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SOLVING GRAPH BISECTION PROBLEMS WITH
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STEFAN E. KARISCH, FRANZ RENDL, AND JENS CLAUSEN

ABSTRACT. An exact solution method for the graph bisection problem is pre-
sented. We describe a branch-and-bound algorithm which is based on a cutting
plane approach combining semidefinite programming and polyhedral relax-
ations. We report on extensive numerical experiments which were performed
for various classes of graphs. The results indicate that the present approach
solves general problem instances with 80 — 90 vertices exactly in reasonable
time, and provides tight approximations for larger instances. Our approach
is particularly well suited for special classes of graphs as planar graphs and
graphs based on grid structures.

1. INTRODUCTION

We consider the problem of partitioning the vertices of a graph into two compo-
nents. Given is an undirected edge-weighted graph G(V, E), where V' denotes the
vertex set, consisting of n vertices, and F the edge set. The weight of the edges are
given by the Laplace matriz L, which is defined through the adjacency matriz A
of the graph by L := Diag(Ae,) — A. Here, e, is the n-vector of all ones and the
linear operator Diag(-) forms a diagonal matrix of the row sums Ae, of A. The
graph bisection problem is to partition the vertex set V into two components V;
and V3 of prespecified sizes ny = |Vi| and no = |V2| (n = ny + n2), such that the
total weight of the edges having one vertex in V3 and one in V5 is minimized. These
edges are said to be cut by the partition. We assume that n; > ns and denote by
d := n1 —ny > 0 the difference between the number of vertices belonging to the
two components of the partition.

We introduce a (—1,1)-vector x of length n and represent each vertex by an
entry of . The interpretation of z is that elements of the same sign correspond
to vertices belonging to the same component of the partition. Then, the graph
bisection problem can be written as

(1) (BIS) z*:=min{}z'Lz:z € F}
where
(2) F:={z:2'e, =d, v € {-1,1}"}

is the set of feasible solutions or bisections. Allowing d to be negative would result
in a symmetric solution where z is replaced by (—z). The special case d = 0 is
called the equicut problem.
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The graph bisection problem has applications in various fields. It is used to
model for example problems arising in VLSI design [3], scientific computing [34],
sparse matrix computation [2], physics [3] or parallel programming [10]. Also, the
partitioning of graphs into several components is often done by recursive bisections,
see e.g. [14]. For a survey on the application in the context of layout problems we
refer to [29].

The graph bisection problem is known to be NP-hard. An exact solution method
for the equicut problem based on branch-and-cut and linear programming relax-
ations was proposed by Brunetta, Conforti and Rinaldi [5]. For the more general
node capacitated graph partition problem, which is also referred to as min-cut
clustering problem, Ferreira et al. [14] described a similar approach, while Johnson,
Mehrotra and Nemhauser [24] suggested an approach based on column generation.
A parallel solution method for graph partition problems based on simple bounding
functions was given by Clausen and Traff [7]. All these exact solution methods have
been limited to instances of general graphs with around 60 vertices.

Many heuristic methods have been proposed in the literature, see e.g. [6, 10, 23,
27, 30, 33|, which are designed to approximate large scale problems as they appear
in real world applications. Nevertheless, it is a great challenge to develop exact
methods for general problem graphs with more than 100 vertices. The approach
presented in this article is certainly a step in this direction.

Semidefinite programming has been successfully applied to various graph opti-
mization problems. Goemans and Williamson [16] presented in their seminal work
an .878-approximation algorithm for the maz-cut problem, using a certain semidefi-
nite relaxation of the problem. Subsequent work of Frieze and Jerrum [15] provided
theoretical approximations for maz-k-cut and mazx-bisection problems. For the latter
problem they obtained a polynomial approximation algorithm with a performance
guarantee of .65.

From a practical side, Helmberg [17] and Helmberg et al. [20] applied with great
success semidefinite programming in combination with polyhedral relaxations to
max-cut. Subsequent work extended the range of the dimensions of exactly solv-
able problem instances considerably, see [19]. Karisch and Rendl [26] investigated
semidefinite programming relaxations of graph equipartition problems. Their re-
sults based on earlier work of Alizadeh [1] and provided tight relaxations for graph
equipartitioning. Wolkowicz and Zhao [35] derived semidefinite relaxations for gen-
eral graph partition problems. For recent investigations on the potentials and lim-
itations of cutting plane algorithms for semidefinite relaxations we refer to [22].

In this work, we derive a branch-and-bound method for the general graph bi-
section problem. It is based on a cutting plane approach combining semidefinite
and polyhedral relaxations. Our goal is to keep the presentation rather selfcon-
tained. Therefore we also include details, which are well known to readers familiar
with recent work in this field. The practical performance of our method shows
that semidefinite programming enables exact solution of general problem instances
with 80 — 90 vertices and tight approximation of bisections of larger graphs. Our
approach is particularly well suited for special classes of graphs as planar graphs
and graphs based on grid structures.

The paper is organized as follows. We conclude this section by introducing
basic notation which will be used throughout the paper. Section 2 reviews lower
bounds for the graph bisection problem which are based on nonlinear relaxation and
addresses how these can be tightened employing polyhedral information. We derive
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the branch-and-bound algorithm in Section 3 and describe algorithmical aspects in
Section 4. Section 5 contains our numerical experiments and results. Finally, we
give some conclusions and directions to future work.

1.1. Basic Notation. The following notation will be used in the remainder of the
paper.

We work in the space of real n x k matrices ®7**. This space is considered with
the trace inner product tr A'B for A,B € R"**. The identity matriz in R"*" is
denoted by I, the matrix E, € R™*" is the matriz of all ones. The n-vector of
all ones is written as e,. Subscripts will not be used if the dimensions are clear
from the context. The j-th canonical unit vector is written as u;. By -+ we denote
the orthogonal complement, e.g. e’ stands for the orthogonal complement of the
vector of all ones. The linear operator Diag(d) forms a diagonal matrix from a
vector d € R™. Its adjoint operator diag(D), acting on D € R™*" yields a vector
containing the diagonal elements of D.

The vector containing the eigenvalues of a symmetric matrix A € R™*" is de-
noted by u(A), and the minimal eigenvalue is given by pmin(A4). For symmetric
matrices A and B, the Léwner partial orderis A = B (A > B), meaning that A—B
is positive semidefinite (positive definite). The Hadamard product of two matrices
A,B € §Rn><k is defined as Ao B = (aij) o (sz) = (aij b”)

2. LOWER BOUNDS BASED ON NONLINEAR RELAXATION

2.1. Semidefinite Relaxation. In this section we review eigenvalue bounds and
bounds based on semidefinite relaxation for the graph bisection problem. We also
discuss their relationship and derive the semidefinite relaxations used for the bound-
ing in the branch-and-bound algorithm.

The first lower bounds based on orthogonal relaxation were introduced by Do-
nath and Hoffmann [11] in the early 1970’s. Instead of the (—1,1)-model these
relaxations base on a (0,1)-model. Here, an n x 2 (0, 1)-matrix Y is used whose
rows correspond to the vertices of the graph and whose columns represent the two
components in which V' is to be partitioned. An entry y;; of this matrix is 1 if
vertex ¢ belongs to component V; in the partition. Now an equivalent formulation
of (BIS) is

(3) (BIS) 2" =min{itr Y'LY :Yes =e,, Y'e, = (n1,n2)", Y € {0,1}"*%}.

Donath and Hoffmann [11] used the fact that the columns of a feasible Y in the
(0,1)-model are orthogonal. Thus, the feasible set can be relaxed to all Y € R"*?
that satisfy

Y'Y = { me 0 ] :

0 N9

Boppana [4] tightened this relaxation of the graph bisection problem by including
the constraints on the row and column sums of Y. Independently, Rendl and
Wolkowicz [32] proposed the same idea for the general graph partition problem,
which contains (BIS) as special case. These bounds are obtained by projecting on
the linear manifold

{Y :Yes =en, Yie, = (n1,ns)", ¥ € R**?}
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and solving

(4) (BISprw)  max 22 uin (V! (L + Diag(f))V)

where V contains an orthonormal basis of el, i.e Vte =0, V!V =1I,_;, and fis a
vector.

