
A Parallel Approach tothe Stable Marriage ProblemJesper LarsenDIKU { Department of Computer ScienceUniversity of CopenhagenUniversitetsparken 1DK 2100 Copenhagen �e-mail:friberg@diku.dkFebruary 3, 1997AbstractThis paper describes two parallel algorithms for the stable marriage problemimplemented on a MIMD parallel computer. The algorithms are tested againstsequential algorithms on randomly generated and worst-case instances. Theresults clearly show that the combination fo a very simple problem and a com-mercial MIMD system results in parallel algorithms which are not competitivewith sequential algorithms wrt. practical performance.1 IntroductionIn 1962 the Stable Marriage Problem was introduced by David Gale and Lloyd Shap-ley in a paper entitled "College Admissions and the Stability of Marriage". Infor-mally, a stable marriage is a one-to-one matching of a set of men to a set of women,such that for any pair of a man and a woman, not both prefer the other to theirassigned partner.This paper describes the development of two parallel algorithms for the stablemarriage problem. In section 2 the basic concepts of the stable marriage problemare introduced. In section 3 two sequential algorithms are described and in section 4we describe the parallel algorithms. Section 5 contains the experimental results. Thpaper is based on [Lar94] in which all details of the algorithms and their implemen-tations are described.The constructed programs (sequential as well as parallel) are available on request.The sequential programs are written in C, while the parallel programs additionallyuse the CSTools communication primitives [Mei92]. Also available are the generatorprograms for generating worst-case instances and randomly generated instances.1



2 Basic concepts and notationFormally, an instance of the stable marriage problem of size n consists of two disjointsets M and W of size n. Throughout this paper we will let n denote the size of theproblem, even though the problem size is actually n2, as the input is two n � n-matrices. The set M is called the set of men, and W the set of women. Associatedwith each person, that is each member in M and W , is a preference list. Thepreference list for a man is a strictly ordered list of all the women, and vice versa.Given a problem-instance a matching M is a pairing of a man m to a womanw. If m and w are matched in the matching M, we call m and w M-partners (orpartners in M or just partners), and write w = pM(m) and m = pM(w). A pair(m;w) is said to block a matching M, if� m and w are not partners in M, but� m prefers w to pM(m) and� w prefers m to pM(w).The pair (m;w) is then called a blocking pair.If a matching contains at least one blocking pair the matching is called unstable,otherwise it is called stable. The terms matching and marriage will be used inter-changeably throughout the paper. The stable marriage problem is to the determinea stable matching for a given instance.3 Two Sequential AlgorithmsFirst we present two sequential algorithms for the stable marriage problem. The�rst is the previously mentioned Gale-Shapley algorithm published in the originalpaper on stable marriages. The second is an algorithm by Tseng and Lee (hereafterreferred to as the Tseng-Lee algorithm) presented in [TL84]. This algorithm isinteresting because it uses the divide-&-conquer-paradigm to construct the solution,a paradigm which exhibits some degree of parallelism.3.1 The Gale-Shapley algorithmThe Gale-Shapley algorithm will always favor one sex over the other, depending onthe parts the sexes plays in the algorithm. We will speak of a man-oriented or awoman-oriented algorithm.We describe the man-oriented version here. The woman-oriented can be derivedfrom the man-oriented by reversing the roles of the sexes.Initially all persons are free. In each iteration a free man proposes to the �rstwoman on his preference list which he has not previously proposed to. If the womanis free the two persons are matched. Is the woman engaged she chooses the man2



