
Technical Report DIKU-TR-97/4Department of Computer ScienceUniversity of CopenhagenUniversitetsparken 1DK-2100 KBH �DENMARKJanuary 1997
Undirected Single Source Shortest Path in Linear Time

Mikkel Thorup

Undirected Single Source Shortest Path in Linear Time�Mikkel ThorupDepartment of Computer Science, University of CopenhagenUniversitetsparken 1, DK-2100 Copenhagen East, Denmarkmthorup@diku.dk, http://www.diku.dk/�mthorupJanuary 1997AbstractA deterministic linear time and linear space algorithm is presented for the undi-rected single source shortest path problem.1 IntroductionLet G = (V;E), jV j = n, jEj = m, be an undirected connected graph with a weight function` : E ! N0 and a distinguished vertex s 2 V . The single source shortest path problem (SSSP)is for every vertex v to �nd the distance from d(v) = dist(s; v) from s to v. This is one ofthe classic problems in algorithmic graph theory. In this paper we present an determinsticlinear time and linear space algorithm for undirected SSSP. We assume that the weights areintergers each stored in one word.Since 1959, all developments in SSSP have been based in Dijkstra's algorithm [Dij59].For each vertex we have a super distance D(v) � d(v). Moreover, we have a set S � V suchthat 8v 2 S : D(v) = d(v). Initially, S = fsg and D(s) = d(s) = 0. For all v 2 V n S, wemaintain that D(v) = minu2S;(u;v)2Efd(u)+ `(u; v)g. In each round of the algorithm we visita vertex v 2 V n S minimizing D(v). As proved by Dijksta, D(v) = d(v), so we can move vto S. Consequently, for all (v; w) 2 E, if D(v) + `(v; w) < D(w), we have to decrease D(w)to D(v) + `(v; w). Dijksta's algorithm �nishes when S = V , returning D(�) = d(�).The complexity of Dijksta's algorithm is determined by the n � 1 times we �nd thevertex v 2 V n S minimizing D(v) and the at most m times we decrement some D(w).All subsequent developments in SSSP have been based various speed-ups and trade-o�s inpriority queues/heaps supporting these two operations. If we just �nd the minimum bysearching all vertices, we solve SSSP in O(n2 +m) time. Applying Williams' heap of 1964,we get O(m logn) time. Fredman and Tarjan's Fibinacci heaps [FT87] had SSSP as a primeapplication, and reduced the running time to O(m+ n logn). They noted that this was anoptimal implementation of Dijkstra's algorithmn in a comparison based model, since it visitsthe vertices in sorted order. Using Fredman and Willard's fusion trees, that like this paperassumes integer weights stored in words, we get an O(mplogn) randomized bound [FW93].�Technical Report DIKU-TR-97/4, Department of Computer Science, University of Copenhagen.1

Their later atomic heaps give an O(m + n logn= log logn) bound [FW94]. More recently,Thorup's priority queues gave an O(m log logn) bound and an O(m + nplogn1+") bound[Tho96]. These bounds are randomized assuming that we want linear space. Latter, Ramanhas obtained an O(m+nplogn log logn) bound in deterministic linear space using standardAC0 instructions only.There has also been a substantial development based on the maximal edge weight C,again assuming integer edge weights, each �tting in one word. First note that using Boas'sgeneral search structure [MN90, vBoa77, vBKZ77], and bucketing according to bD(v)=nc, weget an O(m log logC) algorithm. Particularly for the SSSP application, Ahuja, Melhorn, andTarjan has found a priority queue giving running time O(nplogC +m). Recently this hasbeen improved by Cherkassky, Goldberg, and Silverstein to O(n(logC)1=3+" +m) [CGS97].As observed in [FT87], implementing Dijksta's algorithm in linear time would requiresorting in linear time. In fact, the converse also holds, in that Thorup has shown that lineartime sorting implies that Dijkstra's algorithm can be implemented in linear time [Tho96].In this paper, we solve the undirected version of SSSP deterministically in O(m) time andspace. Since we do not know how to sort in linear time, this implies that we are deviatingfrom Dijksta's algorithm in that we do not visit the vertices in order of increasing distancefrom s. Our algorithm is based on a hierarchical bucketing structure, where the bucketinghelps identifying vertex pairs that can be visited in any order.Finally, a note should be made on our assumption that the weights are integers, eachstored in one word. If the weights are not integers but