Alizadeh [1] observed first that the eigenvalue bounds can be viewed as dual prob-
lems to semidefinite relaxations of graph partition problems. Poljak and Rendl [31]
derived semidefinite relaxations for the graph bisection problem yielding the same
bound as (BISprw). For general graph equipartition problems these equivalences
were obtained by Karisch and Rend! [26].

We are now going to relax the (—1,1)-model. As observed in many places we just
have to linearize the objective function by introducing a new variable X := zzt.
An entry z;; of X equals +1if ¢ and j are in the same set, and —1 otherwise. The
set of feasible bisections can be also expressed using X and is given by

5) T = {X: X =z2t,zeF}

= {X :diag(X) = en, e, Xe, = d?,rank(X) = 1,X = 0}.
Thus, we can restate (BIS) as
(6) (BIS) z*=min{itr LX: X €T}

Dropping the rank condition on X yields a semidefinite relaxation of (BIS)
(7) (BISspp) min{itr LX : diag(X) = e,, e, Xe, =d?, X = 0}
which provides the same bound as (BISgrw ), see [31].

2.2. Tightening the Relaxation with Polyhedral Information. As shown in
different places, e.g. [18, 19, 26], combining semidefinite relaxations with polyhedral
information provides very tight relaxations. The goal is to find tighter descriptions
of T, or to be more precise of its convex hull, than suggested by the feasible set of
(BISspp).

Generic inequalities for (—1,1)-problems are the so called hypermetric inequal-
ities. They base on the fact, that for any x € {—1,1}", the inequality |hfz| > 1
is valid, if h € R" is integer and hle is odd. With respect to the semidefinite
relaxations, these inequalities are just

|h'z| > 1 <= h'zz'h > 1 < tr (Rh")X > 1.

The simplest hypermetric inequalities are the triangle inequalities, where h contains
all zeros except three elements which are either +1 or —1. They read,

—1 (h, = +1,hj = +1,hk = +1)
-1 (hi = +1,h; = +1,h; = —1)
-1 (hi = +1,h; = =1, hs, = +1)
-1 (hz = —].,hj = +1,hk = +].)

for distinct triples of vertices (4, j, k), where we use the fact that X is symmetric and
has diagonal elements equal to 1. We are only going to use the triangle inequalities
here, since they provide a sufficiently tight relaxation when they are added. For
further details and polyhedral results regarding the special case of equicut, we refer
to [5, 8, 9].

The number of possibly violated inequalities is O(n®). We will describe the
triangle inequalities in the resulting tighter relaxation in compact form. Suppose

Tij + Tik + Tk

(8) Lij — Tik — Ljk
—Tij + Tik — Tjk

—Tij — Tik + Tjk

VIV IV IV
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there are my inequalities in a particular relaxation. We introduce a linear operator
B: R — ®™ acting on X, and a vector b € R™>, which both take care of the
inequalities in the model. The r-th inequality is given by

BT(X) + b, = tr h(r)hizr)X +b. >0,

with the vector h(,y € R" defining a triangle inequality as in (8), and b, = —1.
The (tighter) semidefinite relaxation including (some) triangle inequalities is
written as

(9)  (P) min{itr LX :diag(X) =e,, e'Xe=d?, B(X)+b>0, X = 0}.

The cutting plane approach based on this relaxation will provide the lower bounds
for the branch-and-bound algorithm described in the following section.

Before going on, we have to address a difficulty that arises in solving semidefinite
relaxations with equality constraints. Since we are going to apply an interior point
method to solve the semidefinite programming problem (P), we have to make sure,
that there are strictly feasible solutions, i.e. feasible solutions X for which X = 0
and B(X)+b > 0 holds. It is obvious that there exists no positive definite solution
in the equicut case, i.e. if d = 0, since the constraint e!Xe = 0 makes the smallest
eigenvalue of X equal to 0. We are going to show in Section 4.1 how one can
transform an equicut problem into an equivalent one, such that the new problem
has strictly feasible points. Nevertheless, we also have to ensure, that the feasible
set of (P) with d > 0 has interior points. This becomes of importance when several
variables are fixed by branching. In Section 3.2 we are going to identify situations
in which subproblems of (P) lack interior, even if d > 0.

3. THE BRANCH-AND-BOUND ALGORITHM

In this section we describe a branch-and-bound algorithm for the graph bisection
problem in detail. Even though the basic ideas are straight forward, we have to
consider modifications in the relaxations for bounding certain subproblems due to
the above described difficulties regarding interior points.

3.1. Branching. The branching is based upon the decision whether two vertices
belong to the same set or not, which results in a binary branching tree. In order
to reduce the dimension of the subproblems in lower levels of the tree we “merge”
vertices when we branch. We describe the branching in the root node of the search
tree in a general way, where we allow any pair of vertices to be chosen. Then we will
restrict this choice to be able to manage consecutive branchings. We assume, that
the larger component of the partition is always the first one, i.e. the corresponding
entries of x are +1.

In the following we use a superscript on the problem to indicate the level of the
search tree. Hence the original problem in the root node is

(10) (BIS®) 2% =min{l2'L02 : 2w’ = d, z € {-1,1}"}

where we define w° := e as the weight vector of the problem.

We now describe how the branching and generation of the two subproblems in
the first level of the branching tree are carried out. Suppose that p and ¢ are the
vertices on which the decision in the branching is made and let p < gq.

The first possibility is that they go into the same set, which is equivalent to
adding the extra constraint z, = z, in (BIS®). The bisection problem with this
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extra constraint is equivalent to the following lower dimensional problem. Let
L' = (I};) be an (n—1) x (n— 1) matrix obtained from L° by replacing the p-th row
and column by the sum of rows and columns p and ¢, respectively, and deleting the
g-th row and column. For the sum constraints we introduce the (n — 1)-dimensional
weight vector w! such that

1 { wl + wg ifi=p

(1) Wi t= 1 w0 otherwise

2

This weight vector counts the merged vertices twice in the sum constraints. Now,
(BIS°) as given in (10) with the extra constraint =, = z, is equivalent to

(BIS') min{iz'L'z:2'w' =d, z € {-1,1}"""}.
Thus, the semidefinite relaxation of (BIS?!) is
(12)
(P')  min{}tr L'X : diag(X) = e,-1, (w!)!Xw! =d?, B(X)+b>0, X = 0}.

where the matrix variable is an (n—1) x (n—1) matrix. As inequality constraints we
now consider the generic triangle inequalities for an (n — 1)-dimensional problem.

In the case, where the vertices p and ¢ are separated, i.e. z, = —z,, we perform
a “switching” in the problem first, before we reduce it to a smaller dimensional one.
A switching is obtained in the following way. Define the vector y € R"™ with

] 1 ifi=gq
Yi = 1 otherwise
and Z := Diag(y)z where z is the original n-dimensional (-1, 1)-variable of (BIS?).
Then z € {-1,1}", and we have 2'L°z = z'Lz with L := Diag(y)L°Diag(y).
For the sum constraint we have x'w® = x'Diag(y)Diag(y)w® = z'w where w :=
Diag(y)w®. Since z, = —z, if and only if 7, = 7,, (BIS°) from (10) with the extra
constraint z, = —z, is equivalent to the switched problem
min{1z'Lz : #'w = d, &, = z,, € {-1,1}"}.
Now we can proceed as we did above by merging p and ¢ in the switched problem.
To obtain the new cost matrix L' from L°, we replace the p-th row and column by
the difference of rows and columns p and ¢, respectively, and delete the g-th row
and column which results in an analogous update as before. The new weight vector
1 n—1 :

w' eR is

0 0
1 —— 'LUi — 'LUq
(13) w; { wd

Note that when switched first, the first entry of the weight vector w! after the merg-
ing becomes 0. This means that the signs of the remaining (unassigned) vertices
must satisfy the cardinality constraint.

