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Abstract

A deterministic linear time and linear space algorithm is presented for the undi-
rected single source shortest path problem.

1 Introduction

Let G = (V, E), |V| =n, |E| = m, be an undirected connected graph with a weight function
¢ : E — Ny and a distinguished vertex s € V. The single source shortest path problem (SSSP)
is for every vertex v to find the distance from d(v) = dist(s,v) from s to v. This is one of
the classic problems in algorithmic graph theory. In this paper we present an determinstic
linear time and linear space algorithm for undirected SSSP. We assume that the weights are
intergers each stored in one word.

Since 1959, all developments in SSSP have been based in Dijkstra’s algorithm [Dij59].
For each vertex we have a super distance D(v) > d(v). Moreover, we have a set S C V such
that Vv € S : D(v) = d(v). Initially, S = {s} and D(s) = d(s) = 0. Forallv € V'\ S, we
maintain that D(v) = min,eg, (u0)ep{d(v) +£(u,v)}. In each round of the algorithm we wvisit
a vertex v € V'\ S minimizing D(v). As proved by Dijksta, D(v) = d(v), so we can move v
to S. Consequently, for all (v,w) € E, if D(v) + ¢(v,w) < D(w), we have to decrease D(w)
to D(v) + {(v,w). Dijksta’s algorithm finishes when S =V, returning D(-) = d(-).

The complexity of Dijksta’s algorithm is determined by the n — 1 times we find the
vertex v € V \ S minimizing D(v) and the at most m times we decrement some D(w).
All subsequent developments in SSSP have been based various speed-ups and trade-offs in
priority queues/heaps supporting these two operations. If we just find the minimum by
searching all vertices, we solve SSSP in O(n? 4+ m) time. Applying Williams’ heap of 1964,
we get O(mlogn) time. Fredman and Tarjan’s Fibinacci heaps [FT87] had SSSP as a prime
application, and reduced the running time to O(m + nlogn). They noted that this was an
optimal implementation of Dijkstra’s algorithmn in a comparison based model, since it visits
the vertices in sorted order. Using Fredman and Willard’s fusion trees, that like this paper
assumes integer weights stored in words, we get an O(m+/logn) randomized bound [FW93].
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Their later atomic heaps give an O(m + nlogn/loglogn) bound [FW94|. More recently,

Thorup’s priority queues gave an O(mloglogn) bound and an O(m + ny/log n1+€) bound

[Tho96]. These bounds are randomized assuming that we want linear space. Latter, Raman
has obtained an O(m+ ny/lognloglogn) bound in deterministic linear space using standard
AC? instructions only.

There has also been a substantial development based on the maximal edge weight C|
again assuming integer edge weights, each fitting in one word. First note that using Boas’s
general search structure [MN90, vBoa77, vBKZ77], and bucketing according to | D(v)/n], we
get an O(mloglog C) algorithm. Particularly for the SSSP application, Ahuja, Melhorn, and
Tarjan has found a priority queue giving running time O(n+y/logC 4+ m). Recently this has
been improved by Cherkassky, Goldberg, and Silverstein to O(n(log C)'/3¢ + m) [CGS97].

As observed in [FT87], implementing Dijksta’s algorithm in linear time would require
sorting in linear time. In fact, the converse also holds, in that Thorup has shown that linear
time sorting implies that Dijkstra’s algorithm can be implemented in linear time [Tho96].
In this paper, we solve the undirected version of SSSP deterministically in O(m) time and
space. Since we do not know how to sort in linear time, this implies that we are deviating
from Dijksta’s algorithm in that we do not visit the vertices in order of increasing distance
from s. Our algorithm is based on a hierarchical bucketing structure, where the bucketing
helps identifying vertex pairs that can be visited in any order.

