A Parallel Approach to
the Stable Marriage Problem

Jesper Larsen
DIKU — Department of Computer Science
University of Copenhagen
Universitetsparken 1
DK 2100 Copenhagen O
e-mail:friberg@diku.dk

February 3, 1997

Abstract

This paper describes two parallel algorithms for the stable marriage problem
implemented on a MIMD parallel computer. The algorithms are tested against
sequential algorithms on randomly generated and worst-case instances. The
results clearly show that the combination fo a very simple problem and a com-
mercial MIMD system results in parallel algorithms which are not competitive
with sequential algorithms wrt. practical performance.

1 Introduction

In 1962 the Stable Marriage Problem was introduced by David Gale and Lloyd Shap-
ley in a paper entitled ”College Admissions and the Stability of Marriage”. Infor-
mally, a stable marriage is a one-to-one matching of a set of men to a set of women,
such that for any pair of a man and a woman, not both prefer the other to their
assigned partner.

This paper describes the development of two parallel algorithms for the stable
marriage problem. In section 2 the basic concepts of the stable marriage problem
are introduced. In section 3 two sequential algorithms are described and in section 4
we describe the parallel algorithms. Section 5 contains the experimental results. Th
paper is based on [Lar94] in which all details of the algorithms and their implemen-
tations are described.

The constructed programs (sequential as well as parallel) are available on request.
The sequential programs are written in C, while the parallel programs additionally
use the CSTools communication primitives [Mei92]. Also available are the generator
programs for generating worst-case instances and randomly generated instances.

2 Basic concepts and notation

Formally, an instance of the stable marriage problem of size n consists of two disjoint
sets M and W of size n. Throughout this paper we will let n denote the size of the
problem, even though the problem size is actually n?, as the input is two n x n-
matrices. The set M is called the set of men, and W the set of women. Associated
with each person, that is each member in M and W, is a preference list. The
preference list for a man is a strictly ordered list of all the women, and vice versa.

Given a problem-instance a matching M is a pairing of a man m to a woman
w. If m and w are matched in the matching M, we call m and w M-partners (or
partners in M or just partners), and write w = pa(m) and m = pa(w). A pair
(m,w) is said to block a matching M, if

e m and w are not partners in M, but
e m prefers w to pa(m) and
e w prefers m to pa(w).

The pair (m,w) is then called a blocking pair.

If a matching contains at least one blocking pair the matching is called unstable,
otherwise it is called stable. The terms matching and marriage will be used inter-
changeably throughout the paper. The stable marriage problem is to the determine
a stable matching for a given instance.

3 Two Sequential Algorithms

First we present two sequential algorithms for the stable marriage problem. The
first is the previously mentioned Gale-Shapley algorithm published in the original
paper on stable marriages. The second is an algorithm by Tseng and Lee (hereafter
referred to as the Tseng-Lee algorithm) presented in [TL84]. This algorithm is
interesting because it uses the divide-&-conquer-paradigm to construct the solution,
a paradigm which exhibits some degree of parallelism.

3.1 The Gale-Shapley algorithm

The Gale-Shapley algorithm will always favor one sex over the other, depending on
the parts the sexes plays in the algorithm. We will speak of a man-oriented or a
woman-oriented algorithm.

We describe the man-oriented version here. The woman-oriented can be derived
from the man-oriented by reversing the roles of the sexes.

Initially all persons are free. In each iteration a free man proposes to the first
woman on his preference list which he has not previously proposed to. If the woman
is free the two persons are matched. Is the woman engaged she chooses the man

with her highest preference. The rejected man becomes free and therefore has to try
the next woman on his preference list. The algorithm continues by considering a free
man in each iteration and terminates when all men become engaged. Note that while
each engagement of a man, who is engaged more than once, is less desirable to him,
the women get successively more favorable engagements. Proof of the correctness
and termination of the Gale-Shapley algorithm is given in [GI89].

