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2 Sporring: A Prior of Saliency Based Pruning AlgorithmsAbstractIn saliency based pruning algorithms a pruning decision is made based on an order-ing of the parameters. We will in this article focus on the fact that this orderingis invariant under certain transformations, and with that knowledge an equivalenceclass of algorithms is developed all yielding identical prunings. A sub-class is demon-strated to have a simple but sensible interpretation in terms of Bayesian decisiontheory.



DIKU{97/8, University of Copenhagen 31 IntroductionFor some function classes, such as the feed forward neural networks, the number of pa-rameters is very large when compared to the usual size of datasets to be �tted. Togive an example, the number of parameters in the simplest universal feed forward net-work f : RN ! RM (Hornik, 1989; Cybenko, 1989), the number of parameters grow asd(M +N +1), where d is the number of internal nodes or hidden neurons as they are alsocalled.To reduce complexity and increase generalization, a function class can be analyzedby examining each individual parameter for it's importance. This process of removingparameters based on such an analysis is known as pruning and is the subject of this article.We will illustrate how a speci�c pruning scheme can be used to generate a similarity classof algorithms based on invariance. One popular algorithm, Optimal Brain Damage (OBD)(Cun et al., 1990), is interpreted in a statistical manner as a MaximumA Posteriori (MAP)or information theoretical code length functional, and it is thus shown how OBD can beinterpreted in terms of the implicit prior on the feed forward network function class.Before we begin, the reader should note that although the foundations of MAP andcoding are very di�erent, there is in the idealized code length setting applied here, a oneto one correspondence between the two. Idealized code lengths are determined throughShannon's entropy-inequality (Rissanen, 1989) as,L(�) ' � logP (�); (1.1)where L is the code length for the particular entity � and P is its corresponding probability.Under the assumption that P is known, there exists algorithms, such as the Hu�manand especially the Arithmetic coding algorithm, that approach an equality of the above.Conversely, it is straight forward through the equality to design a probability distributiongiven a set of complete pre�x codes. We are thus in this loose sense free to choose theformalism best suited for our needs.2 PruningFitting a function to a set of data points is often accomplished by minimizing an errorfunction E(�), where � is the set of parameters. The de�nition of saliency as we use it inthis article is the increase in E when one or more parameters are removed, i.e. set to zero.The increase by removal of the parameter set f�i1 ; : : : ; �ing will be called �f�i1 ;:::;�ingE,and an ordering is thus induced,��i�1E � ��iE � ��i+1E (2.1)where we used the sloppy notation of �j to denote a set of parameters. The exact pruningdecision performed is not of importance to the work presented in this article, as long asthe decision is based only on the ordering. Generally the set of parameter removals thatgenerate the lowest increase in the error function is pruned.The exact increase is often too computational expensive to evaluate, and for analyticalerror functions (and hence analytical functions) the ordering may be estimated by a



4 Sporring: A Prior of Saliency Based Pruning Algorithmstruncated Taylor series,�E(�;��) � E(� ���)� E(�)= �Xi @E(�)@�i ��i + 12Xi Xj @2E(�)@�i@�j ��i��j + : : : : (2.2)To give an example, OBD uses the sum over all data points of the L2 squared di�erencesbetween the dataset and the function output and estimates the saliency to second order.A mathematical as well as computational convenient restriction is to consider onlysingle parameter prunings. This reduces the number of saliencies to be computed toequal the number of parameters (not yet pruned), and it simpli�es the Taylor expansionto �pE(�;��) = ��p@E(�)@�p + �2p 12 @2E(�)@�2p + : : : ; (2.3)for each parameter �p. Be reminded that in this case, �� = [0; 0; : : : ; 0; �p; 0; : : : ; 0]T .Note that the key issue, when using a Taylor expansion, is that E and hence thefunction, must be analytical and the estimation point must be within the radius of con-vergence. The last point is generally ignored in the literature. Further, the ordering itselfdoes not indicate when it is no longer reasonable to continue pruning. This must be de-termined by exterior constraints such as generalization maximization, see e.g. (Sporring,1995; Svarer et al., 1993; Rasmussen, 1993) references therein and many others.3 A Prior of Saliency Based Pruning AlgorithmsFor the simplicity of the following argument we will investigate single parameter pruningalgorithms, but note that the results holds for multi parameter prunings as well. Assumethat we have an ordering of the parameters such that,�pi�1E � �piE � �pi+1E: (3.1)It is at once noticed that since monotonic transformation with positive slope preserveinequality, the above ordering is also una�ected,T (�pi�1E) � T (�piE) � T (�pi+1E); (3.2)I.e. all continuous transformation T : R ! R with @xT � 0 for all x does not a�ectthe pruning order. We will now study a linear transformation T (�E) = a�E + b, forconstants a > 0 and b, and show that the pruning algorithms described in this article canbe interpreted in terms of a model expectancy.Examine the following function,L(�) = �E(�) +Xi �i log j�ij+ ; (3.3)where �, �i, and  are constants. � must be greater than or equal zero, and the set of �i'smust be chosen such that the saliency order is not disturbed. Generally we will assumethat �i = 0 when �i = 0 and use the convention that 0 log 0 = 0.



