New trends in exact algorithms
for the 0-1 knapsack problem

Silvano Martello', David Pisinger?, Paolo Toth'
IDEIS, Univ. of Bologna, Viale Risorgimento 2, Bologna
2DIKU, Univ. of Copenhagen, Universitetsparken 1, Copenhagen

April 18, 1997

Abstract

While the 1980s were focused on the solution of large sized “easy” knapsack prob-
lems, this decade has brought several new algorithms, which are able to solve “hard”
large sized instances. We will give an overview of the recent techniques for solving
hard knapsack problems, with special emphasis on the addition of cardinality con-
straints, dynamic programming, and rudimentary divisibility. Computational results,
comparing all recent algorithms, are presented.

1 Introduction

We consider the classical 0-1 Knapsack Problem (KP) where a subset of n given items has
to be packed in a knapsack of capacity c¢. Each item has a profit p; and a weight w; and
the problem is to select a subset of the items whose total weight does not exceed ¢ and
whose total profit is a maximum. We assume, without loss of generality, that all input data
are positive integers. Introducing the binary decision variables z;, with z; = 1 if item j is
selected, and x; = 0 otherwise, we get the ILP-model:

n
maximize z = ijxj
=1

n
subject to Y w;z; < ¢ (1)
=1

z; € {0,1}, jeA{l,...,n}.

OTechnical Report 97/10, DIKU, University of Copenhagen, Denmark

The problem, which is A/P-hard, has been thoroughly studied in the last few decades and
several exact algorithms for its solution can be found in the literature. If we were to give a
brief description of the state of the art, we could say that

i) Problems with exponentially growing coefficients cannot be solved efficiently, and we
should not expect them to be solved efficiently due to the A/P-hardness of the problem.

ii) Problems with bounded coefficients can however be solved very fast if the LP and the
ILP solutions are sufficiently close to each other. This applies to instance types such
as the so-called uncorrelated, weakly correlated and subset-sum problems.

iii) Problems with bounded coefficients where the LP solutions differ considerably from
the ILP solutions are still difficult to solve by means of non-specialized algorithms.
Among these instances we have the so-called strongly correlated problems and different
variants. Besides, non-fill problems such as the even-odd problems are difficult to solve.

In the following we will give a historical overview of the different approaches, which have
gradually extended the classes of instances that can be solved in a reasonably short time.

2 Basic branch-and-bound algorithms

Algorithms for knapsack problems are mainly based on two approaches: branch-and-bound
and dynamic programming. The actual performance of an algorithm, however, strictly
depends on the way tight upper bounds are applied.

The first upper bound for KP, based on a continuous relaxation, was presented by Dantzig
[3] in the mid 1950s. It is obtained by sorting the items so that

Y2 Pj+1 .
—_ > = j=1,...,n—1 2
oz) @)

and determining the critical variable xs through
$:= min {z DY wy > c} (3)

The continuous upper bound for KP is then

s—1 s—1
{m+&—2%yﬂ (4)
j=1 j=1 Ws
and the corresponding Dantzig integer solution is x; = 1 for j < s and z; = 0 for j > s.
No better bounds were presented in the following two decades until Martello and Toth [6]
presented a tighter bound by imposing integrality on the critical variable. Since then, several

other bounds have been presented based on Lagrangian relaxation, partial enumeration,
construction of valid additional constraints, and different relaxations of the latter.

The first branch-and-bound algorithms for KP appeared in the early 1970s. Among the
most successful we should mention the algorithms by: Horowitz and Sahni [5], Nauss [11]
and Martello and Toth [6].

These algorithms are all based on a depth-first enumeration, in order to limit the space
consumption. The branching strategy consists of selecting an item j and generating two
children nodes through conditions z; = 1 and x; = 0. The items are examined in the
order given by (2), and the branching node is selected as the (unique) active node generated
by a condition z;, = 1 or, if there is no such node, as the last active node generated by
a condition x; = 0. Upper bounds for these algorithms are derived from some kind of
continuous relaxation of the currently induced subproblem.

A comparison of the algorithms, presented in Martello and Toth [8], shows that they
perform well for small sized “easy” instances.

3 Core algorithms

In order to solve large-sized instances, Balas and Zemel [1] proposed “guessing” the optimal
values of several decision variables, and focus the enumeration on the most interesting ones.
This subset of items, known as the core of the problem, is then solved either by heuristic
techniques or by one of the above exact branch-and-bound methods. The core C' could be
determined by finding the critical variable, x,, and setting C = {s —d,...,s,...,s+d} in
the sequence given by (2), for a prefixed value §. In order to avoid explicit sorting, Balas
and Zemel give a procedure based on partitioning techniques that determines both z; and
the core in O(n) time.