To distinguish between the two ways of generating subproblems we refer to the
first as a pure merging and to the second as a switched merging.

ifi=p
otherwise

In order to make consecutive mergings manageable we restrict the choice for the
vertex pair to branch on and assume that vertex 1 will always play the role of p.
This means that vertex 1 becomes a “supervertex” while going down the search
tree. Figure 1 (see Appendix) shows the complete branching tree for bisecting a
graph with n = 6 vertices into two components of size 4 and 2, i.e. d = 2. By “p, ¢”
we denote that p and ¢ are in the same set while “p|¢” means that p and ¢ are
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separated. A current (partial) solution can be represented by a vector consisting
of “0”,“+” and “—”, where a 0 entry means that the corresponding vertex has not
been assigned yet, and elements with the same sign correspond to vertices in the
same set.

Note that vertex 1 gets only a “+” in the tree and that we therefore seem to
obtain solutions corresponding to d < 0 in Figure 1. But since we assume that
the larger component is the first one, we consider the symmetric solution (—z).
The fixing of vertex 1 to “+” guarantees that only one of each pair of symmetric
solutions is searched.

When we perform a switched merging we only change the sign of ¢ since the new
vertex becomes part of the supervertex. In Figure 1 in the appendix we do not
merge vertices explicitly, but give the sign pattern of the rows and columns of L
which become a single row and column in the subproblem.

Summarizing, a subproblem at level k£ of the tree is obtained as follows. De-
pending on whether the subproblem results from its parent by a pure or a switched
merging of vertices 1 and ¢, the cost matrix L and the weight vector w of the
subproblem are obtained as described above. In the following, we will not use su-
perscripts for L and w to indicate the level of the subproblem. This is done to
simplify the notation.

3.2. Bounding. We now address various properties of the subproblems, that have
to be considered before we bound. These properties depend on the values of the
quadruple (n,k,d,w;), where k is the level of the subproblem in the search tree
and w; is the weight of the supervertex. Knowing these values, we can investigate
both structure and feasible solutions of a given subproblem.

Recall that the cardinalities of the two components into which the vertex set
is partitioned are ny and ns, respectively. The number of positive entries in the
partial solution on which the subproblem is based is given by p; := $((k+1) +w;)
while the number of negative entries equals p_ := 2((k +1) — wy). We use F to
denote the feasible set for the current subproblem

(14) F={z:2s'w=d, z € {-1,1}""F}
We partition F into two sets F = Fy U F_, with
(15) Fr={z:zy=4+l, zeFltand F_:={z:21 =1, z € F}.

First of all we look at the case where we do not bound the subproblem but
construct its feasible solutions explicitly and use the resulting objective function
values as bounds. This is done if exactly one vertex can be arbitrarily assigned,
while the other vertices are fixed. This situation occures if max{p;,p_} =n; — 1
or min{py,p_} = no — 1. In Figure 1 (see Appendix), (+++000) is an example for
the first and (+-0000) for the second case.

We bound a subproblem if max{py,p_} < ny — 1 and min{py,p_} < ny — 1
hold by solving relaxation (P*). As argued above one has to prevent lack of in-
terior points if d = 0. However, even if d > 0, there is a situation, where the
resulting semidefinite relaxation (P*) has no interior points, because the subprob-
lem is equivalent to a certain equicut instance. This situation occurs when the
first entry of each partial solution of the subproblem, z € F, becomes fixed, i.e.
there are only solutions with x; being either positive or negative. This happens if
max{p;,p—} > na. If for instance p; > na, then F_ is empty, since x'w would
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become negative in the case ; = —1. The symmetric case deals with the situation
that the number of —’s in the partial solution p_ is larger than no, so x; must be
negative and hence Fy = (). But this means that if p, > n»

F=F, = {z:z;=+1, 2tw=d, v € {-1,1}"F}
{z 21 =+1, 2" =0, ¥ =w—duy, v € {-1,1}"7F}

and if p_ > ny

F=F = {x:21=-1,2'w=d, x € {-1,1}"F}
= {z:z1=-1, 2" =0, v =w+duy, z € {—1,1}"7F}.

Hence, the feasible set of the subproblem is equivalent to that of an equicut problem
with a different weight vector and an extra constraint on z1. By dropping this extra
constraint in the equicut problem we obtain a relaxation of the subproblem which
only adds symmetric solutions. Therefore the modified subproblem yields the same
solution value as the original one.

If d > 0 and the subproblem is not equivalent to an equicut problem, it is given
by

(16) (BIS*) zF:=min{iz'Lr:a'w=d, v € {-1,1}"F}.

In the equicut case or in the situation described above, the subproblem at the k-th
level is given by

(17) (BIS*) 2" =min{iz'Lz:2'w =0, v € {-1,1}"7*}

where the weight vector is modified by @ = w £ duy, and if d = 0 we just solve the
“original” equicut problem.

The semidefinite relaxations of (16) and (17) are obtained as described above.
We denote the relaxation of (16) by (P¥) and the one of (17) by (PF).

4. ALGORITHMICAL ASPECTS

In this section we describe how the lower bounds are calculated. We use a
cutting plane approach based on semidefinite programming. For further details of
this approach we refer to [17, 20, 25].

4.1. The Primal-Dual Interior Point Approach. For solving problems (P¥)
and (PF) we employ the primal-dual interior point approach of Helmberg et al.
[20]. Before we describe it, we show how one deals with the lack of strictly feasible
points in the second relaxation (PF). For ease of notation, let in the following n be
the dimension of the current subproblem.

For relaxation (PgF) we need to project the problem in order to be able to apply
the interior point approach, since every feasible solution has at least one eigenvalue
equal to 0 with corresponding eigenvector . We introduce an n x (n— 1) projection
matrix V' which contains a basis of the orthogonal complement of w, i.e. for which
Vit = 0 and rank(V) = n — 1 holds. Such a matrix can be easily found by setting

v e |

Then we can substitute X = VRV and obtain the following equivalent, projected
problem to (P}), whose matrix variable is of order n — 1.

(By)  min{itr VILVR: diag(VRV') = e,, B(VRV!) +b >0, R > 0}.
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Note that since V' is full rank we have X > 0 if and only if R = 0.

In order to be able to describe the essential parts of primal-dual interior point
approach we introduce a unified model, which covers both (P¥) and (}30’“) Suppose
there are m, equalities in a particular relaxation. We define a linear operator A(-),
which acts on the primal matrix variable and takes care of the equalities in the
relaxation. The vector a € ™= corresponds to the constant part. For the general
model (P}) with d > 0 we have

A(X):<dli;%gi) ) a=<§g ) e =41,

where the adjoint operator A!(+) acting on an m,-vector is given by

A'(y) = Diag(y1n) + Yyna W, W = ww'.
For the equicut case (PF) the equalities are just

A(X) = diag(VXVY), a=e, m,=n,
where we now use X instead of R for ease of notation. The adjoint operator for
the equality constraints acts on a vector y € ™ and is

Al (y) = V'Diag(y)V.
For the inequalities we use B(-) as defined in Section 2.2, i.e. for the general and
the equicut problem the r-th inequality is given by
B.(X) = tr Hi,)X, and B,(X) = tr V'H,)V X,

respectively. The constant part is just b = —e. The adjoint operators for the
inequalities are

my mp
Bt (u) = Z H.yu,, and B*(u) = ZVtH(,,)Vur
r=1 r=1
and act on a vector u € R™. Finally, we introduce a new cost matrix for the
unified setting, which corresponds to C' = iL ifd>0,and to C' = %VtLV ifd=0.
The primal-dual pair of the relaxations (in the unified setting) is now

min tr CX max aly — blu
st. AX)+a=0 st. C+A(y)—B'(u)—Z=0
(P) (D)
B(X)+b—s=0 u—t=0
X =0,5>0 Z=0,t>0

where s,t € R™ are slack variables. Note that by weak duality, any feasible solution
of (D) yields a lower bound for the graph bisection problem under consideration.