Every woman makes at most (n — 1) rejections, and when the last free woman
gets a proposal the algorithm stops, that is the last free woman will not reject anyone
at all. The number of rejections is therefore maximum (n—1)*(n—1) = n?—2n+1.
Every iteration involves at least one rejection, unless all women have an engagement.
This gives a worst-case complexity of n? — 2n + 1 + 1 iterations. The structure of
such a worst-case can be found in [GI89].

3.2 The Tseng-Lee algorithm

The algorithm of Tseng and Lee uses the well known divide-€9-conquer paradigm.
Having an instance P of the stable marriage problem, P is in the dividing step
divided into two subproblems P; and P>, where P; contains the men from 1 to 3
(assuming for the moment that n is even), and P contains the men from % 4 1 to
n.

These subproblems are then solved recursively, resulting in two ”stable sub-
matchings”. There are no conflicts between the men and the women in either of
the two submatchings, and they can in a sense be regarded as locally stable if we
"forget” about the unassigned women in each submatching. It is now the responsi-
bility of the conquer or merging step to solve any conflicts between pairs of the two
subsolutions, thereby establishing one single solution.

If there are no conflicts between the two submatchings then they will constitute
a stable matching and we are finished. Otherwise the conflicts involved have to
be solved. If two men m and m’ are engaged to the same woman w, she chooses
between them by maintaining the engagement with the one she prefers and rejecting
the other. We then assign the rejected man to the next woman on his preference
list. This may generate new conflicts which are solved in the same way. The order in
which the conflicts are solved is arbitrary. When all conflicts are solved the matching
is stable.

Note that there may be more than two men in a given conflict because other
rejected men may have been assigned to the same woman. The conflicts are never-
theless resolved principally the same way: the woman chooses the winner and the
rest proceeds to the next woman on their preference lists.

The “bottom-case” of this recursive algorithm is a problem with one man and n
women. zHere the man is assigned to his number one female choice.

The termination and correctness proofs are much like the proofs for the Gale-
Shapley algorithm and are therefore omitted. As in the Gale-Shapley algorithm a
man never proposes to the same woman more than once. Hence, a conflict resolved

at an earlier stage in the Tseng-Lee algorithm will not occur later, thereby ensuring
an O(n?) worst-case time complexity. The worst-case instance for the Tseng-Lee
algorithm is the same as for the Gale-Shapley algorithm, as the Tseng-Lee “degen-
erates” into the Gale-Shapley algorithm if the conflicts arise only at the top level of
the divide-and-conquer, and the conflicts here are always between two men.

3.3 Running times

In order to test the programs we constructed two problem-generators. One generates
random problem instances and another generates worst-case instances. Table 1
shows the running times in seconds of the randomly generated and the worst-case
instances (average of 5 different instances).

n Gale-Shapley Tseng-Lee
random | worst-case | random | worst-case
250 0.01 0.16 0.08 0.38
500 0.01 0.76 0.30 1.68
750 0.02 1.88 0.67 3.92
1000 0.03 3.58 0.93 7.25
1250 0.04 5.70 1.75 7.25
1500 0.05 8.27 2.65 16.47
1600 0.05 9.42 2.56 18.72
1700 0.07 10.66 4.02 26.44

Table 1: Running times in seconds of the sequential algorithms.

The table clearly shows that the sequential Gale-Shapley algorithm is the best
of the two, although the advantage drops from a factor 60 to a factor 2 working on
the worst-case instance.

4 The Parallel Approach

Throughout this section p denotes the number of processors.

The parallel algorithms are implemented on the MEIKO parallel computer at
DIKU. It is a message-passing parallel computer with distributed memory. The
system consists of 16 Intel i860 processors, each equiped with 16 Mb of memory,
and 32 T800 communication transputers. It should be noted that the MEIKO has a
high startup latency, i.e. communication of small amounts of data are expensive in
time.

4.1 Parallelization of the Gale-Shapley algorithm

The parallel version of the Gale-Shapley algorithm is developed by dividing the
execution in phases.

In the first phase (the proposing phase) all free men propose to the woman
highest on their preference lists simultaneously. In the second phase (the rejection
phase) the women (in parallel) evaluate their proposals keeping the best offer and
rejecting the remaining men.

