�x:e0: Is a value if e0 is.e0@e00: Clearly e00 has to be a value. Also e0 has to be a value. If e0 is a pair ora truth value the expression is not well-typed. If e0 is an abstraction,e cannot be a value. Similarly, if e0 is a discard, a let (x; y) : : :, aconditional or an either expression, one of the context propagationrules is applicable. The only options left for e0 are a variable or anapplication.(e0; e00): Is a value if the components are.let (x; y) be e0 in e00: Both e0 and e00 have to be values. If e0 is a pair, ewould not be a value and similarly if it is another pair destructor ora discard, a context rule would be applicable. Since e must be welltyped, the only options left are applications and variables. 2It is not hard to show the following properties for any e:1. For any two non-standard reduction sequences reducing e to a valuev, the same set of redexes are reduced.2. If e �!�s e0 lets destructor l consume constructor l0 then there exists areduction sequence using the standard rules plus (pair) and (if) contextpropagation rules where l consumes l0.6.5 Subject ReductionProving subject reduction for the intersection type system is not much dif-ferent from proving it for the previous systems.To prove subject reduction under �!s we need a substitution lemma asusual:Lemma 6.9 (Substitution lemma) If T1 = T 01A; x : �2 `^ e1 : �1 andT2 = T 02A `^ e2 : �2 then there exists T3 such that1. T3 = T 03A `^ e1[e2=x] : �1 and2. For all l 2 Destructors(e1[e2=x]):FT3(l) = FT1(l) [FT2(l)

6.5. SUBJECT REDUCTION 153Proof The lemma follows by simple induction on the structure of thederivation of A; x : �0 `^ e : �. We give the (^-I) case for illustration:(^-I) Assume T1 = T 01A; x : �2 `^ e1 : �1 T 001A; x : �2 `^ e1 : �01A; x : �2 `^ e : �1 ^ �01and T2 = T 02A `^ e2 : �2By induction there exists T4 and T4 such that1. T4 = T 04A `^ e1[e2=x] : �12. T5 = T 05A `^ e1[e2=x] : �013. For all l 2 Destructors(e1[e2=x]):FT4(l) = F T 01A;x:�2`^e1:�1 (l) [FT2(l)4. For all l 2 Destructors(e1[e2=x]):FT5(l) = F T 001A;x:�2`^e1:�01 (l) [FT2(l)but then clearly we can constructT3 = T 04A `^ e1[e2=x] : �1 T 05A `^ e1[e2=x] : �01A `^ e1[e2=x] : �1 ^ �01and obviously l 2 Destructors(e1[e2=x]):FT3(l) = FT4(l) [FT5(l)= F T 01A;x:�2`^e1:�1 (l) [FT2(l) [F T 001A;x:�2`^e1:�01 (l) [FT2(l)= (F T 01A;x:�2`^e1:�1 (l) [F T 001A;x:�2`^e1:�01 (l)) [FT2(l)= FT1(l) [FT2(l) 2

154 CHAPTER 6. INTERSECTION TYPESTheorem 6.10 (Subject Reduction) If T1 = T 01A `^ e1 : � and e1 �! e2then there exists T2 such that1. T2 = T 02A `^ e2 : � and2. For all l 2 Destructors(e2) we haveFT1(l) = FT2(l)and if l 2 Destructors(e1) consumes l0 2 Constructors(e1) thenFT1(l) = FT2(l) [fl0gProof The interesting cases follow from lemma 6.9. 2Soundness of
ow functions computed from inference trees follows asusual:Corollary 6.11 Let T be any derivation for e and let A `^ e : � be itsconclusion. Then FT j= e.6.6 Subject ExpansionWe will prove the subject expansion property. This can only hold if ex-pansion preserves standard types, so this will be our implicit assumptionthroughout the section.The subject expansion property we prove is strong , i.e. the
ow computedis preserved by expansion.We will often use the property that ifTA; x : �0 `^ e : �then T �A; x : �0 ^ �00 `^ e : �where T � only di�ers from T in that bindings x : �0 are replaced by x : �0^�00and use of the subsumption rule at occurrences of x.The following lemma is an adaptation of lemma 5.23 to intersectiontypes:Lemma 6.12 Let e be an expression with n > 0 occurrences of a variablex. If Te[e0=x] = T 0e[e0=x]A `^ e[e0=x] : �then there exists �1 � � � �n;T 0 and T1 � � � Tn s.t.

6.6. SUBJECT EXPANSION 1551. Ti = T 0iA `^ e0 : �i2. Te = T 0eA; x : î �i `^ e : � and3. For all l 2 Destructors(e[e0=x]):FTe[e0=x](l) = FTe(l) [[i FTi(l)Proof The proof is by induction on the derivation Te[e0=x]. Most casesare trivial | the only complication is that we have to treat subexpressionsnot containing x di�erently (we do not have to use induction on these).Furthermore, in the syntax directed rules, we �rst check if the expression ofthe conclusion is x[e0=x] in which case the result follows immediately.We will do the (^-I) case as this is somewhat entertaining:(^-I) Consider: Te[e0=x] = T 0e[e0=x]A `^ e[e0=x] : � T 00e[e0=x]A `^ e[e0=x] : �0A `^ e[e0=x] : � ^ �0By induction we haveT 0i = T 1iA `^ e0 : �i T 0e = T 1eA; x : î �i `^ e : �and Ti00 = T 2iA `^ e0 : �0i T 00e = T 2eA; x : î �0i `^ e : �0where for all l 2 Destructors(e[e0=x]):F T 0e[e0=x]A`^e[e0=x]:� (l) = FT 0e (l) [[i FT 0i (l)and F T 00e[e0=x]A`^e[e0=x]:�0 (l) = FT 00e (l) [[i FT 00i (l)By the (^-I) rule we �ndTi = T 1iA `^ e0 : �i T 2iA `^ e0 : �0iA `^ e0 : �i ^ �0i (y)

156 CHAPTER 6. INTERSECTION TYPESBy the property of strengthened assumptionsT 3eA; x : î �i ^ î �0i `^ e : �and T 4eA; x : î �i ^ î �0i `^ e : �0where T 3e only di�ers from T 1e in the binding for x and similarly forT 4e . We �ndTe T 3eA; x : î (�i ^ �0i) `^ e : � T 4eA; x : î (�i ^ �0i) `^ e : �0A; x : î (�i ^ �0i) `^ e : � ^ �0which with (y) constitutes 1. and 2. of the lemma.FTe[e0=x](l) = F T 0e[e0=x]A`^e[e0=x]:� (l) [F T 00e[e0=x]A`^e[e0=x]:�0 (l)= FT 0e (l) [Si FT 0i (l) [FT 00e (l) [Si FT 00i (l)= FTe(l) [Si FTi(l) 2For standard intersection types it holds that a term is typable if (andonly if) the term is normalising. The proof of this proceeds by proving thatall normal forms are typable and that typability is preserved under beta-expansion. We will now prove subject expansion for �!s along the samelines as the second part of this proof. The following theorem will not dealwith reduction of `�x' as the next section is devoted to this problemTheorem 6.13 (Subject Expansion) If T2 = T 02A `^ e1 : � and e1 �!se2 then there exists T1 such that1. T1 = T 01A `^ e1 : �2. For all l 2 Destructors(e2) we haveFT1(l) = FT2(l)and if l 2 Destructors(e1) consumes l0 2 Constructors(e1) thenFT1(l) = FT2(l) [fl0g

6.6. SUBJECT EXPANSION 157Proof Induction over the de�nition of �!s, i.e. the � and � rules are thebase cases and the context rule is the induction step:(�) Two cases:1. Assume x not free in e. Then (�l0x:e)@le0 �!s discardl e0 in e.We have T2 = T 02A `^ e0 : �0 T 002A `^ e : �A `^ discardl e0 in e : �so we can clearly construct T1 =T 002 ; x : �0A; x : �0 `^ e : �A `^ �l0x:e : �0 !fl0g � T 02A `^ e0 : �0A `^ (�l0x:e)@le0 : �Point 2. follows immediately.2. Assume x has n � 1 occurrences in e. Then (�l0x:e)@le0 �!se[e0=x]. By assumption T2 = T 02A `^ e[e0=x] : �By lemma 6.12 we have T 00i ; �i and T s.t.T 00i = T 000iA `^ e0 : �i and T = T 0A; x : î �i `^ e : �We construct T1 =T 0A; x : î �i `^ e : �A `^ �l0x:e : (î �i)!fl0g � T 0001A `^ e0 : �1 � � � T 000nA `^ e0 : �nA `^ e0 : î �iA `^ (�l0x:e)@le0 : �Point 2. follows from lemma 6.12.(�-if) Assume ifl Truel0 then e else e0 �!s eitherl e or e0

158 CHAPTER 6. INTERSECTION TYPESBy assumption T2 = T 02A `^ e : � T 002A `^ e0 : �A `^ eitherl e or e0 : �So we can construct T1 =A `^ Truel0 : Boolfl0g T 02A `^ e : � T 002A `^ e0 : �A `^ ifl Truel0 then e else e0 : �The case for False is similar.(�-let-pair) The four cases are handled as in the (�) case.\Context Rule": Trivial induction on the context C.\Context propagation rules": The (discard) and (pair) cases follow from asimple rearrangement of the derivations. The (if) and (either) casesrequires the use of ^ but are relatively straightforward: we give the�rst case of (if) for illustration:Assume(ifl e1 then e2 else e3)@l0e4 �!s ifl e1 then (e2@l0e4) else (e3@l0e4)Without loss of generality, we can assume T2 =T 02A `^ e1 : BoolL1 T3 T4A `^ ifl e1 then (e2@l0e4) else (e3@l0e4) : �where T3 = T 03A `^ e2 : �4 !L2 �2 T 003A `^ e4 : �4A `^ (e2@l0e4) : �2 `^ �2 � �A `^ (e2@l0e4) : �and T4 = T 04A `^ e3 : �04 !L3 �3 T 004A `^ e4 : �04A `^ (e3@l0e4) : �3 `^ �3 � �A `^ (e3@l0e4) : �

6.7. HANDLING `FIX' 159We can now construct T1 =T 02A `^ e1 : BoolL1 T5 T6A `^ if l e1 then e2 else e3 : (�4 ^ �04)!L2[L3 � T 003A `^ e4 : �4 T 004A `^ e4 : �04A `^ e4 : �4 ^ �04A `^ (if l e1 then e2 else e3)@l0e4 : �where T5 =T 03A `^ e2 : �4 !L2 �2 `^ �4 ^ �04 � �4 `^ �2 � � L2 � L2 [L3`^ �4 !L2 �2 � (�4 ^ �04)!L2[L3 �A `^ e2 : (�4 ^ �04)!L2[L3 �and T6 =T 04A `^ e3 : �04 !L3 �3 `^ �4 ^ �04 � �04 `^ �3 � � L3 � L2 [L3`^ �04 !L3 �3 � (�4 ^ �04)!L2[L3 �A `^ e3 : (�4 ^ �04)!L2[L3 � 26.7 Handling `�x'The idea of this section is to show that there exists a �nite unfolding em ofany expression �xx:e such that the analysis is invariant under expansion ofthe reduction rule �xx:e �!s em (throughout this section, we will assumethat x occurs in e, since the problem is trivial otherwise). The strategy isas follows:1. Show that it is no restriction to consider expressions �xx:e with ex-actly one occurrence of x (lemma 6.14).2. Show subject expansion for C[�xx:e(m)] �! C[en] where e(m) is mtimes unfolding of e and en is n unfoldings of e and ? inserted for x(corollary 6.18).3. Show subject expansion for C[�xx:e] �! C[�xx:e(m)] (lemma 6.19).The following lemma is a trivial consequence of theorem 6.13:Lemma 6.14 Let e be an expression with n > 0 occurrences of x and nooccurrences of y. LetTA `^ C[e] : � and T 0A0 `^ C[(�l0y:e[y=x])@lx] : �

160 CHAPTER 6. INTERSECTION TYPESbe minimal derivations. ThenF TA`^C[e]:� (l) [fl0g = F T 0A0`^C[(�y:e[y=x])@x]:�(l)and for all l00 2 Destructors(C[e]), l00 6= l impliesF TA`^C[e]:� (l00) = F T 0A0`^C[(�y:e[y=x])@x]:�(l00)Proof Trivial consequence of theorem 6.13. 2De�nition 6.15 For any expression e of type t, de�nee0 = ?ten+1 = e[en=x]Lemma 6.16 Let e and C be given such that e has exactly one occurrenceof x. Then there exists m and n < m such that ifTA `^ C[em] : �is a minimal derivation then it contains the judgements A0 `^ en : �0 andA00 `^ em : �00 with A0 jFV (e)= A00 jFV (e) and �0 = �00.Proof Clearly, for every x free in e, the underlying standard types of A0(x)and A00(x) are the same. Similarly, the underlying types of �0 and �00 are thesame. By �niteness of K(t)== there are only �nitely many pairs (A jFV (e); �)and hence there must exist some m where we meet a judgement, that hasoccurred earlier in the derivation. 2De�nition 6.17 For any expression e, de�nee(0) = xe(n+1) = e[e(n)=x]Corollary 6.18 Let m;n be as computed by lemma 6.16 andTA `^ C[em] : �be the minimal derivation. There existsT 0A ` C[�xx:e(m�n)] : �such that for all l 2 Destructors(C[em]):F TA`^C[�x x:e(m�n)]:� (l) � F T 0A`^C[em]:� (l)

6.7. HANDLING `FIX' 161Proof Immediate from lemma 6.16 and lemma 5.23. 2Lemma 6.19 Let T , A, �, C and e (with exactly one occurrence of x) begiven such that TA `^ C[�xx:e(m)] : �is a minimal derivation. Then there exists T 0 such thatT 0A `^ C[�xx:e] : �and for all l 2 Destructors(C[em]):F T 0A`^C[�x x:e]:� (l) � F TA`^C[�xx:e(m)]:� (l)Proof We have the following derivation:T0A; x : �m `^ e(0) : �0� � �A; x : �m `^ e(m) : �mA `^ �xx:e(m) : �m================A `^ C[�xx:e(m)] : �Dismantle this derivation according to lemma 5.23 intoT0A; x : �m `^ e : �0 T1A; x : �0 `^ e : �1 � � � TmA; x : �m�1 `^ e : �mBy the property of strengthened assumptions, we �ndT 00A; x : î �i `^ e : �0 T 01A; x : î �i `^ e : �1 � � � T 0mA; x : î �i `^ e : �m(where T 0i only di�ers from T 0i in the assumptions for x). Then by (^-I) wehave T 00A; x : î �i `^ e : �0 � � � T 0mA; x : î �i `^ e : �mA; x : î �i `^ e : î �iA `^ �xx:e : î �i `^ î �i � �mA `^ �xx:e : �m==============A `^ C[�xx:e] : �

162 CHAPTER 6. INTERSECTION TYPESInvariance of the computed
ow relations follows by the construction. 2We summarize corollary 6.18 and lemma 6.19 as follows (where we uselemma 6.14 to generalise to an arbitrary number of occurrences of the �x-bound variable).Theorem 6.20 Let C[�xx:e] be given. Then there exists m such that ifTA `^ C[em] : �then there exists T 0 such that T 0A `^ C[�xx:e] : �and for all l 2 Destructors(C[em]):F T 0A`^C[�xlx:e]:� (l) � F TA`^C[em]:� (l)6.8 Flow in Normal FormsWe will now prove the main theorem for normal forms. We will use thenotation A^A0 for the environment mapping x to A(x)^A0(x) if x is in thedomain of both A and A0, and to A(x) resp. A0(x) if x is not in the domain ofA0 resp. not in the domain of A. We extend this to use the abbreviation T ^Afor the derivation where A is intersected with all environments in T (thisderivation contains appropriate subsumption steps at variable occurrences).Clearly T ^A is a valid derivation if T is.Theorem 6.21 If v is a value, there exists A; �;T such thatT = T 0A `^ v : �and FT (l) = fg for all l 2 Destructors(v).Proof Call a property � 2 K result-empty i� all positively occurring labelsare the empty set fg. Similarly, � is called argument-empty i� all negativelyoccurring labels are the empty set fg.We will show that that1. For all v not being variables, applications or bottom there existsA; �;T such that(a) TA `^ v : �

6.8. FLOW IN NORMAL FORMS 163(b) A(x) result-empty for all x(c) � argument-empty.2. For all v and result-empty � there exists A; T such that(a) TA `^ v : �(b) A(x) result-empty for all xIt follows from point 2(a) that any expression occurring in a \consump-tion" context can be given a type where all positively occurring annotations(in particular the top annotation) is the empty set.The proof proceeds by induction over the structure of values.Truel: Any A; � will do.Falsel: Any A; � will do.x: Let � be the given result empty type. Then any (A; x : �) will do.�lx:v: By induction we have TA; x : � `^ v : �0where A and � are result empty. If v is not a variable or an application,�0 is argument empty. Otherwise, the above is true for any result-empty �0 in particular the one that is also argument empty. Thus�!L �0 is argument-empty for any L. SoTA; x : � `^ v : �0A `^ �lx:v : �!L �0is the sought after derivation.v@lv0: If v0 is not a variable or an application, we have by inductionTA0 `^ v0 : �0where A0 is result-empty and �0 argument-empty. If v0 is a variable oran application, then the above is true for any result-empty �0 and inparticular for the argument- and result-empty �0.Let any result-empty � be given. Then �0 !fg � is also result-empty.Then by induction there is TA `^ v : �0 !fg �

164 CHAPTER 6. INTERSECTION TYPESwhere A is result-empty.We now construct T ^A0A ^A0 `^ v : �0 !fg � T 0 ^AA ^A0 `^ v0 : �0A ^A0 `^ v@lv0 : �where A ^A0 is result-empty and � is any given result-empty type.ifl v then v0 else v00: By induction we �nd A; T s.t.TA `^ v : Boolfgand A0; A00; �0; �00;T 0;T 00 s.t.T 0A0 `^ v0 : �0 and T 00A00 `^ v00 : �00where A, A0 and A00 are result-empty and �0, �00 are argument-empty.Let A000 = A ^A0 ^A00. Clearly, there exists an argument empty type�000 such thatT ^ A0 ^ A00A000 `^ v : Boolfg T 0 ^A ^ A00A000 `^ v0 : �0 `^ �0 � �000A000 `^ v0 : �000 T 00 ^ A ^ A0A000 `^ v00 : �00 `^ �00 � �000A000 `^ v00 : �000A000 `^ if v then v0 else v00 : �000eitherl v or v0: Similar, but simpler than the `if' case.(v; v0)l: Follows by simple induction.letl (x; y) be v in v0: We have by inductionT 0A0; x : �x; y : �y `^ v0 : �0where A0; x : �x; y : �y is result-empty and � argument-empty (if v isan application or a variable we choose the argument- and result-empty� as above).For the result-empty �x �fg �y we haveTA `^ v : �x �fg �ywhere A is result-empty.

