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Abstract

Scale space theory is a framework which permits one to analyze an
image at different resolutions. The crucial feature is to let the resolution
of an image vary continuously rather than discrete. This opens up the
toolbox of mathematical analysis for image analysis. When extrema and
saddle points of an image are tracked with increasing scale we know that
they will have disappeared at sufficiently large scale. In this report we in-
vestigate what happens when extrema and saddles disappear. It turns out
that extrema and saddles also appear for two dimensional images when
scale is increased. Two dimensional images are more complicated than
one dimensional signals, and some results generalize from two to higher di-
mensions. We consider two dimensional images as a compromise between
generality and simplicity. One generic event is a saddle and an extremum
merging and annihilating. Prior to annihilation they approach each other
from opposite directions. The other generic event is the creation of a
saddle-extremum pair. It will be shown that these are the only generic
events. Studying scale space events for images in an image sequence or
for a symmetric image, one discovers that more complicated interactions
between extrema and saddles take place when scale is increased. The sit-
uations which arise when extrema and saddles disappear and appear can
be classified by their codimension. The codimension is a measure of com-
plexity. Generic events are the least complex and have codimension one.
We also analyse events of codimension two. The mathematical tool which
will be used for computing the local structure of toppoints is differential
geometry of curves. A short version of this report was published in [8].



Introduction

A digital image is routinely represented as a rectangular lattice of integer num-
bers. This representation is inadequate for pattern recognition. A slight mod-
ification of the imaged object in one of two identical images (for instance by
translation, rotation or scaling of the imaged object) changes the representation
drastically. Scale space is intended to provide a better representation [6] [7] [10].
This alternative representation should be uncommitted in the sense that it must
be possible in principle to reconstruct the lattice representation.

The idea is to select the generic events in scale space as the atoms of a
representation. They can be described as follows. A critical point is a point in
which the gradient is zero. The critical points are the extrema (maxima and
minima) and the saddles of the image’s grey level function, which is denoted
L. A critical curve is a curve in scale space consisting of critical points. The
Hessian H is the matrix whose elements are the partial derivatives of second
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Partial derivatives are denoted by lower indices, for example L., denotes 5-7.
The directions of maximum and minimum curvature are the eigenvectors of the
Hessian. A critical point is a toppoint if at least one eigenvalue is zero, i.e. if
the Hessian does not have full rank. It will be shown that the toppoints are
precisely the points at which the generic events take place. The critical curves
are solutions to the equations which expresses that the gradient is zero:

La(z,y,t) = 0 (1)
Ly(xayat) = 0:

where z and y denote the spatial coordinates, o is scale and ¢t = 202. In order to
study this system of curves, it is useful to find an expression for the tangent at
a given point. As is usual in differential geometry, we let s be a monotonically
varying parameter along the curve. Thus z and y are functions of s and in this
way L and its partial derivates with respect to z, y and ¢ are implicit functions
of s. Tt follows from equation (1), that for all integer n
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In what follows we shall use dots to denote differentiation with respect to s,

such that for instance # denotes Zig. For n = 1 we get two equations using the

chain rule.
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Figure 1: L = 222 + y® + 4t + 6yt. The convex generic event. An extremum
and a saddle merge when scale is increased. (left) t = —5/10. (center) ¢t = 0.
(right) ¢ = 5/10.
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Lay(x,y,8)3 + Lyy(z,y,1)y + Ly(z,y, ) = 0,

from which the directions of the tangent (&,7,%) can be found at any point on
the curve.

We shall analyse the curve at a particular point (zo, yo, to) by computing the
tangent and its derivatives. In the following we will omit reference to (o, yo, to)
and by for instance L,, understand L....(zo, yo,t0). We observe that if the Hes-
sian has full rank, # can be used as a parameter along the tangent, meaning that
the tangent is not horizontal, which in turn has the geometrical interpretation,
that the critical point in the image does not disappear when the scale is infinites-
imally increased. On the other hand, if the Hessian has rank 1 (still assuming
the equations to be independent), the tangent is horizontal. The geometrical
interpretation is that two critical points merge and disappear when the scale is
infinitesimally increased.

The event just described is unavoidable for gaussian smoothing. Critical
points must disappear with increasing scale and this event is the generic way in
which it happens. Figure 1 shows an example. It is visualized by the contour
curves of the image at scales below, at, and above the scale of the toppoint.