DIKU{97/8, University of Copenhagen 5Proposition 1. For � > 0 and a constrainted set of �i's L preserves the pruning orderof any analytical error function E in a Taylor series truncated to �nite order.Proof. The proof is given in appendix A.Proposition 2. For � > 0 and a constrainted set of �i's L is the only functional of anyanalytical error function E for which the chance of L is a linear function of the changeof E in the Taylor series truncated to �nite order.Proof. See appendix B for the proof.There are several key points to notice. First of all, the particular set of �i's where�j = � for all j does not upset the pruning order. To see this, write the constraints on �ias, ��pi�1E ��piEPJj=1 j�1 � �i�1 � ��i � ��pi+1E ��piEPJj=1 j�1 � �i+1 (3.4)where J is the truncation order. For identical �j's the original order is retained.Secondly, this particular choice of identical constants �j's is precisely the limit for thetruncation order going towards in�nity, since the sum in the denominator will tend toin�nity as J does, hence the band of di�erent allowable �j's will tend to zero, i.e. �j ! �for all j as J !1.Finally, if E is an analytical function then L is too. We have a semi-group propertyin the sense that we can de�ne two sequential non-pruning disturbing extensions as inEquation 3.3 and get a third non-disturbing pruning. Thus de�ne L0 as,L0(�) = �0L(�) +Xi � 0i log j�ij+ 0; (3.5)with a new set of constants chosen as prescribed previously, but this time based on Linstead of E. This is of course justL0(�) = �0�E(�) +Xi (�0�i + � 0i) log j�ij+ �0 + 0; (3.6)Again we see that the requirements to be ful�lled are�0��pi�1E ��piEPJj=1 j�1 � �0�i�1 � � 0i�1 � ��0�i � � 0i � �0��pi+1E ��piEPJj=1 j�1 � �0�i+1 � �i+1(3.7)and for �j = � and � 0j = � 0 this requirement is trivially ful�lled. Note that this is adi�erent approach than choosing two di�erent sets of �i's both chosen from the sameanalytical function and then combined. This last approach is in general not a pruningorder invariant.We will now examine the choice of identical �j = 1 for all j. Equation 3.3 can beinterpreted in the coding setting as the sum of code lengths of the noise model and theparameter model, and in the MAP setting as minus the logarithm of the noise probabilitytimes the prior, L = L(Dj�) + L(�) = � logP (Dj�)� logP (�); (3.8)



6 Sporring: A Prior of Saliency Based Pruning Algorithmswhere, P (Dj�) = exp(��E(�)� 0): (3.9)In the example of OBD E, is the sum over data points of the square of a L2 norm, andthis can be interpreted as a normal product distribution with a unit standard deviation,and P (�) = exp(1)Yi j�ij��i ' exp(Xi � log � � logbj��ijc � log logbj��ijc � : : : );(3.10)where  = 0 + 1, � is a normalization constant, and � is the discretization constantto truncating reals into integers. The sum is continued just until the repeated logarithmyields a negative number. This last equation is also known as Rissanen's Universal Distri-bution of Integers (Rissanen, 1989) and most clearly demonstrates the di�erence betweencoding and the MAP methods. While the MAP methodology is best suited for contin-uous distributions, such as Je�rey's semi-prior 1=j�ij (Jaynes, 1968), the problems ofnormalization and discretization is much better handled in the coding methodology. Thekey di�erence between the two is that while Je�rey's prior can only be implemented ona �nite interval of the real axis in order for it to be normalized, Rissanen's distributionis normalizable for all countable sets like the set of all positive integers. Hence usingJe�rey's prior one is concerned with the interval size D in order to evaluate the normal-ization constant 1 = RD1 1=x dx, while one's concern when using Rissanen's distributionis the discretization constant �, i.e. the number of digits accounted for. It should be notedthat there are of course other more sophisticated MAP and coding implementations ofdistributions for real numbers. These and other implementation issues concerning thiscoding prior can be found in (Sporring, 1995).We may thus view the OBD pruning algorithm as a greedy algorithm searching for theminimum in Equation 3.8 by removing the least signi�cant parameter through the errorestimate. This will increase the actual error, but decrease the cost of the model.4 ConclusionThis paper has demonstrated that a large class of saliency based pruning methods, wherethe saliency is calculated from analytical functions, can be used to generate a similarityclass of pruning algorithms all having same pruning order. The (in a sense most) generalextension in this similarity class is used to interpret OBD in terms of Bayesian MaximumA Posteriori (MAP) or code-length functionals and a Prior has thus been made explicit.This is found to be Je�rey's Prior (Jaynes, 1968), which is a very natural un-committedresult for the following reasons:� Je�rey's Prior is scale invariant in the sense that it assign equal probability mass tothe intervals 1�10, 10�100, etc.. It is also the basis of what is known as Benford'slaw, which although surprising has been empirically validated on numerous datasetsof surprisingly di�erent nature e.g. (Buck et al., 1993).