6.9. SUMMARISING THE RESULTS 165We conclude T ^A0A ^A0 `^ v : �x !fg �y T 0 ^A(A ^A0); x : �x; y : �y `^ v0 : �0A ^A0 `^ letl (x; y) be v in v0 : �0where clearly A ^A0 is result-empty and � result empty.discardl v in v0: Simple induction.?t: Clearly, A `^ ?t : � for any A; �. 26.9 Summarising the ResultsSections 6.6, 6.7 and 6.8 prove that the analysis is exact under non-standardreduction: let e be any expression, apply theorem 6.20 exhaustively yieldinga �x-free term e0. By theorem 6.10 and theorem 6.20, the minimal pre-dictable
ow of e and e0 is identical. By inductively applying theorem 6.13,we have that the minimal predictable
ow for e0 represent exactly the redexesmet when reducing e0 to a value.If non-standard reduction reduces e to a value v such that l consumesl0 then there exists a reduction sequence using standard reduction ex-tended with context propagation rules for (pair) and (if) such that l con-sumes l0. (Note that the context propagation rules are necessary since e.g.(let (a; b) be x in �y:y)@True is a value under standard reduction | forclosed terms, context propagation rules are not necessary). We can summa-rize:Theorem 6.22 (Exactness) Let e be any expression and let T be the min-imal derivation for e. Then for any redex l 2 Destructors(e) and anyl0 2 FT (l) there exists a reduction sequence using standard reduction plusthe context propagation rules (pair) and (if) such that l consumes l0.

166 CHAPTER 6. INTERSECTION TYPES

Chapter 7Shivers' CFAThe subtyping
ow analysis of chapter 3 (which we showed correspondsto Sestoft's [Ses88]) is often referred to as 0CFA. The term 0CFA, however,originates from Olin Shivers' thesis [Shi91c] where a family of analyses nCFAfor every n is de�ned. As we will see in this section, Shivers' 0CFA does notcorrespond to Sestoft's analysis, but is in fact strictly more powerful.Section 7.1 presents Shivers' 0CFA in detail and compares it with closureanalysis. Section 7.2 brie
y describes the generalisation to nCFA. Finally,section 7.3 describes 0CFA as originally de�ned by Shivers for a tail-recursivelanguage | the change of language gives rise to certain optimisations ofthe algorithm at the cost of some precision (though applying this analysisto the CPS-transform of an expression still potentially gives better resultsthan closure analysis).7.1 0CFAShivers de�nes his analysis for a CPS language (tail recursive); this makesdirect comparison with Sestoft's analysis di�cult (this might be one reasonfor the confusion). In �gure 7.1 we try to present 0CFA for our languagewhile being as faithful as possible to the original idea. It does make adi�erence that Shivers is de�ning his analysis for a tail-recursive language,we will return to this in section 7.3.We have left out the pair construct as this does not �t smoothly into theformulation. We will return to this below.An environment maps variables to the set of labels, that the variablecan be bound to. We de�ne the union of two environments by (�[�0)(x) =�(x) [�0(x). During analysis, the assumption on each variable x in theenvironment � is made less precise by making �(x) bigger.The analysis function C takes an expression and an environment as ar-guments and returns a pair. The �rst component of this pair is the set oflabels to which the expression can evaluate. The second component is an167

168 CHAPTER 7. SHIVERS' CFA

C : Exp! (Var! P(L))! L� (Var! P(L))C[[x]]� = (�(x); �)C[[�lx:e]]� = (flg; �)C[[Truel]]� = (flg; �)C[[Falsel]]� = (flg; �)C[[ifl e1 then e2 else e3]]� = let (L1; �1) = C[[e1]]�let (L2; �2) = C[[e2]]�let (L3; �3) = C[[e3]]�in (L2 [L3; �1 [�2 [�3)C[[�xx:e]]� = �x (L; �0):(C[[e]](� [�0 [[x 7! L]))C[[let x = e1 in e2]]� = let (L1; �1) = C[[e1]]�let (L2; �2) = C[[e2]](�1 [[x 7! L1])in (L2; �2)C[[e1@le2]]� = let (fl1; � � � ; lng; �1) = C[[e1]]�let (L; �2) = C[[e2]]�let �3 = �1 [�2let (Li; �i)= C[[bodyof (li)]](�3 [[varof (li) 7! L])in (Si2f1;���;ng Li;Si2f1;���;ng �i)Figure 7.1: 0CFA

7.1. 0CFA 169updated environment. Functions bodyof and varof picks out the body resp.bound variable of an abstraction given its label. It should be clear that theanalysis can compute a
ow function as a side e�ect.The variable case looks up the variable in the environment and returnsthis value together with the unaltered environment. Analysing a value re-turns the unaltered environment and the label of the value: in particularthe body of an abstraction is not analysed and will only be so when theabstraction is applied. Conditionals are analysed by analysing the threesubexpressions under the same assumptions. The result is the union of thelabels of the branches and the union of all updated environments. That thesubexpressions are analysed under the same assumptions re
ect that updatesperformed when evaluating one subexpression cannot a�ect the others. Fix-expressions are analysed by computing the least �xed point for the resultof analysing the expression. If we assume that the body of a `�x'-bound isalways a lambda the following simpler de�nition su�ces:C[[�xx:e]]� = let (L; �0) = C[[e]]�in (L; �0[x 7! L])In the let-case, we �rst analyse the let-bound expression e1. This resultsin a set of labels L1 and a new environment �1. We then analyse the bodye2 of the let in the environment �1[[x 7! L1]. It is obvious that the bindingfor x needs to be updated, but less obvious that we need the environment�1 (and not just �): the reason is that variables that were bound whenanalysing e1 might still be alive and could be referenced while analysing e2.This is made clear by the following example:Example 7.1 Considerlet f = (�l1x:�l2y:x)@Truel3in f@FalseAnalysing the let-bound expressions will return (fl2g; [x 7! fl3g]). Whenwe analyse the body, we �nd that f can be l2 and the analysis proceeds toanalyse the body of �l2 . It is then important that the binding of x to fl3gis alive. 2We now come to the most important and di�cult case: application.When analysing an application e@le0, we �rst compute the set of functionsfl1; � � � ; lng that e can evaluate to and the set of values L that the argumentcan evaluate to. Analysis of both expressions is done in the given environ-ment �. For each of the functions �lixi:ei we analyse ei under assumptionthat xi is bound to L. This is done in an environment �1[�2 since analysinge and e0 might have bound variables that are live when analysing the ei. Thisis illustrated by the following example:

170 CHAPTER 7. SHIVERS' CFAExample 7.2 Consider:((�l1x:�l2f:f@x)@True)@l5((�l3y:�l4z:y)@False)When analysing @l5 we �nd that the functions applied are fl2g and thearguments are fl4g. Analysing f@x under assumption that f is fl4g willclearly both reference x and y. 2The result of analysing an application is the union of the labels computed byanalysing the function bodies and the union of the environments computed.The main di�erence to Sestoft's analysis is in the application case wherethe analysis proceeds to analyse the bodies of all functions that potentiallyare applicable. Furthermore, Sestoft computes a �xed-point for the environ-ment: all lookups are intuitively done in the same environment. In 0CFAlookups are performed in a decreasingly precise environment. It is not hardto see that 0CFA is at least as strong as Sestoft's closure analysis.A simple example shows how 0CFA can yield better results than sub-typebased
ow analysis:Example 7.3 Consider let id = �x:xin if id@Truel1then id@Falsel2else Truel3In the �rst application of id the environment is updated to map x to fl1g.Since the body of the lambda is analysed at this point, we �nd that the con-ditional can only evaluate to l1. In the second application, the environmentis updated to map x to fl2g so the result is also precise for this application.The environment returned will map x to fl1; l2g. The result of the wholeexpression will be fl2; l3g. 2Of course the analysis is not exact as shown by the following example:Example 7.4 Considerlet id = �x:xin (�l3y:id@Falsel2)@l4(id@Truel1)When we analyse application l4 we �nd that the function can be fl3g.Analysing the argument updates the binding for x to fl1g and returns thatthe argument to @l4 can be fl1g. We proceed to analyse the body of �l3 inan environment where both x and y are bound to fl1g. Thus this applicationof id will update the binding for x to fl1; l2g which will also be the result ofthe application and thus of the whole expression. 2

7.1. 0CFA 171This example suggests that we could update environments destructivelyinstead of taking the union with the already present binding. This would,however, not be safe as the next example shows:Example 7.5 Consider the following expression:let app = �f:�l1x:f@l3xin app@(app@�l2y:y)@TrueAnalysing this expression, we �rst �nd that f can be bound to l2 in theapplication app@�l2y:y. The result of this application is l1 which is passedas argument to app. At this point it would be unsound to destructivelyupdate the binding for f to l1 since there is still a live occurrence of fbound to l2. It is easy to see that both l1 and l2 will eventually be appliedto True at @l3 . 27.1.1 PairsThe easiest way to add pairs is to treat them like functions:C[[(e1; e2)l]]� = (flg; �)C[[letl (x; y) be e1 in e2]]� = let (fl1; � � � ; lng; �0) = C[[e1]]�let (Li; �i) = C[[fstof (li)]]�0let (L0i; �0i) = C[[sndof (li)]]�0let �0 = � [[x 7! Si2f1;���;ng L0i;y 7! Si2f1;���;ng L00i]let �00 = Si2f1;���;ng(�i [�0i)let (L0; �000) = C[[e2]]�00in (L0; �000)This entails that the components of pairs are re-analysed every time theyare used. Intuitively, this re
ects a lazy (call-by-name) treatment of pairs.The strategy will be safe under any evaluation but is unnecessarily timeconsuming. Since pairs are not a binding construct, they can be analysedseveral times under the same assumptions | if the assumptions change, thiswill be due to an enclosing lambda which will force re-analysis itself.A better strategy thus uses an extra environment that maps pair-labelsto pairs of sets of labels (describing the values that the components canevaluate to). This is exactly the role � plays for pairs in Sestoft's analysis.But while a \universal" environment for functions means loss of informationcompared to Shivers' analysis, this is not the case for pairs (because theyare not binding constructs).

172 CHAPTER 7. SHIVERS' CFA7.2 nCFAShivers'
ow analysis is an abstraction of an instrumented semantics. Thissemantics is de�ned using contours (which correspond to frames) that keeptrack of di�erent live instances of variables. Obviously, there is no upperbound on the number of contours during an execution of a program | onthe other hand, this is the only in�niteness during execution and thus thetarget for abstraction.The semantics allocate a new contour at every application | in theexact instrumented semantics the new contour is picked from an in�niteset of contours. In 0CFA the set of contours is a singleton set. Thus everyapplication uses the same contour | this allows us to dispose of the contoursaltogether and arrive at the analysis presented in the previous section.In 1CFA a less brutal abstraction is used: there is exactly one contourfor each call-site in the program. Thus, if two call-sites apply the samelambda, the bound variable will live in di�erent contours and we will nothave to take the union of bindings. E.g. inlet id = �x:xin � � � id@l1Truel2 � � � id@l3Falsel4 � � �the two bindings to x will not be mixed up, since the �rst will exist in thecontour named l1 and the second in the contour named l3.The memory of 1CFA is short lived, however: considerlet id = �x:xin let f = �y:id@l5yin � � � f@l1Truel2 � � � f@l3Falsel4 � � �The two calls to f are in separate contours, so the bindings for y will live inthe contour named l1 and l3 resp. The binding for x will live in one contour,namely, the one named l5. Thus the abstract result of the �rst applicationof f will be fl2g but the second will be the set fl2; l4g.The generalisation nCFA makes the set of contours isomorphic to Callnwhere Call is the set of call-sites. Thus 2CFA would be able to handle theabove example since the two instances of x would live in the contour namedl1 � l5 and l3 � l5 resp.nCFA has some of the same
avour as polymorphic
ow analysis aspresented in chapter 5. There are, however, signi�cant di�erences:1. In nCFA, the precision of the �rst analysed call is better than lateranalysed.2. nCFA allows a separate treatment (di�erent contours) for all abstrac-tion whereas polymorphic analyses only are able to do this for let- and�x-bound functions. In this sense, nCFA resembles System F basedanalysis more (discussed in section 8.5).

7.3. CPS VS. DIRECT STYLE 1733. Polymorphic analyses are not restricted by the length of the chainof calls and is in this sense 1CFA (see also the discussion on Ja-ganathan andWright's concept of polymorphic splitting in section 11.1[JW96b]).7.3 CPS vs. direct styleAs mentioned in the introduction to this chapter, Shivers de�ned his analysisfor a CPS-based language. The advantage of CPS-transforming a programis that the resulting program is tail-recursive | this is also the crucialprerequisite for Shivers' de�nition to work: CPS is just a well-know andoften used method of transformation of programs to tail-recursive form.De�ne tail-recursive terms by the following syntax:e ::= v@lv j v@l(v0; v00) j ifl v then v0 else v0 j let x = v in v0 j vv ::= �lx:e j �l(x; c):e j Truel j Falsel j x j �xl(f; x):e j �xl(f; x; c):e(where we again for simplicity leave out pairs). Abstractions come in twovariants (and thus so do applications): the usual variant with one argumentand a variant that takes an argument and a continuation. Similarly, `�x'comes in a variant with two arguments (the name used for recursive calls,and the argument) and in a variant with an extra continuation argument.This allows us to simplify the algorithm for 0CFA given in �gure 7.1considerably. The result is shown in �gure 7.2.The new selector cvarof picks out the continuation variable of an ab-straction or �x, and �xvarof picks out the recursion variable of a �x.Note how the tail-recursiveness has spread to the de�nition of the analy-sis: there is no need to return the updated environment. Thus this version of0CFA which takes advantage of tail-recursiveness will be considerably fasterthan the general algorithm. The version given in �gure 7.2 is identical exceptfor small di�erences in language to the algorithm given by Shivers.The improvement of complexity is not for free: applying the analysisof �gure 7.1 to a term e can potentially give better results than the aboveanalysis to the result of CPS.Recall the expression of example 7.3:let id = �x:xin if id@Truel1then id@Falsel2else Truel3

174 CHAPTER 7. SHIVERS' CFA
Cv[[x]]� = �(x)Cv[[�lx:e]]� = flgCv[[�l(x; c):e]]� = flgCv[[Truel]]� = flgCv[[Falsel]]� = flgCv[[�xl(f; x):v]]� = flgCv[[�xl(f; x; c):v]]� = flgCe[[ifl v1 then v2 else v3]]� = let L1 = Cv[[e1]]�let L2 = Cv[[e2]]�let L3 = Cv[[e3]]�in L2 [L3Ce[[let x = v1 in v2]]� = let L1 = Cv[[v1]]�let L2 = Cv[[v2]](� [[x 7! L1])in L2Ce[[v1@lv2]]� = let fl1; � � � ; lng = Cv[[v1]]�let L2 = Cv[[v2]]�let Li = if li is a lambda labelthen Ce[[bodyof (li)]](� [[varof (li) 7! L2;])else Ce[[bodyof (li)]](� [[�xvarof (li) 7! flig;varof (li) 7! L2])in Si2f1;���;ng LiCe[[v1@l(v2; v3)]]� = let fl1; � � � ; lng = Cv[[v1]]�let L2 = Cv[[v2]]�let L3 = Cv[[v3]]�let Li = if li is a lambda labelthen Ce[[bodyof (li)]](� [[varof (li) 7! L2;cvarof (li) 7! L3])else Ce[[bodyof (li)]](� [[�xvarof (li) 7! flig;varof (li) 7! L2;cvarof (li) 7! L3])in Si2f1;���;ng LiFigure 7.2: 0CFA for a tail-recursive language

7.3. CPS VS. DIRECT STYLE 175CPS-converting this expression results inlet id = �(x; c):c@xin id@(Truel1 ; �y:id@(Falsel2 ; �z: if ythen zelse Truel3))Analysis of this term starts by updating the binding for x to fl1g and pro-ceeds to the body of id. Here y will be bound to fl1g and id will be appliedagain. This time x is updated to fl1; l2g and hence z will be bound to fl1; l2g.So while the analysis can tell us that the conditional (in the transformedcase the variable y) can only be l1 which is better than closure analysis, theanalysis will �nd that the �rst branch (the variable z) can be either l1 or l2which is worse than the result for the direct style expression. The result ofthe whole expression will for the CPS-version be fl1; l2; l3g in contrast to justfl2; l3g in direct style. The intuition is that no analysis can be performedin parallel since the program has been sequentialised. Note, however, that0CFA is still as precise or more precise than closure analysis.For nCFA the loss is even worse, as CPS-transformation inserts manynew applications, thus making remembering the last n calls more \local".

