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2 STEFAN E. KARISCH, FRANZ RENDL, AND JENS CLAUSENThe graph bisection problem has applications in various �elds. It is used tomodel for example problems arising in VLSI design [3], scienti�c computing [34],sparse matrix computation [2], physics [3] or parallel programming [10]. Also, thepartitioning of graphs into several components is often done by recursive bisections,see e.g. [14]. For a survey on the application in the context of layout problems werefer to [29].The graph bisection problem is known to be NP -hard. An exact solution methodfor the equicut problem based on branch-and-cut and linear programming relax-ations was proposed by Brunetta, Conforti and Rinaldi [5]. For the more generalnode capacitated graph partition problem, which is also referred to as min-cutclustering problem, Ferreira et al. [14] described a similar approach, while Johnson,Mehrotra and Nemhauser [24] suggested an approach based on column generation.A parallel solution method for graph partition problems based on simple boundingfunctions was given by Clausen and Tr�a� [7]. All these exact solution methods havebeen limited to instances of general graphs with around 60 vertices.Many heuristic methods have been proposed in the literature, see e.g. [6, 10, 23,27, 30, 33], which are designed to approximate large scale problems as they appearin real world applications. Nevertheless, it is a great challenge to develop exactmethods for general problem graphs with more than 100 vertices. The approachpresented in this article is certainly a step in this direction.Semide�nite programming has been successfully applied to various graph opti-mization problems. Goemans and Williamson [16] presented in their seminal workan :878-approximation algorithm for the max-cut problem, using a certain semide�-nite relaxation of the problem. Subsequent work of Frieze and Jerrum [15] providedtheoretical approximations formax-k-cut andmax-bisection problems. For the latterproblem they obtained a polynomial approximation algorithm with a performanceguarantee of :65.From a practical side, Helmberg [17] and Helmberg et al. [20] applied with greatsuccess semide�nite programming in combination with polyhedral relaxations tomax-cut. Subsequent work extended the range of the dimensions of exactly solv-able problem instances considerably, see [19]. Karisch and Rendl [26] investigatedsemide�nite programming relaxations of graph equipartition problems. Their re-sults based on earlier work of Alizadeh [1] and provided tight relaxations for graphequipartitioning. Wolkowicz and Zhao [35] derived semide�nite relaxations for gen-eral graph partition problems. For recent investigations on the potentials and lim-itations of cutting plane algorithms for semide�nite relaxations we refer to [22].In this work, we derive a branch-and-bound method for the general graph bi-section problem. It is based on a cutting plane approach combining semide�niteand polyhedral relaxations. Our goal is to keep the presentation rather selfcon-tained. Therefore we also include details, which are well known to readers familiarwith recent work in this �eld. The practical performance of our method showsthat semide�nite programming enables exact solution of general problem instanceswith 80� 90 vertices and tight approximation of bisections of larger graphs. Ourapproach is particularly well suited for special classes of graphs as planar graphsand graphs based on grid structures.The paper is organized as follows. We conclude this section by introducingbasic notation which will be used throughout the paper. Section 2 reviews lowerbounds for the graph bisection problem which are based on nonlinear relaxation andaddresses how these can be tightened employing polyhedral information. We derive



SOLVING GRAPH BISECTION PROBLEMS WITH SEMIDEFINITE PROGRAMMING 3the branch-and-bound algorithm in Section 3 and describe algorithmical aspects inSection 4. Section 5 contains our numerical experiments and results. Finally, wegive some conclusions and directions to future work.1.1. Basic Notation. The following notation will be used in the remainder of thepaper.We work in the space of real n� k matrices <n�k. This space is considered withthe trace inner product tr AtB for A;B 2 <n�k. The identity matrix in <n�n isdenoted by In, the matrix En 2 <n�n is the matrix of all ones. The n-vector ofall ones is written as en. Subscripts will not be used if the dimensions are clearfrom the context. The j-th canonical unit vector is written as uj . By �? we denotethe orthogonal complement, e.g. e? stands for the orthogonal complement of thevector of all ones. The linear operator Diag(d) forms a diagonal matrix from avector d 2 <n. Its adjoint operator diag(D), acting on D 2 <n�n, yields a vectorcontaining the diagonal elements of D.The vector containing the eigenvalues of a symmetric matrix A 2 <n�n is de-noted by �(A), and the minimal eigenvalue is given by �min(A). For symmetricmatrices A and B, the L�owner partial order is A � B (A � B), meaning that A�Bis positive semide�nite (positive de�nite). The Hadamard product of two matricesA;B 2 <n�k is de�ned as A �B = (aij) � (bij) := (aij � bij).2. Lower Bounds based on Nonlinear Relaxation2.1. Semide�nite Relaxation. In this section we review eigenvalue bounds andbounds based on semide�nite relaxation for the graph bisection problem. We alsodiscuss their relationship and derive the semide�nite relaxations used for the bound-ing in the branch-and-bound algorithm.The �rst lower bounds based on orthogonal relaxation were introduced by Do-nath and Ho�mann [11] in the early 1970's. Instead of the (�1; 1)-model theserelaxations base on a (0; 1)-model. Here, an n � 2 (0; 1)-matrix Y is used whoserows correspond to the vertices of the graph and whose columns represent the twocomponents in which V is to be partitioned. An entry yij of this matrix is 1 ifvertex i belongs to component Vj in the partition. Now an equivalent formulationof (BIS) is(BIS) z� = minf 12 tr Y tLY : Y e2 = en; Y ten = (n1; n2)t; Y 2 f0; 1gn�2g:(3)Donath and Ho�mann [11] used the fact that the columns of a feasible Y in the(0; 1)-model are orthogonal. Thus, the feasible set can be relaxed to all Y 2 <n�2that satisfy Y tY = � n1 00 n2 � :Boppana [4] tightened this relaxation of the graph bisection problem by includingthe constraints on the row and column sums of Y . Independently, Rendl andWolkowicz [32] proposed the same idea for the general graph partition problem,which contains (BIS) as special case. These bounds are obtained by projecting onthe linear manifoldfY : Y e2 = en; Y ten = (n1; n2)t; Y 2 <n�2g



4 STEFAN E. KARISCH, FRANZ RENDL, AND JENS CLAUSENand solving (BISBRW ) maxf te=0 n2�d24n �min(V t(L+Diag(f))V )(4)where V contains an orthonormal basis of e?, i.e V te = 0, V tV = In�1, and f is avector.Alizadeh [1] observed �rst that the eigenvalue bounds can be viewed as dual prob-lems to semide�nite relaxations of graph partition problems. Poljak and Rendl [31]derived semide�nite relaxations for the graph bisection problem yielding the samebound as (BISBRW ). For general graph equipartition problems these equivalenceswere obtained by Karisch and Rendl [26].We are now going to relax the (�1; 1)-model. As observed in many places we justhave to linearize the objective function by introducing a new variable X := xxt.An entry xij of X equals +1 if i and j are in the same set, and �1 otherwise. Theset of feasible bisections can be also expressed using X and is given byT := fX : X = xxt; x 2 Fg= fX : diag(X) = en; etnXen = d2; rank(X) = 1; X � 0g:(5)Thus, we can restate (BIS) as(BIS) z� = minf 14 tr LX : X 2 T g:(6)Dropping the rank condition on X yields a semide�nite relaxation of (BIS)(BISSDP ) minf 14 tr LX : diag(X) = en; etnXen = d2; X � 0g(7)which provides the same bound as (BISBRW ), see [31].2.2. Tightening the Relaxation with Polyhedral Information. As shown indi�erent places, e.g. [18, 19, 26], combining semide�nite relaxations with polyhedralinformation provides very tight relaxations. The goal is to �nd tighter descriptionsof T , or to be more precise of its convex hull, than suggested by the feasible set of(BISSDP ).Generic inequalities for (�1; 1)-problems are the so called hypermetric inequal-ities. They base on the fact, that for any x 2 f�1; 1gn, the inequality jhtxj � 1is valid, if h 2 <n is integer and hte is odd. With respect to the semide�niterelaxations, these inequalities are justjhtxj � 1() htxxth � 1() tr (hht)X � 1:The simplest hypermetric inequalities are the triangle inequalities, where h containsall zeros except three elements which are either +1 or �1. They read,xij + xik + xjk � �1 (hi = +1; hj = +1; hk = +1)xij � xik � xjk � �1 (hi = +1; hj = +1; hk = �1)�xij + xik � xjk � �1 (hi = +1; hj = �1; hk = +1)�xij � xik + xjk � �1 (hi = �1; hj = +1; hk = +1)(8)for distinct triples of vertices (i; j; k), where we use the fact that X is symmetric andhas diagonal elements equal to 1. We are only going to use the triangle inequalitieshere, since they provide a su�ciently tight relaxation when they are added. Forfurther details and polyhedral results regarding the special case of equicut, we referto [5, 8, 9].The number of possibly violated inequalities is O(n3). We will describe thetriangle inequalities in the resulting tighter relaxation in compact form. Suppose