with her highest preference. The rejected man becomes free and therefore has to trythe next woman on his preference list. The algorithm continues by considering a freeman in each iteration and terminates when all men become engaged. Note that whileeach engagement of a man, who is engaged more than once, is less desirable to him,the women get successively more favorable engagements. Proof of the correctnessand termination of the Gale-Shapley algorithm is given in [GI89].Every woman makes at most (n � 1) rejections, and when the last free womangets a proposal the algorithm stops, that is the last free woman will not reject anyoneat all. The number of rejections is therefore maximum (n�1)�(n�1) = n2�2n+1.Every iteration involves at least one rejection, unless all women have an engagement.This gives a worst-case complexity of n2 � 2n + 1 + 1 iterations. The structure ofsuch a worst-case can be found in [GI89].3.2 The Tseng-Lee algorithmThe algorithm of Tseng and Lee uses the well known divide-&-conquer paradigm.Having an instance P of the stable marriage problem, P is in the dividing stepdivided into two subproblems P1 and P2, where P1 contains the men from 1 to n2(assuming for the moment that n is even), and P2 contains the men from n2 + 1 ton. These subproblems are then solved recursively, resulting in two "stable sub-matchings". There are no con
icts between the men and the women in either ofthe two submatchings, and they can in a sense be regarded as locally stable if we"forget" about the unassigned women in each submatching. It is now the responsi-bility of the conquer or merging step to solve any con
icts between pairs of the twosubsolutions, thereby establishing one single solution.If there are no con
icts between the two submatchings then they will constitutea stable matching and we are �nished. Otherwise the con
icts involved have tobe solved. If two men m and m0 are engaged to the same woman w, she choosesbetween them by maintaining the engagement with the one she prefers and rejectingthe other. We then assign the rejected man to the next woman on his preferencelist. This may generate new con
icts which are solved in the same way. The order inwhich the con
icts are solved is arbitrary. When all con
icts are solved the matchingis stable.Note that there may be more than two men in a given con
ict because otherrejected men may have been assigned to the same woman. The con
icts are never-theless resolved principally the same way: the woman chooses the winner and therest proceeds to the next woman on their preference lists.The \bottom-case" of this recursive algorithm is a problem with one man and nwomen. zHere the man is assigned to his number one female choice.The termination and correctness proofs are much like the proofs for the Gale-Shapley algorithm and are therefore omitted. As in the Gale-Shapley algorithm aman never proposes to the same woman more than once. Hence, a con
ict resolved3



at an earlier stage in the Tseng-Lee algorithm will not occur later, thereby ensuringan O(n2) worst-case time complexity. The worst-case instance for the Tseng-Leealgorithm is the same as for the Gale-Shapley algorithm, as the Tseng-Lee \degen-erates" into the Gale-Shapley algorithm if the con
icts arise only at the top level ofthe divide-and-conquer, and the con
icts here are always between two men.3.3 Running timesIn order to test the programs we constructed two problem-generators. One generatesrandom problem instances and another generates worst-case instances. Table 1shows the running times in seconds of the randomly generated and the worst-caseinstances (average of 5 di�erent instances).n Gale-Shapley Tseng-Leerandom worst-case random worst-case250 0.01 0.16 0.08 0.38500 0.01 0.76 0.30 1.68750 0.02 1.88 0.67 3.921000 0.03 3.58 0.93 7.251250 0.04 5.70 1.75 7.251500 0.05 8.27 2.65 16.471600 0.05 9.42 2.56 18.721700 0.07 10.66 4.02 26.44Table 1: Running times in seconds of the sequential algorithms.The table clearly shows that the sequential Gale-Shapley algorithm is the bestof the two, although the advantage drops from a factor 60 to a factor 2 working onthe worst-case instance.4 The Parallel ApproachThroughout this section p denotes the number of processors.The parallel algorithms are implemented on the Meiko parallel computer atDIKU. It is a message-passing parallel computer with distributed memory. Thesystem consists of 16 Intel i860 processors, each equiped with 16 Mb of memory,and 32 T800 communication transputers. It should be noted that the Meiko has ahigh startup latency, i.e. communication of small amounts of data are expensive intime.4.1 Parallelization of the Gale-Shapley algorithmThe parallel version of the Gale-Shapley algorithm is developed by dividing theexecution in phases. 4