176 CHAPTER 7. SHIVERS' CFA

Part IIIExtensions and Applications

177

Chapter 8ExtensionsIn this chapter, we will describe a number of extensions of the previouslyde�ned
ow analyses. Some will be applicable to all analyses while othersare extensions of speci�c systems.The extensions are not described with the same rigour as the analyseswe have presented so far. Thus the present chapter is to a certain extentsuggestions for future work rather than presentations of full-
edged analyses.8.1 ReachabilityThe analyses presented are able to tell us which values can
ow to whichdestructors. In particular, it can tell us exactly which booleans can
ow toa particular conditional. We can exploit this fact, if it turns out that allbooleans that can
ow to some conditional are True (or False). We can addthe following inference rules to any of the type based systems:Bool-E C;A `s e : BoolL C;A `s e0 : � 8l 2 L:ExpOf(l) = TrueC;A `s ifl e then e0 else e00 : �Bool-E C;A `s e : BoolL C;A `s e00 : � 8l 2 L:ExpOf(l) = FalseC;A `s ifl e then e0 else e00 : �(retaining the general Bool-E rule).This idea was also examined by Ayers who called this additional precisionreachability [Aye92]. He reported that in practice few expressions weredeemed unreachable (that is, will never be evaluated such as e00 when allconditionals are True), but that the additional power in his particular ana-lysis practically came for free (his analysis was equivalent to the analysespresented in chapter 3).With these rules, the we get invariance under reduction and expansion179

180 CHAPTER 8. EXTENSIONSof the following rules:(�-if) if True then e else e0 �!s eif False then e else e0 �!s e0(note that makes `either' redundant in the non-standard reduction systemof chapter 6, so this construct as well as its context-propagation rules canbe left out).8.1.1 Reachability and Intersection Flow AnalysisSince the reachability rules allow invariance under reduction and expansionunder the standard reduction rules for `if', it is tempting to state that com-bining reachability with intersection
ow analysis gives us an exact analysis| this is, however, as we will see, not true.We �rst show an example illustrating that reachability interacts wellwith intersection types and can give exact results:Example 8.1 Consider the following expressionlet neg = �l5x:if x then Falsel3 else Truel4in (neg@Truel1 ; neg@Falsel2)with intersection types and reachability, we can give neg the type(Boolfl1g !fl5g Boolfl3g) ^ (Boolfl2g !fl5g Boolfl4g) and thus �nd an ex-act description of the resulting pair. 2Unfortunately the above (Bool-E) rules are only applicable if ExpOf(l)is well de�ned. Thus they will not help us if the conditional can evaluate toa value which is not a boolean (such as a free variable or an application ofa free variable).Example 8.2 Consider the following expression(�l1z:0B@ if bthen if b then z else Truel2else if b then Falsel3 else z 1CA)@l4Truel5In this expression the reachability rules are not applicable since b is a freevariable (which we can assume has type Boolfl6g). Even though this expres-sion will reduce to Truel5 for any value of b, we are not able to give it abetter description than Boolfl2;l3;l5g. 2

8.1. REACHABILITY 181Let e be a given expression. Let a truth-assumption Te for e be a mapfrom (boolean) labels l 2= Le to sets of truth-values. Given Te, de�ne (over-loaded) predicates True? and False? as follows:True?(l) i� l 2 Le ^ ExpOf(l) = Trueor l 2= Le ^ Te(l) = TrueFalse?(l) i� l 2 Le ^ ExpOf(l) = Falseor l 2= Le ^ Te(l) = FalseTrue?(L) i� 8l 2 L : True?(l)False?(L) i� 8l 2 L : False?(l)Now the new type rules can be based on the True? and False? predicates:Bool-E A `^ e : BoolL A `^ e0 : � True?(L)A `^ ifl e then e0 else e00 : �Bool-E A `^ e : BoolL A `^ e00 : � False?(L)A `^ ifl e then e0 else e00 : �Given any truth-assumption Te we are now able to do
ow inference: wecan use the notation A `T̂e e : � for A `^ e : � under assumption Te. GivenA and � call a set T S of truth-assumptions complete if1. l1; � � � ; lm; lm+1; � � � ; ln are all labels in A `^ e : � such that li 2= Le2. For all hb1; � � � ; bmi 2 fhft1g; � � � ; ftmgi j ti 2 fTrue;Falsegg thereexists T 2 T S such that hT (l1); � � � ;T (lm)i = hb1; � � � ; bmi, and3. T (li) = fTrue;Falseg for all T 2 T S and m < i � nIntuitively, li where m < i � n are the labels for which we make no assump-tions and for lj where 1 � j � m we need to check that we can �nd thesame result for all combinations of assumptions.We de�ne A `^-reach e : � to be true if there exists T S such that1. T S is a complete set of truth-assumptions w.r.t. A and �, and2. A `T̂ e : � for all T 2 T SExample 8.3 Recall example 8.2. By provingb : Boolfl6g `[̂l6 7!fTrueg] (�l1z:0@ if bthen if b then z else Truel2else if b then Falsel3 else z 1A)@l4Truel5 : Boolfl5gandb : Boolfl6g `[̂l6 7!fFalseg] (�l1z:0@ if bthen if b then z else Truel2else if b then Falsel3 else z 1A)@l4Truel5 : Boolfl5g

182 CHAPTER 8. EXTENSIONSwe concludeb : Boolfl6g `^-reach (�l1z:0@ if bthen if b then z else Truel2else if b then Falsel3 else z 1A)@l4Truel5 : Boolfl5g28.1.2 Reachability in GraphsA similar idea is applicable with the graph based analyses. If all Bool+-Bool� paths ending at a particular (Bool�)l node start at True1 then wecan \cut" an edge in the graph:G // Bool�G0 ::G00and similarly if they all start at False:G // Bool�G0 G00 //Notice that applying such a transformation can trigger the applicability ofthe same rule at other Bool� nodes. Exactly the same rule is applicable intyped graphs.2If there are paths starting at a free variable and ending at (Bool�)l, wecan do as in the type system: only if the condition for \cutting" is applicableunder all assignments of truth-values to free variables, can we \cut".8.2 Union TypesThe idea employed in section 8.1.1 is a special case of union types. To obtaina union based
ow analysis we add the following rules to the intersectionbased analysis of chapter 6:Semi logical rules:_-E A; x : �1 `^_ e : � A; x : �2 `^_ e : � A `^_ e0 : �1 _ �2A `^_ e[e0=x] : �1to be exact ExpOf(l) is True for all l such that there is a path starting from (Bool+)l.This would be straightforward to express without reference to labels if we used `True' and`False' nodes instead of Bool+.2In untyped graphs, we have to remove edges added by closing rules triggered by a\cut" edge. This is avoided in typed graphs.

8.2. UNION TYPES 183Logical rules: 3 `^_ � � � _ �0 `^_ �0 � � _ �0`^_ �1 � � `^_ �2 � �`^_ �1 _ �2 � �Type-speci�c logical rules:`^_ (�1 !L �2) ^ (�01 !L �2) � �1 _ �01 !L �2The strong reachability
ow analysis of section 8.1.1 can be seen asa special case of this in the following manner. Instead of having generalboolean types we introduce types True and False and replace the booleanstandard typing rules withBool-I A ` True : True A ` False : FalseBool-E A ` e : True A ` e0 : tA ` if e then e0 else e00 : t A ` e : False A ` e00 : tA ` if e then e0 else e00 : tand annotating types True and False in the obvious fashion. Notice that the\standard" rule for `if' is derivable from these rules using the (_-E) ruleA `^_ e : TrueL _ FalseL A `^_ e0 : � A `^_ e00 : �A `^_ ifl e then e0 else e00 : �We are now able to do
ow inference under any assumption on the truth-type of free variables and by using the _-E rule to combine inference treesto the more liberal True _ False assumption.We conjecture that general union types do not give any additional powerover the strong reachability analysis of section 8.1.1. We suggest that a proofof this can be given as a proof transformation \sifting" all applications ofthe _-E rule to the root of the inference tree.Thus, it would be super
uous to add general union types, but not onlythat: we would lose invariance under beta-reduction as the following exampleshows:3Barbenera et al. use an equivalent but slightly less elegant formulation [BDCd95].Using their system as inspiration would lead to:`^_ � _ � � � `^_ � � � _ �0 `^_ �0 � � _ �0`^_ �1 � �01 `^_ �2 � �02`^_ �1 _ �2 � �01 _ �02

184 CHAPTER 8. EXTENSIONSExample 8.4 Consider the term�l1x:�l2y:�l3z:(�l5f:x@f@f)@((�l4t:t)@y@z)This can reduce to:�l1x:�l2y:�l3z:x@((�l4 t:t)@y@z)@((�l4t:t)@y@z) (8.1)(which is the term that we are really interested in | the �rst was only toshow how we got the same label twice). This can reduce to either�l1x:�l2y:�l3z:x@(y@z)@((�l4 t:t)@y@z) (8.2)or �l1x:�l2y:�l3z:x@((�l4 t:t)@y@z)@(y@z) (8.3)Both expressions 8.2 and 8.3 can reduce to�l1x:�l2y:�l3z:x@(y@z)@(y@z) (8.4)We can give expressions 8.1 and 8.4 type (where we leave out unimportantannotations)(Boolfl5g ! Boolfl5g ! Boolfl8g) ^ (Boolfl6g ! Boolfl6g ! Boolfl8g)!fl1g (Boolfl7g ! Boolfl5g _ Boolfl6g)!fl2g Boolfl7g !fl3g Boolfl8gbut this type can be given to neither expressions 8.2 nor 8.3. This is be-cause the intermediate forms lose syntactical equivalence between the twoinstances of f . We can conclude that types are preserved neither by beta re-duction nor expansion. This example is adopted from an example by Pierce[Pie91]. 2It can be shown that a standard union type system is invariant underparallel beta reduction and expansion [BDCd95] and we believe that thisresult can be adopted to union based
ow analysis.Observation 8.5 The intersection and union based strictness analysis ofJensen section [Jen92] includes the following _ elimination ruleA; x : � ` e : �00 A; x : �0 ` e : �00A; x : � _ �0 ` e : �00which is the rule from the sequent calculus formulation of union types insteadof the natural deduction _-E rule given above.Without the cut rule of sequent calculus systems, Jensen's rule is strictlyweaker than the natural deduction rule. This implies that his system mustlack invariance under beta-reduction in a \worse" way than necessary (thefull version is, as noted above, invariant under parallel beta reduction andexpansion).This manifests itself in e.g. reducing let x = e in e0 to e0[e=x] where thesequent calculus rule is applicable to e in the redex but not in the reductwhere e is not bound to any variable.

8.3. USEDNESS 1858.3 UsednessIn the analyses presented, we have made a virtue of being sound underany reduction order. This has the advantage of allowing hyper-strict eval-uation (such as partial evaluation) and compiler optimisations based onbeta-reduction.If we are interested in a �xed evaluation strategy only, the general ap-proach will predict redexes that will never arise during evaluation. Theinformation about whether a subexpression is needed or not, can be in-ferred in a separate analysis and the
ow analysis be changed to take theinformation into account. Instead of using a separate analysis, it is possibleto build this form of \dead code elimination" into the
ow analysis.8.3.1 Lazy EvaluationWe might expect that expressions that never are used do not contribute tothe
ow information. Consider the following expression, however:(�x:f@True)@(f@False)Our analyses will �nd that f can be applied to both True and False, butunder lazy evaluation (f@False) will never be evaluated, and we might beinterested in realising that f is never applied to False.Our �rst option is to infer usedness by a separate analysis and let the
ow analysis use the information. The usedness analysis could give unusedexpressions a special type
. The only di�erence would be when computingthe
ow function, no
ow inferred for subexpressions given type
 shouldbe included.The second option is to build the usedness analysis into the
ow analysisby adding the following:Formulae:

 2 K(t)Semi-logical rules:
 C;A ` e :
and require that if C;A ` e : � is the �nal judgement then neither A nor� contains
. This also handles lazy pairs, since the components of a pairthat is destructed but where the components are not used, can be given type
�
.

186 CHAPTER 8. EXTENSIONS8.3.2 Eager EvaluationFor call-by-value we might wish similar optimisations for terms such as(�x:f@True)@(�l1z:f@False)where the fact that the body of the second lambda is not evaluated impliesthat f will never be applied to False.We have the same two options as in the lazy case. The only change tothe built-in version is to require that no argument in an application has type
 and that we do not build pairs with components of type
:!-E C;A `s e : �0 !` � C;A `s e0 : �0 �0 6=
C;A `s e@le0 : ��-I C;A `s e : � C;A `s e0 : �0 C `s flg � ` � 6=
 �0 6=
A `s (e; e0)l : ��` �0The �rst rule re
ects the fact that all arguments are evaluated. The argu-ment type can contain
 types as in the above example where �z:f@Falsecan be given type
!fl1g
.The second rule re
ects that if a pair is ever used then its componentsare evaluated.8.4 Simple PolymorphismIn chapter 5 we added polymorphism (ML- and �x-polymorphism) to thesubtype based
ow analysis of chapter 3. There is, however, no reason whywe cannot add polymorphism to the simply typed system of chapter 2.As this will be strictly weaker than the subtype polymorphic analyses,the aim should be to improve the complexity. We will not go into verymuch detail about this system, just note that we have principal types dueto an argument similar to the arguments in chapter 5 using the followingproperties:1. Analysing an expression e results in a constraint set which is linearin the size of the untyped term: namely flg � � for each constructorannotated with l.2. Since the set of constraints is �xed in this manner, the Kleene-Mycroft sequences for simple polymorphism must have the propertythat �i+1 = closeA(S(Ci) �i)) where S uni�es variables bound by�i. Thus the number of variables in a Kleene-Mycroft sequence will bestrictly decreasing until a �xed point is found. This bounds the lengthof Kleene-Mycroft sequences by the size of the program and the com-putation of S must be linear as well (checking for v will depend onlyon whether S is the identity or not).

8.5. OTHER INFERENCE-BASED ANALYSES 187This suggests that polymorphically recursive, simple
ow analysis is com-putable in cubic time using the accelerated algorithm of subsection 5.3.5. Ifwe can use the ideas for uni�cation employed by e�cient implementationsof simple
ow analysis, this complexity might even be improved.The above argument is enchanting, but more rigour is required beforethe cubic (or possibly even quadratic)complexity (can be promoted to morethan a conjecture.8.5 Other Inference-Based AnalysesSystem F is a powerful generalisation of ML- and �x-polymorphism4. Theextension consists of not restricting the use of polymorphism | in otherwords higher order and �rst order formulae are not distinguished.It is straightforward to de�ne a System F based
ow analysis, but suchan analysis is likely to be too complex for practical use. Rank n fragmentscould, however, be more promising.Along a similar line, restrictions such as rank n of intersection basedanalysis could be interesting for achieving precise but practical analyses.Independently of this work, Banerjee investigated rank 2 intersection typesas a basis for
ow analysis. He gives an algorithm for his analysis butdoes not give any estimate on its complexity (for further description andcomparison with this work, see chapter 11).8.6 Labelled GraphsThe imprecision of graph based analysis can be seen to be due to the graphcontaining unrealisable paths. We can hope to improve the analysis byintroducing criteria for realisable paths. Such a criterion is known and givenby Asperti who re�nes his notion of well-balanced paths (see section 4.5) tothe notion of legal paths. We follow [AG96] closely in the presentation.Recall that wbp's corresponded to our paths (in unlabeled graphs) exceptthat they went in the opposite direction.De�nition 8.6 Let � be a wbp. An elementary @-cycle of � is a sub-path starting from and ending by going through the argument edge of anapplication node and internal to the argument e of the application (i.e. nottraversing any variables which are free in e).4Historically, System F was introduced independently by Girard [Gir72] andReynolds [Rey74]

188 CHAPTER 8. EXTENSIONS
@========De�nition 8.7 The concepts of @-cycle and v-cycle (cycle over a variable)are de�ned by mutual induction:Base case: Every elementary @-cycle is a @-cycle.Induction case:v-cycle: Every cyclic path of the form x�(�)r@ @��x where � is awbp and is a @-cycle is a v-cycle.

