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The problem, which is NP-hard, has been thoroughly studied in the last few decades andseveral exact algorithms for its solution can be found in the literature. If we were to give abrief description of the state of the art, we could say thati) Problems with exponentially growing coe�cients cannot be solved e�ciently, and weshould not expect them to be solved e�ciently due to the NP-hardness of the problem.ii) Problems with bounded coe�cients can however be solved very fast if the LP and theILP solutions are su�ciently close to each other. This applies to instance types suchas the so-called uncorrelated, weakly correlated and subset-sum problems.iii) Problems with bounded coe�cients where the LP solutions di�er considerably fromthe ILP solutions are still di�cult to solve by means of non-specialized algorithms.Among these instances we have the so-called strongly correlated problems and di�erentvariants. Besides, non-�ll problems such as the even-odd problems are di�cult to solve.In the following we will give a historical overview of the di�erent approaches, which havegradually extended the classes of instances that can be solved in a reasonably short time.2 Basic branch-and-bound algorithmsAlgorithms for knapsack problems are mainly based on two approaches: branch-and-boundand dynamic programming. The actual performance of an algorithm, however, strictlydepends on the way tight upper bounds are applied.The �rst upper bound for KP, based on a continuous relaxation, was presented by Dantzig[3] in the mid 1950s. It is obtained by sorting the items so thatpjwj � pj+1wj+1 (j = 1; . . . ; n� 1) (2)and determining the critical variable xs throughs := minni : Pij=1wj > co (3)The continuous upper bound for KP is then6664s�1Xj=1 pj + 0@c� s�1Xj=1wj1A psws7775 (4)and the corresponding Dantzig integer solution is xj = 1 for j < s and xj = 0 for j � s.No better bounds were presented in the following two decades until Martello and Toth [6]presented a tighter bound by imposing integrality on the critical variable. Since then, severalother bounds have been presented based on Lagrangian relaxation, partial enumeration,construction of valid additional constraints, and di�erent relaxations of the latter.2



The �rst branch-and-bound algorithms for KP appeared in the early 1970s. Among themost successful we should mention the algorithms by: Horowitz and Sahni [5], Nauss [11]and Martello and Toth [6].These algorithms are all based on a depth-�rst enumeration, in order to limit the spaceconsumption. The branching strategy consists of selecting an item j and generating twochildren nodes through conditions xj = 1 and xj = 0. The items are examined in theorder given by (2), and the branching node is selected as the (unique) active node generatedby a condition xk = 1 or, if there is no such node, as the last active node generated bya condition xk = 0. Upper bounds for these algorithms are derived from some kind ofcontinuous relaxation of the currently induced subproblem.A comparison of the algorithms, presented in Martello and Toth [8], shows that theyperform well for small sized \easy" instances.3 Core algorithmsIn order to solve large-sized instances, Balas and Zemel [1] proposed \guessing" the optimalvalues of several decision variables, and focus the enumeration on the most interesting ones.This subset of items, known as the core of the problem, is then solved either by heuristictechniques or by one of the above exact branch-and-bound methods. The core C could bedetermined by �nding the critical variable, xs, and setting C = fs � �; . . . ; s; . . . ; s + �g inthe sequence given by (2), for a pre�xed value �. In order to avoid explicit sorting, Balasand Zemel give a procedure based on partitioning techniques that determines both xs andthe core in O(n) time.All variables preceding the core are �xed to 1, while all those following it are �xed to 0(i.e., for each item j not in the core, xj is set to one, if pj=wj � ps=ws, or to 0 otherwise).The solution of the core problem yields a lower bound which in many cases corresponds tothe optimal solution value. In order to prove optimality of the