
Local Analysis of Scale SpacePeter JohansenDepartment of Computer Science,University of Copenhagen,Universitetsparken 1,DK{2100 Copenhagen,DenmarkNovember 28, 1996AbstractScale space theory is a framework which permits one to analyze animage at di�erent resolutions. The crucial feature is to let the resolutionof an image vary continuously rather than discrete. This opens up thetoolbox of mathematical analysis for image analysis. When extrema andsaddle points of an image are tracked with increasing scale we know thatthey will have disappeared at su�ciently large scale. In this report we in-vestigate what happens when extrema and saddles disappear. It turns outthat extrema and saddles also appear for two dimensional images whenscale is increased. Two dimensional images are more complicated thanone dimensional signals, and some results generalize from two to higher di-mensions. We consider two dimensional images as a compromise betweengenerality and simplicity. One generic event is a saddle and an extremummerging and annihilating. Prior to annihilation they approach each otherfrom opposite directions. The other generic event is the creation of asaddle-extremum pair. It will be shown that these are the only genericevents. Studying scale space events for images in an image sequence orfor a symmetric image, one discovers that more complicated interactionsbetween extrema and saddles take place when scale is increased. The sit-uations which arise when extrema and saddles disappear and appear canbe classi�ed by their codimension. The codimension is a measure of com-plexity. Generic events are the least complex and have codimension one.We also analyse events of codimension two. The mathematical tool whichwill be used for computing the local structure of toppoints is di�erentialgeometry of curves. A short version of this report was published in [8].
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IntroductionA digital image is routinely represented as a rectangular lattice of integer num-bers. This representation is inadequate for pattern recognition. A slight mod-i�cation of the imaged object in one of two identical images (for instance bytranslation, rotation or scaling of the imaged object) changes the representationdrastically. Scale space is intended to provide a better representation [6] [7] [10].This alternative representation should be uncommitted in the sense that it mustbe possible in principle to reconstruct the lattice representation.The idea is to select the generic events in scale space as the atoms of arepresentation. They can be described as follows. A critical point is a point inwhich the gradient is zero. The critical points are the extrema (maxima andminima) and the saddles of the image's grey level function, which is denotedL. A critical curve is a curve in scale space consisting of critical points. TheHessian H is the matrix whose elements are the partial derivatives of secondorder H(x; y) = � Lxx(x; y) Lxy(x; y)Lyx(x; y) Lyy(x; y) �Partial derivatives are denoted by lower indices, for example Lxx denotes @2L@x2 .The directions of maximum and minimum curvature are the eigenvectors of theHessian. A critical point is a toppoint if at least one eigenvalue is zero, i.e. ifthe Hessian does not have full rank. It will be shown that the toppoints areprecisely the points at which the generic events take place. The critical curvesare solutions to the equations which expresses that the gradient is zero:Lx(x; y; t) = 0 (1)Ly(x; y; t) = 0;where x and y denote the spatial coordinates, � is scale and t = 2�2. In order tostudy this system of curves, it is useful to �nd an expression for the tangent ata given point. As is usual in di�erential geometry, we let s be a monotonicallyvarying parameter along the curve. Thus x and y are functions of s and in thisway L and its partial derivates with respect to x, y and t are implicit functionsof s. It follows from equation (1), that for all integer ndndsnLx(x(s); y(s); t(s)) = 0 (2)dndsnLy(x(s); y(s); t(s)) = 0:In what follows we shall use dots to denote di�erentiation with respect to s,such that for instance �x denotes d2xds2 . For n = 1 we get two equations using thechain rule. 2