Finally, a note should be made on our assumption that the weights are integers, each
stored in one word. If the weights are not integers but floating point, the problem is less
well-defined since adding up edge-weights may conflict with the available precision. This
contrast the situation with sorting or, say, minimum spanning tree where we do not need
to add up weights. For those problems, one can simply exploit that the order of floating
points is given from the representation by interpreting them as integers. Also, for any given
computiner, a word is understood to be the maximal entity that can be dealt with in one
time step. Our algorithm is easily modified so as to allow for weights stored in multiple
words. The complexity then becomes linear in the total number of words.

2 Preliminaries

Throughout the paper, we will assume that G,V, E (,s, D,d, S are as defined in the intro-
duction in the description of Dijksta’s algorithm. The point in this work is to find a different
more efficient visiting sequence, still preserving that D(v) = d(v) when a vertex v is visited.

We will let b denote the word length. We will write |x/2'| as = | i to emphasize that
it is calculated simply by shifting out the ¢ least significant bits. If f is a function on the
elements from a set X, we let f(X) denote {f(z)|zr € X}.

3 The component hierachy

By G; we denote the subgraph of G whose edge set is the edges e from G with ((e) < 2%
Thus Gy = G while G| consists of singleton vertices.
On level 7 in the hierachy, we have the componenets of GG;. The component of v on level

i is denoted [v];. By [v]; we will denote [v]; \ S, noting that [v], may not be connected.

Observation 1 If [v]; # [w]; and D(w) i < D(v) | i then D(w) — D(v) < dist(v,w).



Proof: Since [v]; # [w];, any path from v to w contains an edge of lenght > 2" and hence
the dist(v,w) > 2'. However, D(w) | i < D(v) | i implies D(w) — D(v) < 2". u

For i < w, we call [v]; a child of [v];;1, and say that [v]; is a min-child of [v];4, if
min(D([v];7) = min(D([v]; ;). We say that [v]; is minimal if for j = 4,...,w — 1, [v]; is
a min-child of [v];41. Note that minimality depends on S.

Lemma 2 Let [v|;41 be minimal and u be the first vertex outside S on a a shortest path
from s tov. If u & [v];, d(v) | i > min D([v];,,) | i; otherwise d(v) > min D([v];).

Proof: Since u is the first vertex outside S on a shortest path from s to v, D(u) = d(u)
and d(v) = d(u) + dist(u,v). If u € [v];, d(v) > d(u) = D(u) > min D([v];).

We prove the statement of the lemma for u ¢ [v]; by induction on b — 4. In the base case
with i = b, [v], = G, so u cannot be outside [v];, and the statement is vacuously true. Thus,
assume ¢ < b.

If w & [v]it1, by induction, d(v) | i +1 > min D([v];,,) | ¢ + 1. By minimality of [v]i11,
min D([v];,,) | i+ 1 = min D([v] ) { i+ 1. Thus, d(v) | i+ 1 > minD([v];,,) | i+ 1,
implying d(v) | ¢ > min D([v];, ;) | 7.

If u € [v]; 1\ [v];, D(u) L 7> minD([v];,,) | i. Moreover, since u & [v];, dist(u,v) > 2.
Hence, d(v) = (D(u) + dist(u,v)) | ¢ > (min D([v];,,) | ) + L. u

Since D(v) > d(v) for all v, we get some immediate corollaries:

Corollary 3 If [v]; is minimal, min D([v];) = mind([v];). In particular, if D(v) =
min D([v];), D(v) = d(v). Also, if i =0, [v]; = {v} and D(v) = d(v).

Corollary 4 If [v];,1 < w is not minimal but [v];+1 is minimal, then
mind([v]; ) | ¢ > min D([v];,,) | 0.

In particular, if min D([v];") | i = (min D([v];,,) @) + 1, min D([v];) | ¢ = mind([v]; ) | .

4 Visiting minimal vertices

Definition 5 In the rest of this paper, visiting a vertex v requires that [v]g = {v} is minimal.
When v is wisited, it is moved to S, setting D(w) to min{D(w), D(v) + £(v,w)} for all
(v,w) € E.