SOLVING GRAPH BISECTION PROBLEMS WITH SEMIDEFINITE PROGRAMMING 5there are mb inequalities in a particular relaxation. We introduce a linear operatorB : <n�n ! <mb acting on X , and a vector b 2 <mb , which both take care of theinequalities in the model. The r-th inequality is given byBr(X) + br = tr h(r)ht(r)X + br � 0;with the vector h(r) 2 <n de�ning a triangle inequality as in (8), and br = �1.The (tighter) semide�nite relaxation including (some) triangle inequalities iswritten as(P ) minf 14 tr LX : diag(X) = en; etXe = d2; B(X) + b � 0; X � 0g:(9)The cutting plane approach based on this relaxation will provide the lower boundsfor the branch-and-bound algorithm described in the following section.Before going on, we have to address a di�culty that arises in solving semide�niterelaxations with equality constraints. Since we are going to apply an interior pointmethod to solve the semide�nite programming problem (P ), we have to make sure,that there are strictly feasible solutions, i.e. feasible solutions X for which X � 0and B(X)+ b > 0 holds. It is obvious that there exists no positive de�nite solutionin the equicut case, i.e. if d = 0, since the constraint etXe = 0 makes the smallesteigenvalue of X equal to 0. We are going to show in Section 4.1 how one cantransform an equicut problem into an equivalent one, such that the new problemhas strictly feasible points. Nevertheless, we also have to ensure, that the feasibleset of (P ) with d > 0 has interior points. This becomes of importance when severalvariables are �xed by branching. In Section 3.2 we are going to identify situationsin which subproblems of (P ) lack interior, even if d > 0.3. The Branch-and-Bound AlgorithmIn this section we describe a branch-and-bound algorithm for the graph bisectionproblem in detail. Even though the basic ideas are straight forward, we have toconsider modi�cations in the relaxations for bounding certain subproblems due tothe above described di�culties regarding interior points.3.1. Branching. The branching is based upon the decision whether two verticesbelong to the same set or not, which results in a binary branching tree. In orderto reduce the dimension of the subproblems in lower levels of the tree we \merge"vertices when we branch. We describe the branching in the root node of the searchtree in a general way, where we allow any pair of vertices to be chosen. Then we willrestrict this choice to be able to manage consecutive branchings. We assume, thatthe larger component of the partition is always the �rst one, i.e. the correspondingentries of x are +1.In the following we use a superscript on the problem to indicate the level of thesearch tree. Hence the original problem in the root node is(BIS0) z0 = minf 14xtL0x : xtw0 = d; x 2 f�1; 1gng(10)where we de�ne w0 := e as the weight vector of the problem.We now describe how the branching and generation of the two subproblems inthe �rst level of the branching tree are carried out. Suppose that p and q are thevertices on which the decision in the branching is made and let p < q.The �rst possibility is that they go into the same set, which is equivalent toadding the extra constraint xp = xq in (BIS0). The bisection problem with this



6 STEFAN E. KARISCH, FRANZ RENDL, AND JENS CLAUSENextra constraint is equivalent to the following lower dimensional problem. LetL1 = (l1ij) be an (n�1)�(n�1) matrix obtained from L0 by replacing the p-th rowand column by the sum of rows and columns p and q, respectively, and deleting theq-th row and column. For the sum constraints we introduce the (n�1)-dimensionalweight vector w1 such thatw1i := � w0i + w0q if i = pw0i otherwise(11)This weight vector counts the merged vertices twice in the sum constraints. Now,(BIS0) as given in (10) with the extra constraint xp = xq is equivalent to(BIS1) minf 14xtL1x : xtw1 = d; x 2 f�1; 1gn�1g:Thus, the semide�nite relaxation of (BIS1) is(P 1) minf 14 tr L1X : diag(X) = en�1; (w1)tXw1 = d2; B(X) + b � 0; X � 0g:(12)where the matrix variable is an (n�1)�(n�1) matrix. As inequality constraints wenow consider the generic triangle inequalities for an (n� 1)-dimensional problem.In the case, where the vertices p and q are separated, i.e. xp = �xq , we performa \switching" in the problem �rst, before we reduce it to a smaller dimensional one.A switching is obtained in the following way. De�ne the vector y 2 <n withyi := � �1 if i = q1 otherwiseand �x := Diag(y)x where x is the original n-dimensional (�1; 1)-variable of (BIS0).Then �x 2 f�1; 1gn, and we have xtL0x = �xt �L�x with �L := Diag(y)L0Diag(y).For the sum constraint we have xtw0 = xtDiag(y)Diag(y)w0 = �xt �w where �w :=Diag(y)w0. Since xp = �xq if and only if �xp = �xq , (BIS0) from (10) with the extraconstraint xp = �xq is equivalent to the switched problemminf 14 �xt �L�x : �xt �w = d; �xp = �xq ; �x 2 f�1; 1gng:Now we can proceed as we did above by merging p and q in the switched problem.To obtain the new cost matrix L1 from L0, we replace the p-th row and column bythe di�erence of rows and columns p and q, respectively, and delete the q-th rowand column which results in an analogous update as before. The new weight vectorw1 2 <n�1 is w1i := � w0i � w0q if i = pw0i otherwise(13)Note that when switched �rst, the �rst entry of the weight vector w1 after the merg-ing becomes 0. This means that the signs of the remaining (unassigned) verticesmust satisfy the cardinality constraint.To distinguish between the two ways of generating subproblems we refer to the�rst as a pure merging and to the second as a switched merging.In order to make consecutive mergings manageable we restrict the choice for thevertex pair to branch on and assume that vertex 1 will always play the role of p.This means that vertex 1 becomes a \supervertex" while going down the searchtree. Figure 1 (see Appendix) shows the complete branching tree for bisecting agraph with n = 6 vertices into two components of size 4 and 2, i.e. d = 2. By \p; q"we denote that p and q are in the same set while \pjq" means that p and q are