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Figure 1: L = 2x2 + y3 + 4t + 6yt. The convex generic event. An extremumand a saddle merge when scale is increased. (left) t = �5=10. (center) t = 0.(right) t = 5=10.Lxx(x; y; t) _x+ Lxy(x; y; t) _y + Lxt(x; y; t) _t = 0Lxy(x; y; t) _x + Lyy(x; y; t) _y + Lyt(x; y; t) _t = 0;from which the directions of the tangent ( _x; _y; _t) can be found at any point onthe curve.We shall analyse the curve at a particular point (x0; y0; t0) by computing thetangent and its derivatives. In the following we will omit reference to (x0; y0; t0)and by for instance Lxx understand Lxx(x0; y0; t0). We observe that if the Hes-sian has full rank, _t can be used as a parameter along the tangent, meaning thatthe tangent is not horizontal, which in turn has the geometrical interpretation,that the critical point in the image does not disappear when the scale is in�nites-imally increased. On the other hand, if the Hessian has rank 1 (still assumingthe equations to be independent), the tangent is horizontal. The geometricalinterpretation is that two critical points merge and disappear when the scale isin�nitesimally increased.The event just described is unavoidable for gaussian smoothing. Criticalpoints must disappear with increasing scale and this event is the generic way inwhich it happens. Figure 1 shows an example. It is visualized by the contourcurves of the image at scales below, at, and above the scale of the toppoint.The term generic means that if the image is changed slightly, the event maychange position in scale space, but it will still be present. Perhaps surprisingly,also another event is generic: the appearing of two critical points. Below weshall derive the conditions for this to happen. These two events are the onlygeneric ones, and are among the primitives proposed for image representation.The next three sections analyze in detail what happens at codimension oneand two. Then follows description of a setup, which allows one to compute thelocal scale space behaviour at any point of an image. Suggestions for furtherresearch terminate the paper. 3



CodimensionEven if the two above events are su�cient to describe a typical image, in threesituations it is required to study degenerate cases in which the image can not besaid to be typical. These include local symmetry, quantization of scalar and spa-tial resolution, and temporal image sequences. In all three cases the additionalimage constraints have the e�ect that more than two points may be involvedin a generic scale space event. Thus, it will be necessary to include degenerateevents as description primitives. Below tools for describing degenerate eventsare put forward. In order to understand the algebra involved, let us rewrite theequations (2) in which the partial derivatives have been evaluated at (x0; y0; t0)for n = 1 and n = 2. Lxx _x+ Lxy _y + Lxt _t = 0 (3)Lxy _x+ Lyy _y + Lyt _t = 0Lxxx _x2 + Lxyy _y2 + Lxtt _t2 + 2Lxxy _x _y + 2Lxxt _x _t+ 2Lxyt _y _t+ Lxx�x+ Lxy�y + Lxt�t = 0Lyxx _x2 + Lyyy _y2 + Lytt _t2 + 2Lxyy _x _y + 2Lxyt _x _t+ 2Lyyt _y _t+ Lxy�x+ Lyy�y + Lyt�t = 0:(4)If we impose one algebraic constraint, then we say that the event describedhas codimension one. We choose the constraint that the rank of H is one. Animmediate consequence is that the tangent is horizontal (use equations (3)).From the same equations the tangent direction can be found.If we impose an additional constraint the codimension becomes two. Codi-mension two events are determined by the additional constraint that the Hessianhas rank zero. In this case equations (3) still imply that a tangent must behorizontal but they are no longer su�cient to determine the tangent direction.We must invoke equations (4). Since the Hessian has rank zero, �t can be elimi-nated to get a quadratic equation in the unknowns _x and _y. It turns out thatfor Gaussian scale space there are two horizontal perpendicular