The following facts now follow immediately from Corollary 3:

Fact 6 When we visit a vertex v, D(v) = d(v).

Fact 7 For all [v];, maxd([v]; \ [v];) ¢ < mind([v]]) | i.

Lemma 8 If [v]; is minimal and visiting some vertex w € V\S implies that D([v]; ) changes,
then w € [v]; and the change is an increase by one.



Proof: By Corollary 3, before the visit to w, min D([v];") | i = mind([v];). Since D dom-
inates d and d does not change, this means that min D([v];") | ¢ cannot decrease. Moreover,
since the D-values are never increased, an increase of min D([v];) | ¢ means that [v]; is
decreased, i.e. that w € [v]; before the visit. Let [v]; refer to the value before the visit to
w, i.e. w € [v];. Since [v]; is connected, if [v]; \ {w} is non-empty, there must be an edge
(u,z) in [v]; where u € [v]; and z € [v]; \ {w}. By definition of [v];, £(u,z) < 2°. Moreover,
by Fact 7, d(u) | i < min D([v];) { ¢. Thus

)

min D([v]; \ {w}) } i < D(z) L i < (min D([v];) | i) + 1.
|

In connection with Lemma 8, it should be noted that with directed graphs, the increase could
be by more than one. This is the first time in this paper, that we use the undirectedness.

Lemma 9 If [v]; is minimal, it remains minimal until either [v]; =0 or min D([v];) | i is
increased.

Proof: If [v]; is minimal, but visiting some vertex w stops [v]; from being minimal, then
there is a minimal value j > ¢ and a vertex u such that [v];11 = [u];41 and [u]; is minimal
after the visit to w. Before the visit to w, [v]; was minimal. Hence [v]; was minimal,
so min D([v];) 4 j < minD([v]j+1) } j. By Lemma 3, the minimality of [v];4; implies
that min D([v];41) = mind([v]j+1). Hence min D([v];11) | j cannot decrease. Thus, if
min D([v];") | 4 is neither increased, nor emptied, we must have min D([v];4+1) | j = D([v];)
i, contradicting that [v]; stopped being minimal. [ ]

We are now ready to derive a first algorithm for the undirected single source shortest path
problem. The algorithm is so far inefficient, but it illustrates the basic ideas in how we intend
to visit the vertices in a linear time algorithm.

Algorithm A: SSSP, given G = (V, E) with weight function ¢ and distinguished vertex
s, outputs D with D(v) = d(v) = dist(s,v) for all v € V.

A.l. for all v, D(v) < o0

A2, D(s)« 0, S« {s}

A3. forall (s,v) € E, D(v) « {(s,v).

A.4. Visit([s]y, 0)

A.5. return D

Algorithm B: Visit([v];), assuming that [v]; is mininal, it visits all w € [v]; with d(w)

7

i
equal to the value of min D([v];) | ¢ when the call is made. After the call, either [v]; = ()
or min D([v];) @ = d([v];) { 7 is increased by one.

B.1. if ¢ =0, visit v and return

B.2. if [v]; has not been visited previously, iz ([v];) <= min D([v];) i — 1.

B.3. repeat until [v]; =0 or iz([v];) } 1 is increased: > iz([v];) = min D([v];7) i —1
B.3.1. while J[w];—1 C [v]; : min D([w],_,) i — 1 = iz([v];),



B.3.1.1. let [w]; 1 C [v]; A min D([w]; ;) }i—1=1iz([v]);)
B.3.1.2. Visit([w];—1)
B.3.2. increment iz ([v];) by one

In the remainder of this section, we will prove the correctness of Algorithms B, and hence of
Algorithm A. The proof is by induction on 7. If i = 0, [v]; = [v]; = {v}, and the visit to v
in Step B.1 is correct since v is [v]; is minimal by assumption. Afterwards, [v]; = 0. Thus,
we may assume that ¢ > 0. To prove correctness, we will study the following invariant:

iw([o],) = min D([];) b i — 1 = mind([o];) i — 1 1)

When iz ([v];) is first assigned in step B.2, it is assigned D([v];) | i—1. Also, at that time, [v];
is minimal, so min D([v];) = mind([v];) by Lemma 3. Thus (1) holds after this assignment.