In the �rst phase (the proposing phase) all free men propose to the womanhighest on their preference lists simultaneously. In the second phase (the rejectionphase) the women (in parallel) evaluate their proposals keeping the best o�er andrejecting the remaining men.Now the free men proceed to the next woman on their preference list. Thealgorithm continues alternating between the two phases until no man is unmatchedat the end of the rejection phase.Implementing this two-phase algorithm on the Meiko parallel computer, it isimportant to keep in mind that the Meiko has a high start-up latency vs. inte-ger operation ratio. We must therefore restrict the number of communications inour parallel algorithm. We have adopted the master-slave approach, where themaster-processor is in control of the data-
ow of the entire algorithm (handlingthe free men), and the remaining processors (denoted slaves) are responsible forrejecting/engaging the men for some speci�ed women.The master is \packing" the proposals and sending the packets to the appropriateslave processors thereby minimizing the number of communication. The women eachkeep the best man, and return the others to the master (again packed in an array).When no men are returned to the master the algorithm terminates. A drawback ofthis approach is that the master processor becomes a bottleneck of the system.4.2 Parallelization of the Tseng-Lee algorithmIn the parallelization of the Tseng-Lee algorithm a problem of size k is divided intotwo \subproblems" each of size k2 . These two subproblems is solved independentlyby two processors. The solutions of the two subproblems are then send to the parentprocessor and merged together using the merging-step described in section 3.2.As mentioned earlier it is possible that all computation is made in the rootprocessor, as no con
icts has to be resolved in the subproblems. For such an instancethe parallel algorithm \degenerates" into a sequential one, but as reported in [TL84]a theoretical analysis showns that the probability of experiencing of the worst casein randomly generated instances is extremely small.The partitioning is stopped and the problem solved sequentially if the problemreaches some critical size. Unfortunately our experiments show that the best thresh-old is not to divide the problem at all, that is, to solve the problem sequentially!If one considers the above implementation the utilization of processors does notseem to be optimal. Once a processor has sent it's data down to the children it isidle waiting for the results. A way to utilize the processors better is to let moreprocesses (that is instances of the program) work on the same processor . When aprocess is sending down it's two subproblems the left child will be a process residingon the same processor while the right child will be a process on another processor.This algorithm will only be implemented for complete binary trees, that is for 1,2, 4, 8 and 16 processors. Note that having more processors on the same processordecreases the size of the problems that can be solved as more processes has to shared5



the memory.With the \smart" con�guration some processors will have a larger workload thanothers. We therefore have to consider balancing the load of the processors in orderto make them work on approx. the same amount of data. Here a simple way ofbalancing the load is implemented. Instead of dividing the problem in two equallysized subproblems, one problem is made larger than the other.5 Experimental resultsIn testing the parallel algorithms we concentrate the testing solely on completeprocessor-trees. The instances used are the same as for the sequential algorithms.An entry oom (out of memory) indicates that the given problem could notbe solved due to insu�cient