SOLVING GRAPH BISECTION PROBLEMS WITH SEMIDEFINITE PROGRAMMING 7separated. A current (partial) solution can be represented by a vector consistingof \0",\+" and \�", where a 0 entry means that the corresponding vertex has notbeen assigned yet, and elements with the same sign correspond to vertices in thesame set.Note that vertex 1 gets only a \+" in the tree and that we therefore seem toobtain solutions corresponding to d < 0 in Figure 1. But since we assume thatthe larger component is the �rst one, we consider the symmetric solution (�x).The �xing of vertex 1 to \+" guarantees that only one of each pair of symmetricsolutions is searched.When we perform a switched merging we only change the sign of q since the newvertex becomes part of the supervertex. In Figure 1 in the appendix we do notmerge vertices explicitly, but give the sign pattern of the rows and columns of Lwhich become a single row and column in the subproblem.Summarizing, a subproblem at level k of the tree is obtained as follows. De-pending on whether the subproblem results from its parent by a pure or a switchedmerging of vertices 1 and q, the cost matrix L and the weight vector w of thesubproblem are obtained as described above. In the following, we will not use su-perscripts for L and w to indicate the level of the subproblem. This is done tosimplify the notation.3.2. Bounding. We now address various properties of the subproblems, that haveto be considered before we bound. These properties depend on the values of thequadruple (n; k; d; w1), where k is the level of the subproblem in the search treeand w1 is the weight of the supervertex. Knowing these values, we can investigateboth structure and feasible solutions of a given subproblem.Recall that the cardinalities of the two components into which the vertex setis partitioned are n1 and n2, respectively. The number of positive entries in thepartial solution on which the subproblem is based is given by p+ := 12 ((k+1)+w1)while the number of negative entries equals p� := 12 ((k + 1) � w1). We use F todenote the feasible set for the current subproblemF = fx : xtw = d; x 2 f�1; 1gn�kg:(14)We partition F into two sets F = F+ [ F�, withF+ := fx : x1 = +1; x 2 Fg and F� := fx : x1 = �1; x 2 Fg:(15)First of all we look at the case where we do not bound the subproblem butconstruct its feasible solutions explicitly and use the resulting objective functionvalues as bounds. This is done if exactly one vertex can be arbitrarily assigned,while the other vertices are �xed. This situation occures if maxfp+; p�g = n1 � 1or minfp+; p�g = n2 � 1. In Figure 1 (see Appendix), (+++000) is an example forthe �rst and (+-0000) for the second case.We bound a subproblem if maxfp+; p�g < n1 � 1 and minfp+; p�g < n2 � 1hold by solving relaxation (P k). As argued above one has to prevent lack of in-terior points if d = 0. However, even if d > 0, there is a situation, where theresulting semide�nite relaxation (P k) has no interior points, because the subprob-lem is equivalent to a certain equicut instance. This situation occurs when the�rst entry of each partial solution of the subproblem, x 2 F , becomes �xed, i.e.there are only solutions with x1 being either positive or negative. This happens ifmaxfp+; p�g > n2. If for instance p+ > n2, then F� is empty, since xtw would



8 STEFAN E. KARISCH, FRANZ RENDL, AND JENS CLAUSENbecome negative in the case x1 = �1. The symmetric case deals with the situationthat the number of �'s in the partial solution p� is larger than n2, so x1 must benegative and hence F+ = ;. But this means that if p+ > n2F = F+ = fx : x1 = +1; xtw = d; x 2 f�1; 1gn�kg= fx : x1 = +1; xtŵ = 0; ŵ = w � du1; x 2 f�1; 1gn�kgand if p� > n2F = F� = fx : x1 = �1; xtw = d; x 2 f�1; 1gn�kg= fx : x1 = �1; xtŵ = 0; ŵ = w + du1; x 2 f�1; 1gn�kg:Hence, the feasible set of the subproblem is equivalent to that of an equicut problemwith a di�erent weight vector and an extra constraint on x1. By dropping this extraconstraint in the equicut problem we obtain a relaxation of the subproblem whichonly adds symmetric solutions. Therefore the modi�ed subproblem yields the samesolution value as the original one.If d > 0 and the subproblem is not equivalent to an equicut problem, it is givenby (BISk) zk := minf 14xtLx : xtw = d; x 2 f�1; 1gn�kg:(16)In the equicut case or in the situation described above, the subproblem at the k-thlevel is given by(BISk) zk = minf 14xtLx : xtŵ = 0; x 2 f�1; 1gn�kg(17)where the weight vector is modi�ed by ŵ = w� du1, and if d = 0 we just solve the\original" equicut problem.The semide�nite relaxations of (16) and (17) are obtained as described above.We denote the relaxation of (16) by (P kd ) and the one of (17) by (P k0 ).4. Algorithmical AspectsIn this section we describe how the lower bounds are calculated. We use acutting plane approach based on semide�nite programming. For further details ofthis approach we refer to [17, 20, 25].4.1. The Primal-Dual Interior Point Approach. For solving problems (P kd )and (P k0 ) we employ the primal-dual interior point approach of Helmberg et al.[20]. Before we describe it, we show how one deals with the lack of strictly feasiblepoints in the second relaxation (P k0 ). For ease of notation, let in the following n bethe dimension of the current subproblem.For relaxation (P k0 ) we need to project the problem in order to be able to applythe interior point approach, since every feasible solution has at least one eigenvalueequal to 0 with corresponding eigenvector ŵ. We introduce an n�(n�1) projectionmatrix V which contains a basis of the orthogonal complement of ŵ, i.e. for whichV tŵ = 0 and rank(V ) = n� 1 holds. Such a matrix can be easily found by settingV = � In�1�(ŵ1:n�1)t � :Then we can substitute X = V RV t and obtain the following equivalent, projectedproblem to (P k0 ), whose matrix variable is of order n� 1.(P̂ k0 ) minf 14 tr V tLV R : diag(V RV t) = en; B(V RV t) + b � 0; R � 0g:



SOLVING GRAPH BISECTION PROBLEMS WITH SEMIDEFINITE PROGRAMMING 9Note that since V is full rank we have X � 0 if and only if R � 0.In order to be able to describe the essential parts of primal-dual interior pointapproach we introduce a uni�ed model, which covers both (P kd ) and (P̂ k0 ). Supposethere are ma equalities in a particular relaxation. We de�ne a linear operator A(�),which acts on the primal matrix variable and takes care of the equalities in therelaxation. The vector a 2 <ma corresponds to the constant part. For the generalmodel (P kd ) with d > 0 we haveA(X) = � diag(X)wtXw � ; a = � end2 � ; ma = n+ 1;where the adjoint operator At(�) acting on an ma-vector is given byAt(y) = Diag(y1:n) + yn+1W; W := wwt:For the equicut case (P̂ k0 ) the equalities are justA(X) = diag(V XV t); a = en; ma = n;where we now use X instead of R for ease of notation. The adjoint operator forthe equality constraints acts on a vector y 2 <ma and isAt(y) = V tDiag(y)V:For the inequalities we use B(�) as de�ned in Section 2.2, i.e. for the general andthe equicut problem the r-th inequality is given byBr(X) = tr H(r)X; and Br(X) = tr V tH(r)V X;respectively. The constant part is just b = �e. The adjoint operators for theinequalities are Bt(u) = mbXr=1H(r)ur; and Bt(u) = mbXr=1 V tH(r)V urand act on a vector u 2 <mb . Finally, we introduce a new cost matrix for theuni�ed setting, which corresponds to C = 14L if d > 0, and to C = 14V tLV if d = 0.The primal-dual pair of the relaxations (in the uni�ed setting) is now(P ) min tr CXs.t. A(X) + a = 0B(X) + b� s = 0X � 0; s � 0 (D) max aty � btus.t. C +At(y)� Bt(u)� Z = 0u� t = 0Z � 0; t � 0where s; t 2 <mb are slack variables. Note that by weak duality, any feasible solutionof (D) yields a lower bound for the graph bisection problem under consideration.The Karush-Kuhn-Tucker optimality conditions for the dual log-barrier problemare (KKT ) A(X) + a = FP1 = 0B(X) + b� s = FP2 = 0C +At(y)� Bt(u)� Z = FD1 = 0u� t = FD2 = 0ZX � �I = FZX = 0�t � s+ �e = Fts = 0where the �rst and the second pair of conditions are for primal and dual feasibil-ity, respectively. The last two equations are perturbed complementary slacknessconditions. This system of (nonlinear) equations is solved using Newton's method.