The Karush-Kuhn-Tucker optimality conditions for the dual log-barrier problem
are

AX)+a = Fp =0

B(X)+b—s = Fp, =0
C+Ay)-Bu)-Z = Fp, = 0

(KKT) u—t = Fp, =0
ZX —ul = Fzx =0

—tos+ e = FkF, =0

where the first and the second pair of conditions are for primal and dual feasibil-
ity, respectively. The last two equations are perturbed complementary slackness
conditions. This system of (nonlinear) equations is solved using Newton’s method.
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In each iteration the linearized form of (K KT) is solved for a fixed u with respect
to the correction AD = (Ay, Au, AX, AZ, At, As). During the iterative process p is
driven to 0, yielding convergence to a solution of the primal-dual pair.

In the linearized (K KT')-conditions, AX, AZ, As and At can be substituted and
expressed in terms of Ay and Au. This leads to a final system

CA(Z VAN () X) + A(Z1BH A X) = —A(Z 1 Fp, X) — A(Z-LFyx)
(18)  —B(Z-LAY(My)X) + B(Z 1B () X) — #7770 (Au) o 5 =
—B(Z_lelX) — B(Z_lFZ)() + "o Fp,os+ Fp, — tinths.

where (#"); = 1/t;. The final system (18) is of size (m, + ms) and its solution
is the most expensive part of the primal-dual algorithm. We have to construct
an (mg + mp) X (mg + mp) matrix which represents the left hand side of (18),
factorize it and solve for Ay and Aw. It can be shown that the resulting matrix
is positive definite. The complexity for the construction and the solution using a
Cholesky factorization is O(m, + ms)3. Finally, AX, AZ and As are obtained by
backsubstitution, and AX is symmetrized.

As in interior point approaches for linear programming, also in semidefinite pro-
gramming predictor-corrector approaches prove to be very efficient, especially if
the number of inequalities in the program becomes larger. We also employ this ap-
proach here and refer to the references above for details. We point out however that
the final system (18) has to be factorized only once to obtain both the predictor
and the corrector direction.

The last ingredient of the interior point method is the line search part to guar-
antee, that the iterates stay in the interior of the feasible sets. In other words,
we have to check whether the updated X and Z are positive definite which we do
by performing Cholesky factorizations. The complexity of the line search is then
O(n?).

Global convergence of the primal-dual method was proved in [20], while the proof
of quadratic convergence is due to [28]. In general, convergence to a fixed precision
of say 107° is achieved in around 12 — 15 iterations independent of the size of the
semidefinite programming problem.

4.2. The Cutting Plane Approach. As already pointed out above, the number
of possibly violated triangle inequalities is O(n?®). To obtain a relatively tight
relaxation with a relatively small number of inequalities, we employ a cutting plane
approach in the bounding procedure.

The cutting plane approach starts with solving relaxation (BISspp) to the
prespecified precision of convergence. We construct an upper bound from the so-
lution and check whether we can fathom the node in the search tree. If not, we
exhaustively search for violated triangle inequalities and add the n most violated
inequalities as cutting planes. We call this a large add of inequalities.

Then we start the interior point method with a primal solution, which is in the
strict interior of the currently feasible set and hence a strictly feasible point. After
each iteration of the primal-dual method the duality gap becomes smaller, but at
the same time we can not guarantee, that the iterates are still in the interior of the
feasible set with respect to the triangle inequalities. Therefore, we check after each
iteration for violated inequalities. As soon as we find a violation, we could add
the inequality as a cutting plane to the relaxation and restart the whole procedure
from a strictly feasible point of the new relaxation. But in practice it is preferable
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to perform a few more iterations after a violation is detected, before adding new
inequalities. Here, we make 3 more iterates, which results in a larger number of
violated inequalities, of which we choose the n/3 most violated ones to add to the
model. This is called a small add. Then we restart from an interior point of the
current feasible set and check for newly violated inequalities after each iterate.

After 10 small adds we solve the current relaxation to optimality again and
construct a feasible bisection and its corresponding upper bound, which are returned
together with the lower bound to the main part of the branch-and-bound algorithm.

After this rather generic description of the bounding approach we specify a few
algorithmical details. The degree of violation of an inequality is measured with
respect to the barycenter of the feasible set, and not with respect to the origin.
In other words, we measure the portion of the vector to the barycenter one has to
move from the point violating a particular inequality until the inequality is satisfied
with equality.

When there are no inequalities in the model or after performing a large add,
we start from the barycenter X of the (primal) feasible set, whose construction is
explained in the next section. After a small add, we just move back into the interior
of the feasible set. This is done by taking a convex combination of the last point
X7 which was strictly feasible with respect to all triangle inequalities and X. Here
we choose

Xg=9X7+.1X
as new starting point. In the dual problem, we start feasible after a large add, and
infeasible after a small add. We will address this issue in the next section, too.

We tested different combinations of large and small adds, but the setting with
1 large and 10 small adds turned out to be favorable. This setting turned also out
to be effective for the max-cut problem [19].

Whenever the relaxation is solved to optimality we construct a feasible solution
from X and improve it by local search. We first extract a column of X, say the
g-th column X,, which approximates x - z,, where z is a bisection, and set the n;
largest elements to +1 and the others to —1. Then we use a simplified variant of
the Kernighan-Lin heuristic [27] with limited depth search to improve the solution.
This “rounding” and improvement, is generally performed on 10 columns of X, and
the best feasible solution is used as an upper bound. For a more detailed description
of the Kernighan-Lin heuristic we also refer to Lengauer’s book [29].

4.3. Primal and Dual Starting Points. This section describes how strictly fea-
sible points can be obtained for the primal and the dual relaxation of any subprob-
lem in the branching tree. This is necessary to apply an interior point method and
their existence guarantees strong duality by Slater’s constraint qualification. We
also address the issue of starting from dual infeasible points after small adds. Sup-
pose, we consider a subproblem at the k-th level specified by (n, k,d,w;). For ease
of notation, we nevertheless use n as dimension of the subproblems which actually
corresponds to n — k.

4.3.1. Primal Starlfing Points. The key for getting a primal strictly feasible point
is the barycenter X of the feasible set 7 of the subproblem, i.e.
(19) X=X
XeT
with N :=|T| = |F|.
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For computing X we partition 7 into two sets, namely 7 = 7 U 7_, with
Te={X:X=22", 2 Filand T :={X: X =z2', z€ F }.

The barycenters of the two sets are denoted by X+ and X _, respectively, and we
define

-1 -1
Nei= (Tl =15 = (1) and o= == (),

m_

where m4 and m_ are the number of possible (—1)’s in x2.,, of F; and F_, respec-

tively. We observe that my = $(n — 14wy —d) and m_ = $(n — 1 — wy — d).
In these terms, the barycenter can be written as
(20) X =+(Ny Xy +N_X_).

Note that in the equicut case d = 0 we have Ny = N_ and the following consider-
ations simplify accordingly.

When computing the entries of X'+ and X_ we have to distinguish between the
diagonal elements, the elements of the first row and column, and the remaining
entries. The diagonal elements of the barycenters are clearly 1 since they are 1 in
all feasible solutions.

For calculating element (24 )1; of the first row of X'+ we observe that there are

n—2
p= (o))
solutions x € F for which z;z; = —1, and
Ty =Ny —py
solutions for which z;z; = 1. Hence
d— w;
n—1"

(21) (@)1 = (@4)j = N%(—m +74) =
For the other entries (#4);; with i,7 > 1,i # j we have
n—3
Mt = 2 < my — 1 )
solutions x € F for which z;z; = —1, and
Ty =Ny — py

solutions for which z;2; = 1. This yields

_n—l—(d—w1)2

22 P)p = (— =

( ) (m+)J N+( IU/++7T+) (n_l)(n_z)

It is easy to verify, that th'+w = d?. Analogous considerations lead to
. . d+ wq

(23) (@-)1j = (@-)j1 = ———

and

n—1—(d+uw)’
(n=1)mn-2) °

(24) (@-)ij =

where one can also easily see that w! X_w = d2. The barycenter X is now obtained
by using the above quantities in (20).
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The following theorem shows that any strict convex combination of X + and X
is strictly feasible. In fact, both X and X_ have eigenvalues equal to 0, which can
be observed using the ideas of the proof of the following theorem.