Note that min D([v];) } i — 1 = mind([v];) | @ — 1 implies that min D([v];) | i — 1 cannot
decrease. On the other hand, min D([v];) can only increase in connection with visits to
vertices in [v];. Thus, a violotion of (1) is either due to a visit within [v]; or to a change
in iz ([v];). The first possible violation is hence in connection with the call Visit(|w]; ;).
In particular, we may assume that (1) is true before the call. Then, since iz([v];) | 1 has
not been increased, by Lemma 9, [v]; is still minimal. Also, by definition [w]; ; is a min-
child, so [w]; 1 is minimal. Thus, by induction, we may assume that the call Visit([w]; 1) is
correct. However, after the call, if the condition of the while-loop is still satisfied, it says that
min D([v];) did not increase, so (1) still holds. If the condition fails, we know that min D([v];)
did increase. By Lemma 8, first time in the call Visit([w]; 1) where we increase min D([v];) {
i, we increase it by one. However, this implies that D([w]; 1) } i —1 > D([v];) } i — 1 is also
increased, but then, by induction, there are no more visits to made by Visit([w]; 1). Hence
we conclude that D([v];) | ¢ is increased by exactly one, but that means that (1) is restored
in step B.3.2.

5 Towards a linear time algorithm

We will now give an overiew of a linear time algorithm algorithm SSSP. Define the the
component tree T representing the topological structure of the component hierachy, skipping
all nodes [v]; = [v];—1. Thus, the leaves of T are the components [v]y = {v}, v € V. The
internal nodes are the components [v];, ¢ > 0, [v],_1 C [v];. The root in T is the node
[v], = G with r minimized. The parent of a node [v]; is its nearest degree > 2 ancestor in the
component hierachy. Since 7 have no degree one nodes, the number of nodes is < 2n — 1.
In Section 6 we show how to construct 7 in time O(m). Given T, it is straightforward to
modify Algorithm B so that it recurses within 7. In the rest of this paper, when we talk
about children or parents, it is understood that we refer to 7 rather than to the component
hierachy. A min-child [w], of [v]; is minimizing min D([w],) | ¢ — 1. Thus minimality of
components is inherited from the component hierachy to the component tree 7.

The idea now is that for each visited node [v];, we will bucket the children [w];, according
min D([w],) | i — 1. Having done so, we can identify the min-children in constant time. In
Section 7, we will show how to do the bucketing for unvisited children of visited components,
and later in this section, we will show how to do it for visited children of visited components.

As a main point, we will show that the total number of relevant buckets is O(m). When a
node is first to be visited, it is a child of a visited node, so we know min D([v];") | i —1. Also,



since [v]; is has not yet been visited [v]; = [v]; . Finally, when [v]; is about to be visited, it is
minimal, implying min D([v]; ) = mind([v];), that is, m1nD([ 7)) 4 i—1 =mind([v];) | i—1.

Note that the diameter of [v]; is bounded by Z ¢(e). This immediately implies
maxd([v];) < mind([v];) + > ., ((e). Define ixg([v] ) = mind([v];) and A([v];) =

[ eer, €(€)/2°71]. Then
maxd([v];) 4 i —1 < (izo([v];) L i—1) + A([v];) (2)

Now, for each [v]; € T and each ¢ < A([v];), we allocate a bucket B([v];, ¢) for the children
[w]p, of [v]; with min D([w];) | (i — 1) = izo([v];) + ¢

Lemma 10 The total number of buckets is O(m).