amounts of memory available, while ter (terminated)indicates that all the generated instances for the problem had been running for atleast 5 minutes before they were stopped. All running times are presented in seconds.p n250 500 750 1000 1250 1500 1600 1700Randomly generated instances3 0.25 0.70 1.28 1.12 1.83 2.83 1.71 oom7 2.38 5.16 6.48 7.47 10.49 13.94 9.35 oom15 2.27 5.54 9.44 8.81 9.94 16.50 14.32 oomWorst-case instances3 44.83 182.14 ter ter ter ter ter oom7 45.73 184.55 ter ter ter ter ter oom15 49.60 200.33 ter ter ter ter ter oomTable 2: The results of the parallel Gale-Shapley algorithmIn Table 2 the execution times for the parallel Gale-Shapley algorithm are pre-sented. Comparing the times for the parallel Gale-Shapley algorithm with the timesfor the "normal" parallel Tseng-Lee algorithm shown in Table 3, it is obvious thatthe parallel Gale-Shapley algorithm is extremely sensitive to the number of con-
icts. The di�erence between the times for the randomly generated instances andthe worst-case instances are several orders of magnitude higher for the parallel Gale-Shapley algorithm than for the "normal" parallel Tseng-Lee algorithm.As can be seen in Table 2 we had to terminate the algorithm after 5 minutesfor many instances. Because the parallel Gale-Shapley algorithm uses more memorythan the parallel Tseng-Lee algorithms it was not possible to test the instances ofsize 1700.For the "normal" version of the parallel Tseng-Lee algorithm we report the resultsin the Table 3. The results for the "smart" Tseng-Lee algorithm are shown in the6



Table 4. Here some instances were too big due to the fact that more processes haveto share the same memory.p n250 500 750 1000 1250 1500 1600 1700Randomly generated instances3 0.28 1.10 2.73 5.44 6.60 11.62 11.04 13.327 0.41 1.54 3.42 5.90 9.50 14.87 15.73 18.1515 0.53 1.89 4.06 7.06 11.36 16.05 18.95 20.84Worst-case instances3 0.74 2.91 7.19 13.29 16.01 29.36 32.02 36.397 0.85 3.46 8.17 14.08 18.89 31.83 36.17 40.6315 0.95 3.68 8.33 14.92 24.10 34.06 39.11 44.06Table 3: The results of the "normal" parallel Tseng-Lee algorithmp n250 500 750 1000 1250 1500 1600 1700Randomly generated instances2 0.63 2.73 4.90 11.59 16.99 25.97 27.46 oom4 0.96 3.89 8.50 15.51 24.29 37.07 oom oom8 1.36 4.78 9.87 17.75 27.64 oom oom oom16 1.37 4.77 10.73 18.82 29.64 oom oom oomWorst-case instances2 1.07 4.48 10.44 19.62 28.57 43.77 48.25 oom4 1.26 5.82 12.88 23.12 37.40 52.58 oom oom8 1.54 6.24 14.07 25.70 40.10 oom oom oom16 1.80 6.61 14.94 26.88 42.19 oom oom oomTable 4: The results of the "smart" parallel Tseng-Lee algorithmComparing the results for the two parallel Tseng-Lee algorithms we conclude thatthe "smart" parallel Tseng-Lee algorithm is not so smart after all. If we comparethe times of the two parallel Tseng-Lee algorithms where the number of processorsis equal, we observe that the "smart" version is at least a factor 3 slower, and oftenthe factor is around 4:5. Interestingly, if we compare the times where the numberof processors in the "normal" version is equal to the number of processes in the"smart" version, the factor is 2:5. The reason herefore must be that more processescan be active at the same time on one processor, thereby slowing down computation.Consider the "normal" version with three processors. The root �rst sends halfthe data to the left child, and then the other half to the right child. Notice that7



while the root is sending data to the right child, the left has started �nding a stablesubmatching. This means that the left child has an initial advantage over the rightchild, an advantage it keeps throughout the computation if the subproblems are"equally hard". Therefore we might be able to get better times if the left child getsa bit more to work on than the right child. In order to test this conjecture and seehow much more work the left child must have we have run the "normal" versionwith three processors where the left child gets 50; 55; : : : ; 95% of the data. This isdone for the randomly generated instances of size n = 500; 750; 1000.For p = 3 the load-balancing for n = 1000 improves the time by 42%, while thecon�guration with 7 processors at best is 13% faster.It is