Theorem 4.1. Let X, and X_ be given as above. Then for all X € (0,1), the
point X defined by
Xy:=AX, +(1-NX_
is strictly feasible for (P¥) if d > 0.
If d = 0, there is an Ry which consists of the first (n — 1) rows and columns of
X such that Ry is strictly feasible for (PF).

The proof is given in the appendix.
The following corollary holds since Ny > 0 and N_ > 0 follow from the condi-
tions in Section 3.2 that we asserted for bounding a subproblem.

Corollary 4.2. The barycenter X given by (20) is strictly feasible for (P¥), while
R, consisting of the first (n—1) rows and columns of X, is strictly feasible for (}30’“)

There remains one problem, the computation of N, and N_. But this has only to
be done for the problem in the root node, since the coefficients for the subproblems
can be obtained from the coefficients of their parents in the search tree. Using
superscripts to denote the level of the subproblem we have after a pure merging

k k
NEH = (1= Z5)N} and NEF = 25N
while after a switched merging we get
k k
Nitt = 22Nk and NFH = (1 - 2= )NE.

4.3.2. Dual Starting Points. Without inequalities in the model and after a large
add we always start dual feasible. In the general case d > 0 we first set u =1¢ =¢
which makes ¢ strictly feasible. Then we choose y such that

7 =C + A'(y) — B'(u) = C + Diag(yi.n) + ynp1 W — B (u)

becomes positive definite. We use y,4+1 = 0, and choose y;., large enough so that
Z becomes diagonally dominant. In the equicut case we proceed in the same way,
except that y € R, since we have

VtDlag(yln)V = Diag(yl:nfl) + anI:nfl,lznfl-
After a small add it is favorable to start from a point which is infeasible with
respect to
u—1t=0.
Let t,;g and uyq be the portion of ¢t and u before the small add, and let ¢,.,, and
Unew correspond to the respective elements of the newly added inequalities, i.e.

;= ( totd ) and u = < Uold >
tnew unew

The “old” parts are strictly feasible since they were before the small add. Never-
theless, we perturb those of their entries which are very small in order to prevent
numerical difficulties. For the new inequalities we set tpe = € and Upey, = 0. This
allows us to keep the latest y as new starting point and yields therefore the (up to
a small change caused by the perturbation of u) same dual objective function value
as the latest dual problem. In practice, ¢t and v become dual feasible after a few
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steps of the interior point method, and then the lower bound provided by the dual
objective function is a valid lower bound again.

5. COMPUTATIONAL RESULTS

5.1. Implementational Details. Before we are going to describe the numerical
experiments we consider a few implementational details. The main routine of the
branch-and-bound program was implemented in MATLAB. The cutting plane ap-
proach which provides the lower bounds was written in C and uses both BLAS and
LAPACK routines, whenever possible. The compiling options are simply “~0” for
full optimization and “+z” for producing position independent code, which is nec-
essary for MEX interfaces. Our experiments were performed on the HP 9000/735
and the running times are reported in the format “hours:minutes:seconds”.

In the branch-and-bound algorithm, a depth first search strategy is used to search
the branching tree. As described in Section 3.1, branching is performed on a pair
of vertices (1,¢). As ¢ we choose the vertex, whose column is closest to a (—1,1)-
vector, i.e. whose column X, minimizes the Euclidean norm of |X,| — e for all g.
This branching rule turns out to work quite well in practice.

In the cutting plane approach we perform 1 large and 10 small adds, where we add
n and n/3 violated inequalities, respectively. Hence, the number of inequalities my,
is bounded from above by %n As long as there are not more than 2n cutting planes
in the model, we do not perform the predictor-corrector approach, but compute the
“simple” Newton search directions. This turns out to be more efficient.

Each relaxation is solved to an accuracy of 107°, i.e. convergence corresponds to a
relative gap between primal and dual being smaller than this value. The tolerance
for primal and dual feasibility is set to 107%. When the required duality gap is
reached, but not the desired feasibility, usually one or two predictor-corrector steps
without changing the barrier parameter p are sufficient to achieve the prescribed
feasibility. However, this is hardly ever necessary and there are at most two of these
extra iterates necessary while bounding a problem.

5.2. Numerical Experiments. The goal of our experiments was to show that an
exact approach based on semidefinite programming is a step towards the solution of
problem instances of general graphs having more than 100 vertices. We investigated
both exact and approximate solutions for an extensive number of graphs, which
were made available to us from colleagues or were generated by ourselves. We
divide the presentation into four subsections, the first providing an overview of the
test problems under consideration. The other subsections present and discuss the
numerical results for the different classes of problem instances.

5.2.1. Overview. We tested our approach on various classes of graphs which we
either generated ourselves or obtained from the literature. The following sub-
sections contain the results of our experiments. The set of randomly generated
graphs in Subsection 5.2.2 was already used in [25, 26] and can be obtained from
http://wuw.diku.dk/~karisch/eqp.d. The second set of graphs considered in
Subsection 5.2.3 stems from Brunetta, Conforti and Rinaldi [5] and is available at
ftp://ftp.math.unipd.it/pub/Misc/equicut. Subsection 5.2.4 contains graphs
due to [13, 24, 34] which come from real world applications.

The tables in the following sections read as follows: “graph” specifies the name of

the instance, “n” is the number of vertices, and “dens” gives the density in percent.
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A column contains the optimal cut when labeled ”opt” and a feasible solution when
labeled “sol”. In the latter case we provide a performance guarantee of the solution,
given either as relative gap in percent or the absolute gap in the number of edges
in column “gap”. This means that the solution guarantees

opt > sol — Lmax{%, 1} - gap|.
“|B|” gives the number of nodes bounded, and “time” shows the running time.

In Section 5.2.3 we also give the computation times obtained by Brunetta, Con-
forti and Rinaldi [5] with their approach on a SPARC 10/41. In these tables
“SDP-time” denotes our results, while “LP-time” gives the running times reported
in [5].

If not explicitly stated otherwise, we consider equicuts, i.e. the case d = 0. For
the general case, d is some portion of the number of vertices of the graph.

5.2.2. Randomly Generated Instances. These graphs were generated for testing pur-
poses in [25, 26] and consist of two classes. The first class of graphs with labels
“a-c” are unweighted pseudo-random graphs with uniform edge probability p = 1/2.
The other group consists of weighted pseudo-random graphs with edge weights uni-
formly drawn from the interval [0, 10]. They are labeled by “d-f”. The dimensions
of all instances lie between 36 < n < 132, and for each size and type we have
three graphs. We do not give the densities in the tables, but they are in the in-
terval [47,51] percent for the unweighted graphs, and either 99% or 100% for the
weighted instances.

We solve all instances up to size n = 84 to optimality using four different settings
for d. We also compute optimal equicuts for the instances with 108 vertices. The
remaining problems are solved with a performance guarantee of 1%.

Tables 1 and 2 give the results of various partition sizes for the unweighted
instances, and Tables 3 and 4 for the weighted graphs. Comparing the running times
with those of the other graph classes in the next subsections shows empirically that
the randomly generated instances of this type constitute the most difficult class.
The solution times for the different dimension are: seconds for n = 36, minutes for
n = 60, hours for n = 84, and days for n = 108.

In almost all cases, 1%-approximations for weighted graphs can be obtained in
the root node. For unweighted instances, the solutions with this performance guar-
antee can be obtained in several hours for most of the instances under consideration.

We observe, that in general the solution times do not seem to depend on the
value of d.

5.2.3. Brunetta-Conforti-Rinaldi Library. We also tested our approach on a library
created by Brunetta, Conforti and Rinaldi [5], short BCR-library, which contains
250 instances with 20 to 80 vertices. The instances of the BCR-library fall into five
categories.

The first class consists of pure random instances. In the generation, the density of
the graphs was fixed first. Edges belonging to the graph received weights uniformly
drawn from [1,10], the remaining edges got 0 weights.