� @oo �o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/x ������� ;;;;;;;; @-cycle: Every path starting and ending at the argument edge ofan application node and composed of sub-paths internal to theargument e with v-cycles over free variables of e is a @-cycle.
@???????{{{{{{{{{ <<<<<<<<

8.6. LABELLED GRAPHS 189Proposition 8.8 (Corollary 5.1.19 of [AG96]) Let � be a wbp with a@-cycle @ @. Then � can be uniquely decomposed as:�1x��2@ @(�3)r�y�4where both �2 and �3 are wbp's.Call �2 and �3 the call resp. return path of the @-cycle . Call the lastedge of �1 and the �rst edge of �4 the discriminants of the call resp. returnpaths.De�nition 8.9 A wbp is a legal path if and only if the call and return pathsof any @-cycle are the reverse of the other and their discriminants are equal.Note that the condition also makes the variables x and y of proposi-tion 8.8 equal. With the notation of proposition 8.8, we can draw a cycleon a legal path as follows: � @oo �2=(�3)ro/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/x ������� CCCCCCCC ;;;;;;;; �1�4 BBBBBBBBAsperti proved legal paths equivalent to consistent paths [Lam90] and regu-lar paths [Gir89] (the proof can be found in [ADLR94]). The aim of thesedi�erent kinds of paths was to specify the redexes in an expression: to obtainoptimal reduction, no such redex may be copied [L�ev80].Legal paths give an exact characterisation of the possible redexes duringreduction and we anticipate that if the notion was extended to our full lan-guage, we would �nd the analysis equivalent to intersection based analysis.Statman's lemma implies that any nontrivial predicate on simply typedlambda terms that is preserved under beta reduction and expansion is non-elementary recursive [Sta79, Mai92]. Any search of a useful algorithm im-plementing the above is thus in vain (if it should be useful).Furthermore, the notion of legal paths is not a very good startingpoint for the development of practical algorithms. Inspired by the workby Horowitz, Reps and Sagiv we could hope to label edges in the graph andto characterise realisable (legal) paths using a language over these labels[RHS95, RSH94, SRH95]. By Statman's lemma, this language cannot be

190 CHAPTER 8. EXTENSIONScontext-free as this would lead to polynomial time algorithm using context-free reachability [Yan90] (like Horowitz, Reps and Sagiv) but we could hopeto �nd languages which had non-trivial, context-free abstractions.Horowitz, Reps and Sagiv's idea is to label every function call with anopening parenthesis `(n' and every return from a function with a closingparenthesis `)n'. Di�erent call/return pairs are given di�erent numbers nand realisable paths are now paths that traverse call/return labels in a well-balanced manner.For typed graphs, the natural generalisation is to label edges in variableoccurrence cables: backwards edges are labelled with a left parenthesis (sincevalues
owing through such a cable is an argument) and forwards edges arelabelled with a right parenthesis. The subscript n corresponds to di�erentoccurrences of the variable. (We note that labels would be needed in thebranch cables of conditionals and binding- and result cable of �x as well.)Simply requiring paths to traverse labels in a well-balanced manner is,however, much too restrictive. The following simple example can illustratesome of the problems let f = �x:xin f@(f@True)The value True enters f , traverses x, leaves f , enters f again, traverses xand �nally leaves f . With the parenthesis notation this could amount to(f1 (x3)f1 (f2 (x3)f2 where we use superscript to indicate the variable occurrencetraversed (strictly not necessary).First, this path is not well-balanced. In general with higher-order func-tions, call/return are not simply nested as in the �rst-order case5. Thisproblem seems to be solvable by considering well-balancedness for each vari-able in turn.Secondly, the two traversals of (x3 are essentially through two di�erentinstances of x. In the �rst-order case, this does not cause any problems,but examples can be found where this turns out to disallow paths thatcorrespond to potential redexes (we have only been able to �nd examples of2-level paths with this problem).8.7 Shivers' CFA and LinearityShivers' nCFA analyses can, with good e�ect, make use of information aboutlinearity of variables. In the application case, the binding of the formalparameter x is updated to be the union of its previous binding and theargument the abstraction is applied to. This is necessary since there might5As this expression is �rst-order, it can be handled by Horowitz, Reps and Sagiv |this is because x would not be labelled. We could leave out labels on carrier paths as anoptimisation, but it would still be easy to generalise the above example to obtain pathsof a similar kind.

8.7. SHIVERS' CFA AND LINEARITY 191be other instances of x that are still alive. Now, assume that x is linearlyused: this implies exactly that no other instances of x can be alive at thepoint where this application takes place. It will thus be safe to destructivelyupdate the binding for x.As an example, consider (from example 7.4):let id = �x:xin (�l3y:id@Falsel2)@l4(id@Truel1)We easily realise that x is linear. In the �rst application of id 0CFA will�nd that x is bound to fl2g. In the second, standard 0CFA would have toupdate the binding of x to fl2; l3g. If we make use of the fact that x islinear, we will overwrite the binding with fl3g instead.The optimisation is valid not only if a variable is linear (used exactlyonce) but if it is a�ne (used at most once). A suitable analysis for �nd-ing a�ne variables is described by Turner, Wadler and the present au-thor [TWM95]. We leave a proof of validity of this optimisation to futurework.

192 CHAPTER 8. EXTENSIONS

Chapter 9Other Standard TypeSystemsThe analyses based on untyped graphs are applicable to untyped languagesas well as languages with any type system. In contrast, the type basedanalyses as well as the analyses based on typed graphs rely heavily on thepresence of standard types to guide the analysis.In this chapter we will try to convince the reader that the
ow analysespresented are not restricted to the simple language described in section 1.6.We will discuss both more powerful language constructs and more power-ful type systems. The extensions considered are ML polymorphism (sec-tion 9.1), sum types (section 9.2), recursive types (section 9.3) and dynamictypes (section 9.4).For illustration, we will show the extensions to the subtype
ow analysisof chapter 3 and the typed
ow graphs of chapter 4, but hope that it willbe clear that the extensions are equally applicable to the other analyses.We will argue the correctness of the proposed extensions, but will leavea more thorough investigation as future work.9.1 ML PolymorphismWe have studied polymorphism at the level of annotations. For standardtype polymorphism we have the types:t ::= � j Bool j t! t0 j t� t0� ::= t j 8~�:tFor convenience, we add explicit syntax for quanti�cation and instantiatione ::= �~�:e j ef~tgThe type rules for standard ML polymorphism are given in �gure 9.1. Itshould be no cause of confusion that � ranges over both standard typeschemes and
ow schemes. 193

194 CHAPTER 9. OTHER STANDARD TYPE SYSTEMS8-I A ` e : tA ` �~� :e : 8~�:t (~� not free in A)8-E A ` e : 8~�:t0A ` ef~tg : t0[~t=~�]let A ` e : � A; x : � ` e0 : t0A ` let x = e in e0 : t0Figure 9.1: ML-polymorphismIt is possible to add annotation to quantify and instantiate expressions,allowing us to trace which quanti�cations are instantiated where. Since thiskind of
ow is trivial for ML-polymorphism (a quanti�er can only
ow to theoccurrences of the let-bound variable that was quanti�ed) we choose not toannotate 8. If our standard language included more powerful polymorphism,such a generalisation of
ow analysis could be useful.The inference system for
ow analysis of ML polymorphic terms is pre-sented in �gure 9.2.Note that ML-polymorphism implies a certain kind of polymorphism atthe annotation level. Consider the following expression:let id = ��:�l3x:xin (idfBoolfl1gg@Truel1 ; idfBool� !fl2g Bool�g@�l2y:y)where we obtain the exact result as a side e�ect of standard type poly-morphism. This kind of polymorphism is, however, not as general as let-polymorphic
ow analysis. Consider:let f = �l2x:if x then x else Falsel1in : : :which has a monomorphic standard type, but where polymorphism at an-notation level can help improve precision.9.1.1 ML Polymorphism in Typed GraphsIntuitively, a type � can carry any value since it might be instantiated to anytype. For graphs, however, the opposite intuition is more fruitful: no valueis carried along a � -cable, since, as long as the value has type � , it cannotbe used. Thus a � -cable is no cable at all and the appropriate connectionsare made at the instantiation node. A 8~�:t cable is a t-cable.

9.1. ML POLYMORPHISM 195

Formulae: Bool Bool` 2 K�(Bool)! � 2 K�(t) �0 2 K�(t0)�!` �0 2 K�(t! t0) � � 2 K�(t) �0 2 K�(t0)��` �0 2 K�(t� t0)� � 2 K�(�) 8 � 2 K�(t)8�:� 2 K�(8~�:t)Semi- and non-logical rules8-I C;A `� e : �C;A `� �~�:e : 8~�:� (~� not free in A)8-E C;A `� e : 8~�:�0 ~� 2 K�(~t)C;A `� ef~tg : �0[~�=~�]let C;A `� e : � C;A; x : � `� e0 : �0C;A `� let x = e in e0 : �0Figure 9.2: Flow analysis of ML-polymorphic programs

196 CHAPTER 9. OTHER STANDARD TYPE SYSTEMSSince t-cables and 8~�:t-cables are the same, quanti�cation nodes justpass on its incoming cable:T G(�~�:e) = T G(e) +3 8+ +3(we can choose to leave out quanti�cation nodes entirely).At instantiation t0[~t=~�] all occurrences of the bound variables �i (i'thcomponent of ~�) are replaced by the same type ti (i'th component of ~t). Wemodel this in the instantiation node as follows: if � (j)i is a negative and � (k)ia positive occurrence of �i in t0 then add a cable in the instantiation nodefrom t(j)i to t(k)i . All edges in t0 are connected to the \same" edges in t0[~t=~�].This is best illustrated by an example. Considerlet id = �x:xin id@(True;False)where we assume that id is given type 8�:� ! � . The graph for this expres-sion looks as follows:!+ // //___��~ ~ ~ ~ oo_ _ _ ������� let~~} } } } }
�!

ks ksx //___ OO��� id //OO��� //___ //oo_ _ _ 8� // // !�+3 +3 �%CCCCCCCC CCCCCCCC�+ +3
DL����������������������
����������������������True <<yyyyyyyy FalsebbEEEEEEEE

?> =<
89 :;

76 54
01 23

This approach relies on the same intuition as \Theorems for Free", thata function cannot touch arguments of polymorphic type [Wad89].The graph contains the ?+-?� paths that we expect, but if we want toknow which values a variable can be bound to, this approach is insu�cient.The solution is to let � -cables be single edges (the dashed edges in the graphabove) that can carry the top label of the types to which it is instantiated.In the graph, this means that the � -cables carry the label of the pair aroundin the let-bound expression | in itself insu�cient to carry True and Falseto the root.Note, that this approach to standard ML-polymorphism gives the samedegree of polymorphism at
ow level as the type-based approach: in theexample above, the labels of the pair (True;False) reach the root of theapplication node independently of whether there are any other calls to id.

9.2. SUM TYPES 1979.2 Sum TypesIn this section we show how our analyses can be extended to handle lan-guages with sum types. Types are as followst ::= Bool j t! t0 j t� t0 j t+ t0 j 1Sum types come with associated syntax:e ::= inl(e) j inr(e) j case e of inl(x) 7! e0; inr(y) 7! e00 j uwhere u is the unit of type 1. The type rules are given in �gure 9.3.1 A ` u : 1+-I A ` e : tA ` inl(e) : t+ t0 A ` e : t0A ` inr(e) : t+ t0+-E A ` e : t+ t0 A; x : t ` e0 : t00 A; y : t0 ` e00 : t00A ` case e of inl(x) 7! e0; inr(y) 7! e00 : t00Figure 9.3: Sum TypesThe new expressions are given a label:e ::= inll(e) j inrl(e) j casel e of inl(x) 7! e0; inr(y) 7! e00 j uland annotations are added to the singleton type and the sum type construc-tor. The rules are given in �gure 9.4.Note that we actually did have sum types in the original language, asbooleans can be considered as the sum 1+1. It is easy to see that with thisde�nition of booleans, we would arrive at rules similar to those we had in�gure 3.2. The only di�erence is that `True' and `False' are represented byinl(u) resp. inr(u) and will thus each have two labels instead of one (but noincreased precision).9.2.1 Sum Types in Typed GraphsTo extend typed graphs with sum types, we �rst have to de�ne cables car-rying values of sum type:A (t+ t0)-cable is +31 //+32 where +31 is a t-cable and +32is a t0-cable.

198 CHAPTER 9. OTHER STANDARD TYPE SYSTEMS
Formulae: Bool Bool` 2 K�(Bool)! � 2 K�(t) �0 2 K�(t0)�!` �0 2 K�(t! t0) � � 2 K�(t) �0 2 K�(t0)��` �0 2 K�(t� t0)+ � 2 K�(t) �0 2 K�(t0)�+` �0 2 K�(t+ t0) 1 1` 2 K�(1)Type-speci�c logical rules:Unit C ` `1 � `2C `� 1`1 � 1`2Sum C `� �1 � �01 C `� �2 � �02 C ` `1 � `2C `� �1 +`1 �2 � �01 +`2 �02Non-logical rules: 1-I C;A `� ul : 1flg+-I C;A `� e : �C;A `� inll(e) : �+flg �0 C;A `� e : �0C;A `� inrl(e) : �+flg �0+-E C;A `� e : �+` �0 A; x : � `� e0 : �00 A; y : �0 `� e00 : �00C;A `� casel e of inl(x) 7! e0; inr(y) 7! e00 : �00Figure 9.4: Flow analysis with sums

9.2. SUM TYPES 199
T G(u) = u //T G(inl(e) : t+ t0) = T G(e) +3 t +3inl: + //t0 +3

?> =<
89 :;T G(inr(e) : t+ t0) = t +3inr: + //T G(e) +3 t0 +3
?> =<
89 :;T G(case e of inl(x) 7! e0; inr(y) 7! e00) =+3

�� ��������������
����������������������
��������T G(e) //case+3 ��x y T G(e0) 4<T G(e00) +3

?> =<
89 :;

Figure 9.5: Typed
ow graphs for sum types

200 CHAPTER 9. OTHER STANDARD TYPE SYSTEMSIn �gure 9.5 we extend the de�nition of T G with the new syntactic con-structs1. The constructs should be straightforward: the unit u is treated likeother constants (True and False), inl(e) and inr(e) simply connect the rootof T G(e) to the appropriate sub-cable of the sum-cable | note that nothing
ows into the other sub-cable. Finally, the case-construct decomposes thesum (in a manner similar to ��) and connects the branches to the root(similarly to Bool�).9.3 Recursive TypesRecursive types add the ability to de�ne integers, lists etc. Standard typesare t ::= � j Bool j t! t0 j t� t0 j t+ t0 j ��:twhere we have retained the sum types from above (since they are requiredto make practical use of recursive types). We use � for type variables.Usually, recursive types are added to type systems by adding the equiv-alence: ��:t = t[��:t=�]Since we are decorating standard type derivations, it is convenient to makeapplications of this equivalence explicit in the language by addinge ::= fold(e) j unfold(e)with the following (standard) type rules:fold A ` e : t[��:t=�]A ` fold(e) : ��:t unfold A ` e : ��:tA ` unfold(e) : t[��:t=�]Example 9.1 Lists with elements of type t have the type ��:((t� �) + 1).The term fold(inr(u)) is the empty list:` u : 1` inr(u) : t� (��:t� � + 1) + 1` fold(inr(u)) : ��:t� � + 1The list [True;False] : [Bool] is formallyfold(inl((True; fold(inl((False; fold(inr(u)))))))) : ��:((Bool� �) + 1) 21Using ++ and +� would have been more consistent with the rest of the naming, butwould give us two ++ constructs (not mentioning the rather dubious name itself).