Proof: In connection with [v];, we have A([v]; ) 1243 ¢(e)/2° ! buckets. Thus,
the total number of buckets is <dn+7 7 ., (e )/20 L
If e € [v];, {(e) < 2'. Hence, for any e,

D le)/2mt < > 2Y <

[U]iBE J=i—1
Thus, the total number of buckets < 4m + 4n. [

Note that the values of A([v];) are easily found in time O(m) in a bottom-up traversal of
7. Thus, in time O(m), we can initialize the whole bucket structure, embedding it in one
array of pointers to the initially empty doubly linked list of children going into the bucket
— having the list doubly linked allows us to take children out of buckets, when they are
to be moved. We are now ready to present the final visiting procedure. Relative to the
previous Algorithm B, it is generalized to handle that that if a child [w], of [v]; may not
have h = ¢ — 1. This generalization is straightforward. Moreover, it is modified so as to take
care of the bucketing of visited children of visited components.

Algorithm C: Visit([v];, j), assuming that [v]; is mininal and a child of [v]; in T, it visits
all w € [v]; with d(w) | j — 1 equal to the value of min D([v];) | j — 1 when the call is

made. Aftelr the call, either [v];7 =0 or min D([v];) | j — 1 =d([v];) | j — 1 is increased by
one.

C.1. if ¢ =0, visit v and return

C.2. if [v]; has not been visited previously,
C.2.1. ixo([v];) <~ min D([v];) 4 i—1
C.2.2. for ¢ = 0 to A([v];), B([v],q) < 0.
C.2.3. for all children [w]y, of [v];,

C.2.3.1. if min D([w]p) 47— 1 < izo([v];) + A([v];),
C.2.3.1.1. add [w]p, to B([v];, (min D([w]y) L i — 1) — ize([v];)).
C.2.4. iz ([v];) « 1zo([v];)

C.3. repeat until [v]; = 0 or iz([v];) J (j—1i) is increased: > iz ([v];) = (min D([v];) } j—1)
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C.3.1. while B([v];, iz ([v];) — izo([v];)) # 0,

C.3.1.1. let [w], € B([v];, w:([v]i) — izo([v];))

C.3.1.2. Visit([w]p, )

C.3.1.3. delete [w], from B([v);, iz ([v];) — izo([v]))

C.3.1.4. if [w];, # 0, add [w], to C([v];, iz([v];) — izo([v];) + 1)
C.3.2. increment iz ([v];) by one

Given the correctness of Algorithms B, to see the correctness of Algorithm C, our only
problem is to show that it correctly buckets the visited children of visited components.
Algorithm C is only responsible for the bucketing of a child [w],, of [v]; from after [w];, has been
visited, that is, we may assume that [w]y, is in the correct bucket of [v]; just before the visit.
However, just before the visit, [w], is minimal, so by Corollary 3, min D([w], ) = mind([w],).
In particular,

min D(w];) b (G — 1) = mind([w];) + (i — 1 3)

We shall refer to min D([w],,) | (¢ — 1) as the bucket index since it uniquely determines the
correct bucket for [w],; namely B([v];, (min D([w]p) L ¢ — 1) — izo([v];)).

We claim that (3) is maintained after [v]; has first been visited. As in the proof of (1),
note that (3) implies that the bucket index min D([w],) | (¢ — 1) cannot decrease, and
that (3) can only be violated if the bucket index increases. At the same time, the bucket
index min D([w],) | (i — 1) can only increase in connection with visits to vertices in [w],,
i.e. in Step C.3.1.2. By induction, the call Visit([w],) is correct, so if [w], is not emptied,
min D([w];) L i—1=d([w];) { i—1is increased by one. Thus, moving [w], up one bucket
1s correct.

6 The component tree

In this section, we will present a linear time and space construction for the component tree
T defined in the previous section. Recall that on level 7, we want all edges of weight < 2°.
Thus, we are only intestested in the position of the most significant bit (msb) of the weights,
i.e. msb(x) = |log, z|. Although msb is not always directly available, it may be obtained by
two standard ACP operations by first converting the integer x to a double, and then extract
the exponent. Alternatively, msb may be coded by a constant number of multiplications, as
described in [FW93].