Now the free men proceed to the next woman on their preference list. The
algorithm continues alternating between the two phases until no man is unmatched
at the end of the rejection phase.

Implementing this two-phase algorithm on the MEIKO parallel computer, it is
important to keep in mind that the MEIKO has a high start-up latency vs. inte-
ger operation ratio. We must therefore restrict the number of communications in
our parallel algorithm. We have adopted the master-slave approach, where the
master-processor is in control of the data-flow of the entire algorithm (handling
the free men), and the remaining processors (denoted slaves) are responsible for
rejecting/engaging the men for some specified women.

The master is “packing” the proposals and sending the packets to the appropriate
slave processors thereby minimizing the number of communication. The women each
keep the best man, and return the others to the master (again packed in an array).
When no men are returned to the master the algorithm terminates. A drawback of
this approach is that the master processor becomes a bottleneck of the system.

4.2 Parallelization of the Tseng-Lee algorithm

In the parallelization of the Tseng-Lee algorithm a problem of size k is divided into
k

two “subproblems” each of size 5. These two subproblems is solved independently
by two processors. The solutions of the two subproblems are then send to the parent
processor and merged together using the merging-step described in section 3.2.

As mentioned earlier it is possible that all computation is made in the root
processor, as no conflicts has to be resolved in the subproblems. For such an instance
the parallel algorithm “degenerates” into a sequential one, but as reported in [TL84]
a theoretical analysis showns that the probability of experiencing of the worst case
in randomly generated instances is extremely small.

The partitioning is stopped and the problem solved sequentially if the problem
reaches some critical size. Unfortunately our experiments show that the best thresh-
old is not to divide the problem at all, that is, to solve the problem sequentially!

If one considers the above implementation the utilization of processors does not
seem to be optimal. Once a processor has sent it’s data down to the children it is
idle waiting for the results. A way to utilize the processors better is to let more
processes (that is instances of the program) work on the same processor. When a
process is sending down it’s two subproblems the left child will be a process residing
on the same processor while the right child will be a process on another processor.

This algorithm will only be implemented for complete binary trees, that is for 1,
2, 4, 8 and 16 processors. Note that having more processors on the same processor
decreases the size of the problems that can be solved as more processes has to shared

the memory.

With the “smart” configuration some processors will have a larger workload than
others. We therefore have to consider balancing the load of the processors in order
to make them work on approx. the same amount of data. Here a simple way of
balancing the load is implemented. Instead of dividing the problem in two equally
sized subproblems, one problem is made larger than the other.

5 Experimental results

In testing the parallel algorithms we concentrate the testing solely on complete
processor-trees. The instances used are the same as for the sequential algorithms.
An entry oom (out of memory) indicates that the given problem could not
be solved due to insufficient amounts of memory available, while ter (terminated)
indicates that all the generated instances for the problem had been running for at
least 5 minutes before they were stopped. All running times are presented in seconds.

p n
250 | 500 | 750 | 1000 | 1250 | 1500 | 1600 | 1700

‘ Randomly generated instances ‘

3 | 0.25 0.70 1.28 | 1.12 | 1.83| 283 | 1.71 | oom
7 | 2.38 5.16 6.48 | 7.47 | 10.49 | 13.94 | 9.35 | oom
15| 2.27 5.54 944 881 | 994 | 16.50 | 14.32 | oom

‘ Worst-case instances
3 | 44.83 | 182.14 | ter ter ter ter ter oom

7 | 45.73 | 184.55 | ter ter ter ter ter oom
15 | 49.60 | 200.33 | ter ter ter ter ter oom

Table 2: The results of the parallel Gale-Shapley algorithm

In Table 2 the execution times for the parallel Gale-Shapley algorithm are pre-
sented. Comparing the times for the parallel Gale-Shapley algorithm with the times
for the "normal” parallel Tseng-Lee algorithm shown in Table 3, it is obvious that
the parallel Gale-Shapley algorithm is extremely sensitive to the number of con-
flicts. The difference between the times for the randomly generated instances and
the worst-case instances are several orders of magnitude higher for the parallel Gale-
Shapley algorithm than for the "normal” parallel Tseng-Lee algorithm.