9.3. RECURSIVE TYPES 201By adding annotations to `fold' and `unfold' we can trace the
ow offoldings to unfoldings | we do, however, not see any usefulness of suchinformation so we leave fold and unfold unannotated. Thus we add thefollowing rules to our formulae (see �gure 9.4)� � 2 K�(�) � � 2 K�(t) � 2 K�(�)��:� 2 K�(��:t)The inference rules for
ow analysis are straightforward since no annotationsare involved:fold C;A `� e : �[��:�=�]C;A `� fold(e) : ��:� unfold C;A `� e : ��:�C;A `� unfold(e) : �[��:�=�]Note, how applications of the fold rule lose information by requiring that alloccurrences of � in �[��:�=�] are annotated in the same way.To illustrate this consider the list example above. The list [Truel1 ;Falsel2]could be shorthand forfold(inll3((Truel1 ; fold(inll4((Falsel2 ; fold(inrl5(ul0)))l6)))l7))which we can give type��:Boolfl1;l2g �fl6;l7g � +fl3;l4;l5g 1fl0gNote how information is lost: we can only give a description of the elementsof a list that �ts all elements.Lists have di�erent representations. Alternatives to the type given forlists in example 9.1 include:t� (��:t� � + 1) + 1and ��:t� (t� �) + t� 1 + 1These types are equivalent to the type given above, but if one of these is thetype used for lists in a standard typed program, it will allow greater precisionat the
ow analysis level. The �rst type will allow us to annotate the �rstelement of lists di�erently from the remaining (which all need to have thesame annotation). The second type requires every second element of lists tohave the same annotations (that is, the �rst, third, �fth etc. have the sameannotation and the second, fourth, sixth etc. have the same annotation).9.3.1 Recursive Types in Typed GraphsThe same idea for treating standard type variable employed with polymor-phic types is applicable to recursive types. We will adapt the variant where

202 CHAPTER 9. OTHER STANDARD TYPE SYSTEMS� -cables are empty | this makes even more sense with recursive types asno variable will ever have type � and hence the values that a variable canevaluate to can be read from the graph even without � -cables.As with polymorphic types, the important connections are made insidethe nodes involving � -cables: with `fold' and `unfold'. The connections madeare somewhat more complicated as the � binder appears on both \sides" ofthe node.A ��:t cable has to carry the information from all unfoldings of the type,hence we need a t cable to carry the information of t as well as instantiationswith ��:t of positive occurrences of � , and a
ipped t cable to carry theinformation of instantiations of negative occurrences of � . Similarly, weneed a wire in each direction carrying `fold' values. ThusA ��:t cable is +32 //ks 1oo where +31 is a t-cable, ks 1 is its
ipped version and +32 is a t-cable.The forward single edge is the carrier and carries the label of the applied foldoperation; the backward single edge carries the labels of all fold operationthat can occur in argument position.Fold and unfold m-nodes are dual and parameterised by the recursivetype involved. An unfold m-node has an incoming ��:t cable and an out-going t[��:t=�] cable. Let superscripts index the occurrences of � in t asin the polymorphic case. We connect the edges of the positive sub cable ofthe incoming cable to the nodes of the outermost t on the outgoing side.Furthermore, the incoming ��:t cable is connected to all ��:t(i) | directly if� (i) is a positive occurrence of � in t and \switched" if � (i) is a negative oc-currence. The fold m-node has an incoming t[��:t=�] cable and an outgoing��:t cable. Connections are made similarly.Example 9.2 The `fold' m-node for folding (��:� ! �) ! (��:� ! �) to��:� ! � and the dual `unfold' m-node for unfolding ��:� ! � to (��:� !�)! (��:� ! �) are given in �gure 9.6. The type constructors are includedto remind the reader of the kind of labels carried by the individual wires.29.4 Dynamic TypesThis thesis has so far concerned analysis of typed programs. This sectionwill show that this need not be a restriction of the applicability of the ana-lyses. Most programming languages that we usually consider untyped aredynamically typed: they perform runtime checks of well-typedness2.2An obvious exception to this is machine code.

9.4. DYNAMIC TYPES 203

Fold: ! oo� oo! // ,,YYYYYYYYYYY� // ++XXXXXXXXXXX // !// �! // 66mmmmmmmmmmm\\::::::::::::::::yyssssssssssssoo !! // <<yyyyyyyyyyyyy\\::::::::::::::::yyssssssssssssoo �� // <<yyyyyyyyyyyyy! oo� oo
?> =<
89 :;Unfold:

������������������oo !
������������������oo �// !! // 22eeeeeeeeeee ((QQQQQQQQQQQ ""FFFFFFFFFFFFF // �� // 33fffffffffff ""FFFFFFFFFFFFF // !! oo� oo // !// �eeKKKKKKKKKKKKoo !eeKKKKKKKKKKKKoo �
?> =<
89 :;Figure 9.6: Fold and unfold

204 CHAPTER 9. OTHER STANDARD TYPE SYSTEMSIt is possible to optimize a program such that only necessary run-timechecks are performed: we can statically insert the explicit run-time checks.Among the possible completions of a program we can then choose the com-pletion with as few checks as possible. A program that is statically typablewill include no explicit checks and other programs will only contain themin places where the static analysis cannot guarantee that no type errorswill occur. Expressions where the analysis cannot infer a standard typewill be given type dynamic which we write D. For more details see Hen-glein [Hen92, Hen94], and for a description of an extension with polymor-phism, see Rehof [Reh95].The types are thus standard types plus the special type D:t ::= D j Bool j t! t0 j t� t0The full type system is given in �gure 9.7.Conversion Rules:Bool! : Bool; DFun! : D! D; DPair! : D�D; D Bool? : D; BoolFun? : D; D! DPair? : D; D� Dc1 : t1 ; t01 c2 : t2 ; t02c1 � c2 : t1 � t2 ; t01 � t02 c1 : t1 ; t01 c2 : t2 ; t02c1 ! c2 : t01 ! t2 ; t1 ! t02Non-logical rules: Sub A ` e : t c : t; t0A ` e : t0The remaining rule are as in �gure 1.1Figure 9.7: Dynamic TypingThe conversions Bool!; Fun!; Pair! correspond to tagging operations:they take an untagged value which the type system guarantees has a giventype (eg. Bool) and throws it into the common pool of values about whichthe type system knows nothing. In this pool values have tags that canbe checked at run time. Conversions Bool?; Fun?; Pair? check the tag of avalue and provide the untagged value of which the type inference now knowsthe type.Using recursive types and sum types, we already have su�cient powerto specify dynamic types. Type D is equivalent to��:(� ! �) + ((� � �) + Bool)

9.4. DYNAMIC TYPES 205The conversions are expressible in our language. E.g. Bool! isfold � inr � inrand Bool? is outr � outr � unfoldwhere outr is a shorthand for�x: case x ofinl(y) 7! error ;inr(z) 7! zUsing this encoding, we are able to derive a \canonical" annotation of con-versions. Type D should be given �ve annotations according to the recursivetype it represents:��:(� !`1 �) +`4 ((� �`2 �) +`5 Bool`3)If an expression e has this type, the annotation `1 represents the set offunction values that e can evaluate to. Similarly, `2 and `3 represent theset of pairs respectively the set of booleans that e can evaluate to. Labels`4 and `5 give a unique identi�cation of the tagging operations that havelead the the dynamic type. Thus these would allow us to trace the
ow oftagging operations to untagging operations. For this purpose, it would bemore convenient to use just a single annotation on the tagging operation.In the analysis we present in �gure 9.8 we choose to leave out the tagginglabels as it was not our original intention to trace this kind of
ow.Note that we used the coding of dynamic types using recursive and sumtypes as guidance in the speci�cation, but, naturally, we do not need toinclude these in the system.This analysis gives as good results as subtyping
ow analysis for pro-grams that can be typed using a standard type system (i.e. where type Dneed not be used), but we lose information whenever a standard type cannotbe inferred.9.4.1 Dynamic Types in Typed GraphsBy the coding of dynamic types using sums and recursive types, we �ndthat a D-cable consists of 6 forward and 6 backward edges (the 6 are !, +,�, +, Bool, �).Since the labels carried by the sum and � edges are the same, we canreplace them with one forward and one backward edge carrying tagginglabels3: // //////oooooooo3We could, as above, chose to leave tagging labels out completely.

206 CHAPTER 9. OTHER STANDARD TYPE SYSTEMS
Formulae: Bool Bool` 2 K�(Bool)! � 2 K�(t) �0 2 K�(t0)�!` �0 2 K�(t! t0) � � 2 K�(t) �0 2 K�(t0)��` �0 2 K�(t� t0)Dyn D(`1;`2;`3) 2 K�(D)Conversion Rules:Bool! : Bool` ; D(fg;fg;`)Bool? : D(`1;`2;`3) ; Bool`3Fun! : D(`1;`2;`3) !`1 D(`1;`2;`3) ; D(`1;`2;`3)Fun? : D(`1;`2;`3) ; D(`1;`2;`3) !`1 D(`1;`2;`3)Pair! : D(`1;`2;`3) �`2 D(`1;`2;`3) ; D(`1;`2;`3)Pair? : D(`1;`2;`3) ; D(`1;`2;`3) �`2 D(`1;`2;`3)c1 : �1 ; �01 c2 : �2 ; �02c1 � c2 : �1 � �2 ; �01 � �02 c1 : �1 ; �01 c2 : �2 ; �02c1 ! c2 : �01 ! �2 ; �1 ! �02Type-speci�c logical rules:Dyn C ` `1 � `01 C ` `2 � `02 C ` `3 � `03C `� D(`1;`2;`3) � D(`01;`02;`03)Non-logical rules: Sub C;A `� e : � c : �; �0C;A `� e : �0Figure 9.8: Flow analysis and dynamic typing

9.4. DYNAMIC TYPES 207! oo! oo� ooBool oo! // ++XXXXXXXXXXXX! // ,,XXXXXXXXXXXX // !� // ,,XXXXXXXXXXXX // !Bool // ++XXXXXXXXXXXX // �// Bool! // 99sssssssssssss
WW.........................
�������������������oo !! //

BB������������������
WW..........................
������������������oo !! //

BB������������������
VV..........................
������������������oo �� //

BB������������������
VV..........................
������������������oo BoolBool //

BB������������������! oo! oo� ooBool oo

?> =<

89 :;Figure 9.9: The [Fun!]l m-nodewhere the edges read from top to bottom carry labels of type: !,!, �, Bool,!, !, � and Bool. Now the tagging and untagging m-nodes can be foundby combining m-nodes for sum and recursive types.Example 9.3 The [Fun!]l m-node (equivalent to foldl � inll) is given in�gure 9.9 (where the left-hand side is a D ! D cable and the right-handside is a D cable). 2

208 CHAPTER 9. OTHER STANDARD TYPE SYSTEMS

Chapter 10ApplicationsThis chapter will show how
ow analysis can be used as the basis for programanalysis. We will also illustrate the limitations of our approach imposed byour choice of predicting
ow under any reduction strategy.First we describe constant propagation in section 10.1. This is a classicaloptimisation that allows variables that can only result in one value to bereplaced by this value. We can generalise this to replace any expressionthat can only result in a single value by the value. We will give the generalconstruction and show how this can be used on top of the various
owanalyses that we have described in this thesis.Section 10.2 describes a generalisation of constant propagation called�rsti�cation. Firsti�cation transforms a higher-order program into a �rst-order program by propagating all functions (along with the bindings for freevariables).In section 10.3 we will show how binding-time analysis can be based onour
ow analyses. We show how certain properties of
ow analysis are trans-ferred to the binding-time analysis and how this imposes extra requirementson the specialiser employed.10.1 Constant PropagationConstant propagation analysis seeks to �nd expressions that will evaluateto the same value during any evaluation of the program. If this is the case,the expression can be replaced by the value. An expression can be replacedby a value v if the
ow type of the expression identi�es a unique value.� Type BoolL identi�es the unique value v if fvg = Sl2L ExpOf(l).� Type ��`�0 identi�es the unique value (v; v0) if � identi�es the uniquevalue v and �0 identi�es the unique value v0.� Type �0 !` � identi�es the unique value �x:v if � identi�es the uniquevalue v. 209

210 CHAPTER 10. APPLICATIONSIt does not seem di�cult to prove constant propagation based on
owanalysis sound under any reduction order using the subject reduction prop-erty for the
ow analysis. Some care must be taken concerning free variables(see section 10.1.1 below).We go on to sketch how the analyses presented in chapters 2 to 6 can beused as a basis for constant propagation.10.1.1 Simple and Subtype Constant PropagationThe above de�nition gives a complete de�nition of a constant propagationanalysis based on simple or subtype
ow analysis. We notice that choosingthe minimal, principal
ow derivation is important to obtain good results:1. If we choose the minimal (non-principal) type derivation, the resultcan be unsound. Consider the minimal type judgement;`� �y:let f = �x:x in (f@Truel1 ; f@y) : Boolfg ! (Boolfl1g�Boolfg)We �nd that x has type Boolfl1g but in general it would not be soundto replace x with Truel1 . It can be argued that it is sound under theassumption that the expression is never applied, but this is not a veryuseful result of constant propagation: return an optimised programthat only works right if never used!2. If the derivation is principal but not minimal, the result will naturallybe less constant propagation.We can extend the notion of constant propagation to include propagationof free variables. In minimal
ow derivation, we have by theorem 2.8 thatthe �nal judgement C;A `s e : � contains only
ow variables occurring inA or �. Suppose that the assumption for a free variable x is x : Bool� and� does not occur anywhere else in A or �. Then, if an expression has typeBool� in the derivation, we can replace this expression by x (eg. optimise`if x then x else x' to `x').10.1.2 Polymorphic Constant PropagationConstant propagation based on polymorphic
ow analysis comes in two
avours: sticky or non-sticky. The choice depends on how the compilercan make use of the inferred information.Sticky polymorphic constant propagation uses the idea of section 5.2.2to obtain a ground
ow function from a polymorphic derivation: replace anybound label variable � with the union of the sets of labels to which it canbe instantiated.When all polymorphism has been removed, monovariant constant prop-agation as described in section 10.1.1 can be applied.

10.1. CONSTANT PROPAGATION 211Example 10.1 Consider let id = �l3x:xin let y = id@Truel1in (y; id@Falsel2)With explicit
ow abstraction ��: � � � and instantiation, the de�nition of idis ��:�l3x:x : Bool� !fl3g Bool�. If we apply the above procedure, we �ndthat id has a ground type Boolfl1;l2g !fl3g Boolfl1;l2g. From this type, wesee that we cannot replace any value for x. The type for y, however, is nota�ected by this, and remains Boolfl1g allowing us to replace Truel1 for theoccurrence of y. Similarly we can replace the expression id@Falsel2 withFalsel2 and the expression id@Truel1 with Truel1 . 2The non-sticky approach inserts explicit abstractions and instantiationsas above, but retains these as part of the result of the analysis. The compilerinterprets
ow abstractions and instantiations as any other abstraction andapplication: it should, however, choose to beta-reduce all at compile time.This will result in a new copy of the body of a
ow abstraction for any set oflabels to which it is applied (use memorisation to avoid unnecessary copies).Each copy will have di�erent constant propagation properties.Example 10.2 Recall the expression of example 10.1. With explicit ab-straction and instantiation we getlet id = ���l3x:x : Bool� !fl3g Bool�in let y = idffl1gg@Truel1in (y; idffl2gg@Falsel2)By beta-reducing the instantiations we get using memorisation:let id1 = �l3x1:x1 : Boolfl1g !fl3g Boolfl1gin let id2 = �l3x2:x2 : Boolfl2g !fl3g Boolfl2gin let y = id1@Truel1in (y; id2@Falsel2)With this expression we can replace the occurrence of x1 with Truel1 and theoccurrence of x2 with Falsel2 . In this example, the additional informationinferred is useless as the information inferred in example 10.1 replaces allcalls to the identity function with the result, but in general, better resultscan be obtained at the cost of duplicating expressions. 2Soundness of non-sticky constant propagation does not follow immedi-ately from the subject reduction results of chapter 5. It should be straight-forward to extend the reduction system with explicit
ow abstractions and

212 CHAPTER 10. APPLICATIONSinstantiations and prove a subject reduction result for the explicit poly-morphic analysis. This would prove the essence of correctness of the aboveconstant propagation; we would furthermore have to prove the memorisa-tion employed correct. Finally, the implementation should avoid copyingexpressions when it can lead to duplication of evaluation.10.1.3 Intersection Constant PropagationAs with polymorphic constant propagation, we have sticky and non-stickyversions of intersection based constant propagation. In the sticky variant,an expression with intersection
ow type ViBoolLi can be replaced withExpOf(l) if Si Li = flg.In the non-sticky variant, an expression of type Vi2f1;���;ng �i should betreated as an n-tuple of expressions and the subtype step corresponding to^-elimination corresponds to projections of the tuple.10.1.4 Graph Based Constant PropagationIf we base the analysis on the typed
ow graphs of chapter 4 we examine anyexpression to see which constants can reach it. We should also �nd the freeinput variables that can reach the expression. The interface of the graphcan be inferred directly from the graph: it is the collection of cables fromfree variables and the result cable.By the de�nition of constant propagation above, the question whetheran expression can be replaced by a value depends on the
ow type of theexpression. This can be derived from the result cable c of the expression byfor each edge e in c �nding the set of constructors such that there is a pathleaving the carrier edge of the constructor and traversing e. Note that we donot have to construct the whole
ow type: we are only interested in forward,boolean edges of rank 1 (using the standard de�nition of rank). To �nd thedependence on the input, we search for paths starting in the interface andtraversing e.We �nd the set of constants and input variables that traverse an edge bydoing a single sink transitive closure from the edge (backwards reachability).We can take advantage of the ability of typed graphs to do query-based
ow analysis in linear time (assuming constant bounded types) to check onlywhether certain expressions can be replaced by a constant.10.2 Firsti�cationFirsti�cation can be seen as a generalisation of constant propagation thatpropagates all functions to applications. Since the function part of an ap-plication will not always be a unique function, it is replaced by a dispatch

10.2. FIRSTIFICATION 213for choosing the appropriate function. Thus �rsti�cation transforms higher-order programs to �rst-order programs. For this to make sense, we mustassume that all input to the program is �rst-order.Since our goal is not a description of �rsti�cation techniques, but anillustration of the usefulness of
ow analysis to improve the results of �rs-ti�cation, we will assume that we are given a lambda-lifted program. De-scriptions of lambda-lifting can be found in the literature, e.g. [PJ87]. Weassume that the program has the following form:let f1 = �(x11; � � � ; x1m1):e1...fn = �(xn1; � � � ; xnmn):enin ewhere we assume e; e1; � � � ; en to be lambda free. We have furthermore al-lowed tupling of parameters; applications are tupled similarly thus disallow-ing partial applications.1Now �rsti�cation proceeds as follows:1. Replace all occurrences of variables fi in e; e1; � � � ; en with the constantli (formally some coding of the integer i, e.g. an i-tuple of True).2. Apply F [[�]] to e; e1; � � � ; en where F [[�]] is de�ned as follows:F [[x]] = xF [[e@(e1; � � � ; em)]] = case e ofl1 7! f1@(F [[e1]]; � � � ; F [[em]])...ln 7! fn@(F [[e1]]; � � � ; F [[em]])F [[Truel]] = TruelF [[Falsel]] = FalselF [[ifl e then e0 else e00]] = if l F [[e]] then F [[e0]] else F [[e00]]F [[(e; e0)l]] = (F [[e]]; F [[e0]])lF [[letl (x; y) be e in e0]] = letl (x; y) be F [[e]] in F [[e0]]F [[�xlx:e]] = �xlx:F [[e]]F [[letl x = e in e0]] = letl x = F [[e]] in F [[e0]](where we can think of `case' as syntactic sugar for a series of `if').We have thus arrived at a �rst-order program but have paid a heavypenalty in the form of a large dispatch at every application. Flow analysis1For �rsti�cation as presented here to work,
ow analysis should be applied to thisprogram. The ideas, however, extend to less crude methods of �rsti�cation without thelambda-lifting transformation | in this case the result of analysing the original programwill su�ce.