tangents in acodimension two event. The geometric interpretation is that two critical curvesintersect, and the solutions provide the direction of the tangents at the pointof intersection. Figure 2 shows two extrema and two saddles which disappearsimultaneously.Please note that the computations are undertaken projectively. Apparentlywe have one equation too few for the tangent and for its higher derivatives. Ifwe insist on computing the exact size of the tangent and its derivatives, we canuse a set of equations which expresses that the hypothetical point traversingthe curve has constant velocity. This means that the parameter s measures4
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Figure 2: L = x3 + y3 + 6(x + y)t. Two extrema and two saddles disappearsimultaneously when scale is increased. The two saddles merge from oppo-site directions simultaneously with two extrema (a maximum and a minimum)merging from the perpendicular direction. Extrema enter from north-east andsouth-west and saddles from north-west and south-east. (left) t = �4=1000.(center) t = 0. (right) t = 4=1000.arclength. The �rst few equations are_x2 + _y2 + _t2 = 12 _x�x+ 2 _y�y + 2_t�t = 02 �x2 + 2 �y2 + 2 �t 2 + 2 _x �x+ 2 _y �y + 2 _t �t = 0:Analysis of codimension oneLet the rank of H be one. (Lxx; Lxy) and (Lxy; Lyy) cannot vanish simultane-ously. Let (Lxx; Lxy) 6= (0; 0). _x and _y can be eliminated from equation (3) toget ���� Lxx LxtLxy Lyt ���� _t = 0;and we may infer that _t = 0, which implies horizontal tangent. The tangentdirection can then be computed from equation (3).In order to know if the curve is convex (two points disappear with increasingscale) or concave (two points appear with increasing scale) we must compute �t.In the convex case it is negative and it is positive in the concave case. We wishfurther to know which types (saddle or extrema) are involved. To this end weneed to know the sign of the Hessian determinant on the curve. To �nd �t wecan eliminate �x and �y from equation (4) to get���� Lxxx LxxLxxy Lxy ���� _x2 + 2 ���� Lxxy LxxLxyy Lxy ���� _x _y + ���� Lxyy LxxLyyy Lxy ���� _y2 + ���� Lxt LxxLyt Lxy ���� �t = 0:5
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Figure 3: L = 2x2 � 12x2y + 2y3 � 12yt+ 4t. The concave generic event. Anextremum and a saddle split. (left) t = �4=1000. (center) t = 2=1000. (right)t = 8=1000.Depending on the values of the partial di�erential quotients at the toppoint,�t can be positive or negative. This means that the curve may be convex orconcave. An example of a generic convex event is shown in �gure 1, and �gure3 shows an example of a concave generic event.Next we want to know the type of points involved. An approximation to�rst order in s of the Hessian is computed on each of the two tangents. This isdone by approximating the partial derivatives on the curve to �rst order in s.���� Lxx(x; y; t) Lxy(x; y; t)Lyx(x; y; t) Lyy(x; y; t) ���� = ���� Lxx + s(Lxxx _x+ Lxxy _y) Lxy + s(Lxxy _x+ Lxyy _y)Lyx + s(Lxxy _x+ Lxyy _y) Lyy + s(Lxyy _x+ Lyyy _y) ���� = O(s):This means that the sign changes as s passes through the toppoint. The geo-metric interpretation is that a saddle and an extremum are involved. This istrue for both a convex and a concave curve.Analysis of codimension twoLet us next assume that the rank of the Hessian is 0, which means that Lxx =Lxy = Lyy = 0. It follows from equation (3) that _t = 0, which implies thatthe tangents are horizontal. I use the plural here since there are actually twotangents. This can be seen from equations (4) from which �t has been be elimi-nated.���� Lxxx LxtLxxy Lyt ���� _x2 + 2 ���� Lxxy LxtLxyy Lyt ���� _x _y + ���� Lxyy LxtLyyy Lyt ���� _y2 = 0: (5)We notice that in the case of gaussian smoothing (use the relations Lxt =6



