
A note on the practical performance ofthe auction algorithm for shortest pathsJesper LarsenDIKU Department of Computer ScienceUniversity of CopenhagenUniversitetsparken 1DK 2100 Copenhagen �e-mail: friberg@diku.dkFebruary 3, 1997AbstractThe performance of the auction algorithms for the shortest paths has beeninvestigated in four papers with di�ering conclusions. In the following I reporta series of experiments with the code from the two most recent papers. Theexperiments clearly show that the auction algorithm is inferior to state-of-the-art shortest paths algorithmsKeywords: shortest path problem, auction algorithm, performance re-sults.1 IntroductionThe (sequential) auction algorithms for the shortest path problem have been thesubject of experiments which have been reported in at least �ve papers.The �rst paper [Ber91] introduced the auction algorithm for the shortest paths.This algorithm had pseudo-polynomial time-complexity. The paper also introducedthe concepts of best and second-best neighbour; improvements that enhanced thepractical performance.In [PS91] graph reduction was introduced for the �rst time in the auction al-gorithm (here we call it simple reduction). This resulted in a polynomial auctionalgorithm. No experimental testing was reported in this paper.In [BPS92] and [BPS95] Bertsekas et al. improved the polynomial time-complexityeven more with their strong graph reduction (hereafter referred to as extended re-duction).The present author worked with the auction algorithm in a joint MSc. thesis[LP95]. We introduced an even stronger graph reduction scheme (called the im-proved reduction). Although this theoretically has a time-complexity worse than1



the extended graph reduction, experimentally it proved to be as good as the ex-tended graph reduction and sometimes even better.In [Ber91] no computational results of the one-to-all auction algorithm was pro-vided, only a statement that it was slower than the S-HEAP code of [GP88]. Themain conclusion for the best one-to-all auction algorithm of [BPS92] and [BPS95] isthat is marginally outperforms S-HEAP for dense graphs, while the oppostite is thecase for more sparse graphs although this is not documented in detail.In this note I report on comparison of performance tests between the codesdeveloped in [BPS92], [BPS95] and [LP95].I also adress the equally important question originating from the di�erent con-clusions reached in the mentioned papers: are the auction algorithms of [BPS95]better than a state-of-the-art shortest path algorithm?The algorithms tested are:(LP95) The auction algorithm with best neighbour improvement (as introduced in[Ber91]) and extended reduction (as suggested in [BPS92]).(DiH) A heap implementation of Dijkstras algorithm (see e.g. [GP88]). The Dijk-stra algorithm using binary heaps is used as reference algorithm in [BPS92].(DiD) Dijkstras algorithm with double buckets as described in [CGR93]. This algo-rithm is used as the reference algorithm in [LP95] as it performs substantiallybetter than (DiH).(BPS) According to the test results reported in [BPS95], this is the best of theproposed algorithms in [BPS95]. It is an auction algorithm with extendedreduction and best neighbour improvement.The remaining three algorithms of [BPS92] were not tested here as they per-formed worse than (BPS).2 Experimental setup and resultsThroughout this section n denotes the number of nodes and m the number of arcsin a given graph G = (V; E).I tested the algorithms with graphs generated by the programs sprand andspgrid provided by Cherkassky et al. in connection with [CGR93]. These programsare available via ftp at Stanford University.I used the following test cases:Rand4 This is a class of random graphs with n nodes and 4n arcs. A node has anaverage of four outgoing arcs. The Rand4 class represents sparse graphs. Thearc lengths are chosen at random from the interval [0; 10000]. The generatorprogram guarantees that all arcs can be reached from the source. Graphs havebeen generated for values of n equal to 8192, 32768 and 65536.2