oating point, the problem is lesswell-de�ned since adding up edge-weights may con
ict with the available precision. Thiscontrast the situation with sorting or, say, minimum spanning tree where we do not needto add up weights. For those problems, one can simply exploit that the order of
oatingpoints is given from the representation by interpreting them as integers. Also, for any givencomputiner, a word is understood to be the maximal entity that can be dealt with in onetime step. Our algorithm is easily modi�ed so as to allow for weights stored in multiplewords. The complexity then becomes linear in the total number of words.2 PreliminariesThroughout the paper, we will assume that G; V; E; `; s;D; d; S are as de�ned in the intro-duction in the description of Dijksta's algorithm. The point in this work is to �nd a di�erentmore e�cient visiting sequence, still preserving that D(v) = d(v) when a vertex v is visited.We will let b denote the word length. We will write bx=2ic as x # i to emphasize thatit is calculated simply by shifting out the i least signi�cant bits. If f is a function on theelements from a set X, we let f(X) denote ff(x)jx 2 Xg.3 The component hierachyBy Gi we denote the subgraph of G whose edge set is the edges e from G with `(e) < 2i.Thus Gb = G while G0 consists of singleton vertices.On level i in the hierachy, we have the componenets of Gi. The component of v on leveli is denoted [v]i. By [v]�i we will denote [v]i n S, noting that [v]�i may not be connected.Observation 1 If [v]i 6= [w]i and D(w) # i � D(v) # i then D(w)�D(v) < dist(v; w).2

Proof: Since [v]i 6= [w]i, any path from v to w contains an edge of lenght � 2i and hencethe dist(v; w) � 2i. However, D(w) # i � D(v) # i implies D(w)�D(v) < 2i.For i < w, we call [v]i a child of [v]i+1, and say that [v]i is a min-child of [v]i+1 ifmin(D([v]�i) = min(D([v]�i+1). We say that [v]i is minimal if for j = i; : : : ; w � 1, [v]j isa min-child of [v]j+1. Note that minimality depends on S.Lemma 2 Let [v]i+1 be minimal and u be the �rst vertex outside S on a a shortest pathfrom s to v. If u 62 [v]i, d(v) # i > minD([v]�i+1) # i; otherwise d(v) � minD([v]�i).Proof: Since u is the �rst vertex outside S on a shortest path from s to v, D(u) = d(u)and d(v) = d(u) + dist(u; v). If u 2 [v]i, d(v) � d(u) = D(u) � minD([v]�i).We prove the statement of the lemma for u 62 [v]i by induction on b� i. In the base casewith i = b, [v]b = G, so u cannot be outside [v]i, and the statement is vacuously true. Thus,assume i < b.If u 62 [v]i+1, by induction, d(v) # i + 1 > minD([v]�i+2) # i + 1. By minimality of [v]i+1,minD([v]�i+2) # i+ 1 = minD([v]�i+1) # i+ 1. Thus, d(v) # i + 1 > minD([v]�i+1) # i+ 1,implying d(v) # i > minD([v]�i+1) # i.If u 2 [v]�i+1 n [v]i, D(u) # i � minD([v]�i+1) # i. Moreover, since u 62 [v]i, dist(u; v) � 2i.Hence, d(v) = (D(u) + dist(u; v)) # i � (minD([v]�i+1) # i) + 1.Since D(v) � d(v) for all v, we get some immediate corollaries:Corollary 3 If [v]i is minimal, minD([v]�i) = mind([v]�i). In particular, if D(v) =minD([v]�i), D(v) = d(v). Also, if i = 0, [v]i = fvg and D(v) = d(v).Corollary 4 If [v]i; i < w is not minimal but [v]i+1 is minimal, thenmind([v]�i) # i > minD([v]�i+1) # i:In particular, if minD([v]�i) # i = (minD([v]�i+1) # i) + 1, minD([v]�i) # i = min d([v]�i) # i.4 Visiting minimal verticesDe�nition 5 In the rest of this paper, visiting a vertex v requires that [v]0 = fvg is minimal.When v is visited, it is moved to S, setting D(w) to minfD(w); D(v) + `(v; w)g for all(v; w) 2 E.The following facts now follow immediately from Corollary 3:Fact 6 When we visit a vertex v, D(v) = d(v).Fact 7 For all [v]i, max d([v]i n [v]�i) # i � mind([v]�i) # i.Lemma 8 If [v]i is minimal and visiting some vertex w 2 V nS implies that D([v]�i) changes,then w 2 [v]i and the change is an increase by one.3