Lxxx + Lxyy and Lyt = Lxxy + Lyyy which are induced by the heat equation)���� Lxxx LxtLxxy Lyt ����+ ���� Lxyy LxtLyyy Lyt ���� = 0:Since the coe�cients of _x2 and _y2 have the same magnitude but di�erent sign,the discriminant of the quadratic equation is positive and two real solutions existfor the tangent directions. A further consequence is that the two directions areperpendicular to each other. This follows by observing that the product of theroots is �1.�t can be found from equation (4). It is further seen that jH j = O(s2) andwe infer that along each of the two intersecting curves two critical points of thesame type approach each other. In order to gain more insight in the structurewe now orient the coordinate system such that the tangents point along the x-axis and the y-axis. This has an equivalent formulation in terms of a constraintbetween the partial derivatives. It can be found from equation (5) which wassolved for the two tangent directions. The coe�cient of the quadratic term mustbe zero. This means that LxxxLyyy �LxxyLxyy = 0. The Hessian computed onthe tangent which points along the y-axis becomesH1 = H(0; s) = (LxxyLyyy � L2xyy)s2:H on the tangent directed along the x-axis isH2 = H(s; 0) = (LxxxLxyy � L2xxy)s2:Notice that LxxyH1 + LyyyH2 = 0:We shall also need �t on the two tangents. Let �t1 = �t(0; s) be �t on the tangentdirected along the y-axis, and let �t2 = �t(s; 0) be �t on the tangent directed alongthe x-axis.From equation 4 we get �t1 = �Lyyy= (Lxxy + Lyyy)and �t2 = �Lxxy= (Lxxy + Lyyy) :Notice that �t2H1 + �t1H2 = 0: (6)Case 1a: LxxyLyyy > 0: Lxxy and Lyyy have same sign. Both �t1 and �t2 arenegative, which means that both curves are convex. Equation (6) implies that7
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Figure 4: L = x2y+y2x+2(x+y)t. Two saddles merge from opposite directionsand separate in the perpendicular direction. They enter from north-east andsouth-west and separate in directions north west and south east. (left) t =�4=1000. (center) t = 0. (right) t = 6=1000.H1 and H2 have opposite signs, which means that one curve consists of extremaand the other curve consists of saddles. Figure 2 shows an example.Case 1b: LxxyLyyy < 0: Lxxy and Lyyy have opposite signs. It is immediatelyseen that H1 is negative. �t1�t2 < 0 which means that one curve is convex andthe other concave. Equation 6 implies that H2 is also negative. Consequentlyboth curves consist of saddles. Figure 4 shows an example.Two critical curves may intersect with non-horizontal tangents [3]. An ex-ample is shown in �gure 5.Computing the local graphBelow follows directions for computing the local graph at a point in an image.It can be visualized for instance by the contour curves at di�erent values of t asillustrated by the �gures, which have been computed from the local jet.Heat PolynomialsOnce we know the n-jet, we further need to know the dependence on scale.This dependence is supplied by the heat polynomials [9]. The heat polynomialvn(x; t) is a solution to the heat equation@2f@x2 = dfdtwith the initial condition xn. The �rst few heat polynomials are
8
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Figure 5: L = x2 � x3 + 3x2y � y3 � x4y + 2t � 6tx � 12t2y � 12tx2y. Twonon-horizontal intersecting tangents. For negative t a saddle approaches fromthe second quadrant at the same time as a maximum from the third quadrant.For t = 0 they form a shoulder. For positive t it is split into a saddle runningup into the �rst quadrant and a maximum into the fourth quadrant. The twocritical curves intersect. (left) t = �4=10. (center) t = 0. (right) t = 4=10.v0(x; t) = 1v1(x; t) = xv2(x; t) = x2 + 2tv3(x; t) = x3 + 6xtv4(x; t) = x4 + 12x2t+ 12t2Their recursion formula isvn(x; t) = xvn�1(x; t) + 2t(n� 1)vn�2(x; t): (7)The solution to the heat equation for initial condition xnym is vn(x; t)vm(y; t)and is called the extension of xnym [1]. As a consequence the Taylor expansionin the variables x, y and t can be found from the Taylor expansion of the imagein the variables x and y by substituting vn(x; t)vm(y; t) for each monomial xnym.As an example, the polynomial2x2 � 12x2y + 2y3is extended to2(x2 + 2t)� 12(x2 + 2t)y + 2(y3 + 6yt) = 2x2 � 12x2y + 2y3 � 12yt+ 4tAnother useful relation is @vn(x;t)@x = nvn�1(x; t). Its consequence is that we maytake the gradient before we extend the local jet.The appendix lists a Mathematica [11] function which computes the heatpolynomials. 9