All variables preceding the core are fixed to 1, while all those following it are fixed to 0
(i.e., for each item j not in the core, z; is set to one, if p;/w; > ps/ws, or to 0 otherwise).
The solution of the core problem yields a lower bound which in many cases corresponds to
the optimal solution value. In order to prove optimality of the solution found, either an
upper bound having the same value is determined, or reduction procedures are used to prove
that items not in the core should have the above specific value. When optimality cannot be
proved, items which were not fixed to a specific value by reduction are finally enumerated
to optimality.

Effective algorithms based on a core problem were presented by Balas and Zemel [1],
Fayard and Plateau [4] and Martello and Toth [7]. A computational comparison of core
algorithms presented in [8] shows that the mt2 algorithm by Martello and Toth gives the
best performance.

A final refinement of the core approach was presented in Pisinger [12], where an ezpanding
core was used to ensure that the core size automatically adapts to the hardness of the
problem. The algorithm starts from the Dantzig integer solution, and at each iteration it
either inserts a new item or removes an item, depending on whether the weight sum w of
the chosen items is less than ¢ or greater than c¢. Initially the core C' contains only item s,

but whenever a new item j ¢ C'is considered, the core is automatically expanded by sorting
some more items. Simple bounding rules obtained from linear relaxation were used to limit
the search. With a core C' = {a,...,b} an upper bound is found to be

(5)

P+ (¢ —W)ppr1/wpa if W<,
P+ (c—W)po—1/we—1 if W> e,

when the currently chosen items have profit sum p and weight sum w. The algorithm
backtracks whenever |u(p,w)| < z, where z is the incumbent solution value.

The best core-algorithms can solve “easy” instances with more than 100,000 items in less
than a second. The “hard” instances can, however, only be solved for tiny instances.

4 Dynamic programming algorithms

Dynamic programming based on the Bellman recursion [2] is generally not an effective way
of solving KP, since the space consumption is very large, and the worst-case and best-case
computational efforts are generally the same.

Pisinger [13] presented a dynamic programming recursion, minknap, which starts from
the Dantzig integer solution and at each iteration either inserts or removes an item. Thus
assuming that f,,(¢) fora < s, b > s—1, 0 < ¢é < 2¢ is an optimal solution to the core
problem:

D+ Y DT
fa,b(é) = max ?;% w; + Z?:a W;T; < 6, , (6)
z; € {0,1} for j=a,...,b

we may use the following recursion for the enumeration

fap-1(6) if b>s,¢>0
o fap1(E—wp)+ppy if b>s, ¢—wy >0
fos(€) = max far1,(¢) if a<s, ¢<2c @)
forip(€+wy) —po if a<s, ¢+w, <2c

Assuming that p, w are the profit and weight sums of the Dantzig integer solution, we may
initially set fs,_1(¢) = —oo for ¢ = 0,...,w — 1 and f;,1(¢) = p for ¢ = w,...,2¢. An
optimal solution to KP is then given by f ,(c) by alternatively increasing b and decreasing a.
Upper bounds similar to (5) are used to fathom states in the recursion, and the enumeration
is terminated as soon as optimality of the current incumbent solution can be proved. This
implies that a minimal core is enumerated, and although the worst-case time complexity is
O(nc) as for the Bellman recursion, most instances can be solved without enumerating too
many variables. In addition, since forward recursions are used in dynamic programming,
very few states are generated.

5 Tighter bounds

Martello and Toth [9] presented an effective branch-and-bound algorithm, mth, where ad-
ditional constraints on the minimum and maximum cardinality of an optimal solution are
generated from extended covers.

The idea is to determine a value K such that

Sa <K ®)

in any optimal solution (z) to KP. We can then obtain an equivalent ILP model, KP=, by
adding (8) to (1). Whenever the continuous solution to KP violates (8) (i.e., the critical
variable is s > K, with x; > 0), a better upper bound is given by the solution value of the
continuous relaxation of KP<. This solution is efficiently determined, without using an LP
solver, by Lagrangian relaxing (8) into the objective function. Using a multiplier A > 0 and
relaxing the integrality constraints, one gets the problem given by

n n n
maximize ij:cj - A Z zj— K| = Zﬁxj + A\K
j=1 j=1 j=1
: g (9)
subject to Z w;x; < c,
7j=1
OSI‘JS]., j:]-a"'ana

which is a continuous KP. The optimal multipliers A may be derived using a specialized
binary search method, since Martello and Toth prove some monotonicity properties of the
above problem.