The term generic means that if the image is changed slightly, the event may
change position in scale space, but it will still be present. Perhaps surprisingly,
also another event is generic: the appearing of two critical points. Below we
shall derive the conditions for this to happen. These two events are the only
generic ones, and are among the primitives proposed for image representation.

The next three sections analyze in detail what happens at codimension one
and two. Then follows description of a setup, which allows one to compute the
local scale space behaviour at any point of an image. Suggestions for further
research terminate the paper.



Codimension

Even if the two above events are sufficient to describe a typical image, in three
situations it is required to study degenerate cases in which the image can not be
said to be typical. These include local symmetry, quantization of scalar and spa-
tial resolution, and temporal image sequences. In all three cases the additional
image constraints have the effect that more than two points may be involved
in a generic scale space event. Thus, it will be necessary to include degenerate
events as description primitives. Below tools for describing degenerate events
are put forward. In order to understand the algebra involved, let us rewrite the
equations (2) in which the partial derivatives have been evaluated at (zo, Yo, to)
forn=1and n = 2.

wajf + nyy + Lwtt = 0 (3)
Loy + Lyt + Lyt

I
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If we impose one algebraic constraint, then we say that the event described
has codimension one. We choose the constraint that the rank of H is one. An
immediate consequence is that the tangent is horizontal (use equations (3)).
From the same equations the tangent direction can be found.

If we impose an additional constraint the codimension becomes two. Codi-
mension two events are determined by the additional constraint that the Hessian
has rank zero. In this case equations (3) still imply that a tangent must be
horizontal but they are no longer sufficient to determine the tangent direction.
We must invoke equations (4). Since the Hessian has rank zero, f can be elimi-
nated to get a quadratic equation in the unknowns & and gy. It turns out that
for Gaussian scale space there are two horizontal perpendicular tangents in a
codimension two event. The geometric interpretation is that two critical curves
intersect, and the solutions provide the direction of the tangents at the point
of intersection. Figure 2 shows two extrema and two saddles which disappear
simultaneously.

Please note that the computations are undertaken projectively. Apparently
we have one equation too few for the tangent and for its higher derivatives. If
we insist on computing the exact size of the tangent and its derivatives, we can
use a set of equations which expresses that the hypothetical point traversing
the curve has constant velocity. This means that the parameter s measures
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Figure 2: L = 23 + ¢ + 6(z + y)t. Two extrema and two saddles disappear
simultaneously when scale is increased. The two saddles merge from oppo-
site directions simultaneously with two extrema (a maximum and a minimum)
merging from the perpendicular direction. Extrema enter from north-east and
south-west and saddles from north-west and south-east. (left) ¢ = —4/1000.
(center) t = 0. (right) t = 4/1000.

arclength. The first few equations are

j}'2+y2+i2 = 1
245 + 201 + 2t =0
282 + 292 + 212+ 287+ 294+ 2t = 0.

Analysis of codimension one

Let the rank of H be one. (L;z,Lqsy) and (Lgy, Ly,) cannot vanish simultane-
ously. Let (Lyz, Ley) # (0,0). & and ¢ can be eliminated from equation (3) to
get
Lzz La:t .
t=0,
‘ Lzy Lyt

and we may infer that ¢ = 0, which implies horizontal tangent. The tangent
direction can then be computed from equation (3).

In order to know if the curve is convex (two points disappear with increasing
scale) or concave (two points appear with increasing scale) we must compute i
In the convex case it is negative and it is positive in the concave case. We wish
further to know which types (saddle or extrema) are involved. To this end we
need to know the sign of the Hessian determinant on the curve. To find # we
can eliminate & and ¢ from equation (4) to get
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Figure 3: L = 222 — 1222y + 2y — 12yt + 4t. The concave generic event. An
extremum and a saddle split. (left) t = —4/1000. (center) t = 2/1000. (right)
t = 8,/1000.

Depending on the values of the partial differential quotients at the toppoint,
t can be positive or negative. This means that the curve may be convex or
concave. An example of a generic convex event is shown in figure 1, and figure
3 shows an example of a concave generic event.

Next we want to know the type of points involved. An approximation to
first order in s of the Hessian is computed on each of the two tangents. This is
done by approximating the partial derivatives on the curve to first order in s.

Loy + $(Loza® + Loayy) Loy + $(Laoayd + Layyy)
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This means that the sign changes as s passes through the toppoint. The geo-
metric interpretation is that a saddle and an extremum are involved. This is
true for both a convex and a concave curve.