214 CHAPTER 10. APPLICATIONScan reduce the cost greatly: in any case statement case e of l1 : : : where ehas type � we can reduce the dispatch to only test for labels in ann(�). Ifann(�) is a singleton set, the dispatch can be eliminated.By the assumption on input to the program being �rst-order, we can(potentially) reduce all dispatches. This does not mean that we have to giveup modularity entirely: only if we have case e of l1 : : : where e has type �and ann(�) = � we will suspend the reduction until � is instantiated.The sticky interpretation of polymorphic
ow analysis seems to makemore sense than an unsticky interpretation for �rsti�cation. Basing theoptimisation on typed graphs is similar: we �nd the set of functions thatcan be applied at a given application by doing backwards reachability fromthe top node in the application multi-node.We end this section by noting that the �rst uses of
ow analysis wereessentially to transform programs to �rst-order form allowing the applicationof �rst-order analyses. Usually the transformation was implicit, that is, theprogram was not transformed, but the analysis relied on closure informationat every application point. The binding-time analysis of early versions of thepartial evaluator Similix was based on a version of the closure analysis bySestoft [Bon91]. The value
ow information derived by the closure analysisdid not immediately give the binding-time results, but allowed a binding-time analysis that was essentially �rst-order to be used.10.3 Binding-Time AnalysisPartial evaluation aims at reducing a program as much as possible given partof the input to the program (for a standard reference on partial evaluation,see [GJS93]). To allow self-application, partial evaluation is often based onbinding-time analysis, which given information on the availability of input,separates the analysed program into a static and a dynamic part. The staticpart can be evaluated at specialisation time whereas the dynamic part hasto be residualized (i.e. made part of the specialised program). The inputto binding time analysis is a program and a separation of the input into astatic and a dynamic part. A subexpression of the analysed program shouldbe annotated as static, if it can be reduced on the basis of the static inputonly.10.3.1 Type-Based BTALet us assume that a principal
ow derivation with �nal judgement C;A `e : � is given where the annotations in A and the annotations occurringnegatively in � are unique label variables LV .2 Let a binding-time separation2This is the interesting case, but it is easy to extend the ideas to any proper environ-ment.

10.3. BINDING-TIME ANALYSIS 215be a division of LV into a static part LVs and a dynamic part LVd.We interpret annotations as follows:BT (`) = D , if 9� 2 LVd s.t. C ` � � `BT (`) = S , otherwiseWe �nd the binding-time of a constructor e : � by interpreting ann(�). Thebinding-time of a destructor e is the interpretation of ann(�) where e0 : �is the destructed expression. E.g. the annotation of an application e@e0 isBT (`) if e has type � !` �0. Other expressions (`let' and `�x') can alwaysbe annotated as static3This approach extends directly to the non-sticky polymorphic analysis:the abstractions and bound label variables are left in the program as explicitabstractions and applications. Note that we can prove BT of an annotationto be dynamic even if it involves a bound label variable. E.g.let f = �l�x:if d1 then x else d2in � � �where d1 and d2 are free dynamic variables. The
ow type of f could be8(�; �res):f� � �res; �d2 � �resg) Bool� !fl�g Bool�resbut we can prove that �res must be D and thus the binding time type canbe 8�:f� � D; �d2 � Dg) Bool� !S BoolD which in turn can be reducedto 8�:Bool� !S BoolD. We leave the details to future work.A kind of soundness follows from the soundness of
ow analysis: if e hastype �, ` = ann(�) and 9/� 2 LVd s.t. C ` � � ` then e can only evaluate tostatically known values. This soundness concept of binding-time analysis isindependent of the specialiser that will make use of the result of the analysisand therefore is no guarantee that a specialiser can actually make use of theinformation.For this reason, binding-time analysis is often proven correct w.r.t. agiven specialiser. This approach is called monolithic safety. In contrast tothis Henglein and Sands discuss model based safety criteria [HS95]. Un-fortunately, their criterion is not strong enough to prove even the simplestof the binding-time analyses based on
ow analysis we present below (thisis due to their inability to account for context-propagating specialisers, seebelow). Instead of giving any formal soundness results for our binding-timeanalyses, we will discuss informally which requirements the analysis makeson the specialiser, if a monolithic soundness proof is to be possible.The problem with soundness can be paraphrased as \the more precisethe binding-time analysis, the harder the specialiser has to work". This is3This is a sound annotation, though not always desirable, as it might lead to unwantedor even in�nite duplication. We believe that such concerns should be left to a separatetermination analysis.

216 CHAPTER 10. APPLICATIONSvery di�erent from the constant propagation transformation, where a moreprecise analysis was only an asset that gave rise to better transformations.In binding-time analysis a more precise analysis might even be undesirableif no specialiser taking advantage of the information can be found.We illustrate this by an example:let app = �l1f:�l2x:f@l3xin ifl4 app@l5(�l6y:y)@l7Truel8 then app@l9g@l10Falsel11 else � � �where g is free dynamic function (g has type Bool�1 !�2 Bool�3 where�1; �2; �3 2 LVd). A simple
ow analysis as well as a subtype
ow analysiswill infer that both applications of app will result in some � where �3 � �and fl8g � �. Hence the conditional and the branch need to be madedynamic.The annotated program resulting from subtype based
ow analysis willbe: let app = �Sf:�Sx:f@Dxin ifD app@S(�Sy:y)@STrueS then app@Sg@SFalseS else � � �The simple
ow analysis based binding-time analysis will require True andFalse as well as �l6 to be dynamic:let app = �Sf:�Sx:f@Dxin ifD app@S(�Dy:y)@STrueD then app@Sg@SFalseD else � � �The binding-time result from simple
ow analysis can be interpreted bystandard specialisers (and we believe this to be true for all programs), buteven the sub-type based result requires non-standard techniques. Considerthe variables x and f . The
ow type of x is Boolfl8;l11g and thus x is static.The
ow type of f is Boolfl8;l11g !�f Bool�fres where �2 � �f , fl6g � �f ,�3 � �fres and fl8; l11g � �fres . This implies that the binding time type of fis BoolS !D BoolD. The
ow type of �l6y:y is Boolfl8;l11g !fl6g Boolfl8;l11gwhich maps to the binding-time type BoolS !S BoolS.The problem is that while the subtyping stepBoolfl8;l11g !fl6g Boolfl8;l11g � Boolfl8;l11g !�f Bool�fresis legal (under the assumption given above), the corresponding binding-timesubtype step BoolS !S BoolS � BoolS !D BoolDneeds to be interpreted by the specialiser. The point is that subtype stepshave an operational meaning in partial evaluation, namely converting theinternal representation of a value to the program fragment representing the

10.3. BINDING-TIME ANALYSIS 217value. While it is straightforward to convert the internal representation ofa �rst-order value to its program representation, it is not as easy to convertthe internal representation of a function (i.e. a closure) to its external rep-resentation (i.e. a lambda-expression). Therefore, most specialisers disallowhigher-order subtype steps (coercions) as the step above.Higher-order coercions can be handled by interpreting them as eta-conversions4. Above, the binding-time analysis would transform �Sy:y to�Dz:(�Sy:y)@Sz. Thus, the binding-time analysis based on subtyping
owanalysis remains sound, but puts constraints on the specialiser that canutilise the derived binding-time information.As an aside, we note that with higher-order coercions, all constructorscan be annotated as static. This implies that we are only concerned with�nding the annotations for destructors | thus binding-time analysis can bebased directly on a
ow function F .Binding-time analysis based on non-sticky polymorphic
ow analysis re-quires the specialiser to be able to interpret explicit binding-time abstractionand instantiation. The above example is annotated as follows:let app = �(�x; �f ; �farg ; �fres)�Sf:�Sx:f@�fxin ifS appfS;S;S;Sg@S(�Sy:y)@STrueSthen appfS;D;D;Dg@Sg@SFalseSelse � � �A specialiser capable of handling explicit abstraction and instantiation isdescribed in [HM94] | the extension is straightforward: treat binding-timeabstraction and instantiation like static lambda-abstraction and application.If the above expression is analysed using a sticky binding-time analysisbased on polymorphic
ow analysis, we �nd the following annotationlet app = �Sf:�Sx:f@Dxin ifS app@S(�Sy:y)@STrueS then app@Sg@SFalseS else � � �Even though this annotation is sound in the way discussed above, it wouldbe a very bad starting point for a specialiser as the annotation D on theapplication does not indicate that this application should always be residu-alized.Intersection based
ow analysis naturally gives rise to the most demand-ing binding-time analysis | since specialisers are usually required never todiscard computation, our completeness result on the
ow analysis impliesthat a destructor is only deemed dynamic if the argument (function, condi-tional or pair) is part of the dynamic input.The binding-time analysis should insert explicit ^-I and ^-E constructswhich would be interpreted by the specialiser as pairing and projections.4A di�erent approach is to keep both representations at all times during specialisation.

218 CHAPTER 10. APPLICATIONSThus any expression of type Vi2f1;���;ng �i would be copied in n versionsduring specialisation. The complexity of such a specialiser would be asforbidding as the complexity of the intersection based analysis.All the above binding-time analyses have an additional requirement tothe specialiser. Consider `if'if e1 then e2 else e3If e1 is annotated as dynamic the conditional cannot be reduced, and a\direct-style" specialiser will then require the result of the `if' to be deemeddynamic. This is true even if the branches depend only on static input.We can get around this problem by improving the specialiser: a context-propagating or CPS-based specialiser can \push" the context in which theconditional occurs to the branches and allow specialisation of static branchesunder dynamic control | the context propagation rules allowing this corre-spond to the rules of �gure 6.8.While the problems described �rst originated from better binding-timeanalyses requiring better specialisers, this problem is inherent in all our
ow analyses | why is this so? The answer lies in our very �rst decisionto approximate the value
ow under any reduction order. A direct stylespecialiser relies on a speci�c reduction order (conditional before branches)and thus requires the
ow analysis to model this. Surprisingly, our choiceof sacri�cing some precision to achieve general applicability has led us toanalyses that are not generally applicable!10.3.2 Graph-based BTAIt is straightforward to base binding-time analysis on typed graphs: attachthe constant D to all edges in the interface that correspond to dynamicinput (see section 10.1.4 on the notion of interface). Binding-time analysisproceeds by doing single-source transitive closure (or reachability) from theseconstants. All destructors that terminate a path starting from D should beannotated with D.If we assume that all types are of bounded size, this results in a lineartime algorithm.Henglein describes a near linear time algorithm (in the size of the (un-typed) program) for binding-time analysis of untyped programs [Hen91].This analysis is of strength comparable to the graph-based algorithm butdi�ers by not allowing higher-order coercions and by assuming a direct-stylespecialisation of `if'. His analysis can, however, be changed to deal with this| retaining the complexity if allowing higher-order coercions would, as inour case, rely on an assumption that all expressions had bounded types.We note that with this approach it is also easy to do \poor man's gener-alisation" [Hol88]. This is an optimisation, that annotates any constructorthat will always eventually be coerced to dynamic as dynamic. The point is

10.3. BINDING-TIME ANALYSIS 219that if an expression will always be residualized, it can be an advantage todo so as early as possible.The binding-time analysis has divided the destructors into static anddynamic by initially assuming all to be static, and then deeming as few aspossible dynamic using forward reachability from the set of dynamic inputs.We implement \poor man's generalisation" in the same way: initially assumeall constructors to be dynamic and do a backward reachability from the setof static destructors thus deeming only the constructor that will actually beused statically as static. As with binding-time analysis, this can be done inlinear time assuming that types are of bounded size.

220 CHAPTER 10. APPLICATIONS

Chapter 11Related WorkIn this chapter we will discuss the relation to other work. We will not discussthe vast body of work on
ow analysis of �rst-order programs. Instead, weconcentrate on previous and contemporary work on
ow analysis of higher-order functional languages. We have | somewhat arti�cially | divided thework into abstract interpretation based (section 11.1), constraint based (sec-tion 11.2), set-based (section 11.3) and type based analyses (section 11.4).The development of
ow analyses has often gone hand in hand with work onensuring type safety of programs. Section 11.5 brie
y presents and discusseswork in this area.11.1 Abstract InterpretationThe �rst (to our knowledge)
ow analysis of higher-order programs wasde�ned by Jones [Jon81a, Jon81b]. Jones de�nes an abstract machine im-plementing (outside-in) call-by-value reduction. The machine rewrites statesconsisting of a context (identifying the redex within the term) and a redex.To avoid substitution, expressions are represented by a pair of a term and anenvironment mapping free variables to values. Using a �nite approximationof states, a
owchart can be achieved such that, if there is a state transitionin the evaluation of a term, then there is an arrow in the
owchart betweenthe abstract values of the states. This kind of
ow analysis can truly becalled control
ow analysis, as evaluation order under call-by-value is mod-elled in the
ow chart. Furthermore, the abstract states contain informationabout the values of free variables in closures.A later
ow analysis by Jones analyses lambda lifted (no explicit lamb-das, but partial applications allowed) lazy functional programs [Jon87]. Theanalysis �nds safe descriptions of input-output behaviour of each de�nedfunction: a grammar is used to give an approximate description of the val-ues that can be bound to variable and the value that a function can resultin. 221

222 CHAPTER 11. RELATED WORKThe closure analysis of Sestoft [Ses88, Ses91] was developed to facilitateglobalisation analysis [Ses89], which attempts to discover whether a functionparameter can be turned into a global variable. We have described the anal-ysis in depth in section 3.3 and will not describe it any further here. Sestoft'sanalysis formed the basis for the closure analysis in Similix-2 [Bon91] wherethe information was used as a basis for a number of analyses, most notablybinding-time analysis.Ayers extended the Sestoft's closure analysis with reachability as de-scribed in section 8.1 [Aye92].Independently of Sestoft, Shivers [Shi88, Shi91c, Shi91b] de�ned the
owanalysis described in chapter 7. We will not describe this further here, as ithas already been covered in depth.Jaganathan and Weeks describe a general framework for developmentof
ow analyses [JW95a]. They analyse a higher-order language with con-structors and �rst-class references, and give an exact operational semanticsusing a set of states and a transition function. Analyses are obtained byabstract interpretation of the semantics. An analysis equivalent to the anal-yses of chapter 3 (mistakenly coined 0CFA) is described as one abstractionand is proven equivalent to set-based analysis (see below). As in Shivers'analyses, contours are used to allocate new dynamic activation frames andthey are represented by a list of call-site labels. This allows abstractions inthe style of Shivers' nCFA, but the framework allows greater variation inabstraction, and a non-trivial abstraction of contours is described that doesnot lead to exponential complexity. Even though alternative representationsof contours are discussed, it is not clear that the framework is su�cientlygeneral to include analyses such as our polymorphic and intersection basedanalyses.Jaganathan and Wright describe a
ow analysis which strictly improvesover Sestoft's analysis [JW96b]. The �rst improvement is an extension withreachability like Ayers', but more importantly they describe a techniquecalled polymorphic splitting: they use contours like Shivers to record thecall-history, but inspired by let-polymorphism, only calls to let-bound pro-cedures are recorded. Thus the call-history is bounded by the nesting depthof `let' and no abstraction (like in nCFA) has to be made. In its full general-ity, this idea corresponds to analysing a fully let-unfolded program and henceto our let-polymorphic
ow analysis of section 5.2. This is, however, deemedprohibitively complex and the analysis given yields less precise informationthan our let-polymorphic analysis in cases such as:let f = �x:xin let g = �x:�y:(f@x; f@y)in (g@Truel1@Truel2 ; g@Falsel3@Falsel4)(adapted from an example in [JW96b]) which will merge the results of the�rst occurrence of f resulting from the two calls to g, and similarly the

11.2. CONSTRAINT BASED ANALYSIS 223results of the second occurrence. The
ow description of the full expressionwill thus be (Boolfl1;l3g�Boolfl2;l4g)�(Boolfl1;l3g�Boolfl2;l4g) instead of theprecise result (Boolfl1g � Boolfl2g) � (Boolfl3g � Boolfl4g) achievable usinglet-polymorphic
ow analysis.The analysis has been implemented for full Scheme and reasonable run-times are reported for the untuned implementation. The paper describesapplications of the analysis to avoid run-time checks and inlining (which isalso reported in [JW95b] resp. [JW96a]) and shows signi�cant speed-ups dueto the analyses.11.2 Constraint Based AnalysisBondorf and J�rgensen described a very simple linear time
ow analysis forSimilix [BJ93] | we have already described this analysis in chapter 2 so wewill not describe this further here.Palsberg [Pal94] investigated the relationship between the traditionalabstract interpretation based analyses and constraint based analyses. Heproves that the constraint based closure analysis he presents is equivalent tothe closure analysis of Bondorf [Bon91] (which in turn was based on Sestoft'sanalysis [Ses88, Ses91]). This leads Palsberg to a proof of preservation of
ow information under arbitrary beta-reduction (Sestoft had only been ableto prove invariance under call-by-name and call-by-value).Independently of our work, Heintze and McAllester recently describedan algorithm for
ow analysis which allowed single queries to be answeredin linear time under the assumption that the size of types was bounded[HM97]. Not only is the result similar to the result reported in section 4.2,but the algorithm is essentially identical: reachability in a graph, whereeach subexpression is represented by a collection of nodes (named n, dom(n),ran(n) etc.). The graph is not constructed directly from the explicitly typedprogram but using inference rules | this avoids adding argument edges tofunctions that are never applied and result edges for functions whose resultis never used. Hence graph construction is slightly more complicated and theresulting graphs slightly smaller, but the asymptotic complexity is identical.The di�erence shows up in their extension to ML polymorphic languages,where edges are created corresponding to the collection of instances of apolymorphic function. This does not give any polymorphism at annotationlevel as our approach does (though, when they extend the analysis to handlepairs, instantiations of a type variable to pairs and functions will be keptseparate thus giving some polymorphism | this fact is not noted by theauthors). The authors sketch an extension of their analysis with `cons', butwhile their treatment resembles ours, it seems rather ad hoc and it is notclear how it generalises to arbitrary recursive types.