When the continuous solution to KP does not violate (8) a minimum cardinality con-
straint -7, x; > k is imposed on the problem, and the relaxation is solved in a similar
way.

The addition of cardinality constraints seems to be an efficient technique for closing the
gap between the LP and ILP optimum, but the bounds are relatively expensive to derive. In
order to obtain good performance also for “easy” instances, the mth algorithm first tries to
solve the problem by means of the simpler mt2 approach, and only if this does not succeed
within a given time limit, the more expensive bounds are derived. Dynamic programming
applied to the last items was also used in order to save time in the enumeration, when
searching for some items to fill the residual capacity.

6 A combined approach

Martello, Pisinger and Toth [10] proposed to combine dynamic programming with tight
bounds, obtaining an algorithm, combo, with time complexity O(nc). In general the worst-
case bound is very pessimistic since most instances are solved very quickly due to the tight

bounds. Upper bounds are derived by imposing cardinality constraints of the form (8),
but these are surrogate relaxed with the original capacity constraint leading to a new 0-1
Knapsack Problem. Using a multiplier ¢ > 0 one gets the problem

maximize ijxj
7=1
n
subject to Y (wj +0)z; < c+oK (10)
=1
z;€{0,1}, j=1,...,n.

A good choice of multiplier ¢ is found by means of binary search in a similar way as in
Martello and Toth [9]. The new problem (10) tends to be much easier to solve, since con-
tinuous bounds for this problem are generally tight. An optimal solution to the transformed
problem yields an upper bound on the original problem, but if the cardinality of the solution
found is correct, i.e. if 37, z; < K in the optimal solution to (10), one also obtains a feasible
solution to the original problem, thus solving the problem to optimality.

In order to solve some special non-filling knapsack instances, rudimentary divisibility
arguments are used to decrease the capacity whenever possible. Let d be the greatest common
divisor of the weights wy,...,w,. If d # 1, the capacity may be decreased to ¢ = d|c/d].
Deriving d can be done in O(nlogmax{w;}) time using Euclid’s algorithm.

The enumeration part of combo is based on the dynamic programming recursion (7), but
initially a core is chosen as a collection of items which fit together well with respect to some
heuristic algorithms. Moreover, when the number of states in the dynamic programming
gets too high, the lower bound is improved by pairing states with items not in the core. This
usually results in a tightening of the lower bound and thus in additional fathoming of states.

7 Computational experiments

We have investigated how the most effective algorithms behave for different instance types
and data ranges. Seven types of randomly generated data instances are considered as
sketched below (with, in brackets, the abbreviations used in the tables). Each type is tested
with data range R = 1000 and 10 000 for different problem sizes n.

e Uncorrelated instances (unc.): the weights w; and the profits p; are uniformly random
distributed in [1, R].

o Weakly correlated instances (weakly cor.): the weights w; are distributed in [1, R], and
the profits p; in [w; — R/10,w; + R/10] such that p; > 1.

e Strongly correlated instances (str.cor.): the weights w; are distributed in [1, R], and
the profits are set to p; = w; + R/10.

o Inverse strongly correlated instances (inv.str.cor.): the profits p,; are distributed in
[1, R], and the weights are set to w; = p; + R/10.

o Almost strongly correlated instances (alm.str.cor.): the weights w; are distributed in
[1, R], and the profits p; in [w; + R/10 — R/500, w; + R/10 + R/500].

o Subset-sum instances (subset-sum): the weights w; are randomly distributed in [1, R]
and the profits are set to p; = w;.

o Uncorrelated instances with similar weights (unc.sim.w.): the weights w; are distributed
in [100000, 100100] and the profits p; in [1, 1000].

For instance h in a series of H = 100 instances, the capacity is chosen as ¢ = HLH > Wy
All tests were run on a HP9000-735/99, and a time limit of 5 hours was put on each series
of 100 instances.

Tables 1 to 4 compare the average solution times of mt2, minknap, mth and combo. The
oldest of the codes, mt2, is not able to solve the “hard” instances, but it performs well
for uncorrelated, weakly correlated and subset-sum instances. The minknap algorithm has
overall stable behavior due to the pseudo-polynomial time bound, but the hard problems
demand tens or hundreds of seconds to be solved. On the other hand, the solution times have
a very stable growth for increasing data ranges R and problem sizes n. The mth algorithm can
in most cases solve the instances faster than minknap due to the tighter upper bounds. There
are, however, a few anomalous occurrences for the almost strongly correlated instances where
the cardinality bounds do not work efficiently, and thus a very large enumeration takes place.
The combined approach in combo is however clearly superior to all the previous approaches,
being able to solve all the instances in less than 0.2 seconds. The solution times are very
stable, and in nearly all instances combo is faster than all the previous approaches.