Analysis of codimension two

Let us next assume that the rank of the Hessian is 0, which means that L., =
L.y = Ly, = 0. It follows from equation (3) that { = 0, which implies that
the tangents are horizontal. I use the plural here since there are actually two
tangents. This can be seen from equations (4) from which # has been be elimi-
nated.
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We notice that in the case of gaussian smoothing (use the relations L,; =



Lyze + Lyyy and Ly, = Lyyy + Lyy, which are induced by the heat equation)

Lacyy L.z't

‘ La:.z'.z' L.z't =0
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Since the coefficients of #2 and g? have the same magnitude but different sign,
the discriminant of the quadratic equation is positive and two real solutions exist
for the tangent directions. A further consequence is that the two directions are
perpendicular to each other. This follows by observing that the product of the
roots is —1.

t can be found from equation (4). Tt is further seen that |H| = O(s?) and
we infer that along each of the two intersecting curves two critical points of the
same type approach each other. In order to gain more insight in the structure
we now orient the coordinate system such that the tangents point along the a-
axis and the y-axis. This has an equivalent formulation in terms of a constraint
between the partial derivatives. It can be found from equation (5) which was
solved for the two tangent directions. The coefficient of the quadratic term must
be zero. This means that LyyeLyyy — LezyLazyy = 0. The Hessian computed on
the tangent which points along the y-axis becomes

Hy = H(0,5) = (LywyLyyy — L2,,)5°.

Yy

H on the tangent directed along the z-axis is

Hy = H(5,0) = (LpzeLayy — L2,,)5°.

zxy
Notice that
LyywyH1 + LyyyHs = 0.

We shall also need # on the two tangents. Let #; = #(0,s) be £ on the tangent
directed along the y-axis, and let #, = #(s,0) be ¢ on the tangent directed along
the x-axis.

From equation 4 we get

i.l = _Lyyy/ (Lmy + Lyyy)

and
Notice that
toHy + 1 Hy = 0. (6)

Case la: LyuyLyyy > 0. Lysy and Ly, have same sign. Both #; and #5 are
negative, which means that both curves are convex. Equation (6) implies that
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Figure 4: L = 2%y +y?z+2(z+y)t. Two saddles merge from opposite directions
and separate in the perpendicular direction. They enter from north-east and
south-west and separate in directions north west and south east. (left) ¢ =
—4/1000. (center) t = 0. (right) ¢ = 6/1000.

H, and H> have opposite signs, which means that one curve consists of extrema
and the other curve consists of saddles. Figure 2 shows an example.

Case 1b: LygyLyyy < 0. Ly and Ly, have opposite signs. It is immediately
seen that H; is negative. 115 < 0 which means that one curve is convex and
the other concave. Equation 6 implies that H, is also negative. Consequently
both curves consist of saddles. Figure 4 shows an example.

Two critical curves may intersect with non-horizontal tangents [3]. An ex-
ample is shown in figure 5.

Computing the local graph

Below follows directions for computing the local graph at a point in an image.
It can be visualized for instance by the contour curves at different values of ¢ as
illustrated by the figures, which have been computed from the local jet.

Heat Polynomials

Once we know the n-jet, we further need to know the dependence on scale.
This dependence is supplied by the heat polynomials [9]. The heat polynomial
vn(z,t) is a solution to the heat equation

f _ df

oz dt
with the initial condition ™. The first few heat polynomials are
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Figure 5: L = 22 — 2% + 322y — y® — 2%y + 2t — 6tz — 12t%y — 12t2%y. Two
non-horizontal intersecting tangents. For negative ¢ a saddle approaches from
the second quadrant at the same time as a maximum from the third quadrant.
For t = 0 they form a shoulder. For positive ¢ it is split into a saddle running
up into the first quadrant and a maximum into the fourth quadrant. The two
critical curves intersect. (left) ¢ = —4/10. (center) ¢ = 0. (right) ¢ = 4/10.

vo(z,t) = 1

v (z,t) = =z

vo(z,t) = 2% +2t

v3(w,t) = 23+ 62t

va(z,t) = a2t +122% + 122

Their recursion formula is

Un(x,t) = 2Up_1(2,t) + 2t(n — 1)vp_o(z,t). (7)

The solution to the heat equation for initial condition z"y™ is v, (x,t)vm (y,t)
and is called the extension of z"y™ [1]. As a consequence the Taylor expansion
in the variables z, y and ¢ can be found from the Taylor expansion of the image
in the variables = and y by substituting v, (z, t)v,, (y, t) for each monomial z™y™.
As an example, the polynomial

222 — 1222y + 2y3
is extended to

2(2” + 2t) — 12(z% + 2t)y + 2(y> + 6yt) = 227 — 1227y + 2y° — 12yt + 4t

Another useful relation is ‘%’},—(5@ = nu,—1(z,t). Its consequence is that we may
take the gradient before we extend the local jet.
The appendix lists a Mathematica [11] function which computes the heat

polynomials.