solution found, either anupper bound having the same value is determined, or reduction procedures are used to provethat items not in the core should have the above speci�c value. When optimality cannot beproved, items which were not �xed to a speci�c value by reduction are �nally enumeratedto optimality.E�ective algorithms based on a core problem were presented by Balas and Zemel [1],Fayard and Plateau [4] and Martello and Toth [7]. A computational comparison of corealgorithms presented in [8] shows that the mt2 algorithm by Martello and Toth gives thebest performance.A �nal re�nement of the core approach was presented in Pisinger [12], where an expandingcore was used to ensure that the core size automatically adapts to the hardness of theproblem. The algorithm starts from the Dantzig integer solution, and at each iteration iteither inserts a new item or removes an item, depending on whether the weight sum w ofthe chosen items is less than c or greater than c. Initially the core C contains only item s,3



but whenever a new item j 62 C is considered, the core is automatically expanded by sortingsome more items. Simple bounding rules obtained from linear relaxation were used to limitthe search. With a core C = fa; . . . ; bg an upper bound is found to beu(p; w) = 8<: p+ (c� w)pb+1=wb+1 if w � c;p+ (c� w)pa�1=wa�1 if w > c; (5)when the currently chosen items have pro�t sum p and weight sum w. The algorithmbacktracks whenever bu(p; w)c � z, where z is the incumbent solution value.The best core-algorithms can solve \easy" instances with more than 100,000 items in lessthan a second. The \hard" instances can, however, only be solved for tiny instances.4 Dynamic programming algorithmsDynamic programming based on the Bellman recursion [2] is generally not an e�ective wayof solving KP, since the space consumption is very large, and the worst-case and best-casecomputational e�orts are generally the same.Pisinger [13] presented a dynamic programming recursion, minknap, which starts fromthe Dantzig integer solution and at each iteration either inserts or removes an item. Thusassuming that fa;b(~c) for a � s; b � s � 1; 0 � ~c � 2c is an optimal solution to the coreproblem: fa;b(~c) = max8>>><>>>: Pa�1j=1 pj +Pbj=a pjxj :Pa�1j=1 wj +Pbj=awjxj � ~c;xj 2 f0; 1g for j = a; . . . ; b 9>>>=>>>; ; (6)we may use the following recursion for the enumerationfa;b(~c) = max8>>>><>>>>: fa;b�1(~c) if b � s; ~c � 0fa;b�1(~c� wb) + pb if b � s; ~c� wb � 0fa+1;b(~c) if a < s; ~c � 2cfa+1;b(~c+ wa)� pa if a < s; ~c+ wa � 2c (7)Assuming that p̂; ŵ are the pro�t and weight sums of the Dantzig integer solution, we mayinitially set fs;s�1(~c) = �1 for ~c = 0; . . . ; ŵ � 1 and fs;s�1(~c) = p̂ for ~c = ŵ; . . . ; 2c. Anoptimal solution to KP is then given by f1;n(c) by alternatively increasing b and decreasing a.Upper bounds similar to (5) are used to fathom states in the recursion, and the enumerationis terminated as soon as optimality of the current incumbent solution can be proved. Thisimplies that a minimal core is enumerated, and although the worst-case time complexity isO(nc) as for the Bellman recursion, most instances can be solved without enumerating toomany variables. In addition, since forward recursions are used in dynamic programming,very few states are generated. 4



5 Tighter boundsMartello and Toth [9] presented an e�ective branch-and-bound algorithm, mth, where ad-ditional constraints on the minimum and maximum cardinality of an optimal solution aregenerated from extended covers.The idea is to determine a value K such thatnXj=1xj � K (8)in any optimal solution (x) to KP. We can then obtain an equivalent ILP model, KP�, byadding (8) to (1). Whenever the continuous solution to KP violates (8) (i.e., the criticalvariable is s > K, with xs > 0), a better upper bound is given by the solution value of thecontinuous relaxation of KP�. This solution is e�ciently determined, without using an LPsolver, by Lagrangian relaxing (8) into the objective function. Using a multiplier � � 0 andrelaxing the integrality constraints, one gets the problem given bymaximize nXj=1 pjxj � �0@ nXj=1xj �K1A = nXj=1 ~pxj + �Ksubject to nXj=1wjxj � c;0 � xj � 