1. Construct a minimum spanning tree 7' deterministically in linear time as described in
[FWO94]. Clearly, for all 4, the components of G; coincide with those in T;.

2. In linear time and space, we preprocess 1" so that union-find over components of 7' can
be supported in constant time per operation [GT85]: we operate on a S C T, starting
with S consisting of singleton vertices. A union operation adds an edge from 7" to .S,
and find(v) returns a canonical vertex from the component of S that v belongs to.

3. Construct a sequence ey,...,e, ;1 of the edges of T sorted so that msb({(e;)) <
msb((e;11)). Note that msb({(e;)) < log, w. Thus, if logw = O(n), such a sequence
may be produced by simple bucketting. Otherwise, logw = O(w/(lognloglogn)), and
then we can sort in linear time by packed merging [AH92, AHNR95].

After the above preliminary steps, we can construct the component tree 7 as follows.
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Algorithm D:

D1. i1+ -1

D2 X<V

D.3. forj«1ton—1,

D.3.1. if msb(L(e;)) > 1,

D.3.1.1. X' {find(v)|lv e X}
D.3.1.2. for all v € X',

D.3.1.2.1. P(c(v)) « ¢

D.3.1.2.2. cc+1

D.3.1.3. for all v € X,

D.3.1.3.1. P(c(v)) < P(c(find(v)))
D.3.1.4. X0

D.3.2. i < msb(L(e;))

D.3.3. let (v,w) =¢;

D.3.4. X + X U{find(v), find(w)}
D.3.5. union (v, w)

7 The unvisited data structure

Let U be the unvisited sub-forsest U of the component tree 7. Thus a component [v]; of T
is in U if and only if [v]; = [v];.

For each root [v]; in & we which to maintain min D([v];). Also, if [v]; is visited, each
child [w]y, of [v]; in T is becomming a new root in U, so we need to find min D([w]p,).

We will formulate the problem in a more clean data structure way. Let vy,...,v, be an
ordered of the vertices corresponding to an arbitrary ordering of 7. Thus, each tree in U
corresponds to some segment v;, . .., vy for which we want to know min;< ;< D(v;). When we
remove a root from U we split the segment into the segments of the subtrees. In conclussion
we are studing a dynamic partitioning of vy, ..., v, into connected segments, where for each
segment, we want to know the minimal D-value. When we start, vy, ..., v, forms one segment
and D(v;) = oo for all .. We may now repeatedly split a segment or change the D-value of
some v;. After each operation we need to up-date the minimum D-values of the roots in I/
accordingly.

In this section we will show how to perform < n — 1 splits and m changes in O(m) time,
thus showing that we can maintain min D([v];) for all roots in U/ in O(m) total time. As a
first step, we show

Lemma 11 We can accomodate < n — 1 splits and m changes in O(nlogn + m) time.

Proof: First we make a balanced binary sub-division vy, ..., v, of into intervals. That is, the
top-interval is vy, ..., v, and an interval v;, ..., v, 7 > 4, has the two children v;, ..., v 1) /2)
and Ul (i+5)/2]+1s - - -5 Uj-

An interval is said to be broken when it is not contained in a segment, and any segment
is the concatenation of at most 2logn maximal unbroken intervals.



In the process, each vertex has a pointer to the maximal unbroken interval it belongs to,
and each maximal unbroken interval has a pointer to the segment it belongs to. For each
segment and for each maximal unbroken interval, we maintain the minimal D-value. Thus,
when a D-value is changed, we may have to update the minimal D-value of the maximal
unbroken interval and the segment containing it. This takes constant time.