Proof: By Corollary 3, before the visit to w, minD([v]�i) # i = mind([v]�i). Since D dom-inates d and d does not change, this means that minD([v]�i) # i cannot decrease. Moreover,since the D-values are never increased, an increase of minD([v]�i) # i means that [v]�i isdecreased, i.e. that w 2 [v]�i before the visit. Let [v]�i refer to the value before the visit tow, i.e. w 2 [v]�i . Since [v]i is connected, if [v]�i n fwg is non-empty, there must be an edge(u; x) in [v]i where u 2 [v]�i and x 2 [v]�i n fwg. By de�nition of [v]i, `(u; x) < 2i. Moreover,by Fact 7, d(u) # i � minD([v]�i) # i. ThusminD([v]�i n fwg) # i � D(x) # i � (minD([v]�i) # i) + 1:In connection with Lemma 8, it should be noted that with directed graphs, the increase couldbe by more than one. This is the �rst time in this paper, that we use the undirectedness.Lemma 9 If [v]i is minimal, it remains minimal until either [v]�i = ; or minD([v]�i) # i isincreased.Proof: If [v]i is minimal, but visiting some vertex w stops [v]i from being minimal, thenthere is a minimal value j � i and a vertex u such that [v]j+1 = [u]j+1 and [u]j is minimalafter the visit to w. Before the visit to w, [v]i was minimal. Hence [v]j was minimal,so minD([v]j) # j � minD([v]j+1) # j. By Lemma 3, the minimality of [v]j+1 impliesthat minD([v]j+1) = mind([v]j+1). Hence minD([v]j+1) # j cannot decrease. Thus, ifminD([v]�i) # i is neither increased, nor emptied, we must have minD([v]j+1) # j = D([v]j) #i, contradicting that [v]j stopped being minimal.We are now ready to derive a �rst algorithm for the undirected single source shortest pathproblem. The algorithm is so far ine�cient, but it illustrates the basic ideas in how we intendto visit the vertices in a linear time algorithm.Algorithm A: SSSP, given G = (V;E) with weight function ` and distinguished vertexs, outputs D with D(v) = d(v) = dist(s; v) for all v 2 V .A.1. for all v, D(v) 1A.2. D(s) 0, S fsgA.3. for all (s; v) 2 E, D(v) `(s; v).A.4. Visit([s]b; 0)A.5. return DAlgorithm B: Visit([v]i), assuming that [v]i is mininal, it visits all w 2 [v]�i with d(w) # iequal to the value of minD([v]�i) # i when the call is made. After the call, either [v]�i = ;or minD([v]�i) # i = d([v]�i) # i is increased by one.B.1. if i = 0, visit v and returnB.2. if [v]i has not been visited previously, ix ([v]i) minD([v]i) # i� 1.B.3. repeat until [v]�i = ; or ix([v]i) # 1 is increased: � ix ([v]i) = minD([v]�i) # i� 1B.3.1. while 9[w]i�1 � [v]i : minD([w]�i�1) # i� 1 = ix([v]i),4

B.3.1.1. let [w]i�1 � [v]i ^ minD([w]�i�1) # i� 1 = ix ([v]i)B.3.1.2. Visit([w]i�1)B.3.2. increment ix ([v]i) by oneIn the remainder of this section, we will prove the correctness of Algorithms B, and hence ofAlgorithm A. The proof is by induction on i. If i = 0, [v]i = [v]�i = fvg, and the visit to vin Step B.1 is correct since v is [v]i is minimal by assumption. Afterwards, [v]�i = ;. Thus,we may assume that i > 0. To prove correctness, we will study the following invariant:ix([v]i) = minD([v]�i) # i� 1 = mind([v]�i) # i� 1 (1)When ix ([v]i) is �rst assigned in step B.2, it is assigned D([v]i) # i�1. Also, at that time, [v]iis minimal, so minD([v]i) = min d([v]i) by Lemma 3. Thus (1) holds after this assignment.Note that minD([v]i) # i� 1 = mind([v]i) # i� 1 implies that minD([v]i) # i� 1 cannotdecrease. On the other hand, minD([v]i) can only increase in connection with visits tovertices in [v]i. Thus, a violotion of (1) is either due to a visit within [v]i or to a changein ix ([v]i). The �rst possible violation is hence in connection with the call Visit([w]i�1).In particular, we may assume that (1) is true before the call. Then, since ix ([v]i) # 1 hasnot been increased, by Lemma 9, [v]i is still minimal. Also, by de�nition [w]i�1 is a min-child, so [w]i�1 is minimal. Thus, by induction, we may assume that the call Visit([w]i�1) iscorrect. However, after the call, if the condition of the while-loop is still satis�ed, it says thatminD([v]i) did