The second group contains planar grid instances, which are named “hxkg”. They
represent a weighted i x k grid in the plane, where the edge weights have weights
from 1 to 10, drawn from a uniform distribution. The resulting graphs have n = hk
vertices and m = 2hk — h — k edges.
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graph n sol gap |B| time sol gap |B| time
d=0 d=n/2
ex36a 36 117 0% 1 3 8 0% 13 31
ex36b 36 118 0% 1 5 84 0% 1 5
ex36c 36 124 0% 1 2 90 0% 1 4
ex60a 60 367 0% 49 5:00 268 0% 79 9:56
ex60b 60 357 0% 37 4:50 259 0% 75 10:23
ex60c 60 343 0% 29 4:08 250 0% 49 7:15
ex84a 84 742 0% 287  2:02:55 548 0% 339  2:20:25
ex84b 84 71 0% 553 4:19:03 562 0% 77 28:41
ex84c 84 753 0% 619  4:18:15 556 0% 519  3:23:38
ex108a 108 1247 0% 5133  88:56:57 - - - -
ex108b 108 1282 0% 8755 164:58:22 - - - -
ex108c 108 1240 0% 1383 27:15:46 - - - -
ex108a 108 1247 1% 49 1:56:31 915 1% 55 1:37:42
ex108b 108 1282 1% 77 3:00:18 937 1% 69  2:19:58
ex108c 108 1240 1% 13 34:49 918 1% 89  2:49:12
ex132a 132 1885 1% 55 4:45:51 1379 1% 33 2:34:35
ex132b 132 1883 1% 1 5:41 1403 1% 205 13:22:39
ex132c 132 1854 1% 5 27:16 1371 1% 81  5:35:40

TABLE 1. Randomly generated unweighted instances; dens € [47,51]%.

graph n sol gap |B| time sol gap |B| time
d=n/6 d=n/12+1
ex36a 36 112 0% 3 10 114 0% 1 3
ex36b 36 111 0% 1 2 114 0% 1 3
ex36¢ 36 119 0% 1 4 121 0% 1 2
ex60a 60 351 0% 75 5:38 360 0% 49 5:18
ex60b 60 345 0% 87  10:47 352 0% 45 6:01
ex60c 60 332 0% 131 11:21 337 0% 23 3:25
ex84a 84 721 0% 1555 9:16:51 735 0% 801 5:03:53
ex84b 84 741 0% 183 1:19:51 760 0% 491  3:16:60
ex84c 84 727 0% 399 2:59:31 744 0% 751 4:57:35
ex108a 108 1207 1% 61 2:06:43 1235 1% 105  3:40:14
ex108b 108 1241 1% 179 6:21:04 1268 1% 129  4:35:31
ex108c 108 1205 1% 113 5:06:59 1228 1% 37 1:27:02
ex132a 132 1825 1% 109 8:59:19 1869 1% 295 21:12:41
ex132b 132 1829 1% 15 1:22:22 1867 1% 3 16:52
ex132c 132 1799 1% 69 5:04:09 1833 1% 1 5:56

TABLE 2. Randomly generated unweighted instances; dens € [47,51]%.
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graph n sol gap |B| time sol gap |B| time
d=0 d=n/2
ex36d 36 1426 0% 3 11 1030 0% 1 2
ex36e 36 1482 0% 1 4 1086 0% 23 40
ex36f 36 1454 0% 1 4 1065 0% 21 38
ex60d 60 4151 0% ) 45 3086 0% 101 10:48
ex60e 60 4154 0% 35 4:46 3082 0% 55 5:30
ex60f 60 4132 0% 7 8:29 3066 0% 85 8:43
ex84d 84 8152 0% 193 1:14:18 6081 0% 393 2:20:00
ex84e 84 8327 0% 513 3:43:58 6182 0% 231 1:14:04
ex84f 84 8264 0% 305 1:50:41 6171 0% 467 2:57:25
ex108d 108 13891 0% 8517 135:40:36 - - - -
ex108e 108 13699 0% 2351  30:02:33 - - - -
ex108f 108 13709 0% 461 6:56:49 - - - -
ex108d 108 13891 1% 1 2:59 10357 1% 1 2:32
ex108e 108 13699 1% 1 26 10195 1% 1 2:55
ex108f 108 13709 1% 1 2:57 10296 1% ) 13:05
ex132d 132 20581 1% 1 5:30 15371 1% 1 9:31
ex132e 132 20618 1% 1 5:42 15338 1% 1 5:17
ex132f 132 20707 1% 1 9:38 15485 1% 1 5:20
TABLE 3. Randomly generated weighted instances; dens € {99,100} %.
graph n sol gap |B| time sol gap |B| time
d=n/6 d=n/12+1
ex36d 36 1378 0% 95 1:18 1400 0% 3 11
ex36e 36 1440 0% 45 1:04 1464 0% 43 96
ex36f 36 1398 0% 1 ) 1426 0% 7 18
ex60d 60 4041 0% 263 20:32 4103 0% 69 9:32
ex60e 60 4041 0% 235 27:14 4115 0% 145 12:57
ex60f 60 4003 0% 115 13:12 4076 0% 29 04:33
ex84d 84 7906 0% 197 1:11:24 8065 0% 169 1:06:13
ex84e 84 8078 0% 1051 6:20:05 8244 0% 1072 6:47:43
ex84f 84 8034 0% 1501 7:52:55 8188 0% 871 4:43:50
ex108d 108 13494 1% 1 2:56 13767 1% 1 2:48
ex108e 108 13305 1% 1 2:51 13569 1% 1 2:54
ex108f 108 13306 1% 1 2:23 13571 1% 1 2:55
ex132d 132 20005 1% 1 5:30 20410 1% 1 5:42
ex132e 132 20024 1% 1 5:29 20447 1% 1 5:40
ex132f 132 20100 1% 1 5:23 20513 1% 1 5:46

TABLE 4. Randomly generated weighted instances; dens € {99,100} %.
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graph n dens opt |B| SDP-time LP-time
HP 9000 SPARC 10

v0.90 20 10% 21 1 1 3
v0.00 20 100% 401 1 1 2
t0.90 30 10% 24 1 1 20
t0.50 30 50% 397 17 22 1:43
t0.00 30 100% 900 3 6 1:13
q0.90 40 10% 63 1 4 2:59
q0.80 40 20% 199 31 1:09 9:41
q0.30 40 70% 1056 23 1:02 1:05:42
q0.20 40 80% 1238 7 25 95:03
q0.10 40 90% 1425 13 41 54:06
q0.00 40 100% 1606 1 4 19:12
c0.90 50 10% 122 1 10 15:58
c0.80 50 20% 368 45 3:04 2:00:25
c0.70 50 30% 603 49 4:02 2:50:23
c0.30 50 70% 1658 51 2:44 5:45:42
c0.10 50 90% 2226 55 2:39 4:20:02
c0.00 50 100% 2520 43 2:20 2:51:01
c2.90 52 10% 123 1 12 34:02
c4.90 54 10% 160 15 1:39 49:15
c6.90 56 10% 177 3 30 52:23
c8.90 58 10% 226 71 8:46 n.a.
s0.90 60 10% 238 37 4:57 2:54:48

TABLE 5. Equicut of randomly generated instances from the BCR-library.

graph n dens opt |B| SDP-time LP-time
HP 9000 SPARC 10

10x2g 20 15% 6 1 1 6
5x6g 30 11% 19 1 3 1:01
2x16g 32 9% 8 1 4 1:48
18x2g 36 8% 6 1 2 4:22
2x19g 38 8% 6 49 55 13:08
5x8g 40 9% 18 1 2 14:11
3xldg 42 8% 10 5 18 20:56
5x10g 50 7% 22 1 9 47:23
6x10g 60 6% 28 57 5:19 4:59:54
7x10g 70 5% 23 61 9:17 n.a.

TABLE 6. Equicut of planar grid instances from the BCR-library.

Toroidal grid instances belong to the third category of instances. They were
generated in the same way as the planar grid problems, except that they have
n = hk vertices and m = 2hk edges. These instances are denoted by “hxkt”.
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graph n dens opt |B| SDP time LP time

HP 9000 SPARC 10
x5t 20 21% 28 1 1 3
6x5t 30 14% 31 1 3 45
85t 40 10% 33 1 6 8:14
21x2t 42 10% 9 1 ) 17:41
23x2t 46 9% 9 33 2:05 46:28
4x12t 48 9% 24 3 17 50:12
5x10t 50 8% 33 1 6 33:51
10x6t 60 7% 42 43 5:50 1:48:37
7x10t 70 6% 45 47 9:32 7:51:37
10x8t 80 5% 43 45 15:44 n.a.