When a segment is split, we may break an interval, creating at most 2 log, n new maximal
unbroken intervals. For each of these disjoint intervals, we visit all the vertices, in order to
find the minimal D-values, and to restore the pointers from the vertices to the maximal
unbroken intervals containing them. Since each vertex is contained in logn intervals, the
amortized cost of this process is O(nlogn). Next for each of the two new segments, we
find the minimal D-value as the minimum of the minimum D-values of the at most 2logn
maximal unbroken intervals they are concatenated from. This takes O(logn) time per split,
hence an O(nlogn) total time. u

In order to get down to linear total cost, we will make a reduction to Fredman and Willard’s
atomic priority queues [FW94]. Let T'(m,n, s) denote the cost of accomodating m changes
and n — 1 splits, starting with a sequence of length n that has already been divided into
segments of size at most s. By Lemma 11, T'(m,n,n) = O(nlogn +m). In fact, noting that
we only need the log s bottom levels of the interval structure, the construction of the proof
actually gives T'(m,n,s) = O(nlogs + m). This improvement is, however, not necessary for
our reduction.

Lemma 12 T'(m,n,s) = O(m) + T(m,n,logs) + T(m,2n/logs,2s/logs).

Proof: Besides the original splits, we introduce a split at every log s vertex, thus splitting
vy, ..., 0, into pieces of size log s. Maintaining the minimum for the segments within these
pieces is done in T'(m, n,log s) total time.

We will maintain a sequence wy, ..., Wz, 10z s Of super vertices derived from the pieces as
follows. To piece i correspond wo; 1 and wo;. If piece i is not broken, D(wq;_1) = D(ws;) is the
minimal D-value of piece i. However, if piece i is broken, D(ws;_1) is the minimal D-value of
the leftmost segment of piece i, and D(wy;) is the minimal D-value of rightmost segment. The
D-values of the super vertices are trivially maintained in total time O(m), and the minimum
D-values of the segments of super vertices are maintained in 7'(m, 2n/logs, 2s/log s) total
time. Now the result follows since any segment of the orginal sequence, is either within a
segment of a piece, or a segment of super vertices. [

Applying Lemma 11 and Lemma 12 twice, we get
Corollary 13 T'(m,n,n) = O(m) + T (m,n,loglogn).
From the construction of Q-heaps in [FW94], we have:

Lemma 14 ([FW94]) Given O(n) preprocessing time and space for construction of ta-
bles, we can maintain a family {S;} of word-sized integers multisets, each of size at most
O(v/logn), so that each of the following operation can be done in constant time: insert x in
Si, delete x from S;, and find the rank of x in S;, returning the number of elements of S;
that are stricly smaller than x. The total space is O(n+ Y. |Si|).



Lemma 15 Given O(n) preprocessing time and space for construction of tables, we can
maintain a family {A;} of arrays A; - {0,...,s — 1} — {0...,2" — 1}, s = O(y/logn), so
that each of the following operation can be done in constant time: assign x to A;[j] and
given i, k, 1, find min<;<p A;[j]. Initially, we assume A;[j] = oo for all i,j. The total space
is O(n+ 3. |Aql).

Proof: We use Lemma 14 with S; being the multiset of elements in A;. Thus, whenever
we change A;[j], we delete the old value of A;[j] and insert the new value in S;. Further, we
maintain a function o; : {0,...,s — 1} — {0,...,s — 1}, so that o;(j) is the rank of A;[j] in
S;. Here ties are broken arbitrarily. Now o; is stored as a sequence of s (log s)-bit pieces,
where the jth pieces is the binary representation of o(j — 1). Thus, the total bit-length of
o; is slogs = O(v/lognloglogn) = o(logn). Since logn < b, this implies that o; fits in one
register.

By Lemma 14, when we assign x to A;[j], by asking for the rank of = in S;[j], we get
a new rank r for x in A;[j]. To update o;, we make a general transition table X, that as
entry takes a 0 : {0,...,s =1} = {0,...,s — 1} and j,r € {0,...,s — 1}. In (0,7, 1), we
store o’ such that o'(j) = r, o'(h) = o(h) + 1 if min{r,o(j)} < o(h) < max{r,o(j)}, and
o'(h) = o(h) in all other cases. There are s°s? entries to ¥ and each takes one word and is
computed in time O(s). Since s = O(y/logn), if follows that ¥ is constructed in o(n) time
and space. Using X, we up-date o; by setting it to X[oy, 7, 7].