not increase, so (1) still holds. If the condition fails, we know that minD([v]i)did increase. By Lemma 8, �rst time in the call Visit([w]i�1) where we increase minD([v]i) #i, we increase it by one. However, this implies that D([w]i�1) # i� 1 � D([v]i) # i� 1 is alsoincreased, but then, by induction, there are no more visits to made by Visit([w]i�1). Hencewe conclude that D([v]i) # i is increased by exactly one, but that means that (1) is restoredin step B.3.2.5 Towards a linear time algorithmWe will now give an overiew of a linear time algorithm algorithm SSSP. De�ne the thecomponent tree T representing the topological structure of the component hierachy, skippingall nodes [v]i = [v]i�1. Thus, the leaves of T are the components [v]0 = fvg, v 2 V . Theinternal nodes are the components [v]i, i > 0, [v]i�1 � [v]i. The root in T is the node[v]r = G with r minimized. The parent of a node [v]i is its nearest degree > 2 ancestor in thecomponent hierachy. Since T have no degree one nodes, the number of nodes is � 2n � 1.In Section 6 we show how to construct T in time O(m). Given T , it is straightforward tomodify Algorithm B so that it recurses within T . In the rest of this paper, when we talkabout children or parents, it is understood that we refer to T rather than to the componenthierachy. A min-child [w]h of [v]i is minimizing minD([w]�h) # i � 1. Thus minimality ofcomponents is inherited from the component hierachy to the component tree T .The idea now is that for each visited node [v]i, we will bucket the children [w]h accordingminD([w]�h) # i� 1. Having done so, we can identify the min-children in constant time. InSection 7, we will show how to do the bucketing for unvisited children of visited components,and later in this section, we will show how to do it for visited children of visited components.As a main point, we will show that the total number of relevant buckets is O(m). When anode is �rst to be visited, it is a child of a visited node, so we know minD([v]�i) # i�1. Also,5

since [v]i is has not yet been visited [v]i = [v]�i . Finally, when [v]i is about to be visited, it isminimal, implying minD([v]�i) = mind([v]�i), that is, minD([v]�i) # i�1 = mind([v]i) # i�1.Note that the diameter of [v]i is bounded by Pe2[v]i `(e). This immediately impliesmax d([v]i) � mind([v]i) + Pe2[v]i `(e). De�ne ix 0([v]i) = mind([v]i) and �([v]i) =dPe2[v]i `(e)=2i�1e. Thenmax d([v]i) # i� 1 � (ix 0([v]i) # i� 1) + �([v]i) (2)Now, for each [v]i 2 T and each q � �([v]i), we allocate a bucket B([v]i; q) for the children[w]h of [v]i with minD([w]�h) # (i� 1) = ix 0([v]i) + q.Lemma 10 The total number of buckets is O(m).Proof: In connection with [v]i, we have �([v]i) + 1 � 2 +Pe2[v]i `(e)=2i�1 buckets. Thus,the total number of buckets is � 4n +P[v]i2T; e2[v]i `(e)=2i�1.If e 2 [v]i, `(e) < 2i. Hence, for any e,X[v]i3e `(e)=2i�1 < bXj=i�1 2i=2j � 4:Thus, the total number of buckets < 4m+ 4n.Note that the values of �([v]i) are easily found in time O(m) in a bottom-up traversal ofT . Thus, in time O(m), we can initialize the whole bucket structure, embedding it in onearray of pointers to the initially empty doubly linked list of children going into the bucket| having the list doubly linked allows us to take children out of buckets, when they areto be moved. We are now ready to present the �nal visiting procedure. Relative to theprevious Algorithm B, it is generalized to handle that that if a child [w]h of [v]i may nothave h = i� 1. This generalization is straightforward. Moreover, it is modi�ed so as to takecare of the bucketing of visited children of visited components.Algorithm C: Visit([v]i; j), assuming that [v]i is mininal and a child of [v]j in T , it visitsall w 2 [v]�i with d(w) # j � 1 equal to the value of minD([v]�i) # j � 1 when the call ismade. After the call, either [v]�i = ; or minD([v]�i) # j � 1 = d([v]�i) # j � 1 is increased byone.C.1. if i = 0, visit v and returnC.2. if [v]i has not been visited previously,C.2.1. ix 0([v]i) minD([v]i) # i� 1C.2.2. for q = 0 to �([v]i), B([v]i; q) ;.C.2.3. for all children [w]h of [v]i,C.2.3.1. if minD([w]h) # i� 1 � ix 0([v]i) + �([v]i),C.2.3.1.1. add [w]h to B([v]i; (minD([w]h) # i� 1)� ix 0([v]i)).C.2.4. ix ([v]i) ix 0([v]i)C.3. repeat until [v]�i = ; or ix ([v]i) # (j�i) is increased: � ix ([v]i) = (minD([v]�i) # j�1)6