Global analysisWhat happens with the critical points created by a concave generic event? Usinga polynomial to represent the jet, the critical points may escape to in�nity. Aset-up can be used which is similar to the technique which has been introduced.A Fourier series is used rather that a polynomial. That representation has theproperty that points do not disappear to in�nity, but stay in a bounded area.The �rst step to study the global behavior of a singularity is to computeits partial derivatives, its jet, to a certain order. Next a Fourier series must befound which has the same jet at the toppoint up to the chosen order. Then theFourier series must be extended to include explicit dependence on t to be ableto perform analytical computations. This is the easy part. The solution to theheat equation for initial conditioneinx = cos(nx) + i sin(nx)is e�n2teinx = e�n2t cos(nx) + ie�n2t sin(nx):The appendix contains a listing of a Mathematica function to construct aFourier series to represent the jet. One may then experimentally follow thedevelopment for increasing scale by graphical means.Harmonic Polynomials Harmonic polynomials can be used as a basis ratherthan monomials [1]. Let Hm be the homogeneous harmonic polynomials ofdegree m. For two spatial variables Hm consists of two polynomials. Let r2 =(x2 + y2). A Basis for homogeneous polynomials of degree m isHm � r2Hm�2 � r4Hm�4 � : : :Hm are computed recursively as follows H0 = fh0;1; h0;2g = f1; 0g. LetHm = fhm;1; hm;2g.(hm+1;1; hm+1;2) = (xhm;1 � yhm;2; xhm;2 + yhm;1) (8)The �rst few Hm areH0 = f1gH1 = fx; ygH2 = fx2 � y2; xy; x2 + y2gH3 = fx3 � xy2; y3 � x2y; x(x2 + y2); x(x2 + y2)gSince the harmonic polynomials per de�nition are in the kernel of the Lapla-cian, they are not augmented by terms including powers of t when extended to10



heat polynomials. Their local structure is independent of t. This separationinto t-dependent and t-dependent basis functions may yield equations that areeasier to analyze.Suggestions for Further ResearchLocal Symmetry Describe the degenerate toppoints by a symmetry group.A generic top point has a 180� symmetry when simultaneously interchangingextremum and saddle. Codimension two events have larger symmetry groups.Can one assign a unique group to a toppoint? Which groups are they? Does afamily of groups characterize gaussian scale space?Image Representation Is it possible and useful to represent an image byits toppoints? In one dimension a representation by toppoints has been pro-posed [4]. Knowledge of the position of toppoints in scale space is su�cient.It is not immediately transferable to 2 dimensions because concave events aregeneric. Convex toppoints are unavoidable. Are concave toppoints also un-avoidable? How frequent are they?Toppoint Classi�cation Describe the structure of toppoints with high codi-mension for gaussian scale space. Presumably it can be done by consideringthe general form of solutions to the equations for the tangent and its derivates.Bezout's theorem [2] which states that a homogeneous system of equations hasa number of solutions equal to the product of the equations' degrees must beessential. Also the formula for n times implicit di�erentiation will be needed.It is called Faa di Bruno's formula and can be found in [5].AcknowledgementLuc Florack gave me comments on the �nal draft. J�rgen Sand gave me adviceon Fourier Series.AppendicesA Mathematica function for heat polynomials(* *****************HeatPolynomial[pol,variables] has a homogeneous polynomium as inputand a list containing the variables. The result is the correspondingheat polynomial in which t is the time variable.Litt: James Damon: Local Morse Theory for Solutions to the HeatEquation and Gaussian Blurring, in Journal of11