Table 1: Average cpu times for mt2, in HP9000-735/99 seconds

unc. weakly cor. str.cor. inv.str.cor. | alm.str.cor. | subset-sum | unc.sim.w.
n\R| 10> 10*| 10® 10* 103 10* | 10> 10* | 103 104 | 10® 10* 10°
50 | 0.00 0.00 | 0.00 0.00| 0.06 0.04|0.01 0.02]0.03 0.03|0.00 0.01 0.02
100 | 0.00 0.00 | 0.00 0.00 | 26.26 24.78 | 4.44 — | 5.90 16.02 | 0.00 0.01 3.28
200 | 0.00 0.00 | 0.00 0.00 — — — — — — | 0.00 0.02 —
500 | 0.00 0.00 | 0.01 0.01 — — — — — — | 0.00 0.02 —
1000 | 0.00 0.01 | 0.01 0.02 — — — — — — | 0.00 0.02 —
2000 | 0.01 0.01 | 0.01 0.04 — — — — — — | 0.00 0.02 —
5000 | 0.01 0.02 | 0.01 0.08 — — — — — — 1 0.01 0.02 —
10000 | 0.02 0.05 | 0.02 0.13 — — — — — — | 0.01 0.03 —

Table 2: Average cpu times for minknap, in HP9000-735/99 seconds
unc. weakly cor. str.cor. inv.str.cor. alm.str.cor. | subset-sum | unc.sim.w.
n\ R | 10> 10*| 10® 10*| 103 10* | 10° 10* | 10° 10 | 102 10* 10°
50 | 0.00 0.00 | 0.00 0.00 | 0.00 0.02 | 0.00 0.02 | 0.00 0.01 | 0.00 0.03 0.00
100 | 0.00 0.00 | 0.00 0.00 | 0.02 0.17 | 0.01 0.18 | 0.01 0.03 | 0.00 0.03 0.00
200 | 0.00 0.00 | 0.00 0.00 | 0.05 0.82 | 0.04 0.65 | 0.04 0.15 | 0.00 0.03 0.01
500 | 0.00 0.00 | 0.00 0.00 | 0.20 2.52 1 0.19 280 | 0.16 0.88 | 0.00 0.03 0.03
1000 | 0.00 0.00 | 0.00 0.01 | 0.48 8.30 | 0.45 7.59 | 0.37 3.18 | 0.00 0.03 0.10
2000 | 0.00 0.00 | 0.00 0.01] 096 1317|109 14.16 | 0.72 857 | 0.00 0.03 0.35
5000 | 0.00 0.01 | 0.01 0.02|3.73 54.11 | 3.20 54.66 | 1.63 26.57 | 0.01 0.04 1.32
10000 | 0.01 0.01 | 0.01 0.03 | 8.18 11541 | 6.57 122.84 | 1.83 48.33 | 0.01 0.04 1.57
Table 3: Average cpu times for mth, in HP9000-735/99 seconds
unc. weakly cor. str.cor. inv.str.cor. | alm.str.cor. | subset-sum | unc.sim.w.
n\R| 10® 10*| 10® 10*| 10® 10* | 10® 10* | 10® 10* | 10® 10* 10°
50 | 0.00 0.00 | 0.00 0.00 | 0.01 0.01|0.01 0.01]|0.01 0.03]|0.00 0.01 0.00
100 | 0.00 0.00 | 0.00 0.00 | 0.01 0.02 | 0.01 0.01|0.03 0.14] 0.00 0.01 0.01
200 | 0.00 0.00 | 0.00 0.00 | 0.04 0.05|0.03 0.04 | 0.06 0.36 | 0.00 0.02 0.03
500 | 0.00 0.00 | 0.01 0.01]0.09 0.09 |0.08 0.09]|0.10 0.75|0.00 0.01 0.06
1000 | 0.01 0.01 | 0.01 0.02]0.15 0.23|0.14 0.16 | 0.19 1.01 | 0.00 0.02 0.11
2000 | 0.01 0.02 | 0.01 0.03]0.17 0.38 | 0.18 0.23 | 0.31 0.81 | 0.00 0.01 0.18
5000 | 0.02 0.04 | 0.02 0.06 | 0.17 1.75 | 0.33 0.66 | 2.55 1.46 | 0.00 0.02 0.24
10000 | 0.04 0.08 | 0.02 0.10 | 0.28 5.89 | 0.48 1.64 — — | 0.01 0.68 0.35
Table 4: Average cpu times for combo, in HP9000-735/99 seconds
unc. weakly cor. str.cor. inv.str.cor. | alm.str.cor. | subset-sum | unc.sim.w.
n\R| 10> 10*| 10® 10*| 10® 10*| 10® 10*| 10® 10* | 10® 10* 10°
50 | 0.00 0.00 | 0.00 0.00 | 0.00 0.01|0.00 0.01]0.00 0.00|0.00 0.03 0.00
100 | 0.00 0.00 | 0.00 0.00| 0.01 0.03 | 0.01 0.03|0.01 0.02]|0.00 0.02 0.00
200 | 0.00 0.00 | 0.00 0.00 | 0.02 0.04 | 0.02 0.04 | 0.02 0.04 | 0.00 0.03 0.01
500 | 0.00 0.00 | 0.00 0.00 | 0.02 0.05|0.02 0.04 | 0.02 0.02|0.00 0.03 0.03
1000 | 0.00 0.00 | 0.01 0.01 | 0.02 0.07 | 0.03 0.06 | 0.03 0.02| 0.00 0.03 0.06
2000 | 0.00 0.00 | 0.00 0.01 | 0.03 0.05 | 0.04 0.06 | 0.03 0.03| 0.00 0.03 0.07
5000 | 0.01 0.01 | 0.01 0.03 | 0.04 0.05|0.04 0.06 | 0.04 0.04|0.00 0.03 0.12
10000 | 0.01 0.02 | 0.01 0.04 | 0.08 0.07 | 0.08 0.09 | 0.07 0.08 | 0.01 0.02 0.12