C.3.1. while B([v]i; ix ([v]i)� ix 0([v]i)) 6= ;,C.3.1.1. let [w]h 2 B([v]i; ix ([v]i)� ix 0([v]i))C.3.1.2. Visit([w]h; i)C.3.1.3. delete [w]h from B([v]i; ix ([v]i)� ix 0([v]i))C.3.1.4. if [w]�h 6= ;, add [w]h to C([v]i; ix ([v]i)� ix 0([v]i) + 1)C.3.2. increment ix ([v]i) by oneGiven the correctness of Algorithms B, to see the correctness of Algorithm C, our onlyproblem is to show that it correctly buckets the visited children of visited components.AlgorithmC is only responsible for the bucketing of a child [w]h of [v]i from after [w]h has beenvisited, that is, we may assume that [w]h is in the correct bucket of [v]i just before the visit.However, just before the visit, [w]h is minimal, so by Corollary 3, minD([w]�h) = mind([w]�h).In particular, minD([w]�h) # (i� 1) = mind([w]�h) # (i� 1) (3)We shall refer to minD([w]�h) # (i� 1) as the bucket index since it uniquely determines thecorrect bucket for [w]h; namely B([v]i; (minD([w]h) # i� 1)� ix 0([v]i)).We claim that (3) is maintained after [v]i has �rst been visited. As in the proof of (1),note that (3) implies that the bucket index minD([w]�h) # (i � 1) cannot decrease, andthat (3) can only be violated if the bucket index increases. At the same time, the bucketindex minD([w]�h) # (i � 1) can only increase in connection with visits to vertices in [w]�h ,i.e. in Step C.3.1.2. By induction, the call Visit([w]h) is correct, so if [w]�h is not emptied,minD([w]�h) # i� 1 = d([w]�h) # i� 1 is increased by one. Thus, moving [w]h up one bucketis correct.6 The component treeIn this section, we will present a linear time and space construction for the component treeT de�ned in the previous section. Recall that on level i, we want all edges of weight < 2i.Thus, we are only intestested in the position of the most signi�cant bit (msb) of the weights,i.e. msb(x) = blog2 xc. Although msb is not always directly available, it may be obtained bytwo standard AC0 operations by �rst converting the integer x to a double, and then extractthe exponent. Alternatively, msb may be coded by a constant number of multiplications, asdescribed in [FW93].1. Construct a minimum spanning tree T deterministically in linear time as described in[FW94]. Clearly, for all i, the components of Gi coincide with those in Ti.2. In linear time and space, we preprocess T so that union-�nd over components of T canbe supported in constant time per operation [GT85]: we operate on a S � T , startingwith S consisting of singleton vertices. A union operation adds an edge from T to S,and �nd(v) returns a canonical vertex from the component of S that v belongs to.3. Construct a sequence e1; : : : ; en�1 of the edges of T sorted so that msb(`(ei)) <msb(`(ei+1)). Note that msb(`(ei)) < log2w. Thus, if logw = O(n), such a sequencemay be produced by simple bucketting. Otherwise, logw = O(w=(logn log logn)), andthen we can sort in linear time by packed merging [AH92, AHNR95].After the above preliminary steps, we can construct the component tree T as follows.7

Algorithm D:D.1. i �1D.2. X VD.3. for j 1 to n� 1,D.3.1. if msb(`(ej)) > i,D.3.1.1. X 0 f�nd(v)jv 2 XgD.3.1.2. for all v 2 X 0,D.3.1.2.1. P (c(v)) cD.3.1.2.2. c c+ 1D.3.1.3. for all v 2 X,D.3.1.3.1. P (c(v)) P (c(�nd(v)))D.3.1.4. X ;D.3.2. i msb(`(ej))D.3.3. let (v; w) = eiD.3.4. X X [f�nd(v); �nd(w)gD.3.5. union(v; w)7 The unvisited data structureLet U be the unvisited sub-forsest U of the component tree T . Thus a component [v]i of Tis in U if and only if [v]�i = [v]i.For each root [v]i in U we which to maintain minD([v]i). Also, if [v]i is visited, eachchild [w]h of [v]i in T is becomming a new root in U , so we need to �nd minD([w]h).We will formulate the problem in a more clean data structure way. Let v1; : : : ; vn be anordered of the vertices