Differential Equations 1995,Vol 115 pages 368-401.D. V. Widder: The Heat Equation*)HeatPolynomial[pol_,variables_]:=Module[{auxpol1},auxpol1=Expand[pol];(* Et udtryk i +normalform(efter Expand) er et tr med + i rodenhvis der er flere termer. Der er et * eller ^ i toppen hvis der kun eren term som bestr af to faktorer. Ellers er det vist et atom hvis deter en konstant.*)If[(Head[auxpol1]=!=Plus),(* Only one term. Pass the Buck *)HeatPolynomialSingleTerm[pol,variables], (* More terms. Do recursion *)HeatPolynomialSingleTerm[First[auxpol1] ,variables]+HeatPolynomial [auxpol1-First[auxpol1],variables]](* end If *)](* end module HeatPolynomial *)(* *****************HeatPolynomialSingleTermSingleVariable[pol,variables] has ahomogeneous polynomium in one variable as input and a list with thevariable as only element. t is the time variable. The result is thederived heat polynomial.*)HeatPolynomialSingleTermSingleVariable[pol_,variables_]:=Module[{auxpol1,expx,expt},auxpol1=Expand[pol];expx=Exponent[auxpol1,First[variables]];expt=Exponent[auxpol1,t];If[((auxpol1===0)||(expx===0)||(expx===1)),auxpol1,(* Only one term degree(x) at least 2. Do the real work*)auxpol1+HeatPolynomialSingleTermSingleVariable[Expand[auxpol1/First[variables]/First[variables]*expx*(expx-1)*t/(expt+1)], variables]] 12



(* end If *)](* end module HeatPolynomialSingleTermSingleVariable *)(* *****************HeatPolynomialSingleTerm[pol,variables] has a single additive term asinput and a list containing the variables. t is the time variable.*)HeatPolynomialSingleTerm[pol_,variables_]:=Module[{auxpol1},auxpol1=Expand[pol];If[(SameQ[variables,{}]||(auxpol1===0)),(* No more variables or zero. Copy to output *)auxpol1,(* The heatpolynomials are separable: heat[x^n y^m]=heat[x^n]heat[y^m].Separate out the first variable *)HeatPolynomialSingleTermSingleVariable[First[variables]^Exponent[auxpol1,First[variables]],{First[variables]}]*HeatPolynomialSingleTerm[auxpol1/First[variables]^Exponent[auxpol1,First[variables]],Drop[variables,1]]](* end If *)](* end module HeatPolynomialSingleTerm *)A Mathematica function for the representation of a jet asFourier Series(* *****************Local2Global[pol,{x,y},n] computes a Fourier Series with the same jet up toorder n(n even) at (x,y)=(0,0) as pol*)Local2Global[pol_,{x_,y_},n_]:=Module[{first},first=Local2GlobalOneVariable[pol,x,n];ComplexExpand[Expand[Local2GlobalOneVariable[first,y,n]]]](*end Global2Local *)(* *****************Local2GlobalBase[x_,n_] computes the Fourier Series with the samejet up to order n(n even) at x=0 for the polynomials(1,x^2,x^3,x^4, ... , x^n)*) 13



Local2GlobalBase[x_,n_]:=Module[{res,halfn,matrixn,invmatrixn,trigxn,fac},halfn=Floor[n/2];matrixn=Table[D[Exp[I j x],{x,i}],{i,0,n},{j,-halfn,halfn}]/.x->0;matrixn=Transpose[Times[Transpose[matrixn],Table[Exp[(t i^2)],{i,-halfn,+halfn}]]];(* Compute the derivatives at x=0 for each of the complex exponentials*)invmatrixn=Inverse[matrixn];(* Inverting the matrix yields coefficients for (1,x^2,x^3,...,x^n)*)trigxn=Table[Exp[I j x],{j,-halfn,halfn}];fac=Table[(j!),{j,0,n}];res=Dot[Transpose[invmatrixn],trigxn];Times[fac,res]](* end Local2GlobalBase*)(* *****************Local2GlobalOneVariable[pol,x,n] computes a Fourier Series withthe same jet up to order n(n even) at x=0 as pol*)Local2GlobalOneVariable[pol_,x_,n_]:=Module[{list,poly,newpoly},list=Local2GlobalBase[x,n];(*list of expressions to substitute for 1,x,x^2, ...*)poly=Expand[pol];newpoly=Expand[Dot[list,Table[Coefficient[poly,x,i],{i,0,n}]]]](* end Local2GlobalOneVariable*)References[1] James Damon. Local morse theory for solutions to the heat equation andgaussian blurring. Journal of Di�erential Equations, 115(2):368{401, Jan-uary 1995.[2] W. Fulton. Algebraic Curves. Addison-Wesley Publishing Co., 1989.[3] Peter Johansen. On the classi�cation of toppoints in scale space. Journalof Mathematical Imaging and Vision, 4:57{67, 1994.[4] Peter Johansen, Stig Skelboe, Klaus Grue, and Jens Damgaard Andersen.Representing signals by their toppoints in scale space. In Proceedings ofthe International Conference on Image Analysis and Pattern Recognition,1986.[5] D. Knuth. The Art of Computer Programming, volume 1. Addison Wesley,1969. 14
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