DIKU{97/8, University of Copenhagen 7� A very close relative, Rissanen's Universal Distribution of Integers is frequently usedin the coding industries, and one can show (Rissanen, 1989) that it is an optimalcode for large integers.Finally we will conclude that although OBD uses poor estimates when the parametervalues of the net are large, it is a good un-committed choice in the view of the scaleinvariant properties of the implicit prior.5 AcknowledgmentsI would especially like to thank Peter Johansen, Mads Nielsen, Luc Florack and RobertMaas for the many and enlightening discussions during this work.A Proof of Proposition 1We will now prove that the change of L (Equation 3.3) under certain restriction generatesthe same pruning order as the change of any analytical function E up to any but �nitetruncation order in the Taylor series.The change of L can be written as,�L(�;��) � L(� ���)� L(�) = �Xi @L(�)@(�i) ��i + 12Xi;j @2L(�)@(�i)@(�j)��i��j + : : :(A.1)Clearly, the mixed derivatives of the sum of the logarithms are zero, so we need onlyexamine non-mixed terms. First we need to evaluate the n'th derivative of log jxj. Forsimplicity write log jxj as 1=2 logx2, we will now prove by induction that@n@xn 12 log x2 = (�1)n�1(n� 1)!x�n: (A.2)Assume that the n'th derivative is given as above. The n + 1'th derivative is then@@x (�1)n�1(n� 1)!x�n = (�1)n�1(n� 1)!(�n)x�n�1 = (�1)nn!x�(n+1): (A.3)For n = 1, the �rst derivative is seen to be,@@x 12 logx2 = 1x = (�1)00!x�1; (A.4)thus completing the proof.The j'th term in the Taylor expansion of L is given as,(�1)j @jL(�)j! (@(�p))j (��p)j = (�1)j� @jE(�)j! (@(�p))j (��p)j � �pj�jp (��p)j: (A.5)



8 Sporring: A Prior of Saliency Based Pruning AlgorithmsWe identify the �rst term to be � times the identical term in the Taylor expansion of E,and further because of the symmetry, i.e. ��p = �p, we quickly �nd that�pL(�;��) = ��pE(�;��)� �p JXj=1 j�1; (A.6)up to any �nite truncation order J . The �j's are to be chosen such that the pruning orderis maintained, i.e. since �pi�1E � �piE � �pi+1E then so must �jL and thus for positive�, ��pi�1E ��piEPJj=1 j�1 � �i�1 � ��i � ��pi+1E ��piEPJj=1 j�1 � �i+1: (A.7)This completes the proof.B Proof of Proposition 2We will show that L of Equation 3.3 is the unique function that generates linear invarianceto the change of any analytical function E.A linear transformation of the change in error E must have the form,�L(�;��) = a�E(�;��) + b; (B.1)where a and b are constants. We will now investigate the possible functions in the Taylordescription for a and b.The constant a is a scaling constant and it is trivially seen that if a is a function of �and �� then the contribution can be eliminated by an opposite term in b. We will thusassume a to be a positive constant. The constant b is another matter. We are faced withthe choice of a function h such thatL(�) = aE(�) + h(�) + c (B.2)which in the Taylor series behaves such thatb = JXj=1(�1)j @jh(�)j! (@�p)j (�p)j (B.3)is a constant for arbitrary but �nite J . The �rst order terms constraint the problems tosums of functions of only one parameter. Thus either h is independent on �p or,@jh(�)(@�p)j = bp 1(�p)j (B.4)for any j and p, and constants bp restricted as discussed in appendix A. Thush(�) =Xi bi log j�ij+ b0 (B.5)is the only solution for arbitrary constant b0. This completes the proof.
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