As can be seen in Table 2 we had to terminate the algorithm after 5 minutes
for many instances. Because the parallel Gale-Shapley algorithm uses more memory
than the parallel Tseng-Lee algorithms it was not possible to test the instances of
size 1700.

For the ”normal” version of the parallel Tseng-Lee algorithm we report the results
in the Table 3. The results for the ”smart” Tseng-Lee algorithm are shown in the

Table 4. Here some instances were too big due to the fact that more processes have
to share the same memory.

p n
250 | 500 | 750 | 1000 | 1250 | 1500 | 1600 | 1700

‘ Randomly generated instances ‘

3 1028]1.10 | 273 | 5.44 6.60 | 11.62 | 11.04 | 13.32
7 1041] 154|342 590 9.50 | 14.87 | 15.73 | 18.15
151053 | 1.89 | 4.06 | 7.06 | 11.36 | 16.05 | 18.95 | 20.84

‘ Worst-case instances ‘
3 10741291719 13.29 | 16.01 | 29.36 | 32.02 | 36.39

7 1 0.85] 3.46 | 8.17 | 14.08 | 18.89 | 31.83 | 36.17 | 40.63
151 0.95 | 3.68 | 8.33 | 14.92 | 24.10 | 34.06 | 39.11 | 44.06

Table 3: The results of the "normal” parallel Tseng-Lee algorithm

D n
250 | 500 | 750 | 1000 | 1250 | 1500 | 1600 | 1700
‘ Randomly generated instances ‘
2 1063|273 | 4.90 | 11.59 | 16.99 | 25.97 | 27.46 | oom
4 1096 | 3.89 | 850 | 15.51 | 24.29 | 37.07 | oom | oom
8 | 1.36 | 4.78 | 9.87 | 17.75 | 27.64 | oom | oom | oom
16 | 1.37 | 4.77 | 10.73 | 18.82 | 29.64 | oom | oom | oom
‘ Worst-case instances
2 | 1.07 | 4.48 | 10.44 | 19.62 | 28.57 | 43.77 | 48.25 | oom
4 1126|582 | 12.88 | 23.12 | 37.40 | 52.58 | oom | oom
8 | 1.4] 6.24 | 14.07 | 25.70 | 40.10 | oom | oom | oom
16 | 1.80 | 6.61 | 14.94 | 26.88 | 42.19 | oom | oom | oom

Table 4: The results of the ”"smart” parallel Tseng-Lee algorithm

Comparing the results for the two parallel Tseng-Lee algorithms we conclude that
the ”smart” parallel Tseng-Lee algorithm is not so smart after all. If we compare
the times of the two parallel Tseng-Lee algorithms where the number of processors
is equal, we observe that the ”smart” version is at least a factor 3 slower, and often
the factor is around 4.5. Interestingly, if we compare the times where the number
of processors in the ”"normal” version is equal to the number of processes in the
”smart” version, the factor is 2.5. The reason herefore must be that more processes
can be active at the same time on one processor, thereby slowing down computation.

Consider the "normal” version with three processors. The root first sends half
the data to the left child, and then the other half to the right child. Notice that

while the root is sending data to the right child, the left has started finding a stable
submatching. This means that the left child has an initial advantage over the right
child, an advantage it keeps throughout the computation if the subproblems are
"equally hard”. Therefore we might be able to get better times if the left child gets
a bit more to work on than the right child. In order to test this conjecture and see
how much more work the left child must have we have run the "normal” version
with three processors where the left child gets 50,55,...,95% of the data. This is
done for the randomly generated instances of size n = 500, 750, 1000.

For p = 3 the load-balancing for n = 1000 improves the time by 42%, while the
configuration with 7 processors at best is 13% faster.

It is notable that for p = 3 the best times are all achieved at 85%, and for p =7
the best values are all obtained at 65%. This indicates that the best percentage is
independent of the size of the test data. Secondly the two configurations obtain their
best times with different percentages, which might hint that there is a dependency
between the percentage and the number of processors.