1; j = 1; . . . ; n; (9)which is a continuous KP. The optimal multipliers � may be derived using a specializedbinary search method, since Martello and Toth prove some monotonicity properties of theabove problem.When the continuous solution to KP does not violate (8) a minimum cardinality con-straint Pnj=1 xj � k is imposed on the problem, and the relaxation is solved in a similarway.The addition of cardinality constraints seems to be an e�cient technique for closing thegap between the LP and ILP optimum, but the bounds are relatively expensive to derive. Inorder to obtain good performance also for \easy" instances, the mth algorithm �rst tries tosolve the problem by means of the simpler mt2 approach, and only if this does not succeedwithin a given time limit, the more expensive bounds are derived. Dynamic programmingapplied to the last items was also used in order to save time in the enumeration, whensearching for some items to �ll the residual capacity.6 A combined approachMartello, Pisinger and Toth [10] proposed to combine dynamic programming with tightbounds, obtaining an algorithm, combo, with time complexity O(nc). In general the worst-case bound is very pessimistic since most instances are solved very quickly due to the tight5



bounds. Upper bounds are derived by imposing cardinality constraints of the form (8),but these are surrogate relaxed with the original capacity constraint leading to a new 0-1Knapsack Problem. Using a multiplier � � 0 one gets the problemmaximize nXj=1 pjxjsubject to nXj=1(wj + �)xj � c+ �K (10)xj 2 f0; 1g; j = 1; . . . ; n:A good choice of multiplier � is found by means of binary search in a similar way as inMartello and Toth [9]. The new problem (10) tends to be much easier to solve, since con-tinuous bounds for this problem are generally tight. An optimal solution to the transformedproblem yields an upper bound on the original problem, but if the cardinality of the solutionfound is correct, i.e. ifPnj=1 xj � K in the optimal solution to (10), one also obtains a feasiblesolution to the original problem, thus solving the problem to optimality.In order to solve some special non-�lling knapsack instances, rudimentary divisibilityarguments are used to decrease the capacity whenever possible. Let d be the greatest commondivisor of the weights w1; . . . ; wn. If d 6= 1, the capacity may be decreased to c = dbc=dc.Deriving d can be done in O(n logmaxfwjg) time using Euclid's algorithm.The enumeration part of combo is based on the dynamic programming recursion (7), butinitially a core is chosen as a collection of items which �t together well with respect to someheuristic algorithms. Moreover, when the number of states in the dynamic programminggets too high, the lower bound is improved by pairing states with items not in the core. Thisusually results in a tightening of the lower bound and thus in additional fathoming of states.7 Computational experimentsWe have investigated how the most e�ective algorithms behave for di�erent instance typesand data ranges. Seven types of randomly generated data instances are considered assketched below (with, in brackets, the abbreviations used in the tables). Each type is testedwith data range R = 1000 and 10 000 for di�erent problem sizes n.� Uncorrelated instances (unc.): the weights wj and the pro�ts pj are uniformly randomdistributed in [1; R].� Weakly correlated instances (weakly cor.): the weights wj are distributed in [1; R], andthe pro�ts pj in [wj �R=10; wj +R=10] such that pj � 1.� Strongly correlated instances (str.cor.): the weights wj are distributed in [1; R], andthe pro�ts are set to pj = wj +R=10. 6