TABLE 7. Equicut of toroidal grid instances from the BCR-library.

graph n dens opt |B| SDP time LP time

HP 9000 SPARC 10
2x10m 20 100% 118 1 1 3
6xbm 30 100% 270 1 1 28
2x17Tm 34 100% 316 21 29 3:55
10x4m 40 100% 436 1 2 5:15
5x10m 50 100% 670 1 2 53:32
4x13m 52 100% 721 5 34 1:35:02
13x4m 52 100% 721 5 34 1:25:05
9x6m 54 100% 792 1 12 n.a.
10x6m 60 100% 954 1 8 3:35:20
10x7m 70 100% 1288 1 14 35:21:37

TABLE 8. Equicut of mixed grid instances from the BCR-library.

graph n dens opt |B| SDP time LP time

HP 9000 SPARC 10
t0.n.10 30 90% -301 3 7 1:27
t0.n.00 30 100% -337 1 3 1:55
q0.n.70 40 30% -298 17 50 52:53
q0.n.50 40 40% -389 23 55 7:58
q0.n.40 40 30% -450 1 6 20:21
q0.n.00 40 100% -471 31 1:06 11:28
c0.n.00 50 100% -829 67 4:17 26:54:07
s0.n.80 60 20% -465 3 40 1:21:32
0o0.n.80 80 20% -690 115 31:48 n.a.

TABLE 9. Instances with negative weights from the BCR-library.
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The next class of graphs are mized grid instances, which are dense graphs. The
edges of a planar grid got weights uniformly drawn from [1,100], and all the other
edges weights uniformly drawn from [1, 10]. The names of these graphs are “hxkm”.

The last group of graphs in the library are instances with negative weights. They
were generated in the same way as the instances of the first class, except that half
of the edges got weights from [—10, —1], again drawn from a uniform distribution.

We solved all instances to optimality. Instead of presenting a long list of results
we follow [5] and give a small representative sample of the results. We chose the
same instances as Brunetta et al. and added a few larger ones to the lists. Our
results are summarized in Tables 5 to 8.

The longest running times of about 32 and 16 minutes were obtained for the
largest negative instance and the largest toroidal grid which are both of size n = 80.
All the other running times are below 10 minutes of CPU time, and most of the
instances are solved within 2 minutes. The easiest class of graphs with respect
to our approach are the mixed grid instances whose maximal solution times were
about 30 seconds.

A comparison of these results with the ones from Subsection 5.2.2 shows, that
unweighted graphs having a density of about 50% seem to be more difficult to
partition with our approach than others. For weighted instances, dense graphs
with uniformly generated edge weights are much harder to bisect than dense graphs
based on grid structures.

To put our running times into perspective, we shortly discuss the computation
times obtained by Brunetta et al. [5]. Their experiments were performed on a
SPARC 10/41. In [12], the performance of various computers was measured using
standard linear equation software. The numbers given in [12] indicate, that on
LINPACK benchmarks the HP 9000/735 is roughly 6 times faster than the SPARC
10/41. Brunetta et al. used a generic cutting plane approach based on linear pro-
gramming relaxations which does not exploit sparsity of the underlying graphs.
This is definitely a disadvantage of their method but our approach does not exploit
sparsity either. We observe, that their running times are in general in the order
of hours when ours are in the order of minutes. It is difficult to compare the per-
formance of different methods across different platforms, but the results indicate,
that the approach based on semidefinite programming is more efficient.

5.2.4. Other Graphs from the Literature. We also tested our approach on various
classes of graphs from the literature. The first class of problems are graphs rep-
resenting de Bruijn networks of dimensions n € {32,64,128}. These networks are
prominent interconnections networks for parallel computers. For references into
this direction and results regarding the bisection of de Bruijn networks, we refer
to Feldmann et al. [13]. The graph representing a de Bruijn network has n = 2F
vertices and is 2k-regular, where k is the basis of the network. The unweighted
graphs are quite sparse and have therefore minimum cuts of low costs.

The next group of instances was introduced by Johnson, Mehrotra and Nem-
hauser [24] and are compiler design instances. Even though these instances were
used for the more general min-clustering problem, see [14, 24], we use them here as
graph bisection instances. The graphs are weighted.

Finally, we consider an other class of real world instances. They are mesh in-
stances and arise from an application of the finite elements method in fluids, see
[34]. Thereby the problem is the LU-factorization of the matrix of a linear system,
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graph n dens opt gap |B| time
debr5 32 12% 10 0 3 6
debr6 64 6% 18 0 55 7:49
debr7 128 3% 30 0 711 23:18:29
debr7 128 3% 30 1 195 8:53:20
TABLE 10. Equicut of DeBruijn networks.

graph n dens opt |B| time
cd30a 30 13% 302 1 2
cd30b 30 13% 302 1 2
cdd5 45 10% 760 1 7
cdd7a 47 9% 426 1 10
cdd7b 47 9% 580 35 1:52
cd61 61 10% 2176 1 20
TABLE 11. Equicut of compiler design instances.

graph  n dens opt |B| time

m4 32 10% 6 1 1
ma 54 5% 2 1 3
me 60 5% 3 1 4
mb6 70 5% 7 1 37
mb 74 4% 4 1 28
mc 74 5% 6 1 46
md 80 4% 4 1 29
mf 90 4% 4 1 24
m1l 100 3% 4 15 18:15

m8 148 2% 7 1 521
TABLE 12. Equicut of mesh instances.

which is a band matrix with two bands. It can be modeled as a graph bisection
problem in an unweighted planar graph.

The results for the de Bruijn networks in Table 10 show that the running times
are comparable to the ones in Subsection 5.2.2 for randomly generated graphs.

All but one of the compiler design instances can be solved in the root node within
20 seconds of CPU time, see Table 11. In the solution of instance cd47b, one has to
go down the branching tree on a relatively long path containing subproblems with
an absolute gap of 1 between lower and upper bound.

The mesh instances are the easiest instances considered here, see Table 12. For
all but one graph we found the optimal solution already in the root node of the
search tree. This is probably due to the fact that the graphs under consideration are
planar and that for those graphs semidefinite programming relaxations provide tight
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approximations, see for instance [17] for further references on results for the max-
cut problem. The running times are well below one minute for all instances with
n < 90 vertices, and the bisection of the larger graphs can be done within 20 minutes
of CPU time. The mesh instances were also used for experiments by Brunetta et
al. [5] and Ferreira et al. [14]. As mentioned above, the running times in [5] were
obtained on a SPARC 10/41 using a generic linear programming based cutting plane
approach. For all instances with n > 60 vertices the computation times were above
one hour. In [14], a cutting plane approach for the more general node capacitated
graph partitioning problem based on linear programming relaxations was presented
which exploits sparsity of the graphs. The tests for this method were performed on
a SUN 4/50, and the resulting CPU times are about three times larger than ours.
The results in [12] indicate, that the performance of the HP 9000/735 is about 10
times better than the performance of the SUN 4/50 on LINPACK benchmarks. A
comparison of the different approaches shows that exploiting sparsity is crucial for
linear programming approaches.

6. CONCLUSION

We presented a branch and bound approach based on semidefinite and poly-
hedral relaxations for the graph bisection problem and tested it extensively. The
computational results indicate, that the present approach solves bisection problems
on general graphs with 80 — 90 vertices efficiently. If the graphs are planar or if
they base on grids, bisections can be obtained for larger graphs in very reasonable
computation times. Our results also compare favorably to previously published
ones, which were obtained with cutting plane methods based on linear program-
ming relaxations.

Regarding the solution of substantially larger bisection problems, the present
method has its limitations. As long as there are no alternatives to interior point
methods for solving the semidefinite relaxations, exact bisections of general medium
sized graphs with several hundred vertices are out of reach. Recall that each iter-
ation of the interior point method requires the factorization of a dense system of
equations, whose size equals the number of constraints in the relaxation. Neither
sparsity nor structure in the data can be exploited in a satisfactory way in the
current solution procedure.
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APPENDIX

Proof of Theorem 4.1.