corresponding to an arbitrary ordering of T . Thus, each tree in Ucorresponds to some segment vi; : : : ; vk for which we want to know mini�j�k D(vj). When weremove a root from U we split the segment into the segments of the subtrees. In conclussionwe are studing a dynamic partitioning of v1; : : : ; vn into connected segments, where for eachsegment, we want to know the minimalD-value. When we start, v1; : : : ; vn forms one segmentand D(vi) =1 for all i. We may now repeatedly split a segment or change the D-value ofsome vi. After each operation we need to up-date the minimum D-values of the roots in Uaccordingly.In this section we will show how to perform � n� 1 splits and m changes in O(m) time,thus showing that we can maintain minD([v]i) for all roots in U in O(m) total time. As a�rst step, we showLemma 11 We can accomodate � n� 1 splits and m changes in O(n logn+m) time.Proof: First we make a balanced binary sub-division v1; : : : ; vn of into intervals. That is, thetop-interval is v1; : : : ; vn and an interval vi; : : : ; vj, j > i, has the two children vi; : : : ; vb(i+j)=2cand vb(i+j)=2c+1; : : : ; vj.An interval is said to be broken when it is not contained in a segment, and any segmentis the concatenation of at most 2 logn maximal unbroken intervals.8

In the process, each vertex has a pointer to the maximal unbroken interval it belongs to,and each maximal unbroken interval has a pointer to the segment it belongs to. For eachsegment and for each maximal unbroken interval, we maintain the minimal D-value. Thus,when a D-value is changed, we may have to update the minimal D-value of the maximalunbroken interval and the segment containing it. This takes constant time.When a segment is split, we may break an interval, creating at most 2 log2 n new maximalunbroken intervals. For each of these disjoint intervals, we visit all the vertices, in order to�nd the minimal D-values, and to restore the pointers from the vertices to the maximalunbroken intervals containing them. Since each vertex is contained in logn intervals, theamortized cost of this process is O(n logn). Next for each of the two new segments, we�nd the minimal D-value as the minimum of the minimum D-values of the at most 2 lognmaximal unbroken intervals they are concatenated from. This takes O(logn) time per split,hence an O(n logn) total time.In order to get down to linear total cost, we will make a reduction to Fredman and Willard'satomic priority queues [FW94]. Let T (m;n; s) denote the cost of accomodating m changesand n � 1 splits, starting with a sequence of length n that has already been divided intosegments of size at most s. By Lemma 11, T (m;n; n) = O(n logn+m). In fact, noting thatwe only need the log s bottom levels of the interval structure, the construction of the proofactually gives T (m;n; s) = O(n log s+m). This improvement is, however, not necessary forour reduction.Lemma 12 T (m;n; s) = O(m) + T (m;n; log s) + T (m; 2n= log s; 2s= log s).Proof: Besides the original splits, we introduce a split at every log s vertex, thus splittingv1; : : : ; vn into pieces of size log s. Maintaining the minimum for the segments within thesepieces is done in T (m;n; log s) total time.We will maintain a sequence w1; : : : ; w2n= log s of super vertices derived from the pieces asfollows. To piece i correspond w2i�1 and w2i. If piece i is not broken, D(w2i�1) = D(w2i) is theminimalD-value of piece i. However, if piece i is broken, D(w2i�1) is the minimalD-value ofthe leftmost segment of piece i, andD(w2i) is the minimalD-value of rightmost segment. TheD-values of the super vertices are trivially maintained in total time O(m), and the minimumD-values of the segments of super vertices are maintained in T (m; 2n= log s; 2s= log s) totaltime. Now the result follows since any segment of the orginal sequence, is either within asegment of a piece, or a segment of super vertices.Applying Lemma 11 and Lemma 12 twice, we getCorollary 13 T (m;n; n) = O(m) + T (m;n; log logn).From the construction of Q-heaps in [FW94], we have:Lemma 14 ([FW94]) Given O(n) preprocessing time and space for construction of ta-bles, we can maintain a family fSig of word-sized integers multisets, each of size at mostO(4plogn), so that each of the following operation can be done in constant time: insert x inSi, delete x from Si, and �nd the rank of x in Si, returning the number of elements of Sithat are stricly smaller than x. The total space is O(n+Pi jSij).9