notable that for p = 3 the best times are all achieved at 85%, and for p = 7the best values are all obtained at 65%. This indicates that the best percentage isindependent of the size of the test data. Secondly the two con�gurations obtain theirbest times with di�erent percentages, which might hint that there is a dependencybetween the percentage and the number of processors.The con�guration for p = 7 can be viewed as a root with two trees of size threeas children. In the previous runs all processors where using the same percentage,but as setups with three processors are running optimally at 85% we may get bettertimes by �xing the children of the root in the p = 7 setup at 85% and changing thepercentage only for the root. The results of this experiment gave an improvementof the algorithm by 6% compared to the previous load-balancing scheme, where thepercentage was equal on all levels of the processor-tree, and the algorithm was 19%better than the normal version without load-balancing. With p = 15 we �x thechildren of the root to the con�guration optimised above and vary the percentageat the root processor. The best times were achieved at 65% (which made it 13 to21% better than the "normal" version without load-balancing), and it seems to beindependent of the size.We have tried to improve the \smart" algorithm by balancing the load. Itdid improve the times of the \smart" version, but they remained worse than the\normal" version and will therefore not be commented further.As this algorithm (the "normal" version with di�erent load-balancing at eachlevel) looks to be the best parallel version of the Tseng-Lee algorithm we have runthe algorithm for the remaining sizes and also for the worst-case instances. Theresults are given in Table 5. We will call the algorithm for the "optimal" version ofthe parallel Tseng-Lee algorithm. Note, although, that the algorithm is still slowerthan both the sequential ones.For the randomly generated instances the "optimal" version is from 8 to 40%better than the "normal" version. Most of the improvements are about 20%. Thealgorithm is, nevertheless, still worse than the sequential versions and becomes worseas more processors are added.In the remaining part of the paper the parallel Tseng-Lee algorithms commentedupon are the "normal" and the "optimal" versions.For each pair (p; n) we have calculated speedup and e�ciency. In Table 6 the best8



p n250 500 750 1000 1250 1500 1600 1700Randomly generated instances3 0.26 0.98 2.09 3.84 5.87 8.28 9.56 11.367 0.36 1.41 3.02 5.27 8.13 11.25 12.59 15.5215 0.44 1.56 3.46 6.22 9.66 13.62 15.42 18.01Worst-case instances3 0.68 2.82 6.45 11.61 18.39 26.72 30.53 34.577 0.79 3.19 7.24 12.98 20.53 29.80 34.00 38.4415 0.86 3.45 7.82 13.99 22.09 32.03 36.55 41.78Table 5: The results of the "optimal" parallel Tseng-Lee algorithmvalues for speedup and e�ciency are given. For �xed p we have taken the greatestof the Sp(n) respectively Ep(n) values where n = 250; 500; : : : ; 1500; 1600; 1700. Ascan be seen, the sequential algorithms and especially the Gale-Shapley algorithmare always faster than the parallel algorithms no matter how many processors theseuse. Algorithm Random data Worst-casep Sp Ep Sp EpParallel 3 2:94 � 10�2 9:80 � 10�3 4:19 � 10�3 2:62 � 10�4Gale-Shapley 7 5:37 � 10�3 7:67 � 10�4 4:14 � 10�3 2:59 � 10�415 3:65 � 10�3 2:43 � 10�4 3:81 � 10�3 2:38 � 10�4"normal" 3 9:12 � 10�3 3:04 � 10�3 0.356 2:22 � 10�2Parallel 7 6:49 � 10�3 9:28 � 10�4 0.302 1:88 � 10�2Tseng-Lee 15 5:29 � 10�3 3:53 � 10�4 0.243 1:52 � 10�2"optimal" 3 1:02 � 10�2 6:38 � 10�4 0.310 1:94 � 10�2Parallel 7 7:10 � 10�3 4:44 � 10�4 0.278 1:73 � 10�2Tseng-Lee 15 6:41 � 10�3 4:01 � 10�4 0.258 1:61 � 10�2Table 6: The speedup and e�ciency for the parallel Gale-Shapley and Tseng-LeealgorithmsWith such bad speedup and e�ciency the conclusions are very clear. The parallelalgorithms are not even bad but appalling. They are not better than any of thetwo sequential algorithms, and the more processors we use the worse speedup ande�ciency values we get.Examining in detail an iteration in the sequential Gale-Shapley the only thingdone is checking the next woman on a free man's preference list and hence if thewoman is free make an assignment. If she is not free we test the two men against eachother and then in the worst case making four operations (making a new assignment,9