Rand14 Here, the number of arcs is n24 (where n is the number of nodes), and hencethe graphs are dense. Again it is guaranteed that the graph is connected. As inthe Rand4 class, the arc lengths randomly chosen from the interval [0; 10000].Graphs were generated for n equal to 512, 1024 and 1536.GridW A graph of the GridW class is a rectangular grid, 16 "node-layers" wideand with x nodes in each layer, in all, a total of 16384 nodes plus a sourcenode connected to all nodes in the �rst layer. The arcs form a two-way cycle ineach layer. Between two adjacent nodes (or the �rst and the last node) thereare two arcs, one in each direction. In addition, each node in a layer has anoutgoing arc to the adjacent node in the next layer, except for nodes in thelast layer. Finally, the source node is connected to the nodes of the �rst layer.The graph has a total of 49152 arcs. The lengths of the arcs are selected atrandom from the interval [0; 10000]. Graphs were generated for x equal to 256,512 and 1024.GridH The basis of a GridH-class graph is a GridW- graph with only a singlecycle in each layer. Here graphs consists of a rectangular grid, 16 "node-layers" wide with x nodes in each layer. In addition, there is a collection ofarcs connecting randomly selected pairs of nodes on the cycle. The lengthsof the arcs inside a layer are small and non-negative (here selected at randomfrom the interval [0; 100]). Additionally, arcs from lower to higher numberedlayers are added. If an arc from layer �1 to layer �2 is included the randomlyselected length (chosen in the interval [1000; 10000]) is multiplied by (�2��1)2.These graphs were generated for x equal to 128, 256 and 512.Comp This is the class of complete graphs. The length are randomly choosen fromthe interval [1; 10000]. Here we have generated graphs for n = 512, n = 768and n = 1024 nodes.The experiments were performed on a Hewlett-Packard Apollo 9000 series 700Model 730 computer at the Department of Computer Science at the University ofCopenhagen. It has a 99 MHz PA-RISC 7100 processor and 80 MB of main memory.The running times reported in Table 1 are averages taken over 5 runs.It should be noted that while (LP95), (DiH) and (DiD) are written in C andcompiled with gcc, (BPS) is written in Fortran and compiled with f77.The running times clearly indicate that the Dijkstra codes are substantially bet-ter than both of the auction codes. The Dijkstra codes are always at least an orderof magnitude better than the best of the two tested auction codes. The (DiD) codeis always the fastest one-to-all shortest path algorithm.The variation in the running times of the auction codes indicate no clear winner.While (BPS) is best on the random graphs, (LP95) is best on the grid graphs. Herefurther research is necessary to determine if there is a clear winner.3



Test cases n or x (LP95) (BPS) (DiH) (DiD)Rand14 512 0.700 0.187 0.063 0.0171024 2.067 0.477 0.234 0.0741536 6.087 0.910 0.510 0.170Rand4 8192 5.041 7.307 0.143 0.03732768 23.617 29.743 0.840 0.29065536 46.817 59.670 2.337 0.680GridW 256 1.067 2.783 0.050 0.014512 3.533 9.633 0.117 0.0401024 11.983 36.383 0.257 0.083GridH 128 5.750 10.112 0.057 0.027256 24.687 44.283 0.146 0.043512 106.980 188.233 0.303 0.113Comp 512 3.201 0.457 0.227 0.077768 7.766 0.823 0.497 0.1901024 14.917 1.337 0.920 0.320Table 1: The running times in seconds of the algorithms.The algorithms are programmed in two di�erent languages and di�erences inperformance may be due to this rather than to the di�erent algorithms. The di�er-ences observed are, however, too large to originate in the di�erence in programminglanguage.3 ConclusionBased on my experiments it is di�cult to envisage that an auction code can be madefaster than a code based on a Dijkstra-like algorithm. The results clearly indicatesa huge advantage for the latter codes. The most valuable re�nements of the originalauction algorithm has de�nitely been the reductions and further research in moree�ective reductions may lead to more e�cient algorithms.AcknowledgementsI would like to thank Stefano Pallottino from the University of Pisa for providingme with the code from [BPS92] and for his comments, and I would also like tothank Jens Clausen from the Department of Computer Science at the University ofCopenhagen for comments upon the experiments and the draft of this note.
4



References[Ber91] Dimitri P. Bertsekas. An auction algorithm for shortest paths. SIAMJournal on Optimization, 1:425 { 447, 1991.[BPS92] Dimitri P. Bertsekas, Ste�ano Pallottino, and Maria Grazia Scutell�a. Poly-nomial auction algorithms for shortest paths. Technical Report TR-16/92,Dipartimento di Informatica, University of Pisa, 1992.[BPS95] Dimitri P. Bertsekas, Ste�ano Pallottino, and Maria Grazia Scutell�a. Poly-nomial auction algorithms for shortest paths. Computational Optimizationand Applications, 4(2):99 { 125, 1995.[CGR93] Boris V. Cherkassky, Andrew V. Goldberg, and Tomasz Radzik. Shortestpath algorithms: Theory and experimental evaluation. Draft, July 1993.[GP88] Giorgio Gallo and Stefano Pallottino. Shortest path algorithms. Annalsof Operations Resaerch, 13:3 { 79, 1988.[LP95] Jesper Larsen and Ib Pedersen. The auction approach for the shortestpath problem: Theory and experiments. Technical report, Departmentof Computer Science, University of Copenhagen (DIKU), February 1995.Master thesis.[PS91] Stefano Pallottino and Maria Grazia Scutell�a. Strongly polynomial auctionalgorithms for shortest path. Technical Report TR-19/91, Dipartimentodi Informatica, University of Pisa, 1991.

5