10 STEFAN E. KARISCH, FRANZ RENDL, AND JENS CLAUSENIn each iteration the linearized form of (KKT ) is solved for a �xed � with respectto the correction �D = (�y;�u;�X;�Z;�t;�s). During the iterative process � isdriven to 0, yielding convergence to a solution of the primal-dual pair.In the linearized (KKT )-conditions, �X;�Z;�s and �t can be substituted andexpressed in terms of �y and �u. This leads to a �nal system�A(Z�1At(�y)X) +A(Z�1Bt(�u)X) = �A(Z�1FD1X)�A(Z�1FZX )�B(Z�1At(�y)X) + B(Z�1Bt(�u)X)� tinv � (�u) � s =�B(Z�1FD1X)� B(Z�1FZX ) + tinv � FD2 � s+ FP2 � tinvFts:(18)where (tinv)i = 1=ti. The �nal system (18) is of size (ma + mb) and its solutionis the most expensive part of the primal-dual algorithm. We have to constructan (ma + mb) � (ma + mb) matrix which represents the left hand side of (18),factorize it and solve for �y and �u. It can be shown that the resulting matrixis positive de�nite. The complexity for the construction and the solution using aCholesky factorization is O(ma +mb)3. Finally, �X;�Z and �s are obtained bybacksubstitution, and �X is symmetrized.As in interior point approaches for linear programming, also in semide�nite pro-gramming predictor-corrector approaches prove to be very e�cient, especially ifthe number of inequalities in the program becomes larger. We also employ this ap-proach here and refer to the references above for details. We point out however thatthe �nal system (18) has to be factorized only once to obtain both the predictorand the corrector direction.The last ingredient of the interior point method is the line search part to guar-antee, that the iterates stay in the interior of the feasible sets. In other words,we have to check whether the updated X and Z are positive de�nite which we doby performing Cholesky factorizations. The complexity of the line search is thenO(n3).Global convergence of the primal-dual method was proved in [20], while the proofof quadratic convergence is due to [28]. In general, convergence to a �xed precisionof say 10�5 is achieved in around 12� 15 iterations independent of the size of thesemide�nite programming problem.4.2. The Cutting Plane Approach. As already pointed out above, the numberof possibly violated triangle inequalities is O(n3). To obtain a relatively tightrelaxation with a relatively small number of inequalities, we employ a cutting planeapproach in the bounding procedure.The cutting plane approach starts with solving relaxation (BISSDP ) to theprespeci�ed precision of convergence. We construct an upper bound from the so-lution and check whether we can fathom the node in the search tree. If not, weexhaustively search for violated triangle inequalities and add the n most violatedinequalities as cutting planes. We call this a large add of inequalities.Then we start the interior point method with a primal solution, which is in thestrict interior of the currently feasible set and hence a strictly feasible point. Aftereach iteration of the primal-dual method the duality gap becomes smaller, but atthe same time we can not guarantee, that the iterates are still in the interior of thefeasible set with respect to the triangle inequalities. Therefore, we check after eachiteration for violated inequalities. As soon as we �nd a violation, we could addthe inequality as a cutting plane to the relaxation and restart the whole procedurefrom a strictly feasible point of the new relaxation. But in practice it is preferable



SOLVING GRAPH BISECTION PROBLEMS WITH SEMIDEFINITE PROGRAMMING 11to perform a few more iterations after a violation is detected, before adding newinequalities. Here, we make 3 more iterates, which results in a larger number ofviolated inequalities, of which we choose the n=3 most violated ones to add to themodel. This is called a small add. Then we restart from an interior point of thecurrent feasible set and check for newly violated inequalities after each iterate.After 10 small adds we solve the current relaxation to optimality again andconstruct a feasible bisection and its corresponding upper bound, which are returnedtogether with the lower bound to the main part of the branch-and-bound algorithm.After this rather generic description of the bounding approach we specify a fewalgorithmical details. The degree of violation of an inequality is measured withrespect to the barycenter of the feasible set, and not with respect to the origin.In other words, we measure the portion of the vector to the barycenter one has tomove from the point violating a particular inequality until the inequality is satis�edwith equality.When there are no inequalities in the model or after performing a large add,we start from the barycenter X̂ of the (primal) feasible set, whose construction isexplained in the next section. After a small add, we just move back into the interiorof the feasible set. This is done by taking a convex combination of the last pointXI which was strictly feasible with respect to all triangle inequalities and X̂. Herewe choose XS = :9XI + :1X̂as new starting point. In the dual problem, we start feasible after a large add, andinfeasible after a small add. We will address this issue in the next section, too.We tested di�erent combinations of large and small adds, but the setting with1 large and 10 small adds turned out to be favorable. This setting turned also outto be e�ective for the max-cut problem [19].Whenever the relaxation is solved to optimality we construct a feasible solutionfrom X and improve it by local search. We �rst extract a column of X , say theq-th column Xq , which approximates x � xq , where x is a bisection, and set the n1largest elements to +1 and the others to �1. Then we use a simpli�ed variant ofthe Kernighan-Lin heuristic [27] with limited depth search to improve the solution.This \rounding" and improvement is generally performed on 10 columns of X , andthe best feasible solution is used as an upper bound. For a more detailed descriptionof the Kernighan-Lin heuristic we also refer to Lengauer's book [29].4.3. Primal and Dual Starting Points. This section describes how strictly fea-sible points can be obtained for the primal and the dual relaxation of any subprob-lem in the branching tree. This is necessary to apply an interior point method andtheir existence guarantees strong duality by Slater's constraint quali�cation. Wealso address the issue of starting from dual infeasible points after small adds. Sup-pose, we consider a subproblem at the k-th level speci�ed by (n; k; d; w1). For easeof notation, we nevertheless use n as dimension of the subproblems which actuallycorresponds to n� k.4.3.1. Primal Starting Points. The key for getting a primal strictly feasible pointis the barycenter X̂ of the feasible set T of the subproblem, i.e.X̂ := 1N PX2T X(19)with N := jT j = jFj.



12 STEFAN E. KARISCH, FRANZ RENDL, AND JENS CLAUSENFor computing X̂ we partition T into two sets, namely T = T+ [ T�, withT+ := fX : X = xxt; x 2 F+g and T� := fX : X = xxt; x 2 F�g:The barycenters of the two sets are denoted by X̂+ and X̂�, respectively, and wede�neN+ := jT+j = jF+j = � n� 1m+ � and N� := jT�j = jF�j = � n� 1m� � ;where m+ and m� are the number of possible (�1)'s in x2:n of F+ and F�, respec-tively. We observe that m+ = 12 (n� 1 + w1 � d) and m� = 12 (n� 1� w1 � d).In these terms, the barycenter can be written asX̂ = 1N (N+X̂+ +N�X̂�):(20)Note that in the equicut case d = 0 we have N+ = N� and the following consider-ations simplify accordingly.When computing the entries of X̂+ and X̂� we have to distinguish between thediagonal elements, the elements of the �rst row and column, and the remainingentries. The diagonal elements of the barycenters are clearly 1 since they are 1 inall feasible solutions.For calculating element (x̂+)1j of the �rst row of X̂+ we observe that there are�+ = � n� 2m+ � 1 �solutions x 2 F+ for which x1xj = �1, and�+ = N+ � �+solutions for which x1xj = 1. Hence(x̂+)1j = (x̂+)j1 = 1N+ (��+ + �+) = d� w1n� 1 :(21)For the other entries (x̂+)ij with i; j > 1; i 6= j we have�+ = 2� n� 3m+ � 1 �solutions x 2 F+ for which xixj = �1, and�+ = N+ � �+solutions for which xixj = 1. This yields(x̂+)ij = 1N+ (��+ + �+) = �n� 1� (d� w1)2(n� 1)(n� 2) :(22)It is easy to verify, that wtX̂+w = d2. Analogous considerations lead to(x̂�)1j = (x̂�)j1 = �d+ w1n� 1(23)and (x̂�)ij = �n� 1� (d+ w1)2(n� 1)(n� 2) ;(24)where one can also easily see that wtX̂�w = d2. The barycenter X̂ is now obtainedby using the above quantities in (20).