Global analysis

What happens with the critical points created by a concave generic event? Using
a polynomial to represent the jet, the critical points may escape to infinity. A
set-up can be used which is similar to the technique which has been introduced.
A Fourier series is used rather that a polynomial. That representation has the
property that points do not disappear to infinity, but stay in a bounded area.

The first step to study the global behavior of a singularity is to compute
its partial derivatives, its jet, to a certain order. Next a Fourier series must be
found which has the same jet at the toppoint up to the chosen order. Then the
Fourier series must be extended to include explicit dependence on ¢ to be able
to perform analytical computations. This is the easy part. The solution to the
heat equation for initial condition

e = cos(nx) + i sin(nx)
is
e teinT = gt cos(nz) + ie ™t sin(nz).

The appendix contains a listing of a Mathematica function to construct a
Fourier series to represent the jet. One may then experimentally follow the
development for increasing scale by graphical means.

Harmonic Polynomials Harmonic polynomials can be used as a basis rather
than monomials [1]. Let H,, be the homogeneous harmonic polynomials of
degree m. For two spatial variables H,, consists of two polynomials. Let r? =
(z? +y?). A Basis for homogeneous polynomials of degree m is

Hp ®r?Hppo D1 Hppod & . ..

H,, are computed recursively as follows Hy = {ho1,ho2} = {1,0}. Let
Hm = {hm,17 hm,Q}-

(hmt1,15 hmt1,2) = (@hm1 — Yhm,2, Thm 2 + Yhm 1) (8)
The first few H,, are

Hy = {1}

Hl = {Cﬂ,y}

Hy = {a%—y*zy,2” +y’}

Hy = {2* -2y’ — 2%y, 2(2* + y°),2(2® + y?)}

Since the harmonic polynomials per definition are in the kernel of the Lapla-
cian, they are not augmented by terms including powers of ¢ when extended to

10



heat polynomials. Their local structure is independent of ¢t. This separation
into t-dependent and t-dependent basis functions may yield equations that are
easier to analyze.

Suggestions for Further Research

Local Symmetry Describe the degenerate toppoints by a symmetry group.
A generic top point has a 180° symmetry when simultaneously interchanging
extremum and saddle. Codimension two events have larger symmetry groups.
Can one assign a unique group to a toppoint? Which groups are they? Does a
family of groups characterize gaussian scale space?

Image Representation Is it possible and useful to represent an image by
its toppoints? In one dimension a representation by toppoints has been pro-
posed [4]. Knowledge of the position of toppoints in scale space is sufficient.
It is not immediately transferable to 2 dimensions because concave events are
generic. Convex toppoints are unavoidable. Are concave toppoints also un-
avoidable? How frequent are they?

Toppoint Classification Describe the structure of toppoints with high codi-
mension for gaussian scale space. Presumably it can be done by considering
the general form of solutions to the equations for the tangent and its derivates.
Bezout’s theorem [2] which states that a homogeneous system of equations has
a number of solutions equal to the product of the equations’ degrees must be
essential. Also the formula for n times implicit differentiation will be needed.
It is called Faa di Bruno’s formula and can be found in [5].
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Appendices

A Mathematica function for heat polynomials

(oo ok ko koskokok ok ok

HeatPolynomial [pol,variables] has a homogeneous polynomium as input

and a list containing the variables. The result is the corresponding

heat polynomial in which t is the time variable.