Lemma 15 Given O(n) preprocessing time and space for construction of tables, we canmaintain a family fAig of arrays Ai : f0; : : : ; s � 1g ! f0 : : : ; 2b � 1g, s = O(4plogn), sothat each of the following operation can be done in constant time: assign x to Ai[j] andgiven i; k; l, �nd minl�j�kAi[j]. Initially, we assume Ai[j] =1 for all i; j. The total spaceis O(n+Pi jAij).Proof: We use Lemma 14 with Si being the multiset of elements in Ai. Thus, wheneverwe change Ai[j], we delete the old value of Ai[j] and insert the new value in Si. Further, wemaintain a function �i : f0; : : : ; s� 1g ! f0; : : : ; s� 1g, so that �i(j) is the rank of Ai[j] inSi. Here ties are broken arbitrarily. Now �i is stored as a sequence of s (log s)-bit pieces,where the jth pieces is the binary representation of �(j � 1). Thus, the total bit-length of�i is s log s = O(4plogn log logn) = o(logn). Since logn � b, this implies that �i �ts in oneregister.By Lemma 14, when we assign x to Ai[j], by asking for the rank of x in Si[j], we geta new rank r for x in Ai[j]. To update �i, we make a general transition table �, that asentry takes a � : f0; : : : ; s� 1g ! f0; : : : ; s� 1g and j; r 2 f0; : : : ; s� 1g. In �(�; j; r), westore �0 such that �0(j) = r, �0(h) = �(h) + 1 if minfr; �(j)g < �(h) < maxfr; �(j)g, and�0(h) = �(h) in all other cases. There are sss2 entries to � and each takes one word and iscomputed in time O(s). Since s = O(4plogn), if follows that � is constructed in o(n) timeand space. Using �, we up-date �i by setting it to �[�i; j; r].To complete the construction, we construct another table 	 that given � : f0; : : : ; s�1g !f0; : : : ; s � 1g and l; k 2 f0; : : : ; s� 1g returns the j 2 fk; : : : ; lg minimizing �(j). Like �,the table 	 is easily constructed in o(n) time and space. Now, minl�j�kAi[j] is found inconstant time as 	[�i; k; l].Corollary 16 T (m;n; 4plogn) = O(m).Proof: Divide v1; : : : ; vn to pieces of lenght 4plogn. We maintain the D-values for eachpiece as described in Lemma 15. Now any segment of lenght � 4plogn is contained in atmost two pieces, and hence the minimum D-value of any such segment, is found in constanttime.Combining Corollaries 13 and 16, we getProposition 17 T (m;n; n) = O(m).8 Concluding remarksFor completeness, we round up by presenting the pseudo-code for visiting a vertex v:Algorithm E: visit vE.1. S S [fvgE.2. for all (v; w) 2 E, if D(v) + `(v; w) < D(w),E.2.1. let [w]i be the root of [w]0 in U and let [w]j be the parent of [w]i in T .E.2.2. change D(w) to D(v) + `(v; w). 10

E.2.3. if this decreases minD([w]�i) # (j � 1) and minD([w]�i) # (j � 1) � ix 0([w]j) +�([w]j),E.2.3.1. move [w]i to B([w]j;minD([w]�i) # (j � 1)� ix 0([w]j))In conclussion,Theorem 18 There is a deterministic linear time and linear space algorithm for the singlesource shortest path problem for undirected weighted graphs.It should be mentioned that our algorithm uses multiplication implicitely in its calls toFredman and Willard's atomic heaps [FW94]. Multiplication is not an AC0-operation, butas shown in [AMT96], the use of non-AC0-operations is not inherent. Multiplication maybe replaced by some simple selection and copying functions in AC0 that are just missing instandard instruction sets.The above algorithm is quite simple, except for the use of atomic heaps, which, as statedin [FW94], require n > 21220 . For the sake of implementations, we suggest some simplealternatives. First consider the minimum spanning tree computation in Section 6, which istaken from [FW94] and is based on atomic heaps. Note that it satis�es with a spanning treethat is minimal in the graph where