Proof. The proof is divided into two parts. First we prove, that X, and R, are
positive semidefinite and feasible with respect to the equality constraints. Then we
consider strict feasibility with respect to the inequality constraints.

We start with the case d > 0. Feasibility is easy to check and follows from the

construction of Xy. We now show that X is positive definite. We partition into

t
A_ my
X*_{y Z]

with € ®, y € R"~' and Z appropriately sized. Direct calculations yield z = 1,
y=czen_1,and Z =c1 I, 1 +cE, 1 with

_2xd — (d+wy) . _ Adwi 4+ (n —1) — (d+wy)?
- P (n—1)(n—-2)

C3 ,0121—02.

n—1

Using Schur complements, it follows that X\ Oifandonlyifz > 0and Z = %yyt.

He

nce we have to show that Z — yyt >~ 0. We get
Z—yy' =cil +FE —EE=cI+(co—c2)E=: M.

The eigenvalues of the (n — 1) x (n — 1) matrix M are just

p(M) = [e1 + (n = 1)(c2 = c3), crep )"

First we show that ¢, is positive. We get

A M+ (n—1)—(d+w)?  (n—1)? — (d+w)? + 4\dw,
(n—1)(n-2) - (n=1)(n —2)

Clzl-l-

and to have ¢; > 0 we need

(n —1)? — (d 4+ w1)? + 4\dw; > 0.



SOLVING GRAPH BISECTION PROBLEMS WITH SEMIDEFINITE PROGRAMMING 25

LO L1 L2 L3 L4
/(+----0) = 1,6]2,3,4,5
(+---00)
/ \(+---+0) = 1,5|2,3,4,6
(+--000)
/ \ /(+--+-0) = 1,4|2,3,5,6
/ (+--+00)
/ \(+--++0) = 1,4,5,6]2,3
(+-00000)
/ \ /(+-+--0) = 1,3]|2,4,5,6
/ \ (+-+-00)
/ \ / \(+-+-+0) = 1,3,5,6]2,4
/ (+-+000)
/ \ /(+-++-0) = 1,3,4,6]2,5
/ (+-++00)
/ \(+-+++0) = 1,3,4,5|2,6
(000000)
\ /(++---0) = 1,2|3,4,5,6
\ (++--00)
\ / \(++--+0) = 1,2,5,613,4
\ (++-000)
\ / \ /(#+-+-0) = 1,2,4,6]3,5
\ / (++-+00)
\ / \(++-++0) = 1,2,4,5|3,6
(++00000)
\ /(#++--0) = 1,2,3,6/4,5
\ (+++-00)
\ / \(+++-+0) = 1,2,3,5|4,6
(+++000)
\
(++++00) =1,2,3,4]5,6

FiGure 1. Branch-and-Bound Tree for Bisecting a Graph with
n==6and d=2.

We have min{p;,p_} < ny —1 and since d > 0 also max{py,p_} < ns. Recall that
the instance would not be bounded or would be transformed to an equicut problem
otherwise. We distinguish three cases.

If w; > 0 the second condition implies (n —1)? > (d 4+ w1)?. But since ), d, and
wy are all positive, so is 4 \dw;, and thus ¢; > 0.

If wy = 0 the first condition yields that (n —1)? > d? holds and so ¢; is positive.

For w; < 0, we get from the second condition that (n — 1)2 > (d — wy)?. Using
the fact that 4\dw; < 0 and A € (0,1) we bound

(n—1)% — (d + w)? + 4\dwy

C1 =
> (n—1)2—(d+w)? +4dwy, = (n —1)? — (d — wy1)? > 0.

It remains to show that the first eigenvalue of M is positive, as well. Direct
calculation leads to
4(1 — X)\d?

0
n—1 >

1+ (n=1)(c2 —c3) =

since d > 0 and X € (0,1).
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Now, we consider the equicut case, i.e. d = 0. We analogously partition R, and
use Schur complements to derive that it is positive definite. Since Ry consists of
the first (n — 1) rows and columns of X it is easy to see that the eigenvalues of
the new M are

p(M) = [er + (n = 2)(c2 — ¢3), cre;, )"
Analogous considerations as for the case d > 0 imply that ¢; is positive. For the
the first eigenvalue we have, using the fact that d = 0,

(n—1)* — (wy)?
(n—1)*(n—-2)°
Since n — 1 > wy, the positive definiteness of Ry follows.

Regarding feasibility of Ry concerning the equalities, we have to calculate

e+ (n—2)(ex — cg) =

R)\ _R)\wlznfl

VRV =
A _R)\wl:n—l (wl:n—l)tR)\wl:n—l

Since X\w = 0, we deduce that — Rywi.,—1 is equivalent to the first (n—1) elements
of the n’th column of X. It also implies that (w1.,—1)*Ryxwi.n—1 = Xpn,n = 1. Thus
we proved X, = VR, V? and feasibility for Ry.

The second part of the proof considers strict feasibility with respect to the trian-
gle inequalities as given by (8). We have to distinguish two cases, namely whether
the entries in the first column of X, c3, are concerned or not. If they are, i.e. we
have for instance i = 1, the inequalities are in terms of c3 and ¢y

2c3 +co > —1, —co > —1, —2c3 + ¢y > —1.

The second inequality is equivalent to ¢; > 0, and ¢; was shown to be positive
above. A few calculations for the first and the third inequality yield
(25)
+2c3+c+1>0 < (n—-2—-d—w)?—1+4Md(n—-2—-w;) >0
—203+c+1>0 <= (—-2—-d+w)?>—1+4(1-Nd(n—2+w;) > 0.
Consider the first inequality. Nonnegativity of 4\d(n — 2 — w;) is easy to see. For
showing strict feasibility we distinguish two cases. First, we assume that w; > 0.
But then min{p;,p_} implies (n —2 —d —w;) —1 > 0 and we are done. The not
so obvious case is w; < 0. In this case we have to show that (n —2 —d —wy)? > 1.
We do that by excluding (n —2—d—w) € {0, —1,+1}. The expression can not be
equal to 0, since this would imply p; = na — 1/2 and we have only integral values.
(n—2-d—wy) = —1 implies p1 =na, d>1and w;y = —n — 1 — d. Substitution
yields
4 d(n —2 —wy) =4Xd(d - 1) > 0.
On the other hand, (n —2 —d — wy) = +1 implies p = na — 1, d > 0 and
w1 = —n — 3 — d. Combining this we get
A d(n —2 —wq) =4Xd(d+ 1) > 0.

The second inequality of (25) can be proved analogously.
If the first row of X is not concerned, i.e. i > 1, the triangle inequalities become

3co > —1, —cy > —1.
The second one was already proved above. For the first inequality we observe that

(26) 3ca+1>0<= (n—1)(n—5)+3[(d+w)* — 4\dw;] > 0.
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In order to be able to bound a problem under the conditions introduced in Section
3.2, n > 5 must hold, and therefore the first term in (26) is positive. For the second
term we look at wy > 0 first. This implies

(d + ’11)1)2 — 4/\dw1 Z (d + w1)2 - 4dw1 = (d - ’11)1)2 Z 0
since A € (0,1) and d > 0. For w; < 0, we have (d+w;)? > 0 and —4\dw; > 0. O

DEPARTMENT OF COMPUTER SCIENCE, UNIVERSITY OF COPENHAGEN, UNIVERSITETSPARKEN 1,
DK-2100 COPENHAGEN, DENMARK.
E-mail address: karisch@diku.dk

DEPARTMENT OF MATHEMATICS, GRAZ UNIVERSITY OF TECHNOLOGY, STEYRERGASSE 30, A-
8010 GRAZ, AUSTRIA.
E-mail address: rendl@opt.math.tu-graz.ac.at

DEPARTMENT OF COMPUTER SCIENCE, UNIVERSITY OF COPENHAGEN, UNIVERSITETSPARKEN 1,
DK-2100 COPENHAGEN, DENMARK.
E-mail address: clausen@diku.dk