224 CHAPTER 11. RELATED WORK11.3 Set-Based AnalysisSet-based analysis and our
ow analysis have very similar aims: given a pro-gram, set-based analysis �nds a set of values for each variable and subexpres-sion that is a superset of the values that the variable resp. subexpression canevaluate to. This di�ers slightly from
ow analysis, since it does not inferwhich constructor was responsible for the value | the extension, however,is trivial.Set constraints for higher-order functional programs were introduced byHeintze [Hei90, Hei93]. His analysis works by generating set-constraintsand �nding a least solution to these. Heintze gives an O(n3) algorithm forconstraint solving. Heintze's analysis and in particular his derivation of theanalysis is rather complicated. The analysis was simpli�ed by Flanagan andFelleisen [FF95], who used a reduction semantics with a global heap. Thisallows easier and less ad hoc extensions of the analysis to languages withassignment and non local control constructs.The analyses are very similar to the
ow analysis of Palsberg [Pal94].This is particularly evident in the formulation of Flanagan and Felleisenthough this is not remarked upon and Heintze remarks that his analysis\can be roughly compared to 0CFA" (though this seems to be under theprevalent misconception of 0CFA and closure analysis being equivalent)1.The set-based analyses of Heintze and Flanagan and Felleisen do notstate any results concerning modular analysis and it is far from obvious howmodularity can be achieved. Both analyses seek the least solution underset-inclusion which, as discussed in the introduction, is the relevant solutionconcerning the internal
ow in a program, but which is rather useless whendescribing the input-output behaviour and the
ow of arguments: it seemslikely that the analyses can be extended such that input to the program(via free variables or arguments) could be treated separately, giving thema special value which could be traced through the program (such a specialvalue is not essentially di�erent from our label variables).Heintze brie
y mentions an extension of set-based analysis with poly-variance. Essentially, this works by duplicating functions to allow separateanalysis of di�erent calls to the function. Instead of duplicating the functionitself, the constraints generated from the function can be duplicated. In itsfull generality this can achieve the same precision as our polymorphic
owanalysis, it is, however, not immediately implementable in each full general-ity as there is no obvious way of controlling the amount of duplication done.Heintze uses a heuristic based on a �rst mono-variant analysis that approxi-mates the set of functions that can potentially bene�t from duplication. Thisapproach is far more ad hoc than our, and can (by theorems 5.24 and 5.43)never be better than let- and �x-polymorphic
ow analysis. Furthermore,1As mentioned above, the connection was proven by Jaganathan and Weeks [JW95a].

11.4. TYPE BASED ANALYSIS 225no complexity is given on the polyvariant analysis | in the implementa-tion described in [Hei90] a few empirical results are given: some show littleoverhead in using the polyvariant version, but in other cases the overheadis rather big and for one program no timings are given due to excessivecopying.Independently of our work, recent work by Flanagan and Felleisen con-cerns modular and polymorphic set-based analysis of untyped languages[FF96]. The basic idea is similar to the idea of chapter 5:
ow analysisgenerates a set of constraints containing variables. Flanagan and Felleisendo not consider polymorphic recursion. The constraint sets are partiallysolved while retaining observational equivalence of constraint sets | similarto �nding minimal, principal solutions.There are important di�erences, however: Flanagan and Felleisen �ndthat computing a minimal equivalent of a given constraint set is extremelyexpensive (PSPACE-hard) and concentrate on �nding e�cient algorithmsfor simpli�cation that do not always lead to the minimal solution. Thedi�erence is probably due to the absence of standard types in their analy-sis, but a closer comparison between their analysis and our let-polymorphicanalysis will have to be postponed.11.4 Type Based AnalysisTang and Jouvelot [TJ92] describe an escape analysis that uses control-
owe�ects. The analysis infers for each subexpression e an approximation ofthe set of abstractions applied during evaluation of e and thus the aim ofthe analysis di�ers slightly from ours. The paper introduces
ow variablesand thus allows modular analysis; the paper does not state any principalityresults, and indeed such a result cannot be proven in their system since itcontains subtyping, but judgements do not include constraint sets. Thoughnot stated, the analysis is only applicable to call-by-value languages. Thelanguage analysed is the simply typed lambda calculus without recursion,but does extend the language with side-e�ects. The analysis is polymorphicover
ow values, but only in the sense that (side-e�ect free) let-expressionsare unfolded prior to analysis.The aim of a later paper by the same authors [TJ94] is to combine thepower of Shivers' 1CFA with the possibility of separate analysis from typebased
ow analyses. The idea is to analyse each module using 1CFA butwith type-like assumptions on free variables, and use a type based analysisto combine the results of modules. The language is simply typed lambdacalculus. The type system corresponds to the system of chapter 3. The typeenvironment for individual modules is used to approximate the abstractinterpretation environment for the module | this allows separate analysisat the cost of precision.

226 CHAPTER 11. RELATED WORKIndependently of Palsberg and O'Keefe (see the next section), Heintze[Hei95] studied the relationship between standard type systems and
owanalysis. In addition to Palsberg and O'Keefe's result, he showed that byannotating types in a straightforward manner Amadio and Cardelli's typesystem can be used to perform data
ow analysis (the same analysis as safetyanalysis was based on). He went on to prove a number of equivalences:1. Subtyping and recursive types � Sestoft's analysis.2. Subtyping � Sestoft's analysis where cycles in the
ow graph are for-bidden.3. Recursive types � an equality based analysis (with cycles).4. Simple types � an equality based analysis without cycles as describedby Bondorf and J�rgensen [BJ93].Independently of the present work, Banerjee recently studied rank 2 in-tersection based
ow analysis of ML-polymorphic programs [Ban97]. Baner-jee does not attach
ow information to the standard types of the programin the way that we do, but exploits that every ML-typable program canbe given a rank 2 intersection type. Thus, a complete type inference isperformed with annotated types. This prevents an assessment of the com-plexity of the analysis in terms of the typed program, and it is not clearwhether the practical tractability of ML typing carries over to his analy-sis. Modular analysis is obtained by constructively proving the existence ofprincipal typings; it is noted that the inferred constraints can be reducedto \some normal form", but no construction is given for �nding minimal,principal typings (note, that in contrast to full intersection typing, rank 2intersection has a fairly straightforward notion of instance and hence of prin-cipality). As noted in section 8.5 we believe that rank 2 intersection is aninteresting compromise between practicality and precision, and we believethat combining the ideas of Banerjee with the framework of this thesis couldlead to a better understanding of problems involved.11.5 Safety, Type Recovery and Soft TypingThe development of
ow analyses has often gone hand in hand with at-tempts to solve typing problems for untyped programs, either by providingtype safety or by eliminating unnecessary run-time type checks. One of themain motivations and applications of Shivers' analyses was type recovery inScheme [Shi90, Shi91c, Shi91a].Palsberg and Schwartzbach [PS92a, PS92b] describes an analysis calledsafety analysis. The purpose of this analysis is very similar to the typerecovery analysis of Shivers and is based on data
ow analysis (in this case

11.5. SAFETY, TYPE RECOVERY AND SOFT TYPING 227on an analysis equivalent to Sestoft's [Ses88, Ses91]). Safety analysis checksthat if
ow analysis predicts that a set of values can end up in functionposition of an application, then all values are indeed functions.Later, Palsberg and O'Keefe [PO95] showed an exact correspondence be-tween safety analysis and Amadio and Cardelli's type system with subtypingand recursive types [AC91].As mentioned above, Jaganathan and Wright used their polymorphicsplitting
ow analysis to avoid run-time checks [JW95b] and Flanagan andFelleisen uses their set-based analysis for soft typing [FF95].Aiken, Wimmers and Lakshman de�ned soft typing directly [AW93,AWL94]. They de�ne a very precise type system (including intersectionand union) and only insert dynamic type checks when the analysis is un-able to guarantee type correctness. Though their analysis does not infer
ow information in the style of this thesis, the type system is su�ciently�ne-grained to infer the
ow of constructors. This allows conditional types� if � 0 and seems very similar to the reachability optimisation described forour analyses in section 8.1. It would be interesting to use their type systemas a basis for a
ow analysis in the style presented here.

228 CHAPTER 11. RELATED WORK

Chapter 12ConclusionThis chapter summarises, concludes and discusses future work.12.1 SummaryWe have presented a number of program analyses for approximating thevalue
ow during execution of a program. The key features of the analyseswere:� Separate Compilation: The type based analyses of chapters 2, 3and 5 all possessed the principal typing property allowing modules tobe analysed separately without loss of precision. Minimal principaltypings completely resolve all
ow results that are not dependent onthe context.Typed
ow graphs (chapter 4) could be constructed in a modularmanner and by adding special values to input edges reachability resultscould be combined to yield modular analysis.� Precision: Except for the simple
ow analysis of chapter 2, all anal-yses are at least as precise as closure analysis and polymorphism givesadded precision that we expect to be useful in practice.� Practicality: If we assume that all types have bounded size, the ana-lysis based on typed graphs (chapter 4) results in better complexity(quadratic) than was previously known (cubic). The extension withpolymorphism can still be handled in polynomial time.� Evaluation-Order Independence: All analyses were proven to besound under any order of evaluation.Furthermore, we presented an analysis based on intersection types,which, while not being practical, gives exact results.229

230 CHAPTER 12. CONCLUSION12.2 Future WorkWe have already discussed some directions for future work in chapters 8and 9. We will summarise the most important issues raised in these chaptersand suggest other interesting topics.12.2.1 RobustnessWe have shown our analyses to be sound under any order of standard re-duction and thus for a large number of compiler optimisations. It wouldbe interesting to investigate soundness under other transformations such asCPS-translation, eta-conversion etc.12.2.2 Making the Analyses more Generally ApplicableChapter 9 discussed various extensions of the standard type system: weshowed how the analyses could be extended to accommodate languages withpolymorphism, sum types, recursive types and dynamic types. We did not,however, provide any proofs of correctness of these extensions. A morecareful study of these extensions would also lead to a better understandingof the relationship between type based analysis with a dynamic standardtype system and analyses for untyped languages.We have not studied how the analyses could embrace imperative features,eg. assignments, references and call-cc. While we do not expect any problemswith extending the analyses, a closer study is required to make the analysesapplicable to impure functional languages such as Scheme or ML.12.2.3 Improvements of the AnalysesWe suggested a number of improvements of our analyses in chapter 8. We�nd the idea of labelling graphs to be particularly promising: such an exten-sion would bridge the gap between
ow analysis of imperative programs andfunctional programs. We hope that practical analyses could be developedthat are exact (under the same assumptions as intersection based analysis)for �rst-order programs. Furthermore, such an analysis would expose aninteresting link to the theory of optimal reduction.While we �nd that the theory of polymorphic
ow analysis is developedin depth, we still �nd that the given algorithm has room for improvement:the given complexity results seem overly conservative, and we believe thatbetter algorithms can be found.We have discussed the pros and cons of evaluation-order dependency in
ow analysis, but mainly focused on evaluation-order independent analysis.A better understanding of integrating evaluation-order dependency in ouranalyses would expand the �eld of application of the analyses.

Dansk sammenfatningVed overs�ttelse af programmer er det ofte nyttigt at have information omhvorledes v�rdier vil blive skabt og brugt under afvikling af programmet.Form�alet med
ow analyse er at forudse og beskrive den mulige str�m afv�rdier gennem et givet program uden kendskab til dets inddata v�rdier.Denne afhandling pr�senterer en r�kke
ow analyser for typede, h�jere-ordens funktionsprogrammeringssprog. F�lles for analyserne er� Modularitet: Enkelte moduler i et program kan analyseres separat.Dette tillader separat overs�ttelse af programmet.� Praktisk anvendelighed: Med undtagelse af intersection baseretanalyse (se nedenfor) har alle analyser polynomisk kompleksitet.Specielt pr�senteres en ny metode til beregning af closure analyse,der er kvadratisk (under antagelse at alle typer har begr�nset st�r-relse) imods�tning til tidligere kendte metoder, der alle var kubiske.� Pr�cision: Ved at udvide
ow analyse med polymor� og intersectionopn�as analyser, der er strengt mere pr�cise end closure analyse (inter-section baseret analyser er strengt mere pr�cis end og polymorf
owanalyse er usammenlignelig med nCFA). Pr�cisionen af polymorf ana-lyse karakteriseres ved invarians under let- og �x-expansion, og pr�-cisionen af intersection baseret analyse karakteriseres ved invariansunder generel expansion (under et ikke-standard reduktions-system,der aldrig smider beregninger v�k og evaluerer begge grene i 'if').� Uafh�ngighed af evalueringsr�kkef�lge: De pr�senterede ana-lyser bevises korrekte under vilk�arlig evalueringsr�kkef�lge.
231

232 DANSK SAMMENFATNING

Bibliography[AC91] R. Amadio and L. Cardelli. Subtyping recursive types. In Proc.18th Annual ACM Symposium on Principles of ProgrammingLanguages (POPL), Orlando, Florida, pages 104{118. ACMPress, Jan. 1991.[ADLR94] Andrea Asperti, Vincent Danos, Cosimo Laneve, and LaurentRegnier. Paths in the lambda-calculus: Three years of commu-nication without understanding. In Proceedings, Ninth AnnualIEEE Symposium on Logic in Computer Science, pages 426{436,Paris, France, 1994. IEEE Computer Society Press.[AG96] Andrea Asperti and Stafano Guerrini. The Optimal Implemen-tation of Functional Programming Languages. Cambridge Tractsin Theoretical Computer Science. Cambridge University Press,1996. To appear.[AL93] Andrea Asperti and Cosimo Laneve. Paths, computations andlabels in the �-calculus. In RTA'93, volume 690 of LNCS, pages152{167. Springer-Verlag, 1993.[AW93] Alexander Aiken and Edward L. Wimmers. Type inclusion con-straints and type inference. In David Schmidt, editor, 1993 ACMSymposium on Partial Evaluation and Semantics-Based ProgramManipulation, pages 31{41. ACM, June 1993.[AWL94] Alexander Aiken, Edward L. Wimmers, and T.K. Lakshman.Soft typing with conditional types. In Proc. 21st Annual ACMSIGPLAN{SIGACT Symposium on Principles of ProgrammingLanguages (POPL), Portland, Oregon. ACM, ACM Press, Jan.1994.[Aye92] Andrew Ayers. E�cient closure analysis with reachability. InProc. Workshop on Static Analysis (WSA), Bordeaux, France,pages 126{134, Sept. 1992.233