SOLVING GRAPH BISECTION PROBLEMS WITH SEMIDEFINITE PROGRAMMING 13The following theorem shows that any strict convex combination of X̂+ and X̂�is strictly feasible. In fact, both X̂+ and X̂� have eigenvalues equal to 0, which canbe observed using the ideas of the proof of the following theorem.Theorem 4.1. Let X̂+ and X̂� be given as above. Then for all � 2 (0; 1), thepoint X̂� de�ned by X̂� := �X̂+ + (1� �)X̂�is strictly feasible for (P kd ) if d > 0.If d = 0, there is an R̂� which consists of the �rst (n� 1) rows and columns ofX̂� such that R̂� is strictly feasible for (P̂ k0 ).The proof is given in the appendix.The following corollary holds since N+ > 0 and N� > 0 follow from the condi-tions in Section 3.2 that we asserted for bounding a subproblem.Corollary 4.2. The barycenter X̂ given by (20) is strictly feasible for (P kd ), whileR̂, consisting of the �rst (n�1) rows and columns of X̂, is strictly feasible for (P̂ k0 ).There remains one problem, the computation ofN+ andN�. But this has only tobe done for the problem in the root node, since the coe�cients for the subproblemscan be obtained from the coe�cients of their parents in the search tree. Usingsuperscripts to denote the level of the subproblem we have after a pure mergingNk+1+ = (1� mk+n�1 )Nk+ and Nk+1� = mk�n�1Nk�while after a switched merging we getNk+1+ = mk+n�1Nk+ and Nk+1� = (1� mk�n�1 )Nk�:4.3.2. Dual Starting Points. Without inequalities in the model and after a largeadd we always start dual feasible. In the general case d > 0 we �rst set u = t = ewhich makes t strictly feasible. Then we choose y such thatZ = C +At(y)� Bt(u) = C +Diag(y1:n) + yn+1W � Bt(u)becomes positive de�nite. We use yn+1 = 0, and choose y1:n large enough so thatZ becomes diagonally dominant. In the equicut case we proceed in the same way,except that y 2 <n, since we haveV tDiag(y1:n)V = Diag(y1:n�1) + ynW1:n�1;1:n�1:After a small add it is favorable to start from a point which is infeasible withrespect to u� t = 0:Let told and uold be the portion of t and u before the small add, and let tnew andunew correspond to the respective elements of the newly added inequalities, i.e.t = � toldtnew � and u = � uoldunew � :The \old" parts are strictly feasible since they were before the small add. Never-theless, we perturb those of their entries which are very small in order to preventnumerical di�culties. For the new inequalities we set tnew = e and unew = 0. Thisallows us to keep the latest y as new starting point and yields therefore the (up toa small change caused by the perturbation of u) same dual objective function valueas the latest dual problem. In practice, t and u become dual feasible after a few



14 STEFAN E. KARISCH, FRANZ RENDL, AND JENS CLAUSENsteps of the interior point method, and then the lower bound provided by the dualobjective function is a valid lower bound again.5. Computational Results5.1. Implementational Details. Before we are going to describe the numericalexperiments we consider a few implementational details. The main routine of thebranch-and-bound program was implemented in MATLAB. The cutting plane ap-proach which provides the lower bounds was written in C and uses both BLAS andLAPACK routines, whenever possible. The compiling options are simply \{O" forfull optimization and \+z" for producing position independent code, which is nec-essary for MEX interfaces. Our experiments were performed on the HP 9000/735and the running times are reported in the format \hours:minutes:seconds".In the branch-and-bound algorithm, a depth �rst search strategy is used to searchthe branching tree. As described in Section 3.1, branching is performed on a pairof vertices (1; q). As q we choose the vertex, whose column is closest to a (�1; 1)-vector, i.e. whose column Xq minimizes the Euclidean norm of jXqj � e for all q.This branching rule turns out to work quite well in practice.In the cutting plane approach we perform 1 large and 10 small adds, where we addn and n=3 violated inequalities, respectively. Hence, the number of inequalities mbis bounded from above by 133 n. As long as there are not more than 2n cutting planesin the model, we do not perform the predictor-corrector approach, but compute the\simple" Newton search directions. This turns out to be more e�cient.Each relaxation is solved to an accuracy of 10�5, i.e. convergence corresponds to arelative gap between primal and dual being smaller than this value. The tolerancefor primal and dual feasibility is set to 10�6. When the required duality gap isreached, but not the desired feasibility, usually one or two predictor-corrector stepswithout changing the barrier parameter � are su�cient to achieve the prescribedfeasibility. However, this is hardly ever necessary and there are at most two of theseextra iterates necessary while bounding a problem.5.2. Numerical Experiments. The goal of our experiments was to show that anexact approach based on semide�nite programming is a step towards the solution ofproblem instances of general graphs having more than 100 vertices. We investigatedboth exact and approximate solutions for an extensive number of graphs, whichwere made available to us from colleagues or were generated by ourselves. Wedivide the presentation into four subsections, the �rst providing an overview of thetest problems under consideration. The other subsections present and discuss thenumerical results for the di�erent classes of problem instances.5.2.1. Overview. We tested our approach on various classes of graphs which weeither generated ourselves or obtained from the literature. The following sub-sections contain the results of our experiments. The set of randomly generatedgraphs in Subsection 5.2.2 was already used in [25, 26] and can be obtained fromhttp://www.diku.dk/�karisch/eqp.d. The second set of graphs considered inSubsection 5.2.3 stems from Brunetta, Conforti and Rinaldi [5] and is available atftp://ftp.math.unipd.it/pub/Misc/equicut. Subsection 5.2.4 contains graphsdue to [13, 24, 34] which come from real world applications.The tables in the following sections read as follows: \graph" speci�es the name ofthe instance, \n" is the number of vertices, and \dens" gives the density in percent.



SOLVING GRAPH BISECTION PROBLEMS WITH SEMIDEFINITE PROGRAMMING 15A column contains the optimal cut when labeled "opt" and a feasible solution whenlabeled \sol". In the latter case we provide a performance guarantee of the solution,given either as relative gap in percent or the absolute gap in the number of edgesin column \gap". This means that the solution guaranteesopt � sol� bmaxf sol100 ; 1g � gapc:\jBj" gives the number of nodes bounded, and \time" shows the running time.In Section 5.2.3 we also give the computation times obtained by Brunetta, Con-forti and Rinaldi [5] with their approach on a SPARC 10/41. In these tables\SDP-time" denotes our results, while \LP-time" gives the running times reportedin [5].If not explicitly stated otherwise, we consider equicuts, i.e. the case d = 0. Forthe general case, d is some portion of the number of vertices of the graph.5.2.2. Randomly Generated Instances. These graphs were generated for testing pur-poses in [25, 26] and consist of two classes. The �rst class of graphs with labels\a-c" are unweighted pseudo-random graphs with uniform edge probability p = 1=2.The other group consists of weighted pseudo-random graphs with edge weights uni-formly drawn from the interval [0; 10]. They are labeled by \d-f". The dimensionsof all instances lie between 36 � n � 132, and for each size and type we havethree graphs. We do not give the densities in the tables, but they are in the in-terval [47; 51] percent for the unweighted graphs, and either 99% or 100% for theweighted instances.We solve all instances up to size n = 84 to optimality using four di�erent settingsfor d. We also compute optimal equicuts for the instances with 108 vertices. Theremaining problems are solved with a performance guarantee of 1%.Tables 1 and 2 give the results of various partition sizes for the unweightedinstances, and Tables 3 and 4 for the weighted graphs. Comparing the running timeswith those of the other graph classes in the next subsections shows empirically thatthe randomly generated instances of this type constitute the most di�cult class.The solution times for the di�erent dimension are: seconds for n = 36, minutes forn = 60, hours for n = 84, and days for n = 108.In almost all cases, 1%-approximations for weighted graphs can be obtained inthe root node. For unweighted instances, the solutions with this performance guar-antee can be obtained in several hours for most of the instances under consideration.We observe, that in general the solution times do not seem to depend on thevalue of d.5.2.3. Brunetta-Conforti-Rinaldi Library. We also tested our approach on a librarycreated by Brunetta, Conforti and Rinaldi [5], short BCR-library, which contains250 instances with 20 to 80 vertices. The instances of the BCR-library fall into �vecategories.The �rst class consists of pure random instances. In the generation, the density ofthe graphs was �xed �rst. Edges belonging to the graph received weights uniformlydrawn from [1; 10], the remaining edges got 0 weights.The second group contains planar grid instances, which are named \hxkg". Theyrepresent a weighted h� k grid in the plane, where the edge weights have weightsfrom 1 to 10, drawn from a uniform distribution. The resulting graphs have n = hkvertices and m = 2hk � h� k edges.