The configuration for p = 7 can be viewed as a root with two trees of size three
as children. In the previous runs all processors where using the same percentage,
but as setups with three processors are running optimally at 85% we may get better
times by fixing the children of the root in the p = 7 setup at 85% and changing the
percentage only for the root. The results of this experiment gave an improvement
of the algorithm by 6% compared to the previous load-balancing scheme, where the
percentage was equal on all levels of the processor-tree, and the algorithm was 19%
better than the normal version without load-balancing. With p = 15 we fix the
children of the root to the configuration optimised above and vary the percentage
at the root processor. The best times were achieved at 65% (which made it 13 to
21% better than the "normal” version without load-balancing), and it seems to be
independent of the size.

We have tried to improve the “smart” algorithm by balancing the load. It
did improve the times of the “smart” version, but they remained worse than the
“normal” version and will therefore not be commented further.

As this algorithm (the "normal” version with different load-balancing at each
level) looks to be the best parallel version of the Tseng-Lee algorithm we have run
the algorithm for the remaining sizes and also for the worst-case instances. The
results are given in Table 5. We will call the algorithm for the ”optimal” version of
the parallel Tseng-Lee algorithm. Note, although, that the algorithm is still slower
than both the sequential ones.

For the randomly generated instances the ”optimal” version is from 8 to 40%
better than the "normal” version. Most of the improvements are about 20%. The
algorithm is, nevertheless, still worse than the sequential versions and becomes worse
as more processors are added.

In the remaining part of the paper the parallel Tseng-Lee algorithms commented
upon are the "normal” and the ”optimal” versions.

For each pair (p,n) we have calculated speedup and efficiency. In Table 6 the best

P n
250 | 500 | 750 | 1000 | 1250 | 1500 | 1600 | 1700

Randomly generated instances ‘

3 1026098209 | 3.84 | 587 | 828 | 9.56 | 11.36
7 1036|141 | 3.02 | 527 | 813 | 11.25 | 12.59 | 15.52
15] 044 | 1.56 | 3.46 | 6.22 | 9.66 | 13.62 | 15.42 | 18.01

‘ Worst-case instances ‘

3 1068|2821 6.45 | 11.61 | 18.39 | 26.72 | 30.53 | 34.57
7 1079|319 | 7.24 | 12.98 | 20.53 | 29.80 | 34.00 | 38.44
151 0.86 | 3.45 | 7.82 | 13.99 | 22.09 | 32.03 | 36.55 | 41.78

Table 5: The results of the "optimal” parallel Tseng-Lee algorithm

values for speedup and efficiency are given. For fixed p we have taken the greatest
of the S,(n) respectively Ey(n) values where n = 250,500, ...,1500,1600,1700. As
can be seen, the sequential algorithms and especially the Gale-Shapley algorithm
are always faster than the parallel algorithms no matter how many processors these
use.

Algorithm Random data Worst-case

P Sp E, Sp E,
Parallel 31294-102[980-103]419-10 3262 101
Gale-Shapley | 7 | 5.37-1073 | 7.67-107* | 4.14-1073 | 2.59-10~*

15| 3.65-107% | 2.43-107% | 3.81-1073 | 2.38-10¢
”normal” 3 19.12-1072] 3.04-1073 0.356 2.22.1072
Parallel 7 16.49-1073 | 9.28-107* 0.302 1.88-1072
Tseng-Lee 15 | 5.29-1073 | 3.53-10~* 0.243 1.52-102
”optimal” 3 [1.02-102]6.38-10°% 0.310 1.94-1072
Parallel 7 1710-1073 | 4.44-107* 0.278 1.73-1072
Tseng-Lee 15 | 6.41-1073 | 4.01-107* 0.258 1.61-102

Table 6: The speedup and efficiency for the parallel Gale-Shapley and Tseng-Lee
algorithms

With such bad speedup and efficiency the conclusions are very clear. The parallel
algorithms are not even bad but appalling. They are not better than any of the
two sequential algorithms, and the more processors we use the worse speedup and
efficiency values we get.