Litt: James Damon: Local Morse Theory for Solutions to the Heat
Equation and Gaussian Blurring, in Journal of
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Differential Equations 1995,Vol 115 pages 368-401.
D. V. Widder: The Heat Equation
*)
HeatPolynomial [pol_,variables_]:=
Module[{auxpoll},
auxpoli=Expand [pol];

(* Et udtryk i +normalform(efter Expand) er et tr med + i roden
hvis der er flere termer. Der er et * eller ~ i toppen hvis der kun er
en term som bestr af to faktorer. Ellers er det vist et atom hvis det
er en konstant.x)

If[(Head[auxpoll]=!=Plus)
(* Only one term. Pass the Buck *)

HeatPolynomialSingleTerm[pol,variables]

(* More terms. Do recursion *)

HeatPolynomialSingleTerm[First [auxpol1l] ,variables]+
HeatPolynomial [auxpoll-First[auxpoll],variables]
]
(* end If *)
]

(* end module HeatPolynomial *)

(oo ko koskokok ok ok
HeatPolynomialSingleTermSingleVariable[pol,variables] has a
homogeneous polynomium in one variable as input and a list with the
variable as only element. t is the time variable. The result is the
derived heat polynomial.
*)
HeatPolynomialSingleTermSingleVariable[pol_,variables_]:=
Module[{auxpoll,expx,exptl},
auxpoll=Expand[pol];
expx=Exponent [auxpoll,First[variables]];
expt=Exponent [auxpoll,t];
If [((auxpoll===0) | | (expx===0) | | (expx===1))
auxpoll
(* Only one term degree(x) at least 2. Do the real workx)
auxpoll+
HeatPolynomialSingleTermSingleVariable[
Expand[auxpoll/First[variables] /First[variables]*
expx* (expx-1)*t/(expt+1)],

12



(* end If *)
]

(* end module HeatPolynomialSingleTermSingleVariable *)

(5 skokskokorokkokok Kok ok ok o
HeatPolynomialSingleTerm[pol,variables] has a single additive term as
input and a list containing the variables. t is the time variable.
*)
HeatPolynomialSingleTerm[pol_,variables_]:=
Module[{auxpoll},
auxpoll=Expand[pol];
If[(SameQ[variables,{}] || (auxpoli===0))
, (* No more variables or zero. Copy to output *)
auxpoll
, (* The heatpolynomials are separable: heat[x"n y“"m]=heat[x"n]lheat [y m].
Separate out the first variable *)
HeatPolynomialSingleTermSingleVariable[
First[variables] “Exponent [auxpoll,First[variables]],
{First[variables] }]*
HeatPolynomialSingleTerm[
auxpoll/First[variables] “Exponent [auxpoll,First[variables]],
Drop[variables,1]]
]
(* end If *)
]

(* end module HeatPolynomialSingleTerm *)

A Mathematica function for the representation of a jet as
Fourier Series

( sokkok ok ok ok ok ok ok

Local2Global[pol,{x,y},n] computes a Fourier Series with the same jet up to
order n(n even) at (x,y)=(0,0) as pol

*)

Local2Global[pol_,{x_,y_},n_]:=Module[{first},
first=Local2GlobalOneVariable[pol,x,n];

ComplexExpand [Expand[Local2GlobalOneVariable[first,y,n]]]

] (xend Global2Local *)

(koo ook kkskokosk ok ok
Local2GlobalBase[x_,n_] computes the Fourier Series with the same
jet up to order n(n even) at x=0 for the polynomials
(1,x72,x°3,x74, ... , x"n)

*)

13



Local2GlobalBase[x_,n_]:=Module[{res,halfn,matrixn, invmatrixn,trigxn,fac},
halfn=Floor[n/2];
matrixn=Table[D[Exp[I j x],{x,i}],{i,0,n},{j,-halfn,halfn}]/.x->0;
matrixn=Transpose[

Times[Transpose[matrixn],Table[Exp[(t 1i°2)],{i,-halfn,+halfn}]]];
(* Compute the derivatives at x=0 for each of the complex exponentials)
invmatrixn=Inverse[matrixn];
(* Inverting the matrix yields coefficients for (1,x72,x73,...,x"n)x*)
trigxn=Table[Exp[I j x],{j,-halfn,halfn}];
fac=Table[(j!),{j,0,n}];
res=Dot [Transpose[invmatrixn],trigxn];
Times[fac,res]
J(* end Local2GlobalBasex)

(* %k >k >k %k %k %k %k %k %k %k %k %k %k Xk Xk Xk %

Local2GlobalOneVariable[pol,x,n] computes a Fourier Series with
the same jet up to order n(n even) at x=0 as pol
*)
Local2GlobalOneVariable[pol_,x_,n_]:=Module[{list,poly,newpoly},
list=Local2GlobalBasel[x,n];
(*list of expressions to substitute for 1,x,x72, ...*)
poly=Expand[pol];
newpoly=Expand[Dot[list,Table[Coefficient [poly,x,i],{i,0,n}]1]1]
J(* end Local2GlobalOneVariablex)
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