16 STEFAN E. KARISCH, FRANZ RENDL, AND JENS CLAUSENgraph n sol gap jBj time sol gap jBj timed = 0 d = n=2ex36a 36 117 0% 1 3 85 0% 13 31ex36b 36 118 0% 1 5 84 0% 1 5ex36c 36 124 0% 1 2 90 0% 1 4ex60a 60 367 0% 49 5:00 268 0% 79 9:56ex60b 60 357 0% 37 4:50 259 0% 75 10:23ex60c 60 343 0% 29 4:08 250 0% 49 7:15ex84a 84 742 0% 287 2:02:55 548 0% 339 2:20:25ex84b 84 771 0% 553 4:19:03 562 0% 77 28:41ex84c 84 753 0% 619 4:18:15 556 0% 519 3:23:38ex108a 108 1247 0% 5133 88:56:57 { { { {ex108b 108 1282 0% 8755 164:58:22 { { { {ex108c 108 1240 0% 1383 27:15:46 { { { {ex108a 108 1247 1% 49 1:56:31 915 1% 55 1:37:42ex108b 108 1282 1% 77 3:00:18 937 1% 69 2:19:58ex108c 108 1240 1% 13 34:49 918 1% 89 2:49:12ex132a 132 1885 1% 55 4:45:51 1379 1% 33 2:34:35ex132b 132 1883 1% 1 5:41 1403 1% 205 13:22:39ex132c 132 1854 1% 5 27:16 1371 1% 81 5:35:40Table 1. Randomly generated unweighted instances; dens 2 [47; 51]%.graph n sol gap jBj time sol gap jBj timed = n=6 d = n=12 + 1ex36a 36 112 0% 3 10 114 0% 1 3ex36b 36 111 0% 1 2 114 0% 1 3ex36c 36 119 0% 1 4 121 0% 1 2ex60a 60 351 0% 75 5:38 360 0% 49 5:18ex60b 60 345 0% 87 10:47 352 0% 45 6:01ex60c 60 332 0% 131 11:21 337 0% 23 3:25ex84a 84 721 0% 1555 9:16:51 735 0% 801 5:03:53ex84b 84 741 0% 183 1:19:51 760 0% 491 3:16:60ex84c 84 727 0% 399 2:59:31 744 0% 751 4:57:35ex108a 108 1207 1% 61 2:06:43 1235 1% 105 3:40:14ex108b 108 1241 1% 179 6:21:04 1268 1% 129 4:35:31ex108c 108 1205 1% 113 5:06:59 1228 1% 37 1:27:02ex132a 132 1825 1% 109 8:59:19 1869 1% 295 21:12:41ex132b 132 1829 1% 15 1:22:22 1867 1% 3 16:52ex132c 132 1799 1% 69 5:04:09 1833 1% 1 5:56Table 2. Randomly generated unweighted instances; dens 2 [47; 51]%.



SOLVING GRAPH BISECTION PROBLEMS WITH SEMIDEFINITE PROGRAMMING 17graph n sol gap jBj time sol gap jBj timed = 0 d = n=2ex36d 36 1426 0% 3 11 1030 0% 1 2ex36e 36 1482 0% 1 4 1086 0% 23 40ex36f 36 1454 0% 1 4 1065 0% 21 38ex60d 60 4151 0% 5 45 3086 0% 101 10:48ex60e 60 4154 0% 35 4:46 3082 0% 55 5:30ex60f 60 4132 0% 77 8:29 3066 0% 85 8:43ex84d 84 8152 0% 193 1:14:18 6081 0% 393 2:20:00ex84e 84 8327 0% 513 3:43:58 6182 0% 231 1:14:04ex84f 84 8264 0% 305 1:50:41 6171 0% 467 2:57:25ex108d 108 13891 0% 8517 135:40:36 { { { {ex108e 108 13699 0% 2351 30:02:33 { { { {ex108f 108 13709 0% 461 6:56:49 { { { {ex108d 108 13891 1% 1 2:59 10357 1% 1 2:32ex108e 108 13699 1% 1 26 10195 1% 1 2:55ex108f 108 13709 1% 1 2:57 10296 1% 5 13:05ex132d 132 20581 1% 1 5:30 15371 1% 1 5:31ex132e 132 20618 1% 1 5:42 15338 1% 1 5:17ex132f 132 20707 1% 1 5:38 15485 1% 1 5:20Table 3. Randomly generated weighted instances; dens 2 f99; 100g%.graph n sol gap jBj time sol gap jBj timed = n=6 d = n=12+ 1ex36d 36 1378 0% 55 1:18 1400 0% 3 11ex36e 36 1440 0% 45 1:04 1464 0% 43 56ex36f 36 1398 0% 1 5 1426 0% 7 18ex60d 60 4041 0% 263 20:32 4103 0% 69 5:32ex60e 60 4041 0% 235 27:14 4115 0% 145 12:57ex60f 60 4003 0% 115 13:12 4076 0% 29 04:33ex84d 84 7906 0% 197 1:11:24 8065 0% 169 1:06:13ex84e 84 8078 0% 1051 6:20:05 8244 0% 1072 6:47:43ex84f 84 8034 0% 1501 7:52:55 8188 0% 871 4:43:50ex108d 108 13494 1% 1 2:56 13767 1% 1 2:48ex108e 108 13305 1% 1 2:51 13569 1% 1 2:54ex108f 108 13306 1% 1 2:23 13571 1% 1 2:55ex132d 132 20005 1% 1 5:30 20410 1% 1 5:42ex132e 132 20024 1% 1 5:29 20447 1% 1 5:40ex132f 132 20100 1% 1 5:23 20513 1% 1 5:46Table 4. Randomly generated weighted instances; dens 2 f99; 100g%.



18 STEFAN E. KARISCH, FRANZ RENDL, AND JENS CLAUSENgraph n dens opt jBj SDP-time LP-timeHP 9000 SPARC 10v0.90 20 10% 21 1 1 3v0.00 20 100% 401 1 1 2t0.90 30 10% 24 1 1 20t0.50 30 50% 397 17 22 1:43t0.00 30 100% 900 3 6 1:13q0.90 40 10% 63 1 4 2:59q0.80 40 20% 199 31 1:09 9:41q0.30 40 70% 1056 23 1:02 1:05:42q0.20 40 80% 1238 7 25 55:03q0.10 40 90% 1425 13 41 54:06q0.00 40 100% 1606 1 4 19:12c0.90 50 10% 122 1 10 15:58c0.80 50 20% 368 45 3:04 2:00:25c0.70 50 30% 603 49 4:02 2:50:23c0.30 50 70% 1658 51 2:44 5:45:42c0.10 50 90% 2226 55 2:39 4:20:02c0.00 50 100% 2520 43 2:20 2:51:01c2.90 52 10% 123 1 12 34:02c4.90 54 10% 160 15 1:39 49:15c6.90 56 10% 177 3 30 52:23c8.90 58 10% 226 71 8:46 n.a.s0.90 60 10% 238 37 4:57 2:54:48Table 5. Equicut of randomly generated instances from the BCR-library.graph n dens opt jBj SDP-time LP-timeHP 9000 SPARC 1010x2g 20 15% 6 1 1 65x6g 30 11% 19 1 3 1:012x16g 32 9% 8 1 4 1:4818x2g 36 8% 6 1 2 4:222x19g 38 8% 6 49 55 13:085x8g 40 9% 18 1 2 14:113x14g 42 8% 10 5 18 20:565x10g 50 7% 22 1 9 47:236x10g 60 6% 28 57 5:19 4:59:547x10g 70 5% 23 61 9:17 n.a.Table 6. Equicut of planar grid instances from the BCR-library.
Toroidal grid instances belong to the third category of instances. They weregenerated in the same way as the planar grid problems, except that they haven = hk vertices and m = 2hk edges. These instances are denoted by \hxkt".