8 Conclusions

The current decade has considerably extended the classes of knapsack problems which can
be effectively solved. New tight bounds have been derived from cardinality constraints,
and better dynamic programming recursions have been developed, which makes it possible
to terminate the enumeration before all the items have been considered. Combining tight
bounds and dynamic programming leads to a good trade-off between worst-case and best-
case behavior. Future research will show whether this development may be continued so as
to be able to solve all instances with bounded weights in a reasonable amount of time.

Acknowledgements

The first and third author acknowledge Ministero dell’Universita e della Ricerca Scientifica e
Tecnologica (MURST) and Consiglio Nazionale delle Ricerche (CNR) for the support of this
project. The second author would like to thank the EC Network DIMANET for supporting
the research by European Research Fellowship No. ERBCHRXCT-94 0429.

References

[1] E.Balas and E.Zemel (1980), “An algorithm for large zero-one knapsack problems”,
Operations Research, 28, 1130-1154.

2] R.E.Bellman (1957), Dynamic programming, Princeton University Press, Princeton,
NJ.

3] G.B.Dantzig (1957), “Discrete variable extremum problems”, Operations Research, 5,
266-277.

[4] D.Fayard and G.Plateau (1982), “An Algorithm for the solution of the 0-1 knapsack
problem”, Computing, 28, 269-287.

[5] E.Horowitz and S. Sahni (1974), “Computing partitions with applications to the knap-
sack problem”, Journal of ACM, 21, 277-292.

(6] S.Martello and P. Toth (1977), “An upper bound for the zero-one knapsack problem and
a branch and bound algorithm”, Furopean Journal of Operational Research, 1, 169-175.

(7] S.Martello and P. Toth (1988), “A new algorithm for the 0-1 knapsack problem”, Man-
agement Science, 34, 633—644.

[8] S.Martello and P.Toth (1990), Knapsack problems: Algorithms and computer imple-
mentations, Wiley, Chichester, England.

9]

S. Martello and P. Toth (1993), “Upper bounds and algorithms for hard 0-1 knapsack
problems”, Research Report DEIS, University of Bologna, OR/93/04. To appear in
Operations Research.

S. Martello, D. Pisinger and P. Toth (1997), “Dynamic programming and tight bounds
for the 0-1 knapsack problem”, Research Report DEIS, University of Bologna, OR/97/1.

R. M. Nauss (1976), “An efficient algorithm for the 0-1 knapsack problem”, Management
Science, 23, 27-31.

D. Pisinger (1995), “An expanding-core algorithm for the exact 0-1 knapsack problem,”
FEuropean Journal of Operational Research, 87, 175-187.

D. Pisinger (1994), “A minimal algorithm for the 0-1 knapsack problem”, DIKU, Uni-
versity of Copenhagen, Denmark, Report 94/23. To appear in Operations Research.

10