234 BIBLIOGRAPHY[Ban97] Anindya Banerjee. A modular, polyvariant, and type-based clo-sure analysis. In International Conference on Functional Pro-gramming. ACM Press, 1997.[BCDC83] Henk Barendregt, Mario Coppo, and Mariangiola Dezani-Ciancaglini. A �lter lambda model and the completeness of typeassignment. Journal of Symbolic Logic, 1983.[BDCd95] Franco Barbenera, Mariangiola Dezani-Ciancaglini, and Ugode'Ligouro. Intersection and union types: Syntax and seman-tics. Information and Computation, 119:202{230, 1995.[BHA86] Geo�rey Burn, Chris Hankin, and Samson Abramsky. Strict-ness analysis of higher-order functions. Science of ComputerProgramming, 7:249{278, Nov. 1986.[BJ93] Anders Bondorf and Jesper J�rgensen. E�cient analysis for real-istic o�-line partial evaluation. Journal of Functional Program-ming, 3(3):315{346, July 1993.[Bon91] Anders Bondorf. Automatic autoprojection of higher order re-cursive equations. Science of Computer Programming, 17(1-3):3{34, December 1991. Selected papers of ESOP '90, the 3rd Euro-pean Symposium on Programming.[CC77] P. Cousot and R. Cousot. Abstract interpretation: A uni�edlattice model for static analsis of programs by construction orapproximation of �xpoints. In Proc. ACM POPL '77, pages238{252, 1977.[CDCV81] M. Coppo, M. Dezani-Ciancaglini, and B. Venneri. Functionalcharacters of solvable terms. Zeitschrift f�ur Mathematische Logikund Grundlagen der Mathematik, 27:45{58, 1981.[Dam84] L. Damas. Type Assignment in Programming Languages. PhDthesis, University of Edinburgh, 1984. Technical Report CST-33-85 (1985).[DHM95a] Dirk Dussart, Fritz Henglein, and Christian Mossin. Polymor-phic recursion and subtype quali�cations: Polymorphic binding-time analysis in polynomial time. In Alan Mycroft, editor, Proc.2nd Int'l Static Analysis Symposium (SAS), Glasgow, Scotland,volume 983 of Lecture Notes in Computer Science, pages 118{135. Springer-Verlag, September 1995.[DHM95b] Dirk Dussart, Fritz Henglein, and Christian Mossin. Polymor-phic recursion and subtype quali�cations: Polymorphic binding-

BIBLIOGRAPHY 235time analysis in polynomial time. Working version of [DHM95a],1995.[DM82] L. Damas and R. Milner. Principal type-schemes for functionalprograms. In Ninth ACM Symposium on Principles of Program-ming Languages, pages 207{212. ACM Press, 1982.[FF95] Cormac Flanagan and Matthias Felleisen. Set based analysis forfull scheme and its use in soft-typing. Technical Report TR95-253, Rice University, 1995.[FF96] Cormac Flanagan and Matthias Felleisen. Modular and poly-morphic set-based analysis: Theory and practice. Technical Re-port TR96-266, Rice University, November 1996.[Gir72] J.-Y. Girard. Interpr�etation fonctionelle et �elimination descoupures de l'arithm�etique d'ordre sup�rieur. Doctoral thesis,1972. University of Paris VII.[Gir89] J.-Y. Girard. Geometry of interaction 1: Interpretation of sys-tem F. In R. Ferro, C. Bonotto, S. Valentini, and A. Zanardo,editors, Logic Colloquium '88, pages 221{260. North-Holland,1989.[GJS93] Carsten K. Gomard, Neil D. Jones, and Peter Sestoft. PartialEvaluation and Automatic Program Generation. Prentice-Hall,1993.[GRDR88] P. Giannini and S. Ronchi Della Rocca. Characterization oftypings in polymorphic type discipline. In Proc. Symp. on Logicin Computer Science, pages 61{70. IEEE, Computer Society,Computer Society Press, June 1988.[Gun92] Carl A. Gunter. Semantics of Programming Langauges: Struc-tures and Techniques. Foundations of Computer Science. MITPress, 1992.[Hei90] Nevin Heintze. Set-based analysis of ML programs. In Lisp andFunctional Programming, pages 306{317, 1990.[Hei93] Nevin Heintze. Set constraints in program analysis (survey). InProceedings of the 2nd International Workshop on Principles andPractice of Constraints Programming, 1993. invited paper.[Hei95] Nevin Heintze. Control-
ow analysis and type systems. In AlanMycroft, editor, Symposium on Static Analysis (SAS'95), vol-ume 983 of LNCS, pages 189{206, Glasgow, 1995.

236 BIBLIOGRAPHY[Hen88] F. Henglein. Type inference and semi-uni�cation. In Proc. ACMConf. on LISP and Functional Programming (LFP), Snowbird,Utah, pages 184{197. ACM Press, July 1988.[Hen91] Fritz Henglein. E�cient type inference for higher-order binding-time analysis. In J. Hughes, editor, FPCA, volume 523 of LectureNotes in Computer Science, pages 448{472. 5th ACM Confer-ence, Cambridge, MA, USA, Springer-Verlag, August 1991.[Hen92] Fritz Henglein. Dynamic typing. In B. Krieg-Br�uckner, edi-tor, Proc. European Symp. on Programming (ESOP), Rennes,France, volume 582 of Lecture Notes in Computer Science, pages233{253. Springer-Verlag, February 1992.[Hen94] Fritz Henglein. Dynamic typing: Syntax and proof theory. Sci-ence of Computer Programming (SCP), 22(3):197{230, 1994.[Hen96] Fritz Henglein. Syntactic properties of polymorphic subtyping.Unpublished Manuscript, 1996.[HM94] Fritz Henglein and Christian Mossin. Polymorphic binding-timeanalysis. In Donald Sannella, editor, Proceedings of EuropeanSymposium on Programming, volume 788 of Lecture Notes inComputer Science, pages 287{301. Springer-Verlag, April 1994.[HM97] Nevin Heintze and David McAllester. Linear time subtransitivecontrol
ow analysis. In Conference on Programming LanguageDesign and Implementation (PLDI'97), pages 261{272. ACMSIGPLAN, 1997.[Hol88] Carsten Kehler Holst. Poor man's generalization. Working note,August 1988.[HR95] Kristo�er H. Rose.XY-pic User's Guide, September 1995. Version3.2.[HS95] Fritz Henglein and David Sands. A semantic model of bind-ing times for safe partial evaluation. In S.D. Swierstra andM. Hermenegildo, editors, Programming Languages: Implemen-tations, Logics and Programs (PLILP'95), volume 982 of Lec-ture Notes in Computer Science, pages 299{320. Springer-Verlag,1995.[Jen92] T. Jensen. Abstract Interpretation in Logical Form. PhD thesis,Imperial College, Univ. of London, November 1992. Availableas DIKU Report 93/11.

BIBLIOGRAPHY 237[Jon81a] N. Jones. Flow analysis of lambda expressions. Technical ReportDAIMI PB-128, Aarhus University, Jan. 1981.[Jon81b] Neil Jones. Flow analysis of lambda expressions. In S. Evenand Kariv O, editors, Proceedings of the 8th Colloquium onAutomata, Languages and Programming, volume 115 of LNCS,pages 114{128, Acre, Israel, 1981. Springer-Verlag.[Jon87] Neil D. Jones. Flow analysis of lazy higher-order functional pro-grams. In Samson Abramsky and Chris Hankin, editors, Ab-stract Interpretation of Declarative Languages, chapter 5, pages103{122. Ellis Horwood, Chichester, England, 1987.[JW95a] Suresh Jaganathan and Stephen Weeks. A uni�ed treatmentof
ow analysis in higher-order languages. In POPL'95, pages393{407. ACM Press, 1995.[JW95b] Suresh Jaganathan and Andrew Wright. E�ective
ow analysisfor avoiding run-time checks. In Alan Mycroft, editor, SAS'95,volume 983 of LNCS, pages 207{224. Springer-Verlag, 1995.[JW96a] Suresh Jaganathan and Andrew Wright. Flow directed inlining.In Symposium on Programming Language Design and Implemen-tation. ACM, 1996.[JW96b] Suresh Jaganathan and Andrew Wright. Polymorphic splitting:An e�ective polyvariant
ow analysis. Submitted to ACM Trans-actions on Programming Languages and Systems (TOPLAS),1996.[Lam90] J. Lamping. An algorithm for optimal lambda calculus reduc-tion. In Proc. 17-th Annual ACM Symposium on Principlesof Programming Languages, San Francisco, pages 16{30. ACMPress, New York, NY, January 1990.[L�ev78] M. L�evy. R�eductions correctes et optimales dans le lambda calcul.PhD thesis, Universit�e Paris VII, 1978.[L�ev80] M. L�evy. Optimal reductions in the lambda-calculus. In J. Seldinand J. Hindley, editors, To H. B. Curry: Essays on Combi-natory Logic, Lambda Calculus and Formalism, pages 159{191.Academic Press, 1980.[Mai92] Harry G. Mairson. A simple proof of a theorem of Statman.Theoretical Computer Science, 2(103):387{394, September 1992.[Mil78] R. Milner. A theory of type polymorphism in programming. J.Computer and System Sciences, 17:348{375, 1978.

238 BIBLIOGRAPHY[Mos97a] Christian Mossin. Exact
ow analysis. In Fourth InternationalStatic Analysis Symposium (SAS'97), 1997.[Mos97b] Christian Mossin. Higher-order value
ow graphs. In 9th Inter-national Symposium on Programming Languages, Implementa-tions, Logics, and Programs (PLILP'97), 1997.[Myc84] A. Mycroft. Polymorphic type schemes and recursive de�nitions.In Proc. 6th Int. Conf. on Programming, LNCS 167, 1984.[Pal94] Jens Palsberg. Global program analysis in constraint form. InSophie Tison, editor, 19th International Colloquium on Treesin Algebra and Programming (CAAP'94), volume 787 of LNCS,pages 276{290. Spinger-Verlag, 1994.[Pie91] B. Pierce. Programming with Intersection Types and BoundedPolymorphism. PhD thesis, School of Computer Science,Carnegie Mellon University, Dec. 1991. Technical Report CMU-CS-91-205.[PJ87] Simon L. Peyton Jones. The Implementation of Functional Pro-gramming Languages. Prentice-Hall, 1987.[PO95] Jens Palsberg and Patrick O'Keefe. A type system equivalent to
ow analysis. In Principles of Programming Languages, 1995.[PS92a] J. Palsberg and M. Schwartzbach. Safety analysis versus typeinference. Technical Report PB-389, DAIMI, Aarhus University,March 1992.[PS92b] Jens Palsberg and Michael I. Schwartzbach. Safety analysis ver-sus type inference for partial types. Information Processing Let-ters, 43:175{180, 1992. Also available as Tech. Rep. DAIMIPB-404, Computer Science Department, Aarhus University.[Reh95] Jakob Rehof. Polymorphic dynamic typing, aspects of prooftheory and inference. Master's thesis, DIKU, Department ofComputer Science, University of Copenhagen, 1995.[Rey74] J. Reynolds. Towards a theory of type structure. In Proc.Programming Symposium, pages 408{425. Springer-Verlag, 1974.Lecture Notes in Computer Science, vol. 19.[RHS95] T. Reps, S. Horwitz, and M. Sagiv. Precise interproceduraldata
ow analysis via graph reachability. In Conference Record ofthe Twenty-Second ACM Symposium on Principles of Program-ming Languages, pages 49{61, San Francisco, CA, Jan. 1995.

BIBLIOGRAPHY 239[Rit95] M. Rittri. Deriving dimensions under polymorphic recursion. InFunctional Programming Languages and Computer Architecture(FPCA), pages 147{159. ACM Press, June 1995.[RP86] Barbara G. Ryder and Marvin C. Paull. Elimination algorithmsfor data
ow analysis. ACM Computing Surveys, 18(3), Septem-ber 1986.[RSH94] T. Reps, M. Sagiv, and S. Horwitz. Interprocedural data
owanalysis via graph reachability. Technical Report 94/14, DIKU,University of Copenhagen, Denmark, 1994.[Ses88] Peter Sestoft. Replacing function parameters by global variables.Master's thesis, DIKU, University of Copenhagen, Denmark, Oc-tober 1988.[Ses89] Peter Sestoft. Replacing function parameters by global variables.In Fourth International Conference on Functional ProgrammingLanguages and Computer Architecture, Imperial College, Lon-don, pages 39{53. IFIP and ACM, ACM Press and Addison-Wesley, September 1989.[Ses91] P. Sestoft. Analysis and E�cient Implementation of FunctionalLanguages. PhD thesis, DIKU, University of Copenhagen, Oct.1991.[Shi88] Olin Shivers. Control
ow analysis in Scheme. Sigplan Notices,23(7):164{174, July 1988. Sigplan Conf. Programming LanguageDesign and Implementation, Atlanta, Georgia, June 1988.[Shi90] Olin Shivers. Data-
ow analysis and type recovery in Scheme.Technical Report CMU-CS-90-115, School of Computer Science,Carnegie Mellon University, March 1990. 38 pages.[Shi91a] O. Shivers. Data-
ow analysis and type recovery in Scheme. InP. Lee, editor, Topics in Advanced Language Implementation,chapter 3, pages 47{88. MIT Press, 1991.[Shi91b] Olin Shivers. Control-Flow Analysis of Higher-Order Languages.PhD thesis, Carnegie Mellon University, May 1991. CMU-CS-91-145.[Shi91c] Olin Shivers. The semantics of Scheme control-
ow analysis.In Partial Evaluation and Semantics-Based Program Manipula-tion, New Haven, Connecticut. (Sigplan Notices, vol. 26, no. 9,September 1991). ACM, 1991.

240 BIBLIOGRAPHY[SRH95] M. Sagiv, T. Reps, and S. Horwitz. Precise interproceduraldata
ow analysis with applications to constant propagation. InP.D. Mosses, M. Nielsen, and M.I. Schwartzbach, editors, Pro-ceedings of FASE '95: Colloquium on Formal Approaches inSoftware Engineering, volume 915 of Lecture Notes in ComputerScience, pages 651{665, Aarhus, Denmark, May 1995. Springer-Verlag.[Sta79] Richard Statman. The typed �-calculus is not elementary recur-sive. Theoretical Computer Science, 9(1):73{81, Juli 1979.[TJ92] Yan-Mei Tang and Pierre Jouvelot. Control-
ow e�ects for es-cape analysis. In Proc. Workshop on Static Analysis (WSA),Bordeaux, France, pages 313{321, Sept. 1992.[TJ94] Yan Mei Tang and Pierre Jouvelot. Seperate abstract interpreta-tion for control-
ow analysis. In TACS'94, volume 789 of LNCS.Springer-Verlag, April 1994.[TT94] Mads Tofte and Jean-Pierre Talpin. Implementation of the typedcall-by-value �-calculus using a stack of regions. In Proc. 21stAnnual ACM SIGPLAN{SIGACT Symposium on Principles ofProgramming Languages (POPL), Portland, Oregon (this pro-ceedings). ACM, ACM Press, Jan. 1994.[TWM95] David N. Turner, Philip Wadler, and Christian Mossin. Onceupon a type. In 7'th International Conference on FunctionalProgramming and Computer Architecture, pages 1{11, La Jolla,California, June 1995. ACM Press.[vB95] Ste�en van Bakel. Intersection type assignment systems. Theo-retical Computer Science, 151(2):385{435, 1995.[Wad89] P. Wadler. Theorems for free! In Proc. Functional Program-ming Languages and Computer Architecture (FPCA), London,England, pages 347{359. ACM Press, Sept. 1989.[Yan90] Mihalis Yannakakis. Graph-theoretic methods in database the-ory. In Proceeding of the Symposium on Principles of DatabaseSystems, pages 230{247, New York, 1990. ACM Press.

Index�=, 93v, 93`�, 38, 40`�n , 41`^, 135{137`s, 14, 20`ML, 88`MLn , 89`�x, 111`�xn , 111annotation, 13argument-empty, 162BV , 11cable, 69argument, 72binding, 72body, 72function, 72result, 72cable-path, 69carrier, 69close, 97closing rules, 66closure analysis, 52compact, 113constraint, 13conditional, 33constraints, 42constructor, see Constructorsconstructor node, 62Constructors, 14consume, 15context, 11non-standard, 149

cycleelementary, 187destructor, see Destructorsdestructor node, 62Destructors, 14discard, 148discriminants, 189dynamic types, see type systems,dynamicedgebackward, 69forward, 69either, 147environment, 20erasure, 19expression, 11pseudo, 10well-named, 11F , 14, 21, 39, 91, 112, 135�rsti�cation, 209, 212
ow function, 14intersection, 135ML-polymorphic, 91polymorphic recursion, 112simple, 21sound, 15subtyping, 39
ow graphtyped, 68untyped, 62
ow property, 13
ow schemes, see formulae, pred-icative second orderformulae241

242 INDEX�rst-order, 85predicative second order, 85simple, 19FV , 11instancegeneric, 93halbstark, 93lazy, 43simple
ow analysis, 24subtype
ow analysis, 43interface, 212judgementsubtype, 37K8(t), 86K�, 38Ks, 19K^, 134Kleene-Mycroft sequence, 122labelneutral, 50, 102on expressions, 12labelling, 12ML polymorphism
ow analysis, 87standard types, see type sys-tems, ML polymorphismn-level, 74nestingdepth, 74n-level, 74n-nested, 74occurrencenegative, 10of label, 50, 102positive, 10path, 62?+-?�, 72call, 189

legal, 78, 189return, 189well-balanced, 79pre-
ow-graph, 63proper, 24, 43quali�er, 85quanti�er, 87recursive types, see type systems,recursive typesreduction systemnon-standard, 149standard, 12result-empty, 162S8(t), 86semanticsnon-standard, 149standard, 12solve, 14subject expansion, 156strong, 154subject reduction, 31, 60, 107,128, 154substitutionlabel, 13term, 12subtype, 39sum types, see type systems, sumtypesterm, see expressiontype
ow, see formulaerecursive, 200standard, 10type systemdynamic, 202ML polymorphism, 193recursive types, 200sum types, 197typingdynamic, 202principal, 15, 28, 50, 101

INDEX 243unify, 22value, 151variablebound, 11free, 11wbp, see path, well-balancedwell-named, see expression, well-named