SOLVING GRAPH BISECTION PROBLEMS WITH SEMIDEFINITE PROGRAMMING 19graph n dens opt jBj SDP time LP timeHP 9000 SPARC 104x5t 20 21% 28 1 1 36x5t 30 14% 31 1 3 458x5t 40 10% 33 1 6 8:1421x2t 42 10% 9 1 5 17:4123x2t 46 9% 9 33 2:05 46:284x12t 48 9% 24 3 17 50:125x10t 50 8% 33 1 6 33:5110x6t 60 7% 42 43 5:50 1:48:377x10t 70 6% 45 47 9:32 7:51:3710x8t 80 5% 43 45 15:44 n.a.Table 7. Equicut of toroidal grid instances from the BCR-library.graph n dens opt jBj SDP time LP timeHP 9000 SPARC 102x10m 20 100% 118 1 1 36x5m 30 100% 270 1 1 282x17m 34 100% 316 21 29 3:5510x4m 40 100% 436 1 2 5:155x10m 50 100% 670 1 2 53:324x13m 52 100% 721 5 34 1:35:0213x4m 52 100% 721 5 34 1:25:059x6m 54 100% 792 1 12 n.a.10x6m 60 100% 954 1 8 3:35:2010x7m 70 100% 1288 1 14 35:21:37Table 8. Equicut of mixed grid instances from the BCR-library.graph n dens opt jBj SDP time LP timeHP 9000 SPARC 10t0.n.10 30 90% -301 3 7 1:27t0.n.00 30 100% -337 1 3 1:55q0.n.70 40 30% -298 17 50 52:53q0.n.50 40 40% -389 23 55 7:58q0.n.40 40 30% -450 1 6 20:21q0.n.00 40 100% -471 31 1:06 11:28c0.n.00 50 100% -829 67 4:17 26:54:07s0.n.80 60 20% -465 3 40 1:21:32o0.n.80 80 20% -690 115 31:48 n.a.Table 9. Instances with negative weights from the BCR-library.



20 STEFAN E. KARISCH, FRANZ RENDL, AND JENS CLAUSENThe next class of graphs are mixed grid instances, which are dense graphs. Theedges of a planar grid got weights uniformly drawn from [1; 100], and all the otheredges weights uniformly drawn from [1; 10]. The names of these graphs are \hxkm".The last group of graphs in the library are instances with negative weights. Theywere generated in the same way as the instances of the �rst class, except that halfof the edges got weights from [�10;�1], again drawn from a uniform distribution.We solved all instances to optimality. Instead of presenting a long list of resultswe follow [5] and give a small representative sample of the results. We chose thesame instances as Brunetta et al. and added a few larger ones to the lists. Ourresults are summarized in Tables 5 to 8.The longest running times of about 32 and 16 minutes were obtained for thelargest negative instance and the largest toroidal grid which are both of size n = 80.All the other running times are below 10 minutes of CPU time, and most of theinstances are solved within 2 minutes. The easiest class of graphs with respectto our approach are the mixed grid instances whose maximal solution times wereabout 30 seconds.A comparison of these results with the ones from Subsection 5.2.2 shows, thatunweighted graphs having a density of about 50% seem to be more di�cult topartition with our approach than others. For weighted instances, dense graphswith uniformly generated edge weights are much harder to bisect than dense graphsbased on grid structures.To put our running times into perspective, we shortly discuss the computationtimes obtained by Brunetta et al. [5]. Their experiments were performed on aSPARC 10/41. In [12], the performance of various computers was measured usingstandard linear equation software. The numbers given in [12] indicate, that onLINPACK benchmarks the HP 9000/735 is roughly 6 times faster than the SPARC10/41. Brunetta et al. used a generic cutting plane approach based on linear pro-gramming relaxations which does not exploit sparsity of the underlying graphs.This is de�nitely a disadvantage of their method but our approach does not exploitsparsity either. We observe, that their running times are in general in the orderof hours when ours are in the order of minutes. It is di�cult to compare the per-formance of di�erent methods across di�erent platforms, but the results indicate,that the approach based on semide�nite programming is more e�cient.5.2.4. Other Graphs from the Literature. We also tested our approach on variousclasses of graphs from the literature. The �rst class of problems are graphs rep-resenting de Bruijn networks of dimensions n 2 f32; 64; 128g. These networks areprominent interconnections networks for parallel computers. For references intothis direction and results regarding the bisection of de Bruijn networks, we referto Feldmann et al. [13]. The graph representing a de Bruijn network has n = 2kvertices and is 2k-regular, where k is the basis of the network. The unweightedgraphs are quite sparse and have therefore minimum cuts of low costs.The next group of instances was introduced by Johnson, Mehrotra and Nem-hauser [24] and are compiler design instances. Even though these instances wereused for the more general min-clustering problem, see [14, 24], we use them here asgraph bisection instances. The graphs are weighted.Finally, we consider an other class of real world instances. They are mesh in-stances and arise from an application of the �nite elements method in 
uids, see[34]. Thereby the problem is the LU -factorization of the matrix of a linear system,



SOLVING GRAPH BISECTION PROBLEMS WITH SEMIDEFINITE PROGRAMMING 21graph n dens opt gap jBj timedebr5 32 12% 10 0 3 6debr6 64 6% 18 0 55 7:49debr7 128 3% 30 0 711 23:18:29debr7 128 3% 30 1 195 8:53:20Table 10. Equicut of DeBruijn networks.graph n dens opt jBj timecd30a 30 13% 302 1 2cd30b 30 13% 302 1 2cd45 45 10% 760 1 7cd47a 47 9% 426 1 10cd47b 47 9% 580 35 1:52cd61 61 10% 2176 1 20Table 11. Equicut of compiler design instances.graph n dens opt jBj timem4 32 10% 6 1 1ma 54 5% 2 1 3me 60 5% 3 1 4m6 70 5% 7 1 37mb 74 4% 4 1 28mc 74 5% 6 1 46md 80 4% 4 1 29mf 90 4% 4 1 24m1 100 3% 4 15 18:15m8 148 2% 7 1 5:21Table 12. Equicut of mesh instances.which is a band matrix with two bands. It can be modeled as a graph bisectionproblem in an unweighted planar graph.The results for the de Bruijn networks in Table 10 show that the running timesare comparable to the ones in Subsection 5.2.2 for randomly generated graphs.All but one of the compiler design instances can be solved in the root node within20 seconds of CPU time, see Table 11. In the solution of instance cd47b, one has togo down the branching tree on a relatively long path containing subproblems withan absolute gap of 1 between lower and upper bound.The mesh instances are the easiest instances considered here, see Table 12. Forall but one graph we found the optimal solution already in the root node of thesearch tree. This is probably due to the fact that the graphs under consideration areplanar and that for those graphs semide�nite programming relaxations provide tight