each weight x is replaced by msb(x) (recall that msb isfound in two fast AC0-operations: �rst convert to a double, and then extract the exponent).Let C be the maximal weight. Since C �ts in one word, msb(C) is bounded by the wordlength b (� 128?). Assume the typical case that n � msb(C). We can then run Prim'sminimum spanning tree algorithm [Pri57], growing the minimum spanning tree from a singlevertex, letting the priority queue have a bucket for each msb-weight, and a bit-map tellingwhich buckets are non-empty. Using msb on the bit-map, we can immediately identify theleast non-empty bucket. Thus, we have a very simple deterministic O(logC +m) time andspace minimum spanning tree algorithm for msb-weights.Concerning the use of atomic heaps in the previous section, recall that the construction ofthe proof of Lemma 11 actually gives T (m;n; s) = O(m+ n log s). Together with Corollary13, this gives T (m;n; n) = O(m+n log log logn). In conclussion, we have an implementable,O(logC +m + n log log logn)-algorithm for SSSP. This time bound is easily improved, butlikely at the expence of a more complicated algorithm with larger constants.Thus, a deterministic linear time and linear space algorithm has been presented forthe single source shortest path problem on undirected weighted graphs. This theoreticallyoptimal algorithm is not in itself suitable for implementations, but there are simple variantsof it that should work well in both theory in practice.References[AMOT90] R.K. Ahuja, K. Melhorn, J.B. Orlin, and R.E. Tarjan, Faster algorithms forthe shortest path problem, J. ACM 37 (1990) 213{223.[AH92] S.Albers and T.Hagerup, Improved parallel integer sorting without concurrent writing,in Proceedings of the 3rd ACM-SIAM Symposium on Discrete Algorithms, pages 463{472, 1992.[AHNR95] A. Andersson, T. Hagerup, S. Nilsson, and R. Raman. Sorting in linear time?In Proc. 27th ACM Symposium on Theory of Computing (STOC), pages 427{436, 1995.11

[AMT96] A. Andersson, P.B. Miltersen, and M. Thorup. Fusion trees can be implementedwith AC0 instructions only. BRICS-TR-96-30, Aarhus, 1996.[Dij59] E.W.Dijkstra, A note on two problems in connection with graphs, Numer. Math. 1(1959), 269{271.[CGS97] B.V. Cherkassky, A.V. Goldberg, and C. Silverstein, Buckets, heaps, lists,and monotone priority queues. In Proceedings of the 8th ACM-SIAM Symposium onDiscrete Algorithms, pages 83{92, 1997.[GT85] H.N. Gabow and R.E. Tarjan, A linear-time algorithm for a special case of disjointset union. J. Comp. Syst. Sc. 30:209{221, 1985.[FT87] M.L. Fredman and R.E. Tarjan, Fibonacci heaps and their uses in improved net-work optimization algorithms, J. ACM 34 (1987) 596{615.[FW93] M.L. Fredman and D.E. Willard, Surpassing the information theoretic boundwith fusion trees. J. Comp. Syst. Sc. 47:424{436, 1993.[FW94] M.L. Fredman and D.E. Willard, Trans-dichotomous algorithms for minimumspanning trees and shortest paths, J. Comp. Syst. Sc. 48 (1994) 533{551.[Kru56] J.B. Kruskal, On the shortest spanning subtree of a graph and the traveling salesmanproblem. Proc. Amer. Math. Soc. 7:48{50, 1956.[MN90] K. Melhorn and S. N�ahler, Bounded ordered dictionaries in O(log logN) time andO(n) space, Inf. Proc. Lett. 35, 4 (1990), 183{189.[Pri57] R.C. Prim, Shortest connection networks and some generalizatoins. Bell System Tech-nical Journal 36 (1957), 1389{1401.[Ram96] R. Raman. Priority queues: small monotone, and trans-dichotomous. Proc. ESA'96,LNCS 1136, 1996, 121{137.[Tar75] R.E. Tarjan. E�ciency of a good but not linear set union algorithm. J. ACM22:215-225, 1975.[Tho96] M. Thorup. On RAM priority queues. In Proceedings of the 7th ACM-SIAM Sympo-sium on Discrete Algorithms, pages 59{67, 1996.[vBoa77] P. van Emde Boas, Preserving order in a forest in less than logarithmic time andlinear space, Inf. Proc. Lett. 6 (1977), 80{82.[vBKZ77] P. van Emde Boas, R. Kaas, and E. Zijlstra, Design and implementation of ane�cient priority queue, Math. Syst. Th. 10 (1977), 99{127.[Wil64] J.W.J. Williams, Heapsort, Comm. ACM 7, 5 (1964), 347{348.
12