deleting the old assignment, setting the former �ance free and setting the new �anceas engaged). In the practical implementation this corresponds in worst-case to mak-ing two integer comparisons and three integer assignments. These operations areall integer operations and they are quickly performed by the processor. Hence theamount of data we distribute in the parallel algorithms must contain work enoughto outweight the cost of the communication. For our algorithms this does not seempossible. We use to much time on communication compared to the time used forcomputation. n250 500 750 1000 1250 1500 1600 1700#con
icts 1383 2493 4064 5250 6634 7609 9404 10002#con
icts/n 5.53 4.99 5.42 5.25 5.31 5.07 5.88 5.88longest chain 39 40 47 50 51 54 57 57Table 7: Number of con
icts and the longest chain of refusals in an randomly gen-erated instanceFinally we measured the number of con
icts that occurred in the randomlygenerated instances, and from this we calculated the ratio between the number ofcon
icts and the size of the instances. Additionally we measured the maximumnumber of refusals a man was involved in. The average of the �ve runs are shownin Table 7.Note that the ratio between the number of con
icts and the problem size isalmost constant. This suggests that the sequential algorithms in the average casehas linear time-complexity in n, which since the problem size is n2 means that thealgorithms are O(pn) algorithms and thus sublinear.Hence, the parallel algorithms should show sub-linear behaviour in order to"beat" the sequential ones. This di�cult goal was not obtainable and leading tothe bad results. In fact the parallel Gale-Shapley algorithm seems to behave asan linear time algorithm in the average case, while both the of parallel Tseng-Leealgorithms seem to be quadratic even in the average case.The number of refusals in the longest chain is important in two ways. Firstly itshows how small portions of the men's preference lists we are using. Hence, a lot ofthe data sent down in the parallel Tseng-Lee algorithm is never used, but it is notpossible to know that a priori . Secondly, for the parallel Gale-Shapley algorithm,the longest chain is the number of startups that at least one man has to go through,as he is refused every time. The slave-processors has to make the same amount ofstartups also. Alone this amount of startups means that the parallel Gale-Shapleylooses a lot of time compared to the parallel Tseng-Lee algorithm (with 16 processorsit has to make 45 startups regardless of the problem size).
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6 ConclusionOur experiments clearly show that the parallel algorithms are slower than the se-quential ones, and they get even slower the more processors we use. As statedearlier, the communication is too expensive compared to the amount of work to bedone. Clearly the stable marriage problem is to simple to be solved with commercialparallel computers.A warning was issued in [Qui85] by Quinn who writes: \The average case speedupof parallel stable marriage based on the McVitie and Wilson algorithm [like ours]will be small,...". Even so, it must be noted that although the sequential algorithmshave a quadratic worst-case time bound in n, they are in fact linear in the size ofthe input data, because the input consists of two n�n-matrices, and in the averagecase they are linear in n and pn algorithms in the size of the input.References[GI89] Dan Gus�eld and Robert W. Irwing. The Stable Marriage Problem { Struc-ture and Analysis. MIT Press, 1989.[Lar94] Jesper Larsen. A parallel approach to the stable marriage problem, 1994.Graduate project work.[Mei92] Meiko Limited. CSTools Tutorial For Portland C/860 Programmers, 1992.[Qui85] Michael J. Quinn. A note on two parallel algorithms to solve the stablemarriage problem. BIT, 25:473 { 476, 1985.[TL84] S. S. Tseng and R. C. T. Lee. A parallel algorithm to solve the stablemarriage problem. BIT, 24:308 { 316, 1984.
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