To complete the construction, we construct another table ¥ that given o : {0,...,s—1} —
{0,...,s =1} and [,k € {0,...,s — 1} returns the j € {k,...,[} minimizing o(j). Like X,
the table W is easily constructed in o(n) time and space. Now, min<;<; A;[j] is found in
constant time as ¥[oy, k, []. u

Corollary 16 T'(m,n,/logn) = O(m).

Proof: Divide vy,...,v, to pieces of lenght y/logn. We maintain the D-values for each
piece as described in Lemma 15. Now any segment of lenght < +/logn is contained in at
most two pieces, and hence the minimum D-value of any such segment, is found in constant
time. -

Combining Corollaries 13 and 16, we get

Proposition 17 T'(m,n,n) = O(m).

8 Concluding remarks

For completeness, we round up by presenting the pseudo-code for visiting a vertex v:

Algorithm E: visit v

El. S+ Su{v}

E.2. for all (v,w) € E, if D(v) 4+ ¢(v,w) < D(w),

E.2.1. let [w]; be the root of [w]y in U and let [w]; be the parent of [w]; in T.
E.2.2. change D(w) to D(v) + ¢(v, w).
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E.2.3. i&c[hl]s ?ecreases min D([w];7) } (j — 1) and min D([w];7) | (j — 1) < izo([w];) +
E.2.3.1. move [w]; to B([w];, min D([w];) | (j — 1) — izo([w];))

In conclussion,

Theorem 18 There is a deterministic linear time and linear space algorithm for the single
source shortest path problem for undirected weighted graphs.

It should be mentioned that our algorithm uses multiplication implicitely in its calls to
Fredman and Willard’s atomic heaps [FW94]. Multiplication is not an AC%-operation, but
as shown in [AMT96], the use of non-AC’-operations is not inherent. Multiplication may
be replaced by some simple selection and copying functions in AC? that are just missing in
standard instruction sets.

The above algorithm is quite simple, except for the use of atomic heaps, which, as stated
in [FW94], require n > 212" For the sake of implementations, we suggest some simple
alternatives. First consider the minimum spanning tree computation in Section 6, which is
taken from [FW94| and is based on atomic heaps. Note that it satisfies with a spanning tree
that is minimal in the graph where each weight x is replaced by msb(x) (recall that msb is
found in two fast AC%-operations: first convert to a double, and then extract the exponent).
Let C be the maximal weight. Since C fits in one word, msb(C') is bounded by the word
length b (< 1287). Assume the typical case that n > msb(C). We can then run Prim’s
minimum spanning tree algorithm [Pri57], growing the minimum spanning tree from a single
vertex, letting the priority queue have a bucket for each msb-weight, and a bit-map telling
which buckets are non-empty. Using msb on the bit-map, we can immediately identify the
least non-empty bucket. Thus, we have a very simple deterministic O(log C' + m) time and
space minimum spanning tree algorithm for msb-weights.

Concerning the use of atomic heaps in the previous section, recall that the construction of
the proof of Lemma 11 actually gives T'(m, n,s) = O(m + nlogs). Together with Corollary
13, this gives T'(m,n,n) = O(m+nlogloglogn). In conclussion, we have an implementable,
O(log C + m + nlogloglogn)-algorithm for SSSP. This time bound is easily improved, but
likely at the expence of a more complicated algorithm with larger constants.

Thus, a deterministic linear time and linear space algorithm has been presented for
the single source shortest path problem on undirected weighted graphs. This theoretically
optimal algorithm is not in itself suitable for implementations, but there are simple variants
of it that should work well in both theory in practice.
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