� Inverse strongly correlated instances (inv.str.cor.): the pro�ts pj are distributed in[1; R], and the weights are set to wj = pj +R=10.� Almost strongly correlated instances (alm.str.cor.): the weights wj are distributed in[1; R], and the pro�ts pj in [wj +R=10� R=500; wj +R=10 +R=500].� Subset-sum instances (subset-sum): the weights wj are randomly distributed in [1; R]and the pro�ts are set to pj = wj.� Uncorrelated instances with similar weights (unc.sim.w.): the weights wj are distributedin [100000; 100100] and the pro�ts pj in [1; 1000].For instance h in a series ofH = 100 instances, the capacity is chosen as c = hH+1 Pnj=1wj.All tests were run on a HP9000-735/99, and a time limit of 5 hours was put on each seriesof 100 instances.Tables 1 to 4 compare the average solution times of mt2, minknap, mth and combo. Theoldest of the codes, mt2, is not able to solve the \hard" instances, but it performs wellfor uncorrelated, weakly correlated and subset-sum instances. The minknap algorithm hasoverall stable behavior due to the pseudo-polynomial time bound, but the hard problemsdemand tens or hundreds of seconds to be solved. On the other hand, the solution times havea very stable growth for increasing data ranges R and problem sizes n. The mth algorithm canin most cases solve the instances faster than minknap due to the tighter upper bounds. Thereare, however, a few anomalous occurrences for the almost strongly correlated instances wherethe cardinality bounds do not work e�ciently, and thus a very large enumeration takes place.The combined approach in combo is however clearly superior to all the previous approaches,being able to solve all the instances in less than 0.2 seconds. The solution times are verystable, and in nearly all instances combo is faster than all the previous approaches.Table 1: Average cpu times for mt2, in HP9000-735/99 secondsunc. weakly cor. str.cor. inv.str.cor. alm.str.cor. subset-sum unc.sim.w.n n R 103 104 103 104 103 104 103 104 103 104 103 104 10550 0.00 0.00 0.00 0.00 0.06 0.04 0.01 0.02 0.03 0.03 0.00 0.01 0.02100 0.00 0.00 0.00 0.00 26.26 24.78 4.44 | 5.90 16.02 0.00 0.01 3.28200 0.00 0.00 0.00 0.00 | | | | | | 0.00 0.02 |500 0.00 0.00 0.01 0.01 | | | | | | 0.00 0.02 |1000 0.00 0.01 0.01 0.02 | | | | | | 0.00 0.02 |2000 0.01 0.01 0.01 0.04 | | | | | | 0.00 0.02 |5000 0.01 0.02 0.01 0.08 | | | | | | 0.01 0.02 |10000 0.02 0.05 0.02 0.13 | | | | | | 0.01 0.03 |
7



Table 2: Average cpu times for minknap, in HP9000-735/99 secondsunc. weakly cor. str.cor. inv.str.cor. alm.str.cor. subset-sum unc.sim.w.n n R 103 104 103 104 103 104 103 104 103 104 103 104 10550 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.02 0.00 0.01 0.00 0.03 0.00100 0.00 0.00 0.00 0.00 0.02 0.17 0.01 0.18 0.01 0.03 0.00 0.03 0.00200 0.00 0.00 0.00 0.00 0.05 0.82 0.04 0.65 0.04 0.15 0.00 0.03 0.01500 0.00 0.00 0.00 0.00 0.20 2.52 0.19 2.80 0.16 0.88 0.00 0.03 0.031000 0.00 0.00 0.00 0.01 0.48 8.30 0.45 7.59 0.37 3.18 0.00 0.03 0.102000 0.00 0.00 0.00 0.01 0.96 13.17 1.09 14.16 0.72 8.57 0.00 0.03 0.355000 0.00 0.01 0.01 0.02 3.73 54.11 3.20 54.66 1.63 26.57 0.01 0.04 1.3210000 0.01 0.01 0.01 0.03 8.18 115.41 6.57 122.84 1.83 48.33 0.01 0.04 1.57
Table 3: Average cpu times for mth, in HP9000-735/99 secondsunc. weakly cor. str.cor. inv.str.cor. alm.str.cor. subset-sum unc.sim.w.n n R 103 104 103 104 103 104 103 104 103 104 103 104 10550 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.01 0.03 0.00 0.01 0.00100 0.00 0.00 0.00 0.00 0.01 0.02 0.01 0.01 0.03 0.14 0.00 0.01 0.01200 0.00 0.00 0.00 0.00 0.04 0.05 0.03 0.04 0.06 0.36 0.00 0.02 0.03500 0.00 0.00 0.01 0.01 0.09 0.09 0.08 0.09 0.10 0.75 0.00 0.01 0.061000 0.01 0.01 0.01 0.02 0.15 0.23 0.14 0.16 0.19 1.01 0.00 0.02 0.112000 0.01 0.02 0.01 0.03 0.17 0.38 0.18 0.23 0.31 0.81 0.00 0.01 0.185000 0.02 0.04 0.02 0.06 0.17 1.75 0.33 0.66 2.55 1.46 0.00 0.02 0.2410000 0.04 0.08 0.02 0.10 0.28 5.89 0.48 1.64 | | 0.01 0.68 0.35
Table 4: Average cpu times for combo, in HP9000-735/99 secondsunc. weakly cor. str.cor. inv.str.cor. alm.str.cor. subset-sum unc.sim.w.n n R 103 104 103 104 103 104 103 104 103 104 103 104 10550 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.03 0.00100 0.00 0.00 0.00 0.00 0.01 0.03 0.01 0.03 0.01 0.02 0.00 0.02 0.00200 0.00 0.00 0.00 0.00 0.02 0.04 0.02 0.04 0.02 0.04 0.00 0.03 0.01500 0.00 0.00 0.00 0.00 0.02 0.05 0.02 0.04 0.02 0.02 0.00 0.03 0.031000 0.00 0.00 0.01 0.01 0.02 0.07 0.03 0.06 0.03 0.02 0.00 0.03 0.062000 0.00 0.00 0.00 0.01 0.03 0.05 0.04 0.06 0.03 0.03 0.00 0.03 0.075000 0.01 0.01 0.01 0.03 0.04 0.05 0.04 0.06 0.04 0.04 0.00 0.03 0.1210000 0.01 0.02 0.01 0.04 0.08 0.07 0.08 0.09 0.07 0.08 0.01 0.02 0.128
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