Examining in detail an iteration in the sequential Gale-Shapley the only thing
done is checking the next woman on a free man’s preference list and hence if the
woman is free make an assignment. If she is not free we test the two men against each
other and then in the worst case making four operations (making a new assignment,

deleting the old assignment, setting the former fiance free and setting the new fiance
as engaged). In the practical implementation this corresponds in worst-case to mak-
ing two integer comparisons and three integer assignments. These operations are
all integer operations and they are quickly performed by the processor. Hence the
amount of data we distribute in the parallel algorithms must contain work enough
to outweight the cost of the communication. For our algorithms this does not seem
possible. We use to much time on communication compared to the time used for
computation.

250 | 500 | 750 | 1000 | 1250 | 1500 | 1600 | 1700
#conflicts | 1383 | 2493 | 4064 | 5250 | 6634 | 7609 | 9404 | 10002

#conflicts/n | 5.53 | 4.99 | 5.42 | 5.25 | 531 | 5.07 | 5.88 | 5.88

longest chain | 39 40 47 50 o1 o4 o7 o7

Table 7: Number of conflicts and the longest chain of refusals in an randomly gen-
erated instance

Finally we measured the number of conflicts that occurred in the randomly
generated instances, and from this we calculated the ratio between the number of
conflicts and the size of the instances. Additionally we measured the maximum
number of refusals a man was involved in. The average of the five runs are shown
in Table 7.

Note that the ratio between the number of conflicts and the problem size is
almost constant. This suggests that the sequential algorithms in the average case
has linear time-complexity in n, which since the problem size is n?> means that the
algorithms are O(y/n) algorithms and thus sublinear.

Hence, the parallel algorithms should show sub-linear behaviour in order to
"beat” the sequential ones. This difficult goal was not obtainable and leading to
the bad results. In fact the parallel Gale-Shapley algorithm seems to behave as
an linear time algorithm in the average case, while both the of parallel Tseng-Lee
algorithms seem to be quadratic even in the average case.

The number of refusals in the longest chain is important in two ways. Firstly it
shows how small portions of the men’s preference lists we are using. Hence, a lot of
the data sent down in the parallel Tseng-Lee algorithm is never used, but it is not
possible to know that a priori. Secondly, for the parallel Gale-Shapley algorithm,
the longest chain is the number of startups that at least one man has to go through,
as he is refused every time. The slave-processors has to make the same amount of
startups also. Alone this amount of startups means that the parallel Gale-Shapley
looses a lot of time compared to the parallel Tseng-Lee algorithm (with 16 processors
it has to make 45 startups regardless of the problem size).

10

6 Conclusion

Our experiments clearly show that the parallel algorithms are slower than the se-
quential ones, and they get even slower the more processors we use. As stated
earlier, the communication is too expensive compared to the amount of work to be
done. Clearly the stable marriage problem is to simple to be solved with commercial
parallel computers.

A warning was issued in [Qui85] by Quinn who writes: “The average case speedup
of parallel stable marriage based on the McVitie and Wilson algorithm [like ours]
will be small,...”. Even so, it must be noted that although the sequential algorithms
have a quadratic worst-case time bound in n, they are in fact linear in the size of
the input data, because the input consists of two n X n-matrices, and in the average
case they are linear in n and y/n algorithms in the size of the input.

References

[GI89] Dan Gusfield and Robert W. Irwing. The Stable Marriage Problem — Struc-
ture and Analysis. MIT Press, 1989.

[Lar94] Jesper Larsen. A parallel approach to the stable marriage problem, 1994.
Graduate project work.

[Mei92] Meiko Limited. CSTools Tutorial For Portland C/860 Programmers, 1992.

[Qui85] Michael J. Quinn. A note on two parallel algorithms to solve the stable
marriage problem. BIT, 25:473 — 476, 1985.

[TL84] S. S. Tseng and R. C. T. Lee. A parallel algorithm to solve the stable
marriage problem. BIT, 24:308 — 316, 1984.

11