22 STEFAN E. KARISCH, FRANZ RENDL, AND JENS CLAUSENapproximations, see for instance [17] for further references on results for the max-cut problem. The running times are well below one minute for all instances withn � 90 vertices, and the bisection of the larger graphs can be done within 20 minutesof CPU time. The mesh instances were also used for experiments by Brunetta etal. [5] and Ferreira et al. [14]. As mentioned above, the running times in [5] wereobtained on a SPARC 10/41 using a generic linear programming based cutting planeapproach. For all instances with n � 60 vertices the computation times were aboveone hour. In [14], a cutting plane approach for the more general node capacitatedgraph partitioning problem based on linear programming relaxations was presentedwhich exploits sparsity of the graphs. The tests for this method were performed ona SUN 4/50, and the resulting CPU times are about three times larger than ours.The results in [12] indicate, that the performance of the HP 9000/735 is about 10times better than the performance of the SUN 4/50 on LINPACK benchmarks. Acomparison of the di�erent approaches shows that exploiting sparsity is crucial forlinear programming approaches. 6. ConclusionWe presented a branch and bound approach based on semide�nite and poly-hedral relaxations for the graph bisection problem and tested it extensively. Thecomputational results indicate, that the present approach solves bisection problemson general graphs with 80 � 90 vertices e�ciently. If the graphs are planar or ifthey base on grids, bisections can be obtained for larger graphs in very reasonablecomputation times. Our results also compare favorably to previously publishedones, which were obtained with cutting plane methods based on linear program-ming relaxations.Regarding the solution of substantially larger bisection problems, the presentmethod has its limitations. As long as there are no alternatives to interior pointmethods for solving the semide�nite relaxations, exact bisections of general mediumsized graphs with several hundred vertices are out of reach. Recall that each iter-ation of the interior point method requires the factorization of a dense system ofequations, whose size equals the number of constraints in the relaxation. Neithersparsity nor structure in the data can be exploited in a satisfactory way in thecurrent solution procedure. AcknowledgmentsWe thank L. Brunetta, C. Helmberg, G. Rinaldi and R. Weismantel for makingtheir test data available to us, and C. Helmberg for valuable comments on an earlierversion of this paper. References[1] F. ALIZADEH. Interior point methods in semide�nite programming with applications tocombinatorial optimization. SIAM J. Optim., 5:13{51, 1994.[2] C.C. ASHCRAFT and J.W.H. LIU. Using domain decomposition to �nd graph bisectors.Technical report CS-95-08, York University, North York, Canada, 1995.[3] F. BARAHONA, M. GR�OTSCHEL, M. J�UNGER, and G. REINELT. An application of com-binatorial optimization to statistical physics and circuit layout design. Operations Research,36:493{513, 1988.[4] R.B. BOPPANA. Eigenvalues and graph bisection. In Proceedings of the 28th IEEE AnnualSymposium on Foundations of Computer Science, pages 280{285, 1987.
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SOLVING GRAPH BISECTION PROBLEMS WITH SEMIDEFINITE PROGRAMMING 25L0 L1 L2 L3 L4/(+----0) = 1,6|2,3,4,5(+---00)/ \(+---+0) = 1,5|2,3,4,6(+--000)/ \ /(+--+-0) = 1,4|2,3,5,6/ (+--+00)/ \(+--++0) = 1,4,5,6|2,3(+-00000)/ \ /(+-+--0) = 1,3|2,4,5,6/ \ (+-+-00)/ \ / \(+-+-+0) = 1,3,5,6|2,4/ (+-+000)/ \ /(+-++-0) = 1,3,4,6|2,5/ (+-++00)/ \(+-+++0) = 1,3,4,5|2,6(000000)\ /(++---0) = 1,2|3,4,5,6\ (++--00)\ / \(++--+0) = 1,2,5,6|3,4\ (++-000)\ / \ /(++-+-0) = 1,2,4,6|3,5\ / (++-+00)\ / \(++-++0) = 1,2,4,5|3,6(++00000)\ /(+++--0) = 1,2,3,6|4,5\ (+++-00)\ / \(+++-+0) = 1,2,3,5|4,6(+++000)\(++++00) = 1,2,3,4|5,6Figure 1. Branch-and-Bound Tree for Bisecting a Graph withn = 6 and d = 2.We have minfp+; p�g < n2�1 and since d > 0 also maxfp+; p�g � n2. Recall thatthe instance would not be bounded or would be transformed to an equicut problemotherwise. We distinguish three cases.If w1 > 0 the second condition implies (n� 1)2 � (d+w1)2. But since �, d, andw1 are all positive, so is 4�dw1, and thus c1 > 0.If w1 = 0 the �rst condition yields that (n� 1)2 � d2 holds and so c1 is positive.For w1 < 0, we get from the second condition that (n� 1)2 � (d� w1)2. Usingthe fact that 4�dw1 < 0 and � 2 (0; 1) we boundc1 = (n� 1)2 � (d+ w1)2 + 4�dw1> (n� 1)2 � (d+ w1)2 + 4dw1 = (n� 1)2 � (d� w1)2 � 0:It remains to show that the �rst eigenvalue of M is positive, as well. Directcalculation leads to c1 + (n� 1)(c2 � c23) = 4(1� �)�d2n� 1 > 0since d > 0 and � 2 (0; 1).



26 STEFAN E. KARISCH, FRANZ RENDL, AND JENS CLAUSENNow, we consider the equicut case, i.e. d = 0. We analogously partition R� anduse Schur complements to derive that it is positive de�nite. Since R� consists ofthe �rst (n � 1) rows and columns of X� it is easy to see that the eigenvalues ofthe new M are �(M) = [c1 + (n� 2)(c2 � c23); c1etn�2]t:Analogous considerations as for the case d > 0 imply that c1 is positive. For thethe �rst eigenvalue we have, using the fact that d = 0,c1 + (n� 2)(c2 � c23) = (n� 1)2 � (w1)2(n� 1)2(n� 2) :Since n� 1 > w1, the positive de�niteness of R� follows.Regarding feasibility of R� concerning the equalities, we have to calculateV R�V t = � R� �R�w1:n�1�R�w1:n�1 (w1:n�1)tR�w1:n�1 � :SinceX�w = 0, we deduce that �R�w1:n�1 is equivalent to the �rst (n�1) elementsof the n'th column of X�. It also implies that (w1:n�1)tR�w1:n�1 = Xn;n = 1. Thuswe proved X� = V R�V t and feasibility for R�.The second part of the proof considers strict feasibility with respect to the trian-gle inequalities as given by (8). We have to distinguish two cases, namely whetherthe entries in the �rst column of X�, c3, are concerned or not. If they are, i.e. wehave for instance i = 1, the inequalities are in terms of c3 and c22c3 + c2 > �1; �c2 > �1; �2c3 + c2 > �1:The second inequality is equivalent to c1 > 0, and c1 was shown to be positiveabove. A few calculations for the �rst and the third inequality yield+2c3 + c2 + 1 > 0 () (n� 2� d� w1)2 � 1 + 4�d(n� 2� w1) > 0�2c3 + c2 + 1 > 0 () (n� 2� d+ w1)2 � 1 + 4(1� �)d(n� 2 + w1) > 0:(25)Consider the �rst inequality. Nonnegativity of 4�d(n � 2� w1) is easy to see. Forshowing strict feasibility we distinguish two cases. First, we assume that w1 � 0.But then minfp+; p�g implies (n� 2� d� w1)� 1 > 0 and we are done. The notso obvious case is w1 < 0. In this case we have to show that (n� 2� d�w1)2 > 1.We do that by excluding (n�2�d�w1) 2 f0;�1;+1g. The expression can not beequal to 0, since this would imply p+ = n2 � 1=2 and we have only integral values.(n� 2� d� w1) = �1 implies p+ = n2, d > 1 and w1 = �n� 1� d. Substitutionyields 4�d(n� 2� w1) = 4�d(d� 1) > 0:On the other hand, (n � 2 � d � w1) = +1 implies p+ = n2 � 1, d > 0 andw1 = �n� 3� d. Combining this we get4�d(n� 2� w1) = 4�d(d+ 1) > 0:The second inequality of (25) can be proved analogously.If the �rst row of X̂� is not concerned, i.e. i > 1, the triangle inequalities become3c2 > �1; �c2 > �1:The second one was already proved above. For the �rst inequality we observe that3c2 + 1 > 0() (n� 1)(n� 5) + 3[(d+ w1)2 � 4�dw1] > 0:(26)
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